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ABSTRACT

Wave propagation in periodic structures has been studied for centuries; for example,
Newton derived the velocity of sound based on a linear lattice. Recently, advanced
manufacturing techniques have led to the fabrication of geometrically complex archi-
tected materials with acoustic properties unattainable by their constituent materials.
Such rationally designed structures are often called acoustic metamaterials and they
can be engineered to transmit, block, amplify, or redirect acoustic waves. Subwave-
length building blocks, typically periodic (but not necessarily so), can be assembled
into effectively continuous materials to manipulate dispersive properties of vibra-
tional waves in ways that differ substantially in conventional media. This thesis
investigates rationally designed acoustic metamaterials, ranging from 1D to 3D,
and how acoustic wave propagation can be controlled by these artificially structured
composite materials for ultrasound-related biomedical applications.

I first explore 1D wave propagation in acoustic metamaterials to study the basic
mechanics and relevant analysis skills. Bio-inspired helical mechanical metama-
terials are designed and their normal modes are investigated. I demonstrate the
ability to vary the acoustic properties of the helical metamaterials by perturbing the
geometrical structure and mass distribution. By locally adding eccentric and denser
elements in the unit cells, I change the moment of inertia of the system and introduce
centro-asymmetry. This allows me to control the degree of mode coupling and the
width of subwavelength band gaps in the dispersion relation, which are the product
of enhanced local resonance hybridization.

Then I study 2D wave propagation in microlattice acoustic metamaterials for ultra-
sound manipulation. When coupled with pressure waves in the surrounding fluid,
the dynamic behavior of microlattices in the long wavelength limit can be explained
in the context of Biot’s theory of poroelasticity. I exploit elastoacoustic wave prop-
agation within 3D-printed polymeric microlattices to design a gradient refractive
index lens for underwater wave focusing. A modified Luneburg lens index profile
adapted for ultrasonic wave lensing is demonstrated via the finite element method
and underwater testing, showcasing a computationally efficient poroelasticity-based
design approach that enables accelerated design of acoustic wave manipulation
devices.

Lastly, I show that tailorable 3D wave propagation can be achieved based on the
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findings from the previous chapters. Functional ultrasound imaging enables sen-
sitive, high-resolution imaging of neural activity in freely behaving animals and
human patients. However, the skull acts as an aberrant and absorbing layer for
sound waves, leading to most functional ultrasound experiments being conducted
after skull removal. A microscale 2-photon polymerization technique is adopted
to fabricate a conformal acoustic window with a high stiffness-to-density ratio and
sonotransparency. Long-term biocompatibility and lasting signal sensitivity are
demonstrated over a long period of time (> 4 months) by conducting ultrasound
imaging in mouse models implanted with the metamaterial skull prosthesis.
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NOMENCLATURE

Bouligand. A layered and rotated microstructure composed of multiple lamellae,
which is frequently found in naturally designed materials. Adjacent lamellae
are progressively rotated with respect to their neighbors. It is found in various
natural structures, for example, inside the exoskeleton of crustacean.

Bregma. The point or area of the skull where the sagittal and coronal sutures joining
the parietal and frontal bones come together.

Darcy’s law. An equation that describes the flow of a fluid through a porous
medium, which is analogous to Ohm’s law in electrostatics. It describes
the linear relation between the volume flow rate of the fluid and the pressure
difference via the hydraulic conductivity.

Dispersion. The phenomenon in which the phase velocity of a wave depends on
its frequency. A medium having this common property may be termed a
dispersive medium.

Finite element method (FEM). A method for numerically solving differential equa-
tions arising in engineering and mathematical modeling. Studying or ana-
lyzing a phenomenon with FEM is often referred to as finite element analysis
(FEA).

Representative volume element (RVE). The smallest volume over which a mea-
surement can be made that will yield a value representative of the whole. In
the case of periodic materials, one simply chooses a periodic unit cell whose
property of interest can include mechanical properties such as elastic moduli.

Ultrasound. Sound waves with frequencies higher than the upper audible limit of
human hearing. This limit varies from person to person and is approximately
20 kilohertz (20,000 hertz) in healthy young adults. Ultrasound devices
operate with frequencies from 20 kHz up to several gigahertz.
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C h a p t e r 1

INTRODUCTION

1.1 Research objectives
This thesis discusses the mechanics and design of acoustic metamaterials, materials
whose dynamic characteristics are derived geometrically, either from the periodic-
ity of a unit element or from the periodic arrangement of resonant features at the
subwavelength scale. These materials have the ability to tailor their wave properties,
offering new opportunities to create effective media that outperform conventional
materials. The main goals of this work are to (1) explore, study, and design acoustic
metamaterials with respect to acoustic waves propagating through them in increasing
dimensions, (2) characterize their unique acoustic properties using various analy-
sis methods, and (3) model, fabricate, and analyze acoustic metamaterials using
advanced manufacturing technologies for biomedical applications. The behavior
of these materials is characterized using the finite element method, and the predic-
tions are validated through experimental measurements. Additionally, I demonstrate
that acoustic metamaterials have the potential to be used for the manipulation of
ultrasound waves, specifically for lensing and brain imaging.

1.2 Research motivation
Architected materials with unprecedented acoustic characteristics
Acoustics is a study of sound and vibrational waves and their propagation. These
types of waves are present in many aspects of our daily lives, including human
verbal communication, structural vibration [1], and seismic waves [2, 3]. Acoustics
has been extensively studied for centuries from a civil engineering perspective,
as it plays a crucial role in developing non-destructive methods for identifying
defects in skyscrapers [4] and designing building components that can effectively
withstand earthquakes [3, 5]. Acoustic waves with frequencies beyond the range of
human hearing are called ultrasound waves, and they are frequently used in various
therapeutic ultrasound technologies for medicine and industry [6, 7]. However,
it can be challenging to control the propagation of ultrasound waves, since they
have high frequency, between 20 kHz and 40 MHz, which can be easily attenuated
or distorted by the medium. Moreover, ultrasound waves with small wavelengths
effectively interact with microscale scatterers or resonators that require advanced
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manufacturing technologies to fabricate. The motivation for the study of acoustic
metamaterials is driven by the desire to develop new materials that can control the
way that sound waves propagate through them.

Acoustic metamaterials are artificially created structures for controlling sound prop-
agation, and they consist of either periodically tessellated unit cells, or arrays of
subwavelength resonators that respond to specific frequencies, or both. These meta-
materials are made up of small "meta-atoms" that behave like a continuous material
with unusual properties when they are combined in large quantities. The study of
waves propagating through periodic structures has a long history, but it was not until
the development of photonic [8, 9] and phononic crystals [10–12] that researchers
began to fully understand the potential for using engineered structures to control
wave properties. Research in this area has expanded rapidly as it became possi-
ble to create structures using relatively simple building blocks on a subwavelength
scale [10, 13–15]. These acoustic metamaterials can behave similarly to continuous
materials, but have properties that differ significantly from those of conventional
materials. Periodicity in acoustic materials can influence the way that waves prop-
agate through them in a number of ways by affecting its stiffness [16–18] and mass
[19–22], which in turn can affect the way that waves propagate through it. In addi-
tion, the periodicity of the microstructure can cause the waves to scatter and interfere
with itself in a way that modifies the overall wave behavior [23–25].

Research on acoustic metamaterials focuses on the study of materials and/or geome-
tries that can be designed to exhibit specific acoustic properties, such as the ability
to guide [26–28], focus [11, 29, 30], absorb [31–34], and reflect [35–37] sound
waves, or negative refraction [13, 26, 38]. This research may involve theoretical
modeling, computational simulations, and experimental testing to understand the
properties and potential applications of these materials. Some of the areas of study
within the research on acoustic metamaterials include the design of metamaterials
with specific wave propagation properties, the development of new manufacturing
techniques for producing metamaterials [39–41], and the exploration of potential
applications for these materials in fields, including, but not limited to noise control
[42], sensors [43], non-destructive testing [1, 44, 45], ultrasound imaging [46, 47],
medical devices [48, 49], drug delivery [50, 51], and cancer therapy [52–54].
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Current obstacles in ultrasound industry and research
Ultrasound is widely used in medical industry and biomedical research due to its
various advantages [7, 55–64]. It is a non-invasive and portable imaging modality,
which allows for quick and easy imaging in various settings. The real-time imaging
capabilities of ultrasound make it useful for imaging organs that move, such as
the heart and blood vessels. Additionally, it is relatively inexpensive compared to
other imaging modalities such as CT and MRI. It has a wide range of applications
including diagnostic imaging [55, 60], guiding procedures [59], monitoring and
therapeutic applications [57]. Furthermore, it is a relatively safe imaging modality
as it does not involve ionizing radiation and has no known long-term risks. The
combination of these characteristics make ultrasound a valuable tool for the medical
industry and for biomedical research.

The ultrasound industry and research is currently facing a number of obstacles. For
advanced treatments and applications, phased-array transducer must be adopted as
they enable the precise control of the wavefront, however, its widespread adoption
and usage can be restricted by its cost [65]. Another obstacle of ultrasound is
the limited penetration depth, which can restrict its utility in certain applications
such as internal organs imaging [66]. Additionally, ultrasound images tend to have
lower resolution than other imaging modalities, making it harder to detect small
abnormalities or structures [67, 68]. The diagnostic accuracy of ultrasound is
limited for cases such as small tumors, lung or heart conditions, leading to false
positive or negative results. Furthermore, ultrasound images are often qualitative
rather than quantitative, therefore certain physiological parameters such as blood
flow cannot be accurately measured. Another limitation is the safety concerns that
arise from excessive exposure to high-intensity ultrasound waves, which can lead
to heating and tissue damage [69]. Finally, ultrasound waves do not penetrate well
through air, limiting their use for lung imaging [70].

Overcoming the obstacles using acoustic metamaterials
Exceptional and controllable acoustic properties of acoustic metamaterials can help
overcome some of the current obstacles in the ultrasound industry. Acoustic meta-
materials can be utilized in various ways to improve several aspects of ultrasound
imaging, by focusing plane pressure waves, and by enhancing the transmission,
resolution, and diagnostic accuracy [71]. For example, the metamaterials can be
engineered to focus and direct ultrasound waves by either controlling the speed or
the phase of the waves. This will make ultrasound equipment simpler and more



4

cost-effective by achieving the focusing capability without the need of expensive
phased array transducers [46, 72, 73]. Moreover, ultrasound wave propagation can
be improved by acoustic metamaterials to enhance penetration through air, bio-
logical tissue, or even aberrating layers by calculating and offsetting the expected
attenuation or reflecting [48, 51, 74–76]. Traditional ultrasound systems rely on
the transmission and reflection of sound waves through tissue to generate images,
but the resolution of these images can be limited by the properties of the tissue
and the size of the ultrasound transducer [77]. Acoustic metamaterials can improve
ultrasound imaging by allowing for super-resolution imaging. This is achieved by
reducing the intensity of ultrasound waves and increasing the contrast resolution to
the subwavelength level. [44, 78, 79]. Last but not least, acoustic metamaterials
can also make it possible to deliver drugs to previously inaccessible locations [50,
51, 80], and improve cancer therapy through the use of therapeutic ultrasound for
medical treatment [47, 52–54].

1.3 Research approach, methods, and challenges
Research Approach
In this thesis, we implement three research approaches to corroborate each other’s
findings. Fist, we build a finite element model to design the metamaterials and
estimate their acoustic behaviors. Among various designs with their distinctive
dynamic characteristics, ones with interesting aspects with realizable geometrical
and materialistic configuration are chosen. Then, we construct analytical form of the
problem that describes basic acoustic behaviors, mainly in the lower frequency range
of the dispersion curves assuming the long-wave approximation. Lastly, we fabricate
the finite-sized metamaterial samples and measure their transmission coefficients or
quasi-static properties. The experimental results are analyzed and compared to the
simulation results.

Methods
To solve the problem analytically, we construct characteristic equations of the system
from the equations of motion and the force balance equation. The dispersion curves
in the irreducible Brillouin zone are numerically derived from the characteristic
equations by sweeping the input frequency range using MATLAB.

A finite element method is performed via a commercial software (COMSOL Multi-
physics). We start by building the most basic volume element, i.e., unit cell, of the
structure that can represent the whole system by tesselation. Then, we feed mate-
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rial inputs and apply initial or boundary conditions based on the problem settings.
For example, we impose Bloch-Floquet periodic boundary conditions to assume
infinitely periodic unit cells in certain directions. The mesh for the finite element
model is generated based on the geometry and the input conditions. The study
is chosen based on the physics of the problems we are interested in, for example,
frequency or eigenfrequency study are chosen for dynamic loading conditions.

To validate these analytical and numerical results, experiments are conducted mainly
for mechanical characterization, including quasi-static compression tests or trans-
mission measurements. Geometrically sophisticated samples can be fabricated
using 3D printing, followed by extra machining for fine-tuning if needed. Vibration
measurement set-up includes piezoeletric transducers in Hz to sub-MHz range for
exciting and sending vibration signals, and laser Doppler vibrometer for receiving
and recording the output signals. Underwater measurement set-up has piezoelectric
transducers that are acoustically matched to water, paired with acoustically-matched
hydrophone for picking up the transmitted signal. Arbitrary signals can be gener-
ated and sent by function generators, which are then gathered by an oscilloscope for
the data acquisition and analysis. MATLAB codes are used to operate and control
each equipment and to collect data. Further analysis regarding the experimentally
unachievable geometries or the detailed data unobtainable from the experiments are
solved with more sophisticated finite element analysis.

Challenges
The limitations of the analytical approach is that the characteristic equation formu-
lation for the problems with complex geometries or boundary conditions is nearly
impossible. Only a few geometries can be represented as the ensemble of masses
and springs are very small in number, especially when the problem is in 3D. The
analytical method is used in this thesis to solve the representative behavior of the
model under simplifying assumptions.

The finite element analysis is a powerful and versatile tool that can construct and
solve multidimensional problems with sophisticated geometries. However, the com-
putation power of the processor limits the models that can be dealt with. Even the
simple finite element model consists of thousands of degrees of freedom, and effi-
cient and accelerated solvers were not easily accessible until recently. In addition,
incorrect understanding of the physics and erroneous setting of the initial or bound-
ary conditions of the problems may lead to solutions that is not feasible, so deep
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knowledge of the governing physics is essential for the user to run successful simu-
lations.

Lastly, experimental approach is adopted to validate the analytical or numerical
predictions and demonstrate potential applications. It is a strong tool to convince the
readers of the theoretical work with actual samples and measurements. Nevertheless,
it is not always easy to construct an experimental setup that can best test the samples
due to many reasons, including but not limited to, the choice of materials, structures,
testing methods, or resources. Proper choice of experimental methods is critical for
the experimental data to be trustworthy.

1.4 Chapter outlook
In Chapter 2, I described the basic mechanics of a simple acoustic metamaterial
model. I formulated the equations of motion of simple models, 1-dimensional infi-
nite monoatomic and diatomic chains, and solved their dispersion relations. These
harmonic chain models are composed of masses and springs that are only allowed to
move in a single axis. By calculating the dispersion curves in their irreducible Bril-
louin zone, I derived some of the essential physical quantities including the group
and phase velocities and band gap. I also briefly introduced more complicated
acoustic metamaterials in 2D and 3D as well.

In Chapter 3, I studied 1D wave propagation in acoustic metamaterials to under-
stand the mode shapes and their hybridization for the analysis of the dispersion
curve. Acoustic metamaterials with chirality, referred to as helical metamaterials
(HMMs), showed unique acoustic characteristics arising from their geometry. I
designed the metamaterials’ geometry to accommodate varying centro-asymmetry
with uneven distribution of denser masses. I examined the corresponding disper-
sion curves, which revealed increased mode coupling and subwavelength band gap
formation with greater centro-asymmetry. I experimentally validated the acoustic
characteristics of the HMMs by measuring the transmission coefficients.

In Chapter 4, I investigated 2D wave propagation in acoustic metamaterials to un-
derstand how to effectively control the direction of wave propagation, specifically
ultrasound, and identified the key factors that determined the success of this control.
To achieve this, I studied the characteristics of water-saturated polymeric microlat-
tices in the context of Biot theory and leveraged my findings to realize a water-filled
microlattice GRIN lens. I showed that the traditional Luneburg lens could be ef-
fectively configured as a discretized GRIN lens with a modified index profile for
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underwater wave focusing. I verified my design using a computationally efficient
poroelastic model combined with a pressure acoustics study. I performed underwa-
ter experiments using the 3D-printed GRIN lens, showing matching pressure output
profiles from both experimental and numerical results.

In Chapter 5, I focused on 3D wave propagation in acoustic metamaterials to success-
fully develop a microlattice device for living animals based on the understandings
from previous chapters. I aimed to create metamaterials that could be customized
to replace skull and serve as a protective layer for the brain and a transparent win-
dow for ultrasonic waves. To achieve both quasi-static mechanical robustness and
acoustic transparency in the ultrasonic regime, I designed metamaterials with struc-
tural features in the micrometer scale, arranged in honeycomb plate lattices, which
I fabricated using 2-photon polymerization. The metamaterial cranial window was
designed to be impedance matched with biological tissue, to enable low loss trans-
mission of ultrasonic waves for imaging brain activity in small animals (∼ 15 MHz).
To demonstrate the long-term stability, I performed longitudinal brain imaging ex-
periments in vivo via Doppler ultrasound imaging with visual stimulation.
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C h a p t e r 2

ACOUSTIC METAMATERIALS

2.1 Chapter preamble
Acoustic metamaterials (AMMs) are architected materials with unique acoustic
properties that can control and manipulate the transmission of sound waves. These
materials have the potential to revolutionize a wide range of applications, from noise
reduction and vibration damping to ultrasonic imaging and sound insulation. In this
chapter, we will introduce the basic concepts of acoustic metamaterials, including
their 1D chain models for basic theoretical understanding. We will also explore the
different types and mechanisms of acoustic metamaterials and their manufacturing
techniques.

2.2 1D Mass and Spring System and dispersion relation
To analytically approach AMMs, one can generate simple models consisting of
masses and springs, which represent an unit component and its interaction with
neighboring components [1]. The most basic model would be a 1-dimensional
(1D) chain of masses and springs with identical mass and spring constant. A one-
dimensional monoatomic harmonic crystal is a structure consisting of an infinite
chain of masses, labeled as 𝑀 , that interact with one another through harmonic
springs with a spring constant of 𝐾 . The distance between these masses when they
are at rest is defined as 𝑎 (Fig. 2.1a).

The motion of atom "𝑛" in the absence of external forces can be described by the

Figure 2.1: Monoatomic infinite 1-dimensional mass and spring chain. a,
Schematics of 1d monoatomic chain. b, The dispersion curve of 1D monoatomic
chain in the first Brillouin zone. 𝜔0 is the cutoff frequency, defined as

√︁
𝐾/𝑀 .
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following equation:

𝑀
𝑑2𝑢𝑛

𝑑𝑡2
= 𝐾 (𝑢𝑛+1 − 𝑢𝑛) − 𝐾 (𝑢𝑛 − 𝑢𝑛−1).

The equation mentioned describes the displacement, 𝑢𝑛, of mass "𝑛” relative to its
rest position. The first term on the right-hand side of the equation represents the
force on mass "𝑛" exerted by the spring on its right, while the second term represents
the force exerted by the spring on its left. The behavior of a one-dimensional
monoatomic harmonic crystal can be analyzed by solving this equation:

𝑀
𝑑2𝑢𝑛

𝑑𝑡2
= 𝐾 (𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1).

We look for the solutions to the above equation in the form of propagating waves:

𝑢𝑛 = 𝐴𝑒
𝑖𝑘𝑛𝑎𝑒𝑖𝜔𝑡 ,

where 𝑘 is a wave number and𝜔 is an angular frequency. Upon inserting a harmonic
solution into the equation of motion, we obtain an expression that relates the angular
frequency to the wave number,

𝜔2 = − 𝐾
𝑀

(
𝑒

𝑖𝑘𝑎
2 − 𝑒− 𝑖𝑘𝑎

2

)2
.

By using Euler’s formula and the fact that the angular frequency, 𝜔, is a posi-
tive value, we can derive the dispersion relation for propagating waves in a one-
dimensional harmonic crystal,

𝜔(𝑘) = 𝜔0

���sin 𝑘 𝑎2 ��� .
The upper limit for the angular frequency, 𝜔0, is given by 𝜔0 = 2

√︃
𝐾
𝑀

. In a
monoatomic crystal, the wavelength, 𝜆 = 2𝜋

𝑘
, of waves larger than 2𝑎 is equivalent to

that of waves smaller than 2𝑎, so the dispersion relation only needs to be represented
in the symmetrical interval of 𝑘 ∈

[
− 𝜋
𝑎
, 𝜋
𝑎

]
. This interval is known as the first

Brillouin zone of the one-dimensional monoatomic periodic crystal.

The velocity at which the phase of a wave with wave vector 𝑘 and angular frequency
𝜔 propagates is given by the following equation:

𝑣𝜙 =
𝜔

𝑘
.
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The group velocity is the velocity at which a wave packet, which is a superposition
of propagating waves with different wave numbers over some interval, travels. To
understand this concept, consider the superposition of two waves with angular
frequencies 𝜔1 and 𝜔2, and wave vectors 𝑘1 and 𝑘2. If we set 𝜔1 = 𝜔 − Δ𝜔

2 and
𝜔2 = 𝜔+ Δ𝜔

2 , and 𝑘1 = 𝑘 − Δ𝑘
2 and 𝑘2 = 𝑘 + Δ𝑘

2 , and assume that both waves have the
same amplitude 𝐴, then the superposition of these waves leads to the displacement
field at mass "𝑛":

𝑢𝑠𝑛 = 2𝐴𝑒𝑖𝑘𝑛𝑎𝑒𝑖𝜔𝑡 cos
(
Δ𝑘

2
𝑛𝑎 + Δ𝜔

2
𝑡

)
.

The first part of the right-hand side of the above equation represents a traveling wave
that is modulated by the cosine term, where the latter term represents a beat pulse.
The velocity at which this modulation travels is known as the group velocity, and is
given by the following equation:

𝑣𝑔 =
Δ𝜔

Δ𝑘
.

In the limit of very small differences in wave number and frequency, the group
velocity can be represented as a derivative of the dispersion relation,

𝑣𝑔 =
𝑑𝜔(𝑘)
𝑑𝑘

.

For a one-dimensional harmonic crystal, the group velocity is expressed as 𝑣𝑔 =

𝜔0
𝑎
2 cos 𝑘 𝑎2 .

One can picture the 1D diatomic harmonic crystal with alternating masses as shown
in Fig. 2.2. The equations of motion of two adjacent odd and even atoms are

𝑀1 ¥𝑢2𝑛 = 𝐾 (𝑢2𝑛+1 − 𝑢2𝑛 + 𝑢2𝑛−1),
𝑀2 ¥𝑢2𝑛+1 = 𝐾 (𝑢2𝑛+2 − 𝑢2𝑛+1 + 𝑢2𝑛).

We seek for solutions in the form of propagating waves with different amplitudes
for odd and even atoms, as their masses are different.

𝑢2𝑛 = 𝐴𝑒
𝑖𝜔𝑡𝑒𝑖𝑘2𝑛𝑎,

𝑢2𝑛+1 = 𝐵𝑒𝑖𝜔𝑡𝑒𝑖𝑘 (2𝑛+1)𝑎 .

The set of two linear equations, in terms of 𝐴 and 𝐵, obtained by inserting the
solutions in the form of propagating waves with different amplitudes for odd and
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Figure 2.2: Diatomic infinite 1-dimensional mass and spring chain. a, Schemat-
ics of 1d diatomic chain. b, The dispersion curve of 1D diatomic chain in the first
Brillouin zone.

even atoms into the equations of motion is:

(2𝐾 − 𝑀1𝜔
2)𝐴 − 2𝐾 cos 𝑘𝑎𝐵 = 0,

−2𝐾 cos 𝑘𝑎𝐴 + (2𝐾 − 𝑀1𝜔
2)𝐵 = 0.

To find the nontrivial solutions (i.e., where 𝐴 ≠ 0, 𝐵 ≠ 0) for this set of equations,
we must set the determinant of the matrix composed of the linear coefficients 𝐴 and
𝐵 equal to zero. This is an eigenvalue problem in 𝜔2, and the resulting equation is:�����2𝐾 − 𝑀1𝜔

2 −2𝐾 cos 𝑘𝑎
−2𝐾 cos 𝑘𝑎 2𝐾 − 𝑀2𝜔

2

����� = 0.

Setting 𝜉 = 𝜔2, the above condition takes the form of the quadratic equation:

𝜉2 − 2𝐾
(

1
𝑀1

+ 1
𝑀2

)
𝜉 + 4𝐾2

𝑀1𝑀2
sin2 𝑘𝑎 = 0,

which admits two solutions:

𝜔2 = 𝜉 = 𝐾

(
1
𝑀1

+ 1
𝑀2

)
±

√︄
𝐾2

(
1
𝑀1

+ 1
𝑀2

)2
− 4𝐾2

𝑀1𝑀2
sin2 𝑘𝑎.

The solutions to this equation are periodic in wave number 𝑘 with a period of
𝜋/𝑎. These solutions are depicted in the band structures of Fig. 2.2 over the
interval 𝑘 ∈ [0, 𝜋/2𝑎], which is the smallest interval (also known as the irreducible
Brillouin zone) for representing the band structure. The complete band structure can
be reconstructed by using mirror symmetry with respect to a vertical line passing
through the origin.

The frequencies 𝜔1, 𝜔2, and 𝜔3 are related to the constants 𝐾 , 𝑀1, and 𝑀2 as
follows: 𝜔1 =

√︃
2 𝐾
𝑀1

, 𝜔2 =

√︃
2 𝐾
𝑀2

, and 𝜔3 =

√︃
2𝐾 ( 1

𝑀1
+ 1
𝑀2

). These frequencies
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Figure 2.3: Normal modes of 1D monoatomic and diatomic chains. a, Normal
mode of 1d monoatomic chain. b, First normal mode of 1d diatomic chain. c,
Second normal mode of 1d diatomic chain.

are associated with a band structure, which is divided into two branches for a
one-dimensional diatomic crystal that contains two atoms. The two branches are
separated by a gap in the frequency range [𝜔1, 𝜔2]. This gap, also known as
a forbidden band or band gap, allows for the existence of complex wavenumber
solutions and results in the formation of evanescent waves that decay exponentially.

In a 1D harmonic monoatomic crystal, all of the masses vibrate in sync with one
another in a single normal mode (as shown in Figure 2.3a). This normal mode
can occur at frequencies below the cutoff frequency, 𝜔0. On the other hand, a 1D
diatomic chain can have two normal modes (depicted in Figure 2.3). The acoustic
branch, which occurs at frequencies below 𝜔1, represents a mode where two masses
vibrate in phase with each other. The optical branch, which falls between 𝜔2 and
𝜔3, corresponds to a mode where the two masses vibrate out of phase with each
other.

2.3 Expansion to higher dimensions
Acoustic metamaterials in 2D and 3D exhibit unique phenomena that are not seen in
1D crystals. Experimentally, 2D crystals typically use rod-shaped structures as the
scattering units, while 3D crystals are made up of spheres. Theoretical investigations
of periodic acoustic metamaterials often involve studying crystals with scattering
units that are simply empty spaces within a matrix. There are various methods of
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Figure 2.4: 2D periodic acoustic metamaterials a, The direct lattices with ®𝑎1, ®𝑎2
as primitive vectors. b, The reciprocal lattices of the triangular Bravais lattice with
®𝑏1, ®𝑏2 as primitive vectors.

creating acoustic metamaterials both theoretically and experimentally, by altering
the materials used for the scattering units and host matrix. However, one consistent
requirement is that the size of the scattering unit (rod or sphere) and the lattice
constant must be similar to the wavelength of the incident radiation in order for the
crystal’s unique properties to affect the wave passing through it. In other words,
the frequency range in which the crystal operates is determined by the size of the
scattering unit and the lattice constant. An exception to this rule is resonant sonic
materials, which have been shown to have a significant impact on the propagating
radiation, even when the wavelength is much larger than the size of the structure [2].

The regular pattern of scattering units in acoustic metamaterials causes multiple
scatterings of acoustic or elastic waves, resulting in Bragg reflections. These reflec-
tions result in a range of frequencies where waves can propagate through the crystal
(pass bands) or be blocked in one or all directions (stop bands or complete band
gaps). The width of the band gap is determined by the crystal structure and increases
when there is a greater density contrast between the scattering unit material and the
host matrix material. Even larger band gaps can be obtained by switching from a
liquid to a solid host matrix, such as from water to epoxy, which can support both
longitudinal and transverse polarizations [3].

An example of a 2D acoustic metamaterials is a crystal made of cylinders arranged
in a triangular Bravais lattice, where the points are at the vertices of equilateral
triangles. The diagram in Figure 2.4 shows the direct and reciprocal lattices, with
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Figure 2.5: 3D acoustic metamaterials a, The direct lattices (FCC) with ®𝑎1, ®𝑎2,
and ®𝑎3 as primitive vectors. b, The reciprocal lattices (BCC) of the triangular
Bravais lattice with ®𝑏1, ®𝑏2, and ®𝑏3 as primitive vectors.

corresponding primitive vectors ®𝑎1, ®𝑎2 and ®𝑏1, ®𝑏2. Since | ®𝑎1 | = | ®𝑎2 | = 𝑎, where 𝑎 is
the lattice constant, it can be deduced from the reciprocal lattice vectors definition
®𝑎𝑖 · ®𝑏 𝑗 = 2𝜋𝛿𝑖 𝑗 that | ®𝑏1 | = | ®𝑏2 | = 4𝜋/

√
3𝑎, where 𝛿𝑖 𝑗 is the Kronecker delta symbol.

By calculating the components of ®𝑏1 and ®𝑏2, it can be shown that the reciprocal
lattice of a triangular lattice is also a triangular lattice, but rotated by 30◦ in relation
to the direct lattice. Both direct and reciprocal lattices have six-fold symmetry. The
first Brillouin zone is shaped like a hexagon, with two main symmetry directions
referred to as Γ𝑀 and Γ𝐾 as shown in Fig. 2.4.

An example of a 3D crystal is a collection of spheres arranged in a face-centered
cubic (FCC) structure, which is created by adding a sphere to the center of each
face of a cubic unit cell. This structure has a high degree of symmetry, and as
such, acoustic metamaterials with this structure have been widely studied both
theoretically and experimentally. The direct lattice of the FCC structure and its
corresponding reciprocal lattice, which is a body-centered cubic (BCC) crystal
structure as illustrated in Fig. 2.5. The sets of primitive vectors ®𝑎1, ®𝑎2, ®𝑎3 and ®𝑏1, ®𝑏2,
®𝑏3 for both lattices are also displayed. It is evident from the illustration that, with this
specific choice of primitive vectors for the direct lattice, | ®𝑎1 | = | ®𝑎2 | = | ®𝑎3 | = 𝑎/

√
2,

and | ®𝑏1 | = | ®𝑏2 | = | ®𝑏3 | = 2
√

3𝜋/𝑎, where 𝑎 is the length of the cube edge in the
direct lattice.

The first Brillouin zone of the FCC lattice is a truncated octahedron and, which is
equivalent to the Wigner-Seitz cell of the BCC lattice. It is illustrated in Fig. 2.5a
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Figure 2.6: Irreducible Brillouin zone and corresponding dispersion curve. a,
Schematics of 1d monoatomic chain. b, The dispersion curve of 1D monoatomic
chain in the first Brillouin zone. 𝜔0 is the cutoff frequency, defined as

√︁
𝐾/𝑀 .

along with its high symmetry directions. Using the coordinate system in Fig. 2.5b,
the coordinates of the high symmetry points (in units of 2𝜋/𝑎) are: Γ (0, 0, 0), 𝑋
(1, 0, 0), 𝐿 (1/2, 1/2, 1/2), W (1/2, 1, 0), and K (3/4, 3/4, 0). It can be observed that the
direction Γ𝐿 is the same as the direction known as [111], which is along the body
diagonal of the conventional FCC unit cell, as shown in Fig. 2.5.

The dispersion curve of one of the early examples of 2D acoustic metamaterials is
shown in Fig. 2.6 [4]. This system consists of a group of straight, infinite cylinders
made of an isotropic solid "a", which is embedded in an elastic, and isotropic
background "b". The system has symmetry in the direction parallel to the cylinders
(𝑧-direction) and is periodic in the plane perpendicular to the cylinders (transverse
plane), this causes waves to be restricted to the transverse plane. The dispersion
curve for the first ten phononic bands of aluminum alloy rods in a nickel alloy
matrix is shown in figure (Fig. 2.6b). The plots depict the relationship between the
normalized frequency ( 𝜔𝑎/2𝜋𝑐0 ) and the normalized Bloch wave vector ( 𝑘𝑎/2𝜋
) , with 𝑎 being the size of the lattice and 𝑐0 being the speed of transverse wave in
the composite material.

The dispersion curve of a 2D crystal shows a phononic band gap between the first
two branches, which was found by examining the interior of the irreducible triangle
Γ𝑋𝑀 of the Brillouin zone (see Fig. 2.6a), as well as its periphery. This gap
is present throughout the entire zone, which means that vibrations parallel to the
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cylinders cannot travel through the transverse plane. For this crystal, the phononic
band gap arises from the periodicity [2, 5, 6], however, other geometrical factors
including the placement of resonators can create a forbidden band [7–9], along with
the mode hybridization between separate branches causing avoided crossing [10].

2.4 Acoustic metamaterials and material parameters
Acoustics describes how sound waves travel through fluids, such as air or water. One
goal of acoustics is to understand how to control the propagation of sound waves,
which can be achieved through the use of acoustic metamaterials. In order to control
sound waves effectively with acoustic metamaterials, it is necessary to understand
the material parameters that influence wave propagation. Linear acoustics is a
branch of acoustics that deals with small, low-intensity sound waves that can be
described as traveling waves of pressure. One important equation in linear acoustics
is based on Newton’s second law of motion, which relates the velocity of a particle,
𝑣, to the pressure of a sound wave, 𝑝. This equation helps to describe how sound
waves propagate through a medium:

𝜌
𝜕𝑣

𝜕𝑡
= −∇𝑝.

In the context of acoustics, the fluid mass density, 𝜌, is a key factor that influences the
way sound waves propagate through a medium. The continuity equation is a math-
ematical expression that describes how the motion of a non-flowing, non-viscous
fluid is related to its compression and expansion. When analyzing the propagation
of acoustic waves, it is often assumed that the process is isentropic, meaning that
thermal effects can be neglected and the entropy remains constant. Under these
assumptions, the continuity equation can be used to describe the behavior of sound
waves in a fluid as follows,

𝜕𝑝

𝜕𝑡
+ 𝐾∇ · 𝑣 = 0.

The bulk modulus, 𝐾 , is another factor that plays a role in determining how sound
waves propagate through a fluid. It is a measure of the stiffness of the fluid under
compression, and it is one of the two key material constants that are needed to
describe the behavior of sound waves in a medium. When the equations that
describe the fluid mass density and the bulk modulus are combined, it is possible to
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derive the scalar wave equation, which describes the pressure, 𝑝, of a sound wave
as it travels through a fluid:

𝜕2𝑝

𝜕𝑡2
=
𝐾

𝜌
∇2𝑝.

The velocity of an acoustic wave, 𝑐, is determined by the ratio of the bulk modulus
to the fluid mass density as 𝑐 =

√︁
𝐾/𝜌. The acoustic wave impedance, 𝑍 , which

describes the relationship between pressure and velocity in a wave, is equal to
the square root of the product of the bulk modulus and the fluid mass density
(𝑍 = 𝑝/𝑣 =

√
𝐾𝜌). These two parameters, 𝜌 and 𝐾 are therefore critical in

determining the way that sound waves propagate through a medium, and they are the
primary focus when designing acoustic metamaterials. It is worth noting that these
parameters are similar to the electric permittivity and magnetic permeability, which
are the key factors that control the propagation of electromagnetic waves. This
analogy has allowed researchers in the field of acoustic metamaterials to borrow
concepts and techniques from the field of electromagnetic metamaterials.

2.5 Types of acoustic metamaterials
There are several types of acoustic metamaterials reported since the first report of
the first artificial acoustic metamaterial utilized small rubber-coated spheres [2] to
create resonant structures that were much smaller than the wavelength of the incident
sound waves.

Phononic crystals
Phononic crystals (PCs) are periodic structures that manipulate the propagation of
sound waves similar to how photonic crystals [12–14] manipulate the propagation
of light. These structures are made of an array of periodic obstacles called scatterers
arranged in a regular pattern [2, 5, 6]. The size, shape, and spacing of the scatterers
determine the properties of the phononic crystal. When a sound wave encounters
a PC, Bragg scattering occurs. This is when the sound wave is reflected by the
PC’s periodic structure, similar to how X-rays are reflected by a crystal lattice [15].
The reflection occurs when the spacing between the scatterers is equal to a multiple
of half the wavelength of the incident sound wave, creating a bandgap, a range of
frequencies that the PC does not transmit. This allows the PC to selectively filter
and manipulate sound waves. PCs can also exhibit absolute band gaps in their
band structure, frequency ranges in which waves cannot travel, similar to photonic
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Figure 2.7: Phononic crystals a, Kinematic sculpture as an example of phononic
crystals. Transmission plot shows attenuations in specific direction [11]. b, Array
of lead spheres coated with silicone rubber as an example of phononic crystals.
Attenuation dips in the transmission curve coincide with the band gaps in the
dispersion curve [2]. c, Pressure profiles show the focusing of sound in the presence
of phononic crystals [5]

.

band gaps in electromagnetic waves [12]. As a result, PCs can be used in various
applications such as noise and vibration isolation [2, 11], acoustic wave guiding [16,
17], and acoustic filters [18, 19]. Additionally, the band structure of PCs can display
dispersion curves with a negative slope, leading to negative refraction [5, 20].

Membrane-type acoustic metamaterials
Membrane-type acoustic metamaterials (MAMs) are made of thin, flexible mem-
branes or sheets, typically made of polymer or rubber, suspended within a frame
or structure [21–24]. MAMs can be designed and fabricated in various ways to
fit specific applications and desired properties. For example, the size, shape, and
thickness of the membranes can be adjusted to tune the resonant frequency of the
metamaterial, and the spacing between the membranes can be changed to control
the interaction with sound waves [21, 25, 26]. MAMs are lightweight and compact
materials that can isolate sound at low frequencies beyond the limits of traditional
materials, and have the potential to create a new generation of acoustic materials
and sensor devices specialized in noise reduction [27].

Helmholtz resonators
Helmholtz resonator-based acoustic metamaterials (HRAMs) use Helmholtz res-
onators to interact with sound waves in a specific manner [7, 8, 28, 30]. A Helmholtz



24

Figure 2.8: Membrance-based acoustic metamaterials a, The first four mode
shapes of the membrane unit without external loading [21]. b, Schematic of the
2D metamaterial layer composed of chambers divided by membranes [22] . c,
Simulated and measured transmission curves with respect to the mode shapes at the
eigenfrequencies [23]

.

resonator is a small air-filled cavity connected to a tube or pipe that absorbs or re-
flects sound waves in a specific way when they pass through it. HRAMs are made by
arranging a number of Helmholtz resonators in a specific pattern or configuration,
such as a regular grid or a more complex pattern [29]. HRAMs have the ability
to interact with sound waves in a very attenuative way, allowing them to be used
for a variety of applications, including absorbing [28, 30] specific frequencies of
sound, and creating "acoustic black holes," areas where sound waves are completely
absorbed [31].

Negative parameters
The concept of negative mass [9, 24, 32, 34, 35] and/or negative stiffness [33, 36]
can be introduced to design acoustic metamaterials. In general, mass and stiffness
are properties that describe how a material responds to external forces. Mass refers
to the amount of matter in an object, and stiffness refers to the resistance of an
object to being deformed when it is subjected to a force. In the case of acoustic
metamaterials, these properties can be engineered to be negative, which can result
in unusual wave propagation behavior. For example, a material with negative mass
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Figure 2.9: Acoustic metamaterials with Helmholtz resonators a, Schematics
of Helmholtz resonator-based acoustic metamaterials. The effective stiffness of
the metamaterials is negative at specific frequency range [7]. b, Schematic views
of an acoustic metamaterial plate periodically embedded with resonators [28]. c,
Acoustic metamaterials can be composed of different configurations using multiple
Helmholtz resonators [29].

will accelerate in the opposite direction of an applied force, while a material with
negative stiffness will become more deformable when subjected to a force.

Negative mass can be achieved through the use of resonant elements or structures
that are designed to have negative effective mass [7, 9, 32, 35]. These resonant
elements can interact with incident sound waves in such a way that they effectively
have negative mass. A material with negative mass can mitigate the reflection of
sound waves [[40], or achieve superlensing of acoustic waves [9]. On the other
hand, negative stiffness can be achieved through the use of resonant elements or
structures that are designed to have negative effective stiffness [33, 34, 36]. These
resonant elements can interact with incident sound waves in such a way that they
effectively have negative stiffness. Acoustic metamaterials with negative stiffness
have the potential to be used in a variety of applications with their unusual absorption
properties [28].
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Figure 2.10: Acoustic metamaterials with negative parameters a, The effective
mass of the mass-in-mass lattice becomes negative across the narrow frequency
range, and it affects the attenuation coefficients of the acoustic metamaterials [32].
b, The effective modulus of the split hollow sphere is below zero around 5 kHz,
significantly affecting the wave properties [33].

Chirality
Chiral acoustic metamaterials are materials that exhibit specific acoustic properties
related to their chirality, or handedness, which is the property of a material or object
that is not superimposable on its mirror image. Chiral materials have demonstrated a
number of unique properties that make them useful in various industrial applications
[41]. They have been shown to support band gap and mode tunability [37, 42], as
well as exhibit negative thermal expansion [43, 44] and high impact absorption [45].
These properties make them suitable for use in applications such as airfoil stability
[46] and catheters [47]. Recently, 3D chiral mechanical metamaterials have been
developed and their dynamic properties have been studied, revealing distinctive
wave modes[38, 48]. The role of centrosymmetry in chiral metamaterials and its
impact on wave propagation has also been investigated [39].

Nonreciprocity
One area of active acoustic metamaterials research is the development of non-
reciprocal metamaterials, which allow for the breaking of time-reversal symmetry
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Figure 2.11: Chiral acoustic metamaterials a, Various configurations of 2D chiral
acoustic metamaterials [37]. b, Microscale 3D chiral acoustic metamaterials tested
for ultrasound transmission [38]. c, Chiral acoustic metamaterials show distinctive
wave characteristics with respect to the tacticity of the structure [39].

[49] and enable one-way propagation and isolation [50, 51]. Nonreciprocity is the
property of a material or system that behaves differently when sound waves propagate
through it in opposite directions, such as a material that is transparent to sound waves
in one direction but highly reflective to sound waves in the opposite direction. This
can be achieved by designing the material with asymmetric structures or elements
that interact differently with sound waves based on the direction of propagation. In
conventional materials, sound travels symmetrically, meaning that it is possible to
transmit a signal from one location to another and transmit the same intensity of
sound in the opposite direction due to the time-reversibility of wave propagation
in these materials. Non-reciprocal metamaterials can enable full-duplex sound
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Figure 2.12: Nonreciprocal acoustic metamaterials a, Schematic of nonrecip-
rocal behavior, which is enabled with piezoelectric materials driven by nonlinear
electric circuit [49]. b, Electrically controlled magnets form nonreciprocal acoustic
metamaterials. Spatio-temporal modulation shifts the original dispersion curves in
𝑘-space [50].

communication [53], where it is possible to transmit and receive acoustic signals
from the same transducer on the same frequency channel. Non-reciprocal acoustic
metamaterials have the potential to be used in applications such as directional
transparency [54] or to develop more efficient sonar [55].

Active acoustic metamaterials
There has been a growing interest in active acoustic metamaterials, which have the
potential to address the limitations of traditional metamaterials and enhance their
effectiveness in various applications. These materials typically contain elements
that can move or change shape in response to external stimuli, such as an electric
current [51] or a magnetic field [52], and can be controlled or external pneumatic
actuation [30]. Active unit cells, which provide energy to an incoming wave and
feedback to the acoustic system, have been used in designs to create metamateri-
als with unique acoustic properties. These designs allow for reconfigurability and
real-time tunability, and can be made using active transducers [56], micro or na-
noelectromechanical systems [57, 58], piezoelectric materials [59], and electrically
loaded acoustic elements [60].

Manufacturing techniques
There are a variety of new manufacturing techniques that are being developed for
producing metamaterials, including:

• 3D printing [61]: This technique allows for the rapid prototyping and produc-
tion of metamaterials with complex shapes and structures. 3D printing can
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Figure 2.13: Active acoustic metamaterials a, Schematic of active nonreciprocal
acoustic metamaterials activated by piezo-switch driven by electric circuit [51]. b,
3D-printed octet lattices are magnetically actuated to change their configuration
and also wave properties [52]. c, Individual Helmholtz resonators are actuated by
hydraulic force to alter their resonance frequency [30].
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be used to produce metamaterials made from a variety of materials, including
metals, plastics, and ceramics.

• Nanolithography [57, 58]: This technique involves the use of specialized
tools and processes to pattern materials at the nanoscale, which can be used
to create metamaterials with subwavelength features.

• Self-assembly [62, 63]: This technique involves the use of materials that can
spontaneously organize themselves into specific structures or patterns, which
can be used to create metamaterials with specific properties.

• Electrospinning [64, 65]: This technique involves the use of an electric field to
spin a polymer solution into fibers, which can be used to create metamaterials
with a variety of shapes and structures.

• Soft lithography [66]: This technique involves the use of a mold or stamp
to transfer patterns onto a soft material, which can then be used to create
metamaterials with specific shapes and features.
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C h a p t e r 3

1D WAVE PROPAGATION IN ACOUSTIC METAMATERIALS:
HELICAL METAMATERIALS AND MODE HYBRIDIZATION

This chapter is adapted from:

G. Kim, K.M.Y. Coimbra, & C. Daraio. "Mode Hybridization in DNA-Inspired
Helical Metamaterials with Variable Centro-asymmetry". Applied Physics Letters
121, 072201 (2022).

Contributions: Conceived the project and generated the idea, designed and char-
acterized the models via finite element analysis, fabricated the samples, conducted
the transmission experiments, analyzed the data, and wrote the manuscript.

3.1 Chapter summary
This chapter presents an extensive study of 1D wave propagation in acoustic meta-
materials. Through this research, a comprehensive understanding of the dispersion
curves and mode shapes of the vibrational modes of the helical metamaterials has
been developed.

Specifically, we study helical acoustic metamaterials and demonstrate the ability
to vary the materials’ dispersion properties by controlling geometrical structure
and mass distribution. By locally adding eccentric, higher density elements in the
unit cells, we perturb the moment of inertia of the system and introduce centro-
asymmetry. This allows controlling the degree of mode coupling and the width
of subwavelength band gaps in the dispersion relation, which are the product of
enhanced local resonance hybridization. We characterize the distinct normal modes
in our metamaterials using finite element simulations and analytically quantify the
coupling between each mode. The evolution of acoustic band gaps induced by the
increasing level of centro-asymmetry is experimentally validated with 3D-printed
structures.

3.2 Introduction
Phononic crystals (PCs) and acoustic metamaterials (MMs) are rationally designed
structured materials that can be engineered to control the propagation of acoustic
and elastic waves. Traveling waves are reflected [1–3], transmitted [4], or guided [5,
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6], depending on the geometry [7, 8], stiffness [9, 10], and structural composition
[11]. Frequency bands of forbidden wave propagation (band gaps) can be created
by introducing Bragg scattering phenomena [12, 13] or resonant structures [14,
15]. Variations in the geometry or elastic modulus, achieved with electrical [16],
piezoelectric [17], and mechanical stimuli [7, 10] or via enhanced coupling between
different vibrational modes [18], have been used to manipulate the location and
width of band gaps.

PCs and MMs have been shown to present large controllability of their vibration
and sound attenuation with structural elements that undergo deformations, like
deflection or buckling [7, 19]. Among these, chiral materials have been recently
shown to support band gap and mode tunability [20, 21], and they have also been
studied for their unique mechanical properties [22], like negative thermal expansion
[23, 24] and high impact absorption [25]. Chiral materials can be suggested as
solutions for a number of industrial applications [22], like airfoil stability [26] and
catheters [27]. Recently, a new design of 3D chiral mechanical metamaterials has
emerged and their dynamic properties have been characterized, showing distinctive
wave modes, such as lifted degeneracy of two circularly polarized eigenmodes [28,
29]. The role of centrosymmetry in chiral metamaterials and its effects on wave
propagating properties have also been investigated in the context of tacticity [30].

In this chapter, we studied the dynamic characteristics of 3D-printed, chiral mate-
rials with a helicoidal shape (herein defined as helical metamaterials, or HMMs).
The HMMs were fabricated using a single acrylic polymer with added masses. We
designed their architecture to accommodate for centro-asymmetry, which allows for
mode coupling and subwavelength band gap formation. Leveraging these charac-
teristics, we provided experimental evidence for the control of the HMMs’ modal
response and frequency band gaps, making them a promising new class of materials
for vibration isolation.

3.3 DNA-inspired design of the helical metamaterials (HMMs)
Inspired by the helicoidal configuration of Bouligand structures [31, 32] and DNA
[33] (Fig. 3.1a), we designed and studied a chiral structure consisting of horizontal
beams, with radius 𝑟ℎ𝑜𝑟 = 2.5 mm and length 𝑙ℎ𝑜𝑟 = 25 mm, connected by thin, linear
elastic pillars, with radius 𝑟𝑣𝑒𝑟 = 1.25 mm and length 𝑙𝑣𝑒𝑟 = 6.6 mm. These HMMs
can be represented by a classical mass-spring system, where the horizontal beams
function as discrete "masses" and the connecting pillars function as "springs". To
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Figure 3.1: Schematic of the samples’ geometry and vibrational modes. a,
HMMs are inspired by Bouligand structures and the shape and aspect ratio of
DNA molecules. b, Normal modes of HMMs excited by a plane wave in the 𝑧-
direction: longitudinal (left: isometric, right: side view), torsional (left: isometric,
right: top view), and degenerate rotational mode (left: isometric, right: side view).
Coordinate system indicates the coordinates of the isometric view. Black lines
show the reference positions. c, Truncated unit cells show different deformation
behavior of the connecting beams for each mode. The color shows volumetric strain
distribution, where red indicates expansion and blue represents compression.
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ensure linear elastic interactions, we designed pillars that were 10 times lighter than
the horizontal masses. Two connecting pillars, spaced 6.25 mm apart, were included
between each beam for structural stability. To induce chirality, we rotated each mass-
beam 45◦ with respect to its adjacent beam. We implemented the finite element
method (FEM), to numerically analyze the normal modes of our metamaterials
(COMSOL Multiphysics®). The normal modes of the HMMs excited by a plane
wave traveling in the 𝑧-direction are shown in Fig. 3.1b. The colors in Fig. 3.1b,c
represent volumetric strain distribution, which shows that the deformation is mostly
concentrated on the connecting pillars. The longitudinal mode represents the motion
parallel to the vertical axis, whereas the torsional mode generates a propagating
twist. The strain distribution shows that the connecting pillars undergo tension
and compression for the longitudinal mode, whereas they twist under the torsional
mode. Because of the structure’s chiral nature, expansion and compression of the
longitudinal mode stimulate the torsional behavior of the HMMs, and vice versa.
The rotational mode corresponds to a flexural mode, which bends the connecting
pillars as they deform, while the chirality induces a propagating rotational wave
around the central axis.

3.4 Effect of centrosymmetry on the acoustic properties of the HMMs
Dispersion curves of centro-asymmetric HMMs
To analyze the effects of centrosymmetry on the acoustic characteristics of the
HMMs, we adjusted the center of mass of the horizontal beams, by inserting high-
density stainless steel cylinders (𝜌 = 7800 kg/m3) in pre-cut holes on the beams’ core.
These high-density inserts are roughly 7 times heavier than the base material used
for the beams and connecting pillars (VeroWhite, 𝜌 = 1165 kg/m3, Stratasys™).
When additional high-density inserts are arranged in one end of the beams, the
beam’s overall center of mass (red point) shifts further away from the central axis
(white cross) of the HMMs (Fig. 3.2a-c). In all examples, we maintained the
total mass and volume of the samples constant, by only re-positioning the steel
inserts. We derived the respective dispersion curves with normalized frequency
and wavenumber (Fig. 3.2d-f) using the FE model under the 1D Bloch periodic
boundary condition. The frequency is normalized by the characteristic frequency
of the longitudinal mode, which is the square root of the compressive stiffness
divided by the mass of the horizontal cylinder. The wavenumber ranges from 0 to
𝜋/𝑎𝐻𝑀𝑀 , where 𝑎𝐻𝑀𝑀 is the height of the unit cell (𝑎𝐻𝑀𝑀 = 8 cm). The different
colored lines represent different wave modes, which are determined numerically.
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We used normalized volume-averaged displacements and curls to categorize the
data points into longitudinal, torsional, and rotational modes. The blue line with
× markers represents the dispersion characteristics of longitudinal waves. We
identified the longitudinal mode by filtering through the modes with the normalized
𝑧-displacements greater than

√︁
2/3. Unsurprisingly, we note that longitudinal waves

travel at the fastest speed, in comparison to other modes. The torsional mode
(black circles) is the second fastest wave propagating through the structure, which
is filtered by the higher volume-averaged curls (> 1/

√
3) and the smaller volume-

averaged displacements (< 1/
√

2) in the 𝑧-direction. The slowest rotational mode
(red asterisks) splits into two orthogonal modes, which arise from the chirality of the
structure. The rotational modes are characterized by the larger lateral displacements,
greater than 1/

√
3, perpendicular to the central axis. For right-handed HMMs, a

flexural wave rotating in the counter-clockwise direction interacts with other modes
and creates partial band gaps. A clockwise rotating flexural wave has minimal
coupling with different modes and remains undisturbed even with strong centro-
asymmetry. Other data points which do not fall into above-mentioned categories
are defined as transitional modes.

Dispersion curve analysis
In the centrosymmetric structure, no apparent coupling between the existing modes
is observed in the low frequency range (Fig. 3.1d). As the structures become more
centro-asymmetric, coupling between the different modes gets stronger and sub-
wavelength longitudinal band gaps emerge due to local resonance of the constituent
elements [34]. We adopted a ladder-like metamaterials model [35], to investigate the
HMMs analytically and quantify the coupling spring constant 𝛾 between the longitu-
dinal mode and the rest of the modes. The coupling constant gradually changes from
0 to 2.08 to 3.00 with increasing centro-asymmetry. We observed the widening of
a longitudinal band gap with enhanced coupling. The analytical model captures the
slope of two branches that forms the longitudinal band gap, and shows the veering
phenomena between the longitudinal mode and the torsional mode [36]. However,
the model is based on two parallel mass-spring chains that are only allowed to move
in a single dimension, which explains why it cannot fully grasp the complexity of
the numerical solution.
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Figure 3.2: Varying centro-asymmetry of the HMMs and its effects on the
dispersion curves. a, b, and c, Top views of the HMMs model, which consists of
two different materials (light gray: VeroWhite, black: stainless steel) with increasing
centro-asymmetry. The white cross shows the center axis of the HMMs and the red
point shows the center of mass of the top beam. d, e, and f, Corresponding dispersion
curves with normalized frequency as a function of wavenumber. The height of the
unit cell 𝑎𝐻𝑀𝑀 is 8 cm. Blue crosses, black circles, and red asterisks represent
the longitudinal mode, the torsional mode, and the rotational mode, respectively.
Orange points indicate the transitional modes between different types of normal
modes, while the dashed purple lines represent the solution from the ladder-like
analytical model.

Dispersion curves with increasing density of the inserts
We studied the dispersion curves of HMMs with inserts, varying their density and
distribution, to characterize the hybridization mechanism (Fig. 3.3). Three different
types of HMMs are investigated: (i) centrosymmetric HMMs with same material
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Figure 3.3: Effects of added mass to the mode hybridization of the HMMs.
Dispersion curves of the a, centrosymmetric HMMs with same material inserts as
the base material, b, centrosymmetric HMMs with heavier stainless steel inserts,
and c, fully centro-asymmetric HMMs with heavier stainless steel inserts. The
longitudinal modes (blue) and the transitional modes (orange) are highlighted to
show the evolution of longitudinal band gaps. The color of the torsional mode
(black) and the rotational modes (red) are suppressed in the background.

inserts as the base material, (ii) centrosymmetric HMMs with heavier stainless steel
inserts, and (iii) fully centro-asymmetric HMMs with heavier stainless steel inserts.
Both centrosymmetric cases show that the longitudinal mode is not hybridized with
other modes in the low frequency regime, regardless of the inserts’ density (Fig.
3.3a,b). A subwavelength band gap forms only when centro-asymmetry is intro-
duced, at the point where the longitudinal branch first crosses the rotational branch.
Such results imply that hybridization is induced by the asymmetric distribution of
mass, and not by the increased mass of the inclusions. This mode hybridization
leads to the longitudinal subwavelength band gap, which occurs due to the local
resonance of the unit cell [14].

Dispersion curves with increasing degree of centro-asymmetry
To study the evolution of the longitudinal band gap with an increasing level of
centro-asymmetry, we created finite element models with varying center of mass.
The material distribution of stainless steel inserts change from 50-50 distribution
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Figure 3.4: Dispersion curves of the HMMs with increasing degree of centro-
asymmetry. a, 50-50 (centrosymmetric), b, 43.25-56.25, c, 37.5-62.5, d, 31.25-
68.75, e, 25-75, f, 18.75-81.25, g, 12.5-87.5, h, 6.25-93.75, and i, 0-100 (fully
centro-asymmetric) material distribution. The longitudinal modes (blue) and the
transitional modes (orange) are highlighted to show the evolution of longitudinal
band gaps.

(centrosymmetric) to 0-100 distribution (full centro-asymmetric) with intermediate
steps. As the center of mass of the horizontal mass beams moves further away from
the central axis of the HMMs, the longitudinal band gap shifts upward and widens
as shown in Fig. 3.4. This is due to the stronger coupling between the longitudinal
mode and the rest of the modes with increased degree of centro-asymmetry. When
the HMMs are centro-symmetric (Fig. 3.4a), the longitudinal branch remains linear
even though the transitional branch horizontally crosses the longitudinal branch at
the frequency around 0.45. As the centro-asymmetry of the HMMs intensifies, the
coupling between the transitional mode and the longitudinal mode gets stronger,
creating the longitudinal band gap which widens as well (Fig. 3.4b-d). This
trend becomes more complicated as the longitudinal mode couples with multiple
transitional branches (Fig. 3.4e,f). With even higher degree of centro-asymmetry,
an avoided crossing between two separate longitudinal branches forms the larger
longitudinal band gap (Fig. 3.4g-i).

Ladder-like analytical model: Effective stiffness and mass
The effective stiffness and mass of both the longitudinal mode and the torsional mode
of the helical metamaterials (HMMs) are derived from the long-wave properties of
the representative volume element (RVE). The slope of the longitudinal branch and
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Effective parameters Longitudinal mode Torsional mode
Wave speed, 𝑐 [m/s],
via long-wave approximation

422.18 65.77

Mass, 𝑀 [kg] 1.65×10−3 -
Moment of inertia, 𝐽 [kg·m2] - 1.30×10−7

Stiffness, 𝐾 [N/m] 2.93×106 -
Torsional stiffness, 𝐶 [N·m/rad] - 5.61

Table 3.1: Effective mechanical parameters of the HMMs. Wave speeds from the
dispersion curves are calculated under long wavelength assumption. Corresponding
effective stiffness and mass of the RVE of the HMMs for longitudinal modes and
torsional modes are listed below.

Figure 3.5: The analytical model and corresponding unit cell. a, A ladder-like
meta chain model with a mass 𝑀 , stiffness 𝐾 , moment of inertia 𝐽, torsional rigidity
𝐶, and coupling stiffness 𝛾. b, A representative volume element of the HMMs used
for the analytical model.

the torsional branch at the origin of the dispersion curves (Fig. 3.2d) corresponds
to the wave speed of each mode under long-wave approximation. The mass, 𝑀 , and
the moment of inertia with respect to the central axis, 𝐽, of a single horizontal beam
are acquired by integrating the density (with or without a vector from the center
axis) over volume. The effective longitudinal stiffness, 𝐾 , and the torsional stiffness,
herein denoted as 𝐶, of the unit cell is derived from the relation 𝑐𝑙 = 𝑎𝑅𝑉𝐸

√︃
𝐾
𝑀

or

𝑐𝑡 = 𝑎𝑅𝑉𝐸

√︃
𝐶
𝐽
, where 𝑎𝑅𝑉𝐸 = 1 cm. All the derived properties and corresponding

wave speeds for the longitudinal mode and the torsional mode are tabulated in Table
S1.

Derivation of the analytical model
We analyzed a parallel mass-spring model [35] (Fig. 3.5a) using the effective
parameters of the RVE derived in the previous section. For direct comparison,
we divided the torsional stiffness 𝐶 and the moment of inertia 𝐽 by a correction
factor, 1

2𝑟
2, to match their units to N/m and kg, respectively. The radius of the

vertical pillars, 𝑟, is used for the correction factor, based on the relation between the
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moment of inertia of the vertical cylinder with its mass, 𝐽
𝑚
= 1

2𝑟
2. The characteristic

frequencies are

𝜔1 =

√︂
𝐾

𝑀
, 𝜔2 =

√︂
𝐽

𝐶
. (3.1)

The equations of motion of a parallel mass-spring model are

𝑀𝑢 𝑗 + 𝐾 (2𝑢 𝑗 − 𝑢 𝑗−1 − 𝑢 𝑗+1) + 𝛾(𝑢 𝑗 − 𝑣 𝑗 ) = 0,

𝐽𝑣 𝑗 + 𝐶 (2𝑣 𝑗 − 𝑣 𝑗−1 − 𝑣 𝑗+1) + 𝛾(𝑣 𝑗 − 𝑢 𝑗 ) = 0.
(3.2)

Here, 𝑢 𝑗 and 𝑣 𝑗 represent the displacements of the 𝑗-th 𝑀 and 𝐽, and are assumed
to be in harmonic forms:

𝑢 𝑗 (𝑡) = 𝑢̃(𝑘 (𝜔))𝑒𝑖(𝑘 𝑗𝑑−𝜔𝑡) ,
𝑣 𝑗 (𝑡) = 𝑣̃(𝑘 (𝜔))𝑒𝑖(𝑘 𝑗𝑑−𝜔𝑡) .

(3.3)

For more concise derivation, we introduce non-dimensional parameters:

𝛿1 =
𝐽

𝑀
, 𝛿2 =

𝐶

𝐾
, and 𝛿3 =

𝛾

𝐾
. (3.4)

We then insert the values of the effective parameters to the equations of motion, to
derive the dispersion curves for the parallel mass-spring model. We can write the
dispersion relation in terms of non-dimensional wavenumber 𝜅 = 𝑘𝑑 and frequency
Ω = 𝜔/𝜔1:

cos2 𝜅 + 𝐽1
2

cos 𝜅 + 𝐽2 − 2
4

= 0. (3.5)

𝐽1 and 𝐽2 are the invariants of the dispersion relation and can be written as:

𝐽1 =
1
𝛿2

[(𝛿1 + 𝛿2)Ω2 − (4𝛿2 + 𝛿3 + 𝛿2𝛿3)],

𝐽2 = 2 + 1
𝛿2

[𝛿1Ω
4 − (2𝛿1 + 2𝛿2 + 𝛿3 + 𝛿1𝛿3)Ω2 + (4𝛿2 + 2𝛿3 + 2𝛿2𝛿3)]

(3.6)

when 𝛿2 ≠= 0. The solutions for the dispersion relation may be written as

(cos 𝜇)1,2 =
1
4

(
−𝐽1 ±

√︃
8 + 𝐽2

1 − 4𝐽2

)
. (3.7)

The coupling coefficient 𝛾 is obtained so that the 𝑦-intercept of the upper branch
of the analytical dispersion curves fits the edge of the longitudinal branch (at 𝑘
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Figure 3.6: Experimental setup and samples. a, Schematic diagram and picture
of the experimental setup for transmission measurements. b, 3D-printed samples
with added stainless steel inserts for varying centro-asymmetry. (i) 50-50 material
distribution on both ends (centrosymmetric, 6.25 : 6.25 mm length ratio). (ii) 25-
75 material distribution (moderately centro-asymmetric, 3.125 : 9.375 mm length
ratio). (iii) 0-100 material distribution (fully centro-asymmetric, 0 : 12.5 mm length
ratio). Pink boxes indicate where the heavy inserts are positioned.

= 0) in the FE analysis. The dispersion curves of the parallel mass-spring model
with varying coupling stiffness 𝛾 are plotted together with the numerical dispersion
curves, in Fig. 3.2d-f. When 𝛾 = 0, the longitudinal mode and the torsional mode
of the analytical model have no interaction, acting as two independent branches.
However, as 𝛾 increases in value, we observe an avoided crossing from the two
branches, which suggests increased coupling [36].

3.5 Experimental validation of the acoustic band gap
Experiment setup
To validate the numerical simulation results, we 3D-printed periodic HMMs with
varying levels of centro-asymmetry and characterize them experimentally (Fig.
3.6(b)). We fabricated samples with 6 unit cells (= 48 cm) using a high-resolution
PolyJet 3D printing technique (Stratasys Ltd., Connex 500). Due to the high aspect
ratio of the samples, we used 2 minimally tensioned strings to hold the samples
laterally from adjacent supports (Fig. 3.6a). The base structures are composed
of VeroWhite acrylic photoresist, whose constituent properties are 𝐸 = 2.5 GPa,
𝜈 = 0.33[37], and 𝜌 = 1165 kg/m3. We measured the stiffness of the VeroWhite
acrylic polymer from dynamic characterization, and the density using a regular
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scale. For the dynamic characterization, we measured the longitudinal wave speed
of cylindrical samples with finite length to derive the Young’s modulus from the
relation, 𝑐𝑙 =

√︁
𝐸/𝜌. We used stainless steel mass inserts with 𝐸 = 200 GPa, 𝜈 =

0.27, and 𝜌 = 7800 kg/m3. Relatively higher density of the stainless steel rods (4
mm in diameter) compared to the backbone polymer was critical for observing the
mass effect more clearly. We used a piezoelectric transducer (Bruel & Kjaer, type
4810) to transmit the signal to the sample. Signals were generated by an arbitrary
function generator (Keysight Technologies, 33522B), which was connected to a
power amplifier (Bruel & Kjaer, type 2718). Hann-windowed 3-cycle sinusoidal
pulses were used to excite the lattices at a central frequency 𝑓 = 3 kHz. We
measured the transmitted pulse on the top surface of the sample using a laser Doppler
vibrometer (Polytec, CLV-2534), which was sent to an oscilloscope (Tektronix, DPO
3014). The function generator and the oscilloscope were connected to a PC, which
enabled the integration of signal generation and data acquisition functionalities into
a single MATLAB code.

Transmission analysis
Our FEM simulations predicted that the size of the longitudinal band gaps increases
with higher levels of centro-asymmetry (Fig. 3.7a). The deviation at the 0.625
degree comes from a transition of the longitudinal mode’s coupling behavior (Fig.
3.4). The transmission plots for the centrosymmetric case, the moderately centro-
asymmetric case, and the fully centro-asymmetric case are shown in Fig. 3.7b. The
overlaying blue dots represent the longitudinal mode extracted from the dispersion
curves, and the blue boxes highlight the longitudinal band gaps identified through
numerical simulations. The red boxes indicate where the transmission is less than -15
dB (∼ 18%) from the experimental results. The experimental measurements showed
that the band gaps are slightly shifted from the numerical simulations. The band gap
of the longitudinal mode widens as the HMMs become more centro-asymmetric,
which coincides with the prediction. However, the subwavelength band gaps at
lower frequency range (< 500 Hz) were not observed experimentally because the
fabricated samples are not sufficiently tall to attenuate longer wavelength inputs. The
discrepancy between the numerical predictions and the test results originated from
the presence of the torsional mode, which contributes to the longitudinal motion and
can transfer the motion even within the longitudinal band gap. Fabrication errors
(either during machining or 3D-printing) and the need for support strings [38], due
to the long aspect ratio of the structures, may have interfered with the measurements.
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Figure 3.7: Experimental transmission curves coinciding with numerical dis-
persion curves. a, Numerically predicted evolution of the longitudinal band gap
(blue region) with increasing degree of centro-asymmetry. b, Experimentally mea-
sured transmission curves (orange) are plotted with the longitudinal branch (blue
dots) that is filtered from the dispersion curve of the (i) centrosymmetric, (ii) mod-
erately centro-asymmetric, and (iii) fully centro-asymmetric HMMs. Plots are
highlighted with blue shades indicating the longitudinal band gaps predicted from
the numerical simulation and red shades showing the transmission dips (< -15 dB).
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3.6 Conclusions
In summary, 1D wave propagation in acoustic metamaterials was analyzed through
theoretical modeling, finite element analysis, and experimental validation. This
chapter studied the mode hybridization induced by perturbed centrosymmetry in
bio-inspired, helical metamaterials. FEM and analytical studies showed that the
coupling intensity between independent modes grows with centro-asymmetry. We
experimentally demonstrated the hybridization of propagating wave modes and
the formation of partial band gaps. In the future, the rich physics of chirality in
acoustic metamaterials can be further studied for the realization of devices with
acoustic polarization [39], nonreciprocal wave propagation [40], and mechanical
logic switches [41].
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C h a p t e r 4

2D WAVE PROPAGATION IN ACOUSTIC METAMATERIALS:
WATER-SATURATED BEAM MICROLATTICES

This chapter is adapted from:

G. Kim, C.M. Portela, P. Celli, A. Palermo, & C. Daraio. "Poroelastic Microlattices
for Underwater Wave Focusing". Extreme Mechanics Letters 49, 101499, (2021).

Contributions: Participated in the conception of the project, designed and char-
acterized the models via finite element analysis, fabricated the samples, conducted
the transmission experiments, analyzed the data, and wrote the manuscript.

4.1 Chapter summary
In the previous chapter, the basics of acoustic metamaterials and wave propagation
along a single axis are covered. Building on that knowledge, this chapter explores
the effects of expanding the dimension of wave propagation to 2D. We examine the
potential for successful manipluation of wave propagation direction through the use
of water-saturated microlattices with gradually changing beam diameter.

Microlattices, metamaterials with microscale architectures, can exhibit extreme
quasi-static mechanical response and tailorable acoustic properties. When coupled
with pressure waves in surrounding fluid, the dynamic behavior of microlattices in
the long wavelength limit can be explained in the context of Biot’s theory of poroe-
lasticity. In this chapter, we exploit the elastoacoustic wave propagation within
3D-printed polymeric microlattices to incorporate a gradient of refractive index for
underwater ultrasonic lensing. Experimentally and numerically derived dispersion
curves allow the characterization of acoustic properties of a water-saturated elas-
tic lattice. A modified Luneburg lens index profile adapted for underwater wave
focusing is demonstrated via the finite element method and immersion testing, show-
casing a computationally efficient poroelasticity-based design approach that enables
accelerated design of acoustic wave manipulation devices. Our approach can be ap-
plied to the design of acoustic metamaterials for biomedical applications featuring
focused ultrasound.
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4.2 Introduction
Architected materials consisting of open cell structures with microscale beam ele-
ments, i.e., microlattices, can be designed to present desired quasi-static mechanical
properties, like high stiffness-to-density ratio [1], ultra-low shear modulus [2], or
negative Poisson’s ratio [3]. In the dynamic regime, the microscopic features found
in these materials enable unique responses in the ultrasonic range (above 20 kHz),
including wave tunability [4, 5], wave focusing [6–8], or amplitude mitigation [9].
When immersed in a viscous fluid, their constitutive properties combined with their
porosity lead to an interplay between elastic waves traveling in the microlattices and
pressure waves in the surrounding fluid medium [10]. Such interplay leads to com-
plex hybridization phenomena that support exotic responses such as the formation
of acoustic band gaps [11] or the strong elasto-acoustic coupling that dominates the
fluid’s transport properties [12, 13]. As such, the selection of specific geometries
and structural features allows engineering the propagation of waves in ways that
would typically be unachievable with homogeneous or naturally existing materials.

Among various applications of microlattices in the ultrasonic regime, acoustic lens-
ing is of practical importance for its potential use in medical imaging and treatment
[14, 15]. In particular, by introducing a gradient of refractive index, one can enable
focusing of waves with simple manipulation of geometries or materials and without
complicated resonant structures [16–19]. Recently, acoustic gradient-index (GRIN)
ultrasonic lenses composed of microlattices have been shown to be capable of focus-
ing plane waves in air [6, 7]. This is achieved by controlling the speed of sound by
varying the beam thicknesses across the lattice structure. However, this mechanism
should be adapted to account for the presence of the water and the distortion in the
refractive index to work in water. Underwater focusing of ultrasonic waves with
microlattice geometry has so far been proposed only with air as a filling agent [8].
However, this approach requires a closed lattice design, which suffers from high
impedance mismatch at the lens surface and unwanted hydrostatic pressure differ-
ences. A more desirable approach for the design of ultrasonic lenses in underwater
conditions relies on water-saturated microlattices that account for fluid-structure
interaction.

Numerical tools for the design of complex, finite microlattices can be computation-
ally intensive, especially when the lattices are immersed in a fluid. To simplify
this process, finite-element representations of fluid-permeated elastic lattices can be
replaced by numerical homogenization schemes, which provide an approximation
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for the expected response. In the low or moderate frequency range, where wave-
lengths are much larger than the characteristic lengths of the porous medium, the
wave propagation characteristics can be effectively estimated via Biot theory [12,
13]. In this long wavelength regime, fluid-filled cellular media can be considered
as a homogenized medium characterized by a few effective physical properties, e.g.,
porosity, tortuosity, etc. [20–23]

In this chapter, we investigated the characteristics of water-saturated polymeric mi-
crolattices in the context of Biot theory and leveraged our findings to realize a
fluid-filled GRIN lens. We explored the range of effective refractive index of differ-
ent types of water-saturated microlattices based on continuum theory. We showed
that the traditional Luneburg lens can be effectively configured as a discretized
GRIN lens with modified index profile for underwater wave focusing. We verified
our design numerically using a computationally efficient poroelastic model com-
bined with a pressure acoustics study. We validated this design experimentally, by
3D printing a microlattice lens consisting of octet trusses with a spatially varying
effective refractive index based on the simulated results. The pressure distribution
on the output plane was measured and compared to the numerically estimated pres-
sure intensity field. Both results showed good agreement, validating the proposed
design approach.

4.3 Effective refractive index of the water-filled microlattices
Biot theory
Biot’s theory of poroelasticity has been used for the prediction of the macroscopic
behavior of acoustic waves traveling through fluid-saturated porous media at low
or moderate frequencies [12, 13]. According to Biot, the speed and modes of the
propagating elastoacoustic waves, which are the products of the coupling between
elastic waves in solid and pressure waves in fluid, can be accurately identified.
It was analytically predicted [12] and experimentally confirmed [24, 25] that the
coupled compressional waves split into fast and slow pressure modes in the long
wavelength regime. The balance between the boundary layer of Poiseuille flow
and the characteristic size of the porous media plays a key role in determining
the mode of wave propagation. For a steady, axisymmetric, viscous Poiseuille
flow to be established, the boundary layer, also known as the viscous skin depth,
𝑡𝑣𝑖𝑠 =

√︁
2𝜂/𝜔𝜌, must be greater than the radius of the pores of the solid skeleton,

𝑟. Below the ’critical Biot frequency’, 𝜔𝑐𝑟𝑖𝑡 = 2𝜂/𝜌𝑟2, the Poiseuille flow condition
holds and the solid and fluid move in phase by viscous locking, which causes the fast
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compression wave to propagate [12]. Slow pressure waves are not supported, since
the relative motion of fluid and solid cannot be sustained. If the forcing frequency
exceeds 𝜔𝑐𝑟𝑖𝑡 , the Poiseuille flow assumption is no longer valid and the viscous
coupling is taken over by inertial coupling, resulting in the occurrence of both
fast and slow pressure waves. Slow pressure waves are characterized by the large
relative motion between solid and fluid, which makes the waves highly dissipative
and difficult to measure experimentally [26]. The inertial coupling is valid below
the ’viscous Biot frequency’, 𝜔𝑣𝑖𝑠 =

𝜔𝑐𝑟𝑖𝑡

𝜁2 , where 𝜁 is a non-dimensional scaling
constant of the order of 0.01 [27]. For the polymeric microlattices considered in
this work, the viscous Biot frequency lies above 317 kHz.

Adopting finite element analysis for Biot theory
We implemented finite element models (FEM) (COMSOL® Multiphysics) to cal-
culate Biot pressure wave speeds within water-saturated microlattices. The ho-
mogenized physical parameters for each structure were computed as in Krödel et
al [10]. The characteristic equation of oscillating elastic lattices was numerically
solved to obtain the speed of compressional and shear waves, 𝑐𝑝 and 𝑐𝑠, in the long
wavelength limit. The kinetics and kinematics of fluid through the open pores of
the microlattices were investigated to calculate the tortuosity, 𝛼∞, and permeability,
𝜅𝑜. These parameters were used as inputs for the coupled characteristic equations of
water-saturated porous media to derive physical values, such as fast pressure wave
speed 𝑐𝑝1, slow pressure wave speed 𝑐𝑝2, and critical Biot frequencies.

Poroelastic parameters
The poroelastic constants are required to solve the characteristic equations of fluid-
saturated homogeneous porous medium under harmonic oscillation [12, 13]. The
characteristics equations may be written as

𝜏𝑖 𝑗 = [(𝑃 +𝑄 − 2𝜇)𝑒𝑘𝑘 + (𝑄 + 𝑅)𝜖𝑘𝑘 ]𝛿𝑖 𝑗 + 2𝜇𝑒𝑖 𝑗 ,

−𝜙𝑝 = 𝑄𝑒𝑘𝑘 + 𝑅𝜖𝑘𝑘 ,
(4.1)

where 𝜏𝑖 𝑗 is the total stress of solid and fluid phases, 𝑝 is the pore fluid pressure
in terms of solid and fluid strains, 𝑒𝑖 𝑗 and 𝜖𝑖 𝑗 , respectively, 𝜙 is the porosity of the
porous medium, and 𝜇 is the shear modulus of the matrix. These constants can be
numerically evaluated from several different models using the finite element method.
Including the poroelastic coefficients, 𝑃, 𝑄, and 𝑅, which are the combinations of
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measurable quantities such as the bulk modulus of the solid and fluid materials 𝐾𝑠,
𝐾 𝑓 , the shear modulus of the solid 𝜇, the drained bulk and shear modulus of solid
frame 𝐾𝑚, 𝜇𝑚, and the porosity 𝜙 [12], and can be explicitly expressed as

𝑃 =
𝜙𝐾𝑚 + (1 − 𝜙)𝐾′

𝜙′
+ 4

3
𝜇,

𝑄 =
𝜙𝐾′

𝜙′
,

𝑅 =
𝜙2𝐾 𝑓

𝜙′
,

(4.2)

where

𝜙′ = 𝜙 + 𝐾
′

𝐾𝑠
,

𝐾′ = 𝐾 𝑓 (𝜒 − 𝜙),
(4.3)

and 𝜒 = 1 − 𝐾𝑚/𝐾𝑠 is the Biot coefficient. The drained moduli of the solid
skeleton are effective measures that can be derived in the long-wavelength limit.
The eigenfrequencies of the given solid lattice structure are calculated at very small
wavenumber. As a result, the speeds of compressive and transverse waves are
calculated as the ratio of the eigenfrequencies to the input wavenumber. Assuming
linear elasticity and material isotropy, one can derive the drained moduli, 𝐾𝑚 and
𝐺𝑚, of the solid frame as

𝐾𝑚 = (1 − 𝜙)𝜌𝑠
(
𝑣2
𝑃𝑑𝑟𝑦

− 4
3
𝑣2
𝑆𝑑𝑟𝑦

)
𝜇 = (1 − 𝜙)𝜌𝑠𝑣𝑆2

𝑑𝑟𝑦 .

(4.4)

The aforementioned poroelastic coefficients can be expressed as functions of the
derived moduli [28].

The other two important constants are tortuosity and permeability. The tortuosity
of the lattice is a measure of how geometrically twisted the acoustic path of a solid
structure is, that can be represented as

𝛼̃ = 𝛼∞
©­«1 − 𝑖

√︄
𝜔𝐵

𝜔

(
𝜔𝐵

𝜔
+ 𝑖

2

)ª®¬ , (4.5)
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which is a function of the critical Biot frequency,

𝜔𝐵 =
𝜙𝜂

𝑘0𝛼∞𝜌 𝑓
, (4.6)

where 𝛼∞ is the real-valued tortuosity, 𝜂 is the fluid viscosity, and 𝑘0 is the per-
meability of the matrix. The relation between the the dynamic tortuosity and the
dynamic permeability, 𝑘̃ , is

𝛼̃

𝛼∞
=
𝑘0

𝑘̃

𝜔𝐵

𝑖𝜔
. (4.7)

Different definitions of tortuosity can be found in various literature [29–32]. For
our calculation, we followed the one provided by Johnson et al [33]. The equations
of motion with the assumption of harmonic oscillation can be expressed as

−𝜔2 [(𝜌11 + 𝜌12)ũ + (𝜌22 + 𝜌12)Ũ] = ∇ · 𝜏,
𝜔2 [𝜌12ũ + 𝜌22Ũ] = 𝜙∇𝑝

(4.8)

where ũ and Ũ are the amplitude of the displacements of the solid and the fluid, and
the complex densities 𝜌11, 𝜌12, and 𝜌12 are written as

𝜌11 = (1 − 𝜙)𝜌𝑠 − 𝜌12,

𝜌22 = 𝜙𝜌 𝑓 − 𝜌12,

𝜌12 = (1 − 𝛼̃)𝜙𝜌 𝑓 .

(4.9)

By assuming an infinitely rigid frame, saturated with an incompressible Newtonian
fluid, we solved the eigenfrequency at a small wavenumber to get the slow wave
speed, 𝑐𝑝2, in the porous media. For non-viscous fluid, one can relate the slow
pressure wave speed to the real-valued tortuosity as 𝛼∞ =

(
𝑐𝑤/𝑐𝑝2

)2 where 𝑐𝑤 is
the speed of sound in water [10]. According to Darcy’s law, 𝑣 = 𝑘Δ𝑃/𝜇Δ𝑥, the
permeability determines how well a fluid under a pressure gradient can pass through
porous media. In numerical simulations, we considered a periodic tessellation of
identical unit cells, consisting of non-deformable trusses, subjected to a laminar flow
condition. Under a known pressure drop, Δ𝑃, across the finite domain, the average
flow velocity, 𝑣, can be calculated by integration over the fluid area. The permeability
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can then be derived knowing the dynamic viscosity of water, 8.9 × 10−4 𝑃𝑎 · 𝑠, and
the size of the unit cell. The Biot pressure wave speeds can be calculated by solving
the dispersion relation for the squared compressional wave velocity 𝑐2 = (𝜔/𝑘)2

𝑑2𝑐
4 + 𝑑1𝑐

2 + 𝑑0 = 0, (4.10)

by using standard decomposition techniques where

𝑑0 = 𝑃𝑅 −𝑄2,

𝑑1 = −(𝑃𝜌22 − 2𝑄𝜌12 + 𝑅𝜌11),
𝑑2 = 𝜌11𝜌22 − 𝜌2

12.

(4.11)

Since

𝑐2
𝑗 =

−𝑑1 ±
√︃
𝑑2

1 − 4𝑑0𝑑2

2𝑑2

=

(
𝜔

𝑘 𝑗

)2
,

(4.12)

the phase velocities are computed from the solutions of the quadratic equation in
complex wavenumbers 𝑘2

𝑗
as

𝑐𝑃1,2 =
𝜔

ℜ(𝑘1,2)
. (4.13)

Fast and slow Biot pressure waves
The fast and slow pressure waves speeds, 𝑐𝑝1 and 𝑐𝑝2, as well as the corresponding
acoustic refractive indices 𝑛, are shown as a function of porosity for four different
truss structures, e.g., octet, isotropic, diamond, and Kelvin trusses (Fig. 4.1). The
range of porosity is chosen so that the lattice structures are in a manufacturable
regime and their topology remains open-celled. The 𝑐𝑝1 curves for the four different
geometries almost overlap (Fig. 4.1a), whereas the 𝑐𝑝2 curves show variations. The
speed of the solid-borne waves, 𝑐𝑝1, generally depends on the effective elasticity
of the porous media, which is a function of geometry [34]. However, at the manu-
facturable relative densities for these microlattices, the density-stiffness relation is
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Figure 4.1: Wave speeds and refractive indices of water-saturated microlattices.
a, Fast pressure wave speed (𝑐𝑝1, solid lines) and slow pressure wave speed (𝑐𝑝2,
dotted lines), and b, effective refractive index (𝑛 = 𝑐𝑤/𝑐𝑝1) of water-saturated
polymeric lattices with respect to porosity for different types of lattices: octet
(yellow), isotropic (blue), diamond (red), and Kelvin (green) trusses. The speed of
sound in water, 𝑐𝑤 =1481 m/s, is shown as reference in a (dashed black horizontal
line). The excitation frequency of the acoustic wave is fixed at 300 kHz, which is
below the estimated viscous Biot frequencies.

very similar across architectures [35, 36]. Especially when porosity is higher, 𝑐𝑝1

is less sensitive to the moduli of the solid and the effect of the bulk modulus of
the fluid becomes dominant [28]. Therefore, it is not surprising to observe that 𝑐𝑝1

does not vary with the lattice geometry, especially at higher porosity range. On the
other hand, the speed of fluid-borne waves, 𝑐𝑝2, depends on the fluid path and on
the viscous coupling. Both quantities depend on the tortuosity and the permeability,
which are the products of the lattice geometry [28].

The effective acoustic refractive index of a microlattice unit cell is defined as 𝑛 =

𝑐𝑤/𝑐𝑝1, where 𝑐𝑤 is the speed of sound in water and 𝑐𝑝1 is the speed of fast
pressure wave through the porous media. A water-saturated polymeric foam only
allows fast compressional waves to propagate due to attenuation of the slow pressure
waves [10, 37]. In other words, the effective refractive index for different types of
polymeric lattices is only a function of 𝑐𝑝1. As such, we expect that variations
of refractive index among the different geometries can only be ascribed to their
different porosities (Fig. 4.1b). Interestingly, the two bending-dominated lattices
reach higher refractive index values, due to their smaller truss connectivity. With
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higher connectivity, however, the stretch-dominated lattices can achieve larger ranges
of refractive index variation. We can exploit these properties as design features for
our acoustic lenses. We chose the octet truss as the fundamental building block for
its large refractive index variability (Fig. 4.1b) and the ease of fabrication.

Figure 4.2: Experimental setup and analytical, numerical, and experimental
dispersion curves. a, Experimental setup with b, the picture (scale bar: 5 cm) and
c, the 3D model of the measurement system. The model represents the cut plane
(yellow) and the drill hole (red) of the test sample. d, Experimentally reconstructed
dispersion curve (grey-scale colormap, normalized between 0 and 1) with the pre-
diction from Biot theory (solid blue line) extrapolated above the viscous critical
frequency (dashed blue line). The linear dispersion curve of water wave (black line)
is plotted as a reference. (Inset) The microscope image of the unit cell (scale bar:
1 mm). e, Numerically calculated dispersion relation with longitudinally polarized
in-phase modes highlighted in red, others in gray.

4.4 Dispersion relation of the water-filled microlattices
Experimental reconstruction
To determine the acoustic characteristics of our samples, we experimentally recon-
structured the dispersion relation of water-saturated microlattices and compared the
results to a numerically calculated dispersion relation. We fabricated microlattices
composed of octet structures using a high-resolution digital light processing (DLP)
3D printing technique (Autodesk® Ember) using PR48TM acrylic photoresist, whose
constituent properties are taken to be 𝐸 = 3.3 GPa, 𝜈 = 0.39, and 𝜌 = 1190 kg/m3

[10]. The size of the unit cell is 2 mm along each side with the radius of the
truss 𝑟 = 0.16 mm. To ensure that the wave characteristics are well developed, we
allowed more than 5 wavelengths along the travel distance, as a rule of thumb. To
accommodate 10 wavelengths at 300 kHz, the lowest center frequency of interest, we
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printed 25 cells along the wave propagation direction. To measure the acoustic wave
propagation in the water saturated lattices, we immersed our structure in water and
remove the air trapped in the sample with a vacuum pump. All the measurements
were done in a 1.2 m × 0.75 m × 0.75 m water tank surrounded by 2 cm-thick acrylic
walls (Precision Acoustics), see Fig. 4.2a. The tank was filled with deionized water
at room temperature, with negligible variance between measurements. The lattice
was positioned between a broadband ultrasonic transducer (V391-SU, 500 kHz) and
a needle hydrophone (Precision Acoustics, 0.2 mm) (Fig. 4.2b). We drilled a hole
(2 mm wide and 2 cm deep) in the center of the lattice (Fig. 4.2c), to accommodate
the insertion of a hydrophone to measure pressure gradients within the sample.
Signals were generated by an arbitrary function generator (Keysight Technologies,
33522B) connected to a radio-frequency amplifier (Amplifier Research, 75A220).
Hann-windowed 1-cycle sinusoidal pulses were used to excite the lattices, at a cen-
tral frequency 𝑓 = 300 kHz. Three single-axis motorized stages (Velmex, BiSlide)
were installed above the water tank to control the position of the hydrophone. We
measured the transmitted pulse along the drilled hole with constant step increment
(0.3 mm), allowing the characterization of the lattices’ dispersive properties. A pre-
amplifier (Precision Acoustics) connected to the hydrophone relayed the measured
pressure signal to an oscilloscope (Tektronix, DPO 3014). The function generator,
the oscilloscope, and the motorized stages were connected to a PC, which enabled
the integration of signal generation, data acquisition, and positioning functional-
ities into a single MATLAB code. To reconstruct the dispersion characteristics
of our samples, the measured pressure signal was 2D Fourier-transformed into the
wavenumber-frequency domain (Fig. 4.2d).

Effects of the defects on the experimental measurement data
For the experimental measurements, we have drilled a hole into a microlattice
sample, which might have affected the overall acoustic properties of the water-
saturated microlattices. Moreover, we applied vacuum to a microlattice sample
immersed in water to fully infiltrate the pores of the octet microlattices. There is a
possibility that this process may have caused damage to the beams of the unit cells.
It is challenging to investigate defects or their effects, particularly when the sample
contains hundreds of unit cells. Despite this, we can safely assume that the defects
did not significantly impact the overall acoustic properties of the water-saturated
microlattices as (1) the size of the probe hole was small, (2) the wavelength of the
input pressure waves was larger than the feature size of the unit cell, and (3) both
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the Biot model and the FE model were compared to the experimental results for
validation.

The size of the sample was 7 cm × 7 cm × 5 cm and the probe hole was made on
the larger face of the sample. The hole diameter (𝜙ℎ𝑜𝑙𝑒 = 2 mm) was chosen so
that the needle hydrophone (𝜙ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑛𝑒 = 0.2 mm) could probe inside the sample
without making contact and affecting the measurements, while effectively removing
a single line of unit cells at most along the depth direction. Since a line defect in
acoustic metamaterials only affects amplitude of the signal without disturbing the
overall wave properties, it is safe to assume that the hole has minimal influence to
the measurement results [38]. The wavelength of input pressure waves at 300 kHz
is 5 mm when they travel through water. Both the unit cell size (𝑎 = 2 mm) and
the diameter of the constituent beams (𝑑 = 0.32 mm) are considerably smaller than
the wavelength, so the possible influence of micro-cracks created from the vacuum
process can be neglected. The experimentally reconstructed dispersion curve was
thoroughly investigated by comparing results with other dispersion curves from the
poroelastic model and the analysis 4.2d,e. Based on these evaluations, we can assure
that defects do not significantly influence the acoustic properties of water-saturated
microlattices.

2D FFT for the reconstruction of dispersion curve
The purpose of the Hann filter was to reduce any sudden change in amplitude, which
may have led to overshooting of the output pressure. Outside the Hann window,
the signal was zero-padded to minimize the interference with the previous signals.
We stored the transmitted pressure signal measured at each point along the hole in
the lattice as a function of time with sampling frequency 𝑓𝑠 = 1.25 GHz. To secure
enough data points within a single wavelength (𝜆 ≃ 2𝑚𝑚 at 𝑓 = 800 kHz) and to
prevent aliasing, we set the step size between points as 0.3 mm. The measured data
was collected in a 2D matrix of output pressure signal with respect to space and
time. For the reconstruction of the dispersion curve, we 2D-Fourier-transformed the
pressure matrix in space-time domain into the reciprocal wavenumber-frequency
domain. We plotted the transformed data with 𝑘 ∈ [0, 𝜋/𝑎] to show the dispersion
relation in the first Brillouin zone.

Output normalization
We normalized the transmitted pressure intensity after the Fourier transformation,
to compensate for the intensity variation among the frequency components of the
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input signal. The reference pressure signal measured without the test sample shows
pseudo-Gaussian distribution of amplitude, as shown in Fig. 4.3a. We used the ref-
erence pressure amplitude to normalize the transmitted pressure intensity measured
with the sample (Fig. 4.3b).

Figure 4.3: (a) Reference pressure amplitude with frequency centered at 800 kHz.
(b) Pressure output before (red) and after (blue) normalization.

Numerical computation
We also investigated the elastoacoustic characteristics via numerical simulations.
Finite element models of the water-filled microlattices were implemented to derive
their dispersion relation. We studied the coupled acoustic and stress wave propaga-
tion in the [001]-direction under pressure equilibrium and Bloch-Floquet periodic
boundary conditions. The acoustic behavior of octet microlattices under an incident
plane wave is shown in Fig. 4.2e. The strong coupling between structural and
acoustic modes results in various hybridized branches. The four main modes are
two compressional waves, corresponding to one solid-borne and one water-borne
pressure waves, and two degenerate shear modes of the elastic frame. We focus on
the occurrence of the solid-borne longitudinal modes of the water-saturated poly-
meric lattices (red dots in Fig. 4.2e), as this mode dominates energy propagation of
the ultrasonic waves [37].

Dispersion relation
We studied the dispersion relation of the water-saturated polymeric lattices in fi-
nite element simulations, by using the eigenfrequency solver in COMSOL® Multi-
physics. We applied Bloch-Floquet periodic boundary conditions on the faces of the
unit cell under plane wave input. To properly represents the curvature of the trusses
and joints, we used a tetrahedral mesh with the radius of the truss and 1/8 of the
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radius as the maximum and the minimum mesh size, respectively (Fig. 4.4a). We
solved the resulting eigenvalue problems for varying wavenumbers selected within
the first irreducible Brillouin zone, [0, 𝜋

𝑎
], with 𝑎 being the unit cell size.

To find the optimal mesh size, we evaluated the computation accuracy and time as a
function of the number of degrees of freedom (DOF) (Fig 4.4c). We quantified the
accuracy of the mesh by the average error of the computational results, compared
to the predicted pressure wave speeds from Biot theory at very small wavenumber
𝑘 = 0.001× 𝜋

𝑎
. We plotted the total computation time to obtain four eigenfrequencies

along with the error curve, to show the efficiency of the mesh. The error decreases
as the mesh gets more refined, which is counteracted by exponentially increasing
computation costs. We concluded that 2.4 × 105 number of DOFs ensures accurate
enough results with reasonable efficiency.

Figure 4.4: Convergence study. Discretized meshes of the numerical model for
the unit cell of a, octet lattice with surrounding water and b, equivalent poroelastic
medium. c, The error (blue) and computation time (orange) of the eigenfrequency
solver of the water-saturated octet lattice as a function of number of DOFs. The
error at DOF = 38102 is 2245.81 %, which is not shown in the plot.

To classify wave modes, we used several physical parameters, such as the volume-
averaged displacement vectors of the solid frame, and the volume-averaged velocities
of the solid and fluid field. We defined two classification criteria: (i) the polarization
of the normal modes of the solid frame and (ii) the phase difference between the solid
and fluid domain, according to the Biot theory. The polarization factor, 𝑝1, ranges
from 0 to 1, with 1 being purely longitudinal and 0 being purely transverse. The
phase-matching factor, 𝑝2, indicates the degree of mismatch between the oscillating
directions of the solid and the fluid domain, and ranges from complete in-phase
(𝑝2 = +1) to out-of-phase (𝑝2 = −1) modes. Using these classifications, we plotted
the dispersion curve in Fig. 4.2e with longitudinally polarized in-phase modes
highlighted as red, and others in gray.
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Analysis of the dispersion curves acquired using different approaches
The experimental dispersion curve shows a linear, nondispersive response in the
frequency range between the critical Biot frequency (61.2 Hz) and the viscous Biot
frequency (611.8 kHz), marked by several regions of reduced transmission (Fig.
4.2d). These results agree well with finite-element simulations (Fig. 4.2e), which
also show a dispersionless branch (red dotted line in Fig. 4.2e) crossed by localized
modes with near zero group velocity. The slope of these branches corresponds
to the sound speeds, which are 1641 m/s in the experiments and 1603 m/s in the
simulations. A solid-dashed line (blue) overlaid on the experimental dispersion
curve corresponds to the fast pressure wave solution of the Biot theory model. The
analytical model shows dispersionless mode within a inertia-dominated regime at a
constant wave speed of 1611 m/s. We extrapolated the prediction to the frequency
region above the viscous critical frequency for a reference. We also plotted the
dispersionless curve of water waves (black) as a reference.

The presence of localized modes, evident in the numerical dispersion curve (e.g.,
around 300 kHz in Fig. 4.2e), suggests an increased attenuation due to resonances
within the microlattices [39]. The localized modes’ frequency in the numerical
simulations correspond to the region of reduced transmission in the experiments
(Fig. 4.2d). However, the regions of reduced transmission are narrow band and do
not significantly affect the overall signal transmission. This is evident in Fig. 4.3,
which shows the transmission amplitude as a function of frequency.

At higher frequencies, around 600 kHz, the numerical dispersion curve shows
veering of the two fast pressure modes, mixed with multiple localized modes,
suggesting the presence of multiple hybridized modes. This manifests as a significant
drop in the transmitted amplitude through the lattice at similar frequencies (Fig.
4.2d). A Bragg band gap is observed in both of the dispersion curves around 800
kHz, which leads to the bending of the branches near the forbidden band. At higher
frequencies (above 850 kHz), the dispersion curve shows decreasing group velocity.
The dynamic characteristics of the dispersion curve reconstructed from experiments
agree well with the numerical simulations. We exploit these propagation properties
to design an acoustic lens.
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Figure 4.5: Pressure acoustics simulation for Luneburg lens. a, Discretized
Luneburg lens with continuous (red curve) and discrete (yellow circles) refractive
index profiles. Pressure acoustics simulations of Luneburg lens with b, the continu-
ous profile, and with c, the discrete layers, with poroelastic properties corresponding
to the effective refractive indices selected (scale bar: 5 cm).

4.5 Gradient-index Luneburg lens design
Determining the refractive index of the Luneburg lens
Based on the dispersion characterization of our water-filled polymeric microlattices,
we designed a 2D Luneburg lens with a spatially discretized refractive index profile
(Fig. 4.5a). In a conventional, continuous GRIN lens, the focal point resides on
the lens’ surface [40]. However, for most applications, it is useful to place the
location of the focal point in a region at a finite distance from the lens surface. To
spatially vary the focal distance in water, it is necessary to design an appropriate
distribution of the refractive index profile within the lens [41, 42]. Moving the focal
point outside the lens induces undesirable aberration in the focal region [43]. We
minimized these aberrations by further modifying the refractive index distribution
within our lens (Fig. 4.6). The original refractive index profile for the Luneburg
lens is 𝑛 =

√︃
2 − 𝑟2

𝐿
/𝑅2

𝐿
, where 𝑟𝐿 is the distance from the center of the lens, and

𝑅𝐿 is the radius of the spherical lens [40]. However, for fluid-saturated polymeric
lattices underwater, the refractive index must be smaller than 1 since 𝑐𝑝1 is always
greater than 𝑐𝑤 (Fig. 4.2d). We introduced a modified Luneburg lens profile,

𝑛 =

√︂
1+ 𝑓 2

𝐿
−(𝑟𝐿/𝑅𝐿)𝑎𝐿
𝑏𝐿 𝑓𝐿

, with three nondimensional parameters, 𝑎𝐿 = 3.08, 𝑏𝐿 = 1.40,
and 𝑓𝐿 = 1.2 with 𝑅𝐿 = 2 cm. The refractive index distribution of the modified
Luneburg lens is shown as a continuous line in Fig. 4.5a. The refractive index
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gradually varies from 𝑛 = 0.93 at the core of the lens to 0.71 on the outer surface.
This profile ensures that the speed of the acoustic waves is larger on the perimeter
of the lens than at its center.

Figure 4.6: Optimization of Luneburg lens profile for underwater wave fo-
cusing. a, Spherical aberration minimization using adaptive gradient descent opti-
mization. b, Ray trajectory simulation of underwater Luneburg lens with optimized
refractive index profile.

Ray acoustics design
We modified the conventional Luneburg lens index distribution [40], 𝑛 =

√︁
2 − (𝑟𝐿/𝑅𝐿)2,

by introducing three nondimensional parameters. These parameters enable the lens
to have focal point outside the lens, instead of on the lens’ surface, in underwater
environment. We found the best values for the nondimensional parameters, 𝑎𝐿 , 𝑏𝐿 ,

and 𝑓𝐿 in the modified refractive index profile, 𝑛 =

√︂
1+ 𝑓 2

𝐿
−(𝑟𝐿/𝑅𝐿)𝑎𝐿
𝑏𝐿 𝑓𝐿

[43] via adap-
tive gradient descent method. The order of the 𝑟𝐿

𝑅𝐿
, 𝑎𝐿 , determines the convergence

of rays and must be greater than or equal to 2. A scaling parameter, 𝑏𝐿 , adjusts
the refractive indices below 1, which is the maximum refractive index achieved
by water-saturated polymeric microlattices. 𝑓𝐿 determines the approximate focal
length of the lens and is fixed at 1.2 so that the focal point lies 8 cm behind the
lens (double the width of the lens). We applied the gradient descent optimization to
minimize the error (Fig. 4.6a), defined as the radius of the circle of confusion, and
to minimize spherical aberration of the lens. As the results of the iterations under
the constraints stated above, these parameters converge to 𝑎𝐿 = 3.0815 and 𝑏𝐿 =
1.4045, and the final ray trajectories are shown in Fig. 4.6b.

Verification of the Luneburg lens design
To verify our design scheme, we implmented COMSOL® simulations to compare the
pressure acoustic profile of a continuous GRIN lens (Fig. 3b) with our discretized
lens (Fig. 4.5c). First, we investigated a continuous Luneburg lens with modified
refractive index distribution under incident plane waves at 300 kHz. We modeled
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Figure 4.7: Experimental results of the 3D-printed GRIN Luneburg lens. a,
Top-view photograph of the 3D printed Luneburg lens. The insets show optical mi-
croscopy images and corresponding models of unit cells from two different regions
(scale bar: 0.5 mm). b, Normalized pressure intensity in the output plane, c, along
the centerline, and d, across the focal point. Experimental data were measured from
four different scan planes along the lens.

an acoustic domain with 𝜌𝑤 = 1000 kg/m3 and 𝑐𝑤 = 1481 m/s for underwater
environment. Perfectly matched layers (PMLs) surround the external boundary
of the acoustic domain to minimize unwanted reflections. We plotted the sound
pressure level of the region of interest with ambient pressure as a reference. The
continuous GRIN lens focuses plane waves in a localized region behind the lens
(3.15 cm away from the surface).

To validate our discrete lens design, we performed the same finite-element simulation
on a lens assembled with different layers of poroelastic media with finite thickness
(Fig. 4.5c). A circular Luneburg lens, 4 cm in diameter, consists of total 7
layers of unit cells of 2 mm × 2 mm size. We determined the refractive indices
of the discretized layers by taking the mean value of the index along the radial
direction. Within each layer, we derived the beam thickness of each unit cell from
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the poroelastic parameters corresponding to the desired refractive index value (Fig.
4.5a).

Both simulations result in similar pressure distributions along the output plane,
indicating that the poroelastic model captures effectively the acoustic characteristics
of the GRIN lens. The homogenized models of the water-saturated lattices are
significantly more computationally efficient than the fully discretized simulation
with several hundreds octet lattice unit cells and solid-water interfaces (Fig. 4.4).
The pressure distribution in both simulations highlight the presence of scattering
and side lobes, resulting in signal transmission loss at the focus.

Pressure acoustics study using poroelastic waves module
Using the modified refractive index profile, we numerically predicted the pressure
distribution under plane acoustic wave input. We studied both pressure acoustics
model and poroelastic model to compare them, and to validate the use of poroelastic
assumptions for the design of the GRIN lens (Fig. 4.5b,c). For both simulations,
plane waves at 300 kHz travel from a line source on the left of the lens, forming
output plane on the right. We adopted perfectly matched layers (PMLs) to create
non-reflecting boundaries surrounding the acoustic field. For the mesh of the
representative unit element, the maximum size and the minimum size are 1/5 of the
wavelength and 1/10 of the unit cell size, respectively, as shown in Fig. 4.4b. We
determined the mesh size so that there are effectively ∼9 mesh elements within a
single wavelength [44]. As a result, the poroelastic model has much coarser mesh
than the water-coupled lattice model. For a single unit cell, the number of DOFs
reduces from 240k for the water-saturated octet lattice to 1k for the homogenized
model, which makes the poroelastic simulation computationally cheaper. The main
difference between the ray trajectory simulation and the pressure acoustics study
is a discrepancy in the focal distance. This was to be expected, since geometrical
ray acoustics is less accurate in the low frequency limit [45]. Nevertheless, the ray
trajectory study provides a good approximation for the initial design of the lens.

4.6 Underwater experiments of the Luneburg lens
Experimental setup
We 3D-printed a microlattice-based GRIN lens to validate the lens design experi-
mentally (Fig. 4.7a). The size of each unit cell is 2 mm and the radius of the trusses
ranges from 0.15 mm to 0.30 mm, with the thicker beams placed on the outer layers.
We excited the lens with Hann-enveloped bursts, consisting of 5 sinusoidal cycles,
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to achieve narrow bandwidth at the center frequency (300 kHz). To evaluate the fo-
cusing, we mapped the pressure field behind the lens with a 4 mm hydrophone (Fig.
4.2a). We recorded voltage outputs and normalize them by their peak amplitude.
The typical scattered intensity field of the transmitted acoustic waves (Fig. 4.7b)
shows the formation of a focal peak ca. 3 cm away from the lens’ surface. Side
lobes are evident just outside the lens, as predicted in simulations and reported in
earlier studies [46].

Pressure scan
The scan plane is parallel to the top plane of the lens (Fig. 4.7a). We scan the
pressure field in a rectangular area of dimensions 30 mm × 100 mm with step
sizes 1 mm and 5 mm, respectively, splitting the area into 651 data points. As the
hydrophone moves to each location, we enforce a 2-seconds pause to avoid undesired
vibrations to the needle hydrophone.

Measurement results
The results from 4 separate experiments (discrete points) are compared to the numer-
ical predictions (solid black lines), along the directions parallel and perpendicular
to the focal point (Fig. 4.7c,d). The results agree well, with only minor discrepan-
cies among the experimental data arising from the finite height of the 3D printed
lens. The focal length, measured from the back of the lens, and the full width at
half maximum (FWHM) are evaluated from the results. The focal length of the
poroelastic Luneburg lens is observed to be 3 cm, which is in good agreement with
the numerical prediction (3.15 cm). We obtain 3.46 (± 0.3)𝜆 for the FWHM of the
3D printed lens whereas the prediction is 2.8 𝜆, due to higher amplitudes around
the outer edge. The overestimation is caused by the diffraction of the incident wave
traveling around the Luneburg lens. In the experiments, the ultrasound emitter had
a finite width unlike the numerical simulations, which assume an incident planar
wave front. In addition, the 3D printed lens had a finite height, which increased
the diffraction from the top plane. We also ascribe this discrepancy to the limited
prediction of the transmission property due to the use of a simplified poroelastic
model and due to fabrication errors.

4.7 Conclusions
In summary, we investigated the impact of expanding the dimension of wave propa-
gation to 2D, especially in water environment. The aim is to explore the possibility
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of successfully controlling the direction of wave propagation by using microlattices
with gradually varying beam diameters that are saturated with water. This chapter
takes advantage of the theory of poroelasticity for the design of underwater Luneb-
urg lenses featuring heterogeneous arrangement of polymeric microlattices filled
with water. We have demonstrated that using poroelastic theory allows for the com-
putationally cheaper and faster design of acoustic wave manipulation devices. This
approach could be used for biomedical applications that require focused ultrasound
including ultrasonography [47] and sonochemistry [48, 49].
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C h a p t e r 5

3D WAVE PROPAGATION IN ACOUSTIC METAMATERIALS:
PLATE MICROLATTICES IN WATER ENVIRONMENT

This chapter is adopted from:

G. Kim, C. Rabut, B. Ling, M.G. Shapiro, & C. Daraio. "Conformal Acoustic
Window for the Skull Based on Microscale Metamaterials". In preparation.

Contributions: Participated in the conception of the project, designed and char-
acterized the models via finite element analysis, fabricated the samples, conducted
the mechanical characterization both under quasi-static and dynamic loading, par-
ticipated in the animal experiments, analyzed the data, and wrote the manuscript.

5.1 Chapter Summary
This chapter builds on the knowledge gained in previous chapters and delves into the
study of wave propagation in 3D through acoustic metamaterials. The understanding
of the fundamentals of wave propagation in acoustic metamaterials and the analytical
skills gained in the first chapter have laid the foundation for this current chapter.
Additionally, the research in the second chapter on Biot’s theory of poroelasticity,
as well as the design of an acoustic lens for ultrasound wave focusing using water-
saturated microlattices, also contributed to this current study on wave propagation
in 3D environment through acoustic metamaterials.

Functional ultrasound imaging enables sensitive, high-resolution imaging of neural
activity in freely behaving animals and human patients. However, the skull acts as
an aberrating and absorbing layer for sound waves, leading to most of the functional
ultrasound experiments being conducted after skull removal. In pre-clinical settings,
craniotomies are often covered with a polymethylpentene film, which offers limited
longitudinal imaging, due to the film’s poor conformability, and limited mechanical
protection, due to the film’s low stiffness. Here, we overcome these problems by
introducing conformal plate skull replacements consisting of microlattice metamate-
rials with enhanced quasi-static mechanical properties and acoustic characteristics.
A microscale 2-photon polymerization technique is adopted to fabricate a confor-
mal acoustic window with high stiffness-to-density ratio and sonotransparency. We
demonstrate the fitness of the metamaterial acoustic window in vivo via terminal
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and survival experiments on small animals. Long-term biocompatibility and last-
ing signal sensitivity are demonstrated over a long period of time (> 4 months) by
conducting ultrasound imaging in mouse models implanted with the metamaterial
skull prosthesis.

5.2 Introduction
Functional ultrasound imaging (fUSI), the ultrasound analogue of functional mag-
netic resonance imaging (fMRI), enables the imaging of whole-brain activity with
high spatio-temporal resolution and high sensitivity [1, 2]. Based on the power
Doppler technique [3], fUSI records brain dynamics by measuring the variation of
cerebral blood volume, indirectly coupled to cerebral activity through the neurovas-
cular coupling. fUSI has been used in many different animal models from rodent [4,
5] to primate [6] and in humans [7, 8], and it can easily be combined with other brain
recording technology such as optical [9] or electrical modalities [10]. Moreover,
fUSI can easily be adapted for awake head-fixed or freely-moving animals [11] and
it is suitable for pharmacological studies using functional connectivity as a readout
[12].

To ensure high sensitivity to smallest blood volume variations, fUSI relies on high
frequencies (typically between 5 MHz and 15 MHz), which are sensitive to bone’s
attenuation and aberration [13]. This is different from low-frequency focused ul-
trasounds (typically between 0.2 MHz to 1 MHz) used for therapeutic applications,
where transcranial procedures are possible [14]. As a result, most fUSI applications
require circumventing the skull, through open craniotomy [4, 6] or thinned skull
procedures [15]. For chronic studies, the skull can be replaced with an acoustically
transparent bio-polymeric cranial window, to preserve the integrity of brain tissue
over multiple days [10, 16]. The literature has extensively reported the use of poly-
methylpentene (PMP) sheets to replace the skull for ultrasound imaging experiments
(see Table S1). However, PMP sheets have a planar shape, making the replacement
of complex skull geometry impossible. Furthermore, the Young’s modulus of com-
mercially available PMP sheets (< 2 GPa) is generally lower than that of the skull
(3 5 GPa), which makes them compliant and easily deformable.

To optimize the quality and outcome of fundamental neuroscience studies relying
on ultrasound imaging, the shape of a skull-replacement implant should (i) be ad-
justable, (ii) have a high stiffness-to-density and (iii) be sonotransparent. Therefore
there is a clear need for a conformal acoustic window with enhanced quasi-static
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mechanical properties and impedance matched acoustic characteristics.

Mechanical metamaterials (MMs) are rationally designed materials that derive their
properties from the selection of their constitutive materials and from the geometry
of their micro- and meso-structures. MMs have been shown to exhibit unprece-
dented mechanical properties, in both static and dynamic loading regimes. For
example, MMs can have very high stiffness and strength at low density [17–19],
or are capable of manipulating elastic and acoustic waves beyond naturally defined
limits [20–22]. Acoustic metamaterials (AMMs) are the subset of MMs aimed at
manipulating acoustic waves, capable of achieving selective transmission [23–35],
cloaking [36, 37], or focusing and lensing [38, 39]. AMMs can achieve near perfect
transmission via resonance24, zero or negative density [29–31], narrow apertures
[32, 33], impedance matching [34, 35], and overcome the presence of aberrating
layers [24–27]. However, most of the proposed solutions only work within a narrow
frequency bandwidth, which limits their applications for broader use [23–28, 32,
33]. Earlier works demonstrated the use of MMs to image through a stiff and lossy
barrier [25, 26], however, these AMMs do not conform to a real skull geometry and
do not account for the irregularities and inhomogeneities of bone. As such, existing
designs are not readily applicable to solve in-vivo problems. Furthermore, previ-
ous studies only design AMMs for desired acoustic properties, without taking into
consideration their quasi-static response to simultaneously function as a mechanical
and protective barrier [23, 28–35].

Here, we focus on the realization of MMs that can be implanted as custom-formed
skull replacements. These materials are intended to function both as a protective
layer for the brain and as a transparent window for ultrasonic waves. They are
designed to have a high stiffness-to-density ratio (comparable to bone), and can con-
form to arbitrary skull sections (Fig. 1a,b). We label these materials “Metaskulls”,
or MSs.

Literatures using polymethylpentene (PMP) films for cranial window
PMP films have been widely used as a cranial window for ultrasound imaging for
small animals due to its low attenuation properties at higher frequency range (>
10 MHz) [40, 41]. Some of the comprehensive literatures using PMP films are
tabulated (Table 5.1).
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Year Journal Author Type Animal
model

2000 IEEE Bloomfield, P. E. et al.
[40]

Material
characterization

2011 Ultrasound
med. biol.

Madsen, E. R. et al.
[41]

"

2015 Nature methods Sieu, L.-A. et al. [10] fUSI Rat
2016 Neuroimage Demene, C. et al. [42] " Rat
2018 eLife Bimbard, C. et al. [5] " Ferret
2018 IEEE Koekkoek, S. K. E. et al.

[43]
" Mouse

2018 Nature comm. Bergel, A. et al. [16] " Rat
2020 Scientific reports Rahal, L. et al. [44] " Rat
2021 Nature protocols Brunner, C. et al. [45] " Mouse
2021 NeuroImage Edelman, B. et al. [46] " Mouse
2022 Comm. biology Reaux-Le-Goazigo, A.

et al. [47]
" Rat

2022 The Lancet Demeulenaere, O. et al.
[42]

" Mouse

2022 Neurophotonics Tournissac, M. et al.
[48]

" Mouse

Table 5.1: Literatures with the characterization of PMP, and PMP films as a
cranial window.

5.3 Concept
To achieve both quasi-static mechanical robustness and acoustic transparency in
the ultrasonic regime, we designed MMs with structural features in the micrometer
scale, arranged in honeycomb plate lattices, which we fabricated using 2-photon
polymerization (2PP, Fig. 5.1c). The inner structures of the metaskulls are designed
to be impedance matched with biological tissue, to enable low loss transmission
of ultrasonic waves for imaging brain activity in small animals (∼ 15 MHz) [1].
To evaluate numerically the quasi-static and dynamic mechanical properties of the
metaskulls, we implemented finite element (FE) models, which we verify with
experiments. We conducted in vivo tests in mice, to evaluate the brain imaging
quality using metaskulls with varying thickness, by measuring both the total intensity
and signal-to-noise ratio (SNR) of the signal. To demonstrate the long-term stability
of the metaskulls for brain imaging, we performed longitudinal experiments in vivo
via Doppler ultrasound imaging with visual stimulation.
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Figure 5.1: Design and structure of the metaskull. a, Concept schematic illus-
trating ultrasound brain imaging through the metaskull. A 3D model of the inner
structures of the metamaterials shows a periodic tessellation of honeycomb unit
cells, with h = 37 µm, w = 32.3 µm, th = 7.5 µm, and tw = 4.5 µm. b, The metaskull
can fit an arbitrarily shaped region in a curved parietal lobe of the mouse skull. c,
The metaskulls are fabricated with a microscale 2-photon polymerization technique.
SEM images of the sample of the metaskull from the top and isometric views. Scale
bars: b, 1 cm; c, 200 µm (left), 100 µm (bottom right), and 20 µm (top right).

Mechanical metamaterials as a conformal cranial window
We designed the metaskulls which to be acoustically transparent to ultrasound
waves around 15 MHz, to meet fUSI requirements, and to have a high compressive
Young’s modulus for minimal deformation in the vertical direction (Fig. 5.1a). To
achieve a structured material’s stiffness as close to its theoretical limit as possible,
we constructed the unit cell of the metaskulls based on a honeycomb panel with
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hexagonal lattices [49]. The microlattices are composed of polymerized IP-S, which
is an acrylic polymer cured from its viscous liquid photoresist state, suitable for
fabricating biocompatible microscale metamaterials with intricate inner structures
[50]. The unit cell of the honeycomb microlattices consists of a cavity surrounded
by an outer wall with horizontal drainage through holes (5 µm in diameter) (Fig.
5.1c). The cavities are filled up with air to match the MMs’ acoustic impedance to
that of the biological tissue (Ztissue 1.5 MRayl). The 2PP method leaves uncured
photoresist trapped inside the cavity of the unit cell, which increases the effective
acoustic impedance of the metamaterials if it remains inside. We placed the through-
holes in the vertical walls which allowed the trapped photoresist to escape from the
cavities, leaving only air inside the metamaterials.

5.4 Quasi-static characterization of the metaskull
FEA for the mechanical characterizations
We performed the numerical mechanical characterization of the metaskulls under
quasi-static or dynamic loading via FE analysis using a commercial FE software
(COMSOL Multiphysics®) (Fig. 5.2b, 5.7a). The models used for the simulations
consist of a 4-unit-cell thick metaskull with a 300 µm diameter circular face. Mim-
icking the compression experiment setup shown in Figure 5.2a, 50 µm X 50 µm
square-faced punch was compressed against the plate-lattice domain. Assuming
linear elasticity and geometric linearity, we computed the simulation to plot the von
Mises stress distribution on xz- and yz-planes which shows the stress concentration
along the drainage holes.

We numerically calculated the global response of the honeycomb plate-lattices
under compression using a linear elastic model. The FE simulation is modeled
after the experimental setup for the compression test (FemtoTools AG) for the
computation of the deformation and stress distribution of the 4-unit-cell-thick, finite-
sized honeycomb lattices (Fig. 5.2a). To minimize the boundary effect, we built
the lattice model larger than the front face of the tip (Fig. 5.4). Compared and
normalized against the 125-µm-thick PMP model with E = 1.5 GPa, the compressive
Young’s modulus of the honeycomb metamaterials was calculated to be 3.08 GPa.
As expected, the von Mises stress distribution of the model shows that the stress and
deformations are concentrated below the compressed region, especially around the
horizontal drainage holes (Fig. 2b). The presence of the horizontal holes decreases
the effective stiffness of the honeycomb plate-lattices by 12.4%.



78

Figure 5.2: Quasi-static mechanical characterization of the metaskull meta-
materials. a, Optical microscopy image of a metaskull sample for compression
testing, along with the probe tip of the measurement system. b, Von Mises stress
distribution within the FE model compressed with a 50 µm X 50 µm square-faced
probe tip. A quarter of the model is shown for the cross-sectional views. Side-view
images show the stress concentration around the drainage holes. c, Stress-strain
curves showing the single loading-unloading cycle of the honeycomb plate-lattices
and a PMP film under indentation. Dashed lines indicate the slopes at the onset of
the unloading curve, which are used to calculate the effective Young’s moduli. d,
The average and standard deviation of the Young’s modulus obtained from exper-
iments, for both the honeycomb plate-lattices and a PMP film. Red lines indicate
the prediction from the numerical simulation or known material properties. e, The
theoretical upper bound for the modulus of a two-phase, isotropic material (gray)
crossed by an isoline matching the acoustic impedance of the brain (blue), both
as a function of the Young’s modulus and density of the constituent solid. The
acoustic impedance of the brain is constant at 1.52 MRayl and follows a relation,
𝑍 =

√
𝜌𝐸 . The normalized Young’s modulus and relative density are normalized

with the Young’s modulus and density of IP-S, respectively.

Compression test results of the metaskull and a PMP film
We show the quasi-static compression data acquired from 5 independent measure-
ments of the metaskull (148 µm) and a PMP film (125 µm) each (Fig. 5.3). All
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the measurements were calibrated using the reference stiffness of the testing system
(𝑘𝑟𝑒 𝑓 = 28,000 N/m) [51]. We converted the force-displacement data to stress-strain
data using the area of the probe tip and the thickness of the films under compression.
The strain rate lower than 0.001 s−1 was applied to all the measurements. The slope
at the start of the unloading curves shows the global response of the samples under
compression, representing the effective compressive modulus.

Figure 5.3: Quasi-static mechanical testing. a, Sets of 5 independent stress-
strain curves of the metaskull (148 µm) and a PMP film (125 µm) tested with the
indentation experiment setup. b, Bar graph shows the distribution, average, and
standard deviation of the effective Young’s modulus derived from the measurement
data.

The mean effective compressive modulus measured from independent compression
tests of the 3D-printed honeycomb plate-lattices is 3.02 GPa ± 83.4 MPa (standard
deviation), which is in good agreement with the numerical prediction (3.08 GPa)
(Fig. 5.2d). As a reference, we also measured the compressive response of a
PMP film, from which we extracted a Young’s modulus of 1.52 GPa ± 112.1 MPa.
The dimensions of the honeycomb plate-lattice unit cells were optimized so that
the metaskull can be impedance-matched to biological tissue, while preserving the
highest possible quasi-static stiffness. The stiffness of the honeycomb metamaterials
lies on the edge of the theoretical limit, which is the Hashin-Shtrikman upper bound
for two phase materials [52] (Fig. 5.2e).
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Numerical simulation on the effect of the radius of the compressed model
The quasi-static finite element (FE) model consists of a square-faced probe tip
for compression and a 125 µm thick PMP film (E = 1.5 GPa), cut in quarters for
computational and graphical purposes (Fig. 5.4a). The face of the probe tip is 50 µm
X 50 µm large, hence a model wide enough in the lateral direction was required to
properly mimic thin film compression tests without boundary effect. We conducted
a parametric compression study as a function of the radius, 𝑟, on a monolithic,
circular-faced PMP film model to determine the optimal size for the simulation.
The radius was swept from 25 µm to 250 µm with progressively increasing step
size. We calculated the Young’s modulus of a film by dividing the reaction force
with the area of the face of the probe tip, and also with the corresponding strain.
The effective modulus increases as the diameter gets bigger before it saturates at the
radius above 150 µm (Fig. 5.4b). Since the computation cost significantly increases
with a bigger model size, the diameter of the model for the compression simulation
was set as 150 µm. We further normalized the simulation results considering the
structural factor to match the Young’s modulus of the PMP.

Figure 5.4: Characterization of the boundary effect. a, The FE model for the
compression simulation of a monolithic PMP film. The von Mises stress distribution
within the film under 1 µm indentation is shown on the cross sections of the model.
b, Effective compressive modulus (blue, square), and the number of degrees of
freedom (red, circle) as functions of the radius of the model. Beyond r = 150
µm (black, dashed), the value of the modulus saturates while the computation cost
increases significantly.

Compression simulation on the effect of the structural nonlinearity
We compared the quasi-static properties of the honeycomb plate-lattices with and
without the geometric nonlinearity (Fig. 5.5). The linear response does not deviate
from the nonlinear response by more than 0.7% when the applied stress reaches
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4.5 MPa (Table 5.2), which is above the typical acoustic pressure range for the
ultrasound imaging (0.1 - 4 MPa) [53]. In addition, the engineering strain is 0.14%
for 148 µm thick lattices at z = 0.2 µm, which makes the material’s deformation
safely within the linear elastic regime. Based on the analysis, we show that linearity
in both structure and materials can be assumed for expedited computation without
compromising the accuracy of the FE models.

Figure 5.5: Characterization of the geometric nonlinearity. The applied stress
as a function of deformation displacement for both geometrically linear (red, square)
and nonlinear (blue, circle) cases. The discrepancy between two cases gets negligible
for small deformation.

Δ𝑧 (𝜇m) 𝜎𝑙𝑖𝑛 (MPa) 𝜎𝑛𝑙𝑖𝑛 (MPa) 𝐸𝑟𝑟𝑜𝑟 (%)
0.1 2.22 2.23 -0.51
0.2 4.44 4.41 0.66
0.5 11.10 10.09 1.57

1 22.19 21.50 3.11
2 44.39 41.51 6.49
5 110.97 92.47 16.67

Table 5.2: Resultant stresses under compression. 𝜎𝑙𝑖𝑛 and 𝜎𝑛𝑙𝑖𝑛 indicate the
resultant stresses under the deformation, Δ𝑧, assuming geometric linearity and
nonlinearity, respectively. The error is calculated as 𝐸𝑟𝑟𝑜𝑟 = (𝜎𝑙𝑖𝑛 − 𝜎𝑛𝑙𝑖𝑛)/𝜎𝑙𝑖𝑛×
100%.
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The effect of the presence of the drainage holes in the metaskull
The 2PP technique facilitates the rapid fabrication of complicated geometry with
ease, however, drainage holes must exist to remove uncured photoresist from the
inner cavities of the honeycomb plate-lattices. The effective mechanical properties
and structural integrity are affected by the presence of the drainage holes, since we
lose a mass that can withstand the applied load. As a result, the effective Young’s
modulus decreases from 3.51 GPa to 3.08 GPa, reduced by 12.4%. The drainage
holes also weaken the structure by working as a stress concentration center when
the load is applied [54]. The highest von Mises stress on the perimeter of the hole
(dashed circle in blue in Fig. 5.6) reads 260 MPa, which is higher than the stress
found in the same position of the intact structure (100 MPa).

Figure 5.6: Effect of the drainage holes to the structural integrity. a, The FE
compression model with horizontal drainage holes showing the von Mises stress
distribution on the cross sections. b, The FE model without the drainage holes
shows less concentrated stress within the metamaterials.

Micro fabrication process of the metaskulls
We adopted the microscale 2PP technique for the fabrication of the metaskulls
with intricate inner structures (Nanoscribe GmbH & Co. KG). The photoresist,
IP-S, in the form of highly viscous liquid becomes acrylic when cured under laser
irradiation. After printing the desired metaskull geometry, we develop the metaskull
using propylene glycol monomethyl ether acetate (PGMEA) and isopropyl alcohol
(IPA). The presence of the drainage holes allows the remaining photoresist to be
thoroughly removed from the cavities. We measured the mass of the metaskull
samples before and after underwater tests to confirm that the cavities are saturated
with air, trapped inside the structure due to surface tension. For microscopic images,
only 25 X 24 X 4 arrays of unit cells were printed, which resulted in a sample with
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outer dimensions of 590 µm X 574 µm X 148 µm (Fig. 5.2a). Since the single
printing size of the Nanoscribe Photonic Professional GT (300 µm X 300 µm X 300
µm) is smaller than the final dimension, smaller blocks were stitched together to
form a larger final structure.

Compression experiments on the metaskull samples
The quasi-static characterization was performed using a micromechanical testing
tool (FemtoTools AG, FT-MTA02) (Fig. 5.2a). A displacement-controlled probe
tip with a square end (FT-S100,000) was compressed against the metaskull sample
composed of honeycomb unit cells for force measurement. The size of the sample
used for testing (700 µm X 700 µm X 148 µm) was larger than the front end of the tip
(50 µm X 50 µm), so that boundary effects could be neglected (Fig. 5.4). The probe
tip recorded the force signal as the measuring arm traveled downward 2 µm from
the top surface. Calibration test against a rigid substrate surface was done prior to
the measurements to offset the deformation of the measuring arm under given force.
The reference stiffness of the measuring system, 𝐾𝑟𝑒 𝑓 = 28,000 N/m, was then used
for the calibration. We took the sample’s effective stiffness from the beginning of
the unloading curve, which indicates the global response of the lattice.

5.5 Dynamic characterization of the metaskull
Calculation and visualization of the dispersion curves
Numerical simulations were performed using a commercial FE software (COMSOL
Multiphysics®). The dispersion curves of the metaskulls were derived by numeri-
cally solving the characteristic equation of the honeycomb unit cell. Bloch-Floquet
periodic boundary conditions were applied on all sides, assuming infinite period-
icity. With evenly-spaced wavenumbers sweeping within the irreducible Brillouin
zone, the eigenfrequencies below 50 MHz were calculated to best represent the
behavior of the metamaterials around the operating frequency of fUSI for small
animals ( 15 MHz). With incident plane waves traveling in the z-direction, Γ − 𝐴,
the volume-averaged displacements in each direction were normalized with the to-
tal volume-averaged displacement. We determined the longitudinal polarization of
each normal mode based on the dominant direction of deformation. The longitudinal
polarization factor is defined as 𝑤√

𝑢2+𝑣2+𝑤2 where 𝑢, 𝑣, and 𝑤 are the displacements
in 𝑥−, 𝑦−, and 𝑧− directions, respectively. If the longitudinal polarization factor
of one normal mode is close to 1, the mode has dominant pressure wave behavior,
as opposed to when the transverse mode is dominant and the polarization factor is
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close to 0. With blue being purely longitudinal and red being purely transverse,
the dispersion curves were plotted to indicate the polarization of the mode at each
solution (Fig. 5.7b). The dispersion curves of the honeycomb unit cell in different
wave directions were calculated by sweeping the Brillouin zone in the reciprocal
domain. The wavenumber vectors 𝑘 = (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) parallel to Γ− 𝐴, Γ− 𝛽𝐿, Γ− 𝛽𝐻
with 𝛽 = 0.2, 0.5, or 1, are used for the dispersion curves.

We computed the dispersion curves in the Γ − 𝐴 direction in the Brillouin zone,
to investigate the wave propagation characteristics of the metaskulls under plane
acoustic waves, in the z-direction (Fig. 5.7b). We designed the geometry of the
metaskull’s unit cell so that the pressure waves have minimal transmission loss at
15 MHz. The proposed design has a linear longitudinal branch around 15 MHz,
which allows dispersionless propagation of waves around the operating frequency.
We further ensure that there is no hybridization between the longitudinal modes and
shear modes. As a result, the energy loss due to transverse mode conversion from
the longitudinal mode is minimized by avoiding normal-to-shear coupling [55].
We designed the metaskull to have a shear mode band gap between 11.4 and 20.2
MHz, leading to the suppression of shear waves’ conduction through the skull of the
subjects [56]. The acoustic impedance of the metaskulls is matched to biological
tissue, to achieve zero reflection at the water-metaskull interface. At 15 MHz, the
group velocity, cg, of the longitudinal wave through the honeycomb plate-lattices
is 1938.7 m/s with the effective density, 𝜌𝑒 𝑓 𝑓 , equal to 775.6 kg/m3, making the
acoustic impedance of air-saturated plate-lattices along the vertical direction 1.504
MRayl.

Transmission simulation for the metaskull
In addition, we built the transmission models to assess the acoustic characteristics of
the traveling pressure waves with respect to the frequency and the angle of incidence
(Fig. 5.7a). The input and output pressure field, padded with perfectly matched
layers, sandwich a column of honeycomb plate-lattices composed of a finite number
of unit cells (n = 3, 4, 5, 7, and 9). We imposed the Bloch-Floquet periodic boundary
conditions on the side faces to assume infinite periodicity in the lateral directions.
The viscoelastic dissipation of the constituent polymer was incorporated by feeding
an isotropic structural loss factor (𝜂 = 0.075) to the materialistic model [57]. We
evaluated the amplitude of the traveling pressure waves in the output pressure field,
and showed the transmission curves in dB, 10𝑙𝑜𝑔(𝑃/𝑃𝑟𝑒 𝑓 ) (Fig. 5.7d).
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Figure 5.7: Characterization of dynamic mechanical properties of the
metaskulls. a, FE model for the ultrasonic wave propagation at 15 and 30 MHz
through 4 unit cells of the honeycomb plate-lattices in water. (Left) Pressure distri-
bution within the water surrounding the metaskulls and the air inside the cavities.
(Right) The volumetric strain distribution within the honeycomb metamaterials. b,
The dispersion curves of the honeycomb metamaterials in both Γ − 𝐴 and Γ − 0.2𝐿
directions. Curves’ colors indicate the longitudinal polarization of each mode (blue:
pressure mode, red: shear mode, and purple: hybridized mode). c, Experimental
transmission coefficients of the metaskull samples with varying thickness averaged
between 13.75 and 17.5 MHz, shown with error bars. The slope of the linear regres-
sion plot (blue, solid, 𝑟2 = 0.99) is -83.0 dB/cm, whereas the attenuation coefficient
of a 125-µm-thick PMP film (black, dashed) is -36.6 dB/cm. d, Both experimentally
measured (dotted) and numerically derived (solid) transmission curves of a PMP
film (black, dotted) and the metaskulls with varying thickness with respect to fre-
quency.
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Transmission simulation: Frequency dependent pressure & volumetric strain
curve
We compared the acoustic pressure and volumetric strain distribution of the
metaskulls at two different frequencies, 15 and 30 MHz. Both water and air pressures
are normalized by the peak pressures in each medium. Unlike Figure 5.7, 9-unit-cell
structures were modeled for comprehensive analysis of the strain distribution (Fig.
5.8a). For the quantitative evaluation of the attenuation, we plotted the pressure and
strain profiles along the pressure fields and the metaskull, respectively, both as a
function of traveling distance. Both the water and the air pressure amplitudes were
self-normalized with their own maximum pressure for visualization (Fig. 5.7a).
The pressure amplitude in the output field at each frequency is -2.73 dB at 15 MHz
and -31.20 dB at 30 MHz. At 30 MHz, the input frequency lies within the Bragg
band gap of the longitudinal mode (between 23.05 and 38.94 MHz), and as a result,
the amplitude of pressure waves exponentially decays as they travel through the
metaskull. At 15 MHz, the only source of attenuation originates from viscoelastic
dissipation within the constituent solid which causes linearly attenuating amplitude
(Fig. 5.8b).

We experimentally validated the numerical predictions for the acoustic properties
of the metaskulls by measuring the transmission coefficient with respect to the
input frequency (Fig. 5.7d). The metaskull samples with different thickness (111,
148, 185, 259, and 333 µm) were used for the transmission measurements. The
discrepancy between the transmission coefficients at higher frequencies measured
in experiments and simulations was due to the finite size of the metaskull samples
and to boundary effects, leading to weaker attenuation. The transmission coefficients
between 13.75 and 17.5 MHz for each sample were averaged and their values were
linear-fitted, along with the attenuation coefficient of the 125-µm-thick PMP film,
as a reference (Fig. 5.7c). The curve-fitted transmission loss data extrapolate
to the origin, implying zero reflections at the water-metaskull interface, since the
metaskulls are acoustically matched to biological tissue. The attenuation coefficient
of the metaskulls, 83.0 dB/cm, is larger compared to that of the PMP film, 36.6
dB/cm, both at 15 MHz. This higher attenuation from the metaskull is caused by a
larger number of interfaces from the additive manufacturing. However, we show in
the subsequent sections that the fUSI qualities are acceptable even with the slightly
increased attenuation.

We investigated the transmission characteristics of the metaskulls by numerically
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Figure 5.8: Frequency dependent pressure and volumetric strain distribution.
a, The FE models for transmission simulation showing the input and output pressure
fields, and the metaskull. The acoustic pressure and volumetric strain distribution at
30 MHz show more steep attenuation of the traveling waves. b, The pressure (blue)
and volumetric strain (red) profiles along the vertical axis at 15 and 30 MHz. The
envelopes (green) imply different attenuation characteristics at different frequencies.

analyzing the frequency dependent response (Fig. 5.7a). The attenuation through
the 4-unit-cell metaskull at 15 MHz is 1.20 dB, which is significantly smaller
than the attenuation at 30 MHz, by 90Ṫhe volumetric strain distribution within the
constituent solid as a function of the traveling distance shows that the amplitude
of the traveling waves attenuates for both cases, but with much greater loss at the
higher frequency (Fig. 5.8). The higher transmission loss at 30 MHz is attributed
to the presence of a longitudinal band gap between 23.05 and 38.94 MHz, whereas
the loss at 15 MHz arises from the viscoelastic dissipation of the polymer itself
[57]. With gradually increasing frequency, the slope of the attenuation curve gets
steeper and nonlinear as the frequency increases above 18 MHz, and the attenuation
dramatically increases above 20 MHz (Fig. 5.7c).

Transmission simulation: Evaluation of the contribution of the viscosity of air,
and the viscoelastic dissipation of solid
We investigated the contribution of the viscosity on the acoustic characteristics of
the metaskulls by comparing the pressure and volumetric strain profiles (Fig. 5.9a).
The models with and without the viscosity of air and the viscoelasticity of the
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constituent polymer are built for the numerical simulation. To match numerical
transmission curves to the experimental results, isotropic loss factor, 𝜂, at 0.075
is used for the models to account for the viscoelasticity of the solid [57]. The
attenuation coefficients are evaluated for all 4 cases under the same conditions: 𝑓 =
15 MHz, 𝑛 = 9, and 𝜃𝑖 = 0°. The transmission loss of the vacuum-filled model in
the absence of energy dissipation from the constituent materials is -1.32 10-4 dB,
which is negligible. The model, including the effects viscosity from the constituent
solid and air inside the cavities, loses the pressure wave energy by 2.73 dB. The
result is the summation of each case.

Figure 5.9: Effect of the viscosity of air and the viscoelasticity of the solid to
the transmission. a, (Top) The acoustic pressure and the volumetric strain profiles
when the viscoelasticity of the solid is ignored. (Bottom) The profiles with the
isotropic loss factor, , at 0.075. For both plots, the profiles with or without the air
inside the cavity of the metamaterials are not distinguishable. b, The magnified
views of the parts of the profiles from the left panel showing the attenuation due to
the viscosity of air.

Transmission simulation: Advantage of the honeycomb plate-lattices with hor-
izontal holes over vertical holes
The drainage holes can also be placed vertically in the unit cell of the metaskull
as opposed to horizontally as shown in Fig. 5.10b. Nevertheless, the vertical
through holes must be avoided for two reasons. First, we need to prevent biological
fluid or external contaminants, such as bacterias or viruses, from traveling freely
through the cranial window. Allowing direct passages to the brain may cause adverse
inflammation that will undermine the purpose as a protective barrier. Another reason
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Figure 5.10: Thermoviscous dissipation with respect to the direction of the
drainage holes. a, The acoustic pressure (left) and the thermoviscous energy
dissipation (right) distributions within the air inside the cavities of the horizontally
holed metamaterials. The pressure distribution is normalized by the pressure of
the input waves. b, The acoustic pressure (left) and the thermoviscous energy
dissipation (right) distributions within the air inside the cavities of the vertically
holed metamaterials.

is that the viscous attenuation due to the horizontal holes is much smaller than the
attenuation due to the vertical holes. A periodic placement of vertical through-holes
across the metaskulls is structurally identical to micro perforated panels, which
are known as good sound absorbing layers [58]. The pressure gradient along the
cavities connected with the vertical holes results in viscous attenuation along the
neck, which is orders of magnitude higher than the attenuation within the horizontal
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holes. Ideally, there is little to no pressure gradient across the horizontal cavities,
especially when the incident angle of the plane waves is 0°.

Figure 5.11: Angle-dependent dispersion curves of the metaskull. a, Wavevec-
tors of the plane waves are shown with respect to the irreducible Brillouin zone of
the honeycomb unit cell. b, The dispersion curve in the Γ − 𝐴 direction, parallel
to the z-axis. c, The dispersion curves of the plane waves with gradually increased
tilting against the z-axis toward the x-axis, and d, toward the y-axis.
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Transmission simulation: Angle-dependent dispersion curves within the Bril-
louin zone
fUSI is based on the ultrafast transmission of plane acoustic waves in tissues to
capture subtle blood flow changes caused by neurovascular coupling. To achieve
maximum contrast, coherent compounding of tilted plane-waves was performed
[59]. Typically for fUSI, four to ten angles between -10° to +10° are used to form a
single coherently compounded image. We numerically investigated the sensitivity
of the transmission performance of the metaskulls with respect to the incident
angle of the plane acoustic waves (Fig. 5.12). We analyzed dispersion curves and
transmission properties for various incident angles and directions of the incident
waves front (Fig. 5.11). The incident angles were tilted in the xz-plane based on the
Brillouin zone of a hexagonal lattice. Starting from Γ−𝐴, the dispersion curves were
computed with a gradually increasing incident angle toward the Γ−𝐿 direction (Fig.
5.11a). With greater tilting angle, the longitudinal mode of the metaskulls gets more
hybridized with the shear mode, making it less effective at transmitting the acoustic
wave energy. We observe that the original dispersion behavior in Γ − 𝐴 remains
relatively unchanged until Γ − 0.2𝐿, which corresponds to a 14.8◦ tilting. Different
angle-dependent responses between the metaskull models of different thickness is
attributed to Bragg scattering. We quantitatively evaluated the angle-dependent
attenuation using the transmission simulation at 15 MHz. The transmission curve
of the 4-unit-cell metaskulls is almost flat up to 14.8° with only 0.16 dB reduction
from 0◦, but the curve shows steep decrease to -2.55 dB at 30◦ and to -5.81 dB at
40◦ (Fig. 5.12).

We investigated the effects of the incident angle and direction of the plane acoustic
waves on the dispersion curves of the metaskulls (Fig. 5.11). The wavevectors
of the incident waves follow the Brillouin zone notation as shown in Figure 5.11a,
and their angles with respect to the z-axis are tabulated in Table 5.3. For example,
Γ − 0.2𝐿 corresponds to the wavevectors parallel to the vector from the point Γ
to the point on the line A-L splitting the line with 2:8 ratio. Up to Γ − 0.2𝐿 and
Γ − 0.2𝐻, which correspond to 14.80° and 12.89°, respectively, the main design
features of the dispersion curves at Γ − 𝐴 remain (Fig. 5.11b,c(i),d(i)). There
exists a pure longitudinal mode which stays dispersionless, and the shear band gap
opening from 13.48 to 20.49 MHz (or 12.98 to 20.42 MHz) can be observed at
Γ − 0.2𝐿 (or Γ − 0.2𝐻). As the incident angle gets larger for both directions, the
shear band gap narrows and shifts upwards, and the hybridized mode between the
pressure mode and the shear mode emerges (Fig. 5.11c(ii),d(ii)). As the direction
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vectors reach the edge of the Brillouin zone, the shear band gap completely closes
and the pressure mode becomes dispersive (Fig. 5.11c(iii),d(iii)). The energy of
the traveling longitudinal waves will be attenuated, while part of the energy will
be converted to shear mode due to the hybridized mode. To conclude, the acoustic
characteristics of the dispersion curves at Γ− 𝐴 stay undisturbed up to 13°, allowing
wider angle for functional ultrasound examination.

Transmission: The frequency band gap and transmission as a function of the
incident angle
We evaluated the transmission models and their pressure profiles as functions of
wave propagating directions in the Brillouin zone at 𝑓 = 15 MHz. As the incident
pressure waves get more tilted with respect to the vertical axis, the amplitude of
transmitted waves get more attenuated. The amount of transmission loss remains
relatively constant until the incident angle reaches 15°, but increases dramatically
as the incident angle gets larger (Fig. 5.12). The angle-dependent attenuation of the
metaskull is due to the emergence of the hybridized mode and vanishing shear band
gap with greater incident angle.

Figure 5.12: Angle-dependent transmission curves of the metaskull. Numeri-
cally calculated transmission curves of the metaskull with different number of layers
at 15 MHz with respect to the incident angle of the pressure waves in Γ − 0.2𝐿 di-
rection.

Acoustic transmission experiments with the metaskull samples
We used zero-padded, Hann-windowed single-cycle sinusoidal bursts as the in-
put waves for the underwater transmission tests. The signals centered at multiple
different frequencies were sent through the metaskull samples using an immersion
transducer (Olympus, V356-SU). The output signals were recorded by a hydrophone
(Precision Acoustics, 0.2 mm needle) and Fourier-transformed for the evaluation in
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Wavevector 𝜃 (◦) 𝑓𝑐 (MHz) Δ 𝑓 (MHz) Tr. (dB)
Γ − 𝐴 0 15.79 8.89 -2.63

Γ − 0.2𝐿 14.80 16.99 7.01 -2.97
Γ − 0.5𝐿 33.45 - - -7.25
Γ − 𝐿 52.88 - - -8.05

Γ − 0.2𝐻 12.89 16.70 7.44 -2.88
Γ − 0.5𝐻 29.78 0 - -5.60
Γ − 𝐻 48.85 0 - -7.92

Table 5.3: Wavevectors in the Brillouin zone, corresponding angles, and the
resulting transmission characteristics. A The wavevectors in the hexagonal irre-
ducible Brillouin zone and the corresponding incident angles of the plane acoustic
waves. The center frequency, 𝑓𝑐, and the bandwidth, Δ 𝑓 , are acquired from the
dispersion curves in Fig. 5.11. The transmission coefficients are derived from the
FE transmission models with 9-unit-cell metaskulls (Fig. 5.12).

the frequency domain. We plottted the transmission coefficients of the metaskulls
with varying thickness (111, 148 ,175, 259, and 333 µm) and a PMP film (125 µm)
in Fig. 5.7b.

5.6 In vivo experiments for cranial window characterization
Animal surgeries for in vivo experiments
To validate the fitness of the metaskulls as a skull prosthesis to perform high
sensitivity fUSI, we conducted in vivo imaging studies using a total of 6 mice. We
tested four mice to compare the SNR performance of the power Doppler images of
the brain through two types of cranial windows of varying thickness (Fig. 5.13), and
two for the longitudinal monitoring of fUSI performance after cranial implantation
of the metaskulls (Fig. 5.14).

All animal experiments were conducted under protocols approved by the Institu-
tional Animal Care and Use Committee of the California Institute of Technology.
The in vivo experiments presented were performed on C57BL/6J mice (Jackson Lab-
oratory) aged between 6 to 8 weeks. No randomization or blinding were necessary
in this study.

Side-by-side comparison of different skull replacement material
Four mice were used for the cranial window characterization study. Mice were
anesthetized with 2–3% isoflurane with their heads fixed on a stereotaxic frame.
After the incision and stabilization of the skin, the skull was exposed and rinsed
with sterile saline. Ultrasound coupling gel is applied on top of the skull, then we
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Figure 5.13: Side-by-side comparison of different skull replacement material
for high sensitive cerebral power Doppler imaging in mice (N = 4). a, Cerebral
power Doppler imaging of one mouse through the intact skull, after craniotomy
without any material, and through a layer of PMP (125 µm) or metaskulls (111,
148, 185, 259, and 333 µm) (Representative mouse). b, Standardized total intensity
of the power Doppler images with respect to the skull replacement material. c,
Standardized SNR of the power Doppler in i. the cortex and ii. the deeper structures.
Scale bar: 5mm. PD = Power Doppler.

acquired a first transcranial power Doppler image set (“Transcranial” case in Fig.
5.13a) following the parameters described in the fUSI acquisition section. A skull
window (1 cm x 0.4 cm) was then removed by drilling (Foredom) at low speed using
a micro drill steel burr (Burr number 19007-07, Fine Science Tools). Care was
taken not to damage the dura and to prevent inflammatory processes in the brain.
We acquired a second transcranial power Doppler image set where only ultrasound
coupling gel is applied on top of the brain (“Craniotomy” case in Fig. 5.13a). Then,
successive implant sheets for PMP and metalskull cases were positioned on top of
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the brain for additional power Doppler acquisitions.

Surgical implantation of honeycomb lattices for chronic imaging of the brain
in mice
Two mice were implanted with the metaskull and used for the longitudinal study.
Mice were anesthetized with 2%–3% isoflurane, with their heads fixed on a stereo-
taxic frame. After the incision and stabilization of the skin, we removed a rectangular
skull window (1 cm x 0.4 cm) by drilling at low speed using a micro drill steel burr.
The window corresponds to the coronal planes from Bregma -2 mm to Bregma
-2.5mm. Care was taken not to damage the dura and to prevent inflammatory pro-
cesses in the brain. We dropped 20 µl of artificial dura on top of the exposed brain to
provide an aqueous layer between the brain tissue and the implant. A 1 cm x 0.5 cm
metaskull window was sealed in place with the layer of acrylic resin.The surgical
procedure took 45 min to 1 h. Animals recovered quickly, and after a conservative
10 days resting period, they were used for the data acquisition via fUSI.

fUSI acquisition
fUSI visualizes neural activity by mapping local changes in cerebral blood volume
(CBV). CBV variations are tightly linked to neuronal activity through the neurovas-
cular coupling and are evaluated by calculating power Doppler variations in the
brain. fUSI was performed using a 15 MHz ultrasonic prob (L22-14vX, 15 MHz,
64 elements, 0.11 mm pitch, Verasonics) connected to a Verasonics Vantage ultra-
sound system (Verasonics) driven by custom MATLAB (MathWorks) transmission
scripts. Each power Doppler image was obtained from the temporal integration of
300 compounded frames acquired at 500 Hz frame rate, using 5 tilted plane waves
seprated by 3◦ (-6◦, -3◦, 0◦, 3◦, and 6◦) acquired at a 2,500 Hz pulse repetition
frequency. Power Doppler images were then repeated every second (1 Hz image
framerate). Each block of 300 images was processed using a SVD clutter filter
to separate tissue signal from blood signal to obtain a final power Doppler image
exhibiting CBV in the whole imaging plane.

SNR performance through different material and thicknesses shows the trans-
mission characteristics
We first acquired a transcranial cerebral power Doppler image in anesthetized mice
as a reference. We then performed a craniotomy to open a cranial window and to
compare the fUSIe performance through different skull replacement materials. The
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metaskulls with varying thickness and a PMP film (125 µm) were positioned on top
of the brain to cover the cranial opening. The size of the metaskull windows was
1 cm x 0.25 cm, consisting of 75,000 honeycomb unit cells per layer. All power
Doppler images were acquired on the same coronal plane for all conditions (Bregma
-2.5mm).

The standardized intensity maps obtained from the power Doppler using different
types of windows were plotted side by side (Fig. 5.13a). We could observe the
strong attenuation of the transcranial power Doppler signal relative to the image
acquired after craniotomy. The main arteries were indiscernible, also showing poor
in-depth signal. Without any covering after craniotomy, cortical vessels were clearly
visible, as well as the deeper vessels in the thalamic regions. We then covered the
brain with a PMP film or the metaskulls with different thickness, and no clear
structural change from the acquired images was noticeable. The average intensity in
the power Doppler images was the highest in the case of craniotomy and the lowest
in the transcranial case (Fig. 5.13b). Taking the intensity from the craniotomy
as a reference, the PMP case recovered 60% of the reference intensity, while the
metaskulls showed gradual decrease from 50% (111 µm) to 20% (333 µm) of the
reference intensity with increasing thickness.

We quantitatively assessed the signal sensitivity of the ultrasound images through
the metaskulls by analyzing the SNR of the acquired blood vessel mappings. The
normalized SNR in cortical regions and in deeper structures (defined by the white-
dotted squares in Fig. 5.13a) are shown for all the cases (transcranial, craniotomy,
PMP, and the metaskulls) (Fig. 5.13c). The transcranial SNR was evaluated as a
reference, and one can again observe a major loss in SNR in the transcranial case
(70% of the craniotomy signal in the cortical region, and 45% in the deeper struc-
tures). The SNR obtained after covering the brain with a PMP window was almost
95% of the craniotomy SNR, both in the cortical and deeper regions. Similarly, the
metaskull only caused a slight decrease in SNR for the thinner case (92% at 111
µm) for both cortical and deeper structures, while the SNR gradually decreased to
70% as the thickness of the metaskull increased to 333 µm.

We showed that the metaskull induces more than 50% decrease in intensity (this
decrease is around 40% for the PMP film) compared to the craniotomy case in the
power Doppler images, but that the SNR remained above 80% of the craniotomy
SNR.
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Figure 5.14: Longitudinal fUSI study in mice after metaskull implantation. a,
Longitudinal study protocol: mice are implanted with the metaskull (148 µm) at
day 0. They are then examined at day 10, 20, 34, . . . during which visually evoked
activity is recorded. b, Power Doppler images are acquired around coronal plane
B-2.2 mm showing the structure of the vascular network (top, hot colors) and the
activated LGN following visual stimulation (bottom, cold colors)

5.7 Survival test
Longitudinal study confirms biocompatibility and functional signal conserva-
tion over time
We surgically implanted the metaskull in mice (𝑁 = 2) to evaluate the biocom-
patibility of the constituent polymer, and the conservation of the functional signal
through the implant over a long period of time was observed (> 4 months). Power
Doppler scans were performed at days 10, 20, 34, 82 and 120 after surgery, during
which we stimulated the visual system to measure evoked activation in the lateral
geniculate nuclei (LGN).

Functional activation of mice visual system
To evaluate the sensitivity of fUSI through the metaskull long-term, we stimulated
the visual system of the metaskull-implanted mice over multiple days (day 10, 20,
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34, . . . ). We delivered visual stimuli using a blue LED positioned at 3 cm in front
of the eyes of the mice. Stimulation runs consisted of periodic flickering of the blue
LED using the following parameters: 30 s of rest followed by 30 s of a flicker.

Activation maps
Correlation maps were computed individually from the normalized correlation be-
tween each pixel’s temporal signal with the visual stimulus patterns (Pearson’s
product moment) using MATLAB (MathWorks). At day 10 after the implantation,
the power Doppler scan allowed visualization of the brain vessels with great sensi-
tivity from the cortex all the way down to the amygdala. Visually evoked response
was clearly visible as the two LGN were activated, which led to a higher volume of
blood to flow. Throughout the study, the degradation of the power Doppler signal
was observed, resulting in a shallower distinction of the blood vessels in the deeper
structures (see Fig. 5.13 for definition of the deep structures). However, the activa-
tion of both LGN was distinguishable throughout the whole functional study from
day 10 to day 120 with more than 50% correlation with the stimulation pattern.

5.8 Conclusions
In this chapter, we successfully implanted rationally designed acoustic metamate-
rials to living animals for ultrasound imaging. The proposed metamaterial cranial
window, “Metaskull”, allows for fUSI in small animal brains with long-term sta-
bility and lasting signal sensitivity over more than 100 days. The metamaterials’
inner geometry was architectured so that the metaskull can accomplish minimally
attenuative transmission of ultrasonic waves at 15 MHz. At the same time, the
stiffness of the metaskull reaches its theoretical limit, providing a robust protection
layer to the brain. Our approach transcends other widely used materials for cranial
windows, e.g., PMP, since complex shapes and curvatures of the skull can be easily
duplicated with microscale additive manufacturing. The conformal metaskulls can
replace any sections of skull geometry, which is impossible to accomplish with
PMP films’ inherent planar shape. Several limitations must be addressed in future
studies to establish the wider applicability of the metaskulls as cranial windows for
ultrasound brain imaging. First, drainage holes must exist due to the current 2PP
fabrication process, which reduces the effective stiffness and may undermine the
structural integrity of the metaskull. Advanced 3D printing technology, such as
direct ink writing or mid-air 3D printing, that do not need photoresist and support
materials can be further improved to solve the issue. In addition, the viscoelastic
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attenuation from the constituent polymer can be reduced with pyrolysis, allowing the
polymer to carbonize and form brittle structures. Pyrolyzed lattices would provide
enhanced protection from external mechanical forces with increased stiffness. Fur-
ther exploration should aim at incorporating functionalities to the metaskulls, which
will make the metamaterial acoustic window more versatile for biomedical appli-
cations.The directions of research may involve the development of the metaskulls
for ultrasonic wave focusing enabled by transformation acoustics [60], enhanced
photoacoustic imaging for the brain [61], or acoustic wave front shaping for clearer
images [62]. For example, local acoustic characteristics required to manipulate in-
cident ultrasonic waves can be determined with transformation acoustics approach,
so that the dimensions of the unit cells can be tuned to achieve desired properties
and purpose.
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C h a p t e r 6

SUMMARY AND OUTLOOK

6.1 Summary
In this thesis, I discussed periodic acoustic metamaterials and the acoustic waves
propagating through them in 1D, 2D, and 3D. I designed helical acoustic metamate-
rials that support wave propagation in 1D to study their unique dynamic mechanical
properties and corresponding dispersion curves. I found that dispersion curves
provide essential information about the wave properties of the periodic acoustic
metamaterials. Leveraging these findings, I designed an acoustic metamaterial de-
vice with a gradient refractive index that can control the wave propagation direction
in 2D to focus waves. Acoustic metamaterials are exciting not only from an aca-
demic point of view, but also from a practical aspect, as I demonstrated their ability
to provide the brain with a sonotransparent protective layer for accessible ultrasound
brain imaging by studying wave propagation in 3D.

In Chapter 2, I introduced basic concepts for understanding periodic acoustic meta-
materials. I derived the characteristic equations for the simple models, which are
essential for the dispersion relation analysis and for understanding the acoustic prop-
erties the dispersion relation implies. The dispersion curves were plotted for the
graphical representation of the dispersion relation in the irreducible Brillouin zone,
and the physical entities obtained from the curves were explained, e.g., phase ve-
locity, group velocity, band gap, and normal modes. I further showed that the same
analysis can be made also for the acoustic metamaterials in higher dimensions.

In Chapter 3, I studied 1D wave propagation in helical acoustic metamaterials
with varying centro-asymmetry. I perturbed the degree of centro-asymmetry of the
metamaterials to study the hybridization between the normal modes and its influence
to the band gap structure. I investigated the HMMs using a theoretical model based
on the ladder-like mass-spring chain using the physical quantities derived from long-
wave approximation. The analytical dispersion curve matched with the FE analysis
results, showing that greater centro-asymmetry led to increased coupling stiffness
between originally independent modes. Stronger coupling in centro-asymmetric
HMMs created multiple longitudinal band gaps that would block wave propagation.
I validated both dispersion curves by experimentally measuring the transmission
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coefficient along the 3D-printed HMM samples.

In Chapter 4, I investigated water-saturated microlattice metamaterials that can con-
trol wave propagation in 2D. The understanding of normal modes and dispersion
curves from the previous chapter proved useful for the analysis of elastoacoustic cou-
pling within water-saturated metamaterials. To simplify the problem and accelerate
the computation process, I implemented Biot theory to analyze the water-saturated
poroelastic microlattices and studied their acoustic behavior underwater. Based on
this understanding, I fabricated a GRIN Luneburg lens, which enables underwa-
ter ultrasound wave focusing, and demonstrated its performance experimentally. I
made a prediction model based on the poroelastic theory prior to the lens fabrica-
tion to determine the acoustic properties and corresponding geometry of each unit
cell. I showed that using the poroelastic theory for homogenization allows for the
computationally cheaper and faster design of acoustic wave manipulation devices.

In Chapter 5, I studied 3D wave propagation through acoustic metamaterials to de-
velop skull-like material for ultrasound transmission. I demonstrated that rationally
designed acoustic metamaterials can be used as a cranial window for ultrasound
brain imaging. I designed and fabricated a conformal cranial window made up of
honeycomb plate-lattice unit cells using microscale additive manufacturing. The
metamaterial cranial windows with varying thickness were characterized in vivo
to test its transmission performance and compatibility. I further showed that the
proposed metamaterial cranial window enables long-term (> 4 months) fUSI in liv-
ing small animal’s brains with lasting signal sensitivity. This metamaterial cranial
window can transmit ultrasonic waves at 15 MHz with small attenuation, while
providing a robust protection to the brain with its stiffness close to the theoretical
limit.

6.2 Open questions and future work
The HMMs, shown in Chapter 2, have many unexplored parameters that may be
of interest to the acoustic metamaterials community. They exhibit two degenerate
rotational modes, which were only briefly mentioned in the thesis. These modes can
lead to unusual acoustic behaviors, such as nonreciprocal wave propagation, similar
to diodes for electric signals. The rotational modes have two distinct rotations, clock-
wise and counter-clockwise, that arise from the chirality of the HMMs. They admit
identical eigenfrequency solutions at lower frequencies, but diverge as frequency
increases (Fig. 3.2). For example, the second branch of the counter-clockwise
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rotational mode of the right-handed HMMs stops at the edge of the Brillouin zone,
creating a large forbidden band. On the other hand, the clockwise rotational mode
continues to transmit waves at higher frequencies. This chirality-driven degener-
acy can be applied to block polarized acoustic waves in certain directions, thereby
achieving nonreciprocity.

It has been shown that the Luneburg lens can be designed based on the theory
of poroelasticity to focus ultrasound waves underwater as shown in Chapter 4.
Although the biomedical application of this poroelastic Luneburg lens was not
demonstrated in the thesis, it has the potential to be highly beneficial when used
inside the human body to focus pressure intensity. Ingestible sensors are pill-sized
devices that can reside in the gastrointestinal tract for extended periods to perform
their functions. They are intensively studied as they can record direct physiological
information and provide immediate medical treatment [1, 2]. However, controlling
and activating body-embedded devices can be challenging as it is difficult to pinpoint
the exact location of the devices. Moreover, if the sensor has a specific directionality
for input stimulation, the problem becomes more complex as both the position
and pointing direction of the device must be precisely controlled. However, such
precise control may not be necessary if an omni-directional Luneburg lens can
be incorporated into the ingestible devices to easily accomplish ultrasound wave
focusing and perform necessary functionality.

Medical ultrasound probes are designed to have similar acoustic impedance to
water, which enables clinicians to acquire clear sonograms and achieve lossless
transmission of ultrasound waves inside the human body. Water-based couplants,
such as hydrogels, are widely used to fill a thin air interface between the probe
and the human skin to enhance ultrasonic wave transmission. However, current
water-based couplants can be cumbersome, as they can flow down and need to
be cleaned, and easily dehydrate within a few hours, making them undesirable
for long-term, deep organ therapy [3]. Novel ultrasonic metamaterials can be
developed that conform to the abdominal skin to enable daily liver stimulation
and long-term monitoring of kidney diseases in individuals with chronic metabolic
disorders. These metamaterials can be impedance-matched to water to minimize
interfacial wave reflection and be permanently reusable without dehydration, as
they are composed of non-water-based polymers (e.g., acrylics, polystyrene, and
polyurethanes). This approach can pave the way for home health monitoring through
improved accessibility to portable ultrasonic devices and further incorporated into
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biomedical applications that require focused ultrasound, such as ultrasonography
[4] and sonochemistry [5, 6].

Several limitations of the current fabrication process can be further improved to
enhance the performance of the metaskull, shown in Chapter 5. The presence of
drainage holes undermines the mechanical integrity of the metaskull by reducing the
mass of the wall that can withstand loading stress and by creating concentrated stress
points that can initiate cracks within the structure. Research on more advanced 3D
printing techniques that can fabricate such fine-tuned geometries without the need
for residual photoresist and supporting structures is necessary. Additionally, the
polymeric structure contributes to transmission loss due to viscoelastic attenua-
tion generated from its polymer chains. Thermal decomposition, i.e., pyrolysis, of
the acrylic polymer will create a structure with high stiffness and brittleness, which
would contribute to the protection of the brain with increased structural integrity [7].
The properties and behaviors of architected materials can be tuned by making the
metaskulls with functional materials that are encoded with temporal/spatial degrees
of freedom. Changes in temperature and chemical environment, and variations in
electromagnetic fields can stimulate desired responses and topological transforma-
tions [8–10]. By precisely creating complex geometries and local inhomogeneities,
it is possible to design metamaterial cranial windows capable of ultrasonic wave
focusing enabled by transformation acoustics [11], enhanced photoacoustic imaging
for the brain [12], or acoustic wave front shaping for clearer images [13].
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