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ABSTRACT

Modern aerodynamic technologies such as unmanned aerial systems and horizontal
axis wind turbines must regularly contend with forces from highly stochastic and
turbulent atmospheric gusts. Conventional methods for modeling and controlling
fluid flows are limited in their ability to mitigate these aerodynamic forces in real-
time. By applying modern machine learning techniques in an experimental setting,
this thesis demonstrates the utility of machine learning in addressing these important
problems. We follow two complementary approaches towards this goal.

First, we find an end-to-end solution for control in a gusty environment with model-
free reinforcement learning. We deploy state-of-the-art reinforcement learning
algorithms on a generalized aerodynamic test-bed consisting of an airfoil with
motorized trailing edge flaps. The system features embedded flow sensors, enabling
the inclusion of flow measurements in state observations. We place this system in
a highly irregular wake behind a bluff-body, dynamically mounted on elastic bands
and therefore free to oscillate, and train reinforcement learning agents to minimize
the net lifting force on the system by controlling the position of the trailing edge flaps.
We find that model-free reinforcement learning agents can outperform basic linear
controllers in this gusty, turbulent environment. We also show that augmenting state
observations with flow measurements can lead to more consistent learning of the
system dynamics.

Next, we explore Fourier neural operators (FNOs) as a method for forecasting the
time evolution of turbulent fluid flows. FNOs are capable of learning underlying
operator solutions to families of partial differential equations and can be evaluated in
just milliseconds. We specifically focus on training FNOs with experimentally mea-
sured velocity fields of bluff body wakes in the subcritical regime. To the best of our
knowledge, this is the first application of operator learning for fluid mechanics that
features experimental measurements. We find that FNOs can accurately predict the
evolution of these turbulent wakes even when trained with imperfect measurements.
We then show that FNOs can quickly adapt to unseen conditions with minimal data
and training through transfer learning. Finally, we consider the performance of
FNOs over longer prediction horizons. This approach could enable real-time gust
prediction capabilities and monitoring for applied aerodynamic systems.
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C h a p t e r 1

INTRODUCTION

Machine learning has attracted massive interest from scientists and engineers in
many different fields over the past few decades. This sudden, intense focus on
learning-based data-driven techniques has been fruitful; the accelerated development
of this burgeoning field has lead to many important advances in both theory and
deployment of machine learning methods.

There exists a fundamental overlap between fluid mechanics and applied mathemat-
ics that dates back centuries [52]. Theoretical and computational fluid mechanics
were borne out of mathematicians trying to model fluid flows. Famous names such
as Cauchy, Euler, and Laplace are still known as progenitors of both fields today.
It is therefore not surprising that fluid research has not been isolated from develop-
ments in machine learning, especially as it relates to modern applied mathematics.
Even work of more modern figures, such as Andrey Kolmogorov, can be found in
introductory texts for fluid mechanics and machine learning alike.

Applications of machine learning in fluid mechanics have become quite diverse.
There has been particular interest on subjects like simulated swimmers learning to
navigate under varying environmental conditions [16, 19, 24, 54], flow control for
bluff-body wakes [11, 28, 42, 45, 51], flow field reconstruction from sparse data
[2, 6, 10, 14, 15, 32, 33, 37], and various reduced order/machine learning-based
modeling of flow fields [21, 22, 30, 34, 38, 55, 57].

Despite the huge range of applications for machine learning methods in fluid me-
chanics, they have largely been limited to the computational domain. There are
exceptions to this; for example, several papers have been published using neural
networks for higher resolution analysis of particle image velocimetry (PIV) data
[4, 18, 27, 35, 41]. Notably, Jin et al. [25] use recurrent neural networks (RNNs) to
reconstruct time-resolved velocity data from a combination of time-averaged PIV
data and time-resolved probe measurements, proposing a solution to frequency lim-
itations on some PIV systems. Physics informed neural networks (PINNs) [43] have
also been applied to enhance flow measurements in several works [5, 9, 20], learning
’solutions’ that minimize error with respect to a governing equation for a specific
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instance and set of boundary conditions. There have also been a few previous appli-
cations of reinforcement learning in experimental fluid mechanics, although these
have either been limited in scope due to computational and practical environmental
challenges [44] or have focused on settings with known solutions [11, 46].

There exist many modern challenges in applied fluid mechanics that call for power-
ful, real-time solutions such as those that can be provided by data-driven techniques.
While many valuable tools that have been proven effective for fluid flows in com-
putational simulation, transferring these methods to a physical environment is non-
trivial. Real-world solutions must contend with limited and potentially imperfect
measurements under conditions where the exact solution is not available. In this the-
sis we demonstrate modern machine learning methods for applied fluid mechanics
research, specifically focusing on problems that present substantial challenges for
conventional methods. While the machine learning techniques we apply in this work
are general enough for many different settings, the next portion of this chapter will
detail two specific applications by which this work was inspired: autonomous flight
in windy urban environments, and wind turbine control for operation under gusty
conditions. The chapter will then conclude with a summary of the work presented.

1.1 Machine learning applications for modern fluid mechanics
Urban flight challenges
There are many potential applications for unmanned aerial systems (UAS) in urban
environments. These include autonomous flying taxis, last-mile package delivery,
transportation of time-sensitive medical supplies, and infrastructure tracking and
management among many others. However, maintaining stable flight in urban
environments is not a trivial task. Rows of buildings form channels called "urban
canyons" which lead to elevated wind speeds and turbulence [8, 12]. Even a
single building (as shown in figure 1.1 can generate updrafts, downdrafts, horseshoe
vortices, and trailing vortices [56].

Small, lightweight UAS such as those suited for package delivery and surveillance
are especially susceptible to flow disturbances on this scale [26]. Because the
conventional aircraft which have dominated aeronautics research for the past century
are larger, heavier, and faster, existing work relating to UAS-scale gust interactions
is limited [26].
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Figure 1.1: Illustration showing the potentially challenging fluid mechanics faced
by unmanned aerial systems when flying near buildings.

The cost of failure in a dense urban environments is significant. A delivery UAS
weighing tens of pounds could seriously damage buildings and infrastructure in
a crash. Worse still, such systems would pose a serious threat to unsuspecting
pedestrians when falling after a crash or being driven to ground level by a downward
gust.

In order to ensure safe flight through complex urban flow fields, drones must learn
to achieve stable control of aerodynamic forces in highly stochastic and non-linear
physical environment. In addition to being able to mitigate unexpected extreme flow
conditions as they arise, any effective strategy towards safe autonomous flight in
cities should monitor and avoid regions where unsafe flow conditions are expected.
Machine learning can help address both disturbance rejection and avoidance.

There have been several recent works focused on using machine learning to improve
stability for UAS in free flight, however none have demonstrated stable flight in
extreme, vortical, turbulent flows. For example, Mysore et al. [36] trained rein-
forcement learning agents for attitude control using a small racing-style drone and
training partly in simulation. However, the resulting controller was not demonstrated
in a challenging fluid environment. Also using a free-flight system, O’Connell et al.
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[39] used a meta-learning framework for flight control of a multirotor UAS placed
in wind, but only demonstrated the technique in a uniform flow with the free-stream
velocity being adjusted at a low frequency. Even more recently, Simon et al. [48]
trained a drone with a model-free reinforcement learning policy, using an on-board
hot-wire anemometer system to observe the flow state. They were able to improve
performance in a demonstration that involved hovering in 5𝑚𝑠−1 wind coming from
an array of blowers that are turned on while the drone is already in hover. While each
of these contributions is a valuable step towards safer flight in cities, none of them
adequately recreate the challenge of a gusty urban environment. To our knowledge,
there have been no existing demonstrations of UAS successfully navigating gusty
and unsteady flows.

For applications as safety-critical as flight in urban environments, the best mitiga-
tion strategy is avoidance. This could mean simply grounding all UAS in adverse
weather conditions, however applications such as package delivery require regu-
lar and reliable service. Another approach would be modeling the flow field in
real-time based on local sensor data. Gianfelice et al. [17] recently demonstrated a
"real-time" wind prediction system for drone flight in Toronto, applying commer-
cial Reynolds-averaged Navier-Stokes (RANS) solvers to estimate the flow field.
However, conventional techniques in computational fluid mechanics such as this are
not yet capable of making temporally resolved predictions in real-time, and so the
authors were only able to make time-averaged estimates that were validated by look-
ing at point-wise hourly wind speeds and bearings. As discussed earlier machine
learning methods can provide models of complicated fluid dynamics in far less time,
and can reconstruct accurate time-resolved flow field representations from sparse
measurements. Zhang et al. [58] recently used generative adversarial networks to
predict instantaneous flow fields around a single building using surface pressure
measurements in a computational environment. This is a promising approach, but
the demonstration was limited to an idealized setting with perfect sensor data.

Wind turbine gust mitigation
Growing energy demands and the global environmental crisis have generated in-
creased interest in alternative energy resources, such as horizontal-axis wind tur-
bines. The pressure for more clean energy production has lead to a growth in
these systems in both number and size. Transient atmospheric gusts are a major
contributor to the fatigue loading of wind turbine blades and can damage internal
turbine components. This can lead to increased maintenence requirements, costly
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downtime, or even catastrophic failure of the system [47]. Some turbines mitigate
the impact of these intermittent loads by simply shutting down in extreme flow
conditions. However, this of course prevents the turbine from capturing any energy
when winds become gusty. Another damage mitigation strategy in high winds is
to use turbine blades with variable collective pitch, which can be adjusted to limit
the turbine rotation speed and protect valuable internal components [3]. However
shutting down or limiting rotation speed through blade pitch does not entirely pre-
vent blade fatigue loading from gusts, which still necessitates costly inspections and
replacement. Additionally, the composite materials from which most wind turbine
blades are formed are unrecyclable by current waste-management standards, with
predictions for turbine blade waste reaching over 40 million tonnes by 2050 [31].

Wind turbine gust mitigation is fundamentally similar to ensuring safe UAS flight
in urban environments. Both systems can suffer damage from atmospheric gusts
in regular operation, and both systems would ideally be capable of minimizing
undesired aerodynamic forces. However, the problems have distinct considerations.
As fixed systems, wind turbines can benefit from expensive and heavy remote sensing
methods such as LiDAR to detect free-floating particles carried by incoming gusts
[1, 53]. Similarly, traditional flow sensors can be fixed around wind farms to provide
measurements of the incoming flow. However, UAS can change their flight plan or
altitude to avoid particularly gusty conditions, while wind turbines are subject to
whatever disturbances approach them.

There have been several efforts to mitigate wind loadings on turbine blades by
actuating the pitch angle [7, 23, 40, 49, 50]. In many of these strategies the pitch of the
blades can be controlled independently, which allows for individual blades to actuate
in response to gusts to minimize the aerodynamic force. Hxperimental deployment
of data-driven methods for turbine control are limited, even on scaled models.
Notably, Frederik et al. [13] used a data-driven method known as subspace predictive
repetitive control on a scale wind turbine model, and were able to significantly reduce
loading in high turbulence. There is great potential in wind turbine operation and
control for machine learning methods that can balance the simultaneous needs
to maximize energy production, minimize blade loadings, and increase system
reliability.
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1.2 Summary of work
Learning-based methods could provide new capabilities in both controlling and
predicting complicated fluid flows. These techniques could expand the flight capa-
bilities of UAS and increase the performance and longevity of horizontal axis wind
turbines. Progress has already been made towards both of these goals in previous
works, however there remain important questions as to how these methods can per-
form when faced with highly stochastic physics and real-world measurements. In this
work, we apply machine learning methods to challenging experimental conditions
representative of real problems in applied fluid mechanics.

First, in Chapter 2 we provide a more in-depth overview of machine learning in
fluid mechanics, specifically focusing on topics relevant to the work presented here.
In Chapter 3 we present a previously published work describing an application of
machine learning for end-to-end control of an experimental aerodynamic system in
an extreme vortical flow field. This serves to demonstrate machine learning meth-
ods for control in a challenging and relevant fluid environment. Here we deploy
model-free reinforcement learning methods on an aerodynamic test-bed custom built
with integrated pressure sensors to observe the state of the surrounding flow. The
test-bed acts as a generalized aerodynamic system that could be representative of a
wind turbine blade or a fixed-wing UAS. This test-bed is placed on a load cell in the
wake of a large, dynamically mounted bluff body (𝑅𝑒 ≈ 230000) which generates
a highly irregular and gusty wake. We demonstrate that the use of recurrent neural
network (RNN) significantly improves control performance in a highly stochastic
flow setting, with the state-of-the-art algorithm that includes RNNs outperforming
the conventional linear controls approach by a wide margin. We also find that includ-
ing fluid flow measurements in addition to inertial measurements improves training
stability and disturbance rejection, but that the system can learn effective control
policies with either flow measurements or inertial measurements alone. We con-
clude the chapter by discussing the practical limitations of model-free reinforcement
learning methods in a physical environment. Chapter 4 presents work exploring an
application of Fourier neural operators (FNOs) for modeling and forecasting the
temporal evolution of experimentally measured flow velocity fields. FNOs are a
state-of-the-art data-driven technique that can directly approximate solution opera-
tors to families of PDEs and be evaluated in milliseconds [29]. This method holds
great promise for being able to reconstruct and predict time-resolved flow fields in
real-time. To our knowledge, this is the first application of operator-learning for ex-
perimental flow data. Here we apply FNOs to predict the time evolution of cylinder



7

wake velocity fields in the subcritical turbulent regime. We show that FNOs are
capable of learning the wake dynamics and can produce accurate predictions over
many time-steps at a range of Reynolds numbers. We also show that FNOs are able
to generalize to different geometries, especially when transfer-learning techniques
are applied. We conclude Chapter 4 by demonstrating FNOs over longer forecast
horizons. We find that FNOs eventually lose fine details and structures present in
the flow, but instead make predictions that appear similar to a phase-locked time-
averaged flow field. Finally, in Chapter 5 we summarize the work presented and
discuss the outlook and future research directions.
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C h a p t e r 2

BACKGROUND: MACHINE LEARNING IN FLUID
MECHANICS

There are many ways in which learning-based methods can enhance fluid mechanics
research. In this thesis, we explore machine learning methods for two tasks that
are related but distinct: controlling aerodynamic forces in a stochastic and turbulent
flow field, and predicting the time evolution of unsteady velocity field measurements.
Despite how different these applications are in structure, they share an underlying
goal common to most, if not all, machine learning techniques: to learn to achieve a
set task by identifying patterns and underlying relationships in sets of data.

The rest of this chapter provides an overview of the methods applied in this thesis
and reviews related previous works in fluid mechanics. We note that Brunton et al.
[2] provides a comprehensive review of other machine learning applications for fluid
mechanics.

2.1 Reinforcement learning
First we introduce model-free reinforcement learning, which is the primary topic
of Chapter 3. Comprehensive details on the fundamental principles of general
reinforcement learning can be found in Sutton and Barto [24]. After introducing
the structure and function of model-free reinforcement learning, we will review
previous work featuring these methods in fluid mechanics.

Background on model-free reinforcement learning
Reinforcement learning is a subclass of machine learning that encompasses methods
that learn to perform tasks through trial-and-error interactions. These methods are
commonly formulated to learn end-to-end control of a system (from sensing to
actuation) but can be applied in other contexts as well [1]. Most reinforcement
learning methods used for control are designed to address problems formulated as a
Markov decision process (MDP). MDPs can be used to model sequential decision-
making processes, such as those commonly encountered in control. There are two
primary components in an MDP: an agent and an environment. The agent is the
decision-maker that chooses actions. In the context of reinforcement learning, the
agent is also trying to learn which action choices are best to achieve the desired task.
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The environment consists of everything that the agent cannot arbitrarily control. At
discrete time-steps, the agent receives observations describing the state of the system,
and then chooses an action based on these observations. Observations can consist of
any available information that characterizes the state of the environment, and actions
can take any form of manipulation or actuation available to the agent. These actions
can (but do not always) change the state of the system. The agent then receives
an updated observation, and the process repeats itself. In the context of a classical
MDP, the observations fully define the underlying state. This assumption often fails
in real-world settings due to sensor noise or incomplete state information. In this
case, the decision-making process is called a partially observable Markov decision
process (POMDP). We provide additional context for MDPs when introducing the
problem addressed Chapter 3.

There are two broad categories of reinforcement learning algorithms: model-free
and model-based. Model-based algorithms contain explicit models of the envi-
ronment, and choose actions based on planned trajectories based on modeled in-
teractions. These methods are typically more data-efficient as they generally are
initialized with a relatively accurate environmental model, which they can use to
refine their action selection without relying entirely on trial-and-error interactions.
On the other hand, model-free reinforcement learning methods require no a pri-
ori model, and are often initialized as a random set of weights. As they have no
knowledge of the environment or their own actions at the beginning of training, the
learning process for these algorithms is entirely reliant on experience gained through
trial-and-error interactions. In this thesis, we focus only on model-free reinforce-
ment learning algorithms, with only brief reference to model-based reinforcement
learning methods.

Model-free reinforcement learning agents learn behaviors to maximize a numerical
reward signal. The reward signal prescribes the task desired of the agent. Choosing
the reward signal can in itself be challenging, as it must represent only the desired
outcome and not any preconceived notions of what behavior will result in this
outcome. Sutton and Barto [24][p. 54] provides a clear example of this: in chess,
capturing an opponent’s pieces may seem an important part of any winning strategy,
but a chess-playing agent rewarded for capturing pieces will only learn to maximize
the number of pieces captures remaining indifferent towards the greater outcome of
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the game. That is, it may learn a strategy that captures many pieces without ever
winning. In this sense, it is important that the reward signal represents the desired
goal (e.g. winning the game) without arbitrarily imposing ultimately misleading
and unnecessary strategy.

There are many different formulations for model-free reinforcement learning agents.
Much of the foundational work in this field has focused on action-value methods.
Action-value methods learn to value each available action based on the performance
of previous action choices given the current state. That is, given a state observation
they approximate the expected value of each available action based on previous
results. These methods can use bootstrapping to estimate not only the expected value
of each action at the following time-step, but the expected long-term cumulative
return based on taking that action. This allows the agents to choose actions with the
best long-term value, rather than just maximizing the reward at the next step. This
far-sighted decision making is key to successful reinforcement learning applications.

In action-value methods the learned control policy typically consists of estimating
the value of all available actions given the current state and then applying some
choosing algorithm to select an action based on these estimated values. Perhaps the
most common example of this is the 𝜖-greedy algorithm, in which the agent chooses
actions stochastically. The action with the highest estimated value is chosen with
probability 1 − 𝜖 . In the case where the action with the highest estimated value
is not chosen (occurring with probability 𝜖), a different action is chosen randomly
with no consideration for estimated value. For this method, 𝜖 is typically small so
that the agent most often chooses the action with the highest value estimate, but still
occasionally explores other actions. The 𝜖-greedy algorithm addresses the problem
of "explore vs. exploit" which is especially important in model-free reinforcement
learning algorithms. An agent that explores new actions too much will essentially act
randomly and be incapable of following any successful learned behaviors. However,
if an agent always chooses to exploit the learned value of actions, that is to always
choose the action with the highest value, then the agent will tend to converge to
a fixed, non-optimal policy based on only the earliest experiences. This almost
always results in the agent overlooking action choices which were initialized as
having lower values, which means high-performing actions may never be visited at
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all. Therefore, balancing exploration and exploitation is important for model-free
reinforcement learning methods, as it ensures that the agent will continue to explore
the action space and learn better policies while still choosing sensible actions most
of the time.

The model-free reinforcement learning methods used in Chapter 3 are known as
actor-critic methods, which fall under the category of policy gradient algorithms
rather than action-value methods. Rather than choosing the best action from the
expected value of each action based on the state as in action-value algorithms,
policy gradient methods directly learn a continuous parameterized policy that tries
to maximize the return without explicitly calculating values. For example, in a
game of tic-tac-toe an action-value method would observe the state, calculate the
expected return based on each available move, and then choose one through a
method such as the 𝜖-greedy algorithm discussed above. In the same game, a policy
gradient method would learn a policy that chooses actions based on the state state
observation directly without referring to the estimated value. Instead, policy gradient
methods learn to choose actions with high returns implicitly through training the
policy directly: continuous, differentiable, parameterized policies can learn through
gradient descent via the policy gradient theorem. This theorem provides that a
value proportional to the gradient of policy performance can be calculated without
knowing the state-value function, which allows for policy parameter updates to be
made by typical gradient descent methods. More details on the policy gradient
theorem can be found in Sutton and Barto [24][pp. 325-326].

As the name suggests, actor-critic methods have two components: an actor and a
critic. The actor holds the parameterized control policy. It takes observations as an
input and chooses actions as an output. The critic estimates the value of states and/or
actions similar to action-value methods. However, the critic is not consulted when
the actor is choosing actions making this a policy gradient method (rather than
an action-value method). Still, the critic receives the state observations, actions
chosen, and the resulting reward, and tries to approximate an action-value function.
The critic then serves the actor during training, so that the actor can update its own
parameters to to choose actions with estimated higher value. In this manner, the the
critic is used to essentially bootstrap the learning process which makes actor-critic
methods comparatively data-efficient and robust. In most modern applications, both
the actor and critic take the form of neural networks which can be evaluated fast
enough for real-time tasks.
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Reinforcement learning in fluid mechanics
As an end-to-end black-box solution for control that requires no explicit modeling,
model-free reinforcement learning has especially captivated the fluid mechanics
community [2, 5, 28]. Previous applications of reinforcement learning have mostly
focused on flow control in numerical simulations. For example, one focus of model-
free reinforcement learning in fluid mechanics has been controlling the drag on a
bluff body in a computational environment. In these works, an agent is typically
set to suppress vortex shedding or reduce the drag force on a cylinder by rotating or
actuating synthetic jets [12, 19, 20, 22, 25, 26, 29]. Simulated swimmers learning
to navigate various flow conditions have also been a popular target for model-free
reinforcement learning. Many of these studies have focused on schooling formations
and sensing, among other topics [6, 7, 9, 27, 30].

Despite the apparent interest, there have been very few experimental applications of
reinforcement learning in fluid mechanics. Arguably the first experimental applica-
tion of reinforcement learning considering fluid mechanics came from Reddy et al.
[21], wherein a glider was trained to soar on thermal plumes. While Reddy et al. [21]
did find limited success in this application, the system featured a relatively simple
algorithm, a coarsely discretized set of states, and faced practical challenges in train-
ing. Another seminal work, Fan et al. [4] applied reinforcement learning in a more
explicit flow-control environment, using a state-of-the-art model-free algorithm to
solve a well-studied bluff-body wake supression problem and performing compli-
mentary physical and computational experiments. Shimomura et al. [23] used the
Deep Q Network (DQN) algorithm to train agents for flow separation control on
an airfoil with a plasma actuator. While important works, both of these applica-
tions used reinforcement learning for well-studied tasks with known solutions in
conventional controls.

2.2 Neural operators
Multilayer feed-forward neural networks are universal approximators for functions
that map between finite dimensional spaces Hornik et al. [8]. This means that any
function between finite dimensional spaces can be approximated by a multi-layer
feed-forward neural network given sufficient depth. Neural operators are a recently
developed method in machine learning that share much of the same structure as
standard neural networks [13, 14, 18]. However, neural operators are distinct in
their ability to map between infinite-dimensional function spaces [11]. That is, they
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can approximate mappings from one function to another function rather than just
from one finite-dimensional input to a different finite-dimensional output. Certain
neural operators, such as the Fourier neural operator (FNO) has been proven to be a
universal approximator for function space [10].

There are several advantages to mapping between function spaces that are especially
powerful in the context of fluid mechanics. First, mappings between function spaces
are not necessarily bound by any set mesh or grid. This means that neural operators
can be made mesh invariant, allowing for models to be trained and evaluated at
arbitrary resolutions. In the context of fluid mechanics where both computational
and experimental methods produce data in grids of varying resolution, this enables
training a single model with different data sources without the need for interpolation.
It also allows for the resulting model to be evaluated at higher resolution than the
input provides (i.e., super-resolution).

Secondly, mapping between function spaces allows us directly approximate the
solution operator to a family of partial differential equations [11]. This means
that neural operators are especially well-suited for learning system for which the
dynamics can be described by a set of partial differential equations, such as fluid
flows. Directly learning the solution operator allows for neural operators to learn
generalized solutions not limited to a single set of boundary conditions or initial
conditions.

Being able to estimate solutions for various conditions with a single set of parameters
is what sets neural operators apart from physics-informed neural networks (PINNs).
As mentioned briefly in the previous chapter, PINNs are standard neural networks
that are trained to estimate continuous solutions that fit a set of finite measurements
to a known governing equation. These estimated continuous solutions can then be
evaluated at points not included in the original measurement. However, PINNs must
be retrained entirely for each set of conditions as each solution requires a unique set
of parameters. However, neural operators have previously been demonstrated in a
similar physics-informed manner [15].

Previous applications of neural operators to fluid flows have been limited to the
computational domain. Fourier neural operators, which we deploy in Chapter 4,
were demonstrated on fluid flow solutions when first introduced in Li et al. [13].
They have since been applied to other fluid flows in a follow up work, Li et al. [16],
where they approximated solutions to a wavy pipe flow and a transonic airfoil to
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demonstrate how FNOs can learn with general geometries. Another neural operator,
DeepONet, has been applied to computational simulations as well [3, 17]. To the
best of our knowledge neural operators of any form have not been previously applied
to experimental fluid measurements.
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3.1 Chapter abstract
Control of aerodynamic forces in gusty, turbulent conditions is critical for the safety
and performance of technologies such as unmanned aerial vehicles and wind tur-
bines. The presence and severity of extreme flow conditions are difficult to predict,
and explicit modeling of fluid dynamics for control is not feasible in real-time.
Model-free reinforcement learning methods present an end-to-end control solution
for nonlinear systems as they require no prior knowledge, can easily integrate differ-
ent types of measurements, and can adapt to varying conditions through interaction.
Here, we show that reinforcement learning methods can achieve effective aero-
dynamic control in a highly turbulent environment. Algorithms are trained with
different neural network structures, and we find that reinforcement learning agents
with recurrent neural networks can effectively learn the nonlinear dynamics involved
in turbulent flows and strongly outperform conventional linear control techniques.
We also find that augmenting state observations with measurements from a set of
bioinspired flow sensors can improve learning stability and control performance
in aerodynamic systems. These results can serve to inform future gust mitiga-
tion systems for unmanned aerial vehicles and wind turbines, enabling operation in
previously prohibitively dangerous conditions.

3.2 Introduction
Atmospheric winds are often turbulent, containing transient flow disturbances which
result in intermittent aerodynamic forces [5]. These forces affect many systems and
structures, but are especially impactful on inherently aerodynamic technologies.
For example, unmanned aerial vehicles (UAVs) and wind turbines both rely on fluid
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interaction for normal operation, but can be damaged or destroyed when operating
in turbulent wind conditions [18, 41, 53]. Mitigating the effects of these turbulent
forces through active control strategies is an ongoing challenge for both UAV and
wind turbine applications [8, 16, 18, 19, 33, 41, 46]. However, turbulent conditions
in the atmosphere are highly nonstationary and nonlinear making them difficult to
model or control in real-time [5, 6].

Biological systems have long inspired engineers aspiring to develop systems robust
to chaotic environments. Along with inertial and visual cues, sensed through
vestibular, proprioceptive, or ocular systems, some animals navigate turbulent and
unsteady environments through use of biological flow sensors [4]. For example, the
lateral line is a sensory system common to most fish species, and is typically made up
of hundreds of neuromasts located all along the fish’s body [3]. The flow information
observed by the lateral line allows fish to sense disturbances remotely, which can
be used for finding prey, avoiding predators, achieving schooling formations, and
navigating turbulent waters [9, 10, 17, 47]. Similarly, often admired for their
acrobatic flight capabilities, bats have a set of microscopic hairs located on their
wings that sense airflow and may enable enhanced control of unsteady aerodynamics
[25, 43, 44]. Finally, large sea birds of the Procilliforme family (e.g., Wandering
Albatross, Giant Petrel) use their tubular-shaped nostrils to sense and ride turbulent
air-gusts from breaking waves, allowing for long-distance flight with minimal energy
expenditure [32].

The impressive capabilities of these biological systems has previously motivated
research for enhanced control of underwater and aerial autonomous vehicles through
bio-inspired flow sensors [12, 14, 20, 29, 35, 48, 49, 52]. This work has generally
implemented basic proportional-integral-derivative (PID) control techniques when
testing flow sensory systems. While PID control is very effective for systems that
can be linearized, the dynamics of turbulent flow are strongly nonlinear and cannot
be reduced to even locally linearized approximations [6, 26, 42]. To properly realize
the potential of bio-inspired flow sensing for control, nonlinear control methods are
needed.

Model-free reinforcement learning (RL) is a machine learning framework that can
be formulated to control nonlinear systems without any prior knowledge or model-
ing of the system dynamics. RL methods were principally inspired by biological
learning theories regarding how animals learn new behaviors through repeated trial-
and-error [45]. In RL, these trial-and-error interactions fit the formal framework of
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Figure 3.1: Schematic depicting the use of a Markov decision process framework,
where agents take actions based on their observations of their environment, to
address the problem of turbulent disturbances.

a Markov decision process framework (figure 3.1), where discrete time-steps consist
of observing the state of the environment and choosing an action based on that
observation. A numerical reward associated with each previous interaction is used
to learn and improve the action decision-making. Observations can be comprised of
any available state information, which the agent learns to interpret through experi-
ence alone. Actions can consist of any actuations or manipulations that the agent can
physically realize. Capable of learning control policies and observation interpreta-
tions through direct interactions with physical phenomena, it may hold potential for
flow-informed aerodynamic control in turbulent, non-stationary conditions [7].

Here, we experimentally investigate the use of state-of-the-art RL methods provided
integrated flow information for aerodynamic control in a highly turbulent and vortical
environment. RL algorithms are implemented on an aerodynamic testbed consisting
of a wing with actuated trailing-edge flaps. Responding to incoming disturbances
at each time-step by adjusting the position of the trailing-edge flaps to control the
aerodynamics of the system, we set the goal of minimizing the standard deviation
of lift in an unsteady, turbulent flow field. The wing system features an array of
pressure sensors used to observe the aerodynamic state, and is mounted on a load-
cell which can be used to observe the inertial state. We use recurrent neural networks
(RNNs) to improve learning in a highly stochastic and partially observable physical
environment that cannot be simulated trivially in a computational setting. Through
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these wind tunnel experiments, we show that RL agents are able to effectively
integrate flow knowledge and achieve superior disturbance rejection relative to
a conventional linear controller (i.e., PID). Overall, we find that model-free RL
methods are capable of learning and controlling physical aerodynamic systems in
turbulent and highly irregular flow fields.

3.3 Results
Flow-informed aerodynamic testbed
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Figure 3.2: Symmetric airfoils produce zero lift when aligned with uniform flow.
Changing position of a trailing edge flap can change the coefficient of lift and create
an aerodynamic force either upward or downward.

The problem of an aerodynamic system in turbulence was abstracted and generalized
to a basic setting. We developed a testbed consisting of a symmetric airfoil with
motorized trailing-edge flaps and integrated flow sensors. A generic platform such
as this is ideal for aerodynamic study as it can easily be abstracted to more specific
applications such as fixed-wing UAVs and wind turbine blades. In a uniform flow
symmetric airfoils have lift coefficient 𝐶𝐿 = 0 at 0 deg angle-of-attack, which
means no aerodynamic force is produced in the upwards or downwards direction.
As illustrated in figure 3.2, the lift coefficient of a symmetric airfoil in a uniform flow
can be manipulated by adjusting the position of a trailing-edge flap which results in
a non-zero force along the lifting axis.

The wing system (figure 3.3) was designed to be modular, allowing for variation
of sensor type and placement. For this work, the model was configured to include
nine sensors at different positions placed 10 cm apart from one another along the
spanwise axis. The center position sensor featured a pitot-static tube for measuring
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Figure 3.3: The wing system used for training featured a modular design, as shown
by the different color sections. Each section is removable and replaceable, and the
locations of flow sensors are labelled. The wing is 1 m in length (see Methods for
more details).

mean flow velocity. The remaining eight sensors consisted of pressure taps placed
at various chord lengths near the leading edge (details in Methods). The locations
of the sensors were chosen based on previous works for aerodynamic parameter
estimation from sparse on-body flow measurements [23, 39].

Turbulent environment

Figure 3.4: Smoke visualizations showing the turbulent wake of a standard cylinder
at Reynolds number 𝑅𝑒𝐷 = 50000. This was taken in the Caltech Center for
Autonomous Systems and Technologies fan-array wind-tunnel at lower Reynolds
number for purposes of visualization. The actual flow conditions used for testing
and training were too turbulent for effective smoke visualization.
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Bluff body wakes are a well-studied problem in fluid mechanics. Famously, these
wakes can feature a phenomenon commonly known as a Kármán vortex street,
which consists of alternating vortices shedding at a fixed frequency. However the
behavior of vortex shedding in a bluff body wake can change, and there exists a
well-established relationship between this behavior and the Reynolds number of the
flow [1, 2, 37, 54]. At a sufficiently high Reynolds number, the wake becomes
turbulent and vortex shedding, while still present, becomes less regular (figure 3.4)
[1]. To simulate a gusty environment, we placed our wing system in the wake of a
large, asymmetric bluff body which was mounted on elastic bands in a wind tunnel
(figure 3.5). The asymmetry of the body and dynamic mounting produces highly
irregular turbulent disturbances. This flow field is not intended exactly match any
specific atmospheric conditions, but rather to create challenging environment with
frequent large amplitude vortical disturbances.

Figure 3.5: The system was trained in the wake of an asymmetric bluff body in a
conventional closed-loop wind tunnel. The cylindrical portion of the bluff body has
diameter of 30 cm, and was placed 170 cm upstream of the wing system.

A hot-wire anemometer, placed near the leading edge of the wing, characterized
the velocity, turbulence intensity, and frequency spectrum of the flow (see Methods
for details). The mean velocity was recorded as 6.81 m s−1, which corresponds
to a Reynolds number approximately 𝑅𝑒𝐷 = 230000 over the bluff body. Figure
3.5 depicts the power spectral density calculated from the hot-wire anemometer
measurements. Here we see a peak at 2.44 Hz, which can be assumed to be the
primary vortex shedding frequency. This corresponds to a Strouhal number of St=
0.19, which is in good agreement with the expected value for a bluff body wake at
this Reynolds number [1]. However, the power spectrum also suggests that there is
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much energy stored at frequencies lower than the primary vortex shedding frequency,
given the width of the high-energy, low frequency region. This indicates that flow
disturbances are highly irregular in length and time scales and demonstrates the
presence of gust-like disturbances arriving at random intervals. We also note the
energy decay beginning at the primary shedding frequency which follows a -5/3
power law, agreeing with theory of the turbulent energy cascade [34, 38].

f -(5/3)

Figure 3.6: Power spectrum measured in the bluff-body wake plotted logarithmically.
We note the peak frequency at 2.44 Hz (dashed line), the relative width of the high-
energy low frequency region (left of dashed line), and the –5/3 slope energy decay
that agrees with turbulence theory (right of dashed line)

Model-free reinforcement learning
To achieve flow-informed aerodynamic control of our wing system, we implemented
the Twin Delayed Deep Deterministic Policy Gradient algorithm (TD3) as well as
variant known as LSTM-TD3 [13, 27]. These are off-policy actor-critic type algo-
rithms which use neural networks to make control policy decisions (see Methods).
TD3 was previously deployed successfully for experimental flow control in a differ-
ent setting [11]. LSTM-TD3 features a modification to the neural network structure
of TD3 to include recurrent Long-Short-Term-Memory (LSTM) cells. The pres-
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ence of recurrent cells in neural networks can considerably improve performance
in partially observable systems, which can impact performance and prediction in
highly stochastic settings such as the development of turbulent flows [27, 51]. Since
training RL algorithms is an inherently stochastic process, we trained each of the
agents presented here with five separate random seedings and averaged the results
to show general performance. Each agent was trained for 200 episodes which took
approximately 150 minutes per agent.

Through training, RL algorithms attempt to learn control policies that maximize a
numerical reward signal which is prescribed beforehand to set the desired goal of
learning. We designed our reward to hold a constant lifting force (arbitrarily set to
zero) in the presence of flow disturbances, setting it equal to:

𝑅𝑖 = −(𝐿𝑖+1)2 (3.1)

where 𝑅𝑖 is the reward at time-step 𝑖, and 𝐿𝑖+1 is the lifting force at time-step 𝑖 + 1
(see Methods for details). A perfect system would achieve zero lifting force at
each time-step, giving a maximum possible reward equal to zero. We can use the
mean accumulated reward of each episode as a measure for comparison between
algorithms and as a basic indicator of learning behavior. As the name implies, the
mean accumulated award is the sum of rewards accumulated in a single episode
averaged across the five agents. We also use the standard deviation of lift calculated
from the time-histories of each episode to evaluate performance directly related to
disturbance rejection.

Comparison with baseline control methods
As a metric of baseline performance, we compared the RL algorithms with basic PID
control. The PID controller was tuned manually and set to achieve constant zero lift
with feedback from forces measured by the load cell. LSTM-TD3 and TD3 agents
were provided near identical network parameters (see Methods). To gauge how the
respective control policies reduce the effect of flow disturbances, we also measured
the wing system sitting passively in the turbulent environment for comparison.
Due to the randomized nature of training model-free algorithms, performance and
consistency of learning are both important metrics when evaluating the behavior
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of RL agents. The fully trained RL agents, PID control, and passive configuration
were set to perform over approximately one minute each, and the resulting standard
deviations of lift and calculated episodic mean accumulated reward are shown in
Table 3.1.

Controller Standard deviation of lift (mN) Mean accumulated reward
No Control 305 ± 20 -

PID 264 ± 6 -
TD3 266 ± 79 -8960 ± 10728

LSTM-TD3 176 ± 11 -1716 ± 452

Table 3.1: Statistical comparison of control schemes. Rewards and standard devia-
tion of lift values were averaged over five agents trained for both of the reinforcement
learning algorithms and five separate runs for the proportional-integral-derivative
(PID) control. They were calculated over a 4000 time-step horizon, which corre-
sponds to approximately 1 minute of testing or four-times the length of a training
episode. Uncertainty shown is equal to the standard deviation in the presented value
across five separate training sessions. Supplementary figure 1 shows examples of
the load signal over a 60 second interval for all four methods listed in the table below

PID offered only modest improvements in disturbance rejection over no control,
with a 13% reduction in standard deviation of lift. The TD3 algorithm had a
similar reduction in standard deviation as PID, however also demonstrated large
variation between agents, indicating inconsistency in its ability to learn the system
dynamics. The LSTM-TD3 algorithm performed well, reducing standard deviation
of lift by 42% relative to the passive case. Noting that the maximum reward possible
is zero, we also see that TD3 accumulates a negative over five-times greater than
that of LSTM-TD3. Additionally, as indicated by the uncertainties, LSTM-TD3
was also more consistent across agents despite the stochasticity of training. These
uncertainties, calculated as the standard deviation of the respective quantities across
the five agents are themselves indicators of training stability.

Further, the mean accumulated reward (per episode) plot (figure 3.7) indicates that
LSTM-TD3 agents consistently improved throughout training, whereas the TD3
agents struggled to find even locally optimal behaviors. While the reward signal
returned for the TD3 agents became less erratic with training, it eventually decays
and showed a downward trend during the final episodes with increased variance.
This suggests that the dynamics learned by TD3 are not representative of the real
system. As expected from the uncertainty in the standard deviation of lift (Table 1),
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Figure 3.7: Training performance of TD3 and LSTM-TD3. The respective shaded
regions represent the full range of performance of each algorithm at each episode.
Here we plot the learning curve showing the episodic mean accumulated reward
across the five agents trained for each algorithm.

we can confirm that the learning process for the TD3 is inconsistent and there exists
variation across the separately trained agents. The episodic standard deviation of lift
(figure 3.8) remains relatively stable after approximately 100 episodes of training
for both algorithms.

The lack of reduction in standard deviation of lift from both agents across such a large
span of episodes suggests that they have reached asymptotic performance for the
given conditions. Despite these two methods being nearly identical algorithmically,
it seems that the simple inclusion of RNNs in LSTM-TD3 makes aerodynamic
control tractable in this turbulent environment.

Effect of flow sensing
Conventional control strategies for UAVs mitigate turbulent disturbances by sens-
ing and correcting the resulting inertial deviations. They have no knowledge of
the flow or source disturbance itself. This purely reactive-corrective strategy is
insufficient for maintaining stability under extreme atmospheric turbulence [28].
Alternatively, as biological swimmers and flyers would imply, directly observing
the physics responsible for inertial disturbances may allow for aerodynamic systems



34

0 25 50 75 100 125 150 175 200

Episode number

100

150

200

250

300

350

400

450

500

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f 
lif

t 
 (

m
N

)

Figure 3.8: Training performance of TD3 and LSTM-TD3. The respective shaded
regions represent the full range of performance of each algorithm at each episode.
Here we plot the episodic standard deviation for the two algorithms as it decreases
with training.

to react before inertial effects are realized. The flow sensing capabilities of biolog-
ical systems can then be used as inspiration to improve these strategies, given the
direct correlations between easily measurable flow quantities, such as pressure, and
aerodynamic forces.

To show the effect of flow sensing on the performance of aerodynamic control in
turbulence, we conducted ablation studies wherein we maintained the same reward
signal but varied the sensory information provided to the agent. We considered three
cases to establish how flow sensing impacts the ability to learn system dynamics.
In Case I, the RL agents observed and chose actions based on the value of the lift
force alone through the real-time load cell values. Observing only the lift force, the
RL agent in Case I were effectively provided with inertial information and therefore
acted equivalent to conventional UAV controllers. In Case II, actions were selected
using only flow measurements as the observation, though the lift measurements were
used to calculate rewards during an offline training phase. In Case III, the agents
observed both the lift force and flow measurements. With both inertial and flow
information, Case III was afforded a set of information similar to a flow-sensing
biological flyer. All three cases were trained using the LSTM-TD3 algorithm; they
differed only in the sensory information provided to the agent for action selection.
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Figure 3.9: Training performance of reinforcement learning algorithms with varying
observations. The respective shaded regions represent best and worst performing
agent of each case at each episode. Here we show the learning curves for the three
respective cases, plotting episodic mean accumulated reward.

From a comparison of the respective episodic reward signals (figure 3.9), we found
that the three cases seem to learn similarly effective control strategies in after training
200 episodes. While all three cases occasionally experienced policy updates that
decreased performance (as indicated by downward spikes), these detrimental updates
appeared most frequently and most strongly for the Case I agents. The Case II agents
also had several notable bad policy updates, but recovered more quickly than the Case
I agents. The Case III agents learned more stably and reliably than the Case I and
Case II agents, with the best Case III agents consistently outperforming the best Case
I and Case II agents throughout training, and with the worst Case III agents rarely
performing worse than equivalent Case I and Case II agents (highlighted regions-
figure 3.9). Case III agents also achieved the lowest mean standard deviation of lift
and lowest minimum standard deviation across agents for most episodes throughout
training (figure 3.10).

In addition to considering the performance during learning, we also compared
performance of the fully trained RL agents for all three cases. We averaged the
performance of fully trained models for all three cases over a time interval of
approximately one-minute to reduce the effect of stochasticity in the flow. From
the final time-averaged standard deviation of lift values for the three cases (Table
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Figure 3.10: Training performance of reinforcement learning algorithms with vary-
ing observations. The respective shaded regions represent best and worst performing
agent of each case at each episode. Here we show the change in standard deviation
throughout learning plotted as a metric for disturbance rejection.

3.2) we see all three agents considerably reduced the variance of lift relative to the
passive case. We find that that Case III shows superior performance in reducing
the standard deviation of lift and is the most consistent in that metric across the
five separately trained agents. Both the training process (figure 3.9-3.10) and the
final standard deviation (Table 3.2) suggests that the addition of flow sensing helps
RL agents learn a more stable approximation of the system dynamics and improved
performance in terms of disturbance rejection (i.e., reduction of standard deviation).

Case Standard deviation of lift (mN) Mean accumulated reward
No Control 305 ± 20 -

I (Load) 191 ± 20 -1696 ± 492
II (Pressure) 199 ± 33 -1860 ± 596
III (Both) 176 ± 11 -1716 ± 452

Table 3.2: These values were averaged over five agents trained for each of the respec-
tive cases, and were calculated over a 4000 time-step horizon, which corresponds
to approximately 1 minute of testing or four-times the length of a training episode.
Uncertainty shown is equal to the standard deviation in the presented value across
five separate training sessions. Supplementary figure 2 shows examples of the load
signal over a 60 second interval for the three different observations.
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Interestingly, we find that Case I achieves the best (least negative) mean accumu-
lated reward out of the three cases, with Case III falling closely behind by only a
small margin. We note that the uncertainty reported for the reward of these two
cases is approximately twenty-times the apparent difference in performance, which
reduces the significance of this comparison. Still, it is not surprising that the Case
I performance excels in terms of raw reward, as the only observation given in Case
I is directly proportional to the reward itself. Considering that the Case I agents
achieve a higher standard deviation of lift, the performance in terms of reward is the
result of the agents holding a lower mean lift. Although Case I agents are given less
information about the surrounding physics, the information they are given has only
one dimension and excludes highly non-linear flow sensor readings. These attributes
would enable a more simple and less sensitive control policy which simultaneously
explains a lower mean lift value and less responsive disturbance rejection.

3.4 Discussion
We have demonstrated how properly configured RL agents can effectively learn
control of nonlinear stochastic physics with which conventional methods struggle.
Despite the seemingly chaotic nature of the turbulent environment used for training,
our results indicate that RNNs enhance the ability to learn accurate system dynamics.
Further, the inclusion of flow sensors, as inspired by biological systems, showed
potential for enhanced aerodynamic control in turbulence.

We found that the performance achieved by the TD3 agents was very similar to that
of a conventional PID controller (Table 3.1). This result was surprising, as the TD3
agent should be able to better handle the non-linearities of the system dynamics than
the inherently linear PID controller. The poor performance of the TD3 algorithm
(in comparison with LSTM-TD3) may be explained by the partial observability of
our system. It is likely that observing inertial and sparse flow measurements at a
single time-step does not adequately define the state; the probability distribution
of state transitions is dependent on the surrounding flow which is chaotic and
impossible to fully observe in real. Therefore, without being explicitly given a
more comprehensive state observation, the TD3 agents are unable to infer the
underlying state and effectively learn the underlying physics. This difficulty to learn
the underlying physics of the problem would help explain the large variation in both
training and end performance for the TD3 agents (figure 3.7-3.8).
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We showed that LSTM-TD3 agents were able to achieve effective control of the
system aerodynamics by analyzing the available observations sequentially, and out-
performed both PID controllers and TD3 agents. In fact, the LSTM-TD3 agents were
able to decrease the standard deviation in lift by more than three-times the reduction
achieved by PID control. Further, despite being trained in five separate randomized
processes, the final performance of the LSTM-TD3 agents is nearly as consistent
as the five trials used to average the fixed PID controller. This demonstrates the
ability to learn accurate estimations of the state-probability distribution functions.
Due to the similarity of the two algorithms, the addition of recurrent LSTM cells
is very likely the reason for the difference in performance between the TD3 and
LSTM-TD3 agents. The potential performance-enhancing nature of LSTMs is well
established in many settings, including flow-control [27, 50]. When included in
an RL agent recurrent networks, such as those including LSTM cells, are able to
learn latent states and patterns underlying the received observations. Because of the
black-box nature of these methods, it is only possible to speculate what aspects of the
physics were learned through the addition of LSTM cells. However, the fundamen-
tal mechanism through which LSTM cells can typically improve performance is by
integrating temporal information to improve state estimates. Therefore, the increase
in performance associated with the LSTM cells is likely due to improved state esti-
mates which would effectively increase the observability of the partially-observable
process.

Flow sensing was shown to slightly improve mitigation of turbulent disturbances for
our system, although it resulted in a larger bias in the averaged value than inertial
information alone. Still, when provided flow and inertial information the RL agents
did learn more consistently and achieved superior disturbance rejection than when
given partial information (figure 3.9-3.10). Further, the fully trained control policies
given both flow and inertial information varied less in all metrics, suggesting more
stable estimates of system dynamics. It is also noteworthy that agents observing
only flow measurements showed robust control improvement through learning; that
is, agents were able to learn to control inertial dynamics from sparse flow sensing
alone. While the load cell used for testing completely defines the inertial state of the
system in the lifting direction, the pressure sensors used to make flow observations
are relatively sparse and do not completely define the aerodynamic state in the lifting
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direction. It is likely that the performance of flow-informed agents would increase
further given additional or improved flow sensing capabilities, while the inertial
aspects of the lifting force cannot be defined further than the direct measurement
used here. This warrants further exploration of flow sensor types and configurations.

Though the RL controllers outperformed a conventional linear control scheme, there
are several drawbacks to model-free reinforcement learning methods. Training RL
agents is intensive in terms of both time and data. Each RL agent was trained for 200
episodes which took approximately 150 minutes per agent. Since we averaged the
performance of five agents for each algorithm or case shown, the data presented here
represents over 50 hours of wind-tunnel hours between training and testing the poli-
cies. There are also inherent difficulties associated with troubleshooting “black-box”
controllers such as RL agents. The algorithms are sensitive to many hyperparam-
eters that control the neural network structure and training procedure, and tuning
these hyperparameters in an experimental setting relies on intuition, experience, and
patience. The hyperparameter tuning process itself required hundreds of hours of
additional training and testing not shown here. Further, it is possible that a given set
of hyperparameters may be suitable for a subset of tasks but not truly generalizable.
Consistent and deliberate experimental design helps constrain troubleshooting to
the algorithmic aspects of training. Even with this, it should not be expected that
these agents trained in a single set of conditions will hold policies generalizable
across Reynolds numbers or testing geometries. To create truly generalizable RL
policy capable of controlling an aerodynamic system ready for real-world deploy-
ment, the agent would need to train in various conditions and would need to expand
its capabilities to control all forces and moments in three-dimensions.

While model-free reinforcement learning methods impressively learn dynamics of
highly nonlinear and chaotic systems without any prior knowledge, it should be noted
that model-based reinforcement learning and other non-linear control methods can
be more data-efficient. Model-based methods do require prior sampling of system
dynamics and can be more computationally intensive, but many are similarly able
to adapt and learn when exposed to new conditions. Implementing known flow
physics into model-based reinforcement learning methods or non-linear controllers
could lead to superior performance with reduced data requirements.
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The generic testbed and methods developed here may serve to inform future im-
plementations of flow-informed RL for control of aerodynamic systems in extreme
turbulence. While our experiments focus on specifically controlling turbulent dis-
turbances along a single axis, this system is simply a representative proof-of-concept
for multi-dimensional unconstrained aerodynamic interactions. These methods can
be expanded or adapted to systems with higher degrees of freedom by augmenting
state observations and adjusting reward signals. While it is possible for RL meth-
ods to be used for full control and navigation of autonomous systems [15, 36], the
most direct and practical application of aerodynamic control for UAVs is in flow-
informed inner-loop attitude control for fixed wing vehicles. By reducing the effect
of turbulent disturbances, drones can maintain more stable flight in more extreme
conditions. Though training RL agents to achieve full control of free-flight systems
can be challenging experimentally due to the trial-and-error nature of the learning
process, flow-informed agents even have the potential to learn to take advantage
of natural flow structures through energy-efficient soaring behaviors [30, 32, 36].
This technology could allow wind turbines to safely operate at an increased range
of conditions by reducing loads from potentially damaging gusts through actuation
of blade pitch [19, 41, 46]. In the case of a static system such as wind turbines, off-
board remote sensing upwind could further enhance performance. We believe that
the potential of this work can be realized through several next generation technolo-
gies such as flow-informed wind turbines with built-in gust mitigation capabilities,
bioinspired UAVs capable of maintaining steady flight in a windy urban environ-
ment, and other unrealized aerodynamic applications that have been too chaotic for
engineered systems.

3.5 Methods
Wing system design and manufacturing
The wing system featured a NACA0012 airfoil, which is a common standardized
airfoil shape. The dynamics of this airfoil shape in a bluff-body wake at similar
Reynolds number has been the subject of previous study [24]. The body of the wing
was 3D printed using a combination of materials, and was designed to be modular
and allow for various sensor configurations (figure 3.3). The central section, which
housed the primary electronics and secured the system to its mounting, was printed
with micro carbon fiber filled nylon (Markforged Onyx) and was reinforced with
carbon fiber for added strength and rigidity. The spanwise sections designed to
house the individual pressure sensors were also printed with micro carbon filled



41

nylon, but were not reinforced. The sensor housing sections were printed with large
slots, so that different pressure taps or probe types could be used. These pressure tap
slots and the pitot-static tube were printed with an SLA printer (Formlabs Form3)
for improved surface feature accuracy. The pressure ports were placed at locations
0.4%, 0.7%, 1.5% and 6% of the chord length from the leading edge on both the
pressure and suction sides of the wing. The sections between sensors were printed
with clear PLA. The sections were aligned and conjoined by a set carbon fiber spars,
which added rigidity. The trailing edge flaps were cut out of insulation foam and
covered with an adhesive-backed coating for protection.

The wing had a total chord length of 25 cm, with 5 cm trailing edge flaps. This gave
a Reynolds number over the wing of approximately 𝑅𝑒𝑐 = 110000. The spanwise
length of the wing was 1 m, with a total of 9 sensor locations. There was exactly
10 cm between each sensor location, with one of the locations being centered on
the wing. The wing was mounted on a fairing which was set back with an angle
of 60 degrees to reduce aerodynamic interactions between the fairing and the wing.
The fairing was reinforced with carbon fiber and aluminum, and was connected to a
set of air bearings (New Way) which are aligned vertically with the tunnel to define
the lifting direction. The air bearing system allowed for nearly frictionless motion
along a single axis while constraining all other directions. The constrained fairing
was mounted directly to a single-axis load cell (Interface SM-50), which passed
signal through an amplifier (Interface Model SGA) with a 50 Hz low pass filter, and
was read by a DAQ (NI USB-6008). The pressure values were measured by a set of
nine ultra-low range digital pressure sensors (Honeywell RSCDRRM2.5MDSE3)
which communicated to a microcontroller (Teensy 4.0). The microcontroller also
controlled the high speed brushless servo motors (MKS HBL6625) which drove the
trailing edge flaps. Due to mechanical restraints, the actuation for the servo motors
has maximum/minimum position of +40 deg/-40 deg. Both the microcontroller
and the DAQ communicate with a desktop computer which receives states and
sends actions. The full control loop ran at approximately 67 Hz with the serial
communications being the biggest bottleneck.

Generation and characterizations of turbulence
All quantitative results presented are from experiments performed in Caltech’s John
W. Lucas Wind Tunnel (LWT). The LWT is a closed-loop wind tunnel, with test
section dimensions of 130 cm × 180 cm. The turbulence used for training and testing
formed in the wake of a large, asymmetric bluff body mounted to the wind tunnel
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with bungee cords. The bluff body can be described as a large diameter cylinder
(30 cm), with a normal flat plate mounted asymmetrically to the front giving the
full body an effective diameter of 53 cm (figure 3.5). The cylinder spanned the
entire width of the tunnel, while the flat plate had a width of only 60 cm. This was
done to encourage vortex dislocation, which added irregularity in vortex shedding
[54]. The bungee cord encouraged oscillations due to the vortex shedding, which
we observed to be present and irregular. The bluff body was mounted 170 cm
upstream of the wing system with a vertical offset of 48 cm. Sparse elastic bands
aligned horizontally were mounted across the test section directly upstream of the
bluff body, to further increase the turbulence intensity of the flow.

A hot-wire anemometer (TSI IFA-300) was used to characterize the mean velocity,
turbulence intensity, and frequency spectrum of the flow near the wing system. The
hot-wire anemometer was mounted approximately 2 cm upstream of the leading
edge of the airfoil, and measurements were taken for 120 seconds at 1000 Hz. The
turbulence intensity was measured with the hot-wire anemometer to be 10.6%. The
power spectra was calculated with ThermalPro software, using the entire 120 second
run averaged over sets of 8192 datapoints (frequency resolution of 0.122 Hz).

Reward functions for training
Reinforcement learning agents learn to achieve tasks by choosing actions that max-
imize a numerical reward function. Choosing the reward function is a critical part
of experimental design for RL implementations, as it sets the primary directive of
learning. The goal of our experiments was to reduce the standard deviation of the
lifting force, and we tested several different reward functions to achieve this goal.
The final reward function used in this work was set to

𝑅𝑖 = −(𝐿𝑖+1)2 (3.2)

where 𝑅𝑖 is the reward associated with the action taken at time-step 𝑖, and 𝐿𝑖+1

is the lifting force observed at the time-step 𝑖 + 1. The reward was a function of
the lift at the following time-step rather than the current time-step, because this
value is the direct result of the previous action. Since RL agents are designed to
maximize reward signals, we used the negative square of this value to encourage
net-zero lifting force and discourage deviations. Under these conditions, a perfect
agent would achieve a maximum reward equal to zero.
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This reward function is undeniably simplistic; it integrates virtually no prior do-
main knowledge and makes unproven assumptions about the physical system. This
highlights a significant challenge in the deployment of model-free reinforcement
learning algorithms for real-world applications. While we may like to shape our
reward with domain knowledge, the flow sensor state observations do not provide an
interpretable or intuitive description of the non-linear dynamics with which we can
embed physics without explicit modeling (therefore negating the primary benefit
of model-free reinforcement learning methods). Additionally this reward function
assumes that the force observed at a given time-step is determined entirely by the
previous action. That is, that the aerodynamic state is not being influenced by
transient effects of previous actions as well. This itself is likely violated by the
use of Kalman filtering on the load signal alone, which filters current observations
based on the change from previous observations. It is therefore possible that the
improvement seen from integrating LSTM cells can be, in-part, attributed to the
critic network learning action-values based on a time series of actions rather than
the action at a single point. However, we also note that the best TD3 agents were
able to learn policies approaching the average LSTM-TD3 agents learning only the
association between a single action and reward, which indicates that a load at a given
time-step is at least strongly influenced by the action taken at the previous time-step.

This simple reward function was ultimately chosen out of several tested which
featured additional terms (e.g., inclusion of future loads, the difference between loads
observed before and after, etc.) and none of which notably improved performance in
our preliminary tests. We note that this reward function was even used for the agents
trained with flow sensor values only. The agents in this case had no direct knowledge
of the lift while making decisions, and it was measured and saved separately from
the state observations. These flow-only agents were only affected by the actual lift
measurements through off-line training with the reward as shown.

Reinforcement learning algorithms
Both the TD3 and LSTM-TD3 fall in a category of RL algorithms known as actor-
critic methods. As the name suggests actor-critic methods consist of two parts,
the actor and the critic. The actor portion holds the direct control policy of the
agent; it is called at each time-step, with observations as inputs and actions as
outputs. The critic portion is used to estimate the value of each available action
given a state. The value of an action is equal to the expected cumulative future
reward [45]. In most modern applications, both actors and critics take the form of
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artificial neural networks. The critic networks become approximators for the value
function, and the actor network becomes an approximator for an optimal control
policy. The agent learns by first training the value function estimation of the critic
based on past state-action-reward experiences. The actor is then trained using the
critic network to choose the actions which the critic estimates will have the highest
expected value. Actor-critic methods are known to have reduced variance in updates,
which accelerates learning and makes them well-suited for real-world applications
[45]. The TD3 (provided in Algorithm 1) and LSTM-TD3 (provided in Algorithm
2) algorithms build on this basic framework with several modifications to improve
performance.

Algorithm 1 TD3 algorithm used for aerodynamic control [11, 13]

We chose the original TD3 algorithm to start our tests because it is known to among
state-of-the-art methods in RL and has been shown to outperform earlier methods
in simulated tasks [22]. Further, the original TD3 algorithm was used previously
effectively learn control in the first experimental application of RL for explicit control
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of fluid dynamics [11]. The LSTM-TD3 algorithm was chosen as a direct successor
to the TD3 algorithm, which explicitly addresses the problem of partially observable
systems [27]. Gradient clipping was added to both algorithms, to limit the size of
updates and encourage training stability. Additionally, as suggested by a previous
implementation of RL for experimental fluid mechanics, a Kalman filter was applied
to both load and pressure data which was shown to considerably improve learning
[11].

Algorithm 2 LSTM-TD3 algorithm used for aerodynamic control [27]

The hyperparameters used for both TD3 and LSTM-TD3 can be found in Table
3.3. We used densely-connected layers for both algorithms, with ReLU activation
functions on the hidden layers and hyperbolic tangent for the output. The TD3
algorithm networks had just one hidden layer, and LSTM-TD3 had a separate input
layer before the LSTM, then just one hidden layer after the concatenation of the
LSTM output and current feature input.
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Hyperparameter TD3 LSTM-TD3
Discount factor - 𝛾 0.99

Batch size - 𝑁 50
Replay buffer size 50 000

Target update rate - 𝜏 0.005
Actor learning rate 10−3

Critic learning rate - 𝜏 10−3

Exploration noise - 𝜎 0.025
Policy smoothing noise - �̃� 0.025

Policy update delay - 𝑑 3
Target noise clip boundary - 𝑐 0.5
Actor gradient clip boundary 0.5
Critic gradient clip boundary 0.5

Optimizer AMSGrad
Time-steps per episode - 𝑇 1000

Episodes trained - 𝑁𝑒 200
LSTM length - 𝑙 None 10

Table 3.3: Hyperparameters used for training reinforcement learning algorithms.
These parameters were selected after manually tuning for both algorithms. We found
that with similar network and algorithmic structures (the only difference being an
LSTM branch for LSTM-TD3), the two methods performed best with the same
parameters.

We chose hyperparameters based on metrics of peak performance and training sta-
bility. We used a methodical approach when selecting values however the search was
necessarily coarse due to the time intensive nature of training. A more fine parameter
search was not practical for our setting as each one of these tests took three hours,
and there are many hyperparameters to consider. It was similarly impractical to
perform repeated tests for most hyperparameters. Given these limitations, choosing
parameter values required some subjective interpretation of agents’ performance,
especially when several values appeared to perform similarly well.

The algorithms were trained episodically. Each episode began with a policy eval-
uation phase. During this phase, a fixed control policy was used to choose actions
based on observations for a set number of time-steps. This data was then saved for
later evaluation of training. After the evaluation phase, the data collection period
begins, which consisted of the agent with the same fixed control policy interacting
with the environment for a set number of time-steps, however Gaussian noise is
injected into the actions chosen by the policy to encourage exploration. Once the set
number of time-steps had been reached, all interactions and rewards from the data
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collection period are inserted into a replay buffer. Then the agent pauses interaction
to train its neural networks. The critic network is trained by recalling interactions
from a replay buffer which contains previous interactions from about 50 episodes of
training. The actor network is then updated to maximize the value of actions based
on the critic network value estimates. This policy evaluation, data collection, and
training process completed a single episode. We chose to stop training after 200
episodes because we found that the LSTM-TD3 algorithm approached optimal per-
formance around episode 100 but wanted to show a longer horizon to demonstrate
the stability advantages of the algorithm.

3.6 Conclusion (not published)
This work represents one of the first applications of model-free reinforcement in
a highly stochastic fluid environment. Training these algorithms proved to be
timely, and the learning performance was generally inconsistent. As a black-box
end-to-end method that has been shown to outperform optimal control methods in
simulation [31], the appeal of model-free reinforcement learning to solve difficult
control problems in fluid mechanics is obvious.

In the preceding sections, we do not hide the difficulties involved with training a
physical system in such a stochastic and extreme setting. Modeling the wake of
an irregular and three-dimensional shape mounted dynamically for many time-steps
would be extremely computationally expensive making this problem impractical for
simulated environments, and unlike previous experimental applications of model-
free reinforcement learning in fluid experiments [11, 40], our problem had no
known solution or optimal control to match or beat. With no existing solution to
demonstrate an effective control strategy, we had no way of setting performance
expectations beyond that which a basic PID controller could provide. Even before
the painstaking hyperparameter selection process described above, hundreds more
hours were spent adjusting the experimental setting. For example, while we did
observe the system learning improved control policies at various wind speeds, there
were many considerations when selecting a flow velocity for the demonstrations
above. Lower velocities result in more time to react and less turbulent noise in
the pressure measurement, but also result in significantly lower aerodynamic forces
and a lower signal-to-noise ratio in the reward signal. Higher velocities have less
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noise in the load (and therefore reward), but give less time to react and noisier flow
measurements. So while the agents were able to learn at a range of flow velocities,
we needed to balance these effects to make a tractable but challenging learning
environment.

While the notion of a system that learns on its own seems an attractive proposition,
the lack of interpretability and the training instability inherent to black-box model-
free reinforcement learning can frustrate efforts to gain a greater understanding of
both successful and unsuccessful strategies. For example, in this work we found
that LSTM cells improved performance, as did augmenting inertial observations
with flow information. In theory, these two attributes could be together building
predictive latent models of the fluid dynamics involved. This was, in fact, our hope
at the outset of the project. However, in our physical system with high-dimensional
nonlinear inputs we have no way of testing this hypothesis, and it is also possible
that the LSTM cells and flow information improve the latent model of the dynamics
in a purely reactive sense. In theory, should we be capable of producing controlled
and discrete disturbances we could synchronize flow recordings with the control
loop and see at what point the system reacts to the disturbance. However, we
would need to be able to generate disturbances of different kinds with arbitrary
trajectories to test the general accuracy and advance time of the predictive latent
model on average. Despite practical difficulties associated with such a task, this
would simply characterize the performance more formally and would still leave us to
only speculate about how it achieves accurate predictive control in a highly stochastic
fluid environment. Still, it is possible to gain unique insights into observations and
control.

Additionally, as mentioned in the discussion section above model-based reinforce-
ment learning methods and model-based control methods more generally can gener-
ally outperform model-free reinforcement learning. In fact, immediately following
this work Lale et al. [21] used the same system with a novel model-based reinforce-
ment learning algorithm and outperformed all algorithms tested as well as the Soft
Actor Critic algorithm. These experiments featured the same experimental setting,
but are not being included in this thesis for the sake of brevity.

In summary, outside of the results listed there are some larger lessons to be learned
from this work. Firstly, black-box machine learning methods are not magic. While
we did eventually find success in our experiments, even then the final perfor-
mance betrayed our initial (admittedly unrealistic) expectations. Next, performance-
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oriented experimental applications of model-free reinforcement learning in stochas-
tic systems, such as this, can be used to benchmark performance, however it takes
careful consideration to design a task and environment which is both demanding
and feasible for learning. Additionally, performance is the primary metric from
which we can learn through model-free reinforcement learning experiments. It can
be a useful tool for some things, such as to infer the value of different types of
information (as in Gunnarson et al. [15]), but in high dimensional physical systems
observing learned behavior is the only available metric. Lastly, model-based learn-
ing techniques are often overlooked in fluid mechanics for the more mystifying and
open-ended model-free methods, but are often more effective and data-efficient.

Bibliography

[1] P. W. Bearman. On vortex shedding from a circular cylinder in the
critical Reynolds number régime. Journal of Fluid Mechanics, 37
(3):577–585, July 1969. ISSN 0022-1120, 1469-7645. doi: 10.
1017/S0022112069000735. URL https://www.cambridge.org/core/
product/identifier/S0022112069000735/type/journal_article.

[2] P. W. Bearman. Vortex shedding from oscillating bluff bodies. Annual Review
of Fluid Mechanics, 16:195–222, 1984.

[3] Horst Bleckmann and Randy Zelick. Lateral line system of fish. Integrative
Zoology, 4(1):13–25, March 2009. ISSN 17494877. doi: 10.1111/j.1749-
4877.2008.00131.x. URL https://onlinelibrary.wiley.com/doi/10.
1111/j.1749-4877.2008.00131.x.

[4] Horst Bleckmann, Joachim Mogdans, and S. Coombs. Flow Sensing in Air
and Water: Behavioral, Neural and Engineering Principles of Operation.
Springer, Heidelberg, 2014. ISBN 978-3-642-41445-9.

[5] F. Boettcher, Ch. Renner, H.-P. Waldl, and J. Peinke. On the Statistics of Wind
Gusts. Boundary-Layer Meteorology, 108(1):163–173, July 2003.

[6] Steven L. Brunton and Bernd R. Noack. Closed-loop turbulence
control: Progress and challenges. Applied Mechanics Reviews, 67
(5):050801, September 2015. ISSN 0003-6900, 2379-0407. doi:
10.1115/1.4031175. URL https://asmedigitalcollection.asme.
org/appliedmechanicsreviews/article/doi/10.1115/1.4031175/
369906/ClosedLoop-Turbulence-Control-Progress-and.

[7] Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learn-
ing for fluid mechanics. Annual Review of Fluid Mechanics, 52:477–508,
2020.



50

[8] C.E. Carcangiu, A. Pujana-Arrese, A. Mendizabal, I. Pineda, and J. Lan-
daluze. Wind gust detection and load mitigation using artificial neural net-
works assisted control: Wind gust detection and control. Wind Energy, 17
(7):957–970, July 2014. ISSN 10954244. doi: 10.1002/we.1611. URL
https://onlinelibrary.wiley.com/doi/10.1002/we.1611.

[9] Sheryl Coombs and John Montgomery. The role of flow and the lateral line in
the multisensory guidance of orienting behaviors. pages 65–101, 2014. URL
http://link.springer.com/10.1007/978-3-642-41446-6_3.

[10] John Elder and Sheryl Coombs. The influence of turbulence on the sensory
basis of rheotaxis. Journal of Comparative Physiology A, 201(7):667–680,
July 2015. ISSN 0340-7594, 1432-1351. doi: 10.1007/s00359-015-1014-7.
URL http://link.springer.com/10.1007/s00359-015-1014-7.

[11] Dixia Fan, Liu Yang, Zhicheng Wang, Michael S. Triantafyllou, and George Em
Karniadakis. Reinforcement learning for bluff body active flow control in
experiments and simulations. Proceedings of the National Academy of Sci-
ences, 117(42):26091–26098, October 2020. ISSN 0027-8424, 1091-6490.
doi: 10.1073/pnas.2004939117. URL http://www.pnas.org/lookup/
doi/10.1073/pnas.2004939117.

[12] Zhifang Fan, Jack Chen, Jun Zou, David Bullen, Chang Liu, and Fred Del-
comyn. Design and fabrication of artificial lateral line flow sensors. Jour-
nal of Micromechanics and Microengineering, 12(5):655–661, September
2002. ISSN 09601317. doi: 10.1088/0960-1317/12/5/322. URL https:
//iopscience.iop.org/article/10.1088/0960-1317/12/5/322.

[13] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function
approximation error in actor-critic methods. In Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80, Stockholm, Sweden,
October 2018. PMLR. URL http://arxiv.org/abs/1802.09477.

[14] Nikola Gavrilovic, Murat Bronz, Jean-Marc Moschetta, and Emmanuel Be-
nard. Bioinspired wind field estimation—part 1: Angle of attack measure-
ments through surface pressure distribution. International Journal of Micro
Air Vehicles, 10(3):273–284, September 2018. ISSN 1756-8293, 1756-8307.
doi: 10.1177/1756829318794172. URL http://journals.sagepub.com/
doi/10.1177/1756829318794172.

[15] Peter Gunnarson, Ioannis Mandralis, Guido Novati, Petros Koumoutsakos, and
John O. Dabiri. Learning efficient navigation in vortical flow fields. Nature
Communications, 12, 2021.



51

[16] Wei Hou, Darwin Darakananda, and Jeff D. Eldredge. Machine-learning-based
detection of aerodynamic disturbances using surface pressure measurements.
AIAA Journal, 57(12):5079–5093, December 2019. ISSN 0001-1452, 1533-
385X. doi: 10.2514/1.J058486. URL https://arc.aiaa.org/doi/10.
2514/1.J058486.

[17] Yonggang Jiang, Zhiqiang Ma, and Deyuan Zhang. Flow field perception based
on the fish lateral line system. Bioinspiration & Biomimetics, 14(4):041001,
May 2019. ISSN 1748-3190. doi: 10.1088/1748-3190/ab1a8d. URL https:
//iopscience.iop.org/article/10.1088/1748-3190/ab1a8d.

[18] Anya R. Jones. Gust encounters of rigid wings: Taming the parameter
space. Physical Review Fluids, 5(11):110513, November 2020. ISSN 2469-
990X. doi: 10.1103/PhysRevFluids.5.110513. URL https://link.aps.
org/doi/10.1103/PhysRevFluids.5.110513.

[19] Stoyan Kanev and Tim van Engelen. Wind turbine extreme gust control. Wind
Energy, 13(1):18–35, January 2010. ISSN 10954244, 10991824. doi: 10.
1002/we.338. URL https://onlinelibrary.wiley.com/doi/10.1002/
we.338.

[20] Michael Krieg, Kevin Nelson, and Kamran Mohseni. Distributed sensing
for fluid disturbance compensation and motion control of intelligent robots.
Nature Machine Intelligence, 1(5):216–224, May 2019. ISSN 2522-5839. doi:
10.1038/s42256-019-0044-1. URL http://www.nature.com/articles/
s42256-019-0044-1.

[21] Sahin Lale, Peter Renn, Kamyar Azizzandenesheli, Babak Hassibi, Morteza
Gharib, and Anima Anandkumar. Falcon: Fourier adaptive learning and
control for disturbance rejection under extreme turbulence. in preparation,
2023.

[22] Aristotelis Lazaridis, Anestis Fachantidis, and Ioannis Vlahavas. Deep re-
inforcement learning: A state-of-the-art walkthrough. Journal of Artifi-
cial Intelligence Research, 69:1421–1471, December 2020. ISSN 1076-
9757. doi: 10.1613/jair.1.12412. URL http://jair.org/index.php/
jair/article/view/12412.

[23] Mathieu Le Provost, Wei Hou, and Jeff Eldredge. Deep learning and data as-
similation approaches to sensor reduction in estimation of disturbed separated
flows. In AIAA Scitech 2020 Forum, Orlando, FL, January 2020. Amer-
ican Institute of Aeronautics and Astronautics. ISBN 978-1-62410-595-1.
doi: 10.2514/6.2020-0799. URL https://arc.aiaa.org/doi/10.2514/
6.2020-0799.



52

[24] Jonathan N. Lefebvre and Anya R. Jones. Experimental investigation of airfoil
performance in the wake of a circular cylinder. AIAA Journal, 57(7):2808–
2818, July 2019. ISSN 0001-1452, 1533-385X. doi: 10.2514/1.J057468. URL
https://arc.aiaa.org/doi/10.2514/1.J057468.

[25] Kara L. Marshall, Mohit Chadha, Laura A. deSouza, Susanne J. Sterbing-
D’Angelo, Cynthia F. Moss, and Ellen A. Lumpkin. Somatosensory substrates
of flight control in bats. Cell Reports, 11(6):851–858, May 2015. ISSN
22111247. doi: 10.1016/j.celrep.2015.04.001. URL https://linkinghub.
elsevier.com/retrieve/pii/S2211124715003769.

[26] T. Tachim Medjo, R. Temam, and M. Ziane. Optimal and robust control of
fluid flows: Some theoretical and computational aspects. Applied Mechanics
Reviews, 61(1):010802, January 2008. ISSN 0003-6900, 2379-0407. doi:
10.1115/1.2830523. URL https://asmedigitalcollection.asme.
org/appliedmechanicsreviews/article/doi/10.1115/1.2830523/
443747/Optimal-and-Robust-Control-of-Fluid-Flows-Some.

[27] Lingheng Meng, Rob Gorbet, and Dana Kulic. Memory-based deep rein-
forcement learning for POMDPs. In 2021 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 5619–5626, Prague,
Czech Republic, September 2021. IEEE. ISBN 978-1-66541-714-3. doi:
10.1109/IROS51168.2021.9636140. URL https://ieeexplore.ieee.
org/document/9636140/.

[28] A. Mohamed, R. Clothier, S. Watkins, R. Sabatini, and M. Abdulrahim. Fixed-
wing MAV attitude stability in atmospheric turbulence, part 1: Suitability
of conventional sensors. Progress in Aerospace Sciences, 70:69–82, October
2014. ISSN 03760421. doi: 10.1016/j.paerosci.2014.06.001. URL https:
//linkinghub.elsevier.com/retrieve/pii/S0376042114000542.

[29] A. Mohamed, M. Abdulrahim, S. Watkins, and R. Clothier. Development
and flight testing of a turbulence mitigation system for micro air vehicles.
Journal of Field Robotics, 33(5):639–660, August 2016. ISSN 15564959. doi:
10.1002/rob.21626. URL https://onlinelibrary.wiley.com/doi/10.
1002/rob.21626.

[30] Siddharth Mysore, Bassel Mabsout, Kate Saenko, and Renato Mancuso. How
to train your quadrotor: A framework for consistently smooth and responsive
flight control via reinforcement learning. ACM Transactions on Cyber-Physical
Systems (TCPS), 5(4):1–24, 2021.

[31] Guido Novati, L. Mahadevan, and Petros Koumoutsakos. Controlled gliding
and perching through deep-reinforcement learning. Physical Review Fluids,
2019.



53

[32] C.J. Pennycuick. Information systems for flying animals. In Theoret-
ical Ecology Series, volume 5, pages 305–331. Elsevier, 2008. ISBN
978-0-12-374299-5. doi: 10.1016/S1875-306X(08)00011-7. URL https:
//linkinghub.elsevier.com/retrieve/pii/S1875306X08000117.

[33] Johannes E. Pohl, Rolf Radespiel, Benjamin Herrmann, Steven L. Brunton,
and Richard Semaan. Gust mitigation through closed-loop control. I. Trailing-
edge flap response. Physical Review Fluids, 7(2):024705, February 2022.
ISSN 2469-990X. doi: 10.1103/PhysRevFluids.7.024705. URL https://
link.aps.org/doi/10.1103/PhysRevFluids.7.024705.

[34] Stephen B. Pope. Turbulent Flows. Cambridge University Press, 1 edition,
August 2000. doi: 10.1017/CBO9780511840531.

[35] John Quindlen and Jack Langelaan. Flush air data sensing for soaring-capable
uavs. In 51st AIAA Aerospace Sciences Meeting including the New Horizons
Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas,
January 2013. American Institute of Aeronautics and Astronautics. ISBN 978-
1-62410-181-6. doi: 10.2514/6.2013-1153. URL https://arc.aiaa.org/
doi/10.2514/6.2013-1153.

[36] Gautam Reddy, Jerome Wong-Ng, Antonio Celani, Terrence J. Sejnowski, and
Massimo Vergassola. Glider soaring via reinforcement learning in the field.
Nature, 562(7726):236–239, October 2018. ISSN 0028-0836, 1476-4687. doi:
10.1038/s41586-018-0533-0. URL http://www.nature.com/articles/
s41586-018-0533-0.

[37] Anatol Roshko. On the wake and drag of bluff bodies. Journal of the Aero-
nautical Sciences, 22(2):124–132, February 1955. ISSN 1936-9956. doi:
10.2514/8.3286. URL https://arc.aiaa.org/doi/10.2514/8.3286.

[38] Seyed G. Saddoughi and Srinivas V. Veeravalli. Local isotropy in tur-
bulent boundary layers at high Reynolds number. Journal of Fluid Me-
chanics, 268:333–372, June 1994. ISSN 0022-1120, 1469-7645. doi:
10.1017/S0022112094001370. URLhttps://www.cambridge.org/core/
product/identifier/S0022112094001370/type/journal_article.

[39] Aditya Saini and Ashok Gopalarathnam. Leading-edge flow sensing for aero-
dynamic parameter estimation. AIAA Journal, 56(12):4706–4718, Decem-
ber 2018. ISSN 0001-1452, 1533-385X. doi: 10.2514/1.J057327. URL
https://arc.aiaa.org/doi/10.2514/1.J057327.

[40] Satoshi Shimomura, Satoshi Sekimoto, Akira Oyama, Kozo Fujii, and Hi-
royuki Nishida. Closed-loop flow separation control using the deep q network
over airfoil. AIAA Journal, 58, 2020.

[41] Md. Abu S. Shohag, Emily C. Hammel, David O. Olawale, and Okenwa I.
Okoli. Damage mitigation techniques in wind turbine blades: A review. Wind
Engineering, 41, 2017.



54

[42] Eduardo D Sontag. Mathematical Control Theory: Deterministic Finite Di-
mensional Systems. Springer, New York, NY, 1998. ISBN 978-1-4612-0577-
7 978-1-4612-6825-3. URL https://doi.org/10.1007/978-1-4612-
0577-7. OCLC: 1165444109.

[43] Susanne Sterbing-D’Angelo, Mohit Chadha, Chen Chiu, Ben Falk, Wei Xian,
Janna Barcelo, John M. Zook, and Cynthia F. Moss. Bat wing sensors support
flight control. Proceedings of the National Academy of Sciences, 108(27):
11291–11296, 2011.

[44] Susanne J. Sterbing-D’Angelo, Mohit Chadha, Kara L. Marshall, and Cyn-
thia F. Moss. Functional role of airflow-sensing hairs on the bat wing. Journal
of neurophysiology, 117(2):705–712, 2017.

[45] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, Mass., second edition, 2018. ISBN 978-0-
262-03924-6.

[46] Paul D. Towers and Bryn Ll. Jones. Wind turbine gust estimation using remote
sensing data. In UKACC International Conference on Control, 2014.

[47] Michael S. Triantafyllou, Gabriel D. Weymouth, and Jianmin Miao.
Biomimetic survival hydrodynamics and flow sensing. Annual Review
of Fluid Mechanics, 48(1):1–24, January 2016. ISSN 0066-4189, 1545-
4479. doi: 10.1146/annurev-fluid-122414-034329. URL https://www.
annualreviews.org/doi/10.1146/annurev-fluid-122414-034329.

[48] Pablo Valdivia y Alvarado, Vignesh Subramaniam, and Michael Triantafyl-
lou. Design of a bio-inspired whisker sensor for underwater applications.
In 2012 IEEE Sensors, pages 1–4, Taipei, Taiwan, October 2012. IEEE.
ISBN 978-1-4577-1767-3 978-1-4577-1766-6 978-1-4577-1765-9. URL
http://ieeexplore.ieee.org/document/6411517/.

[49] Roberto Venturelli, Otar Akanyeti, Francesco Visentin, Jaas Ježov, Lily D
Chambers, Gert Toming, Jennifer Brown, Maarja Kruusmaa, William M
Megill, and Paolo Fiorini. Hydrodynamic pressure sensing with an artifi-
cial lateral line in steady and unsteady flows. Bioinspiration & Biomimet-
ics, 7(3):036004, September 2012. ISSN 1748-3182, 1748-3190. doi:
10.1088/1748-3182/7/3/036004. URL https://iopscience.iop.org/
article/10.1088/1748-3182/7/3/036004.

[50] Siddhartha Verma, Guido Novati, and Petros Koumoutsakos. Efficient collec-
tive swimming by harnessing vortices through deep reinforcement learning.
Proceedings of the National Academy of Sciences, 115(23):5849–5854, June
2018. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1800923115. URL
https://pnas.org/doi/full/10.1073/pnas.1800923115.



55

[51] Pantelis R. Vlachas, Jaideep Pathak, Brian R. Hunt, Themistoklis P. Sapsis,
Michelle Girvan, Edward Ott, and Petros Koumoutsakos. Backpropagation al-
gorithms and reservoir computing in recurrent neural networks for the forecast-
ing of complex spatiotemporal dynamics. arXiv:1910.05266 [physics], Febru-
ary 2020. URL http://arxiv.org/abs/1910.05266. arXiv: 1910.05266.

[52] Wei Wang, Xingxing Zhang, Jianwei Zhao, and Guangming Xie. Sensing
the neighboring robot by the artificial lateral line of a bio-inspired robotic
fish. In 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1565–1570, Hamburg, Germany, September 2015.
IEEE. ISBN 978-1-4799-9994-1. doi: 10.1109/IROS.2015.7353576. URL
http://ieeexplore.ieee.org/document/7353576/.

[53] S. Watkins, J. Burry, A. Mohamed, M. Marino, S. Prudden, A. Fisher, N. Kloet,
T. Jakobi, and R. Clothier. Ten questions concerning the use of drones in urban
environments. Building and Environment, 167, 2020.

[54] C. H. K. Williamson. Vortex dynamics in the cylinder wake. Annual Re-
view of Fluid Mechanics, 28(1):477–539, January 1996. ISSN 0066-4189,
1545-4479. doi: 10.1146/annurev.fl.28.010196.002401. URL https://www.
annualreviews.org/doi/10.1146/annurev.fl.28.010196.002401.



56

C h a p t e r 4

FORECASTING SUBCRITICAL CYLINDER WAKES WITH
FOURIER NEURAL OPERATORS

Parts of this chapter are adapted from:

Peter I. Renn, Cong Wang, Sahin Lale, Zongyi Li, Anima Anandkumar and Morteza
Gharib (2023). “Forecasting subcritical cylinder wakes with Fourier neural
operators” (in preparation)
P.R. participated in the conception, recorded and analyzed all the data, trained
the models, analyzed prediction performance, and prepared the manuscript.

4.1 Chapter abstract
We present an application of operator learning, specifically Fourier neural operators,
for forecasting the temporal evolution of experimental cylinder wakes in the sub-
critical regime. Fourier neural operators are a recently developed machine learning
method capable of approximating solution operators to systems of partial differential
equations through data, producing full-field solutions in milliseconds. Here we train
Fourier neural operators to predict the time evolution of experimental velocity fields
from particle image velocimetry measurements of cylinder wakes at Reynolds num-
bers ranging from 𝑅𝑒 = 240 to 𝑅𝑒 = 3060. We train the Fourier neural operators
at each Reynolds number over a normalized prediction horizon roughly equivalent
to one-third of a Kármán vortex shedding cycle to compare performance across the
regime. We find that FNOs are capable of accurately predicting the experimental
velocity fields (L2 norm error < 0.1) throughout the range of Reynolds numbers
tested. Given these results, we conclude that this method holds significant potential
for real-time predictive flow control.

4.2 Introduction
Vortex shedding in a cylinder wake is among the most fundamental and well-studied
problems in fluid mechanics. This phenomenon, otherwise known as a Kármán
vortex street, is still relevant for a huge array of industries and applications today.
The vortex shedding process has been studied in detail for decades with several
comprehensive review papers on the subject, so we will keep our descriptions here
brief [39]. Vortex shedding is first observed around 𝑅𝑒 = 50, at which point it
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has been observed that an instability occurs in the previously steady recirculation
regions of the wake. This instability results in a famously beautiful and well-ordered
pattern of laminar alternating vortices convecting downstream and away from the
cylinder. There has been some experimental variation observed in defining where
the laminar vortex shedding regime ends but it is generally placed around 𝑅𝑒 = 190,
at which point small-scale three-dimensional instabilities form and the transition to
turbulence begins [40]. Following transition, the behavior of cylinder wakes from 𝑅𝑒

= 300 to 𝑅𝑒 = 200 000 was labelled the "irregular range" by Roshko [32] (otherwise
known as the sub-critical regime). This regime is characterized by increasing
three-dimensional effects, irregular velocity fluctuations, and the transition of the
outer shear layer (𝑅𝑒 = 1 200) [39]. Modeling vortical wakes in the "irregular
range" is very possible through conventional numerical solvers, however this can be
computationally expensive and time intensive [31].

As a canonical example that is both intuitive and visually striking, cylinder wakes
have become a common subject of studies in other data-driven techniques for fluid
mechanics as well. Notably, Bright et al. [1] used compressive sensing with a
machine learning library of modes in the flow to reconstruct the full flow field.
Using experimental particle image velocimetry (PIV) data, Deng et al. [4] trained
generative adversarial networks to achieve super-resolution on turbulent cylinder
wakes. Fukami et al. [7] used a laminar cylinder flow simulation as a preliminary
demonstration of a super-resolution they later showed was capable of reconstructing
turbulent flows. Fukami et al. [8] used a low Reynolds number to demonstrate a
similar technique capable of super-resolution reconstruction in both space and time.

In recent years machine learning methods have been proposed as a solution for
forecasting the future time evolution of fluid flows [2]. Srinivasan et al. [33] used
recurrent neural networks to predict the temporal dynamics of a numerical model for
a turbulent shear layer which matched the statistical characteristics of the flow field
well, but struggled to predict the instantaneous flow fields as accurately. Proposing
a hybrid deep neural network consisting of convolutional neural network (CNN)
layers, long short-term memory (LSTM) recurrent neural network layers, and de-
convolutional neural network layers, Han et al. [13] demonstrated a method for
predicting the time evolution of a cylinder flow at various Reynolds numbers includ-
ing some turbulent, but requires dozens of previous time-steps as input. Hasegawa
et al. [14] trained a neural network containing a CNN auto-encoder (CNN-AE) and
LSTM layers to predict cylinder wakes for various irregular shapes generated by
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DNS, however only demonstrated the method at a single low Reynolds number with
laminar shedding. Those authors later explored the impact of Reynolds number on
their model within the laminar regime [15], and found that the model performed
well when trained and tested at a Reynolds number but struggled to perform across
the transition from a steady wake to laminar vortex shedding. Nakamura et al.
[30] similarly used a combination of CNN-AE and LSTM layers to predict the time
evolution of a three-dimensional turbulent channel flow, finding good agreement
in statistical quantities but also struggling with instantaneous time-resolved flow
field predictions. Moriomoto et al. [29] notably used neural networks to predict the
evolution of the cylinder flow in time, among other tasks, when demonstrating tech-
niques for improved generalization in machine learning for fluid flows. Combining
a CNN-AE with sparse identification of nonlinear dynamics (SINDy), Fukami et al.
[10] accurately predicted laminar cylinder flow data generated by direct numerical
simulation (DNS), as well as a shear flow model. This method was capable of learn-
ing the latent dynamics of both cases, however the resulting models were sensitive
to learning parameters. Mondal and Sarkar [28] demonstrated a method capable of
predicting the temporal development of high-fidelity neural network based models
while augmenting the training set with inexpensive low-fidelity data at Reynolds
numbers as high as 800. Wu et al. [41] proposed a multi-resolution convolutional
interaction network featuring variational auto-encoders (VAE) for forecasting cylin-
der wakes with Reynolds number varying periodically in the moderate subcritical
regime, using eddy-viscosity turbulence models to generate data. Also using VAEs,
Vlachas et al. [36] augmented existing multiscale frameworks with machine learn-
ing methods, demonstrating accurate predictions of simulated cylinder flows at a
Reynolds number of 1000. We note that the vast majority of the aforementioned
work focuses only on laminar vortex shedding, and those that feature turbulent
training settings generally use simplified numerical models. Further, the methods
applied are largely built on classical neural networks that can not provably learn
solution operators to these systems.

Neural operators represent a new class of data-driven tools that may be well-suited
for many applications within fluid dynamics. Neural operators share the basic
structure of conventional neural networks, however are designed to approximate
nonlinear operators, such as those between functional spaces. These methods have
been shown capable of learning solution operators to systems of partial differential
equations (PDEs) such as the constitutive equations underlying physical processes
studied in fluid mechanics. Once trained, these methods can produce full-field
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solutions in milliseconds, making them orders of magnitude faster than conventional
solvers. Fourier Neural Operators (FNOs), introduced by Li et al. [22], are a specific
type of neural operator that include integral operators via the Fourier domain within
the network architecture. FNOs are discretization invariant, meaning that they can
learn the underlying operator and be evaluated with data given arbitrary and varying
discretizations. Li et al. [22] applied FNOs to computational solutions of the Navier-
Stokes equation, achieving zero-shot super-resolution and successfully predicting
the temporal development of vorticity fields. Other neural operator variations (e.g.,
DeepONet [26]) have been applied to computational flow data as well [5, 24].

While FNOs have proven themselves in several computational domains, the ability
to forecast the evolution of experimental fluid flows faster than real-time could have
many implications in open fields such as mitigation of atmospheric gusts and control
of turbulent boundary layers. However previous studies using neural operators, and
machine learning in general, on fluid mechanics have focused on problems given
convenient computational parameters with known boundary solutions, and virtually
none have used experimental measurements. Here we explore the potential for truly
predictive real-time-capable machine learning models. We train and deploy FNOs
on experimental data measured via two-dimensional particle image velocimetry
(2D2C-PIV) to forecast the time evolution of cylinder wakes at a range of Reynolds
numbers in the subcritical vortex shedding regime. We train an FNO to predict the
evolution of the flow over a ten time-step period, which is equivalent to over one-
third of a shedding cycle. We find that this operator learning approach accurately
predicts instantaneous velocity fields over the full range of Reynolds numbers tested
(error < 0.1) and is robust to experimental noise.

4.3 Experimental setup
Data acquisition
Our data was collected via experiments performed in a small free-surface water
tunnel with a test section of 0.15 m (W) × 0.15 m (H) and a length of 0.61 m. We
performed tests at flow speeds ranging from 𝑈 = 0.02 m s−1 to 𝑈 = 0.40 m s−1. The
corresponding Reynolds numbers range from about 𝑅𝑒 = 240 to 𝑅𝑒 = 3100, where
we define Reynolds number as 𝑅𝑒 = 𝑈𝐷/a with 𝐷 being the cylinder diameter and
a being the kinematic viscosity. The cylinder diameter is held constant at 𝐷 = 9.53
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Figure 4.1: Schematic of the imaging region of interest, outlined by black dashed
line, relative to the water tunnel and cylinder.

× 10−3 m and is fully submerged and fixed to the tunnel walls on both sides. The
cylinder is made of cast acrylic, and is mounted approximately equidistant from the
free surface and the tunnel floor to minimize the impact of either boundary on the
vortex wake.

Figure 4.1 depicts the region of interest relative to the cylinder and the tunnel
boundaries for 2DPIV recordings. Here 𝐿1 = 0.125 m (≈ 13𝐷) and 𝐿2 = 0.084 m
(≈ 9𝐷). This region, located immediately behind the cylinder, is illuminated by a
laser sheet at a streamwise cross section near the center of the tunnel. A high speed
camera (IDT XSM-3520 set to 2144 × 1440 resolution) is used to record the flow
in this region. The frame rate of the camera is adjusted based on the mean flow
speed to maintain a near-constant non-dimensional time between frames regardless
of tunnel speed. The non-dimensional time, otherwise known as the formation time,
for a cylinder flow is given by Jeon and Gharib [16] as:

𝑡∗ =
𝑈𝑡

𝐷
. (4.1)

Here 𝑡∗ is the non-dimensional time and 𝑡 is the dimensional time. In our 2D2C-PIV
analysis, an interrogation window size of 32 × 32 pixels with 50% overlap was
used, giving spatial resolution of < 0.1𝐷 for our resulting velocity fields. With
this data, we were able to construct training sets for each flow configuration tested
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Figure 4.2: Strouhal number plotted against Reynolds number. Note that this
relationship diverges from the established values.

that contained 3488 unique time sequences of data with 864 sequences reserved for
testing (total of 4352 sequences). To prevent any mixing of training and testing data,
we limited the overlap between the sequences so that only the first/last time-step
could be shared. That is, the final time-step of each sequence could be used as the
first time-step of a different sequence but all intermediate time-steps were not shared.
This ensured that no transition between consecutive frames was in more than one
time sequence, preserving the uniqueness of each training point and ensuring that
no contamination could occur between the training and testing data.

We note that the Strouhal number (𝑆𝑡 = 𝑓 𝐷/𝑈 where 𝑓 is shedding frequency) is
known to remain near a constant value of 𝑆𝑡 = 0.21 across the range of Reynolds
numbers tested. This means that scaling the time-steps based on formation time
should result in an approximate scaling based on Strouhal period as well. However,
from calculating the shedding frequency in the PIV measurements, we observed an
irregular distribution of Strouhal numbers that diverge from established results, as
seen in figure 4.2
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Figure 4.3: Particle trace overlaying 60 images showing the recirculation region
of the vortex wake. We can note the three-dimensional effects in the recirculation
region due to the high density of pathlines diverging from specific regions.

We note that deviations in shedding frequency are likely the result of vortex shedding
occurring at an oblique angle [39]. We can further confirm this by examining a
particle trace by overlaying subsequent image pairs, as shown in figure 4.3.

Here we see significant three-dimensional motions in the recirculation region, de-
spite a Reynolds number of only 𝑅𝑒 = 630. This is also indicative of oblique
shedding. Since our cylinder is fixed rigidly to the tunnel and not free to vibrate
or oscillate, oblique shedding is likely the result of a small difference in boundary
conditions at the spanwise ends of cylinder [12]. We note that there is a minor
asymmetry in cylinder geometries at the two walls, where a screw was used to
adjust the exact cylinder length on one side. It is also possible that the difference
in boundary conditions is the result of some spanwise deviation in the incoming
velocity due to tunnel geometry (e.g., a blockage or crooked flow manipulator) or
pump malfunction (e.g., one pump is less efficient than another). Regardless of
the exact source of the oblique shedding angle, this effect should not impact the
validity of this data for training and predicting cylinder wake velocity fields. In fact,
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Figure 4.4: Diagram showing composition of Fourier layer in FNO. Taken from Li
et al. [22].

the additional three-dimensional effect may provide more challenging dynamics.
We simply note that the deviation in shedding frequency was observed, and that
assumptions regarding equivalency between Strouhal period and formation time are
not valid across the full range of Reynolds numbers tested.

Fourier neural operators
Neural operators are distinct from standard neural networks in their unique ability
to learn operator mappings between infinite-dimensional function spaces. Approx-
imating mappings between function spaces allows for directly learning solution
operators to families of PDEs from data alone, making these methods particularly
well-suited for problems in fluid mechanics. In contrast, classical neural networks
map only between finite-dimensional spaces and are not universal approximators of
operators. Introduced by Li et al. [22], Fourier neural operators (FNOs) are power-
ful form of neural operator that are discretization invariant and guarantee universal
approximation for continuous operators [18, 19].

The architecture of an FNO, shown in figure 4.4, is made up of unique Fourier layers.
These Fourier layers consist of paths: non-linear activation functions as found in
classical neural networks, and a linear transform of the input signal performed
in Fourier space. The non-linear activation function path serves to approximate
local non-linearities, and the transform in Fourier space serves as a global integral
operator. The paths are then combined and passed forward. The weights in each
layer are trained through back-propagation to minimize the selected loss function,
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similar to training classical neural networks. Details on the mathematical principles
underlying FNOs and neural operators more generally can be found in Kovachki
et al. [19]. All models were trained on NVIDIA RTX A5000 GPUs, and the FNO
hyperparameters used for this work can be found in table 4.1

Hyperparameter Value
Initial learning rate 10−3

Epochs 200
Batch size 16

Train set size 3488
Test set size 864
Optimizer Adam

Learning rate scheduler StepLR
LR scheduler step size 5

LR scheduler decay rate 0.90
Fourier layer width 80
Fourier layer modes 24

Table 4.1: Hyperparameters used for training FNOs in all following results, except
where noted otherwise

4.4 Results
Prediction approach
In this study, we use FNOs to forecast the time evolution of both 𝑥 and 𝑦 components
of velocity fields (𝑢, 𝑣) in the wake of a cylinder at various Reynolds numbers. In
this context, FNOs can learn to predict future state of the velocity fields based on
current observations. While not necessary for learning with FNOs, we preprocessed
the data by subtracting out the mean field. This approach, borrowing from stability
theory [21], essentially decomposed the velocity into steady and unsteady parts:

𝒖(𝒙, 𝑡) = 𝒖0(𝒙) + 𝒖′(𝒙, 𝑡). (4.2)

We then can substitute this into the Navier-Stokes equations. Assuming the steady
part alone satisfies the time-independent equations and omitting 𝒖′(𝒙, 𝑡) terms of
order greater than one, we are left with

𝜕𝒖′

𝜕𝑡
+ (𝒖0 · ∇)𝒖′ + (𝒖′·)𝒖0 =

∇𝑝′
𝜌

+ aΔ𝒖′, ∇ · 𝒖′ = 0 (4.3)

where 𝑝′ is the unsteady pressure component (i.e., 𝑝(𝒙, 𝑡) = 𝑝0(𝒙) + 𝑝′(𝒙, 𝑡)).
Therefore, we are left with a set of homogeneous linear differential equations [21],
which are perhaps more readily learned by the FNO.
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Figure 4.5: Recursive application of Fourier Neural Operators (FNOs).

In addition to simplifying the underlying differential equations, subtracting out the
time-averaged velocity ensures that unsteady fluctuations are not dominated out the
large free-stream velocity bias. This is common to many modal analysis techniques
used in studying fluid flows (e.g., proper orthogonal decomposition) [34], and likely
has similar benefits in frequency-based learning methods like FNOs. A comparison
of performance between FNOs provided the full velocity components (𝒖(𝒙, 𝑡)) and
fluctuation velocity components (𝒖′(𝒙, 𝑡)) can be found in the appendix. Since we
train the FNOs to predict the fluctuations alone, we can then reconstruct the full
flow field by summing the mean and fluctuating velocity components as defined in
equation 4.2.



66

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

Reynolds number
890

1.0
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(𝒖′(𝒙, 𝑡)) and is then reconstructed.

To demonstrate the benefits of this preprocessing, we can plot the error at each time-
step for the two methods, as shown in figure 4.6. From this we see that predicting
only the fluctuating velocity component results in lower error at each time-step. This
method is used in all results, except when explicitly stated otherwise.

While FNOs can make predictions from only one time-step as input, we chose to
use two time-steps to reduce the effects of experimental errors. From this two time-
step input, the model predicts the state of the flow field at the following time-step.
During training, we set a desired number of time-steps to forecast. The model is
then applied recursively, as shown in figure 4.5, to reach the desired number of steps.
The loss is calculated at each recursive step and summed to find the overall loss in
the prediction. The FNO tries to minimize this loss through the back-propagation
algorithm, similar to a classic neural network. Because they are applied recursively,
the FNO models can also be used to predict time-steps beyond the trained horizon.
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In analyzing predictions, we define the error of the flow field, 𝜖 , at a given time-step
𝑡 as calculated as the L2 error norm:

𝜖 (𝑡) =
∥𝒒∗𝑡 − 𝒒𝑡 ∥2

∥𝒒𝑡 ∥2
(4.4)

where 𝒒𝑡 is a 𝑁 × 1 vector containing the two-component velocity field, such that

𝒒𝑡 =



𝑢(𝑥1, 𝑦1, 𝑡)

𝑢(𝑥1, 𝑦2, 𝑡)

...

𝑢(𝑥1, 𝑦𝑚, 𝑡)

𝑢(𝑥2, 𝑦1, 𝑡)

...

𝑢(𝑥𝑛, 𝑦𝑚, 𝑡)

𝑣(𝑥1, 𝑦1, 𝑡)

...

𝑣(𝑥𝑛, 𝑦𝑚, 𝑡)



(4.5)

and 𝒒∗𝑡 is the FNO estimate of 𝒒𝑡 . The quantities 𝑢(𝑥𝑖, 𝑦 𝑗 , 𝑡) and 𝑣(𝑥𝑖, 𝑦 𝑗 , 𝑡) in
equation 4.5 are the full, reconstructed velocity components at (𝑥𝑖, 𝑦 𝑗 ) and time 𝑡.

We non-dimensionalized the time-step across Reynolds numbers using the same
formulation shown in equation 4.1. This time-step was set to be exactly five-times
the interframe time for each Reynolds number (Δ𝑡 ≈ 0.17). This relatively large
time-step was chosen because the measured difference in consecutive velocity fields
was on the order which we would expect experimental noise to occur. Using a larger
time-step increased the difference while maintaining the same noise level.

Prediction accuracy and Reynolds numbers
We first apply FNOs to cylinder flows at various Reynolds numbers to gauge the
performance of the learned solution operators under varying conditions. To this end,
we recorded equivalent data sets at 𝑅𝑒 = {240, 630, 890, 1260, 1860, 2480, 3060}
and trained separate FNOs for each. The velocity fields is predicted in increments
of 𝑡∗ ≈ 0.17, and the FNO is trained to forecast the evolution of the flow over ten
time-steps.
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Figure 4.7: The error as a function of prediction time plotted at various Reynolds
numbers.

The Reynolds numbers tested range from the very early transition where three-
dimensional effects begin to be observed well into the shear-layer transition regime
[39]. As the Reynolds number increases, the flow becomes noticeably more irregular
which presents challenges for learning the solution operator. As the flow becomes
more turbulent the wake becomes three dimensional and chaotic [17]. Fluctuations
in the shape and motion of the shed vortices become irregular, which generally makes
forecasting the time evolution of the velocity fields difficult. Distinct but intrinsically
coupled to the progressively complex physics associated with increasing Reynolds
number, growing three-dimensional velocity components move particles in and out
of the stream-wise imaging plane which negatively impacts the performance of
PIV algorithms. In effect, as the incident velocity increases the learning problem
becomes more challenging and the data training becomes more noisy.

From figure 4.7 we see that the prediction error does increase with Reynolds number,
but remains under 0.10 across the full prediction horizon, suggesting the FNO is
accurately predicting the instantaneous velocity fields even in the more difficult
high Reynolds number cases. Figure 4.7 also shows that the trajectory of the
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Figure 4.8: The error a a function of Reynolds number plotted at various time-steps.

prediction error does not scale linearly with Reynolds number. Further, we see that
the relationship changes depending on the prediction step, as the distribution of the
error values at the initial time-step have a very different distribution from those at
the final time-step.

Plotting the error at each prediction step as a function of Reynolds number (figure
4.8), we see that the error in the first time-step does have a nearly linear relationship
with Reynolds number. However, this does not hold and the error begins to grow non-
linearly with Reynolds number. The error value of the final time-step (𝑡∗/Δ𝑡∗ = 10)
increases sharply in the range from 𝑅𝑒 = 240 to 890, but then remains relatively
consistent around 𝜖 ≈ 9.3 × 10−2.

We can also examine individual true and predicted velocity fields to gain insight
into the performance of the FNOs. Figures 4.9 and 4.10 show these values as well
as a normalized absolute difference between the measurement and the prediction
at the first and last step for the 𝑅𝑒 = 240 and 𝑅𝑒 = 3060, respectively. The
first step prediction for the 𝑅𝑒 = 240 case (left-columns, figure 4.9) shows some
minor deviations in the outer shear layers in the 𝑥-component as well as small
magnitude high-frequency error that seems to concentrate near the edge of the wake
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Figure 4.9: Instantaneous (𝑎) x and (𝑏) y velocity component measurements (top
row), predictions (middle row), and errors (bottom row) at the first (first column)
and last (second column) prediction for 𝑅𝑒 = 240.
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in both velocity measurements. After 10 predictions (right-columns, figure 4.9)
more differences between the prediction and experiment have developed on the
length scale of wake vortices themselves. We note that the 𝑥-component error does
seem slightly more interior to the wake in comparison with the 𝑦-component. As
would be expected, these regions mostly appear near the edges of wake structures
in both cases.

Looking at the measured velocity fields in the 𝑅𝑒 = 3060 case (top rows, figure
4.10), we immediately see that these higher Reynolds number measurements appear
less smooth than the low Reynolds number measurements. However, the predictions
themselves remain smooth. Similar to the low Reynolds number case, the differ-
ence between measurement and prediction after the first case primarily consists of
high-frequency fluctuations, especially in the 𝑥-component velocity field. We see
that the 𝑦-component velocity field also has high-frequency error, but these are
more focused around the center of the near-wake. For the high Reynolds number
case, there does appear to be some coherence in the distribution of the differences
relative to the vortices themselves after just one time-step. We also note that final
prediction and the first prediction for the 𝑥-component high Reynolds number case
have roughly equivalent high-frequency components in the free-stream portions,
indicating that this may be experimental error. The larger regions of error, however,
clearly accumulate in the wake where we expect the vortices to be, similar to the
lower Reynolds number case.

The error regions with length scales on the order of the primary Kármán vortices
are likely attributable to the learned FNO model itself. We see that in both high and
low Reynolds number cases, these errors accumulate systematically with increased
prediction time, which is indicative of iterating imperfect learned dynamics.

The source of the high-frequency differences we observe is less clear. Since we
can expect to see increasing three-dimensional turbulent velocity fluctuations as the
Reynolds number increases in the range shown, it is possible that some of this signal
can be attributed to error introduced by out-of-plane motion of seeding particles.
While the source of these out-of-plane particles is physical, they are not correctly
characterized by the two-component PIV algorithm applied here and therefore can
appear as noise in the resulting measurement. This is most likely the cause of
the small deviations in the free-stream regions of the flow, especially for the high
Reynolds number case.
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Figure 4.10: Instantaneous (𝑎) x and (𝑏) y velocity component measurements (top
row), predictions (middle row), and errors (bottom row) at the first (first column)
and last (second column) prediction for 𝑅𝑒 = 3060.
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Figure 4.11: Mean absolute error field of 𝑥 and 𝑦 components normalized by free-
stream velocity at different Reynolds numbers.

However, it is also possible that some of the high-frequency deviations are directly
due to FNO modeling error. We see in both cases that the predicted velocity field
becomes smoother between the first and final prediction, especially around the
edges of the wake and between low-velocity regions associated with vortex cores.
These are regions where we would expect to see the most turbulent fluctuations and
small scale flow features, especially in the high Reynolds number case where the
shear layer has transitioned before the vortex formation process begins [39]. The
increasing smoothness observed in the predicted solutions may therefore indicate
that the FNO struggles to model the complicated physics in these turbulent regions,
and therefore learns to predict a more average solution absent of small, sharp flow
features. We also note that the limited spatial resolution of the PIV measurements
(≈ 0.1𝐷) is such that not all small structures (e.g., shear layer vortices) will be
well resolved in our measurement which may in-part make learning these fine-scale
dynamics intractable [37, 39]. As mentioned earlier, we know that these regions
also tend to accumulate pockets of error with larger length scales, and may be due
in part to the smoothing effect learned to minimize the error from small, high-
frequency structures. The more turbulent regions of the flow, however, would likely
also have more out-of-plane velocity components which could then contribute to
the aforementioned measurement noise. It is likely a combination of these factors
that contributes to the high-frequency component of the error. Despite these minor
deviations, we note that FNO does accurately predict the instantaneous shape and
motion of the dominant coherent structures in the turbulent wake.
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Figure 4.11 shows both components of the absolute time-resolved testing error
averaged over the final prediction time-step. In taking the average of the error across
many different predictions, we can establish which regions of the wake tend to
accumulate the most error. We see that the shear layers from either side of the near-
wake are a major source of 𝑥-component velocity error across all three cases. While
there is error in the shear layer in all three cases, we see it increase at the higher
Reynolds numbers where the shear layer transition occurs earlier. Both velocity
components for the 𝑅𝑒 = 1260 and 3060 cases also have strong error signals near
the end of the recirculation region where the primary Kármán vortices are formed.
This central peak error region also expands and diffuses in the downstream wake in
both velocity components, which can likely be attributed to a combination of the
vortices themselves diffusing and an increased variance in shape/trajectory causing
a wider occupancy region for the coherent structures. For the high Reynolds number
case, both components also have regions of elevated error outside the shear layer
near the leading boundary of the frame, which can likely be attributed to unknown
inlet boundary conditions.

4.5 Generalization
Next we will see how FNOs trained with experimental flow measurements can
generalize across different conditions. Generalization in machine learning refers to
the ability of a learning machine to produce accurate approximations when presented
with test data from a distribution separate from that used for training. This is a major
challenge for many machine learning methods as models are trained to minimize
the loss for the specific distribution of the training data alone. In order to generalize
well, a model must learn some underlying dynamics from the training data which
are both valid and significant for out-of-distribution cases as well.

In the context of predicting the time evolution of fluid flows, we test the ability to
generalize by training an FNO to learn the dynamics of one flow configuration, and
then apply that same FNO to a new and unseen case. Given that FNOs can learn
operators, we would expect that the dynamics learned in one flow configurations
would include some of the general underlying dynamics for all cases (i.e., the
Navier-Stokes equations). However that is no guarantee of generalization.
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Figure 4.12: Instantaneous velocity field measurements for the two configurations
used in testing generalization.

Here, we take the FNO trained at 𝑅𝑒 = 630 in the cylinder configuration shown
in figure 4.1 and apply that model to two unseen configurations: (1) flow past the
same cylinder moved to the bottom of the frame and (2) flow past two side-by-side
cylinders. The Reynolds number in these cases was matched to the training data.
Figure 4.12 shows instantaneous velocity fields for the two configurations used to
test generalization.

The configuration with the cylinder moved in the PIV frame is the less challenging of
the two cases, as the fluid dynamics should be identical to the original case other than
the shift in position. However, the FNO has no way of knowing that the system has
undergone a simple translation and has no knowledge of the location of the cylinder
or the flow boundary conditions making this a larger challenge than it may seem. The
side-by-side cylinder combination is an even more challenging configuration, since
the shed vortices can interact downstream leading to complicated and previously
unseen vortex interactions.

With the FNO trained on data from the original cylinder configuration, we made
predictions across the same time horizon used for training (10 time-steps, where
one time-step is Δ𝑡∗ = 0.174). Just as in the Reynolds number testing cases, we can
then calculate the L2 norm error at each time-step using equation 4.4.
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Figure 4.13: Error versus time plot showing the performance of the FNO trained on
a nearly centered cylinder when applied to different cases.

We plot this error against prediction step in figure 4.13. While we see that the error
for both out-of-distribution test cases is higher than the error on the original test set
at all time-steps, the error remains under 0.25 across the full prediction length. As
expected, the FNO does generalize to the moved cylinder case better than it does
for the double cylinder. Interestingly, the error for the double cylinder case grows
only slightly faster than that of the moved cylinder, indicating that the propagating
dynamics of the learned model may be performing similarly.

Moved cylinder generalization
We can examine the instantaneous velocity fields, predictions, and errors to gain
insight into the generalization performance of the FNO in this context. Starting
with the moved cylinder case (figure 4.14, we see that the 𝑥-component velocity
immediately accumulates some error at the edge of the recirculation region, however
the overall shape of the predicted velocity field matches the actual value fairly well.
The 𝑦 component suffers from some error near the vortex formation region in this
case, but similarly matches the general structure of the measured flow. As time
progresses, we see that some deviations begin to arise. In the fifth time-step of the
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Figure 4.14: Instantaneous (𝑎) 𝑥-component and (𝑏) 𝑦-component velocity field
measurements, predictions, and error for the moved cylinder generalization case at
three different timestamps. The dotted black line included in some of the fields
depicts the zero-velocity contour line (i.e., the approximate edge of the recirculation
region) from time-averaging the original training data.
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Figure 4.15: Time-averaged error fields of the prediction at 𝑡∗ = 1.741 normalized
by free-stream velocity. The dotted white line depicts the zero-velocity contour
line (i.e., the approximate edge of the recirculation region) from time-averaging the
original training data.

𝑥-component field (center column of figure 4.14a, 𝑡∗ = 0.871), we see a small pocket
of low-velocity flow predicted just above the tail of the recirculation region, which
is not present in the measured velocity field. We note that this occurs immediately
below the average edge of the recirculation region from the training data. At the same
time-step, we also see a nonphysical negative 𝑦-component velocity region begin
to form immediately above the previously mentioned nonphysical 𝑥-component low
velocity region. Examining the evolution of the flow between the first time-step
and the fifth time-step there is no intuitive physical explanation as to how this could
occur, as there is no indication of these deviations in the up-stream flow, and they
are well above the vortex formation region for the moved cylinder. This suggests
that it is an artifact of the training set. Advancing to the final prediction step (last
column figure 4.14, 𝑡∗ = 1.741), we see that these nonphysical structures continue
to develop in the flow. We also note that a strong error signal accumulates in the
vortex formation region for both velocity fields. In fact, looking at the 𝑦-component
velocity field, we can note that the structures which were developed during the vortex
formation process are virtually absent from the predicted field by the last time-step.
The predicted downstream propagation of fully formed structures become overly
smooth which also contributes to the error, although to a lesser extent.

We can also plot the time-averaged error of both components in the final prediction
step, shown in figure 4.15. We see here that the 𝑥-component error tends to ac-
cumulate along a line approximately one diameter above the physical wake, which
seems likely to be an artifact from the upper shear-layer in the original training set.
We see even more error accumulate along the bottom outer edge of the training set



79

recirculation region, which agrees well with the nonphysical low-velocity region in
that area seen in the 𝑥-component of figure 4.14. In the time-averaged 𝑦-component
error, we also see a high concentration of error near the lower boundary of the
training set recirculation region. However, the dominant source of error in this case
comes from the vortex formation region for the moved cylinder. This agrees well
with what was observed for the instantaneous case, where it appeared that the FNO
was not predicting new vortices should form there. The interior of the recirculation
region has very little 𝑥-component error, which is notable since the FNO has not
learned that a recirculation region can be maintained anywhere other than in the
original location.

Side-by-side cylinder generalization
From figure 4.13, we know that the FNO experiences higher generalization error for
the challenging side-by-side cylinder wake case. We can again examine represen-
tative examples of the instantaneous measurements, predictions, and errors to gain
more insight into the overall performance for this configuration.

Figure 4.16 shows the double-cylinder flow fields at the first, fifth, and tenth time-
step. Immediately, we can note that the double cylinder wake dynamics fill much
more of the image-frame than the previous single cylinder cases. Since the prediction
error tends to accumulate in the actual wake regions (rather than the surrounding
free-stream), the fact that the wake region occupies about twice as much of the frame
helps explain why this case has a higher error than the moved cylinder case at the
very first time-step.

As noted earlier, the prediction error for the double cylinder case grows only slightly
faster than for the moved cylinder case. It is therefore not surprising that we see
very similar performance looking at the instantaneous error fields themselves. In the
𝑥-component case, we once again see a nonphysical low velocity region accumulate
near the trailing edge of the bottom side of what was the recirculation region in the
training set. Interestingly, we do not see a similar effect on the top side, although
this may be because it is largely enveloped by the physical recirculation region of
the top cylinder. We also do not see any corresponding regions in the 𝑦-component
velocity field, which we had previously seen in the moved cylinder case. We alo still
see the predictions become overly smooth by the final step and perform especially
poorly in predicting the regions associated with active vortex formation.
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Figure 4.16: Instantaneous (𝑎) 𝑥-component and (𝑏) 𝑦-component velocity field
measurements, predictions, and error for the double cylinder generalization case at
three different timestamps. The dotted black line included in some of the fields
depicts the zero-velocity contour line (i.e., the approximate edge of the recirculation
region) from time-averaging the original training data.
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Figure 4.17: Time-averaged error fields of the prediction at 𝑡∗ = 1.741 normalized
by free-stream velocity. The dotted white line depicts the zero-velocity contour
line (i.e., the approximate edge of the recirculation region) from time-averaging the
original training data.

Looking at the time-averaged error fields (figure 4.17), we see that the region
associated with the highest error in both fields is near the bottom trailing edge
of the white doted line representing the average recirculation region. While we
saw elevated error in this region in the moved-cylinder case, it was less dominant
compared with the physical vortex formation region in that case. Also distinct from
the moved cylinder case, the error in this region for the double-cylinder case is not as
obviously correlated with the training recirculation region; while the 𝑥-component
time-averaged error in the moved cylinder case closely followed the dotted white
line, the error fields in figure 4.17 seem to have a distinct geometry. Moreover, the
𝑥-component error appears fairly symmetric between the upper and lower cylinder
wakes across an axis that is not shared with the training set recirculation region.
Looking at the instantaneous velocity fields in figure 4.16, we see that this region
is also approximately the midway point between the two cylinders and that the 𝑦-
component of the velocity fields become very close here. So while this error is likely
in-part driven by predictive artifacts as observed in the case where the cylinder was
moved, it appears that it is dominated by interactions between the two wakes. While
we know that the interactions between the two vortex wakes share largely the same
set of physical principles as a single vortex wake, the FNO struggles to generalize
these relationships between the cases.
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Generalization Improvements
The fact that the FNO struggles to predict vortex formation in the correct region
for these cases is unfortunate, but not surprising considering the limitations on the
training set. We saw in both cases that the model could not accurately predict the
formation of vortices outside of the vortex formation region from the training set
data. While it may seem obvious and intuitive that vortex street should move with
the recirculation region, there is nothing in the training set that demonstrates this
relationship. Additionally, there are cases where we do have a recirculation region
but do not have vortex shedding (e.g., very low Reynolds numbers or cases with
active vortex suppression) which would generalize poorly without knowing exact
boundary conditions even if the cylinder location did not change.

There are ways to improve generalization performance of machine learning models,
and some studies have even specialized on this topic specifically for applications in
fluid mechanics [29]. We explore some of these generalization methods as shown in
figure 4.18. Here we compare the generalization performance the following cases:
FNO trained with the full velocity field (𝒖(𝒙, 𝑡)) and the unmodified training set,
FNO trained with the full velocity field (𝒖(𝒙, 𝑡)), but some time sequences in the
training set are flipped across the horizontal axis, FNO trained to predict only the
velocity fluctuations (𝒖′(𝒙, 𝑡)) with unmodified training set, and lastly FNO trained
to predict only the velocity fluctuations (𝒖′(𝒙, 𝑡)) with the unmodified training set
initially but then trained for 20 more steps on a small set of data matching the test
distribution (i.e., transfer learning).

We see that flipping half of the training data sequences did significantly improve
generalization for long term predictions, especially in the case where the cylinder
simply moved. This is somewhat surprising, as the cylinder was near the center of
the frame and did not translate significantly when flipped. However, we find that
learning the velocity fluctuations alone (as has been done for all the previous cases,
see equation 4.3) results in better generalization than learning the full velocity signal
even when flipped.

However, the transfer learning model significantly outperforms all other methods in
both generalization cases tested. Here we took the fully trained model that learned
the velocity fluctuations, and used the network parameters as the initial weights for
a new model. We then trained this new model for only 20 epochs on a limited set of
data containing only 800 time sequences. Each epoch took less than 30 seconds on
a single NVIDIA RTX-A5000, resulting in the full FNO transfer learning training
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time to be less than 10 minutes. Despite the limited training data and number of
epochs, we see a significant reduction in the error in both cases, with the single
moved cylinder configuration (figure 4.18a) achieving 𝜖 ≈ 0.10 after 10 time-steps.
While the double cylinder model (figure 4.18b) is still at 𝜖 ≈ 0.16 after ten time-
steps, we know that complicated wake dynamics occupy a larger portion of the frame
in this case which significantly increases the error.

Moved cylinder transfer learning
We can refer to the instantaneous velocity fields, predictions, and errors for the
transfer learning case (figure 4.19) to compare the performance to the previous
non-transfer learning predictions for the moved cylinder case. Once again we
mark the outline of the recirculation region in the training case. However, here
we do not see any nonphysical structures or clear correlations between the error
and the previous geometry. Additionally, we see non-zero 𝑦-component velocity
being correctly predicted in the vortex formation region. This demonstrates that the
updated FNO model can now predict vortex shedding in the correct region for the
moved cylinder case. Overall, the instantaneous performance now appears similar
to the non-generalization cases shown in the previous section.

Looking at the time-averaged error for the same case (figure 4.20), we confirm
that there is no obvious modeling error due to the difference in geometry from the
training set. The error has overall lower magnitude compared to the non-transfer
learning generalization case (figure 4.15), and the error only accumulates in regions
of the wake similar to those we saw when the model was tested on geometry for
which it was trained.

Double cylinder transfer learning
Although the error remains higher than in the moved cylinder case, the FNO model
also improves considerably for the double cylinder geometry.

The instantaneous velocity fields and error for the transfer learning FNO are shown in
figure 4.21. While the smoothing that seems characteristic for these FNO predictions
does impact the accuracy of some of the smaller features in the 𝑦-component, the
general patterns in the wake are matched well. We note that the FNO even correctly
predicts that a portion of the recirculation region will disconnect from the top
cylinder wake in the 𝑥-component velocity.
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Figure 4.19: Instantaneous (𝑎) 𝑥-component and (𝑏) 𝑦-component velocity field
measurements, predictions, and error for the transfer learning moved cylinder gen-
eralization case at three different timestamps. The dotted black line included in
some of the fields depicts the zero-velocity contour line (i.e., the approximate edge
of the recirculation region) from time-averaging the original training data.
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Figure 4.20: Time-averaged error fields of the prediction at 𝑡∗ = 1.741 normalized
by free-stream velocity for transfer learning FNO. The dotted white line depicts the
zero-velocity contour line (i.e., the approximate edge of the recirculation region)
from time-averaging the original training data.

Looking at the time-averaged velocity fields for the FNO with transfer learning for
the double cylinder geometry (figure 4.22), we see lower magnitude errors than
achieved by the FNO before updating. Interestingly these errors follow roughly
the same shape as those produced by the initial FNO predictions. The error we
see now for this case is approximately equivalent to two single cylinder error fields
superimposed.

4.6 Long prediction times for FNO
So far we have considered a prediction horizon of ten time-steps for each case.
These time-steps are non-dimensionalized, as shown in equation 4.1, so that the free
stream velocity translates the same amount between each set of frames. Although
the time-steps are relatively large, the full time horizons used to this point represent
much less than a full cycle of vortex shedding. Since we see that the prediction
error increases with the number of time-steps, it is useful to know the approximate
prediction length for which a trained FNO can produce meaningful estimates from
real world data.

Here we train two FNOs to predict the evolution of cylinder flows over thirty time-
steps. Since training for thirty time-steps requires three times the amount of data
for any given case we test, we only recorded sufficient training data at two Reynolds
numbers: 𝑅𝑒 = 630 and 𝑅𝑒 = 3060.
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Figure 4.21: Instantaneous (𝑎) 𝑥-component and (𝑏) 𝑦-component velocity field
measurements, predictions, and error for the transfer learning double cylinder gen-
eralization case at three different timestamps. The dotted black line included in
some of the fields depicts the zero-velocity contour line (i.e., the approximate edge
of the recirculation region) from time-averaging the original training data.
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Figure 4.22: Time-averaged error fields of the prediction at 𝑡∗ = 1.741 normalized
by free-stream velocity for transfer learning FNO. The dotted white line depicts the
zero-velocity contour line (i.e., the approximate edge of the recirculation region)
from time-averaging the original training data.
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Figure 4.23: Plotting error against time for longer prediction horizons.
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Figure 4.24: Instantaneous 𝑥-component velocity field measurements, predictions,
and error after 1, 10, 20, and 30 prediction steps for 𝑅𝑒 = 630.
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Figure 4.25: Instantaneous 𝑦-component velocity field measurements, predictions,
and error after 1, 10, 20, and 30 prediction steps for 𝑅𝑒 = 630.

Plotting error against prediction time, figure 4.23 shows the full prediction horizon.
We see that the total error remains less than 0.15, even for the more turbulent
high Reynolds number case. Again, the relationship between error and time is
not exactly linear; over this long horizon, the error contribution of each time-step
actually decreases as the prediction continues. The relatively sharp rise in error
over the first ten time-steps is likely attributable to an initial smoothing of the model
estimates. To confirm this, we can examine velocity fields at various stages of the
prediction.
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Figure 4.26: Instantaneous 𝑥-component velocity field measurements, predictions,
and error after 1, 10, 20, and 30 prediction steps for 𝑅𝑒 = 3060.

Figures 4.24 and 4.25 depict instantaneous velocity fields at the first, tenth, twentieth
and thirtieth time-step prediction for 𝑅𝑒 = 630. As expected the predictions get
considerably smoother between the first and tenth prediction steps, and then remain
similarly smooth over the rest of the forecast. Although the predictions become
smooth, they do maintain some notable characteristics. For example, we see in the
final frame of the 𝑥-component measurement that the low-velocity region immedi-
ately behind the recirculation region is separated by a small higher velocity flow
region. Although the feature is significantly smoother, we see a similar effect in the
same region of the predicted case. This feature is not obvious or intuitive based on
the state of the flow in the first time-step shown, but is somehow still included in the
prediction nearly a full vortex shedding cycle later.

Figures 4.26 and 4.27 depict instantaneous velocity fields at the first, tenth, twentieth
and thirtieth time-step prediction for the 𝑅𝑒 = 3060 case. As we did for the
predictions made for the shorter time horizon at this Reynolds number, we see
considerable error contribution from high-frequency fluctuations, particularly in
the 𝑥-component velocity fields. Once again we see the predictions smooth out
between the first and the tenth prediction step. The predicted shedding frequency
and translational velocity of the resulting vortices is matched very well here even
over a long horizon.
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Figure 4.27: Instantaneous 𝑦-component velocity field measurements, predictions,
and error after 1, 10, 20, and 30 prediction steps for 𝑅𝑒 = 3060.

While we see that forecasting flow fields with FNO over long time horizons results in
very smooth predictions, they maintain useful information about the actual system.
At sufficiently large horizons, the predictions seem to become something similar to
phase-locked time-averages that represent the state of the average velocity field at
the given point in the shedding cycle. While this means that information about the
fine-scale dynamics can be lost, it is important to once again remark on the efficiency
of this prediction method. The flow measurements shown in figures 4.24 and 4.25
span 0.75 seconds, while the prediction of all thirty time-steps can be made in less
than 100 ms.

4.7 Conclusion
We apply a state-of-the-art operator learning technique (FNOs) to forecast the time
evolution of cylinder flows at a range of Reynolds numbers in the subcritical regime.
Subtracting out the time-averaged solution, we simplify the underlying PDE and
improve learning performance. We find that the resulting FNOs achieve low errors
(𝜖 < 0.1) even after ten prediction steps roughly equivalent to one-third of a vortex
shedding cycle.
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We find that error increases with Reynolds number at early prediction time-steps,
but that this relationship changes after several iterations. We see that the error in the
final prediction step increases sharply with Reynolds number between 𝑅𝑒 = 240 and
𝑅𝑒 = 890, but then does not change significantly between higher Reynolds numbers
tested. This may be due to an accumulating smoothness learned to minimize error
from unsteady turbulent dynamics that were not learned. However, it is possible that
these fine-scale interactions were not learned due to insufficient spatial resolution in
our measurements. Given sufficient information to better resolve small secondary
flow structures known to be present in the wake at higher Reynolds numbers (e.g.,
shear vortices), the FNO could potentially learn to accurately predict flow across a
wider set of length scales. While out-of-plane velocities likely contributed to error
in our measurements which also impacted FNO performance, FNOs are not limited
to 2D solutions, and it is possible that they could properly resolve 3D structures if
given volumetric three-dimensional flow data.

We also explore the generalization capabilities of FNO on our system by applying
a fully trained model to unseen conditions. Specifically, we take our model trained
on data with 𝑅𝑒 = 630 in the default cylinder configuration and try to predict
the evolution for two different geometries: (1) the cylinder moved to the bottom
of the frame and (2) a second cylinder added for side-by-side vortex shedding.
The default FNO velocity predictions show acceptable estimates for translation of
existing structures and stability of the recirculation region, but fail to correctly
predict the formation of new vortices in the correct locations. We then show that
learning the PDE alone improves generalization considerably over learning the full
velocity signal, and even outperforms learning the full velocity signal while taking
specific steps to improve generalization (i.e., flipping some time sequences). Finally,
we perform transfer learning and find that our original learned model can rapidly
adapt to new configurations with just a fraction of the training time or data provided.
The transfer learning method shows error fields with characteristics similar to the
original fully trained model, despite being updated with a set of data 20% the size
of the original training set and for only 20 additional epochs. This is extremely
promising for real-world applications of predictive flow technologies where training
data may be difficult to acquire.
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Lastly, we examine the behavior of FNOs for longer prediction horizons, training and
testing for a prediction length three-times that used in the previous examples. We
find that the error accumulation per time-step actually decreases after approximately
10 prediction time-steps, but that this tapering effect coincides with the velocity field
predictions becoming very smooth. This strategy is likely learned by the FNO to
compensate for stochastic turbulent fluctuations in the flow field which the model is
not capable of predicting over such a significant span of time; if it can not exactly
match the irregular fluctuations in the flow predicting something similar to a phase-
averaged flow field for every point in the shedding cycle is an effective strategy at
minimizing error.

This work represents a first step towards operator learning in experimental fluid
mechanics. While this application required PIV processing that precluded FNO
from being applied in real-time here, we have shown that this real-time capable
prediction method is robust and accurate when trained with experimental data.
While real-time PIV systems do exist [20, 35, 38], full-field velocity information is
not a practical reality for control in most deployed engineered systems. However,
flow field reconstruction from sparse measurements has been a focus of many recent
works [1, 3, 6, 9, 11, 25, 27]. These reconstruction methods could be used directly
in conjunction with the FNO methods applied here to predict the future state of full-
field data from a set of distributed sparse sensors. Additionally, recent developments
for FNOs have enabled more flexible spatial measurements [23], making the FNO
itself a potential end-to-end solution for flow field reconstruction and forecasting the
time evolution. The development of systems with the ability to predict complicated
fluid dynamics faster than their physical realization is an exciting new endeavour in
fluid mechanics research.
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C h a p t e r 5

CONCLUSION

This thesis presented applications of machine learning for experiments in applied
fluid mechanics. We first exploref model-free reinforcement learning for end-to-end
control of aerodynamic systems, and then presented the first application of operator-
learning to experimental fluid measurements for forecasting the time evolution of
fluid flows. Here we provide a summary of our findings, and discuss future directions
for this work.

5.1 Model-free reinforcement learning for aerodynamic control in a turbulent
environment

In Chapter 3, we deployed a state-of-the-art model-free reinforcement learning algo-
rithm to control a highly stochastic and challenging fluid environment. Model-free
reinforcement learning methods present a black-box end-to-end solution to the prob-
lem of control; they learn to improve performance based on past experiences without
the need of prior knowledge or modeling. These algorithms take observations as
inputs and can choose actions as outputs. Many reinforcement learning algorithms
are capable of learning effective control policies even when faced with stochastic
learning environments and nonlinear dynamics [7].

A novel aerodynamic test-bed was developed, which consisted of a symmetric
airfoil shape with actuated trailing flaps. Flow sensors were integrated into the
design of the test-bed, to provide information about the surrounding fluid flow to
the reinforcement learning agents. This system was mounted on a one-dimensional
load cell, and placed in a highly vortical and irregular flow field. The challenging
flow conditions were generated by a large asymmetric bluff body mounted upstream
on a set of bungee cords, allowing it to oscillate and rotate freely.

First, we compared the performance of two model-free reinforcement learning al-
gorithms and a conventional proportional integral derivative (PID) controller. The
first reinforcement learning algorithm tested, Twin Delayed Deep Deterministic Pol-
icy Gradient (TD3) [2], was an actor-critic type method that had been deployed in
one of the few previous applications of reinforcement learning for experimental
flow control [1]. The second learning algorithm, known as LSTM-TD3 [5], has
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the same algorithmic structure as TD3 with minor modifications to allow for Long
Short-Term Memory (LSTM) layers to be included. LSTMs are a type of recurrent
neural network (RNN) cell, which have been shown to significantly improve per-
formance in partially observable environments. The reinforcement learning agents
were provided flow measurements and inertial measurements, and given the goal of
minimizing the magnitude of the lifting force in the turbulent bluff body wake.

We found that the average performance of the TD3 algorithm was very similar
to that of the linear PID controller. Additionally the variance in the learning
performance between models was significant for the TD3 algorithm which suggests
that it struggled to reliably learn the dynamics of the system. The LSTM-TD3
algorithm outperformed the PID controller and TD3 algorithm by a wide margin,
and learned consistently across separately trained agents. This suggests that the
inclusion of LSTM cells enables learning effective dynamics of highly stochastic
flow conditions.

Next, inspired by biological swimmers and flyers we studied the value of different
sets of observations provided to our reinforcement learning agents. We were es-
pecially interested in the impact of flow measurements on learned performance as
conventional UAS tend to rely entirely on inertial measurement systems. We found
that agents observing both flow measurements and inertial measurements learned
more consistently than agents given only one of the two types. The performance
of the fully trained policy was similar between agents given either flow, inertial
measurements, or combined measurements. However the combined measurement
agents appeared to achieve better disturbance rejection. Highlighting the value of
flow observations, the agents provided only flow measurements performed similarly
to the other two types of agents despite having no way to directly observe the inertial
values tied to the reward function.

We conclude this chapter by discussing limitations with model-free reinforcement
learning in an experimental context. We also reference a recent collaboration, not
included in this thesis, for a model-based reinforcement learning algorithm which
we found significantly outperformed state-of-the-art model-free methods with far
less data.
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5.2 Fourier neural operators for turbulent cylinder wakes
In Chapter 4, we present an application of Fourier neural operators (FNOs) for
predicting the time evolution of experimental fluid flows. FNOs are a recently
introduced machine learning tool capable of estimating solution operators to families
of PDEs such as Navier-Stokes. Directly approximating the solution operator, FNOs
are mesh-invariant and orders-of-magnitude faster than conventional solvers [3].
This makes them ideal for applications requiring real-time modeling of complicated
fluid mechanics.

We used particle image velocimetry (PIV) to record the wake behind a cylinder
at a range of Reynolds numbers within the subcritical turbulent regime. We then
decomposed the velocity field into steady and non-steady parts and assumed that
the steady part satisfies the time-independent Navier-Stokes equation. We then
tried to learn only the unsteady velocity term, which reduced the Navier-Stokes
equations to a set of homogeneous linear differential equations. Using the unsteady
component, we trained FNOs to predict the state of the experimental flow at future
time-steps. We calculated the L2 norm error between the model predictions and
the measurement to establish the accuracy of the forecast at various time-steps. We
found that this error remained below 0.1 for our full prediction horizon consisting
of ten time-steps in advance from the last measured value.

We then then examined how FNOs can generalize across unseen flow conditions.
As before we first trained an FNO model with experimental flow measurements of a
cylinder wake, where the cylinder is located such that the wake was nearly centered
in the frame. We then applied this model to two distinct geometries. First, we moved
the same cylinder to the bottom of the frame so that the wake was far from its original
location. Then, keeping the cylinder moved to the bottom of the frame in place, we
added a second cylinder near the top of the frame in a side-by-side configuration. We
found that the FNO is able to generalize much better when learning only the unsteady
velocity field, and could predict the convection and diffusion of existing structures.
However, we also found that it struggles to correctly predict the vortex formation
process behind the new cylinder locations. We resolved this with an application
of transfer learning, by updating our models with small training sets from the new
distribution for only 20 epochs. The updated FNOs were able to accurately predict
vortex shedding in the correct regions in both generalization cases, and reduced the
overall error significantly.
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Lastly, we increased the prediction horizon of the training data to train FNOs for
a prediction horizon of thirty time-steps (three-times the length previously used).
We found that the prediction error grew with time most quickly over the first ten
time-steps, at which point the predictions became smooth and averaged and the error
increased less significantly at each time-step. This suggested that the FNO models
struggled to forecast the fine-scale dynamics of the flow over longer prediction
horizons and so instead produced something similar to a phase-averaged field as an
estimate to minimize the overall error.

5.3 Future directions
We have demonstrated some of the first applications of machine learning in the
context of applied experimental fluid mechanics. The combination of these two fields
holds significant promise for developing solutions to open problems in engineering
and presents many exciting opportunities for researchers.

Model-free reinforcement learning methods, such as those demonstrated in Chapter
3, are conceptually an attractive option for control of nonlinear stochastic systems
such as those commonly encountered in fluid mechanics. These methods synthesize
diverse sensor information as part of their natural learning process, require no a
priori modeling or system information, adapt to new environments, and can even
learn policies that outperform optimal control methods [6]. However, model-free
reinforcement learning largely lack performance and learning guarantees, produce
uninterpretable control policies, and have significant data requirements for training.
Being able to physically interpret control decisions is especially important in deploy-
ing systems to the real world, as is guaranteeing that a safe and reliable policy will
be learned. Model-based reinforcement learning can provide many of the benefits
of model-free methods (e.g., sensor fusion, learn to adapt to new environments) but
can provide guarantees and more physically interpretable models. While some a
priori knowledge of the system is necessary for building an initial model, the result
is an accelerated learning process with reduced data requirements. Model-based
reinforcement learning may therefore be a better solution to future control problems
in fluid mechanics.

Fourier neural operators, which we applied to experimental flow measurements
in Chapter 4, are an efficient and powerful learning method capable of modeling
complicated flow physics. They can forecast the time evolution of experimental flow
fields faster than real-time, and can be generalized with minimal data and training
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requirements. This method could provide a solution to real-time flow modeling for
aerodynamic control of UAS and wind turbines. However, our current application
has been provided full velocity fields as input, which cannot be practically obtained
in most deployed systems. While there already exist efforts to apply FNOs to
irregular geometries [4], the problem of making full field predictions from sparse
sensing as an end-to-end solution has not been fully addressed to our knowledge.
Making predictions from sparse measurements would enable implementation of real-
time predictive control methods provided with full-field estimates for the evolution
of the flow. Additionally, future work applying these methods to applied fluid
mechanics should focus on generalizing models more diverse boundary conditions
where incident flow is not limited to a single principle direction. This includes
generalizing the sensor-selection problem, where optimal sensor locations for flow
along one axis is unlikely to be optimal for all other directions. This would present
a more challenging and realistic setting for real-world prediction, as atmospheric
winds can change heading depending on season, time of day, or one of many other
factors.
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