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ABSTRACT

The flight system of the fly is remarkable. A fly can execute an escape maneuver in
milliseconds, compensate for wing damage when half of the wing is missing, fly in
turbulent conditions, and migrate over large distances. While there are many factors
that contribute to the robustness and versatility of insect flight, it is the mechanical
encoding of wing motion in the wing hinge that allows flies to rapidly and accurately
change wing motion over a large dynamic range. The wing hinge consists of several
hardened skeletal elements, named sclerites, and a set of twelve steering muscles are
attached to some of these components within the exoskeleton. Due to the anatomical
complexity and minute size of the sclerites, the way in which the steering muscles
alter the mechanical encoding of wing motion in the hinge is poorly understood.

Using genetically encoded calcium indicators and high-speed videography, is is
possible to simultaneously image steering muscle activity and wing motion. In
order to extract wing pose from the high-speed video frames, an automated tracking
algorithm was developed, that used a neural network and model fitting to accurately
reconstruct the wing kinematics. The synchronous recordings of wing motion and
steering muscle activity were used to train a convolutional neural network that
learned to accurately predict the wing kinematics from muscle activity patterns.
After training, the convolutional neural network was used to perform virtual ex-
periments, revealing how the steering muscles regulate wing motion. Correlation
analysis revealed that the 12 steering muscles have highly correlated activity. The
correlation of muscle activity can be approximated well by a 12D-plane, in which
all activity has to reside.

To study the function of the sclerites, a bottleneck was introduced in the convolu-
tional neural network. The bottleneck consists of five neurons, or latent parameters,
four parameters corresponding to the state of the different sclerites, on which the
steering muscles act, and one parameter representing the wingbeat frequency. This
so called latent network predicts both the changes in wing motion and muscle activ-
ity patterns as a function of sclerite state. The predicted wing motion as a function
of sclerite state matches with previous anatomy and electrophysiology studies for
the basalare, first axillary and third axillary sclerites. The fourth axillary sclerite has
not been studied before, but shows an antagonistic relationship between the ℎ𝑔1,2

and ℎ𝑔3,4 muscles, resulting in a strong decrease and increase, respectively, of stroke
amplitude, deviation and wing pitch angles.
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By replaying the wing kinematics of the virtual experiments on a dynamically scaled
robotic fly, a model of the aerodynamic and inertial control forces as a function of
steering muscle activity was constructed. This control force model was subsequently
integrated in a state-space system of fly flight, which in turn was integrated in a model
predictive control simulation that was used to simulate free flight maneuvers. The
body motion, steering muscle activity, and wing kinematics of the model predictive
control simulations were strikingly similar to the recorded maneuvers of free-flying
flies.

The integrative, multi-disciplinary approach that was used to reveal the mechanical
logic of the wing hinge, and the control problem that a fly needs to solve to stay
airborne, are both unprecedented in prior literature. The methodologies and models
of this study will be a valuable resource in future research on how the fly’s nervous
system controls the complex behavior that is flight.
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C h a p t e r 1

INTRODUCTION

One of the earliest fossils of a winged insect, a mayfly, is more than 300 million
years old (Figure 1.1). The most recent studies date the first flying insects in
the Carboniferous, between 350 and 400 million years ago. Being able to fly is
a significant evolutionary advantage, and to this day, flying insects are the most
abundant and species-rich taxon within the metazoan animals. Although modern
mayflies are remarkably similar to their fossilized ancestors (Almudi et al., 2019),
insects have continued to evolve their flight capabilities throughout the eras (Dudley,
2002). Flies in particular have evolved many novel adaptations of their flight system,
leading to miniaturization and extreme aerial maneuverability. The focus of this
thesis is on the result of millions of years of optimizing insect flight: the flight system
of the fly. In particular, this research will investigate how the steering muscles, wing
hinge, wing kinematics, and aerodynamics are integrated in the control system of
the fruit fly: Drosophila melanogaster.

Figure 1.1: Oldest winged insect fossil, Lithomantis carbonarius, estimated to be
325 million years old (Ross, 2017). Scale bar 5 mm.
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1.1 Stretch-activated muscles enabled the miniaturization of insects
In contrast to birds, bats, and pterosaurs, insects do not have muscles in their wings.
After eclosion from the pupae, insect wings harden and form a flexible lightweight
structure. Changes in orientation or shape of the wing are actuated through the
wing hinge. In insects, including flies, the wings are powered indirectly through
deformation of the thorax. Two sets of power muscles, the dorsal longitudinal and
dorso-ventral muscles (DLMs and DVMs), are oriented approximately orthogonal
within the thorax (Figure 1.2). Power muscles are stretch-activated, which means
that the stretching of the muscle triggers contraction without the need of an action
potential from the motor neuron. The approximately orthogonal orientation of the
power muscles generates a self-sustained oscillation, i.e. the contraction of the
DLMs stretches and activates the DVNs, and subsequent contraction of the DVMs
stretches and activates the DLMs, etc. Using this mechanism, some midges can
achieve wingbeat frequencies of 1000 Hz , (Sotavalta, 1953).

Figure 1.2: Cross-section of a blowfly’s thorax with the dorsal longitudinal and
dorso-ventral muscles, modified from (Dickinson and Tu, 1997).

Insects without stretch-activated power muscles, such as dragonflies and locusts,
are limited in the wingbeat frequencies they can achieve. Conventional neurally
activated muscles rely on the rapid release of calcium ions within the muscle fibers
to trigger contraction. The muscle can only relax, and be ready to contract again,
once the calcium level is brought back to the baseline level. Calcium ions are
stored in the sarcoplasmic reticulum and uptake of the ions across the membrane of
the internal storage organelle is an energy-intensive process. To supply the energy
required for rapid calcium cycling, additional mitochondria are needed. The higher
the contraction frequency of the muscle is, the lower the volume ratio between



3

muscle fibers and other cellular components such as mitochondria and sarcoplasmic
reticulum becomes. This means that fast muscles are limited w.r.t the contractile
force they can generate. For example, the cross-sectional area of the rattle-muscles
of a rattlesnake, vibrating at 100 Hz, consists of only 30% muscle fibers (Iwamoto,
2011). The stretch-activated muscles of a bee contract at 230 Hz but their cross-
sectional area contains 50% muscle fibers.

The development of stretch-activated muscles was a significant event in the evolution
of insect flight. Having a relatively high power output at high wingbeat frequencies
allowed insects to become small. The fossil record shows that insects in the Car-
boniferous and Permian periods had large wing lengths, up to 350 mm (Figure 1.3).
During the Triassic, Jurassic and Cretaceous, the maximum wing length decreased
to 70 mm, which is comparable to the largest insects alive today. Historically, these
large wing lengths have been linked to high oxygen levels in the atmosphere. Sta-
tistical analysis by Clapham and Karr, 2012 shows that oxygen levels explain trends
in wing length only until the end of the Jurassic, however. After the Jurassic, the
evolution of aerial predators, such as birds and bats, provides a likely explanation for
the decrease in wing length. Although insects with large wings have conventional,
neurally activated, twitch-type muscles, the vast majority of insect species relies on
stretch-activated muscles. Most insects are quite small; the average wing length of
an insect is two orders of magnitude smaller than the maximum wing length. During
the evolution of insects, stretch-activated muscles developed four times independent
of each other, which suggests that the ability to fly at high wingbeat frequencies is
crucial for the adaptive radiation of insects (Dudley, 2002).

1.2 Aerodynamic power requirements of insect flight
High wingbeat frequencies are an aerodynamic necessity for small insects. Before
analyzing why this is the case, let me first define some basic aerodynamic terms.
A wing generates both lift and drag forces. The shape of the cross-section of the
wing is largely what determines the ratio of lift and drag forces and is called an
airfoil. As lift and drag are dependent on factors such as wing orientation and air
velocity, it is easier to quantify the aerodynamic characteristics of an airfoil or a
wing using dimensionless numbers. A dimensionless number is a coefficient that
has no measurement units. The advantage of a dimensionless number is that the
performance of a certain airfoil shape can be compared across all flight conditions.
Lift on a wing for example, can be characterized by the lift coefficient:
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Figure 1.3: Fossil-record of insect wing length and atmospheric 𝑝𝑂2 (Clapham and
Karr, 2012).

𝐶𝐿 =
2𝐿
𝜌𝑈2𝑆

, (1.1)

where 𝐿 is the lift force, 𝜌 the air density, 𝑈 the air velocity, and 𝑆 the wing area.
Similarly the drag characteristics of a wing can be expressed as the drag coefficient:

𝐶𝐷 =
2𝐷
𝜌𝑈2𝑆

, (1.2)

where 𝐷 is the drag force. Both the lift and drag force are dependent on the angle-
of-attack, 𝛼, which is the angle between the chord line of the wing and the incoming
air velocity.

The Reynolds number, 𝑅𝑒, a dimensionless parameter that represents the ratio
between inertial and viscous forces in a fluid, can be written as:

𝑅𝑒 =
�̄� · 𝑐
𝜈

=
4 · Φ · 𝑅2 · 𝑛
𝜈 · 𝐴𝑅 , (1.3)
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where �̄� is the stroke-averaged absolute wing tip velocity, 𝑐 the mean chord, 𝜈 the
kinematic viscosity, Φ the stroke extent in radians, 𝑅 the wing length, 𝑛 the wingbeat
frequency, and 𝐴𝑅 the aspect ratio of the wing (Charles Porter Ellington, 1984b).
The aspect ratio is defined as:

𝐴𝑅 =
2 · 𝑅
𝑐
, (1.4)

and quantifies the slenderness of the wing. The Reynolds numbers of insects span
several orders of magnitude. For example, the small trichogrammatid wasp has a
wing length of 200 µm, a wingbeat frequency of 1000 Hz, and a Reynolds number of
𝑅𝑒 = 2.5. A hawkmoth is a relatively large insect and has a wing length of 50 mm,
a wingbeat frequency of 26 Hz, and a Reynolds number of 𝑅𝑒 = 5400. Drosophila
melanogaster have a wingbeat frequency of 200 Hz, a wing length of 2.5 mm, and
a Reynolds number of 𝑅𝑒 = 110. From these three examples it becomes clear that
there is an inverse relation between wing length and wingbeat frequency. This trend
is not only present in insects but in all other flying animals such as birds and bats.

The origin of the inverse trend between wing length and wingbeat frequency lies
in the relationship between the Reynolds number and profile drag. Profile or skin-
friction drag is the drag generated by deceleration of air in the boundary layer around
the wing. Profile drag is generally independent of lift generation and for a laminar
boundary layer it can be approximated as:

𝐶𝑃𝑟𝑜𝐷 ≈ 7
√
𝑅𝑒
, (1.5)

where 𝐶𝑃𝑟𝑜
𝐷

is the profile drag coefficient.

Besides profile drag there is a second source of drag on the wings: induced drag.
The induced drag is the component of the pressure force on the wing that is parallel
to the air velocity vector. In most insects, the cross-section of the wing can be
approximated by a flat plate. Using the flat-plate approximation, one can assume
that the pressure force will be normal to the wing surface. Now it is possible to
compute the lift and drag components of the pressure force using the angle-of-attack,
𝛼, i.e. the angle between the cross-section of the wing and the air velocity vector.

In aircraft aerodynamics the angle-of-attack is usually small, as a high angle-of-
attack (𝛼 > 15◦) results in the flow separating from the wing, a phenomenon named
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stall. Flow separation generates low lift and strong drag forces that will slow a plane
down until it falls out of the sky. In conventional aircraft aerodynamics, induced
drag is usually associated with the tip vortex on the wing. During flight, a strong
pressure differential exists between the bottom and top of the wing. At the tips of
the wing, this pressure differential generates a strong tip vortex. The tip vortex has
a detrimental effect on the lift generation of the wing, as it changes the flow field
around the wing resulting in a lower effective angle-of-attack. For most wings, there
is a linear relationship between the angle-of-attack and the lift generated at a given
airspeed. A reduction in the effective angle-of-attack means lower lift generation.
To provide weight support, a pilot would need to raise the angle-of-attack thereby
increasing the lift-induced drag. To reduce the lift-induced drag, aircraft wings have
a high aspect ratio such that the detrimental effects of the tip vortex only affect the
outboard part of the wing.

In insect flight typical angle-of-attacks are around 45◦ and large areas with flow
separation occur on the wing. The wings are still capable of generating strong lift
forces, however, due to the presence of a leading edge vortex (LEV). At high angles-
of-attack, the airflow immediately separates from the wing at the leading edge. The
separation of the airflow creates a strong low pressure area on the leading edge of
the wing, which bends the airflow back towards the wing. Before the trailing edge,
the airflow reattaches to the wing. The LEV merges with the tip vortex and the
low pressure area beneath the combined vortex is beneficial for the lift production.
Therefore, in this dissertation, I consider the induced drag to be the component of
the pressure force parallel to the air velocity vector, whereas the lift is the component
of the pressure force perpendicular to the air velocity vector.

The aerodynamic power required to overcome the induced drag can be obtained
using the Rankine-Froude estimate:

�̄�∗
𝑖𝑛𝑑 =

�̄�𝑖𝑛𝑑

𝑚 · 𝑔 =

√︄
2 · 𝑝𝑤

𝜌 · Φ · 𝐴𝑅 , (1.6)

with �̄�∗
𝑖𝑛𝑑

as the mean induced power, 𝑚 the mass of the fly, 𝑔 the gravitational
acceleration, 𝑝𝑤 =

𝑚·𝑔
𝑆

the wing loading, 𝜌 the air density, and 𝑆 the wing area.
The mean specific aerodynamic power required to overcome profile drag can be
estimated by:
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Figure 1.4: Lift and drag coefficients for a fruit fly wing with LEV attached. Note
that the maximum lift coefficient (blue) occurs at 𝛼 = 45◦ and the maximum
drag coefficient (red) at 𝛼 = 90◦. The wing does not stall for any angle-of-attack
(Dickinson, Lehmann, and Sane, 1999).

�̄�∗
𝑝𝑟𝑜 =

𝜌 · 𝑛3 · Φ3 · 𝑅3 · 𝑟3
3 (𝑆) · 𝜋

3

2 · 𝑝𝑤
, (1.7)

with 𝑟3
3 (𝑆) as the non-dimensional moment of third wing area. One can calculate the

means specific aerodynamic power by adding the induced and profile drag power:

�̄�∗
𝑎𝑒𝑟𝑜 = �̄�

∗
𝑝𝑟𝑜 + �̄�∗

𝑖𝑛𝑑 . (1.8)

I assume that the mass of a hovering insect scales with the wing length cubed,
(Muijres, Elzinga, Melis, et al., 2014):

𝑚 = 68.5 · 𝑅3. (1.9)

To compute the lift force on the wings the quasi-steady assumption is often used,
meaning that the lift-force can be computed using the instantaneous values for
airspeed and angle-of-attack (Weis-Fogh, 1973). Any time-dependent aerodynamic
effects such as wake-capture (the forces caused by a flapping wing when it interacts
with the wake shed during the previous stroke) are ignored, however for hovering
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flight the quasi-steady lift force can explain more than 90% of weight support. The
wingbeat-averaged quasi-steady lift force can be computed using:

�̄� =
1
2
· 𝜌 · 𝑛2 · Φ2 · 𝑅2 · 𝑆 · 𝑟2

2 (𝑆) · 𝜋
2 · �̄�𝐿 , (1.10)

where Φ corresponds to the stroke-extend in radians, 𝑟2
2 to the non-dimensional

second moment of area, and �̄�𝐿 to the mean lift coefficient during the wingbeat. In
hovering flight, the mean lift force needs to equal the insect’s weight:

�̄� = 𝑚 · 𝑔, (1.11)

where 𝑔 is the gravitational acceleration, 𝑔 = 9.8 m/s2.

In Figure 1.5 the relation between mean specific aerodynamic power, wing length
and aspect-ratio was investigated using the functions described above. Figure 1.5A
shows several power curves over a range of wing length values (100𝜇𝑚 − 1𝑚) and
the required wingbeat frequency to ensure weight support. The aspect-ratio and
mean lift coefficient of the wing are constant per power curve. For each power
curve, the minimum power value was found and plotted against aspect-ratio and
mean lift coefficient, see (Figure 1.5B). The analysis shows that minimum specific
aerodynamic power is a compromise between minimizing profile drag and induced
drag. Optimal wingbeat frequencies range between 100 and 300 Hz. A fruit fly
flaps its wings around 200 Hz and has a wing length of 2.5 mm, a data point that is
close to some of the minimum power values found. The power curve with the lowest
power requirements has a low aspect-ratio and high mean lift coefficient. A fruit
fly wing has an aspect-ratio of 4 and mean lift coefficient of 2, which is close to the
minimum power point. Low aspect-ratio wings and high lift (and drag) coefficients
are trends that are generally observable in smaller insects (Charles Porter Ellington,
1984c), (Liu and Aono, 2009).

1.3 Aerodynamic mechanisms in insect flight
A persistent popular myth is that bumblebees should not be able to fly according to
aerodynamic theory (S. P. Sane, 2017). Bumblebees can fly however and aerody-
namicists are perfectly capable of computing the lift and drag forces on its wings.
Most of the aerodynamic forces during insect flight can be calculated using a rel-
atively simple set of equations, i.e. the quasi-steady model. The only thing that is
different between insect flight and conventional aircraft aerodynamics is that some
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Figure 1.5: Relations between the required aerodynamic power for hovering flight
and several parameters. A: Mean specific aerodynamic power requirements as a
function of wingbeat frequency 𝑛 and wing length 𝑅, plotted on a log scale. The
grey trajectories correspond to different mean lift coefficients and aspect-ratio (see
B). Directions of increasing profile and induced drag are marked with red arrows.
Minimum power locations are marked with colored dots using the color map in B.
B: Minimum specific aerodynamic power plotted against aspect-ratio 𝐴𝑅 and mean
lift coefficient �̄�𝐿 . Values correspond to the minimum power points in A.

common assumptions and simplifications about conventional aerodynamics are no
longer applicable.

The analysis of the minimum required aerodynamic power for hovering flight shows
a drive for smaller insects to increase the wingbeat-averaged lift coefficient. The
simplest way to obtain a higher lift coefficient is to increase the angle of attack. As
discussed previously, for high angles of attack a LEV will form on a flapping wing.
The presence of a LEV on the wing increases the lift coefficient in two ways. First,
the LEV makes it possible to reach high angles of attack without stalling the airflow
on the wing. Second, the core of the LEV has a low pressure area that adds to the
total pressure force on the wing (Figure 1.6).

LEVs are ubiquitous in insect flight and several bat and bird species also use LEVs
to boost lift production during flight (Ellington et al., 1996), (Videler, Stamhuis,
and Povel, 2004), (Muijres, Johansson, et al., 2008). Most insects would not be
able to fly at all without the high lift coefficients that are obtained via the LEV. This
reliance on the LEV begs the question of how reliable the formation and temporal
stability of a LEV is. LEVs are not uncommon in aircraft aerodynamics, a striking
example are the delta wings of the supersonic Concorde. At take-off and landing,
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Figure 1.6: The total pressure force, 𝐹𝑅𝑒𝑠𝑢𝑙𝑡 , on a wing with LEV present consist of
the pressure force that a flat-plate wing would experience without a LEV, 𝐹𝑁𝑜𝑟𝑚𝑎𝑙
and a suction force, 𝐹𝑆𝑢𝑐𝑡𝑖𝑜𝑛, that is generated by the low pressure core of the LEV.
The total pressure force can be split in the lift and drag component which are
orthogonal and parallel to the air velocity, respectively (Dickinson and Gotz, 1993).

the delta wings are at a relatively high angle of attack and a LEV will form. Similar
to insect wings, the presence of a LEV prevents the wing from stalling and boosts
the lift coefficient. The sweep-back angle of the leading edge of delta wings ensures
that the LEV will merge with the tip vortex (Figure 1.7).

When a LEV forms at the leading edge of the wing, the airflow separates from the
wing surface. At the boundary between the free-stream airflow and the stagnated
air on top of the wing there exists a strong gradient in air velocity. This so-called
shear layer sheds vorticity, i.e. small vortices or eddies, into the LEV. The shedding
of vorticity into the LEV makes the vortex grow in intensity until the vortex bursts.
When a vortex bursts, the internal flow transitions from laminar to turbulent flow.
The turbulent vortex is larger in size than the laminar vortex and the suction force
is reduced. In aircraft with straight wings, i.e. not swept back as on delta-wing
aircraft, vortex bursting will result in the detachment of the LEV and subsequent
stalling of the wing (Anderson, 2009). The sweep angle of delta wings makes the
LEV merge with the tip vortex, which means that vorticity gets transported from the
LEV and tip vortex into the wake, helping to ensure that the LEV does not burst. An
insect wing does not have a strong sweep angle however, which makes it vulnerable
to vortex bursting and LEV detachment.

The stability of the LEV on an insect wing is not achieved by the sweep angle of
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Figure 1.7: Visualization of the LEV on a water-tunnel model of the Concorde in
landing configuration (Werlé, 1975).

the leading edge. How do insects stabilize the LEV on the wing and prevent it from
stalling? One of the hypotheses was that the duration of the wing stroke is short
enough to avoid vortex-bursting altogether (C. Ellington, 1995). This so-called
delayed stall mechanism would mean that LEVs are unstable on insect wings but
that the wingbeat frequencies are high enough to ever encounter the negative effects
of vortex-bursting. However, this hypothesis does not explain how the continuously
rotating seeds of maple trees can sustain a stable LEV (Lentink, Dickson, et al.,
2009).

What mechanism does stabilize LEVs on insect wings? In a flow visualization
study using a robotic fly wing, Lentink and Dickinson systematically investigated
the effect of three wing motion parameters on LEV stability: the Reynolds number,
stroke amplitude, and the aspect-ratio of the wing (Lentink and Dickinson, 2009).
The aspect-ratio is defined as a dimensionless number, the so-called Rossby number:

𝑅𝑜 = 𝑅/𝑐. (1.12)

Similarly, the stroke amplitude is expressed as the dimensionless stroke amplitude:

𝐴∗ = Φ𝑅/𝑐. (1.13)
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Figure 1.8 shows the LEV stability for eight different combinations of 𝑅𝑜, 𝑅𝑒, and
𝐴∗. The dimensionless stroke amplitude and the Rossby number were tested for
values corresponding to fly flight and infinity. In case of the Rossby number, a finite
number corresponds to a rotating wing and an infinite value to a translating wing. An
infinite value for the dimensionless stroke amplitude means that the stroke duration
is infinite. The two different values of the Reynolds number correspond to fruitfly
(𝑅𝑒 = 110) and housefly (𝑅𝑒 = 1400). A Reynolds number below 1000 means that
the flow is fully laminar, whereas turbulent flow is possible at Reynolds numbers
greater than 1000. In a similar way, the values picked for the dimensionless stroke
amplitude can distinguish between the delayed-stall mechanism and continuous
LEV stability. Finally, the Rossby number distinguishes between translating and
rotating motion of the wing. The conclusion of the LEV stability analysis is that
the Rossby number is the determining factor for whether a LEV stays attached to
the wing or not. When the Reynolds number allows for turbulent flow on the house
fly wing, the LEV will burst at the outboard section of the but stays attached. LEV
stability is independent of the dimensionless stroke amplitude and remains attached
for both a flapping and continuously rotating wing. However, when the wing motion
transitions from rotating to translating motion, the LEV will detach and the wing will
stall. The LEV is stabilized by centripetal and Coriolis accelerations that the airflow
experiences when close to the wing surface. A Rossby number of 𝑅𝑜 = 3 guarantees
a stable LEV while a higher number can result in LEV detachment. An investigation
of the Rossby number in different flying animals shows that many species can sustain
a stable LEV during flight over a large range of Reynolds numbers, from a fruit fly
to a mute swan.

Most insects make use of a LEV to boost lift production, however in flapping
flight the reciprocating motion means that the wing experiences low air velocities
during stroke reversal. The wingbeat-averaged lift coefficient of a flapping wing
will therefore be significantly lower than for a continuously rotating wing. A second
aerodynamic mechanism makes use of the rotation around the wing’s longitudinal
axis during stroke reversal to produce lift. This so-called rotational lift is similar
to the Magnus effect, i.e. a spinning cylinder or sphere can generate positive or
negative lift depending on the direction of the airflow (Seifert, 2012). As insect
wings are flat, this effect is more complicated and the instantaneous orientation of
the wing affects lift and drag forces. Rotational lift generated by an insect wing
rotating around its longitudinal axis is called the Kramer effect. The Kramer effect
can be described in the quasi-steady formulation as:
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Figure 1.8: LEV stability for different Reynolds numbers, 𝑅𝑒, Rossby numbers,
𝑅𝑜, and dimensionless stroke amplitude, 𝐴∗. Solid blue lines indicate laminar
streamlines while dashes blue lines correspond to turbulent streamlines. The core
of the vortex is shown by orange solid lines while orange dashed lines indicate a
bound vortex. A bound vortex means that there is no LEV present on the wing
and that any lift is generated by the wing surface alone. The detachment of the
LEV means that the wings with a bound vortex are in stall conditions (Lentink and
Dickinson, 2009).

𝐹𝑟𝑜𝑡 = 𝐶𝑟𝑜𝑡𝜌
√︁
𝑆𝑥𝑥𝑆𝑦𝑦𝜔𝑝𝑖𝑡𝑐ℎ𝜔𝑠𝑡𝑟𝑜𝑘𝑒, (1.14)

where 𝐹𝑟𝑜𝑡 is the rotational force, 𝐶𝑟𝑜𝑡 the rotational lift coefficient, 𝑆𝑥𝑥 and 𝑆𝑦𝑦 the
second moment of area around the 𝑥 and 𝑦 axes, 𝜔𝑝𝑖𝑡𝑐ℎ the angular velocity around
the longitudinal axis of the wing and 𝜔𝑠𝑡𝑟𝑜𝑘𝑒 the angular velocity in the strokeplane
(Figure 1.9). The second moment of area can be calculated by:

𝑆𝑥𝑥 =

∫ 𝑅

0
𝑦2𝑑𝐴, (1.15)

and,
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𝑆𝑦𝑦 =

∫ 𝑐2

𝑐1

𝑥2𝑑𝐴, (1.16)

with 𝑥 and 𝑦 as coordinates in the wing reference frame, 𝑑𝐴 an infinitesimal wing
area, 𝑅 the wing length, and 𝑐2 and 𝑐1 the locations of the leading and trailing edge
of the wing respectively (Figure 1.9).

Using dynamically scaled robotic experiments, Sane and Dickinson (2002), found
the rotational lift coefficient to be 2.08 for insect wings. Most versions of the quasi-
steady model assume the wing to be flat and the rotational force is therefore always
normal to the wing. The location of the center of pressure on the chord varies with
angle-of-attack however and was empirically found to be:

𝑥𝑐𝑝 (𝛼) = (𝑐2 − 𝑐1)
[
0.82

|𝛼 |
𝜋

+ 0.05
]
, (1.17)

where 𝑐2 − 𝑐1 indicates the chord length at location 𝑟𝑦 and 𝑥𝑐𝑝 the 𝑥 coordinate of
the center of pressure at 𝑟𝑦.

Figure 1.9: Wing-based reference frame definition of the quasi-steady model with
wing pitch angle and stroke angle (Veen, Leeuwen, and Muijres, 2019).

A recent Computational Fluid Dynamics (CFD) study by, van Veen, van Leeuwen
and Muijres (2019), found that there is a second rotational lift mechanism. This
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so-called pitch-rate rotational force relies only on wing pitch rotation and does not
require stroke velocity. The quasi-steady formulation for the pitch-rate rotational
force is:

𝐹𝑝𝑖𝑡𝑐ℎ = 𝐶𝑟𝑜𝑡𝜌𝑆 |𝑥 |𝑥𝜔
2
𝑝𝑖𝑡𝑐ℎ, (1.18)

with 𝐹𝑝𝑖𝑡𝑐ℎ normal to the wing surface and 𝑆 |𝑥 |𝑥 the asymmetric second moment of
area around the x-axis, which can be calculated by:

𝑆 |𝑥 |𝑥 =

∫ 𝑅

0
𝑥 |𝑥 |𝑑𝐴. (1.19)

Rotational forces are important during stroke reversal when lift produced by the
LEV and wing is small. Insects with high wingbeat frequencies and therefore low
wingbeat amplitudes tend to rely more on rotational forces (Altshuler et al., 2005).
For example, the southern house mosquito, Culex quinquefasciatus, flaps its wings
back-and-forth at 717 Hz and has a stroke-extend of 44◦ and relies for approximately
50% on rotational lift for weight support during hovering, (Bomphrey et al., 2017).
In Drosophila, the wingbeat frequency is lower (200 Hz) and the stroke-extend
therefore higher (150◦) which makes the role of rotational lift smaller: approximately
10% during hovering flight.

When a wing starts moving from standstill it will shed a vortex from the trailing
edge, the so-called starting vortex. The circulation of the starting vortex is opposite
to the bound circulation on the wing. Lift is directly related to the circulation on a
wing:

𝐿′ = 𝜌Γ𝑉, (1.20)

where 𝐿′ is the lift per unit span of the wing, 𝑉 the freestream air velocity, and
Γ the circulation per unit span. A vortex close to the wing with the same sign of
circulation increases the total circulation on the wing. The strength of the circulation
increase is inversely proportional to the distance of the vortex to the wing:

ΔΓ =

∫ 𝑐

0

Γ𝑣𝑜𝑟𝑡𝑒𝑥
(
𝑐
2 − 𝑥

)
4𝜋

(
𝑑 + 𝑐

2 − 𝑥
) 𝑑𝑥, (1.21)
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where ΔΓ is the increase in circulation, 𝑐 the chord length, Γ𝑣𝑜𝑟𝑡𝑒𝑥 the circulation
of the vortex and 𝑑 the distance between the circulation centers of the vortex and
the wing. When the vortex has opposite circulation compared to the wing, the total
circulation on the wing decreases as does the lift on the wing. The starting vortex
has opposite circulation w.r.t. the wing and therefore has a negative effect on the lift
production. As the wing moves away from the starting vortex, this negative effect
on lift diminishes. This delay in circulation growth is known as the Wagner effect
(Figure 1.10) (Wagner, 1925). Because the wing accelerates from standstill twice
during a wingbeat, the Wagner effect negatively impacts lift generation in flapping
flight.

Figure 1.10: Wagner effect. Delay in circulation growth as a function of chord
lengths travelled from the starting vortex for an instantaneously accelerated airfoil
travelling at constant speed (S. P. Sane, 2003).

Some insects get around the Wagner effect using the clap-and-fling mechanism.
At the end of the dorsal wing stroke, the left and right wing clap together and
subsequently get peeled apart at the start of the next wing stroke. During the clap
phase, the LEV and the Trailing Edge Vortex (TEV) shed from the wing (Figure
1.11). The wake between the LEV and TEV hits the wing, pushing the left and
right wing against each other. When the wings clap together, the air between the
wings gets pushed downwards and generates an upward force. Both the shed LEV
and TEV move away from the wing quickly in the downward wake. Similarly,
the wakes of the left and right wing create an upward force when the wings clap
together and deflect the momentum of the wakes downwards. The fling phase starts
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with the leading edges of the wings moving apart. Air rushes in over the leading
edge and forms an LEV. When the trailing edges of the wing peel apart another
downward wake occurs, strengthening the LEVs on both wings. The advantage of
the clap-and-fling mechanism is that the starting vortex does not form as the shed
vorticity of both wings have opposite signs and cancel out each other. Additionally
the downward wakes of the clap-and-fling phases provide upward thrust. Although
some insects employ the clap-and-fling mechanism in free flight, for many insects,
like mosquitoes, the stroke amplitude required for the wings to touch is unfeasible.
While fruit flies regularly employ clap-and-fling under tethered flight conditions, in
free flight clap-and-fling is rare.

Figure 1.11: Clap-and-fling mechanism. The bold black lines show a cross-section
of the wing and the thin black lines correspond to flow lines. Light blue arrows
show the forces on the wings and dark blue arrows the induced flow. A: The wings
approach each other and touch first at the leading edge. B: LEV and TEV vortices
shed from the wing and induce strong flow that claps the wings together. C: The
clap pushes out the air between the wings, in combination with the deflected induced
flow, creating a strong downward flow. D: Leading edges of both wings move apart
and air rushes into the gap. E: LEVs form on both wings and induce a downward
flow. F: Fully developed circulation of the LEV and wing generates strong lift forces
(Weis-Fogh, 1973).

The Reynolds number for most insects is generally low compared to other flying



18

animals such as birds and bats. As a consequence, viscous forces play an important
role in insect flight. One aerodynamic effect that becomes more significant for low
Reynolds numbers is added mass. Added mass can be viewed as additional inertia
due to the air that gets dragged along with the wing (Figure 1.12). Fly wings are
extremely lightweight, one fruit fly wing weighs approximately 0.15% of the body
mass (Charles Porter Ellington, 1984a). Due to this low weight, the mass of the air
that moves with the wing is significant. The volume of air that gets accelerated with
the wing depends on many factors such as the angle-of-attack, wing shape, and the
magnitude and (rotational) direction of the acceleration. A quasi-steady formulation
of the added mass is described by:

𝐹𝐴𝑀 = 𝜌 ¤𝜔𝑆𝑐𝑦𝐶𝐹𝐴𝑀 (𝛼), (1.22)

with ¤𝜔 as the angular acceleration and 𝑆𝑐𝑦 as the chord-based second moment of
area:

𝑆𝑐𝑦 =

∫ 𝑅

0
𝑐(𝑦)2𝑦𝑑𝑦, (1.23)

where 𝑐(𝑦) is the chord length at spanwise section 𝑦. The added mass coefficient,
𝐶𝐹𝐴𝑀 , can be split into an 𝑥, 𝑦, and 𝑧 component. Lift and drag forces are in the
𝑥 − 𝑧 plane and the 𝑦 component can be ignored. The coefficients for the 𝑥 and 𝑧
directions are:

𝐶𝐹𝑥𝐴𝑀 = 𝐶𝐹𝑥𝛼𝐴𝑀
𝑐𝑜𝑠(𝛼), (1.24)

and

𝐶𝐹𝑧𝐴𝑀 = 𝐶𝐹𝑧𝛼𝐴𝑀
𝑠𝑖𝑛(𝛼), (1.25)

where 𝐶𝐹𝑥𝛼𝐴𝑀
and 𝐶𝐹𝑧𝛼𝐴𝑀

were found to be 0.104 and 0.96 respectively.

A recent CFD study by (Veen, Leeuwen, Oudheusden, et al., 2022) computed the
forces from the Wagner effect, and added mass and translational forces during the
start of the wing stroke. A quasi-steady formulation for the Wagner effect can be
expressed as:
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Figure 1.12: Visualization of the fluid layer accelerated by an elliptical wing, (Veen,
Leeuwen, Oudheusden, et al., 2022).

𝐹𝑊𝐸 =
1
2
𝜌𝜔

√
¤𝜔𝑆𝑊𝐸𝐶𝐹𝑊𝐸

(𝛼), (1.26)

where 𝑆𝑊𝐸 is the wing geometry scaling parameter of the Wagner effect:

𝑆𝑊𝐸 =

∫ 𝑅

0

√︃
𝑐(𝑦)3𝑦3𝑑𝑦, (1.27)

and the Wagner effect coefficients for the 𝑥 and 𝑧 directions:

𝐶𝐹𝑥𝑊𝐸
(𝛼) = 𝐶𝐹𝑥𝛼𝑊𝐸

𝑐𝑜𝑠(𝛼), (1.28)

and

𝐶𝐹𝑧𝑊𝐸
(𝛼) = 𝐶𝐹𝑧𝛼𝑊𝐸

𝑠𝑖𝑛(𝛼), (1.29)

where 𝐶𝐹𝑥𝛼𝑊𝐸
and 𝐶𝐹𝑧𝛼𝑊𝐸

are 0 and −1.02 respectively. The translational lift and
drag forces are rewritten as a function of 𝜔:

𝐹𝑡𝑟𝑎𝑛𝑠 =
1
2
𝜌𝜔2𝑆𝑦𝑦𝐶𝐹𝑡𝑟𝑎𝑛𝑠 (𝛼), (1.30)

with:

𝐶𝐹𝑥𝑡𝑟𝑎𝑛𝑠 (𝛼) = 𝐴𝐹𝑥𝛼𝑡𝑟𝑎𝑛𝑠𝛼2 + 𝐵𝐹𝑥𝛼𝑡𝑟𝑎𝑛𝑠𝛼 + 𝐶𝐹𝑥𝛼𝑡𝑟𝑎𝑛𝑠 , (1.31)

and



20

𝐶𝐹𝑧𝑡𝑟𝑎𝑛𝑠 (𝛼) = 𝐶𝐹𝑧𝛼𝑡𝑟𝑎𝑛𝑠𝑐𝑜𝑠(𝛼), (1.32)

with 𝐴𝐹𝑥𝛼𝑡𝑟𝑎𝑛𝑠 = 8.5×10−5, 𝐵𝐹𝑥𝛼𝑡𝑟𝑎𝑛𝑠 = −1.2×10−2,𝐶𝐹𝑥𝛼𝑡𝑟𝑎𝑛𝑠 = 0.41 and𝐶𝐹𝑧𝛼𝑡𝑟𝑎𝑛𝑠 =
3.13.

With quasi-steady terms for translational, added mass and Wagner effect forces it
is possible to compute the total aerodynamic force during a wingstroke (excluding
rotational forces). The total aerodynamic force is simply the sum of all three effects:

𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑡𝑟𝑎𝑛𝑠 (𝛼, 𝜔, 𝑆𝑦𝑦) + 𝐹𝐴𝑀 (𝛼, ¤𝜔, 𝑆𝑐𝑦) + 𝐹𝑊𝐸 (𝛼, 𝜔, ¤𝜔, 𝑆𝑊𝐸 ). (1.33)

Analyzing the development of the total aerodynamic force during wingbeats of
mosquitoes and fruit flies shows that the acceleration of the wing is such that
the added mass and Wagner effect forces cancel each other out (Figure 1.13).
Mosquitoes have a higher wingbeat frequency and lower stroke extend than fruit
flies and the acceleration forces (Wagner effect + added mass) have a larger effect on
lift and drag relative to the translational force. The cancellation of the Wagner effect
by the added mass force explains why most flying insects do not regularly employ
the clap-and-fling mechanism: the delay in circulation growth is compensated by
added mass forces. Clap-and-fling also increases mechanical wear on the wings and
requires more muscle power to reach the required dorsal stroke extend.

1.4 Wing motion patterns are mechanically encoded in the wing hinge
Many of the aerodynamic mechanisms rely on precise control of parameters like the
angle of attack and timing of wing rotation. The power muscles deform the thorax
and this deformation gets transformed into a precise and highly stereotyped wing
motion pattern via the wing hinge. Exactly how the wing hinge can transform the
simple up-and-down motion of the thorax into a complex 4D wing motion pattern
has remained a mystery after more than a century of research.

Several studies have tried to infer the mechanical workings of the wing hinge by
carefully analyzing its anatomy (Williams and Williams, 1943), (J. Pringle, 1949),
(Boettiger and Furshpan, 1952), (John William Sutton Pringle, 1957), (Wisser and
Nachtigall, 1984), (Miyan and Ewing, 1985), (Ennos, 1987). In this section I will
discuss some of the hypotheses that are based on careful dissection of the wing
hinge and thorax. Although informative, one has to keep in mind that these studies
only provide limited understanding of the mechanics of the wing hinge, as they are
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Figure 1.13: Total aerodynamic force during the wingbeat of a fruit fly and mosquito.
A: Total pressure force (grey), translation force (blue), added mass force (green).
and Wagner effect force (red) during the downstroke of a fruit fly wingbeat. The
pressure force 𝐹∗

𝑍
is normal to the wing surface and the lift and drag forces are in the

vertical and horizontal plane respectively. B: Forces during the upstroke of the fruit
fly wingbeat. C,D: Forces during the down-and-upstroke of a mosquito wingbeat
(Veen, Leeuwen, Oudheusden, et al., 2022).

obtained from deceased animals. The wing hinge is difficult to image during flight,
as it is small and some parts are internal to the thorax. More recent studies have used
techniques such as micro Computerized Tomography (𝜇CT) and Scanning Electron
Microscopy (SEM) scans to obtain the detailed 3D morphology of the thorax,
musculature, and the wing hinge (Fabian, Schneeberg, and Beutel, 2016), (Deora,
Gundiah, and Sane, 2017). Again, these studies are on deceased animals and only
give limited insight on the wing hinge mechanics. An in-vivo X-ray tomography of
a tethered Calliphora vicina blowfly is the state-of-the-art study on the mechanics
of the wing hinge in flight (Walker, Schwyn, et al., 2014). Although impressive,
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Figure 1.14: Orientation of the DVMs and DLMs in the thorax of the blowfly
Calliphora vicina. Five regions of the exo-skeleton of the thorax are indicated:
notum, scutum, scutellum, phragma, and episternum (Page, 2018).

the spatial and temporal resolution of these results are not sufficient to resolve the
internal motion of the wing hinge. Besides the lack of resolution, the recordings
were made from a single individual fly that was spinning at a fast rate whilst being
subjected to damaging radiation. The hypotheses on the mechanical workings of
the wing hinge I will discuss in this section are, therefore, based on earlier anatomy
studies.

Figure 1.15: Schematic of a cross-section of the wing, with: Parascutal Shelf (PSS),
Post-Medial Notal Process (PMNP), first axillary sclerite (Ax1), second axillary
sclerite (Ax2), third axillary sclerite (Ax3), Radial Stop (RS), and Pleural Wing
Process (PWP) (Hedenström, 2014).
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The DVMs and DLMs act on the notum and scutum at the top of the thorax (Figure
1.14). Due to the difference in orientation of the muscles, the DVMs and DLMs have
opposite effects on the motion of the scutum. The DVMs attach to the episternum
and are oriented vertically in the thorax, moving the scutum down when activated.
DLMs attach to the phragma of the metathorax at a more horizontal orientation,
moving the scutum up when activated. Motion of the scutum is transferred to the
wing via a piece of the exo-skeleton of the thorax, or cuticle, named the parascutal
shelf. The wing hinge consists of several hardened interlocking skeletal elements
named sclerites. Two of these sclerites, the first and second axillary sclerites,
transfer the motion from the parascutal shelf to the radial vein of the wing (Figure
1.15). The second axillary sclerite is rigidly attached to the radial vein and functions
as a fulcrum on the pleural wing process.

The transfer of mechanical power from the scutum to the wing via the parascutal
shelf, first and second axillary sclerites was described in (Boettiger and Furshpan,
1952). In the study, Boettiger and Furshpan made use of carbon tetrachloride,
𝐶𝐶𝑙4, to anaesthetize flies during flight, such that the wings are extended. What
they found was that the wings could toggle between two extremes: the maximum
dorsal or maximum ventral stroke extent. When pushing on the thorax with a brush,
the experimenters could make the wings switch between the these two positions.
During the switch, the wings moved with the changes in wing pitch angle one
would observe in flight. This bifurcation led to the hypothesis that the wing hinge
is a bi-stable mechanism and that contraction of the power muscles would switch
the wing between the two stable points. This so-called click-mechanism reveals
a process of mechanical encoding by the wing hinge, in which the wing motion
pattern is integral to the hinge morphology. In the click-mechanism, the power
muscles provide the force required to switch between the two stable states. However
in (MIYAN and EWING, 1985) argued that the click-mechanism was an artefact
of the 𝐶𝐶𝑙4 anaesthesia. Due to the heightened amount of tension in the flight
muscles of the fly under 𝐶𝐶𝑙4 anaesthesia, the wings move between the stroke
extremes. Under normal flight conditions, the acceleration profile of the wings
differs considerably from the click mechanism, making it unlikely that the wings
are moving between two bi-stable states. However, these results do not refute the
basic observation of (Boettiger and Furshpan, 1952) that the pattern of wing motion
is encoded mechanically by the morphology of the hinge.

A prominent anatomical feature within a fly’s wing hinge is the radial stop, a
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Figure 1.16: SEM image showing the radial stop (A), pleural wing process (B) and
the second axillary sclerite (ax2) in Calliphora erythrocephala, (PFAU, 1987).

protrusion of the radial vein that has a groove in the middle (Figure 1.16). Beneath
the radial stop is a protrusion of the pleural wing process with one ore two grooves,
depending on the fly species (Miyan and Ewing, 1985). It has been proposed
that the radial stop can engage with the pleural wing process at each wingbeat, by
locking into one of the grooves during the downstroke. According to this hypothesis,
different configurations in which the radial stop and pleural wing process can be
engaged are referred to as gears (Figure 1.17). When the radial stop engages with the
pleural wing process, the ventral stroke amplitude is significantly reduced (Nalbach,
1989, Walker, Thomas, and Taylor, 2012). The number of gear modes depend on
the number of grooves in the pleural wing process. Several studies have reported on
the wing gearing mechanism in flies, (PFAU, 1987), (A. Wisser, 1988), (Nalbach,
1989), (Walker, Thomas, and Taylor, 2012), however a high-speed videography
study (M.H. Dickinson, personal observations) of wing gearing in Drosophila could
not observe engagement of the radial stop with the pleural wing process during long
tethered flight bouts. It remains unclear to what extent wing gearing is used by
different fly species and under which flight conditions.

An intriguing part of the wing hinge is the basalare sclerite; a nail-like structure
wedged in the episternal cleft (Figure 1.18). During the wingbeat, the episternal
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Figure 1.17: Wing gearing in Calliphora vicina, four gear modes have been iden-
tified: gear 0 brings the wing motion to a complete stop, gear 1 (blue) results in
the lowest amplitude, gear 2 (red) an intermediate amplitude, and gear 3 (green) the
highest amplitude (Nalbach, 1989, Page, 2018).

cleft opens and closes as the anterior and dorsal episternum plates slide over each
other. The shape of the head of the basalare is such that the basalare lever arm will
swing back and forth within the thorax, when the episternal cleft opens and closes.

Figure 1.18: Basalare sclerite (b) with 𝑏1 muscle and pleural plate (p.p). A: Basalare
at the start of the downstroke, the episternal cleft (e.c.) is open, and the notopleural
cleft (n.c.) is closed. Motion of the basalare during the downstroke is indicated by
the black arrow. B: Basalare at the start of the upstroke, the e.c. is closed and the
n.c. is open. Adapted from (Walker, Schwyn, et al., 2014).

Attached to the basalare is the basalare tendon which ends at the radial vein of the
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wing (Figure 1.19). The location of the basalare tendon on the basalare lever arm
helps to transmit forces to the radial vein. A total of three muscles attach to the
basalare; I will discuss in the next section how these muscles affect the motion of
the basalare.

Figure 1.19: 𝜇CT image of the basalare (Ba) and basalar tendon with two basalare
muscles, 𝑏1 and 𝑏2 (Page, 2018).

Anterior to the scutum is the scutellum, a saddle-like structure that is coupled to the
scutum via a flexible part of the cuticle that functions as a hinge (Figure 1.20). The
scutellum protrudes in the scutellar lever arm on both sides of the body, forming
a horseshoe-shaped structure that functions to transmit forces from the DLMs to
the wings on both sides of the body. During the wingbeat, the scutellar lever arm
rotates up and down in the same direction as the scutum. The scutellar lever arm
splits into two branches, which each act on a different axillary sclerite: the first and
fourth axillary sclerites (Figure 1.21). During the downstroke the scutellar lever arm
will push the first axillary sclerite anterior and dorsal while during the upstroke the
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lever arm will pull posterior and ventral on the first axillary sclerite. It is difficult to
derive the translation and rotation of the first axillary sclerite as a consequence of
the scutellar lever arm motion, as the sclerite has multiple possible rotation points.
It is speculated that the motion of the scutellar lever arm rotates the radial vein along
its longitudinal axis via rotation of the first and second axillary sclerite.

Figure 1.20: Scutellum and the scutellar lever arm in orange (Deora, Singh, and
Sane, 2015).

The second branch of the scutellar lever arm is the fourth axillary sclerite. In this
section, I will describe a hypothesis formulated by (Miyan and Ewing, 1985), which
is based on anatomical observations. However, more research is required to confirm
this hypothesis. The fourth axillary sclerite consists of two tubular structures that
are coupled by flexible membranes to the cuticle of the fly. At the top of the fourth
axillary sclerite, the two tubes fuse into the scutellar lever arm. Over the length of
the fourth axillary sclerite, the two tubes form a helical shape. At the bottom of the
fourth axillary sclerite, the two tubes merge and fuse into the third axillary sclerite.
The helicity of the tubes turns the sclerite into a spindle that rotates the third axillary
sclerite anterior under tension and posterior under compression. The third axillary
sclerite acts on the radial vein of the wing but is also coupled to the posterior veins
of the wings. Rotation of the third axillary sclerite is therefore expected to affect
the orientation of the posterior part of the wing and is likely to affect the wing pitch
angle and shape of the wing during the wingbeat.

Summarizing, there are four possible mechanical pathways through which the con-
traction of the power muscles is transformed into wing motion. Again, the mechan-
ical pathways are based on the hypotheses of Miyan and Ewing (1985). Figure 1.22
shows the four mechanical pathways in a simplified schematic of the wing hinge.
The first mechanical pathway relies on the opening and closing of the episternal
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Figure 1.21: Scutellar lever arm and the first (ax1) and fourth (ax4) axillary sclerites.
The scutellar lever arm acts on ax1 via the post-median notal process (p.m.n.p.) and
the scutum via the parascutal shelf (p.s.s.) (Miyan and Ewing, 1985).

cleft and the oscillatory motion of the basalare sclerite which is wedged in the cleft.
Motion of the basalare sclerite is transferred to the radial vein of the wing via the
basalare tendon. The second pathway starts with the up-and-down motion of the
scutum, which subsequently transfers this motion to the radial vein via the parascutal
shelf and the first axillary sclerite. This pathway is thought to be responsible for the
main back-and-forth motion of the wing during the wingbeat. The third pathway
starts with the upward motion of the scutum during the downstroke, which causes
the scutellum to rotate clockwise and the scutellar lever arm to move anterior. A
notch in the scutellar lever arm, the post-median notal process, interacts with the
first axillary sclerite and makes it rotate. During the upstroke the opposite happens
and the scutellar lever arm moves posterior and results in rotation of the first axillary
sclerite in opposite direction. The fourth pathway affects the posterior part of the
wing via the third and fourth axillary sclerites. Due to the motion of the scutellar
lever arm, the spindle in the fourth axillary sclerite comes under compression dur-
ing the downstroke and under tension during the upstroke. The axial rotation of
the fourth axillary sclerite makes the third axillary sclerite, which is coupled to the
fourth, moves anterior during the downstroke and posterior during the upstroke.
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Figure 1.22: Four mechanical pathways that transform thorax deformation into wing
motion. A: Top view of the thorax, hinge, and wing of Drosophila melanogaster,
with the scutum (SC), axillary sclerites (ax1-4), parascutal shelf (PS), radial vein
(RV), pleural process (PP), scutellar lever arm (SL), scutellum (SCM), haltere, and
wing veins L1-6. B: Pathways during the downstroke. 1: basalare (BA) moves
anterior and pulls on the basalare tendon (BAT) which is connected to the RV. 2: the
SC moves up and pulls the PS upwards which causes the ax1 and ax2 to tilt on the
PP. The RV is rigidly connected to ax2 and will move the wing downwards during
the downstroke. 3: contraction of the DLMs makes the SCM turn clockwise and
moves the SL anterior. A notch in the SL interacts with ax1 and rotates the sclerite
clockwise. 4: with the anterior motion of the SL, ax4 comes under compression
resulting in an anterior rotation of the ax3. C: Pathways during the upstroke. 1: the
BA moves anterior and tension on the BAT is released. 2: the SC moves downward,
pushing on the PS, causing ax1 and ax2 to rotate anti-clockwise and generating the
upward motion of the RV. 3: anti-clockwise rotation of the SCM moves the SL
posterior and causes anti-clockwise rotation of ax1. 4: posterior motion of the SL
puts ax4 in tension and causes posterior rotation of ax3.

1.5 Flight behavior is controlled by a sparse set of steering muscles
As described above, the intricate wing motion pattern of flies is mechanically
encoded in the wing hinge and is generated by the asynchronous contraction of
the power muscles. Although the motor neurons of the power muscles can control
wingbeat frequency by regulating the level of 𝐶𝑎2+ ions in the muscles, it can not
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generate asymmetric changes in wing motion. A set of small steering muscles that
act on the sclerites can change the configuration of the wing hinge and thereby change
how the deformation of the thorax is converted into wing motion. In Drosophila
there are a total of 17 steering muscles per side, 12 muscles act directly on the
sclerites of the wing hinge and the remaining 5 muscles can change the stiffness of
the thorax. In this section I will focus on the 12 direct steering muscles as these
muscles are responsible for the rapid aerial maneuvers which are characteristic for
fly flight.

Figure 1.23: Schematic overview of the direct steering muscles and their orientation
within the thorax. The muscles are grouped per sclerite: basalare (BA), first axillary
(ax1), third axillary (ax3), and fourth axillary (ax4). Tendons are depicted in grey.

The 12 direct steering muscles act on four sclerites in the wing hinge: the basalare,
first, third, and fourth axillary sclerites. Three muscles are attached to the basalare
sclerite: 𝑏1, 𝑏2, and 𝑏3 (Figure 1.23). Two muscles attach to the first axillary
sclerite: 𝑖1 and 𝑖2. The third axillary sclerite has three muscles attached via a single
shared tendon: 𝑖𝑖𝑖1, 𝑖𝑖𝑖2, and 𝑖𝑖𝑖3. Finally, the fourth axillary sclerite has four muscles
attached: ℎ𝑔1, ℎ𝑔2, ℎ𝑔3, and ℎ𝑔4. The ℎ𝑔-nomenclature is a remnant of the German
term for the fourth axillary: hinter Gelenkforsatz.

Each steering muscle is innervated by one single motorneuron, which means that
the activity of just 24 motorneurons, 12 on each side, controls all flight behavior.
This is in stark contrast to most vertebrate muscles, which can have hundreds of
motorneurons per muscle, each controlling just a small fraction of the muscle fibers
within the muscle. Having multiple motorneurons per muscle is an advantage for
modulating the force output of muscle contraction. Using population encoding,
vertebrate muscles can turn on only a fraction of the muscle fibers in a muscle to
produce a weak force. Insects can modulate muscle output by changing the level of
depolarization of the muscle fiber membranes and thereby the amount of 𝐶𝑎2+ ions
in the cytoplasm.
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Although the steering muscles can generate graded muscle twitches, 24 motorneu-
rons to control all flight behavior constitutes an extremely sparse system. Flight
behavior ranges from escape maneuvers lasting only 30 ms (Muijres, Elzinga, Melis,
et al., 2014) to trimming left and right wing motion for long bouts of straight flight
(Leitch et al., 2021). Once wings are formed after eclosion from the pupae, insects
cannot repair their wings. Insects will need to compensate any force and torque
imbalances due to damage, which often requires highly asymmetric wing motion
patterns, (Muijres, Iwasaki, et al., 2017). The mechanical encoding of wing motion
in the wing hinge helps to reduce the information that the motorneurons need to
transfer to create coordinated and accurate wing motion patterns. Understanding
how flies can control such a wide variety of flight scenarios with a small number
of neurons could provide valuable insights for robust flight control with limited
computational resources.

Figure 1.24: Simultaneous electrophysiology recordings from the 𝑏1 and 𝑏2 muscles
in Calliphora vicina. The stroke amplitude, 𝜙, of the wingtip is displayed such that
dorsal stroke reversal correspond to the maxima and ventral stroke reversal to the
minima and the action potentials of the 𝑏1 and 𝑏2 muscles are shown by solid and
open dots respectively. Amplified voltage recordings for the 𝑏1 and 𝑏2 muscles are
shown on the same time-scale (Tu and Dickinson, 1996)

One of the most accurate techniques to study steering muscle activity is electrophys-
iology. Two sharp electrodes are inserted into the ventral side of the thorax, such
that the electrodes are not in the path of the wing. One electrode functions as the
ground or reference while the other electrode is inserted into the steering muscle.
The number of steering muscles that are accessible is limited, as some muscles
are too close to the wing hinge such that electrode placement would obstruct wing
motion. Electrophysiological recordings from the 𝑏1 and 𝑏2 muscles suggest that,
based on their activity, there are two types of muscles: tonic and phasic muscles
(Tu and Dickinson, 1996). The 𝑏1 motorneuron typically fires an action potential
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once per wingbeat, which is tonic activity (Figure 1.24). An action potential is a
rapid depolarization of the cell membrane followed by a slower return to baseline
(around 1 ms duration). The 𝑏2 muscle is usually quiescent but can turn on in bursts
of activity, i.e. phasic activity. The different activity patterns result in differences in
muscle physiology. Tonic activity of the 𝑏1 muscle requires the rapid re-uptake𝐶𝑎2+

ions and a significant fraction of the muscle cells consists of sarcoplasmic reticulum
and mitochondria. The strength of 𝑏1 muscle twitches is therefore relatively weak.
Phasic muscles, like the 𝑏2 do not have to fire every wingbeat and therefore have a
larger fraction of contractile fibers.

Figure 1.25: Delayed firing of the 𝑏1 motorneuron results in a lower stiffness of the 𝑏1
muscle, posterior motion of the basalare and decrease in stroke amplitude. Advanced
firing of the 𝑏1 motorneuron results into a higher stiffness of the muscle, anterior
motion of the basalare and an increase in stroke amplitude (Michael Dickinson,
2006).

In electrophysiology recordings from the 𝑏1 muscle (Tu and Dickinson, 1994) found
that the timing of action potentials from the motor neuron within the wingbeat
is important. During flight, the 𝑏1 muscle fires typically once per wingbeat at
dorsal stroke reversal. The 𝑏1 motorneuron can advance or delay firing an action
potential. This phase shift has an effect on wing motion: advanced firing of the
motorneuron results in an increase in wing stroke amplitude and delayed firing
results in a decrease in amplitude (Figure 1.25). In an experiment that measured
the work output of the 𝑏1 steering muscle under different frequencies of electrode
activation, Tu and Dickinson, 1994, found that the muscle performs negative work
at activation frequencies of the same order of magnitude as the wingbeat frequency.
This means that activation of the muscle does not result in the generation of positive
mechanical work, but rather an increase or decrease in the dynamic stiffness of the
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muscle depending on the phase. The 𝑏1 muscle can thus be seen as a programmable
spring with the activation phase controlling the spring stiffness. Phasic muscles,
such as the 𝑏2, presumably operate like conventional muscles and a single action
potential in the motorneuron results in a muscle twitch that generates positive work.

Besides the 𝑏1 and 𝑏2 motorneurons, there are several other steering muscles that can
be accessed by electrodes during tethered flight, at least in larger fly species such as
Calliphora: 𝑖1, 𝑖𝑖𝑖1, and 𝑖𝑖𝑖2, (Balint and Dickinson, 2001). Simultaneous recording
of muscle activity using electrodes and the wing motion with high-speed cameras
has revealed several correlations (Figure 1.26). From the high-speed videos, the
3D wingtip trajectory can be reconstructed and the instantaneous wingtip position
can be described by two angles: the stroke angle 𝜙 within the strokeplane and the
deviation angle 𝜃 that gives the elevation angle above the strokeplane. The major
effect of 𝑏1 and 𝑏2 activity seems to be the increase of the deviation angle during
the downstroke, where 𝑏2 activity results in a larger increase than 𝑏1 activity. An
interesting pattern is observed between the 𝑖1 and the 𝑖𝑖𝑖2 muscles: when one of
the two muscles is active the other is quiescent. Multiple muscles show increased
activity when the 𝑖𝑖𝑖2 muscle is active, namely the 𝑏1, 𝑏2, and 𝑖𝑖𝑖1 muscles. Two
different muscle activity modes have been identified: mode 1 is the increased activity
of the 𝑖1 muscle and decreased activity of the 𝑖𝑖𝑖2 muscle, and mode 2 is an increased
activity of the 𝑖𝑖𝑖2 muscle and quiescence of the 𝑖1 muscle. The effect of mode 1
on wing motion is a decrease in ventral stroke amplitude, while mode 2 has the
opposite effect: an increase in ventral stroke amplitude.

The electrophysiology recordings of 5 of the 12 steering muscles suggest interesting
patterns, however one needs to know the simultaneous activity patterns of all 12
muscles to decipher how the steering muscles control flight behavior. A relatively
recent technique, developed by a former post-doc in the Dickinson lab; Theodore
Lindsay, makes use of the powerful tool of Drosophila genetics to visualize steering
muscle activity (Lindsay, Sustar, and Dickinson, 2017). Using the genetically-
encoded fluorescent calcium indicator (GCaMP) it is possible to measure the calcium
concentration in the muscle via fluorescence intensity. The GCaMP molecules that
are expressed in the steering muscles, are bright enough to see through the cuticle
of the fly. With GCaMP it is possible to simultaneously image the activity of all 12
steering muscles in a tethered flying fly via an epi-fluorescence microscope.

As was found in the electrophysiology experiments, the muscle fluorescence showed
that there are roughly two physiological classes of steering muscles: tonic and phasic.
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Figure 1.26: Simultaneous recording of wing motion, flight forces, and electrical
activity of 5 steering muscles. A: Experimental setup with a blow fly, Calliphora
vicina, tethered to a piezo-electric crystal that can detect vertical flight forces. A total
of 5 pairs of electrode wires are connected to a differential amplifier. Three high-
speed cameras record wing motion with infrared backlighting from three orthogonal
angles. B: Overview of the 5 muscles that are being recorded and 2 muscles (grey)
that are not being recorded. C: Stroke angle, 𝜙, and deviation angle, 𝜃, relative to the
strokeplane (𝑥, 𝑦). D: Wing kinematic keypoints: ventral amplitude and downstroke
deviation. E: Downstroke deviation: 𝑏1 activity is marked in green and 𝑏2 in red.
Ventral amplitude: mode 1 is marked in pink, mode 2 in blue. F: Activity of the 5
steering muscles during the experiment, action potentials are marked by the vertical
bars (Balint and Dickinson, 2004).

Each sclerite has at least one tonic and one phasic muscle attached, which suggests
that the ability to actuate the sclerites rapidly (phasic) and for longer durations
(tonic) is important for flight control. The tonic muscles are the 𝑏1, 𝑏3, 𝑖2, 𝑖𝑖𝑖3,
and ℎ𝑔4 muscles and the phasic muscles are the 𝑏2, 𝑖1, 𝑖𝑖𝑖1, 𝑖𝑖𝑖2, ℎ𝑔1, ℎ𝑔2, and ℎ𝑔3

muscles.
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Figure 1.27: Imaging of muscle activity via GCaMP fluorescence. A: Confocal
microscopy image of the steering muscles with colors based on the sclerite: basalare
(blue), first axillary (purple), third axillary (red), and fourth axillary (yellow). B:
Schematic overview of the setup with an epi-fluorescent microscope, LED display
and a behavior camera measuring wing stroke amplitude. C: Muscle activity for the
left and right wing in response to: yaw left (YL), roll left (RL), and pitch up (PU)
stabilization reflexes. Muscle activity is shown for the left and right wing, grouped
per sclerite, and a gray-scale color coding indicates relative muscle activity (white
= more active, black = less active). D: Hypothesized effect on wing motion for each
sclerite. The baseline wing kinematics have been marked by the dotted lines while
the solid lines and orange arrows show the effect of muscle activation. In the case of
the 𝑏3 muscle a green line shows the wing motion pattern upon activation. Depicted
muscles are either tonic (red) or phasic (yellow) (Lindsay, Sustar, and Dickinson,
2017).

By presenting rotating patterns on a LED screen surrounding the tethered fly,
Theodore Lindsay elicited stabilization reflexes while recording the muscle ac-
tivity of the steering muscles and wing stroke amplitudes of the left and right wing
(Figure 1.27). Rotation axes of the LED patterns were around the roll, pitch, and
yaw axes, and the stabilization reflex consists of changes in wing motion that rotate
the fly so as to follow the direction of the visual stimulus. The muscle activity of the
stabilization reflexes was very stereotypical and showed that different sclerites are
involved in different maneuvers. For example, the yaw left reflex shows an increase
in activity of the 𝑖𝑖𝑖 muscles of the left wing and a decrease in ℎ𝑔 muscle activity
of the right wing. The roll left reflex shows decreased activity of the 𝑏1 and 𝑏2



36

muscles and an increase in activity of the 𝑏3 and 𝑖 muscles for the left wing. For the
right wing, the 𝑏3 muscle has decreased activity while the 𝑏1, 𝑏2, and 𝑖𝑖𝑖 muscles
have increased activity. With the exception of the basalare muscles, the muscle
activity of the stabilization reflexes seems to be grouped per sclerite. This led the
authors to speculate that different components of the wing motion are controlled by
different sclerites. According to this hypothesis, the 𝑏-muscles control the ventral
and dorsal stroke amplitude, the 𝑖-muscles decrease the deviation angle of the wing
when activated, the 𝑖𝑖𝑖-muscles increase the deviation angle upon activation, and the
ℎ𝑔-muscles control the angle-of-attack of the wing.

Besides actuating wing motion during flight, the steering muscles are used for non-
flight behavior as well. The 𝑖𝑖𝑖1 muscle is crucial for wing extension and folding,
and therefore shows strong activity during flight starts and stops. When flies are
not flying, they spend a significant amount of time grooming, i.e. cleaning their
eyes and wings. Some of the steering muscles are used during the grooming of
the wings, lowering the wing to make it accessible to the legs of the fly. Another
non-flight behavior that involves the steering muscles is singing. Part of the mating
ritual of flies is the courtship phase, in which the male fly chases a female fly
and extends one of his wings outward, (Bastock and Manning, 1955), (Agrawal,
Safarik, and Michael Dickinson, 2014). Once the wing is extended, the fly uses
its power and steering muscles to vibrate the wing at approximately 200 Hz with a
small amplitude, creating a song that is audible to the female fly, (A. W. Ewing and
Bennet-Clark, 1968). Some of the steering muscles, 𝑏1 and 𝑏2, are not active, while
other steering muscles are always active during song, 𝑏3, 𝑖1, ℎ𝑔1−4, (O’Sullivan
et al., 2018). Variation in the song is achieved by the remaining muscles: 𝑖2, 𝑖𝑖𝑖1−3.
The multi-functionality of the steering muscles is a common phenomenon in nature
and has to be kept in mind when analyzing a biological system.

1.6 Research outline
The research presented in this thesis started with the hypothesized effect of steering
muscle activity on wing motion proposed by Theodore Lindsay, (Lindsay, Sustar,
and Dickinson, 2017). Although ventral stroke amplitudes of the left and right wings
were recorded by a behavioral camera, the limited temporal resolution (30 Hz) and
the projection of complex 3D wing motion into one parameter, provided insufficient
data to confirm the hypothesis. To test the proposed effects of steering muscle
activity on wing motion, I built a setup that combined the GCaMP fluorescence
imaging with a high-speed videography setup that images the wing motion from
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three orthogonal directions. The large difference in temporal resolution of muscle
imaging and high-speed videography required the setup to be highly automated.
Chapter 2 describes the details of the experimental rig and the collected dataset.

Before analyzing the dataset, I needed to extract the left and right wing pose from
the high-speed videos. As the three high-speed cameras were recording at 15,000
frames per second, the total number of high-speed video frames is more than 23
million. It is obvious that an automated algorithm is required to extract wing pose
from the high-speed videos. There were several existing methods to extract the
wing pose from multiple camera views, however an artefact of tethered flight, clap-
and-fling, would require too many user interventions to be practical. I, therefore,
developed a novel tracking algorithm, named FlyNet, that combined pose prediction
by a neural network and pose refinement via 3D model fitting. In Chapter 3, I will
discuss the workflow of FlyNet.

In Chapter 4, the recorded muscle activity and wing kinematic traces, tracked by
FlyNet, are combined in a coupled dataset. This coupled dataset is subsequently
used to train a convolutional neural network to predict wing motion from muscle
activity patterns. The trained network can accurately predict wing motion and is
used to study how steering muscle activity affects wing motion.

Wing kinematic patterns predicted by the trained neural network were replayed on a
dynamically scaled flapping wing robot. The dynamically scaled robot can measure
aerodynamic forces and torques, and in combination with the inertial forces and
torques computed with the Newton-Euler equations, a map from steering muscle
activity to control force-torque was created, as shown in Chapter 5.

In Chapter 6, the map of Chapter 5 is incorporated in a state-space system of fly
flight. The state-space system is subsequently embedded in a control loop. By
using model predictive control, various free flight maneuvers were simulated. The
conclusions of the research in Chapters 2-6 will be discussed in Chapter 7.
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C h a p t e r 2

SIMULTANEOUS RECORDING OF MUSCLE ACTIVITY AND
WING MOTION

The mechanical complexity of the wing hinge makes it impossible to infer the
effect on wing motion of the steering muscles from anatomy alone. Experiments in
which steering muscle activity was measured using electrodes while simultaneously
imaging the wing motion with high-speed cameras yielded data on the changes in
wing kinematics elicited by some muscles. Unfortunately, many of the muscles are
situated at locations which are impossible to access with electrodes during flight.

With the development of Drosophila melanogaster as a model-species in genetics
research and neuroscience, a new technique to measure steering muscle activity in
flight has become available: Genetically Encoded fluorescent Calcium-Indicators
(GECI). Whenever a muscle fiber gets activated by a motor neuron, its membrane
potential rises and calcium ions,𝐶𝑎2+, are released from the sarcoplasmic reticulum
into the cytoplasm. The 𝐶𝑎2+ ions will bind to actin filaments, and by doing so
enable the contraction of the muscle fibers. After contraction of the muscle fibers,
ion pumps transfer the 𝐶𝑎2+ ions back into the sarcoplasmic reticulum. During
the course of a muscle twitch, the 𝐶𝑎2+ concentration will rise and decay with the
contraction and relaxation of the muscle.

Calcium ion concentration within the cytoplasm is a good measure of muscle force.
By genetically expressing GECI in the steering muscles of the fly, it is possible to
image the activity of all steering muscles simultaneously. The changes in fluores-
cence of GECI molecules during a muscle twitch are bright enough to be captured
via an epi-fluorescent microscope through the cuticle of a flying fly. With this tech-
nique, I was able to image the input and output of the wing hinge simultaneously.
The control input to the wing hinge is the activity pattern of the 12 direct steering
muscles and the output is the 3D motion pattern of the wing. This chapter describes
the experimental setup and the methods that were used to capture a large dataset of
muscle activity and coupled wing kinematics of flies under a wide variety of flight
conditions.
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2.1 Imaging muscle activity in flying flies
One of the most powerful tools in Drosophila genetics is the GAL4-UAS system. In
order to express reporter molecules such as the Green Fluorescent Protein (GFP) or
GECI in specific cells, two genetically modified fly mutants are required. The first
genetic variant, or line, has a mutation that expresses the yeast protein GAL4 in a
specific group of cells. The second line has a UAS region in front of the reporter
gene that the experimenter wishes to express. When the GAL4 and UAS-lines are
crossed, the progeny will express the reporter gene in the specific cells (Figure 2.1).
During development, the GAL4 protein will be produced in the desired cells. The
GAL4 protein binds to the UAS region of the genome and subsequently activates the
transcription of the gene following the UAS site. Transcription of the gene results
in the production of the desired protein in the specified cells.

Figure 2.1: Crossing a GAL4 line with a UAS line results in expression of gene
X in the progeny. During development the GAL4 region produces the GAL4
protein which can bind to the UAS region. The binding of GAL4 to UAS results
in the recruitment of RNA polymerase which reads the DNA strand of gene X and
subsequently produces protein X (Kelly, Elchert, and Kahl, 2017).

Using the GAL4-UAS system it is possible to express GECI molecules in the cells of
the steering muscles. Geneticists have developed thousands of different GAL4-lines
that have GAL4 present in specific groups of cells. This specificity varies but can be
sparse enough to target individual neurons or muscles. All direct steering muscles
and some leg, neck, and haltere muscles can be targeted by the GAL4-line 𝑅22𝐻05.
I crossed 𝑅22𝐻05 with the UAS-line that expresses the GECI protein: GCaMP7f.
The progeny of the 𝑅22𝐻05 × 𝐺𝐶𝑎𝑀𝑃7 𝑓 cross has 𝐺𝐶𝑎𝑀𝑃7 𝑓 in the steering
muscles.

The synthetic molecule GCaMP is a combination of three proteins: circularly
permuted GFP, calmodulin, and M13. GFP is a protein that turns ultraviolet and



40

blue light into green light through fluorescence. The gene for producing GFP was
isolated from a jellyfish and is widely used in genomics. Calmodulin is a protein that
is ubiquitous in all eukaryotes and is crucial in intracellular signaling and smooth
muscle contraction. Finally, the M13 protein is a peptide in the myosin light-chain
kinase. The protein myosin is the active and moving part during muscle contraction.
One of the steps in the myosin light-chain kinase is the binding of calmodulin to the
M13 peptide in the myosin light-chain. Researchers have managed to genetically
isolate the M13 peptide from the myosin protein. The GCaMP protein was created
by merging the genetic codes for GFP, calmodulin, and M13 and inserting this gene
into the Drosophila genome, (Nakai, Ohkura, and Imoto, 2001).

Figure 2.2: The GCaMP molecule consists of calmodulin, M13, and GFP proteins.
When the calmodulin protein binds to 4 𝐶𝑎2+ ions, it undergoes a conformational
change and acts on the M13 and GFP molecules, changing the exposure of the
chromophore in the GFP molecule and increasing its fluorescence (Tang and Fang,
2019).

The𝐶𝑎2+ concentration within a resting muscle cell is low: 10−8𝑀 . When a muscle
gets activated, the sarcoplasmic reticulum releases 𝐶𝑎2+ into the cytoplasm and
the calcium concentration rises to 10−6𝑀 . Calmodulin has 4 sites that can bind
with 𝐶𝑎2+ ions. The probability that all 4 sites bind with calcium ions increases
with 𝐶𝑎2+ concentration. When 4 calcium ions bind to calmodulin it undergoes
a conformational change and will interact with the GFP protein through the M13
peptide. Circularly permuted GFP has low fluorescence in its resting state because
the chromophore is protonated due to interaction with water molecules. Water
molecules can access the chromophore as the surrounding alpha helix is porous due
to the circular permutation. When calmodulin undergoes a conformational change
it will tighten the alpha helix, leading to the deprotonation of the chromophore and a
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rapid increase in fluorescence. The chromophore gets excited by a peak wavelength
of 480 nm (blue light) and has a peak emission wavelength of 510 nm (green light).

Over the last two decades GCaMP has been optimized via targeted mutagenesis to
fluoresce brighter, faster, and with a higher signal-to-noise ratio (Akerboom et al.,
2012). The fluorescence signal of GCaMP has a characteristic kernel in response to
a single muscle twitch or an action potential in a neuron: a fast exponential increase
in fluorescence (ON) followed by a slow exponential decrease in fluorescence (OFF)
(Figure 2.3). For our experiments, I selected the GCaMP version with the fastest
ON-OFF characteristics: GCaMP7f. GCaMP7f has a half-rise time of 75 ms and
a half-decay time of 580 ms in dissociated neurons, (Dana et al., 2019). GCaMP
fluorescence is, however, dependent on the thermal and chemical properties of the
cells in which they are expressed and the temporal characteristics will vary between
species. It takes approximately 1 second for the GCaMP fluorescence to return
to baseline after a single stimulus. This relatively long fluorescence response can
result in temporal summation of GCaMP fluorescence as the steering muscles are
active on a wingbeat-to-wingbeat basis (∼ 200 Hz).

Figure 2.3: Fluorescence response, Δ𝐹/𝐹0, for different GCaMP versions for one
action potential (stim) in a dissociated neuron. Δ𝐹/𝐹0 measures the instantaneous
fluorescence intensity divided by the baseline fluorescence (Dana et al., 2019).

To image GCaMP fluorescence, I built an epi-fluorescent microscope. A 470 nm
Light Emitting Diode (LED) provides the excitation photons for GCaMP fluores-
cence. The excitation light-beam gets reflected via a dichroic mirror onto a 4×
objective, which focuses the blue light on the thorax of the fly. When blue light
excites the GCaMP molecules inside the steering muscles, fluorescent green light
spreads in all directions and some of it travels back through the cuticle and the
objective and passes through the dichroic mirror onto an imaging camera (Figure
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2.4). Although the captured fluorescent light has a much lower intensity then the
excitation light, the dichroic mirror is only translucent to a narrow band of wave-
lengths centered around 530 nm. This specificity of the dichroic mirror makes it
possible to image muscle activity in bright light conditions.

Figure 2.4: Epi-fluorescent microscope for imaging muscle activity in flying flies.
Blue light from a 470 nm LED passes trough a dichroic mirror and 0.45 NA objective
onto the thorax of a fly. The blue light excites the GCaMP molecules in the steering
muscles and the fluorescent green light passes back through the objective and the
dichroic mirror onto an imaging camera (Lindsay, Sustar, and Dickinson, 2017).

In order to keep a fly at the focal point of the epi-fluorescent microscope they need
to be fixed in place. Flies can be anaesthetized by cooling them down to 4 𝐶◦ on a
cold plate. Using UV-curable glue, the fly is glued to a tungsten tether at the top of
the thorax (Figure 2.5). The front and middle pair of legs can obstruct the view of
the steering muscles and are therefore cut off at the coxa joint. A fly uses its hind
legs to help steering during flight and removal will result in poor (tethered) flight
behavior. After removing the front and middle pair of legs and gluing the fly to the
tether, flies are given 5 minutes to recover from the procedure. Depending on how
well fed and healthy the flies are, they can perform tethered flight for 30 minutes to
several hours.

When the fly is positioned in front of the epi-fluorescent microscope the wing will
obstruct the view twice during a wingbeat. This is an issue for the automated analysis
of the fluorescence signal, as it is difficult to determine when the wing is blocking
the view. In order to obtain a stable image, both the blue LED and the camera
need to be strobed at the wingbeat frequency of the fly. To measure the phase and
frequency of the wing motion I used the so-called wingbeat analyzer, (Dickinson,
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Figure 2.5: Fruit fly glued to a tungsten tether.

Lehmann, and Gotz, 1993). A wingbeat analyzer consists of an InfraRed (IR) LED,
two IR-sensitive diodes, a wing-stroke mask, and an amplifier. The IR LED is
positioned above the fly such that the two wings cast a shadow on the wing-stroke
mask beneath the fly (Figure 2.6). During the wingbeat, the fly’s wings will cast
a shadow on different sections of the wing-stroke mask. The wing-stroke mask is
designed such that the wing shadow will block more IR-light at the ventral stroke
reversal compared to the dorsal stroke reversal. Two IR-sensitive diodes underneath
the wing-stroke mask measure the light intensity and the amplifier increases the
voltage of the signal (±10 V).

Using a Teensy microcontroller and the wing shadow signal from the wingbeat
analyzer, the blue LED is strobed for 1 ms at dorsal stroke reversal. The Teensy
microcontroller also strobes a machine vision camera (FLIR Blackfly S USB3) at
half the frequency of the LED, such that each image frame contains two subsequent
blue light pulses. Strobing both the camera and the LED has the advantage that
the frame-to-frame variation in light intensity is minimal and slight variations in
GCaMP fluorescence can be picked up by the camera. A second advantage of the
strobing at dorsal stroke reversal is that the thorax deformation is in the same state
during each frame. This will ensure that the outline of the steering muscles does
not change during flight, irrespective of the wingbeat frequency.

2.2 High-speed videography of wing motion
A fly typically flaps its wings back and forth 200 times per second. To resolve
the wing motion with sufficient resolution an imaging camera needs to record at a
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Figure 2.6: Wingbeat analyzer consisting of: an IR LED (IE), wing-stroke mask (G),
lens (L), and an IR-sensitive diode (ID). The wing shadow generates a characteristic
waveform (double peak) during ventral stroke reversal in which the peak voltage
corresponds to the ventral stroke extent (Dickinson, Lehmann, and Gotz, 1993).

minimum of 5000 fps, a frame rate that only high-speed cameras can achieve. The
accurate capture of the 3D motion pattern of the fly’s wing requires a minimum of
three high-speed cameras at orthogonal angles. Sufficient illumination is required
to image the fly at these high frame rates. Flies rely extensively on their visual
system to stabilize their flight. Too much illumination can blind flies or affect flight
behavior. In order to avoid detrimental effects on flight behavior, IR illumination is
preferable as flies cannot see at these wavelengths.

The high-speed camera setup I built consists of three Photron SA5 high-speed
cameras positioned at orthogonal angles. During the experiment, the cameras are
recording continuously at a frame rate of 15, 000 frames per second and with a shutter
speed of 33 microseconds (Figure 2.7). The shutter signal of one of the cameras
is used to synchronize the other two cameras. Each camera has a telecentric lens
(Edmund optics Platinum TL) with 0.5× magnification and a working distance of
175 mm. I backlit the fly using an IR LED (850 nm) with a set of diffuse collimating
lenses that provide a uniform background for each of the cameras (Thor labs: 850
nm mounted LED + collimation lens). The combination of a telecentric lens with
collimated back-lighting yields sharp images of the contours of the fly. A telecentric
lens has its focal point at infinity and the collimating lens projects IR light at
infinity. The parallel back-lighting means that most of the light is projected onto
the lens and is therefore relatively efficient. An issue with a previous high-speed
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videography setup was the excessive heat produced by arrays of IR LEDs, which
required continuous cooling of the setup (Muijres, Elzinga, Melis, et al., 2014).

Figure 2.7: Frame triplet taken at: 15000 fps, shutter time 1/30000 seconds,
resolution 256 by 256 pixels, bit-depth 8 bit.

The Photron SA5 camera has a buffer of 8 GigaByte (GB), meaning that at 15, 000
fps, a resolution of 256 by 256 pixels, and a bit-depth of 8 bit, one can record
8 seconds of high-speed video. For the three cameras, it takes approximately 30
minutes to transfer the buffer to a hard-drive. In order to capture muscle activity
changes, it is necessary to electronically trigger the recording of high-speed videos.
The buffer of each camera was split into 8 partitions of 1 second recording time
each. During an experiment, the high-speed cameras are recording continuously
and storing the last second of high-speed video to a rolling buffer on a currently
active partition. The trigger mode is set to center, meaning that when a trigger pulse
comes in, the rolling buffer continues to record for a half a second and then freezes
the recording. After triggering, the rolling buffer starts at the next partition until a
new trigger pulse arrives. Once all 8 partitions have been filled, the downloading of
the videos to a hard-drive automatically starts. To make the video transfer as fast as
possible, the videos were saved in the MRAW-format.

To be able to reconstruct 3D wing motion, one needs to know the position and
orientation of the high-speed cameras. A 3D camera calibration is performed using
a translucent acrylic cube with circles at known locations. During the calibration
procedure, a snapshot is taken from each camera view. A custom Matlab script au-
tomatically extracts the image coordinates (𝑢, 𝑣) of the circle-centers and using the
Direct Linear Transformation (DLT), and computes the rotation matrix and trans-
lation vector for each camera. The DLT method also computes the magnification
and distortion of the lens (Kwon, 1998). As the lens is telecentric, the distortion
of the lens is minimal and the projection is uniform over the image plane. One
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can use the rotation matrix, translation vector and magnification to compute the
world-to-camera (w2c) and camera-to-world (c2w) projection matrices. The w2c
matrix projects 3D coordinates to the image plane (𝑢, 𝑣-coordinates) and has the
following structure:
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where 𝑐𝑢 and 𝑐𝑣 are the scaling factors for the 𝑢 and 𝑣 coordinates, 𝑅𝑖 𝑗 the rotation
matrix, and 𝑇𝑖 the translation vector. The c2w matrix can be obtained by taking the
Moore-Penrose pseudoinverse of the w2c matrix:
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In case of the w2c matrix, the 3D coordinate is undetermined and can be anywhere
along the line spanned by the focal point and the 𝑥, 𝑦, 𝑧 coordinates from the w2c
matrix. To reconstruct the 3D point from 𝑢, 𝑣 coordinates a minimum of two camera
views is required for triangulation.

2.3 Real-time processing of muscle activity
The limited buffer memory of the high-speed cameras means that the recording
of high-speed video needs to be triggered only when muscle activity changes.
Therefore continuous monitoring of steering muscle fluorescence is required. The
machine vision camera records fluorescence images at half the wingbeat frequency,
which can result in frame rates up to 120 fps. A machine vision algorithm that can
extract muscle activity at these high frame rates is required to capture the relatively
fast rise of GCaMP fluorescence when a steering muscle is activated.

In a previous study, an automated method to extract muscle activity from steer-
ing muscles with overlapping Regions Of Interest (ROIs) was developed (Lindsay,
Sustar, and Dickinson, 2017). The 12 direct steering muscles of a fly are located
relatively close to the exo-skeleton, but some muscles overlap with another in the
side view of the thorax. This means that an increase in fluorescence within the
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contour of a muscle might not necessarily correspond to that muscle. The unmix-
ing method of Theodore Lindsay, resolves this issue by using a 3D model of the
steering muscles in combination with an optical model of the lens to simulate the
fluorescence image that a muscle activity pattern would generate. By solving the
inverse problem, one can obtain the muscle activity from a fluorescence image and
distinguish which muscles are active for overlapping ROIs.

The 3D model was obtained by staining the muscles of a fly with Phalloidin and
capturing a z-stack of images (Δ𝑧 = 10 µm) using a confocal microscope (Figure 2.8).
By tracing the contours of the muscles in each image of the z-stack, a 3D model of
each muscle was obtained. The optical model of the lens, the so-called pointspread
function, was found by placing fluorescent particles of 10 µm diameter on a glass
plate in front of the fluorescence microscope. By moving a fluorescent particle in
and out of focus, in steps of 10 µm over a range of [−100 µm,100 µm] respectively,
one can measure the degree of spreading or blurriness of a point source. Both the
muscle model and the pointspread function are converted into 3D voxel space with
10 µm spacing. The fluorescence image of a muscle at a certain activity level can
be obtained by convolving the 3D muscle model with the pointspread function.

The muscle fluorescence simulation can be written as a linear system:

𝐴𝑢 = 𝐼𝑆, (2.3)

where 𝐴 is the muscle fluorescence model, 𝑢 the muscle activity vector and 𝐼𝑆 the
vectorized simulated fluorescence image. Muscle activity is obtained by solving the
inverse problem:

𝑢 = 𝑝𝑖𝑛𝑣(𝐴)𝑇 𝐼𝐹 , (2.4)

where 𝐼𝐹 is the vectorized fluorescence image and 𝑝𝑖𝑛𝑣 the Moore-Penrose pseudo-
inverse. The pseudo-inverse of 𝐴 can be computed before the experiment, which
enables real-time computation of 𝑢 during an experiment.

At the start of each experiment, the fly is positioned in front of the objective and the
translational manipulators move the microscope into focus. The exact orientation
of the thorax of the fly is hard to control and it is therefore unlikely that the 3D
muscle model matches the view of the microscope. To solve this alignment issue, a
Graphical User Interface (GUI) allows the user to manipulate a contour model of the
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Figure 2.8: A z-stack of Phalloidin stained images and the pointspread function of
the imaging lens form the basis of the anatomical model 𝐴. Predicted fluorescence
images, 𝐼𝐹 , can be obtained by multiplying muscle activities 𝑢 with the 𝐴 (Lindsay,
Sustar, and Dickinson, 2017).

steering muscles which overlays the image. A set of three control points determines
the size, position, orientation and shear of the muscle contours. The three control
points are used to compute the affine transformation that the 3D muscle model has
to undergo to match up with the muscle contours in the image. By applying the
affine transformation before computing the pseudo-inverse of the muscle model, one
can obtain accurate muscle fluorescence unmixing for flies at any orientation where
the steering muscles are visible.

Figure 2.9: Muscle contours and control points (*) for the steering muscles.

The real-time muscle unmixing model allows activation of the high-speed cameras
on muscle activity. Because the strength of fluorescence can differ per muscle and
exact lighting conditions, it is necessary to scale the individual muscle activity traces.
By using the mean and standard deviation of a muscle’s activity pattern the trace can
be z-score normalized, i.e. subtracting the mean from the signal and dividing by the
standard deviation. Fluorescence of the steering muscles peaks at flight initiation
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and stops and is minimal during periods when the fly is not flying. To normalize the
muscle activity to fluorescence intensity during flight, the periods when the fly is
not flying need to be removed from the z-score calculation. The wingbeat analyzer
signal that is used to strobe the blue LED and microscope camera is quiescent when
the fly is not flying. During the experiment, a rolling buffer of 30 seconds of muscle
activities is kept and the mean and standard deviation are computed over the buffer.
At the same time, the Teensy microcontroller that controls strobing sends a boolean
value whether the fly is flying to the computer that performs the real-time muscle
unmixing. A timer on the computer keeps track of the time since the last flight start
and gets reset to zero when the fly is not flying.

With the flight timer and z-score normalized muscle activity, it is possible to reliably
trigger the high-speed cameras on muscle twitches. At the start of an experiment,
the user can select the muscle of interest and the gradient threshold for which high-
speed video recording will be triggered. A gradient-threshold is used instead of
an absolute threshold as it is a more reliable method to capture significant changes
in muscle activity and wing motion during the 1 second high-speed videos. The
gradient of muscle activity is computed over the last 5 frames in the rolling buffer.
Whenever the absolute gradient value exceeds the user-defined threshold and the
fly has been flying for more than 30 seconds, a trigger command will be send to
the Teensy microcontroller. The Teensy microcontroller will subsequently send a
TTL pulse to the high-speed cameras, saving a 1 second high-speed video centered
around the muscle twitch on the current partition. After 8 triggers all paritions in
the high-speed camera buffer are filled and the experiment is automatically stopped.
The high-speed cameras will automatically start transferring their buffers to the
hard-drive of a designated computer that controls the high-speed cameras.

2.4 Visual feedback through a flight simulator
The steering muscles of a fly control all flight behavior; from subtle changes in wing
motion trim to rapid escape maneuvers. Real-time monitoring of muscle activity
allows us to capture high-speed video of relatively fast changes in wing motion.
Waiting for spontaneous muscle twitches does not guarantee that all possible muscle
activity patterns will be captured over time. The constraints of tethered flight deprive
a fly of almost all sensory feedback, except for vision. Halteres, small club-shaped
organs that beat in counter-phase to the wing, are the fly’s equivalent of an Inertial
Measurement Unit (IMU). Fields of strain-detecting sensors at the base of the haltere,
called campaniform sensilla, can detect the minute Coriolis forces that occur when
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a fly rotates. Flies can sense apparent wind using two sets of antennae, called
Johnston’s organs, on their head. The lack of mechanosensory feedback in tethered
flight means that flies rely almost exclusively on visual feedback.

One of the most important forms of visual feedback for flies is optic flow. Optic
flow is the apparent motion of surfaces and edges on the retina as a consequence of
the relative motion between the observer and its environment. A fly has specialized
groups of neurons on its retina to observe translational and rotational optic flow,
(Schnell et al., 2010). Optic flow is important in flight, as it is difficult to sense
important flight parameters such as ground speed and drift without vision.

To stabilize flight, insects have fast optomotor reflexes that can be triggered by optic
flow patterns (Figure 2.10). As a fly is fixed in tethered flight, these optic flow
patterns cannot be induced by the fly’s own motion. Instead, the surrounding of the
fly has to move. Early research on the optic flow made use of rotating drums with
stripe patterns, but nowadays LED displays are the norm (Reiser and Dickinson,
2008).

Figure 2.10: Optic flow patterns induced by translational motion: forward, sideways,
upward, and rotational motion: roll, pitch, yaw (Egelhaaf, 2013).

To elicit strong optomotor reflexes, and steering muscle activity, I built a LED display
surrounding the fly. The LED display consists of 24 horizontal times 5 vertical 8×8
green LED panels. The dichroic mirror of the epi-fluorescent microscope for muscle
imaging is transmissive for green light. Having a large LED display with fluctuating
green light patterns illuminate the fly, is not ideal when trying to capture small
intensity changes in muscle fluorescence. To minimize disturbances of the muscle
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imaging, a red stage light filter (Roscolux 26: light red) was placed in front of the
LED panels. Shifting the LED panels to red light has the additional advantage that
it improves the fly’s vision. Unlike vertebrates, flies require red light to regenerate
the photo-sensitive retinal (Arshavsky, 2010). Blue light converts trans-retinal into
cis-retinal and this molecular change can be sensed by neurons on the retina. To
convert cis-retinal back to trans-retinal, the retina needs to be exposed to orange/red
light. In the outdoor environment this condition is automatically satisfied as sunlight
contains both blue and red light. In the muscle-imaging setup, the blue LED used
for fluorescence excitation rapidly depletes the trans-retinal in the eyes. The red
light of the LED display helps to balance the trans and cis-retinal concentrations.

To detect optic flow, flies need to track the texture of their visual surround. A pattern
with lots of features in the full field of view of the fly mimics the optic flow patterns
of free flight. A so-called starfield pattern induces strong optomotor reflexes. The
starfield pattern is generated by an algorithm in Python where a 3D volume is filled
with blobs at random positions. A virtual fly and virtual LED display are positioned
in the middle of this 3D volume and the algorithm computes the projection of the
blobs on the LED display from the perspective of the fly. To create visual stimuli, the
fly and the LED display translate or rotate at a given velocity through the 3D volume
at a certain frame rate. For each frame, the algorithm computes the projection of
the blobs on the LED screen. Using this method, I created 6 translational optic flow
patterns (forward, backward, sideward left, sideward right, downward, and upward
flight) and 6 rotational optic flow patterns (roll left, roll right, pitch left, pitch right,
yaw left, and yaw right). Fly vision is much faster than human vision (∼ 25 Hz) and
a minimum refresh rate of 60 Hz is required to ensure smooth perceived motion.
The optic flow patterns are therefore designed to run at 60 fps and have a maximum
angular velocity of 10◦ 𝑠−1 on the fly’s retina for both rotational and translational
patterns.

In free flight, flies continuously adapt their wing motion to stabilize flight and
compensate for drift. While the halteres provide sensory feedback to recover from
disturbances such as wind gusts and turbulence, the visual system predominantly
controls wing adjustments to compensate for rotational and translational drift. In
absence of visual feedback, left and right wing motion tends to become highly
asymmetric. Slight asymmetries in wing motion can cause strong roll and yaw
torques. Highly asymmetric wing kinematics are therefore undesirable, as these
conditions will never be experienced in free flight.
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In order to provide visual feedback, the stroke extent of the left and right wings
are tracked via a machine vision camera. The machine vision camera records
the top view of the fly at 30 fps. A prism (90% transmission, 10% reflection)
splits the IR-illumination from below between the high-speed camera and the flight
behavior camera. A real-time algorithm automatically extracts the left and right
wing amplitude from the wing shadow (Figure 2.11). The difference between the
left and right wing angles is used to control the yaw position of a vertical black
stripe (8 pixels wide) on a red background. This so-called stripe fixation is a very
robust behavior in flies, in which they will adjust the left and right stroke amplitude
to keep the stripe in front of them. The visual feedback provided by the dark stripe
ensures that wing motion is relatively symmetric and that the observed muscle
activity corresponds, as closely as possible to free flight conditions.

Figure 2.11: Snapshot of the Kinefly system. The green and red contours can extract
the left and right stroke angle respectively. Wingbeat frequency can be measured
using the yellow contour (Suver et al., 2016).

During the experiments, the flies will be in closed loop mode for 60 seconds in-
terspersed by an open loop presentation of a randomly selected translational or
rotational optic flow pattern for 5 seconds. The LED panels are updated at 60 fps
by a panel controller which is driven by an ATmega8 MCU (Atmel Corp.), (Reiser
and Dickinson, 2008). Commands from the experimental computer are sent via
an USB cable to the panel controller. During the experiment, three different types
of commands are used: start open-loop mode, start closed-loop mode and select
a display pattern (optic flow or stripe fixation). The display patterns are stored
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on a SD-card that serves as the memory of the panel controller. While the panel
controller commands during the experiment are saved, it was outside the scope of
the research to correlate optomotor stimuli to changes in muscle activity and wing
kinematics.

2.5 Combining muscle imaging and high-speed videography in one setup
The experimental setup consists of three components that have to be integrated
to collect the full range of muscle activity and wing motion a fly employs during
flight: high-speed videography, real-time muscle imaging, and the flight simulator.
Coordinating multiple processes and saving all the data in real-time is a demanding
task for any type of software. A state-of-the-art program that allows to run hundreds
of processes in parallel is the Robotic Operating System (ROS), (Stanford Artificial
Intelligence Laboratory et al., 2018). As its name suggests, ROS is used to control
and test robots. ROS can process, analyze, and store data streams from multiple
sensors and send out commands to micro controllers, all simultaneously. At the
start of the experiment, the ROS environment called the roscore is launched. Within
the roscore, there are two types of processes, or nodes: (1) a publisher node that
publishes a message and (2) a subscriber node that is activated when a new message
is published. Sensors like cameras are typically publisher nodes, that publish
a message containing image data whenever a new frame has been recorded. A
subscriber node to the camera message can come into action and apply an algorithm
on the new image, extracting optic flow for example. In a typical application such
as an autonomous car, the resulting optic flow map gets published by a dedicated
publisher and another subscriber can infer the vehicle’s speed from the optic flow
map. This network of publishers and subscribers is flexible and easy to use, while
the under-the-hood software of ROS allocates CPU resources such that all nodes
operate in parallel.

Synchronization is one of the most important aspects of the experiment. The frame
rates of the high-speed cameras (15,000 fps) and the fluorescence microscope (100
fps) are two orders of magnitude apart. Key to synchronizing the high-speed video
data and the muscle imaging is the Teensy 3.2 microcontroller that controls the
strobing of the fluorescence camera and the blue LED. Using the rosserial package,
the Teensy can be turned into a publisher node in the roscore environment. Similarly,
the software running on the Teensy microcontroller can subscribe to nodes in the
roscore environment. The Teensy microcontroller takes in the synchronization
signal of the high-speed cameras and counts the number of frames since the start of
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Figure 2.12: Rendering of the experimental setup. High-speed cameras 1-3 run
continuously at 15,000 fps with a shutter time of 33 𝜇𝑠 and IR (850 nm) backlighting.
An epi-fluorescent microscope images steering muscle fluorescence from the left
side of the the fly at half the wing beat frequency (camera 4). Red LED panels
surrounding the fly can display open and closed-loop stimuli, where visual feedback
is enabled by a behavior camera (camera 5) that images the top view of the fly via a
prism.

the experiment using a long integer called the frame count. Synchronization of the
fluorescence images and high-speed video frames is achieved by adding a timestamp
to each fluorescence frame. The muscle fluorescence camera is strobed such that the
shutter is open for two consecutive blue light pulses. As soon as the shutter closes,
the camera will read out the chip and send a frame to the experimental computer.
At the start of each blue light pulse, the Teensy microcontroller will publish the
current frame count. Whenever the camera publishes a frame, a subscriber to the
camera topic will add the latest frame count to the image as a timestamp. After
extracting the muscle activity from the fluorescence image, the image timestamp is
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added to the muscle activity values as well. When a TTL pulse triggers the recording
of a high-speed video, the Teensy microcontroller will publish a message with the
frame count at the instant that the TTL pulse arrived. The trigger timestamps and
the muscle activity timestamps allow me to synchronize high-speed video data and
muscle activity.

Figure 2.13: Image of the inside of the setup during an experiment.

Before the automated recording of wing motion and muscle activity can start, the
user needs to perform several actions. First, the tethered fly needs to be positioned
in focus of all three high-speed cameras. The position of the fly can be manipulated
in three orthogonal directions using linear motion stages. Once the fly is in focus,
the epi-fluorescence microscope can be moved via linear motion stages to get the
steering muscles in focus. To extract muscle activity from the fluorescence images,
it is necessary to scale and align the ROIs to the steering muscles and compute
the affine transformation of the 3D muscle model. The alignment of the muscle
ROIs is done via a Graphical User Interface (GUI) in which the muscle contours are
displayed over a live view of the fluorescence camera and the user can drag the three
control points (Figure 2.14). Muscle activity of the last 30 seconds is displayed at
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four panels and helps the user to assess the data collected. The GUI is implemented
in Python, using the PyQt and Pyqtgraph packages. For the closed-loop visual
feedback, it is necessary to align the left and right wing ROIs in the Kinefly GUI.
The final step that the user has to take is selecting a muscle and activity threshold that
triggers the recording of high-speed videos. The real-time muscle activity display
can help the user to select an interesting muscle and set the activation threshold to
a level that ignores minor changes in activity but is low enough to be triggered by
major changes. Once the user has determined the trigger settings, they can click
the start recording button which starts the automated experiment. The open and
closed-loop visual stimuli will be displayed on the LED display and the recording
of a high-speed video whenever the muscle activity exceeds the trigger threshold.
If the trigger threshold is too high, the user can adjust the threshold during the
experiment. The experimental script keeps track of the number of triggers and the
experiment is automatically stopped when 8 triggers are reached. Alternatively, the
experiment is also stopped when the duration exceeds 30 minutes.

Figure 2.14: Snapshot of the GUI during an experiment.

Once the experiment ends, the high-speed cameras will automatically transfer the
high-speed videos to a dedicated computer. The relevant data of the muscle imaging
needs to be saved to a hard drive during the experiment however, as the available
Random Access Memory (RAM) is insufficient. ROS has a dedicated package,
named rosbag, that saves all published topics during an experiment. Saving the
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fluorescence images at > 100 fps via rosbag, turned out to be problematic however,
because the images could not be written to file fast enough. Using the h5py library
in python, it is possible to write all data to an hdf5-file during the experiment. At
the start of the experiment, an hdf5 file is created and data can be written to the file
during the experiment. The hdf5 file records a variety of topics: fluorescence images
(100 fps), kinefly images (30 fps), muscle activity, left and right stroke extend from
kinefly, trigger timestamps, trigger threshold, randomly selected open-loop patterns
(index), flight state (flying or not flying), and the affine transformation parameters
(𝑢𝑣-coordinates of control points). Each topic contains the frame count timestamp,
such that all data can be synchronized. The hdf5 file is closed automatically at the
end of the experiment.

Using this automated process of data collection, I collected a large dataset of high-
speed videos and muscle fluorescence data. I tried to record data from at least 5
flies with a specific trigger muscle (Table 2.1). This was successful for all steering
muscles except the 𝑖𝑖𝑖1 and 𝑖𝑖𝑖2 muscles. In almost all experiments, 𝑖𝑖𝑖1 activity was
only observed during flight starts and stops. The 𝑖𝑖𝑖2 muscle is active during flight,
however, changes in muscle activity tend to be gradual. In total, I collected 479
high-speed videos from 82 flies.

trigger muscle fly 1 fly 2 fly 3 fly 4 fly 5 fly 6 fly 7 fly 8 fly 9 fly 10
𝑏1 5 2 8 6 8 8 - - - -
𝑏2 4 8 4 7 7 6 1 1 - -
𝑏3 8 2 8 7 3 7 8 - - -
𝑖1 8 3 1 2 8 8 5 8 5 -
𝑖2 6 8 5 6 3 4 8 2 2 -
𝑖𝑖𝑖1 4 - - - - - - - - -
𝑖𝑖𝑖2 8 3 8 6 - - - - - -
𝑖𝑖𝑖3 8 8 8 8 7 2 8 8 3 8
ℎ𝑔1 6 8 8 4 5 1 3 - - -
ℎ𝑔2 8 8 8 8 5 2 5 6 - -
ℎ𝑔3 8 8 8 1 5 8 8 7 - -
ℎ𝑔4 8 5 8 8 7 4 - - - -

Table 2.1: Table of high-speed videos recorded for different trigger muscles. Note
that each cell is the number of videos recorded during an experiment from a single
unique fly.
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C h a p t e r 3

ACCURATE 3D POSE RECONSTRUCTION OF WING MOTION

The full dataset consists of 527 seconds of high-speed video per camera and contains
23.7 million frames. It is obvious that an automated method is required to extract
wing and body pose from the images. There are several methods to get the position
and orientation of the wing from multiple camera views: hull reconstruction, 3D
model fitting, and neural network prediction. In previous free flight experiments
(Zabala et al., 2009), (Muijres, Elzinga, Melis, et al., 2014), (Muijres, Elzinga,
Iwasaki, et al., 2015), (Muijres, Iwasaki, et al., 2017), the 3D model fitting method-
ology of (Fontaine et al., 2009) was used. Although the automated tracking method
works well for free flight experiments, it requires manual annotation of the wing
and body pose for 5 subsequent frames. After manual annotation, the method can
track body and wing motion using an Unscented Kalman Filter (UKF) and Iterative
Closest Point (ICP). For the ICP method to work, it needs an initial pose estimate
that is close to the actual pose of the body or wing. In the method developed by
Fontaine et al., 2009, this initial pose estimate is provided by the UKF, which relies
on the tracking results of previous frames. When the wing is not visible in one
or more camera views, the ICP method might not converge on a pose close to the
true solution. Once an erroneous pose vector was found, the initial pose vectors
predicted by the UKF for subsequent frames deviate and the tracking method will
loose track. Once the method looses track, the values of the tracker will be far from
the actual solutions. Only manual re-tracking of the body and wing pose can restore
the tracking method to converge on the true pose vectors.

A large difference between the experiments in this study and previous studies is the
tethered flight condition. Although tethered flight constrains the orientation and
position of the body, it is actually more difficult to track wing motion using the
Fontaine et al., 2009 method. In tethered flight, the wings clap together at the end
of the upstroke for most wingbeats. Clap-and-fling is rare in free flying Drosophila;
however, it is ubiquitous in tethered flight. Once the wings clap together, the ICP
method has to "decide" which wing to follow and there is a high probability that
the method will loose track. With a wingbeat frequency of 200 wingbeats per
second, the amount of manual re-tracking required becomes impractical. A new
time-independent tracking method is required to track the wing motion in the dataset.
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In this chapter, I will discuss the existing methods used for wing pose reconstruction
followed by the time-independent tracking algorithm I developed for tethered flight.
The developed methodology consists of two steps: a pose prediction step by a trained
Convolutional Neural Network (CNN) and a pose refinement step by a Particle
Swarm Optimization (PSO). As the method does not use the tracking results of
previous frames, converging on an erroneous pose does not affect future solutions.
After the automated tracking method has run through a high-speed video, there are
two post-processing steps: first the effect of outliers is reduced by Kalman filtering
and secondly the wing pose is converted into Tait-Bryan angles in the strokeplane
reference frame to increase the interpretability of the wing motion data.

3.1 Hull reconstruction, 3D model fitting and neural networks
In the last three decades, the availability and affordability of high-speed cameras and
computers has dramatically increased. With this improved hardware, it is relatively
easy to collect large quantities of data. There are however surprisingly few machine
vision algorithms to automatically extract kinematic data from videos of animal
motion. In this section, I will discuss three different algorithms that can track wing
motion in insect flight based on high-speed video from multiple angles.

Figure 3.1: The 3D-shape of the fly is carved out in voxel-space by removing all
voxels that project to background pixels for each view (Ristroph, Berman, et al.,
2009).

Hull reconstruction
Ristroph, Berman, et al., 2009, developed a 3D hull reconstruction for automated
wing tracking. The high-speed videos of free flying flies are capttured at three
orthogonal angles and back-lit by IR-panels. A DLT camera calibration provides the
camera-to-world and world-to-camera matrices of the three cameras. The camera-
to-world matrices are used for voxel carving, which forms the basis of the 3D hull
reconstruction method. Before the voxel carving can start, a binary mask is obtained
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for each frame in which the background (white) pixels get a value of 0 and the fore-
ground (black) pixels get a value of 1. This foreground segmentation is performed
by setting an intensity threshold and assigning pixels above the threshold as fore-
ground pixels. The voxel carving starts by creating a voxel cube with sufficiently
large dimensions that it contains the projected image of each camera view and the
voxel spacing corresponds to the distance between pixels on the camera chip times
the magnification. For each frame triplet, the values of the voxels in the voxel cube
are first set to 1. Subsequently, for each view the camera-to-world matrix is used to
find all voxels that correspond to a pixel value of 0 in the binary mask (Figure 3.1).
All voxels that project to a pixel value of 0 in one or more camera views are set to
0. The remaining voxels that are 1 form the hull reconstruction of the fly.

Figure 3.2: A k-means clustering algorithm segments the voxel space into body, left
wing and right wing clusters (Ristroph, Berman, et al., 2009).

Once the hull reconstruction has been obtained, the voxels are segmented into 3
segments: body, left wing and right wing. Using k-means clustering it is possible to
reliably segment body and wings. The position of the body is found by computing
the center of mass from the body voxels. Orientation of the body and wings is
subsequently found by performing Principal Component Analysis (PCA) on the
segmented voxels. Three principal components are computed per voxel segment
and the first principal component corresponds to the longitudinal axis of the body or
wing. The second and third principal components do not reliably yield the rotation
angle of the body or wing around the rotational axis however. Using geometric
information of how the body and wings are coupled helps to establish the correct
rotation angle. In case of the wings, the projected voxels form a parallelepiped
shape and it is assumed that the largest diagonal plane forms the (flat plate) wing.
To determine the rotation angle of the body, along the longitudinal axis, and the
correct sign of the longitudinal axis, i.e. pointing to the head, the body voxels
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are segmented into 3 sub-segments via k-means clustering. The 3 sub-segments
correspond roughly to the head, thorax, and abdomen of the fly, and their centers
of mass form an arc. The plane which is spanned by the 3 centers of mass is used
to compute the rotation angle. It is assumed that the sub-segment with the least
amount of voxels corresponds to the head.

Figure 3.3: Definitions of Euler angles describing body orientation (𝜓, 𝛽, 𝜌) and
wing orientation (𝜙, 𝜃, 𝜂) w.r.t. the longitudinal axis of the body or wing segments
(Ristroph, Berman, et al., 2009).

Using the longitudinal axes and the rotation angle of the symmetry axis around it,
Ristroph, Berman, et al., 2009 defined the orientation of a segment w.r.t. to the world
reference frame via three Euler angles, Figure 3.3. The method is time-independent
and has been used successfully in several free flight studies: (Bergou et al., 2010),
(Ristroph, Bergou, Ristroph, et al., 2010), (Ristroph, Bergou, Guckenheimer, et al.,
2011), (Beatus, Guckenheimer, and Cohen, 2015) and (Whitehead et al., 2015).
Bomphrey et al., 2017, an adapted a version of the tracking method to track wing
camber by recording the wing motion of a mosquito from 8 different angles. With
only three orthogonal angles and telecentric lenses, some of the geometric assump-
tions of the method fall apart, however. For example, a large number of false voxels
are introduced when the body occludes the wing in one or more views. For most
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orientations of the fly this is likely to happen for several frames in each wingbeat.
The parallelepiped that is used to find the largest diagonal plane corresponding to
the wing surface becomes a rectangular box when telecentric lenses are used, as the
back-lighting and the acceptance angle of the lens are parallel. Using this method,
the wing pitch angle cannot be reliably found in the experimental setup of this thesis.

3D model fitting
The 3D model fitting method of Fontaine et al., 2009 relies on a B-spline model
of a fly. B-spline surfaces capture the essential geometry of the fly with a minimal
number of parameters. The body model consists of three rotationally symmetric
revolved B-spline surfaces of the head, body and abdomen (Figure 3.4). A single
closed B-spline forms the model of the wing, as the wings are assumed to be flat
plates. For simplicity, the three body components are assumed to form one rigid
body. The 3D model of the fly consists of three rigid bodies and the tracking problem
is to resolve the position and orientation of each body.

Figure 3.4: Definition of pose vectors describing position and orientation of the
body and wings. The position of the body is described by translation vector 𝑇 and
the orientation of the body reference frame (𝑥, 𝑦, 𝑧) relative to world frame 𝐹 by
quaternion 𝑄𝑏. Orientation of the left wing is given by the quaternion 𝑄𝑙𝑤 and the
(fixed) joint position by 𝑇𝑏𝑤, both in the body reference frame. A similar definition
is used for the right wing (Fontaine et al., 2009).

The orientation of the 3D model is described using quaternions. A quaternion is
a 4D vector that gives the rotation of one reference frame w.r.t. another reference
frame as a 3D rotation axis and a rotation around that axis. The formulation of a
quaternion, 𝑞, is:
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𝑞 =


cos(𝜃/2)

sin(𝜃/2)𝑒𝑥
sin(𝜃/2)𝑒𝑦
sin(𝜃/2)𝑒𝑧


(3.1)

where 𝑒𝑥 , 𝑒𝑦, and 𝑒𝑧 are the components of the normalized rotation axis and 𝜃 is the
rotation around this axis in radians. By definition, the norm of a quaternion has to
be 1: ∥𝑞∥ = 1. Although a quaternion requires an additional parameter to represent
orientation, quaternions are mathematically preferable over Euler angles. For some
orientations, Euler angles can experience gimbal-lock. Gimbal-lock occurs when
there are multiple (infinite) combinations of Euler angles that achieve the same
orientation. These non-unique solutions for the same orientation are problematic
when used in a cost function for optimization, for example.

Figure 3.5: Segmentation of the image in background (black), wing (yellow), and
body (green) pixels by background subtraction and intensity thresholding. The
intensity threshold to separte body and wing pixels is found by fitting two normal
distributions to the probability distribution of the pixel intensities and searching for
the minimum between the two normal distributions (Fontaine et al., 2009).

Before starting the automated tracking, the user has to scale the B-spline model
to the dimensions of the fly in the camera views using a dedicated GUI. Once the
model is scaled appropriately, the median image is computed per camera view for
the whole sequence. By subtracting the median image from the video, a background
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subtraction is performed. The background subtraction removes background pixels
from the resulting frames. Foreground segmentation between body and wing pixels
is performed by fitting two Gaussian distributions to the probability density of the
intensity values in a frame and finding the minimum value in between the two
distributions (Figure 3.5). This minimum value is subsequently used for intensity
thresholding.

Figure 3.6: Correspondences between image contours (yellow) and model contours
(red) (Fontaine et al., 2009).

With the body and wing pixels known, the algorithm extracts the contours of the
body and wings from the two masks with a closed-contour B-spline. The body and
wing contours in each camera view are used in the ICP algorithm. With the body
and wings at a certain initial pose, the ICP algorithm first projects the fly model onto
each camera view. A new set of closed-contour B-spline curves is fit to the projected
body and wing models. Now for a fixed number of points, 𝑁 , on the closed-contour
B-splines derived from the image, the normal is computed. A search is performed
along the normal vector to find the intersection with the B-spline curves from the
model projection. After the line-search, a set of correspondences is found between
the image and model contours of the body and wing for each camera view (Figure
3.6). The squared distance between two corresponding points is used as an error
metric. By minimizing the sum of the squared distance of all correspondences, it is
possible to find the pose vector for the model that fits the 3D model the best in all
camera views.

The ICP algorithm does not always converge onto the optimal solution, however.
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If the initial pose vector is too far from the optimal pose vector, the optimization
will converge towards a local optimimum. To ensure that the initial pose vector
of the model is close enough to the globally optimal solution, an UKF is used to
predict the pose of the model using prior (tracked) pose data. Kalman filters use a
model of the system dynamics and measurements of the actual dynamics to predict
the future behavior of the system. An UKF is a Sigma-Point Kalman Filter, that
uses so-called Sigma-points to sample the state of a non-linear system. The UKF
prediction provides a good initial estimate, even when the wing is obstructed in
some of the camera views.

The rotational symmetry of the body model makes it impossible to find the roll
angle. A set of constraints is applied during the ICP optimization to tie the body
roll angle to the joint positions of the left and right wing. An additional constraint
is that the norm of the quaternions has to be 1.

Before the automated tracker can analyze a high-speed video sequence, the user
needs to scale the 3D model and track the pose vector of the fly in the first 5
frames. Verification of the 3D model fitting and human tracked frames of the body
orientation, shows that the tracker is within 5◦ of the human tracked angles. The
method has been used in several free flight studies: (Zabala et al., 2009), (Muijres,
Elzinga, Melis, et al., 2014), (Muijres, Elzinga, Iwasaki, et al., 2015), (Muijres,
Iwasaki, et al., 2017) and (Veen, Leeuwen, and Muijres, 2020). Analyzing high-
speed videos of tethered flies with 3D model fitting turned out to be problematic
however. Manual re-tracking of the wings during clap-and-fling is extremely tedious.

DeepLabCut
A relatively recent method for tracking animal motion is named DeepLabCut,
(Mathis et al., 2018). DeepLabCut relies on a deep residual neural network to
trace key-points in images. The method is based on the tracking of human poses
from single images using deep neural networks (Pishchulin et al., 2016). While
human pose tracking relies on a dataset of over 25,000 annotated images to train the
neural network, DeepLabCut makes use of transfer learning to drastically reduce
the required training data. Manual annotation of tens of thousands of images is time
consuming and often unfeasible for researchers. Transfer learning relies on the fact
that many aspects of machine learning problems are the same, i.e. feature extraction
and object detection from images. By copying parts of a neural network that is
trained on one dataset and integrating it in a new neural network that is used for a
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different task, the required training set for the new neural network can be drastically
reduced.

In the case of DeepLabCut, the architecture of the ResNet50 network has been copied.
ResNet50 is a residual neural network of 50 layers that is designed for the ImageNet
dataset, J. Deng et al., 2009. ImageNet is a vast dataset of images, > 3.2 million,
containing manually labelled objects that span thousands of categories. Although
the goal of the ResNet50 network is to predict the correct label for objects in the
images, the convolutional layers of the network are primarily involved in feature
extraction. Categorization happens primarily in the last layer of the ResNet50
network: the fully connected or dense layer. By only copying the convolutional
layers of the trained ResNet50 network, it is possible to inherit the feature extraction
capabilities.

Figure 3.7: Examples of some activation functions for neural networks (V7, 2022).
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Before focusing on the specific architecture of the DeepLabCut network, it is infor-
mative to go over the different types of layers that have been used. Convolutional
layers scan over the image with filters of a certain window size. The filters are called
kernels and the weights of these kernels are initialized randomly and subsequently
updated by back-propagation of the prediction error. During the convolutional op-
eration, the pixels in the filter window are multiplied with the weights of the kernel
and summed. The resulting scalar value is projected onto an activation function.
When the activation function is linear, the convolutional output is multiplied by 1.
Another activation function that is often used is the Rectified Linear activation Unit
(ReLU), which returns a 0 when the input value is below 0 and returns the input
value when it is above 0. In the case that an image has Red Green Blue (RGB) color
channels, the same convolutional filter is applied over all three channels and all the
values are summed and mapped onto the activation function, resulting in a single
scalar output. Similarly, convolutional layers can be stacked upon each other and
the number of kernels of the previous layer amounts to the number of input channels
for the next layer.

The layer that can perform complex inference is the fully connected or dense layer.
A dense layer consists of a number of predefined neurons that all take in the same
input vector. The input vector is subsequently multiplied with a weight vector in
each neuron and summed into a single scalar value. This scalar value is mapped onto
an activation function, which can have a bias value that can shift the decision point
of the activation function from 0 to the bias value. When a linear activation function
is used in a dense layer, training the layer is similar to performing linear regression
on the data. When the activation function is non-linear, a non-linear regression is
performed. The complexity of the functions that can be learned by dense layers
increases with the number of neurons used and the number of concatenated dense
layers. In practice, one or two dense layers with sufficient neurons can approximate
almost any function intrinsic to the dataset.

To reduce the size of image data, pooling layers are often used. Similar to a
convolutional layer, a pooling layer scans the image with a certain window size and
stride. Instead of performing a convolution, the max or mean value of the window
is computed. In contrast to convolutional layers, pooling layers do not sum over the
kernel dimension.

A problem that is often encountered in deep neural networks is the vanishing gra-
dient problem. When multiple convolutional layers are stacked upon each other,
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the error update is multiplied by the weights of the convolutional layer during the
back-propagation phase. As the weights are often between −1 and +1, the error
update becomes smaller and smaller. This results in very small updates of the first
convolutional layers of a deep CNN during the training phase. As a consequence,
the vanishing gradient problem reduces the effectiveness of deep neural networks
and adding layers might decrease network performance. Pooling layers can help to
reduce the vanishing gradient problem. Another remedy is to rescale the intermedi-
ate data between layers via a batch-normalization layer. To speed up training, data
is usually presented in batches during the training phase. In the case of image data,
a random selection of images and associated labels are stacked together in one batch
and fed through the neural network. The average prediction error is computed for
the whole batch and used to update weights during the back-propagation phase. A
batch-normalization layer computes the mean and standard deviation of the output
data of the previous layer. The data is rescaled using the batch mean and standard
deviation such that the output of the batch-normalization layer is centered around
0 and has a standard deviation of 1. Rescaling between layers keeps the gradi-
ent update at similar magnitude between layers and allows for much deeper neural
networks.

When the stride of a convolutional or pooling layer is more than 1, the data dimen-
sions of the output decrease. This compression of data is often used to shrink the
number of connections to a dense layer at the end of the network. Expansion of
data can be achieved with deconvolution layers, which multiply a scalar value with
a kernel with a given window size and stride. After multiplication with the kernel
for each input channel, the data is summed over the channel dimension and mapped
onto an activation function. Deconvolution layers are typically used in a network
that predicts a probability heatmap of key-point locations or segmented images.

Now that the different layer types in DeepLabCut have been explained, we can focus
on the network architecture. The ResNet50 architecture consists of several residual
blocks (Figure 3.8). A residual block consists of two convolutional layers with 3× 3
windows and a stride of 1, immediately followed by a batch-normalization layer and
a ReLU activation function. A bypass of the input to the residual block gets added
to output of the residual block, followed by another ReLU activation function. The
bypass or residual helps to combat the vanishing gradient problem by providing a
shortcut for back-propagating the error update. After the ResNet50 layers, there are
several deconvolution layers that expand the network back to the image size. In the
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Figure 3.8: Architecture of the DeepLabCut network, the top part of the network
consists of the convolutional layers of the ResNet50 network pretrained on the
ImageNet dataset, followed by a number of deconvolutional layer that produce a
heatmap of the probability of keypoint positions. The ResNet50 network consists of
multiple stacked residual blocks, which consists of convolutional layers with 3 × 3
filters, batch-normalization, ReLU activation, and a by-pass that adds on the input
of the residual block to the output (Mathis et al., 2018).

last deconvolution layer, each kernel predicts the location of one key-point. The
ResNet50 layer weights are loaded from a network trained on the ImageNet data
while the deconvolution layers are initialized with random weights.

To train DeepLabCut on a specific tracking problem, the user needs to annotate
keypoints on images of the dataset via a GUI. Depending on the complexity and
required accuracy of the tracking problem, the user needs to manually annotate
several hundreds to thousands of images to provide a large enough training set.
By rotating and flipping the images and labels, the training set can be augmented.
The labeled dataset is split between a training set (95%) and a validation set (5%).
After several hundred-thousands of epochs of training on the dataset, the training and
validation errors stabilize around a minimum value. The validation error approaches
the human annotation error, a result to be expected as the network cannot surpass
the accuracy of the training data.
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The trained DeepLabCut network performs well on several example tracking prob-
lems (Mathis et al., 2018). For example, several keypoints can be tracked accurately
on a fly walking around and laying eggs in an acrylic cube (Figure 3.9). Trained on
a dataset of 580 human annotated frames, the network can predict keypoints in the
validation set with a root mean square error of 4.2 pixels.

Figure 3.9: Tracking of keypoints on Drosophila melanogaster walking around and
laying eggs in an acrylic cube (Mathis et al., 2018).

DeepLabCut is designed to track 2D keypoints on images, and some additional
processing is required to track 3D wing motion from multiple camera views. The
most straightforward method to obtain 3D keypoints is by training DeepLabCut on
tracking 2D keypoints in each camera view and subsequently triangulate the 3D
keypoints from the predicted 2D keypoints in all views. In Karashchuk et al., 2021,
the legs of walking Drosophila melanogaster were filmed from multiple viewpoints
(6), tracked in each view using DeepLabCut and subsequently triangulated. A min-
imum of 2 camera views is required to perform the triangulation, and the accuracy
of the triangulation improves with the number of camera views in which keypoints
are visible.

3.2 FlyNet: Combining neural network prediction with 3D model fitting
The methodologies discussed in the previous section form the state-of-the-art in
markerless tracking of animal motion. At the end of 2017, after analyzing some
initial high-speed videos of tethered flight, it became clear that hull-reconstruction
and 3D model fitting would not suffice to track wing motion accurately in my exper-
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imental setup. At this point, it was decided to design and program a new automated
tracker that is time-independent from scratch. I tested several methodologies: per-
forming 3D model fitting with global optimization methods like PSO and genetic
algorithms, 3D model fitting on the hull-reconstructed voxel clouds and direct pre-
diction of the wing pose vectors by several CNN architectures. These techniques all
lacked the ability to track wing motion accurately and reliably during the wingbeat.

The most promising method was the direct prediction of wing pose vectors by CNN
networks. Predictions of wing motion would be remarkably accurate for high-
speed video sequences that were present in the training set. For videos of different
flies (at similar position and orientation within the images), the performance of the
trained CNN would be highly erratic however. When wing motion would change
significantly during a high-speed video sequence, i.e. when steering muscles change
their activity pattern, the predicted pose would remain close to the labeled wing
motion pattern. In short, the training set does not contain sufficient variation in
wing motion and fly shapes and orientations to generalize over all video sequences
in the dataset.

The manual annotation of wing pose vectors from frame-triplets was performed
using a dedicated GUI, in which the user can rotate and translate a 3D model of a fly
projected on top of the images. By visually matching the contours of the 3D model
and the underlying images, an accurate annotation of the body and wing pose vectors
was obtained. Using the GUI, an initial manually annotated dataset of around 1000
frame-triplets and associated pose vectors was obtained. On average a full wingbeat
consists of 75 frame-triplets, and this manually annotated dataset contains only 10
wingbeats from 10 different flies. It is therefore not surprising that the trained CNN
does not generalize well over videos with varying wing motion patterns.

In an attempt to increase the training set with a large variety of flies and wing
motion, artificial training data was created using the VTK library in Python. A 3D
model of a fly would be scaled and colored with some random variation of typical
scale and color of real flies in the actual dataset. Subsequently, the fly model was
positioned and oriented according to the pose vectors in the manually annotated
dataset with some random variation added. Using the DLT-calibration of the high-
speed cameras, snapshots of the 3D fly model are taken from each camera view.
These artificial images are coupled to the body and wing pose vectors that have been
used for the positioning the 3D model. Repeating this process 100,000 times yields
an artificial dataset that has a wide variety wing motion patterns and zero error in the
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pose registration. After training the network on the artificial dataset, the prediction
error on an artificial validation set was low. Unfortunately, the network cannot
achieve a similar performance on predicting the wing motion in video sequences of
real flies.

In September 2018, when DeepLabCut became available, Tarun Sharma, a PhD
student in the Dickinson lab, tested its performance in tracking 10 keypoints on each
wing in each camera view and subsequently triangulating these keypoints. Using
around 1000 manually annotated frame-triplets with keypoints, it was possible to
accurately predict 2D keypoints during most frames in a wingbeat. When keypoints
were only visible in one or two views due to obstruction by the body, the triangulation
became problematic. DeepLabCut would still provide an estimate of the location of
the 2D keypoints in the obstructed views, but the prediction error was too large to get
an accurate location of the 3D keypoint. Of the 10 keypoints on the wing, only the
wingtip keypoint could be reliably triangulated during the full wingbeat. This was
insufficient to derive variables like the wing pitch angle with sufficient accuracy.

The number of manually annotated frames that are required to accurately predict
wing motion with a neural network is likely to be much larger than the thousand
manually annotated frames. Most predictions of the network are close to the actual
pose of the wings. With some refinement of the predicted pose, it is possible to
perform accurate tracking of the wing motion. The refinement step can be performed
by 3D model fitting. Instead of a Kalman filter, a trained CNN can predict the initial
pose required for the 3D model fitting. The advantage of CNN prediction of the
initial pose vector is that it is independent of previous frames. With CNN prediction
and 3D model fitting refinement, it is possible to accurately track wing motion with
a limited training set. In the remainder of this chapter, I will discuss the details of
this tracking method, named FlyNet.

3.3 FlyNet: Body and wing pose vectors
At the core of the model fitting method is a 3D model of a fly. The 3D model is based
on images from a tethered flying fly from different angles. Contours were extracted
from the images to determine aspect ratios and curvatures of the head, thorax and
abdomen. The 2D contours were converted into a 3D surface via Non-Uniform
Rational B-splines (NURBS). Like B-splines, NURBS surfaces can be manipulated
by changing the locations of control points (in 3D). By collapsing control points
at the edges of a NURBS-sheet into each other, one can create a NURBS-sphere.
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Three NURBS-spheres were created for the head, thorax and abdomen and the
control points were manipulated to reshape the spheres according to the aspect
ratios and curvatures found in the images.

Figure 3.10: Wing veins, L1-6. The bending axes are marked by the striped magenta
lines.

The wings of the fly are thin and can be assumed to be flat. Observations from high-
speed videos show that the wings can deform significantly during flight, however.
Deformation seems to occur along three different hinge lines that roughly follow
three veins on the wing: L3, L4, and L5 veins (Figure 3.10). The model of the wing
consists of four rigid panels connected by three hinge lines. To reduce the number
of parameters representing wing deformation, it is assumed that the deformation
angle along each hinge line is equal (Figure 3.11). The deformation angle, 𝜉, is the
sum of the local deformation angle of each hinge line: 𝜉 = 𝜉/3 + 𝜉/3 + 𝜉/3. Based
on the manual annotation of wing pose, the assumption for uniform distribution of
deformation holds for most frames in the dataset.

In most tracking methods, the wing hinge is assumed to be a ball-joint with 3
degrees of freedom (DOF). The wing hinge is complex, however, and the ball-joint
assumption might not represent wing motion accurately. Another assumption that
is often made in tracking methods is that the wing is a rigid, flat plate. Besides
chordwise deformation, which is captured by the angle 𝜉, the wing can also bend
spanwise at a flexible section close to the root of the wing (Figure 3.10). It is
difficult to model spanwise bending of the wing, and the exact kinematics of the
wing hinge and; therefore I have chosen to ignore these deformations in my wing
model. Instead, the wing root and hinge are not included in the wing model; rather
the origin of the wing is the intersection between the radial vein and the spanwise
bending axis. Wing motion is described by a translation and rotation of the origin
relative to the world reference frame.
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Figure 3.11: 3D model of a fly. The grey wireframes show the shape of the head,
thorax and abdomen models. Left and right wing models are shown in red and blue
respectively. The path of the left and right wing root traces are plotted in a reference
frame that is fixed to the thorax model. Chordwise deformation angle 𝜉 is displayed
by the local deformation angles, 𝜉/3, around the 3 hinge lines (dotted lines).

The wing pose vector consists of 8 values: 4 parameters for a quaternion describing
the orientation of the leading edge panel of the wing relative to the world reference
frame, 3 parameters for a translation vector describing the distance between the
wing root and the origin of the world reference frame, and the wing deformation
parameter 𝜉. For the head, thorax and abdomen pose vectors there are 7 parameters
each: a quaternion and a translation vector. The complete fly pose is described by
a vector with 37 parameters: head (7), thorax (7), abdomen(7), left wing (8), and
right wing (8). Besides the pose vector there is also a scaling vector that consists of
the 5 parameters that scale the body and wing components independently.

3.4 FlyNet: Predicting pose with a Convolutional Neural Network
The 3D model of the fly can be used to manually annotate the fly pose in each
frame triplet. A module in the FlyNet GUI, which was constructed in Python
with the PyQt and PyQtGraph packages, allows the user to load the 3D fly model,
scale the different model components and rotate, translate, and deform the model
components. The GUI uses the DLT-calibration of the high-speed cameras to project
a wireframe of the fly model onto the three camera views. The user can select a
model component to: scale, rotate, translate, and deform. By adjusting the pose
vector of each component until it matches the images in each view, an accurate label
can be found for each frame triplet (Figure 3.12). Using this GUI, I collected a
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manually annotated dataset of 1000 frame triplets and associated pose vectors.

Figure 3.12: FlyNet GUI with 3D model (yellow wireframe) projected on the camera
views.

With the annotated dataset it is possible to train a CNN to predict the pose vector.
The input of the network is a frame triplet of three 256 × 256 pixel images. Neural
networks work best with data centered around 0 and a standard deviation of 1. The
image data has a bit-depth of 8 and needs to be rescaled by dividing by 255. After
normalization, the images are cropped into 224× 224 pixel images that are centered
around the thorax of the fly in each view. The cropping removes unnecessary pixels
and makes sure that the fly’s body is in the middle of the image. After cropping the
image, the next data pass is to a convolutional block that sequentially analyzes the
cropped images of the camera views. The CNN is implemented in Python using the
Tensorflow library with Graphics Processing Unit (GPU) support.

The CNN architecture consists of three convolutional blocks, one for each camera
view. Most of the components of the convolutional block are explained in the previ-
ous section about DeepLabCut: convolutional layer (Conv2D), batch normalization
(BatchNormalization), and max pooling (MaxPooling2D). In this case, however,
a dropout layer (Dropout) is added, which randomly turns off a certain fraction of
the input to the next layer. By turning off certain kernels or nodes for the following
layer at random, the network becomes more robust and generalizes better over the
dataset. When a training set is relatively small, as is the case for our manually
annotated dataset, the network may learn that a certain combination of features in
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the image corresponds to a certain pose. Under these conditions, however, some of
these features may be meaningless, however, for example, the orientation of one of
the legs might be associated with a certain pose. By randomly turning off this feature
during the training, the network is forced to learn which features are meaningful and
which are not. Shown below is the code that creates the convolutional blocks of the
network:

branches = []

for n in range(self.N_cam):

bn = Lambda(lambda x: x[:,:,:,:,n])(input_mdl)

bn = Conv2D(32,kernel_size=(7,7),strides=2,activation=’selu’)(bn)

bn = BatchNormalization()(bn)

bn = MaxPooling2D(pool_size=(2,2),strides=2)(bn)

bn = Dropout(0.1)(bn)

bn = Conv2D(64,kernel_size=(1,1),strides=1,activation=’selu’)(bn)

bn = BatchNormalization()(bn)

bn = Dropout(0.1)(bn)

bn = Conv2D(64,kernel_size=(5,5),strides=2,activation=’selu’)(bn)

bn = BatchNormalization()(bn)

bn = MaxPooling2D(pool_size=(2,2),strides=2)(bn)

bn = Dropout(0.1)(bn)

bn = Conv2D(128,kernel_size=(1,1),strides=1,activation=’selu’)(bn)

bn = BatchNormalization()(bn)

bn = Dropout(0.1)(bn)

bn = Conv2D(128,kernel_size=(3,3),strides=2,activation=’selu’)(bn)

bn = BatchNormalization()(bn)

bn = MaxPooling2D(pool_size=(2,2),strides=2)(bn)

bn = Dropout(0.1)(bn)

bn = Conv2D(256,kernel_size=(1,1),strides=1,activation=’selu’)(bn)

bn = BatchNormalization()(bn)

bn = Dropout(0.1)(bn)

bn = Conv2D(256,kernel_size=(3,3),strides=3,activation=’selu’)(bn)

bn = BatchNormalization()(bn)

bn = Dropout(0.1)(bn)

bn = Conv2D(1024,kernel_size=(1,1),strides=1,activation=’selu’)(bn)

bn = BatchNormalization()(bn)
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branches.append(bn)

conc = Concatenate()(branches)

conc = Flatten()(conc).

where the Lambda, Concatenate, and Flatten layers perform the necessary re-
shaping of the data. The activation function that is used is the so called Scaled
Exponential Linear Unit (SELU) (Figure 3.7). In Tensorflow, the convolutional
parameters are coded as:

Conv2D(32,kernel_size=(7,7),strides=2,activation=’selu’),

with Conv2D as a 2D convolutional layer function, the first entry of the function
is the number of kernels used (32), the second entry is the kernel window size
(kernel_size=(7,7)), the third entry specifies the stride length (strides=2) in
both dimensions and the final entry is the activation function (activation=’selu’).
Similar conventions are used for the max pooling layer:

MaxPooling2D(pool_size=(2,2),strides=2),

with the first entry being the pool size (pool_size=(2,2)) and stride in both
dimensions (strides=2).

Batch size is an important parameter for the batch normalization layer. If the batch
size is too small, the batch might not contain the range of variability of the full
dataset. This is problematic as the rescaling of the data by batch normalization
depends on the data in the batch. During training, a batch size of 50 samples is
used, in which each batch consists of randomly selected samples from the training
set. The average wingbeat consists of 75 high-speed frames and this batch size is
sufficient to reliably contain the full range of wing motion.

The dropout layer has a single parameter, the dropout rate, which is the fraction of
data that are turned off. After some testing, a dropout rate of 0.1 was chosen as
it gave the lowest validation error. Lower dropout rates reduced the training error
but increased validation error. Higher dropout rates increased the training error and
therefore also the obtainable validation error.

I tested various CNN architectures and found that the relatively simple and shallow
network presented in the previous paragraphs provides the most accurate and robust
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performance. Surprisingly, the pre-trained ResNet network did not generalize well
on the test set. An explanation could be that deep neural networks have too many
degrees of freedom, and overfit on the training data. Relatively small and shallow
networks force the network to generalize over the training set.

After the convolutional head, fully connected layers learn how to predict the pose
vectors from the image features extracted by the convolutional layers. The definition
of the pose vector of the 3D model components is such that they can be divided
into independent components. For example, the wing pose vector consists of 3
independent components: the quaternion, the translation vector and the deformation
angle 𝜉. In total, the model pose vector consists of 12 independent components
(Figure 3.13). Splitting the prediction of the network into independent components
helps generalization, as it is more difficult for the network to associate certain
combinations of wing and body pose vectors with a set of features in the image.
For example, a fly in the training set might have symmetric left and right wing
stroke amplitude during an annotated wingbeat. The network might infer from the
annotated wingbeat that left and right wing motion has to be symmetric, even if
asymmetric wing motion is possible.

With the architecture of FlyNet defined, training on the dataset of manually annotated
frames begins by splitting the data into a training set that contains approximately
95% (950 samples) of the annotated frames, while the remaining 5% (50 samples)
was reserved for validation. Samples in the validation set come from the wingbeat of
a fly that was not shown in the training set, such that the validation is representative
of tracking new data. The network was trained for 1000 epochs with a batch size of
50 and a dropout rate of 0.1 and the mean squared error (MSE) as the loss function.
A learning rate of 1.0 · 10−4 was chosen with a decay of 1.0 · 10−7. The decay
value was subtracted from the learning rate after each epoch, resulting in a linear
decrease of the learning rate during training. Using a Nvidia Geforce GTX 1080
graphics card with 8 GB of memory, it took approximately 24 hours to train FlyNet.
During the training phase, the MSE for the independent components of the pose
vector decayed up to 400 epochs and remained constant afterwards (Figure 3.14).
Stabilization of the validation error indicates that the network’s performance would
not improve with more epochs, even though the training error continues to decline.
The weights of the trained network were saved in an hdf5 file and loaded in the
FlyNet GUI for the prediction step.
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Figure 3.13: FlyNet CNN architecture: the outputs of the convolutional heads
(CNN 1-3) per camera view are flattened, 3 fully connected layers (dense) with
1024 neurons and SELU activation each, represent the body, left, and right wing.
The body layer predict 6 independent components: the quaternion, 𝑞, and the
position, 𝑝, of the head, thorax, and abdomen. Left and right wing layers predict 3
independent components each: wing quaternion, position, and deformation angle 𝜉.

3.5 FlyNet: Refining pose with Particle Swarm Optimization
The neural network predictions of body and wing pose were close to the actual wing
pose in the images, but not accurate enough to study the resulting aerodynamic
forces. Annotating more images might resolve this issue, but it is unclear how
many frames were required. Instead of improving the neural network prediction,
one could also refine the predicted pose using 3D model fitting. This approach
avoids an extensive manual annotation process while still maintaining the benefits
of time-independent tracking.

Similar to Fontaine et al., 2009, image segmentation is required to create binary
masks of the body and wing pixels. Instead of a median image for background
subtraction, I took a minimum pixel intensity image over an image batch of 100
frames. Because the body is stationary, subtracting the median or minimum image
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Figure 3.14: Training and validation MSE over 1000 epochs of training of FlyNet.
The first row contains the total training and validation loss plotted against a log
scale. Separate training and validation errors are plotted for the head (𝑞ℎ, 𝑡ℎ), thorax
(𝑞𝑡 , 𝑡𝑡), abdomen (𝑞𝑎, 𝑡𝑎), left wing (𝑞𝐿 , 𝑡𝐿 , 𝜉𝐿), and the right wing (𝑞𝑅, 𝑡𝑅, 𝜉𝑅).

from a frame would result in the removal of the body. Instead, the body pixels
were found by the simple threshold that the intensity had to be above 200. The wing
pixels are found by subtracting the minimum image from the frame and subsequently
selecting all pixels that had an intensity above 10. Subtracting the minimum image
removed all stationary pixels and resulted in the selection of all pixels corresponding
to moving parts (Figure 3.15).

Besides the binary masks of the body and wing pixels, 3D model fitting requires
a fly model with each component scaled as closely as possible to the actual fly.
The GUI used for annotating the fly pose in frames permits the scaling of model
component independently. Before the automated tracking can start, the user has to
scale the model components accordingly.

Instead of the ICP algorithm used by Fontaine and co-workers (2009), the 3D model
fitting in my approach, uses area matching as a measure of how well the 3D model
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Figure 3.15: Segmented frames with body pixels in red and wing pixels in blue.

aligns with the images. The advantage of area matching is that it is a simple and
computationally efficient method. Disadvantages are that the cost function is not
continuous and gradient-based optimization algorithms will not work. Instead, a
gradient-free optimization method is required to match the projected area of the 3D
model and the frames.

A simple and robust gradient-free optimization algorithm is particle swarm opti-
mization (PSO). PSO is a global optimization function, meaning that it has the
ability to find the global minimum, even when the cost function is complex and
contains multiple local minima. A global optimization function is not guaranteed
to converge on the global minimum in a finite number of iterations, but for complex
problems such as area matching, it is one of the few optimization methods available.

The PSO method relies on a swarm of particles that move through the state-space of
the optimization problem. All particles have a position and a velocity in the state-
space. The state vector consists of all variables that affect the cost function. At the
start of the PSO algorithm, the particles in the swarm are given random positions
and random velocity vectors. For a set number of iterations, the PSO algorithm
will update the position and velocity of each particle according to the following
equations:

𝑥𝑘𝑖 = 𝑥𝑘−1
𝑖 + 𝑣𝑘𝑖 , (3.2)
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𝑣𝑘𝑖 = 𝑤𝑣𝑘−1
𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑘−1

𝑖 ) + 𝑐2𝑟2, (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑘−1
𝑖 ), (3.3)

where 𝑖 is the particle index, 𝑥𝑘
𝑖

is the particle position at iteration 𝑘 , 𝑣𝑘
𝑖

is the particle
velocity, 𝑟1 and 𝑟2 are random weight vectors drawn from a normal distribution, 𝑝𝑏𝑒𝑠𝑡

𝑖

is the personal best of the particle, 𝑔𝑏𝑒𝑠𝑡 is the global best for the whole particle
swarm, and 𝑤, 𝑐1, and 𝑐2 are weights. A particle’s personal best is the position with
the lowest value for the cost function in the travel history of the particle. The global
best is the position with minimum cost value in the travel history of all particles
of the swarm. At each iteration, the cost function is evaluated for the current
position of each particle in the swarm. Subsequently, the cost function values of
the personal and global best are compared to the cost function evaluations for the
current positions. If the current cost function of a particle position is lower than
the personal or global best, these values and the associated position vectors will be
updated. Additionally, for each iteration the random vectors 𝑟1 and 𝑟2 are updated
by randomized weights drawn from a normal distribution.

The velocity update of each particle consists of three parts. The inertia term, 𝑤 ·𝑣𝑘−1
𝑖

,
is the previous velocity multiplied with weight 𝑤. The second term points towards
the personal best of the particle with some added random noise and multiplied by
the scaling factor, 𝑐1. The third term is a vector pointing towards the global best of
the swarm with added random noise and multiplied by scaling factor, 𝑐2. During
the search, particles will keep updating their personal and global best positions.
The two vectors pointing towards the personal and global best positions help the
particles to converge towards a minimum value. Scaled randomization of the last
two terms of the velocity update turn this into a stochastic search, and thus insuring
that the particles will sample the space near a minimum more often. The inertia
term controls how quickly the swarm converges to a global best. If the inertia term is
small, the swarm will converge quickly and risks getting stuck in a local minimum.
Setting the inertia term too high, however, may result in no convergence at all or
convergence only after a large number of iterations.

In my particular application, the cost function that is evaluated by the PSO algorithm
is based on the projected images of the 3D model. In order to speed up evaluation,
the PSO algorithm and the cost function were implemented in C++. One of the big
advantages of C++ is its multi-threading ability. The PSO algorithm lends itself
well for parallel processing, as the cost function evaluations of all particles can be
executed at the same time. Using the std-library in C++17, a separate thread for
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evaluating the cost function can be assigned to each particle. Especially on central
processing units (CPU) with multiple cores, multi-threading can significantly speed
up computation. The cost function relies on several matrix operations that have
been implemented using the Armadillo library. To integrate the C++ code within
the FlyNet GUI that is written in Python, the Boost library was used to make several
C++ functions callable in Python.

The Standard Tessellation Language (STL) model components of the 3D fly model
consisted of a list of vertices and triangles with vertex index numbers. To position
and orient the vertices of the model components, one needs to multiply the vertices
with a transformation matrix. The transformation matrix, 𝑀 , is computed using the
pose vector of a component:

𝑀 =


2𝑞2

0 − 1 + 2𝑞2
1 2𝑞1𝑞2 − 2𝑞0𝑞3 2𝑞1𝑞3 + 2𝑞0𝑞2 𝑇𝑥

2𝑞1𝑞2 + 2𝑞0𝑞3 2𝑞2
0 − 1 + 2𝑞2

2 2𝑞2𝑞3 − 2𝑞0𝑞1 𝑇𝑦

2𝑞1𝑞3 − 2𝑞0𝑞2 2𝑞2𝑞3 + 2𝑞0𝑞1 2𝑞2
0 − 1 + 2𝑞2

3 𝑇𝑧

0 0 0 1


, (3.4)

with 𝑞0, 𝑞1, 𝑞2, 𝑞3, representing the elements of the quaternion, and 𝑇𝑥 , 𝑇𝑦, 𝑇𝑧 repre-
senting the elements of the translation vector. When multiplying the vertices with
the transformation matrix, an additional element with value 1 has to be added to the
vertices to make the multiplication compatible:


𝑝𝑢𝑥

𝑝𝑢𝑦

𝑝𝑢𝑧

1


= 𝑀


𝑝𝑜𝑥

𝑝𝑜𝑦

𝑝𝑜𝑧

1


, (3.5)

where 𝑝𝑢𝑥 , 𝑝𝑢𝑦 , 𝑝𝑢𝑧 are the update vertices and 𝑝𝑜𝑥 , 𝑝𝑜𝑦 , 𝑝𝑜𝑧 the original vertices. For each
body component and the leading edges of the wings, a matrix multiplication with the
matrix 𝑀 is sufficient to update the position of the vertices. In case of the remaining
panels of the wing, however, a consecutive multiplication of transformation matrices
is required. The second panel after the leading edge panel needs to undergo an
additional rotation to incorporate the effect of the deformation angle. Rotation
of the second panel along the hinge-line with angle 𝜉/3 can be represented by a
quaternion:



84

𝑞𝑝𝑎𝑛𝑒𝑙1 =


cos(𝜉/6)

0
sin(𝜉/6)

0


. (3.6)

Computing the transformation matrix for this quaternion gives the orientation of the
second panel relative to the leading edge panel, 𝑀1−2. Subsequent multiplication
with the transformation matrix of the leading edge panel, 𝑀1 puts the panel in the
correct pose:


𝑝𝑢𝑥

𝑝𝑢𝑦

𝑝𝑢𝑧

1


= 𝑀1𝑀1−2


𝑝𝑜𝑥

𝑝𝑜𝑦

𝑝𝑜𝑧

1


. (3.7)

In a similar way, the transformation updates of panel 3 requires multiplication by 3
transformation matrices, 𝑀1 · 𝑀1−2 · 𝑀2−3 and panel 4 by 4 matrices, 𝑀1 · 𝑀1−2 ·
𝑀2−3 · 𝑀3−4. The pose vectors describing the transformation matrices of the left
and right wing panels are given in Table 3.1.

pose variable 𝑀𝐿
1−2 𝑀𝐿

2−3 𝑀𝐿
3−4 𝑀𝑅

1−2 𝑀𝑅
2−3 𝑀𝑅

3−4
𝑞0 cos(𝜉/6) 1 1 1 1 1 1
𝑞𝑥 sin(𝜉/6) 0 -0.0596 -0.362 0 0.0596 0.362
𝑞𝑦 sin(𝜉/6) 1 0.998 0.932 1 0.998 0.932
𝑞𝑧 sin(𝜉/6) 0 0 0 0 0 0
𝑡𝑥 𝑠 0 -0.0867 0 0 -0.0867 0
𝑡𝑦 𝑠 0 0.0145 0 0 -0.0145 0
𝑡𝑧 𝑠 0 0 0 0 0 0

Table 3.1: Definition of the pose vectors describing the transformation matrices
between the left, 𝑀𝐿 , and right, 𝑀𝑅, wing panels. The pose column describes the
different pose parameters, the variable column states the variable with which the
remaining elements of the row are multiplied, with 𝑠 as the scaling factor of the
model component.

After updating the vertices of a model component with the transformation matrix, it
can be projected to the three camera views using the world-to-camera matrices. A
binary image of the projected model can be created by iterating over the projected
triangles of the model and determining which pixels are within the triangle. A fast
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method to compute whether a pixel is within the triangle makes use of barycentric
coordinates (Figure 3.16). Given a triangle with corners 𝐴, 𝐵, and 𝐶 specifying the
𝑢, 𝑣-coordinates in the image frame, the barycentric coordinates (𝑟, 𝑠) of a point P
are given by:

𝑐𝑐 = (𝐶 − 𝐴) · (𝐶 − 𝐴),
𝑏𝑐 = (𝐵 − 𝐴) · (𝐶 − 𝐴),
𝑝𝑐 = (𝑃 − 𝐴) · (𝐶 − 𝐴),
𝑏𝑏 = (𝐵 − 𝐴) · (𝐵 − 𝐴),
𝑝𝑏 = (𝑃 − 𝐴) · (𝐵 − 𝐴),

(3.8)

and

𝑟 =
𝑏𝑏 · 𝑝𝑐 − 𝑏𝑐 · 𝑝𝑏
𝑐𝑐 · 𝑏𝑐 − 𝑏𝑐 · 𝑏𝑐 ,

𝑠 =
𝑐𝑐 · 𝑝𝑏 − 𝑏𝑐 · 𝑝𝑐
𝑐𝑐 · 𝑏𝑐 − 𝑏𝑐 · 𝑏𝑐 .

(3.9)

A point is within the triangle when the following conditions are met:

𝑟 >= 0,

𝑠 >= 0,

𝑟 + 𝑠 < 1.

(3.10)

A binary image of the projected triangles is created using barycentric; coordinates,
for each triangle a bounding box is computed and all the pixels within the bounding
box are tested for being inside or outside the triangle. If a pixel is within the triangle
its value is set to 1. By iterating over all triangles in the model, a binary image is
constructed.

With binary masks of the high-speed video frames and the projected 3D model, the
cost function can be computed. For each model component, the cost function uses the
symmetric difference,Δ, and the union,∪. In order to speed up the computation of the
symmetric difference and union, the binary images are converted into bitsets. Using
the dynamic_bitset class of the Boost library, the union and difference for binary
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Figure 3.16: Barycentric coordinates of points P1 and P2 with respect to the triangle
ABC. The bounding box of ABC is marked in green.

images of all three views can be computed within 10 µs. This is orders of magnitudes
faster than a for loop in C++ can achieve. A dynamic_bitset vectorizes the binary
image into a single bit-vector. Computing the union and symmetric difference are
bitwise operations, which are extremely fast on a CPU. As the cost function is being
computed over all three views simultaneously, the binary images can be concatenated
into a single dynamic_bitset of 256 × 256 × 3 = 196, 608 bits.

The pose vector consists of 37 dimensions, which is a large parameter-space to
search. For example, a grid search with 2 possible values per parameter would
require the investigation of 237 different configurations, requiring more than 137
billion cost function evaluations. The complexity of the PSO search can be greatly
reduced by splitting the pose vector into different components: head, thorax, ab-
domen, left wing, and right wing. In my implementation, there are five separate
PSO searches with 7 or 8 state parameters each. Although the pose vectors of
the five model components are independent, the cost function evaluation is not, as
different model components can overlap in the projected view of the 3D model.
To address this dependence, the PSO algorithm updates the pose of one randomly
selected component at the time. Because the accuracy of wing motion tracking is
more important than body motion the probability of selecting the left and right wing
is 1/3 and the probability of selecting a body component is 1/9.

The cost function per model component is given by:

𝐶 𝑗 =
𝐼𝑏Δ𝐼

𝑝

𝑗

𝐼𝑏 ∪ 𝐼 𝑝
𝑗

, (3.11)
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for body components, and

𝐶 𝑗 =
𝐼𝑤Δ𝐼

𝑝

𝑗

𝐼𝑤 ∪ 𝐼 𝑝
𝑗

, (3.12)

for wing components. Here, 𝐶 𝑗 , the cost function for model component 𝑗 , 𝐼𝑏, and
𝐼𝑤 the dynamic bitsets of the body and wing pixels respectively, and, 𝐼 𝑝

𝑗
the dynamic

bitset of the model component projections in all 3 views, and Δ and ∪ are the bitwise
symmetric difference and union operators, respectively. During the PSO search, the
personal best of a particle consists of a 5 element cost vector with the minimum
cost value per component and, with the pose vectors per component corresponding
to the minimum cost values. Similarly, the global best has a 5 element cost vector
with corresponding component pose vectors. Because only one model component is
evaluated per iteration, the personal and global best pose vectors are corresponding
to minimum cost values of different iterations.

The C++ implementation of the PSO algorithm described in the previous paragraph
is wrapped into several Python functions, using the Boost library, that are callable
by FlyNet. Before the tracking can start, some PSO parameters need to be set:
the number of particles, the number of iterations, and the standard deviation of the
normal distribution, which is used to perturb the initial state and the PSO search
parameters. A large number of particles and/or iterations increases the probability
that the PSO search converges to a global minimum, but at the cost of longer run
times. As a rule of thumb, a PSO algorithm should have at least twice the number
of particles as the number of states. I installed FlyNet on computers with 16 and
32 CPU cores, and the fastest execution times I achieved was when using 1 particle
per core. Because the number of states per component is 8 at most, 16 particles are
sufficient to search the parameter space. The number of particles was therefore set
to the number of CPU cores available. After testing several numbers of iterations, I
was found that the PSO algorithm was likely to converge on the true pose within 300
iterations. In cases where the PSO algorithm did not converge to the true state in
300 iterations, it would not converge after 1000 or 2000 iterations either. Whether
the PSO algorithm converges to the true pose thus depends on how close the initial
pose vectors of the particles are to the true pose.

The initial particle pose vectors were created by adding random noise to the predicted
pose vector from the CNN. Similarly, the particle velocities were randomly sampled
from a normal distribution. By specifying the standard deviation of the normal
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distribution used to generate the random noise vectors, one can specify how close
the particles search around the initial pose. For FlyNet, a standard deviation of
0.1 was chosen, which means that most particles will search around the initial pose
value.

Figure 3.17: Quaternion multiplication of 𝑞𝐴 and 𝑞𝐵 yields quaternion 𝑞𝐶 .

The variables in the pose vector are all linear, except for the quaternion which is
non-linear. A unit quaternion, ∥𝑞∥ = 1, can be seen as a point on a 4D sphere with
radius 1. When updating the quaternion according to equations 3.2 and 3.3, the
result is likely to be not a unit quaternion, however. Instead of the vector difference
pointing towards the local and global best, a quaternion difference is required to
make the particles move on the 4D sphere with radius 1. Determining the quater-
nion difference requires application of the concepts of quaternion multiplication
and the quaternion conjugate, (Kuipers, 1999). In quaternion multiplication, two
quaternions, 𝑞𝐴 and 𝑞𝐵, are multiplied forming quaternion 𝑞𝐶 :

𝑞𝐶 = 𝑞𝐴 ⊗ 𝑞𝐵 =


𝑞𝐴0 −𝑞𝐴𝑥 −𝑞𝐴𝑦 −𝑞𝐴𝑧
𝑞𝐴𝑥 𝑞𝐴0 𝑞𝐴𝑧 −𝑞𝐴𝑦
𝑞𝐴𝑦 −𝑞𝐴𝑧 𝑞𝐴0 𝑞𝐴𝑥

𝑞𝐴𝑧 𝑞𝐴𝑦 −𝑞𝐴𝑥 𝑞𝐴0



𝑞𝐵0

𝑞𝐵𝑥

𝑞𝐵𝑦

𝑞𝐵𝑧


, (3.13)

where ⊗ indicates quaternion multiplication. The quaternion conjugate describes
the opposite rotation from the quaternion:
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𝑞∗ =


𝑞0

−𝑞𝑥
−𝑞𝑦
−𝑞𝑧


. (3.14)

The quaternion difference can be derived using the following property of the quater-
nion conjugate:

𝑞∗ ⊗ 𝑞 =


1
0
0
0


, (3.15)

which makes sense given that the quaternion conjugate opposes the rotation of
the quaternion resulting in no rotation. Suppose the particle position is given by
quaternion 𝑞𝐴 and the personal best is 𝑞𝐶 . The difference between 𝑞𝐴 and 𝑞𝐶

is described by quaternion 𝑞𝐵 (Figure 3.17). Using the quaternion conjugate, the
quaternion difference can be derived from quaternion multiplication:

𝑞𝐶 = 𝑞𝐴 ⊗ 𝑞𝐵,
𝑞∗𝐴 ⊗ 𝑞𝐶 = 𝑞∗𝐴 ⊗ 𝑞𝐴 ⊗ 𝑞𝐵,

𝑞𝐵 = 𝑞∗𝐴 ⊗ 𝑞𝐶 .

(3.16)

Although the quaternion difference describes the rotation required to move from one
orientation to another, quaternion algebra is still required to compute the velocity
and position updates of the PSO algorithm. The temporal derivative of a quaternion,
¤𝑞, is the quaternion multiplication with the angular velocity, 𝜔:

¤𝑞 =
1
2
𝑞∗ ⊗ 𝜔 =

1
2


𝑞0 𝑞𝑥 𝑞𝑦 𝑞𝑧

−𝑞𝑥 𝑞0 𝑞𝑧 −𝑞𝑦
−𝑞𝑦 −𝑞𝑧 𝑞0 𝑞𝑥

−𝑞𝑧 𝑞𝑦 −𝑞𝑥 𝑞0




0
𝜔𝑥

𝜔𝑦

𝜔𝑧


. (3.17)

Angular velocity can be extracted from the difference quaternion using the following
equations:
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�̂� = 2 arccos(𝑞0),

∥𝑒∥ =
√︃
𝑞2
𝑥 + 𝑞2

𝑦 + 𝑞2
𝑧 ,

𝜔𝑥 = �̂� · 𝑞𝑥/∥𝑒∥,
𝜔𝑦 = �̂� · 𝑞𝑦/∥𝑒∥,
𝜔𝑧 = �̂� · 𝑞𝑧/∥𝑒∥.

(3.18)

The angular velocity does not require quaternion algebra to be added or subtracted
and can therefore be used in equation 3.3. After computing the angular velocity
update with equation 3.3, the particle quaternion needs to be updated according to
the following formula:

𝑞0 = cos(∥𝜔∥/2),
𝑞𝑥 = sin(∥𝜔∥/2) · 𝜔𝑥/∥𝜔∥,
𝑞𝑦 = sin(∥𝜔∥/2) · 𝜔𝑦/∥𝜔∥,
𝑞𝑧 = sin(∥𝜔∥/2) · 𝜔𝑧/∥𝜔∥.

(3.19)

As mentioned before, unit quaternions reside on a 4D sphere with radius 1. The
definition of a quaternion allows for a duality, however; a rotation, 𝜃, around axis 𝑒
corresponds to the same orientation as a rotation, −𝜃, around axis −𝑒. This duality
is undesirable as it can confuse the PSO algorithm. To exclude quaternion duality
from the analysis, only positive rotations around the quaternion rotation axis are
allowed by using the norm ∥𝜔∥ in equation 3.19.

To keep the particles searching in feasible space, the search space needs to be
bounded. The unit quaternion constraint, ∥𝑞∥ = 1, which is enforced by normal-
ization after every quaternion update, ensures that all particles search in feasible
orientation space. For the translation vectors, a bounding box of ±3 mm in the
world reference frame guarantees that particles do not stray too far from feasible
solutions. When the update of particle position moves outside the bounding box,
the particle is clamped to the bounding box border. The personal and global best
vector will subsequently pull the particle back from the bounding box border. A
similar bounding box is defined for the deformation angle, 𝜉, with borders at ±𝜋/2.

During the refinement step, in my implementation the PSO algorithm ran for a fixed
number of iterations, 300, and after that the global best pose was used as the refined
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pose. With 300 iterations and 16 or more particles, the PSO algorithm converged
on the true (manually annotated) pose if the CNN prediction was sufficiently close.
Expanding the number of particles and iterations did guarantee convergence on the
true solution, at least not for runs using 256 particles and 2000 iterations. The easiest
way to improve tracking performance was through manual annotation of problematic
frames and retraining of the CNN on the expanded dataset. Over the course of the
experiments, the manually annotated dataset increased from approximately 1000
labels to 2500 labels. With this expanded training set, it was rare that FlyNet could
not track a frame and it was usually only unusual patterns of wing motion (e.g. flight
stops) that were not captured accurately.

The computational performance of FlyNet varied depending on the computer I used,
but is primarily dependent on the CPU. Prediction of the initial pose vector by the
CNN took less than 100 ms for a batch of 100 frame triplets. The refinement step
took around 80 ms per frame triplet on a 32 core AMD Ryzen Threadripper CPU,
and it took approximately 20 minutes to analyze a high-speed video sequence of
1.1 seconds. This processing speed was sufficient to analyze the full dataset of 479
videos with a desktop computer.

An overview of the FlyNet workflow is shown in (Figure 3.18). The neural net-
work prediction and PSO refinement complement each other: the neural network
prediction ensures time-independent tracking while the PSO refinement reduces the
amount of manual annotation that is required to attain the required accuracy. FlyNet
is specifically designed to track the body and wing motion of tethered fruit flies.
The methodology could be used for accurate 3D pose reconstruction from multiple
camera views in general, however. It is relatively easy to import STL models of other
insects in the FlyNet GUI, and it might be valuable to evaluate FlyNet’s tracking
performance on other species.

3.6 FlyNet: Smoothing pose with Kalman Filters
After automated tracking by the FlyNet algorithm, a matrix of 37× 16375 elements
describes the pose vector during a high-speed video. The time-independence of the
FlyNet algorithm is useful as it does not propagate tracking errors over time, but
ignoring the temporal aspects of body and wing motion means that some information
is discarded. The temporal information can be used to improve the accuracy of pose
reconstruction and reduce the effects of outliers. In this section, I will discuss how
I used linear and extended Kalman filters (EKF) to smooth the pose traces and
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Figure 3.18: Workflow FlyNet: the convolutional blocks per camera view are
indicated by CNN1-3, the predicted state vector consists of 5 components with a
quaternion, 𝑞, translation vector, 𝑡 and deformation angle 𝜉. The refinement step
starts by randomly selecting a model component and subsequently modifying the
pose according to the PSO update. The updated 3D model the gets projected on the
camera views and a binary image, 𝐼 𝑝, is computed. The symmetric difference and
union of the projected model image and the segmented body or wing, binary images
are computed and used to calculate the: cost, personal, and global best values of
the particles are updated and the next PSO iteration starts, after 300 iterations the
global best pose is the refined pose.

dampen the effect of outliers.

Kalman filters can use noisy measurements over time in combination with a dy-
namical model of the measured system to predict the future state of the system,
(Stratonovich, 1959, Kalman, 1960). To filter the pose traces, the Kalman filter was
used as a smoother and the emphasis is not on accurately predicting the future state
but on estimating the most likely value for a sample given the time history of the
entire trace and the uncertainties of the measurements and system model.

There are different versions of the Kalman filter, dependent on whether the dynamic
model of the system is linear, non-linear, or unknown. Similar to the PSO update, the
dynamic model of quaternion propagation through time is non-linear and requires
an EKF as a smoother. The dynamic models of position and the deformation angle
are linear and can be filtered by a linear Kalman filter. However, because a linear
dynamic model in an EKF corresponds to linear Kalman filtering, it is easier to
incorporate the quaternion, position, and deformation angle in a single dynamic



93

model and filter the pose vector with an EKF. In the following section the EKF
algorithm will be presented (Grewal and Andrews, 2014).

A Kalman filter consists of a prediction phase and a measurement update phase.
The predicted state, 𝑥𝑘+1, is given by:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 ) + 𝑤𝑘 , (3.20)

with 𝑘 as the sample number, 𝑓 (𝑥𝑘 ) the non-linear dynamic model and 𝑤𝑘 the
system noise. System noise is assumed to be normal distributed with covariance
matrix 𝑄:

𝑤𝑘 = N(0, 𝑄𝑘 ). (3.21)

In a similar way, the measurement model is given as:

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 , (3.22)

with 𝑧𝑘 as the measurement, 𝐻 as the measurement model, and 𝑣𝑘 the measurement
noise that is assumed to be normal distributed with covariance matrix 𝑅:

𝑣𝑘 = N(0, 𝑅𝑘 ). (3.23)

In the EKF definition, the non-linear system model is linearized around state 𝑥𝑘 :

𝑥𝑘+1 =
𝜕 𝑓 (𝑥𝑘 )
𝜕𝑥

𝑥𝑘 + 𝑤𝑘 = Φ𝑘𝑥𝑘 + 𝑤𝑘 , (3.24)

with Φ𝑘 =
𝜕 𝑓 (𝑥𝑘)
𝜕𝑥

as the Jacobian matrix. The a priori estimate, indicated by (-), is
given by:

𝑥−𝑘+1 = Φ𝑘𝑥
+
𝑘 , (3.25)

where (+) stands for the filtered state of the previous sample. The predicted error
covariance, 𝑃−

𝑘
, is computed using:

𝑃−
𝑘 = Φ𝑘𝑃

+
𝑘Φ

𝑇
𝑘 +𝑄𝑘 , (3.26)
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with 𝑃+
𝑘

as the filtered error covariance from the previous sample. After the pre-
diction phase, the measurement update phase starts by computing the filter gain,
𝐾𝑘 :

𝐾𝑘 = 𝑃
−
𝑘𝐻

𝑇 [𝐻𝑃−
𝑘𝐻

𝑇 + 𝑅𝑘 ]−1. (3.27)

Using the filter gain, the state is updated by:

𝑥+𝑘 = 𝑥
−
𝑘 + 𝐾𝑘 [𝑧𝑘 − 𝐻𝑥

−
𝑘 ], (3.28)

and the updated error covariance

𝑃+
𝑘 = [𝐼 − 𝐾𝑘𝐻]𝑃−

𝑘 , (3.29)

where 𝐼 is the identity matrix. By alternating between the prediction and update
phase, the Kalman filter removes noise from the traces by comparing measurements
and dynamic model-based predictions. The model based predictions in the Kalman
filter create a temporal lag in the filtered traces. The Rauch-Tung-Striebel smoother
is most commonly used for removing this lag with a backward pass. After the
forward pass by the EKF described above, the Rauch-Tung-Striebel smoother will
start at the last sample in a sequence. The smoothed state, 𝑥𝑘 is updated according
to:

𝑥𝑘 = 𝑥
+
𝑘 + 𝐴𝑘 (𝑥𝑘+1 − 𝑥−𝑘+1), (3.30)

where 𝑥+
𝑘

and 𝑥−
𝑘+1 are the saved values from the forward pass and

𝐴𝑘 = 𝑃
+
𝑘Φ

𝑇
𝑘𝑃

−
𝑘+1, (3.31)

is constructed with the saved error covariances of the forward pass. Additionally,
the smoothed error covariance can be computed in the backward pass using:

�̂�𝑘 = 𝑃
+
𝑘 + 𝐴𝑘 (�̂�𝑘+1 − 𝑃−

𝑘+1). (3.32)

A user can control the degree of smoothing by setting the covariance matrices 𝑄
and 𝑅. In most cases the covariance matrices are unknown and 𝑅 is typically set
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as the identity matrix. By setting the diagonal values of the 𝑄 matrix, the user can
set the degree of confidence in the dynamic model relative to the measurements. A
smaller value of 𝑄 means more confidence in the dynamic model and as a result a
stronger smoothing of the trace.

In my implementation, the dynamic model used to filter body and wing pose de-
scribes the relation between: position, velocity, and acceleration for the translation
vector, the orientation, angular velocity, and angular acceleration for the quaternion,
and the deformation angle. For example, the state vector, 𝑥𝑘 , for the left wing is
given by:

𝑥𝑘 = [ ¤𝜔𝑥 ¤𝜔𝑦 ¤𝜔𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧 𝑞0 𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑎𝑥 𝑎𝑦 𝑎𝑧 ¥𝜉 𝑣𝑥 𝑣𝑦 𝑣𝑧 ¤𝜉 𝑝𝑥 𝑝𝑦 𝑝𝑧 𝜉]𝑇 , (3.33)

where 𝑣 is the velocity, 𝑎 the acceleration, 𝜔 the angular velocity, ¤𝜔 the angular
acceleration, ¤𝜉 and ¥𝜉 the first and second temporal derivatives of 𝜉, respectively.
The state vector is used to compute the Jacobian of the system update equation.
Unfortunately, the full Jacobian, Φ, is too large to display and is therefore split into
two independent blocks: Φ𝑞 and Φ𝑡,𝜉 . The first block of the system matrix is given
by:

Φ𝑞 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
Δ𝑡 0 0 1 0 0 0 0 0 0
0 Δ𝑡 0 0 1 0 0 0 0 0
0 0 Δ𝑡 0 0 1 0 0 0 0

−𝑞𝑥 Δ𝑡
2

4 −𝑞𝑦 Δ𝑡
2

4 −𝑞𝑧 Δ𝑡
2

4 −𝑞𝑥 Δ𝑡2 −𝑞𝑦 Δ𝑡2 −𝑞𝑧 Δ𝑡2 1 −𝜔𝑥 Δ𝑡2 −𝜔𝑦 Δ𝑡2 −𝜔𝑧 Δ𝑡2
𝑞0

Δ𝑡2

4 𝑞𝑧
Δ𝑡2

4 −𝑞𝑦 Δ𝑡
2

4 𝑞0
Δ𝑡
2 𝑞𝑧

Δ𝑡
2 −𝑞𝑦 Δ𝑡2 𝜔𝑥

Δ𝑡
2 1 −𝜔𝑧 Δ𝑡2 𝜔𝑦

Δ𝑡
2

−𝑞𝑧 Δ𝑡
2

4 𝑞0
Δ𝑡2

4 𝑞𝑥
Δ𝑡2

4 −𝑞𝑧 Δ𝑡2 𝑞0
Δ𝑡
2 𝑞𝑥

Δ𝑡
2 𝜔𝑦

Δ𝑡
2 𝜔𝑧

Δ𝑡
2 1 −𝜔𝑥 Δ𝑡2

𝑞2
Δ𝑡2

4 −𝑞𝑥 Δ𝑡
2

4 𝑞0
Δ𝑡2

4 𝑞2
Δ𝑡
2 −𝑞𝑥 Δ𝑡2 𝑞0

Δ𝑡
2 𝜔𝑧

Δ𝑡
2 −𝜔𝑦 Δ𝑡2 𝜔𝑥

Δ𝑡
2 1



,

(3.34)

which corresponds to the first 10 values of the state vector: [ ¤𝜔𝑥 ¤𝜔𝑦 ¤𝜔𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧 𝑞0 𝑞𝑥 𝑞𝑦 𝑞𝑧].
As the frame rate of the high-speed cameras is 15,000 fps, the time step is
Δ𝑡 = 1/15000𝑠. The second block is given by:
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Φ𝑝,𝜉 =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
Δ𝑡 0 0 0 1 0 0 0 0 0 0 0
0 Δ𝑡 0 0 0 1 0 0 0 0 0 0
0 0 Δ𝑡 0 0 0 1 0 0 0 0 0
0 0 0 Δ𝑡 0 0 0 1 0 0 0 0
Δ𝑡2

2 0 0 0 Δ𝑡 0 0 0 1 0 0 0
0 Δ𝑡2

2 0 0 0 Δ𝑡 0 0 0 1 0 0
0 0 Δ𝑡2

2 0 0 0 Δ𝑡 0 0 0 1 0
0 0 0 Δ𝑡2

2 0 0 0 Δ𝑡 0 0 0 1



(3.35)

corresponding to the remaining values of the state vector [𝑎𝑥 𝑎𝑦 𝑎𝑧 ¥𝜉 𝑣𝑥 𝑣𝑦 𝑣𝑧 ¤𝜉 𝑝𝑥 𝑝𝑦 𝑝𝑧 𝜉].
This tracking process does not involve any temporal derivatives and the measure-
ment matrix need only to select the state variables that have been tracked. The
measurement matrix is given by:

𝐻 =



0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

(3.36)

As mentioned, the measurement covariance matrix, 𝑅, is set to identity. The diagonal
values of 𝑄 are set to 10−5 for the head, thorax, and abdomen, and are set to 10−2

for the left and right wings.

Pose vectors of each model component are filtered by a forward and backward pass.
Besides filtering the pose vectors, the Kalman filter yields the (angular) velocities
and accelerations of the model components.
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3.7 FlyNet: Representing wing motion in the Strokeplane Reference Frame
Although mathematically preferable, quaternions do not provide an intuitive sense
of wing motion. A more intuitive definition of wing motion is a set of Tait-Bryan
angles relative to a thorax-fixed reference frame. Muijres and co-workers (2014)
defined a reference frame at a fixed angle of 45◦ relative to the body’s longitudinal
axis. In case of tethered flight, however, the head and abdomen can be out of the
symmetry plane for prolonged times. This is problematic, as the body’s longitudinal
axis does not necessarily align with the symmetry plane of the thorax. Using the pose
vector of the thorax is problematic as well, as the tracking of the thorax quaternion
is not sufficiently accurate.

Instead of determining the longitudinal axis, a reference frame can be derived from
the positions of the left and right wing roots. Because the fly is tethered, the thorax
is fixed in space and the wing roots move in a c-shaped trajectory around the thorax
(Figure 3.19). By performing PCA on the left and right root traces, a strokeplane
reference frame (SRF) may be conveniently defined. The first principal component
(PC) corresponds to the 𝑦-axis of the SRF, the second PC forms the 𝑥-axis, and the
third PC the 𝑧-axis. Whereas the PCs describe the orthogonal axes of the SRF, they
do not give consistent directions. To create a reference frame that has the 𝑥-axis
pointing forward and the 𝑧-axis pointing upward, the thorax pose vector is used to
establish directionality.

With the SRF defined, the pose of the left and right wings can be described in the
SRF. Using the normalized axes of the SRF, it is possible to compute the quaternion
of the SRF, 𝑞𝑆𝑅𝐹 . The left and right wing quaternions relative to the SRF can
be obtained by multiplying the left and right wing quaternions with the conjugate,
𝑞∗
𝑆𝑅𝐹

. The left and right wing root traces can be expressed relative to the SRF by
subtracting the origin location of the SRF and subsequently multiplying with the
rotation matrix of 𝑞∗

𝑆𝑅𝐹
.

The mechanics of the wing hinge are complex and the root of the wing is not
realistically approximated as a single point. This is why I choose to not define any
constraints between the wing and thorax in FlyNet. To simplify the analysis of wing
motion, however, the motion of the wing root will be ignored in the remainder of
the thesis. It could be that there is valuable information about the mechanics of
the wing hinge in the wing root trajectories, but the added complexity of wing root
motion makes interpreting the wing kinematics less intuitive. For analysis purposes,
the wing joint is assumed to be a ball joint on a fixed position on the thorax with
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Figure 3.19: Strokeplane reference frame (𝑥, 𝑦, 𝑧), is computed via PCA from the
left and right root traces. The stroke (𝜙) and deviation (𝜃) angles describe the
orientation of the wing tip relative to the 𝑦-axis and the 𝑥 − 𝑦 plane, respectively.
Wing pitch (𝜂) and deformation (𝜉) angles give the orientation of the leading edge
panel relative to the 𝑧 − 𝑎𝑥𝑖𝑠 and the rotation angle along 3 hinge lines (yellow),
respectively. The rotation sign is indicated by (+) and (−).

3 degrees of freedom. From an aerodynamics perspective, this assumption is not
likely to change computed or measured aerodynamic forces substantially, as the arm
of the wing root is relatively small and does not increase wing velocity significantly.

The orientation of the wing is described by three Tait-Bryan angles: the stroke
angle, 𝜙, that describes the angle between the 𝑦-axis of the SRF and the projection
of the wingtip on the 𝑥-𝑦 plane, the deviation angle, 𝜃, which is the angle between the
wingtip and the 𝑥-𝑦 plane and the wing pitch angle, 𝜂, which specifies the orientation
of the leading edge panel of the wing with respect to the 𝑧-axis (Figure 3.19). Wing
shape is described by 𝜉 and remains unaltered from the FlyNet definition. The
wing kinematic angles of the right wing are similarly defined such that the signs
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are symmetric with respect to the left wing. Euler and Tait-Bryan angles are non-
commutative, meaning that the order of rotations matters. The rotation convention
used is first 𝜙, then 𝜃 and finally 𝜂. Using quaternions, this can be described as:

𝑞𝑤𝑖𝑛𝑔𝐿 = 𝑞𝜂 ⊗ 𝑞𝜃 ⊗ 𝑞𝜙 =


cos(𝜂/2)

0
sin(𝜂/2)

0


⊗


cos(𝜃/2)
sin(𝜃/2)

0
0


⊗


cos(𝜙/2)

0
0

sin(𝜙/2)


. (3.37)

For the right wing kinematic angles, the signs of 𝜙 and 𝜃 are negative, following the
definitions of right-handed rotations:

𝑞𝑤𝑖𝑛𝑔𝑅 = 𝑞𝜂 ⊗ 𝑞𝜃 ⊗ 𝑞𝜙 =


cos(𝜂/2)

0
sin(𝜂/2)

0


⊗


cos(−𝜃/2)
sin(−𝜃/2)

0
0


⊗


cos(−𝜙/2)

0
0

sin(−𝜙/2)


. (3.38)

With the wing kinematic angles defined, one can parse the left and right wing motion
into distinct wingbeats. A wingbeat is defined as the time between two subsequent
dorsal stroke reversals. To find the dorsal stroke reversal point, I computed the
derivative of the stroke angle, 𝜕𝜙/𝜕𝑡. Both the dorsal and ventral stroke reversal
points can be found at 𝜕𝜙/𝜕𝑡 = 0. Therefore, the condition that 𝜙 > 0 is used to
find the dorsal reversal times of the left and right wings in each video sequence.
The dorsal reversal time of the left wing does not necessarily align with the right
wing, and can be up to 3 frames apart. To remedy the phase difference, I computed
an average time point between the dorsal reversals of the left and right wing and
subsequently rounded to the closest frame time point.

Per video sequence, the average dorsal stroke reversal times were determined and
used to parse out the wingbeats in a sequence. Parameters such as frequency period
and frame numbers were computed per wingbeat. All wing kinematic angles during
the wingbeat period plus temporal data were stored per wingbeat in a hdf5-file.

3.8 FlyNet: Encoding wing motion with Legendre polynomials
Depending on the activation level of the power muscles, wingbeat frequencies can
vary between 150 Hz and 250 Hz. This variation in wingbeat duration makes it
difficult to compare wing kinematics between different high-speed video sequences.
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At a wingbeat frequency of 200 Hz, 75 high-speed video frames are captured per
wingbeat. As there are four kinematic angles per wing, there are 300 data points
representing wing motion during a wingbeat. In order to reduce the number of
data points per wingbeat and allow for comparison between wingbeats of different
periods, I used Legendre polynomials to parameterize wing kinematic traces.

Legendre polynomials are well suited for fitting wing kinematics, as they can fit
non-periodic traces and asymmetric wave forms. Fourier series, that are often
used for fitting wave forms, require periodic boundary conditions and are biased to
symmetric wave forms when a low number of harmonics is used. Similar to Fourier
series, Legendre polynomials form a complete and orthogonal system.

An easy way to generate a Legendre polynomial is using Rodrigues’ formula:

𝑃𝑛 (𝑥) =
1
2𝑛

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)2
(𝑥 − 1)𝑛−𝑘 (𝑥 + 1)𝑘 , (3.39)

where 𝑛 is the order of the Legendre polynomial and 𝑥 ranges between [−1, 1]. A
Legendre basis of order 𝑛 is formed by all polynomials from order 0 up to order 𝑛
(Figure 3.20). By specifying sample points in the range 𝑥 = [−1, 1] and computing
the values for each polynomial in the Legendre basis, a Vandermonde matrix is
created. The Vandermonde matrix, 𝑋 , can be used in a least-squares fit of a wing
kinematic trace, 𝑌 :

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌, (3.40)

where 𝛽 is a vector of 𝑛 + 1 coefficients corresponding to the order of the Legendre
basis. With sufficient coefficients it is possible to fit any trace throughout a wingbeat
without error. When using to many coefficients however, the Runge phenomenon
can occur, which means that the polynomial fit shows high frequency oscillations
around the edges of the wingbeat. The Runge phenomenon may be remediated by
lowering the order of the Legendre basis and by imposing boundary conditions at
the start and end of the wingbeat.

Boundary conditions on polynomial fits can be imposed using restricted least-
squares, (Dykstra, 1983). The restricted least-squares fit, 𝛽∗, makes use of the least
squares fit, 𝛽, and restriction matrix, 𝑅, and restriction vector 𝑟:
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Figure 3.20: Legendre basis of 𝑛 = 5 with the Legendre polynomials given by 𝑃𝑛.

𝛽∗ = 𝛽 − (𝑋𝑇𝑋)−1𝑅𝑇 (𝑅(𝑋𝑇𝑋)−1𝑅𝑇 )−1(𝑅𝛽 − 𝑟). (3.41)

To reduce the Runge phenomenon, the restriction matrix and vectors are chosen
such that the transition between subsequent wingbeats is continuous up to the fourth
derivative. The 𝑗 𝑡ℎ derivative of a Legendre polynomial can be computed by:

𝑃
𝑗
𝑛 (𝑥) = 𝑛 · 𝑃 𝑗−1

𝑛−1 + 𝑥 · 𝑃
𝑗

𝑛−1. (3.42)

Using the equation above, Legendre bases of the 1𝑠𝑡 , 2𝑛𝑑 , 3𝑟𝑑 and 4𝑡ℎ derivative are
computed. The 1𝑠𝑡 , 2𝑛𝑑 , 3𝑟𝑑 , and 4𝑡ℎ derivatives of the actual wing kinematic trace
are computed over a 9 frame time window centered around the start and end time
points of the wingbeat. By requiring that the Legendre fit matches the actual values
of the wing kinematic trace and the derivatives, it can be used as the restriction
vector and restriction matrix respectively:

𝑅𝛽 = 𝑟. (3.43)

The restriction matrix, 𝑅, contains the Legendre basis and the derivative Legendre
bases up to the fourth derivative for 𝑥 = −1 and 𝑥 = 1 (start and end of the
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wingbeat). Matching values of the wing kinematic trace and the 1𝑠𝑡 , 2𝑛𝑑 , 3𝑟𝑑 , and
4𝑡ℎ derivatives are contained in the restriction vector 𝑟. Inserting 𝑅 and 𝑟 in the
restricted least-squares solution of equation 3.41 gives the Legendre coefficients that
make the transitions between the previous and next wingbeat continuous up to the
fourth derivative.

With the restricted least-squares solution, one can fit with higher order Legendre
polynomials before the Runge-phenomenon starts to occur. Using higher order
polynomials is preferable as it allows for a more accurate fit. For each wing kinematic
angle, I tested various number of Legendre polynomials. The stroke angle, 𝜙, could
be fitted accurately with 16 polynomials. Deviation, 𝜃, and deformation, 𝜉, angles
require 20 polynomials each. The wing pitch angle, 𝜂, needed 24 polynomials for
accurate fitting. A total of 80 Legendre coefficients describes the motion of a single
wing during a wingbeat.
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C h a p t e r 4

CONVOLUTIONAL NEURAL NETWORK REGRESSION
BETWEEN MUSCLE ACTIVITY AND WING MOTION

The workflow of the experiments and analysis so far consists of the simultaneous
recording of wing motion and muscle fluorescence, reconstructing body and wing
pose from the three orthogonal views using FlyNet, smoothing pose using an EKF,
extracting four wing kinematic angles per wing and parsing a video sequence into
separate wingbeats, and fitting Legendre polynomials to the wing kinematic traces
via restricted least-squares. To construct a model of how the steering muscles
affect wing motion, one needs to find correlations between muscle fluorescence and
changes in wing motion. Finding these correlations is difficult for several reasons.
The temporal resolution of the muscle fluorescence recordings and the high-speed
videos differs by two orders of magnitude, the kernel of GCaMP fluorescence takes
more than a second to return to baseline and the changes in wing motion can be
subtle yet aerodynamically significant (Figure 2.3).

In neuroscience, a common methodology to increase the temporal resolution of
fluorescence traces is by deconvolving the fluorescence signal with an estimated
function of the GCaMP fluorescence kernel. When the estimated fluorescence
kernel matches well with actual fluorescence kernel, the deconvolution operation
yields clear peaks corresponding to muscle twitches. It is difficult to estimate
the GCaMP fluorescence kernel, however, as it depends on temperature, chemical
composition of the cytoplasm, and genetic expression levels. If the kernel function
that is used for the deconvolution operation is different from the actual GCaMP
fluorescence kernel, the deconvolved signal can contain a highly inaccurate measure
of muscle activity. Because of the high uncertainty of deconvolution results, another
method to remediate the difference in temporal resolution is required.

In this chapter, I will discuss how a CNN can be used to learn the actual GCaMP
fluorescence kernel and perform non-linear regression between muscle activity and
wing motion. The CNN regression is surprisingly accurate; for most flies in the
dataset, the wing motion during the high-speed videos can be reconstructed accu-
rately from the muscle fluorescence of the 12 steering muscles. CNN prediction of
wing motion deviates from the tracked motion when the fly is flying at low, wingbeat
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frequencies or has stopped flying, or when the strobing of the muscle fluorescence
camera was erroneous. By performing a correlation analysis on muscle activity, I
found that muscle activity is highly correlated and that muscle activity resides on a
12D plane. Using the 12D-plane constraint, I explored the predicted wing motion
corresponding to maximum coordinated muscle activity patterns. Comparison of
the CNN-predicted wing motion for maximum coordinated muscle activity patterns
and previous studies shows that the steering muscles that are accessible to electrode
recording, have similar effects on wing motion as that are predicted by my model.
For the steering muscles that are not accessible to electrodes, the CNN makes novel
predictions about their effects on wing motion.

4.1 Scaling of muscle activity and wing motion
Before a CNN can be trained on the muscle and wing motion data, the dataset needs
to be prepared. The magnitude of the muscle activity patterns found by the muscle
unmixing algorithm varies, as GCaMP expression, the translucency of the thorax,
and blue light illumination strength, all of which can vary across preparations.
During each experiment, all fluorescence images, muscle unmixing output, and
flight state parameters were saved to an hdf5-file. An experimental session typically
lasted for at least 15 minutes, which means that it is likely that the full activity
spectrum of most steering muscles was captured during an experiment. The activity
range could subsequently be used to compute a normalized activity function for each
steering muscle making it possible to compare muscle activity across experiments.

To rescale muscle activity traces, the mean, 𝜇, and standard deviation, 𝜎, were com-
puted for the periods when the fly was flying. A boolean value named fly_flying
with a timestamp was saved to an hdf5-file during the experiment, and could sub-
sequently be used to determine the flight bouts. Including data points when the
fly was not flying is problematic, as several tonic muscles exhibit constant activity
during flight. For all steering muscles, except the 𝑏2 and 𝑖𝑖𝑖1 muscles, the activity
is rescaled such that a value of 0 corresponds to (𝜇 − 2𝜎) and 1 to (𝜇 + 2𝜎). In
case of the 𝑏2 and 𝑖𝑖𝑖1 muscles, the muscles are mostly quiescent during flight,
to such an extent that in some experiments these muscles did not fire at all. To
control for complete quiescence, the values of 𝑏2 and 𝑖𝑖𝑖1 muscles are not rescaled
if the standard deviation was below 0.01. If the standard deviation was above this
threshold, the 𝑏2 and 𝑖𝑖𝑖1 traces will be rescaled such that a value of 0 corresponds
to (𝜇) and a value of 1 to (𝜇 + 3𝜎).



105

The parsing of the wing kinematic traces into wingbeats and the subsequent fitting
of Legendre polynomials constitutes most of the work for rescaling wing motion.
Although the wing kinematics have been tracked for both the left and right wing,
steering muscle activity was only recorded from the left side of the thorax. For
each wingbeat, the left wing motion was described by a vector of 80 Legendre
coefficients. The values of the Legendre coefficients correspond to radians, which
can range between [−𝜋, 𝜋]. Therefore, the scaling of the Legendre coefficients is
achieved by simply dividing by 𝜋.

The resampled muscle activity is coupled to the Legendre coefficients and the
wingbeat frequency. This coupled data forms the basis of the dataset used to train
and validate the CNN. The input data of the network consists of 13 variables: the
activity values of the 12 steering muscles and the wingbeat frequency. Wingbeat
frequency was scaled subtracting 150 Hz from the frequency value and subsequently
dividing by 100 Hz, such that a value of 0 corresponds to 150 Hz and a value of 1 to
250 Hz. The output data of the network are the 80 normalized Legendre coefficients.

Although neural networks are capable of handling outliers in the dataset, too many
outlying data points can result in decreased performance. In my analysis, outliers
were removed by thresholds on muscle activity, wingbeat frequency, and Legendre
coefficients. A wingbeat is removed from the dataset when the normalized muscle
activity was lower than −0.5 or larger than 1.5, the normalized wingbeat frequency
was lower than 0 or larger than 1 and if any of the normalized Legendre coefficients
were not inside ranges: −1/3 <= 𝐶𝜃 <= 1/3, −2/3 <= 𝐶𝜂 <= 2/3, −2/3 <=

𝐶𝜙 <= 2/3, and −1/3 <= 𝐶𝜉 <= 1/3. After removing all outliers, the dataset
consisted of 72,219 wingbeats.

It is common practice in machine learning to split a dataset into a training and
validation set (Figure 4.1). For the validation set, I selected the first 30 wingbeats
of each high-speed video sequence (10868 wingbeats). The remaining wingbeats
in the high-speed video were used for the training set (61351 wingbeats).

4.2 Architecture, training and validation of the CNN regression
The GCaMP fluorescence kernel spreads the fluorescence signal of a muscle twitch
out over time. Multiple successive muscle twitches lead to temporal summation of
the fluorescence signal and this effect makes it difficult, not impossible, to identify
the timing of individual muscle twitches. Besides the low temporal resolution of
GCaMP signals, the small changes in muscle fluorescence yield a relatively low
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Figure 4.1: Overview of the training (𝑁𝑤𝑏𝑠 = 61351) and validation set (𝑁𝑤𝑏𝑠 =
10868). The input consists of 13 variables: normalized muscle activity and nor-
malized wingbeat frequency. Output consists of 80 Legendre coefficients: 𝑐𝜃 , 𝑐𝜂,
𝑐𝜙 and 𝑐𝜉 .

signal-to-noise ratio.

A CNN is well suited to extract relevant information from a complex and noisy signal.
In the first layer of the CNN, the network learns the GCaMP fluorescence kernel via
a number of convolutional kernels over a fixed time window. By specifying a large
time window of muscle activity, the CNN has more information to separate signal
from noise. A large time window also makes it easier for the network to remember
specific patterns in muscle activity that are unique to a recording. Learning unique
muscle activity patterns is undesirable, as it is unlikely to occur in unseen data.
By specifying a large time window, the CNN is more likely to overfit. If the time
window is too small however, the amount of information might not be sufficient to



107

identify a muscle twitch.

The length of the time window which was found to work well consisted of 9
wingbeats or approximately 45 ms. A shorter time window would not contain
sufficient information and prediction accuracy would be worse as a consequence.
Longer time windows improved the training error, but the validation error tended to
be higher, especially for very long windows (> 50 wingbeats).

The CNN architecture I constructed consisted of 4 layers: 2 convolutional layers
and 2 dense layers. Input of the network consisted of a 13 × 9 matrix of normalized
muscle activity and normalized frequency of 9 subsequent wingbeats. As output of
the network is a prediction of the 80 normalized Legendre coefficients corresponding
to the first wingbeat in the 9 wingbeat time window. Before the input data is fed
into the first convolutional layer, Gaussian noise with a standard deviation of 0.05
was added to the input matrix. Gaussian noise helps the CNN to generalize on the
data and makes the network more robust to noise in the fluorescence recordings.
The first convolutional layer of the CNN consisted of 64 kernels with a 1 × 9 kernel
window, a 1 × 9 stride ans SELU activation (Figure 4.2). A total of 256 kernels
was used for the second layer, with a 13 × 1 kernel window and stride, and SELU
activation. The output of the second layer Was a vector with 256 elements. A fully
connected dense layer of 1024 virtual neurons takes in the output of the second layer
and applies a SELU activation for each virtual neuron. The last layer of the CNN
has 80 neurons with a linear activation function, corresponding to the 80 normalized
Legendre coefficients.

Figure 4.2: Accurate prediction of wing motion by a CNN using muscle fluorescence
and wingbeat frequency over a time window of 9 wingbeats.

The CNN was trained on the training set for a total of 1000 epochs and a batch size
of 100 samples. After every epoch, the network was evaluated using the validation
set. The learning rate was set as 10−4 with a decay of 10−7 per epoch and MSE
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as a loss function. After the first 200 epochs, the validation error stabilized around
10−3.7 and while the training error continues to decline (10−3.33 after 1000 epochs)
(Figure 4.3).

Figure 4.3: Training and validation error of muscle-activity-to-wing-motion CNN.

After training the network, the prediction performance was tested on all videos in
the dataset. Examples of the CNN prediction performance are given in (Figure
4.4, 4.5) and Appendix A. For most sequences, the wing motion predicted from
muscle activity was within ±2◦ of the tracked wing motion. This accuracy was
quite remarkable, given the complex waveforms of the wing kinematic angles and
the sparse nature of the input data. An explanation for the achieved prediction
accuracy might be that the orthogonal Legendre decomposition encodes much of
the complexity of the wing motion.

Most video sequences shows that muscle fluorescence changes typically last for
approximately 50 wingbeats, before returning to baseline. In free flight, one would
expect shorter bouts of similar muscle activity, as most maneuvers last between 10
and 30 wingbeats, (Muijres, Elzinga, Melis, et al., 2014, Muijres, Elzinga, Iwasaki,
et al., 2015). Although the GCaMP fluorescence kernel can partly explain the slow
return to baseline fluorescence, the changes in wing motion typically last around
50 wingbeats as well. This helps to explain why the trained CNN is so accurate
in predicting wing motion; the sustained changes in wing motion make the limited
temporal resolution of GCaMP imaging less important.

4.3 Virtual experiments on the muscle-to-wing manifold
The trained CNN can be interpreted as an in-silico model of the wing hinge. Inputs
of this in-silico wing hinge are the fluorescence values of the 12 steering muscles
and the wingbeat frequency, akin to the input of the steering and power muscles.
Output of the in-silico wing hinge is the full 3D motion pattern and shape of the
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Figure 4.4: Muscle activity and (predicted) wing motion during a high-speed video
sequence. A: Muscle activity and wingbeat frequency. B: Tracked (black, true) and
predicted (red, pred) wing motion. C: Close-up between 0.4 and 0.6 seconds of A.
D: Close-up of B.

wing. The remarkable accuracy of the predicted wing motion using seen and unseen
muscle activities inspires confidence in the CNN as a model of the wing hinge. One
observation that can be concluded from the accuracy of the trained CNN, is that
steering muscle activity and wingbeat frequency provide sufficient information to
predict wing motion.

Besides predicting wing motion for observed muscle activity, the in-silico wing
hinge can also be used to conduct virtual experiments. A naive way of using the
CNN predictions would be to vary activity of the 𝑏1 muscle while keep all other input
variables constant. However, from the video sequences, I observed that there are
no significant independent changes in muscle activity. Instead, the activity patterns
within the set of 12 muscles are highly conserved. When changing the muscle
activity of only one muscle at a time, the muscle activity pattern is outside the data-
subspace on which the CNN was trained. Giving an input that deviates significantly
from the patterns that were used to train the CNN requires the network to extrapolate.
Extrapolation is unreliable, especially in case of a non-linear regression.
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Figure 4.5: Muscle activity and (predicted) wing motion during a high-speed video
sequence. A: Muscle activity and wingbeat frequency. B: Tracked (black, true) and
predicted (red, pred) wing motion. C: Close-up between 0.4 and 0.6 seconds of A.
D: Close-up of B.

In order to get reliable wing motion predictions from the trained CNN, the input data
needs to reside within the data-subspace of the training set. To find this subspace,
linear models have been fitted to the muscle activity (Figure 4.6). Because the
GCaMP fluorescence kernel consists of a sharp rise followed by a more gradual
exponential decay, the domain of the linear model consists of all wingbeats in which
a selected muscle had activity with a positive fluorescence gradient (> 0.005) during
the 9 wingbeat time window. The gradient condition helps to select wingbeats where
the muscle of interest was likely to be active. Without this condition, it is impossible
to find correlation trends between muscles, as the decay phase of the GCaMP kernel
contains more uncorrelated data points and obscures most of the trends. In Table
4.1 the slopes found by a linear model fit for each muscle are presented together
with the number of wingbeats that were used for the fit.

The correlation analysis of muscle activity shows that for all steering muscles there
is little to no correlation with wingbeat frequency. For the remainder of this thesis, it
is therefore assumed that frequency is independent of steering muscle activity. The
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Figure 4.6: Correlation analysis of muscle activity and wingbeat frequency. For
each column, a linear model has been fitted to all wingbeats in the dataset for which
the muscle fluorescence gradient exceeds a threshold of 0.005. The linear model
are plotted over the dataset (black dots) by lines, the baseline muscle activity by a
grey dot and the maximum muscle activity by a colored dot.

independence of steering muscle activity from wingbeat frequency is an important
observation about the mechanics of the wing hinge and the neural circuitry of the
flight system. It suggests that the steering muscles do not need to change their activity
pattern as a function of wingbeat frequency, which implies that the configuration
changes of the wing hinge by the steering muscles are laregely independent of power
muscle activity. Independence from wingbeat frequency also simplifies the neural
circuitry required to tune the motor neurons of the steering muscles.

Using the muscle correlation coefficients, it is possible to specify muscle activity
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𝑏1 𝑏2 𝑏3 𝑖1 𝑖2 𝑖𝑖𝑖1 𝑖𝑖𝑖2 𝑖𝑖𝑖3 ℎ𝑔1 ℎ𝑔2 ℎ𝑔3 ℎ𝑔4
𝑏1 1 0.38 0.09 −0.27 −0.15 0.21 0.18 0.32 −0.16 −0.09 0.38 0.16
𝑏2 0.12 1 −0.05 −0.07 −0.01 0.34 0.08 0.20 −0.09 −0.07 0.24 0.25
𝑏3 0.09 −0.14 1 0.36 0.36 0.04 −0.27 −0.03 0.22 0.33 −0.07 0.10
𝑖1 −0.30 0.06 0.60 1 0.86 0.41 −0.86 −0.17 0.73 0.73 −0.29 0.05
𝑖2 −0.20 0.19 0.43 0.65 1 0.45 −0.78 0.21 0.56 0.72 −0.16 0.40
𝑖𝑖𝑖1 0.06 0.26 0.04 0.23 0.23 1 −0.23 0.23 0.12 0.17 0.18 0.25
𝑖𝑖𝑖2 0.24 −0.03 −0.34 −0.65 −0.79 −0.35 1 −0.08 −0.71 −0.78 0.26 −0.09
𝑖𝑖𝑖3 0.08 0.50 −0.01 0.07 0.23 0.46 −0.07 1 −0.09 0.09 0.29 0.60
ℎ𝑔1 −0.20 −0.16 0.39 0.77 0.73 0.16 −0.86 −0.29 1 0.90 −0.24 −0.25
ℎ𝑔2 −0.11 −0.05 0.37 0.62 0.71 0.34 −0.80 0.02 0.79 1 0.01 0.01
ℎ𝑔3 0.30 0.20 −0.08 −0.15 −0.14 0.35 0.07 0.32 −0.09 −0.02 1 0.06
ℎ𝑔4 −0.08 0.40 0.14 0.17 0.36 0.33 −0.11 0.58 −0.06 0.08 0.07 1
𝑓 0.02 0.00 −0.09 −0.06 0.00 −0.02 0.04 −0.01 −0.04 −0.02 −0.08 0.04
𝑁 7606 4325 8884 7252 6949 599 10772 8727 7457 7374 9154 13669

Table 4.1: Linear models are fitted to a subset (𝑁) of muscle activity based on a
gradient threshold (> 0.005). One linear model is fitted per column to the muscle
specified on top and the indices correspond to the slopes found by the linear model.

inputs that are within the data subset that was used to train the CNN. Besides the
slopes of the muscle correlations, a baseline muscle activity pattern is required as
a bias vector. Baseline muscle activity is determined by looking for videos in the
dataset that contain no significant changes in muscle activity or wing motion, and
subsequently determining the average activity over those sequences. The baseline
muscle activity is given in Table 4.2.

𝑏1 𝑏2 𝑏3 𝑖1 𝑖2 𝑖𝑖𝑖1 𝑖𝑖𝑖2 𝑖𝑖𝑖3 ℎ𝑔1 ℎ𝑔2 ℎ𝑔3 ℎ𝑔4 𝑓

0.5 0.1 0.5 0.35 0.35 0.1 0.6 0.5 0.35 0.35 0.4 0.4 0.5

Table 4.2: Baseline muscle activity

With the baseline muscle activity, it is possible to predict a baseline wingbeat using
the trained CNN. For each muscle and the wingbeat frequency, the baseline muscle
activity value is kept constant over the 9 wingbeat time window. Feeding this 13× 9
matrix into the trained CNN yields the baseline wingbeat (Figure 4.7).

In a similar way, the effect of maximum activation of a certain muscle can be studied.
The slopes found by the linear models of (Figure 4.6) and Table 4.1 form a 12D
surface. This surface can be anchored to the baseline muscle activity pattern (Table
4.2). As an example, one can start from the baseline muscle activity and move over
the 12D surface towards a point with maximum 𝑏1 activity (𝑏1 = 1). The muscle
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activity pattern at 𝑏1 = 1 on the 12D surface forms the maximum muscle activity
pattern for 𝑏1. In Figure 4.7 the baseline and maximum muscle activity patterns
for all steering muscles are shown as well as the CNN predictions of the associated
wing motion.

Figure 4.7: Wing kinematics for maximum muscle activity patterns. A: Distribution
of muscle activity (50 bins) in the dataset (𝑁𝑤𝑏 is number of wingbeats). B:
Maximum muscle activity patterns, baseline activity is depicted in gray while the
colored bars indicate the maximum muscle activity patterns and maximum muscle
activity is marked by *. C: Predicted wing kinematics for the muscle activity patterns
in B. over one wingbeat 𝑡/𝑇 .

4.4 Verification of the predicted muscle function
The found trends in muscle activity patterns and predicted wing motion in the
previous section need to be verified by comparison to previous physiological studies.
For some of the steering muscles, in particular the ℎ𝑔-muscles, there are no studies
of their effects on wing motion. In this section, I will discuss the effects on wing
motion by muscle activity and how these effects relate to prior studies.

The distribution of muscle activity in (Figure 4.7A) overlaps mostly with the results
found by Lindsay, Sustar, and Dickinson, 2017. In Lindsay, Sustar and Dickinson
(2017), the tonic muscles are 𝑏1, 𝑏3, 𝑖2, 𝑖𝑖𝑖3, ℎ𝑔4, and the phasic muscles are 𝑏2, 𝑖1,
𝑖𝑖𝑖1, 𝑖𝑖𝑖2, ℎ𝑔1, ℎ𝑔2, ℎ𝑔3. The distribution of muscle activity in (Figure 4.7A) shows



114

that my results largely replicated these findings, with a few subtle differences. The
𝑏1, 𝑏3, 𝑖𝑖𝑖2, 𝑖𝑖𝑖3, and ℎ𝑔4 muscles clearly exhibited tonic activity, whereas the 𝑏2,
𝑖𝑖𝑖1, ℎ𝑔1, and ℎ𝑔2 muscles exhibited phasic patterns of activity. A few muscles (𝑖1,
𝑖2, and ℎ𝑔3) showed a mixture of tonic and phasic activity. These discrepancies are
not unexpected, given that the amount of data collected by Lindsay and co-workers
(2017) far exceed what I was able to collect due the the constraints associated with
collecting high-speed video data.

Activity of the 𝑏1 and 𝑏2 muscles results in an increase in stroke amplitude and
deviation during ventral stroke reversal (Figure 4.7C). A similar effect on wing
motion has been observed in Dickinson and Tu, 1997, Balint and Dickinson, 2001
and Balint and Dickinson, 2004. Besides changes in stroke and deviation angle, the
wing pitch and deformation angle advance during ventral stroke reversal. Advanced
firing of the 𝑏1 motor neuron results in advanced rotation of the wing, Dickinson
and Tu, 1997. Delayed firing of the 𝑏1 motor neuron has an opposite effect on
the wing–a decrease in ventral stroke amplitude and deviation, and delayed wing
pitch rotation. When both the 𝑏1 and 𝑏2 muscles are active, a strong increase in
stroke and deviation angles plus an advance in wing pitch rotation occur. The CNN
predictions in (Figure 4.7C) and the measured effects on wing motion in blowflies
(Dickinson and Tu, 1997), (Balint and Dickinson, 2001), (Balint and Dickinson,
2004) are remarkably close.

The muscle activity correlations analysis in (Figure 4.6) and Table 4.1 show some
surprisingly strong correlations. When inspecting the activity of the 𝑏3, 𝑖1, 𝑖2, ℎ𝑔1,
and ℎ𝑔2 muscles, one can see strong correlated trends, whereas the 𝑖𝑖𝑖2 muscle
is anti-correlated with the previously mentioned muscles. An increase in 𝑏3, 𝑖1,
𝑖2, ℎ𝑔1, and ℎ𝑔2 activity and a decrease in 𝑖𝑖𝑖2 activity results in a decrease in
stroke and deviation angle at both ventral and dorsal stroke reversal, in combination
with a reduced wing pitch and deformation angle during the downstroke (Figure
4.7C). The reduced wing pitch angle means a higher angle-of-attack during the
downstroke. At the start of the upstroke, the wing pitch angle reaches a minimum,
sometimes resulting in negative angles-of-attack. In case of increased 𝑏3, 𝑖1, 𝑖2,
ℎ𝑔1, and ℎ𝑔2 activity with the decreased 𝑖𝑖𝑖2 activity, the dip in wing pitch angle
is reduced compared to the baseline wingbeat, lowering the wing pitch rotational
velocity during ventral stroke reversal.

When 𝑖𝑖𝑖2 activity increases and 𝑏3, 𝑖1, 𝑖2, ℎ𝑔1, and ℎ𝑔2 activity decreases, the stroke
and deviation angle increase during ventral and dorsal stroke reversal, while wing
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pitch and deformation angle increase during the downstroke. Angle of attack is
increased during the downstroke and the dip in the wing pitch angle at the start of
the upstroke is deeper than the baseline wingbeat, resulting in a larger wing pitch
rotational velocity during ventral stroke reversal. The deviation angle shows a dip
during mid-downstroke, creating a more circular wing trajectory than the U-shaped
trajectory of the baseline wingbeat.

Although not all muscles of the 𝑏3, 𝑖1, 𝑖2, ℎ𝑔1, ℎ𝑔2 - 𝑖𝑖𝑖2 combination have been
recorded in Balint and Dickinson, 2004, the observed correlations and effects on
wing motion are very similar to the mode 1 and mode 2 behavior in (Figure 1.26).
Mode 1 in Balint and Dickinson, 2004, corresponds to an increase in 𝑖1 activity and
an absence of 𝑖𝑖𝑖24 activity. The 𝑖𝑖𝑖4 muscle exists in a blowfly but not in a fruit
fly, the 𝑖𝑖𝑖2 muscle in Drosophila is comparable in orientation and attachment to the
𝑖𝑖𝑖-sclerite, however. Mode 2 shows an absence of 𝑖1 activity and increased 𝑖𝑖𝑖24

activity. The observed stroke and deviation angles in Balint and Dickinson, 2004
for mode 1 and 2, correspond well to the wing kinematics found in (Figure 4.7C).
Besides the 𝑖1 and 𝑖𝑖𝑖2 muscles, there are four other muscles involved in mode 1 and
2.

Differences in the relative activity of the 𝑏3, 𝑖1, 𝑖2, ℎ𝑔1, and ℎ𝑔2 muscles result in
relatively subtle changes in wing motion. Strong 𝑏3 activity for example, results in a
low deviation angle during the complete wingbeat. When 𝑖2 is more active than the
other four muscles, however, the deviation angle is only lower during ventral stroke
reversal. The wing motion for maximum 𝑖1, ℎ𝑔1 or ℎ𝑔2 activity is quite similar and
the effects on deviation angle are between maximum 𝑏3 and 𝑖2 activity.

The 𝑖𝑖𝑖1 muscle shows strong fluorescence peaks during flight starts and stops and
is likely involved with the unfolding and folding of the wings. During flight itself,
the muscle undergoes more gradual changes in activity. The linear fits in Figure
4.6 and Table 4.1 are not necessarily a good representation of 𝑖𝑖𝑖1 activity, as some
correlations show a bi-modal activity pattern. In Figure 4.7C, the primary effect of
𝑖𝑖𝑖1 activity is a lowering of the deviation angle during dorsal stroke reversal. One
has to be cautious when evaluating the effect of 𝑖𝑖𝑖1 on wing motion, as the number
of wingbeats with significant 𝑖𝑖𝑖1 activity during flight was small.

The effects on wing motion of the 𝑖𝑖𝑖3, ℎ𝑔3 and ℎ𝑔4 muscles have not been researched
in electrophysiology studies. When looking at the effects of 𝑖𝑖𝑖3, ℎ𝑔3 and ℎ𝑔4 activity
in Figure 4.7C, one can see that the muscles have similar effects on wing motion.
For all three muscles, a strong increase in stroke and deviation angle can be observed
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during ventral stroke reversal. Wing pitch rotation is advanced with respect to the
baseline wingbeat and the wing pitch angle is lower during the upstroke (resulting
in a lower angle-of-attack). The effect on ventral stroke and deviation angle are
the strongest for ℎ𝑔3 activity, followed by 𝑖𝑖𝑖3 and ℎ𝑔4 activity. There is a strong
similarity in wing motion for maximum 𝑏2 and ℎ𝑔3 activity. In fact, 𝑏2 activity
is correlated with 𝑖𝑖𝑖3, ℎ𝑔3 and ℎ𝑔4 activity. The 𝑏2 muscle shows highly phasic
activity, while the 𝑖𝑖𝑖3, ℎ𝑔3 and ℎ𝑔4 muscles have more tonic behavior. Similar to
the mode 1 and mode 2 behavior for the 𝑏3, 𝑖1, 𝑖2, ℎ𝑔1, ℎ𝑔2 - 𝑖𝑖𝑖2 combination, one
could propose that there is a mode 3 as well. Mode 3 involves the 𝑏2, 𝑖𝑖𝑖3, ℎ𝑔3

and ℎ𝑔4 muscles, resulting in strong increases in stroke amplitude, high deviation
angles, and advanced wing rotation during ventral stroke reversal. As with mode 1
and mode 2, the relative activity of the involved muscles determines the exact wing
motion pattern.

Interestingly, the ℎ𝑔3 and ℎ𝑔4 muscles have independent activity (Figure 4.6, Table
4.1). A similar independence of muscle activity with similar effects on wing motion
can be observed between the 𝑖𝑖𝑖2 and 𝑖𝑖𝑖3 muscles. I speculate that having multi-
ple muscles with similar effects on wing motion makes it easier to switch between
different motor programs in subsequent wingbeats. It is difficult to grasp the signifi-
cance of the sometimes subtle differences in wing motion patterns for the maximum
muscle activity wingbeats in Figure 4.7C. In the following chapter, the aerodynamic
force production of all wing motion in Figure 4.7C will be investigated, shining a
light on the more subtle differences in wing kinematics.

In summary, the CNN-predicted effects on wing motion for 𝑏1, 𝑏2, 𝑖1, and 𝑖𝑖𝑖2
activity correspond well to the results of previous electrophysiology studies. This
overlap provides confidence in the accuracy of the CNN predictions. The correlation
analysis of muscle activity shows that changes in wing motion require an increase
or decrease in activity of most steering muscles. Actuation of wing motion requires
coordinated steering muscle activity, with the activity being approximately confined
to a 12D plane. The correlation analysis in Figure 4.6 and the CNN-predicted wing
motion in Figure 4.7 will be valuable for investigating the neural wiring of the ventral
nerve cord and how the observed motor programs are encoded in the nervous system
of the fly.
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4.5 Deciphering sclerite functionality with an autoencoder
The strong correlations between steering muscles, described in the previous section,
show that analyzing the effects on wing motion of individual muscles using the
CNN is not feasible, given the strong intrinsic correlations. Therefore, I will take
a different approach, which makes use of the fact that there are four sclerites in the
wing hinge with steering muscles attached, and understanding the functional role
of each sclerite is a critical step in determining how muscle activity translates into
changes in wing motion. The trained CNN of the previous section is not suitable
for this investigation, as the input requires correlated muscle activity patterns that
involve all four sclerites. In this section, I will train a CNN using an autoencoder
architecture to learn how the activity of all the muscles attached to a particular
sclerite is correlated to changes in wing motion. An autoencoder representing
independent sclerite states will provide more information on the function of the
wing hinge.

An autoencoder predicts the input of the network, but contains a bottleneck that
forces the network to learn how to represent the input data by a small number
of parameters: the latent variables. The parameters in the bottleneck span the
latent space. Training the autoencoder with a bottleneck is roughly equivalent to
performing a (non-linear) PCA on a dataset. In this study, I implement a novel
form of a typical autoencoder, so that besides predicting the input, the 80 Legendre
coefficients of wing motion are predicted as well.

The architecture of the sclerite function autoencoder is given in Figure 4.8. Input to
the autoencoder is split into 5 streams, grouping the muscle activity per sclerite and
a separate wingbeat frequency stream. Each stream uses two convolutional layers,
similar to Figure 4.2, followed by a dense layer of 512 neurons and a final layer
of a single neuron with linear activation. The 5 neurons of the 5 streams form the
latent space, projecting the muscle activity to a single variable per sclerite. After
the latent space, the network is split into two streams: one stream uses a decoder to
predict the input to the network, the second stream uses two dense layers to predict
the Legendre coefficients of the wing motion. A back-propagation stop is placed
between the latent space and the muscle activity decoder layers, such that the latent
space is only trained on correlations with wing motion. The muscle activity decoder
layers are still functional, as the decoder predicts the correlation between the latent
space and muscle activity without the noise of the input to the network.

After training the sclerite function autoencoder (1000 epochs, batch size 100, learn-
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Figure 4.8: Architecture of the sclerite autoencoder. Input is the 13 × 9 muscle
activity matrix while the outputs are the muscle activity matrix and the Legendre
coefficients of wing motion. The latent space consists of 5 parameters representing
the 𝑏, 𝑖, 𝑖𝑖𝑖, ℎ𝑔 sclerites and the wingbeat frequency, 𝑓 . Convolutional (conv),
deconvolutional (deconv), and fully connected (dense) layers have been used with
linear, SELU and tanh activation functions. A back-propagation stop has been placed
between the latent space and the muscle activity decoder section of the network.

ing rate 10−4, decay 10−7) on the muscle activity and wing motion dataset, the
network predicts three different vectors/matrices: the latent space vector (5 × 1),
the muscle activity matrix (13 × 9), and the Legendre coefficients (80 × 1). It is
important to note that the prediction error of the wing kinematics by the sclerite
function autoencoder is worse than the network in Figure 4.2, as the bottleneck
restricts the amount of information that can be used for the prediction.

In Figure 4.9, only the decoder sections of the network are used to predict muscle
activity and wing motion for a given latent vector. Each latent parameter is varied
between −3𝜎 and +3𝜎 (9 steps) while the other latent variables are kept at 0, and
subsequently the muscle activity and wing motion are predicted from the latent
input. The autoencoder learns a single variable for each sclerite and subsequently
shows which aspects of muscle activity and wing motion are correlated with the
latent parameter.

The first latent parameter describes the state of the basalare sclerite, the 𝑏-parameter.
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Figure 4.9: Predicted muscle activity (𝜏) and wing motion (𝜙, 𝜃, 𝜂, 𝜉) for 5 latent
parameters ([−3𝜎, 3𝜎], blue-red colorbar).

A positive value for the 𝑏-parameter corresponds to an increase in 𝑏1 and 𝑏2 activity
while the 𝑏3 activity decreases. Negative values for the basalare latent parameter
show an opposite trend with increasing 𝑏3 activity and decreasing 𝑏1 and 𝑏2 activity.
These relationships make sense, because anatomical and physiological evidence
indicates that the 𝑏1 and 𝑏2 muscles both act to rotate the basalare apophysis
anteriorly, whereas the 𝑏3 muscles acts to rotate the basalare apophysis posteriorly.
The corresponding wing motion shows a relatively small change in stroke angle, but a
clear phase shift in ventral wing rotation, with advanced rotation for a positive latent
value and delayed rotation for a negative latent value. During the downstroke, the
deviation angle increases with an increase in the basalare latent parameter, followed
by a rapid drop at the start of the upstroke. A decreasing value of the basalare latent
parameter has the opposite effect on the deviation angle.

The second latent parameter corresponds to the state of the first axillary sclerite: the
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𝑖-parameter. For a positive value of the 𝑖-parameter, the 𝑖1 and 𝑖2 muscles increase
activity while a negative value decreases muscle activity. The corresponding wing
motion for a positive 𝑖-parameter shows a decrease in stroke amplitude and a decrease
in the ventral deviation angle. During the upstroke, the wing pitch angle is higher,
corresponding to a higher angle-of-attack. A negative value of the 𝑖 parameter shows
opposite trends in wing motion.

The third latent parameter describes the state of the third axillary sclerite or the 𝑖𝑖𝑖-
parameter. A positive value of the 𝑖𝑖𝑖-parameter corresponds to increasing activity
of the 𝑖𝑖𝑖2 and 𝑖𝑖𝑖3 muscles. For negative values of the 𝑖𝑖𝑖-parameter, the 𝑖𝑖𝑖 muscles
converge to a constant low activity level. The 𝑖𝑖𝑖1 muscle is not correlated to the
𝑖𝑖𝑖-parameter, probably because 𝑖𝑖𝑖1 is rarely active during flight, and is primarily
specialized for folding and unfolding the wing. Changes in wing motion are almost
the exact opposite from the 𝑖-parameter: a positive 𝑖𝑖𝑖-parameter shows an increase
in stroke amplitude and ventral deviation angle, and a lower wing pitch angle (lower
angle-of-attack) during the upstroke. The mirroring of the 𝑖-parameter and the 𝑖𝑖𝑖-
parameter is likely the result of the strong anti-correlation between 𝑖1, 𝑖2, and 𝑖𝑖𝑖2
muscle activity.

The fourth latent parameter gives the state of the fourth axillary sclerite or the ℎ𝑔-
parameter. With an increasing ℎ𝑔-parameter, the ℎ𝑔1 and ℎ𝑔2 activity decreases,
while the ℎ𝑔3 activity rises strongly and the ℎ𝑔4 activity increases more gradually.
The similar trends of the ℎ𝑔1 and ℎ𝑔2 muscles correspond to the strong correlation
between the two muscles, while the different slopes of the ℎ𝑔3 and ℎ𝑔4 muscles
hint at their independent activity. A strong change in wing stroke amplitude and
deviation angle throughout the wingbeat can be observed as a function of the
ℎ𝑔-parameter. The wing pitch angle during the downstroke increases with the ℎ𝑔-
parameter, resulting in a lower angle-of-attack. Similarly, the deformation angle
changes throughout the wingbeat, creating a higher wing camber with an increasing
ℎ𝑔-parameter.

Finally, the fifth latent parameter corresponds to the effect of wingbeat frequency on
wing motion, the 𝑓 -parameter. The trend between the 𝑓 -parameter and the wing-
beat frequency is roughly linear. With increasing wingbeat frequency, the stroke
amplitude decreases and the downstroke-to-upstroke ratio decreases. The devia-
tion angle and wing pitch angle show a similar shift in the downstroke-to-upstroke
ratio. During the upstroke, the deformation angle decreases with increasing wing-
beat frequency, resulting in lower wing camber. The decrease in stroke amplitude
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with increasing wingbeat frequencies has been observed in Lehmann and Dickin-
son, 1997, where for higher wingbeat frequencies the stroke amplitude needs to be
decreased as the maximum power output of the power muscles has been reached.

Figure 4.10: Hypothesized mechanisms of actuation by the steering muscles. The
wing kinematics for −3𝜎, 0, and +3𝜎 for each latent parameter are displayed as
lollipop figures: showing the wingtip trajectory and the wing pitch and deformation
angles by portraying the cross-section of the wing at regular intervals. Abbrevia-
tions: basalare (BA), basalare tendon (BAT), radial vein (RV), first axillary sclerite
(ax1), second axillary sclerite (ax2), third axillary sclerite (ax3), fourth axillary scle-
rite (hg), dorso-ventral muscles (DVM), and dorso-longitudinal muscles (DLM).

With the predicted wing motion of the sclerite function autoencoder, one can spec-
ulate about how the steering muscles work on the wing hinge. In Figure 4.10, I
present my hypotheses of how steering muscles might act on the sclerites in the wing
hinge to create the changes in wing motion. Although more research in the exact
anatomy and mechanics of the sclerites in the wing hinge is required to verify the
hypothesized actuation, the anatomy presented in Figure 4.10 follows the findings
of (Miyan and Ewing, 1985) closely.

As discussed briefly above, the b-parameter encodes the known anatomy of the
basalare sclerite and the attachments of the basalare muscles accurately, in particular,
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the antagonistic relation among the 𝑏1, 𝑏2, and 𝑏3 muscles. Activation of the 𝑏1

and 𝑏2 muscles (𝑏-parameter = +3𝜎) rotates the apophysis of the basalare sclerite
more anteriorly, thereby increasing the tension on the basalare tendon. The basalare
tendon is attached to the radial vein and the increased tension on the tendon pulls
the wing upwards during ventral stroke reversal. Additionally, the basalare tendon
causes the radial vein to rotate earlier during ventral stroke reversal, causing a phase
advance in wing rotation. When the 𝑏3 muscle is activated (𝑏-parameter =−3𝜎), the
apophysis of the basalare is rotated posteriorly, decreasing the tension on the basalare
tendon. The decreased tension on the tendon reduces the stroke and deviation angle
during ventral stroke reversal, and delays wing rotation.

When the 𝑖1 and 𝑖2 muscles are activated (𝑖-parameter = +3𝜎), both muscles exert a
ventral pull on the first axillary sclerite, which is connected to the second axillary
sclerite. The second axillary sclerite serves as a fulcrum for the back and forth
motion of the wing, and the inboard location of the first axillary sclerite means that
ventral stroke and deviation extend are dampened by the 𝑖1 and 𝑖2 activity. When the
𝑖1 and 𝑖2 muscles are relaxed (𝑖-parameter = −3𝜎), the dampening effect on wing
motion is not present and ventral stroke and deviation angle reach their full extent.

The activity of the 𝑖𝑖𝑖2 and 𝑖𝑖𝑖3 muscles (𝑖𝑖𝑖-parameter = +3𝜎), results in a ventral
pull on the third axillary sclerite, which is coupled to the second axillary sclerite. As
the third axillary sclerite is positioned outboard with respect to the second axillary
sclerite, the ventral pull results in an increase in stroke and deviation angles during
ventral stroke reversal. Relaxation of the 𝑖𝑖𝑖 muscles (𝑖𝑖𝑖-parameter = −3𝜎) has the
opposite effect on wing motion and lowers the stroke and deviation angles during
ventral stroke reversal.

Activation of the ℎ𝑔3 and ℎ𝑔4 muscles (ℎ𝑔-parameter =+3𝜎), changes the orientation
of the helical tubes of the fourth axillary sclerite, such that the rotation amplitude
of the sclerite increases. Rotation of the fourth axillary sclerite is transferred to the
wing via the third axillary sclerite, and results in a larger wing stroke amplitude
and deviation angle throughout the wingbeat. Because the third axillary sclerite is
coupled to the more posterior veins of the wing, ℎ𝑔3 and ℎ𝑔4 activity also affects
the wing pitch and deformation angles throughout the wingbeat (Figure 4.9). When
the ℎ𝑔1 and ℎ𝑔2 muscles are active (ℎ𝑔-parameter = −3𝜎), the muscles affect
the orientation of the helical tubes of the fourth axillary sclerite, such that the
rotation amplitude is decreased. This decrease in fourth axillary rotation results
in a reduction in stroke amplitude and deviation angle throughout the wingbeat.
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Similarly, the absolute wing pitch and deformation angles are lower throughout the
wingbeat.

When the wingbeat frequency is high ( 𝑓 -parameter = +3𝜎), the motor neurons of
the power muscles fire more rapidly, but still an order of magnitude lower than the
wingbeat frequency. The increased firing rate of the motor neurons, pumps more
𝐶𝑎2+ ions into the power muscles accelerating the asynchronous contraction cycle
of the DLMs and DVMs. When the wingbeat frequency is high, the wing stroke
amplitude decreases, because the power muscles can only provide a limited amount
of mechanical power (Lehmann and Dickinson, 1997, Namiki et al., 2022). For low
wingbeat frequencies ( 𝑓 -parameter = −3𝜎), the stroke amplitude can be higher as
the wing kinematics are no longer limited by the power output of the power muscles.
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C h a p t e r 5

DYNAMICALLY-SCALED FLAPPING WING EXPERIMENTS

The detailed analysis of the relation between steering muscle activity and wing
motion in the previous chapter does not provide any information on the aerodynamic
forces that are created by changes in wing motion. Computing the aerodynamic
forces via the quasi-steady aerodynamic model can be an easy way to investigate the
aerodynamic effects of steering muscle activity. However, the quasi-steady approach
does not include a model for wing deformation and might therefore be inaccurate.
Although CFD simulations have become faster and easier to implement, it would
still take hours to compute the aerodynamic forces for just one wing kinematic
pattern. The fastest way to accurately measure aerodynamic forces of insect flight
remains through the use of a dynamically-scaled flapping wing robot.

In the last three decades, there have been several versions of a dynamically-scaled
flapping wing robot in the Dickinson lab, all nicknamed RoboFly, (Dickinson,
1994), (Lauder, 2001), (Birch and Michael H Dickinson, 2001), (Birch, William B
Dickson, and Michael H Dickinson, 2004), (Poelma, W. Dickson, and Dickinson,
2006), (William B Dickson et al., 2010), (M. J. Elzinga, Van Breugel, and Michael H
Dickinson, 2014).

In this chapter, I will give a short description of the hardware and software of
the latest version of RoboFly that I developed. Subsequently, I will describe the
formulas used to dynamically scale the experiments. To permit me to make force
and moment measurements on a model wing that could deform as captured in my
high-speed video analysis, I designed and built a wing that consists of four panels
connected by three hinge lines, actuated by three micro servos. I will then present
the aerodynamic results using the wing kinematics for maximum muscle activity
patterns in Figure 4.7.

5.1 Design and control of RoboFly
The two wings of RoboFly were actuated by a stepper motor and two servo motors
each (Figure 5.1). Stroke angle was controlled by a stepper motor (10 kHz clock)
via two gears with a 1:3 gear ratio. The position of the stepper motor was controlled
via micro-stepping, which permitted fine motor control (7.8 · 10−3 degrees per
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microstep). Two magnets were positioned on the gear (𝜙 = [−91◦, 91◦]), such that
a Hall-effect sensor was activated when the wing moves out of bounds. Besides
protecting the wing, the Hall-effect sensor is also used to home the stepper motor.
During the homing procedure, the stepper rotates the wing in one direction until the
Hall-effect sensor is tripped. The wing rotation stops immediately and subsequently
moves the wing back to the home position (𝜙 = 0). During an experiment, the
Teensy 3.2 microcontroller kept track of the number of microsteps travelled, relative
to the home position. Sometimes the stepper slipped due to large torques. To counter
motor-slip, the steppers were homed after each experiment.

Figure 5.1: The two RoboFly wings are actuated by two stepper motors (𝜙𝐿 , 𝜙𝑅)
and four servo motors (𝜃𝐿 , 𝜂𝐿 , 𝜃𝑅, 𝜂𝑅). Both stepper motors actuate the wings via
gears (1 : 3 gear ratio). Coupled to the gears are two magnets, that trip a Hall-effect
sensor when the wing goes out of bound. At the base of the left wing is a FT sensor.

During an experiment, the stepper’s position, 𝜙, and velocity, ¤𝜙, were controlled
in a feed-forward process. The stepper made micro-steps on a 10 kHz clock, but
the position and velocity set-points were updated at 200 Hz. After the position and
velocity update, the control algorithm computed the required stepping frequency
and direction to reach the specified position and velocity 5 ms ahead. When external
torques on the stepper motor or velocity was too high, the stepper motor often start
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slipping. Such slip was not automatically detected, as there was no feedback on the
actual position of the stepper. To prevent motor slip, I set bounds on the maximum
stepper velocity and acceleration.

The deviation and wing pitch angles were controlled by two servos (HiTec D951TW),
the deviation angle servo moved the servo-pod along the deviation axis via two gears
(1:1 gear ratio), and the wing was directly attached by the wing pitch servo. Position
of the servos was specified by a pulse-width modulation (PWM) signal at 50 Hz.
The deviation servo could move between −45◦ and +45◦ and the wing pitch servo
could move between −90◦ and +90◦. During an experiment, the position of the
servo was updated at 50 Hz in a feed-forward control loop.

The forces and torques on the wing were measured by a 6 degrees of freedom Force-
Torque (FT) sensor (ATI Nano 17), mounted on the rotation axis of the wing pitch
servo. Custom machined aluminum mounts coupled the base of the FT-sensor to the
servo axis, and the head of the FT-sensor to the wing. During the experiment, the
six 16-bit unsigned integers corresponding to the: 𝐹𝑥 , 𝐹𝑦, 𝐹𝑧, 𝑇𝑥 , 𝑇𝑦, 𝑇𝑧 forces and
torques were sampled at 200 Hz and directly written to a .txt file. As the FT-sensor
was positioned at the wing base, vibrations due to stepper and servo motion were
picked up by the FT-sensor. In an earlier version of RoboFly, the stepper motor
actuated the wing directly, without gearing. This turned out to be problematic,
as interference occurred at a stepper motor velocity that was within the required
velocity range of some wing kinematic experiments. The wing vibration at the
interference velocity was so strong that it would dominate the FT-measurements.
By using two gears with a 1:3 gear ratio, the interference velocity was three times
as high and the interference phenomenon no longer occurred during experiments.

RoboFly was submerged in an acrylic tank (2.4 × 1 × 1.2 𝑚 ) filled with mineral
oil (Chevron SuperLa white oil), with a kinematic viscosity of 115 · 10−6 𝑚2 · 𝑠−1

and a density of 880 𝑘𝑔 · 𝑚−3 at 22 𝐶◦, (M. J. Elzinga, William B Dickson, and
Michael H Dickinson, 2012). Mineral oil is an electric isolator, and submerging the
servos, stepper motors and FT-sensor was therefore not problematic. The oil level
in the robofly tank was approximately 1 m. RoboFly was submerged at a depth of
50 cm and the wing’s wingtip radius was 31 cm. A previous study carefully mapped
the effects on lift and drag when the RoboFly wing moves close to the; top, side and
bottom surfaces of the tank (Dickinson, Lehmann, and Sane, 1999). In this study, it
was determined that as long as the wing remains further than∼ 12 cm away from any
surface, the surface does not have any noticeable effect on lift or drag generation, i.e.
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there are no measurable wall- or surface effects, and the results approximate those
of an infinite volume. The positioning of the RoboFly in the acrylic tank guarantees
that the wing never gets too close to the walls or the top and bottom surfaces.

5.2 Actuating wing shape through micro servos
Besides the three Tait-Bryan angles describing wing orientation, FlyNet tracks a
fourth angle describing wing shape, the deformation angle 𝜉. To implement this
fourth angle on RoboFly, the wing was composed of four panels connected by three
hinge lines (Figure 5.2). The four panels were cut out of an acrylic sheet (2.75 mm
thickness) using a laser-cutter. Each hinge line as a 2 mm steel rod at the core,
surrounded by an acrylic tube with inner and outer diameters of 2 mm and 4 mm,
respectively. The acrylic tube was cut into sections of 20 mm and these sections
were glued in an alternating pattern to two adjacent panels.

Figure 5.2: Deformation angle is controlled along three hinge lines (𝜉/3) via three
micro servos (servo 3-5).

The rotation angle between two subsequent panels was controlled by a micro servo
(HiTec HS-7115TH), which was screwed onto one panel and connected to the next
panel via a 1 mm metal rod that was coupled to the servo arm. A total of three micro
servos were used to deform the wing. Following the assumption made in FlyNet,
i.e. the wing bending angle is uniform over the three hinge lines, the deformation
angle 𝜉 was divided by 3 to obtain the rotation angle per hinge line. Because the
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assembly of the wing was not perfect, the angle between two subsequent panels does
not necessarily correspond to the rotation angle of the servo arm. A separate Teensy
3.2 microcontroller was used to set the servo arm position such that the orientation
angle between two panels corresponds to 𝜉/3. The input to the microcontroller was
a PWM signal encoding the angle 𝜉. This input signal is split into 3 PWM signals,
where each PWM signal corresponded to the servo arm angle required to achieve a
𝜉/3 rotation angle along the hinge lines. The mapping function between servo arm
angle and the rotation angle along the hinge line was measured for each micro servo
and these values were used by the Teensy to compute the output PWM signals.

5.3 Dynamic scaling of fly flight
The density and viscosity of the mineral oil allows the RoboFly wing to be much
larger than a fly’s wing, and flap at a much lower frequency than 200 Hz. Without the
benefits of dynamic scaling, it would be impossible to recreate the flow around a fly’s
wing in an experiment. Dynamic scaling was ensured by matching the Reynolds
number of the robotic wing and a real fly, which requires:

𝑛 𝑓 𝑙𝑦 · 𝑅2
𝑓 𝑙𝑦

𝜈𝑎𝑖𝑟
=
𝑛𝑟𝑜𝑏𝑜 · 𝑅2

𝑟𝑜𝑏𝑜

𝜈𝑟𝑜𝑏𝑜
, (5.1)

where 𝑛 𝑓 𝑙𝑦 is the fly’s wingbeat frequency, 𝑛𝑟𝑜𝑏𝑜 the wingbeat frequency of RoboFly,
𝑅 𝑓 𝑙𝑦 the fly’s wing length, 𝑅𝑟𝑜𝑏𝑜 the wing length of RoboFly, 𝜈𝑎𝑖𝑟 the kinematic
viscosity of air and 𝜈𝑟𝑜𝑏𝑜 the kinematic viscosity of the mineral oil. Rewriting the
Reynolds number equality yields:

𝑛𝑟𝑜𝑏𝑜 =
𝑅2
𝑓 𝑙𝑦
𝜈𝑟𝑜𝑏𝑜

𝑅2
𝑟𝑜𝑏𝑜

𝜈𝑎𝑖𝑟
𝑛 𝑓 𝑙𝑦 . (5.2)

By entering the values for a typical fly (𝑅 𝑓 𝑙𝑦 = 2.7𝑚𝑚, 𝜈𝑎𝑖𝑟 = 15.7 · 10−6𝑚2𝑠−1

at 25◦𝐶, 𝑛 𝑓 𝑙𝑦 = 200𝐻𝑧) and the RoboFly parameters (𝑅𝑟𝑜𝑏𝑜 = 310𝑚𝑚, 𝜈𝑟𝑜𝑏𝑜 =

115 · 10−6𝑚2𝑠−1 at 22◦𝐶), the required flapping frequency for RoboFly is 0.11𝐻𝑧.
The low flapping frequency required for RoboFly experiments can be realized easily
generated using the stepper and servo motors.

Once RoboFly experiments have been performed, the equivalent aerodynamic forces
and torques that a fly’s wing would have experienced may be calculated. The scaling
factor between aerodynamic forces measured on RoboFly and the equivalent forces in
fly flight are found using the quasi-steady expressions for the different aerodynamic
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mechanisms (equations: 1.14, 1.18, 1.22, 1.26, 1.30). Using dimensional analysis
on the quasi-steady aerodynamic mechanisms shows that each expression satisfies
the following:

𝐹 = 𝜌𝑛2𝑅4 =

[
𝑘𝑔

𝑚3
1
𝑠2𝑚

4
]
=

[
𝑘𝑔 · 𝑚
𝑠2

]
= [𝑁] . (5.3)

The force scaling factor can, therefore, be written as:

𝐹 𝑓 𝑙𝑦

𝐹𝑟𝑜𝑏𝑜
=

𝜌𝑎𝑖𝑟 · 𝑛2
𝑓 𝑙𝑦

· 𝑅4
𝑓 𝑙𝑦

𝜌𝑟𝑜𝑏𝑜 · 𝑛2
𝑟𝑜𝑏𝑜

· 𝑅4
𝑟𝑜𝑏𝑜

, (5.4)

and the density values are: 𝜌𝑎𝑖𝑟 = 1.18𝑘𝑔𝑚−3 at 25◦𝐶 and 𝜌𝑟𝑜𝑏𝑜 = 880𝑘𝑔𝑚−3 at
22◦𝐶. With the force scaling factor known, it is easy to compute the torque scaling
factor, as torque is the product of force and moment arm:

𝑇 𝑓 𝑙𝑦

𝑇𝑟𝑜𝑏𝑜
=

𝜌𝑎𝑖𝑟 · 𝑛2
𝑓 𝑙𝑦

· 𝑅5
𝑓 𝑙𝑦

𝜌𝑟𝑜𝑏𝑜 · 𝑛2
𝑟𝑜𝑏𝑜

· 𝑅5
𝑟𝑜𝑏𝑜

. (5.5)

5.4 Experimental procedure for testing wing kinematics
Any experiment on RoboFly requires a .txt file that specifies the following angles:
𝜙, ¤𝜙, 𝜃, 𝜂 and 𝜉 at intervals of 5 ms. A C++ program read the five angles and
sent to the Teensy microcontroller via a USB-cable at 200 Hz (RawHID protocol).
The Teensy microcontroller converted the angles to PWM commands for the servos
and step-direction commands for the stepper motors. At the same time, the FT-
measurements were sent from the Teensy micr-controller to the C++ program,
which wrote the measurements to a .mat file.

The Legendre polynomials and coefficients describing a wingbeat, allow for easy
interpolation at the 5 ms intervals required for the .txt file. At the start of an
experiment, the wing was moved to the home position (𝜙 = 0, 𝜃 = 0, 𝜂 = 0, 𝜉 = 0).
In order to prevent rapid acceleration of the wing, the wing kinematic angles during
the first wingbeat of an experiment were multiplied with the following function:

𝑔𝑠𝑡𝑎𝑟𝑡 (𝑡) = sin2
( 𝜋𝑡
4𝑇

)
, (5.6)

where 𝑇 corresponds to the wingbeat period. Similarly, the last wingbeat of the
experiment ends at the home position and the wing kinematic angles are multiplied
by:
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𝑔𝑒𝑛𝑑 (𝑡) = sin2
(𝜋

4
+ 𝜋𝑡

4𝑇

)
. (5.7)

When the wings start moving in the oil, it typically takes two to three wingbeats
before the wake is fully developed (Birch and Michael H Dickinson, 2001). In
order to exclude these start-up effects, a wing kinematic pattern was repeated for 9
wingbeats and only wingbeats 4-8 were used for analysis (Figure 5.3).

Figure 5.3: Typical RoboFly experiment, with the input wing motion and the mea-
sured forces and torques in the strokeplane reference frame. The wing kinematics
were repeated for 9 wingbeats, with the first and last wingbeat being multiplied by
a sin2 function, the 2𝑛𝑑 and 3𝑟𝑑 wingbeat eliminated due to wake development, and
the remaining wingbeats for further analysis.

After each experiment, the FT-data needs to be converted from 16-bit unsigned
integers into actual force and torque vectors. This was done by multiplying the 6
FT integer values with a calibration matrix, yielding a force vector in Newtons and
a torque vector in Newton millimeter in the wing reference frame. The FT-data was
also noisy and required smoothing by a linear Kalman filter.

Besides aerodynamic forces, the FT-sensor also measures inertial and gravitational
forces. The low flapping frequency of RoboFly allows the inertial forces to be
ignored. A fly’s wing is a lightweight structure and gravitational force can be
ignored. In case of the RoboFly wing, however, the gravitational and buoyancy
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forces are substantial. To remove the gravitational force from the analysis, every
wing kinematic pattern was replayed at a 5 times slower frequency. As aerodynamic
forces scale with the frequency squared, the magnitude gets reduced by a factor
of 25. The FT-measurements of the slow frequency experiment correspond to
the gravity force, and was subtracted from the fast frequency experiment after
interpolation. After gravity subtraction, the remaining FT-data were assumed to
accurately represent the aerodynamic forces and torques.

Up to this point, the aerodynamic and gravitational forces have been measured by
the FT-sensor in the wing reference frame. For subsequent analysis it is useful to
transfer the forces and torques to the SRF. Transferring from the SRF to the wing
reference frame is described by the following Tait-Bryan operations:

𝐹𝑤 = 𝑅𝜂 · 𝑅𝜃 · 𝑅𝜙 · 𝐹𝑆𝑅𝐹 , (5.8)

where 𝑅𝜂, 𝑅𝜃 , 𝑅𝜂, correspond to the rotation matrices. To transfer from the wing
reference frame to the SRF, one only needs to transpose the rotation matrices:

𝐹𝑆𝑅𝐹 = 𝑅𝑇𝜙 · 𝑅𝑇𝜃 · 𝑅𝑇𝜂 · 𝐹𝑤 . (5.9)

5.5 Computing inertial forces via the Newton-Euler equations
Besides aerodynamic forces, wing inertia plays a significant role in fly flight. Al-
though the wing mass is only ∼ 0.2% of the body mass (Lehmann and Dickinson,
1997), the angular velocity and acceleration of wing motion is very high. Inertial
forces and torques of a rotating rigid body are computed using the Newton-Euler
equations:

[
𝐹𝐼

𝑇𝐼

]
=

[
𝑚𝑤 −𝑚𝑤 [𝑐𝑤×]

𝑚𝑤 [𝑐𝑤×] 𝐼𝑤 − 𝑚𝑤 [𝑐𝑤×][𝑐𝑤×]

] [
𝑎

¤𝜔

]
+
[

𝑚𝑤 [𝜔×][𝜔×]𝑐𝑤
[𝜔×](𝐼𝑤 − 𝑚𝑤 [𝑐𝑤×][𝑐𝑤×])𝜔

]
,

(5.10)

where 𝑚𝑤 corresponds to the wing mass, 𝑐𝑤 the position of the center of gravity on
the wing, 𝐼𝑤 the inertia tensor of the wing, 𝑎 the linear acceleration of the wing, ¤𝜔
the angular acceleration and𝜔 the angular velocity, all relative to the wing reference
frame. In this thesis, the effects of linear acceleration of the wing will be ignored,
as they are small compared to the angular acceleration. The first right-hand term in
equation 5.10 corresponds to the inertial forces and torques due to wing acceleration,
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𝐹𝑇𝐼 𝑎𝑐𝑐. Inertial effects dependent on angular velocity, such as the Coriolis and the
centrifugal forces, are captured by the second right-hand term equation 5.10, and
are collectively referred to as 𝐹𝑇𝐼𝑣𝑒𝑙 .

Although the RoboFly wing includes the deformation angle, 𝜉, the Newton-Euler
equations for four linked, rigid bodies would become very complex. It is therefore
assumed that the inertial effects of wing deformation are small. The calculated
inertial forces and torques are, therefore, based on the assumption that the wing is a
rigid, flat plate.

The angular velocity and acceleration have to be computed from the Legendre
polynomials describing wing motion. It is relatively easy to compute temporal
derivatives of the Legendre polynomials ( ¤𝜙, ¤𝜃, ¤𝜂, ¥𝜙, ¥𝜃, ¥𝜂) using equation 3.42.
However, the temporal derivatives of the wing kinematic angles do not correspond
to the angular velocity and acceleration. Angular velocity in the wing reference
frame is given by:

𝜔 = 𝑅𝜂 · 𝑅𝜃 ·

¤𝜙
0
0

 + 𝑅𝜂 ·

0
0
¤𝜃

 +

0
¤𝜂
0

 , (5.11)

where 𝑅𝜃 and 𝑅𝜂 correspond to the rotation matrices of the Tait-Bryan operations
for 𝜃 and 𝜂, respectively. Angular acceleration is given by:

¤𝜔 = ¤𝑅𝜂 · 𝑅𝜃 ·

¤𝜙
0
0

 + 𝑅𝜂 · ¤𝑅𝜃 ·

¤𝜙
0
0

 + 𝑅𝜂 · 𝑅𝜃 ·

¥𝜙
0
0

 + ¤𝑅𝜂 ·

0
0
¤𝜃

 + 𝑅𝜂 ·

0
0
¥𝜃

 +

0
¥𝜂
0

 , (5.12)

with ¤𝑅 being the temporal derivative of the rotation matrix.

To compute the inertial forces and torques, one needs to know the mass, center of
gravity, and the inertia tensor of the wing. These parameters were computed using
the scaled 3D model of FlyNet, with a wing length of 2.7𝑚𝑚, an estimated cuticle
density of 1200𝑘𝑔/𝑚3, and a wing thickness of 5.4𝜇𝑚, Charles Porter Ellington,
1984a. The inertial parameters of the (left) wing are given by:
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𝑚𝑤 = 1.61 · 10−9 [𝑘𝑔],

𝑐𝑤 =


−0.16
1.31

0

 [𝑚𝑚],
𝐼𝑤 =


6.32 0.55 0
0.55 0.36 0

0 0 6.67

 · 10−9 [𝑘𝑔 · 𝑚𝑚2] .

(5.13)

With the wing inertia parameters, angular velocity, and acceleration defined, it is
possible to compute the inertial forces and torques for a given wing motion pattern.
Figure 5.4, shows the aerodynamic and inertial forces and torques, in the SRF, for
the baseline wingbeat. The aerodynamic forces were measured on RoboFly and have
been rescaled to the fly scale using equations 5.4 and 5.5. To make interpretation
easier, the forces and torques have been non-dimensionalized by dividing the forces
by the body weight (𝑚𝑔), and the torques by the body weight multiplied with the wing
length (𝑚𝑔𝑅). Using the estimated cuticle density and the scaled body components
of the 3D fly model, the body mass was found to be 1.16 · 10−6 [𝑘𝑔].

Figure 5.4: Aerodynamic (𝐹𝑇𝐴), inertial acceleration (𝐹𝑇𝐼 𝑎𝑐𝑐), inertial velocity
(𝐹𝑇𝐼 𝑣𝑒𝑙) and total (𝐹𝑇𝑡𝑜𝑡𝑎𝑙) forces and torques for the baseline wingbeat.
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The takeaway from Figure 5.4, is that the inertial forces and torques in wing motion
are substantial, even though the wing mass is less than 0.2% of the body mass.

5.6 Aerodynamic and inertial force production of steering muscle activity
With the methods to measure aerodynamic forces and compute inertial forces estab-
lished, the control forces generated by steering muscle activity can now be evaluated.
For each steering muscle, seven wing kinematic patterns were tested on RoboFly.
The seven wing kinematic patterns were found by sampling the muscle activity
patterns on a line between the baseline muscle activity and the maximum muscle
activity of a selected muscle, and subsequently predicting the corresponding wing
motion using the trained CNN.

Figure 5.5: Wing motion and aerodynamic plus inertial forces and torques of
maximum muscle activity wing kinematics. A: Baseline (grey) and maximum
muscle activity (colored) wing kinematics. B: Aerodynamic plus inertial forces and
torques for the wing kinematics in A.

The workflow to obtain the control forces and torques of muscle activity consists of:
measuring the FT-traces of 84 wing kinematic patterns on RoboFly, performing the
gravity subtraction, smoothing the traces with a Kalman filter, converting traces to
the SRF, compute the median FT-traces from the measurement wingbeats, comput-
ing the inertial FT-traces, and finally, summing the inertial and aerodynamic forces
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and torques during a wingbeat. Figure 5.5 shows the total forces and torques for
the baseline wingbeat and the maximum muscle activity wing motion. Although
there are some clear trends between wing motion and force and torque generation,
discussing all details in Figure 5.5 would be a cumbersome exercise and does not
necessarily provide substantial insight. Instead, the wingbeat-averaged forces and
torques for the baseline wingbeat and maximum activity patterns are displayed in
Figure 5.6.

Figure 5.6: Wingbeat-averaged total FT for the baseline wingbeat and maximum
muscle activity wing kinematic patterns of the left wing. The wingbeat-averaged
FT of the baseline wingbeat are subtracted from the maximum muscle activity
FT, except for 𝐹𝑍 , such that the baseline FT starts at 0 and 𝐹𝑍/𝑚𝑔 = 0.5. On the
horizontal axis, the baseline muscle activity pattern is subtracted from the maximum
muscle activity pattern.

The wingbeat-averaged total forces and torques in Figure 5.6 show that the left and
right wing motion generate sufficient force for weight support (𝐹𝑍/𝑚𝑔 = 1). For
the 𝑏2 and ℎ𝑔3 muscle maximum activity patterns, the left and right wings produce
a thrust force of 𝐹𝑍/𝑚𝑔 = 2.5. This level of thrust can accelerate the fly at 2.5𝑔,
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when the strokeplane is oriented vertically. For free flight escape maneuvers, body
accelerations between 2𝑔 and 3𝑔 have been observed (Muijres, Elzinga, Melis, et
al., 2014). When the left and right wing are both actuated by the 𝑖1 muscle, the
maximum activity pattern, the vertical thrust force is reduced to 𝐹𝑍/𝑚𝑔 = 0.5. An
interesting difference between the 𝑏2 and ℎ𝑔3 muscle maximum activity patterns
can be seen for the pitch torque: 𝑏2 muscle activity corresponds to a pitch-up torque
(𝑇𝑌/𝑚𝑔𝑅 < 0) while the ℎ𝑔3 muscle activity pattern corresponds to a pitch-down
torque (𝑇𝑌/𝑚𝑔𝑅 > 0). The opposite effects on pitch torque by 𝑏2 and ℎ𝑔3 muscle
activity shows that the fly can control pitch torque, while increasing thrust. When
the left wing employs the maximum 𝑏2 muscle activity pattern and the right wing
the maximum 𝑖1 muscle activity pattern, strong roll (𝑇𝑋/𝑚𝑔𝑅 > 0) and yaw torques
(𝑇𝑍/𝑚𝑔𝑅 < 0) to the right are created. Again, the strong coupling between roll and
yaw torques has been observed during escape maneuvers (Muijres, Elzinga, Melis,
et al., 2014).

Figure 5.7: Lollipop figures of the baseline wingbeat and instantaneous forces
(aerodynamic+inertial) from three views. The wingbeat-averaged aerodynamic
force vector is displayed in grey (different scale than the instantaneous forces) and
half of the body weight in black. Half the body drag force is displayed in blue, such
that the fly is in force-equilibrium for the baseline wingbeat.

Figures 5.7 and 5.8 show the wing kinematics and instantaneous forces of the
baseline wingbeat and maximum muscle activity patterns, respectively. A striking
observation is the difference in force production between the downstroke and the
upstroke. This difference might be an artefact of tethered flight, which increases the
downstroke/upstroke ratio. In free flight, this ratio is around 0.55 but in tethered
flight it is typically between 0.6 and 0.7. The slower wing motion during the
downstroke affects the aerodynamic and inertial force production.

Another observation that can be made from the lollipop figures is the strong force
production at the start of the upstroke, followed by a dip of zero or slightly negative
lift force and a rapid increase in force during the second half of the upstroke. At
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the start of the upstroke the wing has a high wing pitch rate, which indicates that
rotational forces can at least partly explain the strong forces. The rapid recovery
of (lift) force in the second half of the upstroke might be related to the rapid
acceleration of the wing. Further research, either via CFD simulations or particle
image velocimetry, is required to gain more insight in the aerodynamic mechanisms
that are at play.

Figure 5.8: Lollipop figures for maximum muscle activity patterns of all muscles
with the instantaneous aerodynamic plus inertial force in cyan. The wingbeat-
averaged total force vector is displayed in the color of each muscle and the gravity
(black) and body drag (blue) forces have the same magnitude as in Figure 5.7.
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C h a p t e r 6

RECONSTRUCTING FREE FLIGHT MANEUVERS WITH
MODEL PREDICTIVE CONTROL

The non-linear mapping between steering muscle activity and wing motion that
has been learned by a CNN, in combination with the RoboFly measurements and
inertial force computations of the maximum muscle activity wing kinematics, form
an accurate model of how the steering muscles can generate control forces and
torques. To investigate flight control in insects, several studies have constructed
state-space models of flapping flight (G. Taylor, R. Bomphrey, and ’t Hoen, 2006,
Dickson, Straw, and Dickinson, 2008, I. Faruque and Humbert, 2010, Taha, Hajj,
and Beran, 2014, I. A. Faruque et al., 2018, Zahn et al., 2022). None of these studies
include an accurate model of the wing kinematic control modes that are available
to an insect, however. The results of Chapters 4 and 5 can be used to construct
the control matrix of fly flight. This control matrix, in combination with a system
matrix describing the physics of flight, forms the state-space system of fly flight.

In this chapter, I will discuss the different models that have been used to construct
a state-space system of fly flight. A state-space system can be used to simulate free
flight maneuvers using Model Predictive Control (MPC). By specifying an initial
and goal state, and a time period to achieve the goal state, a MPC-controller will try to
find the optimal trajectory given a cost function and constraints. I specified various
goal states that mimic free flight maneuvers such as saccades, escape maneuvers,
as well as forward, sideward and backward flight. The MPC-controller was able to
predict the body trajectory, wing kinematics, and muscle activity for all specified
goal states. Comparison with free flight studies shows that the body trajectory and
wing kinematics of the simulated maneuvers are remarkably similar.

6.1 State-space representation of fly flight
State-space systems are ubiquitous in control theory and it is likely that the fly’s
nervous system incorporates some form of a state-space representation (Michael
Dickinson, 2006, Michael H Dickinson and F. T. Muijres, 2016, Zahn et al., 2022).
The state-space system used in this chapter constitutes as an explicit discrete time-
variant state-space system. Although the nervous system of the fly and the underlying
physics that are responsible for flight operate continuously in time, changes in
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wing kinematics occur on a wingbeat-to-wingbeat basis. It is, therefore, logical
to discretize the control problem on a wingbeat-to-wingbeat basis. Several studies
show that mechano-sensory organs at the base of the haltere can detect Coriolis
forces, but also serve as a metronome for the fly’s nervous system (Dickerson et al.,
2019, Dickerson, 2020). The haltere beats in anti-phase with respect to the wings,
and afferent signals encoding haltere phase provide critical timing information to
circuitry controlling the steering muscles of the wings.

The explicit discrete time-invariant state-space system is governed by the following
equations:

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘),
𝑦(𝑘) = 𝐶 (𝑘)𝑥(𝑘) + 𝐷 (𝑘)𝑢(𝑘),

(6.1)

where 𝑥(𝑘) and 𝑥(𝑘 + 1) are the state vectors at times 𝑘 and 𝑘 + 1 respectively, 𝑢(𝑘)
is the control vector, 𝐴(𝑘) is the system matrix, 𝐵(𝑘) is the control matrix, 𝐶 (𝑘)
the output matrix, 𝐷 (𝑘) the feed-forward matrix, and 𝑦(𝑘) the output vector (Figure
6.1). In the case of fly flight, there is no feed-forward process and the output of the
state-space system is the state vector. This means that matrices 𝐶 (𝑘) and 𝐷 (𝑘) do
not need to be defined.

Figure 6.1: Overview of an explicit discrete time-variant state-space system, adapted
from Ogata et al., 2010.

The state vector describes the orientation, position, velocity, and angular velocity of
the fly’s body:

𝑥 =

[
𝑣𝑥 𝑣𝑦 𝑣𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧 𝑞0 𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑝𝑥 𝑝𝑦 𝑝𝑧

]𝑇
, (6.2)
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with 𝑣 and 𝜔 being the linear and angular velocity of the body in the SRF, respec-
tively, 𝑞 is the quaternion describing SRF orientation relative to the inertial reference
frame, and 𝑝 is the position of the SRF in the inertial reference frame. Although the
head, thorax and abdomen can move independently in FlyNet, I assume the head and
abdomen to be stationary relative to the thorax in my simulations. This simplifies
the inertia model of the body, although flies are known to move there head and
abdomen during maneuvers (Zanker, Egelhaaf, and Warzecha, 1991, Hateren and
Schilstra, 1999, G. J. Taylor et al., 2013).

The temporal derivative of the state vector, ¤𝑥, is required for updating the state for
each time step:

¤𝑥 =
[
𝑎𝑥 𝑎𝑦 𝑎𝑧 ¤𝜔𝑥 ¤𝜔𝑦 ¤𝜔𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧

]𝑇
, (6.3)

with 𝑎 and ¤𝜔 corresponding to the linear and angular acceleration of the body in
the SRF, respectively. At each time step, the state vector is multiplied with the
system matrix, 𝐴(𝑘), to compute the temporal derivative of the state vector. The
time step, Δ𝑡, corresponds to the wingbeat period, which is assumed to be constant
at 1/ 𝑓 = 1/200 = 0.005 [𝑠] for simplicity. Although flies regulate wingbeat
frequency during flight, it typically takes around 20 wingbeats to increase or decrease
the wingbeat frequency to a new level (Muijres, Elzinga, Melis, et al., 2014).
For simulating rapid maneuvers it is, therefore, not necessary to include variable
wingbeat frequency.

The equations of motion of the system matrix include the following flight forces and
torques: body weight, body inertia, body aerodynamics, and the aerodynamic and
inertial damping of the wings. Inertial and aerodynamic damping effects will be
discussed in the next section. The mass, center of gravity and inertia tensor of the
body were determined from the scaled 3D body model (head, thorax, abdomen) for
the average fly in the dataset. As for the wings, the cuticle density is assumed to be
1200 [𝑘𝑔 ·𝑚−3], and the body mass estimated as 𝑚𝑏 = 1.16 · 10−6 [𝑘𝑔]. The center

of gravity of the body in the SRF is estimated as 𝑐𝑏 =

[
0.04 0 −0.24

]𝑇
[𝑚𝑚].

Finally, the inertia tensor of the body is:

𝐼𝑏 = 𝑚𝑏


0.56 0 −0.19

0 0.67 0
−0.19 0 0.23

 [𝑘𝑔 · 𝑚𝑚
2] . (6.4)



141

The inertial forces and torques on the body can be computed with the Newton-Euler
equations (equation 5.10). To simplify the expressions, the Newton-Euler equations
are evaluated at the center of gravity of the body:[

𝐹𝐼

𝑇𝐼

]
𝑏

=

[
𝑚𝑏 0
0 𝐼𝑏

] [
𝑎

¤𝜔

]
𝑏

. (6.5)

In order to obtain the (rotational) accelerations of the body, one only needs to solve
the inverse problem:

[
𝑎

¤𝜔

]
𝑏

=

[
𝑚𝑏 0
0 𝐼𝑏

]−1 [
𝐹𝐼

𝑇𝐼

]
𝑏

. (6.6)

Because the body velocity and acceleration are expressed in the SRF, the gravi-
tational force needs to be transformed from the inertial reference frame into the
SRF:

[𝐹𝐺]𝑏 = 𝑚𝑏 · 𝑅𝑆𝑅𝐹 (𝑞)


0
0
−𝑔

 , (6.7)

with 𝑅𝑆𝑅𝐹 (𝑞) as the rotation matrix, which can be found using equation 3.4, with
the exclusion of the last column and bottom row. As the state is evaluated at the
center of gravity, there are no torques due to the fly’s weight.

Although the aerodynamics of the wings generate larger forces, the body of the
fly experiences drag during flight. The combined 3D shape of the head, thorax,
abdomen and legs is complex, and the body drag model is set to the worst-case
scenario: a sphere with a radius of 1 [𝑚𝑚]. While the actual body drag is likely
to be lower, the simplicity of the drag model makes it easier to implement in the
state-space system. The drag on the sphere can be calculated as:


𝐹𝐷𝑥

𝐹𝐷𝑦

𝐹𝐷𝑧

 =


−𝑠𝑔𝑛(𝑣𝑥) · 1

2𝐶𝐷𝜋𝜌𝑣
2
𝑥

−𝑠𝑔𝑛(𝑣𝑦) · 1
2𝐶𝐷𝜋𝜌𝑣

2
𝑦

−𝑠𝑔𝑛(𝑣𝑧) · 1
2𝐶𝐷𝜋𝜌𝑣

2
𝑧

 , (6.8)

with the drag coefficient as 𝐶𝐷 = 0.5 and 𝑠𝑔𝑛 as the sign operator. Because the
center of pressure of the sphere is assumed to be at the center of gravity of the body,
there are no torques due to body drag.



142

Although the specifics will be discussed in the next section, the two remaining
FT-components (Force-Torque) come from the left and right wing motion. Because
the aerodynamic and inertial damping terms are dependent on body (rotational)
velocity, these FT-components are added to the system matrix. The equations of
motion to compute linear and rotational accelerations can be written as:

[
𝑎

¤𝜔

]
𝑘+1

=

[
𝑚𝑏 0
0 𝐼𝑏

]−1 ([
𝐹𝐺

0

]
𝑘

+
[
𝐹𝐷

0

]
𝑘

+
[
𝐹𝑑𝑎𝑚𝑝 𝐴

𝑇𝑑𝑎𝑚𝑝 𝐴

]
𝑘

+
[
𝐹𝑑𝑎𝑚𝑝 𝐼

𝑇𝑑𝑎𝑚𝑝 𝐼

]
𝑘

)
, (6.9)

with 𝐹𝑑𝑎𝑚𝑝𝐴 and 𝑇𝑑𝑎𝑚𝑝𝐴 as the aerodynamic damping terms and 𝐹𝑑𝑎𝑚𝑝𝐼 and 𝑇𝑑𝑎𝑚𝑝𝐼
as the inertial damping terms.

The control inputs that are available to the fly are the muscle activity patterns of the
left and right steering muscles: 𝑢𝐿 and 𝑢𝑅. More details will be provided further on
in this chapter, but the aerodynamic plus inertial control forces and torques can be
computed as:

[
𝐹𝐶

𝑇𝐶

]
𝑘+1

=

[
𝑑𝐹
𝑑𝑢𝐿
𝑢𝐿

𝑑𝑇
𝑑𝑢𝐿
𝑢𝐿

]
𝑘+1

+
[
𝑑𝐹
𝑑𝑢𝑅

𝑢𝑅
𝑑𝑇
𝑑𝑢𝑅

𝑢𝑅

]
𝑘+1

. (6.10)

Adding the control forces and torques to equation 6.9, gives the complete equations
of motion for body (rotational) acceleration:

[
𝑎

¤𝜔

]
𝑘+1

=

[
𝑚𝑏 0
0 𝐼𝑏

]−1 ([
𝐹𝐺

0

]
𝑘

+
[
𝐹𝐷

0

]
𝑘

+
[
𝐹𝑑𝑎𝑚𝑝 𝐴

𝑇𝑑𝑎𝑚𝑝 𝐴

]
𝑘

+
[
𝐹𝑑𝑎𝑚𝑝 𝐼

𝑇𝑑𝑎𝑚𝑝 𝐼

]
𝑘

+
[
𝐹𝐶

𝑇𝐶

]
𝑘+1

)
,

(6.11)

The computed accelerations of equation 6.11 can subsequently be used to update
the state vector. As the body accelerations and velocities are both in the SRF, the
update of the body velocity is relatively simple:

[
𝑣

𝜔

]
𝑘+1

=

[
𝑣

𝜔

]
𝑘

+ Δ𝑡

[
𝑎

¤𝜔

]
𝑘+1

. (6.12)

The body quaternion and position are in the inertial reference frame and the (angular)
velocity update needs to be transformed from the SRF to the inertial reference frame.
Using quaternion multiplication, the quaternion update can be written as:
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𝑞𝑘+1 = 𝑞𝑘 +
Δ𝑡

2
𝜔𝑘+1 ⊗ 𝑞𝑘 =


𝑞0

𝑞𝑥

𝑞𝑦

𝑞𝑧

 𝑘
+ Δ𝑡

2


0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧
𝜔𝑥 0 𝜔𝑧 −𝜔𝑦
𝜔𝑦 −𝜔𝑧 0 𝜔𝑥

𝜔𝑧 𝜔𝑦 −𝜔𝑥 0

 𝑘+1


𝑞0

𝑞𝑥

𝑞𝑦

𝑞𝑧

 𝑘
. (6.13)

After computing 𝑞𝑘+1, the quaternion needs to be normalized such that ∥𝑞∥ = 1.
The position update is given by:

𝑝𝑘+1 = 𝑝𝑘 + Δ𝑡 · 𝑅𝑇𝑆𝑅𝐹𝑣𝑘+1, (6.14)

where 𝑅𝑇
𝑆𝑅𝐹

is computed using 𝑞𝑘 .

It is impossible to write the state-update equations 6.11, 6.12, 6.13 and 6.14, in the
form:

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘), (6.15)

because operations like quaternion normalization can not be embedded in a matrix
multiplication. In practice, however, the matrix formulation is not required for using
the state-space system for free flight simulations.

6.2 Aerodynamic and inertial damping
The aerodynamic and inertial forces for the maximum muscle activity patterns
(Chapter 5) have been measured and computed in a stationary reference frame.
During free flight, the body translates and rotates, which has an effect on both the
inertial and aerodynamic forces on the wing (Cheng et al., 2010, Hedrick, Bo Cheng,
and X. Deng, 2009, Bo Cheng and X. Deng, 2011). In this section, I will use the
quasi-steady aerodynamic model and the Newton-Euler equations to compute the
aerodynamic and inertial damping coefficients for fruit fly flight.

To compute the effects of inertial damping, one only needs to add one term to the
angular velocity of the wing:

𝜔 = 𝑅𝜂 · 𝑅𝜃 ·

¤𝜙
0
0

 + 𝑅𝜂 ·

0
0
¤𝜃

 +

0
¤𝜂
0

 + 𝑅𝜂 · 𝑅𝜃 · 𝑅𝜙 ·

𝜔𝑥

𝜔𝑦

𝜔𝑧

𝑏 , (6.16)



144

where the last term adds the body angular velocity, converted to the wing reference
frame. By inserting the redefined angular velocities of the left and right wings
into the Newton-Euler equations, it is possible to compute the inertial forces and
torques given a constant body angular velocity. Using the Newton-Euler equations,
I computed the wingbeat-averaged inertial forces and torques for different body
angular velocities, with baseline wing kinematics for both the left and right wing,
Table 6.1. The values for body velocity are typical for fruit fly flight (Muijres,
Elzinga, Melis, et al., 2014).

𝑣𝑥 𝑚𝑚/𝑠 𝑣𝑦 𝑚𝑚/𝑠 𝑣𝑧 𝑚𝑚/𝑠 𝜔𝑥 𝑟𝑎𝑑/𝑠 𝜔𝑦 𝑟𝑎𝑑/𝑠 𝜔𝑧 𝑟𝑎𝑑/𝑠
−1000 −1000 −1000 −100 −100 −100
−750 −750 −750 −75 −75 −75
−500 −500 −500 −50 −50 −50
−250 −250 −250 −25 −25 −25
0 0 0 0 0 0
250 250 250 25 25 25
500 500 500 50 50 50
750 750 750 75 75 75
1000 1000 1000 100 100 100

Table 6.1: Range of linear and angular velocities for damping experiments.

The wingbeat-averaged inertial forces and torques, that are generated by body rota-
tion, show a linear trend with angular velocity. Translational body velocity does not
cause any changes in inertial force or torque. The slopes of the linear trends form
the inertial damping matrix:

𝑑𝐹𝑇𝐼

𝑑𝜔
=



𝑑𝐹𝑥
𝑑𝜔𝑥

𝑑𝐹𝑥
𝑑𝜔𝑦

𝑑𝐹𝑥
𝑑𝜔𝑧

𝑑𝐹𝑦
𝑑𝜔𝑥

𝑑𝐹𝑦
𝑑𝜔𝑦

𝑑𝐹𝑦
𝑑𝜔𝑧

𝑑𝐹𝑧
𝑑𝜔𝑥

𝑑𝐹𝑧
𝑑𝜔𝑦

𝑑𝐹𝑧
𝑑𝜔𝑧

𝑑𝑇𝑥
𝑑𝜔𝑥

𝑑𝑇𝑥
𝑑𝜔𝑦

𝑑𝑇𝑥
𝑑𝜔𝑧

𝑑𝑇𝑦
𝑑𝜔𝑥

𝑑𝑇𝑦
𝑑𝜔𝑦

𝑑𝑇𝑦
𝑑𝜔𝑧

𝑑𝑇𝑧
𝑑𝜔𝑥

𝑑𝑇𝑧
𝑑𝜔𝑦

𝑑𝑇𝑧
𝑑𝜔𝑧


=



0 −63.5 0
−61.1 0 −2.53

0 1.00 0
−1.21 0 20.4

0 2.15 0
−22.2 0 −0.94


· 10−8. (6.17)

Rotational body velocity generates a torque in opposite direction for 𝜔𝑥 and 𝜔𝑧, but
a torque in the same direction for 𝜔𝑦. The positive damping torque for pitch rotation
means that flight is unstable around the pitch axis. There is a strong coupling
between the roll rotation and yaw torque, and vice versa.
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Aerodynamic damping can be computed using a quasi-steady model. As with the
inertial forces, the quasi-steady simulations assume a rigid, flat, wing. The quasi-
steady terms that were included in the model are the translational and rotational
forces equations (1.14, 1.18, 1.30). Added mass and the Wagner effect have been
ignored, as it adds complexity and both effects depend primarily on wing accelera-
tion.

The angular velocity of the body can be added to the angular velocity of the wing
using equation 6.16. Inclusion of the translational body velocity into the wing’s
angular velocity term is difficult, however. Therefore, I implemented the transla-
tional and rotational quasi-steady terms in blade-element formulation, where the
wing is partitioned into spanwise sections and the air velocity vector is computed
per section (Dickson, Straw, and Dickinson, 2008). Simulating the baseline wing
kinematics on the left and right wings, with the body velocities of 6.1, yields the
damping matrix for body translational velocity:

𝑑𝐹𝑇𝐴

𝑑𝑣
=



𝑑𝐹𝑥
𝑑𝑣𝑥

𝑑𝐹𝑥
𝑑𝑣𝑦

𝑑𝐹𝑥
𝑑𝑣𝑧

𝑑𝐹𝑦
𝑑𝑣𝑥

𝑑𝐹𝑦
𝑑𝑣𝑦

𝑑𝐹𝑦
𝑑𝑣𝑧

𝑑𝐹𝑧
𝑑𝑣𝑥

𝑑𝐹𝑧
𝑑𝑣𝑦

𝑑𝐹𝑧
𝑑𝑣𝑧

𝑑𝑇𝑥
𝑑𝑣𝑥

𝑑𝑇𝑥
𝑑𝑣𝑦

𝑑𝑇𝑥
𝑑𝑣𝑧

𝑑𝑇𝑦
𝑑𝑣𝑥

𝑑𝑇𝑦
𝑑𝑣𝑦

𝑑𝑇𝑦
𝑑𝑣𝑧

𝑑𝑇𝑧
𝑑𝑣𝑥

𝑑𝑇𝑧
𝑑𝑣𝑦

𝑑𝑇𝑧
𝑑𝑣𝑧


=



−19.3 0 53.4
0 1.82 0

19.7 0 −21.5
0 4.91 0

22.5 0 −46.5
0 −9.71 0


· 10−7, (6.18)

and the damping matrix for body angular velocity:

𝑑𝐹𝑇𝐴

𝑑𝜔
=



𝑑𝐹𝑥
𝑑𝜔𝑥

𝑑𝐹𝑥
𝑑𝜔𝑦

𝑑𝐹𝑥
𝑑𝜔𝑧

𝑑𝐹𝑦
𝑑𝜔𝑥

𝑑𝐹𝑦
𝑑𝜔𝑦

𝑑𝐹𝑦
𝑑𝜔𝑧

𝑑𝐹𝑧
𝑑𝜔𝑥

𝑑𝐹𝑧
𝑑𝜔𝑦

𝑑𝐹𝑧
𝑑𝜔𝑧

𝑑𝑇𝑥
𝑑𝜔𝑥

𝑑𝑇𝑥
𝑑𝜔𝑦

𝑑𝑇𝑥
𝑑𝜔𝑧

𝑑𝑇𝑦
𝑑𝜔𝑥

𝑑𝑇𝑦
𝑑𝜔𝑦

𝑑𝑇𝑦
𝑑𝜔𝑧

𝑑𝑇𝑧
𝑑𝜔𝑥

𝑑𝑇𝑧
𝑑𝜔𝑦

𝑑𝑇𝑧
𝑑𝜔𝑧


=



0 4.55 0
−0.39 0 −13.0

0 −21.5 0
−20.8 0 −10.1

0 −11.8 0
−41.3 0 −21.2


· 10−7. (6.19)

The aerodynamic damping coefficients are approximately an order of magnitude
larger than the inertial damping coefficients. Both 𝑑𝐹𝐴𝑥/𝑑𝑣𝑥 and 𝑑𝐹𝐴𝑧/𝑑𝑣𝑧 have a
negative sign, which means that there is a force opposite to the direction of body
motion. In case of 𝑑𝐹𝐴𝑦/𝑑𝑣𝑦, 𝑑𝐹𝐴𝑧/𝑑𝑣𝑥 , and 𝑑𝐹𝐴𝑥/𝑑𝑣𝑧, the signs are positive
however, which generates a force in the direction of body motion. Whether the
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damping coefficient is negative or positive, depends on the effects of body velocity
on parameters such as angle-of-attack, instantaneous air velocity, and orientation of
the wing.

All the aerodynamic damping torques, 𝑑𝑇𝐴/𝑑𝜔, have a negative sign. This means
that for the baseline wing motion, flight is stable to perturbations in angular velocity.
In Cheng et al., 2010 a similar result was found for a variety of wing kinematics.

Matrices 𝑑𝐹𝑇𝐼/𝑑𝜔, 𝑑𝐹𝑇𝐴/𝑑𝑣, and 𝑑𝐹𝑇𝐴/𝑑𝜔 can be converted into a single damping
matrix. Multiplication of the damping matrix with the linear and angular velocity
vectors of the body yields the damping forces and torques:

𝐹𝑇𝑑𝑎𝑚𝑝 = 10−7 ·



−19.3 0 53.4 0 −1.80 0
0 1.82 0 −6.50 0 −13.3

19.7 0 −21.5 0 −6.58 0
0 4.91 0 −21.0 0 −8.06

22.5 0 −4.65 0 −11.5 0
0 −9.71 0 −43.5 0 −21.3





𝑣𝑥

𝑣𝑦

𝑣𝑧

𝜔𝑥

𝜔𝑦

𝜔𝑧


. (6.20)

Although the expression for damping forces and torques is easy to use, the fact that
it has been derived for baseline wing kinematics on both wings is a simplification
of the underlying flight physics. A more accurate method would be, to compute the
aerodynamic and inertial forces during the state-space simulations, with the actual
left and right wing kinematic patterns, and the linear and angular velocity vectors
of the body. It could be the case that the changes in wing kinematics during free
flight maneuvers are such that the damping forces and torques are reduced. This
would make the fly more maneuverable than the damping matrix for the baseline
wing kinematics suggests.

6.3 Control matrix of fly flight
In my model, the control inputs that are available to the fly, are the muscle activity
patterns of the left and right steering muscles: 𝑢𝐿 , 𝑢𝑅. Using the RoboFly measure-
ments of chapter 5, it is possible to compute the Jacobians (𝑑𝐹𝑇/𝑑𝑢𝐿 , 𝑑𝐹𝑇/𝑑𝑢𝑅) of
the aerodynamic force and torque production for maximum muscle activity patterns,
see Figure 5.6. Steering muscle activity is ordered as follows in the control vectors:

𝑢𝐿 =

[
𝑏𝐿1 𝑏𝐿2 𝑏𝐿3 𝑖𝐿1 𝑖𝐿2 𝑖𝑖𝑖𝐿1 𝑖𝑖𝑖𝐿2 𝑖𝑖𝑖𝐿3 ℎ𝑔𝐿1 ℎ𝑔𝐿2 ℎ𝑔𝐿3 ℎ𝑔𝐿4

]𝑇
, (6.21)
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and:

𝑢𝑅 =

[
𝑏𝑅1 𝑏𝑅2 𝑏𝑅3 𝑖𝑅1 𝑖𝑅2 𝑖𝑖𝑖𝑅1 𝑖𝑖𝑖𝑅2 𝑖𝑖𝑖𝑅3 ℎ𝑔𝑅1 ℎ𝑔𝑅2 ℎ𝑔𝑅3 ℎ𝑔𝑅4

]𝑇
. (6.22)

The Jacobians for the aerodynamic force and torque production of the left and right
steering muscles are given in Table 6.2. Control forces and torques can be computed
by multiplying the Jacobian with the control vector:

𝐹𝑇 𝐿𝐶 =
𝑑𝐹𝑇

𝑑𝑢𝐿
𝑢𝐿 , 𝐹𝑇𝑅𝐶 =

𝑑𝐹𝑇

𝑑𝑢𝑅
𝑢𝑅 . (6.23)

The muscle activity correlation analysis in chapter 4 shows that not all combinations
of muscle activity are possible. It is, therefore, required to impose constraints on
the left and right control vectors. The constraint on muscle activity is that it has
to lie on the 12D-surface given by Table 4.1. A mathematical formulation for the
12D-surface constraint is:

𝐶𝑢𝐿 = 𝑢𝑏𝑎𝑠𝑒, 𝐶𝑢𝑅 = 𝑢𝑏𝑎𝑠𝑒, (6.24)

where 𝐶 is the 12 × 12 correlation matrix described by Table 4.1, and 𝑢𝑏𝑎𝑠𝑒 is the
baseline muscle activity pattern (Table 4.2).

6.4 Model Predictive Control
The state-space system of fly flight can be used to simulate free flight maneuvers
via the trajectory prediction by a controller. Although there are various types of
controllers, such as proportional-integral-derivative (PID) controllers, the complex
state update and the constraints on muscle activity, require a more sophisticated
controller. In this section, I will describe how I combined the state-space system
with a model predictive controller.

Model predictive control uses the state-space system to optimize trajectories in
state-space, over a finite time window, for a given cost function (Kouvaritakis and
Cannon, 2016). The state-space system is used to predict, one or multiple, state
trajectories over a finite time window: the horizon. At each time step, the controller
determines the optimal control input that generates a trajectory that minimizes the
cost function, while being subject to system constraints. This process is repeated
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𝐹𝑋
𝑚𝑔

𝐹𝑌
𝑚𝑔

𝐹𝑍
𝑚𝑔

𝑇𝑋
𝑚𝑔𝑅

𝑇𝑌
𝑚𝑔𝑅

𝑇𝑍
𝑚𝑔𝑅

𝑏1 −0.138 −0.101 0.185 0.070 −0.027 0.053
𝑏2 0.260 0.328 0.815 0.426 −0.103 −0.331
𝑏3 −0.303 −0.025 −0.290 −0.244 −0.022 0.227
𝑖1 −0.242 −0.159 −0.180 −0.127 −0.059 0.201
𝑖2 −0.540 −0.148 −0.376 −0.250 0.056 0.376
𝑖𝑖𝑖1 −0.266 0.043 0.262 0.101 −0.028 0.140
𝑖𝑖𝑖2 0.191 0.497 1.234 0.532 −0.061 −0.097
𝑖𝑖𝑖3 −0.550 0.143 0.065 −0.039 0.041 0.180
ℎ𝑔1 −0.062 −0.149 −0.031 −0.034 −0.006 0.108
ℎ𝑔2 −0.031 −0.159 0.079 −0.004 −0.036 0.115
ℎ𝑔3 0.234 0.466 1.236 0.545 0.113 −0.059
ℎ𝑔4 −0.341 0.152 0.192 0.113 0.159 0.183

Table 6.2: Jacobian, 𝑑𝐹𝑇/𝑑𝑢𝐿 , of aerodynamic FT-production and left steering
muscle activity. The Jacobian, 𝑑𝐹𝑇/𝑑𝑢𝑅, for the right steering muscles can be
obtained by multiplying columns 𝐹𝑦/𝑚𝑔, 𝑇𝑥/𝑚𝑔𝑅 and 𝑇𝑧/𝑚𝑔𝑅 by −1.

for every time step, shifting the horizon forward, and MPC is, therefore, also known
as receding horizon control.

The software implementation of MPC is complex from a mathematical and coding
perspective, and I, therefore, choose to use the Python-package do-mpc (Lucia et al.,
2017). Do-mpc allows the user to setup MPC simulations for various control prob-
lems, including continuous time, discrete time, linear models, non-linear models,
and robust control.

For the free flight simulations, the do-mpc controller is using discrete time and a
non-linear model. The duration of all free flight simulations was 10 wingbeats, and
the MPC horizon was set to 10 wingbeats as well. This means that the goal state
is always "visible" to the controller. In robust MPC, it is possible to use multiple
trajectories, or scenarios, with random variations in the control input at each time
step. If a control problem contains uncertain parameters, the multiple scenarios
make the MPC algorithm more robust to model prediction error. The state-space
system of fly flight does not contain any uncertain parameters, and one trajectory is,
therefore, sufficient.

At the center of MPC is the objective function, which is defined in do-mpc as:

𝐽 =

𝑁−1∑︁
𝑘=0

(
𝑙 (𝑥𝑘 , 𝑢𝑘 ) + Δ𝑢𝑇𝑘𝑅Δ𝑢𝑘

)
+ 𝑚(𝑥𝑁 ), (6.25)
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with 𝑁 being the number of time steps of the problem, 𝑙 (𝑥𝑘 , 𝑢𝑘 ) is the Lagrange
term, Δ𝑢𝑇

𝑘
𝑅Δ𝑢𝑘 is the r-term, and 𝑚(𝑥𝑁 ) is the Meyer term. The Lagrange term

provides the option to provide a reference state-trajectory, and add a penalty if the
state deviates from this reference trajectory. Rapid changes in control input are
penalized using the r-term: Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1, and 𝑅 is a weighting matrix. Finally,
the Meyer term evaluates how close the specified goal state is to the final state, 𝑥𝑁 .

In case of the free flight simulations, the MPC objective function is defined as
follows. First, the initial state, 𝑥0, and the goal state, 𝑥𝑛, are specified. Subsequently,
the Lagrange and Meyer terms are both defined as:

𝑙 (𝑥𝑘 , 𝑢𝑘 ) = 𝑚(𝑥𝑁 ) = 𝑆𝑥 · (𝑥𝑁 − 𝑥𝑘 )2 , (6.26)

with 𝑆𝑥 as a scaling matrix. By setting the diagonal values of the 𝑆𝑥 and 𝑅 matrix,
the user can tune the importance of certain aspects of the objective function. The
Lagrange and Meyer terms are the same, as I did not want to specify any reference
trajectory for the Lagrange term. In this way, the objective function allows the
MPC controller to explore any trajectory that ends at the goal state. By setting a
diagonal element to zero in the 𝑆𝑥 matrix, the MPC controller will not optimize the
trajectories for this parameter. If a diagonal element in 𝑆𝑥 is set to a high value,
the MPC controller will prioritize this element. For example, by setting the weight
for the goal 𝑣𝑦 to 1, the controller will punish any deviation from this goal heavily,
and allows the user to enforce straight flight. In a similar way, the user can set the
diagonal values of the 𝑅 matrix, and determine the behavior of the steering muscles
during the simulation. For the free flight simulations, I set all the diagonal values
of 𝑅 to 1.

Besides tuning the cost function, the user needs to specify the bounds of the state
and control vectors. In case of the control vectors, all steering muscle activity is
bounded between [0, 1]. The state vector is bounded as follows: linear velocity
[−104, 104] [𝑚𝑚/𝑠], angular velocity [−1000, 1000] [𝑟𝑎𝑑/𝑠], quaternion bounds
[−1, 1], and position bounds [−104, 104] [𝑚𝑚]. Both the linear and angular velocity
bounds are much larger than what an actual fly can likely achieve in free flight.

After specifying the objective function and the state and control bounds, the state
and control constraints need to be specified. The only constraint on the state is that
the body quaternion needs to be a unit quaternion, ∥𝑞∥ = 1. For the left and right
steering muscles, the constraints are specified in equation 6.24. Do-mpc allows the
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user to specify a constraint tolerance, i.e. how much the state or control vector
can deviate from the constraint before the constraint will be enforced. For the free
flight simulations, the constraint tolerance on the control vector constraints was set
to 𝑐𝑡𝑜𝑙 = 0.001.

Figure 6.2: Schematic overview of the fly flight state-space system and the MPC
controller.

With the objective function, state and control bounds, and the (non-)linear constraints
defined, the MPC controller is now ready to use. Figure 6.2 shows the workflow of
the MPC controller. The user only needs to specify the intial and goal states, time
in which the fly should reach the goal state, and the weight matrix of the objective
function, 𝑆𝑥 . With these parameters, the MPC controller will try to find the optimal
state trajectory and required control inputs, that minimizes the objective function
while satisfying the constraints.

6.5 Simulating free flight maneuvers
Now that the state-space system of fly flight and the MPC problem are both defined,
I will explore the MPC solutions for various virtual, free flight maneuvers. Table 6.3
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shows the initial and goal states, and the goal weights for eight free flight scenarios.
In Figures 6.3 and 6.4, the MPC solutions of the forward flight and a saccade to the
left are displayed. The MPC results for the other maneuvers in Table 6.3 are shown
in Appendix B.

The MPC simulation for forward flight in Figure 6.3 starts from hovering flight, and
has a goal position ahead of the fly. As the goal position is too far to reach within 10
wingbeats, the MPC controller tries to maximize forward body acceleration. During
the first wingbeats of the maneuver, the body pitches down rapidly, 𝜔𝑦 > 0, thereby
tilting the aerodynamic thrust vector forward. Pitch-down torque is generated by an
increase in ℎ𝑔3 and ℎ𝑔4 activity and a simultaneous decrease in 𝑖𝑖𝑖3, 𝑖2, ℎ𝑔2 and 𝑏3

activity. Although this muscle activity pattern decreases dorsal stroke amplitude,
the pitch-down torque is primarily generated by the drop in deviation angle during
the downstroke, which increases the moment arm with respect to the center of
gravity of the body. The tilting of the aerodynamic thrust vector starts accelerating
the fly forward. While the fly picks up speed, stronger 𝑖𝑖𝑖3 activity causes an
increase in ventral stroke amplitude and higher deviation angles. These changes
in wing kinematics stop the pitch down rotation of the fly and increase the overall
aerodynamic thrust.

The body dynamics and wing kinematics computed by the forward flight MPC sim-
ulation correspond to the helicopter model of insect flight (David, 1978). According
to the helicopter model, a fly will use roll and pitch rotations to direct the aerody-
namic thrust vector into the direction it wants to move. The fly can subsequently
use yaw rotations to align the body with the direction of motion. Several studies
have corroborated the helicopter model for flies, and in particular the relationship
between body pitch angle and forward flight speed: (Vogel, 1966, David, 1978,
Zanker, 1988, Muijres, Elzinga, Melis, et al., 2014, M. J. Elzinga, Van Breugel, and
Michael H Dickinson, 2014, Muijres, Elzinga, Iwasaki, et al., 2015). It is encour-
aging that the MPC results can replicate free flight fly behavior. Each simulated
maneuver, in Figure 6.4 and Appendix B, makes use of the helicopter model to
accelerate the fly in the desired direction.

A characteristic maneuver in fly flight is the saccade, a rapid turn of approximately
90◦ (Tammero and Michael H Dickinson, 2002, Fry, Sayaman, and Michael H
Dickinson, 2003). At the start of the simulation, the fly has a forward velocity of
230 𝑚𝑚/𝑠. The goal state requires a forward velocity of 230 𝑚𝑚/𝑠 as well, but
at a yaw angle of 90◦ to the left with respect to the start orientation. During the
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simulated maneuver, the fly first rolls slightly to the to the left while simultaneously
yawing to the left and pitching down, Figure 6.4. The combination of roll and
yaw tilts the aerodynamic thrust vector to the left. By tilting the aerodynamic thrust
vector, the body velocity gets redirected to the left, and the yaw motion subsequently
aligns the body orientation with the velocity vector. After the baseline wingbeat,
the left 𝑖1 and 𝑖2 muscles show a slight uptick in activity, while the right 𝑖2 muscle
decreases in activity. One must keep in mind that the muscle activities were derived
from GCaMP fluorescence, which means that changes in muscle activity that only
last one or two wingbeats, have a relatively low impact on fluorescence. The effect
on wing motion is very subtle, however; the wing pitch angle of the left wing is
slightly lower than the right wing for the second wingbeat. This asymmetry in wing
pitch angle generates a roll and yaw torque to the left. The ℎ𝑔3 and ℎ𝑔4 muscles
of the left and right wings show an increase during the maneuver, which induces
a pitch down torque similar to the forward flight maneuver. Comparing the wing
kinematics of the simulated saccade to free flight saccades, shows that in both cases
the yaw torque is generated by subtle asymmetries in the wing pitch angle (Bergou
et al., 2010, Muijres, Elzinga, Iwasaki, et al., 2015).

The simulated maneuvers in Appendix B show similar body dynamics and wing
kinematics, when being compared with free flight studies. For example, the sideward
velocity maneuver in Figure B.2, shows a drop in deviation angle of the right wing
and a rise in deviation angle of the left wing, similar to Ristroph, Berman, et al.,
2009. Similarly, the simulated escape maneuvers in Figures B.3 and B.4 show similar
trends as in Muijres, Elzinga, Melis, et al., 2014. The good correspondence between
simulated wing kinematics and free flight data is a bit surprising, as the CNN was
trained on tethered flight wing kinematics. Tethered and free flight wing motion
patterns are different but it seems that the simulated flight conditions require wing
kinematics that are closer to free flight (Fry, Sayaman, and Michael H Dickinson,
2003). Summarizing, the remarkably good agreement between simulated and free
flight maneuvers suggests that my state-space system model of Drosophila captures
the flight physics and steering muscle actuation with sufficient accuracy.
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Figure 6.3: Forward flight maneuver. A: Side view at wingbeat 7 of the maneuver,
wingtip traces are shown in red and blue. B: Wingtip traces at wingbeat 7 for
stationary body state. C&D: Left and right steering muscle activity during the
maneuver. E: Body state during the maneuver. F: Left (red) and right (blue)
wing kinematics predicted from steering muscle activity in CD. The baseline wing
kinematics are shown in black for comparison.
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Figure 6.4: Saccade to the left. A: Top view at wingbeat 9 of the maneuver, wingtip
traces are shown in red and blue. B: Wingtip traces at wingbeat 9 for stationary body
state. C&D: Left and right steering muscle activity during the maneuver. E: Body
state during the maneuver. F: Left (red) and right (blue) wing kinematics predicted
from steering muscle activity in CD. The baseline wing kinematics are shown in
black for comparison.
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𝑥
𝑠𝑡
𝑎
𝑟
𝑡

𝑣𝑥 0 0 0 163 163 163 0 0
𝑣𝑦 0 0 0 0 0 0 0 0
𝑣𝑧 0 0 0 163 163 163 0 0
𝜔𝑦 0 0 0 0 0 0 0 0
𝜔𝑦 0 0 0 0 0 0 0 0
𝜔𝑦 0 0 0 0 0 0 0 0
𝑞0 1 1 1 1 1 1 1 1
𝑞𝑥 0 0 0 0 0 0 0 0
𝑞𝑦 0 0 0 0 0 0 0 0
𝑞𝑧 0 0 0 0 0 0 0 0
𝑝𝑥 0 0 0 0 0 0 0 0
𝑝𝑦 0 0 0 0 0 0 0 0
𝑝𝑧 0 0 0 0 0 0 0 0

𝑥
𝑔
𝑜
𝑎
𝑙

𝑣𝑥 325 −325 0 163 163 163 163 163
𝑣𝑦 0 0 −325 0 0 0 0 0
𝑣𝑧 488 488 0 163 163 163 163 163
𝜔𝑦 0 0 0 0 0 0 0 0
𝜔𝑦 0 0 0 0 0 0 0 0
𝜔𝑦 0 0 0 0 0 0 0 0
𝑞0 1 1 1 cos(𝜋/4) cos(𝜋/4) cos(𝜋/2) cos(𝜋/2) cos(𝜋/4)
𝑞𝑥 0 0 0 0 0 0 0 0
𝑞𝑦 0 0 0 0 0 0 0 0
𝑞𝑧 0 0 0 sin(𝜋/4) sin(−𝜋/4) sin(−𝜋/2) sin(−𝜋/2) sin(−𝜋/4)
𝑝𝑥 135 −135 0 27 27 −135 0 0
𝑝𝑦 0 0 −135 27 −27 0 −135 0
𝑝𝑧 0 0 0 0 0 0 0 0

𝑆
𝑥

𝑣𝑥 0.1 0.1 1 0.1 0.1 1 0.1 0.1
𝑣𝑦 1 1 0.1 0.1 0.1 1 0.1 0.1
𝑣𝑧 0.1 0.1 1 0.1 0.1 1 0.1 0.1
𝜔𝑦 1 1 1 1 1 1 1 1
𝜔𝑦 1 1 1 1 1 1 1 1
𝜔𝑦 1 1 1 1 1 1 1 1
𝑞0 0 0 0 0 0 0 0 0
𝑞𝑥 1 1 1 0.5 0.5 1 1 1
𝑞𝑦 0 0 0 0 0 0 0 0
𝑞𝑧 1 1 1 0.5 0.5 1 1 1
𝑝𝑥 0.001 0.001 0.01 0 0 0 0.001 0.001
𝑝𝑦 0.01 0.01 0.001 0.001 0.001 0 0.001 0.001
𝑝𝑧 0 0 0.1 0.1 0.1 0.1 0.1 0.1

Table 6.3: MPC settings for virtual free flight maneuvers.
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C h a p t e r 7

CONCLUSIONS

After more than 400 million years of evolution, it is reasonable to assume that
all aspects of the insect’s flight system are highly optimized due to stringent and
iterative natural selection. The question is, optimized for what? If an engineer could
design the wings, wing hinge and musculature of a fly, he or she would probably
focus on energy efficiency, maneuverability, and control. All these aspects are
important in insect flight, but there are many other factors that need to be taken into
consideration. For example, an insect cannot repair its wings and the flight system
needs to be robust to damage or mechanical fatigue (Muijres, Iwasaki, et al., 2017).
For some butterfly species, the shape of the wing is important for sexual selection
(Le Roy, Debat, and Llaurens, 2019), while for other species the structure of the
environment, such as forest versus open fields, determines the shape of the wing
(Le Roy, Amadori, et al., 2021). Predation of moths by bats has led to the evolution
of hairy scales on moth wings that can absorb ultrasound, however, these hairy
scales deteriorate flight performance (Neil et al., 2020). The design of an insect’s
flight system is thus optimized for many factors, and trying to reverse-engineer this
design is a complicated task.

A good example of biomechanical complexity is the wing hinge of a fly. Although the
number of sclerites is low, the complex 3D shape of the sclerites, and the unknown
mechanical properties of the tissue connecting them, makes it very challenging to
construct a mechanical model of the wing hinge. As with most biological systems,
the wing hinge is multi-functional, besides transforming thorax deformation into
wing motion, the wing hinge also needs to facilitate folding of the wing, and male
flies use the wing and wing hinge to sing during courtship (O’Sullivan et al., 2018).
Besides multi-functionality, the shape of the wing hinge is subject to developmental
constraints, i.e. the wing hinge and the wing have to grow from the same imaginal
disc in the larvae. All these aspects of wing hinge evolution make it very difficult to
infer mechanical function from anatomical observations alone. The complexity of
the wing hinge, combined with the experimental challenges to image the sclerites
during flight, has made the wing hinge an enigma, even after more than a century
of research.
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The complexity of the wing hinge was circumvented in this study, by simultaneously
measuring the input, steering muscle activity, and output, wing kinematics, of the
system. Combining real-time GCaMP imaging at 100 fps (Lindsay and Dickinson,
2016) and high-speed videography at 15, 000 fps (Muijres, Elzinga, Melis, et al.,
2014), required a highly automated experimental rig, because the high-speed video
recording needed to be triggered on changes in muscle activity. The resulting
experimental setup could record up to 8 seconds of high-speed video per fly in
approximately one hour. In total, I collected 479 high-speed video sequences of 1.1
seconds from 82 flies, with synchronous muscle activity recording.

The vast high-speed video dataset created a challenge, as the wing pose needed to
be extracted from the three orthogonal camera views. Although there were several
automated wing pose reconstruction algorithms available, the clap-and-fling effect
in tethered flight would require the user to annotate frames in each wingbeat, which
was unfeasible given that the fly’s wingbeat frequency is around 200 Hz. I, therefore,
developed a novel tracking algorithm, named FlyNet, that combines pose prediction
by a CNN with pose refinement via 3D model fitting by PSO. The main advantage
of FlyNet is that it can track body and wing pose independent of time, i.e. if the
tracked pose is inaccurate in one frame, it does not affect any other frames. This
time independence helped FlyNet to automatically track wing pose, even during
wingbeats when the clap-and-fling occurred. FlyNet can process 1 second of high-
speed video data in 20 minutes on a high-end desktop computer. The combination
of CNN prediction and PSO refinement proved to be accurate and robust for tracking
tethered flight, and I am convinced that the methodology can be used successfully
for any kind of 3D pose reconstruction from multiple camera views.

After tracking the dataset with FlyNet and converting the wing pose vector to four
wing kinematic angles, Legendre polynomials were fitted to the wing kinematic
traces of a wingbeat. By interpolating steering muscle activity at each wingbeat, a
coupled dataset of steering muscle activity and associated Legendre coefficients was
created. This coupled dataset was subsequently used to train a CNN to predict wing
kinematics based on steering muscle activity. The CNN predictions are remarkably
accurate, even when presented with unseen sequences of muscle activity. An corre-
lation analysis of steering muscle fluorescence showed that steering muscle activity
is highly correlated, and that, approximately, all muscle activity is constrained in a
12D plane. By moving to the point of maximum activity for a particular muscle on
the 12D plane, one can find the maximum muscle activity patterns for any particular
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muscle. The predicted wing motion for these maximum muscle activity patterns
reveal the wing kinematic range that the muscles can modulate. Comparison with
electrophysiology studies shows that, for the electrode-accessible steering muscles,
similar trends in wing kinematic changes have been observed, providing support for
my approach. By training an autoencoder on the coupled dataset, with an indepen-
dent latent variable for each group of steering muscles, I could extract the effects
on wing motion of each sclerite. This autoencoder analysis provided novel insights
about the function of each sclerite in the wing hinge, especially for the fourth axillary
sclerite, which has a strong effect on stroke amplitude, deviation and wing pitch.

The predicted wing motion for the maximum muscle activity patterns was replayed
on a dynamically scaled robotic fly, RoboFly. Using the aerodynamic force-torque
measurements of RoboFly and inertial force-torque computations via the Newton-
Euler equations, I constructed a map between steering muscle activity and control
forces and torques. This map was subsequently used in the control model of a
state-space system of fly flight. Using the state-space system in combination with
MPC, I could simulate various free flight maneuvers. The good correspondence
between the body and wing kinematics of the simulated maneuvers and free flight
studies provides confidence in the accuracy of the simulations.

The state-space system of fly flight does not only serve as a validation of how well
the flight physics and role of the steering muscles are captured. By defining the
state-space system, I have formulated the control problem that a fly needs to solve,
every wingbeat, to stabilize flight and perform maneuvers. Because the steering
muscles are innervated by only one motorneuron, muscle fluorescence serves as a
proxy of the neural activity. Recently, several studies have published maps of neural
connectivity of the Drosophila brain and upstream neurons of the motor-neurons
(Scheffer et al., 2020, Phelps et al., 2021). With a map of neural connectivity, and a
description of the control problem to be solved, it might be possible to understand
how a fly performs the neural computations required for such a complex behavior
as free flight.
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A p p e n d i x A

WING MOTION RECONSTRUCTION BY CNN REGRESSION

Figure A.1: Muscle activity and (predicted) wing motion during a high-speed video
sequence. A: Muscle activity and wingbeat frequency. B: Tracked (black, true) and
predicted (red, pred) wing motion. C: Close-up between 0.4 and 0.6 seconds of A.
D: Close-up of B.
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Figure A.2: Muscle activity and (predicted) wing motion during a high-speed video
sequence. A: Muscle activity and wingbeat frequency. B: Tracked (black, true) and
predicted (red, pred) wing motion. C: Close-up between 0.4 and 0.6 seconds of A.
D: Close-up of B.
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A p p e n d i x B

MPC FREE FLIGHT MANEUVERS
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Figure B.1: Backward velocity. A: Side view at wingbeat 6 of the maneuver, wingtip
traces are shown in red and blue. B: Wingtip traces at wingbeat 6 for stationary body
state. C&D: Left and right steering muscle activity during the maneuver. E: Body
state during the maneuver. F: Left (red) and right (blue) wing kinematics predicted
from steering muscle activity in CD. The baseline wing kinematics are shown in
black for comparison.
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Figure B.2: Sideward velocity. A: Frontal view at wingbeat 7 of the maneuver,
wingtip traces are shown in red and blue. B: Wingtip traces at wingbeat 7 for
stationary body state. C&D: Left and right steering muscle activity during the
maneuver. E: Body state during the maneuver. F: Left (red) and right (blue)
wing kinematics predicted from steering muscle activity in CD. The baseline wing
kinematics are shown in black for comparison.
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Figure B.3: Escape maneuver for frontal loom stimulus. A: Top view at wingbeat
7 of the maneuver, wingtip traces are shown in red and blue. B: Wingtip traces at
wingbeat 7 for stationary body state. C&D: Left and right steering muscle activity
during the maneuver. E: Body state during the maneuver. F: Left (red) and right
(blue) wing kinematics predicted from steering muscle activity in CD. The baseline
wing kinematics are shown in black for comparison.
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Figure B.4: Escape maneuver for left loom stimulus. A: Top view at wingbeat 7
of the maneuver, wingtip traces are shown in red and blue. B: Wingtip traces at
wingbeat 7 for stationary body state. C&D: Left and right steering muscle activity
during the maneuver. E: Body state during the maneuver. F: Left (red) and right
(blue) wing kinematics predicted from steering muscle activity in CD. The baseline
wing kinematics are shown in black for comparison.


