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ABSTRACT

The last decades have seen great leaps made in the development of RNA sequencing
technologies, yielding lower cost and greater throughput of experiments, to the point
where the scale of the data produced on a daily basis is staggering. While computa-
tional hardware is also continuously improving, famously (or perhaps infamously)
described by Gordon Moore (Moore, 1965), the rate at which data are produced
eclipses advances on the hardware front. Over the last few years, many new meth-
ods have been proposed for bridging that ever-widening chasm, more than a few of
which harness the latent graphical structure of genomic data to reduce the number
of calculations required and pack the data tighter in memory. This body of work
continues this development on three different, but related, fronts. Firstly, I present
developments that greatly improve upon the efficiency of state-of-the-art methods
for the quantification of RNA-seq reads, and describe a method that improves the
accuracy of quantification without substantially increasing the computational over-
head. Secondly, I introduce a procedure for the discovery of associations between
novel gene isoforms and phenotypes, without prior knowledge of those isoforms.
Lastly, I present the largest reconstruction of the transmission tree of a viral out-
break to date, modeled from viral genome sequences, contact tracing, and symptom
data. I then use the reconstructed transmission tree to assess the efficacy of different
vaccination strategies.



v

PUBLISHED CONTENT AND CONTRIBUTIONS

Figure 6.1, figure 6.4, and figure 6.5 are reprinted with permission from the copyright
holder, Elsevier.

Hjörleifsson, Kristján Eldjárn, Lior Pachter, and Páll Melsted (2022). “Annotation-
agnostic discovery of associations between novel gene isoforms and phenotypes”.
In: bioRxiv. doi: 10.1101/2022.12.02.518787.
K.E.H., P.M., and L.P. designed the study and interpreted the results. K.E.H.
implemented the method and the simulation framework. K.E.H., P.M., and L.P.
drafted the manuscript.

Hjörleifsson, Kristján Eldjárn, Solvi Rognvaldsson, et al. (June 2022). “Recon-
struction of a large-scale outbreak of SARS-CoV-2 infection in Iceland informs
vaccination strategies”. In: Clinical Microbiology and Infection 28 (6), pp. 852–
858. issn: 14690691. doi: 10.1016/j.cmi.2022.02.012.
K.E.H. and S.R. contributed equally to this article. KEH, SR, PM, and KS de-
signed the study and interpreted the results. ABA, MA, KB, GH, AdJ, AsJ, NK,
BK, DNM, LLR, GMS, AS, FJ, OTM, GLN, and JS planned and performed the
laboratory work. ESE, RP, MIS, and MT performed the data collection. KEH, SR,
HJ, ESE, RF, GG, KRG, AG, BOJ, KSJ, TK, RP, MIS, GS, EAT, BT, MT, AH,
HH, Ĳ, GM, PS, UT, and PM performed the data curation. KEH, SR, HJ, OE,
DFG, and PM performed the statistical and bioinformatics analyses. KEH, SR,
PM, and KS drafted the manuscript. All authors contributed to the final version
of the paper.

Hjörleifsson, Kristján Eldjárn, Delaney K Sullivan, et al. (2022). “Accurate quantifi-
cation of single-nucleus and single-cell RNA-seq transcripts”. In: bioRxiv. doi:
10.1101/2022.12.02.518832.
K.E.H. and D.K.S. contributed equally to this article. KEH, D.K.S, and L.P.
designed the study and interpreted the results. KEH, D.K.S., and L.P. performed
the statistical and bioinformatics analyses. K.E.H., D.K.S., G.H., and P.M. created
the software implementation of the method. KEH, D.K.S., and L.P. drafted the
manuscript.

Melsted, Páll et al. (July 2021). “Modular, efficient and constant-memory single-
cell RNA-seq preprocessing”. In: Nature Biotechnology 39 (7), pp. 813–818. issn:
15461696. doi: 10.1038/s41587-021-00870-2.
P.M., A.S.B., L. Liu and L.P. developed the algorithms for bustools and P.M.,
A.S.B. and L. Liu wrote the software. A.S.B. conceived of and performed the
UMI and barcode calculations motivating the algorithms. F.G. implemented and
performed the benchmarking procedure, and curated indices for the datasets.
A.S.B. and E.d.V.B. designed and produced the comparisons between Cell Ranger
and kallisto bustools. L. Lu investigated in detail the performance of different
workflows on the “10k mouse neuron” data and produced the analysis of that



vi

dataset. A.S.B. designed the RNA velocity workflow and performed the RNA
velocity analyses. K.M.H contributed to the development of the reproducible
workflow. K.E.H. developed and investigated the effect of reference transcriptome
sequences for pseudoalignment. J.G. interpreted results and helped to supervise
the research. A.S.B. planned, organized and prepared figures. A.S.B., E.d.V.B.,
P.M., and L.P. planned the manuscript. A.S.B. and L.P. wrote the manuscript.



vii

TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis contribution and organization . . . . . . . . . . . . . . . . . 3
Chapter II: Transcription, processing, and nomenclature . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The co-occurrence of transcription and splicing . . . . . . . . . . . . 7
2.3 The order of splicing . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter III: Accurate quantification of single-cell RNA-seq . . . . . . . . . . 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter IV: Memory improvements in kallisto 0.49 . . . . . . . . . . . . . . 22
4.1 A primer on de Bruĳn graphs . . . . . . . . . . . . . . . . . . . . . 22
4.2 𝑘-mer lookup vs. minimizer lookup . . . . . . . . . . . . . . . . . . 23
4.3 Shrinking the hash table to size . . . . . . . . . . . . . . . . . . . . 25
4.4 Equivalence class preemption vs. dynamic equivalence classes . . . 25

Chapter V: Annotation-agnostic discovery of associations between novel gene
isoforms and phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter VI: Reconstruction of a large-scale outbreak of SARS-CoV-2 infec-
tion in Iceland informs vaccination strategies . . . . . . . . . . . . . . . . 34
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Data collection and completeness . . . . . . . . . . . . . . . . . . . 35
6.3 Reconstructing the transmission tree of a viral outbreak . . . . . . . 37
6.4 Estimating stratified reproduction number using transmission trees . 42
6.5 Simulating the effects of vaccination on transmission trees . . . . . . 42
6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



viii

LIST OF ILLUSTRATIONS

Number Page
1.1 Single-cell RNA sequencing studies over time . . . . . . . . . . . . . 1
1.2 RNA quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The RNA quantification problem . . . . . . . . . . . . . . . . . . . 3
1.4 An overview of de Bruĳn-based RNA quantification with kallisto . . 4
1.5 A de Bruĳn graph of the human transcriptome . . . . . . . . . . . . 5
2.1 Overview of the order of operations in RNA transcription and splicing 7
3.1 Comparison of alignment of Unprocessed, Processed, and Ambigu-

ous reads between kallisto, STARsolo, and alevin-fry . . . . . . . . . 11
3.2 Distinguishing flanking 𝑘-mers . . . . . . . . . . . . . . . . . . . . 12
3.3 False positives and false negatives in kallisto, alevin-fry, and STARsolo 13
3.4 Spearman correlation coefficient between kallisto, alevin-fry, and

STARsolo, and ground truth . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Spearman correlation coefficient between kallisto and alevin-fry, and

kallisto and STARsolo, highlighting difference between single-cell
and single-nucleus quantification . . . . . . . . . . . . . . . . . . . 16

3.6 Running time and peak memory usage of kallisto, alevin-fry, and
STARsolo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 An example of a 𝑘-mer table and corresponding minimizer table for
𝑘 = 7, 𝑔 = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 An overview of annotation-agnostic RNA quantification . . . . . . . 28
5.2 A de Bruĳn graph representing annotated and non-annotated transcripts 29
5.3 Discovery of association signals using annotation-agnostic RNA quan-

tification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1 Daily cases during the third wave of SARS-CoV-2 infections in Iceland 36
6.2 The incubation time distribution and generation time distribution

averaged over all transmission trees. . . . . . . . . . . . . . . . . . . 40
6.3 Distribution of subtree size . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 The time-varying, and effective reproduction numbers in the third

wave of SARS-CoV-2 in Iceland, stratified by quarantine and age . . 48
6.5 Simulations of estimated final size of the third wave of SARS-CoV-2

in Iceland using three different vaccination strategies . . . . . . . . . 50



ix

6.6 The expected number of deaths, critical cases, and severe cases under
three vaccination schemes . . . . . . . . . . . . . . . . . . . . . . . 51

6.7 Simulations of the estimated size of the third wave using subtrees . . 52



x

LIST OF TABLES

Number Page
3.1 Comparison of STARsolo, kallisto, and alevin-fry without true neg-

atives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Comparison of STARsolo, kallisto, and alevin-fry without true neg-

atives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1 Posterior summary of fitted parameters . . . . . . . . . . . . . . . . 42
6.2 Blue clade mutations . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Effective reproduction number of different groups of people in the

third wave of SARS-CoV-2 in Iceland . . . . . . . . . . . . . . . . . 47
6.4 Comparisons between three different vaccination strategies . . . . . . 49
6.5 The crossover points for vaccinating in order of ascending age and

uniformly at random . . . . . . . . . . . . . . . . . . . . . . . . . . 51



1

C h a p t e r 1

INTRODUCTION

The initial sequencing of the human genome in 2001 (Lander et al., 2001) her-
alded beginning of another momentous undertaking: the large-scale, genome-wide
quantification of mRNA in human cells. In the intervening years, great leaps have
been made in the technologies involved, at first with cDNA microarrays, but more
recently with RNA-sequencing (RNA-seq), which has become the de facto standard
method for sequencing expression data, offering lower cost, while yielding a higher
resolution and sensitivity (Mortazavi et al., 2008).

Figure 1.1: The number of published single-cell RNA sequencing studies over time.
Data obtained from Svensson, Veiga Beltrame, and Pachter, 2020 on December 12,
2022.

Progress has been such, that the scale of data produced daily has become stagger-
ing. The associated computational challenges of processing the data, quantifying
RNA abundances, and analyzing expression patterns, have been profound, and have
spurred development of many algorithms (Conesa et al., 2016). The key step of
RNA-seq quantification (Figure 1.2, figure 1.3), in which the raw RNA reads are
aligned to known sequences in a reference genome, is particularly complex as it
requires not just naive counting of molecules, but mapping of large number of reads
and assignment of ambiguously mapping reads via the expectation-maximization
and related algorithms (Nicolae et al., 2011). This is done in order to determine
which gene or transcript the RNA read is a product of, and ultimately obtain a mea-
sure of the expression levels of different genes in the experiment. Many mapping
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algorithms have been proposed, most of which are computationally intensive, and
new or updated software packages which implement novel algorithms and improve
upon prior methods are regularly published.

Figure 1.2: In any cell, there are strands of DNA, certain regions of which we refer
to as genes. These genes consist mainly of two building blocks: exons, which play
a role in the production of protein, and introns, which generally do not. Genes are
constantly being transcribed into nascent RNA molecules, which are then in turn
processed such that the non-protein-coding introns are spliced out. The remaining
exons can be spliced together in different ways, meaning that each gene can have
multiple different mature RNA products. For example, the Ensembl annotation 108
of the human transcriptome contains 33,548 genes, which can yield 236,233 different
transcripts (Cunningham et al., 2022). We refer to the RNA molecules present in
a cell at a given time as the RNA expression of the cell. RNA quantification
involves sampling RNA molecules from multiple cells, and quantifying the gene or
transcript abundances either per cell (in the case of single-cell RNA sequencing) or
per individual in a cohort (in the case of bulk RNA sequencing). This results in
a matrix where each element represents the abundance of a gene or transcript in a
given cell or individual.

One such method is the RNA-seq quantification method kallisto (Bray et al., 2016),
published in 2016, which pseudo-aligns RNA reads against a graphical representa-
tion of a transcriptome, which consists of the sequences of the known transcripts,
or processed mature messenger RNA molecules, in the target genome. Previous
methods align reads to individual transcripts in the transcriptome annotation, or to
the genome (Figure 1.4). This method, which relies on the de Bruĳn graph data
structure for memory efficiency, has heralded the development of numerous fast and
accurate methods that require minimal computational resources (Figure 1.5). In this
body of work, I develop new algorithms for kallisto, which not only further reduce
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Figure 1.3: Both partially processed and completely processed transcripts are cap-
tured during single-cell RNA-seq. During sequencing, the molecules are broken
up into smaller fragments, the sequences of which are digitized and represented as
strings of As, Cs, Gs, and Ts. The quantification problem involves determining
which gene or transcript each of those fragments originates from, in order to mea-
sure the relative expression levels of all genes in a sample.

the needed computational resources, but also enable more accurate and targeted
quantification of RNA-seq data than previously possible. I define nomenclature for
reasoning about the nuclear or cytoplasmic origins of RNA-seq reads and develop
a provably optimal (under mild assumptions) algorithm of distinguishing between
the two when they can be disambiguated.

Most quantification tools, kallisto included, have an oft-ignored blind spot when it
comes to the quantification of novel transcripts. These methods rely on an annotation
of the target transcriptome. However, annotations of mRNAs may be incomplete,
or if the organism is not well studied they may be nonexistent (Zhang et al., 2020).
This may result in data being discarded, and to erroneous quantifications (Kuo,
Hansen, and Hicks, 2022). Furthermore, in downstream applications such as eQTL
analysis, such errors can propagate and result in missed associations. In separate
work, I present a novel algorithm for associating phenotypes with RNA expression,
that can identify expression associations resulting from a wide variety of underlying
transcriptional and post-transcriptional events, without prior knowledge of these
events.

1.1 Thesis contribution and organization
Following is a summary of the main contributions of this thesis.
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Figure 1.4: RNA-seq quantification with kallisto. A de Bruĳn graph is built from the
reference transcriptome, which in this case consists of three transcripts, 𝑇1, 𝑇2, 𝑇3.
Each vertex in a 𝑘-dimensional de Bruĳn graph represents a string of symbols of
length at least 𝑘 . In this toy example, 𝑘 = 5. There is an edge between vertex 𝑎 and
vertex 𝑏 if the 𝑘 − 1 last symbols in the string represented by 𝑎 are the same as the
𝑘 − 1 first symbols in the string represented by node 𝑏. The set of transcript that
uses each vertex is then used to color that vertex. I.e. both 𝑇1 and 𝑇3 use node 𝑎, so
the color of node 𝑎 is (𝑇1, 𝑇3). During quantification, each read is broken down into
its constituent 𝑘-mers, and the nodes they occur in are found in the graph. In order
to determine which transcript the read corresponds to, the intersection of the colors
is taken. If there are multiple transcripts in the intersection, the read is fractionally
assigned to both.

• I develop an algorithm that increases the specificity of RNA-seq quantification,
which under mild assumptions is provably correct, and requires only the
minimal possible amount of data to do so. The algorithm leverages the
efficient de Bruĳn graph data structure to effectively mask out undesired
sequences without minimal storage overhead, and retains its accuracy in terms
of quantification of desired sequences. A key idea is the introduction of a
new concept in sequence alignment, namely that of distinguishing flanking
k-mers. I implement this algorithm in efficient software via a new version of
kallisto that additionally leverages novel improvements I have developed that
reduce memory requirements. I make use of 𝑘-mer minimizers (Roberts et al.,
2004), minimal perfect hash functions (Limasset et al., 2017), memoization,
and other graph theoertic principles. I show that quantifying RNA-seq reads
using indices built with a D-list containing noncoding sequences, such as
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Figure 1.5: A de Bruĳn graph of Ensembl annotation version 108 of the human
transcriptome (Cunningham et al., 2022). The left-hand side shows one of many
connected components. Each connected component mostly constitutes one gene, or
a few genes, in case they share 𝑘-mers.

introns, intergenic regions, and transposable elements, increases the accuracy
of quantification. Thus, the algorithmic ideas translate to biological insight by
revealing how to improve the resolution of quantification with existing assays.
Furthermore, I benchmark the performance against the previous version of
kallisto and other widely used quantification tools. I show that my new version
of kallisto outperforms other methods in terms of memory and CPU usage, and
thereby show that accurate quantification can be done with modest hardware
requirements.

• I describe the computational and graph theoretical improvements made to
kallisto in order to enable the processing of ever larger data sets and lowering
the barrier of entry for doing large-scale RNA-seq analyses.

• I present a novel method for RNA-seq quantification, which does not rely on
an annotation of the underlying transcriptome. The non-annotated sequence
abundances in my reference-free approach enable the direct association pheno-
types with RNA expression, which can identify expression associations result-



6

ing from a wide variety of underlying transcriptional and post-transcriptional
events, without prior knowledge of these events. I show that I can reliably
reproduce known associations, and detect, de novo, phenotypically relevant
transcriptional structures. Thus, by performing statistics tests directly on a
useful data structure rather than on summarized data, I am able to extract
associations that previously were not identifiable.

• I present a statistical model that, given viral genome sequences and extensive
contact tracing data and medical data, reconstructs the latent transmission tree
in a viral outbreak. The model implements an MCMC-algorithm (Metropolis
et al., 1953) to sample from the distribution of all possible transmission trees
using multiple custom likelihood functions to assess infector-infectee pairs in
the tree. This method expands upon prior methods in terms of the types of data
used (Campbell, Didelot, et al., 2018, Campbell, Cori, et al., 2019). Using
this method, I recover a transmission tree for a large-scale outbreak of SARS-
CoV-2 in Iceland. I quantify the effect that mandated quarantine has on the
spread of the virus and I show a strong correlation between the age of patients
and infection rate. Furthermore, I model different vaccination strategies using
the transmission tree and compare their effectiveness in terms of the total
number of cases, the number of ICU cases, and the number of deaths. A
randomized algorithm for vaccination is revealed to be nearly as accurate
as the optimal strategy, and practical to implement. This computational
epidemiologic finding should be of use in the future as vaccination becomes
more routine for a wide variety of infectious diseases.
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C h a p t e r 2

TRANSCRIPTION, PROCESSING, AND NOMENCLATURE

2.1 Introduction
In Chapter 3 we develop a method for the accurate quantification of single-cell RNA-
seq reads. In particular, our method seeks to distinguish between completely spliced
RNA molecules and those still containing introns. This chapter recapitulates the
order of operations in the transcription and splicing processes as they are understood
today. It then defines the terminology we will be using in chapter Chapter 3 and
outlines the simplifying assumptions behind those terms.

2.2 The co-occurrence of transcription and splicing
The life cycle of an RNA molecule begins at the start of transcription, during which
the molecule is considered to be nascent as it undergoes synthesis with RNA poly-
merase. Before their export from the nucleus, RNA molecules are processed, which
entails removing the introns and splicing the remaining exons together, yielding what
we term a completely processed RNA molecule. Although often studied separately,
there is substantial evidence that splicing by the spliceosome is concurrent to the
transcription (Y. Osheim, Miller, and Beyer, 1985; Beyer and Y. N. Osheim, 1988;
Tennyson, Klamut, and Worton, 1995; Wuarin and Schibler, 1994; Neugebauer,
2002; Pandya-Jones and Black, 2009). In fact, the co-occurrence of transcription by
RNA polymerase II (pol II) and processing has been shown to substantially increase
the throughput of the processing, due to the C-terminal domain (CTD) of pol II,
which facilitates attachment of RNA processing factors (Bentley, 2005). Thus, the
notions of completely transcribed, but completely unprocessed molecules do not
accurately reflect the molecular biology of the cell.

Figure 2.1: Overview of the order of operations in RNA transcription and splicing.
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2.3 The order of splicing
Transcription culminates in the polyadenylation (poly(A)) of the molecule, in prepa-
ration for nuclear export (Stewart, 2019). Nascent pre-mRNAs are cleft 20-30 bp
downstream of poly(A) sites, and poly(A) polymerase appends poly(A) tails to the 3’
overhangs, after which they can be captured by current, 3’ capturing RNA-seq meth-
ods. As with splicing, the polyadenylation process may begin co-transcriptionally,
but continue after transcription has terminated (Neugebauer, 2002). Partially pro-
cessed molecules therefore co-occur with completely processed molecules; in fact
splicing can be a multistep process in which long introns are spliced recursively,
yielding many partial products (Wuarin and Schibler, 1994; Tennyson, Klamut, and
Worton, 1995). Per (Wetterberg, Baurén, and Wieslander, 1996) and (Pandya-Jones
and Black, 2009) introns are generally removed in a 5’-to-3’ order. Furthermore,
(Wetterberg, Baurén, and Wieslander, 1996) also show that introns located in the
5’ part of the gene are likely to be removed during transcription, whereas those lo-
cated in the 3’ part are more likely to be removed after transcription. Nevertheless,
there are exceptions to this order of operations, and exon length appears to play
a role in the order of excision (Tardiff, Lacadie, and Rosbash, 2006). However,
this general 5’-to-3’ order of intron removal means that with current, 3’ capturing
RNA-seq methods the presence of an exon-exon junction is a good indicator that
most upstream introns have been removed, and the molecule completely or almost
completely processed. Conversely, the presence of an intron-exon junction does not
indicate that the molecule is completely unprocessed; only that it has not yet been
completely processed, as introns upstream of it are likely to have been removed.
Based on these known mechanics of the transcription and splicing processes, and
state-of-the-art RNA sequencing methods, we can classify the molecules from which
we obtain RNA reads in an experiment as completely processed ( P ) and partially
processed ( U ).
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C h a p t e r 3

ACCURATE QUANTIFICATION OF SINGLE-CELL RNA-SEQ

The presence of both unprocessed and processed mRNA molecules in single-cell
RNA-seq data leads to ambiguity in the notion of a “count matrix”. Underlying
this ambiguity is the challenging problem of separately quantifying completely
processed and completely unprocessed mRNAs. In this chapter, we address this
problem by relating 𝑘-mer assignment to read assignment in the context of different
classes of molecules, and describe a unified approach to quantifying both single-cell
and single-nucleus RNA-seq.

3.1 Introduction
The utility of single-cell RNA-seq measurements for defining cell types has repre-
sented a marked improvement over bulk RNA-seq, and is driving rapid adoption
of single-cell RNA-seq assays (Zeng, 2022). Another application of single-cell
RNA-seq that is not possible with bulk RNA-seq is the study of cell transitions and
transcription dynamics, even via snapshot single-cell RNA-seq experiments (Gorin,
Fang, et al., 2022). This novel application of single-cell RNA-seq is based on the
quantification of both unprocessed and processed mRNAs (Figure 3.2.A), lending
import to the computational problem of accurately quantifying these two modalities.
The challenge of quantifying unprocessed mRNAs in addition to processed mRNAs
has also been brought to the fore with single-nucleus RNA-seq (Kuo, Hansen, and
Hicks, 2022).

The difficulty in quantifying both processed and unprocessed transcripts from single-
cell RNA-seq data stems from the fact that sequenced reads are typically much
shorter than transcripts, and therefore there can be ambiguity in classification of reads
as originating from processed mRNAs vs. their unprocessed precursors (Figure
3.2.B). Reads that span a junction, i.e. cover two exons separated by an intron,
must originate from a completely or partially processed mRNA ( P ), whereas reads
containing sequence unique to an intron must originate from an unprocessed or
partially processed mRNA ( U ), however there are many reads for which it is
impossible to know whether they originated from an unprocessed or processed
transcript ( U | P ). Furthermore, the way in which these cases are resolved depends
on whether reads have been mapped to a whole genome, or directly to transcript
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sequences derived from annotations of the genome. The former approach lends
itself well to identifying reads originating from completely unprocessed transcripts,
as the genome includes all non-coding sequences, however the latter approach is
superior for identifying spliced reads, because the sequence of processed transcripts
is present in the reference being mapped to. Furthermore, methods that rely on
𝑘-mer matching to speed up alignment must account for the distinction between 𝑘-
mer ambiguity and read ambiguity (Figure 3.2.C), and this distinction has not been
carefully accounted for in existing 𝑘-mer based single-cell RNA-seq pre-processing
workflows (Melsted et al., 2021; He et al., 2022).

As a result of these complexities, existing single-cell RNA-seq quantification al-
gorithms provide a smorgasbord of options for users, but confusing, or at times
contradictory, guidance on how to quantify single-cell RNA-seq, with unfortunate
implications for analysis (Soneson et al., 2021). For example,the popular Cell
Ranger software for quantifying single-cell RNA-seq generated with 10x Genomics
machines, in its first six releases only quantified processed RNAs, and not unpro-
cessed transcripts, and a separate program was required for generating unprocessed
molecule counts (Manno et al., 2018). Moreover, the Cell Ranger quantification is
based on an assumption that all reads that are ambiguous as to their origin from
unprocessed or processed transcripts, are always counted as being derived from
completely processed transcripts. Alevin-fry offers a large number of different
quantification modes (He et al., 2022), and there are significant asymmetries in
the quantification of single-cell vs. single-nucleus RNA-seq. For single-nucleus
RNA-seq, typically all reads mapping to gene bodies are included in generation of
a single count matrix, regardless of whether the reads originate from processed or
unprocessed transcripts. For single-cell RNA-seq, great care is taken to avoid the
counting of reads definitely originating from unprocessed transcripts, and only reads
originating from processed transcripts, or ambiguous reads, are included in count
matrices (Kaminow, Yunusov, and Dobin, 2021; He et al., 2022).

We address these shortcomings and inconsistencies based on a novel 𝑘-mer based
method we develop for resolving reads as to their originating source. By utilizing
𝑘-mers, our approach has the benefit of being efficient as it is compatible with
pseudoalignment, and we show via an implementation in the kallisto software (Bray
et al., 2016; Melsted et al., 2021) that it yields a fast and efficient approach for
quantification. Crucially, we introduce an approach to quantification of single-
nucleus RNA-seq that focuses on the unprocessed transcripts, thereby mirroring the
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Figure 3.1: Comparison of alignment of Unprocessed, Processed, and Ambiguous
reads between kallisto, STARsolo, and alevin-fry. Of the seven reads, three are U ,
one is P , and three are U | P . Note that alevin-fry and STARsolo attribute reads
that are fully contained within a single exon to the "spliced" part of the count matrix.
These sequences are however also present in the unprocessed transcripts, and should
therefore be counted as ambiguous.

approach for quantifying single-cell RNA-seq that focuses on processed transcripts.
This places the two assays on a (computationally) level playing field.

3.2 Results
To facilitate quantification of both unprocessed and processed mRNA transcripts,
we distinguished 𝑘-mers into three categories, analogous to the three categories
used for reads: U , P or U | P (Figure 3.3.B). A read can be classified as U , P
or U | P based on the classification of its constituent 𝑘-mers (Methods). In order
to classify 𝑘-mers without indexing all non-coding sequences, we utilized a D-list
(Methods), which consists of distinguishing flanking 𝑘-mers (DFKs) that can be
used to definitively assign a 𝑘-mer to a category (Methods). A read is classified as
U if it has at least one U k-mer, as P if it has at least one P 𝑘-mer, and as U | P
otherwise. Note that a read cannot have both U and P k-mers except in the rare
cases where an exon is short enough that a read can span the junctions on either side
of it, and that in the majority of casesthe DFKs suffice to classify all relevant 𝑘-mers
for classifying a read (Methods).
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Figure 3.2: A. In any cell, there exist two sets of transcripts: the unprocessed
set from which not all introns have been spliced, and the processed one, from
which they have. The number of completely unprocessed and processed transcripts
was obtained from version 104 of the Ensembl annotation of the human genome
(Cunningham et al., 2022). B. Each read in an RNA-seq experiment is either
explicitly U , an expression of a unprocessed transcript, if it contains at least a part
of a non-retained intronic sequence, P , an expression of a mostly or completely
processed transcript, if it contains an exon-exon boundary, or U | P , ambiguous, if
it occurs in the interior of an exon. Furthermore, the 𝑘-mers that constitute an U
read may be U , nascent or U | P , ambiguous, if they also occur in an exon, and the
𝑘-mers that constitute a P , processed read may be P , processed if they contain the
exon-exon junction or U | P , ambiguous, if they are an interior 𝑘-mer in an exon.
The number of unique U , P , and U | P 𝑘-mers in the human transcriptome was
calculated from Ensembl version 104. C. A non-transcriptomic read containing
a subsequence of length greater than 𝑘 , which also occurs in a transcript in the
target transcriptome will get attributed to that transcript. Distinguishing flanking
𝑘-mers (DFKs) can be used to determine whether a read compatible with a reference
transcriptome may have originated from elsewhere in the genome. Using the entire
set of GRCh38 scaffolds to construct a D-list for a kallisto index built from the
completely unprocessed transcripts in version 104 of the Ensembl annotation yields
7,192,804 DFKs. D. A de Bruĳn graph representation of DFKs

To validate our method for classifying reads, we generated 5,000,000 completely
processed reads and 5,000,000 completely unprocessed reads directly from the re-
spective transcripts without error, and assessed whether we could correctly assign
reads when using kallisto with a D-list included in the index (Figure 3.3, Methods).
We found that using a D-list, we can reliably classify reads as unprocessed, processed
or ambiguous, the latter one by identifying reads that are classified as both unpro-
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cessed and processed. The alevin-fry method failed to classify all reads correctly.
In particular, it assigned all U | P ambiguous reads, e.g. reads that are contained
within a single exon, to the “spliced” count matrix corresponding which counts pro-
cessed molecules. This leads to an asymmetry between quantifications of single-cell
RNA-seq data and single-nucleus RNA-seq data, where for the latter, alevin-fry (He
et al., 2022), STARsolo (Kaminow, Yunusov, and Dobin, 2021) and Cell Ranger
(unpublished) always classify ambiguously mapped reads as processed regardless
of assay. We benchmarked alevin-fry, and STARsolo in both “Gene/GeneFull”-
mode and “Velocyto”-mode. STARsolo quantification in “Velocyto”-mode of the
simulated data (Figure 3.3.C) deviated from the ground truth to such an extent that
comparisons with kallisto and alevin-fry were meaningless. When processing reads
from processed transcripts, STARsolo in “Velocyto”-mode only mapped 825,141
(82.5%) of the reads. When processing reads from unprocessed transcripts STAR-
solo only mapped 847,392 (84.7%) of the reads, and of those only 85.4% were
mapped correctly.

Figure 3.3: A. Left: the percentage of P reads, not correctly identified as processed
by kallisto, alevin-fry, and STARsolo in “Gene”-mode in a simulated single-cell
RNA-seq experiment. Right: the percentage of U reads, not correctly identi-
fied as unprocessed by kallisto, alevin-fry, and STARsolo in “GeneFull”-mode in
a simulated single-nucleus RNA-seq experiment. B. Alevin-fry attributes ambigu-
ous reads, e.g. reads that are contained within a single exon, to processed tran-
scripts, leading to an asymmetry between quantifications of simulated single-cell,
and single-nucleus RNA-seq reads. C. STARsolo quantification in “Velocyto”-
mode of the simulated data. Left: simulated experiment with 1,000,000 reads
containing no errors, from processed transcripts, 59,850 of which were ambiguous,
occurring in both unprocessed and processed transcripts. Right: simulated exper-
iment with 1,000,000 reads containing no errors, from unprocessed transcripts, of
which 583,914 were ambiguous.

To better understand the performance of kallisto on data that includes errors, we
assessed its performance using a simulation framework developed by the authors
of STARsolo (Kaminow, Yunusov, and Dobin, 2021). In that simulation frame-
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work, errors were introduced into reads at 0.5% error rate, and reads were simulated
from both coding and non-coding genomic sequence to mimic the presence of both
unprocessed and processed transcripts in single-cell RNA-seq experiments. We
also followed the assessment framework of (Kaminow, Yunusov, and Dobin, 2021),
and compared the results of kallisto to STARsolo and alevin-fry. We found that
kallisto performed similarly to STARsolo in a simulation containing multi-mapping
reads, i.e. reads that align well to two or more distinct transcripts, and outperformed
alevin-fry (Figure 3.4.B). In another simulation, containing no multi-mapping reads,
STARsolo performed marginally better than both kallisto and alevin-fry (Figure
3.4.A). The poor performance of kallisto without the D-list is due to the unrea-
sonable assessment procedure of (Kaminow, Yunusov, and Dobin, 2021), which
omitted assessment of true negatives (Methods). Note that correct calculations of
the Spearman coefficient yield a negligible difference between kallisto, STARsolo,
and alevin-fry (Table 3.1, table 3.2).

Per-cell Spearman coefficient quantiles
Tool 25% 50% 75%
STARsolo 0.9893 0.9922 0.9948
kallisto (with D-list) 0.9678 0.9735 0.9789
alevin-fry splici cr-like 0.9665 0.9717 0.9763
alevin-fry splici cr-like-em 0.9208 0.9291 0.9384
alevin-fry cr-like 0.8604 0.8824 0.9157
alevin-fry cr-like-em 0.8294 0.8559 0.8966
kallisto 0.7594 0.7901 0.8381
alevin-fry sketch cr-like 0.7527 0.7830 0.8337
alevin-fry sketch cr-like-em 0.6932 0.7282 0.7891

Table 3.1: STARsolo, kallisto, and alevin-fry compared in the simulated single-cell
RNA-seq experiment by Kaminow et al. containing no multimapping reads. The
Spearman coefficient of the quantified abundances and the ground truth per cell
was calculated and the quantiles reported. As per (Kaminow, Yunusov, and Dobin,
2021) the true negatives were left out of the abundance vectors used to calculate
the Spearman coefficient, which artificially inflates the effect of false negatives and
false positives on the coefficient.

To understand the implications of correct classification of reads into the unprocessed
transcript, processed transcript, or ambiguous categories, we examined the correla-
tion in gene counts with and without the use of a D-list on both single-cell RNA-seq
and single-nucleus RNA-seq data (Methods). The overall result was not materi-
ally different for single-cell RNA-seq (Figure 3.5.A), with the Pearson correlation
between kallisto and kallisto with the D-list at 0.99, corroborating the results of
(Booeshaghi and Pachter, 2021). Similarly, kallisto with the D-list is highly similar
to alevin-fry (Figure 3.5.B) and STARsolo (Figure 3.5.C). Even though quantifi-
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Per-cell Spearman coefficient quantiles

Tool 25% 50% 75%
STARsolo 0.9961 0.9969 0.9977
kallisto (with D-list) 0.9885 0.9903 0.9919
alevin-fry splici cr-like 0.9909 0.9922 0.9933
alevin-fry splici cr-like-em 0.9740 0.9761 0.9782
alevin-fry cr-like 0.9468 0.9539 0.9635
alevin-fry cr-like-em 0.9427 0.9503 0.9610
kallisto 0.8792 0.8939 0.9139
alevin-fry sketch cr-like 0.8740 0.8893 0.9104
alevin-fry sketch cr-like-em 0.8564 0.8737 0.8988

Table 3.2: STARsolo, kallisto, and alevin-fry compared in the simulated single-
cell RNA-seq experiment by Kaminow et al. containing no multimapping reads.
The Spearman coefficient of the quantified abundances and the ground truth per
cell was calculated and the quantiles reported. Unlike in (Kaminow, Yunusov,
and Dobin, 2021), the true negatives were accounted for in the abundance vectors
used to calculate the Spearman coefficient, which yields a meaningful measure of
correlation.

Figure 3.4: The Spearman coefficient for the correlation between the simulation
ground truth expression and the expression quantified by kallisto, alevin-fry, and
STARsolo in the simulation framework developed by Kaminow, Yunusov, and Dobin
(2021). A. Reads from 4,548 cells, containing no multi-gene reads. B. Reads from
4543 cells, including multi-gene reads.

cation with the D-list does not affect quantifications much, its use does not affect
running times much (Figure 3.6A) so it can be used routinely regardless.

More interesting, is the quantification of single-nucleus RNA-seq, for which unpro-
cessed RNAs can be quantified by generating a D-list based on DFKs in processed
transcripts. This biologically motivated approach to quantification of unprocessed
RNAs, that counts only reads that are definitively unprocessed or ambiguous (but
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Figure 3.5: Comparison of kallisto with alevin-fry and STARsolo on 10x Genomics
single-cell RNA-seq and single-nucleus data (Methods). A. Assessment of the
effect of using the D-list with kallisto. B. Comparison of kallisto to alevin-fry on
single-cell RNA-seq C. Comparison of kallisto to STARsolo on single-cell RNA-seq
D. The difference between kallisto’s quantification of unprocessed transcripts from
single-nucleus RNA-seq, and alevin-fry’s quantification of single-nucleus RNA-seq.
E. The difference between kallisto’s quantification of unprocessed transcripts from
single-nucleus RNA-seq, and STARsolo’s quantification of single-nucleus RNA-
seq. F. The similarity of alevin-fry and STARsolo’s quantification of single-nucleus
RNA-seq. In all plots Spearman correlation is shown with 𝜌 and Pearson correlation
with 𝑟.

not processed mRNAs), is practical for biological data, and produces results that are
significantly different from current approaches that quantify single-nucleus RNA-
seq by agglomerating counts for unprocessed and processed transcripts together.
This is reflected in a comparison of kallisto with the D-list to alevin-fry (Figure
3.5.C) and to STARsolo (Figure 3.5.D). STARsolo and alevin-fry, which both quan-
tify single-nucleus by mixing up processed and unprocessed transcripts, are more
similar to each other (Figure 3.5.E).
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Figure 3.6: Running time and peak memory usage comparisons during quantification
of 204,596,690 single-cell and single-nucleus RNA-seq reads from 7,377 mouse
brain cells. All programs were allocated 20 threads for quantification (Methods).

3.3 Discussion
The use of single-nucleus RNA-seq in lieu of single-cell RNA-seq has been in-
creasingly popular, primarily because nuclei don’t need to be dissociated (Habib
et al., 2017; Cervantes-Pérez et al., 2022; Liang et al., 2019; Al-Dalahmah et al.,
2020). Yet, despite the increasing preponderance of single-nucleus RNA-seq data
and fundamental differences between it and single-cell RNA-seq data, the two data
types have not been treated similarly for quantification purposes. While processed
transcripts are quantified for single-cell RNA-seq, single-nucleus RNA-seq is quan-
tified by combining quantifications of both unprocessed and processed transcripts.
Our approach to quantification offers flexibility for teasing apart the counts of un-
processed vs. processed mRNAs from such data, and highlights the possibility for
quantifying unprocessed transcripts from single-nucleus RNA-seq, just as processed
transcripts are quantified from single-cell RNA-seq. Our method is based on an ef-
ficient and accurate algorithm, and is implemented in software that can form part of
reproducible workflows that have modest hardware requirements. Furthermore, the
generation of unprocessed and processed transcripts counts will prove invaluable
for methods that rely on such counts for downstream analysis. Arguably, all single-
nucleus and single-cell RNA-seq should first involve integrating the unprocessed and
processed transcript modalities using a biophysical model of transcription (Gorin
and Pachter, 2022a), although investigation of that hypothesis is beyond the scope
of this work.

There are several limitations to the quantification framework we have proposed. In
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a cell, the set of unprocessed mRNAs at any given time is likely to include partially
processed molecules (Pai et al., 2018), and in principle the complete splicing cascade
must be understood and known in order to accurately quantify single-nucleus or
single-cell RNA-seq data (Gorin and Pachter, 2022b). Furthermore, the use of
ambiguous reads both for single-cell and single-nucleus RNA-seq is unsatisfactory.
Ideally reads should be longer so that they can be uniquely classified, or they should
be fractionally classified according to probability estimates of the ratio between
unprocessed and processed transcripts. The latter approach is non-trivial due to
variation in effective transcript lengths that will depend on library preparation and
must be accounted for (Pachter, 2011), but this is an interesting direction of study.

Finally, we believe the memory efficiencies introduced with the update to kallisto
prepared for this work (Figure 3.6.B), will greatly extend its utility for a variety
of other applications, such as single-cell genomics assays that generate reads that
must be aligned to the genome (Gao and Pachter, n.d.) and metagenomics (Schaeffer
et al., 2017).

3.4 Methods
The D-list
A D-list (distinguishing list) enables accurate quantification of RNA-seq reads in
experiments where reads that are not an expression of the target transcriptome
may still contain sequences, which do occur in the target transcriptome. Without
the D-list, these reads may be erroneously quantified as transcripts in the target
transcriptome, based on alignment of the common sequences. Thus, the D-list may
contain any sequences that are not desired in the abundance matrix yielded by the
quantification. They may be the transcriptomes of other organisms, in case the RNA
sample is contaminated, they may consist of the unprocessed (unspliced) versions
of the processed (spliced) transcripts in the target transcriptome, in case only the
quantification of processed transcripts, or only the quantification of unprocessed
transcripts is desired, or they may contain common transposable elements, such
as Alu regions, which might otherwise introduce undesired noise. The D-list is
incorporated into the index by finding all sequences, 𝑘 base-pairs or longer, that
occur in both the D-list and the target transcriptome. The first 𝑘-mer upstream and
the first 𝑘-mer downstream of each such common sequence in the D-list are added
to the index colored de Bruĳn graph (Figure 3.2.C, Figure 3.2.B). We refer to these
new vertices in the graph as distinguishing flanking 𝑘-mers (DFKs). The DFK
vertices are left uncolored in the index, such that during quantification, reads that
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contain them will be masked out, and go unaligned. Note that there is no need for
processing sequences that map to the DFK vertices in special cases downstream.

As an illustration, when mapping a P read containing both P and U | P 𝑘-mers
to an index built from U transcripts, the U | P 𝑘-mers will be found in the index,
whereas the disambiguating P 𝑘-mers will not. The whole read will be erroneously
mapped based on the U | P ambiguous 𝑘-mers that are present in the index. By
finding all U | P 𝑘-mers in the completely processed versions of the transcripts,
and adding any distinguishing flanking P 𝑘-mers to the index, the P read will be
masked from mapping to a U transcript.

Recent papers have discussed various ways of reducing the number of false positives
in RNA quantification. The simplest way of doing so is to align the RNA-seq reads
against both the target transcriptome and a secondary transcriptome containing un-
desired transcripts. This has been explored in (Srivastava et al., 2020), and while it
may yield fewer false positives than aligning against the target transcriptome alone,
it is memory-intensive and, depending on the method, potentially CPU intensive.
Another approach, also explored in (Srivastava et al., 20200) is to introduce a prepro-
cessing step, wherein sequences that are similar to those in the target transcriptome
are extracted, using some heuristic for similarity. These sequences are then added
to the index, and handled in special cases downstream, during alignment and quan-
tification. Most recently, alevin-fry introduced the splici index which reduces the
number of false positives while controlling peak memory usage better than previous
approaches. However, indexing intronic sequences, while enabling workflows like
RNA velocity, still incurs a significantly larger memory cost than indexing just the
target transcriptome.

Our method has the distinct advantage of incorporating only the minimum amount
of data, required to disambiguate common sequences, into the index. Therefore, the
memory usage and runtime of kallisto using a D-list are on par with the memory
usage and runtime of kallisto, without the use of a D-list.

3.5 Validation
In addition to validating our results on the simulation framework developed by
Kaminow, Yunusov, and Dobin (2021) we simulated two error-free experiments
using reads generated by BBMap (Bushnell, 2014). One simulation represents
a single-cell RNA-seq experiment consisting of 4,000,000 completely processed
RNA reads and 1,000,000 completely unprocessed RNA reads. The other one
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represents a single-nucleus RNA-seq experiment consisting of 4,000,000 completely
unprocessed RNA reads and 1,000,000 completely processed RNA reads. The
respective ratios of processed to unprocessed reads was estimated based on (Gorin,
Yoshida, and Pachter, 2022). The processed transcripts were obtained from version
104 of the Ensembl of GRCh38, and the unprocessed transcripts were taken to be the
entire sequence from the start of the first exon through the end of the last exon. The
kallisto quantification of the single-cell RNA-seq simulation was performed using
an index built from the completely processed transcripts and a D-list constructed
from all the GRCh38 scaffolds. For the single-nucleus RNA-seq simulation an index
built from the completely unprocessed transcripts, with a D-list constructed from
the completely processed transcripts was used.

The STARsolo simulation
We obtained the simulation framework developed by (Kaminow, Yunusov, and
Dobin, 2021; He et al., 2022) from https://github.com/dobinlab/STARsoloManuscript/
and ran it as-is, substituting the deprecated “decoy”-mode of alevin-fry with its
“splici”-mode replacement.

Correction of the STARsolo calculation of Spearman correlation
Kaminow, Yunusov, and Dobin (2021), calculate the correlation between quantifi-
cation and the ground truth expression of a cell, only between the elements of the
gene/cell count matrices which are expressed in either the simulation or tool quan-
tification. Thus, genes for which there is no expression in either quantification or
ground truth, i.e. true negatives, are ignored in the calculation of the Spearman cor-
relation coefficient. This leads to an artificial inflation of the effect of false positives
and false negatives on the coefficient. For example, consider a cell with very few
genes expressed in the simulation, and as a result 0 counts for almost all genes. Now
suppose a method reports only 7 genes with 1 count (out of thousands), and in the
ground truth of the simulation there are also 7 genes with 1 count, with a disagree-
ment on 2 genes, i.e. method = (1,1,1,1,0,1,1,1) and simulation = (1,1,1,0,1,1,1,1).
(Kaminow, Yunusov, and Dobin, 2021) compute the Spearman correlation between
these vectors, which is -0.1428571, for a cell where the method and simulation agree
over thousands of genes. Table 3.1 shows the quantiles of the Spearman coefficient
between the ground truth of the simulation developed by (Kaminow, Yunusov, and
Dobin, 2021) and each of the quantification tool, calculated only from true positives,
false positives, and false negatives. Table 3.2 shows the quantiles when the calcula-
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tion attributes for true negatives. It is evident that when calculated correctly, there
is negligible difference between kallisto, alevin-fry, and STARsolo with respect to
the ground truth in this simulation.

Analysis of single-cell and single-nucleus RNA-seq
We quantified a 10xV3 dataset containing 204,596,690 single-cell, and single-
nucleus RNA-seq reads from 7,377 adult mouse brain cells via 10x Genomics:
https://www.10xgenomics.com/resources/datasets/5k-adult-mouse-brain-nuclei-isolated-
with-chromium-nuclei-isolation-kit-3-1-standard, using kallisto, alevin-fry (splici
em-like), and STARsolo. For quantification of the single-cell data, we constructed
the kallisto index from version 108 of the Ensembl mouse annotation (Cunningham
et al., 2022), using the entire mouse genome to construct the D-list. For quantifica-
tion of the single-nucleus data, we constructed the kallisto index from completely
unprocessed versions of the mouse transcripts (Validation), using the mature tran-
scripts to construct the D-list. We ran STARsolo in “Gene”-mode for the single-cell
data, and in “GeneFull”-mode for the single-nucleus data. All benchmarks were
performed on a computer with two Intel(R) Xeon(R) Gold 6152 CPUs (a total of
44 cores), 768GiB of DDR4/2666MHz RAM, and twelve 12TB SATA hard drives.
Programs were allocated 20 threads for quantifying the data, and CPU and peak
memory usage were obtained via /usr/bin/time -v. Each program was run
separately to minimize the likelihood of I/O bottlenecks.

Code availability
kallisto is available under the BSD-2-Clause license. The version used for this
paper is available at https://github.com/pachterlab/kallisto-D. All code
for simulations and downstream analyses is available at
https://github.com/pachterlab/HSHMP_2022.
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C h a p t e r 4

MEMORY IMPROVEMENTS IN KALLISTO 0.49

Kallisto performs quantification of RNA-Seq data by building a de Bruĳn graph
(dBG) of the underlying transcriptome, and aligning the RNA-Seq reads to the graph.
Eschewing the traditional alignment algorithms (Smith-Waterman, Needleman-
Wunsch, Burrows-Wheeler, et cetera), kallisto instead exactly matches subsequences
of length 𝑘 , colloquially referred to as 𝑘-mers, to 𝑘-mers that occur in the graph,
yielding what has been termed a pseudoalignment (Bray et al., 2016). Traversing
the graph to find a vertex containing a specific 𝑘-mer would be glacially slow, so
instead we keep track of which vertex in the graph contains which 𝑘-mers in an
index. In tandem with the new, more targeted pseudoalignment paradigm we devel-
oped in the previous chapter, we undertook a major reimplementation of the main
data structures used by kallisto, yielding a reduction in memory on the order of
80% while maintaining comparable running times. This chapter illustrates the key
differences between the index used by kallisto up to and including version 0.48, and
that used by kallisto as of version 0.49.

4.1 A primer on de Bruĳn graphs
A 𝑘-dimenstional de Bruĳn graph 𝐺 (𝑉, 𝐸) on an alphabet Σ is a directed graph of
overlapping strings of length 𝑘 with 𝑉 ⊆ Σ𝑘 . For vertices 𝑎 = 𝑎1 · · · 𝑎𝑘 ∈ 𝑉, 𝑏 =

𝑏1 · · · 𝑏𝑘 ∈ 𝑉 , the edge 𝐸 (𝑎, 𝑏) exists if the last 𝑘 − 1 symbols in 𝑎 are the first 𝑘 − 1
elements in 𝑏, i.e.

𝑎2 · · · 𝑎𝑘 = 𝑏1 · · · 𝑏𝑘−1.

For the sake of memory efficiency, if 𝐸 (𝑎, 𝑏) exists, and the out-degree of 𝑎 and
in-degree of 𝑏 are both 1, we may contract 𝑎 and 𝑏 into a single node of length
𝑘 + 1. We note that each 𝑘-mer is unique in the graph, which in turn means that
no string of length 𝑘 + 1 is ever repeated in the graph. A de Bruĳn graph is then a
data structure which enables a compact representation of a set of strings that share
common substrings. The amount of compression is a function of 𝑘 , but also of the
similarity between the strings in the set. An example of a simple de Bruĳn graph
can be found in Figure 1.4.
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4.2 𝑘-mer lookup vs. minimizer lookup
Prior to version 0.49, kallisto kept in its index a hash table that stored every single
𝑘-mer in the graph, along with a pointer to the (unique) vertex that contained it.
For small graphs and/or small values of 𝑘 this is convenient, but as the graph grows
larger, this hash table becomes prohibitively large. As an illustration, 𝑘 = 31 yields

431 = 4.6 × 1018 possible 𝑘-mers,

given an alphabet of size 4. In order to make large quantification problems tractable,
the 𝑘-mers are replaced with minimizers (Roberts et al., 2004). This is similar to
the concept of winnowing, introduced in Schleimer, Wilkerson, and Aiken, 2004.
A minimizer is defined by three parameters (𝑔, 𝑘,O). Given an ordering O of
minimizers in Σ𝑔, where Σ is an alphabet, a minimizer of length 𝑔 < 𝑘 of a 𝑘-mer
is the smallest 𝑔-mer occurring in the 𝑘-mer. Note that consecutive, overlapping
𝑘-mers have a substantial probability of sharing the same minimizer, if 𝑘 and 𝑔 are
selected appropriately. Thus, the projection of a 𝑘-mer into minimizer space can be
thought of a hash function, with an explicitly nonuniform collision rate. The more
overlapping 𝑘-mers are, the more likely they are to share a minimizer, and therefore
collide. Thus, consecutive 𝑘-mers in the graph are likely to share a minimizer.
Intuitively, we might assume that lexicographical order of minimizers would be
sufficient, but due to the structure of genetic sequences, this is problematic. As
an example, sequences consisting of just A are abundant in genetic sequences, so
the lexicographically smallest minimizer would occur in a large amount of 𝑘-mers,
regardless of their locality. As of kallisto 0.49, a hash table mapping minimizers
to vertices is stored in the index, instead of the hash table mapping 𝑘-mers to
vertices in the index. The minimizer-based de Bruĳn graph used by kallisto 0.49 is
implemented in Bifrost (Holley and Melsted, 2020). Whereas 𝑘-mers are unique in
the dBG, 𝑔-mers are not. I.e. 𝑘-mers that do not occur in the same vertex could share
a minimizer and therefore two or more distinct vertices in the graph could contain
the same minimizer. When we want to query which vertex in the dBG contains a
given 𝑘-mer, we

1. Calculate the minimizer of the 𝑘-mer;

2. Look up the minimizer in the minimizer hash table;

3. For each vertex containing the minimizer, assess whether it contains the
original 𝑘-mer (which is unique in the graph).
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In theory, by indexing minimizers instead of 𝑘-mers, we therefore sacrifice lookup
time in order to save memory, but in practice, the processing time is on par with
earlier versions of kallisto, or better. In practice, for 𝑘 = 31, 𝑔 = 23 is a heuristic
that yields a favorable trade-off between speed and memory. The largest memory

Figure 4.1: An example of a 𝑘-mer table and corresponding minimizer table for
𝑘 = 7, 𝑔 = 3 using lexicographical ordering for illustration purposes. Minimizers
are means of hashing 𝑘-mers, such that collisions between 𝑘-mers that occur close
to each other in a sequence are more likely than collisions between 𝑘-mers that are
far apart.

savings from storing minimizers occurs when all 𝑘-mers in the graph share the same
minimizer. This is not useful for our purposes, since the end goal is to be able to
quickly determine which node in our graph contains the 𝑘-mer. If all 𝑘-mers share
the same minimizer we have reverted back to a linear search over all vertices in the
graph. The optimal memory reduction conditioned on maintaining close to constant
time lookup is attained when all 𝑘-mers in each vertex share the same minimizer,
and no two vertices share the same minimizer. Let 𝑛 be the number of unique 𝑘-mers
in the graph. This lower bound can then be expressed as

𝑏𝑔 = log2( |Σ |) · 𝑔 · |𝑉 | bits,

whereas the minimal number of bits required to store the 𝑛 original 𝑘-mers is

𝑏𝑘 = log2( |Σ |) · 𝑘 · 𝑛 bits.

The optimal memory reduction is then

𝑟 = 1 −
𝑏𝑔

𝑏𝑘
= 1 − |𝑉 |

(𝑘 − 𝑔)𝑛 .

In real-world experiments however, finding an order for the minimizers that satisfies
the optimal case is at the best of times computationally intensive, but at the worst
impossible. A random ordering of minimizers, e.g. by hashing, has been found to
yield a good compromise.
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4.3 Shrinking the hash table to size
Traditional (open accessing) hash tables require more space than they have keys.
This is because two or more keys can hash to the same value, resulting in a collision
which at lookup time needs to be resolved by direct comparison. When a collision
occurs, we start at the hash value and search linearly for the key if performing a
lookup or for the next empty slot if performing an insertion. As the hash table is
populated with more and more values, the probability of a collision, and therefore a
linear search, increases. As a heuristic, we may want to resize our hash table when
we reach 80% capacity, in order to reduce the number of collisions. This comes
with a penalty though, as it requires rehashing every key in the table with a new
hash function. Chaining hash tables, which are generally implemented using linked
lists, suffer from the same linear search fallback in the case of collisions. In our
case, once a kallisto index has been built, the complete set of keys is known and no
new minimizers will be added to the graph. This enables us to select a new hash
function that solves two problems. Firstly, it removes the need for the extra capacity
required to minimize the penalty for collisions, and secondly, it removes the penalty
for a collision, namely the linear search.

We replace the old, dynamic hash table with a new, static one, using a minimal,
perfect hash function (MPHF). Minimal, because it allows us to reduce the capacity
to 100% of the number of keys and perfect because for the predefined set of keys
in the table there are no collisions. More formally, given a set 𝑆 of 𝑘 keys, an
MPHF is an injective function that maps each key in 𝑆 to an integer in the range
[0, 𝑘 − 1], thereby labeling each key with a unique integer, such that there are no
collisions between labels of different keys, and the set of integers chosen is dense.
The minimal memory to store such a function for a set of 𝑘 keys has been shown to
be log2(𝑒) · 𝑘 bits (Mehlhorn, 1982; Fredman and Komlós, 1984), but in practice,
for large sets of keys the constant will be larger. The MPHF implementation used
by kallisto 0.49 is provided by BBHash (Limasset et al., 2017).

4.4 Equivalence class preemption vs. dynamic equivalence classes
Kallisto assigns equivalence classes (ECs) to 𝑘-mers in the dBG. The equivalence
class of a 𝑘-mer is the set of transcripts in which the 𝑘-mer occurs as a sub-sequence.
It then colors each vertex in the dBG with the equivalence class that pertains to the
set of transcripts that use that vertex. When attributing a read to a specific transcript,
kallisto
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1. Finds the vertices containing the 𝑘-mers that occur in the read;

2. Gathers the sets of transcripts that constitute the ECs of those vertices;

3. Takes the intersection of those sets.

If there is only one transcript in the intersection, the read will be attributed to that
transcript, but if there are more it is fractionally assigned using an EM algorithm.
Prior to kallisto 0.49, equivalence classes were preemptively generated for all of
the vertices in the dBG, and stored in a data structure in memory. While easier
to implement, this results in a very large number of equivalence classes being
preempted, with proportionally few ever being used by any read. To add insult to
injury, kallisto requires both a mapping from a set of transcripts to its EC and a
mapping from an EC to its set of transcripts, resulting in an even larger memory
footprint. As of kallisto 0.49, the vertices in the dBG are colored with the sets of
transcripts that use them, rather than with the explicit EC. As a result, an EC only
gets created once the 𝑘-mers in a read have been found in vertices in the dBG and the
sets of transcripts associated with those vertices have been intersected. We store the
equivalence classes in compressed bitmaps, implemented in Roaring (Lemire et al.,
2017). Furthermore, we cap the size of equivalence classes at 250 transcripts, as
very large equivalence classes are unlikely to affect the intersection of the transcript
sets, while taking up a lot of space in memory.
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C h a p t e r 5

ANNOTATION-AGNOSTIC DISCOVERY OF ASSOCIATIONS
BETWEEN NOVEL GENE ISOFORMS AND PHENOTYPES

In this chapter we present a novel method for associating phenotypes with RNA ex-
pression, that can identify expression associations resulting from a wide variety of
underlying transcriptional and post-transcriptional events, without relying on anno-
tations of these events. We show that we can reliably detect, de novo, phenotypically
relevant transcriptional structures.

5.1 Introduction
The quantification of RNA reads is a key step in most analyses of RNA-seq data
(Kukurba and Montgomery, 2015). Current quantification methods rely on anno-
tations of the organisms’ transcriptomes, which may be incomplete or nonexistent
(Zhang et al., 2020). This may result in data being discarded and can lead to er-
roneous quantifications. In downstream applications such as eQTL analysis, such
errors can propagate and result in missed, or erroneous associations (Saha and
Battle, 2018). We present a novel method for associating phenotypes with RNA
expression, that can identify expression associations resulting from a wide variety
of underlying transcriptional and post-transcriptional events, without requiring a
prior annotation of the transcriptome. By constructing a de Bruĳn graph of all the
reads overlapping a single gene, and pruning away nodes that are likely to be due to
sequencing errors, we obtain a representation of the expression of the gene in our
cohort. Each expressed isoform constitutes one path through the graph. We then
run associations on the expression of each individual node and a phenotype. Should
an isoform of the gene associate with the phenotype, there will be a set of nodes
in the graph that uniquely identify the isoform, the expression of which also asso-
ciates with expression of the phenotype. This method enables discovery of novel
alternative polyadenylation, exon-skipping, duplications, insertions, deletions, and
circular RNA, among other transcriptional and post-transcriptional variations, with-
out prior knowledge of these events. We show that we can reliably reproduce known
associations, and detect, de novo, phenotypically relevant transcriptional structures.
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Figure 5.1: The annotation-agnostic association process consists of four steps. A.
We obtain a dataset of RNA-seq reads from a cohort of individuals, overlapping the
genomic region of interest. B. A de Bruĳn graph is constructed from the dataset,
and the individuals’ expression of each vertex is quantified. An optional pruning
step can remove vertices that are likely to be erroneous (either due to genetic or
technical noise) in order to reduce the number of association targets (See Methods).
C. The vertex abundances are normalized such that the individuals’ expression sums
to one, respectively. D. The normalized expression of each vertex is associated with
a phenotype of interest, and the p-values of the associations are aggregated using
the harmonic mean p-value (See Methods)

5.2 Methods
RNA-Seq reads overlapping a genomic region of interest, e.g. a gene, are obtained
from a cohort of people for which a phenotype of interest is available. A bi-directed
de Bruĳn Graph (dBG) is constructed, using Bifrost (Holley and Melsted, 2020),
from these reads with k-mer size 𝑘 = 31 and then compacted such that consecutive
𝑘-mers with out-degree 1 and in-degree 1 respectively are folded into a single,
maximal unitig, which is a high-confidence contig. Each path between two unitigs
represents distinct ways the corresponding part of the gene might be expressed in the
cohort. Each individual’s expression of each unitig in the graph is then quantified
(Figure 5.2).

Quality filter
The size of the dBG is dependent on several factors: genetic variation, errors
introduced in sequencing, the size and relatedness of the cohort, the length and
number of different isoforms of the gene, the expression levels of that gene in the
tissue of interest, etc. In order to reduce the scope of the problem and thereby
reduce the number of association tests performed, we may prune from the graph
nodes that are likely present due to noise, either genetic or technical. To that end,
all 𝑘-mers that occur in common transposable elements, such as Arthrobacter luteus
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Figure 5.2: A de Bruĳn graph representing annotated and non-annotated transcripts.
The two annotated transcripts can be represented with the three green nodes. The
first non-annotated transcript contains a duplication of exon 2. In order to represent
that transcript we add a node whose sequence is the last 𝑘 − 1 base pairs in exon
2 followed by the first 𝑘 − 1 base pairs in exon 2. The second non-annotated
transcript skips over exon 2. In order to represent that transcript, we add a node
whose sequence is the last 𝑘 − 1 basepairs in exon 1 followed by the first 𝑘 − 1 base
pairs in exon 3. In this example, the first non-annotated transcript can be uniquely
identified by expression of the red vertex. If expression of the transcript correlates
with a phenotype, then expression of the node will necessarily also correlate with
that phenotype.

(Alu) regions are removed from the graph. Furthermore, the median abundance of
isoforms of the gene that are present in an annotation of the target transcriptome are
found for each individual in the cohort, and unitigs that are expressed less than 0.5%
of the transcriptomic median abundance are deemed to be erroneous. Unitigs with
less than 50 counts associated with them are taken to be erroneous if there is another
unitig within Hamming distance 1, with more than four times their expression.
Finally, tips, i.e. short chains of nodes that are disconnected on one end (Zerbino
and Birney, 2008) are removed.

Associations
Unitig abundances are normalized to sum up to 1 for each individual, in order to
capture associations between genotypes and phenotypes on one hand, and isoform-
specific expression rather than individual coverage, on the other. The normalized
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abundances for each unitig respectively, are associated with a qualitative or a qualita-
tive phenotype. Crucially, the expression of sequences from any isoforms containing
structural variants, which are not part of any transcriptome annotation, are implic-
itly associated with the phenotype. For any such novel isoform, there will be a set
of subsequences, the expression of which uniquely distinguishes the isoform from
other transcripts. Since the relative expression levels of different isoforms of the
same gene are not generally independent, the resulting p-values for the individual
unitigs are aggregated using the Harmonic Mean P-value (HMP) (Wilson, 2019)
with weights equal to the log-transformed mean counts normalized to 1, i.e. given
a dBG with N unitigs with mean counts 𝑢1, · · · , 𝑢𝑁 , the weight for the 𝑝-value of
unitig 𝑖 is 𝑤𝑖 =

log(𝑢𝑖+1)∑
𝑗 log(𝑢 𝑗+1) (Yi et al. 2018). Distinct genes are assumed to be

expressed independently, and the aggregated 𝑝-value is Bonferroni corrected for the
number of protein-coding genes in the target transcriptome.

Simulated differential transcript usage experiments
In order to assess the sensitivity of the method, we simulated bulk RNA-Seq datasets
with novel structures and simulated phenotypes that correlated with those novel
structures. While methods to generate signals that do not require theoretical models
exist (Gerard, 2020), these generate their signal using reads from real RNA-seq
datasets. In our case we need to simulate novel isoforms as well the signals correlated
with them. Basing the signal simulation on real-world RNA-seq datasets is not
tenable in our case, since they would not contain the novel isoform. A protein-
coding gene was arbitrarily selected from version 108 of the Ensembl annotation
of the GRCh38 assembly (Cunningham et al., 2022). An alternative transcriptome
𝑇alt was generated from the reference transcriptome 𝑇ref by adding a novel isoform
based on an existing isoform, but containing a duplication, exon skipping, alternative
polyadenylation, or circular structure not present in the original. A cohort of size
1,000 was created, 10 of which were chosen to express the novel structure, for a
prevalence of 1%. Single-ended reads overlapping the chosen protein-coding gene
were generated for all 1,000 individuals in the cohort using BBMap (Bushnell, 2014).
For the affected cohort, the reads were generated from𝑇alt, whereas for the remaining
990 wild-type individuals the reads were generated from𝑇ref. Various different rates
for SNPs and indels were used in order to assess robustness to noise. Qualitative
phenotypes were obtained by assigning the affected individuals expressing the novel
structure the phenotype 1 and others 0. Varying the allele frequency of SNPs and
indels gives us an idea of the level of robustness to biological noise. A number
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of simulations were run, with the numbers of reads per individual varying from 1
to 100, in order to assess the method’s sensitivity to coverage, with 25 reads per
gene taken to be a reasonable coverage per (Svensson, Natarajan, et al., 2017), and
assuming 19,116 protein-coding genes in the transcriptome (Piovesan et al., 2019).
Simulating different levels of coverage shows us the sensitivity of the method as a
function of the expected number of reads overlapping an identifying sequence of the
novel isoform, given by

E[number of overlapping reads] = 𝐶∗ · 1
|𝑡 | ·

𝐿 − 1
𝑙 (𝑡∗) ,

where 𝐶∗ denotes the total number of reads in affected individuals, 𝑡 denotes the set
of isoforms, 𝐿 denotes the expected read length, and 𝑙 (𝑡∗) denotes the length of the
novel isoform. Expected coverage of an identifying sequence in the range of [1, 50]
was simulated and quantified using the method [Figure 5.3.A]. Technical noise was
simulated by adding or subtracting from each unitig for each individual a number
of reads drawn from a Poisson distribution with parameter 𝜆 = 𝜇 ∗ 𝜉, where 𝜇 is the
mean expression over all individuals and unitigs, and 𝜉 is a scaling factor. Values
of 𝜉 ∈ [0.01, 0.1] were simulated [Figure 5.3.C] to assess the robustness of the
method w.r.t. technical noise. Genetic noise was simulated by varying the Single
Nucleotide Polymorphism (SNP) rate 𝑟SNP. Values of 𝑟SNP ∈ [0.05, 0.1, 0.5] were
simulated [Figure 5.3.B] to assess the robustness of the method w.r.t. genetic noise.
For each set of parameters, 1000 simulated experiments were run and the proportion
of experiments where a signal was discovered was reported. Associations were
performed using a Wilcoxon rank-sum test, and Bonferroni-corrected for 19,116
protein-coding genes (Piovesan et al., 2019), yielding a significance threshold of
𝑝 < 2.5×10−6. The simulated reads were quantified using kallisto (Bray et al., 2016),
using an index constructed from 𝑇ref, in order to attempt to discover associations
between those abundances and the target phenotype.

Code availability
The method was implemented in C++ using the Bifrost library (Holley and Melsted,
2020) for the construction and maintenance of de Bruĳn Graphs. The source code is
available under GPLv3 and can be downloaded from https://github.com/pachterlab/AAQuant.
The simulation framework is available at https://github.com/pachterlab/HPM_2022.
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5.3 Results
As evident in Figure 5.3.A, we can reliably recover associations between the ex-
pression of a novel isoform and a qualitative phenotype, even with low expected
coverage of the identifying locus. These associations are not discovered when using
transcript abundances from kallisto, using version 104 of the Ensembl annotation
of GRCh38. Furthermore, Figure 5.3.B shows that even for high levels of genetic
noise, we can still detect these associations, due to the pruning of low quality vertices
from the graph. Lastly, per Figure 5.3.C, we can reliably recover the associations
with high levels of instrumental noise, and the robustness to noise is relative to the
expected number of reads overlapping a distinguishing region. Combining these
three measures of robustness, we are able to detect associations 97.5% of all associ-
ations between the expression of a novel isoform and a qualitative phenotype, using
reasonable parameters for a real-world experiment, e.g. 25 reads per individual,
which yields an expected 13.9 reads overlapping a distinguishing region, SNP rate
of 1%, and noise with a magnitude of 5% of the mean unitig expression.

Figure 5.3: The proportion of 1,000 simulated annotation-agnostic association
experiments in which a ground truth association between expression of a novel
isoform, containing a duplication, and a phenotype, was detected. A. To detect a
signal in an experiment with no genetic or technical noise, it was sufficient for an
expected 5 reads to overlap an identifying region of the gene. B. Even with a SNP
rate of 0.5 (See Methods), we detected over 95% of all signals, with an expected
11 reads overlapping an identifying region of the gene. Note however, that even
with quality filters in place (See Methods]) the noise adds extraneous vertices to the
graph, the expression of which must also be associated with the phenotype, resulting
in a large number of computations. C. With an expected 10 reads overlapping an
identifying region of the gene, we can reliably detect signals from simulations with
technical noise (See Methods) of magnitude up to 7% of the mean expression in the
cohort.
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5.4 Discussion
AbundanceDBG enables annotation-agnostic discovery of associations between rel-
ative abundances of kmers in gene transcripts on one hand, and qualitative and
quantitative phenotypes on the other. It does so in a memory and computation-
ally efficient way by processing unambiguous, overlapping k-mers together, and by
leveraging minimizers for lookup in the underlying graph. The ability to detect tran-
scriptional and post-transcriptional events, without prior knowledge of those events
is useful for discovering expression associations in instances where transcriptome
annotations are incomplete or nonexistent. Firstly, we have shown that we can dis-
cover association between novel isoforms and a phenotype, without prior knowledge
of the isoforms. Secondly, using simulated experiments, we have shown that we
can reliably detect associations not found by state-of-the-art RNA-seq quantification
methods. We have furthermore demonstrated that our discovery of the associations
is robust to genetic and instrumental noise. However, the method does not attribute
meaning to the associated sequence. Having discovered an association between a
phenotype and a sequence, it must then be aligned against the genome to identify
the transcriptional or post-transcriptional events that yielded the sequence. As an
illustration, if the associated sequence was produced by a duplication in the gene, it
remains to be determined where in the sequence the duplication splice junction is,
and the loci of the sequences on either side of the junction.
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C h a p t e r 6

RECONSTRUCTION OF A LARGE-SCALE OUTBREAK OF
SARS-COV-2 INFECTION IN ICELAND INFORMS

VACCINATION STRATEGIES

The spread of SARS-CoV-2 is dependent on several factors, both biological and be-
havioral. The effectiveness of various non-pharmaceutical interventions can largely
be attributed to changes in human behavior, but quantifying this effect remains
challenging. In this chapter, we reconstruct the transmission tree of the third wave
of SARS-CoV-2 infections in Iceland using contact tracing and viral sequence data
from 2522 cases. This enables us to compare the infectiousness of distinct groups of
persons directly. We find that people diagnosed outside of quarantine are 89% more
infectious than those diagnosed while in quarantine, and infectiousness decreases
as a function of the time spent in quarantine. Furthermore, we find that people
of working age, 16-66 years old, are 47% more infectious than those outside that
age range. Lastly, the transmission tree enables us to model the effect that given
population prevalence of vaccination would have had on the third wave had they
been administered before that time using several different strategies. We find that
vaccinating in order of ascending age or uniformly at random would have prevented
more infections per vaccination than vaccinating in order of descending age.

6.1 Introduction
Over 160 million cases of SARS-CoV-2 have been diagnosed globally, resulting in
over 3.3 million deaths1. As the virus spreads, nations have invested heavily in mon-
itoring the epidemic, including tracking the spread by various means. The first case
of SARS-CoV-2 infection in Iceland was confirmed on February 28, 2020 and as of
May 14, 2021 a total of 6,526 people have been diagnosed in the country. The first
wave in Iceland was characterized by several persons introducing the virus from var-
ious countries (Gudbjartsson, Helgason, et al., 2020). Extensive sequencing of the
viral genomes showed that it consisted of several genetically distinct outbreaks that
were eliminated by May 2020 through non-pharmaceutical interventions, primarily
isolation of cases, contact tracing, quarantine, social restrictions, and mandatory
testing at the border (Gudbjartsson, Norddahl, et al., 2020). The second and third
waves arose at the end of July and in mid-September 2020. Although these waves
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overlapped in time they can be distinguished with the sequences of the viral genomes.
The third wave was considerably larger, consisting of 2,783 confirmed cases and
was characterized by a single genetic clade, traced back to a person who entered the
country in August 2020.

Being able to understand the differences between distinct groups of persons in
epidemic outbreaks is a key to being able to employ targeted measures to contain
them. By reconstructing the chain of events in an entire outbreak, we can observe
these differences directly. Furthermore, having access to a case-by-case replay of
the outbreak enables us to model the effect that vaccinations would have had on
the third wave, had they been administered before that time. This constitutes the
largest study to date investigating a single outbreak with complete contact tracing
and sequence data.

6.2 Data collection and completeness
The outbreaks in Iceland are well characterized with good availability of data. Every
diagnosed case was contact traced and recent contacts placed in quarantine. At the
end of quarantine, all persons were tested and allowed to leave quarantine given
a negative test result. This exit test allows for diagnosis of asymptomatic cases
that otherwise could have gone undiagnosed3. Every PCR positive sample was
sequenced within 36-48 hours of the sample collection and the results fed back
to the contact tracing team to inform their inquiries. Furthermore, every infected
person was enrolled in telehealth monitoring and received multiple structured phone
calls to monitor symptoms after diagnosis and provide support regarding isolation
practice3. This extensive data collection can provide insight into the effectiveness
of non-pharmaceutical interventions.

Contact tracing of SARS-CoV-2 infections
Everyone who tested positive for SARS-CoV-2 was contacted by a team designated
by the authorities to track their infection. They were required to isolate and everyone
with whom they had been in contact, within 48 hours of the onset of symptoms, was
required to quarantine. If the place of quarantine was shared with an infected person,
the length of quarantine was two weeks, but otherwise a weeklong quarantine was
sufficient. At the end of quarantine, they were tested for SARS-CoV-2.
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Figure 6.1: A. Daily cases during the third wave of SARS-CoV-2 infections in
Iceland, excluding cases diagnosed at the border. On October 15, 𝑅̂𝑡 t went below 1
outside of quarantine for the first time and stayed below 1 except for the time period
covering the hospital outbreak. Based on this observation, we split the outbreak
into a growth phase before October 15 (red dashed line) and a decline phase from
then until the end of January 2021. B. i. When determining who infected a
person, initially all diagnosed cases are equally likely. ii. Quarantine, diagnosis
and dates of symptom onset make some people more likely than others, assuming
specific incubation time and generation time distributions. iii. Contact tracing data
make certain transmissions very likely but do not enable us to disregard others. iv.
Given the viral haplotypes, we can disregard transmissions where the haplotypes
are incompatible, i.e. neither is derived from the other, and in some cases determine
the direction of the transmission, in cases where de novo mutations occur between
generations. C. We use the real-world data and the tree structure to infer the latent
data for each diagnosed case. The “<”-symbol represents that the date on the left
needs to precede the date on the right. For each diagnosed person we infer the
ancestor, i.e. the person who infected them, the date of infection, and the number
of transmissions separating the ancestor and the person, 𝜅. D. One instance of a
reconstructed transmission tree for the third wave in Iceland.

Sequencing
The viral genomes of all positive PCR samples were sequenced at deCODE genetics.
We performed reverse transcription and multiplex amplicon PCR on the basis of
information provided by the Artic Network initiative (https://artic.network/)
to generate complementary DNA and sequencing libraries. Samples were sequenced
using either Illumina (n=1,939) or ONT (n=1,184) technologies. These numbers
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include cases diagnosed at the border. Illumina sequencing was performed using
MiSeq sequencers (MiSeq v2 reagent kits) with 2 x 150 cycle paired-end reads, with
up to 48 multiplexed samples per run. Samples for ONT were multiplexed using
native barcodes and sequenced using either GridION or PromethION flowcells,
version R.9.4.1.

Analysis of sequence data
We aligned amplicon sequences to the reference genome of the SARS-CoV-2 (Gen-
Bank number, NC_045512.2)[17]. For Illumina sequences we used the latest
Burrows–Wheeler Aligner (BWA-MEM) and variants were called with sequenc-
ing utilities bcftools[18] as previously described[2]. For ONT sequences, sequence
alignment and variant calling was performed using the Artic Network pipeline
(https://artic.network/) with default parameters. Detailed description of sequencing
methods is available in (Hjörleifsson, Pachter, and Melsted, 2022).

Data availability
All sequences used in this analysis are available in the European Nucleotide Archive
(ENA) under accession number PRJEB44803 (https://www.ebi.ac.uk/ena/
browser/view/PRJEB44803)

6.3 Reconstructing the transmission tree of a viral outbreak
In any outbreak of a viral disease there is a single progenitor, who infects a number
of persons, each of whom in turn infects other persons and so forth until the disease
is contained, or everyone has been infected. These transmissions from person to
person form a tree of transmissions with the progenitor as its root. Since the third
wave in Iceland originated with one infected person, it consisted mostly of a single
subtree of the global transmission tree of the SARS-CoV-2 pandemic. Despite
the extensive data collected on each diagnosed case, the true transmission tree of
the third wave cannot be determined from them with certainty. In the contact
tracing data, the contact resulting in a transmission may not be reported and there
are reported contacts between persons where a transmission did not occur. Even
in cases where an actual transmission occurred, the direction of transmission is
unknown unless the virus accumulated a mutation at transmission (Figure 6.1.B).

In this study, we expand upon the size of transmission trees reconstructed in pre-
vious studies by analyzing an entire epidemic on a national scale (Kermack and
Mckendrick, 1927, Aherfi et al., 2020). This enables us to quantify the efficacy of
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targeted interventions such as quarantine measures and compare the infectiousness
of different age groups at different times. Current methods do not take into account
much of the information we possess, such as quarantine times, household data and
the fact that the third wave in Iceland was a single introduction outbreak. Therefore,
we extended the Bayesian phylogenetic model Outbreaker2 (Campbell, Didelot, et
al., 2018; Campbell, Cori, et al., 2019) to infer the most likely transmission trees
using data from contact tracing, viral genome sequences, household membership,
and times of onset of symptoms, quarantine, and diagnosis. This model infers the
of the transmission tree with iterative MCMC sampling, generating 10,000 trees in
each chain. Four MCMC chains were run, and every 50 samples were extracted with
a burn-in of 5,000. The likelihood in the model is the product of the genetic, contact,
generation time, incubation time and reporting likelihoods. In order to make use
of our extensive data on each diagnosed case we implemented custom likelihood
functions for the generation time likelihood and the incubation time likelihood, as-
suming the same distributions as in (Flaxman et al., 2020), but truncated them with
respect to quarantine, onset of symptoms, and diagnosis dates.

The incubation time likelihood function
The incubation period of an infectious disease is the time from exposure to onset
of symptoms. Because of the extensive follow-up of each person diagnosed with
COVID-19 (Methods), the date of symptom onset in our data is well recorded.
Furthermore, in instances where persons were in quarantine at the time of diagnosis,
we can constrain a sample from the incubation time distribution to be upper bounded
by the quarantine date, conditioned on that they are not in the same household as
an infected person. For symptomatic persons, the incubation distribution, 𝑓 ∗, was
chosen to be gamma distributed, like in Flaxman et al., 2020.

𝑓 ∗ ∼ Γ(𝛼 = 1.35, 𝛽 = 0.27),

discretized by taking the density at each 𝑡 ∈ [1, · · · , 100] and dividing by the sum
over all 𝑡. For asymptomatic persons, a uniform distribution was chosen:

𝑓 (𝑡) = 1
14

, for 𝑡 = 1, · · · , 14.

For each person, the incubation distribution was constrained based on the available
data in the following way. Let 𝑡𝑟,𝑖 = min(𝑡𝑑,𝑖, 𝑡𝑠,𝑖, where 𝑡𝑑,𝑖 is the time of diagnosis,
𝑡𝑠,𝑖 is the time of symptom onset (if not reported, 𝑡𝑠,𝑖 = ∞). We define an upper
bound on the infection time of person 𝑖. to be 𝑡𝑢,𝑖 = min(𝑡𝑟,𝑖, 𝑡𝑞,𝑖 + 1), where 𝑡𝑞,𝑖
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is the quarantine time. If 𝑖 was not quarantined or is member of a household with
infected persons, then 𝑡𝑞,𝑖 = ∞. The likelihood LTI of the infection time of person
𝑖, 𝑡inf,𝑖, is then

LTI(𝑡inf,𝑖) =


0, if 𝑡inf,𝑖 > 𝑡𝑢,𝑖,

𝑓 (𝑡𝑟 ,𝑖−𝑡inf,𝑖)∑
𝑘>𝑡𝑟 ,𝑖−𝑡𝑢,𝑖 𝑓 (𝑘) , otherwise.

Finally, we lower bound the infection time of all persons at seven days before the
first date of diagnosis in the third wave.

The generation time likelihood function
Generation time is the time from one transmission to the next in a chain of infections.
Since the infection times are mostly unknown, this was approximated with the serial
interval distribution, i.e. the time between onsets of symptoms of one to the next in
a chain of infections. As with the incubation time distribution, we can place bounds
on the infection time delay between two persons w.r.t. their respective quarantine
dates, conditioned on them not being part of the same household. Like Flaxman
et al., 2020, the serial interval distribution, 𝑠∗, was chosen to be gamma distributed
with the parameters

𝑠∗ ∼ Γ(𝛼 = 2.6, 𝛽 = 0.4),

discretized by taking the density at each 𝑡 ∈ [1, · · · , 100] and dividing by the sum
over all 𝑡.

For each person, the infection time delay distribution was constrained based on the
available data in the following way. Conditioned on the sampled infection time of
person 𝑖, 𝑡inf,𝑖, we sample 𝛼𝑖, the person that infected 𝑖. We define an upper bound
on the time of infection from 𝛼𝑖 to 𝑖 to be

𝑡𝑢,𝛼𝑖 =


∞, if 𝛼𝑖 was not quarantined at diagnosis,

𝑡𝑟,𝑖, if 𝛼𝑖 and 𝑖 share a household,

min{𝑡𝑑,𝛼𝑖 , 𝑡𝑞,𝛼𝑖 , 𝑡𝑟,𝑖}, otherwise.

The likelihood LTD of the delay 𝑡 = 𝑡inf,𝑖 − 𝑡inf,𝛼𝑖 is as follows:

LTD =


0, if 𝑡inf,𝑖 > 𝑡𝑢,𝛼𝑖 ,

𝑠(𝑡)∑𝑡𝑢,𝛼𝑖
𝑘=1 𝑠(𝑘)

, otherwise.

Thus, we allow for the possibility that a quarantined person to infect other members
of their household, but no one outside of their household during quarantine. Figure
6.2 shows the temporal distributions averaged over all transmission trees.
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Figure 6.2: The incubation time distribution and generation time distribution aver-
aged over all transmission trees in the final model. The red line shows the assumed
distributions that were fed into the model. The incubation time distribution refers
to only those who were symptomatic.

The genetic likelihood function
To estimate the likelihood of the viral haplotype of person 𝑖 conditioned on 𝛼𝑖

having infected them, we compare their set of mutations, 𝑀𝑖 and 𝑀𝛼𝑖 . Let 𝑑𝑚,𝑖

be the sequencing depth over mutation 𝑚 in person 𝑖, measured as the number of
reads overlapping a 1 base pair window around the start (𝑠𝑚) and end site (𝑒𝑚) of
the mutation (𝑠𝑚 = 𝑒𝑚 if 𝑚 is a SNP or insertion). Further define 𝐷𝑖,𝛼𝑖 = {𝑚 ∈
𝑀𝛼𝑖 \ 𝑀𝑖 : 𝑑𝑚,𝑖 < 5} as the set of mutations in 𝛼𝑖 with insufficient coverage in 𝑖.
𝐷𝛼𝑖 ,𝑖 is defined symmetrically to 𝐷𝑖,𝛼𝑖 . We define the accumulation of mutations
𝑟𝛼𝑖 ,𝑖 from person 𝛼𝑖 to 𝑖 as follows:

𝑟𝛼𝑖 ,𝑖 =


| (𝑀𝑖 ∪ 𝐷𝑖,𝛼𝑖 \ 𝑀𝛼𝑖 |, if 𝑀𝛼𝑖 ⊆ 𝑀𝑖 ∪ 𝐷𝑖,𝛼𝑖 ,

−|(𝑀𝛼𝑖 ∪ 𝐷𝛼𝑖 ,𝑖) \ 𝑀𝑖 |, if 𝑀𝑖 ⊆ 𝑀𝛼𝑖 ∪ 𝐷𝛼𝑖 ,𝑖,

−∞, otherwise.

Let 𝑋 be the random variable representing the accumulation of mutations between
two persons separated by 𝜅 generations of infections. We model 𝑋 with a Poisson
random variable 𝑋 ∼ Poi(𝜆 = 𝜅𝜇), where 𝜇 is the mutation rate. We define the
genetic likelihood of the viral genotype of person 𝑖, conditioned on𝛼𝑖 having infected
them

L𝐺 (𝑀𝑖 |𝛼𝑖, 𝑀𝛼𝑖 , 𝜅𝑖, 𝜇) = 𝑃(𝑋 = 𝑟𝛼𝑖 ,𝑖).

Note that for 𝑟𝛼𝑖 ,𝑖 < 0,L𝐺 (𝑀𝑖 |𝛼𝑖, 𝑀𝛼𝑖 , 𝜅𝑖, 𝜇) = 0, which disallows the occurrence
of back mutations and incompatible haplotypes and ignores sequencing errors.
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Other likelihoods
The default Outbreaker2 contact and reporting likelihoods were used as described
in Campbell, Cori, et al., 2019.

Mutation rate and haplotype imputation
Furthermore, we implemented a custom genetic likelihood function in terms of
variations from the blue clade. We estimated the accumulation of mutations in
SARS-CoV-2 per transmission using pairs in the contact tracing network. We found
572 pairs of infected persons linked by contact tracing with a sequence coverage
greater than 99%, that had their sampling dates separated by 2 days or more, where
the receiving person in the pair shared haplotype or derived haplotype with the
spreading person. The average number of mutations in the receiving persons that
are not present in the spreading persons provides an estimate of the mutation rate per
transmission. We found 158 such mutations among the 572 pairs, translating into
a mutation rate of 0.28 per transmission. To correct for errors in the transmission
chain inference and for false positive mutations, we reversed the role of the spreading
and receiving person (459 pairs) and found 19 mutations (0.04 per transmission).
This resulted in a corrected mutation rate of 0.23 per transmission (95%-CI: 0.19-
0.28). We used the mutation rate as a fixed parameter in the model. This enabled
us to control the likelihood of back mutations in the model and to impute missing
or incomplete viral haplotypes. In the cases where an infected person had started
producing antibodies at the time of sampling, the sequenced haplotype may have
been incomplete or even missing altogether. If the sequence coverage was less than
95%, we chose a random person with whom they had reported contact and had them
inherit their viral haplotype in the model.

Other hyperparameters
The default Outbreaker2 prior distributions were used for the remaining parameters
as described by (Campbell, Cori, et al., 2019). The proportion of cases reported 𝜋,
the proportion of contacts reported 𝜖 , and the probability of non-infectious contact
between cases 𝜆 were all fitted by Outbreaker2. Posterior distributions of these
hyperparameters are available in table 6.1. The mutation rate of the virus 𝜇 was
statically estimated and fixed at 0.23 (See above). The probability of contact between
transmission pairs 𝜂, and the probability of false-positive reporting of contact 𝜁 were
fixed to 𝜂 = 1, 𝜁 = 0, as is the default in Outbreaker2.
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Parameter Mean 95%-PI

𝜖 0.74 (0.72 − 0.77)
𝜆 5.5 × 10−4 (5.3 × 10−4 − 5.9 × 10−4)
𝜋 0.87 (0.83 − 0.91)

Table 6.1: Posterior summary of the proportion of cases sampled 𝜋, the proportion
of cases reported 𝜖 , and the probability of non-infectious contact between cases 𝜆.
PI refers to the posterior interval.

6.4 Estimating stratified reproduction number using transmission trees
The effective reproduction number 𝑅 of a disease outbreak denotes how many
persons each diagnosed person infects on average. It is useful for discerning whether
an epidemic is in growth or successfully being contained. In order to contain an
outbreak, 𝑅 must stay below one. The 𝑅 at a given time is denoted by 𝑅𝑡 , the time-
varying reproduction number. A variety of methods have been proposed to estimate
𝑅𝑡 (Kermack and Mckendrick, 1927; Flaxman et al., 2020; Giordano, Blanchini,
et al., 2020; Hethcote, 2000; Cori et al., 2013), all of which attribute the number of
cases at time 𝑡 to cases diagnosed in the preceding days weighted with the assumed
generation time distribution. The idea of reconstructing the latent transmission tree
of an outbreak has been explored in previous studies (Campbell, Cori, et al., 2019;
Wallinga, 2004; Aherfi et al., 2020; James et al., 2021), most recently with the
Outbreaker2 model which infers the transmission tree of an outbreak using contact
data, sequence data and times of symptom onset. In comparison to the classical
methods, in a transmission tree model, 𝑅𝑡 is calculated by averaging the out-degree,
i.e. the number of persons they infected, of everyone in the tree at time 𝑡. Since the
data are available on an individual level, we can estimate the reproduction number
for distinct groups of people, allowing us to compare their relative infectiousness in
an outbreak.

6.5 Simulating the effects of vaccination on transmission trees
There are two distinct goals of the vaccination effort. Firstly, to protect those at risk,
such as the elderly, those with underlying diseases, and front-line workers. Secondly,
to obtain herd immunity to protect the community from future outbreaks. Once the
first goal has been attained, the order in which vaccines should be distributed to the
rest of the population needs to be decided. Some efforts have been made to simulate
the effect vaccination has on the spread of the disease (Giordano, Colaneri, et al.,
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2021; Grauer, Löwen, and Liebchen, 2020; Huang et al., 2021). These models
construct a theoretical wave of infections assuming a compartmental model (e.g.
SIR models and variations thereof), and rely on multiple epidemiological constants.
However, by using the transmission trees, we can use real-world data to reconstruct
what would have happened if certain people in the tree had been immune at the
time. By simulating immunity given a specific fraction of the adult population
vaccinated, we can estimate what the size of the third wave in Iceland would have
been, conditioned on all non-pharmaceutical interventions having been the same.
Using this method, we can simulate the effect different vaccine distribution strategies
would have had on the third wave, had they been employed before that time.

Simulating vaccination strategies
With our collection of likely infection trees, we simulated different vaccination
strategies by selecting people 16 years and older to be immune in each respective
infection tree and removing them and all their downstream transmissions from that
tree. By counting the remaining persons in the tree, we obtained a measure of the
size of the third wave in Iceland given that a particular fraction of the population
would have been vaccinated at the time, and all non-pharmaceutical interventions
being identical. This replay of the outbreak assumes that all transmissions remain
the same, except some persons have been immunized and therefore break the chain
of transmission, reducing the size of the outbreak. We considered three vaccination
strategies: vaccinating in order of descending age, in order of ascending age, and
uniformly at random.

The adult population was segmented into ten-year age brackets with each person
in a given bracket assumed to be vaccinated with equal probability. We performed
1,000 simulations, sampling immune persons and calculating the average outbreak
size over all transmission trees. The outbreak size point estimates were obtained by
averaging the mean outbreak size over all simulations and 95% confidence intervals
by taking the 2.5% and 97.5% quantiles. A person in a given simulation was selected
to be vaccinated based on how large a proportion of their age group was vaccinated in
the simulation, and a given vaccine efficacy, assumed to be 60% for the former dose
and 90% for the latter, which is in line with reported efficacy of the mRNA vaccines
(Dagan et al., 2021; Lipsitch and Kahn, 2021; Hall et al., 2021). The number of
people in each age group was obtained from census data from the Registers Iceland
and is accurate as of January 1st, 2021. We performed 1000 simulations. We also
simulated the expected number of deaths, critical cases, and severe cases using the
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log-linear fits from (Herrera-Esposito and Campos, 2022) and (Levine-Tiefenbrun
et al., 2021) (Figure 6.6, Table 6.5). These simulations were not sensitive to the
initial cases in the tree.

We simulated the effect the actual distribution of vaccines in at-risk groups and
would have had on the third wave. We obtained vaccination numbers for each age
bracket from the Icelandic Directorate of Health. These consisted of the number of
persons vaccinated per day from the first day of vaccination on December 28, 2020,
until at-risk groups and front-line workers had been vaccinated, at which point 29%
of the adult population had been vaccinated. For each day we modeled the third
wave with the de facto number of accumulated vaccinations per age bracket.

In order to assess the sensitivity of the simulations to the initial cases in the tree,
we repeated the simulations conditioned on the first 50 persons being unvaccinated,
and furthermore, we ran the simulations on subtrees of size greater than 100 whose
direct ancestor was one of the first 50 persons to be infected.

Figure 6.3: Log of the size distribution of the subtrees. The ones used in the
simulations in Figure 6.7 are of size 100 or more (red, dotted line).

Statistical analysis
In order to estimate the 𝑅 of a particular group of persons, we averaged the out-
degree of everyone in the group over all transmission trees. The confidence intervals
were obtained by iteratively calculating 𝑅̂ with bootstrapping of the persons in the
data set. To estimate the effect size of the difference in infectiousness between
two distinct groups of persons, we calculated the ratio of 𝑅̂ between the groups.
Significance was tested by taking the difference of the logs of the bootstrapped 𝑅̂

values for the two groups and performing a z-test, using the bootstrapped values
to estimate the standard deviation. In addition to bootstrapping, we performed
jackknife and permutation tests, with identical results.
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We estimated the stratified time-varying reproduction number 𝑅𝑡 to be the mean out-
degree per group of everyone diagnosed in a four-day wliding window (𝑡−4, 𝑡], such
that each person contributed to 𝑅̂𝑡 on four days. We obtained the 95% confidence
interval with bootstrapping.

Data and source code availability Source code for model construction and analysis
is available at
https://github.com/DecodeGenetics/COVID19_reconstruction_iceland

6.6 Results
In the third wave of SARS-CoV-2 infections in Iceland, 89% of diagnosed cases had
a single dominant haplotype, traced back to a person who entered the country in
August 2020 (Figure 6.1.A). The third wave accumulated 2,783 cases of the same
or derived haplotype (colloquially referred to as the blue clade, see Table 6.2) over
a period of five months before being contained. Although cases of other clades
were diagnosed during this period, we refer to the blue clade outbreak in Iceland
as the third wave for the sake of brevity. Vaccinations against SARS-CoV-2 were
initiated in Iceland on December 28th, 2020, and when the last blue clade case was
diagnosed on January 28th, 2021, only 3.6% of the adult population (16 years and
older) had received at least one vaccine dose. The success of the containment was
largely due to non-pharmaceutical interventions, mass testing, and effective contact
tracing measures.

Locus 241 445 3037 6023 6286 8017 13064 14408 18483 19999 20229 21255 22227 23403 25563 26801 28932 29645

Ref C T C T C A C C T G C G C A G C C G

Alt T C T C T G T T C T T C T G T G T T

Table 6.2: The mutations that make up the blue clade, representing the vast majority
of diagnosed cases in the third wave.

We inferred a transmission tree using data on every person in the third wave di-
agnosed before December 1st, 2020, a total of 2,522 people (Figure 6.1.D). Of
these, 2,431 had the blue clade and 91 had an incomplete or missing haplotype but
were included because of contact tracing data. Although the third wave contin-
ued past December 1st, this dataset contains 91% of the 2,783 persons who were
ever diagnosed with this clade. Contact tracing data, quarantine status, and onset
of symptoms were available for everyone in the dataset. A total of 1,275 (51%)
persons were diagnosed while in quarantine and 1,964 (78%) had reported contact
with prior cases. 1,738 (69%) persons were symptomatic upon diagnosis and 187
(7%) never showed any symptoms. An average of 303 persons (12%) in the model
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had more than one transmission between them and their ancestor, indicating the
presence of undiagnosed case. The Outbreaker2 model estimated the proportion of
observed cases to be 87% of the total (95%-PI: 83%-91%) (Table 6.1).

Effect of contact tracing-informed quarantine on the effective reproduction
number
Persons diagnosed outside of quarantine were 88.8% more infectious (95%-CI:
70.9%-109.2%, 𝑝 = 2.8 × 10−32) than those diagnosed while in quarantine. The
former had an 𝑅̂ of 1.31 (95%-CI: 1.21-1.43) while the latter had an 𝑅̂ of 0.70
(95%-CI: 0.66-0.73). Furthermore, the length of time from the start of quarantine
to a positive PCR test had a significant effect on infectiousness. Persons diagnosed
after a short quarantine, i.e. one or two days, were 66.6% more infectious (95%-CI:
49.3%-85.2%, 𝑝 = 4.0 × 10−19) than those diagnosed after a long quarantine, i.e.
three or more days, with an 𝑅̂ of 0.89 (95%-CI: 0.83-0.96) and 0.54 (95%-CI: 0.50-
0.58), respectively. This indicates that the sooner people were quarantined after
exposure, the fewer opportunities they had to infect others, which shows that contact
tracing is highly time critical. Additionally, those diagnosed outside quarantine
were 144.4% more infectious (95%-CI: 116.8%-174.1%, p=2.5× 10−50) than those
who were diagnosed after a long quarantine.

Effective reproduction number varies with age
We calculated the 𝑅̂ of adults, 16 years and older, and children, 15 years and
younger, demonstrating that adults were 59.5% more infectious (95%-CI: 41.6%-
83.4%, 𝑝 = 1.7 × 10−12), with an 𝑅̂ of 1.06 (95%-CI: 0.99-1.12) compared to 0.66
(95%-CI: 0.59-0.73) for children. We also calculated the 𝑅̂ of those of working
age, 16 to 66 years old and found that they were 46.6% more infectious (95%-CI:
27.7%-65.4%, 𝑝 = 1.6 × 10−8) than those outside that age range, with an 𝑅̂ of 1.08
(95%-CI: 1.01-1.16) compared to 0.74 (95%-CI: 0.66-0.84) for children and the
elderly. In addition to showing that adults were more infectious than children and
the elderly in the third wave in Iceland, this indicates that people of working age in
particular played a key role in the transmission of the virus.

Estimating the time-varying reproduction number
We calculated 𝑅̂𝑡 , stratified by whether or not people were in quarantine at the time
of diagnosis (Figure 6.4.A). 𝑅̂𝑡 outside quarantine is more variable than the relatively
stable 𝑅̂𝑡 in quarantine. Figure 6.4.A shows three peaks in 𝑅̂𝑡 outside of quarantine,
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which correspond to three well characterized events: two superspreading events and
one outbreak in a hospital. On October 15, 𝑅̂𝑡 went below 1 outside of quarantine
for the first time and stayed below 1 except for the time period covering the hospital
outbreak. Based on this observation we split the outbreak into a growth and decline
phase on October 15 (Figure 6.1.A).

An outbreak has (at least) two phases
Any outbreak has at least one growth phase and one decline phase. The mean
out-degree of persons who get infected during a growth phase is strictly greater
than one, and strictly less than one during a decline phase. For an entire outbreak,
the mean out-degree is equal to 1 − 1/𝑁, where 𝑁 is the number of people in the
transmission tree. This can be verified thus: Let 𝑁 be the number of persons in a
given transmission tree. Each person except for the root is infected by exactly one
other person, who is also in the tree, thus has an in-degree of 1. The number of
edges in the tree is then 𝑁 − 1, and since the average 𝑅 is the average out-degree of
the transmission tree we have that 𝑅 = 1 − 1/𝑁.

The 𝑅̂ of different groups during the decline and growth phase of the third wave
are shown in Table 1. All comparisons reported above remain significant in the
growth phase and decline phase, except there is no significant difference between
the infectiousness of those of working age and those outside working age in the
decline phase (23.8%, 95%-CI: -3.3%-56.3%, 𝑝 = 0.08).

Group Overall Growth phase Decline phase
𝑁 𝑅̂ 𝑁 𝑅̂ 𝑁 𝑅̂

Everyone 2522 (100%) 1.00 1442 (100%) 1.17 (1.09-1.27) 1080 (100%) 0.77 (0.70-0.85)

Outside quarantine 1247 (49%) 1.31 (1.21-1.43) 776 (54%) 1.45 (1.32-1.62) 471 (44%) 1.08 (0.93-1.25)

In quarantine 1275 (51%) 0.69 (0.66-0.73) 666 (46%) 0.84 (0.78-0.91) 609 (56%) 0.53 (0.49-0.57)

Short quarantine 564 (22%) 0.89 (0.83-0.96) 340 (24%) 1.02 (0.93-1.13) 224 (21%) 0.70 (0.62-0.78)

Long quarantine 711 (28%) 0.54(0.50-0.58) 326 (23%) 0.66 (0.58-0.74) 385 (36%) 0.43 (0.39-0.48)

Adults (16+ y.o.) 2164 (86%) 1.06 (0.98-1.12) 1269 (88%) 1.22 (1.13-1.32) 895 (83%) 0.82 (0.74-0.91)

Children (0-15 y.o.) 358 (14%) 0.66 (0.59-0.73) 173 (12%) 0.80 (0.69-0.93) 185 (17%) 0.53 (0.45-0.62)

Working age (16-66 y.o.) 1921 (76%) 1.08 (1.01-1.16) 1171 (81%) 1.25 (1.15-1.37) 750 (69%) 0.82 (0.73-0.92)

Outside working age 601 (24%) 0.74 (0.66-0.84) 271 (19%) 0.83 (0.74-0.92) 330 (31%) 0.66 (0.54-0.81)

Table 6.3: The number of people in different groups diagnosed in the growth phase
and the decline phase of the third wave of SARS-CoV-2 infections in Iceland, and
their estimated effective reproduction number 𝑅̂.
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Figure 6.4: A. 𝑅̂𝑡 for those diagnosed while in quarantine and those diagnosed
outside quarantine, respectively. The shaded area represents the 95% confidence
interval for the mean and dashed lines show dates of social restrictions imposed. B.
Effective reproduction number of those diagnosed outside quarantine compared to
those diagnosed in quarantine. Error bars reflect 95% CI of the mean. C. Effective
reproduction number of those diagnosed outside quarantine, those diagnosed after
1-2 days in quarantine and those diagnosed after 3+ days in quarantine. D. Effective
reproduction number stratified by age.

Simulating vaccination strategies
The effect of vaccination is not only determined by the proportion of persons
vaccinated, but also who is vaccinated. As our results show, there was a significant
difference in infectiousness between age groups in the third wave. To investigate
this effect, we modeled three vaccination strategies on the adult population, 16 years
and older: vaccinating by order of descending age, order of ascending age, and
uniformly at random. We then compared these vaccination strategies in terms of the
expected total number of cases, critical cases, severe cases, and deaths. For each
strategy we iteratively increased the proportion of the adult population vaccinated,
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both starting at 0% and assuming a starting point of 29% as of April 28th, 2021.
The second starting point reflects the actual vaccinations of persons at high risk
and front-line workers in Iceland. We assumed that a single dose would lower the
probability of being infected by 60% and that two doses would lower it by 90%
(Dagan et al., 2021; Lipsitch and Kahn, 2021; Hall et al., 2021). We found that
vaccinating the population uniformly at random or in order of ascending age would
have yielded fewer overall cases than vaccinating in order of descending age. We
found no significant difference in the number of deaths, critical cases, and severe
cases between the vaccination strategies.

Figure 6.5 shows the mean size of the outbreak for the three vaccination strategies,
assuming the first person in the transmission tree is unvaccinated. As a benchmark
we compare the vaccination strategies by the lowest proportion of adults who would
have needed to be vaccinated such that the final size of the third wave would have
been 100 persons (4% of the observed outbreak) on average. These simulations are
not sensitive to the initial cases in the transmission tree (Supplementary methods,
supplementary figures 1-4).

All non-pharmaceutical interventions being the same as they were in the third wave,
starting at 29% and vaccinating with a single dose in order of descending age would
have yielded an outbreak with a mean size of 100 persons with 79% of adults
vaccinated (95%-CI: 68%-89%). Vaccinating in order of ascending age would have
yielded a 100-person outbreak with 64% of adults vaccinated (95%-CI: 54%-76%),
and vaccinating uniformly at random with 72% vaccinated (95%-CI: 56%-85%).
Table 2 shows comparisons between the different vaccination strategies.

Proportion of adults vaccinated

Model Age, descending Age, ascending Uniform at random

Actual vaccinations/First dose 79.2% (67.6%-89.4%) 64.1% (53.7%-75.7%) 72.3% (56.1%-85.1%)

Actual vaccinations/Second dose 66.2% (57.1%-72.1%) 52.8% (42.4%-58.4%) 54.5% (43.7%-63.1%)

First dose 81.1% (71.8%-89.6%) 50.4% (38.5%-69.2%) 70.0% (50.0%-86.5%)

Second dose 66.8% (59.9%-72.4%) 35.0% (29.4%-40.1%) 47.0% (33.6%-57.5%)

Table 6.4: The lowest proportion of adults who would have needed to be vaccinated
such that the final size of the third wave would have been 100 persons on average.
The former two models use actual vaccination numbers up to the 29% mark and
extrapolate from there using the three strategies. The latter two models start from
zero.
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Figure 6.5: Simulations of the estimated final size of the third wave at a given
population prevalence of vaccination. Solid lines show the mean size of the outbreak,
shaded areas represent 2.5%-97.5% quantiles. A. Using the actual vaccination
scheme for at-risk groups and front-line workers, up to 29% of the adult population,
and using three separate vaccination strategies from 29% to 100%: age-descending,
age-ascending and uniformly at random. Modeled vaccinations beyond the 29%
mark are assumed to have an efficacy of 60%. B. Simulations of the size of the
third wave, assuming 60% vaccine efficacy, under the three different vaccination
strategies, starting with no vaccinations and concluding with 100% of the adult
population vaccinated. C. Same simulation as in A, but all vaccinations are assumed
to have an efficacy of 90% (both first and second dose administered). D. Same
simulation as in C, but assuming 90% vaccine efficacy.

6.7 Discussion
Quarantine has been assumed to slow the spread of infectious diseases, but the extent
to which it is effective has been difficult to quantify because doing so requires data
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Figure 6.6: The expected number of deaths, critical cases, and severe cases as a
function of the proportion of adults, 16 years and older vaccinated under the three
different vaccination strategies modeled.

Proportion of adults vaccinated at crossover
Metric Age, ascending Uniform at random
Fatal cases (Levin et al.) 10.8% (0%-21.8%) 17.7% (0%-33.4%)
Fatal cases (Herrera-Esposito et al.) 10.9% (0%-22.1%) 18.0% (0%-33.8%)
Critical cases (Herrera-Esposito et al.) 6.9% (0%-15.3%) 12.9% (0%-26.8%)
Severe cases (Herrera-Esposito et al.) 3.4% (0%-10.7%) 7.4% (0%-17.8%)

Table 6.5: The crossover points at which vaccinating in order of ascending age and
uniformly at random, respectively, yield fewer expected deaths, critical cases, and
severe cases than vaccinating in order of descending age. There was no significant
difference between the two vaccination paradigms.
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Figure 6.7: Simulations of the estimated size of the third wave for a given population
prevalence of vaccination, using subtrees in order to remove the dependence on the
age distribution in the initial cases. Each subtree is of size 100 and its root has
a direct ancestor in the first 50 persons to be infected. Solid lines show the mean
outbreak size, shaded areas represent 2.5%-97.5% quantiles. A. Using the de facto
vaccination scheme for at-risk groups and front-line workers, up to 29% of the adult
population, and using three separate vaccination strategies from 29% to 100%:
age-descending, age-ascending and uniformly at random. Modeled vaccinations
beyond the 29% mark are assumed to have an efficacy of 60%. B. Simulations of
the size of the third wave, assuming 60% vaccine efficacy, under the three different
vaccination strategies, starting with no vaccinations and concluding with 100% of
the adult population vaccinated. C. Same simulation as in A, but all vaccinations
are assumed to have an efficacy of 90% (both first and second dose administered).
D. Same simulation as in B, but assuming 90% vaccine efficacy.
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on the individual level. We found that mandated quarantine significantly decreased
the spread of the third wave of SARS-CoV-2 infections in Iceland, with persons
diagnosed outside of quarantine being 89% more infectious than those diagnosed
while in quarantine. Furthermore, we observed that contact tracing is time critical
by comparing the infectiousness of people diagnosed after a short quarantine to
that of those diagnosed after a longer quarantine. Lastly, we found that people of
working age played a key role in the generation of the third wave in Iceland, most
likely resulting from more frequent contact among this age group, compared with
older persons who may be retired.

We found that vaccinating persons in order of ascending age or uniformly at ran-
dom would have prevented more transmissions per vaccination than vaccinating in
descending order of age in the third wave in Iceland. Our estimates of the final size
of the outbreak are sensitive to the assumed vaccine efficacy. However, the relative
difference between the modelled vaccination strategies is independent of efficacy.
Recent studies suggest that vaccinated persons who become infected have a lower
viral load (Levine-Tiefenbrun et al., 2021) and may be less likely to infect others
(Harris et al., 2021). This is not taken into account here.

The effect of vaccination on the spread of the disease has been studied with classical
modelling approaches based on susceptible, infectious, and/or recovered models
and variations thereof. These models can yield insights, but uncertainty remains
as to how contacts, dependency between age of contacts, and variability due to
superspreading events should be modelled. By reconstructing the third wave from
real-world data, we circumvented these limitations by removing the behavioural
modelling assumptions and simulating vaccinations directly on the transmission
tree.

Our results show no significant difference in the expected number of deaths, critical
cases, or severe cases between the modelled strategies. This implies that it is possible
to minimize the number of cases without increasing the mortality or hospitalization
rates. One possible explanation is that, although older persons are more likely to
develop severe disease, the vaccination of younger persons prevents transmission to
older people. Since the data were collected, SARS-CoV-2 variants have emerged
that have been shown to be more infectious than previous ones, particularly the Delta
variant (B.1.617.2). Like vaccine efficacy, this increased infectiousness would only
affect the final size of the outbreak, but the relative difference between the strategies
is independent of baseline infectiousness. Recent studies have considered vaccine
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efficacy (VE) against SARS-CoV-2 infection and whether VE against the Delta
variant is reduced. A study from Qatar (Tang et al., 2021) based on convenience
samples showed lower VE against all infections (symptomatic and asymptomatic)
of the Delta variant for BNT162b2 (Pfizer; 53.5% VE), whereas no reduction was
observed or mRNA-1273 (Moderna; 84.8% VE). Additionally, a recent survey-
based study from the UK (Pouwels et al., 2021) revealed decreased VE against
all infections of the Delta variant for ChAdOx1 nCoV-19 (Oxford- AstraZeneca;
67% VE), but no significant reduction for BNT162b2 (Pfizer; 80% VE). Based on
these results, we believe that our findings would also apply to the Delta variant.
The effectiveness of nonpharmaceutical interventions can largely be attributed to
changes in human behaviour. Quantifying this effect remains challenging. By
leveraging the extensive data collected for diagnosed persons in the third wave of
SARS-CoV-2 infections in Iceland, we created a model that allowed us to observe
the differences in infectiousness of distinct groups of people.

Although the data collected are extensive, some cases went undiagnosed. Serologic
measurements after the first wave of SARS- CoV-2 infections in Iceland (Gudbjarts-
son, Helgason, et al., 2020) estimated that diagnosed cases were 56% of the total
and another 14% were quarantined but undiagnosed. In addition, 95% of people
quarantined in the third wave (𝑛 = 21, 225) were PCR tested upon leaving quaran-
tine. Due to this and the higher availability of PCR tests, we expect that at least 70%
of cases in the third wave were diagnosed and therefore included in the transmission
tree. Outbreaker2 estimated that 87% of cases were diagnosed, but this estimate
does not include undiagnosed persons who did not infect others.

The vaccination of a population serves two distinct purposes: first, to prevent death
and severe illness in groups at high risk, and second, to curb the spread of the virus
in the population. We simulated the effect of three vaccination strategies using four
different metrics: the number of infections, severe cases, critical cases, and deaths.
Our results demonstrate a negligible difference between the vaccination strategies
for the latter three metrics (Figure 6.6, Table 6.5), but a significant difference in the
number of infections (Figure 6.5). Although our results for the third wave indicate
that vaccinating in order of ascending age would have curtailed the outbreak sooner,
this may reflect the age composition of this particular outbreak. Vaccinating the
remaining adult population uniformly at random, once high-risk groups have been
fully vaccinated, is a more robust strategy, because it removes the dependency
between who is vaccinated and their age. When interpreting these results, it is
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important to keep in mind that they only provide a lower bound on the so-called
herd immunity threshold.
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