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ABSTRACT

Safety-critical control and planning for autonomous systems operating in unstruc-
tured environments is a challenging problem must be addressed as autonomous
vehicles, surgical robots, and autonomous industrial robots become more pervasive.
This thesis addresses some of the issues in safety critical autonomy by introducing
new techniques for computationally tractable and efficient safety-critical control.
The approach developed in this thesis arises from taking a deeper look at two ques-
tions: 1) How can we obtain better uncertainty quantification of the disturbances
that affect autonomous systems either as a result of unmodeled changes in the envi-
ronment or due to sensor imperfections? 2) Given richer uncertainty quantification
techniques, how do incorporate the diverse uncertainty descriptions into the control
and planning framework without sacrificing the tractability and efficiency of existing
approaches?

I address the above two questions by developing risk-aware control and planning
techniques for traversal of a mobile robot over static but extreme terrain and in
the presence of dynamic obstacles. We first look at algorithms for risk-aware
terrain assessment, and extensively test them on wheeled and legged robots that
were deployed in subterranean tunnel, urban, and cave environments for search
and rescue operations in the DARPA Subterranean Challenge. I then present a
theory for risk-aware model predictive control in static environments and in the
presence of dynamic obstacles. Coherent risk measures are applied to this planning
and control framework in order to account for diverse uncertainty descriptions.
Computationally tractable reformulations of the optimal control problem are realized
through constraint tightening techniques.

I then investigate algorithms for uncertainty assessment and prediction of apriori
unknown, dynamic obstacles using data-driven techniques. We use a technique from
signal processing literature called Singular Spectrum Analysis for making linear
predictions of dynamic obstacles. The obstacle motion predictions are equipped
with error predictions to account for the uncertainty in the sensing heuristically
using bootstrapping techniques. We use a statistical tool, Adaptive Conformal
Inference, to further calibrate the heuristic error prediction online to obtain true
uncertainty prediction while using nonstationary data to analyze the performance of
the data-driven predictor. These techniques provide reactive, real-time, risk-aware
obstacle avoidance in dynamic environments.
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C h a p t e r 1

INTRODUCTION

Providing safety and performance guarantees for motion planning and control al-
gorithms is an important prerequisite for developing trustworthy robots. While this
is a well-studied problem with tractable algorithms for real-time implementation
when the robot and environment models are exactly known, the guarantees fail in
real-world, unstructured settings. For example - autonomous vehicles are highly
successful in clear driving conditions. But unlike human drivers, autonomous ve-
hicles are not as adaptable to sudden environmental changes (like weather or other
erratic drivers). How does one translate this human-like intelligence into principles
for autonomous robots so that they can operate successfully, not only in structured
environments, but also in the real world?

Simplified models of robot dynamics and of the environment are very useful be-
cause they make the control and planning algorithms tractable and allow real-time
implementation. However, when robots operate in a real-world setting where the
environment is dynamic and unstructured, common distributional assumptions used
to develop the planning algorithms are no longer valid and consequently, the safety
guarantees no longer hold. The work described in this thesis takes steps to close the
gap between the simplifying assumptions made by control and planning algorithms
and the real world to account for a wider class of uncertainty descriptions while
retaining the tractability of the current state-of-the-art approaches. The process of
bridging this gap is tackled first by modeling the uncertainty in the robot’s percep-
tion in static and dynamic environments, and then accounting for this uncertainty in
the interpretation of the environment by using a risk-aware approach in the motion
planning framework.

1.1 Uncertainty modeling
In a first step to get a richer risk assessment for autonomous robots, we must
understand where the uncertainty in planning is arising from. Consider a robot
operating in a post-earthquake industrial warehouse. The environments which are
of interest to robotic operations are highly risky, containing difficult geometries
(e.g. rubble, slopes) and non-forgiving hazards (e.g. large drops, sharp rocks).
Determining where the robot may safely travel is a non-trivial problem, compounded
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by several issues: 1) Sensor noise, sparsity, and occlusion induces biases and
uncertainty in analysis of safety. 2) Environments often pose a mix of various
sources of static risk, including slopes, rough terrain, low traction, narrow passages,
etc. 3) The motion of dynamic obstacles (e.g. falling debris) is often unknown a
priori and requires reactive behaviors.

Let’s first consider motion planning over completely unknown static, extreme ter-
rain. Motion planning over uneven terrain given only sensor measurements requires
classification of the terrain as traversable or not. Most traversability analyses are de-
pendent on sensor type and measured through geometry-based, appearance-based,
or proprioceptive methods [106]. Geometry-based methods often rely on building a
2.5D terrain map which is used to extract features such as maximum, minimum, and
variance of the height and slope of the terrain [56]. Planning algorithms for such
methods take into account the stability of the robot on the terrain [61]. In [52, 104],
the authors estimate the probability distributions of states based on the kinematic
model of the vehicle and the terrain height uncertainty. Some methods incorporate
sensor and state uncertainty to obtain a probabilistic terrain estimate in the form of
a grid-based elevation map like in [43].

Now let’s consider environments with dynamic, moving obstacles. One needs to
be able to predict the motion of the obstacle and incorporate it into the planning
framework. One way to account for obstacle motion is to assume a limit on their
modeled motions. For example, in [132], the authors assumed a priori knowledge
of the obstacle dynamics or motion patterns. The authors of ARMTD [67] and
CHOMP [109] provided an offline planner while assuming that the obstacles are
quasi-static. Or, one can plan the agent’s path off-line using a Probabilistic Roadmap
(PRM) in a field of static obstacles and then replan when dynamical behaviors are
observed [137]. However, without prior knowledge of an obstacle’s behavior, a
worst-case analysis of unsafe obstacle locations can lead to conservative behavior.
Potential fields (PFs) are actively used for dynamic obstacle avoidance: e.g., recent
works [80] apply artificial PFs with stochastic reachable sets in Human-Centered en-
vironments. Slow moving and simple (linear or double integrator-like) dynamics are
assumed. Switching-based planning methods detect and classify dynamic obstacle
behavior against a set of trajectories, such as constant speed, linear, and projectile-
like motion [69, 85]. Classification-based methods require distinguishable obstacle
behaviors and prior knowledge about the dynamic environment to generate a set of
trajectories.
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While many prior works assume perfect knowledge of the environment, an important
challenge is to also account for uncertainty in perception. Existing works address the
problem by making simplifying assumptions, such as linear system dynamics and
bounded or Gaussian uncertainty distributions [10, 110, 130]. However, addressing
the problem in its full generality for nonlinear dynamics and arbitrary distributions
is an open problem. In this thesis, we consider uncertainty quantification and risk
assessment in static but extreme environments and in the presence of unknown
moving obstacles.

1.2 Risk-aware Control
When uncertainty in the interpretation of the environment is modeled using ap-
proximate sensor models and data-driven methods, we obtain environment (or un-
certainty) models that are constantly changing. If we assume that the distribution
of the uncertainty is known a priori - the motion planning techniques yield paths
that are safe only when the world behaves exactly as modeled. Instead, this work
incorporates the changing uncertainty distributions within the planning and control
pipeline to be able to provide safety guarantees even when the world does not behave
as modeled.

Model Predictive Control (MPC) is widely used for robotic motion planning because
it incorporates robot dynamics and state and control constraints in a receding horizon
fashion [21, 97]. There are many ways to incorporate uncertainty in MPC. Robust
MPC accounts for worst-case disturbances in a set of bounded uncertainties [16].
This approach is often too conservative, since it does not account for the distribution
of the uncertainties. Stochastic MPC [93] minimizes the expected value of a cost
function, while respecting a bound on the probability of violating the state and
control constraints. The chance constraints in stochastic MPC do not usefully
account for events in the tail of the uncertainty distribution, and the policy that
results from an expected cost function minimizes the cost on average. In this thesis,
we optimize for policies that have risk-averse behavior: the policies are not as
conservative as in the robust case but account for “risky” outcomes in the tail of the
uncertainty distribution and therefore perform better in practice.

There are many ways to incorporate risk into a control strategy [70], such as chance
constraints [64, 103], exponential utility functions [78], and distributional robust-
ness [30, 144]. However, applications in autonomy and robotics require more
“nuanced assessments of risk” [92]. Artzner et. al. [12] characterized a set of co-
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herent risk measures that have natural and desirable properties. This thesis focuses
on these risk measures, which are widely used in finance and operations research,
among other fields. Some examples of coherent risk measures are Conditional
Value-at-Risk (CVaR) and Entropic Value-at-Risk (EVaR).

Motion planning based on coherent risk measures has previously been considered.
In [123], the authors provided an MPC scheme for a discrete-time dynamical system
with process noise whose objective was a CVaR measure. They further provided
Lyapunov conditions for risk-sensitive exponential stability. In [62], the authors
devised an MPC scheme to avoid randomly moving obstacles using a CVaR risk
metric. Similar results were obtained in [37] on EVaR metric for obstacle avoidance
with additional guarantees of recursive feasibility and finite-time task completion
while following a set of waypoints. Risk-sensitive obstacle avoidance has also
been tackled through CVaR-based control barrier functions in [5] with application
to bipedal robot locomotion. In [125], the authors considered multistage risk-
averse and risk-constrained optimal control for general coherent risk measures with
conic representations. A scenario tree-based branch MPC framework with feedback
policies that account for a tradeoff between robustness and performance through
CVaR metrics was proposed in [31].

Recently, there has been a push to develop motion planning techniques that are robust
to a set of probability distributions within which the true distribution of uncertainty
lies. This is called distributionally robust motion planning. It is important to note
that coherent risk measures have heretofore provided distributional robustness in
the cost, but not in the chance constraints that one may need to satisfy in SMPC.
This thesis also extends the use of coherent risk measures to provide distributional
robustness in the chance constraints.

Distributionally robust chance constraints (DRCCs) have been well studied in
stochastic optimization. A popular metric for enforcing distributional robustness is
the Wasserstein distance. In [143] the author proposed a tight inner and outer approx-
imation of the DRCC with a Wasserstein ambiguity set using a CVaR reformulation.
In [33], the authors enforced DRCCs with Wasserstein distance ambiguity set in
an MPC setting. Optimal control using distributionally robust CVaR constraints
with second-order moment ambiguity sets can be posed as a semidefinite program
in [138].

Clearly, there is a need to quantify the risk in our modeling assumptions based on
the robot’s perception of the environment. Towards this end, we first consider risk-
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aware traversability analysis in static, extreme environments. Next, we develop a
theoretical framework for risk-aware model predictive control that is distributionally-
robust to disturbances. Finally, we look at prediction of dynamic obstacles with
uncertainty quantification and risk-aware obstacle avoidance.

1.3 Thesis Structure
Chapter 2: Preliminaries
We provide the necessary background on coherent risk measures and model predic-
tive control - topics that are used repeatedly in the following sections.

Chapter 3: Risk-Aware Planning in a Static Environment
We introduce a risk-aware traversability and planning framework for a static envi-
ronment with extensive field results. The use of the mean value of the cost often
accounts for the average measurement, but not the cost with low probability of oc-
currence that can be very risky for the robot. We model the traversability estimate as
a Gaussian random variable (for each grid cell) with the variance given by the sensor
uncertainty and the expected value calculated using different sources of risk like -
obstacle height, slope, step height, negative obstacles, water/mud, etc. The random
variable is then used to compute a Conditional Value-at-Risk (CVaR) cost map.
Unlike other traversability cost analysis techniques, our method implicitly accounts
for high risk, low probability events using CVaR. The CVaR cost is used in the geo-
metric and local planner to plan paths over extreme terrain that account for multiple
sources of geometric, confidence-based, and semantic risk. This framework was
deployed in the DARPA Subterranean Challenge.

Chapter 4: Distributionally-robust MPC with Total Variation Distance
We consider the thoery behind risk-aware model predictive control in static environ-
ments with distributionally-robust chance constraints and compare the complexity
of the control problem to state-of-the-art model predictive control techniques. We
show that obtaining distributional robustness in the constraints for Total Variation
Distance ambiguity sets is equivalent to a simple tightening of the chance constraint.
The constraint tightenings provide intuitive approximations of the MPC optimiza-
tion that reduce the number of optimization variables so as to make the complexity
of the distributionally-robust MPC comparable to stochastic MPC.
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Chapter 5: Risk-Aware MPC with dynamic obstacles
We study the risk-aware control problem in the presence of dynamic obstacles,
whose uncertainty description is known apriori, using MPC. We develop an obstacle-
avoidance MPC framework that formulates the obstacle avoidance constraint using
coherent risk measures. To handle disturbances, or process noise, in the state
dynamics, the state constraints are tightened in a risk-aware manner to obtain a
disturbance feedback policy (a policy that is reactive to the disturbances that the
robot will experience in the future) that provides risk-sensitive recursive feasibility
while (probabilistically) guaranteeing finite-time task completion.

Chapter 6: Data-driven Prediction and Risk-Aware MPC with unknown ob-
stacles
We look at the data-driven prediction of apriori unknown obstacles and provides a
risk-aware MPC framework to obtain reactive control strategies for dynamic obstacle
avoidance purely from online data. Compared to state-of-the-art techniques, our
method replaces the need for obstacle trajectory/model classification while allowing
online predictions that allow for highly reactive behavior when the predictions are
incorporated in a multi-step planning framework. Extracting a dynamics model from
data is challenging, especially when the available data is limited, noisy, and partial.
We use Singular Spectrum Analysis to separate noise from the underlying signal
and to extract a predictive distribution of obstacle behavior. We generate a bootstrap
of predictive models and forecast a set of obstacle trajectories. The bootstrapped
forecasts are treated as a distribution of possible obstacle models at each time step
and used in a model predictive control (MPC) framework in a distributionally-
robust manner. The MPC optimization incorporates distributionally-robust chance
constraints such that the optimization is robust to all distributions with the mean and
variance of the bootstraps.

Chapter 7: Data-driven MPC using Adaptive Conformal Prediction
We provide an uncertainty quantification technique for the above data-driven pre-
dictor to be able to provide distribution-free uncertainty region predictions using
conformal inference, a data-driven technique to get calibrated prediction sets from
the output of a black-box predictor. Hence, we supplement the data-driven, dynamic
obstacle predictions with true coverage guarantees.



7

Chapter 8: Conclusion
We list the contributions of this thesis and provides some future directions that could
improve the work presented in this thesis.
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C h a p t e r 2

PRELIMINARIES

We formally consider a probability space (Ω, F , 𝑃), where Ω, F , and 𝑃 are the
sample space, 𝜎-algebra over Ω, and probability measure over F respectively. A
random variable 𝑋 : Ω −→ R denotes the cost of each outcome. The set of all cost
random variables defined on Ω is given by X. We use X ∈ R𝑛 to denote a random
vector of length 𝑛.

2.1 Distributionally Robust Optimization
Let u ∈ U ⊂ R𝑛𝑢 be the decision vector of a stochastic program with the random
vector X . A classical stochastic program is given by,

inf
u∈U

E[𝑔(X ,u)]

s.t. 𝑃

(
ℎ(X ,u) > 0

)
≤ 𝜖,

where the functions 𝑔(·), ℎ(·) ∈ R are the cost random variable and the optimization
constraints respectively.

When the uncertainty is bounded, we can write a classical robust optimization
program as,

inf
u∈U

sup
X∈X

𝑔(X ,u)

s.t. ℎ(X ,u) > 0, ∀X ∈ X.

We consider a stochastic optimization problem for which the distribution of random
variables is ambiguous and lies in a set of probability measures called an ambiguity
set. The distributionally robust optimization program is hence given by,

inf
u∈U

sup
𝑄∈Q

E𝑄 [𝑔(X ,u)]

s.t. 𝑄

(
ℎ(X ,u) > 0

)
≤ 𝜖, ∀𝑄 ∈ Q,

where Q is the set of probability measures that described the ambiguity set.
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2.2 Risk Measures
A risk measure is a function that maps a cost random variable to a real number,
𝜌 : X −→ R. For constrained stochastic optimization programs, chance constraints
can be reformulated by a commonly used risk measure called the Value-at-Risk
(VaR). For a given confidence level 𝛼 ∈ (0, 1), VaR1−𝛼 denotes the (1 − 𝛼)-quantile
value of the cost variable 𝑋 and is defined as,

VaR1−𝛼 (𝑋) := inf{𝑧 | P(𝑋 ≤ 𝑧) ≥ 𝛼}.

It follows that VaR1−𝛼 (𝑋) ≤ 0 =⇒ P(𝑋 ≤ 0) ≥ 𝛼. However, VaR is generally
nonconvex and hard to compute. We now introduce convex and monotonic risk
measures. In particular, we are interested in coherent risk measures [12] that satisfy
the following properties.

Definition 1 (Coherent Risk Measures) Consider two random variables, 𝑋 , 𝑋′ ∈
X. A coherent risk measure, 𝜌 : X −→ R, is a risk measure that satisfies the following
properties:

1. Monotonicity 𝑋 ≤ 𝑋′ =⇒ 𝜌(𝑋) ≤ 𝜌(𝑋′),

2. Translational invariance 𝜌(𝑋 + 𝑐) = 𝜌(𝑋) + 𝑐, ∀𝑐 ∈ R,

3. Positive homogeneity 𝜌(𝛼𝑋) = 𝛼𝜌(𝑋), ∀𝛼 ≥ 0,

4. Subadditivity 𝜌(𝑋 + 𝑋′) ≤ 𝜌(𝑋) + 𝜌(𝑋′).

Another nice property of coherent risk measures is that they can be written as the
worst-case expectation over a convex, bounded, and closed set of probability mass
(or density) functions (pdf/pmf). This is the dual representation of a risk measure,
and this set is referred to as the risk envelope.

Definition 2 (Representation Theorem [12]) Every coherent risk measure can be
represented in its dual form as,

𝜌(𝑋) := sup
𝑄∈Q
E𝑄 (𝑋),

where the risk envelope Q ⊂ {𝑄 ≪ 𝑃} is convex and closed.
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The above theorem gives a distributionally robust interpretation of coherent risk
measures. We will discuss distributionally optimization in the next section.

While coherent risk measures act on a one-dimensional cost random variable, in
this thesis, we write 𝜌(X), where X is a vector of cost random variables of length

𝑛, to mean 𝜌(X) =
[
𝜌(𝑋1), . . . , 𝜌(𝑋𝑛)

]𝑇
.

Some examples of coherent risk measures and their dual representation are reviewed
next. These example measures will be used in subsequent chapters.

Conditional Value-at-Risk
For a given confidence level 𝛼 ∈ (0, 1), value-at-risk VaR1−𝛼 denotes the (1 − 𝛼)-
quantile value of the cost variable 𝑋 ∈ L𝑝 (Ω, F , P). The conditional value-at-risk
CVaR1−𝛼 measures the expected loss in the (1 − 𝛼)-tail given that the threshold
VaR1−𝛼 has been crossed. CVaR1−𝛼 is found as

CVaR1−𝛼 (𝑋) := inf
𝑧∈R
E

[
𝑧 + (𝑋 − 𝑧)

+

1 − 𝛼

]
, (2.1)

where (·)+ = max{·, 0}. A value of 𝛼 ≃ 0 corresponds to a risk-neutral case;
whereas, a value of 𝛼 → 1 is rather a risk-averse case. Q is the risk envelope
defined by,

Q :=
{
𝑄 ≪ 𝑃 | 0 ≤ 𝑑𝑄

𝑑𝑃
≤ 1
𝛼

}
, (2.2)

where 𝑑𝑄

𝑑𝑃
is called the Radon–Nikodym derivative and it gives the rate of change

of density of one density function, 𝑄, w.r.t the other, 𝑃. For a discrete probability
distribution, the risk envelope translates to

Q :=
{
𝑞 ∈ Δ𝐽 | 0 ≤ 𝑞( 𝑗) ≤

𝑝( 𝑗)
𝛼
∀ 𝑗 ∈ {1, . . . , 𝐽}

}
(2.3)

where Δ𝐽 is the probability simplex, Δ𝐽 := {𝑞 ∈ R𝐽 | 𝑞 ≥ 0,
∑𝐽
𝑗=1 𝑞( 𝑗) = 1}.

CVaR provides a convex upper bound of VaR, or equivalently, a convex inner
approximation of a chance constraint, i.e.,

VaR1−𝛼 (𝑋) ≤ CVaR1−𝛼 (𝑋) ≤ 0 =⇒ P(𝑋 ≤ 0) ≥ 𝛼. (2.4)
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Entropic Value-at-Risk
EVaR, derived using the Chernoff inequality for VaR, is the tightest upper bound
for VaR and CVaR. The EVaR1−𝛼 of random variable 𝑋 is given by

EVaR1−𝛼 (𝑋) := inf
𝑧>0

[
𝑧−1 ln

E[𝑒𝑋𝑧]
1 − 𝛼

]
. (2.5)

Similar to CVaR1−𝛼, for EVaR1−𝛼, the limit 𝛼 → 0 corresponds to a risk-neutral
case; whereas, 𝛼→ 1 corresponds to a risk-averse case. In fact, it was demonstrated
in [7, Proposition 3.2] that lim𝛼→1 EVaR1−𝛼 (𝑋) = ess sup(𝑋), where ess sup(𝑋) is
the worst case value of 𝑋 .

For EVaR, the risk envelope Q for a continuous random variable with the pdf 𝑃 is
defined as the epigraph of the KL divergence,

Q :=
{
𝑄 ≪ 𝑃 | 𝐷𝐾𝐿 (𝑄 | |𝑃) :=

∫
𝑑𝑄

𝑑𝑃

(
ln
𝑑𝑄

𝑑𝑃

)
𝑑𝑃 ≤ − ln(1 − 𝛼)

}
, (2.6)

where 𝐷𝐾𝐿 (𝑄 | |𝑃) denotes the KL divergence between the distributions 𝑄 and 𝑃.
For some 𝑥, 𝑦 ∈ R, 𝐷𝐾𝐿 (𝑥 | |𝑦) can be written in the form of the exponential cone,
𝐾𝑒𝑥𝑝:

𝑡 ≥ 𝑥 ln(𝑥/𝑦) ⇐⇒ (𝑦, 𝑥,−𝑡) ∈ 𝐾𝑒𝑥𝑝 .

Similarly, for a discrete random variable 𝑋 ∈ {𝑥1, 𝑥2, . . . , 𝑥𝐽} with pmf given by
𝑝 = [𝑝(1), 𝑝(2), . . . , 𝑝(𝐽)]𝑇 , where 𝑝( 𝑗) = P(𝑋 = 𝑥 𝑗 ), 𝑗 ∈ Z𝐽1, the KL divergence
is given as

𝐷𝐾𝐿 (𝑞 | |𝑝) :=
𝐽∑︁
𝑗=1
𝑞( 𝑗) ln

(
𝑞( 𝑗)
𝑝( 𝑗)

)
, 𝑞, 𝑝 ∈ Δ𝐽 = {𝑞 ∈ R𝐽 | 𝑞 ≥ 0,

𝐽∑︁
𝑗=1
𝑞( 𝑗) = 1}.

g-entropic risk measures
Let 𝑔 be a convex function with 𝑔(1) = 0, and 𝛽 be a nonnegative number. The
g-entropic risk measure [7], ER𝑔,𝛽, with divergence level 𝛽 for a random variable
𝑋 ∈ L𝑝 (Ω, F , P) is defined as,

ER𝑔,𝛽 (𝑋) := sup
𝑄∈Q

𝐸𝑄 (𝑋), (2.7)

where, Q = {𝑄 ≪ 𝑃 :
∫
𝑔
( 𝑑𝑄
𝑑𝑃

)
𝑑𝑃 ≤ 𝛽}.

The definition (2.7) describes the g-entropic risk measures in terms of their dual
representation. To obtain the primal form, we can use the generalized Donsker-
Vardhan variational formula [7],
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VaR1−𝛼 (Z)E(Z) CVaR1−𝛼 (Z) EVaR1−𝛼 (Z)

Probability 1 − 𝛼

Z

𝑝(Z)

Figure 2.1: Comparison of the mean, VaR, and CVaR for a given confidence
𝛼 ∈ (0, 1). The axes denote the values of the stochastic variable Z with pdf 𝑝(Z).
The shaded area denotes the %(1 − 𝛼) of the area under 𝑝(Z). If the goal is to
minimize Z , using E(Z) as a performance measure is misleading because tail events
with low probability of occurrence are ignored. VaR gives the value of Z at the
(1−𝛼)-tail of the distribution. But, it ignores the values of Z with probability below
1 − 𝛼. CVaR is the average of the values of VaR with probability less than 1 − 𝛼
(average of the worst-case values of Z in the 1−𝛼 tail of the distribution). Note that
E(Z) ≤ VaR1−𝛼 (Z) ≤ CVaR1−𝛼 (Z) ≤ EVaR1−𝛼 (Z). Hence, EVaR1−𝛼 (Z) is a more
risk-sensitive measure.

inf
`∈R
{` + 𝐸𝑃 (𝑔∗(𝑋 − `))} = sup

𝑄≪𝑃
{𝐸𝑄 (𝑋) − 𝑔

(𝑑𝑄
𝑑𝑃

)
𝑑𝑃},

where 𝑔∗ is the conjugate (the Legendre-Fenchel transform) of 𝑔. Both CVaR and
EVaR have been proven to be g-entropic risk measures. Another g-entropic risk
measure that we’ll consider in this work is using the total variation distance [120]:

TVD𝛼 (𝑋) = sup
𝑄∈Q

𝐸𝑄 (𝑋) = 𝛼 sup
𝑥∈Ω

𝑥 + (1 − 𝛼)CVaR1−𝛼 (𝑋)

where the risk envelope is given by,

Q :=
{
𝑞 ∈ Δ𝐽 :

1
2

𝐽∑︁
𝑗=1
|𝑞( 𝑗) − 𝑝( 𝑗) | ≤ 𝛼

}
.

2.3 Model Predictive Control
Consider a linear, discrete-time system given by

x(𝑡 + 1) = 𝐴x(𝑡) + 𝐵u(𝑡) + 𝐷δ(𝑡) (2.8)

where x(𝑡) ∈ R𝑛𝑥 and u(𝑡) ∈ R𝑛𝑢 are the system state and controls at time 𝑡,
respectively. The system is affected by a stochastic, additive, process noise 𝜹𝑡 ∈ R𝑛𝑑 .

Consider there are 𝑟𝑥 state constraints that take the form

X := {x ∈ R𝑛𝑥 |𝐹𝑥x ≤ 𝑔𝑥}, 𝐹𝑥 ∈ R𝑟𝑥×𝑛𝑥 , 𝑔𝑥 ∈ R𝑟𝑥 .
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We also have 𝑟𝑢 control constraints that take the form

U := {u ∈ R𝑛𝑢 |𝐹𝑢u ≤ 𝑔𝑢}, 𝐹𝑢 ∈ R𝑟𝑢×𝑛𝑥 , 𝑔𝑢 ∈ R𝑟𝑢 .

Consider that the goal is to steer the system to a set

X𝐹 := {x ∈ R𝑛𝑥 |𝐹 𝑓x ≤ 𝑔 𝑓 }, 𝐹 𝑓 ∈ R𝑟 𝑓×𝑛𝑥 , 𝑔𝑥 ∈ R𝑟 𝑓 ,

while minimizing the control effort and deviation from the desired trajectory, i.e.,
we want to minimize the following cost,

𝐽 (x,u) := x𝑇𝑄x + u𝑇𝑅u,

where 𝑄 ∈ R𝑛𝑥×𝑛𝑥 and 𝑅 ∈ R𝑛𝑢×𝑛𝑢 are the weights on each of the state and control
costs. Model Predictive Control (MPC) provides an optimization-based framework
to compute the best control input for the next 𝑁-steps while satisfying the state and
control constraints. If we have a system starting at an initial condition at time 𝑡, that
is given by x(𝑡) = x0, the MPC optimization is given by,

𝐽∗𝑡 (x(𝑡)) = min
𝑈𝑡

E
[
x𝑇
𝑡+𝑁 |𝑡𝑃x𝑡+𝑁 |𝑡 +

𝑡+𝑁−1∑︁
𝑘=𝑡

(
x𝑇
𝑘 |𝑡𝑄x𝑘 |𝑡 + u

𝑇
𝑘 |𝑡𝑅u𝑘 |𝑡

) ]
(2.9)

s.t. x𝑘+1|𝑡 = 𝐴x𝑘 |𝑡 + 𝐵u𝑘 |𝑡 + 𝐷δ𝑘 |𝑡 , (2.10)

Prob(x𝑘 |𝑡 ∉ X) ≤ 𝜖, u𝑘 |𝑡 ∈ U, (2.11)

Prob(x𝑇+𝑁 |𝑡 ∉ X𝐹) ≤ 𝜖 (2.12)

x𝑡 |𝑡 = x(𝑡) (2.13)

∀𝑘 ∈ {𝑡, 𝑡 + 1, . . . 𝑡 + 𝑁 − 1}
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C h a p t e r 3

RISK-AWARE PLANNING IN STATIC ENVIRONMENTS

For a robot to autonomously navigate over a priori unknown, extreme terrain, it
must first evaluate the risk of traversal over different regions and then incorporate
this risk in the planning framework. In this work, we evaluate the traversability cost
map for a static environment by computing the CVaR cost of traversal using the first
two moments of the cost random variable. The risk cost map is incorporated into
geometric and kinodynamic planners to enable the robot to account for high-cost,
low-probability scenarios in its motion plan.

This chapter was adapted from:

Anushri Dixit*, David D. Fan*, Kyohei Otsu, Sharmita Dey, Ali-Akbar Agha-
Mohammadi, and Joel W. Burdick. STEP: Stochastic Traversability Evaluation
and Planning for Risk-Aware Off-road Navigation; Results from the DARPA Sub-
terranean Challenge, 2022.

3.1 Introduction
Autonomous traversal over extreme, hazardous terrain is an open problem with many
applications to extra-terrestrial [103], disaster-struck [1], and subterranean environ-
ments [74]. The robots operate in terrain is uneven and highly risky with noisy
sensor measurements and localization uncertainty. Autonomous motion planning
in such conditions requires a framework that can account for the traversability risk
arising from sources like rubble, sudden drops, muddy/slippery areas, while also
considering the uncertainty in the robots estimates. The framework needs to be able
to make tractable reformulations of the nonconvex constraints arising from these
risks so that it can plan reactive motions in real time.

In this work, we will evaluate the traversability cost of a region as the cost accounting
for the hazards from the uneven terrain (geometric, confidence-aware analysis) and
type of terrain (semantic analysis), see Figure 3.1. We will treat this traversability
cost as a random variable and account for the uncertainty in the traversability cost
using Conditional Value-at-Risk (CVaR). Using the CVaR assessment of the terrain,
we obtain a geometric path and a low-level model predictive control (MPC) plan
that accounts for the risk in the terrain.



15

Figure 3.1: Top left: Boston Dynamics Spot quadruped robot exploring Valentine
Cave at Lava Beds National Monument, CA. Top middle, bottom middle (second
image from the left): Clearpath Husky robot exploring Arch Mine in Beckley, WV.
Bottom left: Spot exploring abandoned Satsop power plant in Elma, WA.

In particular, we take an MPC approach known as Sequential Quadratic Program-
ming (SQP), which iteratively solves locally quadratic sub-problems to converge to
a globally (more) optimal solution [20]. Particularly in the robotics domain, this
approach is well-suited due to its reduced computational costs and flexibility for
handling a wide variety of costs and constraints [13, 47, 82, 95, 116]. A common
criticism of SQP-based MPC (and nonlinear MPC methods in general) is that they
can suffer from being susceptible to local minima. We address this problem by
incorporating a trajectory library (which can be predefined and/or randomly gener-
ated, e.g. as in [73]) to use in a preliminary trajectory selection process. We use
this as a means to find more globally optimal initial guesses for the SQP problem
to refine locally. Another common difficulty with risk-constrained nonlinear MPC
problems is ensuring recursive feasibility [87]. We bystep this problem by dynami-
cally relaxing the severity of the risk constraints while penalizing CVaR in the cost
function.

In this work, we propose STEP (Stochastic Traversability Evaluation and Planning),
that pushes the boundaries of the state-of-the-practice to enable safe, risk-aware,
and high-speed ground traversal of unknown environments. Specifically, our con-
tributions include:

1. Uncertainty-aware 2.5D traversability evaluation which accounts for local-
ization error, sensor noise, and occlusion, and combines multiple sources of
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traversability risk.

2. An approach for combining these traversability risks into a unified risk-aware
CVaR planning framework.

3. A highly efficient MPC architecture for robustly solving non-convex risk-
constrained optimal control problems.

4. A suite of recovery behaviors to account for fast response to failure scenarios.

5. Risk-based gait adaptation for quadrupedal robots (in our case, the Boston
Dynamics Spot platform).

6. Real-world demonstration of real-time CVaR planning on wheeled and legged
robotic platforms in unknown and risky environments.

3.2 Risk-Aware Traversability and Planning
Problem Statement
We first define the problem of risk-aware traversability and motion planning. Let 𝑥𝑘 ,
𝑢𝑘 , 𝑧𝑘 denote the robot’s state, action (or control input), and observation (or sensory
measurement) at the 𝑘-th time step. A path 𝑥0:𝑁 = {𝑥0, 𝑥1, · · · , 𝑥𝑁 } is composed of
a sequence of poses. A policy is a mapping from state to control 𝑢 = 𝜋(𝑥). A map
is represented as 𝑚 = (𝑚 (1) , 𝑚 (2) , · · · ) where 𝑚𝑖 is the 𝑖-th element of the map (e.g.,
a cell in a grid map). The robot’s dynamics model captures the physical properties
of the vehicle’s motion, such as inertia, mass, dimension, shape, and kinematic and
control constraints:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ) (3.1)

𝑔(𝑢𝑘 ) ≻ 0 (3.2)

ℎ(𝑚, 𝑥𝑘 ) ≻ 0 (3.3)

where 𝑔(𝑢𝑘 ), ℎ(𝑚, 𝑥𝑘 ) are vector-valued functions that encode the control and state
constraints/limits respectively.

Following [106], we define traversability as the capability for a ground vehicle to
reside over a terrain region under an admissible state. We represent traversability as
a cost, i.e. a continuous value computed using a terrain model, the robotic vehicle
model, and kinematic constraints, which represents the degree to which we wish the
robot to avoid a given state:

𝑟 = R(𝑚, 𝑥, 𝑢) (3.4)
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where 𝑟 ∈ R, and R(·) is a terrain assessment model. This model captures various
unfavorable events such as collision, getting stuck, tipping over, high slippage, to
name a few. Each mobility platform has its own assessment model to reflect its
mobility capability.

Associated with the true traversability value is a distribution over possible values
based on the current understanding about the environment and robot actions. In
most real-world applications where perception capabilities are limited, the true
value can be highly uncertain. To handle this uncertainty, consider a map belief,
i.e., a probability distribution 𝑝(𝑚 |𝑥0:𝑘 , 𝑧0:𝑘 ), over a possible set M. Then, the
traversability estimate is also represented as a random variable 𝑅 : (M×X×U) −→
R. We call this probabilistic mapping from map belief, state, and controls to possible
traversability cost values a terrain assessment model.

A risk metric 𝜌(𝑅) : 𝑅 → R is a mapping from a random variable to a real number
which quantifies some notion of risk. In order to assess the risk of traversing
along a path 𝑥0:𝑁 with a policy 𝜋, we wish to define the cumulative risk metric
associated with the path, 𝐽 (𝑥0, 𝜋). To do this, we need to evaluate a sequence of
random variables 𝑅0:𝑁 . To quantify the stochastic outcome as a real number, we use
the dynamic, time-consistent risk metric given by compounding the one-step risk
metrics [115]:

𝐽 (𝑥0, 𝜋;𝑚) = 𝑅0 + 𝜌0
(
𝑅1 + 𝜌1

(
𝑅2 + . . . + 𝜌𝑁−1

(
𝑅𝑁 )

) )
(3.5)

where 𝜌𝑘 (·) is a one-step coherent risk metric at time 𝑘 . This one-step risk gives
us the cost incurred at time-step 𝑘 + 1 from the perspective of time-step 𝑘 . Any
distortion risk metric compounded as given in (3.5) is time-consistent (see [92]
for more information on distortion risk metrics and time-consistency). We use the
Conditional Value-at-Risk (CVaR) as the one-step risk metric:

𝜌(𝑅) = CVaR𝛼 (𝑅) = inf
𝑧∈R
E

[
𝑧 + (𝑅 − 𝑧)+

1 − 𝛼

]
(3.6)

where (·)+ = max(·, 0), and 𝛼 ∈ (0, 1] denotes the risk probability level. We note
that the results in this chapter are also easily extended to other tail risk measures
like Entropic Value-at-Risk and total variation distance-based risk.

We formulate the objective of the problem as follows: Given the initial robot
configuration 𝑥𝑆 and the goal configuration 𝑥𝐺 , find an optimal control policy
𝜋∗ that moves the robot from 𝑥𝑆 to 𝑥𝐺 while 1) minimizing time to traverse, 2)
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minimizing the cumulative risk metric along the path, and 3) satisfying all kinematic
and dynamic constraints. For a quadrupedal robot like the Boston Dynamics Spot
robot, the framework must additionally also select the best gait type based on the
risk accrued while moving from 𝑥𝑆 to 𝑥𝐺 as a part of the optimal policy 𝜋∗.

Hierarchical Risk-Aware Planning
We propose a hierarchical approach to address the aforementioned risk-aware motion
planning problem by splitting the motion planning problem into geometric and
kinodynamic domains. We consider the geometric domain over long horizons,
while we solve the kinodynamic problem over a shorter horizon. This is convenient
for several reasons: 1) Solving the full constrained CVaR minimization problem over
long timescales/horizons becomes intractable in real-time. 2) Geometric constraints
play a much larger role over long horizons, while kinodynamic constraints play a
much larger role over short horizons (to ensure dynamic feasibility at each timestep).
3) A good estimate (upper bound) of risk can be obtained by considering position
information only. This is done by constructing a position-based traversability model
Rpos by marginalizing out non-position related variables from the terrain assessment
model, i.e. if the state 𝑥 = [𝑝𝑥 , 𝑝𝑦, 𝑥other]⊺ consists of position and non-position
variables (e.g. orientation, velocity), then

Rpos(𝑚, 𝑝𝑥 , 𝑝𝑦) ≥ R(𝑚, 𝑥, 𝑢) ∀𝑥other, 𝑢 (3.7)

Geometric Planning: The objective of geometric planning is to search for an opti-
mistic risk-minimizing path, i.e. a path that minimizes an upper bound approxima-
tion of the true CVaR value. For efficiency, we limit the search space only to the
geometric domain. We are searching for a sequence of poses 𝑥0:𝑁 which ends at 𝑥𝐺
and minimizes the position-only risk metric in (3.5), which we define as 𝐽pos(𝑥0:𝑁 ).
The path optimization problem can be written as:

𝑥∗0:𝑁 = arg min
𝑥0:𝑁

[
𝐽pos(𝑥0:𝑁 ) + _

𝑁−1∑︁
𝑘=0
∥𝑥𝑘 − 𝑥𝑘+1∥2

]
(3.8)

𝑠.𝑡. 𝜙(𝑚, 𝑥𝑘 ) ≻ 0 (3.9)

where the constraints 𝜙(·) encode position-dependent traversability constraints (e.g.
constraining the vehicle to avoid obstacles and prohibit lethal levels of risk) and
_ ∈ R weighs the tradeoff between risk and path length.

Kinodynamic Planning: We then solve a kinodynamic planning problem to track
the optimal geometric path, minimize the risk metric, and respect kinematic and
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Figure 3.2: Overview of system architecture for STEP. From left to right: Odometry
aggregates sensor inputs and relative poses. Next, Risk Map Processing merges
these pointclouds and creates a multi-layer risk map. The map is used by the
Geometric Path Planner and the Kinodynamic MPC Planner. An optimal trajectory
is found and sent to the Tracking Controller, which produces control inputs to the
robot.

dynamics constraints. The goal is to find a control policy 𝜋∗ within a local planning
horizon 𝑇 ≤ 𝑁 which tracks the path 𝑋∗0:𝑁 . The optimal policy can be obtained by
solving the following optimization problem:

𝜋∗ = arg min
𝜋∈Π

[
𝐽 (𝑥0, 𝜋)+_

𝑇∑︁
𝑘=0
∥𝑥𝑘 − 𝑥∗𝑘 ∥

2
]

(3.10)

𝑠.𝑡. ∀𝑘 ∈ [0, · · · , 𝑇] : 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ) (3.11)

𝑔(𝑢𝑘 ) ≻ 0 (3.12)

ℎ(𝑚, 𝑥𝑘 ) ≻ 0 (3.13)

where the constraints 𝑔(𝑢) and ℎ(𝑚, 𝑥𝑘 ) are vector-valued functions which encode
controller limits and state constraints, respectively.

Recovery from Unfavorable States
Recovery planning is a particular type of planning problem where the initial state is
not safe. For example, the robot might need to start planning from the state where it
touches walls with its bumpers, or the state where the body is tilted on top of rubble.
The recovery from those unfavorable states involves finding a safe control without
violating the safety constraints under smaller margin conditions.

3.3 STEP for Unstructured Terrain
This section discusses how we compute traversability risk and efficiently solve the
risk-aware trajectory optimization problem. At a high level, our approach takes the
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following steps (see Figure 3.2): 1) Assuming some source of localization with
uncertainty, aggregate sensor measurements to create an uncertainty-aware map. 2)
Perform ground segmentation to isolate the parts of the map the robot can potentially
traverse. 3) Compute risk and risk uncertainty using geometric properties of the
pointcloud (optionally, include other sources of risk, e.g. semantic or other sensors).
4) Aggregate these risks to compute a 2.5D CVaR risk map. 5) Solve for an optimistic
CVaR minimizing path over long ranges with a geometric path planner. 7) Solve for
a kinodynamically feasible trajectory which minimizes CVaR while staying close to
the geometric path and satisfying all constraints.

Pointcloud Processing and Mapping
Multi-sensor Merging Our pointcloud pipeline starts from merging pointclouds
from different sensors. One robot can have multiple units of the same senor to
increase coverage, or have heterogeneous sensors that produce pointclouds using
different mechanics (e.g., active LiDAR, passive stereo cameras). After apply-
ing sensor-specific filters that remove noise or body occlusion, these pointclouds
are merged using extrinsic calibration information. If the sensors are not time-
synchronized, we use odometry to compensate motion offset.

Temporal Pointcloud Merging The merged pointclouds are aggregated over a fixed
time window to construct a local pointcloud map. We maintain a pose graph on
the time window to incorporate history updates in the odometry estimate (e.g.,
loop closures). Based on the latest pose graph, we reconstruct a full aggregated
pointcloud. We annotate each point by the time offset to the latest pointcloud. This
allows us to propagate odometry uncertainty to each point in the fusion phase.

Ground Segmentation The aggregated pointcloud is segmented into ground and
obstacle points using 3D pointcloud segmentation techniques. We leverage the
work in [66] that allows efficient ground segmentation based on line fitting in the
cylindrical coordinates. We extended the work to also handle challenges prevalent
in subterranean environments, such as low ceiling or negative obstacles. The ground
segmentation is critical for elevation mapping in an occluded environment where
the ground is not observed by the sensors and the measurements of walls/ceiling
make false ground planes.

Elevation Mapping We construct 2.5D height map using the segmented ground
points. After splitting points to each grid map cell and sorting by time stamps,
we apply the Kalman filter to estimate the height of the ground. We set up the
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Figure 3.3: Estimation of ground height with uncertainty

filter to place more weight on the recent measurements which are less affected by
the odometry error. Figure 3.3 shows the visualization of ground height estimation
with uncertainty. Note that there is higher level of uncertainty for the areas that
do not have enough measurements. These mapping uncertainties are used to adjust
confidence in a later traversability estimation process.

Modeling Assumptions
Among many representation options for rough terrain, we use a 2.5D grid map in this
work for its efficiency in processing and data storage [42]. The map is represented
as a collection of terrain properties (e.g., height, risk) over a uniform grid.

For different vehicles we use different robot dynamics models. For example, for
a system which produces longitudinal/lateral velocity and steering (e.g. legged
platforms), the state and controls can be specified as:

𝑥 = [𝑝𝑥 , 𝑝𝑦, 𝑝\ , 𝑣𝑥 , 𝑣𝑦, 𝑣\]⊺ (3.14)

𝑢 = [𝑎𝑥 , 𝑎𝑦, 𝑎\]⊺ (3.15)

While the dynamics 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ) can be written as,

𝑥𝑘+1 = 𝑥𝑘 + Δ𝑡



𝑣𝑥 cos(𝑝\) − 𝑣𝑦 sin(𝑝\)
𝑣𝑥 sin(𝑝\) + 𝑣𝑦 cos(𝑝\)

^𝑣𝑥 + (1 − ^)𝑣\
𝑎𝑥

𝑎𝑦

𝑎\


.
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We let ^ ∈ [0, 1] be a constant which adjusts the amount of turning-in-place the
vehicle is permitted. In differential drive or ackermann steered vehicles we can
remove the lateral velocity component of these dynamics if desired. However, our
general approach is applicable to any vehicle dynamics model.

Terrain assessment models
The traversability cost is assessed as the combination of multiple risk factors. These
factors are designed to capture potential hazards for the target robot in the specific
environment (Figure Figure 3.4). Such factors include:

• Collision: quantified by the distance to the closest obstacle point.

• Step size: the height gap between adjacent cells in the grid map.

• Tip-over: a function of slope angles and the robot’s orientation.

• Sensor Uncertainty: sensor and localization error increase the variance of
traversability estimates.

• Negative Obstacles: detected by checking the lack of measurement points in
a cell.

• Slippage: quantified by geometry and the surface material of the ground.

Geometry-based risk sources

Geometry-based risk sources include collision with obstacles, too-large step sizes
in terrain, and impassable slopes. These geometry-based risks are constructed
using geometric analysis of elevation map estimates and LiDAR pointcloud points.
We construct these risks per grid cell, with the following methods. First, using
the ground estimates from the ground segmentation pipeline, we obtain a lower
bound on the height of the ground, i.e. the height at which the robot would place
its foot or wheel if occupying that cell with its foot/wheel. Above this ground
estimate, we can determine the relative height of other occupying LiDAR points in
the temporally merged pointcloud with respect to the ground. Points which occur
above or below a certain height threshold which outline the body of the robot are
treated as obstacles, and the corresponding grid cells at these points are marked as
untraversable. Similar analysis is performed for step size risk, which checks the
height gap between adjacent cells in the elevation map. For adjacent cells which
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exhibit too high a height gap, these cells are marked as untraversable. Finally,
checking the normals of the elevation map gives an overall estimation of slope
(which the size of the normal calculation averaged over the approximate size of the
robot), and areas with too high slope values are marked as high risk or untraversable.

Note that in all these analyses, the uncertainty of the elevation map plays a large role.
Sensor and localization uncertainty corrupts elevation measurements to a varying
degree, proportional with distance from the robot. Therefore we adapt various
detection or risk thresholds with distance from the robot, to obtain a more robust
result. For example, for the Husky robot, ground clearance beneath the robot belly
is 10cm. Detecting a 10cm step size in elevation at 100m away requires an angular
localization accuracy of < 0.06 degrees. This may be infeasbile, and therefore
adapting the step size threshold with distance helps to reduce spurious detections at
longer ranges.

Figure 3.4: Multi-layer geometric risk analysis, which first aggregates recent point-
clouds (top). Then, each type of analysis (slope, step, collision, etc.) generates
a risk map along with uncertainties (middle rows). These risks are aggregated to
compute the final CVaR map (bottom).
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Confidence-based risk sources

One example of confidence-based risk sources is the detection of negative obstacles.
To detect negative obstacles, we estimate areas in the pointcloud that have no returns
and use 2-D ray-tracing to find "gap" areas that are not occluded by obstacles, small
steps, or upward slopes. However, if this is the only criteria for negative obstacle
detection, many false positives for negative obstacles are observed. One such
instance is shown in Figure 3.5 when the robot turns the corner into a new room
from a narrow passageway and in the time-taken for the LiDAR returns from all
areas of the new room to reach the sensor, false-positives of negative obstacles
are detected. To address this, we account for the confidence in the gaps in the
pointcloud by estimating whether these areas have been sufficiently covered so far,
i.e., the robot has sensed the area from different positions and for long enough
to ensure that the gaps in the pointcloud are not caused due to the sensor and
environment configuration, see Algorithm 1 for a detailed description of the method
to check whether a given region passes the coverage check.

Figure 3.5: Confidence-based risk analysis: the scene is illustrated through the
point-of-view (POV) of a third-person (top left) and robot (top middle and top
right). The aggregated pointcloud (bottom left) has regions of no returns from the
area on the left side of the robot. These holes in the pointcloud are marked as
negative obstacles in the risk layer (bottom middle) only when there are no returns
from these regions despite them being unoccluded and sufficiently covered by laser
strike pattern. This risk layer is aggregated with the geometric risk layers to compute
the final CVaR map (bottom right).
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Algorithm 1 Algorithm for computing whether a given area is unoccluded and
sufficiently covered, i.e., 𝑚cover

MSE >= 0
Input: 𝑚unocc: Grid map of unoccluded grid points from the current robot state 𝑥𝑡 (using

ray-tracing),
𝑥𝑡 = [𝑝𝑥 , 𝑝𝑦 , 𝑝\ , 𝑣𝑥 , 𝑣𝑦 , 𝑣 \ ]𝑇 : Current robot state,
𝑑cover: Threshold for sufficient coverage.

Output: 𝑚unocc
𝑁

: Number of times each grid cell in the grid map has been observed unoc-
cluded by the robot so far,
𝑚cover = {𝑚cover

`𝑥
, 𝑚cover

`𝑦
, 𝑚cover

MSE }: Multi-layer map indicating whether each grid cell
being evaluated for presence of negative obstacles has been observed unoccluded from
different points to ensure sufficient coverage.

1: for 𝑖 = 0 to |𝑚unocc | do
2: # Update 𝑚unocc

𝑁

𝑚
unocc, (𝑖)
𝑁

=

{
1 + 𝑚unocc, (𝑖)

𝑁
if 𝑚unocc, (𝑖) = 1 (i.e., 𝑖th grid cell is unoccluded)

𝑚
unocc, (𝑖)
𝑁

if 𝑚unocc, (𝑖) = 0 (i.e., 𝑖th grid cell is occluded)
3: # Update mean 𝑥 and 𝑦 robot positions from where each grid cell has been observed

unoccluded

{𝑚cover, (𝑖)
`𝑥

, 𝑚
cover, (𝑖)
`𝑦

} =

{𝑚cover, (𝑖)

`𝑥
+ 𝑝𝑥−𝑚cover, (𝑖)

`𝑥

𝑚
unocc, (𝑖)
𝑁

, 𝑚
cover, (𝑖)
`𝑦

+ 𝑝𝑦−𝑚cover, (𝑖)
`𝑦

𝑚
unocc, (𝑖)
𝑁

} if 𝑚unocc, (𝑖) = 1

{𝑚cover, (𝑖)
`𝑥

, 𝑚
cover, (𝑖)
`𝑦

} if 𝑚unocc, (𝑖) = 0

4: # Update mean squared deviation of the average robot positions from which a given
grid cell is observed
to check if it crosses the threshold for sufficient coverage, 𝑑cover

𝑚
cover, (𝑖)
MSE =

{
(𝑝𝑥 − 𝑚cover, (𝑖)

`𝑥
)2 + (𝑝𝑦 − 𝑚cover, (𝑖)

`𝑦
)2 − (𝑑cover)2 if 𝑚unocc, (𝑖) = 1

−(𝑑cover)2 if 𝑚unocc, (𝑖) = 0
5: end for

Semantics-based risk sources

We account for changes in the terrain features based on changes in the intensity of
LiDAR returns. Areas that comprise a lot of mud and water have low intensity of
returns. This enables detection of muddy regions where the robot may get stuck or
fall down. Areas with deep water levels are similarly detected as negative obstacles
because the LiDAR returns are very sparse. This combined with low intensity of
returns allows us to detect lethal regions with deep water levels.

Traversability Cost
To efficiently compute the Conditional Value-at-Risk (CVaR) traversability cost for
𝑙 > 1 risk factors, we assume each risk factor 𝑅𝑙 is an independent random variable
which is normally distributed, with mean `𝑙 and variance 𝜎𝑙 . We take a weighted
average of the risk factors to obtain the terrain assessment model, 𝑅 =

∑
𝑙 𝑤𝑙𝑅𝑙 ,

which will also be normally distributed as 𝑅 ∼ N(`, 𝜎2). Let 𝜑 and 𝚽 denote
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Figure 3.6: Semantics-based risk analysis: the robot camera (top left) shows a puddle
of water in front of the robot. The aggregated pointcloud (top right) has regions of no
returns from the area in front of the robot. These holes in the pointcloud are marked
as water in the risk layer (bottom left) when the holes in the pointcloud are present
with low intensity returns in the area near the hole. This risk layer is aggregated
with the geometric risk layers to compute the final CVaR map (bottom middle and
bottom right) with different levels of robustness 𝛼. We clearly see the effects on the
risk map, where higher values of 𝛼 result assigning high cost to unknown regions.

the probability density function and cumulative distribution function of a standard
normal distribution respectively. The corresponding CVaR is computed as:

𝜌(𝑅) = ` + 𝜎𝜑(𝚽
−1(𝛼))

1 − 𝛼 (3.16)

The CVaR cost accounts for the expected cost in the (1−𝛼) tail of the distribution of
the terrain assessment model, 𝑅, thus also accounting for high-risk, low probability
events. We construct the 𝑅 such that the expectation of 𝑅 is positive, to keep the
CVaR value positive.

Construction of the mean and variance of each risk factor depends on the type of risk.
For example, collision risk is determined by checking for points above the elevation
map, and the variance is derived from the elevation map variance, which is mainly
a function of localization error. In contrast, negative obstacle risk is determined by
looking for gaps in sensor measurements. These gaps tend to be a function of sensor
sparsity, so the risk variance increases with distance from the sensor frame.
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Risk-aware Geometric Planning
In order to optimize (3.8) and (3.9), the geometric planner computes an optimal path
that minimizes the position-dependent dynamic risk metric in (3.5) along the path.
Substituting (3.16) into (3.5), we obtain:

𝐽pos(𝑥0:𝑁 ) = 𝑅0 + 𝜌0
(
𝑅1 + 𝜌1

(
𝑅2 + . . . + 𝜌𝑇−1(𝑅𝑇 )

) )
= 𝑅0 + 𝜌

(
𝑅1 + 𝜌

(
𝑅2 + . . . + 𝜌(𝑅𝑇−1 + `𝑇 + 𝜎𝑇

𝜑(𝚽−1(𝛼))
1 − 𝛼 )

))
...

= `0 +
𝑁∑︁
𝑘=1

[
`𝑘 + 𝜎𝑘

𝜑(𝚽−1(𝛼))
1 − 𝛼

]
We use the A∗ algorithm to solve (3.8) over a 2D grid. A∗ requires a path cost 𝑔(𝑛)
and a heuristic cost ℎ(𝑛), given by:

𝑔(𝑛) = 𝐽pos(𝑥0:𝑛) + _
𝑛−1∑︁
𝑘=0
∥𝑥𝑘 − 𝑥𝑘+1∥2, (3.17)

ℎ(𝑛) = _ ∥𝑥𝑛 − 𝑥𝐺 ∥2. (3.18)

For the heuristic cost we use the shortest Euclidean distance to the goal. The
parameter lambda is a relative weighting between the distance penalty and risk
penalty and can be thought of as having units of (traversability cost / m). We use
a relatively small value, which means we are mainly concerned with minimizing
traversability costs.

Risk-aware Kinodynamic Planning
The geometric planner produces a path, i.e. a sequence of poses. We wish to find a
kinodynamically feasible trajectory which stays near this path, while satisfying all
constraints and minimizing the CVaR cost. To solve (3.10)-(3.13), we use a risk-
aware kinodynamic MPC planner, whose steps we outline (Figure 3.7, Algorithm
2, Figure 3.8).

Trajectory library: Our kinodynamic planner begins with selecting the best candi-
date trajectory from a trajectory library, which stores multiple initial control and
state sequences. The selected trajectory is used as initial solution for solving a
full optimization problem. The trajectory library can include: 1) the trajectory
accepted in the previous planning iteration, 2) a stopping (braking) trajectory, 3) a
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Figure 3.7: Diagram of kinodynamic MPC planner, which begins with evaluating
various paths within a trajectory library. The lowest cost path is chosen as a candidate
and optimized by the QP solver.

Figure 3.8: Diagram of kinodynamic MPC planner, which begins with evaluating
various paths within a trajectory library. The lowest cost path is chosen as a candidate
and optimized by the QP solver.

geometric plan following trajectory, 4) heuristically defined trajectories (including
v-turns, u-turns, and varying curvatures), and 5) randomly perturbed control input
sequences.

QP Optimization: Next, we construct a non-linear optimization problem with costs
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Algorithm 2 Kinodynamic MPC Planner (sequences {var𝑘 }𝑘=0:𝑇 are expressed as
{var} for brevity)
Input: current state 𝑥0, current control sequence (previous solution) {𝑢∗} ( 𝑗 )
Output: re-planned trajectory {𝑥∗} ( 𝑗+1) , re-planned control sequence {𝑢∗} ( 𝑗+1)

# Initialization
1: {𝑥r} = updateReferenceTrajectory()
2: {𝑢∗} ( 𝑗 ) = stepControlSequenceForward({𝑢∗} ( 𝑗 ) )

# Loop process
3: for 𝑖 = 0 to qp_iterations do
4: 𝑙 = generateTrajectoryLibrary(𝑥0)
5: [{𝑥c}, {𝑢c}] = chooseCandidateFromLibrary(𝑙)
6: [{𝛿𝑥∗}, {𝛿𝑢∗}] = solveQP({𝑥c}, {𝑢c}, {𝑥r})
7: [𝛾, 𝑠𝑜𝑙𝑣𝑒𝑑] = lineSearch({𝑥c}, {𝛿𝑥∗}, {𝑢c}, {𝛿𝑢∗})
8: 𝑢𝑐

𝑘
= 𝑢c

𝑘
+ 𝛾𝛿𝑢∗

𝑘
, ∀𝑘 = 0 : 𝑇

9: {𝑥𝑐} = rollOutTrajectory(𝑥0, {𝑢𝑐})
10: end for
11: if solved then
12: {𝑥∗} ( 𝑗+1) , {𝑢∗} ( 𝑗+1) = {𝑥𝑐}, {𝑢𝑐}
13: else
14: {𝑥∗} ( 𝑗+1) , {𝑢∗} ( 𝑗+1) = getStoppingTrajectory()
15: end if
16: return {𝑥∗} ( 𝑗+1) , {𝑢∗} ( 𝑗+1)

and constraints (3.10–3.13). We linearize the problem about the initial solution and
solve iteratively in a sequential quadratic programming (SQP) fashion [101]. Let
{𝑥𝑘 , �̂�𝑘 }𝑘=0:𝑇 denote an initial solution. Let {𝛿𝑥𝑘 , 𝛿𝑢𝑘 }𝑘=0:𝑇 denote deviation from
the initial solution. We introduce the solution vector variable 𝑋:

𝑋 =

[
𝛿𝑥T

0 · · · 𝛿𝑥T
𝑇

𝛿𝑢T
0 · · · 𝛿𝑢T

𝑇

]T
(3.19)

We can then write the MPC in the form:

minimize
1
2
𝑋T𝑃𝑋 + 𝑞T𝑋 (3.20)

subject to 𝑙 ≤ 𝐴𝑋 ≤ 𝑢 (3.21)

where 𝑃 is a positive semi-definite weight matrix, 𝑞 is a vector to define the first
order term in the objective function, 𝐴 defines inequality constraints and 𝑙 and 𝑢
provide their lower and upper limit. In the next subsection we describe these costs
and constraints in detail. This is a quadratic program, which can be solved using
commonly available QP solvers such as our implementation uses the OSQP solver,
which is a robust and highly efficient general-purpose solver for convex QPs [126].

Linesearch: The solution to the SQP problem returns an optimized variation of
the control sequence {𝛿𝑢∗

𝑘
}𝑘=0:𝑇 . We then use a linesearch procedure to determine
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the amount of deviation 𝛾 > 0 to add to the current candidate control policy 𝜋:
𝑢𝑘 = 𝑢𝑘 + 𝛾𝛿𝑢∗𝑘 .

Stopping Sequence: If no good solution is found from the linesearch, we pick the
lowest cost trajectory from the trajectory library with no collisions. If all trajectories
are in collision, we generate an emergency stopping sequence to slow the robot as
much as possible (a collision may occur, but hopefully with minimal energy).

Tracking Controller: Having found a feasible and CVaR-minimizing trajectory, we
send it to a tracking controller to generate closed-loop tracking behavior at a high
rate (>100Hz), which is specific to the robot type (e.g. a simple cascaded PID, or
legged locomotive controller).

Optimization Costs and Constraints
Costs: Note that the cost (3.10) includes the CVaR risk. To linearize the cost for
representation in a QP, we compute the Jacobian and Hessian of 𝜌 with respect to
the state 𝑥. We efficiently approximate these terms via numerical differentiation.

Kinodynamic constraints: Similar to the cost, we linearize the system dynamics
(3.11) with respect to 𝑥 and 𝑢. Depending on the dynamics model, this may be done
analytically.

Control limits: The constraint function 𝑔(𝑢) in (3.12) limits the range of the control
inputs. For example in the 6-state dynamics case, we limit maximum accelerations:
|𝑎𝑥 | < 𝑎max

𝑥 , |𝑎𝑦 | < 𝑎max
𝑦 , and |𝑎\ | < 𝑎max

\
.

State limits: Within the function ℎ(𝑚, 𝑥) in (3.13), we encode velocity constraints:
|𝑣𝑥 | < 𝑣max

𝑥 , |𝑣𝑦 | < 𝑣max
𝑦 , and |𝑣\ | < 𝑣max

\
. We also constrain the velocity of the

vehicle to be less than some scalar multiple of the risk in that region, along with
maximum allowable velocities:

|𝑣\ | < 𝛾\ 𝜌(𝑅𝑘 ) (3.22)√︃
𝑣2
𝑥 + 𝑣2

𝑦 < 𝛾𝑣 𝜌(𝑅𝑘 ) (3.23)

This constraint reduces the energy of interactions the robot has with its environment
in riskier situations, preventing more serious damage.

Position risk constraints: The function ℎ(𝑚, 𝑥𝑘 ) also encodes constraints on position
and orientation to prevent the robot from hitting obstacles. The general form of this
constraint is:

𝜌(𝑅𝑘 ) < 𝜌max (3.24)
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To formulate the above constraint, we locate areas on the map where the risk 𝜌 is
greater than the maximum allowable risk. These areas are marked as obstacles,
and are often highly non-convex. To obtain a convex and tractable approximation
of this highly non-convex constraint, we decompose obstacles into non-overlapping
2D convex polygons, and create a signed distance function which determines the
minimum distance between the robot’s footprint (also assumed to be a convex
polygon) and each obstacle [116]. Let A,B ⊂ R2 be two convex sets, and define
the distance between them as:

dist(A,B) = inf{∥𝑇 ∥ | (𝑇 + A) ∩ B ≠ ∅} (3.25)

where 𝑇 is a translation. When the two sets are overlapping, define the penetration
distance as:

penetration(A,B) = inf{∥𝑇 ∥ | (𝑇 + A) ∩ B = ∅} (3.26)

Then we can define the signed distance between the two sets as:

sd(A,B) = dist(A,B) − penetration(A,B) (3.27)

We then include within the function ℎ(𝑚, 𝑥𝑘 ) a constraint to enforce the following
inequality:

sd(Arobot,B𝑖) > 0 ∀𝑖 ∈ {0, · · · , 𝑁obstacles}. (3.28)

Note that the robot footprint Arobot depends on the current robot position and
orientation: Arobot(𝑝𝑥 , 𝑝𝑦, 𝑝\), while each obstacle B𝑖 (𝑚) is dependent on the
information in the map (See Figure 3.9).

Orientation constraints: We wish to constrain the robot’s orientation on sloped
terrain so as to prevent the robot from rolling over or performing dangerous maneu-
vers. To do this, we add constraints to the function ℎ(𝑚, 𝑥𝑘 ) which limit the roll and
pitch of the robot as it settles on the surface of the ground. Denote the position as
𝑝 = [𝑝𝑥 , 𝑝𝑦]⊺ and the position/yaw as 𝑠 = [𝑝𝑥 , 𝑝𝑦, 𝑝\]⊺. Let the robot’s pitch be 𝜓
and roll be 𝜙 in its body frame. Let 𝜔 = [𝜓, 𝜙]⊺. The constraint will have the form
|𝜔 | ≺ 𝜔max. At 𝑝, we compute the surface normal vector, call it 𝑛𝑤 = [𝑛𝑤𝑥 , 𝑛𝑤𝑦 , 𝑛𝑤𝑧 ]⊺,
in the world frame. Let 𝑛𝑟 = [𝑛𝑟𝑥 , 𝑛𝑟𝑦, 𝑛𝑟𝑧]⊺, be the surface normal in the body frame,
where we rotate by the robot’s yaw: 𝑛𝑟 = 𝑅\𝑛𝑤 (see Figure 3.9), where 𝑅\ is a basic
rotation matrix by the angle \ about the world 𝑧 axis. Then, we define the robot
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Figure 3.9: Left: Computing convex to convex signed distance function between
the robot footprint and an obstacle. Signed distance is positive with no intersection
and negative with intersection. Right: Robot pitch and roll are computed from the
surface normal rotated by the yaw of the robot. Purple rectangle is the robot footprint
with surface normal 𝑛𝑤. g denotes gravity vector, 𝑛𝑟𝑥,𝑦,𝑧 are the robot-centric surface
normal components used for computing pitch and roll.

pitch and roll as 𝜔 = 𝑔(𝑛𝑟) where:

𝜔 = 𝑔(𝑛𝑟) =
[

atan2(𝑛𝑟𝑥 , 𝑛𝑟𝑧)
−atan2(𝑛𝑟𝑦, 𝑛𝑟𝑧)

]
(3.29)

Note that 𝜔 is a function of 𝑠. Creating a linearly-constrained problem requires a
linear approximation of the constraint:

|∇𝑠𝜔(𝑠)𝛿𝑠 + 𝜔(𝑠) | < 𝜔max (3.30)

The linearization is realized by finding the gradients of the orientation constraints
with respect to position and yaw separately.

Box Constraint: Note that if 𝛿𝑥 and 𝛿𝑢 are too large, linearization errors will
dominate. To mitigate this effect we also include box constraints within (3.12) and
(3.13) to maintain a bounded deviation from the initial solution: |𝛿𝑥 | < 𝜖𝑥 and
|𝛿𝑢 | < 𝜖𝑢.

Adding Slack Variables: To further improve the feasibility of the optimization prob-
lem we introduce auxilliary slack variables for constraints on state limits, position
risk, and orientation. For a given constraint ℎ(𝑥) > 0 we introduce the slack variable
𝜖 , and modify the constraint to be ℎ(𝑥) > 𝜖 and 𝜖 < 0. We then penalize large slack
variables with a quadratic cost: _𝜖𝜖2. These slack variables are incorporated into
the QP problem (3.20) and (3.21).
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Dynamic Risk Adjustment
The CVaR metric allows us to dynamically adjust the level and severity of risk
we are willing to accept. Selecting low 𝛼 reverts towards using the mean cost
as a metric, leading to optimistic decision making while ignoring low-probability
but high cost events. Conversely, selecting a high 𝛼 leans towards conservatism,
reducing the likelihood of fatal events while reducing the set of possible paths. We
adjust 𝛼 according to two criteria: 1) Mission-level states, where depending on the
robot’s role, or the balance of environment and robot capabilities, the risk posture for
individual robots may differ. 2) Recovery Behaviors, where if the robot is trapped
in an unfavorable condition, by gradually decreasing 𝛼, an escape plan can be found
with minimal risk. These heuristics are especially useful in the case of risk-aware
planning, because the feasibility of online nonlinear MPC is difficult to guarantee.
When no feasible solution is found for a given risk level 𝛼, a riskier but feasible
solution can be quickly found and executed.

Gait Selection
We considered two platforms for testing our traversability framework - a Clearpath
Husky (wheeled robot) and Boston Dynamics Spot (quadrupedal legged robot). In
the case of the Spot, multiple locomotion gaits are available, namely, walking gait
(standard operation, most stable), stair climbing gait (reduces the robot speed and
pitches the robot to better see the stairs while descending), crawling gait (three feet
touch the ground at all times, the most stable gait)1. Furthermore, the height of the
robot can also be dynamically adjusted; the height reduction to fit in small spaces is
henceforth called the crouch gait. These locomotion gaits provide greater mobility
for the Spot in areas that would not be traversable with the standard walking gait.

• Stair gait selection Stair detection was performed using geometric analysis
of LiDAR and camera disparity pointcloud data. To detect stairs, we use
a plane fitting method similar to [117]. We compute normals and perform
clustering to identify contiguous surfaces in the pointcloud of similar slope.
We then isolate flat and vertical planes to detect potential stair surfaces. After
finding candidate stair surfaces, the larger stair direction and overall plane
is determined. Finally, the intersection of the ground plane that the robot
currently sits on and the plane of the stairs is used to determine the start of

1Further descriptions of the gaits can be found here: https://support.bostondynamics.
com/s/article/Operating-Spot

https://support.bostondynamics.com/s/article/Operating-Spot
https://support.bostondynamics.com/s/article/Operating-Spot
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the stairs. Once the start of the stairs (either up or down) is determined, the
robot can align itself to this location and begin a stair walking gait.

Figure 3.10: Stair detection with plane-fitting method

• Crouch gait through slip detection A learning-based slip prediction module
was implemented leveraging the joint state information of the quadruped at
each time instant. We train an ensemble model to predict the probability of
slip, 𝑝(𝑠𝑙𝑖𝑝), at each time instant, based on the robot limb kinematics and
kinetics. Slip-annotations from multiple field trials across different terrains
(e.g., rocky, sandy, muddy terrains) formed the ground truth for the model
training. During slip prediction using the trained model, if the 𝑝(𝑠𝑙𝑖𝑝) > 0.5,
the crawling gait mode is enabled for the robot to traverse the potentially
slippery terrain. For more details on the implementation of the slip-predictive
model see [35].

• Crouch behavior in low ceiling areas If the robot detects a region with low
ceiling that is within 16 cm of the robot height (the limit to which the robot
can bend), the robot enables crouch gait that reduces its height of the robot by
16 cm. Once the robot passes through the low ceiling area, it switches back
to the walking gait.

Recovery Behaviors
Recovery behaviors are fast, reactive actions ensure that if the robot is doing some-
thing that is hazardous that will end its mission, the robot can recover from that
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Figure 3.11: Gait change through slip detection

Figure 3.12: Crouch behavior in low ceiling areas

situation quickly and safely. In the case that a recovery behavior is activated, the
robot temporarily pauses following the commands from the MPC pipeline to get to
a safe state from where it can resume the kinodynamic planning pipeline.

Tilt recovery The tilt recovery behavior tracks the odometry received from the
state estimation pipeline for the wheeled robot. The odometry is a combination
of wheel odometry and inertial measurements. It consists of the pose and twist
measurements. If the pitch of the robot is above a certain threshold, the robot
immediately backtracks along the same path that got the robot in the lethal pitch
state at a low speed.

Wiggle behavior We monitor the velocity of the robot obtained from the wheel,
inertial odometry to ensure that the robot is not stuck during mission. If the robot
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Figure 3.13: Tilt recovery behavior when the robot pitch exceeds the safe limit.

does not move for a certain time period even though the MPC pipeline is commanding
the robot to move, the robot is considered to be stuck. In the case that the robot is
stuck, we deploy a wiggle behavior that moves the wheels of the robot in such a way
that, unintruded, the robot would travel in a figure-8 pattern. The allows the robot
to wiggle back and forth till it is not stuck anymore.

Escape lethal If the robot finds itself trapped in a lethal zone for some period of
time, it is useful to have a behavior which attempts to escape the high risk regions
with minimum risk. This is accomplished in the following way. First, a goal location
is chosen which is not in a lethal area, close to the robot, and which minimizes the
amount of lethal area the robot would need to traverse to reach the goal in a straight
line. Next, the risk threshold of the traversability cost maps are changed, to allow
traversal through high risk map cells which would normally be treated as constraints
or obstacles. Then, the goal is sent to the global and local planners, and executed
on the robot. If the goal is reached, the recovery behavior is ended, but if the goal
is still not reachable, the risk threshold can be further adjusted to allow more and
more risky behavior in an attempt to escape. In this way, the CVaR risk threshold is
useful for adapting the risk profile of the robot in real-time.

3.4 Experiments
In this section, we report the experimental and field performance of STEP. We
first present a comparative study between different adjustable risk thresholds in
simulation on a wheeled differential drive platform. Then, we demonstrate real-
world performance using a wheeled robot deployed in an abandoned subway filled
with clutter, and a legged platform deployed in a lava tube environment.
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Figure 3.14: Path distributions from four simulated runs. The risk level 𝛼 spans
from 0.1 (close to mean-value) to 0.95 (conservative). Smaller 𝛼 typically results
in a shorter path, while larger 𝛼 chooses statistically safe paths.
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Figure 3.15: Distance vs risk trade-off from 50 Monte-Carlo simulations. Left:
Distributions of path distance. Right: Distributions of max risk along the traversed
paths. Box plot uses standard quartile format and dots are outliers.

Simulation Study
To assess statistical performance, we perform 50 Monte-Carlo simulations with
randomly generated maps and goals. These results were also included in our
previous work [41]. Random traversability costs are assigned to each grid cell. The
following assumptions are made: 1) no localization error, 2) no tracking error, and
3) a simplified perception model with artificial noise. We give a random goal 8 m
away and evaluate the path cost and distance. We use a differential-drive dynamics
model (no lateral velocity).

We compare STEP using different 𝛼 levels. Figure 3.14 shows the distribution of
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paths for different planning configurations. The optimistic (close to mean-value)
planner 𝛼 = 0.05 typically generates shorter paths, while the conservative setting
𝛼 = 0.95 makes long detours to select statistically safer paths. The other 𝛼 settings
show distributions between these two extremes, with larger 𝛼 generating similar
paths to the conservative planner and smaller 𝛼 generating more time-optimal paths.
Statistics are shown in Figure 3.15.

Hardware Results
We deployed STEP on two different robots (wheeled and legged) in different chal-
lenging environments (an abandoned subway, a lava tube, a limestone mine, and
a combination of different subterranean environments in the DARPA Subterranean
Challenge). The robot was equipped with custom sensing and computing units, and
driven by JPL’s NeBula autonomy software [1]. 3 Velodyne VLP-16s were used
for collecting LiDAR data. Localization was provided onboard by a LiDAR-based
SLAM solution [39, 105]. The entire autonomy stack runs on an Intel Core i7 CPU.
The typical CPU usage for the traversability stack is about a single core.

Previous Results

Earlier versions of STEP (without semantic and confidence-aware risk sources, gait
adaptations, and the entire suite of recovery behaviors) were tested in multiple field
locations. For the sake of completeness, we have included these results, published
in [41], from:

1. Abandoned subway filled with industrial clutter in Downtown Los Angeles,
CA in Figure 3.16,

2. Valentine Cave in Lava Beds National Monument, Tulelake, CA in Figure 3.17

Results from the Kentucky Underground and LA Subway

We tested the various new parts of our traversability pipeline during fully au-
tonomous runs in our tests at Kentucky Underground Storage (KU), Wilmore, KY.
The results of the cost map for confidence-based and semantics-based risk are seen
in Figure 3.5 and Figure 3.6. We also tested the tilt recovery behavior on a pile of
rubble in KU by forcing the robot into a hazardous tilt position, the robot was able
to recover from this risky configuration as seen in Figure 3.13.
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Figure 3.16: Traversability analysis results for Husky in an abandoned subway ex-
periment. Top left to right: Risk maps at three varying risk levels: 𝛼 = 0.1, 0.5, 0.9,
respectively. Colors correspond to CVaR value (white: safe (𝑟 <= 0.05), yellow
to red: moderate (0.05 < 𝑟 <= 0.5), black: risky (𝑟 > 0.5)). Also shown are the
most recent LiDAR measurements (green points). Bottom left and middle: Front
and right on-board cameras observing the same location. Bottom right: Completed
top-down map of the environment after autonomous exploration. Bright dots are
pillars, which are visible in the camera images. The effect of these risk analyses
results in intuitive outcomes - for example, a low pile of metal, while probably
traversable, should be avoided if possible. When the region has inadequate sensor
coverage, the risk will be high. When the robot is closer and the sensor coverage is
good, then the CVaR cost will decrease, yielding a more accurate risk assessment.
This results in more efficient and safer planning when compared to deterministic
methods.

We also tested new results in an abandoned subway with multiple levels filled with
industrial clutter in Downtown Los Angeles, CA. For example, the LA Subway
envirnoment served as a test bed for the stair gait and crouch gait behaviors that are
shown in Figure 3.10 and Figure 3.12 respectively.

Results from the DARPA Subterranean Challenge

The traversability framework was deployed in the DARPA Subterranean Challenge
held in Louisville Mega Cavern, Louisville, KY. The course consisted of 3 different
environments - tunnel, urban, and cave. Figure 3.18 shows the course map and
different sections that the robot explored. The sections showcased in Figure 3.18
have a high difficulty rating as listed in the course layout guide posted by DARPA2.
The terrain challenges of each of the sections are listed below:

2The course guide can be accessed here: https://bitbucket.org/subtchallenge/
finals_ground_truth/src/master/course_design/Finals_Course_Callouts.pdf

https://bitbucket.org/subtchallenge/finals_ground_truth/src/master/course_design/Finals_Course_Callouts.pdf
https://bitbucket.org/subtchallenge/finals_ground_truth/src/master/course_design/Finals_Course_Callouts.pdf


40

Figure 3.17: Traversability analysis results for the Valentine Cave experiment. From
left to right: Third-person view, elevation map (colored by normal direction), risk
map (colored by risk level. white: safe (𝑟 <= 0.05), yellow to red: moderate
(0.05 < 𝑟 <= 0.5), black: risky (𝑟 > 0.5)), and planned geometric/kinodynamic
paths (yellow lines/red boxes).

Region A An office-like area that consists of narrow corridors (5′ × 8′) and small
rooms (8′ × 8′) for the robots to explore.

Region B A warehouse-like area with a lot of shelving and clutter imitating an
industrial warehouse after an earthquake.

Region C A connection between the urban and tunnel part of the course. The stairs
act as a negative obstacle for the wheeled robots. The presence of this negative
obstacle in a narrow corridor makes the drop harder to detect.

Region D A constrained passage with ground, wall, and ceiling obstacles - with
vertical pipes and debris.

Region E A narrow cave opening mimicking a region that humans have to crawl
through. The ground slopes upwards and the ceiling slopes downwards cre-
ating issues for ground segmentation and low-ceiling detection.
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Region F A small limestone cave with rubble and loose rock piles.

Figure 3.19 shows the results of the traversability analysis and the geometric and
kinodynamic plans of the robot in the different scenarios listed above. We see that
the robot is able to plan safe paths in all of these scenarios and successfully navigate
the different terrain hazards.

Figure 3.18: The layout of the competition course with snapshots of the systems
build of the areas traversed by the robots that have interesting terrain and high
difficulty.
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Figure 3.19: Traversability analysis results for the DARPA Subterranean Challenge.
From left to right: robot front camera view, elevation map (colored by normal di-
rection), risk map (colored by risk level- white: safe (𝑟 <= 0.05), yellow to red:
moderate (0.05 < 𝑟 <= 0.5), black: risky (𝑟 > 0.5)), and planned geometric/kino-
dynamic paths (yellow lines/red boxes).
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C h a p t e r 4

DISTRIBUTIONALLY-ROBUST MPC WITH TOTAL
VARIATION DISTANCE

The previous chapter considered risk-aware traversability evaluation in a priori un-
known environments. The risk-based cost map was used in the geometric and
kinodynamic planner directly in the cost and constraints. However, in the previous
chapter, we did not consider the theory behind the risk evaluation of the cost and
constraints used in the planning framework. This chapter studies a method to com-
pute control in the cases when the uncertainty distribution (like the distribution of
the process noise) is not known exactly, but is known to lie in a set of distributions.
Hence, this chapter studies the problem of distributionally robust model predictive
control (MPC) using total variation distance ambiguity sets. For a discrete-time
linear system with additive disturbances, we provide a conditional value-at-risk
reformulation of the MPC optimization problem that is distributionally robust in
the expected cost and chance constraints. The distributionally robust chance con-
straint (DRCC) is over-approximated as a simpler, tightened chance constraint that
reduces the computational burden. Numerical experiments support our results on
probabilistic guarantees and computational efficiency.

This chapter was adapted from:

Anushri Dixit, Mohamadreza Ahmadi, and Joel W. Burdick. Distributionally
robust model predictive control with total variation distance. IEEE Control Systems
Letters, 6:3325–3330, 2022. doi: 10.1109/LCSYS.2022.3184921.

4.1 Introduction and Background
There are many ways to incorporate uncertainty in MPC. Robust MPC accounts
for worst-case disturbances in a set of bounded uncertainties [16]. This approach
is often too conservative, since it does not account for the distribution of the un-
certainties. Stochastic MPC (SMPC) [93] minimizes the expected value of a cost
function, while respecting a bound on the probability of violating state and control
constraints (also called chance constraints). Risk-aware MPC methods use coherent
risk measures [37, 125] to account for variations in the underlying distribution of
uncertainty. This is convenient since one often only has an estimate of the true
uncertainty distribution. As discussed in the preliminaries, this notion of allowing
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for variation in the underlying distribution is called distributional robustness. It
is important to note that coherent risk measures have heretofore provided distribu-
tional robustness in the cost, but not in the chance constraints that one may need to
satisfy in SMPC. This chapter extends the use of coherent risk measures to provide
distributional robustness in the chance constraints.

The total variation distance (TVD) is a commonly used bounding metric on probabil-
ity spaces. Intuitively, it provides an upper bound on the difference of probabilities
that an event occurs under two measures [53], see Figure 4.1 for an illustration of
TVD. In [136], the authors provide a TVD-based distributionally robust solution
of the linear, quadratic regulator and use this formulation for a drop–shipping re-
tail fulfillment application. In [148], the authors consider a data-driven strategy to
solve iterative tasks using a MPC scheme. This framework is amenable to general
ambiguity sets, including TVD.

Definition 3 (Total Variation Distance Risk [120]) The total variation distance-
based risk measure for a cost random variable, 𝑋 is given by,

TVD1−𝛼 (𝑋) := sup
𝑄∈QTVD

𝐸𝑄 (𝑋) = 𝛼 sup
𝑥∈Ω

𝑥 + (1 − 𝛼)CVaR1−𝛼 (𝑋),

where the ambiguity set of TVD1−𝛼 (𝑋) is given by,

QTVD :=
{
𝑞 ∈ Δ𝐽 : 𝑑𝑇𝑉 (𝑝, 𝑞) =

1
2

𝐽∑︁
𝑗=1
|𝑞( 𝑗) − 𝑝( 𝑗) | ≤ 𝛼

}
,

where Δ𝐽 is the probability simplex, Δ𝐽 := {𝑞 ∈ R𝐽 | 𝑞 ≥ 0,
∑𝐽
𝑗=1 𝑞( 𝑗) = 1} and

𝑝 refers to the probability mass function associated with the random variable 𝑋 .
Gibbs and Su [53] survey the relationships between total variation and various other
probability metrics/distances.

We provide a deterministic approximation of a stochastic MPC optimization problem
with a distributionally robust objective and DRCC with TVD ambiguity sets for a
discrete distribution. This is achieved by over-approximating the DRCC in the form
of a simple, but more conservative, chance constraint that is further simplified using
CVaR. The objective is also reformulated as a CVaR objective. The resulting MPC
optimization is an efficient quadratic program.
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Figure 4.1: Depiction of the Total Variation Distance (TVD) between discrete
probability distributions. Our method is robust to any distribution within TVD ≤ 𝛼
of a nominal distribution, where 𝛼 ∈ (0, 1).

4.2 Problem formulation
We consider a class of discrete-time systems given by

x(𝑡 + 1) = 𝐴x(𝑡) + 𝐵u(𝑡) + 𝐷δ(𝑡) (4.1)

where x(𝑡) ∈ R𝑛𝑥 and u(𝑡) ∈ R𝑛𝑢 are the system state and controls at time 𝑡,
respectively. The system is affected by a stochastic, additive, process noise 𝜹𝑡 ∈ R𝑛𝑑 .

Assumption 1 (Discrete process noise) The process noise δ consists of i.i.d. sam-
ples of a discrete distribution given by the probability mass function (pmf), p =

[𝑝(1), 𝑝(2), . . . , 𝑝(𝐽)]𝑇 . For this distribution, we also define the index set D =

{1, . . . , 𝐽}.1

Consider there are 𝑟 state constraints that take the form

X := {x ∈ R𝑛𝑥 |𝐹𝑥x ≤ 𝑔𝑥}, 𝐹𝑥 ∈ R𝑟×𝑛𝑥 , 𝑔𝑥 ∈ R𝑟 .

In this work, we are interested in satisfying these state constraints in a distributionally
robust manner,

1 − 𝜖 ≤ min
𝑄∈Q
P𝑄 (x ∈ X)

= 1 −max
𝑄∈Q
P𝑄 (x ∉ X)

= 1 −max
𝑄∈Q
E𝑄 (1x∉X)

= 1 − 𝜌(1x∉X),

1The results in this work can be extended to continuous distributions using sample average
approximation [77] or other sample-based techniques [18].
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where we used the property that the probability of an event can be expressed as
the expected value of its indicator to express the DRCC as the risk of an indicator.
Hence,

min
𝑄∈QTVD

P𝑄 (x ∈ X) ≥ 1 − 𝜖 ⇐⇒ TVD1−𝛼 (1x∉X) ≤ 𝜖 . (4.2)

Problem 1 Consider the discrete-time system (5.1). Given a deterministic initial
condition x0 ∈ R𝑛𝑥 , state constraintsX ⊂ R𝑛𝑥 , convex polytopic control constraints
U ⊂ R𝑛𝑢 , a convex stage cost 𝑐 : R𝑛𝑥 × R𝑛𝑢 → R≥0, a horizon 𝑁 ∈ N, and risk
tolerance 𝜖 ∈ (0, 1) for state constraints, compute the receding horizon controller
u = {u𝑘 }𝑁−1

𝑘=0 such that the total cost J (𝑥(𝑡),u) is minimized while satisfying the
distributionally robust constraints (5.9), i.e., the solution to the following optimiza-
tion problem,

min
u

J (𝑥(𝑡),u) := TVD1−𝛼

( 𝑁−1∑︁
𝑘=0

𝑐(x𝑘 ,u𝑘 )
)

(4.3a)

s.t. x𝑘+1 = 𝐴x𝑘 + 𝐵u𝑘 + 𝐷δ𝑘 , (4.3b)

TVD1−𝛼 (1x𝑘∉X) ≤ 𝜖, (4.3c)

u𝑘 ∈ U, x0 = x(𝑡), ∀𝑘 ∈ {0, . . . 𝑁 − 1}, (4.3d)

where, x𝑘 = x(𝑡 + 𝑘 |𝑡) and u𝑘 = u(𝑡 + 𝑘 |𝑡).

4.3 MPC reformulation
The batch form of Equation (5.11b) can be re-written as

x𝑘+1 = 𝐴𝑘+1x0 +
𝑘∑︁
𝑖=0

(
𝐴𝑖𝐵u𝑘+1−𝑖 + 𝐴𝑖𝐷δ𝑘+1−𝑖

)
,

= 𝐴𝑘+1x0 +B𝑘+1ū𝑘+1 +D𝑘+1δ̄𝑘+1,

where, B𝑘 , ū𝑘 , D𝑘 , and δ̄𝑘 are given as,

B𝑘 =

[
𝐴𝑘−1𝐵 𝐴𝑘−2𝐵 . . . 𝐵

]
∈ R𝑛𝑥×𝑘𝑛𝑢

ū𝑘 =
[
u𝑇1 u𝑇2 . . . u𝑇

𝑘

]𝑇
∈ R𝑘𝑛𝑢×1

D𝑘 =

[
𝐴𝑘−1𝐷 𝐴𝑘−2𝐷 . . . 𝐷

]
∈ R𝑛𝑥×𝑘𝑛𝑑

δ̄𝑘 =
[
δ𝑇1 δ𝑇2 . . . δ𝑇

𝑘

]𝑇
∈ R𝑘𝑛𝑑×1.
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Clearly, as 𝑘 increases, the disturbance effects compound. At each step 𝑘 , the
distribution of x𝑘 is given by the joint distribution of (δ1, . . . , δk). Let p𝑘 denote
the probability mass function of this joint distribution. The size of this joint pmf is
𝐽𝑘 (see Assumption 1).

The following key result provides an over approximation of the DRCC for TVD
ambiguity sets.

Lemma 1 (Risk Reformulation) If Assumption 2 holds, then (5.11e) is satisfied if
the following constraint is satisfied,

P(x𝑘 ∉ X) + 𝛼 ≤ 𝜖 . (4.4)

Proof: We express the risk constraint through its dual representation. Note
that we are finding the worst-case expectation within the TVD-based risk envelope.
The distribution that gives us this worst-case expectation has the pmf q ◦ p𝑘 (where
◦ denotes element-wise multiplication) in the following optimization,

TVD1−𝛼 (1x𝑘∉X) = max
q

𝐽𝑘∑︁
𝑗=1
𝑞( 𝑗)𝑝𝑘 ( 𝑗)1x 𝑗

𝑘
∉X

s.t.
𝐽𝑘∑︁
𝑗=1
𝑞( 𝑗)𝑝𝑘 ( 𝑗) = 1, 𝑞( 𝑗) ≥ 0,

𝐽𝑘∑︁
𝑗=1

1
2
|𝑞( 𝑗)𝑝𝑘 ( 𝑗) − 𝑝𝑘 ( 𝑗) | ≤ 𝛼.

(4.5a)

= min
λ1∈R𝐽𝑘 ,_2,a∈R

max
q

L(λ1, _2, a)

s.t. λ1 ⪰ 0, _2 ≥ 0.
(4.5b)

where,L(λ1, _2, a) is the Lagrangian of the constrained optimization given in (4.5a)
given by,

L(λ1, _2, a) =
𝐽𝑘∑︁
𝑗=1
𝑞( 𝑗)

[
𝑝𝑘 ( 𝑗)1x 𝑗

𝑘
∉X + a𝑝𝑘 ( 𝑗) + _1( 𝑗)

]
− _2

( 𝐽𝑘∑︁
𝑗=1

𝑝𝑘 ( 𝑗) |𝑞( 𝑗) − 1|
𝑓 (𝑞( 𝑗))

−2𝛼
)
− a.
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The inner maximization of (4.5b) can be solved by using convex conjugate of the
function 𝑓 (𝑥) = |𝑥 − 1| given by,

𝑓 ∗(𝑦) =
{
𝑦 |𝑦 | ≤ 1
+∞ |𝑦 | > 1

.

Hence, we obtain

max
q
L(λ1, _2, a) = _2

𝐽𝑘∑︁
𝑗=1

𝑝𝑘 ( 𝑗) 𝑓 ∗
(
(_2𝑝𝑘 ( 𝑗))−1 (𝑝𝑘 ( 𝑗)1x 𝑗

𝑘
∉X + a𝑝𝑘 ( 𝑗) + _1( 𝑗)

) )+2_2𝛼−a.

Now we substitute the above convex conjugate 𝑓 ∗ into (4.5b)2,

TVD1−𝛼 (1x𝑘∉X)

= min
λ1,_2,a

𝐽𝑘∑︁
𝑗=1

(
𝑝𝑘 ( 𝑗)1x 𝑗

𝑘
∉X + a𝑝𝑘 ( 𝑗) + _1( 𝑗)

)
+ 2_2𝛼 − a

s.t. λ1 ⪰ 0, _2 ≥ 0,

− 1 ≤ (_2𝑝𝑘 ( 𝑗))−1 (𝑝𝑘 ( 𝑗)1x 𝑗

𝑘
∉X + a𝑝𝑘 ( 𝑗) + _1( 𝑗)

)
≤ 1

(4.6a)

= min
λ1,_2,a

P(x𝑘 ∉ X) + a +
𝐽𝑘∑︁
𝑗=1
_1( 𝑗) + 2_2𝛼 − a

s.t. λ1 ⪰ 0, _2 ≥ 0,

− _2𝑝𝑘 ( 𝑗) − a𝑝𝑘 ( 𝑗) − _1( 𝑗) ≤ 𝑝𝑘 ( 𝑗)1x 𝑗

𝑘
∉X ,

𝑝𝑘 ( 𝑗)1x 𝑗

𝑘
∉X ≤ _2𝑝𝑘 ( 𝑗) − a𝑝𝑘 ( 𝑗) − _1( 𝑗),

(4.6b)

≤ min
λ1,_2,a

P(x𝑘 ∉ X) +
𝐽𝑘∑︁
𝑗=1
_1( 𝑗) + 2_2𝛼

s.t. λ1 ⪰ 0, _2 ≥ 0,

− _2𝑝𝑘 ( 𝑗) − a𝑝𝑘 ( 𝑗) − _1( 𝑗) ≤ 0,

𝑝𝑘 ( 𝑗) ≤ _2𝑝𝑘 ( 𝑗) − a𝑝𝑘 ( 𝑗) − _1( 𝑗),

(4.6c)

= P(x𝑘 ∉ X) + 𝛼. (4.6d)

In the above equations, we first substituted 𝑓 ∗ and constrained the argument of the
conjugate to lie in [−1, 1] in (4.6a) considering that the conjugate is unbounded

2We can take the inverse of _2 in the conjugate because the solution of (4.5a) always lies on the
boundary of the TVD constraint

∑𝐽
𝑗=1

1
2 |𝑞( 𝑗)𝑝𝑘 ( 𝑗) − 𝑝𝑘 ( 𝑗) | ≤ 𝛼, i.e., the optimal _2 > 0.
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outside this range. Afterwards, we noted that

P(x𝑘 ∉ X) =
𝐽𝑘∑︁
𝑗=1

𝑝𝑘 ( 𝑗)1x 𝑗

𝑘
∉X ,

and re-arranged the inequality constraints on (_2𝑝𝑘 ( 𝑗))−1 (𝑝𝑘 ( 𝑗)1x 𝑗

𝑘
∉X + a𝑝𝑘 ( 𝑗) +

_1( 𝑗)
)

to obtain (4.6b).

Next, we make the following constraints stricter in (4.6c)

−_2𝑝𝑘 ( 𝑗) − a𝑝𝑘 ( 𝑗) − _1( 𝑗) ≤ 0 =⇒
−_2𝑝𝑘 ( 𝑗) − a𝑝𝑘 ( 𝑗)−_1( 𝑗) ≤ 𝑝𝑘 ( 𝑗)1x 𝑗

𝑘
∉X ,

𝑝𝑘 ( 𝑗) ≤ _2𝑝𝑘 ( 𝑗) − a𝑝𝑘 ( 𝑗) − _1( 𝑗) =⇒
𝑝𝑘 ( 𝑗)1x 𝑗

𝑘
∉X ≤ _2𝑝𝑘 ( 𝑗)−a𝑝𝑘 ( 𝑗) − _1( 𝑗),

to get a upper bound on (4.6b) that is independent of the state 𝑥 𝑗
𝑘
. Finally, we note

that (λ1, _2, a) = (0, 0.5,−0.5) satisfies the KKT condition [24] and hence is the
optimal solution to (4.6c) to complete the proof.

Remark 1 A natural interpretation of the tightening provided in Lemma 1 can be
seen in Figure 4.1: one could have predicted that the probability of constraint
violation can vary at most by 2𝛼. The above proof provides a state-independent way
to realize a similar tightening. It may be more conservative than the TVD constraint
value, but it simply approximates the distributionally robust chance constraint by a
more conservative chance constraint (with lower violation probability). If 𝛼 > 𝜖 ,
then the chance constraint becomes P(x𝑘 ∉ X) < 0, which is impossible to satisfy
and indicates that the conservativeness of the chance constraint should be reduced
by decreasing 𝛼 or increasing 𝜖 .

Lemma 2 If Assumption 2 holds, the TVD constraint (5.11e) is satisfied if the
following constraint is satisfied,

𝐹𝑥x̃𝑘 + CVaR𝜖−𝛼
(
𝐹𝑥D𝑘 δ̄𝑘

)
≤ 𝑔𝑥 , (4.7)

where x̃𝑘 is the undisturbed nominal state: x𝑘 = x̃𝑘 + 𝐷δ̄𝑘 .

Proof: In [100], Nemirovski and Shapiro showed that CVaR provides a convex
conservative approximation of the chance constraint. We have shown in Lemma 1
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that (5.11e) is satisfied if (4.4) holds. Hence, a conservative approximation of
P(x𝑘 ∉ X) = P(𝐹𝑥x𝑘 − 𝑔𝑥 > 0) ≤ 𝜖 − 𝛼 is given by,

0 ≥ CVaR𝜖−𝛼 (𝐹𝑥x𝑘 − 𝑔𝑥)
= CVaR𝜖−𝛼 (𝐹𝑥x̃𝑘 + 𝐹𝑥D𝑘 δ̄𝑘 − 𝑔𝑥))
= 𝐹𝑥x̃𝑘 − 𝑔𝑥 + CVaR𝜖−𝛼 (𝐹𝑥D𝑘 δ̄𝑘 ),

where we obtain the first step by plugging in x𝑘 = x̃𝑘 + 𝐷δ̄𝑘 and the next step
follows from the translational invariance property of coherent risk measures.

Lemmas 1, 2 provide a simple tightening of the state constraints (5.11e).

Remark 2 The chance constraint can be further tightened using the positive homo-
geneity property of coherent risk measures and i.i.d assumption on all disturbances,

𝐹𝑥x̃𝑘 + ∥𝐹𝑥𝐷∥1CVaR𝜖−𝛼 ( |𝛿 |) ≤ 𝑔𝑥 . (4.8)

This tightening further reduces the size of the optimization problem, as ∥𝐹𝑥𝐷∥1CVaR𝜖−𝛼 ( |𝛿 |)
can be expressed with approximately 𝐽𝑘 fewer optimization variables and 2𝐽𝑘 fewer
constraints for each 𝑘 ∈ {0, . . . 𝑁 − 1}when computed online.

Lemma 3 (Cost function) If the cost function given in (4.3a) is expressed as a
quadratic cost with

𝑐(x𝑘 ,u𝑘 ) = x𝑇𝑘𝑄x𝑘 + u
𝑇
𝑘𝑅u𝑘 ,

then the MPC cost J (x𝑡 ,u) is equivalently expressed as:

J (x𝑡 ,u)

= min
𝑚,𝑧,s

𝑁−1∑︁
𝑘=0
𝑐(x̃𝑘 ,u𝑘 )+𝛼𝑚+(1 − 𝛼)

𝐽𝑁∑︁
𝑗=1

𝑝𝑁 ( 𝑗)
(
𝑧+ 𝑠( 𝑗)

1 − 𝛼
) (4.9a)

s.t. 𝑚 ≥
𝑁−1∑︁
𝑘=0

(
D𝑘 δ̄

𝑗

𝑘
+ 2𝐴𝑘x0 + 2B𝑘ū𝑘

)𝑇
𝑄D𝑘 δ̄

𝑗

𝑘
, (4.9b)

𝑠( 𝑗) + 𝑧 ≥
𝑁−1∑︁
𝑘=0

(
D𝑘 δ̄

𝑗

𝑘
+ 2𝐴𝑘x0 + 2B𝑘ū𝑘

)𝑇
𝑄D𝑘 δ̄

𝑗

𝑘
, (4.9c)

𝑠( 𝑗) ≥ 0, ∀ 𝑗 ∈ {1, . . . , 𝐽𝑁 } (4.9d)
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Proof: Consider (4.3a) with a quadratic stage cost 𝑐(x𝑘 ,u𝑘 ).

J (x0,u) = TVD1−𝛼

(𝑁−1∑︁
𝑘=0

𝑐(x𝑘 ,u𝑘 )
)

= 𝛼 sup
(δ1, ..., δk)

𝑁−1∑︁
𝑘=0
𝑐(x𝑘 ,u𝑘 ) + (1 − 𝛼)CVaR1−𝛼

(𝑁−1∑︁
𝑘=0

𝑐(x𝑘 ,u𝑘 )
)

Our goal is to find the worst-case value and the CVaR of the total stage cost. Consider
the nominal state update equation,

x̃𝑘+1 = 𝐴𝑘+1x0 +B𝑘+1ū𝑘+1 (4.10)

We can write the quadratic stage cost as a function of the nominal state (without any
disturbance effects) as,

𝑐(x𝑘 ,u𝑘 ) = x𝑇𝑘𝑄x𝑘 + u
𝑇
𝑘𝑅u𝑘

= (𝐴𝑘x0 +B𝑘ū𝑘 +D𝑘 δ̄𝑘 )𝑇𝑄(𝐴𝑘x0 +B𝑘ū𝑘 +D𝑘 δ̄𝑘 ) + u𝑇𝑘𝑅u𝑘
= (𝐴𝑘x0 +B𝑘ū𝑘 )𝑇𝑄(𝐴𝑘x0 +B𝑘ū𝑘 ) + 2(𝐴𝑘x0)𝑇𝑄D𝑘 δ̄𝑘

+ 2(B𝑘ū𝑘 )𝑇𝑄D𝑘 δ̄𝑘 + (D𝑘 δ̄𝑘 )𝑇𝑄D𝑘 δ̄𝑘 + u𝑇𝑘𝑅u𝑘
= x̃𝑇𝑘𝑄x̃𝑘 + u

𝑇
𝑘𝑅u𝑘 + (D𝑘 δ̄𝑘 )𝑇𝑄D𝑘 δ̄𝑘 + 2(𝐴𝑘x0)𝑇𝑄D𝑘 δ̄𝑘 + 2(B𝑘ū𝑘 )𝑇𝑄D𝑘 δ̄𝑘

= 𝑐(x̃𝑘 ,u𝑘 ) +
(
D𝑘 δ̄𝑘 + 2𝐴𝑘x0 + 2B𝑘ū𝑘

)𝑇
𝑄D𝑘 δ̄𝑘 .

We know from the translational invariance property of coherent risk measures that,

TVD1−𝛼

(𝑁−1∑︁
𝑘=0

𝑐(x𝑘 ,u𝑘 )
)
=

𝑁−1∑︁
𝑘=0

𝑐(x̃𝑘 ,u𝑘 ) + TVD1−𝛼

(𝑁−1∑︁
𝑘=0

(
D𝑘 δ̄𝑘 + 2𝐴𝑘x0 + 2B𝑘ū𝑘

)𝑇
𝑄D𝑘 δ̄𝑘

)
.

Now, the above TVD is expressed as a combination of the worst-case value and the
CVaR. The worst-case value is,

sup
(δ1, ..., δk)

𝑁−1∑︁
𝑘=0

(
D𝑘 δ̄𝑘 + 2𝐴𝑘x0 + 2B𝑘ū𝑘

)𝑇
𝑄D𝑘 δ̄𝑘

= min
𝑚∈R

𝑚

s.t. 𝑚 ≥
𝑁−1∑︁
𝑘=0

(
D𝑘 δ̄

𝑗

𝑘
+ 2𝐴𝑘x0 + 2B𝑘ū𝑘

)𝑇
𝑄D𝑘 δ̄

𝑗

𝑘
∀ 𝑗 ∈ {1, . . . , 𝐽𝑁 }.

Hence the cost of the MPC can be rewritten as the minimization given by (4.9).

Using the reformulations afforded by Lemmas 1, 2, 3, we can reformulate the MPC
optimization given in (5.11).
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Theorem 4 If there exists a solution to the following quadratic program,

min
u,𝑚,𝑧,s

𝑁−1∑︁
𝑘=0

𝑐(x̃𝑘 ,u𝑘 ) + 𝛼𝑚 + (1 − 𝛼)
𝐽𝑁∑︁
𝑗=1

𝑝𝑁 ( 𝑗)
(
𝑧 + 𝑠( 𝑗)

1 − 𝛼

)
(4.11a)

s.t. x̃𝑘+1 = 𝐴x̃𝑘 + 𝐵u𝑘 , (4.11b)

𝐹𝑥x̃𝑘 + CVaR𝜖−𝛼
(
𝐹𝑥D𝑘 δ̄𝑘

) ≤ 𝑔𝑥 , (4.11c)

u𝑘 ∈ U, x̃0 = x(𝑡), (4.11d)

(4.9b), (4.9c), (4.9d), ∀𝑘 ∈ {0, . . . 𝑁 − 1}. (4.11e)

then the solution is a feasible solution of (5.11).

Proof: We showed in Lemmas 1, 2 that satisfying (4.11c) also satisfies (5.11e).
We further showed in Lemma 3 that the cost function can be reformulated as a min-
imization. Plugging this cost function into the original MPC gives us a min-min
optimization problem that can be combined into a one-layer optimization given
by (5.24). This is true because the feasible solution to the one-layer optimiza-
tion (5.24) must be a feasible solution for the min-min problem and vice versa.
Hence the optimal value of both optimizations must be equal.

4.4 Numerical Experiments
We compare our method, DRMPC given in (5.24) and tight DRMPC (TDRMPC)
that uses constraint (4.8) in place of (4.11c), against chance constrained stochastic
MPC (SMPC) methods that evaluate the chance constraint using mixed integer
variables as seen in [18, 89] and a CVaR MPC (CMPC) approach inspired by [63,
123, 125]. In [63], the authors consider a CVaR-constrained MPC whereas in [123]
the authors considered a CVaR cost. Similar to [125], although we don’t consider
dynamic risk, we consider CVaR cost and constraints in the MPC problem for the
most consistent comparison to our method. The MPC optimizations considered for
both these approaches are given below.
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min
u

E

( 𝑁−1∑︁
𝑘=0

𝑐(x𝑘 , 𝑢𝑘 )
)

(SMPC)

s.t. x𝑘+1 = 𝐴x𝑘 + 𝐵u𝑘 + 𝐷𝜹𝑘 ,

P(𝐹𝑥x𝑘 − 𝑔𝑥 > 0) ≤ 𝜖,

x0 = x(𝑡).

min
u

CVaR1−𝛼

( 𝑁−1∑︁
𝑘=0

𝑐(x𝑘 ,u𝑘 )
)

(CMPC)

s.t. x𝑘+1 = 𝐴x𝑘 + 𝐵u𝑘 + 𝐷𝜹𝑘 ,

CVaR𝜖 (𝐹𝑥x𝑘 − 𝑔𝑥) ≤ 0,

x0 = x(𝑡).

To illustrate the effectiveness and the advantages of the proposed method, we com-
pare it to chance constrained stochastic MPC and CVaR MPC. We perturb the
probability mass function of the disturbance to demonstrate the proposed method’s
distributional robustness. We look at a simple two-dimensional discrete system
x𝑘+1 = 𝐴x𝑘 + 𝐵𝑢𝑘 + 𝐷𝛿𝑘 , with

𝐴 =

[
1.0475 −0.0463
0.0463 0.9690

]
, 𝐵 = 𝐷 =

[
0.028
−0.0195

]
.

The control constraints are −20 ≤ 𝑢𝑘 ≤ 20, the state constraints are −
[
4 4

]𝑇
≤

x𝑘 ≤
[
4 4

]𝑇
, and the disturbance lies in the set 𝛿𝑘 ∈ {−1, 0, 1} with probabilities

p =

[
0.1 0.8 0.1

]
respectively. We run 100 random simulations for each value

of 𝜖 ∈ {0.09, 0.2, 0.5, 0.9} such that each simulation has 35 runs of the MPC
optimization. The initial system state, x0, lies somewhere between (3.1, 3.0)𝑇

and (4.1, 4.0)𝑇 . For each Monte-Carlo simulation, we randomly choose an initial
condition in this range.

Discussion: The results are summarized in Table 4.1. We have two comparisons
for each value of 𝜖 : the nominal case wherein we do not allow any perturbations to
the original distribution p of the disturbances (𝛼 = 0), and another allowing random
variations in the distribution pwith a total variation distance 𝛼. As seen in Table 4.1,
for the 100 simulations, the percentage of violation of the constraints is consistently
lower for the distributionally robust formulation. When 𝛼 = 0, the chance constraint
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ϵ 0.09 0.2 0.5 0.9
𝛼 0 0.05 0 0.15 0 0.4 0 0.8

V
io

la
tio

ns SMPC 3.08 3.17 11.9 12.2 14.6 15.9 23.4 24.1
CMPC 0 0 2.71 3.03 2.97 4.69 2.97 9.28

DRMPC 0 0 2.71 0 2.97 0 2.97 0
TDRMPC 0 0 0.69 0 2.7 0 2.89 0

C
os

t

SMPC 1.12 1.13 1.19 1.19 1.22 1.21 1.31 1.31
CMPC 1.1 1.11 1.13 1.12 1.19 1.18 1.21 1.23

DRMPC 1.1 1.1 1.13 1.01 1.19 1.1 1.21 1.1
TDRMPC 1.01 1.02 1.01 1.02 1.12 1.02 1.18 1.01

Table 4.1: Summary of results from Monte-Carlo simulations. The percentage of
constraint violations and the average cost of each simulation (×104) are compared.

and cost for CMPC and DRMPC are equivalent and the results are the same for
both. However, as soon as we allow for 𝛼 perturbations in the distribution of the
process noise, we see that DRMPC allows much fewer constraint violations and has
a consistently lower cost. The TDRMPC is even more risk-averse than DRMPC
due to further constraint tightening and we see the smallest percentage of constraint
violations with behaviors that have consistently lower cost than SMPC and CMPC.

Figure 4.2 depicts one such Monte-Carlo simulation. The constraint 𝑦𝑘 ≤ 4, where
𝑦 is the second component of our state x𝑘 , is violated by both the SMPC and
CVaR MPC controllers while the DRMPC and tight DRMPC controllers do not
violate constraints. However, this risk-averse behavior comes at the cost of slower
convergence to the origin.

The average times (in seconds) for each MPC iteration are

SMPC: 0.32,CMPC: 0.47,DRMPC: 0.54,TDRMPC: 0.11

run using YALMIP [86] and a Gurobi solver [60] in MATLAB (on a 2.7 GHz
Quad-Core Intel Core i7 processor). Thus, TDRMPC provides extra safety and
reduced computational effort compared to SMPC and CMPC (with essentially no
cost penalty in this example). These results motivate and justify our risk-based
chance constraint formulation with the novel constraint tightening approximations.
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Figure 4.2: Top: Comparison of the four controllers through visualization of one
of the 100 simulations (𝜖 = 0.5, 𝛼 = 0.4). Bottom: Yellow region of the top figure
zoomed in for clarity on the behavior near the boundary of the state constraint set,
𝑦𝑘 ≤ 4.
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C h a p t e r 5

RISK-AWARE MPC WITH DYNAMIC OBSTACLES

The previous chapters investigated the planning problem in static but extreme en-
vironments in the presence of sensor and localization uncertainty. This chapter
establishes a theoretical framework for risk-aware planning in the presence of mov-
ing obstacles. We study the problem of risk-averse receding horizon motion planning
for agents with uncertain dynamics, in the presence of stochastic, dynamic obstacles.
We propose a model predictive control (MPC) scheme that formulates the obstacle
avoidance constraint using coherent risk measures. To handle disturbances, or pro-
cess noise, in the state dynamics, the state constraints are tightened in a risk-aware
manner to provide a disturbance feedback policy. We also propose a waypoint
following algorithm that uses the proposed MPC scheme for discrete distributions
and prove its risk-sensitive recursive feasibility while guaranteeing finite-time task
completion. We further investigate some commonly used coherent risk metrics,
namely, conditional value-at-risk (CVaR), entropic value-at-risk (EVaR), and g-
entropic risk measures, and propose a tractable incorporation within MPC. We
illustrate our framework via simulation studies.

This chapter was adapted from:

Anushri Dixit, M. Ahmadi, and J. W. Burdick. Risk-Sensitive Motion Planning
using Entropic Value-at-Risk. In European Control Conference, 2021. URL
https://arxiv.org/abs/2011.11211.

Anushri Dixit, Mohamadreza Ahmadi, and Joel W. Burdick. Risk-Averse Receding
Horizon Motion Planning. 2022.

5.1 Introduction
Autonomous robots must increasingly plan motions in unstructured and uncertain
environments with safety guarantees. Some applications where safe planning is
required include autonomous traversal over extreme terrain in GPS-denied subter-
ranean environments [23, 41], inspection of planetary environments [34], search
and rescue missions caused by natural disasters [96, 118], and autonomous driv-
ing [113]. These applications present challenges at all the levels of planning and
control [114]. The lowest control level requires a good physical model for accurate

https://arxiv.org/abs/2011.11211
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motion prediction. To ensure robustness and safety, these models are often equipped
with low-level controllers that leverage tools from robust control and invariant set
theory [8]. At the intermediate level, algorithms must plan paths that are dynam-
ically feasible, obstacle-free, and account for uncertainty in the motion dynamics,
sensor measurements, and the environment. Several existing algorithms (model
predictive control and A*-based graph planners to name a few) tackle some or all of
these issues [19, 71]. At the highest level, robots must reason about their (uncertain)
environment and decide on what tasks to do. Partially Observable Markov Decision
Processes (POMDPs) are popular models for such sequential planning tasks [76].
Our work looks at the problem of obstacle avoidance using model predictive control
(MPC) techniques.

This chapter provides a framework for risk-averse model predictive control with
obstacle avoidance constraints. This work allows for a linear discrete-time system
to be affected by both process noise as well as measurement noise in the sensing of
obstacle position and orientation. The control input is parameterized as a disturbance
feedback policy. Additionally, the MPC scheme in this work allows for a general
class of coherent risk measures. Coherent risk measures can be expressed as a
distributionally-robust expectation, i.e, the risk is equivalently expressed as the
worst-case expectation over a convex, closed set of distributions, as discussed in
the Preliminaries. We use this property of distributional robustness extensively
throughout this chapter. We reformulate the risk-aware MPC with obstacle avoidance
constraints as a convex, mixed-integer program.

Notation: We denote by R𝑛 the 𝑛-dimensional Euclidean space, R≥0 the non-
negative reals, and Z≥0 the set of non-negative integers. The index set, {𝑘, 𝑘 +
1, . . . , 𝑘 + 𝑁} is denoted by Z𝑘+𝑁

𝑘
. Throughout the chapter, a bold font denotes a

vector and (·)⊤ is its transpose, e.g., a = (𝑎1, . . . , 𝑎𝑛)⊤, with 𝑛 ∈ {1, 2, . . .}. For
vector a, we use a ⪰ (⪯)0 to denote element-wise non-negativity (non-positivity),
a ≡ 0 to show all elements of a are zero, and |a| to denote the element-wise
absolute value of a. For vectors 𝑎, 𝑏 ∈ R𝑛, we denote their inner product by ⟨a, b⟩,
i.e., ⟨a, b⟩ = a⊤b. For a finite set A, denote its power set 2A . For a probability
space (Ω, F , P) and a constant 𝑝 ∈ [1,∞), L𝑝 (Ω, F , P) denotes the vector space
of real valued random variables 𝑋 for which E|𝑋 |𝑝 < ∞. For probability density
functions 𝑃(𝑋) and 𝑄(𝑋), 𝑃 ≪ 𝑄 implies that 𝑃 is absolutely continuous with
respect to 𝑄, i.e., if 𝑄(𝑋) = 0, then 𝑃(𝑋) = 0.

We follow the following convention for indices that appear most commonly as
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sub/superscripts in this chapter:

• 𝑘 indicates the state at time 𝑡 + 𝑘 , x𝑘 = x(𝑡 + 𝑘 |𝑡),

• 𝑗 denotes the values associated with the 𝑗 th possible occurrence of the random
variable (from the sample space),

• 𝑙, 𝑖 represent the 𝑙th obstacle and the 𝑖th edge of the obstacle respectively.

5.2 Problem Statement
We consider a class of discrete-time dynamical systems given by

x(𝑡 + 1) = 𝐴x(𝑡) + 𝐵u(𝑡) + 𝐷δ(𝑡),
y(𝑡) = 𝐶x(𝑡),

(5.1)

where x(𝑡) ∈ R𝑛𝑥 , y(𝑡) ∈ R𝑛𝑦 , and u(𝑡) ∈ R𝑛𝑢 are the system state, output, and
controls at time 𝑡, respectively. The system is affected by a stochastic, additive,
process noise δ(𝑡) ∈ R𝑛𝑥 . In fact, the noise term δ can represent exogenous
disturbances or unmodeled dynamics (see the case study in [5] for such modeling
method applied to bipedal robots). We posit the following assumption about the
process noise.

Assumption 2 (Discrete process noise) The process noise δ is assumed to consist
of i.i.d. samples of a discrete distribution given by the probability mass function
(pmf), 𝑝𝛿 = [𝑝𝛿 (1), 𝑝𝛿 (2), . . . , 𝑝𝛿 (𝐽𝛿)]𝑇 . For this distribution, we also define the
index set D = Z𝐽𝛿1 .

We also consider 𝐿 moving obstacles with index 𝑙 ∈ Z𝐿1 that can be approximated
by a convex polytope defined by 𝑚𝑙 half-spaces in R𝑛𝑥

Ō𝑙 (𝑡) = {o ∈ R𝑛𝑥 | c𝑇𝑖,𝑙 (o − a𝑙 (𝑡)) ≤ d𝑖,𝑙 , ∀𝑖 ∈ Z𝑚𝑙

1 }. (5.2)

We allow each polytopic obstacle Ō𝑙 , 𝑙 ∈ Z𝐿1 , centered at a𝑙 at time 𝑡 to move
randomly w.r.t. the nominal trajectory. The random set defining obstacle Ō𝑙 ,
𝑙 ∈ Z𝐿1 , at time 𝑡 can be written as a random rotation 𝑅𝑙 and random translation 𝑤𝑙
of Ō𝑙 . Hence, we can rewrite the obstacle at time 𝑡 as a random set, O𝑙 , as

O𝑙 (𝑡) = 𝑅𝑙 (𝑡)Ō𝑙 (𝑡) +w𝑙 (𝑡)

=

{
o′ = 𝑅𝑙 (𝑡) (o − a𝑙 (𝑡)) + a𝑙 (𝑡) +w𝑙 (𝑡) | c𝑇𝑖,𝑙o ≤ d𝑖,𝑙 , ∀𝑖 ∈ Z𝑚𝑙

1

}
=

{
o′ | c𝑇𝑖,𝑙

(
𝑅𝑙 (𝑡)−1 (o′ − a𝑙 (𝑡) −w𝑙 (𝑡)

)
+ a𝑙 (𝑡)

)
≤ d𝑖,𝑙 , ∀𝑖 ∈ Z𝑚𝑙

1

}
.

(5.3)
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Figure 5.1: A representation of the environment for the motion planning problem.
The light blue polytopes, Ō(𝑡), represent the nominal obstacle set centered at the
nominal trajectory a𝑙 (𝑡). We allow for random rotations and translations about this
trajectory. This random obstacle set is given by the darker blue polytope O(𝑡). The
safe set, S𝑙 (𝑡), is the region outside the obstacle set. The goal of the drone in the
figure is to plan a path to the terminal set X𝐹 .

In other words, we allow the 𝑙th obstacle moving with the nominal trajectory a𝑙 (𝑡)
to rotate and translate randomly. The random movement of the obstacle about the
nominal trajectory is described by the set O𝑙 (𝑡) in the above equations.

Assumption 3 (Discrete measurement noise) The random rotations and transla-
tions are sampled from a joint probability distribution whose sample space has
cardinality 𝐽𝑜, i.e., Ω𝑙 = {(𝑅1

𝑙
,w1

𝑙
), . . . , (𝑅𝐽

𝑙
,w𝐽𝑜

𝑙
)}. A random rotation and trans-

lation is picked from this set with pmf given by 𝑝𝑙 = [𝑝𝑙 (1), 𝑝𝑙 (2), . . . , 𝑝𝑙 (𝐽𝑜)]𝑇 .
For this distribution, we also define the index set J = {1, . . . , 𝐽𝑜}.

The nominal safe set is defined as the region outside of the polytopic obstacles

S̄𝑙 (𝑡) = R𝑛𝑦\Ō𝑙 (𝑡)
=

{
o | ∃𝑖 ∈ Z𝑚𝑙

1 , 𝑐
𝑇
𝑖,𝑙 (o − a𝑙 (𝑡)) ≥ 𝑑𝑖,𝑙

}
.

(5.4)

Similarly, the random safe set is given byS𝑙 (𝑡) = R𝑛𝑦\O𝑙 (𝑡). For obstacle avoidance,
we are interested in the minimum distance to the safe set,

Z (y(𝑡),S𝑙 (𝑡)) = dist(y(𝑡),S𝑙 (𝑡)) := min
z∈S𝑙 (𝑡)

| |y(𝑡) − z | |. (5.5)

Our goal is to bound the risk of collision with the randomly moving obstacles by
evaluating the distance from the probabilistic safe set (which is the complement of
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the obstacle set) and constraining it to be below a threshold, 𝜖𝑙 ,

𝜌1−𝛼
[
Z (y(𝑡),S𝑙 (𝑡))] ≤ 𝜖𝑙 , ∀𝑙 ∈ Z𝐿1 . (5.6)

The obstacle avoidance constraint (5.6) is a risk safety constraint with confidence
level 𝛼 and risk tolerance (also referred to as risk threshold) 𝜖𝑙 for each obstacle 𝑙 ∈
Z𝐿1 . Note that this implies that we allow the coherent risk of the distance from the
safe set to be at most 𝜖𝑙 in 1 − 𝛼 worst realizations. Henceforth, we represent 𝜌1−𝛼

as 𝜌 for simplicity.

Let the state constraints take the form X := {𝑥 ∈ R𝑛𝑥 |𝐹𝑥𝑥 ≤ 𝑔𝑥}, 𝐹𝑥 ∈ R𝑟×𝑛𝑥 , 𝑔𝑥 ∈
R𝑟 , which can represent physical constraints on a robot. Given that the system is
subject to noise 𝛿, we want to satisfy the following state constraints in the risk-averse
sense:

𝜌( 𝑓 𝑇𝑥,𝑛𝑥(𝑡 + 𝑘 |𝑡) − 𝑔𝑥,𝑛) ≤ 𝜖𝑥 , ∀𝑘 ∈ Z𝑁1 , 𝑛 ∈ Z
𝑟
1, (5.7)

where 𝐹𝑥 =

[
𝑓 𝑇
𝑥,1 𝑓 𝑇

𝑥,2 . . . 𝑓 𝑇𝑥,𝑟

]𝑇
, 𝑔𝑥 =

[
𝑔𝑇
𝑥,1 𝑔𝑇

𝑥,2 . . . 𝑔𝑇𝑥,𝑟

]𝑇
. We write this

constraint in shorthand as, 𝜌(x𝑘 ∉ X) ≤ 𝜖𝑥 .

Similarly, we consider control constraints of the form U := {u ∈ R𝑛𝑢 |𝐹𝑢u ≤
𝑔𝑢}, 𝐹𝑢 ∈ R𝑠×𝑛𝑢 , 𝑔𝑢 ∈ R𝑠, for example, representing actuator limitations, and we
want to satisfy the following risk constraint

𝜌( 𝑓 𝑇𝑢,𝑛𝑢(𝑡 + 𝑘 |𝑡) − 𝑔𝑢,𝑛) ≤ 𝜖𝑢, ∀𝑘 ∈ Z𝑁−1
0 , 𝑛 ∈ Z𝑠1, (5.8)

where 𝐹𝑢 =

[
𝑓 𝑇
𝑢,1 𝑓 𝑇

𝑢,2 . . . 𝑓 𝑇𝑢,𝑠

]𝑇
, 𝑔𝑢 =

[
𝑔𝑇
𝑢,1 𝑔𝑇

𝑢,2 . . . 𝑔𝑇𝑢,𝑠

]𝑇
. We write this

constraint in shorthand as, 𝜌(u𝑘 ∉ U) ≤ 𝜖𝑢.

Note that the uncertainty in the control input u arises from the description of the
control policy as a function of the disturbances. This disturbance feedback policy
will be elaborated upon shortly. If we choose to have hard constraints on the control
input, the risk level can be set to a conservative value, 𝛼 → 1, for the control
constraints. For ease of presentation, we keep the risk level constant across all the
constraints.

Lastly, we also consider terminal constraints of the form X𝐹 := {x ∈ R𝑛𝑥 |𝐹 𝑓x ≤
𝑔 𝑓 }, 𝐹 𝑓 ∈ R𝑣×𝑛𝑥 , 𝑔 𝑓 ∈ R𝑣 and we want to satisfy,

𝜌( 𝑓 𝑇𝑓 ,𝑛𝑥(𝑡 + 𝑁 |𝑡) − 𝑔 𝑓 ,𝑛) ≤ 𝜖 𝑓 , ∀𝑛 ∈ Z
𝑣
1 (5.9)

where, 𝐹 𝑓 =

[
𝑓 𝑇
𝑓 ,1 𝑓 𝑇

𝑓 ,2 . . . 𝑓 𝑇
𝑓 ,𝑣

]𝑇
, 𝑔 𝑓 =

[
𝑔𝑇
𝑓 ,1 𝑔𝑇

𝑓 ,2 . . . 𝑔𝑇
𝑓 ,𝑣

]𝑇
. We write

this constraint in shorthand as, 𝜌(x𝑁 ∉ X𝐹) ≤ 𝜖 𝑓 .
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Remark 3 The total number of risk constraints are 𝐿 + 𝑟 + 𝑠 + 𝑣 for 𝐿 obstacles, 𝑟
state constraints, 𝑠 control constraints, and 𝑣 terminal constraints. With some abuse
of notation, we write the risk 𝜌1−𝛼 to mean the adjusted risk level 1 − 𝛼′ such that,

1 − 𝛼′ = (1 − 𝛼)
𝐿 + 1

where 𝛼 is the risk confidence level of the entire system and 𝛼′ is the adjusted risk
level for the risk constraints and cost to attain the true confidence 𝛼.

Assumption 4 We assume that the measures of risk (used for safety, state, and
control constraints and the cost function) are coherent risk measures that can be
represented in their dual form as:

𝜌(𝑋) := sup
𝑄∈Q

𝐸𝑄 (𝑋),

where,Q is a convex, closed set that we represent asQ =
{
g(𝑞, 𝛼) ≤ 0,

∑𝐽
𝑗=1 𝑝( 𝑗)𝑞( 𝑗) =

1, 𝑞( 𝑗) ≥ 0, ∀ 𝑗 ∈ J
}
, and g(𝑞, 𝛼) is a convex function in 𝑞. We assume that if

g(𝑞, 𝛼) is of dimension > 1, all its elements constitute a single function applied to
all the components of 𝑞 separately. We also assume that 𝛼→ 0 corresponds to the
risk-neutral case with 𝜌(𝑋) → E(𝑋) and 𝛼→ 1 corresponds to worst case (robust)
with 𝜌(𝑋) → max 𝛿.

In this work, we parameterize the control policy as an affine function of the pro-
cess noise, i.e., we solve for a disturbance feedback policy. In [147], the authors
reduced the number of decision variables during the computation of the affine dis-
turbance feedback policy and showed that for a linear, time-invariant system, this
policy is equivalent to using state feedback policies. We apply this simplified affine
disturbance feedback (SADF) as,

𝑢𝑘 =

𝑘−1∑︁
𝑚=0

𝐾𝑘−𝑚𝛿𝑚 + [𝑘 , (5.10a)

=⇒ u𝑁 = K𝑁δ𝑁 + η𝑁 , (5.10b)

where, 𝑢𝑖 is an affine function of the disturbances, 𝛿, from time 𝑡 to 𝑡+𝑖, 𝐾𝑘−𝑚, [𝑘 are
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the decision variables in the MPC optimization, and for a 𝑁 step (horizon) problem,

K𝑁 =


0 . . . . . . 0 0
𝐾1 0 . . . 0 0
...

. . .
. . . 0 0

𝐾𝑁−1 𝐾𝑁−2 . . . 𝐾1 0


u𝑁 =

[
𝑢0 𝑢1 . . . 𝑢𝑁−1

]𝑇
δ𝑁 =

[
𝛿0 𝛿1 . . . 𝛿𝑁−1

]𝑇
η𝑁 =

[
[0 [1 . . . [𝑁−1

]𝑇
.

We are now ready to present the problem we are interested in solving in this chapter.

Problem 2 Consider the discrete-time dynamical system (5.1) and the randomly
moving obstacles𝑂𝑙 , 𝑙 ∈ Z𝐿1 , as defined in (5.2) and (5.3). Given an initial condition
𝑥0 ∈ R𝑛𝑥 , a goal set X𝑓 ⊂ R𝑛𝑥 , state constraints X ⊂ R𝑛𝑥 , control constraints
U ⊂ R𝑛𝑢 , an immediate convex cost function 𝑟 : R𝑛𝑥 × R𝑛𝑢 → R≥0, a horizon
𝑁 ∈ N≥0, and risk tolerances 𝜖𝑙 , 𝜖𝑥 , 𝜖𝑢, 𝜖𝐹 , for for obstacle, state, control and
terminal constraints respectively, compute the receding horizon controller {𝑢𝑘 }𝑁−1

𝑘=0
such that 𝑥(𝑡 + 𝑁) ∈ X𝑓 while satisfying the risk-sensitive safety constraints (5.6),
i.e., the solution to the following problem

min
K𝑁 ,η𝑁

𝐽 (𝑥(𝑡),u) := 𝜌1−𝛼

( 𝑁−1∑︁
𝑘=0
(𝑟 (x𝑘 ,u𝑘 )

)
(5.11a)

s.t. x𝑘+1 = 𝐴x𝑘 + 𝐵u𝑘 + 𝐷𝛿𝑘 , (5.11b)

y𝑘 = 𝐶x𝑘 , (5.11c)

𝑢𝑘 =

𝑘−1∑︁
𝑚=0

𝐾𝑘−𝑚𝛿𝑚 + [𝑖, (5.11d)

𝜌1−𝛼 (x𝑘+1 ∉ X) ≤ 𝜖𝑥 , (5.11e)

𝜌1−𝛼 (u𝑘 ∉ U) ≤ 𝜖𝑢, (5.11f)

𝜌1−𝛼
(
Z (y𝑘 ,S𝑙 (𝑡 + 𝑘))

)
≤ 𝜖𝑙 ,∀𝑙 ∈ Z𝐿1 , (5.11g)

𝜌1−𝛼 (𝑥𝑁 ∉ X𝐹) ≤ 𝜖 𝑓 , (5.11h)

x0 = x(𝑡). (5.11i)

Note that although the obstacles O𝑙 are assumed to be convex polytopes (5.2), the
safe set S𝑙 (𝑡 + 𝑘) in (5.4) is nonconvex in y𝑘 . Hence, the minimum distance to
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S𝑙 (𝑡 + 𝑘), Z (y𝑘 ,S𝑙 (𝑡 + 𝑘)), is also nonconvex in y𝑘 . Therefore, the risk-sensitive
safety constraint (5.11g) is a nonconvex constraint in the decision variable 𝑢, which
renders optimization problem (5.11) nonconvex as well.

The next section will reformulate the state, control, and safety constraints (5.11e),
(5.11f), (5.11g) in order to obtain a convex mixed-integer relaxation of (5.11), which
yields locally optimal solutions. Nonetheless, every such locally optimal solutions
satisfies the constraints of optimization (5.11) including the risk-sensitive safety
constraint (5.11g).

5.3 Risk-Constrained Receding Horizon Planning
This section breaks down the receding horizon control problem into several parts.
First, we modify the state and control constraints by finding efficient approximations
that rigorously satisfy the risk constraints. Next, we specifically look at a tractable
reformulation of the risk-obstacle avoidance constraint. Note that the risk-averse
state and control constraint tightening can be computed offline because it depends
only on the risk from the process noise. On the other hand, the risk-averse obstacle
avoidance constraint depends on the distance of the system from the obstacle, which
is constantly varying and hence needs to be computed online. We then rewrite
the non-convex safe set as a set of mixed-integer constraints. We reformulate the
terminal constraint by adding discrete states such that we can reach the goal in
finite-time. Finally, we provide an efficient, tractable reformulation of the risk cost
function. Note that the proofs of the lemmas and propositions are provided in the
Appendix.

State and Control Constraint Tightening
Lemma 5 (Tightened state constraint) Assuming the control policy (5.11d), a
tightened set of state constraints,

𝑓 𝑇𝑥,𝑛
(
𝐴𝑘𝑥0 +B𝑘η𝑘

)
+ ∥ 𝑓 𝑇𝑥,𝑛

(
B𝑘K𝑘 +D𝑘

)
∥1𝜌( |𝛿 |) ≤ 𝜖𝑥 + 𝑔𝑥,𝑛, ∀𝑘 ∈ Z𝑁1 , 𝑛 ∈ Z

𝑟
1

(5.12)
where, B𝑘 =

[
𝐴𝑘−1𝐵 𝐴𝑘−2𝐵 . . . 𝐵

]
, and D𝑘 =

[
𝐴𝑘−1𝐷 𝐴𝑘−2𝐷 . . . 𝐷

]
,

guarantees that (5.11e) holds.

Proof: First, rewrite the risk state constraint (5.9) as,

𝜌( 𝑓 𝑇𝑥,𝑛 (𝐴𝑘𝑥0 +B𝑘u𝑘 +D𝑘δ𝑘 ) − 𝑔𝑥,𝑛) ≤ 𝜖𝑥 , ∀𝑘 ∈ Z𝑁1 , 𝑛 ∈ Z
𝑟
1
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where, B𝑘 =

[
𝐴𝑘−1𝐵 𝐴𝑘−2𝐵 . . . 𝐵

]
, and D𝑘 =

[
𝐴𝑘−1𝐷 𝐴𝑘−2𝐷 . . . 𝐷

]
.

We replace u𝑘 with the SADF control policy (5.11d),

𝜖𝑥 ≥ 𝜌
(
𝑓 𝑇𝑥,𝑛

(
𝐴𝑘𝑥0 +B𝑘 (η𝑘 +K𝑘δ𝑘 ) +D𝑘δ𝑘

)
− 𝑔𝑥,𝑛

)
= 𝑓 𝑇𝑥,𝑛

(
𝐴𝑘𝑥0 +B𝑘η𝑘

)
+ 𝜌

(
𝑓 𝑇𝑥,𝑛 (B𝑘K𝑘 +D𝑘 )δ𝑘

)
− 𝑔𝑥,𝑛

= 𝑓 𝑇𝑥,𝑛
(
𝐴𝑘𝑥0 +B𝑘η𝑘

)
+ 𝜌

(
𝑓 𝑇𝑥,𝑛

𝑘−1∑︁
𝑚=0

(
𝐴𝑘−𝑚−1(𝐵𝐾𝑘−𝑚 + 𝐷)

)
𝛿𝑚

)
− 𝑔𝑥,𝑛

(5.13)

The second term on the right-hand side of the above inequality can be simplified
by using the subadditivity, monotonicity, and positive homogeneity properties of
coherent risk measures and then i.i.d. nature of the disturbances respectively,

𝜌

(
𝑓 𝑇𝑥,𝑛

𝑘−1∑︁
𝑚=0

(
𝐴𝑘−𝑚−1(𝐵𝐾𝑘−𝑚 + 𝐷)

)
𝛿𝑚

)
≤

𝑘−1∑︁
𝑚=0

𝜌

(
𝑓 𝑇𝑥,𝑛

(
𝐴𝑘−𝑚−1(𝐵𝐾𝑘−𝑚 + 𝐷)

)
𝛿𝑚

)
(Subadditivity)

≤
𝑘−1∑︁
𝑚=0

𝜌

(
| 𝑓 𝑇𝑥,𝑛

(
𝐴𝑘−𝑚−1(𝐵𝐾𝑘−𝑚 + 𝐷)

)
| |𝛿𝑚 |

)
(Monotonicity)

≤
𝑘−1∑︁
𝑚=0
| 𝑓 𝑇𝑥,𝑛

(
𝐴𝑘−𝑚−1(𝐵𝐾𝑘−𝑚 + 𝐷)

)
| 𝜌( |𝛿𝑚 |) (Positive Homogeneity)

≤ ∥ 𝑓 𝑇𝑥,𝑛
(
B𝑘K𝑘 +D𝑘

)
∥1𝜌( |𝛿 |). (i.i.d disturbances)

Hence, satisfying the tightened constraint (5.12) implies satisfaction of the state
constraint (5.9).

The above tightening is useful because 𝜌( |𝛿 |) is independent of the disturbance
feedback matrices. Hence, 𝜌( |𝛿 |) can be computed offline.

Similarly, input constraints of the form (5.11f) are enforced as,

𝑓 𝑇𝑢,𝑛ηi + ∥ 𝑓 𝑇𝑢,𝑛K𝑘 ∥1𝜌( |𝛿 |) ≤ 𝜖𝑢 + 𝑔𝑢,𝑛, 𝑘 ∈ Z𝑁−1
0 , 𝑛 ∈ Z𝑠1, (5.14)

and terminal constraints of the form (5.11h) are enforced as,

𝑓 𝑇𝑓 ,𝑛
(
𝐴𝑁𝑥0 +B𝑁η𝑁

)
+ ∥ 𝑓 𝑇𝑓 ,𝑛

(
B𝑁K𝑁 +D𝑁

)
∥1𝜌( |𝛿 |) ≤ 𝜖 𝑓 + 𝑔 𝑓 ,𝑛, ∀𝑛 ∈ Z𝑣1.

(5.15)

Now we reformulate the risk that arises from the moving obstacle (5.11g). This
safety constraint is given by,

𝜌
[
Z (y𝑘 ,S𝑙 (𝑡 + 𝑘))] = 𝜌

(
min

z∈S𝑙 (𝑡+𝑘)
| |y(𝑡 + 𝑘 |𝑡) − z | |

)
≤ 𝜖𝑙 , ∀𝑙 ∈ Z𝐿1 (5.16)
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In (5.16), the safe set at time 𝑡 + 𝑘 , S𝑙 (𝑡 + 𝑘), is a random variable that is a function
of the discrete measurement noise and the output, y(𝑡 + 𝑘 |𝑘), is a random variable
that is a function of the process noise (𝛿0, 𝛿1, . . . , 𝛿𝑘 ). Hence the distance of the
output y𝑘 from the safe set is given by a random variable, Z (y𝑘 ,S𝑙 (𝑡 + 𝑘)), that has
a joint distribution of the measurement and process noise. This joint distribution
has a sample space of cardinality 𝐽 = |D|𝑘 |J | = (𝐽𝛿)𝑘𝐽𝑜 and a pmf given by
p = [𝑝(1), 𝑝(2), . . . , 𝑝(𝐽)]𝑇 .

Lemma 6 (Safety Constraint Reformulation) If Assumptions 3 and 4 hold, then
the L.H.S. of constraint (5.11g) is equivalent to

min
λ1,_2,a,ℎ𝑙,𝑘

_2𝑔
∗
(
_−1

2
(
p(ℎ𝑙,𝑘 + a) + λ1

) )
− a

s.t. λ1 ⪰ 0, _2 ≥ 0,

y𝑘 +
c𝑖,𝑙
| |c𝑖,𝑙 | |

ℎ
𝑗

𝑙,𝑘
∈ S 𝑗

𝑙
(𝑡 + 𝑘), ∀ 𝑗 ∈ Z𝐽1, ∃𝑖 ∈ Z

𝑚𝑙

1 ,

(5.17)

where, λ1 ∈ R𝐽 , _2, a, ℎ𝑙,𝑘 ∈ R and 𝑔∗ is the convex conjugate [17] of the convex
function 𝑔 that describes the risk envelope of a coherent risk measure.

Proof: To find the distance of y𝑘 from the safe set, Z (y𝑘 ,S𝑙 (𝑡 + 𝑘)), we define
a set of variables ℎ 𝑗

𝑙,𝑘
≥ 0, 𝑙 ∈ Z𝐿1 and 𝑘 = 0, . . . , 𝑁 − 1 satisfying

y𝑘 +
c𝑖,𝑙
| |c𝑖,𝑙 | |

ℎ
𝑗

𝑙,𝑘
= z (5.18)

∀ 𝑗 ∈ Z𝐽1,∀𝑘 ∈ Z
𝑁−1
0 and for some 𝑖 ∈ Z𝑚𝑙

1 , which is the distance from each y𝑘 to
a point z ∈ X. If z ∈ S 𝑗

𝑙
(𝑡 + 𝑘), then minimizing ℎ𝑙,𝑘 defines the line segment

connecting y𝑘 and z, which is the minimum distance to the setS 𝑗
𝑙
(𝑡 + 𝑘). Therefore,

Z (y𝑘 ,S𝑙 (𝑡 + 𝑘)) = min
z∈S𝑙 (𝑡+𝑘)

| |y(𝑡 + 𝑘) − z | |

=

{
minℎ𝑙,𝑘 ℎ𝑙,𝑘

s.t. y𝑘 + c𝑖,𝑙
| |c𝑖,𝑙 | | ℎ

𝑗

𝑙,𝑘
∈ S 𝑗

𝑙
(𝑡 + 𝑘),

(5.19)

and we denote ℎ∗
𝑙,𝑘

as the solution to (5.19).

Next, substitute the dual form of coherent risk measures (given by the representation
theorem) from (2.5) into the L.H.S. of (5.11g). Then, replace the risk envelope Q
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with the convex representation given in Assumption 4. That is, 𝜌(Z (y𝑘 ,S𝑙 (𝑡+𝑘))) =
max𝑄∈Q E𝑄

[
Z (y𝑘 ,S𝑙 (𝑡 + 𝑘))

]
= max𝑄∈Q E𝑄

[
ℎ∗
𝑙,𝑘

]
, where (5.19) is used.

max
𝑞(1),...,𝑞(𝐽)

E𝑄
[
ℎ∗𝑙,𝑘

]
s.t. 𝑔(𝑞) ≤ 0, −𝑞( 𝑗) ≤ 0, ∀ 𝑗 ∈ Z𝐽1,∑︁

𝑗∈Z𝐽1

𝑝( 𝑗)𝑞( 𝑗) = 1.
(5.20)

The dual of this problem is given by,

min
λ1,_2,a

max
q

{ ∑︁
𝑗∈Z𝐽1

[
𝑞( 𝑗)𝑝( 𝑗)ℎ∗𝑙,𝑘 + _

𝑗

1𝑞( 𝑗) + a𝑝( 𝑗)𝑞( 𝑗)
]
− _2𝑔(𝑞) − a

}
s.t. λ1 ⪰ 0, _2 ≥ 0,

(5.21)

where, λ1 =

[
_1

1, . . . , _
𝐽
1

]
∈ R𝐽 , _2 and a ∈ R are the dual variables. We conclude

that (5.21) and (5.20) are equivalent because strong duality holds by Slater’s con-
dition [25]. Slater’s condition is satisfied by showing strict feasibility for (5.20),
i.e., there exists a feasible solution to (5.20) such that the inequality constraints hold
with strict inequalities. One such solution occurs when 𝑞( 𝑗) = 1, ∀ 𝑗 ∈ Z𝐽1. We can
find the maximum value of the Lagrangian in the objective of (5.21) when we know
the exact form of the function 𝑔.

We can equivalently write the inner maximization of (5.21) in the form of the convex
conjugate of 𝑔 given by 𝑔∗

min
λ1,_2,a

_2𝑔
∗
(
_−1

2
(
p(ℎ∗𝑙,𝑘 + a) + λ1

) )
− a

s.t. λ1 ⪰ 0, _2 ≥ 0.
(5.22)

The above minimization is convex in the dual variables because the perspective
operation preserves convexity [25]. We know from the conjugacy theorem ([17],
Proposition 1.6.1) that properness of 𝑔 implies properness of 𝑔∗. Finally, substituting
minimization problem (5.19) for ℎ∗

𝑙,𝑘
in optimization (5.22) gives (5.17).

Remark 4 The term p(ℎ∗
𝑙,𝑘
+a) in (5.22) is just the expected value, i.e., p(ℎ∗

𝑙,𝑘
+a) =

E𝑃 (ℎ∗𝑙,𝑘 + a).

Remark 5 Note that for simplicity, we are assuming that 𝑔(𝑞) ∈ R. The above
proof, however, can easily be extended to a vector-valued function g of dimension
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> 1 under Assumption 4. In this case, g is a function �̄� applied to each component
of 𝑞, i.e.,

g(𝑞) =
[
�̄�(𝑞(1)) �̄�(𝑞(2)) . . . �̄�(𝑞(𝐽))

]𝑇
.

The equivalent safety constraint reformulation is then given by,

min
λ1,λ2,a,ℎ𝑙,𝑘

∑︁
𝑗∈Z𝐽1

{
_
𝑗

2 �̄�
∗ ((_ 𝑗2)−1 (𝑝( 𝑗) (ℎ𝑙,𝑘 + a) + λ 𝑗

1
) )}
− a

s.t. λ1 ⪰ 0, λ2 ⪰ 0,

y𝑘 +
c𝑖,𝑙
| |c𝑖,𝑙 | |

ℎ
𝑗

𝑙,𝑘
∈ S 𝑗

𝑙
(𝑡 + 𝑘), ∀ 𝑗 ∈ Z𝐽1

(5.23)

Similar results could be obtained for g-entropic risk measures using the Donsker-
vardhan variational formula, as shown in [7].

The above reformulation applies to all coherent risk measures that satisfy Assump-
tion 4. Next, we present this formulation for a few specific risk measures studied in
our examples.

CVaR

For a CVaR constraint, the convex function, 𝑔(𝑞) =
[
𝑞(1) − 1

1−𝛼 . . . 𝑞(𝐽) − 1
1−𝛼

]𝑇
is separated into �̄�(𝑞( 𝑗)) = 𝑞( 𝑗)− 1

1−𝛼 ∀ 𝑗 ∈ Z
𝐽
1. The convex conjugate �̄�∗(𝑞∗) = 1

1−𝛼
if 𝑞∗ = 1 and �̄�∗(𝑞∗) = +∞ otherwise can be applied to (5.23) and simplified to get
a linear program,

CVaR1−𝛼 (Z (y𝑘 ,S𝑙 (𝑡 + 𝑘))) = CVaR1−𝛼 (ℎ∗𝑙,𝑘 )

= min
λ1,λ2,a

𝐽∑︁
𝑗=1

{
_
𝑗

2 �̄�
∗
(
(_ 𝑗2)

−1 (𝑝( 𝑗) (ℎ 𝑗 ,∗
𝑙,𝑘
+ a) + λ 𝑗

1
) )}
− a

s.t. λ1 ⪰ 0, λ2 ⪰ 0

= min
λ1,λ2,a

𝐽∑︁
𝑗=1

_
𝑗

2
1 − 𝛼 − a

s.t. λ1 ⪰ 0, λ2 ⪰ 0,

𝑝( 𝑗) (ℎ 𝑗 ,∗
𝑙,𝑘
+ a) + _ 𝑗1 = _

𝑗

2, ∀ 𝑗 ∈ Z
𝐽
1 .
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EVaR

For EVaR, the risk envelope constitutes 𝑔(𝑞) = ∑
𝑗∈Z𝐽1

𝑝( 𝑗)𝑞( 𝑗) ln(𝑞( 𝑗)) + ln(1−𝛼)
and,

𝑔∗(𝑞∗) =
𝐽∑︁
𝑗=1

𝑝( 𝑗) exp
(𝑞∗( 𝑗) − 1

𝑝( 𝑗)

)
− ln(1 − 𝛼)

We substitute the convex conjugate into (5.22) to obtain the following exponential
cone optimization,

EVaR1−𝛼 (Z (y𝑘 ,S𝑙 (𝑡 + 𝑘))) = EVaR1−𝛼 (ℎ∗𝑙,𝑘 )

= min
λ1,_2,a

_2𝑔
∗
(
_−1

2
(
p(ℎ 𝑗 ,∗

𝑙,𝑘
+ a) + λ1

) )
− a

s.t. λ1 ⪰ 0, _2 ≥ 0

= min
λ1,_2,a,s

_2

𝐽∑︁
𝑗=1

𝑝( 𝑗) exp
(_−1

2 (𝑝( 𝑗) (ℎ
𝑗 ,∗
𝑙,𝑘
+ a) + _ 𝑗1)

𝑝( 𝑗)

)
− _2 ln(1 − 𝛼) − a

s.t. λ1 ⪰ 0, _2 ≥ 0

= min
λ1,_2,a

_2

𝐽∑︁
𝑗=1

𝑝( 𝑗)𝑠( 𝑗) − _2 ln(1 − 𝛼) − a

s.t. λ1 ⪰ 0, _2 ≥ 0,(
𝑠( 𝑗), _2𝑝( 𝑗), 𝑝( 𝑗) (ℎ 𝑗 ,∗𝑙,𝑘 + a) + _

𝑗

1
)
∈ 𝐾𝑒𝑥𝑝, ∀ 𝑗 ∈ Z𝐽1 .

Total variational distance ambiguity sets

The risk envelope for TVD is given by, 𝑔(𝑞) = ∑
𝑗∈Z𝐽1
|𝑞( 𝑗)𝑝( 𝑗) − 𝑝( 𝑗) | −2𝛼. When

the conjugate 𝑔∗(𝑞∗) = ∑
𝑗∈Z𝐽1

𝑞∗( 𝑗) + 2𝛼 when |𝑞∗( 𝑗)/𝑝( 𝑗) | ≤ 1 is substituted into
(5.22), one obtains a linear program,
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TVD𝛼 (Z (S𝑙 (𝑡 + 𝑘))) = TVD𝛼 (ℎ∗𝑙,𝑘 )

= min
λ1,_2,a

_2𝑔
∗
(
_−1

2
(
p(ℎ 𝑗 ,∗

𝑙,𝑘
+ a) + λ1

) )
− a

s.t. λ1 ⪰ 0, _2 ≥ 0

= min
λ1,_2,a

𝐽∑︁
𝑗=1

(
𝑝( 𝑗) (ℎ 𝑗 ,∗

𝑙,𝑘
+ a) + _ 𝑗1

)
+ 2_2𝛼 − a

s.t. λ1 ⪰ 0, _2 ≥ 0

|_−1
2

(
𝑝( 𝑗) (ℎ∗𝑙,𝑘 + a) + _

𝑗

1
)
| ≤ 𝑝( 𝑗), ∀ 𝑗 ∈ Z𝐽1

= min
λ1,_2,a

𝐽∑︁
𝑗=1

(
𝑝( 𝑗) (ℎ 𝑗 ,∗

𝑙,𝑘
+ a) + _ 𝑗1

)
+ 2_2𝛼 − a

s.t. λ1 ⪰ 0, _2 ≥ 0,

− _2𝑝( 𝑗) ≤ 𝑝( 𝑗) (ℎ 𝑗 ,∗𝑙,𝑘 + a) + _
𝑗

1 ≤ _2𝑝( 𝑗), ∀ 𝑗 ∈ Z𝐽1 .

Now that we have seen how our general reformulation of the risk obtained in
Lemma 6 can be applied to various examples of coherent risk measures, we are
ready to present the MPC optimization that incorporates all the risk constraint
reformulations we have obtained so far.

Theorem 7 Consider the MPC optimization given by (5.11) with confidence level
𝛼 and risk tolerances 𝜖𝑙 , 𝑙 ∈ Z𝐿1 . If Assumption 1 holds, then (5.11) is equivalent to
a minimization overV = {K𝑁 ,η𝑁 ,λ1, _2, a, ℎ𝑙,𝑘 } given by

min
V

𝐽 (x(𝑡),u) := 𝜌

(
𝑁−1∑︁
𝑘=0

𝑟 (x𝑘 ,u𝑘 )
)

(5.24a)

s.t. _2𝑔
∗
(
_−1

2
(
p(ℎ𝑙,𝑘 + a) + λ1

) )
− a ≤ 𝜖𝑙 , (5.24b)

λ1 ≤ 0, (5.24c)

_2 ≥ 0 (5.24d)

y𝑘 +
c𝑖,𝑙
| |c𝑖,𝑙 | |

ℎ
𝑗

𝑙,𝑘
∈ S 𝑗

𝑙
(𝑡 + 𝑘), ∀ 𝑗 ∈ Z𝐽1 (5.24e)

(5.11𝑏), (5.11𝑐), (5.11𝑑), (5.11𝑒), (5.11 𝑓 ), (5.11ℎ), (5.11𝑖) (5.11ℎ).
(5.24f)
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Proof: We can substitute the result from Lemma 6 in (5.11) to get

min
K𝑁 ,η𝑁

𝐽 (x(𝑡),u) :=
𝑁−1∑︁
𝑘=0

𝑟 (x𝑘 ,u𝑘 ) (5.25a)

s.t. (5.11𝑏), (5.11𝑐), (5.11𝑑), (5.11𝑒), (5.11 𝑓 ), (5.11ℎ), (5.11𝑖) (5.11ℎ),
(5.25b)

(5.17) ≤ 𝜖𝑙 , 𝑙 ∈ Z𝐿1 . (5.25c)

Suppose we have an optimal solution to (5.25) given by (K∗
𝑁
,η∗

𝑁
). As (5.25) is feasi-

ble, its constraints must be satisfied; this implies the inner minimization (5.17) must
also be feasible, with solution (λ∗1, _2

∗, a∗, ℎ∗
𝑙,𝑘
). Hence, (K∗

𝑁
,η∗

𝑁
,λ∗1, _2

∗, a∗, ℎ∗
𝑙,𝑘
)

must also be a feasible solution to (5.24) and yield the same objective value. Con-
versely, denote the optimal solution to (5.24) as (K∗

𝑁
,η∗

𝑁
,λ∗1, _2

∗, a∗, ℎ∗
𝑙,𝑘
). The pair

(K∗
𝑁
,η∗

𝑁
) must be feasible for (5.25) and gives the same objective value. Hence,

the above optimization (5.25) is equivalent to the one-layer optimization (5.24).

We have now incorporated the results from Lemma 6 into the MPC formula-
tion to get an equivalent formulation (5.24) of the original MPC problem given
by (5.11). We can incorporate the results from Lemma 5 by replacing con-
straints (5.11e), (5.11f), (5.11h) with the tightened constraints (5.12), (5.14), (5.15)
respectively. However, it remains to express the cost (5.24a) and obstacle avoidance
constraint (5.24e) just in terms of the optimization variables K𝑁 ,η𝑁 instead of the
dependence on x𝑘 ,u𝑘 . We will reformulate the obstacle avoidance constraint in
terms of the optimization variables and provide a mixed-integer reformulation of
the nonconvex safe set in the next subsection.

Mixed-Integer Reformulation of the MPC optimization
This subsection frames the nonconvex safe set as a set of disjunctive inequalities.
These inequalities are incorporated in our optimization by introducing a set of binary
variables and using the Big-M reformulation [139]. The safe set (5.4) is defined as
the region outside the obstacle 𝑙. Given that an obstacle can rotate and translate by
𝑅𝑙 (𝑡 + 𝑘) and w𝑙 (𝑡 + 𝑘) from its nominal trajectory, we can write the safe set at 𝑡 + 𝑘
as the region outside O𝑙 (𝑡 + 𝑘) described in (5.3). It can equivalently be expressed
as a result of the rotation and translation of the nominal safe set itself

S𝑙 (𝑡 + 𝑘) = R𝑛𝑦\O𝑙 (𝑡 + 𝑘)
= 𝑅𝑙 (𝑡 + 𝑘)S̄𝑙 (𝑡 + 𝑘) +w𝑙 (𝑡 + 𝑘).

(5.26)
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In (5.24e), S𝑙 (𝑡 + 𝑘) is a nonconvex set. For some obstacle 𝑙 ∈ Z𝐿1 , (5.24e) can be
rewritten as

𝑅𝑙 (𝑡 + 𝑘)−1
(
y𝑘 +

c𝑖,𝑙
| |c𝑖,𝑙 | |

ℎ𝑙,𝑘 −w𝑙 (𝑡 + 𝑘)
)
∈ S̄𝑙 (𝑡 + 𝑘).

We know that y𝑘 = 𝐶x𝑘 such that x𝑘 = 𝐴𝑘𝑥0 +B𝑘 (η𝑘 +K𝑘δ𝑘 +D𝑘δ𝑘 ), where

δ𝑘 =
[
𝛿1 𝛿2 . . . 𝛿𝑘

]𝑇
is the process noise, i.e.,

𝑅𝑙 (𝑡 + 𝑘)−1 (𝐴𝑘𝑥0 +B𝑘 (η𝑘 +K𝑘δ𝑘 ) +D𝑘𝛿𝑘 +
c𝑖,𝑙
| |c𝑖,𝑙 | |

ℎ𝑙,𝑘 −w𝑙 (𝑡 + 𝑘)
) ∈ S̄𝑙 (𝑡 + 𝑘).

In the above equation, as described at the before Lemma 6, the safe set at time 𝑡 + 𝑘 ,
S𝑙 (𝑡 + 𝑘) is a random variable that is a function of the discrete measurement noise
and the output, y(𝑡 + 𝑘 |𝑘), that in turn is a random variable that is a function of the
process noise (𝛿0, 𝛿1, . . . , 𝛿𝑘 ). Hence, distance of the output from the safe set, ℎ𝑙,𝑘 , is
a random variable that has a joint distribution of the measurement and process noise.
This joint distribution has a sample space of cardinality 𝐽 = |D|𝑘 |J | = (𝐽𝛿)𝑘𝐽𝑜 and
a pmf given by p = [𝑝(1), 𝑝(2), . . . , 𝑝(𝐽)]𝑇 .

𝑅
𝑗

𝑙
(𝑡 + 𝑘)−1 (𝐴𝑘𝑥0 +B𝑘η𝑘 +

(
B𝑘K𝑘 +D𝑘

)
δ
𝑗

𝑘
+ c𝑖,𝑙
| |c𝑖,𝑙 | |

ℎ
𝑗

𝑙,𝑘
−w 𝑗

𝑙
(𝑡 + 𝑘)) ∈ S̄𝑙 𝑗 (𝑡 + 𝑘),

where {𝑅 𝑗
𝑙
(𝑡+𝑘), 𝑤 𝑗

𝑙
(𝑡+𝑘), δ 𝑗

𝑘
} such that 𝑗 ∈ Z𝐽1 is a realization of the measurement

and process noise from its joint distribution. Given that the obstacles are convex
polygons of the form (5.2), we write the safe region as the union of regions outside
of the halfspaces that define an obstacle as follows

𝑚𝑙∨
𝑖=1

c𝑇𝑖,𝑙

[
𝑅
𝑗

𝑙
(𝑡 + 𝑘)−1 (𝐴𝑘𝑥0 +B𝑘η𝑘 +

(
B𝑘K𝑘 +D𝑘

)
δ
𝑗

𝑘
+ c𝑖,𝑙
| |c𝑖,𝑙 | |

ℎ
𝑗

𝑙,𝑘
−

w
𝑗

𝑙
(𝑡 + 𝑘) − a𝑙 (𝑡 + 𝑘)

)
+ a𝑙 (𝑡 + 𝑘)

]
≥ 𝑑𝑖,𝑙 . (5.27)

Because the above disjunctive inequalities, however, are hard to enforce, we refor-
mulate the constraint using a Big-M reformulation. The reformulation converts the
disjunctive inequalities into a set of constraints described using binary variables,
𝛾
𝑗

𝑖
∈ {0, 1} and a large positive constant 𝑀 . The value of 𝑀 depends on the bounds

on ℎ
𝑗

𝑙,𝑘
(determined from the size of obstacle 𝑙) and y𝑘 (dependent on the state

and control inputs). It can be computed using linear programming. The Big-M
reformulation of (5.27) is as follows
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c𝑇𝑖,𝑙

[
𝑅
𝑗

𝑙
(𝑡 + 𝑘)−1

(
𝐴𝑘𝑥0 +B𝑘η𝑘 +

(
B𝑘K𝑘 +D𝑘

)
δ
𝑗

𝑘
+ c𝑖,𝑙
| |c𝑖,𝑙 | |

ℎ
𝑗

𝑙,𝑘
−

w
𝑗

𝑙
(𝑡 + 𝑘) − a𝑙 (𝑡 + 𝑘)

)
+ a𝑙 (𝑡 + 𝑘)

]
≥ 𝑑𝑖,𝑙 − 𝑀𝛾 𝑗𝑖 ,

(5.28a)

𝑚𝑙∑︁
𝑖=1

𝛾
𝑗

𝑖
≤ 𝑚𝑙 − 1, ∀𝑖 ∈ Z𝑚𝑙

1 , 𝑗 ∈ Z
𝐽
1 . (5.28b)

Inequalities (5.28) provide output constraints that satisfy the risk-sensitive obstacle
avoidance constraint by taking into account measurement noise and process noise.
However, the cardinality of the joint distribution that describes the distance from
the obstacle, ℎ𝑙,𝑘 , increases exponentially with the horizon, 𝑘 . With exponentially
increasing mixed-integer variables, the optimization soon becomes intractable.

To account for this, we introduce a new random variable, 𝛿𝑚𝑎𝑥,𝑘 , whose cumulative
distribution function is defined as follows

P(𝛿𝑚𝑎𝑥,𝑘 ≤ 𝑥) :=P( |𝛿0 | ≤ 𝑥 , |𝛿2 | ≤ 𝑥 , . . . , |𝛿𝑘−1 | ≤ 𝑥)
=P( |𝛿0 | ≤ 𝑥)P( |𝛿2 | ≤ 𝑥) . . . P( |𝛿𝑘−1 | ≤ 𝑥)
=P( |𝛿1 | ≤ 𝑥)𝑘 .

We can find a conservative (inner) approximation of (5.28a) using, 𝛿𝑚𝑎𝑥,𝑘 , as follows,

c𝑇𝑖,𝑙𝑅𝑙 (𝑡 + 𝑘)
−1 (B𝑘K𝑘 +D𝑘

)
δ𝑘 ≥ − ∥c𝑇𝑖,𝑙𝑅𝑙 (𝑡 + 𝑘)

−1 (B𝑘K𝑘 +D𝑘

)
∥1∥δ𝑘 ∥∞

= − ∥c𝑇𝑖,𝑙𝑅𝑙 (𝑡 + 𝑘)
−1 (B𝑘K𝑘 +D𝑘

)
∥1𝛿𝑚𝑎𝑥,𝑘 .

Hence, we can rewrite (5.28a) as,

−
c𝑇𝑖,𝑙𝑅 𝑗𝑙 (𝑡 + 𝑘)−1(B𝑘K𝑘 +D𝑘 )


1𝛿

𝑗

𝑚𝑎𝑥,𝑘
+ c𝑇𝑖,𝑙

[
𝑅
𝑗

𝑙
(𝑡 + 𝑘)−1

(
𝐴𝑘𝑥0+

B𝑘η𝑘 +
c𝑖,𝑙
| |c𝑖,𝑙 | |

ℎ
𝑗

𝑙,𝑘
−w 𝑗

𝑙
(𝑡 + 𝑘) − a𝑙

)
+ a𝑙

]
≥ 𝑑𝑖,𝑙 − 𝑀𝛾 𝑗𝑖

(5.29)

Notice that in the above inequality, we have, with some abuse of notation, reduced the
cardinality of the joint distribution that describes, ℎ𝑙,𝑘 , from 𝐽 = |D|𝑘 |J | = (𝐽𝛿)𝑘𝐽𝑜
to 𝐽 = |D||J | = 𝐽𝛿𝐽𝑜. This means that the number of constraints no longer increase
exponentially with horizon length. Notice that the approximation is not conservative
at the beginning of the horizon, i.e., when 𝑘 = 1, the distribution described by 𝛿𝑚𝑎𝑥,𝑘
is the same as 𝛿1.
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Terminal constraints
In order to steer the system to the target region in finite time, we follow the suggestion
of [112] and define a new discrete state 𝜓 ∈ {0, 1}, such that 𝜓 = 0 implies that the
task has been completed at an earlier step or at the current step and 𝜓 = 1 means
that the task has not yet been completed at the current time. The update equation of
𝜓 is then given by

𝜓𝑘+1 = 𝜓𝑘 − `𝑘 , (5.30)

where `𝑘 ∈ {0, 1} is a discrete input.

Our goal to drive the system to a terminal set X𝐹 is given by the tightened state
constraint (5.15). Additionally, we incorporate the following constraints

𝑓 𝑇𝑓 ,𝑛
(
𝐴𝑘𝑥0 +B𝑘η𝑘

)
+ ∥ 𝑓 𝑇𝑓 ,𝑛

(
B𝑘K𝑘 +D𝑘

)
∥1𝜌( |𝛿 |) ≤ 𝜖 𝑓 + 𝑔 𝑓 ,𝑛 + 1𝑀 (1 − `𝑘 ),

(5.31)
∀𝑘 ∈ Z𝑁1 , 𝑛 ∈ Z

𝑣
1, where 1 ∈ R𝑛𝑥 is a vector of 1’s. Here, `𝑘 = 1 if the task of

reaching the goal, X𝐹 = {x ∈ R𝑛𝑥 |𝐹 𝑓x ≤ 𝑔 𝑓 } is completed at time step 𝑡 + 𝑘 + 1.
Equation (5.30) implies that 𝜓 jumps from 1 → 0, signaling completion of the
task. After the task completion, all other MPC problem constraints can be relaxed
by adding the term 𝑀 (1 − 𝜓𝑘 ) to them, i.e., any constraints of the form 𝐶1s𝑘 +
𝐶2𝛾𝑖 + 𝐶3 ≥ 0 are modified to 𝐶1s𝑘 + 𝐶2𝛾𝑖 + 𝐶3 + 1𝑀 (1 − 𝜓𝑘 ) ≥ 0, ∀𝑖, 𝑘 where
s𝑘 = [Kk, ηk, λ1, λ2, a, ℎ𝑙,𝑘 ]. We also add the following terminal constraint at
time 𝑡 + 𝑁 to ensure that the task is completed

𝜓𝑁 = 0. (5.32)

Note that the discrete state 𝜓 need not be a binary variable as long as we enforce the
constraint,

0 ≤ 𝜓𝑘 ≤ 1, 𝑘 = 1, 2, . . . , 𝑁. (5.33)

The MPC objective function is then modified as

min
V

𝐽 (V) := 𝜌
( 𝑁−1∑︁
𝑘=0

(
𝑟 (u𝑘 ) + 𝜓𝑘

) )
= 𝜌

( 𝑁−1∑︁
𝑘=0

𝑟
( 𝑘−1∑︁
𝑚=0

𝐾𝑘−𝑚𝛿𝑚 + [𝑘
) )
+
𝑁−1∑︁
𝑘=0

𝜓𝑘

(5.34)

whereV = {KN , ηN , λ1, λ2, a, ℎ𝑙,𝑘 } and 𝑟 (u𝑘 ) is a convex function of the control
input with 𝑟 (0) = 0.
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MPC Objective
For the MPC cost (5.34), consider the case, 𝑟 (u) = ∥𝑅u∥1, where 𝑅 ∈ R𝑛𝑢 ,

𝐽 (𝑡) = 𝜌
( 𝑁−1∑︁
𝑘=0
∥𝑅u𝑘 ∥1

)
+
𝑁−1∑︁
𝑘=0

𝜓𝑘 ,

= 𝜌

( 𝑁−1∑︁
𝑘=0

 𝑘−1∑︁
𝑚=0

𝑅𝐾𝑘−𝑚𝛿𝑚 + 𝑅[𝑘


1

)
+
𝑁−1∑︁
𝑘=0

𝜓𝑘 .

(5.35)

This subsection introduces two methods to compute the control effort risk given
by 𝜌

( ∑𝑁−1
𝑘=0 𝑟 (uk)

)
. The first method provides an exact value of the risk and the

second method provides an approximation. The first method loosely follows the
steps taken to calculate the moving obstacle risk (see Lemma 6) and will be more
computationally expensive because the control effort 𝑟 (u𝑘 ) is a joint distribution
of (𝛿0, . . . , 𝛿𝑁−1) that grows with the horizon length 𝑁 . The second method will
utilize the constraint tightening tools used in Lemma 5 to approximate the value of
the control effort risk. This approximation will be more computationally efficient.
The examples in Section 5.4 contrast the two methods.

Exact computation of control effort risk

We define the control effort as a random variable, 𝑍 :=
∑𝑁−1
𝑘=0

∑𝑘−1
𝑚=0 𝐾𝑘−𝑚𝛿𝑚+[𝑘


1.

The sample space of 𝑍 consists of the joint probability distribution of (𝛿0, . . . , 𝛿𝑁−1),
which has cardinality |D|𝑁 . All the realizations of 𝑍 can be vectorized as z =[
𝑧(1), 𝑧(2), . . . , 𝑧( |D|𝑁 )

]
. Note that 𝑧( 𝑗) = ∑𝑁−1

𝑘=0
∑𝑘−1

𝑚=0 𝐾𝑘−𝑚𝛿
𝑗
𝑚 + [𝑘


1, ∀ 𝑗 ∈

Z
|D|𝑁
1 , where 𝛿 𝑗𝑚 is a realization of 𝛿𝑚 from the joint pmf. If the pmf is denoted by

pΔ ∈ R|D|
𝑁 , then,

𝜌

( 𝑁−1∑︁
𝑘=0

 𝑘−1∑︁
𝑚=0

𝑅𝐾𝑘−𝑚𝛿𝑚 + 𝑅[𝑘


1

)

=


max𝑞(1),...,𝑞( |D|𝑁 ) E𝑄

[
𝑍
]

s.t. 𝑔(𝑞) ≤ 0
−𝑞( 𝑗) ≤ 0 ∀ 𝑗 ∈ Z|D|

𝑁

1∑𝐽
𝑗=1 𝑝Δ( 𝑗)𝑞( 𝑗) = 1

=


minξ1,b2,𝜗 b2𝑔

∗
(
b−1

2
(
pΔ(z + 𝜗) − ξ1

) )
− 𝜗

s.t. ξ1 ≤ 0
b2 ≥ 0 ,

(5.36)
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where, ξ1 ∈ R|D|
𝑁

, ξ2, 𝜗 ∈ R are the dual variables, see Lemma 6 for details on
how we find the dual function and obtain the conjugate in the above minimization.
Note that the number of constraints grow exponentially with the horizon length.

Approximation of control effort risk

We can alternatively approximate the cost as,

𝜌

( 𝑁−1∑︁
𝑘=0

 𝑘−1∑︁
𝑚=0

𝑅𝐾𝑘−𝑚𝛿𝑚 + 𝑅[𝑘


1

)
≤
𝑁−1∑︁
𝑘=0

(
𝜌
(
∥
𝑘−1∑︁
𝑚=0
(𝑅𝐾𝑘−𝑚𝛿𝑚)∥1

)
+ ∥𝑅[𝑘 ∥1

)
(Subadditivity)

≤
𝑁−1∑︁
𝑘=0

( 𝑘−1∑︁
𝑚=0

𝑅𝐾𝑘−𝑚


1𝜌
(
|𝛿 |

)
+ ∥𝑅[𝑘 ∥1

)
(i.i.d disturbances),

(5.37)

where we obtained the first inequality by using the subadditivity of norms and
then the translational invariance property of coherent risk measures. The second
inequality results from observing that all disturbances are i.i.d and can be replaced
by 𝛿. We use the homogeneity of norms and coherent risk measures to obtain the
final result (similar to Lemma 5).

The above cost approximation eliminates the additional |D|𝑁 constraints that result
from (5.36). This approximation deprioritizes task completion; i.e., when we sub-
stitute this upper bound into (5.35), the term

∑𝑁−1
𝑘=0 𝜓𝑘 has less weight compared to

when we use the exact cost (5.36). Another approximation of the true cost would be
using the random variable 𝛿𝑚𝑎𝑥,𝑁 as seen in (5.29). In using an approximation of
(𝛿0, . . . , 𝛿𝑁−1) via 𝛿𝑚𝑎𝑥,𝑁 , we reduce the number of constraints from |D|𝑁 to |D|.

Properties of MPC
We now combine all the parts of the MPC into one optimization.
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min
V

𝑁−1∑︁
𝑘=0

( 𝑘−1∑︁
𝑚=0

𝑅𝐾𝑘−𝑚


1𝜌
(
|𝛿 |

)
+ ∥𝑅[𝑘 ∥1

)
𝐽∑︁
𝑗=1

{
_
𝑗

2 �̄�
∗
(
(_ 𝑗2)

−1 (𝑝( 𝑗) (ℎ 𝑗
𝑙,𝑘
+ a) + λ 𝑗

1
) )}
− a ≤ 𝜖𝑙 + 𝑀𝑘

L.H.S (5.29) ≥ 𝑑𝑖,𝑙 − 𝑀𝛾 𝑗𝑖 − 𝑀𝑘

𝐹𝑥
(
𝐴𝑘𝑥0 +B𝑘η𝑘

)
+ ∥𝐹𝑥

(
B𝑘K𝑘 +D𝑘

)
∥1𝜌( |𝛿 |) ≤ 𝜖𝑥 + 𝑔𝑥 + 𝑀𝑘

𝐹𝑢ηk + ∥𝐹𝑢K𝑘 ∥1𝜌( |δ |)
)
≤ 𝜖𝑢 + 𝑔𝑢 + 𝑀𝑘

(5.30), (5.31), (5.32), (5.33).

(5.38)

where 𝑀𝑘 = 𝑀 (1 − 𝜓𝑘 ) and V = {K𝑁 ,η𝑁 ,λ1,λ2, a, ℎ𝑙,𝑘 }. The constraints must
hold∀𝑘 ∈ Z𝑁−1

1 , 𝑙 ∈ Z𝐿1 , 𝑗 ∈ Z
𝐽
1, and 𝑖 ∈ Z𝑚𝑙

1 . The solution to the deterministic MPC
problem (5.38) is also a solution to (5.11). The convex, mixed-integer relaxation of
a nonconvex optimization problem in (5.38) results in locally optimal solutions.

Proposition 1 (Risk-sensitive recursive feasibility) If the optimization (5.38) is
feasible at time 𝑡, then it is feasible at time 𝑡 + 1 with confidence 𝛼.

Proof: Assume that the feasible solution to (5.38) at time 𝑡 is given by the
control policy {(0, [∗0), (𝐾

∗
1 , [
∗
1), . . . , (𝐾

∗
𝑁−1, [

∗
𝑁−1)}. At time 𝑡, we apply the control

input 𝑢0 = [∗0. Since (5.12), (5.14) hold for all 𝛿0 ≤ 𝜌( |𝛿 |), if 𝛿0 > 𝜌( |𝛿 |), the
state and control constraints may not hold and the MPC optimization may no longer
be feasible. Similarly, if the distance to the obstacle is greater than the risk of the
distance, the MPC may no longer be feasible, i.e., if ℎ𝑙,0 > 𝜌(ℎ𝑙,0).

Let us assume for simplicity that 𝛿0 ≤ 𝜌( |𝛿 |), ℎ𝑙,0 ≤ 𝜌(ℎ𝑙,0) hold at time 𝑡. The
optimization is feasible at time 𝑡 + 1 if there exists a feasible input at time 𝑡 + 𝑁 that
does not violate constraints. Since 𝜓∗

𝑁
= 0 by virtue of the terminal constraint, all

the constraints in the optimization are relaxed thereafter. Note that the state 𝜓𝑁 = 0
is invariant due to (5.30) and (5.33) and that `𝑘 = 0 at all time after the task has
been completed. Therefore, once the optimization constraints are relaxed they will
remain this way. A control input (𝐾𝑁 , [𝑁 ) = (0, 0) ensures that the optimization is
feasible. At time 𝑡 + 1, a feasible solution to (5.38) is given by the control sequence
{(0, 𝐾∗1𝛿0 + [∗1), . . . , (𝐾

∗
𝑁−1, [

∗
𝑁−1), (0, 0)}.



77

Finally, we aim to quantify the probability of the constraints at time 𝑡 + 1 no longer
being satisfied by the control input 𝑢0 = [∗0.

P{MPC infeasible}
≤ P{𝛿0 > 𝜌( |𝛿 |) ∪ ℎ𝑙,0 > 𝜌(ℎ𝑙,0)}
≤ P{𝛿0 ≥ 𝜌( |𝛿 |)} + P{ℎ𝑙,0 ≥ 𝜌(ℎ𝑙,0)}
= P{𝛿0 − E( |𝛿 |) ≥ 𝜌( |𝛿 |) − E( |𝛿 |)} + P{ℎ𝑙,0 − E(ℎ𝑙,0) ≥ 𝜌(ℎ𝑙,0) − E(ℎ𝑙,0)}
(Subtracting E( |𝛿 |), E(ℎ𝑙,0) from both sides)

≤
𝜎2
𝛿

𝜎2
𝛿
+

(
𝜌( |𝛿 |) − E( |𝛿 |)

)2 +
𝜎2
ℎ

𝜎2
ℎ
+

(
𝜌(ℎ𝑙,0) − E(ℎ𝑙,0)

)2 (Cantelli’s inequality)

where, 𝜎2
𝛿
, 𝜎2

ℎ
are the variances of 𝛿 and ℎ𝑙,0 respectively. Note that as 𝛼 increases,

the risk gets larger as a greater value of 𝛼 corresponds to a more risk-averse setting.
Hence, the upper bound on P{MPC infeasible} gets smaller.

We know that when 𝛼→ 0 (risk-neutral), 𝜌( |𝛿 |) → E( |𝛿 |), 𝜌(ℎ𝑙,0) → E(ℎ𝑙,0), and
P{MPC infeasible} ≤ 1. Similarly,𝛼→ 1 (risk-averse), 𝜌( |𝛿 |) → max |𝛿 |, 𝜌(ℎ𝑙,0) →
max ℎ𝑙,0, and P{MPC infeasible} → 0 (because P{𝛿0 > 𝜌( |𝛿 |) ∪ ℎ𝑙,0 > 𝜌(ℎ𝑙,0)} →
0). Hence, (5.38) is feasible at time 𝑡 + 1 if it is feasible at time 𝑡 with increasing
probability as the confidence level 𝛼 increases.

Remark 6 Proposition 1 provides a loose bound on the infeasibility of the MPC. In
the case of CVaR, TVD, and EVaR, we know that the risk measures are upper bounds
for VaR (see Figure 1) and can hence provide tighter bounds on the likelihood of
infeasibility. Recall from Remark 3 that the confidence level is adjusted to account
for multiple risk constraints. Hence, we can quantify the bounds on probability of
MPC infeasibility in terms of the confidence 𝛼,

P{MPC infeasible at 𝑡 + 1|𝑡} ≤ P{𝛿0 > 𝜌( |𝛿 |) ∪ ℎ𝑙,0 > 𝜌(ℎ𝑙,0)}

≤ P{𝛿0 ≥ 𝜌( |𝛿 |)} +
𝐿∑︁
𝑙=1
P{ℎ𝑙,0 ≥ 𝜌(ℎ𝑙,0)}

≤ 1 − 𝛼
𝐿 + 1

+ 𝐿1 − 𝛼
𝐿 + 1

(VaR probability bound)

≤ 1 − 𝛼.

MPC is often used to plan local trajectories given a reference trajectory or a set
of waypoints from a higher-level global planner like A* or RRT [62, 88]. Let
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Algorithm 3 Follow waypoints
Number of waypoints visited,𝑊 = 0
while𝑊 < 𝐾 do

Initialize (x0, 𝜓0) = (w𝑊 , 1)
Set desired goal x𝑑𝑒𝑠 = w𝑊+1
while 𝜓0 ≠ 0 do

Solve (5.38) to obtain policy {(0, [∗0), . . . , (𝐾
∗
𝑁−1, [

∗
𝑁−1)}

Update x0 = 𝐴x0 + 𝐵[∗0 + 𝐷𝛿0
Update 𝜓0 = 𝜓0 − `0
if x0 = x𝑑𝑒𝑠 then
𝑊 = 𝑊 + 1

end if
end while

end while

{w1,w2, . . . ,w𝐾} be a given a sequence of waypoints. We call a waypoint w 𝑗+1

𝑁-step reachable from w 𝑗 , if there exists a feasible solution to (5.38) with x0 = w 𝑗

and x𝐾 = w 𝑗+1.1

Proposition 2 (Finite-time task completion) Assuming that the waypoint w 𝑗+1 is
𝑁-step reachable from w 𝑗 , ∀ 𝑗 ∈ Z𝐾−1

1 , Algorithm 3 gives a sequence of control
inputs to move from w0 to w𝐾 in finite time with confidence 𝛼.

Proof: Consider the simple case of starting from w0 and reaching w1, i.e.,
when we have exactly two waypoints. We implement Algorithm 3 till 𝜓0 = 0.
Let 𝐽∗𝑡 be the cost of the MPC optimization (5.38) at time 𝑡. The feasible solution
to (5.38) at 𝑡 is given by the input sequence {(0, [∗0), (𝐾

∗
1 , [
∗
1), . . . , (𝐾

∗
𝑁−1, [

∗
𝑁−1)}

and the state sequence {𝜓∗0, 𝜓
∗
1, . . . , 𝜓

∗
𝐾
}. At time 𝑡 + 1, with confidence 𝛼, the

cost of the MPC optimization is 𝐽∗
𝑡+1 ≤ 𝐽∗𝑡 − ∥𝑅[0∥1 − 𝜓∗0. This is true because

we know from Proposition 1 that, with confidence 𝛼, at time 𝑡 + 1, {(0, 𝐾∗1𝛿0 +
[∗1), . . . , (𝐾

∗
𝑁−1, [

∗
𝑁−1), (0, 0)} is a feasible control input with 𝜓(𝑡 +𝐾 |𝑡 +1) = 0, i.e.,

𝐽∗𝑡 will incur no additional cost from (𝐾𝑁 , [𝑁 |𝑡+1) = (0, 0) and𝜓(𝑡+𝐾+1|𝑡+1) = 0.
Since 𝐽∗

𝑡+1 − 𝐽
∗
𝑡 ≤ −∥𝑅[0∥1 − 𝜓∗0, the cost decreases by at least 1 at each time step

till the task is completed. Considering that 𝐽∗𝑡 is always positive and finite, it will
take a finite number of steps to reach 𝐽∗

𝑘
= 0, 𝑘 ≥ 𝑡. Hence, the policy to take the

1We assume that we obtain these waypoints from a higher-level planner like A* or RRT. Analyzing
the 𝑁-step reachability of the waypoints is out of the scope of this thesis and we consider it an avenue
of future work.
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system from w0 to w1 will be implemented in finite time, with confidence 𝛼. By
induction, the system will reach w𝐾 from w0 in finite time with confidence 𝛼.

5.4 Numerical Results
To illustrate the effectiveness of this method, we present numerical experiments that
were run on MATLAB using the YALMIP toolbox [86] with a Gurobi solver [60]
(for CVaR and TVD) and a Mosek solver [11] (for EVaR) .

Simple 2D system
We first look at the two-dimensional discrete system 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐷𝛿𝑘 that
is similar to the example we considered in [37], but with process noise.

𝐴 =

[
1.0475 −0.0463
0.0463 0.9690

]
, 𝐵 =

[
0.028
−0.0195

]
, 𝐷 =

[
0.028
−0.0195

]
.

The process noise can take values, 𝛿𝑘 ∈
[
−0.2 −0.1 0 0.1 0.2

]
.

The control constraints are
−100 ≤ 𝑢𝑘 ≤ 100.

One randomly moving obstacle interferes with the MPC solution path that would be
found in the absence of any obstacles. The obstacle rotates either 0 or 𝜋/4 degrees.
The obstacle can translate along the x-axis by 0,−0.25, or 0.25 m. The horizon
length is 𝑁 = 8.

We compare the disturbance feedback policies obtained by using three different risk
measures - CVaR, EVaR, and TVD by comparing the total cost of reaching the goal,
the percentage of infeasible optimizations, and the average computation time for
each MPC iteration.

Cost Comparison: A fair comparison of using the exact cost versus the over
approximation of the cost can be made only if the constraints of the MPC (5.38)
remain the same. For 50 Monte Carlo simulations, we compare the MPC trajectories
obtained when using CVaR risk. We compare the trajectory costs resulting from
using a) the exact cost as computed in (5.36) and b) the upper bound of the exact
cost (5.37), see Table 5.1. The average time taken for each MPC iteration is also
provided. We see that the time taken for each MPC iteration is significantly higher
when the exact CVaR cost is used. The control effort is also higher when using
the exact cost. This is because the over-approximated cost always penalizes higher
control effort more than task completion (control is parameterized as an affine
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Figure 5.2: Comparison of the trajectories obtained using the exact cost (5.36)
and the upper bound cost (5.37). The gray rectangles show possible obstacle
configurations. The darker rectangle has a higher probability of occurrence and the
lighter rectangle has a lower probability of occurrence.

function of the disturbance). Figure 5.2 shows us the qualitative difference between
the 50 Monte Carlo simulations when 𝛼 = 0.9. We emphasize that task completion
is prioritized when the exact CVaR cost is used.

𝛼 Average cost (×103)
Exact Upper bound

0.1 4.44 3.94
0.4 4.51 3.94
0.8 5.36 3.93
0.9 6.20 3.89

Time(s) 83.68 6.32

Table 5.1: Average trajectory cost for CVaR MPC using different costs

Feasibility comparison: For different risk levels, 𝛼, we also compare the number
of times the MPC optimization is infeasible when we use CVaR, EVaR, and TVD
risk measures, with the cost (5.37). The results for 50 Monte Carlo simulations
are summarized in Table 5.2. It has been shown that VaR ≤ CVaR ≤ EVaR and
CVaR ≤ TVD, see Section ??. Proposition 1 provides us a loose bound for the
probability of infeasibility of the MPC. Table 5.2 shows us that as 𝛼 increases
(increasing conservativeness), the percentage of infeasible optimizations decreases.
Furthermore, the actual likelihood of infeasibility is much lower than the bounds
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obtained in Proposition 1. Thus, the bounds of Proposition 1 are verified in this
case, though the degree of tightness is unknown.

𝛼 MPC infeasible (%)
CVaR EVaR TVD

0.1 5.3 1.64 0
0.4 5.9 1.09 0
0.8 6.4 0.18 0
0.9 2.7 0 0

Time (s) 6.32 42.33 3.61

Table 5.2: Results for infeasibility of risk-aware MPC

Quadcopter

Figure 5.3: A comparison of the TVD MPC trajectories with the expectation-based
MPC (𝛼 → 0) trajectory. On the right, the shaded blue region is zoomed in from
a different perspective to illustrate the behavior near one of the random realizations
of the obstacle.

We consider a quadcopter that must follow given waypoints while avoiding randomly
moving obstacles and adhering to state and control constraints, Algorithm 3. The
quadcopter is described by the states (𝑥, 𝑦, 𝑧, 𝜙, \, 𝜑, ¤𝑥, ¤𝑦, ¤𝑧, ¤𝜙, ¤\, ¤𝜑)𝑇 . The position
of the quadcopter in 3D space is given by the coordinates 𝑥, 𝑦, 𝑧 and the roll, pitch,
and yaw are given by 𝜙, \, 𝜑 respectively. The model of the quadcopter is given by

¥𝑥 = −𝑔\, ¥𝑦 = 𝑔\, ¥𝑧 = −𝑢1

𝑚
− 𝑔,

¥𝜙 =
𝑢2

𝐼𝑥𝑥
, ¥\ = 𝑢3

𝐼𝑦𝑦
, ¥𝜑 =

𝑢4

𝐼𝑧𝑧
,

where𝑚 is the quadcopter’s mass, 𝑔 is the acceleration due to gravity, and 𝐼𝑥𝑥 , 𝐼𝑦𝑦, 𝐼𝑧𝑧
are the quadcopter moments of inertia about the 𝑥, 𝑦, 𝑧-axes of the system. The
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control inputs are given by 𝑢1, 𝑢2, 𝑢3, 𝑢4. We used the following parameters: 𝑚 =

0.65kg, 𝑙 = 0.23m, 𝐼𝑥𝑥 = 0.0075kg.m2, 𝐼𝑦𝑦 = 0.0075kg.m2, 𝐼𝑧𝑧 = 0.0013kg.m2,
𝑔 = 9.81m.s−2 [37, 62].

The TVD risk constraint has two parameters: the confidence level, 𝛼, and the
risk-threshold, 𝜖 . We chose 𝛼 ∈ {0.8, 0.99}, 𝜖 = 0.04. The waypoints are given
by regions of size [−0.5, 0.5]3 around the waypoint center (denoted by o in Fig-
ure 5.3). We chose a horizon length of 𝑁 = 15 for the MPC optimization. We
considered the case of having one randomly translating and rotating obstacle. The
obstacle is a rectangular box of size 2x1x4 m3; it can rotate by 𝜋

2 and translate
by 4m along the y-axis and 1m along the z-axis. Figure 5.3 shows all the differ-
ent configurations of this obstacle at different times. We further allow for process
noise 𝛿 ∈ {−0.2,−0.1, 0, 0.1, 0.2}. The continuous-time system is discretized with
a time-interval of 0.02 sec. As the risk-averseness of the system grows, the tra-
jectory followed by the quadcopter maintains a greater distance from all possible
configurations of the moving obstacle.
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C h a p t e r 6

DATA-DRIVEN PREDICTION AND RISK-AWARE MPC WITH
UNKNOWN OBSTACLES

So far, this thesis has investigated risk-aware planning in a priori unknown static,
extreme environments. The previous chapter also considered risk-aware MPC in
the presence of moving obstacles but with the completely known uncertainty de-
scriptions to compute risk-aware feedback policies with recursive feasibility and
task completion guarantees. This chapter answers two questions: 1) how does one
predict the motion of a priori unknown moving obstacles and also quantify the un-
certainty in the prediction? 2) Given this prediction model with uncertainty, how can
one obtain a risk-aware obstacle avoidance maneuver? Given noisy measurements
of the a priori unknown obstacle trajectory, a bootstrapping technique predicts a set
of obstacle trajectories. The bootstrapped predictions are incorporated in the MPC
optimization using a risk-aware methodology so as to provide probabilistic guaran-
tees on obstacle avoidance. Note, however, that the bootstrapping technique is a
heuristic for the uncertainty quantification of the obstacle trajectory predictions and
the risk-level we account for in the planning may or may not represent the true risk-
level for obstacle avoidance. The next chapter will expand on these issues and take
a deeper look at adaptive uncertainty quantification that provides true probabilistic
coverage. The methods introduced in this chapter are validated using simulations
of a multi-rotor drone that avoids various moving obstacles.

This chapter was adapted from:

Skylar X. Wei*, Anushri Dixit*, Shashank Tomar, and Joel W. Burdick. Moving
obstacle avoidance: A data-driven risk-aware approach. IEEE Control Systems
Letters, 7:289–294, 2022. doi: 10.1109/LCSYS.2022.3181191.

6.1 Introduction
Emerging applications of robots in urban, cluttered, and potentially hostile environ-
ments have increased the importance of online path planning with obstacle behavior
classification and avoidance [41, 134]. Traditionally, robot-obstacle interaction is
formulated as the problem of planning a collision-free path from a starting position
to a goal [81]. In environments with an arbitrary number of moving obstacles and
agents with bounded velocity, this problem is known to be NP-hard [28].
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This chapter presents a new framework for discovering the dynamics of a priori
unknown moving obstacles, forecasting their trajectories, and providing risk-aware
optimal avoidance strategies. It replaces the need for obstacle trajectory/model clas-
sification while allowing online computation. Extracting a dynamics model from
data is challenging [26], especially when the available data is limited, noisy, and par-
tial. To tackle partial measurements, we leverage Takens’ embedding theorem [127],
which uses partial observations to produce an attractor that is diffeomorphic to the
full-state attractor. We then use Singular Spectrum Analysis (SSA) [57, 58] to
separate noise from the underlying signal and to extract a predictive model of ob-
stacle behavior. Our use of time delay embedding is also the basis of Eigensystem
Realization Algorithm (ERA) in linear system identification [72]. Inspired by [45],
we use a classical bootstrap to forecast a set of obstacle trajectories with statistical
quantification. An MPC planner then incorporates the set of obstacle forecasts as
an affine conservative approximation of a distributionally-robust chance constraint
(DRCC). This constraint is then efficiently recast in a risk-aware manner, allowing
an MPC optimization based on sequential convex programming [13, 95].

We demonstrate our approach on three scenarios that exhibit increasingly compli-
cated dynamical behavior. Monte-Carlo simulations verify the planner’s ability
to uphold the user chosen chance constraint. The risk-aware reformulation not
only gives provable probabilistic collision avoidance guarantees, but also allows an
on-line execution of the planner.

Notation: The set of positive integers, natural numbers, real numbers, and positive
reals are denoted as Z+, N, R, and R+, respectively. We denote the sequence of
consecutive integers {𝑖, · · · , 𝑖 + 𝑘} as Z𝑖:𝑖+𝑘 . The finite sequence {𝑎1, · · · , 𝑎𝑘 } of
scalars or vectors 𝑎 is denoted as {𝑎}𝑘1 . The expression 𝐼𝑛×𝑛 denotes 𝑛 by 𝑛 identity
matrices and 1 = [1, 1, 1]𝑇 .

6.2 SSA Preliminaries
Consider a discrete-time multivariate stochastic process {o𝑚}𝑁1 where𝑚 denotes the
𝑚th observable measurement of the process, and 𝑁 is the total number of available
observations. Suppose that the true stochastic process model of the observables is
ô𝑚 = o𝑚 + 𝛾𝑚, where 𝛾𝑚 denotes a random discrete-time zero-mean measurement
noise, and o𝑚 is the noiseless observable that captures the governing laws, which
can be composed of trends, seasons, and stationary time series. Singular Spec-
trum Analysis [57] separates the true signal lo𝑚 and the noise 𝛾𝑚 and extracts a
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Figure 6.1: A description of bootstrap-SSA-forecast architecture in forecasting the
trajectory of a Frisbee where the stochastic observables (corrupted by zero-mean,
noise) consist of {ô}𝑁1 = [{𝑥}𝑁1 , {�̂�}

𝑁
1 , {𝑧}

𝑁
1 ], the Frisbee’s center positions with

respect to an inertial frame. The SSA analysis and bootstrap forecast is applied to
every observable state. Despite its 12-state governing dynamics [68] and with only
center position measurements of the Frisbee, we show an example 𝑁strap forecasts
of the Frisbee trajectory for future time steps {1, 2, · · · , 𝑁ℎ} using our proposed
framework.

recursive governing dynamic model of o𝑚 that can generate a short term accurate
forecast. Figure 6.1 describes this method.

Time Delay Embedding

Takens’ method of delays [127] can reconstruct qualitative features of the full-state
phase-space from delayed partial observations. The 𝑚th-state observables ô𝑚 are
delay embedded into a trajectory (Hankel) matrix 𝐻𝑚

[𝐿×𝑁] , Figure 6.1 gives an ex-
ample of the Hankel matrix for state 𝑥. Parameter 𝐿 is the time delay length, and
𝑁 is the time series length. Repeating patterns in the Hankel matrix represent un-
derlying trends and oscillations, which can be extracted from its covariance matrix:
𝑋𝑚 = 𝐻𝑚

[𝐿,𝑁] (𝐻
𝑚
[𝐿,𝑁])

𝑇 .

Eigen Decomposition

To recover the true signal o𝑚, we seek the best, low-rank matrix approximation of this
signal by thresholding the eigenvalues of 𝑋𝑚 [2]. The symmetric covariance matrix
𝑋𝑚 has a spectral decomposition 𝑈Σ𝑈𝑇 , where Σ is a diagonal matrix with real
eigenvalues _1 ≥ _2 ≥ · · · _𝐿 . The matrix of left eigenvectors 𝑈 =

[
`1, · · · , `𝐿

]
is

orthogonal. The truncated right eigenvectors l𝑉 = [a1, · · · , a𝐿]𝑇 ∈ R𝐿×𝑁 of 𝑋𝑚 can
be found as 𝑉 = 𝑈Σ. Suppose _ is the optimal threshold and _𝑛 ≥ _ ≥ _𝑛+1, which
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partitions the Hankel matrix 𝐻𝑚
[𝐿,𝑁] as:

𝐻𝑚
[𝐿,𝑁] =

𝑛∑︁
𝑝=1

√︁
_𝑝`𝑝a

𝑇
𝑝︸          ︷︷          ︸

≜𝐻𝑜
[𝐿,𝑁 ]

+
𝐿∑︁

𝑝=𝑛+1

√︁
_𝑝`𝑝a

𝑇
𝑝︸             ︷︷             ︸

≜𝐻
𝛾

[𝐿,𝑁 ]

. (6.1)

Hankelization

Matrix 𝐻𝑜
[𝐿,𝑁] in (6.1) should maintain a Hankel structure: minor variations in its

𝑘 th secondary diagonals result from insufficient noise removal.1 A Hankelization
step performs secondary diagonal averaging in order to find the matrix H𝑂 that
is closest to 𝐻𝑜

[𝐿,𝐾] with respect to the Frobenius norm among all 𝐿 × 𝑁 Hankel
matrices [57]. The operator H acting on 𝐿 × 𝑁 matrix 𝐻

𝑦

[𝐿,𝑁] entry wise
is defined as: for the (𝑖, 𝑗)𝑡ℎ element of matrix 𝐻𝑜

[𝐿,𝑁] and 𝑖 + 𝑗 = 𝑠, define a
set 𝐷𝑠 ≜ {(𝑙, 𝑛) : 𝑙 + 𝑛 = 𝑠, 𝑙 ∈ Z1:𝐿 , 𝑛 ∈ Z1:𝑁 }, is mapped to (𝑖, 𝑗)th element of
the Hankelized H𝐻𝑜

[𝐿,𝑁] via the expression in Figure 6.1 (for the case of o𝑚 = x),
where |𝐷𝑠 | denotes the number of elements in set 𝐷𝑠 .

Forecast with Linear Recurrence Formula

Definition 4 A time series 𝑌𝑁 = {𝑦}𝑁1 admits an L-decomposition of order not
larger than d, denoted by ord𝐿 (𝑌𝑁 ) ≤ 𝑑, if there exist two systems of functions
𝜚𝑘 : Z0:𝐿−1 → R, 𝜗𝑘 : Z0:𝐿−1 → R, such that 𝑦𝑖+ 𝑗 =

∑𝑑
𝑘=1 𝜗𝑘 (𝑖)𝜚𝑘 ( 𝑗), {𝑖, 𝑗} ∈

Z0:𝐿−1 × Z0:𝐿−1 ∀𝑘 ∈ Z1:𝑑 .

If ord𝐿 (𝑌𝑁 ) = 𝑑, then the series 𝑌𝑁 admits a L-decomposition of the order d and
both systems of functions (𝜚1, · · · , 𝜚𝑑) and (𝜗1, · · · , 𝜗𝑑) are linearly independent
[59].

Definition 5 A time series {𝑦}𝑁1 is governed by a linear recurrent relations/formula
(LRF), if there exist coefficients {𝜙}𝑑1 and 𝜙𝑑 ≠ 0 such that

𝑦𝑖+𝑑 =
𝑑∑︁
𝑘=1

𝜙𝑘 𝑦𝑖+𝑑−𝑘 , ∀𝑖 ∈ Z0:𝑁−𝑑 , 𝑑 < 𝑁 . (6.2)

1The 𝑘 th secondary diagonals of a matrix 𝑀 are also the 𝑘 th diagonals of 𝑀 flipped horizontally
with respect to its middle column.
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Real-valued time series governed by LRFs consists of sums of products of polyno-
mials, exponentials and sinusoids [57].

Theorem 8 [57] Let `1:𝐿−1
𝑖

be the vector of the first 𝐿 − 1 components of a left
eigenvector `𝑖 of 𝐻𝑚

[𝐿,𝑁] , and let 𝜋𝑖 be the 𝐿th component of eigenvector `𝑖. Let
𝑣2 ≜

∑𝑑
𝑖=1 𝜋

2
𝑖
. Under Assumptions 6 and 7 (see below), the LRF coefficients 𝜙𝑖

where 𝑖 ∈ [1, 𝐿 − 1] can be computed as:[
𝜙𝐿−1 𝜙𝐿−2 · · · 𝜙1

]𝑇
=

1
1 − 𝑣2

𝑑∑︁
𝑖=1

𝜋𝑖`
1:𝐿−1
𝑖 , (6.3)

and y evolves as the LRF: y𝑁+1 =
∑𝐿−1
𝑗=1 𝜙 𝑗y𝑁− 𝑗 .

6.3 Problem Statement
Consider the linear, discrete-time dynamical agent model:

x𝑖+1 = 𝐴x𝑖 + 𝐵u𝑖, y𝑖+1 = 𝐺x𝑖+1 (6.4)

where x𝑖 ∈ R𝑛x , u𝑖 ∈ R𝑛u , and y𝑖 ∈ R𝑛y , for all 𝑖 ∈ N, correspond to the system states,
controls, and outputs at time index 𝑖 respectively. The state transition, actuation, and
measurement matrices are 𝐴 ∈ R𝑛x×𝑛x , 𝐵 ∈ R𝑛x×𝑛u , and 𝐺 ∈ R𝑛y×𝑛x respectively.
Constant matrix 𝐶 ∈ R3×𝑛x maps the system’s states (6.4) to the system’s 𝑥, 𝑦, 𝑧
positions with respect to inertial frame 𝐸 . We model the 𝑘 th obstacle, 𝑘 ∈ Z1:𝑁obs , as
a sphere. The obstacle occupies the point setO𝑘 (c𝑘 , 𝑟𝑘 ) = {x ∈ R3 : ∥c𝑘−x∥2 ≤ 𝑟𝑘 },
where c𝑘 ∈ R3 and 𝑟𝑘 ∈ R+ are the 𝑘 th obstacle’s center and radius.

We consider the case where the agent (6.4) is tasked with following a reference output
trajectory yref which need not consider obstacle information. While following this
path, the agent may encounter 𝑁obs spherical, stationary or moving obstacles. The
obstacle-free region is the open set:

S ≜
{
R3 \ ∪𝑁obs

𝑘=1 O𝑘
}
. (6.5)

Assumption 5 Obstacles can be detected and localized at the same rate ( 𝑓 + Hz)
as the planner update. Only measurements of an obstacle’s geometric center with
respect to frame E are assumed, and they are corrupted by a zero-mean noise. We
can estimate the radius, 𝑟𝑘 , of the 𝑘 th obstacle as 𝑟𝑘 , and the estimate satisfies
𝑟𝑘 ≥ 𝑟𝑘 . 2

2Note Assumption 5 does not imply full state measurement.
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Assumption 6 All obstacle measurements, admit an L-decomposition of order 𝑑,
are governed by LRFs (6.2) whose LRF coefficients can be uniquely defined.

Assumption 7 We assume that the obstacles’ velocities are bounded by 𝑣max, and
the initial distances between all obstacles and the agent are significantly greater
than 𝑑𝑣max

𝑓 + .

Problem 3 [Prediction] Consider a multivariate stochastic process where observ-
ables {𝑥}𝑁1 , {𝑦}𝑁1 , and {𝑧}𝑁1 denote the spherical obstacle’s true center location
in reference frame, E. The measurements are corrupted by independent, zero-mean
noises {𝛾1}𝑁1 , {𝛾2}𝑁1 , and {𝛾3}𝑁1 (see Figure 6.1). Under Assumptions 5-7, we seek
to predict the obstacle position at times 𝑁 + 1 to 𝑁 + 𝑁ℎ using these measurements.

Due to limited and noisy partial data and the lack of explicit dynamics models, we
estimate a Bootstrap distribution of the obstacle predictions, denoted by the random
setOpred, from time index 𝑁+1 to 𝑁+𝑁ℎ and calculate its first and second moments.
We account for errors in the forecastS due to poor signal and noise separation and
bandwidth limits (due to limited training data and incorrect choices of embedding
length 𝐿) by solving a DRCC MPC problem.

Problem 4 [Planning] Consider the system (6.4) and free-space (6.5). Given a
discrete-time reference trajectory yref

𝑖
∀𝑖 ∈ Z1:𝑁ℎ where 𝑁ℎ ∈ Z+ is the length of the

horizon, convex state constraints Dx ⊂ R𝑛x , convex input constraints Du ⊂ R𝑛u ,
and a convex stage cost 𝐿𝑖 : R𝑛x × R𝑛u → R≥0, a total of 𝑁obs spherical obstacles
each approximated by a set Opred

𝑘
, and risk tolerance 𝜖 ∈ (0, 1], we seek to compute

a receding horizon controller {u∗}𝑁ℎ

1 that avoids the unsafe set Opred ≜
⋃𝑁obs

𝑘=1 O
pred
𝑘

via the following non-convex optimization:

{u∗}𝑁ℎ

1 = min
{u𝑘 }𝑁

ℎ

1 ∈ R𝑛u

𝑁ℎ∑︁
𝑖=1

𝐿𝑖 (y𝑟𝑒 𝑓𝑖
− y𝑖, u𝑖) (6.6a)

s.t. x𝑖+1= 𝐴x𝑖+𝐵u𝑖 y𝑖+1=𝐺x𝑖+1 (6.6b)

x𝑖 ∈ Dx, u𝑖 ∈ Du, x1 = x𝑖𝑛𝑖𝑡 (6.6c)

P(x𝑖 ∈ Opred) ≤ 𝜖, ∀𝑖 ∈ Z1:𝑁ℎ

(6.6d)
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6.4 Bootstrap Forecasting
Despite empirical successes in reconstructing and forecasting [58], the theoretical
accuracy of SSA is strenuous to obtain, see [3]. Inspired by [45], we use bootstrap-
ping to improve model discovery and to produce probabilistic forecasts.

Our real-time bootstrap forecast, Algorithm 4, assumes time series measurements
corrupted by noise. The user-defined parameters 𝑁 train and 𝑁step represent the
number of initial training samples, and the number of newly accumulated samples
during an initial bootstrap. Further, one must choose parameters 𝛿𝑡 and 𝑁𝜎, where
threshold 𝛿𝑡 is used to separate signal from noise, and 𝑁𝜎 is the number of steps of
progressive relaxation of threshold 𝛿𝑡 .3 In the desired signal/noise separation (6.1),
the unknown theoretical optimal threshold _ must be estimated. Let 𝑌_1:_𝑑

𝑁
be the

Hankelization reconstructed ŷ with the eigenvalues {_}𝑑1 and their corresponding
right and left eigenvectors. Note, if 𝑑 > 𝑛 where _𝑛 ≤ _ ≤ _𝑛+1, then the norm val-
ues ∥𝑌_1:_𝑑+𝑡

𝑁
−𝑌_1:_𝑑+𝑡+1

𝑁
∥2 ≈ ∥𝑌_1:_𝑑+𝑡+1

𝑁
−𝑌_1:_𝑑+𝑡+2

𝑁
∥2 since they are comprised of the

residual measurement noise. We threshold the difference between two consecutive
reconstructions with 𝛿𝑡/𝑁 , i.e. finding the smallest 𝑡 ∈ Z+ s.t.:

∥𝑌_1:_𝑡
𝑁
− 𝑌_1:_𝑡+1

𝑁
∥2 − ∥𝑌_1:_𝑡+1

𝑁
− 𝑌_1:_𝑡+2

𝑁
∥2 ≤

𝛿𝑡

𝑁
(6.7)

Since the selection of the threshold 𝛿𝑡 is crucial, we add an additional parameter
𝑁𝜎 to ensure no principle components are lost in 𝑌_1:_𝑑

𝑁
because of bad choice of

𝛿𝑡 , i.e. to avoid 𝑑 < 𝑛. We also include the next 𝑁𝜎 largest eigenvalues after the
first 𝑡 eigenvalues in the bootstrapping process. Most importantly, the number of
bootstraps, 𝑁strap, needs to be determined a priori, considering the computation
capacity, number of obstacles, and the expected noise level4.

6.5 Bootstrap Planning
This section introduces an MPC-based path planner to solve Problem 4. First,
we reformulate the obstacle avoidance constraint (6.6d) in terms of the mean and
variance of the bootstrap predictions. Next, we use this constraint in the MPC opti-
mization, and provide probabilistic guarantees of constraint satisfaction. Algorithm
4 produces 𝑁strap copies of 𝑁ℎ length predictions of the 𝑘 th obstacle’s location. We

3The parameters 𝛿𝑡 and 𝑁𝜎 are dictated by measurement noise levels, which can be characterized
off-line in a controlled experimental setting.

4The effectiveness of Algorithm 4 depends highly on the time delay length 𝐿, the number of
training measurements 𝑁 train, the number of bootstraps 𝑁strap, and the MPC horizon length, 𝑁ℎ. We
recommend that 𝑁 train be at least 10𝑁ℎ and that 𝐿 = 𝑁 train

4 . 𝑁strap and 𝑁step should be as large as
allowed by the computing platform and benchmarking them offline.
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Algorithm 4 Bootstrap Forecast Algorithms (Per Obstacle)
Data: Obstacle center position measurements {x̂}𝑁1 , {ŷ}

𝑁
1 , {ẑ}

𝑁
1 ,

User defined constants: 𝑁 train,𝑁step, 𝛿𝑡 , 𝑁𝜎 , 𝑁strap

Result: Forecast:{ 𝑗x}𝑁+𝑁ℎ

𝑁+1 ,{ 𝑗y}𝑁+𝑁ℎ

𝑁+1 ,{ 𝑗z}𝑁+𝑁ℎ

𝑁+1 ,∀ 𝑗 ∈ Z1:𝑁 straps

Use {x̂𝑁+1, ŷ𝑁+1,ẑ𝑁+1} to update Hankel matrix
while istrap ≤ 𝑁strap do

while 𝑁 + 1 ≥ 𝑁 train do
for states = 𝑥, 𝑦, 𝑧 do

while (6.7) holds do
𝑡++

end
obtain ({_istrap}𝑡1,{`istrap}𝑡1,𝜙istrap) for each states, istrap++
for 𝑡𝑡 = 𝑡 + 1 : 𝑡 + 𝑁𝜎 do

obtain ({_istrap}𝑡𝑡1 ,{`istrap}𝑡𝑡1 ,𝜙istrap) for each states, istrap++
end

end
𝑁 train = 𝑁 train + 𝑁step

end
Back-up Strategy

end
Apply the tuples ({ 𝑗_istrap}𝑡 𝑗1 , { 𝑗`istrap}𝑡 𝑗1 , 𝑗𝜙istrap) ∀ 𝑗 ∈ Z1:Nstraps for 𝑥, 𝑦, 𝑧 to the updated Hankel,
where 𝑡 𝑗 denotes number of eigenvalues post truncation for the 𝑗 𝑡ℎ bootstrap. Perform a 𝑁ℎ step
forecast using 𝑗𝜙istrap.

denote the 𝑗 th copy of the bootstrap prediction as {ŷ 𝑗
𝑘
}𝑁ℎ

1 = {ŷ 𝑗1,𝑘 , ŷ
𝑗

2,𝑘 , · · · , ŷ
𝑗

𝑁ℎ,𝑘
}.

The collision avoidance set constraint (6.6d) can be reformulated based on the obsta-
cle shape and center as ∥𝐶x𝑖 −ŷ 𝑗

𝑖,𝑘
∥2 ≥ 𝑟𝑘 + 𝑟𝑝 ≜ 𝑟 𝑘 , for each 𝑖 ∈ Z1:𝑁ℎ , 𝑘 ∈ Z1:𝑁obs ,

and where 𝑟𝑝 is the agent’s safety radius (6.4). This collision constraint can be
reexpressed as the following concave (in the state x𝑖) constraint,

(𝐶x𝑖 − ŷ 𝑗
𝑖,𝑘
)𝑇 (𝐶x𝑖 − ŷ 𝑗

𝑖,𝑘
) ≥ 𝑟 𝑘 ∥(𝐶x𝑖−ŷ 𝑗

𝑖,𝑘
)∥2. (6.8)

We approximate (6.8) as an affine constraint through the use of Sequential Convex
Programming (SCP) [13, 95]

(𝐶x𝑖 − ŷ 𝑗
𝑖,𝑘
)𝑇 (𝐶x𝑖 − ŷ 𝑗

𝑖,𝑘
) ≥ 𝑟 𝑘 ∥(𝐶x𝑖 − ŷ 𝑗

𝑖,𝑘
)∥2, (6.9)

where x𝑖 is approximated with the solution from previous SCP iterations. Note
that (6.9) over-approximates constraint (6.8) (see [95] for proof).

Lemma 9 If we have𝑁strap forecasts of the𝑘 th obstacle’s position from time 𝑖 ∈ Z1:𝑁ℎ

and the previous SCP trajectory {x}𝑁ℎ

1 , then we can define the 𝑗 th bootstrap lumped
collision avoidance coefficients 𝛼 𝑗

𝑖,𝑘
, 𝛽 𝑗

𝑖,𝑘
and the standard deviation of the collision
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avoidance constraint Δ𝑖,𝑘 as:

𝛼
𝑗

𝑖,𝑘
≜ −𝐶𝑇 (𝐶x𝑖 − ŷ 𝑗

𝑖,𝑘
) (6.10)

𝛽
𝑗

𝑖,𝑘
≜ 𝑟 𝑘 ∥(𝐶x𝑖 − ŷ 𝑗

𝑖,𝑘
)∥2 − (𝐶x𝑖)𝑇 (𝐶x𝑖 − ŷ 𝑗

𝑖,𝑘
) (6.11)

Δ𝑖,𝑘 ≜
√︃

p𝑇
𝑖
Σ𝛼𝑖,𝑘p𝑖 + 2p𝑇

𝑘
Σ𝛼𝛽𝑖,𝑘 + Σ𝛽𝑖,𝑘 , (6.12)

where,Σ𝛼𝑖,𝑘 ≜ cov
(
𝛼
𝑗

𝑖,𝑘
, 𝛼

𝑗

𝑖,𝑘

)
,Σ𝛽𝑖,𝑘 ≜ cov

(
𝛽
𝑗

𝑖,𝑘
, 𝛽

𝑗

𝑖,𝑘

)
, andΣ𝛼𝛽𝑖,𝑘 ≜ cov

(
𝛼
𝑗

𝑖,𝑘
, 𝛼

𝑗

𝑖,𝑘

)
are

sample covariance matrices computed using the bootstrapped coefficients {𝛼𝑖,𝑘 }𝑁
strap

1
and {𝛽𝑖,𝑘 }𝑁

strap

1 and p𝑖 ≜ 𝐶x𝑖 ∈ R3 . Let the dimension of the null space ofΣ𝛼𝑖,𝑘 be𝑛𝑖,𝑘 ≥
0 .5 The standard deviation Δ𝑖,𝑘 has the following upper bound,

Δ𝑖,𝑘 ≤1𝑇 |Σ̃
1
2
𝛼𝑖,𝑘

(
p𝑖−h𝑖,𝑘

)
|+
√︁

3𝑘𝑖,𝑘 ≜ Z𝑖,𝑘 , (6.13)

where Σ̃𝛼𝑖,𝑘 =Σ𝛼𝑖,𝑘+ 𝐼null
𝑖,𝑘

, 𝐼null
𝑖,𝑘

=

[
0 0
0 𝐼𝑛𝑖,𝑘×𝑛𝑖,𝑘

]
∈ R3×3 , and

[
h𝑖,𝑘

𝑘𝑖,𝑘

]
≜

[
−
(
Σ𝛼𝑖,𝑘

+𝐼null
𝑖,𝑘

)−1
Σ𝛼𝛽𝑖,𝑘

Σ𝛽𝑖,𝑘
−Σ𝑇

𝛼𝛽𝑖,𝑘

(
Σ𝛼𝑖,𝑘

+𝐼null
𝑖,𝑘

)−1
Σ𝛼𝛽𝑖,𝑘

]
. (6.14)

Proof: Let the eigendecomposition of Σ𝛼𝑖,𝑘be the following:

Σ𝛼𝑖,𝑘 = [ 𝑈𝑟 𝑈𝑛 ]
[
Λ𝑟 0
0 0

]
[ 𝑈𝑟 𝑈𝑛 ]𝑇

where, 𝑈𝑟 ∈ R3×(3−𝑛𝑖,𝑘) is comprised of the eigenvectors of Σ𝛼𝑖,𝑘 that are orthonor-
mal. The columns of 𝑈𝑛 ∈ R𝑛𝑖,𝑘are the complementary orthonormal basis that
spans the null space of Σ𝛼𝑖,𝑘 . By substituting (6.14) one can verify the following
inequality:

Δ𝑖,𝑘 ≤
√︃
(p𝑖 − h𝑖,𝑘 )𝑇 Σ̃𝛼𝑖,𝑘 (p𝑖 − h𝑖,𝑘 ) + 𝑘𝑖,𝑘 ≜ Δ̃𝑖,𝑘 (6.15)

where Σ̃𝛼𝑖,𝑘 is a positive definite matrix because

Σ̃𝛼𝑖,𝑘 = [ 𝑈𝑟 𝑈𝑛 ]
( [

Λ𝑟 0
0 0

]
+

[
0 0
0 𝐼𝑛𝑖,𝑘×𝑛𝑖,𝑘

] )
[ 𝑈𝑟 𝑈𝑛 ]𝑇 .

We further upper bound (6.15) by adding a positive constant, ]𝑖,𝑘 ≜ 2√
3
1𝑇 |Σ̃1/2

𝛼𝑖,𝑘p𝑘 −
h𝑘 |, to Δ̃2

𝑖,𝑘
and obtain

5In all numerical simulations, Σ𝛼𝑖,𝑘
is strictly positive definite. However, when one or more

measurable states are noiseless, Σ𝛼𝑖,𝑘
can be ill-conditioned. Instead of adding 𝐼null

𝑖,𝑘
, which can

be numerically expansive to determine, we recommend applying Algorithm 4 only to states with
measurement noise, and adapt Theorem 10 with deterministic forecasts for the noiseless states and
the DRCC formulation for the noisy ones.
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Δ̃2
𝑖,𝑘 ≤ Δ̃2

𝑖,𝑘 +
2
√

3
1𝑇 |Σ̃1/2

𝛼𝑖,𝑘 (p𝑘 − h𝑘 ) | ≤
√︃
b𝑇
𝑖,𝑘
b𝑖,𝑘

where b𝑖,𝑘 ≜ |Σ̃1/2
𝛼𝑖,𝑘 (p𝑘 − h𝑖,𝑘 ) | + 1

√︃
𝑘𝑖,𝑘
3 ∈ R3. For the inequality to hold, the

expression ]𝑖,𝑘 must always be non-negative which is true by construction. Further,
let Z𝑖,𝑘 = 1𝑇b𝑖,𝑘 ∈ R, then Z2

𝑖,𝑘
= (b𝑇

𝑖,𝑘
1) (1𝑇b𝑖,𝑘 ) = b𝑇𝑖,𝑘b𝑖,𝑘 + 2𝜖b . If 𝜖b ≥ 0, we can

then state Δ𝑖,𝑘 ≤ Z𝑖,𝑘 which completes the proof (since b𝑖,𝑘 = [b𝑥
𝑖,𝑘
, b
𝑦

𝑖,𝑘
, b𝑧
𝑖,𝑘
] ∈ R3,

then 𝜖b = b𝑥𝑖,𝑘b
𝑦

𝑖,𝑘
+ b𝑥

𝑖,𝑘
b𝑧
𝑖,𝑘
+ b𝑦

𝑖,𝑘
b𝑧
𝑖,𝑘
> 0 because b𝑥

𝑖,𝑘
, b
𝑦

𝑖,𝑘
, b𝑧
𝑖,𝑘
∈ R+).

Figure 6.2: Four Monte-Carlo simulations with agent dynamics (6.19) and a Frisbee
obstacle (see Figure 6.1) are compared. The same obstacle behaviors are simulated
while the agent tracks the same figure ’8’ reference trajectory with four risk levels
𝜖 = {0.05, 0.25, 0.5, 1}. The simulation is designed to be difficult: the vehicle must
deviate from its reference trajectory as the obstacle trajectory is designed to intersect
the agent’s reference trajectory with noise obstacle trajectory measurements. All
measurement noises are sampled uniformly between [−0.125, 0.125] meters. The
bootstrap obstacle forecast uses the parameters: 𝐿 = 24, 𝑁 train = 100, 𝑁step = 5,
𝛿𝑡 = 20, 𝑁𝜎 = 8, 𝑁strap = 40. SSA-MPC uses the constants 𝑁ℎ = 10, 𝜒 = 50
and 𝜏 = 0.25 with fixed 4-step SCP iterations. The tuple ({_ 𝑗 }𝑡 𝑗1 , {` 𝑗 }𝑡 𝑗1 , 𝜙 𝑗 ),∀ 𝑗 ∈
Z1:40 in Algorithm 4 is computed with observables measured at 20 Hz. The four
sub-diagrams show the planned trajectory at 4 risk levels; the planner is more
conservative as 𝜖 → 0, and aligns with the results shown in Table 7.1 and 6.2.

It is costly to incorporate each boostrap as a separate obstacle constraint, as the
number of constraints grow linearly with 𝑁strap. Instead, we estimate the ensemble
mean and covariance of the distance from the obstacle. A DRCC accounts for
all bootstrap distributions that can have this mean and covariance. This approach
results in a significantly fewer obstacle constraints, whose cardinality remains fixed
regardless of the number of bootstrap predictions 𝑁strap.

Theorem 10 (SSA-MPC) Consider Problem 4 under Assumptions 5-7 with system
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dynamics (6.4) and bootstrap SSA forecasts of all obstacles’ center positions. Given
a risk tolerance 𝜖 , the solution to the following optimal control problem is a feasible
solution of Problem 4 as 𝑤 −→ ∞. The SCP optimization problem at iteration 𝑤 is:

{u∗}𝑁ℎ

1 = min
u𝑖 ∈ R𝑛u

s𝑖,𝑘 ∈ R3

𝑁ℎ∑︁
𝑖=1

𝐿𝑖 (y𝑟𝑒 𝑓𝑖
− 𝐺x𝑖, u𝑖) (6.16a)

s.t. x𝑖+1 = 𝐴x𝑖 + 𝐵u𝑖 (6.16b)

x𝑖 ∈ Dx, u𝑖 ∈ Du, x1 = x𝑖𝑛𝑖𝑡 (6.16c)

Λ𝑖,𝑘

[
x𝑖 s𝑖,𝑘

]𝑇
≤ Γ𝑖,𝑘 (6.16d)

∥x𝑖 − x𝑖∥ ≤ 𝜒𝜏𝑤 ∀(𝑖, 𝑘) ∈ Z1:𝑁ℎ×Z1:𝑁obs
(6.16e)

where {x̄}𝑁ℎ

1 is the solution to the (𝑤 − 1)th iteration of the SCP optimization,
Λ𝑖,𝑘 ∈ R7×11 and Γ𝑖,𝑘 ∈ R7 encode the risk-based collision avoidance relationships,

Λ𝑖,𝑘 =


E[𝛼𝑖,𝑘]𝑇𝐶 1𝑇 a𝜖𝑛
Σ̃

1/2
𝛼𝑖,𝑘

𝐶 −𝐼3×3

−Σ̃1/2
𝛼𝑖,𝑘

𝐶 −𝐼3×3

 , Γ𝑖,𝑘 =


−E[𝛽𝑖,𝑘]−a𝜖𝑛

√
3𝑘𝑖,𝑘

Σ̃
1/2
𝛼𝑖,𝑘

h𝑖,𝑘

−Σ̃1/2
𝛼𝑖,𝑘

h𝑖,𝑘

 ,
where 𝜖𝑛 ≜ 𝜖

𝑁obs and a𝜖𝑛 ≜
√︃

1−𝜖𝑛
𝜖𝑛

. Lastly, 𝜒 ≥ 0 is the initial trust region
and 𝜏 ∈ (0, 1) the worst-case rate of convergence.

Proof: Denote the 𝑗 th random bootstrapped obstacle forecastsas z 𝑗
𝑖,𝑘
≜

(𝛼 𝑗
𝑖,𝑘
)𝑇x𝑖 + 𝛽 𝑗𝑖,𝑘 , where 𝛼 𝑗

𝑖,𝑘
and 𝛽

𝑗

𝑖,𝑘
are defined in (6.10) and (6.11). The ob-

stacle avoidance constraint (6.8) has an affine over approximation (6.9), which is
equivalently given by z 𝑗

𝑖,𝑘
< 0. Hence, the chance constraint (6.6d) is,

P(x𝑖 ∈ Opred) = P
( 𝑁obs⋃
𝑘=1
{z𝑖,𝑘 ≥ 0}

)
≤
𝑁obs∑︁
𝑘=1
P(z𝑖,𝑘 ≥ 0).

Enforcing P(z𝑖,𝑘 ≥ 0) ≤ 𝜖𝑛, ∀𝑘 ∈ Z1:𝑁obs also satisfies (6.6d). We can satisfy this
constraint as a DRCC:

sup
^∼

(
E[z𝑖,𝑘],Σz𝑖,𝑘

) P{^ ≥ 0} ≤ 𝜖𝑛, ∀𝑖, 𝑘 ∈ Z1:𝑁ℎ × Z1:𝑁obs
,

whereE[z𝑖,𝑘 ] andΣz𝑖,𝑘 are the sample mean and covariance of the bootstrapped {z𝑖,𝑘 }𝑁
strap

1 .
We reformulate the above statement as a deterministic constraint as shown in [51],

E[z𝑖,𝑘 ]︸ ︷︷ ︸
E[𝛼𝑖,𝑘]𝑇𝐶x𝑖+E[𝛽𝑖,𝑘]

+a𝜖𝑛
√︃
Σz𝑖,𝑘︸ ︷︷ ︸
Δ𝑖,𝑘

≤0, ∀𝑖 ∈Z1:𝑁ℎ

, 𝑘 ∈Z1:𝑁obs
. (6.17)
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Cases 𝜖 0.05 0.1 0.25 0.5 0.75 1

%Feas. 97.5 98.2 98.9 99.6 99.9 100
Const. %Succ. 100 100 100 100 100 59.0
Speed 𝑑𝑚𝑖𝑛 2.26 1.85 1.41 1.12 0.94 0.64

𝜎(𝑑𝑚𝑖𝑛) 0.42 0.33 0.25 0.22 0.24 0.35
%Feas. 99.5 99.6 99.9 100 100 100

Ball %Succ. 100 100 100 100 100 79.3
w/drag 𝑑𝑚𝑖𝑛 2.60 2.14 1.63 1.27 1.04 0.64

𝜎(𝑑𝑚𝑖𝑛) 1.08 0.93 0.70 0.50 0.37 0.27
%Feas. 90.3 97.4 98.3 98.6 97.5 97.8

Frisbee %Succ. 100 100 100 100 99.7 58.0
w/drag 𝑑𝑚𝑖𝑛 4.97 3.97 2.85 2.01 1.44 0.78

𝜎(𝑑𝑚𝑖𝑛) 1.97 1.53 1.15 0.91 0.76 0.77

Table 6.1: Summary of results from MC simulations of system (6.19)

Constraint (6.17) is not affine in the optimization variable, as is desirable for real-
time application. By Lemma 9, Δ𝑖,𝑘 ≤ Z𝑖,𝑘 , and we deduce the following tighter
inequality constraint as a numerically appealing alternative to (6.17),

E[𝛼𝑖,𝑘 ]𝑇𝐶x𝑖 + E[𝛽𝑖,𝑘 ] + a𝜖𝑛
(
1𝑇 |Σ1/2

𝛼𝑖,𝑘p𝑖 − h𝑖,𝑘 | +
√︁

3𝑘𝑖,𝑘
)
≤ 0. (6.18)

To account for the absolute value term, we introduce auxiliary optimization variables
s𝑖,𝑘 that satisfy the following:

Σ
1/2
𝛼𝑖,𝑘p𝑖 − h𝑖,𝑘 ≤ s𝑖,𝑘 , −Σ1/2

𝛼𝑖,𝑘p𝑖 + h𝑖,𝑘 ≤ s𝑖,𝑘 .

Therefore, satisfying (6.16d) is equivalent to satisfying (6.18).

Convergence of the SCP is proven in [47] which is based on implementing a trust
region via second-order cone constraints (6.16e). The authors also show the solution
to the SCP as 𝑤 →∞ is a feasible solution to Problem 4.6

6.6 Numerical Examples
We consider a quadcopter that follows a reference trajectory yref while avoiding
unknown moving obstacles and respecting state and control constraints. Its position
and Euler angles (roll, pitch, yaw) in frame 𝐸 are denoted 𝑥, 𝑦, 𝑧, 𝜑, \, 𝜓.

Example 1: Fully-actuated Multirotor with attitude controller
Assume there exists a low level attitude controller that tracks given attitude com-
mands within 20 Hz. As a result, we use the following linear dynamic model to

6To be numerically feasible, 𝑤 is usually upper bounded by a finite integer, resulting in a
sub-optimal but still feasible solution.
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Cases 𝜖 0.05 0.1 0.25 0.5 0.75 1

%Feas. 83.9 84.2 85.6 86.5 88.6 99.8
Const. %Succ. 100 100 100 100 100 61.2
Speed 𝑑𝑚𝑖𝑛 10.42 8.67 6.59 4.88 3.57 0.46

𝜎(𝑑𝑚𝑖𝑛) 2.47 2.28 1.86 1.43 1.16 0.14
%Feas. 92.8 91.8 90.9 91.1 90.7 82.8

Ball %Succ. 100 100 100 100 100 0.1
w/drag 𝑑𝑚𝑖𝑛 6.95 5.82 4.25 3.04 2.13 1.82

𝜎(𝑑𝑚𝑖𝑛) 2.52 2.55 2.27 1.98 1.59 N/A
%Feas. 92.2 94.5 92.9 92.3 86.9 100

Frisbee %Succ. 100 100 100 100 100 40.5
w/drag 𝑑𝑚𝑖𝑛 12.5 11.3 9.10 6.59 4.24 0.34

𝜎(𝑑𝑚𝑖𝑛) 2.47 2.84 3.00 2.81 2.27 0.05

Table 6.2: Summary of results from MC simulations of system (7.10)

extract a high-level motion planner that outputs attitude and thrust inputs:

¥𝑥 = −𝑔\, ¥𝑦 = 𝑔𝜑, ¥𝑧 = 𝑢1 − 𝑔, ¥𝜓 = 𝑢4, (6.19)

where the planner control inputs are given by 𝑢1, \, 𝜑, 𝑢4 which are thrust, roll angle,
pitch angle, and yaw rate, and where 𝑔 = 9.81𝑚/𝑠2 is the gravitational acceleration.

Example 2: Multirotor operating in small angle regime
A mixer maps thrust and moment inputs into electronic speed controller PWM
commands at 8kHz. Since the multirotor is constrained to operate within the state
constraints \ ∈ [−0.45, 0.45] radians and 𝜑 ∈ [−0.45, 0.45] radians, we use the
following standard multirotor linear dynamics,

¥𝑥 = −𝑔\, ¥𝑦 = 𝑔𝜑, ¥𝑧 = 𝑢1 − 𝑔, (6.20)

¥𝜑 =
𝑢2

𝐼𝑥𝑥
, ¥\ = 𝑢3

𝐼𝑦𝑦
, ¥𝜓 =

𝑢4

𝐼𝑧𝑧
, (6.21)

where the planner control inputs 𝑢1, 𝑢2, 𝑢3, 𝑢4 correspond to the thrust force in
the body frame and three moments. The vehicle’s moments of inertia are 𝐼𝑥𝑥 =

0.0075𝑘𝑔𝑚2, 𝐼𝑦𝑦 = 0.0075𝑘𝑔𝑚2, 𝐼𝑧𝑧 = 0.013𝑘𝑔𝑚2. For both examples, the desire
reference trajectory consists of positions, {𝑥ref}, {𝑦ref}, {𝑧ref} and yaw angles {𝜓ref}.

We conducted Monte-Carlo (MC) simulations of our planner as it avoids three dif-
ferently behaved obstacles which are introduced once in each run for both examples.
See code.7 Case 1 uses a constant speed spherical obstacle without drag. Case 2 is a
thrown spherical obstacle with drag. In Case 3, a Frisbee is thrown at various initial

7https://github.com/skylarXwei/Riskaware_MPC_SSA_Sim.git

https://github.com/skylarXwei/Riskaware_MPC_SSA_Sim.git
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positions, velocities, and rotation speed. The sphere dynamics are captured by a
6-state ODE with drag penalties proportional to its velocities. The Frisbee is mod-
eled following [68], using a 12-state model identical to Figure 6.1 with aerodynamic
drag. The Frisbee is modeled as a sphere with the same radius as the Frisbee disk.
We also benchmark our method against an artificial potential field alternative. A
supplementary video (https://youtu.be/6s8pfRZ171Q) provides more details.

We conducted 1000 MC simulations per 𝜖 level to compare the numerical feasibility,
percent success in obstacle avoidance (if the MPC planner is feasible), and the
planner’s conservativeness, as measured by the minimum distance between the
obstacle and agent centers. For the three cases, the obstacle speed ranges are
[0.41, 8.43], [3.41, 6.37], and [5.76, 6.68] m/s, respectively. The MPC planning
and measurement rates are fixed at 20 Hz. With a 10 step horizon and 40 bootstraps,
the average per planner update rate is 0.030 ± 0.0014 sec, using Gurobi [60] on an
Intel i7-9700K CPU @3.6GHz processor, using a dynamic simulation written in
MATLAB. The results in Tables 7.1 and 6.2 show the applicability of our SSA-MPC
algorithm, despite vast differences in obstacle behavior. Further, as the risk tolerance
𝜖 shrinks, the percentage success in obstacle avoidance (when the solution is feasible)
increases, with a trade-off in the feasibility of optimization (6.16). Parameters 𝑑𝑚𝑖𝑛
and 𝜎(𝑑𝑚𝑖𝑛) are the average minimum distance between the agent and the obstacle
and the standard deviation of this minimum distance across 1000 MC simulations,
respectively. Based on Table 7.1 and 6.2, the risk tolerance 𝜖 can also viewed as
a robustness parameter which is inversely proportional to the distance between the
agent and obstacles. However, the cost of more robustly avoiding the obstacles
is reflected in the numerical feasibility, a parameter describing the chances of the
SCP formulation (6.16) being feasible for the entire simulation. The feasible set
of the polytopic collision avoidance constraints (6.16d) shrinks as 𝜖 (and hence 𝜖𝑛)
decreases.

https://youtu.be/6s8pfRZ171Q
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C h a p t e r 7

DATA-DRIVEN MPC USING ADAPTIVE CONFORMAL
PREDICTION

So far, we have considered uncertainty quantification techniques that are heuristic.
For example in the previous chapter, the bootstrapping technique was an approximate
technique to quantify the variations in the linear predictor based on the dataset used.
However, we do not know if the risk-level, 𝜖 , that we used for the MPC is truly
accounting for at least 𝜖 coverage for the real system. In this chapter, we provide
an online algorithm that uses the data collected online to obtain uncertainty sets
for multistep-ahead predictions with probabilistic coverage. These uncertainty sets
are used within a model predictive controller to safely navigate among dynamic
agents. While most existing data-driven prediction approaches (and the ones we’ve
considered so far) quantify prediction uncertainty heuristically, we quantify the true
prediction uncertainty in a distribution-free, adaptive manner that allows to capture
changes in prediction quality and the agents’ motion. We empirically evaluate our
algorithm on a case study where a drone avoids a flying frisbee and compare with
the results from the previous chapter.

This chapter was adapted from:

Anushri Dixit*, Lars Lindemann*, Skylar Wei, Matthew Cleave-
land, George J. Pappas, and Joel W. Burdick. Adaptive confor-
mal prediction for motion planning among dynamic agents. In
Submitted to Learning for Dynamics and Control (L4DC) Conference, 2022.
URL https://arxiv.org/pdf/2212.00278.pdf.

7.1 Introduction
Motion planning of autonomous systems in dynamic environments requires the
system to reason about uncertainty in its environment, e.g., a self-driving car needs
to reason about uncertainty in the motion of other vehicles, and a mobile robot
navigating a crowded space needs to assess uncertainty of nearby pedestrians. These
applications are safety critical, as the agents’ intentions are unknown, and systems
must be able to plan reactive behaviors in response to an increase in uncertainty.

Existing works include predictive and reactive approaches, e.g., multi-agent naviga-
tion via the dynamic window approach [48, 94] or navigation functions [128, 129].

https://arxiv.org/pdf/2212.00278.pdf
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Reactive approaches typically consider simplified dynamics and do not optimize
performance. Predictive approaches incorporate predictions of the agents’ future
motion and can optimize performance. Interactive approaches take inter-agent in-
teraction into account [40, 79], while non-interactive approaches ignore potential
interactions [38, 135].

In this chapter, we use trajectory predictors to predict
the agents’ future motion, and quantify prediction un-
certainty in an adaptive and online manner from past
agent observations of a single trajectory. Particularly,
we use tools from the adaptive conformal prediction
(ACP) literature [15, 54, 55, 146] to construct prediction
regions that quantify multistep-ahead prediction uncer-
tainty. Based on this quantification, we formulate an
uncertainty-informed motion planner. Our contributions are as follows:

• We propose an algorithm that adaptively quantifies uncertainty of trajectory
predictors using ACP. Our algorithm is distribution-free and applies to a broad
class of trajectory predictors, providing average probabilistic coverage.

• We propose a model predictive controller (MPC) that leverages uncertainty
quantifications to plan probabilistically safe paths around dynamic obstacles.
Importantly, our adaptive algorithm enables us to capture and react to changes
in prediction quality and the agents’ motion.

• We provide empirical evaluations of a drone avoiding a flying frisbee.

Related Work
Planning in dynamic environments has found broad interest, and non-interactive
sampling-based motion planner were presented in [10, 75, 91, 107, 111], while
[38, 130, 141, 142] propose non-interactive receding horizon planning algorithms.
However, accounting for uncertainty in the agent motion is challenging.

Intent-driven models for planning among human agents have estimated agent un-
certainty using Bayesian inference [14, 46, 49, 99]. Model predictive control was
also used in a stochastic setting to account for uncertainty under the assumption
of bounded or Gaussian uncertainty [41, 98, 145]. Data-driven trajectory predic-
tors can provide mean and variance information of the predictions, which can be
approximated as a Gaussian distribution [27] and used within stochastic planning



99

frameworks [32, 50, 102]. These approaches quantify prediction uncertainty in
a heuristic manner for real systems as the authors make certain assumptions on
prediction algorithms and agent models and its distribution, e.g., being Gaussian.
Distributionally robust approaches such as [142] are distribution free and can ensure
safety at the cost of conservatism.

Data-driven trajectory predictors, such as RNNs or LSTMs, provide no information
about prediction uncertainty which can lead to unsafe decisions. For this reason,
prediction monitors were recently presented in [44, 90] to monitor prediction quality.
Especially [90] used conformal prediction to obtain guarantees on the predictor’s
false negative rate. Conformal prediction was further used to obtain estimates on
constraint satisfaction via neural network predictors [22, 36, 84, 108]. Conceptually
closest to our work are [29, 83] where prediction uncertainty quantifications are
obtained using conformal prediction, and then utilized to design model predictive
controllers. While the algorithm in [29] can not provide end-to-end safety guar-
antees, [83] can provide probabilistic safety guarantees for the planner. However,
changes in the distribution that describes the agents’ motion can not be accounted
for, e.g., when the agents’ motion changes depending on the motion of the con-
trol system. Another distinct difference is that offline trajectory data is needed,
while we obtain uncertainty quantifications in an adaptive manner from past agent
observations of a single trajectory.

7.2 Problem Formulation and ACP Preliminaries
The dynamics of our autonomous system are governed by the discrete-time dynam-
ical system,

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡), 𝑥0 := Z (7.1)

where 𝑥𝑡 ∈ X ⊆ R𝑛 and 𝑢𝑡 ∈ U ⊆ R𝑚 denote the state and the control input at time
𝑡 ∈ N ∪ {0}, respectively. The sets U and X denote the set of permissible control
inputs and the workspace of the system, respectively. The measurable function
𝑓 : R𝑛×R𝑚 → R𝑛 describes the system dynamics and Z ∈ R𝑛 is the initial condition
of the system. For brevity, let 𝑥 := (𝑥0, 𝑥1, . . .) denote the trajectory of (7.1) under
a given control sequence 𝑢 := (𝑢0, 𝑢1, . . .).

The system operates in an environment with 𝑁 dynamic agents whose trajectories
are a priori unknown. LetD(𝑥) be an unknown distribution over agent trajectories,
i.e., let 𝑌 := (𝑌0, 𝑌1, . . .) ∼ D(𝑥) describe a random trajectory where the joint agent
state 𝑌𝑡 := (𝑌𝑡,1, . . . , 𝑌𝑡,𝑁 ) at times 𝑡 ∈ N ∪ {0} is drawn from R𝑁𝑛, i.e., 𝑌𝑡, 𝑗 is the
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state of agent 𝑗 at time 𝑡. For instance, 𝑌𝑡 can denote the uncertain two-dimensional
positions of 𝑁 pedestrians at time 𝑡. Modeling dynamic agents by a distribution
D provides great flexibility, and D can generally describe the motion of Markov
decision processes. We use lowercase letters 𝑦𝑡 when referring to a realization of
𝑌𝑡 , and assume at time 𝑡 to have access to past observations (𝑦0, . . . , 𝑦𝑡). We make
no other assumptions on the distribution D, and in our proposed algorithm we will
predict states (𝑦𝑡+1, . . . , 𝑦𝑡+𝐻) for a prediction horizon of 𝐻 from (𝑦0, . . . , 𝑦𝑡) and
quantify prediction uncertainty using ideas from ACP.

Problem 5 Given the system in (7.1), the unknown random trajectories 𝑌 ∼ D(𝑥),
and a failure probability 𝛿 ∈ (0, 1), design the control inputs 𝑢𝑡 such that the
Lipschitz continuous constraint function 𝑐 : R𝑛 × R𝑛𝑁 → R is satisfied1 with a
probability of at least 1 − 𝛿 at each time, i.e., that

Prob
(
𝑐(𝑥𝑡 , 𝑌𝑡) ≥ 0

)
≥ 1 − 𝛿 for all 𝑡 ≥ 0. (7.2)

To address Problem 5, we use trajectory predictors to predict the motion of the agents
(𝑌0, 𝑌1, . . .) to enforce the constraint (7.2) within a MPC framework.[83] assumed
the availability of validation data from D to build prediction regions that quantify
uncertainty of trajectory predictors. In this setting, we can collect data online to
adapt our uncertainty sets based on past performance of our predictor using ACP
without any assumptions on the distribution of the uncertainty and exchangeability
of the validation and training dataset.

Remark 7 By parameterizing the distribution D(𝑥) by the trajectory 𝑥, we model
potential interactions between system and agents. This way, we can adapt to cases
where the trajectory predictor (introduced next) is trained without information of 𝑥,
i.e., without taking interactions into account.

Trajectory Predictors:
Given observations (𝑦0, . . . , 𝑦𝑡) at time 𝑡, we want to predict future states (𝑦𝑡+1, . . . , 𝑦𝑡+𝐻)
for a prediction horizon of 𝐻. Assume that Predict is a function that maps observa-
tions (𝑦0, . . . , 𝑦𝑡) to predictions ( �̂�1

𝑡 , . . . , �̂�
𝐻
𝑡 ) of (𝑦𝑡+1, . . . , 𝑦𝑡+𝐻). Note that 𝑡 in �̂�𝜏𝑡

denotes the time at which the prediction is made, while 𝜏 indicates how many steps
1For an obstacle avoidance constraint, like 𝑐(𝑥, 𝑦) := ∥𝑥 − 𝑦∥ − 0.5 ≥ 0, the Lipschitz constant

is 1. We implicitly assume that the constraint function is initially satisfied, i.e., that 𝑐(𝑥0, 𝑦0) ≥ 0.
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we predict ahead. In principle, Predict can be a classical auto-regressive model or
a neural network based method.

While our proposed problem solution is compatible with any trajectory predictor
Predict, we focus in the case studies on real-time updating strategies like sliding
linear predictors with extended Kalman filter. Extracting a dynamics model from
data is challenging, especially when the available data is limited, noisy, and partial.
[127] showed that the method of delays can be used to reconstruct qualitative features
of the full-state, phase space from delayed partial observations. By building on our
previous work using time delay embedding in dynamic obstacle avoidance presented
in the previous chapter ([142]), we employ a linear predictor based on spatio-
temporal factorization of the delayed partial observations as the pairing trajectory
predictor.

Adaptive Conformal Prediction (ACP):
Conformal prediction is used to obtain prediction regions for predictive models,
e.g., neural networks, without making assumptions on the underlying distribution
or the predictive model [9, 119, 140]. Let 𝑅1, . . . , 𝑅𝑡+1 be 𝑡 + 1 independent and
identically distributed (i.i.d.) random variables. The goal in conformal prediction is
to obtain a prediction region of 𝑅𝑡+1 based on 𝑅1, . . . , 𝑅𝑡 . Formally, given a failure
probability 𝛿 ∈ (0, 1), we want to obtain a prediction region 𝐶 such that

Prob(𝑅𝑡+1 ≤ 𝐶) ≥ 1 − 𝛿.

We refer to 𝑅𝑖 also as the nonconformity score. For supervised learning, we can
select 𝑅𝑖 := ∥𝑍𝑖 − `(𝑋𝑖)∥ where ` is the predictor so that a large nonconformity
score indicates a poor predictive model. By a quantile argument, see [131, Lemma
1], we can obtain 𝐶 to be the (1 − 𝛿)th quantile of the empirical distribution of the
values 𝑅1, . . . , 𝑅𝑡 and∞. Calculating the (1−𝛿)th quantile can be done by assuming
that �̄�1, . . . , �̄�𝑡 correspond to the values of 𝑅1, . . . , 𝑅𝑡 , but instead sorted in non-
decreasing order (�̄� refers to the order statistic of 𝑅), i.e., for each �̄�𝑖 there exists
exactly one 𝑅 𝑗 such that �̄�𝑖 = 𝑅 𝑗 and �̄�𝑖+1 ≥ �̄�𝑖. By setting 𝑞 := ⌈(𝑡 +1) (1−𝛿)⌉ ≤ 𝑡,
we obtain the (1 − 𝛿)th quantile as 𝐶 := �̄�𝑞, i.e., the 𝑞th smallest nonconformity
score.

The underlying assumption in conformal prediction is that 𝑅1, . . . , 𝑅𝑡+1 are ex-
changeable (exchangeability includes i.i.d. data). This is an unreasonable assump-
tion for time-series prediction where 𝑅𝑡 may denote the nonconformity score at time
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𝑡. To address this issue, ACP was introduced in [15, 54, 55, 146]. The idea is now
to obtain a prediction region 𝐶𝑡+1 adaptively so that Prob(𝑅𝑡+1 ≤ 𝐶𝑡+1) ≥ 1 − 𝛿
for each time 𝑡. In fact, the prediction region is now obtained as 𝐶𝑡+1 := �̄�𝑞𝑡+1

where 𝑞𝑡+1 := ⌈(𝑡 + 1) (1− 𝛿𝑡+1)⌉ depends on the variable 𝛿𝑡+1 that is adapted online
based on observed data. In this way, the prediction region 𝐶𝑡+1 becomes a tuneable
parameter by the choice of 𝛿𝑡+1. To adaptively obtain the parameter 𝛿𝑡+1, ideas from
online learning are used and we update 𝛿𝑡+1 as

𝛿𝑡+1 := 𝛿𝑡 + 𝛾(𝛿 − 𝑒𝑡) with 𝑒𝑡 :=


0 if 𝑟𝑡 ≤ 𝐶𝑡
1 otherwise

(7.3)

where we denote by 𝑟𝑡 the observed realization of 𝑅𝑡 and where 𝛾 is a learning
rate. The idea is to use 𝛿𝑡+1 to adapt to changes in the distribution of 𝑅1, . . . , 𝑅𝑡+1

over time by using information on how much the prediction region 𝐶𝑡 overcovered
(𝑟𝑡 ≪ 𝐶𝑡) or undercovered (𝑟𝑡 ≫ 𝐶𝑡) in the past.

Remark 8 One of the main performance enhancers is the proper choice of 𝛾. In
[55], the authors present fully adaptive conformal prediction (FACP) where a set
of learning rates {𝛾𝑖}1≤𝑖≤𝑘 is used in parallel from which the best 𝛾 is selected
adaptively. Based on past performance (using a reweighting scheme that evaluates
which 𝛾𝑖 provided the best coverage), the authors maintain a belief 𝑝 (𝑖)𝑡 at each time
step 𝑡 for each {𝛿(𝑖)𝑡 }1≤𝑖≤𝑘 . The new update laws are

𝛿
(𝑖)
𝑡+1 := 𝛿(𝑖)𝑡 + 𝛾𝑖 (𝛿 − 𝑒

(𝑖)
𝑡 ) with 𝑒

(𝑖)
𝑡 :=


0 if 𝑟𝑡 ≤ 𝐶 (𝑖)𝑡
1 otherwise

where the individual prediction regions are 𝐶 (𝑖)𝑡 := �̄�
𝑞
(𝑖)
𝑡

with 𝑞 (𝑖)𝑡 := ⌈(𝑡 + 1) (1 −
𝛿
(𝑖)
𝑡 )⌉, while the best prediction region is 𝐶𝑡 := �̄�𝑞𝑡 with 𝑞𝑡 := ⌈(𝑡 + 1) (1 −∑𝑘
𝑖=1 𝑝

(𝑖)
𝑡 𝛿
(𝑖)
𝑡 )⌉.

7.3 Adaptive Conformal Prediction Regions for Trajectory Predictions
Recall that we can obtain predictions ( �̂�1

𝑡 , . . . , �̂�
𝐻
𝑡 ) at time 𝑡 of future agent states

(𝑌𝑡+1, . . . , 𝑌𝑡+𝐻) from past observations (𝑦0, . . . , 𝑦𝑡) using the Predict function.
Note, however, that these point predictions contain no information about prediction
uncertainty and can hence not be used to reason about the safety constraint (7.2). To
tackle this issue, we aim to construct prediction regions for (𝑌𝑡+1, . . . , 𝑌𝑡+𝐻) using
ideas from ACP.
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To obtain prediction regions for (𝑌𝑡+1, . . . , 𝑌𝑡+𝐻), we could consider the nonconfor-
mity score ∥𝑌𝑡+𝜏 − �̂�𝜏𝑡 ∥ at time 𝑡 that captures the multistep-ahead prediction error
for each 𝜏 ∈ {1, . . . , 𝐻}. A large nonconformity score indicates that the prediction
�̂�𝜏𝑡 of 𝑌𝑡+𝜏 is not accurate, while a small score indicates an accurate prediction. For
each 𝜏, we wish to obtain a prediction region 𝐶𝜏𝑡 that is again defined by an update
variable 𝛿𝜏𝑡 . Note, however, that we can not evaluate ∥𝑦𝑡+𝜏 − �̂�𝜏𝑡 ∥ at time 𝑡 as only
measurements (𝑦0, . . . , 𝑦𝑡) are known, but not (𝑦𝑡+1, . . . , 𝑦𝑡+𝐻). Consequently, we
cannot use the update rule (7.3) to update 𝛿𝜏𝑡 , as the error 𝑒𝜏𝑡 would depend on
checking if ∥𝑦𝑡+𝜏 − �̂�𝜏𝑡 ∥ ≤ 𝐶𝜏𝑡 . To address this issue, we define the time lagged
nonconformity score

𝑅𝜏𝑡 := ∥𝑌𝑡 − �̂�𝜏𝑡−𝜏∥

that we can evaluate at time 𝑡 so that we can use the update rule (7.3). This
nonconformity score 𝑅𝜏𝑡 is time lagged in the sense that, at time 𝑡, we evaluate the 𝜏
step-ahead prediction error that was made 𝜏 time steps ago. We can now update the
parameter 𝛿𝜏

𝑡+1 that defines 𝐶𝜏
𝑡+1 as

𝛿𝜏𝑡+1 := 𝛿𝜏𝑡 + 𝛾(𝛿 − 𝑒𝜏𝑡 ) with 𝑒𝜏𝑡 :=


0 if ∥𝑦𝑡 − �̂�𝜏𝑡−𝜏∥ ≤ 𝐶𝜏𝑡
1 otherwise.

(7.4)

To compute the prediction region 𝐶𝜏
𝑡+1, note that we can not compute 𝑅𝜏1 , . . . , 𝑅

𝜏
𝜏−1.

Therefore, with minor change, we let 𝐶𝜏
𝑡+1 be the ⌈(𝑡 − 𝜏 + 1) (1 − 𝛿𝜏

𝑡+1)⌉
th smallest

value of (𝑅𝜏𝜏 , . . . , 𝑅𝜏𝑡 )2.

By obtaining a prediction region for 𝑅𝜏
𝑡+1 using ACP, we obtain a prediction region

for the 𝜏 step-ahead prediction error that was made 𝜏 − 1 time steps ago, i.e., for
∥𝑌𝑡+1 − �̂�𝜏𝑡+1−𝜏∥. Under the assumption that 𝑅𝜏

𝑡+1 and 𝑅𝜏𝑡+𝜏 are independent and
identically distributed, 𝑅𝜏

𝑡+1 serves as a prediction region for 𝜏 step-ahead prediction
error that was made 0 time steps ago (now at time 𝑡), i.e., for 𝑅𝜏𝑡+𝜏 which encodes
∥𝑌𝑡+𝜏−�̂�𝜏𝑡 ∥. Naturally, in our setting 𝑅𝜏

𝑡+1 and 𝑅𝜏𝑡+𝜏 are not independent and identically
distributed, but it still serves as a good measure for the prediction region 𝑅𝜏𝑡+𝜏. We
remark that for the theoretical guarantees that we provide in the next section, only
the one step-ahead prediction errors are relevant.

2Instead of keeping track of all data, we will choose a sliding window of the 𝑁 most recent
data. For all prediction regions, we will then consider (𝑅𝜏

𝑡−𝑁 , . . . , 𝑅
𝜏
𝑡 ) and compute 𝐶𝜏

𝑡+1 as the
⌈(𝑁 + 1) (1 − 𝛿𝜏

𝑡+1)⌉
th smallest value.
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Theorem 11 Let 𝛾 be a learning rate, 𝛿1
0 ∈ (0, 1) be an initial value for the recursion

(7.4), and 𝑇 be the number of times that we compute the recursion (7.4). Then, for
the onestep-ahead prediction errors, it holds that

1 − 𝛿 − 𝑝1 ≤
1
𝑇

𝑇−1∑︁
𝑡=0

Prob(∥𝑌𝑡+1 − �̂�1
𝑡 ∥ ≤ 𝐶1

𝑡+1) ≤ 1 − 𝛿 + 𝑝2 (7.5)

with constants 𝑝1 := 𝛿1
0+𝛾
𝑇𝛾

, 𝑝2 := (1−𝛿
1
0)+𝛾

𝑇𝛾
so that lim𝑇→∞ 𝑝1 = 0 and lim𝑇→∞ 𝑝2 = 0.

Proof: Since the probability of an event is equivalent to the expected value of
the indicator function of that event, it follows by the definition of the error 𝑒1

𝑡+1 that

Prob(∥𝑌𝑡+1 − �̂�1
𝑡 ∥ ≤ 𝐶1

𝑡+1) = E[1 − 𝑒
1
𝑡+1] = 1 − E[𝑒1

𝑡+1] . (7.6)

For a given initialization 𝛿𝜏0 and learning rate 𝛾, we know from [54, Proposition 4.1]
that the following bound holds (with probability one) for the misclassification errors

−(1 − 𝛿1
0) + 𝛾

𝑇𝛾
≤ 1
𝑇

𝑇−1∑︁
𝑡=0

𝑒1
𝑡+1 − 𝛿 ≤

𝛿1
0 + 𝛾
𝑇𝛾

=⇒
��� 1
𝑇

𝑇−1∑︁
𝑡=0

𝑒1
𝑡+1− 𝛿

��� ≤ max(𝛿1
0, 1 − 𝛿

1
0) + 𝛾

𝑇𝛾
.

Hence, taking the expectation of the above two-sided inequality, we get that

−(1 − 𝛿1
0) + 𝛾

𝑇𝛾
≤ 1
𝑇

𝑇−1∑︁
𝑡=0
E[𝑒1

𝑡+1] − 𝛿 ≤
𝛿1

0 + 𝛾
𝑇𝛾

,

(𝑎)
⇔

−(1 − 𝛿1
0) + 𝛾

𝑇𝛾
≤ 1
𝑇

𝑇−1∑︁
𝑡=0

(
1 − Prob(∥𝑌𝑡+1 − �̂�1

𝑡 ∥ ≤ 𝐶1
𝑡+1)

)
− 𝛿 ≤

𝛿1
0 + 𝛾
𝑇𝛾

,

⇔ 1 − 𝛿 +
(1 − 𝛿1

0) + 𝛾
𝑇𝛾

≥ 1
𝑇

𝑇−1∑︁
𝑡=0

Prob(∥𝑌𝑡+1 − �̂�1
𝑡 ∥ ≤ 𝐶1

𝑡+1) ≥ 1 − 𝛿 −
𝛿1

0 + 𝛾
𝑇𝛾

,

where we used equation (7.6) for the equivalence in (a).

Remark 9 The above result can be similarly extended to the FACP case with a set
of candidate learning rates, 𝛾, [55, Theorem 3.2].

Example 1 To illustrate these multistep-ahead prediction regions, consider a pla-
nar double pendulum whose dynamics are governed by chaotic, nonlinear dy-
namics that are sensitive to the initial condition [122]. We study the predic-
tions made by a linear predictor that uses noisy observations of the position
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of the double pendulum and use ACP to predict the uncertainty in the predic-
tions. Both the trajectory predictor and the uncertainty quantification using ACP
use online data from a single trajectory. ACP provides the multi-step errors
in the linear predictions with a coverage level of 𝛿 = 0.1, and learning rates
𝛾 =

(
0.0008 0.0015 0.003 0.005 0.009 0.017 0.03 0.05 0.08

)
.

Figure 7.1 compares the 1-step and 6-step ahead error prediction regions to the true
multi-step errors for two states, the second mass position, 𝑥2, 𝑦2. The percentages
of one-step errors that are incorrectly predicted, i.e., 𝑒1

𝑡 = 1, for the positions of
each mass, 𝑥1, 𝑥2, 𝑦1, 𝑦2 are 2.36%, 0.94%, 1.57%, 1.73% respectively. We can see
the effects of adaptation as the ACP prediction regions are larger in areas of poor
performance of the linear predictor (and consequently higher error in the prediction)
and smaller in regions where the linear predictor performs well.
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Figure 7.1: The multi-step prediction errors are shown for two of the six states of a
double pendulum (𝑥2, 𝑦2). ACP can correctly predict regions of high and low error
(90% coverage regions) by adjusting the prediction quantile using update law (7.3).
The orange lines are the true multi-step prediction errors and the blue areas are the
error regions predicted by ACP.

7.4 Uncertainty-Informed Model Predictive Control
Based on the obtained uncertainty quantification from the previous section, we
propose an uncertainty-informed model predictive controller (MPC) that uses pre-
dictions �̂�𝜏𝑡 and adaptive prediction regions 𝐶𝜏

𝑡+1. The underlying optimization
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problem that is solved at every time step 𝑡 is:

min
(𝑢𝑡 ,...,𝑢𝑡+𝐻−1)

𝑡+𝐻−1∑︁
𝑘=𝑡

𝐽 (𝑥𝑘+1, 𝑢𝑘 ) (7.7a)

s.t. 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ), 𝑘 ∈ {𝑡, . . . , 𝑡 + 𝐻 − 1} (7.7b)

𝑐(𝑥𝑡+𝜏, �̂�𝜏𝑡 ) ≥ 𝐿𝐶𝜏𝑡+1, 𝜏 ∈ {1, . . . , 𝐻} (7.7c)

𝑢𝑘 ∈ U, 𝑥𝑘+1 ∈ X, 𝑘 ∈ {𝑡, . . . , 𝑡 + 𝐻 − 1} (7.7d)

where 𝐿 is the Lipschitz constant of the constraint function 𝑐, 𝐽 is a step-wise cost
function, and 𝑢𝑡 , . . . , 𝑢𝑡+𝐻−1 is the control sequence. The optimization problem in
(7.7) is convex if the functions 𝐽 and 𝑓 are convex, the function 𝑐 is convex in its
first argument, and the setsU and X are convex.

Based on this optimization problem, we propose a receding horizon control strategy
in Algorithm 5. In line 1 of Algorithm 5, we initialize the parameter 𝛿𝑡0 simply
to 𝛿. Lines 2-11 present the real-time planning loop by: 1) updating the states 𝑥𝑡
and 𝑦𝑡 and calculating new predictions �̂�𝜏𝑡 (lines 3-4), 2) computing the adaptive
nonconformity scores 𝐶𝜏

𝑡+1 (lines 5-9), and 3) solving the optimization problem in
(7.7) of which we apply only 𝑢𝑡 (lines 10-11).

Algorithm 5 MPC with ACP Regions
1: Input: Failure probability 𝛿, prediction horizon 𝐻, learning rate 𝛾
2: Output: Control input 𝑢𝑡 (𝑥𝑡 , 𝑦0, . . . , 𝑦𝑡) at each time 𝑡
3: 𝛿𝜏0 ← 𝛿 for 𝜏 ∈ {1, . . . , 𝐻}
4: for 𝑡 from 0 to∞ # real-time motion planning loop do
5: Update 𝑥𝑡 and 𝑦𝑡
6: Obtain predictions �̂�𝜏𝑡 for 𝜏 ∈ {1, . . . , 𝐻}
7: for 𝜏 from 1 to 𝐻 # compute ACP regions do
8: 𝛿𝜏

𝑡+1 ← 𝛿𝜏𝑡 + 𝛾(𝛿 − 𝑒𝜏𝑡 )
9: 𝑅𝜏𝑡 := ∥𝑦𝑡 − �̂�𝜏𝑡−𝜏∥

10: 𝑞 ←
⌈
(𝑡 + 1) (1 − 𝛿𝜏

𝑡+1)
⌉

11: Set 𝐶𝜏
𝑡+1 as the 𝑞th smallest value of (𝑅𝜏𝜏 , . . . , 𝑅𝜏𝑡 )

12: end for
13: Calculate controls 𝑢𝑡 , ..., 𝑢𝑡+𝐻−1 as the solution of (7.7)
14: Apply 𝑢𝑡 to (7.1)
15: end for

Remark 10 While Algorithm 5 uses a single learning rate, one can similarly extend
the above algorithm to be fully adaptive using a candidate set of {𝛾𝑖}1≤𝑖≤𝑘 without
loss of generality.
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Remark 11 [54] assume that when 𝛿𝑡+1 ≤ 0, the prediction region𝐶𝑡+1 →∞. This
means that when the algorithm requires robust behavior, the ∞-prediction region
ensures that any prediction at the next time-step should be correctly classified. For
a physical system, there are limits on how much the dynamic obstacle can accelerate
in one time-step which gives us an upper bound 𝑅max < ∞ on the worst-case error.
In practice, we enforce 0 ≤ 𝛿𝑡+1 ≤ 1 with 𝐶𝑡+1 ≤ 𝑅max.

Theorem 12 Let 𝛾 be a learning rate, 𝛿1
0 ∈ (0, 1) be an initial value for the recursion

(7.4), and 𝑇 be the number of times that we compute the recursion (7.4). If the
optimization problem (7.7) in Algorithm 5 is recursively feasible, then Algorithm 5
will lead to

1
𝑇

𝑇−1∑︁
𝑡=0

Prob
(
𝑐(𝑥𝑡+1, 𝑌𝑡+1) ≥ 0

)
≥ 1 − 𝛿 − 𝑝1 (7.8)

with constant 𝑝1 := 𝛿1
0+𝛾
𝑇𝛾

so that lim𝑇→∞ 𝑝1 = 0.

Proof: By assumption, the optimization problem in (7.7) is feasible at each
time 𝑡 ∈ {0, 1, . . .}. Due to constraint (7.7c) and Lipschitz continuity of 𝑐, it hence
holds that

0 ≤ 𝑐(𝑥𝑡+1, �̂�1
𝑡 ) − 𝐿𝐶1

𝑡+1 ≤ 𝑐(𝑥𝑡+1, 𝑌𝑡+1) + 𝐿∥𝑌𝑡+1 − �̂�
1
𝑡 ∥ − 𝐿𝐶1

𝑡+1 (7.9)

at each time 𝑡 ∈ {0, 1, . . .}. Consequently, note that ∥𝑌𝑡+1− �̂�1
𝑡 ∥ ≤ 𝐶1

𝑡+1 is a sufficient
condition for 𝑐(𝑥𝑡+1, 𝑌𝑡+1) ≥ 0. In a next step, we can derive that

Prob
(
𝑐(𝑥𝑡+1, 𝑌𝑡+1) ≥ 0

) (𝑎)
= Prob

(
𝑐(𝑥𝑡+1, 𝑌𝑡+1) ≥ 0

�� ∥𝑌𝑡+1 − �̂�1
𝑡 ∥ ≤ 𝐶1

𝑡

)
Prob(∥𝑌𝑡+1 − �̂�1

𝑡 ∥ ≤ 𝐶1
𝑡 )

+ Prob
(
𝑐(𝑥𝑡+1, 𝑌𝑡+1) ≥ 0

�� ∥𝑌𝑡+1 − �̂�1
𝑡 ∥ > 𝐶1

𝑡

)
Prob(∥𝑌𝑡+1 − �̂�1

𝑡 ∥ > 𝐶1
𝑡 )

(𝑏)
≥ Prob

(
𝑐(𝑥𝑡+1, 𝑌𝑡+1) ≥ 0

�� ∥𝑌𝑡+1 − �̂�1
𝑡 ∥ ≤ 𝐶1

𝑡

)
Prob(∥𝑌𝑡+1 − �̂�1

𝑡 ∥ ≤ 𝐶1
𝑡 )

(𝑐)
= Prob(∥𝑌𝑡+1 − �̂�1

𝑡 ∥ ≤ 𝐶1
𝑡 )

where the equality in (a) follows from the law of total probability, while the inequality
in (b) follows from the nonnegativity of probabilities. The equality in (c) follows
as Prob(𝑐(𝑥𝑡+1, 𝑌𝑡+1) ≥ 0 | ∥𝑌𝑡+1 − �̂�1

𝑡 ∥ ≤ 𝐶1
𝑡 ) = 1 since ∥𝑌𝑡+1 − �̂�1

𝑡 ∥ ≤ 𝐶1
𝑡 implies

𝑐(𝑥𝑡+1, 𝑌𝑡+1) ≥ 0 according to (7.9). We now use the result from Theorem 11 to
complete the proof.
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7.5 Case Studies: Multirotor operating in small angle regime dodging a flying
frisbee

We compare the performance of the MPC with ACP uncertainty prediction regions
with our previous work that uses a distributionally robust approach to uncertainty
quantification [142]. We use the same multirotor operating in the presence of a
moving obstacle example with a MPC planner. The multirotor is constrained to
operate within the state constraints \ ∈ [−0.45, 0.45] radians and 𝜑 ∈ [−0.45, 0.45]
radians. We use the following standard multirotor linear dynamics,

¥𝑥 = −𝑔\, ¥𝑦 = 𝑔𝜑, ¥𝑧 = 𝑢1 − 𝑔, ¥𝜑 =
𝑢2

𝐼𝑥𝑥
, ¥\ = 𝑢3

𝐼𝑦𝑦
, ¥𝜓 =

𝑢4

𝐼𝑧𝑧
, (7.10)

where the planner control inputs 𝑢1, 𝑢2, 𝑢3, 𝑢4 correspond to the thrust force in
the body frame and three moments. The vehicle’s moments of inertia are 𝐼𝑥𝑥 =

0.0075𝑘𝑔𝑚2, 𝐼𝑦𝑦 = 0.0075𝑘𝑔𝑚2, 𝐼𝑧𝑧 = 0.013𝑘𝑔𝑚2. The MPC planner has a horizon
length of 10 steps and the planner is updated at 20 Hz. It is implemented through a
Sequential Convex Programming approach [95].

Numerical simulations of the proposed MPC planner with ACP regions and dy-
namics (7.10) are presented as it avoids a Frisbee that is thrown at the drone from
various initial positions, velocities, and rotation speed. The Frisbee is modeled
following [68], and we implement linear predictions of the trajectory arising from
its nonlinear dynamics.

We conducted 1000 Monte Carlo simulations per allowed failure probability level
𝛿 to compare the numerical feasibility, percentage of success in obstacle avoidance
(if the MPC planner is feasible), and the planner’s conservativeness, as measured
by the minimum distance between the obstacle and agent centers, i.e., 𝑑𝑚𝑖𝑛 and
𝜎(𝑑𝑚𝑖𝑛) describe the average and standard deviation of this minimum distance across
simulations, respectively. We compare three uncertainty quantification techniques
in Table 7.1, (1) The proposed ACP method (Algorithm 5), (2) empirical bootstrap
prediction that accounts for the uncertainty in the predictions using the empirical
bootstrap variance [142], and (3) the sliding linear predictor with an Extended
Kalman Filter (EKF) that approximates the uncertainty in the obstacle predictions
as a Gaussian distribution.

Discussion: Table 7.1 shows that our proposed method can successfully avoid the
Frisbee, while using a significantly smaller average divergence distance (𝑑𝑚𝑖𝑛, 𝜎(𝑑𝑚𝑖𝑛))
from the Frisbee. I.e., our approach avoids the conservatism of other approaches
due to the adaptivity of the uncertainty sets. Our method can usefully adjust the



109
Case 𝛿 0.025 0.05

UQ method Proposed [142] w/EKF Proposed [142] w/EKF
%Feas. 83.8 87.4 97.1 80.9 90.3 97.6

Frisbee %Succ. 99.2 100 100 100 100 100
w/drag 𝑑𝑚𝑖𝑛 2.91 14.2 5.27 2.74 4.97 4.25

𝜎(𝑑𝑚𝑖𝑛) 1.25 2.04 1.28 1.3 1.97 1.11

Table 7.1: Summary of results from MC simulations of system (7.10).
We used FACP for predicting uncertainty sets with learning rates 𝛾 =

{0.0008, 0.0015, 0.003, 0.005, 0.009, 0.017, 0.03, 0.05, 0.08, 0.13} and using
the last 30 measurements of the obstacle.

prediction sets when the underlying uncertainty distribution is shifting (due to dis-
crepancy in the linear dynamic predicted and the true nonlinear obstacle motion).
We also note that the feasibility of the MPC optimization is worse for our method
compared to [142] and the EKF predictor. This issue arises during sudden changes
in the size of the uncertainty sets when the learning rate 𝛾 is chosen too large. We
will investigate this issue in future work by considering tools to ensure recursive
feasibility [65] or by providing backup controllers [124, 133] when the MPC is
infeasible.
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C h a p t e r 8

CONCLUSION

This thesis considered ways to intelligently quantify and incorporate the uncer-
tainty in sensing unstructured environments into motion planning algorithms for
autonomous robots. Towards this end, my work developed data-driven uncertainty
quantification techniques in increasingly complex environments and developed a
theoretical framework to account for this uncertainty in a principled manner.

State-of-the-art motion planning techniques make many simplifying assumptions
on what the nature of the uncertainty affecting the robotic system looks like. For
example - we can assume the process noise is bounded and that this bound is
known. In the real world, this robust bound may be too conservative and result
in overly cautious robot motion that does not leverage the true range of motion
autonomous robots can have. Another example of a simplifying assumption in
designing controllers for autonomous systems is that agents move in the environment
with a Gaussian uncertainty behavior. This assumption is too optimistic and can
result in failures for safety-critical systems when the real-world is unstructured and
does not have Gaussian behavior. In this thesis, I looked at risk-aware methodologies
that don’t make simplifying assumptions on the environment or the robot models,
and hence provide agile behaviors without sacrificing safety. These risk-averse
strategies were demonstrated on wheeled and legged ground robots and on drones.

Chapter 3 considered traversability risk, and how it can be incorporated into the
geometric planning and a model predictive control planning framework. This risk
incorporated information about not only which parts of the unknown environments
were obstacles, but also about which areas of the environment are "riskier” to
travel over than others. We considered geometric, semantic, confidence-based
traversability risk sources. This planning framework was deployed in the DARPA
Subterranean Challenge and verified with extensive field experiments.

Chapter 4 considered distributionally robust chance constraints instead of risk con-
straints, and reformulated the Total Variation Distance-based DRCC using CVaR. We
compared this method against risk-aware MPC without DRCCs as well as Stochastic
MPC, and showed that the use of DRCCs provides robustness to the variation in
the uncertainty distribution not just in the cost but also in the constraints. The
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computational complexity of this reformulation is comparable to that of Stochastic
MPC while providing more robustness.

We then considered risk-aware MPC in an environment with dynamic obstacles.
First, in Chapter 5, we assumed that the motion of the dynamic obstacles and the
uncertainty associated with their movement was known apriori. We showed that
traditional stochastic and robust MPC frameworks can be generalized into a single
framework with coherent risk measure-based cost and constraints. This framework
provides a convex, mixed-integer optimization reformulation of the MPC problem
that can account for a large class of coherent risk measures within the cost and
constraints of the MPC.

The approaches presented in Chapters 4 and 5 assumed that in the description of the
ambiguity set, the nominal uncertainty is given a priori and that the risk-level, or
the size of the ambiguity set, is also known. In Chapters 6 and 7, these assumptions
on a prioir knowledge are relaxed, while still maintaining a risk-averse result. In
Chapter 6, the trajectory of the dynamic obstacle or its uncertainty distribution was
not assumed to be known a priori. We provide a technique to make data-driven
predictions of the moving obstacles using Singular Spectrum Analysis. Given these
predictions, we quantify their uncertainty using a Bootstrapping technique. We use
the bootstrapped predictions in the MPC optimization to provide a distributionally
robust reformulation of the obstacle avoidance safety constraint.

Chapter 7 further provides a calibration technique to adjust the size of the uncertainty
set of the moving obstacle predictions using Adaptive Conformal Predictions. This
technique dynamically quantifies prediction uncertainty from an online data stream
and provide an uncertainty-informed model predictive controller to safely navigate
in the presence of dynamic obstacless. In contrast to other the data-driven prediction
models that quantify prediction uncertainty in a heuristic manner, like in Chapter 6,
the true prediction uncertainty is quantified in a distribution-free, adaptive manner
that even allows to capture changes in prediction quality and the obstacle’s motion.

This work is just a first step towards providing safety without sacrificing performance
in unstructured environments. My work so far allows for a rich understanding of a
static environment and allows for prediction of the trajectories of dynamic obstacles.
We saw that data-driven models of the environment will encounter distribution shifts
when deployed in an unknown, dynamic environment and that planning algorithms
must be able to adapt to these distribution shifts in an online setting. Some examples
of this distribution shift include a pedestrian at a crosswalk reacting to a speeding
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autonomous vehicle by suddenly stopping or running across the crosswalk based on
where they are on the crosswalk.

The usual assumption of identically and independently distributed (i.i.d.) data no
longer holds and the trajectory data we collect online in a dynamic environment is
nonstationary. The following question arises: can we provide certificates to detect
when the learned, data-driven, environment models might fail? In an environment
with distribution shifts, we can reduce the number of predicted failures by incorpo-
rating distributional robustness in the learning framework. This can be achieved by
constructing sets of distributions online, using dependent data, that contain the true
underlying distribution that describes the real world and allowing the risk-level (or
the size of the set of distributions) to change dynamically based on the environment.

Furthermore, in order to obtain risk-averse behavior for autonomous systems that
interact with other moving agents and even humans, we must be able incorporate the
dynamic ambiguity sets within a planning framework, while retaining performance
and providing safety guarantees. For example - is it possible to estimate the risk-
level that is acceptable to different users of an autonomous taxi in order to give
them the best driving experience? Given the goal of developing controllers that can
adapt in increasingly dynamic environments with distribution shifts, investigating
the modeling of multi-agent interactions with the goal of incorporating risk-aware
prediction and planning into a game-theoretic framework is an exciting avenue of
future work. These advances will help us develop intelligent systems that can
interact with and convey intent to other dynamic agents in the real-world.

Beyond the risk-aware control and uncertainty quantification discussed in this thesis,
it will be important to also consider risk-aware high-level planning methodologies
for robotic applications. In [6], we took a first step towards addressing this by
considering the stochastic shortest path planning problem in Markov Decision Pro-
cesses (MDPs). In order to account for rare but important realizations of the system,
we consider a nested dynamic coherent risk total cost functional rather than the con-
ventional risk-neutral total expected cost. Under some assumptions, we show that
optimal, stationary, Markovian policies exist and can be found via a special Bell-
man’s equation. Future research will explore risk-averse polices for POMDPs that
maximize the satisfaction probability of a set of high-level mission specifications in
terms of temporal logic formulae [4, 121].

While there exist many control synthesis techniques for risk-sensitive settings, there
are few verification techniques - especially for arbitrary risk measures - that account
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for unstructured uncertainty. The inability to obtain risk-aware verification through
the same risk measures used for policy development stems primarily from the
inability to calculate these measures for unknown probability distributions. We
develop sample-based bounds for arbitrary (coherent) risk measures using ideas
from scenario optimization and provide a fundamental requirement on the number
of samples required to generate our bounds and use these bounds to provide high
confidence statements on system performance in a risk-aware setting in [3]. Next
steps involve closely analyzing the tightness of these bounds and their applicability
controller synthesis that works well not only in simulation but also on hardware.

From richer uncertainty quantification to a deeper look at risk-aware control, plan-
ning, and verification, I have listed just a few avenues of future work in the area
of risk-aware autonomy above. I think there are many exciting questions yet to be
answered before safety-critical autonomous systems can attain human-like behavior
with performance and generalization guarantees.
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