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ABSTRACT 

Wearable sensors have shown great potential in health diagnostics and monitoring. 

Continuous monitoring of metabolites in sweat could potentially offer great insight into a 

person’s health, but current sweat sensing technology faces challenges in different realms: 

The sensing strategies are limited and there is a need to achieve high sensitivity for low-

concentration targets and widen the detection spectrum of chemical targets. The lack of 

efficient sweat sampling creates inaccurate sensing results from sweat mixing with skin 

contaminants or sensing byproducts. Moreover, the lack of evaluation of sweat metabolites 

with respect to relevant clinical conditions and the lack of scalable fabrication technique pose 

hurdles in the eventual applications of non-invasive sweat monitoring. In this thesis, efforts 

advancing progress in these fronts are presented. Chapter 1 establishes a brief topical 

overview of the sweat-sensing background. In Chapter 2, we demonstrate how to utilize 

laser-engraving technique to achieve high-performance graphene sensors for electroactive 

metabolite sensing and vital signs detection. Chapter 3 describes subsequent efforts built on 

laser-engraved graphene sensors to improve sensing selectivity and widen the detection 

spectrum to detect non-electroactive targets in sweat. In Chapter 4, design and performance 

of our laser-engraved microfluidics are described and shown to improve sweat sampling in 

both exercise-induced and iontophoresis-induced sweating individuals. Chapter 5 presents 

our endeavors in evaluating sweat biomarkers with clinical conditions in pilot studies 

involving individuals with gout and metabolic syndrome. In total, the works summarized 

here expand biology, chemistry, material science, and mechanical engineering, and could 

potentially facilitate future applications in precision nutrition.  
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C h a p t e r  1  

INTRODUCTION 

Materials from this chapter appear in “Yang, Y.; Gao, W. Wearable and flexible 

electronics for continuous molecular monitoring. Chemical Society Reviews 48, 

1465–1491 (2019) doi:10.1039/C7CS00730B” and “Min, J.; Tu, J.; Xu, C.; Lukas, 

H.; Shin, S.; Yang, Y.; Solomon, S.; Mukasa, D.; Gao, W. Skin-interfaced wearable 

sweat sensors for precision medicine. Chemical Reviews, Manuscript Submitted.” 

 

 

 

 

 

 

 

 

 

 

  



 

 

2 
1.1 Wearable Chemical Sensors 

The increasing research interest in personalized medicine — an innovative 

approach harnessing biomedical devices to deliver tailored diagnostics and 

therapeutics according to the individual characteristics of each patient — promises 

to revolutionize traditional medical practices.1,2 This presents a tremendous 

opportunity for developing wearable devices toward predictive analytics and 

treatment. On the other hand, the Internet of Things (IoT) — sensors and actuators 

connected by networks— has received enormous attention in the past decade.3 The 

IoT is expected to revolutionize future medicine by enabling highly personalized 

and accessible healthcare and will have an economic impact on the healthcare of 

over 1 trillion dollars in 2020.3 As healthcare cost and the world’s aging population 

increase, there has been a need for personalized wearable devices to continuously 

monitor the health status of patients while patients are out of hospital. In this case, 

wearable biosensors can sample physiological signals conveniently and 

noninvasively, and thus provide sufficient information for health monitoring and 

even preliminary medical diagnosis.4–6  

Flexible electronics could serve as an ideal platform for personalized wearable 

devices, thanks to their unique properties such as light weight, high flexibility and 

great conformability.7–10 In the past decade, wearable and flexible sensors have 

been demonstrated for tracking conventional physical signals continuously in real 

time, such as body motion, blood pressure, body and skin temperature, heart rate as 

well as electrophysiological activities including EEG (electroencephalography), 

ECG (electrocardiography) and EMG (electromyography).11–15 However, the 

commercially available wearable devices at present fail to provide more insightful 

information on users’ health state at the molecular level. Biomarkers from the 

human body fluids, molecules that can be objectively measured and evaluated as 

indicators of normal or disease processes, can provide a dynamic and powerful 

access to understand a broad spectrum of health conditions, and will aid in the 

prediction, screening, diagnosis and therapy of diseases.16 However, many studies 



 

 

3 
using biomarkers never achieve their full potential due to the lack of continuous 

monitoring technologies that could identify the roles of biomarkers in a timely 

manner. The instantaneous and continuous detection of relevant biomarkers in the 

human body using wearable chemical sensors can provide more in-depth personal 

healthcare monitoring and medical diagnosis, as compared to the detection of 

physical activities and vital signs. The limited availability of wearable chemical 

sensors has hindered further progress towards continuous personalized health 

monitoring. 

According to the International Union of Pure and Applied Chemistry (IUPAC), a 

chemical sensor is “a device that transforms chemical information, ranging from 

the concentration of a specific sample component to total composition analysis, into 

an analytically useful signal”.17 A typical chemical sensor usually consists of a 

recognition element (receptor) and a physicochemical transducer. The function of 

the receptor is to provide high selectivity towards the target analyte in the presence 

of potentially interfering chemicals while the transducer is the key component that 

converts the chemical information to a measurable analytical signal. Wearable and 

flexible chemical sensors could be used as attractive alternatives to the bulky and 

expensive analytical instruments used in the healthcare sector. In traditional clinical 

settings, urine and blood samples are routinely analyzed through standard analytical 

techniques, which are expensive, time-consuming and unable to provide continuous 

measurements of the concentration of an analyte of interest. In addition, although 

the current gold-standard fluid for diagnostics is blood, it requires invasive 

sampling that poses a major hurdle and is unsuitable for long-term continuous use. 

Recognizing the significance of non-invasive wearable and flexible sensors for 

continuous molecular monitoring, researchers have focused tremendous effort on 

wearable and flexible techniques that can sample and analyze the major electrolytes, 

metabolites, heavy metals, and toxic gases directly in alternative body fluids, such 

as sweat, tears, interstitial fluid and saliva, as well as exhaustion breath, particularly 

in the past 5 years; researchers have also developed wearable epidermal sensors 

that can monitor wound healing (Fig. 1-1). The transition from blood to other body 



 

 

4 
fluids and breath provides a noninvasive means of in situ sensing, which is more 

attractive toward continuous health monitoring in daily life. Based on the 

transduction technique, the wearable and flexible chemical sensors are mainly 

either electrochemical or optical in nature. 

 

Figure 1-1. Wearable and flexible chemical sensors for non-invasive health 

monitoring. 

At present, electrochemical biosensing is the most common wearable and flexible 

sensing strategy owing to its unique advantages of sensor miniaturization, high 

sensitivity and label-free direct measurement.18,19 Some classic examples of 

electrochemical sensors have been developed and demonstrated on wearable or 

flexible platforms over the years: (1) amperometric sensors. Amperometric sensors 

measure current generated from the oxidation or reduction of an electroactive 

analyte in a chemical reaction. Enzymatic amperometric sensors have been used for 

continuous monitoring of glucose, lactate, ethanol and uric acid, where chemical 

reactions of the target metabolite catalyzed by a specific enzyme (e.g. glucose 

oxidase, lactate oxidase and urate oxidase) generate electrical current proportional 

to the target concentration. (2) Potentiometric sensors. Potentiometry is usually 

defined as a zero-current technique that measures the potential appearing between 

the working electrode and the reference electrode in an electrochemical cell.20 The 



 

 

5 
ion selective electrode based potentiometric sensors have been widely used for 

selective ion quantification.21 They usually contain a permselective membrane 

where the target ions interact with the corresponding ionophore (e.g. a sodium 

ionophore X for Na+, valinomycin for K+ and a calcium ionophore ETH 129 for 

Ca2+ )in the sensing membrane and cause voltage changes. For potentiometric 

sensors, the relationship between the analyte concentration and voltage output can 

be described by the Nernst equation: E = RT/zF•ln(A/A1) = const + S•log(A), where 

A and A1 are ion activities/concentrations outside and inside the membrane, z is the 

charge of the ion, and S is the sensor sensitivity. For sodium or potassium sensing 

at room temperature, theoretically an ion selective sensor should have a sensitivity 

of 59.16 mV per decade of concentration. (3) Voltammetric sensors. Voltammetry 

is a very versatile and well-explored electroanalytical method and a transduction 

principle for deriving information about one or multiple analytes dynamically by 

measuring the current as a function of the varied potential. For example, stripping 

voltammetry is suitable for monitoring the heavy metals in body fluids.22 (4) 

Electrochemical biosensors including affinity-based immunosensors and DNA 

sensors which have widely been used for analyzing proteins, peptides and 

DNAs/RNAs. 

1.2 Sweat Sensors  

Sweat is a very important body fluid that contains rich information about our 

physiological state. The wide distribution of sweat glands in the human body and 

the abundant biochemical compounds in sweat have made sweat a feasible and ideal 

biofluid for non-invasive biosensing.23,24 Eccrine sweat, which is easily accessible 

non-invasively, is excreted directly onto the surface of the skin and is composed of 

water and various electrolytes (e.g. sodium, potassium, calcium, and chloride), 

nitrogenous compounds (e.g. urea and amino acids), and metabolites such as 

glucose, lactate and uric acid. Xenobiotics such as drugs and ethanol can also be 

found in sweat.25 Abnormal health conditions (e.g. electrolyte imbalance and 

physical stress) and diseases can alter sweat composition by either varying the 
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concentration of common components or leading to the presence of new 

components. Despite many advantages, sweat analysis remains an 

underrepresented solution for health monitoring and clinical diagnosis compared to 

blood and urine analysis due to the challenges of contamination, evaporation as 

well as the lack of real time sweat sampling and sensing devices.  

While sweat analysis has attracted tremendous attention in recent years, novel 

wearable and flexible sweat sensing platforms based on different detection 

approaches have been developed for in situ sweat analysis toward continuous health 

monitoring. Specifically, sweat analytes are detected and quantified either with 

electrochemical and/or with optical methods on various flexible substrates.26–30 The 

electrochemical sweat sensors use functionalized electrodes to transduce sweat 

analyte concentration into electrical signals (i.e. current or voltage) which are 

transmitted to the processing component and give quantitative results with high 

sensitivity.  

1.3 Sweat Stimulation 

Sweat is produced from glands located deep within the skin, the body’s largest 

organ by surface area. The skin has a stratified structure including the stratum 

corneum, epidermis, dermis, and hypodermis. The dermis is the major component 

of the skin containing blood vessels, nerve endings, and the base of sweat glands, 

sebaceous glands, and hair follicles (Fig. 1-2). The average eccrine sweat gland 

density is 200/cm2, but this varies between individuals and across the body with the 

highest density among the palms and soles (~400/cm2).23,31 The total number of 

eccrine sweat glands is on the order of 1.6–5 million.23 Eccrine sweat glands secrete 

a highly filtered, aqueous fluid composed of electrolytes, metabolites, and 

additional molecules. The works in the thesis focus on eccrine sweat as eccrine 

sweat glands are the most abundant and active source of sweat. 
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Figure 1-2. Structure of the skin with sweat glands. 

Sweat secretion is stimulated by adrenergic and cholinergic innervation (Fig. 1-

3).32 When the secretory cell is stimulated, a signaling cascade occurs involving 

Ca2+ or cAMP as second messengers to trigger the efflux of Cl- into the lumen of 

the secretory coil. Na+ is pumped out at the basolateral membrane and diffuses 

down its electrochemical gradient into the lumen. The buildup of electrolytes in the 

lumen renders it hypertonic with respect to the cytosol; this osmotic gradient drives 

the primary sweat solution out of the cell and into the secretory lumen. Advective 

mass transport drives fluid up the eccrine sweat duct. Along the sweat duct, luminal 

cells reabsorb ions to produce a hypotonic sweat solution.  

Thermoregulatory sweating is an autonomic response to signals from 

thermoreceptors in the preoptic-anterior hypothalamus area. Upon an increase in 

core temperature, thermoreceptors send through efferent pathways to 

postganglionic sympathetic neurons in the dermis.31 Cholinergic nerve fibers 

around the secretory coil release acetylcholine, thus activating muscarinic receptors 

on the membrane of the eccrine secretory cell. Activation of muscarinic G-protein-

coupled receptors (GPCRs) increases intracellular inositol trisphosphate (IP3). IP3 

binds to receptors on the endoplasmic reticulum (ER) membrane to release Ca2+ 
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into the cytosol.33 Stromal interaction molecule protein, STIM1, monitors the ER 

Ca2+ levels, and when Ca2+ stores are depleted STIM1 induces store-operated Ca2+ 

entry by binding to and activating Orai, a Ca2+ channel on the plasma membrane.33 

This influx of Ca2+ mediates the exchange of electrolytes resulting in sweat 

secretion. 

Sweating is also adrenergically stimulated under the “fight or flight” response. The 

physical reaction to stress, anxiety, fear, and pain occurs mostly in the palms, soles, 

and axillary region and may have the selective advantage of increasing 

palmoplantar friction for fleeing.23 “Emotional” sweating is controlled by the 

limbic system and efferent signals are sent to adrenergic nerve fibers in the sweat 

secretory coil. Release of epinephrine and norepinephrine in signaling stimulates 

α- and β-adrenoreceptors in sweat secretory cells. A synthetic sympathomimetic 

drug, isoproterenol, selectively stimulates β-adrenoreceptors and has been used to 

further differentiate the two pathways. β-adrenergic stimulation is the dominant 

pathway in emotional sweating. The magnitude of stimulated sweat secretion 

(measured by secretory rate) is 4:2:1 for cholinergic, β-adrenergic, and α-

adrenergic pathways, respectively.34 α-adrenergic stimulation results in Ca2+ influx 

similar to cholinergic pathways. β-adrenergic GPCRs activate adenylyl cyclase and 

increase the intracellular concentration of cyclic adenosine monophosphate 

(cAMP). cAMP activates protein kinase A (PKA), which in turn mediates Cl- 

secretion by opening the cystic fibrosis transmembrane conductance regulator 

(CFTR).35,36 In the case of cystic fibrosis, CFTR is defective or absent, resulting in 

blocked CFTR Cl- secretion during β-adrenergic stimulation and inhibited Cl- 

reabsorption. A “ratiometric” sweat rate test comparing adrenergic and cholinergic 

sweat rates may be used to assess CFTR functional activity.37 
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Figure 1-3. Stimulation of sweat.   

Sweat may be generated at the periphery of a stimulated region via the sudomotor 

axon reflex (Fig. 1-3). Nicotinic agonists interact with receptors on postganglionic 

sudomotor terminals at the base of the sweat gland, causing antidromic axonal 

conduction towards a branch point followed by orthograde conduction down the 

branching fibers. Acetylcholine is then released at the nerve terminals and binds to 

muscarinic receptors on the eccrine sweat gland, resulting in sweat secretion similar 

to the direct iontophoretic response.31,38 The spatial extension of this sweating could 

be millimeters beyond the periphery of the stimulation region.39 The sudomotor 

axon reflex may be used to assess autonomic nervous system disorders, such as 

diabetic neuropathy.31,40 The sudomotor axon reflex may also be used to separate 

drug-induced sweat stimulation and sweat sampling regions to prevent cross-

contamination.38 The sudomotor axon response has a longer latency than the direct 

cholinergic response by about 5 s, which accounts for axonal conduction and 

neuroglandular transmission. The sudomotor axon response and direct response 
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produce similar sweat volumes in the presence of nicotinic agonists. In contrast to 

the direct stimulated sweat response, which continues over an hour after cessation 

of the stimulus, the sudomotor axon response returns to baseline 3–5 minutes after 

stimulus cessation.41 
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C h a p t e r  2  

LASER-ENGRAVED GRAPHENE SENSORS 

Materials from this chapter appears in “Wang, M.; Yang, Y.; Gao, W. Laser-

engraved graphene for flexible and wearable electronics. Trends in Chemistry 3, 969–

981 (2021) doi:10.1016/j.trechm.2021.09.001” and “Yang, Y.; Song, Y.; Bo, X.; 

Min, J.; Pak, O. S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; Hsiai, T. K.; 

Li, Z.; Gao, W. A laser-engraved wearable sensor for sensitive detection of uric acid 

and tyrosine in sweat. Nature Biotechnology 38, 217–224 (2020) 

doi:10.1038/s41587-019-0321-x.” 
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2.1 Introduction 

Graphene has been broadly used in the development of flexible electronic devices 

and systems, thanks to its high theoretical specific surface area, mobility, flexibility, 

mechanical strength, conductivity, and biocompatibility.1–4 The fabrication of 

graphene is commonly achieved by chemical vapor deposition, mechanical 

exfoliation, and wet chemical reduction of graphene oxide (GO).5–7 Although 

conventional processing techniques, such as screen-printing, roll-to-roll printing, and 

inkjet printing, have been used to fabricate graphene-based devices,8–10 in most cases, 

restacking of graphene sheets in the presence of additives hinders their 

performance.11,12 An important frontier lies in the large-scale, low-cost production of 

high-performance and versatile graphene-based electronics for wide-range 

applications of graphene in consumer devices, and LEG has shown great potential to 

this end. 

Laser processing technologies permit scalable patterning of graphene on various 

substrates, primarily either via laser-induced direct carbonization of polymeric 

substrates [e.g., polyimide (PI), polyethyleneimine] or laser-induced reduction of 

GO. In the 2010s, it was found that commercially available CO2 laser cutters could 

be used to directly engrave and pattern porous graphene on various synthetic and 

natural carbon precursor (e.g., PI) substrates under ambient conditions,13 without 

generating hazardous wastes.14 Since then, LEG has shown tremendous potential for 

flexible electronics applications, as it has unique electrical and chemical properties 

and allows rapid customizable prototyping on a large scale and at low cost.15–17 

Direct graphene patterning can be achieved with lasers of various wavelengths, 

spanning from UV to infrared (IR).18 When the laser beam reaches the precursor of 

graphene (i.e., PI), graphene forms in a photochemical and/or photothermal process. 

The photochemical reaction usually appears when a short-wavelength (i.e., UV or 

blue) laser source is used, as its high photon energy absorbed can directly break 

chemical bonds and form a dense graphene structure.18,19 The photothermal reaction 

could become predominant when a longer-wavelength (i.e., IR) laser source is used, 



 

 

18 
as the absorbed laser energy is converted into local heat and thus leads to a high 

localized temperature (>2500°C).13  It should be noticed that multiple laser 

parameters (e.g., wavelength,20–22 power,23 pulse width,24 and scanning speed) play a 

key role in the final graphene structure formation and should be considered 

concurrently during graphene fabrication. When engraving the PI with a 10.6-μm 

CO2 laser cutter, chemical bonds in the PI network are broken and thermal 

reorganization of the carbon atoms occurs, resulting in sheets of graphene 

structures.18 It has been shown that such LEG flakes are full of defects, expanding a 

hexagon lattice with two pentagons and one heptagon, which could lead to a porous 

structure.25 With custom laser settings, different morphologies of the graphene 

structure can be directly patterned on PI, ranging from isotropic pores, cellular 

networks, and nanofibers.23 

Current wearable sweat sensors are primarily focused on a limited number of 

electrolytes and metabolites monitored via ion-selective sensors or enzymatic 

electrodes.26–28 Among the analytes for which wearable sensors do not exist are uric 

acid (UA) and tyrosine (Tyr). UA is a risk factor for cardiovascular disease,29,30 type 

2 diabetes31,32 and renal disease,33 and has been widely used in clinical settings for 

the management of gout,34,35 the most common inflammatory arthritis affecting tens 

of millions of people worldwide.36 Tyr is a conditionally essential amino acid 

involved in brain signaling and in the production of dopamine and stress hormones 

(for example, noradrenaline and adrenaline).37 Abnormal Tyr concentrations are 

linked to metabolic disorders such as tyrosinemia,38,39 liver diseases,39 

neuropsychiatric, and eating disorders.40,41 Measurement of UA and Tyr in sweat is 

challenging because of their low concentrations in micromolar ranges that are 

difficult to detect with existing methods. 

To tackle the low-concentration sensing challenge, LEG is a promising new 

candidate in electrochemical biosensors due to its attractive electrochemical 

properties such as large surface area, excellent stability, and abundant catalytic active 

sites, which significantly improve the electron transfer kinetics and thereby enable 
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the sensitive detection of biomarkers in biofluids. Moreover, considering that 

scalable manufacture is crucial for widespread implementation of wearable sensors, 

a promising fabrication technology is CO2 laser engraving, which may allow rapid 

engraving of patterns in ambient conditions and reduce personnel training and 

process optimization. The use of CO2 laser-engraving technology has not been used 

to fabricate a multimodal wearable system. The sweat sensor presented in this thesis 

is entirely laser engraved to facilitate scalable manufacture and flexibility for the 

wearer’s comfort.  

2.2 Materials and Methodology 

Materials and reagents 

Uric acid, l-tyrosine, silver nitrate, iron chloride (III), dopamine hydrochloride, 

choline chloride, creatinine, pantothenic acid calcium salt, citrulline, pyridoxine and 

lactic acid were purchased from Alfa Aesar. Sodium thiosulfate pentahydrate, 

sodium bisulfite, tryptophan, leucine, alanine, isoleucine, methionine, valine, lysine, 

thiamine hydrochloride and serine were purchased from Sigma Aldrich. Potassium 

ferricyanide (III) was purchased from Acros Organics. Acetic acid, sodium acetate, 

sodium chloride, urea, l-ascorbic acid and dextrose (d-glucose) anhydrous, glycine, 

arginine, inositol, ornithine, aspartic acid, threonine, histidine, riboflavin, creatine, 

phenylalanine, nicotinic acid, folic acid and glutamic acid were purchased from 

Thermo Fisher Scientific. Polyimide film (75 μm thick) and PET (12 μm and 75 μm 

thick) were purchased from DuPont and McMASTER-CARR, respectively. Glassy 

carbon electrodes were purchased from CH Instruments, screen-printed carbon 

electrodes were purchased from Metrohm AG and gold electrodes were fabricated 

on a PET substrate by photolithography followed by 30 nm Cr/100 nm gold 

deposition via electron-beam evaporation and lift-off in acetone. 

Fabrication and characterization of the LEG 

For sensor patterning, a polyimide film (DuPont) was attached onto a supporting 

substrate in a 50-W CO2 laser cutter (Universal Laser System). The optimized 



 

 

20 
parameters for the chemical sensor were power 6.3%, speed 5.5%, points per inch 

(PPI) 1,000 and raster mode. After graphene electrodes were scribed, silver was 

electrodeposited onto one pattern to function as the reference electrode at −0.2 mA 

for 100 s using a plating solution containing 250 mM silver nitrate, 750 mM sodium 

thiosulfate and 500 mM sodium bisulfite. The physical sensors had their contact 

pads scribed with the same parameters as the chemical sensors. For the active 

sensing area of the strain sensor, the optimized parameters were power 0.3%, speed 

1.0% (1.4%, 1.2% and 1.0% were described as higher speed, medium speed and 

lower speed, respectively, in Fig.2-6i and Appendix A, Fig. A-11), PPI 400, vector 

mode; for the active sensing area of the temperature sensor, the optimized 

parameters were power 1.5%, speed 11%, PPI 1,000 and vector mode. Scanning 

electron microscopy (SEM) images were taken with a field emission scanning 

electron microscope (FEI Sirion). The surface properties of the laser-induced 

graphene were characterized by X-ray photoelectron spectroscopy (Escalab 250xi, 

Thermo Fisher Scientific). The Raman spectrum of graphene was recorded using a 

532.8-nm laser with an inVia Reflex (Renishaw). 

Characterization of the UA and Tyr sensors 

All sensor characterizations were performed in 0.01 M acetate buffer saline (ABS) 

(pH 4.6 with the addition of 50 mM NaCl) unless otherwise noted. DPV analysis 

was performed through an electrochemical workstation (CHI 832D). The detailed 

parameters were: range, 0–0.9 V; incremental potential, 0.004 V; pulse amplitude, 

0.05 V; pulse width, 0.05 s; pulse period, 0.5 s; and sensitivity, 1 × 10−5 A/V. The 

selectivity study of the LEG was tested in ABS containing physiological 

concentrations of analytes. The dependence of the sensor response on pH was 

studied by DPV tests in 0.3× PBS with solution pHs adjusted by lactic acid. 

Characterization of the strain and temperature sensors 

The temperature sensor characterization was performed on a ceramic hot plate 

(Thermo Fisher Scientific) (Fig.2-6f,g and Appendix A, Fig.A-10). The sensor 

response was recorded using a parameter analyzer (Keithley 4200A-SCS) and 
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compared with the readings from an infrared thermometer (LASERGRIP 800; 

Etekcity). The response of the strain sensor was recorded using the parameter 

analyzer (Keithley 4200A-SCS) in a controlled temperature atmosphere (23 ± 1 °C). 

The accuracy of the strain sensor for heart rate and respiration rate monitoring was 

validated on a healthy subject with a commercially available vital-sign monitor 

(Masimo MightySat; Appendix A, Fig. A-11). Under repetitive bending under a 

0.1% strain for 10,000 cycles (performed using a Lynxmotion AL5D 4DOF 

Robotic Arm), the mechanical deformation effect on LEG-based electrode was 

evaluated (Fig. 2-8). 

2.3 Results and Discussion 

With the use of the CO2 laser engraving technique, we have developed a laser-

engraved sensor patch for multiplex sensing of uric acid, tyrosine and vital signs. 

Characterization of the LEG-based UA and Tyr sensor 

Owing to its unique electrochemical properties arising from the fast electron 

mobility, high current density and ultra large surface area, graphene is an 

appropriate candidate for building high-performance sensors to detect ultralow 

levels of electroactive analytes in body fluids. Laser cutting has been used to 

directly obtain graphene structures from a variety of substrates toward energy 

storage and fluid capture applications.13,15,42 Here we manufactured highly sensitive 

LEG-CS on polyimide via raster mode (Fig.2-1a-d and Appendix A, Fig. A-1). 

The three-electrode LEG-CS could selectively catalyze the oxidation of UA and 

Tyr at specific potentials (Fig.2-1b). After optimization on the basis of the DPV 

peak amplitudes of UA and Tyr in the standard solutions (Fig. 2-2 and Table 2-1) 

and electrochemical impedance spectroscopy (Appendix A, Fig. A-2), the 

electrocatalytic activity and reproducibility of LEG-CS for direct oxidation of UA 

and Tyr at physiological concentrations had sensitivities of 3.50 µA µM−1 cm−2 and 

0.61 µA µM−1 cm−2, and low detection limits of 0.74 µM and 3.6 µM, respectively 

(Fig. 2-1e,f and Appendix A, Fig. A-3). Two distinct current peaks at ~0.39 V and 
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~0.64 V from the DPV scans correspond to the oxidation reactions of UA and Tyr, 

respectively.  

 

Figure. 2-1: Schematics and characterization of the LEG-based UA and Tyr 

sensor. a, Schematic of the raster mode for LEG-CS fabrication. b, A three-

electrode LEG-based flexible sensor for simultaneous UA and Tyr detection. CE, 

counter electrode; WE, working electrode; RE, reference electrode. c,d, SEM 

images of the LEG-CS. Scale bars, 200 µm (c) and 3 µm (d). e,f, UA (e) and Tyr (f) 

detection with the LEG-CS in a 0.01 M ABS solution. Insets are the corresponding 

calibration plots. Curr., current. g,h, Simultaneous and selective detection of UA in 

the presence of 50 μM Tyr (g) and Tyr in the presence of 50 μM UA (h). i, 

Simultaneous detection of 50 μM UA and 50 μM Tyr in the presence of common 

interferences: 170 μM glucose (Glu), 10 mM urea, 25 μM dopamine (DA) and 

50 μM ascorbic acid (AA). j, Cyclic voltammetry scans of an LEG electrode 

(LEGE), a glassy carbon electrode (GCE), a gold electrode (AuE), and a screen-

printed carbon electrode (SPE) in a solution containing 5 mM [Fe(CN)6]3− and 
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0.2 M KCl. k,l, DPV signals in raw sweat (k) and saliva (l) samples from an LEG 

electrode, a glassy carbon electrode, a gold electrode and a screen-printed carbon 

electrode. Experiments in e–l were repeated five times independently with similar 

results. 

 

Figure 2-2. Optimization of the LEG-based chemical sensor under different 

laser parameters. Condition, 50 μM UA and 50 μM Tyr. Five experiments were 

performed independently with similar results. 

 

 

Table 2-1. Optimization of the LEG-CS with different laser parameters. 
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The LEG-based UA and Tyr sensor shows excellent selectivity over other analytes 

in sweat at physiologically relevant concentrations43 (Fig.2-1g-i, Fig. 2-3,2-4, 

Appendix A, Fig. A-4-6, Note A-1, Table A-1).  

  



 

 

25 

 

Figure 2-3. The selectivity of the LEG-CS to UA over other analytes in human 

sweat. I and I0 represent the peak amplitude of the DPV plot of an LEG-CS, and the 

average peak amplitude obtained from the initial UA solution, respectively. The 

concentrations of the initial UA and other analytes are based on Appendix A, Table 

A-1. UA concentration was increased by 50% in the end. Error bars represent the 

standard deviations of four measurements. 

 

Figure 2-4. The selectivity of the LEG-CS to Tyr over other analytes in human 

sweat. I and I0 represent the peak amplitude of the DPV plot of an LEG-CS, and the 
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average peak amplitude obtained from the initial Tyr solution, respectively. The 

concentrations of the initial Tyr and other analytes are based on Appendix A, Table 

A-1. Tyr concentration was increased by 50% in the end. Error bars represent the 

standard deviations of four measurements.  

The LEG-CS displays superior electrochemical performance over commercial 

glassy carbon, screen-printed carbon and gold electrodes (Fig. 2-1j). Moreover, it 

enables direct detection of UA and Tyr in raw body fluids (that is, sweat and saliva) 

(Fig. 2-1k,l). The response of UA and Tyr sensing can be wirelessly recorded using 

the as-designed FPCB (Appendix A, Fig. A-7,8). Although we focus on the 

detection of UA and Tyr in this work, LEG-CS is able to detect ultralow levels of 

other electroactive molecules such as ascorbic acid and dopamine (Appendix A, 

Fig. A-9). The LEG-CS is mechanically flexible, fully compliant with the skin and 

exhibits mechanical and electrochemical stability (Fig. 2-5). 

 

Figure 2-5. Stability of the LEG-CS during the bending tests. a,b, The long term stability 

of an LEG-based sensor during the bending test. 0–0.25 % strains were applied for both x (a) 

and y (b) axis. I and I0 represent the current amplitude of the DPV plot during the bending, 

and the average current amplitude without bending, respectively. The error bars represent the 

standard deviation of 10 measurements. Conditions, 50 µM UA and 100 µM Tyr. 

Design and characterization of the LEG-based vital-sign monitor 

The LEG has unique properties for designing resistive physical sensors: as the 

temperature rises, its conductivity increases owing to increased electron–phonon 

scattering and thermal velocity of electrons in the sandwiched layers 44 (Fig. 2-6a); 
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when an external strain is applied, its three-dimensional porous structure is 

compressed, resulting in decreased resistance (Fig. 2-6b). Here the LEG-based 

temperature and piezoresistive strain sensors are fabricated in vector mode (Fig. 2-

6c,d and Appendix A, Fig. A-1). Both material morphology and sensor layout are 

important in achieving the desired sensor performance: the fiber-like structure 

resulted from a high dose of local laser power (Fig. 2-6d and Fig.2-7) coupled with 

a straight-line design (strain sensor) yields the highest strain response; the compact 

structure (Fig. 2-6c) coupled with serpentine line design (temperature sensor) is 

less susceptible to strain variations (Fig. 2-6e).  

 

Figure. 2-6: Design and characterization of the LEG-based vital-sign sensors. 

a,b, Mechanisms of temperature sensing (a) and strain sensing (b) using LEG. c,d, 

SEM images of an LEG-based temperature sensor (c) and an LEG-based strain sensor 

(d). Scale bars, 100 µm. e, Strain responses of LEG with different morphologies and 

layouts. f,g, Calibration plot (f) and dynamic response (g) of the LEG-based 

temperature sensor in the physiological temperature range. Error bars represent the 

s.d. from ten sensors of different batches (ten measurements per sensor). h, Dynamic 
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response of an LEG-based temperature sensor upon contact with and removal from 

the human body. i, Strain responses of the LEG-based strain sensors prepared with 

varied laser scanning speeds. Error bars represent the s.d. from ten sensors of 

different batches (ten measurements per sensor). j, I–V curves of a strain sensor under 

different strains. k, Real-time respiration rate measurement with a strain sensor, at 

rest and after exercise. l, Dependence of the response of LEG-CS on the temperature. 

Condition, 50 µM UA and 100 µM Tyr in ABS. ΔR/R represents the ratio of the 

resistance change to the flat state resistance of the vital-sign sensor at 25 °C. 

Experiments in e and g were repeated ten times independently with similar results. 

Experiments in h and j–l were repeated five times independently with similar results. 

 

Figure 2-7. Porous fiber-like graphene structure for strain sensing. a, Cross-

section SEM image of the fiber-like LEG. Scale bar, 100 μm. b, Magnified view of 

the fiber-like LEG structure. Scale bar, 10 μm. 

The temperature sensor shows a fast, accurate and stable response to temperature 

variations with a sensitivity of −0.06% °C−1 and a low detection limit of 0.051 °C 

(Fig. 2-6f-h and Appendix A, Fig.A-10), which indicates the negative temperature 

coefficient behavior of the LEG. The strain sensor is fabricated at a low laser speed 

for large strain response and high stability (Fig. 2-6i,j and Appendix A, Fig. A-11), 

which is ideally suited for accurate monitoring of respiration rate (Fig. 2-6k) and 

heart rate (Appendix A, Fig. A-12), as validated with commercial vital monitors 

(Appendix A, Fig. A-13). After 10,000 bending cycles, the flat-state resistance of 

the strain sensor remains stable (Fig. 2-8). The temperature and strain sensor 

response can be accurately monitored by the FPCB (Appendix A, Fig. A-14). 

a b
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Considering that the response of the UA and Tyr sensor can be influenced by 

temperature variations (Fig. 2-6l), the temperature sensor readings could be used 

for real-time chemical sensor calibration during on-body use. 

 

Figure 2-8. The long-term stability of the LEG-based strain sensor. a, The 

measurement was performed during a bending test of a strain sensor (10,000 cycles 

with strains alternated between 0% and 0.1%). b,c, The resistive sensor response 

during 910–915 cycles (b) and 9610–9615 cycles (c) of bending.  

2.4 Conclusion 

Our laser-engraved multimodal sensor enables efficient and sensitive molecular 

sensing and multiplexed vital-sign sensing. Owing to its fast electron mobility, high 

current density and ultralarge surface area, the graphene-based chemical sensor 

achieves rapid and accurate detection of UA and Tyr in human sweat in situ. The 

vital sign physical sensors also exhibit excellent stability and sensitivity for 

temperature and strain sensing. Moreover, the fabrication of the sensor with a 

widely available CO2 laser engraving approach sets great potential for the mass 

production and the eventual use of these sensors for biomedical sensing. 
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laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in 

sweat. Nature Biotechnology 38, 217–224 (2020) doi:10.1038/s41587-019-0321-x”. 
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Figure A-1. Vector and raster modes of the laser cutting process. a, A CO2 laser 

cutting machine. b, Optical image of laser-scribed graphene patterns via vector mode 

and raster 

mode, respectively. Scale bar, 1 cm. c,d, SEM images of vector mode-scribed 

graphene structure. Scale bars represent 5 μm (c) and 2 μm (d), respectively. e,f, SEM 

images of raster mode-scribed graphene structure. Scale bars represent 5 μm (e) and 

2 μm (f), respectively. 

 

Figure A-2. Electrochemical impedance spectroscopy (EIS) for LEG-based 

electrodes prepared with different laser-engraving parameters. EIS tests were 

performed in a solution containing 0.2 M KCl and 5 mM [Fe(CN)6]3- at open circuit 

potentials with an AC amplitude of 5 mV in the range of 0.1–1000000 Hz. 
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Figure A-3. Reproducibility of the LEG-based chemical sensors for Tyr and UA 

sensing. a, Continuous successive detection of UA and Tyr using an LEG-CS for 16 

cycles. I and I0 represent the peak amplitudes of the DPV plot obtained from a give 

scan cycle and the first cycle, respectively. b, Batch to batch variation of the LEG-

based chemical sensor performance (10 batches). I and I0 represent the peak 

amplitude of the DPV plot, and the average peak amplitude obtained from the first 

batch, respectively. Measure of the center is the mean value of each batch. Error bars 

represent the standard deviations of the peak amplitudes measured from 16 sensors. 

Conditions: 50 and 100 μM of UA and Tyr. 

 

 
Figure A-4. The selectivity of the LEG-CS to Tyr over tryptophan. The DPV 

plots were obtained from solutions containing physiologically relevant levels of Tyr 

(170 μM) and tryptophan (20, 40 and 60 μM). The experiment was repeated 5 times 

independently with similar results. 
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Figure A-5. The dependence of sensor response on the solution pH levels. a,b, 

The DPV responses (a) and the corresponding peak amplitudes (b) of the LEG-based 

chemical sensors (3 mm in diameter) for UA sensing in solutions with different pHs. 

c,d, The DPV responses (a) and the corresponding peak amplitudes (b) of the LEG-

based chemical sensors for Tyr sensing in solutions with different pHs. To prepare 

the artificial sweat samples with different pH, lactic acid was used to adjust the pH 

of the PBS buffer (0.3X) solutions to physiologically relevant pHs. The UA and Tyr 

concentrations are 100 and 100 µM, respectively. Error bars represent the standard 

deviations of measurements from 5 sensors. 

 
Figure A-6. The selectivity of the LEG-CS to lactate. Physiologically relevant 

levels of lactic acid (10, 20, 30, and 40 mM) were added to 0.1 M ABS (pH 4.6) 
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containing 50 μM UA and 50 μM Tyr. The experiment was repeated 5 times 

independently with similar results. 

 
 

Figure A-7. Characterization and calibration of LEG-CS using the FPCB. a,b, 

DPV curves in ABS solutions containing varied UA concentrations (a) their 

corresponding 

calibration curve (b). c,d, DPV curves of Tyr in ABS solutions containing varied Tyr 

concentrations (c) and their corresponding calibration curve (d). The experiment was 

repeated 5 times independently with similar results. 

 

Figure A-8. Control of the DPV scan cycle lengths by varying the scan steps. 

Varied incremental potentials (4, 8, and 16 mV) were used to achieve the scan cycle 
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lengths of 90, 45, 23 seconds. Conditions, 50 μM UA and 250 μM Tyr. The 

experiment was repeated 5 times independently with similar results. 

 

 
 

Figure A-9. Sensor performance for detection of ultra-low levels of other 

electroactive compounds. a,b, the LEG electrodes show excellent sensitivity to AA 

(40, 80, and 120 μM) (a) and DA (0.5, 1, and 2 μM) (b). A commercial Ag/AgCl was 

used as the reference electrode. The experiment was repeated 5 times independently 

with similar results. 

 

 
Figure A-10. Characterization of the LEG-based temperature sensors. a, Batch 

to 

batch variation of the LEG-based temperature sensor performance (10 batches). Error 

bars 

represent the standard deviations of 10 measurements from a temperature sensor; the 

mean of the 10 measurements is measure of the centre. b, The response of an LEG-
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based temperature sensor to small temperature changes. The experiment was 

repeated 5 times independently with similar results. 
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Figure A-11. Batch to batch variation of the LEG-based strain sensors prepared 

with varied laser scanning speeds. Error bars represent the standard deviations of 

10 

measurements from a strain sensor under 0.25% strain; the mean of the 10 

measurements is the center of measure. 

 

 
Figure A-12. Heart rate (HR) monitoring using an LEG-based strain sensor. a,b, 

The resistive response of an LEG-based strain sensor (a) and extracted heart rate 

information (b) during long term continuous pulse monitoring on a healthy subject. 

c,d, The resistive responses of the LEG-based strain sensor at 1–3 minutes and at 15–

17 minutes during this test. 
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Figure A-13. Heart rate (HR) monitoring using an LEG-based strain sensor. a,b, 

The resistive response of an LEG-based strain sensor (a) and extracted heart rate 

information (b) during long term continuous pulse monitoring on a healthy subject. 

c,d, The resistive responses of the LEG-based strain sensor at 1–3 minutes and at 15–

17 minutes during this test. 

 

 
Figure A-14. Characterization and calibration of the temperature and strain 

sensors using the FPCB. a, Calibration curve for the temperature sensor. b,c, 

Characterization in response to pulsed strains (b) and the calibration plot of the strain 

sensor (c). Throughout the figure, the experiments were repeated 3 times 

independently and similar results were obtained. 
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Table A-1. Sweat analytes and their concentrations used for the selectivity 

studies. The values were chosen based on the mean physiological levels of the 

analytes.1 

 

Note A-1. The selectivity of the LEG-CS for sweat UA and Tyr sensing 

Current wearable electrochemical sweat sensors are primarily focused on a limited 

number of electrolytes (e.g., Na+, K+ , Cl- ) and metabolites (e.g., lactate and glucose) 

at high concentrations (usually at mM levels) monitored via ion-selective sensors or 

enzymatic electrodes; biosensors based on bioreceptors (e.g., antibodies) could be 

highly sensitive, but usually require multiple washing steps and detection in standard 

buffer or redox solutions in order to transduce the bioaffinity interactions. The 

approach we utilize here for continuous monitoring of UA and Tyr is based on their 

selective oxidation reaction at a specific potential. The selectivity is based on the 

oxidation peak position for the LEG-CS. We evaluate here the selectivity of the LEG-

CS over the common amino acids, vitamins and other potential interfering chemicals 

at physiologically relevant concentrations in human sweat listed in Table A-1. Our 

Constituents

Median values of human sweat constituents

Concentration (μM)
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Ascorbic acid
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Choline chloride
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Creatine
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Constituents Concentration (μM)Number
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Methionine
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electrochemical sensing data in Figs. 3,4 show that the physiological level sweat 

analytes have minimal influence on the detection of UA and Tyr using the LEG-CS. 

There are few electroactive molecules reported to be present in human sweat with 

comparable concentrations with UA and Tyr. Dopamine is a well-known 

electroactive neurotransmitter present at high concentration in cerebrospinal fluid. 

Our data in Fig. 1i shows that at the same conditions, the dopamine oxidation peak 

appears at a more negative potential than UA and doesn’t affect the UA monitoring. 

In fact, to our knowledge, there is no literature report on the presence of dopamine in 

human sweat. Another electroactive molecule tryptophan has a close oxidation peak 

position to Tyr. However, tryptophan is present at a much lower concentration 

compared to Tyr. Our selectivity study (Fig. A-4) shows that physiologically relevant 

concentrations of tryptophan do not significantly affect our Tyr measurement. 

As pH is usually a key factor that could influence electrochemical sweat sensor 

performance, we try to evaluate here the influence of pH on the sensor performance 

in artificial sweat (with pH values adjusted by varying lactic acid as lactic acid is the 

main contributing factors for sweat pH). Considering the normal sweat pH range in 

the literature and from our human subjects (pH ranges from 4 to 6), the dependence 

of the chemical sensor performance in artificial sweat with pHs between 4 to 6 was 

examined. Our results in Fig. A-5 show that, although the oxidation peak positions 

slightly shift under different pHs, the peak amplitudes of UA and Tyr sensing remain 

stable in the range of pH 4 to pH 6. Considering that we are essentially measuring 

the peak heights, the influence of the pH is small to our sensors. Moreover, it is worth 

noting that the variations of pH values of an individual’s sweat at different time points 

during biking session and at different biking sessions are small. 
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C h a p t e r  3  

MOLECULAR IMPRINTED POLYMER-BASED LASER-ENGRAVED 
GRAPHENE SENSORS 

Materials from this chapter appears in “Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, 

J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J. S.; Hsiai, T. K.; Li, Z.; Gao, 

W. A wearable electrochemical biosensor for the monitoring of metabolites and 

nutrients. Nature Biomedical Engineering 1–11 (2022) doi: 10.1038/s41551-022-

00916-z” . 
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3.1 Introduction 

Circulating nutrients are essential indicators for overall health and body function. 

Amino acids (AAs), sourced from dietary intake and gut microbiota synthesis, and 

influenced by personal lifestyles, are important biomarkers for a number of health 

conditions (Fig.3-1). 1 Metabolic profiling and monitoring are a key approach to 

enabling precision nutrition and precision medicine.2 Current gold standards in 

medical evaluation and metabolic testing heavily rely on blood analyses that are 

invasive and episodic, often requiring physical visits to medical facilities, labor-

intensive sample processing and storage, and delicate instrumentation (for example, 

gas chromatography–mass spectrometry (GC–MS)).3 As the current COVID-19 

pandemic remains uncontrolled around the world, there is a pressing need for 

developing wearable and telemedicine sensors to monitor an individual’s health state 

and to enable timely intervention under home- and community-based settings4–10; it 

is also increasingly important to monitor a person’s long-term cardiometabolic and 

nutritional health status after recovery from severe COVID-19 infection using 

wearables to capture early signs of potential endocrinological complications such as 

T2DM.11 
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Figure 3-1. Circulating nutrients such as AAs are associated with various 

physiological and metabolic conditions. 

  

Sweat is an important body fluid containing a wealth of chemicals reflective of 

nutritional and metabolic conditions.10,12–14The progression from blood analyses to 

wearable sweat analyses could provide great potential for non-invasive, continuous 

monitoring of physiological biomarkers critical to human health.15–20 However, 

currently reported wearable electrochemical sensors focus primarily on a limited 

number of analytes including electrolytes, glucose and lactate, owing to the lack of a 

suitable continuous monitoring strategy beyond ion-selective and enzymatic 

electrodes or direct oxidation of electroactive molecules.12–14,19,20 Thus, most 

clinically relevant nutrients and metabolites in sweat are rarely explored and 

undetectable by existing wearable sensing technologies.  

In this chapter, we present a universal wearable biosensing strategy based on a 

judicious combination of the mass-producible laser-engraved graphene (LEG), 

electrochemically synthesized redox-active nanoreporters (RARs) and molecularly 

imprinted polymer (MIP)-based ‘artificial antibodies’, as well as unique in situ 

regeneration and calibration technologies. Unlike bio-affinity sensors based on 

antibodies or classic MIPs, which are generally for one-time use and require multiple 

washing steps to transduce the bio-affinity interactions in standard ionic solutions21,22 

, this approach enables the demonstration of sensitive, selective and continuous 

monitoring of a wide range of trace-level biomarkers in biofluids including all nine 

essential AAs as well as vitamins, metabolites and lipids commonly found in human 

sweat. 

3.2 Materials and Methodology 

Methodology of Sensing Electroactive Targets 

For electroactive molecules in sweat, the oxidation of bound target molecules in the 

MIP template can be directly measured by differential pulse voltammetry (DPV) in 
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which the peak current height correlates with analyte concentration (Fig. 3-2a). 

Considering that multiple electroactive molecules can be oxidized at similar 

potentials, this LEG–MIP approach addresses both sensitivity and selectivity issues.  

 

Methodology of Sensing non-Electroactive Targets 

As the majority of metabolites and nutrients (for example, BCAAs) are non-

electroactive and cannot easily be oxidized under operational conditions, we herein 

utilize an indirect detection approach involving a redox-active nanoreporter(s) (RAR) 

layer sandwiched between the LEG and MIP layers to enable rapid quantitation (Fig. 

3-2e). The selective adsorption of the target molecules onto the imprinted polymeric 

layer decreases the exposure of the RAR to the sample matrix. Controlled-potential 

voltammetric techniques such as DPV or linear sweeping voltammetry (LSV) can be 

applied to measure the RAR’s oxidation or reduction peak, where the decrease in 

peak height current density corresponds to an increase in analyte levels. Considering 

that a total level of multiple nutrients (for example, total BCAAs) is often an 

important health indicator, a multi-template MIP approach can be used to enable 

accurate and sensitive detection of the total concentration of multiple targets with a 

single sensor (Fig.3-2i).  

Materials and reagents 

Uric acid, l-tyrosine, silver nitrate, iron(III) chloride, dopamine hydrochloride, 

choline chloride, creatinine, pantothenic acid calcium salt, citrulline, pyridoxine 

and lactic acid were purchased from Alfa Aesar. Sodium thiosulfate pentahydrate, 

sodium bisulfite, tryptophan, leucine, alanine, isoleucine, methionine, valine, lysine, 

thiamine hydrochloride, serine, sulfuric acid, hydrochloric acid, AQCA, 3-

aminophenylboronic acid (APBA), aniline, o-phenylenediamine, methylene blue, 

thionine, 2-(N-morpholino)ethanesulfonic acid hydrate (MES), ethanolamine, N-

(3-dimethyl-aminopropyl)-N′-ethylcarbodiimide (EDC), N-

hydroxysulfosuccinimide sodium salt (sulfo-NHS), bovine serum albumin (BSA), 
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tris(hydroxymethyl)aminomethane hydrochloride (Tris–HCl), streptavidin–

peroxidase conjugate (Roche) and hydroquinone were purchased from Sigma-

Aldrich. Carboxylic-acid-modified magnetic beads (MBs; Dynabeads, M-270) 

were obtained from Invitrogen. Potassium ferricyanide and potassium ferrocyanide 

were purchased from Acros Organics. Acetic acid, methanol, sodium acetate, 

sodium chloride, sodium dihydrogen phosphate, potassium chloride, potassium 

hydrogen phosphate, urea, l-ascorbic acid and dextrose (d-glucose) anhydrous, 

glycine, arginine, inositol, ornithine, aspartic acid, threonine, histidine, riboflavin, 

creatine, phenylalanine, nicotinic acid, folic acid, glutamic acid and hydrogen 

peroxide (30% (w/v)) were purchased from Thermo Fisher Scientific. Insulin 

capture antibody and biotinylated detector antibody were purchased from R&D 

systems (Human/Canine/Porcine Insulin DuoSet ELISA). Screen printed carbon 

electrodes and magnetic holder were purchased from Metrohm DropSens. Medical 

adhesives were purchased from 3 M and Adhesives Research. PI films (75 μm thick) 

were purchased from DuPont. PET films (12 μm thick) were purchased from 

McMaster-Carr. 

Fabrication and preparation of the LEG sensors 

The LEG electrodes were fabricated on a PI film with a thickness of 75 μm (DuPont) 

with a 50 W CO2 laser cutter (Universal Laser System). When engraving the PI 

with a CO2 laser cutter, the absorbed laser energy is converted to local heat and thus 

leads to a high localized temperature (>2,500 °C), chemical bonds in the PI network 

are broken and thermal re-organization of the carbon atoms occurs, resulting in 

sheets of graphene structures. The optimized parameters for the graphene electrodes 

and electronic connections were power 8%, speed 15%, and points per inch (PPI) 

1,000 in raster mode with three-time scan. For the active sensing area of the 

temperature sensor, the optimized parameters were power 3%, speed 18%, and PPI 

1,000 in vector mode with one-time scan. To prepare the reference electrode, Ag 

was first modified on the corresponding graphene electrode by multi-current 

electrodeposition with electrochemical workstation (CHI 832D) at −0.01 mA for 



 

 

52 
150 s, −0.02 mA for 50 s, −0.05 mA for 50 s, −0.08 mA for 50 s and −0.1 mA for 

350 s using a plating solution containing 0.25 M silver nitrate, 0.75 M sodium 

thiosulfate and 0.5 M sodium bisulfite. To obtain the Ag/AgCl electrode, 0.1 M 

FeCl3 solution was further dropped on the Ag surface for 30 s, and then 3 µl 

polyvinyl butyral (PVB) reference cocktail prepared by dissolving 79.1 mg of PVB 

and 50 mg of NaCl in 1 ml of methanol was dropped on the Ag/AgCl electrode and 

dried overnight. The Na+-selective electrode was prepared as follows: 0.6 µl of Na+-

selective membrane cocktail prepared by dissolving 1 mg of Na ionophore X, 

0.55 mg sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, 33 mg polyvinyl 

chloride and 65.45 mg bis(2-ethylhexyl) sebacate into 660 µl of tetrahydrofuran 

was drop-casted onto the graphene electrode and dried overnight. To obtain the 

desired stable Na+-sensing performance for long-term continuous measurements, 

the obtained Na+ sensor was conditioned overnight in 100 mM NaCl. 

The fabrication process of the LEG–MIP sensor array is illustrated in Fig. 3-3. All 

the MIP layers are synthesized by electro-polymerization. The polymerization 

solution was prepared by dissolving 5 mM template (for example, target AA), 

12.5 mM APBA and 37.5 mM pyrrole into 0.01 M phosphate-buffered saline (PBS) 

(pH 6.5). For multi-MIP BCAA sensor, 5 mM of each target (that is, Leu, Ile and 

Val) was used. Before MIP deposition, the LEG was activated in 0.5 M H2SO4 with 

CV scans for 60 segments (−1.2 to 1 V with a scan rate of 500 mV s−1). For the 

direct-detection LEG–MIP sensors, the target imprinted polymer was 

electrochemically synthesized on the LEG electrode with CV deposition (0–1 V for 

ten cycles, 50 mV s−1) using the prepared polymerization solution. The target 

molecules were extracted by soaking the electrode into an acetic acid/methanol 

mixture (7:3 v/v) for 1 h. Subsequently, the resulting electrode was immersed into 

0.01 M PBS (pH 6.5) for repetitive CV scans (0.4–1 V with a scan rate of 50 mV s−1) 

until a stable response was obtained. For LEG-non-imprinted polymer, the 

electrode was prepared following the same procedure as LEG–MIP except that no 

template was added in the polymerization solution. 
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For the indirect-detection MIP sensors, electrochemically synthesized RARs (for 

example, PBNPs or AQCA) were first modified on the LEG electrode. The PBNP 

RAR on the LEG was prepared with CV (20 cycles) (−0.2 to 0.6 V with a scan rate 

of 50 mV s−1) in an aqueous solution containing 3 mM FeCl3, 3 mM K3Fe(CN)6, 

0.1 M HCl and 0.1 M KCl. A PBNP layer with appropriate redox signal is necessary 

to produce a good sensitivity for the final MIP sensors; to achieve this stable and 

suitable redox signal, the LEG electrode was rinsed with distilled water after the 

initial Prussian blue (PB) deposition, and the PB electrodeposition step was 

repeated two more times until a stable 70 µA LSV peak in 0.1 M KCl solution was 

achieved. Subsequently, the LEG–PB was rinsed with distilled water and immersed 

in a solution containing 0.1 M HCl and 0.1 M KCl for repetitive CV scans (−0.2 to 

0.6 V with a scan rate of 50 mV s−1) until a stable response was obtained. To prepare 

the AQCA RAR on the LEG, the LEG electrode was first incubated in 50 µl PBS 

(pH 6.5) with 5 mM AQCA at 4 °C overnight. Subsequently, the LEG–AQCA was 

rinsed with distilled water and immersed into a phosphate buffer solution for 

repetitive CV scans (−0.8 to 0 V with a scan rate of 50 mV s−1) until a stable 

response was obtained. For the indirect-detection LEG–PB–MIP sensors, an 

additional PB activation process was conducted right after the template extraction 

(IT scan at 1 V in 0.5 M HCl for 600 s), followed by an LEG–PB–MIP sensor 

stabilization process in 0.1 M KCl (CV scans at −0.2 to 0.6 V with a scan rate of 

50 mV s−1). It should be noted that, for the LEG–AQCA–MIP sensor, only three 

CV cycles of polymerization were used to prepare the MIP layer, and the sensor 

was stabilized in 0.01 M PBS (pH 6.5) (CV scans at −0.8 to 0 V with a scan rate of 

50 mV s−1). 

The morphology of materials was characterized by scanning electron microscopy 

(Nova Nano SEM 450) and transmission electron microscopy (Talos S-FEG FEI, 

USA). The Raman spectrum of the electrodes with different modification was 

recorded using a 532.8 nm laser with an inVia Reflex (Renishaw). Fourier-

transform infrared spectra were measured using infrared spectrometry (Nicolet 

6700). 
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Characterization of the LEG sensor performance 

A set of electrochemical sensors were characterized in solutions of target analytes. 

All the in vitro sensor characterizations were performed through CHI 832D. The 

response of the Na+ sensor was characterized with open circuit potential 

measurements in the solutions containing varied Na+ levels. DPV analysis was 

performed for all the direct-detection LEG–MIP sensor characterizations in 0.01 M 

PBS (pH 6.5) or in raw sweat. The DPV conditions were as follows: range, 0.4–

1 V; incremental potential, 0.01 V; pulse amplitude, 0.05 V; pulse width, 0.05 s; 

pulse period, 0.5 s; and sensitivity, 1 × 10−5 A V−1. For in vitro indirect detection of 

the target molecules based on the LEG–PB–MIP sensors, LSV analysis (0.4–0 V) 

was performed in 0.1 M KCl. The LSV conditions were as follows: range, 0.4–0 V; 

scan rate, 0.005 V s−1; sample interval, 0.001 V; quiet time, 2 s; and sensitivity, 

1 × 10−4 A V−1. For in vitro indirect detection of the target molecules based on the 

LEG–AQCA–MIP sensors, negative DPV analysis (0 to −0.8 V) was performed in 

0.01 M PBS. The negative DPV conditions were as follows: 0 to −0.8 V; 

incremental potential, 0.01 V; pulse amplitude, 0.05 V; pulse width, 0.05 s; pulse 

period, 0.5 s; and sensitivity, 1 × 10−5 A V−1.  

To evaluate the performance of the various electrode substrates for MIP-based AA 

sensing, LEG, printed carbon electrode, Au electrode and glassy carbon electrode 

were chosen. The glassy carbon electrodes were purchased from CH Instruments. 

The printed carbon electrodes were printed on the PI substrate using a Dimatix 

Materials Printer DMP-2850 (Fujifilm, Minato, Japan) with a commercial carbon 

ink from NovaCentrix. The Au electrodes were fabricated via E-beam evaporation: 

20 nm of Cr and 100 nm of Au were deposited onto an O2-plasma pre-treated PET 

substrate. MIP films were prepared with CV deposition (0–1 V for ten cycles, 

50 mV s−1). 

GC–MS analysis for sensor validation 

GC–MS analysis of the AAs in sweat and serum samples was performed using 

EZ:Faast kit from Phenomenex, which enables sample preparation, derivatization 



 

 

55 
and GC–MS analysis of free AAs. A Varian Saturn 2000 was used for the GC–MS 

runs. One microlitre of prepared sample solution was injected for GC in helium 

carrier gas at 1.0 ml min−1 constant flow with a pulse pressure of 20 pounds per 

square inch for 0.2 min, with the oven programmed from 110 °C to 320 °C at 32 °C 

min−1. The mass chromatography was set with source at 240 °C, quad at 180 °C and 

auxiliary at 310 °C with a scan range of 45–450 m/z at a sampling rate of 3.5 scans 

s−1. Selected ion monitoring was used, which records the ion current at selected 

masses that are characteristic of the certain AA in an expected retention time.23 For 

example, after the derivatization of the EZ:Faast kit, Trp has a characteristic mass 

at 130 with a retention time at around 5.1 min, and peak height is recorded for Trp 

measurements at ion number 130 and at 5.1 min from the raw data spectrum. The 

internal standard (IS; norvaline) was added during the sample derivatization 

process to account for potential evaporation-induced increase in peak detection; the 

IS norvaline peak height is recorded at its ion number 158 at 1.65 min (Appendix 

B, Fig. B-13). The Trp peak height recorded from raw data spectrum was calibrated 

with respect to the IS in the same run: normalized Trp peak height = Trp peak 

height/IS peak height. With normalized peak heights of different levels of Trp 

standards, calibration plots were constructed. For other samples, the normalized 

peak height of Trp was used to calculate the concentration. 

3.3 Results and Discussion 

Biosensor design and evaluation for universal metabolic and nutritional analysis 

Universal detection of AAs and other metabolites/nutrients with high sensitivity and 

selectivity was achieved through careful design of the selective binding MIP layer on 

the LEG. MIPs are chemically synthesized receptors formed by polymerizing 

functional monomer(s) with template molecules. Although MIP technology has been 

proposed for sensing, separation and diagnosis22,24, it has not yet been demonstrated 

for continuous wearable sensing as classic MIP sensors require washing steps for 

sensor regeneration and the detection is generally performed in standard buffer or 

redox solutions. In our case, the functional monomer (for example, pyrrole) and 
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crosslinker (for example, APBA) initially form a complex with the target molecule; 

following polymerization, their functional groups are embedded in the polymeric 

structure on the LEG (Appendix B, Fig. B-1); subsequent extraction of the target 

molecules reveals binding sites on the LEG-MIP electrode that are complementary 

in size, shape, and charge to the target analyte (Figs. 3-2,3-3).  

 
Figure 3-2. Schematics and characterizations of the biomimetic LEG-MIP 

sensors. a, Direct detection of electroactive molecules using LEG-MIP sensors. b,c, 

DPV voltammograms of the LEG-MIP sensors for direct Tyr (b) and Trp (c) 

detection. Insets, the calibration plots. ∆J, peak height current density. d, In situ 

continuous sensing and regeneration of an LEG-MIP Trp sensor in 50 µM Trp. e, 

Indirect molecular detection using LEG-RAR-MIP sensors. f, LSV voltammograms 

of indirect Leu detection with LEG-PBNP-MIP sensors. Inset, the calibration plot. 

g,h, Indirect detection of all essential AAs (g) and multiple vitamins, lipids, and 
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metabolites  (h) using LEG-PBNP-MIP sensors. i, Schematic of multi-MIP AA 

sensors. j, LSV voltammograms of a LEG multi-MIP sensor for BCAA 

quantification. Inset, the calibration plot. k, In situ continuous sensing and 

regeneration of an LEG-PBNP-MIP Leu sensor in 50 µM Leu. l, Repetitive CV scans 

of an LEG-PBNP electrode in 0.1 M KCl. m, DPV voltammograms of indirect Leu 

detection with LEG-AQCA-MIP sensors. Inset, the calibration plot. n, In situ 

regeneration of an LEG-AQCA-MIP Leu sensor in a raw sweat sample. o, Selectivity 

of the Trp, Tyr, Leu, Ile, Val, and BCAA sensors against other AAs. p, Validation of 

Tyr, Trp, and Leu sensors for analyzing raw exercise sweat samples (n=20) against 

GC-MS. All error bars represent the s.d. from 3 sensors. 

Two detection strategies—direct and indirect—are designed on the basis of the 

electrochemical properties of the target molecules (Fig. 3-2a,e, Fig. 3-3). 

Optimizations and characterizations of the LEG–MIP sensors are detailed in 

Appendix B, Note B-1 and Fig. B-2-6. 
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Figure 3-3. Schematic of the preparation procedure and detection mechanism 

of the LEG-MIP AA sensors. Left panel, electroactive AA sensor with direct 

detection mechanism; Right panel, AA sensor with indirect detection mechanism. Supplementary Fig. 6 Schematic of fabrication procedure and detection mechanism of MIP-based AA sensors on the laser-engraved graphene. Left 
panel, electroactive AA sensor with direct detection mechanism; Right panel, AA sensor with indirect detection mechanism. 

Electro-polymerization

Graphene electrode

Electro-deposition

Extraction
R

eg
en

er
at

io
n

R
ec

og
ni

tio
n

Oxidation

e- e- e- e-

Redox-active nanoreporter

APBA Pyrrole Graphene

Amino acid

R
eg

en
er

at
io

n

R
ec

og
ni

tio
n

Extraction

Blocked

e- e- e- e-

Electro-
polymerization



 

 

59 
For electroactive molecules in sweat, (e.g. Tyr and Trp) , two AAs with close redox 

potentials (~0.7 V), could be detected selectively with this strategy (Fig. 3-2b,c and 

Fig. 3-4).  

 

Figure 3-4. Selectivity studies of the LEG-MIP sensors for detecting two 

electroactive amino acids: Trp and Tyr. a–c, DPV voltammograms of a bare LEG 

electrode (a), an LEG-MIP Trp electrode (b), and an LEG-MIP Tyr electrode (c) in 

50 μM Trp, 50 μM Tyr, and 50 μM Trp + 50 μM Tyr.  

Linear relationships between peak height current densities and target concentrations 

with sensitivities of 0.63 µA µM−1 cm−2 and 0.71 µA µM−1 cm−2 respectively for the 

LEG–MIP Tyr and Trp sensors were observed (Fig. 3-5). 

 
Figure. 3-5. Schematic illustration of the sensitivity calculation of the LEG-

RAR-MIP sensor. S, sensitivity of the sensor; B, background peak current height; 

A, the electrode area; J1 and J2: peak current height of the LSV obtained in the 

presence of the analyte with concentrations of C1 and C-2, respectively. 
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It is worth noting that choices of monomer/crosslinker/template ratios and incubation 

periods have substantial influences on sensor response while sample volume does not 

(Fig. 3-6). The Tyr and Trp sensors can be readily and repeatably regenerated in situ 

without any washing step with a high-voltage amperometry current–time (IT) that 

oxidizes the bound targets at their redox potentials (Fig. 3-2d). 

 

Figure 3-6. Evaluation of the effect of incubation time and sample volume on 

the LEG-MIP sensor performance. a,b, DPV voltammograms (a) and current 

density of the peak height (∆J) (b) of the Trp sensors in 50 μM Trp with varied 1–20 

min incubation time. c,d, DPV voltammograms (c) and current density of the peak 

height (∆J) (d) of the Trp sensors in 50 μM Trp with varied sample volumes. Error 

bars in b and d represent the s.d. from 3 sensors. 

For non-electroactive targets such as BCAAs, an indirect detection approach was 

utilized involving an RAR layer sandwiched between the LEG and MIP layers. The 

selective adsorption of the target molecules onto the imprinted polymeric layer 

decreases the exposure of the RAR to the sample matrix. Controlled-potential 

voltammetric techniques such as DPV or linear sweeping voltammetry (LSV) can 

be applied to measure the RAR’s oxidation or reduction peak, where the decrease 

in peak height current density corresponds to an increase in analyte levels. For 
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example, using Prussian Blue nanoparticles (PBNPs) as the RAR, we developed an 

MIP–LEG Leu sensor with a log-linear relationship between the peak height 

decrease and Leu concentration and a sensitivity of 702 nA mm−2 per decade of 

concentration (Fig. 3-2f). We established this approach to quantify the 

physiologically relevant range of all nine essential AAs (that is, Leu, Ile, Val, Trp, 

Phe, histidine (His), lysine (Lys), methionine (Met) and threonine (Thr)) (Fig. 3-2g 

and Appendix B, Fig. B-7) as well as a number of vitamins, metabolites and lipids 

(vitamins B-6, C, D3 and E, glucose, uric acid, creatine, creatinine and cholesterol) 

(Fig. 3-2h and Appendix B, Fig. B-8). In addition to these nutrients and 

metabolites, this approach can be easily reconfigured to enable the monitoring of a 

broad spectrum of biomarkers ranging from hormones (for example, cortisol) to 

drugs (for example, immunosuppressive drug mycophenolic acid) (Appendix B, 

Fig. B-9 and Table B-1 and 2). Most of these targets are undetectable continuously 

by any existing wearable technology. Considering that a total level of multiple 

nutrients (for example, total BCAAs) is often an important health indicator, a multi-

template MIP approach can be used to enable accurate and sensitive detection of 

the total concentration of multiple targets with a single sensor (Fig. 3-2i,j). These 

indirect LEG–RAR–MIP sensors can be regenerated in situ by applying constant 

potential to the working electrode, which repels the bound target molecules from 

the MIP layer, achieving prolonged re-usability (Fig. 3-2k). 

The LEG–MIP sensors show stable responses during repeatable use: the PBNP-

based RAR showed stable redox signals throughout 60 repetitive cyclic 

voltammetry (CV) scans (Fig. 3-2l and Appendix B, Fig. B-5). Compared with 

traditional MIP preparation processes, the electrodeposited MIP layer on the mass-

producible LEG leads to high reproducibility in selectivity, sensitivity and device-

to-device consistency (Appendix B, Fig. B-10 and 11). The choice of LEG as the 

MIP deposition substrate also showed advantages in sensor sensitivity compared 

with classic electrodes such as glassy carbon electrode, printed carbon electrode 

and Au electrode (Fig. 3-7).  
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Figure 3-7. Comparison of the performance of the MIP sensors based on 

different electrodes: LEG, printed carbon electrode (PCE), Au electrode (AuE), 

and glassy carbon electrode (GCE). a,b, DPV voltammograms (a) and ∆J (b) of 

the Trp MIP sensors before (dotted line) and after (solid line) incubation in 50 μM 

Trp. c,d, LSV voltammograms (c) and ∆J (d) of the Leu PB-MIP sensors before 

(dotted line) and after (solid line) incubation in 50 μM Leu. Error bars represent the 

s.d. from 3 electrodes. 
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Supplementary Fig. 22 Selectivity of the LEG-MIP Trp sensors and the LEG-PB-MIP Leu sensors over other major analytes in human sweat. a,b, The 
selectivity of the Trp LEG-MIP sensors (a) and the Trp LEG-MIP sensors (b). I and I0 represent the peak amplitude obtained from the LEG-MIP sensors, 
and the average peak amplitude obtained from the starting target solution, respectively. The concentrations of the initial Trp, Leu and other sweat 
analytes are based on Supplementary Table 2. Trp and Leu concentrations were increased by 50% in the end.  
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Figure 3-8. Selectivity of the LEG-MIP Trp sensors and the LEG-PB-MIP Leu 

sensors over other major analytes in human sweat. a,b, The selectivity of the Trp 

LEG-MIP sensors (a) and the Leu LEG-MIP sensors (b). I and I0 represent the peak 

amplitude obtained from the LEG-MIP sensors, and the average peak amplitude 

obtained from the starting target solution, respectively. The concentrations of the 

initial Trp, Leu and other sweat analytes are based on Appendix B, Table B-2. Trp 

and Leu concentrations were increased by 50% in the end. Error bars represent the 

s.d. from 3 independent measurements. 

Other RARs such as anthraquinone-2-carboxylic acid (AQCA) can also be used for 

indirect AA sensing with stable performance (negatively scanned DPV was used 

here to monitor AQCA reduction) (Fig. 3-2m and Appendix B, Fig. B-12). As 

illustrated in Fig. 3-2n, the LEG–AQCA–MIP sensors could be directly 

regenerated in a raw human sweat sample, resolving a main bottleneck of wearable 

biosensing. The MIP–LEG AA sensors have excellent selectivity for other analytes 

in sweat (including AAs with similar structures) at physiologically relevant 

concentrations (Fig. 3-2o, Fig. 3-8, and Appendix B, Table B-2). The LEG–MIP 

technology showed a comparable sensitivity with the current gold-standard 

laboratory-based GC–MS25; the sensor measurements in raw human sweat samples 

have been validated against GC–MS (Fig.3-2p and Appendix B, Fig. B-13,14). 

3.4 Conclusion 

As current wearable electrochemical sensors are limited to a narrow range of 

detection targets owing to lack of continuous sensing strategies beyond ion-selective 

and enzymatic electrodes. Though various bio-affinity-based sensors have been 

developed to detect a broader spectrum of targets using antibodies or MIPs, they 

generally require multiple washing steps or provide only one-time use; these 

limitations have hampered their useability in wearable devices. By integrating mass-

producible LEG, electrochemically synthesized RARs and ‘artificial antibodies’, we 

have demonstrated a powerful universal wearable biosensing strategy that can 

achieve selective detection of a broad range of biomarkers (including all essential 
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AAs, vitamins, metabolites, lipids, hormones and drugs) and reliable in situ 

regeneration.  
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A p p e n d i x  B  

SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

Materials from this chapter appears in “Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, 

J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J. S.; Hsiai, T. K.; Li, Z.; Gao, 

W. A wearable electrochemical biosensor for the monitoring of metabolites and 

nutrients. Nature Biomedical Engineering 1–11 (2022) doi: 10.1038/s41551-022-

00916-z”. 
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Figure B-1. Characterization of the LEG. a, Optical image of a flexible LEG 

sensor patch array fabricated via low-cost and mass-producible CO2 laser engraving. 

Scale bar, 1 cm. b, Raman spectra of the LEG. c,d, High-angle annular dark-field 

scanning transmission electron microscopy (HAADF-STEM) (c) and bright-field 

transmission electron microscopy (TEM) image (d) of the LEG. Scale bars, 1 μm and 

500 nm, respectively. 
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Figure B-2. Characterization and validation of the MIP sensor preparation. a, 

DPV voltammograms of the LEG, the LEG-MIP before template (Trp) extraction, 

and the LEG-MIP after template (Trp) extraction in 0.1 M KCl solution containing 

2.0 mM K4Fe(CN)6/K3Fe(CN)6 (1:1). b, Raman spectra of the LEG, the LEG-MIP 

before template (Trp) extraction, and the LEG-MIP after template (Trp) extraction. 

c, DPV voltammograms of the LEG, the LEG-non-imprinted polymer (NIP), the 

LEG-NIP after template extraction procedure, and the LEG-NIP after extraction 

procedure (followed by a 7-min incubation in 50 μM Trp) in 0.1 M KCl solution 

containing 2.0 mM K4Fe(CN)6/K3Fe(CN)6 (1:1). d, LSV voltammograms of the 

LEG, the LEG-PB-MIP before template (Leu) extraction, and the LEG-PB-MIP after 

template (Leu) extraction in 0.1 M KCl. e, Raman spectra of the LEG, the LEG-PB, 

the LEG-PB-MIP before template (Leu) extraction, and the LEG-PB-MIP after 

template (Leu) extraction. f, LSV voltammograms of the LEG, the LEG-PB-NIP, the 

LEG-PB-NIP after template extraction procedure, and the LEG-PB-NIP after 

template extraction procedure (followed by a 7-min incubation in 50 μM Leu) in 0.1 

M KCl.  
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Supplementary Fig. 7 Characterization of the MIP sensor preparation. a, DPV voltammograms of the LEG, LEG-MIP before template (Trp) extraction, 
and LEG-MIP after template (Trp) extraction in 0.1 M KCl solution containing 2.0 mM K4Fe(CN)6/K3Fe(CN)6 (1:1). b, Raman spectra of the LEG, LEG-
MIP before template (Trp) extraction, and LEG-MIP after template (Trp) extraction. c, LSV voltammograms Raman spectra of the LEG, LEG-PB-MIP 
before template (Leu) extraction, and LEG-PB-MIP after template (Leu) extraction in 0.1 M KCl. d, Raman spectra of the LEG, LEG-PB-MIP before 
template (Leu) extraction, and LEG-PB-MIP after template (Leu) extraction. 
DPV conditions: range, +0.4–+1 V; incremental potential, 0.004 V; pulse amplitude, 0.05 V; pulse width, 0.05 s; pulse period, 0.5 s; and sensitivity, 1 ×
10−5 A/V. LSV conditions: range, 0.4-0 V; scan rate, 0.005 V/s; smpl interval, 0.001 V; quiet time, 2s, and sensitivity, 1 × 10−4 A/V.

Direct

Indirect

d

a

e

Note: Electrochemical behaviors and physical characterization of the sensors during preparation process were studied. In supplementary Fig. 5a, the
preparation process of direct detection MIP sensor was studied by DPV in 2.0 mM of K4Fe(CN)6/K3Fe(CN)6 (1:1) , it can be observed that GE displayed
the largest peak current owed to its large specific surface area. The oxidation peak extremely decreased after the nonconductive polymeric film was
constructed on GE by electropolymerization of APBA and pyrrole in the existence of Try. It can be accounted for the fact that when the GE was densely
covered by the nonconducting polymer and preventing the probe reaching the GE surface. Subsequently, extraction of the Try template was performed
by using constant voltage method (1 V) in 0.5 M HCl. Non-covalent interaction between the monomer and the Try template molecules were damaged
and Try was leached out, leaving behind imprinted cavities that are complementary, both chemically and sterically to the template molecules. These
cavities provide a gate for the probe ions to reach the electrolyte/electrode interface, resulting in the rise of the peak current. Raman spectrum was
used to study the roughness during preparation process. As we know, the Raman intensity is influenced by the scattering of the exciting light from the
surface of sample, thus, the Raman intensity decreases with the increase of surface roughness. As shown in Supplementary Fig. 5b, the change of
Raman intensity of C=C backbone stretching increased and then decreased with polymerization and extraction, respectively, indicating the surface
becomes smooth and roughened, which further indicated that the cavities are left on the surface with the extraction of the Try template. Electroactive
PB was used as a probe The fabrication process of indirect detection MIP sensor

f

c
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Figure B-3. Characterization of the electrochemical kinetics of the LEG-MIP 

electrodes. a,b, Cyclic voltammograms (a) of an LEG-MIP Trp sensor at the scan 

rates from 10 to 200 mV s−1 in 50 μM Trp, and the corresponding plot (b) of anodic 

peak current densities versus scan rate. c,d, Cyclic voltammograms (c) of an LEG-

PB-MIP Leu sensor in 0.1 M KCl at the scan rates from 10 to 300 mV s−1 and the 

corresponding plot (d) of anodic and cathodic peak current densities versus square-

root of scan rate. Solid lines in b,d represent linear fit trendlines. 

 

Figure B-4. Theoretical and experimental optimization of the MIP composition. 

a, Density functional theory (DFT)-optimized geometries of the monomer 
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Supplementary Fig. 8. Characterization of the electrochemical kinetics of the LEG-MIP electrodes. a,b, Cyclic voltammograms of an LEG-MIP Trp
sensor at the scan rate from 10 to 200 mV s−1 (a) in 50  μM Tryptophan in 0.1 M phosphate buffer (Ph=6.5)and the corresponding plot of anodic peak 
currents versus scan rate plot (b). c,d, Cyclic voltammograms of an LEG-PB-MIP Leu sensor at the scan rate from 10 to 300 mV s−1 (c) in 0.1 M KCl and 
the corresponding plot of anodic and cathodic peak currents versus square-root of scan rate (d). 

c

ba

d

Note: The kinetic processes on the modified electrode playing an important role for understanding whether the reaction process at the modified
electrode was controlled by adsorption and/or diffusion. As shown in Supplementary Fig. 7, Cyclic voltammetry (CV) was used to study the effect of
scan rate on the peak current for both the direct and indirect detection MIP sensors. Since the electro-active target itself (Try) will produce redox
reaction, the direct MIP sensor was evaluated in the supporting electrolyte that containing a fixed concentration of the target (50 μM Try)
(Supplementary Fig. 7a and b). Differently, the redox peak of Prussian blue can be used to study the electrode kinetics without target in the 0.1 M KCl
supporting electrolyte, (Supplementary Fig. 7c and d). The plots of anodic peak current vs. scan rate showed a linear dependence, indicating that the
oxidation of Try on the direct detection MIP sensor is controlled by adsorption processes. However, both the anodic and cathodic peak currents were
proportional to square root of the scan rate, suggesting that electrochemical redox reactions at GE-PB-MIP Leu sensor was a diffusion-controlled
process. The linear equations for direct and indirect detection MIP sensors were as follows:

𝐼𝐼𝑝𝑝𝑝𝑝 μ𝐴𝐴 = 1.2137 + 0.0423𝑣𝑣

𝐼𝐼𝑝𝑝𝑝𝑝 μ𝐴𝐴 = −58.908 + 24.749𝑣𝑣1/2

𝐼𝐼𝑝𝑝𝑝𝑝 μ𝐴𝐴 = 35.33− 26.264𝑣𝑣1/2

Direct-detection MIP sensors: 
Indirect-detection MIP sensors: 

The above results perfectly explained why the current signal displayed linear relationship with the concentration of the target in direct detection,
while it is linear between the current signal and the logarithm of the target in indirect detection.

Supplementary Fig. 9. Theoretical and experimental optimization of MIP composition. a, Density functional theory (DFT)-based simulation of the 
monomer (pyrrole)/target (Trp) bonding. b, DFT simulated bonding energies of the monomer-target complexes. c,d, Current density of the peak 
height (∆J) of the Trp MIP sensors based on different monomer/target combinations (c) and different target/crosslinker/monomer ratios (d) in 50 μM
Trp. APBA was used as the crosslinker. Ratios of target/(crosslinker)/monomer in c, 1:(2.5):7.5. Error bars in c,d represent the s.d. from 3 sensors.
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(Pyr)/target (Trp) bonding. b, DFT simulated bonding energies of the monomer-

target complexes. c,d, Current density of the peak height (∆J) of the Trp MIP sensors 

based on different monomer/target combinations (c) and different 

target/crosslinker/monomer ratios (d) in 50 μM Trp. Ratios of 

target/(crosslinker)/monomer in c, 1:(2.5):7.5; APBA was used as the crosslinker for 

c and d. Error bars represent the s.d. from 3 sensors. 

 

 

Figure B-5. Electrochemical characterization of the RARs on the LEG. a, 

Repetitive LSVs of the PB modified LEG electrodes. b–d, Repetitive negative DPVs 

of the AQCA (b), MB (c), and thionine (d) modified LEG electrodes. e, Relative 

peak signal changes of PB, AQCA, MB, and thionine RAR-modified LEG electrode 

under repeating voltammetric scans. DPV conditions for b–e: scan range, -0.2–-0.8 

V, 0.2–-0.6 V and 0.1–-0.6 V, respectively, for AQCA, MB, and Thionine; scan rate, 

5 mV s-1; sample interval, 1 mV; quiet time, 2 s; sensitivity, 1 × 10−4 A V-1. 
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Supplementary Fig. 12 Electrochemical characterization of the RARs on the LEG. a, Repetitive LSVs of the PB modified LEG electrodes in 0.1 M KCl.
b,c,d, Repetitive DPVs of the AQCA (b), MB (c), and Thionine (d) modified LEG electrode in 0.1 M phosphate buffer (Ph=6.5. e, Relative peak signal
changes (d) of PB, AQCA, MB, and thionine RAR-modified LEG electrode under repeating voltammetric scans.
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Figure B-6. Characterizations of the LEG-MIP sensor regeneration. a, 

Schematic of the LEG-MIP sensor regeneration for direct electroactive molecule 

detection. b, DPV voltammograms of an LEG-MIP Trp sensor before and after 

regeneration in 50 µM Trp (IT under a fixed potential of 0.7 V for 12 s). c, 

Comparison of regeneration efficiency of the LEG-MIP Trp sensors using controlled 

voltammetry (i.e., DPV, LSV, IT, CV) after 12 s. d, Time consumption of the LEG-

MIP Trp sensors to reach 100 % recovery. e, Schematic of the LEG-PB-MIP sensor 

regeneration for indirect detection. f, LSV voltammograms of an LEG-PB-MIP Leu 

sensor before and after regeneration in 50 µM Leu (IT under a fixed potential of -0.2 

V for 50 s). g, Comparison of regeneration efficiency of the LEG-PB-MIP Leu 

sensors using controlled voltammetry (i.e., DPV, LSV, IT, CV) after 50 s. h, Time 

consumption of the LEG-PB-MIP Leu sensors to reach 80% signal change recovery. 

Error bars in c and g represent the s.d. from 3 sensors. 
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Supplementary Fig. 13. Characterization of the LEG-MIP sensor regeneration methods for direct and indirect detection MIP. a, Schematic of the 
LEG-MIP sensor regeneration for direct electroactive molecule detection. b, DPV voltammograms of an LEG-MIP Trp sensor before and after 
regeneration in 50 μM Trp (IT under a fixed potential of 0.7 V was in-situ scanned for the Trp regeneration).  c,d,  Comparison of regeneration 
efficiency of the LEG-MIP Trp sensors using controlled voltammetry (i.e., DPV, LSV, IT, CV) after 12 s (c) and after 100 % recovery (d). e, Schematic of 
the LEG-PB-MIP sensor regeneration for indirect detection. f, LSV voltammograms of an LEG-PB-MIP Leu sensor before and after regeneration in 50 
μM Leu (regeneration details here).  g,h, Comparison of regeneration efficiency of the LEG-PB-MIP Leu sensors using controlled voltammetry (i.e., 
DPV, LSV, IT, CV) after xx mins (g) and xx mins (h).

Error bar?

e

a

NH

HN

n

B
OH

HN

NH

n

HO

O

N

HN

OH

O

N

NH

HO

+ + + + + + + + +

NH

HN

n

B
OH

HN

NH

n

HO

- - - - - - - - -

b

f

c

g

25

50

75

100

0
CVIT

Method
LSVDPV

Ti
m

e 
(s

)

d

Trp

Leu

H3C

OH
O

CH3

NH2



 

 

73 

 

Figure B-7. LSV voltammograms of the LEG-PB-MIP sensors for indirect 

detection of all nine essential amino acids.  
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Supplementary Fig. 15 LSV voltammograms of the LEG-PB-MIPs for indirect detection of all essential amino acids, key 
vitamins and metabolites. Conditions in a-n, incubated in 0.01 M phosphate-buffered saline (PBS) contain corresponding 
concentration target, and tested in 0.1 M KCl solution.
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Figure B-8. LSV voltammograms of the LEG-PB-MIP sensors for indirect 

detection of multiple vitamins, metabolites, and lipids. 
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Supplementary Fig. 16 LSV voltammograms of the LEG-PB-MIPs for indirect detection of all essential amino acids, key 
vitamins and metabolites. Conditions in a-n, incubated in 0.01 M phosphate-buffered saline (PBS) contain corresponding 
concentration target, and tested in 0.1 M KCl solution.
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Figure B-9. LSV voltammograms and the corresponding calibration curves of 

the 

LEG-PB-MIP sensor for indirect detection of cortisol and mycophenolic acid. 

Dashed lines in b,d represent linear fit trendlines. 
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Figure B-10. Characterization of the reproducibility of the LEG-MIP sensors 

from five different batches. a, Device-to-device variations in MIP film preparation 

on LEG. ∆J represents current density of the peak height in the voltammograms 

(DPV here) of the LEG, the LEG-MIP before template (Trp) extraction, and the LEG-

MIP after template (Trp) extraction in 0.1 M KCl solution containing 2.0 mM K4 

Fe(CN)6 /K3 Fe(CN)6 (1:1). Error bars represent the s.d. from 3 sensors. b,c, 

Sensitivity reproducibility of the LEG-MIP sensors. Batch-to-batch comparison of 

the sensitivity (∆J) of the Trp LEG-MIP sensors (b) and the Leu LEG-PB-MIP 

sensors (c) in the presence of 50 μM target. Error bars represent the s.d. from 3 

sensors. d,e, Selectivity reproducibility of the LEG-MIP sensors. Batch-to-batch 

comparison of the selectivity of the Trp LEG-MIP sensors (d) and the Leu LEG-PB-

MIP sensors (e) over other amino acids. 50 μM was used for each amino acid. 
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Figure B-11. Microscopic and electrochemical characterization of the surface of 

the LEG-MIP electrodes. a–e, SEM characterization of the surface of LEG-MIP 

Trp electrodes from 5 different batches. Scale bars, 100 μm and 10 μm for upper and 

lower rows, respectively. f–j, Electrochemical characterization of the surface of 

LEG-MIP Trp electrodes from 5 different batches. Cdl, electrochemical double layer 

capacitance. Cyclic voltammograms were obtained for each LEG-MIP Trp electrode 

at the scan rates in PBS (pH 6.5). Current density in the calibration plot represents 

the oxidation current height at 0.6 V. Error bars represent the s.d. from 3 sensors. 

Solid lines in calibration plots represent linear fit trendlines. 
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Figure B-12. Characterization of the performance of the LEG-AQCA-multi-

MIP BCAA sensor. a,b, Negative DPV voltammograms (a) and the corresponding 

calibration plot (b) of an LEG-AQCA-multi-MIP sensor for BCAA quantification. 

Error bars represent the s.d. from 3 sensors. Solid line in b represent a linear fit 

trendline. c,d, In situ regeneration of an LEG-AQCA-MIP BCAAs sensor in PBS 

buffer containing 60 μM total BCAAs (1:1:1) (c) and a raw sweat sample collected 

from a healthy subject (d). 

 

 
Figure B-13. GC-MS analyses of the Tyr, Try, Leu, Ile and Val in standard 

analyte solution. Each amino acid (200 μM added) displays a characteristic specific 
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Supplementary Fig. 21 Characterization of the LEG-AQCA-multi-MIP BCAA sensor performance.  Regeneration. 
a,b, Negative DPV voltammograms (a) and calibration plot (b) of an LEG-AQCA-multi-MIP sensor for BCAA 
quantification. c,d, In situ regeneration of an LEG-AQCA-MIP BCAAs sensor in PBS buffer containing XX BCAA (c) 
and a raw sweat sample (d).
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peak at its specific ion number. a, Merged spectrum of all ion numbers displaying all 

amino acids detectable by the EZ:Faast amino acid kit. b, Characteristic peak of Tyr 

in Ion 164. c, Characteristic peak of Leu, Ile and Trp in Ion 130. d, Characteristic 

peak of Val in Ion 158 

 

 
Figure B-14. GC-MS analyses of human sweat and serum samples collected at 

the same time. Serum and sweat samples are diluted for 4 and 6.66 times, 

respectively. Merged spectra of all ion numbers are shown here. Compared to sweat, 

merged spectra of all ion numbers in serum displayed more peaks showing more 

amino acids. 
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Table B-1. Sweat analytes and their concentrations used for the selectivity 

studies. The values were chosen based on the mean physiological levels of the 

analytes1  

 
 

Table B-2. The sensitivities (normalized by electrode area) of the LEG-PB-MIP sensors 

for 

small molecule quantification. 

Table S2 Sweat analytes and their concentrations used for the selectivity studies. The values were chosen based on the mean physiological levels of 
the analytes. 

Constituents

Median values of human sweat constituents

Concentration (μM)

Alanine

Arginine

Ascorbic acid

Aspartic acid

Choline chloride

Citrulline

Creatine

Creatinine

Dehydroascorbic acid

Glycine

Glutamic acid

Folic acid

Histidine

Inositol

Number

1

2

3

4

5

6

7

8

9

12

11

10

13

14

360

780

10

340

50

400

15

84

11

390

370

50

520

1.6

Isoleucine15 16

Leucine16 210

Constituents Concentration (μM)Number

Pantothetic acid

Phenylalanine

Pyridoxine

21

22

23

Ornithine20 150

50

130

0.01

Riboflavin

Serine

Tryptophan

Threonine

Thiamine

Tyrosine

Uric acid

Valine

24

25

28

27

26

29

30

31

50

50

55

450

50

170

50

250

Lysine17 150

Methionine18 50

Nicotinic acid19 50

Vitamin B6

Vitamin C

Glucose

Vitamin E

Vitamin D3

Lactate

32

33

36

35

34

37

20

20

40

20

20

2000
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Sensitivity (nA mm-2

decade (μM)-1)Targets
Sensitivity (nA mm-2

decade (μM)-1)Number TargetsNumber

Lysine

Valine

Leucine

Methionine

Phenylalanine

Threonine

Histidine

Tryptophan

Isoleucine

Vitamin C

1

2

3

4

5

6

7

8

9

10

596.2

1134.9

701.6

753.8

788.3

1330.7

1014.4

1407.9

860.2

552.9

Vitamin E

Vitamin D3

Uric acid

12

13

14

Vitamin B611 748.3

748.3

1416.9

1197.4

Glucose

Creatine

Mycophenolic acid

Cholesterol

Creatinine

Cortisol

15

16

19

18

17

20

1005.7

974.2

1676.7

1188.3

936.1

1648.2
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Note B-1. Optimization and characterization of the LEG-MIP biosensors  

Characterization of the MIP sensor preparation. The preparation of the LEG-MIP 

sensors was characterized electrochemically with differential pulse voltammetry 

(DPV) in 0.1 M KCl solution containing 2.0 mM K4Fe(CN)6/K3Fe(CN)6 (1:1) 

(Appendix B, Fig. B-2a). The LEG displayed a high oxidation peak owing to its 

large electrochemically active surface area. The redox peak substantially 

decreased after the MIP film deposition (co-polymerization of APBA and pyrrole 

in the presence of Trp here) due to the fact that the less conducting polymer layer 

blocked the LEG from the redox reporter solution. The template molecules were 

removed during template extraction step, leaving behind imprinted cavities that are 

complementary, both chemically and sterically to the template molecules. These 

cavities allow reporter ions to reach the electrolyte/electrode interface, resulting 

in a rise of the redox peak current.  

Raman spectrum was also used to study the surface roughness of the LEG-MIP 

sensor during preparation process. Raman intensity is influenced by the scattering 

of the exciting light from the sample surface, and thus decreases with the increase 

of surface roughness. As shown in Appendix B, Fig. B-2b, Raman intensity of 

C=C backbone stretching increased after polymerization (smooth surface), and then 

decreased after template extraction (rough surface), indicating the residual cavities 

on the surface resulted from the template extraction1. To further validate the 

successful preparation of the MIP layer, a non-imprinted polymer (NIP) film was 

prepared on the LEG as the control. The standard MIP template extraction 

procedure and further incubation in 50 µM Trp did not lead to substantial signal 

change of the LEG-NIP in the standard redox solution (Appendix B, Fig. B-2c).    

For the preparation of the LEG-RAR-MIP sensors, redox reporters such as Prussian 

blue (PB) and anthraquinone-2-carboxylic acid (AQCA) were deposited between 

the MIP and graphene layers. For the PB RAR, the preparation process was 

characterized electrochemically with linear sweep voltammetry (LSV) in 0.1 M 

KCl as illustrated in Appendix B, Fig. B-2d. The LEG-PB displayed a high 
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reduction peak of PB which decreased after deposition of the polymer film (co-

polymerization of APBA and pyrrole in the presence of Leu here) due to the PB 

blockage by the polymer. The extraction of the template molecules (with CV 

sweeping in 0.1 M HCl and 0.1 M KCl) leads to the target selective cavities and 

increases the exposure of the PB film to the electrolyte solution, resulting an 

increased redox signal.  

The Raman spectra of the LEG-PB-MIP Leu showed similar behavior as the LEG-

MIP Trp sensor: Raman intensity of C=C backbone stretching increased after 

polymerization on LEG-PB, and then decreased after template extraction, the 

residual cavities were left on the surface resulted from the template extraction 

(Appendix B, Fig. B-2e). To further validate the successful preparation of the MIP 

layer on the LEG-PB, a NIP film was prepared on the LEG-PB as the control. The 

standard MIP template extraction procedure and further incubation in 50 µM Leu 

did not lead to substantial signal change of the LEG-PB-NIP (Appendix B, Fig. B-

2f).    

Electrochemical kinetics of the LEG-MIP electrodes. The electrochemical 

kinetic process on the modified electrode plays an important role in understanding 

whether the reaction process at the modified electrode is controlled by adsorption 

and/or diffusion. Cyclic voltammetry (CV) was used to study the effect of scan rate 

on the peak current for both the direct and indirect detection LEG-MIP sensors 

(Appendix B, Fig. B-3). Since the electroactive target (e.g., Trp) can be directly 

oxidized at a given voltage, the LEG-MIP Trp sensor was evaluated in 0.01 M PBS 

containing 50 μM Trp (Appendix B, Fig. B-3a,b). A linear dependence was 

obtained between the anodic peak current and scan rate, indicating that the 

oxidation of Trp on the direct detection MIP sensor is controlled by adsorption 

processes. On the other side, the redox peak of the RAR (e.g., PB) can be directly 

used to study the electrode kinetics in 0.1 M KCl (Appendix B, Fig. B-3c,d). In 

this case, both anodic and cathodic peak currents showed proportional relationships 

to square root of the scan rate, suggesting that electrochemical redox reactions at 
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LEG-PB-MIP Leu sensor were a diffusion-controlled process2. The relation 

between measured peak height current density Jpa (μA mm-2) and scan rate v (mV 

s-1) for direct and indirect detection MIP sensors are as follows:  

LEG-MIP Trp sensors:    

Jpa  = 0.1718 + 0.006v  

LEG-PB MIP Leu sensors:   

Jpa, anodic  = -8.338 + 3.5031√v 	 

Jpa, cathodic  = 5.007 – 3.7458√v 

The above results explain the reasons why the current signal has a linear 

relationship with the concentration of the target in direct detection, while it is log-

linear with the target levels in indirect detection. To minimize the influence of 

oxidation reactions of common sweat interferants, the reduction peak of PB is 

chosen for further analyzing of in direct detection. 

Theoretical and experimental optimization of MIP composition. MIPs can 

either rely on covalent or non-covalent interactions. In the case of a wearable sensor 

which should be capable of regeneration for continuous monitoring, weak 

reversible non-covalent interactions are ideal. There are multiple of monomers 

which are capable of forming non-covalent bonds with amino acids (e.g., Trp and 

Leu), however we narrowed our search to electroactive monomers since sensor 

fabrication with such monomers requires only electropolymerization on the 

working electrode in the presence of the desired template molecules. In addition, 

electroactive monomers efficiently transduce binding events, thus improving 

detectability3. Thus, the formulations such as choices of monomers and 

monomer/template ratios have substantial influence on the sensitivity and the 

selectivity of the MIP sensor.  

Taking the Trp sensor design as an example, we utilized density functional theory 

(DFT) calculations to quantify the binding energy between Trp and six commonly 
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used electroactive monomers: aminophenylboronic acid (APBA), aniline, 

ethylenedioxythiophene (EDOT), phenylene, pyrrole, and thiophene (Appendix B, 

Fig. B-4). The calculations were carried out using the ORCA software4. The 

semiempirical Austin Model 1 (AM1) was used first to achieve a rough estimate of 

geometric optimal configurations. The higher level B3LPY functional with a 6-

31(d,p) basis set was then used to calculate final geometric configurations and 

binding energies. Binding energies were calculated with the typical formula: 

∆E= EMonomer-Template – (ETemplate+EMonomer) 

The DFT simulated bonding energies of the monomer-target complexes were 

demonstrated in Appendix B, Fig. B-4b. To maximize sensitivity of the MIP it is 

common to select the monomer which has the highest binding affinity to Trp. 

Further, it has been previously demonstrated that the co-polymerization of a 

monomer with high affinity and a monomer with low affinity (crosslinker) to the 

template can produce highly selective MIPs by mitigating non-selective binding5. 

APBA exhibits the highest interaction energy with the Trp, indicating that APBA 

is an ideal crosslinker or co-monomer for Trp MIP. The choice of pyrrole (which 

has lowest interaction energy) and APBA as the monomer and crosslinker could 

leads to MIPs with both high selectivity and high regeneration capability.  

Our experimental data demonstrates that the choice of APBA/aniline also leads to 

high sensitivity (reflected by the current peak height of the LEG-MIP sensor in 50 

μM Trp) compared to other individual monomers and other monomer/crosslinker 

combinations (Appendix B, Fig. B-4c). The ratio of template, crosslinker, and 

monomer is another key parameter MIP quality. Based on the experimental data 

illustrated in Appendix B, Fig. B-4d, the ratio of 1:2.5:7.5 

(template/crosslinker/monomer) led to the optimal sensitivity for Trp detection.  

Optimization of the LEG-MIP recognition in vitro. To obtain the optimal sensor 

performance for rapid sample analysis, the influences of sample incubation time 

and volume were evaluated experimentally. As demonstrated in Fig.3-6a,b, the 

current density of the peak height of the LEG-MIP Trp sensors increases rapidly 
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with the increase of incubation time initially, and then gradually stabilizes after 5 

min (with an optimal incubation time of 7 min), indicating the saturated adsorption 

for Trp. Unlike the incubation time, sample volumes (between 0.028–1.1 μL mm-

2) didn’t show substantial influence on the sensor response as illustrated in Fig. 3-

6c,d.  

Characterization of the RARs for indirect MIP detection. The high demand for 

electrochemical stability of wearable sensors in practical applications poses high 

requirements for RARs. Therefore, the performance of four RARs including PB, 

AQCA, MB, and thionine before and after repetitive LSV or DPV scans was 

investigated (Appendix B, Fig. B-5). As summarized in Appendix B, Fig. B-5e, 

PB and AQCA displayed best stability among these four.  

In situ regeneration of the LEG-MIP sensors. Sensor regeneration is the major 

hurdle that limits the applicability of current bioaffinity sensing technologies for 

wearable continuous monitoring. We have investigated the possibility of using 

various controlled voltammetric techniques to realize the repeatable, wash-free, in 

situ regeneration of the LEG-MIP sensors.   

For direct detection of the electroactive targets (e.g., Trp) using LEG-MIP sensors, 

as the molecule is specifically fixed in the receptor site, the molecule can be 

oxidized once a proper redox voltage is applied to the electrode; the oxidation 

product doesn’t have good binding affinity to the MIP receptor site, leading to 

sensor regeneration (Appendix B, Fig. B-6a). After the detection DPV scan, 

applying a fixed redox potential of 0.7 V for 12 s can reset the sensor response to 

the background current with a ~100% recovery ratio (Appendix B, Fig. B-6b). 

Considering that high temporal resolution (regeneration speed) and high accuracy 

(recovery ratio) are both critical for continuous wearable sensing, we evaluated 

various electrochemical voltammetric methods such as DPV, LSV, IT and CV for 

the LEG-MIP sensor regeneration (Appendix B, Fig. B-6c,d):  the results show 

that IT offers the best performance in recovery rate. 
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The regeneration for the LEG-RAR-MIP sensors for detection of general targets, 

particularly non-electroactive targets such as BCAAs, is based on a different 

mechanism. After the extraction of the AA template from the MIP layer, the 

complementary cavity of corresponding AA exists within a polymer backbone or 

scaffold6. The negatively charged target AA will be specifically adsorbed into the 

shape imprinted cavity. A negative electrical signal applied on the working 

electrode will repel the negatively charged AA from the receptor site (Appendix 

B, Fig. B-6e). The LSV curve shows that the sensor can be restored to the same 

level as background signal under an applied negative voltage (-0.2 V) (Appendix 

B, Fig. B-6f).  The regeneration method and the regenerate time was optimized by 

using various electrochemical voltammetric methods such as DPV, LSV, IT and 

CV. The results in Appendix B, Fig. B-6g,h show that IT method under the 

potential of -0.2V for 50 s is optimal for regeneration of the LEG-PB-MIP sensor. 

Evaluation of the batch-to-batch sensor reliability and reproducibility. 

Traditional MIP was synthesized commonly using less controllable thermal or 

optical approaches in a bulk solution, which could have the limitations such as the 

production of irregular particles7–9. In this work, the MIP layer is electrochemically 

deposited on the surface of our mass-producible, highly consistent laser-engraved 

graphene (LEG) electrodes via cyclic voltammetry. The data in Appendix B, 

Fig.B-10a show that the electrochemical behaviors of our LEG electrodes, LEG-

MIP electrodes before template (Trp) extraction, and the LEG-MIP electrodes after 

template (Trp) extraction show very small variation, indicating the high 

reproducibility and reliability of our MIP preparation process. To further verify the 

reliability of the LEG-MIP sensor, 5 different sensor batches (3 sensors per batch) 

were prepared to evaluate the reproducibility in sensitivity and selectivity for both 

electroactive (Trp) and non-electroactive (Leu) targets. As illustrated in Appendix 

B, Fig.B-10b,c the Trp and Leu LEG-MIP sensors from all batches exhibited very 

similar sensitivities with relative standard deviations of 5.16% and 2.14%, 

respectively (n=15) in the presence of the same concentration of target analytes. 

The Trp and Leu sensors obtained from all batches also showed high selectivity for 
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the target over other amino acids with similar structures (as shown in Appendix B, 

Fig.B-10d,e). 

The characterization of the multi-MIP BCAA sensors. To ensure the multi-MIP 

BCAA sensors have same response to Leu, Ile, and Val, 5 mM of each target 

molecule was used to prepare the MIP film. Negative DPV from 0–-0.8 V was 

performed to characterize the LEG-AQCA-multi-MIP BCAA sensor in BCAA 

solutions (1:1:1), and a log-linear relationship between the peak height decrease 

and BCAA with sensitivity of 939.2 nA mm-2 per decade of concentration was 

observed (Appendix B, Fig.B-12a,b). The fabricated indirect LEG-AQCA-multi-

MIP BCAA sensor can be regenerated in situ upon constant potential applied to the 

working electrode in both PBS buffer (Appendix B, Fig.B-12c) and raw sweat 

(Appendix B, Fig.B-12d). 
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C h a p t e r  4  
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electronics for continuous molecular monitoring. Chemical Society Reviews 48, 

1465–1491 (2019) doi: 10.1039/C7CS00730B”, “Min, J.; Tu, J.; Xu, C.; Lukas, H.; 

Shin, S.; Yang, Y.; Solomon, S.; Mukasa, D.; Gao, W. Skin-interfaced wearable 

sweat sensors for precision medicine. Chemical Reviews, Manuscript 

Submitted”,“Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O. S.; Zhu, L.; Wang, M.; Tu, 

J.; Kogan, A.; Zhang, H.; Hsiai, T. K.; Li, Z.; Gao, W. A laser-engraved wearable 

sensor for sensitive detection of uric acid and tyrosine in sweat. Nature 

Biotechnology 38, 217–224 (2020) doi:10.1038/s41587-019-0321-x” and “Wang, 

M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; 

McCune, J. S.; Hsiai, T. K.; Li, Z.; Gao, W. A wearable electrochemical biosensor 

for the monitoring of metabolites and nutrients. Nature Biomedical Engineering 1–

11 (2022) doi: 10.1038/s41551-022-00916-z”. 
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4.1 Introduction 

The fast progress in sweat sensing platforms has expedited research on sweat 

sampling. The continuity and reliability of sweat sensor data are fundamental for 

achieving continuous health monitoring. Effective sweat sampling is the first step 

toward achieving continuous and accurate biomarker analysis. Early sweat 

sampling methods for analyzing biomarkers in sweat were often confounded by 

discrepancies due to skin contamination, sweat evaporation, sweat stimulation 

methods, and sweat rate effects.1–4 Recent development in sweat sampling 

microfluidics offers a great solution to tackle these challenges, but most devices 

were based on PDMS technology requiring cleanroom fabrication, which could be 

costly and time-consuming.5,6 In Chapter 4.2, we will summarize our efforts done 

to achieve scalable fabrication of sweat-sampling microfluidics via laser engraving. 

On the other hand, sweat can be induced in various manners, such as thermal 

stimulation, exercise, natural secretion, and iontophoresis. While past sweat studies 

rely heavily on exercise and thermal stress, large variations in sweat rate could be 

expected and hampered the collection on sedentary individuals.2,3,7,8 Iontophoresis 

was developed to achieve sweat stimulation in sedentary individuals. Iontophoresis 

is a procedure where a small current delivers a cholinergic drug loaded in hydrogel 

into the skin. Two pieces of hydrogels are attached to the skin; the anode hydrogel 

contains a cholinergic agent while the cathode hydrogel contains electrolytes to 

facilitate current flow (Fig. 4-1). As the cholinergic agent stimulates the M3 

muscarinic receptors on sweat glands, a direct sweat response is elicited. Depending 

on nicotinic receptor specificity, the iontophoretic drug may induce peripheral 

sudomotor axon reflex sweating.9 Different cholinergic agonists could be used to 

induce sweating and the sweating response varies in duration and area, determined 

by the receptor activity and susceptibility to acetylcholinesterase (AChE) 

hydrolysis. Although a few recent reports use pilocarpine gel-based iontophoresis 

for sedentary sweat sampling,10–12 this approach suffers from short sweat periods 

and low sensing accuracy due to the mixing of sweat and gel fluid and the lack of 
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dynamic sweat sampling. In the Chapter 4.3, we will elaborate our laser-engraved 

microfluidics for on-demand sweat stimulation and continuous sweat sampling. 

 
Figure 4-1. Scheme of iontophoresis-based sweat induction. AXR: Axon-reflex 

mediated sweating. DIR: direct stimulated sweating.  

4.2 Laser-engraved Microfluidics for Exercise-induced Sweat 

4.2.1 Materials and Methodology 

Materials 

Medical adhesives were purchased from Adhesives Research. Polyimide film 

(75 μm thick) and PET (12 μm and 75 μm thick) were purchased from DuPont and 

McMASTER-CARR, respectively.  

Fabrication and characterization of microfluidic channels 

A double-sided medical adhesive was attached to a substrate in the above-

mentioned laser cutter. One layer of medical adhesive was cut through to make the 

channels and the reservoir, and another layer of medical adhesive was used to 

interface skin with inlets. The cylindrical reservoir has a radius of 2.13 mm, a 

thickness of 140 µm (medical tape) and its volume can thus be calculated as ~2 µl. 

The microfluidic channels have a depth of 140 µm and a width of 175 µm. Between 

two layers lies a thin (12 µm) and transparent PET film. The optimized laser cutter 

parameters were power 1%, speed 1.5%, PPI 1,000 for reservoir outline and 

channels, and power 2%, speed 1%, PPI 1,000 for inlet outlines, all in vector mode. 

The sweat rates were measured via optical image analysis on the basis of the 

photographs of a microfluidic patch taken sequentially on the different body parts 
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of the subjects. The estimated sweat rates were calculated by the sweat volume 

changes divided by the time intervals. For Fig. 4-3f, black dye was dropped in the 

reservoir, and a transparent 75-µm PET film was used instead of the polyimide 

layer to prepare the microfluidics for better visibility. An assembled flow patch was 

attached onto a subject’s arm after an iontophoresis session implemented using a 

Model 3700 Macroduct Sweat Collection System. The flow tests were done with a 

syringe pump (Thermo Fisher Scientific, 78-01001) and set concentrations of UA 

and Tyr in ABS. The DPV data were wirelessly transmitted to a laptop computer 

and automatically converted to concentration via custom-developed software. 

Refreshing time analysis and simulations 

A ballpark estimate of the concentration refreshing time Tc can be obtained by 

considering the mass balance of a standard well-mixed model: dC/dt+(C-

Ci)Q/Vr=0, where Ci and Q denote, respectively, the new solute concentration and 

total flow rate into the reservoir, and Vr represents the reservoir volume. This simple 

ordinary differential equation can be solved analytically to obtain the solute 

concentration in the reservoir as a function of time t: C(t)=Ci-(Ci-C0)e-Qt/Vr, where 

C0 is the initial concentration in the reservoir. Hence, the refreshing time taken for 

the reservoir to reach a concentration of kCi can be readily calculated as 

Tc=
Vr
Q

ln 1-C0/Ci
1-k

. For an experimentally measured sweat rate of Q = 1.5 µL min-1 and 

concentration change from C0 = 20 µM to Ci = 80 µM, we estimate that the designed 

reservoir volume Vr = 2 mm3 leads to a refreshing time Tc ≈ 2.7 minutes to reach k = 

90% of the new concentration. This simple analysis provides an order of magnitude 

estimate of the required refreshing time by assuming perfect mixing. To obtain more 

realistic estimates, a three-dimensional model was created with the same geometry 

of the device. The mass transport process was simulated using a finite-element 

software COMSOL Multiphysics by numerically solving the Stokes equation for an 

incompressible flow 

∇p = μ∇2v,∇· v = 0, 
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coupled with the convection-diffusion equation 

∂C
∂t

+ v·∇C=D∇2C. 

Here p and v denote, respectively, pressure and flow velocity, whereas µ and D 

denote, respectively, solvent viscosity and solute diffusivity. The Stokes equation is 

applicable here because the Reynolds number is on the order of 10-2 for this 

microfluidic device. The solute concentration in the chamber is tracked by computing 

the average concentration over the bottom surface of the chamber. A flow rate of 0.15 

µL min-1 is prescribed at each inlet, with the no-slip boundary condition on all 

channel walls.  

The simulated refreshing time as a function of the number of inlets is displayed in 

Fig. 3c. The refreshing time decreases as the number of inlets increases; for ten inlets 

with a total inlet flow rate of 1.5 µl min−1, the simulated 90% refreshing time is 

~2.5 min, slightly less than the ballpark estimate on the basis of perfect mixing 

(~2.7 min). In Fig. 4-3d, the time evolution of the average concentration under 

different total inlet flow rates is displayed. In Fig. 3c, the concentration distribution 

over the bottom surface of the chamber is displayed at different time instances. 

Similarly, numerical simulation was performed on the basis of the actual design of 

the microfluidic module used in this work (Appendix C, Fig. C-3). 

4.2.2 Results and Discussion 

The microfluidic module consists of multiple layers engraved by the laser cutter: 

microfluidic channels patterned on a double-sided medical adhesive and inlet-

engraved polyethylene terephthalate (PET) and medical adhesive layers (Fig. 4-2 and 

Appendix C, Fig. C-1,2).  
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Figure 4-2. Schematics and photo of the microfluidic sweat sensing patch. a, The 

sensor with entirely laser-engraved components: the microfluidic module and the 

LEG-based chemical and physical sensors. b, Layers of the sensor, from the bottom 

layer in contact with epidermis to the top layer. c, Multiple functions of the 

microfluidic sensor: ultrasensitive sweat UA and Tyr detection, sweat rate 

estimation, temperature sensing and vital-sign (for example, heart rate and 

respiration rate) monitoring. d, Photographic image of a flexible microfluidic patch. 

Design and performance characterization of the laser-engraved microfluidics 

Laser engraving enables rapid bulk manufacturing of microfluidic devices. The 

microfluidic module is fabricated in vector mode to fully cut through double-sided 

adhesives (Fig. 4-3a,b). The use of microfluidics enhanced the sweat sampling 

process and achieved higher temporal resolution for wearable sensing by constantly 

supplying newly secreted sweat to the sensor. In response to inflow of solutions at 

a new solute concentration, the time taken for the solute concentration in the 

reservoir to adjust to the new concentration (referred to as the refreshing time 

hereafter) is a key performance indicator of the microfluidic module. We used 

numerical simulations to determine the effects of the inlet number and flow rates 

on the refreshing time (Fig. 4-3c,d). For the case of ten inlets, with an 

experimentally measured sweat rate (1.5 µl min−1) as the inlet flow rate, the 
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refreshing time taken to reach 90% of the new solute concentration was around 

2.5 min, for a change of solute concentration from 20 µM to 80 µM (Fig. 4-3e).  

 

Figure 4-3. Design and characterization of the laser-engraved microfluidics. a, 

Schematic of vector-mode laser cutting for microfluidic fabrication. b, 

Photographic image of the microfluidic channels. Scale bar, 1 cm. c, Numerical 

simulation of the refreshing time required for the average concentration to reach 

70%, 80% and 90% of the new solute concentration (that is, from 20 µM UA to 

80 µM UA). Flow rate for each inlet, 0.15 µl min−1. d, Simulations of the time 

evolution of the average concentration at different total inlet flow rates. e, 

Simulations of the distributions of solute concentration over the bottom surface of 

the reservoir at different time instances (inlet flow rate, 1.5 µl min−1). f, 

Photographic images of the microfluidic sweat sampling during an iontophoresis-
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induced sweat secretion process. Scale bar, 5 mm. g, Setup of the flow test to 

wirelessly monitor the analyte levels. A syringe pump is used to inject analyte 

solutions through an inlet. h, Successive DPV scans of 15 cycles in 80 µM UA and 

200 µM Tyr with a fixed flow rate of 1 µl min−1. The experiment was repeated three 

times independently with similar results. i, Dynamic and wireless UA sensing 

before and after switching the input UA and Tyr concentration from 20 and 50 µM, 

to 80 and 200 µM, respectively. 

During the on-body trials, the microfluidic patch effectively sampled sweat with high 

temporal resolution (Fig. 4-3f and Appendix C, Fig. C-3). Moreover, it monitored 

sweat rate or sweat loss on different body parts through optical image analysis13 (Fig. 

4-4).  

 

Figure 4-4. Inferred sweat rates from different locations of eight healthy 

subjects obtained via optical image analysis. Sub., subject.  

Wireless and continuous sensing capabilities of the microfluidic-based sensor are 

performed via continuous analyte solution injection at physiological sweat rates (Fig. 

4-3g-i).  
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Figure 4-5. Characterization of the dynamics of the continuous microfluidic 

sensing. a, Stable peak amplitudes of twelve successive DPV scans in a solution 

containing 80 µM UA and 200 µM Tyr with a fixed flow rate of 1 µL min-1. b, 

Dynamic DPV response of the microfluidic sensing when the inflow solution was 

switched from 20 µM UA and 50 µM Tyr to 80 µM UA and 200 µM Tyr with a fixed 

flow rate of 1 µL min-1. A DPV scan was performed every minute (with a scan step 

of 8 mV and a scan cycle of 45 seconds).  

The sensor patch reliably and continuously measured the UA and Tyr levels (±0.49% 

and ±1.07%, respectively) through successive DPV scans over a 15-cycle period 

(Fig. 4-3h and Fig. 4-5a). When the input solution was switched from 20 to 80 µM 

for UA and from 50 to 200 µM for Tyr, the patch took less than 3 min to reach a new 

stable reading with a hysteresis of ~1 min (Fig. 4-3i and Fig. 4-5b), indicating the 

high temporal resolution of the microfluidic sensing system. As illustrated in Fig. 4-

6, with a 45-s scan cycle every 2.5 min, the microfluidic system showed very stable 

readings for UA and Tyr sensing during five successive scans (±1.25% and ±3.24 %, 

respectively) even when the flow rate was as small as 0.25 µl min−1, indicating that 

the molecular depletion in the confined reservoir during DPV scans will not affect 

the sensing accuracy. 
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Figure 4-6. Characterization of continuous microfluidic sensing performance 

under different flow rates. a, The DPV plots of an LEG-CS for UA and Tyr sensing 

at different flow rates (from 0.25 to 1.5 µL min-1). b, The peak amplitudes of UA and 

Tyr in 5 successive DPV scans (2.5 minutes per scan with a 45-s scan cycle length) 

with different flow rates (from 0.25 to 1.5 µL min-1). Conditions, 80 µM UA and 200 

µM Tyr.  

4.2.3 Conclusion 

The laser-engraved microfluidics presented above enables efficient microfluidic 

sweat sampling with fast filling and refreshing time for accurate continuous sensing 

of the target metabolites (Tyr and UA) in situ. Moreover, the laser-engraving 

manufacture technique endowed a great potential for mass production of such sweat 

microfluidics and the eventual realization of microfluidic sweat sensing. 

4.3 Laser-engraved Microfluidics for Iontophoresis-induced Sweat 

4.3.1 Materials and Methodology 

Materials  

Medical adhesives were purchased from 3 M and Adhesives Research. PI films 

(75 μm thick) were purchased from DuPont. PET films (12 μm thick) were 

purchased from McMaster-Carr. 
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Fabrication and characterization of microfluidic channels 

The microfluidic module was fabricated using a 50 W CO2 laser cutter (Universal 

Laser System) (Appendix C, Fig.C-4). Briefly, layers of double-sided and single-

sided medical adhesives (3M) were patterned with channels, inlets, the 

iontophoresis gel outlines and reservoirs. For all microfluidic layers, the 

iontophoresis gel outlines were patterned to enable the current flow from the top PI 

electrode layer. The bottom layer, which is the double-sided adhesive layer in 

contact with the skin (accumulation layer), was patterned with a sweat 

accumulation well (3M 468MP, laser parameters: power 60%, speed 90%, PPI 

1,000). The second layer (the inlet layer), in contact with the accumulation layer, 

was patterned with the multiple inlets (12-μm-thick PET, laser parameters: power 

20%, speed 100%, PPI 1,000). The third layer (channel layer), in contact with the 

inlets layer, was patterned with microfluidic channels (Adhesives Research 93049, 

laser parameters: power 45%, speed 100%, PPI 1,000). The fourth layer (reservoir 

layer), sandwiched between the channel layer and the electrode PI layer, was 

patterned with the reservoir and the outlet (3M 468MP, laser parameters: power 

60%, speed 90%, PPI 1,000). The reservoir is an ellipse with a 5.442 mm major 

axis and a 4.253 mm minor axis to fully enclose the active sensing area. The 

thickness of the channel layer is ~0.1 mm (Adhesives Research 93049), and the 

thickness of the reservoir layer is 0.13 mm (3M 468MP). The reservoir area is 

18.17 mm2, and thus the reservoir volume can be calculated as the area multiplied 

by the thickness of the reservoir layer (0.13 mm), which totals 2.36 µl. 

Fabrication of agonist agent hydrogels 

Hydrogels containing muscarinic agent carbachol was prepared as follows. Briefly, 

for anode gel, agarose (3% w/w) was added into de-ionized water and then heated 

to 250 °C under constant stirring. After the mixture was fully boiled and became 

homogeneous without agarose grains, the mixture was cooled down to 165 °C and 

1% carbachol was added to the above mixture. Subsequently, the cooled mixture 

was slowly poured into pre-made cylindrical moulds or into assembled microfluidic 
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patch and solidified for 10 min at 4 °C. The cathode gel was prepared similarly 

except that NaCl (1% w/w) was used instead of carbachol 

Refreshing time analysis and simulations 

The refreshing time analyses were performed using numerical simulations 

(COMSOL). Three-dimensional models of different microfluidic designs with 

same dimensions of the actual device were created in Rhinoceros and imported into 

COMSOL Multiphysics. The mass transport process was simulated by numerically 

solving the Stokes equation for an incompressible flow coupled with convection–

diffusion equation. 

∇p=µ∇2v  
∂C
∂t =D∇2C-v∙∇C 

 

 p: pressure  

 v: flow velocity 

µ: solvent viscosity (water viscosity)  

D: solute diffusivity (Tryptophan diffusivity)14  

The Stokes equation is applicable as the Reynolds number is on the order of 10−2 in 

this device. For all simulation results (graphical and quantitative data), a total flow 

rate of  0.15 µl min−1 is prescribed with the non-slip boundary condition on all 

channel walls, with the initial Trp concentration C0 as 20 µM and supplied new Trp 

concentration Cn as 80 µM.   

4.3.2 Results and Discussion 

The flexible and disposable sweat induction and sampling patch consists of two 

carbachol-loaded iontophoresis module and a multi-inlet microfluidic module 

(Fig.4-7 and Appendix C, Fig.C-4). 
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Figure 4-7. Schematic and optical photo of the microfluidic sweat induction 

and sampling patch. a,b, Schematic (a) and layer assembly (b) of the microfluidic 

‘NutriTrek’ patch for sweat induction, sampling and biosensing. T, temperature. c, 

Images of a flexible sensor patch  

Wearable system design for autonomous sweat induction, sampling, analysis and 

calibration 

To enable on-body continuous metabolic and nutritional monitoring, the flexible 

sensor patch was designed to comprise an iontophoresis module for localized on-

demand sweat induction, a multi-inlet microfluidic module for efficient sweat 

sampling, a multiplex LEG–MIP sweat nutrient sensor array for continuous AA 

analysis, and LEG-based temperature and electrolyte sensors for real-time AA 

sensor calibration (Fig. 4-8a).  
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Figure 4-8. Wearable system design for autonomous sweat induction, sampling, 

analysis and calibration. a, Illustration of a multi-functional wearable sensor 

patch. ISE, ion-selective electrode. b, Schematic of localized sweat sampling based 

on iontophoretic sweat extraction with muscarinic agents: pilocarpine and 

carbachol. c,d, Localized sweat rates measured from the stimulated (c) and 

surrounding (d) skin areas after a 5-min iontophoresis with pilocarpine and 

carbachol. Solid and dashed curves represent quadratic-fit trendlines. S, subject. e, 

Numerically simulated Trp concentration ([Trp]) distributions in the microfluidic 

reservoir at 120 s after the inlet fluid changed from 20 to 80 µM Trp (flow rate 

1.5 µl min−1) (with varied designs in inlet number, angle span, and inlet and outlet 

orientation). f, On-body evaluation of the optimized flexible microfluidic patch for 

efficient carbachol-based iontophoretic sweat induction and surrounding sampling 

at rest. Timestamps represent the period (min) after a 5-min iontophoresis session. 

Black dye was used in the reservoir to facilitate the direct visualization of sweat 

flow in the microfluidics. Scale bar, 3 mm. 

To make this wearable technology broadly applicable, particularly for sedentary 

individuals, we utilize here a custom-designed iontophoresis module consisting of 

the LEG anode and cathode coupled with hydrogels containing muscarinic agent for 
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sustainable sweat extraction. There are various muscarinic agent that could be used, 

but a careful selection was performed to enable a prolonged sweating session. 

Acetylcholine and methacholine are hydrolyzed by AChE and thus have a shorter 

sweating duration. On the other hand, the nicotinic activity of the cholinergic agents 

affects the indirect axon-reflex sweating and thus the area of the sweat response. For 

example, the β-methyl group of bethanechol limited the nicotinic activity and thus 

the sweating response is highly localized and mostly direct sweating underneath the 

placement of the iontophoresis gel. Detailed studies and summaries of the receptor 

activities and sweating response can be found in previous literature.15–18 Carbachol 

was selected from various muscarinic agents as it allows the most efficient, 

repeatable and long-lasting sweat secretion from the surrounding sweat gland owing 

to its additional nicotinic effects19 (Fig. 4-8b-d, Fig. 4-9, Appendix C, Note C-1).  

 

Figure 4-9. Investigation of the localized and surrounding sweat stimulation 

with muscarinic agents: carbachol and pilocarpine. a, Localized sweat 

stimulation with the muscarinic agent loaded hydrogels followed by periodic sweat 

collection from the exact stimulated skin area after hydrogel removal. The obtained 

sweat rate data over time was shown in Fig. 4-8c. b, Localized sweat stimulation 

with the muscarinic agent loaded hydrogels followed by periodic sweat collection 

Supplementary Fig. 28 Schematic and optical photos of the on body evaluation of the iontophoresis-microfludics-based flexible patch for sweat 
induction and sampling.  At T= xx min after iontophoresis, the sweat entered the microfluidic reservoir and pushed the dye inside reservoir to the 
outlet. 
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from the surrounding skin area with the exact stimulated skin area blocked by 

medical tape. The obtained sweat rate data over time was shown in Fig. 4-8d. 

In contrast, the classic sweat-inducing agent—pilocarpine—used by the standard 

sweat test and previously reported wearable systems10–12 offers only a short period of 

sweat and very limited sweat rate from the neighboring sweat glands (Fig. 4-8b-d). 

Furthermore, sampling the mixture of the leaked sweat underneath the pilocarpine 

gel and the gel fluid could result in substantial wearable sensor errors and fail to 

provide real-time information owing to the absence of efficient sweat refreshing. A 

very small current (50–100 µA) is used for our iontophoresis module, compared with 

commonly used 1–1.5 mA10–12, greatly reducing the risk of skin irritation. To 

maximize the efficiency of low-volume sweat sampling and improve the temporal 

resolution of wearable sensing, a compact and flexible microfluidic module was 

carefully designed to isolate sweat sampling areas from iontophoresis gels. 

Numerical simulations were performed to optimize the geometric design of the 

microfluidic module, including inlet number, angle span, orientation and flow 

direction with respect to the reservoir geometry (Fig. 4-8e).  

For all simulation runs (graphical and quantitative data), a total flow rate of 

0.15 µl min−1 is prescribed with the non-slip boundary condition on all channel walls, 

with the initial Trp concentration C0 as 20 µM and supplied new Trp concentration 

Cn as 80 µM.  The concentration distribution over the bottom surface of the chamber 

is displayed at different time instances in Figs.4-10, 4-11; and the time for the 

average volume concentration to reach 90% Cn and 95% Cn is displayed in Table 4-

1.  
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Figure 4-10. Effects of inlet numbers and inlet span of the microfluidics on 

target refreshing. The figure illustrates numerical simulation results of Trp level 

distributions at 120 s after switching the input from 20 to 80 µM Trp (flow rate, 1.5 

µL min−1) (with varied designs in inlet number and angle span). As shown in above, 

fewer inlets can lead to a uniform concentration near the inlet area, but a larger 

dispersion in the bottom edge area where sensors are located. The smaller angle span 

could also lead to dispersion in the area opposite to inlets; an angle span too large 

could yield a dispersion in the middle of the reservoir. Balancing the inlet number 

and ranges, the optimized condition is 7 inlets in 180° span. 
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Supplementary Fig. 29 Optimization of inlet numbers and inlet span. As shown in above, fewer inlets can lead to a uniform concentration near the 
inlet area, but a larger dispersion in the bottom edge area where sensors are located. The smaller angle span could also lead to dispersion in the area 
opposite to inlets; an angle span too large could yield a dispersion in the middle of the reservoir. Balancing the inlet number and ranges, the optimized 
condition is 7 inlets in 180° span. 
Conditions: total inlet flow rate 1.5µL/min. Diffusion coefficients… diffusivity xxxxx 20 to 80 µm Trp.
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Figure 4-11. Effects of inlet-outlet orientations of the microfluidics on target 

refreshing. The figure illustrates numerical simulation results of Trp level 

distributions at 120 s after switching the input from 20 to 80 µM Trp (flow rate, 1.5 

µL min−1) (with varied designs in inlet-outlet orientation). When the inlets-outlet 

orientation is along the longer axis of the reservoir, much more time is needed to 

update the volume concentration. When the inlets are aligned to center of the 

reservoir (radial) or perpendicular to the edge of the reservoir, more time is needed 

to update the volume concentration compared to the optimized condition, where 

inlets are aligned towards the outlet.  
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Supplementary Fig. 30 Effects of inlet-outlet orientation on liquid refreshing. When the inlets-outlet orientation is along the longer axis of the 
reservoir, much more time is needed to update the volume concentration. When the inlets are aligned to center of the reservoir (radial) or 
perpendicular to the edge of the reservoir, more time is needed to update the volume concentration compared to the optimized condition, where 
inlets are aligned towards the outlet.
Conditions: total inlet flow rate 1.5µL/min. Diffusion coefficients… diffusivity xxxxx, 20 to 80 µm Trp.

7 inlet align to center



 

 

108 
Table 4-1. Numerically simulated time for average volumetric concentration to 

reach 90% and 95% of the newly supplied concentration. The conformation with 

7 inlet, 180° span and aligned to outlet yields the smallest time for the average 

volumetric concentration to reach close to the newly updated concentration supplied 

at inlets (fastest refreshing time). 

 

We call this time to reach new concentration as refreshing time, and it is especially 

important as it captures how long it takes the sensor to detect an updated 

concentration in the reservoir. Specifically, increased number of inlets and a smaller 

angular span of the inlets improves the rate of refreshing, as shown in Fig. 4-10 and 

Table 4-1. Therefore, we chose the 7-inlet with 120 angular span conformation. 

Based on this conformation, we further tuned the orientation of inlets and 

investigated if the inlet flow direction affects the refreshing time. As shown in Fig. 

4-11 and Table 4-1, the flow along the shorter axis of the reservoir with inlets aligned 

to the reservoir exit yields the shortest refreshing time. With numerical simulations 

of our optimized geometry design, as illustrated in Fig. 4-10, the time to reach 90% 

of the Cn is around 2 min (Trp, C0 initially at 20 µM and Cn at 80 µM, sweat rate of 

1.5 µL min−1).   

With the optimized design for sweat induction and sampling, sweat can be 

conveniently induced locally and readily sampled with the multi-inlet microfluidics 

Comparison with different microfluidic designs (flow rate: 1.5 μL min-1; [Trp]: 20-80 μM )

Time to reach
90% update (s)

Flow direction 
(along long/short axis)OrientationSpanInlet #

Time to reach
95% update (s)

N/A

180

180

180

120

270

180

180

180

1

3

5

7

7

7

7

7

7

N/A

Radial

Radial

Radial

Radial

Radial

Radial

Perpendicular to tangent

Aligned to outlet

133

127.2

98

95

93.7

127.6

103.8

95.6

91

Short

Short

Short

Short

Short

Short

Long

Short

Short

182

185

118

108.6

111

155

123

109.7

104.7

Table  S3. Time for average volumetric concentration to reach 90% and 95% of the newly supplied concentration.  Consistent to the observation in 
Fig S23-24, the conformation with 7 inlet, 180° span and aligned to outlet yields the smallest time for the average volumetric concentration to reach 
close to the newly updated concentration supplied at inlets (fastest refreshing time).
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over a prolonged period (Fig. 4-8c,f and Appendix C, Fig. C-5). The simulation 

result on the refreshing time was also validated with an experimental flow test shown 

in Fig. 4-12. As demonstrated in Fig. 4-13, with a 30-s DPV scan cycle every 2.5 

minutes, the LEG sensor displayed very stable reading for Trp sensing during 3 

successive scans at a low flow rate of 0.15 μL min-1, indicating that the refreshment 

in the confined reservoir under slow sweat rates will not affect the wearable sensing 

accuracy. Therefore, at the physiological sweat rates ranging from 0.15 µl min−1 to 

3 µl min−1, our wearable sensor patch could provide reliable and accurate analysis of 

the dynamic changes of the AA levels. 

 

Figure 4-12. Characterization of the dynamics of the continuous microfluidic 

sensing. a,b, DPV voltammograms (a) and corresponding peak height current 

densities (b) of an LEG Trp sensor during a flow test with the input Trp level 

increased from 20 to 80 µM. A fixed flow rate of 1.5 μL min-1 was used and DPV 

scans were performed every minute. 

2 4 6 8 100
0.1

0.5

0.9

1.3

ΔJ
 (μ

A 
m

m
-2

)

Time (min)
0.4 0.5 0.6 0.7 0.8 0.9

0.3

0.7

1.1

1.5

C
ur

re
nt

 d
en

si
ty

 (μ
A 

m
m

-2
)

Potential (V)

Fig  S 32 

Different electrodes 

a b
20 μM Trp 80 μM Trp

1.5 μL min-1

3 min

8 min

1.5 μL min-1



 

 

110 

 
Figure 4-13. Characterization of continuous microfluidic sensing performance 

under different flow rates. a, The DPV voltammograms of an LEG Trp sensor at 

different flow rates (from 0.15 to 3 μL min-1). b, The peak height current densities of 

the Trp sensor in 3 successive DPV scans under each flow rate. c,d, DPV 

voltammograms of an LEG Trp sensor in three repetitive scans at a flow rate of 0.2 

μL min-1 (c) and 0.5 μL min-1 (d), respectively. Conditions, one scan every 2.5 min 

in 40 μM Trp. 

4.3.3 Conclusion 

As the majority of wearable biosensors rely on vigorous exercise to access sweat 

and are not suitable for daily continuous use, our mass-producible sweat induction 

and sampling microfluidics offer a great alternative for efficient on-demand sweat 

sensing in sedentary individuals. With optimized multi-inlet microfluidic 

sudomotor axon reflex sweat sampling, we envision that this wearable technology 

could play a crucial role in the realization of noninvasive in situ sweat monitoring 

for personalized medicine. 
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Figure C-1. Fabrication process of the microfluidic patch 

 

 
Figure C-2. Microscopic images showing the resolution of the laser engraving. a– 

d, a graphene microelectrode fabricated by the raster mode (a), a graphene micropattern 

fabricated 

by vector mode (b), and a microfluidic channel fabricated by vector mode under top view (c) 

and 

cross-sectional view (d). Scale bars, 100 μm 
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Figure C-3. The numerical simulation showing the fluidic dynamics in the 

reservoir of the lab-on-skin sensor patch. The dimension used here are based on 

actual sensor design used in this work. Scale bar, 5 mm. 

 

 

Figure C-4. Fabrication process of the multifunctional flexible wearable sensor 
patch. 
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Figure C-5. On-body evaluation of the microfluidic flexible sensor patches for 

carbagel-based iontophoretic sweat stimulation and sampling at rest. 

Timestamps represent the period (min) after a 5-min iontophoresis session. Black dye 

was used in the reservoir to facilitate the direct visualization of sweat flow in the 

microfluidics. Scale bars, 3 mm 

 
 

Note C-1. Iontophoresis-based localized sweat stimulation 

Iontophoresis is a common procedure that enables on-demand sweat induction by 

transdermal delivery of a muscarinic agonist that stimulates sweat gland to produce 

sweat. Despite its widespread use in cystic fibrosis diagnosis, the choice of agonists 

is still mostly limited to pilocarpine and acetylcholine, which only affect the sweat 

glands where the agonist is delivered. Here we use carbachol, a muscarinic agonist 

that has nicotinic effects, which enable the sudomotor axon reflex sweating (SAR) 

and sweat glands neighboring the dosed area also produce sweat for sampling (Fig. 

4-8b).1 Carbachol is a cholinomimetic ester more resistant to acetylcholinesterase 

hydrolysis than acetylcholine and enables a prolonged sweat production time. Using 

a commercial iontophoresis device, we compared the sweat rate stimulated by 

commercial pilogels loaded with pilocarpine and custom made carbagels (Fig. 4-9), 

Supplementary Fig. 31 Carbachol iontophoresis.
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both with the same geometry and the same dosing area (a circle with a 27 mm 

diameter). Using the same commercial sweat collectors and the same sampling area 

(a concentric circle with a 28.4 mm diameter), the total sweat rates (of the dosed area 

and the surrounding area) of three subjects induced by carbagels is much higher and 

lasts longer than those induced by commercial pilogels (Fig. 4-8c). Moreover, with 

the same dosing area (a 11 mm diameter circle) blocked (by a 13 mm diameter 

adhesive disk) and the same commercial sweat collector (a concentric circle with a 

28.4 mm diameter), the carbagels elicited significant SAR sweat rates in 3 subjects 

compared to none by pilogels (Fig. 4-8d). To avoid the potential contamination from 

gel, we harvest only the SAR sweat and the high sweat rate obtained is sufficient for 

continuous chemical sensing (Appendix C, Fig. C-5). 
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C h a p t e r  5  

INTEGRATED MICROFLUIDIC SWEAT SENSOR FOR METABOLIC 
MONITORING  

Materials from this chapter appears in “Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O. 

S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; Hsiai, T. K.; Li, Z.; Gao, W. A 

laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in 
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5.1  Introduction 

Wearable devices1,2, such as wearable sweat sensors3–5, have the potential to capture 

changes in health rapidly, continuously, and non-invasively. In order to be suitable 

for wearable use, system-level integration is necessary for the development of 

wearable sweat sensors. In Chapter 5.2, our efforts on system integration 

evaluations are presented. 

Sweat contains rich molecular information for probing personal health condition.6 

For example, chloride concentration in sweat is the gold standard to diagnose cystic 

fibrosis7, and glucose concentration in sweat is being intensively explored for 

diabetes management. 5,7,8 In Chapter 5.3, our integrated microfluidic sweat sensing 

device is detailed for in situ monitoring towards metabolic health monitoring, with 

a focus on gout and metabolic syndrome management. 

5.2 Wearable System Development and Validation 

5.2.1 Wearable System Integration 

The flexible and disposable sensor patch consists of carbachol-loaded iontophoresis 

electrodes, a multi-inlet microfluidic module, a multiplexed MIP nutrient sensor 

array, a temperature sensor, and an electrolyte sensor (Fig. 5-1). The sensor patch 

can be easily attached to skin with conformal contact and interfaces with a 

miniaturized electronic module in the form of a FPCB for on-demand iontophoresis 

control, in situ signal processing and wireless communication with the user interfaces 

through Bluetooth (Fig. 5-1g and Appendix D, Fig. D-1,D-2).  
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Figure 5-1. Schematics and images of the biomimetic wearable biosensor 

‘NutriTrek’. a, Circulating nutrients such as amino acids are associated with various 

physiological and metabolic conditions. b, Schematic of the wearable ‘NutriTrek’ 

that enables metabolic monitoring through a synergistic fusion of laser-engraved 

graphene, redox-active nanoreporters, and biomimetic ‘artificial antibodies’. c,d, 

Schematic (c) and layer assembly (d) of the microfluidic ‘NutriTrek’ patch for sweat 

induction, sampling, and biosensing. T, temperature; PI, polyimide. e,f, Images of a 
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flexible sensor patch (e) and a skin-interfaced wearable system (f). Scale bars, 5 mm 

(e) and 2 cm (f). g, Block diagram of electronic system of ‘NutriTrek’. The modules 

outlined in red dashes are included in the smartwatch version. ADC, analog-to-digital 

converter; DAC, digital-to-analog converter; CPU, central processing unit; GPIO, 

general-purpose input/output; POT, potentiometry; In-Amp, instrumentation 

amplifier; MCU, microcontroller; SPI, serial peripheral interface; TIA, 

transimpedance amplifier; UART, universal asynchronous receiver-transmitter. h, 

Custom mobile application for real-time metabolic and nutritional tracking. i, 

‘NutriTrek’ smartwatch with a disposable sensor patch and an electrophoretic 

display. Scale bars, 1 cm (top) and 5 cm (bottom). 

The block diagram of the electronic system (Fig. 5-1g and Appendix D, Fig. D-2) 

represents both the wearable electronic patch and the smart watch that can (i) induce 

sweat via iontophoresis and (ii) monitor sweat via electrochemical methods. The 

sweat induction and the sweat sensing procedures are initiated and controlled by the 

microcontroller when it receives a user command from the Bluetooth module. For 

sweat induction, programmable iontophoretic current is generated by a voltage 

controlled current source. For the optimized design, a 100-µA current (~2.6 µA mm-

2) was applied for on-body iontophoresis sweat induction using the flexible 

microfluidic patch, with current output check and protection circuit (Appendix D, 

Note D-1).  For sweat sensing, the voltammetry involves controlled voltage 

potentials between the electrodes. A series voltage reference and a digital to analog 

converter (DAC) is used to generate a dynamic potential bias across the reference 

and working electrodes. A bipotentiostat circuit is constructed by a control amplifier 

and two transimpedance amplifiers. An instrumentation amplifier is used for 

potentiometric measurements and a voltage divider is used for the resistive 

temperature sensor. All analog voltage signals are acquired by the microcontroller’s 

built-in analog-to-digital converter (ADC) channels, processed, then transmitted over 

Bluetooth to a user device. A custom mobile app ‘NutriTrek’ was developed to 

process, display, and store the dynamic metabolic information monitored by the 
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wearable sensors (Fig. 5-1h). The wearable system was also integrated into a 

smartwatch with an electronic paper display (Fig. 5-1i).  

While on-board signal conditioning, processing and wireless transmission provides 

feasible scheme for wearable sensing, in situ sweat analysis poses more factors to 

consider to achieve accurate sensing outcome due to complex and interpersonally 

varied sweat composition and demands technological innovations for accurate on-

body sensing, unlike classic bioaffinity sensors which operate in optimal buffers. For 

example, for direct LEG-MIP Trp sensing, a DPV scan in sweat even before 

target/MIP recognition could lead to an oxidation peak as a small amount of 

electroactive molecules (e.g., Trp and Tyr) can be oxidized on the surface of MIP 

layer; after recognition and binding of Trp into the MIP cavities, a substantially 

higher current peak height can be obtained; measuring difference of the two peak 

heights allows more accurate bound Trp measurement directly in sweat with high 

selectivity (Fig. 5-2a-c).  

 

Figure 5-2. The two-scan sensor calibration strategy enabling selective Trp 

sensing in situ in the presence of Tyr. a, scheme of the two-scan strategy. b, peak 

height currents directly from the DPV scan before and after recognition incubation 

time. c, peak height difference caused by target recognition gives consistent sensing 

outcome in the presence of different Tyr levels. ∆I, peak height current; ∆I’, peak 

height difference caused by target recognition. 

Moreover, the sensing outcome is influenced by temperature and ionic strength (Fig. 

5-3), so real-time readings from an LEG-based strain-resistive temperature sensor 

and an ion-selective Na+ sensor can be used to calibrate the LEG-MIP reading(Fig. 
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5-4). Considering that sweat rate during exercise was reported to have influence on 

certain biomarker levels; we could use sweat Na+ level (which showed a linear 

correlation with sweat rate) to further calibrate the nutrient levels for personalized 

analysis. This unique transduction strategy involving both the two-step DPV scans 

and the temperature/electrolyte calibrations allows us to obtain accurate reading 

continuously in sweat during on-body use (Fig. 5-5). 

  

Figure 5-3. The performance of the LEG-MIP sensor under varied temperature 

and electrolyte levels. a, Color map showing the dependence of the LEG-MIP Trp 

sensor response on Trp and Na+ concentrations. b, Open circuit potential responses 

of an LEG-based Na+ sensor in the presence of varied Na+ concentrations. Inset, 

calibration plot of an LEG-based Na+ sensor. c, Color map showing the dependence 

of the LEG-MIP Trp sensor response on Trp and temperature. d, Calibration plot of 

an LEG-based temperature sensor in the physiological temperature range. Solid 

calibration lines in b,d represent linear fit trendlines. 

Supplementary Fig. 26  LEG-MIP sensor calibration against temperature and electrolyte  levels. a, Color map showing the dependence of the LEG-
MIP Trp sensor response on Trp and Na+ concentrations. b, The open circuit potential responses of a LEG-based Na+ sensor in the presence of varied 
Na+ concentrations. Inset, calibration plot of the LEG-based Na+ sensor. c, Color map showing the dependence of the LEG-MIP Trp sensor response 
on Trp and temperature. d, Dynamic response of an LEG-based temperature sensor in the physiological temperature range. Inset, calibration plot of 
the LEG-based temperature sensor.
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Figure 5-4. Mutiplexed sensing for calibrating MIP sensing outcome. a, 

Illustration of a multifunctional wearable sensor patch. b, Electrolyte calibration of 

the AA sensor reading. 
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Figure 5-5. In situ calibration strategies of the wearable LEG-MIP sensors 

involving a two-step DPV-scan calibration and real-time 

temperature/electrolyte calibrations. (A and B) In situ calibration strategies of the 

MIP-LEG sensor with direct detection mechanism (a) and the MIP-RAR (AQCA 

used here for wearable sensing)-LEG sensor with indirect detection mechanism (b) 

to obtain accurate reading continuously during on-body use.  
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5.2.2 System Evaluation in Human Subjects 

Evaluation of the wearable system was conducted first via sensing of sweat Trp and 

Tyr in human subjects during a constant-load cycling exercise trial (Fig. 5-6a–d and 

Appendix D, Fig. D-3). The DPV data from the sensors were wirelessly transmitted 

along with temperature and Na+ sensor readings to the mobile app that automatically 

extracted the oxidation peaks using a custom developed iterative baseline correction 

algorithm (Fig. 5-6e and Appendix D, Fig. D-4) and performed calibration for the 

accurate quantification of sweat Tyr and Trp.  

 
Figure 5-6. Wearable system evaluation across activities toward prolonged 

physiological and nutritional monitoring. a–d, Continuous on-body Trp and Tyr 

analysis using a wearable sensor array with real-time sensor calibrations during 

cycling exercise. e, Custom voltammogram analysis with an automatic peak 

extraction strategy based on a polynomial fitting and cut-off procedure. f–j, Dynamic 

sweat Trp and BCAA analysis during physical exercise toward central fatigue 

monitoring. k–o, Dynamic analysis of sweat AA levels with and without Trp and Tyr 

supplement intake at rest toward personalized nutritional monitoring. 
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Considering that AAs (e.g., Try and BCAAs) play a crucial role in central fatigue 

during physical exercise9, a flexible Trp and BCAA sensor array was used to monitor 

the AA dynamics during vigorous exercise (Fig. 5-6f–j and Fig. 5-7). Both Trp and 

BCAA levels decreased during the exercise due to the serotonin synthesis and BCAA 

ingestion, respectively. The increased sweat Trp/BCAA ratio was observed which 

could potentially serve as an indicator for central fatigue, in agreement with a 

previous report on its plasma counterpart9.  

 

Figure 5-7. Dynamic monitoring of central fatigue using the Trp/BCAA sensor 

array patches. a–c, BCAA (a), Trp (b) and Trp/BCAA ratio (c) before exercise and 

after vigorous exercise until fatigue in human serum. d–f, BCAA (d), Trp (e) and 

Trp/BCAA ratio (f) before exercise and after vigorous exercise until fatigue in 

iontophoresis sweat.  

The wearable iontophoresis-integrated patch enables daily continuous AA 

monitoring at rest beyond the physical exercise. As illustrated in Fig. 5-6k–o and 

Appendix D, Figs. D-5-7, rising Trp and Tyr levels in sweat were observed from all 

four subjects after Trp and Tyr supplement intake while the readings from the sensors 

remained stable during the studies without intake (Fig. 5-8). Such capability opens 

the door for personalized nutritional monitoring and management through 
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personalized sensor-guided dietary intervention. It should be noted that our pilot 

study showed that sweat nutrient and electrolyte levels were independent of sweat 

rate changes during the carbachol-based iontophoresis-induced sweat (Appendix D, 

Fig. D-8).  

 

Figure 5-8.  Tyr and Trp levels in continuous on-body Trp and Tyr sensing using 

wearable sensor arrays with and without supplement intake. Bars indicate the 

mean value of target; error bars represent the s.d. of measurements from all the 

subjects (n= 4). 

5.3 Application of Wearable Sweat Sensors toward Gout and Metabolic 

Syndrome Management 

Metabolic profiling and monitoring are a key approach to enabling precision nutrition 

and precision medicine.10 Current gold standards in medical evaluation and metabolic 

testing heavily rely on blood analyses that are invasive and episodic, often requiring 

physical visits to medical facilities, labor-intensive sample processing and storage, 

and delicate instrumentation (for example, gas chromatography–mass spectrometry 

(GC–MS)).11 As the current COVID-19 pandemic remains uncontrolled around the 

world, there is a pressing need for developing wearable and telemedicine sensors to 

monitor an individual’s health state and to enable timely intervention under home- 

and community-based settings12–14. The progression from blood analyses to wearable 

sweat analyses could provide great potential for non-invasive, continuous monitoring 

of physiological biomarkers critical to human health. However, most clinically 

relevant nutrients and metabolites in sweat are rarely explored and undetectable by 
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existing wearable sensing technologies. In this section, we evaluated the use of sweat 

biomarkers for gout and metabolic syndrome management. 

5.3.1 Gout Management 

5.3.1.1 Introduction 

As the global burden of gout is rising, management and treatment of gout have 

become a significant task.15 Gout is often characterized by chronic hyperuricemia, an 

elevated UA level exceeding the physiological saturation threshold16. For gout 

patients, many risk factors, such as an increased intake of dietary purines and 

alcohol17, can lead to gout attacks due to increased UA level in serum (Fig. 9a). 

Monitoring serum uric acid plays a crucial role in personalized gout treatment and 

management (e.g., urate-lower therapy, flare-up preventions, and dietary/nutritional 

control)16. The following sections delineate our effort in evaluating sweat UA toward 

non-invasive UA monitoring for gout management. 

5.3.1.2 Methods 

To evaluate the sensor performance toward gout management, a purine-rich diet 

study was performed on both healthy male and female subjects (Fig. 5-9b-e and 

Appendix D, Fig. D-9). The subjects reported to the lab after overnight fasting. 

Fresh capillary blood samples were collected using a finger-prick approach before 

the exercise. After cleaning the fingertip with alcohol wipe and allowing it to air 

dry, the skin was punctured with CareTouch lancing device. Samples were 

collected with centrifuge tubes after wiping off the first drop of blood with gauze. 

After the 90-min standardized clotting procedure finished, serum was separated by 

centrifuging at 6,000 rpm for 15 min, and instantly stored at −20 °C for HPLC 

analysis. A 20-min constant-load cycling exercise was immediately conducted on 

the subjects after the blood collection with the sweat information collected by the 

sensor patch from the forehead. The subjects were then given a purine-rich diet 

(250 g of canned sardines) followed by a 2-h rest. The blood collection and the 

cycling trial were then repeated. The plotted data for this study are based on the 
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first two successive complete DPV measurements. To further characterize the 

sweat UA sensing, six patients with gout, four subjects with hyperuricemia (without 

history of gout attack) and five healthy subjects were recruited (Fig. 5-9f). It should 

be noted that all of the six patients with gout (three currently under urate-lowering 

therapy, three not on any medical therapy) didn’t receive any urate-lowering 

medication for at least 10 h ahead of the study. The sweat samples and blood 

samples were collected 2 h after their regular lunch and tested by the sensor patches 

and HPLC, respectively (same procedure as the after meal test in the meal challenge 

study). During the on-body test, sweat samples were collected periodically from the 

subjects using centrifuge tubes and then frozen at −20 °C for further sensor 

validation via HPLC analysis. For dynamic monitoring of UA before and after 

purine intake (Fig. 5-9g), a healthy subject underwent a finger-prick blood 

collection followed by a 20-min cycling test after overnight fasting, then consumed 

canned sardines. The blood collection and sweat test were repeated periodically 

every hour until 6 h after the intake. The collected blood samples were analyzed 

with HPLC. To investigate the medication influence on serum and sweat UA levels, 

a patient with gout underwent the sweat and blood sample tests on two days: on one 

day the patient received urate-lowering medication (allopurinol) 2 h before the test 

and on the other day the patient did not take medication for 24 h before the test. The 

sweat samples and blood samples were collected 2 h after their regular lunch and 

tested by the sensor patches and HPLC, respectively (same procedure as the after 

meal test in the meal challenge study). The correlation plot in Fig. 9h was based on 

data obtained from 15 subjects (including six patients with gout). The Pearson 

correlation coefficient was acquired through linear regression in Origin 2018 

(n = 46). 

5.3.1.3 Results and Discussion 

To evaluate our sensor for gout management, we performed a controlled purine-

diet study in healthy male and female subjects. For subjects with overnight fasting 

(n = 6), both serum and sweat UA levels increased after a purine-rich diet (Fig. 9b-
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e and Appendix D, Fig. D-9). The subsequent human study, carried out 2 h after a 

regular lunch, indicated that higher sweat UA levels were identified from the 

subjects with hyperuricemia (n = 4) and patients with gout (without medication, 

n = 6) than from the healthy subjects (n = 5), with a similar trend in serum UA levels 

(Fig. 5-9f and validated in Appendix D, Fig. D-10, Note D-2 with HPLC). This 

approach also shows promise for personalized dosage adjustment in urate-lowering 

therapy, as illustrated in Fig. 5-10. The dynamic changes of sweat UA before and 

after a purine-rich diet over a 7-h period measured by the wearable sensor (Fig. 5-

9g) closely resembled those of serum UA. We obtained a high correlation 

coefficient of 0.864 between sweat and serum UA concentrations (Fig. 5-3h), 

suggesting the potential use of sweat UA as a biomarker for gout management. 

 
Figure 5-9. Non-invasive gout management with the sweat sensor. a, Purine-rich 

diets increase the risk of gout attacks. b–e, UA levels in sweat and serum of a healthy 

male (b,c) and a healthy female (d,e) subject under fasting condition, and after a 

purine-rich diet on two different days. Bars in b–e indicate the mean value of the first 

two successive measurements. f, The sweat and serum UA levels obtained using the 
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wearable sensors in patients with diagnosed gout, subjects with hyperuricemia and 

healthy individuals. Bars indicate the mean value of each category; error bars 

represent the s.d. of measurements from all the subjects in each category (n = 6 for 

patients with gout, n = 4 for subjects with hyperuricemia and n = 5 for healthy 

subjects). g, Dynamic changes of sweat and serum UA from one healthy subject 

before and after a purine-rich diet over a 7-h period. The experiment was repeated 

twice independently with similar results. h, The correlation of sweat and serum UA 

concentrations from the human studies. The Pearson correlation coefficient was 

acquired through linear regression (n = 46 biologically independent samples). 

 
Figure 5-10. The influence of urate-lowering medication (allopurinol) on the 

sweat and serum UA levels. The sweat and blood tests were performed on the same 

gout patient on two days: on one day the patient received urate-lowering medication 

2 hours before the test, and on the other day the patient did not take medication 24 

hours before the test. Error bars represent the standard deviations of the first two 

successive measurements. 

5.3.2 Non-invasive Monitoring of Metabolic Syndrome 

5.3.2.1 Introduction 

As the current COVID-19 pandemic remains uncontrolled around the world, there 

is a pressing need for developing wearable and telemedicine sensors to monitor an 

individual’s health state and to enable timely intervention under home- and 

community-based settings12–14; it is also increasingly important to monitor a 

person’s long-term cardiometabolic and nutritional health status after recovery 
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from severe COVID-19 infection using wearables to capture early signs of potential 

endocrinological complications such as T2DM.18  

Metabolic syndrome, a metabolic disorder defined as glucose intolerance, obesity, 

hypertension and dyslipidemia, is a risk factor for atherosclerotic cardiovascular 

disease (ASCVD) and type 2 diabetes (T2DB)19,20. It doubles risk for ASCVD and 

increases risk for T2DB fivefold20, and recent studies found that metabolic 

syndrome is associated with a significant risk of sudden cardiac death21. The 

prevalence of metabolic syndrome ranges from 10% to 40% worldwide, with a 

prevalence of 33% in the U. S.19,22 The development of metabolic syndrome could 

be genetic and epigenetic, with risk factors such as central obesity, physical 

inactivity, and insulin resistance19,23. Despite chronic screening of the metabolic 

diseases, it is still of urgent need to detect and monitor the metabolic biomarkers, 

and an effective nutritional treatment could be personalized from different dietary 

interventions to ameliorate symptoms such as inflammation, glucose intolerance, 

etc.24  

Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, 

are essential amino acids usually associated with benefits on regulating body 

weight, muscle protein synthesis and glucose homeostasis. Many observational 

studies have concluded that elevated circulating BCAAs levels are associated with 

poor metabolic health. Specifically, increases in BCAAs are consistently observed 

in insulin-resistant obesity and Type 2 diabetes mellitus (T2DM) in both human 

patients and rodent models and have been linked to cardiovascular disease and 

metabolic syndrome25–28 (Fig. 5-11a). Elevated blood BCAA levels are correlated 

positively with insulin resistance and HbA1c in various clinical studies29–31, some 

of which reported that increase in blood BCAA levels are predictive of future 

insulin resistance or T2DM32,33. Despite all these findings, it is still unclear if 

BCAAs are the cause of IR and T2DM or a representative biomarker of impaired 

insulin action34.  Some proposed that increased plasma BCAAs levels could be 

attributed to decreased BCAA metabolism in fat29,35–37 and insulin resistance was 
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shown to correlate with reduced BCAA catabolic enzyme gene expression29,38. In 

addition, two mechanisms have been proposed for a causative link between 

increased plasma BCAAs levels and T2DM/IR. One proposed that elevated serum 

BCAAs level leads to persistent activation of rapamycin complex 1 signaling 

pathway, which uncouples insulin receptor from insulin signaling mediator and 

causing insulin resistance25,29,39,40. The other proposed that abnormal BCAA 

metabolism causes accumulated BCAA metabolites that trigger T2DM/IR-

associated mitochondrial dysfunction and stress signaling29,41. Recent studies have 

shown the potential use of BCAAs supplementation as dietary intervention to 

ameliorate insulin resistance42. Monitoring changes in essential nutrient levels 

provides a highly sensitive early detection of metabolic syndrome risks, enabling 

effective personalized dietary intervention (Fig. 5-11b). In the following sections, 

we evaluate the use of sweat BCAA levels towards metabolic syndrome 

management.  

Recently, various correlation analyses were performed on metabolites and COVID-

19 severity. Increased leucine and phenylalanine showed a consistently significant 

association with COVID-19 severity and increased tyrosine showed notable 

association with COVID-19 severity43. The findings also suggested that for the 

severe COVID-19 cases, BCAAs accumulation in serum occurs in favor of 

cytosolic aerobic glycolysis43.  Moreover, cytokine release syndrome, a major 

cause of the multi-organ injury and fatal outcome induced by SARS-CoV-2 

infection, was found to be potentially modulated by metabolic interventions. 

Specifically, 14 inflammatory cytokines linked to CRS in severe patients were 

strongly correlated with tryptophan, and the decreased tryptophan and increased 

kynurenine reflect the hyperactivation of rate-limiting enzyme IDO1, which is 

reportedly involved in regulating hyperinflammatory responses44. Considering that 

circulating elevated Leu has been reported as a key metabolic fingerprint for the 

COVID-19 severity, we also evaluated our biosensors for analyzing the samples 

from patients with COVID-19 and healthy individuals in the following sections. 
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5.3.2.2 Methods 

The validation and evaluation of the sweat sensor were performed using human 

subjects in compliance with all the ethical regulations under protocols (ID 19-0892 

and 21-1079) that were approved by the institutional review board at California 

Institute of Technology. The participating subjects (aged over 18 years) were 

recruited from the California Institute of Technology campus and the neighbouring 

communities through advertisement. All subjects gave written informed consent 

before study participation. For wearable sensor evaluation, healthy subjects with a 

body mass index (BMI) of 18.5–24.9 kg m−2 with fasting serum glucose 

<100 mg dl−1 were recruited. For the BCAA study, inclusion criteria include: group 

I, individuals with normal weight who have a BMI of 18.5–24.9 kg m−2 with fasting 

serum glucose <100 mg dl−1 (healthy); group II, individuals with 

overweight/obesity who have a BMI of 25–35 kg m−2 and fasting serum glucose 

<6 mg dl−1 (overweight/obesity); group III, individuals with obesity who have a 

BMI of 25–35 kg m−2 and fasting serum glucose ≥126 mg dl−1 (obesity and T2DM). 

COVID-19-positive and COVID-19-negative serum samples were purchased from 

RayBiotech. 

For the BCAA studies, the subjects were asked to consume 5 g BCAAs (2:1:1 

Leu:Ile:Val) or a standardized snack including a protein drink (Fairlife, Core Power 

Elite) and a CLIF energy bar. An iontophoresis session was implemented with 

carbachol gels for sweat induction. Over the entire study period, the subject’s sweat 

was sampled periodically and analysed by the sensor patch. Blood glucose level 

was recorded every 15 min with a commercial Care Touch Blood Glucose Meter. 

Fresh capillary blood samples were collected using a finger-prick approach during 

the human studies. After cleaning the fingertip with alcohol wipe and allowing it to 

air dry, the skin was punctured with a CareTouch lancing device. Samples were 

collected with centrifuge tubes after wiping off the first drop of blood with gauze. 

After the 90-min standardized clotting procedure finished, serum was separated by 
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centrifuging at 6,000 rpm for 15 min, and instantly stored at −20 °C for analysis 

with GC–MS, the LEG–MIP sensors and the custom insulin assay. 

For the BCAA diet challenge study, the collected serum samples were analysed 

using a custom insulin sandwich immunoassay. The MBs were modified on the 

basis of a previous publication.45 Briefly, 3 μl MBs were activated with 50 mg ml−1 

EDC/sulfo-NHS in MES buffer (25 mM, pH 5) for 35 min followed by capture 

antibody immobilization (25 μg ml−1 in MES buffer) for 15 min. After de-activation 

with 1 M ethanolamine in phosphate buffer (0.1 M, pH 8), MBs were incubated in 

25 μl standards prepared in 1% BSA or serum samples diluted five times in 1% 

BSA for 15 min. From here, the beads were rinsed with 1% BSA twice after each 

binding step. Next, the MBs were incubated in 25 μl of biotin-detector antibody 

(1.0 μg ml−1) in 1% BSA for 30 min followed by 15 min in streptavidin–peroxidase 

conjugate (2,500×) prepared in 1% BSA. The amperometric detection was carried 

out by applying a constant potential of −0.2 V to MBs resuspended in 45 μl 1 mM 

hydroquinone, and 5 μl 5 mM H2O2 was pipetted onto the screen-printed carbon 

electrodes when background current stabilized. 

5.3.2.3 Results and Discussion 

To explore the use of sweat BCAAs as a non-invasive risk factor of metabolic 

syndrome, we performed a pilot study to investigate the correlations between serum 

and sweat BCAAs involving three groups of subjects: normal weight (I, n = 10), 

overweight/obesity (II, n = 7) and obesity with T2DM (III, n = 3) (Fig. 5-11c,d). 

Positive Pearson correlation coefficients of 0.66 (n = 65) and 0.69 (n = 65) were 

observed between sweat and serum levels (all analysed by the sensors) of Leu and 

total BCAA, respectively (Fig. 5-11c).  

Compared with healthy participants in group I, substantially elevated sweat and 

serum Leu levels (analysed by the sensors) were observed in groups II and III (Fig. 

5-11d), consistent with previous reports that higher circulating BCAA levels were 

identified in individuals with obesity and T2DM.46 Considering the well-

established role of BCAAs on insulin production and inhibition of glycogenolysis, 
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we also investigated the post-prandial response of sweat Leu/BCAAs and blood 

glucose/insulin after BCAA supplement and dietary intake in healthy subjects (Fig. 

5-11e,f). All biomarkers remained stable during the fasting period; protein diet 

intake resulted in increases in both blood glucose and insulin, while BCAA intake 

only led to a rapid insulin increase. In both studies, sweat Leu and BCAAs first 

increased in the 30–60 min and then decreased. For subjects with different 

metabolic conditions, Leu levels in iontophoretic sweat after BCAA vary 

differently: although a substantial increase in sweat Leu levels was observed in all 

cases, healthy subjects showed a drastic percentage fluctuation and individuals with 

obesity/T2DM showed blunted fluctuation that may indicate the different metabolic 

stage of BCAA in those individuals (Fig. 5-11g). 
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Figure 5-11. Personalized monitoring of metabolic syndrome risk factors using 

LEG–MIP BCAA sensors. a, Elevated BCAA levels identified in individuals with 

obesity and/or T2DM. b, The close associations between BCAA metabolism and 

insulin response in healthy and obesity/T2DM groups. c, Correlation of serum and 

sweat total BCAA and Leu levels obtained with the LEG–MIP sensors (n = 65). 

Dashed lines represent linear-fit trendlines. d, Box-and-whisker plot of measured Leu 

levels in iontophoresis-extracted sweat and serum in three groups of participants: 

normal weight (group I, n = 10), overweight or obesity (group II, n = 7) and obesity 

with T2DM (group III, n = 3), The bottom whisker represents the minimum, the top 

whisker represents the maximum and the square in the box represents the mean. e,f, 

Dynamic changes of sweat Leu and total BCAAs, serum insulin (Ins) and blood 

glucose (BG) levels from two healthy subjects with 5 g BCAAs (e) and standard 

protein diet (f) intakes. g, Sweat Leu dynamics collected from groups I–III after 5 g 

BCAA intake. Inset, ratio of the Leu level at 50 min after BCAA intake and the level 

before intake. h, Evaluation of Leu as a metabolic fingerprint for COVID-19 severity 

in serum samples from COVID-19-negative subjects (n = 8) and COVID-19-positive 

patients (n = 8). Error bars represent the s.d. from three measurements. 

Considering that circulating elevated Leu has been reported as a key metabolic 

fingerprint for COVID-19 severity, we also evaluated our biosensors for analysing 

the samples from patients with COVID-19 and healthy individuals; substantially 

elevated Leu levels were identified in COVID-19-positive samples compared with 

the negative ones (415.6 ± 133.7 versus 151.5 ± 36.0 µM), indicating the great 

potential of our biosensors for at-home COVID-19 monitoring and management 

(Fig. 5-11h). 

5.3.3 Conclusion 

Metabolic profiling using wearable sensors has become increasingly crucial in 

precision nutrition and precision medicine, especially in the era of the COVID-19 

pandemic, as it provides not only insights into COVID-19 severity but also 

guidance to stay metabolically healthy to minimize the risk of potential COVID-19 



 

 

140 
infection. As the pandemic remains rampant throughout the world and regular 

medical services are at risk of shortage, there is an urgent need to develop and apply 

wearable sensors that can monitor health conditions via metabolic profiling to 

achieve at-home diagnosis and timely intervention via telemedicine. 

By integrating mass-producible LEG, multiplexed sensor array and system-level 

integration into a wireless wearable technology, with optimized multi-inlet 

microfluidic sweat sampling, in situ signal processing, calibration and wireless 

communication. Using this telemedicine technology, we have demonstrated the 

wearable and continuous monitoring of post-prandial UA and AA responses to 

identify risks for gout flareups and metabolic syndrome. The high correlations 

between sweat and serum BCAAs and between sweat and serum UA suggest that 

this technology holds great promise for use in metabolic syndrome risk and gout 

monitoring. The substantial difference in Leu between COVID-19-positive and 

COVID-19-negative blood samples indicates the potential of using this technology 

for at-home COVID-19 management. We envision that this wearable technology 

could play a crucial role in the realization of precision nutrition through continuous 

monitoring of circulating biomarkers and enabling personalized nutritional 

intervention. This technology could also be reconfigured to continuously monitor a 

variety of other biomarkers towards a wide range of personalized preventive, 

diagnostic and therapeutic applications. 
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A p p e n d i x  D  

SUPPLEMENTARY INFORMATION FOR CHAPTER 5 

Materials from this chapter appears in “Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O. 

S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; Hsiai, T. K.; Li, Z.; Gao, W. A 

laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in 

sweat. Nature Biotechnology 38, 217–224 (2020) doi:10.1038/s41587-019-0321-x” 

and “Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; 

Heflin, N.; McCune, J. S.; Hsiai, T. K.; Li, Z.; Gao, W. A wearable electrochemical 

biosensor for the monitoring of metabolites and nutrients. Nature Biomedical 

Engineering 1–11 (2022) doi: 10.1038/s41551-022-00916-z”. 
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Figure D-1. Integrated flexible NutriTrek prototype for personalized nutritional 

monitoring. a,b, Optical photos of a wearable NutriTrek prototype consisting of a 

flexible, disposable microfluidic sensor patch (a) for autonomous sweat stimulation 

and sweat analysis and a flexible printed circuit board (FPCB) (b) for in situ 

electrochemical control, signal processing, and wireless communication. Scale bars, 

5 mm (a) and 1 cm (b). c,d, Optical photos of the integrated system on the body. 

Scale bars, 5 cm (c) and 1 cm (d). e, Optical photo of a flexible NutriTrek patch 

interfacing with the custom cell phone app for real-time data collection. Scale bar, 3 

cm. 

 

  

Supplementary Fig. 3 Integrated wearable system for personalized nutritional monitoring. a,b, Schematic 3D model (a) and an optical photo (b) of 
the wearable electronic patch with flexible printed circuit board (FPCB). c, Schematic 3D model of the integrated smart watch consisting of two 
vertically stacked PCBs, a Lithium-ion battery, an electronic paper display, and a 3D printed case. d,e, Photos of the smart watch PCB connected to 
the MIP sensor from a top view (d), and a bottom view (e). f, Photo of the fully assembled smartwatch. 
The smart watch capabilities expand from the wearable electronic patch to include USB battery charging, and sensor data displaying capabilities.

a b

c d

e A : 5 mm
B : 1 cm
C : 5 cm
D : 1 cm
E : 3 cm
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Figure D-2. The detailed circuit diagram of the NutriTrek.  
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Fig. D-3. Continuous on-body Trp and Tyr analysis with real-time sensor 

calibrations using a wearable sensor array on three subjects during a constant-

load cycling exercise. b,f,j represent the raw signals obtained from the on body 

measurement while c,g,k represent the corresponding data obtained with automated 

voltammogram analysis. 
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during a constant-load cycling exercise. b, f,  and j represent the raw signals obtained from the on body measurement while c, g, and k represent the 
corresponding data obtained with automated voltammogram analysis.
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Figure D-4. Automated voltammogram analysis. A sample input voltammogram 

(a) is approximated by a polynomial baseline that acts as a threshold (b) for the input 

voltammogram. The voltammogram below the threshold is retained, while the 

voltammogram above the threshold is replaced by the polynomial baseline to 

generate the first iteration cut-off voltammogram (c). The polynomial fitting and 

cutting-off procedure is iterated a specified number of times (d,e). After the iterative 

baseline correction, the original input voltammogram is subtracted by the final 

baseline to yield a corrected voltammogram (f,g). A simple peak detection algorithm 

is employed to calculate the peak height and location of the corrected voltammogram. 
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Supplementary Fig. 35 Automated voltammogram analysis. 
A sample input voltammogram (a) is approximated by a 
polynomial baseline that acts as a threshold (b) for the input 
voltammogram. The voltammogram below the threshold is 
retained, while the voltammogram above the threshold is 
replaced by the polynomial baseline to generate the first 
iteration cut-off voltammogram (c). The polynomial fitting 
and cutting-off procedure is iterated a specified number of 
times (d,e). After the iterative baseline correction, the original 
input voltammogram is subtracted by the final baseline to 
yield a corrected voltammogram (f,g). A simple peak 
detection algorithm is employed to calculate the peak height 
and location of the corrected voltammogram.

Note: Fourth order polynomial fitting was used, and the 
maximum iteration count was specified to 15.
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Figure D-5.  Iontophoresis-based continuous on-body Trp and Tyr analysis 

using a wearable sensor array with and without supplement intake (Subject 2). 

a–c, The raw voltammograms (a), automatically corrected voltammograms (b), and 

calibrated biomarker trends (c) collected during an on-body study with the 

supplement intake (Trp and Tyr, 1 g each). d–f, The raw voltammograms (d), 

automatically corrected voltammograms (e), and calibrated biomarker trends (f) 

collected during an on-body study without the supplement intake. 
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Figure D-6.  Iontophoresis-based continuous on-body Trp and Tyr analysis 

using a wearable sensor array with and without supplement intake (Subject 3). 

a–c, The raw voltammograms (a), automatically corrected voltammograms (b), and 

calibrated biomarker trends (c) collected during an on-body study with the 

supplement intake (Trp and Tyr, 1 g each). d–f, The raw voltammograms (d), 

automatically corrected voltammograms (e), and calibrated biomarker trends (f) 

collected during an on-body study without the supplement intake. 

 

Supplementary Fig.38

Ionto

Intake   no intake

10 30 50 70 90
0

25

50

75

100

C
on

ce
nt

ra
tio

n 
(μ

M
)

Time (min)

0

12

24

36

48

C
on

ce
nt

ra
tio

n 
(μ

M
)

0.07

0.08

0.09

0.4 0.5 0.6 0.7 0.8
0.10

0.12

0.14

Potential (V)

0.5 0.6 0.7 0.8
0

1

2

Potential (V)

1

2

0

0.5 0.6 0.7 0.8
0

3

6

Potential (V)

2

4

0

0.01

0.02

0

0.4 0.5 0.6 0.7 0.8
0.00

0.01

0.02

Potential (V)
10 30 50 70 90

0

25

50

75

100

C
on

ce
nt

ra
tio

n 
(μ

M
)

 Tyr

Time (min)

0

12

24

36

48

 Trp

C
on

ce
nt

ra
tio

n 
(μ

M
)

Trp

Tyr

Subject 2

No intake

Trp

Tyr

P
ot

en
tia

l (
m

V
)

Trp

Tyr

ca

P
ot

en
tia

l (
V

)

Intake

b

P
ot

en
tia

l (
m

V
)

Trp

Tyr

fd

P
ot

en
tia

l (
V

)

e

Subject 3

Subject 3



 

 

152 

 

Figure D-7.  Iontophoresis-based continuous on-body Trp and Tyr analysis 

using a wearable sensor array with and without supplement intake (Subject 4). 

a–c, The raw voltammograms (a), automatically corrected voltammograms (b), and 

calibrated biomarker trends (c) collected during an on-body study with the 

supplement intake (Trp and Tyr, 1 g each). d–f, The raw voltammograms (d), 

automatically corrected voltammograms (e), and calibrated biomarker trends (f) 

collected during an on-body study without the supplement intake. 
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Figure D-8.  Sweat rate and the concentrations of amino acids (Trp here) and 

Na+ on human subjects. The sweat was induced with the proposed carbachol-based 

iontophoresis.   

 

 

Figure D-9. Investigation of the sweat and serum UA levels using a purine-rich 

diet challenge. UA levels in sweat and serum of two heathy subjects under fasting 

condition, and after a purine-rich diet on two different days.  
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Figure D-10. HPLC analyses of the sweat (a,b) and serum (c,d) UA levels of a 

healthy subject (a,c) and a patient with gout (b,d).  

 

 
Table D-1. UA HPLC gradient method 
 

 
Table D-2. Tyr HPLC gradient method 
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Note D-1. Signal conditioning, processing and wireless transmission for the 

wearable sensor.  

The sweat induction and the sweat sensing procedures are initiated and controlled by 

the microcontroller (STM32L432KC, STMicroelectronics) when it receives a user 

command from the Bluetooth module over Universal Asynchronous 

Receiver/Transmitter (UART) communication.  

Sweat induction: Programmable iontophoretic current is generated by a voltage 

controlled current source that consists of a unity-gain difference amplifier (AD8276, 

Analog Devices) and a boost transistor (BC846, ON Semiconductor). The circuit is 

supplied by the output of a boost converter (LMR64010) that boosts the 3.7 V battery 

voltage to 36 V. The microcontroller controls the digital to analog converter (DAC) 

(DAC8552, Texas Instruments) over serial peripheral interface (SPI) to set the 

control voltage of the current source. The current source output is checked by a 

comparator (TS391, STMicroelectronics) and the microcontroller is interrupted 

through its general-purpose input/output (GPIO) pin at output failure. The protection 

circuit consists of a current limiter (MMBF5457, ON Semiconductor) and analog 

switches (MAX4715, Maxim Integrated; ADG5401, Analog Devices). The 

microcontroller’s GPIO is also used to enable or disable the iontophoresis circuit. For 

the optimized design, a 100-µA current (~2.6 µA mm-2) was applied for on-body 

iontophoresis sweat induction using the flexible microfluidic patch.  

Power analysis: When powered at 3.3 V, the electronic system consumes ~28 mA 

during an active electrochemical measurement and ~61 mA during iontophoresis. 

The microcontroller and Bluetooth module each consume ~12 mA; the sensor 

interface consumes ~4 mA; the boost converter and iontophoresis module consumes 

~33 mA, and the display module consumes an additional ~8 mA when refreshing its 

screen. 

Sweat sensing: The sweat sensing circuitry can perform two channel simultaneous 

DPV, as well as potentiometric and temperature measurements. A bipotentiostat 

circuit is constructed by a control amplifier (AD8605) and two transimpedance 
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amplifiers (AD8606). A series voltage reference (ISL60002, Renesas Electronics) 

and a DAC (DAC8552, Texas Instruments) is used to generate a dynamic potential 

bias across the reference and working electrodes. In instrumentation amplifier 

(INA333, Texas Instruments) is used for potentiometric measurements; and a voltage 

divider is used for the resistive temperature sensor. All analog voltage signals are 

acquired by the microcontroller’s built-in analog-to-digital converter (ADC) 

channels, processed, then transmitted over Bluetooth to a user device. 

Custom mobile application design. The custom mobile application was developed 

with the cross-platform Flutter framework. The mobile application can wirelessly 

communicate with the wearable devices via Bluetooth to send commands, and to 

acquire, process, and visualize the sweat biomarker levels. The application 

establishes a secure Bluetooth connection to the wearable sensor. The home page 

plots the user’s historical biomarker levels,  and highlights the most recently 

measured analyte concentrations. When a sweat biomarker measurement is 

prompted, the user can switch over to the measurement page that plots the sweat 

sensors’ voltammograms in real time. Following the voltammetric measurement, the 

app extracts the voltammograms’ peak currents using a custom baseline correction 

algorithm, then converts the peak currents to corresponding biomarker 

concentrations. This measurement data is added to the list of historic analyte levels 

in the home page. 

Note D-2. HPLC analysis for sensor validation and sample analysis.  

HPLC tests of UA and Tyr were done on HP Agilent 1100 HPLC using an Agilent 

Eclipse XDB-C18 5 µm 3×250 mm column. Tests of UA and Tyr were done with 

gradient methods, and the gradient profiles are shown in Tables D-1,2. Detection 

wavelengths for UA and Tyr were 245 nm and 274 nm, respectively. Retention times 

were ~9 minutes and ~4 minutes for UA and Tyr, respectively. Sweat samples were 

diluted 3 times and serum samples were diluted 20 times, both with water. 
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C h a p t e r  6  

CONCLUSION AND FUTURE OUTLOOK 

Materials from this chapter appear in “Min, J.; Tu, J.; Xu, C.; Lukas, H.; Shin, S.; 

Yang, Y.; Solomon, S.; Mukasa, D.; Gao, W. Skin-interfaced wearable sweat sensors 

for precision medicine. Chemical Reviews, Manuscript Submitted”  
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The fast progress in the development of sweat sensing platforms has opened the door 

for practical applications in non-invasive monitoring of fitness and health conditions. 

Early prototypes of wearable sweat sensors faced challenges in several aspects. First, 

the existent sensing strategies based on enzymes and ionophores limit the range of 

detection spectrum and sensitivity; second, previous prototypes relied on direct 

contact of flexible sensor electrode to the skin and can yield inaccurate sensing results 

due to contamination from skin, sweat evaporation and long refreshing time. Third, 

the manufacture procedure of previous prototypes was complex, including cleanroom 

fabrications which could be costly and time-consuming and limit the feasibility for 

mass production. Fourth, the lack of evaluation of sweat biomarkers for clinical 

conditions beyond cystic fibrosis hinders the wide application of wearable sweat 

sensing.  

This thesis have summarized our efforts to tackle these challenges. Using mass-

producible laser-engraving technique and differential pulse voltammetry, we have 

developed highly sensitive graphene sensors able to detect, for the first time, various 

electroactive targets (e.g. UA and Tyr) in sweat. Building on the pristine LEG, we 

developed MIP-based sensing strategies to further improve the sensor’s selectivity in 

complex matrix and to widen the detection spectrum of the ultralow-level, non-

electroactive metabolites. Besides chemical sensors, LEG-based strain sensor and 

temperature sensor were developed and consolidated in the same sensing patch to 

provide vital signs detection and calibration for real-time chemical sensing. In 

addition to graphene-based sensors, we used the laser-engraving technique to create 

efficient sweat induction and sampling microfluidics to enable fast refreshing for 

improved chronoaccuracy and on-demand sweat induction in sedentary individuals. 

With the multiplexed microfluidic sweat sensors, we have evaluated the use of sweat 

UA for gout management and the use of BCAAs for metabolic syndrome 

management. 

While the aforementioned innovations helped to advance wearable sweat sensing, 

there are lingering and emerging challenges for future research and studies to resolve 
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before the eventual application of sweat sensing technology. Current sweat extraction 

technologies still suffer from large interpersonal variations or insufficiencies in sweat 

volume or sweat duration. In order to cope with the potential low sweat rates, fast-

sampling microfluidics with low dead volume and miniaturized sensors with high 

sensitivity are necessary but yet to be achieved. While enzymatic sensors and ion-

selective electrodes have been extensively developed for the detection of common 

sweat electrolytes and metabolites that are relatively high in concentration, many 

trace-level biomarkers including hormones and lipids are challenging to assess 

continuously with traditional sensing mechanisms. In addition to developing novel 

high-performance sensors, it is also important to improve selectivity and stability for 

long-term use in the complex fouling media and potential mechanical strains. For 

compact and robust system-integration, low-power and precise electronic circuitry 

should be coupled with a compact power source. 

While sweat sensing technology has been significantly developed in the past decade, 

the sweat gland physiology, secretion and partitioning of the sweat metabolites are 

waiting more research efforts.  Even with full understanding of the partitioning 

mechanism of a certain sweat metabolite, evaluation of such sweat biomarker for a 

clinical condition remains to be investigated at a larger scale considering inter-person 

and inter-group variations. The evaluation will undoubtedly become a multi-factor 

problem, and the use of big data and machine learning may help pool crucial factors 

together for a more comprehensive correlation of multi-biomarkers to the clinical 

condition at stake. However, with an influx of sensitive health data uploaded to the 

cloud, data privacy issues can arise. Additionally, considering that conventional von 

Neumann computing strategies are inefficient at processing large volumes of 

unstructured cloud data, neuromorphic edge computing technologies embedded in 

wearable devices have the potential to process data more securely and efficiently. 

The previously illustrated challenges and considerations leave plenty of room for 

exciting future directions and opportunities for advancing the field of wearable sweat 

sensing. The continual research into the final product will undoubtedly unite concepts 
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and skills from various disciplines, from fundamental chemistry and materials 

innovations, practical device and system-level engineering, to physiological and 

clinical studies. Ultimately, the seamless integration of wearable sweat sensors into 

our daily life can be envisioned to enhance precision medicine and healthcare.




