
The Identification of Discrete Mixture Models

Thesis by
Spencer Lane Gordon

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy in Computer Science

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2023
Defended January 19, 2023

ii

© 2023

Spencer Lane Gordon
ORCID: 0000-0002-7101-2370

All rights reserved

iii

ACKNOWLEDGEMENTS

[Intentionally left blank]

iv

ABSTRACT

In this thesis we discuss a variety of results on learning and identifying
discrete mixture models, i.e., distributions that are a convex combination of k
from a known class C of distributions. We first consider the case where C is
the class of binomial distributions, before generalizing to the case of product
distributions. We provide a necessary condition for identifiability of mixture
of products distributions as well as a generalization to structured mixtures
over multiple latent variables.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] S. L. Gordon and L. J. Schulman, “Hadamard extensions and the iden-
tification of mixtures of product distributions,” IEEE Transactions on
Information Theory, vol. 68, no. 6, pp. 4085–4089, 2022. doi: 10.1109/
TIT.2022.3146630,
S.G. participated in all parts of the project.

[2] S. Gordon, B. H. Mazaheri, Y. Rabani, and L. Schulman, “Source iden-
tification for mixtures of product distributions,” in Proceedings of Thirty
Fourth Conference on Learning Theory, M. Belkin and S. Kpotufe, Eds.,
ser. Proceedings of Machine Learning Research, vol. 134, PMLR, Aug.
2021, pp. 2193–2216. [Online]. Available: https://proceedings.mlr.
press/v134/gordon21a.html,
S.G. participated in all parts of the project.

[3] S. Gordon, B. Mazaheri, L. J. Schulman, and Y. Rabani, “The sparse
hausdorff moment problem, with application to topic models,” CoRR,
vol. abs/2007.08101, 2020. arXiv: 2007 . 08101. [Online]. Available:
https://arxiv.org/abs/2007.08101,
S.G. participated in all parts of the project.

https://doi.org/10.1109/TIT.2022.3146630
https://doi.org/10.1109/TIT.2022.3146630
https://proceedings.mlr.press/v134/gordon21a.html
https://proceedings.mlr.press/v134/gordon21a.html
https://arxiv.org/abs/2007.08101
https://arxiv.org/abs/2007.08101

vi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions v
Table of Contents . v
List of Illustrations . vii
Chapter I: Introduction . 1

1.1 Organization . 3
Chapter II: The k-Mix IID problem . 5

2.1 Introduction . 5
2.2 Mixture Models and Other Definitions 11
2.3 Properties of Hankel Matrices 13
2.4 The Empirical Moments . 14
2.5 Learning the Source . 16
2.6 Implications for Topic Models 18
2.7 Analysis . 19
2.8 Computing the Weights . 22
2.9 Deferred Proofs . 25
2.10 Useful Theorems . 28

Chapter III: Sufficient Conditions for the Identifiability of Mixtures of
Products . 31
3.1 Introduction . 31
3.2 Motivation . 33
3.3 Some Theory for Hadamard Products, and a Proof of Theorem 45 35
3.4 Combinatorics of the NAE Condition: Proof of Theorem 47(a) 37
3.5 From NAE to Rank: Proof of Theorem 47(b) 39

Chapter IV: Source Identification for Mixtures of Products 41
4.1 Introduction . 41
4.2 Preliminaries . 46
4.3 The Algorithm . 49
4.4 The Condition Number Bound 56
4.5 Analysis of the Algorithm . 57

Chapter V: The Identifiability of Uniform Mixtures of Binomial Distri-
butions with Log-Linear Influences 65

Bibliography . 72

vii

LIST OF ILLUSTRATIONS

Number Page
3.1 A Bayesian network diagram relating H and X1, . . . , Xn. 34
3.2 Argument for Theorem 47(a). Upper-left region is white. En-

tries (t, f(t)) (indicated with black dots) are not white. 38
4.1 Graphical depiction of a k-MixProd 41

1

C h a p t e r 1

INTRODUCTION

In this thesis, we will investigate problems of the following form: We have
a distribution over vectors X = (X1, X2, . . . , Xn) ∈ [B]n for B ∈ N with
P (X1, . . . , Xn) a mixture of k distributions from a class D of distributions
with a given parameterization. We are given samples of X and are asked to
determine themixture weights, that is, the weight of eachmixture constituent
in the distribution, along with the parameters determining the mixture con-
stituents. Our goal is to recover these parameter up to an input accuracy ε

with probability 1− δ, where δ is also part of our input. We’d like to use as
few samples as possible.

We will write our target distribution as a convex combination of k distribu-
tions P1(θ1), . . . , Pk(θk) ∈ D, with non-negative weights π1, . . . , πk summing
to 1.

Definition 1. The (k − 1)-simplex, ∆k−1 ⊆ Rk, consists of all vectors π ∈ Rk
≥0

such that
∑

i πi = 1.

Definition 2 (Mixture of discrete distributions). A k-mixture of distributions
is parameterized by distributionsP1, . . . , Pk andmixingweights π ∈ ∆k−1 and
is themarginal distribution overX = (X1, X2, . . . , Xn) of the joint distribution
on (X,U) given by P (X = x | U = u) = Pu(X = x) and P (U = u) = πu for
all u ∈ [k].

Notation 3. WhenD is a family of discrete distributions parameterized by θ ∈
Rn we can write a mixture of k distributions from D as P (X) = π1P (X; θ1) +

· · · + πkP (X; θk). When we don’t care about the parameterization, we will
write P (X) = π1P1(X) + · · ·+ πkPk(X).

The k-Mix D problem

• Input: The input to this problem is a distribution P (X) that is a mix-
ture of k distributions from D with unknown mixing weights π1, . . . , πk

where the ith mixture constituent is parameterized by unknown pa-
rameter θi, along with parameters ε, δ > 0.

2

• Goal: The goal is to design an algorithm that uses S samples from
P and with probability at least 1 − δ outputs the following: a vector
π̃ ∈ ∆k−1 along with distributions P (·; θ̃1), . . . , P (·; θ̃k) ∈ D such that
∥π̃ − π∥∞ ≤ ε and

∥∥∥θ̃i − θi

∥∥∥
∞
≤ ε for i = 1, . . . , k.

Identifiability
There is one way in which the k-Mix D problem is too hard, no matter which
class of distributions D we are considering; permuting the mixture compo-
nents by applying some permutation σ : [k] → [k] will not change any of
the observed statistics. In particular, let P ′(X) = π′

1P (X; θ′1) + π′
2P (X; θ′2) +

· · · + π′
kP (X; θ′k) where π′

u = πσ−1(u) and θ′u = θ′σ−1(u) for all u. Then P = P ′

and there is no way to distinguish between the distribution on X induced
by these two distinct mixture models. Thus, we will always be interested
in approximately recovering the parameters only up to the equivalence class of
mixture models induced by permuting mixture components.

• Revised Goal: Our revised goal is to design an algorithm that uses S
samples from P andwith probability at least 1−δ outputs the following:
a vector π̃ ∈ ∆k−1 along with distributions P (·; θ̃1), . . . , P (·; θ̃k) ∈ D
such that for some permutation σ : [k] → [k] the vector πσ obtained
by permuting coordinates according to σ satisfies ∥π̃ − πσ∥∞ ≤ ε and∥∥∥θ̃i − θσ(i)

∥∥∥
∞
≤ ε for i = 1, . . . , k.

Having weakened our requirement for a solution to the problem, there is
another way in which the k-Mix D problem may still be too hard for certain
classes of distributions D and certain concrete choices of distributions from
D. There may be multiple equivalence classes of parameters that generate
the same distribution on X .

To illustrate this phenomenon, consider the following class of distributions,
where n ∈ N is fixed:

IID := {IID(θ) : θ ∈ [0, 1]} ,

where X ∈ {0, 1}n and P (X = x) =
∏n

i=1 θ
xi(1− θ)1−xi for P = IID(θ).

Example 4. In both of the following, let D = IID and let k = 3.

3

Degenerate mixture Consider π = (0, 1/2, 1/2) and θ = (θ1, θ2, θ3) = (1/2, 1/4, 3/4).
Then

P (X = x) = 0× P (X = x; θ1) +
1

2
× P (X = x; 1/4) +

1

2
× P (X = x; 3/4)

=
1

2
× P (X = x; 1/4) +

1

2
× P (X = x; 3/4),

so any choice of θ1 gives the same distribution on X .

Identical mixture components Consider π = (1/3, 1/3, 1/3) and θ = (1/2, 1/2, 1/4).
Then

P (X = x) = π1 × P (X = x; 1/2) + π2 × P (X = x; 1/2) + π3 × P (X = x; 1/4)

= (π1 + π2)× P (X = x; 1/2) + π3 × P (X = x; 1/4),

so any choice of π1 and π2 that retains π1 + π2 = 2/3 will give the same
distribution on X .

What we need for the k-Mix D problem to be solvable is identifiability of the
mixture model.

Definition 5 (Identifiability). We will say that a k-Mix D instance π, θ is
identifiable when P (X; π, θ) ̸= P (X; π′, θ′) for any π′, θ′ not in the equivalence
class of parameters containing π, θ.

Note that identifiability is a property of instances and not of problems. In
this work we will be very interested in understanding when a given instance
is identifiable.

1.1 Organization
The k-Mix IID Problem
The first case, considered in Chapter 2, will be mixtures of IID distributions,
i.e.,D := IID. For the k-Mix IID problem, there is a complete characterization
of identifiability in terms of conditions on the parameters and the number
of copies of X1 available. Moreover, there are known algorithms for solving
the problem. In this chapter, we present a new analysis of Prony’s method, a
classical method for solving this problem, and obtain the best known upper
bounds on the required sample complexity and runtime for solving the k-Mix
IID problem. Finally, we present an algorithm for the non-binary case, where
X ∈ [B]n for some B ∈ N.

4

The k-Mix Prod Problem
The next case, considered in Chapters 3 and 4, is that of product distributions.
That is,

Pu(X = x; θ) =
n∏

i=1

θxi
i (1− θi)

1−xi

for θ ∈ [0, 1]n. In Chapter 3 we present a new sufficient condition for identifia-
bility that generalizes the identifiability condition for the k-Mix IID problem
and in Chapter 4 we give an algorithm to solve the k-Mix Product problem
under a stronger identifiability assumption.

Generalizations
In Chapter 5, we consider a slightly different model and prove an identifia-
bility result for this model.

5

C h a p t e r 2

THE k-MIX IID PROBLEM

[1] S. Gordon, B. Mazaheri, L. J. Schulman, and Y. Rabani, “The sparse
hausdorff moment problem, with application to topic models,” CoRR,
vol. abs/2007.08101, 2020. arXiv: 2007 . 08101. [Online]. Available:
https://arxiv.org/abs/2007.08101,

2.1 Introduction
We consider the problem of learning a mixture of k IID distributions, k-Mix
IID. This is equivalent to learning a mixture of k binomial distributions;
motivated by the following analogy, we call this the k-coin problem. (In the
literature this is also called the k-spike problem.)

Consider a set of k visually indistinguishable coins. When tossed, coin j

has (unknown) probability θj of coming up heads. There is an (unknown)
probability distribution π on the coins.

Our sampling regimen is this: a coin is picked according to π. We do not
discover which coin we picked. We then toss this coin m times, yielding a
sequence X = (X1, . . . , Xm) ∈ {0, 1}m. Repeat.

The samples X are distributed according to

Pr(X = x) = Pr(X1 = x1, . . . , Xm = xm) =
k∑

j=1

πj

m∏
i=1

θxi
j (1− θj)

1−xi . (2.1)

We writeM = (θ, π) for the parameters of this model. Our goal is to start
from empirical statistics on X which are close to the probabilities in (2.1),
and from that to produce reconstructed parameters π̃1, . . . , π̃k and θ̃1, . . . , θ̃k

such that
∥∥∥θ − θ̃

∥∥∥
∞

and ∥π − π̃∥∞ are small.

Equivalent formulation. The sample statistics are of course invariant un-
der permutation of [m], so only

∑
Xi matters. Therefore we can effectively

think of the distribution in (2.1) as a mixture of binomial distributions:
Binomial(m, θj)with mixture weights (πj).

https://arxiv.org/abs/2007.08101
https://arxiv.org/abs/2007.08101

6

We will show below that estimates of the probabilities in (2.1) give estimates
of the following quantities,

µi :=
∑
j

πjθ
i
j, i = 0, . . . , 2k, (2.2)

which we will refer to as the moments of the distribution P , where we define P
as the probability measure on [0, 1] supported on k discrete points θj , each
with weight πj . That is, we can write

µi :=

∫ 1

0

θi dP(θ) (i ≥ 0). (2.3)

Obviously asm→∞we are able to learn from a single sample the bias of the
chosen coin; and thus can determine the distribution on coins with enough
samples. On the other hand, even with exact statistics, we need m ≥ 2k in
order to verify that P is supported on at most k points (this will be explained
below). In this chapter we will solve the problem form = 2k.

Understanding the relationship between the sequence (µi) and measures on
[0, 1] is a classical problem in probability, known as the Hausdorff moment
problem.

The Sparse Hausdorff Moment Problem. The Hausdorff moment prob-
lem is that of determining what moment sequences (µi) are possible for a
probability measure P supported on [0, 1]. See [1], [2] for background on
this classical problem.

Our problem is the computational version of the Hausdorffmoment problem,
“sparse” because the measure P is supported on an unknown but discrete set
{θ1, . . . , θk}.

Motivation. The problem of reconstructing the parameters (θ, π) is quite
useful:

(i) By a known reduction, any algorithm for this problem lifts to an algorithm
for learning Topic Models. This will be discussed in Sec. 2.6.

(ii) The moments we analyze correspond to the cumulative distribution func-
tion of an exponential distribution. Thus, the problem of learning mixtures
of binomial distributions is equivalent to learning mixtures of exponential

7

distributions. [3] show that learning population histories from coalescence
times reduces to learning mixtures of exponential distributions. The use of
[3] of theMatrix PencilMethod is interchangeable with our version of Prony’s
method, which improves time complexity. Other applications of learning
mixtures of binomial or (equivalently) exponential distributions abound
in various areas, including ecology, geology, social sciences, and computer
systems. For example, see [4] for an application in network evaluation.

(iii) This problem is a special case of the problem of identifying mixture
models of k product distributions on binary variables, a problem on which
there has been an impressive sequence of contributions in the last twodecades,
as we will discuss below. In chapter 4, our results for the iid case are used to
improve the complexity of the k-Mix Prod problem. In particular, we use the
algorithm for k-Mix IID as a subroutine in the solution to k-Mix Prod.

(iv) Algorithms for identifying mixtures of product distributions are the
simplest case of the yet-more-general problem of identifying distributions on
directed graphical models [5]. There has been little work in this direction, [6]
being a notable exception. However, even that work has to make strong
assumptions about the distributions of the variables Xi, and in particular
they cannot be binary. (Except for the case k = 2, but we are concerned here
with complexity of the problem as a function of k.) Source identification in
causal graphical models is an important direction for future research, and
the dependence of the sample size and runtime complexity on k matters a
great deal. (One may think of k as a bound on how much “confounding”
there is among the observables in the model.)

Prony’s method. The algorithm we analyze is essentially that of Prony,
1795 [7]. The idea is to (a) characterize the coin biases (the support of P)
as the roots of a polynomial whose coefficient vector is the kernel of the
Hankel matrix; (b) use polynomial root-finding to determine the empirical
coin biases; (c) reconstruct the mixture weights by polynomial interpolation.

Prior work on the sparse Hausdorff, i.e., k-coin mixture, problem. It
has long been acknowledged in the numerical analysis literature (e.g., [1]
§9.4, [8]) that the Prony method is highly sensitive to sample error (i.e., to
errors in the moments). This instability is also inherent to our problem (the
source identification of k-coin mixture models); a lower bound ([9] Thm 6.1)

8

shows that even for any constant c ≥ 2, if ck (rather than just the minimum
2k) noisy moments are available, accurate source identification is possible
only if those moments are available to accuracy exp(−Ω(k)). To be specific
here, the input to our problem is an empirical moment sequence µ̃0, . . . , µ̃m;
its accuracy is maxi |tildeµi − µi|where µi is as in (2.3).

In order to obtain this short list of moments to within accuracy ε one needs
sample size roughly 1/ε2. Throughout the paper, therefore, accuracies of
exp(−Ω(k)) in the moments, translate to sample size bounds of exp(Ω(k)),
and vice versa; we shall therefore have no need to comment separately on
sample size.1

The prior upper bounds for the problem were: (i) [9] re-invented the Prony
method and solved the problem using moment accuracy min{ζO(k), k−O(k2)}
and runtime poly(k). (ii) A different algorithm in [10] improved require-
ments in the moment accuracy to k−O(k) but required runtime kO(k2). (iii)
Motivated by a problem in population genetics that reduces to the k-coin
mixture problem, [3] analyzed a solution using the Matrix Pencil Method
(MPM), which required moment accuracy π4

minζ
O(k).

We note that [9], [10] do not depend on πmin and [10] does not depend on ζ .
This is the result of analyzing error in terms of transportation norm, which
allows coins with equivalent biases (ζ = 0) to be merged and improbable
coins (πmin ≈ 0) to be ignored without severe consequences.

The Matrix Pencil Method used by [3] gives the desired parameters of the
model (θ) directly, yielding a straightforward stability analysis. While run-
time is not discussed in [3], the method requires solving a generalized eigen-
value problem, which in practice requires timeO(k3).2 Wepropose improving
runtime by instead using Prony’s Method, a close “relative” of the Matrix
Pencil Method. Prony’s Method gives coefficients of a polynomial whose

1Of course, collecting samples also takes time, so one might ask whether the sample
complexity should be included within the runtime term. However, the process of sampling
and computing the moments or frequencies is computationally trivial. It can often be
done under a very restrictive computational model, such as streaming. Or samples might
be collected in parallel. Or the frequencies might be otherwise available from an external
source. Thus, wemake a clear distinction between two resourceswhich a source identification
algorithm requires: the sample size, which as noted, translates directly into the accuracy of
the moments; and the runtime, given those moments.

2It is possible that the runtime could be improved to the time it takes to multiply two
k× k matrices. This is still much worse than O(k2), and the best guarantees hide impractical
constants.

9

roots lie at the desired parameters (θ). This significantly complicates the
stability analysis, which becomes the main undertaking of this paper.

Our result. Ourmain result is to provide source identification of k-coin mix-
tures using the Prony method, simultaneously requiring moment accuracy
only π2

minζ
O(k), and achieving runtime O(k2+o(1)).

The main technical contributions needed for the result are Theorem 16 and
Lemma 28, which give quantitative characterizations of the error propagation
occurring in Prony’s method. Recall that Prony’s method interprets the
kernel of a Hankel matrix as a polynomial with roots corresponding to the
support of P . We are able to show that the approximate Hankel matrix has
a pseudo-kernel that is close to the kernel of the exact Hankel matrix; this
pseudo-kernel has roots close to the roots of the exact kernel when interpreted
as a polynomial.

Our result also implies an improvement in identifying pure topic models,
via the reductions in [9], [10]. These reductions require solving k binary
instances, and the required accuracy of those solutions necessitates a post-
reduction moment accuracy of exp(−Ω(k2 log k)) in both papers (hence, re-
quired sample size exp(O(k2 log k))). Our result improves the required accu-
racy the moments to exp(−Ω(k log k)) (sample size exp(O(k log k))) and the
runtime to O(k3+o(1)). A more detailed comparison with previous work on
topic models is given in Section 2.6.

We have posted a working implementation of the algorithm on the following
public Jupyter Notebook: Online notebook implementation.3 (Tested in
Chrome and Safari.)

Related work. The k-coin problem becomes easier whenm is superlinear
in k, and trivial when m is Ω(k2 log k). Therefore, we focus on the smallest
m for which the problem is solvable, which is m = 2k − 1 if k is assumed,
orm = 2k if k needs to be verified. As noted previously, three prior papers
gave algorithms with worse performance than ours. Roughly stating the
results (ignoring dependence on ζ and on πmin), they are as follows. The
paper [9] solved the problem with moment accuracy k−O(k2) (sample size

3https://colab.research.google.com/drive/1qR6VOYSjq08LPxqHhyY0ap_
VL1apt9yS?usp=sharing

https://colab.research.google.com/drive/1qR6VOYSjq08LPxqHhyY0ap_VL1apt9yS?usp=sharing
https://colab.research.google.com/drive/1qR6VOYSjq08LPxqHhyY0ap_VL1apt9yS?usp=sharing
https://colab.research.google.com/drive/1qR6VOYSjq08LPxqHhyY0ap_VL1apt9yS?usp=sharing

10

kO(k2)) and runtime poly(k). That paper also proves a lower bound of exp(k)
on the sample size needed to solve the problem. Subsequently, a different
solution using near optimal sample size s = kO(k), but much worse runtime
of kO(k2), was given in [10]. More recently, an algorithm achieving sample
size s = kO(k) and runtime of poly(k)was analyzed in [3]. (Incidentally all
of these papers use m = 2k − 1, and hence do not deal with verifying that
the source is a k-coin distribution.)

In [9], [10], the k-coin problem arises as the output of a reduction from
the problem of identifying topic models, introduced in [11], [12]. A (pure)
k-topic model is simply analogous to the k-coin problem with highly multi-
sided coins. There has been ample work on learning pure and mixed topic
models, under various restrictive assumptions on themodel, and alsowithout
restrictions [9], [10], [13], [14]. The reductions of [9], [10] can be used
in conjunction with our algorithm to reduce the sample size and runtime
required to solve the topic model problem. This is discussed in Section 2.6.

In [3], the k-coin problem arises as output of a reduction from the problem
of inferring population histories (see the references therein). Our results
improve both the sample size and the runtime complexity of the solution. We
do note that the k-coin algorithm in [3] could have been used in conjunction
with the reductions in [9], [10] to solve the topic model problem; the bounds
derived this way would be worse than the bounds we prove in this paper.

We also mention some generalizations of the k-coin problem that were con-
sidered in the literature. Most obvious is mixtures of k product distributions
on {0, 1}m. That is, the formulation is the same as ours except thatX1, . . . , Xm

are merely required to be independent, but not necessarily iid, conditional
on the hidden variable H . This problem has been the focus of considerable
research in the past two decades [15]–[20]. Clearly, in this case a larger m
is no longer purely helpful, since the number of degrees of freedom of the
problem also goes up with m. It should be noted, though, that the strongest
results in this sequence, [19] and [20], do not address the problem of identi-
fying the source model; rather, they learn a model which generates similar
statistics. On the positive side, this task can sometimes be performed even
under conditions where there is not enough information in the statistics for
identification (i.e., when there are models with near-enough statistics that
are far apart in, say, transportation distance); but on the negative side, since

11

these algorithms (as well as the algorithm in [10]) are forced to perform an
exhaustive enumeration over a large grid of potential models, their computa-
tional efficiency does not much improve evenwhen the statistics are known to
sufficiently-good accuracy that only a very small-diameter (in transportation
distance) set of models could generate them.

The distinction between the “identification” and “learning” goals was made
already in [16], who solved the identification problem for mixtures of k = 2

product distributions on {0, 1}m. Similar results for somewhat more general
models were achieved at a similar time in [17]. The best result to date [20]
learns in time kk3 ·mO(k2), improving upon a previous result [19] ofmO(k3).
The same paper [20] shows a lower bound ofmΩ(

√
k) on the sample size of

the task.

Beyond mixtures of product distributions, an even more complex but impor-
tant class of source identification problems arises when the hidden variable
(our “H”) may be just one of several such variables, and when a known
directed causal structure exists among the observed variables (the “Xi”).
This is a very broad field of investigation and we point only to [5], [21]
for background, and to [6] for an example of how (with some additional
assumptions on the distributions of the Xi) certain models can be handled.

2.2 Mixture Models and Other Definitions
We specialize the definitions appearing in Chapter 1 to this particular problem
to reduce notational clutter.

Definition 6 (The k-coin model). A k-coin modelM = (θ, π) is a mixture,
with non-negative mixing weights π1, . . . , πk, of k Bernoulli variables with
success probabilities θ1, . . . , θk, respectively.

Definition 7 (m-snapshots of a k-coin model). Given a k-coin modelM =

(θ, π), anm-snapshot is a sample from the mixture of binomial distributions
π1 Binomial(m, θ1) + . . . + πk Binomial(m, θk). (The binomial is a sufficient
statistic for m rv’s X1, . . . , Xm because they are iid given the selected coin.)

For a k-coin model, the moments defined in equation (2.3) can be written as
follows where δθ is the Dirac measure at θ,

P = π1δθ1 + · · ·+ πkδθk , µi =
k∑

j=1

θijπj.

12

Definition 8 (Separation for polynomials and mixtures). For a k-coin proba-
bilitymodelM = (θ, π), define the separation by ζ(M) = mini ̸=j |θi − θj|. For
a degree k polynomial with roots β1, . . . , βk ∈ C, define the root separation
by mini ̸=j |βi − βj|.

Definition 9. The rectangular Vandermonde matrix V
(m)
θ ∈ R(m+1)×k associ-

ated with a vector θ ∈ Ck is given by

V
(m)
θ =

1 1 1 · · · 1

θ1 θ2 θ3 · · · θk

θ21 θ22 θ23 · · · θ2k
...
θm1 θm2 θm3 · · · θmk

.

We will denote the square Vandermonde matrix by Vθ := V
(k−1)
θ .

Definition 10 (Hankel Matrix). The (k + 1)× (k + 1) Hankel matrixHk+1 =

Hk+1(P) is defined byHk+1 = [µi+j]
k
i,j=0.

Note that if P is supported on a set of cardinality k (a.k.a. a k-coin distribu-
tion), then

Hk+1 =
k∑

j=1

πjθjθ
T
j = V

(k)
θ diag(π1, . . . , πk)V

(k)
θ

T
(2.4)

where θTj = (1, θj, θ
2
j , θ

3
j , . . . , θ

k
j). This also shows that the Hankel matrix is

positive semi-definite.

Definition 11 (Polynomial associated with a vector). We associate to each
vector q ∈ Rk a degree k − 1 polynomial q̂(x) =

∑k−1
j=0 qjx

j . (For this reason
we use zero indexing for the vector.)

Definition 12. For a matrixM , let ∥M∥2 denote the 2→ 2 operator norm of
M . Thus, ∥M∥2 = σmax(M), the largest singular value ofM .

Definition 13. For a Hermitian matrixM , let λi(M) denote the ith smallest
eigenvalue ofM . In particular λ1(M) is the smallest eigenvalue ofM .

Definition 14 (Euclidean projection onto a closed convex set). For a closed
convex set S ⊆ Rk and any point x /∈ S, the Euclidean projection of x onto S

is ProjS(x) := argminy∈S ∥y − x∥2 . This projection is unique.

13

2.3 Properties of Hankel Matrices
We begin with some properties of Hankel matrices corresponding to finitely
supporteddistributions that follow from results inChihara [22]. (See Schmüd-
gen [23, Ch. 10] for a complete characterization.) For completeness, a proof
is provided in Section 2.9.

Lemma 15. Let P be a probability measure on [0, 1]. Then,

1. P is supported on a set of cardinality at most k iffHk+1 is singular.

2. If the support of P is a set {θ1, . . . , θk} ⊂ [0, 1] then the kernel of Hk+1 is
spanned by the vector q ∈ Rk+1 where q̂(z) =

∏k
i=1(z − θi) is the unique

monic polynomial with roots at the support of P .

The above lemma is classic in the theory of Orthogonal Polynomials, but for
completeness we provide a proof in Section 2.9. An essential contribution of
this chapter is to strengthen the above lemma with a quantitative version:

Theorem 16. Let P = (θ, π) be a k-coin distribution with separation ζ, and let
Hk := Hk(P). Then, with I representing the k × k identity matrix and ⪰ being the
PSD order,

Hk ⪰
πmin

k
·
(
ζ

8

)2k−2

· I .

Proof. We must show that for every monic degree k′ ≤ k − 1 polynomial q̂,
represented by q ∈ Rk,

qTHkq ≥
πmin

k
·
(
ζ

8

)2k−2

· ∥q∥22 .

Let β1, β2, . . . , βk′ be the roots (possibly complex) of the polynomial q̂, ordered
so that |β1| ≥ |β2| ≥ · · · ≥ |βk′ |. Since q̂ is monic, we can write q̂(x) =∏k′

j=1(x − βj). As the balls B(θi, ζ/2), i = 1, 2, . . . , k, are disjoint, by the
pigeonhole principle, there exists an i ∈ {1, 2, . . . , k} such that B(θi, ζ/2) ∩
{β1, β2, . . . , βk′} = ∅. The value of q̂ at θi is

q̂(θi) =
k′∏
j=1

(θi − βj).

14

There must be some ℓ ∈ {0, 1, 2, . . . , k′} such that |qℓ|2 ≥ ∥q∥22
k′+1

. Notice that
|qℓ| = |ek′−ℓ(β1, β2, . . . , βk′)|, where er is the r-th elementary symmetric poly-
nomial over k′ variables. (e0 = 1, e1 =

∑
βi, e2 =

∑
i<j βiβj , etc. . .) So, ek′−ℓ

is the sum over
(

k′

k′−ℓ

)
≤ 2k

′ monomials, hence |β1β2 · · · βk′−ℓ| ≥ ∥q∥2
(
√
k′+1)2k′

.
Eliminating from the product all the factors whose absolute value is below 2,
we get that for some r ≤ k′ − ℓ, |β1β2 · · · βr| ≥ ∥q∥2

(
√
k′+1)4k′

. For j ∈ {1, 2, . . . , r},
since |βj| ≥ 2 and θi ∈ [0, 1], it follows that |θi − βj| ≥ |βj |

2
. Also, by the

definition of iwe have that |θi − βj| > ζ/2 for all j ∈ {1, 2, . . . , k′}. Thus, we
have that

|q̂(θi)| =

(
r∏

j=1

|θi − βj|

)(
k′∏

j=r+1

|θi − βj|

)
≥ |β1β2 · · · βr|

2r

(
ζ

2

)k′−r

≥ ∥q∥2
(
√
k′ + 1)8k′

ζk
′ ≥ 1√

k
·
(
ζ

8

)k−1

∥q∥2 .

Therefore,

qTHkq =
k∑

j=1

πj · (q̂(θj))2 ≥ πmin · (q̂(θi))2 > πmin ·
1

k
·
(
ζ

8

)2k−2

· ∥q∥22 .

Corollary 17. For a k-coin model (θ, π), λ2(Hk+1) > πmin ·
(

ζ
16

)2k−2.

Proof. By the Courant-Fischer-Weyl min-max principle, the smallest eigen-
value of Hk is given by minimizing the Rayleigh-Ritz quotient. Let q ̸= 0

be a minimizer of qTHkq
qTq

. Let k′ be greatest such that qk′ ̸= 0, and w.l.o.g. set
qk′ = 1. Then by Theorem 16,

λ1(Hk) = min
q ̸=0

qTHkq

qTq
≥ πmin

k
·
(
ζ

8

)2k−2

≥ πmin ·
(

ζ

16

)2k−2

,

where the last inequality follows from observing that 1/k ≥ 1/22k−1 for k ≥ 2.
Notice that Hk is a principal submatrix of Hk+1. Therefore, by the Cauchy
interlacing theorem (Theorem 40), λ2(Hk+1) ≥ λ1(Hk).

2.4 The Empirical Moments
We bound the sampling error as follows. Sample s coins and let each of the
random variables hj , 0 ≤ j ≤ 2k, be the fraction of coins which came up
“heads” exactly j times. Then by the additive deviation bound known as
Hoeffding’s inequality [24], Pr(|hj − E(hj)| ≥ t) ≤ 2 exp(−2t2s). Thus

15

Lemma 18. If we use s > 1
2t2

log(4k/δ) samples then with probability at least 1− δ:
∀j, |hj − E(hj)| < t.

We can convert between the normalized histogram h and the standard mo-
ments of the distribution by using the observation (Lemma 1 in [25]) that
for any t ∈ R,

ti =
n∑

j=i

(
j
i

)(
n
i

) × (n
j

)
tj(1− t)n−j.

This gives us a linear transformation for converting from h to the vector
µ̃ = (µ̃0, . . . , µ̃2k). Define Pas ∈ R(2k+1)×(2k+1) (using zero-indexing) by

Pasij =

(ji)
(2ki)

if j ≥ i

0 otherwise;

then µ̃ = Pash.

Lemma 19. ∥Pas∥2 ≤ 6k. Proof in Appendix 2.9.

Now let µ = (µ0, . . . , µ2k) be the actual vector of moments of the distribution
P .

Lemma 20. For every ε > 0, using s = 2O(k) · 1
ε2
· log(1/δ) samples gives us

estimated moments µ̃ = (µ̃0, . . . , µ̃2k) satisfying ∥µ̃− µ∥∞ ≤ ε with probability at
least 1− δ.

Proof. Follows directly from Lemma 19 and Lemma 18.

Given an s-sample as above with empirical moments µ̃0, µ̃1, . . . , µ̃2k, denote
by H̃k+1 the empirical Hankel matrix,

H̃k+1 =

µ̃0 µ̃1 µ̃2 · · · µ̃k

µ̃1 µ̃2 µ̃3 · · · µ̃k+1

...
µ̃k µ̃k+1 µ̃k+2 · · · µ̃2k

 . (2.5)

Corollary 21. For every ε > 0, using s = 2O(k) · 1
ε2
· log(1/δ) samples, we can

obtain an empirical Hankel matrix satisfying
∥∥∥H̃k+1 −Hk+1

∥∥∥
2
≤ ε with probability

at least 1− δ.

Proof. We have
∥∥∥H̃k+1 −Hk+1

∥∥∥
2
≤
∥∥∥H̃k+1 −Hk+1

∥∥∥
F
≤ (k + 1) · ∥µ̃ − µ∥∞.

Now use Lemma 20 with ε
k+1

.

16

2.5 Learning the Source
In this section, we define our learning algorithm, and we state and prove our
main result and applications. The auxiliary lemmas are stated and proved in
Section 2.7. The algorithm is specified given k, lower bounds on the source
parameters ζ and πmin, the empirical histogram h, and a parameter γ control-
ling the output accuracy. The algorithm is a straightforward implementation
of Prony’s method with numerical approximations where needed. See Al-
gorithm 1 for the full description of the algorithm (where the parameter
for probability of success, 1− δ, has been suppressed in favor of a constant
“0.99”). On line 5, we take the output of Prony’s method and project the roots
back into [0, 1] and on line 6 in RectifyWeights we do a similar correction
to ensure that the weights are non-negative and still sum to one. While
simple, we defer the implementation of RectifyWeights to Algorithm 2 in
Appendix 2.8.

Procedure LearnPowerDistribution(k, ζ, πmin, H̃k+1, γ):
1 v

ε1−approx←−−−−−− argmin{vTH̃k+1v : vTv = 1}
// ε1 = πmin · 2−γ · (ζ/16)2k

2

3 β̃1, β̃2, . . . , β̃k
ε2−approx←−−−−−− roots(v̂)

// ε2 =
1
6k
· 2−γ · (ζ/2)k

4

5 θ̃1, θ̃2, . . . , θ̃k ← Proj[0,1](β̃1), . . . ,Proj[0,1](β̃k)

6 π̃ ← RectifyWeights(V −1

θ̃
µ̃)

// see Algorithm 2 on page 24
7

8 return M̃ ← (θ̃, π̃)

Procedure LearnCoinMixture(k, ζ, πmin, γ, h):
9 µ̃← Pash

10 H̃k+1 ← Hankel(µ̃)
11 return M̃ ← LearnPowerDistribution(k, ζ, πmin, H̃k+1, γ)

Algorithm 1: The main learning algorithm.

Theorem 22. LetM = (θ, π) be a k-coin model with separation ζ = ζ(M). Given
an empirical Hankel matrix H̃k+1 satisfying

∥∥∥H̃k+1 −Hk+1

∥∥∥
2
≤ πmin·2−γ ·(ζ/16)4k,

the procedure LearnPowerDistribution in Algorithm 1 outputs a model M̃ =

(θ̃, π̃) satisfying ∥∥∥θ − θ̃
∥∥∥
∞
, ∥π − π̃∥∞ ≤ 2−γ

17

using O(k2 log k + k log2 k · log(log ζ−1 + log π−1
min + γ)) arithmetic operations.

Proof. Throughout the proof, we make no attempt to optimize the absolute
constants that are used. Let u1 denote the unit vector spanning the kernel
of Hk+1, and let v1 denote the eigenvector corresponding to the smallest
eigenvalue of H̃k+1. Also, let ε0 > 0 be a sufficiently small constant, to be
determined later. The analysis of LearnPowerDistribution can be broken
down into steps, each of which degrades the initial accuracy obtained for the
Hankel matrix. The outline is as follows. The auxiliary claims and proofs
appear mostly in Section 2.7.

1. As
∥∥∥H̃k+1 −Hk+1

∥∥∥
2
≤ πmin · 2−γ · (ζ/16)4k, by Lemma 25,

∥u1 − v1∥2 <
√

2(k + 1) · 2−γ · (ζ/16)2k < 1

2
· 2−γ · (ζ/8)2k.

2. We use Lemma 26 with ε = πmin · 2−γ · (ζ/16)2k, which satisfies the
conditions of the lemma. We compute v ∈ Rk+1 such that

∥v − v1∥2 ≤ ε <
1

2
· 2−γ · (ζ/16)2k,

using O(k2 log k + k log2 k · log(log ζ−1 + log π−1
min + γ)) arithmetic opera-

tions.

3. As ∥u1 − v1∥2, ∥v − v1∥2 < 1
2
· 2−γ · (ζ/16)2k, we have that ∥u1 − v∥2 <

2−γ · (ζ/16)2k. So, by Lemma 27,

∥q − r∥∞ < 2k ·
√
k + 1 · 2−γ · (ζ/16)2k < 2−γ · (ζ/8)2k,

where q := u1/ |(u1)k| , r := v/ |(u1)k|.

4. As ∥q − r∥∞ < 2−γ · (ζ/8)2k ≤ 1
24k(k+1)

· 2−γ · (ζ/2)2k−1, by Lemma 28 we
have that

d(θ, β) ≤ 1

6(k + 1)
· 2−γ · (ζ/2)k

(where θ is the vector of roots of q̂ and β is the vector of roots of r̂ and
d is the matching distance, defined in Lemma 28).

5. We use Corollary 43 with ρ = ε = 1
6(k+1)

· 2−γ · (ζ/2)k, which satisfy
the conditions of the corollary. Thus, we can compute biases θ̃1, . . . , θ̃k
satisfying ∥∥∥θ̃ − θ

∥∥∥
∞
≤ ρ+ ε ≤ 1

3(k + 1)
· 2−γ · (ζ/2)k,

18

using O(k log2 k · (log(log ζ−1 + γ) + log2 k)) arithmetic operations.

6. Finally, line 6 can be executed in the time it takes to invert the Vander-
monde matrix Vθ̃ (i.e., O(k2) arithmetic operations, for instance using
Parker’s Algorithm [26]; by Lemma 34, the procedure RectifyWeights
takes O(k) operations). By Corollary 35, as ∥θ̃ − θ∥∞, ∥µ̃ − µ∥∞ ≤

1
3(k+1)

· 2−γ · (ζ/2)k (the guarantee for µ̃ is implied with plenty of room
to spare by our assumption on the sample), we have ∥π̃ − π∥∞ ≤ 2−γ .

Corollary 23. LetM = (θ, π) be a k-coin model with separation ζ = ζ(M). For
any γ ≥ 1, the procedure LearnCoinMixture in Algorithm 1 uses a histogram h

for a sample of 2k-snapshots of size s = π−2
min · 2O(k+γ) · ζ−O(k) · log δ−1, and outputs

a model M̃ = (θ̃, π̃) satisfying∥∥∥θ − θ̃
∥∥∥
∞
, ∥π − π̃∥∞ ≤ 2−γ

with probability at least 1− δ. After sampling, LearnCoinMixture computes the
approximate model M̃ using O(k2 log k + k log2 k · log(log ζ−1 + log π−1

min + γ))

arithmetic operations.

Proof. By Lemma 20 and Corollary 21 we can achieve
∥∥∥H̃k+1 −Hk+1

∥∥∥
2
≤

πmin · 2−γ · (ζ/16)4k for a sample of size s = π−2
min · 2O(k+γ) · ζ−O(k) · log δ−1, with

probability at least 1− δ. The theorem immediately follows from Theorem 22.

Notice that the proof actually gives a stronger guarantee for
∥∥∥θ̃ − θ

∥∥∥
∞
, which

is relative to (ζ/2)k. We can get a relative guarantee ∥π̃ − π∥∞ ≤ πmin · 2−γ by
increasing the sample size by a factor of π−2

min.

Corollary 24. Let W (M,M̃) denote the Wasserstein distance between modelsM
andM̃ (viewed as metric measure spaces on [0, 1]). Then,W (M,M̃) ≤ (k+1)·2−γ

with probability at least 0.99. Proof in Appendix 2.9.

2.6 Implications for Topic Models
Corollary 23 improves upon the upper bound of Theorem 5.1 in [9], which
uses a sample of (2k − 1)-snapshots of size max

{
(2/ζ)O(k), (2γk)O(k2)

}
to

achieve accuracy 2−γ with high probability, using runtime ofO(kc) arithmetic

19

operations, for a relatively large constant c (in particular, the algorithm solves
a convex quadratic program whose representation uses k3 bits). Corollary 23
also improves upon the upper bound of [10].4 That algorithm uses a sample
size comparable to ours, but requires runtime (2γk)O(k2) to achieve accuracy
2−γ with high probability.

These improvements imply immediately a similar improvement for learning
pure k-topic models, using known reductions from k-topic models to k-coin
models. The reduction in Theorem 4.1 of [9] uses a sample of 1- and 2-
snapshots of size O

(
n · poly

(
log n, k, π−1

min, ζ
−1, 2γ

))
, and runtime polynomial

in the sample size, to reduce the problem to solving k instances of the k-coin
problem with accuracy min

{
(2γk/πminζ)

−O(1) , (2γk)−O(k)
}
. The reduction

in [10] 5 uses a sample of 1- and 2-snapshots of size poly (n, k, 2γ), and runtime
polynomial in the sample size, to reduce the problem to solving at most k
instances of the k-coin problem with accuracy (2γk)−O(k). Notice that solving
the k-coin outcome of either one of the two reductions using either one of
the two previous algorithms requires a sample size of at least kO(k2) (on
account of the required accuracy). Our algorithm enables a solution to the
outcome of these reductions using a sample size of kO(k) (and total runtime
of O(k3+o(1))). We note that the accuracy in [9], [10] is stated in terms of
Wasserstein distance, which is a weaker guarantee than the one we use here
(see Corollary 24).

2.7 Analysis
In this sectionweprove the lemmas that are needed in the proof of Theorem22
andCorollary 23. We have to copewith the fact that roots of polynomials (and
even, generally, of polynomials with well-separated roots), are notoriously
ill-conditioned in terms of the polynomial coefficients [27]. For this reason
we will be developing bounds specifically adapated to our situation. We
begin with an estimate on the accuracy of the recovered kernel of the Hankel
matrix.

Lemma 25. Let P be any k-coin distribution with separation ζ. Then, for every
ε < πmin ·

(
ζ
16

)2k the following holds. Suppose that ∥∥∥H̃k+1 −Hk+1

∥∥∥
2
≤ ε. Let u1 be

the unit vector in the kernel ofHk+1 and let v1 be the unit eigenvector corresponding to
4See Theorem 3.9 in the ArXiv version
5See Theorem 6.1 in the ArXiv version.

https://arxiv.org/pdf/1504.02526.pdf

20

λ1(H̃k+1) (chosen so that uT
1 v1 ≥ 0). Then ∥u1 − v1∥2 <

√
2(k + 1) ·

(
16
ζ

)2k
· ε
πmin

.
Proof in Appendix 2.9.

Recall that
(
λ1(H̃k+1), v1

)
is an eigenpair of H̃k+1. We need to compute a

good approximation of v1. This can be done using the following lemma. The
result is implied by the algorithm of Pan and Chen (Theorem 1.2 of [28]).
Extracting our lemma from the result in that paper is somewhat involved and
we provide in Appendix 2.9 a brief outline of the argument (in particular,
the parts that are not spelled out in that paper).

Lemma 26. For every ε such that 0 < ε < 1
2
min{λ2(H̃k+1)−λ1(H̃k+1), 1}, we can

compute a unit vector v satisfying ∥v − v1∥2 < ε usingO
(
k2 log k + k log2 k log log(1/ε)

)
arithmetic operations.

We need to show that our computed first eigenvector of the empirical Hankel
matrix is close to the kernel eigenvector of the true Hankel matrix.

Lemma 27. Let P be any k-coin distribution with separation ζ. Let u1 be a unit
vector in the kernel ofHk+1. Let v be a unit vector satisfying ∥u1 − v∥2 < ε for some
ε > 0. Let q = u1/ |(u1)k| and let r = v/ |(u1)k|. Then ∥q − r∥∞ < 2k

√
k + 1 · ε.

Proof in Appendix 2.9.

We are going to use the roots of the polynomial r̂ as our guessed coin biases
(after projecting the roots back to [0, 1]). We first need to show that the roots
of q̂ are well-behaved with respect to perturbations of q so that when q and r

are close the roots of q̂ are close to the roots of r̂.

Lemma 28. Let q ∈ Rk+1 be the vector representing a degree-k monic polyno-
mial with roots θ1, θ2, . . . , θk contained in [0, 1]. Let ζ be the root separation for
q̂. Let r ∈ Rk+1 represent another degree-k polynomial. Let ε ∈

(
0, (ζ/2)

k

4k

)
. If r

satisfies ∥q − r∥∞ ≤ ε, then the (possibly complex) roots β1, β2, . . . , βk of r̂ sat-
isfy d(θ, β) ≤ 4kε

(ζ/2)k−1 where d(θ, β) is the optimal matching distance defined by
d(θ, β) := minσ∈Sk

maxi
∣∣θi − βσ(i)

∣∣.
Proof. Fix any root θi of q̂, and consider the ball

Bi = B

(
θi,

4kε

(ζ/2)k−1

)

21

in the complex plane. By assumption, 4kε
(ζ/2)k−1 < ζ

2
, so there are no other roots

of q̂, aside from θi, in Bi. Moreover, for any x ∈ Bi, and for any j ̸= i, we have
that |x− θj| ≥ ζ

2
. Thus for every x ∈ ∂Bi, we have

|q̂(x)| =

∣∣∣∣∣(x− θi)
∏
j ̸=i

(x− θj)

∣∣∣∣∣ > 4kε

(ζ/2)k−1

(
ζ

2

)k−1

= 4kε.

On the other hand, we also have that Bi ⊂ B(0, (2k − 1)/(2k − 2)), as
θ1, . . . , θk ∈ [0, 1] and ζ ≤ 1

k−1
. Therefore, |x| ≤ 2k−1

2k−2
, and thus

|q̂(x)− r̂(x)| =

∣∣∣∣∣
k∑

j=0

(qj − rj)x
j

∣∣∣∣∣ ≤
k∑

j=0

|qj − rj| · |x|j ≤ (k + 1) ·
(
2k − 1

2k − 2

)k

· ∥q − r∥∞ ≤ 4kε.

By Rouché’s theorem (Theorem 41), we conclude that there is exactly one
zero of r̂ in Bi and the matching distance bound follows immediately.

Our reconstructed coin biases will be denoted θ̃1, θ̃2, . . . , θ̃k. We compute
these biases by finding the roots of v̂ (approximately), and then by projecting
these roots onto the unit interval. To find the approximate roots we can use
Corollary 43 in Appendix 2.10.

Once we have recovered the parameters θ̃1, . . . , θ̃k, we need to use those to
recover mixture weights. This sequence of steps—first solving (approxi-
mately) for the roots, then for the mixture weights—is the essence of Prony’s
method [7], [1] §9.4, [8].

In Appendix 2.8, we will show that this recovery can be done by solving a
linear system without paying too great a price in terms of accuracy.

22

2.8 Computing the Weights
Recovering the Weights
We will begin by stating results characterizing the condition number of a
Vandermonde matrix under perturbations that preserve the Vandermonde
structure.

Lemma 29 (Operator norm bound for a Vandermonde inverse; equation 3.2

in [29]). Let θ ∈ Rk be entry-wise non-negative, and let q(z) =
k∏

i=1

(z − θi). Then

∥∥V −1
θ

∥∥
∞ =

|q(−1)|
mini {(1 + θi) |q′(θi)|}

.

Claim 30. For roots θ1, . . . , θj satisfying |θi − θj| ≥ ζ, we have
∥∥V −1

θ

∥∥
∞ ≤

2k/ζk−1.

Proof. We apply Lemma 29 and observe that |q(−1)| ≤ 2k and q′(θi) ≥ ζk−1.

We define the derivative matrix of the Vandermonde matrix by interpreting
each entry as the evaluation of a polynomial at a point, [Va]ij = pi(aj), where
pi(t) = ti. Then [V ′

a]ij = p′i(aj) = iai−1
j .

We will now define the condition number of the system,

cond∞(a, b) := lim
ε→0

sup
∥∆a∥∞≤ε
∥∆b∥∞≤ε

{
∥∆x∥∞

ε

∣∣∣∣ V (a+∆a)(x+∆x) = b+∆b

}
.

(2.6)

We will utilize a bound from [30]. After instantiating the theorem with the
parameters relevant to our problem, the bound is the following:

Theorem31 (Theorem2.2 of [30]). cond∞(a, b) ≤ ∥V −1
a ∥∞+∥V −1

a V ′
a diag(x)∥∞.

Lemma 32. Let θ ∈ [0, 1]k, and let w ∈ Rk be a probability distribution over [k].
Let µ = Vθw. If ζ ≤ mini ̸=j |θi − θj|, cond∞(θ, µ) ≤ (k + 1)2k/ζk−1.

23

Proof. We observe that∥∥V −1
θ V ′

θ diag(π)
∥∥
∞ ≤

∥∥V −1
θ

∥∥
∞ ∥V

′
θ diag(π)∥∞

≤ 2k/ζk−1 ∥V ′
θ diag(π)∥∞

= 2k/ζk−1 max
i∈[k−2]

(i+ 1)
k∑

j=1

∣∣θijπj

∣∣
≤ k2k/ζk−1.

Applying the bound of Theorem 31 gives the conclusion.

Lemma 33. Let θ ∈ [0, 1]k and let w ∈ Rk be a probability distribution over [k]. Let
µ = Vθw, and ζ ≤ mini ̸=j |θi − θj|. Then π′ := V −1

θ̃
µ̃ satisfies

∥π′ − π∥∞ ≤
(k + 1)2k

ζk−1
max

{∥∥∥θ̃ − θ
∥∥∥
∞
, ∥µ̃− µ∥∞

}
.

Proof. This follows from Lemma 32 and the definition of the condition num-
ber.

Lemma 34. Given any weights π′ ∈ Rk satisfying
∑k

i=1 π
′
i = 1, the procedure

RectifyWeights(π′) outputs in time O(k) a weight vector π̃ ∈ [0, 1]k satisfying
the following conditions

(i)
∑k

i=1 π̃i = 1.

(ii) ∥π̃ − π∥∞ ≤ (k + 1) ∥π′ − π∥∞.

Corollary 35. Letting π̃ ∈ [0, 1]k be the output of RectifyWeights(π′) where π′ is
as in Lemma 33,

∥π̃ − π∥∞ ≤
(k + 1)22k

ζk−1
max

{∥∥∥θ̃ − θ
∥∥∥
∞
, ∥µ̃− µ∥∞

}
.

Proof. Notice that the first equation in the linear systemdefining π′ is
∑k

i=1 π
′
i =

1Tπ′ = µ̃0 = 1. Thus, π′ satisfies the hypothesis of Lemma 34 and the conclu-
sion follows.

24

Procedure RectifyWeights(π′):
1 I− ← {i | π′

i < 0}, I+ ← {i | π′
i ≥ 0}

2 W− ←
∑

i∈I− π′
i, W+ ←

∑
i∈I+ π′

i

for i = 1, . . . , k do

3 π̃i ←

{
0 if i ∈ I−

π′
i

(
1 + W−

W+

)
if i ∈ I+

end
4 return π̃
Algorithm 2: Correct computed weights to be non-negative and sum to
one.

Fixing the weights
The weights produced prior to calling RectifyWeights sum to 1 (since they
satisfy the equation 1 = µ0 =

∑
j π̃j) but they may lie outside [0, 1]. To correct

this, we simply make all negative weight zero and scale all non-negative
weights so that the sum of the weights doesn’t change.

Proof of Lemma 34. Note that in Algorithm 2, I− denotes the indices of the
negative weights, and I+ the positive weights. W− and W+ denote the sums
of the weights in the corresponding set of indices.

We will now analyze π̃. First, note that we maintain property (i):

k∑
i=1

π̃i =
∑
i∈I+

π′
i

(
1 +

W−

W+

)
= W+

(
1 +

W−

W+

)
= W+ +W− = 1.

Now we show that the weights are non-negative. Trivially, π̃i ≥ 0 for i ∈ I−.
For i ∈ I+,

W+ = 1−W−

= 1 + |W−|

≥ |W−|.

So π′
i(1 +

W−

W+) ≥ 0 if i ∈ I+ as well.

We now prove (ii). We know that the true weights π lie in [0, 1], so increasing
the negative weights to 0 only moves them closer to their true values. Thus,

25

we have |π̃i − πi| ≤ |π′
i − πi| for all i ∈ I−. We observe that∣∣W−∣∣ ≤ ∥π′ − π∥1 ≤ k ∥π′ − π∥∞

and then that

|π̃i − π′
i| =

∣∣∣∣∣∣∣
(
π′
i/W

+
)︸ ︷︷ ︸

≤1

W−

∣∣∣∣∣∣∣ ≤ k ∥π′ − π∥∞ .

It follows that ∥π̃ − π′∥∞ ≤ k ∥π′ − π∥∞. Now we can apply the triangle
inequality to get that

∥π̃ − π∥∞ ≤ ∥π̃ − π′∥∞ + ∥π′ − π∥∞ ≤ (k + 1) ∥π′ − π∥∞ .

To see that the runtime is O(k) we observe we can compute I− and I+ in
linear time and likewise forW− andW+. Each subsequent computation of
π̃i takes constant time.

2.9 Deferred Proofs
Proof of Lemma 15. (Part 1.) By Equation (2.4), the rank ofHk+1 for a t-coin
distribution is at most t, and that implies that if t ≤ k, thenHk+1 is singular.
So consider a distribution P on [0, 1] that has positive mass at k + 1 points or
more. Let q ∈ Rk+1 be a non-zero vector. We have

qTHk+1q =

∫ 1

0

(
k∑

j=0

qjθ
j

)2

dP(θ) =
∫ 1

0

q̂2(θ) dP(θ).

There are at most k points in [0, 1]where the polynomial q̂ evaluates to 0, and
the total P measure of those points is less than 1. Thus, qTHk+1q > 0, soHk+1

is positive definite.

(Part 2.) SinceHk+1 is symmetric, its kernel is spanned by q s.t. qTHk+1q = 0.
In order for the above integral to evaluate to zero over P , we need that
q̂2(θ) = 0 for each point θ ∈ supp(P). As q̂ is of degree ≤ k, it is necessarily a
scalar multiple of

∏k
i=1(z − θi).

Proof of Lemma 19. We first observe that

Pas =

(
0
0

)(
2k
0

)−1 (
1
0

)(
2k
0

)−1 · · ·
(
2k−1
0

)(
2k
0

)−1 (
2k
0

)(
2k
0

)−1

0
(
1
1

)(
2k
1

)−1 · · ·
(
2k−1
1

)(
2k
1

)−1 (
2k
1

)(
2k
1

)−1

0 0 · · ·
(
2k−1
2

)(
2k
2

)−1 (
2k
2

)(
2k
2

)−1

...
0 0 · · · 0

(
2k
2k

)(
2k
2k

)−1

26

which can be factored to obtain

Pas =

(
2k
0

)−1
0 0 · · · 0

0
(
2k
1

)−1
0 · · · 0

0 0
(
2k
2

)−1 · · · 0
...
0 0 0 · · ·

(
2k
2k

)−1

(
0
0

) (
1
0

)
· · ·

(
2k−1
0

) (
2k
0

)
0

(
1
1

)
· · ·

(
2k−1
1

) (
2k
1

)
0 0 · · ·

(
2k−1
2

) (
2k
2

)
...
0 0 · · · 0

(
2k
2k

)

.

Now ∥∥∥∥∥diag
((

2k

0

)
,

(
2k

1

)
, . . . ,

(
2k

2k

))−1
∥∥∥∥∥
2

≤ 1.

The Frobenius norm of the latter matrix is(
2k∑
j=0

j∑
i=0

(
j

i

)2
)1/2

=

(
2k∑
j=0

(
2j

j

))1/2

≤
(
2k

(
4k

2k

))1/2

≤ (2k42k)1/2 ≤ 6k

for k ≥ 2. Using the sub-multiplicativity of the operator norm and the
fact that the Frobenius norm upper bounds the operator norm, we get that
∥Pas∥ ≤ 6k, as desired.

Proof of Corollary 24:. Each θi can be matched to its corresponding θ̃i up to
weightmin{πi, π̃i}. The additional |πi− π̃i|must move an additional distance
of at most 1. This gives

W (M,M̃) ≤
k∑

i=1

|θi − θ̃i| ·min{πi, π̃i}+
k∑

i=1

|πi − π̃i|

≤
k∑

i=1

2−γ min{πi, π̃i}+
k∑

i=1

2−γ

≤ (k + 1) · 2−γ,

using Theorem 22 and the fact that
∑k

i=1 min{πi, π̃i} ≤
∑k

i=1 πi = 1.

Proof of Lemma 25. By Weyl’s inequality, we have that λ1(H̃k+1) ≤ ε. By
Corollary 17, the eigengap λ2(Hk+1)− λ1(H̃k+1) is at least

πmin

(
ζ

16

)2k−2

− πmin

(
ζ

16

)2k

> πmin

(
ζ

16

)2k

.

27

Now we can use Corollary 38 to obtain

uT
1 v1 =

∣∣uT
1 v1
∣∣ ≥

1−

∥∥∥Hk+1 − H̃k+1

∥∥∥2
F∣∣∣λ2(Hk+1)− λ1(H̃k+1)
∣∣∣2

1/2

> 1− (k + 1) · ε2

w2
min

(
ζ
16

)4k
= 1− (k + 1) ·

(
16

ζ

)4k

·
(

ε

πmin

)2

.

Since ∥u1 − v1∥22 = 2− 2uT
1 v1 we get that

∥u1 − v1∥22 < 2(k + 1) ·
(
16

ζ

)4k

·
(

ε

πmin

)2

.

Proof sketch of Lemma 26. We follow the outline in the papers by Pan, Chen,
and Zheng [28], [31]. As H̃k+1 is a Hankel matrix, a similarity transfor-
mation A = T H̃k+1 T

−1, where A is tridiagonal, can be computed in time
O(k2 log k). The characteristic polynomial cA(x) of A can then be computed
in time O(k). Then, a root λ̃ that satisfies |λ̃ − λ1(H̃k+1)| < ε2 can be com-
puted in time O

(
(k log2 k)(log log(1/ε) + log2 k)

)
(see Theorem 42; note that

∥A∥2 = ∥H̃k+1∥2, thus it is trivially upper bounded by (k + 1)2). Next, pro-
ceed to compute v as follows. Pick an initial guess v(0) uniformly at random
on the unit sphere (i.e., from the unit Haar measure on the sphere). We
need vT1 v

(0) > 1√
k
, which happens with constant probability. To boost the

success probability to 1 − δ, we can repeat the entire process O(log(1/δ))

times. For constant δ, this does not affect the asymptotic bound. We compute
v(1), v(2), . . . using the inverse power iteration (see, for instance, Chapter 4
in [32]): Solve for ṽ(t) the system of linear equations

(
λ̃I − H̃k+1

)
ṽ(t) = v(t−1),

then set v(t) = ṽ(t)

∥ṽ(t)∥2
. As H̃k+1 is a Hankel matrix, this can be done using

O(k2) arithmetic operations. How many iterations are needed?—It is known
that if λ1(H̃k+1) is the unique eigenvalue of H̃k+1 that is closest to λ̃, and
if vT1 v(0) > 0, then tan θ(t) ≤ ρ · tan θ(t−1), where θ(t) is the angle between
v1 and v(t), and ρ = |λ̃−λ1(H̃k+1)|

|λ̃−λ2|
, where λ2 is an eigenvalue of H̃k+1 that is

second-closest to λ̃. Notice that in our case ρ = |λ̃−λ1(H̃k+1)|
mini>1 |λ̃−λi(H̃k+1)|

< ε2

ε−ε2
< 2ε.

As tan θ(0) ≤
√
k, after t = O(log1/2ε k) iterations, we have tan θ(t) < ε. This

implies that
∥∥v(t) − v1

∥∥
2
< ε.

28

Proof of Lemma 27. Notice that q and r are well-defined, as (u1)k ̸= 0 by the
second part of Lemma 15. Now each of the coefficients of q can be bounded
by

|qi| = |ek−i(θ1, . . . , θk)| ≤
(
k

i

)
where er is the r-th elementary symmetric polynomial over k variables. Now
∥q∥2 ≤

√
k + 1 · ∥q∥1 ≤ 2k

√
k + 1. Since |(u1)k| · ∥q∥2 = ∥u1∥2 = 1, we have

|(u1)k| ≤ 1
2k

√
k+1

, and

∥q − r∥∞ ≤ ∥q − r∥2 ≤ 2k
√
k + 1 · ∥u1 − v∥2 < 2k

√
k + 1 · ε,

as stipulated.

Proof of Lemma 32. We observe that∥∥V −1
θ V ′

θ diag(π)
∥∥
∞ ≤

∥∥V −1
θ

∥∥
∞ ∥V

′
θ diag(π)∥∞

≤ 2k/ζk−1 ∥V ′
θ diag(π)∥∞

= 2k/ζk−1 max
i∈[k−2]

(i+ 1)
k∑

j=1

∣∣θijπj

∣∣
≤ k2k/ζk−1.

Applying the bound of Theorem 31 gives the conclusion.

2.10 Useful Theorems
Consider two n × n Hermitian matrices A, B, with spectral decomposi-
tions A =

∑n
i=1 κiuiu

T
i and B =

∑n
i=1 λiviv

T
i , where the eigenvalues of

both matrices are sorted in increasing order (i.e., κ1 ≤ κ2 ≤ · · · ≤ κn and
λ1 ≤ λ2 ≤ · · · ≤ λn). Also, let P = B − A and let ρ1 ≤ ρ2 ≤ · · · ≤ ρn be the
eigenvalues of P in increasing order.

Theorem 36 (Weyl’s inequality). For every i ∈ {1, 2, . . . , n},

κi + ρ1 ≤ λi ≤ κi + ρn.

Theorem 37 (Davis-Kahan sinΘ theorem). Using the above definitions, let i0, i1
be integers such that 1 ≤ i0 ≤ i1 ≤ n, and let

g = inf{|κ− λ| : κ ∈ [κi0 , κi1] ∧ λ ∈ (−∞, λi0−1] ∪ [λi1+1,+∞)},

29

where we define λ0 = −∞ and λn+1 =∞. Then,

∥sinΘ(U, V)∥F ≤
∥P∥F
g

,

where U (V , respectively) is the n×i1−i0+1matrix whose columns are ui0 , . . . , ui1

(vi0 , . . . , vi1 , respectively), Θ(U, V) is the i1 − i0 + 1× i1 − i0 + 1 diagonal matrix
whose i-th diagonal entry is the i-th principal angle between the column spaces of U
and V , and sinΘ(U, V) is the diagonal matrix derived by applying the function sin

entrywise to Θ(U, V). The same inequality holds if the Frobenius norm is replaced
by any orthogonally invariant norm, e.g., an operator norm ∥ · ∥op.

Corollary 38. Using the same definitions,

|uT
1 v1| ≥

√
1− ∥P∥2
|κ1 − λ2|2

.

Proof. Take i0 = i1 = 1. By Theorem 37, | sin θ(u1, v1)| ≤ ∥P∥
|κ1−λ2| . The corollary

follows as |uT
1 v1| = | cos θ(u1, v1)| =

√
1− sin2 θ(u1, v1).

Theorem39 (Courant-Fischer-Weylmin-maxprinciple). For every i = 1, 2, . . . , n,

λi = min
U⪯Rn

{
max
x∈U

{
xTBx

xTx
: x ̸= 0

}
: dim(U) = i

}
= max

U⪯Rn

{
min
x∈U

{
xTBx

xTx
: x ̸= 0

}
: dim(U) = n− i+ 1

}
.

Let C be an m ×m Hermitian matrix with eigenvalues ν1 ≤ ν2 ≤ · · · ≤ νm,
where m ≤ n.

Theorem 40 (Cauchy’s interlacing theorem). If C = Π∗BΠ for an orthogonal
projection Π, then for all i = 1, 2, . . . ,m it holds that λi ≤ νi ≤ λn−m+i.

Theorem 41 (Rouché’s theorem). Let f and g be two complex-valued functions
that are holomorphic inside a region R with a closed simple contour ∂R. If for every
x ∈ ∂R we have that |g(x)| < |f(x)|, then f and f + g have the same number of
zeros inside R, counting multiplicities.

Theorem 42 (Pan’s Algorithm: Theorem 1.1 of [33]). Given a monic degree
k polynomial p̂ with roots ρ1, . . . , ρk ∈ B(0, 1) and an accuracy parameter γ > 1,
we can compute approximate roots ρ̃1, . . . , ρ̃k satisfying ∥ρ − ρ̃∥∞ ≤ 2−γ in time
O(k log2 k · (log γ + log2 k)).

30

Corollary 43. Let q ∈ Rk+1 represent the polynomial q̂(z) =
∏k

i=1(z − θi) where
θ1, . . . , θk ∈ [0, 1] are ζ-separated, and let r ∈ Rk+1 represent a polynomial of degree
k with roots β1, . . . , βk satisfying d(θ, β) ≤ ρ < ζ/2. For every ε ∈ (0, ζ/2 − ρ),
we can reconstruct biases θ̃1, . . . , θ̃k satisfying

∥∥∥θ̃ − θ
∥∥∥
∞
≤ ρ+ ε using O(k log2 k ·

(log log(1/ε) + log2 k)) arithmetic operations.

Proof. We will first approximate the roots β̃1, . . . , β̃k of r̂ using Theorem 42.
Since the roots of r̂ are in B

(
0, 2k−1

2k−2

)
instead of B(0, 1), we will actually find

the roots of r̂
(
2k−2
2k−1

z
)
and then multiply by 2k−1

2k−2
to get the roots of r̂ up to

accuracy ε in time O(k log2 k · (log log(1/ε) + log2 k)). (Notice that in order to
get the desired accuracy we need to run Pan’s algorithm to get the rescaled
roots to within distance 2k−2

2k−1
· ε; this doesn’t matter for the purposes of

runtime.)

Our output is θ̃i := Proj[0,1](β̃i) for i = 1, . . . , k, where we label the roots
β̃1, . . . , β̃k by the permutation achieving the matching distance, i.e., the order-
ing of coordinates so that ∥θ − β∥∞ = d(θ, β). Now∣∣∣θi − θ̃i

∣∣∣ ≤ ∣∣∣θi −ℜ(β̃i)
∣∣∣ ≤ |θi −ℜ(βi)|+

∣∣∣ℜ(βi)−ℜ(β̃i)
∣∣∣ ≤ |θi − βi|+

∣∣∣βi − β̃i

∣∣∣ ≤ ρ+ε.

31

C h a p t e r 3

SUFFICIENT CONDITIONS FOR THE IDENTIFIABILITY OF
MIXTURES OF PRODUCTS

[1] S. L. Gordon and L. J. Schulman, “Hadamard extensions and the iden-
tification of mixtures of product distributions,” IEEE Transactions on
Information Theory, vol. 68, no. 6, pp. 4085–4089, 2022. doi: 10.1109/
TIT.2022.3146630,

3.1 Introduction
The Hadamard product for row vectors u = (u1, . . . , uk), v = (v1, . . . , vk) is
the mapping ⊙ : Rk × Rk → Rk given by

u⊙ v := (u1v1, . . . , ukvk).

The identity for this product is the all-ones vector 1. We associate with vector
v the linear operator v⊙ = diag(v), a k × k diagonal matrix, so that

u · v⊙ = v ⊙ u.

Throughout this chapterm is a real matrix with row set [n] := {1, . . . , n} and
column set [k]; writemi for a row andmj for a column.

As a matter of notation, for a matrix Q and nonempty sets R of rows and C

of columns, let Q|CR be the restriction of Q to those rows and columns (with
either index omitted if all rows or columns are retained).

Definition 44. The Hadamard Extension of m, written H(m), is the 2n × k

matrix with rows mS for all S ⊆ [n], where, for S = {i1, . . . , iℓ}, mS =

mi1 ⊙ · · · ⊙miℓ ; equivalentlymj
S =

∏
i∈S m

j
i . (In particularm∅ = 1.)

This construction originated recently in learning theory [20], [34] where it
is arises naturally and unavoidably when we wish to perform source iden-
tification (i.e., parameter estimation) given data from a mixture (convex
combination) of k product distributions on n binary random variables. We
explain the connection further in Section 3.2. Motivated by this application,
we are interested in the following two questions:

https://doi.org/10.1109/TIT.2022.3146630
https://doi.org/10.1109/TIT.2022.3146630

32

(1) If H(m) has full column rank, must there exist a subset R of the rows, of
bounded size, such that H(m|R) has full column rank?

(2) In each row ofm, assign distinct colors to the distinct real values. Is there
a condition on the coloring that ensures H(m) has full column rank?

In answer to the first question we show:

Theorem 45. If H(m) has full column rank then there is a set R of no more than
k − 1 of the rows ofm, such that H(m|R) has full column rank.

Considering the more combinatorial second question, observe that if m pos-
sesses two identical columns then the same is true of H(m), and so the latter
cannot have full column rank. Extending this further, suppose there are
three columns C in which only one row r has more than one color. Then
rowspaceH(m|C) is spanned by 1|C and r|C , so again H(m) cannot have full
column rank. Motivated by these necessary conditions, set:

Definition 46. For a matrix Q let NAE(Q) be the set of nonconstant rows of
Q (NAE=“not all equal”); let ε(Q|C) = |NAE(Q|C)| − |C|; and let ε(Q) =

minC ̸=∅ ε(Q|C). If ε(Q) ≥ −1we say Q satisfies the NAE condition.

In answer to the second question we have the following:

Theorem 47. If m satisfies the NAE condition then

(a) There is a restriction ofm to some k − 1 rows R such that ε(m|R) = −1.

(b) H(m) is full column rank.

(As a consequence also H(m|R) is full column rank.)

Apparently the only well-known example of the NAE condition is when m

contains k−1 rowswhich are identical andwhose entries are all distinct. Then
the vectorsm∅,m{1},m{1,2}, . . . ,m{1,...,k−1} form a nonsingular Vandermonde
matrix. This example shows that the bound of k − 1 in (a) is best possible.

For another example in which the NAE condition ensures that rankH(m) = k,
take the (k − 1)-row matrix with mj

i = 1 for i ≤ j and mj
i = 1/2 for i > j.

Here the NAE condition is only minimally satisfied, in that for every ℓ ≤ k

there are ℓ columns C s.t. ε(m|C) = −1.

33

For k > 3 the NAE condition is no longer necessary in order that H(m) have
full column rank. E.g., for k = 2ℓ, the ℓ× k “Hamming matrix”mj

i = (−1)ji

where j is an ℓ-bit string j = (j1, . . . , jℓ), forms H(m) = the Fourier transform
for the group (Z/2)ℓ (often called a Walsh or Hadamard transform), which
is invertible.

Furthermore, for k ≤ 2ℓ, almost all (in the sense of Lebesgue measure)
ℓ× k matricesm form a full-column-rank H(m). (For k = 2ℓ this is because
detH(m) is a polynomial in the entries ofm, and the Walsh example shows
that this polynomial is nonzero. For k < 2ℓ, consideration of the same 2ℓ × 2ℓ

Walsh transform implies that there are some k rows of H(m) such that the
determinant of the minor they form is a nonzero polynomial.) Despite this
observation, the Vandermonde case, in which k− 1 rows are required, is very
typical, as it is what arises in H(m) for a mixture model of observables Xi

that are iid conditional on a hidden variable. Another class of examples that
is far from Lebesgue-typical, and furthermore also far from being “separated”
(see next section), is this. There are two possible coins, with biases p1 ̸= p2.
A hidden variable H is sampled in {0, . . . , k − 1}, and then the process is
that you observe the result of H independent tosses of coin 1, followed by
k − 1 − H independent tosses of coin 2. The NAE condition implies that
here H(m) has full column rank. As a consequence (applying [34]) the
following model is identifiable: a hidden H is sampled (from unknown
prior) in {0, . . . , k − 1}, and then you observe the result of 2H independent
tosses of coin 1 followed by 2k − 1 − 2H independent tosses of coin 2. A
similar class of examples (sometimes identifiable but in general not) are the
“subcube mixtures” studied in [20], where all coin biases must be one of
{0, 1/2, 1}.

3.2 Motivation
Consider observable random variables X1, . . . , Xn that are statistically inde-
pendent conditional on H , a hidden or latent random variable H supported
on {1, . . . , k}. (See Figure 3.1 for an illustration.)

The most fundamental case is that the Xi are binary. Then we denotemj
i =

Pr(Xi = 1|H = j). The model parameters are m along with a probability
distribution (the mixture distribution) π = (π1, . . . , πk) on H .

The study of finite mixture models was pioneered in the late 1800s in [35],

34

X1 X2
. . . Xi

. . . Xn

H

Figure 3.1: A Bayesian network diagram relating H and X1, . . . , Xn.

[36]. The problem of learning such distributions has drawn a great deal of
attention. For surveys see, e.g., [37]–[40]. For some algorithmic papers on
discrete-valuedXi, see [6], [9], [10], [15]–[20], [34]. The source identification
(or parameter estimation) problem is that of computing (m, π) from the joint
statistics of the Xi. Put another way, the problem is to invert the multilinear
moment map

µ : (m, π)→ R2[n]

µ(m, π)S = Pr(XS = 1) where S ⊆ [n], XS =
∏

i∈S
Xi

= mS · π⊤.

Since mj
S = Pr(XS = 1|H = j), this shows the essential role of H(m) in the

mixture model.

Connection to rankH(m)

In general µ is not injective (even allowing for permutation among the values
of π and columns ofm). For instance it is clearly not injective ifm has two
identical columns (unless π places no weight on those). More generally,
and assuming all πj > 0, it cannot be injective unless H(m) has full column
rank. (Suppose α ∈ Rk is nonzero s.t. H(m)α = 0. Since (H(m)α)|{∅} = 0,∑

j αj = 0. So for sufficiently small δ > 0, π + δα is a mixture distribution,
distinct from π, with identical statistics.)

One sufficient condition for injectivity, due to [41], is that there be 2k − 1

“separated” observables Xi. Xi is separated if all mj
i are distinct, or in our

terminology, if no color recurs inmi. (Further it is shown in [34], Theorem
1, that one can lower bound the distance between µ(m, π) and any µ(m′, π′)

in terms of ζ = mini minj ̸=j′ |mj
i − mj′

i | and the distance between (m, π)

and (m′, π′).) There are examples with X1, . . . , X2k−1 where the mapping is
injective but is no longer so if any single Xi is omitted [9].

35

A weaker and still sufficient condition for injectivity of µ, due to [34], is that
for every i ∈ [n] there exist two disjoint sets A,B ⊆ [n]−{i} such that H(m|A)
and H(m|B) have full column rank. (It is not known whether two disjoint
such A,B are strictly necessary.)

Observable Xi with larger finite range
If each Xi can take on one of say L values, m can be considered as a nonneg-
ative n× k × L real array, with mj

i,ℓ = Pr(Xi = ℓ|H = j),
∑L

ℓ=1m
j
i,ℓ = 1; the

multivariatemoments are indexed not by setsS but bymappingsS : [n]→ [L],
withmS = mS(1) ⊙ · · · ⊙mS(n) and

µ : (m, π)→ R[L][n]

µ(m, π)S = Pr(XS = 1) where XS =
∏n

i=1
δXi,S(i)

(Kronecker delta)

= mS · π⊤

For any given k, if L is sufficiently large andm satisfies a certain nonsingu-
larity condition, the mixture learning problem becomes easier; this insight is
due to [6]. It will be interesting to explore what conditions exactlymmust
satisfy for identifiability (for positive π), for arbitrary L. But in this paper we
study only the most extreme, and hardest for identification, case L = 2.

3.3 Some Theory for Hadamard Products, and a Proof of Theorem 45
For v ∈ Rk and U a subspace, extend the definition of v⊙ to

v⊙(U) = {u · v⊙ : u ∈ U}

and introduce the notation

v⊙̄(U) = span(U ∪ v⊙(U)).

Wewant to understand which subspaces U are invariant under v⊙̄. Let v have
distinct values λ1 > . . . > λℓ for ℓ ≤ k. Let the polynomials pv,i (i = 1, . . . , ℓ)
of degree ℓ− 1 be the Lagrange interpolation polynomials for these values,
so pv,i(λj) = δij (Kronecker delta). Let B(v) denote the partition of [k] into
blocksB(v)(i) = {j : vj = λi}. Let V(i) be the space spanned by the elementary
basis vectors in B(v)(i), and P(i) the projection onto V(i) w.r.t. the standard

36

inner product. Since v⊙ is diagonal with entries λi in B(v)(i), we have the
matrix equation

pv,i(v⊙) = P(i), (3.1)

where pv,i is interpreted as a matrix polynomial. The collection of all linear
combinations of the matrices P(i) is a commutative algebra, theB(v) projection
algebra, which we denote AB(v). The identity of the algebra is I =

∑
P(i).

Definition 48. A subspace of Rk respects B(v) if it has a basis in which each
vector lies in some V(i).

For a subspace U we let U⊥ be its orthogonal complement w.r.t. the standard
inner product.

ForU respectingB(v)writeU = span(
⋃
U(i)) forU(i) ⊆ V(i). (ThusU =

⊕
U(i)

and U(i) = P(i)U .) Let D(i) = (U(i))
⊥ ∩ V(i). Then (U(i))

⊥ = D(i) ⊕
⊕

j ̸=i V(j).

Lemma 49. A subspace U⊥ respects B(v) if U does.

Proof. The subspaces of an inner product space form an orthocomplemented
lattice in which the meet operation is intersection, and the negation operation
is orthogonal complement. So for any subspacesW,W ′ we have De Morgan’s
law (span(W ∪W ′))⊥ = W⊥ ∩W ′⊥. Thus U⊥ =

⋂
(U(i))

⊥ =
⊕

D(i).

Lemma 50. A subspace U respects B(v) iff U =
⊕

(P(i)U).

Proof. (⇐): Because this gives an explicit representation of U as a direct sum
of subspaces each restricted to some V(i).

(⇒): By definition U is spanned by some collection of subspaces V ′
(i) ⊆ V(i);

since these subspaces are necessarily orthogonal, U =
⊕

V ′
(i). Moreover,

since P(i) annihilates V(j), j ̸= i, and is the identity on V(i), it follows that each
V ′
(i) = P(i)U .

Theorem 51. A subspace U is invariant under v⊙̄ iff U respects B(v).

Proof. (⇐): Let w ∈ U and write w =
∑

wi for wi ∈ U(i). Then v ⊙ wi =

λiwi ∈ U(i). So v ⊙ w =
∑

v ⊙ wi ∈
⊕

U(i) = U .

(⇒): If U = v⊙̄(U) then these also equal v⊙̄(v⊙̄(U)), etc., so U is an invariant
space of AB(v), meaning, aU ⊆ U for any a ∈ AB(v). In particular, apply-
ing (3.1), this holds for a = P(i). So U ⊇

⊕
(P(i)U). On the other hand,

37

since
∑

P(i) = I , U = (
∑

P(i))U ⊆
⊕

(P(i)U). So U =
⊕

(P(i)U). Now apply
Lemma 50.

The symbol ⊂ is reserved for strict inclusion.

Lemma 52. If R, T ⊆ [n] and rowspaceH(m|R) ⊂ rowspaceH(m|R∪T), then
there is a row t ∈ T such that rowspaceH(m|R) ⊂ rowspaceH(m|R∪{t}).

Proof. Without loss of generality R, T are disjoint. Let T ′ ⊆ T be a small-
est set s.t. ∃R′ ⊆ R s.t. mR′ ⊙ mT ′ /∈ rowspaceH(m|R). Select any t ∈ T ′

and write mR′ ⊙mT ′ = mR′ ⊙mT ′−{t} ⊙mt. By minimality of T ′, mR′ ⊙
mT ′−{t} ∈ rowspaceH(m|R). But then mR′ ⊙mT ′ ∈ rowspaceH(m|R∪{t}), so
rowspaceH(m|R) ⊂ rowspaceH(m|R∪{t}).

Proof of Theorem 45. This is now a consequence of Lemma 52. Start withR = ∅,
and repeatedly use the Lemma to adjoin to R a row from [n] \R which will
increase the rank of H(m|R) by at least 1.

Remark
rankH(m), along with a basis (using only rows of H(m)) for rowspaceH(m),
can be computed in time O(nk3) using Chen and Moitra’s “GrowByOne”
procedure [20]. For completeness here is a version of that procedure: For
ℓ ≥ 0 let Wℓ = span(m|[ℓ]), and let rℓ = rankWℓ. Wℓ is spanned by some
vectors mSℓ,1

, . . . ,mSℓ,rℓ
, with all Sℓ,i ⊆ [ℓ], which we compute as follows.

For ℓ = 0 we have r0 = 1, S0,1 = ∅. For ℓ > 1 form the matrix with rows
mSℓ−1,1

, . . . ,mSℓ−1,rℓ−1
followed by rowsmSℓ−1,1∪{ℓ}, . . . ,mSℓ−1,rℓ−1

∪{ℓ}. Perform
Gaussian elimination to zero-out all but rℓ − rℓ−1 of the second batch of rows.
The first batch, together with the non-eliminated rows of the second batch,
becomemSℓ,1

, . . . ,mSℓ,rℓ
.

3.4 Combinatorics of the NAE Condition: Proof of Theorem 47(a)
Recall we are to show: If ε(m) ≥ −1 then m has a restriction to some k − 1 rows
on which ε = −1.

Proof of Theorem 47(a). We induct on k. The (vacuous) base-case is k = 1.

For k > 1, we proceed by way of contradiction. Suppose the theorem fails for
k, and letm be a k-column counterexample with the least possible number
of rows, n. So n > k − 1 ≥ 1. Necessarily every row of m is in NAE(m). Our

38

strategy is to showm has a restrictionm′ to n−1 rows, for which ε(m′) ≥ −1;
this will imply a contradiction because, by minimality of the number of rows
ofm, m′ has a restriction to k − 1 rows on which ε = −1.

If ε(m) ≥ 0 then we can remove any single row of m and still satisfy ε ≥ −1.

Otherwise, ε(m) = −1, so there is a nonempty S such that |NAE(m|S)| =
|S| − 1; choose a largest such S. It cannot be that S = [k] (as then n = k − 1).
Arrange the rows NAE(m|S) as the bottom |S| − 1 rows of the matrix. As
discussed earlier, for the NAE condition one may regard the distinct real
values in each row ofm simply as distinct colors; relabel the colors in each
row above NAE(m|S) so the color above S is called “white.” (There need be
no consistency among the real numbers called white in different rows.) See
Fig. 3.2.

S

T 2

NAE(m|)S
R 2

[k] - S

T 1

R 1

R'

R''

R 1

f(T)1

m'

m

f

Figure 3.2: Argument for Theorem 47(a). Upper-left region is white. Entries
(t, f(t)) (indicated with black dots) are not white.

Due to the maximality of |S| and the fact that ε(m) ≥ −1, there is no set of
columns S ′ with S ⊂ S ′ such that for some set of rows A ⊆ [n]− NAE(m|S),
with |A| = n− |S ′|+ 1, m|S′

A is all white. That is to say, if we form a bipartite
graph on “right” vertices corresponding to the columns [k] − S, and “left”

39

vertices corresponding to the rows [n]−NAE(m|S), with non-white cells being
edges, then any subset of the right vertices of size ℓ ≥ 1 has at least ℓ + 1

neighbors within the left vertices.

By the induction on k (since S ̸= ∅), for the set of columns [k] − S there is
a set R′′ of k − |S| − 1 rows such that ε(m|[k]−S

R′′) = −1. Together with the
rows of NAE(m|S) this amounts to at most k − 2 rows, so since n ≥ k, we can
find two rows outside this union; delete either one of them, leaving a matrix
m′ with n− 1 rows. This matrix has the rows NAE(m|S) at the bottom, and
n− |S| remaining rows which we call R′. The lemma will follow by showing
that ε(m′) ≥ −1.

Inm′, the induced bipartite graph on right vertices [k]− S and left vertices
R′ has the property that any right subset of size ℓ ≥ 1 has a neighborhood of
size at least ℓ in R′. Applying Hall’s Marriage Theorem, there is an injective
f : [k]− S → R′ employing only edges of the graph.

Now consider any nonempty set of columns T , and write it as T = T1 ∪ T2

for T1 ⊆ [k] − S and T2 ⊆ S. We need to show that ε(m′|T) ≥ −1. Let
R1 = NAE(m′|T1) ∩ R′′ and R2 = NAE(m′|T2). We have that |R1| ≥ |T1| − 1

because ε(m|[k]−S
R′′) = −1. We further have that |R2| ≥ |T2| − 1 because

ε(m) ≥ −1 and because NAE(m|T2) ⊆ NAE(m|S) = NAE(m′|S), so no row of
NAE(m|T2) has been removed in m′.

If T2 = ∅, the rowsR1 witness that ε(m′|T) ≥ −1. Likewise if T1 = ∅, the rows
R2 witness the same conclusion.

Lastly suppose both T1 and T2 are nonempty. Nonemptyness of T2 gives
|NAE(m|T2)| ≥ |T2| − 1. Now use the matching f . The set of rows f(T1) lies
in R′ and is therefore disjoint from NAE(m|T2), which as noted is a subset
of NAE(m′|S). Moreover since T2 ̸= ∅, every entry (t, j) for t ∈ T2, j ∈ R′ is
white. On the other hand due to the construction of f , for every t ∈ T1 the
entry (t, f(t)) is non-white. Therefore every row in f(T1) is in NAE(m′|T1∪T2).
So |NAE(m′|T1∪T2)| ≥ |T2| − 1 + |T1|, which is to say ε(m′|T) ≥ −1. Thus
ε(m′) ≥ −1.

3.5 From NAE to Rank: Proof of Theorem 47(b)
Recall we are to show: H(m) has full column rank if ε(m) ≥ −1.

40

Proof of Theorem 47(b). The case k = 1 is trivial. Now suppose k ≥ 2 and that
Theorem 47(b) holds for all k′ < k. Any constant rows of m affect neither
the hypothesis nor the conclusion, so remove them, leavingmwith at least
k − 1 rows. Now pick any set, C, of k − 1 columns ofm. By Theorem 47(a)
there are some k − 2 rows ofm, call them R′, on which ε(m|CR′) = −1. Let v
be a row of m outside R′. Let R′′ denote the set of rows of m other than v.
Since R′′ contains R′, by induction dim rowspaceH(m|CR′′) = k − 1. Therefore
U := rowspaceH(m|R′′) ⊆ Rk is of dimension at least k − 1. We claim now
that dim v⊙̄(U) = k. (Note that v⊙̄(U) = rowspaceH(m).)

Suppose to the contrary that dim v⊙̄(U) = k − 1. It must then be that
dimU = k − 1 and v⊙̄(U) = U . So as proven in Theorem 51, U respects B(v).
Since v is nonconstant, B(v) is a partition of [k] into ℓ ≥ 2 nonempty blocks
B(v)(i), and U =

⊕ℓ
i=1 U(i) with U(i) = P(i)U(i). So there is some i0 for which

U(i0) ⊂ V(i0); specifically, U(i) = V(i) for all i ̸= i0, and dimU(i0) = dimV(i0) − 1.
Since |B(v)(i0)| < k, we know by induction that P(i0) rowspaceH(m) = V(i0).
But since rowspaceH(m) = v⊙̄(U) = U , this means that P(i0)U = V(i0). Con-
tradiction.

41

C h a p t e r 4

SOURCE IDENTIFICATION FOR MIXTURES OF PRODUCTS

[1] S. Gordon, B. H. Mazaheri, Y. Rabani, and L. Schulman, “Source iden-
tification for mixtures of product distributions,” in Proceedings of Thirty
Fourth Conference on Learning Theory, M. Belkin and S. Kpotufe, Eds.,
ser. Proceedings of Machine Learning Research, vol. 134, PMLR, Aug.
2021, pp. 2193–2216. [Online]. Available: https://proceedings.mlr.
press/v134/gordon21a.html,

4.1 Introduction
A k-MixProd is a mixture (that is, a convex combination) of k product dis-
tributions on a set of n random variables X . In the notation of Bayesian
networks, this situation is represented graphically by a single unobservable
random variable U with edges to each of the variables Xi ∈ X . U is referred
to as a “confounding” variable with range 1, . . . , k and the variables in X
are referred to as the “observables.” The main complexity parameter of the
problem is k, the number of mixture constituents or “sources.” See Fig. 4.1.

X1 X2 X3
. . . Xn

U

Figure 4.1: Graphical depiction of a k-MixProd

In this chapter we study the identification problem for k-MixProds. Specifi-
cally, given a joint distribution P on the variables (vertices), recover up to
small statistical error (a) the mixture weights, up to a permutation of the
constituents, and (b) the conditional distribution of each vertex X within
each mixture source.

Problem Statement and Notation.
The hidden variable U ranges in [k] = {1, . . . , k}, with unknown distribution
πj := Pr(U = j). There are n binary observable variablesX1, X2, . . . , Xn; their
distributions are given by the rowsmi of an unknown matrix n× k matrix

https://proceedings.mlr.press/v134/gordon21a.html
https://proceedings.mlr.press/v134/gordon21a.html

42

m, with the meaning that mij := Pr[Xi = 1 | U = j]. Thus, the identification
problem is to recover (πj)j∈[k] and (mij)i∈[n],j∈[k] (up to permuting the set [k])
to within high accuracy.

Identification is not always possible, as there can be disparate models sharing
the same distribution on the observables. To give sufficient conditions for
identifiability, we need the following definition, which allows us to quantify
the degree to which an observable variable has distinct behavior in each of
the different mixture constituents.

Definition 53. An observable Xi is ζ-separated if minj ̸=j′ |mij −mij′ | > ζ .

It is known that a k-MixProd is identifiable (from perfect statistics) if it has at
least 2k− 1 0-separated observables [42] and πmin > 0. In general (although
not for everym), 2k − 1 observables are also necessary [9]. Moreover some
separation assumption is certainly necessary for identification: e.g., a mixture
of several identical sources generates the same statistics as a single source.

Clearly, a sample size bound requires a further, quantitative assumption on
separation; this is the role of the parameter ζ in our work. For our near-
optimal running time and sample complexity guarantee, we also require a
slightly larger-than-minimal number of observables: 3k−3 rather than 2k−1.
(A similar algorithm works with just 2k − 1 ζ-separated observables, and
its post-sampling runtime is about the same, but its sample size requirement
is larger.)

It should be noted that the post-sampling runtime, although exponential in
k, is hardly affected by ζ . The bottleneck resource is sample size.

Main Result

Theorem 54. The algorithm given later w.h.p. identifies a k-MixProd on n ≥ 3k−3

binary observables, each of which is ζ-separated, with runtime (and, a fortiori, sample
complexity)

(1/ζ)O(k log k)(n log n)(1/min πi)
O(log k)(1/ε)2.

and w.h.p. (over the distribution of samples) computes π̃ and m̃ such thatmaxi |π̃i−
πi| ≤ ε and maxij |m̃j

i −mj
i | ≤ ε.

43

It is actually sufficient that there merely exist a subset of 3k − 3 ζ-separated
random variables. Under this weaker assumption, the runtime above is
multiplied by nO(k) (the sample size is unaffected).

Discussion
The k-MixProd problem for finite-range observables has been studied for
nearly 30 years [15]–[19], [42]–[44] There are two versions of the problem:
(1) Learning the model, namely, producing any model consistent with (or
close to) the observed statistics; (2) Identifying the model, namely, producing
the true model (or one close to it). Any algorithm for “learning” will also of
course achieve identification if it happens that themodel is uniquely specified
by the statistics, but the algorithm may not, and existing algorithms do not,
provide a certificate of uniqueness under such conditions.

Our result is concerned entirely with identification. Since our algorithm
computes, as part of its operation, the condition number of the matrices that
it uses for inverting the model→statistics mapping, it will only return an
output under conditions which ensure the output is indeed unique (to within
the allowed ε error). Hence, as comparedwith a “learning” algorithm, we are
effectively providing a stronger output guarantee under stronger conditions
on the input.

One of the chief motivations for our work is the characterization of interven-
tional distributions in Bayesian networks (causal DAGs). Causal inference is a
sizable and growing field; in that setting, we want to understand the distri-
bution on some “downstream” variable(s) that will result if we disconnect a
specified “intervention variable” from its parents in the DAG, and instead
assign it to a chosen value. This task is easy when all variables in the network
are observable, but challenging when there are latent or “hidden” variables
whose statistics we cannot observe. In the most extreme case there may be
a latent variable U which can directly affect all observables. It turns out, as
we show in separate work, that it is possible to solve that problem when U

takes on a bounded number k of values. In that work, a key subroutine has
to solve k-MixProd problems. The role of the present work is to provide and
analyze the needed algorithm for that problem.

We should emphasize that “learning” the model, without “identification,” is
(so far as we know) useless for causal inference applications. Fortunately,

44

we show that when identification is possible, it can also be performed much
faster than the best current results for “learning” (which suffer a k3 in the
exponent, as compared with our k log k).

Of course it remains of great interest to ask whether a similar runtime can be
achieved for learning. Our algorithm, in any event, does not achieve this.

Comments on the assumptions in Theorem 54.

1. The observable variables are binary. The binary case is actually the most diffi-
cult. (The problem also becomes significantly easier when each variableXi

takes on at least k values and the k distributions onXi span a k-dimensional
space. This kind of assumption was first to our knowledge used in, in a
somewhat different setting, in [45].)

2. The mixture is ζ-separated. A separation condition of some kind, on at least
some of the variables, is necessary, since we certainly cannot identify the
distribution of the latent variable if it does not have sufficient effect upon
the observable variables. The 0-separation condition fails only on a set of
Lebesgue measure 0 in the parameter space. Likewise for small ζ, most
distributions are ζ-separated. The value of ζ-separation will be, as we
show below, that it ensure that matrices representing the parameters for
each source are well-conditioned. ζ-separation is not always a necessary
condition; characterizing necessary conditions is a difficult open question,
tackled in part in [46], where it is shown, essentially, that some “batching”
of not-fully-separated variables is also sufficient to imply invertibility of the
relevant matrices (however, no quantitative bounds on condition number
are known).

3. The required value of n. Depending on the actual distributions (as expressed
by m), the number of ζ-separated variables n required to identify the
source may be anywhere from lg n to 2k − 1. Less than lg n is not possible:
in that case a k-MixProd can be any probability distribution on X , and it is
not hard to see that parameters are not unique.

Prior work. In [19] a seminal learning algorithm for k-MixProd was given.
Its running time, for mixtures on n binary variables (n suff. large), is nO(k3).
This was improved in [43] to kO(k3)nO(k2). The most recent algorithm [44]
identifies a mixture of k product distributions on at least 3k − 3 ζ-separated
variables in time 2O(k2)n. In this work we improve the latter results, giving

45

upper bounds with exponent O(k log k) rather than O(k2). This is nearly
optimal, as it is known that even in the special case that the observables are
known to be iid conditional on U—call this the k-MixIID problem—exponent
Ω(k) is unavoidable [9]. Moreover n ≥ 2k − 1 observable variables are
generally necessary. (There are interesting special cases in which better
efficiency is possible. [43] study “mixtures of sub-cubes,” i.e., k-MixProd
with all bit probabilities in {0, 1

2
, 1}. For this problem they achieve complexity

nO(log k).)

It turns out that the k-MixIID problem plays a special role at the base of a
tower of reductions. On the one hand it can be solved using a relatively simple,
two-century-old method of Prony [7], which connects it to the classical Haus-
dorff moment problem; it can also be solved by the Matrix Pencil Method [3],
[9], [10], [47]. Both analyses are quite recent. In turn, the k-MixProd prob-
lem is solved by a nontrivial reduction to k-MixIID, first with exp(O(k2))

complexity [44] and here with exp(O(k log k)) complexity. In forthcoming
work the authors have shown in turn how to reduce to k-MixProd from the
yet more general k-MixBND problem, in which the input distribution is a
k-component mixture over distributions consistent with a (known) Bayesian
Network. The dominant term in the complexity of that algorithm is that of
the k-MixProd instances to which the problem reduces. Hence the key role
played by the improved sample- and run-time complexities of the present
work.

Comparison with the parametric case. The literature on mixture models
for parametric families (exponential distributions, gaussians in R or Rd, etc.)
is even more extensive and older than for the discrete case. It is necessary
however to point out a fundamental difference between the types of prob-
lems. In general, in a k-MixIID problem, a mixture source is chosen from
distribution π), and then we sample some n independent samples from that
source. In almost every parametric scenario (think e.g., of a mixture of k
unit-variance gaussians on the line), n = 1 is sufficient in order to (in the limit
of many repetitions) identify the model. This is fundamentally untrue in the
non-parametric case. To see this, consider an instance of 2-MixIID for binary
variables with two equiprobable sources (i.e., π1 = π2 = 1/2), one of which
has Pr(X = 1 | U = 0) = 3

4
and the other Pr(X = 1 | U = 1) = 1

4
. With only

a single sample from each source, it is impossible to distinguish between a

46

mixture inwhichPr(X = 1 | U = 0) = 1 and the otherPr(X = 1 | U = 1) = 0.
More specifically, it is only possible to identify the mean of these two param-
eters. With access to multiple samples from the same source, however, we
can begin to infer the parameters associated with each mixture component.
For the k-MixIID problem for binary rv’s, it is known that n = 2k − 1 such
samples [9] are needed. (This value is called there the threshold “aperture”
of the problem.)

Unlike k-MixIID, the k-MixProd problem does not allow us access to multiple
samples of iid variables from a source. However it does give access tomultiple
variables which are independent conditional on the source. An approach
introduced in [44] is to create synthetic copies of a single variable via linear
combinations of the other variables; since we need to modify the method, we
describe below how this is done. This approach enables a reduction from the
k-MixProd problem to the k-MixIID problem.

Organization. Section 4.2 sets up the key mathematical objects needed for
our work. Section 4.3 describes the algorithm. The algorithm is similar to
that in [44], differing in one crucial way which will be described. Along
with the algorithm pointers are provided to the main steps of the analysis
in Appendix 4.5. The part of this work which is a full departure from the
previous literature is the condition number bound in Section 4.4, in which the
condition number of a key linear mapping (namely, the matrix of multilinear
moments of the distribution on observables), is bounded through a novel
argument characterizing the images of rank-1 tensors under mapping by
Hadamard extensions.

4.2 Preliminaries
Hadamard Extensions
As in earlier works [43], [44], the algorithm and its analysis make extensive
use of the Hadamard extension of a matrixm.

Definition 55. Given a matrix m of any dimensions, let mi∗ denote the ith
row ofm andm∗j the jth column ofm. Where clear from context we write
mi instead ofmi∗.

Definition 56 (Hadamard product). The Hadamard product is the mapping
⊙ : Rk ×Rk → Rk which, for row vectors u = (u1, . . . , uk) and v = (v1, . . . , vk),

47

is given by u⊙ v := (u1v1, . . . , ukvk). Equivalently, using the linear operator
v⊙ = diag(v), the Hadamard product is u⊙ v = u · v⊙. The identity element
for the Hadamard product is the all-ones vector 1. The Hadamard product
of u with itself k times is written u⊙k.

Definition 57 (Hadamard extension). For n ∈ R[n]×[p], theHadamard extension
of n, written H(n), is the 2n× pmatrix with rows H(n)S for all S ⊆ [n], where,
for S = {i1, . . . , iℓ}, H(n)S = ni1 ⊙ · · · ⊙niℓ ; equivalently H(n)jS =

∏
i∈S n

j
i . In

particular H(n)∅ = 1, and for all i ∈ [n], H(n){i} = ni.

Notation for subsets and collections of subsets Wewill reserve calligraphic
fonts for collections of subsets of [n], i.e., S ⊆ 2[n]. In contrast, the same
variable in a standard math font will represent a subset of [n], i.e., S ⊆ [n].

Definition 58 (Sum of two collections). The sum of two collections of subsets
X ,Y ⊆ 2[n] is defined as X + Y := {X ∪ Y : X ∈ X , Y ∈ Y}.

Definition 59 (Kronecker product of vectors). Let S, T ⊂ [n] be two disjoint
sets. Let x and y, respectively, be vectors indexed by the subsets in X = 2S

and Y = 2T , respectively. Then the Kronecker product x ⊗ y is the vector
indexed by the subsets in X + Y given by

(x⊗ y)X∪Y := xXyY , for all X ∈ X and Y ∈ Y .

Note that X + Y = 2S∪T . (Notice that every set Z ∈ X + Y can be written
uniquely as Z = X ∪Y forX ∈ X and Y ∈ Y . We don’t define the Kronecker
product when X ∩ Y ≠ ∅.)

Definition 60 (Kronecker product of vectors — alternate definition). Let
S, T ⊂ [n] be two disjoint sets. Let x ∈ R2S and y ∈ R2T , which is to say, x
has a coordinate xR for every R ⊆ S, and similarly for y. Then the Kronecker
product x⊗ y is the vector with coordinates xR for every R ⊆ S ∪ T , given by

(x⊗ y)R := xR∩SyR∩T .

In the algorithm and analysis we will make heavy use of the singular values
of a matrixM, which we will denote σmax(M) = σ1(M) ≥ σ2(M) ≥ · · · .

When
{
v(i)
}k
i=1

is a set of row vectors, we will write (v(1); v(2); . . . ; v(k)) for
the matrix obtained by vertically concatenating each row vector in order.

48

Finally, for a matrixM,M+ will denote the Moore-Penrose inverse (i.e., the
pseudoinverse), given by (MTM)−1MT in the case that M has full column
rank.

Definition 61 (Column-wise Khatri-Rao product of matrices). The column-
wise Khatri-Rao product of matrices A ∈ Rn×k,B ∈ Rm×k is denoted A ∗ B;
A ∗B has dimensions nm× k with row ij given byAi∗ ⊙Bj∗.

Definition 62 (Vandermonde matrix). The Vandermonde matrix Vdm(m) ∈
Rk×k associated with a vector m ∈ Rk has entries Vdm(m)ji = mj

i for j ∈
{0, 1, . . . , k − 1} and i ∈ {1, 2, . . . , k}.

Multilinear Moments
Using the notation from Sec. 4.1, observe that the expectation of each Xi is
given bymiπ

T. The model parameters are (πj)j∈[k] and (mij)i∈[n],j∈[k] (up to
a permutation of the range of U).

When k > 1, observable variables Xi and Xi′ will not in general be inde-
pendent. We will make use of information about the dependencies between
observables through measurements of E[XiXi′]. Generalizing this, for any
S ⊆ [n], we will define the random variable XS :=

∏
i∈S Xi. The data we ob-

tain from our samples will be estimates of E[XS] for different subsets S ⊆ [n].
These are known as the multilinear moments of the distribution, since they are
multilinear polynomials in the parametersmij .

Our goal will be to eventually compute powermoments for the single variable
X1, i.e. the values E[X1X

(2)
1 X

(3)
1 · · ·X

(ℓ)
1] for ℓ ≤ 2k where each X

(j)
1 is a copy

of X1 that is iid conditioned on U . Such copies are not guaranteed to exist
among the Xi, but we can still define (and our algorithm will compute) the
power moments. The ℓth power moment is defined as E[X⊙ℓ

1], the expectation
of the product of ℓ copies of X1 that are iid conditioned on U .

Now E[XS] =
∑

j πj

∏
i∈S mij , or equivalently, E[XS] = (mi1 ⊙ mi2 ⊙ · · · ⊙

mis)π
T where S = {i1, i2, . . . , is}.

If we replacemwith the Hadamard extensionM := H(m), we can simplify
the above equation to E[XS] = MSπ

T.

We can also write power moments in terms of Hadamard products. In partic-
ular, we have E[X⊙ℓ

i] =
∑

j πjm
ℓ
ij = m⊙ℓ

i πT.

49

Observe that source identification is not possible if M has less than full
column rank, i.e., rankM < k, as then the mixing weights cannot be unique.

For a collection of subsets S ⊆ 2[n], let M[S] denote the restriction of M to
the rowsMS, S ∈ S. E.g., M = M[2[n]].

If we have non-overlapping collections of subsets A and B, we can build a
matrix of multilinear moments as follows:

Definition 63 (Observable matrices). For collectionsA,B ⊆ 2[n] withA ⊆ 2S

and B ⊆ 2T for disjoint S, T ⊆ [n], we define the matrix

CB,A := M[B]π⊙M[A]T.

For any A ∈ A, B ∈ B, we have

(CB,A)B,A = MBπ⊙M
T
A

which is the multilinear moment E[XA∪B] and therefore observable.

The Empirical Multi-linear Moments For a finite sample drawn from the
model, we let g̃(S) be the empirical estimate of E[XS], i.e., the fraction of
samples for which

∏
i∈S Xi = 1. These g̃(S) for S ⊆ [n] are the complete list

of “observables” of the model. Each converges, in the infinite-sample limit,
to the value g(S) := E[XS],

g(S) = MSπ
T = MSπ⊙1T.

Our algorithm will heavily utilize (the empirical estimates of) matrices of
observable moments.

4.3 The Algorithm
The algorithmappears below asAlgorithm3. It uses disjoint setsS, T, T ′ ⊆ [n]

of ζ-separated variables, with |S| = |T | = |T ′| = k−1 and 1 ∈ T , and takes as
input the desired accuracy ε. We will use tildes in the algorithm to denote the
empirical version of quantities we define with respect to exact moments. To
avoid clutter however we will describe most steps of the algorithm as though
we had access to the exact moments we need (i.e. g(S) instead of g̃(S)). In
the actual algorithm we use our empirical estimates of the moments.

50

Definition 64. Define the following collections from S, T, T ′:

A := 2S, B := 2T , B′ := 2T
′
.

We introduce shorthand for the corresponding submatrices ofM:

A := M[A], B := M[B], B′ := M[B].

An essential difference between this algorithm and the one given in [44] is
that our A,B,B′ comprise of the entirety of 2S , 2T , and 2T

′ . Consequently, we
use the entire 2k × 2k matrix for CAB rather than performing an expensive
2O(k2) search within it for a well-conditioned k × k submatrix. In the earlier
paper this search cost was dominated by other costs, but that is no longer the
case here, due to the stronger bounds we provide (coming from Section 4.4).

Our goal will be to compute the power moments E[X⊙ℓ
1]. To do this, we

will alternate between computing vectors of moments vi, and vectors of
coefficients ui, u

′
i, defined below:

Definition 65. The sequence of vectors v1, . . . , v2k ∈ RA is given by

(vi)A := E[XAX
⊙i
1]

for each A ∈ A.

In particular, (vi)∅ = E[X⊙i
1].

Proposition 66. vi = m⊙i
1 π⊙A.

That is, each entry of the vector vi will be a mixed moment, with a multilinear
part given by XA and a power moment part given by X⊙ℓ

1 . Our algorithms
begins by computing ṽ0 and ṽ1, the empirical counterparts to v0 and v1, re-
spectively. These empirical counterparts are available directly as empirical
multilinear moments.

Definition 67. The sequence of vectors u1, . . . , u2k ∈ RB is given by the equa-
tions

uiM[B] := m⊙i
1 .

The sequence of vectors u′
1, . . . , u

′
2k ∈ RB′ is defined analogously with B′

replacing B everywhere.

51

Proposition 68. ui = viC
+
BA and u′

i = viC
+
B′A.

That is, ui is the vector of coefficients of linear combinations of parameter
vectors fromM[B] (orM[B′]) needed to create the parameter vector for the
variable X⊙i

1 .

Once we have computed v1, v2, . . . , v2k, we can take the entries (vi)∅ = E[X⊙i
1]

to obtain the first 2k power moments forX1, which we can then pass as input
to an algorithm for learning k-MixIID.

At this point, wewill have recoveredm1 and π andwe can use these to recover
the remaining parameters with some more straightforward linear algebra.

Empirical counterparts In the pseudocode for Algorithm 3, we will exclu-
sively be working with empirically computed (hence, approximate) versions
of the quantities above. The empirical counterpart to any quantity is distin-
guished by a tilde, e.g., Ã is the empirical counterpart toA.

The Steps of the Algorithm
We now outline what each non-trivial line of the algorithm accomplishes.

• Line 1: As stated in Theorem 54, we write the algorithm under the
assumption that all observable bits are ζ-separated (and consequently in
this line, S, T, T ′ are arbitrary disjoint sets of size k−1). This assumption
is not strictly necessary; all we actually need is that the disjoint sets
S, T, T ′ create ĈBA and ĈB′A with σk above the threshold in Line 6,
something that is guaranteed if S, T, T ′ are of size k − 1 and consist
of ζ-separated variables, but may also hold without either of these
conditions. In any case, provided one assumes that there exist some
3k − 3 ζ-separated variables, an exhaustive search running in time
nO(k) will suffice to find S, T, T ′ passing the threshold in Line 6.

• Line 3: For the algorithm outlined here to produce m and π within
additive error ε (in each coordinate), we shall need the g̃(S) that we use
to be accurate to within ε(minπi)

O(log k)ζO(k log k). This can be achieved
with high probability using a sample of size

(1/ε)2(1/min πi)
O(log k)(1/ζ)O(k log k).

52

1 input: disjoint sets of ζ−separated S, T, T ′ of size k − 1 each, with
1 ∈ T , as well as the desired accuracy ε.

2 A ← 2S,B ← 2T ,B′ ← 2T
′ .

3 Use (1/ε)2(1/min πi)
O(log k)(1/ζ)O(k log k) samples to estimate

{g̃(A ∪B ∪B′)}A∈A,B∈B,B′∈B′ .
4 Construct C̃BA, C̃B′A, and C̃B+B′,A from the empirical moments.
5 Compute ĈBA and ĈB′A by taking the SVD of C̃BA and C̃B′A and

truncating to the first k singular values.
6 if min{σk(ĈBA), σk(ĈB′A)} < πminζ

O(k) then terminate
7 ṽ0 ← (g̃(A))A∈A
8 ṽ1 ← (g̃(A ∪ {1}))A∈A

9 ũ1 ← ṽ1Ĉ
+
BA

10 ũ′
1 ← ṽ1Ĉ

+
B′A

11 for i = 1, . . . , 1 + lg k
12 for j = 1, . . . , 2i−1

13 ṽ2i−1+j ← (ũj ⊗ ũ′
2i−1)ĈB+B′,A

14 ũ2i−1+j ← ṽ2i−1+jĈ
+
BA

15 ũ′
2i ← ṽ2iĈ

+
B′A.

16 LetHk+1 be the (k + 1)× (k + 1) Hankel matrix with entries given by
[Hk+1]i,j = (ṽi+j){1}

17 if the second−smallest eigenvalue ofHk+1 is below πminζ
O(k) then

terminate
18 m̃1, π̃ ← LearnPowerDistribution(Hk+1).
19 Ṽ ← (ṽ0; . . . ; ṽk−1)

20 Vdm(m̃1)← (m̃⊙0
1 ; . . . ; m̃

⊙(k−1)
1)

21 ÃT ← π̃−1
⊙ (Vdm(m̃1))

−1Ṽ

22 B̃← ĈBA(Ã
T)+π−1

⊙ .
23 for every i ∈ [n] \ S, m̃i ← ((g̃(R ∪ {i}))R∈A)

T
(
ÃT
)+

π̃−1
⊙ .

24 for every i ∈ S, m̃i ← ((g̃(R ∪ {i}))R∈B)
T
(
B̃T
)+

π̃−1
⊙ .

Algorithm 3: Identifies a mixture of product distributions given 3k − 3
ζ-separated observable bits.

53

• Line 5: This line is a critical place where it is necessary to acknowledge
the empirical nature of the quantities we are computing with, and ac-
count for this explicitly. Thematrix C̃BA will w.h.p. be close in Frobenius
norm to CBA when the moments are computed from a large sample,
but C̃BA will almost certainly have rank(C̃BA) = 2k−1 > rank(CBA) = k,
which will introduce instability in the pseudoinverse. To avoid this
we replace C̃BA (resp. C̃B′A) with ĈBA (resp. ĈB′A), the rank k ap-
proximation obtained by truncating to the first k singular values. The
SVD of anm×mmatrix can be computed in time O(m3) [48] which in
our setting is O(23k). Note that computing the pseudoinverse of ĈBA

takes no more time than computing ĈBA since we use the same SVD of
C̃BA to compute both. (There are also methods which are faster for a
low-rank approximation.)

• Line 6: If σk(CBA) is too small, we have a contradiction to our as-
sumption that S and T consisted of ζ-separated observables. Likewise,
σk(CBA) being too small contradicts the ζ-separation of the variables in
S and T ′.

• Lines 7-8: Here we create v0 and v1, both of which are directly con-
structed from observable quantities.

• Lines 9-15: In lines 9-10, we do the first step of the iteration that we
continue in lines 11-15. We initialize u1 and u′

1 by multiplying v1 by
the pseudoinverses of CBA and CB′A, respectively. Note here a differ-
ence from [44], where the CBA matrices were k × k and full-rank. We
then compute vi, ui, and u′

i for larger values of i. We use the fact that
vi+j = (ui⊗uj)CB+B′,A, proven in Lemma 69 to do this computation. We
analyze the error introduced by this step in Lemma 80. This crucially
relies on the condition number bound in Theorem 71, which is proved
in Section 4.4. Each time we multiply by Ĉ+

BA we introduce some addi-
tional error and we are only able to bound the error by showing that
the operator norm of Ĉ+

BA−C+
BA is small, which requires this condition

number bound. There are lg k steps in the iteration, each of which re-
quires 2O(k) time, since we multiply by matrices of size 2O(k) constantly
many times each iteration. (The Kronecker product computation also
requires 2O(k) time.)

54

• Lines 16-18: We assemble the power moments of X1 into a Hankel
matrix and invoke an algorithm for identifying a k-MixIID. (If the Han-
kel matrix has insufficiently large second smallest singular value, we
conclude that one of our assumptions has not been satisfied—in partic-
ular, our estimated moments could be outside the required accuracy;
or that there was a rare statistical error in the sampling.) The recovery
ofm1 and π can be done in time k2+o(1) +O(k(log2 k) log log(ε−1)) (see
Corollary 83 for the runtime and the error bound).

• Lines 19-21: We computeA by multiplying the matrix of the first k vi

vectors by the inverse of the matrix Vdm(m̃1), the Vandermonde matrix
generated from the empirical version of row m1. (See Lemma 86 for
the resulting error bound.)

• Line 22: We compute B by multiplying CBA by the pseudoinverse of
A. Again, the pseudo-inverse here replaces the regular inverse used in
[44] because A is no longer square. (See Lemma 88 for the resulting
error bound.)

• Lines 23-24: We compute the remaining parameters in a similar fashion,
using A+ or B+ as needed, depending on if the observable in question
could overlap with an observable used byA or B.

Lemma 69. For all ℓ, (vℓ)∅ = E[X⊙ℓ
1].

Proof. We show by induction on ℓ that vℓ = m⊙ℓ
1 π⊙A

T, hence (vℓ){1} =

m⊙ℓ
1 π⊙1T = E[Xℓ

1]. The base case of ℓ = 1 follows trivially from the defi-
nition of v1. So suppose that this is true of vℓ′ for ℓ′ < ℓ. Let ℓ = 2i + j for
j ∈ {1, 2, . . . , 2i}. Now,A, B, and B′ have full column rank, so

vℓ = (vjC
+
BA ⊗ v2iC

+
B′A)CB+B′,A

= (m⊙j
1 π⊙A

T(Bπ⊙A
T)+ ⊗m⊙2i

1 π⊙A
T(B′π⊙A

T)+)(B ∗B′)π⊙A
T (using Defn. 61)

= (m⊙j
1 (B)+ ⊗m⊙2i

1 (B′)+)(B ∗B′)π⊙A
T

= mℓ
1π⊙A

T,

When actually running the algorithm, we will only have access to the ap-
proximations C̃BA, C̃B′A, and C̃B+B′,A, and, starting with ṽ1, we will compute

55

approximate vectors ũj = ṽjĈ
+
BA, and ũ′

2i = ṽ2iĈ
+
B′A, and use those to com-

pute an approximate vector ṽℓ = (ũj ⊗ ũ′
2i)C̃B+B′,A. Notice the advantage of

the recurrence in Line 12; we are able to get away with performing at most
1 + lg k iterations to compute any of ṽ1, . . . , ṽ2k. Each iteration consists of at
most two matrix multiplications by Ĉ+

BA and Ĉ+
B′A, followed by a convolu-

tion, followed by multiplication by CB+B′,A. Each such step can increase the
initial sampling error by at most a factor of ζ−O(k)π

−O(1)
min . By starting with

empirical moments accurate to within εζΩ(k log k)π
Ω(log k)
min , we can ensure that

the resulting vectors ṽi are sufficiently close to the vectors vi to start solving
form1 and π.

The conclusion of our analysis can be stated as follows:

Theorem 70. 1. If all multilinear moments used in the computation are within
±ε of their true values, the output π̃ and m̃ will satisfy

∥m̃−m∥∞ , ∥π̃ − π∥∞ ≤ π
−O(lg k)
min ζ−O(k lg k)ε.

2. With high probability, all empirical multilinear moments appearing in Algo-
rithm 3 will be within ±ε of their true value.

Proof. 1. This is an immediate consequence of Theorem 89 and Corol-
lary 83.

2. With N samples, Hoeffding’s inequality upper bounds the probability
that each moment g(S) differs from its empirical estimate g̃(S) by at
least ε as

Pr
[
| ˜g(S)− g(S)| > ε

]
≤ 2e−2ε2N .

Aunion bound over 3(2k) suchmoments gives us a bound for the failure
event,

Pr
[
∃S : | ˜g(S)− g(S)| > ε

]
≤ 6(2k)e−2ε2N .

This becomes constant when the number of samples N is O(k/ε2).

We note that a simpler version of the above procedure uses only 2k − 1

ζ-separated variables, but needs 2k − 1 iterations to compute the ṽi-s, hence
the required initial accuracy would be exponential in k2 rather than in k log k.

56

4.4 The Condition Number Bound
The key to the sample-complexity and run-time bounds for our algorithm
lies in the following condition number bound for the Hadamard Extension.

Theorem 71. Letm have k − 1 rows, every row ζ-separated, and letM = H(m).
List the singular values of Mπ⊙ in decreasing order: σ1 ≥ σ2 ≥ . . ., and note
σk+1 = . . . = σ2k−1 = 0. Then

σk ≥
(minπi)(ζ/2

√
5)k−1√

k(k2 + 1)k−1
.

Definition 72. Hp = {H(n) : n ∈ R[k−1]×[p]}. (So H1 consists of rank-1 tensors
of order k − 1.)

The proof of Theorem 71 relies on the following insight. Since M has dimen-
sions 2k−1 × k, σk characterizes the least norm ofMv ranging over any unit
vector v, but it does not characterize the least norm of vectors of the form hM;
the left-kernel of M is of course very large. The insight is that it does become
possible to bound σk in terms of such vectors h, provided h is restricted to rank
1 tensors.

Proof. Let τ(m, π) = min0̸=h∈H1

∥∥hTMπ⊙
∥∥ / ∥h∥. The proof rests on two key

lemmas:

Lemma 73. σk(Mπ⊙) ≥ τ(m, π)/
√

k
∏k−1

1 (1 + ∥mi∗∥2).

Proof. Consider v ∈ Rk, ∥v∥ = 1, achieving σk, i.e., r := H(m)π⊙v satisfies
∥r∥ = σk. W.l.o.g. ∥vk∥ ≥ 1/

√
k. Now H(m)∗k =

1
πkvk

(
r −

∑k−1
j=1 πjvjH(m)∗j

)
.

Now we carefully choose h ∈ H1 based on m. Define n ∈ R[k−1] by ni :=

−1/mii; and let h :=
(∏k−1

1 mii

)
H(n). For j ̸= k we have

hTH(m)∗j =

(
k−1∏
1

mii

)∑
S

nSmS,j =

(
k−1∏
1

mii

)∑
S

(−1)|S|
(∏

i∈S

1/mii

)(∏
i∈S

mij

)

=
∑
S

(−1)|S|
(∏

i/∈S

mii

)(∏
i∈S

mij

)
=

k−1∏
i=1

(mii −mij) = 0.

So, hTH(m)∗jπj = 0 for j = 1, . . . , k − 1. For j = k we can also show that
hTH(m)∗jπj is small:

(
hTH(m)π⊙

)
k
=

1

vk
hT

(
r −

k−1∑
j=1

πjvjH(m)∗j

)
=

1

vk
hTr−

k−1∑
j=1

πjvj
(
hTH(m)∗j

)
=

1

vk
hTr.

57

The norm of hTH(m)π⊙ is then upper bounded by∥∥hTH(m)π⊙
∥∥ =

∣∣(hTH(m)π⊙)k
∣∣ = 1

vk
hTr ≤

√
k ∥h∥ ∥r∥

=
√
k ∥h∥σk = σk

√√√√k

k−1∏
1

(1 +m2
ii) due to h being a rank 1 tensor

Lemma 74. τ(m, π) ≥ (minπi)(ζ/2
√
5)k−1.

Proof. Consider anyG ∈ H1, sayG = H(g), g ∈ R[k−1]. Then (GTH(m)π⊙)j =

πj

∑
S gSmS,j = πj

∏k−1
1 (1+gimi,j). We also note that ∥G∥ =

√∏k−1
1 (1 + g2

i).

We now show that there is some j such that
∏k−1

i=1

∣∣∣∣1+gimij√
1+g2

i

∣∣∣∣ is large. First, for
any i for which gi ≥ 1

2
, there is at most one j s.t. mij < ζ; exclude these j’s.

Next, for each i for which gi <
1
2
, there is at most one j s.t.

∣∣∣ 1gi
+mij

∣∣∣ < ζ/2;
exclude these j’s. For the remainder of the argument fix any j which has not
been excluded. Since m has k columns while g ∈ Rk−1, such a j exists. We
consider three cases for i. In each case we lower bound

∣∣∣∣1+gimij√
1+g2

i

∣∣∣∣.
1. gi ≥ 1/2,mij ≥ ζ . Then

∣∣∣∣1+gimij√
1+g2

i

∣∣∣∣ ≥mij ≥ ζ .

2. −1/2 ≤ gi < 1/2. Then
∣∣∣∣1+gimij√

1+g2
i

∣∣∣∣ ≥ √ (mij−2)2

5
≥ 1/

√
5. (This does not

depend on j.)

3. gi < −1/2, | 1gi
+mij| ≥ ζ/2. Then

∣∣∣∣1+gimij√
1+g2

i

∣∣∣∣ = ∣∣∣∣ gi(
1
gi

+mij)

gi

√
1+1/g2

i

∣∣∣∣ ≥ ζ

2
√
5
.

We therefore have τ(m, π) ≥ (minπi)(ζ/2
√
5)k−1.

The proof of Theorem 71 now follows from Lemmas 73, 74, and the fact that
∥mi∗∥ ≤ k for any i.

4.5 Analysis of the Algorithm
Here we will bound the errors introduced in each step of Algorithm 3, refer-
ring often to both the empirical and idealized versions of each quantity in
question. First, we will introduce some notation to simplify some intermedi-
ate calculations:

Definition 75. ζ1 := ζ/9k3/2.

58

We will work under the following assumptions when doing the analysis.

Assumption 1. All empirical multilinear moments appearing in computa-
tions are within an additive ε of their true values.

Assumption 2. The sets S, T, T ′ contain ζ-separated observables.

Finally, for amatrixM , ∥M∥will denote the spectral norm. Wewill frequently
use (implicitly) the upper-bound ∥M∥ ≤ ∥M∥F , where ∥·∥F is the Frobenius
norm.

Bounding theOperatorNormandConditionNumber for the IdealMatrices
and Vectors
First, we argue that the ideal versions of the matrices under consideration
are well-behaved, crucially relying on Theorem 71.

Lemma 76. The matricesA, B, and B′ satisfy

1. A∅∗ = B∅∗ = B′
∅∗ = 1, the all ones row vector.

2. σk(A), σk(B), σk(B
′) ≥ ζk1 .

3. σmax(A), σmax(B), σmax(B
′) ≤ k2k−1.

Moreover, the matrices CBA and CB′A satisfy

1. σmax(CBA), σmax(CB′A) ≤ 22k−2.

2. σk(CBA), σk(CB′A) ≥ πminζ
2k
1 .

Proof. This follows immediately from Theorem 71, the definitions of CBA

and CB′A, and the min-max characterization of the first and last singular
values.

Corollary 77. ∥(CBA)
+∥ , ∥(CB′A)

+∥ ≤ π−1
minζ

−2k
1 .

Lemma 78. ∥ui∥ , ∥u′
i∥ ≤ π−1

minζ
−2k
1 , and ∥vi∥ ≤ ζ−k

1 .

Proof. Clearly, ∥vi∥ ≤ 2k−1 ≤ ζ−k
1 , as vi is a vector of 2k−1 moments of prod-

ucts of Bernoulli random variables. Now ∥ui∥ =
∥∥viC+

BA
∥∥ ≤ ζ−k

1

∥∥C+
BA
∥∥ ≤

π−1
minζ

−2k
1 . A similar argument bounds ∥u′

i∥.

59

Bounding Error in Derived Quantitites

Lemma 79. If ε is sufficiently small,∥∥∥ĈBA −CBA

∥∥∥
2
,
∥∥∥ĈB′A −CB′A

∥∥∥
2
,
∥∥∥C̃B+B′,A −CB+B′,A

∥∥∥
2
≤ 23kε < ζ−k

1 ε,

and ∥∥∥Ĉ+
BA −C+

BA

∥∥∥
2
,
∥∥∥Ĉ+

B′A −C+
B′A

∥∥∥
2
≤ 2π−2

minζ
−5k
1 ε.

Proof. To prove the first inequalities we use the fact that
∥∥∥ĈBA −CBA

∥∥∥
2
≤

2
∥∥∥C̃BA −CBA

∥∥∥ since ∥∥∥ĈBA − C̃BA

∥∥∥ ≤ ∥∥∥C̃BA −CBA

∥∥∥ (as the nearest rank k

matrix to C̃BA can be no further than the distance from C̃BA to CBA). We
then observe that ∥·∥2 ≤ ∥·∥F and the fact that every entry in the matrix
of differences is at most ε in magnitude. For the final inequality we use
Lemmas 90 and 91 to get∥∥∥Ĉ+

BA −C+
BA

∥∥∥ ≤ 2
∥∥C+

BA
∥∥2 ∥∥∥ĈBA −CBA

∥∥∥ ≤ 2π−2
minζ

−5k
1 ε.

The same argument bounds
∥∥∥Ĉ+

B′A −C+
B′A

∥∥∥
2
.

Lemma 80. For any i ∈ lg(2k) and j ≤ 2i,

∥ṽj − vj∥ , ∥ũj − uj∥ ,
∥∥ũ′

j − u′
j

∥∥ ≤ π−2i
minζ

−11ik
1 ε.

Proof. Recall that we initialize the algorithm with

ṽ1 ← (g̃(R ∪ {1}))R∈A, ũ1 ← ṽ1Ĉ
+
BA, ũ′

1 ← ṽ1Ĉ
+
BA.

First, we observe that ∥ṽ1 − v1∥ ≤ ε by assumption. Since ũ1, ũ
′
1 are computed

in the same manner here as in the loop, we will bound that error in the
induction. Now assume that the claim holds up to i− 1, and let εi−1 be the
bound obtained in the i− 1st step. Recall that in each iteration of the outer
loop we compute

ṽ2i ← (ũ2i−1 ⊗ ũ′
2i−1)C̃B+B′,A, ũ2i ← ṽ2iĈ

+
BA, ũ′

2i ← ṽ2iĈ
+
B′A.

We also observe that we choose ε so that ∥ũj − uj∥ ≪ ∥uj∥ and ∥ṽi − vi∥ ≪
∥vj∥ for all i, j so that we can upper bound ∥ũj∥ ≤ 2 ∥uj∥ ≤ 2π−1

minζ
−2k
1 and

∥ṽi∥ ≤ 2 ∥vi∥ ≤ 2ζ−k
1 . We will first focus on bounding ∥ṽ2i − v2i∥. To do this

we write

ṽ2i − v2i = (ũ2i−1 ⊗ ũ′
2i−1)C̃B+B′,A − (u2i−1 ⊗ u′

2i−1)CB+B′,A.

60

We now let w = ũ2i−1 − u2i−1 , w′ = ũ′
2i−1 − u2i−1 , and E = C̃B+B′,A −CB+B′,A,

and use the triangle inequality to obtain

∥ṽ2i − v2i∥ ≤
∥∥∥(w ⊗ ũ′

2i−1)C̃B+B′,A

∥∥∥+∥∥∥(ũ2i−1 ⊗ w′)C̃B+B′,A

∥∥∥+∥(ũ2i−1 ⊗ ũ′
2i−1)E∥ .

The first two terms can each be bounded by

∥w∥ 2 ∥u1∥
∥∥∥C̃B+B′,A

∥∥∥ ≤ 2π−1
minζ

−2k
1 23kεi−1,

and the final term is bounded by

4 ∥u1∥2 ∥E∥ ≤ 4π−2
minζ

−4k
1 ζ−k

1 ε.

As a result we get that

∥ṽ2i − v2i∥ ≤ 4π−2
minζ

−5k
1 (εi−1 + ε).

Now we can bound ∥ũ2i − u2i∥ by observing that

ũ2i − u2i = ṽ2iĈ
+
BA − v2iC

+
BA.

Let z = ṽ2i − v2i and let D = Ĉ+
BA −C+

BA. The above equation becomes

ũ2i − u2i = (v2i + z)(C+
BA +D)− v2iC

+
BA = v2iD + zC+

BA + zD,

and after taking norms and using the triangle inequality we obtain

∥ũ2i − u2i∥ ≤ ∥v2iD∥+
∥∥zC+

BA
∥∥+ ∥zD∥ .

By Corollary 77, Lemma 78 and the induction hypothesis, we get

∥ũ2i − u2i∥ ≤ π−2
minζ

−k
1 2ζ−5k

1 ε+ ∥ṽ2i − v2i∥
(
π−1
minζ

−2k
1 + 2π−2

minζ
−5k
1 ε

)
≤ 2π−2

minζ
−6k
1 ε+ 4π−2

minζ
−5k
1 (εi−1 + ε)(π−1

minζ
−2k
1 + 2π−2

minζ
−5k
1 ε)

≤ 32π−2
minζ

−10k
1 εi−1

≤ π−2
minζ

−11k
1 εi−1,

where we use the fact that εi−1 ≥ ε. For j not a power of 2, we can do the
same analysis, and since the error bound is increasing in j, the result will
follow.

Corollary 81. Algorithm 3 will produce vectors ṽi for i ≤ 2k satisfying

∥ṽi − vi∥ ≤ π
−O(lg k)
min ζ−O(k lg k)ε.

61

Applying the k-MixIID Algorithm.
We use the following theorem.

Theorem 82 (A slight restatement of Theorem 22 from Chapter 2). Given a
mixtureM = (m,π) of k Bernoulli random variables with probabilitiesm1, . . . ,mk

and mixing probabilities π1, . . . , πk, respectively, let [Hk+1]
k
i,j=0 = µi+j be the matrix

of moments of the distribution. If m is ζ-separated, then there is an algorithm,
LearnPowerDistribution, that takes as input a Hankel matrix [H̃k+1]

k
i,j=0 = µ̃i+j

of approximate moments ofM satisfying
∥∥∥H̃k+1 −Hk+1

∥∥∥
2
≤ πmin2

−γζ16k (for
some γ ≥ 1), and outputs a model M̃ = (m̃, π̃) satisfying

∥m̃−m∥∞ , ∥π̃ − π∥∞ ≤ 2−γ

using O(k2 log k + k log2 k · log(log ζ−1 + log π−1
min + γ)) arithmetic operations.

Corollary 83. The output (m̃1, π̃) of LearnPowerDistribution in line 14 of
Algorithm 3 satisfies

∥m̃1 −m1∥ , ∥π̃ − π∥ ≤ π
−O(lg k)
min ζ−O(k lg k)ε.

Proof. Every entry (ṽi){1} satisfies ∥(ṽi)1 − (vi)1∥ ≤ π
−O(lg k)
min ζ−O(k lg k)ε so∥∥∥H̃k+1 −Hk+1

∥∥∥ ≤ π
−O(lg k)
min ζ−O(k lg k)ε

which implies that

∥m̃1 −m1∥∞ , ∥π̃ − π∥∞ ≤ π
−O(lg k)
min ζ−O(k lg k)ε.

Finally, we need to multiply by k ≤ ζ−1 to account for the conversion to the
Euclidean norm to get the stated bound.

Solving for the Rest of the Model.
Once we have computed m̃1 and π̃, we will use them to compute the re-
maining model parameters. In this section we bound the additional error
introduced by these computations.

Proposition 84. ∥Vdm(m̃1)− Vdm(m1)∥ ≤ k ∥m̃1 −m1∥ ≤ ζ−1 ∥m̃1 −m1∥.

Claim 85 (Claim 26 in [47]). ∥Vdm(m1)
−1∥ ≤ 2k/ζk−1 ≤ ζ−2k when m1 is

ζ-separated.

62

Lemma 86. The computed Ã produced by Algorithm 3 will satisfy∥∥∥Ã−A
∥∥∥ ≤ π

−O(lg k)
min ζ−O(k lg k)ε.

Proof. Recall Ṽ = (ṽ0; . . . ; ṽk−1) from Algorithm 3 and V = (v0; . . . ; vk−1) is
its real-value analog. First, we observe that

∥∥∥Ṽ ∥∥∥ ≤ ζ−3k. Also, by Lemma 90
and Claim 85, ∥Vdm(m̃1)

−1∥ ≤ ζ−3k. Now, by Corollary 83,
∥∥π̃−1

⊙ − π−1
⊙
∥∥ ≤

π
−O(lg k)
min ζ−O(k lg k)ε. Thus,∥∥π̃−1

⊙ − π−1
⊙
∥∥∥∥(Vdm(m̃1))

−1
∥∥∥∥∥Ṽ ∥∥∥ ≤ π

−O(lg k)
min ζ−O(k lg k)ε.

Now, by Lemma 91, ∥(Vdm(m̃1))
−1 − (Vdm(m1))

−1∥ ≤ π
−O(lg k)
min ζ−O(k lg k)ε,

so, ∥∥π̃−1
⊙
∥∥∥∥(Vdm(m̃1))

−1 − (Vdm(m1))
−1
∥∥∥∥∥Ṽ ∥∥∥ ≤ π

−O(lg k)
min ζ−O(k lg k)ε.

Finally,
∥∥∥Ṽ − V

∥∥∥ ≤ π
−O(lg k)
min ζ−O(k lg k)ε, so that

∥∥π−1
⊙
∥∥∥∥(Vdm(m̃1))

−1
∥∥∥∥∥Ṽ − V

∥∥∥ ≤ π
−O(lg k)
min ζ−O(k lg k)ε.

Putting these together, we easily obtain∥∥∥Ã−A
∥∥∥ =

∥∥∥π̃−1
⊙ (Vdm(m̃1))

−1Ṽ − π−1
⊙ (Vdm(m1))

−1V
∥∥∥

≤
∥∥π̃−1

⊙ − π−1
⊙
∥∥∥∥(Vdm(m̃1))

−1
∥∥∥∥∥Ṽ ∥∥∥+ ∥∥π̃−1

⊙
∥∥∥∥(Vdm(m̃1))

−1 − (Vdm(m1))
−1
∥∥∥∥∥Ṽ ∥∥∥

+
∥∥π−1

⊙
∥∥∥∥(Vdm(m̃1))

−1
∥∥∥∥∥Ṽ − V

∥∥∥ (∥∥Vdm(m1)
−1E2

∥∥+ ∥E1V ∥∞)

+ ∥w∥
∥∥Vdm(m̃1)

−1
∥∥∥∥∥Ṽ ∥∥∥

≤ π
−O(lg k)
min ζ−O(k lg k)ε.

Lemma 87.
∥∥∥(ÃT)+

∥∥∥ ≤ ζ−O(k) and
∥∥∥(B̃T)+

∥∥∥ ≤ ζ−O(k).

Proof. We prove this for (ÃT)+, the argument for (B̃T)+ is the same.

Notice that Lemma 86 together with the lower bound on σk(A) from Theo-
rem 71 imply that ÃT has full row rank. Now,∥∥∥(ÃT)+

∥∥∥ ≤ ∥∥(AT)+
∥∥+ ∥∥∥(ÃT)+ − (AT)+

∥∥∥ .

63

We bound each term separately. We have∥∥(AT)+
∥∥ =

∥∥A(AAT)−1
∥∥ ≤ ∥A∥∥∥(AAT)−1

∥∥ ≤ k2k−1/(σk(A))2 ≤ ζ−O(k).

As for the second term, notice that∥∥∥ÃÃT −AAT
∥∥∥ =

∥∥∥Ã(ÃT −AT) + (Ã−A)AT
∥∥∥

≤
∥∥∥Ã∥∥∥∥∥∥ÃT −AT

∥∥∥+ ∥∥∥Ã−A
∥∥∥∥∥AT

∥∥
≤ π

−O(lg k)
min ζ−O(k lg k)ε.

Therefore, by Lemma 91 also
∥∥∥(ÃÃT)−1 − (AAT)−1

∥∥∥ ≤ π
−O(lg k)
min ζ−O(k lg k)ε.

Thus, we get for the second term∥∥∥(ÃT)+ − (AT)+
∥∥∥ =

∥∥∥Ã(ÃÃT)−1 −A(AAT)−1
∥∥∥

=
∥∥∥(Ã−A)(ÃÃT)−1 +A((ÃÃT)−1 − (AAT)−1)

∥∥∥
≤
∥∥∥Ã−A

∥∥∥∥∥∥(ÃÃT)−1
∥∥∥+ ∥A∥∥∥∥(ÃÃT)−1 − (AAT)−1

∥∥∥
≤ π

−O(lg k)
min ζ−O(k lg k)ε.

Lemma 88.
∥∥∥B̃−B

∥∥∥ ≤ π
−O(lg k)
min ζ−O(k lg k)ε.

Proof. We can bound B̃−B using the same tools as in the previous bounds.
First, we bound∥∥∥C̃BA −CBA

∥∥∥∥∥∥(ÃT)+
∥∥∥∥∥π̃−1

⊙
∥∥ ≤ π−1

minζ
−O(k)ε.

Next, ∥∥∥C̃BA

∥∥∥∥∥∥(ÃT)+ − (AT)+
∥∥∥∥∥π̃−1

⊙
∥∥ ≤ π

−O(lg k)
min ζ−O(k lg k)ε.

Finally, ∥∥∥C̃BA

∥∥∥∥∥∥(ÃT)+
∥∥∥∥∥π̃−1

⊙ − π−1
⊙
∥∥ ≤ π

−O(lg k)
min ζ−O(k lg k)ε.

The resulting bound is∥∥∥B̃−B
∥∥∥ =

∥∥∥C̃BA(Ã
T)+π̃−1

⊙ −CBA(A
T)+π⊙

∥∥∥
≤
∥∥∥C̃BA −CBA

∥∥∥∥∥∥(ÃT)+
∥∥∥∥∥π̃−1

⊙
∥∥+

+
∥∥∥C̃BA

∥∥∥∥∥∥(ÃT)+ − (AT)+
∥∥∥∥∥π̃−1

⊙
∥∥+

+
∥∥∥C̃BA

∥∥∥∥∥∥(ÃT)+
∥∥∥∥∥π̃−1

⊙ − π−1
⊙
∥∥

≤ π
−O(lg k)
min ζ−O(k lg k)ε.

64

Theorem 89. Algorithm 3 will compute m̃i satisfying, for all i ∈ [n],

∥m̃i −mi∥∞ ≤ π
−O(lg k)
min ζ−O(k lg k)ε.

Proof. We will compute the bound using the inversion of B̃T since this will
give us the worst case. Let ỹ = (g̃(R ∪ {i}))R∈B, and let y = (g(R ∪ {i}))R∈B.
We note that ∥ỹ − y∥ ≤ ζ−O(k)ε, by assumption on the sample size, and
∥ỹ∥ ≤ 2k−1. Then,

∥ỹ − y∥
∥∥∥(B̃T)+

∥∥∥∥∥π̃−1
⊙
∥∥ ≤ π

−O(1)
min ζ−O(k)ε,

∥ỹ∥
∥∥∥(B̃T)+ − (BT)+

∥∥∥∥∥π̃−1
⊙
∥∥ ≤ π

−O(lg k)
min ζ−O(k lg k)ε,

and
∥ỹ∥

∥∥∥(B̃T)+
∥∥∥∥∥π̃−1

⊙ − π−1
⊙
∥∥ ≤ π

−O(lg k)
min ζ−O(k lg k)ε.

So that we get

∥m̃i −mi∥ =
∥∥∥ỹ(B̃T)+π̃−1

⊙ − y(BT)+π−1
⊙

∥∥∥
≤ ∥ỹ − y∥

∥∥∥(B̃T)+
∥∥∥∥∥π̃−1

⊙
∥∥+ ∥ỹ∥∥∥∥(B̃T)+ − (BT)+

∥∥∥∥∥π̃−1
⊙
∥∥+ ∥ỹ∥ ∥∥∥(B̃T)+

∥∥∥∥∥π̃−1
⊙ − π−1

⊙
∥∥

≤ π
−O(lg k)
min ζ−O(k lg k)ε.

Miscellaneous Proofs

Lemma 90. LetM, M̃ ∈ Rn×n have rank k ≤ n. Let
∥∥∥M̃ −M

∥∥∥ = ε ≤ σk(M)/2.

Then
∥∥∥M̃+

∥∥∥ ≤ 2 ∥M+∥.

Proof. We observe that∥∥∥M̃+
∥∥∥ =

1

σk(M̃)
≤ 1

σk(M)− σk(M)/2
≤ 2

∥∥M+
∥∥ .

Lemma 91 (Theorem 3.4 in [49]). Let M, M̃ ∈ Rn×n have rank k ≤ n. Then∥∥∥M+ − M̃+
∥∥∥ ≤ 2 ∥M+∥

∥∥∥M̃+
∥∥∥∥∥∥M − M̃

∥∥∥.

65

C h a p t e r 5

THE IDENTIFIABILITY OF UNIFORMMIXTURES OF
BINOMIAL DISTRIBUTIONS WITH LOG-LINEAR

INFLUENCES

In the work thus far we have been exclusively concerned with the setting
where there is a single latent variable U which induces independence among
X1, . . . , Xn when it is conditioned upon. In general Bayesian networks we
are unlikely to have a single predecessor for most nodes and so this setting is
insufficiently general to handle many cases of interest. However, this setting
does allow us to identify the parameters of the joint distribution on U and
the Xi using only O(k)moments, when U is supported on k states.

Towards the goal of eventually understanding identifiability in more general
graphs, we will return the k-Mix IID setting and start generalizing from there.

We begin by introducing multiple latent predecessors U1, . . . , Uℓ; we will
have each visible variable X be conditionally independent from the others
given the values of each of the Ui. With ℓ hidden variables having k states
each, we then obtain a setting in which there kℓ possible assignments to the
latent variables, and each such assignment induces a (potentially different)
probability that X = 1. One method for identifying parameters in this case
(excluding the measure zero set of parameters for which the probability that
X = 1 is the same across two or more assignments to U1, . . . , Uℓ) is to run
a kℓ-Mix IID algorithm. Unfortunately, doing this requires observing O(kℓ)

copies ofX and requires learning kℓ parameters. Here, there is no advantage
to be gained by knowing that there are multiple independent latent variables,
as opposed to a single latent variable with kℓ states. We will call this the naïve
setting.

We would like to understand when we can hope to take advantage of the
independence structure among the latent variables, which requires that there
be some observable trace of this indpendence structure in the Bernoulli
parameters induced by the assignments to the latent variables. Towards
that end, we will consider the case where the contributions to the Bernoulli
parameters induced by an assignment can be decoupled into a contribution

66

for each latent variable. The simplest way to do this is to have Pr(X = 1 |
u1, . . . , uℓ) =

∏ℓ
i=1 αi,ui

for parameters {αi,j}i,j∈[ℓ]×[k] so that the contributions
from each latent variable aremultiplied together; changing one latent variable
only changes that term in the product. This model is already interestingly
different from the naïve setting when k = 2. Then we have 2ℓ+ ℓ parameters
describing the joint distribution in this setting, compared to 2ℓ+ ℓ parameters
in the naïve setting. We can hope to do better than just running Prony’s
algorithm with a mixture of 2ℓ distributions in this case.

This assumption of “independent influence” of the latent variables on the
observed variables makes the resulting model into a log-linear model; we
have

log Pr(X = 1 | u1, . . . , uℓ) =
ℓ∑

i=1

logαi,ui
.

While we have a log-linear dependence of the probability on the parameters,
these are unnormalized, in that the probability of X = 1 | u1, . . . , uℓ does not
depend on the sum of the probabilities of X = 1 across all assignments to
U1, . . . , Uℓ. As a result, these are in fact distinct from many of the models that
go under the heading of “log-linear models”, such as restricted Boltzmann
machines or Markov random fields.

Formalizing our model We are concerned with the following mixture
model: We have n binary random variables X1, . . . , Xn that are iid condi-
tioned on a collection of ℓ independent latent binary variables U1, . . . , Uℓ.
Each Ui is uniform over {0, 1}.1 Finally, we have that the the probability that
X = 1 given U = u is given by the product of terms corresponding to each
of the hidden variables, namely P (X = x | U = u) =

∏ℓ
j=1 αj,uj

. We have 2ℓ
parameters αib for i = 1, 2, . . . , ℓ and b = 0, 1.

The probability that X = 1 is given by 2−ℓ times

µ1 :=
ℓ∏

i=1

(αi0 + αi1).

With enough copies of X we have access to

µj :=
ℓ∏

i=1

(αj
i0 + αj

i1)

1Relaxing this assumption makes the analysis quite a bit more difficult, and we do not
know if the same result will hold in that setting.

67

for arbitrary j.2

We are going to throw out the restrictions on the statistical model, and con-
sider the problem of solving the polynomial system.

We first observe that µ1 is invariant to the transformation

(αi0, αi1) 7→ (λαi0, λαi1),

(αj0, αj1) 7→ (λ−1αi0, λ
−1αi1)

for any λ > 0 and i ̸= j (where all other parameters are unchanged). As
a result, we can without loss of generality solve for parameters satisfying
αi0 + αi1 = µ

1
ℓ
1 for all i ∈ [ℓ]. Let γ := µ

1
ℓ
1 .

To solve for αi0, αi1 it now suffices to solve for ai := αi0αi1, the product of our
two parameters. In particular, we get that αi0(γ − αi0) = ai which we can
easily solve for αi0.

We will obtain the following theorem:

Theorem 92. The mapping from {ai} to µ2, . . . , µℓ+1 is identifiable.

Our immediate goal will now be to understand the polynomial system of
equations in the variables {ai} that we obtain after this transformation.

First, we observe that

α2
i0 + α2

i1 = (αi0 + αi1)
2 − 2αi0αi1 = γ2 − 2ai

so that

µ2 =
ℓ∏

i=1

(γ2 − 2ai).

Moreover,

α3
i0 + α3

i1 = (αi0 + αi1)
3 − 3(α2

i0αi1 + αi0α
2
i1)

= γ3 − 3αi0αi1(αi0 + αi1)

= γ3 − 3γai.

In subsequent computations, I’ll omit the subscript ‘i’ everywhere since it
remain constant throughout.

2The actual observation we can make is of µj/2
ℓ, which we can multiply by 2ℓ to get µj .

68

Definition 93. Let pm(a) denote the univariate polynomial in a obtained by
simplifying αn

0 + αn
1 using α0 + α1 = γ and a = α0α1.

Proposition 94.

p0 = 2, (5.1)

p1 = γ, (5.2)

pm = γpm−1 − apm−2, m ≥ 2. (5.3)

Proof. First, p0 = α0
0 + α0

1 = 2 and p1 = α1
0 + α1

1 = γ. Now

pm = αm
0 + αm

1

= (αm−1
0 + αm−1

1)(α0 + α1)− α0α1(α
m−2
0 + αm−2

1)

= γpm−1 − apm−2.

Observation 95. The polynomials defined above satisfy the following:

1. The degree of pm is ⌊m/2⌋.

2. pm(0) = γm for m > 0.

3. The leading term of pm has a negative sign if ⌊m/2⌋ is odd, and a positive
sign if ⌊m/2⌋ is even.

Proof. By induction overm.

Proposition 96. For anym > 2,

1. the roots r1, . . . , r⌊m/2⌋ of pm are all real, distinct, and contained in (0,∞).

2. Let s1, . . . , s⌊(m−1)/2⌋ be the roots of pm−1. Then 0 < r1 < s1 and si−1 < ri <

si for i = 2, . . . , ⌊m/2⌋ and s⌊(m−1)/2⌋ < r⌊m/2⌋ when pm has degree greater
than pm−1.

Proof. We will induct over m. The claim clearly holds for m = 0, 1. Now
p2 = −2a + γ2 which has a root at γ2/2 and p3 = γ(−2a + γ2) − aγ =

−2γa+ γ3 − γa = −3γa+ γ3 which has a root at γ2/3.

69

Now fix an arbitrary m ∈ N. Let d := deg(pm−2), so d + 1 = deg(pm). Let
s1, . . . , sd be the roots of pm−2 and let r1, . . . , rd be the first d roots of pm−1. By
the inductive hypothesis, 0 < r1 < s1 < r2 < · · · < rd < sd. If deg(pm−1) = d+

1 > deg(pm), then there is an additional root rd+1 of pm−1 with sd < rd+1. Since
we have accounted for every root of pm−1 and pm−2, it must be the case that the
value of pm−1 alternates between strictly positive and strictly negative on the
sequence of open intervals (−∞, r1), (r1, r2), (r2, r3), . . . , (r⌊(m−1)/2⌋,∞) and
pm−2 alternates in sign on the intervals (−∞, s1), (s1, s2), . . . , (sd,∞). Now
we compute

pm(r1) = γpm−1(r1)− r1pm−2(r1) = −r1pm−2(r1) < 0;

pm(s1) = γpm−1(s1)− s1pm−2(s1) = γpm−1(s1) < 0.

By the preceding observation, pm(0) = γm > 0 so there must be a root of pm
in (0, r1).

For 1 < i < d, ri ∈ (si−1, si) and si ∈ (ri, ri+1). Moreover, pm(ri) = −ripm−2(ri)

and pm(si) = γpm−1(si), so sign(pm(ri)) = sign(pm(si)) = − sign(pm(ri+1)).
We conclude that there is a root of pm in the interval (si, ri+1) for 1 < i < d.

we have thus shown that there are roots of pm in each of the intervals

(0, r1), (s1, r2), (s2, r3), . . . , (sd−1, rd).

If deg(pm−1) = d+1, thenwe also get that there is a root in (sd, rd+1) andwe are
done. If deg(pm−1) = d, then the leading term of pm has a different sign than
the leading terms of pm−1 and pm−2. Since sign(pm(sd)) = sign(pm−1(sd)) and
sd is greater than all the roots of pm−1 it must be the case that sign(pm−1(x)) =

sign(pm−1(sd)) for all x ∈ [sd,∞). But limx→∞ pm(x) = − limx→∞ pm−1(x), so
there must be a root of pm in (sd,∞). we have thus accounted for all d + 1

roots of pm, proving the claim.

The identifiability of symmetric systems of polynomial equations
Consider a sequence of ℓ univariate polynomials p1, . . . , pℓ. Let x1, . . . , xℓ be
indeterminates.

We can construct symmetric polynomials in the xi by taking products as
follows:

qi(x) :=
ℓ∏

j=1

pi(xj).

70

Proposition 97. Suppose that for all i ∈ [ℓ], pi has a smallest positive real root αi

with multiplicity 1 that is not a root of p1, p2, . . . , pi−1. Then the mapping

(y1, . . . , yℓ) 7→ (q1(y), . . . , qℓ(y))

is invertible, except on a set of measure zero.

Proof. In what follows, let #(αj, pi) denote the multiplicity of root αj in pi.
By assumption, #(αj, pi) = 0 for j > i and #(αj, pj) = 1 for all j.

We will now construct a sequence of rational functions r1, . . . , rℓ satisfying

#(αj, ri) = 1i=j,

where #(αj, ri) < 0 if αj is a pole of ri.

First, we set r1 := p1, since #(αj, p1) = 0 for all j > 1.

Now inductively we construct ri as follows:

ri := pi

(
i−1∏
i′=1

r
−#(αi′ ,pi)
i′

)
.

By construction, #(αj, ri) = 0 for j < i and #(αi, ri) = 1. Moreover,
#(αj, ri) = 0 for j > i since

#(αj, pi) = #(αj, r1) = · · · = #(αj, ri−1) = 0.

Now define si :=
∏ℓ

j=1 ri(yj) for i = 1, . . . , ℓ so that si is the symmetric
product of ri evaluated at each indeterminate, just as qi is the symmetric
product of pi evaluated at each indeterminate.

In fact, we have

si = qi

(
i−1∏
i′=1

s
−#(αi′ ,pi)
i′

)
.

Let F and G be the following mappings:

(y1, . . . , yℓ)
F7−→ (q1, . . . , qℓ)

G7−→ (s1, . . . , sℓ).

Finally, let H = G ◦ F .

We now consider the Jacobian of H , evaluated at the point α = (α1, . . . , αℓ).

71

By construction we have that

∂si
∂yj

(α) =

(∏
j′ ̸=j

ri(αj′)

)
r′i(αj).

Now ∏
j′ ̸=j

ri(αj′) ̸= 0 ⇐⇒ i = j

since ri(αi) = 0 and #(αj, ri) = 0 for any j ̸= i. Moreover, r′i(αi) ̸= 0 since
αi is a simple root of ri, so we conclude that ∂si

∂yj
(α) ̸= 0 ⇐⇒ i = j. Thus,

the Jacobian is a diagonal matrix with non-zero diagonal entries and is thus
invertible. We conclude that there is an open neighborhood around α in
which H is invertible, which implies the same for F . Since F is a polynomial
map, we conclude it is generically identifiable.

Proof of Theorem 92. Finally, Theorem 92 follows immediately from Proposi-
tions 94 and 97.

Conjecture 98. Let p1, . . . , pℓ be univariate polynomials and let qi :=
∏ℓ

j=1 pi(xj)

for i = 1, . . . , ℓ. Let α1, . . . , αL be the set of all roots appearing in any pi. Consider
the matrix M ∈ Rℓ×L with entry Mij ∈ Z≥0 being the multiplicity with which
αj appears as a root in pi. Then the mapping (x1, . . . , xℓ) 7→ (q1(x), . . . , qℓ(x)) is
invertible if and only ifM has rank ℓ over Q.

72

BIBLIOGRAPHY

[1] F. B. Hildebrand, Introduction to Numerical Analysis, 2nd. McGraw-Hill,
1974.

[2] B. Simon, A Comprehensive Course in Analysis. American Mathematical
Society, 2015.

[3] Y. Kim, F. Koehler, A. Moitra, E. Mossel, and G. Ramnarayan, “How
many subpopulations is too many? Exponential lower bounds for
inferring population histories,” in Int’l Conference on Research in Compu-
tational Molecular Biology, ser. Lecture Notes in Computer Science, L.
Cowen, Ed., vol. 11457, Springer, 2019, pp. 136–157. doi: 10.1007/978-
3-030-17083-7_9.

[4] A. Feldmann and W. Whitt, “Fitting mixtures of exponentials to long-
tail distributions to analyze network performancemodels,” Performance
Evaluation, vol. 31, no. 3, pp. 245–279, 1998.

[5] J. Pearl, Causality, 2nd. Cambridge, 2009.

[6] A. Anandkumar, D. J. Hsu, and S. M. Kakade, “A method of mo-
ments for mixture models and hidden Markov models,” in Proceedings
of the 25th Annual Conference on Learning Theory - COLT, ser. JMLR
Proceedings, vol. 23, 2012, pp. 33.1–33.34. [Online]. Available: http:
//proceedings.mlr.press/v23/anandkumar12/anandkumar12.pdf.

[7] R. de Prony, “Essai expérimentale et analytique,” J. Écol. Polytech., vol. 1,
no. 2, pp. 24–76, 1795.

[8] R. Kumaresan, D. W. Tufts, and L. L. Scharf, “A Prony method for
noisy data: Choosing the signal components and selecting the order
in exponential signal models,” Proceedings of the IEEE, vol. 72, no. 2,
pp. 230–233, 1984.

[9] Y. Rabani, L. J. Schulman, and C. Swamy, “Learning mixtures of ar-
bitrary distributions over large discrete domains,” in Proceedings of
the 5th Conference on Innovations in Theoretical Computer Science, 2014,
pp. 207–224. doi: 10.1145/2554797.2554818.

[10] J. Li, Y. Rabani, L. J. Schulman, and C. Swamy, “Learning arbitrary
statistical mixtures of discrete distributions,” in Proceedings of the 47th
Annual ACM Symposium on Theory of Computing, 2015, pp. 743–752. doi:
10.1145/2746539.2746584.

[11] T. Hofmann, “Probabilistic latent semantic analysis,” in Proceedings of
the 15th Conference on Uncertainty in Artificial Intelligence, 1999, pp. 289–
296.

https://doi.org/10.1007/978-3-030-17083-7_9
https://doi.org/10.1007/978-3-030-17083-7_9
http://proceedings.mlr.press/v23/anandkumar12/anandkumar12.pdf
http://proceedings.mlr.press/v23/anandkumar12/anandkumar12.pdf
https://doi.org/10.1145/2554797.2554818
https://doi.org/10.1145/2746539.2746584

73

[12] C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, “Latent
semantic indexing: A probabilistic analysis,” Journal of Computer and
System Sciences, vol. 61, no. 2, pp. 217–235, 2000.

[13] S. Arora, R. Ge, andA.Moitra, “Learning topicmodels—going beyond
SVD,” in Proceedings of the 53rd Annual IEEE Symposium on Foundations
of Computer Science, 2012.

[14] A. Anandkumar, D. P. Foster, D. J. Hsu, S. M. Kakade, and Y.-K. Liu, “A
spectral algorithm for latent Dirichlet allocation,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds., Curran Associates, Inc., 2012, pp. 917–925.

[15] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie,
“On the learnability of discrete distributions,” in Proceedings of the 26th
Annual ACM Symposium on Theory of Computing, 1994, pp. 273–282. doi:
10.1145/195058.195155.

[16] Y. Freund and Y. Mansour, “Estimating a mixture of two product distri-
butions,” in Proceedings of the 12th Annual Conference on Computational
Learning Theory, Jul. 1999, pp. 53–62. doi: 10.1145/307400.307412.

[17] M. Cryan, L. Goldberg, and P. Goldberg, “Evolutionary trees can be
learned in polynomial time in the two state general Markov model,”
SIAM J. Comput., vol. 31, no. 2, pp. 375–397, 2001. doi: 10 . 1137 /
S0097539798342496.

[18] K. Chaudhuri and S. Rao, “Learning mixtures of product distributions
using correlations and independence,” in Proceedings of the 21st An-
nual Conference on Learning Theory - COLT, Omnipress, 2008, pp. 9–20.
[Online]. Available: http://colt2008.cs.helsinki.fi/papers/7-
Chaudhuri.pdf.

[19] J. Feldman, R. O’Donnell, and R. A. Servedio, “Learning mixtures of
product distributions over discrete domains,” SIAM J. Comput., vol. 37,
no. 5, pp. 1536–1564, 2008. doi: 10.1137/060670705.

[20] S. Chen and A. Moitra, “Beyond the low-degree algorithm: Mixtures
of subcubes and their applications,” in Proceedings of the 51st Annual
ACM Symposium on Theory of Computing, 2019, pp. 869–880.

[21] J. Peters, D. Janzing, and B. Schölkopf, Elements of Causal Inference. MIT
Press, 2017.

[22] T. S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and
Breach, 1978.

[23] K. Schmüdgen, The Moment Problem (Graduate Texts in Mathematics).
Springer International Publishing, 2017, vol. 277.

https://doi.org/10.1145/195058.195155
https://doi.org/10.1145/307400.307412
https://doi.org/10.1137/S0097539798342496
https://doi.org/10.1137/S0097539798342496
http://colt2008.cs.helsinki.fi/papers/7-Chaudhuri.pdf
http://colt2008.cs.helsinki.fi/papers/7-Chaudhuri.pdf
https://doi.org/10.1137/060670705

74

[24] Wikipedia contributors, Hoeffding’s inequality —Wikipedia, the free en-
cyclopedia, [Online; accessed 6-April-2020], 2020. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Hoeffding%27s_
inequality&oldid=946643344.

[25] T. J. Rivlin, “Bounds on a polynomial,” Journal of Research of the National
Bureau of Standards - B. Math. Sci., vol. 74B, no. 1, pp. 47–54, Jan. 1970.

[26] F. D. Parker, “Inverses of Vandermonde matrices,” The American Math-
ematical Monthly, vol. 71, no. 4, pp. 410–411, 1964.

[27] J. H. Wilkinson, “The perfidious polynomial,” in Studies in Numeri-
cal Analysis, ser. Studies in Mathematics, G. H. Golub, Ed., vol. 24,
Mathematical Association of America, 1984, pp. 1–28.

[28] V. Y. Pan and Z. Q. Chen, “The complexity of the matrix eigenproblem,”
in Proceedings of the 31st Annual ACMSymposium on Theory of Computing,
1999, pp. 507–516.

[29] W. Gautschi, “How (un)stable are Vandermonde systems,” Asymptotic
and computational analysis, vol. 124, pp. 193–210, 1990.

[30] S. G. Bartels andD. J.Higham, “The structured sensitivity ofVandermonde-
like systems,” Numerische Mathematik, vol. 62, pp. 17–33, 1992.

[31] V. Y. Pan, Z. Q. Chen, and A. Zheng, “The complexity of the algebraic
eigenproblem,” Math. Science Research Institute, Berkeley California,
Tech. Rep. 1998-071, 1998.

[32] B. N. Parlett, The Symmetric Eigenvalue Problem. Prentice-Hall, Inc., 1998.

[33] V. Y. Pan, “Optimal and nearly optimal algorithms for approximating
polynomial zeros,” Computers & Mathematics with Applications, vol. 31,
no. 12, pp. 97–138, 1996.

[34] S. L. Gordon, B. Mazaheri, Y. Rabani, and L. J. Schulman, “Source iden-
tification for mixtures of product distributions,” in Proceedings of the
34th Annual Conference on Learning Theory - COLT, ser. Proceedings of
Machine Learning Research, vol. 134, PMLR, 2021, pp. 2193–2216. [On-
line]. Available: http://proceedings.mlr.press/v134/gordon21a.
html.

[35] S. Newcomb, “A generalized theory of the combination of observations
so as to obtain the best result,” American Journal of Mathematics, vol. 8,
no. 4, pp. 343–366, 1886.

[36] K. Pearson, “Contributions to the mathematical theory of evolution
III,” Philosophical Transactions of the Royal Society of London (A.), vol. 185,
pp. 71–110, 1894.

https://en.wikipedia.org/w/index.php?title=Hoeffding%27s_inequality&oldid=946643344
https://en.wikipedia.org/w/index.php?title=Hoeffding%27s_inequality&oldid=946643344
http://proceedings.mlr.press/v134/gordon21a.html
http://proceedings.mlr.press/v134/gordon21a.html

75

[37] B. S. Everitt and D. J. Hand, “Mixtures of discrete distributions,” in
Finite Mixture Distributions, Dordrecht: Springer Netherlands, 1981,
pp. 89–105.

[38] D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical Analysis
of Finite Mixture Distributions. John Wiley and Sons, Inc., 1985.

[39] B. G. Lindsay,Mixture Models: Theory, Geometry and Applications. 1995,
pp. i–163.

[40] G. J.McLachlan, S. X. Lee, and S. I. Rathnayake, “Finitemixturemodels,”
Annual Review of Statistics and Its Application, vol. 6, no. 1, pp. 355–378,
2019. doi: 10.1146/annurev-statistics-031017-100325.

[41] B. Tahmasebi, S. A. Motahari, and M. A. Maddah-Ali, “On the identifi-
ability of finite mixtures of finite product measures,” (Also in “On the
identifiability of parameters in the population stratification problem:
A worst-case analysis,” Proceedings of the ISIT 2018 pp. 1051-1055),
2018. [Online]. Available: https://arxiv.org/abs/1807.05444.

[42] B. Tahmasebi, S. A. Motahari, and M. A. Maddah-Ali, “On the identifi-
ability of finite mixtures of finite product measures,” (Also in “On the
identifiability of parameters in the population stratification problem: A
worst-case analysis,” Proceedings of the ISIT’18 pp. 1051-1055.), 2018.
[Online]. Available: https://arxiv.org/abs/1807.05444.

[43] S. Chen and A. Moitra, “Beyond the low-degree algorithm: Mixtures
of subcubes and their applications,” in Proceedings of the 51st Annual
ACM Symposium on Theory of Computing, 2019, pp. 869–880. doi: 10.
1145/3313276.3316375.

[44] S. L. Gordon, B. Mazaheri, Y. Rabani, and L. J. Schulman, “Source
identification for mixtures of product distributions,” in Proceedings of
the 34th Annual Conference on Learning Theory - COLT, ser. Proceedings
of the Machine Learning Research, vol. 134, PMLR, 2021, pp. 2193–
2216. [Online]. Available: http://proceedings.mlr.press/v134/
gordon21a.html.

[45] D. Hsu, S. M. Kakade, and T. Zhang, “A spectral algorithm for learning
hidden Markov models,” J. Comput. Syst. Sci., vol. 78, no. 5, pp. 1460–
1480, Sep. 2012. doi: 10.1016/j.jcss.2011.12.025.

[46] S. L. Gordon and L. J. Schulman, “Hadamard extensions and the iden-
tification of mixtures of product distributions,” IEEE Transactions on
Information Theory, vol. 68, no. 6, pp. 4085–4089, 2022. doi: 10.1109/
TIT.2022.3146630.

[47] S. L. Gordon, B. Mazaheri, Y. Rabani, and L. J. Schulman, “The sparse
Hausdorff moment problem, with application to topic models,” 2020.
[Online]. Available: https://arxiv.org/abs/2007.08101.

https://doi.org/10.1146/annurev-statistics-031017-100325
https://arxiv.org/abs/1807.05444
https://arxiv.org/abs/1807.05444
https://doi.org/10.1145/3313276.3316375
https://doi.org/10.1145/3313276.3316375
http://proceedings.mlr.press/v134/gordon21a.html
http://proceedings.mlr.press/v134/gordon21a.html
https://doi.org/10.1016/j.jcss.2011.12.025
https://doi.org/10.1109/TIT.2022.3146630
https://doi.org/10.1109/TIT.2022.3146630
https://arxiv.org/abs/2007.08101

76

[48] G. H. Golub and C. F. V. Loan, Matrix Computations, 4th. The Johns
Hopkins University Press, 2013.

[49] G. W. Stewart, “On the perturbation of pseudo-inverses, projections
and linear least squares problems,” SIAMReview, vol. 19, no. 4, pp. 634–
662, 1977. doi: 10.1137/1019104.

https://doi.org/10.1137/1019104

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	Introduction
	Organization

	The k-Mix IID problem
	Introduction
	Mixture Models and Other Definitions
	Properties of Hankel Matrices
	The Empirical Moments
	Learning the Source
	Implications for Topic Models
	Analysis
	Computing the Weights
	Deferred Proofs
	Useful Theorems

	Sufficient Conditions for the Identifiability of Mixtures of Products
	Introduction
	Motivation
	Some Theory for Hadamard Products, and a Proof of Theorem 45
	Combinatorics of the NAE Condition: Proof of Theorem 47(a)
	From NAE to Rank: Proof of Theorem 47(b)

	Source Identification for Mixtures of Products
	Introduction
	Preliminaries
	The Algorithm
	The Condition Number Bound
	Analysis of the Algorithm

	The Identifiability of Uniform Mixtures of Binomial Distributions with Log-Linear Influences
	Bibliography

