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ivABSTRACT

This thesis establishes control and estimation architectures that combine both model-based

and model-free methods by theoretically characterizing several types of jump stochastic sys-

tems (JSSs), i.e., systems with random and repetitive jump phenomena. By expanding the

capabilities of model-based stochastic control and estimation, there is potential for artificial

intelligence to be implemented as a supplement to theory-influenced design instead of be-

ing used end-to-end. We begin by deriving sufficient conditions for stochastic incremental

stability for nonlinear systems perturbed by two types of non-Gaussian noise: 1) shot noise

processes represented as compound Poisson processes, and 2) finite-measure Lévy processes

constructed as affine combinations of Gaussian white and Poisson shot noise processes. We

then present a controller architecture based on a concept we call pattern-learning for pre-

diction (PLP) for discrete-time/discrete-event systems, in which we can take advantage of

the fact that the underlying jump process is a sequence of random variables that occurs as

repeated patterns of interest. Finally, we demonstrate control and estimation for JSSs in

three real-world applications. First, we consider the control of networks with dynamic topol-

ogy (e.g., power grid with fault-tolerance to downed lines), for which PLP is integrated with

variations of the novel system-level synthesis framework for disturbance-rejection. Second,

we perform congestion control of vehicle traffic flow over metropolitan intersection networks,

for which PLP is extended to pattern-learning with memory and prediction (PLMP) via the

inclusion of episodic control, designed to reduce memory consumption by exploiting struc-

tural symmetries and temporal repetition in the network. Third, we perform estimation and

forecasting (the dual problem to control) for epidemic spread throughout a population net-

work under jump phenomena such as superspreader effects and the emergence of variant

viruses. Our results indicate that learning patterns in the jump process makes controller/ob-

server design efficient in data-consumption and computation time, which suggests that it can

potentially be used for other JSSs in the real world.
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1C h a p t e r 1

INTRODUCTION

1.1 Motivation

Current model-based methods of performing control or estimation for stochastic systems are

able to handle a rather limited scope of distributions. One common assumption, in particular,

is Gaussian white noise and many model-based controllers or observers in the literature have

typically been designed for robustness to Gaussian white noise perturbations. The choice

to use Gaussian white noise models is justifiable in practice; vision-based localization and

mapping [161], spacecraft navigation [28], and motion-planning [75] are notable examples

of applications where controllers and observers designed under the Gaussian white noise

assumption perform well. Moreover, Gaussian white noise distributions are appealing to

study because they demonstrate properties (e.g., independent increments, Central Limit

Theorem, etc.) which make them convenient to analyze. As a result, there has been a wealth of

literature studying Gaussian white noise systems, particularly in stability analysis, controller,

and observer design. For example, a model-based controller can be developed via the well-

known linear quadratic Gaussian (LQG) approach [17, 51], while a model-based observer

can be designed via Kalman filtering [76] and its extensions [128, 151]. More recent methods

of model-based control methods for Gaussian white noise systems include the path integral

approach [145], convex optimization-based approaches [127, 109], as well as a number of

reinforcement learning-based approaches [107, 45].

Control and estimation of stochastic systems that fall outside of the scope of model-based

design are often left for model-free techniques in artificial intelligence (AI). For example, one

especially prevalent distribution of non-Gaussian noise is impulsive shot noise, which arises

in real-world applications almost as frequently as Gaussian white noise. Some examples are

wind turbulence in agile quadrotor flight [112], meteorite collisions in spacecraft control [162],

power outages in the power grid [144], spikes of brain activity in neuroscience [53], and large

fluctuations of stock prices in financial analysis [115]. Fortunately, modern-day technological

advancements and ever-increasing capabilities for sensing, computing, actuating, and com-

municating have made it possible to rely almost entirely on AI for controlling and forecasting

complex stochastic systems. In fact, machine learning is already being used for a variety of



Figure 1.1: Examples of jump stochastic systems (JSSs) in the real-world: nonhomogeneous
arrival processes in vehicle traffic networks, meteorite collisions in spacecraft control [162],
and wind turbulence in agile quadrotor flight [112].

real-world systems with highly promising results. In the field of robotics, for example, meta-

learning algorithms are applied to the problem of quadrotor flying and landing in random

environments [137, 111] to perform adaptive control while learning characteristics of the

random environment simultaneously. Other examples are the neural network architectures

that are being used for control and prediction tasks, e.g., vehicle traffic forecasting using

variations of the graph convolutional neural network [93, 40].

However, training AI methods can often be exhaustive in computation time and energy,

especially if they redundantly learn information that could be more easily obtained from

structured models. More efficient controllers/observers can be developed for stochastic sys-

tems by taking advantage of the theoretical properties of their sources of randomness. This

concept is best demonstrated with Gaussian white noise systems, and can be extended to

shot noise systems too. Just as how the basis for modeling various forms of Gaussian white

noise is the standard Brownian motion process [114], shot noise is modeled using the Pois-

son processes [10, 81], especially the compound Poisson process. Both Brownian motion and

Poisson processes are special cases of the more general Lévy processes [154, 8], which have

useful properties like stationary and independent increments, and can be used to model noise

with both small and large variations. Moreover, for many discrete-time/discrete-event sys-
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tems, we can take advantage of the fact that the underlying stochastic process is a sequence

of random variables which occurs as repeated “patterns of interest.” It is thus clear that con-

trol/estimation of many stochastic systems can be made more efficient in data-consumption

and time if a theoretical characterization of the underlying stochastic process can be made.

1.2 Related Work

The general need to balance between model-based and model-free methods for efficient design

is not a new idea in the engineering community. Recent trends in research have seen an

increasing number of proposed algorithms incorporating both model-based and model-free

methods of control.

Controlling Uncertain Systems A related branch of work emerges from the field of ro-

bust and adaptive control, where the stochasticity in the dynamics (e.g., model parameters,

external perturbations) is uncertain. They discuss a need to integrate system identification

procedures (via data-driven design) into standard control techniques. [44] demonstrates this

by addressing the linear quadratic regulator (LQR) problem with the goal of maintaining

safety. More recently, there have also been works that consider robust online control such that

the system does not need to be fully identified before it can be controlled; for example, [70]

explores this problem for nonlinear systems with large model uncertainties. Controlling un-

certain systems, especially with safety constraints, is an important problem to address in a

wide array of applications such as spacecraft guidance and motion-planning [110], decision

and control in connected automated vehicles [113], and agile quadrotor flight in the face of

wind turbulence [112]. Many of these algorithms involve a multi-step procedure where the

original uncertain dynamics and constraints are mapped down to an approximate model,

which is then used for planning and control. For instance, [110] develops a surrogate opti-

mization problem with chance constraints by leveraging polynomial chaos expansion, then

applies sequential convex programming to generate approximate solution trajectories. This

reinforces the natural control design approach to construct (approximate) models from the

original dynamics before learning about its uncertainties by gathering data.

Meta-Learning In the field of AI, meta-learning algorithms refer to algorithms which

not only focus on learning the subject matter (e.g., classification tasks), but also focus on

learning the learning procedure itself. Recently, meta-learning approaches have demonstrated

great potential to be used for learning-based control in robotics applications. For example,

the method of [112] has an offline learning phase which learns the wind characteristics and

3



encodes them into a set of functions, i.e., by building a model; the adaptive control strate-

gies are then designed online. This offline modeling of the wind characteristics enables the

algorithm to be efficient in data-consumption, requiring “only a total of 12 min of flight data

in just six different wind conditions to train.” A branch of meta-learning that has started

to become popular in machine learning literature is called imitation learning, which seeks to

emulate behaviors while being data-efficient. One algorithm based on imitation learning is

known as programmatic reinforcement learning (PRL) [149, 148], which was developed with

the idea of committing learned policies to memory for future use instead of re-computing

them for environments that have already been observed before. Both works [149] and [148]

address efficient representation of neural policies into a set of PID controls that can be di-

rectly applied to the system in the future, effectively constructing a model-based controller.

Storing Past Information while Learning Bayesian updating is perhaps the most

common and fundamental approach for learning, control, and state-estimation in engineer-

ing applications; there has been a wide variety of literature and standard texts in the last

several decades on algorithms which use it (e.g., hidden Markov models, Bayesian neural

networks [74], Kalman and particle filtering). In contrast to probabilistic schemes such as

Bayesian updating, which encodes prior knowledge as a probability distribution, there has

also been a class of methods that “hard-codes” data-driven policies into model-based for-

mat for update and reuse. Imitation learning, described previously, is not the only approach

that does this; in problems that can be solved using deep reinforcement learning methods,

the experience replay [56] mechanism manages to improve sample and data efficiency by

storing the last few experiences into memory and “replaying” them. A related approach is

called episodic control [91, 20, 124], which incorporates episodic memory [21] into traditional

learning techniques with the goal of speeding up training by recalling specific instances of

highly rewarding experiences. Although most experience replay or episodic memory meth-

ods deterministically maintain an explicit table of mappings from policy to reward, they are

similar to Bayesian methods in that they both encode past information to avoid redundant

computation in handling recurring data.

Predictions with Structure On the opposite end, rather than storing past trajectories

into memory to reduce redundant data, algorithms can also invoke predictions to reduce

redundant computation in the future. Model predictive control (MPC) is one of the most

popular control algorithms that demonstrates this, and many variations of MPC for various

different applications have been proposed in the literature [60, 41]. Both short-term and

4



long-term predictions for online control have been proven to be beneficial even in the face

of either purely stochastic or adversarial disturbances [31]. In [164], this is demonstrated

explicitly by applying greedy conventional MPC to the linear quadratic tracking problem, and

proving near-optimality in the dynamic regret performance metric. The benefit of predictions

is especially notable when there is spatial or temporal structure to the problem. Graph

neural networks (GNNs) [15] are an example of a learning-based approach which encodes the

topology of the graph for tasks such as graph classification and representation learning [82].

Recently, extensions of GNNs are also being used for congestion control problems in computer

networks [132] and vehicle traffic forecasting [93, 40]. Many of these GNN extensions tend

to include either a convolutional neural network or a recurrent neural network to capture

spatial and temporal repetitions, respectively.

1.3 Jump Stochastic Systems

The class of jump stochastic systems (JSSs), i.e., systems with random and repetitive jump

phenomena, serve as an excellent example in demonstrating the model-based/model-free

balance motivated in Section 1.1 because of its prevalence in both theory and application.

• Because Gaussian white noise is usually small in magnitude and continuous in the sense

that changes occur over a measurable duration of time, it cannot be used to model

jump phenomena. However, there exist tools and theories in mathematics specifically

for various jump processes, including Poisson processes, renewal processes, and Markov

jump processes.

• JSSs are interesting to study because they are highly prevalent in real-world applica-

tions from diverse fields. This includes large-scale networks (e.g., electricity outages

in the power grid, vehicle arrival processes in traffic networks), biology (e.g., super-

spreaders and the emergence of variant viruses in epidemic spread, neuronal spikes in

brain signal imaging), and robotics (e.g., sudden wind gusts in agile quadrotor flight,

meteorite collisions in spacecraft).

Suppose the stochastic process underlying the JSS is represented as a discrete-time stochastic

process {Yn}n∈N. Further let Tn be the time of the nth arrival, ξn be the magnitude of the nth

arrival, and An , Tn−Tn−1 be the nth interarrival time. Then we can express Yn ,
∑n

i=1 ξi.

We can alternatively define a continuous-time stochastic process {Y (t), t ≥ 0} with discrete

arrivals. The counting process, defined below, is the most basic process underpinning the

5



stochastic processes that drive the types of JSSs we are interested in throughout this thesis.

Definition 1 (Counting Process). The process Y (t) also has associated with it a counting

process {N(t), t ≥ 0} which counts the number of arrivals by time t; formally, it is defined

as N(t) , sup{n ∈ N : Tn ≤ t}.

Similarly, we can represent Y (t) ,
∑N(t)

i=1 ξi, and relate the continuous and discrete-time

versions with Yn ≡ YN(t) = Y (t) when N(t) = n. Various types of jump processes emerge de-

pending on how we characterize the distribution P(An ≤ a, ξn = xn|(ξn−1 = xn−1, Tn−1), · · · ,
(ξ0, T0)) for each n∈N. We are interested in the following ones.

Definition 2 (Renewal Processes). Yn is a renewal process if An are i.i.d. and ξn = 1 for all

n ∈ N, and An and ξn are independent of each other. Yn is a renewal reward process if An

are i.i.d. and ξn are i.i.d., and An and ξn are independent of each other.

P(An ≤ a, ξn = xn|(ξn−1 = xn−1, Tn−1), · · · , (ξ0, T0)) = P(An ≤ a)P(ξn = xn).

Definition 3 (Poisson Processes). Yn is a (standard) Poisson process if An ∼ Exp(λ) and

ξn = 1 for all n ∈ N, and An and ξn are independent of each other. Yn is a compound Poisson

process if An ∼ Exp(λ) and ξn are i.i.d., and An and ξn are independent of each other.

Definition 4 (Markov (Jump) Process). Yn is a Markov process if An ∼ Exp(λ), ξn depends

on ξn−1, and An and ξn are independent of each other. The distribution becomes

P(An ≤ a, ξn = xn|(ξn−1 = xn−1, Tn−1), · · · , (ξ0, T0)) = (1− e−λa)P(ξn = xn|ξn−1 = xn−1).

Yn is a Markov jump process if ξn depends on ξn−1 and An only depends on current state ξn.

P(An ≤ a, ξn = xn|(ξn−1 = xn−1, Tn−1), · · · , (ξ0, T0))

= P(An ≤ a|ξn = xn)P(ξn = xn|ξn−1 = xn−1).

1.4 Contributions

The contributions of this thesis are two-fold. First, we theoretically characterize various jump

processes to learn recurrent patterns in JSSs. Second, we use our characterizations to perform

control and estimation with less redundant computation and data-consumption in various

applications. Because of the properties motivated in Section 1.3, this thesis focuses exclusively

on JSSs driven by the jump processes defined in Section 1.3. Despite this, the hope is that

the contributions of this thesis can be used as a foundation for broadly designing efficient

learning-based controllers for non-Gaussian stochastic systems, not necessarily within the

class of JSSs.
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1.4.1 Theory and Architecture

Two main examples of JSSs that are theoretically studied here are: 1) nonlinear systems

externally perturbed by impulsive noise phenomena (e.g., Poisson shot noise), and 2) systems

that are driven by random repeated behaviors of interest (e.g., switching phases in Markovian

jump systems (MJSs)).

Stability Analysis for Non-Gaussian Stochastic Systems Our first theoretical con-

tribution uses theory from Poisson random measures and Lévy processes to develop incre-

mental stability criteria for nonlinear systems perturbed by two types of non-Gaussian noise:

1) shot noise processes represented as compound Poisson processes, and 2) finite-measure

Lévy processes constructed as affine combinations of Gaussian white and compound Poisson

shot noise processes (see Chapter 2). For each noise type, we compare trajectories of the

perturbed system with distinct noise sample paths against trajectories of the nominal, un-

perturbed system. We show that for a finite number of jumps arising from the noise process,

the mean-squared error between the trajectories exponentially converges toward a bounded

error ball across a finite interval of time under practical boundedness assumptions. The im-

pact of our work is that understanding the relationship between system stability and the

characteristics of the jump noise allows us to infer the types of model-based controllers we

need to design. We demonstrate our results using several simple and intuitive case studies: a

1D linear reference-tracking system, 2D linear time-varying systems, a 2D nonlinear system,

and a 2D nonlinear observer design problem.

The Pattern-Occurrence Problem Our second theoretical contribution is the charac-

terization of recurrent patterns in the jump process. We leverage results from renewal theory

and martingales (some reference texts are [131, 130, 38, 39]) to develop the theoretical back-

ground necessary to address the following two problems pertaining to the occurrence and

recurrence of patterns: 1) the expected minimum occurrence time of any pattern from some

collection of patterns, and 2) the first-occurrence probability of a pattern being the first to

occur among the collection at the expected occurrence time. For the purposes of real-world

application, we also ensure these formulas operate on two key extensions of prior pattern-

occurrence literature: 1) the statistics of the jump process are unknown (e.g., the transition

matrix of the Markov jump process), and 2) the realization of the jump process over time is

not observable.
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Figure 1.2: A flow diagram representing the overall structure of the thesis. Chapter 2 dis-
cusses stability analysis–an important prerequisite to control and estimation. A concrete
controller architecture based on learning patterns is developed in Chapter 3. The following
three chapters then present specific applications of control and estimation for JSSs: dynamic-
topology network control in Chapter 4, vehicle traffic congestion control in Chapter 5, and
epidemic spread forecasting in Chapter 6.
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1.4.2 Applications in Control and Estimation

One specific architecture we design for controlling discrete-time/discrete-event JSSs imple-

ments pattern-learning for prediction (PLP). PLP identifies recurrent patterns in the JSS’s

jump process, then leverages two key functions:

• memorization of past patterns to prevent redundant computation of control policies;

• prediction of future patterns to schedule control policies in advance.

The following describes the three main applications we consider throughout this thesis.

Dynamic-Topology Network Control In our first application contribution, we demon-

strate a concrete implementation of PLP for linear discrete-time Markovian jump systems

(MJSs) that switch among a finite number of modes. PLP is then applied to the control

of networks with dynamic topology; the specific dynamics we use are those of a power grid

with fault-tolerance to downed lines, modeled as a MJS whose modes represent the differ-

ent topologies. The combinations of line failures are chosen to represent the “patterns” in

the power grid system. The pattern learning component can be thought of as a mechanism

that recognizes previously-occurred network topologies, and uses the relevant policy to con-

trol it. The control policies are designed using variations of the novel system-level synthesis

(SLS) [153, 104, 5] framework, including a version which is robust to dynamic topologies

(Chapter 4) and another which is data-driven [160, 3]. By comparing our architecture against

a baseline controller and a topology-robust extension of the baseline (both without PLP), we

showed that a controller with PLP is able to achieve three things: 1) match the control effort

cost of the baseline, 2) stabilize the network just as well as the topology-robust extension,

and 3) achieve runtime faster than both.

Vehicle Traffic Network Congestion Control Our second application contribution

is the design of a controller architecture for vehicle traffic flow based on pattern-learning

with memory and prediction (PLMP). Here, PLMP is an extension of PLP with an explicit

implementation of a memory component based on our version of episodic control [91, 20,

124], which builds equivalence classes to group together patterns that are controlled using

the same light signals. The significance of PLMP is that it exploits the natural spatial

and temporal symmetries prevalent in traffic networks to perform congestion control by

scheduling light signals in advance without redundant computation. We apply our model to

9



two synthetic datasets, one synthesized from scratch and one synthesized from real-world

data, and compare two periodic baseline light signals to various implementations of our

PLMP controller, including a version without prediction called pattern-learning with memory

(PLM). We evaluate the performance of each implementation according to three different

congestion metrics and find that, on average, PLM outperforms the periodic baselines while

PLMP outperforms PLM with mild variation among the different implementations.

Epidemic Spread Forecasting in Population Networks For our third application

contribution, we consider estimation and forecasting for the epidemic spread across popula-

tion networks by using a multiscale combined compartmental ODE/ hidden Markov model

approach. One significance of our model is that it takes advantage of two recurrent spa-

tiotemporal patterns and combines extensions of two models that are traditionally used

separately in the study of epidemics. Another significance of our work is the explicit mod-

eling of jump phenomena that are unique to epidemic spreads, which are superspreader

effects and the emergence of variant viruses. Virus superspreaders are considered through

a stochastic setting, which incorporates Gaussian white and Poisson jump noise in the dy-

namics. The chronic emergence of new virus mutations can be represented as a jump to a set

of dynamics with different parameter values, i.e., event-driven switching. Various different

experiments are performed to demonstrate our model on two datasets, constructed based on

real contact-tracing COVID-19 data from different countries.
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11C h a p t e r 2

STOCHASTIC INCREMENTAL STABILITY OF NONLINEAR LÉVY
NOISE SYSTEMS

Many model-based designs for controllers or observers typically aim for robustness against

Gaussian white noise. However, we cannot use Gaussian white noise to model sudden impul-

sive perturbations because it is small in magnitude and continuous in the sense that changes

occur gradually over a measurable duration of time. Instead, one class of non-Gaussian noise

which is more suitable for modeling impulsive perturbations is shot noise [10].

Shot noise is a type of jump phenomenon that is interesting to study in both theory and ap-

plication. On one hand, shot noise phenomena in the real world are omnipresent: in the field

of robotics, there is wind turbulence in agile quadrotor flight [112], meteorite collisions in

spacecraft control [162], and in cyberphysical systems like the power grid, there are power out-

ages [144]. Other examples of shot noise arise as spikes of brain activity in neuroscience [118]

and large fluctuations of stock prices in financial analysis [115]. On the other hand, there

is an abundance of theoretical literature (e.g., Applebaum 2009 [8], Øksendal 2007 [115],

Mao 1991 [103], and Ikeda and Watanabe 1989 [71]) which provides useful tools to model

the shot noise phenomenon such as Poisson processes (Definition 3). Both Brownian motion

and Poisson processes are special cases of the more general Lévy processes [154, 8], and a

particularly useful result is the Lévy-Khintchine Theorem, which describes Lévy processes

as affine combinations of Brownian motion processes and compound Poisson processes [8].

Despite both the theoretical and practical appeal of shot noise phenomena, there are few

model-based control or estimation methods designed for robustness to shot noise. In this

chapter, we address an important prerequisite question to the problem of controller and

observer design for JSSs: stability analysis and characterization. We specifically develop

sufficient conditions for incremental (globally exponential) stability of nonlinear stochastic

systems perturbed by Poisson shot noise and Lévy noise. We borrow, from the literature

of applied mathematics, the theory of Poisson random measures and Lévy processes to lay

out the foundations for studying these systems. We are specifically interested in addressing

a standard stochastic stability question posed by [87]: can trajectories of the system, arising



Figure 2.1: A simplified Dubins’ car nonlinear system perturbed by different sample paths
of Lévy noise for three different initial conditions starting randomly on the red circle. The
car tries to track the reference path outlined by the red circle. The objective is to determine
stability criteria about the system to find a bound on the deviation between the red circle
and the system trajectories over some elapsed time.

from 1) different sample paths of noise and 2) different initial conditions within a bounded set,

be bounded in some region after a sufficiently elapsed time? In Figure 2.1, several trajectories

are depicted for the simplified Dubins’ car (dynmaics in [119]) perturbed by Lévy noise for

three different initial conditions starting randomly on the red circle.

Chapter Organization

We begin in Section 2.1 with a brief review of Poisson and Lévy processes and their theoretical

properties. In Section 2.2, we set up the stochastic differential equations (SDEs) representing

the Poisson shot and Lévy noise systems we consider throughout the chapter; this includes

a discussion of Itô’s formula for jump-diffusions and the existence and uniqueness of solu-

tions. We provide a survey on both deterministic and stochastic Lyapunov-sense stability

as well as the stronger notion of incremental stability in Section 2.3. Our main results are

summarized in Section 2.4, where we review the stochastic contraction theorem for Gaussian

white noise systems, and establish analogous results for Poisson shot and Lévy noise systems,

with specialization to linear time-varying Poisson shot noise systems. Extensive numerical

simulations of the bounds we derive in Section 2.4 are presented in Section 2.5.
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Terminology and Mathematical Notation

For the sake of simplifying terminology, we will henceforth refer to additive Gaussian white,

additive compound Poisson shot, and additive bounded-measure Lévy noise systems as sim-

ply white, shot, and Lévy noise systems, respectively. The understanding is that the short-

ened terminology throughout this chapter does not refer to the general cases (e.g., non-

Gaussian white noise, or Lévy noise whose measures have infinite total mass). We use the `p

norm ‖·‖ , ‖·‖p for vectors and the corresponding induced norm ‖A‖ , supx 6=0(‖Ax‖ / ‖x‖)
for matrices. We abuse the notation ‖·‖ to apply to both matrices and vectors where the

context is relevant. For any g which is a function of time, we denote the left-limit of g(t) at

time t as g(t−) , lims→t− g(s) for any t > 0. For any g : R×Rn → Rm, a function of both a

scalar parameter a ∈ R and a vector x ∈ Rn, we write the partial derivatives in the following

shorthand notation. First, ∂ag ≡ ∂ag(a,x) , ∂g(a,x)/∂a, and ∇xg ≡ ∇xg(a,x) ∈ Rm×n de-

notes the gradient with respect to x. Moreover, we denote ∂2
xixj
, ∂2g(a,x)/(∂xi∂xj) as the

double partial derivative of g with respect to two distinct components xi and xj of x, i 6= j,

and likewise ∂2
xi
, ∂2g(a,x)/(∂2xi) for the derivative with respect to the same component

xi. When describing a dynamical system of the form ẋ(t) = f(t,x(t)), where x : R+ → Rn is

a function of time and f : R+×Rn → Rn, we often simplify the notation by writing without

the argument t, as in ẋ = f(t,x) with the understanding that f is not taking the func-

tion x as input, but rather the vector x(t). Furthermore, we define the dot notation as the

time-derivative, meaning ẋ(t) , (d/dt)x(t). For any function H(t,x(t)) which takes in as ar-

gument time t ∈ R+ and state x(t) ∈ Rn which evolves over time according to some dynamics

of the form ẋ = f(t,x), has the time-derivative Ḣ , ∂tH+∇xH ·ẋ(t) = ∂tH+∇xH ·f(t,x).

2.1 Poisson and Lévy Processes

The general Poisson random measure, typically denoted N(dt, dy) over the space [0, t] × E
with “jump space” E, is characterized by the intensity measure Leb×ν, where Leb denotes

the standard Lebesgue measure in time and ν(dy) is the probability measure on E describing

the distribution of jumps.

Definition 5 (Poisson Random Measure). Let E ⊆ N`. We define random measure N([0, t]×
E) on jump space E until some time t > 0 with intensity measure Leb×ν, where Leb denotes

the standard Lebesgue measure (the measure in time) and ν is the probability measure on the

jump space E (describing the distribution of the jumps). We denote the intensity (parameter)

for the Poisson process corresponding to the intensity measure ν as λ and denote the time of

the ith arrival with random variable Ti. One can think of λ as the average number of arrivals
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over time. N is called a Poisson random measure if the following are satisfied:

1. if E1, · · · , En are pairwise disjoint subsets of E, then N([0, t]×E1), · · · , N([0, t]×En)

are independent;

2. for each Ei ⊆ E, the random measure N([0, t]×Ei) has a corresponding Poisson process

with intensity parameter λi := (ν(Ei)/ν(E))λ.

While most results in the theory of Poisson processes are written with respect to Poisson

random measures, our scope in this chapter is specifically on the compound Poisson process.

Below, we provide a more in-depth defintion of Poisson processes compared to Definition 3

by relating them to the Poisson random measure. Moreover, [81] does an excellent job of

describing all the different properties of the Poisson process; we will organize just the few

that are relevant to this thesis.

Definition 6 (Poisson Processes: Extended). Let E ⊆ N` and t > 0. The standard Poisson

process N(t) counts the number of jumps in E that have occurred in the time interval [0, t]

for t ≤ T . It is characterized by an intensity parameter λ > 0, which essentially describes

the rate at which jumps occur in the process. The compound Poisson process is a simple

generalization of the standard Poisson process to weighted jumps, and can be expressed

in terms of the sum
∑N(t)

i=1 Y (Ti), where Ti < t is the arrival time of the ith jump and

Y : [0, T ]→ E is a function describing the jump distribution over the space E. The intensity

λ > 0 of a compound Poisson process is the same as that of its corresponding standard

Poisson process.

Definition 7 (Poisson Integral). Let ξ :R+×Rn×E→R be a predictable, bounded Borel-

measurable function and N be a Poisson random measure on [0, T ]×E with intensity measure

Leb× ν. We define the Poisson integral of ξ as follows:

Iξ :=

∫
[0,T ]×E

ξ(s,x(s), y)N(ds, dy), (2.1)

where x(t) is the solution to (2.8).

Campbell’s formula is a useful notion which allows us to determine the distribution of the

sum
∑

y∈N ξ(y) for some function ξ of points y in the Poisson point process N . The formula

for time-invariant functions ξ(y) is often presented in the literature, e.g., Section 3.2 of [81]
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and Proposition 2.7 of [90]. The lemma below is a simple extension of the formula to functions

which are both time-varying and dependent on the state x(t) of some stochastic differential

equation, i.e., ξ ≡ ξ(t,x(t), y).

Lemma 1 (Campbell’s Formula). Let ξ : R+ × Rn × E → R be a predictable, locally-

bounded Borel-measurable function and N([0, t] × E) denote the Poisson random measure

with intensity λ over the jump space E. If ξ also satisfies the integrability condition∫
[0,t]×E

|ξ(s,x(s), y)|dsν(dy) <∞

a.s., where we write “a.s.” for “almost-surely,” then

E[Iξ] =

∫
[0,t]×E

E[ξ(s,x(s), y)]dsν(dy). (2.2)

Another useful result similar to Campbell’s formula is the mean squared integral case.

Lemma 2 (Square-Integral Formula). Consider the setup of Definition 7 above. If the fol-

lowing properties hold:∫
[0,T ]×E

|ξ(t,x(t), y)|dtν(dy) <∞,
∫

[0,T ]×E
ξ2(t,x(t), y)dtν(dy) <∞, (2.3)

then

E[I2
ξ ] =

∫
[0,T ]×E

E[ξ(t,x(t), y)2]dtν(dy) +

(∫
[0,T ]×E

E[ξ(t,x(t), y)]dtν(dy)

)2

. (2.4)

Remark 1. Instead of the general Poisson random measure, our focus in this chapter is

on standard and compound Poisson processes. Thus, we will be using the simpler function

ξ : R+ × Rn → R to describe the jumps of the process, which only takes time and the state

x(t) of the SDE as input. Following the construction of (2.1):

∫ t

0

ξ(s,x(s))dN(s) =
∑

0<t≤T

ξ(t,∆x(t))1{∆N(t) 6= 0} =

N(t)∑
i=1

ξ(Ti,∆x(Ti)), (2.5)

where ∆x(t) = x(t) − x(t−), ∆N(t) = N(t) − N(t−), and the indicator in the second

line of the equation determines whether or not a jump occurred at time t. We denote this

special case by N(t) without the argument y, since we have essentially isolated the jump

as the multiplicative factor ξ(Ti,x(Ti)) for each i; all we need to represent is the time of
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each arrival and the cumulative number of arrivals until time t. This representation has an

intuitive interpretation: if we think of the noise process as a sequence of impulses where the

ith impulse arrives at time Ti, then integrating a function ξ with respect to it over an interval

of time [0, t] would only pick out the values of ξ at Ti ∈ [0, t].

For further properties of the standard and compound Poisson processes, we refer to the

same above references on Poisson processes, as well as Kingman 1993 [81] or Baccelli and

Blaszczyszyn 2009 [10].

We can generalize beyond the class of Poisson shot noise by comparing the definitions for a

Brownian motion process and a Poisson process.

1. A real-valued process {W (t) : t ≥ 0} defined on a probability space (Ω,F ,P) is said to

be a Brownian motion if the following hold:

• the paths of W are P almost-surely continuous;

• P(W (0) = 0) = 1;

• for 0 ≤ s ≤ t, W (t)−W (s) is equal in distribution to W (t− s);

• for 0 ≤ s ≤ t, W (t)−W (s) is independent of W (r) for r ≤ s;

• for t > 0, W (t) is equal in distribution to a normal random variable with variance

t.

2. A real-valued process {N(t) : t ≥ 0} defined on a probability space (Ω,F ,P) is said to

be a Poisson process with intensity λ > 0 if the following hold:

• the paths of N are P right-continuous with left-limits;

• P(N(0) = 0) = 1;

• for 0 ≤ s ≤ t, N(t)−N(s) is equal in distribution to N(t− s);

• for 0 ≤ s ≤ t, N(t)−N(s) is independent of N(r) for r ≤ s;

• for t > 0, N(t) is equal in distribution to a Poisson random variable with param-

eter λt.

The similarity between the two definitions motivates the definition of a general Lévy process.
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Definition 8 (Lévy Processes [154, 73]). A process {L(t) : t ≥ 0} defined on a probability

space (Ω,F ,P) is said to be a Lévy process if the following hold:

• Cádlág Paths: the paths of L are almost-surely P right-continuous with left-limits.

• Zero Initial Condition: P(L(0) = 0) = 1

• Stationary Increments: for 0 ≤ s ≤ t, L(t)− L(s) is equal in distribution to L(t− s).

• Independent Increments: for 0 ≤ s ≤ t, L(t)− L(s) is independent of L(r) for r ≤ s.

Under this definition, we can observe that both Gaussian white noise processes and compound

Poisson shot noise processes are both Lévy processes. This implies that the affine combination

of the two is also a Lévy process. In fact, a well-known result called the Lévy-Khintchine

Theorem, stated formally in Theorem 1.6 of Watson 2016 [154], Theorem 2.7 of Bass 2009 [14],

or Theorem 1.2.14 of Applebaum 2009 [9], says that Lévy processes can be represented as

affine combinations of Brownian motion processes and Poisson processes. This even includes

Lévy processes with intensity measures that have unbounded jumps. One example of this

is a Gamma process, which has intensity measure on R+ given by ν(dy) = ay−1e−bydy

such that on any finite interval of time, the number of jumps lying in the interval (0, 1) is

infinite. However, we emphasize that we only consider bounded-measure Lévy processes in

this chapter, excluding Lévy processes like the Gamma process, since they rarely occur in

the practical control and engineering applications of our target scope.

A particularly useful theoretical result known as the Lévy-Khintchine Decomposition Theo-

rem, stated formally below, leads us to a direct extension of Poisson shot noise by combining

it with Gaussian white noise. We closely follow the version of the formula stated formally in

Theorem 1.6 of [154] or Theorem 2.7 of [14].

Theorem 1 (Lévy-Khintchine Formula). Let L be a Lévy process with characteristic expo-

nent Ψ. Then there exist (unique) a ∈ R, σ ≥ 0 and a measure ν satisfying
∫
R 1∧x2ν(dx) <∞

such that

Ψ(θ) = iaθ − 1

2
σ2θ2 +

∫
R

(
eiθx − 1

)
ν(dx)−

∫
R
iθx1[−1,1](x)ν(dx). (2.6)

Conversely, given any triplet (a, σ, ν), there exists a Lévy process L with characteristic ex-

ponent given by (2.6).
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a is called the center of L and captures the deterministic drift component, σ is the Gaussian

coefficient and captures the variance of the Brownian motion component, and the Lévy

measure ν captures the size and intensity of the “large” jumps of L.

2.2 Shot and Lévy Noise Systems

We begin this chapter by setting up the specific form of stochastic differential equation (SDE)

we consider for analysis throughout this chapter. Namely, we consider systems that can be

expressed as SDEs of the following form:

dx(t) = f(t,x)dt+ σ(t,x)dW (t) + ξ(t,x)dN(t), (2.7)

where

• f : R+ × Rn → Rn is a deterministic function in C(1,2), i.e., f is once-differentiable in

time and twice-differentiable in state;

• σ(t,x)dW (t) is the additive Gaussian white noise of the system, where σ : R+×Rn →
Rn×d, σ ∈ C(1,2) is the variation of the white noise, and W : R+ → Rd is a d-dimensional

standard Brownian motion process;

• ξ(t,x)dN(t) is a compound Poisson process which enters into the system as an additive

disturbance, where ξ : R+ × Rn → Rn, ξ ∈ C(1,2) describes the jumps that occur, and

N(t) is the scalar standard Poisson process with intensity λ. The “derivative” of the

standard Poisson process, written as dN(t), is understood as a function which takes

value 1 if a jump has occurred at time t, and value 0 otherwise.

Assumption 1 (Bounded Noise Magnitudes). For the system (2.7), there exist constants

γ, η > 0 such that

sup
t,x
‖σ(t,x)‖ ≤ γ, sup

t,x
‖ξ(t,x)‖ ≤ η,

where the norms used are described in the terminology and mathematical notation defined

at the beginning of this chapter.

Note that if σ(t,x) ≡ 0, we have the following shot-noise SDE

dx(t) = f(t,x)dt+ ξ(t,x)dN(t), (2.8)
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and if ξ(t,x) ≡ 0, we recover the white-noise SDE :

dx(t) = f(t,x)dt+ σ(t,x)dW (t). (2.9)

While there may exist forms of white and shot noise processes that are more general than

what is used in (2.7), we focus our scope to the specific case of the Gaussian white noise pro-

cess and the compound Poisson process. This is because their applicability to most practical

problems in stochastic control and robotic engineering is more widespread than any other

type of white and shot noise.

Since much of the conventional stochastic system dynamics have been concentrated around

white noise injection, the form of (2.9) may be familiar to the reader (see, e.g., [114]).

However, there has not been as much attention given to the shot noise case (2.8). Thus, the

remainder of this chapter is devoted to the review of relevant background material necessary

to understand the notation associated with the shot noise term, and the nature of solutions

to the combined SDE (2.7). As shown in Section 2.4, these are especially important for the

stability analysis of systems governed by dynamics of the form (2.8) or (2.7).

2.2.1 Itô’s Formula

The version of the Itô’s Formula for functions of stochastic processes which are driven by

more general Poisson random measures are described in standard stochastic references such

as Chapter 4, Section 4.4 of Applebaum 2009 [8] and Chapter 6 of Ikeda and Watanabe

1989 [71]. Itô’s formula for functions of scalar-valued stochastic processes is standard; see,

for example, Theorem 32 in Chapter 2 of Protter 1992 [125] or Theorem 3.7 of Bass 2009 [14]

for the formula. An extension to functions which depend on time is discussed in Chapter 1 of

Jeanblanc 2007 [73], and an extension to multi-dimensional stochastic processes is presented

in Chapter II, Section 5 of Ikeda and Watanabe 1989 [71]. For the purposes of this chapter,

we present a version of the formula for systems (2.7) in the lemma below.

Lemma 3 (Itô’s Formula). For functions G ∈ C(1,2),

G(t,x(t)) = G(0,x0) +

∫ t

0+

∂sG(s,x(s−))ds+
n∑
i=1

∫ t

0+

∂xiG(s,x(s−))dxci(s) (2.10)

+
1

2

n∑
i,j=1

∫ t

0+

∂xi∂xjG(s,x(s−))d[xi, xj]
c(s) +

N(t)∑
i=1

(G(Ti,x(Ti))−G(Ti,x(Ti−))) ,

where integrals from 0+ to t indicate an integral over the interval (0, t], x ∈ Rn, 0 < Ti ≤
t is the time of the ith arrival of N(t), and we use the left-limit notation introduced in
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the beginning of this chapter. Furthermore, dxci represents the continuous part of the SDE

for component xi, and d[xi, xj]
c represents the continuous part of the quadratic variation

between the two SDEs corresponding to components xi and xj of x. For example, for (2.7),

dxci(t) = fi(t,x)dt+ σi(t,x)dW (t), and d[xi, xj]
c(t) = (σσT )ij(t).

Remark 2. The sum over s, for 0<s≤ t, in the last term of (2.10) can be thought of as

the contribution of G(t,x(t)) coming from the jump-discontinuities of the stochastic pro-

cess x(t) within the interval (0, t]. Note that the terms of the sum are nonzero only when

limr→s− G(r,x(r)) 6= G(s,x(s)), and since G ∈ C(1,2), this only occurs when there is a jump

of x at time s. By the form of the SDE (2.7), the jumps of x arise from the jumps of its shot

noise part, specifically the standard Poisson process N(t). Hence, the last term of (2.10) can

alternatively be expressed as follows:

∑
0<s≤t

(G(s,x(s))−G(s−,x(s−))) =

N(t)∑
i=1

(G(Ti,x(Ti))−G(Ti−,x(Ti−))) ,

where 0 < Ti ≤ t is the time of the ith arrival of N(t). We refer to Chapter 1, Section 4 of

Protter 1992 [125], Section 1.3.4 of Jeanblanc 2007 [73] for further details on this notation.

A comprehensive treatment of the scalar version of (2.10) can be found in many references

(see e.g., Theorem 32 of [125] or Theorem 3.7 of [14]). The specific version of the formula

stated is also used in [86, 9]. The term d[xi,xj]
c(s) in (2.10) is the continuous part of the

quadratic variation between two stochastic processes xi and xj, which is defined in the

following remark.

Remark 3 (Quadratic Variation). Consider two generic scalar SDEs of the form (2.7):

dxi = fi(t,x)dt+ σi(t,x)dW (t) + ξi(t,x)dN(t), (2.11a)

for i = 1, 2, and where fi, σi, ξi denote the ith row of each respective function. Then the

quadratic variation term d[x1, x2](t) is computed to be σ1(t,x)σ2(t,x)dt+ξ1(t,x)ξ2(t,x)dN(t)

since dW (t) · dW (t) = dt and dN(t) · dN(t) = dN(t) while the dot products between every

other pair of terms vanishes. For the case of (2.7), the quadratic variation is comprised of two

parts: the continuous part d[x1, x2]c(t) = dt and the purely discontinuous part d[x1, x2]d(t) =

dN(t). For further information about this notation, one may refer to [114, 86] and references

therein.
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Example 1. One can obtain intuition about (2.10) by considering the following specific

example. Let x ≡ x ∈ R be the state of the scalar process dx(t) = µdt + dN(t), and let

G(t, x) = tx2. Consider using (2.10) to evaluate G(t, x) until the time of the first jump

T1 = t1 > 0 of N(t). Then note that

x(t) =

µt if t < t1

µt+ 1 if t = t1
. (2.12)

On the left side of (2.10), we have

G(t1, x(t1)) = t1x
2(t1) = t1(µt1 + 1)2, (2.13)

and on the right side of (2.10), we get:

0 +

∫ t1

0

x2(s−)ds+

∫ t1

0

2sx(s−) · µds+ 0 +
∑
s≤t1

(
sx2(s)− sx2(s−)

)
=

∫ t1

0

x(s−) (x(s−) + 2µ(s)) ds+ t1(2µt1 + 1)

= µ2t31 + t1(2µt1 + 1), (2.14)

which is indeed equivalent to the left side (2.13).

Definition 9 (Infinitesimal Generator). For G ∈ C(1,2), the infinitesimal generator is defined

to be

LG = lim
t→0

Ex0 [G(t,x(t))]−G(0,x0)

t
,

where x(t) is the trajectory of a given SDE which starts with initial condition x(0) , x0.

This definition extends the standard definition of the infinitesimal generator (see Definition

1.21 in Øksendal 2009 [115] or (4-12) in Kushner 1967 [87] for instance) to functions G which

are also dependent on time t.

Remark 4. From the formula of the infinitesimal generator, it is easy to see its close relation-

ship with Itô’s formula (Lemma 3) because it can be used to compute the Ex0 [G(t,x(t))]

term in Definition 9. For the case where the SDE mentioned in Definition 9 is a scalar

version of the white noise system (2.9) (i.e., x(t) , x(t) ∈ R), the generator is given by

LG = ∂tG(t, x(t)) + ∂xG(t, x(t))f(t, x(t)) + (1/2)∂2
xG(t, x(t))σ2(t, x(t)). The generator for a

version of the Lévy noise system (2.7) which models the shot noise component using more

general Poisson random measures, is shown in Theorem 1.22 of Øksendal 2009 [115].
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2.2.2 Existence and Uniqueness of Solutions

The conditions for existence and uniqueness of solutions for white noise systems (2.9) have

been studied in a widely in literature (e.g., [114], Chapter 4 of [83]), and they are standard.

1. f and σ must be Lipschitz with respect to the time argument: there exists C > 0 such

that ‖f(t,x)− f(t,y)‖+ ‖σ(t,x)− σ(t,y)‖F ≤ C ‖x− y‖ for all t ≥ 0, x,y ∈ Rn;

2. f and σ must have bounded growth with respect to the state argument: there exists

K > 0 such that ‖f(t,x)‖2 + ‖σ(t,x)‖2
F ≤ K(1 + ‖x‖2) for all t ≥ 0, x ∈ Rn.

Similar conditions can be derived in the case of shot noise systems (2.8) and the combined

Lévy noise system (2.7). The Lévy noise case was presented in [115], and also in [8] for various

cases of E[x0]. Because we are specializing to the case of the standard Poisson process instead

of considering the Poisson integral with respect to the general Poisson random measure, the

proof from [8] can be simplified, and we do so below.

First, we present the well-known Gronwall inequality, a standard result of which can be

found in any classical control-theoretic textbook (e.g., [80, 138]).

Lemma 4 (Gronwall inequality). Let I = [t1, t2] ⊂ R and φ, ψ, ρ : I → R+ be continuous,

nonnegative functions.

If the following inequality holds true:

φ(t) ≤ ψ(t) +

∫ t

t1

ρ(s)φ(s)ds ∀ t ∈ [t1, t2], (2.15)

then it follows that

φ(t) ≤ ψ(t) +

∫ t

t1

ψ(s)ρ(s)e
∫ t
s ρ(τ)dτds. (2.16)

For (2.7), we impose some additional Lipschitz and bounded-growth conditions so that we

have the existence and uniqueness of solutions. We adapt a combination of conditions from

Theorem 6.2.3 of Applebaum 2009 [8] and Section IV.3 of Ikeda and Watanabe 1989 [71]

specifically to our case.

Theorem 2 (Existence and Uniqueness for SDE (2.8)). For fixed T > 0, let f : [0, T ]×Rn →
Rn and ξ : [0, T ]× Rn → Rn be measurable functions satisfying the following conditions:
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1. Lipschitz: ∀x,y ∈ Rn, t ∈ [0, T ], ∃K > 0

‖f(t,x)− f(t,y)‖+ ‖σ(t,x)− σ(t,y)‖F + ‖ξ(t,x)− ξ(t,y)‖ ≤ K ‖x(t)− y(t)‖ ,
(2.17)

2. Bounded-growth: ∀x ∈ Rn, t ∈ [0, T ], ∃C > 0

‖f(t,x)‖2 + ‖σ(t,x)‖2
F + ‖ξ(t,x)‖2 ≤ C(1 + ‖x(t)‖2), (2.18)

for positive constants C and K where the norm on ξ is the Frobenius norm and the norms on

the vector-valued functions are any vector norm. Further, let x0 ∈ Rn have E[‖x0‖] <∞ and

be independent of the noise processes. Then the SDE (2.8) with initial condition x(0) = x0

has a unique solution x(t) adapted to the filtration Ft generated by x0 and N(s), where

s ≤ t and

E
[∫ T

0

‖x(t)‖2 dt

]
<∞

where the definition of “uniqueness” that we use is as follows: for x,y two solutions of (2.8)

with the same initial conditions, then

P(x(t) = y(t), ∀t > 0) = 1.

Proof. First we construct an approximate sequence using Picard iterations, recursively de-

fined as

z(n)(t) = z
(n)
0 +

∫ t

0

f(s, z(n−1)(s))ds+

∫ t

0

ξ(s, z(n−1)(s))dN(s), (2.19)

where n ∈ N.

Taking the difference between two trajectories z(n)(t) and z(m)(t) results in

z(n,m)(t) = z
(n,m)
0 +

∫ t

0

f (n−1,m−1)(s)ds+

∫ t

0

ξ(n−1,m−1)(s)dN(s), (2.20)

with n,m ∈ N and the notation

z(n,m)(t) := z(n)(t)− z(m)(t), z(n,m)(0) := z(n,m)(0)

f (n,m)(t) := f(t, z(n)(t))− f(t, z(m)(t))
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ξ(n,m)(t) := ξ(t, z(n)(t))− ξ(t, z(m)(t)).

Taking the mean-squared difference, and applying the triangle and Cauchy-Schwarz inequal-

ities leads to

E
[∥∥z(n,m)(t)

∥∥2
]
≤ E

[(∥∥∥z(n,m)
0

∥∥∥+

∫ t

0

∥∥f (n−1,m−1)(s)
∥∥ ds+

∫ t

0

∥∥ξ(n−1,m−1)(s)
∥∥ dN(s)

)2
]
≤

3E
[∥∥∥z(n,m)

0

∥∥∥2
]

+ 3E
[∫ t

0

ds

∫ t

0

∥∥f (n−1,m−1)(s)
∥∥2
ds

]
+ 3E

[(∫ t

0

∥∥ξ(n−1,m−1)(s)
∥∥ dN(s)

)2
]
.

(2.21)

Note that the Lipschitz bound (2.17) can be squared on both sides:

‖f(t,x)− f(t,y)‖2 + ‖ξ(t,x)− ξ(t,y)‖2

+ 2 ‖f(t,x)− f(t,y)‖ ‖ξ(t,x)− ξ(t,y)‖ ≤ K2 ‖x− y‖2 . (2.22)

Because norms are nonnegative and the integral of nonnegative functions (whether it is

standard ds or Poisson dN(s)) is also nonnegative, the bound also holds for each individual

term in the left-hand side sum. Using (2.22) on the second expectation term yields:

E
[∫ t

0

ds

∫ t

0

∥∥f (n−1,m−1)(s)
∥∥2
ds

]
≤ K2t

∫ t

0

E
[∥∥z(n−1,m−1)(s)

∥∥2
]
ds, (2.23)

and for the final term, we can apply Remark 1 and extend Lemma 2 to vector-valued func-

tions:

E

[(∫ t

0

∥∥ξ(n−1,m−1)(s)
∥∥ dN(s)

)2
]

= λ

∫ t

0

E
[∥∥ξ(n−1,m−1)(s)

∥∥2
]
ds+ E

[(
λ

∫ t

0

∥∥ξ(n−1,m−1)(s)
∥∥ ds)2

]
, (2.24)

using the fact that λ :=
∫
{1}` ν(dy), as in Remark 1. By Cauchy-Schwarz inequality and the

squared Lipschitz bound (2.22):

(2.24) ≤ K2λ

∫ t

0

E
[∥∥z(n−1,m−1)(s)

∥∥2
]
ds+ λ2E

[∫ t

0

ds

∫ t

0

∥∥ξ(n−1,m−1)(s)
∥∥2
ds

]
≤ K2λ

∫ t

0

E
[∥∥z(n−1,m−1)(s)

∥∥2
]
ds+K2λ2t

∫ t

0

E
[∥∥z(n−1,m−1)(s)

∥∥2
]
ds. (2.25)
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Finally, note that z
(n,m)
0 = 0 because both trajectories z(n) and z(m) begin with the same

initial conditions. In combination, we get:

E
[∥∥z(n)(t)− z(m)(t)

∥∥2
]
≤ 3K2(t+ λ+ λ2t)

∫ t

0

E
[∥∥z(n−1)(s)− z(m−1)(s)

∥∥2
]
ds. (2.26)

Choose n = k + 1,m = k for k > 0. By induction, we get:

E
[∥∥z(k+1)(t)− z(k)(t)

∥∥2
]
≤ cktk+1

(k + 1)!
∀k ≥ 0, t ∈ [0, T ], (2.27)

where c := 3K2(T + λ + λ2T ). From there, it is straightforward to show that
{
z(k)(t)

}
is a

Cauchy sequence which converges to a limit since z ∈ Rn.

To show that the solution is unique, consider two solution trajectories x(t, ω) and y(t, ω)

of (2.8) with respective initial conditions x0 and y0 where ω is a specific sample path of the

noise process N . We can apply the same calculations as before on the mean-squared error

difference between x and y to get

E
[
‖x(t)− y(t)‖2] ≤ 3E

[
‖x0 − y0‖

2]+ cE
[∫ t

0

‖x(s)− y(s)‖2 ds

]
. (2.28)

By Gronwall’s inequality (Lemma 4), (2.28) becomes

E
[
‖x(t)− y(t)‖2] ≤ 3E

[
‖x0 − y0‖

2] ect. (2.29)

Now we set the two initial conditions x0 and y0 equal to each other. This implies that c1 = 0

and so h(t) = 0 for all t ≥ 0. Thus,

P (‖x− y‖ = 0) = 1 for all t ≥ 0.

This holds for all sample paths of N . Thus, the solution is indeed unique for all t ∈ [0, T ].

The proof is complete. �

Remark 5 (Alternative Conditions). There have also been previous works done on describ-

ing existence and uniqueness conditions for solutions to SDEs of the form (2.8) while imposing

different, non-Lipschitz conditions on f and ξ. For instance, [96] relaxes the Lipschitz con-

ditions by instead assuming that f and ξ are bounded above by any concave function of the

normed difference in trajectories ‖x− y‖. Alternatively, [77] presents a result for conditions
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where f is upper-bounded in norm by a constant and the bound on ξ depends on the size of

the jump (which is not easily applicable to our case because we are only considering stan-

dard Poisson process noise, i.e., the jump size is always one). We choose to work with simple

Lipschitz conditions because it is easier to relate to the well-known white noise version.

2.3 Common Notions of Stability and Additional Background

In this section, we provide a brief review of previous incremental stability results for deter-

ministic and white noise systems (2.9). Our main results to be presented in the following Sec-

tion 2.4, the Shot Noise Stochastic Contraction Theorem and the Lévy Noise Stochastic Con-

traction Theorem, derive incremental stability conditions for the shot noise system (2.8) and

Lévy noise system (2.7), respectively. For simplicity, we henceforth refer to each theorem as

the Shot Contraction Theorem and the Lévy Contraction Theorem, respectively.

2.3.1 Deterministic Stability

Characterizations of deterministic stability are traditionally defined in the Lyapunov sense.

For both autonomous nonlinear systems dx = f(x)dt and non-autonomous nonlinear sys-

tems dx = f(t,x)dt, stability in the sense of Lyapunov is either characterized with re-

spect to an equilibrium point x∗ (see Section 1.2.2 of Sastry 1999 [135]) or a limit cycle

O := {x(t)|x(t) = x(t+ T )}, where T > 0 (see Definition 2.13 of Sastry 1999 [135]). The

most common types of deterministic stability are defined as follows with respect to an equi-

librium point. First, asymptotic stability occurs when there exists r > 0 such that for all

‖x(t)− x∗‖ < r, we have limt→∞ x(t) = x∗. The stronger exponential stability occurs when

there exists κ, α > 0 such that ‖x(t)− x∗‖ ≤ κ ‖x0 − x∗‖α(t−t0) for all t ≥ t0. More formal

details regarding these standard types of stability can be found in well-known control theory

references such as Khalil 2002 [80].

For many systems, determining the type of stability can be difficult to do using the conditions

prescribed by their literal definitions. Instead, it is common to invoke either the Indirect

Lyapunov method (Theorem 4.7 of Khalil 2002 [80]) or the Direct Lyapunov methods (Section

4.4 of Khalil 2002 [80]). Another approach to determine stability is via the use of Krasovskii’s

Theorem (Theorem 3.7 in Slotine and Li 1991 [138]), and we will see in Section 2.4.1 that

contraction theory is a generalization of this theorem for determining incremental stability of

a system. Many of these approaches require the construction of a differentiable, real-valued,

nonnegative Lyapunov function V (x), which essentially captures the potential energy of the

system, and determines stability type depending on how quickly its value descreases along the
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solution trajectories of the system. We refer to seminal works such as Krasovskii 1870 [85],

Sontag 1983 [140], or LaSalle and Lefschetz 1973 [89] for further reading on deterministic

stability.

2.3.2 Deterministic Incremental Stability

Incremental stability generalizes Lyapunov-sense stability by considering the convergence of

solution trajectories toward a desired time-varying trajectory rather than an equilibrium

point or a limit cycle. Furthermore, systems that satisfy the incremental stability property

have guaranteed global exponential convergence towards the desired trajectory. There has

been an extensive amount of work characterizing incremental stability for deterministic non-

linear dynamics [98, 97]. Applications of incremental stability arise in numerous settings such

as cooperative control over multi-agent swarm systems [33] and phase synchronization in di-

rected networks [139, 32]. A recent tutorial paper on incremental stability and connections

to machine learning is Tsukamoto et. al. 2021 [147].

Definition 10 (Incremental Exponential Stability). For any nonlinear function f ∈ C(1,2),

the deterministic system dx = f(t,x)dt is said to be incrementally (globally exponentially)

stable if there exist constants κ, α > 0 such that

‖x2(t)− x1(t)‖ ≤ κ ‖x2,0 − x1,0‖ e−αt (2.30)

for any vector norm ‖·‖, and all t ≥ 0. The trajectories x1(t) and x2(t) are solutions of the

system dx = f(t,x)dt with respective initial conditions x1,0 and x2,0 6= x1,0.

Following the notation from Definition 10, we denote δx ∈ Rn to be the infinitesimal dis-

placement length between x1(t) and x2(t) over a fixed infinitesimal interval of time. Formally,

the infinitesimal displacement length is represented as a path integral:

‖x2(t)− x1(t)‖ ≤
∫ x2

x1

‖δx(t)‖ . (2.31)

The evolution of the infinitesimal displacement over time can be approximated by the dy-

namics

dδx = Fδxdt, (2.32)

where F , ∇xf(t,x) is the Jacobian of the system. These dynamics, associated with the

state δx, are commonly referred to as the virtual dynamics.
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Similar to the indirect and direct Lyapunov methods of testing Lyapunov stability, there

is a test to determine incremental stability of a system without needing to directly ap-

ply Definition 10. Oftentimes, performing a differential coordinate transform from δx to

δz , Θ(t,x)δx, where Θ(t,x) ∈ Rn×n is a smooth invertible square matrix, makes it eas-

ier to verify the conditions of this test. The new virtual dynamics under this coordinate

transform become

dδz = Fgδzdt, (2.33)

where

Fg , (Θ̇(t,x) + Θ(t,x)F )Θ−1(t,x) (2.34)

is the generalized Jacobian of the system, and the dot notation is defined in the beginning

of this chapter.

An equivalent way to say that a system dx(t) = f(t,x)dt is incrementally stable in the sense

of Definition 10 is to say that it is contracting with rate α > 0. Similar to (2.33), we

can extend the notion of contraction to more general metrics. We say that the system is

contracting with respect to a uniformly positive definite metric M(t,x) , Θ(t,x)>Θ(t,x)

and convergence rate α. For most practical applications, we are able to make the following

assumption on M(t,x).

Assumption 2 (Bounded Metric). The metric M(t,x) described in the setup above is

bounded in both arguments x and t from above and below, and its first and second derivatives

with respect to the x argument are also bounded from above. We thus define the following

constants

m = inf
t,x
λmin(M(t,x)), m = sup

t,x
λmax(M(t,x)) (2.35)

m′ = sup
t,x,i,j

‖(∂xM(t,x))i,j‖ , m′′ = sup
t,x,i,j

∥∥(∂2
xM(t,x))i,j

∥∥ .
The inequality (2.30) is obtained for the special case where M(t,x) = In, the n-dimensional

identity matrix. For general deterministic system dynamics dx(t) = f(t,x)dt, the criterion

for testing incremental stability is stated in the theorem below.

Theorem 3 (Basic Contraction). Consider the deterministic dynamics dx = f(t,x)dt. If

there exists a uniformly positive definite metric M(t,x) and α > 0 such that the following
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condition is satisfied:

F>M(t,x) +M(t,x)F + Ṁ(t,x) ≤ −2αM(t,x), (2.36)

then the system is contracting. In relation to (2.34), we have λmax((Fg + F>g )/2) ≤ −α.

2.3.3 Stochastic Stability

Lyapunov-sense stability characterizations have also been derived for stochastic nonlinear

systems. The seminal work of Kushner 1967 [87] laid out the foundations of Lyapunov-based

stochastic stability theory for systems perturbed by noise processes that are right-continuous,

strong Markov processes. The Lévy noise processes of our consideration belong in this class.

This section informally presents some of these foundations in order to set the context for

stochastic incremental stability to be discussed in the following section.

For a given stochastic system of the form (2.7), suppose we design a corresponding Lyapunov-

like function V (t,x) such that

LV (t,x(t)) ≤ −βV (t,x(t)), (2.37)

for some β > 0, initial condition x(0) = x0, and L as the infinitesimal generator defined

in Definition 9. Rearranging this inequality can give us

E[V (t,x(t)] ≤ V (0,x0)e−βt, (2.38)

which implies that, under the assumption that E[V (t,x(t)] <∞ for all t > 0, V (t,x(t)) is a

supermartingale since e−βt ≤ 1 for all t ≥ 0. Using Doob’s supermartingale inequality (stated

originally in Chapter VII.3 of Doob 1953 [49], also in Chapter 1.7 of Kushner 1967 [87]), (2.38)

implies:

0 ≤ P
(

sup
s≤t<∞

V (t,x(t)) ≥ c

)
≤ 1

c
E[V (s,x(s))] ≤ 1

c
V (0,x0)e−βs

for s < t and any constant c > 0. This further implies almost-sure stability of the system

since the right side of the inequality tends to 0 as s → ∞, and hence the probability that

the “energy” of the system will ever exceed any constant c > 0 tends to zero.

However, unlike deterministic systems, it is often the case for stochastic systems that con-

vergence to an equilibrium does not occur exactly with zero error; at best, the solution

trajectories are guaranteed to remain within some bounded-error ball of the equilibrium
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point. This is especially true for the large jump disturbances that arise for the shot and

Lévy noise processes considered in this chapter. There have been approaches to characteriz-

ing stability for stochastic systems perturbed by non-Gaussian noise: asymptotic stability of

systems driven by Lévy noise is developed in Applebaum 2009 [9] while exponential stability

is studied in Mao 1990 [102]. The alternative approach we take in this work is through the use

of contraction theory, which allows us to achieve incremental stability [6], which generalizes

the mentioned Lyapunov-sense stability to account for convergence among multiple different

solution trajectories of the system, rather than toward a single equilibrium point or a fixed

limit cycle. We show in Section 2.4 that the specific form of the error bound enters into

the right side of (2.38) additively, and derive their specific expressions by considering the

mean-squared error between solution trajectories with distinct initial conditions and noise

sample paths.

2.3.4 Stochastic Incremental Stability

For deterministic systems, incremental stability has been established as a concept of conver-

gence between different solution trajectories with different initial conditions [99, 4]. However,

in the stochastic setting, the difference between trajectories also arises from using different

noise processes. To this end, we require a change in notation from deterministic incremental

stability analysis. The infinitesimal displacement length now considers the difference between

a solution trajectory x(t) of a stochastic system with one noise sample path and a solution

trajectory y(t) of a stochastic system with another noise sample path. This can be viewed as

a comparison between solution trajectories coming from distinct systems, which is different

from the comparison of two solution trajectories from the same system done for deterministic

incremental stability. To make this distinction clear, we use the notation δq in place of δx,

and the path integral (2.31) is now written instead as

‖y(t)− x(t)‖ ≤
∫ y(t)

x(t)

‖δq‖ =

∫ 1

0

‖∂µq(t)‖ dµ. (2.39)

In particular, for the Lévy noise system (2.7) we consider a parametrization of a new state

q(µ, t) ∈ Rn, with µ ∈ [0, 1], such that:

q(µ = 0, t) = x(t), q(µ = 1, t) = y(t) (2.40)

σµ=0(t) = σ1(t,x), σµ=1(t) = σ2(t,y), ξµ=0(t) = ξ1(t,x), ξµ=1(t) = ξ2(t,y)

Wµ=0(t) = W1(t), Wµ=1(t) = W2(t), Nµ=0(t) = N1(t), Nµ=1(t) = N2(t),
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where x(t) and y(t) are solution trajectories of, respectively:

dx(t) = f(t,x)dt+ σ1(t,x)dW1(t) + ξ1(t,x)dN1(t), x(0) = x0

dy(t) = f(t,y)dt+ σ2(t,y)dW2(t) + ξ2(t,y)dN2(t), y(0) = y0,

e.g., q(µ, t) , µx(t) + (1 − µ)y(t). This parametrization allows us to construct a virtual

system with state q(µ, t), written as

dq(µ, t) = f(t,q(µ, t))dt+ σµ(t,q(µ, t))dWµ(t) + ξµ(t,q(µ, t))dNµ(t). (2.41)

The virtual dynamics become

dδq(t) = Fδq(t)dt+ δσµdWµ(t) + δξµdNµ(t), (2.42)

where F is the Jacobian defined in (2.32) and

δσµ(t,q) , [∇qσµ,1(t,q)δq(t), · · · ,∇qσµ,d(t,q)δq(t)] ∈ Rn×d

δξµ(t,q) , ∇qξµ(t,q)δq(t) ∈ Rn, (2.43)

where σµ,i is the ith column of σµ.

Assumption 3 (Initial Conditions). The initial conditions adhere to some probability dis-

tribution p(q0) = p(x0,y0), where p is either compactly-supported on the set of initial

conditions X0 ⊂ Rn, or is a distribution with finite second moment on X0 such that

‖x0 − y0‖ ≤ c0, ∀x0,y0 ∈ X0. (2.44)

The work of Pham 2009 [121] considered stochastic incremental stability for the specific case

of additive Gaussian white noise perturbations, and Dani 2015 [42] extended this theory to

more general state-dependent metrics. Stochastic contraction is defined in Definition 2 of

Pham 2009 [121], but is only applicable to white noise systems (2.9). For the purposes of

including shot noise, we create a more general definition of stochastic contraction.

Definition 11 (Stochastically Contracting). The system (2.7) is said to be stochastically

contracting if:

1. the nominal, unperturbed system dx = f(t,x)dt is contracting with some differential

coordinate transform Θ(t,x) and convergence rate α, i.e., (2.36) is satisfied;
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2. there exists a Lyapunov-like function V (t,x) such that

E[V (t,q(t))] ≤ V (0,q0)e−βt + κ(t), (2.45)

for some contraction rate β > 0 and bounded function κ : R+ → R+, and initial

condition q0 ∈ Rn.

Separately, white noise SDE (2.9) is stochastically contracting under the same two conditions

above without η and ξ in condition 2, while shot noise SDE (2.8) removes mention of γ and

σ.

Remark 6. The equation (2.45) is a version of (2.38) with a nonzero steady-state error bound

κ(t) added. This is because it is often the case for stochastic systems that convergence to

an equilibrium does not occur with zero error due to considering trajectories arising from

different noise sample paths. Moreover, for the impulsive shot noise in (2.7) and (2.8), almost-

sure convergence is nearly impossible to demonstrate. We show this in Section 2.4, where

the bound is derived probabilistically, with a condition on having a finite number of jumps

within the interval of time [0, t].

Demonstrating stochastic incremental stability for stochastic systems perturbed by some

class of noise processes involves rewriting (2.45) and deriving specific forms of β and κ(t)

based on the parameters of the stochastic system. One common choice of Lyapunov function

is the metric-weighted norm-squared difference between solution trajectories with distinct

initial conditions and noise sample paths:

V (t,q(µ, t), δq(t)) =

∫ 1

0

∂µq
>(µ, t)M(t,q(µ, t))∂µq(µ, t)dµ, (2.46)

where M(t,q) , Θ>Θ(t,q) is the metric defined as before, and the parametrization over µ

is such that V (t,q0, δq0) = ‖y0 − x0‖.

Similar to the direct method of Lyapunov, we analyze the behavior of the system by analyz-

ing the derivative of the Lyapunov-like function V (t,q, δq) along trajectories of the virtual

system (2.41). This requires us to use the infinitesimal generator from Definition 9, which

can be thought of as the stochastic analogue to the differentiation operator used in the de-

terministic case. For the shot and Lévy noise systems, we invoke Itô’s formula (Lemma 3)

directly instead of using the infinitesimal generator by virtue of the relationship described

in Remark 4.
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2.3.5 Other Relevant Inequalities and Results

The Comparison Lemma (Khalil 2002[80], p.102-103) can be roughly stated as follows: Sup-

pose we have an initial-value problem of the form {u̇ = g(u, t), u(0) = u0} and corresponding

solution u(t). Then if we were to consider an analogous problem {D+v ≤ g(v, t), v(0) ≤ u0},
the solution v(t) satisfies v(t) ≤ u(t) for all t ≥ 0, where D+ denotes the right side limit

defined as

D+v(t) , lim sup
∆t→0+

v(t+ ∆t)− v(t)

∆t
. (2.47)

Note that this definition implies that if there exists a function g(∆t, t) such that

|v(t+ ∆t)− v(t)|
∆t

≤ g(∆t, t), ∀∆t ∈ (0, a] (2.48)

for some a > 0, and g0(t) , lim∆t→0+ g(∆t, t) exists, then D+v(t) ≤ g0(t).

We use the Comparison Lemma to derive the following result, which is used in the proofs of

the stochastic contraction results of Section 2.4.

Lemma 5. Let y :R+→R≥0 be a piecewise-continuous, nonnegative function which is right-

continuous with left limits. Let µ > 0 be a positive constant, and θ :R+→R be a nonconstant,

continuously-differentiable function with θ(0) = ζ > 0. Fix a value of time T > 0, and

suppose that there are a finite number k ∈ N jump-discontinuities of y in the interval [0, T )

which occur at times ti given by 0 < t1 ≤ t2 ≤ · · · ≤ tk < T . Further suppose that there exists

a continuous, nonnegative function h(t) which bounds the jumps, i.e., y(ti)− y(ti−) ≤ h(ti).

Given this setup, if the following inequality holds:

y(t)− y(0) ≤ θ(t)− µ
∫ t

0+

y(s−)ds, ∀t ∈ [0, T ). (2.49)

Then

y(t) ≤
∫ t

0+

dθ(s)

ds
e−µ(t−s)ds+ ζe−µt + y(0)e−µt, ∀t ∈ [0, T ), (2.50)

where the integral from 0+ to t denotes integration over the interval (0, t].

Proof. Suppose that u : R+ → R is the continuously-differentiable state of the dynam-

ics (2.49) with equality instead of inequality, and set u(0) = y(0). Then we can directly solve

for u(t) by using an integrating factor of eµt:

u(t)− y(0) = θ(t)− µ
∫ t

0

u(s)ds
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=⇒ d

dt

(
u(t)eµt

)
=
dθ(t)

dt
eµt

=⇒ u(t) =

∫ t

0+

dθ(s)

ds
e−µ(t−s)ds+ (y(0) + ζ)e−µt. (2.51)

Note that by the bound on the magnitude of the jumps at each time ti, D
+y(t) ≤ h(t) for

all t ∈ [0, T ), which means that (2.48) is satisfied with g(∆t, t) ≡ g0(t) , h(t). Hence, we

can apply the Comparison Lemma to conclude that y(t) ≤ u(t) for all t ∈ [0, T ), yielding

the desired result (2.50). �

Lemma 6 (Maximum of Nonnegative Functions). Suppose {αi}ki=1 and {βi}ki=1 are finite,

nonnegative, real-valued sequences. Then

max
i=1,··· ,k

αiβi ≤ max
i=1,··· ,k

αi max
i=1,··· ,k

βi. (2.52)

Proof. Suppose the maximum value of the sequences {αi}ki=1 and {βi}ki=1 occur at ia, ib ∈
{1, · · · , k}, respectively. Further suppose that the maximum value of the product sequence

{αiβi}ki=1 occurs at index j ∈ {1, · · · , k}. Then

max
i,··· ,k

αiβi = αjβj ≤ αiaβib = max
i=1,··· ,k

αi max
i=1,··· ,k

βi

since αj ≤ αia and βj ≤ βib . This concludes the proof. �

2.4 Stochastic Contraction Theorems for Incremental Stability

2.4.1 For Gaussian White Noise Systems

Both Pham 2009 [121] and Dani 2015 [42] specified (2.45) for white noise systems (2.9); Pham

2009 investigated systems for which a state-independent metric M(t,x) ≡M(t) can be used,

while Dani 2015 used the original metric M(t,x) with motivation toward nonlinear observer

design. Both works compared between two noise-perturbed trajectories: x(t), solution to (2.9)

with noise term σ1(t,x)dW1(t), and y(t), solution to (2.9) with σ2(t,x)dW2(t). However, we

emphasize that we compare one noise-perturbed trajectory x(t) against a trajectory y(t) of

the deterministic system dy = f(t,y)dt in order to easily combine the white noise result

with the shot noise result (to be presented in Section 2.4.2) for the purposes of the Lévy

noise result in Section 2.4.4. That is, we define the measure µ such that:

q(µ = 0, t) = x(t), q(µ = 1, t) = y(t), σµ=0(t,q) = σ(t,x), σµ=1(t,q) = 0, (2.53)
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where x(t) and y(t) are solution trajectories of, respectively, dx(t) = f(t,x)dt+σ(t,x)dW (t)

with initial condition x(0) = x0, and dy(t) = f(t,y)dt with initial condition y(0) = y0. The

virtual system corresponding to (2.53) becomes:

dq(µ, t) = f(t,q(µ, t))dt+ σµ(t,q(µ, t))dW (t),

while the virtual dynamics become

dδq(t) = Fδq(t)dt+ δσµdW (t).

Remark 7. Another significant distinction between our stochastic incremental stability

results and previous versions is that we derive an error bound over a fixed interval of time

[s, t] for any s < t instead of fixing s = 0 and including the initial state. This allows us to

interpret our stability theorems as a measure of how far the perturbed trajectory will deviate

away from the nominal within a local horizon of time, which has practical applicability in

online, adaptive design of controllers and observers.

Theorem 4 (White Noise Stochastic Contraction Theorem). Suppose that (2.9) is stochas-

tically contracting in the sense of Definition 11 under a differential coordinate transform

Θ(t,x) which satisfies Assumption 2. We consider a parametrization µ ∈ [0, 1] such that the

virtual system and virtual dynamics are established as in (2.41) and (2.42) without the shot

noise terms ξµ(t,q), δξµ, and dN(t). Then, for a fixed interval of time [s, t] for s < t, (2.45)

can be rewritten as:

E[‖y− x‖2] ≤ 1

m
E
[
‖y(s)− x(s)‖2] e−βw(t−s) +

κw(βw, s, t)

mβw
, (2.54)

where

βw = 2α− γ2

m

(
m′ +

m′′

2

)
, (2.55a)

κw(βw, s, t) = γ2(m′ +m)
(
1− e−βw(t−s)) . (2.55b)

Here, γ is the bound defined in Assumption 1, m,m,m′,m′′ are the constants defined in As-

sumption 2, and α is the deterministic contraction rate from Theorem 3.

Dani 2015 [42] demonstrates an application of white noise incremental stability to the prob-

lem of model-based nonlinear observer design. Thus, extending Theorem 4 to account for

non-Gaussian noise gives us a potential way to design model-based observers and controllers
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for systems perturbed by non-Gaussian noise. With this motive, the next section presents our

main results, the Shot Contraction Theorem and the Lévy Contraction Theorem, which are

incremental stability theorems for the shot noise system (2.8) and Lévy noise system (2.7),

respectively.

2.4.2 For Compound Poisson Shot Noise Systems

We begin with the Shot Contraction Theorem for shot noise systems (2.8). Similar to the

parametrization from (2.53), we compare a trajectory x(t) of the shot noise system (2.8)

against a trajectory y(t) of the nominal system dy(t) = f(t,y)dt,y(0) = y0. We define the

parameter µ ∈ [0, 1] such that

q(µ = 0, t) = x(t), q(µ = 1, t) = y(t), ξµ=0(t,q) = ξ(t,x), ξµ=1(t,q) = 0. (2.56)

The virtual system for (2.56) is given by

dq(µ, t) = f(t,q(µ, t))dt+ ξµ(t,q(µ, t))dN(t), (2.57)

and the virtual dynamics are

dδq(t) = Fδq(t)dt+ δξµdN(t), (2.58)

with the Jacobian F from (2.32).

Assumption 4. Consider the shot noise system (2.8), virtual system (2.57), virtual dynam-

ics (2.58), and corresponding Lyapunov-like function (2.46). For any fixed t > 0, there exists

a deterministic, locally-bounded, continuously-differentiable function h : R+ → R+ such that

E

[
sup
r∈[0,t]

V (r,q, δq)− V (r−,q, δq)

]
≤ h(t). (2.59)

For the remainder of this section, the expectation operator E[·] is understood to be taken

over all sources of randomness in the argument. For E [V (t,q, δq)] from Assumption 4, E[·]
is taken with respect to the initial conditions p(q0), the random function ξ describing the

jump distribution, and the standard Poisson process N(t).

Remark 8. The reason for introducing an abstract function h(t) in Assumption 4 is because

the Lyapunov-like function V (t,q, δq) takes in arguments q and δq, which depend on the

shot noise process of (2.8). Thus, more information is needed about f(t,x) and ξ(t,x) in order
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to conclude a bound for nonlinear systems of the form (2.8), and determine a more specific

function h(t). In Section 2.4.3, we specialize (2.8) to linear time-varying (LTV) systems where

f(t,x) , A(t)x and jumps ξ(t,x) ≡ ξ(t) which are independent of the state x. We will see

that the expression of h(t) in terms of system parameters relies on knowing the exact form

of the solution trajectory x(t) of (2.8), which is easy to obtain for LTV systems.

Remark 9. The existence of a h(t) in (2.59) is roughly justified using the following argument.

Note that we can simplify the difference in (2.59) as follows:

V (t,q, δq)− V (t−,q, δq)

=

∫ 1

0

[
∂µq(µ, t)>M(t,q(µ, t))∂µq(µ, t)− ∂µq(µ, t−)>M(t,q(µ, t))∂µq(µ, t−)

]
dµ

≤
∫ 1

0

(
m ‖∂µq(µ, t)‖2 −m ‖∂µq(µ, t−)‖2) dµ, (2.60)

where the last inequality follows from Assumption 2. By continuity of the nominal system,

y(t) = y(t−). Hence, the difference (2.60) is nonzero only when there exists a jump at time

t. But we know that the jumps of the SDE (2.8) are assumed to be bounded by a constant η

by Assumption 1. Therefore, we can assume that (2.60) is also bounded at each fixed time t.

Definition 12 (Condition on the Number of Jumps). Let N(t) be the standard Poisson

process driving the shot noise process behind systems of the form (2.8) or (2.7). For fixed

values of time 0 ≤ s ≤ t, define Ek[·] , E[·|N(t)−N(s) = k] to be the expectation operator

E[·] conditioned on the occurrence of k jumps within the fixed interval of time [s, t]. By

the stationarity property of Poisson processes, the event is equivalent to the event that

N(t− s) = k, which occurs with probability

pk(t− s) , P(N(t)−N(s) = k) = e−λ(t−s) (λ(t− s))k

k!
, (2.61)

and we have the relationship E[·] =
∑∞

k=0 pkEk[·].

Theorem 5 (Shot Noise Stochastic Contraction Theorem). Consider the shot noise sys-

tem (2.8) which has trajectories that begin from different initial conditions and are per-

turbed by noise processes which satisfy Assumption 1. Let N(t) be the standard Poisson

process in (2.8). Take as convention T0 , s, where s ≥ 0 is fixed. Define Ti, i ≥ 1 to be the

arrival time of the ith jump of N after time s. Further suppose that (2.8) is stochastically

contracting in the sense of Definition 11 under a differential coordinate transform Θ(t,x)
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which satisfies (2.35). Suppose the Lyapunov-like function (2.46) satisfies Assumption 4. For

any t > s, if k jumps occur between s and t with probability pk(t − s) given by (2.61), we

achieve the following bound:

Ek[‖y(t)− x(t)‖2] ≤ 1

m
Ek[‖y(s)− x(s)‖2]e−βs(t−s) +

κs(βs, s, t)

m
(2.62)

for any k ∈ N, where

βs , 2α, (2.63a)

κs(βs, s, t) , k

∫ t

s+

dh(τ)

dτ
e−βs(t−τ)dτ + kh(s)e−βs(t−s). (2.63b)

Here, α > 0 is the deterministic contraction rate from (2.36), m is defined in (2.35), and the

function h is defined in Assumption 4.

Proof of Theorem 5. Using Lemma 3, (2.46) becomes

V (t,q, δq) = V (s,q, δq) +

∫ t

s+

∂τV (τ−,q, δq)dτ (2.64a)

+

∫ t

s+

n∑
i=1

[∂qiV (τ−,q, δq)fi(τ,q) + ∂δqiV (τ−,q, δq) (Fδq)i] dτ (2.64b)

+

N(t)∑
i=N(s)+1

(V (Ti,q, δq)− V (Ti−,q, δq)) , (2.64c)

where F is the Jacobian from (2.32), Ti is the time of the ith arrival in the Poisson process

N(t) driving the shot noise system (2.8), and we use the left-limit notation from the beginning

of this chapter. Note that in (2.64c), we abuse the notation for the subscript i in Ti for both

sums which range over i = N(s) + 1 to N(t) and sums which range over i = 1 to k. Because

we will later condition on N(t)−N(s) = k, we abuse the notation in this way for the sake of

simplicity. Similar to the argument of Remark 9, note that each term of the sum (2.64c) is

nonzero only if there is a jump at time s, where s ≤ t. Furthermore, the terms of (2.10) which

correspond to the continuous part of the quadratic variation are zero for dynamics (2.8).

We condition on the number of jumps being N(t) = k by applying Ek across the entire

equation (2.64).

Ek [V (t,q, δq)]− Ek [V (s,q, δq)] = Ek
[∫ t

s+

∂τV (τ,q, δq)dτ

]
(2.65a)
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+
n∑
i=1

Ek
[ ∫ t

s+

(∂qiV (τ,q, δq)fi(τ,q) + ∂δqiV (τ,q, δq) (Fδq)i) dτ

]
(2.65b)

+ Ek

 N(t)∑
i=N(s)+1

(V (Ti,q, δq)− V (Ti−,q, δq))

 . (2.65c)

Recall that the Lyapunov-like function (2.46) is twice continuously-differentiable with respect

to its arguments q and δq. This means there is a jump-discontinuity in V only if there is

a jump discontinuity in q or δq. But by the relationship between (2.41) and (2.42), q and

δq experience jumps at the same times. Hence, the number of jumps experienced by V in a

fixed interval of time [s, t] is equal to the number of jumps experienced by the trajectory q

in [s, t].

A bound on (2.65a) and (2.65b) is derived from Theorem 3. We bound (2.65c) in the following

way:

Ek

 N(t)∑
i=N(s)+1

(V (Ti,q, δq)− V (Ti−,q, δq))

 = Ek

[
k∑
i=1

(V (Ti,q, δq)− V (Ti−,q, δq))

]
(2.66a)

≤ kEk
[

max
i∈{1,··· ,k}

(V (Ti,q, δq)− V (Ti−,q, δq)

]
(2.66b)

≤ kh(t), (2.66c)

where h(t) is defined in Assumption 4. The inequality (2.66c) comes from (2.59) and the fact

that Ti ∈ [s, t] for all i = 1, · · · , k.

In combination, we get:

Ek [V (t,q, δq)]− Ek [V (s,q, δq)] ≤ −2α

∫ t

s+

Ek[V (τ,q, δq)]dτ + kh(t), (2.67)

where α is the contraction rate of the nominal system. Applying Lemma 5 with y(t) ,

Ek[V (t,q, δq)], ζ = kh(s), µ , 2α, and θ(t) , kh(t) turns (2.67) into

Ek[V (t,q, δq)] ≤ Ek[V (s,q, δq)]e−βs(t−s) + κs(βs, s, t), (2.68)
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where βs and κs(βs, s, t) are defined in (2.63a) and (2.63b), respectively. Note that by As-

sumption 2, (2.39), and Cauchy-Schwarz:

mEk
[
‖y(t)− x(t)‖2] ≤ mEk

[∫ 1

0

‖∂µq(µ, t)‖2 dµ

]
≤ Ek[V (t,q, δq)]. (2.69)

We use (2.69) to write (2.68) as an inequality on the norm mean-squared error between the

two trajectories x and y. Because the condition that N(t)−N(s) = k occurs with probability

pk(t− s) given by (2.61), we obtain our desired bound (2.62). �

Both the shot noise system and the nominal system have the same contraction rate. This is

because the shot noise system behaves exactly as the nominal system in between consecutive

jumps. The displacements of the shot noise trajectory incurred by the jumps of the shot

noise process can each be thought of as a reset to a different initial condition from which the

system evolves nominally.

Remark 10. In conjunction with Remark 7, we note two important differences between

the white noise incremental stability result Theorem 4 and incremental stability results for

systems which include impulsive shot noise, such as (2.8) and (2.7). First, taking t → ∞
in the inequality of Theorem 4 yields a bound which can be interpreted as the steady-state

error ball that solution trajectories will ultimately converge toward. However, stability for

shot or Lévy noise systems is more comparable to finite-time stability theory, described

in Chapter III of Kushner 1967 [87]. Due to the impulsive, large-norm jumps of the noise

process, convergence between solution trajectories is considered only within a finite interval

of time [s, t] for each 0 ≤ s < t. The second difference is that the mean-squared error bounds

for the cases of shot and Lévy noise systems are provided with a specific probability of

satisfaction, which is weaker than the traditional mean-squared sense of convergence. This

probability is dependent upon the number of jumps incurred by the noise process. Using

the practical interpretation of Remark 7, this probabilistic guarantee allows for a smarter

design for controllers and observers by including a predictive component. For instance, the

probability of (2.61) can be used as a measure of expectation that k jumps will arise in a

fixed, future horizon of time; given this event, the bound of Theorem 5 provides a guarantee

on the mean-squared deviation of the perturbed trajectory away from the nominal.

Remark 11. The error ball (2.63b) depends on intensity λ and the jump norm bound η

(defined in Assumption 1) of the shot noise process. For example, in Section 2.4.3, we consider

a specific linear time-varying form of (2.8) to derive a concrete expression of h(t) (from (2.59))
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which is directly proportional to η. This implies that larger jump norms result in larger error

bounds. While the relationship between κs(βs, s, t) and λ is not as straightforward to discern

from the derivation of Section 2.4.3, we expect to see the following trend. An increasing λ

is indicative of a more rapid accumulation of jumps, resulting in a larger overall deviation

of the perturbed trajectory away from the nominal trajectory, and thus a larger error ball.

In Section 2.5, we use numerical simulations to verify these relationships between η, λ, and

the size of the error bound.

2.4.3 Specialization to the Linear Time-Varying Case

To demonstrate a concrete example of the function h(t) from (2.59), we consider a specializa-

tion of Theorem 5 to the class of linear time-varying (LTV) systems where f(t,x) = A(t)x(t)

is a linear function and ξ(t,x) ≡ ξ(t) is a function is only dependent on time:

dx(t) = A(t)x(t)dt+ ξ(t)dN(t). (2.70)

Here, A :R+→Rn×n is continuous for all t≥ 0, and ξ :R+→Rn is a random function which

maps time to a random vector in Rn such that the bound in Assumption 1 is still satisfied.

By virtue of Remark 8, we can leverage the additional knowledge that the shot noise system

is LTV in order to further simplify the bound (2.60).

Note that a solution trajectory of (2.70) with value x(s) ∈ Rn at time s is given by:

x(t) = Φ(t, s)x(s) +

∫ t

s+

Φ(t, τ)ξ(τ)dN(τ) = Φ(t, s)x(s) +

N(t)∑
i=N(s)+1

Φ(t, Ti)ξ(Ti), (2.71)

where the second equality follows from the definition of the Poisson integral from Section

2.3.2 of Applebaum 2009 [8].

Instead of using a parameter µ ∈ [0, 1], we consider the construction of the virtual system

by stacking the SDEs (2.70) and the nominal system dy(t) = A(t)y(t)dt:

dq(t) =

[
dx(t)

dy(t)

]
=

[
A(t)x(t)

A(t)y(t)

]
dt+

[
ξ(t)

0

]
dN(t), (2.72)

where N(t) is the standard Poisson process with intensity λ > 0.

Assumption 5. There exists a continuously-differentiable, uniformly positive-definite, sym-

metric matrix P (t) such that
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1. we can define the bounds

α1 , inf
t
λminP (t), α2 , sup

t
λmaxP (t) (2.73)

for finite constants α1, α2 > 0;

2. for all t ≥ 0 and a fixed α > 0,

∂tP (t) + P (t)A(t) + A>(t)P (t) ≤ −2αP (t). (2.74)

The decomposition of f(t,x) into A(t)x, which can be seen as a product of a function

of time and a function of state, allows us to consider metrics M(t,q) ≡ M(t) which are

independent of state q ∈ R2n of the virtual system (2.72). Moreover, we choose the metric

to be M(t) , P (t), where P (t) satisfies Assumption 5. The condition (2.74) can be viewed

as a simplification of (2.36) for LTV systems. Because the metric is independent of state, we

can construct a Lyapunov-like function which is simplified compared to (2.46):

V (t,q(t)) = (y(t)− x(t))>P (t)(y(t)− x(t)). (2.75)

We further assume that the nominal system admits a solution with the state transition matrix

Φ(t, s) , e
∫ t
s A(r)dr satisfying the following assumption, which is derived from Theorem 4.11

of Khalil 2002 [80].

Assumption 6 (Bounded State-Transition Matrix). The state-transition matrix Φ(t, τ) ,

e
∫ t
τ A(r)dr satisfies the following condition

‖Φ(t, τ)‖ ≤ κe−β(t−τ), ∀ 0 ≤ τ ≤ t (2.76)

for some κ, β > 0 and any trajectory q(t) from a system with nominal dynamics dq(t) =

A(t)q(t)dt.

Theorem 6 (Shot Noise Stochastic Contraction Theorem: LTV Systems). Suppose the LTV

shot noise system (2.70) is perturbed by noise processes which satisfy Assumption 1, and is

stochastically contracting in the sense of Definition 11 under the metric P (t) from Assump-

tion 5. Further suppose that the nominal LTV system is such that Assumption 6 and As-

sumption 5 holds. If for a fixed interval of time [s, t] for 0 ≤ s < t, k ∈ N jumps occur with

probability pk(t− s) given by (2.61), then (2.45) can be written explicitly as:

Ek[‖y(t)− x(t)‖2] ≤ 1

α1

Ek[‖y(s)− x(s)‖2]e−βs(t−s) +
κs(βs, s, t)

α1

, (2.77)
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where

βs , 2α, (2.78a)

κs(βs, s, t) ,
∫ t

s+

dψk(s, τ)

dτ
e−βs(t−τ)dτ + kα2η

2e−βs(t−s), (2.78b)

and

ψk(s, t) , Ek

[
k∑
i=1

{
2α2ηκ ‖y(s)− x(s)‖ e−β(Ti−s) + 2α2κη

2

(
i−1∑
j=1

e−β(Ti−Tj)

)}]
. (2.79)

Here, N(t) is the standard Poisson process in (2.8), and Ti ≥ s, i ≥ 1 is the arrival time of

the ith jump after time s in the Poisson process N driving (2.70), with convention T0 , s.

The variable λ is the intensity of N(t), α1 and α2 are defined in Assumption 5, and η is the

bound on the norm of the jumps ξ(t) described by Assumption 1.

Proof of Theorem 6. Applying Lemma 3 to the Lyapunov-like function (2.75) yields

V (t,q)− V (s,q) =∫ t

s+

∂τV (τ−,q)dτ +

∫ t

s+

(∇xV (τ−,q) · A(τ)x(τ) +∇yV (τ−,q) · A(τ)y(τ)) dτ (2.80a)

+

N(t)∑
i=N(s)+1

(V (Ti,q)− V (Ti−,q)) . (2.80b)

As in the proof to Theorem 5, we again abuse the notation of the subscript i in Ti for both

sums which range over i = N(s) + 1 to N(t) and sums which range over i = 1 to k for the

sake of simplicity. Using left-limit notation, we write

∇xV (s,q(τ)) = −2(y(τ)− x(τ))>P (t), ∇yV (s,q(τ)) = 2(y(τ)− x(τ))>P (t). (2.81)

Let x(t) be the solution trajectory described in (2.71) with value x(s) ∈ Rn at time t0.

Further denote y(t) = Φ(t, s)y(s) to be the solution trajectory of the nominal system with

value y(s) ∈ Rn at time t0. We can simplify each term in the sum (2.80b) as follows:

V (Ti,q)− V (Ti−,q) = y(Ti)
>P (Ti)(x(Ti−)− x(Ti)) + (x(Ti−)− x(Ti))

>P (Ti)y(Ti)

+ (x>Px(Ti)− x>Px(Ti−)) = −2y>Pξ(Ti) + (x>Px(Ti)− x>Px(Ti−)), (2.82)

where y>Pξ(τ) is shorthand notation for y>(τ)P (τ)ξ(τ) for any τ , and likewise for other

similar notation. The first equality comes from the fact that y(Ti) = y(Ti−) for all Ti ≤ t
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due to its continuity. The second equality is obtained by by virtue of N(Ti−) = N(Ti) − 1

and N(Ti) = i.

The second term of (2.82) can be simplified as follows:

x>Px(Ti)− x>Px(Ti−) = 2ξ>(Ti)P (Ti)Φ(Ti, s)x(s)

+ 2

 i−1∑
j=N(s)+1

ξ>(Ti)Φ
>(Ti, Tj)

P (Ti)ξ(Ti) + ξ>Pξ(Ti), (2.83)

where the second equality is obtained by using the fact that N(Ti−) = N(Ti)− 1 and that

N(Ti) = i. Substituting (2.82) into (2.80) yields:

V (t,q)− V (s,q) =

∫ t

s+

(y(τ)− x(τ−))>(∂τP (τ) + 2P (τ)A(τ))(y(τ)− x(τ−))dτ

+

N(t)∑
i=N(s)+1

[
− 2ξ>(Ti)P (Ti)Φ(Ti, s)(y(s)− x(s))

+ 2

 i−1∑
j=N(s)+1

ξ>(Ti)Φ
>(Ti, Tj)

P (Ti)ξ(Ti) + ξ>Pξ(Ti)

]
(2.84a)

≤ −2α

∫ t

s+

V (τ−,q)dτ +

N(t)∑
i=N(s)+1

[
2α2 ‖ξ(Ti)‖ ‖Φ(Ti, s)‖ ‖y(s)− x(s)‖

+ 2α2

 i−1∑
j=N(s)+1

ξ>(Tj)Φ
>(Ti, Tj)

 ξ(Ti) + α2ξ
>ξ(Ti)

]
(2.84b)

≤ −2α

∫ t

s+

V (τ−,q)dτ +

N(t)∑
i=N(s)+1

[
2α2 ‖ξ(Ti)‖κ ‖y(s)− x(s)‖ e−β(Ti−s)

+ 2α2κ ‖ξ(Ti)‖
i−1∑

j=N(s)+1

‖ξ(Tj)‖ e−β(Ti−Tj) + α2 ‖ξ(Ti)‖2

]
(2.84c)

≤ −2α

∫ t

s+

V (τ−,q)dτ +

N(t)∑
i=N(s)+1

[
2α2ηκ ‖y(s)− x(s)‖ e−β(Ti−s)

+ 2α2κη
2

 i−1∑
j=N(s)+1

e−β(Ti−Tj)

+ α2η
2

]
. (2.84d)

Here, (2.84b) from using Assumption 5, the bound on P (t), and submultiplicativity. The

third inequality (2.84c) comes from submultiplicativity, triangle inequality, and (2.76). Fi-
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nally, (2.84d) is obtained by using Assumption 1. Taking the conditional expectation Ek[·]
over (2.84) yields:

Ek[V (t,q)]− Ek[V (s,q)] ≤ −2α

∫ t

s+

Ek [V (τ−,q)] dτ + ψk(s, t) + kα2η
2, (2.85)

where ψk(s, t) is as in (2.79). Apply Lemma 5 to (2.85) with y(t) , Ek[V (t,q)], ζ , kα2η
2,

µ , 2α, and θ(t) , ψk(s, t). Use (2.69) and the fact that (1/α2)In ≤ P−1(t) ≤ (1/α1)In to

write the inequality in terms of the norm mean-squared error between x and y. This gives

us the desired bound (2.77), with βs as in (2.78a) and κs(βs, t) as in (2.78b). �

Note that there are several ways to simplify ψk(s, t). One can explicitly write out the integral

form of the expectation with the knowledge that Ti are Gamma-distributed with parameter i

and λ for all i = 1, · · · , k. While this direct computation of (2.79) yields the tightest bound,

this method requires computing k integrals and is thus increasingly difficult to compute with

increasing k. We provide two ways to derive a looser bound.

The first term of (2.79) simplifies as

2α2ηκEk

[
k∑
i=1

‖y(s)− x(s)‖ e−β(Ti−s)

]
≤ 2α2ηκe

βsEk[‖y(s)− x(s)‖]kEk
[

max
i=1,··· ,k

e−βTi
]

= 2α2ηκe
βsEk[‖y(s)− x(s)‖]kE

[
e−βT1

]
(2.86)

because the random variables Ti, i = 1, · · · , k are such that T1 ≤ T2 ≤ · · ·Tk, and so e−βTi

takes the largest value with the smallest index i.

For the second term of (2.79), we use Lemma 6:

2α2κη
2Ek

[
k∑
i=1

i−1∑
j=1

e−β(Ti−Tj)

]
≤ 2α2κη

2k(k − 1)Ek
[

max
i=1,··· ,k

e−βTi max
j=1,··· ,k

eβTj
]

= 2α2κη
2k(k − 1)Ek

[
e−βT1eβTk

]
. (2.87)

Here, (2.87) holds because Ti, i = 1, · · · , k are such that T1 ≤ T2 ≤ · · ·Tk. This means the

value of i ∈ {1, · · · , k} which maximizes e−βTi is i = 1, and the value of j ∈ {1, · · · , k} which

maximizes eβTj is j = k. Use the fact that T1 ∼ Exp(λ) and Tk ∼ Gamma(k, λ) to further

simplify the resulting inequality. The derivative of the function ψk(s, t) from (2.79) simplifies

to

dψk(s, t)

dt
, 2α2ηκ ‖y(s)− x(s)‖ keβsλe−(λ+β)t +

2α2κη
2k(k − 1)λk+1

(λ+ β)Γ(k)
tk−1

(
e(β−λ)t − e−2λt

)
.

(2.88)
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Alternatively, we can bound the second term of (2.79) in the following way:

2α2κη
2Ek

[
k∑
i=1

i−1∑
j=1

e−β(Ti−Tj)

]
≤ 2α2κη

2Ek

[
k∑
i=1

(i− 1) max
j∈{1,··· ,i−1}

e−β(Ti−Tj)

]
= α2κη

2k(k − 1)Ek
[
e−βSi

]
, (2.89)

where Si , Ti − Ti−1 is exponentially-distributed with parameter λ. The maximum value

of j is achieved at j = i − 1 because the difference Ti − Ti−1 is the smallest value in the

range, and thus e−β(Ti−Ti−1) is the largest. Note that Si represent the interarrival times of the

Poisson jumps and are thus i.i.d. for all i = 1, · · · , k. The derivative of the function ψk(s, t)

from (2.79) simplifies to

dψk(s, t)

dt
,
(
2α2ηκ ‖y(s)− x(s)‖ keβs + α2κη

2k(k − 1)
)
λe−(λ+β)t. (2.90)

As mentioned in Remark 11, ψk(s, t) of (2.79), and thus κs(βs, s, t) of (2.78b), is directly

proportional to the jump norm bound η.

Remark 12. A comparison of the results between Theorem 6 and Theorem 5 show that

the form of the stability bounds is the same. First, note that m = α1 and βs from (2.78a)

in Theorem 6 is as in (2.63a) from Theorem 5. Second, and more importantly, having more

knowledge about the system dynamics allows us to derive a more concrete bound compared

to the bounds of Section 2.4.2, which are dependent upon some abstract function h(t).

In particular, for this LTV case, the difference (2.60) can be computed exactly using the

precise solution form (2.71), and the metric M(t,x) , P (t) does not depend on the state x.

From (2.85), we have h(t) = ψk(s, t).

Remark 13. Similar to Remark 11, the strength of the stability bound in Theorem 6 is con-

tingent on both inherent parameters and design parameters, but the explicit form of (2.79)

allows us to derive additional insights. First, an additional inherent parameter we can con-

sider is the the maximum norm bound η: (2.79) is directly proportional to η, which implies

that larger jump norms result in larger error bounds. Second, among the design parameters,

the contraction metric M(t,x) ≡ P (t) can be chosen such that α1 is small and α2 is large.

This enables a looser bound on (2.77), and so (2.77) is tighter and more meaningful when we
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choose a metric whose condition number is close to 1. For exponentially-stable unperturbed

LTV systems, (2.79) also demonstrates that a larger deterministic contraction rate allows for

faster convergence to a smaller error ball. Correspondingly, this effect can also be achieved for

controllable open-loop unstable unperturbed LTV systems by designing a control law such

that, in Assumption 6, κ is small and β is large. In Section 2.5, we use numerical simulations

to investigate how the stability bounds vary by varying the different parameters discussed

in here and in Remark 11.

2.4.4 For Bounded-Measure Lévy Noise Systems

In this section, the stochastic contraction theorem for Lévy noise system (2.7) is presented

and proven to be a combination of the white and the shot noise cases. Consider two tra-

jectories of a system: x(t) a solution of (2.7) with initial condition x0, and y(t) a solution

of the nominal system dy(t) = f(t,y)dt with initial condition y0. We define the parameter

µ ∈ [0, 1] which yields the parametrization (2.40); in particular, we again use the specific

parametrization (2.63). Analogous to the white noise parameters βw, κw from (2.55) and the

shot noise parameters βs, κs from (2.63), denote β`, κ` to be the contraction rate and error

bound, respectively, for the Lévy noise system. The derivation of the error bound makes use

of the following lemma.

Lemma 7. Consider the function (2.46) with respect to a metric M which satisfies Assump-

tion 2. Then the following identities hold true for each time t > 0:
n∑

i,j=1

∂2
δqiδqj

V (t,q, δq)d[δqi, δqj]
c(t) ≤ 2mγ2dt, (2.91a)

n∑
i,j=1

∂2
qiqj
V (t,q, δq)d[qi, δqj]

c(t) ≤ m′γ2

(∫ 1

0

‖∂µq(µ, t)‖2 dµ+ 1

)
dt, (2.91b)

n∑
i,j=1

∂2
qiqj
V (t,q, δq)d[qi, qj]

c(t) ≤
(
m′′γ2

∫ 1

0

‖∂µq(µ, t)‖2 dµ

)
dt, (2.91c)

where the constants are as in Assumption 2 and Assumption 1.

Proof of Lemma 7. First, we compute the quadratic variation terms.

d[δqi, δqj]
c(t) =

d∑
k=1

δσµ,ik(t,q)δσµ,jk(t,q)dt,

d[qi, δqj]
c(t) =

d∑
k=1

σµ,ik(t,q)δσµ,jk(t,q)dt,
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d[qi, qj]
c(t) =

d∑
k=1

σµ,ik(t,q)σµ,jk(t,q)dt,

where δσµ is defined in (2.43) and σµ comes from the notation of the virtual system.

a. Proof of (2.91a): From matrix multiplication, and the fact that M(t,q) is independent

of δq:

δq>(t)M(t,q)δq(t) =
n∑
k=1

n∑
l=1

δqkδqlMkl(t,q)

∂2
δqiδqj

V (t,q(t), δq(t)) = 2

∫ 1

0

Mij(t,q(µ, t))dµ.

Substituting into the left side of (2.91a), we get:

n∑
i,j=1

∂2
δqiδqj

V (t,q(t), δq(t))d[δqi, δqj]
c(t)

= 2

∫ 1

0

n∑
i,j=1

Mij(t,q)
d∑

k=1

(∂µσµ(t,q))ik (∂µσµ(t,q))jk dµdt

≤ 2m
n∑

i,j=1

d∑
k=1

∫ 1

0

(∂µσµ(t,q))ik (∂µσµ(t,q))jk dµdt. (2.92)

We have the following identity for any square matrix A and any pair i, j = 1, · · · , n
such that i 6= j:

1

2
tr(A>A) =

1

2

n∑
i=1

d∑
k=1

a2
ik ≥

n∑
i 6=j

d∑
k=1

aikajk,

which is easily seen by completing the squares. This allows us to bound (2.92) by

splitting the sum up into terms with i = j and terms with i 6= j and bounding both

parts by a trace:

2m
n∑

i,j=1

d∑
k=1

∫ 1

0

(∂µσµ(t,q))ik (∂µσµ(t,q))jk dµdt ≤ 2mtr
(
σ>µ σµ(t,q)

)
≤ 2mγ2dt.

b. Proof of (2.91b): First, we can compute the matrix derivative as follows.

∂2
qiδqj

V (t,q(t), δq(t)) = 2

∫ 1

0

∂qiMj,i(t,q) (∂µq(µ, t))i dµ ∀1 ≤ i, j ≤ n.
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This gives:

2

∫ 1

0

n∑
i,j=1

∂qiMj,i(t,q) (∂µq(µ, t))i

d∑
k=1

σµ,ik (∂µσµ(t,q))jk dµdt

≤ 2m′
∫ 1

0

n∑
i=1

(∂µq(µ, t))i

d∑
k=1

σµ,ik(t,q)δσµ,jk(t,q)dµdt

≤ 2m′γ2

∫ 1

0

‖∂µq(µ, t)‖ dµdt, (2.93)

where the second-to-last inequality follows from the same trace bound used in (2.91a).

Applying the fact that 2a ≤ (a2 + 1) for all a > 0 yields our final bound:

(2.93) ≤ m′γ2

(∫ 1

0

‖∂µq(µ, t)‖2 dµ+ 1

)
dt.

c. Proof of (2.91c): Again, start by computing the matrix derivative

∂2
qiqj
V (t,q(t), δq(t)) =

∫ 1

0

n∑
k,l=1

∂2
qiqj
Mkl(t,q) (∂µq(µ, t))k (∂µq(µ, t))l dµ.

Now we can use the same technique as in (2.91b).

n∑
i,j=1

∂2
qiqj
V (t,q(t), δq(t))d[qi, qj]

c(t)

=
n∑

i,j=1

n∑
k,l=1

∫ 1

0

∂2
qiqj
Mkl(t,q) (∂µq(µ, t))k ·

d∑
r=1

σµ,ir(t,q)σµ,jr(t,q) · (∂µq(µ, t))l dµdt

≤
(
m′′γ2

∫ 1

0

‖∂µq(µ, t)‖2 dµ

)
dt.

�

Theorem 7 (Lévy Noise Stochastic Contraction Theorem). Consider the Lévy noise sys-

tem (2.7) which has trajectories that begin from different initial conditions and are perturbed

by noise processes which satisfy Assumption 1. Let N(t) be the standard Poisson process

in (2.7), and define Ti, i ≥ 1 to be the arrival time of the ith jump of N(t). Further suppose

that (2.7) is stochastically contracting in the sense of Definition 11 under a differential coor-

dinate transform Θ(t,x) which satisfies (2.35). If the Lyapunov-like function (2.46) satisfies
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and Assumption 4, then with probability pk(t− s) given by (2.61), we achieve the following

bound:

Ek[‖y(t)− x(t)‖2] ≤ 1

m
Ek
[
‖y(s)− x(s)‖2] e−β`(t−s) +

κ`(β`, s, t)

m
, (2.94)

where

β` , 2α− γ2

m

(
m′ +

m′′

2

)
= βw (2.95a)

κ`(β`, s, t) , k

∫ t

s+

dh(τ)

dτ
e−β`(t−τ)dτ + kh(s)e−β`(t−s) +

γ2

β`
(m′ +m)

(
1− e−β`(t−s)

)
= κs(β`, s, t) +

1

β`
κw(β`, s, t) = κs(βw, s, t) +

1

βw
κw(βw, s, t). (2.95b)

Here, α is the deterministic contraction rate from (2.36), γ is the norm bound on the variation

of the white noise process from Assumption 1, and m,m′,m′′ are defined in (2.35). The

function h(τ) is defined in Assumption 4. The function h is defined in Assumption 4.

Proof of Theorem 7. Applying Lemma 3 to (2.46):

V (t,q, δq) = V (s,q, δq) +

∫ t

s+

∂τV (τ−,q, δq)dτ (2.96a)

+

∫ t

s+

n∑
i=1

[∂qiV (τ−,q, δq)fi(τ,q) + ∂δqiV (τ−,q, δq) (Fδq)i] dτ (2.96b)

+

∫ t

s+

n∑
i=1

[∂qiV (τ−,q, δq)σµ,i(q) + ∂δqiV (τ−,q, δq)δσµ,i(q)] dW (τ) (2.96c)

+
1

2

[∫ t

s+

n∑
i,j=1

∂2
δqiδqj

V (τ−,q, δq)d [δqi, δqj]
c (τ) (2.96d)

+ 2

∫ t

s+

n∑
i,j=1

∂2
qiδqj

V (τ−,q, δq)d [qi, δqj]
c (τ) (2.96e)

+

∫ t

s+

n∑
i,j=1

∂2
qiqj
V (τ−,q, δq)d [qi, qj]

c (τ)

]
(2.96f)

+

N(t)∑
i=N(s)+1

(V (Ti,q, δq)− V (Ti−,q, δq)) , (2.96g)

where F is the Jacobian from (2.32), and Ti denotes the time of the ith jump. As in the proof

of Theorem 5, a bound on (2.96a) and (2.96b) are derived from Theorem 3. Simplifying the
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quadratic variation terms (2.96d) to (2.96f) requires computing the partial derivatives of V .

From Lemma 7, we obtain the following inequalities:

n∑
i,j=1

∂2
δqiδqj

V (τ−,q, δq)d[δqi, δqj]
c(τ) ≤ 2mγ2dτ, (2.97a)

n∑
i,j=1

∂2
qiδqj

V (τ−,q, δq)d[qi, δqj]
c(τ) ≤ m′γ2

(∫ 1

0

‖∂µq(µ, τ)‖2 dµ+ 1

)
dτ, (2.97b)

n∑
i,j=1

∂2
qiqj
V (τ−,q, δq)d[qi, qj]

c(τ) ≤
(
m′′γ2

∫ 1

0

‖∂µq(µ, τ)‖2 dµ

)
dτ, (2.97c)

where γ is the white-noise bound from Definition 11, and m,m′,m′′ are the metric bounds

defined in Assumption 2. Note that we can use (2.69) to further simplify equations (2.96d)

to (2.96f). Moreover, applying Assumption 4 and following logic similar to that of the proof

to Theorem 5 gives us a bound on (2.96g).

Taking Ek[·] across the entire inequality, note that the white noise term (2.96c) disappears

due to being a martingale with zero mean. Combining the bounds of each remaining term

from (2.96) yields the following:

Ek [V (t,q, δq)]− Ek[V (s,q, δq)] ≤ −
(

2α− m′′γ2

2m
− m′γ2

m

)∫ t

s+

Ek[V (τ−,q, δq)]dτ

+ (m′γ2 +mγ2)t+ kh(t). (2.98)

We obtain a bound on the solution Ek[V (t,q, δq)] using Lemma 5 with y(t) , Ek[V (t,q, δq)],

ζ = kh(s), µ , 2α, and θ(t) , (m′γ2 + mγ2)t + kh(t). Then we use (2.69) to write the

resulting inequality in terms of the norm mean-squared error between x and y. This gives

us the desired bound (2.94). �

Remark 14 (Lévy Parameters in Terms of White and Shot Parameters). The parame-

ters (2.95) for the Lévy noise SDE (2.7) can be expressed as a combination of (2.55) and (2.63)

in the following way. β` can be interpreted as being the direct sum of βw and βs(= 2α) with

the extra 2α term removed to prevent double-counting of the convergence rate from the

nominal system:

β` = βs + βw − 2α = βw.

Furthermore, κ`(β`, s, t) is a sum of the white noise error ball and the shot noise error ball

with contraction rate β` used in place of βw or βs; this is written in the last two equations
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of (2.95b). We emphasize the importance of this remark because of its likeness to the Lévy-

Khintchine theorem, which represents Lévy processes as an additive combination of Brownian

motion processes and compound Poisson processes.

Remark 15. Our contraction theorems have shown that the unperturbed and noise-perturbed

trajectories converge toward each other in expectation. It is weaker than the almost-sure sense

of convergence, meaning we do not guarantee trajectory convergence for every noise process

sample paths ω. For a more comprehensive treatment of this topic, see [72], [1], and Chapter

2 of [65].

2.5 Numerical Simulations

2.5.1 1D Linear Reference-Tracking

We use the Shot Noise Stochastic Contraction Theorem to derive a stability bound for a

simple linear system perturbed by shot noise, as a further specialization to the LTV system

from Section 2.4.3. Suppose we have the following scalar system, which can be viewed as

the Ornstein-Uhlenbeck process [114] augmented with shot noise instead of the usual white

noise:

dx(t) = ax(t)dt+ u(t)dt+ ξ(t)dN(t), (2.99)

where a > 0 so that it is unstable in open-loop, N(t) is a standard Poisson process with rate

λ > 0, and jump height distribution ξ(t) is a Bernoulli random variable which takes value

η > 0 with probability p, and −η with probability q , 1− p.

We are interested in the problem of tracking some given reference trajectory xr(t). To achieve

this, we design the following control law:

ur(t) = ẋr(t)− axr(t), u(t) = ur(t)− γ(x(t)− xr(t)), (2.100)

with control gain γ > a. As described in the beginning of this chapter, the dot notation of

ẋr(t) refers to the time-derivative of xr(t). The system (2.99) can be solved directly:

x(t) = x0e
(a−γ)t +

∫ t

0

(ur(s) + γxr(s)) e
(a−γ)(t−s)ds+

N(t)∑
i=1

ξ(Ti)e
(a−γ)(t−Ti), (2.101)

where x0 ∈ R is the initial condition. The nominal closed-loop system has the dynamics

dy(t) = ay(t) + u(t), with the same u(t) as in (2.100). A trajectory of this nominal system

with initial condition y0 ∈ R is thus given by

y(t) = y0e
(a−γ)t +

∫ t

0

(ur(s) + γxr(s)) e
(a−γ)(t−s)ds. (2.102)
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Like (2.72), we design a virtual system by stacking the nominal closed-loop system on top of

the noise-perturbed closed-loop system (2.99), and define q = (x, y)> ∈ R2 to be the virtual

system state. The contraction metric P (t) from Assumption 5 is chosen to be the identity

I2, meaning α1 = α2 = 1. The Lyapunov-like function is chosen to be V (q) = (y − x)2.

Following an argument similar to the proof of Theorem 6 with t0 = 0, we get:

Ek[V (q(t))]− Ek[V (q0)] ≤

2(a− γ)

∫ t

0+

Ek[V (q(s))]ds+ Ek

[
k∑
i=1

(y − x)2(Ti)− (y − x)2(Ti−)

]
, (2.103)

conditioned on the number of jumps being N(t) = k by time t. Here, the last term can be

simplified by using (2.101) and (2.102):

(y − x)2(Ti)− (y − x)2(Ti−) = −2(y0 − x0)e(a−γ)Tiξ(Ti) + 2ξ(Ti)
i−1∑
j=1

ξ(Tj)e
(a−γ)(Ti−Tj) + ξ2(Ti).

(2.104)

Substituting (2.104) into (2.103) and using Theorem 6 yields the following bound with prob-

ability pk(t) given by (2.61)

Ek
[
|y(t)− x(t)|2

]
≤ Ek

[
|y0 − x0|2

]
e−βst + κs(βs, 0, t), (2.105)

where the contraction rate is βs , 2(γ − a) > 0 and the error bound κs(βs, 0, t) comes

from (2.63b).

We simulate (2.99) with the lower-level tracking controller (2.100) implemented to track

xr(t) , sin(t). We use the theoretical bound created for the each of the two different ver-

sions of ψk, (2.88) and (2.90). The results are organized in Figure 2.2. Both figures share

the following experiment setup. The number of jumps is fixed to be k = 5, and we consider

the evolution of trajectories starting from t0 = 0. The intensity of the shot noise process

varies across λ ∈ {1, 2, 4}, corresponding to each row of subfigures. We simulate the system

until just before the (k + 1)th jump occurs at time Tk+1. In the left column of subfigures,

we simulate a sample nominal closed-loop reference trajectory y(t) (gray line) with a sam-

ple closed-loop noise-perturbed reference trajectory x(t) (black line). The initial conditions

x0 and y0 are sampled uniformly in the range [1, 6]. In the middle column of subfigures,

the empirical squared-difference trajectory |y(t) − x(t)|2 for the specific x(t) and y(t) from
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Figure 2.2: Simulation of the 1D linear reference-tracking system over values of λ ∈ {1, 2, 4},
constrained to k = 5 jumps. [Left column] A sample trajectory of the nominal system
(light grey line) and a trajectory of the shot noise perturbed system (black line). Jump
occurrences and heights are marked with red stems. [Middle column] The empirical mean
squared-difference is obtained by taking the timewise average over all Monte-Carlo trials
of trajectory squared-differences. Two theoretical bounds are computed, one using dψk/dt
from (2.90) (dark grey dashed line), one using dψk/dt from (2.88) (light grey dashed line).
[Right column] The empirical probability that a jump occurs at a certain time is plotted
over time. The histogram is constructed by discretizing the span of time into subintervals
and computing the proportion of jumps over all Monte-Carlo trials which fall into each
subinterval.
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the left column is plotted (black-dashed line), along with the theoretical mean-squared er-

ror bound (2.105) (gray-dashed line). The empirical squared-difference shown in the figures

comes from timewise-averaging over 200 Monte-Carlo trials. In the right column of subfig-

ures, the empirical probability that a jump occurs at a certain time is plotted as a histogram

over time. The histogram is constructed by discretizing the maximum length of time into

30 subintervals and computing the proportion of jumps (over all Monte-Carlo trials) which

fall into each subinterval. We note that it is possible for the empirical squared-difference to

exceed the theoretical bound. This is because the bound is on the expected behavior, and

should not be treated as an almost-sure guarantee for all sample paths. Moreover, we ob-

serve that in both figures, the trajectories converge toward each other in between consecutive

jumps, which aligns with the incrementally stable nature of the nominal system.

We can make a few insightful observations based on the two figures. The theoretical bound

derived in Section 2.4.3 yields an expression for ψk(0, t) which is proportional to both λ and

e−λt. This effect is demonstrated in both experiments. First, note that an increasing value of

λ corresponds to a larger accumulation of jumps. This corresponds to an increasing constant

initial value for the theoretical bound, i.e., the gray-dashed line. Second, an increasing value

of λ also corresponds to a faster accumulation of jumps, i.e., all k = 5 jumps of the system

occur earlier in time for larger λ. This corresponds to a faster speed of decay in the first

bumps of both grey dashed lines in the middle column of Figure 2.2. Moreover, for the light

grey dashed line, the effect of λ is illustrated through the proximity between the line t = 0

and the second bump; as λ grows larger, more jumps occur earlier in time, and the second

bump occurs closer to t = 0.

Another observation is that the second bump which occurs when plotting the theoretical

error bound as the light grey dashed line Figure 2.2 arises from the distribution of Tk. The

second bump essentially accounts for the possibility of seeing jumps which occur closer to t

in the interval [0, t]. In contrast, the theoretical error bound with ψk(t) as in (2.90) only has

the initial bump. All the weight is assigned to the initial value, from which it exponentially

decays over time.
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2.5.2 2D LTV Systems

In this section, we extend the experiment of Section 2.5.1 by considering more complex 2D

LTV shot noise systems of the form:

dx(t) = d

[
x1

x2

]
(t) =

[
a11(t) a12(t)

a21(t) a22(t)

]
︸ ︷︷ ︸

=:A(t)

[
x1

x2

]
(t)dt+

[
ξ1(t)

ξ2(t)

]
︸ ︷︷ ︸

=:ξ(t)

dN(t) (2.106)

with supt>0 ‖ξ(t)‖ ≤ η for some η > 0. Note that constructing virtual system (2.72) for

2D dynamics yields virtual system state vector q(t) ∈ R4. For a more practical setup,

we can follow the design of the previous 1D example from Section 2.5.1 and consider an

open-loop unstable system A(t) with a control law u(t) , K(t)x(t) that makes the system

exponentially stable. However, for the simplicity of the example, we do not consider the

control law design problem, and demonstrate the contraction theorems on systems are already

open-loop exponentially stable.

We apply Section 2.4.3 to derive the theoretical mean-squared error bounds for 2D LTV

systems with one of two types of matrices A(t): diagonal and (upper) triangular. We note that

the conceptual observations for both systems are similar to what is observed in Section 2.5.1:

the relationship with increasing λ, and the two different approaches ((2.90) and (2.88)) to

simplifying the error bound. Hence, in contrast to the experiment of Section 2.5.1, we will

illustrate the results for only one choice of λ and the expression of ψk(t0, t) from (2.90). The

purpose of these simulations is to demonstrate the computation of the theoretical bound

for more complex LTV systems, especially choosing the metric P (t) and all the appropriate

parameters values to satisfy the assumptions of Theorem 6.

Diagonal A(t) Matrix First, consider the case where A(t) is a diagonal matrix, i.e.,

a12(t) = a21(t) ≡ 0 for all t ≥ 0. Specifically:

A(t) ,

[
−3t2 − 1 0

0 −2t− 1

]
. (2.107)

Because A(t) is diagonal, the corresponding state-transition matrix is easily computed:

Φ(t, s) , exp

([∫ t
s
a11(r)dr 0

0
∫ t
s
a22(r)dr

])
=

[
e−(t3+t)+(s3+s) 0

0 e−(t2+t)+(s2+s)

]
. (2.108)
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Figure 2.3: Behavior of the exponentially stable 2D diagonal LTV system with bounded
P (t) metric. The number of jumps is fixed at N(t) = 10. [Left column] Evolution of solution
trajectories x(t), xc(t), and y over time. [Right] Evolution of Lyapunov-like functions V , V c,
and the theoretical bound over time.

One choice of parameters such that Assumption 6 is satisfied with the induced 2-norm is

when κ = 1 and β = 1.

Solution trajectories for the perturbed and nominal systems can now be written explicitly

as follows. From (2.71), we have the perturbed system trajectory x(t) and the nominal

trajectory y(t) given by:

x(t) =

[
e−(t3+t)x0,1

e−(t2+t)x0,2

]
+

N(t)∑
i=1

[
e−(t3+t)+(T 3

i −Ti)ξ1(Ti)

e−(t2+t)+(T 2
i −Ti)ξ2(Ti)

]
, y(t) =

[
e−(t3+t)y0,1

e−(t2+t)y0,2

]
, (2.109)

with initial conditions x0,y0 ∈ R2, respectively.
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Note that one such choice of metric P which satisfies (2.74) is:

P (t) ,

[
sin(t) + 3 0

0 cos(t) + 3

]
, (2.110)

with α = 2. Clearly, P (t) is positive definite for each t > 0, and satisfies the boundedness

inequality in Assumption 5 with α1 = 2 and α2 = 4. Hence, the Lyapunov-like function (2.75)

yields:

V (t,q(t)) = (sin(t) + 3)(y1(t)− x1(t))2 + (cos(t) + 3)(y2(t)− x2(t))2

= e−2(t3+t)(sin(t) + 3)

y0,1 − x0,1 −
N(t)∑
i=1

eT
3
i +Tiξ1(Ti)

2

+ e−2(t2+t)(cos(t) + 3)

y0,2 − x0,2 −
N(t)∑
i=1

eT
2
i +Tiξ2(Ti)

2

= V c(t,q(t)) + e−2(t3+t)(sin(t) + 3)

2(y0,1 − x0,1)

N(t)∑
i=1

eT
3
i +Tiξ1(Ti) +

N(t)∑
i=1

eT
3
i +Tiξ1(Ti)

2
+ e−2(t2+t)(cos(t) + 3)

2(y0,2 − x0,2)

N(t)∑
i=1

eT
2
i +Tiξ2(Ti) +

N(t)∑
i=1

eT
2
i +Tiξ2(Ti)

2 ,

(2.111)

where the continuous part of the Lyapunov function V c(t,q(t)) is defined as

V c(t,q(t)) , (sin(t) + 3)(y1(t)− xc1(t))2 + (cos(t) + 3)(y2(t)− xc2(t))2

= e−2(t3+t)(sin(t) + 3)(y0,1 − x0,1)2 + e−2(t2+t)(cos(t) + 3)(y0,2 − x0,2)2, (2.112)

and xc(t) , Φ(t, 0)x0 denotes the continuous part of the perturbed trajectory x(t). We can

again compute the error bound on V (t,q(t)) using the argument of Theorem 6. Conditioning

on the number of jumps by time t being N(t) = k, we obtain:

Ek[‖y(t)− x(t)‖2] ≤ 1

2
Ek[‖y0 − x0‖2]e−βst +

κs(βs, 0, t)

2
, (2.113)

where βs , 2α = 4 and κs is as in (2.78b) with ψk(0, t) defined as (2.79). We use the

simplification of ψk(0, t) using the sum of exponentials bound (2.90), and substitute k =

10, α2 = 4, β = 1, κ = 2. The computation follows similarly to that of Section 2.5.1 and will

not be repeated here for conservation of space. The 1) evolution of V , V c, the theoretical

upper bound on E10[‖y(t)− x(t)‖], and 2) the evolution of the trajectories x, xc, and y over

time are visualized in Figure 2.3.
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Figure 2.4: Figure 2.3 for the exponentially stable 2D upper-triangular LTV system with
bounded P (t) metric. The number of jumps is fixed at N(t) = 10.

Triangular A(t) Matrix Now consider instead the case where A(t) is an upper-triangular

matrix, i.e., a21(t) ≡ 0. Specifically, let

A(t) =

[
− cos(t)− 5 10

0 −2t− 1

]
, (2.114)

which has state-transition matrix

Φ(t, s) ,

[
e(sin(t)−5t)−(sin(s)−5s) 0

0 e−(t2+t)+(s2+s)

]
· exp

([
0 10(t− s)
0 0

])

=

[
e(sin(t)−5t)−(sin(s)−5s) 0

0 e−(t2+t)+(s2+s)

](
I2 +

[
0 10(t− s)
0 0

])
by Taylor expansion

=

[
e(sin(t)−5t)−(sin(s)−5s) 10(t− s)e(sin(t)−5t)−(sin(s)−5s)

0 e−(t2+t)+(s2+s)

]
. (2.115)
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This allows us to write the solution trajectories (2.71) for the perturbed (x(t)) and nominal

(y(t)) systems explicitly as follows:

x(t) =

[
eb1(t)(x0,1 + 10tx0,2)

eb2(t)x0,2

]
+

N(t)∑
i=1

[
eb1(t)−b1(Ti)(ξ1(Ti) + 10(t− Ti)ξ2(Ti))

eb2(t)−b2(Ti)ξ2(Ti)

]
,

y(t) =

[
eb1(t)(y0,1 + 10ty0,2)

eb2(t)y0,2

]
, (2.116)

where b1(t) , sin(t)− 5t and b2(t) , −(t2 + t).

In contrast to the previous diagonal A(t) case, we now consider a symmetric P (t) with

nonzero off-diagonal elements. Namely:

P (t) ,

[
sin(t) + 3 1

1 cos(t) + 3

]
, (2.117)

which satisfies (2.74) with α = 2. This choice of P (t) is also uniformly positive definite for

each t > 0, and P (t) is bounded as in Assumption 5 with α2 = 4.7071 and α1 = 1.2929. We

can now construct the Lyapunov-like function (2.75) for this particular system. Compared

to the previous diagonal matrix case, the inclusion of cross-terms make computation a little

trickier.

V (t,q(t)) , (y(t)− x(t))TP (t)(y(t)− x(t))

= V c(t,q)− 2(sin(t) + 3)z1(t)d1(t)− 2(cos(t) + 3)z2(t)d2(t)

− 2 [z2(t)d1(t) + z1(t)d2(t)− d1(t)d2(t)] + (sin(t) + 3)d2
1(t) + (cos(t) + 3)d2

2(t),

(2.118)

where

V c(t,q(t)) , (y(t)− xc(t))T P (t) (y(t)− xc(t))

= (sin(t) + 3)z2
1(t) + 2z1(t)z2(t) + (cos(t) + 3)z2

2(t), (2.119)

with xc(t) , Φ(t, 0)x0 being the continuous part of the perturbed solution x(t), and

z1(t) , eb1(t) (y0,1 + 10ty0,2 − x0,1 − 10tx0,2) , z2(t) , eb2(t) (y0,2 − x0,2)

d1(t) ,
N(t)∑
i=1

eb1(t)−b1(Ti) (ξ1(Ti) + 10(t− Ti)ξ2(Ti)) , d2(t) ,
N(t)∑
i=1

eb2(t)−b2(Ti)ξ2(Ti).
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Instead of dealing with this explicit version of the Lyapunov-like function, we can use the

bound from Theorem 6. When the induced 2-norm is used, state-transition matrix Φ(t, s) is

bounded for a choice of κ = 5 and β = 0.5. Conditioning on the number of jumps by time t

being N(t) = k, we obtain:

Ek[‖y(t)− x(t)‖2] ≤ 1

1.2929

[
Ek[‖y0 − x0‖2]

]+
e−βst +

κs(βs, 0, t)

1.2929
, (2.120)

where βs , 2α = 4 and κs is as in (2.78b) with ψk(0, t) defined as (2.79) with the simplified

version as in (2.90). Substitute k = 10, α2 = 4.7071, β = 0.5, κ = 5 to obtain the bound.

The 1) evolution of V , V c, the theoretical upper bound on E10[‖y(t)− x(t)‖], and 2) the

evolution of the trajectories x, xc, and y over time are visualized in Figure 2.4.

2.5.3 2D Nonlinear System

We demonstrate the general bound from the Shot Noise Stochastic Contraction Theo-

rem Theorem 5 by considering a 2D nonlinear shot noise system:

dx(t) = d

[
x1

x2

]
(t) =

[
f1(t,x)

f2(t,x)

]
︸ ︷︷ ︸

f(t,x)

dt+

[
ξ1(t)

ξ2(t)

]
︸ ︷︷ ︸

=:ξ(t)

dN(t), (2.121)

with supt>0 ‖ξ(t)‖ ≤ η, for some η > 0.

We consider a system which is already open-loop exponentially stable for reasons of simplic-

ity. We also consider a nonlinear function f(t,x) such that its Jacobian matrix F turns into

a diagonal matrix, and such that (2.36) is satisfied with a state-dependent M(t,x). One such

dynamics is given by

f(t,x) ,

[
−(2t+ 1)(sin(x1) + 3)x1

−(2t+ 1)(cos(x2) + 5)x2

]
, (2.122)

which has diagonal matrix Jacobian

F (t,x) , ∇xf(t,x)

=

[
−(2t+ 1) [x1 cos(x1) + sin(x1) + 3] 0

0 −(2t+ 1) [−x2 sin(x2) + cos x2 + 5] .

]
(2.123)

Choose metric

M(t,x) ,

[
(sin(t) + 3)(e−x

2
1 + 1) 0

0 (cos(t) + 3)(e−x
2
2 + 1)

]
, (2.124a)
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∂tM(t,x) =

[
cos(t)(e−x

2
1 + 1) 0

0 − sin(t)(e−x
2
2 + 1)

]
, (2.124b)

∇xM(t,x) =

[
−2x1(sin(t) + 3)(e−x

2
1 + 1) 0

0 −2x2(cos(t) + 3)(e−x
2
2 + 1)

]
, (2.124c)

with Ṁ(t,x) , ∂tM(t,x) +∇xM(t,x) · ẋ(t).

We empirically generate trajectories with initial condition x0 ∼ U [1, 6] up until the maximum

time t where the number of jumps is N(t) = 3 such that (2.36) is satisfied and that M(t,x)

is uniformly positive definite with m = 4,m = 2. To construct the virtual system, we choose

the specific affine parametrization q(µ, t) = (1− µ)x(t)− µy(t), ∂µq(t) = y(t)− x(t). Then

the Lyapunov-like function (2.46) is written explicitly as:

V (t,q, δq) =

∫ 1

0

∂µq
>M(t,q(µ, t))∂µqdµ

=

∫ 1

0

(y(t)− x(t))>M (t, (1− µ)x(t)− µy(t)) (y(t)− x(t))dµ

=

∫ 1

0

[
(y1(t)− x1(t))2(sin(t) + 3)

(
e−((1−µ)x1(t)−µy1(t))2 + 1

)
+ (y2(t)− x2(t))2(cos(t) + 3)

(
e−((1−µ)x2(t)−µy2(t))2 + 1

)]
dµ. (2.125)

With the Lyapunov-like function (2.125), each term in the sum of (2.65c) yields:

V (Ti,q(Ti), δq(Ti))− V (Ti−,q(Ti−), δq(Ti−))

=

∫ 1

0

(sin(Ti) + 3)

[
(y1(Ti)− x1(Ti))

2
(
e−((1−µ)x1(Ti)−µy1(Ti))

2

+ 1
)

− (y1(Ti)− x1(Ti−))2
(
e−((1−µ)x1(Ti−)−µy1(Ti))

2

+ 1
)]

dµ

+

∫ 1

0

(cos(Ti) + 3)

[
(y2(Ti)− x2(Ti))

2
(
e−((1−µ)x2(Ti)−µy2(Ti))

2

+ 1
)

− (y2(Ti)− x2(Ti−))2
(
e−((1−µ)x2(Ti−)−µy2(Ti))

2

+ 1
)]

dµ (2.126)

for each arrival time Ti > 0. Because we cannot compute the explicit form of x(t) and

y(t) from the dynamics, the bound h(t) from (2.59) is difficult to compute analytically. We

plot the evolution of (2.125) over time for multiple sample trajectories of x(t) and y(t),

and demonstrate a bound empirically. The evolution of some sample solution trajectories
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Figure 2.5: Figure 2.3 for varying values of λ ∈ [0.5, 1, 2] for the exponentially stable 2D non-
linear system. [Left] Evolution of a sample solution trajectories x and y with the correspond-
ing value of λ over time. [Right] Lyapunov-like function V averaged over 20 Monte-Carlo
trials, then plotted over time. The number of jumps is fixed at N(t) = 3.

and an empirical average over multiple Monte-Carlo trials for three different values of λ are

portrayed in Figure 2.5. We note that as λ increases, the support of V increases over time

and the average height of the spikes decreases.

2.5.4 2D Observer Design

In this case study, we look at a stochastic observer design problem for a simple 2D nonlinear

system, and derive stability bounds using the Lévy Noise Stochastic Contraction Theorem.

Consider the following nominal system

dx , d

[
ẋ1

ẋ2

]
=

[
ax1 + bx2 − x1(x2

1 + x2
2)−

1
2 (9x2

1 + 4x2
2 −R2)

cx1 + dx2 − x2(x2
1 + x2

2)−
1
2 (9x2

1 + 4x2
2 −R2)

]
︸ ︷︷ ︸

,f(t,x)

dt, (2.127)
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where the constants a, b, c, d, R ∈ R are chosen to manipulate the behavior of the system in

ways we detail later.

Suppose that we wanted to design an observer for this system based on measurements that

are perturbed by Lévy noise. That is, we assume a measurement equation of the following

linear form:

y = h(t,x) , C(t)x + σ(t)W (t) + ξ(t)N(t), (2.128)

where W (t) is the standard Brownian motion process, N(t) is the standard Poisson process,

and σ(t), ξ(t) are their respective variances. In the case of additive white noise, the observer

can be designed and related to the white noise contraction theorem according to Section 4.1

of Pham 2009 [121]. We apply a similar methodology for our Lévy noise case, and relate it

to Theorem 7. Choose an output injection matrix K(t) such that the observer dynamics

dx̂ = (f(t, x̂) +K(t)(y(t)− ŷ(t))) dt, ŷ(t) , h(t, x̂) = C(t)x̂ + σ(t)W (t) + ξ(t)N(t)

is stochastically contracting. The full observer dynamics can be written as follows:

dx̂(t) = [f(t, x̂) +K(t)C(t)(x(t)− x̂(t))] dt+Kσ(t)dW (t) +Kξ(t)dN(t). (2.129)

The objective of any state-estimation problem is to ensure the estimate x̂ quickly tracks the

true state x. To this end, we are interested in achieving global exponential convergence of x̂

towards x. We can apply Theorem 7 to obtain a probabilistic bound on ‖x− x̂‖2.

Note that a trajectory y(t) of the original dynamics (2.127) satisfies the noiseless version

of (2.129), given by dy = [f(t,y) +K(t)C(t)(x− y)] dt. Hence, we can use the form of (2.129)

to construct a virtual system:

dq(µ, t) = [f(t,q(µ, t)) +K(t)C(t)(x(t)− q(µ, t))] dt+ σµ(t)dW (t) + ξµ(t)dN(t), (2.130)

with state q parametrized by µ ∈ [0, 1] such that q(µ = 0, t) = x̂(t) and q(µ = 1, t) = x(t).

The rest of the parametrization follows in a way similar to (2.40).

Thus, by combining Theorem 7 and Section 4.1 of Pham 2009 [121] using the Lyapunov-like

function V (t,q) , (x− x̂)>K>(t)K(t)(x− x̂), we get that the bound (2.94) is satisfied with

probability pk(t) given by (2.61), where

β` = inf
t,q
|λmax (∇qf(t,q)−K(t)C(t))|, (2.131)
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Figure 2.6: Three different noisy observers with three sample noise processes across varying
values of λ, estimating the state of a reference trajectory (gray) of the 2D system. The
observers’ estimates (black) are overlaid on top of the reference state, and the jumps of the
Poisson shot noise are indicated with red stems.

κ`(β`, 0, t) , k

∫ t

0+

dh(τ)

dτ
e−β`(t−τ)dτ + kh(τ)e−β`t +

1

β`
sup
t≥0

tr(σ>(t)K>(t)K(t)σ(t))
(
1− e−β`t

)
.

(2.132)

As seen in Section 2.5.3, it is easier to derive forms of the h(t) from Assumption 4 using

empirical methods. We simulate (2.127) for various parameter values, and we choose con-

stant matrices C , [1, 0] (i.e., we only observe noise-perturbed measurements of the first

component x1) and K(t) , (1, 1)> for simplicity. First, consider a = d = −2, b = 0, c = 4,

and R = 0. Using the direct method of Lyapunov with V (x) = x2
1 + x2

2 demonstrates that

the origin is globally exponentially stable for the nominal system. In the visualizations pro-
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Figure 2.7: Similar graph as in Figure 2.6, but for the case where system parameters are
chosen so that nominal trajectories converge globally exponentially to a limit cycle instead.
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vided in Figure 2.6, we simulate a sample trajectory of the nominal system (2.127) (gray),

then overlay it with a trajectory representing the observer state values perturbed by Lévy

noise processes with the shot noise component varied across λ values 1/4, 1/10, and 1/16.

Moreover, we condition specifically on the number of jumps being N(t) = 5. We observe the

same trends as seen in the 1D linear system of Section 2.5.1: larger values of λ provide less

time for convergence in between consecutive jumps.

Alternatively, when a = b = d = 1, c = −0.5, R = 0, the observer can be designed so that

all trajectories converge exponentially to a limit cycle. We create a similar visualization for

this set of parameters in Figure 2.7, constrained to N(t) = 2 jumps.

2.6 Concluding Remarks

In this chapter, we designed incremental stability criteria for nonlinear stochastic systems

perturbed by two types of non-Gaussian noise, particularly those characterized by impulsive

jumps. The Shot Contraction Theorem (Theorem 5) was designed for compound Poisson shot

noise systems of the form (2.8) while the Lévy Contraction Theorem (Theorem 7) was de-

signed for finite-measure Lévy noise systems of the form (2.7). In Theorem 6, a specialization

of the Shot Contraction Theorem was presented for linear time-varying nominal dynamics

of the form (2.70). All three theorems showed that, under the assumption that a finite num-

ber of jumps arise from the noise process over a finite interval of time, solution trajectories

corresponding to different initial conditions and different realizations of the noise process

converged exponentially to within a bounded error ball of each other in the mean-squared

sense under certain practical boundedness conditions on the parameters of the noise process

and contraction metric. We’ve shown that the convergence rate for (2.8) is equal to that of the

nominal system ẋ = f(t,x) because the shot noise system behaves exactly as the determinis-

tic system in between consecutive jumps. Remark 11 discussed properties of the error bound

κs(βs, t) defined in (2.63b), and made the claim that 1) larger jump norm bounds η, and 2)

shorter interarrival times between jumps correspond to a larger error ball. Furthermore, the

convergence rate (2.95a) and error bound (2.95b) of (2.7) were shown to be nearly direct

sums of the parameters for the white noise case (2.55) and the shot noise case (2.63), which

is similar to the implications of the Lévy-Khintchine theorem. The numerical simulations

of Section 2.5 demonstrated our results. The 1D simple linear reference-tracking shot noise

system in Section 2.5.1 illustrated the tradeoff of Remark 11 by considering three different

intensities of shot noise processes. We also demonstrated how to derive expressions for the

theoretical κs(βs, t) in Sections 2.5.1 and 2.5.2. The computations performed in the proof
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of Theorem 5 were also shown for the specific 2D nonlinear system of Section 2.5.3, and the

error bound κs(βs, t) was derived empirically. Section 2.5.4 illustrated the decomposition of

the Lévy noise parameters by looking at a Lévy noise stochastic observer design problem for

a simple 2D nonlinear system.

We emphasize that the benefits of our work are two-fold. First, the phenomenon of impulsive

jumps in noise processes is understudied for nonlinear stochastic systems in the controls com-

munity compared to Gaussian white noise despite being prevalent and important for many

applications. Second, by addressing the prerequisite problem of stability characterization for

shot and Lévy noise systems, we established the foundations to enable model-based design of

stochastic controllers and observers that are robust to shot and Lévy noise. By considering a

class of noise models broader than the Gaussian assumption, we can expand the capabilities

of model-based controller and observer design which consume less training time and data.
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69C h a p t e r 3

LEARNING RECURRENT PATTERNS IN A JUMP PROCESS

Our previous analysis in Chapter 2 explored the possibility of making controller and observer

design more efficient in data-consumption and computation time for stochastic systems per-

turbed by Poisson shot noise and finite-measure Lévy noise. The primary benefit of answering

the stability question posed there is that methods of stochastic controller/observer design,

previously suitable for only Gaussian white noise systems, can now be expanded to account

for JSSs. For many discrete-time/discrete-event JSSs, we can take advantage of the fact

that the underlying jump process is a sequence of random variables that occurs as repeated

patterns of interest over time, space, or both. In fault-tolerance control or manufacturing pro-

cess applications, for example, a “pattern of interest” may be a specific sequence of modes

which represents a critical fault. Another example can be found in queuing-based systems

such as vehicle intersection networks, where repetition arises naturally while counting the

number of entities in the queue over time. Mathematically, it is common to model these

phenomena using renewal processes (see Definition 2), which generalize Poisson processes by

allowing the interarrival times to be any i.i.d. sequence of random variables not necessarily

Exponentially-distributed. A related class of jump processes are Markov (jump) processes

(see Definition 4), which enforces some dependency between the interarrival time and the

magnitude of the jump.

This chapter develops a procedure for learning recurrent patterns in the jump process by ad-

dressing pattern-occurrence problems. The pattern-occurrence problems learn the properties

of the jump process to determine which specific sequences of values should be considered

patterns, then solves for two quantities pertaining to their occurrence and recurrence: 1) the

expected minimum time until a pattern from the pattern collection appears in the sequence,

and 2) the probability that a pattern will be the first among the collection to be observed

in the sequence. This way, control policies can be explicitly designed for each pattern, mem-

orized to prevent redundant computation, then scheduled to be applied at the pattern’s

expected future occurrence time. We refer to this principle as Pattern-Learning for Predic-

tion (PLP). For the purposes of this chapter, we design a PLP-based controller architecture

specifically for a class of uncertain linear discrete-time Markovian jump systems (MJSs),



which are then used in some of the applications discussed in the subsequent chapters.

Chapter Organization

In Section 3.1, we set up the pattern-occurrence problem and derive closed-form expressions

to the pattern-occurrence quantities for two concrete stochastic process distributions: 1) when

patterns are generated from an i.i.d. sequence, and 2) when patterns are generated from a

Markov chain. In Section 3.2, we set up the specific form of linear, discrete-time Markovian

jump system (MJS) used for our demonstration of a concrete implementation of PLP which

learns patterns in the underlying mode-switching process. The implementation of the PLP

controller architecture for MJSs is described in the subsequent Section 3.3.

3.1 Learning Patterns in Sequences

We begin with the formal definition of patterns and set up the pattern-occurrence quan-

tities as generically as possible. Let {ξn} be the underlying stochastic process where each

random variable ξn : Ω → X is defined on the probability space (Ω,F ,P) with filtration

{Fn}∞n=1 defined by Fn,σ(ξ0, ξ1, · · · , ξn). Here, X , {ζ1, · · · , ζM} is a discrete, finite set

of values from where the stochastic process is generated according to a probability dis-

tribution ξn∼P(·|ξn−1 =ϕn−1, · · · , ξ1 =ϕ1, ϕ0). We denote all sequences of the form {·}∞n=1

using the shorthand {·}, e.g., {ξn}≡{ξn}∞n=1 and {Fn}≡{Fn}∞n=1. The letter ξ is specif-

ically reserved to denote random variables in the stochastic process and ϕ is reserved for

the deterministic value it takes. Furthermore, sequences denoted using other Greek letters

are deterministic unless explicitly stated otherwise. For any two n,m∈N such that n1<n2,

we use MATLAB notation to represent sequences ξn1:n2 , (ξn1 , ξn1+1, · · · , ξn2) and likewise

ϕn1:n2 . Also, we denote the concatenation of α , (α1, · · · , αa) and β , (β1, · · · , βb) as

α ◦ β , (α1, · · · , αa, β1, · · · , βb), where α and β are placeholders for either deterministic or

random mode sequences.

Definition 13 (Patterns). Define the set Ψ, {ψ1, · · · ,ψK} to be a collection of patterns,

where K ∈N, each ψk , (ψk,1, · · · , ψk,dk) is a sequence with length dk ∈N, and elements

ψk,j ∈X . Each ψk is referred to as a pattern if we are interested in observing its occurrence

in the stochastic process {ξn} over time (e.g., because it models a system fault).

Definition 14 (Pattern-Occurrence Times). For each of the patterns in the collection Ψ

(from Definition 13), define the following stopping times for each k ∈{1, · · · , K}:

τk|n,min{i ∈ N | ξn = ϕn, ξn+i−dk+1:n+i=ψk}. (3.1)
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Definition 15 (Time and Probability of First Occurrence). Under the setup of Definition 14

and given the collection Ψ, the 1) minimum time of occurrence of any pattern in Ψ and 2)

the first-occurrence probabilities (i.e., the probability that each pattern ψk will be the first

observed) are given by:

τn, min
k∈{1,··· ,K}

τk|n, qk,P(τn=τk|n). (3.2)

This means ξn+τn−dk+1:n+τn = ψk if pattern ψk will be the first observed among the entire

collection Ψ.

Problem 1 (Pattern-Occurrence). We are interested in characterizing the following pattern-

occurrence quantities described in Definition 15:

• the estimate E[τn] of the mean minimum occurrence time, which counts the number of

timesteps to observe the occurrence of any pattern from Ψ, given the estimated current

value at time n∈N is ϕn;

• the estimated first-occurrence probabilities {qk}, where qk ∈ [0, 1] is the probability that

pattern ψk ∈Ψ is the first to be observed among all of Ψ.

Finally, we restate two fundamental results that are commonly used in the analyses of mar-

tingales, and will be used in the derivation of our pattern-occurrence quantities. For further

results and properties, we refer the reader to standard probability texts including [49], [57],

and [18].

Lemma 8 (Martingale Convergence). Let {Mn}∞n=1 be a martingale on the filtered probabil-

ity space (Ω,F , {Fn},P), and let τ be a stopping time. Denote Ωn , {ω ∈ Ω : |τ(ω)| > n}.
If E[Mτ ] <∞ and E[Mn∧τ ] <∞, then Mn is uniformly-integrable, i.e.,

lim inf
n→∞

∫
Ωn

|Mn(ω)|dP(ω) = 0.

Lemma 9 (Optional Stopping Theorem). Consider a continuous, real-valued, cádlág (right-

continuous, left-limit) random process M(t) adapted to the filtration {F(s), s ≤ t}. Let

τ ≥ 0 be a stopping time for M . Suppose one of the following three conditions holds:

• τ is almost-surely (a.s.) bounded, i.e. there exists a fixed time T ∈ R≥0 such that τ ≤ T

a.s.;
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• E[τ ] < ∞ and there exists a constant C ≥ 0 such that E[|M(t) −M(s)| | F(s)] ≤ C

a.s. on the event that {τ > s};

• there exists a constant c such that |M(t ∧ τ)| ≤ c a.s. for all t ≥ 0.

Then

• E[M(τ)] = E[M(0)] if M(t) is a martingale;

• E[M(τ)] ≥ E[M(0)] if M(t) is a submartingale;

• E[M(τ)] ≤ E[M(0)] if M(t) is a supermartingale.

3.1.1 Independent, Identically-Distributed Sequences

The first concrete stochastic process we consider in solving Problem 1 is an i.i.d. sequence.

We fix {ξn} to be generated from probability distribution p(ϕ),P(ξn =ϕ) for all n∈N and

ϕ∈X . Because of the independence among the random variables, i.e., P(ξn =ϕ|ξn−1 =ϕn−1,

· · · , ξ1 =ϕ1, ϕ0)≡P(ξn =ϕ), we consider the following additional stopping times other than

the ones from Definition 15.

Definition 16 (Pattern Occurrence Times for i.i.d. Sequence). For each of the patterns

in pattern collection Ψ, define the following stopping times. τk|0 is the time until the first

occurrence of pattern ψk from the start of the stochastic process, τk is the time between the

first and second occurrences of ψk, and τk2|k1 is the time until the first occurrence of pattern

ψk2 given pattern ψk1 was already observed, with τk|k = 0:

τk|0 , min{n ∈ N | (ξn, · · · , ξn+dk−1) = ψk}, (3.3)

τk , min{n ∈ N | (ξn+τk|0 , · · · , ξn+τk|0+dk−1) = ψk},

τk2|k1 , min{n ∈ N | (ξn+τk1|0
, · · · , ξn+τk1|0+dk2−1) = ψk2}.

Related to the Geometric Distribution

Because {ξn} are generated i.i.d., the occurrence of any specific pattern ψk in {ξn} can

be related to a Geometric distribution using the following case-by-case argument, inspired

by [130]. For any k ∈ {1, · · · , K}, we derive E[τk|0] and E[τk]. There are two cases that need

to be considered, depending on the amount of self-overlap there is in ψk, where overlaps are

defined as follows.
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Definition 17 (Pattern Overlaps). We say that a pattern ψk has a self-overlap of size

vk < dk if

vk , max{r < dk | (ψk,1, · · · , ψk,r) = (ψk,dk−r+1, · · · , ψk,dk)},

and we say that a pattern ψk2 has an overlap with ψk1 of size vk2|k1 < min(dk1 , dk2) if

vk2|k1 , max{r < min(dk1 , dk2) | (ψk2,1, · · · , ψk2,r) = (ψk1,dk1−r+1, · · · , ψk1,dk1 )}.

Lemma 10 (Occurrence Time without Self-Overlaps). When there are no self-overlaps in

ψk,

E[τk] = E[τk|0] =

(
dk∏
i=1

p(ψk,i)

)−1

. (3.4)

Proof. Since
∏dk

i=1 p(ψk,i) is the probability of observing exactly the sequence ψk, the for-

mula (3.4) arises naturally when treated like a Geometric random variable. The formula for

E[τk] is equivalent to E[τk|0] because there are no self-overlaps; thus, we focus our derivation

on E[τk|0]. Note that τk|0>n+ dk iff the pattern does not occur for the first n values and the

next dk values are ψk:

{τk|0 > n+ dk} ⇐⇒ {τk|0 > n and (ξn+1, · · · , ξn+dk) = ψk}.

In terms of probabilities:

P(τk|0 > n+ dk) = P(τk|0 > n)P((ξn+1, · · · , ξn+dk) = ψk) = P(τk|0 > n)

dk∏
i=1

p(ψk,i).

By the definition of expected value:

1 =
∞∑
n=0

P(τk|0 > n+m) =

dk∏
i=1

p(ψk,i)
∞∑
n=0

P(τk|0 > n) =

dk∏
i=1

p(ψk,i)E[τk|0].

Dividing through by
∏dk

i=1 p(ψk,i) yields (3.4). �

Lemma 11 (Occurrence Time with Self-Overlaps). When there is a self-overlap of size

vk<dk in ψk, and ψk,1:vk does not have a self-overlap itself, E[τk] is as in (3.4) and

E[τk|0] =

(
dk∏
i=1

p(ψk,i)

)−1

+

(
vk∏
i=1

p(ψk,i)

)−1

. (3.5)
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Proof. Define the augmented pattern γk , ψk ◦ (ζ) for any ζ ∈ X , and define

τ ∗k , min{n ∈ N | (ξn+τ∗
k|0
, · · · , ξn+τ∗

k|0+dk) = γk}

where τ ∗k|0 , min{n ∈ N | (ξn, · · · , ξn+dk) = γk}

to be the time it takes to observe the augmented pattern γk again after its first occurrence.

Further define ∆τk to be the time after the next occurrence of the original pattern ψk it

takes to observe the first occurrence of γk, i.e., τ ∗k = τk + ∆τk. Clearly ∆τk > 0. Because

the addition of ζ to the original sequence removes the self-overlap, we can use Lemma 10 to

compute E[τ ∗k ]:

E[τ ∗k ] =

(
p(ζ)

dk∏
i=1

p(ψk,i)

)−1

.

Next, we can compute E[∆τk] by conditioning on the value of ζ, assuming the pattern ψk

has already been observed.

E[∆τk | ξ = α] =



1 + E[τ ∗k |ψk,1, · · · , ψk,vk+1] if α = ψk,vk+1

1 + E[τ ∗k |ψk,1] if α = ψk,1

1 if α = ζ

1 + E[τ ∗k ] if α 6∈ {ψk,1, ψk,vk+1, y}

from which we can construct the equation

E[∆τk] = 1 + p(ψk,vk+1)E[τ ∗k |ψk,1, · · · , ψk,vk+1] (3.6)

+ p(ψk,1)E[τ ∗k |ψk,1] + (1− p(ψk,vk+1)− p(ψk,1)− p(ζ))E[τ ∗k ]. (3.7)

Note that by definition of τ ∗k :

E[τ ∗k ] = E[τ(ψk,1:vk+1)] + E[τ ∗k |ψk,1:vk+1] and E[τ ∗k ] = E[τ(ψk,1)] + E[τ ∗k |ψk,1], (3.8)

where τ(ψk,1:j) (for any j ∈ {1, · · · , dk}) represents the time it takes to observe the next

occurrence of the subpattern ψk,1:j after the first occurrence of ψk. Assume ψvk+1 is such that

the sub-pattern ψk,1:vk+1 has no self-overlaps. Then since neither of the sequences ψk,1:vk+1

nor (ψk,1) have self-overlaps, we can use Lemma 10 to compute:

E[τ(ψk,1:vk+1)] =

(
vk+1∏
i=1

p(ψk,i)

)−1

and E[τ(ψk,1)] = p(ψk,1)−1.
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Hence, rearranging (3.8) and substituting back into (3.6):

E[τ ∗k ] = E[τk] + 1 + p(ψk,vk+1) (E[τ ∗k ]− E[τ(ψk,1, · · · , ψk,vk+1)])

+ p(ψk,1) (E[τ ∗k ]− E[τ(ψk,1)]) + (1− p(ψk,vk+1)− p(ψk,1)− p(ζ))E[τ ∗k ],

which yields the desired result (3.5) after rearranging the terms. �

Remark 16. If the subsequence ψk,1:vk itself has a self-overlap of size v′k < vk, then we can

repeat Case 2 by induction:

E[τk|0] =

(
dk∏
i=1

p(ψk,i)

)−1

+

(
vk∏
i=1

p(ψk,i)

)−1

+

 v′k∏
i=1

p(ψk,i)

−1

. (3.9)

Interpretation with Martingales

In contrast to relating them to the Geometric distribution, the pattern-occurrence prob-

lem can be solved from an alternative perspective using martingales, which we adapt as a

combination of [92] and [123]. As typical of martingale analyses, it becomes convenient to

view Problem 1 from a game perspective.

Definition 18 (Agents and Rewards: i.i.d. Case). We introduce the notion of an agent, which

observes the process {ξn} and accumulates rewards at each time with the goal of observing

a pattern from Ψ. We refer to a type-k agent to be an agent who accumulates rewards by

specifically observing the occurrence of ψk ∈Ψ in {ξn}. At each time n∈N, K new agents,

one for each type k, k ∈{1, · · · , K}, are introduced to system; we refer to a type-k agent

which is introduced at time n as type-k agent n. In order for the game to be fair-odds, each

type-k agent n observes the stochastic process {ξn+1, ξn+2, · · · , } and accumulates rewards

at a rate that is inversely-proportional to the action it took, starting from some arbitrary

initial reward ck ∈R. When an agent first loses everything he has, he leaves the game and

never returns.

We next make the following notations. For two patterns ψk1 and ψk2 defined in Definition 13,

let

Di,j(ψk1 ,ψk2) ,

p(ψk2,j)−1 if ψk1,i = ψk2,j

0 else
(3.10)
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for all i ∈ {1, · · · , dk1}, j ∈ {1, · · · , dk2}. Intuitively, Di,j(ψk1 ,ψk2) can be thought of as a

fair-odds weighting factor that is earned when the ith element of pattern ψk1 and the jth

element of pattern ψk2 coincide. We further define

ψk1♦ψk2 = (3.11)

min(dk1 ,dk2 )∏
i=1

Di,i(ψk1 ,ψk2) +

min(dk1−1,dk2 )∏
i=1

Di+1,i(ψk1 ,ψk2) + · · ·+Ddk1 ,1
(ψk1 ,ψk2).

Essentially, (3.11) conveys the total winnings obtained by an agent who is betting to observe

(partial) occurrences of ψk2 in the pattern ψk1 .

Now suppose a type-k agent n arrives and bets on the event {ξn:n+dk−1 =ψk} using betting

strategy {B(k)
n,j}

dk
j=0, starting from B

(k)
n,0 = ck, 1. Because the game is fair-odds, we have:

B
(k)
n,j+1 ,



p(ψk,j+1)−1 ·
j∑

jj=0

B
(k)
n,jj −

j∑
jj=0

B
(k)
n,jj if ξn+dk−j = ψk,j+1

0 if
∑j

jj=0B
(k)
n,jj = 0

−
j∑

jj=0

B
(k)
n,jj else

(3.12)

for each j ∈ {0, · · · , dk − 1}.

Definition 19 (Cumulative Net Rewards: i.i.d. Case). Given the setup above, the type-k

agent n cumulative net reward by time n>n is given by R
(k)
n,n =

∑dk−1
j=0 B

(k)
n,j1{n + j ≤ n},

which can be expanded as

R
(k)
n,n = (3.13)

 ∏
j∈{0,··· ,dk−1}

n+j≤n

p(ψk,j)


−1

ck if ∀j ∈ {0, · · · , dk − 1} s.t. n+ j ≤ n, Dn+j,j+1(ξ1:n,ψk) > 0

0 if ∃j ∈ {0, · · · , dk − 1} s.t. n+ j ≤ n, Dn+j,j+1(ξ1:n,ψk) = 0

.

Note that R
(k)
n,n = ck. Moreover, the type-k cumulative net reward over all type-k agents

that arrive until time n>n is defined by R
(k)
n ,

∑n
n=1R

(k)
n,n. Finally, with τ , mink τk|0 the

minimum occurrence time, let Rτ be the net reward accumulated over all agents over all

types by τ . Then

Rτ ,


(ψ1♦ψ1)c1 + · · ·+ (ψ1♦ψK)cK if τ = τ1|0

...

(ψK♦ψ1)c1 + · · ·+ (ψK♦ψK)cK if τ = τK|0

. (3.14)
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In the i.i.d. case, we set up the betting strategy of each agent in the form of (3.12) so that

{R(k)
n } is a martingale. To demonstrate this formally, we require Lemma 8 and Lemma 9.

To build intuition, we first begin by deriving the formula for two patterns, inspired by Li

1980 [92], before moving on to the general K ≥ 2 patterns.

Lemma 12 (Expected Occurrence Times: i.i.d. Case, 2 Patterns). Let Ψ, {ψ1,ψ2} be a

collection of two patterns. Then the expected first occurrence time for pattern ψk2 is given

by

E[τk2|0] , ψk2♦ψk2 , (3.15)

where the ♦ notation is defined in (3.11). The expected waiting time for pattern ψk2 to occur

for the first time after the first occurrence of another pattern ψk1 is given by

E[τk2|k1 ] , ψk2♦ψk2 −ψk1♦ψk2 . (3.16)

Proof of Lemma 12. First, by the argument shown in the previous Section 3.1.1, both τk2|k1

and τk2|0 are dominated by Geometric random variables. Hence, E[τk2|k1 ],E[τk2|0] < ∞. For

indexing simplicity, we re-index the sequence {ξn} such that ψk1 has occurred before time

zero, i.e., ξ−dk1+1 = ψk1,1, · · · , ξ0 = ψk1,dk1 , ξ1 ← ξτk1|0+1, · · · , ξh ← ξτk1|0+h for some h∈N. A

type-k2 agent n ∈ {−dk1 + 1, · · · , h ∧ τk2|k1} arrives and bets on observing {ξn:dk2−1 =ψk2}.
Note that the reward process of type-k2 agent n, {R(k2)

n,h∧τk2|k1
}h∈N, is a martingale by the

fair-odds betting strategy construction from Definitions 18, 19, etc. The net reward over

all type-k2 agents {R(k2)
h∧τk2|k1

}h∈N can be expressed as R
(k2)
h =

∑h
n=−dk2+1R

(k2)
n,h , and since the

weighted sum of martingales is also a martingale, {R(k2)
h∧τk2|k1

}h∈N is also a martingale.

By construction, this simplifies to:

R
(k2)
h∧τk2|k1

=
(
ψk1 ◦ ξ1:h∧τk2|k1

)
♦ψk2 − (h ∧ τk2|k1 + dk1), (3.17)

and consequently:

R(k2)
τk2|k1

= ψk2♦ψk2 − (τk2|k1 + dk1), (3.18)

which implies

E[R(k2)
τk2|k1

] = ψk2♦ψk2 − (E[τk2|k1 ] + dk1) <∞ (3.19)

since we’ve established E[τk2|k1 ] <∞.
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Denote Ωh, {ω ∈ Ω|h < τk2|k1(ω)}. By triangle inequality, |R(k2)
τk2|k1
| ≤ |ψk2♦ψk2|+ |τk2|k1|+

|dk1| = ψk2♦ψk2 + τk2|k1 + dk1 , which is finite. We apply Lemma 8 to get

lim inf
h→∞

∫
Ωh

|
h∑

n=1

R
(k2)
n,h (ω)|dP(ω) ≤ lim inf

h→∞

∫
Ωh

(ψk2♦ψk2 + τk2|k1 + dk1)dP(ω) = 0. (3.20)

Hence, with the fact that {R(k2)
h∧τk2|k1

}h∈N is a martingale and the conditions (3.19) and (3.20)

are satisfied with stopping time τk2|k1 , we can apply Optional Stopping (Lemma 9). Note

that E[R
(k2)
0 ] = ck2(ψk1♦ψk2 − dk2 + 1) since ξ1:0 is the empty sequence, so we are looking

for occurrences of ψk2 in ψk1 . Thus

E[R(k2)
τk2|k1

] = E[R
(k2)
0 ] =⇒ E[τk2|k1 ] = ψk2♦ψk2 −ψk1♦ψk2 . (3.21)

A similar argument can be used to show E[τk2|0] = ψk2♦ψk2 . �

Theorem 8 (Expected Occurrence Times: i.i.d. Case). Define Ψ to be the pattern collection

from Definition 13 with K> 2 patterns. From the notation of Definition 15, define τ ≡
mink τk|0 to be the i.i.d. version of the minimum occurrence time from Problem 1, defined

in Definition 19. Then

E[τ ] =

(
K∑
k=1

c∗k

)−1

, (3.22)

where c∗ , (c∗1, · · · , c∗K)> such that Wc∗ = 1K , where 1K is the K-dimensional vector of all

ones and

W ,


ψ1♦ψ1 ψ1♦ψ2 · · · ψ1♦ψK
ψ2♦ψ1

...
. . .

...

ψK♦ψ1 ψK♦ψK

 (3.23)

is called the gain matrix.

Proof of Theorem 8. By extending Lemma 12 to more than two patterns, we observe that the

process {Rn} (Definition 19) is a zero-mean martingale with stopping time τ , and E[τ ] <∞
with appropriate assumptions. Thus

(
K∑
k=1

ck

)
E[τ ] = E[R0] = E[Rτ ] =

[
q1 q2 · · · qK

]
W


c1

c2

...

cK

 , (3.24)
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where qk are the first-occurrence probabilities from the second question of Problem 1. Choos-

ing c∗ as above turns the first term of (3.24) into 1, since
∑

k qk = 1. Rearranging the terms

yields the desired equation (3.22). �

Although the first-occurrence probabilities (q1, q2, · · · , qK)> were unknown, we were able to

compute E[τ ] in Theorem 8 without knowing what they were by choosing the initial bets

c∗ appropriately. However, any other choice of c 6= c∗ satisfies (3.24); we compute the first-

occurrence probabilities using this observation.

Theorem 9 (First-Occurrence Probabilities: i.i.d. Case). In the i.i.d. case, the vector of

first-occurrence probabilities from Problem 1, denoted q, (q1, · · · , qK)>, are given by

q = W−>1KE[τ ], (3.25)

where again, W is the gain matrix (3.23) and 1K is the K-dimensional all-ones vector.

Proof of Theorem 9. First, rearrange the terms of (3.24):

E[τk1|0] = E[τ ] +
K∑

k2=1

qk2E[τk1|k2 ], E[τk1 ] = ψk1♦ψk1 .

Using the ♦ notation:

ψk1♦ψk1 = E[τ ] +
K∑

k2=1

qk2(ψk1♦ψk1 −ψk2♦ψk1) =⇒ 0 = E[τ ]−
K∑

k2=1

qk2ψk2♦ψk1 .

Consequently,

0 =
K∑

k2=1

ck2E[τ ]−
K∑

k1=1

K∑
k2=1

qk1(ψk1♦ψk2)ck2 ,

and we chose an appropriate c∗ so that we could solve for E[τ ] without needing to solve for the

{qk}. Once E[τ ] is obtained, however, we can choose specific c = {[1, 0, · · · , 0], · · · , [0, 0, · · · , 1]}
to obtain the linear system of equations which allows us to solve for {qk}:

c = [1, 0, · · · , 0]> =⇒ 0 = E[τ ]−
K∑

k1=1

qk1(ψk1♦ψ1),
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c = [0, 1, · · · , 0]> =⇒ 0 = E[τ ]−
K∑

k1=1

qk1(ψk1♦ψ2),

...

c = [0, 0, · · · , 1]> =⇒ 0 = E[τ ]−
K∑

k1=1

qk1(ψk1♦ψK).

In terms of the gain matrix, W>q = E[τ ]1K , and solving for q yields the desired result. �

3.1.2 Markov Chain Sequences

Now, we consider the pattern-occurrence problems for when {ξn} is generated from an irre-

ducible Markov chain over the state-space X , i.e., P(ξn =ϕ|ξn−1 =ϕn−1, · · · , ξ1 =ϕ1, ϕ0) ≡
P(ξn =ϕ|ξn−1 =ϕn−1). The transition probability matrix (TPM) is denoted by P , [P (ζ, ζ ′)]

∈ RM×M , and we take initial probability distribution to be {p0(ζ)}ζ∈X and stationary dis-

tribution to be {π(ζ)}ζ∈X .

Definition 20 (Feasibility). A pattern ψk or an arbitrary sequence of modes (α1, · · · , αa)
with length a∈N is feasible with respect to P if it can be generated by the Markov chain

with TPM P , i.e., P [αi, αi+1] > 0 for all i∈{1, · · · , a− 1}.

In contrast to i.i.d. sequences, there are constraints on the degrees of freedom on possible

Markov chain sample path trajectories due to the memorylessness property. Thus, we take

inspiration from [122] and consider the occurrence of feasible augmented patterns up to two

extra values. We choose two additional variables because when n = 0, the probability of

observing ξ0 = ζ is distributed differently from ξn = ζ, n ≥ 2 (i.e., the initial distribution

p0(ζ) instead of the transition probability P (ξn−1, ζ)).

Definition 21 (Augmented Pattern). Suppose we are given a collection of patterns Ψ

(from Definition 13). An augmented pattern γ corresponding to a pattern ψk ∈Ψ is de-

fined by prefixing two values m1,m2 ∈X such that the resulting sequence is feasible in the

sense of Definition 20. We define the augmented collection

Γ , {feasible (m1,m2) ◦ψk |m1,m2 ∈ X ;ψk ∈ Ψ} (3.26)

to be the collection of augmented patterns, and we define KL ∈N to be its cardinality.

We henceforth enumerate each augmented pattern γ` in the augmented collection Γ using

subscript `∈{1, · · · , KL}.
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It is easier to solve for Problem 1 by conditioning on the type of “ending string” observed,

where an “ending string” is formally defined below.

Definition 22 (Ending Strings). Given the collection of patterns Ψ and current time n∈N,

suppose we let the sequence {ξn, ξn+1, · · · } run until one of the patterns from Ψ has been

observed. Then an ending string associated with pattern ψk ∈Ψ terminates the process at

time τn>n if ξτn−dk+1:τn =ψk. We characterize two primary types of ending strings:

• An initial-ending string β occurs when part of an augmented pattern is observed

immediately after the current value. We classify initial-ending strings into two further

subcases:

– A Case 0 initial-ending string β , ψk occurs when ξn:n+dk−1 =ψk. Define S(0)
I to

be the set of Case 0 initial-ending strings, with cardinality K
(0)
I ∈N.

– A Case 1 initial-ending string β , (m1) ◦ ψk occurs when ξn:n+dk = (m1) ◦ ψk.
Here, m1 ∈X is such that the above ending string is feasible. Define S(1)

I to be

the set of Case 1 initial-ending strings, with cardinality K
(1)
I ∈ N.

• A later-ending string (∗,m1,m2) ◦ ψk occurs when an augmented pattern is observed

long after the current value, i.e., when τn > n+ dk + 1 and ξτn−dk−1:τn = (m1,m2) ◦ψk.
Here, m1,m2 ∈X are such that the above ending string is feasible, and ∗ is a placeholder

for any feasible sequence of values (see Definition 20) including the empty string. Define

SL , {(∗) ◦ γ` |γ` ∈ Γ} to be the set of later-ending strings, with the same cardinality

KL as Γ.

Define SI ,S(0)
I ∪S

(1)
I to be the set of initial-ending strings, with cardinality KI =K

(0)
I +K

(1)
I .

Together, define the set of ending strings to be S =SI ∪ SL. We henceforth enumerate each

ending string βs in S using the subscript s∈{1, · · · , KI +KL}.

Example 2 (Ending Strings Construction). We provide intuition behind the notation de-

scribed by Definition 22. Let M = 4, i.e., X = {1, 2, 3, 4}, and let the TPM P be such that

P [m1,m2]> 0 for all m1,m2 ∈X except when m1 =m2 and when (m1,m2)∈{(3, 2), (2, 3),

(3, 4), (4, 3)}. The pattern collection of interest consists of K = 3 patterns Ψ = {ψ1,ψ2,ψ3}
with ψ1 = (213), ψ2 = (412), and ψ3 = (314). The augmented pattern collection is defined as

Γ, ∪3
i=1 Γi with Γ1 = {α◦ψ1|α∈{(14), (21), (24), (31), (41)}}, Γ2 = {α◦ψ2|α ∈ {(12), (21),

(31), (41), (42)}}, Γ3 = {α ◦ ψ3|α ∈ {(21), (31), (41)}}. Hence, the number of later-ending
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2 22 4 1 ... 24 633 2 8 ...8

Current
Value Future Sequence

Case 0 Initial-ending string

Later-ending string

Type - 13 Agents

1 32 4 2 ... 24 633 2 8 ...8

Case 1 Initial-ending string

3 32 4 1 134... 1

(Agent 1)    4     1     3      1     4

41 2

(Agent 2)     4     1      3     1     4

1

...
(Agent               )     4     1     3      1     4

Figure 3.1: A visualization of the ending strings and agent-reward construction using the
setup of Example 2. The red box marks the current time n ∈ N, and each of the three se-
quences demonstrate the three different types of ending strings which terminate the stochas-
tic process in the sense of Definition 22. The grey rectangles hide future values which have
not occurred because of sequence termination. For the last case where γ13 terminates the
process as a later-ending string, type-13 agents at indices 1, 2, · · · , τ3|n−5 are shown. By the
reward construction of Definition 23, type-13 agent τ3|n − 5 is the only agent who receives a
nonzero reward.

strings is KL = 13. Suppose the current state is ϕn = 2. Then the set of feasible augmented

Case 0 initial-ending strings is S(0)
I = {ψ2} since P [2, 4]> 0, and for Case 1 initial-ending

strings, S(1)
I = {(1) ◦ψ1, (4) ◦ψ1, (1) ◦ψ2, (1) ◦ψ3}. Thus, K

(0)
I = 1 and K

(1)
I = 4.

Definition 23 (Agents and Rewards: MC Case). Let Γ be the augmented pattern collection

associated with original collection Ψ (see Definition 21). Similar to the i.i.d. case (Defini-

tion 18), we introduce the notion of an agent, except with respect to the augmented collection

Γ instead of the original collection Ψ. We refer to a type-` agent to be an agent which ac-

cumulates rewards by specifically observing the occurrence of γ` ∈Γ in {ξn}. At each time

n∈N, KL new agents, one for each type `, `∈{1, · · · , KL}, are introduced to the process;

we refer to a type-` agent that is introduced at time n as type-` agent n. A type-` agent n
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observes realizations in the future sequence {ξn+1, ξn+2, · · · , } and accumulates rewards at a

rate which is inversely-proportional to the action it took, starting with some arbitrary initial

reward c` ∈R.

Each type-` agent n aiming to observe augmented pattern γ`, (m1,m2) ◦ ψk arrives and

chooses one betting strategy between {B(1,`)
n,j }

dk+1
j=1 or {B(2,`)

n,j }
dk
j=1 depending on the observed

outcome ϕn. Both betting strategies are initialized with B
(1,`)
n,0 = B

(2,`)
n,0 = c`. If ϕn =m1,

type-` agent n aims to observe the event {ξn+1:n+dk+1 = (m2) ◦ψk}:

B
(1,`)
n,j =


(P (γ`,j, γ`,j+1))−1

j−1∑
i=0

B
(1,`)
n,i −

j−1∑
i=0

B
(1,`)
n,i if ξn+j−1 = γ`,j, ξn+j = γ`,j+1

0 if
∑j−1

jj=0B
(1,`)
n,jj = 0

−
j−1∑
i=0

B
(1,`)
n,i else

. (3.27)

Otherwise, if ϕn 6=m1, type-` agent n aims to observe the event {ξn+1:n+dk =ψk}:

B
(2,`)
n,j =

(P (ξn, ψk,1))−1 c` − c` if ξn+1 = ψk,1

−c` else
;

for all j = 2, · · · , dk,

B
(2,`)
n,j =


(P (ψk,j−1, ψk,j))

−1
j−1∑
i=0

B
(2,`)
n,i −

j−1∑
i=0

B
(2,`)
n,i if ξn+j−1 = ψk,j−1, ξn+j = ψk,j

0 if
∑j−1

jj=0B
(2,`)
n,jj = 0

−
j−1∑
i=0

B
(2,`)
n,i else

. (3.28)

In both strategies {B(1,`)
n,j }

dk+1
j=1 and {B(2,`)

n,j }
dk
j=1, the middle case of 0 arises because the type-`

agent n leaves the game on the first time he loses the entire reward he accumulated so far.

Given the setup above, the type-` agent n cumulative net reward by time n ∈ N is given by:

R
(`)
n,n = 1{ξn = m1}

dk+1∑
j=0

B
(1,`)
n,j 1{n+ j ≤ n}+ 1{ξn 6= m1}

dk∑
j=0

B
(2,`)
n,j 1{n+ j ≤ n}. (3.29)

Remark 17. It becomes necessary to distinguish the occurrence time of a pattern ψk from

that of an augmented pattern γ` , (m1,m2) ◦ ψk. We define τa`|n and τan to be the versions

of (3.1) and (3.2) for γ` ∈ Γ.
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Remark 18. Due to the stationarity of {ξn}, the distributions of τk|n1 −n1 and τk|n2 −n2 are

equivalent for each k ∈{1, · · · , K}, and any times n1, n2 ∈N, such that ϕn1 =ϕn2 . Likewise,

the distributions of τn1 − n1 and τn2 − n2 are equivalent. For notation simplicity in the

following presentation, we remove the subscript n ∈ N in all variables, and use the above

stationarity property to shift times to n= 0 in variables such that the current value is given

by ϕ0 instead of ϕn. Furthermore, we apply the shorthand notation to Definitions 14 and 15

such that τk≡ τk|0 and τ ≡ τ0; the notation for the augmented patterns (Remark 17) follow

similarly as τa` ≡ τa`|0 and τa≡ τa0 .

Definition 24 (Ending String Probabilities). Define P(βs) to be the probability that ending

string βs ∈S terminates the stochastic process {ξn} in the sense of Definition 22. For initial-

ending strings βs ∈SI which is explicitly denoted as (β1, · · · , βbs) with length bs ∈N, we get

P(βs) = p(ϕ0)P [ϕ0, β1]
∏bs−1

j=1 P [βj, βj+1]. We later demonstrate how to compute P(βs) for

later-ending strings βs ∈SL, as part of solving Problem 1.

Definition 25 (Gain Matrix). We construct the Markov chain version of the gaim ma-

trix (3.23). Let βs ∈S be an ending string which is explicitly denoted as βs, (β1, · · · , βbs)∈S
with length bs ∈N. Further let augmented pattern γ` ∈Γ be associated with original pattern

ψk ∈Ψ, i.e., γ`, (m1,m2) ◦ ψk for some m1,m2 ∈X . Then the total gain Ws` accumulated

over all type-` agents from observing (partial) occurrences of γ` in βs, is given by

Ws`,
min(bs−1,dk+1)∑

j=1

D
(1)
j (βs,γ`) +

min(bs−1,dk)∑
j=1

D
(2)
j (βs,γ`),

with D
(1)
i and D

(2)
i defined based on the reward strategy from Definition 23. First,

D
(1)
i (βs,γ`),

(
P [m1,m2]P [m2, ψk,1]

i−2∏
j=1

P [ψk,j, ψk,j+1]

)−1

if βbs−i =m1 and βbs−i+1 =m2, βbs−i+j =ψk,j−1 for all j ∈{2, · · · , i}; else, D
(1)
i (βs,γ`) = 0.

Second,

D
(2)
i (βs,γ`),

(
P [βbs−i, ψk,1]

i∏
j=2

P [ψk,j−1, ψk,j]

)−1

if βbs−i 6=m1 and βbs−i+j =ψk,j for all j ∈{1, · · · , i}; else, D
(2)
i (βs,γ`) = 0. A gain matrix

W ∈R(KI+KL)×KL is constructed with entries Ws` for each pair of βs ∈S and γ` ∈Γ.
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Definition 26 (Cumulative Net Rewards: MC Case). The expected type-` cumulative net

reward over all type-` agents by time τ is defined E[R
(`)
τ ], c`[P(β1), · · · ,P(βKI+KL)]W·,`,

where the P(βs) are the probabilities from Definition 24 and W·,` denotes the `th column

of the gain matrix (see Definition 25). Correspondingly, the expected cumulative net reward

over all agents by time n is defined as Rn ,
∑KL

`=1 R
(`)
n , and

E[Rτ ]=[P(β1) · · ·P(βKI+KL)]Wc, (3.30)

where c, [c1, · · · , cKL ]> is the vector of initial rewards (see Definition 23). Note that this

expression is similar to (3.24) from the i.i.d. case.

We are now ready to use our construction to present our main results, which address the

questions in Problem 1.

Theorem 10 (Expected Time of Occurrence: MC Case). Denote τ as in Remark 18 with

current mode ϕ0 for the collection Ψ from Definition 13 and corresponding augmented col-

lection Γ. Then

E[τ ] =
1

KL∑̀
=1

c∗`

[(
1−

KI∑
s=1

P(βs)

)
+

KI∑
s=1

P(βs)

KL∑
`=1

Ws`c
∗
`

]
, (3.31)

where γ` ∈Γ, βs ∈S, P(βs) is from Definition 24, W is from Definition 25, and c∗ ∈RKL is the

vector of initial rewards (see Definition 25) such that
∑KL

`=1Ws`c
∗
` = 1 for all s∈{KI + 1, · · · ,

KI +KL}.

Proof. Because the Markov chain is irreducible and finite-state, E[τa` ]<∞, for each τa` de-

fined in Remark 17. Note that τk = minγ`∈Γk τ
a
` , where Γk is the subset of Γ containing aug-

mented patterns γ, (m1,m2) ◦ ψk corresponding to original pattern ψk ∈Ψ. We have that

τ , mink τk, and by Definition 15, we also have E[τ ]<∞. By the construction of the gain ma-

trix W and the fact that linear combinations of martingales are martingales, both {R(`)
n∧τa`
}n∈N

and {Rn∧τ}n∈N are martingales. This implies that E[R
(`)
τa`

]<∞ since E[τa` ]<∞. Furthermore,

E[Rτ ]<∞ because τ ≤ τa` for all `. Define the set Ω
(`)
n , {ω ∈Ω|n< τa` }. By Lemma 8 and

the triangle inequality, limn→∞
∫

Ω
(`)
n
|R(`)

n (ω)|dP(ω) = 0, which implies {R(`)
n∧τa`
} is uniformly-

integrable over Ω
(`)
n . Thus, {Rn∧τ} is uniformly-integrable over Ωn, {ω ∈Ω |n< τ}⊆ ∩KL`=1

Ω
(`)
n . With the above conditions satisfied, we apply Optional Stopping (Lemma 9) to the

stopped process {Rn∧τ}, which implies E[Rτ ] =E[R0]. Note E[R0] = 0 by the construction
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of Definition 26. After choosing the initial rewards c∗ as in the theorem statement, and

substituting into (3.30):

KL∑
`=1

c∗`E[τ ]=E[R0]=E[Rτ ]=

KI∑
s=1

P(βs)

KL∑
`=1

Ws`c
∗
`+

(
1−

KI∑
s=1

P(βs)

)
.

Rearranging the terms to isolate E[τ ] yields (3.31). �

This addresses the first question in Problem 1. To address the second question, we use the

following theorem, which also addresses the computation of P(βs) for later-ending strings

βs ∈SL (see Definition 24).

Theorem 11 (First-Occurrence Probabilities: MC Case). In addition to the setup of The-

orem 10, explicitly denote ending string βs, (β1, · · · , βbs)∈S to have length bs ∈N. Then

the first-occurrence probabilities {qk} (see Definition 15) are given by

qk =
∑
βs∈S

P(βs)1{βbs−dk+1:bs = ψk}. (3.32)

Proof. Rearranging the terms of (3.30):

KI∑
s=1

P(βs)

KL∑
`=1

Ws`c` = −
KI+KL∑
s=KI+1

P(βs)

KL∑
`=1

Ws`c` +

KL∑
`=1

c`E[τ ]. (3.33)

We are given E[τ ] from Theorem 10, and P(βs) can be computed via Definition 24 when

βs ∈SI . For s∈{KI + 1, · · · , KI +KL}, choose one of KL vectors c ∈ {e1, · · · , eKL} (where

ei is the ith standard basis vector of RKL) to substitue into (3.33) and construct KL different

equations. Solve the resulting linear system for theKL unknowns {P(βKI+1), · · · ,P(βKI+KL)}.
By Definition 15, qk,P(τ = τk) =

∑
βs∈S P(βs)P(τ = τk |βs), where we denote shorthand

P(τ = τk |βs) to be the probability of ψk being the first pattern observed at mode-index τ

given βs is the ending string which terminated the mode process in the sense of Definition 22.

Clearly, P(ψk |βs) = 1 if βbs−dk+1:bs =ψk holds, otherwise it is 0. We thus obtain the desired

equation. �

3.2 Uncertain Markovian Jump Systems (MJSs)

The Poisson shot and Lévy noise systems we presented in Chapter 2 are comparable to hybrid

systems or Markovian jump systems (MJSs). In shot or Lévy noise systems, large deviations

away from nominal behaviors arise solely from the jump-discontinuous noise process, which
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is independent of the open-loop dynamics. In contrast, hybrid systems have switches (i.e.,

jumps) which arise as an inherent property of the open-loop dynamics. Despite this impor-

tant distinction, the two settings can still be closely related to one another in two ways. First,

stability analysis techniques are primarily focused on handling the jump-discontinuities more

than any other property of the system. For hybrid systems, literature toward this direction

of research include Lyapunov-sense conditions for asymptotic stability [94, 67] and charac-

terizations of incremental stability [120]. Second, dwell time can be related to the interarrival

time by viewing it as a form of stability criteria which ensures that the system has sufficient

time to converge toward a desired state in between consecutive switching phases. Likewise,

the stability results of Section 2.4 can be alternatively interpreted as conditions imposed on

the shot or Lévy noise system such that the mean time between consecutive jumps (which

depends on the intensity parameter λ) is long enough for the system to be reasonably close to

the nominal trajectory. One notable example which utilizes dwell-time criteria for nonlinear

systems is in Hespanha 1999 [68], where it is shown that input-to-state induced norms should

be bounded uniformly between switches. In terms of applications, dwell-time criteria for at-

taining exponential stability has been shown to be effective for robotic systems, in particular

walking locomotion and flapping flight [50] as well as autonomous vehicle steering [105].

In this section, we consider a specific class of MJSs with the purpose of demonstrating

the efficiency of controller architectures designed around applying the pattern-occurrence

problem to the underlying Markov chain mode process.

3.2.1 Setup and Preliminaries

We consider linear Markovian jump systems (MJSs) of the following form:

x[t+ 1] = A(ξN [t])x[t] +Bu[t] + w[t]. (3.34)

Here, x[t]∈Rnx is the state, A(ξN [t])∈Rnx×nx is the dynamics matrix which changes accord-

ing to the phase variable ξN [t], u[t]∈Rnu is the control input, and w[t]∈Rnx is an unob-

servable external noise process whose distribution is assumed known or partially known. For

each t∈N, N [t] is the number of modes (i.e., number of phases switches, or jumps arising

from the underlying Markov chain) that have been observed by time t. We henceforth say

that the current mode-index at time t∈N is n∈N if N [t] = n, and the transition from mode

ξn−1 to ξn occurs at time Tn , min{s∈N |N [s] = n}. The discrete mode process {ξn}∞n=1

takes values from the set X , {1, · · · ,M}, where M ∈N, and is defined such that ξn : Ω→ X
on probability space (Ω,F ,P) with filtration {Fn}∞n=1, Fn , σ(ξ0, ξ1, · · · , ξn). We assume
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B is a known constant matrix. Again, we distinguish {ξn} from the sequence of determin-

istic values {ϕn} which it takes, i.e., ξn =ϕn for all past mode-indices n∈N. With similar

MATLAB notation as before, we denote x[s : t] , {x[s], · · · ,x[t]} for any s< t, likewise for

u[s : t],w[s : t].

Assumption 7. The mode process {ξn} operates on a timescale which is ∆T ∈N times

longer than the timescale of the system (3.34), i.e., if N [t] = n, then N [t + a∆T ] = n + a

for any a∈N. This means Tn − Tn−1 = ∆T for all n∈N. In certain applications, ∆T can

be interpreted as the minimum time needed between switching modes, and for simplicity

we assume that its value is known. Consequently, we assume that N [t] and the sequence of

transition times {Tn} are also known.

The mode process {ξn} is generated from an irreducible Markov chain over the state-space

X with transition probability matrix (TPM) denoted by P ∈RM×M and initial probability

vector p0, [p0(1), · · · , p0(M)]> ∈{0, 1}M . As before, in Section 3.1.2, we represent the entries

of the TPM using brackets, so that P [m1,m2] denotes the probability of the mode switching

from m1 to m2, for any m1,m2 ∈X . Suppose the probability distribution of ξn is given by

pn ∈{0, 1}M at mode-index n∈N, then the mode process dynamics are updated in the usual

Markov chain way p>n+1 = p>nP . This implies that given ξn =ϕn ∈X , we have ξn+1 =m with

probability P [ϕn,m] for any m ∈ X .

Assumption 8. In addition to knowing the values of ∆T ,N [t], and {Tn} (see Assumption 7),

we consider the following settings. The true realizations {ϕn} of the mode process {ξn} are

unknown over time, but the set X of values that it takes and the initial mode ξ0 =ϕ0 are

known. The sparsity structure of the TPM P is known, but the values of the nonzero entries

are unknown. As a simple example of this setting, one can think of an industrial machine

which has three known modes (e.g., working, stalled, and failed), but the process in which

the machine varies among the three modes is largely unknown.

3.3 Controller Architecture for MJSs Based on Pattern-Learning

The controller architecture we propose is visualized in Figure 3.2. It consists of three main

parts: 1) Mode Process Identification (ID), 2) Pattern-Learning for Prediction (PLP) on the

mode process, and 3) Control Law Design for the system dynamics. In this section, we begin

with a brief description of each part–including an introduction of the main notations used–

to provide a coherent view of the architecture (Figure 3.2) as a whole. The details of each

individual part and the choice of algorithms used to implement them are discussed in the next
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Figure 3.2: A flow diagram representation of the proposed controller architecture specifically
for linear MJS dynamics of the form (3.34). Circles represent inputs to the algorithm; user-
defined inputs are colored blue and unknown/unobservable parameters are colored gray. The
architecture consists of three main parts (violet boxes): 1) Mode Process ID (Section 3.3.1),
2) Pattern-Learning for Prediction (Section 3.3.2), 3) and Control Law Design (Section 3.3.3).

sections: Mode Process ID in Section 3.3.1, PLP in Section 3.3.2, and Control Law Design

in Section 3.3.3. We emphasize that our choice of algorithm to implement each component

is unique to the uncertain linear discrete-time MJS setup described in Section 3.2 and that

alternative implementations can be made for other dynamics; this will be demonstrated in

the applications described in the subsequent chapters.

3.3.1 Mode Process Identification

For each time t∈N and corresponding mode-index n,N [t], the system maintains the fol-

lowing estimated statistics about the mode process {ξn} and system dynamics (3.34): an

estimate P̂ (t) of the true TPM P , and an estimate ϕ̂
(t)
n of the current mode ϕn. The first

part of our architecture, Mode Process Identification (ID) is responsible for learning these

unknown statistics of the mode process. We use hats and superscripts (t) to emphasize that

these quantities are estimates which change over time.

Definition 27 (Mode Process Estimates). For each time t∈N and corresponding mode-

index n,N [t], the system maintains the following estimated statistics about the mode
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process {ξn} and system dynamics (3.34): an estimate P̂ (t) of the true TPM P , and an

estimate ϕ̂
(t)
n of the current mode ϕn. We use hats and superscripts (t) to emphasize that

these quantities are estimates which change over time.

3.3.2 Pattern-Learning in the Mode Process

Once P̂ (t) and ϕ̂
(t)
n are obtained from Mode Process ID (Section 3.3.1) for each t∈N and

n,N [t], Pattern-Learning for Prediction (PLP) in Figure 3.2 computes additional statis-

tics about the mode process that facilitate the creation of predictions, which will be used

in the Control Law Design component. These additional statistics are precisely the pattern-

occurrence quantities described in Section 3.1, which can be solved using the method of Sec-

tion 3.1.2 for Markov chains. In the context of the uncertain linear MJS (3.34), however, we

require some additional adjustments, detailed below.

Definition 28 (Prediction Horizon). Define the constant L∈N to be the prediction horizon

on the mode process, i.e., the length of the sequences of modes.

In the setup of the Markovian jump system from Section 3.2, “patterns” refer to finite-

length sequences of modes in the mode process underlying the system (3.34), formalized

in Definition 13. Because we consider a fixed future horizon of length L, however, the length

of each pattern ψk is dk≡L for each k ∈{1, · · · , K}.

Definition 29 (Pattern-Occurrence Times for Uncertain MJS). Denote n,N [t] ∈ N to be

the current mode-index at current time t∈N, and suppose the estimated current mode is

ξn = ϕ̂
(t)
n . Then for each of the patterns in the collection Ψ from Definition 13, define the

following stopping times for each k ∈{1, · · · , K}:

τ̂
(t)
k|n,min{i ∈ N | ξn = ϕ̂(t)

n , ξn+i−L+1:n+i=ψk}. (3.35)

Definition 30 (Time and Probability of First Occurrence for Uncertain MJS). Under the

setup of Definition 29 and given the collection Ψ, the 1) minimum time of occurrence of any

pattern in Ψ and 2) the first-occurrence probabilities (i.e., the probability that each pattern

ψk will be the first observed) are given by:

τ̂ (t)
n , min

k∈{1,··· ,K}
τ̂

(t)
k|n, q̂

(t)
k ,P(τ̂ (t)

n = τ̂
(t)
k|n). (3.36)

This means ξ
n+τ̂

(t)
n −L+1:n+τ̂

(t)
n

= ψk if pattern ψk will be the first observed.
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To generate predictions from the mode process, we are interested in characterizing the

pattern-occurrence quantities defined by Problem 1. In the context of the MJS (3.34), these

are the following. First, we want the estimate E[τ̂
(t)
n ] of the mean minimum occurrence time,

which counts the number of mode-indices to observe the occurrence of any pattern from

Ψ, given the estimated current mode ϕ̂
(t)
n . Second, we want the estimated first-occurrence

probabilities {q̂(t)
k }, where q̂

(t)
k ∈ [0, 1] is the probability that pattern ψk ∈Ψ is the first to be

observed among all of Ψ. Because the statistics of the mode process are estimates instead

of true values, all the quantities from Section 3.1 are expressed with hats and superscript

(t)s. Moreover, it becomes necessary to consider a pattern collection Ψ (from Definition 13)

which varies with time.

Definition 31 (Time-Varying Collection). Let L∈N be the prediction horizon from Defini-

tion 28. We construct the collection of patterns Ψ[t], with time-varying cardinality K[t]∈N,

to be a subset of feasible length-L future sequences of modes given the estimated current

mode ϕ̂
(t)
n :

Ψ[t] , {ψ(t)
1 , · · · ,ψ(t)

K[t]} ⊆ {feasible (α1, · · · , αL)|P̂ (t)[ϕ̂(t)
n , α1] > 0, αi ∈X}. (3.37)

That is, each pattern ψk ∈Ψ[t] is feasible with respect to P̂ (t) in the sense of Definition 20.

A key difference between here and Problem 1 is that we keep the hat and superscript (t) in

the τ and qk quantities because we emphasize they are dependent on Ψ[t] and P̂ (t), ϕ̂
(t)
n from

Section 3.3.1, which change over time. Thus, we can obtain these formulas by extending the

results derived from the Markov chain case of the previous Section 3.1 to uncertain statistics

P̂ (t) and ϕ̂
(t)
n .

3.3.3 Control Law Design from Memory and Prediction

Let g :R+ × X × Rnx → Rnu be a generic function representing the mode-dependent state-

feedback control law designed by the Control Law Design component in Figure 3.2. The

Control Law Design component uses the expected occurrence time E[τ̂
(t)
n ] and probabili-

ties {q̂k}K[t]
k=1 computed from PLP (Section 3.3.2) to store the control policies of previously-

occurred patterns and to schedule control policies in advance. This procedure is described

more carefully in the following two propositions.

Proposition 1 (Scheduling Future Control Inputs). Suppose we are given the estimated

pattern-occurrence quantities E[τ̂
(t)
n ] and {q̂(t)

k }k from PLP. Let τ ≡E[τ̂
(t)
n ] be the shorthand
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Figure 3.3: A visualization of PLP with the pattern collection of three patterns described
in Example 2. Note L = 3. The middle row of circles shows the evolution of ϕ̂

(t)
n over time,

while the bottom row of boxes shows the process on the mode timescale (see Assumption 7).
The red circle and box indicate the estimated mode at current time t∈N. The blue circles
indicate the expected pattern which is first to occur; in this example, (3, 1, 4) has the highest
first-occurrence probability among any pattern in the collection Ψ[t]. Control input sequences
are then scheduled according to Proposition 1, shown in the green box.

notation (with a temporary abuse of notation) for the estimated expected minimum oc-

currence time for the specific pattern collection Ψ[t] given estimated current mode ϕ̂
(t)
n . To

schedule a control law in advance, we simply choose the pattern ψ
(t)
k ∈Ψ[t] corresponding

to the largest occurrence probability q̂
(t)
k . Then, until mode-index τ , the future sequence of

control inputs u[t :Tn+bτc+1 − 1] is

u[s] = g(s, ψ
(t)
k,1,x[s]), s ∈ [t :Tn+1 − 1] (3.38)

...

u[s] = g(s, ψ
(t)
k,L,x[s]), s ∈ [Tn+bτc :Tn+bτc+1 − 1].

Aside from operating on a longer timescale (mode process instead of system dynamics),
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Proposition 1 is similar in principle to standard model predictive control (MPC): only the

first control law in the sequence (3.38), corresponding to the first mode ψ
(t)
k,1, is applied at

the next mode-index n+ bτc.

Proposition 2 (Storing Past Control Inputs in Memory). Define U to be a table which maps

mode patterns ψ
(t)
k to control policies {g(t, ψ

(t)
k,1, ·), · · · , g(t, ψ

(t)
k,L, ·)} and the accumulated

state and control trajectories over each occurrence time. When ψ
(t)
k ∈Ψ[t] is first observed, a

new entry U [ψ
(t)
k ](t), defined by (3.38) for the specific ψ

(t)
k , is created. For anticipated future

occurrences of ψ
(t)
k , the system predicts future control inputs using control gain U [ψ

(t)
k ](t) in

the form of (3.38). The table entry for ψ
(t)
k is then updated at every occurrence time after

its first.

3.4 Concluding Remarks

In this chapter, we introduced the notion of pattern-learning in stochastic systems with re-

peated behaviors of interest, and discussed how the pattern-occurrence problems (Problem 1)

could be used in the design framework of Pattern-Learning for Prediction (PLP). We derived

formulas for the pattern-occurrence problem in both the i.i.d. sequence case (Section 3.1.1)

and the Markov chain case (Section 3.1.2) to determine the minimum expected occurrence

times of patterns and the first-occurrence probabilities. We provided an example of a PLP-

based controller architecture (Figure 3.2) for a specific form of linear discrete-time MJS with

uncertain statistics. There, the PLP component used the pattern-occurrence formulas for

the Markov chain case to take advantage of patterns that occurred in the underlying mode

process. Essentially, the controller architecture proposed in this chapter extends traditional

uncertain system controllers (which often leverage well-researched techniques in system iden-

tification, experience replay, and predictive control) to learn patterns in the system behavior.

In the following chapters, we provide in-depth discussions around the implementation of

each component for a variety of applications. We will show that incorporating PLP into the

control law design can save time, data consumption, and computational energy because there

is no need to devote resources toward re-computing a control action for a pattern that has

been observed before.
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94C h a p t e r 4

CONTROL OF DYNAMIC-TOPOLOGY NETWORKS

This chapter describes the first of three applications that demonstrate the effectiveness of

learning patterns to efficiently control JSSs: the control of networks that undergo changes in

topology. The control of networks which undergo parametric and/or topological changes has

become an important and widely-studied problem with recent trends in large-scale systems

and smart technology. In literature, an adaptive, consensus-based control scheme for complex

networks with time-varying, switching network topology was discussed in [32]. Distributed

target-detection and tracking using a dynamic sensor network was studied in [12], while [133]

described fault-tolerance against actuator failures in a multiagent system connected by a

switching topology network.

In this chapter, the specific type of dynamic-topology network application we consider is

that of a power grid which goes through topological changes due to faults like downed power

lines. The original power grid dynamics are linearized and modeled as a MJS whose modes

correspond to the different topologies. Sequences of line failures over time are chosen to rep-

resent the “patterns,” and we implement the modular controller architecture from Chapter 3

to perform disturbance-rejection in a way that is robust to these failures. We employ PLP to

recognize previously-occurred network topologies, then use the relevant closed-loop response

(which was stored in memory) to control it.

Chapter Organization

In Section 4.1, we specialize the MJS dynamics from the previous Section 3.2 to the power

grid. Sections 4.2 and 4.3 describe the concrete algorithms chosen to implement the Mode

Process ID (see Section 3.3.1) and Control Law Design (see Section 3.3.3) components for this

application. In particular, the Control Law Design is implemented with the novel system level

synthesis (SLS) framework for distributed, localized disturbance-rejection of linear large-

scale networks. Our experimental results in Section 4.4 compare the performance of our PLP-

based controller architecture, with Mode Process ID and Control Law Design implemented as

described previously, against two controllers without PLP. All three controllers are designed

around variations of the SLS framework, including a version that is robust to changing



network topology and a version which is data-driven. We discuss several important tradeoffs,

such as the size of the pattern collection and the system scale versus the accuracy of the

mode predictions, which show how different PLP implementations affect stabilization and

runtime performance.

4.1 System Setup

In this chapter, we demonstrate the proposed controller architecture to the following ex-

tension of (3.34), which switches among a finite number of different topologies G(m) ,

(V , E(m)),m ∈ {1, · · · ,M},M ∈N:

xi[t+ 1] = Aii(ξN [t])xi[t] +
∑

j∈Ni(ξN [t])

Aij(ξN [t])xj[t] +Biu[t] + wi[t]. (4.1)

Here, ns, |V|, i∈{1, · · · , ns}, the neighboring nodes of subsystem i areNi(m), {j ∈V : (i, j)

∈ E(m)}, and A(m) , [Aij(m)]∈Rnx×nx for each topology m∈{1, · · · ,M}. Since the

topology-switching mechanism abides by a Markov chain, the assumptions from Section 3.2

still hold. The mode process {ξn} is the index of the current topology at time t∈N with

N [t] being the number of topology changes made by time t.

4.2 Mode Process Identification

Recall from Section 3.3.1, the Mode Process ID component estimates the current mode

ϕ̂
(t)
N [t] and the TPM P̂ (t) based on state and control trajectories x[0 : t], u[0 : t]. In the

context of this dynamic-topology network, ϕ̂
(t)
N [t] is estimated using consistent set narrowing,

a variation of nested convex body chasing [70] extended specifically to dynamic-topology

network systems. Second, P̂ (t) is estimated using empirical counts based on ϕ̂
(t)
N [t] and on

estimates of the previous modes {ϕ̂(s)
N [s]}

t−1
s=0.

4.2.1 Consistent Set Narrowing

Because the distribution of the external noise process w[t] is unknown other than its norm

bound, we employ a consistent set narrowing approach, which checks the set of modes that

are “consistent” with the state/control observations. This method is similar to the nested

convex body chasing approach described in [70], which was used for model approximation

and selection for designing robust controls.

Denote the current mode-index as n,N [t]∈N. By Assumption 7, there are at most ∆T − 1

state and control observations, x[Tn : t] and u[Tn : t], associated with a single mode ϕn. We

thus construct a consistent set as follows.
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Figure 4.1: A visual diagram depicting Mode Process ID with consistent set narrowing. Here,
∆T = 10 and M = 5. With n , N [t], the upper row of gray circles denotes a realization {ϕn}
of the original unobservable mode process {ξn}. The middle row denotes the evolution of the
consistent set, updated via (4.2) using the state and control observations x[Tn : t], u[Tn : t].

The estimate {ϕ̂(t)
N [t]} of the mode process is at the bottom row of white circles.

Definition 32 (Consistent Sets). Over time, we construct a sequence of consistent sets

{C[t]}t∈N in the following way. For each n∈N, we initially set C[Tn],X because no ob-

servations about the current mode ϕn have been made yet. Then for each t∈ (Tn, Tn+1), if

C[t − 1] 6=∅, a new consistent set is formed by retaining all modes m∈C[t − 1] from the

previous iteration where each one-step value of state and control (x[t],x[t+ 1],u[t]) satisfies

the norm-boundedness condition of the noise w[t]:

C[t] =

{
m ∈ C[t− 1] |

t−1∧
r=Tn

1{‖x[r+1]−A(m)x[r]−Bu[r]‖∞≤w}
}
. (4.2)

As (4.2) is being performed for each t∈N, we update the estimate ϕ̂
(t)
N [t] of the current mode.

We use ϕ̂
(t)
N [t] ∈ argmaxζ∈X P̂

(t−1)[ϕ̂
(t−1)
N [t−1], ζ] if |C[t]| > 1; otherwise, we update ϕ̂

(t)
N [t] ∈C[t].

Remark 19. One property of consistent set narrowing, also observed in nested convex body

chasing approaches [70], is that at each time t∈Z≥0, the consistent set C[t] always contains

the true mode ϕN [t]. This is by definition of the consistent set, and the deterministic nature

of the condition (4.2) which defines the narrowing process (equivalent to verifying a simple

linear inequality). In the MJS literature, there have been notions of consistency similar

to (4.2) according to which unknown modes of MJS are estimated. For example, [136] verifies

consistency under the assumption that imperfect measurements y[t] 6= x[t] of the state x[t] are

collected. Thus, instead of using the state history x[0 : t] directly, the consistency condition
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is designed around the collected measurements y[0 : t] and propagated estimates of x[0 : t]

based on the initial condition x0 and the measurement equation.

Mode detectability is also a concept that has been studied; for instance, in [37], the mode

variable (analogous to ξt ∈X in our notation) emits its own signal (analogous to ϕ̂
(t)
t in

our notation) independently of the system dynamics and the previous modes. We note the

subscripts of t instead of n because the mode process in [37] is assumed to operate on the

same timescale as the system dynamics. In the consistent set narrowing approach, we obtain

ϕ̂
(t)
n from the state and control trajectories (x[t],x[t + 1],u[t]); this estimate also changes

with time as we collect more data about the trajectories.

4.2.2 Empirical Estimation of the TPM

For any n∈N, the estimate of ϕn is most accurate when the maximum possible amount of

data from the system has been obtained to create the estimate, i.e., among all t∈ [Tn, Tn+1),

the value of ϕ̂
(t)
n is most accurate at time t=Tn+1 − 1. For general TN [t] <t<TN [t]+1, P̂ (t)

is estimated based on ϕ̂
(t)
N [t] and only the most accurate estimates of the previous modes

{ϕ̂(TN [s]−1)

N [s] }t−1
s=0. Thus, in the TPM estimation procedure, there is only one estimate associated

each true mode ϕn. For simplicity of notation in this section only, we fix n,N [t] and denote

shorthand ϕ̂n′ ≡ ϕ̂
(Tn′−1)
n′ for n′<n and ϕ̂n≡ ϕ̂(t)

n .

If t=Tn for some n∈N, estimating P̂ (t) given {ϕ̂n′}nn′=1 is straightforward. By Assumption 8,

it is known which entries of the TPM are nonzero. Thus, we initialize P̂ (t) to be an M ×M
matrix with a 1 in the nonzero entries; when normalized, this corresponds to a stochastic

matrix which has uniform distribution over the feasible transitions (e.g., 1/3 probability each

for a row with three nonzero entries) but for estimation purposes, we keep the estimate of

the TPM unnormalized until the end of the simulation duration. For each consecutive pair of

transitions (ϕ̂n′ , ϕ̂n′+1) for n′ ∈{0, · · · , n− 1}, we take P̂ (t)[ϕ̂n′ , ϕ̂n′+1] = P̂ (t)[ϕ̂n′ , ϕ̂n′+1] + 1.

If Tn<t<Tn+1 for some n∈N, we have two separate subcases. If ϕ̂
(t−1)
n = ϕ̂

(t)
n , then we sim-

ply follow the approach above and compute P̂ (t) using the sequence {ϕ̂n′}nn′=1. Otherwise, if

ϕ̂
(t−1)
n 6= ϕ̂

(t)
N [t], then we again follow the approach above and compute P̂ (t), but using the se-

quence {ϕ̂n′}n−1
n′=1 instead. To incorporate the mode estimate at current mode-index n, we first

need to reset the TPM estimate of the last transition via P̂ (t)[ϕ̂n−1, ϕ̂
(t−1)
n ] = P̂ (t)[ϕ̂n−1, ϕ̂

(t−1)
n ]−

1; then we update as usual P̂ (t)[ϕ̂n−1, ϕ̂
(t)
n ] = P̂ (t)[ϕ̂n−1, ϕ̂

(t)
n ] + 1. Once the mode sequence es-

timates have been processed until current time t, we update P̂ (t) such that each row is
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normalized to sum to 1.

Remark 20. The need for including Mode Process ID in the controller architecture Fig-

ure 3.2 is closely related to the notion of mode observability, which has been studied ex-

tensively in the literature [150, 2, 11, 136]. One common setup is that the measurements

come from a (linear) noisy measurement equation such that y[t] 6= x[t], and derive mode ob-

servability conditions from the imperfect observations y[t] of the state x[t]. Also, the mode

process is assumed to operate on the same timescale as the system dynamics. Compared

to these methods, the algorithms we chose for implementing Mode Process ID hinge upon

assumptions that simplify the mode observability problem. For example, in Assumption 8,

the state x[t] is observable and in Assumption 7, we fix the mode switching times to be

constant and deterministic rather than stochastic.

We again emphasize that this is because the focus of our paper is on the impact of PLP on

control design rather than mode observability, and we aimed to set up a simple scenario to

show that our approach can be used when the system has uncertainties. Thus, not all of our

assumptions are limiting; for example, compared to our approach, [150] explicitly imposes

that the external noise processes {w[t]}t, {v[t]}t are Gaussian white and neither [150] nor [2]

consider the impact of control.

Remark 21. We qualitatively discuss some conditions for mode observability in our specific

implementation of Mode Process ID. First, the modes {A(1), · · · , A(M)} cannot be too

“similar” to each other with respect to a certain metric d, (e.g., if d(A(m1), A(m2))<ε for

some threshold ε> 0 and two distinct modes m1 6=m2 and m1,m2 ∈X ). Second, when ∆T is

too short, the consistent set may not converge to a single mode even if d(A(m1), A(m2))≥ ε
for all pairs (m1,m2)∈X such that m1 6=m2. Rigorous derivation of these conditions for our

specific case are deferred to future work. This includes designing d and ε for the consistent

set narrowing approach, and deriving conditions on ∆T and the set {A(1), · · · , A(M)} for

guaranteed convergence towards a singleton consistent set. Although these conditions are

contingent upon our simplifying assumptions, they are expected to be similar to those derived

in the aforementioned literature.

4.3 Control Law Design

In this section, we describe our choice of implementation for Memory and Prediction, then

tie it into our choice of implementation for the the Control Law Design component. The

design of Memory is inspired by experience replay techniques that are commonly employed
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for reinforcement learning, in particular, episodic memory for control [91, 20]. One well-

known control method that explicitly incorporates the predictions is model predictive control

(MPC), and so we address Prediction and Control Law Design simultaneously. For the pur-

poses of our topology-switching network case study here, we also implement non-predictive

Control Law Design using the novel system level synthesis approach [152, 5], including a

topology-robust version (see Section 4.3.3) and a data-driven version [160, 3].

4.3.1 Incorporating Predictions

Our implementation of the memory component in this controller architecture is achieved

using a table U which maps patterns of interest to the optimal control sequences we designed

for them in our experiment so far (see Proposition 2); this also includes explicit state and

control trajectories. This implementation was inspired by episodic memory [91] which can

be added to learning-based control methods (e.g., reinforcement learning) to recall specific

experiences and their rewards [20]. Our table U is implemented according to Proposition 2

and its entries are updated in two ways: 1) the control law is updated in an entry for an

existing pattern, or 2) a new entry is created for a newly-observed pattern ψ at time t, where

ψ ∈Ψ[t+ 1] but ψ 6∈Ψ[t]. We describe the control law synthesis and update procedures in

the following Section 4.3.2.

For the prediction component, we specifically recall model predictive control (MPC). Stan-

dard MPC for discrete-time linear dynamics seeks to predict a future sequence of controls

{u[t],u[t + 1], · · · ,u[t + H]} which minimizes some cost functional at each timestep t∈N,

for some prediction horizon H ∈N. Once the first control input u[t] is applied to the system,

the procedure is repeated at the next time t + 1. Although intuitive, incorporating both

short-term and long-term predictions for online control have been proven to be beneficial,

even when the system to be controlled is perturbed by either random and adversarial dis-

turbances [31]; in [164], this is demonstrated explicitly with the linear quadratic regulator.

For concreteness, we are inspired by the methods of [117] and [101], which discuss MPC for

MJSs, and we extend their approaches to our setting (Section 4.1).

We remark that H, like prediction horizon L for the mode process, is a user-chosen hy-

perparameter; one reasonable choice could be to make it time-varying and set it equal to

∆T − (t−TN [t]) at each t. Given the estimated current mode m, ϕ̂(t)
N [t], the cost function we
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seek to optimize is the following mode-dependent quadratic cost function:

J(t,m) ,
H∑
s=t

(x[s]>Q(m)x[s] + u[s]>R(m)u[s]) + x[H]>Qf (m)x[H]. (4.3)

The main distinction is that the prediction part of MPC is done on the estimated mode

process instead of the system dynamics. Let t∈N and n,N [t], and suppose the consistent

set narrowing approach of Section 3.3.1 estimates the current mode to be ϕ̂
(t)
n . Again, by As-

sumption 7, there are at most ∆T − 1 state and control observations x[Tn : t] and u[Tn : t]

associated with each mode ϕn. Thus, for the control input u[t] = K(t, ϕ̂
(t)
n )x[t] at time t, the

gain K(t, ϕ̂
(t)
n )∈Rnx×nu associated specifically with mode ϕ̂

(t)
n can be designed using standard

linear optimal control tools such as LQR minimization.

4.3.2 System Level Synthesis

For the purposes of this application, we employ the novel system level synthesis (SLS) [152, 5]

approach for distributed disturbance-rejection in linear discrete-time network systems with

static topologies G, (V , E), expressed as

x[t+ 1] = Ax[t] +Bu[t] + w[t]. (4.4)

The standard state-feedback control law for systems of this form is given by u[t] =Kx[t] and

in z-transform expression, the resulting closed-loop system is given by x = (zI−A−BK)−1w.

However, for large-scale systems (i.e., large-dimensional matrices A and B), optimizing over

the transfer function (zI − A − BK)−1 by solving for K is difficult. Thus, a key feature

of SLS is that it reparametrizes the control problem: instead of designing just the open-

loop feedback gain K, SLS designs for the entire closed-loop system via response maps

Φ, {Φx,Φu} such that x[0 : t] = Φxw[0 : t] and u[0 : t] = Φuw[0 : t], where w[t] is an additive

external disturbance. The main result can be summarized as follows.

Lemma 13. For the linear, discrete-time static dynamics (4.4), the following are true. First,

the affine subspace described by[
I − ZÂ −ZB̂

] [Φx

Φu

]
= I (4.5)

parametrizes all possible system responses Φ, where Â , blkdiag(A, · · · , A,0)∈RHnx×Hnx ,

B̂ is defined similarly, Z is the block-downshift operator, nx ∈N is the state dimension,
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and H ∈N is a chosen finite horizon over which control is performed. Second, for any Φ

which satisfies the condition in (4.5), the feedback gain K ,ΦuΦ
−1
x achieves the desired

internally-stabilizing system response.

Then the state-feedback controller is implemented as follows:

x̂[t] =
T∑
k=2

Φx[k]ŵ[t+ 1− k], ŵ[t] = x[t]− x̂[t], u[t] =
T∑
k=1

Φu[k]ŵ[t+ 1− k], (4.6)

with the controller’s internal state ŵ and system responses {Φx,Φu}, which are closed-loop

transfer function maps defined as x = Φxw and u = Φuw. These transfer function maps are

constrained to finite time horizon H, for which we will denote {Φx,Φu} ∈ FH . It was shown

in [104] that even when this relationship is approximately satisfied, the implementation (4.6)

produces a stable closed-loop response.

Definition 33. We associate a local h-hop set Li,h with each system i ∈ V to be the

set of systems j for which the (i, j)th entry of Gh is nonzero, where G∈{1, 0}M×M is the

adjacency matrix of A in (4.4). The system response is said to be h-localizable iff for every

i ∈ V , j /∈ Li,h, we have Φx,ij = 0, and analogously for Φu. We denote this as {Φx,Φu} ∈ Lh.

The Φ implementation also makes SLS more suitable for distributed and localized control law

design in large-scale linear systems, and so Φ is often implemented as Φ(i), {Φ(i)
x [s],Φ

(i)
u [s]}

for each node i∈V and its local subsystem Li,h. Here, s∈{1, · · · , H} is the index of the

spectral component. Both time horizon H and number of neighboring hops h are parameters

chosen by design based on properties such as the scale and topology of G.

The desired behavior can then be achieved by constraining {Φx,Φu} to lie in an appropriate

convex set S, and solving an optimization problem of the form:

min
{Φx,Φu}

f(Φx,Φu, Q,R) s.t. {Φx,Φu} ∈ S, (4.7)

where Q ∈ RNx×Nx , R ∈ RNu×Nu are cost matrices which assign weight to Φx,Φu respectively.

The set S typically includes system-to-system communication delay constraints as well as the

necessary robustness constraints to keep the closed-loop response stable during the process

of learning the uncertainties.
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4.3.3 Robust Adaptation to Dynamic Topologies

We can also extend SLS to account for dynamic topologies G(m), (V , E(m)) for m∈N repre-

senting the index of the topology. Let Φ
(i,t)
m , {Φ(i,t)

x,m[s],Φ
(i,t)
u,m[s]} define the ith local response

map Φ(i) which is created specifically for topology m∈{1, · · · ,M}. As we demonstrate for

this case study, the mode in our original dynamics (3.34) corresponds to the index of the cur-

rent topology the system is in. Topology-robust SLS (see Section 4.3.3) essentially attempts to

design a single {Φx,Φu} response that can simultaneously stabilize multiple topologies (i.e.,

distinct A matrices). Conditions for simultaneous stabilization for a collection of discrete-

time LTI systems have been studied extensively in past literature: some results (e.g., [19])

express the condition by ensuring that the closed-loop transfer function between every pos-

sible plant-controller pair does not have any pole-zero cancellations, while others (e.g., [26])

derive conditions based on the algebraic Riccati equation. To keep our discussion focused,

we do not state these conditions here.

Centralized Implementation

We begin with a nominal topological structure A∗ of the network. We are aware that at least

one link has been disconnected, and although we do not know which one(s), we are given a

finite collection ofK candidate link failure matricesD, one of which gives us the true topology

A = A∗+D. This setup is consistent with real-world scenarios where we are oftentimes able

to vaguely identify the local region in which a potential link failure has occurred. We assume

that none of the candidate matrices causes the graph to become disconnected.

With this premise, the system dynamics are given by x[t+ 1] = (A∗+D)x[t] +Bu[t] + w[t].

The matrix A∗ denotes the known nominal system and link failures D enter in the form of

perturbations to A∗.

To characterize the set of D, we introduce basis matrices Al to encode all possible single-link

modifications so that linear combinations can be used to model a general number of failures

corresponding to each candidate D. We will denote this set as P0, and formally refer to it as

the initial consistent set :

P0 :=

{
M∑
l=1

ξlAl : ξl ∈ {−1, 0, 1}

}
, (4.8)

where coefficient ξl = 1 is for when a link is added, ξl = −1 for when a link is deleted, ξl = 0

for when a link is unchanged. Because it is a discrete combinatorial set, we will impose

K << 2M to make the problem tractable.
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At each timestep, the consistent set is updated using new observations of (x[t+1],x[t],u[t]):

Pt+1 :=

{
D ∈ Pt :

∥∥∥∥∥x[t+ 1]−

(
A∗ +

M∑
l=1

ξlAl

)
x[t]−Bu[t]

∥∥∥∥∥
∞

≤ η

}
. (4.9)

We will now use SLS to design the controller
{

Φ
(t)
x ,Φ

(t)
u

}
, where the superscript (t) is included

to show that the control laws may change over time as more of the topology is learned. In the

context of our topology adaptation problem, the following inequalities should be satisfied:

T∑
k=1

∥∥∆k(A
′, B,Φ(t−1)

x ,Φ(t−1)
u )

∥∥ ≤ λt ∀A′ = A∗ +D, D ∈ Pt, (4.10a)∥∥∥∥∥
T∑
k=1

(
Φ(t−1)
x − Φ(t)

x

)
[k + 1]ŵ[t− k]

∥∥∥∥∥ ≤ γ. (4.10b)

λt is referred to as the robustness margin and for each timestep t it determines whether the

controller is stabilizable with the tth polytope of uncertainties. γ is the adaptation margin

and ensures that the system response Φx doesn’t fluctuate wildly with largely-varying w.

The full optimization problem for centralized robust control which adapts to topological

changes is hence presented:

min{
Φ

(t)
x [k],Φ

(t)
u [k]

}T
k=1

,λt

f
(
Φ(t)
x ,Φ

(t)
u , Q,R

)
=


λt if λt ≤ λ∗

T∑
k=1

∥∥∥QΦ
(t)
x [k] +RΦ

(t)
u [k]

∥∥∥
1

else
. (4.11)

s.t. {Φ(t)
x ,Φ

(t)
u } ∈ FT and (4.10)

The two separate steps expressed in the objective function above are taken because op-

timizing for a performance objective is only reasonable if robust stability is feasible with

uncertainty Pt.

Remark 22. In implementation, the inclusion of (4.10b) to S is made optional. This is

because the incorrect system response may be learned and closely adhered to for the rest of

time if γ is chosen too small, resulting in an unstable controller. This is problematic in the

case of topological uncertainties, where the sparsity patterns of all the candidate topologies

D may be different.
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Localized Implementation

A localized version of the algorithm essentially decomposes (4.11) into multiple independent

subproblems. For system i, the submatrix Ai of consideration only includes the rows of A

corresponding to the systems in Ld(i) (Definition 33). This means each system only keeps

track of link modifications within its own local subset. Further, let dc be the communication

delay matrix between systems of the network, defined as dc(i, j) = |j − i| if j ∈ Ld(i), and

∞ otherwise.

Each system i begins with a local initial consistent set P(i)
0 , defined the same way as in (4.8)

but instead with Mi basis matrices A(i)
l which have dimensions equal to Ai. Each consistent

set is locally updated from P(i)
t to P(i)

t+1 in a fashion similar to (4.9).

To design local controllers, we solve a local optimization problem of the form (4.7) for the

ith columns of the system response matrices Φ
(t)
x,i,Φ

(t)
u,i. The constraints follow analogously to

(4.10). Define the submatrix

∆j
k

(
A,B,Φ

(t)
x,ji,Φ

(t)
u,ji

)
:= Φ

(t)
x,ji[k + 1]−

∑
l∈N (j)

AjlΦ
(t)
x,li[k]−BjΦ

(t)
u,ji[k], (4.12)

where i, j ∈ V , k = 1, · · · , T , and t iterates over the simulation time. This allows us to define

our robustness margin constraints∥∥∥∥∥∥
∑

j∈Ld(i)

∆j
k

(
A′, B,Φ

(t)
x,ji,Φ

(t)
u,ji

)∥∥∥∥∥∥ ≤ ciρ
k−1 ∀A′ = A∗ +D,D ∈ Pt ∀k ≤ T − 1, (4.13a)

ci

T∑
k=1

ρk−1 ≤ λ
(i)
t + ε, ε ≥ 0. (4.13b)

Unlike the centralized formulation, instead of a constant, we introduce ρ > 0 and ci > 0 to

ensure faster exponential convergence to zero, which is motivated by the possibility of local

disturbances propagating throughout the network in a cascading manner if it is not killed

quickly enough within the local region.

The full optimization problem for localized robust, topologically-adaptive control is hence

presented:

min{
Φ

(t)
x [k],Φ

(t)
u [k]

}T
k=1

,λt,ε

f
(

Φ
(t)
x,i,Φ

(t)
u,i, Qi, Ri

)
=

T∑
k=1

∥∥∥QΦ
(t)
x,i[k] +RΦ

(t)
u,i[k]

∥∥∥
1

+ rcε. (4.14)

s.t. {Φ(t)
x ,Φ

(t)
u } ∈ Ld ∩ FT and (4.13)
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Remark 23. The objective function described here is equivalent to the two-part objective

function in (4.11). The slack variable ε (scaled by fixed rc > 0) helps reduce the two-

part process into a single-step optimization problem; when ε is very large, the optimization

problem effectively focuses on shrinking the polytope until ε is sufficiently reduced.

Iterative Implementation for Dynamic Topologies

The iterative localized robust extension of SLS for the original topology-switching network

dynamics (4.1) is a simple variation of the localized implementation from the previous dis-

cussion, namely with time-varying local sets L(t)
i,h. According to [116, 157], consensus among

distributed systems is achievable with time-varying topologies, under conditions such as joint-

connectedness (the union of the graphs in the entire collection of topologies is connected)

among topologies that are visited infinitely many times. The initial true system topology

A(ξ0) (with adjacency matrix G(ξ0)) is known.

Each subsystem keeps a nominal topology estimate A(i)(α∗(t)) and updates it whenever it

detects that a switch has been made. The transition probability matrix P of the chain is

unknown to the system, and each subsystem maintains an estimate P̂ (i), which it updates

both locally and via simple averaging with the values of its other neighbors [157]. Since the

methodology is the same across all subsystems i ∈ V , the subscript i is henceforth removed

for notational simplicity.

Similar to (4.8), the initial consistent sets are formed from Mk basis matrices A(i,k)
` where

k = 1, · · · , K, i ∈ V , and the collective modification is expressed as a linear combination

of these bases. At each timestep t, an observation x[t] is made from the system (4.1). We

identify which coefficients remain consistent with the system dynamics (x[t],x[t−1],u[t−1])

by updating the consistent set in a fashion similar to (4.9) for each i. Because identification

for each system i was only done using information local to i, additional consensus may be

performed to further narrow down the consistent set in order to estimate the state of the

Markov chain more precisely.

As before, it is most important to maintain system stability while this identification and

consensus process is being done. To construct a topologically-robust controller {Φ(t)
x,i,Φ

(t)
u,i} for

each system i, we simply solve the optimization problem (4.14) with the same communication

delay matrix dc defined as before and time horizon H.
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4.3.4 A Data-Driven Formulation

To be able to use PLP with the SLS approach, we require a formulation of SLS which

is driven by data. Toward that end, we leverage data-driven SLS [160, 3], which extends

traditional SLS using a characterization based on Willems’ fundamental lemma [156], which

parametrizes state and input trajectories based on past trajectories under the conditions of

persistence of excitation. Define the Hankel matrix

Ĥr(x[0 : H]),


x[0] x[1] · · · x[H − r]
x[1] x[2] · · · x[H − r + 1]

...
...

. . .
...

x[r − 1] x[r] · · · x[H − 1]


for finite time horizon H and some r∈N. We say the finite-horizon state trajectory x[0 : H]

is persistently-exciting of order r if Ĥr(x[0 : H]) is full rank. In the data-driven formulation

of SLS, the achievable subspace described by (4.5) can be equivalently written as the set{[
ĤH(x[0 :H])

ĤH(u[0 :H])

]
G

∣∣∣∣ G s.t. Ĥ1(x[0 :H])G = I

}
. (4.15)

Now, let n∈N and n′ ∈N, n′>n, be such that at times Tn and Tn′ , the system (3.34) have

switched to the same mode m∈X . For our PLP approach, the state/control trajectories

{x[Tn−1 :Tn−1],u[Tn−1 :Tn−1]} and {x[Tn′−1 :Tn′−1],u[Tn′−1 :Tn′−1]} can be collectively

used to design the optimal control law for mode m, i.e., we use horizon Tn−1 :Tn− 1 in place

of [0 :H] in (4.15). To implement memory, we store (in U) previous trajectories of the system

corresponding to the same mode, and continue to append to it as the simulation progresses.

To apply Proposition 1, SLS is run more than once to compute a new Φ for every new

estimated mode m, ϕ̂(t)
n , hence the dependence of Φ

(i,t)
m on time t∈N. By Proposition 2,

the Φ
(i,t)
m are stored and updated over time in the table U .

4.4 Experiment Results

The overall control objective is to minimize the mode-dependent quadratic cost function (4.3)

subject to constraints imposed by various implementations of SLS from Section 4.3.2. Namely,

we consider three versions of the controller architecture Figure 3.2; a visual distinction among

the three is shown in Figure 4.2:

• Baseline [First row of Figure 4.2]: here, Figure 3.2 is implemented only using Mode

Process ID; both PLP and MPC are not used. Control Law Design uses the basic SLS
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Figure 4.2: The time-varying control law for each of the three versions of the controller
architecture, designed based on the estimated mode ϕ̂

(t)
n and the consistent set C[t]. Each

horizontal bar represents a time duration of length ∆T . The baseline uses the previous law
until the consistent set converges to a singleton set (white sub-bars). Topology-Robust is able
to control multiple modes simultaneously, so it uses a robust law (red sub-bars) until the
convergence. PLP (future horizon L= 3) uses the law corresponding to the predicted next
mode (blue sub-bars) until convergence; note that when the mode in the converged consistent
set is equivalent to the predicted next mode, the control policy need not be changed.

approach from Section 4.3.2. We minimize the cost (4.3) subject to the achievabil-

ity constraint described by (4.5) and the locality constraint described with the sets

{Li,h}i∈V . Because the topology changes over time and basic SLS is not designed for

time-varying topologies, this requires the optimization to be solved multiple times.

• Topology-Robust [Second row of Figure 4.2]: we have the same architecture as above,

but SLS is replaced with the method of Section 4.3.3, an extension of SLS to network

dynamics under time-varying topological changes. A single common control law Φ(i,t)

is designed for all consistent modes in C[t], and this common law is used until time

t∗>t when |C[t∗]|= 1, after which standard SLS is used.

• PLP [Third row of Figure 4.2]: we combine the original architecture proposed by Fig-

ure 3.2 with the extended SLS approach described in Section 4.3.2. We minimize the

cost (4.3) subject to the data-driven achievability constraint described by (4.15) and

the locality constraint described with the sets {Li,h}i∈V . Given pattern collection Ψ[t]

at time t∈N and mode-index n,N [t], if ψ, (ψ1, · · · , ψL)∈Ψ[t] is expected to occur

at mode-index n+E[τ̂
(t)
n ]∈N, the control law for node i∈V is scheduled to be Φ

(i,s)
m ,
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Figure 4.3: [Left] The different possible topologies of the Hexagon System. [Right] The un-
derlying Markov chain for topology transitions.

where m=ψ1 and s∈ [T
n+E[τ̂

(t)
n ]
, t∗), where Tn is defined in Assumption 7 and t∗ is the

time after T
n+E[τ̂

(t)
n ]

when |C[t∗]|= 1. For times s∈ [t, T
n+E[τ̂

(t)
n ]

) where a prediction is

not available, we revert to the baseline controller.

The three architectures are each tested on two specific network systems of the form given

in (4.1).

• (Small-Scale) Hexagon System: the network system (4.1) consists of a hexago-

nal arrangement of ns = 7 nodes and M = 8 topologies (see Figure 4.3). When PLP

is included, the collection of patterns Ψ[t] is constructed with equality in (3.37);

hence, Problem 1 become easy to solve–every ending string in S is an initial-ending

string, E[τ̂
(t)
n ] =L for each t∈N, n,N [t], and determining argmaxk{q̂

(t)
k } reduces to a

maximum likelihood problem.

• (Large-Scale) Rectangular Grid System: the network system (4.1) consists of a

10×10 rectangular grid arrangement of ns = 100 nodes and M = 20 topologies (see Fig-

ure 4.4). The true TPM is a M ×M stochastic matrix with no self-transitions. When

PLP is included, the collection Ψ[t] is constructed with strict subset in (3.37), which

means the pattern-occurrence formulas from Theorems 10 and 11 must be used to

solve Problem 1.

For both hexagon and grid systems, the specific A and B matrices in (4.1) are the linearized

discrete-time power grid dynamics given detailed below. Following the model used in [152],
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Figure 4.4: The different possible topologies of the 10× 10 Rectangular Grid System.

power networks are composed of several synchronized oscillators coupled together to operate

under the following nonlinear second-order ODE swing dynamics

ciθ̈i + biθ̇i = −
∑
j∈Ni

aij(θi − θj) + wi + ui,

where for the ith system (typically called a bus) of the network, ci is its inertia, bi is a

damping factor, wi is the external disturbance, and ui is the control action. The state of

each system is described by the relative phase angle θi between the bus’s rotor axis and

resultant magnetic field, as well as its derivative, the frequency θ̇i. Use x(i) =
[
θi θ̇i

]T
and

rewrite the dynamics in matrix form as:[
θ̇i

θ̈i

]
=

[
0 1

−ai
ci
− bi
ci

][
θi

θ̇i

]
+
∑
j∈N (i)

[
0 0
aij
ci

0

][
θj

θ̇j

]
+

[
0

1

]
wi +

[
0

1

]
ui, ai :=

∑
j∈N (i)

aij. (4.16)

For our experiments, we use the same power grid parameters as in [152]. Discretize the

system with sampling time ∆t (distinct from ∆T ) using the mean-value theorem to obtain

109



the following approximated model:[
x

(i)
1

x
(i)
2

]
[t+ 1] =

[
1 ∆t

−ai
ci

∆t 1− bi
ci

∆t

]
︸ ︷︷ ︸

,Aii

[
x

(i)
1

x
(i)
2

]
[t] (4.17)

+
∑
j∈N (i)

[
0 0

aij
ci

∆t 0

]
︸ ︷︷ ︸

,Aij

[
x

(j)
1

x
(j)
2

]
[t] +

[
0

∆t

]
wi[t] +

[
0

∆t

]
︸ ︷︷ ︸
,Bi

ui[t].

Even though the Control Law Design component of all three architectures is localized and

distributed by the nature of SLS, we initially assume Mode Process ID and PLP are cen-

tralized. This is reasonable under Assumption 7, which imposes that communications among

subsystems are much faster compared to the switching of the topologies. This is often the

case in fault-tolerance for large-scale network applications such as the power grid and the in-

ternet, where faults are expected to occur rarely. Furthermore, in Section 4.4.2, we introduce

the implementation of localized, distributed Mode Process ID and PLP. For simplification

of terminology in this section only, we overload the terminology “PLP” to refer to both the

controller with PLP (third row of Figure 4.2) and a component of the controller architecture

in Figure 3.2 that leverages other algorithms, with the understanding that PLP truly refers

to the latter.

4.4.1 Tradeoff Comparison Results

Each simulation is run by applying one of the three controller architectures to one of the two

network systems. We run a total of 20 Monte-Carlo experiment trials and each trial is run for

Tsim = 400 timesteps with ∆T = 10. The PLP architecture also uses a future horizon of L= 3.

A sample trajectory of the states and control versus time for all three architectures is shown

in Figure 4.5 for the hexagon system; we reduce the time horizon to 80 timesteps for this

figure only so that there is better clarity in distinguishing the lines. Because the objective

is the reject external disturbances, the state values waver around the zero line. Moreover,

under Topology-Robust, the state has the smallest oscillations around zero (green), followed

by PLP (red), and finally the baseline (blue). A sample evolution of the consistent set

narrowing approach applied for Mode Process ID is also shown in Figure 4.6 for the baseline

and PLP architectures; again, we plot for a shorter horizon of time (120 timesteps) for easier

visibility. The PLP architecture manages to successfully narrow the consistent set down to

a singleton within the ∆T time interval more often than the baseline, and consequently also
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manages to track the true mode more precisely.

The comparisons among the different scenarios are performed by evaluating one of the follow-

ing four performance metrics. First, to measure the control effort, an LQR-like cost (4.18a)

is averaged over the entire simulation duration Tsim. Second, to measure the disturbance-

rejection performance, we consider the the time-average error norm (4.18b). Third, for the

baseline controller architectures, we measure the proportion (4.18c) of the simulation dura-

tion in which the matching control law is used to control the current topology. Here, if the

true mode is given by ϕn at time t, we say that the matching control law {Φ(i,t)
m : i ∈ V} is

used if m, ϕ̂(t)
n =ϕn. Fourth, the total runtime is recorded.

1

Tsim

Tsim∑
t=1

x[t]>Inxx[t] + u[t]>Inuu[t], (4.18a)

1

Tsim

Tsim∑
t=1

‖x[t]‖2 , (4.18b)

1

Tsim

Tsim∑
t=1

1{ϕ̂(t)
n = ϕn}, (4.18c)

where Inx , Inu are identity matrices of the appropriate dimensions.

The metrics (4.18) are further averaged over 20 Monte-Carlo simulations with varying initial

condition x0, noise process w[t], and true realization {ϕn} of the mode process {ξn}. The

results are tabulated in Table 4.1 with the three architecture names abbreviated: “Base” as

the baseline, and “TR” as Topology-Robust. The proportion of time the matching control law

is irrelevant for Topology-Robust because it computes a single law to be used for multiple

topologies, hence the “–” entries. We also plot a sample evolution of
∥∥∥P − P̂ (t)

∥∥∥ for one

Monte-Carlo trial in Figure 4.7, where the norm taken is the Frobenius norm. Because P̂ (0)

begins with uniform probabilities in the nonzero positions, there are some variations in the

norm difference, but overall, the curve decreases with time, indicating convergence to within

a small error ball of the true TPM. This also allows for the pattern-occurrence quantities to

be solved more accurately, which improves the prediction performance of PLP. As Table 4.1

shows, this also enables better controller performance (LQR Cost and Error Norm) of PLP

over the other two architectures.

The values in both sub-rows of the “LQR Cost” row in Table 4.1 suggest that the time-average

LQR costs of all three controller architectures increase as the scale of the system gets larger.
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Base
PLP
TR

Figure 4.5: States and control versus time for one Monte-Carlo trial in the hexagon system.
We abbreviate the baseline controller as “Base”, and Topology-Robust as “TR.”

This is expected because the same values of horizon H and number of hops h (defined in

Section 4.3.2) were chosen for the SLS implementation of both systems. In practice, H and

h must be adjusted as the scale of the system changes, but for fairer comparison we use the

same values for both the hexagon and grid systems. Furthermore, assuming a small margin

of error, Topology-Robust should theoretically stabilize the system better than the baseline

at the expense of increased control effort because Topology-Robust uses a single common

law is for multiple different modes. This can be validated empirically by the entries in the

“LQR Cost” and “Error Norm” rows, and is also supported by Figure 4.5, where the state’s

oscillations around the zero line are the largest in magnitude with the baseline and the least

with Topology-Robust.

More interestingly, the PLP architecture manages to balance the performance metrics better

compared to the the other architectures: LQR cost similar to the baseline architecture, error

norm similar to the Topology-Robust architecture, and runtime faster than either the baseline

or the topology-robust extension. The improved runtime comes from the PLP component’s
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Base
PLP
True

Base
PLP

Figure 4.6: Modes versus time for one Monte-Carlo trial of the hexagon system. In the bottom
subfigure, thin black vertical lines indicate intervals of length ∆T .

Base
PLP

Figure 4.7: Frobenius norm of the difference between the true TPM P and estimated TPM
P̂ (t) versus time for one Monte-Carlo trial of the hexagon system.
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Metric / Controller Base TR PLP

LQR Cost 36.4537 42.5596 34.7242

445.8137 472.1195 442.1264

Error Norm 2.2146 1.5546 1.5236

6.1294 5.9453 5.8244

Prop. Match 0.4304 – 0.615

0.1533 – 0.16

Runtime 11.8314 67.2254 2.2689

101.3741 X 38.5824

Table 4.1: The average performance metrics [row] over 20 Monte-Carlo simulations of
Tsim = 400 timesteps, for each pair of controller architecture [column]. In each cell, the top
value is recorded for the hexagon system and the bottom is for the grid system. For the sake
of space, we abbreviate “Base” as the baseline controller, and “TR” as Topology-Robust.

ability to refrain from recomputing parts of the original SLS optimization by preserving the

control inputs of previously-observed topologies and state/control trajectories (see Propo-

sition 2). Moreover, the ability of PLP to predict the expected occurrence times of future

mode patterns allows for the scheduling of SLS controllers in advance (see Proposition 1); as

seen in Figure 4.2, this improves the error norm when Pattern-Learning manages to predict

the future mode correctly. The “Prop Match” row of Table 4.1 shows that this is indeed

the case: the PLP architecture consistently uses the matching control law more often than

the baseline regardless of network system. This is expected since PLP can be viewed as an

additional mode estimation algorithm, and so the estimate ϕ̂
(t)
n is on average better with

PLP than without. In general, this suggests that appending PLP to a baseline controller

that is neither predictive nor designed to be robust to time-varying topologies could be used

as an alternative to Topology-Robust, especially in complex systems where simultaneous

stabilization isn’t possible or takes too much computation time, memory, and control effort.

We remark that the difference in the construction of the pattern collection Ψ[t] in the hexagon

system versus the grid system also has a role in the relationship among the performance met-

rics, especially in how often the matching control law is used and the error-norm performance.

Recall that for the hexagon system, Ψ[t] is created by accumulating every feasible mode se-

quence of length L, which implies E[τ̂
(t)
n ] =L, whereas in the grid system, a random subset

of feasible mode sequences is chosen per time t. In the PLP column of the “Prop. Match”

row, we see the matching control law is used less often in the grid system than the hexagon
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system, which is expected since E[τ̂
(t)
n ]≥L for the grid system and predictions for a longer

horizon of mode-indices become less accurate. Thus, increasing the number of patterns in

the pattern collection decreases the expected minimum occurrence time, which yields more

accurate estimates of future modes. The Base and PLP columns in the “Error Norm” row

suggest that better predictions enable better disturbance-rejection; this implies that PLP

will more closely resemble the error norm of the baseline when less patterns are included in

Ψ[t].

4.4.2 Localized Pattern-Learning and Prediction

Table 4.1 demonstrates that performance deteriorates with larger scale, and this can be

attributed to the fact that both Pattern-Learning and Mode Process ID are implemented in

a centralized fashion, which conflicts with the localized, distributed nature of SLS. We now

briefly discuss an extension of PLP to a localized, distributed implementation of PLP. Since

the previous section already compared the performance of PLP to those of the controllers

without PLP, we focus our discussion here on how the localized implementation of PLP

compares to the centralized version.

Let current time be t∈N and n,N [t]. Based on information from its own local subsys-

tem (4.1), each node i∈V stores and updates three objects: 1) its own estimates of the

current mode ϕ̂
(i,t)
n and TPM P̂ (i,t) (computed via Section 3.3.1), 2) its own estimates of the

pattern-occurrence quantities E[τ̂ (i,t)], {q̂(i,t)
k }Kk=1 (computed from Section 3.1.2), and 3) its

own pattern collection Ψ(i)[t] and pattern-to-control law table U (i) (see Section 3.3.3). Each

node i∈V employs the consistent set narrowing approach of (4.2) to update its own set

C(i)[t] of consistent topologies over time t. Each subsystem i∈V then extracts ϕ̂
(i,t)
n , C(i)[t],

and estimates P̂ (i,t) by empirically counting the proportion of transitions across the entire

estimated past history ϕ̂
(i,t)
0:n . For the TPMs, we also implement consensus averaging of the

estimates to neighboring subsystems that are one link away. Essentially, the key distinction

is that we add an additional enumeration i∈V to the usual sets, tables, and estimated quan-

tities from Section 3.3.1 and Problem 1 in order to emphasize that each subsystem maintains

local estimates of everything.

In Figure 4.8, we plot the estimated pattern-occurrence quantities for this localized exten-

sion of PLP applied to the hexagon system. To demonstrate the evolution of the pattern-

occurrence quantities over time, each subsystem i’s pattern collection Ψ(i)[t] is chosen to

contain more than half of the full combinatorial set of feasible length-L mode sequences
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Figure 4.8: [Top] The evolution of E[τ̂ (i,t)] over time for subsystems i∈{1, 4, 6}. [Bottom]
The evolution over time of the Frobenuis norm of the difference between P and P̂ (i,t) for
subsystems i∈{2, 4, 6}.

initially considered in Section 4.4.1, such that the true value of E[τ̂ (i,t)] is 5.83328 via Theo-

rem 10. The evolution of the estimated minimum occurrence time E[τ̂ (i,t)] over t is shown at

the top, while the Frobenius norm difference ‖P − P̂ (i,t)‖ of the TPM estimate is shown at

the bottom. We use varying groups of subsystems for these figures in order to demonstrate

the locality property.

Note in Figure 4.8, that as time increases, the estimates E[τ̂ (i,t)] of tend to converge towards

the true value 5.83328 as more of the TPM gets learned. The piecewise nature of the E[τ̂ (i,t)]

over t in Figure 4.8 arises because the pattern collection Ψ(i)[t] may change over time, which

in turn changes each subsystem’s estimate of the expected minimum occurrence time. At

the bottom of Figure 4.8, the matrix norm difference between the true and estimated TPMs

for each of the three subsystems decreases over time, which is expected as each subsystem

gathers more data to learn the true transition probabilities of P . Compared to the centralized

TPM estimate evolution over time (Figure 4.7) there is more rapid variation in each subsys-

tem’s estimate in the bottom figure of Figure 4.8; this could be attributed to the consensus

averaging among the subsystems. Viewing topologies at a local level can make the modes
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look similar to one another, and so a localized implementation of consistent set narrowing

may perform worse than the centralized implementation. This is a well-known tradeoff be-

tween centralized and distributed control: for more efficient computation, we are trading

performance optimality. This is a well-known tradeoff between centralized and distribut-

ed/decentralized controller architectures: for more efficient computation, we are trading off

optimality of performance. Still, even a localized implementation of PLP further supports

the insights obtained from centralized PLP in Section 4.4.1: the time delays in identifying the

current topology via Mode Process ID and time delays in the convergence of the estimated

TPM to its true value are key factors in determining the extent of performance improvement

that PLP brings.

4.5 Concluding Remarks

In this chapter, we implemented our PLP controller architecture from the previous Chapter 3

on the control of a network with dynamic topology by integrating the pattern-occurrence

quantities into MPC (Section 4.3.1) and using variations of SLS (Section 4.3.2) for the Con-

trol Law Design component. We provided an empirical comparison study of its performance

against a baseline controller and a topology-robust extension of the baseline. Because PLP

can be viewed as an additional mode estimation algorithm, it enabled the estimated mode

to match the true mode more often, although this was mainly possible for an optimal choice

of pattern collection. Compared to the baseline, PLP was able to achieve better disturbance-

rejection at significantly reduced computation time, redundancy, and control cost, which

suggested its potential to be used in place of a robust controller for more complex appli-

cations where designing for robustness is expensive. Overall, the merit of our work in this

application contributes to the concept of learning patterns for efficient control. Namely, less

redundant control design for stochastic systems with uncertain dynamics can be performed

by learning patterns in the system’s behavior, which eliminates computation time and re-

dundancy by storing past patterns into memory and predicting the future occurrence of

patterns.
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118C h a p t e r 5

VEHICLE TRAFFIC CONGESTION CONTROL IN SIGNALIZED
INTERSECTION NETWORKS

In this chapter, we describe the second of three applications that demonstrate the effec-

tiveness of learning patterns for efficient control: the congestion control of vehicles in urban

traffic networks of signalized intersections. One of the most common methods of modeling

vehicle traffic flow is via queueing theory [106, 95, 108]. While queuing-based results are

useful for benchmarking performance, they often rely on assumptions that are not reflective

of real-world traffic (e.g., Poisson arrivals). Another class of models encompass discrete-time

ODE dynamics [36], which allow for the explicit formulaic construction of control laws, but

sometimes rely on the knowledge of parameters (e.g., turning proportion) whose values may

be difficult to obtain in practice. Recently, neural networks are gaining traction as suitable

methods for vehicle congestion control due to their ability to accommodate realistic traffic

characteristics and complex network topologies. For example, [165] developed a framework

for automated incident detection based on Bayesian networks, with an emphasis on being

able to flexibly incorporate domain-specific knowledge into an otherwise all-data-driven ap-

proach. More recently, works such as [163] and [93] have considered variations on graph

neural network (GNN) architectures to predict the spatiotemporal behavior of traffic spread

across complex networks.

In the context of traffic networks, patterns can be defined according to the temporal repeti-

tion and structural symmetry that arises naturally in a variety of ways. For example, many

road networks are typically arranged like a rectangular grid, and in America, T-junctions

and X-junctions (4-way intersections) are highly common. These kinds of repeated topo-

logical structures fundamentally impact the travel behavior of vehicles and consequently,

congestion level [159]. Repetition can be observed in the traffic density over time not only

due to the grid structure of the network, but also due to human routine: rush hours during

the weekdays are a notable example of this. Even for special events that do not occur regu-

larly (e.g., traffic jams near the venue of a music concert), a certain level of congestion can

be predicted if this special event was planned beforehand [88]. Many of the neural network

architectures described above are designed to account for general topologies, and may be



less efficient when considering environments where structural symmetry could be leveraged.

To account for environment repetition, methods based on explicit rule-based construction

have also emerged [100, 47]. For vehicle routing, reinforcement learning methods are espe-

cially suitable [129], and for repetitive environments like urban grid intersection networks,

experience replay (e.g., [56]) approaches can be used. A related approach is called episodic

control [91, 20, 124], which incorporates episodic memory [21] into traditional learning tech-

niques with the goal of speeding up training by recalling specific instances of highly rewarding

experiences.

These natural spatial and temporal structures suggest that a congestion control mechanism

designed around some suitable choice of “pattern” can improve the time and computation ef-

ficiency at which light signal sequences are designed. For this purpose, this chapter constructs

a controller architecture similar to the one proposed in Chapter 3, with an extension of PLP

called pattern-learning with memory and prediction (PLMP). Compared to PLP, PLMP ex-

plicitly implements a memory component in the form of a table that maps patterns and

light signal sequences to rewards; our architecture employs an approach which extends the

state-of-the-art episodic control methods (e.g., [20]) by building equivalence classes to group

patterns that can be controlled using the same sequence of light signals. The “patterns” at

each intersection are the intersection’s snapshots, e.g., traffic camera photos which display

the distribution of vehicles present in each lane and direction. Moreover, in Control Law De-

sign, prediction is implemented with a one-timestep lookahead that augments, to the original

pattern, the distribution of vehicles in the adjacent links of the intersection and schedules

future light signal sequences in advance. We apply our model to two synthetic datasets, one

synthesized from scratch and one synthesized from real-world data, and compare two peri-

odic baseline light signals to variations of our PLMP controller, including a version without

prediction called pattern-learning with memory (PLM). We evaluate the performance of each

controller on a variety of traffic scenarios according to three different congestion metrics: 1)

average waiting time per vehicle, 2) average time deviation away from the optimal travel

duration, and 3) the number of vehicles that have not yet reached the end of their routes.

We find that, on average, PLM outperforms the periodic baselines while PLMP outperforms

PLM with mild variation among the different implementations.

Chapter Organization

First, Section 5.1 introduces the relevant notation and assumptions, then sets up the scenario

of vehicle traffic flow as a Markov decision process (MDP). Next, Section 5.2 describes the
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concrete implementation of the PLMP component. Lastly, numerical simulations comparing

variations of our architecture to several baseline light signals are discussed in Section 5.3.

5.1 System Setup and MDP Formulation

5.1.1 The Grid Network of Signalized Intersections

AH ×L rectangular grid network of four-way intersections is represented by a graph G= (I,N ,
E), with set of intersections I, nodes N , and directed edges E that connect between two

nodes. Each intersection is denoted with a tuple I := (h, i)∈I marking its location in the

grid, h∈{0, · · · , H − 1} and i∈{0, · · · , L− 1}; there are a total of HL intersections in the

network and they are assumed to be spaced equally apart. Each node is represented as a

tuple (I, D, χ, f)∈N , where I is the intersection ID, D is one of the four directions {E, N, W, S},
χ∈{1, 0} indicates whether vehicles are incoming (1) or outgoing (0) at the node. The vari-

able f ∈{0, 1} indicates whether the node is located at the fringes of the network or not;

we partition the set of nodes N into the set NF of fringe nodes and the set NI :=N /NF
of intermediate nodes. Each intersection I is controlled by a traffic light signal; let m∈M
be the mode of the traffic light and M be the set of possible modes. We assume there are

|M|= 8 possible modes each signal can take: 1) E-W forward green, 2) E-W left-turn green, 3)

N-S forward green, 4) N-S left-turn green, 5) E forward and left green, 6) N forward and left

green, 7) W forward and left green, 8) S forward and left green. Right-turns are permitted

whenever.

5.1.2 Vehicle Arrival Processes

Let VA[t] represent the time-varying set of vehicle arrivals from the fringes of the network, i.e.,

VA[t] =∅ if no vehicles entered the grid at time t and VA[t] = {v1, · · · , vK} if some number

K ∈N vehicles v1 to vK have entered at time t. Note that V [t] := ∪ts=0VA[t] is the total

number of vehicles that are in the grid network by time t. Note that VD[t] is an increasing

set, and the hope is that VD[Tsim] = ∪Tsims=0 VA[t] by the end of the simulation duration. Let

VD[t]⊆V [t] be the set of departed vehicles (i.e., vehicles that have reached their destination)

and let VC [t] :=V [t]\VD[t] be the set of circulating vehicles. For all sets of the form V∗[t],
we use V∗[t] = |V∗[t]| to represent its cardinality. The evolution of V [t] depends on both

the vehicle arrival process and the vehicle departure process; the vehicle arrival process is

extracted from sensing data and the vehicle departure process depends on the light signals.

All vehicles are identical with some length and travel at a constant speed, which means they

travel to and across each intersection at a constant amount of time. Let ∆tL be the time it

120



Figure 5.1: Grid network visualization of intersection graph G for H =L= 3. Nodes are
distinguished by incoming (χ= 1, light gray dots) or outgoing (χ= 0, dark gray dots). Sample
routes for five vehicles are also shown as an alternating sequence of nodes (black dots) and
links (black lines). In this snapshot (e.g., traffic camera photos which display the distribution
of each intersection in the grid), forward-going E/W traffic are allowed to pass through each
intersection (red and green line segments); over time, and as the vehicles trace their respective
routes, these traffic light colors would change.

takes a single vehicle to travel an uncongested link between intersections, and let ∆tI be the

time it takes to cross an intersection. Define R(H,L) to be the entire combinatorial set of all

routes from fringe to fringe of a grid network with dimensions H ×L. We assume each v ∈V [t]

is traversing the grid network according to a pre-determined route rv ∈R(H,L) that starts

at a node of entry ev ∈NF and ends at a node of departure dv ∈NF . We represent rv as an

alternating sequence of nodes and links rv = [ev, `
(e)
v , n1, `1, · · · , nk−1, `k−1, nk, `

(d)
v , dv], where

k ∈N is the route length, ni ∈NI for i∈{1, · · · , k}, and `
(e)
v , `

(d)
v , `i ∈E for i∈{1, · · · , k− 1}.

We distinguish `
(e)
v and `

(d)
v from the other links `i as the fringe links of the route, i.e., links

that connect to or from a fringe node (I, D, χ, 1). A sample visualization of G with vehicle

routes and light signals is in Figure 5.1.

Definition 34 (Vehicle Quantities). Let Tsim ∈N be the time duration of the experiment.

Each vehicle v ∈V [Tsim] locally keeps track of two congestion quantities. First, Wv[t]∈N is
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its cumulative waiting time by time t∈ [0, Tsim], which increments by 1 for each timestep it

waits at an intersection on a red light. Second, if v ∈VD[Tsim], Dv ∈N is the total time it

took to travel its entire route.

5.1.3 The Vehicle MDP (VMDP) Formulation

States: The state space S :=SN ×SL is composed of two distinct parts. First, SN ⊆ (Z≥0)12HL

denotes the number of vehicles at each incoming intermediate node {(I, D, 1, 0) : D ∈ {E, N, W, S}},
partitioned by direction and turn (right, left, or forward); the elements of each st,N ∈SN
are ordered [E-rt, E-lft, E-fwd, N-rt, · · · , W-rt, · · · , S-rt, S-lft, S-fwd] where rt, lft, and fwd are

shorthand for right, left, and forward, respectively. Second, SL⊆ (Z≥0)3(4HL−2H−2L) repre-

sents the number of vehicles that are present in each link, partitioned again by turn, and

each st,L ∈SL is ordered in the same way as st,N . The full state vector is concatenated as

st = [st,N
>, st,L

>]> ∈S.

Actions: The action space A :=MHL describes the mode of each light signal at each inter-

section.

Transition Function: The transition function T (st+1|st, at) for two states st, st+1 ∈S and

action at ∈A is defined by the constraints of vehicle movement along the grid (i.e., to get

from intersection (0, 0)→ (1, 1), take either (0, 0)→ (0, 1)→ (1, 1) or (0, 0)→ (1, 0)→ (1, 1)).

We assume the time spent in each link is directly proportional to the level of congestion: if a

vehicle enters a link with X ∈ (Z≥0) vehicles inside, it takes (X + 1)∆tL timesteps to travel

it if the link is between two intersections and (X + 1)∆tI timesteps if the link is across an

intersection. We define v∗ ∈N to be the maximum number of vehicles per turn that can cross

an intersection in one timestep.

Rewards: The reward function R(st, at, st+1) := 1>(st+1,N − st,N) is the rate of intersection

clearance, which computes the total number of vehicles that are removed from each inter-

section through an action at that drives st to st+1. Here, 1∈ (Z≥0)12HL is the vector of all

ones.

Definition 35 (Congestion Metrics). Let Tsim ∈N be the time duration of the experiment,

and define D∗v ≤Dv to be the optimal travel time of each vehicle v ∈VD[Tsim] (i.e., the time

taken to reach its destination assuming an empty network and all-green light signals). With

the vehicle quantities described in Definition 34, we use the following metrics to evalu-
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ate the performance of our controller. First, define the average cumulative waiting time to

be W := (1/VD[Tsim])
∑

v∈VD[Tsim] Wv[Tsim]. Second, define the average travel deviation to be

D := (1/VD[Tsim])
∑

v∈VD[Tsim](Dv−D∗v). Third, we keep track of VC [t], the number of vehicles

that did not reach their destinations by t∈ [0, Tsim].

5.2 Pattern-Learning with Memory and Prediction

We now describe the controller architecture based on pattern-learning with memory and pre-

diction (PLMP), an extension of PLP (see Chapter 3) for the VMDP set up in Section 5.1.3.

With I := (h, i), let the set ΨI [t] = {ψ1, · · · ,ψK[t]} be the collection of patterns for intersec-

tion I at time t, where K[t]∈N is the number of patterns currently recorded and each ψk

represents a pattern. Note that for any 0<s< t, ΨI [s]⊆ΨI [t]. In our VMDP, the “patterns”

of intersection I correspond to the distribution of vehicles in its local snapshot; for concrete-

ness, we choose ψk ∈ (Z≥0)8 to be a projection of a state st,N ∈SN down to left and forward

turns per direction; since vehicles can turn right whenever, they are not considered in the

pattern.

5.2.1 Learning from Spatial Patterns

The VMDP implements the memory part of the PLMP controller architecture by storing

any patterns that have frequently occurred in the past. This is motivated by the concept

that snapshots often repeat over time, e.g., a snapshot containing X number of vehicles

in the North-South lanes and no vehicles in the East-West lanes is likely to occur again

later in time. In this implementation, we are inspired by episodic memory, which can be

added to reinforcement learning methods to recall specific experiences and their rewards;

some common implementations of episodic memory for control are [91], [20], and [124]. In

our VMDP, episodic memory is implemented for each intersection I with a memory table

QI :Z≥0× Eq(ΨI [t])×M→R, which maps patterns and light signal modes to best rewards.

Compared to previous episodic memory approaches, each memory table in our VMDP also

uses equivalence classes to limit its size: the original pattern collection ΨI [t] is divided into

multiple classes such that all patterns in a class are assigned the same optimal traffic light.

We define Eq(ΨI [t])⊆ΨI [t] to be the unique keys of the equivalence classes for ΨI [t]. Each

entry QI(t,ψ,m) = r means that as of time t, the best reward of r can be obtained by

applying mode m to intersection I if the given pattern is ψ.

For each intersection I, equivalence classes are constructed in the following way. For the

first pattern ψ1 ∈ΨI [0], ψ1 is placed inside Eq(ΨI [t]) and its associated equivalence class is
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constructed as Eq(ψ1) = Eq0(ψ1), where

Eq0(ψj) :=

{v ·ψj, v ∈{2, · · · , v∗}} ∪ {[v1 + ψj,1, · · · , v8 + ψj,8], [v1, · · · , v8]∈{0, · · · , v∗}8\0}, (5.1)

where · denotes multiplication by a scalar, v∗ is from Section 5.1.3, and 0∈R8 is the all-

zeros vector. This means Eq0(ψj) contains the following two types of elements: 1) every

elementwise multiple of ψj up to a factor of v∗, 2) every nonzero additive variation of the

entries of ψj up to v∗.

For each time t+ 1 when a new pattern ψk /∈ Eq(ΨI [t]) is observed at intersection I, its

equivalence class is constructed iteratively as:

Eq(ψk) :=

∅ if ∃ ψj ∈ Eq(ΨI [t]) s.t. ψk ∈ Eq(ψj)

f(Eq0(ψk), {Eq(ψj)}K[t]
j=1 , Eq(ΨI [t])) else

, (5.2)

where Eq0 is defined in (5.1). The function f is designed to check if every ψ ∈ Eq0(ψk) is

already in the pattern collection, whether as a unique key or an equivalence class member:

f(Eq0(ψk), {Eq(ψj)}K[t]
j=1 , Eq(ΨI [t])) :=

{
ψ ∈ Eq0(ψk) : f̃(ψ, {Eq(ψj)}K[t]

j=1 , Eq(ΨI [t])) = 1
}
,

f̃(ψ, {Eq(ψj)}K[t]
j=1 , Eq(ΨI [t])) =

0 if ∃ ψj ∈ Eq(ΨI [t]) s.t. (ψ=ψj ∨ψ ∈ Eq(ψj))

1 else
. (5.3)

This construction allows all elements of ΨI [t] to be partitioned into its unique keys and

disjoint equivalence classes for all time t, i.e., ΨI [t] = Eq(ΨI [t]) ∪ Eq(ψ1)∪ · · · ∪ Eq(ψK[t]).

Looking up Q-values then amounts to looking through only Eq(ΨI [t]) instead of the entire

collection ΨI [t], which reduces memory compared to other episodic control approaches.

The update method of each intersection’s memory table follows similarly to episodic control.

At specific intersection I, suppose ψ is the current pattern snapshot observed at time t.

If ψ 6∈ΨI [t], the Q-value is approximated with Q̂I , which averages the Q-values of the k-

nearest-neighbor (kNN) patterns in Eq(ΨI [t]):

Q̂I(t,ψ,m) :=


1
k

k∑
j=1

QI(t, ψ̂j,m) if ψ 6∈ ΨI [t]

QI(t,ψ,m) else

, (5.4)

where {ψ̂j}kj=1⊆ Eq(ΨI [t]) are the k unique keys with the nearest distance to ψ at time t.

Here, “nearest” is measured with `1-norm difference, modulus the structure of the equivalence
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6

0

2

Mode 1

4 2 0 0 0 00 2 0
lft rt lft rt lft rt lft rt

Mode 8

. . .

2 1 0 0 0 00 1 0

1 2 0 0 0 00 2 0

Figure 5.2: Example memory table QI for intersection I := (1, 1) with current pattern
ψ= [4, 2, 0, 0, 0, 0, 2, 0] (blue), v∗= 2, and k= 3 nearest neighbors. Entries in Eq(ΨI [t]) are
marked with white circles. For mode 1, ψ does not exist in QI , so the 3 nearest patterns
(large red ball) are used during lookup; one example of a “near” pattern is in green, where
the left-turn lane in the East direction has three less vehicles. For mode 8, an entry for ψ
already exists because it is equivalent to the red pattern, which is ψ/2.

classes: d(ψk,ψj) := ‖({ψk}∪ Eq(ψk))− ({ψj}∪ Eq(ψj))‖1 where we briefly abuse notation

to denote ‖B1 − B2‖1 := min{‖b1− b2‖1 , b1 ∈B1, b2 ∈B2}. During training, the Q-values of

the memory table are updated by comparing the existing value with the Bellman update.

Denote ψ ∈SN to be the expansion of ψ where zeros are placed in the positions of right-

turning vehicles. Suppose the pair (ψ,m) at time t transitions to the patternψ∗ via transition

function TI(ψ
∗|ψ,m) and yields reward RI(ψ,m,ψ

∗
), where TI and RI are dimension-

reduced versions of T and R (from Section 5.1.3) for individual intersections. Then define:

r∗ := (1− α)Q̂I(t,ψ,m) + α(RI(ψ,m,ψ
∗
) + γQ̂I(t,ψ

∗,m∗)). (5.5)

Here, Q̂I is the estimated Q-value computed through (5.4), α∈ [0, 1] is the learning rate, and

γ ∈ [0, 1] is the reward discount rate. Mode m∗ is the optimal light signal mode from pattern

ψ∗ (and varies by algorithm, e.g., Q-learning, SARSA). The update for entry (ψ,m) is then

performed as follows:

QI(t+ 1,ψ,m)←

max{QI(t,ψ,m), r∗} if (t,ψ,m) ∈ QI
r∗ else

. (5.6)

The action at ∈A is then constructed by putting together all the optimal modes m∗ of each

intersection into a single vector. The PLMP algorithm with only memory implemented (with-
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Figure 5.3: Sample prediction procedure for intersection (0, 0) and its neighbors (0, 1) and (1, 0).
Here, ∆tL = 2 and ∆tI = 1. There are a total of three vehicles at (0, 0) at time 0: two vehicles (one
right-turning, one forward-going) at direction S are given the green light to pass at time 0 while
one vehicle (forward-going) at direction W is given the green light to pass at time 6. Here, there are
no other vehicles in the system, so each vehicle takes ∆tI + ∆tL = 3 timesteps to reach their next
intersection.

out prediction) will henceforth be called pattern-learning with memory (PLM); note that it

differs from episodic control by implementation of the equivalence classes. For concreteness

and variety, we consider two different ways of choosing the optimal mode m given pattern ψ.

First, greedy exploitation uses transition function TI to approximate the next ψ∗ and chooses

the mode m that maximizes the immediate reward RI(ψ,m,ψ
∗
). Second, episodic control

(EC) exploitation chooses the action m∗ which maximizes (5.4). We also enable exploration

with some probability ε∈ [0, 1) , i.e., randomly choose m∈M.

5.2.2 Learning from Temporal Patterns

The VMDP implements the prediction part of the PLMP controller architecture by approxi-

mating future occurrences of patterns so that future light signal sequences can be scheduled

in advance. Because the objective is to demonstrate the advantage of enabling prediction, we

use a simple one-timestep lookahead assuming that all predictions are accurate due to sensors

being abundantly placed throughout the grid; we defer the treatment of noisy predictions to

future work.

We employ an augmented pattern representation φk = [ψ>k , ζ
>
k ]> ∈ (Z≥0)16 associated with

126



each original pattern ψk ∈ΨI [t]. The eight additional entries ζk ∈ (Z≥0)8 contain the counts

of incoming vehicles in its adjacent links, and can be viewed as a projection of state st,L ∈SL
down to left and forward turns per direction. Define P : (Z≥0)16→ (Z≥0)8 to be a projection

mapping such that P(φk) is equal to the pattern which will occur in the next timestep.

Because a vehicle’s transition time from a link to an incoming node depends on the number

of other vehicles that are currently present on the link, we do not write the explicit form

of P ; essentially, we achieve accurate predictions by enabling one-timestep lookahead using

the augmented pattern. For example, when ∆tL = 1 and there are no other vehicles in the

left-turn lane of the link to the East of intersection I, we get P([0>, e>1 ]>) = e>1 , where e1 is

the first standard basis vector of (Z≥0)8.

We conclude this section with a side-by-side comparison of the algorithm pseudocode for

vehicle traffic congestion control with PLM and PLMP.

Algorithm 1 Congestion Control via PLM

1: Initialize VMDP.

2: Initialize pattern tables {ΨI [0]}.
3: Create next pattern ψ.

4: Create next traffic light from ψ.
5: for t= 1 :Tsim do
6: Propagate 1 step.
7: Add any new vehicle arrivals.
8: Update VMDP state.
9: Update pattern tables {ΨI [t]}.

10: Create next pattern ψ.
11: Create next traffic light from ψ.
12: end for

Algorithm 2 Congestion Control via
PLMP

1: Initialize VMDP.

2: Initialize pattern tables {ΨI [0]}.
3: Predict next pattern ψ∗=P(φ).

4: Create next traffic light from ψ∗.
5: for t= 1 :Tsim do
6: Propagate 1 step.
7: Add any new vehicle arrivals.
8: Update VMDP state.
9: Update pattern tables {ΨI [t]}.

10: Predict next pattern ψ∗=P(φ).
11: Create next traffic light from ψ∗.
12: end for

5.3 Numerical Simulations

We demonstrate the performance of various implementations of Algorithms 1 and 2. We

compare the two ways from Section 5.2.1 in which actions are chosen: exploration with

probability ε together with greedy or EC exploitation. We distinguish the way in which each

intersection updates its memory table by varying the learning rate α: an episodic control (EC)

update computes the new potential Q-value as in (5.5) with 0<α< 1 (specifically chosen

α= 0.9), while a greedy update uses α= 0. We also consider a periodic baseline controller,

where the light at each intersection cycles through the modes repeatedly with some cycle

duration C ∈N.
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Strategy Description

Periodic16 Periodic with C = 16.

Periodic8 Periodic with C = 8.

EC(0) PLM with EC exploitation,

ε= 0 exploration, EC update

PLM(0,1,1) PLM with greedy exploitation

ε= 0 exploration, greedy update

PLM(5e-3,1,0) PLM with greedy exploitation

ε= 5e-3 exploration, EC update

PLMP(0,0,0) PLMP with EC exploitation

ε= 0 exploration, EC update

PLMP(0,1,1) PLMP with greedy exploitation

ε= 0 exploration, greedy update

PLMP(5e-3,1,0) PLMP with greedy exploitation

ε= 5e-3 exploration, EC update

Table 5.1: The eight different controller implementations compared in the experiment: two
periodic baselines and six different versions of Algorithms 1 and 2. PLM(0, 0, 0) is equivalent
to episodic control (EC), but with equivalence classes implemented.

5.3.1 Dataset Preprocessing

We apply each variation of our proposed architecture to the following two datasets.

Pure Synthetic The number VA[t] of vehicles arriving into the network from the fringes

as a function of time t is described as follows. Vehicles enter into the fringe intersections

as platoons. Let Tn be the time of arrival for the nth platoon. Interarrival times Tn−Tn−1

are generated independently from a Geometric distribution with a time-varying parameter

p[t]∈ (0, 1). At each arrival time Tn, the size of each platoon is a random nonzero inte-

ger generated between some minimum and maximum size. We choose experiment duration

Tsim = 200, p[t]∈ [0.1, 0.25], and each platoon generated has some size between 30 to 50 ve-

hicles.

Real-World Intersections We use real-world data of traffic flowing through several single

intersections provided in [146]. For our grid network setting, we assign the behavior of one

intersection to each of the four fringes of the grid: intersections on the East fringe of the

grid behave according to the kn-hz intersection, the North fringe is according to the qc-yn
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Figure 5.4: Congestion metric VC [t] from Definition 35 plotted over time until t= 100 for four
strategies from Table 5.1, applied to the pure synthetic dataset. The cumulative number of
vehicles in the system over time, V [t], is shown in solid blue.

intersection, West to sb-sx, and South to tms-xy. Each intersection in the original dataset

consists of two one-hour arrivals of vehicles; we add the two arrival processes together and

discretize arrivals into 5-second bins, i.e., Tsim = 3600/5 = 720. The original vehicle routes are

also modified to respect the constraints of being a fringe intersection, e.g., traffic emerging

from the East side of sb-sx are rerouted to emerge from the West side (because sb-sx

corresponds to fringe intersections of the form (0, i) for i∈{0, · · · , L− 1}).

5.3.2 Results

We evaluate eight different controller implementations, using the congestion metrics from Def-

inition 35, on a grid network with dimensions H =L= 5. Each implementation is described

in Table 5.1. Our results for v∗= 2, ∆tL = 2, ∆tI = 1, k= 3 nearest neighbors, and γ= 0.1

averaged over 20 Monte-Carlo trials, are demonstrated in Table 5.2 for the synthetic dataset
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Strategy W D

Periodic16 12.21145 44.37445

Periodic8 20.25 58.79762

EC(0) 1.2622 24.27622

PLM(0,1,1) 1.10247 23.75265

PLM(5e-3,1,0) 4.62031 30.0

PLMP(0,0,0) 0.41584 22.19802

PLMP(0,1,1) 0.38158 21.92434

PLMP(5e-3,1,0) 2.42907 28.37716

Strategy W D

Periodic16 12.13208 38.20283

Periodic8 6.87660 26.78723

EC(0) 0.89105 14.80156

PLM(0,1,1) 0.89412 14.93334

PLM(5e-3,1,0) 0.90551 14.79528

PLMP(0,0,0) 0.22509 9.98524

PLMP(0,1,1) 0.23443 9.17216

PLMP(5e-3,1,0) 0.25368 9.49632

Table 5.2: The average cumulative waiting time W and the average travel deviation D
(from Definition 35) for each of the two datasets. [Left] Pure Synthetic. [Right] Real-World.

(left subtable) and the real-world dataset (right subtable). A sample plot of one trial of

VC [t] (the number of circulating vehicles metric from Definition 35) for the synthetic dataset

until t= 100 timesteps is shown in Figure 5.4; the figure for the real-world dataset yielded a

similar trend, but with smaller values because the arrival process is much thinner than the

synthetic dataset despite being over longer time interval.

The basic trend for both datasets is that PLMP does better on average than PLM and PLM

does better on average than the periodic baseline. In Figure 5.4, all four controllers experience

at least a 15-timestep delay after time 0 from which vehicles begin to reach their respective

destinations; thus, each line follows the cumulative number of vehicles in the system (blue

line) precisely until timestep 15. Afterwards, however, PLMP consistently begins to drop

first, followed by PLM, then finally the periodic baseline, indicating that PLMP enables

vehicles to reach their destination the fastest on average and periodic enables the slowest.

This is also consistent with the magnitude of the measurements in Table 5.2. For the periodic

baselines applied to the synthetic dataset (heavier traffic), the left subtable in Table 5.2

shows that a smaller period (i.e., faster light signal switching) can cause more congestion

than relief. For PLM and PLMP, the average waiting time per vehicle (W ) and average

travel deviation (D) are mostly consistent to how they increase or decrease in value together.

Adding exploration causes both PLM and PLMP to perform worse, which is expected because

traffic in a structured, predictable setting like a rectangular grid leaves very little chance that

choosing a random mode will perform better than pure exploitation.

5.4 Concluding Remarks

This chapter presented new controller architectures based on pattern-learning with memory

and prediction (PLMP) and pattern-learning with memory (PLM) for vehicle traffic conges-
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tion control over a metropolitan grid of signalized intersections. The architectures exploited

the natural spatial symmetries and temporal repetition in the traffic network to perform

control without redundant computation of light signal sequences. In particular, the memory

component used an extension of episodic memory which builds equivalence classes to group

together patterns that are controlled using the same light signals. In addition, accurate pre-

dictions are incorporated with a one-timestep lookahead that augments vehicle counts in the

adjacent links of the intersection and schedules light signals in advance. We demonstrated

the performance advantages of multiple implementations of PLM and PLMP with respect

to three congestion metrics over two different traffic scenarios, and found that on average,

PLM outperforms the periodic baselines while PLMP outperforms PLM with mild variation

among the different implementations. Similar to the dynamic-topology network application

of Chapter 4, this suggests that a control architecture built around learning patterns enables

better performance; in this application, the specific performance metrics considered are the

congestion metrics from Definition 35.
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132C h a p t e r 6

EPIDEMIC SPREAD MITIGATION IN POPULATION NETWORKS

Similar to the urban vehicle traffic networks from Chapter 5, population networks are another

example of stochastic dynamics that involve spatial symmetries and temporal repetition

that can be exploited for efficient control or estimation. Population networks tend to be

partitioned according to distinct social ties and communities based on various factors such

as geographical location, mutual interests, etc., which enable patterns to be identified in the

relationships among the individuals [155]. Furthermore, the travel behavior of individuals

repeat due to daily human routine [62], which can be used in making predictions about the

spread of viruses.

Our third and final application used to demonstrate the impact of learning patterns comes

from forecasting epidemic spread in population networks, especially the recent COVID-19

disease which was arguably ongoing as of December 2022. Mathematical models (e.g., [52, 54])

have been shown to be quite effective in informing the design of mitigation policies for various

past outbreaks such as the influenza pandemics [35, 34] and the SARS epidemic of 2003 [64].

The seminal work [79] in 1927 introduced the original compartmental model for emulating

epidemic/pandemic dynamics, which moves the population through the different phases of

illness (called “compartments”) undergone upon exposure to the virus. Since then, a variety

of extensions have been made to this traditional model, including stochastic factors [141],

nonlinear interactions with the infected [27], and temporary immunity [69]. An alternative

compartmental model method uses coupled hidden Markov models (CHMMs), e.g., [134,

142, 48], which allows for heterogeneity in the population network (e.g., different immune

responses) by modeling at the individual level. An added benefit to the CHMM architecture

is that there are standard algorithms which enable the inference of unknown parameters

(e.g., death rate, recovery rate) from observational data such as contact-tracing information;

multiple separate observation processes may be incorporated [158] and the parameters to be

estimate may be time-varying [7].

Motivated by the above, this chapter proposes a novel multiscale model for the propagation of

the SARS-CoV-2 virus throughout a population by exploiting community structures in the



interaction network and observing the effects of heterogeneous population characteristics.

One primary novelty of our work is the explicit modeling of jump phenomena that are

unique to epidemic spreads, which are superspreader effects [61] and the emergence of variant

viruses [25], and posing the multiscale model as JSSs for each type of phenomena. Namely,

gene sequencing analysis suggests that the possibility of infection from a variant of the virus

is highly probable even if an individual has recovered from infection of a different strain [55].

Thus, infection to a variant virus can be represented as a jump to a set of dynamics with

different parameter values, because different mutations have different parameter values [30].

This is similar to the switching among different topologies from Chapter 4, and requires more

compartments to be included compared to traditional compartmental models. Moreover,

superspreader effects can be captured by the shot noise phenomenon analyzed in Chapter 2.

Chapter Organization

In Section 6.1, we describe how to transform a given population into a graph network of

communities and individuals for the purposes of our model, and we introduce the SEIRD

phases of the COVID-19 disease. In Section 6.2, we outline the SEIRD compartmental ODE

module, the larger scale of our multiscale model, and mathematically define the transition

rates and the ODE dynamics. Section 6.2.2 presents an extension of the ODE compartmental

model that explicitly considers superspreader effects; the model takes the form of a Poisson

shot noise SDE similar to the one described in Chapter 2. Section 6.2.3 presents an extension

of the ODE compartmental model that accounts for the emergence of variant viruses; the

model switches among different parameter values in a way that is similar to the MJS which

was used to model the dynamic topology network in Chapter 4. Next, in Section 6.3, we

outline the coupled HMM module, the smaller scale of our multiscale model, and define the

transition probabilities per individual. In particular, for estimating the parameters of the

HMM module, we emphasize an extension of the Baum-Welch (expectation-maximization)

algorithm in two key ways: incorporating multiple observation processes simultaneously, and

accounting for time-varying parameters. In Section 6.4, we discuss how the two levels of

available data, infected/death counts and individual-level contact-tracing, are used together

to estimate the parameters of both parts of the multiscale model. In Section 6.5, we demon-

strate the application of our multiscale model to multiple experiments, using two datasets

that are constructed based on real-world data available online.
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6.1 Preliminaries

The overall multiscale model proposed in this chapter is summarized in Figure 6.1. Before

we discuss each part of the model in detail, we set up and introduce two concepts: first, the

representation of the population as a network of communities and second, the SEIRD phases

of the COVID-19 disease. These model choices are used in the design of both the large-scale

compartmental model and the small-scale CHMMs throughout the chapter.

6.1.1 The Community Network Graph

Let V denote the set of individuals in the population, with a constant cardinality N := |V|.
We are primarily interested in the propagation of disease throughout a large-scale network,

meaning |V| is very large. The interaction network of this population is represented as a

network of communities Gc := (C , E), where C := {Ck}Kk=1, where K ≤ |V| is the total num-

ber of communities and E is the set of edges. An edge e(i, j)∈E is created between two

communities Ci and Cj if they share at least one member; the edge is assigned a weight

w(i, j)∈R≥0 proportional to the number of members they share. Let Nk := |Ck| be the car-

dinality of community k, assumed constant, and denote Nk := {Cj ∈C |e(k, j)∈E}. Every

community forms a fully-connected subgraph where the nodes are the individuals. The in-

terpretation of the communities is geographic, in that each community is assigned a certain

type and each individual may belong to more than one community. For simplicity of pre-

sentation, we consider only static types in which the membership of individuals is mostly

constant over time (e.g., routine locations such as schools, workplaces, private residences),

as opposed to dynamic types where the membership of individuals may vary (stochastically)

over time (e.g., special-occasion locations such as restaurants, amusement parks, musical

concerts). Let M ∈N be the total number of community types with C := ∪Mj=1 C (j), where

C (j) is the set of all communities of type j. For each individual n∈V , let Vn := {C ∈C |n∈C}
be the set of communities that n belongs to. A visual representation of the two graphs with

M = 3 types of communities is shown in Figure 6.2.

Assumption 9. For all k ∈{1, · · · , K}, the members of community k remain as members

of community k, with no new members joining and no present members departing. Thus, all

susceptible individuals of k transition to becoming infectious members of k, from which they

either die from the disease, or become a recovered member of group k. This assumption may

be relaxed for time-varying networks, but for the main focus of this application, we assume

static topologies.
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Figure 6.1: A flow diagram representation of the multiscale model for parameter estimation
of COVID-19. Two entities are identified from the original population of individuals (dots):
the different communities the individuals belong in (black circles), and the tracked individu-
als, i.e., those whose contact-tracing data is available (red dots). The resulting conversion is
referred to as the community graph (see Section 6.1.1). Each community in the community
graph is modeled according to the large-scale SEIRD compartmental ODE model (in green),
and the parameters (i.e., transition rates) of the model is estimated using the available count
data for the community (see Section 6.2). The interaction network of all individuals in each
community is extracted as a coupled hidden Markov model (CHMM, in red), where the hid-
den state is defined as the individual’s health status. Specifically, the SEIRD compartments
for the different phases of COVID are embedded into each CHMM, and so each tracked indi-
vidual is modeled according to a small-scale SEIRD CHMM (in blue). Gray nodes represent
un-tracked individuals, whose health status remains unknown, and red nodes represent the
health status of a tracked individual, which can be identified through observed symptoms
(see Section 6.3). Contact tracing data is used in each tracked individual’s CHMM to esti-
mate his/her unique parameters (i.e., transition probabilities, true health status sequence).
The estimates of the model parameters for the overall population network are then combined
(in purple) via averaging; both the compartmental ODE and individual CHMM parameters
are updated (see Section 6.4), and the models are then used for predicting quantities such
as the future death toll.
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Figure 6.2: The full graph network of the individuals and the corresponding communities.
Here, there are M = 3 types of communities, “work,” “school,” and “home’.’

6.1.2 SEIRD: The Phases of COVID-19

The evolution of COVID-19 spread within each community in Gc is modeled according to

five main phases X := {S, E, I, R, D}. A majority of the population begins as susceptible (S)

individuals, meaning they do not test positive for traces of virus on their bodies. In the next

phase, individuals are exposed (E) to the virus (i.e., asymptomatic infected): they are carriers

of the virus without any noticeable symptoms of the disease, but they are still capable of

infecting susceptible individuals. After a certain period of time, individuals would either

begin to display symptoms, upon which they transition to the ill (I) phase. Finally, any

individual in (I) would either 1) succumb to death by the illness, transition to the death (D)

phase, and remain there for the rest of time, or 2) successfully fight the disease and transition

to the recovered (R) phase, where they are now considered invincible to the virus.

The SEIRD model generalizes the simpler but more standard SIR/SIRS models [79] by 1)

distinguishing between recovered and deceased individuals, and 2) distinguishing two types

of infectious individuals separately as exposed (i.e., asymptomatic infected) and ill (i.e.,

symptomatic infected) individuals. Note that both exposed and ill individuals are capable

of spreading the virus to susceptible individuals; in the case of Singapore, as of March 17,
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Figure 6.3: SEIRD for the ODE module.

2020, it is reported that roughly 48% of individuals who are ill with COVID-19 had been

infected from exposed people alone [46]. However, in the case of COVID-19, it is important

to maintain (E) and (I) as separate phases because of the time delay taken for symptoms to

show; COVID-19 symptoms typically present within 2 to 14 days upon exposure [143]. For

this reason, SEIRD captures a more accurate description of the COVID-19 disease compared

to other types of compartment models [59].

Definition 36 (Infectious). An infectious individual is one in which any other susceptible

individual is liable to becoming exposed via social contact with him/her. These individuals

test positive for the presence of virus on their bodies, but may not always display symptoms of

the disease. In this specific setting, both exposed and ill individuals are considered infectious

compartments.

6.2 ODE Module: Large-Scale Disease Propagation

6.2.1 Basic Framework

We begin by designing the ODE module, which is used to emulate virus spread throughout

the community network Gc. Traditional compartmental models assume random uniform in-

teractions among individuals in a population, and do not consider groups, communities, or

other heterogeneous interaction dynamics. This may lead to coarse approximations of quan-

tities such as the predicted death toll, especially when a population is very large. In contrast

to the traditional approach, we partition the population into a network of strongly-connected

communities; this allows us to introduce basic heterogeneity into the model, distinguishing

inter-community rate of spread from the intra-community rate of spread by changing the

edge weights of Gc.

For the purposes of modeling the COVID-19 pandemic, we choose to employ the five-

compartment SEIRD compartmental model, visualized in Figure 6.3, where X := {S,E, I, R,D}
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are the phases described in Section 6.1.2. Mathematically, the ODE dynamics for a SEIRD

model is governed by the following set of differential equations:

dS(t)

dt
= −β(I(t) + E(t))S(t), (6.1a)

dE(t)

dt
= β(I(t) + E(t))S(t)− αE(t), (6.1b)

dI(t)

dt
= αE(t)− (γ(r) + γ(d))I(t), (6.1c)

dR(t)

dt
= γ(r)I(t), (6.1d)

dD(t)

dt
= γ(d)I(t). (6.1e)

Here, the parameters are the transition rates, given by θ := [β, α, γ(r), γ(d)]>. We define β to

be the contact rate between exposed and ill individuals with susceptible individuals in the

population, α is the rate at which exposed individuals fall ill, and γ(z) is the rate that ill

individuals leave their ill status, becoming recovered if z = r or deceased if z = d.

Assumption 10. We do not take into account the natural births and natural deaths, as we

are primarily focused on the effects of the disease itself on the existing population. We also

consider the case where the network is closed, in that no interaction with any individuals

outside of the population captured by the community network is allowed.

The SEIRD model for multiple communities (and multiple community types) is a simple

extension of the original compartmental model (6.1). The compartmental model for the en-

tire community network Gc can be visualized as K identical copies of Figure 6.3, connected

to each other according to the topology imposed by Gc. Toward this end, we define the

parameter vector for community k as θk := [{βkj}j∈{1,··· ,K}, αk, γ(r)
k , γ

(d)
k ]> with subscript k

on each parameter. Here, [βkj] ∈ RK×K (with {βkj}j∈{1,··· ,K} its vectorized form for each

k ∈ {1, · · · , K}) defines the contact rate between each community of the network. Namely,

βkk denotes the rate of contact among susceptible and infectious members which belong in

the same community k, while βkj denotes the average rate of contact among susceptible indi-

viduals in community k and infectious individuals in community j for all other communities

j 6= k. The intuition for this definition is that a susceptible individual in some community

k has at most K different ways of becoming infected (i.e., by coming into contact with a

individual of any other community), depending on the topology of the community network.
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Mathematically, for each k, the dynamics are governed by the following set of differential

equations:

dSk(t)

dt
= −

K∑
j=1

βkj(Ij(t) + Ej(t))

Nj

Sk(t), (6.2a)

dEk(t)

dt
=

K∑
j=1

βkj(Ij(t) + Ej(t))

Nj

Sk(t)− αkEk(t), (6.2b)

dIk(t)

dt
= αkEk(t)− (γ

(r)
k + γ

(d)
k )Ik(t), (6.2c)

dRk(t)

dt
= γ

(r)
k Ik(t), (6.2d)

dDk(t)

dt
= γ

(d)
k Ik(t), (6.2e)

where the parameters are defined previously.

Assumption 11. Each community Ck has at least one tracked individual, i.e., an individual

whose contact-tracing data over time is available. We define Ck to be the set of all tracked

individuals in community k.

Remark 24. The contact parameter βkj between communities k and j is proportional to

the edge weight w(i, j), which describes the strength of the connection between the two com-

munities. The weight w(i, j) increases when the two communities interact more frequently

with each other.

Now, we describe a method for estimating the transition rate parameters in θk for each

community k based on count data. First, the estimates {γ̃(r)
k , γ̃

(d)
k } of community k’s true

rates of recovery and death {γ(r)
k , γ

(d)
k } can be determined by observing time-series data of its

recovered and death tolls over time, which are some of the most well-reported statistics per-

taining to COVID-19. Second, estimating αk is difficult from count data alone since, unlike

the recovery and death tolls, Ek(t) is difficult to obtain due to the lack of visible symptoms in

exposed individuals. We thus rely entirely on contact-tracing data from individuals in Ck to

estimate αk; this estimation procedure is detailed further in Section 6.4. Finally, estimating

the rates [βkj]k,j∈{1,··· ,K} in which susceptible individuals of each community transition to

becoming exposed (asymptomatic infected) is tricky due to their dependence on other com-

munities, and we also rely on individual contact-tracing data. Thus, we also defer discussion

of their estimation to Section 6.4.
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6.2.2 A Stochastic Extension

The effect of superspreaders typically arises when a small handful of infectious people come

in contact with an abnormally large number of susceptible individuals. In COVID-19, a

notable example of this effect is the individual known as Patient 31, who is believed to have

been a primary cause for the sudden spike in cases of COVID-19 in South Korea, which

eventually lead to hundreds of deaths between late February and early March of 2020 [78].

Modeling phenomena like these requires some modification to the SEIRD compartmental

model described previously, especially since the deterministic ODEs (6.1) and (6.2) cannot

capture the randomness of the superspreader effect.

The superspreader effect can be emulated by varying the rates [βkj] of contact between

susceptible and infectious individuals in communities. For compartmental ODEs, white-noise

perturbations to the contact rates have been accounted for in prior work [63, 24, 23] to mimic

slight variations in the daily number of contacts. However, these variations are small and

occur steadily as a function of time; white noise is therefore insufficient to represent sudden

drastic increases in the contact rate, which give rise to the phenomenon of superspreaders.

Rather, impulse disturbances are better modeled as Poisson shot noise, which has as much

real-world presence and mathematical development in literature as Gaussian white noise

does (see Chapter 2).

Using shot noise, the evolution of βkj(t), now a time-varying quantity, for each k, j ∈
{1, · · · , K} can be characterized by the stochastic differential equation (SDE):

βkjdt = βkj,0dt+ σkjdW (t) + ξkjdNkj(t), (6.3)

where βkj,0 is the baseline constant value of the parameter, W is standard white noise, Nkj is

standard Poisson noise with intensity parameter λkj, and σkj and ξkj are their corresponding

variances. An SDE of the form (6.3) replaces each entry in the original constant matrix [βkj]

considered before in (6.2). The parameters λkj, σkj, and ξkj are chosen based on community

type, especially those where it is suspected that a higher-than-average frequency of contact

might occur (e.g., homes, schools). For example, when superspreaders emerge only from

interactions within group k, βkk abides by (6.3) while the other rates βkj, j 6= k remain

constant, and the deterministic ODE (6.2) is modified as follows.

dSk(t) =

(
−Z(t)− βkk,0(Ik(t) + Ek(t))

Nk

Sk(t)

)
dt (6.4a)

− (Ik(t) + Ek(t))Sk(t)

Nk

(σkkdW (t) + ξkkdN(t)),
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dEk(t) =

(
Z(t) +

βkk,0(Ik(t) + Ek(t))

Nk

Sk(t)− αkEk(t)
)
dt (6.4b)

+
(Ik(t) + Ek(t))Sk(t)

Nk

(σkkdW (t) + ξkkdN(t)),

where the variable Z refers to the sum:

Z(t) :=
∑
j 6=k

βkj(Ij(t) + Ej(t))

Nj

Sk(t),

and the other equations in (6.2) are kept the same. For further generality, λkj(t), σkj(t), and

ξkj(t) can also be time-varying random variables.

6.2.3 Including Multiple Variants

With the recent rise of mutations of SARS-CoV-2 such as the Delta variant and the Omicron

variant, it now becomes imperative to consider more than one strain of virus. Gene sequencing

analysis suggests that the possibility of infection from a variant virus is highly probable even

if an individual has recovered from infection of the original strain. It becomes necessary to

modify the previously-described SEIRD compartment model in the following way: once an

individual has recovered from a variant virus, (s)he transitions to being susceptible to the

variants (s)he has not yet been exposed to.

Let A ∈ N be the total number of known strains of SARS-CoV-2 which are being propagated

throughout the network. In order to accommodate multiple strains of the virus, we make

the following modifications to the states of the SEIRD compartmental model described

previously:

• (S)usceptible individuals may now be susceptible to a variety of combinations of strains.

We hence revise the notation of compartment (S) as (S[x1, · · · , xA]), where xa = 1 for

individuals susceptible to strain a ∈ {1, · · · , A} and xa = 0 for individuals protected

from strain a. The vector [x1, · · · , xA], which we refer to as the (virus) susceptibility

profile, takes values in A (S) ⊂ {0, 1}A; in fact, there are a total of 2A−1 possible com-

binations of strains any individual may be susceptible to because [0, · · · , 0] corresponds

to a fully-recovered individual, which corresponds to the (R) compartment.

• The (E)xposed compartment is revised similarly to the (S)usceptible compartment,

with notation (E[y1, · · · , yA]) such that ya = 1 for individuals exposed to strain a ∈
{1, · · · , A}, ya = 0 if protected from strain a, and ya = −1 if susceptible but not
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exposed to strain a. We assume multiple strains of the virus may not simultaneously

infect an individual, so any vector [y1, · · · , yA] can only contain exactly one zero; we

henceforth define A (I) ⊂ {−1, 0, 1}A to be the set of possible values of [y1, · · · , yA].

Likewise, the (I)ll compartment is revised with notation (I[y1, · · · , yA]) such that ya = 1

for individuals ill from strain a ∈ {1, · · · , A}, ya = 0 if protected from strain a,

and ya = −1 if susceptible but not ill from strain a. Note the possible set of values

[y1, · · · , yA] for (I) compartment is the same as those of the (E) compartment; we

henceforth refer to the set A (I) as the set of possible (virus) infectiousness profiles.

• There is still only a single (R)ecovered compartment and a single (D)eath compartment.

Correspondingly, we redefine the phase space as

X := {R,D} ∪

 ⋃
[x1,··· ,xA]∈A (S)

S[x1, · · · , xA]

 (6.5)

∪

 ⋃
[y1,··· ,yA]∈A (I)

E[y1, · · · , yA] ∪ I[y1, · · · , yA]

 ,

and to account for the uniqueness of each virus strain, the vector θk, k ∈ {1, · · · , K} of

transition rate parameters from the compartmental model of Section 6.2 is updated as follows:

θk :=

[
{βi,kj}i∈{1,··· ,|A (I)|}

j∈{1,··· ,K }
, {αi,k}i∈{1,··· ,|A (I)|, {γ

(r)
i,k }i∈{1,··· ,A}, (6.6)

{γ(d)
i,k }i∈{1,··· ,|A (I)|}, {νi,k}i∈{1,··· ,|A (I)|−A}

]
,

where νi,k is the rate of recovery of community k from virus strain i of individuals who are

susceptible to multiple strains (including i).

Remark 25. In this paper, we only consider the case where the total number of variants A

is known beforehand. However, when a new (A+ 1)th strain is identified to be propagating

throughout the population, a new group is created with the sole infectious individual being

its only member for the time being.

The equations governing the compartment model for multiple strains is a simple extension

of (6.1). With Assumption 10 in place, we have that for each time t:∑
[x1,··· ,xA]∈A (S)

S[x1, · · · , xA](t) +R(t) +D(t)
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Figure 6.4: SEIRD for the ODE module for a single individual v ∈ V with A = 3 possible
virus strains, using transition rates as parameters. Here, a (S) compartment with value 0
in strain a ∈ {1, · · · , A} means the individual is protected against strain a, and a 1 means
that (s)he is susceptible. A (E) compartment with value 0 in strain a means protection, 1
for exposure (asymptomatic infection), and −1 for susceptibility but not exposure; similarly
for the (I) compartment with 1 representing illness instead.
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+
∑

[y1,··· ,yA]∈A (I)

(E[y1, · · · , yA](t) + I[y1, · · · , yA](t)) = Nk.

For concreteness and simplicity of description, we henceforth limit our discussion to the case

of A = 3 different strains; the SEIRD compartmental model for a single community different

strains is thus shown in Figure 6.4. For simplicity of notation, we enumerate the vectors

c1 := [1, 0, 0], c2 := [0, 1, 0], c3 := [0, 0, 1], c4 := [1, 1, 0]

c5 := [1, 0, 1], c6 := [0, 1, 1], c7 := [1, 1, 1], d1 := [−1, 1, 0]

d2 := [1,−1, 0], d3 := [−1, 0, 1], d4 := [1, 0,−1], d5 := [0,−1, 1]

d6 := [0, 1,−1], d7 := [1,−1,−1], d8 := [−1, 1,−1], d9 := [−1,−1, 1]

∀ i = 1, 2, 3 :

dSk[ci](t)

dt
= −

∑
j∈Nk

βi,kj(Ij[ci](t) + Ej[ci](t))

Nj

Sk[ci](t)

+


ν1Ik[d1](t) + ν3Ik[d3](t) if i = 1

ν2Ik[d2](t) + ν5Ik[d5](t) if i = 2

ν4Ik[d4](t) + ν6Ik[d6](t) if i = 3

(6.7a)

∀ i = 4, 5, 6 :

dSk[ci](t)

dt
= −

∑
j∈Nk

βi,kj
2i−6∑
`=2i−7

(Ij[d`](t) + Ej[d`](t))

Nj

Sk[ci](t) + νi+3,kIk[di+3](t)

dSk[c7](t)

dt
= −

∑
j∈Nk

9∑̀
=7

β`+3,kj(Ij[d`](t) + Ej[d`](t))

Nj

Sk[c7](t)

∀ i = 1, 2, 3 :

dEk[ci](t)

dt
=

K∑
j=1

βi,kj(Ij[ci](t) + Ej[ci](t))

Nj

Sk[ci](t)− αi,kEk[ci](t) (6.7b)

∀ i = 1, · · · 6 :

dEk[di](t)

dt
=

K∑
j=1

βi+3,kj(Ij[di](t) + Ej[di](t))

Nj

Sk[cdi/2e+3](t)− αi,kEk[di](t)
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∀e ∈ {c1, · · · , c7,d1, · · · ,d9} :

dIk[e](t)

dt
= α·,kEk[e](t)− γ(d)

·,k Ik[e](t) (6.7c)

dRk(t)

dt
=

3∑
i=1

γ
(r)
i,k Ik(t) (6.7d)

dDk(t)

dt
=

∑
e∈{c1,··· ,d9}

γ
(d)
·,k Ik(t) (6.7e)

where the parameters are defined in (6.6) and the subscript of · in (6.7c) and (6.7e) is replaced

with the appropriate index.

6.3 CHMM Module: Individual-Level Propagation

While the SEIRD compartmental model is used to propagate the health status of each

community, coupled hidden Markov models (CHMMs) [22] are used to represent the health

status of certain tracked individuals. Detailed contact-tracing data from a single individual

offers further insight into the parameters of the dynamics of the disease spread within smaller

subsets of each community.

6.3.1 Parameter Estimation from Contact-Tracing

Let Xn(t)∈X be the hidden state of the HMM for individual n∈V for all time t∈N, with

X the set of possible phases defined in Section 6.1.2; in the context of epidemic modeling,

Xn(t) is the health status of individual n∈V at each time t∈N. A chain n∈V of the CHMM

is a sequence of hidden states {Xn(t), t ≥ 0} over time for the single individual v, and they

are connected to the chains corresponding to the other individuals v interacts with. We

denote random vector Xn(t1 : t2) := (Xn(t1), Xn(t1 + 1), · · · , Xn(t2)) for 0<t1<t2 to be the

sequence of health statuses for individual n∈V between times t1 and t2, and the vector of

deterministic values it takes as lowercase xn(t1 : t2) := (xn(t1), xn(t1 + 1), · · · , xn(t2)).

Although the true health status of any individual may be unknown (especially when (s)he

is in the (E) phase), each individual releases a set of observable symptoms (e.g., fever,

sore throat, etc.) which can be used to determine whether or not (s)he is infectious (ex-

posed or ill). Suppose we are interested in keeping track of B ∈N specific symptoms of

COVID-19; for simplicity, we assume that they occur independently of each other. Let

Yn(t) := [Yn,1(t), · · · , Yn,B(t)]> ∈{0, 1}B represent the observed symptoms vector of individ-

ual n∈V at time t, where Yn,j = 0 if the individual does not exhibit symptom j ∈{1, · · · , B},
and 1 otherwise. Define the observation probability matrix (OPM) On(Yn,·(t)|·)∈RB×|X | for
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Figure 6.5: A sample coupled hidden Markov model relating the health statuses of three
individuals in a community, along with the observed symptoms.

individual n∈V , with entries On(Yn,j(t)|Xn(t)) denoting the probability of observing the

positive presence symptom j in individual v at time t, i.e., Yn,j(t) = 1. Note that each row

of this matrix does not necessarily need to sum to 1 since the entries correspond only to the

case yn,j = 1. The boldfaced notation for X and x also extends to Yn,yn in the same way,

as {Yn(0 : t) = yn(0 : t)}≡{Yn,1(0 : t) = yn,1(0 : t), · · · ,Yn,B(0 : t) = yn,B(0 : t)}.

Assumption 12. For each n∈V , the OPM On is given and known.

A sample CHMM of a specific community with three individuals, not strongly-connected, is

visualized in Figure 6.5. Because contact-tracing data only provides us information about

the evolution of the observed symptoms over time for a subset of tracked individuals, the

transition probabilities among the different phases in X are unknown. Each individual is

assigned a vector of unknown parameters similar to θk for the compartmental model of each

community k ∈{1, · · · , K}. For individual n∈V , the full vector of transition probability

parameters is given by ηn(t) := [βn(t), αn, γ
(r)
n , γ

(d)
n ], and the sparsity pattern of the transition
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γ
(d)
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1

1

Figure 6.6: The underlying Markov chain for a single chain of the CHMM module, using
transition probabilities as parameters.

probability matrix (TPM) corresponding to the chain of v is given by

Pn(t) :=


1− βn(t) βn(t) 0 0 0

0 1− αn αn 0 0

0 0 1− γ(r)
n − γ(d)

n γ
(r)
n γ

(d)
n

0 0 0 1 0

0 0 0 0 1

 . (6.8)

Note that the probability for transitioning from S to E is time-varying because it is dependent

on the time-varying health statuses of his/her immediate neighbors.

Given a complete sequence {yn(0 : Tsim)} of observed symptoms over some time duration

Tsim > 0, we address two questions for each individual n∈V . Question 1: how can we estimate

the values of the TPM Pn(t) in the CHMM? Question 2: given the TPM estimates P̂n(t)

for all t ∈ [0, Tsim], how can we estimate the true health status xn(0 : t)? Both question

can be addressed by extending standard HMM techniques (see, e.g., [65]). For Question

1, the forward-backward algorithm (e.g., [126]) and Baum-Welch (expectation-maximization)

(e.g., [16]) are standard procedures in the HMM literature which can estimate the transition

and observation probabilities in Pn and On. For the purposes of this application, we make two

simultaneous extensions: 1) multiple different time series of observations can be incorporated

at once, and 2) the unknown parameters are assumed to be time-varying.

Define fn,j(t, x) :=P(Xn(t) =x,Y
(t)
n,j = y

(t)
n,j) to be the probability that the individual is in

state x ∈ X at time t and the past observed symptom sequence is given by Y
(t)
n,j = y

(t)
n,j.

Define bn,j(t, x) := P(Y
(t+1:T )
n,j = y

(t+1:T )
n,j |Xn(t) =x) to be the probability of observing a future

sequence of symptoms Y
(t+1:T )
n,j = y

(t+1:T )
n,j given we know the individual is in state x. The
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recursive equations for fn,j and bn,j are then given by:

fn,j(t, x) =
∑
z∈X

fn,j(t− 1, z)On(yn,j(t)|x)P̂
(t−1)
n,j (z, x), fn,j(0, x) := qn(x)On(yn,j(0)|x),

(6.9a)

bn,j(t, x) =
∑
z∈X

bn,j(t+ 1, z)P̂
(t)
n,j(x, z)On(yn,j(t+ 1)|z), bn,j(T, x) = 1 ∀x ∈ X . (6.9b)

Given observation sequence Yn,j(0 : Tsim) = yn,j(0 : Tsim), define gn,j(t, x) to be the probabil-

ity that the state of individual n at time t is x given observation sequence j, and hn,j(t, x, z)

to be the probability that the state of individual n makes a transition from x to z at time t:

gn,j(t, x) := P(Xn(t) = x|Yn,j(0 : Tsim) = yn,j(0 : Tsim)), (6.10a)

hn,j(t, x, z) := P(Xn(t) = x,Xn(t+ 1) = z|Yn,j(0 : Tsim) = yn,j(0 : Tsim)). (6.10b)

The variables defined in (6.9) allow us to simplify (6.10) beyond their definitions:

gn,j(t, x) =
fn,j(t, x)bn,j(t, x)∑

z∈X
fn,j(t, z)bn,j(t, z)

, (6.11a)

hn,j(t, x, z) =
fn,j(t, x)P̂

(t)
n,j(x, z)On(yn,j(t+ 1)|z)bn,j(t+ 1, z)∑

u,w∈X
fn,j(t, u)P̂

(t)
n,j(u,w)On(yn,j(t+ 1)|w)bn,j(t+ 1, w)

. (6.11b)

Note that the expressions for (6.11) are dependent on previous estimates of the TPM P̂
(0:t−1)
n,j

for each time t; essentially, we are recursively building new estimates of P̂
(t)
n,j based on the

previous time’s estimates. For a single individual n ∈ V , estimating the TPM Pn(t) based

on a single observation sequence j ∈ {1, · · · , B} can be solved according to the standard

Baum-Welch algorithm [16]. Define η̂
(t)
n,j to be the estimate of the true parameter vector ηn

at time t based on observation sequence j, and define a corresponding auxiliary function as:

Qn,j(t) :=E
[
log
(
p

(c)
n,j(Xn(0 : t),Yn,j(0 : t)|ηn(0 : t))

) ∣∣∣∣yn,j(0 :T ), η̂
(0:t)
n,j

]
, (6.12)

where p
(c)
n,j denotes the joint probability distribution of observing a complete set of data

{xn(0 : t),yn,j(0 : t)} for individual n:

p
(c)
n,j(xn(0 : t),yn,j(0 : t)|ηn(0 : t)) = qn(xn(0))

t−1∏
s=0

Pn(s, xn(s), xn(s+ 1))
t∏

s=0

On(yn,j(s)|xn(s)).
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We maximize the (6.12) to determine the optimal initial probability distribution q̂
(t)
n,j and

the optimal TPM P̂
(t)
n,j. Note that the maximization must be done subject to the regularity

conditions
∑

u∈X P̂
(t)
n,j(x, u) = 1 and

∑
x∈X q̂

(t)
n,j(x) = 1 for all x ∈ X . The optimal point has

the following closed-form expression:

q̂
(t)
n,j(x) = gn,j(0, x), (6.13a)

P̂
(t)
n,j(x, z) =

(
t−1∑
s=0

hn,j(s, x, z)

)(
t∑

s=0

gn,j(s, x)

)−1

, (6.13b)

where the gv,j(t, x) and hv,j(t, x, z) are defined in (6.10). The procedure is repeated for each

t ∈ [0, Tsim] so that we obtain an estimate of q̂
(t)
n,j and P̂

(t)
n,j which evolves over time.

In order to account for time-varying parameters, we apply a discounting factor a ∈ (0, 1]

which weights the values of past estimates less the further back in the past they were ob-

served. To aggregate multiple observations into a single definitive estimate, define w∈RB

to be weights such that
∑
wj = 1:

P̂n(t, x, z) =

(
B∑
j=1

wj

t−1∑
s=0

at−shn,j(s, x, z)

)(
B∑
j=1

wj

t∑
s=0

at−sgn,j(s, x)

)−1

. (6.14)

The assignment of weights is chosen via two metrics: 1) the observation sequences are sta-

tistically correlated with each other, or 2) one observation sequence yields more information

about a state than another, e.g., observing a fever on an individual may be more reflective of

his/her ill state than a runny nose. For simplicity, we assume that these weights are known

beforehand and that our observation processes are independent of each other, meaning that

the weights are only chosen according to how well they represent the true state.

Question 2 can be addressed by applying the standard Viterbi algorithm to each separate

observation sequence, then aggregating them. Specifically, recall Xn(t) ∈ X refers to the

hidden state of individual n ∈ V , and suppose we are given a time series of observations

Yn,j(0 : t) for symptom j ∈ {1, · · · , B}. The estimated time-varying TPM underlying the

HMM is given by P̂
(t)
n at time t, and the known OPM is given by On. The initial state is

known and given by Xn(0) = xn(0). Then the standard Viterbi algorithm (e.g., [58]) can

be applied to the observation sequence j ∈{1, · · · , B} to estimate the sequence x̂n,j(1 : t)

of likely hidden states over time based on symptom j. The probability of observing some

specific sequence of health statuses xn(1 : t) for some t ≤ Tsim is given by:

P({Xn(t) = xn(t), n ∈ V , t ∈ [0, T ]})
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=
∏
n∈V

qn(xn(0))
∏

t∈[0,T−1]
n∈V

P(Xn(t+ 1)|Xn(t), {Xm(t),m ∈ N (n)}),

where qn(x) denotes the initial probability that individual n starts off at state x. Based on

the observations of an individual’s symptoms, we recursively compute:

δn,j(0, x) = qn(x)On(yn,j(0)|x),

δn,j(t, x) = max
z∈X

δn,j(t− 1, z)P̂ (t−1)
n (z, x)On(yn,j(t)|x), t ≥ 1.

Then for the specific observation sequence j, the optimal sequence of states is given by

x̂n,j(t) := argmaxz∈X δn,j(t, z). Thus, x̂n,j(t)∈X is the most likely health status of individual

n∈V at time t ∈ [0, Tsim] given observation process j ∈{1, · · · , B}. Then the health status

x̂n(t) determined by considering all observation processes simultaneously is then given by

whichever phase in X occurs most often in the aggregate set {x̂n,1(t), · · · , x̂n,B(t)}. Ties are

broken according to the state which is more “harmful” to the network, e.g., if the most

likely state is tied between susceptible (S) or exposed (E), then we take the individual to be

exposed because (s)he is liable to infecting more people in the network.

6.3.2 Including Multiple Variants

We can extend the CHMM module to account for variant viruses and mutations in a way

similar to what was done for the compartmental ODE module (Section 6.2.3). The unknown

probabilities for the CHMM module, expanded to consider multiple strains, is given by

ηv(t) :=

[
{βi,v(t)}i∈{1,··· ,|A (S)|}

j∈{1,··· ,K}
, {αi,v(t)}i∈{1,··· ,|A (S)|+|A (I)|}, (6.15)

{γ(r)
i,v }i∈{1,··· ,A}, {γ

(d)
i,v (t)}i∈{1,··· ,|A (S)|+|A (I)|}, {νi,v(t)}i∈{1,··· ,|A (I)|}

]
.

Furthermore, the TPM P
(t)
v for each v ∈ V and time t ∈ N is updated similarly to (6.7):

P (t)
v =


P

(t)
v,SS P

(t)
v,SE 0 0 0

0 P
(t)
v,EE P

(t)
v,EI 0 0

P
(t)
v,IS 0 P

(t)
v,II P

(t)
v,IR P

(t)
v,ID

0 0 0 1 0

0 0 0 0 1

 ,
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where each of the submatrices P
(t)
v,·· are defined as follows, using the parameters defined

in (6.15):

P
(t)
v,SE = diag

{
diag{β1,v(t), · · · , βA,v(t)}, (6.16)

diag{βA+1,v(t) + βA+2,v(t), · · · , β2A−1,v(t) + β2A,v(t)},
|A (S)|∑
i=2A+1

βi,v(t)

}
P

(t)
v,SS = I − P (t)

v,SE

P
(t)
v,EI = diag{α1,v(t), · · · , α|A (I)|,v(t)}, P

(t)
v,EE = I − P (t)

v,EI (6.17)

P
(t)
v,IS =

[
P

(t)

v,IS

04×12

]

P
(t)
v,IR =

A∑
i=1

γ
(r)
i,v (6.18)

P
(t)
v,ID = diag{γ(d)

1,v (t), · · · , γ(d)

|A (I)|,v(t)}

P
(t)
v,II = I −

∑
χ∈{S,R,D}

P
(t)
v,Iχ

where

P
(t)

v,IS =



ν1,v(t) 0 ν3,v(t) 0 0 0 0 0 0

0 ν2,v(t) 0 0 ν5,v(t) 0 0 0 0

06×3 0 0 0 ν4,v(t) 0 ν6,v(t) 0 0 0

0 0 0 0 0 0 ν7,v(t) 0 0

0 0 0 0 0 0 0 ν8,v(t) 0

0 0 0 0 0 0 0 0 ν9,v(t)


,

and I−M for a rectangular matrix M ∈ Rn×m is intended to mean a n×n matrix where the

diagonal elements are 1 minus the row sum of M . The procedure for estimating parameters,

which was detailed in Sections 6.2 (and will be detailed further in 6.4), is then used with the

multi-strain versions of the ODE and CHMM dynamics.

6.4 Parameter Estimation with the Two Modules

The relationship between the small-scale CHMM model (Section 6.3) and the large-scale

compartmental model (Section 6.2) can be illustrated as follows. An individual in com-

munity k who has health status S at time t is counted in the number Sk(t). When (s)he

transitions to health status E at time t+1, we decrement Sk(t+1) =Sk(t)− 1 and increment
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Ek(t + 1) =Ek(t) + 1. This relationship suggests that both count data (e.g., the number of

total infections/deaths) and the individual contact-tracing data can be used to estimate the

transition rates of the compartmental model.

Figure 6.7: [Left] Original local community graph for two individuals (gray and red) who are
being tracked. [Right] The corresponding graph representation of the local community graph.
Communities are strongly-connected, and nodes which are shared among communities are
replicated. Edges between replicated nodes (dashed black lines) between them have weights
that depend on the interaction parameters and/or mitigation strategy employed.

Define θ̃k(t) := [{β̃kj(t)}j∈{1,··· ,K}, α̃k(t), γ̃(r)
k (t), γ̃

(d)
k (t)]> to be the estimate of parameter

vector θk for the specific community Ck, k ∈ {1, · · · , K}, at time t ∈ (0, Tsim]. Similarly,

define η̂n(t) := [β̂n(t), α̂n(t), γ̂
(r)
n (t), γ̂

(d)
n (t)]> to be the estimate of the parameter vector

ηn(t) for the tracked subset V ⊆ V of the total population. Note that even for original

parameters which are constant (e.g., αk, αn, etc.), we consider a time-varying estimate due

to the time-varying nature of the estimated TPM P̂n(t). Moreover, the transition probability

estimates in the small-scale CHMM model and the transition rate estimates in the large-scale

compartmental model need to be reconciled. The conversion from any probability p to any

rate r for is done through the standard formula p := 1− e−r.

First, by the structure of the estimated TPM P̂n(t), we can estimate some parameters

by matching the corresponding entries: β̂n(t) = P̂n(t, S, E), α̂n(t) = P̂n(t, E, I), γ̂
(r)
n (t) =

P̂n(t, I, R), γ̂
(d)
n (t) = P̂n(t, I, D). To estimate the {β̃kj(t)}j parameters, first define κn(t) to

be the number of infectious tracked neighbors of n ∈ Ck in community Ck. To get an esti-
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mate κ̂n(t) of κn(t), individual n exchanges Viterbi algorithm results with his/her tracked

neighbors {x̂m,j(t),m ∈ N (n)}, then simply counts the number of people inferred to be

infectious.

Note the probability βn(t) (β̂n(t)) for individual n to transfer from S to E is dependent on

κn(t) (κ̂n(t)). A sensible choice for βn(t) should meet two criteria: 1) it should be impossible

for n to become exposed if κn(t) = 0, and 2) it should be a function which increases with κn(t).

One such choice, from [48] is a modified Beta distribution; here, we use the straightforward

probabilistic relationship:

P̂ (t, S, E) = β̂n(t) = 1−
(

1− β̂(1)
n (t)

)κ̂n(t)

. (6.19)

Here β
(1)
n ∈ [0, 1] is the constant probability of a susceptible person becoming exposed upon

contact with an infectious individual, and β̂
(1)
n (t) is its time-varying estimate. We use a su-

perscript 1 to emphasize that the probability corresponds to a single susceptible individual

and a single infectious individual. Because κn(t) = 0 implies βn(t) = 0, we specifically con-

sider the case where κn(t) > 0, from which β̂
(1)
n (t) is determined by algebraic rearrangement

of (6.19). Once β̂
(1)
n (t) is determined for all tracked n, we estimate the {β̃kj(t)}j for each k

via

β̃kk(t) = −
∑
n∈Ck

ln(1− β̂(1)
n (t)), β̃kj(t) = −

∑
n∈Ck∩Cj

ln(1− β̂(1)
n (t)), (6.20)

where k, j ∈ {1, · · · , K} and Ck is the set of tracked individuals in community Ck. Similar

to the β̂’s, we rely entirely on contact-tracing data from individuals in Ck to estimate α̃k(t):

α̃k(t) := −
∑
n∈Ck

ln(1− α̂n(t)) = −
∑
n∈Ck

ln(1− P̂n(t, E, I)). (6.21)

Note that both the {β̃kj(t)}j and α̃k(t) were estimated using only individual contact-tracing

data because the lack of visible symptoms in exposed individuals makes it difficult to obtain

the counts Ek(t) for each k. In contrast, the ill, recovered, and death tolls have been some

of the most frequently reported statistics throughout the worst of the COVID-19 pandemic,

and so we can obtain additional estimates from the large-scale count data. The time cycle

period for each rate in the compartmental model is one day:

γ̃
(r)
k (t) :=

1

2

 1

Ik(t)
(Rk(t+ 1)−Rk(t))−

∑
n∈Ck

ln(1− γ̂(r)
n (t))

 ,
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γ̃
(d)
k (t) :=

1

2

 1

Ik(t)
(Dk(t+ 1)−Dk(t))−

∑
n∈Ck

ln(1− γ̂(d)
n (t))

 ,

for time t ∈ [0, Tsim).

Remark 26. The multiscale model can be reduced to either a full compartmental ODE or

a full coupled HMM, models which are prevalent throughout much of the existing literature

on epidemic modeling (see the beginning of the chapter for a review). In particular, the

multiscale model can be reduced to a full CHMM model by using the Markov chain dynamics:

Xn(t+ 1) = x with probability P
(t)
n [Xn(t), x] for some x ∈ X ; the number of individuals per

compartment at each time t can then be obtained by counting the number of individuals

which belong in each phase, e.g., Sk(t) =
∑

n∈Ck 1{Xn(t) = S}. If the CHMM module

replaces the ODE module, a means of propagating individuals across each phase of COVID-

19, the multiscale model becomes fully stochastic, and further details about intra-community

interactions may effectively remove the need to introduce the community structure. However,

the key point is that when handling large-scale populations, individual-level modeling is not

ideal due to computation time incurred from the large number of parameters that need to

be estimated. Using coarser community partitions via the ODE module allows us to abstract

away an appropriate number of details.

6.5 Simulation

We apply our multiscale model to specific case studies pertaining to the ongoing pandemic

of COVID-19 and demonstrate its performance via numerical simulations. The common

assumptions used for each experiment are described below.

Performance Metrics: We consider the following metrics to evaluate the performance of

our multiscale model on the datasets described above. Specific to the CHMM module, we

look at two metrics. First, the binary correlation between the predicted and true sequence of

states, i.e., the ratio of correctly-inferred states determined by the multi-observation Viterbi

algorithm (see Section 6.3.1) in comparison to the true health states of the individual:

Tsim∑
t=1

1{x̂n,j(t) = xn,j(t)}. (6.22)

Second, we investigate the average entrywise absolute-value difference between true and

estimated TPMs for each time t ∈ [0, Tsim]:

1

|X |2
∑
x,z

|Pn(t, x, z)− P̂ (t)
n (x, z)|. (6.23)
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We choose the metric (6.23) in this way, as opposed to the standard L1 or L2 norms, so that

any deviations away from the true matrix caused by a massive error in a single entry do not

greatly impact the overall error.

For parameter estimation of both communities and individuals, we consider mean absolute-

value differences:

1

K

K∑
k=1

|χ̂(t) − χ|, χ ∈ {αk, γ(r)
k , γ

(d)
k },

1

N

N∑
n=1

|χ̂(t) − χ|, χ ∈ {βn(t), αn, γ
(r)
n , γ(d)

n }, (6.24)

where χ is a placeholder variable for the original parameters in θk or ηn, and N ≤ N is the

number of tracked individuals in the total population.

Symptoms Observation Matrix: We consider the symptoms of 1) fever/headache/mi-

graine, 2) difficulty breathing/blockage in lungs, 3) sore throat/scratchy throat/coughing, 4)

stomach pain/indigestion/diarrhea,5) sneezing/runny nose/itchy nose, and 6) dead based on

the real symptoms observed of a person infected with COVID-19. We assign the following

concrete probability values, which were chosen based on the real-data statistics about the

symptoms given by the CDC [29].

On(yn,j = 1|x) =



0.1 0.1 0.9 0 0

0.05 0.05 0.65 0.01 0

0.07 0.07 0.73 0.01 0

0 0 0.03 0.01 0

0 0.9 0.95 0 0

0 0 0 0 1


∈ RB×|X |.

That is, the (j, x)th entry of the matrix above defines the probability of observing symptom

j ∈ {1, · · · , B} from individual n (i.e., yn,j = 1) given his/her current health status is x ∈ X .

Prediction and Forecasting: We substitute the estimated parameters

θ̃k(Tsim) := [{β̃kj(Tsim)}j∈{1,··· ,K}, α̃k(Tsim), γ̃
(r)
k (Tsim), γ̃

(d)
k (Tsim)]

obtained from Section 6.4 into the compartmental module (6.2) in order to forecast the

evolution of counts up to some future time T+
sim > Tsim. For the purposes of prediction, we

keep the rates constant at the final value estimate at time Tsim. To determine the accuracy

of the prediction, we consider the absolute-value difference between the true and predicted
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counts X(t) over time t ∈ (Tsim, T
+
sim], where X is a placeholder for one of the original

compartments X ∈ {I, R,D}. Note that the susceptible and exposed individuals are not

considered since they are difficult to obtain the true values of in the real world.

6.5.1 Performance of HMM Model: Parameter Estimation

We evaluate the performance of the parameter estimation scheme from Sections 6.3.1 and 6.4

using two datasets, described below.

Dataset 1: We construct a dataset based off of [43], which is a collection of real-world

contact-tracing time series data about the spread of COVID-19 in South Korea during 2020.

The communities corresponding to the SEIRD compartmental module from Section 6.2 are

constructed based off of Korea’s provinces, so there is only M = 1 type of community for this

dataset. Individuals within each province are assumed to interact according to a strongly-

connected graph, while the edge weights between each pair of provinces are designed based

off passenger traffic data collected in 2018 from KOSIS [84]. The total number of individuals

considered in this dataset is approximately 5000, and each individual v ∈ V is modeled as

a CHMM with nominal parameter values ηv(t) calculated based on their “age”, “symptom-

onset-date”, “confirmed-date”, and “released-date” fields from the original contact-tracing

dataset.

Dataset 2: We construct a more artificial dataset in the following way. We choose a specific

number of communities K, each of some size Nk, k ∈ {1, · · · , K} which is randomly chosen

from some range. From each community Ck, a subset of members belong to more than one

community, and another subset Ck ⊆ Ck of members individual is chosen to be tracked. Some

initial distribution of health statuses across the total population is chosen, and the “true”

behavior of disease spread throughout the network is emulated by propagating the CHMM

of every individual (tracked or not). This generates a sample path of compartment counts

over time per community, as well as health status sequences and observed symptoms over

time for each tracked individual in the population; this sample path of values is precisely

our dataset. In one of our experiments, we consider different parameters (e.g., community

structures, proportion of population which is tracked) in order to demonstrate their effects

on the forecasting performance of our multiscale model.

We use a network with K = 10 communities and N = 116 individuals in the population. The

communities are roughly equally-partitioned: [15, 21, 19, 26, 18, 18, 20, 24, 14, 20] and there
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Code Hyperparam Definition

K Num communities

community size range [min, max] number of members per community

multi communities prop Prop. of total population in multiple communities

range simult communities [min, max] num communities one person can be in

tracked prop Prop. of people in each community tracked

Table 6.1: Possible simulation parameters to adjust in the code (Dataset 2).

Home Work School

α 0.8× 4/14 0.8× 4/14 0.8× 4/14

γ(r) 0.979/14 0.979/7 0.979/7

γ(d) 0.021/7 0.021/14 0.021/14

Table 6.2: True parameter values for each type of community in Dataset 2.

are a total of 55 tracked individuals. The results can be observed in Figure 6.8 and Figure 6.9.

6.5.2 Impact of Network Topology on Virus Propagation

In this simulation, we apply the full multiscale model described in Sections 6.2 to 6.4 to

Dataset 2. We especially determine the effect of the population network structure on the

speed and breadth of the virus spread. The number of communities is chosen at random and

interconnected according to various topologies:

1. Dense Graph: the number of edges in each community is between 60% and 80% among

all possible edges in the community. The number of edges between any two commu-

nities is between 1% and 2% among all possible edges. More specifically, the three

communities have 564, 1044, and 1274 many edges respectively;

2. Sparse Graph: the number of edges in each community is between 1% and 2% among all

possible edges in the community. The number of edges between any two communities

is between 1% and 2% among all possible edges;

3. Tree with Multiple Branches : each community is a tree, and the number of branches

for each node is between 3 and 6. This corresponds to a structure which is somewhere
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Figure 6.8: The estimated parameters β̂
(1)
n (t) and α̂n(t) over time, with constant red line

denoting the true value.
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Figure 6.9: The estimated parameters γ̂
(r)
n (t) and γ̂

(d)
n (t) over time, with constant red line

denoting the true value.

in between the densities of the Dense graph and the Sparse graph.

Using the parameters estimated via the HMM model in Section 6.5.2, we now consider the

propagation of disease at the large scale. After a similar experiment is performed for Dataset

2 and converting the transition probabilities to transition rates, we use the values given in

Table 6.2.

We visualize the trajectories of each compartment in Figure 6.10. Even for this smaller

network of 200 nodes, the Sparse Graph took approximately an hour to run on a 2.2-GHz

Intel Core i7 Macbook Air. This result provides further experimental motivation for why

the CHMM module should be used strictly for small-scale parameter estimation; the ODE

module is better suited for community-wide propagation.

We verify the hypothesis that reducing the frequency of contacts between people via inter-

ventions methods such as quarantine is helpful in preventing the spread of the virus. For a

fixed simulation time of Tsim = 2000, the pandemic in the Dense Graph continues to spread
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Figure 6.10: Emulation via HMM module of the dense, tree, and sparse graphs.
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until all the people have been infected at least once. For the Tree with Multiple Branches,

the pandemic ends at time 860 with 146 people infected at least once, and for the Sparse

Graph, it ends at time 799 with only 116 people infected at least once.

6.5.3 The Effects of Superspreaders

In this experiment, we emulate the effect of superspreaders by accounting for high variability

in the contact rate of individuals by applying the stochastic model (6.4) to Dataset 1. For

the sake of graph simplicity, we reduce the original 23 provinces in the dataset down to two

groups: Group 1, corresponding to highly popular locations, contains about 400 members to-

tal, and Group 2 contains the remaining 915 individuals. The [βkj] matrix, substituting (6.3)

for the interactions of people, are given by:

[βkj] :=

[
β0 + σW (t) + ξN(t) 0.0021

0.01 0.005

]
(k,j)

,

where β0 = 0.03, σ = 0.01, λ = 0.0143, and ξi∼Unif[0.5, 2]. The values of αk, γk are deter-

mined by what was estimated previously from the HMM experiment of Section 6.5.1.
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Figure 6.11: The spread of virus visualized over the five compartments for two disjoint groups.
The rate of interactions in the Group 1 is subjected to stochastic noise.
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The trajectories of both groups over time are shown in Figure 6.11. The initial number of

people in each compartment are chosen to be I1(0) = 26, E1(0) = 30 for Group 1, and

I2(0) = 45, E2(0) = 63 for Group 2. For both groups, the remaining individuals are all

susceptible. We observe that Group 2 initially enjoys a reduction in the number of infectious

individuals for the two months, but increases as a result of coming into contact with members

of Group 1, despite the fact that interactions outside of Group 1 are kept at far less than

the interactions within Group 1. This experiment verifies an intuitive hypothesis: as a result

of the fragile stability, the pandemic ends more slowly than the time it would have taken

without the emergence of superspreaders.

6.6 Conclusion

In this chapter, we addressed the problem of modeling epidemic spread for control by propos-

ing a novel multiscale model consisting of two main parts: 1) a compartmental model which

separates among population communities and emulates large-scale disease using ODE dy-

namics, and 2) a coupled HMM model which is embedded within each individual to emulate

the evolution of an his/her health status over time. The novelty in our proposed technique

is the combination and extensions of two models which are traditionally used separately in

the study of epidemics. Furthermore, the combination of two scales of epidemic modeling

allows for the incorporation of multiple scales of data, such as large-scale infected/death

counts and individual-level contact-tracing. Model parameters, i.e., transition rates, tran-

sition probabilities, and edge weights, are estimated using extensions of standard methods

of parameter estimation (e.g., Viterbi’s algorithm, Baum-Welch), an the trained model is

then used to forecast predictions on the spread of SARS-CoV-2. In particular, we have made

additional stochastic extensions to our model by accounting for jump phenomena in two

ways: 1) the effect of possible superspreaders via Poisson shot noise and 2) the emergence of

variant viruses via jump-switching to different parameters. The implementation of the model

is demonstrated on two datasets which were constructed based on real data from at least

three different countries.
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163C h a p t e r 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion and Thesis Contributions

In this thesis, we used the broad class of jump stochastic systems (JSSs), i.e., systems with

random and repetitive jump phenomena, to demonstrate that tools and theory from mathe-

matics can be leveraged to better balance the interplay between model-based and model-free

learning for efficient stochastic control and estimation. Although it is becoming increasingly

popular to rely entirely on unsupervised AI methods for controlling/estimating complex

stochastic systems, training them can often be exhaustive in computation time and energy

if they redundantly learn information that could be more easily obtained from structured

models. A key aim of this thesis was to demonstrate that learning recurrent patterns in the

underlying jump process can make controller and observer design of JSSs more efficient in

data and time by reducing redundant computation.

Our contributions in this thesis were two-fold: in theory and in application. On the theory

side, two main examples of JSSs were studied: systems perturbed by Poisson shot noise

and Markovian jump systems (MJSs). We began by characterizing sufficient conditions for

stochastic incremental stability for both Poisson shot and Lévy noise systems. This work ex-

plicitly leveraged theory from Poisson random measures and Lévy processes to develop these

conditions, which showed that understanding the relationship between system stability and

the jump noise characteristics enabled the potential to more efficiently design controllers

and observers for JSSs. We then presented a controller architecture based on the principle

of pattern-learning for prediction (PLP) for discrete-time/discrete-event systems, where re-

current patterns are learned and memorized to minimize redundant computation of control

policies. The key aspect of PLP in our controller architecture was the usage of martingales

to derive closed-form expressions for two pattern-occurrence quantities: 1) the expected mini-

mum occurrence time of any pattern from a collection of patterns, and 2) the first-occurrence

probability of a pattern being the first to occur among the collection. The pattern-occurrence

quantities allowed us to schedule control policies for future patterns, which further reduced

redundancy.



On the application side, we highlighted three real-world network control problems from a

diversity of fields to show that control and observer design can exploit the natural patterns

that emerge from spatial structures and temporal repetitions present in the network. Our first

application was a concrete implementation of the PLP controller architecture for dynamic-

topology networks, specifically, a power grid whose topology changed due to downed lines

over time. There, PLP was integrated with model predictive control (MPC) and the novel

system level synthesis (SLS) framework for disturbance-rejection, then compared against

variations such as SLS which was robust to changing topologies. We showed that the con-

troller with PLP was able to achieve three things: 1) match the control effort cost of the SLS

baseline, 2) stabilize the network just as well as the topology-robust extension, and 3) achieve

runtime faster than either. Our second application was the congestion control of vehicle traf-

fic flow over metropolitan intersection networks via an architecture based on pattern-learning

with memory and prediction (PLMP). Here, PLMP was an extension of PLP with an explicit

implementation of a memory component based on a version of episodic control that built

equivalence classes to group together patterns that can be controlled using the same light

signals. We demonstrated the performance advantage of PLMP with respect to several con-

gestion metrics and traffic scenarios, and found that on average, it outperformed the baseline

controllers with mild variation among the different implementations. Our third application

was the estimation and forecasting for the epidemic spread across population networks by

using a multiscale combined compartmental ODE/ hidden Markov model. Jump phenomena

were regularly present in the spread of epidemics through the chronic emergence of new virus

mutations, which can be represented as a jump to a set of dynamics with different parameter

values, and superspreader effects, which can be modeled with impulsive shot noise.

Overall, our research demonstrated the performance advantages of learning patterns for less

redundant computation by memorizing past patterns to schedule future policies in advance,

which made the overall procedure more efficient in data-consumption and computation time.

7.2 Future Work

Continuous-State Dynamics and Inexact Patterns

The impact of Chapter 2 is that understanding the relationship between system stability and

the characteristics of the jump noise allows us to infer the types of model-based controllers

we need to design. However, if the system is complex enough, model-based techniques may

also be intensive in computation time. For example, the Hamilton-Jacobi-Bellman (HJB)

equation is a well-known method for optimal control in deterministic settings with determin-
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istic disturbances [66, 13]. Impulse control is a HJB-based method developed for stochastic

systems similar to the shot and Lévy noise dynamics described in Chapter 2; extensive dis-

cussion on impulse control has been developed in [115] with applications to finance. Yet a

well-known limitation of HJB approaches in many scenarios is the large amount of compu-

tation time and the inability to analytically solve for the value function from the partial

differential equation (PDE). Our implementation and applications of the PLP architecture

throughout this thesis have considered discrete values and depend on exact matching be-

tween patterns that are observed and patterns that are stored in memory. This does not

fully cover cases where the dynamics behave as in Chapter 2, where the possible values the

jump could take is a continuous spectrum instead of a discrete set. One way to bypass the

scalability to larger pattern spaces is to project multiple patterns into the same equivalence

class, similar to the PLMP architecture for the vehicle traffic problem (see Chapter 5). A

future point of work would be to design a procedure which constructs a similarity metric

in the pattern space that can be used to reduce the dimensionality of the problem prior to

control. A relevant branch of literature that could be consulted for this direction is feature

extraction in machine learning.

Uncertainty Quantification

The current PLP architecture described in Chapter 3 is just one specific type of imple-

mentation among a wide variety of controller frameworks that build upon the concept of

learning patterns to reduce time, data consumption, and redundant computation. Typical

schemes using Bayesian updates (e.g., Kalman filtering) encode prior knowledge as a proba-

bility distribution. While methodically different to the idea of the pattern-occurrence problem

from Chapter 3, which adopts a more frequentist approach by using martingales to construct

closed-form formulas, both ideas are similar in that they avoid redundant computation in

handling recurring data. Thus, a natural topic for the future is developing alternative imple-

mentations of the pattern-learning component, especially Bayesian approaches to solving the

pattern-occurrence problems. One extension is to predict the occurrence of future patterns

with more state-of-the-art approaches in uncertainty quantification, especially when some

statistics of the dynamics are unknown (e.g., the transition probability matrix of the MJS

in Chapter 4). In addition, a combination of the two approaches can be considered: instead

of relying entirely on Bayesian means, explicitly learning specific patterns and keeping track

of a table (such as the episodic control approach used in Chapter 5) may potentially provide

further benefits depending on the application setting.
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Other Real-World Applications

The applications considered throughout this thesis have involved extensive software sim-

ulations with a number of simplifying assumptions. A broad subject of future work will

involve incorporating domain-specific knowledge into the algorithms designed here, as well

as a focus on actual deployment to real-world systems. We also aim to design more learning-

based stochastic controller and estimation architectures around these systematic model-

based/model-free tradeoffs for other applications, including wireless communication, the in-

ternet and datacenter resource allocation, biological networks and neuroscience, and in air

traffic management, which can be viewed as a 3D extension to the vehicle traffic problem

from Chapter 5. A poignant part of future research would be devoted to providing more

explicit theoretical guarantees on performance based on these tradeoffs.
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