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Abstract 

More than 5.4 million people in the United States live with chronic paralysis and roughly 20 million 

people worldwide live with spinal cord injuries. Brain-machine interfaces (BMIs) can be 

transformative for these people, enabling them to control computers, robots, and more with only 

thought. State-of-the-art BMIs have already made this future a reality in limited clinical trials. 

However, these state-of-the-art BMIs have shortcomings that limit user adoption; high-performance 

BMIs currently require highly invasive electrodes above or in the brain; device degradation limits 

longevity to about 5 years; and their field of view is small, restricting the number, and type, of 

applications possible. This illustrates the need for a new generation of BMIs with a brain recording 

modality that is longer lasting, less invasive, and scalable to sense activity from large regions of the 

brain.  

Functional ultrasound imaging (fUSI) is a recently developed technique that meets these criteria. fUSI 

measures cerebral hemodynamics with exceptional spatiotemporal resolution (<100 µm; ~100 ms) 

and a large field of view (several cm)—specifications ideally suited to recording detailed activity of 

entire cortical regions in parallel. In a series of novel results, we work towards developing the first 

high-performance ultrasonic BMI for human use. We first demonstrate that posterior parietal cortex 

(PPC), an area important for sensorimotor transformation, contains mesoscopic populations tuned to 

the intended movement direction. Using offline recorded data from several rhesus macaque monkeys, 

we can decode intended movement direction, task state, and expected action reward magnitude on a 

single trial basis. Having demonstrated that we could decode a variety of motor and cognitive 

variables using offline data, we developed a real-time, closed-loop ultrasonic BMI capable of 

decoding up to eight directions of intended movement with high accuracy. Finally, we began to 

translate these results into human applications and demonstrate the ability to measure changes in 

cerebral hemodynamics with high sensitivity through an acoustically transparent skull replacement 

in human subjects.  

Taken together, our work is a novel characterization of how functional ultrasound neuroimaging may 

enable a new generation of BMIs. Additionally, this work reinforces the validity of fUSI as a robust 

and accessible neuroimaging technique for future neuroscience questions about mesoscopic 

populations and their interrelationships throughout the brain.  
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1 Introduction 

Motor actions require exceptional visual-motor coordination executed with precise spatial and 

temporal accuracy, such as the orchestrated action of a pianist’s eyes, fingers, and feet while they 

read and play music. Complex neuronal circuits across multiple brain regions, including the posterior 

parietal cortex (PPC), represent these visual cues and associated movements. Within these complex 

circuits, PPC is believed to integrate visual information, represent possible action plans, and decide 

upon the optimal action for downstream execution (Colby and Duhamel, 1996; Snyder et al., 1997; 

Whitlock, 2017). These vital roles were first postulated by clinicians in 1909 when Dr. Bálint reported 

that bilateral parietal lobe damage impaired visually-guided reach accuracy (optic ataxia), eye 

movements (oculomotor apraxia), and visual perception (simultagnosia) (Bálint, 1909; Andersen et 

al., 2014; Parvathaneni and Das, 2020). Extensive animal and human studies have further established 

and elucidated PPC’s role in planning movements (Fleming and Crosby, 1955; Yin and Mountcastle, 

1977; Andersen et al., 1985; Gnadt and Andersen, 1988; Snyder et al., 1997; Cui and Andersen, 2007; 

Whitlock, 2017).  

Approximately 5.4 million people worldwide live with chronic paralysis and are not able to complete 

these spatiotemporally precise motor actions that we usually take for granted (Armour et al., 2016). 

Brain-machine interfaces (BMIs) can be transformative for these people by enabling them to control 

computers, robots, and more with only thought. At its essence, brain-machine interfaces measure 

brain signals and use these signals to control external devices. State-of-the-art BMIs have already 

enabled a small number of these patients to regain some of their quality of life (Hochberg et al., 2006; 

Collinger et al., 2013; Aflalo et al., 2015; Anumanchipalli et al., 2019; Willett et al., 2021, 2023). 

BMIs need to record from brain regions involved in movement planning to decode the user’s intended 

actions. The PPC is a good candidate region. Because the PPC encodes for a breadth of action-related 

variables, including goals of movements and movement trajectory, it enables a diversity of BMI 

applications (Andersen et al., 2019), including speech generation, decoding limb and finger 

movements, and computer cursor control (Musallam et al., 2004; Mulliken et al., 2008; Hwang and 

Andersen, 2009; Hauschild et al., 2012; Aflalo et al., 2015; Klaes et al., 2015; Andersen et al., 2019; 

Guan et al., 2022a, 2022a; Wandelt et al., 2022a).  
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However, existing state-of-the-art BMIs have shortcomings that limit user adoption; high 

performance BMIs currently require highly invasive electrodes above or in the brain; device 

degradation limits longevity to about 5 years (Bullard et al., 2020; Sponheim et al., 2021); and their 

field of view is small, restricting the number, and type, of applications possible. Less invasive 

techniques, such as EEG, offer substantially lower spatial resolution and cannot resolve signals below 

the brain surface, thus limiting their utility as a sensing technique for BMIs. This illustrates the need 

for a new generation of BMIs with a brain recording modality that is longer lasting, less invasive, and 

scalable to sense activity from large regions of the brain.  

Functional ultrasound imaging (fUSI) is a recently developed ultrafast ultrasound technique that 

meets these criteria. Ultrafast ultrasound uses plane-wave pulse-echo transmissions (“one-shot”- 

“one-image”) to acquire thousands of images per second and thus image transient phenomena 

(millisecond range) deep inside organs. This differs from the sequential focused beams commonly 

used in clinical ultrasonography. Combining ultrafast sonography with coherent compounding of 

tilted planar ultrasound illuminations enabled accurate measurement of transient changes in cerebral 

blood volume (CBV) (Macé et al., 2011). fUSI measure changes in CBV with high sensitivity, 

exceptional spatiotemporal resolution (100 µm; ~100 ms), deep brain coverage (2-7 cm), and a large 

field of view (several cm) (Montaldo et al., 2022) – specifications ideally suited to recording detailed 

mesoscopic activity of entire cortical regions in parallel. These hemodynamics reflect neuronal 

activity through neurovascular coupling (Mosso, 1881; Attwell et al., 2010; Macé et al., 2011; 

O’Herron et al., 2016; Bergel et al., 2018; Boido et al., 2019; Aydin et al., 2020; Nunez-Elizalde et 

al., 2022).  

In this present work, we used fUSI to examine the mesoscopic representation of actions within PPC 

and develop the first high performance ultrasonic BMI. This work not only answers open 

neuroscience questions about the functional organization of PPC, but also contributes to our 

understanding of the pathophysiology of neurological disorders caused by PPC damage (e.g., optic 

ataxia and oculomotor apraxia) and begins developing a next generation of BMIs that are high-

performing, minimally-invasive, long-lasting, and able to measure neural signals from large (or even 

separate) brain regions. 

In Chapter 2, we provide relevant background on response properties of PPC, recording technologies 

for large animals and humans, fUSI, and BMIs. We also briefly discuss previous work on using fUSI 

for decoding information on single trials using offline data. 
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In Chapter 3, we identify mesoscopic populations tuned to individual directions. These populations 

were stable across more than 100-900 days and displayed a rough topography along an anterior-

posterior axis. These results address a fundamental gap in our understanding of PPC’s functional 

organization by developing mesoscopic maps of directional tuning previously unattainable with fMRI 

(poor resolution) or electrophysiology (poor coverage) methods. 

In Chapter 4, we explore how non-directional information about future actions is represented within 

PPC. We first show that we can robustly decode multiple different task states in a memory-guided 

saccade task, supporting feasibility of a freely paced fUSI-BMI. We next identify robust value signals 

within mesoscopic PPC populations of one monkey. Higher rewarded actions were associated with 

increased hemodynamic activity. This chapter contributes to the development of a versatile closed-

loop fUSI-BMI by showing that fUSI can decode non-directional signals, i.e., expected reward 

magnitude and current task state. This suggests that fUSI should be able to decode a variety of 

cognitive brain states, such as emotions, from the brain and be used as the sensing technique for a 

‘mood BMI’ that models and decodes mood variations in real-time. 

In Chapter 5, we present our work on developing the first high-performance, closed-loop ultrasonic 

BMI. We demonstrate that we can decode at least eight directions of intended movements. Building 

off Chapter 3, we develop a method to pretrain the decoder model and demonstrate that our ultrasonic 

BMI is stable across >30 days without retraining. This work establishes the feasibility of a real-time 

fUSI-BMI and prepares for future work translating this work into clinical applications that restore 

mobility to patients with neurological or psychiatric impairments. 

In Chapter 6, we present our work on developing fUSI for awake, moving humans with a sonolucent 

skull replacement. We first characterize the skull replacement material in an in vitro setting and 

demonstrate that we can image through a variety of thicknesses. We next test the functional sensitivity 

in a visual experiment using rats. We finally demonstrate that we can detect task-related activity using 

fUSI in an awake human participant.  

In Chapter 7, we summarize our results and describe future research directions. Together, these 

chapters help elucidate where motor and decision variables are encoded in PPC at the meso-scale 

(fUSI). These results also establish that fUSI is a highly sensitive method that can serve as a next 

generation of less-invasive, yet high-performing, BMIs. Through these monkey and human 

experiments, we developed a deeper understanding of the mesoscopic PPC circuits involved in motor 
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and cognitive decisions. This will enable future work to better decode intended actions and mood 

states using fUSI and develop a human fUSI-BMI.  
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2 Background 

2.1 Brain-machine interfaces (BMIs) 

2.1.1 Definition 

Brain-machine interfaces (BMIs) enable direct communication between the brain and external 

devices. BMIs are broadly classified as either input or output devices. Input BMIs add external signals 

back into the brain, such as sensory information, while output BMIs read signals out from the brain 

and use these signals to control external devices, including robotic arms, computer cursors, and 

speech predictors. The long-term goal is to develop bidirectional BMIs that are capable of both input 

and output. This would allow sensory feedback from any externally controlled device, including 

proprioception, pain, pressure, temperature, and texture.  

2.1.2 Example BMI applications 

2.1.2.1 Input 

Most input BMIs replace sensory information, including vision, hearing, and touch. The most 

common BMI is a cochlear implant with approximately 200,000 devices implanted in the United 

State and 750,000 devices implanted worldwide (Anon, 2021). First developed in the early 1960s, 

cochlear implants are a type of input BMI that restores hearing to people with partial to complete 

hearing loss. It uses multi-electrode arrays to directly stimulate the cochlear nerve, thus bypassing 

damage or lack of development of the middle or inner ear (Rao, 2020). 

More recently, researchers have made progress in using electrode-based BMIs to evoke naturalistic 

sensations (Flesher et al., 2016, 2021; Armenta Salas et al., 2018; Callier et al., 2020; Bjånes et al., 

2022; Fifer et al., 2022) and restore vision in humans (Beauchamp et al., 2020; Chen et al., 2020).  

2.1.2.2 Output 

Applications for output BMIs are likely only limited by the imagination. Since BMIs learn the 

mapping between neural activity and the desired activity, humans can be trained to control a variety 

of different effectors with their brain. Currently, output effectors have been focused on speech and 

movement decoding. These areas of focus are likely due in part to invasive BMIs being limited to 

patients with partial to complete paralysis, such as patients with spinal cord injuries or amyotrophic 

lateral sclerosis (ALS). In these patients, recent work has demonstrated that the motor representation 

within PPC is consistent before and after paralysis (Guan et al., 2022b). These motor representations 
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of arm and hand movements have been used by many groups to enable dexterous control of robotic 

limbs (Hochberg et al., 2006; Collinger et al., 2013; Aflalo et al., 2015). Some notable recent 

examples include decoding handwriting (Willett et al., 2021), decoding external speech 

(Anumanchipalli et al., 2019; Moses et al., 2021; Willett et al., 2023), decoding individual finger 

movements (Guan et al., 2022a), and decoding internal speech (Wandelt et al., 2022a).  

2.1.3 Obstacles for broad adoption 

Despite how impressive output BMIs have become, state-of-the-art output BMIs currently require 

invasive electrodes below the dura or in the brain, limiting the number and type of applications 

possible. Electrode-based BMIs suffer from additional factors that further limit the technology’s 

adoption to a broader patient population. These include device degradation limiting the BMI’s 

longevity to typically around 5 years (Bullard et al., 2020; Sponheim et al., 2021) and the implants 

only sampling from small regions of superficial cortex. An ideal BMI technology would be non-

invasive, long-lasting, sensitive to rapid changes in small groups of neurons, and able to image from 

multiple large cortical and subcortical brain regions simultaneously.  

2.2 Brain recording techniques for large animals and humans 

BMIs need to measure brain signals from the brain. A variety of methods exist for recording brain 

activity in large animals, including humans. These methods vary in terms of invasiveness, 

spatiotemporal resolution, spatial coverage, specificity for neuronal activity, cost, portability, and 

other factors. Recording methods can be broadly categorized by the type of signal they detect and 

measure: electrical, magnetic, optical, or acoustic. 

 
Figure 2.1 Functional ultrasound enables mesoscopic imaging of neural populations 

(A) 1.5 mm isotropic fMRI. Each box represents one voxel. (B) 15.6 MHz 2D fUSI. Each red sheet represents one coronal 

imaging plane. Inset shows 100 μm x 100 μm voxel size. (C) Utah array and Neuropixel recording methods for recording 

from intraparietal sulcus. (D) Comparison of spatial resolution and spatial coverage for each method. 
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2.2.1 Electrical 

The most direct way to monitor brain activity is to measure the electrical activity directly emanating 

from neurons. These sensing modalities can be non-invasive (EEG), minimally-invasive (ECoG), or 

highly invasive (intracortical electrodes).  

2.2.1.1 Electroencephalography (EEG)  

Electroencephalography (EEG) is one of the oldest, if not the oldest, technique for measuring brain 

activity. Non-invasive electrodes are placed across the scalp and record voltage fluctuations. It is 

believed these voltage fluctuations represent an attenuated and transformed version of the local field 

potentials resulting from pyramidal neurons in the cortex (Lopes da Silva, 2013, Anon, 2023a). 

Although EEG can record temporally precise activity from across the entire scalp, it is difficult to 

accurately estimate the cortical sources of the electrical fields detectable at the scalp (Lopes da Silva, 

2013). This limits EEG’s spatial resolution (Figure 2.1D) even with high numbers of EEG electrodes. 

The first output brain-machine interface (BMI) used EEG and could achieve a one-bit decode (Nowlis 

and Kamiya, 1970). Scalp EEG has since been used to decode individual trials and control BMIs with 

higher bit-rates (Wolpaw et al., 1991; Wolpaw and McFarland, 2004; Norman et al., 2018). 

Performance of modern EEG BMIs varies greatly across users (Ahn and Jun, 2015) but can yield two 

degrees of freedom with 70%–90% accuracy (Huang et al., 2009). 

2.2.1.2 Electrocorticography (ECoG) 

Electrocorticography (ECoG), a type of intracortical EEG (iEEG), is a minimally-invasive technique 

where a grid of electrodes is surgically placed epidurally or subdurally above the brain region(s) of 

interest. As with scalp EEG, voltage fluctuations from LFPs are measured. However, the measured 

signal more directly reflects the neuronal activity because there are not as many layers of tissue 

(including bone) to attenuate and transform the electrical signals. These grids of electrode arrays 

generally have better spatial resolution than EEG, but sample from a smaller region of the brain 

(Figure 2.1D). 

Subdural and epidural ECoG arrays have different risk profiles. Epidural ECoG is believed to be safer 

because it is part of the peripheral immune system and reduces the risk of infection within the central 

nervous system (Mollman and Haines, 1986; Korinek, 1997). Both types of ECoG generally have 

immune responses that lead to granulation tissue, glial scarring, and signal degradation across time 

(Schendel et al., 2014; Kozai et al., 2015; Alahi et al., 2022).  
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Micro-ECoG arrays have been developed that have a much smaller distance (i.e., pitch) between 

electrodes (Hosp et al., 2008; Kellis et al., 2016; Konerding et al., 2018). These are believed to be 

better for a number of neuroscience applications, including BMIs (Wang et al., 2009), and have even 

been able to detect action potentials (Khodagholy et al., 2015, 2016). Although epidural ECoG is 

preferable from a risk standpoint, subdural ECoG has better signal quality, especially for micro-ECoG 

(Bundy et al., 2014). 

Epidural and subdural ECoG arrays have been used for a number of high-performance BMIs, 

including speech decoding (Moses et al., 2021) and movement decoding (Spüler et al., 2014; Benabid 

et al., 2019). The speech BMIs could decode approximately 12-15 words/minute or 29 

character/minute (Moses et al., 2021; Metzger et al., 2022). The movement BMIs were capable of 

decoding eight degrees of freedom at ~70% accuracy (Benabid et al., 2019). ECoG arrays can 

additionally record stable signals across many months, if not years, thus reducing the need for daily 

recalibration (Moses et al., 2021).  

Recently, endovascular electrodes have been developed that have similar signal quality to subdural 

and epidural ECoG arrays (John et al., 2018). These endovascular electrodes require much less 

invasive procedures to place (endovascular access instead of brain surgery). However, they can only 

be placed in blood vessels of at least 1 mm diameter, limiting which brain regions can be accessed 

(Oxley et al., 2018). Additionally, endovascular electrodes currently have much lower information 

transfer rates (~12 character per minute) than ECoG BMIs (Oxley et al., 2021). 

2.2.1.3 Intracortical electrode(s) 

Intracortical electrodes are invasive electrodes inserted into the brain to record action potentials and 

LFPs from nearby neurons. While activity from single neurons can be isolated using intracortical 

electrodes, these electrodes can only record from very small volumes of the brain (Figure 2.1C, D). 

Additionally, a craniotomy is required above the area of interest to allow the intracortical electrode 

access. Traditionally, researchers inserted a single microelectrode through the cranial opening into 

the brain and used a micromanipulator to precisely control the depth of the electrode. With the 

assistance of an audio monitor or computer software, researchers could then precisely position the 

microelectrode to isolate and record neurons of interest. As technology advanced, multi-electrode 

arrays (MEAs) became available, enabling researchers to record from multiple electrodes 

simultaneously. Recording from multiple electrodes not only allowed more neurons to be recorded 

during a single electrode penetration, but also enabled better isolation of individual neurons’ activity 
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and simultaneous recording of the activity of multiple neurons. These MEAs are either a linear 

electrode array, a grid of electrodes, or a combination of the two. A linear electrode array has all the 

electrodes spaced along a shank, allowing the depth of the shank to be controlled but no adjustment 

of the individual electrode positions relative to each other. High-density linear electrode arrays, e.g., 

Neuropixels, now exist that allow simultaneous recording (~30 KHz) of >300 channels spaced along 

a 10-40 mm silicon shank (Figure 2.1C). The electrode grids have the electrodes spaced across a 

grid, i.e., the electrodes are all parallel to each other rather than along a linear shank. Some of these 

electrode grids allow the researcher to control the depth of individual electrodes (Dotson et al., 2017). 

In humans, the most common type of chronic intracortical electrode used for neuroscience research 

and BMI applications is the Utah array, a 4.2 mm square grid with 100 evenly-spaced microelectrodes 

(0.4 mm pitch), 1 or 1.5 mm deep (Figure 2.1C). This limits the recordings to superficial cortex in 

areas previously identified to be task relevant. Additionally, these devices are implanted beneath the 

dura, increasing the risk for infections of the central nervous system (Mollman and Haines, 1986; 

Korinek, 1997). A number of companies have begun to develop new chronic intracortical electrodes 

for human applications, including the neural threads being developed by Neuralink (Drew, 2023). 

There are a variety of semi-acute intracortical electrodes commonly used simultaneously for epilepsy 

monitoring and human neuroscience, such as the Behnke Fried electrode used for stereotactic EEG 

(Fried et al., 1997). 

Stereotactic EEG (sEEG) is a type of intracortical electrophysiology commonly used to map 

epileptogenic zones for surgical resection (Chassoux et al., 2018). It uses one or more semi-acute 

intracortical electrode arrays with each of these electrode arrays containing macroelectrodes, 

microelectrodes, or both electrode types. These macroelectrodes usually have a lower impedance that 

is good at measuring lower-frequency signals originating from LFPs, similar to the signal measured 

by ECoG electrodes. The microelectrodes typically have high impedances that are well-suited for 

recording single-unit activity (Fried et al., 1999). These macro-micro sEEG electrodes have a few 

advantages and disadvantages compared to other intracranial electrophysiology and ECoG methods. 

Although sEEG electrodes have sparser coverage within a given brain volume due to the large spacing 

between macroelectrodes on a single shank, typically multiple electrodes are used simultaneously. 

This allows bilateral monitoring of multiple brain regions of clinical interest. These depth sEEG 

electrodes can also be used to access subcortical structures, such as thalamus, subthalamus, 

hippocampus, and basal ganglia (Herff et al., 2020). sEEG electrodes may also have lower surgical 
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and long-term complications than ECoG or Utah Arrays (Cardinale et al., 2013; Hader et al., 2013; 

Mullin et al., 2016) due to sEEG electrode implantation only requiring small burr holes whereas Utah 

Array and ECoG implantation require more extensive craniotomies. 

Recently, Neuropixel probes, a type of high-density linear electrode array, have been used for acute 

intrasurgical human recordings (Chung et al., 2022; Paulk et al., 2022). Other high-density electrode 

arrays are being developed that may be better for future human neuroscience research. For example, 

stronger and longer primate Neuropixels that will reduce the likelihood of the electrode shank from 

breaking while also enabling the electrodes to reach regions deeper than 1 cm from the brain surface 

(Trautmann et al., 2023).  

Intracortical electrodes have been used for a number of BMI applications in both monkeys (Wessberg 

et al., 2000; Musallam et al., 2004) and humans (Hochberg et al., 2006; Collinger et al., 2013; Aflalo 

et al., 2015). In humans, sEEG electrodes have been used for a number of neural decoding and BMI 

applications (Herff et al., 2020), including spatial navigation (Vass et al., 2016; Watrous et al., 2018), 

motor control (Vadera et al., 2013; Li et al., 2017), and speech (Akbari et al., 2019; Han et al., 2019), 

but the most impressive BMI results with intracortical electrodes continue to be obtained with Utah 

Arrays. Recently, these Utah Array BMIs have been used to decode individual finger movements at 

>85% accuracy (Guan et al., 2022a), decode handwriting at 90 characters/min (Willett et al., 2021) 

and decode intended speech at 62 words/min (Willett et al., 2023). 

2.2.2 Magnetic 

2.2.2.1 Functional magnetic resonance imaging (fMRI) 

Functional magnetic resonance imaging (fMRI) measures brain activity by detecting changes 

associated with blood flow. There are multiple versions of fMRI but the most common is Blood-

Oxygen-Level-Dependent (BOLD) fMRI. BOLD fMRI generates a homogeneous strong magnetic 

field (1.5+ T) and can measure the difference between oxygenated (diamagnetic) and deoxygenated 

(paramagnetic) hemoglobin (Ogawa et al., 1990). Since neurons and other brain cells need oxygen, 

this shift between oxygenated and deoxygenated blood is well correlated with neuronal activity 

(Logothetis et al., 2001; Goense and Logothetis, 2008; Op de Beeck et al., 2008). This phenomena is 

called neurovascular coupling (Attwell et al., 2010). fMRI can measure the entire brain but suffers 

from low spatiotemporal resolution and sensitivity (Figure 2.1A, D). Additionally, the subject is 

confined to a magnetic bore and needs to minimize all body movements, thus limiting the type of 

neuroscience questions that can be answered. 
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High and ultra-high field fMRI (7-14 Tesla) has been developed that allows higher spatial resolution 

and sensitivity (Goense et al., 2016), but have a number of limitations including cost. Additionally, 

many people report adverse side effects when they enter/exit the ultra-high magnetic fields, including 

nausea and dizziness (Hoff et al., 2019). 

fMRI has been used for various BMI applications, but has been limited by its low sensitivity, lack of 

portability, high cost, and requirement for the participant to minimize head and body movements 

(Sorger and Goebel, 2020). 

2.2.2.2 Magnetoencephalography (MEG) 

Magnetoencephalography (MEG) is similar to EEG since the source of the signal is the same, 

coordinated activity in cortical neurons that causes ionic currents and local magnetic fields (LMFs) 

(Buzsáki et al., 2012; Malmivuo, 2012; Lopes da Silva, 2013). Although it used to be believed that 

MEG had much better spatial resolution than EEG, recent work has disabused that idea and suggests 

that MEG and EEG have similar ability to source localize (Malmivuo, 2012). EEG is marginally 

better at recording activity that results from deep brain sources (Malmivuo, 2012). MEG 

instrumentation is an order of magnitude more expensive than EEG instrumentation and additionally 

currently require a stationary head dewar, restricting what activities the experimental subject can do. 

Some researchers have developed successful MEG-based BMIs (Mellinger et al., 2007; Wittevrongel 

et al., 2021), buts the limitations described above make MEG a non-ideal recording modality for most 

BMI applications. Despite these limitations, Kernel, a neurotechnology company, has developed a 

portable MEG system based on optically-pumped magnetometry and has plans to use this technology 

for BMI applications (Pratt et al., 2021). 

2.2.3 Optical 

2.2.3.1 Calcium imaging 

Calcium imaging is a microscopy technique that measures the flux of calcium (Ca2+) via calcium 

indicators, fluorescent molecules that fluoresce upon binding of Ca2+. Measuring the fluorescence 

from these calcium indicators allows The activity of individual neurons and glia can be measured 

across time by quantifying the amount of fluorescence emitted by these calcium indicators. These 

calcium indicators are typically genetically-encoded calcium indicators (GECIs), thus requiring viral 

injections or transgenic animals. Until recently, this property has limited its use in nonhuman primates 

(Heider et al., 2010; Sadakane et al., 2015; O’Shea et al., 2017) and prevented it from being a usable 

technology for human applications. Although calcium imaging can image individual neurons and 
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track them across days, it can only image a small part of the brain (Figure 2.1D), lacks sufficient 

temporal discriminability to track sequential activation of neurons (Knöpfel and Song, 2019), and is 

limited to measuring activity within 0.6-1.4 mm of the brain surface (Glickfeld et al., 2013; 

Kawakami et al., 2013; Masamizu et al., 2014).  

Imaging of dendritic calcium signals in nonhuman primate motor cortex has been used to control an 

online motor BMI and could be used to decode between four target locations at ~40-60% accuracy 

(Trautmann et al., 2021). Although the requirement for viral transfection currently prevents this 

technique from having human applications, it can be used to address neuroscience questions relevant 

to BMIs that have been difficult to answer with electrode-based techniques, such as linking population 

dynamics in motor cortex to the anatomical circuit structure and neuron cell types (O’Shea et al., 

2017; Trautmann et al., 2021). 

2.2.3.2 Voltage imaging 

Voltage imaging is a mixture between optical and electrical acquisition methods. Like calcium 

imaging, it uses microscopy and fluorescent molecules to measure from individual neurons within its 

field of view. Like electrical methods, it tracks voltage fluctuations. However, instead of using 

electrodes, this method uses genetically encoded voltage indicators (GEVIs) to measure voltage 

fluctuations. It has some advantages over calcium imaging, including temporal resolution and 

tracking hyperpolarizing and subthreshold depolarizing signals within neurons (Knöpfel and Song, 

2019; Zhu et al., 2021). However, it possesses most of the same limitations of calcium imaging, 

including inability to only record from superficial cortex, inability to record from large regions of the 

brain, and need for viral transfection or transgenic animals. Additionally, the current generation of 

GEVIs still have substantially worse signal amplitudes and signal-to-noise ratios than GECIs (Zhu et 

al., 2021). 

2.2.3.3 Functional near-infrared spectroscopy (fNIRS) 

Functional near-infrared spectroscopy (fNIRS) is an optical technique that uses near-infrared 

spectroscopy to measure concentrations of deoxygenated and oxygenated hemoglobin (Anon, 

2023b). Similar to fMRI, it measures a hemodynamic proxy for neural activity. Although fNIRS has 

lower spatial resolution than fMRI (Figure 2.1D), it is a portable technique and allows subjects to 

freely move about and interact with their environment (Sakai, 2022). As with other optical techniques, 

this method is limited by light’s ability to penetrate into tissue and is restricted to imaging 

neurovascular activity within superficial cortex (1-2 cm). Despite these limitations, fNIRS has been 
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used to successfully control BMIs (Coyle et al., 2007; Sitaram et al., 2007; Naseer et al., 2014; Shin 

and Im, 2020). Kernel, a neurotechnology company, aims to commercialize fNIRS as a sensitive 

method to noninvasively measure brain activity, including for BMI applications (Ban et al., 2022; 

Drew, 2023). 

2.2.4 Ultrasound 

2.2.4.1 Transcranial Doppler (TCD) 

Transcranial Doppler (TCD) uses an ultrasound transducer placed above “acoustic windows,” i.e., 

thinner regions of the skull, to measure blood flow velocity in the basal arteries of the brain. There 

are four commonly used acoustic windows in adults (transtemporal, transorbital, suboccipital, and 

submandibular), each with their own advantages and disadvantages (Carrizosa, 2022). TCD is used 

predominately for clinical applications, including microemboli detection, cerebral vasospasm 

detection, and measuring amount of stenosis (Purkayastha and Sorond, 2013). Since it is a low-cost 

and non-invasive method, it has additionally been used for several neuroscience applications 

(Duschek and Schandry, 2003).  

Researchers have built TCD-based BMIs (Myrden et al., 2011; Aleem and Chau, 2013; Faress and 

Chau, 2013; Lu et al., 2015; Khalaf et al., 2018), but their performance (1-2 bits/min) has been 

underwhelming compared to other non-invasive methods. TCD suffers additional limitations that 

restrict its future use as a BMI. First, it is currently limited to recording through acoustic windows, 

which restricts TCD to imaging large basal arteries and providing a measure of global, rather than 

local, cerebrovascular activity (Purkayastha and Sorond, 2013). Second, TCD requires a skill operator 

to position the transducer appropriately and 10-15% of patients do not have adequate acoustic 

windows, even with optimal transducer placement (Carrizosa, 2022). Additionally, TCD produces a 

lot of heat, limiting the length of time that it can be safely used continuously (British Medical 

Ultrasound Society, 2010).  

2.2.4.2 Functional ultrasound imaging  

Functional ultrasound imaging (fUSI) is an emerging technology to detect changes in cerebral blood 

volume (CBV) with high sensitivity and spatiotemporal precision. It was first used in 2011 to identify 

cortical and thalamic areas activated by whisker stimulation and to track the propagation of seizures 

in rats (Macé et al., 2011). Since then it has been used in a variety of other model organisms, including 

ferrets (Bimbard et al., 2018), mice (Tiran et al., 2017), rabbits (Demené et al., 2018), nonhuman 
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primates (Dizeux et al., 2019; Blaize et al., 2020), and humans (Demene et al., 2016; Imbault et al., 

2017).  

fUSI takes advantage of ultrafast plane-wave ultrasound and pulsed-wave Doppler to form Power 

Doppler images at 1-10 Hz. Briefly, plane wave ultrasound pulses are generated at a high frequency 

(pulse repetition frequency; PRF) and multiple angles (Figure 2.2A). The resulting plane wave 

ultrasound images are coherently combined to form a single compounded image (Figure 2.2B). A 

series of these compounded images is used in turn to generate each Power Doppler image (Figure 

2.2C). An SVD-based clutter filter or high-pass filter is used to isolate the signal from the red blood 

cells and ignore the brain tissue motion (Demené et al., 2015). Parameters at each stage of this process 

can be optimized for different objectives. See (Montaldo et al., 2022) for a detailed, yet intuitive, 

explanation of pulsed-wave Doppler and functional ultrasound neuroimaging. 

 
Figure 2.2 Functional ultrasound creates high-resolution, high-sensitivity Power Doppler images. 

(A) Ultrafast plane wave ultrasound images are acquired at 5 angles with 3 accumulations in a total of 2 ms. (B) These 

plane-wave images are coherently compounded into a single image. These compounded images are generated at 500 Hz. 

(C) A series of compounded images are formed into a single Power Doppler image. The final images are 1 Hz instead of 

2 Hz due to hardware and software limitations requiring ~500 ms of downtime to transfer and save the compounded 

images. 

The parameters at each stage of this image acquisition can be tailored for different applications and 

trade-offs. The central frequency of the ultrasound transducer determines the spatial resolution limit. 

With a 15.6 MHz linear transducer, the voxel resolution is ~100 x ~100 μm for a 2D imaging plane 

with a variable slice thickness dependent upon the transducer lens (Montaldo et al., 2022). The Power 

Doppler framerate can be increased at the cost of sensitivity. Compounded images are acquired at 

500 Hz, but different numbers of these compounded images can be used to form each Power Doppler 

image. For example, for 10 Hz Power Doppler images, 50 compounded images are used while for 2 

Hz Power Doppler images, 250 compounded images are used. Using less compounded images leads 

to reduced sensitivity to CBV changes. An additional consideration is the speed of data transfer and 



15 

 

saving. For the ultrasound acquisition system used in majority of studies described in this dissertation, 

we acquired ~500 ms of compounded images, which took ~500 ms to save to our solid-state hard 

drive. Newer fUS systems have accelerated the data saving process to allow continuous acquisition 

and saving of compounded images or Power Doppler images. 

As we discussed above, current BMI technologies have various limitations and an ideal BMI 

technology would be non-invasive, long-lasting, sensitive to rapid changes in small groups of 

neurons, and able to image from multiple large cortical and subcortical brain regions simultaneously. 

Functional ultrasound imaging (fUSI) is an emerging neuroimaging technology that is well-

positioned to achieve many of these criteria. 

In this dissertation, we used a 256-channel ultrafast ultrasound acquisition machine (Verasonics 

Vantage 256) and a 128-element linear ultrasound probe. Since fUS is currently unable to penetrate 

primate skulls, we performed fUSI through a craniectomy or sonolucent skull replacement. For the 

monkey studies, we used a 15.6 MHz ultrasound transducer and acquired fUS data at 1 or 2 Hz with 

high spatial resolution (~100 µm in-plane) and large field of view (12.8 X 16-20 mm; H X W). For 

the human studies, we used a 7.5 MHz ultrasound transducer and acquired fUS data at ~0.7 Hz with 

high spatial resolution (~200 µm in-plane) and large field of view (38.4 X 50 mm; H X W). 
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2.3 Posterior parietal cortex (PPC) 

The posterior parietal cortex (PPC) is a good candidate region for BMI applications because it is a 

visuomotor area with many movement-related signals. This allows a BMI implanted in PPC to decode 

intended movements with high accuracy and speed (Andersen et al., 2019). It is anatomically situated 

between the visual cortex and motor cortex, fitting its role as a sensorimotor transformation area. PPC 

neurons encode a variety of different variables related to movements, including effector, direction, 

and action desirability.  

2.3.1 Encoding of effector 

Separate PPC regions preferentially encode different movement types (Cui and Andersen, 2007; 

Hadjidimitrakis et al., 2019), or “effectors”. For example, lateral intraparietal area (LIP) preferentially 

encodes saccades (Gnadt and Andersen, 1988), parietal reach region (PRR) preferentially encodes 

limb reaches (Snyder et al., 1997), and anterior intraparietal area (AIP) preferentially encodes 

grasping movements (Taira et al., 1990) (Figure 2.3). These areas reveal an effector-dependent 

functional organization across PPC.  

In this dissertation, we focus on saccadic eye movements to corroborate our fUSI results with the 

extensive electrophysiology and fMRI literature on saccadic decision-making within LIP. However, 

the methods developed here generalize to non-saccadic tasks and to regions outside of PPC. 

 
Figure 2.3 PPC is organized by different movement effectors. 

LIP predominately encodes eye movements. PRR predominately encodes reaches. AIP predominately encodes grasps. 

Figure modified with permission from (Cohen and Andersen, 2002). 
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2.3.2 Encoding of direction 

Many PPC neurons exhibit increased activity to visual stimuli within its visual receptive field and 

before movement onset to their response field (Andersen, 1988; Gnadt and Andersen, 1988; Colby et 

al., 1996). The width of the visual response field for each LIP neuron varies greatly (<3° to >30°) and 

is positively correlated with response field eccentricity (Ben Hamed et al., 2001). The visual response 

field and saccadic response field are highly overlapping, if not identical, (Gnadt and Andersen, 1988; 

Barash et al., 1991; Platt and Glimcher, 1997, 1998a; Shadlen and Newsome, 2001), so we will use 

the more general terminology “response field”. 

LIP’s response fields are spatially organized, with adjacent neurons having similar response fields 

(Blatt et al., 1990; Ben Hamed et al., 2001; Patel et al., 2010, 2014; Savaki et al., 2010; Arcaro et al., 

2011). However, the specific organization of these response fields remains debated (Patel et al., 

2014). This debate about spatial organization of LIP neurons continues in part due to the limited field 

of view, sensitivity, and/or spatial resolution of existing recording techniques (Figure 2.1). fMRI can 

record whole brain activity but lacks the spatiotemporal resolution and signal sensitivity to refine our 

knowledge of PPC’s spatial organization (Figure 2.1A). Electrophysiology can measure single 

neuron activity but cannot simultaneously record from entire large brain volumes such as primate 

PPC (Figure 2.1C). It can additionally be difficult to align and reconstruct electrophysiology data 

recorded over many months. This suggests the need for a sensitive technique that can bridge the gap 

in spatiotemporal resolution between single neurons (microscopic) and millimeter-sized patches of 

cortex (macroscopic), such as fUSI.  

In this dissertation, we use fUSI to explore how saccade direction is represented at the mesoscopic 

level and we report results that help reconcile the differences between the previously reported 

microscopic and macroscopic functional organizations. 

2.3.3 Encoding of non-motor signals 

Variables relevant to future movements are encoded by neurons in multiple PPC regions. These 

include anticipated reward (Platt and Glimcher, 1999; Dorris and Glimcher, 2004; Musallam et al., 

2004; Sugrue, 2004; Sugrue et al., 2005; Iyer et al., 2010; Ghazizadeh et al., 2018), categorization 

(Freedman and Assad, 2006), cue salience (Leathers and Olson, 2012), and task strategy (Zhang et 

al., 2017). However, much remains unknown about whether (and how) these variables are spatially 

organized within PPC regions or if they are more diffusely encoded. LIP and possibly other PPC 

regions integrates many of these decision variables to reflect the overall desirability of an action 
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(Dorris and Glimcher, 2004; Sugrue et al., 2005; Christopoulos et al., 2015). In this dissertation, we 

used fUSI to explore how many of these non-motor signals are encoded within PPC, including reward 

size, effort, and object novelty. fUSI has a large field of view capable of imaging an entire coronal 

plane of the intraparietal sulcus, allowing us to simultaneously measure multiple subregions of PPC, 

including LIP, VIP, and MIP. This will allow us to determine whether these non-motor signals are 

encoded within intermixed or discrete mesoscopic populations. 

2.3.4 BMI applications 

PPC has several advantages over primary motor (M1) cortex (PMv) for BMI applications. PPC 

encodes for higher-level aspects of movement intention, such as goal trajectory, while M1 encodes 

lower-level aspects, such as muscle activity or force (Townsend et al., 2006; Park et al., 2014; 

Gallivan et al., 2018). Additionally, PPC receives input from multiple sensory modalities, such as 

vision, proprioception, and audition, while M1 predominately receive inputs related to motor 

execution (Holsapple et al., 1991; Luppino and Rizzolatti, 2000). This would allow PPC to provide a 

greater diversity of control signals for a BMI. As discussed previously, BMIs implanted in PPC have 

been used for numerous human applications (Andersen et al., 2019), including control of individual 

finger movements (Guan et al., 2022a), speech generation (Wandelt et al., 2022a, 2022b), and control 

of robotic limbs (Aflalo et al., 2015). In this dissertation, we develop the first ultrasonic BMI by 

taking advantage of the higher-level visuomotor signals encoded within PPC. 

2.4 Relevant previous fUSI results 

2.4.1 Single-trial decoding of direction, task state, and effector 

We previously showed that we could use fUSI to decode a variety of information from offline pre-

recorded data, including target direction (left/right), task state (memory/not-memory), and effector 

(hand/eye). The following content is modified from this previous work for brevity and relevance 

(Norman et al., 2021).  

To look for goal-related hemodynamic signals in the PPC, we acquired fUS images from NHPs using 

a miniaturized 15-MHz, linear array transducer placed on the dura via a cranial window. The 

transducer provided a spatial resolution of 100 μm × 100 μm in-plane, slice thicknesses of ~400 μm, 

covering a plane with a width of 12.8 mm and penetration depth of 16 mm. We positioned the probe 

surface-normal in a coronal orientation above the PPC (Figure 2.4A, B). We then selected planes of 

interest for each animal from the volumes available (Figure 2.4C, F). Specifically, we chose planes 
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that captured both the lateral and medial banks of the intraparietal sulcus (ips) within a single image 

and exhibited behaviorally tuned hemodynamic activity.  

 
Figure 2.4 Anatomical imaging regions. 

(A and B) Illustrations of craniotomy field of view in the axial plane (A) and coronal cross-section (B), overlaid on a 

NHP brain atlas (Calabrese et al., 2015). The 24 × 24-mm (inner dimension) chambers were placed surface normal to the 

brain on top of the craniotomized skull. (C and D) 3D vascular maps for monkey L and monkey H. The field of view 

included the central and intraparietal sulci for both monkeys. (E and F) Representative slices for monkey L and monkey 

H show the intraparietal sulcus (dotted line, labeled ips) with orientation markers (l, lateral or left; r, right; m, medial; v, 

ventral; d, dorsal; a, anterior; p, posterior).  

We recorded 1 Hz fUSI data while two NHPs (Monkey L and H) performed memory-delayed 

instructed saccades and reaches. The monkeys were required to memorize the location of a cue 

presented in either the left or right hemifield and execute the eye or hand movement once the center 

fixation cue extinguished. For the reaches, the animal’s gaze remained fixated throughout the trial, 

including during the fixation, memory, and reach movement phases.  
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2.4.1.1 Decoding two directions of eye or hand movements 

We predicted the direction of upcoming movements using single trials of fUSI data (Figure 2.5A). 

Briefly, we used class-wise principal-component analysis (CPCA) to reduce data dimensionality. We 

chose CPCA because it is ideally suited to discrimination problems with high dimension and small 

sample size (Das and Nenadic, 2008, 2009). We then used ordinary least-squares regression (OLSR) 

to regress the transformed fUS data (from the memory delay period) to the movement direction (i.e., 

class label). Finally, we used linear discriminant analysis (LDA) to classify the resulting value for 

each trial as a presumed left or right movement plan. All reported results were generated using a 10-

fold cross-validation. Saccade direction prediction accuracy within a session (i.e., decoded from the 

memory delay) ranged from 61.5% (binomial test versus chance level, p = 0.012) to 100% (p < 0.001) 

on a given 30-min run. The mean accuracy across all sessions and runs was 78.6% (p < 0.001). Reach 

direction prediction accuracy ranged from 73.0% (binomial test versus chance level, p < 0.001) to 

100% (p < 0.001). The mean accuracy across all sessions and runs was 88.5% (p < 0.001). 
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Figure 2.5 Single-trial decoding of intended movement direction. 

(A) Data flow chart for cross-validated single-trial movement direction decoding. Training images were separated from 

testing data according to the cross-validation technique being used. Movement intention predictions were made for single 

trials based on the dimensionality reduction and a classification model built by the training data with corresponding class 

labels (i.e., actual movement direction). (B) Decoding accuracy as a function of time across all datasets. (C) Decoding 

accuracy as a function of the number of trials used to train the decoder. Data points in (B) and (C) are means, and shaded 

areas represent standard error (SEM) across sessions. (D) Cross-temporal decoder accuracy, using all combinations of 

training and testing data with a 1-s sliding window. Results are shown in an example session for each animal. Significance 

threshold is shown as a contour line (p < 0.05, FDR corrected). Training the classifiers during the memory or movement 

phase enabled successful decoding of the memory and movement phases. (E) Representative decoder weighting maps 

(monkey L). The top 10% most heavily weighted voxels are shown as a function of space and time before the go cue was 

given, overlaid on the vascular map. 

To analyze the temporal evolution of direction-specific information in PPC, we attempted to decode 

the movement direction across time through the trial phases (fixation, memory, and movement). For 

each time point, we accumulated the preceding data. For example, at t = 2 s, we included imaging 

data from t = 0–2 s (where t = 0 s corresponds to the beginning of fixation). The resulting cross-

validated accuracy curves (Figure 2.5B) show accuracy at chance level during the fixation phase, 

increasing discriminability during the memory phase, and sustained decode accuracy during the 

movement phase. During the memory phase, decoder accuracy improved, surpassing significance 
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2.08 s ± 0.82 s after the monkey received the target cue for saccades (2.32 s ± 0.82 s before moving, 

binomial test versus chance level, p < 0.05, Bonferroni corrected for 18 comparisons across time) and 

1.92 s ± 1.4 s for reaches (2.28 s ± 1.4 s before moving). Decoding accuracy between saccades and 

reaches was not significantly different. 

To determine the amount of data required to achieve maximum decode accuracy, we systematically 

removed trials from the training set (Figure 2.5C). Using just 27 trials, decoder accuracy reached 

significance for all datasets (binomial test, p < 0.05) and continued to increase. Decoder accuracy 

reached a maximum when given 75 trials of training data, on average. 

Were we decoding the neural correlates of positions, trajectories, or goals? To answer this question, 

we used a cross-temporal decoding technique. We used a 1-s sliding window of data to train the 

decoder and then attempted to decode the intended direction from another 1-s sliding window. We 

repeated this process for all time points through the trial duration, resulting in an n × n array of 

accuracies, where n is the number of time windows tested. Cross-validated accuracy was significantly 

above chance level throughout the memory and movement phases (Figure 2.5D, purple line, binomial 

test versus chance level, p < 0.05, Bonferroni corrected for 18 time points). In other words, the 

information we are decoding from this brain region was highly similar during movement preparation 

and execution. This result suggests that this area is encoding movement plans (Snyder et al., 1997), 

visuo-spatial attention (Colby and Goldberg, 1999), or both. Although intention and attention are 

overlapping abstract concepts that cannot be separated by this experimental design, dissociating their 

contribution would not fundamentally change our interpretation. Distinct spatial locations within PPC 

encoded this information, a fact reflected in the variable weighting assigned to each voxel in our 

decoding algorithm. The decoder placed the highest weightings in area LIP (Figure 2.5E). This also 

agrees with the canonical function of this region for the planning of eye movements (Gnadt and 

Andersen, 1988; Andersen and Buneo, 2002). 

2.4.1.2 Simultaneously decoding memory period, effector, and direction 

To demonstrate the ability of fUS to decode multiple dimensions of behavior from a single trial of 

data, we trained the same two animals to perform a memory-delayed, intermingled effectors task. 

This task was similar to the saccade and reach tasks in its temporal structure. However, in addition to 

the animals fixating their gaze during the fixation period, they also moved a joystick to a central cue 

with their right hand. This cue’s color indicated which effector they should move when the go cue 
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arrived (blue for saccades and red for reaches). If the monkey moved the correct effector (eye/hand) 

to the correct direction (left/right), then they received a liquid reward (Figure 2.6A).  

 
Figure 2.6 Decoding task, effector, and direction simultaneously. 

(A) Intermingled memory-delayed saccade and reach task. A trial started with the animals fixating their gaze (and moving 

the joystick to) a central cue. The center fixation cue was either colored blue to cue saccades (top row) or red to cue 

reaches (bottom row), randomized trial by trial (i.e., not blocked). Next, a target (white circle) was flashed on either the 

left or right visual field. The animals had to remember its location while continuing to fixate their eye and hand on the 

center cue. When the center was extinguished (go signal), the animals performed a movement of either the eye or hand 

to the remembered peripheral target location. ∗Mean values across sessions shown; the fixation period was consistent 

within each session but varied across sessions from 2.4 to 4.3 s. (B) Confusion matrices of decoding accuracy represented 

as percentage (columns add to 100%). (C) Example classification of 14 consecutive trials. Classification predictions are 

shown as lines, and shaded areas indicate ground truth. An example of the fUS image time series transformed by the 

classifier subspace appears in red. After predicting the task period, the classifier decoded effector (second row) and 

movement direction (third row) using data only from the predicted task period (first row). 

We decoded the temporal course of (1) the task structure, (2) the effector, and (3) the target direction 

of the animal using a decision tree decoder. First, we predicted the task memory periods versus non-

memory periods (including movement, inter-trial interval, and fixation). We refer to this distinction 

as task/no task (Figure 2.6C, task/no task). To predict when the monkey entered the memory period, 

the decoder used continuous data where each power Doppler image was labeled as task or no task. 

After predicting the animal entered the task phase, the second layer of the decision tree used data 

from the predicted task phase period to classify effector and direction (Figure 2.6C, reach/saccade, 

left/right). Each of these decodes used the same strategy as before (cross-validated CPCA). Figure 

2.6B depicts the confusion matrix of decoding accuracy for each class for monkeys H and L. The 
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classifier correctly predicted no-task periods 85.9% and 88.8% of the time for monkeys H and L, 

respectively, left versus right on 72.8% and 81.5% of trials for monkeys H and L, and eye versus hand 

on 65.3% and 62.1% of trials for monkeys H and L. All three decodes were significantly above chance 

level (p < 0.05, binomial test versus chance, Bonferroni corrected for three comparisons). 

2.4.1.3 Vascular signal and information content 

The purported benefits of fUS compared to established neuroimaging techniques include increased 

resolution and sensitivity. To test the benefit of increased resolution, we classified movement goals 

while systematically decreasing the resolution of the image. We resized the images using a low-pass 

filter in each of the dimensions of the imaging plane, x (across the probe surface) and z (with image 

depth). We then used the entire image (where the downsized images contained fewer pixels) to decode 

movement direction. Accuracy continuously decreased as voxel sizes increased (Figure 2.7A). This 

effect was isotropic (i.e., similar for both x and z directions). 

 
Figure 2.7 Effects of spatial resolution, time window, and mean power Doppler intensity. 

(A) Accuracy decreases with resolution in both the x direction (across the imaging plane) and z direction (depth in the 

plane) in an isotropic manner. (B) Decoding accuracy as a function of decoder time bin durations (1-, 2-, and 3-s bins 

represented by black, red, and purple, respectively). Data are aligned to the end of the time bin used for decoding. Dots 

represent maximum decoder accuracy for each session for each of the bin sizes. Stars indicate statistical significance 

between groups (Student’s t test, p < 0.001 for all combinations). (C) A typical vascular map overlaid with contours 

dividing the image into deciles of mean power Doppler intensity. Decoding accuracy is shown as a function of the mean 

power Doppler intensity. Information content is greatest in quantile 3, which mostly contains small vasculature within 

the cortex. Subcortical and primary unit vasculature (i.e., deciles 1 and 10) are least informative to decoding movement 

direction. All data represent means, and shaded areas, when present, represent standard error (SEM) across sessions. 
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We hypothesized that functional information useful for decoding would primarily be located in 

subresolution (<100 μm) vessels within the imaging plane. This hypothesis was based on the function 

of hyperemia, which starts in parenchymal arterioles and first-order capillaries (i.e., vessels of 

diameter <50 μm; (Rungta et al., 2018)). To test this hypothesis, we rank ordered voxels by their 

mean power Doppler intensity and segmented them by deciles, resulting in a spatial map of ranked 

deciles (Figure 2.7C). Deciles 1–2 mostly captured subcortical areas. Deciles 3–8 mostly captured 

cortical layers. Deciles 9 and 10 were largely restricted to large arteries, commonly on the cortical 

surface and in the sulci. We then classified movement goals using data from each decile. We 

normalized accuracy for each session, where 0 represents chance level (50%) and 1 represents the 

maximum accuracy reached across deciles. Accuracy peaked when the regions of the image within 

the third decile of mean Doppler power were used to decode movement direction. This decile was 

mostly represented by cortex vasculature, much of which is at or below the limits of fUS resolution. 

This result is consistent with our hypothesis that functional hyperemia arises from subresolution 

vessels (Boido et al., 2019; Maresca et al., 2020) and agrees with previous studies in rodents (Demené 

et al., 2016) and ferrets (Bimbard et al., 2018). 

This work presented a high-water mark for ultrasound neuroimaging sensitivity that builds on the two 

previous studies of fUS in NHPs (Dizeux et al., 2019; Blaize et al., 2020). Significant advances 

include (1) classification of behavior using fUS data from a single trial, (2) detection of the neural 

correlates of behavior before its onset, (3) the first investigation of motor planning using fUS, and (4) 

significant advances in ultrafast ultrasound imaging for single trial and real-time imaging as a 

precursor to BMI. Our study is the first to successfully classify fUS activity with just a single trial of 

data. Furthermore, we predicted the differences between multiple task variables (e.g., effector, 

direction) in addition to detecting the task itself. We also decoded the behavior of the animal before 

it was executed.  

2.4.1.4 Simultaneous effector and direction decoding 

PPC’s location within the dorsal stream suggests that while visuospatial variables are well 

represented, other movement variables such as effector may be more difficult to detect. Indeed, 

decoding accuracy was higher for direction (i.e., left versus right) than for effector (i.e., hand versus 

eye) (Figure 2.5B). The observed difference in performance is likely due to PPCs bias toward the 

contralateral side and partially intermixed populations for effectors in some regions. In addition to 

direction and effector, we decoded the task versus no-task phases. This is a critical step toward closed-
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loop feedback environments such as BMI, where the user gates their own movement or the decoder 

is otherwise not privy to movement or task timing information. Furthermore, simultaneous decoding 

of task state, direction, and effector is a promising step forward for the use of fUS in both complex 

behaviors and BMIs. 

2.4.1.5 Goal decoding for BMI 

The results presented here suggest that fUS has potential as a recording technique for BMI. A 

potential limitation is the temporal latency of the hemodynamic response to neural activity. 

Electrophysiology-based BMIs that decode velocity of intended limb movements require as little 

latency as possible. However, in many cases, goal decoding circumvents the need for instantaneous 

updates. For example, if a BMI decodes the visuospatial location of a goal (as we do here), then the 

external effector (e.g., a robotic arm) can complete the movement without low-level, short-latency 

information (e.g., joint angles). Furthermore, goal information as found in PPC can represent 

sequences of consecutive movements (Baldauf et al., 2008) and multiple effectors simultaneously 

(Chang and Snyder, 2012). Finally, future goal decoders could potentially leverage information from 

regions in the ventral stream to decode object semantics directly (Bao et al., 2020). These unique 

advantages of goal decoding could thus improve BMI efficacy without requiring short-latency 

signals. 

2.4.1.6 Comparison to other non-invasive and minimally-invasive recording methods 

Other techniques, such as noninvasive scalp EEG, have been used to decode single trials and as a 

neural basis for control of BMI systems (Wolpaw et al., 1991; Wolpaw and McFarland, 2004; 

Norman et al., 2018). The earliest proof-of-concept EEG-based BMI achieved a one-bit decode 

(Nowlis and Kamiya, 1970). Performance of modern EEG BMIs varies greatly across users (Ahn and 

Jun, 2015) but can yield two degrees of freedom with 70–90% accuracy (Huang et al., 2009). This 

performance is comparable to that described here using fUS. However, fUS performance is rapidly 

increasing as an evolving neuroimaging technique, including recent breakthroughs in 3D fUS 

neuroimaging (Sauvage et al., 2018; Rabut et al., 2019). These technological advances are likely to 

herald improvements in fUS single-trial decoding and future BMIs. 

Epidural ECoG is a minimally invasive technique used for neuroscientific investigation, clinical 

diagnostics, and as a recording method for BMIs. Building on the success of more-invasive subdural 

ECoG, early epidural ECoG in monkeys enabled decoding of continuous 3D hand trajectories with 

slightly worse accuracy than subdural ECoG (Shimoda et al., 2012). More recently, bilateral epidural 
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ECoG over human somatosensory cortex facilitated decoding of 8 degrees of freedom (4 degrees of 

freedom per arm, including 3D translation of a robotic arm and wrist flexion) with ~70% accuracy 

(Benabid et al., 2019). In this study, we demonstrated that unilateral fUS imaging of PPC enabled 3 

degrees of freedom with similar accuracy. This is fewer degrees than attainable using modern bilateral 

ECoG grids. However, it demonstrates that, as a young technique, fUS holds excellent potential. 

Future work can, for example, extend these findings to similarly record bilateral cortical and 

subcortical structures, such as M1, PPC, and basal ganglia. As fUS recording technology rapidly 

advances toward high-speed, wide-coverage, and 3D scanning, these types of recordings will become 

commonplace. 

2.4.1.7 Non-motor applications 

fUS BMI in its form in the current study could also enable BMIs outside the motor system. Optimal 

applications might require access to deep brain structures or large fields of view on timescales 

compatible with hemodynamics. For example, cognitive BMIs such as state decoding of mood and 

other psychiatric states (Shanechi, 2019) are of great interest due to the astounding prevalence of 

psychiatric disorders. Like fUS, cognitive BMI is a small but rapidly advancing area of research 

(Musallam et al., 2004; Andersen et al., 2019). It is our mission that these areas of research mature 

together, as they are well matched in timescale and spatial coverage. 

2.4.1.8 Relevance to current work 

This previous work demonstrated that fUSI possessed the sensitivity to decode single-trial motor 

variables, including time of initiation (task/no-task), effector (hand/eye), and direction (left/right). 

However, this just scratches the surface of what should be possible with fUSI in PPC or other cortical 

areas. In this dissertation, we work to expand the dimensions (increased number of directions and 

task states) and number of features (reward size) decodable by fUSI. We additionally demonstrate 

how this technology can reveal novel information about mesoscopic neural populations. Finally, we 

describe the first efforts at translating this fUSI-BMI technology into human applications. 
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3 Topographic organization of direction within posterior 

parietal cortex 

3.1 Background 

The posterior parietal cortex (PPC) integrates visual information, represents possible action plans, 

and decides upon the optimal action for downstream execution (Colby and Duhamel, 1996; Snyder 

et al., 1997; Whitlock, 2017). Separate PPC regions preferentially encode different movement types 

(Cui and Andersen, 2007; Hadjidimitrakis et al., 2019), or “effectors”. Lateral intraparietal area (LIP) 

preferentially encodes saccades (Gnadt and Andersen, 1988), parietal reach region (PRR) 

preferentially encodes limb reaches (Snyder et al., 1997), and anterior intraparietal area (AIP) 

preferentially encodes grasping movements (Taira et al., 1990). These areas reveal an effector-

dependent functional organization across PPC. 

It remains debated about whether PPC possesses functional organization along other dimensions, 

including response field location (Patel et al., 2014; Hadjidimitrakis et al., 2019). Several papers have 

found that LIP’s response fields are spatially organized, with adjacent neurons having similar 

response fields (Blatt et al., 1990; Ben Hamed et al., 2001; Patel et al., 2010; Savaki et al., 2010; 

Arcaro et al., 2011), however, the specific organization of these response fields remains debated (Patel 

et al., 2014). This debate about spatial organization of LIP neurons continues in part due to the limited 

field of view, sensitivity, and/or spatial resolution of existing recording techniques (Figure 2.1). fMRI 

can record whole brain activity but lacks the spatiotemporal resolution and signal sensitivity to refine 

our knowledge of PPC’s spatial organization (Figure 2.1A). Electrophysiology can measure single 

neuron activity but cannot simultaneously record from entire large brain volumes such as primate 

PPC (Figure 2.1C). It can additionally be difficult to align and reconstruct data recorded over many 

months. This suggests the need for a sensitive technique that can bridge the gap in spatiotemporal 

resolution between microscopic single neurons and macroscopic patches of cortex. 

Here, we use an emerging technique, functional ultrasound imaging (fUSI), with a large field of view, 

excellent sensitivity, and high spatiotemporal resolution (Figure 2.1B, D) to determine the 

mesoscopic spatial organization of saccadic response fields within PPC. We found functionally 

distinct subregions within (dorsal-ventral) and across (anterior-posterior) coronal PPC planes where 

small mesoscopic patches of neighboring cortex encode different movement directions consistently 



29 

 

across many months to years. These results fill a gap in our understanding of PPC’s functional 

organization and demonstrate that fUSI can help elucidate the function of other mesoscopic 

populations throughout the brain. 

3.2 Results 

We used a miniaturized 15.6-MHz, 128-channel, linear ultrasound transducer array paired with an 

ultrafast ultrasound acquisition system to record 1 Hz fUS images from two rhesus macaque monkeys 

(Monkey L and Monkey P; Figure 3.1). We positioned the transducer surface normal to the brain 

above the dura mater and recorded from multiple evenly spaced coronal planes of the left posterior 

parietal cortex (PPC). We centered the recording chamber over the intraparietal sulcus to record from 

as much of the posterior parietal cortex as possible, both medial-lateral, but also anterior-posterior 

(Supplemental Movie 3.1, Supplemental Movie 3.2). The 15.6-MHz transducer provided a high 

spatial resolution (100 μm x 100 μm in-plane) and a large field of view (12.8 mm width, 16 mm 

depth, 400 μm plane thickness).  

We recorded 1 Hz fUSI data as Monkey L and P performed memory-guided saccades (Figure 3.1B). 

Each monkey was cued with one of eight directions, remembered the cue location, and executed a 

saccade to the remembered location once the central fixation point extinguished. This enabled us to 

measure high-resolution changes in cerebral blood volume (CBV) from multiple PPC subregions 

simultaneously as the monkeys performed multiple directions of saccades. These areas included 

lateral intraparietal area (LIP), ventral intraparietal area (VIP), medial intraparietal area (MIP), Area 

5, Area 7, and medial parietal cortex (MP). 
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Figure 3.1 Monkeys perform memory-guided saccade task during fUSI acquisition. 

(A) Coronal imaging planes in Monkey L and P. Position relative to estimated ear-bar zero (EBZ) overlaid on a NHP 

brain atlas (Calabrese et al., 2015). Anatomical labels based upon (Saleem, 2012). (B) Memory-guided saccade task. A 

trial began with the monkey fixating on a center blue diamond. After the monkey fixated, a white circular cue was flashed 

in one of 8 peripheral locations. Once the center fixation diamond extinguished, the monkey made a saccade to the 

remembered cue location and maintained fixation on the peripheral location. If the saccade was to the correct location, 

the peripheral cue reappeared and the monkey received a liquid reward. 

3.2.1 Are there mesoscopic populations tuned to different directions? 

To identify mesoscopic populations tuned to different directions, we convolved our task design with 

a single gamma hemodynamic response function and used a general linear model (GLM) to identify 

voxels that responded differently to the eight directions. In both monkeys, mesoscopic PPC 
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populations had clear directional tuning. In an example session from Monkey P (Figure 3.2A-C), the 

majority of LIP voxels showed directional tuning while very few voxels outside of the LIP showed 

directionally modulated activity. Some of these directionally-modulated voxels showed substantial 

increases in CBV (>20%) from baseline where the magnitude of the increase depended on the 

direction while other voxels displayed suppression from baseline for certain movement directions 

(Figure 3.2B). To quantify the example regions’ tuning, we averaged the response to each of the 

directions at the end of the memory period across all the voxels in each ROI (Figure 3.2C). Different 

populations within a single coronal plane had different preferred directions and different widths of 

their tuning curves. Some ROIs were tightly tuned to a few specific directions (Figure 3.2B, C – ROI 

2) while other ROIs had broader tuning to the entire contralateral hemifield (Figure 3.2B, C – ROI 

1). The example session from Monkey L displayed similar phenomena (Figure 3.2D-F). Most voxels 

within the LIP displayed directional modulation and these voxels were clumped into multiple 

subpopulations with different tuning curves. These tuning curves had different preferred directions 

and tuning curve width. In Monkey L, the mid-MIP directly adjacent to the sulcus had some 

directionally tuned vascular response, but this activity did not penetrate into deeper cortical layers. 
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Figure 3.2 PPC contains multiple distinct directionally-tuned mesoscopic populations. 

(A) Statistical parametric maps showing the average activity during the memory period. Voxel threshold determined by 

GLM F-test for voxels where q < 0.001 (FDR-corrected). White scale bar – 1 mm. Center arrows indicate the 8 directions 

tested. (B) Event-related average of activity within each ROI. Each line represents one direction. The circular color scale 

indicates the direction of each line. Error shading shows SEM. Green shading shows timepoints used for calculating 

baseline and blue line shows timepoint used for analyzing memory response to the different directions. (C) Tuning curves. 

Each line shows a cubic spline fit to the directional responses at the end of the memory period within each ROI. Error 

bars show SEM. (D-F) Example session for Monkey L. Same format as A-C. 
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3.2.2 How consistent is this directional tuning within a session? 

Having observed clear mesoscopic populations with directional preference in both monkeys, we 

performed decoding analyses for each example session to better understand the information content 

within these voxel subpopulations and how consistent their responses were. We used principal 

component analysis (PCA) to reduce the dimensionality of the fUSI data and linear discriminant 

analysis (LDA) to predict one of the eight movement directions using the PCA-transformed data. We 

used a “multicoder” architecture where we predicted the horizontal (left, middle, or right) and vertical 

(up, middle, or down) components of intended movement separately and then combined those 

independent predictions to form a final prediction (e.g., up and to the right). We examined the ability 

to decode intended movement direction throughout the trial (Figure 3.3) and found that we could 

begin decoding the intended movement direction significantly above chance (p<0.01; 1-sided 

binomial test) within 3 seconds of the directional cue (Figure 3.3A, D). In both monkeys, the percent 

correct exceeded 50% (leave-one-out cross-validation; Monkey P – 59.6% correct, Monkey L – 

54.1%). The missed predictions typically bordered the true movement direction (Figure 3.3B, E). To 

capture this information about the closeness of each prediction, we examined the mean absolute 

angular error (MAAE), i.e., the mean unsigned angular error between the predicted and true 

movement direction. As with the percent correct, the MAAE reached significance (p<0.01; 1-sided 

permutation test) within 3 seconds of the directional cue. The MAAE converged to <35° for both 

monkeys (Monkey P – 23.7°, Monkey L – 32.8°, Figure 3.3A, D-bottom).  

The decoding analyses used the entire image at each timepoint to decode the intended movement 

direction on individual trials. To understand which portions of the vascular anatomy contributed the 

most to the decoding performance, we performed a searchlight analysis. We moved a pillbox (200 

μm radius) across the entire image and assessed the ability of each pillbox to decode the intended 

movement direction (Figure 3.3C, F). For the searchlight analysis, we ignored voxels within and 

across the sulcal fold, i.e., we only used voxels on the same side of the sulcus for a given searchlight 

pillbox. We observed that LIP contained the most informative voxels and that these informative 

voxels overlapped with the same voxels identified with the previous GLM analysis. In both animals, 

a small number of voxels within the MIP were within the 10% most significant voxels (threshold: 

Monkey L – p<0.005, Monkey P – p<10-5). These significant voxels were in the superficial cortical 

layers along the sulcus and did not extend into deeper cortical layers, matching the results from 

Monkey L’s GLM analysis. 
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The searchlight analyses helped reveal which voxels were important for the overall decoding 

performance but did not answer which voxels are important for discriminating between specific 

direction pairs. To begin answering this question, we projected the LDA class-class boundaries back 

through the PCA transform to represent each LDA boundary in the vascular image space (Figure 

3.3G, H). We observed several interesting patterns. First, different populations were important for 

maximally discriminating between different direction pairs. This might seem to disagree with the 

searchlight results where voxels within a 200 μm radius patch could robustly decode eight movement 

directions but we believe it means that discriminability between specific direction pairs improves if 

you have more of the image. In other words, the discriminability is improved by having more 

information rather than just a few voxels (≤ 13 voxels) with similar directional preferences. Second, 

the importance of a given voxel for the boundary followed a gradient. For example, in Figure 3.3G, 

the importance of the voxels in the mid-LIP for ipsilateral upwards (Class 1) vs other directions (Class 

2) displays a gradient where the boundary is stronger for neighboring directions. This agrees with 

there being different populations with strong tuning for specific directions. An ideal boundary should 

be comprised of the voxels with the strongest difference in response to a given direction to help reduce 

the trial-to-trial variability in the discriminability. Third, the conjunction of the boundary voxels 

matched with the GLM and searchlight analyses, further supporting that mesoscopic LIP 

subpopulations robustly encoded for different movement directions. 
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Figure 3.3 Single-trial decoding of eight intended movement directions with high accuracy. 

(A) Decoding performance as a function of time. Top plot shows percent correct. Bottom plot shows mean absolute 

angular error (MAAE). Dashed lines show chance level performance. Color of the line shows statistical significance (1-

sided binomial test or permutation test). (B) Confusion matrix of decoding represented as percentage (rows adds to 

100%). (C) Searchlight analysis. Top 10% of voxels with the lowest MAAE. White circle – 200 μm searchlight radius. 

White line – 1 mm scalebar. Masked voxels correspond to threshold of p<10-5. (D-F) Decoding performance for Monkey 

L. Same format as A-C. Masked voxels corresponds to threshold of p<0.005. (G) Projection of LDA boundaries onto 

vascular image for Monkey P. Each tile represents the boundary between two direction classes. (H) Projection of LDA 

boundaries onto vascular image for Monkey L. 
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3.2.3 Are these mesoscopic populations stable across multiple days? 

In the example sessions, PPC subpopulations were robustly tuned to individual movement directions, 

but are these mesoscopic regions stable across time? To begin answering this question, we collected 

data from the same coronal plane across many months. We then trained our decoder on one day’s 

data and tested how well we could use this trained decoder to predict movement direction on other 

sessions from that same plane without any retraining of the decoder. We repeated this analysis using 

each session as the training set and testing all the other sessions. If the subpopulations are constant 

across time, then we should be able to decode intended movement direction using a decoder trained 

on another session’s data from the same coronal imaging plane. If the subpopulations change across 

time, then we would expect decoder performance to get worse and for the confusion matrices to 

become random. 

In Monkey P, the decoder performance remained significant even after more than 100 days between 

the training and testing sessions (Figure 3.4A). All pairs of training and testing session for Monkey 

P showed significant decoding performance (p<10-5; 36/36 pairs) (Figure 3.4B). In Monkey L, the 

decoder performance remained significant across more than 900 days (Figure 3.4D). Almost all pairs 

of training and testing session for Monkey L showed significant decoding performance (p<0.01; 

117/121 pairs) (Figure 3.4E). Different training sessions had different decoding performance when 

tested on itself using cross-validation (diagonal of performance matrices), so we also examined the 

accuracy normalized to the training session’s cross-validated accuracy. We did not observe any clear 

differences between the absolute and normalized accuracy measures. Interestingly, in Monkey L, the 

decoder trained on the March 13, 2021 session performed the best for three directions (contralateral 

up, contralateral down, and ipsilateral down) in the training set and continued to decode these same 

three directions the best consistently throughout the test sessions (Figure 3.4D). We saw this pattern 

consistently where the decoder could best predict certain directions, even when the training session 

had poor cross-validated performance by itself (Supplemental Figure 3.1).  

In both monkeys, temporally adjacent sessions had better performance (Figure 3.4C, F). In Monkey 

L, the performance was clumped into two temporal groups (before and after May 3, 2023) where 

training on a session within its same temporal group provided the best performance. Physical changes 

in the imaging plane across time may explain the decrease in performance. Although we did our best 

to align our recordings to the exact same imaging plane from day to day, there was out-of-plane 

alignment issues where the major blood vessels were very similar but mesovasculature would change 
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(Supplemental Figure 3.2A, D). This suggested that we might be decoding from slightly different 

neural populations. This out-of-plane difference was <400 μm across all recording sessions based 

upon comparing the fUSI imaging planes with anatomical MRIs of our monkeys’ brains. To test our 

hypothesis that differences in vascular anatomy led to the decrease in decoder performance, we 

looked at the similarity of the vascular anatomy across time using an image similarity metric, the 

complex-wavelet structural similarity index measure (CW-SSIM)(Sampat et al., 2009). The CW-

SSIM clumped the vascular images into discrete groups (Supplemental Figure 3.2B, E), matching 

our qualitative assessment of image similarity. The similarity grouping also matched the pairwise 

decoding performance grouping in Monkey L (Figure 3.4E). The decoder performance and image 

similarity were correlated (Supplemental Figure 3.2C, F). As image similarity decreased between 

the training session and each test session, the decoder performance also decreased. This supports our 

hypothesis that the decrease in decoder performance resulted from changes in the imaging plane 

rather than drift in each subpopulation’s tuning. 

 



38 

 

 
Figure 3.4 PPC stably encodes movement direction across many months to years. 

(A) Example decoder stability for Monkey P. Trained the decoder on Day 0 data and tested the trained decoder on other 

sessions from the same imaging plane without any retraining. (B) Decoder stability for training and testing on each 

session. ns – nonsignificant decoding performance (α = 0.01). Bold text represents example session shown in Fig. 5A. 

(C) MAAE as a function of days between the training and testing session (absolute difference in time). Dashed line – 

Linear fit to data. *=p<10-2, **=p<10-4. (D-F) Decoder stability for Monkey L. Same format as Fig. 5A-C. 
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3.2.4 How does mesoscopic population tuning change across anterior and posterior 

portions of PPC?  

Having demonstrated that there are PPC subpopulations robustly tuned to individual movement 

directions and these subpopulations’ tuning is consistent across many months to years, we next asked 

how this varied across different anterior to posterior coronal imaging planes. We repeated the same 

GLM analysis for data acquired from coronal planes evenly spaced throughout the PPC (Figure 3.1A, 

Supplemental Movie 3.1, Supplemental Movie 3.2) and found the peak preferred direction for every 

voxel (Figure 3.5A). Several patterns appeared. First, each coronal plane contained LIP voxels with 

directional modulation. Some of these planes contained large, contiguous patches of activity while 

other planes contained multiple discrete patches of activity. Second, most anatomical planes in both 

monkeys contained multiple LIP subpopulations with different tuning properties. These different 

subpopulations were sometimes in discrete patches and sometimes in the same contiguous patch. 

Third, posterior planes encoded more contralateral upward movements while anterior planes encoded 

more contralateral downward movements. Fourth, in Monkey P, regions outside of the LIP contained 

directionally modulated voxels, including in medial intraparietal (MIP), medial parietal (MP), and 

Area 5 cortex. We did not observe any activity within Area 5 of Monkey L and only observed very 

superficial activity within MIP of a single coronal plane (-3.33 mm of EBZ). Unfortunately, Monkey 

L’s chamber was more medial and did not contain the same posterior portion of MP where we 

observed activity in Monkey P. 
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Figure 3.5 Polar direction is topographically organized along anterior-posterior axis of LIP. 

A. Color overlays showing preferred direction for voxels with statistically significant difference in response for different 

movement directions. Threshold based upon GLM F-test where q < 0.01 (FDR-corrected). (B) Preferred direction for all 

significant voxels within each coronal plane. Color represents depth from brain surface. Grey shaded area shows 

contralateral angles. (C) Angular distribution of response fields within LIP. Gray shaded area shows contralateral angles. 

(D) Depth of tuned LIP voxels. Gray shaded area shows approximate LIPd. 
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To further understand the directional encoding across different coronal planes, we extracted the 

directional-modulated voxels and created a beeswarm chart of each voxel’s directional preference 

(Figure 3.5B). As expected, certain directions within a given plane were over-represented, i.e., 

clumps of similarly tuned neurons in the beeswarm plot. The anterior-posterior gradient was still 

evident where more anterior planes had more voxels tuned for downwards directions while posterior 

planes had more voxels tuned for upwards directions. The majority of voxels encoded for contralateral 

movements (-90° to +90°) although there were some voxels that responded most strongly for 

ipsilateral movements. Each of the planes had broad and overlapping representation of contralateral 

movements. To better quantify these observations, we collapsed the voxels across planes (Figure 

3.5C) and found that >85% of tuned LIP voxels were contralaterally preferring (Monkey P – 87.7%; 

Monkey L – 89.4%).  

Dorsal (LIPd) and ventral (LIPv) LIP are believed to have different functions (Liu et al., 2010). 

According to theories of topographic encoding (Patel et al., 2014), we would expect separate 

representations of movement directions within LIPd and LIPv. In the statistical parametric maps, 

more anterior planes had more activity within LIPd than posterior planes, however the middle of the 

LIP seemed to have the most activity consistently across all planes. To help quantify this, we labeled 

the beeswarm chart with the depth of each voxel (Figure 3.5B). We did not observe any clear trends 

in the data to distinguish between LIPd and LIPv. We additionally collapsed all the tuned voxels 

across planes and looked at their percent depth within the sulcus (Figure 3.5D). LIPd is 

approximately the dorsal 53% of the lateral intraparietal sulcus (Liu et al., 2010). Instead of observing 

clear separation between LIPd and LIPv, we observed one homogenous group with the most activity 

peaking at the boundary between LIPd and LIPv, suggesting that LIPd and LIPv may share a 

topographic representation and/or that they receive common shared inputs. 

Certain planes had better representation of specific directions, so we next asked whether there would 

be any performance difference in fUSI decoders trained on the different anatomical planes. We 

applied our decoding analysis to every recorded session (Supplemental Figure 3.3A, B). In Monkey 

P, all sessions reached statistical significance (18/18 sessions). In Monkey L, almost all sessions 

reached statistical significance (19/20 sessions). Decoder performance within a session depended on 

the monkey. In Monkey P, the peak MAAE ranged from 17° to 55° (29.97° ± 2.32° mean ± SEM). 

In Monkey L, the MAAE ranged from 33° to 85° (57.98° ± 3.35° mean ± SEM). This supports that 

on individual sessions we could accurately decode at least eight intended movement directions on a 
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single-trial basis and that there are individual populations that robustly encode for specific directions. 

There was no statistical difference (1-way ANOVA, α=0.01) between the percent correct or MAAE 

depending on the plane (Supplemental Figure 3.3C). 
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3.3 Discussion 

This work demonstrates that posterior parietal cortex (PPC) contains voxels tuned to different 

directions. These tuned voxels were predominately within LIP and grouped into contiguous 

mesoscopic subpopulations. Multiple subpopulations existed within a given coronal plane, i.e., 

multiple preferred directions in a given plane. A rough topography exists where anterior LIP had 

more voxels tuned to contralateral downwards saccades and posterior LIP had more voxels tuned to 

contralateral upwards saccades. These populations remained stable across more than 100 – 900 days.  

3.3.1 Sensitivity of fUSI 

We observed large effect sizes with changes in cerebral blood volume (CBV) on the order of 10 –

30% change from baseline activity (Figure 3.2). This is much larger than observed with BOLD fMRI 

where on similar saccade-based event-related tasks, the effect size was approximately 0.4 – 2% 

(Kagan et al., 2010; Wilke et al., 2012). Our results agree with previous papers that found fUSI is a 

sensitive neuroimaging technique for detecting mesoscopic functional activity in a diversity of model 

organisms, including pigeons, rats, mice, nonhuman primates, ferrets, and infant and adult humans 

(Macé et al., 2011, 2018; Demene et al., 2016; Imbault et al., 2017; Bimbard et al., 2018; Demené et 

al., 2018; Rau et al., 2018; Dizeux et al., 2019). 

3.3.2 Anterior-posterior gradient 

Our results agree with previous studies of topography within LIP. Our fUSI data (Figure 3.5) matches 

two fMRI (Patel et al., 2010; Arcaro et al., 2011) and two electrophysiology (Ben Hamed et al., 2001; 

Wardak et al., 2004) studies that found an anterior-posterior gradient where anterior LIP encodes for 

more downwards movements and posterior LIP encoded for more upwards movements. Ben Hamed 

et al. 2001 stated “LIP does not appear to contain a continuous and orderly retinotopic organization. 

Across nearby and successive penetrations, neurons seemed to be organized in clusters of cells with similar 

visual and oculomotor properties, but sharp transitions from one cluster to another could be observed.” 

This matches very closely with the results observed in this study where we found clusters within LIP 

tightly tuned to one direction with differently tuned clusters in close proximity within a given plane. 

Two additional studies (Blatt et al., 1990; Savaki et al., 2010) found the opposite anterior-posterior 

gradient where anterior LIP encoded for upwards movements while posterior LIP encoded for 

downward movements. To reconcile these contradictory results, (Patel et al., 2014) suggested that 

there existed separate topographies for two of the main functions of LIP. One topography for 
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attentional processing (anterior LIP—downward attention; posterior LIP—upward attention) and one 

topography for saccade planning (anterior LIP—upward saccades; posterior LIP—downward 

saccades). Our results where we used a memory-guided saccade task disagree with this interpretation 

and instead suggest another explanation. Arcaro et al. 2011 reconciled their fMRI data with the two 

electrophysiology studies by suggesting that the differences result solely because of differences in 

recording site location within the lateral intraparietal sulcus, i.e., the two electrophysiology papers 

recorded from different overlapping anterior-posterior ranges of LIP. The combined range of 

recording agreed with the results that Arcaro et al. 2011 showed for visuotopic LIP (LIPvt) and caudal 

intraparietal cortex (CIP-2). Our data supports this interpretation. The provided stereotactic zero, i.e., 

ear-bar zero (EBZ), in Blatt, Andersen, and Stoner 1990 agree with our results. Our results overlap 

with their results for approximately 4 mm (–4 to –8 mm of EBZ) and over that range, we observed 

the same tuning of LIPv for contralateral upward saccades.  

However, this does not explain the difference between Savaki et al. 2010 and the other studies, 

including the present results. This may be caused by a unique task and methodology not used in any 

of the other studies. The researchers had each monkey perform hundreds of saccades back and forth 

in just one direction (horizontal, vertical, or oblique) before euthanizing the monkeys and looking at 

accumulation of tritiated deoxyglucose in post-mortem tissue. They assumed that ipsilateral 

movements would not cause increases in deoxyglucose concentrations, e.g., that rightward saccades 

would not lead to increased deoxyglucose within the right LIP. However, our results and other studies 

(Ben Hamed et al., 2001) show that this assumption is false. For example, we found that some 

mesoscopic areas within LIP had increased neurovascular activity for all directions with a stronger 

response to contralateral targets (Figure 3.2). We also saw that some LIP regions could have higher 

neurovascular activity for ipsilateral movements than its polar opposite (Figure 3.5, –3 and –8 of 

EBZ in Monkey P). This suggests that Savaki et al. 2010 could identify regions tuned to horizontal, 

vertical, and oblique directions, but not comment on the sign of that tuning. This means their study 

may be limited in its ability to identify areas encoding for specific angles, i.e., their results showing 

upward or downward preference for different anterior-posterior regions of LIP may be reversed for 

at least some of LIP. 

Together, our results agree broadly with the previous results and help resolve some of the 

disagreements about the specific organization of LIP for different angles of movement.  
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3.3.3 Preference for contralateral space 

Previous studies found that LIP responds strongest to contralateral stimuli and movements. At the 

single neuron level, approximately 80-90% of LIP neurons are tuned to contralateral directions (Blatt 

et al., 1990; Ben Hamed et al., 2001). Of note, (Platt and Glimcher, 1998b) reported no bias towards 

contralateral or ipsilateral in their recorded LIP neurons. At the macroscopic population level, the 

BOLD response in LIP is also almost exclusively contralateral preferring (Kagan et al., 2010; Patel 

et al., 2010; Arcaro et al., 2011). In the present study, we found our results quite closely agreed with 

LIP having strongly lateralized responses with ~88% of LIP voxels preferred contralateral directions. 

The reasons for the apparent discrepancy with (Platt and Glimcher, 1998b) remains unknown. 

3.3.4 Differences between dorsal and ventral LIP 

Previous studies found that peripheral targets were represented within the ventral LIP (LIPv) while 

foveal and parafoveal targets were represented within the dorsal LIP (LIPd) (Blatt et al., 1990; Ben 

Hamed et al., 2001; Patel et al., 2010; Arcaro et al., 2011). In our study, we only tested a single 

eccentricity (20°) and observed activity within both LIPd and LIPv. In both monkeys, we observed 

less LIPd activity in the more posterior planes (< -3.33 mm of EBZ). The overall distribution of tuned 

LIP voxels did not demonstrate a clear separation between LIPd and LIPv. We do not know why our 

results disagree with previous studies. Future fUSI studies with foveal, parafoveal, and peripheral 

targets will be needed to explore the mesoscopic representation of eccentricity within LIP and PPC.  

3.3.5 Directional saccadic activity outside of LIP 

In Monkey P, we additionally observed directionally modulated activity outside of the LIP in the 

posterior-ventral MIP, Area 7, and medial parietal area (MP). MP has been previously identified as a 

saccade-related area in single-unit electrophysiology and fUSI studies (Thier and Andersen, 1998; 

Norman et al., 2021). In Monkey L, our recording chamber was too lateral and we were unable to 

record signals from MP. Our results in Monkey P further support that MP may be an underexplored 

oculomotor planning region. The MP voxels preferred contralateral directions and did not display any 

clear organization of their response fields. 

The posterior-medial MIP also contained directionally tuned activity. Some of this activity (-8 mm 

of EBZ) is in superficial cortical layers, perhaps reflecting inputs to MIP that relay directional 

information from upstream brain regions. We do not know why we see activity within the deeper 

layers of posterior-ventral MIP. Previous work found the functionally-defined parietal reach region 
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(PRR), overlapping with the anatomical area MIP, responds predominately to reach movements or 

eye-hand movements (Snyder et al., 1997, 2000; Cui and Andersen, 2007). Our task was a memory-

guided saccade task with no reach component. Monkey P sat in an open chair with his hands and arms 

free while Monkey L sat in an enclosed chair with his hands and arms confined. Despite Monkey P 

being free to move his arms, we did not observe any arm movements related to the task itself. Future 

fUSI studies where we use a task with intermingled reaches and saccades will be useful in elucidating 

why we see activity within MIP of one monkey. 

More anterior portions of putative Area 7a displayed directionally tuned activity to contralateral 

movement directions. This is consistent with previous literature that found Area 7a neurons have 

visual receptive fields and display saccade-related activity (Hyvarinen, 1981; Motter and 

Mountcastle, 1981; Andersen et al., 1985, 1987). We do not know why only a small region of Area 

7A in Monkey P showed directional tuning or why Area 7a in Monkey L did not have directionally 

tuned activity. One possibility is that the neurons within individual voxels of Area 7a display high 

heterogeneity in their response fields such that no consistent tuning appears at the mesoscopic 

population level. 

3.3.6 Stability across time 

We demonstrated that we could decode intended movement direction using a decoder trained on data 

from a different session many months to years apart. This strongly suggests that the directional 

preference for the LIP subpopulations remained stable. The decoder performed best when the training 

and testing sessions were close in time. We have three possible interpretations for this. First, the 

representations of direction within subpopulations randomly drift across time. Under this 

interpretation, we would expect that the predicted movement direction would become increasingly 

random as more time elapses as the tuned voxels used for the model decorrelate. A second 

interpretation is that the subpopulations drift, but they drift at the same rate and in the same directions. 

This would lead to the tuned voxels staying correlated but encode for different directions. Under this 

interpretation, we would expect to see the decoder make increasingly more mistakes, but in a 

consistent manner. In other words, the decoder might develop an error bias where instead of 

predicting the correct class, it consistently predicts a different direction in its place. A third 

interpretation is that the vascular anatomy relative to our recording plane changed across time and 

that we are decoding from slightly different neural populations. Under this interpretation, the 

decoding errors should increase for neighboring directions because the tuned mesoscopic populations 
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observed in this study extend in both anterior-posterior directions and smoothly transition to encoding 

different directions rather than having sharp transitions where neighboring voxels encode for 

completely different directions. This smooth transition means that the populations used for decoding 

will still be quite similar to the original populations being measured. 

Our data best supports this third interpretation. Rather than the error’s becoming increasingly random 

as time progresses, the confusion matrices still had strong diagonal, i.e., correct predictions, but just 

much higher variance about that diagonal. If the subpopulations tuning had drifted at different rates 

and in different directions, then the voxel-direction correlation learned by the decoder would have 

vanished. The decoder would then have made random errors for all directions and the confusion 

matrix would be random. When we looked at the image similarity across time, we know that the 

imaging plane did change despite attempting to align our recordings to the same imaging plane from 

day to day (Supplemental Figure 3.2). Additionally, the decoder performance and image similarity 

were positively correlated. This supports that the subpopulations are stable across time with our 

decoder performance decreasing because of our imaging plane changing. 

3.3.7 Applications to ultrasonic brain-machine interfaces 

We previously showed that we could decode movement timing (memory/not-memory), direction 

(contralateral/ipsilateral), and effector (hand/eye) simultaneously on a single-trial basis with high 

accuracy (Norman et al., 2021). We recently also demonstrated that we could train monkeys to use a 

real-time fUSI BMI for up to eight directions of eye movements (Griggs et al., 2022). Here, we 

extended these papers’ results in several aspects.  

First, we demonstrated that we could achieve better decoding performance using offline recorded data 

(50-60% correct) than the accuracy reported for the online real-time fUSI-BMI data (~38% correct). 

Much work remains to quantify why this difference exists, but we believe one reason is motion-

correction. In the present study, we used post hoc motion-correction to minimize movement of the 

imaging plane across a session. In the real-time fUSI-BMI study, we did not implement online 

motion-correction. Although the mesoscopic populations are tolerant to a small amount of motion 

due to similarly tuned voxels being clumped together, the information in adjacent voxels is 

sufficiently decorrelated that our machine learning algorithms need to keep track of the same voxel 

across time for peak performance. This similarly agrees with our interpretation for why the decoder 

performance decreases across time. One future method that may be well-suited to this problem is 
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convolutional neural networks that can utilize local structure in images to maintain high performance 

rather than our existing decoder algorithms that assume features do not move across time. 

Second, we demonstrated that we could decode above chance level with a static decoder model even 

after several years. In the fUSI-BMI paper, we only had data out to 79 days, which is much less than 

the 900 days reported here. This suggests that future ultrasonic BMIs can constantly update an 

existing model rather than needing to be recalibrated daily. This is one current advantage of imaging-

based BMIs over electrode-based BMIs. Electrode-based BMIs require calibration or retraining for 

each subsequent session due to their inability to record from the same neurons across multiple days, 

let alone multiple months (Downey et al., 2018). Imaging-based BMIs just require precise alignment 

of the current field of view (2D plane or 3D volume) to a previous session’s field of view. 

3.3.8 Future studies and questions 

3.3.8.1 Record along intraparietal sulcus axis 

In our study and most of the previous studies of LIP response fields, the topography changed along 

an anterior-posterior axis. It will be interesting in future studies to align the ultrasound transducer 

along the intraparietal sulcus so that our imaging plane acquires a large anterior-posterior slice of LIP. 

This was not possible in the current animals due to the size of the ultrasound transducer and 

positioning of the chamber relative to the intraparietal sulcus. 

3.3.8.2 Eccentricity axis 

Many studies have found a topography along an eccentricity axis with foveal and parafoveal targets 

being anterior of the peripheral targets representation (Blatt et al., 1990; Ben Hamed et al., 2001; Patel 

et al., 2010; Savaki et al., 2010; Arcaro et al., 2011). In the current study, we presented our stimuli at 

a single eccentricity. It will be interesting to compare the representation of foveal, parafoveal, and 

peripheral targets within the LIP to see whether we observe a similar patchy organization to angular 

direction for eccentricity.  

3.3.8.3 Relation of changes in CBV to underlying cellular activity 

Each voxel (~100 μm x ~100 μm x ~400 μm) contains approximately 65 neurons and 130 glia 

(Shapson-Coe et al., 2021), whereas each 1-1.5 mm3 fMRI voxel contains approximately 16,000-

24,000 neurons and 32,000-48,000 glia. This suggests that fUSI may be able to detect very local 

activity within neural circuits, including from within different cortical layers. However, fUSI 

measures changes in cerebral blood volume (CBV) and neurovascular coupling is complex (Hillman, 
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2014; O’Herron et al., 2016; Iadecola, 2017; Kaplan et al., 2020). Although every neuron within the 

brain is positioned within 15 μm of a blood vessel (Tsai et al., 2009), we do not understand the 

contributions of different cell types sufficiently well to disentangle their contribution to the CBV 

signal. Given the small number of cells in a fUSI voxel and the recent advent of primate-specific 

Neuropixel probes capable of recording high-density electrophysiological activity a few centimeters 

in the brain (Trautmann et al., 2023), future experiments combining these two methodologies will 

help us better understand the specific relationship between the hemodynamic and underlying cellular 

activity within these mesoscopic populations. Several people have already begun to characterize the 

relationships between fUSI signals and other measures of neuronal activity, such as electrical activity 

and calcium fluxes (Boido et al., 2019; Aydin et al., 2020; Bourgeais-Rambur et al., 2022; Nunez-

Elizalde et al., 2022). These papers found that fUSI was well correlated with both calcium and 

electrophysiological activity with some evidence that inhibitory neurons contribute more to the fUSI 

signal than excitatory neurons.  

3.3.8.4 Spatial autocorrelation of fUSI voxels 

Despite there only being ~65 neurons in a fUSI voxel, neighboring voxels are supplied oxygen and 

nutrients by the same neurovasculature. This leads to spatial autocorrelation between neighboring 

voxels (Supplemental Figure 3.4) and confounds our ability to precisely identify the size and spatial 

separation of tuned populations. Motion of our imaging plane and spatial smoothing further worsens 

this spatial autocorrelation. There have been a variety of methods proposed for fMRI to handle the 

statistical consequences of spatial autocorrelation and calculate accurate statistical thresholds for 

cluster-wise inference (Worsley et al., 1996; Eklund et al., 2016; Gopinath et al., 2018b, 2018a). 

However, to the best of our knowledge, no methods have been devised to separate the various 

contributors to the spatial autocorrelation, including correlated neuronal activity. Future experiments 

will be needed to tease apart the contribution of correlated neurons versus other contributors to the 

size of neurovascular patches with similar tuning. Each voxel most likely contains neurons with a 

mixture of response fields with a bias towards specific response fields. Simultaneously recording 

fUSI signals and single neurons will be crucial for understanding the response properties within 

individual voxels and patches of similarly tuned voxels.  

3.3.8.5 Directional tuning of cortical layers 

Ultra-high field fMRI has enabled sub-millimeter voxel resolution and allowed researchers to study 

layer-specific activity (Dumoulin et al., 2018), especially with CBV-based fMRI (Huber et al., 2015). 
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Similar laminar analyses are possible with fUSI because it measures CBV and has higher 

spatiotemporal resolution and sensitivity than UHF fMRI. To date, only one fUSI study has begun to 

explore this possibility. Blaize et al. 2020 inferred cortical layer based upon cortical depth from the 

sulcus and found layer-specific ocular dominance within deep visual cortex. In the present study, we 

observed broad activity within LIP that did not appear to respect any laminar boundaries within the 

cortex. In both monkeys, we detected some directionally-specific activity within the shallower layers 

of MIP (Figure 3.2D, Figure 3.3C, Figure 3.3F, Figure 3.5A). This may reflect activity within 

superficial input layers. We could qualitatively estimate the boundary between white matter and grey 

matter based upon the amount of organized mesovasculature observed in our vascular maps. 

However, the thickness of PPC cortex varied within and across imaging planes, which prevented 

reliable estimates of cell layer based upon cortical depth. Future studies will be needed to better 

understand how to define cortical layers with fUSI, including studies to identify layer-specific 

properties detectable by ultrasound. 

3.4 Conclusion 

Here, we used functional ultrasound imaging to demonstrate that the posterior parietal cortex (PPC) 

contains mesoscopic populations of neurons tuned to different movement directions. This 

organization changed along an anterior-posterior gradient and remained stable across many months 

to years. It helped unify previous findings that had examined the topographic organization of LIP at 

the macroscopic (fMRI) and microscopic (electrophysiology) levels. In one monkey, we additionally 

found robust saccade-related activity within the medial parietal (MP) cortex, a parietal area that 

warrants further investigation. Using the methods established here for tracking the same populations 

across many months to years, it will be possible to quantify the topographic organization of different 

brain regions and study how each area’s mesoscopic and macroscopic organizations change across 

time.  
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3.5 Materials and Methods 

3.5.1 Experimental model and subject details 

All training, recording, surgical, and animal care procedures were approved by the California Institute 

of Technology Institutional Animal Care and Use Committee and complied with the Public Health 

Service Policy on the Humane Care and Use of Laboratory Animals. We worked with two rhesus 

macaque monkeys (Mucaca mulatta; 14-years old, male, 14-17 kg). Monkey L participated in two 

previous fUSI experiments (Norman et al., 2021; Griggs et al., 2022). Monkey P participated in one 

previous fUSI experiment (Griggs et al., 2022). 

3.5.2 General 

3.5.2.1 Animal preparation and implant 

We implanted a titanium headpost and custom square recording chamber on each monkey’s skull 

under general anesthesia and sterile surgical conditions. We printed or machined each 24 x 24 mm 

(inner dimension) chamber using Onyx filament (Markforged) or PEEK. We placed the recording 

chamber over a craniectomy centered above the left intraparietal sulcus. 

3.5.2.2 Behavioral setup and task 

Each monkey sat head-fixed in custom-designed primate chairs facing an LCD screen ~30 cm away. 

We used a custom Python 2.7 software based upon PsychoPy (Peirce, 2007) to control the behavioral 

task and visual stimuli. We tracked their left eye position using an infrared eyetracker at 500 Hz 

(EyeLink 1000, Ottawa, Canada). Eye position was recorded simultaneously with stimulus 

information for offline analysis.  

Monkeys performed a memory-guided saccade task (Figure 3.1B) where they fixated on a center dot 

(fixation state), maintained fixation while a peripheral cue was flashed for 400 ms in one of eight 

locations (20d eccentricity, equally spaced around circle), continued to maintain fixation on center 

dot (memory state), and finally made a saccade to the remembered cue location (movement state). If 

they correctly made a saccade to the cued location, then the peripheral cue was redisplayed and the 

monkey had to maintain fixation on the peripheral target until the liquid reward (30% juice; 0.35 mL 

monkey L and 0.75 mL monkey P) was delivered. To avoid the monkeys predicting state transitions, 

we used variable durations sampled from a uniform distribution for each task state. In Monkey L, the 

fixation and memory phase was 4 ± 0.25 seconds, the movement phase was 0.75 ± 0.15, and the 
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intertrial interval (ITI) was 5 ± 1. For Monkey P, the fixation and memory phase were 5 ± 1 seconds, 

the movement phase was 1 ± 0.5 seconds, and the ITI was 8 ± 2 seconds.  

3.5.3 Functional ultrasound imaging 

We used a programmable high-framerate ultrasound scanner (Vantage 256; Verasonics, Kirkland, 

WA) to drive the ultrasound transducer and collect pulse echo radiofrequency data. We used a custom 

plane-wave imaging sequence to acquire the 1 Hz Power Doppler images. We used a pulse repetition 

frequency of 7500 Hz with 5 evenly spaced tilted angles (-6° to 6°) with 3 accumulations to create 

one high-contrast compounded ultrasound image. We acquired the high-contrast compound images 

at 500 Hz and saved the images for offline construction of Power Doppler images. We constructed 

each Power Doppler image using 250 compound images acquired over 0.5 seconds. To separate the 

blood echoes from background tissue motion, we used a SVD clutter filter (Demené et al., 2015). For 

more details on the functional ultrasound imaging sequence and Power Doppler image formation, 

please see (Macé et al., 2013; Norman et al., 2021). 

We used a 15.6 MHz ultrasound transducer (128-element miniaturized linear array probe, 100 μm 

pitch, Vermon, France). This transducer and imaging sequenced provided us with a 12.8 mm (width) 

and 13-20 mm (height) field of view. The in-plane resolution was approximately 100 μm x 100 μm 

with a plane thickness of ~400 μm. During each recording session, we placed the ultrasound 

transducer on the dura with sterile ultrasound gel. We held the transducer using a 3D-printed slotted 

chamber plug that minimized motion of the transducer relative to the brain. The slots were spaced 

1.66 mm apart. This slotted chamber plug allowed us to acquire specific imaging planes across 

sessions. To help with later offline data concatenation, we acquired vascular maps using a single 

Power Doppler image and adjusted the transducer until the acquired vascular map closely matched a 

previously acquired vascular image for that chamber slot. 

3.5.4 Across session alignment and concatenation 

We concatenated data across multiple sessions for each imaging plane. We first performed a semi-

automated intensity-based rigid-body registration to align the vascular anatomy between sessions. As 

described above, during the acquisition, we minimized out-of-plane movement between sessions by 

matching each session’s imaging plane to a previously acquired template image for each chamber 

slot. See (Griggs et al., 2022) for more details. 



53 

 

3.5.5 – 3D visualization 

We used MATLAB to export the vascular images to NIFTI format. We used Napari (Sofroniew et 

al., 2022), the `napari-medical-image-formats` plugin (Boucsein, 2022), and custom Python code to 

visualize the 3D reconstruction and save as a movie. 

3.5.6 Quantification and statistical analysis 

Unless reported otherwise, summary statistics reported as XX ± XX are mean ± SEM. 

3.5.6.1 General linear model (GLM) 

We applied several pre-processing steps before creating the GLM to explain the data. We first applied 

a Gaussian spatial filter (FWHM – 100 μm). We then applied a pixelwise high-pass temporal filter 

(1/128 Hz) to remove low-frequency drift. We finally used grand mean scaling to scale each voxel’s 

intensity to a common scale (Penny et al., 2006; Ashby, 2019). To build the general linear model, we 

convolved the regressors of interest with a hemodynamic response function (HRF). We used a single 

gamma function with a time constant (τ) of 1 second, a pure delay (δ) of 1 second, and a phase delay 

(n) of 3 seconds based upon a previous monkey event-related fMRI study (Kagan et al., 2010). The 

regressors of interest were fixation period, memory period, movement period, and reward delivery. 

For the memory and movement periods, we used separate regressors for each direction. We then fit 

the GLM model using the convolved regressors and scaled fUSI data. We used an F-test to identify 

voxels that had a statistically significant difference to the eight directions during the memory period. 

3.5.6.2 Multiple comparison correction 

For all voxel-wise p-values used and reported, we used false-discovery rate correction (FDR) to 

correct for the simultaneous multiple comparisons. This was implemented using MATLAB’s ̀ mafdr` 

function. 

3.5.6.3 Preferred direction 

We used a center-of-mass approach to find the preferred tuning of each voxel. For each voxel, we 

first calculated the Cohen’s d measure of effect size by comparing the response at the end of the 

memory period to the baseline (-1 to 1 seconds relative to cue onset). This gave us a standardized 

measure of response strength for each direction. We then scaled the peak response at each voxel to 

be 1. We then found the centroid for each voxel, which provided both a direction and magnitude. The 

direction represents the peak tuning direction while the magnitude represents the strength of that 

tuning. A value close to zero means no tuning while a value close to 1 means highly tuned to a specific 
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direction. This method minimizes assumptions about shape of the response field, such as whether it 

is Gaussian. We then smoothed the resulting statistical map using a pillbox spatial filter (1-voxel 

radius). 

3.5.6.4 Within-session decoding analysis 

Decoding intended movement direction on a single trial basis had five steps: 1) aligning the fUSI data 

and behavioral data, 2) preprocessing, 3) selecting data to analyze, 4) dimensionality reduction and 

class separation, and 5) cross-validation. First, we created the behavioral labels by temporally aligning 

the fUS data with the behavioral data. We could then label each fUSI timepoint with its corresponding 

task state and movement direction.  

Second, we preprocessed the data by applying several operations. The first operation was motion 

correction. We used NoRMCorre to perform rigid registration between all the Power Doppler images 

in a session (Pnevmatikakis and Giovannucci, 2017). We then applied temporal detrending (50 

timepoints) and a pillbox spatial filter (2-voxel radius) to each Power Doppler image.  

Third, we would then select what spatial and temporal portions of the data to use in the decoder model. 

We always used the entire image where each pixel is a single feature. We used a dynamic time 

window. At each timepoint before the cue, we used all timepoints since the start of the trial. For 

example, to test our ability to decode at 3 seconds after the trial start, we used the fUS images at 0, 1, 

2, and 3 seconds. At each timepoint after the cue, we used all previous timepoints after the cue in the 

trial. For example, to test our ability to decode at 2 seconds after cue onset, we concatenated the data 

from 0, 1, and 2 seconds after the cue. We treated these timepoints as additional features in the decoder 

model. In other words, the input to our decoder model had N*T features, where N is the number of 

pixels in a single Power Doppler image and T is the number of timepoints. 

Fourth, we split the data into train and test folds according to a leave-one-out or 10-fold cross-

validation scheme. For the test sets, we stripped the behavioral labels. We then scaled the train and 

test splits by applying a z-score operation fit to the train data. We used the entire image as our features, 

i.e., each voxel’s activity was a single feature. To train the linear decoder on the training data, we 

used principal component analysis (PCA) for dimensionality reduction and linear discriminant 

analysis (LDA) for class separation. For the PCA, we kept 95% of the variance. For the LDA, we 

used MATLAB’s ̀ fitcdiscr` function with default parameters. We used a multicoder approach where 

the horizontal (left, center, or right) and vertical components (down, center, or up) were separately 
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predicted and combined to form the final prediction. As a result of this separate decoding of horizontal 

and vertical movement components, “center” predictions are possible (horizontal—center and 

vertical—center) despite this not being one of the eight possible peripheral target locations. We then 

calculated the percent correct and absolute angular error for each sample in the test data.  

Fifth, we then repeated the model training and testing for each consecutive fold of data. We finally 

found the mean accuracy metrics across all the folds, i.e., mean accuracy and mean absolute angular 

error (MAAE). To correct for testing the performance at every trial timepoint, we used a Bonferroni 

correction. 

We used a 1-sided binomial test to calculate the p-values associated with the percent correct results 

and used a permutation test with 100,000 replicates to calculate the p-values associated with the 

angular error results. For the permutation test, a single replicate was created by sequentially drawing 

X directional guesses from a uniform distribution of the eight possible directions, where X is the 

number of trials in the session. We then calculated the 1-sided p-value of each of our results by finding 

how many of the replicates were less than our observed mean angular error. 

See (Norman et al., 2021; Griggs et al., 2022) for more details on these methods. 

3.5.6.5 Across-session decoding analysis 

To test whether we could use a decoder trained on a separate session’s data to decode movement 

intent in a different session, we applied the same steps as for the within-session decoding analysis 

with two differences. First, the training set was all the data from a specific session and the testing set 

was all the data from a different specific session. Second, to assess performance within the same train 

and test session, we used 10-fold cross-validation instead of leave-one-out cross-validation. The later 

sessions’ data (after March 25, 2022) are used in a previous publication and were acquired at a 2 Hz 

imaging rate with slightly different acquisition parameters. See (Griggs et al., 2022) for more details 

about the acquisition of these data. For the across-session decoding analysis, we downsampled this 2 

Hz data to 1 Hz to allow us to easily compare the same trial timepoints between the two sets of data. 

3.5.6.6 Image similarity 

We compared the pairwise similarity of vascular images from different sessions by using the complex 

wavelet structural similarity index measure (CW-SSIM). The CW-SSIM quantifies the similarity of 

two images, where 0 is dissimilar and 1 is the same image (Sampat et al., 2009). We used the CW-

SSIM over other forms of SSIM because it is more flexible in incorporating variations in image 
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resolution, luminance change, contrast change, rotations, and translations. We used an 

implementation freely available from the MATLAB Central File Exchange (Wang et al., 2023) with 

4 levels and 16 orientations. 

3.5.6.7 PCA-LDA projection 

To visualize the boundaries between pairwise classes, we projected the LDA boundaries through the 

PCA space. For each class-class pair, we obtained the LDA boundary weights (constant and linear 

components) which has a single weight for each principal component. We discarded the constant 

components and weighted each principal component by the linear component of the LDA weights 

and added all the principal components together. We then applied a threshold to each image where 

we kept the 10% most extreme values (positive or negative). 

3.5.6.8 Searchlight analysis 

We defined a circular region of interest (ROI) and, using only the pixels within the ROI, we performed 

the within-session decoding analysis using 10-fold cross-validation. We assigned that ROI’s percent 

correct and MAAE metrics to the center voxel. We then repeated this across the entire image, such 

that each image pixel is the center of one ROI. To visualize the results, we overlaid the performance 

metric (MAAE or percent correct) onto a vascular map and kept up to the 10% most significant 

voxels. As part of this searchlight analysis, we ignored activity within the sulcal fold or activity on 

the other side of the sulcal fold. To do this, we defined the boundaries of the sulcal folds using a 

custom GUI in MATLAB and only used voxels on the same side of the sulcal fold as the searchlight 

center. This is similar in principle to the cortical surface-based searchlight decoding developed for 

fMRI (Chen et al., 2011). 

3.5.6.9 Spatial autocorrelation 

For every pixel in the image, we examined voxels at different distances from the seed voxel. For each 

distance tested, we identified voxels that were between [max(0, i-0.1) mm, i mm] away. We then 

performed Pearson linear correlation between these identified voxels and the seed voxel. We then 

assigned the mean correlation to the seed voxel. 

To calculate the mean correlation for each distance, we took the mean and standard deviation across 

the entire image. 
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3.6 Extended Data 

3.6.1 Supplemental figures 

 
Supplemental Figure 3.1 Stability of directional preference across time. 

Same format as Figure 3.4C but using different training session. (A) Example decoder stability for Monkey L. Trained 

the decoder on Day 0 data and tested the trained decoder on other sessions from the same imaging plane without any 

retraining. 
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Supplemental Figure 3.2 Impact of image similarity on decoder performance. 

(A) Vascular anatomy for each recording session from the same recording slot in Monkey P. White scalebar – 1 mm. (B) 

Pair-wise similarity between different vascular images for Monkey P. (C) Performance as a function of image similarity 

for Monkey P. Left axis (blue) shows normalized accuracy. Right axis (orange) shows mean absolute angular error 

(MAAE). Each session is represented by a pair of blue and orange dots. *=p<10-2, **=p<10-4, ***=p<10-6. (D-F) Same 

format as (A-C) for Monkey L.   
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Supplemental Figure 3.3 Linear decoders can decode intended movement direction from most fUSI sessions, 

regardless of PPC plane. 

(A) Percent correct for each session. Solid black line with gray envelope show mean ± SEM. Each gray line shows 

performance on single session. Dashed line shows chance level. (B) Mean absolute angular error (MAAE) for each 

session. Same format as in (A). (C) MAAE as function of coronal plane. 
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Supplemental Figure 3.4 Power Doppler data displays spatial autocorrelation. 

Mean Pearson spatial autocorrelation across entire fUSI field. Voxel radius – Distance of voxels from center seed voxel. 

Shaded area – Standard deviation 
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3.6.2 Supplemental movies 

Supplemental Movie 3.1 Anatomy in Monkey P 

3D reconstruction of vascular anatomy in Monkey P.  

Supplemental Movie 3.2 Anatomy in Monkey L 

3D reconstruction of vascular anatomy in Monkey L.  
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4 Decoding of non-directional signals from PPC 

4.1 Background 

To develop an effective brain-machine interface (BMI), it is crucial to decode not only what a subject 

wants to do, but also when they want to execute the action. The posterior parietal cortex (PPC) is a 

good candidate brain region for decoding both the when and the what of intended actions, because 

PPC contains not only information about the spatial aspects of planned actions, but also the temporal 

sequence of those actions. Most experiments aimed at elucidating the neurophysiology behind 

movement planning and execution use trial-based tasks with distinct temporal states. These temporal 

states frequently include a fixation or baseline period, a cue period that tells the subject the desired 

action, a memory period to temporally separate the visual and motor components, a movement period 

where the cued movement is performed, and an intertrial interval where the subject can perform freely 

paced behavior before the next trial begins. At the microscopic level, electrode-based BMIs implanted 

in PPC can be used to decode current task state (Pesaran et al., 2002; Shenoy et al., 2003; Bokil et al., 

2006; Hudson and Burdick, 2007; Hwang and Andersen, 2009; Campos et al., 2010; Diomedi et al., 

2021). At the macroscopic level, fMRI studies have identified regions of the parietal cortex that 

contain macroscopic information about task timing (Bode and Haynes, 2009) and task strategy 

(Braver et al., 2003; Crone et al., 2006; Rowe et al., 2008). This suggests that that we may be able to 

decode which task state the monkey is currently experiencing from mesoscopic PPC using fUSI. 

In addition to movement direction and action timing, LIP is modulated by multiple decision variables 

of upcoming movements, including expected reward (Platt and Glimcher, 1999; Dorris and Glimcher, 

2004; Musallam et al., 2004; Sugrue, 2004; Sugrue et al., 2005; Iyer et al., 2010; Ghazizadeh et al., 

2018), cue salience (Leathers and Olson, 2012), reward uncertainty (Foley et al., 2017; Horan et al., 

2019; Li et al., 2022), stimulus category (Freedman and Assad, 2006), and task context (Zhang et al., 

2017). LIP is thought to encode the relative desirability of actions by integrating information from 

multiple sources (Dorris and Glimcher, 2004; Sugrue et al., 2005; Gottlieb and Snyder, 2010; 

Christopoulos et al., 2015). These prior findings suggest that LIP and other PPC regions may encode 

other variables related to action desirability, including physical effort of a movement and object 

novelty. 
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Previous researchers have examined whether LIP is modulated by object novelty. At the microscopic 

level (single-unit), novelty enhances the neural response slightly (Foley et al., 2014) while at the 

macroscopic level (fMRI), LIP does not appear to be modulated by novelty (Ghazizadeh et al., 2020). 

Using fUSI to examine the responses within mesoscopic PPC populations can help resolve this 

apparent discrepancy between the microscopic and macroscopic levels. 

Despite ample evidence at the microscopic (single neuron) and macroscopic (fMRI) level of reward 

modulation within LIP, much remains unknown about how reward and other desirability variables 

are encoded within PPC. First, are these desirability variables encoded at the mesoscopic level within 

LIP and PPC? Second, are there PPC regions modulated by effort? Third, are the regions encoding 

these different variables overlapping or separate?  

Here, we investigated where and how these non-directional variables are represented across PPC 

regions at the mesoscopic population level. This will help inform us about possible control signals 

that we can decode from the PPC using fUSI. As discussed in more depth later (Chapter 5.3.6, 

Chapter 7.2.1), ultrasonic BMIs have a number of features that would make them a good platform 

for neuropsychiatric BMIs. Being able to decode reward, effort, novelty, and other “cognitive” 

variables are related to many neuropsychiatric illnesses and suggest that we could track biomarkers 

relevant to depression, anxiety, or other mental health issues. Investigating where and how these non-

directional variables are represented across PPC will also inform us about possible sources of 

variability in other signals we want to decode from PPC. For example, if we are only interested in 

direction of the movement, then we want to be aware of and compensate for the effect of different 

rewards or outcomes associated with different movement directions.  

4.2 Results 

4.2.1 Decoding of task state 

To test whether PPC contains mesoscopic information related to task timing, we used the data 

previously collected for Chapter 3 where Monkey P and Monkey L performed memory-guided 

saccades. This memory-guided movement task had seven discrete task states (Figure 4.1A): fixation 

period, cue, memory period, saccade, target hold, reward delivery, and intertrial interval (ITI). To get 

an intuition for the task-related information contained with mesoscopic PPC, we examined the trial 

averaged activity across our imaging plane (Figure 4.1B and Supplemental Movie 4.1). Different 

regions of the image had different activity with a few shared patterns. In an example session, region 
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of interest (ROI) 1, within the dorsal LIP, was activated during both the memory period and start of 

the ITI; ROI 2, within a large blood vessel supplying the intraparietal sulcus, showed modest 

activation during the memory activity with the most activity at the start of the ITI; ROI 3, within the 

ventral MIP, had sustained activity from the end of the memory period through the reward delivery; 

and ROI 4, within white matter adjacent to the ventral MIP, had little activity to any task state. All of 

the ROIs displayed increased activity at the start of the trial that decreased before the cue onset. These 

different patterns of activity suggested that PPC contained mesoscopic populations tuned to different 

aspects of the task and that we might be able to use these distributed spatiotemporal patterns to decode 

the current task state.  

 
Figure 4.1 Complex spatiotemporal patterns across PPC during saccade task states. 

(A) Task design. We combined the seven discrete states into 5 meta-states: fixation, movement planning, movement 

execution, reward, and intertrial interval (iti). (B) Example trial activity for different ROIs. (C) Histogram of raw task 

labels, unbalanced meta-labels, and balanced meta-labels. (D) Transition graph between the five meta-states showing 

probability of transitioning to same or different state on subsequent fUSI frame. (E) Example task decoding of three 

sequential trials. (F) Confusion matrix showing decoding performance. Rows sum to 100%. (G) Searchlight analysis 

showing 10% most significant voxels. 

Unlike the analysis discussed in Chapter 3.2.2 where we used multiple timepoints to decode the 

intended movement direction, here we tried to identify the current task state based upon a single fUSI 

timepoint. In other words, can we identify what task state an arbitrary fUS image is from? Since our 

fUSI acquisition systems recorded hemodynamic data at 1-2 Hz, we could not temporally resolve 
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some of the shorter task states (e.g., saccade from target hold). To handle this, we grouped the task 

states into five meta-states relevant to movement decoding: initial fixation, movement planning, 

movement execution, reward delivery, and ITI. These task meta-states were different lengths such 

that certain meta-states had more fUSI frames (Figure 4.2A). To prevent any bias in our trained 

model towards the most common classes, we balanced our dataset by randomly selecting N fUSI 

frames from each meta-state, where N is the number of fUSI frames in the smallest meta-state. In the 

example session shown, there was ~400 fUSI frames per meta-state. We successfully decoded the 

current task state on 60.6% of samples, well above the chance level of 20% (1434/2365 samples; 

p<1e-15; 1-sided binomial test). Example decoding during three sequential trials showed the decoder 

predicted the overall task flow fairly well, but temporally adjacent states were frequently confused 

(Figure 4.2C). The confusion matrix agreed with this temporal confusion. Neighboring meta-states 

(e.g., planning and execution) were more commonly confused than meta-states that were temporally 

separated (e.g., fixation and execution) (Figure 4.2D). 

 
Figure 4.2 High decoding accuracy for individual task states using single Power Doppler images. 

(A) Histogram of raw task labels, unbalanced meta-labels, and balanced meta-labels. (B) Transition graph between the 

five meta-states showing probability of transitioning to same or different state on subsequent fUSI frame. (C) Example 

task decoding of three sequential trials. (D) Confusion matrix showing decoding performance. Rows sum to 100%. (E) 

Searchlight analysis showing 10% most significant voxels. 
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To better understand what portions of the image contained the most information about task timing, 

we performed a searchlight analysis (Figure 4.2E). The 10% most informative voxels were 

distributed throughout the image, including within Area 5, Area 7a, dorsal LIP, MIP, and the main 

blood vessel(s) running within the intraparietal sulcus. This suggests that information about task 

timing is distributed across multiple PPC regions, consistent with each of these PPC regions being 

involved in different types or phases of movement planning. 

As a stronger test of this task decoding, we tested our decoder’s performance on a hold-out session. 

Similar to Chapter 3.2.3, we trained the decoder on all the balanced data from a training session and 

tested its ability to decode on a separate session collected 28 days later. The decoder predicted 39.8% 

of the task states correctly (972/2445; p<1e-15), a substantial drop in performance but still well above 

chance level. This shows that the identified task-related spatiotemporal patterns are consistent across 

sessions and that an ultrasonic BMI would require minimal, if any, retraining to be able to decode 

task state on subsequent days, an ideal trait for a BMI. 

4.2.2 Behavioral evidence of learning object outcome associations 

Having demonstrated that we could successfully decode task timing information from PPC, we next 

examined the encoding of non-motor variables. We trained two monkeys (Monkey L and Monkey 

H) on a modified memory-guided saccade task where the cue stimulus indicated different outcomes 

(Figure 4.3) We paired complex abstract visual stimuli (‘fractals’) with specific outcomes 

consistently so that each monkey learned the paired outcome via operant conditioning (Miyashita et 

al., 1991; Yamamoto et al., 2012).  

We first varied the amount of reward associated with different visual objects. We divided sets of eight 

or nine fractal objects into equal groups, each with a different level of reward. For example, in two-

level reward sets, four objects were associated with a small reward (0.25 mL) and four objects were 

associated with a large reward (0.75 mL) (Figure 4.3B). We trained two monkeys (Monkey L and 

H) on the reward task. After four days of training on the task and a 2-fractal set (one high reward and 

one low reward), both monkeys chose the high-reward fractal significantly above chance (binomial 

test: Monkey L: 114/152 High/Total (75%) p<0.0001; Monkey H: 50/72 (69%) p<0.0001). This 

shows they understand the task and learned the rewards associated with the fractals despite minimal 

training. We additionally trained Monkey L on object sets with 3+ reward levels. Monkey L learned 

these multi-level reward sets rapidly. On his first day learning an object set with three reward levels 

(9 objects: 0.25, 0.75, or 2.25 mL reward), he chose the higher reward 82% of the time (56/68; p<1e-
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15; 1-sided binomial test). After six days of training on a different object set with three reward levels, 

he chose the highest reward 94% of the time (68/72; p<1e-15; 1-sided binomial test). This further 

demonstrated that the monkeys robustly and easily learned the object-outcome associations, even for 

more complicated reward magnitude image sets. 

We next tried to vary the amount of physical effort associated with different visual objects. For these 

eight object fractal sets, objects were paired with different target hold times (900 or 2700 ms). The 

longer hold times required more physical effort from the monkey to maintain their eye position at the 

eccentric location. Monkey L did not display a preference for objects with a shorter hold time. He 

chose the shorter hold 53% of the time (2 options: 900 or 2700 ms) (p=0.38, 23/43 choice task). We 

did not train Monkey H on this task type because we did not observe any behavioral difference in 

Monkey L for this task type. 

We finally varied the novelty or familiarity of the experienced visual objects. Half of the objects were 

familiar objects seen on previous days and half of the objects were novel objects never seen before 

that day. All the objects in the novel-familiar sets received the same amount of reward. Previous 

literature has found that novel objects are more salient than familiar objects (Johnston et al., 1990; 

Park et al., 2010) with faster reaction time, increased number of saccades, and length of gaze to novel 

objects (Ghazizadeh et al., 2016). We tested Monkey L on multiple novel-familiar sets. We did not 

observe any difference in saccadic reaction time between novel and familiar objects (𝛼=0.1; 2 sample 

t-test) across 4 sessions. We did not train Monkey H on this task type because we did not observe any 

behavioral difference in Monkey L for this task type. 
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Figure 4.3 Memory-guided saccade task variant with complex visual cues. 

(A) Variant of the memory-guided saccade task. A fractal cue was displayed in the periphery and indicated different 

outcomes, such as different reward amounts or target hold times. (B) Example object sets for reward size, novelty, and 

effort.  

4.2.3 Reward magnitude 

After confirming that the monkeys learned the different rewards associated with the fractal objects, 

we collected 1 Hz fUSI data while the monkeys made instructed saccades to the different fractals. We 

used a general linear model (GLM) to assess which voxels showed statistically significant modulation 

by reward value (Figure 4.4A). For the example session, we observed discrete mesoscopic 

populations within dorsal LIP that were modulated by the reward value of the instructed saccade 

target. These areas had increased hemodynamic activity for high reward objects (Figure 4.4B). We 

observed no such modulation within ventral LIP. Consistent with our previous results, specific 

portions of LIP displayed directional modulation with increased activity for contralateral saccadic 

targets (Figure 4.4B – ROI 2). 

To assess the consistency of this reward modulation from trial to trial, we used a decoding analysis 

to predict the expected reward size from the recorded fUSI data. As in Chapter 3.2.2, we tested the 

decoding ability across the entire trial. In an example session, decoding performance for reward size 

reached significance at the end of the memory period and continued to improve through the 

movement phase (Figure 4.4C) to 85.2% correct. The confusion matrix showed that both classes had 
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similar accuracies (Figure 4.4D). To understand which parts of PPC contained the most information 

about reward size, we performed a searchlight analysis with a 200 μm radius. The 10% most 

significant voxels were in LIP, Areas 1/2, and superficial layers of Area 5 (Figure 4.4E). 

The GLM analysis revealed that some areas were modulated by both direction and reward size. To 

understand the consistency of these modulations, we performed another decoding analysis where we 

simultaneously decoded reward size and movement direction (Figure 4.4F). The decoder 

performance was more variable but reached significance at the end of the memory period and 

improved through the movement phase to 64.7% correct. The confusion matrix showed that certain 

classes were decoded better (Figure 4.4G). As expected from Chapter 3, the decoder performed well 

for direction classification (contralateral vs ipsilateral). The decoder had high accuracy at classifying 

reward size for contralateral movements but had higher confusion for ipsilateral movements. There 

was also modest confusion between contralateral and ipsilateral high rewards. To identify the PPC 

areas containing information about both reward size and movement direction, we used a searchlight 

analysis with a 200 μm radius (Figure 4.4H). The 10% most informative voxels were within the same 

areas as identified by the reward-only searchlight, but noisier. Additionally, many informative voxels 

were within the central sulcus. 
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Figure 4.4 Distinct mesoscopic PPC populations encode for reward magnitude. 

(A) Statistical parametric map showing the regions with a statistically different activity during the memory period for 

low-reward and high-reward objects. Voxel threshold determined by GLM t-contrast where q<0.05 (FDR-corrected). 

White scale bar – 1 mm. (B) Event-related average of activity within each ROI. Each line represents one condition 

(direction X reward level). Letters represent significant 2-way ANOVA results (p<0.05 with Bonferroni correction for 

number of timepoints). R = significant effect of reward; D = significant effect of direction; x = significant interaction 

term. (C) Decoding performance (percent correct) as a function of trial time. Dashed line shows chance performance. 

Color of line represents statistical significance (1-sided binomial test). (D) Confusion matrix of decoding represented as 

percentage (rows adds to 100%). (E) Searchlight analysis showing 10% most significant voxels. White circle – 200 μm 

searchlight radius. White line – 1 mm scalebar. (F-H) Same format as C-E for decoding reward + direction 

simultaneously.  
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4.3 Discussion 

Here, we demonstrated that not only can we decode the intended movement direction from PPC 

(Chapter 3) but can also decode the task state and other non-motor variables. This prepares for future 

work on using ultrasound as a high-performance BMI for a variety of applications. 

4.3.1 Decoding task state 

Our fUSI linear decoder could decode the major task states (fixation, movement planning, movement 

execution, reward delivery, and intertrial interval) at well above chance level using just single fUSI 

frames (Figure 4.2D). This builds off our prior work where we demonstrated we could robustly 

decode memory from non-memory states (Figure 2.6) (Norman et al., 2021). Detecting movement 

initiation is an important first step for a motor BMI to decode free behavior (as opposed to task 

structured behavior) but decoding multiple task states enables a richer repertoire of actions possible 

with a BMI. 

The decoder performance in the example session reached 60% with the most confusion for temporally 

adjacent task states. This temporal confusion is expected because movement preparation follows 

spatiotemporally precise patterns, especially in repetitive task-confined settings (Churchland and 

Shenoy, 2007; Churchland et al., 2010, 2012). The monkey knows the task structure very well and 

will be anticipating the next state before it occurs. This means that the fUSI data at the end of one 

task state and start of the next state will be very similar. This likely leads to decreased performance 

in our single timepoint task decoder. 

4.3.1.1 Previous literature 

Previous literature has examined the encoding of task states and timing within PPC at the microscopic, 

mesoscopic, and macroscopic levels. At the microscopic level, several studies have used single units 

and LFP activity within PPC for BMI applications. Changes in different LFP power bands of the 

parietal reach region (PRR) could be used as a robust indicator of movement onset and researchers 

trained a monkey to control a go/no-go BMI task using these PRR LFPs (Hwang and Andersen, 

2009). Previous work found that LFP and/or single-unit activity from LIP could be used to decode 

two task states (movement planning and execution) (Pesaran et al., 2002) and time of saccadic 

initiation (Bokil et al., 2006). Later work found that spiking activity from multi-electrode arrays 

recording populations of LIP neurons could decode temporal intervals (9 states of saccade task) above 

chance level using a k-nearest neighbor decoder (Campos et al., 2010). However, this work 
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interestingly found temporal information could be substantially better decoded from Supplemental 

Eye Field (SEF) rather than LIP (Campos et al., 2010). Building off these simpler decoder models, 

researchers have also used spiking activity from PRR neurons paired with a finite state machine or 

Hidden Markov Model (HMM) to offline decode neural activity associated with different task states 

and movement directions (Shenoy et al., 2003; Hudson and Burdick, 2007; Diomedi et al., 2021, 

2022).  

At the mesoscopic level, we showed that fUSI can decode go/no-go signals from the PPC (Norman 

et al., 2021). At the macroscopic level, researchers used human fMRI to show that PPC could be used 

to decode the current task set (Bode and Haynes, 2009). The results we showed here agree with this 

previous literature and show that mesoscopic PPC recordings are capable of more than just decoding 

go/no-go and can differentiate between many different task states. 

Outside of PPC, fUSI has been used to decode different temporal states from single fUSI frames at 

above chance level in rodents (Berthon et al., 2023). They used a three-layer fully-connected artificial 

neural network (ANN) to successfully decode between two movement states at 98±1% accuracy and 

between four wake/sleep states at 87±4%. However, as they note, their model suffered from a 

temporal data leak introduced by using temporally autocorrelated data in both their train and test sets. 

In the results we reported here, we prevented a similar temporal data leak by defining the cross-

validation folds at the level of individual trials rather than individual timepoints. This ensured that 

there was never training and testing data from the same trial and that no temporal autocorrelation 

could drive our significant decoding. This difference in cross-validation schemes makes it difficult to 

directly compare the decoding performance of our linear decoder and their ANN, but most likely their 

ANN exceeded the performance we obtained by 10-20%. The reason for this performance difference 

is unknown and warrants investigation in future studies, including testing their ANN architecture on 

our current dataset.  

4.3.1.2 Future improvements 

The peak performance we obtained for decoding between multiple task states was only 60.6% so 

there is still much room for future development of the task state decoding. We have several ideas of 

how to boost the performance. 

First, one of the simplest ways to boost the performance may be to increase the fUSI framerate. As 

we discussed above, we had high confusion for temporally adjacent task states. Additionally, we 
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combined task states together into meta-states because some task states were substantially shorter 

than 500-1000 ms, preventing us from reliably collecting fUSI frames during specific states, such as 

during the target acquire state (the time between the end of the memory state and the end of the 

saccade to the remembered target location). Faster framerate (6-10 Hz) fUSI is already possible 

(although it comes with reduced sensitivity to changes in CBV) (Dizeux et al., 2019; Brunner et al., 

2020, 2021). Faster framerate fUSI will not overcome the challenges of distinguishing temporally 

adjacent states, especially if the temporally adjacent states evoke similar neural states. However, it 

may help in at least two ways. First, faster sampling rate would allow more precise estimates of state 

transitions. Second, faster framerates may increase confidence in the prediction of certain task states 

by averaging multiple adjacent temporal predictions together. Additional research would be needed 

to find the balance between increasing the framerate and maintaining a sufficient signal-to-noise ratio. 

A second way to boost the performance may be to use multiple timepoints to form each prediction. 

In the current analyses, we took arbitrary shuffled timepoints and tried to classify them. In a real-

world application, the test data would be contiguous in time. This continuity could be leveraged in 

several ways. 

1) Multiple sequential timepoints can be fed into the decoder instead of solitary timepoints. 

Although this would increase the decoder latency, it would help reduce the noise between 

adjacent timepoints and may identify spatiotemporal patterns not possible with the current 

decoder architecture. This approach will also become more practical as the framerate of 

fUSI increases in the future, thus reducing the decoder latency even when using multiple 

timepoints. A similar approach has been used by electrode-based BMIs (Achtman et al., 

2007). 

2) With contiguous data, the decoder algorithm could be adjusted to only allow valid state 

transitions, such as via a finite state machine (Shenoy et al., 2003). For example, in the 

memory-guided task, it is impossible for the task to go from fixation to movement 

execution (Figure 4.2B). The current model does not prevent such impossible state 

transitions. An improved model would use its knowledge (or prediction) of the current state 

to predict future valid states rather than impossible states. In a laboratory setting, it is 

possible to identify and label relevant task states. In real-world applications, it can be very 

difficult and time-consuming to label behavioral data, although various methods have been 
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developed to help overcome this challenge (Mathis et al., 2018, 2020; Berger et al., 2020; 

Lauer et al., 2022). 

3) A Hidden Markov Model (HMM), Long Short Term Memory network (LSTM; type of 

recurrent neural network), transformer neural network, or other stochastic model could be 

used to better model and predict the task states. Since certain state transitions are much less 

likely or even impossible (Figure 4.2B), the decoder can use the probability of each 

transition to weight its training and develop a temporal model. In the context of a BMI for 

neuropsychiatric applications, an example would be that it is highly unlikely to rapidly 

transition from happy to depressed, anxious to not anxious, or other opposite mood states. 

Rather, it would be expected for there to be no transition or a slow transition through 

intermediate mood states. An effective neuropsychiatric BMI should incorporate this 

information such that it does not intervene (e.g., stimulate) when unnecessary or stop 

intervening when necessary. Supervised HMMs (and variants) have already been used for 

several BMI applications (Hudson and Burdick, 2007; Kemere et al., 2008; Bollimunta et 

al., 2012; Kao et al., 2017a; Diomedi et al., 2022). Unsupervised HMMs may also be useful 

for finding latent neurovascular states that are behaviorally relevant but difficult to label, 

such as for fUSI data collected during free behavior. More recently, LSTM networks have 

become popular and can exceed the performance of HMMs with sufficient training data 

(Anumanchipalli et al., 2019; Makin et al., 2020; Tadayon and Pottie, 2020; Moses et al., 

2021; Willett et al., 2021). 

A third way to boost performance may be to record from a different brain region. Here, we recorded 

from PPC, but there are other regions known to be important for preparation and initiation of action 

sequences, including the basal ganglia (Klaus et al., 2019) and motor cortex (Ebbesen and Brecht, 

2017; Svoboda and Li, 2018). Since the basal ganglia and motor cortex are downstream of the PPC 

and involved in gating movement execution, the signals from these areas may allow more precise 

estimates of action initiation. Recording from the subthalamic nucleus would additionally be useful 

in detecting movement stop signals (Aron and Poldrack, 2006). Such a signal would be critical for 

users to decide if they wanted to abort a decoded action sequence. 

We expect that these lines of research, or closely related ones, will be useful in boosting the 

performance of future task state decoding from fUSI data. 
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4.3.2 Encoding of reward magnitude within PPC 

We demonstrated that we could decode the expected reward magnitude paired with different visual 

stimuli (Figure 4.4C-E) and could also simultaneously decode expected reward magnitude and 

movement direction (Figure 4.4F-H). The observed change in CBV for different reward levels 

depended upon the movement direction (contra/ipsi) and was weaker than that observed for encoding 

of only movement direction (<5% CBV change instead of 20+%). With the GLM analysis, we only 

observed reward modulation within the dorsal LIP. 

4.3.2.1 Previous literature 

There has been extensive previous literature on the encoding of reward magnitude by individual LIP 

neurons (Platt and Glimcher, 1999; Musallam et al., 2004; Sugrue et al., 2005; Louie et al., 2011) 

although there has been some recent disagreement about whether LIP is encoding economic utility or 

the information gain from reducing uncertainty about action outcomes (Horan et al., 2019; Li et al., 

2022). All of these papers used single-neuron recordings of LIPs and found that in saccade tasks, 

receptive field stimuli paired with larger rewards were associated with increased firing rates. Our 

observed results match this literature where we saw that discrete patches of dorsal LIP had increased 

activity for stimuli and saccades associated with higher rewards (Figure 4.4A-B). 

At the macroscopic level, previous fMRI work has found that dorsal LIP had increased hemodynamic 

response to stimuli paired with large rewards (Ghazizadeh et al., 2018, 2020). They used a block 

related design where the monkey fixated on a center point and passively viewed fractals flashed in 

one visual hemifield’s periphery. The passively shown fractals had been previously associated with 

either a large or small reward. They found a stronger contralateral response for reward magnitude. 

Our fUSI results match these fMRI results where we saw stronger responses to high reward objects 

both for contralateral and ipsilateral targets, but the strongest response to contralateral high-reward 

targets (Figure 4.4A-B). 

4.3.2.2 Future work 

Having demonstrated that there are mesoscopic populations tuned to reward magnitude, we want to 

better understand how these signals scale with reward magnitude in the mesoscopic populations we 

identified. Previous literature has shown that at the single neuron level, the response magnitude 

depends on the full choice set and is scaled according to divisive normalization (Louie et al., 2011). 

Our current fUSI dataset contains sessions with instructed saccades to objects drawn from image sets 

with 2, 3, or 5 levels of rewards. Each session also typically has images drawn from multiple different 
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sets, allowing us to compare the scaling of the hemodynamic response not only within an image set, 

but between image sets. Combining this rich dataset with new analyses and additional experiments 

will be useful for exploring whether a divisive normalization model best explains the observed reward 

modulation at the mesoscopic scale. 

4.3.3 Novelty 

We failed to find any behavioral difference between novel and familiar stimuli during our memory-

guided saccade task for instructed or choice trials. Previous work has demonstrated robust novelty 

effects in a variety of species (Jaegle et al., 2019), including humans (Johnston et al., 1990; Park et 

al., 2010; Wang and Mitchell, 2011) and monkeys (Butler, 1953; Ghazizadeh et al., 2016; Ogasawara 

et al., 2022). We do not know why we did not observe a novel-familiar difference in our monkey. 

One possible explanation is that we used a memory-guided saccade task while most previous monkey 

studies used a free-viewing paradigm where the monkeys were free to look at any stimuli on the 

screen without their saccades influencing their reward. This difference in task may have obscured the 

monkey’s preference for novel objects if the monkey just wanted to advance the trial as rapidly as 

possible and realized his choice between objects did not influence his reward level. Additional 

training and/or revised experiments will be needed to better examine whether novelty is encoded 

within mesoscopic PPC.  

4.3.4 Effort 

We failed to find any behavioral difference between stimuli or actions paired with different physical 

efforts. We hypothesize this might be due to eye movements being almost effortless. Humans make 

~3 saccades/second (Ibbotson and Krekelberg, 2011), and we do not consciously think of these 

movements, except for very eccentric eye movements. Our task design used long hold times to try to 

increase the effort of eye movements, but it is likely that the movement was still effortless for the 

monkey. Additionally, long hold times are mildly aversive because it delays the reward delivery and 

decreases down the maximum amount of reward the monkey can receive per unit time. If the monkey 

understood the task, we would expect the monkey to choose the object with the shorter hold time to 

maximize their reward rate, i.e., become skillful at completing the task as fast as possible (Hikosaka 

et al., 2013). This suggests that the monkey did not understand the object-associated outcomes or did 

not care about the different hold times. 

Using a different effector, such as a force joystick, in place of the eye tracking may help better explore 

the encoding of movement effort. A force joystick would allow the researcher to explicitly set 
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different amounts of force that the monkey needs to exert to move the joystick or complete the task. 

This would allow a more conventional exploration of effort rather than trying to make effortless eye 

movements into unnatural effortful eye movements. 

4.3.5 Future work 

We have already highlighted several questions about how task timing, reward magnitude, novelty, 

and effort are each separately encoded within PPC. Additional work is also needed to explore how 

different combinations of these variables are encoded and how they influence the encoding of 

direction we characterized in Chapter 3. Previous work has proposed schemas about how desirability 

of different actions might be computed within PPC and used to decide upon the optimal action 

(Christopoulos et al., 2015). fUSI’s ability to record from entire PPC planes and monitor multiple 

brain regions may offer novel insight into how the desirability of different actions with single or 

multiple effectors is computed. 

4.3.6 Conclusion 

In this chapter, we explored how non-directional signals were represented within PPC, including task 

timing and reward magnitude. We found that PPC contained distributed spatiotemporal patterns that 

allowed us to identify the major states of our task, including initial fixation, movement planning, 

movement execution, reward delivery, and intertrial interval. This supports future work on developing 

an ultrasonic BMI that can decode not only the user’s intended actions but also the timing of those 

actions. 

We found that reward magnitude led to increased activity within the dorsal LIP and that we could use 

a linear decoder to simultaneously decode direction (contra/ipsi) and reward magnitude (high/low). 

This supports future work on developing an ultrasonic BMI that can detect non-motor signals for 

neuropsychiatric applications, such as detecting and correcting aberrant mood states. 
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4.4 Materials and Methods 

These methods closely follow those described in Chapter 3.  

4.4.1 Experimental model and subject details 

All training, recording, surgical, and animal care procedures were approved by the California Institute 

of Technology Institutional Animal Care and Use Committee and complied with the Public Health 

Service Policy on the Humane Care and Use of Laboratory Animals. We worked with three rhesus 

macaque monkeys (Mucaca mulatta; 14-years old, male, 14-17 kg). Monkey L participated in all 

experiments. Monkey H participated in the object-dependent outcome experiments. Monkey P 

participated in the task state decoding experiments. 

4.4.2 General 

4.4.2.1 Animal preparation and implant 

We implanted a titanium headpost and custom square recording chamber on each monkey’s skull 

under general anesthesia and sterile surgical conditions. We printed or machined each 24 x 24 mm 

(inner dimension) chamber using Onyx filament (Markforged), PEEK, or Ultem. We placed the 

recording chamber over a craniectomy centered above the left intraparietal sulcus. 

4.4.2.2 Behavioral setup and task 

Each monkey sat head-fixed in custom-designed primate chairs facing an LCD screen ~30 cm away. 

We used a custom Python 2.7 software based upon PsychoPy (Peirce, 2007) to control the behavioral 

task and visual stimuli. We tracked their left eye position using an infrared eyetracker at 500 Hz 

(EyeLink 1000, Ottawa, Canada). Eye position was recorded simultaneously with stimulus 

information for offline analysis.  

Monkeys performed a memory-guided saccade task (Figure 4.3A) where they fixated on a center dot 

(fixation state), maintained fixation while a peripheral cue was flashed for 400 ms in one of eight 

locations (20d eccentricity, equally spaced around circle), continued to maintain fixation on center 

dot (memory state), and finally made a saccade to the remembered cue location (movement state). If 

they correctly made a saccade to the cued location, then the peripheral cue was redisplayed and the 

monkey had to maintain fixation on the peripheral target until the liquid reward was delivered. The 

target cue was an abstract visual object paired with different outcomes. We used a Latin square 

pseudo-randomization scheme to avoid any consistent patterns of sequential object presentations. 
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To assess any preference for specific objects, we used choice trials where two fractal objects were 

diametrically presented (e.g., upward left and downward right) during the cue state. During the 

movement state, the monkey made an eye movement to one of the remembered eye positions and 

received the outcome associated with the fractal in that target location. Similar to the instructed 

saccade task, both fractals appeared once the monkey made a saccade to either remembered location. 

4.4.2.3 Modifying action reward 

To modify the reward magnitude, we replaced the peripheral cue with complex visual objects 

('fractals’) consistently associated with a large or small juice reward (Figure 4.2B). These visual 

objects were organized into sets of eight, nine, or ten objects. The sets of eight objects had four objects 

with low reward and four objects with high reward. The sets of nine objects had three objects with 

low reward, three objects with medium reward, and three objects with high reward. The sets of ten 

objects had five pairs of fractals, each associated with a different reward level. On each training day, 

each object in an object set was experienced the same number of times to avoid differences in 

perceptual exposure.  

For the choice trials, we included all comparisons, including fractals with the same reward level. 

4.4.2.4 Modifying action effort 

To modify the physical effort, we varied the duration of the target hold. As with the reward magnitude 

sets, fractal objects were consistently associated with different target hold times (Figure 4.3B). As 

with the reward task, we included choice trials where the monkey chose between two fractals with 

equal or different effort levels to allow us to test whether PPC regions encodes relative and/or absolute 

movement effort. 

For the choice trials, we included all comparisons, including fractals with the same effort level. 

4.4.2.5 Novel and familiar object sets 

To explore the effect of novelty on PPC, we developed novel-familiar sets of eight objects. Four 

objects were novel objects never seen before that day. Four objects were familiar objects previously 

experienced on multiple days. All objects received the same reward size (0.25 mL). 

4.4.3 Functional ultrasound imaging 

We used a programmable high-framerate ultrasound scanner (Vantage 256; Verasonics, Kirkland, 

WA) to drive the ultrasound transducer and collect pulse echo radiofrequency data. We used a custom 

plane-wave imaging sequence to acquire the 1 Hz Power Doppler images. We used a pulse repetition 
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frequency of 7500 Hz with 5 evenly spaced tilted angles (-6° to 6°) with 3 accumulations to create 

one high-contrast compounded ultrasound image. We acquired the high-contrast compound images 

at 500 Hz and saved the images for offline construction of Power Doppler images. We constructed 

each Power Doppler image using 250 compound images acquired over 0.5 seconds. To separate the 

blood echoes from background tissue motion, we used a SVD clutter filter (Demené et al., 2015). For 

more details on the functional ultrasound imaging sequence and Power Doppler image formation, 

please see (Macé et al., 2013; Norman et al., 2021). 

We used a 15.6 MHz ultrasound transducer (128-element miniaturized linear array probe, 100 μm 

pitch, Vermon, France). This transducer and imaging sequenced provided us with a 12.8 mm (width) 

and 13-20 mm (height) field of view. The in-plane resolution was approximately 100 μm x 100 μm 

with a plane thickness of ~400 μm. During each recording session, we placed the ultrasound 

transducer on the dura with sterile ultrasound gel. We held the transducer using a 3D-printed slotted 

chamber plug that minimized motion of the transducer relative to the brain. The slots were spaced 

1.66 mm apart. This slotted chamber plug allowed us to acquire specific imaging planes across 

sessions. To help with later offline data concatenation, we acquired vascular maps using a single 

Power Doppler image and adjusted the transducer until the acquired vascular map closely matched a 

previously-acquired vascular image for that chamber slot. 

4.4.4 Across session alignment and concatenation 

We concatenated data across multiple sessions for each imaging plane. We first performed a semi-

automated intensity-based rigid-body registration to align the vascular anatomy between sessions. As 

described above, during the acquisition, we minimized out-of-plane movement between sessions by 

matching each session’s imaging plane to a previously acquired template image for each chamber 

slot. See (Griggs et al., 2022) for more details. 

4.4.5 Quantification and statistical analysis 

Unless reported otherwise, summary statistics reported as XX ± XX are mean ± SEM. 

4.4.5.1 General linear model (GLM) 

We applied several pre-processing steps before creating the GLM to explain the data. We first applied 

a Gaussian spatial filter (FWHM – 100 μm). We then applied a pixelwise high-pass temporal filter 

(1/128 Hz) to remove low-frequency drift. We finally used grand mean scaling to scale each voxel’s 

intensity to a common scale (Penny et al., 2006; Ashby, 2019). To build the GLM, we convolved the 
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regressors of interest with a hemodynamic response function (HRF). We used a single gamma 

function with a time constant (τ) of 1 second, a pure delay (δ) of 1 second, and a phase delay (n) of 3 

seconds based upon a previous monkey event-related fMRI study (Kagan et al., 2010). The regressors 

of interest were fixation period, memory period, movement period, reward delivery, intertrial interval, 

and regressors for each reward level. For the memory and movement periods, we used separate 

regressors for contralateral and ipsilateral. For the reward level regressors, we modeled them as 

lasting the length of the memory period. We then fit the GLM model using the convolved regressors 

and scaled fUSI data. We used a T-contrast or F-contrast to identify voxels that had a statistically 

significant difference to the different reward levels. 

4.4.5.2 Multiple comparison correction 

For all voxel-wise p-values used and reported, we used false-discovery rate correction (FDR) to 

correct for the simultaneous multiple comparisons. This was implemented using MATLAB’s ̀ mafdr` 

function. 

4.4.6 Within-session decoding analysis 

Decoding the movement and decision variables on a single trial basis had five steps: 1) aligning the 

fUSI data and behavioral data, 2) preprocessing, 3) selecting data to analyze, 4) dimensionality 

reduction and class separation, and 5) cross-validation. First, we created the behavioral labels by 

temporally aligning the fUS data with the behavioral data. We could then label each fUSI timepoint 

with its corresponding task state, movement direction, and decision variable states.  

Second, we preprocessed the data by applying several operations. The first operation was motion 

correction. We used NoRMCorre to perform rigid registration between all the Power Doppler images 

in a session (Pnevmatikakis and Giovannucci, 2017). We then applied temporal detrending (50 

timepoints) and a pillbox spatial filter (2-voxel radius) to each Power Doppler image.  

Third, we would then select what spatial and temporal portions of the data to use in the decoder model. 

We always used the entire image where each pixel is a single feature. For the decoding of direction 

and reward level, we used a dynamic time window. At each timepoint before the cue, we used all 

timepoints since the start of the trial. For example, to test our ability to decode at 3 seconds after the 

trial start, we used the fUS images at 0, 1, 2, and 3 seconds. At each timepoint after the cue, we used 

all previous timepoints after the cue in the trial. For example, to test our ability to decode at 2 seconds 

after cue onset, we concatenated the data from 0, 1, and 2 seconds after the cue. We treated these 
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timepoints as additional features in the decoder model. In other words, the input to our decoder model 

had N*T features, where N is the number of pixels in a single Power Doppler image and T is the 

number of timepoints. 

For the task state decoding, we always used a single timepoint of data. To avoid biases in the learned 

model, we balanced class labels by randomly taking N samples from each state, where N is the 

number of samples in the smallest class. 

Fourth, we split the data into train and test folds according to a K-fold cross-validation scheme. For 

the reward magnitude and direction decoding, we used ten folds. For the task state decoding, we used 

five folds. For the test sets, we stripped the behavioral labels. We then scaled the train and test splits 

by applying a z-score operation fit to the train data. We used the entire image as our features, i.e., 

each voxel’s activity was a single feature. To train the linear decoder on the training data, we used 

principal component analysis (PCA) for dimensionality reduction and linear discriminant analysis 

(LDA) for class separation. For the PCA, we kept 95% of the variance. For the LDA, we used 

MATLAB’s `fitcdiscr` function with default parameters. We then calculated the percent correct for 

each sample in the test data.  

Fifth, we then repeated the model training and testing for each consecutive fold of data. We finally 

found the mean accuracy metrics across all the folds, i.e., mean accuracy. To correct for testing the 

performance at every trial timepoint, we used a Bonferroni correction. 

We used a 1-sided binomial test to calculate the p-values associated with the percent correct results. 

4.4.7 Searchlight analysis 

We defined a circular region of interest (ROI) and, using only the pixels within the ROI, we performed 

the within-session decoding analysis using 10-fold cross-validation. We assigned that ROI’s percent 

correct metrics to the center voxel. We then repeated this across the entire image, such that each image 

pixel is the center of one ROI. To visualize the results, we overlaid the performance metric (percent 

correct) onto a vascular map and kept up to the 10% most significant voxels. As part of this searchlight 

analysis, we ignored activity within the sulcal fold or activity on the other side of the sulcal fold. To 

do this, we defined the boundaries of the sulcal folds using a custom GUI in MATLAB and only used 

voxels on the same side of the sulcal fold as the searchlight center. This is similar in principle to the 

cortical surface-based searchlight decoding developed for fMRI (Chen et al., 2011).  
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4.5 Extended Data 

4.5.1 Supplemental movies 

Supplemental Movie 4.1 Example trial averaged activity 

Average activity across imaging plane for example session in Monkey P. Time relative to cue onset. 
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5 Decoding Motor Plans Using a Closed-Loop Ultrasonic 

Brain-Machine Interface 

The following chapter’s contents are taken and adapted from Griggs and Norman et al. 2022, with 

modifications done to fit the dissertation format. 

Griggs, WS and Norman, SL et al. 2022. Decoding motor plans using a closed-loop ultrasonic brain-

machine interface. bioRxiv. https://doi.org/10.1101/2022.11.10.515371. 

5.1 Background 

Brain-machine interfaces (BMIs) translate complex brain signals into computer commands and are a 

promising method to restore the capabilities of human patients with paralysis (Wolpaw et al., 2020). 

State-of-the-art BMIs have already made this future a reality in limited clinical trials (Hochberg et al., 

2006; Collinger et al., 2013; Aflalo et al., 2015; Moses et al., 2021; Willett et al., 2021). However, 

these BMIs require invasive electrode arrays inserted into the brain. Device degradation limits the 

BMI’s longevity to typically around 5 years (Bullard et al., 2020; Sponheim et al., 2021). The 

implants only sample from small regions of superficial cortex. These are some of the factors limiting 

BMI technology’s adoption to a broader patient population. 

Functional ultrasound (fUS) imaging is a recently developed technique that is poised to enable longer 

lasting, less invasive BMIs that can scale to sense activity from large regions of the brain. fUS 

neuroimaging uses ultrafast pulse-echo imaging to sense changes in cerebral blood volume 

(CBV)(Macé et al., 2011). It has a high sensitivity to slow blood flow (~1mm/s velocity) and balances 

good spatiotemporal resolution (100 μm; <1 sec) with a large and deep field of view (~2 centimeters). 

Previously, we demonstrated that fUS neuroimaging possesses the sensitivity and field of view to 

decode movement intention on a single-trial basis simultaneously for two directions (left/right), two 

effectors (hand/eye), and task state (go/no-go) (Norman et al., 2021). However, we performed this 

post hoc (off-line) analysis using pre-recorded data. In this study, we demonstrate the first online, 

closed-loop, functional ultrasound BMI (fUS-BMI). In addition, we present key advances that build 

on previous fUS neuroimaging studies. These include decoding eight movement directions and 

designing decoders stable across more than 40 days. 
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5.2 Results 

We used a miniaturized 15.6-MHz, 128-channel, linear ultrasound transducer array paired with a real-

time ultrafast ultrasound acquisition system to stream 2 Hz fUS images from monkeys as they 

performed memory-guided eye movements (Figure 5.1). We positioned the transducer surface 

normal to the brain above the dura mater and recorded from coronal planes of the left posterior parietal 

cortex (PPC), a sensorimotor association area that uses multisensory information to guide movements 

and attention (Colby and Goldberg, 1999; Andersen and Buneo, 2002; Andersen and Cui, 2009). This 

technique achieved a large field of view (12.8 mm width, 16 mm depth, 400 μm plane thickness) 

while maintaining high spatial resolution (100 μm x 100 μm in-plane). This allowed us to stream 

high-resolution hemodynamic changes across multiple PPC regions simultaneously, including the 

lateral (LIP) and medial (MIP) intraparietal cortex (Figure 5.1A). Previous research has shown that 

the LIP and MIP are involved in planning eye and reach movements, respectively (Gnadt and 

Andersen, 1988; Snyder et al., 1997, 2000). This makes PPC a good region from which to record 

effector-specific movement signals.  

We streamed the real-time 2 Hz fUS images into a BMI decoder that used principal component (PCA) 

and linear discriminant analysis (LDA) to predict planned movement directions. We used the BMI 

output to directly control the behavioral task (Figure 5.1C). To build the initial training set for the 

decoder, each of two monkeys initially performed instructed eye movements to a randomized set of 

two or eight peripheral targets. We used the fUS activity during the delay period preceding successful 

eye movements to train the decoder. After 100 successful training trials, we switched to closed-loop 

BMI mode where the movement came from the fUS-BMI (Figure 5.1E). During this closed-loop 

BMI mode, the monkey continued to fixate on the center cue until after the delivery of the liquid 

reward. During the interval between a successful trial and the subsequent trial, we rapidly retrained 

the decoder, continuously updating the decoder model as each monkey used the fUS-BMI. 
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Figure 5.1 Anatomical recording planes and behavioral tasks. 

(A) Coronal fUS imaging planes used for monkey P and monkey L. A coronal slice from an MRI atlas shows the 

approximate field of view for the fUS imaging plane. Black square - Recording chamber. Red line – Position of ultrasound 

transducer. The vascular maps show the mean Power Doppler image from a single imaging session. Anatomical labels 

based upon (Saleem, 2012). (B) Memory-guided saccade task. monkey – Nonhuman primate, i.e., monkey. (C) fUS-BMI 

algorithm. Real-time 2 Hz functional images were streamed to a linear decoder that controlled the behavioral task. The 

decoder used the last 3 fUS images (1.5 seconds) of the memory period to make its prediction. If the prediction was 

correct, the data from that prediction was added to the training set. The decoder was retrained after every successful trial. 

The training set consisted of trials from the current session and/or from a previous fUS-BMI session. (D) Multicoder 

algorithm. For predicting eight movement directions, the vertical component (blue; up, middle, or down) and the 

horizontal component (red; left, middle, or right) were separately predicted and then combined to form each fUS-BMI 

prediction (purple). (E) Memory-guided BMI task. The BMI task is the same as (B) except that the movement period is 

controlled by the brain activity (via fUS-BMI) rather than eye movements. After 100 successful eye-movement trials, the 

fUS-BMI controlled the movement prediction (closed-loop control). During the closed-loop mode, the monkey had to 

maintain fixation on the center fixation cue until reward delivery. The red square represents the monkey’s eye position 

and is not visible to the monkey. Yellow square represents the BMI-controlled cursor position and is visible to the 

monkey. 



87 

 

5.2.1 Online decoding of two eye movement directions 

To demonstrate the feasibility of a fUS-BMI, we first performed online, closed-loop decoding of two 

movement directions (Figure 5.2). After building a preliminary training set of 20 trials, we began 

testing the decoder’s accuracy on each new trial in a training mode not visible to the monkey (blue 

line, Figure 5.2A). After 100 trials, we switched the BMI from training to closed-loop decoding 

where the monkey now controlled the task direction using his movement intention, i.e., the brain 

activity detected by the fUS-BMI in the last 3 fUS images of the memory period (Figure 5.1C, E, 

Figure 5.2A-yellow line). At the conclusion of each trial, the monkey received visual feedback of the 

fUS-BMI prediction. In our second closed-loop 2-direction session, the decoder reached significant 

accuracy (p<0.01; 1-sided binomial test) after 55 training trials and improved in accuracy until 

peaking at 82% accuracy at trial 114 (Figure 5.2A). The decoder predicted both directions well above 

chance level but displayed better performance for rightward movements (Figure 5.2B). To 

understand which brain regions were most important for the decoder performance, we performed a 

searchlight analysis with a 200 μm, i.e., 2 voxel, radius (Figure 5.2C). Dorsal LIP and Area 7a 

contained the voxels most informative for decoding intended movement direction. 

An ideal BMI needs very little training data and no retraining between sessions. Electrode-based 

BMIs typically require calibration or re-training for each subsequent session, due to difficulty in 

recording from the same neurons across multiple days (Downey et al., 2018).Thanks to its wide field 

of view, fUS neuroimaging can image from the same brain regions over time, and therefore may be 

an ideal technique for stable decoding across many sessions. To test this hypothesis, we pretrained 

the fUS-BMI using a previously recorded session’s data and then tested the decoder in an online, 

closed-loop experiment. To perform this pretraining, we first aligned the data from the previous 

session’s imaging plane to the current session’s imaging plane (Supplemental Figure 5.1). We used 

semi-automated rigid body registration to find the transform between the previous and current 

imaging plane, applied this 2D image transform to each frame of the previous session, and saved the 

aligned data. This semi-automated pre-registration process took less than 1 minute. To pretrain the 

model, the fUS-BMI automatically loaded this aligned dataset and trained the initial decoder. The 

fUS-BMI reached significant performance substantially faster (Figure 5.2D) when we used this 

pretraining approach. The fUS-BMI achieved significant accuracy at Trial 7, approximately 15 

minutes faster than the example session without pretraining.  
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Figure 5.2 Example sessions decoding two saccade directions. 

(A) Mean decoding accuracy as a function of trial number. Blue represents fUS-BMI training where the monkey 

controlled the task using overt eye movements. The BMI performance shown in blue was generated post hoc with no 

impact on the real-time behavior. Yellow represents trials under fUS-BMI control where the monkey maintained fixation 

on the center cue and the task direction was controlled by the fUS-BMI. Grey chance envelope – 95% binomial 

distribution. Red line – last nonsignificant trial. (B) Confusion matrix of decoding accuracy across entire session 

represented as percentage (rows add to 100%). (C) Searchlight analysis represents the 10% voxels with the highest 

decoding accuracy (threshold is q<=1.66e-6). White circle – 200 μm radius searchlight used. White bar – 1 mm scale 

bar. (D-F) Same format as in (A-C). fUS-BMI was pretrained using data collected from a previous session. Top 10% of 

voxels in searchlight analysis corresponds to a threshold of q<=2.07e-13. Text color for the day labels matches the day 

label colors in Figure 5.3. 

To quantify the benefits of pretraining upon fUS-BMI training time and performance, we compared 

fUS-BMI performance across all sessions when (a) using only data from the current session versus 

(b) pretraining with data from a previous session (Figure 5.3). For all real-time sessions that used 

pretraining, we also created a post hoc (offline) simulation of the fUS-BMI results without using 

pretraining. For each simulated session, we passed the recorded data through the same classification 

algorithm used for the real-time fUS-BMI but did not use any data from a previous session. 

Using only data from the current session: The mean decoding accuracy reached significance (p<0.01; 

1-sided binomial test) at the end of each online, closed-loop recording session (2/2 sessions monkey 

P, 1/1 session monkey L) and most offline, simulated recording sessions (3/3 sessions monkey P, 3/4 
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sessions monkey L) (Figure 5.3). For monkey P, decoder accuracies reached 75.43 ± 2.56% correct 

(mean ± SEM) and took 40.20 ± 2.76 trials to reach significance. For monkey L, decoder accuracies 

reached 62.30 ± 2.32% correct and took 103.40 ± 23.63 trials to reach significance.  

Pretraining with data from a previous session: The mean decoding accuracy reached significance at 

the end of each online, closed-loop recording session (3/3 sessions monkey P, 4/4 sessions monkey 

L) (Figure 5.2C). Using previous data reduced the time to achieve significant performance (100% of 

sessions reached significance sooner, monkey P – 36-43 trials faster; monkey L – 15-118 trials faster). 

The performance at the end of the session was not statistically different from performance in the same 

sessions without pretraining (paired t-test, p<0.05). For monkey P, accuracies reached 80.21 ± 5.61% 

correct and took 9.00 ± 1 trials to reach significance. For monkey L, accuracies reached 66.78 ± 

2.79% correct and took 71.00 ± 28.93 trials to reach significance. Assuming no missed trials, pre-

training decoders shortened training by 10-45 minutes. We also simulated the effects of not using any 

training data from the current session, i.e., using only the pretrained model (Supplemental Figure 

5.2A). We did not observe a statistically significant difference between the performance (accuracy or 

number of trials to significant performance) for either monkey whether current session training data 

was included or not.  

These results demonstrate online decoding of fUS signals into two directions of movement intention, 

monkeys learning to control the task using the fUS-BMI, and that pretraining using a previous 

session’s data greatly reduced, or even eliminated, the amount of new training data required in a new 

session.  
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Figure 5.3 Performance across sessions for decoding two saccade directions. 

Mean decoder accuracy during each session for monkey P and L. Solid lines are real-time results while fine-dashed lines 

are simulated sessions from post hoc analysis of real-time fUS imaging data. Vertical marks above each plot represent 

the last nonsignificant trial for each session. Day number is relative to the first fUS-BMI experiment. Coarse-dashed 

horizontal black line represents chance performance. 

5.2.2 Online decoding of eight eye movement directions 

Having demonstrated that we could achieve similar, but online and closed-loop, performance to our 

previous offline decoding paper(Norman et al., 2021), we extended the capabilities of fUS-BMI by 

decoding eight movement directions in real time (Figure 5.4). We used a “multicoder” architecture 

where we predicted the vertical (up, middle, or down) and horizontal (left, middle, or right) 

components of intended movement separately and then combined those independent predictions to 

form a final prediction (e.g., up and to the right) (Figure 5.1D). In the first 8-direction experiment, 

the decoder reached significant accuracy (p<0.01; 1-sided binomial test) after 86 training trials and 

improved until plateauing at 34-37% accuracy (Figure 5.4A – upper plot), compared to 12.5% chance 

level, with most errors indicating directions neighboring the cued direction (Figure 5.4B). To capture 

this extra information about proximity of each prediction to the true direction, we examined the mean 

absolute angular error. The fUS-BMI reached significance at 55 trials and steadily decreased its mean 

absolute angular error to 45° by the end of the session (Figure 5.4A – bottom plot). Compared to the 
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most informative voxels for the 2-target eye decoder, a larger portion of LIP, including ventral LIP, 

contained the most informative voxels for decoding eight directions of movement (Figure 5.4C). 

We next tested whether pretraining would aid the 8-target decoding similarly to the 2-target decoding. 

As before, pretraining improved the number of trials required to reach significant decoding (Figure 

5.4D). The fUS-BMI reached significant accuracy at Trial 13, approximately 25 minutes earlier than 

using only data from the current session. The mean decoder accuracy reached 45% correct with a 

final mean absolute angular error of 34°, which was better than the performance achieved in the 

example session without pretraining. The searchlight analysis indicated the same regions within LIP 

provided the most informative voxels for decoding (Figure 5.4F) for both the example sessions with 

and without pretraining. Notably, we pretrained the fUS-BMI on data from 42 days before the current 

session. This demonstrates that fUS-BMI can remain stable over at least 42 days. It further 

demonstrates that we can consistently locate the same imaging plane and that mesoscopic PPC 

populations consistently encode for the same directions on the time span of >1 month. 
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Figure 5.4 Example sessions decoding eight saccade directions. 

(A) Mean decoding accuracy and mean absolute angular error as a function of trial number. Blue represents fUS-BMI 

training where the monkey controlled the task using overt eye movements. The BMI performance shown here was 

generated post hoc tested on each new trial with no impact on the real-time behavior. Yellow represents trials under fUS-

BMI control where the monkey maintained fixation on the center cue and the movement task direction was controlled by 

the fUS-BMI. Grey chance envelope – 95% binomial distribution. Green chance envelope – 95% permutation test 

distribution. Red line – last nonsignificant trial. (B) Confusion matrix of decoding accuracy across entire session 

represented as percentage (rows add to 100%). The horizontal axis plots the predicted movement (predicted class) and 

the vertical axis the matching directional cue (true class). (C) Searchlight analysis represents the 10% of voxels with the 

lowest mean absolute angular error (threshold is q≤2.98e-3). White circle – 200 μm searchlight radius used. White bar – 

1 mm scale bar. (D-F) Same format as in (A-C). fUS-BMI was pretrained on data from Day 22 and updated after each 

successful trial. Top 10% of voxels in searchlight analysis corresponds to a threshold of q≤8e-5. Text color for the day 

labels matches the day label colors in Figure 5.5. 
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Using only data from the current session (Figure 5.5-left): The mean decoder accuracy reached 

significance by the end of all real-time (2/2) and simulated sessions (8/8). The mean absolute angular 

error for monkey P reached 45.26 ± 3.44° and the fUS-BMI took 30.75 ± 12.11 trials to reach 

significance. The mean absolute angular error for monkey L reached 75.06 ± 1.15° and the fUS-BMI 

took 132.33 ± 20.33 trials to reach significance. 

Pretraining with data from a previous session (Figure 5.5-right): The mean decoder accuracy reached 

significance by the end of all real-time (6/6) and simulated sessions (2/2). The fUS-BMI reached 

significant decoding earlier for most sessions compared to simulated post hoc data; 5/5 faster monkey 

L; 2/3 faster monkey P (third session reached significance equally fast). For monkey P, the pretrained 

decoders reached significance 0-51 trials faster and for monkey L, the pretrained decoders reached 

significance 66-132 trials faster. For most sessions, this would shorten training by up to 45 minutes. 

The performance at the end of each session was not statistically different from performance in the 

same session without pretraining (paired t-test, p<0.05). The mean absolute angular error for monkey 

P reached 37.82° ± 2.86° and the fUS-BMI took 10.67 ± 1.76 trials to reach significance. The mean 

absolute angular error for monkey L reached 71.04° ± 2.29° and the fUS-BMI took 42.80 ± 17.05 

trials to reach significance. We also simulated the effects of not using any training data from the 

current session, i.e., using only the pretrained model (Supplemental Figure 5.2B). We did not 

observe a statistically significant difference between the performance (accuracy, mean absolute 

angular error, or number of trials to significant performance) for either monkey whether current 

session training data was included or not. 
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Figure 5.5 Performance across sessions for decoding eight saccade directions. 

Mean absolute angular error during each session for monkey P and L. Solid lines are real-time results while fine-dashed 

lines are simulated sessions from post hoc analyses of real-time fUS data. Vertical marks represent the last nonsignificant 

trial for each session. Day number is relative to the first fUS-BMI experiment. Coarse-dashed horizontal black line—

chance performance. 

These results demonstrate online decoding of fUS signals into eight directions of movement intention, 

a significant advance over decoding only contra- and ipsilateral movements. They also show that the 

directional encoding within PPC mesoscopic populations is stable across at least one month, thus 

allowing us to reduce, or even eliminate, the need for new training data.  

5.2.3 Online decoding of two hand movement directions 

Another strength of fUS neuroimaging is its wide field of view capable of sensing activity from 

multiple functionally diverse brain regions, including those that encode different movement effectors, 

e.g., hand and eye. To test this, we decoded intended hand movements to two target directions 

(reaches to the Left/Right for monkey P) in addition to our previous results decoding eye movements 

(Figure 5.6). The monkey performed a similar task wherein he had to maintain touch on a center dot 

and touch the peripheral targets during the training (Figure 5.6A). In this scenario, we no longer 

constrained the monkey’s eye position, instead recording hand movements to train the fUS-BMI. 

After the training period, the monkey controlled the task using the fUS-BMI while keeping his hand 

on the center fixation cue. Notably, we used the same imaging plane used for eye movement decoding, 

which contained both LIP (important for eye movements) and MIP (important for reach movements). 
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In an example session using only data from the current session (Figure 5.6B), it took 70 trials to reach 

significance and achieved a mean decoder accuracy of 61.3%. The decoder predominately guessed 

left (Figure 5.6C). Two foci within the dorsal LIP and scattered voxels throughout Area 7a and the 

temporo-parietal junction (Area Tpt) contained the most informative voxels for decoding the two 

movement directions (Figure 5.6D). 

 
Figure 5.6 Example sessions decoding two reach directions. 

(A) Memory-guided reach task for Monkey P. Identical to memory-guided saccade task in Figure 5.1B with all fixation 

or eye movements being replaced by maintaining touch on the screen and reach movements, respectively. Peripheral cue 

was chosen from one of two peripheral targets. The white square represents the monkey’s hand position and is visible to 

the monkey. (B-D) Example results from session trained on data from the current session only. Same format as Figure 

5.2A-C. Threshold for searchlight analysis is q≤3.05e-3. (E-G) Example results from the Day 78 session pretrained on 

data from Day 76 and retrained after each successful trial. Same format as Figure 5.2D-F. Threshold for searchlight 

analysis is q≤6.47e-3. Text color for the day labels matches the day label colors in Figure 5.7. 
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To assess the benefits of pretraining on reach decoder performance and training time, we evaluated 

the effect of pretraining the fUS-BMI on an example session (Figure 5.6E-G). As with the saccade 

decoders, pretraining significantly shortened training time. In some cases, pretraining rescued a “bad” 

model. For example, the example session using only current data (Figure 5.6C) displayed a heavy 

bias towards the left. When we used this same example session to pretrain the fUS-BMI a few days 

later, the new model made balanced predictions (Figure 5.6F). The searchlight analysis for this 

example session revealed that the same dorsal LIP region from the example session without 

pretraining contained the majority of the most informative voxels (Figure 5.6G). MIP and Area 5 

also contained a few patches of highly informative voxels. 

 
Figure 5.7 Performance across sessions for decoding two reach directions. 

Performance across sessions for monkey P. Same format as Figure 5.3A. 

Using only data from the current session (Figure 5.7-left): The mean decoder accuracy reached 

significance by the end of each session (1 real-time and 3 simulated). The performance reached 65 ± 

2% correct and took 67.67 ± 18.77 trials to reach significance. 

Pretraining with data from a previous session (Figure 5.7-right): The mean decoder accuracy reached 

significance by the end of each session (3 real-time). Monkey P’s performance reached 65 ± 4% 

correct and took 43.67 ± 17.37 trials to reach significance. For two of the three real-time sessions, the 

number of trials needed to reach significance decreased with pretraining (-2 – 46 trials faster; 0-16 

minutes faster). There was no statistical difference in performance between the sessions with and 

without pretraining (paired t-test, p<0.05). We also simulated the effects of not using any training 

data from the current session, i.e., using only the pretrained model (Supplemental Figure 5.2C). We 

did not observe a statistically significant difference between the performance (accuracy or number of 

trials to significant performance) whether current session training data was included or not. 
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These results are consistent with our previous study’s results (Norman et al., 2021) that we can decode 

not only eye movements, but also reach movements. As with the eye movement decoders, we could 

pretrain the fUS-BMI using a previous session’s data and reduce, or even eliminate, the need for new 

training data.  
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5.3 Discussion 

This work demonstrates, for the first time, a closed-loop, online, ultrasonic BMI and makes two other 

key advances that prepare for future work on the next generation of minimally-invasive ultrasonic 

BMIs: decoding more movement directions and stabilizing decoders across more than a month. 

5.3.1 Decoding more movement directions 

We successfully decoded eight movement directions in real-time, an advance on previous work that 

decoded two saccade directions and two reach directions using pre-recorded data (Norman et al., 

2021). Specifically, we replicated the two direction results using real-time online data (Figure 

5.2,Figure 5.3,Figure 5.6) and then extended the decoder to work for eight movement directions 

(Figure 5.4Figure 5.5). 

5.3.2 Stabilizing decoder across time 

Electrode-based BMIs are particularly adept at sensing fast changing (~10s of ms) neural activity 

from spatially localized regions (<1 cm) during behavior or stimulation that is correlated to activity 

in such spatially specific regions, e.g., M1 for motor and V1 for vision. Electrodes, struggle to track 

individual neurons over longer periods of time, e.g., between subsequent recording sessions. 

Consequently, decoders are typically retrained every day (Downey et al., 2018). In this paper, we 

demonstrated a novel alignment method that stabilizes image-based BMIs across more than a month 

and decode from the same neural populations with minimal, if any, retraining. This is a critical 

development that enables easy alignment of previous days’ models to a new day’s data and begin 

decoding while acquiring minimal to no new training data. Much effort has focused on reducing or 

eliminating re-training in electrode-based BMIs (Sussillo et al., 2016; Dyer et al., 2017; Kao et al., 

2017b; Pandarinath et al., 2018; Degenhart et al., 2020; Wimalasena et al., 2020). These methods 

require identification of manifolds and/or latent dynamical parameters and collecting new data to 

align to these manifolds/parameters. Furthermore, some of the algorithms are computationally 

expensive and/or difficult to implement in online use. Our novel decoder alignment algorithm 

leverages the intrinsic spatial resolution and field of view provided by fUS neuroimaging to simplify 

this process in a way that is intuitive, repeatable, and performant.  
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5.3.3 Improving performance 

An ideal fUS-BMI would have performance that is better than the 45% correct at decoding eight 

movement directions found in this study. We have several ideas about how to improve the fUS-BMI 

performance.  

First, realigning the recording chamber and ultrasound transducer along the intraparietal sulcus axis 

would allow sampling from a larger portion of LIP and MIP. In this paper, we placed the chamber 

and probe in a coronal orientation to aid anatomical interpretability. However, most of our imaging 

plane is not contributing to the decoder performance (Figure 5.2C, Figure 5.3F, Figure 5.4C, Figure 

5.4F, Figure 5.6D, Figure 5.6G). Previous papers have found that receptive fields are anatomically 

organized along anterior-posterior and dorsal-ventral gradients within LIP (Patel et al., 2014). By 

realigning the recording chamber orthogonal to the intraparietal sulcus in future studies, we could 

sample from a larger anterior-posterior portion of LIP with diverse range of directional tunings.  

Second, we were limited to 2D planar imaging. The advent of 3D ultrafast volumetric imaging based 

on matrix or row-column array technologies will be capable of sensing changes in CBV from blood 

vessels that are currently orthogonal to the imaging plane. Additionally, 3D volumetric imaging can 

fully capture entire functional regions and sense multiple functional regions simultaneously. There 

are many regions which could fit inside a single 3D probe’s field of view and contribute to a motor 

BMI, for example: PPC, primary motor cortex (M1), dorsal premotor cortex (PMd), and 

supplementary motor area (SMA). These areas encode different aspects of movements including 

goals, sequences, and expected value of actions (Platt and Glimcher, 1999; Taylor et al., 2002; 

Ohbayashi et al., 2016; Côté et al., 2020). This is just one example of myriad advanced BMI decoding 

strategies that will be made possible by synchronous data across brain regions. Currently, high-

quality, low-latency real-time 3D fUS imaging is not possible due to bandwidth, memory, and 

compute limitations. However, ongoing advances in hardware and algorithms will likely soon enable 

3D fUS-BMI. 

Third, another route for improved performance would be using more advanced decoder models. 

Convolutional neural networks are tailor-made for identifying image characteristics and are robust to 

spatial perturbation common in fUS images. Recurrent neural networks and transformers use 

“memory” processes that may be particularly adept at characterizing the temporal structure of fUS 

time series data. A potential downside of artificial neural networks (ANNs) like these is that they 

require significantly more training data. However, the methods presented here for across-session 
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image alignment allow for pre-recorded data to be aggregated and organized into a large data corpus. 

Such a data corpus should be sufficient for training many ANNs. The amount of training data required 

could be further reduced by decreasing the feature count of the ANNs themselves. For example, one 

could reduce the input layer dimensions by restricting the data to features collected only from the 

task-relevant areas, such as LIP and MIP, instead of the entire image. ANNs additionally take longer 

to train (~minutes instead of seconds) and would require different strategies for online retraining than 

used in this paper. In this paper, we leveraged the ability to rapidly retrain linear models on every trial 

without stopping the task. Although online training and inference using ANNs are beyond the scope 

of this paper, this is an active area of investigation for fUS-BMIs. For example, an ANN has recently 

been used to offline decode different movement and sleep states using rodent fUSI data (Berthon et 

al., 2023). 

5.3.4 Advantages of fUS neuroimaging 

fUS neuroimaging has several advantages compared to existing BMI technologies. The large and 

deep field of view allows us to reliably record from multiple cortical and subcortical regions 

simultaneously – and to record from the same populations in a stable manner over long periods of 

time. fUS neuroimaging is epidural, i.e., does not require penetration of the dura mater, substantially 

decreasing surgical risk, infection risk, and tissue reactions while enabling chronic imaging over long 

periods of time (potentially many years) with minimal, if any degradation, in signal quality. In our 

monkey studies, fUS neuroimaging has been able to image through the dura, including the granulation 

tissue that forms above the dura (several ~mm) with minimal loss in sensitivity.  

In this paper, we demonstrated a new benefit of fUS: decoders that are stable across multiple days or 

even months. Using conventional image registration methods, we can align our decoder across 

different recording sessions and achieve excellent performance without collecting additional training 

data. A weakness of this current fUS-BMI compared to current electrophysiology BMIs is poorer 

temporal resolution. Electrophysiological BMIs have temporal resolutions in the 10s of milliseconds 

(e.g., binned spike counts). fUS can reach a similar temporal resolution (up to 500 Hz in this work) 

but is limited by the time constant of mesoscopic neurovascular coupling (~seconds). Despite this 

neurovascular response acting as a low pass filter on each voxel’s signal, faster fUS acquisition rates 

can measure temporal variation across voxels down to <100 ms resolution. Earlier researchers already 

exploited this to track dynamic propagation of local hemodynamic changes through cortical layers 

and between functional regions within a single plane of view in monkeys (Dizeux et al., 2019). As 
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the temporal resolution and latency of real-time fUS imaging improves with enhanced hardware and 

software, tracking the propagation of these rapid hemodynamic signals may enable improved BMI 

performance and response time. Additionally, for the current study, and for many BMI applications, 

the goals of an action can be extracted despite the slow mesoscopic hemodynamic response and do 

not require the short latency required for extracting faster signals such as the trajectories of intended 

movements. Beyond movement, many other signals in the brain may be better suited to the spatial 

and temporal strengths of fUS, for example, monitoring biomarkers of neuropsychiatric disorders 

(discussed in detail below).  

5.3.5 Decoding hand, eye, or both? 

Dorsal and ventral LIP contained the most informative voxels when decoding eye movements 

(Figure 5.2C, F, Figure 5.4C, F). This is consistent with previous literature that LIP is important for 

spatially specific oculomotor intention and attention (Gnadt and Andersen, 1988; Barash et al., 1991 

p.199; Colby et al., 1995). Dorsal LIP, MIP, Area 5, and Area 7 contained the most informative voxels 

during reach movements (Figure 5.6D, G). The voxels within the LIP closely match with the most 

informative voxels from the 2-direction saccade decoding, suggesting that our fUS-BMI may be using 

eye movement plans to build its model of movement direction. The patches of highly informative 

voxels within MIP and Area 5 suggest the fUS-BMI may also be using reach-specific information 

(Lacquaniti et al., 1995; Snyder et al., 1997; Chang et al., 2009; Li and Cui, 2013; Mackenzie et al., 

2016 p.20). Future experiments will be critical for disentangling the mesoscopic contributions of LIP, 

MIP, Area 5, and other PPC regions for accurate effector predictions with a fUS-BMI. One such 

experiment would be recording and ultimately decoding fUS signals from the PPC as monkeys 

perform dissociated eye and reach movements (Snyder et al., 1997). As this fUS-BMI is translated 

into human applications, these effector-specific signals can also be more cleanly studied by 

instructing subjects to perform dissociated effector tasks. 

5.3.6 Moving beyond a motor BMI 

The vast majority of BMIs have focused on motor applications, e.g. restoring lost motor function in 

people with paralysis (Wolpaw et al., 2020). Recently there has been interest in developing closed-

loop BMIs to restore function to other demographics, such as patients disabled from neuropsychiatric 

disorders (Shanechi, 2019). Depression, the most common neuropsychiatric disorder, affects an 

estimated 3.8% of people (280 million) worldwide (Institute of Health Metrics and Evaluation, 2019). 

In this paper, we demonstrated the utility of the fUS-BMI for motor applications to allow easier 
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comparison with existing BMI technologies. fUS-BMIs seem to be an ideal platform for applications 

that require monitoring neural activity over large regions of the brain and long timescales, from hours 

to months. As demonstrated here, fUS neuroimaging captures neurovascular changes on the order of 

a second and is also stable over more than 1 month. Combined with neuromodulation techniques such 

as focused ultrasound, it may be possible to not only record from these distributed corticolimbic 

populations but also precisely modulate specific mesoscopic populations (Darmani et al., 2022; Singh 

et al., 2022). 

The contributions presented here demonstrate the first online, closed-loop fUS-BMI. It prepares for 

the next generation of BMIs that are less invasive, high-resolution, stable across time, and scalable to 

sense activity from large regions of the brain. These advances are a step toward fUS-BMI for a 

broader range of applications, including restoring function to patients suffering from debilitating 

neuropsychiatric disorders.  
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5.4 Materials and Methods 

5.4.1 Experimental model and subject details 

We implanted two healthy 14-year-old male rhesus macaque monkeys (Macaca mulatta) weighing 

14-17 kg. All training, recording, surgical, and animal care procedures were approved by the 

California Institute of Technology Institutional Animal Care and Use Committee and complied with 

the Public Health Service Policy on the Humane Care and Use of Laboratory Animals. 

5.4.2 General 

We used NeuroScan Live software (ART INSERM U1273 & Iconeus, Paris, France) interfaced with 

MATLAB 2019b (MathWorks, Natick, MA, USA) for the real-time fUS-BMI and MATLAB 2021a 

for all other analyses. 

5.4.3 Animal preparation and implant 

For each monkey, we placed a cranial implant containing a titanium head post and a craniotomy 

positioned over the posterior parietal cortex. The dura underneath the craniotomy was left intact. The 

craniotomy was covered by a 24 X 24 mm (inner dimension) chamber. For each recording session, 

we used a custom 3D-printed polyetherimide slotted chamber plug that held the ultrasound 

transducer. This allowed the same anatomical planes to be consistently acquired on different days. 

5.4.4 Behavioral setup  

Monkeys sat in a primate chair facing a monitor or touchscreen. The LCD monitor was positioned 

~30 cm in front of the monkey. The touchscreen was positioned on each day so that the monkey could 

reach all the targets on the screen with his fingers but could not rest his palm on the screen. This was 

~20 cm in front of the monkey. Eye position was tracked at 500 Hz using an infrared eye tracker 

(EyeLink 1000, Ottawa, Canada). Touch was tracked using a touchscreen (Elo IntelliTouch, Milpitas, 

California). Visual stimuli were presented using custom Python 2.7 software based on PsychoPy 

(Peirce, 2007). Eye and hand position was recorded simultaneously with the stimulus and timing 

information and stored for offline analysis. 

5.4.5 Behavioral tasks 

Monkeys performed several different memory-guided movement tasks. In the memory-guided 

saccade task, monkeys fixated on a center cue for 5 ± 1 seconds. A peripheral cue appeared for 400 

ms in a peripheral location (either chosen from 2 or 8 possible target locations) at 20° eccentricity. 

The monkey kept fixation on the center cue through a memory period (5 ± 1 s) where the peripheral 
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cue was not visible. The monkey then executed a saccade to the remembered location once the 

fixation cue was extinguished. If the monkey’s eye position was within a 7° radius of the peripheral 

target, the target was re-illuminated and stayed on for the duration of the hold period (1.5 ± 0.5 s). 

The monkey received a liquid reward of 1000 ms (0.75 mL) for successful task completion. There 

was an 8 ± 2 second intertrial interval before the next trial began. Fixation, memory, and hold periods 

were subject to timing jitter sampled from a uniform distribution to prevent the monkey from 

anticipating task state changes. 

The memory-guided reach task was similar, but instead of fixation, the monkey used his fingers on a 

touchscreen. Due to space constraints, eye tracking was not used concurrently with the touchscreen, 

i.e., only hand or eye position was tracked, not both.  

For the memory-guided BMI task, the monkey performed the same fixation steps using his eye or 

hand position, but the movement phase was controlled by the fUS-BMI. Critically, the monkey was 

trained to not make an eye or hand movements from the center cue until at least the reward was 

delivered. For this task variant, the monkey received a liquid reward of 1000 ms (0.75 mL) for 

successfully maintaining fixation/touch and correct fUS-BMI predictions. The monkey received a 

100 ms (0.03 mL) reward for successfully maintaining fixation/touch during incorrect fUS-BMI 

predictions. This was done to maintain monkey motivation. 

5.4.6 fUS-BMI 

5.4.6.1 Functional ultrasound sequence and recording 

During each fUS-BMI session, we placed the ultrasound transducer (128-element miniaturized linear 

array probe, 15.6 MHz center frequency, 0.1 mm pitch, Vermon, France) on the dura with ultrasound 

gel as a coupling agent. We consistently positioned the ultrasound transducer across recording 

sessions using a slotted chamber plug. The imaging field of view was 12.8 mm (width) by 13-20 mm 

(height) and allowed the simultaneous imaging of multiple cortical regions, including lateral 

intraparietal area (LIP), medial intraparietal area (MIP), ventral intraparietal area (VIP), Area 7, and 

Area 5.  

We used a programmable high-framerate ultrasound scanner (Vantage 256; Verasonics, Kirkland, 

WA) to drive the ultrasound transducer and collect pulse echo radiofrequency data. We used different 

plane-wave imaging sequences for real-time and anatomical fUS neuroimaging. 
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5.4.6.2 Real-time low-latency fUS neuroimaging 

We used a custom-built computer running NeuroScan Live (ART INSERM U1273 & Iconeus, Paris, 

France) attached to the 256-channel Verasonics Vantage ultrasound scanner. This software 

implemented a custom plane-wave imaging sequence optimized to deliver Power Doppler images in 

real-time at 2 Hz with minimal latency between ultrasound pulses and Power Doppler image 

formation. The sequence used a pulse-repetition frequency of 5500 Hz and transmitted plane waves 

at 11 tilted angles equally spaced from -6° to 6°. These tilted plane waves were compounded at 500 

Hz. Power Doppler images were formed from 200 compounded B-mode images (400 ms). To form 

the Power Doppler images, the software used an ultrafast Power Doppler sequence with an SVD 

clutter filter (Demené et al., 2015) that discarded the first 30% of components. The resulting Power 

Doppler images were transferred to a MATLAB instance in real-time and used for the fUS-BMI. The 

prototype 2 Hz real-time fUS system had approximately an 800 ms latency from the end of the 

ultrasound pulse sequence to arrival of the beamformed fUS image in MATLAB. Each fUS image 

and associated timing information were saved for post hoc analyses. 

5.4.6.3 Anatomical Doppler neuroimaging 

At the start of each recording session, we used a custom plane-wave imaging sequence to acquire an 

anatomical image of the vasculature. We used a pulse repetition frequency of 7500 Hz and transmitted 

plane waves at 5 angles ([-6°, -3°, 0°, 3°, 6°]) with 3 accumulations. We coherently compounded 

these 5 angles from 3 accumulations (15 images) to create one high-contrast ultrasound image. Each 

high-contrast image was formed in 2 ms, i.e., at a 500 Hz framerate. We formed a Power Doppler 

image of the monkey brain using 250 compounded B-mode images collected over 500 ms. We used 

singular value decomposition to implement a tissue clutter filter and separate blood cell motion from 

tissue motion (Demené et al., 2015). 

5.4.6.4 fUS-BMI Overview 

There were three components to decoding movement intention in real-time: 1) apply preprocessing 

to a rolling data buffer, 2) train the classifier, and 3) decode movement intention in real-time using 

the trained classifier. As described previously (10), the time for preprocessing, training, and decoding 

was dependent upon several factors, including the number of trials in the training set, CPU load from 

other applications, the field of view, and classifier algorithm (PCA+LDA vs cPCA+LDA). In the 

worst cases during offline testing, the preprocessing, training, and decoder, respectively, took 
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approximately 10, 500 ms, and 60 ms. See (Norman et al., 2021) for more description of the amount 

of time needed for preprocessing, training, and prediction with different sized training sets. 

5.4.6.5 Data preprocessing 

Before streaming the Power Doppler images into the classification algorithm, we applied two 

preprocessing operations to a rolling 60-frame (30 seconds) buffer. We first performed a rolling 

voxel-wise z-score over the previous 60 frames (30 seconds) and then applied a pillbox spatial filter 

with a radius of 2 pixels to each of the 60 frames in the buffer. 

5.4.6.6 Real-time classification 

The fUS-BMI made a prediction at the end of the memory period using the preceding 1.5 seconds of 

data (3 frames) and passed this prediction to the behavioral control system via a TCP-based server 

(Supplemental Figure 5.3). We used different classification algorithms for fUS-BMI in the 2-

direction and 8-direction tasks. For decoding two directions of eye or hand movements, we used class-

wise principal component analysis (cPCA) and linear discriminant analysis (LDA), a method well 

suited to classification problems with high dimensional features and low numbers of samples. This 

method is mathematically identical to that used previously for offline decoding of movement intention 

(Norman et al., 2021) but has been optimized for online training and decoding. Briefly, we used cPCA 

to dimensionally reduce the data while keeping 95% variance of the data. We then used LDA to 

improve the class separability of the cPCA-transformed data. For more details on the method and 

implementation, see (Das et al., 2007; Das and Nenadic, 2009; Norman et al., 2021). 

For decoding eight directions of eye movements, we used a multicoder approach where the horizontal 

(left, center, or right) and vertical components (down, center, or up) were separately predicted and 

combined to form the final prediction. As a result of this separate decoding of horizontal and vertical 

movement components, “center” predictions are possible (horizontal—center and vertical—center) 

despite this not being one of the eight possible peripheral target locations. To perform the predictions, 

we used principal component analysis (PCA) and LDA. We used the PCA to reduce the 

dimensionality of the data while keeping 95% of the variance in the data. We then used LDA to 

predict the most likely direction. We opted for the PCA+LDA method over the cPCA+LDA for 8-

direction decoding because we found in offline analyses that the PCA+LDA multicoder outperformed 

cPCA+LDA for decoding eight movement directions with a limited number of training trials. 
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5.4.6.7 Real-time training of model 

We retrained the fUS-BMI classifier during the intertrial interval (without stopping the experiment) 

every time the training set was updated. For the real-time experiments, the data recorded during a 

successful trial was automatically added to the training set. During the initial training phase, 

successful trials were defined as the monkey performing the movement to the correct target and 

receiving his juice reward. Once in BMI mode, successful trials were defined as a correct prediction 

plus the monkey maintaining fixation until juice delivery.  

For experiments that used a model trained on data from a previous session, we used data from all 

valid trials from the previous session upon initialization of the fUS-BMI. A valid trial was defined as 

any trial that reached the prediction phase, regardless of whether the correct class was predicted. The 

classifier then retrained after the addition of each successful trial to the training set during the current 

session. 

5.4.6.8 Post hoc experiments 

These experiments analyzed the effect of using only data from a single session on decoder 

performance. We simulated an online scenario where we trained and/or decoded on each attempted 

trial in order. We considered all trials where the monkey received a reward as successful and retrained 

after each trial. 

5.4.6.9 Connection with the behavioral system – (Supplemental Figure 5.3) 

We designed a threaded TCP server in Python 2.7 to receive, parse, and send information between 

the computer running the PsychoPy behavior software and the real-time fUS-BMI computer. Upon 

queries from the fUS-BMI computer, this server transferred task information, including task timing 

and actual movement direction, to the real-time ultrasound system. The client-server architecture was 

specifically designed to prevent data leaks: the actual movement direction was never transmitted to 

the fUS-BMI until after a successful trial had ended. The TCP server also received the fUS-BMI 

prediction and passed it to the PsychoPy software when queried. The average server write-read-parse 

time was 31 +/- 1 (mean ± STD) ms during offline testing between two desktop computers (Windows) 

on a local area network.  

5.4.7 Across-session alignment 

At the beginning of each experimental session, we acquired an anatomical image showing the 

vasculature within the imaging field of view. For sessions where we used previous data as the initial 
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training set for the fUS-BMI, we then performed a semi-automated intensity-based rigid-body 

registration between the new anatomical image and the anatomical image acquired in a previous 

session. We used the MATLAB `imregtform` function with the mean square error metric and a 

regular step gradient descent optimizer to generate an initial automated alignment of the previous 

anatomical image to the new anatomical image. If the automated alignment had misaligned the two 

images, the software prompted the proctor to manually shift and rotate the previous session’s 

anatomical image using a custom MATLAB GUI. We then applied the final rigid body transform to 

the training data from the previous session, thus aligning the previous session with the new session. 

5.4.8 Quantification and statistical analysis 

Unless reported otherwise, summary statistics reported as XX ± XX are mean ± SEM. 

5.4.8.1 Post hoc simulated session 

We used the recorded real-time fUS images to simulate the effects of different parameters on fUS-

BMI performance, such as using only current session data without pretraining. To do this, we 

streamed pre-recorded fUS images and behavioral data, frame by frame, to the same fUS-BMI 

function used for closed-loop, online fUS-BMI. To dynamically build the training set, we added all 

trials reaching the end of the memory phase regardless of whether the offline fUS-BMI predicted the 

correct movement direction. This was done because the high possible error rate from bad predictions 

meant that building the training set from only correctly predicted trials could lead to imbalanced 

samples across conditions (directions) and possibly contain insufficient trials to train the model; zero 

correct predictions for certain directions could prevent the model from ever predicting that direction. 

5.4.8.2 Searchlight analysis 

We defined a circular region of interest (ROI; 200 μm radius) and moved it sequentially across all 

voxels (left to right then top to bottom) in the imaging field of view. For each ROI, we performed 

offline decoding with 10-fold cross-validation using either the cPCA+LDA (2-directions) or 

PCA+LDA (8-directions) algorithm where we only used the voxels fully contained with each ROI. 

We assigned the mean performance across the cross-validation folds to the center voxel of the ROI. 

To visualize the results, we overlaid the performance (mean absolute angular error or accuracy) of 

the 10% most significant voxels on the anatomical vascular map from the session. 
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5.5 Extended Data 

 
Supplemental Figure 5.1 Across session alignment algorithm. 

Supplement to Figure 5.1. 

We used semi-automated intensity-based rigid-body registration to find the transform from the previous session to the 

new imaging plane. The registration error is shown in the overlay where green represents the old session (Day 1) and 

magenta represents the new session (Day 64). 
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Supplemental Figure 5.2 Closed-loop, real-time decoding of movement directions using pretrained model only. 

Supplement to Figures 4.3, 4.5, and 4.7. 

(A) Performance for 2-direction saccade decoding using only the pretrained model. (B) Performance for 8-direction 

saccade decoding using only the pretrained model. (C) Performance for 2-direction reach decoding using only the 

pretrained model.   
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Supplemental Figure 5.3 TCP Communication Architecture for real-time fUS-BMI. 

We designed a threaded TCP server in Python 2.7 to receive, parse, and send information between the computer running 

the PsychoPy behavior software and the real-time fUS-BMI computer. Upon queries from the fUS-BMI computer (“fUS 

decoder”), this server transferred task information, including task timing and actual movement direction, to a real-time 

ultrasound system. The client-server architecture was specifically designed to prevent data leaks, i.e., the actual 

movement direction was never transmitted to the fUS-BMI until after a successful trial had ended. The TCP server also 

received the fUS-BMI prediction and passed it to the PsychoPy software when queried. The average server write-read-

parse time was 31 +/- 1 (mean ± STD) ms during offline testing between two Windows computers on a local area network. 
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6 Window to the Brain: Ultrasound Imaging of Human 

Neural Activity Through a Cranial Implant  

6.1 Background 

Measuring brain function in adult humans holds the key to neuroscience research, precision 

diagnostics, disease monitoring, and therapeutics for neurological injury and disease. However, our 

understanding of human brain function is largely limited by the technology we use to access it. We 

are faced with tradeoffs between sensitivity, coverage, invasiveness, and the ability to record freely 

moving participants. 

There are several techniques available today that monitor brain function in awake humans (Figure 

6.1C). Functional MRI (fMRI) is capable of measuring function throughout the whole human brain 

but suffers from limited sensitivity and spatiotemporal resolution. It additionally requires the patient 

to lie in a confined space and minimize movements, restricting the type of tasks possible (Figure 

6.1D-top). Other non-invasive methods, such as scalp electroencephalography (EEG) and functional 

near infrared spectroscopy (fNIRS), are affordable and portable. However, the resulting signals are 

limited by volume conduction or scattering effects, resulting in poor signal to noise and limited ability 

to measure function in deep brain regions. Intracranial electroencephalography (iEEG) and 

electrocorticography (ECoG) have good temporal resolution and better spatial resolution but are 

highly invasive and require epidural or subdural implantation. Implanted microelectrode arrays set 

the gold standard in sensitivity and precision by recording the activity of individual neurons and local 

field potentials. However, these devices are also highly invasive, requiring insertion into the brain 

(Figure 6.1D-bottom). Moreover, they are difficult to scale across many brain regions and have a 

limited functional lifespan due to tissue rejection. To date, only severely impaired patients whom the 

benefits outweigh the risk have used invasive recording technologies. There is a clear and distinct 

need for neurotechnologies that optimally balance the tradeoffs between invasiveness and 

performance.  

Functional ultrasound imaging (fUSI) is an emerging neuroimaging technique that spans the gap 

between invasive and non-invasive methods. It represents a new platform with excellent sensitivity 

and brain coverage, enabling a host of new pre-clinical and clinical applications (Deffieux et al., 2018; 

Rabut et al., 2020). fUSI measures changes in cerebral blood volume (CBV) by detecting the 
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backscattered echoes from red blood cells moving within its field of view (several cm) (Figure 6.1E). 

It is spatially precise down to ~100 µm with a framerate up to 10 Hz, allowing it to sense the function 

of small populations of neurons (Montaldo et al., 2022). fUSI is minimally-invasive and requires only 

removal or replacement of a small skull area in large organisms. fUSI does not intrude on brain tissue 

but instead sits outside the brain’s protective dura mater and does not require the use of contrast 

agents. fUSI is non-radiative, portable, and proven across multiple animal models (rodents, ferrets, 

birds, non-human primates, and humans) (Macé et al., 2011). In recent work, we decoded the 

intentions and goals of non-human primates from fUSI data (Norman et al., 2021) and subsequently, 

used fUSI as the basis for the first ultrasonic BMI (Griggs et al., 2022).  

An important direction of this research is the translation of fUSI-based neuroimaging and BMI for 

human participants. However, the skull bone attenuates and aberrates acoustic waves at high 

frequencies, substantially reducing signal sensitivity. As a result, most pre-clinical applications 

require a craniotomy (Brunner et al., 2021), and the human fUSI studies have required the skull to be 

removed or absent. These include intra-operative imaging during neurosurgery (Imbault et al., 2017; 

Soloukey et al., 2020) and recording through the anterior fontanelle window of newborns (Demene 

et al., 2017). The next challenge for fUSI is to record brain activity in awake adults outside of an 

operating room. 

In this study, we demonstrate fUSI in an awake adult participant equipped with an ultrasound-

transparent “acoustic window” installed as part of a cranioplasty (skull replacement procedure) 

following a decompressive hemicraniectomy (partial skull removal). Hemicraniectomies are 

commonly performed to reduce pathologically high intracranial pressures, including from traumatic 

brain injuries (TBIs), strokes, and subarachnoid hemorrhages (Güresir et al., 2009; Alvis-Miranda et 

al., 2013; Pallesen et al., 2019). After the craniectomy, the scalp is replaced to prevent infection and 

the patient is left to heal for periods that range from weeks up to a year. After this period, a 

cranioplasty is performed to replace the missing skull with one of an assortment of cranioplastic 

reconstruction materials. These include autologous bone, titanium mesh, and polymethyl 

methacrylate (PMMA). Recently, customized cranial implants (CCIs) have grown in popularity 

thanks to their sterility, strength, and cosmetic appeal (Iaccarino et al., 2020). One CCI material, 

PMMA, is also purported to be transparent to ultrasound, or “sonolucent” (Shay et al., 2020). This 

opened the possibility of using fUSI in a non-invasive setting for low-cost monitoring and diagnostics 

after implantation of the cranial window. To test this possibility, we evaluated the performance of 
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fUSI in a patient undergoing a craniectomy (a) before reconstruction, i.e., in the absence of skull, and 

(b) after CCI reconstruction, i.e., through the scalp and PMMA material.  

Before conducting the experiment in the human participant, we examined the imaging characteristics 

of two FDA- approved materials (PMMA and titanium mesh) for functional (fUSI) ultrasound 

imaging. We first characterized these materials with an in vitro cerebrovascular phantom. We then 

compared their signal and contrast properties in an in vivo rodent model. Finally, we present results 

demonstrating the detection of functional brain signals while a human subject with a PMMA cranial 

implant (Figure 6.1A) performed visuomotor tasks (Figure 6.1B).  
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Figure 6.1 Functional ultrasound enables brain imaging in freely behaving subjects with high spatiotemporal 

resolution and large coverage. 
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(A) 3D rendering of fUSI recording through the patient’s PMMA cranial implant. (B) Experimental setup used for fUSI 

recordings (C) Common functional recording modalities on a chart comparing their spatial resolution, coverage, and 

ability to record moving subjects. or electrical implants. (D) Example experimental setups for functional recording in 

humans using fMRI or electrical implants (E) The ultrafast acquisition of ultrasound images allows a fast temporal 

sampling of the brain signal. We then applied a clutter filter to exclude tissue motion while keeping blood motion for 

sensitive measurements of CBV variations.   

6.2 Results 

6.2.1 In vitro performance comparison 

fUSI is performed by acquiring a series of sequential power Doppler images and observing 

spatiotemporal changes in the signal. To determine if power Doppler signals can be detected through 

PMMA material, we first designed and built a Doppler ultrasound phantom with flow channels 

mimicking human cerebrovasculature (Figure 6.2A). This allowed us to measure power Doppler in 

a controlled environment. We compared five different imaging scenarios: (1) no implant, (2) 1 mm 

thick PMMA implant, (3) 2 mm thick PMMA implant, (4) 3 mm thick PMMA implant, and (5) 

titanium mesh implant (Figure 6.2B, C). We passed synthetic red blood cells through a 280-μm 

diameter tubing at three lateral (5, 15, 25 mm) and four axial positions (14, 24, 34, 44 mm) at a 

constant velocity of ~27 mm/s, and recorded fUSI signals to estimate SNR and resolution loss in each 

imaging scenario (Figure 6.2D). We found that power Doppler intensity decreased with the increase 

in PMMA implant thickness and also decreased through the titanium mesh (Figure 6.2E). SNR 

decreased with depth and was inversely proportional to the thickness of the intervening PMMA 

material (Figure 6.2F). 
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Figure 6.2 Polymeric skull replacement materials enable power Doppler imaging with minimal SNR loss in an in 

vitro blood flow phantom. 

(A) 3D rendering of the in vitro Doppler phantom (B) Photo of three thicknesses of the PMMA skull-implant material 

used to evaluate the performance of the in vitro Doppler recording through the implants. (C) Photo of titanium mesh 

(commonly used in cranial reconstruction) (D) Power Doppler images (see A. for imaging plane) of the Doppler phantom 

in different implant scenarios. (E) Doppler intensity for each implant scenario over N=15 acquisitions. Stars indicate 

statistical differences (paired sampled t-test) between each scenario compared to the No implant scenario (*: p<0.05 , **: 

p<0.01 , ***: p<0.001) (F) SNR attenuation for each implant scenario as function of the depth (N=15 acquisitions). 

6.2.2 Functional activity comparison in rodent model 

To test whether we could detect functional signals through the different cranial implant materials in 

vivo, we performed fUSI in four rats for each of the five implant types, (Figure 6.3A). The total 

intensity of the power Doppler signal from the whole brain decreased by 30% from the no-implant 

scenario to the 1 mm implant scenario (Figure 6.3B). The power Doppler intensity dropped a further 

~15% per mm implant thickness for the 2 mm and 3 mm materials. The power Doppler intensity 

decreased by 60% for the titanium mesh compared to no-implant. The SNR loss also decreased as the 

PMMA implant thickness increased but with a smaller decrease than observed for power Doppler 

signal intensity. In the cortex, the SNR decreased slightly with the mesh (-1dB) and as the PMMA 
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implant thickened (~ -1dB/mm). The deep structures within the image showed a similar trend in SNR 

across the different implant materials. 

As we recorded the fUSI signals, we used a visual task where the rat experienced subsequent blocks 

of darkness (30 frames) and light exposure (10 frames). We modeled the response of each voxel to 

the visual task using a general linear model (GLM). which allowed us to quantify which voxels 

showed significant task modulation (p<1e-5). Briefly, we convolved our block design (“rest” or 

“light”) with the hemodynamic response function and fit the linear model mapping of the convolved 

task regressors to each fUSI voxel’s signal. This allowed us to assess the statistical significance 

between the hemodynamic response and task structure for each voxel. In all five implant conditions, 

we identified voxels within the lateral geniculate nucleus (LGN) activated during the optical 

stimulation. Using fUSI through the thicker implants and the titanium mesh resulted in fewer task-

modulated voxels within the LGN (Figure 6.3D). Additionally, we observed less signal change for 

the thicker vs. thinner implants and titanium mesh vs. any of the PMMA implants (p<1e-3, 1-way 

ANOVA with post hoc hsd, Figure 6.3E). 



119 

 

 
Figure 6.3 Acoustic window materials enable sensitive in vivo rodent fUSI imaging. 

(A) Power Doppler images of the same rat brain with different skull implant materials. (B) Standardized Doppler 

intensity, standardized SNR in cortex (see dotted box ii of panel (A) for cortex region), and standardized SNR in 

subcortical structures (see dotted box iii of panel (A) for subcortical structures region) for each skull implant scenario. 

(C) Light-modulated areas and example time courses. Top row - Statistical parametric map of voxels modulated by visual 

task (p(corrected)<1e-5) from GLM. Black box shows LGN region used to calculate mean fUSI time course. Bottom row 

- Time course from LGN region for each skull implant condition. Maroon line - Mean percent change. Orange shading - 

Light-on condition. (D) Area of left LGN activated during light-on condition for each implant material in example 

session. (E) Mean activation during light-on condition for each implant material in example session. 
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6.2.3 fUSI through decompressive craniectomy window 

Having evaluated our ability to detect functional signals through the different implant materials in 

vitro and in an in vivo rodent model, we next hypothesized that it would be possible to detect 

functional brain signals in a human participant with a custom PMMA implant by measuring fUSI 

while a patient with a CCI performed a visuomotor task.  

Approximately 30 months prior to CCI installation, Patient J suffered a traumatic brain injury and 

underwent a left decompressive hemicraniectomy of approximately 16 cm length by 10 cm height 

(Figure 6.1A). We used anatomical and functional MRI scans acquired after the craniectomy to 

identify the brain structures and functional cortical regions within the craniectomy borders (Figure 

6.4A-B). 

In the period between the craniectomy and the cranioplasty, we imaged Patient J’s brain using 

ultrasound through his cranial opening at 10.5 months post-craniectomy (Figure 6.4C). During this 

period, we observed large brain vessels following the curve of sulci folds and smaller vessels 

irrigating the sulci, typical of fUSI images (Figure 6.4D). Due to the lack of intracranial pressure, 

and the dramatic brain motion that results from this condition, we were unable to collect functional 

data or co-register ultrasound images to anatomical MRI. However, the ability to collect high quality 

vascular maps provided evidence that fUSI was possible through an intact human scalp.  



121 

 

 
Figure 6.4 Ultrasound enables vascular imaging through intact scalp after craniectomy. 

(A) Coronal plane from Patient J’s fMRI after their decompressive hemicraniectomy. Orange overlay shows regions 

activated during finger tapping task (B) Transverse plane showing finger-tapping regions. (p<0.05 FWE-corrected) (C) 

Patient J during functional ultrasound imaging session with craniectomy (D) Power Doppler image of Patient J’s brain 

through the cranial window. 

6.2.4 Cranial implant design for Patient J 

To successfully detect functional signal through patient J’s CCI, we collaborated with patient J’s 

attending physician (author CL) and the CCI manufacturer to design an appropriate acoustic window. 

In a separate fMRI study, we identified cortical response fields to a simple finger tapping task (Fig. 

5A). Based on this mapping, Longeviti LLC designed and manufactured a PMMA CCI implant for 

patient J with a 2mm thick 34 x 50 mm parallelogram-shaped sonolucent “window to the brain” 

placed above the finger-tapping response field (Figure 6.5B, C). The outer surface of the implant 

was matched to the contralateral skull CT for excellent cosmetics and the borders of the implant were 

matched to the thickness of the bordering skull.  
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Figure 6.5 Patient J was reconstructed with a custom-designed acoustic window. 

(A) MRI scan of Patient J after reconstruction. The red crosses indicate the middle of the transducer during the example 

fUSI session. Green shading - sonolucent portion of head, including scalp, CCI, and meninges above brain. (B) 4mm 

thick sonolucent cranial implant with the 2 mm thick parallelogram-shaped “window” placed above the finger-tapping 

task cortical area (yellow region) (C) Reconstruction surgery of Patient J with the PMMA CCI. (D) Co-registration of 

the fUSI imaging plane with an anatomical MR image. 

6.2.5 First non-invasive fUSI activity recording in human through cranial implant 

We imaged Patient J’s brain through hist acoustic “window” following cranioplastic reconstruction 

(Figure 6.5D). To better locate the purported finger-tapping responsive brain regions, we first located 

the boundaries of the thinned window using real-time anatomical B-mode ultrasound imaging. Once 

we located the boundaries of the “window”, we positioned the ultrasound transducer above the 

purported functional regions by measuring the relative difference between the window edges and 
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those regions, as previously measured using the MRI & fMRI scans. We immediately observed the 

cortical vasculature, including vessels following the curves of sulcal folds and smaller vessels 

irrigating the adjacent cortex (Figure 6.5D). 

Based upon a prior fUSI recording session and the location of the thinned window, we estimated we 

were above the hand region of left primary sensory cortex (S1) and the left supramarginal gyrus 

(SMG). Among its functions are reports that it plays a role in grasping and tool use (Gallivan et al., 

2013; Orban and Caruana, 2014; Vingerhoets, 2014; Buchwald et al., 2018; McDowell et al., 2018; 

Garcea and Buxbaum, 2019; Potok et al., 2019; Wandelt et al., 2022b). Thus, in an attempt to detect 

functional brain signals, we instructed Patient J to perform two visuomotor tasks while sitting in a 

comfortable chair with a screen in front of him (Figure 6.6A). In the first task, we used a block design 

with 60 second “rest” blocks and 30 second “task” blocks. During the rest blocks, we instructed the 

patient to close their eyes and relax. During the task blocks, the patient used a video game controller 

joystick. He was instructed to complete “connect-the-dots” puzzles on the computer monitor (Figure 

6.6B). He used their right thumb to control the game controller’s thumbstick (cursor location) and 

their left index finger to control the left shoulder button (mouse click). We repeated the same tasks 

across multiple runs (N=3).  Finally, we concatenated the data from two runs and used a GLM analysis 

to identify voxels with functional activation. The GLM revealed several regions that were task 

modulated (Figure 6.6D). The activity within these regions displayed positive modulation by the 

task, i.e., increased activity during the drawing blocks and decreased activity during the rest blocks 

(ROI 2, Figure 6.6D). For example, ROI 2 had an average of 3.68% difference between the drawing 

and rest blocks (p value <1e-10, two-sided t-test). Outside of these activated regions (i.e., ROI 1, 

Figure 6.6D), the signal remained stable throughout the run with no significant increase nor decrease 

during the task periods. For example, ROI 1 had an average difference of -0.034% between the 

drawing and rest blocks, (p value = 0.67, two-sided t-test). As a step towards translating nonhuman 

animal results into human applications, we tested the ability to decode task state (rest vs. connect-the-

dot) from the fUSI data using a linear decoder. We successfully decoded the task state with 67.8% 

accuracy (p<1e-5, 1-sided binomial test).  
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Figure 6.6 Permanent acoustic window allows non-invasive fUSI. 

(A) Vascular anatomy of the imaging plane. Dashed lines highlight specific anatomic features, including PMMA implant 

surface, brain surface, and sulcal vessels. (B) Connect-the-dot task. In the rest blocks, the patient relaxed and tried to 

keep their mind clear. In the task blocks, the patient used a game controller to draw lines in a “connect-the-dots” task. 

(C) Task-modulated areas across two concatenated runs. T-score statistical parametric map threshold at p(corrected) < 

1e-10. White boxes shows ROIs used in part D. (D) Mean scaled fUSI signal from ROIs. White regions are rest blocks; 

grey regions are task blocks. 

In the second task, we asked Patient J to play guitar while we recorded fUSI data. During the rest 

blocks, we instructed him to minimize finger/hand movements, close his eyes, and relax. During the 

task blocks, the patient played improvised or memorized music on a guitar with his right hand 

strumming and his left fingers moving on the fretboard. We identified several regions that were task-

activated, including several that were similar in location to those activated by the connect-the-dots 

task (Figure 6.7A, B).  
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Figure 6.7 Permanent acoustic window allows fUSI detection of guitar playing. 

(A) Functional activity evoked by guitar playing task. T-score statistical parametric map threshold at p(corrected) < 1e-

10. White boxes shows ROIs used in part B. (B) Mean scaled fUSI signal from ROIs. White regions are rest blocks; grey 

regions are task blocks. 

6.3 Discussion 

fUSI presents a host of benefits (e.g., increased sensitivity, resolution, and portability) over 

comparable techniques such as fMRI. However, fUSI cannot penetrate human skull bone while 

maintaining sufficient sensitivity. In this study, we established the feasibility of awake human fUSI 

imaging in a non-surgical setting through a polymeric acoustic window. Before testing this approach 

in humans, we first characterized the acoustic performance of the reconstruction material in in vitro 

and in vivo (rodent) settings. This allowed us to determine feasibility of non-invasive imaging through 

a CCI and optimize the fUSI sequence for maximum sensitivity. We subsequently acquired, for the 

first time, functional activity of the brain using fUSI in an awake behaving adult patient outside of a 

surgery.  

6.3.1 Diagnostics & monitoring after skull reconstruction (clinical use) 

It is currently difficult and expensive to monitor anatomical and functional brain recovery following 

a cranioplasty. Behavioral assessments, such as Cognitive Status Examination, Mini-Mental State 

Examination, or Functional Independence Measure are commonly used to assess neuropsychological 

recovery following traumatic brain injuries (Smith-Knapp et al., 1996; Nabors et al., 1997; de Guise 

et al., 2011), but cannot identify specific sites of damage or track recovery at these anatomical 

locations. Less commonly, CT and/or MRI are used to assess anatomical and functional recovery 

(Scheibel, 2017). However, these methods possess low sensitivity/specificity for assessing brain 

recovery, are expensive (CT + MRI), and can add risk to the patient (CT). Limited studies have 

attempted to use 1D transcranial Doppler (TCD) through the temporal window to predict 6-month 
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clinical outcomes in patients with severe head injuries (Moreno et al., 2000). In this paper, we describe 

how to use fUSI through a CCI. In the future, sonolucent CCIs may enable routine monitoring during 

the postoperative period for both anatomical and functional recovery. We can monitor the recovery 

of individual brain regions and their function, and do so at reduced cost and complexity. Depending 

on the damaged brain regions beneath the cranial implant, specific tasks can be designed to isolate 

and test specific brain circuits for recovery.  

Some TBI patients will develop Syndrome of the Trephined (SoT), a syndrome where they develop 

neurological deterioration following a large craniectomy (Ashayeri et al., 2016). Recording from 

these patients with TBI sequelae or SoT may provide novel insight into the pathophysiology of their 

disease processes and subsequent recovery. 

6.3.2 BMI & neuroscience (research use) 

The ability to measure fUSI signals from adult humans with an acoustic window opens tremendous 

opportunities for BMI and neuroscience research. Approximately 1.7 million people suffer from a 

severe traumatic brain injury each year in the United-States (Georges and M Das, 2023). If only a 

small fraction of these patients receive a sonolucent cranial implant as part of their standard of care, 

it would provide a major opportunity to measure mesoscopic neural activity with excellent 

spatiotemporal resolution and high sensitivity in humans. In those patients with minimal long-term 

neurological damage, it will also enable new investigations into advanced neuroimaging techniques 

and BMIs. As we demonstrated in this paper, fUSI possesses high sensitivity even through the cranial 

implant. 

6.3.3 Future work 

This study demonstrates that functional ultrasound signals can be monitored with high sensitivity 

through a PMMA implant. Future work will be critical for translating this finding into impactful 

clinical applications. As one example, previous researchers have found that transcranial Doppler 

(TCD) can be used to monitor intracranial pressure (ICP) and cerebral perfusion pressure (CPP), two 

important clinical measures for assessing acute and chronic neurological injuries and diseases 

(Rosenberg et al., 2011). fUSI with its high sensitivity and large field of view may be able to measure 

ICP and CPP with higher accuracy and precision than TCD.  

Furthermore, this work may serve as a basis for research and clinical neuroprosthetics, and BMIs. As 

these technologies gain popularity and user base, the need for novel sensing techniques is growing. 

https://www.zotero.org/google-docs/?broken=2oohzg
https://www.zotero.org/google-docs/?broken=2oohzg
https://www.zotero.org/google-docs/?broken=2oohzg
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Current state-of-the-art BMIs use highly invasive electrodes that limits their use to  narrow patient 

populations (e.g. quadriplegia), and typically last less than 5 years. Minimally-invasive techniques 

that maintain high sensitivity and spatiotemporal resolution hold great promise for accelerating the 

field. fUSI through a sonolucent cranial window could be a much safer and less invasive recording 

modality, especially for patient populations already undergoing this procedure. This research platform 

could expand the span of BMI use cases. For example, approximately 280 million people suffer from 

depression worldwide (Institute of Health Metrics and Evaluation, 2019). Although the risk-benefit 

tradeoff of an invasive BMI is currently difficult to justify for these patients, a small sonolucent 

cranial window may provide a more viable solution. This minimally-invasive surgery would enable 

the investigation of ultrasonic “mood” BMIs (Shanechi, 2019). 

6.4 Conclusion 

Recording high-quality, spatiotemporally precise brain signals in humans will be critical to 

developing new evidence-based treatment for neurological and psychiatric injuries and diseases. To 

date, these methods were either highly invasive with high signal quality or non-invasive with low 

spatiotemporal resolution and signal quality. Here, we introduced an intermediate solution: In a 

patient with a polymeric acoustic window, we recorded spatially precise (200 μm) and highly 

sensitive measures of brain function. In certain patient populations, this minimally-invasive cranial 

replacement paired with non-invasive fUSI may be justified to track recovery from neurological 

injuries, monitor neurodegeneration in terminal conditions, and even provide novel therapies 

(ultrasound neurofeedback or neuromodulation). This would not only help researchers to better 

understand the neural circuits affected by brain injuries and disorders, but has clear pathways toward 

clinical translation that could one day benefit patients directly. 

6.5 Materials and Methods 

6.5.1 General 

All analysis was completed in MATLAB 2021a. 

6.5.2 Implant materials 

We tested two different types of cranioplasty materials: polymethyl methacrylate (PMMA) and 

titanium mesh. We used 1-, 2-, and 3-mm thick PMMA disks provided by Longeviti to test the effects 

of different implant thicknesses of signal quality and strength. See details below for more details on 
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the custom PMMA cranial implant designed for Patient J (Chapter 6.5.8). We used 0.6 mm thick 

titanium mesh that had a honeycomb pattern alternating between small and large circles (1.5 mm and 

3 mm diameter; KLS Martin). 

6.5.3 Functional ultrasound imaging 

Functional ultrasound imaging (fUSI) visualizes neural activity by mapping local changes in cerebral 

blood volume (CBV). CBV variations are tightly linked to neuronal activity through the 

neurovascular coupling (Iadecola, 2017) and are evaluated by calculating power Doppler variations 

in the brain (Mace et al., 2013). We used a 7.5 MHz ultrasonic probe (128 elements, 0.300 mm pitch, 

Vermon, Tours, France) connected to a 256-channel Vantage ultrasound system (Verasonics Inc., 

Redmond, WA, USA) controlled by custom MATLAB B-mode and fUSI acquisition scripts. Each 

Power Doppler image was obtained from the accumulation of 300 compounded frames acquired at 

400 Hz frame rate. Each compounded frame was created using 2 accumulations of 5 tilted plane 

waves (-6°, -3°, 0°, 3°, 6°). We used a pulse repetition frequency (PRF) of 4000 Hz. Power Doppler 

images were repeated every ~1.5 seconds. Each block of 300 images was processed using a SVD 

clutter filter (Demené et al., 2015) to separate tissue signal from blood signal to obtain a final Power 

Doppler image exhibiting artificial (for in vitro experiment) or cerebral blood volume (CBV) in the 

whole imaging plane (Fig. 1C). 

6.5.4 In vitro tissue anatomical and doppler phantoms 

We routed 280 µm inner diameter polyethylene tubing through a hollow, box-shaped, 3D-printed, 

nylon cast at three lateral positions and five axial positions (15 grid points, total). We then poured a 

liquid gelatin phantom with graphite added to mimic the scattering effects of biological soft tissue. 

Once the phantom cast had set/solidified, we flowed a red blood cell phantom liquid (CAE Blue 

Phantom™ Doppler Fluid) through the tubing using a peristaltic pump and a long recirculating route 

with a low pass filter to create a smooth flow at velocities of approximately 0.1 mm/s. 

6.5.5 In vivo functional ultrasound imaging comparative study in rat 

Four Long-Evans male rats were used in this study (15-20 weeks old, 500–650 g). During the surgery 

and the subsequent imaging session, the animals were anesthetized using an initial intraperitoneal 

injection of xylazine (10 mg/kg) and ketamine (Imalgene, 80 mg.kg-1). The scalp of the animals was 

removed and the skull was cleaned with saline. A craniectomy was performed to remove a 0.5 mm × 

1 cm portion of the skull by drilling (Foredom) at low speed using a micro drill steel burr (Burr 
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number 19007-07, Fine Science Tools). We took care to avoid damage to the dura and prevent 

inflammation. After surgery, the surface of the brain was rinsed with sterile saline and ultrasound 

coupling gel was placed on the window. The linear ultrasound transducer was positioned directly 

above the cranial window or cranial implant material and we performed fUSI scans during the visual 

experiment described below. 

fUSI with visual stimuli was performed in all animals. Visual stimuli were delivered using a blue 

LED (450 nm wavelength) positioned at 5 cm in front of the head of the rats. Stimulation runs 

consisted of periodic flickering of the blue LED (flickering rate: 5 Hz) using the following 

parameters: 30 s dark, followed by 10 s of light flickering repeated three times for a total duration of 

120 s. At this distance, the light luminance was of 14 lux when the light was on and ~0.01 lux when 

the light was off. 

6.5.6 fUSI data processing 

For the rodent and human in vivo experiments, we used a general linear model (GLM) to find which 

voxels were significantly modulated by the visual task. To perform this GLM, we first preprocessed 

the fUSI data with nonlinear motion correction (Pnevmatikakis and Giovannucci, 2017), spatial 

smoothing (2D Gaussian with sigma=1 (FWHM = 471 um), and a voxelwise moving average 

temporal filter (rat - 2-timepoints; human - 5-timepoints). We then scaled the fUSI signal by its 

voxelwise mean so that all of the runs and voxels had a similar signal range (Chen et al., 2017). To 

generate the GLM regressor for the visual task, we convolved the block task design with a single 

Gamma hemodynamic response function (HRF) (Boynton et al., 1996). For the rodent experiments, 

we used the following HRF parameters: time constant (τ)=0.7, time delay (δ)=1 sec, phase delay 

(n)=3 sec. For the human experiments, we used the following HRF parameters: τ=0.7, δ=3 sec, n=3 

sec. We next fit the GLM using the convolved regressor and the scaled fUSI signal from each voxel. 

We determined statistical significance of the beta coefficients for each voxel using a 2-sided t-test 

with False Discovery Rate (FDR) correction (p (corrected) < 1e-5).  

6.5.7 Decompressive hemicraniectomy and reconstruction procedure 

Patient J underwent a decompressive hemicraniectomy to relieve intracranial pressure following a 

severe traumatic brain injury on April 9, 2019. The approximate size of the hemicraniectomy was 16 

cm in the anterior-posterior axis by 10 cm in the dorsal-ventral axis (Fig. 4B). A 700 um isotropic 

anatomical MRI was acquired shortly after the hemicraniectomy. The patient underwent a 
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cranioplasty to repair the skull defect with the custom skull implant on September 22, 2021. CL 

performed these surgeries at Keck Hospital of USC. 

6.5.8 Skull implant design 

The PMMA skull implant (Longeviti ClearFit) was designed to fit the hemicraniectomy and match 

the geometry of the right side of the intact skull. The implant was 4-mm thick to match the patient’s 

nominal bone thickness except for a 34 x 50 mm parallelogram-shaped “window” of 2 mm thick 

PMMA positioned over the area of the brain known to be active during finger tapping, based on the 

results of a functional MRI experiment.  

6.5.9 Human participant 

We recruited and consented a 37-year-old male participant (Patient J) with a traumatic brain injury to 

participate in a research study examining the ability to record functional ultrasound signals through a 

custom cranial implant. All procedures were approved by the Institutional Review Boards (IRB) of 

the University of Southern California (USC), California Institute of Technology (Caltech), and 

Rancho Los Amigos National Rehabilitation Hospital (RLA). All fUSI study sessions took place at 

Caltech. All CT and MRI scans occurred at the Keck Hospital of USC. 

6.5.10 Human fUSI task 

Patient J sat in a reclining chair with a 27-inch fronto-parallel screen (Acer XB271HU) positioned 70 

cm in front of him. Patient J controlled the behavioral task using a Logitech F310 Gamepad. We used 

Gopher (https://github.com/Tylemagne/Gopher360) to enable control of the computer with the 

Logitech Gamepad. Right thumbstick controlled the position of the computer cursor while the left 

shoulder button functioned as the left mouse button. We used a block design for the drawing task with 

30 or 60 frame rest blocks followed by 30 frame blocks of drawing with the Gamepad. We verbally 

instructed the patient for each rest or task block. The patient was instructed to complete one of 

multiple “Connect-The-Dots” drawings (Fig. 6B). When the patient finished one of the drawings, we 

presented a new drawing for him to complete. For the rest blocks, we instructed the patient to close 

their eyes and try to keep their mind relaxed. We acquired fUSI data at 0.6 Hz (1.65 sec/frame). 

For the guitar playing task, we used an identical block design with 60 frame rest blocks followed by 

30 frame task blocks. In the task blocks, the patient used his left hand to form chords on the fretboard 

and his right hand to strum the strings.  

https://github.com/Tylemagne/Gopher360
https://github.com/Tylemagne/Gopher360
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6.5.11 Task decoding 

To decode whether a given timepoint was in a “task” or “rest” block, we used principal component 

analysis combined with a support vector machine (PCA+SVM). We first labeled each motion-

corrected fUSI timepoint (“sample”) as “rest” or “task”. We then balanced the dataset to have equal 

number of “rest” and “task” timepoints. We then split the dataset at the level of block pairs (1 block 

pair = rest+task) to avoid training the classifier on time points immediately adjacent to the test time 

points. This helps ensure that the model would generalize and that our model was not “memorizing” 

local patterns for each block pair. We then applied a 2D Gaussian smoothing filter (sigma=1) to each 

sample in the train and test sets. We then preprocessed the train set with a 50-window detrend to 

remove drift across the run and voxelwise z-score across time. We then trained and validated the 

PCA+SVM classifier using a blockwise leave-one-out cross-validator; i.e., we trained on 5 blocks 

and then tested on the held-out block pair’s timepoints.   
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7 Conclusion 

7.1 Summary of current work 

This dissertation is a novel exploration of how an emerging neurotechnology, functional ultrasound 

imaging (fUSI), can help elucidate the mesoscopic representation of action variables (movement 

direction, task state, and reward) within PPC and how this technology can be used to develop less-

invasive, yet high-performing, BMIs.  

We first explored how saccadic movement direction was represented within and across different 

coronal PPC planes (Chapter 3). Discrete cortical patches encoded for different movement directions 

and enabled offline decoding of intended movement direction on individual trials. These cortical 

patches were stable across many months to years, suggesting that fUSI-based decoders would need 

minimal, if any, retraining on new sessions before they would have high decoding accuracy. We 

additionally confirmed a rough topography across LIP where cortical patches in anterior LIP more 

often encoded for contralateral upward directions while cortical patches in posterior LIP more often 

encoded for contralateral downward directions. Additionally, there was no statistically significant 

difference in decoder performance trained on the different coronal planes. This demonstrated that 

unique information about movement direction was distributed across the anterior-posterior aspects of 

LIP and suggested that an optimal fUSI-based decoder should capture information from a 3D volume 

rather than isolated coronal planes.  

In Chapter 4, we explored how non-directional signals were encoded within PPC, including task 

state and variables related to action desirability. Trial-averaged fUSI revealed complex 

spatiotemporal patterns for the different states of the memory-guided saccade task. We could leverage 

linear fUSI-based decoders to predict the task state from single timepoints at well above chance level. 

Since the performance was ~60% (chance level 20%) with the highest confusion for temporally-

adjacent states, we proposed improved decoder models that would incorporate temporal information, 

such as including a Hidden Markov Model in the decoder algorithm.  

We additionally identified small mesoscopic populations within the dorsal LIP modulated by reward 

magnitude. These populations had increased hemodynamic activity for larger reward sizes. Using a 

linear fUSI-based decoder, we could simultaneously decode intended movement direction and 

expected reward magnitude. This supported that fUSI was sensitive to detect weaker non-directional 
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signals from PPC and would be a good candidate for neuropsychiatric BMIs aimed at decoding mood 

states. 

Having demonstrated the types of signals that we could robustly decode from the PPC, we next 

developed an online, closed-loop ultrasonic BMI (i.e., fUSI-BMI) and trained two monkeys to use it 

for multiple directions of eye or hand movements (Chapter 5). Both monkeys could control the fUSI-

BMI at well above chance level for two directions of reach movements and eight directions of eye 

movements. We additionally demonstrate that we can pretrain the fUSI-BMI using data from a 

previous session and that this allowed us to start decoding above chance level from close to the start 

of the session, even without retraining the model. This built upon our earlier work (Norman et al., 

2021) where we had previously demonstrated the first proof-of-concept real-time fUSI-BMI using 

offline pre-recorded data. This chapter demonstrated the first high-performance ultrasonic BMI and 

supports future work on developing ultrasonic BMIs for other applications, such as detecting aberrant 

mood states (e.g., depression or anxiety) and restoring patients to more euthymic states (e.g., less 

depressed or anxious). 

In pursuit of developing an ultrasonic BMI with human applications, we finally presented work where 

we recorded fUSI signals in an awake, behaving human through a sonolucent skull replacement 

(Chapter 6). To do this, we first characterize our ability to record fUSI signals through titanium mesh 

and different thickness polymethyl methyl acrylate (PMMA), two materials used for cranioplasties. 

Using our Doppler phantom, fUSI could detect functional signals through all the materials although 

the signal-to-noise ratio was inversely correlated with the PMMA thickness and was the worst in the 

titanium mesh. We next test the different cranioplasty materials in an in vivo rodent model. In 

agreement with the in vitro tests, fUSI sensitivity was inversely proportional to implant thickness and 

was worst in the titanium mesh. Finally, we tested fUSI in a human who received a PMMA 

cranioplasty with a 2-mm thinned window positioned above the posterior frontal lobe and anterior 

parietal lobe. While our subject performed a variety of blocked tasks, including connect-the-dot with 

a videogame controller and playing guitar, we could robustly detect task-related signals. We 

subsequently registered our fUSI imaging plane to previously acquired anatomical MRIs and 

identified that we had been recording above the hand region of the primary sensory cortex and the 

supramarginal gyrus, an area implicated in complex tool use and speech generation. The results 

presented in this chapter are the first high-quality fUSI images in an awake behaving human and we 
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propose some future directions of this work to continue translating pre-clinical fUSI results from 

rodents, monkeys, and other species into human applications. 

7.2 Future directions 

We presented work on a wide range of topics, including functional ultrasound neuroimaging, stability 

of mesoscopic populations across time, and encoding of action within PPC. This creates numerous 

opportunities for further interdisciplinary investigations that range from improved functional 

ultrasound acquisition methods to novel methods for cortical layer analyses to tracking learning in 

mesoscopic populations across months. We highlight a few possible extensions below. 

7.2.1 Neuropsychiatric BMIs for treating mood disorders 

Approximately 600 million, or approximately 10% of, people worldwide suffer from depression, 

anxiety, or other mood disorders (Dattani et al., 2021), making it a massive public health crisis (Lopes 

et al., 2022). The most common therapies consist of medications and/or behavioral therapy. However, 

medications and therapy only works for ~33% of patients, with the rest being treatment-resistant 

(Rush, 2023). Other therapies include electroconvulsive therapy (Espinoza and Kellner, 2022), 

transcranial magnetic and direct current stimulation (Loo et al., 2012; Xie et al., 2013), vagus nerve 

stimulation (Rush et al., 2005; Martin and Martín-Sánchez, 2012), and electrical stimulation via deep 

brain stimulation electrodes (Dougherty et al., 2015; Bergfeld et al., 2016; Holtzheimer et al., 2017). 

These methods have various downsides, including variable efficacy, invasiveness, and cognitive side 

effects (Delaloye and Holtzheimer, 2014). 

One area of ongoing research to help these people with treatment-resistant depression is to develop 

BMIs for neuropsychiatric applications (Shanechi, 2019). This may help patients who have exhausted 

other treatments while also developing novel therapies with fewer adverse effects. If aberrant moods 

can be detected before they become severe, then less medication, therapy, or other treatments may be 

needed to restore them to a euthymic state or abort their aberrant mood progression. Ideally, the BMI 

would measure a brain signal, or biomarker, that is highly correlated with different mood states. When 

the beginning of an aberrant mood state is detected, the BMI could adjust the therapy, such as 

precisely stimulating specific brain regions (Scangos et al., 2021b). Many researchers have tried to 

identify biomarkers of different mood disorders, specifically whether someone is currently in an 

aberrant mood state, but it has proven challenging (Insel, 2014; Williams, 2016; Bouthour et al., 

2019). Recently, researchers demonstrated the first closed-loop BMI for treatment-resistant 
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depression (Scangos et al., 2021a) in a single patient with depth electrodes (NeuroPace RNS System) 

placed in amygdala (sensing) and ventral capsule/ventral striatum (stimulation). Despite the promise 

of this technique, electrode-based sensing technologies have their limitations for neuropsychiatric 

applications. First, the electrodes can only sample from very small portions of the brain (Figure 2.1), 

making it difficult to precisely position the electrode(s) in locations that are effective for recording 

relevant signals or stimulating relevant brain circuits. Second, the electrophysiology signals drift 

across multiple hours to days, making it challenging to consistently record the same neural population 

that are predictive of different mood states. Third, the inflammatory response to depth electrodes 

typically leads to signal degradation within a few years, impairing the ability to sense mood 

biomarkers. 

fUSI is a technique that may be ideally suited for a neuropsychiatric BMI. It can record from 

distributed brain regions via one or more transducers; the hemodynamic signal it measures varies on 

the order of minutes, thus matching the same timescale as mood; it can track the same anatomical 

volumes with high precision across days and months; it can be made portable (unlike fMRI); and it 

can potentially be used for ultrasound neuromodulation (Darmani et al., 2022). We believe there is 

tremendous opportunities for research along this direction, such as recording fUSI signals in patients 

with hemicraniectomies or sonolucent skull replacements from brain areas implicated in mood 

disorders (thalamus, amygdala, prefrontal cortex, etc.) while also tracking their mood states. 

7.2.2 4D fUSI-BMI 

All of the work in this dissertation used 3D (2D + time) fUSI acquisition with a linear ultrasound 

transducer. There has been tremendous progress in the last several years towards developing 4D (3D 

+ time) fUSI acquisition systems with high sensitivity (Rabut et al., 2019; Brunner et al., 2020, 2021). 

As these systems become faster and more accessible to a wide range of researchers, they will enable 

a better understanding of the mesoscopic functional organization of entire brain regions. In Chapter 

3, we recorded data from planes spaced 1.667 mm apart across multiple different sessions and found 

a rough topography. A volumetric fUSI system would have allowed us to collect fewer sessions of 

data. Additionally, it would have enabled us to track the spatiotemporal hemodynamic patterns that 

propagate throughout PPC rather than just within a narrow 2D imaging plane. 

Additionally, the real-time fUSI-BMI would likely benefit from additional information captured by 

an entire volume rather than isolated planes in at least two regards. First, it would improve the 
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coregistration across days and likely improve the decoder’s stability. Second, different planes have 

different preferred directions so that may lead to fUSI decoders with higher performance. 

7.2.3 fUSI-guided electrophysiology 

One of the challenges associated with invasive electrophysiology is identifying where to record. 

Historically, this was based upon lesion studies where removing certain parts of the brain affected 

certain behaviors. More recently, researchers have used fMRI to identify areas with macroscopic 

activity related to specific tasks. However, it remains challenging to precisely position invasive 

electrodes to the desired target. This is particularly difficult for small subcortical targets, such as the 

caudate tail, claustrum, or specific thalamic nuclei. Electrophysiologists frequently use guide grids 

with evenly spaced holes every 0.5-1 mm, but even with that, there is tremendous day-to-day 

variability in location of the electrode, especially for deep brain structures where small changes in 

penetration angle leads to recording from very different anatomical locations. Electrophysiologists 

frequently rely upon nearby anatomical structures to help identify where their electrode is on a given 

day. For example, for targeting the caudate tail, researchers will typically first find the boundaries of 

the lateral geniculate nucleus (LGN), a structure with well characterized visual response patterns, and 

then move their electrode lateral a few millimeters on subsequent recording sessions. fUSI can help 

with this problem. It can be used to identify mesoscopic locations with task-relevant activity. It can 

also be used to image the electrode itself and see where the electrode is in real-time relative to the 

ultrasound imaging plane or volume. A similar approach was used previously with B-mode 

ultrasound (Glimcher et al., 2001). 

In addition to guiding placement of invasive electrodes, it can be used as a complementary recording 

technology to understand how localized activity within a small volume is related to broader activity 

in the entire region. Similar methods have already been used to better understand the relationship 

between the mesoscopic CBV changes measured by fUSI and the activity of individual or multiple 

neurons measured by electrophysiology or calcium imaging (Boido et al., 2019; Aydin et al., 2020; 

Bourgeais-Rambur et al., 2022; Nunez-Elizalde et al., 2022). 

7.3 Final thoughts 

Taken together, the work presented here is a novel characterization of how functional ultrasound 

neuroimaging may enable a new generation of BMIs. Additionally, this dissertation provides a large 
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corpus that supports fUSI as a robust and accessible neuroimaging technique for future neuroscience 

questions about mesoscopic populations and their interrelationships throughout the brain. 

Functional ultrasound imaging is a rapidly advancing neurotechnology for pre-clinical and clinical 

research. We highlighted several applications, both human and nonhuman, for this technology, 

including ultrasonic BMIs and imaging through sonolucent skull replacements. We believe this 

technology will continue to develop rapidly and become a valuable tool for elucidating answers to 

currently difficult, if not intractable, neuroscience questions.  
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