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ABSTRACT

Prediction of the linear amplification of disturbances in hypersonic boundary layers
is challenging due to the presence and interactions of discrete modes (e.g. Tollmien-
Schlichting and Mack) and continuous modes (entropic, vortical, and acoustic).
While direct numerical simulations (DNS) and global analysis can be used, the large
grids required make the stability calculations expensive, particularly when a large
parameter space is required. At the same time, parabolized stability equations are
non-convergent and unreliable for problems involving multi-modal and non-modal
interactions. We therefore apply the One-Way Navier-Stokes (OWNS) Equations
to study transitional hypersonic boundary layers. OWNS is based on a rigorous,
approximate parabolization of the equations of motion that removes disturbances
with upstream group velocity using a higher-order recursive filter. We extend
the original algorithm by considering non-orthogonal curvilinear coordinates and
incorporate full compressibility with temperature-dependent fluid properties. The
generalized OWNS methodology is validated by comparing to DNS data for flat
plates and a sharp cone, and to linear stability theory results for local disturbances
on the centerline of the Mach 6 HIFiRE-5 elliptic cone. OWNS provides DNS-
quality results for the former flows at a small fraction of the computational expense.
We further demonstrate the capability of OWNS to track fully 3D instabilities by
applying the algorithm to a complex Mach 6 finned-cone geometry as well as a 3D
Mach 1.5 turbulent jet.

It is often desirable, especially for design purposes, to compute worst-case distur-
bances, i.e. solving the inverse problem, otherwise known as resolvent or input-
output analysis. While DNS and global analysis can be used to compute optimal
forced responses, their large computational expense render these tools less practical
for large design parameter spaces. We address this issue by modifying the original
OWNS framework to find the optimal forcing and responses using Lagrangian mul-
tipliers via an iterative, adjoint-based, space-marching technique that appreciably
reduces the computational burden compared to the global approach that uses sin-
gular value decomposition without sacrificing accuracy. The input-output OWNS
model is validated against optimal forcings and responses of a Mach 4.5 flat-plate
boundary layer from literature and a Mach 1.5 turbulent jet. We then apply these
equations to study worst-case disturbances on the centerline of the Mach 6 HIFiRE-5
elliptic cone and on a highly cooled Mach 6 flat-plate boundary layer.
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Although the worst-case forcings are theoretically informative, they are not physi-
cally realizable. In natural receptivity analysis, disturbances are forced by matching
local solutions within the boundary layer to outer solutions consisting of free-stream
vortical, entropic, and acoustic disturbances. We pose a scattering formalism to re-
strict the input forcing to a set of realizable disturbances associated with plane-wave
solutions of the outer problem. The formulation is validated by comparing with DNS
of a Mach 4.5 flat-plate boundary layer. We show that the method provides insight
into transition mechanisms by identifying those linear combinations of plane-wave
disturbances that maximize energy amplification over a range of frequencies. We
also discuss how the framework can be extended to accommodate scattering from
shocks and in shock layers for supersonic flow.
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NOMENCLATURE

Variables

(𝜉, 𝜂, 𝜁) = Streamwise, wall-normal/radial, and spanwise coordinates
(𝑥, 𝑦, 𝑧) = Global Cartesian coordinates
(𝑁𝜉 , 𝑁𝜂, 𝑁𝜁 ) = Streamwise, wall-normal/radial, and spanwise resolution
𝑀 = Mach number
𝑇 = Temperature
𝜈 = Kinematic viscosity
𝑝 = Pressure
𝑎 = Speed of sound
𝑐Φ = Phase speed
𝜌 = Density
𝑘 = Thermal conductivity
𝜇 = Dynamic viscosity
𝑐𝑣 = Isochoric specific heat capacity
𝑐𝑝 = Isobaric specific heat capacity
u = Velocity vector defined as (𝑢, 𝑣, 𝑤)𝑇

𝑅𝑒∗ = Unit Reynolds number
𝛼 = Complex streamwise wavenumber defined as 𝛼𝑟 + 𝑖𝛼𝑖

𝛽 = Spanwise wavenumber
𝜅 = Bulk viscosity
𝛾 = Specific heat ratio
𝑅 = Gas constant
𝑁𝑏 = Order of one-way approximation for OWNS

𝛿∗0 = Inlet Blasius length scale defined as
√︃

𝜈∗∞𝑥
∗
0

𝑢∗∞

𝐷∗ = Jet diameter
𝛿 = Boundary/jet-layer thickness
𝛿𝑖 𝑗 = Kronecker delta
𝛿𝑖
𝑗

= Mixed Kronecker delta (dot product between co/contravariant basis vectors)
𝑡 = Time
𝑓 ∗ = Disturbance frequency
𝜔 = Angular disturbance frequency
𝐹 = Non-dimensional frequency defined as 𝜔∗𝜈∗∞

𝑢∗2∞
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𝑆𝑡 = Non-dimensional frequency defined as 𝑓 ∗𝐷∗

𝑢∗
𝑗

𝑁 = Disturbance amplification factor
B𝒑 = Primitive input restriction matrix
C 𝒑 = Primitive output restriction matrix
𝑾 𝒇 = Characteristic input weighting matrix
𝑾‡ = Characteristic output weighting matrix

Superscripts

𝐻 = Hermitian transpose
∗ = Dimensional quantities
‡ = Approximate OWNS operators
ˆ = Unit vector

Subscripts

∞ = Free-stream conditions
𝑒 = Boundary-layer edge conditions
𝑤 = Wall conditions
𝑗 = Conditions at the jet nozzle exit
𝑝 = Primitive variables
𝜙 = Characteristic variables
+ − 0 = Plus, minus, and zero characteristics
0 = Inlet plane
1 = Outlet plane

The nomenclature outlined above holds true for the entirety of the thesis unless
otherwise stated for a specific section.
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C h a p t e r 1

INTRODUCTION

1.1 Challenges of hypersonic boundary-layer transition
Developing an in-depth understanding of hypersonic laminar-to-turbulent transition
will help formulate methods to control aerodynamic and thermal loads. For example,
due to the difficulty of predicting the onset of turbulence, the take-off mass of the
US National Aerospace Plane (NASP/X-30) was affected by a factor of two or
more (Hirschel, 2005). Thus, it is of utmost importance to understand the state
of the aerodynamic boundary layer throughout the flight trajectory for optimal
vehicular design. We will first review the fundamentals of high-speed boundary-
layer transition and thereafter describe the current tools used to predict the onset of
transition.

For idealized flow conditions, i.e. slender geometries experiencing minor pressure
gradients (if at all) and low free-stream perturbations, at subsonic and low supersonic
speeds, natural transition is due to the first mode which is characterized by the
amplification of Tollmien-Schlichting (T-S) waves (Fedorov, 2011). This occurs
when the boundary layer is receptive to infinitesimal disturbances (e.g. surface
roughness). The disturbance waves, which are intrinsically hydrodynamic, amplify
as they travel downstream until they reach a finite amplitude of ≈1% of the free-
stream velocity in which then three-dimensional velocity and pressure fluctuations
appear along with hairpin eddies (Zhong and Wang, 2012; Hirschel, 2005). The
flow then exhibits nonlinear breakdown where the streamwise stretched vortices
cascade energy to smaller structures. Turbulent spots begin to appear after which
the flow becomes fully turbulent.

In contrast, at hypersonic speeds (M > 4), natural transition is far more complex due
to the presence and interaction of multiple discrete modes including the first, sec-
ond, and higher-order modes as denoted by Mack (1984) and Mack (1969). Second
and higher-order modes are characterized by convectively amplified streamwise-
propagating acoustic disturbances usually in the ultrasonic range. Several numerical
(Sivasubramanian and Fasel, 2014; Sivasubramanian and Fasel, 2015; Sivasubra-
manian, Sandberg, et al., 2007) and experimental (Demetriades, 1960; Demetriades,
1974; Fischer and Wagner, 1972; Kendall, 1975; Kimmel, Demetriades, and Don-
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aldson, 1996; Stetson and Kimmel, 1992; Stetson, Kimmel, et al., 1991; Stetson,
1983) works have substantiated the existence of such instabilities. These distur-
bances approximately behave as acoustic waves reflecting between the solid wall
and the relative sonic line (Fedorov, 2011). The second Mack mode is usually the
dominant instability in zero-pressure-gradient boundary layers at hypersonic speeds
with insulated walls. Even with the aforementioned simplified conditions, the sec-
ond mode becomes unstable due to a complex synchronization of fast (Mode F) and
slow (Mode S) discrete modes that originate from upstream/downstream acoustic
branches relative to a supersonic local velocity (Fedorov and Tumin, 2011). Addi-
tionally, it has been shown that the first mode along with other instabilities, such as
the concave-wall Görtler instability (Saric, 1994), the supersonic mode (Knisely and
Zhong, 2019a; Knisely and Zhong, 2019b), and three-dimensional crossflow insta-
bility (Arnal and Casalis, 2000; Saric, Reed, and White, 2003) interact with and/or
modify the acoustic properties of the second mode (e.g. Görtler-modified azimuthal
Mack-modes (Kuehl and Paredes, 2016)). Thus, efficient predictive tools capable
of capturing these multi-modal instabilities are critical for engineering design.

Cool surfaces can destabilize the second Mack mode at even lower Mach numbers.
Bitter and Shepherd (2015) demonstrated that Mode F (the fast acoustic mode)
can become destabilized over a broad range of frequencies. Under high wall-
cooling, this mode can synchronize with the slow acoustic branch causing an acoustic
emission at a Mach angle corresponding to the relative phase speed. This additional
mode, referred to as the supersonic mode (Knisely and Zhong, 2019a; Knisely and
Zhong, 2019b), can elongate and modulate the disturbance within the boundary layer
(Chuvakhov and Fedorov, 2016). Thus, high-speed transition with the presence of
wall-cooling adds an additional layer of complexity with the potential involvement
of the supersonic mode.

Current tools to predict boundary-layer transition include direct numerical simu-
lations (DNS) and its linear counterparts such as global stability analysis, local
linear stability theory (LST), and parabolized stability equations (PSE). Although
global methods are most accurate, they are computationally intensive, especially
with complex geometries. LST is more computationally efficient but typically em-
ploys the parallel-flow assumption that introduces error as seen in Ma and Zhong
(2003a), which studies the stability characteristics of a Mach 4.5 flat-plate boundary
layer. PSE may seem to be the optimal method between DNS and LST, but there
are intrinsic disadvantages. Instead of formally deriving a one-way operator, PSE
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achieves a stable spatial march by numerically damping all upstream-propagating
waves, as well as a subset of the downstream-propagating ones, by using an implicit
streamwise discretization along with a restriction on the minimum step-size, or by
explicitly adding damping terms to the equations (Towne, Rigas, and Colonius,
2019). In either form, the associated damping prevents the upstream waves from
destabilizing the spatial march, but also has the unintended consequence of damp-
ing and distorting, to differing degrees, all of the downstream waves. This has, in
turn, profound negative consequence for non-modal instabilities that are associated
with an interacting group of stable modes and for flows with more rapid streamwise
evolution (Towne, Rigas, and Colonius, 2019). To clarify, modal instabilities are in-
stabilities associated with a single temporally or spatially amplified discrete mode of
the spectrum. Non-modal instabilities, however, can lead to transient amplification
due to interaction of stable modes even when there are no unstable modes (Schmid,
2007). In spatial analysis, this phenomena is represented by spatial amplification
at a prescribed frequency. Finally, the minimum step size associated with the regu-
larization of the equations leads to non-convergence in many cases of interest. For
instance, the synchronization region between Mode F and Mode S, which leads
to the second Mack mode instability, can exhibit spectrum singularities (Fedorov,
2011) which may lead to rapid disturbance variation and thus require high spatial
resolution to accurately capture the physics. In essence, using PSE and LST as
engineering tools for boundary-layer transition prediction is suboptimal due to their
inability to accurately model receptivity, non-modal and multi-modal instabilities
along with the synchronization and coalescence of discrete modes with continuous
branches which is relevant for hypersonic boundary layers (Chuvakhov and Fedorov,
2016; Bitter and Shepherd, 2015).

1.2 One-Way Navier-Stokes (OWNS) Equations
We alleviate the aforementioned deficiencies in PSE by introducing a novel marching
technique, the One-Way Navier-Stokes (OWNS) Equations. Originally developed
for hyperbolic equations (e.g. Euler), OWNS employs a rigorous parabolization
technique to generate well-posed, one-way approximations (Towne, 2016; Towne
and Colonius, 2013; Towne and Colonius, 2015; Towne, Rigas, Kamal, et al., 2022).
Efficient (fast) approximations of the resulting operator can then be made using re-
cursive filters that were originally developed for non-reflecting boundary conditions
(NRBC). Since OWNS tracks the full spectrum of downstream-propagating modes
without any damping, it is an efficient tool to study multi-modal and non-modal insta-



6

PSE

OWNS

G
lo

b
a
l

(D
is

c
re

ti
ze

 in
 x

yz
)

Entropy
Vorticity

Acoustic
downstreamAcoustic

upstream
M

a
rc

h
in

g
 M

e
th

o
d

s

(D
is

c
re

ti
ze

 in
 y

z,
 m

a
rc

h
 in

 x
)

Figure 1.1: Global versus marching methods PSE and OWNS on a flat-plate
boundary layer. In PSE, the linearized Navier-Stokes equations are regularized
to damp the upstream modes, whereas in OWNS the equations are parabolized
by filtering out modes with upstream group velocity, similar to applying a
NRBC. Figure from Towne, Rigas, Kamal, et al. (2022).

bilities at a computational expense comparable to other low-cost stability/transition
codes such as LASTRAC (Chang, 2004). The only restriction is the paraboliza-
tion itself – meaning that OWNS can be applied to flows such as boundary and
free-shear layers that are dominated by convective instabilities, i.e. flows lacking
feedback (global instability). Finally, and importantly, unlike PSE, the OWNS al-
gorithm is convergent and not restricted to a dominant wavelength. A schematic
comparing the global, PSE, and OWNS methods on a flat-plate boundary layer is
shown in Fig. 1.1.

From a computational perspective, assuming 𝑁𝜉 > 𝑁𝑏, where 𝑁𝑏 is the number of
recursion parameters used in OWNS to remove upstream waves, OWNS provides
a CPU-cost (FLOPS) and memory speedup by factors of 𝑁 𝑙−1

𝜉
/𝑁 𝑙

𝑏
and 𝑁𝑚

𝜉
/𝑁𝑚

𝑏
,

respectively, where the factors 1 < 𝑙 ≤ 3 and 1 < 𝑚 ≤ 2 depend on the sparsity and
structure of the matrix to be inverted, and the efficiency of the algorithm employed
(Duff, Erisman, and Reid, 2017). The significant savings in memory, and, for
sufficiently large 𝑁𝜉 , significant savings in FLOPS compared to global methods
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allow problems that would normally require high-performance computing resources
to be solved on a laptop.

1.3 Input-output analysis
In traditional stability analyses, we analyze how incident disturbances evolve into
flow instabilities. However, for design problems, the inverse study is often more
useful: what are the worst-case disturbances that lead to the fastest transition from
laminar to turbulent flows? Recently, a new technique referred to as resolvent or
input-output analysis has been introduced that combines the linear receptivity and
instability problem via optimization techniques, such as singular value decomposi-
tion (SVD), to determine surface or volumetric inhomogeneities, i.e. inputs, that
lead to maximal amplification of disturbances, i.e. outputs. Trefethen et al. (1993)
introduced studying the pseudospectra of the “linearized Navier-Stokes evolution”
operator as a tool for understanding non-modal amplification of disturbances in
Couette and Poiseuille flows. Monokrousos et al. (2010) used the input-output
framework to determine optimal amplification in the spatially evolving flat-plate
boundary layer, and it has subsequently been used in a variety of contexts, including
extensions to computing optimal disturbances in turbulent mean flows (Schmidt et
al., 2018). Owing to their large computational requirements, these global analyses
were only tractable for simple geometries at low speeds initially, but with recent
advancements in computer architecture, their extension to high-speed flows has now
gained traction (Nichols and Lele, 2011; Nichols and Candler, 2019; Cook, Knut-
son, et al., 2020; Cook and Nichols, 2022; Lugrin et al., 2021; Bugeat et al., 2019;
Bae, Dawson, and McKeon, 2020). There have also been contemporary method-
ological advancements pertaining to the nature of the optimal forcing, such as using
sparsity-promoting norms in computing localized forcing structures (Skene et al.,
2022).

While promising results have been shown, their routine application to practical,
in-flight geometries would involve complex algorithms and large-scale computing.
In this thesis, we address this issue by modifying the original OWNS framework to
find the optimal forcing and responses using Lagrangian multipliers via an iterative,
adjoint-based, space-marching technique that appreciably reduces the computational
burden compared to the global approach without sacrificing accuracy.
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1.4 Natural boundary-layer receptivity
Natural boundary-layer receptivity analyses determine how free-stream vortical,
entropic, and acoustic waves excite instabilities. Several approaches have been
developed to accomplish this inner-to-outer matching, such as forcing a flat-plate
boundary layer with an induced traveling wave having a frequency of an incident
acoustic wave and a wavenumber associated with surface irregularities (Crouch,
1992). However, many studies (Goldstein, 1983; Duck, Ruban, and Zhikharev,
1996; Qin and Wu, 2016; Ruban, Keshari, and Kravtsova, 2021) still rely upon
asymptotic expansions, which often require additional approximations such as re-
strictions to low frequencies (Fedorov, 2003). Although DNS can alleviate these
challenges, many (expensive) calculations are needed to characterize the dominant
natural receptivity mechanisms. A powerful tool, especially for design problems,
would be to determine the worst-case free-stream disturbances that lead to maximal
amplification, alluding to the possibility of coupling natural boundary-layer recep-
tivity to the aforementioned input-output analysis. We first highlight that although
the inputs for the optimization problem can be readily restricted to subspaces by, for
example, forcing only in certain equations (mass, momentum, or energy), and/or in
certain flow regions (e.g. Jeun, Nichols, and Jovanović (2016)), the resulting inho-
mogeneous problem is not physically realizable, in the sense that the sources are
unconnected to any physical mechanism that produces them. Thus, a new method-
ology is proposed in this thesis that employs a scattering formalism to restrict
input-output analysis to forcings that are associated with free-stream disturbances.

1.5 Outline of thesis
The remainder of the thesis is organized as follows. We begin by generalizing
the original OWNS formulation by using a non-orthogonal curvilinear coordinate
system and the fully compressible Navier-Stokes equations, including variation of
fluid properties, in Sec. 2. We validate the new algorithm to 2D numerical/LST
solutions of adiabatic and highly cooled flat-plate boundary layers, an isothermal
sharp cone, and the centerline of the Mach 6 HIFiRE-5 elliptic cone (Kimmel,
Adamczak, et al., 2010). Thereafter, we demonstrate the capability of OWNS
to track fully 3D instabilities in Sec. 3 by applying the algorithm to a complex
Mach 6 finned-cone geometry as well as a Mach 1.5 turbulent jet. In Sec. 4, we
tackle the inverse problem of determining the worst-case disturbances using the
OWNS equations, which considerably reduces the computational burden relative to
global techniques using SVD. The methodology is validated to a Mach 4.5 flat-plate
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boundary layer from literature and a Mach 1.5 turbulent jet. We then apply this
technique to study the optimal forcings and responses along the centerline of the
Mach 6 HIFiRE-5 elliptic cone and of a Mach 6 cooled-wall flat-plate boundary layer.
In the penultimate section, Sec. 5, we address the issue of the physical realizability
of the input forcings in input-output analyses. Specifically, we develop a scattering
technique that restricts the forcings to those associated with free-stream disturbances
to study natural boundary-layer receptivity. Finally, we conclude and outline future
work in Sec. 6. Note that Sec. B provides details of the newly developed stability
code, Caltech Stability and Transition Analysis Toolkit (CSTAT), that encompasses
the OWNS methodology and is used for all stability calculations in this thesis.
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C h a p t e r 2

GENERALIZED OWNS ALGORITHM

This chapter uses the non-orthogonal curvilinear coordinate system and the various
grid-related nomenclature from Sec. A. Here we generalize the OWNS methodology
for application to complex geometries using the aforementioned coordinate system
across all speed regimes with full compressibility effects including temperature-
dependent fluid properties. The derivation of the OWNS equations from the gen-
eralized Navier-Stokes equations is presented for both the homogeneous and inho-
mogeneous stability problems, along with the new algorithm used to compute the
recursion parameters for jets and boundary layers. We validate this generalized
OWNS technique to various hypersonic boundary-layer flows, ranging from flat
plates to the Mach 6 HIFiRE-5 elliptic cone.

2.1 Linearized equations of motion
The non-dimensional, compressible Navier-Stokes equations for an ideal gas can be
written in tensor form as

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒖) = 0, (2.1a)

𝜌
𝐷𝒖

𝐷𝑡
+ 𝒈−1∇𝑝 =

1
𝑅𝑒

∇ · 𝝉, (2.1b)

𝜌𝑐𝑝 (𝑇)
𝐷𝑇

𝐷𝑡
− 𝐷𝑝

𝐷𝑡
=

1
𝑃𝑟𝑅𝑒

∇ ·
(
𝑘 (𝑇)𝒈−1∇𝑇

)
+ 1
𝑅𝑒

(𝝉 : 𝒈∇𝒖) , (2.1c)

𝝉 = 2𝜇(𝑇)𝑺 + 𝜅(𝑇) (∇ · 𝒖)𝒈−1, (2.1d)

𝑆 =
1
2

(
∇𝒖𝒈−1 + (∇𝒖𝒈−1)𝑇 − 2

3
(∇ · 𝒖)𝒈−1

)
, (2.1e)

𝑝 =
𝛾∞ − 1
𝛾∞

𝜌𝑇, (2.1f)

𝑅𝑒 =
𝜌∗∞𝑎

∗
∞L

∗

𝜇∗∞
, (2.1g)

𝑃𝑟 =
𝜇∗∞𝑐

∗
𝑝∞

𝑘∗∞
, (2.1h)

where asterisks denote dimensional quantities. All relevant variables have been
non-dimensionalized with a characteristic length scale L∗ (later chosen as either the
inlet Blasius scale 𝛿∗0 or jet diameter 𝐷∗), as well as characterisitc speed, density,
and temperature scales, 𝑎∗∞, 𝜌∗∞, and 𝑎∗2∞/𝑐∗𝑝∞, respectively. Furthermore, the
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fluid properties are normalized with appropriate free-stream quantities such that
𝑐𝑝 (𝑇) = 𝑐∗𝑝 (𝑇)/𝑐∗𝑝∞, 𝑘 (𝑇) = 𝑘∗(𝑇)/𝑘∗∞, 𝜇(𝑇) = 𝜇∗(𝑇)/𝜇∗∞, and 𝜅(𝑇) = 𝜅∗(𝑇)/𝜇∗∞.
Note that unless otherwise stated, Stokes’ hypothesis is enforced throughout the
thesis where bulk viscosity 𝜅 ≡ 0. Finally, the covariant (𝒈) and contravariant (𝒈−1)
metric tensors and the Christoffel symbols and scale factors embodied in the nabla
operators in Eq. 2.1 correspond to the physical counterparts from Sec. A.1. We then
linearize all equations about a time-independent base flow such that

𝒒(𝜉, 𝜂, 𝜁 , 𝑡) = 𝒒(𝜉, 𝜂, 𝜁) + 𝒒′(𝜉, 𝜂, 𝜁 , 𝑡), (2.2)

where 𝒒 = [𝜌, 𝑢, 𝑣, 𝑤, 𝑇]𝑇 is the state vector. Due to algebraic complexity, we
have automated this transformation using the Mathematica software and present the
general matrix form of the resulting forced linear equation

𝑮
𝜕𝒒′

𝜕𝑡
+ 𝑨𝝃,𝒊𝒗𝒔

𝜕𝒒′

𝜕𝜉
+ 𝑨𝜼,𝒊𝒗𝒔

𝜕𝒒′

𝜕𝜂
+ 𝑨𝜻,𝒊𝒗𝒔

𝜕𝒒′

𝜕𝜁
+ 𝑨𝒊𝒗𝒔𝒒

′ = 𝑨𝝃,𝒗𝒊𝒔
𝜕𝒒′

𝜕𝜉
+ 𝑨𝜼,𝒗𝒊𝒔

𝜕𝒒′

𝜕𝜂
+

𝑨𝜻,𝒗𝒊𝒔
𝜕𝒒′

𝜕𝜁
+ 𝑨𝒗𝒊𝒔𝒒

′ + 𝑩𝝃𝝃
𝜕2𝒒′

𝜕𝜉2 + 𝑩𝜼𝜼
𝜕2𝒒′

𝜕𝜂2 + 𝑩𝜻𝜻
𝜕2𝒒′

𝜕𝜁2 + 𝑩𝝃𝜼
𝜕2𝒒′

𝜕𝜉𝜕𝜂
+

𝑩𝝃𝜻
𝜕2𝒒′

𝜕𝜉𝜕𝜁
+ 𝑩𝜼𝜻

𝜕2𝒒′

𝜕𝜂𝜕𝜁
+ B𝒑 𝒇 𝒑,

(2.3)
where 𝒇 𝒑 = [ 𝑓𝜌, 𝑓𝜉 , 𝑓𝜂, 𝑓𝜁 , 𝑓𝑇 ]𝑇 is a general primitive forcing vector that is dimen-
sionally consistent with 𝑮 𝜕𝒒′

𝜕𝑡
and B𝒑 is an operator that maps unit inputs into the

system’s state space for input-output analysis. Note that all of the aforementioned
base-flow coefficient matrices are functions of (𝜉, 𝜂, 𝜁) and have been normalized
with the original coefficient matrix of 𝜕𝒒′

𝜕𝑡
and further scaled by the local speed

of sound such that 𝑮 = 1
𝑎
𝑰. The coefficient matrices also contain all the physical

covariant/contravariant metric tensors, Christoffel symbols, and the scale factors
computed using the methodology outlined in Secs. A.1 and A.2 on the stability grid
constructed as per Sec. A.3. Lastly, in the linearization process, the fluid is assumed
to be an ideal gas with 𝑐𝑣 = 𝑐𝑣 (𝑇) and 𝑐𝑝 = 𝑐𝑝 (𝑇), and fluid properties 𝑘 , 𝜇, 𝜅,
and 𝛾 that depend solely on temperature (the functional dependence is user-defined
in OWNS). By denoting any of the aforementioned fluid properties as Φ, we can
perform a Taylor series expansion about 𝑇 as follows

Φ(𝑇) = Φ(𝑇) + 𝑑Φ

𝑑𝑇

����
𝑇=𝑇

𝑇 ′ + higher order terms. (2.4)

The linearized fluid-property perturbation is thus

Φ′ =
𝑑Φ

𝑑𝑇

����
𝑇=𝑇

𝑇 ′. (2.5)
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After discretizing in the 𝜂 and 𝜁 directions (if performing 3D analyses, otherwise we
invoke spanwise periodicity and consider one wavenumber at a time for 3DF com-
putations), and entering the stationary frequency domain via the Laplace transform
with 𝑠 = −𝑖𝜔, we have

−𝑖𝜔𝑮𝒒′ + 𝑨𝝃,𝒊𝒗𝒔
𝑑𝒒′

𝑑𝜉
+ 𝑩𝒒′ = 𝑪

𝑑𝒒′

𝑑𝜉
+ 𝑩𝝃𝝃

𝑑2𝒒′

𝑑𝜉2 + B𝒑 𝒇 𝒑, (2.6)

where the discrete operators 𝑩(𝜉) and 𝑪 (𝜉) are defined as

𝑩(𝜉) = 𝑨𝜼,𝒊𝒗𝒔
𝜕

𝜕𝜂
+ 𝑨𝜻,𝒊𝒗𝒔

𝜕

𝜕𝜁
+𝑨𝒊𝒗𝒔 −

(
𝑨𝜼,𝒗𝒊𝒔

𝜕

𝜕𝜂
+ 𝑨𝜻,𝒗𝒊𝒔

𝜕

𝜕𝜁
+ 𝑨𝒗𝒊𝒔 + 𝑩𝜼𝜼

𝜕2

𝜕𝜂2+

𝑩𝜻𝜻
𝜕2

𝜕𝜁2 + 𝑩𝜼𝜻
𝜕2

𝜕𝜂𝜕𝜁

)
,

(2.7)
𝑪 (𝜉) = 𝑨𝝃,𝒗𝒊𝒔 + 𝑩𝝃𝜼

𝜕

𝜕𝜂
+ 𝑩𝝃𝜻

𝜕

𝜕𝜁
. (2.8)

Refer to Sec. A.2 for the classification of analysis types (2D, 3DF, or 3D). Note
that all perturbation quantities hereafter remain in the frequency domain unless
otherwise stated.

We now transform the discretized equation to characteristic space via the transfor-
mation

𝝓(𝜉, 𝜂, 𝜁 , 𝑡) = 𝑻 (𝜉, 𝜂, 𝜁)𝒒′(𝜉, 𝜂, 𝜁 , 𝑡), ˜𝑨𝝃,𝒊𝒗𝒔 = 𝑻𝑨𝝃,𝒊𝒗𝒔𝑻
−1, (2.9)

where the rows of𝑻 are the left eigenvectors of 𝑨𝝃,𝒊𝒗𝒔. The discretized characteristic
equation reads

−𝑖𝜔˜𝑮𝝓 + ˜𝑨𝝃,𝒊𝒗𝒔
𝑑𝝓

𝑑𝜉
+ ˜𝑩𝝓 = ˜𝑪

𝑑𝝓

𝑑𝜉
+ ˜𝑩𝝃𝝃

𝑑2𝝓

𝑑𝜉2 + ˜𝑫𝝓 + ˜B𝒑 𝒇𝝓, (2.10)

where

˜𝑮 = 𝑻𝑮𝑻−1, ˜𝑩 = 𝑻𝑩𝑻−1
+ 𝑻𝑨𝝃,𝒊𝒗𝒔

𝑑𝑻−1

𝑑𝜉
, ˜𝑪 = 𝑻𝑪𝑻−1 + 2𝑻𝑩𝝃𝝃

𝑑𝑻−1

𝑑𝜉
,

˜𝑩𝝃𝝃 = 𝑻𝑩𝝃𝝃𝑻
−1, ˜𝑫 = 𝑻𝑪

𝑑𝑻−1

𝑑𝜉
+ 𝑻𝑩𝝃𝝃

𝑑2𝑻−1

𝑑𝜉2 , ˜B𝒑 = 𝑻B𝒑𝑻
−1,

(2.11)
and 𝒇𝝓 = 𝑻 𝒇 𝒑. The right-hand-side of Eq. 2.10 (excluding the forcing) corresponds
to streamwise viscous terms which will be discretized explicitly when performing
the spatial march and thus we can denote it as a forcing term

𝒇𝝃,𝒗𝒊𝒔 = ˜𝑪
𝑑𝝓

𝑑𝜉
+ ˜𝑩𝝃𝝃

𝑑2𝝓

𝑑𝜉2 + ˜𝑫𝝓. (2.12)
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We now formally isolate the marching variable, 𝜉, by writing

d𝝓
d𝜉

= 𝑳𝝓 + ˜𝑨−1
𝝃,𝒊𝒗𝒔

˜B𝒑 𝒇𝝓 + ˜𝑨−1
𝝃,𝒊𝒗𝒔 𝒇𝝃,𝒗𝒊𝒔, (2.13)

where
𝑳 = −˜𝑨−1

𝝃,𝒊𝒗𝒔 (−𝑖𝜔˜𝑮 + ˜𝑩). (2.14)

Eq. 2.13 is still exact, but cannot be solved as an initial-value problem in 𝜉 because
𝐿 has eigenvalues of both signs. In PSE, this equation is regularized to damp the
upstream modes, whereas in OWNS, described in the next section, the equation is
parabolized by filtering out the modes with upstream group velocity.

2.2 OWNS equations
The OWNS parabolization, derived in detail in Towne and Colonius (2015) and
Towne, Rigas, Kamal, et al. (2022), is now applied to Eq. 2.13. We provide the
two variations of the parabolization that can be applied under different scenarios as
outlined below.

2.2.1 Variation 1: outflow approach
The outflow approach is appropriate when there is no external forcing ( 𝒇𝝓 = 0). In
addition, streamwise viscous terms must be neglected ( 𝒇𝝃,𝒗𝒊𝒔 = 0) in this version
as the parabolization is applied to the inviscid portion of the operator, following
the original approach in Towne and Colonius (2015). This is consistent with the
traditional thin-layer approximation invoked in PSE. In the projection approach,
discussed in the next section, the need for this approximation is eliminated though
we point out that it is highly accurate for the cases considered in this thesis. Setting
𝒇𝝓 = 𝒇𝝃,𝒗𝒊𝒔 = 0, we have

d𝝓
d𝜉

= 𝑳𝝓. (2.15)

We can rewrite Eq. 2.15 by partitioning 𝐿 as follows

d
d𝜉

[
𝝓+

𝝓−

]
=

[
𝑳++ 𝑳+−

𝑳−+ 𝑳−−

] [
𝝓+

𝝓−

]
, (2.16)

where the ++, −−, +−, and −+ partitioned blocks are associated with the negative
and positive characteristic variables. We now perform an eigenvalue decomposition
of 𝑳 = 𝑽𝑫𝑼 such that

𝝓 = 𝑽𝝍 ↔ 𝝍 = 𝑼𝝓,

d𝝍
d𝜉

= 𝑫𝝍,
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where the diagonal matrix 𝑫 contains the eigenvalues, columns of 𝑽 are the right
eigenvectors and rows of 𝑼 = 𝑽−1 are the left eigenvectors, all ordered in the same
way as the expansion coefficients 𝝍. We can further partition the matrices as follows

d
d𝜉

[
𝝍+

𝝍−

]
=

[
𝑫++ 0
0 𝑫−−

] [
𝝍+

𝝍−

]
, (2.17)[

𝝓+

𝝓−

]
=

[
𝑽++ 𝑽+−

𝑽−+ 𝑽−−

] [
𝝍+

𝝍−

]
, (2.18)[

𝝍+

𝝍−

]
=

[
𝑼++ 𝑼+−

𝑼−+ 𝑼−−

] [
𝝓+

𝝓−

]
, (2.19)

where 𝝍+ and 𝝍− are the downstream and upstream expansion coefficients, respec-
tively. The exact parabolization is

d𝝍+

d𝜉
= 𝑫++𝝍+, (2.20a)

𝝍− = 0, (2.20b)

or in terms of characteristics with differential-algebraic equation (DAE) system of
index 1

d𝝓+

d𝜉
= 𝑳++𝝓+ + 𝑳+−𝝓−, (2.21a)

𝑼−+𝝓+ +𝑼−−𝝓− = 0. (2.21b)

The parabolization is at this point exact, but requires an eigenvalue decomposition
of 𝑳 at each step in order to determine 𝑼−+ and 𝑼−−, which is computationally ex-
pensive. However, an excellent approximate parabolization is obtained by designing
a higher-order recursive filter (Towne and Colonius, 2015; Towne and Colonius,
2013; Towne, 2016) for these matrices, resulting in the OWNS-outflow DAE system

d𝝓+

d𝜉
= 𝑳++𝝓+ + 𝑳+−𝝓−, (2.22a)

(𝑳 − 𝑖𝑏
𝑗
+𝑰)𝝓 𝒋 = (𝑳 − 𝑖𝑏 𝑗

−𝑰)𝝓 𝒋+1 𝑗 = 0, . . . , 𝑁𝑏 − 1, (2.22b)

𝝓𝑵𝒃
− = 0, (2.22c)

where {𝝓 𝒋 : 𝑗 = 0, ..., 𝑁𝑏} and {𝑏 𝑗
+, 𝑏

𝑗
− : 𝑗 = 0, ..., 𝑁𝑏 − 1} are the auxiliary

variables and complex-valued recursion parameters, respectively. Note that 𝑁𝑏 is
the order of the approximate one-way system such that as 𝑁𝑏 → ∞, we recover
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the exact parabolization in Eq. 2.20 (Towne, 2016). The physical variable 𝝓 is the
zero-indexed quantity 𝝓0 and the remaining auxiliary variables are defined via the
recursions. The DAE system can then be solved using an implicit integration method
of choice such as backward differentiation formula (BDF) or implicit Runge-Kutta
(RK).

2.2.2 Variation 2: projection approach
The projection approach alleviates the need to neglect the streamwise viscous terms
and the inhomogeneous term and is fully described in Towne, Rigas, Kamal, et al.
(2022), but we provide a synopsis here. Using the same eigenvalue decomposition
as the outflow approach 𝑳 = 𝑽𝑫𝑼, we define a projection operator that splits the
solution 𝝓 into the right-going (𝝓′) and left-going (𝝓′′) components

𝑷 =

[
𝑽+ 𝑽−

] [
𝑰 0
0 0

] [
𝑼+

𝑼−

]
, (2.23)

such that
𝝓′ = 𝑷𝝓, 𝝓′′ = (𝑰 − 𝑷)𝝓. (2.24)

Applying the projection operator to Eq. 2.13 yields

𝑷
d𝝓
d𝜉

= 𝑷
(
𝑳𝝓 + ˜𝑨−1

𝝃,𝒊𝒗𝒔
˜B𝒑 𝒇𝝓 + ˜𝑨−1

𝝃,𝒊𝒗𝒔 𝒇𝝃,𝒗𝒊𝒔
)
, (2.25)

and the fact that 𝑷 and 𝑳 commute we write (Towne, 2016)
d𝝓′

d𝜉
= 𝑷

(
𝑳𝝓 + ˜𝑨−1

𝝃,𝒊𝒗𝒔
˜B𝒑 𝒇𝝓 + ˜𝑨−1

𝝃,𝒊𝒗𝒔 𝒇𝝃,𝒗𝒊𝒔
)
. (2.26)

As with the outflow approach, we again use a higher-order recursive filter to generate
an approximate projection operator 𝑷‡ (Towne, 2016). Specifically, the following
recursions are used to determine 𝑷‡ acting on an arbitrary vector 𝝓

𝝓−𝑵𝒃
+ = 0, (2.27a)

(𝑳 − 𝑖𝑏 𝑗
−𝑰)𝝓− 𝒋 − (𝑳 − 𝑖𝑏

𝑗
+𝑰)𝝓−( 𝒋+1) = 0 𝑗 = 1, . . . , 𝑁𝑏 − 1, (2.27b)

(𝑳 − 𝑖𝑏0
−𝑰)𝝓0 − (𝑳 − 𝑖𝑏0

+𝑰)𝝓−1 = (𝑳 − 𝑖𝑏0
−𝑰)𝝓, (2.27c)

(𝑳 − 𝑖𝑏
𝑗
+𝑰)𝝓 𝒋 − (𝑳 − 𝑖𝑏 𝑗

−𝑰)𝝓( 𝒋+1) = 0 𝑗 = 0, . . . , 𝑁𝑏 − 1, (2.27d)

𝝓𝑵𝒃
− = 0. (2.27e)

The above recursion equations defining the approximate projection operator can be
rewritten in the following form (Towne, Rigas, Kamal, et al., 2022)

𝝓′
± = 𝑷3𝝓

aux, (2.28a)

𝑷2𝝓
aux = 𝑷1𝝓±, (2.28b)
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where 𝝓aux contains the auxiliary variables, the matrices 𝑷1 and 𝑷2 are defined by
the recursive relations, and 𝑷3 is a matrix that extracts the projected state from the
auxiliary variables. The approximate form of Eq. 2.26 can therefore be expressed
as a DAE input-output system (Towne, Rigas, Kamal, et al., 2022)

𝑨‡ 𝑑𝝓
‡

𝑑𝜉
= 𝑳‡𝝓‡ + 𝑩‡

(
˜B𝒑 𝒇 𝜙 + 𝒇𝝃,𝒗𝒊𝒔

)
, (2.29a)

𝝓′ = 𝑪‡𝝓‡. (2.29b)

The augmented state vector is

𝝓‡ =


𝝓′
±

𝝓′
0

𝝓aux

 , (2.30)

and the operators in Eq. 2.29 are

𝑨‡ =


𝑰

0
0

 , 𝑩‡ =


0 0

𝑷1 ˜𝑨
−1
𝝃,𝒊𝒗𝒔±±

0
0 𝑰

 , 𝑪‡ =

[
𝑰 0 0
0 𝑰 0

]
, (2.31)

and

𝑳‡ =


0 0 𝑷3

𝑷1 ˜𝑨
−1
𝝃,𝒊𝒗𝒔±±

𝑳±± 𝑷1 ˜𝑨
−1
𝝃,𝒊𝒗𝒔±±

𝑳±0 −𝑷2

𝑳0± 𝑳00 0

 . (2.32)

The input to the system is either the forcing 𝒇𝝓 = 𝑻 𝒇 𝒑 and/or an inlet boundary
condition 𝝓0 = 𝑻𝒒′0, while the output is 𝝓′, the downstream-projected component
of the characteristic variable, from which the primitive state vector can be retrieved
as 𝒒′ = 𝑻−1𝝓′. Eq. 2.29 can thus be efficiently integrated in the positive 𝜉-direction
given an appropriate input.

However, the integration method has an impact on the streamwise viscous terms,
which must be treated explicitly and where the streamwise derivatives are approxi-
mated with second-order finite differences. The remaining terms, on the other hand,
require an implicit integration and thus the stepper must be of a split implicit-explicit
(IMEX) type. We have found that an IMEX-BDF scheme (typically second order)
is the most efficient choice meeting these requirements. Details of the IMEX-BDF
schemes and their numerical stability properties can be found in Frank, Hundsdorfer,
and Verwer (1997) and Hu and Shu (2021). Including the streamwise viscous terms,
however, can occasionally lead to numerical instability. Specifically, we must have
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a sufficiently large local grid Reynolds number 𝑅𝑒𝑔 = 𝜌∗𝑢∗𝑑𝜉∗

𝜇∗ , which essentially re-
quires the base flow to be advection dominated. Should numerical instability occur,
either the streamwise grid size 𝑑𝜉 can be increased or the streamwise viscous terms
can be neglected altogether. In fact, extensive calculations with both boundary lay-
ers and jets have demonstrated that these streamwise viscous terms are insignificant
compared to the other terms from Eq. 2.13 and thus neglected for the remainder of
the thesis.

2.2.3 Recursion parameters
The recursion parameters for both the outflow and projection approaches are based
on the original algorithm described in Towne and Colonius (2015), which uses the
spatial eigenvalues of the linearized Euler equations about a uniform flow. These
eigenvalues provide a basis which can be used to predict the eigenvalues of the semi-
discrete operator 𝑳 for complicated, non-uniform flows. Note that the recursion
parameters are different between boundary layers and jets, and the original method
from Towne and Colonius (2015) has been adapted to accommodate the curvilinear
coordinate system. The complete algorithm (MATLAB script) for computing the
recursion parameters for 2D/3DF calculations is presented in Sec. C, where for 3D
analyses, the same method is used but the base-flow quantities are cross-stream
averaged.

The effectiveness of the OWNS method in accurately filtering the upstream-traveling
modes without modifying the downstream ones is demonstrated using the projection
approach in Fig. 2.1, where the local spectra (in 𝜉) of the Navier-Stokes and OWNS
equations are shown for the Mach 4.5 flat-plate boundary layer from Sec. 4.2 for
three values of 𝑁𝑏. The spectra were calculated by solving a generalized eigenvalue
problem obtained from the homogeneous form of Eq. 2.29 by assuming a locally
parallel flow, for which 𝜕𝜉 → 𝑖𝛼 and the complex streamwise wavenumber 𝛼 is the
eigenvalue. With sufficient 𝑁𝑏 of recursion parameters, the OWNS operator con-
verges to the downstream-traveling waves, thus removing the ellipticity associated
with the upstream-propagating acoustic modes and enabling a stable, convergent
marching in the slowly varying 𝜉 direction.

2.3 Validation of generalized OWNS algorithm
In this section, we will validate the generalized OWNS methodology to various 2D
boundary-layer flows, i.e. 𝛽 = 0. Note that computations presented in this section
are from Kamal, Rigas, et al. (2020) where the thermodynamic state variables
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Figure 2.1: Placement of recursion parameters 𝒃+ and 𝒃− for the Mach 4.5
flat-plate boundary layer from Sec. 4.2. The local spectra of the Navier-Stokes
and OWNS operators are shown. The 𝒃+ recursion parameters are placed in
the vicinity of the downstream-propagating modes, whereas the 𝒃− parameters
are placed adjacent to the upstream acoustic modes. Figure from Towne, Rigas,
Kamal, et al. (2022) where 𝜷 denotes the recursion parameters.

were 𝜈′ (specific volume) and 𝑝′ rather than 𝜌′ and 𝑇 ′ from Eq. 2.1. Additionally,
the numerical solutions used for comparison all assume a calorically perfect gas
(constant specific heats). Thus, unless otherwise stated, we likewise assume the
fluid as calorically perfect air with 𝛾 = 1.4 and 𝑃𝑟 = 0.72 and, moreover, viscosity
and thermal conductivity calculated using Sutherland’s law

𝜇∗ = 𝜇∗∞

(
𝑇∗

𝑇∗
∞

)3/2
𝑇∗
∞ + 𝑆∗

𝑇∗ + 𝑆∗
, (2.33)

where 𝑆∗ = 110.4 K.

Finally, reference to the 𝜂-coordinate in this section and for the remainder of the
thesis will correspond to the physical wall-normal coordinate (for boundary layers)
except when defining any wall-normal grid-stretching functions, any association to
the grid metrics from Sec. A, or otherwise stated.
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2.3.1 Computational setup
To properly resolve the instabilities near the wall and critical layer, we employ a grid
stretching technique (Malik, 1990) for all validation cases

𝜂 =
𝑎𝜆

𝑏 − 𝜆
,

𝑏 = 1 + 𝑎/𝜂𝑚𝑎𝑥 ,

𝑎 = 𝜂𝑚𝑎𝑥𝜂𝑖/(𝜂𝑚𝑎𝑥 − 2𝜂𝑖),

(2.34)

where 0 ≤ 𝜆 ≤ 1 (equidistant grid points). Using the above scheme, half the points
in the 𝜂 direction are placed between 𝜂 = 0 and 𝜂 = 𝜂𝑖.

Details of each validation case are outlined below. Note that all validation cases
have no external forcing, and thus, the outflow approach is used for all OWNS
computations with second-order BDF (BDF2) streamwise integration.

2.3.1.1 Adiabatic flat plate

We first validate OWNS by comparing to DNS of a two-dimensional Mach 4.5
adiabatic-wall, flat-plate boundary layer (Ma and Zhong, 2003a). The parameters
are given in Table 2.1. The base flow is computed using the Howarth–Dorodnitsyn
transformation of the compressible Blasius equations under the assumption 𝑑𝑝 = 0.
Note that 𝛾 was not explicitly provided in Ma and Zhong (2003a) so a value of 1.4
was assumed. The computational domain is summarized in Table 2.2 where 𝜉 and
𝜂 coincide with the global 𝑥 and 𝑦 axes with its origin placed at the plate leading
edge. The grid resolution for this validation, and all subsequent computations
in this thesis, is chosen after performing grid-convergence studies to ensure the
wavenumber, growth rates, optimal gains, and/or other quantities of interest are
grid independent. The initial resolution for the grid-convergence study is usually
estimated based on the frequency, Mach number, and size of the domain.

Table 2.1: Adiabatic flat-plate flow parameters from Ma and Zhong (2003a).

𝑀∞ 𝑇∗
∞ [K] 𝑇∗

𝑤 [K] 𝑝∗∞ [Pa] 𝑅𝑒∗∞ [1/m]

4.5 65.15 𝑇∗
𝑎𝑑

728.438 7.2 × 106
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Figure 2.2: Self-similar base flow solutions 𝒖∗𝝃
𝒖∗∞

and 𝑻
∗

𝑻∗
∞

for Case 1.

Table 2.2: Computational domain used for adiabatic flat-plate stability analy-
ses.

𝜉∗
𝑚𝑖𝑛

[m] 𝜉∗𝑚𝑎𝑥 [m] 𝜂∗
𝑚𝑖𝑛

[m] 𝜂∗𝑚𝑎𝑥 [m] 𝑁𝜉 𝑁𝜂

0.025 0.63 0.0 0.0118 8000 800

The self-similar base flow solutions for
𝑢∗𝜉
𝑢∗∞

and 𝑇
∗

𝑇∗
∞

are presented in Fig. 2.2. The
similarity variable 𝜒 is defined as

𝜒 =

√︄
𝑢∗∞𝜌∗∞
2𝜇∗∞𝜉∗

∫ 𝜂∗

0

𝜌∗

𝜌∗∞
𝑑𝜂∗. (2.35)

2.3.1.2 Highly cooled (isothermal) flat plate

The second validation case is also a flat-plate configuration but with a cold wall
(Chuvakhov and Fedorov, 2016). Parameters are given in Table 2.3. Similar
to the adiabatic case, the base flow is computed using the Howarth–Dorodnitsyn
transformation of the compressible Blasius equations under the assumption 𝑑𝑝 = 0.
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Figure 2.3: Self-similar base flow solutions 𝒖∗𝝃
𝒖∗∞

and 𝑻
∗

𝑻∗
∞

for Case 2.

The computational domain is summarized in Table 2.4 where 𝜉 and 𝜂 coincide with
the global 𝑥 and 𝑦 axes with its origin placed at the plate leading edge.

Table 2.3: Highly cooled flat-plate flow parameters from Chuvakhov and Fe-
dorov (2016). Note that 𝑳∗ = 0.0382 m.

𝑀∞ 𝑇∗
∞ [K] 𝑇∗

𝑤 [K] 𝑝∗∞ [kPa] 𝑅𝑒 =
𝜌∗∞𝑢

∗
∞𝐿∗

𝜇∗∞

6.0 300 150 20 106

Table 2.4: Computational domain used for highly cooled flat-plate stability
analyses.

𝐹 𝜉∗
𝑚𝑖𝑛

[m] 𝜉∗𝑚𝑎𝑥 [m] 𝜂∗
𝑚𝑖𝑛

[m] 𝜂∗𝑚𝑎𝑥 [m] 𝑁𝜉 𝑁𝜂

1.3124 · 10−4 0.0956 0.2677 0.0 0.0574 8000 1000
2.0590 · 10−4 0.0388 0.1721 0.0 0.0367 8000 1000

The self-similar base flow solutions for
𝑢∗𝜉
𝑢∗∞

and 𝑇
∗

𝑇∗
∞

are presented in Fig. 2.3. The
similarity variable 𝜒 is the same as the adiabatic flat-plate case.
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2.3.1.3 Isothermal sharp cone

The third case we consider is an axisymmetric 7-deg half-angle sharp cone (Sousa
et al., 2019) with the flow parameters based on tests performed by Wagner (2014) in
the DLR High Enthalpy Shock Tunnel Göttingen (HEG) and given in Table 2.5. An
inviscid solution of the base flow was first determined by solving the Taylor-Maccoll
ODE (Taylor and Maccoll, 1933) using a modified MATLAB code from Lassaline,
J. V. (2009). Thereafter, the compressible Blasius boundary layer was computed by
applying the Mangler transformation (Mangler, 1948) for axisymmetric flows (Lees,
1956). Note that 𝑃𝑟 = 0.704 for this case and although not explicitly mentioned in
Sousa et al. (2019), 𝛾 was assumed to be 1.4 and the viscosity is chosen by satisfying
Sutherland’s law (Eq. 2.33) with 𝑅𝑒∗𝑒 = 5.69× 106 m−1. The computational domain
is summarized in Table 2.6 in which the 𝜉 and 𝜂 axes originate from the cone nose.

Table 2.5: Sharp-cone flow parameters from Sousa et al. (2019).

𝑀∞ 𝑇∗
∞ [K] 𝑇∗

𝑤 [K] 𝑝∗∞ [Pa] 𝑅𝑒∗∞ [1/m] 𝑓 ∗ [kHz]

7.4 268 300 2129 4.06 × 106 550

Table 2.6: Computational domain used for sharp-cone stability analyses.

𝜉∗
𝑚𝑖𝑛

[m] 𝜉∗𝑚𝑎𝑥 [m] 𝜂∗
𝑚𝑖𝑛

[m] 𝜂∗𝑚𝑎𝑥 [m] 𝑁𝜉 𝑁𝜂

0.14 0.95 0.0 0.0186 8294 400

The self-similar base flow solutions for
𝑢∗𝜉
𝑢∗𝑒

and 𝑇
∗

𝑇∗
𝑒

are presented in Fig. 2.4. The
similarity variable 𝜒 is defined as

𝜒 =

√︄
3𝑢∗𝑒𝜌∗𝑒
2𝜇∗𝑒𝜉∗

∫ 𝜂∗

0

𝜌∗

𝜌∗𝑒
𝑑𝜂∗. (2.36)

2.3.1.4 HIFiRE-5 elliptic cone

The final validation case is a 38.1% scale model of the HIFiRE-5 elliptic cone with
an axial length of 38.1 mm and an aspect ratio of 2:1 at the tip. The cone half-angles
are 7.00 and 13.797 degrees along the minor (centerline) and major (attachment line)
axes, respectively. The base flow is provided by The Boeing Company with the free-
stream parameters summarized in Table 2.7. We focus our study on the centerline,
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Figure 2.4: Self-similar base flow solutions 𝒖∗𝝃
𝒖∗𝒆

and 𝑻
∗

𝑻∗
𝒆

for Case 3.

and for validation purposes treat the flow and disturbances there as locally two-
dimensional and compare with solutions found using LASTRAC (Chang, 2004).
The streamwise computational domain varies slightly depending on the frequency
analyzed and is summarized in Table 2.8. For all LST computations, we have
𝑁𝜉×𝑁𝜂 = 100×600 and for the OWNS computations we have 𝑁𝜉×𝑁𝜂 = 5000×600.
The origin of the curvilinear coordinates correspond to 𝑥∗ = 8.364 · 10−4 m and
𝑦∗ = 9.454 · 10−4 m (global 𝑥 and 𝑦 axes originate from the cone nose).

Table 2.7: HIFiRE-5 flow parameters.

𝑀∞ 𝑇∗
∞ [K] 𝑇∗

𝑤 [K] 𝑝∗∞ [Pa] 𝑅𝑒∗∞ [1/m]

6.0 49.45 315 417.315 8.1 × 106

Table 2.8: Computational domain used for HIFiRE-5 stability analyses.

𝑓 ∗ [kHz] 𝜉∗
𝑚𝑖𝑛

[m] 𝜉∗𝑚𝑎𝑥 [m]

60 0.101 0.305
70 0.0807 0.305
80 0.0652 0.305
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Figure 2.5: DNS-computed centerline base flow solutions 𝒖∗
𝒙 (top) and 𝑻

∗

(bottom) from The Boeing Company for Case 4.

Contour plots of 𝑢∗𝑥 and𝑇 ∗ acquired from The Boeing Company along the centerline
of the HIFiRE-5 elliptic cone are shown in Fig. 2.5.

2.3.2 Boundary conditions
No-slip boundary conditions (𝑢′ = 𝑣′ = 0) are imposed at the wall along with
𝑇 ′ = 0. The latter condition is enforced because Mack (1984) and Malik (1990)
argued that for high-frequency disturbances, the thermal inertia of the body will
preclude temperature perturbations from penetrating deep into the solid boundary.
Thus, at the wall, we solve the continuity and linearized equation of state for 𝑝′

and 𝜈′. At the upper boundary, we impose 1D inviscid Thompson characteristic
boundary conditions (Thompson, 1987) to prevent spurious numerical reflections.
The inviscid assumption is valid at the upper boundary since viscous effects from the
boundary layer are negligible in this region. The OWNS marches are initialized with
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the right-going component of eigenfunctions from quasi-parallel LST corresponding
to a specific mode at the inlet.

2.3.3 Results
2.3.3.1 Adiabatic flat plate

We initialize the OWNS march at the inlet with the first mode, i.e. Mode S, with
𝑁𝑏 = 20. Here, Mode S denotes the discrete mode originating from the slow
continuous spectrum, whereas Mode F1, F2, F3, etc. are the sequential discrete
modes emanating from the fast acoustic branch (refer to Knisely and Zhong (2019b)
for more details regarding the discrete-mode classifications). Figs. 2.6 and 2.7
compare the wavenumber 𝛼𝑟 , the disturbance growth rate 𝛼𝑖, and the wall-pressure
perturbations |𝑝′𝑤 | from OWNS and DNS at 𝐹 = 2.2 · 10−4. The wavenumber and
growth rate are defined as Ma and Zhong (2003a)

𝛼𝑟 =
𝑑 |𝑝′𝑤 𝜃

|
𝑑𝜉

, (2.37)

𝛼𝑖 = − 1
|𝑝′𝑤 |

𝑑 |𝑝′𝑤 |
𝑑𝜉

, (2.38)

where 𝑝′𝑤 𝜃
is the phase angle of the wall-pressure perturbation. Note that if multiple

modes are present, we will observe the modulated effect of these waves in 𝛼𝑟 and
𝛼𝑖.

When the unstable Mode S is initialized at 𝜉∗ = 0.025 m, there is also the presence
of the stable Mode F1 causing the small oscillation in growth rate. Although it
cannot be observed in Figs. 2.6 or 2.7, LST results from Ma and Zhong (2003a)
indicate synchronization of these two modes at 𝜉∗ ≈ 0.098 m, in which then Mode
S becomes the canonical second Mack mode due to resonant interactions with the
stable Mode F1. This resonance continues until 𝜉∗ ≈ 0.142 m which is the neutral
stability point of the second mode after which the wall-pressure perturbations decay
rapidly to zero. The oscillation in growth rate after the neutral stability point is due
to the presence of the now stable second mode, Mode F1, and other higher-order
fast acoustic modes. Overall, we observe excellent agreement between OWNS and
DNS in the wall-pressure distribution and streamwise wavenumber. Although there
are small discrepancies in the growth rates, both methods yielded a second-mode
neutral stability point of 𝜉∗ ≈ 0.142 m.
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(a) Scaled streamwise wavenumber 𝜶𝒓

√︃

𝝃
𝝃0

.

(b) Scaled growth rate 𝜶𝒊

√︃

𝝃
𝝃0

.

Figure 2.6: Streamwise wavenumber (a) and growth rate (b) between OWNS
and DNS (Ma and Zhong, 2003a) when Mode S is initialized at the inlet.
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Figure 2.7: Wall-pressure perturbations from DNS (Ma and Zhong, 2003a)
and OWNS with arbitrary linear scale applied.

2.3.3.2 Highly cooled (isothermal) flat plate

To compare results with Chuvakhov and Fedorov (2016), we non-dimensionalize
𝜉∗ and 𝜂∗ with 𝐿∗ = 0.0382 m, i.e. the distance from the plate leading edge.
We will first study the low-frequency (LF) wave train at 𝐹 = 1.3124 · 10−4 which
corresponds to Mode F1 originating from the branch point 𝑐𝐹 = 𝑀∞ + 1 of the fast
acoustic waves. We thus initialize the OWNS march with this mode at the inlet with
𝑁𝑏 = 20. Fig. 2.8 shows the wall-pressure distribution and the pressure disturbance
field computed with OWNS. In accordance to LST from Chuvakhov and Fedorov
(2016), the inlet disturbances grow exponentially in the boundary layer until 𝜉𝑘 ≈ 4.5
where the second mode begins to synchronize with the slow acoustic branch. At
this point, a new discrete stable mode is also formed. From 4.5 < 𝜉 < 5.6, the
second mode radiates slow acoustic waves and generates the outer acoustic field
seen in Fig. 2.8. At 𝜉𝑠 ≈ 5.6, the second mode coalesces with the slow acoustic
branch. We note that the spontaneous radiation of sound is localized to this region
(Chuvakhov and Fedorov, 2016). The complex pattern observed below the main
beam is attributed to interactions between monochromatic waves having different
amplitudes and front angles (Chuvakhov and Fedorov, 2016). Referring to Fig. 8
from Chuvakhov and Fedorov (2016), there is excellent agreement between DNS and
OWNS which demonstrates OWNS’ capability of accurately capturing the complete
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(a) Pressure disturbance field (top) and wall-pressure distribution (bottom).

(b) Start of synchronization region at 𝝃𝒌 ≈ 4.5 (left) and point of coalescence at 𝝃𝒔 ≈ 5.6
(right).

Figure 2.8: OWNS results for LF wave train at 𝑭 = 1.3124 · 10−4 for highly
cooled flat plate. Pressure disturbance field and wall-pressure distribution (a)
and close-up of start of synchronization region and point of coalescence (b).

disturbance evolution at a fraction of the cost of DNS.

We now study the high-frequency (HF) wave train at 𝐹 = 2.0590 · 10−4 which
corresponds to the mode originating near the branch point 𝑐𝑆 = 𝑀∞ − 1 of the slow
acoustic waves. The OWNS march is therefore initialized with this mode at the
inlet with 𝑁𝑏 = 20. Fig. 2.9 shows the wall-pressure distribution and the pressure
disturbance field calculated using OWNS. LST results from Chuvakhov and Fedorov
(2016) indicate that this mode becomes unstable as it propagates downstream before
becoming stable and having its phase speed drop below 𝑐𝑆. In contrast to the LF
case, the second mode does not coalesce with the slow acoustic branch but is in
close proximity before becoming stable. In the vicinity of 𝑐𝑆, the second mode
radiates slow acoustic waves at 𝜉𝑠 ≈ 1.9 as observed in Fig. 2.9. However, the outer
acoustic field is much narrower and weaker than the LF case which is corroborated
with LST and DNS findings of Chuvakhov and Fedorov (2016). Below the main
beam, the acoustic pattern is emblematic of slow acoustic waves being radiated
by a stationary local harmonic source which is hypothesized to occur due to the
spatial inhomogeneity of the region near 𝜉𝑠 ≈ 1.9 (Chuvakhov and Fedorov, 2016).
Referring to Fig. 11 from Chuvakhov and Fedorov (2016), we again observe excellent
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(a) Pressure disturbance field (top) and wall-pressure distribution (bottom).

(b) Start of spontaneous acoustic radiation at 𝝃𝒔 ≈ 1.9 (left) and downstream region
(right).

Figure 2.9: OWNS results for HF wave train at 𝑭 = 2.0590 · 10−4 for highly
cooled flat plate. Pressure disturbance field and wall-pressure distribution (a)
and close-up of when the second mode begins to radiate slow acoustic waves at
𝝃𝒔 ≈ 1.9 and downstream region (b).

agreement between DNS and OWNS.

2.3.3.3 Isothermal sharp cone

We first initialize the OWNS march with Mode S at the inlet with 𝑁𝑏 = 12. Wall-
pressure perturbations from OWNS and DNS (Sousa et al., 2019) at the conditions
prescribed in Table 2.5 are compared in Fig. 2.10.

Overall, we see excellent agreement between the OWNS and DNS wall-pressure
signal. Although not apparent from Fig. 2.10, LST results indicate that the unstable
Mode S (first mode) synchronizes with the stable Mode F1 at 𝜉∗ ≈ 0.323 m and
the former becomes the second Mack mode. At 𝜉∗ ≈ 0.447 m, the second mode
reaches its neutral stability point and the resonant interactions with Mode F1 cease
and the wall-pressure disturbances decay rapidly. However, we observe a kink in the
wall-pressure profile during the decay. To understand why this occurs, we must gain
a better insight into how the modes interact spatially, and thus we plot the specific
volume disturbance field in Fig. 2.11.
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Figure 2.10: Wall-pressure perturbations between OWNS and DNS (Sousa et
al., 2019) with different initial conditions at 𝑹𝒆∗∞ = 4.06×106 m−1 and 𝒇 ∗ = 550
kHz. Arbitrary linear scale applied.

(a) Second mode

(b) Supersonic mode

Figure 2.11: Specific volume perturbations from OWNS showing the second
mode (top) and the supersonic mode appearing further downstream (bottom)
at 𝑹𝒆∗∞ = 4.06×106 m−1 and 𝒇 ∗ = 550 kHz with Mode S initialized at the inlet.
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To understand the instabilities present in Fig. 2.11, we first define the relative Mach
number

𝑀 (𝜂) =
𝑢𝜉 (𝜂) − 𝑐𝑟

𝑎(𝜂) . (2.39)

Note that we use Eq. 2.37 and Eq. 2.38 in determining 𝛼𝑟 and 𝛼𝑖, respectively, such
that

𝑐𝑟 = R

(
𝜔

𝛼𝑟 + 𝑖𝛼𝑖

)
. (2.40)

Typical of the second Mack mode, we see amplification of acoustic waves trapped
between the wall and relative sonic line 𝑀 (𝜂𝑠) = −1. In this region, disturbances
travel supersonically downstream relative to the local mean flow. Outside this
region, for 𝑀 > −1, the disturbances travel subsonically relative to the free-stream
and thus we observe the subsonic “rope-like” structures centered about the critical
layer 𝑀 (𝜂𝑐) = 0. However, due to substantial wall-cooling (𝑇𝑤/𝑇𝑒 = 0.864), there
is an additional mode—the supersonic mode—which appears at 𝜉∗ ≈ 0.477 m,
causing the modulation of the wall-pressure signal seen in Fig. 2.10, a phenomenon
also observed by Chuvakhov and Fedorov (2016). This mode occurs when the
phase speed of the disturbances in the free-stream is slow enough such that they
travel supersonically upstream relative to the free-stream (𝑀 > 1) and creates an
acoustic radiation from the boundary layer (Knisely and Zhong, 2019b) (this was also
observed for the highly cooled flat-plate case). This acoustic emission eventually
decays as Mach waves in the free-stream. This validation case serves to illustrate
how OWNS is once again capable of accurately modeling complex multi-modal
instabilities.

Following the discussion from Sec. 1, one of the major disadvantages of using
PSE is that it is only suited to track a dominant mode of a desired wavenumber.
However, it is often desirable to perform unsteady calculations initialized with
random perturbations such that the base flow dictates the unstable modes that appear.
The normal-mode ansatz that PSE is based upon precludes such analyses. OWNS,
however, is capable of tracking downstream-propagating modes that form from
arbitrary initial conditions. We illustrate this by initializing the same stability
calculation but with a normally distributed random 𝝓0 within the boundary layer
and homogeneous conditions in the free-stream. The wall-pressure signal from this
analysis is once again compared to DNS in Fig. 2.10 (note that there is significant
overlap to the wall-pressure signal with Mode S initialization). After the initial
transients, we observe excellent agreement to the DNS data with the appearance of
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Figure 2.12: N-factors along the HIFiRE-5 centerline computed with our In-
House LST code CSTAT versus LASTRAC for 𝒇 ∗ = 60, 70, and 80 kHz.

the second mode, thus demonstrating the versatility of using OWNS in marching an
arbitrary initial condition.

2.3.3.4 HIFiRE-5 elliptic cone

We first validate the linear operator 𝑳 from Eq. 2.13 (assuming 𝒇𝝓 = 𝒇𝝃,𝒗𝒊𝒔 = 0
as usual) by comparing LST N-factors from CSTAT versus those from LASTRAC
(Chang, 2004). Fig. 2.12 shows the comparison at 𝑓 ∗ = 60, 70, and 80 kHz in which
the N-factor is defined as

𝑁𝐿𝑆𝑇 = −
∫ 𝜉

𝜉0

𝛼𝑖 (𝜉′) 𝑑𝜉′. (2.41)

We see excellent agreement in the LST N-factors between CSTAT and LASTRAC.
Thus, PSE and OWNS computations are performed for the same frequency range
in which the second mode is used as the inlet boundary condition with 𝑁𝑏 = 15 for
OWNS. We compare the N-factors from OWNS, PSE, and LST in Fig. 2.13 where
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Figure 2.13: Comparing the N-factor along the HIFiRE-5 centerline between
LST, OWNS, and PSE for 𝒇 ∗ = 60, 70, and 80 kHz.

the N-factor for OWNS and PSE is defined as

𝑁𝑃𝑆𝐸/𝑂𝑊𝑁𝑆 = ln
( |𝑝′𝑤 |
|𝑝′𝑤0 |

)
. (2.42)

From Fig. 2.13, we see that for all frequencies, locally removing the parallel mean-
flow assumption that is used in LST but not in OWNS/PSE stabilizes the second
mode along the centerline. This is most likely due to the unusually large 𝑢𝜂 from
the primary vortex roll-up advecting the perturbation energy upwards and away
from the wall. To understand why PSE and OWNS performed almost identically,
we visualize the disturbance field by plotting the specific volume perturbations at
𝑓 ∗ = 80 kHz in Fig. 2.14.

Unlike validation Cases 2 and 3 where we witnessed complex multi-modal inter-
actions, we do not observe any similar physics in Fig. 2.14. The presence of one
dominant instability is likely why PSE performed on par with OWNS. However,
the peak amplitudes of the perturbations are separated by regions of high shear in
the base flow (refer to Fig. 2.5). This is contrary to typical second-mode wave
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Figure 2.14: Specific volume disturbance field from OWNS along the centerline
of the HIFiRE-5 elliptic cone for 𝒇 ∗ = 80 kHz.

structure as seen in validation Case 3 and alludes to potentially additional unstable
modes not revealed under a strictly two-dimensional analysis. In fact, the pres-
ence of such complex mode shapes along a plane of symmetry may indicate that
a fully three-dimensional stability calculation is required to accurately track the
disturbance evolution (this is somewhat expected since the primary vortex roll-up
near the leeward line induces strong spanwise variations (Li et al., 2012)).

2.3.4 Summary
To recapitulate, we derived the OWNS DAE for both the outflow and projection ap-
proaches corresponding to the homogeneous and inhomogeneous stability problems,
respectively, and presented the algorithm for computing the recursion parameters
for jets and boundary layers across all speed regimes. We thereafter extended the
original methodology by using a non-orthogonal, curvilinear coordinate system with
full compressibility effects. We validated the generalization by comparing to DNS
data for flat plates and a sharp cone, and to LST results for local disturbances on the
centerline of the HIFiRE-5 elliptic cone (all in 2D). OWNS provided DNS-quality
results for the former flows at a small fraction of the computational expense. In the
next chapter, we extend the application of OWNS to 3D flows, i.e. flows exhibiting
inhomogeneity in two or three spatial coordinates, to demonstrate its capability of
accurately tracking 3D instabilities.
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C h a p t e r 3

APPLICATION OF OWNS TO COMPLEX 3D FLOWS

In this chapter, we use the generalized OWNS technique from Sec. 2 to analyze
3D instabilities on a Mach 6 finned-cone geometry and a Mach 1.5 axisymmetric
turbulent jet. For the former flow, we leverage OWNS’s ability to march downstream
with an arbitrary inlet condition in the form of a spatially randomized inlet forcing
to excite all possible instability mechanisms (both modal and non-modal). This
obviates the trial-and-error approach needed for PSE, which is also restricted to only
modal instabilities. The OWNS results suggest there exists no significant (linear)
amplification mechanisms beyond the dominant vortex mode. Finally, the jet case
is used to validate the generalized curvilinear implementation of the centerline
treatment from Sec. B.1.2.

3.1 Mach 6 finned-cone geometry
We first study the stability characteristics of a complex 3D 7◦ half-angle finned-
cone geometry with a 1 mm nose radius and a fin with 0.125 in leading-edge
radius and 75◦ sweep angle, as depicted in Fig. 3.1. The geometry was designed
to experimentally study boundary-layer transition in the Boeing/AFOSR Mach-6
Quiet Tunnel at Purdue University (BAM6QT) with details found in Turbeville and
Schneider (2018), Turbeville and Schneider (2019), and Turbeville and Schneider
(2021). The addition of the fin provides basic control mechanisms for high-speed
flight vehicles, but also a shock-wave-boundary-layer interaction (SWBLI) on the
cone surface due to the fin shock in addition to three-dimensional streamwise-aligned
corner flow at the fin-cone junction. Previous stability analyses (Knutson, GS, and
Candler, 2018b; Knutson, GS, and Candler, 2018a; Knutson, Brock, and Candler,
2021; Mullen, Moyes, et al., 2018; Mullen, Turbeville, et al., 2019; Mullen, Moyes,
et al., 2019; McMillan, Mullen, and Reed, 2021; Riha, McMillan, and Reed, 2021)
have demonstrated the importance of these streamwise-aligned laminar vortices in
predicting transition on the cone surface. This motivates the application of OWNS
with its unique attributes in analyzing such a complex flow field. We will also
perform similar calculations using PSE for a comparison basis. Note that results in
this section correspond to the author’s contribution to the AIAA journal article being
submitted from the original AIAA AVIATION manuscript (Araya et al., 2022).
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Figure 3.1: Schematic diagram of the Purdue finned-cone wind-tunnel model
utillized. Figure from Araya et al. (2022).

3.1.1 Computational setup
The 3D base flow is computed by the Applied Physics Lab (APL) at Johns Hop-
kins University using the inflow conditions from recent experiments at BAM6QT
(Turbeville and Schneider, 2021). These parameters are summarized in Table 3.1.
Note that for this section, dimensional quantities are only denoted with their respec-
tive dimensions with asterisks omitted for simplicity.

Table 3.1: Base-flow parameters corresponding to inflow conditions from the
BAM6QT experiments.

𝑅𝑒𝑚 [m−1] 𝑢∞ [m/s] 𝑇∞ [K] 𝑝∞ [Pa] 𝑇𝑤 [K]

8.4 × 106 865.52 51.78 482.10 309.5

The laminar vortices arising from the SWBLIs situated at the fin and cone surfaces
are shown in Fig. 3.2. The goal of the present analyses is to evaluate the importance
of the vortex situated on the cone surface for transition, and thus a partitioned domain
is used for the stability calculations. The corresponding stability domain acquired
from APL is schematically displayed in Fig. 3.3.

All computations are performed at a single frequency at 𝑓 = 250 kHz, which was
found to maximally amplify the dominant vortex-mode instability (explained fully
in Sec. 3.1.3) by the APL group using PSE calculations. The corresponding stability
parameters for the OWNS and PSE marches are summarized in Table 3.2. The cross-
stream directions are discretized with fourth-order central finite-difference schemes
with summation-by-parts (Mattsson and Nordström, 2004) (SBP) boundary closure.
Both the streamwise and spanwise coordinates are uniformly distributed, with grid-
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Figure 3.2: Laminar vortices along the fin and cone surfaces due to SWBLIs.
The inset in the image corresponds to the domain used for stability calculations.
Gray-scale contours correspond to streamwise velocity slices at 𝒙 = 0.1, 0.2, 0.3,
and 0.4 m, whereas colored contours correspond to surface heat flux. Figure
from Araya et al. (2022).

Figure 3.3: Mean-flow domain acquired from APL to be used for stability
calculations. Figure from Araya et al. (2022).
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stretching in the wall-normal direction (Malik, 1990). The OWNS marches are
integrated in the streamwise direction using BDF2.

Due to the increased computational cost of OWNS, the original common base flow
from APL is truncated in the spanwise (outboard region) and wall-normal directions
to allow the same high cross-stream resolution in both PSE and OWNS. To verify
that this has no impact on the dominant vortex-mode growth, the surface N-factors
computed using PSE with the original and truncated base flows are shown in Fig. 3.4
where

𝑁 = log
( |𝑝′𝑤 |
max( |𝑝′𝑤 |𝑥=0.24 m)

)
. (3.1)

Note that 𝑥𝑡𝑟 corresponds to the experimental heat-flux based transition onset found
to be at 𝑥 ≈ 0.305 m. We see that the domain truncation has minimal impact on the
overall growth rate, and thus use the truncated domain for all subsequent calculations.
However, even with this added efficiency, the OWNS calculations, albeit feasible,
still required substantial time and memory (RAM) to invert the DAE matrix at each
streamwise station via the lower-upper (LU) decomposition. To circumvent this,
we developed a hybrid computational approach in which the LU decomposition
was performed on the DAE matrix constructed with second-order cross-stream
discretization with reduced-order boundary closure, which significantly increased
the sparsity of the matrix and thereby reduced the memory cost. This operation
was performed using the Intel® oneAPI Math Kernel Library PARDISO package
(Schenk and Gärtner, 2004) to parallelize the LU decomposition. The inverted
system and corresponding solution then served as a preconditioner matrix and
guess, respectively, for solving the full linear system (see above for the numerics)
using the generalized minimum residual (iterative) method from MATLAB. This
hybrid approach reduced the total computational time by ≈ 50% at each streamwise
station.

Table 3.2: Computational setup of PSE and OWNS marches at f = 250 kHz.

Solver IC 𝑁𝜉 𝑁𝜂 𝑁𝜁 𝑁𝑏 𝑥𝑚𝑖𝑛 [m] 𝑥𝑚𝑎𝑥 [m]

PSE SBG 627 225 301 - 0.09 0.40
OWNS SBG 2001 225 301 10 0.09 0.40
OWNS Random 1232 225 301 10 0.09 0.28
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(a) (b)

Figure 3.4: Surface N-factors computed with PSE from original (a) and trun-
cated (b) base flows at 𝒇 = 250 kHz. The cyan circle along the solid vertical line
at 𝒙 = 0.24 m, which was the second location of the experimental PCB sensor,
represents the local maximum pressure used for the N-factor normalization.
The dashed line is the experimental heat-flux based transition onset 𝒙 𝒕𝒓 .

3.1.2 Boundary conditions
The PSE and one of two separate OWNS calculations are initialized using (the same)
spatial BiGlobal (SBG) eigenfunction, whereas the second OWNS computation is
initialized using randomized inlet forcing, i.e. forcing of each state variable at every
grid point randomly drawn from a normal distribution. This is done to excite all
wavenumbers at a given frequency and to trigger the gamut of potential instability
mechanisms. No-slip and isothermal boundary conditions are imposed at the wall
(𝑢′ = 𝑣′ = 𝑤′ = 𝑇 ′ = 0), and thus we solve the linearized continuity equation for 𝜌′.
At the upper boundary, we impose 1D inviscid Thompson characteristic boundary
conditions (Thompson, 1987). Lastly, we enforce spanwise symmetry boundary
conditions.

3.1.3 Results
3.1.3.1 Randomized forcing vs. SBG initialization at 𝑓 = 250 kHz

One of the major advantages of OWNS is the ability to initialize the march with
an arbitrary initial condition, which allows excitation of all instability mechanisms.
This is particularly useful for complex flow configurations, such as the current
study, where the dominant mode may not be known apriori or where multi-modal
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Figure 3.5: Surface N-factors computed using OWNS along prescribed az-
imuthal rays with randomized inlet forcing (dashed lines) and a SBG inlet
boundary condition (solid lines) at 𝒇 = 250 kHz.

or non-modal effects may be present. Thus, we perform two OWNS computations
initialized with a SBG inlet boundary condition and randomized forcing.

We first evaluate the N-factor along azimuthal rays of 𝜙 = 30.0◦, 32.5◦, and 35.0◦

between the two different initializations in Fig. 3.5. Note that𝑁 is computed similarly
to Eq. 3.1, but is normalized with the wall-pressure amplitude at 𝑥 = 0.24 m along
the selected azimuthal ray. After the initial transients in the upstream region, both
computations converge onto the dominant vortex instability with virtually identical
growth rates from 𝑥 > 0.2 m along the three selected azimuths. This would suggest
the dominant instability is indeed solely the vortex mode. We further substantiate this
by comparing the cross-stream pressure amplitudes and R (𝑢′) in Figs. 3.6 and 3.7,
respectively, at three axial positions. Even though the cross-stream profiles vastly
differ at the inlet (𝑥 = 0.09 m), both calculations indicate the initial development
of the vortex instability by 𝑥 = 0.185 m with similar pressure amplitudes and
wavenumber distribution. At 𝑥 = 0.28 m, both computations depict nearly identical
pressure amplitude and wave structures corresponding to the lone growth of the
vortex mode. Thus, since both OWNS marches track the same instability from
𝑥 = 0.2 m, the calculation with randomized inlet forcing was stopped at 𝑥 = 0.28
m.
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(a) 𝒙 = 0.09 m

(b) 𝒙 = 0.185 m

(c) 𝒙 = 0.28 m

Figure 3.6: Pressure amplitudes computed using OWNS with randomized
forcing at the inlet (left) and using a SBG inlet boundary condition (right) at
𝒇 = 250 kHz. The amplitudes are normalized by the maximum value at each
streamwise station such that contour limits blue, black, and red correspond to
0 < | 𝒑′| < 1. The background contour lines correspond to mean streamwise
velocity.
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(a) 𝒙 = 0.09 m

(b) 𝒙 = 0.185 m

(c) 𝒙 = 0.28 m

Figure 3.7: R(𝒖′) computed using OWNS with randomized forcing at the inlet
(left) and using a SBG inlet boundary condition (right) at 𝒇 = 250 kHz. All
quantities are normalized by the maximum value at each streamwise station
such that contour limits blue, black, and red correspond to−0.5 < R(𝒖′) < 0.5.
The background contour lines correspond to mean streamwise velocity.



43

(a) Recursion parameter study where
dashed and solid lines correspond to 𝑵𝒃 =
10 and 𝑵𝒃 = 13, respectively.

(b) Streamwise grid-convergence study
where dashed and solid lines correspond
to 𝑵𝝃 = 2001 and 𝑵𝝃 = 6001, respectively,
for the OWNS computations, whereas the
dash-dotted line corresponds to the PSE
calculation.

Figure 3.8: OWNS recursion parameter and grid-convergence studies using
surface N-factors along three azimuthal rays.

3.1.3.2 Comparison with PSE and convergence at 𝑓 = 250 kHz

At 𝑥𝑡𝑟 , the maximum N-factor from PSE and OWNS are approximately 3.0 and
2.0, respectively. Although the cross-stream resolution and numerics are identical
between OWNS and PSE, two additional factors may explain the lower growth rate
from OWNS: the number of recursion parameters, 𝑁𝑏, and the streamwise resolution,
𝑁𝜉 . Higher 𝑁𝑏 allows more accurate filtration of the upstream waves whereas
higher 𝑁𝜉 minimizes numerical dissipation, both of which invariably increases the
computational burden. We tested the effect of increasing 𝑁𝑏 from 10 to 13 for
0.245 m < 𝑥 < 0.280 m, but virtually no differences were observed in the surface
N-factors along 𝜙 = 30.0◦, 32.5◦, and 35.0◦ azimuths as shown in Fig. 3.8a. Note
that the N-factors were computed using Eq. 3.1, but normalized by the wall-pressure
amplitude at 𝑥 = 0.245 m along a given azimuth. Thus, the OWNS computations
are recursion-parameter converged.

We then investigated the effect of 𝑁𝜉 by tripling the streamwise resolution from
0.245 m < 𝑥 < 0.333 m. The OWNS N-factors along the three azimuthal rays in
Fig. 3.8b increases with higher 𝑁𝜉 , and closely agrees with the PSE values. In fact,
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the maximum N-factor at 𝑥𝑡𝑟 with a slightly downstream neutral point of 𝑥 = 0.245
m is 2.7 and 2.5 for PSE and OWNS, respectively. This suggests that the OWNS
calculations are not fully streamwise-grid-converged, but performing the calculation
at the refined resolution for the entire domain would be computationally prohibitive.
We can thus use the current OWNS calculations to only ascertain the dominant
instabilities present with the randomized inlet forcing (see Sec. 3.1.3.1) and general
features of the vortex mode as we demonstrate below the qualitative convergence of
the OWNS calculations to those using PSE.

The pressure amplitudes and the cross-stream wavenumber distribution from Figs. 3.9
and 3.10, respectively, show qualitative agreement between OWNS and PSE. This
suggests that non-modal and/or multi-modal effects are negligible if the flow field is
excited strictly at the inlet. The wave structures at 𝑥 = 0.2 m in Fig. 3.10a indicate
interaction between the disturbances at the crest of the laminar vortex and those
near the wall. However, by 𝑥 = 0.3 m (near 𝑥𝑡𝑟), most of the wave structures are
situated at the crest with minimal interaction with the wall due to the steepening of
the base-flow vortex. This also corroborates the relatively large pressure amplitude
observed at the crest in Figs. 3.9b and 3.9c.

3.2 Mach 1.5 turbulent jet
In this section, we apply the planar-marching techniques of OWNS and PSE to
a Mach 1.5 turbulent axisymmetric jet (see Fig. 3.11) computed using large-eddy
simulation described by Brès et al. (2017), in which the Reynolds number 𝑅𝑒 =

𝜌∗
𝑗
𝑢∗
𝑗
𝐷∗/𝜇∗

𝑗
= 1760000 and temperature ratio 𝑇𝑗/𝑇∞ = 1. In linearizing Eq. 2.1,

a turbulent Reynolds number of 𝑅𝑒𝑇 = 1760 is instead used, which is three orders
of magnitude less than the true Reynolds number. This is justified since using an
eddy-viscosity model or a reduced effective Reynolds number enhances both the
near-field (Pickering, Rigas, Schmidt, et al., 2021) and far-field (Pickering, Towne,
et al., 2021) dynamics in free-shear flows.

3.2.1 Computational setup
We use three different azimuthal domains: a 2D-domain (3DF calculation with
azimuthal wavenumber 𝑚 = 0), a 𝜋

4 -domain, and a full 2𝜋-domain. The latter two
domains are enforced with symmetric and periodic spanwise boundary conditions,
respectively, with all domains discretized in the cross-stream direction using the
fourth-order central finite-difference scheme. The radial grid contains higher con-
centration of points near the shear layer at 𝜂 = 0.5, whereas the azimuthal grid
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(a) 𝒙 = 0.2 m

(b) 𝒙 = 0.3 m

(c) 𝒙 = 0.4 m

Figure 3.9: Pressure amplitudes computed using PSE (left) and OWNS (right)
using a SBG inlet boundary condition at 𝒇 = 250 kHz. The amplitudes are
normalized by the maximum value at each streamwise station such that contour
limits blue, black, and red correspond to 0 < | 𝒑′| < 1. The background contour
lines correspond to mean streamwise velocity.
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(a) 𝒙 = 0.2 m

(b) 𝒙 = 0.3 m

(c) 𝒙 = 0.4 m

Figure 3.10: R(𝒖′) computed using PSE (left) and OWNS (right) using a SBG
inlet boundary condition at 𝒇 = 250 kHz. All quantities are normalized by
the maximum value at each streamwise station such that contour limits blue,
black, and red correspond to −0.5 < R(𝒖′) < 0.5. The background contour
lines correspond to mean streamwise velocity.
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Figure 3.11: Contour plot of the local Mach number for the 𝑴 𝒋 = 1.5 turbulent
jet. Figure from Towne, Rigas, Kamal, et al. (2022) where 𝒙/𝑫 and 𝒓/𝑫
correspond to 𝝃 and 𝜼, respectively.

is uniformly distributed. All marches are initialized with an axisymmetric Kelvin-
Helmholtz instability from LST with 1D inviscid Thompson characteristic boundary
conditions at the far-field (Thompson, 1987). We chose to focus on the axisym-
metric mode since it is generally of most importance in jet aeroacoustics (Cavalieri
et al., 2012; Chen and Towne, 2021).

The objective of using the three different azimuthal domains is to validate the gener-
alized curvilinear implementation of the centerline treatment from Sec. B.1.2, and
thus we elect to use PSE for these calculations. To more closely analyze the physics,
we also perform OWNS marches for the 2D- (3DF) and 𝜋

4 -azimuthal domains, along
with a 3DF linearized Navier-Stokes (LNS) calculation (see Sec. B.3.3 for details
of the LNS solver), and compare the results to PSE. The OWNS calculations are
integrated in the streamwise direction using BDF2 with 𝑁𝑏 = 11, whereas the fourth-
order central finite-difference scheme is used for streamwise discretization in the
LNS computation along with an outlet sponge to model an open boundary. The flow
and computational parameters are summarized in Tables 3.3 and 3.4, respectively.

Finally, all length scales presented in this section are normalized by the jet diameter
𝐷∗ and (𝜉, 𝜂, 𝜁) correspond to the canonical (𝑥, 𝑟, 𝜃) cylindrical coordinates.

Table 3.3: Mach 1.5 jet flow parameters.

𝑀 𝑗 𝑢∗
𝑗
= 𝑀 𝑗𝑎

∗
𝑗

[m/s] 𝑇∗
∞ [K] 𝑝∗∞ [Pa] 𝑅𝑒𝑇 𝑆𝑡

1.5 510.39 288.15 101300 1760 0.52

Table 3.4: Computational parameters used for the Mach 1.5 jet analyses.

𝜉𝑚𝑖𝑛 𝜉𝑚𝑎𝑥 𝜂𝑚𝑖𝑛 𝜂𝑚𝑎𝑥 𝜁𝑚𝑖𝑛 [rad] 𝜁𝑚𝑎𝑥 [rad] 𝑁𝜉 𝑁𝜂 𝑁𝜁

0.50 30 0.0063 16.17 0 [0, 𝜋/4, 2𝜋] 1001 225 [1, 20, 160]
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Figure 3.12: R( 𝒑′) for the 𝝅
4 - (top) and 2𝝅- (bottom) azimuthal domains

computed using PSE. Left and right columns correspond to 𝜻 = 0 and 𝜻 = 𝜻𝒎𝒂𝒙 ,
respectively.

Figure 3.13: R( 𝒑′) for the 𝝅
4 -azimuthal domain computed using OWNS, where

left and right correspond to 𝜻 = 0 and 𝜻 = 𝜻𝒎𝒂𝒙 , respectively.

3.2.2 Convergence study with Kelvin-Helmholtz instability initialization
We plot the pressure field along the first and last azimuthal planes for the 3D
computations in Fig. 3.12 for PSE and Fig. 3.13 for OWNS and compare to the
3DF calculations in Fig. 3.14. Overall, we see excellent agreement between all
three spanwise domains and amongst the azimuthal slices for the 3D calculations,
in which the jet dynamics include the near-field Kelvin–Helmholtz instability along
with the far-field acoustic radiation. The convergence of the solutions thus validates
the generalized curvilinear implementation and the centerline treatment for each
type of azimuthal domain.

3.2.3 Comparison of pressure response between OWNS, PSE, and LNS
For a closer quantitative comparison, we plot the pressure amplitude along the jet
lip line at 𝜂 = 0.5 and at 𝜁 = 0 between PSE, OWNS, and LNS for the 2D- and
𝜋
4 -azimuthal domains in Fig. 3.15. Again, all the solutions converge well, but the
hydrodynamic Kelvin-Helmholtz instability from the OWNS and LNS computations
in the shear layer appears to be modulated by the acoustic radiation in the region
1.5 < 𝜉 < 13. This coupling is also discussed in Nichols, Lele, and Moin (2009),
and further highlights the inability of PSE to resolve multi-modal interactions,
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Figure 3.14: Top to bottom corresponds to R( 𝒑′) from 3DF computations
using PSE, OWNS, and LNS.

Figure 3.15: Pressure amplitudes along the jet lip line at 𝜼 = 0.5 and 𝜻 = 0
for the 2D- and 𝝅

4 -azimuthal domains computed using OWNS (solid lines), PSE
(dashed lines) and LNS (dash-dotted line). Note that the 3DF OWNS and LNS
computations are highly overlapping.

which, in contrast, can be accurately captured using OWNS at a fraction of the cost
of LNS.

3.2.4 Summary
We have demonstrated the capability of OWNS to track complex 3D instabilities
by studying the evolution of the vortex mode on a Mach 6 finned-cone geometry.
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By using both a randomized inlet forcing and a SBG inlet boundary condition, the
insensitivity to the initial conditions was established as both calculations converged
to the dominant vortex mode. Thereafter, we demonstrated the accurate implemen-
tation of the pole conditions for cylindrical coordinates by spatially evolving the
Kelvin-Helmholtz instability using various azimuthal domains for a Mach 1.5 ax-
isymmetric turbulent jet. In contrast to PSE, OWNS was able to track the modulated
Kelvin-Helmholtz instability due to the acoustic radiation with significantly lower
computational burden compared to LNS (global approach).

Up to this point, we have only considered the forward problem, i.e. analyzing how
disturbances spatially evolve from a prescribed inlet boundary condition or volu-
metric forcing. However, the inverse problem of determining the inhomogeneous
forcing (inputs) that results in the largest disturbance-energy amplification (outputs)
would instead directly illuminate the dominant instability mechanisms present, and
is commonly referred to as input-output or resolvent analysis. This optimization
method usually requires solving a system of globally discretized equations, which
can become computationally prohibitive for large domains and/or complex flows. In
the following chapter, we develop an algorithm using the OWNS projection equa-
tions from Sec. 2.2.2 to accurately compute these optimal forcings and responses
with considerably reduced computational expense compared to the global approach.
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C h a p t e r 4

INPUT-OUTPUT ANALYSIS USING OWNS

Input-output analysis provides a powerful framework for analyzing transitional and
turbulent flows, especially for computing coherent flow structures. However, this
technique remains computationally expensive for flows exhibiting inhomogeneity in
multiple spatial coordinates. In this chapter, we outline how the OWNS projection
approach from Sec. 2.2.2 can be reconstructed to efficiently compute the optimal
(worst-case) forcings and responses using an iterative, adjoint-based method with
Lagrangian multipliers. This obviates the need to solve the globally discretized
direct and adjoint equations, thereby bypassing the large computational expensive
of traditional input-output analysis. We validate this new methodology to a Mach
4.5 transitional zero-pressure-gradient flat-plate boundary layer and a Mach 1.5
turbulent jet against corresponding global calculations. Thereafter, we study worst-
case disturbances on the centerline of the Mach 6 HIFiRE-5 elliptic cone and on a
highly cooled Mach 6 flat-plate boundary layer.

4.1 Methodology
Although not necessary, the streamwise viscous terms in the derivation of the optimal
OWNS framework is omitted for their negligible effects (this will be substantiated
in the subsequent validations), i.e. 𝒇𝝃,𝒗𝒊𝒔 = 0, which allows ˜B𝒑 to be directly
embedded into the 𝑩‡ operator from Eq. 2.29a. The constrained optimization can
then be constructed by defining the Lagrangian function

L(𝝓‡, 𝝓‡∗, 𝝓‡

0, 𝝓
‡

1
, 𝒇𝝓) = J (𝝓‡) − ⟨𝝓‡∗, (𝑨‡𝜕𝜉 − 𝑳‡)𝝓‡ − 𝑩‡ 𝒇𝝓⟩, (4.1)

where the asterisk denotes adjoint OWNS operators/variables. Here, J is a generic
cost function to be maximized subject to the governing approximate OWNS projec-
tion equations, which are enforced via the adjoint variable 𝝓‡∗. For succinctness,
we have used 𝜕𝜉 to indicate 𝜉-derivatives in this section.

We define an inner product over the cross-stream coordinates

(𝒂, 𝒃)𝑂 = (𝒂,𝑾𝒆𝒃) = 𝒂𝑯 (𝜉)𝑾𝜼𝜻 (𝜉)𝑾𝒆 (𝜉)𝒃(𝜉) = 𝒂𝑯 (𝜉)𝑾𝑶 (𝜉)𝒃(𝜉), (4.2)
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and over the entire domain

⟨𝒂, 𝒃⟩𝑂 = ⟨𝒂,𝑾𝒆𝒃⟩ =
∫
Ω

𝒂𝑯 (𝜉)𝑾𝜼𝜻 (𝜉)𝑾𝒆 (𝜉)𝒃(𝜉) d𝜉 =

∫
Ω

𝒂𝑯 (𝜉)𝑾𝑶 (𝜉)𝒃(𝜉) d𝜉

=

∫
Ω

(𝒂, 𝒃)𝑂 d𝜉, (4.3)

whereΩ = [𝜉0, 𝜉1] is the streamwise extent of the domain, and 𝜉0 and 𝜉1 correspond
to the streamwise coordinates of the inlet and outlet planes, respectively. The weight
matrix is constructed as a composition so that the norm represents a quantity of
interest (e.g. energy) and quadrature weights for the cross-stream discretization, i.e.
𝑾𝑶 (𝜉) = 𝑾𝜼𝜻 (𝜉)𝑾𝒆 (𝜉). In this way ⟨𝒂, 𝒃⟩𝑂 ≈ ⟨𝒂, 𝒃⟩𝑔, (equal up to a discretization
error). The definition of ⟨𝒂, 𝒃⟩𝑔 is provided in Sec. B.3.4 and inner products without
any subscripts involve only quadrature weights. The diagonal integration-weight
matrix 𝑾𝜼𝜻 (𝜉) is composed of ℎ𝜉ℎ𝜂d𝜂, ℎ𝜉ℎ𝜂ℎ𝜁d𝜂, and ℎ𝜉ℎ𝜂ℎ𝜁d𝜂d𝜁 for 2D, 3DF,
and 3D analyses, respectively. We additionally now define the Chu-energy norm
(Chu, 1965)

𝐸𝐶ℎ𝑢 =
1
2

∫ ∫
Ω

𝑅𝑇

𝜌
𝜌′2 + 𝜌 |u′|2 + 𝑅𝜌

𝑇

(
𝛾(𝑇) − 1

)𝑇 ′2 d𝜉d𝐴 (4.4)

=

∫
Ω

𝒒′𝑯 (𝜉)𝑾𝜼𝜻 (𝜉)𝑾𝒆 (𝜉)𝒒′(𝜉) d𝜉 = ⟨𝒒′, 𝒒′⟩𝑂 , (4.5)

where 𝐴 represents the streamwise-local cross-stream area and 𝑾𝒆 (𝜉) from this
point onwards is the diagonal Chu-energy weight matrix defined as

𝑾𝒆 (𝜉) =
1
2



𝑅𝑇
𝜌

0 0 0 0
0 𝜌 0 0 0
0 0 𝜌 0 0
0 0 0 𝜌 0
0 0 0 0 𝑅𝜌

𝑇 (𝛾(𝑇)−1)


. (4.6)

The inner product in Eq. 4.1 can be expanded through integration by parts, yielding

⟨𝝓‡∗, (𝑨‡𝜕𝜉 − 𝑳‡)𝝓‡ − 𝑩‡ 𝒇𝝓⟩

= ⟨(−𝑨‡∗𝜕𝜉 − 𝑳‡∗)𝝓‡∗, 𝝓‡⟩ +
[(
𝑨‡∗𝝓‡∗, 𝝓‡

)] 𝜉1
𝜉0

− ⟨𝝓‡∗, 𝑩‡ 𝒇𝝓⟩

= ⟨(−𝑨‡∗𝜕𝜉 − 𝑳‡∗)𝝓‡∗, 𝝓‡⟩ +
(
𝑨‡∗𝝓‡∗

1
, 𝝓‡

1

)
−

(
𝑨‡∗𝝓‡∗

0 , 𝝓
‡

0

)
− ⟨𝝓‡∗, 𝑩‡ 𝒇𝝓⟩,

(4.7)
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where

𝑨‡∗ = 𝑾‡

𝜼𝜻

−1
𝑨‡𝑯𝑾‡

𝜼𝜻 , 𝑳‡∗ = 𝑾‡

𝜼𝜻

−1
𝑳‡𝑯𝑾‡

𝜼𝜻 , (4.8)

and 𝑾‡

𝜼𝜻 is the augmented diagonal quadrature-weight matrix to accommodate the
auxiliary variables. Thus, we can define the adjoint to Eq. 2.29a as

(𝑨‡∗𝜕𝜉 − 𝑳‡∗)𝝓‡∗ = 𝒇 ∗𝝓 , (4.9)

where 𝒇 ∗𝝓 is the adjoint characteristic forcing determined from evaluating the sta-
tionary points of the Lagrangian function. Note that the negative sign in front of
𝑨‡∗ has been dropped since we are marching upstream.

The cost function J is defined analogously to the global resolvent formulation
from Sec. B.3.4 to compute the optimal volumetric forcings, 𝒇 𝒑, that maximize the
Chu-energy of the flow. Here, we will express J in characteristics instead as

J (𝝓‡, 𝒇𝝓) = 𝜎2
𝑂 (𝜔) =

⟨𝒚, 𝒚⟩𝑂
⟨ 𝒇 𝒑, 𝒇 𝒑⟩𝑂

=

∫
Ω
𝒒′𝑯C𝑯

𝒑 𝑾𝑶C 𝒑𝒒
′ d𝜉∫

Ω
(𝑻−1 𝒇𝝓)𝑯𝑾𝑶 (𝑻−1 𝒇𝝓) d𝜉

=

∫
Ω
𝝓‡𝑯𝑾‡

𝜼𝜻

𝑾‡︷                                     ︸︸                                     ︷
𝑾‡

𝜼𝜻

−1
𝑪‡𝑯𝑻−𝑯

C
𝑯
𝒑 𝑾𝑶C 𝒑𝑻

−1𝑪‡ 𝝓‡ d𝜉∫
Ω
𝒇 𝑯𝝓 𝑾𝜼𝜻 𝑾

−1
𝜼𝜻 𝑻

−𝑯𝑾𝑶𝑻
−1︸               ︷︷               ︸

𝑾 𝒇

𝒇𝝓 d𝜉

=
⟨𝝓‡,𝑾‡𝝓‡⟩
⟨ 𝒇𝝓,𝑾 𝒇 𝒇𝝓⟩

. (4.10)

The Lagrangian function from Eq. 4.7, after enforcing 𝝓0 = 0, and after substituting
the cost function from Eq. 4.10, is

L(𝝓‡, 𝝓‡∗, 𝝓‡

1
, 𝒇𝝓) =

⟨𝝓‡,𝑾‡𝝓‡⟩
⟨ 𝒇𝝓,𝑾 𝒇 𝒇𝝓⟩

− ⟨(𝑨‡∗𝜕𝜉 − 𝑳‡∗)𝝓‡∗, 𝝓‡⟩

−
(
𝑨‡∗𝝓‡∗

1
, 𝝓‡

1

)
+ ⟨𝝓‡∗, 𝑩‡ 𝒇𝝓⟩. (4.11)

The optimal forcing and responses are obtained by finding the stationary points of
the Lagrangian function

𝛿L = ⟨∇𝝓‡∗L, 𝛿𝝓‡∗⟩ + ⟨∇𝝓‡L, 𝛿𝝓‡⟩ + ⟨∇𝝓‡

1

L, 𝛿𝝓‡

1
⟩ + ⟨∇ 𝒇𝝓L, 𝛿 𝒇𝝓⟩ = 0. (4.12)
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We now set each inner product of the stationary points individually to zero

⟨∇𝝓‡∗L, 𝛿𝝓‡∗⟩ = 0 → ⟨−(𝑨‡𝜕𝜉 − 𝑳‡)𝝓‡ + 𝑩‡ 𝒇𝝓, 𝛿𝝓
‡∗⟩ = 0, (4.13a)

⟨∇𝝓‡L, 𝛿𝝓‡⟩ = 0 →
〈 (𝑾‡ +𝑾‡

𝜼𝜻

−1
𝑾‡𝑯𝑾‡

𝜼𝜻 )𝝓
‡

⟨ 𝒇𝝓,𝑾 𝒇 𝒇𝝓⟩

− (𝑨‡∗𝜕𝜉 − 𝑳‡∗)𝝓‡∗, 𝛿𝝓‡

〉
= 0, (4.13b)

⟨∇𝝓‡

1

L, 𝛿𝝓‡

1
⟩ = 0 → ⟨−𝑨‡∗𝝓‡∗

1
, 𝛿𝝓‡

1
⟩ = 0, (4.13c)

⟨∇ 𝒇𝝓L, 𝛿 𝒇𝝓⟩ = 0 →
〈
− ⟨𝝓‡,𝑾‡𝝓‡⟩
⟨ 𝒇𝝓,𝑾 𝒇 𝒇𝝓⟩2 (𝑾 𝒇 +𝑾−1

𝜼𝜻𝑾
𝑯
𝒇 𝑾𝜼𝜻 ) 𝒇𝝓

+𝑾−1
𝜼𝜻 𝑩

‡𝑯𝑾‡

𝜼𝜻𝝓
‡∗, 𝛿 𝒇𝝓

〉
= 0. (4.13d)

An iterative procedure for finding the stationary points from Eq. 4.13 is summarized
in Algorithm 1 and schematically illustrated in Fig. 4.1. Lastly, 𝑁 optimal and
suboptimal forcings, { 𝒇 𝒑1, 𝒇 𝒑2, . . . , 𝒇 𝒑𝑵}, and responses, {𝒒′1, 𝒒

′
2, . . . , 𝒒

′
𝑵}, can

also be computed by initializing the optimization procedure such that ⟨ 𝒇 𝒑 𝒊, 𝒇 𝒑 𝒋⟩ =
𝛿𝑖 𝑗 , and orthonormalizing the forcings at each iteration.

Algorithm 1 uses a power iteration scheme, along with Gram-Schmidt orthogonal-
ization, to facilitate the calculation of multiple modes. Other more sophisticated
iteration schemes such as the Arnoldi method or RSVD (Halko, Martinsson, and
Tropp, 2011) could be used to accelerate convergence. However, for the various
validations and applications presented later in this chapter, along with extensive
experience using Algorithm 1 for studies beyond the scope of this thesis, the power
iteration method was found to converge sufficiently fast in just a few iterations.

4.2 Validation of optimal OWNS to a Mach 4.5 flat-plate boundary layer
We first validate the optimal OWNS framework by considering a Mach 4.5 laminar
flat-plate zero-pressure-gradient boundary layer. Optimal forcings and responses are
computed using the OWNS and global approach for several frequency and wavenum-
ber combinations corresponding to different linear instability mechanisms. These
cases, and the numerical parameters used for each, are summarized in Table 4.1.
Results in this section are from Towne, Rigas, Kamal, et al. (2022), in which dimen-
sional quantities are not denoted with asterisks.
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Algorithm 1 Optimal forcing and response with OWNS
1: Initialize random 𝒇 𝒑 𝒊 such that ⟨ 𝒇 𝒑 𝒊, 𝒇 𝒑 𝒋⟩𝑂 = 𝛿𝑖 𝑗 . Set threshold 𝜖 (here 10−4).
2: Solve the forced OWNS projection equations to determine the response by

spatially marching in +𝜉

(𝑨‡𝜕𝜉 − 𝑳‡)𝝓‡

𝒊 = 𝑩‡ 𝒇𝝓𝒊 , 𝝓𝒊 (𝜉 = 𝜉0) = 0.

3: Calculate adjoint forcing

𝒇 ∗𝝓 𝒊
= 𝛼∗

𝑖 (𝑾‡ +𝑾‡

𝜼𝜻

−1
𝑾‡𝑯𝑾‡

𝜼𝜻 )𝝓
‡

𝒊 ,

where 𝛼∗
𝑖

is a normalization coefficient such that 𝒇 ∗𝝓 𝒊
has unit norm.

4: Solve the adjoint OWNS projection equations by spatially marching in −𝜉

(𝑨‡∗𝜕𝜉 − 𝑳‡∗)𝝓‡∗

𝒊 = 𝒇 ∗𝝓 𝒊
, 𝝓∗

𝒊 (𝜉 = 𝜉1) = 0.

5: Calculate direct forcing

𝒇 𝒑 𝒊 = G
[
𝑻−1(𝑾 𝒇 +𝑾−1

𝜼𝜻𝑾
𝑯
𝒇 𝑾𝜼𝜻 )−1𝑾−1

𝜼𝜻 𝑩
‡𝑯𝑾‡

𝜼𝜻𝝓
‡∗

𝒊

]
,

where G[ ] is the Gram-Schmidt orthonormalization operator such that

⟨ 𝒇 𝒑 𝒊, 𝒇 𝒑 𝒋⟩𝑂 = 𝛿𝑖 𝑗 .

6: Calculate the relative change of the cost function

Δ =

����J𝑘+1 − J𝑘

J𝑘

���� = ���� ⟨𝒚, 𝒚⟩𝑂,𝑘+1 − ⟨𝒚, 𝒚⟩𝑂,𝑘

⟨𝒚, 𝒚⟩𝑂,𝑘

���� .
7: Repeat Steps 2 to 6 until Δ < 𝜖 .

4.2.1 Computational setup
For this section only, all boundary-layer quantities are non-dimensionalized using
the free-stream velocity 𝑢∞ and the local compressible displacement thickness 𝛿∗(𝑥)
or the displacement thickness at the outlet of the domain 𝛿∗0. Note that for the present
flat-plate geometry, 𝑥 = 𝜉 and 𝑦 = 𝜂. The domain inlet is located just downstream
of the leading edge at 𝑅𝑒𝑖𝑛𝑥 = 105, corresponding to 𝑅𝑒𝑖𝑛

𝛿∗0
= 871, to avoid the

singularity in the similarity solution used in this validation study. The streamwise
domain extends to 𝑅𝑒𝑜𝑢𝑡𝑥 =

𝜈∞𝑥
𝑢∞

= 1.74 × 106 or 𝑅𝑒𝑜𝑢𝑡
𝛿∗0

= 11216. The domain size
is similar to the one of Bugeat et al. (2019), where in their calculations the outlet is
at 𝑅𝑒𝑜𝑢𝑡𝑥 = 1.75 × 106 or 𝑅𝑒𝑜𝑢𝑡

𝛿∗0
= 11000. However, in their analyses, the flat-plate

leading edge was also included in the computational domain, resulting in a weak
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Figure 4.1: Schematic of the iterative, adjoint-based algorithm for compu-
tation of the optimal forcings and responses using the OWNS projection ap-
proach. Figure from Towne, Rigas, Kamal, et al. (2022), where hats represent
frequency-domain variables and 𝒙 can be replaced with 𝝃 to extend to the
present curvilinear coordinates.

shock at the leading edge and small discrepancies in the outlet momentum thickness
when compared to the similarity solution.

In order to properly resolve the instabilities near the wall and critical layer, grid
stretching in the 𝑦-direction is employed clustering half of the points near the wall
for 𝑦/𝛿∗0 < 0.9 (Malik, 1990). No-slip and adiabatic boundary conditions (𝑢′ = 𝑣′ =

𝑤′ = 𝜕𝑇 ′/𝜕𝑦 = 0) are enforced at the wall (Poinsot and Lelef, 1992). The OWNS
equations are integrated in the streamwise direction using BDF2 with 𝑁𝑏 = 15,
which provided a good approximation for filtering the upstream-propagating waves
while accurately tracking the downstream modes. Finally, the streamwise resolution
was reduced for the global calculations as indicated in Table 4.1 due to the higher-
order discretization and the larger computational memory requirements.
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Figure 4.2: Laminar base flow of the 𝑴 = 4.5 adiabatic flat-plate boundary
layer calculated using a similarity transformation. Self-similar streamwise
velocity and temperature components (left) and local Mach number (right)
with the dashed line corresponding to the displacement thickness 𝜹∗(𝒙). Figure
from Towne, Rigas, Kamal, et al. (2022) where 𝜼 is the self-similar variable.

Table 4.1: Numerical parameters for the 𝑴 = 4.5 flat-plate boundary layer.

Boundary layer 𝜔 𝛽 𝑁𝑥 × 𝑁𝑦 (OWNS/Global) 𝑥/𝛿∗0 𝑦/𝛿∗0
Streaks 0.002 2.2 1601 × 81 / 601 × 108 0.01 − 155 0 − 9

Second mode 2.5 0 2401 × 108 / 1001 × 180 0.01 − 155 0 − 9
Oblique mode 0.32 1.2 1601 × 81 / 651 × 81 0.01 − 155 0 − 9

The laminar base flow corresponds to a similarity solution of the compressible
boundary-layer equations, where the Howarth-Dorodnitsyn transformation was em-
ployed to reduce the governing equations to a set of ODE’s. The similarity solution
is shown in Fig. 4.2.

Finally, in the optimization, we restrict the forcing only to the momentum compo-
nents ( 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧), or equivalently denoted as ( 𝑓𝑢, 𝑓𝑣, 𝑓𝑤), using the B𝒑 operator to
match the setup of Bugeat et al. (2019).

4.2.2 Results
4.2.2.1 Optimal gain

Using the optimal OWNS algorithm, we compute the resolvent modes for the adia-
batic flat-plate boundary layer across a range of frequencies and spanwise wavenum-
bers. The optimal input-output gains corresponding to three regions of locally max-
imum gain in the 𝜔 − 𝛽 plane are shown in Fig. 4.3. Their maxima correspond to
the amplification of streaks (𝜔 → 0), second Mack modes (𝛽 = 0), and oblique first
modes. We observe excellent agreement of the optimal 𝜔 and/or 𝛽 when compared
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Figure 4.3: Optimal input-output gain for three linear instability mechanisms
for the 𝑴 = 4.5 flat-plate adiabatic boundary layer. Validation against nor-
malized results from Bugeat et al. (2019) for a similar configuration. Figure
from Towne, Rigas, Kamal, et al. (2022).

to the global resolvent calculations of Bugeat et al., 2019 for all three instability
mechanisms.

4.2.2.2 Optimal forcings and responses

For streaks, the optimal forcing consists of streamwise counter-rotating vortices
that lift the streamwise base-flow momentum. This is referred to as the lift-up
mechanism and yields a response that contains primarily streaks of highly amplified
streamwise velocity stretching in the streamwise direction. The dominant input ( 𝑓𝑣)
and output (𝑢′) velocity modes from OWNS and global computations are shown
in Fig. 4.4. Great agreement is observed between the two methods, with the small
differences near the domain inlet/outlet boundaries attributed to the sponges of
the global method that attenuate the response to avoid reflections. Based on our
experience, the tuning of the sponges is a tedious procedure and problem specific,
but is obviated for the OWNS method since upstream-traveling waves are removed
at each streamwise station during the parabolization procedure.

In Fig. 4.4, we also plot the OWNS optimal forcing and response profiles for all
the perturbed quantities at a given streamwise station near the inlet and outlet,
respectively. The OWNS results are compared to our global calculations and the
global analyses from Bugeat et al. (2019). Great agreement is observed between
OWNS and our global results, confirming the accuracy of the OWNS methodology.
Some discrepancies are observed for the forcing away from the wall when compared
to Bugeat et al. (2019) (both our global and OWNS). These discrepancies can be
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attributed to the differences in the computational domain (inclusion of leading edge
and shock) and the different choice of the input norm between the two studies.
The forcing amplitudes presented in Bugeat et al. (2019) likely correspond to the
conservative form of the momentum equations whereas we perform our analyses
using primitive variables (Karban et al., 2020). Essentially, our forcing exists in a
different subspace, but we are optimizing the same quantity, i.e. the disturbance-
energy amplification with respect to the Chu-energy norm, which explains the
agreement observed in the response profiles despite the differences in the forcing
modes.

We next analyze the optimal forcing and response for the oblique first mode with
contour plots of the dominant components 𝑓𝑤 and 𝑢′ from the OWNS and global
calculations shown in Fig. 4.5. The optimal forcing field contains upstream-titled
structures that are emblematic of the non-modal Orr mechanism. This generates an
oblique wave response with relatively large streamwise velocity. Good agreement
is achieved between the global and OWNS results for all perturbed input and output
components, although a small error of about 1% in the wavelength can be observed.

Lastly, we compare the results for the second-mode instability in Fig. 4.6, as was done
in the two previous cases. We see the classical subsonic second-mode instability
in the response field, characterized by the trapped acoustic waves between the wall
and relative sonic line as well as thermodynamic amplification near the generalized
inflection point (two coexisting mechanisms). For such a response, we require the
optimal forcing to be primarily concentrated near the generalized inflection point.
Good agreement is again observed between OWNS and our global results.

In comparing the three linear instabilities, the first and second modes exhibit
convective-type non-normality (Sipp et al., 2010), where there is a streamwise
spatial lag between the input and response. In contrast, we observe component-type
non-normality in the streaks due to the lift-up mechanism, which is local at each
streamwise station as the base-flow momentum is advected by the counter-rotating
vortices in the cross-stream directions. Consequently, we observe an elongated
spatial support in the forcing field when compared to the first or second mode.

The close agreement of the resolvent modes between the global and OWNS calcu-
lations also extends to suboptimal modes. To demonstrate this, Fig. 4.7 compares
the global and OWNS streamwise velocity response for the first suboptimal mode,
i.e. the mode with second highest gain, for each of the three instability mechanisms
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Figure 4.4: Streak (steady 3DF) optimal disturbances at 𝝎 = 0.002, 𝜷 = 2.2.
Forcing and response amplitude components at 𝒙/𝜹∗0 = 35 (left) and 𝒙/𝜹∗0 = 159
(right). Circle symbols: Bugeat et al. (2019); triangle symbols: global using
CSTAT; solid lines: OWNS. Figure from Towne, Rigas, Kamal, et al. (2022).
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Figure 4.5: Oblique first mode (unsteady 3DF) optimal disturbances at 𝝎 =
0.32, 𝜷 = 1.2. Forcing and response amplitude components at 𝒙/𝜹∗0 = 12 (left)
and 𝒙/𝜹∗0 = 159 (right). Circle symbols: Bugeat et al. (2019); triangle symbols:
global using CSTAT; solid lines: OWNS. Figure from Towne, Rigas, Kamal,
et al. (2022).
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Figure 4.6: Planar second mode (unsteady 2D) optimal disturbances at𝝎 = 2.5,
𝜷 = 0. Forcing and response amplitude components at 𝒙/𝜹∗0 = 90 (left) and
𝒙/𝜹∗0 = 148 (right). Circle symbols: Bugeat et al. (2019); triangle symbols:
global using CSTAT; solid lines: OWNS. Figure from Towne, Rigas, Kamal,
et al. (2022).
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Figure 4.7: Streamwise velocity response for the first suboptimal mode calcu-
lated using the global and OWNS methods: (a,b) streaks; (c,d) oblique first
mode; (e,f) 2D second mode. Figure from Towne, Rigas, Kamal, et al. (2022).

studied above. As expected, we see an increased number of wavepackets in the
responses due to the orthogonality between optimal and suboptimal modes.

4.3 Validation of optimal OWNS to a Mach 1.5 turbulent jet
The last validation of the input-output OWNS framework corresponds to studying
the optimal forcings and responses of a turbulent jet. Previous resolvent analyses of
jets (Garnaud et al., 2013; Jeun, Nichols, and Jovanović, 2016; Schmidt et al., 2018;
Lesshafft et al., 2019) illuminated a diverse set of physical phenomena, such as
the Kelvin-Helmholtz instability, which results in large-scale coherent wavepackets
(Jordan and Colonius, 2013), the Orr mechanism (Tissot et al., 2017; Schmidt et al.,
2018), the lift-up mechanism (Nogueira et al., 2019; Pickering, Rigas, Nogueira, et
al., 2020), and acoustic modes within the jet core (Tam and Hu, 1989; Towne, Cav-
alieri, et al., 2017). The complexity of the physics within the resolvent framework
makes it a challenging test case, and thus we apply the optimal OWNS equations to
the same Mach 1.5 turbulent jet from Sec. 3.2. The goal is to use OWNS to repro-
duce the optimal forcings and responses from the global approach at a fraction of
the computational expensive. The results presented in this section are from Towne,
Rigas, Kamal, et al. (2022).
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4.3.1 Computational setup
Since the base flow is axisymmetric, the azimuthal direction is homogeneous and
can be decomposed into Fourier modes. We elect to focus on the axisymmetric
mode corresponding to azimuthal wavenumber 𝑚 = 0, which is generally of most
importance in jet aeroacoustics (Cavalieri et al., 2012; Chen and Towne, 2021), at
𝑆𝑡 = 0.26 and 0.52. The computational details for the OWNS and global resolvent
analyses are summarized in Table 4.2. The radial direction is discretized using
the fourth-order central finite-difference scheme with higher concentration of points
near the shear layer at 𝜂 = 0.5 and 1D inviscid Thompson characteristic boundary
conditions at the far-field (Thompson, 1987). Refer to Sec. B.1.2 for the centerline
treatment of 3DF jets. The streamwise grid for the global resolvent computations
is also discretized using the fourth-order central finite-difference scheme and is
stretched near the inlet using a hyperbolic tangent function. Inlet and outlet sponges
are used to model open boundaries for the global calculations, whereas the OWNS
marches are streamwise-integrated using BDF2.

Table 4.2: Computational parameters used for the 𝑴 𝒋 = 1.5 optimal jet anal-
yses.

𝜉𝑚𝑖𝑛 𝜉𝑚𝑎𝑥 𝜂𝑚𝑖𝑛 𝜂𝑚𝑎𝑥 𝑁𝜉 𝑁𝜂 𝑁𝑏 (OWNS only)

0.50 30 0.0143 16.97 1001 275 15

Furthermore, the input forcing is radially restricted to 𝜂𝑚𝑖𝑛 < 𝜂 < 𝜂𝑚𝑎𝑥 using the B𝒑

operator. We use 𝜂𝑚𝑖𝑛 = 0.0425 to prevent the forcing from damaging the centerline
pole conditions and 𝜂𝑚𝑎𝑥 is defined as the radial location where the velocity is greater
than 5% of the maximum jet velocity, i.e. the forcing is contained only within the
jet layer. No constraints are applied for the output, i.e. C 𝒑 = 𝑰.

4.3.2 Results
The optimal R (𝑝′) from the OWNS and global resolvent analyses at 𝑆𝑡 = 0.26 and
0.52 and 𝑚 = 0 are shown in Fig. 4.8. The dominant instability at these frequencies
is the Kelvin-Helmholtz instability in the near-field (Schmidt et al., 2018; Pickering,
Rigas, Nogueira, et al., 2020) along with the far-field acoustic radiation. We also
quantitatively compare the global and OWNS pressure responses at the jet lip-line
𝜂 = 0.5 in Fig. 4.9. There is excellent agreement between the two methods, thereby
substantiating the assumption of weak influence of the upstream-propagating waves
in the OWNS parabolization.
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Figure 4.8: Optimal forcing (a-d) and response (e-h) for the 𝑴 𝒋 = 1.5 turbulent
jet. Comparison between global (a,b,e,f) and OWNS (c,d,g,h). Contours of
R( 𝒑′) at 𝑺𝒕 = 0.26 and 𝑺𝒕 = 0.52 and 𝒎 = 0 are shown. Figure from
Towne, Rigas, Kamal, et al. (2022) where 𝒙/𝑫 and 𝒓/𝑫 correspond to 𝝃 and 𝜼,
respectively.

Figure 4.9: Optimal pressure response at the jet lip-line 𝜼 = 0.5 for (a) 𝑺𝒕 =
0.26; (b) 𝑺𝒕 = 0.52 and 𝒎 = 0. Solid and dashed lines correspond to global and
OWNS solutions, respectively. Figure from Towne, Rigas, Kamal, et al. (2022)
where 𝒙/𝑫 corresponds to 𝝃.



66

4.4 Application of optimal OWNS to the Mach 6 HIFiRE-5 elliptic cone
To assess the optimal OWNS framework for more complex geometries, we perform
a 2D optimization (𝛽 = 0) along the centerline of the HIFiRE-5 elliptic cone
with streamwise body curvature effects included and full global inputs and outputs
(B𝒑 = C 𝒑 = 𝑰). Results from this section are from Kamal, Rigas, et al. (2021), in
which † denotes dimensional quantities rather than asterisks. Stability analyses along
the centerline assuming spanwise homogeneity must be performed with caution,
however, as the centerline vortices induce strong azimuthal variations in the near
vicinity (Kamal, Rigas, et al., 2020; Choudhari et al., 2009).

4.4.1 Computational setup
The HIFiRE-5 elliptic cone in the present study is a 38.1% scale model with an
axial length of 38.1 mm and an aspect ratio of 2:1 at the tip. The cone half-angles
are 7.00 and 13.797 degrees along the minor (centerline) and major (attachment
line) axes, respectively. The base flow is provided by The Boeing Company with
the flow parameters summarized in Table 4.3. Note that the wall-normal domain
increases in the 𝜉-direction. We focus our study on the centerline and treat the flow
and disturbances there as locally two-dimensional. The origin of the curvilinear and
global Cartesian coordinates correspond to the nose tip with a streamwise domain
of Ω† = [0.0660, 0.294] m with 𝑁𝜉 × 𝑁𝜂 = 2000 × 150. Contour plots of 𝑢 and 𝑇

fields and wall-normal 𝑢 profiles along the centerline are shown in Fig. 4.10.

Table 4.3: HIFiRE-5 flow parameters.

𝑀∞ 𝑇
†
∞ [K] 𝑇

†
𝑤 [K] 𝑝

†
∞ [Pa] 𝑅𝑒

†
∞ [1/m]

6.0 49.45 315 417.315 8.1 × 106

To properly resolve the instabilities near the wall and critical layer, we employ a grid
stretching technique (Malik, 1990)

𝜂 =
2𝜂𝑖𝜂𝑚𝑎𝑥𝜆

𝜂𝑚𝑎𝑥 − (2𝜆 − 1) (𝜂𝑚𝑎𝑥 − 2𝜂𝑖)
, (4.14)

where 0 ≤ 𝜆 ≤ 1 (equidistant grid points). Using the above scheme, half the points
in the 𝜂 direction are placed between 𝜂 = 0 and 𝜂 = 𝜂𝑖.

No-slip (𝑢′ = 𝑣′ = 0) and isothermal (𝑇 ′ = 0) boundary conditions are imposed at
the wall for all calculations. At the wall, we solve the linearized continuity equation
for 𝜌′. At the upper boundary, we impose 1D inviscid Thompson characteristic
boundary conditions (Thompson, 1987) to prevent spurious numerical reflections.
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(a) 𝒖 (top) and 𝑻 (bottom) base-flow fields.

(b) 𝒖 profiles at selected streamwise stations.

Figure 4.10: DNS-computed centerline base-flow solutions from The Boeing
Company.

4.4.2 Results
4.4.2.1 Optimal forcings and responses

Although the highest LST N-factor for the centerline was shown to occur at 𝑓 † = 80
kHz from Kamal, Rigas, et al. (2020), we perform a frequency sweep using OWNS
to evaluate the optimal 𝑓 † since the parallel-flow assumption in LST introduces
error, especially for complex flows. Using the optimal OWNS algorithm, which
incorporates all nonparallel and non-modal effects, the optimal 𝑓 † is predicted
lower at 𝑓 † = 70.0 kHz as seen in the gain curve of Fig. 4.11. All HIFiRE-5 results
hereafter in this section will correspond to this frequency.
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Figure 4.11: Gain curve for Mach 6 HIFiRE-5 elliptic cone with the conditions
from Table 4.3 along the centerline at 𝜷 = 0. Note the compact range of values
on the 𝒙-axis as we are zoomed into a small frequency range near the optimal
value.

Fig. 4.12 plots the optimal forcing and response fields. The spatial structures exhibit
some resemblance to the second mode of the Mach 4.5 flat-plate boundary layer from
Sec. 4.2, where the forcing is concentrated near the critical layer and the response
contains hydrodynamic and thermodynamic amplification in the relative supersonic
region near the wall, with the latter also observed near the critical layer. Furthermore,
the response has a wavenumber that is within about 10% of the averaged theoretical
second-mode wavenumber (see Fig. 4.13 ) which is defined as

(𝛼𝑟)th = 𝜋

(
1

(𝜉1 − 𝜉0)

∫ 𝜉1

𝜉0

𝛿(𝜉) d𝜉
)−1

, (4.15)

where the second-mode wavelength is approximately twice the boundary-layer thick-
ness (Kendall, 1975; Stetson and Kimmel, 1992). However, there are also notable
traits that are atypical of the second mode in the optimal forcing and responses.

In the forcing fields, the structures are upstream-tilted (against 𝑢) which is character-
istic of the Orr-mechanism but also situated between the relative sonic line and the
critical layer (as opposed to centered about the critical layer as seen in the Mach 4.5
flat-plate validation case from Sec. 4.2). To explain this, we first note the relatively
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(a) R( 𝒇𝝃) (left) and R(𝒖′) (right).

(b) R( 𝒇𝜼) (left) and R(𝒗′) (right).

(c) R( 𝒇𝑻 ) (left) and R(𝑻′) (right).

Figure 4.12: Optimal OWNS forcing (left) and response (right) fields at 𝒇 † =
70.0 kHz for Mach 6 HIFiRE-5 elliptic cone. The red and cyan isocontours
represent the critical layer and relative sonic line, i.e. where ̂𝑴 = 𝒖−𝒄𝚽

𝒂 is 0
and -1, and the green and magenta isocontours represent the boundary-layer
edge and 𝒗 = 0, respectively. Note that undulations of the critical layer and
relative sonic line is due to the modulation of the phase speed since the OWNS
methodology does not assume any wave-like ansatz (Kamal, Rigas, et al., 2020).

large positive 𝑣 near the critical layer (see Fig. 4.14a) induced by the centerline
vortices. Analogous to the upstream-tilting behavior, the Orr-mechanism, which
extracts energy from the mean shear through the transport of momentum along the
mean momentum gradient via the perturbed Reynolds stresses (Hack and Moin,
2017; Roy and Govindarajan, 2010), places these forcing structures below the crit-
ical layer (against 𝑣) so that the mean flow advects them upwards into the region
of maximum shear. Below these upstream-tilted structures, we observe forcing in
the relative supersonic region to excite trapped acoustic waves that amplify as they
propagate downstream.

The response fields also exhibit complex structures that evolve in the boundary
layer. Fig. 4.15 provides snapshots of the |𝑢′| and |𝑇 ′| wall-normal profiles near
the beginning, middle, and end of the march. At 𝜉 = 1144.3, the |𝑢′| profile
contains dual peaks which is emblematic of the second mode. However, as the
disturbance evolves along the centerline, the profile transforms to contain three
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Figure 4.13: Comparison of the calculated and averaged theoretical second-
mode wavenumbers for Mach 6 HIFiRE-5 elliptic cone.

(a) Centerline wall-normal base flow 𝒗.

(b) Density-weighted shear 𝝆 𝝏𝒖
𝝏𝜼 .

Figure 4.14: Select base-flow quantities for Mach 6 HIFiRE-5 elliptic cone.
The red and green isocontours represent the critical layer and boundary-layer
edge, respectively.

peaks at 𝜉 = 1872.5 and further evolves to contain four peaks by the end of the
domain at 𝜉 = 3267.0. These peaks are associated with the shear layers in the base
flow (see Fig. 4.14b), where local peaks below the critical layer are contained in
regions bounded by the wall and the two 𝑢 inflectional points (refer to Fig. 4.10b).
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Note that the near-wall 𝑢 inflectional point nearly coincides with the relative sonic
line. The common peak throughout the domain occurs at the critical layer where we
observe upstream-tilted structures between the second 𝑢 inflectional point and the
boundary-layer edge as seen in Fig. 4.12a. Finally, starting from near the middle of
the streamwise domain, we observe an additional peak outside the boundary layer
which is associated with disturbances near the critical layer being advected upwards
due to the large positive 𝑣 and effectively being trapped in a region bounded by
where 𝑣 = 0 in the freestream. This is further illustrated in Fig. 4.15a in which
the peak at the critical layer relative to the freestream disturbances decreases from
𝜉 = 1872.5 to 𝜉 = 3267.0 due to continual wall-normal advection of energy. In
contrast to the topological change in |𝑢′| profiles, the |𝑇 ′| profiles retain their dual
peaks throughout the streamwise domain which is characteristic of the second mode
as seen in Fig. 4.15b. However, the subsonic rope-like structures corresponding to
the second peak, although initially centered about the critical layer, advect upwards
relative to the critical layer while also increasing in magnitude relative to the near-
wall structures. The latter observation is most likely due to the Orr-mechanism
most efficiently extracting energy from the base flow near the critical layer where
the highest shear is observed.

(a) |𝒖′ | profiles. (b) |𝑻′ | profiles.

Figure 4.15: Wall-normal |𝒖′| and |𝑻′| profiles at select streamwise stations for
Mach 6 HIFiRE-5 elliptic cone.
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(a) Input forcing 𝚪 𝒇𝒑 and response 𝚪𝒒′ energy den-
sity functions.

(b) Wall-normal ordinate at which
𝚪𝒒′ |𝒎𝒂𝒙 occurs at each streamwise
station. The dashed line repre-
sents the boundary-layer edge.

Figure 4.16: Streamwise evolution of optimal energy growth for Mach 6
HIFiRE-5 elliptic cone.

4.4.2.2 Energetics

In order to examine the energetics of the responses, we first define the local Chu
energy (Chu, 1965)

C =
1
2

©«
𝑅𝑇

𝜌
𝜌′2 + 𝜌 |u′|2 + 𝑅𝜌

𝑇

(
𝛾(𝑇) − 1

)𝑇 ′2ª®®¬ , (4.16)

with corresponding energy density functionsΓ 𝑓𝑝 andΓ𝑞′ for the inputs and responses,
respectively, as

Γ 𝑓𝑝/𝑞′ (𝜉) =
∫

C 𝑓𝑝/𝑞′ d𝐴. (4.17)

The streamwise evolution of these quantities is shown in Fig. 4.16a. Almost all
the forcing energy is concentrated near the inlet with relatively little spatial support
thereafter as shown by the exponential decay. The response growth rate, however,
exhibits faster than exponential growth near the inlet before assuming a near-constant
exponential amplification from 𝜉 ≈ 1320. This is characteristic of convective-type
non-normality where there is streamwise separation between the input and response
as seen in the forcing and response fields in Fig. 4.12.
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To further analyze the cross-stream energy distribution of the response, we compute
the wall-normal distance at which Γ𝑞′ reaches its maximum at each streamwise
station. The result is plotted in Fig. 4.16b. From the inlet at 𝜉 ≈ 734 to 𝜉 ≈ 1320, the
wall-normal ordinate evolves rapidly but monotonically from deep in the boundary
layer towards the boundary-layer edge corresponding to the initial ramp-up of Γ𝑞′
in Fig. 4.16a. Thereafter, the peak-energy location progresses upwards in the
𝜂-direction almost linearly, coinciding to where the response disturbance energy
undergoes exponential growth. Referring to Fig. 4.14b, this streamwise-progression
is likely favorable since the flow exhibits the highest shear near the boundary-layer
edge where energy can be most efficiently harvested from the base flow via the
Orr-mechanism.

4.5 Application of optimal OWNS to a Mach 6 highly cooled flat-plate bound-
ary layer

In this section, we present results from Kamal, Rigas, et al. (2022), where OWNS
is used to conduct a parametric study of the global optimal forcing and responses of
a Mach 6 flat-plate boundary layer by varying the frequency and wall temperature.
Specifically, we tackle the global forced receptivity problem with highly cooled-
wall conditions by parametrically analyzing the unconstrained optimal forcings and
corresponding responses with B𝒑 = C 𝒑 = 𝑰. Here, “forced receptivity” refers
to subjecting the boundary layer to input disturbances of the correct frequency-
wavelength combination to directly excite instabilities (Saric, Reed, and Kerschen,
2002). Lastly, since the second-mode amplification rates are largest for 2D pertur-
bations (Mack, 1975), we will restrict our analysis to 𝛽 = 0.

4.5.1 Computational setup
The base flow is computed using the Howarth–Dorodnitsyn transformation of the
compressible Blasius equations under the assumption 𝑑𝑝 = 0 at wall-temperature
ratios𝑇𝑤/𝑇∞ ∈ [0.5, 7.02]. Note that these wall temperatures span high to moderate
to no wall-cooling. The fluid is assumed to be calorically perfect air with 𝛾 = 1.4
and 𝑃𝑟 = 0.72 with viscosity and thermal conductivity calculated using Sutherland’s
law

𝜇∗ =
1.458𝑇∗3/2

𝑇∗ + 𝑆∗
· 10−6, (4.18)

where 𝑆∗ = 110.4 K.

The computational domain is summarized in Table 4.4, where the origin of the global
𝑥 and 𝑦 Cartesian coordinates is placed at the plate leading edge. Note that 𝑥 = 𝜉
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and 𝑦 = 𝜂 for the present flat-plate geometry. The grid resolution was determined
based on OWNS computations of a similar configuration from Kamal, Rigas, et al.
(2020). It is important to recognize that if the global approach, which requires an
SVD of the resolvent operator, was instead being used to perform these optimal
computations on such a large grid, the computational cost would be considerably
higher. For OWNS, the linear dimension of the system of equations at each step is
𝑛𝑂 ≈ 2𝑁𝑏𝑁𝑞𝑁𝑦𝑁𝑧, whereas in the global approach 𝑛𝑔 = 𝑁𝑞𝑁𝑥𝑁𝑦𝑁𝑧, where 𝑁𝑞 and
𝑁𝑏 are the number of state variables and recursion parameters (Towne and Colonius,
2015), respectively. This yields a substantial computational complexity reduction
by using OWNS.

Finally, the flow and stability parameters are given in Table 4.5, which were originally
derived from Chuvakhov and Fedorov (2016). Note that in addition to OWNS
computations, we will perform LST (using CSTAT) at representative streamwise
stations to elucidate the underlying modal dynamics from the optimal calculations.

Table 4.4: Computational domain used for flat-plate optimizations.

𝑥∗
𝑚𝑖𝑛

[m] 𝑥∗𝑚𝑎𝑥 [m] 𝑦∗
𝑚𝑖𝑛

[m] 𝑦∗𝑚𝑎𝑥 [m] 𝑁𝑥 𝑁𝑦

0.0388 0.1721 0.0 0.005 8001 200

Table 4.5: Flat-plate flow and stability parameters.

𝐹 · 104 𝑀∞ 𝑇𝑤/𝑇∞ 𝑇∗
∞ [K] 𝑝∗∞ [Pa] 𝑅𝑒∗∞ [1/m]

0.60 − 2.06 6.0 0.5 − 7.02 300 20000 2.61 × 107

To properly resolve the instabilities near the wall and critical layer, we employ a grid
stretching technique (Malik, 1990)

𝑦 =
2𝑦𝑖𝑦𝑚𝑎𝑥𝜆

𝑦𝑚𝑎𝑥 − (2𝜆 − 1) (𝑦𝑚𝑎𝑥 − 2𝑦𝑖)
, (4.19)

where 0 ≤ 𝜆 ≤ 1 (equidistant grid points). Using the above scheme, half the points
in the 𝑦 direction are placed between 𝑦 = 0 and 𝑦 = 𝑦𝑖.

No-slip (𝑢′ = 𝑣′ = 0) and isothermal (𝑇 ′ = 0) boundary conditions are imposed at
the wall for all calculations. At the wall, we solve the linearized continuity equation
for 𝜌′. At the upper boundary, we impose 1D inviscid Thompson characteristic
boundary conditions (Thompson, 1987) to prevent spurious numerical reflections.
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Figure 4.17: Gain from optimal computations versus frequency at various wall-
temperature ratios for 2D Mach 6 flat-plate boundary layer.

4.5.2 Results
We analyze the optimal response for different amounts of wall-cooling across a
range of frequencies. The overall corresponding gain Ψ of the linearized system
is plotted in Fig. 4.17. As is confirmed in more detailed analysis below, the 2D
first mode occurring at low frequencies results in comparably small gains, while the
Mach 6 boundary layer is more receptive to the 2D second mode for 𝐹 > 0.76 ·10−4.
As expected, the second mode is increasingly destabilized with higher wall-cooling,
with 𝐹opt = 0.92 · 10−4 for moderate to no wall-cooling (𝑇𝑤/𝑇∞ ≥ 3.76). When the
wall is cooled even further (𝑇𝑤/𝑇∞ ≤ 2.13), the boundary layer shrinks sufficiently
enough to cause 𝐹opt to increase due to the inverse relationship between frequency
and length scale of the second mode (Parziale, Shepherd, and Hornung, 2015)).

To analyze the amplification mechanisms at play across Fig. 4.17, we examine in
the next section the optimal inputs/responses for three characteristic frequencies
of 𝐹 = 0.60 · 10−4, 1.09 · 10−4, and 2.06 · 10−4 at 𝑇𝑤/𝑇∞ = 0.5 (highly cooled)
and 7.02 (adiabatic). We compare the behavior of the global solutions at selected
streamwise stations to LST results in order to establish connections between global
and local amplification mechanisms. We also analyze the maximally resonant case
of 𝐹 = 1.41 · 10−4 and 𝑇𝑤/𝑇∞ = 0.5.
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Figure 4.18: Optimal forcings of the x-momentum equation (left) and corre-
sponding 𝒖′ responses (right) for 𝑭 = 0.60 ·10−4, 1.09 ·10−4, and 2.06 ·10−4 from
top to bottom at 𝑻𝒘/𝑻∞ = 0.5. The cyan, red, and yellow isocontours represent
the lower relative sonic line, critical layer, and the upper relative sonic line,
i.e. where ̂𝑴 = 𝒖−𝒄𝚽

𝒂 is -1, 0, and 1, and the green isocontours represent the
boundary-layer edge, respectively.

4.5.2.1 Optimal input and responses: highly cooled wall (𝑇𝑤/𝑇∞ = 0.5)

The x-momentum and energy forcings with corresponding responses are plotted in
Figs. 4.18 and 4.19 for 𝑇𝑤/𝑇∞ = 0.5. At 𝐹 = 0.60 · 10−4, the input fields contain
short-wavelength forcing concentrated between the boundary-layer edge and the
relative sonic line with lower amplitude forcing near the wall and in the free-stream.
This yields a first-mode/Mode S response that is strongly stabilized due to the
wall-cooling (Hirschel, 2005). In fact, our LST results indicate that this mode
remains stable throughout the domain, which explains the elongated spatial support
in the forcing fields needed to produce the optimal response. The presence of the
(damped) first mode is further corroborated by comparing the OWNS wall-normal
amplitude profiles to LST eigenfunctions at 𝑥∗ = 0.17 m in Fig. 4.22. Note that to
compare OWNS to LST, both state vectors were locally normalized to have unitary
L2-norm, i.e. | |q′

x | |2 = 1. Although the LST profiles of Mode S for 𝐹 = 0.60 · 10−4

and 𝑇𝑤/𝑇∞ = 0.5 nearly coincide with those from the OWNS computations, the
non-modal growth in the optimal responses could not have been predicted by LST.
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Figure 4.19: Optimal forcings of the energy equation (left) and corresponding
𝑻′ responses (right) for 𝑭 = 0.60 · 10−4, 1.09 · 10−4, and 2.06 · 10−4 from top
to bottom at 𝑻𝒘/𝑻∞ = 0.5. The cyan, red, green, and yellow isocontours
correspond to those from Fig. 4.18.

When the frequency is increased to 𝐹 = 1.09 ·10−4, the forcing field is more complex
and contains upstream-tilted structures before 𝑥∗ ≈ 0.10 m, which appears to excite
Mode F1 and Mode S waves. From the inlet region, the phase speed of Mode F1
decreases while that of Mode S increases, and at 𝑥∗ ≈ 0.13 m, Mode F1 crosses
the continuous vorticity/entropy branch. At this point, the phase speeds of Mode
F1 and Mode S begin to align, resulting in the disturbance amplification observed
in the response fields of Figs. 4.18 and 4.19. At 𝑥∗ ⪆ 0.15 m, Modes F1 and S
are synchronized, i.e. phase speeds (nearly) coincide, with the former mode being
the unstable second mode. The input fields support the second-mode growth from
𝑥∗ ≈ 0.12 m via strong forcing near the critical layer and the wall to excite the
subsonic rope-like structures and the trapped acoustic waves, respectively. Note that
the forcing precedes the response due to convective-type non-normality where there
is a streamwise spatial lag between the input and response (Sipp et al., 2010). Lastly,
comparing the OWNS wall-normal amplitudes to the LST profiles at 𝑥∗ = 0.17 m
for 𝐹 = 1.09 · 10−4 and 𝑇𝑤/𝑇∞ = 0.5 in Fig. 4.22 further substantiates the second
mode (Mode F1) as the dominant instability in the optimal solutions.

At the highest frequency of 𝐹 = 2.06 · 10−4, the input forcing is concentrated
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near the inlet region due to the inverse relationship between frequency and length
scale of the second mode (Parziale, Shepherd, and Hornung, 2015)). That is,
compared to 𝐹 = 1.09 · 10−4, we expect the second-mode growth to occur further
upstream where the boundary layer is thinner and due to convective non-normality,
the forcing is pushed even further upstream. Similar to the downstream input region
of 𝐹 = 1.09 · 10−4, forcing is predominantly concentrated near the critical layer
and the wall to excite the subsonic rope-like structures and the trapped acoustic
waves, respectively. From LST, Mode F1’s phase speed decreases as it propagates
downstream from the inlet and at 𝑥∗ ≈ 0.04 m, it synchronizes with Mode S
and becomes the unstable second mode as seen by growth of disturbances in the
response fields of Figs. 4.18 and 4.19. After de-synchronizing with Mode S, the
phase speed of the unstable Mode F1 continues to decrease until it eventually
synchronizes with the slow acoustic spectrum at 𝑥∗ ≈ 0.07 m. At this point, a new
stable discrete mode is generated and the unstable Mode F1 now has a supersonic
phase speed and is referred to as the supersonic mode (Knisely and Zhong, 2019a).
The appearance of the latter mode corresponds to the emergence of the upper
relative sonic line in Figs. 4.18 and 4.19 and the subsequent acoustic radiation
from the boundary layer. The supersonic mode remains unstable until 𝑥∗ ≈ 0.085
m, but continues to be phase-speed locked to the stable discrete mode until the
latter coalesces with the slow acoustic spectrum at 𝑥∗ ≈ 0.108 m. Contrasting to
𝐹 = 0.60 · 10−4 or 𝐹 = 1.09 · 10−4, the optimal wall-normal amplitude profiles
at 𝑥∗ = 0.17 m in Fig. 4.22 exhibit larger discrepancies to LST eigenfunctions
of Mode F1, presumably due to the resonant-like interactions occurring between
the supersonic mode and the slow acoustic spectrum and historical effects from
interacting with the stable discrete mode further upstream. Discrepancies between
DNS and LST when analyzing the supersonic mode excited via modal interactions
were similarly reported in Knisely and Zhong (2019b). In essence, LST’s inability to
resolve inter-modal interactions renders it unreliable for these complex disturbance
dynamics. Finally, the oscillations observed in the free-stream for both OWNS and
LST further substantiate the presence of the supersonic mode (Knisely and Zhong,
2019a).

4.5.2.2 Optimal input and responses: adiabatic wall (𝑇𝑤/𝑇∞ = 7.02)

Similar to the 𝑇𝑤/𝑇∞ = 0.5 case, comparisons to LST eigenfunctions at selected
streamwise positions is helpful in explaining the observed optimal responses. At
the lowest frequency of 𝐹 = 0.60 · 10−4, Mode S is unstable at the inlet and remains
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Figure 4.20: Optimal forcings of the x-momentum equation (left) and corre-
sponding 𝒖′ responses (right) for 𝑭 = 0.60 · 10−4, 1.09 · 10−4, and 2.06 · 10−4

from top to bottom at 𝑻𝒘/𝑻∞ = 7.02. The cyan, red, and green isocontours
correspond to those from Fig. 4.18.

so until 𝑥∗ ≈ 0.105 m. This is reflected in the input fields of Figs. 4.20 and
4.21, where short-wavelength forcing is concentrated near the critical layer with
weaker inputs near the wall and free-stream to strictly excite Mode S waves. As
expected, the warmer wall destabilizes the first mode (recall that Mode S was stable
at 𝐹 = 0.60 · 10−4 for 𝑇𝑤/𝑇∞ = 0.5). Thus, the optimal response is obtained with
a relatively less extensive spatial forcing field. Although Mode F1 branches off the
fast acoustic spectrum, it does not pass through the continuous vorticity/entropy
branch by the end of the domain. Therefore, the response fields solely contain
Mode S waves, which is further substantiated by the excellent agreement of the LST
eigenfunctions of Mode S to the OWNS amplitude profiles in Fig. 4.22.

When 𝐹 is increased to 1.09 · 10−4, LST results predict the presence of both Modes
F1 and S from the inlet, with Mode S becoming unstable by 𝑥∗ ≈ 0.062 m as its
phase speed increases prior to synchronizing with Mode F1. Consequently, the
input fields in Figs. 4.20 and 4.21 contain the necessary forcing to excite Mode S
waves only near the inlet region (until 𝑥∗ ≈ 0.045 m). As the phase speed of Mode
F1 continues to decrease further downstream, it eventually crosses the continuous
vorticity/entropy branch and synchronizes with the (unstable) Mode S at 𝑥∗ ≈ 0.078
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m in which the latter then becomes the second mode. The input fields support the
second-mode growth in a similar fashion to𝑇𝑤/𝑇∞ = 0.5 with strong forcing near the
critical layer and the wall. After the two modes de-synchronize further downstream,
the second mode (Mode S) stabilizes at 𝑥∗ ≈ 0.12 m, which corresponds to acoustic
waves no longer reflecting between the wall and relative sonic line in Fig. 4.21.
Finally, we note the excellent agreement of the LST eigenfunctions of Mode S to
that of the OWNS amplitude profiles in Fig. 4.22. This illustrates the dominance of
modal instabilities in the optimal computations.

At the highest frequency of 𝐹 = 2.06 ·10−4, LST results indicate the presence of both
Modes F1 and S by 𝑥∗ ≈ 0.06 m, in which the former is characterized by a strong
𝑇 ′ peak near the wall and weaker peaks at and below the critical layer. Conversely,
Mode S has a strong 𝑇 ′ peak at the critical layer and a weaker peak near the wall.
Due to the adiabatic-wall boundary condition, the input fields in Figs. 4.20 and 4.21
reflect preferential excitation of Mode S waves with strong forcing near the critical
layer. Nevertheless, both modes are excited and as they propagate downstream,
the phase speeds of Modes F1 and S decrease and increase, respectively, and by
𝑥∗ ≈ 0.165 m, Mode F1 has crossed through the continuous vorticity/entropy branch
and synchronized with Mode S. A fundamental distinction from the synchronization
of previous cases is that both modes are stable. Consequently, the elongated spatial
forcing is required to sustain excitation of Modes F1 and S and their inter-modal
interactions toward the end of the domain. Moreover, the interaction between the
two stable modes causes an additional “zero” to appear in the wall-normal R (𝑝′)
profile above the relative sonic line near the outlet (see Fig. 4.21). Although it
may be tempting to categorize this as the third mode, Mack (1984) requires the two
zeros to be situated below the relative sonic line for such a classification. Thus,
the increase in nulls is attributed to non-modal effects. Lastly, although the LST
eigenfunctions for Mode S in Fig. 4.22 capture the general profile of the OWNS
amplitudes, notable differences are still observed. This is once again due to the
inability of LST to resolve any inter-modal interactions.

As a final remark, a common observation amongst all frequencies for both 𝑇𝑤/𝑇∞ =

0.5 and 7.02 is the presence of the non-modal Orr mechanism. This manifests itself
as upstream-tilted structures in the input fields that are then rotated by the base flow
as energy is extracted from the mean shear along the mean momentum gradient
via the perturbed Reynolds stresses (Hack and Moin, 2017; Roy and Govindarajan,
2010).
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Figure 4.21: Optimal forcings of the energy equation (left) and corresponding
𝒑′ responses (right) for 𝑭 = 0.60 · 10−4, 1.09 · 10−4, and 2.06 · 10−4 from top to
bottom at 𝑻𝒘/𝑻∞ = 7.02. The cyan, red, and green isocontours correspond to
those from Fig. 4.18.

4.5.2.3 Energetics

As mentioned previously, although LST provides insight into the modal dynamics, it
does not predict non-modal growth which occurs due to interaction of stable modes.
Thus, to comprehensively analyze the streamwise evolution of the disturbances, the
Chu-energy density functions Γ 𝑓 and Γ𝑞′ (as defined in Sec. 4.4.2 where Γ 𝑓 = Γ 𝑓𝑝 )
are plotted in Fig. 4.23 for 𝑇𝑤/𝑇∞ = 0.5 and 7.02 at 𝐹 = 0.60 · 10−4, 1.09 · 10−4,
and 2.06 · 10−4. After the initial ramp-up of Γ𝑞′ from introducing the input forcing
at 𝐹 = 0.60 · 10−4 and 𝑇𝑤/𝑇∞ = 0.5, the response energy grows and decays in
a similar fashion to the input energy. The absence of self-sustaining disturbance-
energy growth suggests a strictly non-modal response, which is expected since the
first mode is stabilized with wall cooling. In contrast, at 𝑇𝑤/𝑇∞ = 7.02, the input
forcing is concentrated near the inlet and decays thereafter, but the response energy
continuously grows until the end of the domain. This modal-like behaviour in the
response is because the first mode is relatively destabilized under the adiabatic-wall
thermal condition.

When the frequency is increased to 𝐹 = 1.09·10−4, at𝑇𝑤/𝑇∞ = 0.5, most of the input
energy is concentrated near the end of the domain where the second mode is present.
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Figure 4.22: Wall-normal amplitude profiles at 𝒙∗ = 0.17 m for 𝑭 = 0.60 ·10−4,
1.09 · 10−4, and 2.06 · 10−4 from top to bottom at 𝑻𝒘/𝑻∞ = 0.5 (left) and
𝑻𝒘/𝑻∞ = 7.02 (right). Colored solid and dashed lines correspond to optimal
and LST computations, respectively. Boundary-layer edge ( ), critical layer
( ), and lower relative sonic line ( ).
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Consequently, the response energy initially exhibits oscillatory behaviour likely due
to destructive interference between Modes F1 and S before the former passes through
the continuous vorticity/entropy branch at 𝑥∗ ≈ 0.13 m and synchronizes with Mode
S to become the unstable second mode. Thereafter, Γ𝑞′ increases sharply due to
the second-mode amplification. In the case of 𝑇𝑤/𝑇∞ = 7.02, the input energy
is conversely concentrated near the inlet to optimally excite the unstable Mode S
(first mode) which becomes the second mode once it synchronizes with Mode F1
at 𝑥∗ ≈ 0.078 m. The response energy therefore increases while the first/second
modes are unstable until 𝑥∗ ≈ 0.12 m, after which the second mode stabilizes and
the disturbance energy wanes.

Finally, at the highest frequency of 𝐹 = 2.06 · 10−4 and 𝑇𝑤/𝑇∞ = 0.5, the input
energy decreases rapidly from the inlet, but is accompanied with a sharp increase
in Γ𝑞′ due to the second-mode growth. At 𝑥∗ ≈ 0.07 m, the response energy begins
to decrease due to Mode F1 synchronizing with the slow acoustic spectrum, which
initiates the acoustic radiation from the boundary layer. It is interesting to note that
while wall-cooling destabilizes the second mode, this acoustic radiation provides a
mechanism by which disturbance energy is transferred out of the boundary layer. In
the case of adiabatic wall (𝑇𝑤/𝑇∞ = 7.02), since both Modes F1 and S are stable
throughout the domain, the input and response energy profiles are emblematic of
the non-modal response at 𝐹 = 0.60 · 10−4 and 𝑇𝑤/𝑇∞ = 0.5, where the response
energy mimics the growth and decay of the input energy.

4.5.2.4 Maximal amplification: F = 1.41 · 10−4 and Tw/T∞ = 0.5

The largest gain from Fig. 4.17 is predicted to occur at 𝐹 = 1.41 · 10−4 and 𝑇𝑤/𝑇∞ =

0.5, which corresponds to conditions where the boundary layer exhibits maximal
resonance. The inputs and responses at these optimal conditions are plotted in
Fig. 4.24. Near the inlet region, the input fields contain forcing that excite Mode F1
and S waves. Second mode waves are thereafter observed to optimally facilitate the
synchronization of Modes F1 and S. The response fields contain both the second
mode and the supersonic mode, where the latter emerges downstream of the upper
relative sonic line.

The energy density functions Γ 𝑓 and Γ𝑞′ at the optimal conditions are plotted in
Fig. 4.23 which show an interesting contrast to the supersonic mode at 𝐹 = 2.06 ·
10−4. At the higher frequency, Γ𝑞′ began decreasing once Mode F1 synchronized
with the slow acoustic spectrum and disturbance energy was emitted into the free-
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Figure 4.23: Streamwise evolution of the optimal input 𝚪 𝒇 ( ) and response
𝚪𝒒′ ( ) Chu-energy density functions at 𝑭 = 0.60 · 10−4, 1.09 · 10−4, and
2.06 · 10−4 for 𝑻𝒘/𝑻∞ = 0.5 (left) and 𝑻𝒘/𝑻∞ = 7.02 (right). Note that energy
density functions at 𝑭 = 1.41 · 10−4 correspond to the optimal conditions in
Fig. 4.17 and thus only shown for 𝑻𝒘/𝑻∞ = 0.5.

Figure 4.24: Optimal forcings of the x-momentum and energy equations (left)
and corresponding 𝒖′ and 𝑻′ responses (right) for 𝑭 = 1.41 · 10−4 at 𝑻𝒘/𝑻∞ =
0.5. The cyan, red, green, and yellow isocontours correspond to those from
Fig. 4.18.

stream via the acoustic radiation. In contrast, LST results for 𝐹 = 1.41 ·10−4 indicate
that Mode F1 synchronizes with the slow acoustic waves at 𝑥∗ ≈ 0.148 m, which
corresponds to the reduction in the growth rate of Γ𝑞′ in Fig. 4.23, but the quantity
itself continues to increase. Essentially, at 𝐹 = 1.41 · 10−4, the amplification of the
second-mode supersedes the energy released into the free-stream.
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4.5.3 Summary
In this chapter, we developed an efficient, iterative space-marching technique to
compute the optimal forcings and responses by reformulating the OWNS projection
equations from Sec. 2.2.2. The methodology was first validated against 2D/3DF
global input-output analyses of a Mach 4.5 transitional flat-plate boundary layer and
a Mach 1.5 turbulent jet. We then applied the optimal OWNS algorithm to analyze
the worst-case disturbances along the centerline of the Mach 6 HIFiRE-5 elliptic
cone and on a highly cooled Mach 6 flat-plate boundary layer.

For a better understanding of the receptivity mechanisms present, any of the inputs
from the aforementioned analyses could have been restricted to, for example, forcing
only in certain equations (mass, momentum, or energy), and/or in certain flow
regions. However, the resulting inhomogeneous problem would not have been
physically realizable, in the sense that the sources would be unconnected to any
physical mechanism that produced them. Thus, a new technique is proposed in the
following chapter that addresses the physical realizablility of the input forcings via
a scattering formalism.
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C h a p t e r 5

OPTIMAL NATURAL BOUNDARY-LAYER RECEPTIVITY

In the context of transition analysis, linear input-output analysis determines worst-
case disturbances to a laminar base flow based on a generic right-hand-side volumet-
ric/boundary forcing term. The worst-case forcing is not physically realizable, and,
to our knowledge, a generic framework for posing physically realizable worst-case
disturbance problems is lacking. In natural receptivity analysis, disturbances are
forced by matching (typically local) solutions within the boundary layer to outer
solutions consisting of free-stream vortical, entropic, and acoustic disturbances.
In this chapter, we employ a scattering formalism to restrict input-output analysis
to forcings that are associated with free-stream disturbances. We decompose the
full linear solution into an incident component, representing vortical, entropic, or
acoustic disturbances to the free-stream, and a scattered (or residual) component
that is forced by the incident wave propagated through the linearized equations.
This forcing approaches zero in the free-stream where the incident waves satisfy the
governing equations, but is nonzero within the shock- and boundary-layer regions
where it can be parameterized and optimized using the standard input-output (SVD)
framework. This permits natural receptivity analysis to be performed directly in
the global framework without recourse to asymptotic analysis (though with its own
challenges as we discuss). The formulation is validated by comparing with DNS
of a Mach 4.5 flat-plate boundary layer. We show that the method provides insight
into transition mechanisms by identifying those linear combinations of plane-wave
disturbances that maximize energy amplification over a range of frequencies. We
also discuss how the framework can be extended to accommodate scattering from
shocks and in shock layers for supersonic flow. Note that all results in this section
are from Kamal, Lakebrink, and Colonius (2022).

5.1 Methodology
5.1.1 Scattering ansatz
After transforming to the stationary frequency domain and taking 𝒇 𝒑 = 0, Eq. 2.3
may be written as

L𝒒′ = 0, (5.1)
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where

L = −𝑖𝜔𝑮 + 𝑨𝒊𝒗𝒔 − 𝑨𝒗𝒊𝒔 +
(
𝑨𝝃,𝒊𝒗𝒔 − 𝑨𝝃,𝒗𝒊𝒔

) 𝜕

𝜕𝜉
+

(
𝑨𝜼,𝒊𝒗𝒔 − 𝑨𝜼,𝒗𝒊𝒔

) 𝜕

𝜕𝜂
+

(
𝑨𝜻,𝒊𝒗𝒔 −

𝑨𝜻,𝒗𝒊𝒔
) 𝜕

𝜕𝜁
− 𝑩𝝃𝝃

𝜕2

𝜕𝜉2 − 𝑩𝜼𝜼
𝜕2

𝜕𝜂2 − 𝑩𝜻𝜻
𝜕2

𝜕𝜁2 − 𝑩𝝃𝜼
𝜕2

𝜕𝜉𝜕𝜂
− 𝑩𝝃𝜻

𝜕2

𝜕𝜉𝜕𝜁
− 𝑩𝜼𝜻

𝜕2

𝜕𝜂𝜕𝜁
.

(5.2)
We wish to solve these equations subject to inhomogeneous boundary conditions that
represent free-stream vortical, acoustic, and entropic waves far from the surface, and
homogeneous boundary conditions that represent no-slip and adiabatic/isothermal
conditions at the surface. Formally, we write the boundary conditions as

C𝒒′ = 𝒈, (5.3)

where C is an appropriate differential operator and 𝒈 represents the incident waves
at infinity. Practical implementation of the boundary conditions is discussed later.

Without loss of generality, we can recast this inhomogeneous boundary-value prob-
lem as volumetrically forced PDEs with homogeneous boundary conditions by using
a scattering ansatz. We decompose the solution into incident and scattered com-
ponents, 𝒒′ = 𝒒 𝒊 + 𝒒𝒔, where the incident component satisfies the inhomogeneous
boundary conditions, C𝒒 𝒊 = 𝒈. Then Eq. 5.1 and Eq. 5.3 become

L𝒒𝒔 = −L𝒒 𝒊, C𝒒𝒔 = 0. (5.4)

For a known incident-wave solution, these equations can be solved for the scattered
component. After discretization (details discussed in Sec. 5.1.4), Eq. 5.4 becomes

𝑳𝒒𝒔 = −𝑳′𝒒 𝒊 ≡ 𝒇 , (5.5)

where the inhomogeneous boundary conditions have been imposed in the left-hand-
side 𝑳 matrix but not in the right-hand-side 𝑳′ matrix. In discretizing, we have
also truncated the computational domain to a region incorporating the boundary
layer and a portion of the free-stream (shock layer inclusive), and posed far-field
artificial (non-reflecting) boundary conditions. We further specify that the incident
component takes the form of appropriate linear vortical, entropic, or acoustic waves
in a uniform flow (whose analytical solution is known and given in Sec. 5.1.3),
such that 𝑳′𝒒 𝒊 ≈ 0 towards the free-stream. The support of the forcing term, 𝒇 ,
is shown in Fig. 5.1, and is confined to the shock- and boundary-layer regions for
supersonic flow, depicted by volumetric sources (blue) and surface sources (red). In
the discretized case, these are not distinct and are both incorporated directly in 𝑳′𝒒 𝒊.
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(a)

(b)

Figure 5.1: A depiction of supp(𝑳′𝒒 𝒊); (a) supersonic case generally; (b) ideal-
ized supersonic flat plate without shock layer. Depth of the blue shaded region
corresponds to the strength of supp(𝑳′𝒒 𝒊), whereas the red dashed lines indi-
cate surface scattering from the body and shock. The grey shaded region in (b)
corresponds to the computational domain utilized.

The source originating at the shock surface includes the reflection and transmission
of incident disturbances of each type to every other. In the linearized framework
proposed here, we are implicitly linearizing about a fixed shock position, and this
would also neglect effects associated with shock oscillations (Cook and Nichols,
2022).

The shock also gives rise to technical challenges since we are discretizing about a
discontinuous solution. As a first step towards establishing the general framework,
in what follows, we limit further analysis to the flat-plate scenario shown in Fig. 5.1b,
where any shock and shock layer are neglected and 𝑳′𝒒 𝒊 decays smoothly towards
infinity (similar to the scenario in subsonic flow). We choose the computational
domain depicted in the sketch, which also neglects scattering sources from any
leading-edge geometry, and scattered waves that are generated from below and
diffracted around the plate, which are expected to be small compared to direct
irradiation. We choose the downstream extent of the computational domain on
physical grounds so that dominant instability mechanisms (as a function of Reynolds
number) are captured within the domain.

Three potential sources of error may be identified in our framework. The first of
these is discretization error, which is controlled by choosing a sufficiently fine grid.
However, typical grids that are desirable for the scattered-field solution, i.e. ones
that are highly stretched outside the boundary layer, present a challenge for incident
waves of sufficiently high frequency, in that a direct computation of 𝑳′𝒒 𝒊 in this
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region is prone to large errors. This is alleviated by computing 𝑳′𝒒 𝒊 on a much finer
grid and then interpolating the results onto the coarser computational mesh used
for the solution of the scattered field. The remaining two errors are associated with
posing the correct outer solution for 𝒒 𝒊. It is desirable to use analytical solutions for
these free-stream disturbances, but these are only readily available for the inviscid,
uniform-flow case. Then, depending on the choice of base flow, an asymptotic
error arises in that the base flow may not exactly approach uniform flow (e.g. if a
boundary-layer solution is utilized), thus yielding 𝑳′𝒒 𝒊 ≠ 0 in the far-field, indicative
of an artificial source of scattered waves. For example, if a boundary-layer solution
is used for the base flow, then there is a spurious source of O(𝑅𝑒− 1

2 ). Moreover, our
𝑳′ includes viscous terms, and so 𝑳′𝒒 𝒊 → 1

𝑅𝑒
in the far-field rather than zero, and

there are again artificial sources, which we term the viscous error.

In the present work, we control both uniform-flow and viscous errors by choosing
a sufficiently high Reynolds number such that the true sources are much larger than
the spurious ones. More specifically, the choice of the Reynolds number restricts the
maximum cross-stream wavenumbers of the ansatz assumed for 𝒒 𝒊 as explained next
in Secs. 5.1.2 and 5.1.3. We verify this approach by comparing our solutions with
ones where the region outside the boundary layer is artificially zeroed in Sec. 5.2.
In principle, there are more sophisticated ways of minimizing these errors, such
as using a DNS for the base flow or by choosing incident waves that account for
viscosity.

5.1.2 Optimization
We may write the incident wave as a sum of fundamental solutions to the (assumed
inviscid) exterior (uniform flow) problem

𝒒 𝒊 =
𝑁∑︁
𝑗=1

𝑎 𝑗𝝍 𝒋 ≡ 𝚿𝒂, (5.6)

where the 𝝍 𝒋 are each fundamental solution and are placed as columns of the matrix
𝚿. The specific form (plane waves) is enumerated in Sec. 5.1.3. Now, let 𝑩 ≡ −𝑳′𝚿

so that Eq. 5.5 can be rewritten as

𝑳𝒒𝒔 = 𝑩𝒂, (5.7)

where the vector of amplitudes 𝒂 is the input to the linearized system (analogous to
the input forcing fields in the unconstrained problem).



90

We next define a global inner product

⟨𝒃, 𝒅⟩ = 𝒃𝑯𝑾𝝃𝜼𝜻𝑾𝒆𝒅 = 𝒃𝑯𝑾𝒅, (5.8)

where 𝐻 is the Hermitian transpose and 𝑾 is a positive-definite weight matrix. 𝑾 is
constructed as a product of 𝑾𝝃𝜼𝜻 , a diagonal positive-definite matrix of quadrature
weights, and 𝑾𝒆, an energy-weight matrix, so that <· , · > represents the volume-
integrated quantity (up to a discretization error). The gain can thus be defined as a
Rayleigh quotient

𝐺2 =
⟨𝒒𝒔, 𝒒𝒔⟩
𝒂𝑯𝒂

=
𝒒𝒔𝑯𝑾𝒒𝒔

𝒂𝑯𝒂
=

𝒂𝑯𝑩𝑯𝑹𝑯𝑾𝑹𝑩𝒂

𝒂𝑯𝒂
, (5.9)

with optimal solution
{𝒒′𝒐 𝒑𝒕, 𝒂𝒐 𝒑𝒕} = argmax 𝐺, (5.10)

where 𝑹 = 𝑳−1 is the global resolvent operator. In the optimization, we restrict
| |𝒂 | |2 = 1 and scale each column of 𝑩 so that

〈
𝒃 𝒋 , 𝒃 𝒋

〉
= 1, which nullifies the

arbitrary norm associated with −𝑳′𝝍 𝒋 . Lastly, comparison to the unconstrained
problem can be made by defining the following gains

𝐺𝑐 = (⟨𝒒𝒔, 𝒒𝒔⟩ / ⟨ 𝒇 , 𝒇 ⟩)
1
2 , 𝐺𝑢𝑐 = ⟨𝒒𝒔, 𝒒𝒔⟩

1
2 , (5.11)

where 𝒇 = 𝑩𝒂 for the constrained problem and where ⟨ 𝒇 , 𝒇 ⟩ = 1 for the uncon-
strained optimization, thereby enforcing 𝐺𝑐 ≤ 𝐺𝑢𝑐.

To summarize, the scattered-wave ansatz allows us to constrain the optimization
to realistic input forcings given by solutions to the outer problem in the form of
plane acoustic, vortical, and entropic waves. We will find linear combinations of
such waves that maximize the amplification (according to the chosen norm) of the
response. The solutions can be directly compared with the worst-case disturbances
for right-hand-side forcings that are not restricted to realizable disturbances to the
outer problem.

5.1.3 Incident waves
Plane acoustic waves in the uniform (assumed inviscid) free-stream take the form

𝝍𝒂 = 𝒒𝒂𝑒i(−𝜔𝑡+𝛼𝑎𝑥+𝜅𝑎𝑦+𝛽𝑎𝑧) , (5.12)

where 𝛼𝑎, 𝜅𝑎, 𝛽𝑎 ∈ R are the acoustic wavenumbers in the 𝑥, 𝑦, and 𝑧 direc-
tions, respectively, and where 𝜔′2 = 𝑎2

∞
(
𝛼2
𝑎 + 𝜅2

𝑎 + 𝛽2
𝑎

)
and the amplitude 𝒒𝒂 =
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Table 5.1: Wavenumber ranges for acoustic waves.

𝑀∞ Range

< 1 − 1
1 − 𝑀∞

≤ 𝛼𝑎𝑎∞
𝜔

≤ 1
1 + 𝑀∞

= 1
𝛼𝑎𝑎∞
𝜔

≤ 1
2

> 1
𝛼𝑎𝑎∞
𝜔

≤ 1
𝑀∞ + 1

&
𝛼𝑎𝑎∞
𝜔

≥ 1
𝑀∞ − 1

[
1 𝑎∞𝛼𝑎

𝜔′
𝑎∞𝜅𝑎
𝜔′

𝑎∞𝛽𝑎
𝜔′ (𝛾 − 1)𝑇∞

]𝑇
, both with 𝜔′ = 𝜔 − 𝛼𝑎𝑈∞. These waves

satisfy the Euler equations linearized about a uniform flow (taken in the 𝑥-direction
with speed 𝑈∞).

In the 2D case considered here, 𝛽𝑎 = 0, and the waves are parameterized with 𝛼𝑎 (or
a wave angle) at a specified real frequency, 𝜔. The ranges of permitted values of 𝛼𝑎

are based on the aforementioned dispersion relation for the different Mach-number
regimes and are given in Table 5.1. For those cases where |𝛼𝑎 | is unbounded, we
limit it to the highest wavenumber that can be resolved over 10 grid points, so that
we take |𝛼𝑎 | ≤ 2𝜋

10Δ𝑥 .

Planar vortical and entropic wave solutions in the uniform free-stream are of the
form

𝝍𝒗,𝒆 = 𝒒𝒗,𝒆𝑒i(−𝜔𝑡+𝛼𝑣,𝑒𝑥+𝜅𝑣,𝑒𝑦+𝛽𝑣,𝑒𝑧) , (5.13)

where the amplitudes are 𝒒𝒗 =
[
0 − 𝜅𝑣+𝛽𝑣

𝛼𝑣
1 1 0

]𝑇
and 𝒒𝒆 =

[
−1 0 0 0 𝑇∞

]𝑇
,

respectively. The wavenumbers𝛼𝑣,𝑒 = 𝜔/𝑀∞, 𝜅𝑣,𝑒, and 𝛽𝑣,𝑒 correspond to the Carte-
sian 𝑥, 𝑦, and 𝑧 directions, respectively, in which the latter two quantities are real
but otherwise unconstrained. Realistic vortical and entropic disturbances will be
compact and thus an infinite superposition of the plane waves. However, decom-
posing the disturbances in Fourier modes has the advantage of identifying those
wavelengths of disturbances to which the boundary layer is most receptive.

As in the acoustic waves, we limit our attention to the 2D case (𝛽𝑣,𝑒 = 0) and set
max(𝜅𝑣,𝑒) to the minimum of either those supported by at least 15 grid points within
the boundary layer or satisfy 𝑅𝑒𝜆𝑣,𝑒 ≥ 2000. The latter constraint is set to minimize
the free-stream viscous error, while still retaining a broad spectrum for 𝜅𝑣,𝑒.
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5.1.4 Computational details
From now, we restrict our attention to strictly 2D, flat-plate boundary layers where
𝑥 = 𝜉 and 𝑦 = 𝜂. The LNS equations are discretized with fourth-order central
finite-difference schemes and closed with no-slip boundary conditions (𝑢′ = 𝑣′ = 0)
and 1D inviscid Thompson characteristic boundary conditions (Thompson, 1987)
at the wall-normal boundaries. Isothermal conditions (𝑇 ′ = 0) are enforced at the
wall for the parametric study and those validating to Ma and Zhong (2005), whereas
adiabatic conditions (𝜕𝑇 ′/𝜕𝑦 = 0) are used for all other analyses. We employ inlet
and outlet sponges to model open boundaries. All computations are performed
using the CSTAT code (see Sec. B for full details).

The computational domain contains wall-normal grid clustering in the boundary
layer (Malik, 1990) and extends from 𝑥∗ ∈ [0.006, 0.4] m and 𝑦∗ ∈ [0, 0.01] m with
𝑁𝑥 × 𝑁𝑦 = 3001× 250. The base flow is computed using the Howarth–Dorodnitsyn
transformation of the compressible Blasius equations. Finally, each forcing vector
−𝑳′𝝍 𝒋 is computed with a wall-normal resolution of 5𝑁𝑦 and interpolated back onto
the stability grid to minimize free-stream discretization error.

Different inner products (and associated norm) can be used to measure the strength
of the response. Hereafter, we exclusively employ the Chu energy (Chu, 1965) for
both the forcing and response norms, which follows previous compressible input-
output analyses of Towne, Rigas, Kamal, et al. (2022), Schmidt et al. (2018), and
Cook and Nichols (2022). The columns of the 𝑩 matrix, which correspond to the
scattered forcing fields, are therefore also normalized similarly.

5.1.5 Validation
We validate our methodology by comparing to DNS of a 2D Mach 4.5 adiabatic-
wall, flat-plate boundary layer from Ma and Zhong (2003a), Ma and Zhong (2003b),
and Ma and Zhong (2005), which we subsequently refer to as MZ1, MZ2, and MZ3,
respectively, in this chapter. A summary of the relevant computations from each
paper is provided in Table 5.2. For validation purposes, we focus on the case
where the boundary layer is excited by free-stream slow and fast acoustic waves
at incident angles of 𝜃∗∞ = 0◦ and 𝜃∗∞ = 22.5◦, respectively, processed through an
oblique shock using DNS. Although the shock is neglected in our computations,
the linear theoretical formulation of McKenzie and Westphal (1968) predicts the
maximum deflection of fast acoustic waves with 𝜃∗∞ ∈ [0, 90]◦ to be just ≈ 1.24◦.
This is computed with a constant shock angle of 𝜃∗𝑠 ≈ 13.69◦ from Fig. 4 of MZ1.
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Table 5.2: Summary of relevant DNS performed by MZ1, MZ2, and MZ3 of a
2D Mach 4.5 adiabatic-wall, flat-plate boundary layer.

Paper Relevant DNS

MZ1 Steady-state base flow characterizing the oblique shock.
MZ2 Wall-pressure response from an incident fast acoustic wave at

𝜃∗∞ = 22.5◦; quantification of the response of boundary-layer modes
(Mode F1/F2 and second mode) to free-stream fast acoustic waves
for 𝜃∗∞ ∈ [0, 90]◦.

MZ3 Wall-pressure response from an incident slow acoustic wave at
𝜃∗∞ = 0◦.

Furthermore, MZ2 found that for incident fast acoustic waves, the transmitted waves
of the same type are responsible for synchronizing with the boundary-layer modes
(explained further later), and thus the other wave-modes generated downstream of
the shock are unimportant. Lastly, slow acoustic waves at 𝜃∗∞ = 0◦ impinging on the
shock generates predominantly the same type of waves propagating nearly parallel
to the wall (MZ3). We can thus neglect the shock in comparing our results to MZ2
and MZ3.

In our computations, we force the LNS equations with −𝑳′𝝍 𝒋 corresponding to
fast and slow acoustic waves at the aforementioned incident angles and compare
the total solution 𝒒′ = 𝒒 𝒊 + 𝒒𝒔 to the DNS. In comparing results, we adopt the
following nomenclature from LST: Modes F1 and F2 are the sequential discrete
modes emanating from the fast acoustic branch, whereas Mode S originates from
the slow continuous spectrum, such that the second mode corresponds to Mode
S during and post-synchronization with Mode F1. Fig. 5.2a compares the wall-
pressure amplitudes between the DNS and the present solution at 𝐹 = 2.2 × 10−4.
The pressure amplitude has been normalized to agree at the peak of each curve
since both sets of computations are linear. For the DNS, linearity implies the non-
dimensional amplitudes of the disturbances were at least one order of magnitude
larger than the maximum numerical noise while also sufficiently small to remain in
the linear regime (MZ1). Great agreement is observed for the slow acoustic wave
and the agreement is satisfactory for the fast acoustic wave, especially in the region
0.1 < 𝑥∗ < 0.2 m, which corresponds to the location where the second Mack mode
is dominant. We speculate the discrepancy in the leading-edge region is due to the
shock in the DNS being locally oriented at 𝜃∗𝑠 ≈ 15.8◦, which contrasts the global
shock angle of 𝜃∗𝑠 ≈ 13.69◦ used to estimate the maximum deflection of incident



94

(a) (b)

Figure 5.2: (a) Wall-pressure amplitudes for the present 𝒒′ solution compared
to those of MZ2 and MZ3 with free-stream slow (SA) and fast (FA) acoustic
waves at 𝑴∞ = 4.5 and 𝑭 = 2.2×10−4; (b) the corresponding density responses
for SA (top) and FA (bottom).

fast acoustic waves, resulting in larger local refraction when compared to further
downstream. This likely effects the resonance with Mode F1 (the dominant mode
near the inlet) since it exhibits higher sensitivity to incident-disturbance angles
compared to the second mode (see Fig. 5.3a). Finally, the density response for slow
acoustic waves at 𝜃∗∞ = 0◦ in Fig. 5.2b matches well with the corresponding Fig. 11
of MZ3.

5.2 Optimal global receptivity analysis
We now investigate the inverse problem of determining the linear combination of
free-stream disturbances that lead to the maximal flow response. We use the same
base flow and parameters from Sec. 5.1.5.

To allow comparison with the results of MZ2 for the forward problem, we initially
restrict our attention to downstream-propagating fast acoustic waves from above the
plate, i.e. 𝛼𝑎 ≥ 0 and 𝜅𝑎 ≤ 0, with 𝐹 = 2.2×10−4. We discretize the corresponding
incident wave angles 0 ≤ 𝜃∗∞ ≤ 90◦ using 𝑁 = 1000 points. The corresponding
distribution of waves with amplitude 𝑎 is plotted against 𝜃∗∞ in Fig. 5.3a with
prominent peaks observed at incident wave angles of 25◦ and 35◦, and a less
significant peak at 44◦. We compare this curve to response coefficients computed
by MZ2 for the forward problem computed over the range of angles. They measured
approximate response coefficients for Modes F1 and F2 by using the maximum
wave amplitudes in their respective dominant regions, according to LST, whereas
the second-mode response coefficients were calculated by Fourier-transforming the
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pressure from the global DNS (at the specified frequency) and selecting the second-
mode amplitude with its wavelength again inferred from LST.

The comparison allows us to interpret the optimal solution as one that directly excites
the second mode by selecting the fast acoustic waves at 𝜃∗∞ = 25◦, but also one that
excites Mode F1 over a range of angles where its response coefficient is largest
(and larger than the second mode). The higher response coefficient for Mode F1
is due to the synchronization between its wavenumber/wave speed and those of the
free-stream fast acoustic waves at these angles, and largest near the leading edge due
to the strongest base-flow non-parallelism, as is evident in Fig. 5.3b. Downstream
of the leading edge, the phase speeds of Modes F1 and S approach one another, and
by 𝑥∗ ≈ 0.11 m, these two modes fully synchronize, which incites the second mode.
The second mode remains unstable until it passes through the Branch II neutral point
at 𝑥∗ ≈ 0.155 m (MZ2) and decays thereafter as Modes F1 and S de-synchronize,
the latter of which is now the second mode. For 𝑥∗ > 0.3 m, the small growth and
subsequent decay in Fig. 5.3b is due to the emergence of Mode F2 caused by the
wavenumber/wave speed synchronization with the fast acoustic waves.

This importance of Mode F1 to second-mode amplification corroborates the finding
of MZ2, and is further highlighted by comparing the respective gains from this
optimal linear combination of fast acoustic waves, 𝐺𝑐 ≈ 40, with the gain obtained
by limiting the input to only fast acoustic waves at 𝜃∗∞ = 25◦, which we computed
as 𝐺𝑐 ≈ 21, a reduction of about 48%.

Lastly, we demonstrate how the true scattering sources in our framework are signifi-
cantly larger than the spurious ones induced by the three sources of error mentioned
in Sec. 5.1.1 by repeating the above computation and artificially removing any
sources outside the boundary layer. The corresponding amplitude profile is shown
in Fig. 5.3a which is quantitatively similar to the original solution with 𝐺𝑐 only
decreasing by ≈ 2%.

We next analyze the case where the free-stream is restricted to vortical waves, again
at 𝐹 = 2.2 × 10−4. As investigated by Schrader, Brandt, and Henningson (2009),
there are two competing mechanisms for optimally perturbing the boundary layer
using free-stream vortical disturbances: smaller wavelengths (large 𝜅𝑣) are able to
penetrate deeper into the boundary layer, but suffer faster viscous decay, whereas the
opposite is true for larger wavelengths. The optimal distribution of vortical waves,
shown in Fig. 5.4a, shows two maxima corresponding to 𝜅𝑣 ≈ 0.014 and 𝜅𝑣 ≈ 0.31.
Maximal excitation of disturbances is achieved by simultaneously subjecting the
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Figure 5.3: (a) Optimal amplitude profile with free-stream fast acoustic waves
at 𝑴∞ = 4.5 and 𝑭 = 2.2 × 10−4; (b) the corresponding 𝒒𝒔 responses (green
isocontour is 𝜹99). Colored lines in (a) are the response coefficients from MZ2,
the dashed lines are along the optimal angles from the scattering framework,
and the dash-dotted line is the optimal amplitude profile with scattering sources
restricted to 𝜹99.

boundary layer to highly penetrating free-stream vortical modes and those that ex-
hibit minimal viscous decay. Near the leading edge, free-stream vorticity penetrates
the boundary layer and elicits a non-modal response characterized by large-scale
streamwise jets emanating from the wall in the 𝑢′ response field of Fig. 5.4b. These
jets are also seen to be modulated by Modes F1 and S.

Downstream of the leading edge, the phase speed of Mode F1 decreases, and by
𝑥∗ ≈ 0.11 m, Mode F1 synchronizes with Mode S to incite the second mode. During
the second-mode growth however, the streamwise jets remain as seen in Fig. 5.4b.
Once the second mode has decayed appreciably by 𝑥∗ ≈ 0.18 m, the jets are once
again visible, but only weakly and for a short length as they suffer viscous decay.
This is because free-stream vortical disturbances with 𝜅𝑣 ≈ 0.31, which corresponds
to 𝜆𝑣 ≈ 1.5𝛿99 at the inlet, optimally excite the jets, but also experience relatively
large viscous decay.

Similar calculations were performed for slow acoustic waves, entropic waves, and
for the gamut of all free-stream waves. The respective gains are summarized in
Table 5.3. Firstly, the slow acoustic waves yielded a gain ≈ 1.9 times greater than
the fast acoustic waves, which corroborates the general understanding that slow
waves dominate acoustically induced transition onset in adiabatic-wall high-speed
boundary layers (MZ3, Balakumar (2015)). Vortical waves yielded a gain nearly
identical to 𝐺𝑐

𝑎𝑙𝑙
, suggesting that the transient streamwise jets excited by vortical
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(a) (b)

Figure 5.4: (a) Optimal amplitude profile with free-stream vortical waves at
𝑴∞ = 4.5 and 𝑭 = 2.2 × 10−4; (b) the corresponding 𝒒𝒔 responses (green
isocontour is 𝜹99).

Table 5.3: Gains from (un)constrained optimizations at 𝑴∞ = 4.5 and 𝑭 =
2.2 × 10−4.

Case 𝐺𝑐 or 𝐺𝑢𝑐

Fast acoustic (𝛼𝑎 ≥ 0 and 𝜅𝑎 ≤ 0) 40
Slow acoustic (𝜅𝑎 ≤ 0) 76

Vortical 95
Entropic 11

All 96
Unconstrained 3.0 × 104

disturbances is the dominant receptivity mechanism for the current configuration.
Entropy waves, on the other hand, play no significant role at these conditions.
Lastly, the unconstrained optimization (standard input-output) problem yielded a
gain nearly 300 times greater than 𝐺𝑐

𝑎𝑙𝑙
, suggesting that the physically realizable

inputs have a small projection onto the unconstrained (non-physically realizable)
inputs. Conversely, a large number of unconstrained forcing modes would be
required to represent the physical forcing.

5.3 Optimal parametric study
We now compute 𝐺𝑐 for the gamut of free-stream disturbances across a range of
frequencies. Here, each wave-mode (fast/slow acoustic, vortical, and entropic) is
discretized with 𝑁 = 1000 points, but in contrast to Sec. 5.1.5, half the acoustic
waves radiate above (𝜅𝑎 ≤ 0) while the other half radiate below (𝜅𝑎 ≥ 0) the
plate. Additionally, 𝛼𝑎 < 0 is included in the ansatz for fast acoustic waves. The
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Figure 5.5: 𝑮𝒄 vs 𝑭 at 𝑴∞ = 4.5 with gamut of free-stream waves with the
corresponding maximum amplitude from each wave-mode (fast/slow acoustic,
vortical, and entropic).

gain profile and the maximum amplitude from each wave-mode, which reveals
the dominant free-stream disturbance type, are shown in Fig. 5.5. The first mode is
optimally excited at 𝐹𝑜𝑝𝑡 ≈ 0.1×10−4, but the gain rapidly decreases with increasing
frequency up until 𝐹 ≈ 0.7 × 10−4. Then for 𝐹 > 1.1 × 10−4, the second mode
becomes the dominant instability and peaks at 𝐹𝑜𝑝𝑡 ≈ 1.4 × 10−4.

Across all frequencies, |𝑎 |max for entropic waves is the lowest, closely followed by
fast acoustic waves. Although |𝑎 |max is attributed to a vortical wave at the lowest
frequencies, the relative importance of slow acoustic waves steeply increases from
𝐹 ≈ 0.05 × 10−4 and eventually overtakes vortical waves at 𝐹 ≈ 0.3 × 10−4, before
becoming subdominant again by 𝐹 ≈ 0.9 × 10−4. The dominance of the vortical
wave at high frequencies is likely attributed to the “swallowing” effect (Fedorov and
Khokhlov, 2001) where Mode F1 synchronizes with the continuous vorticity branch.
The resulting Mode F1 waves, as discussed above, maximize the amplification of the
second mode. While the fast acoustic waves are closer in wavenumber to Mode F1,
the vortical waves are apparently more effective because they can simultaneously
excite Mode F1 (“swallowing” effect) and Mode S (similar wavenumber).

5.3.1 Summary
We have developed a scattered-wave ansatz which can be understood as a general-
ization of receptivity theory to compute the linear superposition of free-stream dis-
turbances resulting in the maximum disturbance-energy amplification. This global
approach circumvents the need for asymptotic expansions which is commonly used
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for receptivity analyses based on local methods. Alternatively, the ansatz can be
considered as restricting the forcing field in input-output analysis to physically re-
alizable quantities associated with the free-stream disturbances. We validated and
applied this novel technique to a 2D Mach 4.5 flat-plate boundary layer for which
the forward receptivity problem was previously solved using DNS (MZ2, MZ3).
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C h a p t e r 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions
In this thesis, we covered a variety of topics ranging from generalizing the One-Way
Navier-Stokes (OWNS) Equations to developing a novel framework in restricting
input-output analyses to physically realizable free-stream disturbances. We will
outline some of the key conclusions from each chapter.

We began by embedding the non-orthogonal curvilinear coordinate system from
Sec. A into the OWNS algorithm, along with full compressibility effects with user-
defined fluid properties in Sec. 2. The generalization was validated by comparing to
DNS results (in the linear regime) of an adiabatic flat plate (Ma and Zhong, 2003a),
a highly cooled flat plate (Chuvakhov and Fedorov, 2016), and a 7-deg half-angle
sharp cone (Sousa et al., 2019). In all cases, we observe that OWNS gives DNS-
quality results at a fraction of the computational expense. Essentially, OWNS was
able to fully track the downstream-propagating modes even when initialized with
random perturbations since the formulation does not assume any wave-like ansatz.
Additionally, we validated the non-orthogonal curvilinear coordinate system by
comparing LST results from CSTAT with LST data of the HIFiRE-5 elliptic cone
computed using LASTRAC (Chang, 2004).

We then applied OWNS to a complex 3D boundary layer, specifically a Mach 6
finned-cone geometry in Sec. 3. By initializing the march at 𝑓 = 250 kHz with both
randomized inlet forcing and a SBG inlet boundary condition, the insensitivity to the
initial conditions was established and both computations converged to the dominant
vortex mode well upstream of transition. Thus, while more expensive than PSE,
OWNS obviates the need for a trial-and-error approach to select the appropriate
wavelength for the SBG initial condition, yielding DNS-like confidence that all
wavelengths (and instability mechanisms) are accounted for in the solution. In the
present flow, the OWNS computations, at least up to the transition location, suggest
that there exists no significant amplification mechanisms beyond the dominant vortex
mode. Finally, we validated the curvilinear implementation and centerline treatment
for 3D jets in cylindrical coordinates for various azimuthal domains using a 3D Mach
1.5 axisymmetric turbulent jet.
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We next addressed the inverse problem of reconstructing the OWNS algorithm to
determine the worst-case disturbances leading to the fastest transition to turbulence
in Sec. 4. Specifically, the optimal input and output modes were computed using
Lagrangian multipliers via an iterative, adjoint-based, space-marching technique
that appreciably reduced the computational burden compared to the global approach
that uses SVD without sacrificing accuracy. The input-output OWNS model was
validated against optimal forcings and responses of a Mach 4.5 flat-plate boundary
layer from Bugeat et al. (2019) and a Mach 1.5 turbulent jet. We then applied
these equations to study worst-case disturbances on the centerline of the Mach 6
HIFiRE-5 elliptic cone and on a highly cooled Mach 6 flat-plate boundary layer. The
former study demonstrated the capability of the optimal OWNS method in efficiently
computing worst-case disturbances for complex flows. For the latter study, the
deficiencies of LST in analyzing flows exhibiting inter-modal interactions and/or
non-modal effects (e.g. supersonic mode) were highlighted, while simultaneously
exemplifying OWNS’s ability to tackle such complex flows with high accuracy.

Finally, in Sec. 5, we developed a scattering ansatz to study global, optimal natural
boundary-layer receptivity. The technique can be understood as a generalization of
receptivity theory to determine the linear combinations of free-stream disturbances
that give rise to the maximal disturbance amplification in the boundary layer. At the
same time, it can be considered as a restriction of the forcing field in input-output
analysis to a subspace associated with excitation by free-stream disturbances, which
addresses a long-standing and contentious issue regarding the realizability of input-
output analyses. As compared to many receptivity studies based on local methods,
the global approach circumvents the need for asymptotic expansions. As a first
application of the approach, we consider 2D disturbances to a Mach 4.5 flat-plate
boundary layer for which the forward receptivity problem was previously solved
using DNS (Ma and Zhong, 2003b; Ma and Zhong, 2005). The results validate
the approach and revealed optimal disturbance amplification scenarios. When the
free-stream is restricted to fast acoustic waves, maximal response is achieved by
subjecting the boundary layer to acoustic waves with incident angles that optimally
excite the second mode, but also, to a lesser extent, Mode F1. The receptivity
mechanism vastly changes, however, in the case of incident vortical waves, where
an optimal combination of highly penetrating and minimally decaying incident
waves produce a transient response characterized by large-scale streamwise jets
emanating from the wall and modulated by Modes F1 and S in the 𝑢′ response
field. Finally, the efficiency of our approach was demonstrated by computing
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the optimal receptivity for the same Mach 4.5 flat-plate boundary layer over a
range of frequencies, highlighting where first- (low-frequency) and second-mode
(high-frequency) instabilities are most receptive to different types of free-stream
disturbances.

6.2 Future work
The input-output framework of OWNS will be applied to a variety of other flows,
including extending the study in Sec. 4.5 to 3DF disturbances. Furthermore, we
will apply optimal OWNS along various inviscid streamlines and vortex paths on
the HIFiRE-5 elliptic cone and the BOLT geometry (Thome et al., 2018) to para-
metrically investigate the various instabilities present. The BOLT geometry was
specifically designed to excite a multitude of instabilities (Thome et al., 2018),
making OWNS a highly attractive stability solver for such a complex flow field.
Similarly, while the configurations considered for the optimal global receptivity
analyses in Sec. 5 were restricted to 2D flows, the methodology can be readily ap-
plied to 3D disturbances and more complex geometries, and the scattering ansatz
can include sources associated with the shock and shock layer. We also plan to
embed the scattering framework within the optimal OWNS algorithm to compute
the physically realizable worst-case disturbances in an efficient manner (in lieu of
the global approach used in Sec. 5).

Although the OWNS approach significantly reduces the computational burden com-
pared to global methods, further advancements are required to enable OWNS to be
used routinely as an engineering tool for complex 3D stability calculations. Specif-
ically, the OWNS algorithm may be reconstructed in a manner similar to Zhu and
Towne (2023), in which the action of the approximate projection operator is per-
formed by sequentially satisfying the recursive relations rather than in parallel as
is done in the current formulation. From a computational perspective, additional
efficiency can also be achieved by using the Clusters Interface of PARDISO which
includes Message Passing Interface (MPI) technology to facilitate communication
between multiple nodes (the current PARDISO solver in CSTAT is restricted to only
one node), and OpenMP∗ for parallelizing tasks amongst the processors in a given
node. Although this technology exists, the wrapper to synchronize the MATLAB
platform with the Clusters Interface needs to be developed. Embedding this new
PARDISO feature within CSTAT would also enable efficient computations if chem-
ical non-equilibrium effects are included in the future since a larger linear system of
equations would need to be inverted. With these advancements, we plan to conduct
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stability analyses, including input-output analyses, on the BOLT geometry. We will
also investigate the optimal disturbances of 3D chevron jets (Gudmundsson and
Colonius, 2007).

Finally, all of the current solvers within CSTAT are linear, but insight into the
nonlinear regime for transition analysis is important to understand the breakdown
mechanisms (Rigas, Sipp, and Colonius, 2021). Additionally, the linear regime
may altogether be bypassed in the presence of sufficiently large amplitude forcing.
Thus, work is underway to incorporate nonlinear PSE and OWNS solvers to study
nonlinear transition mechanisms and characterize the breakdown of disturbances
just prior to turbulence.
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A p p e n d i x A

NON-ORTHOGONAL CURVILINEAR COORDINATES

The OWNS algorithm is written in the physical, non-orthogonal coordinate system,
allowing versatility in performing boundary-layer stability calculations of complex
geometries while simultaneously satisfying the cylindrical coordinate system used
for jet calculations. This appendix delineates the tensor properties used to write
the LNS equations from Sec. 2.1 in the generalized coordinate system and how the
fundamental grid metrics are computed for each type of analysis. We also outline
how the stability grid is generated for both jets and boundary layers.

A.1 Tensor calculus
We begin by defining (𝑥, 𝑦, 𝑧) or 𝑥𝑖 as the global Cartesian coordinate system and
(𝜉, 𝜂, 𝜁) or 𝜉𝑖 as the streamwise, wall-normal, and spanwise curvilinear coordinate
system, respectively. The natural or covariant basis vectors can be defined as

𝒈1 =

(
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,
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, (A.1)

and the corresponding dual or contravariant basis vectors as

𝒈1 =
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. (A.2)

The covariant 𝑔𝑖 𝑗 and contravariant 𝑔𝑖 𝑗 metric tensor components, along with the
Jacobian 𝐽 can therefore be defined as

𝑔𝑖 𝑗 = 𝒈𝒊 · 𝒈 𝒋 , 𝑔𝑖 𝑗 = 𝒈𝒊 · 𝒈 𝒋 , 𝐽 =

��������
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�������� , (A.3)

where upon closer examination, the contravariant metric tensor is simply the inverse
of the covariant metric tensor 𝒈. We can now define the Christoffel symbols of the
second kind {

𝑙

𝑖 𝑗

}
=

1
2
𝑔𝑙𝑠

(
𝜕𝑔𝑖𝑠

𝜕𝑥 𝑗
+
𝜕𝑔 𝑗 𝑠

𝜕𝑥𝑖
−
𝜕𝑔𝑖 𝑗

𝜕𝑥𝑠

)
. (A.4)

We now transform all of the aforementioned grid metrics onto the physical coordi-
nate system as outlined in Demirdzic et al. (1987) and Demirdzic (1982). In this
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section, the physical counterparts will be denoted with tildes, except for the physical
Christoffel symbols which will be denoted with square brackets

�̃�𝑖 𝑗 =
𝑔𝑖 𝑗

√
𝑔𝑖𝑖𝑔 𝑗 𝑗

, (A.5)[
𝑖

𝑗 𝑘

]
=

√︂
𝑔𝑖𝑖

𝑔 𝑗 𝑗𝑔𝑘𝑘

({
𝑖

𝑗 𝑘

}
− 𝛿𝑖𝑗

𝑔 𝑗𝑚

𝑔 𝑗 𝑗

{
𝑚

𝑗𝑘

})
, (A.6)

𝑑𝜉
𝑖
= ℎ𝑖𝑑𝜉

𝑖, ℎ𝑖 = | |𝑔𝑖 | |, (A.7)

where ℎ𝑖 are the scale factors in the respective direction. Similar to the nonphysical
case, the physical contravariant metric tensor can be computed by inverting the
physical covariant metric tensor �̃�. With the physical quantities now defined, we
outline several important tensor-calculus properties used in Sec. 2.1, where, for this
example, we assume 𝑢, 𝒗, and 𝒘 as general zeroth-, first-, and second-order tensors
defined in the physical curvilinear coordinates, respectively,

∇ 𝑗𝑢 =
1
ℎ 𝑗

𝜕𝑢

𝜕𝜉 𝑗
, (A.8)

∇ · 𝒗 =
1
ℎ 𝑗

𝜕𝑣 𝑗

𝜕𝜉 𝑗
+ 𝑣𝑚

[
𝑗

𝑚 𝑗

]
, (A.9)

∇ 𝑗𝑣
𝑖 =

1
ℎ 𝑗

𝜕𝑣𝑖

𝜕𝜉 𝑗
+ 𝑣𝑚

[
𝑖

𝑚 𝑗

]
, (A.10)

∇ 𝑗𝑤
𝑖 𝑗 =

1
ℎ 𝑗

𝜕𝑤𝑖 𝑗

𝜕𝜉 𝑗
+ 𝑤𝑚 𝑗

[
𝑖

𝑚 𝑗

]
+ 𝑤𝑖𝑚

[
𝑗

𝑚 𝑗

]
. (A.11)

A.2 Grid metric generation
In this section, we will outline how the fundamental grid metrics are generated to
compute the physical covariant/contravariant metric tensors, Christoffel symbols,
and the scale factors from Sec. A.1 for the three different types of OWNS analy-
ses: 2D, 3D-Fourier (3DF), and 3D. 2D calculations have no spanwise coordinate,
wavenumber, or velocity, and thus the total state vector reduces to 𝒒 = [𝜌, 𝑢, 𝑣, 𝑇]𝑇 .
For 3DF analyses, the base flow is assumed to exhibit spanwise homogeneity along
the streamwise direction and thus the 3D perturbations are Fourier-transformed
with a spanwise wavenumber. Note that the computational domain is still 2D (no
spanwise coordinate), but a locally homogeneous spanwise velocity exists, and thus
we refer to the 3DF domain hereafter as “quasi 3D.” Lastly, 3D calculations have
coordinates in all three spatial directions, but only applicable for the local solvers
(see Sec. B.3). Note that for all analysis types, the fundamental grid metrics, and
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Figure A.1: Schematic of a curvilinear grid for 2D boundary-layer computa-
tions.

thereby the quantities from Sec. A.1, are computed on the base-flow grid and then
interpolated onto the stability grid via the modified Akima cubic Hermite method
from MATLAB.

A.2.1 2D implementation
For 2D calculations of boundary layers, the 𝜉-coordinate corresponds to the stream-
wise arclength along the geometry, i.e. at 𝜂 = 0, in which the 𝜂-coordinate is defined
as

𝜂 =
𝜂𝑤𝑛

𝜂𝑤𝑛,𝑚𝑎𝑥

����
𝜉=0

, 𝜂 ∈ [0, 1], (A.12)

where 𝜂𝑤𝑛 is the non-dimensional, physical wall-normal coordinate. A schematic
of this coordinate system is presented in Fig. A.1. The wall-normal grid metrics 𝜕𝑥

𝜕𝜂
,

𝜕2𝑥
𝜕𝜂2 , etc. are then computed via second-order numerical differentiation.

In contrast to the wall-normal direction, we wish to ensure any streamwise contrac-
tion/expansion of the grid is strictly due to the surface curvature. Thus, we first
define the signed curvature of the geometry as

𝜅1(𝜉) = −ℎ−3
1

(
𝜕𝑥

𝜕𝜉

𝜕2𝑦

𝜕𝜉2 − 𝜕𝑦

𝜕𝜉

𝜕2𝑥

𝜕𝜉2

)
, (A.13)

where 𝜅1 < 0 and 𝜅1 > 0 for concave and convex surface curvatures, respectively.
Note that all quantities in Eq. A.13 are computed at the wall (𝜂 = 0) with second-
order numerical differentiation. The streamwise scale factor at each grid point can
therefore be computed as

ℎ1(𝜉, 𝜂) = 1 + 𝜅1𝜂𝑤𝑛 (𝜉, 𝜂). (A.14)

Thus, the first-order streamwise grid metrics are calculated using Eq. A.1 by con-
structing 𝒈1 as

𝒈1(𝜉, 𝜂) = ℎ1 �̂�1(𝜉), (A.15)
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where �̂�1 is the streamwise unit covariant basis vector at the surface (the hat will
denote surface unit vectors in this section). Higher-order streamwise grid metrics
are then computed with second-order numerical differentiation with any cross-
derivatives, e.g. 𝜕2𝑥

𝜕𝜉𝜂
, calculated by numerically differentiating the streamwise grid

metrics from Eq. A.15 along the 𝜂-coordinate.

In summary, at each grid point, 𝒈1 is oriented along the surface basis vector at 𝜂 = 0
with its magnitude corresponding to the contraction/expansion of the grid due to the
local streamwise surface curvature. However, analyses neglecting curvature effects
can also be performed by enforcing[

𝑘

𝑖1

]
= 0, ℎ1 = 1. (A.16)

Essentially, since the Christoffel quantity

[
𝑘

𝑖 𝑗

]
represents the 𝑘 th component of how

the 𝑖th unit covariant basis vector changes in the 𝑗 th direction, the effect of 𝜅1 can be
negated by zeroing any variations of the covariant basis vectors in the 𝜉-direction,
while also constraining the streamwise scale factor to unity.

Lastly, the fundamental grid metrics for planar jets are computed analytically know-
ing that the local coordinate system coincides with the Cartesian coordinates, i.e.
𝑥 = 𝜉 and 𝑦 = 𝜂.

A.2.2 3DF implementation
Although 3DF calculations have no “physical” spanwise coordinate due to the
Fourier transformation, the fundamental grid metrics are derived using the 3D base-
flow grid and subsequently mapped onto a corresponding quasi 3D grid. Similar to
Sec. A.2.1, the 𝜉-coordinate for boundary layers is the streamwise arclength, which
is parametrically defined with the 3D surface coordinates (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) inputted by the
user. The wall-normal 𝜂-coordinate is defined as

𝜂 =
𝜂𝑤𝑛

𝜂𝑤𝑛,𝑚𝑎𝑥

, 𝜂 ∈ [0, 1], (A.17)

where 𝜂𝑤𝑛 is the streamwise and spanwise averaged non-dimensional, physical wall-
normal coordinate. This choice of coordinate system (see Fig. A.2) ensures any
variations in the wall-normal stretching within the full 3D domain are encapsulated
in the quasi 3D base-flow grid. Furthermore, we will define a spanwise coordinate
𝜁 as follows

𝜁 =
𝜁𝑠𝑎

𝜁𝑠𝑎,𝑚𝑎𝑥

����
𝜉=0,𝜂=0

, 𝜁 ∈ [0, 1], (A.18)
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Figure A.2: Schematic of a curvilinear grid for 3DF boundary-layer compu-
tations. Arrows projecting from the 𝝃-coordinate at 𝜼 = 0 demonstrate how
�̂�3 may be oriented. Dashed lines correspond to the discretized 2D base-flow
surface used to compute the grid metrics for the quasi 3D grid.

where 𝜁𝑠𝑎 is the non-dimensional, physical spanwise arclength. Although 𝜁 is not
used in the stability analysis, we require this coordinate to construct the spanwise
grid metrics along the quasi 3D base-flow grid. With (𝜉, 𝜂, 𝜁) defined, we can now
determine the coordinates (𝑥𝑏, 𝑦𝑏, 𝑧𝑏) upon which all grid metrics are computed on
as follows ©«

𝑥𝑏 (𝜉, 𝜂)
𝑦𝑏 (𝜉, 𝜂)
𝑧𝑏 (𝜉, 𝜂)

ª®®¬ =
©«
𝑥𝑠 (𝜉)
𝑦𝑠 (𝜉)
𝑧𝑠 (𝜉)

ª®®¬ + 𝜂𝜂𝑤𝑛,𝑠 (𝜉) �̂�2(𝜉), (A.19)

where 𝜂𝑤𝑛,𝑠 and �̂�2 are the wall-normal distance and unit wall-normal vector along
the streamwise arclength 𝜉, respectively. Note that we assume the 3D base-flow
grid already contains wall-normal grid distribution. The grid metrics 𝜕𝑥𝑏

𝜕𝜂
, 𝜕2𝑥𝑏

𝜕𝜂2 ,
etc. in the wall-normal direction are then computed via second-order numerical
differentiation.

Similar to the 2D case, we require any streamwise and spanwise grid contraction/-
expansion to be solely due to the streamwise (𝜅1) and spanwise (𝜅3) normal surface
curvatures, respectively. However, unlike the 2D case where the surface is pa-
rameterized with the 𝜉-coordinate, we will use the first and second fundamental
forms from differential geometry to compute 𝜅1 and 𝜅3, in which the coefficients are
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defined as follows

𝐸1 = 𝒈1 · 𝒈1, 𝐹
1 = 𝒈1 · 𝒈3, 𝐺

1 = 𝒈3 · 𝒈3, (A.20a)

𝐸2 =
𝜕𝒈1
𝜕𝜉

· �̂�2, 𝐹
2 =

𝜕𝒈3
𝜕𝜉

· �̂�2, 𝐺
2 =

𝜕𝒈3
𝜕𝜁

· �̂�2, (A.20b)

where superscripts 1 and 2 denote the first and second fundamental coefficients,
respectively. Note that all surface covariant basis vectors in Eq. A.20 are com-
puted on the 3D base-flow grid via second-order numerical differentiation and then
interpolated along 𝜉. With this, 𝜅1 and 𝜅3 can be computed as follows

𝜅1,3(𝜉) = −(𝐸2 ¤𝜉2 + 2𝐹2 ¤𝜉 ¤𝜁 + 𝐺2 ¤𝜁2), (A.21a)(
¤𝜉
¤𝜁

)
=

(
𝐸 𝐹

𝐹 𝐺

)−1 (
�̂�1,3 · 𝒈1

�̂�1,3 · 𝒈3

)
, (A.21b)

where �̂�1,3 corresponds to the unit streamwise/spanwise surface covariant basis
vectors along 𝜉. Note that the subscript (1, 3) compactly represents either the
streamwise (1) or spanwise (3) component. Similar to the 2D case, 𝜅1,3 is positive and
negative for convex and concave normal surface curvatures, respectively. Although
�̂�1 is known since (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) is supplied into OWNS as an input, �̂�3 can be oriented
in three ways:

1. Locally orthogonal to �̂�1 and �̂�2, i.e. �̂�3(𝜉) = 𝒈1×𝒈2
| |𝒈1×𝒈2 | | .

2. Along the 3D base-flow grid, i.e. computing �̂�3 based on the surface spanwise
grid lines and interpolating onto 𝜉.

3. Along a user-prescribed direction projected onto the local surface tangent
plane, i.e. 𝒈3(𝜉) = 𝒈3,𝒖 − 𝒈3,𝒖 ·𝒈2

𝒈2·𝒈2
𝒈2, where 𝒈3,𝒖 is the user-defined direction

and 𝒈2 is the wall-normal surface covariant basis vector along 𝜉 (�̂�3 can
thereafter be computed by normalizing 𝒈3).

Note that the non-orthogonal implementation permits �̂�3 to be oriented in any
arbitrary direction along the local surface tangent plane, allowing the user to perform
more versatile stability calculations.

With 𝜅1,3 computed, the streamwise and spanwise scale factors at each grid point of
the quasi 3D grid can be calculated as follows

ℎ1,3(𝜉, 𝜂) = 1 + 𝜅1,3𝜂𝑤𝑛,𝑏 (𝜉, 𝜂), (A.22)
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where 𝜂𝑤𝑛,𝑏 is the non-dimensional, physical wall-normal coordinate of the quasi
3D grid. Note that if the user elects to prescribe a streamwise-varying spanwise
wavelength, i.e. 𝜆𝜁 = 𝜆𝜁 (𝜉), then ℎ3 is modified to

ℎ3(𝜉, 𝜂) =
𝜆𝜁

𝜆𝜁,0

(
1 + 𝜅3𝜂𝑤𝑛,𝑏 (𝜉, 𝜂)

)
, (A.23)

where 𝜆𝜁,0 is the inlet spanwise wavelength. Finally, the first-order streamwise and
spanwise grid metrics are calculated using Eq. A.1 by constructing 𝒈1,3 as follows

𝒈1,3(𝜉, 𝜂) = ℎ1,3 �̂�1,3(𝜉). (A.24)

Higher-order streamwise grid metrics and any cross-derivatives involving 𝜂 are
computed in a similar manner to Sec. A.2.1. For the spanwise grid metrics, any cross-
derivatives involving 𝜉 or 𝜂, e.g. 𝜕2𝑥𝑏

𝜕𝜉𝜁
, are calculated by numerically differentiating

the spanwise grid metrics along the 𝜉- and/or 𝜂-coordinate. Finally, to be consistent
with the base-flow homogeneity assumption of 3DF calculations, the spanwise
covariant basis vectors along 𝜉 are assumed to be invariant in 𝜁 , i.e. 𝜕𝒈3

𝜕𝜁
=

𝜕2𝒈3
𝜕𝜁2 = 0,

which also implies any derivatives involving 𝜕2

𝜕𝜁2 = 0.

To summarize, at each point of the quasi 3D grid, 𝒈1 is oriented along the pre-
scribed pathway corresponding to (𝑥𝑠, 𝑦𝑠, 𝑧𝑠), whereas 𝒈3 is oriented either locally
orthogonal, along the 3D base-flow grid, or a user-defined direction projected onto
the local surface tangent plane. The magnitudes of 𝒈1,3, i.e. ℎ1,3, dictate the grid
contraction/expansion and are computed based on the local streamwise/spanwise
normal surface curvatures. The user can also choose to perform stability analyses
excluding streamwise and/or spanwise curvature effects by correspondingly setting([

𝑘

𝑖1

]
= 0, ℎ1 = 1

)
and/or

([
𝑘

𝑖3

]
= 0, ℎ3 = 1

)
. (A.25)

Similar to Sec. A.2.1, enforcing Eq. A.25 neglects the effect of 𝜅1,3 by removing
any variations of the unit covariant basis vectors in the 𝜉- and/or 𝜁-directions, while
also constraining the corresponding scale factor(s) to unity.

In contrast to boundary layers, 3DF jet computations are performed in cylindrical
coordinates, and thus the fundamental grid metrics can be computed analytically
with the following coordinate transformation

𝑥 = 𝜉, 𝑦 = 𝜂 cos 𝜁, 𝑧 = 𝜂 sin 𝜁, (A.26)

where (𝜉, 𝜂, 𝜁) correspond to the canonical axial, radial, and tangential coordinates,
respectively. Note that stability analyses of 3DF jets are performed only along the
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Figure A.3: Schematic of a curvilinear grid for 3D boundary-layer computa-
tions. Example of 𝝃𝒍 and 𝜻𝒍 , i.e. surface grid lines (arclengths) used to compute
local, first-order grid metrics, are also depicted.

𝜁 = 0 azimuthal plane. Lastly, the singularity at the pole is mitigated by starting the
radial grid slightly offset from the centerline with the corresponding pole conditions
explained in Sec. B.1.2.

A.2.3 3D implementation
Unlike 2D and 3DF analyses, 3D stability calculations require discretization in all
three spatial directions, where the 𝜉-coordinate for boundary layers corresponds to
the streamwise arclength at 𝜂 = 𝜁 = 0, i.e. along the surface geometry at the first
spanwise plane. The cross-stream coordinates 𝜂 and 𝜁 are defined as

𝜂 =
𝜂𝑤𝑛

𝜂𝑤𝑛,𝑚𝑎𝑥

����
𝜉=0,𝜁=0

, 𝜂 ∈ [0, 1], (A.27a)

𝜁 =
𝜁𝑠𝑎

𝜁𝑠𝑎,𝑚𝑎𝑥

����
𝜉=0,𝜂=0

, 𝜁 ∈ [0, 1], (A.27b)

where 𝜂𝑤𝑛 and 𝜁𝑠𝑎 are defined the same as Secs. A.2.1 and A.2.2, respectively. The
3D coordinate system is exemplified in Fig. A.3. The wall-normal grid metrics 𝜕𝑥

𝜕𝜂
,

𝜕2𝑥
𝜕𝜂2 , etc. are then computed via second-order numerical differentiation.

Similar to the 2D and 3DF cases, we wish for any streamwise and spanwise grid
contraction/expansion to correspond to the local normal surface curvatures, thus
requiring computation of 𝜅1,3(𝜉, 𝜁), at each point on the surface. This is done
identically to Sec. A.2.2 by using the first and second fundamental coefficients,
and aligning the unit surface covariant basis vectors �̂�1,3 along the streamwise and
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spanwise surface grid lines. Note that an advantage of the non-orthogonal system
is that surface grid points can be distributed arbitrarily to efficiently resolve any
rapidly evolving geometric features.

With 𝜅1,3 computed, the streamwise and spanwise scale factors at each grid point of
the 3D grid can be calculated as follows

ℎ1,3(𝜉, 𝜂, 𝜁) = 1 + 𝜅1,3𝜂𝑤𝑛 (𝜉, 𝜂, 𝜁), (A.28)

where, similar to Sec. A.2.1, 𝜂𝑤𝑛 is the non-dimensional, physical wall-normal coor-
dinate. Finally, the first-order streamwise and spanwise grid metrics are calculated
using Eq. A.1 by constructing 𝒈1,3 as follows

𝒈1,3(𝜉, 𝜂, 𝜁) = ℎ1,3 �̂�1,3(𝜉, 𝜁). (A.29)

However, the grid metrics computed from Eq. A.29 correspond to the local stream-
wise and spanwise surface grid lines (arclengths), which we will denote as 𝜉𝑙 and
𝜁𝑙 (see Fig. A.3), respectively, and are not defined with respect to the 𝜉-coordinate
or 𝜁-coordinate from Eq. A.27. Thus, the following mappings are required to have
consistent first-order grid metrics

𝜕

𝜕𝜉
=
𝜕𝜉𝑙

𝜕𝜉

𝜕

𝜕𝜉𝑙
,

𝜕

𝜕𝜁
=
𝜕𝜁𝑙

𝜕𝜁

𝜕

𝜕𝜁𝑙
, (A.30)

where the mapping functions 𝜕𝜉𝑙
𝜕𝜉

(𝜉, 𝜁) and 𝜕𝜁𝑙
𝜕𝜁

(𝜉, 𝜁) are computed via second-order
numerical differentiation. Higher-order streamwise and spanwise grid metrics and
any cross-derivatives are then calculated numerically.

To recapitulate, the local, first-order streamwise and spanwise grid metrics within
the 3D domain are determined by first orienting 𝒈1,3 along the surface covariant basis
vectors. The magnitudes of 𝒈1,3, i.e. ℎ1,3, are then computed based on the local
streamwise/spanwise normal surface curvatures, which then allows computation of
𝜕𝑥
𝜕𝜉𝑙

, 𝜕𝑥
𝜕𝜁𝑙

, etc. We then map these local grid metrics to be defined with respect to 𝜉 and
𝜁 , upon which higher-order grid metrics can be calculated numerically thereafter.
If the user wishes to neglect curvature effects, only the streamwise component can
be excluded since 3D stability analyses are streamwise-local but fully discretized in
the cross-stream plane. However, extra care must be taken when applying Eq. A.16,
such that the streamwise scale factor with respect to 𝜉𝑙 must be set to unity, which
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we will denote as ℎ1,𝑙 . We can then compute ℎ1 as follows

ℎ1 =

√︄(
𝜕𝑥

𝜕𝜉𝑙

𝜕𝜉𝑙

𝜕𝜉

)2
+

(
𝜕𝑦

𝜕𝜉𝑙

𝜕𝜉𝑙

𝜕𝜉

)2
+

(
𝜕𝑧

𝜕𝜉𝑙

𝜕𝜉𝑙

𝜕𝜉

)2

=
𝜕𝜉𝑙

𝜕𝜉

√︄(
𝜕𝑥

𝜕𝜉𝑙

)2
+

(
𝜕𝑦

𝜕𝜉𝑙

)2
+

(
𝜕𝑧

𝜕𝜉𝑙

)2

=
𝜕𝜉𝑙

𝜕𝜉
ℎ1,𝑙

=
𝜕𝜉𝑙

𝜕𝜉
.

(A.31)

Similar to 3DF jet computations, 3D calculations are performed in cylindrical
coordinates with the fundamental grid metrics computed analytically using the
coordinate transformation of Eq. A.26. The singularity at the pole is avoided by
starting the radial grid slightly offset from the centerline, but the imposition of pole
conditions depends on the extent of the azimuthal domain, i.e. whether 𝜁𝑚𝑎𝑥 = 2𝜋
or 𝜁𝑚𝑎𝑥 < 𝜋. If the latter, the azimuthal domain must be an integer fraction of
𝜋 (e.g. 𝜋, 𝜋/2, 𝜋/3, etc.) to ensure radially symmetric conditions across the
centerline, in which practical implementation of the 𝜋-domain would correspond
to 𝜁𝑚𝑎𝑥 = 𝜋 − 𝜖 , where 𝜖 is the machine precision. The two possible azimuthal
domains are schematically shown in Fig. A.4 and the corresponding pole conditions
are explained in Sec. B.1.2.

A.3 Stability grid generation
After computing the fundamental grid metrics and corresponding physical covari-
ant/contravariant metric tensors, Christoffel symbols, and scale factors on the base-
flow grid, the stability grid is subsequently generated. Points along the 𝜉-coordinate
are uniformly distributed, except for global methods (see Sec. B.3), in which a
hyperbolic tangent function may be used cluster points near the inlet to improve
computational efficiency. This is particularly useful when resolving leading-edge
effects for boundary layers or the Kelvin-Helmholtz mode near the nozzle exit for
jets. For boundary layers, the stretched 𝜂-coordinate can be constructed by one of
the following three ways:

1. Malik stretching—half the nodes are clustered below a user-defined 𝜂-coordinate
denoted as 𝜂ℎ (Malik, 1990).

2. Biquadratic stretching—nodes are distributed into three regions to facilitate
interior clustering (in addition to the boundaries) (Groot, 2018). Nodes
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Figure A.4: Schematic of a curvilinear grid for 3D jet computations. The
red dashed lines correspond to a full 2𝝅-azimuthal domain, whereas the green
dashed lines correspond to an example of an azimuthal slice, i.e. a 𝝅

4 -azimuthal
domain. The 𝜼- and 𝜻-coordinates correspond to the radial and tangential
directions from cylindrical coordinates, respectively. The black dashed line is
the transformed radial coordinate 𝜼 from Mohseni and Colonius (2000).

are clustered in the regions [0, 3
4𝜂ℎ],[

3
4𝜂ℎ,

5
2𝜂ℎ], and [ 5

2𝜂ℎ, 1], where 𝜂ℎ <

32/87 is a user-defined 𝜂-coordinate (this constraint ensures a monotonic 𝜂-
distribution without discontinuities). Smaller values of 𝜂ℎ (typically 𝜂ℎ ≤ 0.1)
will increase the stretching within the boundary-layer region and near-field
free-stream/shock layer, but yield coarse grid resolution near the far-field
boundary (this may be suitable for stability analyses where the disturbances
decay slowly into the free-stream/shock layer).

3. Base-flow stretching—wall-normal stretching of the stability grid mimics the
stretched 𝜂-coordinate from Sec. A.2.

For jets, the radial domain of the stability grid is constructed either with a stretched
mixing-layer region using a hyperbolic tangent function or replicates the grid dis-
tribution from the base-flow grid. Finally, the spanwise grid for 3D computations
is generated with a uniformly distributed 𝜁-coordinate for both jets and boundary
layers.
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A p p e n d i x B

CALTECH STABILITY AND TRANSITION ANALYSIS
TOOLKIT (CSTAT)

CSTAT is a comprehensive stability package designed to perform a variety of anal-
yses from subsonic to hypersonic regimes for boundary and free-shear layers in
generalized, non-orthogonal, curvilinear coordinates with user-defined fluid proper-
ties (these features were delineated in Secs. A and 2). The motivation behind CSTAT
was to develop a package containing the modern stability tools, and thereby provide
a means to perform exhaustive computations, both for fundamental understanding
and engineering design. Note that the current version of the code, CSTAT V2.0,
does not support calculation of nonlinear effects.

The code is written predominantly in MATLAB (R2019a) and requires external
libraries if the Intel® oneAPI Math Kernel Library PARDISO package (Schenk and
Gärtner, 2004) is to be used as the sparse linear solver. The overall structure of
CSTAT can be decomposed into two categories: symbolic and numerical compu-
tation. The symbolic portion is written in Wolfram Mathematica, which performs
the linearization of the fully compressible Navier-Stokes equations and outputs the
operators and generalized curvilinear grid metrics in functional form which are then
read into MATLAB when performing the desired stability calculation.

This appendix outlines the various boundary conditions, the base-flow processing
prior to stability computations, and the wide range of solvers and utilities within
CSTAT for both boundary layers and jets.

B.1 Boundary conditions
B.1.1 Boundary layers
For LST and SBG, no streamwise boundary conditions are required, whereas for
local marching methods (PSE and OWNS), only the inlet boundary condition in the
form of the perturbed state vector 𝒒′0 is prescribed. In contrast, for global methods
(see Sec. B.3), inlet and outlet sponges of streamwise thickness Δ𝑖𝑛 and Δ𝑜𝑢𝑡 ,
respectively, are employed to model open boundaries (these sponges are augmented
exterior to the stability domain of interest). We solve the inviscid form of Eq. 5.1
at the outer sponge boundaries (corresponding to the first and last streamwise grid
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points), and couple the 1D inviscid Thompson characteristic boundary conditions
(Thompson, 1987) to eliminate any incoming waves into the domain. Note that
the sponge regions are excluded in the computation of the inputs and/or responses
for all the global methods via the input and output screening matrices B𝒑 and C 𝒑,
respectively. Lastly, the sponge can be constructed using a power, exponential, or
polynomial function, but the polynomial method (default) has demonstrated the best
performance from extensive prior applications in damping the waves originating
from the stability domain.

At the wall, the usual boundary conditions include no-slip, i.e. 𝑢′ = 𝑣′ = 𝑤′ = 0,
coupled with either isothermal (𝑇 ′ = 0) or adiabatic (𝜕𝑇 ′/𝜕𝜂 = 0) thermal conditions.
The user may also elect to choose impedance boundary conditions (IBCs) at the wall
of either structured or random porosity where additional input parameters such as
porosity, depth of pore, pore radius, tortuosity, fiber diameter, and felt-metal flow
resistivity are required. The acoustic model for structured- and random-porosity
IBCs corresponds to the work of Fedorov, Malmuth, et al. (2001) and Fedorov,
Shiplyuk, et al. (2003), respectively.

The far-field boundary conditions include either 1D inviscid Thompson character-
istic boundary conditions (Thompson, 1987) to permit waves leaving the domain
only, homogeneous Dirichlet conditions for all perturbed state variables, or a shock
condition if the wall-normal domain extends to just below the shock (Petrov, 1985).
The last option replaces the 𝜂-momentum equation at the far-field with the steady,
linearized Rankine-Hugoniot condition assuming no disturbances upstream of the
shock, which reads (Cook and Nichols, 2022)

𝑝′2 = −2𝜌2𝑣2,𝑠𝑣
′
2,𝑠 − 𝜌′2𝑣

2
2,𝑠, (B.1)

where the subscript 2 corresponds to conditions just downstream of the shock and
𝑣′2,𝑠 and 𝑣2,𝑠 are the un/steady shock-normal velocities, respectively. When using the
shock boundary condition, the streamwise and spanwise fundamental grid metrics
at the far-field boundary must be computed directly with numerical differentiation
rather than using the surface normal curvatures from Sec. A.2. This is because the
far-field ℎ1,3 must reflect the shock curvature (since the shock is a physical far-field
boundary) with 𝑢 and𝑤 velocities oriented along the shock surface. Furthermore, we
require the shock-normal un/steady velocities rather than the wall-normal quantities
to satisfy Eq. B.1. Thus, we first calculate the shock normal �̂�2,𝒔 as follows

�̂�2,𝒔 (𝜉, 𝜁) =
�̂�3,𝒔 × �̂�1,𝒔

| | �̂�3,𝒔 × �̂�1,𝒔 | |
, (B.2)
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where �̂�1,𝒔 and �̂�3,𝒔 are the unit streamwise and spanwise covariant basis vectors
along the shock surface, respectively. For 3DF calculations, �̂�3,𝒔 is first computed in
the 3D base-flow grid and then interpolated along 𝜉, whereas 2D analyses in which
�̂�3,𝒔 does not exist, �̂�2,𝒔 (𝜉) is simply orthogonal to �̂�1,𝒔, which can be computed as

�̂�2,𝒔 (𝜉) =
(
0 −1
1 0

)
�̂�1,𝒔 . (B.3)

Using �̂�2 from Sec. A.2, we can write the shock-normal velocity as a function of the
wall-normal velocity as follows

𝑣2,𝑠 = 𝑣2 cos 𝜃, cos 𝜃 = �̂�2 · �̂�2,𝒔 . (B.4)

We can thus rewrite Eq. B.1 as

𝑝′2 = −𝑣2 cos2 𝜃 (2𝜌2𝑣
′
2 + 𝜌′2𝑣2), (B.5)

which is used in lieu of the wall-normal momentum equation. The remaining
governing equations (continuity, streamwise and spanwise momentum, and energy)
remain invariant at the far-field boundary.

The spanwise boundary conditions for 3D computations include periodic, symmet-
ric, and antisymmetric. The penultimate condition enforces 𝜕/𝜕𝜁 = 0 for 𝜌′, 𝑢′, 𝑣′,
and 𝑇 ′ with 𝑤′ = 0 at the spanwise boundaries, whereas the conditions are reversed
for the antisymmetric conditions.

B.1.2 Jets
Streamwise boundary conditions (or their absence) for jets are identical to the
boundary-layer case from Sec. B.1.1, with far-field conditions being either the 1D
inviscid Thompson characteristic boundary conditions or homogeneous Dirichlet
conditions.

Symmetric conditions are employed at the centerline for planar (2D) jets, i.e. 𝜕/𝜕𝜂 =

0 for 𝜌′, 𝑢′, and 𝑇 ′ with 𝑣′ = 0. For 3DF or 3D calculations, which are performed
in cylindrical coordinates, the singularity at the pole is mitigated by removing the
grid point at 𝜂 = 0 and using the transformed radial coordinate 𝜂 (see Fig. A.4) from
Mohseni and Colonius (2000). In the case of 3DF computations, i.e. analyses along
the 𝜁 = 0 plane, the radial derivative operators near the centerline are modified with
symmetric (even azimuthal mode) or antisymmetric (odd azimuthal mode) finite-
difference closure schemes. If performing 3D calculations with 𝜁𝑚𝑎𝑥 < 𝜋, only the
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symmetric conditions are enforced since the azimuthal domain, which is an integer
fraction of 𝜋, is assumed to be radially symmetric across the centerline. For the case
of the full azimuthal domain, i.e. 𝜁𝑚𝑎𝑥 = 2𝜋, the radial transformation is adapted
for the present generalized curvilinear coordinates, such that there is a 1-1 mapping
between the 𝜂- and 𝜂-coordinates for 𝜁 < 𝜋, but 𝜕

𝜕𝜂
= − 𝜕

𝜕𝜂
and 𝜕2

𝜕𝜂2 = 𝜕2

𝜕𝜂2 for 𝜁 ≥ 𝜋.
Furthermore, at any given azimuthal position, 𝑣′ and 𝑤′ remain defined with respect
to the 𝜂-coordinate, but the sign of these variables is reversed if the stencil near the
centerline includes grid points through 𝜂 = 0.

The spanwise boundary condition for 3D analyses is restricted to the symmetric or
antisymmetric constraint from Sec. B.1.1 if 𝜁𝑚𝑎𝑥 < 𝜋. Otherwise, the 𝜁-domain
must contain the full 2𝜋 revolution with the enforcement of spanwise periodic
conditions.

B.2 Base-flow processing
The two inputs into CSTAT are the base flow consisting of the Cartesian velocity
components, density, and temperature and the corresponding structured grid. How-
ever, since the velocity vector 𝒖 in Eq. 2.1 is composed of the physical curvilinear
velocity components, we need to map the input base-flow velocity onto the local
coordinate system as follows

2D : 𝑢 =
ℎ1
𝐽

(
−𝑣𝑦

𝜕𝑥

𝜕𝜂
+ 𝑢𝑥

𝜕𝑦

𝜕𝜂

)
, (B.6a)

𝑣 =
ℎ2
𝐽

(
𝑣𝑦

𝜕𝑥

𝜕𝜉
− 𝑢𝑥

𝜕𝑦

𝜕𝜉

)
, (B.6b)

3DF/3D : 𝑢 =
ℎ1
𝐽

[
𝜕𝑧

𝜕𝜁

(
−𝑣𝑦

𝜕𝑥

𝜕𝜂
+ 𝑢𝑥

𝜕𝑦

𝜕𝜂

)
+ 𝜕𝑦

𝜕𝜁

(
𝑤𝑧

𝜕𝑥

𝜕𝜂
− 𝑢𝑥

𝜕𝑧

𝜕𝜂

)
+ (B.6c)

𝜕𝑥

𝜕𝜁

(
−𝑤𝑧

𝜕𝑦

𝜕𝜂
+ 𝑣𝑦

𝜕𝑧

𝜕𝜂

)]
, (B.6d)

𝑣 = − ℎ2
𝐽

[
𝜕𝑧

𝜕𝜁

(
−𝑣𝑦

𝜕𝑥

𝜕𝜉
+ 𝑢𝑥

𝜕𝑦

𝜕𝜉

)
+ 𝜕𝑦

𝜕𝜁

(
𝑤𝑧

𝜕𝑥

𝜕𝜉
− 𝑢𝑥

𝜕𝑧

𝜕𝜉

)
+ (B.6e)

𝜕𝑥

𝜕𝜁

(
−𝑤𝑧

𝜕𝑦

𝜕𝜉
+ 𝑣𝑦

𝜕𝑧

𝜕𝜉

)]
, (B.6f)

𝑤 =
ℎ3
𝐽

[
𝜕𝑧

𝜕𝜂

(
−𝑣𝑦

𝜕𝑥

𝜕𝜉
+ 𝑢𝑥

𝜕𝑦

𝜕𝜉

)
+ 𝜕𝑦

𝜕𝜂

(
𝑤𝑧

𝜕𝑥

𝜕𝜉
− 𝑢𝑥

𝜕𝑧

𝜕𝜉

)
+ (B.6g)

𝜕𝑥

𝜕𝜂

(
−𝑤𝑧

𝜕𝑦

𝜕𝜉
+ 𝑣𝑦

𝜕𝑧

𝜕𝜉

)]
, (B.6h)

where (𝑢, 𝑣, 𝑤) are the velocity components along the local covariant basis vectors
and (𝑢𝑥 , 𝑣𝑦, 𝑤𝑧) are the global Cartesian velocities.
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The gradients of all base-flow variables are then computed with finite-difference
schemes consistent with the stability analysis (usually fourth-order) with SBP bound-
ary closure (Mattsson and Nordström, 2004). Note that for 3DF or 3D jet calcula-
tions with 𝜁𝑚𝑎𝑥 < 𝜋, the base flow is taken just offset of the centerline with adjacent
radial gradients computed using the pole conditions from Mohseni and Colonius
(2000) coupled with symmetric finite-difference closure conditions. The symmetry
enforcement is required since the base flow is assumed to be axisymmetric for 3DF
or radially symmetric across the centerline for 3D with 𝜁𝑚𝑎𝑥 < 𝜋. Finally, for 3D
jets with 𝜁𝑚𝑎𝑥 = 2𝜋, the radial derivatives are computed in the same manner as the
perturbed state vector 𝒒′ from Sec. B.1.2.

B.3 Stability solvers
Each type of solver within CSTAT is succinctly described in this section. The reader
is encouraged to review the associated references for detailed descriptions. For this
section only, the ˆ will denote the shape function of the ansatz assumed for a given
type of solver.

B.3.1 Local marching methods for 2D/3DF/3D analyses
B.3.1.1 One-Way Navier-Stokes (OWNS)

See Sec. 2 for details of the OWNS methodology.

B.3.1.2 Parabolized stability equations (PSE)

Similar to OWNS, PSE tracks the downstream evolution of an initial disturbance
specified at a streamwise station with non-parallel base-flow effects included, which
contrasts LST or SBG. A key assumption in the PSE algorithm is that the flow is
dominated by a single instability characterized by a complex streamwise wavenum-
ber that varies slowly in 𝜉. For this solver, we substitute the ansatz 𝒒′(𝜉, 𝜂, 𝜁 , 𝑡) =
�̂�(𝜉, 𝜂)𝑒𝑖

(∫ 𝜉

𝜉0
𝛼(𝜉′) 𝑑𝜉′+𝛽𝜁−𝜔𝑡

)
for 2D/3DF or 𝒒′(𝜉, 𝜂, 𝜁 , 𝑡) = �̂�(𝜉, 𝜂, 𝜁)𝑒𝑖

(∫ 𝜉

𝜉0
𝛼(𝜉′) 𝑑𝜉′−𝜔𝑡

)
for 3D into Eq. 2.3 with the streamwise viscous and forcing terms neglected, i.e.
𝑪 = 𝑩𝝃𝝃 = 𝒇 𝒑 = 0 from Eq. 5.1. This method, although computationally efficient,
has several intrinsic disadvantages which are detailed in Towne, Rigas, and Colonius
(2019).

B.3.2 Local linear stability theory (LST/SBG) for 2D/3DF/3D analyses
In classical linear theory, the base flow is assumed to evolve slowly with 𝜉 and 𝜁

relative to the wavelengths of the associated disturbance, i.e. the base flow is locally
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homogeneous in 𝜉 and 𝜁 . By introducing the normal-mode ansatz 𝒒′(𝜉, 𝜂, 𝜁 , 𝑡) =
�̂�(𝜂)𝑒𝑖(𝛼𝜉+𝛽𝜁−𝜔𝑡) into Eq. 2.3 with 𝒇 𝒑 = 0, a nonlinear spatial eigenvalue problem
can be solved to determine the unstable modes at a given streamwise station, i.e.
the complex streamwise wavenumbers 𝛼 and their corresponding eigenfunctions.
The method, however, may yield inaccurate results for complex flows exhibiting
multi-modal and/or non-modal (transient) instabilities.

Following similar assumptions to LST, if the base flow also exhibits strong spanwise
variations, an SBG analysis can be performed via full cross-stream discretization,
thereby only assuming local streamwise homogeneity such that the normal-mode
ansatz takes the form 𝒒′(𝜉, 𝜂, 𝜁 , 𝑡) = �̂�(𝜂, 𝜁)𝑒𝑖(𝛼𝜉−𝜔𝑡) . Similar to LST, SBG calcu-
lations should be qualified for complex flows containing multi-modal instabilities
and/or transient growth.

B.3.3 Global methods for 2D/3DF analyses
Note that all global methods outlined below, including global optimal, are restricted
to 2D/3DF due to their large computational expense.

B.3.3.1 Global stability analysis (GSA)

In GSA, all viscous terms are retained with no streamwise base-flow homogeneity
assumptions. A linear, temporal eigenvalue analysis is conducted to solve for the
global modes (the complex frequencies 𝜔 and their corresponding eigenfunctions)
by globally discretizing Eq. 2.3 in the 𝜉- and 𝜂-directions with 𝒇 𝒑 = 0 and using
the ansatz 𝒒′(𝜉, 𝜂, 𝜁 , 𝑡) = �̂�(𝜉, 𝜂)𝑒𝑖(𝛽𝜁−𝜔𝑡) . Given the large computational expense
of this global eigenvalue problem, the user is prompted for the guess of the most
unstable complex frequency, in which then CSTAT computes eigenvalues within the
vicinity of the guessed value using the Krylov-Schur algorithm from MATLAB. If
the adjacent modes calculated are not of relevance, the user is prompted for a new
guess and the process continues until the desired modes have been determined.

B.3.3.2 Linearized Navier-Stokes (LNS)

Using the same global discretization and ansatz as GSA, no streamwise assump-
tions are made regarding the base flow and all terms from Eq. 2.3 are retained.
However, instead of determining global eigenmodes, the streamwise evolution of
perturbations of a prescribed inlet disturbance profile (usually the eigenfunction
from LST corresponding to the most unstable mode) is calculated at a given real
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frequency 𝜔. This is accomplished by lifting the inlet boundary condition into an
equivalent right-hand-side forcing 𝒇 𝒑 and setting B𝒑 = 𝑰. LNS essentially is the
global analogue of the local marching methods OWNS and PSE.

B.3.4 Optimization methods
B.3.4.1 Global optimal for 2D/3DF analyses

In the global approach, Eq. 5.1 is discretized in the streamwise direction with all
viscous terms retained, and after incorporating appropriate boundary conditions,
can be written in an input-output format as

𝑳𝒒′ = B𝒑 𝒇 𝒑, 𝒚 = C 𝒑𝒒
′, (B.7)

where 𝑳 is the LNS operator. We can therefore express the observable in terms of
the input forcing as

𝒚 = C 𝒑RB𝒑 𝒇 𝒑, (B.8)

where R = 𝑳−1 is the global resolvent operator.

Input-output analysis determines the forcing and response pairs that yield the largest
gain. We thus need to define a global inner product

⟨𝒂, 𝒃⟩𝑔 = ⟨𝒂,𝑾𝒆𝒃⟩ = 𝒂𝐻𝑾𝝃𝜼𝜻𝑾𝒆𝒃 = 𝒂𝐻𝑾𝒈𝒃, (B.9)

where 𝑾𝒈 is a positive-definite weight matrix constructed as 𝑾𝒈 = 𝑾𝝃𝜼𝜻𝑾𝒆. Here
𝑾𝒆 represents a physical quantity of interest, i.e. the Chu-energy weight matrix
(Chu, 1965) from Sec. 4.1, and 𝑾𝝃𝜼𝜻 is a diagonal positive-definite matrix of
quadrature weights composed of ℎ𝜉ℎ𝜂d𝜉d𝜂 and ℎ𝜉ℎ𝜂ℎ𝜁d𝜉d𝜂 for 2D and 3DF analy-
ses, respectively. Thus, the inner product represents the volume-integrated quantity
(up to a discretization error). Inner products without any subscripts involve only
quadrature weights.

The global optimal forcing and responses can now be calculated via the following
Rayleigh quotient

𝜎2
𝑔 (𝜔) =

⟨𝒚, 𝒚⟩𝑔
⟨ 𝒇 𝒑, 𝒇 𝒑⟩𝑔

=
𝒇 𝑯𝒑 B𝑯

𝒑 R
𝐻
C𝑯

𝒑 𝑾𝒈C 𝒑RB𝒑 𝒇 𝒑

𝒇 𝑯𝒑 𝑾𝒈 𝒇 𝒑
. (B.10)

The maximum global gain 𝜎𝑔 can be obtained with either the generalized SVD
method or transforming to the standard one by defining 𝒌 𝒑 = 𝑾1/2

𝒈 𝒇 𝒑 and maximiz-
ing

𝜎2
𝑔 (𝜔) =

𝒌𝑯
𝒑 R

𝑯
𝒈 R𝒈𝒌 𝒑

𝒌𝑯
𝒑 𝒌 𝒑

, (B.11)
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where R𝒈 = 𝑾1/2
𝒈 C 𝒑RB𝒑𝑾

−1/2
𝒈 is a weighted form of the resolvent operator. The

optimal gains and corresponding forcings can now be computed via the eigenvalue
decomposition of R𝑯

𝒈 R𝒈 or, equivalently, the following SVD

R𝒈 = 𝑼𝒈𝚺𝒈𝑽
𝑯
𝒈 . (B.12)

The singular values contained within the diagonal positive-semi-definite matrix 𝚺𝒈

correspond to 𝜎𝑔, whereas the input and output modes are contained in the columns
of the matrices 𝑽 = 𝑾−1/2

𝒈 𝑽𝒈 and 𝑼 = 𝑾−1/2
𝒈 𝑼𝒈, respectively.

B.3.4.2 OWNS optimal for 2D/3DF/3D analyses

See Sec. 4 for details of the optimal OWNS methodology.

B.4 Auxiliary utilities
The various auxiliary utilities contained within CSTAT are discussed in this section.
These functions allow the user to easily generate the necessary input files (e.g.
flat-plate boundary-layer base flows) and/or maximize the efficiency in conducting
stability analyses using CSTAT.

B.4.1 Self-similar boundary-layer solutions
CSTAT includes a base-flow generator for zero-pressure-gradient flat-plate and
sharp-cone Blasius profiles, the former of which is computed using the Howarth-
Dorodnitsyn transformation. For sharp-cone profiles, the Taylor-Maccoll ODE
(Taylor and Maccoll, 1933) is solved initially to determine the inviscid, boundary-
layer edge properties along the ray emanating from the nose at the cone half-angle
using a modified MATLAB code from Lassaline, J. V. (2009). Thereafter, following
the work of Lees (1956), the Blasius profile is computed by applying the Mangler
transformation (Mangler, 1948) for axisymmetric flows to the self-similar solution.
While the calorically perfect gas assumption is used, i.e. 𝑐𝑝 is constant, the fluid
properties 𝜇 and 𝑘 are both functions of temperature and can vary via Sutherland’s
Law or with polynomial functions. The similarity solution (Blasius profile) is then
numerically computed by solving the boundary-value problem using the fourth-order
method from MATLAB (bvp4c).

In addition to the classical Blasius profiles, the more general class of Falkner–Skan
(FS) and Falkner–Skan-Cooke (FSC) profiles can also be generated to include
pressure gradient and/or sweep angles, which can model infinitely spanning swept
wings. Note that the pressure gradient is encapsulated in the Hartree parameter 𝛽𝐻 .
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Excluding the sharp-cone feature, all important points made regarding the Blasius
profiles apply to FS/FSC solutions with the exception that these profiles are locally
self-similar to accommodate the change in edge Mach number. Essentially, the
FS/FSC ODE’s are solved at each streamwise station to determine the local profile
(this is valid if the edge properties do not experience rapid streamwise variation
(Gaponov and Smorodskii, 2008)).

B.4.2 Inviscid-streamline and vortex-path generator
In 3DF boundary-layer computations, an integration pathway must be supplied into
CSTAT in the form of surface coordinates (𝑥𝑠, 𝑦𝑠, 𝑧𝑠). One common pathway is the
inviscid streamline, i.e. streamlines based on the boundary-layer edge velocities.
CSTAT includes a utility that takes the 3D base flow and corresponding grid as
inputs, and computes the inviscid streamlines along the surface of the body. The
user can then extract (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) corresponding to a desired streamline and perform
stability analyses thereafter.

Similar to the inviscid-streamline generator, CSTAT also includes a vortex-path
generator. This utility calculates vortex paths for stationary crossflow based on
the inflection-point method, where the marching direction is locally oriented such
that spanwise generalized inflection point (GIP), 𝜕

𝜕𝜂

(
𝜌 𝜕𝑤

𝜕𝜂

)
= 0, occurs at 𝜌𝑤 = 0

(Kocian et al., 2019). The spanwise base-flow velocity 𝑤 here is oriented orthog-
onal to the marching direction. The user can then extract the surface coordinates
corresponding to one vortex path for subsequent stability calculations. However,
depending on the resolution of the base flow, certain streamwise stations may not sat-
isfy the GIP and 𝜌𝑤 = 0 requirement within the specified tolerance due to sensitivity
of the streamwise basis vectors, especially when near planes of spanwise symme-
try. Specifically, the user-input tolerance governs the wall-normal distance between
the GIP and where 𝜌𝑤 = 0 (theoretically these two quantities should coincide but
numerically a small distance is tolerated). If erroneous pathways are observed, the
tolerance is increased incrementally until smooth pathways are computed. There
is also an additional input parameter that represents the angular resolution used to
iterate through the spanwise velocities until the vortex-path criterion is satisfied,
after which the spanwise location at the next streamwise station is determined.

B.4.3 MEX-operator generator
The linear operators used for all the solvers in CSTAT can be constructed using the
default MATLAB function handles or pre-compiled MEX files. Given the complex-
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ity and generality of the operators, the former method is computationally inefficient,
especially for complex geometries, due to MATLAB’s interpreted language type.
The MEX-operator utility will generate the MEX files that can be used to compute
the operators considerably faster. Note that the default MEX files present in CSTAT
should be functional for most Linux 64-bit architecture. However, these files can
be recompiled if need be with the included script, which is a one-time process and
once completed, these operators can be used for any arbitrary geometry and base
flow.

B.4.4 Numerical solvers
The default numerical solver in MATLAB for matrix inversion is UMFPACK.
Although robust, this algorithm can be memory-intensive especially for 3D compu-
tations. A new solver, the Intel® oneAPI Math Kernel Library PARDISO package
(Schenk and Gärtner, 2004), has been recently added for the PSE, OWNS, and LNS
solvers. PARDISO is a memory-efficient algorithm that can solve large sparse linear
systems of equations on multiprocessor computer architecture. The user should re-
view how to compile the solver and all the iparm PARDISO parameters that control
the efficiency and accuracy of the linear solver from the Intel® website. The default
parameters in CSTAT have been tested for a wide variety of cases (both jets and
boundary layers in 2D, 3DF, and 3D) for maximal efficiency and robustness of the
matrix inversion, but the user may need to further tune the iparm parameters for
complex cases to maximize performance.

The aforementioned two solvers are implemented in CSTAT as “direct” solvers in
that they perform the LU decomposition of the desired linear system of equations.
However, even with PARDISO, this operation can become computationally expen-
sive, especially for 3D OWNS. Thus, two types of hybrid computational approaches
have been implemented for OWNS. The first method involves performing the LU
decomposition on the DAE matrix constructed with second-order cross-stream dis-
cretization with reduced-order boundary closure, which significantly increases the
sparsity of the matrix and thereby reduces the memory cost. The inverted sys-
tem and corresponding solution then serves as a preconditioner matrix and guess,
respectively, for solving the desired linear system using the restarted generalized
minimum residual (iterative) method from MATLAB. This hybrid approach was
found to reduce the total computational time by ≈ 50% when applied to the 3D
OWNS equations on the Mach 6 finned-cone geometry from Araya et al. (2022).
The second hybrid computational approach is specifically designed for the OWNS
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projection method and exploits the slowly varying nature of the base flow in the
streamwise direction. Here, the preconditioner matrix and guess corresponds to
the DAE matrix and solution from the previous streamwise station, respectively.
Note that this algorithm may become inefficient if the base flow exhibits relatively
strong streamwise variations (e.g. the Mach 6 HIFiRE-5 elliptic cone or the Mach
6 finned-cone geometry (Araya et al., 2022)), and therefore more suited for simpler
flows such as jets.
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A p p e n d i x C

OWNS RECURSION PARAMETERS

The algorithm for computing the OWNS recursion parameters for both jets and
boundary layers is presented in the following MATLAB script. Although the algo-
rithm is for 2D/3DF calculations, the same method is used for 3D analyses, but the
base-flow quantities are cross-stream averaged.

1 function [b_plus,b_minus] = ...

OWNS2D3DF_parameters(xi,equation,baseflow,Nb)

2

3

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % −−−−−−−−−−−−−−−−−−−−−−−−−−− Unpack Variables ...

−−−−−−−−−−−−−−−−−−−−−−−−−− %

6

7 % Frequency

8 w = equation.w;

9

10 % Evaluate required baseflow quantities

11 [baseflow.Q,¬,¬,¬,¬,¬,¬,¬,¬,¬,baseflow.fp,¬,¬] = ...

baseflow.fcn(xi,equation.grid.eta);

12

13 % Create scaled baseflow quantities

14 c = sqrt(baseflow.fp.ga.*baseflow.Q.p./baseflow.Q.rho); ...

% Speed of sound

15 Mxi = baseflow.Q.u./c; ...

% Streamwise ...

Mach number

16 k = w./c; ...

% ...

Wavenumber

17

18 % Grid parameters

19 dz = equation.grid.dz; ...

% Uniform ...

wall−normal grid spacing

20 if max(Mxi) < 1 && ...

strcmp(equation.analysistype,'BoundaryLayer')
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21 Leta = equation.grid.wallnorm_avg; ...

% Average wall−normal domain ...

length

22 else

23 Leta = equation.grid.Leta;

24 end

25

26 % Allocate storage for b's

27 b_plus = zeros(1,Nb);

28 b_minus = zeros(1,Nb);

29

30 if strcmp(equation.analysistype,'BoundaryLayer')

31

32 % Distribution is based on the freestream/wall values

33 Mxi1 = Mxi(end); % Fast−stream Mach number

34 Mxi2 = Mxi(1); % Slow−stream Mach number

35 k1 = k(end); % Fast−stream wavenumber

36 k2 = k(1); % Slow−stream wavenumber

37

38 % Error message if Mxi1 = 1

39 if Mxi1 == 1 error('Recursion Parameters are Inf for ...

Mxi = 1'); end

40

41 % Ajust minimum Mach number if Mxi1 or Mxi2 very small ...

or zero

42 epsilon = 10e−12;

43 if abs(Mxi1) < abs(epsilon); Mxi1 = epsilon; end

44 if abs(Mxi2) < abs(epsilon); Mxi2 = epsilon; end

45

46 % Division of parameters among modes

47 Nb1 = ceil(Nb/3); % Total ...

fast−stream/propagating acoustic parameters

48 Nb2 = ceil(Nb/3); % Total ...

slow−stream/evanescent acoustic parameters

49 Nb0 = Nb − Nb1 − Nb2; % Vorticity parameters

50

51 Nb1p = floor(Nb1/2); % Fast−stream propagating ...

acoustic parameters

52 Nb1e = Nb1 − Nb1p; % Fast−stream evanescent ...

acoustic parameters

53 Nb2p = floor(Nb2/2); % Slow−stream propagating ...

acoustic parameters

54 Nb2e = Nb2 − Nb2p; % Slow−stream evanescent ...
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acoustic parameters

55

56 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

57 % Make parameters for propogating modes

58

59 if Mxi1 < 1

60

61 % Fast−stream propagating acoustic waves

62 ind = (1:Nb1p);

63 [b_plus(ind),b_minus(ind)] = ...

AcousticModesPropagating(k1,Mxi1,Nb1p);

64

65 % Slow−stream propagating acoustic waves

66 ind = (1:Nb2p) + Nb1p;

67 [b_plus(ind),b_minus(ind)] = ...

AcousticModesPropagating(k2,Mxi2,Nb2p);

68

69 else

70

71 % Supersonic propagating acoustic modes

72 ind = (1:Nb1);

73 [a1,¬] = ...

AcousticModesPropagating(k1,Mxi1,floor(Nb1/2));

74 [¬,a2] = ...

AcousticModesPropagating(k1,Mxi1,Nb1−floor(Nb1/2));

75

76 b_plus(ind) = [a1,a2];

77 b_minus(ind) = −1i*b_plus(ind);

78

79 end

80

81 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

82 % Make parameters for evanescent modes

83

84 if Mxi1 < 1

85

86 % Fast−stream evanescent acoustic waves

87 ind = (1:Nb1e) + Nb1p + Nb2p;

88 [b_plus(ind),b_minus(ind)] = ...

AcousticModesEvanescent(k1,Mxi1,Nb1e,Leta,dz);

89

90 % Slow−stream evanescent acoustic waves

91 ind = (1:Nb2e) + Nb1 + Nb2p;
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92 [b_plus(ind),b_minus(ind)] = ...

AcousticModesEvanescent(k2,Mxi2,Nb2e,Leta,dz);

93

94 else

95

96 % Supersonic evanescent acoustic modes

97 ind = (1:Nb2)+Nb1;

98 [a1,¬] = ...

AcousticModesEvanescent(k1,Mxi1,floor(Nb2/2),Leta,dz);

99 [¬,a2] = ...

AcousticModesEvanescent(k1,Mxi1,Nb2−floor(Nb2/2),Leta,dz);

100

101 b_plus(ind) = [a1,a2];

102 b_minus(ind)= [−1i*abs(a1),−1i*abs(a2)];

103

104 end

105

106

107 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

108 % Make parameters for convective modes (vorticity+entropy)

109 ind = (1:Nb0)+Nb1+Nb2;

110

111 [b_plus(ind),b_minus(ind)] = ...

ConvectiveModes(k1,k2,Mxi1,Mxi2,Nb0,dz);

112

113 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

114 % Move plus modes from real axis

115 b_plus = b_plus + ( abs(imag(b_plus))<1e−9 )*1e−4*1i;

116 b_minus = b_minus + ( abs(imag(b_minus))<1e−9 )*1e−4*1i;

117

118 elseif strcmp(equation.analysistype,'Jets')

119

120 % Define uniform flow parameters

121 Mxi1 = Mxi(1); % Fast−stream Mach number

122 Mxi2 = Mxi(end); % Slow−stream Mach number

123 k1 = k(1); % Fast−stream wavenumber

124 k2 = k(end); % Slow−stream wavenumber

125

126 % Ajust minimum Mach number if Mxi1 or Mxi2 very small ...

or zero

127 epsilon = 10e−12;

128 if abs(Mxi1) < abs(epsilon); Mxi1 = epsilon; end

129 if abs(Mxi2) < abs(epsilon); Mxi2 = epsilon; end
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130

131 if Mxi1 < 1.05 % Subsonic jet parameters

132

133 % Division of parameters amoung modes

134 Nb_kh = 3; % Total KH ...

parameters

135 Nb2 = ceil((Nb − Nb_kh)/2); % Total ...

free stream acoustic parameters

136 Nb_w = Nb − Nb_kh − Nb2; % Vorticity ...

parameters

137 Nb_a2 = floor(Nb2/2); % Free ...

stream propagating acoustic parameters

138 Nb_e2 = Nb2 − Nb_a2; % Free ...

stream evanescent acoustic parameters

139

140 % Make parameters for vorticity modes

141 b_w = linspace(k1/Mxi1,k2/Mxi2,Nb_w);

142

143 theta = 3*pi/4;

144 l(1,1) = cos(theta);

145 l(2,1) = sin(theta);

146

147 for j = 1:Nb_w

148

149 v(1,1) = real(b_w(j));

150 v(2,1) = imag(b_w(j));

151 r = ...

(2*(transpose(v)*l)/(transpose(l)*l))*l − v;

152

153 b_plus(j+Nb−Nb_w) = b_w(j);

154 b_minus(j+Nb−Nb_w) = r(1) + 1i*r(2);

155

156 end

157

158 % Make parameters for KH mode

159 b_w = linspace(k2/(0.8*Mxi1),k2/(0.6*Mxi1),Nb_kh);

160

161 for j = 1:Nb_kh

162

163 v(1,1) = real(b_w(j));

164 v(2,1) = imag(b_w(j));

165 r = ...

(2*(transpose(v)*l)/(transpose(l)*l))*l − v;
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166

167 b_plus(j) = b_w(j);

168 b_minus(j) = r(1) + 1i*r(2);

169

170 end

171

172 % Wave numbers for acoustic modes

173 eta_c = k2/sqrt(1−Mxi2^2);

174 eta_m = 2/(Leta*dz);

175 if Nb_e2 > 1; deta_e = 0.1*(eta_m−eta_c)/(Nb_e2−1); ...

else deta_e = 0.2*eta_m/2; end

176 if Nb_a2 > 1; deta_a = 0.1*(eta_c−0)/(Nb_e2−1); ...

else deta_a = 0.2*eta_c/2; end

177 eta_a2 = fliplr(linspace(eta_c−deta_a,0,Nb_a2+1)); ...

eta_a2 = eta_a2(2:end);

178 eta_e2 = ...

fliplr(linspace(eta_m,eta_c+deta_e,Nb_e2)); % ...

eta_e2 = eta_e2(2:end);

179 eta2 = [eta_a2− 0.00i,eta_e2]; ...

% Slow stream wave numbers

180

181 % Make parameters for free stream acoustic modes

182 for j = 1:Nb2

183

184 muj = sqrt(k2^2 − (1−Mxi2^2)*(eta2(j))^2);

185

186 b_plus(j+Nb_kh) = (−Mxi2*k2 + muj)/(1−Mxi2^2) + 0i;

187 b_minus(j+Nb_kh) = (−Mxi2*k2 − muj)/(1−Mxi2^2) ...

− 0i;

188

189 end

190

191 else % Supersonic jet parameters

192

193 % Division of parameters among modes

194 N1 = ceil(Nb/10); % ...

Vorticity modes

195 N2 = ceil(Nb/10); % ...

Propagating acoustic modes

196 N3 = ceil(Nb/10); % ...

Evanescent acoustic modes

197 N4 = ceil((Nb − N1 − N2 − N3)/2); % Core ...

acoustic modes (negative phase speeds)
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198 N5 = Nb − N1 − N2 − N3 − N4; % Core ...

acoustic modes (positive phase speeds)

199

200 % Make parameters for vorticity modes : N1

201 b_w = linspace(k1/Mxi1,k2/Mxi2,N1);

202

203 % Constants for rotation of negative parameters

204 theta = 3*pi/4;

205 l(1,1) = cos(theta);

206 l(2,1) = sin(theta);

207 zero = −k2*(−Mxi2)/(1−Mxi2^2)*cos(theta);

208

209 for j = 1:N1

210

211 % Rotate negative parameters by an angle theta ...

around zero

212 v(1,1) = real(b_w(j));

213 v(2,1) = imag(b_w(j));

214 r = (2*(transpose(v)*l − ...

zero)/(transpose(l)*l))*l − v;

215

216 % Set parameters

217 b_plus(j) = b_w(j);

218 b_minus(j) = r(1) + 1i*r(2)−50i;

219

220 % Save parameters

221 b_all.N1(1,j) = b_plus(j);

222 b_all.N1(2,j) = b_minus(j);

223

224 end

225

226 % Define critical wave numbers

227 eta_c = k2/sqrt(1−Mxi2^2);

228 eta_m = 2.7/(Leta*dz);

229 if N2 > 1; deta_a = 0.1*(eta_c−0)/(N2−1); else ...

deta_a = 0.2*eta_c/2; end

230 if N3 > 1; deta_e = 0.1*(eta_m−eta_c)/(N3−1); else ...

deta_e = 0.2*eta_m/2; end

231 %if N4 > 1; deta_z = 0.2*(eta_m−0)/(N4−1); else ...

deta_e = 0.2*eta_m/2; end

232 deta4 = k1*sqrt( (1 − (Mxi1 − ...

(1−Mxi1^2)*3)^2)/(1−Mxi1^2));

233 deta5 = k1*sqrt( (1 − (Mxi1 + ...
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(1−Mxi1^2)*3)^2)/(1−Mxi1^2));

234

235 % Define wave numbers for acoustic modes

236 eta2 = fliplr(linspace(eta_c−deta_a,0,N2+1)); eta2 ...

= eta2(2:end);

237 eta3 = fliplr(linspace(eta_m,eta_c+deta_e,N3));

238 eta4 = fliplr(linspace(eta_m,deta4,N4+0)); % eta4 = ...

eta4(2:end);

239 eta5 = fliplr(linspace(eta_m,deta5,N5+0)); % eta5 = ...

eta5(2:end);

240 eta = [eta2,eta3]; % Slow ...

stream wave numbers

241

242 % Make parameters for free−stream acoustic modes: N2,N3

243 for j = 1:N2+N3

244

245 % mu

246 muj = sqrt(k2^2 − (1−Mxi2^2)*(eta(j))^2);

247

248 % Set parameters

249 b_plus(j+N1) = (−Mxi2*k2 + muj)/(1−Mxi2^2);

250 b_minus(j+N1) = (−Mxi2*k2 − muj)/(1−Mxi2^2);

251

252 % Save parameters

253 b_all.N23(1,j) = b_plus(j+N1);

254 b_all.N23(2,j) = b_minus(j+N1);

255

256 end

257

258 % −−−−−−−−−−−−−−−−− Core modes ...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

259

260 % Make parameters for core acoustic modes (negative ...

phase speeds) : N4

261

262 % Constants for rotation of negative parameters

263 theta = 5*pi/4; % 5

264

265 l(1,1) = cos(theta);

266 l(2,1) = sin(theta);

267 zero = −k2*(−Mxi2)/(1−Mxi2^2)*cos(theta);

268

269 for j = 1:N4
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270

271 % mu

272 muj = sqrt(k1^2 − (1−Mxi1^2)*(eta4(j))^2);

273

274 % Positive parameters

275 lam_p = (−Mxi1*k1 + muj)/(1−Mxi1^2);

276

277 % Rotate negative parameters by an angle theta ...

around sonic point

278 v(1,1) = real(lam_p);

279 v(2,1) = imag(lam_p);

280 r = (2*(transpose(v)*l − ...

zero)/(transpose(l)*l))*l − v;

281

282 % Set parameters

283 b_plus(j+N1+N2+N3) = lam_p;

284 b_minus(j+N1+N2+N3) = r(1) + 1i*r(2);

285

286 % Save parameters

287 b_all.N4(1,j) = b_plus(j+N1+N2+N3);

288 b_all.N4(2,j) = b_minus(j+N1+N2+N3);

289

290 end

291

292 % Make parameters for core acoustic modes (positive ...

phase speeds): N5

293

294 % Constants for rotation of negative parameters

295 theta = 3*pi/4; % 3

296 l(1,1) = cos(theta);

297 l(2,1) = sin(theta);

298 zero = −k2*(−Mxi2)/(1−Mxi2^2)*cos(theta);

299

300 for j = 1:N5

301

302 % mu

303 muj = sqrt(k1^2 − (1−Mxi1^2)*(eta5(j))^2);

304

305 % Positive parameters

306 lam_p = (−Mxi1*k1 − muj)/(1−Mxi1^2);

307

308 % Rotate negative parameters by an angle theta ...

around sonic point
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309 v(1,1) = real(lam_p);

310 v(2,1) = imag(lam_p);

311 r = (2*(transpose(v)*l − ...

zero)/(transpose(l)*l))*l − v;

312

313 % Set parameters

314 b_plus(j+N1+N2+N3+N4) = lam_p;

315 b_minus(j+N1+N2+N3+N4) = r(1) + 1i*r(2);

316

317

318 % Save parameters

319 b_all.N5(1,j) = b_plus(j+N1+N2+N3+N4);

320 b_all.N5(2,j) = b_minus(j+N1+N2+N3+N4);

321

322 end

323

324 %%%% Alternative supersonic jet parameters %%%%

325 %%%%%%% ...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%

326 %

327 % % Division of parameters among modes

328 % N1 = ceil(Nb/5); % ...

Vorticity modes

329 % N2 = ceil((Nb − N1)/4); % ...

Propagating acoustic modes

330 % N3 = ceil((Nb − N1 − N2)/3); % ...

Evanescent acoustic modes

331 % N4 = ceil((Nb − N1 − N2 − N3)/2); % Core ...

acoustic modes (negative phase speeds)

332 % N5 = Nb − N1 − N2 − N3 − N4; % Core ...

acoustic modes (positive phase speeds)

333 %

334 % % Make parameters for vorticity modes : N1

335 % b_w = linspace(k1/Mxi1,k2/Mxi2,N1);

336 %

337 % % Constants for rotation of negative parameters

338 % theta = 3*pi/4;

339 % l(1,1) = cos(theta);

340 % l(2,1) = sin(theta);

341 % zero = −k2*(−Mxi2)/(1−Mxi2^2)*cos(theta);

342 %

343 % for j = 1:N1

344 %
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345 % % Rotate negative parameters by an angle theta ...

around zero

346 % v(1,1) = real(b_w(j));

347 % v(2,1) = imag(b_w(j));

348 % r = (2*(transpose(v)*l − ...

zero)/(transpose(l)*l))*l − v;

349 %

350 % % Set parameters

351 % b_plus(j) = b_w(j);

352 % b_minus(j) = r(1) + 1i*r(2);

353 %

354 % end

355 %

356 %

357 % % Define critical wave numbers

358 % eta_c = k2/sqrt(1−Mxi2^2);

359 % eta_m = 2.7/(Leta*dz);

360 % if N2 > 1; deta_a = 0.1*(eta_c−0)/(N2−1); else ...

deta_a = 0.2*eta_c/2; end

361 % if N3 > 1; deta_e = 0.1*(eta_m−eta_c)/(N3−1); else ...

deta_e = 0.2*eta_m/2; end

362 % %if N4 > 1; deta_z = 0.2*(eta_m−0)/(N4−1); else ...

deta_e = 0.2*eta_m/2; end

363 % deta4 = k1*sqrt( (1 − (Mxi1 − ...

(1−Mxi1^2)*3)^2)/(1−Mxi1^2));

364 % deta5 = k1*sqrt( (1 − (Mxi1 + ...

(1−Mxi1^2)*3)^2)/(1−Mxi1^2));

365 %

366 % % Define wave numbers for acoustic modes

367 % eta2 = fliplr(linspace(eta_c−deta_a,0,N2+1)); eta2 = ...

eta2(2:end);

368 % eta3 = fliplr(linspace(eta_m,eta_c+deta_e,N3));

369 % eta4 = fliplr(linspace(eta_m,deta4,N4+0)); % eta4 = ...

eta4(2:end);

370 % eta5 = fliplr(linspace(eta_m,deta5,N5+0)); % eta5 = ...

eta5(2:end);

371 % eta = [eta2,eta3]; % Slow ...

stream wave numbers

372 %

373 % % Make parameters for free−stream acoustic modes: N2,N3

374 % for j = 1:N2+N3

375 %

376 % % mu
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377 % muj = sqrt(k2^2 − (1−Mxi2^2)*(eta(j))^2);

378 %

379 % % Set parameters

380 % b_plus(j+N1) = (−Mxi2*k2 + muj)/(1−Mxi2^2);

381 % b_minus(j+N1) = (−Mxi2*k2 − muj)/(1−Mxi2^2);

382 %

383 % end

384 %

385 % % Make parameters for core acoustic modes (negative ...

phase speeds) : N4

386 %

387 % % Constants for rotation of negative parameters

388 % theta = 5*pi/4;

389 %

390 % l(1,1) = cos(theta);

391 % l(2,1) = sin(theta);

392 % zero = −k2*(−Mxi2)/(1−Mxi2^2)*cos(theta);

393 %

394 % for j = 1:N4

395 %

396 % % mu

397 % muj = sqrt(k1^2 − (1−Mxi1^2)*(eta4(j))^2);

398 %

399 % % Positive parameters

400 % lam_p = (−Mxi1*k1 + muj)/(1−Mxi1^2)+0i;

401 %

402 % % Rotate negative parameters by an angle theta ...

around sonic point

403 % v(1,1) = real(lam_p);

404 % v(2,1) = imag(lam_p);

405 % r = (2*(transpose(v)*l − ...

zero)/(transpose(l)*l))*l − v;

406 %

407 % % Set parameters

408 % b_plus(j+N1+N2+N3) = lam_p;

409 % b_minus(j+N1+N2+N3) = r(1) + 1i*r(2);

410 %

411 % end

412 %

413 % % Make parameters for core acoustic modes (positive ...

phase speeds): N5

414 %

415 % % Constants for rotation of negative parameters
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416 % theta = 3*pi/4;

417 % l(1,1) = cos(theta);

418 % l(2,1) = sin(theta);

419 % zero = −k2*(−Mxi2)/(1−Mxi2^2)*cos(theta);

420 %

421 % for j = 1:N5

422 %

423 % % mu

424 % muj = sqrt(k1^2 − (1−Mxi1^2)*(eta5(j))^2);

425 %

426 % % Positive parameters

427 % lam_p = (−Mxi1*k1 − muj)/(1−Mxi1^2);

428 %

429 % % Rotate negative parameters by an angle theta ...

around sonic point

430 % v(1,1) = real(lam_p);

431 % v(2,1) = imag(lam_p);

432 % r = (2*(transpose(v)*l − ...

zero)/(transpose(l)*l))*l − v;

433 %

434 % % Set parameters

435 % b_plus(j+N1+N2+N3+N4) = lam_p;

436 % b_minus(j+N1+N2+N3+N4) = r(1) + 1i*r(2);

437 %

438 %

439 % end

440

441

442 end

443

444

445 end

446

447 end

448

449

450 % ac,a1,a2: convective,acoustic branches

451 % Inviscid parallel flow: Towne,Colonius JCP 2015

452

453 % Offset plus and minus, see page 854, Towne & Colonius JCP ...

2015

454

455 function [a1,a2] = AcousticModesPropagating(k,Mxi,Nb)
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456

457 % Make parameters for propogating modes

458

459 offset = 1;

460

461 if offset == 0

462

463 th = linspace(0,pi/2,Nb+1); th = th(1:end−1);

464

465 a1 = k*(−Mxi + cos(th))/(1−Mxi^2);

466 a2 = k*(−Mxi − cos(th))/(1−Mxi^2);

467

468 else

469

470 % Distribute twice the number of points

471 th = linspace(0,pi/2,2*Nb+1); th = th(1:end−1);

472

473 % Offset by one point

474 a1 = k*(−Mxi + cos(th(1:2:end−1)))/(1−Mxi^2);

475 a2 = k*(−Mxi − cos(th(2:2:end−0)))/(1−Mxi^2);

476

477 end

478

479

480 end

481

482

483 function [a1,a2] = AcousticModesEvanescent(k,Mxi,Nb,Leta,dz)

484

485 % Define wave numbers for evanescent modes

486 eta_c = k/sqrt( abs(1−Mxi^2));

487 eta_m = 1.5/(Leta*dz);

488 if Mxi < 1 deta_e = 0.1*(eta_m−eta_c)/(Nb−1); else deta_e ...

= 1.0*(eta_m−eta_c)/(Nb−1); end

489 if Nb == 1, deta_e = 0; end

490

491 offset = 1;

492

493 if offset == 0

494

495 eta = fliplr(linspace(eta_m,eta_c+deta_e,Nb));

496 muj = sqrt(k^2 − (1−Mxi^2)*(eta).^2);

497
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498 % Make parameters for evanescent modes

499 a1 = (−Mxi*k + muj)/(1−Mxi^2);

500 a2 = (−Mxi*k − muj)/(1−Mxi^2);

501

502 else

503

504 eta = fliplr(linspace(eta_m,eta_c+0.5*deta_e,2*Nb));

505 muj = sqrt(k^2 − (1−Mxi^2)*(eta).^2);

506

507 % Make parameters for evanescent modes

508 a1 = (−Mxi*k + muj(1:2:end−1))/(1−Mxi^2);

509 a2 = (−Mxi*k − muj(2:2:end−0))/(1−Mxi^2);

510

511 end

512

513 end

514

515

516 function [ac,ac_minus] = ConvectiveModes(k1,k2,Mxi1,Mxi2,Nb,dz)

517

518 % Make parameters for convective modes (vorticity+entropy)

519 if Mxi1 < 1

520

521 ac = linspace(k1/(0.4*Mxi1),k1/Mxi1,Nb);

522 if abs(k2) < 1e−10

523 ac_minus = −1i*ac + (1+1i)*(−Mxi1/abs(1−Mxi1^2));

524 else

525 ac_minus = (1+1i)*(−2*k2*(Mxi2)/(1−Mxi2^2) − 1i*ac);

526 end

527

528 else

529

530 eta_m = 1.5/dz; if Nb == 1, eta_m = 0; end

531 ac = k1/Mxi1 + 1i*linspace(0,0.2*eta_m,Nb);

532 ac_minus = −1i*imag(ac) +(min((1.8889*Mxi1−1.8333),1)+ ...

min((6.4444*Mxi1−6.6667),3)*1i)*(−Mxi1/abs(1−Mxi1^2));

533

534 end

535

536 end
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