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ABSTRACT

Twisted bilayer graphene (TBG) near the magic angle exhibits a wide variety of
correlated and topological phases such as superconductivity, correlated insulators,
and orbital ferromagnetism. We show using electrical transport measurements that
adding a layer of tungsten diselenide in proximity to twisted bilayer graphene stabi-
lizes superconductivity to twist angles significantly below the magic angle despite
the disappearance of correlated insulators and insulators at full moiré filling. These
findings—along with our report of a relationship between superconductivity and
symmetry breaking Fermi surface reconstruction—suggest constraints on theories
of the origin of superconductivity in TBG. In the context of this TBG-tungsten dis-
elenide system, we study how the correlated phases evolve over a wide twist angle
range and classify them into a hierarchy based on where they occur relative to the
magic angle (or where bands have been maximally flattened). While effects such as
orbital ferromagnetism near one electron per moiré unit cell and gapped correlated
insulators only exist in close proximity to the magic angle, superconductivity and
high-temperature cascade transitions survive in a wider twist angle range.

We also analyze the structures of twisted trilayer, quadrilayer, and pentalayer
graphene (and all proximitized to tungsten diselenide) near their respective the-
oretical magic angles, revealing robust electron- and hole-side superconductivity in
each heterostructure. We additionally find previously unreported insulating states
in twisted trilayer and quadrilayer graphene along with an enlarged filling range
of superconductivity in pentalayer. Our studies on twisted graphene multilayers
beyond two layers allow us to generalize the correlated physics found in TBG and
consider the role of the additional bands introduced.

In the last part of this thesis, we measure the two-dimensional topological insulator
candidate system InAs/GaSb with added stoichiometric impurities. Previous studies
in pure InAs/GaSb structures have revealed low bulk resistivity and edge states that
arise from trivial effects which can be easily mistaken for topological effects. Due,
in part, to the strain effects of Indium impurities added to GaSb, our results show
high bulk resistivity. We also, due to the wide gate-tunability in our devices, are able
to measure the expected spin-orbit-split valence band structure. Our development
of highly tunable InAs/GaSb-derivative structures paves the way for another look
at two-dimensional topological insulator behavior in these systems and for their
integration into superconducting devices.
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gray). The behavior for 𝜃 = 0.79° shows much smaller variation in
temperature. (f) Conductance vs. 1/T for partial filling factors 𝜈 =
+2, +3 (shown with activated gap measurements) for 0.97° showing
insulating behavior. In contrast, the inset shows that for 0.87°, partial
fillings 𝜈 = 1, 2 show metallic behavior. . . . . . . . . . . . . . . . . 50

3.10 Activated gap measurements for the 𝜈 = ± 4 full filling gaps in device
D3 at 1.04°. The higher temperatures required for this measure-
ment were enabled by measuring this sample in a Quantum Design
PPMS system with continuous temperature regulation from 1.7–300
K. Inset: activated gap measurements of the correlated states at 𝜈 = ±2. 51

3.11 Additional data for device D4 (0.80°). (a) R𝑥𝑥 as a function of 𝜈
and temperature to 2 K, revealing a superconducting pocket over the
range of 2 < 𝜈 < 3.2 and resistance at full filling (𝜈 = |4|) less than
at the charge neutrality point. (b) Current vs. voltage at 𝜈 = 2.79, at
temperatures from 50 mK to 900 mK, in 50 mK steps. The main plot
is on the log scale in both axes, revealing a BKT transition temperature
near 250 mK. Inset: I-V dependence for the same temperatures. (c)
Fraunhofer-like pattern for D4 at 𝜈 = 2.40. . . . . . . . . . . . . . . . 52
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3.12 WAL data measured in D4 (𝜃 = 0.80°). (a) R𝑥𝑥 as a function of
backgate voltage, V𝑏𝑔, for the 0.80° contacts of D4. The black line
shows the voltage range used in the flat bands, which corresponds
to the plots in (b)–(d). The red line, from the dispersive bands,
corresponds to plots in (e), (f). (b) The change in conductivity,
relative to the 0 mT point, as a function of magnetic field (Δ𝜎)
taken at the mentioned range of gate voltage at 25 mK. (c), (d) show
averaged data from (b) for different field ranges. The data in (e), (f)
show a WAL peak in the dispersive bands near V𝑏𝑔 = −6 V (red line
in (a)). Data in (e) was taken at 25 mK. In (f), the data points at each
temperature are offset by 0.1 e2/h for clarity. . . . . . . . . . . . . . . 53

3.13 Longitudinal resistance Rxx as a function of magnetic field and 𝜈 for
the four regions of twist angle 0.97° (a), 0.87° (b), 0.79° (c), and
0.80° (d). Here the dominant sequence in the Landau fan is ±2,
±4, ±6, ±8, ±10, as labeled in (b). After ±10, we find a sequence
of ±14, ±18, and ±22, which can also be accounted for by the SOI,
as shown in Fig. 3.17. These mentioned Landau levels up to ±22
are marked by white lines in each plot. Additional slopes are found
in (a) corresponding to Landau levels −1, +3, −12, as well as short
segments corresponding to +5 and +7 that disappear as the field
increases. In (b), (c) we find Landau level +3, but in (c) +22 seems
to be missing. The odd levels are all marked with green lines. . . . . 55

3.14 Hall conductance for devices D1 (𝜃 = 0.97°, panel (a)) and D2 (𝜃 =
0.79°, panel (b)) showing quantized steps around the CNP with steps
corresponding to ±2, ±4 and ±6 (in units of 𝑒2/ℎ) being pronounced
down to 1.5 T. The less developed 3𝑒2/ℎ step has also been observed. 56
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3.15 Continuum-model results for valley 𝐾 that include Ising and Rashba
spin-orbit coupling at 0.87°(a)–(c) and 0.79°(d)–(f) twist angles. (a),
(d) Band structure along the high-symmetry directions of the Bril-
louin zone indicated in the inset. The line colour represents the
out-of-plane spin projection, ⟨𝑆𝑧⟩, and the dotted horizontal line de-
notes the chemical potential corresponding to 𝜈 = +2. (b), (c) and
(e), (f) Energy of the upper pair of flat conduction bands, including
spin-orbit coupling. Coloured lines show the Fermi surfaces at 𝜈
= +2, with the colour indicating the in-plane spin projection. The
out-of-plane projection is largely constant along these surfaces and
may therefore be deduced from (a), (d). Black lines correspond to
the Fermi surface without SOI effects. The large spin-orbit-induced
Fermi-surface deformation visible here reflects the flatness of the
bands near the Fermi energy. . . . . . . . . . . . . . . . . . . . . . . 57

3.16 Continuum model band structure calculations for different SOI pa-
rameters. (a), (c), (f), (h) Flat-band energies similar to Fig. 3.15. (b),
(d), (e), (g), (i), (j) 𝜈 = +2 Fermi surfaces. We consider the cases
where no SOI is present along with cases where only Ising, only
Kane-Mele, and only Rashba are present. In (c)–(j), the non-zero
SOI parameter is set to 3 meV. In (c), the bands possess an out-of-
plane spin polarization (⟨𝑆𝑧⟩), which is displayed in colour as per the
inset. In (i) and (j), the colour of the Fermi surfaces indicates the
expectation value of the in-plane spin according to the wheel above
(i). All other parameter sets have a zero in-plane spin projection. . . 58
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3.17 Simulated Landau fan diagrams with SOI. (a), (c) Color plot of
the phenomenologically broadened density of states as a function of
energy squared in (meV)2 (roughly equivalent to the electron density
that is gate-tuned in the experiment) and the magnetic field in Tesla.
(b), (d) The spectrum without taking broadening effects into account.
Blue and red lines correspond to levels originating proximate to the
+K and −K valleys, respectively. The parameters considered are
(�̃�𝐼 , �̃�𝑅, �̃�KM) = (3, 4, 0) meV with a broadening Γ = 0.22 meV and
(a), (b) and (�̃�𝐼 , �̃�𝑅, �̃�KM) = (1.5, 2.5, 2) meV with a broadening
Γ = 0.15 meV (c), (d). We note that the Landau level sequence and
energy levels on the hole-doped side are identical to those shown here
for (a) and (b). When both �̃�𝐼 and �̃�KM are nonzero, as in (c) and (d),
a slightly different Landau-level sequence is generically obtained at
negative energies relative to the CNP. . . . . . . . . . . . . . . . . . 60

4.1 Device overview and optical images. (a) Schematic of the devices
and example stack of flakes before cleanroom processing, showing
the twist angle angle between the graphene and bottom hBN, showing
no obvious alignment. (b)–(e) Optical images of finished devices. . . 62

4.2 Phase diagram, focusing particularly on superconductivity. (Top)
Phase diagram as a function of twist angle, indicating the regions
which exhibit the anomalous Hall effect (AHE) due to ferromag-
netism, 𝜈 = +2 correlated insulators (CI), superconductivity (SC),
and symmetry breaking cascade effects as deduced from R𝑥𝑥 peaks
and Hall density resets. The cascade and superconductivity start to
disappear on either side of the diagram, as indicated by the fading
bar color. (Bottom) Critical temperatures T𝑐 of superconductivity for
both holes and electrons (squares indicate 50% R𝑛 and the error bars
10% and 90% R𝑛; for more details, see Fig. A.1). The gradient-filled
domes are guides to the eye. . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Hall density vs. 𝜈. Flavor symmetry breaking correlations manifest
as Hall density resets (as seen clearly for 1.04°–1.23° on the hole
side, indicated by colored arrows) and occasionally as singularities
or hole-like regions (as seen at 1.10° and 0.97° on the electron side). . 64
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4.4 Widths of charge-neutrality peaks 𝛿𝑛. The full-width half-max used
for this plot is shown in the inset for the 1.10° data point with T𝑐
of 1.59 K (red) and the 1.23° point (pink). Listed next to each data
point is the maximum T𝑐 measured for the twist angle, and the color
corresponds to whether the superconductivity was on the hole (blue)
or electron (red) side. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Data for device D3 at 0.88°. (a) A 𝜈-T diagram of R𝑥𝑥 . (b) Linecuts at
base temperature of R𝑥𝑥 for different contacts (colors corresponding
to the inset) show little variation over a range of several 𝜇m. (c)
Applying an electric field (D) shows no obvious D-field dependence. 66

4.6 Pomeranchuk-effect phase transition peak fits. (a) Example of a peak
fit at 𝜈 ≈ 1 for a device at twist angle 0.88°. (b) R𝑥𝑥 peak positions
near filling factor 𝜈 ≈ 1 as a function of temperature for devices with
various twist angles. The vertical colored lines represent the 𝜈 = 1
filling factor for the respectively colored twist angle data. (c), (d) Fit
parameters Δ𝜇 and Δ𝛾 representing change in the chemical potential
and specific heat, respectively, for the phase transition represented
by the R𝑥𝑥 peaks in (b). Error bars are 95% confidence intervals.
The hollow square for 0.95° was set to the same Δ𝛾 value as the
0.97° device due to the unconstrained Δ𝛾 value for the data points. . 67

4.7 𝑑𝜌

𝑑𝑇
resistivity derivative data. (a), (b) 𝑑𝜌

𝑑𝑇
2D diagrams for devices at

twist angles 0.88° and 1.10°, respectively. R𝑥𝑥 peaks corresponding
to Pomeranchuk-like transitions are shown with black dots, supercon-
ducting (SC) pockets are shown with arrows, and the magenta lines
are guides to the eye representing the approximate regions of T-linear
resistivity. The green lines reveal the inflection points in 𝜌. (c) The
resistivity slope 𝑑𝜌

𝑑𝑇
for a range of twist angles, where red(blue) is for

electrons(holes). The values come from the average derivative over
the area spanned by 1.5 < 𝜈 < 1.8 (−2 < 𝜈 < −1.6) for electrons
(holes) and 15 < 𝑇 < 38 (error bars are the standard deviations).
Device D4, twist angle 1.10° is represented by hollow squares. . . . 69



xviii

4.8 Data for the 1.10° region of D1. (a) Linecuts for a range of tempera-
tures shown in the colorbar. (b) R𝑥𝑥 of the hole-side superconductivity
dome, along with a linecut at 𝜈 = −2.16 (right inset) and Fraunhofer-
like pattern (left inset, 𝜈 = –2.3). (c) Temperature dependence of the
charge neutrality point and 𝑛𝑢 = 2 peaks, showing the activated gap
behavior at 𝜈 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 R𝑥𝑥 data focusing around 𝜈 = 1. (a) R𝑥𝑥 vs. 𝜈 and T on the electron
side for D1 at 1.10°. (b) A zoom into panel (a) around 𝜈 = 1, revealing
the switching behavior of the resistance. (c) Dense line-cut plots near
𝜈 = 1, showing that the evolution of R𝑥𝑥 maxima above 10 K (magenta
line) are distinct from the ferromagnetic peak. . . . . . . . . . . . . . 71

4.10 R𝑥𝑦 hysteresis data. (a) Hysteresis loops taken at 𝜈 = 0.9 at a range
of temperatures. Inset: the resistance jump ΔR𝑥𝑦 of hysteresis loops
measured vs. B and T. (b) ΔR𝑥𝑦 measured as a function of 𝜈 and B at
1.5 K. For each 𝜈, the line results from sweeping B up and down. (c)
ΔR𝜈

𝑥𝑦 = R𝜈↑
𝑥𝑦 - R𝜈↓

𝑥𝑦 measured as a function of the sweeping parameter
𝜈 and B, which was held constant. . . . . . . . . . . . . . . . . . . . 71

4.11 More details on hysteresis. (a) ΔR𝑥𝑦 vs. B and 𝜈 around filling factor
1 measured at 3.5 K. (b) Hysteresis loops measured at filling factors
marked by arrows in (a). (c)-(e) Hysteresis loops as a function of
𝜈 and B. (c) The 3D perspective of (d) (𝜈 sweep forward is solid,
backward is dashed) and (e) (B sweep forward is solid, backward
sweep is dashed). The density sweep in (d) was measured at 30 mT,
after cycling to 200 mT to align the domains. (f) Pulses of B and
𝜈 showing reproducible switching of magnetic state, with bit-like
switching of R𝑥𝑦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.12 Hall effect and Chern number behavior near 𝜈 = 1. (a) Hall den-
sity vs. 𝜈 measured at 0.5 T (the value shown is antisymmetrized
[𝑅𝑥𝑦 (0.5𝑇) − 𝑅𝑥𝑦 (−0.5𝑇)]/2). (b), (c) Magnetic field and 𝜈 depen-
dence of 𝑅𝑥𝑦 and 𝑅𝑥𝑥 measured at 3 K. (c) contains dotted lines
representing the 𝐶 = −1, +1, +3. 𝐶 = −1 and +3 lines originated
from 𝜈 = 0.95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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4.13 Ten-band model calculations. (a)–(d) The band structure obtained for
each spin and mini-valley (K, K’) flavor for the case of broken C2T
symmetry at 𝜈 ≃ 0.81. The K↑ flavor, which is nearly filled, preserves
the Dirac-like band structure (a), whereas the other three flavors have
a C2T -broken mass (b)–(d). The gray planes represent the chemical
potential. (e)–(h) Berry curvature Ω𝑘𝑥 ,𝑘𝑦 for the conduction flat band
in the K↑ flavor (e) and for K↓ (f)–(h), where the Berry curvature is
concentrated above the Γ pocket. The Fermi surface is plotted as a
dotted circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Schematics of the alternating twisted trilayer (a), quadrilayer (b), and
pentalayer (c) graphene studied. . . . . . . . . . . . . . . . . . . . . 77

5.2 The non-interacting band structures calculated based on the contin-
uum model for TTG (a), TQG (b), and TPG (c) near their respective
magic angles. The colors represent the eigenstates associated with
the flat bands (blue), Dirac cones (yellow), and dispersive TBG-like
bands (red). On the left side of each diagram is the band structure
with 𝐷/𝜖0 = 0, and the right side shows finite field 𝐷/𝜖0 ≈ 0.4 V/nm. 78

5.3 R𝑥𝑥 linecuts for TTG device D1 (a), TQG device D2 (b), and TPG
device D3 (c) at a range of temperatures (25 mK, every 0.25 K from
0.25 to 2 K, and then every 1 K from 3 to 7 K. The cuts were taken
at constant 𝐷 fields of 𝐷/𝜖0 = 0.22 V/nm (a), −0.15 V/nm (b), and
0 V/nm (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 R𝑥𝑥 measurements as a function of 𝜈 and electric displacement field
𝐷 for TTG (a), TQG (b), and TPG (c). . . . . . . . . . . . . . . . . . 82

5.5 Leftmost optical images are devices D1–D3. The scale bar in each
panel is 5 𝜇m. 𝑅𝑥𝑥 2D diagrams (𝑛–𝐷) shown in the middle are ob-
tained from electrodes marked with the corresponding colored lines.
The electrodes marked with purple lines were used for measuring
𝑅𝑥𝑥 in the other figures of the text. Rightmost plots were taken at
Vtg = 0 V (along the grey dashed lines in the 𝑛–𝐷 plots). All three
devices have a high degree of homogeneity in twist angle with the
same superconducting filling range and |𝜈 | = 4 carrier density for
multiple contacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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5.6 Landau fans of multilayer devices. (a)–(f) 𝑅𝑥𝑥 measured as a function
of 𝐵 field and 𝜈 from trilayer to pentalayer. The main sequences of
the fan diagrams are labelled below the 𝑅𝑥𝑥 plots. Landau levels
from the dispersive bands are visible as 𝑅𝑥𝑥 oscillations at low 𝐵

fields in the fan diagrams. (g)–(m) 𝑅𝑥𝑦 measured as a function of
𝐵 field and 𝜈 from trilayer to pentalayer. Below the 2D plots, we
show Hall conductance linecuts around |𝜈 | = 4. The layer number
𝑛 determines the resulting quantization. Since the dispersive bands
of 𝑛-layer magic-angle graphene consist of 𝑛− 2 Dirac-like cones (at
low energies), the |𝜈 | = 4 quantization is therefore expected to follow
monolayer graphene sequence multiplied by 𝑛 − 2. The plateaus in
TTG and TQG clearly show this trend, while in TPG only the first
plateau is observed. These observations however confirm the number
of layers in each sample. . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 Measurements of the 𝜈 ≈ 2 insulator in TTG through linecuts (a),
and equivalent 2D diagram (b). Activation gap measurement (c), and
𝐷 dependence (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.8 Magnetic field dependence of the TTG insulating state under out-of-
plane magnetic field (a) and in-plane magnetic field (b). Linecuts at
the bottom of (b) are for clarity. . . . . . . . . . . . . . . . . . . . . 87

5.9 The R𝑥𝑥 gap behavior at charge neutrality in TQG revealed with
temperature linecuts (a), and a 𝐷-temperature diagram (b). (c) Ex-
perimentally derived gaps with respect to 𝐷 and (d) TQG continuum-
model gaps. 𝑈 is the top-bottom layer potential used. . . . . . . . . . 88

5.10 (a)–(d) Ginzburg–Landau coherence lengths 𝜉GL (for details on de-
termining 𝜉GL, see Section B.1) versus 𝜈 for all three devices around
𝜈 = −2—and for 𝜈 = +2 for TPG (d)—superimposed on the 𝑅𝑥𝑥
versus 𝑇 and 𝜈 plots. (e) 𝜉GL and moiré wavelength 𝐿M versus twist
angle of different layers, suggesting a possible relation between the
two length scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
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5.11 Critical temperature 𝑇𝑐 is indicated by a dashed line that delineates
10% of the normal state resistance (see Section B.1 for details). 𝑇𝑐
is maximized at finite 𝐷 fields. Overall, superconductivity is sup-
pressed more easily with 𝐷 as the layer number is increased for both
hole ((a)–(c)) and electron (Fig. B.2) doping. (d) Theoretical calcu-
lations of the inverse of the flat-band bandwidth for twisted trilayer,
quadrilayer, and pentalayer graphene as a function of 𝐷/𝜖0 (top) and
potential difference 𝑈 (bottom). For a fixed 𝐷, the bandwidth of the
flat bands is larger for systems with more layers, but when expressed
as a function of 𝑈, the flat-band broadening follows a similar trend
across the different structures. . . . . . . . . . . . . . . . . . . . . . 89

5.12 Comparison of Hall and longitudinal resistance in tri- and quadrilayer
graphene devices. (a), (b) 𝐷 field and 𝜈 dependence of 𝑅𝑥𝑥 (top) and
Hall density (bottom, measured at 𝐵 = 0.9 T) for TTG. Purple and
grey dashed lines mark the filling factors where flavor symmetry-
breaking transitions associated with |𝜈 | = 2 and |𝜈 | = 3 happen,
respectively. The yellow line in (a) delineates the evolution of the
vHs. (c), (d) Same for TQG (bottom, measured at 𝐵 = 1.5 T).
The superconducting 𝑇𝑐 reaches its maximum (orange dot in (d))
exactly at the position of the vHs. When present, flavor symmetry-
breaking transitions around |𝜈 | ≈ 3 coincide with the termination
of superconductivity. By contrast, superconductivity extends much
further in the absence of a |𝜈 | ≈ 3 reset (c). . . . . . . . . . . . . . . 91

5.13 TPG device Hall density and phase diagram. (a) Hall density as a
function of 𝜈 and 𝐷. (b) Schematic of features in the phase diagram
of TPG, mapping out the cascade (present at low 𝐷 but not present
at high 𝐷), van Hove singularities, superconducting boundary, and
|𝜈flat | = 4 Hall density resets. Sketches of the DOS around 𝜈 = +2 for
different 𝐷 fields are shown on the right. The middle panel illustrates
the flavor symmetry polarization observed in regions that support
superconductivity. Flavor symmetry is preserved at higher 𝐷 fields,
as shown in the top and bottom panels. . . . . . . . . . . . . . . . . 92

5.14 Electron-side superconductivity in TPG. (a), (b) 2D plots of 𝑅𝑥𝑥 and
Hall density 𝑛𝐻 , respectively, showing the extent of superconductiv-
ity, how it evolves with 𝐷 and is associated with features in panel (b).
(c), Fraunhofer-like pattern taken at the yellow point in (a). . . . . . . 93
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5.15 Observation of a vHs near 𝜈 = 6. 𝑅𝑥𝑥 (a) and 𝑅𝑥𝑦 (b) for large 𝜈
in TPG at 𝐷 = 0. The purple arrows show the vHs located in the
dispersive TBG-like band near its half-filling point (𝜈 ≈ 6), which
is shown in the band structure of (e). The same vHs is also present
in TQG (d), which also has a dispersive TBG-like band (compare to
Fig. 5.14b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.16 Depiction of different approximation schemes used to understand the
role of interactions in TPG. Note that the Hartree correction shifts
the flat band (purple) up in energy, and the chemical potential (for
a given 𝜈) consequently also shifts upward. Cascaded bands (bands
that are totally filled as a result of symmetry breaking) in (c) and (d)
are shown in green. (d) corresponds to a minimal model of Hartree
and Fock effects characterized by a Hartree shift (Δ𝐻) and a Fock gap
(Δ𝐹). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.17 A schematic of the three bands contributing to 𝜈. Superconductivity
is expected in cascaded flat bands (blue). The schematic depicts
scenario (ii), where the dispersive bands collect charge, keeping the
flat bands from filling until 𝑛𝑢 ≈ 5, where superconductivity ends. . . 96

5.18 Model calculations, including interactions, of band filling. (a) Partial
filling of each subsystem versus total filling 𝜈 for a fixed dielectric
constant 𝜖 = 11.15. Here, solid (dashed) lines correspond to a
cascaded (uncascaded) solution with the cascade solution enabling
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solid (dashed) lines correspond to a solution at potential difference
𝑈 = 0 meV (𝑈 = 34 meV). Finite 𝐷 allows the flat bands to fill
more quickly. (c) filling of the flat-band subsystem as function of the
Hartree and Fock terms, holding total 𝜈 constant. While (a), (b) are
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is calculated using the minimal Hartree-Fock model of panel (d) in
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5.20 The 𝐷-dependence near 𝜈 = 4. (a) 𝑅𝑥𝑥 vs. 𝜈 and 𝐷, showing the
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6.1 A schematic of a 2D topological insulator, demonstrating the inverted
band structure with protected helical edge states. The close-up shows
the spin polarization of the edge states in opposite directions, and the
axes in the plot track the energy 𝐸 , of the conduction and valence
bands along the sample width 𝑥. . . . . . . . . . . . . . . . . . . . . 103

6.2 Schematics of the double quantum wells studied. Adapted from Ref.
[185]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Schematic diagrams InAs/GaSb uncoupled/coupled quantum well
band structure. (a) Uncoupled overlapping InAs and GaSb quantum
wells and (b) coupled quantum wells with anticrossing points at finite
k and spin-orbit coupling. The green lines represent the predicted
topologically protected edge states of opposite spin and momentum
combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 An electrostatic capacitance model that is a first approximation to
the InAs/GaSb double quantum well’s behavior under top and back
gates. (a) shows a circuit schematic, and (b), (c) show the relevant
parameters for the model, which are described in the text . . . . . . . 107

6.5 2D gate plots of electron and hole densities. (a) 𝑛 − 𝑝, (b) 𝑛 , and
(c) −𝑝, using the capacitance model. The color bar is the same in all
plots, except plot (b) has the 𝑝 contribution removed. (c) has the 𝑛
contribution removed. The band schematics plotted next to (a) reveal
the general behavior of the bands and chemical potential at various
points in the phase diagram. . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Landau fan of an InAs/GaSb device VA18-034 showing electron-
like/InAs behavior on the right and hole-like behavior on the left,
with some evidence of mixing/inverted bands. . . . . . . . . . . . . . 110
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PREFACE

This thesis covers the unifying theme of correlations and topology in two-dimensional
electronic systems studied using electrical transport measurements. The two general
classes of study covered here are twisted graphene moiré heterostructures and In-
dium Arsenide/Gallium Antimonide (InAs/GaSb)-derivative quantum wells. While
an attempt has been made to relate the two topics, some of the standard language,
fabrication considerations, and goals in the two classes of electronic systems are
different enough to warrant separate sections. The layout is generally as follows.

Although the introductory material in Chapters 1 and 2 includes sections particularly
relevant to graphene moiré heterostructures, many of the topics apply more generally
to other 2D systems and offer a foundation for the work on InAs/GaSb systems.
After the introductory chapters, the discussion turns to twisted bilayer graphene in
Chapters 3 and 4, in which we reveal the twisted bilayer graphene-tungsten diselenide
(WSe2) system, the presence of superconductivity down to low twist angles, and
delve into a broader look at twist angle dependence and correlated phases. Chapter
5 studies alternating twisted multilayer graphene structures with three, four, and five
layers. Near each respective magic angle, we find superconductivity and study the
unique properties in each system. Chapter 6 offers more introductory material on
two-dimensional topological insulators and electron-hole band structure calculations
that are relevant for the purpose of studying InAs/GaSb quantum wells. The result is
the specific application to our measurements on InAs1−𝑥Sb𝑥/In𝑦Ga1−𝑦Sb quantum
wells with stoichiometric doping of Sb and In. Finally, Chapter 7 provides a
promising overlook on future studies in both graphene-based heterostructures and
InAs/GaSb-derivative quantum wells. Data is included on Bernal bilayer graphene-
WSe2 heterostructures and InAs/GaSb Josephson junctions to highlight relevant
issues we have begun to explore.

In the work here, we have made our best attempt to harmoniously merge experi-
ment with theoretical underpinnings, while focusing also on reproducibility in our
experiments. Emphasis should always be placed on observations and trends that are
generally seen in a number of devices rather than possible outliers. While we have
made our best attempts in this direction, we realize the potential for complicating
factors such as the still-unknown role of WSe2 in our graphene systems. Discus-
sions on twist angle inhomogeneity, measurements of disorder, and long-wavelength
commensurate structures have also been included. When discussing theory, we have
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made explicit attempts to avoid overly simplistic binaries (such as that superconduc-
tivity must arise from either weak-coupling unconventional phonon-based mech-
anisms or high-𝑇𝑐-cuprate-like mechanisms) while providing constraints in future
theoretical endeavors. We also provide fairly comprehensive data from our twisted
graphene heterostructure measurements in the hope that the data provided will lend
researchers further guidance in theory development.

“To doubt everything or to believe everything are two equally convenient
solutions; both dispense with the necessity of reflection.”

Henri Poincaré

“Nothing in life is to be feared, it is only to be understood. Now is the
time to understand more, so that we may fear less.”

Marie Curie
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C h a p t e r 1

INTRODUCTION

Experimental fields thrive on model systems. A sufficiently simple, but interesting,
model system allows for easy experimental manipulation, respectable theoretical
approximations, and a somewhat idealized basis of understanding onto which we
can add more complex effects. Thus a model system can result in close theory-
experiment collaborations and a scientific spirit of competition assisted by a host of
different approaches to the subject. Even if a model system evades direct application,
the refinement of theoretical understanding provided by its study can have immense
practical consequences. Biologists have long understood and popularized this con-
cept of model systems, and it has served an important role in the field of condensed
matter physics. As geneticists have the model organism Drosophila melanogaster
and neuroscientists have Caenorhabditis elegans, condensed matter physicists have
graphene.

Just considering the naturally occurring forms of graphene, we find a world of physics
(and applications) that has produced thousands of papers and still has surprising
findings appearing after decades of study. Furthermore, adding the more artificial
degree of freedom of rotational misalignment while stacking, we find a dazzling
array of new effects. Since the twisted graphene structures inherit some of the
experimental and theoretical capabilities of the original graphene system, the study
of these new structures offer a promising route to probe the convoluted physics
of strong electron correlations, topological band structure effects in materials, and
unconventional superconductivity.

1.1 Graphene, a model system for condensed matter physics
Monolayer graphene consists of carbon atoms arranged into a simple but nontrivial
2D planar crystal structure consisting of a triangular lattice with a two-atom basis
(the hexagonal lattice, shown in Fig. 1.1). Since carbon atoms have 4 electrons, and
each atom in graphene forms three traditional covalent bonds, the extra electron per
atom forms a 𝜋 bond that stretches across the crystal, allowing for high electrical
conductivity. When the details are worked out, the 𝜋-bonds result in a simple low-
energy form of the electron energy dispersion, which is what we call the energy
levels available in the lattice according to the electron wavelengths, or wavevectors
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k. The low-energy Hamiltonian is [1]

𝐻 = ℏ𝑣𝐹
(
𝜏𝜎𝑥 , 𝜎𝑦

)
· k = ℏ𝑣𝐹

(
0 𝜏𝑘𝑥 − 𝑖𝑘𝑦

𝜏𝑘𝑥 + 𝑖𝑘𝑦 0

)
(1.1)

where (𝜎𝑥 , 𝜎𝑦) represents a 2D vector of Pauli matrices operating on the sublattice
basis, k is the wavevector (𝑘𝑥 , 𝑘𝑦), and 𝜏 is a valley index equal to +1 for the K
valley and -1 for the K’ valley. This Hamiltonian is the Dirac equation for massless
particles such as light, only with a velocity 𝑣𝐹 = 1 × 106 m/s that is reduced by a
factor of 300 from the speed of light. The energy eigenvalues derived from Eq. (1.1)
take the linear, isotropic form 𝐸 = ±ℏ𝑣𝐹𝑘 . Note that the Dirac cones, as they are
called, emanate from distinct points (called valleys) K and K’, relative to which
the vector k is measured (see Fig. 1.2). This Dirac cone band structure also makes
the system practical for experimentalists due to the semimetallic behavior across
the accessible energy levels and the access to both electron- and hole-like behavior.
Following Fig. 1.2, adding electrons fills energy levels above the plane of Dirac
cone vertices up to what is called the Fermi level (the energy to which electrons are
filled). Dropping the Fermi level below the plane is equivalent to adding holes. The

Figure 1.1: The structure of graphene, a hexagonal lattice with lattice constant of
0.246 nm. The primitive lattice vectors are shown as a1 and a1. Each unit cell
(orange oval) contains two atoms, often denoted as the A and B sublattices.
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Figure 1.2: The low-energy band structure of graphene, showing Dirac cones that
are colored red/blue for K/K’ points in the Brillouin zone.

fact that energy levels are available from energies below to above the cone vertices
makes the structure semimetallic.

Graphene research rapidly developed after the pragmatic discovery that one can
isolate high-quality monolayer graphene with a simple Scotch-tape exfoliation tech-
nique [2, 3], which favorably contrasts with the expensive growth methods required
for most high-quality 2D electron systems. This technique works for a host of so-
called van der Waals materials, which consist of planar layers of material loosely
connected by van der Waals forces. Due to an additional stacking technique de-
veloped more recently (described below), device mobility has been reported in the
range of 1 million cm2/(V·s). This is comparable to other high-quality materials
grown using molecular beam epitaxy, the pinnacle of material growth techniques in
terms of purity and control.

The 2D, atomically thin nature of graphene allows for high electron and hole density
tunability with a voltage applied to a capacitive gate separated from the graphene
layer by a dielectric. Without gate-tunability, one would need to resort to chemical
doping and new samples fabricated and tested for each electron/hole density, as is
done for many of the high-temperature superconductors. Graphene, on the other
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hand, can be tuned in-situ to have very low electron densities (which in such a
thin, low heat-capacity system has fascinating practical implications [4]) and high
densities, with resistivities in easily measured tens of Ω to kΩ ranges. Furthermore,
the close proximity of the electron and hole energy bands and the more nuanced
effect of chirality allow for the experimental study of unique behaviors such as Klein
tunneling, where electrons travel unimpeded through a potential barrier [5]. The
2D electrons also lend themselves to study by methods such as scanning tunneling
microscopy since the graphene layer can be left exposed in a pristine fashion. When
adding the fabrication conveniences discussed later and graphene’s amenability in
heterostructures of multiple materials, it is easy to see the vast playground of effects
available to graphene researchers.

1.2 Electron correlations
The equation and pictures above describe the single-particle physics of graphene.
Most well known solid-state materials, like the standard semiconductors of Si and
GaAs, can be largely understood by considering how individual electrons act in the
periodic potential of the ionic lattice. The researcher can calculate the energy levels,
or band structure, available to electrons and then consider how the electrons fill those
levels and respond to the experimental stimuli. This picture, however, conveniently
neglects the energetic effects of the electrons on each other, except for possibly some
renormalized terms such as mass. While electron-electron correlations often result
in small quantitative changes to the band structure—but ultimately no qualitative
differences—their effects can restructure the lattice or produce new orders such as
ferromagnetism and superconductivity. Changes to the band structure can result in
gaps where they were previously unexpected or polarization favoring certain types of
electron. These and a host of other phases—some exotic, elusive, and highly sought-
after—arise from the complex effects of the Coulomb interaction when considering
effects such as spin and localized vs. delocalized (itinerant) electrons.

There are a few effects worth mentioning since they are directly relevant to the
discussion or provide context to the future discussion of the complicated effects
of interactions in twisted multilayer graphene. In general, Coulomb interactions
are included by accounting for the potential energy between pairs of electrons at
positions 𝒓𝑖 and 𝒓 𝑗 :

𝐻𝐶 =
1
2

∑︁
𝑖≠ 𝑗

𝑒2

4𝜋𝜖 |𝒓𝑖 − 𝒓 𝑗 |
(1.2)
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where 𝜖 is the dielectric constant that varies depending on the sample geometry.
While in general this interaction term is complicated to implement, Hartree-Fock
theory provides a mean-field approach for correcting the single-particle band struc-
ture [6]. If one uses a Slater determinant wavefunction of the electrons and a
variational approach to optimize the energy, the Coulomb interaction breaks into
two terms. The first is the Hartree term:

𝑉𝐻 (𝒓) =
∫

d𝒓′
𝑒2

4𝜋𝜖 |𝒓 − 𝒓′|
∑︁
𝜎′

𝑜𝑐𝑐∑︁
𝑗

|𝜓 𝑗 (𝒓′, 𝜎′) |2. (1.3)

Hartree correlations account for the Coulomb interaction of the averaged electron
density for all occupied electrons, regardless of spin species 𝜎′. Since it is easier to
incorporate with a self-consistent approach, it serves as a good first approximation
to accounting for correlations in the band structure. When electrons are localized
(or clustered), as in twisted graphene systems, this term will generally become
significant and favor distributing electrons away from localized points. The Fock
(or exchange) term is:

−
∫

d𝒓′
𝑒2

4𝜋𝜖 |𝒓 − 𝒓′|
∑︁
𝜎′

𝑜𝑐𝑐∑︁
𝑗

𝜓∗
𝑗 (𝒓′, 𝜎′)𝜓 𝑗 (𝒓, 𝜎)𝜓𝑖 (𝒓′, 𝜎′) (1.4)

=
∑︁
𝜎′

∫
d𝒓′𝑉𝑒𝑥 (𝒓, 𝒓′, 𝜎, 𝜎′)𝜓𝑖 (𝒓′, 𝜎′). (1.5)

This term accounts for interactions between electrons of different spin species (𝜎,
𝜎′), and it involves a more complicated integral operator than the simpler Hartree
term 𝑉𝐻 (𝒓)𝜓𝑖 (𝒓, 𝜎). The complicated nature of the Fock term means that it usually
involves more approximations and assumptions. However, it can be responsible
for sizeable effects, such as exchange-induced gaps that completely polarize bands.
Hartree and Fock terms are both relevant in twisted graphene systems. It is worth
noting that the Hartree term generally produces continuous changes in the band
structure as the electron density is changed, and the Fock term introduces gaps and
can split spin/valley species, which is relevant for ferromagnetism and correlated
insulators.

The interaction integrals above can occasionally be simplified to an interaction
strength term 𝑈 (or sometimes a few different terms). There are a few useful toy
models that incorporate an interaction term 𝑈. The first is a lattice of localized
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electron sites, in which electrons are penalized for being on the same site, as a
result of Coulomb repulsion. Depending on the other energetic terms, such as
the kinetic energy and spin-spin interactions, this system tends to favor different
ordered states. The first one is widely studied through the Hubbard Hamiltonian [7],
which considers just the kinetic energy from hopping between sites and the on-site
Coulomb interaction. When the system is half filled, an antiferromagnetic ground
state is favored (Fig. 1.3a). Although electrons are not forbidden from hopping to
the nearest-neighbor sites, they are energetically disfavored by the increase in energy
𝑈 from two electrons being on the same site. Since the electrons are frozen, this
state is insulating. This insulator, called a Mott insulator, is an example of how
insulators can form due to electron interactions instead of the usual scenario where
a single-particle band is filled.

Figure 1.3: Example spin-correlated phases. (a) An antiferromagnetic state and (b)
a ferromagnetic state on a square lattice of localized electrons.

Spin-spin interactions tend to favor ferromagnetism (Fig. 1.3b), where a single spin
species is favored. Although the picture in Fig. 1.3b represents spins localized onto
a lattice, it is useful to consider the so-called Stoner model of ferromagnetism in
itinerant (mobile) electrons. The model considers spin-up 𝑛𝒌,↑ and spin-down 𝑛𝒌 ′,↓

Bloch electron number operators, where 𝒌 and 𝒌′ are the wavevectors [8]. The
interaction looks like

𝐻𝑖𝑛𝑡 =
𝑈

𝑁

∑︁
𝒌,𝒌 ′

𝑛𝒌↑𝑛𝒌 ′↓. (1.6)

The number of electrons in the up state can be determined with

〈
𝑛↑

〉
=

∫ ∞

0
𝑁 (𝐸) 𝑓 [𝐸 (𝒌, ↑)] d𝐸, (1.7)
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where 𝐷 (𝐸) is the density of states (here assumed to be about the same for up and
down spins for simplicity), and 𝑓 is the Fermi-Dirac distribution function. A similar
equation applies for

〈
𝑛↓

〉
. If we assume the presence of a small external magnetic

field 𝐵 for the purpose of calculating spin susceptibility, the 𝑈 term can be seen as
an additional internal magnetic field, further favoring spin polarization. The energy
of up- and down-spin electrons can be represented as follows (and shown in Fig. 1.4)

𝐸 (𝒌, ↑) = 𝐸 (𝒌) − 𝜇𝐵𝐵 +𝑈
〈
𝑛↓

〉
(1.8)

𝐸 (𝒌, ↓) = 𝐸 (𝒌) + 𝜇𝐵𝐵 +𝑈
〈
𝑛↑

〉
. (1.9)

𝐸

𝐸𝐹

𝜇𝐵𝐵 +𝑈
〈
𝑛↑

〉
−𝜇𝐵𝐵 +𝑈

〈
𝑛↓

〉
Figure 1.4: Schematic of energy splitting between spin-up (red) and spin-down
(blue) parabolic itinerant bands.

𝐸 (𝒌) here is just the energy before magnetic field and interactions. Then we can
calculate the magnetic moment

𝑀 = 𝜇𝐵
(〈
𝑛↑

〉
−

〈
𝑛↓

〉)
(1.10)

= 𝜇𝐵

∫ ∞

0

{
𝑓 [𝐸 − 𝜇𝐵𝐵 +𝑈

〈
𝑛↓

〉
] − 𝑓 [𝐸 + 𝜇𝐵𝐵 +𝑈

〈
𝑛↑

〉
]
}
𝑁 (𝐸) d𝐸. (1.11)

This is solved by taking the limit of 𝑇 → 0 and small 𝐵, so that the change about
the Fermi energy 𝐸𝐹 is small, the density of states is approximately constant there,
and the Fermi-Dirac distributions just pick out the states filled up to 𝐸𝐹

𝑀
𝑇→0
= 𝜇𝐵𝑁 (𝐸𝐹)

[
𝐸𝐹 + 𝜇𝐵𝐵 −𝑈

〈
𝑛↓

〉
−

(
𝐸𝐹 − 𝜇𝐵𝐵 −𝑈

〈
𝑛↑

〉)]
(1.12)

= 𝜇𝐵𝑁 (𝐸𝐹)
[
2𝜇𝐵𝐵 +𝑈 𝑀

𝜇𝐵

]
. (1.13)
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If we move terms and calculate the spin susceptibility 𝜒, we get

𝜒 =
𝑀

𝐵
=

2𝜇2
𝐵
𝑁 (𝐸𝐹)

1 −𝑈𝑁 (𝐸𝐹)
, (1.14)

which is reminiscent of the Curie-Weiss form for ferromagnetism that shows a
diverging term as 𝑇 → 𝑇𝑐. The divergence indicates the onset of ferromagnetism
and gives us the Stoner Criterion for the development of itinerant ferromagnetism,

𝑈𝑁 (𝐸𝐹) > 1. (1.15)

Increasing interactions 𝑈 or the density of states at the Fermi level 𝑁 (𝐸𝐹) can
result in ferromagnetism. Since 𝑁 (𝐸𝐹) is larger for flat bands (many energy levels
concentrated in a small range of energy levels), the idea behind the Stoner criterion
provides the context of why flat-band electron systems are interesting places to search
for correlated phases. Theories of superconductivity also follow the qualitative trend
where high interaction strength and density of states lead to the development of a
superconducting gap.

The naturally derived monolayer and Bernal bilayer graphene materials add to
the study of electron correlations by introducing valley degeneracy. However,
previous studies of correlated effects in graphene occurred at high magnetic fields
[9], where the quantum Hall effect flattens energy levels into highly degenerate
Landau levels that allow for interactions to dominate. Spin ferromagnetic, canted
anti-ferromagnetic, and other effects have been observed as a consequence, and the
picture gets more rich and complicated with bilayer graphene. However, twisted
multilayer graphene structures can be tuned to have flat bands without high magnetic
fields, resulting in a more rich phase diagram without requiring high magnetic fields.

1.3 Van der Waals heterostructures
Studying electron-electron correlations in van der Waals materials has been aided
by the fact that van der Waals materials of different character, layer number, and
orientation can be cleanly stacked on top of each other, forming van der Waals
heterostructures. The experimenter has access to naturally metallic, insulating,
semiconducting (like many of the transition metal dichalcogenides (TMDCs) shown
in Fig. 1.5), magnetic, and superconducting layers that can result in electron systems
with enhanced properties when compared to single-crystal samples. And high-
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quality crystals can be found through exfoliation techniques involving the repeated
application of tape to a bulk crystal and subsequent transfer to Si/SiO2 substrates.

Figure 1.5: Ball and stick model from a planview (a) and a side view (b) of a TMDC,
which contains one transition metal (blue) and two chalcogen atoms (orange) per
unit cell. Some of the most typical examples are the semiconducting materials
WSe2, WS2, MoS2, and MoSe2.

The van der Waals crystals vary in cleanliness, ease of use, and applicability in
heterostructures. For instance, some have vacancies, dopants, and other inhomo-
geneities, whereas others tend to oxidize quickly in ambient conditions, and others
tend to form large Schottky barriers when contacted with metals. Furthermore, the
properties of heterostructures can largely rely on the details behind transferring the
flakes into interfaces and the geometry of contact formation and device etching.

An example device is shown in Fig. 1.6, which consists of a van der Waals in-
terface between a superconductor (NbSe2) and a ferromagnet (Fe3GeTe2), with
pre-patterned gold contacts that the two flakes were placed onto and an insulat-
ing hexagonal boron nitride (hBN) flake encapsulating the structure. While van
der Waals heterostructures such as this introduce a vast potential for unique and
clean interfaces between dissimilar materials, the properties rely heavily on the
details of fabrication and individual material properties. For instance, the men-
tioned ferromagnet-superconductor interface is plagued by the fact that NbSe2 and
Fe3GeTe2 are both sensitive to oxidation and degradation from chemical baths.
Furthermore, NbSe2 has a high failure rate in the standard sequential stack pickup
technique described in the next chapter, and is consequently often exposed to further
polymer residues. Fe3GeTe2 rarely exfoliates into large crystals of thickness < 5
nm.

Graphene and hBN crystals are air-stable and easy to exfoliate into sizeable flakes
(30–100+ 𝜇m features). Graphene monolayers are easily detected optically, and
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Figure 1.6: A device consisting of pre-fabricated Au electrodes, with a flake of
Fe3GeTe2 and a flake of NbSe2 stacked so that the resistance of the junction between
them could be measured.

when we use proper polymer pick-up techniques, fabrication temperatures, and
encapsulation, we can make devices of high mobility. The hBN layer, which is
structured the same as graphene except for having alternating atoms of boron and
nitrogen and a slightly larger lattice constant, isolates graphene from charge puddles
inherent in SiO2 and provides a flat surface for the metallic graphene. Both graphene
and hBN are also amenable to fabrication steps after stacking the layers together,
such as electron beam lithography, etching, and metal deposition. Top and back
gates can be easily fabricated in graphene/hBN heterostructures that can capacitively
induce electron densities on the order of 1013 cm−2.

1.4 Moiré patterns, the continuum model, and the magic angle
A moiré pattern forms when two spatially oscillating patterns of similar wavelength
become nearly aligned. When this happens, a larger-wavelength beating pattern
emerges, which is seen in the common example of trying to take a picture of a
TV screen (stripes form when the pixels of the camera and pixels of the TV nearly
match). In two-dimensional crystals, either a slightly different lattice constant or a
twist offset between layers can lead to a new large-wavelength lattice.

Two graphene pieces can form a moiré pattern when they are stacked on each other
with a small rotational offset—or twist angle—between them, as shown in Fig. 1.7a.
Twisted bilayer graphene (TBG) forms a lattice with a twist-angle-dependent spacing
𝐿𝑀 between unit cells, following
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Figure 1.7: Examples of a ball and stick model of TBG (a), and a scanning tunneling
microscope topography image of TBG (b). A moiré unit cell is displayed as green
hexagon in (a), and the black lines in (b) mark another way to construct a moiré unit
cell. (b) is taken from our paper [10].

𝐿𝑀 =
𝑎

2 sin (𝜃/2) , (1.16)

which leads to a unit cell area

𝐴𝑀 =

√
3𝑎2

8 sin2 (𝜃/2)
. (1.17)

Whereas graphene atoms are spaced apart by 0.142 nm, and the lattice constant is
0.246 nm, unit cells for twist angles near 1° are spaced about 𝐿𝑀 ≈ 14 nm apart.
The unit cell size theoretically will increase infinitely as the twist angle approaches
0 (although practically, the two graphene sheets will relax for small enough twist
angles). The size of the unit cells is small enough that Coulomb interactions between
sites are sizeable compared to the bandwidths we are dealing with—𝑒2/(4𝜋𝜖𝐿𝑀) ∼
10s of meV. However, the unit cells are large enough that they can be filled using
gate-induced doping, which can produce densities of electrons 𝑛 > 1013 cm−2. In
the case of graphene, filling each moiré unit cell with four electrons is particularly
relevant because this fills the (four-fold) spin and valley degenerate bands and reveals
insulators that are expected with single-particle calculations. In the case of about
1°, that corresponds to 𝑛 = 4/𝐴𝑀 ≈ 2.3 × 1012 cm−2, well within the abilities of
gating in van der Waals materials. The scales involved here open up a range of
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possibilities since atomic lattices rarely get beyond the atomic scale, and fabrication
techniques get very difficult below 100 nm.

A topography image taken with a scanning tunneling microscope (STM), shown
in Fig. 1.7b, shows a TBG moiré pattern for the twist angle of 1.92°, with a unit
cell spacing of ∼7 nm, while the smaller, weaker lattice of the top graphene layer
can also be seen. Since scanning tunneling microscope topography also takes into
account electronic local density of states, the image also reveals periodic electron
accumulation, which occurs where the graphene lattices overlap almost perfectly—
called the AA sites since the A sublattices on both layers are aligned. On the other
hand, AB and BA sites (occurring at the vertices of the green hexagons in Fig. 1.7a
and the center of the triangles in Fig. 1.7b), where only half of the graphene atoms
overlap with opposite sublattices stacked on top of each other, tend to have less
electron density.

Another system exhibiting moiré patterns is the graphene-hBN interface. Due to
hBN’s large band gap, pairing it with graphene mostly reveals the metallic properties
of the graphene layers, usually without perturbation from the hBN layers. However,
graphene and hBN can align if stacked at nearly the same twist angle, creating a
moiré pattern. Two main effects occur in this instance. First, the two elements
in hBN introduce a sublattice asymmetry that was not present in the all-carbon
graphene lattice. This tends to open an insulating gap at the charge neutrality point
(∼0 electron and hole density). Second, the slight difference in lattice constants
results in a moiré pattern with a maximum wavelength of about 15 nm. When four
electrons fill each moiré unit cell, the behavior turns insulating again, indicating the
filling of the bands for the larger-wavelength unit cell in a similar fashion as what
happens in TBG.

Turning again to twisted bilayer graphene, modeling a moiré pattern at small twist
angles is a difficult task if approaching from an ab initio approach based on atomic
positions, due to the large amount of atoms in each moiré unit cell, on the order
of thousands. However, the so-called continuum model [11, 12] was developed
based on the low-energy Dirac Hamiltonian of graphene and is widely used as a first
approach to the single-particle band structure of graphene. The concept starts with
the Hamiltonians of the top and bottom graphene layers along with a tunneling term
that couples the two layers,

𝐻𝑐𝑜𝑛𝑡 = 𝐻𝑡 + 𝐻𝑏 + 𝐻𝑡𝑢𝑛. (1.18)
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Here it is convenient to use a second-quantized description, where 𝜓𝑡/𝑏 (𝒌) and
𝜓
†
𝑡/𝑏 (𝒌) are the annihilation and creation operators for the top/bottom layers, re-

spectively. These are actually eight-component spinors accounting for sublattice,
spin, and valley degrees of freedom (unless there are assumed degeneracies). The
intralayer terms are the Dirac Hamiltonian rotated symmetrically in opposite direc-
tions by 𝜃/2

𝐻𝑡/𝑏 =

∫
d𝒌𝜓†

𝑡/𝑏 (𝒌)ℎ𝑡/𝑏 (𝒌)𝜓𝑡/𝑏 (𝒌) (1.19)

where the integral represents the sum over 𝒌 states for the total energy (also allowing
for coupling between different 𝒌), although we are mostly concerned with the 𝒌

dependent Hamiltonian

ℎ𝑡/𝑏 (𝒌) = −ℏ𝑣𝐹𝑅𝑧 (±𝜃/2)
[
𝑘𝑥𝜏𝑧𝜎𝑥 + 𝑘𝑦𝜎𝑦

]
𝑅−1
𝑧 (±𝜃/2) (1.20)

where 𝜎𝑖 are Pauli matrices acting on sublattice indices, and 𝜏𝑖 Pauli matrices act
on the valley indices. The negative sign only introduces a phase factor compared
to Eq. (1.1) that we can ignore. We assume from here on that we can ignore
valley coupling (which works for the single-particle picture but perhaps not when
interactions are included), so we focus on one valley K, or 𝜏𝑧 = 1. The rotation
can be applied to either the 𝒌 or sublattice 𝜎 terms, so we apply it to the sublattice,
obtaining for the two layers

ℎ𝑡 (𝒌) = −ℏ𝑣𝐹𝑒𝑖𝜃𝜎𝑧/4𝒌 · 𝝈𝑒−𝑖𝜃𝜎𝑧/4 ℎ𝑏 (𝒌) = −ℏ𝑣𝐹𝑒𝑖𝜃𝜎𝑧/4𝒌 · 𝝈𝑒−𝑖𝜃𝜎𝑧/4. (1.21)

Modeling the layers without interlayer tunneling essentially models two Dirac cones
separated by a twist-angle dependent wavevector 𝐾𝜃 ∝ sin (𝜃/2), with a simple
schematic shown in Fig. 1.8a,b. The next step is to consider the interlayer tunneling
𝐻𝑡𝑢𝑛, which tends to induce level repulsion, as shown in Fig. 1.8c. This term couples
operators from top and bottom layers with offset momenta 𝒒ℓ, corresponding to the
reciprocal lattice vectors of the moiré lattice

𝐻𝑡𝑢𝑛 =
∑︁
ℓ=1,2,3

∫
𝒌

d𝒌𝜓†
𝑡 (𝒌)𝑇ℓ𝜓𝑏 (𝒌 + 𝒒ℓ) + ℎ.𝑐. (1.22)

where
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Figure 1.8: Schematic depiction of band structures in TBG. (a) Two monolayer
graphene Brillouin zones twisted by an angle 𝜃 and the resulting mini-Brillouin
zone (mBZ) for the moiré lattice. (b) Two uncoupled Dirac cones that occur at the
dots in (a). (c) When coupling is included, and (d) when the coupling is included
and the twist angle is near the magic angle.

𝒒ℓ = 𝑘𝜃

(
− sin

[
2𝜋
3

(ℓ − 1)
]
�̂� + cos

[
2𝜋
3

(ℓ − 1)
]
�̂�

)
, 𝑘𝜃 =

4𝜋
3𝑎

2 sin(𝜃/2),
(1.23)

and (using 𝜎± = (𝜎𝑥 ± 𝑖𝜎𝑦)/2)

𝑇ℓ = 𝑤𝐴𝐴 + 𝑤𝐴𝐵
(
𝑒−2𝜋𝑖(ℓ−1)/3𝜎+ + 𝑒2𝜋𝑖(ℓ−1)/3𝜎−

)
. (1.24)

There are two coupling parameters 𝑤𝐴𝐴 and 𝑤𝐴𝐵, which correspond to interlayer
tunneling at AA and AB sites, respectively. TBG at low angles tends to relax,
resulting in slightly larger AB-type regions and smaller AA-type regions [13], so we
have generally used 𝑤𝐴𝐴 = 55 meV and 𝑤𝐴𝐵 = 105 meV. This choice of parameters
results in the correct magic angle ∼1.1° and experimentally matches the gaps
between moiré bands and dispersive bands.

The Hamiltonian is practically solved by noting that 𝜓𝑡/𝑏 (𝒌) can be represented in a
Bloch basis, expanded into an extended zone scheme by adding more Hamiltonian
components with wavevector 𝒌 + G (for reciprocal lattice vector 𝐺) and coupling
them. The final Hamiltonian matrix looks like the following
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©«

ℎ𝑡 (𝒌)
ℎ𝑡 (𝒌 + G𝑡) 𝑇

. . .

ℎ𝑏 (𝒌)
𝑇† ℎ𝑏 (𝒌 + G2)

. . .

ª®®®®®®®®®®®¬
(1.25)

where each point of a lattice of reciprocal vectors (made large enough to assure
convergence) constitutes another row and column corresponding to its respective
intralayer Hamiltonian on the diagonal. The interlayer elements 𝑇 then couple
terms between layers and with varying by momenta 𝑞ℓ, matching the condition of
Eq. (1.22). This is usually schematically represented as

ℎ𝑇𝐵𝐺 (𝒌) =
(
ℎ𝑡 (𝒌) 𝑇

𝑇† ℎ𝑏 (𝒌)

)
. (1.26)

The continuum model, since one can continuously tune the twist angle and since it
works at small angles, predicts a special result. At certain twist angles the Fermi
velocity becomes zero, and the low-energy bands flatten considerably. The Fermi
velocity can be approximated [11] based on the dimensionless ratios 𝜂 = 𝑤𝐴𝐴/𝑤𝐴𝐵
and 𝛼 =

𝑤𝐴𝐵

𝑣𝐹 𝑘 𝜃
, where 𝑣𝐹 is the original monolayer graphene Fermi velocity 106 m/s.

The low-energy continuum model Fermi velocity is, then, approximately

𝑣𝑐𝑜𝑛𝑡 =
1 − 3𝛼2

1 + 3𝛼2(1 + 𝜂2)
𝑣𝐹 . (1.27)

So the points with zero Fermi velocity are controlled by 𝛼, the ratio of the AB
hopping to the Moiré wavevector—or the separation between Dirac cones—which
is proportional to 𝜃. Although there are multiple twist angles with vanishing Fermi
velocity, only one is practically accessible for TBG, and it is around 1.1°. Fig. 1.9
shows how the continuum model bands drastically flatten when lowering the twist
angle and then widen as the angle is further lowered. The flat bands also meet
the higher-energy dispersive bands below a certain angle ∼0.8°. It is worth noting
briefly that the bands in magic-angle TBG, as measured by STM, are not as flat as
suggested by the continuum model, due to correlations [10, 14].
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Figure 1.9: Continuum model TBG band structure for twist angles above and below
the magic angle, showing the flattening near the magic angle. Note that the x-axes
represent momentum 𝒌 following the mini Brillouin zone shown in the left inset.

1.5 Superconductivity: conventional vs. unconventional
Superconductivity is generally recognized by its characteristic features of zero re-
sistance, an energy gap (observed with optics and other energy spectroscopy tech-
niques), strong diamagnetism (cancelling out magnetic fields in the superconducting
area), and macroscopic phase coherence (visible in Josephson junctions). The tra-
ditional theory of superconductivity—outlined in 1957 by Bardeen, Cooper, and
Schrieffer [15] and thus often called BCS superconductivity—provides a useful
foundation from which to understand these basic experimental phenomena. Many
basic elemental materials, such as aluminum, titanium, tin, and mercury, act as con-
ventional BCS superconductors, typically only at very low temperatures, However,
BCS theory fails to account for the range of features more recently associated with
complex unconventional superconducting systems, most notably high-temperature
superconductivity [16] and its association with other electron correlations.

The BCS theory of superconductivity generally applies to Cooper pairs of one
spin-up and one spin-down electron, with an isotropic (s-wave, spin-singlet) pairing
potential and a limit to the critical temperature 𝑇𝑐 that is directly related to the
density of states at the Fermi level 𝑁 (𝐸𝐹) and the strength of the pairing potential
𝑉 [17]:

𝑘𝐵𝑇𝑐 = 1.13ℏ𝜔𝑐𝑒
− 1

𝑁 (𝐸𝐹 )𝑉 (1.28)

where 𝑘𝐵 is Boltzmann’s constant and 𝜔𝑐 is the cutoff frequency of the attractive
pairing interaction. The pairing gap at zero temperature Δ results from a similar
equation to Eq. (1.28), and the two can be related by a multiplicative constant
Δ = 1.764𝑘𝐵𝑇𝑐. However, these equations assume the weak-coupling condition,
i.e., 𝑁 (𝐸𝐹)𝑉 ≪ 1. Conventional superconductivity arises from a pairing potential
due to phonons mediating an attractive electron-electron interactions. Thus, a
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conventional BCS-like superconductor will show the strongest superconductivity
when the density of states and electron-phonon coupling are high.

The coherence length 𝜉 also has a BCS weak-coupling prediction:

𝜉 =
ℏ𝑣𝐹

𝜋Δ
. (1.29)

It can also be directly empirically determined—since it represents a maximum
vortex length scale in an out-of-plane magnetic field—with the equation derived
from Ginzburg-Landau theory

𝑇𝑐/𝑇𝑐0 = 1 − (2𝜋𝜉2/Φ0)𝐵⊥ (1.30)

where Φ0 = ℎ/(2𝑒). It is most often determined by the slope of the 𝑇𝑐 vs. 𝐵 curve
close to the critical temperature.

This leaves us several routes by which we can classify superconductivity as un-
conventional. Superconductivity could possibly form an anisotropic pairing gap,
as in the d-wave pairing observed in cuprate superconductors [18]. The Cooper
pairs could form a spin-aligned triplet or other configurations as opposed to the
spin-neutral singlet state. The mechanism mediating Cooper pairs could be due to
electron-electron or spin-based interactions as opposed to the traditional phonons.
The bound pairs could also be more exotic than traditional Cooper pairs [19].

Strong-coupling superconductivity would violate the equations above and could even
imply approaching the Bose-Einstein condensate (BEC) regime with an extended
phase space of tightly paired electrons [21], particularly with residual effects at
temperatures higher than 𝑇𝑐. In many high-𝑇𝑐 superconductors, this manifests as
a pseudogap. The degree of coupling can be estimated with the dimensionless
constant Δ/𝐸𝐹 , which approximately converts to the more experimentally attainable
𝑇𝑐/𝑇𝐹 , where 𝐸𝐹 and 𝑇𝐹 = 𝐸𝐹/𝑘𝐵 are the Fermi energy and Fermi temperature,
respectively, and are directly related to the total number of electrons in the system.
So-called Uemura plots [22], such as in Fig. 1.10 showing 𝑇𝑐 plotted vs. 𝑇𝐹 for
known superconductors, are insightful since previously recognized unconventional
superconductors fall toward the top left of the diagram (as opposed to conventional
superconductors, which tend toward the bottom right of the diagram) [20, 23, 24]. A
high 𝑇𝑐/𝑇𝐹 ratio was one of the first indicators of unconventional superconductivity
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Figure 1.10: Uemura plot of superconducting critical temperature 𝑇𝑐 vs. Fermi
temperature 𝑇𝐹 for a range of materials, including TBG. Reprinted from [20], with
permission from the copyright holder, Springer Nature.

in TBG [20], leading to theoretical interest and continued debate on the mechanism
behind superconductivity in TBG and other twisted moiré materials.

Since tightly-bound pairs in strong-coupling superconductors can be susceptible to
phase fluctuations, coherence lengths also tend to be smaller than weak-coupling
BCS superconductors, so comparison to Eq. (1.29) can be another useful measure
indicating strong-coupling or non-BCS superconductors.

Any mixture of these and other measures of unconventional superconductivity pro-
vide fertile grounds for more fully understanding superconductivity, particularly
when observations are paired with other correlated effects. Graphene moiré sys-
tems’ advantages, in terms of fabrication and doping, provide useful experimental
testing grounds for theories of unconventional superconductivity.

1.6 Spin-orbit coupling
Spin-orbit coupling (SOC) is an energetic contribution to electrons resulting from
the interaction between the spin of the electron and effective magnetic fields from the
lattice or orbital angular momentum. It generally splits electrons of one particular
spin species into two separate energy levels of opposite momenta. One can also
switch between the two levels by flipping the spin of the electron (Fig. 1.11).
An intuitive picture of SOC comes from considering an out-of-plane (𝑧 direction)
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Figure 1.11: An schematic of the energy splitting involved in spin-orbit coupling,
where opposite spins/momenta are split, but the reversing both leads to the same
energy.

electric field 𝐸 induced by an asymmetric lattice. Due to relativity, moving electrons
interpret the field as magnetic field, and the energetic coupling to spins is

𝐻Rashba = − 𝑔ℏ𝐸

4𝑐2𝑚2
𝑒

(s × p) · ẑ (1.31)

where the g-factor is 𝑔 ≈ 2 for a bare electron, 𝑐 is the speed of light, 𝑚𝑒 is the
mass of an electron, s is the electron spin vector, and p is the momentum. This is
called the Rashba effect, and it generally splits in-plane spins. In graphene, due to
the association of momentum with valley and sublattice degrees of freedom, this
can be represented as

𝐻Rashba =
𝜆𝑅

2
(
𝜏𝑧𝜎𝑥𝑠𝑦 − 𝜎𝑦𝑠𝑥

)
, (1.32)

with 𝜏𝑖 and 𝜎𝑖 being Pauli matrices acting on the valley and sublattice states, respec-
tively, and where 𝜆𝑅 represents the energy splitting.

Another relevant SOC term in 2D systems, considered for graphene in Ref. [25], is
called the Kane-Mele SOC:

𝐻Kane-Mele =
𝜆𝐾𝑀

2
𝜏𝑧𝜎𝑧𝑠𝑧 . (1.33)

And the other relevant term to graphene and TMDCs is called Ising SOC, and it
couples out-of-plane spins to valley (momentum):

𝐻Ising =
𝜆𝐼

2
𝜏𝑧𝑠𝑧 . (1.34)

A well know feature that results from spin-orbit coupling is the weak antilocalization
(WAL) effect, a distinct conductivity peak at low temperatures and magnetic fields.
An explanation of the effect follows from a simple argument that can be found in
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more detail in [26]. Electrons bounce randomly off random defects in a material.
In materials with favorable amounts of defects and at temperatures low enough for
the electrons to maintain phase coherence, an effect called weak localization occurs.
Electrons that travel in opposite paths, returning to their origin, tend to constructively
interfere. Conductivity, as a result suffers since it is favorable for electrons to return
rather than traveling through the material. The interference is jumbled, however, by
a magnetic field, resulting in a distinct conductivity dip at zero magnetic field.

Figure 1.12: A depiction of the two time-reversed (opposite) paths electrons scat-
tering off defects.

In systems with SOC, the opposite effect occurs. When SOC is strong, the spin of
an electron will get randomized when travelling along the path shown in Fig. 1.12.
However, electrons on the time-reversed path will experience the opposite spin
rotation, resulting in destructive interference. In this case, small magnetic fields
decrease the conductivity, resulting in a conductivity peak at zero magnetic field.
The peak is generally on the order of ≲ 𝑒2/ℎ.

1.7 Topology in graphene systems
Graphene has been at the forefront of theoretical interest not only for the reasons
stated above, but also for its close connection to topology in condensed matter
systems. One of the first widely recognized examples is found in the Haldane model
[27], which revealed a globally time-reversal symmetric topological insulator state
by introducing locally varying magnetic fields in a graphene lattice. Later, around
the time of the experimental discovery of graphene, Kane and Mele realized [25]
that spin-orbit coupling in graphene could induce the quantum spin Hall effect in
graphene, characterized by a gap in the bulk of a sample paired with topologically
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protected helical edge states (where current of spin ↑ goes in one direction and
current of spin ↓ in the opposite direction). Topological edges states should be
insensitive to disorder and reveal quantized conductance according to a Chern
number 𝐶 multiplied by the quantum of conductance 𝑒2/ℎ. However, graphene’s
intrinsic spin-orbit coupling is very small, precluding the quantum spin Hall effect.
Further efforts to find topologically nontrivial states through induced spin-orbit
coupling [28–30] and ferromagnetism [31] have not yet turned up unambiguous
experimental signatures of topological states in monolayer graphene although bilayer
graphene may show more promise [32].

However, further insights into the topology of graphene come from another method
of modifying the Hamiltonian, which is relevant for the discussion of TBG: instead
of a spin-orbit gap, an added sublattice mass (a term that energetically favors atoms
on one sublattice of the graphene over the other) to the Dirac Hamiltonian in Eq. (1.1)
introduces an analytic example of topology in the graphene system [33]. This results
in a Hamiltonian of the form

�̂� = ℏ𝑣𝐹
(
𝜏𝜎𝑥 , 𝜎𝑦

)
· k + 𝑚𝜎𝑧 =

(
𝑚 ℏ𝑣𝐹 (𝜏𝑘𝑥 − 𝑖𝑘𝑦)

ℏ𝑣𝐹 (𝜏𝑘𝑥 + 𝑖𝑘𝑦) −𝑚

)
. (1.35)

This Hamiltonian has the modified energies 𝐸 = ±
√︃
ℏ2𝑣2

𝐹
𝑘2 + 𝑚2 and therefore

quadratic electron and hole bands separated by the gap of 2𝑚.

The relevant quantity for calculating the topological character of the band structure
is the Berry Curvature, defined as

Ω(k) = −Im∇𝑘 × ⟨𝑢k |∇𝑘𝑢k⟩ · ẑ = −2Im
〈
𝜕𝑢k
𝜕𝑘𝑥

����𝜕𝑢k
𝜕𝑘𝑦

〉
(1.36)

where the last equality works for Ω(k) in the ẑ direction for a 2D system, and 𝑢k

is the Bloch basis function for the underlying Bloch wavefunction 𝜓k(r) = 𝑢k𝑒
𝑖k·r,

which in this case is the eigenvectors of the Hamiltonian.

Whereas the Berry curvature is 0 for states of the massless Dirac Hamiltonian,
except for singularities at the K and K’ points, a more complex function is found
for the eigenvectors of the massive Dirac Hamiltonian in Eq. (1.35) [34]:

Ω(k) = ±𝜏
ℏ2𝑣2

𝐹
𝑚

2
(
𝑚2 + ℏ2𝑣2

𝐹
𝑘2)3/2 (1.37)
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where the ± sign out front refers to electrons(+) or holes(−).

Integrating the Berry curvature gives us the Chern number:

𝐶 =
1

2𝜋

∫
Ω(k) d2k =

𝜏ℏ2𝑣2
𝐹
𝑚

2

∫ 𝑘→∞

𝑘=0

𝑘 d𝑘(
𝑚2 + ℏ2𝑣2

𝐹
𝑘2)3/2 = ±𝜏

2
. (1.38)

Note that here the integral should be over the Brillouin zone, and the Dirac Hamil-
tonian only applies in the low energy limit. However, the denominator quickly
disappears at large k. This calculation can be thought of with a more intuitive
picture when we are dealing with a 2-level Hamiltonian that can be represented in
terms of Pauli matrices �̂� =

∑
𝑖=𝑥,𝑦,𝑧 𝑑𝑖 (k)𝜎𝑖. The Chern number derivation from

Berry curvature can be represented in terms of a 3D unit vector d̂(k) = d(k)/|d(k) |
in terms of the equation

𝐶 =
1

4𝜋

∫
d̂ ·

(
𝜕d̂
𝜕𝑘𝑥

× 𝜕d̂
𝜕𝑘𝑦

)
d2k (1.39)

which simply counts the times d̂ wraps around the surface of a sphere in the integral
[35]. In our case with d(k) = (ℏ𝑣𝐹𝜏𝑘𝑥 , ℏ𝑣𝐹𝑘𝑦, 𝑚), the unit vector d̂ points in the 𝑧
direction at k = 0, and it points in the 𝑥 − 𝑦 plane when 𝑘𝑥 or 𝑘𝑦 → ∞, as shown
in Fig. 1.13. The vector thus wraps around half a sphere over the integrated space,
giving us the result in Eq. (1.38) and geometrically demonstrating the connection to
topology.

The calculation in Eq. (1.38) captures the general behavior of massive Dirac
fermions, in which the Chern number is opposite in sign for conduction vs. va-
lence bands and for opposite valleys (but the Chern number is spin-invariant). Since
Dirac points come in pairs (here spin- and valley-degenerate pairs, and mini-valleys
in TBG [36]), the Chern number will always be an integer. Even though a sublattice
mass can be added to graphene experimentally with aligned hBN, the degeneracy of
graphene’s valleys causes the overall Chern number to inherently cancel out, leaving
a non-topological gap.

Nevertheless, experiments can show signatures of the Berry curvature through the
valley Hall effect [34, 37]. And with the right combination of band flattening
and symmetry breaking—which causes favorable polarization of one flavor—the
nonzero Chern number can represent itself in an orbital ferromagnet, as we will see
later in twisted bilayer graphene.
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Figure 1.13: The energy of the massive Dirac Hamiltonian (pink) with blue vectors
representing the vector d(k).



26

C h a p t e r 2

DEVICE DESIGN AND CHARACTERIZATION

This thesis largely discusses measurements of electrical transport properties, or
electrical resistance, of 2D materials. When we are considering van der Waals
materials, there are important details in the fabrication procedure to allow for high-
quality measurements. These details are particularly relevant to the fabrication
of TBG when considering types of disorder present, so fabrication procedures
are discussed first in this chapter. Secondly, this chapter discusses measurement
equipment and protocols, with a brief discussion of Landau levels, which are heavily
used in analysis, and the setup of our Oxford Triton dilution refrigerator.

2.1 Fabrication
Van der Waals dry stacking technique
Since the original isolation of monolayer van der Waals materials [2, 3], stacking
techniques for graphene have improved dramatically. In particular, when insulating
hBN is used as a substrate [38], the atomic flatness significantly reduces the strain
and charge impurities induced by substrates like SiO2 [39]. In addition, the less
graphene is exposed to solvents and polymers, the better the device quality. Thus,
the next big step was discovering a way to fabricate devices without exposing the
graphene layer to any polymer or solvent [40]. In this method, a polymer is used to
sequentially pick up a flake of each material, and the stack of flakes is dropped onto
the substrate by melting the polymer. Contacts are then made by etching through
the graphene layer and subsequent metal deposition. Only the top hBN is exposed
to solvents and polymers, leaving the encapsulated graphene pristine. Furthermore,
the application of temperatures >110° C while depositing or peeling flakes off of
their substrates tends to push impurities (which appear as bubbles in optical images)
out of the interfaces between flakes [41]. These bubble impurities plague device
quality, so devices are generally made by etching devices out of bubble-free areas.

For moiré heterostructures, an additional procedural step makes precise control over
twist angle possible [42]. Due to the strong adhesion of graphene to hBN and its
tendency to tear, a single graphene flake can be split into multiple pieces, which
can be picked up one by one. Since the flake consists of a single crystal, twisting
between pickup steps can allow for control at the level of ∼0.1°. Small-angle
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twisted moiré structures present a problem due to the tendency of the interface to
relax toward a non-twisted configuration as a result of the low friction of van der
Waals materials. TBG, in particular, has been reported to relax with the application
of high temperatures [20]. From our fabrication experience, we found that TBG at
≲1.5° is more prone to relaxation when many stacking steps are involved, when
high temperatures (>100° C) are used during stacking steps, and when stacking
occurs in a quick and uncontrolled manner. This, unfortunately, means that bubble
impurities appear in our devices more often than when we use high-temperature
stacking steps; however, we can usually make large enough areas for devices when
we use large graphene flakes and slow, controlled transfer steps.

Before optimizing our technique, devices would often show disorder-broadened
features in measurements, and superconductivity did not reliably appear. Conversa-
tions with other research groups also confirmed our struggles at getting reproducible
results, with a report or two of only one superconducting device out of ten. Often
times, these devices involve multiple contacts, with different levels of impurity and
inhomogeneity for each one. TBG papers have also revealed a range of behaviors
[20, 43–53]. This is likely due in part to the fact that TBG naturally displays sizeable
twist angle inhomogeneity on the level of ∼100 nm [54], even for groups that have
honed the fabrication process enough to reliably make superconducting devices.
Additionally, the similarity of lattice constants in graphene and hBN could result
in accidental commensurate lattices from alignment or moiré-in-moiré conditions
that result from more complex three-layer alignment [55, 56]. Thus the explicit
symmetry breaking involved in these alignment conditions could change the device
behavior.

The mentioned complications result in a lack of reproducibility in TBG devices, so
we have made attempts to base the bulk of our work on findings that are reproduced
in multiple devices, while not overly weighing details that may be device dependent.
And, after honing our fabrication technique, we see superconductivity in multiple
contacts in a majority of devices. We suppose the reproducibility we see could
be assisted, to some degree, by the included tungsten diselenide (WSe2) in our
devices, which seems to reduce disorder in TBG. STM measurements also support
the reduction in disorder [57].

The devices used in the following two chapters consist of TBG with a WSe2 mono-
layer stacked on top, with encapsulating hBN layers on the top and bottom, as shown
in Fig. 3.1. The stack is deposited onto a pre-deposited Au back gate. We opted to
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avoid picking up an additional graphite layer for a back gate since this would increase
the stacking steps, and thus the potential for strain and relaxation induced by the
relatively violent process of stacking. The general process we used for assembling
a stack of van der Waals materials is outlined below.

Figure 2.1: Flakes of van der Waals materials exfoliated onto SiO2 in preparation
for making a TBG-WSe2 device. The red lines on graphene outline the two pieces
that are rotated with respect to each other in the final device.

1. Exfoliation: Apply a bulk crystal of the desired type to scotch tape. Then
stick and peel the tape repeatedly to create a thin, even layer of flakes across
the tape. Stick the tape onto a Si substrate with about 300 nm SiO2 (to
enhance the contrast and make the flakes visible), and peel off slowly. After
this exfoliation step, flakes are found by searching around the Si chip using
optical microscopy. A few tips can be used to get large, thin flakes. For
instance, a light oxygen plasma cleaning of the Si/SiO2 substrate can help
with finding large monolayer graphene flakes. Generally, using large facets of
bulk crystals, being generous with the amount of bulk crystal used, and light
application of heat (∼100° C for <5 minutes) can help in some instances.
We repeat this exfoliation and flake searching step for each material before
starting the stack assembly. Examples of each flake in a TBG-WSe2 device
are shown in Fig. 2.1.

2. Polymer pickup of the top hBN: A good top hBN flake is large enough
to cover the remaining flakes, and thick enough to provide structure but not
so thick as to obscure the other flakes in the stack. We used flakes in the
range of 10–30 nm thick for the top hBN. The polymer pickup technique
requires a polymer that will reliably pick up the first hBN flake but will melt
at accessible temperatures. A thin film of poly(bisphenol A carbonate) (PC)
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Figure 2.2: An example polymer stamp, showing a pre-cut PDMS square that
supports the thin PC film, which is attached to the slide using scotch tape with a
window cut out.

supported by polydimethylsiloxane (PDMS) on a glass slide Fig. 2.2. A PC
thin film is produced by dissolving the polymer into a solvent, such as N-
methyl-2-pyrrolidinone (NMP) until it forms a viscous liquid. After placing
a few drops on a glass slide, slipping another slide across the first slide, and
letting the two slides harden, the PC forms a dry thin film. We can then cut
and pick up the film with scotch tape. A window in the scotch tape allows us
to stretch the PC over a PDMS stamp. After a curing step at 104° C for 9
minutes, we can use the polymer stamp to pick up the hBN flake.

Figure 2.3: A transfer setup used to make van der Waals stacks.
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Figure 2.4: Flake-by-flake polymer dry stacking technique. (a)–(e) The stacking
process used for a TBG-WSe2 device. (f) The stack (except for the bottom hBN)
picked up on the polymer stamp, using the flakes from Fig. 2.1. The top hBN (blue),
WSe2 (pink), and two graphene pieces (red) are outlined.

3. Stack assembly: The degrees of freedom necessary for assembling a stack
of van der Waals materials (including twisting for moiré structures) are: x-,
y-, and z-axis control of the substrate relative to the polymer stamp slide,
independent tuning of the microscope focus, accurate twist control of the
substrate, and (optional but convenient) x- and y-axis control of the polymer
stamp slide. The substrate holder also needs to have temperature control
up to at least 180° C. We used a commercially produced transfer setup (HQ
Graphene), shown in Fig. 2.3. The polymer stamp is used to subsequently pick
up the top hBN, followed by monolayer WSe2, the two graphene flakes, and a
bottom hBN flake (30–70 nm thick to avoid over-etching in further steps), as
shown in Fig. 2.4. As the polymer stamp is lowered over each van der Waals
flake, the polymer contact to the substrate forms a line that propagates as the
polymer stamp is raised or lowered. When the line propagates across the flake
and then retracts, the flake is picked up and added to the stack that adheres to
the bottom of the polymer stamp. When picking up flakes for twisted devices,
we used a temperature of ∼90° C for each pickup step. Slight temperature
increases and decreases allow for slow and steady propagation of the polymer
contact line across the flake that is being picked up. While in the next chapter
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[46], the graphene flake was torn to make twisted structures, in the following
chapters [53, 58], the graphene flake was first cut into pieces with a Pt-Ir STM
tip attached to a glass slide to allow for clean pickup of each piece. For TBG,
first the top flake of graphene is picked up. Then the substrate is rotated to
about 1.1–1.3° (overshooting the target angle slightly to allow for relaxation),
and the second flake is picked up.

4. Deposition and cleaning: Finally, to complete the stacking step, the stamp
containing the finished stamp is lowered onto a substrate, a degenerately
doped Si/SiO2 chip pre-patterned with Au lithography markers for optically
designing devices and with a Au gate. While lower the stack onto the substrate,
the temperature is set to 150° C. Then, the temperature is raised to 170° C to
melt the PC, and the stamp is lifted. Leftover polymer residue can be removed
in a 10-minute NMP bath.

For three-, four-, and five-layer devices, the process of twisting and stacking graphene
flakes is just repeated for extra pieces of the graphene flake. The rest of the steps
remain the same.

Contact deposition and etching
The next steps involve the use of micro- and nano-fabrication tools available in the
Kavli Nanoscience Institute (KNI).

1. Electron-beam lithography: Each step of lithography is first prepared by
spin-coating polymethyl methacrylate (PMMA, more specifically 950 PMMA
A4) at 1500 rpm followed by a low-temperature bake of 110° C for 90 s. We
use dedicated electron-beam lithography machines (Raith EBPG 5000+ or
5200) at 100 kV, beam currents in the range of 1–100 nA, and a dosage
of 1100–1300 𝜇C/cm2, depending on feature size. We construct our Hall
bar lithography patterns to avoid feature sizes ≲ 1 𝜇m and fillet edges to
avoid sharp corners, which reduces cracks in the PMMA. After lithography,
we use a methyl isobutyl ketone (MIBK)/isopropyl alcohol (IPA) solution to
develop the patterns and remove the PMMA from the exposed area. In the
first lithography step, we set up a pattern for the contacts and contact pads.

2. Contact etch: We use an RF reactive ion plasma etch system (Plasmatherm
RIE) to etch our devices made of van der Waals materials since it has a
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controllable etch rate. We first use a light O2 etch (30 W, 20 sccm O2 flow
rate, 50 mTorr chamber pressure for 1 minute) to clean off any residual PMMA
from the contact area. Then, a CHF3/O2 etch step is used (60 W, 40 sccm
CHF3/4 sccm O2, 40 mTorr) to remove the top hBN, graphene, and a little
of the bottom hBN from the contact area. We found hBN to etch at a rate
of approximately 25-40 nm/minute, with graphene and WSe2 areas etching
at a slightly slower rate. We periodically checked the etch optically to avoid
over-etching.

3. Metal evaporation and liftoff: The sequential etching through hBN-encapuslated
graphene and subsequent electron-beam evaporation allows for reliable effec-
tive one-dimensional contacts to graphene [40]. In our process, as opposed
to Ref. [40], we achieve contacts in one lithography step. This both avoids an
unnecessary lithography step and possible PMMA and solvent-based contam-
ination of the contacts since the metal is deposited immediately after etching.
We use a Kurt J. Lesker Labline electron-beam evaporator to evaporate metals
for contacts and gates. We deposit 5 nm Ti followed by usually 100 nm of
Au. We found more reliable contacts by depositing only after achieving base
pressures < 1×10−7 torr.

4. Device geometry etch: After the contacts are deposited, we shape the device
into a multi-contact Hall bar (e.g., see Fig. 2.5 for a device after the contact
deposition and geometry etch steps) by first performing a lithography step
that exposes an area around the contacts and outside the outline of a Hall bar
geometry. Note that the Hall bar is defined in a bubble-free region. After
lithography, the device is etched using the same CHF3/O2 etch recipe as
before, but for longer to etch down to the SiO2.

This was occasionally supplemented by an extra lithography step and the deposition
of a Ti/Au topgate before the final device geometry etch step. The topgate was
necessary for three-, four-, and five-layer graphene moiré structures in order to
control the electric field.

2.2 Electrical transport measurements
The types of measurements mostly discussed here involve the study of how electrons
move through condensed matter systems, or electrical transport. The quantity of
interest is the resistance of a material. The theoretical picture comes from modelling
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Figure 2.5: A finished TBG-WSe2 device, with contacts and etched into a Hall bar.
The orange stripe behind the device is a thin Au backgate.

low-energy excitations imposed on the material by an excitation voltage and derive
the resulting current. When considered at low temperatures, the current depends on
energetic states being available near the Fermi energy 𝐸𝐹 (the point where electrons
are filled up to), the velocity of states near the Fermi energy, and a consideration
of scattering mechanisms. A first-order approach comes from Boltzmann transport
theory [8], given a two-dimensional band structure with energy 𝜖 (𝒌) and current
density j flowing through the material along the electric field E, we get

j =
𝑒

(2𝜋)2

∫
d𝒌v(𝒌)

(
− 𝜕 𝑓 0

𝜕𝜖 (𝒌) 𝜙(𝒌)
)
=

𝑒

(2𝜋)2

∫
d𝒌v(𝒌)

(
− 𝜕 𝑓 0

𝜕𝜖 (𝒌) 𝑒E · v(𝒌)𝜏(𝒌)
)

(2.1)

where v(𝒌) = 1
ℏ

d𝜖
dv(𝒌) is the group velocity of electrons derived from the band

structure, − 𝜕 𝑓 0 (𝒌)
𝜕𝜖 (𝒌) 𝜙(𝒌) is the perturbed Boltzmann distribution function that tells us

which electron states are occupied. 𝑓 0 is the equilibrium Fermi-Dirac distribution
function. 𝜙(𝒌) = 𝑒E·v(𝒌)𝜏(𝒌) is the perturbation potential consisting of the electric
field with consideration of scattering mechanisms through a relaxation time 𝜏(𝒌),
which could be due to material defects, electron-phonon coupling, and electron-
electron coupling. This can be simplified very roughly by assuming temperature
approaches zero, resulting in − 𝜕 𝑓 0 (𝒌)

𝜕𝜖 (𝒌) becoming very sharp and selecting a single
energy 𝐸𝐹 out of the integral. If we also convert the integral over 𝒌 into an integral
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over 𝜖 , we include the density of states at the Fermi surface 𝑁 (𝐸𝐹) to get (along
one direction x, so paying attention only to 𝑗𝑥 and 𝐸𝑥 components of current and
electric field)

𝜎 =
𝑗𝑥

𝐸𝑥
∼ 𝑒2 〈

𝑣2
𝐹

〉
𝑥
⟨𝜏⟩ 𝑁 (𝐸𝐹) (2.2)

where 𝜎 = 1/𝜌 is the conductivity (and 𝜌 is the resistivity),
〈
𝑣2
𝐹

〉
𝑥

is a sort of aver-
aged Fermi velocity favoring the x direction, and ⟨𝜏⟩ is an averaged scattering time.
Although this analysis is very rough, it gets the point across that the conductivity is
highest when the band structure allows for high Fermi velocity and density of states.
If the band contains a gap, 𝑁 (𝐸𝐹) → 0 in the gap and the material is insulating,
which results in very low conductivity. Scattering mechanisms tend to decrease the
scattering time 𝜏 and reduce the conductivity, and higher temperature tends to blur
the states about the Fermi energy by broadening − 𝜕 𝑓 0 (𝒌)

𝜕𝜖 (𝒌) by a factor of roughly 𝑘𝐵𝑇 ,
where 𝑘𝐵 is Boltzmann’s constant. Thus low temperatures more closely reveal the
band structure since the energy scales we work with are of order ≲ a few meV, and
1 K corresponds to broadening of order 0.1 meV.

Although electrical transport measures quantities that are theoretically somewhat
convoluted to relate to the band structure 𝜖 (𝒌), the simplicity of the electrical setup
allows for easy fabrication and placement of the device into well isolated fridges.
In addition, the measurements can sometimes have relatively simple interpretations,
such as zero resistivity in superconductors, and serve as a starting point for many
practical devices, such as Josephson junctions and transistors.

The Hall bar device

Figure 2.6: Demonstration of four-point measurements made on a Hall bar.

More practically, measurements are performed in an idealized geometry such as the
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Hall bar (Fig. 2.6) where the geometry allows for nearly constant electric field down
the length of the device 𝐿. The contacts on either side of the device allow for a
four-point measurement where they are seen as probing the voltage in the rectangular
section of the geometry. This is done by supplying a current 𝐼 and measuring the
longitudinal resistance as 𝑅𝑥𝑥 = 𝑉𝑥𝑥/𝐼. Four-point measurements in most cases
do not contribute contact resistance to the measurement of 𝑉𝑥𝑥 and thus are useful
for low-resistance measurements (as in measurements of superconductors). In two-
dimensional devices, sometimes one refers to the resistivity 𝜌𝑥𝑥 = 𝑅𝑥𝑥𝑊/𝐿, where
the units are sometimes referred to asΩ/square since it is the resistance if the sample
was shaped like a square where𝑊 = 𝐿.

The other form of measurements, mostly relevant under magnetic fields, result
from transverse accumulation of electrons in the device. 𝑅𝑥𝑦 = 𝑉𝑥𝑦/𝐼 is useful for
determining the density of carriers in the device through the Hall effect: 𝑛Hall =

𝐵
𝑅𝑥𝑦𝑒

.
Hall effect measurements can also reveal the effect of magnetization (in that case
called the anomalous Hall effect). Although some may use the convention that
positive 𝑅𝑥𝑦 results from hole carriers (negative 𝑛), we will generally use the opposite
convention: positive 𝑅𝑥𝑦 results from electron carriers.

Landau levels
A useful technique in two-dimensional transport measurements is enabled when
we apply a large out-of-plane magnetic field to the device. If the sample is clean
enough, electrons inside the device effectively form orbits and localize, resulting
in an insulating bulk. However, electrons along the edges of the device form one-
dimensional chiral edge states that disfavor backscattering, resulting in longitudinal
𝑅𝑥𝑥 ≈ 0 (Fig. 2.7). 𝑅𝑥𝑦 measurements using contacts on opposite sides of the device
also result in quantized resistance 𝑅𝑥𝑦 = ℎ

𝐶𝑒2 where 𝐶 is an integer representing the
number of edge states and is also related to the topology of the system. The number
of edge states depends on both magnetic field 𝐵 and the density of electrons in the
system 𝑛. This effect is called the integer quantum Hall effect.

The explanation for this behavior results from the quantized energy levels that result
from electrons in cyclotron orbits, which in the case of quadratic bands is

𝐸 = ℏ𝜔𝑐 (𝑁 + 1/2) (2.3)

where 𝜔𝑐 = 𝑒𝐵/𝑚∗, 𝑚∗ is the effective mass, and 𝑁 is an integer. In monolayer
graphene, due to the Dirac cone dispersion, the equivalent equation is
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Figure 2.7: Demonstration of the resistance measured in a 2D system at high enough
magnetic fields to display the quantum Hall effect.

𝐸 = ℏ𝜔𝐷sgn(𝑁)
√︁
|𝑁 | (2.4)

where 𝜔𝐷 = 𝑣𝐹
√︁

2𝑒𝐵/ℏ is the cyclotron frequency for Dirac bands. As the Fermi
energy is changed in the system, these energy levels (called Landau levels) are filled
sequentially. For a schematic, see Fig. 2.8a. When the Fermi energy is placed on a
Landau level, there is a high density of states that allows for conduction of electrons
and quick filling of the Landau level. However, when in the gap between the Landau
levels, the quantum Hall effect picture described above causes electrons in the bulk
to localize while edge states dominate the transport. Thus, oscillations in 𝑅𝑥𝑥 are
seen as a result of tuning the either electron density 𝑛 (which fills sequential Landau
levels) or the spacing of the Landau levels through 𝐵. The resulting trajectory of
Landau level gaps in 𝑛-𝐵 parameter space is represented in the following simple
relationship

𝑛

𝑛0
= 𝐶

𝜙

𝜙0
(2.5)

where 𝑛0 = 1/𝐴 is a normalization factor involving area 𝐴 that is ultimately canceled
out, 𝜙 = 𝐵 · 𝐴 is the magnetic flux, 𝜙0 = ℎ/𝑒 is the magnetic flux quantum, and
𝐶 is the integer factor mentioned above. When both 𝑛 and 𝐵 can be tuned while
measuring 𝑅𝑥𝑥 , a fan-like diagram results (Fig. 2.8b, c). Each Landau level gap has a
slope corresponding to ℎ/𝐶𝑒, and the values of𝐶 present depend on the degeneracy
of the system. For a monolayer of graphene, 𝐶 takes the values ±4(𝑁 + 1/2) with
𝑁 = 0, 1, 2 . . ., or a sequence of ±2, ±6, ±10, etc. (Fig. 2.8b). The factor of
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1/2 in the equation is unique to graphene and results from the 𝜋 Berry phase [59,
60]. A bare Bernal bilayer of graphene returns 𝐶 = ±4𝑁 where 𝑁 = 1, 2, 3 . . .,
or a sequence of ±4, ±8, ±12, etc. In both cases, the separation of 𝐶 values by 4
represents the fourfold spin and valley degeneracy. It is also important to note that
the origin of the fans is at the base of the band, where the band is unfilled. In the
case of graphene that is the charge neutrality point at 𝑛 = 0. Often, intermediate
Landau levels are seen at large magnetic fields, due to the magnetic field breaking
the degeneracies of the system.

Figure 2.8: Schematic Landau level energy and fan diagrams. (a) Energy structure
of Landau levels in a Dirac cone. The spacing between the Landau levels can
be changed with magnetic field, and electron density tunes the Fermi level up or
down. (b) Example Landau fan schematic for monolayer graphene. (c) Example
Landau fan schematic for TBG at 𝜃 = 1.1°, showing the fan originating from the
dispersive bands after full filling (green) and a fan originating from half filling with
a degeneracy of 2.

TBG fan diagrams are slightly more complex because most often one of two cases
prevails.

1. Naively, TBG is just two separate sheets of monolayer graphene. If interlayer
coupling is relatively small, which is the case in large-angle TBG, the degen-
eracy from the added layer leads to twice the indices of monolayer graphene,
or a sequence of ±4, ±12, ±20, and this is observed in TBG with twist angle
1.8° [61], for example.

2. When the twist angle of TBG is reduced to near the magic angle or below,
there are a few more considerations. The expected picture should be very
similar to the case above since, despite strong interlayer coupling, there is still
a supposed eight-fold degeneracy of spin, valley, and mini-valley. However, a
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four-fold degenerate sequence matching Bernal bilayer graphene is generally
seen experimentally [20, 43], likely due to an instability to strain effects [62].
The main way to tell TBG apart from Bernal bilayer graphene is through the
satellite fans originating from the fully filled bands at 4 electrons or holes
per moiré unit cell and possibly from 2 electrons or holes per moiré unit cell
or other correlated insulator states. Interestingly, when fans are visible at 2
electrons per moiré unit cell, the sequence has two-fold degeneracy: ±2, ±4,
±6, etc. See Fig. 2.8c for an example schematic with both full-filling satellite
fans and a fan from positive half filling.

Finally, if electron density 𝑛 is hard to determine, it is useful to measure the frequency
of the oscillations as 𝐵 is varied with constant 𝑛. Usually these oscillations in 𝑅𝑥𝑥 (𝐵)
are referred to as Shubnikov-de Haas (SdH) oscillations, and they can be measured
even before the quantization in the quantum Hall effect sets in. The important
relationship is [6]

Δ

(
1
𝐵

)
=

2𝜋𝑒
ℏ𝐴𝐹

(2.6)

where 𝐴𝐹 is the Fermi surface area, and Δ(1/𝐵) is the period of oscillations. The
common way to measure the Fermi surface area involves taking the Fourier transform
of 𝑅𝑥𝑥 measurements represented in the variable 1/𝐵, leading to frequencies 𝑓1/𝐵 =
ℏ𝐴𝐹
2𝜋𝑒 . For the case of an isotropic 2D Fermi surface, 𝐴𝐹 = 𝜋𝑘2

𝐹
, and 𝑘2

𝐹
= 4𝜋𝑛/𝑔,

where 𝑔 is the degeneracy of the bands. This leads to 𝑛 = (𝑔𝑒/ℎ) 𝑓1/𝐵, which will
be referred to again in Section 6.3.

2.3 Dilution fridge setup and electronics
In this thesis, nearly all the measurements have been performed in our bottom-
loading Oxford Triton dilution fridge (Fig. 2.9). The dilution fridge uses a multi-
stage cooling system, with the final stage utilizing a pumping action on a mixture
of He3 and He4 isotopes to reach a base temperature of about 20–25 mK. The plate
containing the mixture, and thus the lowest temperature stage, is the mixing chamber
plate. The fridge is equipped with 48 DC lines and a uniaxial superconducting
magnet that can reach up to 8 T. Since the base temperature is in a sort of equilibrium
point for the fridge—where no extra heaters have to be applied—and since the
low temperatures are generally favorable for measurements, data reported here is
generally taken at the base temperature unless otherwise stated.
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Figure 2.9: Figures showing the Oxford Triton with all the thermal shields on (a),
and showing the plates at each temperature stage (b).

Our dilution fridge uses multiple temperature stages, with fully-encapsulating shields
thermally anchored to each stage, to minimize heat transfer through thermal radi-
ation. However, one source of radiation still needs to be suppressed: transmission
through the wires to the device [63]. Unless filtering is applied, the electron tem-
perature will be significantly higher than the base temperature of the fridge. For DC
measurements taken below kHz frequencies, the general approach involves repeated
thermalization steps and low-temperature passive filtering of frequencies outside of
the range used.

For the filtering used on our fridge, we largely followed the setup of Ref. [64],
although we did not implement high-frequency filtering beyond the 𝜋 and RC filters.
Our setup has been thermalized by first installing an extra 5 m of constantan (a
copper-nickel alloy with low thermal conductivity) twisted pair cables (in addition
to ∼ 2 m already installed), which is wound around and glued with GE varnish
onto oxygen-free copper cylinders that are bolted to each stage of the fridge. The
slightly resistive nature of the constantan wires (∼ 66 Ω/m) causes a small amount
of attenuation at each stage.

For high-frequency filtering, we first used three different passive 𝜋 filters in series,
which filter out bands of 200 MHz–4 GHz (Mini-circuits LFCN-80+), 2–7 GHz
(LFCN-1400+), and 7–18 GHz (LFCN-5000+). Since the stop-band range of the
LFCN-80+ is where many modern microwave electronics transmit, we included two
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𝜋 filters of that range for each line. Then, we used a two-pole RC filter, consisting
of 1 kΩ resistors cylindrical MELF-type resistors known to retain resistivity to
low temperatures and 1–10 nF C0G/NP0 ceramic capacitors. Most lines use 1 nF
capacitors, resulting in a low-pass cutoff frequency of about 159 kHz, whereas a few
lines use 10 nF capacitors, resulting in a cutoff frequency of about 16 kHz. Since
devices measured, the lines, and current-limiting resistors add extra resistivity to the
circuit and consequently increase the time constant of the filters, this range allowed
for noise filtering with reasonable time constants. The components for each of the 48
lines were arranged on surface-mount PCBs enclosed in custom-made gold-plated
oxygen-free copper boxes attached to the mixing chamber plate (Fig. 2.10). Each
PCB was supplied with plenty of grounding/thermalization anchors through screws
to the copper boxes. Between the filtering boxes and the connection to the sample
puck, the wires were protected with copper braiding and copper plates. Additional
VLFX-80+ 𝜋 filters were added between the room-temperature electronics and the
fridge for further filtering.

Figure 2.10: Picture of the filter boxes (lids are also placed over the PCBs) loaded
onto the mixing chamber plate.

The sample PCB is loaded into an encapsulated puck, shown in Fig. 2.11. Parts
were fabricated out of oxygen-free copper and coated with gold to thermalize the
sample and position it such that an out-of-plane magnetic field can be applied. An
additional piece was constructed for holding the sample in an in-plane magnetic
field orientation.

For the vast majority of measurements, lock-in amplifiers were used, specifically
Stanford Research models 830 and 865a. Frequencies of 7–20 Hz allowed for the
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Figure 2.11: Pictures of the sample puck open, showing the PCB in the out-of-plane
field orientation (a), and closed (b).

low-noise filtering that lock-in amplifiers can provide while remaining in the DC
limit. Generally, in graphene samples, 0.5–1 nA was used, maintained by a series
30 kΩ–10 MΩ resistor added to the line. Gate voltages were supplied by Stanford
Research SIM928 battery-supplied isolated voltage sources, and occasionally these
sources provided offset biases that, when added with a summing amplifier (Stanford
Research SIM980), allowed for 𝑑𝑉/𝑑𝐼 measurements.
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C h a p t e r 3

SUPERCONDUCTIVITY STABILIZED IN TWISTED BILAYER
GRAPHENE-WSE2 HETEROSTRUCTURES

Twisted bilayer graphene (TBG) around the magic angle of ∼1.1° is now well
known for exhibiting a rich phase diagram of correlated insulating, superconducting,
ferromagnetic, and topological phases [20, 43, 44, 65–67]. While these phases
have been further studied for a number of devices with both electrical transport
measurements [45, 47–50, 52, 68–70] and scanning probe measurements [10, 14,
54, 57, 71–75], the origins, interplay, and specific symmetry breaking mechanisms
of the phases are still elusive, particularly for the superconducting state. We modified
the traditional TBG heterostructure by picking up TBG with a monolayer of tungsten
diselenide (WSe2), widely known to proximitize spin-orbit coupling into monolayer
[28, 29, 76] and bilayer graphene [32, 77], in order to study which phases are
stabilized and which are suppressed. To our surprise, the superconducting phase
is stabilized and persists when correlated insulating states disappear, and even as
the non-correlated moiré-induced gaps disappears. This contrasts with the standard
picture, where superconductivity and correlated insulators have been observed only
for angles within ±0.1° from the magic-angle value of 1.1°.

3.1 Twisted bilayer graphene picked up with WSe2

To get an idea of why changing the surrounding layers of graphene could be beneficial
for studying TBG, we point out that the physics of the correlated phases in TBG is
already known to be strongly affected by the dielectric environment. In particular,
since insulating hexagonal boron nitride (hBN) and graphene exhibit similar crystal
lattices, the relative alignment between the hBN and TBG is critical. For example, a
ferromagnetic state near 𝜈 = +3 was observed in devices where hBN aligns with TBG
[66, 67]. However, in such devices the band structure of the flat bands is strongly
altered [67], and superconductivity—typically observed when hBN and TBG are
misaligned—is absent. Recent work using a very thin hBN layer separating a back
gate from TBG additionally suggests that electrostatic screening plays a role in the
appearance of insulating and superconducting states [47] (see also Ref. [48]). These
experiments exemplify the effects of hBN layers on the phase diagram in hBN-TBG-
hBN structures and highlight the importance of understanding how microscopic
details of the dielectric environment alter the properties of correlated phases.
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Figure 3.1: A schematic model of the devices studied in this chapter and the next,
TBG picked up with WSe2 and encapsulated in hBN.

Here, instead of the usual hBN-TBG-hBN structures, we investigate devices made
from hBN-TBG-WSe2-hBN van der Waals stacks in which a monolayer of WSe2

resides between the top hBN and TBG (Fig. 3.1). The WSe2 has been grown by
the groups of X. Xu and J.-H. Chu [46]. Like hBN, flakes of transition metal
dichalcogenides, such as WSe2, can be used as high-quality insulating dielectrics
for graphene-based devices [78]; however, the two van der Waals dielectrics differ
in several ways that may alter the TBG band structure. First, unlike hBN, the WSe2

and graphene lattice constants differ significantly (0.353 nm for WSe2 and 0.246
nm for graphene, Fig. 3.2). This mismatch implies that the moiré pattern formed
between TBG and WSe2 has a maximum lattice constant ∼ 1 nm—much smaller
than that formed in small-angle TBG (> 10 nm). Second, it is well-established
that WSe2 can induce a spin-orbit interaction (SOI) in graphene via van der Waals
proximity [29, 32, 76, 77]. And finally, due to hybridization effects, WSe2 may also
change both the Fermi velocity of the proximitized graphene sheet and the system’s
phonon spectrum, although we have not found direct evidence of these changes so
far. We chose to use monolayer WSe2 in particular because of its large band gap
[79] that allows applying a large range of gate voltages. It has also been suggested
previously that a monolayer induces larger spin-orbit coupling in graphene compared
to few-layer WSe2 [29].
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Figure 3.2: Ball and stick models for the graphene (a) and WSe2 (b) crystals, viewed
from the top for size comparison. Shown is the lattice constant for each crystal.

3.2 Superconductivity in devices with twist angles as low as 0.79°
We have studied four TBG-WSe2 devices and concentrate mostly on two of them
(see Fig. 3.10 and Fig. 3.11 for data from two additional devices). Optical images
of the four devices are shown in Fig. 3.3. The device bottom hBN thicknesses for
D1, D2, D3, and D4 are 62 nm, 40 nm, 48 nm, and 56 nm, respectively. All four
devices were stacked and then placed on pre-defined Au back gates (orange area in
Fig. 3.3). D4 differs from the other devices since it features monolayer WSe2 on both
the top and bottom of the device. Surprisingly, we find robust superconductivity in
all studied TBG-WSe2 structures, even for twist angles far outside of the previously
established range.

Fig. 3.4 shows a representative phase diagram of longitudinal resistance R𝑥𝑥 with
respect to temperature and moiré filling factor 𝜈. 𝜈 represents the number of electrons
per moiré unit cell, and negative 𝜈 represents holes per moiré unit cell. Due to the
spin and valley degeneracy (fourfold degeneracy), there is an expected band gap at
𝜈 = ±4.

The conversion from backgate voltage to filling factor 𝜈 relies on the determination
of the twist angle, and the details of the twist angle determination are important to
our claims. First, note that the Moiré unit cell depends on the twist angle according
to 1.17 (where we have simplified using the small-angle approximation)

𝐴𝑀 ≈
√

3𝑎2

2𝜃
. (3.1)

Since 𝜈 = 4 corresponds to a fully filled moiré unit cell, we can derive the twist
angle 𝜃 by relating the electron density at full filling to the moiré unit cell area
𝑛full = 4/𝐴𝑀 , which results in
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Figure 3.3: Optical images of devices D1–D4. Electrodes that are used in the
measurements and corresponding twisted angles are labeled for each device. The
ones marked with blue lines are used for measuring Hall conductance in Fig. 3.13.
The scale bar in each panel corresponds to 15 𝜇m.

𝜃2 ≈
√

3𝑎2

8
𝑛full, (3.2)

where 𝑎 = 0.246 nm is the lattice constant of graphene, and 𝜃 is in radians. nfull

can be determined roughly by using the geometric capacitance between the gate
and graphene of 𝐶 = 𝜖𝑟𝜖0/𝑑, where 𝐶 is the capacitance per unit area, 𝜖𝑟 ≈ 3
is the dielectric constant of hBN, and 𝑑 is the bottom hbN thickness (determined
optically or using atomic force microscopy). Then the backgate voltage applied can
be converted to electron density with 𝑛 = 𝐶𝑉𝑏𝑔. When the x-axis of a plot such as
Fig. 3.4 has been converted to density, the position of the full-filling insulators can
be roughly determined, which gives us 𝑛full.
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Figure 3.4: The R𝑥𝑥 plot recorded vs. temperature and 𝜈 for device D1 at 0.97°.

However, this only roughly determines the twist angle, and using Landau levels is
much more accurate. Landau fan diagrams plotted as R𝑥𝑥 oscillations vs. 𝑉𝑏𝑔 and
magnetic field 𝐵 allow us to accurately determine, first, the backgate capacitance
by fitting lines to the resistance minima about 𝜈 = 0 that make up the Landau
level sequence of TBG. This avoids the problem of the approximate 𝜖𝑟 value of
hBN and inaccuracy in thickness determination. Then, fitting lines to Landau
fans originating from the full-filling points (and optimally also from half-filling
insulators) allow extrapolation to 𝑛full, ultimately resulting in twist angle accuracy
of about 0.01–0.02°.

Figure 3.5: R𝑥𝑥 vs. T and 𝜈 for measured contact pairs with 0.87° (a) and 0.79° (b)
twist angles.

For device D1, 𝜃 = 0.97°, a superconducting pocket emerges on the hole side near
𝜈 = −2 with a maximal transition temperature 𝑇𝑐 ≈ 0.8 K. To our knowledge, this is
the smallest angle for which superconductivity has been reported for hole doping.
Careful inspection reveals another weak superconductivity pocket close to 𝜈 = +2.
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However, despite the small twist angle—falling outside the 𝜃M ± 0.1° range—the
observed phase diagram resembles that of regular high-quality magic-angle hBN-
TBG-hBN structures [20, 44]. Evidence of correlated insulators are also present in
this device, visible as resistance peaks at 𝜈 =2, 3 and will be discussed more below.

Fig. 3.5 shows the temperature dependence of resistance over two TBG regions
corresponding to angles 𝜃 = 0.87° and 𝜃 = 0.79°; in both cases superconducting
transitions are clearly visible, this time only on the electron side. The transition
temperatures are 𝑇𝑐 ≈ 600 mK and 380 mK, respectively. Aside from the drop in
longitudinal resistance (Rxx) to zero, it helps to have another tool for confirming the
superconductivity. Otherwise, the resistance drop could possibly be explained by a
phase transition to a low-resistance state [80]. In three-dimensional superconductors,
one may measure the Meissner effect, or the expulsion of magnetic fields, but
this is more difficult in a system consisting of two atomic layers (so very small
magnetization) and that is potentially prone to vortices and other modulations or
defects in the ideally uniform superconducting area.

Measurements of resistivity under a DC bias current and at a range of magnetic fields
serve as a useful tool since they can reveal the robustness of the superconducting
phase to magnetic field and phase coherence effects that manifest as oscillations as
the magnetic field changes. These phase-coherent oscillations are reminiscent of
a Josephson junction where two superconducting electrodes, decoupled by a non-
superconducting element, exhibit predictable magnetic field oscillations. For an
ideal rectangular geometry, the oscillations have a characteristic Fraunhofer pattern
(similar to the pattern seen by diffracting light through a slit). Thus we call the
diagrams Fraunhofer-like patterns, and we display the plots for three mentioned
twist angles in Fig. 3.6. These are qualitatively similar to the typical hBN-TBG-
hBN devices [20, 43, 44]. The shape is diamond-like, representing a finite phase
space in DC bias current and magnetic field where superconductivity exists, and it
exhibits small oscillations. In our devices, we typically see periods of 1.5–3 mT. If
interpreted as an effective junction area, where oscillations are periodic in 𝐵 = Φ0/𝐴,
whereΦ0 = ℎ/2𝑒 is the superconducting flux quantum, and 𝐴 is the junction area, we
obtain 𝐴 ∼ 0.67–1.33 𝜇𝑚2, consistent with the length scale of the device geometry.
Josephson Junction behavior likely occurs when the superconductivity in the devices
has some inhomogeneities, and more distinct oscillations are observed by measuring
the patterns at 𝜈 closer to the edge of the superconducting regions [20]. Fig. 3.7
shows Fraunhofer-like patterns for D1 at other filling factors. Panel (a) shows what
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a Fraunhofer-like pattern looks like for the weak superconductivity found on the
electron side, and panel (b) shows more distinct oscillations due to being closer to
the edge of the superconducting range.

Figure 3.6: Fraunhofer-like patterns for the 0.97° region at 𝜈 = −2.4 (a), 0.87° re-
gion at 𝜈 = 1.96 (b), and 0.79° region at 𝜈 = 2.3.

3.3 Disappearing correlated insulators and full-filling gaps at low twist angles
Starting at 0.97°, the presence of robust correlated insulating states observed at
filling factors 𝜈 = +2, +3 allows for further analysis based on the higher-temperature
data shown in Fig. 3.8. As seen in panels (a),(b), the mentioned correlated insulators
have an exponentially increasing resistance below a few Kelvin. However, small
resistance peaks seen at other filling factors are less developed and do not show
insulating behavior (Fig. 3.8c). Measurement of the activated gaps, explained in
more detail below, determines the correlated insulator gaps to be Δ+2 = 0.68 meV
and Δ+3 = 0.08 meV (see Fig. 3.9f).

Figure 3.7: Additional data from device D1 (0.97°). (a) Fraunhofer-like pattern for
electron doping, at 𝜈 = 1.58. (b), (c) Additional Fraunhofer-like pattern for hole
doping, 𝜈 = −2.1 (b), and 𝜈 = −2.5 (c).



49

Figure 3.8: Additional temperature data for device D1 (0.97°). (a) Rxx as a function
of 𝜈 and Temperature up to 10 K. (b) Temperature dependence of Rxx for 𝜈 = 2 and
𝜈 = 3 showing insulating behaviour. (c) At other partial integer filling factors Rxx
increases with temperature, consistent with metallic behavior.

Although superconductivity persists for all three angles, the correlated insulators
are quickly suppressed as the twist angle is reduced. This suppression is not
surprising, as for angles below 𝜃M, the bandwidth increases rapidly and, moreover,
the characteristic correlation energy scale 𝑒2/4𝜋𝜖𝐿𝑚 also diminishes due to an
increase in the moiré periodicity 𝐿𝑀 = 𝑎/2 sin(𝜃/2) [10, 11, 65, 71–73]. For the
lower angle of 𝜃 = 0.87° correlated-insulating behavior is heavily suppressed at
all filling factors. In Fig. 3.5a, a peak in longitudinal resistance versus density is
visible only around 𝜈 = +2 above the superconducting transition. Data for a larger
temperature range (Fig. 3.9a,b) shows that the resistance peak near 𝜈 = +2 survives
up to 𝑇 = 30 K, and also reveals a new peak near 𝜈 = +1 in the temperature range 10–
35 K. These observations suggest that electron correlations remain strong, though
the corresponding states appear to be metallic as the overall resistance increases
with temperature. The decreasing resistivity with 𝑇 is in contrast to the correlated
insulators observed in the 0.97° device (Fig. 3.9f).

Fig. 3.9e shows fitting for activation gaps at full filling for 0.87° with dark black/blue
dots. The log conductivity (𝜎) vs. 1/𝑇 plot allows for linear fitting to exponential
behavior of the form 𝜎 ∝ 𝑒−Δ/2𝑘𝐵𝑇 , shown with green lines (the same fit is applied to
the 0.97° correlated insulators in panel f). At low temperatures (high 1/𝑇), however,
the conductivity is known to saturate due to variable-range hopping, which takes the
form 𝜎 ∝ exp[−(𝑇0/𝑇)1/3] [61]. The red dotted lines show the fit to a model that
includes both behaviors. For this angle, we measure activation gaps at full filling
(i.e., at 𝜈 = ±4) of Δ+4 = 8.3 meV and Δ−4 = 2.8 meV (the red line fits give 9.4
meV and 3.7 meV, respectively)—far smaller than the gaps around 𝜃M (for example,
see Fig. 3.10 for full-filling gaps of Δ+4 = 29.2 meV and Δ−4 = 21.1 meV and also
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activated behavior for correlated states at 𝜈 = ±2). The trend represented in our
devices at low twist angles is in line with previous results that report a disappearance
of the band gap separating dispersive and flat bands at around 𝜃 = 0.8° [81, 82].
This full-filling gap behavior also informs the interlayer tunneling parameters we
used in our continuum model Hamiltonian 𝑤𝐴𝐴 = 55 meV and 𝑤𝐴𝐵 = 105 meV, as
the gaps close near 0.8° as seen in Fig. 1.9, yet the magic angle is still in the range
of 1–1.1°.

Figure 3.9: Larger-temperature-range data showing Rxx as a function of filling factor
𝜈, for 𝜃 = 0.87° (a), (b) and 𝜃 = 0.79° (c), (d). Line cuts shown in (b) are taken
from the same data set as (a), and line cuts shown in (d) are taken from (c). (e)
Conductance vs. 1/T for full filling 𝜈 = ±4 extracted from the data in (a) (blue and
black) and (c) (cyan and gray). The behavior for 𝜃 = 0.79° shows much smaller
variation in temperature. (f) Conductance vs. 1/T for partial filling factors 𝜈 = +2,
+3 (shown with activated gap measurements) for 0.97° showing insulating behavior.
In contrast, the inset shows that for 0.87°, partial fillings 𝜈 = 1, 2 show metallic
behavior.

Measurements at the smallest twist angle, 𝜃 = 0.79°, particularly confirm the full-
filling gap trend. Along with the lack of insulating states at any partial filling,
the resistance at full filling is even more reduced (Fig. 3.9c,d). The relatively
low resistances < 2 kΩ, measured at full filling—which are less than 15% of
the resistance at the charge neutrality point (CNP)—suggest a semi-metallic band
structure around full filling, consistent with theoretical expectations for TBG at 𝜃 =
0.79° [81] and the resistivity of a dilute 2D electron gas [83]. Surprisingly, despite
the complete absence of both full-filling band gaps and correlated insulators, the
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Figure 3.10: Activated gap measurements for the 𝜈 = ± 4 full filling gaps in device
D3 at 1.04°. The higher temperatures required for this measurement were enabled
by measuring this sample in a Quantum Design PPMS system with continuous
temperature regulation from 1.7–300 K. Inset: activated gap measurements of the
correlated states at 𝜈 = ±2.

superconducting low-resistance pocket near 𝜈 = +2 is clearly resolved (Fig. 3.5b,
Fig. 3.6c).

We have also reproduced the finding in another device at a twist angle of 0.80°.
Despite having a slight change in geometry, with WSe2 on both top and bottom of
TBG, we observe resistance at full-filling that is less than at the CNP, and super-
conductivity is found on the electron side (Fig. 3.11a). Fig. 3.11b shows another
measurement commonly performed on two-dimensional superconductors. The dot-
ted line marks the point where the I-V curve matches 𝑉𝑥𝑥 ∝ 𝐼3, which is known as
the BKT (after Berezinskii, Kosterlitz, and Thouless) transition temperature, and
is seen here near 250 mK. Fig. 3.11c shows the Fraunhofer-like pattern, further
confirming superconductivity.

Both the disappearance of the correlated insulators and the vanishing gap between
flat and dispersive bands for low angles suggest that the additional WSe2 monolayer
does not significantly change the magic angle (on the scale of angles considered
here). Since superconductivity survives at much lower angles than the correlated
insulating states, our observations strongly suggest the two phenomena have dif-
ferent origins [47, 48]. Note also that the close proximity of the dispersive bands
does not seem to have a major impact on the superconducting phase. Our findings
of superconductivity in TBG with metallic band structure put strong constrains on
the proposed theoretical explanations and are the main result of this work. For
example, our observations are in contrast with scenarios wherein superconductiv-
ity descends from a Mott-like insulating state as in high-Tc superconductors [7]
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Figure 3.11: Additional data for device D4 (0.80°). (a) R𝑥𝑥 as a function of 𝜈 and
temperature to 2 K, revealing a superconducting pocket over the range of 2 < 𝜈 <
3.2 and resistance at full filling (𝜈 = |4|) less than at the charge neutrality point. (b)
Current vs. voltage at 𝜈 = 2.79, at temperatures from 50 mK to 900 mK, in 50 mK
steps. The main plot is on the log scale in both axes, revealing a BKT transition
temperature near 250 mK. Inset: I-V dependence for the same temperatures. (c)
Fraunhofer-like pattern for D4 at 𝜈 = 2.40.

and more consistent with phonon-only mediated superconductivity [84–86]. We
emphasise, however, that electron correlations may still prove important for the
development of superconductivity. For instance, even for the smallest angle of 𝜃
= 0.79°, the superconducting pocket is seemingly pinned to the vicinity of 𝜈 = 2.
Additionally, as shown in Fig. 3.9, at higher temperatures residual Rxx peaks can
still appear at certain integer filling factors despite the absence of gapped correlated
insulating states. It is thus hard to rule out the possibility that superconductivity
arises from correlated states of metallic nature that may be present at smaller angles
and near integer values of 𝜈 in analogy to other exotic superconducting systems
[87–89].

3.4 Weak antilocalization measurements in TBG-WSe2

Measurements in finite magnetic field reveal further insights into the physics of
TBG-WSe2 structures. First, in small fields we observe a conductance peak at
𝐵 = 0 mT, indicative of weak antilocalization (WAL) and consequently the presence
of strong SOI. Previous works established that WSe2 can induce large SOI into
monolayer and bilayer graphene [29, 32, 77], and hence the generation of SOI in
the proximitized layer of TBG is expected. In Fig. 3.12c, we see the WAL peak’s
development in the flat bands as the temperature is lowered from 700 mK to 25
mK. Each peak is taken by averaging over a small range of gate voltages (shown in
Fig. 3.12a, b, colored dots), which averages out the noise due to mechanisms such
as universal conductance fluctuations [90]. The data taken at 900 mK—where the
WAL peak has disappeared—has been subtracted from experimental points at other
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Figure 3.12: WAL data measured in D4 (𝜃 = 0.80°). (a) R𝑥𝑥 as a function of backgate
voltage, V𝑏𝑔, for the 0.80° contacts of D4. The black line shows the voltage range
used in the flat bands, which corresponds to the plots in (b)–(d). The red line, from
the dispersive bands, corresponds to plots in (e), (f). (b) The change in conductivity,
relative to the 0 mT point, as a function of magnetic field (Δ𝜎) taken at the mentioned
range of gate voltage at 25 mK. (c), (d) show averaged data from (b) for different
field ranges. The data in (e), (f) show a WAL peak in the dispersive bands near V𝑏𝑔

= −6 V (red line in (a)). Data in (e) was taken at 25 mK. In (f), the data points at
each temperature are offset by 0.1 e2/h for clarity.

temperatures, and the data points have been symmetrized about 0 mT. The peak can
be easily missed unless the averaging process mentioned above is performed, and
the magnetic field sweeps very slowly.

In order to fit the peaks, we implemented the theory of WAL in monolayer graphene
[91] since the low-energy band structure in TBG retains Dirac cones, although
they have been flattened. The theory has been previously used in graphene-TMDC
heterostructures [29, 90] as well as in bare monolayer graphene on SiO2 [92]—but
in the bare monolayer case, it only occurs close to the CNP and at temperatures >5
K, ruling out this effect in TBG (since the WAL peaks we observe only occur below
1 K and persist away from the CNP). The relevant equation is

Δ𝜎(𝐵) = − 𝑒2

2𝜋ℎ
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(3.3)

where 𝐹 (𝑥) = 𝑙𝑛(𝑥) + 𝜓(0.5 + 𝑥), 𝜓 is the digamma function, and 𝜏−1
𝐵

= 4𝑒𝐷𝐵/ℏ.
𝐷 = 𝑣2

𝐹
𝜏/2 is the diffusion constant, which is set by the Fermi velocity (in our
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case we use 𝑣𝐹 ≈ 1 × 105 m/s, reduced from the monolayer graphene value of 106

m/s) and the Drude scattering time 𝜏 =
𝜇𝑚∗

𝑒
= ℏ𝜎

𝑣𝐹𝑒
2

√︃
𝜋
|𝑛| , which is derived from the

effective mass 𝑚∗ = ℏ
√︁
𝜋 |𝑛|/𝑣𝐹 and measurements of mobility 𝜇 = 𝜎/|𝑛|𝑒 to be

∼ 1.5 ps. Then we are left with three fit parameters: 𝜏𝜙, 𝜏𝑎𝑠𝑦, 𝜏𝑠𝑜. The spin-orbit
relaxation time parameters 𝜏𝑎𝑠𝑦—which results mostly from Ising-like asymmetric
SOI—and 𝜏𝑠𝑜 = (𝜏−1

𝑎𝑠𝑦+𝜏−1
𝑠𝑦𝑚)−1—which combines symmetric (𝜏𝑠𝑦𝑚) and asymmetric

SOI terms—are intrinsic to the system and do not vary with temperature. However,
the dephasing parameter 𝜏𝜙 decreases with increasing temperature. Thus, we can
constrain the fits by only varying 𝜏𝜙 for curves at different temperatures.

Since there are several fit parameters, and the applicable range of Eq. (3.3) is
difficult to determine precisely, two magnetic field ranges are shown, along with
their dotted-line fits in Fig. 3.12c, d. Whereas the total spin-orbit scattering time
𝜏𝑠𝑜 ≈ 10 ps better reproduces the low-field data in panel (c), 𝜏𝑠𝑜 ≈ 1–3 ps captures
the saturation at larger fields with asymmetric and symmetric relaxation time ratio
(𝜏𝑎𝑠𝑦𝑚/𝜏𝑠𝑦𝑚) varying in range 0.3–3. The values of 𝜏𝑠𝑜 obtained here correspond to
SOI energies [93] in the range of 0.5–1 meV. We note that, in the case of TBG, a
more detailed analysis with a correct model for describing WAL in TBG is likely
required for a more accurate quantitative comparison. Regardless, the WAL peaks
are an indication of strong SOI in WSe2/TBG heterostructures. Finally, we also see
evidence of WAL in the dispersive bands, as shown in Fig. 3.12e, f.

3.5 Landau Fans
The second important finding that results from finite magnetic field measurements
comes from Landau fan diagram measurements. For all angles measured in our
range of 0.79°–0.97° we find that even at modest magnetic fields, above 𝐵 =
1 T, gaps between Landau levels are well-resolved, showing a fan diagram that
diverges from the CNP (Fig. 3.13). The slopes of the dominant sequence of Rxx

minima correspond to even-integer Landau level fillings±2,±4,±6, etc.—indicating
broken four-fold (spin-valley flavor) symmetry. By contrast, the majority of previous
transport experiments [20, 43–45, 47, 48, 54] near the magic angle report a Landau-
fan sequence ±4, ±8, ±12 at the CNP (see Section 2.2), with broken-symmetry
states being only occasionally observed at the lowest Landau level (corresponding
to the ±2 sequence) [44, 54, 66]. In addition to Rxx minima corresponding to the
gaps between Landau levels, we also measured quantized Hall conductance plateaus
with distinct quantization at ±2, ±4, ±6, shown in Fig. 3.14. The well quantized
plateaus further corroborate the two-fold symmetry and indicate the low disorder in
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Figure 3.13: Longitudinal resistance Rxx as a function of magnetic field and 𝜈 for
the four regions of twist angle 0.97° (a), 0.87° (b), 0.79° (c), and 0.80° (d). Here
the dominant sequence in the Landau fan is ±2, ±4, ±6, ±8, ±10, as labeled in (b).
After ±10, we find a sequence of ±14, ±18, and ±22, which can also be accounted
for by the SOI, as shown in Fig. 3.17. These mentioned Landau levels up to ±22 are
marked by white lines in each plot. Additional slopes are found in (a) corresponding
to Landau levels −1, +3, −12, as well as short segments corresponding to +5 and
+7 that disappear as the field increases. In (b), (c) we find Landau level +3, but in
(c) +22 seems to be missing. The odd levels are all marked with green lines.

the measured TBG areas. Note also that for the smallest angle (𝜃 = 0.79°), we do
not observe obvious signatures of correlated insulating states, which are sometime
strengthened by magnetic fields, near 𝜈 = 2 up to 𝐵 = 4 T.

3.6 Discussion on spin-orbit coupling effects
The observation of additional Landau levels is also consistent with a scenario in
which the TBG band structure is modified by SOI inherited from the WSe2 mono-
layer. We included spin-orbit coupling in continuum-model calculations by adding
a term to the top layer’s interlayer Hamiltonian 𝐻𝑡 = 𝐻𝑡,Dirac + 𝐻𝑡,𝑆𝑂 , where the
spin-orbit term is

𝐻𝑡,𝑆𝑂 =

∫
d𝒌𝜓†

𝑡 (𝒌)𝑒𝑖𝜃𝜎𝑧/4
(
𝜆𝐼

2
𝜏𝑧𝑠𝑧 +

𝜆𝑅

2
(𝜏𝑧𝜎𝑥𝑠𝑦 − 𝜎𝑦𝑠𝑥) +

𝜆𝐾𝑀

2
𝜏𝑧𝜎𝑧𝑠𝑧

)
𝑒−𝑖𝜃𝜎𝑧/4𝜓𝑡 (𝒌).

(3.4)

The Ising (𝜆𝐼), Rashba (𝜆𝑅), and Kane-Mele spin-orbit parameters reported in the
literature for proximitized SOI in monolayer graphene vary widely in density func-
tional theory calculations [94, 95] and experimental studies [28, 29, 32, 76, 77,
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Figure 3.14: Hall conductance for devices D1 (𝜃 = 0.97°, panel (a)) and D2 (𝜃 =
0.79°, panel (b)) showing quantized steps around the CNP with steps corresponding
to ±2, ±4 and ±6 (in units of 𝑒2/ℎ) being pronounced down to 1.5 T. The less
developed 3𝑒2/ℎ step has also been observed.

93]. Ranges given include 𝜆𝐼 ∼ 1–5 meV and 𝜆𝑅 ∼ 1–15 meV. The wide ranges
are mostly due to the relatively unconstrained parameters when fitting weak antilo-
calization data. While density functional theory does not predict strong Kane-Mele
SOI, some experiments have suggested it could play a role near the CNP [29]. Since
both Ising and Kane-Mele terms contribute similarly to the spin relaxation times
[93], and the band structure of TBG is more complex in comparison to monolayer
and bilayer graphene, it is challenging to distinguish their separate contribution in
our weak antilocalization measurements, so we set it to zero. Although spin-orbit
parameters have not been studied in TBG, the interfacial nature suggests we can
translate the results from monolayer graphene in the way described above.

Fig. 3.15 shows the band structure at the two twist angles of 0.87° (panel (a))
and 0.79° (panel (b)) with 𝜆𝐼 = 3 meV and 𝜆𝑅 = 4 meV. These twist angles are
sufficiently below the magic angle that Hartree correlations [96] are not expected
to warp the bands significantly from their single-particle band structures, and there
are no correlated insulating gaps in the system visible in Fig. 3.9. Closer to the
magic angle, correlations significantly reconstruct the band structure and likely
dominate over the SOI. Nevertheless, the displayed single-particle band structures
show that the presence of SOI lifts the degeneracy of both flat and dispersive bands,
thereby breaking four-fold spin-valley symmetry. In a finite magnetic field, the
resulting Landau levels then descend from two-fold degenerate Kramers states. We
emphasise that the fan diagram has been reproduced in multiple samples—including
a device with WSe2 on both the top and bottom (D4, 0.80°, Fig. 3.13d). The latter
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Figure 3.15: Continuum-model results for valley 𝐾 that include Ising and Rashba
spin-orbit coupling at 0.87°(a)–(c) and 0.79°(d)–(f) twist angles. (a), (d) Band
structure along the high-symmetry directions of the Brillouin zone indicated in
the inset. The line colour represents the out-of-plane spin projection, ⟨𝑆𝑧⟩, and
the dotted horizontal line denotes the chemical potential corresponding to 𝜈 = +2.
(b), (c) and (e), (f) Energy of the upper pair of flat conduction bands, including
spin-orbit coupling. Coloured lines show the Fermi surfaces at 𝜈 = +2, with the
colour indicating the in-plane spin projection. The out-of-plane projection is largely
constant along these surfaces and may therefore be deduced from (a), (d). Black
lines correspond to the Fermi surface without SOI effects. The large spin-orbit-
induced Fermi-surface deformation visible here reflects the flatness of the bands
near the Fermi energy.

observation indicates that mirror symmetry breaking by WSe2 placed on only one
side of the TBG does not account for the observed degeneracy lifting. Odd steps—
which are not generated by the SOI—are occasionally observed for low angles (green
dashed lines in Fig. 3.13). We attribute these steps to additional symmetry breaking,
possibly due to correlation effects originating either from flat-band physics or simply
a magnetic-field-induced effect (e.g., Zeeman splitting or exchange interaction) at
low electronic densities. The band structure is not overly dependent on the details
of the SOI, as is explored in Fig. 3.16. Cases where only the Ising term (panel
(c)), only the Kane-Mele term (panel (f)), and only the Rashba term (panel (h)) are
considered relative to the case without any spin-orbit coupling (panel (a)). When
both 𝜆𝐼 and 𝜆𝑅 are non-zero, the Dirac cones at ±𝜅 generate masses. In contrast,
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when 𝜆𝐼 , 𝜆𝑅, 𝜆KM are individually the only non-zero SOI, only the Kane-Mele term
results in a gapped spectrum at charge neutrality, as indicated in the inset of panel
(f). Aside from this feature, the band structure when 𝜆KM = 3 meV is qualitatively
identical to the band structure without SOI. Nevertheless, the dominant picture is
that of spin-orbit split bands.

Figure 3.16: Continuum model band structure calculations for different SOI param-
eters. (a), (c), (f), (h) Flat-band energies similar to Fig. 3.15. (b), (d), (e), (g), (i), (j)
𝜈 = +2 Fermi surfaces. We consider the cases where no SOI is present along with
cases where only Ising, only Kane-Mele, and only Rashba are present. In (c)–(j),
the non-zero SOI parameter is set to 3 meV. In (c), the bands possess an out-of-plane
spin polarization (⟨𝑆𝑧⟩), which is displayed in colour as per the inset. In (i) and (j),
the colour of the Fermi surfaces indicates the expectation value of the in-plane spin
according to the wheel above (i). All other parameter sets have a zero in-plane spin
projection.

In addition to the degeneracy splitting, our data reveal an apparent recurrence of
4-fold degeneracy for large Landau-level fillings, ±14, ±18, ±22, which are still
offset from the usual sequence of ±16, ±20, ±24. The mechanism of SOI-induced
degeneracy breaking can account for this recurrence as well, as seen in Fig. 3.17.
The model used in this case considers a Dirac cone Hamiltonian at mini-valley 𝜅
and valley flavor 𝐾 (and 𝐾′ results are produced in a similar manner)

𝐻 = −ℏ𝑣𝐹,renorm(𝑖𝜕𝑥𝜎𝑥 + 𝑖𝜕𝑦𝜎𝑦) +
𝜆𝐼

2
𝑠𝑧 +

𝜆𝑅

2
(𝜎𝑥𝑠𝑦 − 𝜎𝑦𝑠𝑥) +

˜𝜆𝐾𝑀
2
𝜎𝑧𝑠𝑧 (3.5)

with renormalized Fermi velocity 𝑣𝐹,renorm ≈ 105 m/s, as is appropriate for the
twist angles considered. The three spin-orbit terms in this case are effective SOI
terms relevant to the moiré Dirac cones and not expected to be the same as the
terms considered above. After including a magnetic field, solving for Landau levels,
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and adding a broadening factor—outlined in more detail in the Supplementary
Information of Ref. [46]—we calculate the results shown in Fig. 3.17a,c. The
Landau level positions (solid lines) and gaps (dotted lines) are considered in panels
(b) and (d). For reasonable SOI effective parameters, the experimental scenario
is realized. SOI remains, so far, the simplest explanation for the additional even
Landau levels observed, though other effects such as strain [62, 97] may contribute.

Induced SOI can additionally constrain the nature of the TBG phase diagram.
Regardless of concrete SOI mechanism details, SOI acts as an explicit symmetry-
breaking field that further promotes instabilities favoring compatible symmetry-
breaking patterns while suppressing those that do not. For example, the relative
robustness of the 𝜈 = 2 correlated insulator in our 𝜃 = 0.97° device suggests that
interactions favor re-populating bands [74, 75] in a manner that also satisfies the spin-
orbit energy. Furthermore, the survival of superconductivity with SOI constrains
the plausible pairing channels—particularly given the dramatic spin-orbit-induced
Fermi-surface deformations that occur at 𝜈 = +2, shown in the 2D Fermi surface
diagrams in Fig. 3.15b, d. Superconductivity in our low-twist-angle devices, for
instance, is consistent with Cooper pairing of time-reversed partners that remain
resonant with SOI. Thus the stability of candidate insulating and superconducting
phases to the SOI provides additional nontrivial constraints for theory [85, 98–101].
The integration of monolayer WSe2 demonstrates the impact of the van der Waals
environment and proximity effects on the rich phase diagram of TBG. In a broader
context, this approach opens the future prospect of controlling the range of novel
correlated phases available in TBG and similar structures by carefully engineering
the surrounding layers, and it highlights a key tool for disentangling the mechanisms
driving the different correlated states.
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Figure 3.17: Simulated Landau fan diagrams with SOI. (a), (c) Color plot of the
phenomenologically broadened density of states as a function of energy squared
in (meV)2 (roughly equivalent to the electron density that is gate-tuned in the
experiment) and the magnetic field in Tesla. (b), (d) The spectrum without taking
broadening effects into account. Blue and red lines correspond to levels originating
proximate to the +K and −K valleys, respectively. The parameters considered are
(�̃�𝐼 , �̃�𝑅, �̃�KM) = (3, 4, 0) meV with a broadening Γ = 0.22 meV and (a), (b) and
(�̃�𝐼 , �̃�𝑅, �̃�KM) = (1.5, 2.5, 2) meV with a broadening Γ = 0.15 meV (c), (d). We
note that the Landau level sequence and energy levels on the hole-doped side are
identical to those shown here for (a) and (b). When both �̃�𝐼 and �̃�KM are nonzero,
as in (c) and (d), a slightly different Landau-level sequence is generically obtained
at negative energies relative to the CNP.
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C h a p t e r 4

HIERARCHY OF CORRELATIONS IN TWISTED BILAYER
GRAPHENE-WSE2 HETEROSTRUCTURES

The twisted bilayer graphene (TBG)-WSe2 material system, with its stabilized su-
perconductivity, shows promise for further studying the host of correlated phases
and effects of the topological bands previously found in TBG [20, 43, 44, 46, 49,
50, 65–67]. Particularly, the increased angle range of superconductivity allows us to
search for other phenomena linked to superconductivity. The twist angle serves the
role of tuning the electronic interactions in the system [11, 65], so we particularly
study the twist-angle dependence of a variety of correlation-related effects. We find
a hierarchy of phases, with some phases, such as superconductivity, present over a
wide twist angle range. Meanwhile, some phases are only present in a small range
about the magic angle of 1.1°, i.e., where the strength of interactions is greatest.
In this study, a number of devices have been measured in detail with the goal of
distinguishing characteristics that are reproducible over multiple devices. Given the
wide range of phenomena observed in these devices and others, our findings serve
as an initial roadmap to further studies of correlated effects in TBG and give some
clues about the mechanisms involved.

4.1 Devices studied
The devices studied in this chapter are of the same structure as in the previous
chapter (Fig. 3.1 and the schematic is shown in Fig. 4.1a), TBG picked up with
monolayer WSe2, encapsulated with hBN, and placed on a Au back gate. Although
the devices from the previous chapter have been included in considerations, several
more devices have been added to the study, including the ones shown in Fig. 4.1.
For a summary of devices used, see Table A.1. The new devices used WSe2 from
a commercial source (HQ graphene), which we found had a similar effect on our
devices. Some of the devices included Au top gates, as shown in Fig. 4.1e. Since we
are studying the trends through the range of twist angles, much of the summarizing
data for each twist angle is left to the appendix.
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Figure 4.1: Device overview and optical images. (a) Schematic of the devices and
example stack of flakes before cleanroom processing, showing the twist angle angle
between the graphene and bottom hBN, showing no obvious alignment. (b)–(e)
Optical images of finished devices.

4.2 Correlated phases at a range of twist angles
We first point out the phase diagram of correlated phases for the range of twist
angles studied here, 0.79°–1.23°, in Fig. 4.2. We find correlated insulators with
well defined activation gaps for twist angles in the relatively narrow range of 0.97°–
1.15°, indicating that the addition of WSe2 leaves the value of the magic angle
unaffected. Unlike the correlated insulators, we find that the cascade of high-
temperature symmetry breaking transitions [74, 75] (discussed in more detail below)
and superconductivity near 𝜈 = ±2 (where 𝜈 is the number of electrons per unit cell)
persist over a much wider range of - twist angles (see also Fig. A.1 Ref. [46]
for more data). While all devices exhibit pronounced electron-hole asymmetry
and a peak T𝑐 on the electron (hole) side which is shifted towards lower (higher)
angles, superconductivity can be found well above (𝜃 = 1.23°, D2) and below (𝜃
= 0.88°, D3) the magic angle for both negative and positive filling factors. To the
best of our knowledge, this is the largest reported range of twist angles exhibiting
superconductivity for both electron and hole doping.
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Figure 4.2: Phase diagram, focusing particularly on superconductivity. (Top) Phase
diagram as a function of twist angle, indicating the regions which exhibit the anoma-
lous Hall effect (AHE) due to ferromagnetism, 𝜈 = +2 correlated insulators (CI),
superconductivity (SC), and symmetry breaking cascade effects as deduced from
R𝑥𝑥 peaks and Hall density resets. The cascade and superconductivity start to dis-
appear on either side of the diagram, as indicated by the fading bar color. (Bottom)
Critical temperatures T𝑐 of superconductivity for both holes and electrons (squares
indicate 50% R𝑛 and the error bars 10% and 90% R𝑛; for more details, see Fig. A.1).
The gradient-filled domes are guides to the eye.

4.3 Link between superconductivity and Fermi surface reconstruction
Importantly, the observed superconducting regions are consistently accompanied by
Fermi surface reconstructions around 𝜈 = ±2, as manifested by a low-temperature
reset in the Hall density. Consider, for example, the Hall density plots for the
two lowest twist angles in Fig. 4.3 (blue and black curves). For 0.88°, hole-side
SC around 𝜈 = –2 has T𝑐 = 130 mK and is accompanied by the formation of a kink
in the Hall density (black arrow), which is separate from the van Hove singularity.
At larger twist angles, the kink becomes a fully-developed Hall density reset to zero
(colored arrows), corresponding to a more complete flavor symmetry breaking-
induced Fermi surface reconstruction (see Fig. A.2 for more data). In contrast, the
device with twist angle 0.79° reveals a linear Hall density on the hole side that extends
well beyond 𝜈 = −2, ultimately reaching a van Hove singularity [102]. This signals
the absence of an interaction-driven Fermi surface reconstruction. Interestingly, we
also no longer find hole-side superconductivity for this twist angle. On the electron
side, both twist angles exhibit superconductivity and a kink in the Hall density due
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Figure 4.3: Hall density vs. 𝜈. Flavor symmetry breaking correlations manifest
as Hall density resets (as seen clearly for 1.04°–1.23° on the hole side, indicated
by colored arrows) and occasionally as singularities or hole-like regions (as seen at
1.10° and 0.97° on the electron side).

to Fermi surface reconstructions.

Our observations indicate that a fully flavor (i.e., spin and valley) symmetric state
strongly disfavors the formation of superconductivity. This rules out the simplest
scenario for superconductivity based on electron-phonon coupling, which relies
only on the local density of states [103]. Alternatively, and independently of
the pairing mechanism, in the case of multiflavor pairing, superconductivity and
magnetism (i.e., flavor polarization) can be inherently connected. This connection
emerges from a simple energetic argument. If two flavors pair, they could increase
their condensation energy by exchanging particles with the other flavors, such that
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they maximize their density of states. Roughly, this is captured through a term
akin to Δ2𝑀 in the free energy, but with M (and Δ) being a matrix indicating
the density of the various flavors on its diagonal, and correlations (pairing) in
the off diagonal [104]. This term in the free energy implies that strong flavor
polarization (manifested in 𝑀) will generally increase the superconducting gap,
and thus T𝑐, of a multiflavor superconductor. Conversely, a finite superconducting
order parameter could also induce polarization. Our experimental observation that
enhanced superconductivity occurs only in regions with prominent Hall density
resets is thus in line with multiflavor pairing. This could potentially reconcile
experiments with electron-phonon mechanisms of superconductivity, although we
note that our results do not rule out unconventional mechanisms based, for example,
on flavor fluctuations [99] or the Kohn-Luttinger scenario [105].

4.4 Notes on the effects of adding WSe2 and disorder
We note that the addition of WSe2, while not changing the magic angle value, may
help stabilize superconductivity over a wider range of angles. A few effects may
be responsible. The first effect is a possible reduction in twist angle disorder. In
all TBG devices studied so far, it appears that there are significant device-to-device
variations that are often associated with disorder. In addition to disorder that is
intrinsic to graphene (such as charge disorder originating from residual polymers
and other impurities, disordered edges, strain from wrinkles or bubbles, strain from
the substrate or back gate), in TBG twist angle disorder is believed to play an
important role. As previously reported, it generates domains and gradual twist-
angle shifts on length scales from 100 nm to a micron [54, 57]. In this context,
characterizing TBG disorder through transport measurements is somewhat more
elusive as transport averages over device length scales (a few µm).

It is important to emphasize that measurements of disorder that are typically used
in a single layer of graphene and commonly detected through broadening of of
charge-neutrality peaks in longitudinal or Hall resistance (full width at half max—
FWHM—of R𝑥𝑥), do not correlate well with superconductivity or other features
that may point towards disorder in the TBG samples. Fig. 4.4 shows that there is
not an obvious correlation of superconducting 𝑇𝑐 with the charge-neutrality peaks.
However, the previously mentioned robust plateaus in our devices (Fig. 3.14) suggest
that the added layer of WSe2 decreases the amount of twist angle disorder, and we
occasionally see devices with broadened features in Landau fan diagrams and a
number of features near 𝑛𝑢 = 2, suggesting twist angle disorder as the cause
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(Fig. A.3d). We have also confirmed in separate devices that the twist angle disorder
is reduced on the hundreds-of-nanometer to µm scale in STM measurements [57].

Figure 4.4: Widths of charge-neutrality peaks 𝛿𝑛. The full-width half-max used
for this plot is shown in the inset for the 1.10° data point with T𝑐 of 1.59 K (red) and
the 1.23° point (pink). Listed next to each data point is the maximum T𝑐 measured
for the twist angle, and the color corresponds to whether the superconductivity was
on the hole (blue) or electron (red) side.

We find in the best devices that four-point measurements almost perfectly overlap for
different contact configurations (Fig. 4.5b), signaling high twist angle uniformity.
Moreover, in a dual-gated geometry no dependence on the displacement field is
found (Fig. 4.5c). Although this device’s twist angle (0.88°) is right on the edge of
where superconductivity begins on the hole side (Fig. 4.2), we see clear signs of
superconductivity on both electron and hole sides in Fig. 4.5.

Figure 4.5: Data for device D3 at 0.88°. (a) A 𝜈-T diagram of R𝑥𝑥 . (b) Linecuts
at base temperature of R𝑥𝑥 for different contacts (colors corresponding to the inset)
show little variation over a range of several 𝜇m. (c) Applying an electric field (D)
shows no obvious D-field dependence.

This may explain our observation, in part, of superconductivity over a large angle
range although the spin-orbit coupling may still play a role, particularly in the
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electron-side superconductivity away from the magic angle where hBN encapsulated
TBG data is lacking and comparison is not possible. We also point out that our
recent study on Bernal bilayer graphene-WSe2 heterostructures suggests that spin-
orbit coupling from WSe2 favors superconducting ground states at flavor polarization
transitions in another graphene system [106]. This further bolsters the idea that WSe2

plays a part in the stabilized superconductivity observed here. However, we suspect
that the precise details could possibly depend on the precise twist angle difference
between WSe2 and graphene [107].

4.5 High-temperature features at a range of twist angles

Figure 4.6: Pomeranchuk-effect phase transition peak fits. (a) Example of a peak fit
at 𝜈 ≈ 1 for a device at twist angle 0.88°. (b) R𝑥𝑥 peak positions near filling factor
𝜈 ≈ 1 as a function of temperature for devices with various twist angles. The vertical
colored lines represent the 𝜈 = 1 filling factor for the respectively colored twist angle
data. (c), (d) Fit parametersΔ𝜇 andΔ𝛾 representing change in the chemical potential
and specific heat, respectively, for the phase transition represented by the R𝑥𝑥 peaks
in (b). Error bars are 95% confidence intervals. The hollow square for 0.95° was
set to the same Δ𝛾 value as the 0.97° device due to the unconstrained Δ𝛾 value for
the data points.

The principal features emerging at higher temperatures (above 5–10 K) in TBG,
such as the cascade of phase transitions between symmetry broken states near
integer filling factors and the linear-in-T dependence of R𝑥𝑥 , are also present over
a wide range of angles. We focus first on the cascade of phase transitions, high-
temperature R𝑥𝑥 peaks associated with phase transitions that repopulate the bands to
favor certain flavors [74, 75]. In the case of |𝜈 | ≈ 1, R𝑥𝑥 peaks (an example is shown
in Fig. 4.6a, and panel (b) shows experimental data following the R𝑥𝑥 peaks at a
range of twist angles) are associated with a Pomeranchuk-like phase transition [108,
109] between a flavor symmetric state near charge neutrality and a symmetry broken
phase with free local spin moments (approximately 1 per moiré site) in analogy to
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the Pomeranchuk effect in He3 [108]. The evolution of this phase boundary with
temperature can be fit using a simple thermodynamic model including the free
energy of localized spins [109]. When considering the grand canonical potential
approach, allowing the filling factor 𝜈 to change, and setting the magnetic field to
zero, the phase transition line follows:

𝜈 =
1
Δ𝜇

[
−1

2
Δ𝛾𝑇2 − ln(2)𝑇 + Δ𝜖

]
. (4.1)

The main parameters entering this model are the shift in the chemical potential Δ𝜇
due to the cascade transition and the change in specific heat Δ𝛾 between the flavor
symmetric and local moment phases. Δ𝛾 is negative since the local moment phase
has a smaller density of states. Δ𝜖 is a free parameter related to a reference energies
of the phases. A strong carrier density reset, and therefore strong correlations, are
related to a strong Δ𝜇. Only the electron-side transitions were mapped in this study
because they were detectable in a wider range of twist angles.

Our data suggest that this description works reasonably well over the entire range
of angles investigated here. Fig. 4.6c, d show the fit parameters for the data in
panel (b). Δ𝛾 appears to be roughly constant except for device D1 at 1.10° right
at the magic angle, perhaps indicating additional correlation effects emerging for
this angle. We note that this device also exhibits a metallic anomalous Hall phase
near 𝜈 = 1 at low temperatures, discussed below. The slowly increasing Δ𝜇 signals
stronger shifts of the bands as the twist angle is increased toward the magic angle,
a trend that is consistent with the strength of interactions. The appearance of su-
perconductivity, high-temperature symmetry breaking cascade transitions, and in
particular Pomeranchuk-like transitions over similar twist angle ranges (see Fig. A.1
and Ref. [46] to see the fading cascade at the limits of twist angles studied here)
suggests a possible connection between these instabilities and points to similari-
ties between TBG and heavy-fermion systems [110] which also show rich phase
diagrams exhibiting similar phases [87, 111, 112].

The twist angle dependence of the linear-in-T resistivity behavior is shown in Fig. 4.7,
with more examples in the appendix (Fig. A.4). A linear temperature dependence
of the resistivity can be due to electron-phonon scattering, at least at higher tem-
peratures (above 5–10K) [82, 86, 113]. Alternatively, this dependence has also
been associated with strange metal behavior due to its onset at low temperatures
and its strength near the |𝜈 | = 2 correlated phases [49, 114]. Our data show that
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Figure 4.7: 𝑑𝜌

𝑑𝑇
resistivity derivative data. (a), (b) 𝑑𝜌

𝑑𝑇
2D diagrams for devices at twist

angles 0.88° and 1.10°, respectively. R𝑥𝑥 peaks corresponding to Pomeranchuk-like
transitions are shown with black dots, superconducting (SC) pockets are shown with
arrows, and the magenta lines are guides to the eye representing the approximate
regions of T-linear resistivity. The green lines reveal the inflection points in 𝜌.
(c) The resistivity slope 𝑑𝜌

𝑑𝑇
for a range of twist angles, where red(blue) is for

electrons(holes). The values come from the average derivative over the area spanned
by 1.5 < 𝜈 < 1.8 (−2 < 𝜈 < −1.6) for electrons (holes) and 15 < 𝑇 < 38 (error
bars are the standard deviations). Device D4, twist angle 1.10° is represented by
hollow squares.

the linear-in-T behavior is qualitatively similar in devices away from (Fig. 4.7a; see
Fig. A.4 for more examples) and close to the magic angle (Fig. 4.7b).

Both cases exhibit broad regions of linear-in-T behaviour fanning out from approxi-
mately |𝜈 | = 2 (delineated by magenta lines). At lower |𝜈 |, this region is bordered by
a broad region near charge neutrality, where the increase in resistance is quadratic
(consistent with expectations for Fermi liquid behaviour). At higher |𝜈 | > 2, there
is a region where the temperature dependence of the resistivity crosses over from
strongly super-linear to sub-linear as temperature increases. The intermediate in-
flection points, shown as green lines in Fig. 4.7a, b appear to be intertwined with
other TBG phases as they occasionally touch the superconducting domes (both for
electrons and holes at 0.88° as well as for holes at 1.10°) or onset near 𝜈 ≈ 2, when a
correlated insulating gap is present. This observation contrasts with the suggestion
that the entire superconducting dome emerges below a linear-in-T phase [114].

Both the magnitude of the T dependence at 𝜈 > 2 (as measured by the slope near
the green lines) and the linear-in-T slope measured at higher temperatures (within
the magenta regions, in the range of 1 < 𝜈 < 2) are enhanced near the magic angle
(Fig. 4.7c). This is to be expected, as the Fermi velocity is minimized for this angle
and could be even further reduced by interaction effects causing band flattening at
nonzero filling [115]. Particularly, calculations with Hartree effects included are
known to exhibit flattened regions of bands in the range of |𝜈 | > 2. Finally we note
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that, in general, the linear-in-T slope peaks around the same angle value for both
electrons and holes. This contrasts with the observed doping asymmetry of the twist
angles at which the superconducting 𝑇𝑐 becomes maximal, further highlighting the
differences between high- and low-temperature symmetry breaking phenomena.

4.6 Strong correlations and a ferromagnetic state at 1.10°
For the remaining section of the chapter, we focus mostly on a magic-angle device
with 𝜃 = 1.10° (D1, Fig. 4.8). Upon cooldown, this device exhibits clear R𝑥𝑥 peaks
below T ≈ 40 K at every integer 0 < |𝜈 | < 4. As temperature is lowered further, a
correlated insulator (CI) develops near 𝜈 = +2, while other resistance peaks remain
metallic or disappear gradually (Fig. 4.8a, c). As is seen in Fig. 4.1a and Fig. 4.1c,
there is not evidence of obvious alignment between hBN and TBG, which tends
to produce a gap at the charge neutrality point. For hole doping (Fig. 4.8b), the
corresponding superconducting dome near 𝜈 = –2 reaches a maximal transition
temperature of T𝑐 = 1.6 K, featuring vanishing longitudinal resistance Rxx and a
Fraunhofer-like pattern in line with previously reported hBN-encapsulated, high-
quality magic-angle TBG devices [20, 43, 44, 47, 48].

Figure 4.8: Data for the 1.10° region of D1. (a) Linecuts for a range of temperatures
shown in the colorbar. (b) R𝑥𝑥 of the hole-side superconductivity dome, along with
a linecut at 𝜈 = −2.16 (right inset) and Fraunhofer-like pattern (left inset, 𝜈 = –
2.3). (c) Temperature dependence of the charge neutrality point and 𝑛𝑢 = 2 peaks,
showing the activated gap behavior at 𝜈 = 2.

In contrast to the features at 𝜈 = ±2, the evolution of R𝑥𝑥 near 𝜈 = ±1 is more subtle.
In the temperature range 6 K < T < 40 K, the R𝑥𝑥 peaks near both 𝜈 = +1 and 𝜈 = –1
evolve towards lower filling factors |𝜈 | as temperature increases, following the phase
boundary discussed above (Fig. 4.8a, Fig. 4.9c). However, at lower temperatures, T
< 6 K, the two peaks show distinctly different behavior. While the hole-side peak
completely disappears, reflecting simple metallic behavior from charge neutrality
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Figure 4.9: R𝑥𝑥 data focusing around 𝜈 = 1. (a) R𝑥𝑥 vs. 𝜈 and T on the electron
side for D1 at 1.10°. (b) A zoom into panel (a) around 𝜈 = 1, revealing the
switching behavior of the resistance. (c) Dense line-cut plots near 𝜈 = 1, showing
that the evolution of R𝑥𝑥 maxima above 10 K (magenta line) are distinct from the
ferromagnetic peak.

to 𝜈 ≈ –2, the peak near 𝜈 = 1 gradually gives way to another peak emerging in
the filling range 0.8 < 𝜈 < 0.95 that persists to the lowest temperatures (Fig. 4.9a).
Careful inspection reveals that R𝑥𝑥 exhibits switching behavior around the peak,
discontinuous resistance changes between the same sweep across 𝜈 taken at slightly
different temperatures (Fig. 4.9b) presumably due to switching of domains.

Figure 4.10: R𝑥𝑦 hysteresis data. (a) Hysteresis loops taken at 𝜈 = 0.9 at a range
of temperatures. Inset: the resistance jump ΔR𝑥𝑦 of hysteresis loops measured vs.
B and T. (b) ΔR𝑥𝑦 measured as a function of 𝜈 and B at 1.5 K. For each 𝜈, the line
results from sweeping B up and down. (c) ΔR𝜈

𝑥𝑦 = R𝜈↑
𝑥𝑦 - R𝜈↓

𝑥𝑦 measured as a function
of the sweeping parameter 𝜈 and B, which was held constant.

Further measurements in the 𝜈 and temperature range of this low-temperature R𝑥𝑥
peak reveal an anomalous Hall effect (AHE). Fig. 4.10a shows hysteresis loops in
the Hall resistance, R𝑥𝑦, for 𝜈 = 0.9 as measured from 0.3 K to 7 K. The loop
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has a coercive field of up to about 150 mT and is centered about zero magnetic
field. The jump in resistance ΔR𝑥𝑦 = R𝐵↑

𝑥𝑦 – R𝐵↓
𝑥𝑦 reaches a maximal value of 2.5

kΩ, significantly smaller than the resistance quantum, which persists until the Curie
temperature ∼ 5 K (Fig. 4.10a inset). Signatures of the AHE are also observed at
twist angles of 1.04° and 0.99°, as shown in Fig. A.5.

Importantly, the observed AHE phase appears well below filling factor 𝜈 = 1, existing
in the range 0.7 < 𝜈 < 1, with the maximalΔR𝑥𝑦 occurring near 𝜈 = 0.88 (Fig. 4.10b).
Upon approaching 𝜈 = 0.95, the filling at which R𝑥𝑥 peaks, the coercive field diverges
accompanied by a sudden decrease in ΔR𝑥𝑦. Additionally, hysteresis is observed
when sweeping 𝜈 in opposite directions (Fig. 4.10c) and holding the magnetic field
constant.

For a more detailed look, see Fig. 4.11. Panels (c)-(e) shows the picture of hysteresis
seen as a result of sweeping either B or 𝜈. Panel (b) shows that after 𝜈 > 0.95,
hysteresis loops sometimes appear in the opposite direction from that seen for
𝜈 > 0.95 (in this case at 3.5 K but still with a similar 𝜈-B diagram in panel (a)). The
magnetism is also very stable, with domains remaining unflipped for up to hours
after initializing them using magnetic field or 𝜈 (Fig. 4.11f).

Measurements of R𝑥𝑦 at elevated temperatures and over a wider doping range further
reveal the unusual nature of the observed AHE phase (Fig. 4.12a). Surprisingly,
within the range of 𝜈 exhibiting the AHE and up to magnetic fields greater than 1
T, the sign of R𝑥𝑦 is opposite to that of the surrounding doping range. Also, R𝑥𝑦
changes sign when the temperature reaches ∼5 K, consistent with the measured
AHE Curie temperature. While naively this behaviour might be due to a change of
carrier type from electrons to holes, the measurements show a linear increase in R𝑥𝑦
with increasing magnetic field throughout the entire doping range (Fig. 4.10a and
Fig. 4.12b), consistent with dominant electron conduction.

The observation of hysteresis signals the emergence of an orbital ferromagnetic
phase that arises from a band carrying nonzero Chern number 𝐶 [82, 116]. A
finite Chern number is also expected to result in R𝑥𝑦 and R𝑥𝑥 features that follow
the Streda formula in an out-of-plane magnetic field B = ℎ

𝐶𝑒
𝑛. We observe clear

maxima and minima in R𝑥𝑥 approximately following the Streda formula at fields
less than 3 T (Fig. 4.12c), and specifically point to the R𝑥𝑥 minimum following 𝐶 =

–1 that extrapolates to 𝜈 = 0.95 at zero field, near where the coercivity diverges.
The low-field features disappear by B = 3–4 T, where a finite-field Chern insulating
phase corresponding to 𝐶 = 3 takes over. The observed switch in Chern number
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Figure 4.11: More details on hysteresis. (a) ΔR𝑥𝑦 vs. B and 𝜈 around filling factor 1
measured at 3.5 K. (b) Hysteresis loops measured at filling factors marked by arrows
in (a). (c)-(e) Hysteresis loops as a function of 𝜈 and B. (c) The 3D perspective of
(d) (𝜈 sweep forward is solid, backward is dashed) and (e) (B sweep forward is solid,
backward sweep is dashed). The density sweep in (d) was measured at 30 mT, after
cycling to 200 mT to align the domains. (f) Pulses of B and 𝜈 showing reproducible
switching of magnetic state, with bit-like switching of R𝑥𝑦.

indicates the competing nature of these phases [47, 117].

However, our observations stand in contrast to discussions of zero-field Chern
insulators, where the chemical potential falls into an insulating gap [47, 56, 117,
118]. Throughout the entire doping range, the AHE phase observed here appears
metallic. This is implied by the electron-like Hall resistivity and the finite R𝑥𝑥
peak at 0 T that is small compared to ℎ/𝑒2 and increases with temperature. This
contrasts with the expected vanishing of R𝑥𝑥 for a gapped bulk with gapless edge
channels [67] or a resistance ∼ ℎ/𝑒2 that can originate from domain walls extending
between the contacts [119]. We note that while disorder effects and the presence
of domains observed in Ref. [56] can, to some extent, explain the absence of a gap
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Figure 4.12: Hall effect and Chern number behavior near 𝜈 = 1. (a) Hall den-
sity vs. 𝜈 measured at 0.5 T (the value shown is antisymmetrized [𝑅𝑥𝑦 (0.5𝑇) −
𝑅𝑥𝑦 (−0.5𝑇)]/2). (b), (c) Magnetic field and 𝜈 dependence of 𝑅𝑥𝑦 and 𝑅𝑥𝑥 measured
at 3 K. (c) contains dotted lines representing the 𝐶 = −1, +1, +3. 𝐶 = −1 and +3
lines originated from 𝜈 = 0.95.

and imperfect quantization, local compressibility [75, 120] and scanning tunneling
spectroscopy measurements [14, 121] typically do not resolve a gapped state near
𝜈 = 1. In the following, we present a scenario which would be consistent with the
metallicity as well as the electron-like behaviour of R𝑥𝑦 in the AHE phase seen in
Fig. 4.10a and Fig. 4.12a. Our scenario relies on the fact that strong interactions
can heavily deform the TBG bands, such that the Γ point of the mini-Brillouin zone
can be inverted, as reported by local spectroscopy measurements [14].

4.7 Ten band Hartree-Fock model for TBG near 𝜈 = 1
To model TBG, we employ a ten-band model [122] that includes short-range
Coulomb interactions [10]. First we show that this model, which uses a Hartree-Fock
approximation, can capture the existence of the symmetry breaking cascade [74, 75]
and TBG band structure deformations [14, 102, 115, 123] (see Supplemental Ma-
terial of Ref. [53] for more details). Flavor-resolved mean-field band structures at
𝜈 = 0.81 are shown in Fig. 4.13a–d. Here, the symmetry breaking cascade occurs
well before 𝜈 reaches 1, with one of the spin-valley flavor bands being almost filled
while the other three develop a gap and are shifted back to the vicinity of the charge
neutrality point. Focusing on the three gapped bands, one can obtain a total Chern
number of 𝐶 = ± 3 or 𝐶 = ±1 [117], depending on the exact symmetry breaking
mechanism, when the chemical potential is within the gap. For example, broken T
symmetry naturally leads to 𝐶 = ±3, and broken C2 symmetry can give rise to 𝐶 =
±1 phases [121].

Now consider the case displayed in Fig. 4.13 where the chemical potential for three
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Figure 4.13: Ten-band model calculations. (a)–(d) The band structure obtained
for each spin and mini-valley (K, K’) flavor for the case of broken C2T symmetry
at 𝜈 ≃ 0.81. The K↑ flavor, which is nearly filled, preserves the Dirac-like band
structure (a), whereas the other three flavors have a C2T -broken mass (b)–(d). The
gray planes represent the chemical potential. (e)–(h) Berry curvature Ω𝑘𝑥 ,𝑘𝑦 for
the conduction flat band in the K↑ flavor (e) and for K↓ (f)–(h), where the Berry
curvature is concentrated above the Γ pocket. The Fermi surface is plotted as a
dotted circle.

flavors touches the bottom of the inverted electron pocket at the Γ point and still
remains in the top of the band for the remaining flavor. Despite being slightly
electron doped, the three flavors still contribute to the anomalous Hall conductance.
Since the Berry curvature of the upper band is small near the bottom of the inverted
electron pocket, as shown in Fig. 4.13g–h, the Chern number remains approximately
conserved and contributes to magnetization in a way that is analogous to the de-
scription in Section 1.7. The consistently positive slope 𝑑𝑅𝑥𝑦

𝑑𝐵
of the Hall resistivity

arises from the electron-like bands of the barely filled flavors, while the apparent
hole-like sign of 𝑅𝑥𝑦 originates from the negative offset caused by the anomalous
Hall effect. The experimentally observed hysteresis, in this scenario, would still be
explained by orbital ferromagnetism [116]. Due the metallic nature of the system,
the Streda formula with 𝐶 = −1; 𝜈 = 1 at 𝐵 = 0 T is only approximately satisfied.
We note, that while the mean-field calculations presented here successfully capture
a possible metallic AHE phase, other ground states with similar characteristics may
also be possible [102, 117, 124, 125] and are hard to rule out based on our data.
Finally, a similar scenario to the one proposed here can also explain AHE phases
observed recently near 𝜈 = ±2 [118, 126].

Our results show that the robustness to deviations of the twist angle from the
magic angle divides TBG phases into two categories. Superconductivity, cascade
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transitions, as well as the linear-in-T dependence of the resistivity are robust over
a wide range of twist angles, spanning at least 0.8° ≲ 𝜃 ≲ 1.23°. Moreover,
the cascade transitions near 𝜈 = ±2 appear to be a necessary prerequisite for the
appearance of superconductivity, implying close relations between these two phases.
In contrast, the correlated insulating and orbital ferromagnetic states require a more
subtle interplay of strong interactions, kinetic energy scales, and possible breaking of
spatial symmetries. Due to this sensitivity, these phases appear in a more immediate
vicinity of the magic angle, where the close competition between various phases can
result in differing behaviour of devices with the same twist angle (e.g., see Fig. A.6).
This hierarchy of TBG phases will guide future theoretical frameworks aiming to
explain the rich phenomenology of TBG and related structures.
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C h a p t e r 5

PROMOTION OF SUPERCONDUCTIVITY IN MAGIC-ANGLE
GRAPHENE MULTILAYERS

While we previously restricted our discussion to two layers of graphene with rota-
tional misalignment, the discovery of a new heterostructure involving three graphene
layers suggests that TBG may be just one in a family of graphene moiré supercon-
ductors. Twisted trilayer graphene (TTG) exhibits superconductivity with even more
robust indicators of strong coupling or BEC-type superconductivity [127, 128] and
large Pauli limit violation [129] along with the other indicators of robust supercon-
ductivity characteristic of TBG. This recent introduction of a new graphene moiré
superconductor leads us to wonder if there could be more waiting to be discovered.
Our work here introduces two new superconducting graphene systems by translating
the concept of alternating twist angle in TTG to four- and five-layer devices.

5.1 Alternating twisted multilayer graphene heterostructures

Figure 5.1: Schematics of the alternating twisted trilayer (a), quadrilayer (b), and
pentalayer (c) graphene studied.

We investigate twisted graphene multilayers where each successive layer is twisted
by an angle ±𝜃 relative to the previous one in an alternating sequence (Fig. 5.1). We
denote the four- and five-layer structures twisted quadrilayer graphene (TQG) and
twisted pentalayer graphene (TPG) . For an even number 𝑛 of layers, the spectrum
at zero displacement field 𝐷 is expected to separate into 𝑛/2 independent TBG-like
bands, each characterized by a different effective twist angle. When the number of
layers 𝑛 is odd, in addition to (𝑛 − 1)/2 TBG-like bands, one monolayer-graphene-
like band (essentially a Dirac cone) is expected [130] (see Fig. 5.2, left side of
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Figure 5.2: The non-interacting band structures calculated based on the continuum
model for TTG (a), TQG (b), and TPG (c) near their respective magic angles. The
colors represent the eigenstates associated with the flat bands (blue), Dirac cones
(yellow), and dispersive TBG-like bands (red). On the left side of each diagram is
the band structure with 𝐷/𝜖0 = 0, and the right side shows finite field 𝐷/𝜖0 ≈ 0.4
V/nm.

each diagram, for examples when 𝑛 is 3, 4 and 5). In twisted bilayer graphene, the
continuum model Hamiltonian matrix looks like (see Section 1.4 for more details)

ℎ𝑇𝐵𝐺 =

(
ℎ𝐷,1 𝑇

𝑇† ℎ𝐷,2

)
(5.1)

where along the diagonal are rotated Dirac Hamiltonians for the two layers, and the
𝑇 is an interlayer tunneling term. It can be extended to twisted n-layer devices with
a generalization
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ℎ𝑇𝑛layer𝐺 =

©«
ℎD,1 𝑇1,2 0 . . .

𝑇
†
1,2 ℎD,2 𝑇2,3 . . .

0 𝑇
†
2,3 ℎD,3 . . .

...
...

...
. . .

ª®®®®®¬
. (5.2)

An important distinction between TBG and graphene moiré heterostructures con-
taining additional layers is the band structure dependence of the relative layer dis-
placement, which manifests as an extra phase factor in the tunneling terms. For the
picture in Ref. [130] and Fig. 5.2, not only must the graphene sheets be stacked
with alternating angles, but moreover, the emergence of independent TBG- and
Dirac-like bands only occurs when all odd (even) layers are AA stacked, i.e., stacked
directly on top of one another.

In TTG, it has been numerically shown that this situation is energetically preferable:
the system naturally relaxes into the odd/even aligned stacking configuration [131].
This result is further experimentally verified in transport [127] and local probe [132]
measurements. A simple heuristic supports these results and permits a generalization
to additional layers. Starting from a bilayer system, the moiré superlattice appears
as a periodic variation between AA, AB, and BA stacking regions. The AA regions
have a relatively high energy compared to the Bernal-like (AB and BA) regions, and
the lattice accordingly responds by relaxing to minimize the AA-region area. We
now consider adding a third layer with the same relative twist angle as the first layer,
but for the moment arbitrarily displaced from that layer. A moiré superlattice is also
generated between the new layer and the second layer, and the system once again
seeks to minimize (maximize) the area of the AA (AB/BA) regions. Crucially, if
the first and third layers are misaligned, the AA regions between the first and second
layers are misaligned from the AA regions between the second and third layers,
frustrating the ability of the lattice to relax. Only when the first and third layers are
aligned will the AA region occur at the same locations and only then can the system
optimize its energy through relaxation. As the layers are sequentially stacked, the
argument generalizes to quadrilayer and pentalayer systems.

The theoretically predicted “magic” values needed to obtain one set of flat TBG-
like bands are 𝜃magic

TTG =
√

2𝜃magic
TBG ≈ 1.53°, 𝜃magic

TQG = (
√

5 + 1)𝜃magic
TBG /2 ≈ 1.75°, and

𝜃
magic
TPG =

√
3𝜃magic

TBG ≈ 1.87° assuming an effective TBG twist angle 𝜃magic
TBG = 1.08°

[130]. The system may be conveniently modified through the application of a
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displacement field 𝐷, which controllably hybridizes the different bands (Fig. 5.2
right side of each diagram). In our case, we add a potential difference 𝑈 between
the top and bottom layer—and linearly interpolate for layers in between—such
that 𝑈 = 0.1(𝑛 − 1)𝑒𝐷/𝜖0 × 0.33 nm, where 𝑛 is the number of layers. This
provides agreement with experiment, but results do not rely on the specifics of the
approximation.

In order to approximate the band structures of the experimental systems in this
study, we use different interlayer tunneling parameters in Fig. 5.2. Since tunneling
parameter 𝑤𝐴𝐵 also changes the magic angle, different tunneling parameters can be
used to simulate systems slightly above and below the magic angle. The continuum
model suggests that for the case where the twist angle is below the n-layer magic
angle (𝜃 < 𝜃

𝑚𝑎𝑔𝑖𝑐

𝑛𝑙𝑎𝑦𝑒𝑟𝐺
), a 𝐷 field applied to the system quickly gaps out all states at

the charge neutrality point (CNP) except for a dispersive monolayer graphene-like
Dirac cone in odd-layer systems, and the density of states remains constant for larger
𝐷. However, for the case where 𝜃 > 𝜃

𝑚𝑎𝑔𝑖𝑐

𝑛𝑙𝑎𝑦𝑒𝑟𝐺
, the CNP becomes gradually more

metallic as 𝐷 is applied until a finite 𝐷 where the bands are gapped out. For TTG
the behavior is closer to the former case, justifying our use of 𝑤𝐴𝐵 = 110 meV,
whereas TQG and TPG behave like the latter case, so we used 𝑤𝐴𝐵 = 108 and 102
meV, respectively. We use the same 𝑤𝐴𝐴 = 60 meV for all three band structures.

5.2 Introduction to the devices measured
Experimentally, we explore properties of alternating twisted trilayer, quadrilayer,
and pentalayer graphene (TTG, TQG, and TPG) structures with 𝜃 = 1.52 ± 0.02°
(device D1, trilayer), 𝜃 = 1.80±0.04° (D2, quadrilayer), and 𝜃 = 1.82±0.05° (D3,
pentalayer), respectively. We also measured a second TQG device at 𝜃 = 1.64°,
shown in the appendix (Fig. B.3). We find that TTG, TQG, and TPG all exhibit hall-
mark signatures of strong correlations (Fig. 5.3), including robust superconductivity
on electron and hole sides and flavor symmetry breaking as revealed by pronounced
resistance peaks around certain integer filling factors 𝜈 (number of electrons per
moiré site). These peaks, particularly at higher temperature—such as at 7 K in
Fig. 5.3c—look analogous to the cascade peaks in TBG.

Furthermore, each sample has a dependence on electric displacement field 𝐷 shown
in Fig. 5.4. The correlated features at |𝜈 | < 4 generally disappear at high 𝐷, likely
due to strong hybridization between bands (as shown in Fig. 5.2 right panels) that
tends to broaden and change the character of the flat bands. The hybridization in
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each device also reveals a more resistive region in the |𝜈 | ≈ 4 range between flat and
dispersive bands since the dispersive low-energy bands (red and yellow in Fig. 5.2)
are lifted, and Dirac cone-like structures (which have a low density of states near
the cone) are raised above the flat bands.

Figure 5.3: R𝑥𝑥 linecuts for TTG device D1 (a), TQG device D2 (b), and TPG device
D3 (c) at a range of temperatures (25 mK, every 0.25 K from 0.25 to 2 K, and then
every 1 K from 3 to 7 K. The cuts were taken at constant 𝐷 fields of 𝐷/𝜖0 = 0.22
V/nm (a), −0.15 V/nm (b), and 0 V/nm (c).

All devices investigated here show a high degree of twist angle homogeneity as char-
acterized by four-point measurements between different pairs of contacts. Fig. 5.5
shows 𝑅𝑥𝑥 versus carrier density with fixed top-gate voltage (Vtg = 0 V), revealing
that almost every pair of contacts shows superconductivity. More importantly, su-
perconducting pockets from different pairs significantly overlap in the filling range,
and resistance peaks at |𝜈 | = 4 appear at the same density. Moreover, all find-
ings related to the extent of the superconducting phase and the occurrence of the
symmetry-breaking transitions in the 𝜈–𝐷 phase diagram are reproducible over
multiple contact pairs. This also includes the observation of a gapped correlated in-
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Figure 5.4: R𝑥𝑥 measurements as a function of 𝜈 and electric displacement field 𝐷
for TTG (a), TQG (b), and TPG (c).

sulator at 𝜈 = +2 in TTG, which has not been reported previously. In this context, we
note that any significant twist-angle disorder would create conducting percolation
pathways that quickly suppress insulating behavior.

We attribute the low level of disorder to the increased twist angle relative to TBG—
which results in less twist angle relaxation—and the use of monolayer WSe2 during
device stacking, presumably originating from the increased lateral friction between
WSe2 and graphene (compared to the friction at the hBN-graphene interface). We
note that this additional layer does not change the magic-angle condition [14, 46],
and the induced spin-orbit interaction (SOI) energy scale is ∼ 1 meV in twisted
bilayers [46]. Therefore, SOI is likely too small to significantly affect the overall
band structure and directly impact the cascade physics at the magic angle (though
may play a more important role for stabilizing superconductivity far away from the
magic angle [46]). Finally, we note that, in general, SOI is expected to manifest
differently when the sign of the 𝐷 field is reversed, a feature that has not been
observed in the experiment. The absence of 𝐷-field asymmetry is probably due to
the small energy scale of SOI compared to the interactions and the weak tendency
to polarize wavefunctions with 𝐷 field in magic-angle graphene multilayers.
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Figure 5.5: Leftmost optical images are devices D1–D3. The scale bar in each
panel is 5 𝜇m. 𝑅𝑥𝑥 2D diagrams (𝑛–𝐷) shown in the middle are obtained from
electrodes marked with the corresponding colored lines. The electrodes marked
with purple lines were used for measuring 𝑅𝑥𝑥 in the other figures of the text.
Rightmost plots were taken at Vtg = 0 V (along the grey dashed lines in the 𝑛–𝐷
plots). All three devices have a high degree of homogeneity in twist angle with the
same superconducting filling range and |𝜈 | = 4 carrier density for multiple contacts.
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Figure 5.6: Landau fans of multilayer devices. (a)–(f) 𝑅𝑥𝑥 measured as a function
of 𝐵 field and 𝜈 from trilayer to pentalayer. The main sequences of the fan diagrams
are labelled below the 𝑅𝑥𝑥 plots. Landau levels from the dispersive bands are visible
as 𝑅𝑥𝑥 oscillations at low 𝐵 fields in the fan diagrams. (g)–(m) 𝑅𝑥𝑦 measured as
a function of 𝐵 field and 𝜈 from trilayer to pentalayer. Below the 2D plots, we
show Hall conductance linecuts around |𝜈 | = 4. The layer number 𝑛 determines the
resulting quantization. Since the dispersive bands of 𝑛-layer magic-angle graphene
consist of 𝑛 − 2 Dirac-like cones (at low energies), the |𝜈 | = 4 quantization is
therefore expected to follow monolayer graphene sequence multiplied by 𝑛 − 2.
The plateaus in TTG and TQG clearly show this trend, while in TPG only the first
plateau is observed. These observations however confirm the number of layers in
each sample.
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Twist angles were determined from high 𝐵 field data and corresponding Landau-fan
diagrams in a similar way as in TBG. From the slope of the Landau fan at charge
neutrality (which is directly proportional to the gate-sample capacitance) and the
voltage difference between charge-neutrality point (CNP) and |𝜈 | = 4 filling, the
corresponding |𝜈 | = 4 electron density is obtained. We used two separate criteria
for the assignment of |𝜈 | = 4. First, at high 𝐷 fields, resistive features (peaks) emerge
(Fig. 5.4), as discussed before. We interpret these peaks presumably as the opening
of the hybridization ‘gaps’ and corresponding full filling (|𝜈 | = 4) of the ‘gapped’
bands. Even though the Dirac-like bands prevent full gaps, their low density of
states should not change 𝜈 too drastically. Second, at high 𝐵 fields, quantum
Hall insulating states develop around |𝜈 | = 4, which typically cover a broader filling
range where Hall conductance is quantized in accordance with the expectations from
the dispersive bands (Fig. 5.6, also see discussion below). These high-𝐵 features
can also be cross-checked with fan-like features coming from |𝜈 | < 4. The electron
density of |𝜈 | = 4 directly determines the twist angle in the low-angle approximation
𝜃2 ≈

√
3𝑎2𝑛|𝜈 |=4/8, where 𝑎 = 0.246 nm is the graphene lattice constant.

In terms of mismatched twist angles between layers and twist angle disorder, it is
difficult to experimentally determine the magnitude, but there are a few reasons
that suggest our samples are close to the desired alternating twist angle structure,
with matching twist angles for even/odd layers. When multiple distinct twist angles
are present [133], the resulting band structure is expected to become very complex
(notably, no sense of single moiré periodicity remains) and deviates significantly
from the observed experimental results. Importantly, the resulting band structures
noticeably deviate from the ones described in Fig. 5.2, where for 𝑛 layers at zero 𝐷
field, there are 𝑛/2 (for even 𝑛) or (𝑛−1)/2 (for odd 𝑛) sets of overlapping TBG-like
bands (one flat) and 1 Dirac cone if 𝑛 is odd. Although the parameter space is
too large to provide a thorough analysis, we provide some references with varying
geometries that do not agree with our experimental observations [134–136].

We note that signatures of the dispersive bands are also observed in Landau-fan
diagrams and vHs (Fig. 5.6 and Fig. 5.15). For example, emerging Landau levels
from the dispersive bands are typically observed through oscillations at low magnetic
field. Since at low energies, the dispersive bands (Fig. 5.2 left panels in yellow and
red) can be effectively treated as decoupled monolayer graphene-like bands when
considering the Landau level spectrum (see Section 2.2), the corresponding Hall
conductance around |𝜈 | = 4 will be quantized in a way that depends on the number
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of layers. As we see in Fig. 5.6g–m (particularly the linecuts), the 𝜈 ≈ 4 Landau
level TTG sequence follows (2, 6, 10, etc.) as in monolayer graphene. For TQG,
the sequence is roughly like two decoupled monolayers: 4, 12, 20, etc. Although
the TPG sequence is less clear, the first level can be made out at 6, following three
decoupled monolayers, as we would expect from the band structure (Fig. 5.2c).
Furthermore, both TQG and TPG devices show vHs signatures at |𝜈 | ≈ 6, consistent
with the expectation for vHs from roughly half filling of the dispersive TBG-like
bands (see Fig. 5.15).

5.3 Gaps in TTG and TQG

Figure 5.7: Measurements of the 𝜈 ≈ 2 insulator in TTG through linecuts (a), and
equivalent 2D diagram (b). Activation gap measurement (c), and 𝐷 dependence (d).

In addition to the symmetry-breaking transitions previously reported in TTG [51,
127, 128], our TTG structure (coupled to a tungsten diselenide (WSe2) monolayer
[46]) exhibits a previously unobserved correlated insulating state near 𝜈 = +2 at
finite 𝐷 (Fig. 5.7). We note that this insulating state is more resistive than the other
states in the vicinity Fig. 5.7a,b, and we determine it is gapped by its activated
temperature dependent behavior in Fig. 5.7c. This behavior cannot arise at the
non-interacting band theory level, which always predicts semimetallic bands, and is
instead attributed to the interplay between an interaction-driven cascade transition
and hybridization induced by the 𝐷 field (e.g., as captured by Refs. [137, 138]). The
𝐷-dependence, particularly its finite extent at 0.2 < 𝐷/𝜖0 < 0.35, is further shown
in Fig. 5.7d.

The behavior is suppressed by an out-of-plane 𝐵 field of 𝐵⊥ > 0.4 T but is mostly
insensitive to the in-plane 𝐵 field (the weak suppression by the in-plane 𝐵 field
could possibly originate from a non-ideal in-plane-field alignment of the sample),
as shown in Fig. 5.8. These experimental observations are highly indicative of a gap
that originates from strong interactions in TTG. We note, however, that the formation
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of fully gapped states in TTG requires a mechanism that additionally gaps out the
MLG-like band, which may explain the presence of the gap only at finite 𝐷 fields.
Moreover, suppression of the gap with an out-of-plane magnetic field is at odds with
the 𝐶2 breaking scenario [66, 67] and is more in line with incommensurate Kekulé
spiral [124] or intervalley-coherent [117, 137–139] orders in the flat bands. The
insensitivity to in-plane field is suggestive of a spin-polarized insulator or a phase
that is otherwise insensitive to in-plane magnetic field. Finally, we can not rule out
that the gap originates from induced SOI, since it is still possible that SOI promotes
instabilities that favor the formation for certain 𝜈 = +2 insulating states in TTG.

Figure 5.8: Magnetic field dependence of the TTG insulating state under out-of-
plane magnetic field (a) and in-plane magnetic field (b). Linecuts at the bottom of
(b) are for clarity.

We have also detected an insulating state developing at finite 𝐷 fields in TQG near
charge neutrality, as seen in Fig. 5.9a. The gap opens at 𝐷/𝜖0 ≈ 1.2 V/nm, and it
increases with increasing 𝐷. However, in contrast to TTG, the TQG insulating state
can be explained through the 𝐷-induced hybridization only. As mentioned above,
the continuum model predicts that in a sample with 𝜃 > 𝜃𝑚𝑎𝑔𝑖𝑐

𝑇𝑇𝐺
, the bands at the CNP

are metallic until a finite 𝐷, where they gap out. And in TTG, there is no monolayer
graphene-like Dirac cone to keep the bands metallic, so the result is predicted based
on single-particle physics (Fig. 5.9c,d). The 𝐷 field where the CNP is first gapped
also serves as a constraint for modeling the system, helping determine 𝑤𝐴𝐵. Note
that the charge-neutrality gap is a good reference for matching the experimental 𝐷
field with potential difference𝑈 (which we defined above) used in calculations since
the interaction-driven Hartree correction vanishes at the CNP.
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Figure 5.9: The R𝑥𝑥 gap behavior at charge neutrality in TQG revealed with tem-
perature linecuts (a), and a 𝐷-temperature diagram (b). (c) Experimentally derived
gaps with respect to 𝐷 and (d) TQG continuum-model gaps. 𝑈 is the top-bottom
layer potential used.

Figure 5.10: (a)–(d) Ginzburg–Landau coherence lengths 𝜉GL (for details on deter-
mining 𝜉GL, see Section B.1) versus 𝜈 for all three devices around 𝜈 = −2—and for
𝜈 = +2 for TPG (d)—superimposed on the 𝑅𝑥𝑥 versus 𝑇 and 𝜈 plots. (e) 𝜉GL and
moiré wavelength 𝐿M versus twist angle of different layers, suggesting a possible
relation between the two length scales.

5.4 Superconducting regions
The superconducting regions in all three structures extend over significantly larger
filling factor ranges in comparison to TBG [20, 43, 46, 48] where superconductivity
is typically observed within 2 < |𝜈 | < 3. Moreover, superconductivity is ‘ascen-
dant’ as the layer number is increased, in the sense that it emerges over successively
broader regions of phase space, reaching 𝜈 ≈ +5 on the electron side for TPG
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Figure 5.11: Critical temperature 𝑇𝑐 is indicated by a dashed line that delineates
10% of the normal state resistance (see Section B.1 for details). 𝑇𝑐 is maximized
at finite 𝐷 fields. Overall, superconductivity is suppressed more easily with 𝐷

as the layer number is increased for both hole ((a)–(c)) and electron (Fig. B.2)
doping. (d) Theoretical calculations of the inverse of the flat-band bandwidth for
twisted trilayer, quadrilayer, and pentalayer graphene as a function of 𝐷/𝜖0 (top)
and potential difference 𝑈 (bottom). For a fixed 𝐷, the bandwidth of the flat bands
is larger for systems with more layers, but when expressed as a function of 𝑈, the
flat-band broadening follows a similar trend across the different structures.

(Fig. 5.3). Along with a zero longitudinal resistance 𝑅𝑥𝑥 observed in the character-
istic 𝜈 vs. 𝑇 dome (Fig. 5.10), we also measure large critical currents (∼ 400 nA) and
Fraunhofer-like patterns, substantiating the robustness of phase coherence (shown
in the appendix, Fig. B.1).

Moreover, high critical perpendicular magnetic fields 𝐵𝑐 (typically ∼ 0.8 T) indicate
that the corresponding Ginzburg–Landau coherence lengths 𝜉GL (approximately 10−
30 nm) are significantly smaller than those observed in TBG (Fig. 5.10e) and deviate
from the weak-coupling prediction, 𝜉GL ≈ ℏ𝑣𝐹/𝜋Δ with Δ ≈ 1.76𝑘𝐵𝑇𝑐—suggesting
a strong-coupling origin of superconductivity [127, 128] (see Section B.1). When
combined with other recent experiments [129, 132, 140], these observations affirm
the unconventional nature of superconductivity within the entire class of graphene
moiré systems. Further, the measurements on three to five layers indicate that the
addition of layers promotes superconductivity over a broader filling window despite
the coexisting dispersive bands as well as the ostensibly increased vulnerability to
disorder—both from the additional twist angles as well as from the sensitivity to the
relative displacement between layers.
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In addition to the pronounced 𝜈-dependence, the observed superconducting pockets
are highly tunable with electric displacement field 𝐷. A comparison of the three
structures reveals that TQG and TPG are more tunable than TTG. This is apparent
both in the 𝐷-dependent evolution of the filling range where superconductivity
is measured (Fig. 5.4) as well as in the critical temperature 𝑇𝑐 (Fig. 5.11a–c).
Notably, superconductivity in TQG and TPG is fully quenched for all fillings at
𝐷/𝜖0 = 0.75 V nm−1 and 𝐷/𝜖0 = 0.6 V nm−1, respectively. In the case of TTG,
however, superconductivity is present up to the maximum accessible electric field
𝐷/𝜖0 = 1 V nm−1. Nevertheless, superconductivity is largely suppressed at optimal
doping in all three heterostructures; further, they reveal that𝑇𝑐 forms a 𝐷-symmetric
dome maximized at small finite 𝐷 fields (for electron-side data showing similar
behavior see Fig. B.2). We also note that TTG, TQG, and TPG all exhibit a similar
variation of 𝑇𝑐 when viewed as a function of the potential difference 𝑈 (as defined
in Section 5.3 and represented on the right side of panels (a)–(c) in Fig. 5.11)
between the top and bottom layers. This layer-number invariance is consistent with
non-interacting continuum-model calculations tracking the evolution of the inverse
of the flat-band bandwidth with 𝑈 (Fig. 5.11e). The dependence of 𝑇𝑐 on 𝐷 in
all devices qualitatively matches the predictions of Ref. [103] for TTG with one
marked exception: the observed vanishing of superconductivity and the decay of
𝑇𝑐 appears to be linear in 𝐷 (Fig. 5.11b,c and Fig. B.2), in line with predictions
for multilayer graphene with rhombohedral stacking [141] and in contrast to the
exponential ‘tail’ typically expected from the weak-coupling theory (and seen in the
model of Ref. [103]).

5.5 Hall density analysis
Comparing the location of the superconducting regions with the evolution of the
Hall density as a function of 𝐷 and 𝜈 in TTG, TQG, and TPG provides further
insight into the intricate relationship between the superconducting phase and the
correlation-modified Fermi surface (Fig. 5.12). As in previous TBG and TTG
measurements, we observe symmetry-breaking electronic transitions (a ‘cascade’
of transitions) that are signalled by sudden drops in the Hall density magnitude (a
‘reset’) without a change in sign (see Fig. B.4g–i for examples of these features).
These resets (see dashed lines in Fig. 5.12) indicate a rearrangement of spin/valley
sub-bands and typically occur near integer fillings of the flat bands [74, 75]. At low
𝐷 fields, superconducting pockets onset around the |𝜈 | = 2 resets (purple dashed
line), and the filling extent of superconductivity varies depending on the presence
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Figure 5.12: Comparison of Hall and longitudinal resistance in tri- and quadrilayer
graphene devices. (a), (b) 𝐷 field and 𝜈 dependence of 𝑅𝑥𝑥 (top) and Hall density
(bottom, measured at 𝐵 = 0.9 T) for TTG. Purple and grey dashed lines mark the
filling factors where flavor symmetry-breaking transitions associated with |𝜈 | = 2
and |𝜈 | = 3 happen, respectively. The yellow line in (a) delineates the evolution of the
vHs. (c), (d) Same for TQG (bottom, measured at 𝐵 = 1.5 T). The superconducting
𝑇𝑐 reaches its maximum (orange dot in (d)) exactly at the position of the vHs.
When present, flavor symmetry-breaking transitions around |𝜈 | ≈ 3 coincide with
the termination of superconductivity. By contrast, superconductivity extends much
further in the absence of a |𝜈 | ≈ 3 reset (c).

or absence of a |𝜈 | = 3 flavor symmetry-breaking transition (grey dashed line). For
electron- and hole-doped TTG as well as for electron-doped TQG (Fig. 5.12a, b, d),
a flavor symmetry-breaking transition appears around |𝜈 | = 3 and superconductivity
accordingly terminates, as previously noted in TTG [127]. By contrast, when
signatures of the |𝜈 | = 3 reset are completely absent (for example in hole-doped
TQG, Fig. 5.12c, or in TPG, Fig. 5.13), superconductivity extends much farther.
Combined, these observations suggest that superconductivity is favored when only
two out of the four flavors are predominantly populated (|𝜈 | = 2 cascade) and
suppressed beyond |𝜈 | = 3 resets. This behavior can be understood within the
simplest iteration of the cascade scenario: resets associated with |𝜈 | = 3 produce
spin- and valley-polarized bands [125, 142, 143] and naturally disfavor Cooper
pairing of time-reversed partners.

At high 𝐷 fields, signatures of the cascade vanish and instead van Hove singularities
(vHs) become more prominent, reflecting qualitative changes in the band structure
(see yellow lines in Fig. 5.12 and Fig. B.4 that track the vHs). Consistent with
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Figure 5.13: TPG device Hall density and phase diagram. (a) Hall density as a
function of 𝜈 and 𝐷. (b) Schematic of features in the phase diagram of TPG,
mapping out the cascade (present at low 𝐷 but not present at high 𝐷), van Hove
singularities, superconducting boundary, and |𝜈flat | = 4 Hall density resets. Sketches
of the DOS around 𝜈 = +2 for different 𝐷 fields are shown on the right. The middle
panel illustrates the flavor symmetry polarization observed in regions that support
superconductivity. Flavor symmetry is preserved at higher 𝐷 fields, as shown in the
top and bottom panels.

previous TTG measurements [127, 128], the vHs in our TTG sample (as well as
in TPG, see Fig. 5.13) crudely bound the superconducting regions. By contrast,
the vHs in TQG cross well into the superconducting pockets—in fact, for electron
doping, 𝑇𝑐 reaches its maximum exactly at the position of the vHs (orange dot in
Fig. 5.12d or see Fig. B.5d–f for more details). In our second TQG device, the vHs
behavior crossed into the superconducting pocket, but it was not as pronounced as
the first device (Fig. B.3), likely due to the smaller twist angle. The interplay between
the vHs and superconducting boundaries, as revealed in Hall density measurements,
is complex: 𝑇𝑐 can be both enhanced and suppressed at the vHs depending on the
layer number and possibly other details such as the precise twist angle.

Pentalayer measurements provide additional signatures that point towards a close re-
lation between superconductivity and flavor symmetry-breaking cascades (Fig. 5.13).
In contrast to TTG, in TPG we can access 𝐷 fields that are large enough to stifle
superconductivity—which occurs simultaneously with the onset of the vHs and
the apparent suppression of the cascade transitions (see red and light blue lines in
Fig. 5.13b that mark the superconducting boundaries and the cascade transitions,
respectively). For example, at low 𝐷 fields (|𝐷 |/𝜖0 < 0.6 V nm−1) around 𝜈 = +2,
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the Hall density resets close to zero, in line with a nearly complete flavor symmetry-
breaking polarization. However, at higher 𝐷 fields (|𝐷 |/𝜖0 > 0.6 V nm−1), the
Hall density is dominated by a vHs around 𝜈 = +2, while the cascade signatures
are diminished. Superconductivity accordingly also vanishes. For hole doping, the
disappearance of superconductivity similarly coincides with the weakening of the
cascade. This on/off correspondence between the two phenomena suggests that they
either share a common origin, such as a large density of states, or that the cascade
serves as a prerequisite for robust superconductivity in graphene moiré superlattices.

5.6 Superconductivity extended to 𝜈 ≈ 5 in TPG

Figure 5.14: Electron-side superconductivity in TPG. (a), (b) 2D plots of 𝑅𝑥𝑥 and
Hall density 𝑛𝐻 , respectively, showing the extent of superconductivity, how it evolves
with 𝐷 and is associated with features in panel (b). (c), Fraunhofer-like pattern taken
at the yellow point in (a).

As mentioned above, for low 𝐷 fields in TPG, the superconducting pockets are
extraordinarily large, spanning −4 ≲ 𝜈 < −2 for hole doping and +2 ≲ 𝜈 ≲ +5 for
electron doping (Fig. 5.10c,d, Fig. 5.4c, and Fig. 5.14). In particular, the electron-
side range corresponds roughly to a density window of 6 × 1012 cm−2, which is
the largest filling range so far reported in a graphene-based superconductor. The
observed superconductivity exhibits similar values of 𝑇𝑐 and 𝐵𝑐 as the trilayer and
quadrilayer samples and is likewise accompanied by a Fraunhofer-like pattern of
critical current (Fig. 5.14c), confirming superconducting phase coherence. This
contrasts TBG, where superconductivity originating at |𝜈 | ≈ 2 almost always dies
before about |𝜈 | ≈ 3. We emphasize that the unprecedented persistence of super-
conductivity across a large filling factor range in TPG (and also TQG in comparison
to TTG or TBG) cannot be explained in a minimal framework of alternating twisted
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graphene multilayers [130, 144] without invoking the non-trivial role of the addi-
tional bands.

Figure 5.15: Observation of a vHs near 𝜈 = 6. 𝑅𝑥𝑥 (a) and 𝑅𝑥𝑦 (b) for large 𝜈 in TPG
at 𝐷 = 0. The purple arrows show the vHs located in the dispersive TBG-like band
near its half-filling point (𝜈 ≈ 6), which is shown in the band structure of (e). The
same vHs is also present in TQG (d), which also has a dispersive TBG-like band
(compare to Fig. 5.14b).

The role of the additional bands in TPG deserves careful consideration due to the
implications for the strength of interactions (such as Hartree effects) and the types
of superconductivity the bands can plausibly support. Explanations for the en-
larged superconducting intervals can generically be organized into three scenarios
depending on the filling of the flat TBG-like bands 𝜈flat, relative to the total filling
𝜈max at which superconductivity terminates (𝜈max = +5 for electron-doped TPG and
|𝜈max | = 4 for TQG and hole-doped TPG). Briefly, in scenario (𝑖), 𝜈max corresponds
to 𝜈flat ≈ +3, the flat-band filling at which superconductivity is typically suppressed
in TBG, suggesting that the superconducting phase space is largely the same for dif-
ferent multilayer magic-angle structures when considering just the flattest TBG-like
bands. In scenario (𝑖𝑖), 𝜈max coincides with 𝜈flat ≈ +4, precluding any simple anal-
ogy with TBG, although superconductivity can still be attributed to the flat bands.
Finally, scenario (𝑖𝑖𝑖) assumes full filling of the flat bands before superconductivity
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is suppressed at 𝜈max. This scenario includes the possibility that the distinction
between the different TBG- and MLG-like bands breaks down even at 𝐷 = 0 due to
hybridization as well as potential multi-band superconductivity [145–148]. In this
case, superconductivity in TPG is a more general phenomenon than in TBG since it
occurs in either mixed bands or new, more dispersive bands.

From the perspective of the non-interacting band structure, the three scenarios all
seem implausible, therefore interactions must play a crucial role. In particular,
although the presence of the dispersive bands implies that |𝜈 | − |𝜈flat | > 0, this effect
is much smaller than needed for either scenario (𝑖) or (𝑖𝑖). Coulomb interactions can
significantly enhance |𝜈 | − |𝜈flat |, either by evening out the spatial charge distribution
[14, 98, 115, 149, 150] or symmetry breaking. We developed a few simple models
for TPG incorporating these mechanisms (for more details on the model including
interactions, see the Supplementary Material in Ref. [58]) and show an outline
of the results in Fig. 5.16 and 5.18. We now return to the three scenarios while
considering the effects of interactions along with the experimental behavior near
𝜈 ≈ 4 shown in Fig. 5.20, 5.19 and the presence of vHs at 𝜈 ≈ 6 (Fig. 5.14b and
Fig. 5.15). Note that in the discussion below, 𝜈 denotes the total number of electrons
per moiré site, and 𝜈flat denotes the number of electrons per moiré site added to the
flat TBG-like bands.

Figure 5.16: Depiction of different approximation schemes used to understand the
role of interactions in TPG. Note that the Hartree correction shifts the flat band
(purple) up in energy, and the chemical potential (for a given 𝜈) consequently also
shifts upward. Cascaded bands (bands that are totally filled as a result of symmetry
breaking) in (c) and (d) are shown in green. (d) corresponds to a minimal model of
Hartree and Fock effects characterized by a Hartree shift (Δ𝐻) and a Fock gap (Δ𝐹).
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Scenario (𝑖): flat TBG-like bands are filled to 𝜈flat = +3 at 𝜈 = +5
For TBG and TTG, the strongest superconducting pockets normally start from |𝜈 | = 2
and end around |𝜈 | = 3. Therefore, a conventional scenario would suggest that TPG
could behave in a similar way, i.e., flat TBG-like bands are filled to 𝜈flat = +3 when
superconductivity is diminished at 𝜈 = +5. This scenario implies that the additional
two electrons per moiré site are distributed in the dispersive TBG- and MLG-like
bands due to the Hartree interactions, with a large portion of the charge carriers
being hosted by the dispersive TBG-like bands. Our modeling suggests a minimal
flat-band occupation 𝜈flat ≳ +3.8 at 𝜈 ≈ +5 (see Fig. 5.18a, c, which show that
unphysically large Δ𝐻 and Δ𝐹 are required to allow for 𝜈flat < +3.8), diminishing
the plausibility of scenario (𝑖) for electron-doped TPG which has 𝜈max ≈ +5. The
relevance of this scenario is further undermined by the observation of vHs at 𝜈 ≈ +6
(Fig. 5.15): under the reasonable assumption that the non-interacting band structure
remains valid for the dispersive TBG-like bands (apart from a Hartree shift), scenario
(𝑖) would instead place the observed vHs near 𝜈 ≈ +5 due to the vHs occurring near
half filling of the TBG-like band. Taken together, these arguments effectively rule
out scenario (𝑖).

Figure 5.17: A schematic of the three bands contributing to 𝜈. Superconductivity is
expected in cascaded flat bands (blue). The schematic depicts scenario (ii), where
the dispersive bands collect charge, keeping the flat bands from filling until 𝑛𝑢 ≈ 5,
where superconductivity ends.

Scenario (𝑖𝑖): flat TBG-like bands are filled close to 𝜈flat = +4 at 𝜈 = +5
As a result of interactions, a fraction of electrons are preferentially distributed in
the dispersive TBG- and MLG- like bands. It is therefore possible that for total
filling of 𝜈 ≈ +5, the flat TBG-like bands are filled close to 𝜈flat ≈ +4, with the extra
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one electron per moiré site being distributed in the other bands (see Fig. 5.17 for
a schematic). Fig. 5.18a shows the filling correspondence between 𝜈flat and 𝜈 for
various interaction terms given a reasonable dielectric constant under two methods
of accounting for correlations. Whether using just Hartree correlations (solid lines)
or including cascade effects (dashed lines), it is plausible that the dispersive bands
could hold the extra electron necessary to keep superconductivity in the flat bands.
In this scenario, the modeling suggests that the filling of the flat bands is nearly four
(𝜈flat > +3.8) when 𝜈 ≈ 5, which is well outside the typical TBG superconducting
range. However, the appearance of 𝜈 ≈ 𝜈flat = 4 resistive states at high 𝐷 suggests
the filling 𝜈flat is modified at high 𝐷. This is shown in Fig. 5.18b, where the dashed
lines indicate that the flat bands fill more quickly once a finite 𝐷 has been applied.
In this scenario, the flat bands are filled with 4 electrons per unit cell by 𝜈 ≈ 5,
so by the time 𝜈 = 6 is reached, 2 electrons per unit cell can be distributed to the
dispersive bands. This allows for the appearance of the vHs in Fig. 5.15.

Figure 5.18: Model calculations, including interactions, of band filling. (a) Partial
filling of each subsystem versus total filling 𝜈 for a fixed dielectric constant 𝜖 = 11.15.
Here, solid (dashed) lines correspond to a cascaded (uncascaded) solution with the
cascade solution enabling higher filling of the flat-band subsystem. (b) Similar
to (a) but the solid (dashed) lines correspond to a solution at potential difference
𝑈 = 0 meV (𝑈 = 34 meV). Finite 𝐷 allows the flat bands to fill more quickly. (c)
filling of the flat-band subsystem as function of the Hartree and Fock terms, holding
total 𝜈 constant. While (a), (b) are calculated using the model shown in panel (b),
(c) of Fig. 5.16, (c) is calculated using the minimal Hartree-Fock model of panel (d)
in Fig. 5.16.
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Scenario (𝑖𝑖𝑖): flat TBG-like bands are fully filled to 𝜈flat = +4 before 𝜈 = +5 or
hybridization of different bands obscures the distinction between them
The last scenario suggests either that the flat TBG-like bands are fully filled before
the suppression of superconductivity, in which case superconductivity would exist
in the more dispersive bands, or that the distinction between the different TBG-
and MLG-like bands breaks down due to hybridization (i.e. mixing), even at 𝐷 =

0. Such mixing between flat, dispersive TBG-like, and MLG-like bands obviates
our definition of 𝜈flat, potentially allowing flavor polarization, and accompanying
superconductivity, to persist well beyond 𝜈 = +4. While such hybridization is
expected for finite 𝐷 fields, mixing between flat, dispersive TBG- and MLG-like
bands for |𝜈 | < |𝜈max | may occur even at 𝐷 = 0 due to, for example, proximity to
WSe2, layer-to-layer charge inhomogeneity, or distant-layer coupling.

Figure 5.19: TPG measurements near 𝜈 = 4. 𝑅𝑥𝑥 (top panel) and Hall density
(bottom panel) measurements measured at 𝐷 shown in the figure.

Assuming well-defined flat and dispersive bands, in scenario (𝑖𝑖𝑖) the former bands
are completely filled, and superconductivity is supported fully by the latter non-flat
bands. This assertion is at odds with the large dispersion of the remaining TBG-
and MLG-like bands. However, while the exact mechanism underlying scenario
(𝑖𝑖𝑖) is difficult to pin down, it is not without experimental support. For instance,
a natural interpretation of the Hall density minimum around 𝜈 ≈ +4 (Fig. 5.19 for
|𝐷 | ≲ 0.4 V nm−1 is that it marks the complete filling of the flat bands, 𝜈flat ≈ +4.

Experimentally, starting from low 𝐷 fields, we observe a drop in Hall density at
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Figure 5.20: The 𝐷-dependence near 𝜈 = 4. (a) 𝑅𝑥𝑥 vs. 𝜈 and 𝐷, showing the
linecuts where (b)–(g) are taken from. (b)–(g) 𝜈 vs. temperature at a selected value
of 𝐷, showing the evolution near 𝜈 ≈ 4.

𝜈 ≈ +4 which surprisingly does not affect superconductivity in any abrupt way
(superconductivity continuously evolves and is present until 𝜈 ≈ +5). As the 𝐷 field
is increased, this Hall density drop only varies slightly (Fig. 5.19) and is gradually
replaced by a transition where Hall density changes sign (Fig. B.6). The high𝐷-field
transition can be interpreted as a ‘gap’ feature emerging in the band structure similar
to TTG [127]. Further measurements of 𝑅𝑥𝑥 show that the corresponding 𝜈 ≈ +4
feature does not shift with temperature (Fig. 5.20) and is significantly broadened
at high 𝐵 fields, resembling the feature associated with the flat-band gap in TTG
(Fig. 5.6, a and e). Fig. B.6 shows more evidence that the 𝜈 ≈ 4 behavior does
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not vary strongly with added magnetic field or temperature. These observations
indicate that the 𝜈 = +4 feature is naturally explained as either marking the end
of the flat bands or resulting from band details due to hybridization, which is in
line with scenario (𝑖𝑖𝑖). In this context, the alternative possibility that 𝜈 = +4
corresponds to a flavor-polarization reset at 𝜈flat = +3 is highly unlikely, due to the
limited movement of the features associated with 𝜈 ≈ 4 as 𝐷 is varied. Finally, we
note that this line of argument cannot fully rule out scenario (𝑖𝑖) due to the potential
presence of small dispersive pockets in the flat bands that may remain unfilled near
𝜈 = +4 (schematically depicted in Fig. 5.17).

Our measurements demonstrate the increasing predominance of superconductivity in
twisted graphene multilayer structures as the number of layers is increased from three
to five and highlight the close relationship between the flavor symmetry-breaking
transitions and superconductivity. Moreover, our findings suggest a scenario in
which the symmetry-broken 𝜈 = ±2 state strongly favors the formation of the
superconducting state while the cascade corresponding to 𝜈 = ±3 suppresses it.
Interestingly, this scenario is consistent not only with previous TBG [20, 43, 46–
48, 53] and TTG [51, 127, 128] observations but also in part with the recently
investigated ABC trilayers [151] and Bernal bilayers without [152] and with a
WSe2 substrate [106] where superconductivity is observed near or within phases in
which two out of four flavors are predominantly filled. These common observations
suggest that symmetry-broken states with similar types of polarization underlie
superconductivity in all these graphene-based superconductors. In this context,
the discovery of superconductivity in TQG and TPG together with recent work
on untwisted bi- and trilayers dramatically expands the scope of graphene-based
superconductors. This expansion holds promise for resolving important questions
related to the nature of the pairing mechanism in these systems and provides guidance
for developing novel graphene-based superconductors and their applications.
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C h a p t e r 6

TOPOLOGY AND BAND ENGINEERING IN
INAS/GASB-DERIVATIVE STRUCTURES

The 2D topological insulator (2DTI) phase serves an important role in condensed
matter physics due to the protected helical edge states intrinsically present in mate-
rials exhibiting the phase. The phase exhibits topological properties without large
magnetic fields (required for the quantum Hall effect) or ferromagnetic symmetry
breaking. When coupled to superconductors, 2DTIs can provide a route to topo-
logical quantum computation with the elusive Majorana bound states [153–156].
Although graphene-based heterostructures show promise for examining electron
correlations and topological phases, the potentially useful 2DTI (or quantum spin
Hall) state has not been found in these systems, except at extreme conditions, such
as a version of 2DTIs at high magnetic fields [9, 157] or in fragile forms that show
only a few features of topological insulators [32].

Materials grown with molecular beam epitaxy, however, have shown promise as
2D topological insulators [158–161]. The flexibility in fabrication of these 2D
electron gases (2DEGs), the achievable impurity levels, and favorable contacts with
superconductors such as aluminum, allow for complex designs and a high degree of
control over experimental parameters. Furthermore, 2DTIs in Josephson junctions
show theoretical promise for studying the phase diagram of topological supercon-
ductivity [162, 163] and for a scalable route to networks of topological qubits [164,
165]. However, the field is still in its infancy and has many unresolved issues. After
a brief introduction to 2DTIs, this section discusses the InAs/GaSb coupled quan-
tum well material system and improvements our group has made toward tunable
2DTIs. Initial results on superconducting Josephson junctions with the material are
also covered in the outlook section (Chapter 7). Particularly, we cover the promis-
ing coupled InAs1−𝑥Sb𝑥/In𝑦Ga1−𝑦Sb platform that exhibits large resistance in the
inverted band (potentially 2DTI) regime, measurements of valence band structure,
and magnetic field dependence and comparison to theoretical expectations.

6.1 Introduction to 2D topological insulators (2DTIs)
Topological insulators are materials that behave as insulators in the bulk and host
conductive edge states. The conductive edge states arise from the required closing of
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the bulk insulating gap when going from the non-trivial topology inside the material
to the trivial topology outside. The topological state does not break time-reversal
symmetry and thus occurs at zero magnetic field, without any magnetism in the sam-
ple. The insulating gap results from time-reversal-symmetric spin-orbit coupling
that splits two crossing bands into spin-↑, +k (also spin-↓, −k) and spin-↓, +k (also
spin-↑, −k) bands, where ±k refers to bands of electrons with opposite momenta.
One way to represent this is with the schematic in Fig. 6.1, where the conduction
and valence band edges are plotted along a line drawn through the sample. Outside
the sample, conduction and valence bands are topologically trivial, but inside the
sample, the two bands invert and exhibit non-trivial topology. The bands cross at
the edges to form a Dirac point, resulting in a topologically protected conductive
edge state. Due to the degeneracy of spin-orbit coupling, electrons traveling in one
direction are spin polarized, and the electrons travelling in the opposite direction are
oppositely spin polarized. This is what is meant by helical edge states. Furthermore,
each edge should theoretically exhibit a robust quantized conductance of one quan-
tum conductance unit 𝑒2/ℎ in each of the two directions (resulting in predictable
nonlocal quantized conductance in devices according to Landauer-Büttiker theory),
that is highly sensitive to time-reversal breaking perturbations such as magnetic field
or magnetic impurities but not to other forms of disorder.

Only a few material systems have been shown to exhibit 2DTI behavior experi-
mentally on a scale large enough to make electrical transport devices. The leading
material systems are HgTe/CdTe quantum wells [158], the recently studied mono-
layer WTe2 [166, 167], and InAs/GaSb quantum wells [159, 160, 168–172], the
system studied in this thesis. Although several experimental signatures have been
verified, including the quantized edge mode conductivity [158, 173], edge mode
suppression under a magnetic field [158], helical spin transport [174], and imag-
ing of the protected conductive edge modes [175, 176], several questions remain
regarding 2DTIs. Namely, how robust are the helical edge states to disorder [177,
178], temperature [179], and magnetic field [180–182]? What is the role of inter-
actions [183], and band structure [184] in each of these systems? Also, how well
can these experimental signatures be accounted for using non-topological (trivial)
mechanisms? The discussion on InAs/GaSb will touch these topics and point out
the benefits of the InAs/GaSb system for studying 2DTIs due to its remarkable
tunability.



103

Figure 6.1: A schematic of a 2D topological insulator, demonstrating the inverted
band structure with protected helical edge states. The close-up shows the spin
polarization of the edge states in opposite directions, and the axes in the plot track
the energy 𝐸 , of the conduction and valence bands along the sample width 𝑥.

6.2 InAs/GaSb, a topological insulator candidate
Coupled intrinsically electron-doped InAs and hole-doped GaSb quantum wells
offer an enticing route to further studying 2DTIs. The two semiconductor layers
are deposited on top of one another using molecular beam epitaxy, resulting in
geometries similar to those shown in Fig. 6.2. The AlSb layers, which have a larger
bandgap than InAs or GaSb, serve as insulating barriers. Contacts are made to
the quantum wells using selective wet etching to the InAs layer, followed by Ti/Au
evaporation. Device shape can be controlled with an etch to the substrate. The gold
topgate can then be fabricated after an Al2O3 dielectric layer is deposited.

The key to the InAs/GaSb material structure lies in (a) the broken-gap structure in
which the bottom of the conduction band of InAs lies below the top of the valence
band of GaSb, and (b) the gate tunability to both the electron-like InAs and hole-
like GaSb layers. The full range of this tunability has been enabled by substrate
engineering [186]. The GaSb substrate, which is deposited onto, is already lattice-
matched with the GaSb quantum well (and only slightly off for InAs), resulting



104

Figure 6.2: Schematics of the double quantum wells studied. Adapted from Ref.
[185].

Figure 6.3: Schematic diagrams InAs/GaSb uncoupled/coupled quantum well band
structure. (a) Uncoupled overlapping InAs and GaSb quantum wells and (b) coupled
quantum wells with anticrossing points at finite k and spin-orbit coupling. The green
lines represent the predicted topologically protected edge states of opposite spin and
momentum combinations.

in both a reduction in strain dislocations and less deposition required between the
substrate and the quantum well relative to GaAs substrates, for instance. Thus the
backgate’s higher capacitance enables greater density tuning in the quantum well,
and the reduced strain improves mobility [160].

The conceptual idea behind the InAs/GaSb system is captured by first considering an
effective band structure of the two layers when they are decoupled (e.g., by a small
dielectric layer grown between them), as shown in Fig. 6.3a. InAs (red, electron
band) has a lower effective mass than GaSb (blue, hole band), and their alignment
can be tuned by the top and back gates. Applying an out-of-plane electric field can
either further dope both the electron (InAs) and hole (GaSb) bands, causing the
bands to further overlap, or it can push the bands apart. When the electron and hole
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bands are no longer overlapping, as shown in the inset to Fig. 6.3a, there is a trivial
energy gap between the bands.

However, when the two bands overlap, the InAs and GaSb layers are coupled. Once
spin-orbit coupling is considered, anticrossing points occur at finite momenta, as
shown in Fig. 6.3b. Electrons are still represented as red, and holes as blue in the
band structure. The gaps have been shown theoretically to exhibit the quantum spin
Hall effect [187], which prompted experimental efforts to observe 2DTI signatures.
The nature of the edge states (green lines) is shown in the inset of Fig. 6.3b. When
looking along one edge of a device, a channel of one spin species travels in the
forward direction, and the opposite-spin channel travels in the reverse direction.
The chemical potential must pass through both edge states when it is in the gap,
and the Fermi velocity is controlled by the size of the gap and the momenta of the
anticrossing points.

This can be modeled, to first-order, using a capacitance model [188] that considers
the geometric capacitance of the wells to the top/back gates (𝐶𝑡 /𝐶𝑏), the geometric
capacitance between the electron and hole layers (𝐶𝑚), and the quantum capaci-
tance of the electron/hole layers (𝐶𝑞,𝑒/𝐶𝑞,ℎ), as shown in Fig. 6.4a. The quantum
capacitance follows the density of states, 𝐷 of the quadratic spin-degenerate bands,
𝐶𝑞,𝑒(ℎ) = 𝑒2𝐷𝑒(ℎ) , where 𝐷𝑒 (ℎ) =

𝑚∗
𝐼𝑛𝐴𝑠 (𝐺𝑎𝑆𝑏)
𝜋ℏ2 . Then, the electron and hole densi-

ties (𝑛 and 𝑝) follow from the definitions of the chemical potential relative to the
conduction band bottom, 𝐸𝐹 , and the amount of band inversion, 𝐸𝑔, in Fig. 6.4b.

𝑛 = 𝐷𝑒𝐸𝐹 =
𝐶𝑞,𝑒

𝑒2 𝐸𝐹 (6.1)

𝑝 = 𝐷ℎ (𝐸𝑔 − 𝐸𝐹) =
𝐶𝑞,ℎ

𝑒2 (𝐸𝑔 − 𝐸𝐹) (6.2)

A schematic of the InAs (left) and GaSb (right) energy levels is shown in Fig. 6.4c.
Also shown is the energy offsets, 𝐸1 and 𝐻1, of the electron and hole bands due to
quantum confinement from the finite layer thickness, which tunes the band overlap.
This energy structure can be represented mathematically as

𝜇𝑡𝑔 + 𝑒
𝜎𝑡𝑔

𝐶𝑡
− 𝐻1 − 𝐸𝑔 + 𝐸𝐹 + const. = 𝜇 (6.3)

𝜇𝑏𝑔 + 𝑒
𝜎𝑏𝑔

𝐶𝑏
+ 𝐸1 + 𝐸𝐹 + const. = 𝜇. (6.4)
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Gauss’s law determines the charge at each layer and the electric field between layers

𝑒𝑝 + 𝜎𝑡𝑔 = −𝜖0𝜖𝑄𝑊𝐸𝑚 (6.5)

−𝑒𝑛 + 𝜎𝑏𝑔 = 𝜖0𝜖𝑄𝑊𝐸𝑚 (6.6)

where 𝜖𝑄𝑊 is the quantum well dielectric constant (which is nearly the same for InAs
and GaSb), and 𝐸𝑚 is the electric field in the middle of the quantum wells. Lastly,
we have the following relations between 𝐸𝑚, 𝜇, 𝜇𝑏𝑔, and 𝜇𝑡𝑔 and other parameters:

𝑒𝐸𝑚𝑑𝑚 = Δ = 𝐸𝑔 + const. (6.7)

−𝑒𝑉𝑏𝑔 = 𝜇𝑏𝑔 − 𝜇 (6.8)

−𝑒𝑉𝑡𝑔 = 𝜇𝑡𝑔 − 𝜇. (6.9)

If we leave offsets as experimentally determined constants, we can get equations
relating 𝑛 and 𝑝 to topgate and backgate voltages𝑉𝑡𝑔. The capacitance model results
in linear relationships between densities and gate voltages. There are three regimes
of 𝑝 and 𝑛 to consider:

1. n > 0, p = 0: When one carrier type is absent, the dependence on gates comes
from some simple modifications to geometric capacitance. For the topgate,
the slope is

𝑑𝑛

𝑑𝑉𝑡𝑔
=
𝐶𝑞,𝑒

𝑒

𝐶′
𝑡

𝐶′
𝑡 + 𝐶𝑞,𝑒 + 𝐶𝑏

, (6.10)

where 𝐶′
𝑡 =

(
1
𝐶𝑡

+ 1
𝐶𝑚

)−1
is the capacitance from the topgate to the bottom

InAs layer. And for the backgate,

𝑑𝑛

𝑑𝑉𝑏𝑔
=
𝐶𝑞,𝑒

𝑒

𝐶𝑏

𝐶′
𝑡 + 𝐶𝑞,𝑒 + 𝐶𝑏

. (6.11)

2. n = 0, p > 0: For the topgate,

𝑑𝑝

𝑑𝑉𝑡𝑔
= −

𝐶𝑞,ℎ

𝑒

𝐶𝑡

𝐶𝑡 + 𝐶𝑞,ℎ + 𝐶′
𝑏

, (6.12)
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Figure 6.4: An electrostatic capacitance model that is a first approximation to the
InAs/GaSb double quantum well’s behavior under top and back gates. (a) shows a
circuit schematic, and (b), (c) show the relevant parameters for the model, which are
described in the text

where 𝐶′
𝑏
=

(
1
𝐶𝑏

+ 1
𝐶𝑚

)−1
. And for the backgate,

𝑑𝑝

𝑑𝑉𝑏𝑔
= −

𝐶𝑞,ℎ

𝑒

𝐶′
𝑏

𝐶𝑡 + 𝐶𝑞,ℎ + 𝐶′
𝑏

. (6.13)

3. n, p > 0: When both carriers are present, the analysis takes a few more steps
and results in the coupled equations

𝑉𝑡𝑔 −𝑉𝑡𝑔,0 = −𝑒𝑝
𝐶𝑡

− 𝑒𝑝

𝐶𝑞,ℎ
− 𝑒𝐶𝑚

𝐶𝑡

(
𝑛

𝐶𝑞,𝑒
+ 𝑝

𝐶𝑞,ℎ

)
(6.14)

𝑉𝑏𝑔 −𝑉𝑏𝑔,0 =
𝑒𝑛

𝐶𝑏
+ 𝑒𝑛

𝐶𝑞,𝑒
+ 𝑒𝐶𝑚
𝐶𝑏

(
𝑛

𝐶𝑞,𝑒
+ 𝑝

𝐶𝑞,ℎ

)
. (6.15)

These equations can be evaluated most easily by inverting the following deriva-
tives, which are represented only in terms of constants:
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𝑑𝑉𝑡𝑔

𝑑𝑝
= −𝑒

(
1
𝐶𝑡

+ 1
𝐶𝑞,ℎ

+ 𝐶𝑚

𝐶𝑡𝐶𝑞,ℎ

)
+ 𝑒

𝐶2
𝑚

𝐶𝑡𝐶𝑞,ℎ

(
𝐶𝑞,𝑒 + 𝐶𝑏 + 𝐶𝑚

)−1 (6.16)

𝑑𝑉𝑡𝑔

𝑑𝑛
= 𝑒

(
𝐶𝑞,ℎ

𝐶𝑚𝐶𝑡
+ 1
𝐶𝑚

+ 1
𝐶𝑡

+
𝐶𝑏𝐶𝑞,ℎ

𝐶𝑚𝐶𝑞,𝑒𝐶𝑡
+ 𝐶𝑏

𝐶𝑚𝐶𝑞,𝑒
+ 𝐶𝑏

𝐶𝑡𝐶𝑞,𝑒

+
𝐶𝑞,ℎ

𝐶𝑞,𝑒𝐶𝑡
+ 1
𝐶𝑞,𝑒

)
(6.17)

𝑑𝑉𝑏𝑔

𝑑𝑝
= 𝑒

𝐶𝑚

𝐶𝑏𝐶𝑞,ℎ
− 𝑒

(
1
𝐶𝑏

+ 1
𝐶𝑞,𝑒

+ 𝐶𝑚

𝐶𝑏𝐶𝑞,𝑒

) (
𝐶𝑞,𝑒

𝐶𝑚

+
𝐶𝑡𝐶𝑞,𝑒

𝐶𝑚𝐶𝑞,ℎ
+
𝐶𝑞,𝑒

𝐶𝑞,ℎ

)
(6.18)

𝑑𝑉𝑏𝑔

𝑑𝑛
= 𝑒

(
1
𝐶𝑏

+ 1
𝐶𝑞,𝑒

+ 𝐶𝑚

𝐶𝑏𝐶𝑞,𝑒

)
− 𝑒

𝐶2
𝑚

𝐶𝑏𝐶𝑞,𝑒

(
𝐶𝑞,ℎ + 𝐶𝑡 + 𝐶𝑚

)−1
. (6.19)

When these three regimes are patched together with reasonable material parameters,
described more below, the result is the phase diagram shown in Fig. 6.5. The lines
of constant 𝑛 (black) and 𝑝 (gray) reveal that increasing the topgate and backgate
voltages leads to more electrons in the system, and decreasing the gate voltages leads
to more holes in the system. In the bottom right of the diagram, an electric field
results in depopulated electron and hole bands, and a trivial gap along the green line.
The top left of the diagram, between the red and blue lines, marks the gate space
where electron and hole bands overlap, or the inverted band regime. The blue and
red lines represent the edge of the hole and electron bands, respectively. As shown
in Fig. 6.5b,c, the hole and electron bands, respectively, are completely depopulated
beyond these lines. Finally, the green line in the top left marks where we should
find the topological gap.

The novelty of InAs/GaSb as a 2DTI comes from the ability to electrically tune
between a topological gap, with helical edge states, and a trivial gap without pro-
tected edge states. The inverted regime was explored in [168, 170, 189], and the
transition from inverted to non-inverted bands was further explored in [160, 190]
due to enhanced growth techniques [186] and tuning the layer thicknesses close to
the crossover point. A 2D diagram formed from using both top and back gates allows
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Figure 6.5: 2D gate plots of electron and hole densities. (a) 𝑛 − 𝑝, (b) 𝑛 , and (c)
−𝑝, using the capacitance model. The color bar is the same in all plots, except plot
(b) has the 𝑝 contribution removed. (c) has the 𝑛 contribution removed. The band
schematics plotted next to (a) reveal the general behavior of the bands and chemical
potential at various points in the phase diagram.

for a better determination of band structure. The inverted regime for InAs/GaSb
behaves similarly to our reference device, VA18-034 (schematic in Fig. 6.2a), for
which we show the topgate Landau fan diagram in Fig. 6.6. Large topgate values
result in electron-like behavior very similar to that expected in an InAs quantum
well. Close to the resistance peak, when charge carriers are maximally depleted
and equal (the charge neutrality point or CNP), the Landau fan shows evidence of
both electron and hole-like features, as expected for the mixed electron and hole
bands. The presence of multiple peaks at 𝐵 = 0 also indicates mixed bands due
to the added van Hove singularities when bands cross through each other to form
mixed electron-hole states.

A few problems arose over the past several years, however:

1. The resistance peak in InAs/GaSb only reaches in the range of a few kΩ,
indicating the lack of a bulk gap. One explanation of the bulk resistivity
is a combination of (a) the low gap of ∼ 4 meV and (b) anisotropy in the
band when considering more realistic band structure calculations [170, 191].
Although there may be a gap at each point in momentum space, the hole band
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Figure 6.6: Landau fan of an InAs/GaSb device VA18-034 showing electron-
like/InAs behavior on the right and hole-like behavior on the left, with some evidence
of mixing/inverted bands.

at a given momentum may overlap with the conduction band at a different
momentum point, resulting in semimetallic behavior.

2. The ability to tune between inverted (ideally topological) and non-inverted
(trivial) band structures provides a cross check to ensure the 2DTI edge mode
properties don not arise from trivial effects. However, studies indicate that
many of the features previously associated with topological edge conductance
can also be found when the gap is trivial [171, 192]. The reported trivial edge
conductance can be attributed to phenomena related to Fermi level pinning
at the edge of the device in the InAs layer. The nature of these trivially
conductive edges were further revealed to persist over 100s of 𝜇m and exhibit
n-type behavior [193].

3. The finite momentum of the quantum spin Hall gaps should die as parallel
magnetic field is applied. Additionally, the time-reversal symmetry-protected
edge states should allow backscattering with an applied magnetic field, as it
does in HgTe/CdTe quantum wells [158]. Nevertheless, some devices lack the
expected in-plane magnetic field dependence of the bulk resistivity and edge
state conductance [159]. Although explanations have been suggested for this
robustness to magnetic fields due to strain or correlated phases [180–183],
the mechanisms often complicate or preclude characterizing the system as a
standard 2DTI [184]. Additionally, the lack of robustness to magnetic field in
some samples [160, 172] suggests other mechanisms at work.
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Figure 6.7: VA19-014 𝑅𝑥𝑥 characterization. (a) R𝑥𝑥 plot measured with respect to
topgate voltage V𝑡𝑔 and backgate voltage V𝑏𝑔. (b) Linecuts from (a) on a linear
scale and log scale in the inset.

4. Lastly, a more realistic band structure using, e.g., an 8-band Kane model
suggests spin-orbit coupling may play a larger role than initially thought since
it splits results in large splitting of the hole band. However, the precise role
of the spin-orbit splitting has contrasting explanations [191, 194, 195] due
to the dominant electron conduction in the devices studied. Understanding
the hole band spin-orbit splitting will help with material development and
characterization and lead to more accurate predictions regarding 2DTI physics.

These problems call into question some of the claims of 2DTI behavior, call for
more careful characterization, and suggest goals for future material development.

6.3 InAs/In𝑥Ga1−𝑥Sb and InAs1−𝑥Sb𝑥/In𝑦Ga1−𝑦Sb impurity doped systems
The first problem of a conductive bulk has been explored by doping the material
system. Strain in the GaSb layer was soon discovered to increase the gap size and
the peak resistivity [159, 196], and an effective method of inducing strain is through
modifying the effective lattice constant in GaSb relative to the substrate by adding
indium to make a quantum well of In𝑥Ga1−𝑥Sb [169, 172, 194] or by changing the
substrate’s lattice constant [161]. Bulk resistivity at the inverted gap, with these
modifications, has been enhanced to hundreds of kΩ, and the gap estimates are in
the range of tens of meV, about an order of magnitude larger than estimates on the
InAs/GaSb system. However the possible effects of trivial edge states have not been
extensively studied in the strained-layer systems.

Additionally, adding Sb to lone quantum well of InAs, making InAs1−𝑥Sb𝑥 , likely
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reduces the n-type trivial edge states [185] and lifts the electron band bottom from
the InAs level without having to reduce the thickness. Thus, a double quantum well
of InAs1−𝑥Sb𝑥/In𝑦Ga1−𝑦Sb has the potential to simultaneously reduce the effects of
bulk conductivity and trivial edge states. As such, we studied the structures shown
in the middle and on the right in Fig. 6.2. The VA18-040 structure included 4 nm
of In0.33Ga0.67Sb grown on 13 nm InAs. The VA19-014 structure was grown with
4 nm of In0.33Ga0.67Sb grown on top of 9.1 nm of InAs0.9Sb0.1. The results showed
many similarities, but due to the smaller band overlap in the latter, we will focus
here mostly on the VA19-014 structure. A 2D gate map is shown in Fig. 6.7, with
linecuts revealing a max resistivity of 100 kΩ and a shoulder (seen in the inset of b)
related to the hole band edge. The resistivity of the CNP peak also increases toward
the top left of the diagram in Fig. 6.7a, indicating a larger gap as the electron and
hole bands further overlap.

Figure 6.8: Comparing 2D Landau diagrams with constant-𝑛 lines. (a) 2D gate
diagram taken at 2 T to show the Landau levels of constant 𝑛 on the right side. (b)
2d gate diagram taken at 5 T to clarify the Landau level behavior.

Using the capacitance model, combined with 2D gate maps at 2 T we can determine
the gate phase diagram, as shown in Fig. 6.8a. The visible Landau levels (peaks
in the 2D plot) at the top-right of the diagram are due to a single electron band,
so they represent lines of constant-𝑛 and therefore follow the lines of constant 𝑛
derived from the capacitance model, represented as black lines. Furthermore, to
the left of the hole band edge (blue line, as derived from the capacitance model), in
the inverted regime, the electron Landau levels are still visible and further constrain
the phase diagram. The green line represents the CNP from the capacitance model,
which also aligns with the R𝑥𝑥 peak. The parameters used in the capacitance model
here are 𝑚𝑒 = 0.045𝑚0, 𝑚ℎ = 0.09𝑚0 and 𝐶𝑡 = 0.054, 𝐶𝑏 = 0.13, and 𝐶𝑚 = 2.1
𝜇F/cm2, derived roughly from the device dimensions. Fig. 6.8a shows the same



113

diagram taken at 5 T to more clearly reveal the Landau levels and the signs of mixed
electron and hole bands to the left of where the blue line is in panel a.

Figure 6.9: Landau fan diagrams. (a) R𝑥𝑥 and (b) R𝑥𝑦 Landau fan diagrams for two
different values of 𝑉𝑏𝑔, taken by sweeping V𝑡𝑔.

Figure 6.10: Fourier transforms (y-axis densities 𝑛 and 𝑝 are derived from 2 𝑓1/𝐵𝑒/ℎ)
of the data in Fig. 6.9(a), (b).

A further look at the Landau fan diagrams (Fig. 6.9) following two linecuts of
constant 𝑉𝑏𝑔 (shown as white lines in Fig. 6.8a) further reveals the nature of the
band filling. As with the InAs/GaSb device in Fig. 6.6, the right side of the diagram
reveals electron behavior, and there is evidence of hole-like behavior left of the
CNP peak. In this device, the large resistance of the CNP peak hides some of the
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mixed-band behavior in R𝑥𝑥 plots although the crossing bands on the right side of
the CNP and positive-to-negative switch in the lower left of the R𝑥𝑦 diagrams reveal
signatures of inverted bands.

Using a Fourier transform of the Shubnikov-de Haas (SdH) oscillations reveals
peaks in frequencies that are related to the Fermi surface area of the bands, as seen
in Fig. 6.10. The Fourier transform is taken using the R𝑥𝑥 Landau fan diagrams
that have been represented in 1/𝐵, up-sampled, subtracted by a polynomial fit, zero-
padded, and windowed (as is commonly done in these measurements [197]) before
applying the Fourier transform. Then each Fourier transform is normalized to its
largest magnitude to give the plots in Fig. 6.10. The frequencies can be converted
to electron 𝑛 and hole 𝑝 densities using the relation 𝑛(𝑝) = 2𝑒 𝑓1/𝐵/ℎ (assuming an
isotropic, spin-degenerate 2D Fermi surface). The solid orange and magenta lines
follow the peaks of the main features in the data while the black solid lines mark the
Hall density-derived total carrier density |𝑛 − 𝑝 |, which is measured in two-carrier
systems through the slope of the linear R𝑥𝑦 regime at intermediate fields (∼1.75–4
T). By subtracting the black curve (|𝑛 − 𝑝 |) from the orange curve 𝑛, we derive
the hole density (cyan curve) [160] when two carriers are involved. The red and
blue dashed lines mark the capacitance model densities 𝑛 and 𝑝, respectively, which
show reasonable agreement with experiment on the right side of the CNP in both
diagrams. To the left of the CNP, the oscillation-derived features distinctly contrast
the capacitance model predictions due to the spin-split valence bands discussed next.

6.4 8-band Kane model band structure including strain
Although the capacitance model works well for the conduction bands, its assumption
of quadratic and spin-degenerate bands oversimplifies the band structure of the
valence bands. A more realistic model can be constructed using the 8-band Kane
model Hamiltonian applied to the materials involved. The 8×8 𝑘 · 𝑝 Hamiltonian,
discussed in detail elsewhere [184, 191], is derived based on the symmetry of the
zincblende semiconductor systems grown in the [001] direction and has empirically
derived material-dependent parameters found in Refs. [198–200]. The eight bands
include two from an s-like orbital for the conduction band, denoted Γ6𝑐 with total
angular momentum 𝐿 = 1/2 and z-component 𝐿𝑧 = ±1/2, and a p-like orbital for the
valence band. The valence band can be broken up into two bands with total angular
momentum 𝐿 = 1/2 (Γ7𝑣), and 𝐿 = 3/2 for the four remaining bands (𝐿𝑧 = ±3/2,
𝐿𝑧 = ±1/2, the Γ8𝑣 bands).
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For a stoichiometrically pure system, like InAs/GaSb, the Hamiltonian for the 2D
system is calculated by discretizing into a grid in the z direction, with the Hamiltonian
for each point reflecting the appropriate material parameters. Stoichiometric impu-
rities can be modeled by appropriate interpolation of the parameters [200]. While
most parameters can be linearly interpolated, a few, such as band gap 𝐸𝑔 and spin-
orbit parameter Δ, have quadratic components. For our InAs1−𝑥Sb𝑥/In𝑦Ga1−𝑦Sb
devices, Fig. 6.11a shows the geometry of the discretized lattice used for the Hamil-
tonian (with 9 nm InAs1−𝑥Sb𝑥 and 4 nm In𝑦Ga1−𝑦Sb). The grid spacing (0.5 nm) and
the AlSb barrier thicknesses (5 nm) used are sufficient for the model, and the band
structure does not change much if they are varied. Fig. 6.11b shows the resulting
band structure, where 𝑘 = 0 on the x-axis refers to the Γ point, and the positive
(negative) 𝑘 sides of the graph plot out the band structure along the [100] ([110])
direction. The calculations here are incomplete since they do not incorporate strain
effects into the Hamiltonian. As such, the band structure is very similar to that of
stoichiometrically pure InAs/GaSb. The code for the band structure calculations is
modified from Ref. [201].

Figure 6.11: 𝑘 · 𝑝 calculation details. (a) The 1D lattice in the growth direction used
in the 8-band calculations. Each point has its own Hamiltonian with the appropriate
material parameters, and they are linked through the 𝑘𝑧 variable. (b) The resulting
band structure without including strain effects yet.

The addition of stoichiometric impurities not only changes the Kane Hamiltonian
parameters but also adds strain to the lattice by changing the bulk lattice constant
𝑎0 of the material. In our case, epitaxial growth restricts the lattice constant of
the grown materials 𝑎𝑒 𝑓 𝑓 to approximately the same lattice constant as the GaSb
substrate. When the large indium atoms are added, the bulk material lattice constant
𝑎0 increases, and thus the lattice undergoes compressive strain in order to grow
epitaxially according to the substrate lattice constant 𝑎𝑒 𝑓 𝑓 . The effect of this com-
pressive strain can be accounted for using the strain parameters 𝑎𝑐, 𝑎𝑣, 𝑏 provided
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by Ref. [200], along with the in-plane strain in one direction

𝜖𝑥𝑥 =
𝑎𝑒 𝑓 𝑓 − 𝑎0

𝑎0
. (6.20)

The strain in the remaining directions can be determined, due to the [001] direction
of epitaxial growth, to be [202–204]

𝜖𝑦𝑦 = 𝜖𝑥𝑥 (6.21)

𝜖𝑧𝑧 = −𝜖𝑥𝑥
𝜎

= −2𝜖𝑥𝑥
𝑐12

𝑐11
(6.22)

where 𝜎 = 𝑐11/2𝑐12 is Poisson’s ratio. The appropriate strain matrix shifts the
conduction band according to the hydrostatic strain, or trace of the strain 𝜖𝑡𝑟 =

𝜖𝑥𝑥 + 𝜖𝑦𝑦 + 𝜖𝑧𝑧 = 2𝜖𝑥𝑥 (𝑐11 − 𝑐12)/𝑐11, multiplied by a constant 𝑎𝑐. The valence
band also shifts following −𝑎𝑣𝜖𝑡𝑟 . Note that under compressive strain (𝜖𝑡𝑟 < 0), the
conduction band moves upward, and the valence band moves downward (𝑎𝑐, 𝑎𝑣 < 0)
due to these diagonal components. Other terms come into play in the valence bands
due to the transformation from the p-orbital |𝑋⟩, |𝑌⟩, |𝑍⟩ basis into the |𝐿, 𝐿𝑍⟩ basis.
The total strain matrix for the valence bands, following Pikus and Bir [202–204], is

|3/2, 3/2⟩ |3/2, 1/2⟩ |3/2,−1/2⟩ |3/2,−3/2⟩ |1/2, 1/2⟩ |1/2,−1/2⟩

©«

ª®®®®®®®®®¬

−𝑎𝑣𝜖𝑡𝑟 + 𝜖𝑏 0 0 0 0 0
0 −𝑎𝑣𝜖𝑡𝑟 − 𝜖𝑏 0 0

√
2𝜖𝑏 0

0 0 −𝑎𝑣𝜖𝑡𝑟 − 𝜖𝑏 0 0 −
√

2𝜖𝑏
0 0 0 −𝑎𝑣𝜖𝑡𝑟 + 𝜖𝑏 0 0
0

√
2𝜖𝑏 0 0 −𝑎𝑣𝜖𝑡𝑟 0

0 0 −
√

2𝜖𝑏 0 0 −𝑎𝑣𝜖𝑡𝑟

(6.23)

where 𝜖𝑏 = 𝑏
2 (𝜖𝑥𝑥 + 𝜖𝑦𝑦 − 2𝜖𝑧𝑧) = 𝑏𝜖𝑥𝑥 (𝑐11 + 2𝑐12)/𝑐11. After interpolating the

material parameters (strain parameters 𝑎𝑐, 𝑎𝑣, and 𝑏 and the lattice constant 𝑎0 can
be linearly interpolated [200]) and adding the strain term to the Hamiltonian, the
band structure is significantly modified, as shown in Fig. 6.12. The band structure
is approximately matched to the experimental results by finding the band overlap
that produces the density 𝑛cross at the CNP taken from the capacitance model, which
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can be translated into a wavevector 𝑘cross =
√

2𝜋𝑛cross. The gate points 𝑉𝑏𝑔 = 0.3𝑉
and 𝑉𝑏𝑔 = −0.4𝑉 correspond approximately to 𝑘cross = 0.2 nm−1 (panel a) and
𝑘cross = 0.16 nm−1 (panel b), respectively.

Figure 6.12: The 𝑘 · 𝑝 8-band model calculation with strain included for
InAs0.913Sb0.087/In0.33Ga0.67Sb at two levels of band overlap corresponding to
𝑘𝑐𝑟𝑜𝑠𝑠 = 0.2 and 0.16 nm−1. The positive side of the 𝑘 axis refers to 𝑘 in the
[100] direction, and the negative side to the [110] direction.

The main effect on the band structure of the Sb impurity in the InAs1−𝑥Sb𝑥 layer
is to modify the effective mass of the electron-like bands, and otherwise the band
structure is similar to previously studied InAs/In𝑥Ga1−𝑥Sb structures [169, 172, 194],
with an increased band gap in the range of tens of meV and split valence bands. The
band gap also increases with the overlapping of the bands in the calculated band
structure, contrary to the narrowing of the band gap with increasing band overlap
that occurs in InAs/GaSb systems [160, 189]. This is confirmed by the increasing
resistance of the CNP at higher backgate values in Fig. 6.7.

Considering the anisotropy involved (the valence bands are more squarelike in
𝑘𝑥 − 𝑘𝑦 space rather than circular parabolas), the relevant quantity to compare with
SdH oscillations is the Fermi surface area, shown in Fig. 6.13a. The slopes give
the cyclotron effective mass (the mass relevant for SdH oscillations) through the
formula

𝑚∗ =
ℏ2

2𝜋
d𝐴
d𝐸

(6.24)

and are also shown in Fig. 6.13b,c. Although the topgate dependence will vary from
the dependence on energy, the picture of the valence band realized by the 8-band
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Hamiltonian with strain reveals a few points that can clarify the behavior of the SdH
oscillations left of the CNP in Fig. 6.10. Due to the large splitting of the valence
bands, we can expect a finite Fermi level range where only one electron and one
hole band are filled. In this range, the lower density of states should result in the
bands quickly filling and then filling more slowly when the second valence band has
been reached.

Figure 6.13: Fermi surface properties deduced from the 𝑘 · 𝑝model with 𝑘cross = 0.2
nm−1. (a) displays the Fermi surface areas. The red and magenta curves are for the
heavy and light electron bands, respectively, and the black and blue are for heavy
and light holes, respectively. (b), (c) The effective masses calculated from (a) for
holes and electrons.

6.5 Effective model for the valence band Fermi surface area
The relation of the gate voltages to the valence band filling can be qualitatively
captured with a modified capacitance model, shown in Fig. 6.14. The model still
assumes quadratic bands but allows for two offset hole-like bands and two electron-
like bands, with different effective masses in each band. The electron bands still
move together, and the hole bands move together as the gate voltages are changed.
The quadratic band assumption allows the same analysis above to work by modifying
the quantum capacitances and breaking the valence band into three ranges based on
the Fermi level position.
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𝑚𝑒,heavy

𝑚𝑒,light

𝑚ℎ,heavy𝑚ℎ,light

𝜇

𝐸𝐹
𝐸𝑔

𝐸2

𝐸𝑠

Figure 6.14: Modified quadratic band structure now introducing a heavy and light
hole band along with heavy and light electron bands. The light electron band and
heavy hole band start at a certain energy 𝐸2, whereas the heavy hole and light
electron bands start at the band gap, which is approximately where 𝜇 is. We have
just included the part above 𝜇 for the sake of better identifying these as parabolas
and for the sake of the definition of 𝐸𝑔.

(i) 𝐸𝐹 > 𝐸2: Here there is just the heavy hole and and light electron band.
The model is the same as before, just with quantum capacitances due to
singly degenerate bands. Although perhaps the hole band is offset some
as well, our main concern is with the slopes 𝑑𝑝/𝑑𝑉𝑡𝑔 and 𝑑𝑛/𝑑𝑉𝑡𝑔, which
we can find using Eq. (6.17), (6.16) with modified quantum capacitances

𝐶𝑞,𝑒(ℎ),light(heavy) =
𝑒2𝑚∗

𝑒 (ℎ) ,light(heavy)
2𝜋ℏ2 as follows

𝐶𝑞,ℎ → 𝐶𝑞,ℎ,heavy (6.25)

𝐶𝑞,𝑒 → 𝐶𝑞,𝑒,light. (6.26)

Then we can get the Fermi surface areas 𝐴𝑒,light = 4𝜋2𝑛 and 𝐴ℎ,heavy = 4𝜋2𝑝.
The only constraint used here is that the heavy-hole and light-electron bands
start with approximately the same 𝑘𝐹 , so the same electron/hole densities,
resulting in 𝑛light = 𝑝heavy at the top of the valence band.

(ii) 0 < 𝐸𝐹 < 𝐸2: With the addition of the heavy electron band and heavy hole
band, the quantum capacitances are updated with

𝐶𝑞,ℎ → 𝐶𝑞,ℎ,light + 𝐶𝑞,ℎ,heavy (6.27)

𝐶𝑞,𝑒 → 𝐶𝑞,𝑒,light + 𝐶𝑞,𝑒,heavy. (6.28)
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Then a few constraints help with deriving the Fermi surface areas. First, the
two electron-like bands share the same band bottom, so they share the same
Fermi energy

𝐸𝐹 =
ℏ2𝑘2

𝐹,𝑒,light

2𝑚𝑒,light
=
ℏ2𝑘2

𝐹,𝑒,heavy

2𝑚𝑒,heavy
. (6.29)

Given the total 𝑛 = 𝑛light + 𝑛heavy, retrieved from the capacitance equations,
and some algebra, we get

𝐴𝑒,light = 4𝜋2𝑛light =
4𝜋2𝑛

1 + 𝑚𝑒,heavy
𝑚𝑒,light

(6.30)

𝐴𝑒,heavy = 4𝜋2𝑛heavy =
4𝜋2𝑛

1 + 𝑚𝑒,light
𝑚𝑒,heavy

. (6.31)

For holes, the case is similar, except the light hole band is offset from the
heavy hole band by a constant 𝐸𝑠:

𝐸light = 𝐸heavy − 𝐸𝑠 (6.32)

ℏ2𝑘2
𝐹,ℎ,light

2𝑚ℎ,light
=
ℏ2𝑘2

𝐹,ℎ,heavy

2𝑚ℎ,heavy
− 𝐸𝑠 . (6.33)

Then we can derive

𝑝 = 𝑝heavy + 𝑝light (6.34)

= 𝑝heavy

(
1 +

𝑚ℎ,light

𝑚ℎ,heavy

)
−

2𝑚ℎ,light𝐸𝑠

4𝜋ℏ2 (6.35)

= 𝑝light

(
1 +

𝑚ℎ,heavy

𝑚ℎ,light

)
+

2𝑚ℎ,heavy𝐸𝑠

4𝜋ℏ2 , (6.36)

from which we can get 𝐴ℎ,light = 4𝜋2𝑝light and 𝐴ℎ,heavy = 4𝜋2𝑝heavy. The only
other constraint used is that 𝑝heavy and 𝑛light are continuous from region (i).

(iii) 𝐸𝐹 < 0: This range below the bottom of the electron-like bands is similar to
regime 2 above, where 𝐶𝑞,ℎ is the combined quantum capacitance of the hole
bands. The only difference here is that the two bands will be filled to different
densities, but we stop the discussion here since this range of 𝐸𝐹 is not reached
in our devices.
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Focusing on just𝑉𝑡𝑔 dependence to match our two SdH oscillation diagrams, we get
the Fermi surface areas in Fig. 6.15. It is apparent that the low density of states in
region (i) results in quicker band filling, and the bands fill more slowly once all four
bands are involved in region (ii). The parameters used here are 𝑚𝑒,light = 0.04𝑚0,
𝑚𝑒,heavy = 0.05𝑚0, 𝑚ℎ,light = 0.15𝑚0, 𝑚ℎ,heavy = 0.16𝑚0, 𝐸𝑠 = 3 meV.

Figure 6.15: Plots of the Fourier transforms of the SdH oscillations (represented as
Fermi surface area), along with the capacitance model (right side lines) and split-
band effective model (left side lines) fits to the data. Taken for 𝑉𝑡𝑔 linecuts at two
𝑉𝑏𝑔 points.

To further visualize the valence band filling, we show the quadratic band schematics
for three gate points on the 𝑉𝑏𝑔 = −0.4𝑉 linecut in Fig. 6.16, using the same
parameters as in the fits above. All three diagrams show in bold the maximum and
minimum filling of each band, and the black line represents the Fermi level. Since
the electric field changes with 𝑉𝑡𝑔, the bands shift relative to each other. Fig. 6.16a
shows the top of the heavy hole and light electron bands, Fig. 6.16b shows the onset
of the light hole and heavy electron bands, and Fig. 6.16c shows the far left point in
𝑉𝑡𝑔.

Although the inclusion of more fitting parameters into the model introduces more
play in the model, and imperfections in the bands will likely change the behavior
slightly, a few trends can be noted. The low slope in the left side of the diagrams
indicates we have reached region (ii), where both heavy and light electron and hole
bands are involved. We also have a ballpark indication of the splitting of the two
valence bands, with 𝐸𝑠 being in the range of a few meV, and 𝐸ℎ,heavy,top − 𝐸2 ∼10
meV (seen in Fig. 6.16b) as another measure.

The VA18-040 structure, with thicker InAs (13 nm, without impurity Sb) shows
similar SdH oscillation behavior. Since the backgate showed signs of saturation
at high and low values, visible as a curving CNP in Fig. 6.17a, the model fitting
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Figure 6.16: The four quadratic bands used in the effective model and the Fermi
level (black line) as seen at three different 𝑉𝑡𝑔 points for 𝑉𝑏𝑔 = −0.4𝑉 .

cannot be made as precise, but signs of both light and heavy hole bands are visible
in the SdH oscillations (Fig. 6.17c). The larger hole density here is allowed by
the larger electron-hole band overlap, which results from the thicker InAs layer
(providing less quantum confinement energy). Interestingly, 𝑘 · 𝑝 theory for this
structure predicts a non-monotonic hybridization gap behavior as the electron-hole
band overlap increases (Fig. 6.17b). The non-monotonic behavior is consistent with
experiment, where the resistance of the CNP increases along with𝑉𝑏𝑔 when𝑉𝑏𝑔 < 0
and decreases with 𝑉𝑏𝑔 on the positive side. We leave the in-depth study of the
hybridization gap for future studies, but the variance in behavior observed in the
two structures—both theoretically and experimentally—suggest a high degree of
tunability in such structures by varying stoichiometry and material thickness.

The observation of the valence band transition from one electron/one hole band
to two electron/two hole band behavior is a step forward for InAs/GaSb-derivative
structures. Previous measurements have either lacked high-quality hole-like SdH
oscillations required for reliable determination of the valence band behavior [191]
or have not yet reached the point where there is evidence of two electron and
two hole bands [194]. The measurements we report serve as indicators of clean
heterostructures and well working top and back gates, which allow for wide ranges
of density tuning. The combination of sample quality and resistive bulk make these
strained heterostructures worthwhile candidates for more rigorous study regarding
the 2DTI phase, both theoretically [184] and experimentally in terms of trivial vs.
topological edge state conductance [192].
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Figure 6.17: Results for a VA18-040 Hallbar. (a) A 2D topgate and backgate map of
longitudinal resistance. (b) Hybridization gaps derived from the 8-band 𝑘 · 𝑝 model
for the approximate range of electron-hole band overlap (top of hole band minus
bottom of electron band) seen in experiment. (c) SdH oscillations-derived Fermi
surface areas for a linecut at V𝑏𝑔 = −2 V. The colored lines were calculated from
the same models as in Fig. 6.15, but with parameters 𝐶𝑏 = 0.06, 𝐶𝑡 = 0.08, 𝐶𝑚 =

1.62𝜇F/cm2, 𝐸𝑠 = 4 meV, and the same effective masses except for𝑚ℎ,light = 0.14𝑚0
in the valence band and 𝑚ℎ = 0.1𝑚0 in the conduction band.

To finish the discussion on strained InAs/GaSb devices, we turn to the in-plane
magnetic field dependence, which is another useful determinant of inverted vs.
non-inverted bands [160]. The orbital effect of the magnetic field shifts the 𝑘
midline of the electron and hole bands in opposite directions relative to each other
and perpendicular to the applied field following Δ𝑘𝑥 ∼ 𝑒𝐵𝑦 ⟨𝑧⟩ /ℏ, where ⟨𝑧⟩ is
the distance between the centers of the electron and hole wells (half the overall
thickness). Although the larger hybridization gap in the strained devices will make
them more impervious to Δ𝑘𝑥 shifts, the shifting bands and diminishing bandgap
should be apparent, which is confirmed experimentally in Fig. 6.18. Both the
VA19-014 and VA18-040 devices show similar trends when the magnetic field is
applied approximately along the same direction as the R𝑥𝑥 measurement. A gradual
resistance decrease is seen, consistent with a slowly closing gap.

Figure 6.18: In-plane field dependent topgate curves for Hallbar devices with the
structure of (a) VA19-014 and (b) VA18-040.
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C h a p t e r 7

OUTLOOK

7.1 Twisted moiré heterostructure devices
Research on superconducting twisted graphene moiré heterostructures has just be-
gun. There are wide-ranging theories about the mechanism of superconductivity in
TBG alone (Refs. [19, 84–86, 110, 125, 137, 205, 206] represent a small sample),
and whether the same mechanisms can be applied to layer number greater than
2 remains to be explored. Additionally, we have only looked at a small range of
twist angles in TTG, TQG, and TPG. More phenomena can be found from tuning
the interactions through the twist angle of these structures, as has been done with
TBG in Chapter 4, or from experimenting with the presence/absence of WSe2 in
heterostructures. Another question remains: are there more graphene moiré het-
erostructures supporting superconductivity? Twisted structures with layer number
up to 5 allow for many more degrees of freedom to be explored.

A range of studies remain to be done, as well, to further probe the superconductivity
in graphene moiré heterostructures. The nematicity seen in TBG [207] has not yet
been reported in three-five layer systems. If it is unique to TBG, then the question of
why remains. Electrical transport measurements with vector magnets and multidi-
rectional contacts could reveal much about superconductivity in multilayer systems.
Capacitance measurements, which have been relatively unproductive in TBG sys-
tems limited by twist angle disorder, could be useful to determine the phase diagram
of other multilayer systems. Due to the higher homogeneity seen in our samples
consisting of three and more layers, capacitive measurements of compressibility
[151, 152, 208] could more directly and accurately reveal the density of states in
these systems. Tunnel junctions and Josephson junctions in interesting geometries
can reveal clues about the pairing mechanisms and character of superconductivity
[18, 209]. While initial studies on transport devices [68] and STM measurements
[132, 140] have revealed the unconventional character of superconductivity in TBG
and TTG, careful experimental studies of utilizing a range of geometries could reveal
more about the superconducting state.

Devices interfacing superconductivity with other correlated and topological phases
are highly sought-after [165]. The unique ability of graphene moiré heterostruc-
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tures to host both superconductivity and other correlated states places them in a
unique position for studying interfacial phenomena. Since structures such as TBG,
TTG, and TQG can exhibit superconductivity, flavor polarized states, and insulating
behavior in the same device, problems of imperfect contacts between different mate-
rials can be minimized. Interfaces between states can be made by electrically gating
selected areas. A few studies have been conducted on TBG Josephson junctions
[68, 69] and Josephson junctions involving magnetic regions [210, 211]. However,
reproducibility and lack of control over the correlated states available in TBG plague
current efforts. The homogeneity and reproducibility of TTG and TQG, along with
the new finding of insulating states, could allow for exploring impressive device
physics while minimizing the problems inherent to TBG. Gating can not only tune
between superconducting and insulating states at different electron densities but also
carefully tune the bandwidth and correlations by using electric field. The level of
control is unprecedented and would incorporate the unique properties such as high
in-plane critical magnetic fields [129] and tunable coherence length. These sorts of
devices would allow for further study of superconductivity and for potentially ob-
serving new phenomena entirely. For instance, the unique symmetry-broken states
in TBG can potentially lead to Majorana bound states [212], and further topological
superconducting states could be realized by considering moiré patterns with other
materials, such as magnetic van der Waals layers [213].

7.2 Superconductivity stabilization in other graphene systems
Naturally occurring Bernal bilayer graphene (BBG) has recently been found to host
superconductivity at high electric fields, with a low transition temperature of ∼
30 mK [152] and only existing at finite in-plane magnetic fields. BBG devices
can have high mobility, they are not plagued by the twist-angle inhomogeneity of
twisted graphene heterostructures, and they are easy to fabricate in a range of device
geometries and sizes. The discovery of superconductivity in BBG, and specifically
its link to symmetry breaking transitions allowed by high electric fields, brings to
question whether other electronic systems can host superconductivity with an origin
analogous to TBG.

We fabricated double-gated BBG devices with monolayer WSe2 in proximity to the
graphene. The phase diagram of R𝑥𝑥 with respect to electric displacement field
𝐷 and electron density 𝑛 is shown in Fig. 7.1. We focus on the hole side of the
phase diagram (𝑛 < 0). When 𝐷 > 0, the holes are drawn toward the WSe2, and
they are pushed away for 𝐷 < 0. The leftward fan arises from a combination of
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Figure 7.1: 2D R𝑥𝑥 plot vs. 𝐷 and 𝑛. The left schematics show the setup of WSe2
on top of BBG and the direction holes are pulled with each sign of 𝐷 field.

Fermi surface changes (single-particle) and electronic correlation-driven symmetry
breaking.

We find, interestingly, a broad zero-resistance feature on the 𝐷 > 0 side of the phase
diagram but not on the 𝐷 < 0 side at zero magnetic field. This superconducting
region displays a 𝑇𝑐 (𝑇𝐵𝐾𝑇 ) of 260 mK (Fig. 7.2a), almost an order of magnitude
higher than the 𝑇𝑐 in BBG without WSe2. The superconductivity shows a diamond-
like Fraunhofer-like pattern (Fig. 7.2b), and the critical field 𝐵𝑐⊥ ≈ 15 mT at
base temperature yields a corresponding Ginzburg-Landau coherence length 𝜉GL =√︁
Φ0/(2𝜋𝐵𝑐⊥) ≈ 150 nm. This is much smaller than the mean free path ℓ𝑚 𝑓 of

BLG-WSe2, measured using magnetic focusing [106] to be around 10 𝜇m, placing
the superconductivity in the clean limit.
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Figure 7.2: Superconductivity characterization under changes in temperature and
magnetic field. (a) Temperature linecuts at 𝐷/𝜖0 = 1 V/nm, showing BKT behavior
(right bottom inset) with a transition temperature 260 mK (green), along with R𝑥𝑥
vs. temperature at 𝑛 = −5.75 × 1011 cm−2 (upper left inset). (b) Fraunhofer-like
pattern at 𝐷/𝜖0 = 0.9 V/nm and 𝑛 = −5.05 × 1011 cm−2.

Figure 7.3: Anomalous magnetic-field dependence of superconductivity. (a) A map
of the superconducting dome showing the dependence of R𝑥𝑥 on in-plane field (𝐵∥
in the y-axis, left) and 𝑛. The zero-field 𝑇𝑐 curve vs. 𝑛 is plotted alongside (right
y-axis). (b) Critical in-plane field normalized by the Pauli critical field, as a function
of temperature normalized by𝑇𝑐 (inset is un-normalized data). Each curve was taken
at a different density, and the solid lines are fit curves. (c) The Pauli violation ratio
at a number of densities, with error bars being the standard deviation of the model
fits. The doping trend of the PVR is well captured by a model (blue line in the inset)
taking into account fixed Ising SOC together with doping-dependent Rashba SOC
and constant orbital depairing

We then directed the magnetic field in the plane of the device (𝐵∥) and mapped
out the superconductivity across the density range, shown in Fig. 7.3. The critical
field and 𝑇𝑐 curves should be approximately proportional if the superconductor is
of the weak-coupling spin-singlet character, since the critical field should follow
the Pauli limit 𝐵𝑝 = 1.86 T/K × 𝑇0

𝑐 . However, we find that they diverge on the
low-density side of the diagram. When we look into it further (Fig. 7.3b), we
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Figure 7.4: Landau fans and corresponding Fourier transforms. (a), (b) Landau
fans measured for BBG-WSe2 at 𝐷/𝜖0 = 1 V/nm and -1 V/nm, respectively. (c),
(d) matching normalized Fourier transforms. (e), (f) 𝑅𝑥𝑥 plots at the same 𝐷 along
with Fermi surface schematics.

find that the critical field-temperature relation at different densities follow the same
phenomenological model 𝑇/𝑇0

𝑐 = 1 − (𝐵𝑐∥/𝐵0
𝑐∥)

2. However, the projected critical
field at zero temperature 𝐵0

𝑐∥ for the orange curve is very near the Pauli limit,
whereas 𝐵0

𝑐∥ for the purple curve shows a strong Pauli violation ratio 𝐵0
𝑐∥/𝐵𝑝 ∼ 5. A

large Pauli limit violation implies an unconventional pairing mechanism that is less
susceptible to magnetic fields. The Pauli violation ratio is mapped across densities
in Fig. 7.3c, showing continuous tunability from near-Pauli-limit superconductivity
to superconductivity with a Pauli violation ratio up to ∼6.

We also measured Landau fan diagrams at 𝐷/𝜖0 = 1 V/nm and 𝐷/𝜖0 = −1 V/nm to
map out the Fermi surface in Fig. 7.4a, b, respectively. Fig. 7.4c, d show the Fourier
transforms, which have been normalized so that a single Fermi surface should show
a line at a value of 𝑓𝜈 = 1. BBG without WSe2 [152] shows very similar Fermi
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surfaces to the case here where 𝐷/𝜖0 = −1 (Fig. 7.4d). A peak of 𝑓𝜈 = 1/12 at low
densities represents a state where 12 pockets are being equally filled (3 because of
trigonal warping × 4 flavors), a symmetric 12-fold state (𝑆𝑦𝑚(12)−, with a subscript
denoting that 𝐷 < 0). This symmetric state transitions into a flavor-polarized state
we call 𝐹𝑃(2, 2)−. 𝐹𝑃(2, 2)− contains two pockets of larger density and two pockets
of smaller density that are similar in size to the 𝑆𝑦𝑚(12)− pockets.

The 𝐷 > 0 case at low densities, however, shows states at slightly higher and lower
frequencies than 1/12, suggesting the 12-fold degenerate state split in half to form
six states with slightly higher and six with slightly lower density than the 𝑆𝑦𝑚(12)−.
We call this the 𝐹𝑃(6, 6)+ state (subscript now denoting that 𝐷 > 0). The 𝐹𝑃(2, 2)+
state, although it is very similar to 𝐹𝑃(2, 2)−, exists throughout the superconducting
range (Fig. 7.4c) and then quickly transitions out to a more complex polarized state
at higher densities. This contrasts the larger phase space occupied by 𝐹𝑃(2, 2)− and
its transition into a more easily recognized 4-fold symmetric state. Furthermore,
superconductivity seen throughout the range of the symmetry broken 𝐹𝑃(2, 2)+
state contrasts the appearance of superconductivity in BBG without WSe2 only on
the boundary of the 𝐹𝑃(2, 2) and 𝑆𝑦𝑚(12) states.

Our observation of zero-field superconductivity throughout the range of the approx-
imately 2-fold symmetry broken state, and the 𝐷 field asymmetry suggests that
spin-orbit coupling could play an important role in stabilizing superconductivity.
Furthermore, the symmetry broken state with two out of four flavors filled suggests
a similarity with TBG and other moiré systems exhibiting superconductivity. BBG,
where spin-orbit coupling’s effects are more easily seen than in TBG, could pro-
vide a new foundation for studying the effects of WSe2, such as how the spin-orbit
coupling depends on relative twist angle, and how multiple-layer vs. monolayer
WSe2 effects the system. Since our initial studies already revealed links between the
superconductivity, symmetry breaking, and the effects of WSe2, more studies will
likely further unlock our understanding of the competing phases at play.

7.3 InAs/GaSb-derivative Josephson junction devices
Now we switch to the outlook for InAs/GaSb-based materials. Pairing well con-
trolled 2DTI materials with superconductors is one of the next steps for fully exploit-
ing their unique properties. 2DTIs in Josephson junctions show theoretical promise
for studying the phase diagram of topological superconductivity [162, 163] and for a
scalable route to networks of topological qubits [164, 165]. So far, promising efforts
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have been made in a few material systems [214–216]. However, recent studies [217,
218] have called into question some of the methods used in the past to distinguish
between topological and trivial states in Josephson junctions. The gate tunability
of InAs/GaSb-derivative systems could offer an electric switch between trivial and
topological states with similar qualities, in order to weed out shared effects. Previous
results in InAs/GaSb systems [219] can likely be improved upon with the enhanced
material quality, strained materials, and gate ranges available now. However, many
details still need to be worked out in terms of material compatibility, making trans-
parent contacts the the material, and reducing disorder resulting from etching and
deposition steps.

Figure 7.5: Geometry of Josephson junction devices fabricated from InAs/GaSb-
derivative quantum well wafers. Shown are the Al electrodes (gray) and quantum
well (orange).

To this end, we recently fabricated Josephson Junction devices with the general
geometry shown in Fig. 7.5. With batch processing, devices of many widths W and
lengths L were fabricated, and we have experimented briefly with the etch geometry
around the devices. The processing works roughly as follows. The (capped) quantum
wells are selectively etched to the InAs layer, and Al contacts are deposited in the
etched area. Then the contacts are separated (except near the junction) by etching
through the quantum wells. A dielectric layer is placed on top (usually Si3N4 or
Al2O3), followed by thicker bond pad layers and top gates. So far we have only
measured working devices with two quantum well geometries: VA20-004 with 5.1
nm GaSb on 13 nm InAs0.9Sb0.1 and VA21-010 with 13 nm InAs0.6Sb0.4 on 5 nm
GaSb.
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A number of the devices so far reveal reasonable critical currents and resistance
measured above critical currents (or in the normal metal state) 𝑅𝑛, as shown in
Fig. 7.6. 𝐼𝑐𝑅𝑛 is a measure used for comparing the quality of the Josephson junction,
so it is displayed with each figure. However, without much gate voltage dependence
and a proper determination of where in the phase diagram we are (metallic, bordering
on insulating, etc.), the values can’t properly be compared with other devices.

Figure 7.6: 𝐼–𝑉 curves for two representative devices: (a) from VA20-004 with
dimensions L = 0.15 𝜇m and W = 4 𝜇m, and (b) from VA21-010 with dimensions
L = 0.3 𝜇m and W = 2 𝜇m.

The Al-InAsSb/GaSb devices exhibit robust Fraunhofer patterns, as shown in
Fig. 7.7a,b. These patterns can be used to determine the approximate current
distribution in the device, and the period of the oscillations reflects the device area
through the approximate relationship Δ𝐵𝐴 = Φ0, where the period in magnetic field
is Δ𝐵, the area of the device across which supercurrent travels (which is usually
offset by a factor due to flux focusing from the contacts) is 𝐴, and Φ0 = ℎ/(2𝑒) is the
flux quantum. We see both oscillation periods that correspond to device geometry
and evidence of fairly uniform supercurrent in each device (Fig. 7.7c,d). Well re-
solved and useful Fraunhofer patterns require several oscillations before the critical
field of the superconductor is reached, here around 10 mT, but if the oscillations are
too rapid, the magnetic field resolution may not be fine enough to measure a smooth
pattern. This, and the fact that longer junctions make it harder for supercurrent to
pass, place approximate limitations on the geometry of L ∼ 0.1–0.5 𝜇m and W ∼
2–6 𝜇m, with longer junctions requiring less width. The supercurrent distribution
can be derived using the Dynes-Fulton approach [220, 221], and is a useful tool for
determining of supercurrent is concentrated on the edges.
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Figure 7.7: Fraunhofer patterns measured for two Josephson junctions. (a) Dev 3
from VA20-004 and (b) Dev 2 from VA21-010. The Dynes-Fulton-based estimates,
derived from the Fraunhofer patterns above, of current density along the width of
the Josephson junctions are shown in the lower panels.

Although some optimization is needed for larger gate ranges, some progress has been
made. Fig. 7.8 and Fig. 7.9 show two devices with gate dependence suggesting that
we are on the electron side of the phase diagram since 𝑅𝑛 increases with decreasing
𝑉𝑡𝑔. Interestingly, the 𝐼𝑐𝑅𝑛 product in Fig. 7.8a increases as electrons are removed
from the system. Although the critical current is small in Fig. 7.9, this device shows
both topgate (panel a) and backgate dependence (panel b) to the critical current. The
topgate range allows for large modulation of 𝐼𝑐, from full suppression to ∼ 50 nA.
𝑅𝑛 was also measured by killing the superconductivity with an out-of-plane field of
50 mT (panel c), showing both topgate and backgate dependence. The saturation of
𝑅𝑛 at small 𝑉𝑡𝑔 and large resistance (∼10s of kΩ) suggest that the device quality is
close to showing the transition from the conduction to the valence band.

The Josephson junction devices shown already suggest promising results with finer
tuning of geometries, fabrication details, and material properties. These consid-
erations along with the promise of strained InAs/GaSb-derivative quantum wells
offer significant prospects for further study and could easily offer improvements
into the understanding of superconducting devices with 2DTI candidates. Potential
next steps are measuring Shapiro steps resulting from the irradiation of microwave-
frequency excitations on Josephson junctions [219, 222, 223], measuring the current-
phase relationship with more complex geometries [214, 224], and looking for phase
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Figure 7.8: Critical current vs. gate voltage. I𝑐R𝑛 (a) and 𝑑𝑉/𝑑𝐼 data (b) for
Josephson junction device 013 from VA21-010 (L = 0.3 𝜇m and W = 4 𝜇m)
showing topgate dependence. The saturation of the critical current left of 𝑉𝑡𝑔 = -7V
is likely due to screening in the gate.

Figure 7.9: Changing critical current with topgate and backgate. (a) 𝑑𝑉/𝑑𝐼 data for
Josephson junction 212 from VA21-010 (L = 0.2 𝜇m and W = 4 𝜇m) showing 𝐼𝑐
from 0 to ∼50 nA as the topgate is tuned. (b) 𝑑𝑉/𝑑𝐼 and (c) resistance taken at 50
mT to kill superconductivity, showing modulation with back gate.

transitions that can be associated with topological superconductivity and Majorana
bound states [156, 163, 165, 214, 216, 225].
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A p p e n d i x A

CHAPTER 4 SUPPLEMENTARY DATA: HIERARCHY OF
CORRELATIONS IN TWISTED BILAYER GRAPHENE-WSE2

HETEROSTRUCTURES

The data for TBG devices is available in a public repository at https://doi.
org/10.22002/D1.20151, and the code (including Binder support for the Jupyter
notebooks) for replication of the results can be found at https://doi.org/10.
22002/D1.20169.

Table A.1: Device Table. The superconducting transition temperatures (SC T𝑐), 𝜈
= 2 correlated insulator (CI) gap, and 𝜈 = 1 correlated state parameters measured
for the devices used to plot the phase diagram in Fig. 4.2 sorted by twist angle.

Twist angle (±0.02) Device Hole SC Tc (K) Electron SC Tc (K) 𝜈=2 CI (meV) 𝜈=1 state

0.79 D6 (M20) N/A 0.382 N/A N/A
0.80 D7 (W5) N/A 0.54 N/A N/A
0.83 D6 (M20) N/A 0.702 High-T peak High-T peak
0.87 D6 (M20) N/A 0.626 High-T peak High-T peak
0.88 D3 (S3) 0.129 0.652 High-T peak High-T peak
0.95 D9 (M30) 0.339 0.486 Δ=0.186 High-T peak
0.97 D5 (M08) 0.742 0.089 Δ=0.68 High-T peak
0.97 D1 (S13) 0.398 0.352 Δ=0.09 High-T peak
0.99 D9 (M30) 0.429 N/A Δ=0.11 Low-T peak, switching
1.04 D1 (S13) 0.798 N/A Δ=0.89 Low-T peak, hysteresis
1.04 D8 (M12) 0.4 0.098 Δ=0.26 Low-T peak
1.10 D1 (S13) 1.59 0.083 Δ=0.84 FM to 7K
1.10 D4 (W3) 0.443 N/A Δ=0.27 Low-T peak
1.15 D2 (S12) 0.267 0.155 Δ ∼0.17 to SC High-T peak
1.23 D2 (S12) 0.317 0.128 Disappearing N/A

https://doi.org/10.22002/D1.20151
https://doi.org/10.22002/D1.20151
https://doi.org/10.22002/D1.20169
https://doi.org/10.22002/D1.20169
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Figure A.1: Figures in the left column show the high-temperature (to 40 K) R𝑥𝑥
vs. the moiré filling factor for a number of devices across the angle range. The
corresponding figures in the right column reduce the temperature range to emphasize
the correlated insulators and superconductivity appearing at low temperature. (b)
shows extracted T𝑐 on the hole side for each of the angles represented here. The
resistance was much larger for device D1 at 1.10°, as well as another device D4
at the same twist angle, so the y-axis for these curves is on the right of the plot.
The extreme sensitivity of the correlations and superconductivity to the twist angle,
cleanliness, homogeneity, and other factors occasionally results in different T𝑐 values
for devices of the same angle. (l), The electron-side superconductivity T𝑐 values.
T𝑐 was derived from 50% R𝑛, where R𝑛 is defined as the intersection of line fits to
the highly sloped region and the normal region just above the transition (line fits
shown for selected curves as dashed black lines). The same method was used to
determine the error-bars at 10% and 90% R𝑛 in Fig. 4.2.
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Figure A.2: More detailed Hall density data for the mentioned devices, taken at
the the range of temperatures displayed in (b). The only deviation from these panels
is in (a), where the lowest-temperature curve was measured at 50 mK instead of 25
mK. The inset of (a) displays the 𝜈 ≈ –2 region for the 0.88° device as it evolves at
temperatures up to 5 K, revealing the appearance of the feature mentioned in the main
text and Fig. 4.3, which corresponds with the onset of hole-side superconductivity.
This small feature, indicative of the onset of a cascade, survives to only around 2 K.
The rest of the panels reveal clear cascades, where the Hall density returns to near
0, at both 𝜈 = –2 and +2 at low temperatures.
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Figure A.3: R𝑥𝑥 measured as a function of magnetic field B and moiré filling factor
𝜈 for a collection of twist angles. One can see high-resistance states near 𝜈 = 2 just
near the magic angle (0.97° to 1.15°) and near 𝜈 = 1 only in a very small range near
1.10° (by 1.04°, it is already disappearing, and it is gone at 1.15° here). On the edge
of the magic angle, (such as at 0.97°) the 𝜈 = 2 state develops with a small magnetic
field. The hole-side 𝜈 = –2 insulator is always smaller than the electron-side 𝜈 = 2
insulator, and it is not fully developed at 0 magnetic field in these diagrams. The
noisy features commonly seen for |𝜈 | > 3 and occasionally for other values of 𝜈 at
high field are likely due to contact/geometry effects near the insulating states.
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Figure A.4: Linear-in-T behavior of TBG. (a)–(g) Derivatives of resistivity with
respect to temperature up to 40 K for twist angles from 0.95° to 1.23°. (h) Selected
linecuts of R𝑥𝑥 vs. temperature for the 1.04° twist angle (filling factor values also
shown as coloured lines in (d)). The linecuts show the broad positive-curvature zone
near charge neutrality (black line), the linear resistivity that persists down to a few
Kelvin (although often blocked by a correlated insulator, superconducting, or other
symmetry-broken state at low temperatures) near |𝜈 | = 2 (red and blue lines), and the
super-linear low temperature to sub-linear high temperature states at |𝜈 | > 2 (purple
and orange lines), which have large transition regions that prevent linear behavior
until high temperatures. The curve at 𝜈 = −2.826 (purple) shows an example where
the higher-temperature positive-curvature zone is seen as the superconducting dome
is phasing out (small T𝑐).
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Figure A.5: Other signatures of ferromagnetism in TBG. (a) ΔR𝑥𝑦 vs. B and 𝜈
around filling factor 1 measured with twist angle 1.04° in device D1 at 1.5K. (b)
Line cut of R𝑥𝑦 versus B at 𝜈 = 0.87 (red arrow) for the same device. (c) Temperature
dependence of another device D9, twist angle 0.99°, showing evidence of switching
behavior (similar to that seen in Fig. 4.9b) and therefore possible ferromagnetism
near 𝜈 = 1. Bad contacts prevented us from measuring R𝑥𝑦 data in this device.
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Figure A.6: Comparison of two devices at 1.10°. (a), (c) R𝑥𝑥 and R𝑥𝑦 versus filling
factor and magnetic field up to 8 T for D1. (b) Schematics showing correlated Chern
insulators (bold blue lines) and zero-field competing Chern insulators (red lines)
at the magic angle. (d) Hall conductance showing well-quantized Chern insulators
emanating from charge neutrality (broadest plateaus at 𝐶 = ±4), 𝜈 = ±1 (𝐶 = ±
3) and 𝜈 = ±2 (𝐶 = ± 2). (e), (f) Landau fan of D4 and schematic of visible
Landau levels along with correlated Chern insulators (bold lines). Notice the fan
around charge neutrality does not show the usual clear 4-fold degeneracy preference
represented by a wider Landau level plateau in (a), and the fan emanating from 𝜈

= 1 persists to lower fields. This variance in magnetic field dependence reveals the
sensitivity of the symmetry-broken states near 1.10°, particularly near 𝜈 = 1. (g),
(h) T-dependence of D4 at high and low temperatures, respectively. Contrast this
with the T-dependence of D1 in Fig. 4.8 and Fig. A.1.
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A p p e n d i x B

CHAPTER 5 SUPPLEMENTARY DATA: ASCENDANCE OF
SUPERCONDUCTIVITY IN MAGIC-ANGLE GRAPHENE

MULTILAYERS

B.1 Determining 𝑇𝑐 and Hall density
Tc and the coherence length: 𝑇𝑐 is determined by the following procedures. First,
the high temperature 𝑅𝑥𝑥 data is fitted using a linear function 𝑅(𝑇) = 𝐴𝑇 + 𝐵.
Then, 𝑇𝑐 is defined by the value where 𝑅𝑥𝑥 (𝑇) is a certain fraction (typically 10%
as in Fig. 5.11) of 𝑅(𝑇). Ginzburg-Landau coherence lengths 𝜉GL are obtained
from the 𝐵 dependence of 𝑇𝑐, by fitting the Ginzburg-Landau relation 𝑇𝑐/𝑇𝑐0 =

1 − (2𝜋𝜉2
GL/Φ0)𝐵⊥, where Φ0 = ℎ/(2𝑒) is the superconducting flux quantum and

𝑇𝑐0 is the critical temperature at zero magnetic field. We get 𝜉GL from the 𝑇𝑐 vs.
𝐵 linear fit, where the intercept at the 𝐵 axis is equal to Φ0/(2𝜋𝜉2

GL). Following
Ref. [127], we use 𝑇𝑐 defined by 40% of the normal state resistance to evaluate the
coherence length data in Fig. B.1e (corresponding error bars are evaluated by using
𝑇𝑐 defined by 30% and 50% of the normal state resistance). As mentioned in the
main text, 𝜉GL (𝐵𝑐) is much smaller (higher) in the twisted graphene multilayers
compared to TBG. One possibility for the reduction of 𝜉GL is the relative decrease
of the characteristic moiré wavelength (see Fig. B.1f).
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B.2 Figures

Figure B.1: Magnetic field dependence of twisted multilayer graphene samples.
Column (a) shows 𝑅𝑥𝑥 versus 𝜈 and 𝐷 phase diagrams, and the green dots indicate
the positions where the corresponding 𝐼 versus 𝐵 plots shown in (b) are measured
for D1–D3. Column (c) shows the critical current 𝐼𝑐 versus 𝜈 at the optimal 𝐷
fields for D1–D3. Column (d) shows 𝑅𝑥𝑥 versus 𝜈 and 𝐵 around 𝜈 = −2 for D1–D3,
highlighting the high critical magnetic fields in these systems. Superconductivity in
the twisted graphene multilayers has a higher 𝐵𝑐 (∼ 0.8 T or higher) than in TBG.
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Figure B.2: 𝐷-𝑇 dependence of multilayer samples. (a)–(c) 𝑅𝑥𝑥 as a function of
𝑇 and 𝐷 field for D1–D3 at filling factor 𝜈 = +2.2, +2.4, and +3.2, respectively.
Superconducting 𝑇𝑐 is indicated by a dashed line that delineates 10% of the normal
state resistance (see section B.1 for details). (d)–(e) 𝑇𝑐/𝑇𝑚𝑎𝑥𝑐 versus potential energy
difference 𝑈 for TTG, TQG, and TPG around hole-side (d) and electron-side (e)
optimal doping, respectively. 𝑈 is converted from 𝐷 using 𝑈 = 0.1 × (𝑛 − 1) ×
0.33 nm × 𝑒𝐷, where 𝑒 is the electron charge and 𝑛 − 1 is the number of graphene
interfaces.
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Figure B.3: Data for the second TQG device with twist angle 𝜃 ≈ 1.64°𝑅𝑥𝑥 . (a)
𝑅𝑥𝑥 and (b) Hall density versus filling factor 𝜈 and displacement field 𝐷. Yellow
lines in (a) track the evolution of vHs features in Hall density. 𝑅𝑥𝑥 versus 𝜈 and
temperature measured at 𝐷/𝜖0 = −0.29 V nm−1 (c) and −0.17 V nm−1 (d). (e) 𝑅𝑥𝑥
Landau fan measured at zero 𝐷 field. (f) 𝑅𝑥𝑥 versus 𝜈 measured at zero 𝐷 field and
zero magnetic field. 𝑅𝑥𝑦 phase diagram measurements (b) and the Landau fan (e)
reveal more correlated behavior (|𝜈 | < 4) than the TQG device at 1.80° twist angle.
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Figure B.4: Detailed tracking of Hall density for multilayer samples. Hall density
(a)–(c) and 𝑅𝑥𝑥 (d)–(f) as a function of 𝜈 and 𝐷 for TTG, TQG, and TPG. Hall
density maps are measured at 𝐵 = 0.9 T, 1.5 T, and 1.5 T, respectively. Yellow lines
in (d)–(f) track the evolution of vHs/‘gap’ features where Hall density changes sign.
Examples are shown of Hall density near the cascade transition reset (g), the vHs
(h), and the ‘gap’ (i) following the definitions in Ref. [127]. Filling ranges for the
line cuts are marked by the corresponding colored dashed lines in (a), (c).
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Figure B.5: 𝑅𝑥𝑥 as a function of 𝜈 and 𝐷 measured at different temperatures. Plots
for TTG (a)–(c), TQG (d)–(f), and TPG (g)–(i). Grey lines track the evolution of
the vHs/‘gap’ features. (j) The plot on the left shows a line cut of 𝑅𝑥𝑥 versus 𝐷
at charge neutrality for TQG. The plot on the right shows corresponding density
of states (DOS) at charge-neutrality point (CNP) calculated using non-interacting
continuum model. In the regions where DOS is high, resistance is expected to be
low and vice versa. (k) Equivalent plots as in (j) for TPG.
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Figure B.6: Detailed Hall effect and temperature dependence data for TPG. (a) Hall
density versus 𝐷 and 𝜈 at 𝐵 = 0.5 T. (b) Line cuts from (a). Panels below zoom in
on the evolution of Hall density resets near |𝜈 | = 4. (c) and (d) Hall density versus
𝐷 and 𝜈 measured at 𝐵 = 1.5 T (c) and 3 T (d), with respective line cuts shown in
(f) and (g). (e) 𝑅𝑥𝑥 versus 𝐷 and 𝜈 measured at 𝑇 = 1.5 K, 𝐵 = 0.5 T (line cuts
are shown in (h)). From all the above line cuts, Hall density resets and 𝑅𝑥𝑥 resistive
features consistently exist around 𝜈 = +4.
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