
Physics-Informed Neural Approaches for Multiscale
Molecular Modeling and Design

Thesis by
Zhuoran Qiao

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2023
Defended November 22, 2022



ii

© 2023

Zhuoran Qiao
ORCID: 0000-0002-5704-7331

Some rights reserved. This thesis is distributed under a Creative Commons
Attribution-NonCommercial-ShareAlike License.



iii

ACKNOWLEDGEMENTS

I would like to begin by thanking the entire Caltech community. When I decided to
start pursuing my Ph.D., I never imagined the incredible journey of interdisciplinary
research it would lead me to. I sincerely thank all staff and students at Caltech for
working together to build a supportive and inclusive environment for international
students. I feel fortunate to be part of this great community.

I want to express my thanks to my advisors, Prof. Thomas F. Miller III and Prof.
Animashree Anandkumar. Thank you Tom for constantly supporting my research
and striving to create an intimate, diverse, and cooperative team that will last for
years. Thank you Anima for not only being a great mentor guiding me to confront
many technical challenges, but also a leader encouraging me to develop my research
taste and to see the bigger scientific picture. I want to also thank my committee
members and the professors who helped me along the course of my Ph.D. study:
thank you Prof. William Goddard, Prof. Lu Wei, and Prof. Zhen-Gang Wang.

My achievements would not have been possible without the team members, friends,
and collaborators who have accompanied me during the past years. Special thanks to
Matthew Welborn, Lixue Cheng, and Feizhi Ding for their kind guidance during the
early days of my research. Thank you to members from the former Miller group:
Tomislav, Emiliano, Tamara, Sebastian, Matthew, Jeongmin, Dan, Jorge, Xuecheng,
Roman, Doris, Marta, James, Jiace, Vignesh, Rui and Bo; and to members from
Anima Lab: Dani, Or, Rafal, Sahin, Zongyi, Jiawei, Hongkai, and Guanzhi. I thank
great collaborators Anders and Krishna from Entos, and Weili, Arash, and Chaowei
from Nvidia. Thank you, my friends - Frid Fu, Heyun Li, Hanchen Wang, Leo Wu,
Wenjun Xie, and Lin Xu. I wish you all the best in your career and personal life.

Finally, I would like to thank my family. Thank you to my parents for being supportive
of my pursuit to a doctoral degree and for reliving my family responsibilities. Thank
you Yuanjin; you have turned the past four years into the happiest days of my life and
made me always look forward to a better future. This dissertation is dedicated to you.



iv

ABSTRACT

Chemical processes in nature span multiple characteristic length and time scales,
and the computational simulation for systems at the intersection of different scales
is highly challenging with far-reaching implications for numerous scientific and
industrial problems. To facilitate the computational modeling and design for
large molecular systems and address the cost-resolution tradeoffs in conventional
strategies, in this dissertation we introduce a series of physics-informed machine
learning methods for the efficient computational modeling of chemical systems
and the accurate prediction of their properties such as energetics, structures, and
dynamics. In Chapters 2-3, we introduce a family of orbital-based geometric deep
learning methods for the prediction of quantum chemical properties while adhering
to the scaling and symmetry constraints of electronic structure theory. The presented
methods achieve a chemical accuracy on community-wide benchmarks for molecular
property prediction, and are shown to be transferable among diverse main-group
molecular systems. In Chapter 4, we introduce a method for the prediction of protein-
ligand complex structures based on a finite-time stochastic process parameterized by
deep equivariant neural networks. The presented method achieves improved structure
prediction accuracy against existing approaches, and is able to rapidly sample protein
structures for folding landscapes that are modulated by inter-molecular interactions.
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2.1 A schematic overview of orbital-based deep learning frameworks. A

low-level quantum chemistry calculation is first performed on the
molecular system, generating the atomic orbital (AO) feature matrices
which are constructed from quantum-chemical operators associated
with a near-minimal basis set. (Dark red) In the OrbNet approach,
a graph neural network is proposed to predict the electronic energy
of the molecule. Rotation-inversion invariance is realized through
the construction of symmetry-adapted atomic orbitals (SAAOs) and
feature matrices re-evaluated in the SAAO basis used as inputs to the
neural network. In the followup OrbNet-Equi approach, the prediction
is performed in an end-to-end fashion, directly using the AO feature
matrices as inputs to the machine learning model; rotation-inversion
equivariance is realized through the UNiTE neural network based on
O(3)-representation theory. OrbNet-Equi supports the prediction of a
broader set of quantum chemistry properties such as multipoles and
densities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Summary of the OrbNet workflow. (a) A low-cost mean-field elec-
tronic structure calculation is performed for the molecular system,
and (b) the resulting the one-electron quantum operators and the
SAAOs are constructed. (c) An attributed graph representation is
built with node and edge attributes corresponding to the diagonal and
off-diagonal elements of the SAAO tensors. (d) The attributed graph
is processed by the embedding layer and message passing layers to
produce transformed node and edge attributes. (e) The transformed
node attributes for the encoding layer and each message passing layer
are extracted and (f) passed to MPL-specific decoding networks. (g)
The node-resolved energy contributions 𝜖𝑢 are obtained by summing
the decoding networks outputs node-wise, and (h) the final extensive
energy prediction is obtained from a one-body summation over the
nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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2.3 Prediction errors for (a) molecule total energies and (b) relative
conformer energies performed using OrbNet models trained using
various datasets. The mean absolute error (MAE) is indicated by the
bar height, the median of the absolute error is indicated by a black
dot, and the the first and third quantiles for the absolute error are
indicated as the lower and upper bars. Model 1 uses training data from
QM7b-T; Model 2 additionally includes training data from GDB13-T
and DrugBank-T; Model 3 additionally includes training data from
QM9; and Model 4 additionally includes ensemble averaging over
five independent training runs. Testing is performed on data that is
held-out from training in all cases. Training and prediction employs
energies at the 𝜔B97X-D/Def2-TZVP level of theory. All energies in
kcal/mol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Comparison of the accuracy/computational-cost tradeoff for a range
of potential energy methods for the Hutchison conformer benchmark
dataset. Aside from the OrbNet results (black), all data was previously
reported in Ref. 64, with median R2 values for the predicted conformer
energies computed relative to DLPNO-CCSD(T) reference data and
with computation time evaluated on a single CPU core. The OrbNet
results (black) are obtained using Model 4 (i.e., with training data
from QM7b-T, GDB13-T, DrugBank-T, and QM9 and with ensemble
averaging over five independent training runs). The solid black circle
plots the median R2 value from the OrbNet predictions relative to
DLPNO-CCSD(T) reference data, as for the other methods. The open
black circle plots the median R2 value from the OrbNet predictions
relative to the 𝜔B97X-D/Def2-TZVP reference data against which
the OrbNet model was trained. Error bars correspond to the 95%
confidence interval, determined by statistical bootstrapping. . . . . . 19

2.5 The molecular geometry optimization accuracy for the ROT34 (left)
and MCONF (right) datasets, reported as the best-alignment root-
mean-square-deviation (RMSD) compared to the reference DFT
geometries at the 𝜔B97X-D3/Def2-TZVP level. The distribution
of errors are plotted as histograms (with overlaying kernel density
estimations). Timings correspond to the average cost for a single force
evaluation for the MCONF dataset on a single Intel Xeon Gold 6130
@ 2.10GHz CPU core. . . . . . . . . . . . . . . . . . . . . . . . . 20
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2.6 Detail of a single message-passing and pooling layer (“Message
Passing Layer” in Fig. 2.2), and a decoding network (“Decoding” in
Fig. 2.2). At message passing and pooling layer 𝑙 + 1, the whole-
molecule, atom-specific, node-specific, and edge-specific attributes are
updated. The atom-specific attributes f𝑙

𝐴
are updated with input from

node- and edge-specific attributes h𝑙𝑢 and e𝑙𝑢𝑣 and likewise includes
the back-propagation from the whole-molecule attributes; finally,
the whole-molecule attributes q𝑙 are updated with input from the
atom-specific attributes. The final atom-specific attributes are passed
into separate decoding networks to generate the energy prediction
and auxiliary target predictions. A decoding network is composed
of multiple residual blocks (“Residual”) and a linear output layer, as
illustrated above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 QM-informed machine learning for modelling molecular properties. (a)
Conventional ab initio quantum chemistry methods predict molecular prop-
erties based on electronic structure theory through computing molecular
wavefunctions and interaction terms, with general applicability but at high
computational cost. (b) Atomistic machine learning approaches use geo-
metric descriptors such as interatomic distances, angles, and directions to
bypass the procedure of solving the electronic structure problem, but often
requires vast amounts of data to generalize toward new chemical species. (c)
In our approach, features are extracted from a highly coarse-grained QM
simulation to capture essential physical interactions. An equivariant neural
network efficiently learns the mapping, yielding improved transferability
at an evaluation speed that is competitive to Atomistic ML methods. (d)
Characteristics of the atomic orbital features considered in OrbNet-Equi.
Every pair of atoms (𝐴, 𝐵) is mapped to a block in the feature matrix, with
the row dimension of the block matching the atomic orbitals of the source
atom 𝐴 and the column dimension matching the atomic orbitals of the
destination atom 𝐵. (e) OrbNet-Equi is equivariant with respect to isometric
basis transformations on the atomic orbitals (Equations 3.3-3.4), yielding
consistent predictions (illustrated as the dipole moment vector of a HSF
molecule) at different viewpoints. . . . . . . . . . . . . . . . . . . . . . 43
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3.2 Schematic illustration of the OrbNet-Equi method. The input atomic
orbital features T[Ψ0] are obtained from a low-fidelity QM simulation.
A neural network termed UNiTE first initializes atom-wise represen-
tations through the diagonal reduction module, and then updates
the representations through stacks of block convolution, message
passing, and point-wise interaction modules. A programmed pooling
layer reads out high-fidelity property predictions ŷ based on the final
representations. Neural network architecture details are provided in
Methods 3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Model performance on the QM9 dataset. (a-b) Test mean absolute
error (MAE) of OrbNet-Equi is shown as functions of the number of
training samples, along with previously reported results from task-
specific ML methods (FCHL18[125], FCHL19[126], SLATM[127],
SOAP[128], FCHL18*[129], MuML[130]) and deep-learning-based
methods (SchNet[51], PhysNet[52], OrbNet [76]) for targets (a)
electronic energy 𝑈0 and (b) molecular dipole moment vector ®𝜇
on the QM9 dataset. Results for OrbNet-Equi models trained with
direct-learning and delta-learning are shown in dashed and solid lines,
respectively. (c) Incorporating energy-weighted density matrices
to improve data efficiency on learning frontier orbital properties.
The HOMO, LUMO, and HOMO-LUMO gap energy test MAEs of
OrbNet-Equi are shown as functions of the number of training samples.
For models with the default feature set (red curves), the reduction
in test MAE for delta-learning over direct-learning models gradually
diminishes as the training data size grows. The LUMO and gap energy
MAE curves exhibit a crossover around 32k-64k training samples,
thereafter direct-learning models outperform delta-learning models.
In contrast, when the energy-weighted density matrix features are
supplied (blue curves), the test MAE curves between direct-learning
and delta-learning models remain gapped when the training data size
is varied. The black stars indicate the lowest test MAEs achieved by
Atomistic ML methods (SphereNet [108]) trained with 110k samples. 45
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3.4 Learning electron charge densities for organic and biological motif
systems. (a) 2D heatmaps of the log-scale reference density 𝜌(®𝑟) and
the log-scale OrbNet-Equi density prediction error | 𝜌̂(®𝑟) − 𝜌(®𝑟) | (both
in 𝑎−3

0 ). The heatmaps are calculated by sampling real-space query
points ®𝑟 ∈ R3 for all molecules in the (red) BfDB-SSI test set and (blue)
QM9 test set. The nearly-linear relationship for log10(𝜌(®𝑟)) < −4 low-
density regions reveals that OrbNet-Equi-predicted densities possess
a physical long-range decay behavior. Distributions of log10(𝜌(®𝑟))
and log10( | 𝜌̂(®𝑟) − 𝜌(®𝑟) |) are plotted within the marginal charts. (b)
The 𝐿1 density errors 𝜀𝜌 of OrbNet-Equi are plotted against the 𝜀𝜌 of
densities obtained through monomer density superposition (MDS),
across the BfDB-SSI test set. Error bars mark the 99% confidence
intervals of 𝜀𝜌 for individual samples. The inset figure shows the
average 𝜀𝜌 for MDS, an Atomistic ML method [131], and OrbNet-
Equi predictions on the BfDB-SSI test set. OrbNet-Equi yields the
lowest average prediction error and consistently produces accurate
electron densities for cases where inter-molecular charge transfer is
substantial. (c-d) Visualization of density deviation maps for (c) MDS
and (d) OrbNet-Equi-predicted densities on the Glu−/Lys+ system
(SSI-139GLU-144LYS-1), a challenging example from the BfDB-SSI
test set. Red isosurfaces correspond to Δ𝜌 = −0.001 𝑎−3

0 and blue
isosurfaces correspond to Δ𝜌 = +0.001 𝑎−3

0 , where Δ𝜌 is the model
density subtracted by the DFT reference density. . . . . . . . . . . . 46
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3.5 OrbNet-Equi/SDC21 infers diverse downstream properties.(a) Con-
former energy ranking on the Hutchison dataset of drug-like molecules.
The horizontal axis is labelled with acronyms indicating each method
(O: OrbNet-Equi/SDC21 (this work); G: GFN-xTB; G2: GFN2-xTB;
A: ANI-2x; B: B97-3c; 𝜔: 𝜔B97X-D3/def2-TZVP). The y-axis corre-
sponds to the molecule-wise 𝑅2 between predictions and the reference
(DLPNO-CCSD(T)) conformer energies. Violin plots display the dis-
tribution of 𝑅2 scores for each method over the (left) neutral, (middle)
charged, and (right) all molecules from the Hutchison dataset. Medi-
ans and first/third quantiles are shown as black dots and vertical bars.
(b) A torsion profiles example from the TorsionNet500 benchmark.
All predicted torsion scans surfaces are aligned to the true global
minima of the highest level of theory (𝜔B97X-D3/def2-TZVP) results,
with spline interpolations. (c) A uracil-uracil base pair example
for non-covalent interactions. The dimer binding energy curves are
shown as functions of the intermolecular axis (𝑟𝑒) where 𝑟𝑒 = 1.0
corresponds to the distance of optimal binding energy. (d) Geometry
optimization results on the (left) ROT34 and (right) MCONF datasets.
Histograms and kernel density estimations of the symmetry-corrected
RMSD scores (Methods 3.8) with respect to the reference DFT ge-
ometries are shown for each test dataset. (e) Evidence of zero-shot
model generalization on radical systems. OrbNet-Equi/SDC21 yields
prediction errors drastically lower than semi-empirical QM methods
for adiabatic ionization potential on the G21IP dataset, achieving
accuracy comparable to DFT on 7 out of 21 test cases. . . . . . . . . 48
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3.6 Assessing model performance on tasks from the GMTKN55 challenge.
Box plots depict the distributions of task-difficulty-weighted absolution
deviations (WTAD, see Methods 3.8) filtered by chemical elements
and electronic states (a) supported by the ANI-2x model; (b) appeared
in the dataset used for training OrbNet-Equi/SDC21; (c) all reactions.
Statistics are categorized by each class of tasks in the GMTKN55
benchmark, as shown in y-axis labels. Prop. small: Basic properties
and reaction energies for small systems; Prop. large: Reaction
energies for large systems and isomerisation reactions; React. barriers:
Reaction barrier heights; Inter. mol. NCI: Intermolecular noncovalent
interactions; Intra. mol. NCI: Intramolecular noncovalent interactions;
Total: total statistics of all tasks. . . . . . . . . . . . . . . . . . . . . 49

3.7 Examples of 𝑁-body tensors. . . . . . . . . . . . . . . . . . . . . . 70
3.8 Illustrating an 𝑁-body tensor with 𝑁 = 2. Imagine Alice and Bo

are doing experiments with two bar magnets without knowing each
other’s reference frame. The magnetic interactions depend on both bar
magnets’ orientations and can be written as a 2-body tensor. When
Alice make a rotation on her reference frame, sub-tensors containing
index 𝐴 are transformed by a unitary matrix U𝐴, giving rise to the
2-body tensor coefficients in the transformed basis. We design neural
network to be equivariant to all such local basis transformations. . . . 70
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4.1 NeuralPLexer enables protein-ligand complex structure prediction
with full receptor flexibility. (a) Method overview. (b) Sampling
from NeuralPLexer. The protein (colored as red-blue from N- to
C-terminus) and ligand (colored as grey) 3D structures are jointly
generated from a learned SDE, with a partially-diffused initial state
𝑞𝑇∗ approximated by the protein backbone template and predicted
interface contact maps. (c-e) Key elements of the NeuralPLexer
technical design. (c) Ligand molecules and monomeric entities are
encoded as the collection of atoms, local coordinate frames (depicted
as semi-transparent triangles), and stereospecific pairwise embeddings
(depicted as dashed lines) representing their interactions. (d) The
forward-time SDE introduces relative drift terms among protein C𝛼
atoms, non-C𝛼 atoms and ligand atoms, such that the SDE erases local-
scale details at 𝑡 = 𝑇∗ to enable resampling from a noise distribution.
(e) Information flow in the equivariant structure diffusion module
(ESDM). ESDM operates on a heterogeneous graph formed by protein
atoms (P), ligand atoms (L), protein backbone frames (B) and ligand
local frames (F) to predict clean atomic coordinates x̂0, ŷ0 using the
coordinates at a finite diffusion time 𝑡 > 0. . . . . . . . . . . . . . . 99
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4.2 Model performance on benchmarking problems. (a-d) Fixed-backbone
blind protein-ligand docking. (a) Success rates over the test dataset
are plotted against the number of conformations sampled per protein-
ligand pair; a success is defined as the ligand RMSD being lower
than given threshold for at least one of the sampled conformations.
Distributions of (b) the physical plausibility of sampled conformations
as measured by the ligand heavy-atom steric clash rate with receptor
atoms and (c) the geometrical accuracy as measured by the ligand
RMSD are plotted against the number of ligand rotatable bonds,
an indicatior of molecular flexibility. (d) Overlay of NeuralPLexer-
predicted ligand and side-chain structures on the ground-truth for a
challenging example (PDB: 6MJQ). (e-g) Ligand-coupled binding
site repacking via diffusion-based inpainting. (e) A selected example
(PDB:6TEL) where NeuralPLexer accurately inpaints the binding site
protein-ligand structure, while directly aligning AlphaFold2 prediction
to the ground-truth complex resulted in steric clashes between the
ligand and binding site residues. (f) Summary of binding site accuracy
(measured by the all-atom lDDT-BS score) and ligand clash rate over
the test dataset. 32 conformations are sampled for each protein-ligand
pair; dots indicates the median value and errorbars indicates 25% and
75% percentiles. (g) Success rates compared to baseline methods. A
success is defined as: lDDT-BS > 0.7, ligand RMSD < 2.0 Å, and
clash rate = 0.0. The pink "true contact map" curves are obtained
by initializing the geometry prior 𝑞𝑇∗ using the true protein-ligand
contact map, while the gold curves are obtained by generating both
protein and ligand conformations end-to-end. . . . . . . . . . . . . . 103
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4.3 Assessments on systems with large binding-induced protein confor-
mational transitions. Apo protein structures are used as the input
backbone template. (a) Summary statistics of the relative protein
folding similarity with respect to apo and holo PDB (measure by
ΔTM-Score, the difference between TM-Scores computed against
holo and apo structures) and binding site similarity with respect to
holo (measured by lDDT-BS) for sampled structures. Purple dots
are obtained with protein-only inputs and gold dots are obtained
using protein+ligand inputs. Ligand-conditioning increases average
ΔTM-Score from -9.0% to -7.7% (p=0.03), and average lDDT-BS
from 0.59 to 0.63 (p<0.001). (b-c) Two examples for which neither
their holo nor apo reference structures were observed during training.
A marginal improvement in ΔTM-Score or lDDT-BS may indicate
substantial protein conformational differences, while NeuralPLexer
can qualitatively capture the correct protein state transitions. . . . . . 104
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C h a p t e r 1

INTRODUCTION

The study of chemistry entails many complex phenomena spanning a hierarchy of
dynamical scales ranging from the time evolution of electronic wavefunctions and
chemical reactions to macroscopic phase transitions and biological homeostasis.
Computational chemistry has traditionally been a discipline built upon physical
principles to construct simulation algorithms and domain knowledge to empirically
select or revise these simulation tools to understand chemical, material, and biology
systems at varying scales. Owing to the recent advancements in data-driven
deep learning, significant progress in molecular modeling has been made to solve
problems that were considered inaccessible by conventional strategies. These
successes encompass almost the entire hierarchy of dynamical scales in chemistry,
ranging from the representation of correlated many-body quantum states [1, 2], the
construction of more accurate density functionals [3], the accelerated simulation
for anomalous phase transitions [4], and the accurate prediction of protein and
RNA structures [5, 6]. Having witnessed these progresses, one shall prospect
for addressing remaining challenges in order to reshape machine-learning-based
modeling into versatile tools beyond data-centric models and to ultimately guide the
study of exotic chemical phenomena in complement to current domain expertise.
With this motivation, a major part of my research has been concerned of integrating
physics-informed representations and neural network techniques for chemical systems
that existing approximation-based and learning-based approaches struggle to provide
a quantitative description at a tractable computational cost. Among the spectrum
of learning-based modeling strategies, we have also investigated several theoretical
aspects that we believe to have a sustainable impact on computational chemistry.
Notably, principles and models that were historically discovered in the context of
chemical physics have been found to dramatically benefit the outcomes of learning-
based modeling on vision and language data [7, 8], and we anticipate them to open
a promising pathway for the efficient simulation of chemical systems themselves.
This dissertation represents endeavors during the course of my graduate study to
develop and extend such physics-informed neural approaches for machine learning,
with applications to molecular modeling problems at multiple scales including the
prediction of (i) molecular electronic structure and dynamics, and (ii) structure
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ensembles of biomolecular complexes.

Here, we seek to provide a primer on some key elements of chemical physics and
discuss their contributions to modern deep learning and the author’s research.

1.1 Electronic structure methods and equivariant neural networks
An essential task in molecular simulation is the determination of the potential energy
surface based on the laws of quantum mechanics. Restricting ourselves to the Born-
Oppenheimer approximation, the potential energy 𝐸 at a molecular configuration is
given by the Time Independent Schrödinger Equation (TISE):

𝐻̂ |𝜓⟩ = 𝐸 |𝜓⟩ (1.1)

In an ab-initio treatment, the Hamiltonian operator 𝐻̂ : 𝐿2(R3𝑁 ) → 𝐿2(R3𝑁 )
comprises of one-electron terms, two-electron terms and nuclei repulsion terms; the
state 𝜓 : R3𝑁 → C is a 𝑁-electron wavefunction satisfying exchange anti-symmetry.

The exponential scaling of function space dimension in (1.1) for a general interacting
Hamiltonian renders it intractable to exactly solve the TISE on classical computers
beyond toy models, and developing polynomial-scaling numerical methods is a core
subject of study in theoretical chemistry [9]. Despite many progresses in modern
electronic structure methods, quantum chemistry calculations that explicitly treat all
electrons of |𝜓⟩ in a correlated manner are still inaccessible to most experimental
applications beyond fragment-sized molecules. A myriad of methods such as
Hartree-Fock (HF) and standard Kohn-Sham Density Functional Theory (KS-DFT)
then adopts a mean-field variational ansatz in which the electronic wavefunction is
approximated as a single Slater determinant:

|𝜓⟩ =
𝑛occ∏
𝑖

𝑎̂
†
𝑖
|0⟩ =

𝑛occ∏
𝑖

(
∑︁
𝜇

𝐶𝑖𝜇 𝑏̂
†
𝜇) |0⟩ (1.2)

where each single-electron orbital 𝑖 excited by the fermionic creation operator 𝑎̂†
𝑖

is
represented as the linear combination of an atomic orbital basis |Φ𝜇⟩ = 𝑏̂†𝜇 |0⟩ with
variational coefficients C. The electronic part of a DFT Hamiltonian reads:

𝐻̂ =
∑︁
𝑖

[
− 1

2
∇2
𝑖 + 𝑣nuc(r𝑖) +

∫
𝜌(r′)

∥r′ − r𝑖∥
𝑑r′ + 𝑣xc [𝜌]

]
(1.3)

where the original TISE is mapped to an effective non-interacting system and 𝑣xc is
called the exchange-correlation (XC) functional approximating for the non-classical
two-electron contributions to the electronic energy. Mean-field methods, especially
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DFT, have shown great success in many molecular modeling problems often with a
quantitative accuracy able to explain and predict experimental measurements. Yet an
XC functional involving exact Hartree-Fock exchange terms and a sufficiently large
basis set is required in most cases for DFT to produce reliable predictions [10]. This
fact has significantly restricted the applicability of DFT for many large molecular
systems such as those in enzyme catalysis [11] and condensed-phase systems
such as those in battery materials [12], where standard DFT calculations incur a
punitive computational cost while it can be also challenging to apply molecular
mechanics approximations or embedding-based techniques due to non-local effects.
A parallel line of study, semi-empirical quantum mechanics (SEQM) methods [13,
14], instead aims to further coarse-grain mean-field methods to significantly reduce
their computational cost while preserving a qualitatively correct description of
molecular electronic structure. A class of SEQM methods is based on a tight-binding
approximation to the electron density to alleviate the explicit evaluation of molecular
integrals or grid-based integrations, in which the electronic energy is expanded as a
series of valence orbital density fluctuations 𝛿𝜌 around a reference density 𝜌0:

𝐸 [𝜌] = 𝐸 (0) [𝜌0] +
∑︁
𝑟=1

𝐸 (𝑟) [𝜌0, (𝛿𝜌)𝑟] (1.4)

which is often truncated such that the electronic Hamiltonian is approximated as
linear and bilinear terms involving atomic or shell-resolved charges and distance-
based scaling functions, with parameters obtained through a moderate fitting to
either KS-DFT functionals or experimental measurements. A main challenge in the
development of SEQM approximations is the tradeoff between the ability to achieve
chemical accuracy, the computational cost and the applicability to diverse systems. As
elaborated in later chapters, we develop learning-based strategies integrating orbital-
based representations from SEQM to systematically improve the prediction accuracy
of molecular electronic structure and properties while maintaining a physically
complete representation of the wavefunction and a transferability to main-group
chemical systems out of the training data distribution.

We now take a closer look at the basis |Φ𝜇⟩ appeared in (1.2). A class of commonly
adopted basis functions in quantum chemistry are Slater-type orbitals that resemble
solutions of the TISE for hydrogen-like atoms [15]:

Φ𝜇 (r) := Φ𝐴
𝑛𝑙𝑚 (r) = 𝑅

𝐴
𝑛𝑙 (𝑟)𝑌𝑙𝑚 (r̂) (1.5)

which are eigenstates of the quantum angular momentum operator: 𝐽2 |𝑛𝑙𝑚⟩ =

𝑙 (𝑙 + 1) |𝑛𝑙𝑚⟩, 𝐽± |𝑛𝑙𝑚⟩ =
√︁
𝑙 (𝑙 + 1) − 𝑚(𝑚 ± 1) |𝑛𝑙 (𝑚 ± 1)⟩. As will be discussed
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later with greater details, this is equivalent to the fact that the spherical harmonics
𝑌𝑙𝑚 forms a basis of SO(3) irreducible representations over the space 𝐿2(S2). One
remarkable consequence is that the action of the angular momentum operator over a
𝑁-particle system decomposes the product state into a linear combination of total
angular momentum eigenstates:

|𝐿𝑀⟩ =
𝑙1∑︁

𝑚1=−𝑙1

𝑙2∑︁
𝑚2=−𝑙2

|𝑙1𝑚1; 𝑙2𝑚2⟩⟨𝑙1𝑚1; 𝑙2𝑚2 |𝐿𝑀⟩ (1.6)

Although seemingly unrelated to its original context, (1.6) enables the formulation
of expressive nonlinear operations in deep neural networks that are equivariant
to arbitrary Euclidean transformations [16]. We will discuss how this connection
improves the accuracy and versatility of orbital-based deep learning techniques.

1.2 Stochastic thermodynamics and score-based generative modeling
Another important discipline in molecular simulation, statistical mechanics, studies
the macroscopic thermodynamic properties originated from the collective behavior
of many-body systems. A paradigmatic model in classical thermodynamics is the
overdamped Langevin process [17] described by the following stochastic differential
equation (SDE):

𝑑x = F(x, 𝑡)𝑑𝑡 + 𝝈(x, 𝑡)𝑑W𝑡 (1.7)

where W𝑡 is a standard Brownian motion with diffusion coefficients D = 𝝈T𝝈

corresponding to thermal noises generated from a Markovian bath. It is interesting to
study a system initially at thermal equilibrium 𝑝(x) = 1

𝑍
𝑒−𝛽𝑈 (x) and its dissipation

behavior when the potential 𝑈 (x) is erased at 𝑡 = 0. The time evolution of the
phase-space density 𝑝(x, 𝑡) is dictated by the Fokker-Planck Equation:

𝜕𝑡 𝑝(x, 𝑡) = −
∑︁
𝑖

𝜕𝑥𝑖 [𝐹𝑖 (x, 𝑡)𝑝(x, 𝑡)] +
1
2

∑︁
𝑖, 𝑗

𝜕𝑥𝑖𝜕𝑥 𝑗 [𝐷𝑖 𝑗 (x, 𝑡)𝑝(x, 𝑡)] (1.8)

Starting from (1.8) and its adjoint, a remarkable result [18] states that the transition
kernel for a time-reversed process 𝑝(x𝑡 |x𝑠) satisfies the following dynamics:

𝜕𝑡 𝑝(x𝑡 |x𝑠) = −∇T
x
[
F(x, 𝑡)𝑝(x𝑡 |x𝑠) −

1
𝑝(x𝑡)

(D(x, 𝑡) log 𝑝(x𝑡)) · ∇x
]

+ 1
2
[
∇T

x · (D(x, 𝑡)𝑝(x𝑡 |x𝑠)) · ∇x
]

(1.9)

Based on the Feynman–Kac formula [19], the time evolution of probability distribution
described by the PDE (1.9) can be solved by sampling stochastic trajectories from a
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SDE of similar form to (1.7). When the diffusion coefficients are position-independent
D(x, 𝑡) = D(𝑡), this reverse-time SDE reads:

𝑑x = [F(x, 𝑡) − D(𝑡)∇x log 𝑝(x, 𝑡)]𝑑𝑡 + 𝝈(x, 𝑡)𝑑W̄𝑡 (1.10)

In machine learning literatures, the extra current term ∇x log 𝑝(x, 𝑡) is called a
score function. As 𝑝(x) =

∫
𝑝(x|x𝑇 )𝑝(x𝑇 )𝑑x𝑇 , (1.10) provides a rigorous scheme

to sample from 𝑝(x) for high-dimensional distributions without computing the
partition function 𝑍 . In Chapter 4, we discuss that such score-based generative
modeling techniques can enable the prediction of complex molecular structures that
are important for both molecular biology research and drug discovery applications.

1.3 Structure of the thesis
Chapter 2 introduces a machine learning framework in which the electronic structure
properties of molecular systems are predicted using a symmetry-adapted atomic
orbital basis and graph neural networks architecture. The presented method, OrbNet,
achieves chemical accuracy at the cost of semi-empirical calculations for thermalized
geometries on serveral organic molecule benchmarks, and is transferable to systems
larger than the molecules included for model training. We also present the analytic
nuclear gradient theory of OrbNet for geometry optimizations and molecular dynamics
simulations, as well as strategies to improve data efficiency by incorporating auxiliary
information from density matrices computed at DFT level.

Chapter 3 introduces a substantially revised framework for orbital-based deep
learning based on the symmetry of the matrix representation of 𝑁-reduced operators
in an atomic orbital basis. We present theoretical results for equivariant neural
networks defined on a generalized class of atomic-orbital-operator representations,
implementation of the network in the context of semi-empirical Hamiltonians, and
applications to several quantum chemistry problems with comparisons to both
conventional electronic structure methods and machine-learning-based methods.

Chapter 4 introduces a method for protein-ligand structure prediction based on
score-based generative modeling incorporating techniques from protein biophysics
and equivariant neural networks. The NeuralPLexer method outperforms existing
physics-based and learning-based methods on benchmarking problems including
fixed-backbone blind protein-ligand docking and binding site repacking. Moreover,
the predictions agree with compound-specific effects on protein structure distributions
in contrast to existing ligand-agnostic protein structure prediction algorithms.
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C h a p t e r 2

ORBITAL-BASED DEEP LEARNING FOR MOLECULAR
ELECTRONIC STRUCTURE

This chapter is based on the following publications:

[1] Zhuoran Qiao, Matthew Welborn, Animashree Anandkumar, Frederick R
Manby, and Thomas F Miller III. “OrbNet: Deep learning for quantum
chemistry using symmetry-adapted atomic-orbital features”. In: The Journal
of Chemical Physics 153.12 (2020), p. 124111. doi: 10.1063/5.0021955.

[2] Zhuoran Qiao, Feizhi Ding, Matthew Welborn, Peter J. Bygrave, Daniel
G. A. Smith, Animashree Anandkumar, Frederick R. Manby, and Thomas F.
Miller. “Multi-task learning for electronic structure to predict and explore
molecular potential energy surfaces”. In: arXiv preprint arXiv:2011.02680
(2020). Appeared at Machine Learning for Molecules workshop at NeurIPS
2020 as a Contributed Talk. doi: 10.48550/ARXIV.2011.02680.

Abstract
We introduce a machine learning method in which energy solutions from the
Schrodinger equation are predicted using symmetry adapted atomic orbitals features
and a graph neural-network architecture. OrbNet is shown to outperform existing
methods in terms of learning efficiency and transferability for the prediction of
density functional theory results while employing low-cost features that are obtained
from semi-empirical electronic structure calculations. Learning efficiency of the
method can be further improved by incorporating physically motivated constraints
on the electronic structure through multi-task learning. For applications to datasets
of drug-like molecules, including QM7b-T, QM9, GDB-13-T, DrugBank, and the
conformer benchmark dataset of Folmsbee and Hutchison, OrbNet predicts energies
within chemical accuracy of DFT at a computational cost that is thousand-fold or
more reduced.

2.1 Introduction
The potential energy surface is the central quantity of interest in the modeling of
molecules and materials. Calculation of these energies with sufficient accuracy
in chemical, biological, and materials systems is in many – but not all – cases
adequately described at the level of density functional theory (DFT). However, due

https://doi.org/10.1063/5.0021955
https://doi.org/10.48550/ARXIV.2011.02680
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Figure 2.1: A schematic overview of orbital-based deep learning frameworks. A
low-level quantum chemistry calculation is first performed on the molecular system,
generating the atomic orbital (AO) feature matrices which are constructed from
quantum-chemical operators associated with a near-minimal basis set. (Dark red) In
the OrbNet approach, a graph neural network is proposed to predict the electronic
energy of the molecule. Rotation-inversion invariance is realized through the
construction of symmetry-adapted atomic orbitals (SAAOs) and feature matrices
re-evaluated in the SAAO basis used as inputs to the neural network. In the followup
OrbNet-Equi approach, the prediction is performed in an end-to-end fashion, directly
using the AO feature matrices as inputs to the machine learning model; rotation-
inversion equivariance is realized through the UNiTE neural network based on
O(3)-representation theory. OrbNet-Equi supports the prediction of a broader set of
quantum chemistry properties such as multipoles and densities.

to its relatively high cost, the applicability of DFT is limited to either relatively small
molecules or modest conformational sampling, at least in comparison to force-field
and semi-empirical quantum mechanical theories. A major focus of machine learning
(ML) for quantum chemistry has therefore been to improve the efficiency with
which potential energies of molecular and materials systems can be predicted while
preserving accuracy.

In the context of quantum chemistry, many applications have focused on the use atom-
or geometry-specific feature representations and kernel-based[20–28] or neural-
network (NN) ML architectures.[29–42] Recent studies focus on the featurization of
molecules in abstracted representations — such as quantum mechanical properties
obtained from low-cost electronic structure calculations[43–47] — and the utilization
of novel graph-based neural network[48–54] techniques to improve transferability
and learning efficiency.

In this vein, we present an approach based on the featurization of molecules in terms
of symmetry-adapted atomic orbitals (SAAOs) and the use of graph neural network
methods for deep-learning quantum-mechanical properties. We demonstrate the
performance of the new method for the prediction of molecular properties, including
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the total and relative conformer energies for molecules in a range of datasets of
organic and drug-like molecules. The method enables the prediction of molecular
potential energy surfaces with full quantum mechanical accuracy while enabling
vast reductions in computational cost; moreover, the method outperforms existing
methods in terms of its training efficiency and transferable accuracy across diverse
molecular systems.

2.2 Method
The target of the OrbNet machine learning approach is to learn a transferable mapping
𝐸𝜃 from input molecular-orbital-based features {f} to the quantum mechanical
energies 𝐸 .

𝐸 ≈ 𝐸𝜃 [{f}] . (2.1)

The key elements of OrbNet (Fig. 2.2) include the efficient evaluation of the features
{f} in the rotation-inversion-invariant symmetry-adapted atomic orbital (SAAO)
basis, the utilization of a graph neural network (GNN) architecture with edge and node
attention and message passing layers, and a decoding phase that ensures extensivity
of the resulting energies.

Symmetry-adapted atomic orbital (SAAO) features
Let {Φ𝐴

𝑛,𝑙,𝑚
} be the set of atomic orbital (AO) basis functions with atom index 𝐴 and

the standard principal and angular momentum quantum numbers, 𝑛, 𝑙, and 𝑚. Let C
be the corresponding molecular orbital coefficient matrix obtained from a mean-field
electronic structure calculation, such as HF theory, DFT, or a semi-empirical method.
The one-electron density matrix of the molecular system in the AO basis is then

𝑃𝜇𝜈 = 2
∑︁
𝑖∈occ

𝐶𝜇𝑖𝐶𝜈𝑖 (2.2)

(for a closed-shell system). We construct a rotationally invariant symmetry-adapted
atomic-orbital (SAAO) basis {Φ̂𝐴

𝑛,𝑙,𝑚
} by diagonalizing diagonal density-matrix

blocks associated with indices 𝐴, 𝑛, and 𝑙, such that

P𝐴𝑛𝑙Y
𝐴
𝑛𝑙 = Y𝐴

𝑛𝑙 diag(𝜆𝐴𝑛𝑙𝑚) (2.3)

where [P𝐴
𝑛𝑙
]𝑚𝑚′ = 𝑃𝐴

𝑛𝑙𝑚,𝑛𝑙𝑚′ . For s orbitals (𝑙 = 0), this symmetrization procedure is
obviously trivial, and can be skipped. By construction, SAAOs are localized and
consistent with respect to geometric perturbations of the molecule, and in contrast
with localized molecular orbitals (LMOs) obtained from minimizing a localization
objective function (Pipek-Mezey, Boys, etc.), SAAOs are obtained by a series of
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very small diagonalizations, without the need for an iterative procedure. The SAAO
eigenvectors Y𝐴

𝑛𝑙
are aggregated to form a block-diagonal transformation matrix Y

that specifies the full transformation from AOs to SAAOs:

|Φ̂𝑝⟩ =
∑︁
𝜇

𝑌𝜇𝑝 |Φ𝜇⟩ (2.4)

where 𝜇 and 𝑝 index the AOs and SAAOs, respectively.

We employ ML features {f} comprised of matrices obtained by evaluating (one-
electron-reduced-) quantum-chemical operators in the SAAO basis. In Sections 2.2-
2.5, all quantum mechanical matrices will be assumed to represented in the SAAO
basis.

The features include expectation values of the Fock (F), density (P), core Hamiltonian
(H), and overlap (S) operators in the SAAO basis. For the models employed in
Section 2.2, Coulomb (J), exchange (K), and the orbital centroid distance (D)
matrices in the SAAO basis are also employed as features; other quantum-mechanical
matrix elements are also possible for featurization.

Approximated Coulomb and exchange for SAAO features
When a semi-empirical quantum chemical theory is employed, the computational
bottleneck of SAAO feature generation becomes the J and K terms, due to the need
to compute four-index electron-repulsion integrals. We address this problem by
introducing a generalized form of the Mataga–Nishimoto–Ohno–Klopman formula,
as in the sTDA-xTB method,[55, 56]

(𝑝𝑞 |𝑟𝑠)MNOK =
∑︁
𝐴

∑︁
𝐵

𝑄𝐴
𝑝𝑞𝑄

𝐵
𝑟𝑠𝛾𝐴𝐵 (2.5)

Here, 𝐴 and 𝐵 are atom indices, 𝑝, 𝑞, 𝑟, 𝑠 are SAAO indices, and

𝛾
{J,K}
𝐴𝐵

=

(
1

𝑅
𝑦{J,K}
𝐴𝐵

+ 𝜂−𝑦{J,K}

)1/𝑦{J,K}

(2.6)

where 𝑅𝐴𝐵 is the distance between atoms 𝐴 and 𝐵, 𝜂 is the average chemical hardness
for the atoms 𝐴 and 𝐵, and 𝑦{J,K} are empirical parameters specifying the decay
behavior of the damped interaction kernels, 𝛾{J,K}

𝐴𝐵
. In this work, we used 𝑦J = 4 and

𝑦K = 10 similar to which employed in the sTDA-RSH method[57]. The transition
density 𝑄𝐴

𝑝𝑞 is calculated from a Löwdin population analysis,

𝑄𝐴
𝑝𝑞 =

∑︁
𝜇∈𝐴

𝑌 ′
𝜇𝑝𝑌

′
𝜇𝑞 (2.7)
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where the 𝑝th column of Y′ = YS1/2 contains the expansion coefficients for the 𝑝th
SAAO in the symmetrically orthgonalized AO basis. This yields approximated J
and K matrices for featurization:

𝐽MNOK
𝑝𝑞 = (𝑝𝑝 |𝑞𝑞)MNOK =

∑︁
𝐴,𝐵

𝑄𝐴
𝑝𝑝𝑄

𝐵
𝑞𝑞𝛾

J
𝐴𝐵

(2.8)

𝐾MNOK
𝑝𝑞 = (𝑝𝑞 |𝑝𝑞)MNOK =

∑︁
𝐴,𝐵

𝑄𝐴
𝑝𝑞𝑄

𝐵
𝑝𝑞𝛾

K
𝐴𝐵 (2.9)

A naive implementation of Eqs. 2.8 and 2.9 is O(𝑁4), the leading asymptotic cost.
However, this scaling may be reduced to O(𝑁2) with negligible loss of accuracy
through a tight-binding approximation; for molecules in this study, computation
of JMNOK and KMNOK is not the leading order cost for feature generation and such
tight-binding approximation is thus not employed.

The OrbNet model architecture
OrbNet encodes the molecular system as graph-structured data and utilizes a graph
neural network (GNN) machine-learning architecture. The GNN represents data
as an attributed graph 𝐺 (V,E,X,Xe), with nodes V, edges E, node attributes
X : V −→ R𝑛×𝑑 , and edge attributes Xe : E −→ R𝑛e×𝑒, where 𝑛 = |𝑉 |, 𝑛e = |𝐸 |, and 𝑑
and 𝑒 are the number of attributes per node and edge, respectively.

Specifically, OrbNet employs a graph representation for a molecular system in which
node attributes correspond to diagonal SAAO features

𝑋𝑢 = [𝐹𝑢𝑢, 𝐽𝑢𝑢, 𝐾𝑢𝑢, 𝑃𝑢𝑢, 𝐻𝑢𝑢] (2.10)

and edge attributes correspond to off-diagonal SAAO features

𝑋e
𝑢𝑣 = [𝐹𝑢𝑣, 𝐽𝑢𝑣, 𝐾𝑢𝑣, 𝐷𝑢𝑣, 𝑃𝑢𝑣, 𝑆𝑢𝑣, 𝐻𝑢𝑣] (2.11)

By introducing an edge attribute cutoff value for edges to be included, non-interacting
molecular systems separated at infinite distance are encoded as disconnected graphs,
thereby satisfying size-consistency.

The model capacity is enhanced by introducing nonlinear input-feature transfor-
mations to the graph representation via radial basis functions to generate node
embeddings hRBF and edge embeddings eRBF, with infinite-order-differentiable ‘aux-
iliary edge’ attributes eaux

𝑢𝑣 to enforce size-consistency, as detailed in Appendix 2.7.
The radial basis function embeddings are transformed by neural network modules to
yield 0-th order node and edge attributes,

h0
𝑢 = Ench(hRBF

𝑢 ), e0
𝑢𝑣 = Ence(eRBF

𝑢𝑣 ) (2.12)
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where Ench and Ence are residual blocks[58] comprising 3 dense NN layers. In
contrast to atom-based message passing neural networks, this additional embedding
transformation captures the interactions among the physical operators.

The node and edge attributes are updated via the Transformer-motivated[59] message
passing mechanism in Fig. 2.6. For a given message passing layer (MPL) 𝑡 + 1,
the information carried by each edge is encoded into a message function m𝑡

𝑢𝑣 and
associated attention weight m𝑡

𝑢𝑣, and is accumulated into node features through a
graph convolution operation. The overall message passing mechanism is given by:

h𝑡+1
𝑢 = h𝑡𝑢 + 𝜎

(
W𝑡

h ·
[⊕

𝑗

( ∑︁
𝑣∈𝑁 (𝑢)

𝑤
𝑡, 𝑗
𝑢𝑣 · m𝑡

𝑢𝑣

) ]
+ b𝑡h

)
(2.13)

where m𝑡
𝑢𝑣 is the message function computed on each edge

m𝑡
𝑢𝑣 = 𝜎(W𝑡

m · [h𝑡𝑢 ⊙ h𝑡𝑣 ⊙ e𝑡𝑢𝑣] + b𝑡m) (2.14)

and the convolution kernel weights, 𝑤𝑡, 𝑗𝑢𝑣 , are evaluated as (multi-head) attention
scores[49] to characterize the relative importance of an orbital pair,

𝑤
𝑡, 𝑗
𝑢𝑣 = 𝜎a(

∑︁
[(W𝑡, 𝑗

a · h𝑡𝑢) ⊙ (W𝑡, 𝑗
a · h𝑡𝑣) ⊙ e𝑡𝑢𝑣 ⊙ eaux

𝑢𝑣 ]/𝑛e) (2.15)

where the summation is applied over the elements of the vector in the summand. Here,
the index 𝑗 specifies a single attention head, and 𝑛e is the dimension of hidden edge
features e𝑡𝑢𝑣 ,

⊕
denotes a vector concatenation operation, ⊙ denotes the Hadamard

product, and · denotes the matrix-vector product.

The edge attributes are updated according to

e𝑡+1
𝑢𝑣 = 𝜎(W𝑡

e · m𝑡
𝑢𝑣 + b𝑡e) (2.16)

W𝑡
m, W𝑡

h, W𝑡
e, b𝑡m, b𝑡h, b𝑡e are MPL-specific trainable parameter matrices, W𝑡,𝑖

a are
MPL- and attention-head-specific trainable parameter matrices, 𝜎(·) is an activation
function with a normalization layer, and 𝜎a(·) is the activation function used for
generating attention scores.

The decoding phase of OrbNet (Fig. 2.2f-h) is designed to ensure the size-extensivity
of energy predictions. The employed mechanism outputs node-resolved energy
contributions for the embedding layer (𝑡 = 0) and all MPLs (𝑡 = 1, 2, ..., 𝑇) to predict
the energy components associated with all nodes and MPLs. The final energy
prediction 𝐸𝜃 is obtained by first summing over 𝑡 (Fig. 2.2g) for each node 𝑢 and
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then performing a one-body sum over nodes (i.e., orbitals) (Fig. 2.2h), such that

𝐸𝜃 =
∑︁
𝑢∈V

𝜖𝑢 =
∑︁
𝑢∈V

𝑇∑︁
𝑡=0

Dec𝑡 (h𝑡𝑢) (2.17)

where the decoding networks Dec𝑡 are multilayer perceptrons.

2.3 Numerical results
We present results that focus on the prediction of accurate DFT energies using
input features obtained from the GFN1-xTB method [60], a member of the family
of semi-empirical quantum mechanics (SEQM) methods for molecular electronic
structure simulations. The GFN family of methods[60–62] have proven to be
extremely useful for the simulation of large molecular system (1000s of atoms or
more) with time-to-solution for energies and forces on the order of seconds. However,
this applicability can be limited by the accuracy of the semi-empirical method,[63,
64] thus creating a natural opportunity for “delta-learning” the difference between
the GFN1 and DFT energies on the basis of the GFN1 features. Specifically, we
consider regression labels associated with the difference between high-level DFT
and the GFN1-xTB total atomization energies,

𝐸𝜃 ≈ 𝐸DFT − 𝐸GFN1 − Δ𝐸fit
atoms (2.18)

where the last term is the sum of differences for the isolated-atom energies between
DFT and GFN1 as determined by a linear model. This approach yields the direct
ML prediction of total DFT energies, given the results of a GFN1-xTB calculation.

The QM9 dataset

We begin with a broad comparison of recently introduced ML methods for the total
energy task, 𝑈0, from the widely studied QM9 dataset.[65] QM9 is composed of
organic molecules with up to nine heavy atoms at locally optimized geometries, so
this test (Table 2.1) examines the expressive power of the ML models for systems
in similar chemical environments. Results for OrbNet are presented both without
ensemble averaging of independently trained models (i.e., predicting only on the
basis of the first of trained model) and with ensemble averaging the results of
five independently trained models (OrbNet-ens5). As observed previously,[52]
ensembling helps in this and other learning tasks, reducing the OrbNet prediction
error by approximately 10-20%.
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Also included in the table are previously published methods utilizing graph represen-
tations of atom-based features, including SchNet[51], PhysNet[52], DimeNet[53],
and DeepMoleNet[54]. We note that DimeNet employs a directional message
passing mechanism and PhysNet and DeepMoleNet employ supervision based on
prior physical information to improve the model transferability, which could also be
employed within OrbNet; it is clear that without these additional strategies and even
without model ensembling, OrbNet provides greater accuracy and learning efficiency
than all previous deep-learning methods.

Transferability and Conformer Energy Predictions
A more realistic and demanding test of ML methods is to train them on datasets of
relatively small molecules (for which high-accuracy data is more readily available)
and then to test on datasets of larger and more diverse molecules. This provides
useful insight into the transferability of the ML methods and the general applicability
of the trained models.

To this end, we investigate the performance of OrbNet on a series of dataset containing
organic and drug-like molecules. Fig. 2.3 presents results in which OrbNet models
are trained with increasing amounts of data. Using the training-test splits described
in Section 2.7, Model 1 is trained using data from only the QM7b-T dataset; Model 2
is trained using data from the QM7b-T, GDB13-T, and DrugBank-T datasets; Model
3 is trained using data from the QM7b-T, QM9, GDB13-T, and DrugBank-T datasets;
and Model 4 is obtained by ensembling five independent training runs with the same
data as used for Model 3. Predictions are made for total energies (Fig. 2.3A) and
relative conformer energies (Fig. 2.3B) for held-out molecules from each of these
datasets, as well as for the Hutchison conformer dataset.

As expected, it is seen from Fig. 2.3 that the OrbNet predictions improve with
additional data and with ensemble modeling. The median and mean of the absolute
errors consistently decrease from Model 1 to Model 4 except for a non-monotonicity
in the DrugBank-T MAE, likely due to the relatively small size of that dataset.
It is nonetheless striking that Model 1, which includes only data from QM7b-T
yields relative conformer energy predictions on the DrugBank-T and Hutchison
datasets (which include molecules with up to 50 heavy atoms) with an accuracy
that is comparable to the more heavily trained models. Note that all of the OrbNet
models predict relative conformer energies with MAE and median prediction errors
that are well within the 1 kcal/mol threshold of chemical accuracy, across all four



16

test datasets. Predictions for QM9 using Models 1 and 2 are not included, since
QM9 includes F atoms whereas the training data in those models do not; relative
conformer energies are not predicted for QM9 since they are not available in this
dataset. Although total energy prediction error for the OrbNet is slightly larger
per heavy atom on the Hutchison dataset than for the other datasets, the relative
conformer energy prediction error for the Hutchison dataset is slightly smaller than
for GDB13-T and DrugBank-T; this is due to the fact that the Hutchison dataset
involves locally minimized conformers that are less spread in energy per heavy atom
than the conformers of the thermalized datasets. This relatively small energy spread
among conformers in the Hutchison dataset is a realistic and challenging aspect of
drug-molecule conformer-ranking prediction, which we next consider.

Figure 2.4 presents a direct comparison of the accuracy and computational cost of
OrbNet in comparison to a variety of other force-field, semiempirical, machine-
learning, DFT, and wavefunction methods, as compiled in Ref. 64. For the Hutchison
conformer dataset of drug-like molecules which range in size from nine to 50 heavy
atoms, the accuracy of the various methods was evaluated using the median R2 of
the predicted conformer energies in comparison to DLPNO-CCSD(T) reference data
and with computation time evaluated on a single CPU core.[64]

The OrbNet conformer energy predictions (Fig. 2.4, black) are reported using Model
4 (i.e., with training data from QM7b-T, GDB13-T, DrugBank-T, and QM9 and
with ensemble averaging over five independent training runs). The solid black
circle indicates the median R2 value (0.81) of the OrbNet predictions relative to
the DLPNO-CCSD(T) reference data, as for the other methods; this point provides
the most direct comparison to the accuracy of the other methods. The open black
circle indicates the median R2 value (0.90) of the OrbNet predictions relative to the
𝜔B97X-D/Def2-TZVP reference data against which the model was trained; this point
indicates the accuracy that would be expected of the Model 4 implementation of
OrbNet if it had employed coupled-cluster training data rather than DFT training
data. We performed timings for OrbNet on a single core of an Intel Core i5-1038NG7
CPU @ 2.00GHz, finding that the OrbNet computational cost is dominated by the
GFN1-xTB calculation for the feature generation. In contrast to Ref. 64 which
used the xtb code of Grimme and coworkers[66], we used Entos Qcore for the
GFN1-xTB calculation calculations. We find the reported timings for GFN1-xTB to
be surprisingly slow in Ref. 64, particularly in comparison to the GFN0-xTB timings.
For GFN0-xTB, our timings with Entos Qcore are very similar to those reported
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in Ref. 64, which is sensible given that the method involves no self-consistent field
(SCF) iteration. However, whereas Ref. 64 indicates GFN1-xTB timings that are
43-fold slower than GFN0-xTB, we find this ratio to be only 4.5 with Entos Qcore,
perhaps due to differences of SCF convergence. To account for the issue of code
efficiency in the GFN1-xTB implementation and to control for the details of the
single CPU core used in the timings for this work versus in Ref. 64, we normalize the
OrbNet timing reported in Fig. 2.4 with respect to the GFN0-xTB timing from Ref. 64.
The CPU neural-network inference costs for OrbNet are negligible contribution to
this timing.

The results in Fig. 2.4 make clear that OrbNet enables the prediction of relative
conformer energies for drug-like molecules with an accuracy that is comparable to
DFT but with a computational cost that is 1000-fold reduced from DFT to realm
of semiempirical methods. Alternatively viewed, the results indicate that OrbNet
provides dramatic improvements in prediction accuracy over currently available ML
and semiempirical methods for realistic applications, without significant increases in
computational cost.

2.4 Analytical nuclear gradient theory
In this section, we introduce and numerically demonstrate the analytical gradient
theory for OrbNet, which is essential for the calculation of inter-atomic forces and
other response properties, such as dipoles and linear-response excited states.

OrbNet is constructed to be end-to-end differentiable by employing input features
(i.e., the SAAO matrix elements) that are smooth functions of both atomic coordinates
and external fields. We derive the analytic gradients of the total energy 𝐸out with
respect to the atom coordinates, and we employ local energy minimization with
respect to molecular structure as an exemplary task to demonstrate the quality of the
learned potential energy surface (Section 2.4).

Analytical gradient formulation
The derivation of analytical nuclear gradients for OrbNet is nontrivial due to the
response of molecular orbitals and the density matrix when perturbing atomic nuclei
coordinates. In our work, this challenge is addressed using a Lagrangian formalism
[67, 68], and the analytic gradient of the predicted energy with respect to an atom
coordinate 𝑥 can be expressed in terms of contributions from the tight-binding model,
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Figure 2.3: Prediction errors for (a) molecule total energies and (b) relative conformer
energies performed using OrbNet models trained using various datasets. The mean
absolute error (MAE) is indicated by the bar height, the median of the absolute error
is indicated by a black dot, and the the first and third quantiles for the absolute error
are indicated as the lower and upper bars. Model 1 uses training data from QM7b-T;
Model 2 additionally includes training data from GDB13-T and DrugBank-T; Model
3 additionally includes training data from QM9; and Model 4 additionally includes
ensemble averaging over five independent training runs. Testing is performed on data
that is held-out from training in all cases. Training and prediction employs energies
at the 𝜔B97X-D/Def2-TZVP level of theory. All energies in kcal/mol.
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Figure 2.4: Comparison of the accuracy/computational-cost tradeoff for a range of
potential energy methods for the Hutchison conformer benchmark dataset. Aside
from the OrbNet results (black), all data was previously reported in Ref. 64, with
median R2 values for the predicted conformer energies computed relative to DLPNO-
CCSD(T) reference data and with computation time evaluated on a single CPU
core. The OrbNet results (black) are obtained using Model 4 (i.e., with training data
from QM7b-T, GDB13-T, DrugBank-T, and QM9 and with ensemble averaging over
five independent training runs). The solid black circle plots the median R2 value
from the OrbNet predictions relative to DLPNO-CCSD(T) reference data, as for the
other methods. The open black circle plots the median R2 value from the OrbNet
predictions relative to the 𝜔B97X-D/Def2-TZVP reference data against which the
OrbNet model was trained. Error bars correspond to the 95% confidence interval,
determined by statistical bootstrapping.
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Figure 2.5: The molecular geometry optimization accuracy for the ROT34 (left) and
MCONF (right) datasets, reported as the best-alignment root-mean-square-deviation
(RMSD) compared to the reference DFT geometries at the 𝜔B97X-D3/Def2-TZVP
level. The distribution of errors are plotted as histograms (with overlaying kernel
density estimations). Timings correspond to the average cost for a single force
evaluation for the MCONF dataset on a single Intel Xeon Gold 6130 @ 2.10GHz
CPU core.

the neural network, and additional constraint terms:

𝑑𝐸out
𝑑𝑥

=
𝑑𝐸TB
𝑑𝑥

+
∑︁

f∈{ F,D,P,S,H }
Tr

[
𝜕𝐸NN
𝜕f

𝜕f
𝜕𝑥

]
+ Tr[W𝜕SAO

𝜕𝑥
] + Tr[z𝜕FAO

𝜕𝑥
] (2.19)

Here, the third and fourth terms on the right-hand side are gradient contributions
from the orbital orthogonality constraint and the Brillouin condition, respectively,
where FAO and SAO are the Fock matrix and orbital overlap matrix in the atomic
orbital (AO) basis. An overview of the expressions for 𝜕f

𝜕𝑥
, W, and z and derivations

are provided in Appendix 2.7. The gradient for the GFN-xTB model 𝑑𝐸TB
𝑑𝑥

has been
previously reported [60], and the neural network gradients with respect to the input
features 𝜕𝐸NN

𝜕f are obtained using reverse-mode automatic differentiation [69].

Results: Molecular geometry optimizations
A practical application of energy gradient (i.e., force) calculations is to optimize
molecule structures by locally minimizing the energy. Here, we use this application
as a test of the accuracy of the OrbNet potential energy surface in comparison to
other widely used methods of comparable and greater computational cost. Test are
performed for the ROT34 [70] and MCONF [71] datasets, with initial structures
that are locally optimized at the high-quality level of 𝜔B97X-D3/Def2-TZVP DFT
with tight convergence parameters. Dataset and geometry optimization details
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Table 2.2: The mean geometry optimization errors and the percentage of optimized
structures that correspond to incorrect geometries (i.e., RMSD > 0.6 Angstrom).

Method Mean RMSD (Å) Incorrect geometries Time/step
ROT34 MCONF ROT34 MCONF MCONF

GFN-xTB 0.23 0.90 8% 52% < 1 s
GFN2-xTB 0.21 0.60 8% 44% < 1 s

DFT (B97-3c) 0.06 0.51 0% 37% > 100 s
This work 0.09 0.26 0% 6% < 1 s

Ref. DFT (𝜔B97X-D3) - - - - > 1,000 s

are provided in Appendix 2.7. This test investigates whether the potential energy
landscape for each method is locally consistent with a high-quality DFT description.

Fig. 2.5 presents the resulting distribution of errors for the various methods over each
dataset, with results summarized in the accompanying table. It is clear that while the
GFN semi-empirical methods provide a computational cost that is comparable to
OrbNet, the resulting geometry optimizations are substantially less accurate, with a
significant (and in some cases very large) fraction of the local geometry optimizations
relaxing into structures that are inconsistent with the optimized reference DFT
structures (i.e., with RMSD in excess of 0.6 Angstrom). In comparison to DFT using
the B97-3c functional, OrbNet provides optimized structures that are of comparable
accuracy for ROT34 and that are significantly more accurate for MCONF; this should
be viewed in light of the fact that OrbNet is over 100-fold less computationally costly.
On the whole, OrbNet is the best approximation to the reference DFT results, at a
computational cost that is over 1,000-fold reduced.

2.5 Improved data efficiency via multi-task learning
To improve data efficiency, we introduce a multi-task learning strategy in which
OrbNet is trained with respect to both molecular energies and other computed
properties of the quantum mechanical wavefunction.

Refinements on the OrbNet architecture for multi-task learning
In this extension to the OrbNet framework, the feature embedding and neural message-
passing mechanism employed for the node and edge attributes is largely unchanged.
However, to enable multi-task learning and to improve the capacity of the model,
we introduce atom-specific attributes f𝑡

𝐴
, and molecule-level attributes q𝑡 , where 𝑡 is

the message passing layer index and 𝐴 is the atom index. The whole-molecule and
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atom-specific attributes allow for the prediction of auxiliary targets through multi-
task learning, thereby providing physically motivated constraints on the electronic
structure of the molecule that can be used to refine the representation at the SAAO
level.

For the prediction of both the electronic energies and the auxiliary targets, only
the final atom-specific attributes, f𝐿

𝐴
, are employed, since they self-consistently

incorporate the effect of the whole-molecule and node- and edge-specific attributes.
The electronic energy is obtained by combining the approximate energy 𝐸TB from
the extended tight-binding calculation and the model output 𝐸NN, the latter of which
is a one-body sum over atomic contributions; the atom-specific auxiliary targets d𝐴
are predicted from the same attributes.

𝐸̂out = 𝐸TB + 𝐸NN = 𝐸TB +
∑︁
𝐴

[Dec(f𝑇𝐴) + 𝐸
c
𝐴] ; d̂𝐴 = Decaux(f𝑇𝐴) (2.20)

Here, the energy decoder Dec and the auxiliary-target decoder Decaux are residual
neural networks [58] built with fully connected and normalization layers, and 𝐸c

𝐴
are

element-specific, constant shift parameters for the isolated-atom contributions to the
total energy. The GradNorm algorithm [72] is used to adaptively adjust the weight
of the auxiliary target loss based on the gradients of the last fully-connected layer
before the decoding networks.

Auxiliary targets from density matrix projection
The utility of graph- and atom-level auxiliary tasks to improve the generalizability of
the learned representations for molecules has been highlighted for learning molecular
properties in the context of graph pre-training [73, 74] and multi-task learning [54].
Here, we employ multi-task learning with respect to the total molecular energy and
atom-specific auxiliary targets. The atom-specific targets that we employ are similar
to the features introduced in the DeePHF model [47], obtained by projecting the
density matrix into a basis set that does not depend upon the identity of the atomic
element,

d𝐴𝑛𝑙 = [EigenVals𝑚,𝑚′ ( [ OD 𝐴
𝑛𝑙]𝑚,𝑚′) | |EigenVals𝑚,𝑚′ ( [ VD 𝐴

𝑛𝑙]𝑚,𝑚′)] (2.21)

Here, the projected density matrix is given by [ OD 𝐴
𝑛𝑙
]𝑚,𝑚′ =

∑
𝑖∈occ⟨𝛼𝐴𝑛𝑙𝑚 |𝜓𝑖⟩⟨𝜓𝑖 |𝛼

𝐴
𝑛𝑙𝑚′⟩,

and the projected valence-occupied density matrix is given by [ VD 𝐴
𝑛𝑙
]𝑚,𝑚′ =∑

𝑗∈valocc⟨𝛼𝐴𝑛𝑙𝑚 |𝜓 𝑗 ⟩⟨𝜓 𝑗 |𝛼
𝐴
𝑛𝑙𝑚′⟩, where |𝜓{𝑖, 𝑗}⟩ are molecular orbitals from the refer-

ence DFT calculation, |𝛼𝐴
𝑛𝑙𝑚

⟩ is a basis function centered at atom 𝐴 with radial index
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𝑛 and spherical-harmonic degree 𝑙 and order 𝑚. The indices 𝑖 and 𝑗 runs over all
occupied orbitals and valence-occupied orbital indices, respectively, and | | denotes a
vector concatenation operation. The auxiliary target vector d𝐴 for each atom 𝐴 in
the molecule is obtained by concatenating d𝐴

𝑛𝑙
for all 𝑛 and 𝑙. The parameters for the

projection basis |𝛼𝐴
𝑛𝑙𝑚

⟩ can be found in the Appendix of the original publication [75].
Additional attributes, such as such as partial charges and reactivities, could also be
naturally included within this framework.

Results: Atomization energy predictions
We perform a standard benchmark test of predicting molecular energies for the
QM9 dataset. Table 2.3 presents results from current work, as well as previously
published results using SchNet [51], PhysNet [52], DimeNet [53], DeepMoleNet
[54], and OrbNet [76]. The approach proposed in this work significantly outperforms
existing methods [51–54] in terms of both data efficiency and prediction accuracy.
In particular, it is seen that the use of multi-task learning in the current study leads to
significant improvement over the OrbNet results obtained via directly training on
energies (single-task), which already exhibited the smallest errors among published
methods.

2.6 Conclusions
Electronic structure methods typically face a punishing trade-off between the pre-
diction accuracy of the method and its computational cost, across all areas of the
chemical, biological, and materials sciences. We present a new machine-learning
method with the potential to substantially shift that trade-off in favor of ab initio-
quality accuracy at low computational cost. OrbNet utilizes a graph neural network
architecture to predict high-quality electronic-structure energies on the basis of
features obtained from low-cost/minimal-basis mean-field electronic structure meth-
ods. The method is demonstrated for the case of predicting 𝜔B97X-D/Def2-TZVP
energies using GFN1-xTB input features, although it is completely general with
respect to both the choice of high-level (including correlated wavefunction) method
used for generating reference data and the choice of mean-field method used for
feature generation. In comparison to state-of-the-art GNN methods for the prediction
of total molecule energies for the QM9 dataset, it is shown that OrbNet provides a
33% improvement in prediction accuracy with the same amount of data relative to
the next-most accurate method (DeepMoleNet).[54] And in comparison to the wide
array of methods used for predicting relative conformer energies in a realistic and
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Message Passing & Pooling

Decoding

Residual

BatchNorm
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Figure 2.6: Detail of a single message-passing and pooling layer (“Message Passing
Layer” in Fig. 2.2), and a decoding network (“Decoding” in Fig. 2.2). At message
passing and pooling layer 𝑙 + 1, the whole-molecule, atom-specific, node-specific,
and edge-specific attributes are updated. The atom-specific attributes f𝑙

𝐴
are updated

with input from node- and edge-specific attributes h𝑙𝑢 and e𝑙𝑢𝑣 and likewise includes
the back-propagation from the whole-molecule attributes; finally, the whole-molecule
attributes q𝑙 are updated with input from the atom-specific attributes. The final
atom-specific attributes are passed into separate decoding networks to generate the
energy prediction and auxiliary target predictions. A decoding network is composed
of multiple residual blocks (“Residual”) and a linear output layer, as illustrated above.

diverse dataset of drug-like molecules, as compiled by Folmsbee and Hutchison,[64]
it is shown that OrbNet provides a prediction accuracy that is similar to DFT and
much improved over existing ML methods, but at a computational cost that is reduced
by at least three orders of magnitude relative to DFT. Natural future directions for
development will include the expansion of OrbNet to a broader set of chemical
elements, incorporation of directional message-passing and model supervision using
prior physical information,[52–54] and end-to-end refitting of the semi-empirical
method used for feature generation.[33, 77]
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2.7 Appendix
Feature and architecture details
We employ the following feature embedding scheme where the SAAO feature matrices
are transformed by radial basis functions,

hRBF
𝑢 = [𝜙h

1( 𝑋̃𝑢), 𝜙
h
2( 𝑋̃𝑢), ..., 𝜙

h
𝑛r ( 𝑋̃𝑢)] (2.22)

eRBF
𝑢𝑣 = [𝜙e

1( 𝑋̃
e
𝑢𝑣), 𝜙e

2( 𝑋̃
e
𝑢𝑣), ..., 𝜙e

𝑚r ( 𝑋̃
e
𝑢𝑣)] (2.23)

where X̃ and X̃e are pre-normalized SAAO feature matrices, 𝜙h
𝑛 (𝑟) = sin(𝜋𝑛𝑟) is

a sine function used for node (SAAO) embedding; to improve the smoothess of
the potential energy surface, we used the real Morlet wavelet functions for edge
embedding:

𝜙e
𝑚 (𝑟) = exp(−( 𝑟

𝜎 · 𝑐X
)2) · sin(𝜋𝑚𝑟/𝑐X) (2.24)

and 𝑐X (X ∈ { F,D,P, S,H }) is the operator-specific upper cutoff value to 𝑋̃e
𝑢𝑣. To

ensure size-consistency for energy predictions, a mollifier 𝐼X(𝑟) with the auxiliary
edge attribute eaux

𝑢𝑣 is introduced:

eaux
𝑢𝑣 = Waux · 𝐼X( 𝑋̃e

𝑢𝑣) (2.25)

where

𝐼X(𝑟) =


exp
(

𝑐X
|𝑟 |−𝑐X

+ 1
)
· exp(−( 𝑟

𝜎·𝑐X
)2) if 0 ≤ |𝑟 | < 𝑐X

0 if |𝑟 | ≥ 𝑐X
(2.26)

In the revised OrbNet architecure 2.5, the radial basis function embeddings of the
SAAOs and a one-hot encoding of the chemical element of the atoms (fonehot

𝐴
) are

transformed by neural network modules to yield 0-th order SAAO, SAAO-pair, and
atom attributes,

h0
𝑢 = Ench(hRBF

𝑢 ), e0
𝑢𝑣 = Ence(eRBF

𝑢𝑣 ), f0
𝐴 = Encf (fonehot

𝐴 ) (2.27)

where Ench and Ence are residual blocks[58] comprising 3 dense NN layers, and
Encf is a single dense NN layer. In contrast to atom-based message passing neural
networks, this additional embedding transformation captures the interactions among
the physical operators.

The update of the node- and edge-specific attributes (gray block in Fig. 2.6) is
unchanged from Ref. [76], except with the additional information back-propagation
from the atom-specific attributes. The node and edge attributes at step 𝑙 + 1 are
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updated via the following neural message passing mechanism (corresponding to
“AO-AO attention” in Fig. 2.6):

h̃𝑙+1
𝑢 = h𝑙

𝑢 + W𝑙
h,2 · Swish

(
BatchNorm

(
W𝑙

h,1 ·
[⊕

𝑖

(
∑︁

𝑣∈𝑁 (𝑢)
𝑤𝑙,𝑖
𝑢𝑣 · m𝑙

𝑢𝑣)
]
+ b𝑙

h,1
) )

+ b𝑙
h,2

(2.28a)

m𝑙
𝑢𝑣 = Swish(W𝑙

m · [h𝑙
𝑢 ⊙ h𝑙

𝑣 ⊙ e𝑙𝑢𝑣] + b𝑙
m) (2.28b)

𝑤𝑙,𝑖
𝑢𝑣 = Tanh(

∑︁
[(W𝑙,𝑖

a · h𝑙
𝑢) ⊙ (W𝑙,𝑖

a · h𝑙
𝑣) ⊙ e𝑙𝑢𝑣 ⊙ eaux

𝑢𝑣 ]/𝑛e) (2.28c)

e𝑙+1
𝑢𝑣 = e𝑙𝑢𝑣 + W𝑙

e,2 ·
(
Swish(W𝑙

e,1 · m𝑙
𝑢𝑣 + b𝑙

e,1)
)
+ b𝑙

e,2 (2.28d)

where m𝑙
𝑢𝑣 is the message function on each edge, 𝑤𝑙,𝑖𝑢𝑣, are multi-head attention

scores [49] for the relative importance of SAAO pairs (𝑖 indexes attention heads),
⊕

denotes a vector concatenation operation, ⊙ denotes the Hadamard product, and ·
denotes the matrix-vector product.

The SAAO attributes are accumulated into the atoms on which the corresponding
SAAOs are centered, using an attention-based pooling operation (“AO-Atom attention”
in Fig. 2.6) inspired by the set transformer [78] architecture:

𝑎𝑙𝐴,𝑢 = Softmax(f𝑙𝐴 · (h
𝑙
𝑢)T/√𝑛h) (2.29a)

f̃𝑙+1
𝐴 = W𝑙

f,1 ·
[
f𝑙𝐴 | | (

∑︁
𝑢∈𝐴

𝑎𝑙𝐴,𝑢h
𝑙
𝑢)

]
+ b𝑙f,1 (2.29b)

where the Softmax operation is taken over all SAAOs 𝑢 centered on atom 𝐴. Then
the global attention 𝛼𝑙

𝐴
is calculated for all atoms in the molecule to update the

molecule-level attribute q𝑙+1:

𝛼𝑙+1
𝐴 = Softmax(q𝑙 · (f̃𝑙+1

𝐴 )T/√𝑛h) (2.30a)

q𝑙+1 = q𝑙 +
∑︁
𝐴

𝛼𝑙+1
𝐴 f̃𝑙+1

𝐴 (2.30b)

where the Softmax is taken over all atoms in the molecule, and the initial global
attribute q0 is a molecule-independent, trainable parameter vector.

Finally, the molecule- and atom-level information is propagated back to the SAAO
attributes:

f𝑙+1
𝐴 = 𝛼𝑙+1

𝐴 f̃𝑙+1
𝐴 (2.31a)

h𝑙+1
𝑢 = W𝑙

f,2 ·
[
f𝑙+1
𝐴 | |h̃𝑙+1

𝑢

]
+ b𝑙f,2. (2.31b)

The list of trainable model parameters is: Waux, W𝑙
h,1, W𝑙

h,2, b𝑙h,1, b𝑙h,2, W𝑙
m, b𝑙m,

W𝑙,𝑖
a , W𝑙

e,1, W𝑙
e,2, b𝑙e,1, b𝑙e,2, W𝑙

f,1, W𝑙
f,2, b𝑙f,1, b𝑙f,2, q0, and the parameters of Ench,

Ence, Encf , Dec, and Decaux.
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Dataset and computational details
Datasets used in Sec. 2.2

Results are presented for the QM7b-T dataset[44, 79] (which has seven conformations
for each of 7211 molecules[37] with up to seven heavy atoms of type C, O, N, S,
and Cl), the QM9 dataset[65] (which has locally optimized geometries for 133885
molecules with up to nine heavy atoms of type C, O, N, and F), the GDB-13-T
dataset[44, 79] (which has six conformations for each of 1000 molecules from the
GDB-13 dataset[80] with up to thirteen heavy atoms of type C, O, N, S, and Cl),
DrugBank-T (which has six conformations for each of 168 molecules from the
DrugBank database[81] with between fourteen and 30 heavy atoms of type C, O, N,
S, and Cl), and the Hutchison conformer dataset from Ref. 64 (which has up to 10
conformations for each of 622 molecules with between nine and 50 heavy atoms of
type C, O, N, F, P, S, Cl, Br, and I). Except for DrugBank-T, all of these datasets have
been described previously; thermalized geometries from the DrugBank dataset are
sampled at 50 fs intervals from ab initio molecular dynamics trajectories performed
using the B3LYP[82–85]/6-31g*[86] level of theory and a Langevin thermostat[87]
at 350 K. The structures for the datasets are provided in the Supporting Information of
our published works. [76] For results reported in Section 2.3, the pre-computed DFT
labels from Ref. 65 were employed. For results reported in Section 2.3, all DFT labels
were computed using the 𝜔B97X-D functional[88] with a Def2-TZVP AO basis
set[89] and using density fitting[90] for both the Coulomb and exchange integrals
using the Def2-Universal-JKFIT basis set;[91] these calculations are performed
using Psi4.[92] Semi-empirical calculations are performed using the GFN1-xTB
method[60] using the Entos Qcore[93] package, which is also employed for the
SAAOs feature generation.

For the results presented in this work, we train OrbNet models using the following
training-test splits of the datasets. For results on the QM9 dataset, we removed
3054 molecules due to a failed a geometric consistency check, as recommended in
Ref. 65; we then randomly sampled 110000 molecules for training and used 10831
molecules for testing. The training sets of 25000 and 50000 molecules in section 2.3
are subsampled from the 110000-molecule dataset. For the QM7b-T dataset, two
sets of training-test splits are generated; for the model trained on the QM7b-T dataset
only (Model 1 in Section 2.3), we randomly selected 6500 different molecules (with
7 geometries for each) from the total 7211 molecules for training, holding out 500
molecules (with 7 geometries for each) for testing; for Models 2-4 in Section 2.3, we
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used a 361-molecule subset of this 500-molecules set for testing, and we used the
remaining 6850 molecules of QM7b-T for training. For the GDB13-T dataset, we
randomly sampled 948 different molecules (with 6 geometries for each) for training,
holding out 48 molecules (with 6 geometries for each) for testing. For the DrugBank-T
dataset, we randomly sampled 158 different molecules (with 6 geometries for each)
for training, holding out 10 molecules (with 6 geometries for each) for testing. No
training on the Hutchison conformer dataset was performed, as it was only used
for transferability testing. Since none of the training datasets for OrbNet included
molecules with elements of type P, Br, and I, we excluded the molecules in the
Hutchison dataset that included elements of these types for the reported tests (as
was also done in Ref. 64 and in Fig. 2.4 for the ANI methods). Moreover, following
Ref. 64, we excluded sixteen molecules due to missing DLPNO-LCCSD(T) reference
data; an additional eight molecules were excluded on the basis of DFT convergence
issues for at least one conformer using Psi4. The specific molecules that appear
in all training-test splits are listed in the Supporting Information of the original
publication [76].

Datasets used in Sec. 2.5

For results reported in Section 2.5, we employ the QM9 dataset[65] with pre-computed
DFT labels. From this dataset, 3054 molecules were excluded as recommended
in Ref. [65]; we sample 110000 molecules for training and 10831 molecules for
testing. The training sets of 25000 and 50000 molecules are subsampled from the
110000-molecule dataset.

To train the model reported in Section 2.4, we employ the published geometries from
Ref. [76], which include optimized and thermalized geometries of molecules up to
30 heavy atoms from the QM7b-T, QM9, GDB13-T, and DrugBank-T datasets. We
perform model training using the dataset splits of Model 3 in Ref. [76]. DFT labels
are computed using the 𝜔B97X-D3 functional [94] with a Def2-TZVP AO basis
set[89] and using density fitting[90] for both the Coulomb and exchange integrals
using the Def2-Universal-JKFIT basis set.[91]

For results reported in Section 2.4, we perform geometry optimization for the DFT,
OrbNet, and GFN-xTB calculations by minimizing the potential energy using the
BFGS algorithm with the Translation-rotation coordinates (TRIC) of Wang and
Song[95]; geometry optimizations for GFN2-xTB are performed using the default
algorithm in the xtb package [66].
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ROT34 includes conformers of 12 small organic molecules with up to 13 heavy
atoms; MCONF includes 52 conformers of the melatonin molecule which has 17
heavy atoms. All local geometry optimizations are initialized from pre-optimized
structures at the 𝜔B97X-D3/Def2-TZVP level of theory. From these initial structures,
we performed a local geometry optimization using the various energy methods,
including OrbNet from the current work, the GFN semi-empirical methods [60, 62],
and the relatively low-cost DFT functional B97-3c [96]. For the B97-3c method, the
mTZVP basis set is employed. The error in the resulting structure with respect to the
reference structures optimized at the 𝜔B97X-D3/Def2-TZVP level was computed as
root mean squared distance (RMSD) following optimal molecular alignment.

All DFT and GFN-xTB calculations are performed using Entos Qcore [93];
GFN2-xTB calculation are performed using xtb package [66].

Hyperparameters and training details
Hyperparameters and model training for results in Sec. 2.2

Table 2.4 summarizes the hyperparameters used for OrbNet in Sec. 2.2 for the
reported results. We perform a pre-transformation on the input features from F, J,
K, D, P, H, and S to obtain X̃ and X̃e: We normalize all diagonal SAAO tensor
values 𝑋𝑢𝑢 to range [0, 1) for each operator type to obtain 𝑋̃𝑢; for off-diagonal
SAAO tensor values, we take 𝑋̃𝑢𝑣 = − ln( |𝑋𝑢𝑣 |) for X ∈ { F, J,K,P, S,H }, and
𝐷̃𝑢𝑣 = 𝐷𝑢𝑣. The model hyperparameters are selected within a limited search space;
the cutoff hyperparameters 𝑐X are obtained by examining the overlap between feature
element distributions between the QM7b-T and GDB13-T datasets. The same set of
hyperparameters is used throughout this work, thereby providing a universal model.

To provide additional regularization for predicting energy variations from the
configurational degree of freedom, we performed training on loss function of the
form

L(Ê,E) = (1 − 𝛼)
∑︁
𝑖

L2(𝐸̂𝑖, 𝐸𝑖)

+ 𝛼
∑︁
𝑖

L2(𝐸̂𝑖 − 𝐸̂𝑡 (𝑖) , 𝐸𝑖 − 𝐸𝑡 (𝑖)). (2.32)

For a conformer 𝑖 in a minibatch, we randomly sample another conformer 𝑡 (𝑖)
of the same molecule to be paired with 𝑖 to evaluate the relative conformer loss
L2(𝐸̂𝑖 − 𝐸̂𝑡 (𝑖) , 𝐸𝑖 − 𝐸𝑡 (𝑖)), putting additional penalty on the prediction errors for
configurational energy variations. E denotes the ground truth energy values of the
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Hyperparameter Meaning Value or name
𝑛r Number of basis functions for node embedding 8
𝑚r Number of basis functions for edge embedding 8
𝑛h Dimension of hidden node attributes 256
𝑛e Dimension of hidden edge attributes 64
𝑛a Number of attention heads 4
𝐿 Number of message passing layers 3
𝐿enc Number of dense layers in Ench and Ence 3
𝐿dec Number of dense layers in a decoding network 4

Hidden dimensions of a decoding network 128, 64, 32, 16
𝜎 Activation function Swish
𝜎a Activation function for attention generation TanhShrink
𝛾 Batch normalization momentum 0.4
𝑐F Cutoff value for 𝐹̃𝑢𝑣 8.0
𝑐J Cutoff value for 𝐽𝑢𝑣 1.6
𝑐K Cutoff value for 𝐾̃𝑢𝑣 20.0
𝑐D Cutoff value for 𝐷̃𝑢𝑣 9.45
𝑐P Cutoff value for 𝑃̃𝑢𝑣 14.0
𝑐S Cutoff value for 𝑆𝑢𝑣 8.0
𝑐H Cutoff value for 𝐻̃𝑢𝑣 8.0

Table 2.4: Model hyperparameters employed in the OrbNet model. All cutoff values
are in atomic units.

minibatch, Ê denotes the model prediction values of the minibatch, and L2 denotes
the L2 loss function L2( 𝑦̂, 𝑦) = | | 𝑦̂ − 𝑦 | |22. For all models in Section 2.3, we choose
𝛼 = 0 as only the optimized geometries are available; for models in Section 2.3, we
choose 𝛼 = 0.9 for all training setups.

All models are trained on a single Nvidia Tesla V100-SXM2-32GB GPU using the
Adam optimizer.[97] For all training runs, we set the minibatch size to 64 and use
a cyclical learning rate schedule[98] that performs a linear learning rate increase
from 3 × 10−5 to 3 × 10−3 for the initial 100 epochs, a linear decay from 3 × 10−3 to
3 × 10−5 for the next 100 epochs, and an exponential decay with a factor of 0.9 every
epoch for the final 100 epochs. Batch normalization[99] is employed before every
activation function 𝜎 except for that used in the attention heads, 𝜎a.

Hyperparameters and model training for results in Sec. 2.4-2.5

Table 2.5 summarizes the hyperparameters for OrbNet employed in Sec. 2.4-2.5. We
perform a pre-transformation on the input features from F, D, P, H, and S to obtain
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Hyperparameter Meaning Value
𝑛r Number of basis functions for node embedding 8
𝑚r Number of basis functions for edge embedding 8
𝑛h Dimension of hidden node attributes 256
𝑛e Dimension of hidden edge attributes 64
𝑛a Number of attention heads 4
𝐿 Number of message passing & pooling layers 2
𝐿enc Number of dense layers in Ench and Ence 3
𝐿dec Number of residual blocks in a decoding network 3
𝑛d Hidden dimension of a decoding network 256
𝛾 Batch normalization momentum 0.4
𝑐F Cutoff value for 𝐹̃𝑢𝑣 6.0
𝑐D Cutoff value for 𝐷̃𝑢𝑣 9.45
𝑐P Cutoff value for 𝑃̃𝑢𝑣 6.0
𝑐S Cutoff value for 𝑆𝑢𝑣 6.0
𝑐H Cutoff value for 𝐻̃𝑢𝑣 6.0
𝜎 Morlet wavelet RBF scale 1/3

Table 2.5: Model hyperparameters employed in the revised OrbNet model. All cutoff
values are in atomic units.

X̃ and X̃e: We normalize all diagonal SAAO tensor values 𝑋𝑢𝑢 to the range [0, 1)
for each operator type to obtain 𝑋̃𝑢; for off-diagonal SAAO tensor values, we take
𝑋̃𝑢𝑣 = − ln( |𝑋𝑢𝑣 |) for X ∈ { F,P, S,H }, and 𝐷̃𝑢𝑣 = 𝐷𝑢𝑣.

Training is performed on a loss function of the form

L(Ê,E, d̂, d) = (1 − 𝛼)
∑︁
𝑖

L2(𝐸̂𝑖, 𝐸𝑖)

+ 𝛼
∑︁
𝑖

L2(𝐸̂𝑖 − 𝐸̂𝑡 (𝑖) , 𝐸𝑖 − 𝐸𝑡 (𝑖)) (2.33)

+ 𝛽
∑︁
𝑖

∑︁
𝐴∈𝑖

L2(d̂𝐴, d𝐴). (2.34)

∑
𝑖 denotes summation over a minibatch of molecular geometries 𝑖. For each geometry

𝑖, we randomly sample another conformer of the same molecule 𝑡 (𝑖) to evaluate the
relative conformer loss L2(𝐸̂𝑖 − 𝐸̂𝑡 (𝑖) , 𝐸𝑖 − 𝐸𝑡 (𝑖)); E denotes the ground truth energy
values of the minibatch, Ê denotes the model prediction values of the minibatch; d̂𝐴
and d𝐴 denote the predicted and reference auxiliary target vectors for each atom 𝐴 in
molecule 𝑖, and L2( 𝑦̂, 𝑦) = | | 𝑦̂ − 𝑦 | |22 denotes the L2 loss function. For the model
used in Section 2.5, we choose 𝛼 = 0 as only the optimized geometries are available;
for models in Section 2.4, we choose 𝛼 = 0.95. 𝛽 is adaptively updated using the
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GradNorm[72] method.

All models are trained on a single Nvidia Tesla V100-SXM2-32GB GPU using the
Adam optimizer [97]. For all training runs, we set the minibatch size to 64 and use a
cosine annealing with warmup learning rate schedule [100] that performs a linear
learning rate increase from 3 × 10−6 to 3 × 10−4 for the initial 100 epochs, and a
cosine decay from 3 × 10−4 to 0 for 200 epochs.

Analytical nuclear gradients for atomic orbital features
The electronic energy in the OrbNet model is given by

𝐸out [f] = 𝐸xTB + 𝐸NN [f] (2.35)

Here, f denotes the features, which correspond to the matrix elements of the single-
electron quantum mechanical operators {F,P,D,H, S} evaluated in the AO or the
SAAO basis. We provide an overview of the derivation of analytical nuclear gradients
for the SAAO features used in OrbNet. The full details of the gradient expressions
can be found in our published work [75].

Generation of SAAOs

We denote {𝜙𝐴
𝑛,𝑙,𝑚

} as the set of atomic basis functions with atom indices 𝐴,
with principle, angular and magnetic quantum numbers 𝑛, 𝑙, 𝑚, and {𝜓𝑖} as the
set of canonical molecular orbitals obtained from a low-level electronic structure
calculation.

We define the transformation matrix X between AOs and SAAOs as eigenvectors of
the local density matrices (in covariant form):

P̃𝐴𝑛,𝑙X
𝐴
𝑛,𝑙 = X𝐴

𝑛,𝑙Σ
𝐴
𝑛,𝑙 (2.36)

where P̃ is the covariant density matrix in AO basis and is defined as

P̃ = SPAOS (2.37)

Neural network gradient

The Lagrangian for OrbNet is

L = 𝐸NN [f] +
∑︁
𝑝𝑞

𝑊𝑝𝑞

(
C†SC − I

)
𝑝𝑞

+
∑︁
𝑎𝑖

𝑧𝑎𝑖𝐹𝑎𝑖 (2.38)

The second term of right-hand-side corresponds to the orbitals orthogonality con-
straint, and the third term corresponds to the Brillion conditions.
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Stationary condition for the Lagrangian with respect to the MOs

The Lagrangian is stationary with respect to variations of the MOs:
𝜕L
𝜕𝑉𝑝𝑞

= 0 (2.39)

where 𝑉𝑝𝑞 is a variation of the MOs in terms of the orbital rotation between MO pair
𝑝 and 𝑞 and is defined as

C̃ = C(I + V) (2.40)

This leads to the following expressions for each term on the right-hand-side of Eq.
2.38:

𝐴𝑝𝑞 =
𝜕𝐸NN [f]
𝜕𝑉𝑝𝑞

���
V=0

=
𝜕𝐸NN [f]
𝜕f

𝜕f
𝜕𝑉𝑝𝑞

���
V=0

(2.41)

𝑊𝑝𝑞 =
𝜕
∑
𝑝𝑞𝑊𝑝𝑞

(
C†SC − I

)
𝑝𝑞

𝜕𝑉𝑝𝑞

���
V=0

(2.42)

(A[z])𝑝𝑞 =
𝜕
∑
𝑎𝑖 𝑧𝑎𝑖𝐹𝑎𝑖

𝜕𝑉𝑝𝑞

���
V=0

= (Fz)𝑝𝑞
���
𝑞∈occ

+
(
Fz†

)
𝑝𝑞

���
𝑞∈vir

+ 2 (g[z̄])𝑝𝑞
���
𝑞∈occ

(2.43)

SAAO derivatives

The OrbNet energy gradient involves the derivatives of the SAAO transformation
matrix X𝐴

𝑛,𝑙
with respect to orbital rotations and nuclear coordinates. As detailed

in Appendix D.5 of [75], the derivatives of the SAAOs X with respect to nuclear
coordinates 𝑥 can be expressed as

𝜕X
𝜕𝑥

= XT𝑥 (2.44)

where T𝑥 is defined as

𝑇𝑥𝐼,𝜅𝜆 =
X𝑇
𝐼,𝜅

P̃𝑥
𝐼
X𝐼,𝜆

𝜖𝐼,𝜆 − 𝜖𝐼,𝜅
for 𝜅 ≠ 𝜆, 𝑇𝑥𝐼,𝜅𝜅 = 0 (2.45)

where P̃𝑥
𝐼

is defined as

𝑃̃𝑥𝜇𝜈∈𝐼 ≡
𝜕𝑃̃𝐼𝜇𝜈

𝜕𝑥
=
𝜕 (SPS)𝜇𝜈

𝜕𝑥

=
∑︁
𝜅𝜆

𝜕𝑆𝜇𝜅

𝜕𝑥
𝑃𝜅𝜆𝑆𝜆𝜈 + 𝑆𝜇𝜅𝑃𝜅𝜆

𝜕𝑆𝜆𝜈

𝜕𝑥

=
∑︁
𝜅𝜆

𝑆𝑥𝜇𝜅𝑃𝜅𝜆𝑆𝜆𝜈 + 𝑆𝜇𝜅𝑃𝜅𝜆𝑆𝑥𝜆𝜈 (2.46)
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Define 𝑁 = PS, then

P̃𝑥𝐼 =
[
S𝑥N + N†S𝑥

]
𝐼

(2.47)

The nuclear derivatives of the OrbNet energy usually involve the term Tr[BT𝑥],
which can be re-written as

Tr[BT𝑥] =
∑︁
𝐼

Tr[B̃𝐼 P̃𝑥𝐼 ] =
∑︁
𝐼

Tr
(
B̃𝐼

[
S𝑥N + N†S𝑥

]
𝐼

)
= Tr[WS𝑥]

where B̃ defined as

𝐵̄𝐼,𝜅𝜆 =
𝐵𝐼,𝜅𝜆

𝜖𝜅 − 𝜖𝜆
for 𝜅 ≠ 𝜆, 𝐵̄𝐼,𝜅𝜅 = 0 (2.48)

B̃𝐼 =
1
2

X𝐼 (B̄𝐼 + B̄†
𝐼
)X†

𝐼
(2.49)

and W is defined as

𝑊
𝐼

𝜇𝜈

���
𝜈∈𝐼

= 2
(
NB̃𝐼

)
𝜇𝜈

(2.50)

Derivatives of OrbNet energy with respect to MOs

Define the derivatives of the OrbNet energy with respect to feature f as:

Q 𝑓 =
𝜕𝐸NN [f]
𝜕f (2.51)

where f ∈ {F,P,D,H, S}.

Note that Q 𝑓 has the same dimension as f, and is symmetrized.

The derivatives of OrbNet energy with respect to the MO variations, Eq. 2.41, can
be rewritten as

𝐴𝑝𝑞 =
𝜕𝐸NN [f]
𝜕𝑉𝑝𝑞

���
V=0

=
𝜕𝐸NN [f]
𝜕f

𝜕f
𝜕𝑉𝑝𝑞

���
V=0

=
∑︁
𝑓

[
Q 𝑓 · 𝜕f

𝜕𝑉𝑝𝑞

]
(2.52)

Define

𝐴
𝑓
𝑝𝑞 = Q 𝑓 · 𝜕f

𝜕𝑉𝑝𝑞
(2.53)

which corresponds to the contribution to OrbNet energy derivatives with respect to
MOs from a specific feature f.
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Derivatives of OrbNet energy with respect to nuclear coordinates

The derivatives of OrbNet energy with respect to nuclear coordinates can be written
as

𝜕𝐸NN
𝜕𝑥

=
𝜕𝐸NN [f]
𝜕f

𝜕f
𝜕𝑥

=
∑︁
𝑓

[
Q 𝑓 𝜕f

𝜕𝑥

]
(2.54)

Define

𝐴
𝑓
𝑥 = Q 𝑓 · 𝜕f

𝜕𝑥
(2.55)

which corresponds to the contribution to OrbNet energy derivatives with respect to
MOs from a specific feature f.

xTB generalized Fock matrix

The xTB generalized Fock matrix is defined as

(g[Y])𝜇𝜈 =
∑︁
𝜅𝜆

𝜕𝐹𝜇𝜈

𝜕𝑃𝜅𝜆
𝑌𝜅𝜆 (2.56)

where Y is an arbitrary symmetric matrix with the same dimension as the AO density
matrix P.

The xTB Fock matrix is defined as

𝐹𝜇𝜈 = 𝐻𝜇𝜈 +
1
2
𝑆𝜇𝜈

∑︁
𝐶,𝑙′′

(𝛾𝐴𝐶,𝑙𝑙′′ + 𝛾𝐵𝐶,𝑙′𝑙′′)𝑝𝐶𝑙′′ +
1
2
𝑆𝜇𝜈 (𝑞2

𝐴Γ𝐴 + 𝑞
2
𝐵Γ𝐵) (𝜇 ∈ 𝐴, 𝑙; 𝜈 ∈ 𝐵, 𝑙′)

(2.57)

which is a functional of the shell-resolved charges, i.e. F[𝑝𝐶
𝑙′′].

With the above expression, the xTB generalized Fock matrix can be computed as

(g[Y])𝜇𝜈 =
∑︁
𝜅𝜆

𝜕𝐹𝜇𝜈

𝜕𝑃𝜅𝜆
𝑌𝜅𝜆 =

∑︁
𝐶,𝑙′′

∑︁
𝜅𝜆

𝜕𝐹𝜇𝜈

𝜕𝑝𝐶
𝑙′′

𝜕𝑝𝐶
𝑙′′

𝜕𝑃𝜅𝜆
𝑌𝜅𝜆 (2.58)

The shell-resolved charges 𝑝𝐶
𝑙′′ are defined as

𝑝𝐶𝑙′′ = 𝑝
𝐶
𝑙′′

0 −
∑︁
𝜅∈𝐶,𝑙′′

∑︁
𝜆

𝑆𝜅𝜆𝑃𝜅𝜆 (2.59)

Define

𝑝𝐶𝑙′′ ≡
∑︁
𝜅𝜆

𝜕𝑝𝐶
𝑙′′

𝜕𝑃𝜅𝜆
𝑌𝜅𝜆 = −

∑︁
𝜅∈𝐶,𝑙′′

∑︁
𝜆

𝑆𝜅𝜆𝑌𝜅𝜆 (2.60)
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The final expression for the xTB generalized Fock matrix is

(g[Y])𝜇𝜈 =
∑︁
𝐶,𝑙′′

∑︁
𝜅𝜆

𝜕𝐹𝜇𝜈

𝜕𝑝𝐶
𝑙′′

𝜕𝑝𝐶
𝑙′′

𝜕𝑃𝜅𝜆
𝑌𝜅𝜆 =

∑︁
𝐶,𝑙′′

𝜕𝐹𝜇𝜈

𝜕𝑝𝐶
𝑙′′
𝑝𝐶𝑙′′

=
1
2
𝑆𝜇𝜈

∑︁
𝐶,𝑙′′

(𝛾𝐴𝐶,𝑙𝑙′′ + 𝛾𝐵𝐶,𝑙′𝑙′′)𝑝𝐶𝑙′′ + 𝑆𝜇𝜈 (𝑞𝐴𝑞𝐴Γ𝐴 + 𝑞𝐵𝑞𝐵Γ𝐵) (2.61)

where 𝑞𝐴 =
∑
𝑙 𝑝

𝐴
𝑙
.

Coupled-perturbed z-vector equation for xTB

Combining the stationary condition of the Lagrangian, Eq. 2.39 and the condition
x = x† leads to the coupled-perturbed z-vector equation for xTB:

(𝜀𝑎 − 𝜀𝑖)𝑧𝑎𝑖 + 2[g(z̄)]𝑎𝑖 = −(𝐴𝑎𝑖 − 𝐴𝑖𝑎) (2.62)

where 𝜀𝑎, 𝜀𝑖 are the xTB orbital energies, z is the Lagrange multiplier defined in Eq.
2.38. z̄ = z + z†.

g(z̄) is the generalized xTB Fock matrix and is defined in Eq. 2.61.

Expression for W

The stationary condition of the Lagrangian, Eq. 2.39 also leads to the expression for
the weight matrix W:

𝑊𝑝𝑞 = −1
4
(1 + 𝑃̂𝑝𝑞) [A + A(z)] 𝑝𝑞 (2.63)

where 𝑃̂𝑝𝑞 is the permutation operator that permutes indices 𝑝 and 𝑞.

Final OrbNet gradient expression

With all intermediate quantities obtained in the previous sections, we can now write
the expression for the OrbNet energy gradient:

𝑑𝐸out
𝑑𝑥

=
𝜕𝐸out
𝜕𝑥

+ Tr[WS𝑥] + Tr[zF(𝑥)] (2.64)
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where the first term on the right-hand-side can be computed as

𝜕𝐸out
𝜕𝑥

=
𝑑𝐸xTB
𝑑𝑥

+
∑︁
𝑓

[
Q 𝑓 𝜕f

𝜕𝑥

]
(2.65a)

=
𝑑𝐸xTB
𝑑𝑥

+
∑︁
𝑓

[
Q 𝑓 𝜕f

𝜕𝑥

]
+ Tr[WS𝑥] + Tr[zAO 𝜕FAO

𝜕𝑥
] (2.65b)

=
𝑑𝐸xTB
𝑑𝑥

+ Tr[WS𝑥] + Tr[zAOF𝑥] (2.65c)

+ 2Tr
[
W𝐻S𝑥

]
+ Tr

[
Q𝐻,AOH𝑥

]
+ 2Tr

[
W𝑆S𝑥

]
+ Tr

[
Q𝑆,AOS𝑥

]
+ 2Tr

[
W𝐹S𝑥

]
+ Tr

[
Q𝐹,AOF𝑥

]
+ 2Tr

[
W𝑃S𝑥

]
+ 4Tr

[
W𝐷S𝑥

]
+ 2Tr

[
d̄𝐿 · r𝑥

]
The GFN-xTB gradient is written as [60]

𝑑𝐸xTB
𝑑𝑥

= Tr[PH𝑥] + 𝐸𝑥h2 + 𝐸
𝑥
h3 (2.66)
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C h a p t e r 3

EQUIVARIANT NEURAL NETWORKS FOR ORBITAL-BASED
DEEP LEARNING

This chapter is based on the following publication:

[1] Zhuoran Qiao, Anders S. Christensen, Matthew Welborn, Frederick R.
Manby, Animashree Anandkumar, and Thomas F. Miller III. “Informing
geometric deep learning with electronic interactions to accelerate quantum
chemistry”. In: Proceedings of the National Academy of Sciences 119.31
(2022), e2205221119. doi: 10.1073/pnas.2205221119.

Abstract
Predicting electronic energies, densities, and related chemical properties can facilitate
the discovery of novel catalysts, medicines, and battery materials. By developing
a physics-inspired equivariant neural network, we introduce a method to learn
molecular representations based on the electronic interactions among atomic orbitals.
Our method, OrbNet-Equi, leverages efficient tight-binding simulations and learned
mappings to recover high fidelity quantum chemical properties. OrbNet-Equi models
a wide spectrum of target properties with an accuracy consistently better than standard
machine learning methods and a speed several orders of magnitude greater than
density functional theory. Despite only using training samples collected from readily
available small-molecule libraries, OrbNet-Equi outperforms traditional methods
on comprehensive downstream benchmarks that encompass diverse main-group
chemical processes. Our method also describes interactions in challenging charge-
transfer complexes and open-shell systems. We anticipate that the strategy presented
here will help to expand opportunities for studies in chemistry and materials science,
where the acquisition of experimental or reference training data is costly.

3.1 Introduction
Discovering new molecules and materials is central to tackling contemporary chal-
lenges in energy storage and drug discovery [101, 102]. As the experimentally
uninvestigated chemical space for these applications is immense, large-scale com-
putational design and screening for new molecule candidates has the potential to
vastly reduce the burden of laborious experiments and to accelerate discovery [103–

https://doi.org/10.1073/pnas.2205221119
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105]. A crucial task is to model the quantum chemical properties of molecules by
solving the many-body Schrödinger equation, which is commonly addressed by ab
initio electronic structure methods [9, 106] such as density functional theory (DFT)
(Figure 3.1a). While very successful, ab initio methods are laden with punitive
computational requirements that makes it difficult to achieve a throughput on a scale
of the unexplored chemical space.

In contrast, machine learning (ML) approaches are highly flexible as function
approximators, and thus are promising for modelling molecular properties at a
drastically reduced computational cost. A large class of ML-based molecular
property predictors includes methods that use atomic-coordinate-based input features
which closely resemble molecular mechanics (MM) descriptors [22, 40, 51–54,
107–111]; these methods will be referred to as Atomistic ML methods in the current
work (Figure 3.1b). Atomistic ML methods have been employed to solve challenging
problems in molecular sciences such as RNA structure prediction [6] and anomalous
phase transitions [4]. However, there remains a key discrepancy between Atomistic
ML and ab initio approaches regarding the modelling of quantum chemical properties,
as Atomistic ML approaches typically neglect the electronic degrees of freedom
which are central for the description of important phenomena such as electronic
excitations, charge transfer, and long-range interactions. Moreover, recent work
shows that Atomistic ML can struggle with transferability on downstream tasks
where the molecules may chemically deviate from the training samples [64, 112] as
is expected to be common for under-explored chemical spaces.

Recent efforts to embody quantum mechanics (QM) into molecular representations
based on electronic structure theory have made breakthroughs in improving both
the chemical and electronic transferability of ML-based molecular modelling [3,
33, 44, 47, 76, 113, 114]. Leveraging a physical feature space extracted from QM
simulations, such QM-informed ML methods have attained data efficiency that
significantly surpass Atomistic ML methods, especially when extrapolated to systems
with length scales or chemical compositions unseen during training. Nevertheless,
QM-informed ML methods still fall short in terms of the flexibility of modelling
diverse molecular properties unlike their atomistic counterparts, as they are typically
implemented for a limited set of learning targets such as the electronic energy or the
exchange-correlation potential. A key bottleneck hampering the broader applicability
of QM-informed approaches is the presence of unique many-body symmetries
necessitated by an explicit treatment on electron-electron interactions. Heuristic
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schemes have been used to enforce invariance [43, 46, 47, 76, 115, 116] at a potential
loss of information in their input features or expressivity in their ML models. Two
objectives remain elusive for QM-informed machine learning: (a) incorporate the
underlying physical symmetries with maximal data efficiency and model flexibility,
and (b) accurately infer downstream molecular properties for large chemical spaces,
at a computational resource requirement on par with existing empirical and Atomisic
ML methods.

Herein, we introduce an end-to-end ML method for QM-informed molecular represen-
tations, OrbNet-Equi, in fulfillment of these two objectives. OrbNet-Equi featurizes
a mean-field electronic structure via the atomic orbital basis, and learns molecular
representations through a machine learning model that is equivariant with respect
to isometric basis transformations (Figure 3.1c-e). By the virtue of equivariance,
OrbNet-Equi respects essential physical constraints of symmetry conservation so that
the target quantum chemistry properties are learned independent of a reference frame.
Underpinning OrbNet-Equi is a neural network designed with insights from recent
advances in geometric deep learning [7, 16, 117–121], but with key architectural
innovations to achieve equivariance based on the tensor-space algebraic structures
entailed in atomic-orbital-based molecular representations.

We demonstrate the data efficiency of OrbNet-Equi on learning molecular properties
using input features obtained from tight-binding QM simulations which are efficient
and scalable to systems with thousands of atoms [14]. We find that OrbNet-Equi
consistently achieves lower prediction errors than existing Atomistic ML methods
and our previous QM-informed ML method [76] on diverse target properties such
as electronic energies, dipole moments, electron densities, and frontier orbital
energies. Specifically, our study on learning frontier orbital energies illustrates an
effective strategy to improve the prediction of electronic properties by incorporating
molecular-orbital-space information.

To showcase its transferability to complex real-world chemical spaces, we trained
an OrbNet-Equi model on single-point energies of 236k molecules curated from
readily available small-molecule libraries. The resulting model, OrbNet-Equi/SDC21,
achieves a performance competitive to state-of-the-art composite DFT methods when
tested on a wide variety of main-group quantum chemistry benchmarks, while being
up to thousand-fold faster at runtime. As a particular case study, we found that
OrbNet-Equi/SDC21 substantially improved the prediction accuracy of ionization
potentials relative to semi-empirical QM methods, even though no radical species was
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included for training. Thus, our method has the potential to accelerate simulations
for challenging problems in organic synthesis [122], battery design [123], and
molecular biology [124]. Detailed data analysis pinpoints viable future directions to
systematically improve its chemical space coverage, opening a plausible pathway
towards a generic hybrid physics-ML paradigm for the acceleration of molecular
modelling and discovery.
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| 𝑟 |,𝜃,𝜙, 𝑟molecule

MM features

𝐻Ψ ൌ 𝐸Ψmolecule

QM simulation
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Figure 3.1: QM-informed machine learning for modelling molecular properties. (a)
Conventional ab initio quantum chemistry methods predict molecular properties based on
electronic structure theory through computing molecular wavefunctions and interaction
terms, with general applicability but at high computational cost. (b) Atomistic machine
learning approaches use geometric descriptors such as interatomic distances, angles, and
directions to bypass the procedure of solving the electronic structure problem, but often
requires vast amounts of data to generalize toward new chemical species. (c) In our approach,
features are extracted from a highly coarse-grained QM simulation to capture essential
physical interactions. An equivariant neural network efficiently learns the mapping, yielding
improved transferability at an evaluation speed that is competitive to Atomistic ML methods.
(d) Characteristics of the atomic orbital features considered in OrbNet-Equi. Every pair
of atoms (𝐴, 𝐵) is mapped to a block in the feature matrix, with the row dimension of
the block matching the atomic orbitals of the source atom 𝐴 and the column dimension
matching the atomic orbitals of the destination atom 𝐵. (e) OrbNet-Equi is equivariant
with respect to isometric basis transformations on the atomic orbitals (Equations 3.3-3.4),
yielding consistent predictions (illustrated as the dipole moment vector of a HSF molecule)
at different viewpoints.
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a b

c

Figure 3.3: Model performance on the QM9 dataset. (a-b) Test mean absolute error
(MAE) of OrbNet-Equi is shown as functions of the number of training samples,
along with previously reported results from task-specific ML methods (FCHL18[125],
FCHL19[126], SLATM[127], SOAP[128], FCHL18*[129], MuML[130]) and deep-
learning-based methods (SchNet[51], PhysNet[52], OrbNet [76]) for targets (a)
electronic energy𝑈0 and (b) molecular dipole moment vector ®𝜇 on the QM9 dataset.
Results for OrbNet-Equi models trained with direct-learning and delta-learning are
shown in dashed and solid lines, respectively. (c) Incorporating energy-weighted
density matrices to improve data efficiency on learning frontier orbital properties.
The HOMO, LUMO, and HOMO-LUMO gap energy test MAEs of OrbNet-Equi are
shown as functions of the number of training samples. For models with the default
feature set (red curves), the reduction in test MAE for delta-learning over direct-
learning models gradually diminishes as the training data size grows. The LUMO
and gap energy MAE curves exhibit a crossover around 32k-64k training samples,
thereafter direct-learning models outperform delta-learning models. In contrast,
when the energy-weighted density matrix features are supplied (blue curves), the
test MAE curves between direct-learning and delta-learning models remain gapped
when the training data size is varied. The black stars indicate the lowest test MAEs
achieved by Atomistic ML methods (SphereNet [108]) trained with 110k samples.
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a

b

c MDS - reference

OrbNet-Equi - referenced

BFDb-SSI
QM9

Figure 3.4: Learning electron charge densities for organic and biological motif
systems. (a) 2D heatmaps of the log-scale reference density 𝜌(®𝑟) and the log-scale
OrbNet-Equi density prediction error | 𝜌̂(®𝑟) − 𝜌(®𝑟) | (both in 𝑎−3

0 ). The heatmaps
are calculated by sampling real-space query points ®𝑟 ∈ R3 for all molecules in the
(red) BfDB-SSI test set and (blue) QM9 test set. The nearly-linear relationship for
log10(𝜌(®𝑟)) < −4 low-density regions reveals that OrbNet-Equi-predicted densities
possess a physical long-range decay behavior. Distributions of log10(𝜌(®𝑟)) and
log10( | 𝜌̂(®𝑟) − 𝜌(®𝑟) |) are plotted within the marginal charts. (b) The 𝐿1 density
errors 𝜀𝜌 of OrbNet-Equi are plotted against the 𝜀𝜌 of densities obtained through
monomer density superposition (MDS), across the BfDB-SSI test set. Error bars
mark the 99% confidence intervals of 𝜀𝜌 for individual samples. The inset figure
shows the average 𝜀𝜌 for MDS, an Atomistic ML method [131], and OrbNet-Equi
predictions on the BfDB-SSI test set. OrbNet-Equi yields the lowest average
prediction error and consistently produces accurate electron densities for cases where
inter-molecular charge transfer is substantial. (c-d) Visualization of density deviation
maps for (c) MDS and (d) OrbNet-Equi-predicted densities on the Glu−/Lys+ system
(SSI-139GLU-144LYS-1), a challenging example from the BfDB-SSI test set. Red
isosurfaces correspond to Δ𝜌 = −0.001 𝑎−3

0 and blue isosurfaces correspond to
Δ𝜌 = +0.001 𝑎−3

0 , where Δ𝜌 is the model density subtracted by the DFT reference
density.
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Figure 3.5: OrbNet-Equi/SDC21 infers diverse downstream properties.(a) Conformer
energy ranking on the Hutchison dataset of drug-like molecules. The horizontal axis is
labelled with acronyms indicating each method (O: OrbNet-Equi/SDC21 (this work);
G: GFN-xTB; G2: GFN2-xTB; A: ANI-2x; B: B97-3c; 𝜔: 𝜔B97X-D3/def2-TZVP).
The y-axis corresponds to the molecule-wise 𝑅2 between predictions and the reference
(DLPNO-CCSD(T)) conformer energies. Violin plots display the distribution of
𝑅2 scores for each method over the (left) neutral, (middle) charged, and (right) all
molecules from the Hutchison dataset. Medians and first/third quantiles are shown as
black dots and vertical bars. (b) A torsion profiles example from the TorsionNet500
benchmark. All predicted torsion scans surfaces are aligned to the true global
minima of the highest level of theory (𝜔B97X-D3/def2-TZVP) results, with spline
interpolations. (c) A uracil-uracil base pair example for non-covalent interactions.
The dimer binding energy curves are shown as functions of the intermolecular axis
(𝑟𝑒) where 𝑟𝑒 = 1.0 corresponds to the distance of optimal binding energy. (d)
Geometry optimization results on the (left) ROT34 and (right) MCONF datasets.
Histograms and kernel density estimations of the symmetry-corrected RMSD scores
(Methods 3.8) with respect to the reference DFT geometries are shown for each
test dataset. (e) Evidence of zero-shot model generalization on radical systems.
OrbNet-Equi/SDC21 yields prediction errors drastically lower than semi-empirical
QM methods for adiabatic ionization potential on the G21IP dataset, achieving
accuracy comparable to DFT on 7 out of 21 test cases.

3.2 Method
OrbNet-Equi featurizes a molecular system through mean-field QM simulations.
Semi-empirical tight-binding models [14] are used through this study since they can
be solved rapidly for both small-molecules and extended systems, which enables
deploying OrbNet-Equi to large chemical spaces. In particular, we employ the
recently reported GFN-xTB [60] QM model in which the mean-field electronic
structure Ψ0 is obtained through self-consistently solving a tight-binding model
system (Figure 3.1c). Built upon Ψ0, the inputs to the neural network comprises a
stack of matrices T[Ψ0] defined as single-electron operators Ô [Ψ0] represented in
the atomic orbitals (Figure 3.1d),(

T[Ψ0]
)𝑛,𝑙,𝑚;𝑛′,𝑙′,𝑚′

𝐴𝐵
= ⟨Φ𝑛,𝑙,𝑚

𝐴
|Ô [Ψ0] |Φ𝑛′,𝑙′,𝑚′

𝐵
⟩ (3.1)
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Figure 3.6: Assessing model performance on tasks from the GMTKN55 challenge.
Box plots depict the distributions of task-difficulty-weighted absolution deviations
(WTAD, see Methods 3.8) filtered by chemical elements and electronic states (a)
supported by the ANI-2x model; (b) appeared in the dataset used for training OrbNet-
Equi/SDC21; (c) all reactions. Statistics are categorized by each class of tasks in the
GMTKN55 benchmark, as shown in y-axis labels. Prop. small: Basic properties
and reaction energies for small systems; Prop. large: Reaction energies for large
systems and isomerisation reactions; React. barriers: Reaction barrier heights; Inter.
mol. NCI: Intermolecular noncovalent interactions; Intra. mol. NCI: Intramolecular
noncovalent interactions; Total: total statistics of all tasks.

where 𝐴 and 𝐵 are both atom indices; (𝑛, 𝑙, 𝑚) and (𝑛′, 𝑙′, 𝑚′) indicate a basis
function in the set of atomic orbitals {Φ} centered at each atom. Motivated by
mean-field electronic energy expressions, the input atomic orbital features are selected
as T = (F,P,H, S) using the Fock F, density P, core-Hamiltonian H, and overlap
S matrices of the tight-binding QM model (see Methods 3.7), unless otherwise
specified.
OrbNet-Equi learns a map F to approximate the target molecular property y of
high-fidelity electronic structure simulations or experimental measurements,

min
F

L
(
y, F

(
T[Ψ0]

) )
(3.2)
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where L denotes a cost functional between the reference and predicted targets over
training data. The learning problem described by (3.2) requires a careful treatment
on isometric coordinate transformations imposed on the molecular system, because
the coefficients of T[Ψ0] are defined up to a given viewpoint (Figure 3.1e). Precisely,
the atomic orbitals {Φ𝑛,𝑙,𝑚

𝐴
} undergo a unitary linear recombination subject to 3D

rotations: R · |Φ𝑛,𝑙,𝑚

𝐴
⟩ = ∑

𝑚′ D 𝑙
𝑚,𝑚′ (R)|Φ𝑛,𝑙,𝑚′

𝐴
⟩, where D 𝑙 (R) denotes the Wigner-D

matrix of degree 𝑙 for a rotation operation R. As a consequence of the basis changing
induced by R, T[Ψ0] is transformed block-wise:(

R · T[Ψ0]
) 𝑙;𝑙′
𝐴𝐵

= D 𝑙 (R)
(
T[Ψ0]

) 𝑙;𝑙′
𝐴𝐵

D 𝑙′ (R)† (3.3)

where the dagger symbol denotes a Hermitian conjugate. To account for the roto-
translation symmetries, the neural network F must be made equivariant with respect
to all such isometric basis rotations, that is,

R · F
(
T[Ψ0]

)
≡ F

(
R · T[Ψ0]

)
(3.4)

which is fulfilled through our delicate design of the neural network in OrbNet-Equi
(Figure 3.2). The neural network iteratively updates a set of representations h𝑡

defined at each atom through its neural network modules, and reads out predictions
using a pooling layer located at the end of the network. During its forward pass,
diagonal blocks of the inputs T[Ψ0] are first transformed into components that are
isomorphic to orbital-angular-momentum eigenstates, which are then cast to the
initial representations h𝑡=0. Each subsequent module exploits off-diagonal blocks
of T[Ψ0] to propagate non-local information among atomic orbitals and refine the
representations h𝑡 , which resembles a process of applying time-evolution operators on
quantum states. We provide a technical introduction to the neural network architecture
in Methods 3.7. We incorporate other constraints on the learning task such as size-
consistency solely through programming the pooling layer (Methods 3.10), therefore
achieving task-agnostic modelling for diverse chemical properties. Additional details
and theoretical results are provided in Appendix 3.10-3.9.

3.3 Performance on benchmark datasets
We begin with benchmarking OrbNet-Equi on the QM9 dataset [65] which has been
widely adopted for assessing ML-based molecular property prediction methods.
QM9 contains 134k small organic molecules at optimized geometries, with target
properties computed by DFT. Following previous works [51, 52, 108, 109, 119, 132],
we take 110000 random samples as the training set and 10831 samples as the test set.



51

We present results for both the “direct-learning” training strategy which corresponds
to training the model directly on the target property, and, whenever applicable, the
“delta-learning” strategy [24] which corresponds to training on the residual between
output of the tight-binding QM model and the target level of theory.
We first trained OrbNet-Equi on two representative targets, the total electronic energy
𝑈0 and the molecular dipole moment vector ®𝜇 (Figure 3.3a-b), for which a plethora
of task-specific ML models has previously been developed [76, 125, 128–130, 133].
The total energy𝑈0 is predicted through a sum over atom-wise energy contributions
and the dipole moment ®𝜇 is predicted through a combination of atomic partial charges
and dipoles (Appendix 3.10). For 𝑈0 (Figure 3.3a), the direct-learning results of
OrbNet-Equi match the state-of-the-art kernel-based ML method FCHL18/GPR [125]
in terms of the test mean absolute error (MAE), while being scalable to large data
regimes (Figure 3.3a, training data size > 20,000) where no competitive result has
been reported before. With delta-learning, OrbNet-Equi outperforms our previous
QM-informed ML approach OrbNet [76] by ∼ 45% in the test MAE. Because
OrbNet also uses the GFN-xTB QM model for featurization and the delta-learning
strategy for training, this improvement underscores the strength of our neural network
design which seamlessly integrates the underlying physical symmetries. Moreover,
for dipole moments ®𝜇 (Figure 3.3b), OrbNet-Equi exhibits steep learning curve
slopes regardless of the training strategy, highlighting its capability of learning
rotational-covariant quantities at no sacrifice of data efficiency.
We then targeted on the learning task of frontier molecular orbital (FMO) properties,
in particular energies of the highest occupied molecular orbital (HOMO), the lowest
unoccupied molecular orbital (LUMO) and the HOMO-LUMO gaps which are
important in the prediction of chemical reactivity and optical properties [134, 135].
Because the FMOs are inherently defined in the electron energy space and are often
spatially localized, it is expected to be challenging to predict FMO properties based
on molecular representations in which a notion of electronic energy levels is absent.
OrbNet-Equi overcame this obstacle by breaking the orbital filling degeneracy of its
input features to encode plausible electron excitations near the FMO energy levels,
that is, adding energy-weighted density matrices of ‘hole-excitation’ D𝛽

h and that of
‘particle-excitation’ D𝛽

p :
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(𝐷𝛽

h )𝜇𝜈 =
∑︁
𝑖

𝐶∗
𝜇𝑖𝐶𝜈𝑖 · exp

(
− 𝛽(𝜖HOMO − 𝜖𝑖)

)
· 𝑛𝑖 (3.5)

(𝐷𝛽
p )𝜇𝜈 =

∑︁
𝑖

𝐶∗
𝜇𝑖𝐶𝜈𝑖 · exp

(
𝛽(𝜖LUMO − 𝜖𝑖)

)
· (1 − 𝑛𝑖) (3.6)

where 𝜖𝑖 and 𝑛𝑖 are the orbital energy and occupation number of the 𝑖-th molecular
orbital from tight-binding QM, and𝐶𝜇𝑖, 𝐶𝜈𝑖 denotes the molecular orbital coefficients
with 𝜇 and 𝜈 indexing the atomic orbital basis. Here the effective temperature
parameters 𝛽 are chosen as 𝛽 = [4, 16, 64, 256] (atomic units), and a global-
attention based pooling is used to ensure size-intensive predictions (Appendix 3.10).
Figure 3.3c shows that the inclusion of energy-weighted density matrices (D𝛽

h ,D
𝛽
p )

indeed greatly enhanced model generalization on FMO energies, as evident from
the drastic test MAE reduction against the model with default ground-state features
(F,P, S,H) as well as the best result from Atomistic ML methods. Remarkably, for
models using default ground-state features (Figure 3.3c, red lines) we noticed a rank
reversal behavior between direct-learning and delta-learning models as more training
samples become available, mirroring similar observations from a recent Atomistic ML
study [136]. The absence of this crossover when (D𝛽

h ,D
𝛽
p ) are provided (Figure 3.3c,

blue) suggests that the origin of such a learning slow-down is the incompleteness
of spatially-degenerate descriptors, and the gap between delta-learning and direct-
learning curves can be restored by breaking the energy-space degeneracy. This
analysis reaffirms the role of identifying the dominant physical degrees of freedom in
the context of ML-based prediction of quantum chemical properties, and is expected
to benefit the modelling of relevant electrochemical and optical properties such as
redox potentials.
Furthermore, OrbNet-Equi is benchmarked on 12 targets of QM9 using the 110k
full training set (Appendix Table 3.1), for which we programmed its pooling layer
to reflect the symmetry constraint of each target property (Appendix 3.10). We
observed top-ranked performance on all targets with average test MAE around two-
fold lower than atomistic deep learning methods. In addition, we tested OrbNet-Equi
on fitting molecular potential energy surfaces by training on multiple configurations
of a molecule (Appendix 3.10). Results (Appendix Table 3.2-3.3) showed that
OrbNet-Equi obtained energy and force prediction errors that match state-of-the-art
machine learning potential methods [137, 138] on the MD17 dataset [137, 139],
suggesting that our method also efficiently generalizes over the conformation degrees
of freedom apart from being transferable across the chemical space. These extensive
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benchmarking studies confirm that our strategy is consistently applicable to a wide
range of molecular properties.

3.4 Accurate modeling for electron charge densities
We next focus on the task of predicting the electron density 𝜌(®𝑟) : R3 → R which
plays an essential role in both the formulation of DFT and in the interpretation of
molecular interactions. It is also more challenging than predicting the energetic
properties from a machine learning perspective, due to the need of preserving its
real-space continuity and rotational covariance. OrbNet-Equi learns to output a set of
expansion coefficients 𝑑𝑛𝑙𝑚

𝐴
to represent the predicted electron density 𝜌̂(®𝑟) through

a density fitting basis set {𝜒} (Methods 3.8, Appendix 3.10),

𝜌̂(®𝑟) =
𝑁atom∑︁
𝐴

𝑙max (𝑧𝐴)∑︁
𝑙

𝑙∑︁
𝑚=−𝑙

𝑛max (𝑧𝐴,𝑙)∑︁
𝑛

𝑑𝑛𝑙𝑚𝐴 𝜒𝑛𝑙𝑚𝐴 (®𝑟) (3.7)

where 𝑙max(𝑧𝐴) is the maximum angular momentum in the density fitting basis set for
atom type 𝑧𝐴, and 𝑛max(𝑧𝐴, 𝑙) denotes the cardinality of basis functions with angular
momentum 𝑙. We train OrbNet-Equi to learn DFT electron densities on the QM9
dataset of small organic molecules and the BfDB-SSI [140] dataset of amino-acid
side-chain dimers (Figure 3.4) using the direct-learning strategy. OrbNet-Equi results
are substantially better than Atomistic ML baselines in terms of the average 𝐿1

density error 𝜀𝜌 =
∫
|𝜌(®𝑟)−𝜌̂(®𝑟) |𝑑®𝑟∫

|𝜌(®𝑟) |𝑑®𝑟 (Methods 3.8); specifically, OrbNet-Equi achieves an
average 𝜀𝜌 of 0.191±0.003% on BfDB-SSI using 2000 training samples compared to
0.29% of SA-GPR [131], and an average 𝜀𝜌 of 0.206±0.001% on QM9 using 123835
training samples as compared to 0.28%-0.36% of DeepDFT [141]. Figure 3.4a
confirms that OrbNet-Equi predicts densities at consistently low errors across the
real-space and maintains a robust asymptotic decay behavior within low-density
(𝜌(®𝑟) < 10−4 𝑎−3

0 ) regions that are far from the molecular system.
To understand whether the model generalizes to cases where charge transfer is
significant, as in donor-acceptor systems, we introduce a simple baseline predictor
termed monomer density superposition (MDS). The MDS electron density of a
dimeric system is taken as the sum of independently-computed DFT electron densities
of the two monomers. OrbNet-Equi yields accurate predictions in the presence
of charge redistribution induced by non-covalent effects, as identified by dimeric
examples from the BfDB-SSI test set for which the MDS density (Figure 3.4b,
x-axis) largely deviates from the DFT reference density of the dimer due to inter-
molecular interactions. One representative example is a strongly interacting Glutamic
acid - Lysine system (Figure 3.4, c-d) whose salt-bridge formation is known to be
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essential for the helical stabilization in protein folding [142], for which OrbNet-Equi
predicts 𝜌(®𝑟) with 𝜀𝜌 = 0.211 ± 0.001% significantly lower than that of monomer
density superposition (𝜀𝜌 = 1.47 ± 0.02%). The accurate modelling of 𝜌(®𝑟) offers
an opportunity for constructing transferable DFT models for extended systems by
learning on both energetics and densities, while at a small fraction of expense relative
to solving the Kohn-Sham equations from scratch.

3.5 Transferability on downstream tasks
Beyond data efficiency on established datasets in train-test split settings, a crucial
but highly challenging aspect is whether the model accurately infers downstream
properties after being trained on data that are feasible to obtain. To comprehensively
evaluate whether OrbNet-Equi can be transferred to unseen chemical spaces without
any additional supervision, we have trained an OrbNet-Equi model on a dataset
curated from readily available small-molecule databases (Methods 3.8). The training
dataset contains 236k samples with chemical space coverage for drug-like molecules
and biological motifs containing chemical elements C, O, N, F, S, Cl, Br, I, P, Si,
B, Na, K, Li, Ca, and Mg, and thermalized geometries. The resulting OrbNet-
Equi/SDC21 potential energy model is solely trained on DFT single-point energies
using the delta-learning strategy. Without any fine-tuning, we directly apply OrbNet-
Equi/SDC21 to downstream benchmarks that are recognized for assessing the
accuracy of physics-based molecular modelling methods.
The task of ranking conformer energies of drug-like molecules is benchmarked
via the Hutchison dataset of conformers of ∼700 molecules [64] (Figure 3.5a;
Table 3.5, row 1-2). On this task, OrbNet-Equi/SDC21 achieves a median 𝑅2 score
of 0.87±0.02 and 𝑅2 distributions closely matching the reference DFT theory on
both neutral and charged systems. On the other hand, we notice that the median
𝑅2 of OrbNet-Equi/SDC21 with respect to the reference DFT theory (𝜔B97X-
D3/def2-TZVP) is 0.96±0.01, suggesting that the current performance on this task is
saturated by the accuracy of DFT and can be systematically improved by applying
fine-tuning techniques on higher-fidelity labels [143, 144]. Timing results on the
Hutchison dataset (Table 3.4) confirms that the neural network inference time of
OrbNet-Equi/SDC21 is on par with the GFN-xTB QM featurizer, resulting in an
overall computational speed that is 102−3 fold faster relative to existing cost-efficient
composite DFT methods [64, 96, 145]. To understand the model’s ability to describe
dihedral energetics which are crucial for virtual screening tasks, we benchmark
OrbNet-Equi on the prediction of intra-molecular torsion energy profiles using the
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TorsionNet500 [146] dataset, the most diverse benchmark set available for this
problem (Table 3.5, row 3). Although no explicit torsion angle sampling was
performed during training data generation, OrbNet-Equi/SDC21 exhibits a barrier
MAE of 0.173±0.003 kcal/mol much lower than the 1 kcal/mol threshold commonly
considered for chemical accuracy. On the other hand, we notice a MAE of 0.7
kcal/mol for the TorsionNet model [146] which was trained on ∼1 million torsion
energy samples. As shown in Figure 3.5b, OrbNet-Equi/SDC21 robustly captures the
torsion sectors of potential energy surface on an example challenging for both semi-
empirical QM [60, 62] and cost-efficient composite DFT [96] methods, precisely
resolving both the sub-optimal energy minima location at ∼ 30◦ dihedral angle as
well as the barrier energy between two local minimas within a 1 kcal/mol chemical
accuracy. Next, the ability to characterize non-covalent interactions is assessed
on the S66x10 dataset [147] of inter-molecular dissociation curves (Table 3.6),
on which OrbNet-Equi achieves an equilibrium-distance binding energy MAE of
0.35 ± 0.09 kcal/mol with respect to the reference DFT theory compared against
1.55 ± 0.17 kcal/mol of the GFN-xTB baseline. As shown from a Uracil-Uracil
base-pair example (Figure 3.5c) for which high-fidelity wavefunction-based reference
calculations have been reported, the binding energy curve along the inter-molecular
axis predicted by OrbNet-Equi/SDC21 agrees well with both DFT and the high-
level CCSD(T) results. To further understand the accuracy and smoothness of the
energy surfaces and the applicability on dynamics tasks, we perform geometry
optimizations on the ROT34 dataset of 12 small organic molecules and the MCONF
dataset of 52 conformers of melatonin [70, 71] (Figure 3.5d; Table 3.5, row 4-5).
Remarkably, OrbNet-Equi/SDC21 consistently exhibits the lowest average RMSD
among all physics-based and ML-based approaches (Table 3.5) including the popular
cost-efficient DFT method B97-3c [96]. Further details regarding the numerical
experiments and error metrics are provided in Methods 3.8.
Remarkably, on the G21IP dataset [148] of adiabatic ionization potentials, we find
that the OrbNet-Equi/SDC21 model achieves prediction errors substantially lower
than semi-empirical QM methods (Figure 3.5e, Table 3.7) even though samples of
open-shell signatures are expected to be rare from the training set (Methods 3.8).
Such an improvement cannot be solely attributed to structure-based corrections, since
there is no or negligible geometrical changes between the neutral and ionized species
for both the single-atom systems and several poly-atomic systems (e.g., IP_66, a
Phosphanide anion) in the G21IP dataset. This reveals that our method has the
potential to be transferred to unseen electronic states in a zero-shot manner, which
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represents an early evidence that a hybrid physics-ML strategy may unravel novel
chemical processes such as unknown electron-catalyzed reactions [149].
To comprehensively study the transferability of OrbNet-Equi on complex under-
explored main-group chemical spaces, we evaluate OrbNet-Equi/SDC21 on the
challenging, community-recognized benchmark collection of the General Ther-
mochemistry, Kinetics, and Non-covalent Interactions (GMTKN55)[150] datasets
(Figure 3.6). Prediction error statistics on the GMTKN55 benchmark are reported
with three filtration schemes. First, we evaluate the WTMAD error metrics (Meth-
ods 3.8) on reactions that only consist of neutral and closed-shell molecules with
chemical elements CHONFSCl (Figure 3.6a), as is supported by an Atomistic-ML-
based potential method, ANI-2x [151], which is trained on large-scale DFT data.
OrbNet-Equi/SDC21 predictions are found to be highly accurate on this subset, as
seen from the WTMAD with respect to CCSD(T) being on par with the DFT methods
on all five reaction classes and significantly outperforming ANI-2x and the GFN
family of semi-empirical QM methods [60, 62]. It is worth noting that OrbNet-
Equi/SDC21 uses much fewer number of training samples than the ANI-2x training
set, which signifies the effectiveness of combining physics-based and ML-based
modelling.
The second filtration scheme includes reactions that consist of closed-shell — but
can be charged — molecules with chemical elements that have appeared in the
SDC21 training dataset (Figure 3.6b). Although all chemical elements and electronic
configurations in this subset are contained in the training dataset, we note that
unseen types of physical interactions or bonding types are included, such as in alkali
metal clusters from the ALK8 subset [150] and short strong hydrogen bonds in the
AHB21 subset [152]. Therefore, assessments of OrbNet-Equi with this filtration
strategy reflect its performance on cases where examples of atom-level physics are
provided but the chemical compositions are largely unknown. Despite this fact, the
median WTMADs of OrbNet-Equi/SDC21 are still competitive with DFT methods
on the tasks of small-system properties, large-system properties and intra-molecular
interactions. On reaction barriers and inter-molecular non-covalent interactions
(NCIs), OrbNet-Equi/SDC21 results fall behind DFT but still show improvements
against the GFN-xTB baseline and match the accuracy of GFN2-xTB which is
developed with physic-based schemes to improve the descriptions on NCI properties
against its predecessor GFN-xTB.
The last scheme includes all reactions in the GMTKN55 benchmarks containing
chemical elements and spin states never seen during training (Figure 3.6c), which
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represents on the most stringent test and reflects the performance of OrbNet-
Equi/SDC21 when being indiscriminately deployed as a quantum chemistry method.
When evaluated on the collection of all GMTKN55 tasks (Figure 3.6, ‘Total’
panel), OrbNet-Equi/SDC21 maintains the lowest median WTMAD among methods
considered here that can be executed at the computational cost of semi-empirical
QM calculations. Moreover, we note that failure modes on a few highly extrapolative
subsets can be identified to diagnose cases that are challenging for the QM model
used for featurization (Table 3.7). For example, the fact that predictions being
inaccurate on the W4-11 subset of atomization energies [153] and the G21EA subset
of electron affinities [148] parallels the absence of an explicit treatment of triplet or
higher-spin species within the formulation of GFN family of tight-binding models.
On the population level, the distribution of prediction WTMADs across GMTKN55
tasks also differ from that of GFN2-xTB, which implies that further incorporating
physics-based approximations into the QM featurizer can complement the ML model,
and thus the accuracy boundary of semi-empirical methods can be pushed to a regime
where no known physical approximation is feasible.

3.6 Discussion
We have introduced OrbNet-Equi, a QM-informed geometric deep learning framework
for learning molecular or material properties using representations in the atomic
orbital basis. OrbNet-Equi shows excellent data efficiency for learning related to
both energy-space and real-space properties, expanding the diversity of molecular
properties that can be modelled by QM-informed machine learning. Despite only
using readily available small-molecule libraries as training data, OrbNet-Equi offers
an accuracy alternative to DFT methods on comprehensive main-group quantum
chemistry benchmarks at a computation speed on par with semi-empirical methods,
thus offering a possible replacement for conventional ab initio simulations for general-
purpose downstream applications. For example, OrbNet-Equi could immediately
facilitate applications such as screening electrochemical properties of electrolytes for
the design of flow batteries [123], and performing accurate direct or hybrid QM/MM
simulations for reactions in transition-metal catalysis [122, 154]. The method can
also improve the modelling for complex reactive biochemical processes [11] using
multi-scale strategies that have been demonstrated in our previous study [124], while
conventional ab initio reference calculations can be prohibitively expensive even on
a minimal sub-system.
The demonstrated transferability of OrbNet-Equi to seemingly dissimilar chemical
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species identifies a promising future direction of improving the accuracy and chemical
space coverage through adding simple model systems of the absent types of physical
interactions to the training data, a strategy that is consistent with using synthetic
data to improve ML models [155] which has been demonstrated for improving the
accuracy of DFT functionals [3]. Additionally, OrbNet-Equi may provide valuable
perspectives for the development of physics-based QM models by relieving the
burden of parameterizing Hamiltonian parameters against specific target systems,
potentially expanding their design space to higher energy-scales without sacrificing
model accuracy. Because the framework presented here can be readily extended to
alternative quantum chemistry models for either molecular or material systems, we
expect OrbNet-Equi to broadly benefit studies in chemistry, materials science, and
biotechnology.

3.7 The UNiTE neural network architecture
This section introduces Unitary N-body Tensor Equivariant Network (UNiTE), the
neural network model developed for the OrbNet-Equi method to enable learning
equivariant maps between the input atomic orbital features T[Ψ0] and the property
predictions ŷ[Ψ0]. Given the inputs T, UNiTE first generates initial representations
h𝑡=0 through its diagonal reduction module (Methods 3.7). Then UNiTE updates
the representations h𝑡=0 ↦→ h𝑡=1 ↦→ · · · ↦→ h𝑡=𝑡 𝑓 with 𝑡1 stacks of block convolution
(Methods 3.7), message passing (Methods 3.7), and point-wise interaction (Methods
3.7) modules, followed by 𝑡2 stacks of point-wise interaction modules. A pooling
layer (Methods 3.7) outputs predictions ŷ using the final representations h𝑡=𝑡 𝑓 at
𝑡 𝑓 = 𝑡1 + 𝑡2 as inputs.
h𝑡 is a stack of atom-wise representations, i.e., for a molecular system containing
𝑑 atoms, h𝑡 := [h𝑡1, h

𝑡
2, · · · , h

𝑡
𝑑
]. The representation for the 𝐴-th atom, h𝑡

𝐴
, is a

concatenation of neurons which are associated with irreducible representations of
group O(3). Each neuron in h𝑡

𝐴
is identified by a channel index 𝑛 ∈ {1, 2, · · · , 𝑛max},

a "degree" index 𝑙 ∈ {0, 1, 2, · · · , 𝑙max}, and a "parity" index 𝑝 ∈ {+1,−1}. The
neuron h𝑡

𝐴,𝑛𝑙 𝑝
is a vector of length 2𝑙 + 1 and transforms as the 𝑙-th irreducible

representation of group SO(3); i.e., h𝑡
𝐴,𝑛𝑙 𝑝

=
⊕

𝑚 ℎ
𝑡
𝐴,𝑛𝑙 𝑝𝑚

where ⊕ denotes a vector
concatenation operation and 𝑚 ∈ {−𝑙,−𝑙 + 1, · · · , 𝑙 − 1, 𝑙}. We use 𝑁𝑙 𝑝 to denote
the number of neurons with degree 𝑙 and parity 𝑝 in h𝑡 , and 𝑁 :=

∑
𝑙,𝑝 𝑁𝑙 𝑝 to denote

the total number of neurons in h𝑡 .
For a molecular/material system with atomic coordinates x ∈ R𝑑×3, the following
equivariance properties with respect to isometric Euclidean transformations are
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fulfilled for any input gauge-invariant and Hermitian operator O[Ψ0]; for all allowed
indices 𝐴, 𝑛, 𝑙, 𝑝, 𝑚:

• Translation invariance:

h𝑡𝐴,𝑛𝑙 𝑝𝑚 ↦→ h𝑡𝐴,𝑛𝑙 𝑝𝑚 for x ↦→ x + x0 (3.8)

where x0 ∈ R3 is an arbitrary global shift vector;

• Rotation equivariance:

h𝑡𝐴,𝑛𝑙 𝑝𝑚 ↦→
∑︁
𝑚′

h𝑡𝐴,𝑛𝑙 𝑝𝑚′D 𝑙
𝑚,𝑚′ (𝛼, 𝛽, 𝛾) (3.9)

for x ↦→ x·R(𝛼, 𝛽, 𝛾) whereR(𝛼, 𝛽, 𝛾) denotes a rotation matrix corresponding
to standard Euler angles 𝛼, 𝛽, 𝛾;

• Parity inversion equivariance:

h𝑡𝐴,𝑛𝑙 𝑝𝑚 ↦→ (−1)𝑙 · 𝑝 · h𝑡𝐴,𝑛𝑙 𝑝𝑚 for x ↦→ −x (3.10)

The initial vector representations h𝑡=0 are generated by decomposing diagonal
sub-tensors of the input T into a spherical-tensor representation without explicitly
solving tensor factorization, based on the tensor product property of group SO(3).
The intuition behind this operation is that the diagonal sub-tensors of T can be
viewed as isolated systems interacting with an effective external field, whose
rotational symmetries are described by the Wigner-Eckart Theorem [15] which links
tensor operators to their spherical counterparts and applies here within a natural
generalization. Each update step h𝑡 ↦→ h𝑡+1 is composed of (a) block convolution, (b)
message passing, and (c) point-wise interaction modules which are all equivariant
with respect to index permutations and basis transformations. In an update step
h𝑡 ↦→ h𝑡+1, each off-diagonal block of T corresponding to a pair of atoms is contracted
with h𝑡 . This block-wise contraction operation can be interpreted as performing local
convolutions using the blocks of T as convolution kernels, and therefore is called
block convolution module. The output block-wise representations are then passed
into a message passing module, which is analogous to a message-passing operation
on edges in graph neural networks [156]. The message passing outputs are then
fed into a point-wise interaction module with the previous-step representation h𝑡 to
finish the update h𝑡 ↦→ h𝑡+1. The point-wise interaction modules are constructed
as a stack of multi-layer perceptrons (MLPs), Clebsch-Gordan product operations,
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and skip connections. Within those modules, a matching layer assigns the channel
indices of h𝑡 to indices of the atomic orbital basis.
We also introduce a normalization layer termed Equivariant Normalization (EvNorm,
see Methods 3.7) to improve training and generalization of the neural network.
EvNorm normalizes scales of the representations h, while recording the direction-
like information to be recovered afterward. EvNorm is fused with a point-wise
interaction module by first applying EvNorm to the module inputs, then using an
MLP to transform the normalized frame-invariant scale information, and finally by
multiplying the recorded direction vector to the MLP’s output. Using EvNorm within
the point-wise interaction modules is found to stabilize training and eliminate the
need for tuning weight initializations and learning rates across different tasks.
The explicit expressions for the neural network modules are provided for quantum
operators O being one-electron operators and therefore the input tensors T is a stack
of matrices (i.e., order-2 tensors). Without loss of generality, we also assume that T
contains only one feature matrix. Additional technical aspects regarding the case of
multiple input features, the inclusion of geometric descriptors, and implementation
details are discussed in Appendix 3.10. The proofs regarding equivariance and
theoretical generalizations to order-𝑁 tensors are provided in Appendix 3.9.

The Diagonal Reduction module
We define the shorthand notations 𝜇 := (𝑛1, 𝑙1, 𝑚1) and 𝜈 := (𝑛2, 𝑙2, 𝑚2) to index
atomic orbitals. The initialization scheme for h𝑡=0 is based on the following
proposition: for each diagonal block of T, T𝐴𝐴, defined for an on-site atom pair
(𝐴, 𝐴),

𝑇
𝜇,𝜈

𝐴𝐴
:= ⟨Φ𝜇

𝐴
|Ô |Φ𝜈

𝐴⟩ (3.11)

there exists a set of T-independent coefficients 𝑄𝜇,𝜈

𝑛𝑙 𝑝𝑚
such that the following linear

transformation 𝜓
𝜓(T𝐴𝐴)𝑛𝑙 𝑝𝑚 :=

∑︁
𝜇,𝜈

𝑇
𝜇,𝜈

𝐴𝐴
𝑄
𝜇,𝜈

𝑛𝑙 𝑝𝑚
(3.12)

is injective and yields h𝐴 := 𝜓(T𝐴𝐴) that satisfy equivariance ((3.8)-(3.10)).
The existence of Q is discussed in Appendix, Corollary 3. For the sake of compu-
tational feasibility, a physically-motivated scheme is employed to tabulate Q and
produce order-1 equivariant embeddings h𝐴, using on-site 3-index overlap integrals
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Q̃:

𝑄̃
𝜇,𝜈

𝑛𝑙𝑚
:= 𝑄̃𝑛1,𝑙1,𝑚1;𝑛2,𝑙2,𝑚2

𝑛𝑙𝑚

=

∫
r∈R3

(Φ𝑛1,𝑙1,𝑚1
𝐴

(r))∗Φ𝑛2,𝑙2,𝑚2
𝐴

(r)Φ̃𝑛,𝑙,𝑚

𝐴
(r)𝑑r (3.13)

where Φ𝐴 are the atomic orbital basis, and Φ̃𝐴 are auxiliary Gaussian-type basis
functions defined as (for conciseness, at x𝐴 = 0):

Φ̃𝑛,𝑙,𝑚 (r) := 𝑐𝑛,𝑙 · exp(−𝛾𝑛,𝑙 · 𝑟2) 𝑟 𝑙 𝑌𝑙𝑚 (
r
𝑟
) (3.14)

where 𝑐𝑛,𝑙 is a normalization constant such that
∫
r | |Φ̃

𝑛,𝑙,𝑚

𝐴
(r)) | |2𝑑r = 1 following

standard conventions [157]. For numerical experiments considered in this work the
scale parameters 𝛾 are chosen as (in atomic units):

𝛾𝑛,𝑙=0 := 128 · (0.5)𝑛−1 where 𝑛 ∈ {1, 2, · · · , 16}
𝛾𝑛,𝑙=1 := 32 · (0.25)𝑛−1 where 𝑛 ∈ {1, 2, · · · , 8}
𝛾𝑛,𝑙=2 := 4.0 · (0.25)𝑛−1 where 𝑛 ∈ {1, 2, 3, 4}

Q̃ adheres to equivariance constraints due to its relation to SO(3) Clebsch-Gordan
coefficients 𝐶 𝑙𝑚

𝑙1𝑚1;𝑙2𝑚2
∝

∫
r∈S2 𝑌𝑙1𝑚1 (r)𝑌𝑙2𝑚2 (r) (𝑌𝑙𝑚 (r))∗𝑑r [15]. Note that the aux-

iliary basis Φ̃𝐴 is independent of the atomic numbers, and thus the resulting h𝐴
are of equal length for all chemical elements. Q̃ can be efficiently generated using
electronic structure programs, here done with [93]. The resulting h𝐴 in explicit form
are

h𝐴 :=
⊕
𝑛,𝑙,𝑝,𝑚

ℎ𝐴,𝑛𝑙 𝑝𝑚 where

ℎ𝐴,𝑛𝑙 (𝑝=+1)𝑚 =
∑︁
𝜇,𝜈

𝑇
𝜇,𝜈

𝐴𝐴
𝑄̃
𝜇,𝜈

𝑛𝑙𝑚

ℎ𝐴,𝑛𝑙 (𝑝=−1)𝑚 = 0

h𝐴 are then projected by learnable linear weight matrices such that the number of
channels for each (𝑙, 𝑝) matches the model specifications. The outputs are regarded
as the initial representations h𝑡=0 to be passed into other modules.

The Block Convolution module
In an update step h𝑡 ↦→ h𝑡+1, sub-blocks of T are first contracted with a stack of
linearly-transformed order-1 representations h𝑡 .

m𝑡,𝑖

𝐴𝐵,𝜈
=

∑︁
𝜇

(
𝜌𝑖 (h𝑡𝐴)

)
𝜇
𝑇
𝜇,𝜈

𝐴𝐵
(3.15)
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which can be viewed as a 1D convolution between each block T𝐴𝐵 (as convolution
kernels) and the 𝜌(h𝑡

𝐴
) (as the signal) in the 𝑖-th channel where 𝑖 ∈ {1, 2, · · · , 𝐼}

is the convolution channel index. The block convolution produces block-wise
representations m𝑡

𝐴𝐵
for each block index (𝐴, 𝐵). 𝜌𝑖 is called a matching layer at

atom 𝐴 and channel 𝑖, defined as:(
𝜌𝑖 (h𝑡𝐴)

)
𝜇
= Gather

(
W𝑖

𝑙 · (h
𝑡
𝐴)𝑙 (𝑝=+1)𝑚, 𝑛[𝜇, 𝑧𝐴]

)
(3.16)

W𝑖
𝑙
∈ R𝑀𝑙×𝑁𝑙,+1 are learnable linear weight matrices specific to each degree index 𝑙,

where 𝑀𝑙 is the maximum principle quantum number for shells of angular momentum
𝑙 within the atomic orbital basis used for featurization. The Gather operation maps
the feature dimension to valid atomic orbitals by indexing W𝑖

𝑙
· (h𝑡

𝐴
)𝑙 (𝑝=+1)𝑚 using

𝑛[𝜇, 𝑧𝐴], the principle quantum numbers of atomic orbitals 𝜇 for atom type 𝑧𝐴.

The Message Passing module
Block-wise representations m𝑡

𝐴𝐵
are then aggregated into each atom index 𝐴 by

summing over the indices 𝐵, analogous to a ‘message-passing’ between nodes and
edges in common realizations of graph neural networks [156],

m̃𝑡
𝐴 =

∑︁
𝐵

⊕
𝑖, 𝑗

m𝑡,𝑖

𝐵𝐴
· 𝛼𝑡, 𝑗

𝐴𝐵
(3.17)

up to a non-essential symmetrization and inclusion of point-cloud geometrical terms
((3.66)). 𝛼𝑡, 𝑗

𝐴𝐵
in (3.17) are scalar-valued weights parameterized as SE(3)-invariant

multi-head attentions:

𝜶𝑡𝐴𝐵 = MLP
(
(z𝑡𝐴𝐵 · W𝑡

α) ⊙ 𝜿( | |T𝐴𝐵 | |)/
√
𝑁

)
(3.18)

where ⊙ denotes an element-wise (Hadamard) product, and

z𝑡𝐴𝐵 =
⊕
𝑛,𝑙,𝑝

𝑙∑︁
𝑚=−𝑙

ℎ𝑡𝐴,𝑛𝑙 𝑝𝑚 · ℎ𝑡𝐵,𝑛𝑙 𝑝𝑚 (3.19)

where MLP denotes a 2-layer MLP, W𝑡
α are learnable linear functions and 𝑗 ∈

{1, 2, · · · , 𝐽} denotes an attention head (one value in 𝜶𝑡
𝐴𝐵

). 𝜿(·) is chosen as Morlet
wavelet basis functions:

𝜿( | |T𝐴𝐵 | |) := Wκ

(⊕
𝑘

∑︁
𝑛,𝑙

∑︁
𝑛′,𝑙′

𝜉𝑘 (log
(
| |T𝑛,𝑙;𝑛

′,𝑙′

𝐴𝐵
| |)

) )
(3.20)

𝜉𝑘 (𝑥) := exp(−𝛾𝑘 · 𝑥2) · cos(𝜋𝛾𝑘 · 𝑥) (3.21)
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where W𝑡
κ are learnable linear functions and 𝛾𝑘 are learnable frequency coefficients

initialized as 𝛾𝑘 = 0.3 · (1.08)𝑘 where 𝑘 ∈ {0, 1, · · · , 15}. Similar to the scheme
proposed in SE(3)-transformers [121], the attention mechanism (3.18) improves
the network capacity without increasing memory costs as opposed to explicitly
expanding T.
The aggregated message m̃𝑡

𝐴
is combined with the representation of current step h𝑡

𝐴

through a point-wise interaction module 𝜙 (see Methods 3.7) to complete the update
h𝑡
𝐴
↦→ h𝑡+1

𝐴
.

Equivariant Normalization (EvNorm)
We define EvNorm : h ↦→ (h̄, ĥ) where h̄ and ĥ are given by

h̄𝑛𝑙 𝑝 :=
∥h𝑛𝑙 𝑝 ∥ − 𝜇ℎ𝑛𝑙 𝑝

𝜎ℎ
𝑛𝑙 𝑝

and ĥ𝑛𝑙 𝑝𝑚 :=
h𝑛𝑙 𝑝𝑚

∥h𝑛𝑙 𝑝 ∥ + 1/𝛽𝑛𝑙 𝑝 + 𝜖
(3.22)

where ∥·∥ denotes taking a neuron-wise regularized 𝐿2 norm:

∥h𝑛𝑙 𝑝 ∥ :=
√︄∑︁

𝑚

h2
𝑛𝑙 𝑝𝑚

+ 𝜖2 − 𝜖 (3.23)

𝜇ℎ
𝑘𝑙 𝑝

and 𝜎ℎ
𝑘𝑙 𝑝

are mean and variance estimates of the invariant content ∥h∥ that
can be obtained from either batch or layer statistics as in normalization schemes
developed for scalar neural networks [99, 158]; 𝛽𝑘𝑙 𝑝 are positive, learnable scalars
controlling the fraction of vector scale information from h to be retained in ĥ, and
𝜖 is a numerical stability factor. The EvNorm operation (3.22) decouples h to
the normalized frame-invariant representation h̄ suitable for being transformed by
an MLP, and a ‘pure-direction’ ĥ that is later multiplied to the MLP-transformed
normalized invariant content to finish updating h. Note that in (3.22), h = 0 is always
a fixed point of the map h ↦→ ĥ and the vector directions information h is always
preserved.

The Point-wise Interaction module and representation updates
A point-wise interaction module 𝜙 ((3.24)-(3.26)) nonlinearly updates the atom-wise
representations through h𝑡+1 = 𝜙(h𝑡 , g)

f𝑡𝑙 𝑝𝑚 =
(
MLP1(h̄𝑡)

)
𝑙 𝑝
⊙ (ĥ𝑡𝑙 𝑝𝑚 · Win,𝑡

𝑙,𝑝
) where (h̄𝑡 , ĥ𝑡) = EvNorm(h𝑡) (3.24)

q𝑙 𝑝𝑚 = g𝑙 𝑝𝑚 +
∑︁
𝑙1,𝑙2

∑︁
𝑚1,𝑚2

∑︁
𝑝1,𝑝2

(f𝑡𝑙1𝑝1𝑚1
⊙ g𝑙2𝑝2𝑚2) 𝐶 𝑙𝑚𝑙1𝑚1;𝑙2𝑚2

𝛿
(−1)𝑙1+𝑙2+𝑙
𝑝1·𝑝2·𝑝 (3.25)

h𝑡+1
𝑙 𝑝𝑚 = h𝑡𝑙 𝑝𝑚 +

(
MLP2(q̄)

)
𝑙 𝑝
⊙ (q̂𝑙 𝑝𝑚 · Wout,𝑡

𝑙,𝑝
) where (q̄, q̂) = EvNorm(q)

(3.26)
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which consist of coupling another O(3)-equivariant representation g with h𝑡 and
performing normalizations. In (3.24)-(3.26), 𝐶 𝑙𝑚

𝑙1𝑚1;𝑙2𝑚2
are Clebsch-Gordan coeffi-

cients of group SO(3), 𝛿 𝑗
𝑖

is a Kronecker delta function, and MLP1 and MLP2 denote
multi-layer perceptrons acting on the feature (𝑛𝑙 𝑝) dimension. Win,𝑡

𝑙,𝑝
∈ R𝑁𝑙, 𝑝×𝑁𝑙, 𝑝

and Wout,𝑡
𝑙,𝑝

∈ R𝑁𝑙, 𝑝×𝑁𝑙, 𝑝 correspond to learnable linear weight matrices specific to the
update step 𝑡 and each (𝑙, 𝑝).
For 𝑡 < 𝑡1, the updates are performed by combining h𝑡 with the aggregated messages
m̃𝑡 from step 𝑡:

h𝑡+1
𝐴 = 𝜙

(
h𝑡𝐴, 𝜌

†(m̃𝑡
𝐴)

)
(3.27)

where 𝜌† is called a reverse matching layer, defined as:(
𝜌†(m̃𝑡

𝐴)
)
𝑙 (𝑝=+1)𝑚 = W†

𝑙
·
∑︁
𝜇

Scatter
(
m̃𝑡
𝐴,𝜇, 𝑛[𝜇, 𝑧𝐴]

)
(3.28)(

𝜌†(m̃𝑡
𝐴)

)
𝑙 (𝑝=−1)𝑚 = 0 (3.29)

the Scatter operation maps the atomic-orbital dimension in m̃𝑡 to a feature dimension
with fixed length 𝑀𝑙 using 𝑛[𝜇, 𝑧𝐴] as the indices and flattens the outputs into shape
(𝑁atoms, 𝑀𝑙 𝐼𝐽). W†

𝑙
∈ R𝑁𝑙,+1×𝑀𝑙 𝐼𝐽 are learnable linear weight matrices to project the

outputs into the shape of h𝑡 .
For 𝑡1 ≤ 𝑡 < 𝑡2, the updates are based on local information:

h𝑡+1
𝐴 = 𝜙

(
h𝑡𝐴, h

𝑡
𝐴

)
(3.30)

Pooling layers and training
A programmed pooling layer reads out the target prediction ŷ after the representations
h𝑡 are updated to the last step h𝑡 𝑓 . Pooling operations employed for obtaining main
numerical results are detailed in Appendix 3.10; hyperparameter, training, and loss
function details are provided in Appendix 3.10. As a concrete example, the dipole
moment vector is predicted as ®𝜇 =

∑
𝐴 (®𝑥𝐴 · 𝑞𝐴 + ®𝜇𝐴) where ®𝑥𝐴 is the 3D coordinate

of atom 𝐴, and atomic charges 𝑞𝐴 and atomic dipoles ®𝜇𝐴 are predicted respectively
using scalar (𝑙 = 0) and Cartesian-coordinate vector (𝑙 = 1) components of h𝑡 𝑓

𝐴
.

QM-informed featurization details and gradient calculations
The QM-informed representation employed in this work is motivated by a pair of
our previous works [75, 76], but in this study the features are directly evaluated in
the atomic orbital basis without the need of heuristic post-processing algorithms to
enforce rotational invariance.
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In particular, this work (as well as [76] and [75]) constructs features based on the
GFN-xTB semi-empirical QM method [60]. As a member of the class of mean field
quantum chemical methods, GFN-xTB centers around the self-consistent solution of
the Roothaan-Hall equations,

FC = SC𝝐 (3.31)

All boldface symbols are matrices represented in the atomic orbital basis. For the
particular case of GFN-xTB, the atomic orbital basis is similar to STO-6G and
comprises a set of hydrogen-like orbitals. C is the molecular orbital coefficients
which defines Ψ0, and 𝝐 is a diagonal eigenvalue matrix of the molecular orbital
energies. S is the overlap matrix and is given by

𝑆𝜇𝜈 = ⟨Φ𝜇 |Φ𝜈⟩ (3.32)

where 𝜇 and 𝜈 index the atomic orbital basis {Φ}. F is the Fock matrix and is given
by

F = H + G [P] (3.33)

H is the one-electron integrals including electron-nuclear attraction and electron
kinetic energy. G is the two-electron integrals comprising the electron-electron
repulsion. Approximation of G is the key task for self-consistent field methods,
and GFN-xTB provides an accurate and efficient tight-binding approximation for G.
Finally, P is the (one-electron-reduced) density matrix, and is given by

𝑃𝜇𝜈 =

𝑛elec/2∑︁
𝑖=1

𝐶∗
𝜇𝑖𝐶𝜈𝑖 (3.34)

𝑛elec is the number of electrons, and a closed-shell singlet ground state is assumed
for simplicity. Equations 3.31 and 3.33 are solved for P. The electronic energy 𝐸 is
related to the Fock matrix by

F =
𝛿𝐸

𝛿P (3.35)

The particular form of the GFN-xTB electronic energy can be found in [60].
UNiTE is trained to predict the quantum chemistry properties of interest based on
the inputs T = (F, P, S, H) with possible extensions (e.g., the energy-weighted
density matrices). For the example of learning the DFT electronic energy with the
"delta-learning" training strategy:

𝐸DFT ≈ 𝐸TB + F (T) (3.36)
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Note that F, P, S, and H all implicitly depend on the atomic coordinates x and
charge/spin state specifications.
In addition to predicting 𝐸 it is also common to compute its gradient with respect to
atomic nuclear coordinates x to predict the forces used for geometry optimization
and molecular dynamics simulations. We directly differentiate the energy (3.36)
to obtain energy-conserving forces. The partial derivatives of the UNiTE energy
with respect to F, P, S, and H is determined through automatic differentiation. The
resulting forces are computed through an adjoint approach developed in Appendix
D of our previous work [75], with the simplification that the SAAO transformation
matrix X is replaced by the identity.

3.8 Dataset and computational details
Training datasets
The molecule datasets used in Section 3.3-3.4 are all previously published. Following
Section 2.1 of [131], the 2291 BFDb-SSI samples for training and testing are selected
as the sidechain–sidechain dimers in the original BFDb-SSI dataset that contain ≤
25 atoms and no sulfur element to allow for comparisons among methods.
The Selected Drug-like and biofragment Conformers (SDC21) dataset used for
training the OrbNet-Equi/SDC21 model described in Section 3.5 is collected from
several publicly-accessible sources. First 11,827 neutral SMILES strings were
extracted from the ChEMBL database [159]. For each SMILES string, up to four
conformers were generated by Entos Breeze, and optimized at the GFN-xTB level.
Non-equilibrium geometries of the conformers were generated using either normal
mode sampling [160] at 300K or ab initio molecular dynamics for 200fs at 500K in
a ratio of 50%/50%, resulting in a total of 178,836 structures. An additional number
2,549 SMILES string were extracted from ChEMBL, and random protonation states
for these were selected using Dimorphite-DL [161], as well as another 2,211 SMILES
strings which were augmented by adding randomly selected salts from the list of
common salts in the ChEMBL Structure Pipeline [162]. For these two collections
of modified ChEMBL SMILES strings, non-equilibrium geometries were created
using the same protocol described earlier, resulting in 21,141 and 27,005 additional
structures for the two sets, respectively. To compensate for the bias towards large
drug-like molecules, ∼45,000 SMILES strings were enumerated using common
bonding patterns, from which 9,830 conformers were generated from a randomly
sampled subset. Lastly, molecules in the BFDb-SSI and JSCH-2005 datasets were
added to the training data set [140, 163]. In total, the data set consists of 237,298
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geometries spanning the elements C, O, N, F, S, Cl, Br, I, P, Si, B, Na, K, Li, Ca, and
Mg. For each geometry DFT single point energies were calculated on the dataset
at the 𝜔B97X-D3/def2-TZVP level of theory in Entos Qcore version 0.8.17.[88,
93, 164] Lastly, we additionally filtered the geometries for which DFT calculation
failed to converge or broken bonds between the equilibirum and non-equilibrium
geometries are detected, resulting in 235,834 geometries used for training the
OrbNet-Equi/SDC21 model.

Electronic structure computational details
The dipole moment labels ®𝜇 for QM9 dataset used in Section 3.3 were calculated
at the B3LYP level of DFT theory with def2-TZVP AO basis set to match the level
of theory used for published QM9 labels, using Entos Qcore version 1.1.0 [83, 89,
93]. The electron density labels 𝜌(®𝑟) for QM9 and BFDb-SSI were computed at
the 𝜔B97X-D3/def2-TZVP level of DFT theory using def2-TZVP-JKFIT [165] for
Coulomb and Exchange fitting, also as the electron charge density expansion basis
{𝜒}. The density expansion coefficients d are calculated as

𝑑𝛾 =
∑︁
𝜉

∑︁
𝜇,𝜈

(
(S𝜌)−1)

𝛾𝜉
𝑆𝜇𝜈;𝜉𝑃𝜇𝜈 (3.37)

where 𝜇, 𝜈 are AO basis indices, 𝜉, 𝛾 are density fitting basis indices. Note that 𝛾
stands for the combined index (𝐴, 𝑛, 𝑙, 𝑚) in (3.7). P is the DFT AO density matrix,
S𝜌 is the density fitting basis overlap matrix, and 𝑆𝜇𝜈;𝜉 are 3-index overlap integrals
between the AO basis and the density fitting basis {𝜒}.

Benchmarking details and summary statistics
For the mean 𝐿1 electronic density error over the test sets reported in Section 3.4, we
use 291 dimers as the test set for the BFDb-SSI dataset, and 10000 molecules as the
test set for the QM9 dataset, following literature [131, 141]. 𝜀𝜌 for each molecule in
the test sets is computed using a 3D cubic grid of voxel spacing (0.2, 0.2, 0.2) Bohr
for BFDb-SSI test set and voxel spacing (1.0, 1.0, 1.0) Bohr for the QM9 test set,
both with cutoff at 𝜌(®𝑟) = 10−5 𝑎−3

0 . We note that two baseline methods used slightly
different normalization conventions when computing the dataset-averaged 𝐿1 density
errors 𝜀𝜌, (a) computing 𝜀𝜌 for each molecule and normalizing over the number of
molecules in the test set [141] or (b) normalizing over the total number of electrons
in the test set [131]. We found the average 𝜀𝜌 computed using normalization (b) is
higher than (a) by around 5% for our results. We follow their individual definitions
for average 𝜀𝜌 for the quantitative comparisons described in the main text, that is,
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using scheme (a) for QM9 but scheme (b) for BfDB-SSI.
For downstream task statistics reported in Figure 3.5 and Table 3.5, the results on
the Hutchison dataset in Figure 3.5a are calculated as the 𝑅2 correlation coefficients
comparing the conformer energies of multiple conformers from a given model to the
energies from DLPNO-CCSD(T). The median 𝑅2 in Table 3.5 with respect to both
DLPNO-CCSD(T) and 𝜔B97X-D3/def2-TZVP are calculated over the 𝑅2-values for
every molecule, and error bars are estimated by bootstrapping the pool of molecules.
The error bars for TorsionNet500 and s66x10 are computed as 95% confidence
intervals. Geometry optimization experiments are performed through relaxing
the reference geometries until convergence. Geometry optimization accuracies in
Figure 3.5d and Table 3.5 are reported as the symmetry-corrected root mean square
deviation (RMSD) of the minimized geometry versus the reference level of theory
(𝜔B97X-D3/def2-TZVP) calculated over molecules in the benchmark set. Additional
computational details for this task are provided in Appendix 3.10.
For the GMTKN55 benchmark dataset collection, the reported CCSD(T)/CBS results
are used as reference values. The WTAD scores for producing Figure 3.6 is defined
similar to the updated weighted mean absolute deviation (WTMAD-2) in [150], but
computed for each reaction in GMTKN55:

WTAD𝑖, 𝑗 =
56.84

1
𝑁𝑖

∑
𝑗 |Δ𝐸 |𝑖, 𝑗

· |Δ𝐸 |𝑖, 𝑗 (3.38)

for 𝑗-th reaction in the 𝑖-th task subset. Note that the subset-wise WTMAD-2 metric
in Appendix Table 3.7 is given by

WTMAD-2𝑖 =
1
𝑁𝑖

∑︁
𝑗

WTAD𝑖, 𝑗 (3.39)

and the overall WTMAD-2 is reproduced by

WTMAD-2 =
1∑55
𝑖 𝑁𝑖

∑︁
𝑖, 𝑗

WTAD𝑖, 𝑗 (3.40)

3.9 Additional theoretical results
We formally introduce the problem of interest, restate the definitions of the building
blocks of UNiTE (Methods 3.7) using more formal notations, and prove the theoretical
results claimed in this work. We first generalize the input data domain to a generic
class of tensors beyond quantum chemistry quantities; for brevity we call such inputs
N-body tensors.
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𝑁-body tensors (informal)
We are interested in a class of tensors T, for which each sub-tensor T(𝑢1, 𝑢2, · · · , 𝑢𝑁 )
describes relation among a collection of 𝑁 geometric objects defined in an 𝑛-
dimensional physical space. For simplicity, we will first introduce the tensors of
interest using a special case based on point clouds embedded in the 𝑛-dimensional
Euclidean space, associating a (possibly different) set of orthogonal basis with each
point’s neighbourhood. In this setting, our main focus is the change of the order-N
tensor’s coefficients when applying 𝑛-dimensional rotations and reflections to the
local reference frames.

Definition 1 (𝑁-body tensor). Let {x1, x2, · · · , x𝑑} be 𝑑 points in R𝑛 for each
𝑢 ∈ {1, 2, · · · , 𝑑}. For each point index 𝑢, we define an orthonormal basis (local
reference frame) {e𝑢;𝑣𝑢} centered at x𝑢 1, and denote the space spanned by the basis as
𝑉𝑢 := span({e𝑢;𝑣𝑢}) ⊆ R𝑛. We consider a tensor T̂ defined via 𝑁-th direct products
of the ‘concatenated’ basis {e𝑢;𝑣𝑢 ; (𝑢, 𝑣𝑢)}:

T̂ :=
∑︁
®𝑢,®𝑣
𝑇
(
(𝑢1; 𝑣1), (𝑢2; 𝑣2), · · · , (𝑢𝑁 ; 𝑣𝑁 )

)
e𝑢1;𝑣1 ⊗ e𝑢2;𝑣2 ⊗ · · · ⊗ e𝑢𝑁 ;𝑣𝑁 (3.41)

T̂ is a tensor of order-𝑁 and is an element of (
⊕𝑑

𝑢=1𝑉𝑢)⊗𝑁 . We call its coefficients T
an N-body tensor if T is invariant to global translations (∀x0 ∈ R𝑛,T[x] = T[x+x0],
and is symmetric:

𝑇
(
(𝑢1; 𝑣1), (𝑢2; 𝑣2), · · · , (𝑢𝑁 ; 𝑣𝑁 )

)
= 𝑇

(
(𝑢𝜎1; 𝑣𝜎1), (𝑢𝜎2; 𝑣𝜎2), · · · , (𝑢𝜎𝑁

; 𝑣𝜎𝑁
)
)

(3.42)
where 𝜎 denotes arbitrary permutation on its dimensions {1, 2, · · · , 𝑁}. Note
that each sub-tensor, T®𝑢, does not have to be symmetric. The shorthand no-
tation ®𝑢 := (𝑢1, 𝑢2, · · · , 𝑢𝑁 ) indicates a subset of 𝑁 points in {x1, x2, · · · , x𝑑}
which then identifies a sub-tensor2T®𝑢 := T(𝑢1, 𝑢2, · · · , 𝑢𝑁 ) in the 𝑁-body
tensor T; ®𝑣 := (𝑣1, 𝑣2, · · · , 𝑣𝑁 ) index a coefficient 𝑇®𝑢 (𝑣1, 𝑣2, · · · , 𝑣𝑁 ) :=
𝑇
(
(𝑢1; 𝑣1), (𝑢2; 𝑣2), · · · , (𝑢𝑁 ; 𝑣𝑁 )

)
in a sub-tensor T®𝑢, where each index 𝑣 𝑗 ∈

{1, 2, · · · , dim(𝑉𝑢 𝑗
)} for 𝑗 ∈ {1, 2, · · · , 𝑁}.

1We additionally allow for 0 ∈ {e𝑢;𝑣𝑢 } to represent features in T that transform as scalars.
2For example, if there are 𝑑 = 5 points defined in the 3-dimensional Euclidean space R3 and each

point is associated with a standard basis (𝑥, 𝑦, 𝑧), then for the example of N=4, there are 54 sub-tensors
and each sub-tensor T(𝑢1 ,𝑢2 ,𝑢3 ,𝑢4 ) contains 34 = 81 elements with indices spanning from 𝑥𝑥𝑥𝑥 to 𝑧𝑧𝑧𝑧.
In total, T contains (5 × 3)4 coefficients. The coefficients of T are in general complex-valued as
formally discussed in Definition S2, but are real-valued for the special case introduced in Definition 1 .
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Figure 3.7: Examples of 𝑁-body tensors.

Alice

Bo

2-body Tensor  (Alice’s basis rotated)

N
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S
S

Figure 3.8: Illustrating an 𝑁-body tensor with 𝑁 = 2. Imagine Alice and Bo are
doing experiments with two bar magnets without knowing each other’s reference
frame. The magnetic interactions depend on both bar magnets’ orientations and can
be written as a 2-body tensor. When Alice make a rotation on her reference frame,
sub-tensors containing index 𝐴 are transformed by a unitary matrix U𝐴, giving rise
to the 2-body tensor coefficients in the transformed basis. We design neural network
to be equivariant to all such local basis transformations.

We aim to build neural networks F𝜃 : (
⊕𝑑

𝑢=1𝑉𝑢)⊗𝑁 → Y that map T̂ to order-1
tensor- or scalar-valued outputs y ∈ Y. While T̂ is independent of the choice of
local reference frame e𝑢, its coefficients T (i.e. the 𝑁-body tensor) vary when
rotating or reflecting the basis e𝑢 := {e𝑢;𝑣𝑢 ; 𝑣𝑢}, i.e. acted by an element U𝑢 ∈ O(n).
Therefore, the neural network F𝜃 should be constructed equivariant with respect to
those reference frame transformations.

Equivariance
For a map 𝑓 : V → Y and a group 𝐺, 𝑓 is said to be 𝐺-equivariant if for all
𝑔 ∈ 𝐺 and v ∈ V, 𝜑′(𝑔) · 𝑓 (v) = 𝑓 (𝜑(𝑔) · v) where 𝜑(𝑔) and 𝜑′(𝑔) are the group
representation of element 𝑔 on V and Y, respectively. In our case, the group 𝐺 is
composed of (a) Unitary transformations U𝑢 locally applied to basis: e𝑢 ↦→ U†

𝑢 · e𝑢,
which are rotations and reflections for R𝑛. U𝑢 induces transformations on tensor
coefficients: T®𝑢 ↦→ (U𝑢1 ⊗ U𝑢2 ⊗ · · · ⊗ U𝑢𝑁 )T®𝑢, and an intuitive example for
infinitesimal basis rotations in 𝑁 = 2, 𝑛 = 2 is shown in Figure 3.8; (b) Tensor
index permutations: ( ®𝑢, ®𝑣) ↦→ 𝜎( ®𝑢, ®𝑣); (c) Global translations: x ↦→ x + x0. For
conciseness, we borrow the term 𝐺-equivariance to say F𝜃 is equivariant to all the
symmetry transformations listed above.
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𝑁-body tensors

Here we generalize the definition of N-body tensors to the basis of irreducible group
representations instead of a Cartesian basis. The atomic orbital features discussed
in the main text fall into this class, since the angular parts of atomic orbitals (i.e.,
spherical harmonics 𝑌𝑙𝑚) form the basis of the irreducible representations of group
SO(3).

Definition 2. Let𝐺1, 𝐺2, · · · , 𝐺𝑑 denote unitary groups where𝐺𝑢 ⊂ U(n) are closed
subgroups of U(n) for each 𝑢 ∈ {1, 2, · · · , 𝑑}. We denote 𝐺 := 𝐺1 × 𝐺2 × · · · × 𝐺𝑑 .
Let (𝜋𝐿 ,V𝐿) denote a irreducible unitary representation of U(n) labelled by 𝐿.
For each 𝑢 ∈ {0, 1, · · · , 𝑑}, we assume there is a finite-dimensional Banach space
𝑉𝑢 ≃

⊕
𝐿 (V𝐿)⊕𝐾𝐿 where 𝐾𝐿 ∈ N is the multiplicity ofV𝐿 (e.g. the number of feature

channels associated with representation index 𝐿), with basis {𝝅𝐿,𝑀}𝑢 such that
span({𝝅𝐿,𝑀,𝑢; 𝑘, 𝐿, 𝑀}) = 𝑉𝑢 for each 𝑢 ∈ {1, 2, · · · , 𝑑} and 𝑘 ∈ {1, 2, · · · , 𝐾𝐿},
and span({𝝅𝐿,𝑀,𝑢;𝑀}) ≃ V𝐿 for each 𝑢, 𝐿. We denote V :=

⊕
𝑢 𝑉𝑢, and index

notation 𝑣 := (𝑘, 𝐿, 𝑀). For a tensor T̂ ∈ V⊗𝑁 , we call the coefficients T of T̂ in
the 𝑁-th direct products of basis {𝝅𝐿,𝑀,𝑢; 𝐿, 𝑀, 𝑢} an 𝑁-body tensor, if T̂ = 𝜎(T̂)
for any permutation 𝜎 ∈ Sym(𝑁) (i.e. permutation invariant).

Note that the vector spaces 𝑉𝑢 do not need to be embed in the same space R𝑛

as in the special case from Definition S1, but can be originated from general
‘parameterizations’ 𝑢 ↦→ 𝑉𝑢, e.g., coordinate charts on a manifold.

Corollary 1. If 𝑉𝑢 = C𝑛, 𝐺𝑢 = U(n) and 𝝅𝐿,𝑀,𝑢 = e𝑀 where {e𝑀} is a standard
basis of C𝑛, then T is an 𝑁-body tensor if T̂ is permutation invariant.

Proof. For 𝑉𝑢 = C𝑛, 𝜋 : 𝐺𝑢 → U(C𝑛) is a fundamental representation of U(n).
Since the fundamental representations of a Lie group are irreducible, it follows
that {e𝑀} is a basis of a irreducible representation of U(n), and T is an 𝑁-body
tensor.

Similarly, when 𝑉𝑢 = R𝑛 and 𝐺𝑢 = O(n) ⊂ U(n), T is an 𝑁-body tensor if T̂ is
permutation invariant. Then we can recover the special case based on point clouds in
R𝑛 in Definition 1.
Procedures for constructing complete bases for irreducible representations of U(n)
with explicit forms are established [166]. A special case is 𝐺𝑢 = SO(3), for which a
common construction of a complete set of {𝝅𝐿,𝑀}𝑢 is using the spherical harmonics
𝝅𝐿,𝑀,𝑢 := 𝑌𝑙𝑚; this is an example that polynomials 𝑌𝑙𝑚 can be constructed as a basis
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of square-integrable functions on the 2-sphere 𝐿2(𝑆2) and consequently as a basis of
the irreducible representations (𝜋𝐿 ,V𝐿) for all 𝐿 [167].

Decomposition of diagonals T𝑢

We consider the algebraic structure of the diagonal sub-tensors T𝑢, which can be
understood from tensor products of irreducible representations.
First we note that for a sub-tensor T®𝑢 ∈ 𝑉𝑢1 ⊗ 𝑉𝑢2 ⊗ · · · ⊗ 𝑉𝑢𝑁 , the action of 𝑔 ∈ 𝐺 is
given by

𝑔 · T®𝑢 = (𝜋(𝑔𝑢1) ⊗ 𝜋(𝑔𝑢2) ⊗ · · · ⊗ 𝜋(𝑔𝑢𝑁 ))T®𝑢 (3.43)

for diagonal sub-tensors T𝑢, this reduces to the action of a diagonal sub-group

𝑔 · T𝑢 = (𝜋(𝑔𝑢) ⊗ 𝜋(𝑔𝑢) ⊗ · · · ⊗ 𝜋(𝑔𝑢))T𝑢 (3.44)

which forms a representation of 𝐺𝑢 ∈ U(𝑛) on 𝑉⊗𝑁
𝑢 . According to the isomorphism

𝑉𝑢 ≃
⊕

𝐿 (V𝐿)⊕𝐾𝐿 in Definition S2 we have 𝜋(𝑔𝑢) · v =
⊕

𝐿𝑈
𝐿
𝑔𝑢

· v𝐿 for v ∈ 𝑉𝑢
where v𝐿 ∈ V𝐿 , more explicitly

𝑔 · T𝑢 ( ®𝑘, ®𝐿) = (𝑈𝐿1
𝑔𝑢

⊗ 𝑈𝐿2
𝑔𝑢

⊗ · · · ⊗ 𝑈𝐿𝑁
𝑔𝑢 ) T𝑢 ( ®𝑘, ®𝐿) (3.45)

where we have used the shorthand notation T𝑢 ( ®𝑘, ®𝐿) :=
T𝑢

(
(𝑘1, 𝐿1), (𝑘2, 𝐿2), · · · , (𝑘𝑁 , 𝐿𝑁 )

)
and 𝑈𝐿

𝑔𝑢
denotes the unitary matrix rep-

resentation of 𝑔𝑢 ∈ U(n) on V𝐿 expressed in the basis {𝝅𝐿,𝑀,𝑢;𝑀}, on the
vector space V𝐿 for the irreducible representation labelled by 𝐿. Therefore
T𝑢 ( ®𝑘, ®𝐿) ∈ V𝐿1 ⊗ V𝐿2 ⊗ · · · ⊗ V𝐿𝑁 is the representation space of an 𝑁-fold
tensor product representations of U(n). We note the following theorem for the
decomposition of T𝑢 ( ®𝑘, ®𝐿):

Theorem 1 (Theorem 2.1 and Lemma 2.2 of [168]). The representation of U(n) on
the direct product of V𝐿1 ,V𝐿2 , · · · ,V𝐿𝑁 decomposes into direct sum of irreducible
representations:

V𝐿1 ⊗ V𝐿2 ⊗ · · · ⊗ V𝐿𝑁 ≃
⊕
𝐿

𝜇(𝐿1,𝐿2,··· ,𝐿𝑁 ;𝐿)⊕
𝜈

V𝐿;𝜈 (3.46)

and ∑︁
𝐿

𝜇(𝐿1, 𝐿2, · · · , 𝐿𝑁 ; 𝐿) dim(V𝐿) =
𝑁∏
𝑢=1

dim(V𝐿𝑢) (3.47)

where 𝜇(𝐿1, 𝐿2, · · · , 𝐿𝑁 ; 𝐿) is the multiplicity of 𝐿 denoting the number of replicas
of V𝐿 being present in the decomposition of V𝐿1 ⊗ V𝐿2 ⊗ · · · ⊗ V𝐿𝑁 .
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Note that we have abstracted the labeling details for U(n) irreducible representations
into the index 𝐿. See [168] for proof and details on representation labeling. We
now state the following result for generating order-1 representations (Materials and
methods, 3.7):

Corollary 2. There exists an invertible linear map 𝜓 : 𝑉⊗𝑁
𝑢 → 𝑉★𝑢 :=⊕

(V𝐿)⊕𝜇(𝐿;𝑉𝑢) where 𝜇(𝐿;𝑉𝑢) ∈ N, such that for any T𝑢, 𝐿 and 𝜈 ∈
{1, 2, · · · , 𝜇(𝐿;𝑉𝑢)}, 𝜓(𝑔𝑢 · T𝑢)𝜈,𝐿 = 𝑈𝐿

𝑔𝑢
· 𝜓(T𝑢)𝜈,𝐿 if 𝜇(𝐿;𝑉𝑢) > 0.

Proof. First note that each block T𝑢 ( ®𝑘, ®𝐿) of T𝑢 is an element ofV𝐿1⊗V𝐿2⊗· · ·⊗V𝐿𝑁

up to an isomorphism. (3.47) in Theorem S1 states there is an invertible lin-
ear map 𝜓 ®𝐿 : V𝐿1 ⊗ V𝐿2 ⊗ · · · ⊗ V𝐿𝑁 →

⊕
𝐿 (V𝐿)⊕𝜇(𝐿1,𝐿2,··· ,𝐿𝑁 ;𝐿) , such that

𝜏(𝑔𝑢) = (𝜓 ®𝐿)
−1 ◦ 𝜋(𝑔𝑢) ◦ 𝜓 ®𝐿 for any 𝑔𝑢 ∈ 𝐺𝑢, where 𝜏 : 𝐺𝑢 → U(V𝐿1 ⊗ V𝐿2 ⊗

· · · ⊗ V𝐿𝑁 ) and 𝜋 : 𝐺𝑢 → U(
⊕

𝐿 (V𝐿)⊕𝜇(𝐿1,𝐿2,··· ,𝐿𝑁 ;𝐿)) are representations of
𝐺𝑢. Note that 𝜋 is defined as a direct sum of irreducible representations of U(n),
i.e. 𝜋(𝑔𝑢)𝜓 ®𝐿 (T𝑢 ( ®𝑘, ®𝐿)) :=

⊕
𝜈,𝐿𝑈

𝐿
𝑔𝑢

(
𝜓 ®𝐿 (T𝑢 ( ®𝑘, ®𝐿)))

)
𝜈,𝐿

. Note that 𝜓(T𝑢) :=⊕
𝐿

⊕
®𝑘,®𝐿 𝜓 ®𝐿 (T𝑢 ( ®𝑘, ®𝐿))𝐿 and 𝜇(𝐿,𝑉𝑢) :=

∑
®𝑘,®𝐿 𝜇(𝐿1, 𝐿2, · · · , 𝐿𝑁 ; 𝐿) directly sat-

isfies 𝜓(𝑔𝑢 · T𝑢)𝜈,𝐿 = 𝜓(𝜏(𝑔𝑢)T𝑢)𝜈,𝐿 = 𝑈𝐿
𝑔𝑢
𝜓(T𝑢)𝜈,𝐿 for 𝜈 ∈ {1, 2, · · · , 𝜇(𝐿;𝑉𝑢)}.

Since each 𝜓 ®𝐿 are finite-dimensional and invertible, it follows that the finite direct
sum 𝜓 is invertible.

For Hermitian tensors, we conjecture the same result for SU(2), O(2) and O(3) as
each irreducible representation is isomorphic to its complex conjugate.
We then formally restate the proposition in Methods 3.7 which was originally given
for orthogonal representations of O(3) (i.e., the real spherical harmonics):

Corollary 3. For each 𝐿 where 𝜇(𝐿;𝑉𝑢) > 0, there exist 𝑛𝐿 × dim(𝑉𝑢)𝑁 T-
independent coefficents 𝑄®𝑣

𝜈,𝐿,𝑀
parameterizing the linear transformation 𝜓 that

performs T®𝑢 ↦→ h𝑢 := 𝜓(T𝑢), if 𝑢1 = 𝑢2 = · · · = 𝑢𝑁 = 𝑢:(
𝜓(T𝑢)

)
𝜈,𝐿,𝑀

:=
∑︁
®𝑣
𝑇𝑢 (𝑣1, 𝑣2, · · · 𝑣𝑁 )𝑄®𝑣

𝜈,𝐿,𝑀 for 𝜈 ∈ {1, 2, · · · , 𝑛𝐿} (3.48)

such that the linear map 𝜓 is injective,
∑
𝐿 𝑛𝐿 ≤ dim(𝑉𝑢)𝑁 , and for each 𝑔𝑢 ∈ 𝐺𝑢:

𝜓
(
𝑔𝑢 · T𝑢

)
𝜈,𝐿

= 𝑈𝐿
𝑔𝑢

(
𝜓(T𝑢)

)
𝜈,𝐿

(3.49)

Proof. According to Definition 2, a complete basis of 𝑉⊗𝑁
𝑢 is given by {𝝅𝐿1,𝑀1,𝑢 ⊗

𝝅𝐿2,𝑀2,𝑢 ⊗ · · · ⊗ 𝝅𝐿𝑁 ,𝑀𝑁 ,𝑢; ( ®𝑘, ®𝐿, ®𝑀)} and a complete basis of (𝑉★𝑢 )𝐿 is {𝝅𝐿,𝑀,𝑢;𝑀}.
Note that 𝑉𝑢 and (𝑉★𝑢 )𝐿 are both finite dimensional. Therefore an example of Q𝐿



74

is the dim(𝑉𝑢)𝑁 × 𝜇(𝐿;𝑉𝑢) matrix representation of the bĳective map 𝜓 in the two
basis, which proves the existence.

Note that Corollary S3 does not guarantee the resulting order-1 representations
h𝑢 := 𝜓(T𝑢) (i.e. vectors in 𝑉★𝑢 ) to be invariant under permutations 𝜎, as the
ordering of {𝜈}𝐿 may change under T ↦→ 𝜎(T). Hence, the symmetric condition
on T is important to achieve permutation equivariance for the decomposition
𝑉⊗𝑁
𝑢 → 𝑉★𝑢 ; we note that T𝑢 has a symmetric tensor factorization and is an

element of Sym𝑁 (𝑉𝑢), then algebraically the existence of a permutation-invariant
decomposition is ensured by the Schur-Weyl duality [169] giving the fact that
all representations in the decomposition of Sym𝑁 (𝑉𝑢) must commute with the
symmetric group S𝑁 . With the matrix representation Q in (3.48), clearly for any 𝜎,
𝜓(𝜎(T𝑢)) = 𝜎(T𝑢) · Q = T𝑢 · Q = 𝜓(T𝑢). For general asymmetric 𝑁-body tensors,
we expect the realization of permutation equivariance to be sophisticated and may be
achieved through tracking the Schur functors from the decomposition of 𝑉⊗𝑁

𝑢 → 𝑉★𝑢 ,
which is considered out of scope of the current work. Additionally, the upper bound∑
𝐿 𝑛𝐿 ≤ dim(𝑉𝑢)𝑁 is in practice often not saturated and the contraction (3.48) can

be simplified. For example, when 𝑁 > 2 it suffices to perform permutation-invariant
decomposition on symmetric T𝑢 recursively through Clebsch-Gordan coefficients C
which has the following property:

C𝜈,𝐿

𝐿1;𝐿2
· (𝑈𝐿1

𝑔𝑢
⊗𝑈𝐿2

𝑔𝑢
) · (C𝜈,𝐿

𝐿1;𝐿2
)† = 𝑈𝐿

𝑔𝑢
for 𝜈 ∈ {1, 2, · · · , 𝜇(𝐿1, 𝐿2; 𝐿)} (3.50)

i.e., C parameterizes the isomorphism 𝜓 ®𝐿 of Theorem S2 for 𝑁 = 2, ®𝐿 = (𝐿1, 𝐿2).
Then 𝜓 can be constructed with the procedure (𝑉𝑢)⊗𝑁 ↦→ 𝑉 ′

𝑢 ⊗ (𝑉𝑢)⊗(𝑁−2) ↦→
𝑉 ′′
𝑢 ⊗ (𝑉𝑢)⊗(𝑁−3) ↦→ 𝑉★𝑢 without explicit order-𝑁 + 1 tensor contractions, where each

reduction step can be parameterized using C.
Procedures for computing C in general are established [170, 171]. For the main results
reported in this work O(3) ≃ SO(3) ×Z2 is considered, where 𝜇(𝐿1, 𝐿2; 𝐿) ≤ 1 and
the basis of an irreducible representation 𝝅𝐿,𝑀 can be written as 𝝅𝐿,𝑀 := |𝑙, 𝑚, 𝑝⟩
where 𝑝 ∈ {1,−1} and 𝑚 ∈ {−𝑙,−𝑙 + 1, · · · , 𝑙 − 1, 𝑙}. |𝑙, 𝑚, 𝑝⟩ can be thought as
a spherical harmonic 𝑌𝑙𝑚 but may additionally flips sign under point reflections
I depending on the parity index 𝑝: I |𝑙, 𝑚, 𝑝⟩ = 𝑝 · (−1)𝑙 |𝑙, 𝑚, 𝑝⟩ where ∀x ∈
R3,I(x) = −x. Clebsch-Gordan coefficients C for O(3) is given by:

𝐶
𝜈=1,𝑙 𝑝𝑚
𝑙1𝑝1𝑚1;𝑙2𝑝2𝑚2

= 𝐶 𝑙𝑚𝑙1𝑚1;𝑙2𝑚2
𝛿
((−1)𝑙1+𝑙2+𝑙)
𝑝1·𝑝2·𝑝 (3.51)

where 𝐶 𝑙𝑚
𝑙1𝑚1;𝑙2𝑚2

are SO(3) Clebsch-Gordan coefficients. For 𝑁 = 2, the problem
reduces to using Clebsch-Gordan coefficients to decompose T𝑢 as a combination
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of matrix representations of spherical tensor operators which are linear operators
transforming under irreducible representation of SO(3) based on the the Wigner-
Eckart Theorem (see [15] for formal derivations).
Both 𝑉𝑢 and 𝑉★𝑢 are defined as direct sums of the representation spaces V𝐿 of
irreducible representations of 𝐺𝑢, but each 𝐿 may be associated with a different
multiplicity 𝐾𝐿 or 𝐾★

𝐿
(e.g. different numbers of feature channels). We also allow

for the case that the definition basis {e𝑢;𝑣} for the 𝑁-body tensor T differ from
{𝝅𝑢;𝐿,𝑀} by a known linear transformation D𝑢 such that e𝑢;𝑣 :=

∑
𝐿,𝑀 (𝐷𝑢)𝐿,𝑀𝑣 𝝅𝑢;𝐿,𝑀 ,

or (𝐷𝑢)𝐿,𝑀𝑣 := ⟨e𝑢;𝑣, 𝝅𝑢;𝐿,𝑀⟩ where ⟨·, ·⟩ denotes a Hermitian inner product, and we
additionally define if 𝐾𝐿 = 0, ⟨e𝑢;𝑣, 𝝅𝑢;𝐿,𝑀⟩ := 0. We then give a natural extension
to Definition S2:

Definition 3. We extend the basis in Definition 2 for 𝑁-body tensors to {e𝑢;𝑣} where
span({e𝑢;𝑣; 𝑣}) = 𝑉𝑢, if

D𝑢 · 𝜋2(𝑔𝑢) = 𝜋1(𝑔𝑢) · D𝑢 ∀𝑔𝑢 ∈ 𝐺𝑢 (3.52)

where 𝜋1 and 𝜋2 are matrix representations of 𝑔𝑢 on 𝑉𝑢 ⊂ 𝑉★𝑢 in basis {e𝑢;𝑣} and in
basis {𝝅𝑢;𝐿,𝑀}. Note that 𝜋2(𝑔𝑢) · v = 𝑈𝐿

𝑔𝑢
· v for v ∈ V𝐿 .

Generalized neural network building blocks
We clarify that in all the sections below 𝑛 refers to a feature channel index within
a irreducible representation group labelled by 𝐿, which should not be confused
with dim(𝑉𝑢). More explicitly, we note 𝑛 ∈ {1, 2, · · · , 𝑁h

𝐿
} where 𝑁h

𝐿
is the number

of vectors in the order-1 tensor h𝑡𝑢 that transforms under the 𝐿-th irreducible
representation 𝐺𝑢 (i.e. the multiplicity of 𝐿 in h𝑡𝑢). 𝑀 ∈ {1, 2, · · · , dim(V𝐿)}
indicates the 𝑀-th component of a vector in the representation space of the 𝐿-th
irreducible representation of 𝐺𝑢, corresponding to a basis vector 𝝅𝐿,𝑀,𝑢. We also
denote the total number of feature channels in h as 𝑁h :=

∑
𝐿 𝑁

h
𝐿
.

For a simple example, if the features in the order-1 representation h𝑡 are specified
by 𝐿 ∈ {0, 1}, 𝑁h

𝐿=0 = 8, 𝑁h
𝐿=1 = 4, dim(V𝐿=0) = 1, and dim(V𝐿=1) = 5, then

𝑁h = 8+4 = 12 and h𝑡𝑢 is stored as an array with
∑
𝐿 𝑁

h
𝐿
·dim(V𝐿) = (8×1+4×5) = 28

elements.
We reiterate that ®𝑢 := (𝑢1, 𝑢2, · · · , 𝑢𝑁 ) is a sub-tensor index (location of a sub-tensor
in the 𝑁-body tensor T), and ®𝑣 := (𝑣1, 𝑣2, · · · , 𝑣𝑁 ) is an element index in a sub-tensor
T®𝑢.
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Convolution and message passing. We generalize the definition of a block
convolution module (3.15) to order-𝑁 and complex numbers:

(m𝑡
®𝑢)
𝑖
𝑣1 =

∑︁
𝑣2,··· ,𝑣𝑁

𝑇®𝑢 (𝑣1, 𝑣2, · · · , 𝑣𝑁 )
𝑁∏
𝑗=2

(
𝜌𝑢 𝑗

(h𝑡𝑢 𝑗
)∗

) 𝑖
𝑣 𝑗

(3.53)

Message passing modules (3.17)-(3.27) is generalized to order 𝑁:

m̃𝑡
𝑢1 =

∑︁
𝑢2,𝑢3,··· ,𝑢𝑁

⊕
𝑖, 𝑗

(m𝑡
®𝑢)
𝑖 · 𝛼𝑡, 𝑗®𝑢 (3.54)

h𝑡+1
𝑢1 = 𝜙

(
h𝑡𝑢1 , 𝜌

†
𝑢1 (m̃

𝑡
𝑢1)

)
(3.55)

EvNorm. We write the EvNorm operation (3.22) as EvNorm : h ↦→ (h̄, ĥ) where

ℎ̄𝑛𝐿 :=
| |h𝑛𝐿 | |−𝜇𝑥𝑛𝐿

𝜎𝑥
𝑛𝐿

and ℎ̂𝑛𝐿𝑀 :=
𝑥𝑛𝐿𝑀

| |h𝑛𝐿 | |+1/𝛽𝑛𝐿 + 𝜖
(3.56)

Point-wise interaction 𝜙. We adapt the notations and explicitly expand (3.24)-
(3.26) for clarity. The operations within a point-wise interaction block h𝑡+1

𝑢 =

𝜙(h𝑡𝑢, g𝑢) are defined as:

(f𝑡𝑢)𝑛𝐿𝑀 =
(
MLP1(h̄𝑡𝐴)

)
𝑛𝐿

(ĥ𝑡𝑢)𝑛𝐿𝑀 where (h̄𝑡𝑢, ĥ𝑡𝑢) = EvNorm(h𝑡𝑢) (3.57)

(q𝑢)𝑛𝐿𝑀 = (g𝑢)𝑛𝐿𝑀 +
∑︁
𝐿1,𝐿2

∑︁
𝑀1,𝑀2

(f𝑡𝑢)𝑛𝐿1𝑀1 (g𝑢)𝑛𝐿2𝑀2 𝐶
𝜈(𝑛),𝐿𝑀
𝐿1𝑀1;𝐿2𝑀2

(3.58)

(h𝑡+1
𝑢 )𝑛𝐿𝑀 = (h𝑡𝑢)𝑛𝐿𝑀 +

(
MLP2(q̄𝑢)

)
𝑛𝐿

(q̂𝑢)𝑛𝐿𝑀 where (q̄𝑢, q̂𝑢) = EvNorm(q𝑢)
(3.59)

where 𝜈 : N+ → N+ assigns an output multiplicity index 𝜈 to a group of feature
channels 𝑛.
For the special example of O(3) where the output multiplicity 𝜇(𝐿1, 𝐿2; 𝐿) ≤ 1 (see
Theorem S1 for definitions), we can restrict 𝜈(𝑛) ≡ 1 for all values of 𝑛, and (3.58)
can be rewritten as

(q𝑢)𝑛𝑙 𝑝𝑚 = (g𝑢)𝑛𝑙 𝑝𝑚 +
∑︁
𝑙1,𝑙2

∑︁
𝑚1,𝑚2

∑︁
𝑝1,𝑝2

(f𝑡𝑢)𝑛𝑙1𝑝1𝑚1 (g𝑢)𝑛𝑙2𝑝2𝑚2 𝐶
𝑙𝑚
𝑙1𝑚1;𝑙2𝑚2

𝛿
((−1)𝑙1+𝑙2+𝑙)
𝑝1·𝑝2·𝑝

(3.60)
which is based on the construction of 𝐶𝜈(𝑛),𝐿𝑀

𝐿1𝑀1;𝐿2𝑀2
in (3.51). The above form recovers

(3.25).



77

Matching layers. Based on Definition S3, we can define generalized matching
layers 𝜌𝑢 and 𝜌†𝑢 as (

𝜌𝑢 (h𝑡𝑢)
) 𝑖
𝑣
=

∑︁
𝐿,𝑀

(
W𝑖

𝐿 · (h
𝑡
𝑢)𝐿𝑀

)
· ⟨e𝑢;𝑣, 𝝅𝑢;𝐿,𝑀⟩ (3.61a)(

𝜌†𝑢 (m̃𝑡
𝑢)

)
𝐿𝑀

=
∑︁
𝑣

W†
𝐿
· (m̃𝑡

𝑢)𝑣 · ⟨𝝅𝑢;𝐿,𝑀 , e𝑢;𝑣⟩ (3.61b)

where W𝑖
𝐿

are learnable (1×𝑁h
𝐿
) matrices; W†

𝐿
are learnable (𝑁h

𝐿
× (𝑁 i 𝑁 j)) matrices

where 𝑁 i denotes the number of convolution channels (number of allowed 𝑖 in
(3.15)).

𝐺-equivariance

With main results from Corollary S2 and Corollary S3 and basic linear algebra,
the equivariance of UNiTE can be straightforwardly proven. 𝐺-equivariance of the
Diagonal Reduction layer 𝜓 is stated in Corollary S3, and it suffices to prove the
equivariance for other building blocks.
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Proof of 𝐺-equivariance for the convolution block (3.53). For any 𝑔 ∈ 𝐺:∑︁
𝑣2 , · · · ,𝑣𝑁

(
𝑔 · 𝑇®𝑢 (𝑣1, 𝑣2, · · · , 𝑣𝑁 )

) 𝑁∏
𝑗=2

(
𝜌𝑢 𝑗

(𝑔 · h𝑡𝑢 𝑗
)∗

) 𝑖
𝑣 𝑗

(3.62a)

=
∑︁

𝑣2 , · · · ,𝑣𝑁
((

⊗
®𝑢
𝜋1 (𝑔𝑢 𝑗

) · 𝑇®𝑢) (𝑣1, 𝑣2, · · · , 𝑣𝑁 ))
𝑁∏
𝑗=2

(
𝜌𝑢 𝑗

(𝜋2 (𝑔𝑢 𝑗
) · h𝑡𝑢 𝑗

)∗
) 𝑖
𝑣 𝑗

(3.62b)

=
∑︁

𝑣2 , · · · ,𝑣𝑁

(
(
⊗
®𝑢
𝜋1 (𝑔𝑢 𝑗

) · 𝑇®𝑢) (𝑣1, 𝑣2, · · · , 𝑣𝑁 )
) 𝑁∏
𝑗=2

( ∑︁
𝐿,𝑀

(D𝑢 𝑗
)𝐿,𝑀𝑣 𝑗 ·

(
W𝑖

𝐿 · (𝜋2 (𝑔𝑢 𝑗
) · h𝑡𝑢 𝑗

)𝐿𝑀
) )∗) 𝑖

(3.62c)

=
∑︁

𝑣2 , · · · ,𝑣𝑁

(
(
⊗
®𝑢
𝜋1 (𝑔𝑢 𝑗

) · 𝑇®𝑢) (𝑣1, 𝑣2, · · · , 𝑣𝑁 )
) 𝑁∏
𝑗=2

(
(
∑︁
𝐿,𝑀

W𝑖
𝐿 · (D𝑢 𝑗

)𝐿,𝑀𝑣 𝑗 · (𝜋2 (𝑔𝑢 𝑗
) · h𝑡𝑢 𝑗

)𝐿𝑀
) )∗) 𝑖

(3.62d)

(S35)
=

∑︁
𝑣2 , · · · ,𝑣𝑁

(
(
⊗
®𝑢
𝜋1 (𝑔𝑢 𝑗

) · 𝑇®𝑢) (𝑣1, 𝑣2, · · · , 𝑣𝑁 )
) 𝑁∏
𝑗=2

( ∑︁
𝐿,𝑀

(
W𝑖

𝐿 · (𝜋1 (𝑔𝑢 𝑗
) · D𝐿,𝑀

𝑢 𝑗
· h𝑡𝑢 𝑗

)𝑣 𝑗
) )∗) 𝑖 (3.62e)

=
∑︁

𝑣2 , · · · ,𝑣𝑁

(
(
⊗
®𝑢
𝜋1 (𝑔𝑢 𝑗

) · 𝑇®𝑢) (𝑣1, 𝑣2, · · · , 𝑣𝑁 )
) 𝑁∏
𝑗=2

(
𝜋1 (𝑔𝑢 𝑗

)∗ · (𝜌𝑢 𝑗
(h𝑡𝑢 𝑗

))∗
) 𝑖
𝑣 𝑗

(3.62f)

=
∑︁

𝑣2 , · · · ,𝑣𝑁

∑︁
𝑣′1 ,𝑣

′
2 , · · · ,𝑣

′
𝑁

(
(𝜋1 (𝑔𝑢 𝑗

))𝑣 𝑗 ,𝑣′𝑗 · 𝑇®𝑢 (𝑣
′
1, 𝑣

′
2, · · · , 𝑣

′
𝑁 )

) 𝑁∏
𝑗=2

∑︁
𝑣′′
𝑗

(𝜋1 (𝑔𝑢 𝑗
)∗)𝑣 𝑗 ,𝑣′′𝑗 ·

(
(𝜌𝑢 𝑗

(h𝑡𝑢 𝑗
))∗

) 𝑖
𝑣′′
𝑗

(3.62g)

=
∑︁

𝑣′1,𝑣′2 , · · · ,𝑣
′
𝑁

(𝜋1 (𝑔𝑢1 ))𝑣1 ,𝑣
′
1
𝑇®𝑢 (𝑣′1, 𝑣

′
2, · · · , 𝑣

′
𝑁 )

𝑁∏
𝑗=2

∑︁
𝑣 𝑗 ,𝑣

′′
𝑗

(𝜋1 (𝑔𝑢 𝑗
))𝑣 𝑗 ,𝑣′𝑗 (𝜋

1 (𝑔𝑢 𝑗
)∗)𝑣 𝑗 ,𝑣′′𝑗 ·

(
(𝜌𝑢 𝑗

(h𝑡𝑢 𝑗
))∗

) 𝑖
𝑣′′
𝑗

(3.62h)

=
∑︁

𝑣′1 ,𝑣
′
2 , · · · ,𝑣

′
𝑁

(𝜋1 (𝑔𝑢1 ))𝑣1 ,𝑣
′
1
𝑇®𝑢 (𝑣′1, 𝑣

′
2, · · · , 𝑣

′
𝑁 )

𝑁∏
𝑗=2

∑︁
𝑣′′
𝑗

𝛿
𝑣′′
𝑗

𝑣′
𝑗

·
(
(𝜌𝑢 𝑗

(h𝑡𝑢 𝑗
))∗

) 𝑖
𝑣′′
𝑗

(3.62i)

=
∑︁
𝑣′1

(𝜋1 (𝑔𝑢1 ))𝑣1 ,𝑣
′
1

∑︁
𝑣′2 , · · · ,𝑣

′
𝑁

𝑇®𝑢 (𝑣′1, 𝑣
′
2, · · · , 𝑣

′
𝑁 )

𝑁∏
𝑗=2

(
(𝜌𝑢 𝑗

(h𝑡𝑢 𝑗
))∗

) 𝑖
𝑣′
𝑗

(3.62j)

=
∑︁
𝑣′1

(𝜋1 (𝑔𝑢1 ))𝑣1 ,𝑣
′
1
(m𝑡

®𝑢)
𝑖
𝑣′1

(3.62k)

= 𝜋1 (𝑔𝑢1 ) · (m𝑡
®𝑢)

𝑖
𝑣′1

= (𝑔 · (m𝑡
®𝑢)

𝑖)𝑣1 (3.62l)

Proof of 𝐺-equivariance for the message passing block (3.54)-(3.55). From the
invariance condition 𝑔 · 𝛼𝑡, 𝑗®𝑢 = 𝛼

𝑡, 𝑗

®𝑢 , clearly∑︁
𝑢2,𝑢3, · · · ,𝑢𝑁

⊕
𝑖, 𝑗

(𝑔 · m𝑡
®𝑢)

𝑖 · 𝛼𝑡 , 𝑗®𝑢 =
∑︁

𝑢2,𝑢3, · · · ,𝑢𝑁

⊕
𝑖, 𝑗

(𝜋1(𝑔𝑢1) · (m𝑡
®𝑢)

𝑖) · 𝛼𝑡 , 𝑗®𝑢 (3.63a)

= 𝜋1(𝑔𝑢1) ·
∑︁

𝑢2,𝑢3, · · · ,𝑢𝑁

⊕
𝑖, 𝑗

((m𝑡
®𝑢)

𝑖) · 𝛼𝑡 , 𝑗®𝑢 (3.63b)

= 𝜋1(𝑔𝑢1) · m̃𝑡
𝑢1 = 𝑔 · m̃𝑡

𝑢1 (3.63c)

Proof of 𝐺-equivariance for EvNorm (3.56). Note that the vector norm | |x𝑛𝐿 | | is
invariant to unitary transformations x𝑛𝐿 ↦→ 𝑈𝐿

𝑔𝑢
· x𝑛𝐿 . Then (𝑔 · x) = | |x𝑛𝐿 | |−𝜇𝑥𝑛𝐿

𝜎𝑥
𝑛𝐿

= x̄,

and (̂𝑔 x𝑛𝐿) = (𝜋2 (𝑔𝑢)·𝑥)𝑛𝐿𝑀
| |x𝑛𝐿 | |+1/𝛽𝑛𝐿+𝜖 = 𝜋

2(𝑔𝑢) · x̂𝑛𝐿 = 𝑔 · x̂𝑛𝐿 .
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Proof of 𝐺-equivariance for the point-wise interaction block (3.57)-(3.59). Equiv-
ariances for (3.57) and (3.59) are direct consequences of the equivariance of EvNorm
(𝑔 · x) = x̄ and (̂𝑔 x𝑛𝐿) = 𝑔 · x̂𝑛𝐿 , if 𝑔𝑢 · x𝑛𝐿 = 𝜋2(𝑔𝑢) · x𝑛𝐿 ≡ 𝑈𝐿

𝑔𝑢
· x𝑛𝐿 . Then it

suffices to prove 𝑔 · (q𝑢)𝑛𝐿 = 𝑈𝐿
𝑔𝑢

· (q𝑢)𝑛𝐿 , which is ensured by (3.50):

(𝑔𝑢 · g𝑢)𝑛𝐿𝑀 +
∑︁
𝐿1,𝐿2

∑︁
𝑀1,𝑀2

(𝑔𝑢 · f𝑡𝑢)𝑛𝐿1𝑀1 (𝑔𝑢 · g𝑢)𝑛𝐿2𝑀2 𝐶
𝜈 (𝑛) ,𝐿𝑀
𝐿1𝑀1;𝐿2𝑀2

(3.64a)

= (𝑈𝐿
𝑔𝑢

· g𝑢)𝑛𝐿𝑀 +
∑︁
𝐿1,𝐿2

∑︁
𝑀1,𝑀2

(𝑈𝐿1
𝑔𝑢

· f𝑡𝑢)𝑛𝐿1𝑀1 (𝑈𝐿2
𝑔𝑢

· g𝑢)𝑛𝐿2𝑀2 𝐶
𝜈 (𝑛) ,𝐿𝑀
𝐿1𝑀1;𝐿2𝑀2

(3.64b)

= (𝑈𝐿
𝑔𝑢

· g𝑢)𝑛𝐿𝑀 +
∑︁
𝐿1,𝐿2

∑︁
𝑀1,𝑀2

∑︁
𝑀′

1,𝑀
′
2

(𝑈𝐿1
𝑔𝑢

⊗ 𝑈𝐿2
𝑔𝑢
)𝑀2,𝑀

′
2

𝑀1,𝑀
′
1
· (f𝑡𝑢)𝑛𝐿1𝑀

′
1
(g𝑢)𝑛𝐿2𝑀

′
2
𝐶

𝜈 (𝑛) ,𝐿𝑀
𝐿1𝑀1;𝐿2𝑀2

(3.64c)
(S33)
= (𝑈𝐿

𝑔𝑢
· g𝑢)𝑛𝐿𝑀 +

∑︁
𝐿1,𝐿2

∑︁
𝑀′

1,𝑀
′
2

∑︁
𝑀′

(𝑈𝐿
𝑔𝑢
)𝑀,𝑀′ ·

(
(f𝑡𝑢)𝑛𝐿1𝑀

′
1
(g𝑢)𝑛𝐿2𝑀

′
2
𝐶

𝜈 (𝑛) ,𝐿𝑀′

𝐿1𝑀
′
1;𝐿2𝑀

′
2

)
(3.64d)

= 𝑈𝐿
𝑔𝑢

·
(
g𝑢 +

∑︁
𝐿1,𝐿2

∑︁
𝑀′

1,𝑀
′
2

(f𝑡𝑢)𝑛𝐿1𝑀
′
1
(g𝑢)𝑛𝐿2𝑀

′
2
𝐶

𝜈 (𝑛) ,𝐿𝑀′

𝐿1𝑀
′
1;𝐿2𝑀

′
2

)
𝑛𝐿𝑀

(3.64e)

= 𝑈𝐿
𝑔𝑢

· (q𝑢)𝑛𝐿𝑀 = 𝜋2(𝑔𝑢) · (q𝑢)𝑛𝐿𝑀 = 𝑔 · (q𝑢)𝑛𝐿𝑀 (3.64f)

For permutation equivariance, it suffices to realize 𝜎(T) ≡ T due to the symmetric
condition in Definition S2 so (3.53) is invariant under 𝜎, the permutation invariance
of 𝜓 (see Equation 3.48), and the actions of 𝜎 on network layers in 𝜙 defined for a
single dimension {(𝑢; 𝑣)} are trivial (since 𝜎(𝑢) ≡ 𝑢).

3.10 Appendix
Additional neural network details
Efficient GPU evaluation of spherical harmonics and Clebsch-Gordan
coefficients

All O(3)-representation related operations are implemented through element-wise
operations on arrays and gather-scatter operations, without the need of recursive
computations that can be difficult to parallelize on GPUs at runtime. The real
spherical harmonics (RSHs) are computed based on Equations 6.4.47-6.4.50 of [172],
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which reads:

𝑌𝑙𝑚(®𝑟) = 𝑁S
𝑙𝑚

[ (𝑙−|𝑚 |/2) ]∑︁
𝑡=0

𝑡∑︁
𝑢=0

[ |𝑚 |/2−𝑣𝑚 ]+𝑣𝑚∑︁
𝑣=𝑣𝑚

𝐶𝑙𝑚
𝑡𝑢𝑣 (

𝑥

∥𝑟 ∥ )
2𝑡+|𝑚 |−2(𝑢+𝑣) ( 𝑦

∥𝑟 ∥ )
2(𝑢+𝑣) ( 𝑧

∥𝑟 ∥ )
𝑙−2𝑡−|𝑚 |

(3.65a)

𝐶𝑙𝑚
𝑡𝑢𝑣 = (−1)𝑡+𝑣−𝑣𝑚 (1

4
)𝑡

(
𝑙

𝑡

) (
𝑙 − 𝑡
|𝑚 | + 𝑡

) (
𝑡

𝑢

) (
|𝑚 |
2𝑣

)
(3.65b)

𝑁S
𝑙𝑚 =

1
2 |𝑚 | 𝑙!

√︂
2(𝑙 + |𝑚 |)!(𝑙 − |𝑚 |)!

2𝛿0𝑚
(3.65c)

𝑣𝑚 =


0 if 𝑚 ≥ 0
1
2 if 𝑚 < 0

(3.65d)

where [·] is the floor function. The above scheme only requires computing element-
wise powers of 3D coordinates and a linear combination with pre-tabulated coeffi-
cients. The Clebsch-Gordan (CG) coefficients are first tabulated using their explicit
expressions for complex spherical harmonics (CSHs) based on Equation 3.8.49 of
Ref. 15, and are then converted to RSH CG coefficients with the transformation
matrix between RSHs and CSHs [173].

Multiple input channels

UNiTE is naturally extended to inputs that possess extra feature dimensions, as
in the case of AO features T described in Section 3.7 the extra dimension equals
the cardinality of selected QM operators. Those stacked features is processed by a
learnable linear layer Win resulting in a fixed-size channel dimension. Each channel
is then shared among a subset of convolution channels (indexed by 𝑖), instead of
using one convolution kernel for all channels 𝑖. For the numerical experiments of
this work, T are mixed into 𝐼 input channels by Win and we assign a convolution
channel to each input channel.

Restricted summands in Clebsch-Gordan coupling

For computational efficiency, in the Clebsch-gordan coupling (3.25) (i.e., (3.60)) of
a point-wise interaction block, we further restrict the angular momentum indices
(𝑙1, 𝑙2) within the range {(𝑙1, 𝑙2); 𝑙1 + 𝑙2 ≤ 𝑙max, 𝑙1 ≤ 𝑛, 𝑙2 ≤ 𝑛} where 𝑙max is the
maximum angular momentum considered in the implementation.
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Incorporating geometric information

Because the point cloud of atomic coordinates x is available in addition to the
atomic-orbital-based inputs T, we incorporated such geometric information through
the following modified message-passing scheme to extend (3.17):

(m̃𝑡
𝐴)𝑙𝑚 =

∑︁
𝐵≠𝐴

⊕
𝑖, 𝑗

(
(m𝑡,𝑖

𝐴𝐵
)𝑙𝑚 + 𝑌𝑙𝑚 (𝑥𝐴𝐵)

(
W𝑙,𝑡

𝑖
| |m𝑡,𝑖

𝐴𝐵
| |
) )

· 𝛼𝑡, 𝑗
𝐴𝐵

(3.66)

where 𝑌𝑙𝑚 denotes a spherical harmonics of degree 𝑙 and order 𝑚, 𝑥𝐴𝐵 := ®𝑥𝐴𝐵
| | ®𝑥𝐴𝐵 | |

denotes the direction vector between atomic centers A and B, and W𝑙,𝑡
𝑖

are learnable
linear functions.

Pooling layers
We define schemes for learning different classes of chemical properties with OrbNet-
Equi without modifying the base UNiTE model architecture. We use 𝐴 to denote
an atom index, |𝐴| to denote the total number of atoms in the molecule, 𝑧𝐴 ∈ N+ to
denote the atomic number of atom 𝐴, and ®𝑥𝐴 ∈ R3 to denote the atomic coordinate
of atom 𝐴.

Energetic properties

A representative target in this family is the molecular electronic energy 𝐸 (x) (i.e.,
𝑈0 in the convention of QM9), which is rotation-invariant and proportional to the
system size (i.e., extensive). The pooling operation is defined as:

𝑦𝜃 =
∑︁
𝐴

Wo · | |h
𝑡 𝑓

𝐴
| |+𝑏o

𝑧𝐴
(3.67)

which is a direct summation over atom-wise contributions. Wo is a learnable linear
layer and 𝑏o

𝑧𝐴
are learnable biases for each atomic number 𝑧. To account for nuclei

contributions to molecular energies, we initialize 𝑏o
𝑧 from a linear regression on the

training labels with respect to {𝑧𝐴} to speed up training on those tasks. This scheme
is employed for learning𝑈0,𝑈, 𝐻, 𝐺, ZPVE, and 𝑐𝑣 on QM9, the energies part in
MD17 and for the OrbNet-Equi/SDC21 model.
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Dipole moment ®𝜇

The dipole moment ®𝜇 can be thought as a vector inR3. It is modelled as a combination
of atomic charges 𝑞𝐴 and atomic dipoles ®𝜇𝐴, and the pooling operation is defined as

®𝜇𝜃 =
∑︁
𝐴

( ®𝑅𝐴 · 𝑞𝐴 + ®𝜇𝐴) (3.68)

𝑞𝐴 = 𝑞′𝐴 − Δ𝑞 where Δ𝑞 :=
∑
𝐴 𝑞

′
𝐴

|𝐴| (3.69)

𝑞′𝐴 := Wo,0 · (h
𝑡 𝑓

𝐴
)𝑙=0,𝑝=1 + 𝑏o

𝑧𝐴
(3.70)

( ®𝜇𝐴)𝑚 := Wo,1 · (h
𝑡 𝑓

𝐴
)𝑙=1,𝑝=1,𝑚 where 𝑚 ∈ {𝑥, 𝑦, 𝑧} (3.71)

where Wo,0 and Wo,1 are learnable linear layers. Equation 3.69 ensures the translation
invariance of the prediction through charge neutrality.
Note that OrbNet-Equi is trained by directly minimizing a loss function L( ®𝜇, ®𝜇𝜃)
between the ground truth and the predicted molecular dipole moment vectors. For
the published QM9 reference labels [65] only the dipole norm 𝜇 := | | ®𝜇 | | is available;
we use the same pooling scheme to readout ®𝜇𝜃 but train on L(𝜇, | | ®𝜇𝜃 | |) instead to
allow for comparing to other methods in Table 3.1.

Polarizability 𝛼

For isotropic polarizability 𝛼, the pooling operation is defined as

𝛼𝜃 =
∑︁
𝐴

(𝛼𝐴 + ®𝑅𝐴 · ®𝑝𝐴) (3.72)

𝛼𝐴 := Wo,0 · (h
𝑡 𝑓

𝐴
)𝑙=0,𝑝=1 + 𝑏o

𝑧𝐴
(3.73)

®𝑝𝐴 = ®𝑝′𝐴 − Δ ®𝑝 where Δ ®𝑝 :=
∑
𝐴
®𝑝′𝐴

|𝐴| (3.74)

( ®𝑝′𝐴)𝑚 := Wo,1 · (h
𝑡 𝑓

𝐴
)𝑙=1,𝑝=1,𝑚 where 𝑚 ∈ {𝑥, 𝑦, 𝑧} (3.75)

Molecular orbital properties

For frontier molecular orbital energies, a global-attention based pooling is employed
to produce intensive predictions:

𝑎𝐴 = Softmax(Wa · | |h
𝑡 𝑓

𝐴
| |) :=

Wa · | |h
𝑡 𝑓

𝐴
| |∑

𝐴 Wa · | |h
𝑡 𝑓

𝐴
| |

(3.76)

𝑦𝜃 =
∑︁
𝐴

𝑎𝐴 · (Wo · | |h
𝑡 𝑓

𝐴
| |+𝑏o

𝑧𝐴
) (3.77)
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where Wa and Wo are learnable linear layers and 𝑏o
𝑧𝐴

are learnable biases for each
atomic number 𝑧. Similar to energy tasks, we initialize 𝑏o

𝑧 from a linear fitting on the
targets to precondition training.
We take the difference between the predicted HOMO energies (𝜖HOMO) and LUMO
energies (𝜖LUMO) as the HOMO-LUMO Gap (Δ𝜖) predictions.

Electronic spatial extent ⟨𝑅2⟩

The pooling scheme for ⟨𝑅2⟩ is defined as:

⟨𝑅2⟩𝜃 =
∑︁
𝐴

( | | ®𝑅𝐴 − ®𝑅0 | |2·𝑞𝐴 + 𝑠𝐴) (3.78)

®𝑅0 :=
∑
𝐴 ( ®𝑅𝐴 · 𝑞𝐴 + ®𝜇𝐴)∑

𝐴 𝑞𝐴
(3.79)

𝑞𝐴 := Wo,0 · (h
𝑡 𝑓

𝐴
)𝑙=0,𝑝=1 + 𝑏o

𝑧𝐴
(3.80)

( ®𝜇𝐴)𝑚 := Wo,1 · (h
𝑡 𝑓

𝐴
)𝑙=1,𝑝=1,𝑚 where 𝑚 ∈ {𝑥, 𝑦, 𝑧} (3.81)

𝑠𝐴 := Wo,2 · (h
𝑡 𝑓

𝐴
)𝑙=0,𝑝=1 (3.82)

where Wo,0, Wo,1, and Wo,2 are learnable linear layers.

Electron densities 𝜌(®𝑟)

Both the ground truth and predicted electron densities 𝜌(®𝑟) are represented as a
superposition of atom-centered density fitting basis {𝜒},

𝜌(®𝑟) =
𝑁atom∑︁
𝐴

𝑙max (𝑧𝐴)∑︁
𝑙

𝑙∑︁
𝑚=−𝑙

𝑛max (𝑧𝐴,𝑙)∑︁
𝑛

𝑑𝑛𝑙𝑚𝐴 𝜒𝑛𝑙𝑚𝐴 (®𝑟) (3.83)

similar to the approach employed in [131]; here we use the def2-TZVP-JKFIT density
fitting basis for {𝜒}. Computational details regarding obtaining the reference density
coefficients 𝑑𝑛𝑙𝑚

𝐴
are given in Section 3.8, and the training loss function is defined in

SI 3.10. The pooling operation to predict 𝜌(®𝑟) from UNiTE is defined as

𝑑𝑛𝑙𝑚𝐴 :=
(
Wd

𝑧𝐴,𝑙
· (h𝑡 𝑓

𝐴
)𝑙,𝑝=1,𝑚

)
𝑛

(3.84)

where Wd
𝑧,𝑙

are learnable weight matrices specific to each atomic number 𝑧 and
angular momentum index 𝑙, and 𝑧𝐴 denotes the atomic number of atom 𝐴. This
atom-centered expansion scheme compactly parameterizes the model-predicted
density 𝜌̂(®𝑟). We stress that all UNiTE neural network parameters except for this
density pooling layer (3.84) are independent of the atomic numbers 𝑧.
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Time complexity
The asymptotic time complexity of UNiTE model inference is O(𝐵𝑁𝐼), where 𝐵
is the number of non-zero elements in T, and 𝐼 denotes the number of convolution
channels in a convolution block (3.15). This implies UNiTE scales as O(𝑁 (𝑛𝑑)𝑁 ) if
the input is dense, but can achieve a lower time complexity for sparse inputs, e.g.,
when long-range cutoffs are applied. We note that in each convolution block (3.15)
the summand 𝑇®𝑢,®𝑣 ·

∏𝑁
𝑗=2

(
𝜌𝑢 𝑗

(h𝑡𝑢 𝑗
)
) 𝑖
𝑣 𝑗

≠ 0 only if the tensor coefficient 𝑇®𝑢,®𝑣 ≠ 0;
therefore (3.15) can be exactly evaluated using ((𝑁 − 1)𝐵𝐼) arithmetic operations.
In each message passing block (3.17) the number of arithmetic operations scales
as O(𝐵′𝐼) where 𝐵′ is the number of indices ®𝑢 such that m𝑡

®𝑢 ≠ 0, and 𝐵′ ≤ 𝐵.
The embedding block 𝜙 and the point-wise interaction block 𝜓 has O(𝑑) time
complexities since they act on each point independently and do not contribute to the
asymptotic time complexity.

Additonal numerical results
The QM9 dataset

We provide the QM9 MAEs on all 12 target properties as reported in Table 3.1. The
standardized MAE and standardized log MAE in Table 3.1 are computed following
the Appendix C of [53]. Uncertainties for test MAEs are obtained by statistical
bootstrapping with sample size 5000 and 100 iterations.

MD17 and rMD17 datasets

The MD17 dataset [139] contains energy and force labels from molecular dynamics
trajectories of small organic molecules, and is used to benchmark ML methods for
modelling a single instance of a molecular potential energy surface. Recently the
revised-MD17 (rMD17) dataset[137] was reported with improved label fidelity. For
both the MD17 and the rMD17 dataset, We train OrbNet-Equi simultaneously on
energies and forces of 1000 geometries of each molecule and test on another 1000
geometries of the same molecule, using previously reported dataset splits (Section
3.10). All results are obtained without performing system-specific hyperparameter
selections and without using additional regularization techniques such as model
ensembling or stochastic weight averaging [174].
As shown in Table 3.2 and Table 3.3, OrbNet-Equi with direct learning achieves
competitive accuracy when compared against the best results reported by kernel
methods [137, 175] and graph neural networks (GNNs) [53, 109, 138]. Additional
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Table 3.3: OrbNet-Equi test force MAEs (in kcal/mol/Å) on the original MD17
dataset using 1000 training geometries.

Molecule OrbNet-Equi (direct learning) OrbNet-Equi (delta learning)

Aspirin 0.156 0.118

Ethanol 0.092 0.069

Malonaldehyde 0.159 0.128

Naphthalene 0.064 0.048

Salicylic Acid 0.097 0.067

Toluene 0.072 0.057

Uracil 0.098 0.072

Table 3.4: OrbNet-Equi inference time breakdowns (mean/std in milliseconds) for
the calculation of energy and forces on the Hutchison dataset [64].

Feature generation NN inference NN back propagation Nuclear gradients calculation

85.8 ± 40.1 181 ± 83 273 ± 73 33.2 ± 1.8

performance gains are observed when the models are trained with the delta learning
strategy, resulting in the lowest test MAEs for both energy and forces on most of
the test molecules. We note that MD17 represents an ideal case scenario where
abundant high-level reference calculations are available on the potential energy
surface of a single chemical system and the configurations of interest only spans a
thermally-accessible energy scale. Despite the highly-interpolative nature of this
learning task, OrbNet-Equi results still matches the accuracy that can be achieved with
state-of-the-art neural network potentials for which system-dependent optimizations
are often employed.

Inference timings

Wall-clock timing results for evalulating the pretrained OrbNet-Equi/SDC21 model
are reported on the Hutchison dataset [64] which represents the distribution of
realistic drug-like molecules,. All timing results are obtained using 16 cores of an
Intel Xeon Gold 6130 CPU. We note that due to the use of a Lagrangian formalism
we previous developed [75] to efficiently compute the analytic nuclear gradients in
which the operator derivatives with respect to atomic coordinates are not explicitly
evaluated, for such medium-sized organic molecules the overhead for computing
energy and forces in addition to only computing the energies is still dominated by
neural network back propagation.
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Downstream benchmarks

Table 3.5-3.7 provide summary statistics of method performances on downstream
main-group quantum chemistry benchmarks considered in this study.
Additional computational details for geometry optimization experiments are provided
as follows. The symmetry-corrected root-mean-square-deviations (RMSDs) are
computed between the test geometries and the reference DFT (𝜔B97X-D3/def2-
TZVP) geometries following a Hungarian algorithm [176] to account for equivalent
atoms. OrbNet-Equi/SDC21 and GFN-xTB results are obtained using Entos Qcore
version 1.1.0 with the L-BFGS algorithm with tight thresholds (energy change after
iteration < 1E-6 a.u., gradient RMS < 4.5E-4 a.u, max element of gradient < 3E-4
a.u., optimization step RMS < 1.8E-3 a.u., and max element of optimization step <
1.2E-3 a.u.). GFN2-xTB results are obtained with the XTB [66] package with default
settings. ANI-2x energy calculations are performed with the TorchANI [177] package
and geometry optimizations are performed with the geomeTRIC optimizer [95] with
default settings. Using this software setting, ANI-2x optimizations are found unable
to converge on 21 out of 52 conformers on MCONF and 1 out of 12 conformers
on ROT34, and the average errors are reported as “-”. On the subsets that ANI-2x
geometry optimizations converged, the average RMSD for ANI-2x is 0.154±0.038
on ROT34 and 0.324±0.026 on MCONF versus the reference geometries. The
histograms and kernel density estimations displayed in Figure 3.5d are computed on
the subsets where all methods successfully converged, that is, 11 conformers from
ROT34 and 31 conformers from MCONF.

Hyperparameters and training details
Model hyperparameters

We use the same set of model hyperparameters to obtain all numerical experiment
results on open benchmarks reported in this work. The hyperparameters are
summarized in Table 3.9 and Table 3.10. The hyperparameters for the OrbNet-
Equi/SDC21 model is locally optimized based on a 4219-sample validation set from
the training data distribution, with the additional difference of using LayerNorm [158]
for mean 𝜇 and variance 𝜎 estimates, and 𝜖 = 0.5 in all EvNorm layers. This choice
is made to improve model robustness when applied to extrapolative molecular
geometries.
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Table 3.10: The number of feature channels 𝑁h
𝑙 𝑝

for each representation group (𝑙, 𝑝)
of h𝑡 used in this work across all values of 𝑡. Note that 𝑙max = 4.

𝑁𝑙 𝑝 𝑙 = 0 𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4

𝑝 = +1 128 48 24 12 6
𝑝 = −1 24 8 4 2 0

Training

For all training setups we use the Adam optimizer [97] with maximal learning rate
5 × 10−4 and parameters 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−4. The loss function
denoted as L below refers to a SmoothL1Loss function [179]. Batch sizes and the
total number of epochs are adjusted for different benchmarks to account for their
vastly different training set sizes, as detailed below. No additional regularization
such as weight decay or early stopping is employed.

QM9

For QM9 tasks we optimize the model using the loss L(𝑦, 𝑦𝜃) for each target 𝑦. We
use a batch size of 64 when the training sample size > 1000, and a batch size of 16
for smaller training sizes. We employ a learning rate schedule of first performing
linear warmup for 100 epochs to the maximal learning rate followed by a cosine
learning rate annealing [180] for 200 epochs. Models are trained on a single Nvidia
Tesla V100-SXM2-32GB GPU, taking around 36 hours for training runs with 110k
training samples.

MD17

For MD17, we optimize the model by simultaneously training on energies 𝐸 (R) and
forces F(R), using the following loss function:

LE+F(𝐸,F; 𝐸𝜃 ,F𝜃) := 𝑐E·L(𝐸 (R); 𝐸𝜃 (R))+𝑐F·
1

3|𝐴|

|𝐴|∑︁
𝐴

∑︁
𝑚∈{𝑥,𝑦,𝑧}

L(−𝜕𝐸𝜃 (R))
𝜕𝑅𝐴,𝑚

−𝐹𝐴,𝑚 (R))

(3.85)
Following previous works [51, 53, 138], we set 𝑐E = 1, 𝑐F = 1000 for training on the
rMD17 labels, and 𝑐E = 0, 𝑐F = 1000 for training on the original MD17 labels. For
each molecular system, we use the 1000 geometries of the ‘train 01’ subset given
by [137] for training and the 1000 geometries of the ‘test 01’ subset for testing. We
use a batch size of 8, and train the model on a single Nvidia Tesla V100-SXM2-32GB



95

GPU for 1500 epochs using a step decay learning rate schedule, taking around 30
hours for each training run.
For proof-of-principle purposes, the gradients of tight-binding features with respect
to atomic coordinates are obtained using finite difference with a 5-point stencil
for each degree of freedom. The grid spacing between the stencil points is set to
0.01 Bohr. We note that in principle, this cost of evaluating and storing feature
gradients can be avoided if the electronic structure method is implemented with
back-propagation and the model can be trained end-to-end on both energy and force
labels.

Electron densities

For electron density, we train the models on the analytic 𝐿2 density loss following [27]:

L𝜌 (𝜌, 𝜌̂) :=
∫

∥𝜌(®𝑟) − 𝜌̂(®𝑟)∥2𝑑®𝑟 = (d − d̂)𝑇 S𝜌 (d − d̂) (3.86)

where the density coefficients d :=
⊕

𝐴,𝑛,𝑙,𝑚 𝑑
𝑛𝑙𝑚
𝐴

are defined in (3.7), and S𝜌 is the
overlap matrix of the density fitting basis {𝜒}. A sparse COO format is used for S𝜌

to efficiently compute L𝜌 during batched training. We use a batch size of 64 and a
cosine annealing learning schedule for training; the models are trained on a single
Nvidia Tesla V100-SXM2-32GB GPU for 2000 epochs on the BFDb-SSI dataset
taking 10 hours, and for 500 epochs on the QM9 dataset taking 120 hours.

The OrbNet-Equi/SDC21 model

The training dataset (see Methods 3.8) contains different geometries 𝑏η for each
molecule 𝜂 in the dataset. We train on a loss function following [76]:

LG(𝐸 (𝜂, 𝑏η), 𝐸𝜃 (𝜂, 𝑏η)) := L(𝐸 (𝜂, 𝑏η), 𝐸𝜃 (𝜂, 𝑏η) (3.87)

+ 𝑐G · L(𝐸 (𝜂, 𝑏η) − 𝐸 (𝜂, 𝑏̂η), 𝐸𝜃 (𝜂, 𝑏η) − 𝐸𝜃 (𝜂, 𝑏̂η))

where 𝑏̂η is a geometry randomly sampled from all the geometries {𝑏η} of each
molecule 𝜂 within each mini-batch during training. We use 𝑐G = 10 in this work.
We train the model for 125 epochs on a Nvidia Tesla V100-SXM2-32GB GPU using
a batch size of 64 and a cosine annealing learning rate schedule taking 64 hours.
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C h a p t e r 4

MULTISCALE EQUIVARIANT SCORE-BASED GENERATIVE
MODELING FOR DYNAMIC-BACKBONE PROTEIN-LIGAND

STRUCTURE PREDICTION

This chapter is based on the following publication:

[1] Zhuoran Qiao, Weili Nie, Arash Vahdat, Thomas F. Miller III, and Ani-
mashree Anandkumar. “Dynamic-Backbone Protein-Ligand Structure Pre-
diction with Multiscale Generative Diffusion Models”. In: arXiv preprint
arXiv:2209.15171 (2022). In submission. To appear at Machine Learning in
Structural Biology workshop at NeurIPS 2022 as a Contributed Talk. doi:
10.48550/ARXIV.2209.15171.

Abstract
Molecular complexes formed by proteins and small-molecule ligands are ubiquitous,
and predicting their 3D structures can facilitate both biological discoveries and the
design of novel enzymes or drug molecules. Here we propose NeuralPLexer, a deep
generative model framework to rapidly predict protein-ligand complex structures
and their fluctuations using protein backbone template and molecular graph inputs.
NeuralPLexer jointly samples protein and small-molecule 3D coordinates at an atom-
istic resolution through a generative model that incorporates biophysical constraints
and inferred proximity information into a time-truncated diffusion process. The
reverse-time generative diffusion process is learned by a novel stereochemistry-aware
equivariant graph transformer that enables efficient, concurrent gradient field predic-
tion for all heavy atoms in the protein-ligand complex. NeuralPLexer outperforms
existing physics-based and learning-based methods on benchmarking problems
including fixed-backbone blind protein-ligand docking and ligand-coupled binding
site repacking. Moreover, we identify preliminary evidence that NeuralPLexer
enriches bound-state-like protein structures when applied to systems where protein
folding landscapes are significantly altered by the presence of ligands. Our results
reveal that a data-driven approach can capture the structural cooperativity among
protein and small-molecule entities, showing promise for the computational identifi-
cation of novel drug targets and the end-to-end differentiable design of functional
small-molecules and ligand-binding proteins.

https://doi.org/10.48550/ARXIV.2209.15171
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4.1 Introduction
Protein structures are dynamically modulated by their interactions with small-
molecule ligands, triggering downstream responses that are crucial to the regulation
of biological functions [181–183]. Proposing ligands that selectively target protein
conformations has become an increasingly important strategy in small-molecule-
based therapeutics [184–186]. However, computational prediction of protein-ligand
structures that are coupled to receptor conformational responses is still hampered by
the prohibitive cost of physically simulating slow protein state transitions [187, 188],
as well as the static nature of existing protein folding prediction algorithms [5, 189].
While several schemes have been proposed to remedy these issues [190–199], such
methods often require case-specific expert interventions and lack a unified framework
to predict 3D structures in a systematic and cooperative fashion.
A data-driven approach may facilitate the study of protein-small-molecule interactions
on many aspects. One important category of under-addressed problem in structural
biology is the prediction of protein-ligand complex structures with significant binding-
induced protein conformational changes, which is common for those involved in
allosteric regulations. The identification of an unobserved non-native proteome for
proposing new drugs with unconventional action mechanism. Traditional structure-
based drug design are largely limited to inhibitors for proteins with well-characterized
binding pockets, but recent experimental evidences suggest that a large fraction
of the human proteome are potential drug targets because of under-characterized
ligand-specific conformational changes. Such allosteric modulators raise immense
opportunities for small-molecule-based therapeautics, but the discovery of such
functional molecules has been mostly serendipitous due to the lack of experimental
approaches to systematically resolve dynamic protein structures, the prohibitive
cost of predicting milisecond-scale protein state transition behaviors using physical
simulations, as well as the static nature of existing protein structure prediction
algorithms such as AlphaFold. A computational method that rapidly generates
protein-ligand complex structures can therefore significantly aid the process of
unconventional target identification and rational allosteric modulator design.
Here we propose NeuralPLexer, a Neural framework for Protein-Ligand complex
structure prediction. NeuralPLexer leverages diffusion-based generative model-
ing [200, 201] to sample 3D structures from a learned statistical distribution. We
demonstrate that the multi-scale inductive bias in biomolecular complexes can
be feasibly integrated with diffusion models by designing a finite-time stochastic
differential equation (SDE) with structured drift terms. Owing to this formulation,
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NeuralPLexer can generalize to ligand-unbound or predicted protein structure inputs
once trained solely on experimental protein-ligand complex structures that are not
paired to alternative protein conformations. When applied to blind protein-ligand
docking, NeuralPLexer improves both the geometrical accuracy and structure quality
compared to baseline methods; when applied to ligand binding site design, an inpaint-
ing version of NeuralPLexer can accurately repack 44% of failed AlphaFold2 [5]
binding sites with up to 60% success rate improvements compared to the method
in Rosetta [202]. Furthermore, NeuralPLexer only requires molecular graphs as
ligand inputs, therefore can enable end-to-end gradient-based design for functional
small-molecules and ligand-binding proteins when coupled to recently-proposed
differentiable protein sequence [203–205] and molecular graph generators [206,
207].

4.2 Method
We assume the model inputs are a receptor protein backbone template containing
the amino acid sequence s and (N, C𝛼, C) atomic coordinates x̃ ∈ R𝑛res×3×3,
and a set of ligand molecular graphs {G𝑘 }𝐾𝑘=1 containing atom/bond types and
stereochemistry labels (e.g., tetrahedral or E/Z isomerism [208]). We aim to sample
(x, y) ∼ 𝑞𝜙 (·|s, x̃, {G}) from a generative model 𝑞𝜙 with predicted 3D heavy-atom
coordinates of the protein x ∈ R𝑛×3 and that of the ligands y ∈ R𝑚×3. It can be
understood as a conditional generative modeling problem for partially-observed
systems.
NeuralPLexer adopts a two-stage architecture for protein-ligand structure prediction
(Figure4.1a). The input protein backbone template and molecule graphs are first
encoded and passed into a contact predictor that iteratively samples binding interface
spatial proximity distributions for each ligand in {G}; the output contact map
parameterizes the geometry prior, a finite-time marginal of a designed SDE that
progressively injects structured noise into the data distribution. An equivariant
structure diffusion module (ESDM) then jointly generates 3D protein and ligand
structures by denoising the atomic coordinates sampled from the geometry prior
through a learned reverse-time SDE (Figure4.1b).

Protein-ligand structure generation with biophysics-informed diffusion processes
Diffusion models [201] introduce a forward SDE that diffuses data into a noised
distribution and a neural-network-parameterized reverse-time SDE that generate
data by reverting the noising process. To motivate the design principles for our
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biomolecular structure generator, we first consider a general class of linear SDEs
known as the multivariate Ornstein–Uhlenbeck (OU) process [209] for point cloud
Z ∈ R𝑁×3:

𝑑Z𝑡 = −ΘZ𝑡𝑑𝑡 + 𝜎𝑑W𝑡 (4.1)

where Θ ∈ R𝑁×𝑁 is an invertible matrix of affine drift coefficients and W𝑡 is a
standard 3𝑁-dimensional Wiener process. The forward noising SDEs used in
standard diffusion models [210, 211] can be recovered by setting Θ = 𝜃I, converging
to an isotropic Gaussian prior distribution at the 𝑡 → ∞ (often expressed as 𝑡 → 1
with reparameterized 𝑡 [212]) limit. In contrast, we design a multivariate SDE with
data-dependent drift matrix Θ(Z0) and truncate the SDE at 𝑡 = 𝑇∗ < ∞ such that the
final state of forward noising process is a partially-diffused, structured distribution
𝑞𝑇∗ that can be well approximated by a coarse-scale model. We propose a set of
SDEs depicted by Figure4.1d and detailed in Table 4.1, with separated lengthscale
parameters 𝜎1, 𝜎2 such that the forward diffusion process erases residue-scale local
details but retains global information about protein domain packing and ligand
binding interfaces, yielding the following time-dependent transition kernels:

𝑞𝑡
(
xC𝛼 (𝑡) |x(0), y(0)

)
= N

(
xC𝛼 (0);𝜎2

1 𝜏I
)

(4.2)

𝑞𝑡
(
xnonC𝛼 (𝑡) − xC𝛼 (𝑡) |x(0), y(0)

)
= N

(
𝑒−𝜏

(
xnonC𝛼 (0) − xC𝛼 (0)

)
; 2𝜎2

1 (1 − 𝑒−2𝜏)I
)

(4.3)

𝑞𝑡
(
y(𝑡) − cTxC𝛼 (𝑡) |x(0), y(0)

)
= N

(
𝑒−𝜏

(
y(0) − cTxC𝛼 (0)

)
;𝜎2

1 (1 − 𝑒−2𝜏) (I + cTc)
)

(4.4)

where we use an exponential schedule 𝜏 = (𝜎2
min/𝜎

2
1 )𝑒

𝑡 with truncation 𝑇∗ =

2 log(𝜎2/𝜎min). c is a softmax-transformed contact map as detailed in Sec. 4.2,
which attracts the diffused ligand coordinates y(𝑡) towards binding interface C𝛼
atoms while preserving SE(3)-equivariance. We choose 𝜎1 = 2.0 Å to match the
average radius of standard amino acids with task-specific 𝜎2 > 𝜎1 such that at 𝑡 = 𝑇∗:
(a) the terms involving xnonC𝛼 (0) and y(0) approximately vanishes thus are set to
zeros to initialize the reverse-time SDE, and (b) the C𝛼-atom coordinate marginal
𝑞𝑇∗

(
xC𝛼 (𝑡) |x(0)

)
is sufficiently close to which approximated by the backbone template

𝑞𝑇∗
(
xC𝛼 (𝑡) |x̃

)
, guided by the theoretical result proposed in [213]. Proofs regarding

SE(3)-equivariance are stated in the Appendix 4.5.
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Contact map prediction and sampling from the truncated reverse-time SDE
Given protein-ligand coordinates (x, y), we define the contact map L ∈ R𝑛res×𝑚 with

matrix elements 𝐿𝐴𝑖 = log(
∑

𝑗∈{𝐴} 𝑒
−2𝛼∥x 𝑗−y𝑖 ∥2∑

𝑗∈{𝐴} 𝑒
−𝛼∥x 𝑗−y𝑖 ∥2 ) where 𝑗 runs over all protein atoms

in amino acid residue 𝐴 and 𝛼 = 0.2 Å−1. The term c in (4.4) is then defined as
𝑐𝐴𝑖 (L) =

exp(𝐿𝐴𝑖)∑
𝐴 exp(𝐿𝐴𝑖) . To sample from the reverse-time SDE, we use the contact

predictor to generate inferred contact maps L̂ and parameterize the geometry prior
𝑞𝑇∗(·|x̃, L̂) — the initial condition of reverse-time SDE — by replacing x(0) in
𝑞𝑇∗ with the backbone template x̃ and the ligand-C𝛼 relative drift coefficient c
with the predicted c(L̂). Note that in the general multivariate OU formulation, this
corresponds to replacing the clean-data-dependent drift coefficients Θ(Z0) by a
model estimation Θ̂. To account for the multimodal nature of protein-ligand contact
distributions, the contact predictor models L as the logits of a categorical posterior
distribution over a sequence of one-hot observations {l}𝐾

𝑘=1 sampled for individual
molecules in {G}. The forward pass of contact predictor 𝜓 takes an iterative form:

L̂𝑘 = 𝜓(
𝑘∑︁
𝑟=1

l𝑟 ; s, x̃, {G}); l𝑘 = OneHot(𝐴𝑘 , 𝑖𝑘 ); (𝐴𝑘 , 𝑖𝑘 ) ∼ Categorical𝑛res×𝑚 (L̂𝑘−1), 𝑖𝑘 ∈ G𝑘

(4.5)
where 𝑘 ∈ {1, · · · , 𝐾} and we set L̂ := L̂𝐾 . All results reported in this study are
obtained with 𝐾 = 1 due to the curation scheme of standard annotated protein-ligand
datasets, but we note that the model can be readily trained on more diverse structural
databases with multi-ligand samples.

Architecture overview
Here we outline the key neural network design ideas and defer the featurization,
architecture, and training details to the Appendix. To enable stereospecific molecular
geometry generation and explicit reasoning about long-range geometrical correla-
tions, NeuralPLexer hybridizes two types of elementary molecular representations
(Figure4.1c): (a) atomic nodes and (b) rigid-body nodes representing coordinate
frames formed by two adjacent chemical bonds. For small-molecule ligand encoding,
we introduce a graph transformer with learnable chirality-aware pairwise embeddings
that are constructed through graph-diffusion-kernel-like transformations [214]; such
pairwise embeddings are pretrained to align with the intra-molecular 3D coordinate
distributions from experimental and computed molecular conformers. The protein
backbone template encoding module and the contact predictor are built upon a
sparsified version of invariant point attention (IPA) adapted from AlphaFold2 [5]
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and are combined with standard graph attention layers [187, 215] and edge update
blocks.
The architecture of ESDM (Figure4.1e) is inspired by prior works on 3D graph and
attentional neural networks for point clouds [216, 217], rigid-body simulations [218]
and biopolymer representation learning [5, 219–221]. In ESDM, each node is
associated with a stack of standard scalar features fs ∈ R𝑐 and cartesian vector features
fv ∈ R3×𝑐 representing the displacements of a virtual point set relative to the node’s
Euclidean coordinate t ∈ R3. A rotation matrix R ∈ SO(3) is additionally attached
to each rigid-body node. Geometry-aware messages are synchronously propagated
among all nodes by encoding the pairwise distances among virtual point sets into
graph transformer blocks. Explicit non-linear transformation on vector features
fv is solely performed on rigid-body nodes through a coordinate-frame-inversion
mechanism, such that the node update blocks are sufficiently expressive without
sacrificing equivariance or computational efficiency. On the contrary, 3D coordinates
are solely updated for atomic nodes while the rigid-body frames (t,R) are passively
reconstructed according to the updated atomic coordinates, circumventing numerical
issues regarding fitting quaterion or axis-angle variables when manipulating rigid-
body objects. The nontrivial actions of a parity inversion operation on rigid-body
nodes ensure that ESDM can capture the correct chiral-symmetry-breaking behavior
that adheres to the molecular stereochemistry constraints.

4.3 Results
Fixed-backbone protein-ligand docking. In this setting the ground-truth receptor
protein backbone is given as input x̃, and both ligand coordinates and protein sidechain
coordinates are predicted using the input protein backbone and ligand graphs. Results
are compared to a recent learning-based method EquiBind [222]; for reference, we
also include results from a physics-based blind docking method CB-Dock [223]
obtained with ground-truth all-atom receptor inputs and using a computing budget
similar to learning-based methods. Models are trained and tested on the PDBBind-
2020 [224] dataset split used in [222], with additional test dataset processing to
ensure a reasonable comparison to docking-based methods (see Appendix 4.5). As
shown in Figure 4.2a-c, NeuralPLexer achieves both improved geometrical accuracy
(reported as the ligand heavy atom root-mean-squre-deviation (RMSD)) and lower
steric clash rate (the fraction of ligand heavy atoms with a Lennard-Jones energy >
100 kcal/mol, using UFF [225] parameters). We found that good ligand structure
quality and geometrical accuracy can be achieved using as few as 10 integrator steps
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(0.2 second per conformation on a single V100 GPU).

Ligand-coupled binding site repacking. Here we apply a diffusion-based inpaint-
ing strategy to jointly sample ligand and protein structure for a cropped region within
6.0 Å of the ligand conditioning on the uncropped parts of the protein. Protein bind-
ing site accuracy is measured by the lDDT-BS metric [226] with cutoff parameters
consistent with CAMEO [227]. Input backbones are obtained using template-free
AlphaFold2 (AF2) predictions of 154 selected chains whose TM-score [228]>0.8 and
lDDT-BS<0.9 out of the abovementioned PDBBind test set, a subset representing
cases where AF2 correctly predicts the global protein folding but unable to reproduce
the exact bound-state binding site structure. We found 82% of structures contain
steric clash with the ligand when directly aligned to reference complex structure in
PDB, while NeuralPLexer is able to rescue 44% of these AF2 binding sites with joint
protein-ligand inpainting (Figure 4.2e-g). Comparing to an energy-based flexible
ligand-receptor modeling method RosettaLigand [202], NeuralPLexer increases
success rate by up to 60% on the combined metric for ligand accuracy, binding site
accuracy and physical plausibility.

Cryptic pockets and binding-induced protein conformation transitions. Lastly,
we assessed NeuralPLexer-sampled structures for 31 systems from the PocketMiner
dataset [229] which represents proteins with substantial ligand-binding-induced
conformation changes. As a preliminary examination, we use the ligand-unbound
(apo) crystal structure from PDB as the input backbone template and fix the ligand
conformation to ground-truth coordinates along sampling. We found NeuralPLexer
shifts the sampled ensemble toward bound-state (holo) structures when performing
joint protein-ligand generation, compared to unconditioned protein-only sampling
results (Figure 3a). Human evaluations reveal that NeuralPLexer correctly predicts
biologically-relevant motions as illustrated by examples in Figure 3b-c, but a more
systematic examination is currently hampered by the sensitivity of TM-Score and
lDDT-BS to binding-irrelevant fluctuations. We note that native contact analysis
algorithms [230] may provide improved metrics for interpreting protein generative
models and consider that a future direction.

4.4 Discussion and outlooks
We have presented a learning-based method for dynamic-backbone protein-ligand
structure prediction, establishing an accuracy and sampling efficiency advantage
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Table 4.1: Summary of the forward-time SDEs with a constant effective diffusion
coefficient (𝜎(𝜏) = 𝜎).

Atom type SDE Expression Approximate marginal at 𝑡 = 𝑇∗

Receptor C𝛼 𝑑xC𝛼 = 𝜎𝑑w1 𝑞𝑇∗
(
xC𝛼 |x(0), y(0)

)
= N(xC𝛼 (0);𝜎2

2 I)
Receptor non-C𝛼 𝑑xnonC𝛼 = 𝜃 (xC𝛼 − xnonC𝛼)𝑑𝜏 + 𝜎𝑑w2 𝑞𝑇∗

(
xnonC𝛼 − xC𝛼 |x(0), y(0)

)
= N(0; 2𝜎2

1 I)
Ligand atoms 𝑑y = 𝜃 (cTxC𝛼 − y)𝑑𝜏 + 𝜎𝑑w3 𝑞𝑇∗

(
y − cTxC𝛼 |x(0), y(0)

)
= N(0;𝜎2

1 (I + cTc))

relative to baseline approaches. We anticipate the incorporation of state-of-the-art
protein representation learning techniques such as the use of sequence evolutionary
signals, pretrained language models, or higher-level attention mechanisms [5, 203,
204] and training on large-scale structure datasets to further improve the methodology
and facilitate applications in various downstream molecular design problems.

4.5 Appendix
The forward-time and reverse-time SDEs
The forward-time SDEs in NeuralPLexer are summarized in Table 4.1. For generality,
we introduce an effective time stamp 𝜏 such that the drift and diffusion coefficients
are constant 𝜃 (𝑡) = 𝜃, 𝜎(𝜏) = 𝜎. The symbolic conventions are as following:

• xC𝛼 ∈ R𝑛res×3 denotes the collection of alpha-carbon coordinates in the protein,
following the standard nomenclature for amino acid atom types:

• xnonC𝛼 ∈ R(𝑛−𝑛res)×3 denotes the set of coordinates for all non-alpha-carbon
protein atoms (backbone N, C, O, and all side-chain heavy atoms);

• y ∈ R𝑚×3 denotes all ligand heavy atom coordinates. Note that 𝑚 :=
∑𝐾
𝑘=1 𝑚𝑘

with 𝑚𝑘 being the number of heavy atoms in each ligand molecule G𝑘 .

Transition kernel densities and sampling

Following the general result for Ornstein–Uhlenbeck processes [231]

𝑞0:𝑡 (x𝑡) = N(exp(−Θ𝑡)x0;
∫ 𝑡

0
𝑒Θ(𝑠−𝑡)𝝈𝝈T𝑒Θ

T (𝑠−𝑡)𝑑𝑠) (4.6)

given the effective time-homogeneous diffusion process described in Table 4.1, for
internal coordinates xnonC𝛼 − xC𝛼:

𝑑 (xnonC𝛼 − xC𝛼) = −𝜃 (xnonC𝛼 − xC𝛼)𝑑𝜏 + 𝜎𝑑w2 − 𝜎𝑑w1 (4.7)
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since the Brownian motions w1,w2 are independent, we obtain the transition kernel
for the finite time interval 𝑠:

𝑞(xnonC𝛼 (𝜏 + 𝑠) − xC𝛼 (𝜏 + 𝑠) |xnonC𝛼 (𝑡) − xC𝛼 (𝜏)) (4.8)

= N
(
𝑒−𝜃𝑠 (xnonC𝛼 (𝜏) − xC𝛼 (𝜏)); (1 − 𝑒−2𝜃𝑠)𝜎

2

𝜃2 I
)

Similarly, for the ligand degrees of freedom

𝑑 (y − cTxC𝛼) = −𝜃 (y − cTxC𝛼)𝑑𝑡 + 𝜎𝑑w3 − 𝜎cT𝑑w1 (4.9)

the transition kernel is

𝑞(y(𝜏 + 𝑠) − cTxC𝛼 (𝜏 + 𝑠) |y(𝜏) − cTxC𝛼 (𝜏)) (4.10)

= N
(
𝑒−𝜃𝑠 (y(𝜏) − cTxC𝛼 (𝜏)); (1 − 𝑒−2𝜃𝑠) 𝜎

2

2𝜃2 (I + cTc)
)

The transition kernel for alpha-carbon atoms is a standard Gaussian

𝑞(xC𝛼 (𝜏 + 𝑠) |xC𝛼 (𝜏)) = N
(
xC𝛼 (𝜏);𝜎2𝑠I

)
. (4.11)

Defining 𝜎2
1 = 𝜎2

2𝜃 , 𝜎2
2 = 𝜎2 · 𝜏(𝑇∗), and 𝜏 = 2𝜃𝜏, we recover (2-4). For model

training in practice, we use an exponential noise schedule defined by 𝜏 = 𝜏0𝑒
𝑡 and

𝜏0 =
𝜎2

min
𝜎2 with 𝜎min being a minimum perturbation scale as commonly adopted in

variance-exploding (VE) [201] SDEs. For completeness, the SDEs defined in the
transformed time horizon 𝑡 ∈ [0, 𝑇∗] is given by replacing the drift coefficient 𝜃 and
the diffusion coefficient 𝜎 with the following time-dependent counterparts:

𝜃 (𝑡) = 𝜃 · 𝑑𝜏
𝑑𝑡

=
𝜎2

min

2𝜎2
1
𝑒𝑡 (4.12)

and

𝜎(𝑡) =
√︂
𝜎2 · 𝑑𝜏

𝑑𝑡
= 𝜎min𝑒

1
2 𝑡 . (4.13)

To sample from the marginal distribution 𝑞𝑡 := 𝑝data ∗ 𝑞0:𝑡 derived from the forward
SDEs:

z1, z2, z3 ∼ N(0; I) (4.14a)

(x, y) ∼ 𝑝data (4.14b)

xC𝛼 (𝑡) = xC𝛼 + 𝜎
√︁
𝜏(𝑡)z1 (4.14c)

xnonC𝛼 (𝑡) = xC𝛼 (𝑡) +
√︁
𝛼(𝑡) (xnonC𝛼 − xC𝛼) +

√︁
1 − 𝛼(𝑡)𝜎1(z2 − z1) (4.14d)

y(𝑡) = cTxC𝛼 (𝑡) +
√︁
𝛼(𝑡) (y − cTxC𝛼) +

√︁
1 − 𝛼(𝑡)𝜎1(z3 − cTz1) (4.14e)



108

where 𝛼(𝑡) = 𝑒−2𝜃𝜏(𝑡) .
For the reverse-time SDE

𝑑Z𝑡 = [−Θ(𝑡)Z𝑡 − 𝜎2(𝑡)∇Z𝑡
log 𝑞𝑡 (Z𝑡)]𝑑𝑡 + 𝜎(𝑡)𝑑W𝑡 (4.15)

the ESDM 𝜙 predicts the denoised observations x̂(0), ŷ(0) using x̂(𝑡), ŷ(𝑡) which is
formally equivalent to estimating the score function ∇Z log 𝑞𝑡 (Z) [232]. Given a time
discretization schedule with interval 𝑠, we obtain the expression for the predicted
observation mean Z̄(𝜙, 𝑡 − 𝑠) in one denoising step Z(𝑡) ↦→ Z(𝑡 − 𝑠):

x̄C𝛼 (𝜙, 𝑡 − 𝑠) = −(xC𝛼 (𝑡) − x̂C𝛼 (0))
𝜎(𝑡 − 𝑠)
𝜎(𝑡) + xC𝛼 (𝑡) (4.16a)

x̄nonC𝛼 (𝜙, 𝑡 − 𝑠) = −
(xnonC𝛼 (𝑡) − xC𝛼 (𝑡)) ·

√︁
𝛼(𝑡) − (x̂nonC𝛼 (0) − x̂C𝛼 (0))√︁

1 − 𝛼(𝑡)

√︁
1 − 𝛼(𝑡 − 𝑠)

(4.16b)

+ x̄C𝛼 (𝑡 − 𝑠) +
√︁
𝛼(𝑡 − 𝑠) (x̂nonC𝛼 (0) − x̂C𝛼 (0))

ȳ(𝜙, 𝑡 − 𝑠) = −
(y(𝑡) − cTxC𝛼 (𝑡)) ·

√︁
𝛼(𝑡) − (ŷ(0) − cTx̂C𝛼 (0))√︁

1 − 𝛼(𝑡)

√︁
1 − 𝛼(𝑡 − 𝑠)

(4.16c)

+ cTx̄C𝛼 (𝑡 − 𝑠) +
√︁
𝛼(𝑡 − 𝑠) (ŷ(0) − cTx̂C𝛼 (0))

standard ODE-based or SDE-based integrators can then be adapted to sample from
(4.15).

Euclidean equivariance

Given group 𝐺, a function 𝑓 : 𝑋 → 𝑌 is said to be equivariant if for all 𝑔 ∈ 𝐺
and 𝑥 ∈ 𝑋 , 𝑓 (𝜑𝑋 (𝑔) · 𝑥) = 𝜑𝑌 (𝑔) · 𝑓 (𝑥). Specifically 𝑓 is said to be invariant if
𝑓 (𝜑𝑋 (𝑔) · 𝑥) = 𝑓 (𝑥). We are interested in the special Euclidean group 𝐺 = SE(3)
consists of all global rigid translation and rotation operations 𝑔 · Z := t + Z · R
where t ∈ R3 and R ∈ SO(3). To adhere to the physical constraint that 𝑝data is
always SE(3)-invariant, the transition kernels of forward-time SDE should satisfy
SE(3)-equivariance 𝑞(Z𝑡+𝑠 |Z𝑡) = 𝑞(𝑔 · Z𝑡+𝑠 |𝑔 · Z𝑡) such that the marginals are
invariant 𝑞𝑡 (Z𝑡) = 𝑞𝑡 (𝑔 · Z𝑡) for any time 𝑡. The proofs are straightforward:
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For receptor C𝛼 degrees of freedom

𝑞(t + xC𝛼 (𝜏 + 𝑠) · R|t + xC𝛼 (𝜏) · R)
= N

(
t + xC𝛼 (𝜏 + 𝑠) · R; t + xC𝛼 (𝜏) · R, 𝜎2𝑠I

)
= N

(
(xC𝛼 (𝜏 + 𝑠) − xC𝛼 (𝜏)) · RRT; 0, 𝜎2𝑠R · I · RT)

= N
(
(xC𝛼 (𝜏 + 𝑠) − xC𝛼 (𝜏)); 0, 𝜎2𝑠I

)
= 𝑞(xC𝛼 (𝜏 + 𝑠) |xC𝛼 (𝜏)).

For receptor non-C𝛼 degrees of freedom

𝑞((t + xnonC𝛼 (𝜏 + 𝑠) · R − t − xC𝛼 (𝜏 + 𝑠) · R) | (t + xnonC𝛼 (𝜏) · R − t − xC𝛼 (𝜏) · R))

= N
(
(xnonC𝛼 (𝜏 + 𝑠) · R − xC𝛼 (𝜏 + 𝑠) · R); 𝑒−𝜃𝑠 (xnonC𝛼 (𝜏) · R − xC𝛼 (𝜏) · R), (1 − 𝑒−2𝜃𝑠)𝜎

2

𝜃2 I
)

= N
(
(xnonC𝛼 (𝜏 + 𝑠) − xC𝛼 (𝜏 + 𝑠)); 𝑒−𝜃𝑠 (xnonC𝛼 (𝜏) − xC𝛼 (𝜏)), (1 − 𝑒−2𝜃𝑠)𝜎

2

𝜃2 R · I · RT)
= 𝑞((xnonC𝛼 (𝜏 + 𝑠) − xC𝛼 (𝜏 + 𝑠) | (xnonC𝛼 (𝜏) − xC𝛼 (𝜏))).

For ligand degrees of freedom

𝑞(t + y(𝜏 + 𝑠) · R − cT(t + xC𝛼 (𝜏 + 𝑠) · R) |t + y(𝜏) · R − cT(t + xC𝛼 (𝜏) · R))
= 𝑞(t + y(𝜏 + 𝑠) · R − cTt − cTxC𝛼 (𝜏 + 𝑠) · R|t + y(𝜏) · R − cTt − cTxC𝛼 (𝜏) · R)
= 𝑞(y(𝜏 + 𝑠) · R − cTxC𝛼 (𝜏 + 𝑠) · R|y(𝜏) · R − cTxC𝛼 (𝜏) · R)

= N
(
𝑒−𝜃𝑠 (y(𝜏) − cTxC𝛼 (𝜏)); (1 − 𝑒−2𝜃𝑠) 𝜎

2

2𝜃2 R · (I + cTc) · RT)
= 𝑞(y(𝜏 + 𝑠) − cTxC𝛼 (𝜏 + 𝑠) |y(𝜏) − cTxC𝛼 (𝜏))

where we have used cTt = t up to a column-wise broadcasting operation based on
the row-wise normalization property of the softmax-transformed contact map c.
Since all transition kernels are SE(3)-equivariant, it then follows that the score
∇Z log 𝑞𝑡 (Z) is also SE(3)-equivariant: ∇Z′ log 𝑞𝑡 (Z′) = ∇Z log 𝑞𝑡 (Z) · R where
Z′ = t + Z · R and thus the reverse-time SDE is equivariant. While the forward
SDE is also E(3)-equivariant as the noising process satisfies 𝑞(−Z(𝜏 + 𝑠) | −Z(𝜏)) =
𝑞(Z(𝜏 + 𝑠) |Z(𝜏)), it is worth noting that the reverse SDE is only SE(3)-equivariant
as parity-inversion transformations 𝑖 : Z ↦→ −Z on the data distribution 𝑝data is
physically forbidden and thus the score ∇Z log 𝑞𝑡 (Z) is of broken chiral symmetry in
general: ∃Z such that ∇−Z log 𝑞𝑡 (−Z) ≠ −∇Z log 𝑞𝑡 (Z).

Small-molecule featurization and encoding
We consider two types of nodes to construct a graph-based molecular represen-
tation: (a) heavy-atoms 𝑖 ∈ {1, 2, · · · , 𝑁atom} and (b) local coordinate frames
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𝑢 ∈ {1, 2, · · · , 𝑁frame}, 𝑢 := 𝑢(𝑖 𝑗 𝑘) formed by atom triplets (𝑖, 𝑗 , 𝑘) that are con-
nected by bonds (𝑖 𝑗) and ( 𝑗 𝑘). We introduce Path-integral Graph Transformer
(PiFormer), an attentional neural network with edge-level operations inspired by
the path-integral formulation of quantum mechanics, to infer the long-range inter-
atomic geometrical correlations for small molecules based on their graph-topological
properties. PiFormer operates on the collection of following classes of embeddings:

• Atom representations H ∈ R𝑁atom × 𝑐. The input atom representations is a
concatenation of one-hot encodings of element group index and period index
for the given atom, which is embedded by a linear projection layer R18+7 → R𝑐;

• Frame representations F ∈ R𝑁frame × 𝑐. For a given frame 𝑢, F𝑢 is initialized
by a 2-layer MLP R4∗2+18+7 → R𝑐 that embed the bond type encodings
(defined as [is_single, is_double, is_triple, is_aromatic]) of the "incoming"
bond (𝑖(𝑢), 𝑗 (𝑢)), "outgoing" bond ( 𝑗 (𝑢), 𝑘 (𝑢)), and the atom type encoding
of the center atom 𝑗 (𝑢);

• Stereochemistry encodings S ∈ R𝑁frame×𝑁frame×𝑐s . S is a sparse tensor where an
element S𝑢𝑣 is nonzero only if the pair of frames (𝑢, 𝑣) is adjacent, i.e., 𝑢 and
𝑣 sharing a common incoming or outgoing bond;

• Pair representations G ∈ R𝑁frame×𝑁atom×𝑐p . G is initialized by an outer sum of H
and F which is added to linear-projected S and passed to a 2-layer MLP.
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Elements of the stereochemistry encoding tensor S are defined as

S𝑢𝑣,0 := (common_bond(u, v) = incoming_bond(u)) (4.17a)

S𝑢𝑣,1 := (common_bond(u, v) = incoming_bond(v)) (4.17b)

S𝑢𝑣,2 := (common_bond(u, v) = outgoing_bond(u)) (4.17c)

S𝑢𝑣,3 := (common_bond(u, v) = outgoing_bond(v)) (4.17d)

S𝑢𝑣,4 := i(v) ∈ {i(u), j(u), k(u)} (4.17e)

S𝑢𝑣,5 := j(v) ∈ {i(u), j(u), k(u)} (4.17f)

S𝑢𝑣,6 := k(v) ∈ {i(u), j(u), k(u)} (4.17g)

S𝑢𝑣,7 := (j(u) = j(v)) ∧ is_above_plane(u, v) (4.17h)

S𝑢𝑣,8 := (j(u) = j(v)) ∧ is_below_plane(u, v) (4.17i)

S𝑢𝑣,9 := is_double_or_aromatic(common_bond(u, v)) ∨ is_same_side(u, v)
(4.17j)

S𝑢𝑣,10 := is_double_or_aromatic(common_bond(u, v)) ∨ not_same_side(u, v)
(4.17k)

is_above_plane(𝑢, 𝑣) is defined as one of the three atoms in frame 𝑣 is above
the plane formed by frame 𝑢 with normal vector v𝑢 =

(r 𝑗 (𝑢)−r𝑖 (𝑢) )×(r𝑘 (𝑢)−r 𝑗 (𝑢) )
∥r 𝑗 (𝑢)−r𝑖 (𝑢) ∥∥r𝑘 (𝑢)−r 𝑗 (𝑢) ∥ ;

is_same_side(𝑢, 𝑣) is defined as the two bonds not shared between 𝑢, 𝑣 being
on the same side of the common bond, equivalent to v𝑢 · v𝑣 > 0, vice versa. Our
current technical implementations for is_above_plane and is_same_side are based
on computing the normal vectors and dot-products using the coordinates from an
auxiliary conformer, but we note that in principle all stereochemistry encodings can
be generated based on cheminformatic rules without explicit coordinate generations.
We additionally denote MASKs as a 𝑁frame × 𝑁frame logical matrix defined as the
adjacency matrix of frame pairs (𝑢, 𝑣).
The notion of "frames" in a coordinate-free topological molecular graph is justified
by the inductive bias that most bending and stretching modes in molecular vibrations
are of high frequency, i.e., most bond lengths and bond angles fall into a small range
as predicted by valence bond theory, such that the local frames forms a consistent
molecular representation without prior knowledge on 3D coordinates. PiFormer
operates solely on the molecular representation defined by the input graph, and the
frame coordinates (t,R) are initialized right before the ESDM blocks.
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Table 4.2: Composition of the dataset used for pretraining the small-molecule
encoder.

Data source Num. samples collected Sampling weight L3D LCC LMLM

BioLip [233] ligands
(deposited date<2019.1.1) 160k 2.0 + - +

GEOM [234] 450k * 5 0.4 + - +
DES370k [235] 370k 1.0 + - +
PEPCONF [236] 3775 5.0 + - +

PCQM4Mv2 [237, 238] 3.4M 0.1 + - +
Chemical Checker [239] 800k 1.0 - + +

The forward pass of single PiFormer block is expressed as:

U𝑙 = Softmaxrow−wise
( (F · WK,𝑙) · (F · WQ,𝑙)T + S · WS,𝑙√

𝑐P
+ Inf · MASKs

)
(4.18a)

Gout = (1 + 1
𝐾

U𝑙)𝐾 · (G𝑙 · WG,𝑙), G𝑙+1 = MLP( [Gout | | (F𝑙)T · H𝑙 | |G𝑙]) + G𝑙

(4.18b)

Fout = MHAwithEdgeBias(F𝑙 ,H𝑙 , (G𝑙+1)T), F𝑙+1 = MLP(Fout + F𝑙) + F𝑙
(4.18c)

Hout = MHAwithEdgeBias(H𝑙 ,F𝑙+1,G𝑙+1), H𝑙+1 = MLP(Hout + H𝑙) + H𝑙

(4.18d)

where 𝐾 denotes the propagation length truncation for the learnable graph kernel
exp(U𝑙) ≈ (1 + 1

𝐾
U𝑙)𝐾 in a single PiFormer block, MLP denotes a 3-layer multilayer

perceptron combined with layer normalization [158]. WK,WQ,WS,WG are trainable
linear weight matrices. MHAwithEdgeBias(X1,X2,Xedge) denotes a multi-head
cross-attention layer between source node embeddings X1 and target node embeddings
X1, with edge embeddings Xedge entering attention computation as a relative positional
encoding term as in the relation-aware transformer introduced in [187]. For all
models descibed in this study, we set 𝑙max = 6 and 𝐾 = 8.

PiFormer model pretraining

In Table 4.2 we summarize the small-molecule datasets used for training the PiFormer
encoder used in the reported NeuralPLexer model. The loss function used in PiFormer
pretraining is the following:

Llig−pretraining = L3D−marginal+L3D−DSM+LCC−regression+0.01·LCC−ismask+0.1·LMLM

(4.19)
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We use a mixture density network head to encourage alignment between the learned
last-layer pair representations G and the intra-molecular 3D coordinate marginals.
For a single training sample with 3D coordinate observation y:

L3D−marginal =

𝑁frame∑︁
𝑢

𝑁atom∑︁
𝑖

log
[ 𝑁modes∑︁

𝑙

exp(𝑤𝑖𝑢𝑙) · 𝑞3D(𝑇−1
𝑢 ◦ y𝑖 |m𝑖𝑢𝑙)∑𝑁modes

𝑙
exp(𝑤𝑖𝑢𝑙)

]
(4.20)

where 𝑇𝑢 := (R𝑢, t𝑢), 𝑇−1
𝑢 ◦ y𝑖 := (y𝑖 − t𝑢) · RT

𝑢 . t𝑢 ∈ R3 and R𝑢 ∈ SO(3) are given
by

(R𝑢, t𝑢) = rigidFrom3Points(y𝑖(𝑢) , y 𝑗 (𝑢) , y𝑘 (𝑢)) (4.21)

where rigidFrom3Points is the Gram–Schmidt-based frame construction operation
described in Ref. [5], Alg. 21; we additionally add a numerical stability factor of
0.01 Å to the vector-norm calculations to handle edge cases when computing the
rotation matrices from perturbed coordinates. Each component the 3D distance-angle
distribution 𝑞3D is parameterized by

𝑞3D(t|𝜇, 𝜎, v) = Gaussian(∥t∥2 |𝜇, 𝜎) × PowerSpherical( t
∥t∥2

|v, 𝑑 = 3) (4.22)

where PowerSpherical is a power spherical distribution introduced in [240]; m𝑖𝑢𝑙 :=
(𝜇, 𝜎, v)𝑖𝑢𝑙 , and

[w𝑖𝑢,m𝑖𝑢] = 3DMixtureDensityHead
(
G𝑙max

)
𝑖𝑢
. (4.23)

whre 3DMixtureDensityHead is a 3-layer MLP.
Using an equivariant graph transformer similar to ESDM (see Sec. 4.5) but with
all receptor nodes dropped, we construct a geometry prediction head to perform
global molecular 3D structure denoising. We sample noised coordinates y(𝑡) from a
VPSDE [201] and introduce a SE(3)-invariant denoising score matching loss based
on the Frame Aligned Point Error (FAPE) [5]:

L3D−DSM = E𝑡∼(0,1],y𝑡∼𝑞0:𝑡 (·|y)
[
mean𝑢,𝑖 min(∥𝑇−1

𝑢 ◦y𝑖−𝑇−1
𝑢 ◦ŷ𝑖∥2, 10 Å)·√𝛼𝑡

]
(4.24)

where
ŷ = GeometryPredictionHead(y𝑡 ; H𝑙max ,F𝑙max ,G𝑙max) (4.25)

LCC−regression is a mean squared loss for fitting the "level 1" chemical checker
(CC) [239] embeddings which represent harmonized and integrated bioactivity data,
and LCC−ismask is an auxiliary binary cross entropy loss for classifying whether a
specific CC entry is available for any molecule in the chemical checker dataset. Model



114

Figure 4.4: Network architecture schematics for the encoders and contact prediction
modules.

is trained for 20 epochs with 15% masking ratio for atom and bond encodings, 40%
masking ratio for stereochemistry encodings, and dropout=0.1; LMLM is a standard
cross-entropy loss for predicting the masked tokens which is added to encourage
learning on molecular graph topology distributions, but empirically we found LMLM

converged within the first two epochs and did not find it to influence the learning
dynamics of other tasks.

Protein sequence and backbone encoding
The inputs to the protein encoder are (i) the one-hot amino-acid type (20 standard
residues + 1 "unknown" token) encoding of the 1D sequence 𝑠, (ii) the backbone
(N,C𝛼,C) coordinates of a perturbed protein structure x(𝑡) sampled from the forward
SDEs described in Table 4.1, and (iii) a random Fourier encoding of the diffusion time
step 𝑡. To reduce memory cost, the protein backbone is represented as a sparse graph
with each node mapped to each amino acid residue and randomized edges according
to the inclusion probability 𝑝(add_edge(𝑖, 𝑗)) = exp(−∥x𝑖 (𝑡) − x 𝑗 (𝑡)∥/10.0 Å) for
all residue pairs (𝑖, 𝑗). The edge representations are initialized as a random Fourier
encoding of the signed sequence distance between two residues (𝑖, 𝑗) if 𝑖 and 𝑗 are
located on the same chain, and are initialized as zeros if (𝑖, 𝑗) are located on different
chains.
The protein encoder is composed of 4 stacks of invariant point attention (IPA) [5]
blocks with two technical modifications:

• The attention scores are computed on the sparsified protein graph, instead of
the densely-connected graph as in standard self-attention layers;

• Each node 𝑖 is associated with 𝑛head replicas of coordinate frames {𝑇}𝑖,
instead of a single frame as in a static structure representation. {𝑇}𝑖
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is initialized as 𝑛head copies of the backbone frames constructed by
rigidFrom3Points(xN,𝑖, xC𝛼,𝑖, xC,𝑖). The layer output is 𝑛head × 7 scalars repre-
senting the translation vector and the quaternion variable to update the frame
associated with each attention head.

the multi-replica design is found to moderately improve model convergence at a fixed
network size. For conciseness, we refer to the modified invariant point attention as
GraphIPA.

Contact predictor
As illustrated in Figure 4.4, the embeddings from the protein and small-molecule
ligand graph encoders are passed to the contact predictor to estimated the contact
maps L. A protein-ligand graph is created before the contact predictor forward pass,
with pairwise intermolecular edges connecting all protein residues and ligand atoms.
The contact predictor is composed of 4 modules each comprises of an intra-protein
GraphIPA block, a bidirectional intra-ligand-graph self-attention layer, a bidirectional
self-attention layer on the protein-ligand intermolecular edges, and a MLP to update
protein-ligand edge representations using the attention maps and previous-layer edge
representations. The final edge representations are used to predict L as described by
Equation 4.5. The contact predictor weights are shared across all one-hot contact
matrix sampling iterations.

All-atom graph featurization
All protein heavy-atoms nodes (features and 3D coordinates) and the ligand 3D
coordinates sampled from the geometry prior 𝑞𝑇∗ are added to the network inputs
right before the ESDM block forward pass. Each protein atom representation is
initialized as the concatenation of:

• The residue-wise representation from the protein backbone encoder;

• An one-hot encoding of its atom type as defined by the 37 standard amino acid
heavy atom symbols in the PDB format [241];

• A random Fourier encoding of the diffusion time step 𝑡.

A random Fourier encoding of the diffusion time step 𝑡 is also concatenated to the
ligand atom representations from the ligand graph encoder and are transformed by a
2-layer MLP.



116

Given the noised all-atom protein coordinates at diffusion time 𝑡, the following edges
are added to the protein-ligand graph:

• Edges connecting a protein atom node and the residue node that the protein
atom belongs to;

• Edges connecting two protein atom nodes that are within the same residue;

• Edges connecting two protein atom nodes that are within 6.0 Å distance;

• Edges connecting a protein atom node and a ligand atom node that are within
8.0 Å distance;

The protein-atom-involving edges are initialized as a concatenation of the following
features:

• A boolean code indicating whether the source node and target node belong to
the same residue or the same ligand molecule;

• A boolean code indicating whether there is a covalent bond between the source
and target nodes. The covalent bonding information for protein-ligand edges
are resolved based on the reference protein-ligand complex structure, where
an atom pair (𝑖, 𝑗) is considered as a covalent bond if the distance satisfies
𝑑𝑖 𝑗 < 1.2𝜎𝑖 𝑗 where 𝜎𝑖 𝑗 = 1

2 (𝜎𝑖 + 𝜎𝑗 ) is the average Van der Waals (VdW)
radius for the atom pair.

To focus the learning problem on binding-site parts of the protein-ligand complex
structure, the following native contact encoding features are added to the protein
sub-graph that do not involve residues that are within 6.0 Å of any ligand heavy
atom; given two amino acid residues, we define the native contact encoding as
the concatenation of clean-protein-structure N − N, C𝛼 − C𝛼, and C − C distances
discretized into [2.0 Å, 4.0 Å, 6.0 Å, 8.0 Å] bins. Such features are embedded by a
2-layer MLP and added to the residue-residue edge representations. Note that at
training time the native contact encodings are computed from the protein structure in
the ground-truth protein-ligand complex, while at sampling time they are computed
from the input backbone template.

The ESDM architecture
The neural network architecture of the proposed equivariant structure diffusion mod-
ule (ESDM) is summarized in Figure 4.5. The forward pass expression of the trainable
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Figure 4.5: Network architecture of a single block in the equivariant structure
diffusion module (ESDM). Arrows indicate information flow directions, and "+"
indicates an element-wise tensor summation.

modules PointSetAttentionwithEdgeBias, LocalUpdateUsingChannelWiseGating,
LocalUpdateUsingReferenceRotation, PredictDrift are defined as:

f′s, f′v, e′ = PointSetAttentionwithEdgeBias(fs, fv, e, t) where (4.26a)

fQ, fK, fV = Ws · fs, tQ, tK, tV = (t/10 Å + fv · Wv) (4.26b)

z𝑖 𝑗 =
1

√
𝑐head

(fT
Q,i · fK,j) + We · e𝑖 𝑗 −

w𝑖 𝑗√
18𝑐head

∥tQ − tK∥2
2 (4.26c)

𝜶𝑖 𝑗 = Softmax 𝑗∈{𝑖} (z𝑖 𝑗 ), e′ = MLP(z𝑖 𝑗 ) (4.26d)

f′s =
∑︁
𝑗∈{𝑖}

𝜶𝑖 𝑗 ⊙ fV, f′v = (
∑︁
𝑗∈{𝑖}

𝜶𝑖 𝑗 ⊙ tV) − t/10 Å (4.26e)

where fs ∈ R𝑁nodes×𝑐, fv ∈ R𝑁nodes×3×𝑐, e ∈ R𝑁edges×𝑐, t ∈ R𝑁nodes×3. Note that the
expression for computing attention weights z is directly adapted from IPA.

f′s, f′v = LocalUpdateUsingChannelWiseGating(fs, fv) where (4.27a)

f′s, fgate = MLP(fs ⊕ ∥fv∥2) (4.27b)

f′v = (fv · Wv) ⊙ fgate (4.27c)

As only linear layers and vector scaling operations are used to update the vector
representations fv, LocalUpdateUsingChannelWiseGating is E(3)-equivariant.
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f′s, f′v = LocalUpdateUsingReferenceRotation(fs, fv,R ∈ SO(3)) where
(4.28a)

f′s, fvloc = MLP(fs ⊕ RT · fv ⊕ ∥fv∥2) (4.28b)

f′v = R · fvloc (4.28c)

Since the third row of R is a pseudovector as described in rigidFrom3Points,
the determinant of the rotation matrix R is unchanged under parity inversion
transformations 𝑖 : x ↦→ −x and thus the intermediate quantity fvloc is SE(3)-
invariant but in general not invariant under parity inversion 𝑖. This property ensures
that ESDM can learn the correct chiral symmetry breaking behaviors in molecular
3D conformation distributions.

Δt = PredictDrift(fs, fv) where (4.29a)

oscale = Softplus(MLP(fs)) (4.29b)

Δt = (fv · Wdrift) ⊙ oscale. (4.29c)

The predicted drift vectors Δt are added to the input node coordinates; the final
coordinate outputs are taken as the predicted denoised observations x̂(0), ŷ(0).

Model training and hyperparameters
The loss function for NeuralPLexer training is:

Ltraining = E𝑡∼(0,1]
[
Lcontact(𝑡)+Lgp−mean(𝑡)+LDSM−prot(𝑡)+LDSM−ligand(𝑡)+LDSM−site(𝑡)

]
(4.30)

We train the contact predictor 𝜓 to match the posterior distribution defined by
the observed contact map 𝑞L := Categorical𝑛res×𝑚 (L) where L :=

⊕
𝑘 L𝑘 with

intermediate ligand-wise one-hot matrices l𝑘 sampled from 𝑞L𝑘
:

Lcontact(𝑡) = KL(𝑞L∥𝑞𝜓 (·|0, s, x̃(𝑡),G))+
𝐾∑︁
𝑘=1
El𝑘∼𝑞L𝑘

[
JS(𝑞L𝑘

∥𝑞𝜓,𝑘 (·|
𝑘∑︁
𝑟=1

l𝑟 , s, x̃(𝑡),G))
]

(4.31)
where KL denotes a Kullback–Leibler divergence and JS denotes a Jensen–Shannon
divergence. An auxiliary loss is added to the mean term in the predicted geometry
prior:

Lgp−mean(𝑡) = El𝑘∼𝑞L𝑘

[
∥cT
𝜓,𝑘 (

𝑘∑︁
𝑟=1

l𝑟 , s, x̃(𝑡),G) · x̃(𝑡) − c · x̃(𝑡)∥
]

(4.32)
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The denoising score matching (DSM) loss expressions are given by

LDSM−prot = Ex(𝑡),y(𝑡)∼𝑞0:𝑡 (·|x(0),y(0))
[1
𝑛

∑︁
𝑖

∥x𝑖 (0) − x̂𝑖 (0)∥2/𝜎(𝑡)
]

(4.33)

LDSM−site is defined analogously but averaged for residues that are within 6.0 Å of
the ligand in the ground-truth structure. Lastly

LDSM−ligand = Ex(𝑡),y(𝑡)∼𝑞0:𝑡 (·|x(0),y(0))
[ 1
𝑚

∑︁
𝑖

∥y𝑖 (0) − ŷ𝑖 (0)∥2/𝜎(𝑡)
]
. (4.34)

For the ligand graph encoder, we use 6 PiFormer blocks with an embedding dimension
of 512 for atom representation and frame representations, and a dimension of 128 for
pair representations. For the protein encoder, we use 4 GraphIPA blocks with a node
embedding dimension of 256 and edge embedding dimension of 64. For the contact
predictor we use 4 blocks with the same embeddings sizes (256, 64) as in the protein
encoder; linear layers are added to project the ligand representations to the length of
protein representations before they are passed to the contact predictor. For ESDM,
we use a stack of 4 blocks with a embedding dimension of 64 for both node and edge
representations, that is, each node 𝑖 is associated with scalar representations fs,𝑖 of
size 64 and vector representations fv,𝑖 of size [3, 64].
The pretrained small-molecule encoder weights are frozen during training. Model is
trained with batch size of 8 for 40 epochs, using dropout=0.05, an inital learning rate
of 3E-4 with 1000 warmup steps followed by a cosine annealing learning rate decay
schedule. On the PDBBind 2020 training set (170k samples), the training run took
20 hours a single NVIDIA-Tesla-V100-SXM2-32GB GPU.

Task-specific fine-tuning

The model used for fixed-backbone protein-ligand docking is fine-tuned on the
original PDBBind training dataset, while all backbone atoms (N,C𝛼,𝐶,𝑂) and C𝛽
atoms are set to the ground-truth coordinates. Fine-tuning is performed for 20 epochs
with a batch size of 8 without teacher forcing for the geometry prior (i.e., sampling
the one-hot matrix l from the observed contact map 𝑞L = Categorical𝑛res×𝑚 (L), using
the predicted contact map 𝜓(l, s, x̃,G) to parameterize the finite-time transition
kernels 𝑞𝑡 (Z(𝑡) |Z(0)) during model forward pass, and then backpropagating the
model end-to-end) using a cosine annealing schedule with an initial learning rate of
1𝐸 − 4.
The model used for binding-site inpainting is fine-tuned on all split-chain samples
from the original PDBBind training dataset. A protein-chain/ligand pair is included
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in the fine-tuning dataset if any heavy atom of the ligand is within 10 Å of any heavy
atom of the protein chain. All receptor residues that are not within 6.0 Å of the ligand
are set to the ground-truth coordinates with the residue-wise and protein-atom-wise
time-step encoding set to zeros. Fine-tuning is performed for 40 epochs with a batch
size of 10 without teacher forcing for the geometry prior using a cosine annealing
schedule with a initial learning rate of 1𝐸 − 4.

Computational details
Test datasets and post-processing

While the time-split-based PDBBind 2020 dataset has been used in previous works
for studying model generalization to novel protein-ligand pairs, we noticed that the
363-sample test set curated by [222] contains samples with improperly removed
alternative ligand conformation ground truths or deleted adjacent chains that strongly
interact with the ligand molecule in the full structure (e.g., binding sites near protein-
protein interfaces). To ensure a reasonable comparison to docking-based methods,
for the test dataset used fixed-backbone ligand conformation prediction experiments
we keep all protein chains that are within 10 Å of the ligand from the original PDB
file instead of using the receptor PDB files curated by PDBBind; we further removed
all covalent ligands and pipetide binders from the test set as such cases are usually
tackled by specialized algorithms [242, 243], resulting in 275 test samples in total to
produce the results presented in Figure 4.2a-d.
The AlphaFold2 structures used in the ligand-coupled binding site repacking task are
predicted using ColabFold [244] with default MSA, recycling, and AMBER relaxation
settings, and without using templates in order to best reflect the prediction fidelity
of AlphaFold2 on novel targets (since all PDBBind test set samples are deposited
before year 2021). The input sequences for all protein chains are obtained from
https://www.ebi.ac.uk/pdbe/api/pdb/entry/molecules/ to avoid issues
related to unresolved residues and to represent a realistic testing scenario where the
protein backbone models are obtained from the full sequence.

Baseline method configurations

We run CB-Dock [223] with a heuristic low-sampling-intensity configuration (exhaus-
tiveness=1, number of clustered binding sites to start local docking = 1) such that the
execution time (43 seconds per ligand on average on single core of an Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz CPU) is comparable to deep-learning-based methods

https://www.ebi.ac.uk/pdbe/api/pdb/entry/molecules/
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that were proposed to perform docking at a low computing budget. The top-scored
ligand conformations collected for each protein-ligand pair as ranked by Autodock
Vina [245] are used to obtain the success rate results in Figure 2a. EquiBind [222] are
launched with the default configuration file, and for each protein-ligand pair 64 ligand
conformations are generated using different random RDKit [246] input conformers.
We note that the incorporation of side-chain flexibility as provided by AutoDock
Vina and the systematic tuning of sampling intensity in docking-based methods
may offer a more accurate comparision regarding the accuracy/computational time
relationship among physics-based and learning-based methods.
RosettaLigand [202] runs are launched with a configuration modified from the
standard protocol. We set the receptor Calpha constraint parameter to 100.0 to
enable a fully flexible receptor; the ligand coordinates are initialized using the
aligned-ground-truth conformation as obtained by TM-Align [228], with randomized
torsion angles using the BCL [247] library as described in the standard protocol.
We set the docking box width to 4.0 Å and remove the ligand center perturbation
step to ensure the ligand search space during the low-resolution docking stage is
constrained to the binding site location. While high-fideltiy physics-based methods
such as IFD-MD [197] have been proposed for flexible-receptor ligand docking, such
algorithms often incur orders-of-magnitude higher computational cost, and thus are
not included within the scope of this study.

Evaluation metric details
All protein structure alignments and TM-Score calculations are performed using
TMAlign [228]. All reported TM-Scores are normalized by the chain length of
the reference PDB structure. The per-residue all-atom lDDT score is computed
using OpenStructure [248]; the lDDT-BS score is then computed by averaging the
per-residue scores for ligand binding site residues with a cutoff of 4.0 Å as used in
CAMEO [227]. The symmetry-corrected heavy-atom RMSD for ligand structure
comparison is computed using the obrms function in OpenBabel [249]. A standard
6-12 Lennard-Jones energy functional form is used for computing the clash rate
statistics; the L-J energy and VdW radius parameters are obtained from the UFF
parameter file retrieved from https://github.com/kbsezginel/lammps-data-
file/blob/master/uff-parameters.csv.

https://github.com/kbsezginel/lammps-data-file/blob/master/uff-parameters.csv
https://github.com/kbsezginel/lammps-data-file/blob/master/uff-parameters.csv
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