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To the reader
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Les liquides conduisent très-difficilement la chaleur; mais ils ont, comme les
milieux aériformes, la propriété de la transporter rapidement dans certaines

directions. C’est cette même propriété qui, se combinant avec la force centrifuge,
déplace et mêle toutes les parties de l’atmosphère et celles de l’Océan; elle y

entretient des courants réguliers et immenses.

Jean-Baptiste Joseph Fourier

Mémoire sur les températures du globe terrestre et des espaces planétaires, 1827
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ABSTRACT

Resolving atmospheric turbulent and convective processes in global climate simu-
lations is, and will remain for decades, an intractable computational problem. The
strong influence of these processes on cloud formation and maintenance makes the
task of modeling turbulence and convection one of the grand challenges in climate
modeling, due to the outsized effect of clouds on climate. Current operational
climate models fail to represent atmospheric turbulence and convection accurately
and consistently across dynamical regimes and vertical levels; errors in the repre-
sentation of these processes explain about half of the spread in climate projections.
This dissertation seeks to reduce such representation errors by improving a recently
proposed unified framework for modeling turbulence and convection, known as
the extended eddy-diffusivity mass-flux scheme, in several ways. First, the frame-
work is rederived by systematically coarse-graining the governing fluid equations,
highlighting the assumptions about atmospheric motion that are necessary to yield
the scheme. New terms related to turbulent entrainment processes are shown to
arise from the derivation. Second, a generalized formulation of turbulent diffusion
consistent with the framework is presented. This novel formulation is shown to accu-
rately represent turbulent processes under statically stable and unstable conditions,
including regimes with sharp lapse rate inversions such as the stratocumulus-topped
boundary layer. Finally, a methodology to calibrate free parameters within the
model from indirect data is proposed. The methodology, based on Kalman filtering,
is shown to be efficient at calibrating imperfect black-box models from noisy data,
and in its regularized unscented version approximately quantifies parametric uncer-
tainty. The resulting unified data-informed model of turbulence and convection is
shown to accurately represent a range of low-cloud regimes that are associated with
the largest biases in current operational climate models. The response of the model
to realistic climate perturbations is also shown to be consistent with the resolved
climate response, although structural errors in the amount of condensate are still
important at realistic vertical resolutions.
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C h a p t e r 1

INTRODUCTION

Climate models are the best tool at our disposal to analyze the possible trajectories
of the climate system given a specific anthropogenic forcing. Roughly 60 years since
their inception, they have evolved from models of a dry1 atmosphere over a shallow
quiescent ocean, to Earth system models that simulate aerosols (Kim et al., 2008),
mesoscale ocean eddies (Adcroft et al., 2019), and even plant stomatal physiology
(Bonan et al., 2014). Granted, their use as harbingers of anthropogenic climate
change has been rendered obsolete by humanity’s relentless effort to make the evi-
dence of global warming inescapable (H.-M. Zhang et al., 2019; Chure et al., 2022).
Nevertheless, they remain our only means to quantitatively compare future climate
adaptation, mitigation and geoengineering strategies. For this reason, the need for
accurate climate projections with quantified uncertainties is more pressing than ever
(Goddard et al., 2009; Hope, 2015). In order to improve climate projections, we
need to understand their strengths, as well as where their uncertainties stem from.

Our understanding of the greenhouse effect, the fundamental process driving global
warming, is robust and has been for over a century. Fourier (1827) first noted that
higher atmospheric absorptivity in the infrared than in the visible range resulted in
warmer surface temperatures than those expected in a planet without an atmosphere.
Following Fourier’s work, Pouillet (1838) presented the first idealized analytical
model of the greenhouse effect, showing that the surface would become warmer
if the infrared absorptivity of the atmosphere were to increase. More accurate
estimates of the greenhouse effect would become possible in the coming decades
through the work of Kirchhoff (1860), Tyndall (1865), Stefan (1879), Boltzmann
(1884), and Planck (1901), on thermal radiation.

The now routine analysis of the equilibrium climate sensitivity (ECS), or forecast
of the mean surface temperature increase in equilibrium with a doubling of at-
mospheric CO2, was first considered by Arrhenius (1896). His estimate assumed
global radiative equilibrium between the Earth’s surface, the atmosphere and its
outermost layer. Notably, he considered the most significant of climate feedbacks:
the strengthening of the greenhouse effect due to an increase in atmospheric water

1Without a hydrologic cycle (Smagorinsky et al., 1965).
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vapor, governed by the Clausius-Clapeyron relation. Little progress was made in
the next 60 years, with many analyses of the ECS ignoring the water vapor feedback
that Arrhenius recognized (Callendar, 1938; Plass, 1956), or even questioning the
sign of the ECS (Möller, 1963).

Climate change reseach gained significant momentum in the 1960s through the
seminal work of Syukuro Manabe, enabled by the creation of the first general
circulation model at the Geophysical Fluid Dynamics Laboratory (Smagorinsky
et al., 1965). The Nobel laureate recognized the important role of convection
(Manabe and Strickler, 1964), reintroduced the water vapor feedback (Manabe and
Wetherald, 1967), estimated the high-latitude albedo feedback, and studied the
changes in meridional transport and the hydrologic cycle stemming from a change
in CO2 concentration (Manabe and Wetherald, 1975). The largest sources of error
in his analysis of the ECS were, to a large extent, the same problems that haunt
climate models today: an imperfect treatment of fluid transport, a failure to predict
the response of clouds, and a lack of data-based constraints on the physical process
parameterizations within his model.

This thesis seeks to address several necessarily focused aspects of these problems that
remain relevant to climate models today. The first one is the need for an accurate and
physically consistent parameterization of unresolved vertical fluid transport in the
troposphere; a need that arises from the scale separation between computationally
affordable resolutions and the eddies and updrafts that control the fate of clouds
on Earth (Schneider et al., 2017a). Uncertainties about vertical mixing in the
troposphere alone account for about half of the variance in ECS forecasts by current
climate models (Sherwood et al., 2014).

In this context, Chapter 2 reviews the development of a unified modeling framework
for atmospheric fluid flow known as the eddy-diffusity mass-flux (EDMF) scheme
(Siebesma and Teixeira, 2000; Soares et al., 2004; Siebesma et al., 2007), outlining
its scientific background, its underlying assumptions, and presenting a self-contained
derivation of a generalized time-dependent version of the scheme from the Navier-
Stokes equations. A discussion of similarities and differences between current
implementations of the EDMF framework in the literature is also offered. The use
of this scheme reduces the unresolved turbulence and convection closure problem
to finding parameterizations for a set of elementary fluid processes, like small-
scale mixing and entrainment by ascending plumes. Chapter 3 then derives a
generalized parameterization of small-scale turbulent mixing in the atmosphere,
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based on a quasi-balanced budget of turbulence kinetic energy and universal physical
constraints that arise naturally in stratified boundary layer flows. The reader will not
find references in the derivation of this closure to properties of emergent atmospheric
flow patterns like cumulus or stratocumulus clouds that, although critical for Earth’s
climate, have in my opinion become an obstacle to unification of turbulence and
convection models in recent years.

The second problem covered in this thesis is the lack of efficient and flexible tools
to calibrate and quantify the uncertainty of climate process parameterizations from
data. Although training algorithms exist in cases where the model output is dif-
ferentiable with respect to model parameters, this represents a strong constraint on
parameterization architectures and the data used for training them (Bretherton et al.,
2022; Lopez-Gomez et al., 2022b). As a solution to this problem, Chapter 4 presents
a methodology to systematically calibrate physical process parameterizations with
unknown error structures from possibly noisy and indirect data. The solutions pro-
posed to solve this problem draw heavily on the growing body of work on ensemble
Kalman processes for inverse problems (Iglesias et al., 2013; Schillings and Stuart,
2017; D. Z. Huang et al., 2022a; D. Z. Huang et al., 2022b). This methodology is
then applied to train physical parameterizations within the EDMF scheme derived
in Chapters 2 and 3, using data from large-eddy simulations of cloud and boundary
layer flows typical of the stratocumulus-to-cumulus transition regions in the eastern
Pacific Ocean (Teixeira et al., 2011; Shen et al., 2022).

Finally, Chapter 5 is devoted to the physical analysis of the dynamics and climate
change response of a data-informed EDMF scheme trained on a wide range of
current-climate atmospheric conditions, spanning the stratocumulus to shallow cu-
mulus transition found off the coasts of California and Peru. The response of the
parameterized dynamics is compared, on a single-column basis, to the response of
large-eddy simulations with perfectly-resolved turbulent and convective dynamics.
This analysis is necessarily incomplete due to the focus on a single atmospheric
column, which neglects interactions with mesoscale flow patterns and the general
circulation of the atmosphere. Nevertheless, it enables a controlled study of the
structural errors within the scheme, its generalization to unseen large-scale forcing
conditions, and the relation between the changes predicted by the model and those
resolved by large-eddy simulations under global warming. An assessment of the
performance of the parameterized dynamics within a global Earth System Model,
beyond the scope of this thesis, is left for future work.
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C h a p t e r 2

THE EXTENDED EDDY-DIFFUSIVITY MASS-FLUX SCHEME

2.1 Modeling the effects of convection
In his 1827 Mémoire on the temperature of the Earth, and before discussing the
greenhouse effect induced by infrared atmospheric absorbers, Fourier highlighted
the important role of fluid transport in setting the temperature distribution of the
planet. He remarked that the presence of a gaseous atmosphere tends to homogenize
temperatures through buoyancy-driven transport, or convection (Fourier, 1827).
Because of convection, he wrote, the actual temperature lapse rate of the lower
atmosphere must be lower than the one resulting from radiative balance. The
modification of Earth’s equilibrium climate by convection remained unaddressed
beyond similar qualitative statements for the next century; most climate sensitivity
studies routinely chose to ignore atmospheric motion for analysis tractability (e.g.,
Plass, 1956).

The first attempt to quantitatively assess the effect of convection on the temperature
distribution of the atmosphere is due to Manabe and Strickler (1964) and Manabe
et al. (1965). Manabe and Strickler (1964) proposed to model convection as a sta-
bilizing mechanism that completely balances the destabilizing effect of upwelling
longwave radiation through an atmosphere. In their model, the atmosphere simply
undergoes instantaneous convective adjustments that allow its lapse rate to remain
below a critical value of 6.5 K/km, chosen to match the observed average tropo-
spheric lapse rate. The introduction of this simple radiative-convective equilibrium
proved crucial to reproduce realistic climatologies in computational models. Earth’s
atmosphere in pure radiative equilibrium would have surface temperatures exceed-
ing 50 ◦C in the subtropics and tropopause temperatures below −80 ◦C, far from
the observed values (Manabe and Strickler, 1964). In contrast, imposing radiative-
convective equilibrium leads to subtropical surface temperatures of ∼ 27 ◦C, and
more realistic temperatures in the upper troposphere.

Nevertheless, several unphysical phenomena were soon identified in models using
this simple convection scheme. It was shown that instantaneous convective adjust-
ment leads to large precipitation rates, and to saturation of the atmosphere after
convection is triggered, which is uncommon in nature (Emanuel and Raymond,
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1993; Villalba-Pradas and Tapiador, 2022). It also results in cold biases in the tropi-
cal upper troposphere due to the absence of penetrative convection into conditionally
stable atmospheric layers (G. J. Zhang and McFarlane, 1995). The convective ad-
justment approach would be revisited a few decades later by Betts (1986) and Betts
and Miller (1986), who proposed a lagged convective adjustment model with two
parameters dictating the adjustment timescales for the temperature and specific hu-
midity lapse rates, respectively. In this model, convective fluxes are the result of
finite-time relaxation processes toward reference thermodynamic profiles specified
a priori. Due to its simplicity, the Betts-Miller scheme is still a popular choice in
low-complexity atmospheric models (Beucler et al., 2018; Dunbar et al., 2021). A
modified version of the scheme introduced by Janjić (1994), in which the relaxation
timescales and profiles are a function of the thermodynamic state of the convecting
clouds, is still used in some weather models today (Skamarock et al., 2019; J. Li
et al., 2018).

Convective adjustment schemes model convection implicitly, in terms of a desired
outcome: a realistic thermodynamic structure of Earth’s atmosphere that is specified
a priori. They do not attempt to model clouds or convective motion explicitly, nor
their relation to the environment1. Their simplicity limits their usefulness if one is
interested in understanding how convection and clouds may change with increasing
levels of CO2, or how these changes feed back on the ECS.

2.2 Modeling convection explicitly: Mass flux schemes
Early attempts to model convection explicitly include the mass flux schemes of
Ooyama (1971), Yanai et al. (1973), and Arakawa and Schubert (1974). These
schemes aim to represent moist convection as the aggregate effect of an ensemble
of slender saturated updrafts carrying buoyant moist air to the upper layers of the
troposphere; exchanging mass, moisture and energy with their environment along
the way. This decomposition of the convecting atmosphere into updrafts and a
surrounding environment was proposed based on the observed bimodal structure
of the joint probability density function of vertical velocity and moist conserved
variables within convective clouds (Yanai et al., 1973; Arakawa and Schubert,
1974; Siebesma et al., 2007). Moist convection refers to convective processes that
result in phase changes of water within the rising air parcels, which lead to latent

1In fact, according to Betts (1986), "it is clearly impossible to attempt to integrate at each grid-
point in a global model, a cloud-scale model of much realism." Hopefully the reader is convinced
this is no longer the case by the end of this thesis, at least for cloud ensembles.
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heat release and further increase the vertical transport of energy and moisture to
upper layers of the troposphere. Dry convection, which does not result in latent
heat release, is represented in these schemes through a separate boundary layer
parameterization (Arakawa and Schubert, 1974).

Analytically, mass flux schemes are derived by considering a statistical partition of
the atmosphere above the boundary layer into a set of saturated thermals, and an
unsaturated environment in which the thermals are embedded. From this decompo-
sition arises a parameterization of moist convection in the equations of motion. To
see this, consider the evolution equation for a thermodynamic field 𝜙 averaged over
an atmospheric volume Ω,

𝜕⟨𝜙⟩
𝜕𝑡

+⟨uℎ⟩ ·∇ℎ⟨𝜙⟩+⟨𝑤⟩
𝜕⟨𝜙⟩
𝜕𝑧

= −1
𝜌

[
∇ℎ · (𝜌⟨u∗

ℎ𝜙
∗⟩) + 𝜕 (𝜌⟨𝑤

∗𝜙∗⟩)
𝜕𝑧

]
+𝑆⟨𝜙⟩, (2.1)

where ⟨·⟩ denotes a density-weighted average over volumeΩ, (·)∗ denotes deviations
about this average, 𝑤 is the vertical velocity, uℎ is the horizontal velocity vector,
𝜌 is the volume-averaged density, and 𝑆⟨𝜙⟩ represents all sources and sinks of ⟨𝜙⟩.
The term 𝜕 (𝜌⟨𝑤∗𝜙∗⟩)/𝜕𝑧 encodes all unresolved vertical transport processes within
the atmospheric volume Ω, which for typical climate model resolutions include the
effects of turbulence and convection in the troposphere (Schneider et al., 2017b).

Mass flux schemes decompose the volume Ω into 𝑛 + 1 subdomains Ω0, . . . ,Ω𝑛.
Here, Ω0 denotes the environment, which occupies a large fraction 𝑎0 ≈ 1 of the
volume of Ω (Bjerknes, 1938; Ogura and Cho, 1973). The other subdomains Ω𝑖

represent thermals or updrafts. Some mass flux models retain a single bulk updraft
(𝑛 = 1, Yanai et al., 1973; Tiedtke, 1989; Gregory and Rowntree, 1990), while others
consider the effect of an ensemble of thermals (𝑛 > 1, Arakawa and Schubert, 1974;
G. J. Zhang and McFarlane, 1995; Grell and Dévényi, 2002), each of them occupying
an area fraction2 𝑎𝑖. In any case, all schemes satisfy the volume partition

𝑛∑︁
𝑖=1

𝑎𝑖 + 𝑎0 = 𝑎𝑢 + 𝑎0 = 1, (2.2)

where 𝑛 ≥ 1 is the number of thermals or updrafts considered. The volume
decomposition (2.2) also implies the Favre average (Favre, 1965)

𝜌⟨𝜙⟩ =
𝑛∑︁
𝑖=0

𝜌𝑎𝑖𝜙𝑖, (2.3)

2Many studies envision this partition in the limit Δ𝑧 → 0, which is why 𝑎𝑖 is denoted area
fraction in the literature. In practice, all schemes are implemented in grids with a finite Δ𝑧 due to
limited computational power.
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where (·)𝑖 denotes the density-weighted average over the subdomain Ω𝑖. Several
approximations are added to the updraft/environment decomposition in classic mass
flux schemes for tractability,

• Fields within each subdomain (e.g., 𝜙𝑖) are approximated as uniform, so
turbulent fluxes or covariances within the subdomains are neglected. Then,
the grid-averaged covariance can be written as

𝜌⟨𝑤∗𝜙∗⟩ ≈
𝑛∑︁
𝑖=0

𝜌𝑎𝑖 (�̄�𝑖 − ⟨𝑤⟩)(𝜙𝑖 − ⟨𝜙⟩); (2.4)

• Updrafts are assumed to be in dynamic equilibrium, such that transient terms
like 𝜕𝑡𝑎𝑖, 𝜕𝑡𝜙𝑖 or 𝜕𝑡�̄�𝑖 are neglected;

• Environmental averages roughly match the global average, since the updraft
area fraction is assumed negligible (𝑎𝑢 ≪ 1);

• Unresolved horizontal fluxes in equation (2.1) are much smaller than the
vertical fluxes, and so they are neglected;

• Density variations between updrafts and environment are neglected, except in
buoyancy terms. This is implied in the Favre average (2.3), where the density
𝜌 is taken to be constant across subdomains.

The usefulness of the mass flux framework becomes apparent when applying the
decomposition (2.4) to equation (2.1). Using the approximations listed above, this
decomposition implies

𝜕⟨𝜙⟩
𝜕𝑡

+ ⟨uℎ⟩ · ∇⟨𝜙⟩ + ⟨𝑤⟩ 𝜕⟨𝜙⟩
𝜕𝑧

= −1
𝜌

𝜕

𝜕𝑧

[
𝑛∑︁
𝑖=1

𝑀𝑖 (𝜙𝑖 − ⟨𝜙⟩)
]
+ 𝑆⟨𝜙⟩, (2.5)

where we have neglected the mass flux contribution from the environment, consistent
with the approximation 𝜙0 ∼ ⟨𝜙⟩. In equation (2.5),𝑀𝑖 is the mass flux due to updraft
𝑖,

𝑀𝑖 = 𝜌𝑎𝑖 (�̄�𝑖 − ⟨𝑤⟩),
𝑛∑︁
𝑖=1

𝑀𝑖 = −𝑀0. (2.6)

The mass flux 𝑀𝑖, multiplied by the subdomain anomaly 𝜙𝑖 − ⟨𝜙⟩, represents the
vertical convective transport of 𝜙 due to updraft 𝑖. The magnitude of this transport is
regulated in mass flux schemes through entrainment of unsaturated environmental
air and detrainment of saturated air,
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𝜕𝑀𝑖

𝜕𝑧
= 𝐸𝑖 − 𝐷𝑖, (2.7)

𝜕

𝜕𝑧
(𝑀𝑖𝜙𝑖) = 𝐸𝑖 ⟨𝜙⟩ − 𝐷𝑖𝜙𝑖 + 𝑆𝜙𝑖 , (2.8)

where 𝐸𝑖 is the entrainment of environmental air into the 𝑖-th updraft, 𝐷𝑖 is the
detrainment, and 𝑆𝜙𝑖 is the net source or sink (Tiedtke, 1989). Equation (2.7)
controls the intensity of convection as a function of height, and equation (2.8)
modifies the thermodynamic properties of the updraft. Note that entrainment and
detrainment may modify the thermodynamic state of the updraft without changing
the mass flux, if 𝐸𝑖 − 𝐷𝑖 = 0.

Figure 2.1: Schematic of the mass flux scheme decomposition of Arakawa and
Schubert (1974) within an atmospheric column, from the surface to some height
below the highest cloud top. A spectrum of ascending saturated thermals (Ω1, . . . ,
Ω𝑛) occupying a cross-sectional area fraction 𝑎𝑢 (grey shading) is initialized atop
a well-mixed turbulent boundary layer (height 𝑧𝑏𝑙). Their upward mass flux (e.g.,
𝑀1, thick solid arrows) is compensated by large-scale environmental subsidence
(𝑀0, thin descending arrows). The spectrum of thermals aims to represent different
clouds; the top height of each cloud depends on their mass flux at 𝑧𝑏𝑙 and the net
entrainment rate (blue arrows). Detrainment is concentrated at cloud top for each
thermal (orange arrows).

Equation (2.7) uniquely specifies the mass flux given closures for entrainment and
detrainment; independent equations for the area fraction 𝑎𝑖 and the updraft vertical
velocity �̄�𝑖 are not necessary in classic mass flux schemes (Tiedtke, 1989). Nev-
ertheless, modern mass flux schemes typically employ an additional equation for
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updraft vertical velocity, which can be used to obtain better estimates of updraft top
height (de Roode et al., 2012). In the majority of these schemes, the updraft vertical
velocity equation follows Simpson and Wiggert (1969),

1
2
𝜕�̄�2

𝑖

𝜕𝑧
= 𝑐1�̄�𝑖 − 𝑐2𝜖𝑖�̄�

2
𝑖 , (2.9)

where 𝜖𝑖 = 𝐸𝑖/𝑀𝑖 is the fractional entrainment rate, �̄�𝑖 is the updraft buoyancy, and
𝑐1, 𝑐2 are tunable parameters.

A schematic of the mass flux decomposition within an atmospheric column is
shown in Figure 2.1. Although equation (2.7) does not prescribe the closures
for entrainment and detrainment rates, classic mass-flux schemes concentrate all
net detrainment (𝐸𝑖 − 𝐷𝑖 < 0) around the thermal termination height, which is
diagnosed as the height of neutral buoyancy (Arakawa and Schubert, 1974; Tiedtke,
1989), or as the height of neutral vertical velocity in models that use equation (2.9).
Therefore, the integrated vertical transport of each thermal depends on its cloud
base mass flux and entrainment processes. Many parameterizations of entrainment
have been proposed (Houghton and Cramer, 1951; Squires, 1958; Turner, 1962;
Squires and Turner, 1962; Randall and Huffman, 1982; Kain and Fritsch, 1990; de
Rooy et al., 2013), and finding optimal formulations continues to be an active area
of research (Savre and Herzog, 2019; Cohen et al., 2020; Shin and Baik, 2022).

The simple set of equations (2.2)–(2.8) provides a framework to represent explicitly
many of the physical phenomena observed in convective regions of Earth’s atmo-
sphere. For instance, equation (2.6) implies that enhanced convective transport 𝑀𝑖

by the updrafts results in stronger adiabatic heating and drying of the environment
through compensating subsidence (Ooyama, 1971; Tiedtke, 1989). Considering the
total specific humidity 𝜙 = 𝑞𝑡 , entrainment of environmental air dries the saturated
updrafts through equation (2.8), reducing their buoyancy; detrainment moistens the
environment, cooling it through evaporation (Nitta, 1975).

2.3 Convection meets turbulence: Eddy-diffusivity mass-flux (EDMF) schemes
Despite representing a step change in the parameterization of convection with respect
to convective adjustment (e.g., Tiedtke, 1989), mass flux schemes still rely on several
unrealistic approximations. As sketched in Figure 2.1, they assume that organized
convective motion is initiated directly above the boundary layer, while in nature
thermals typically originate close to the heat source; in this case Earth’s surface
(Couvreux et al., 2010; Davini et al., 2017). This further results in large sensitivities
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to the trigger function used to initiate convection (Stensrud and Fritsch, 1994; T. Wu,
2012; Saint-Martin et al., 2021). In addition, moist convective fluxes are considered
independent from turbulence and dry convection within the boundary layer, which
can lead to unrealistic discontinuities in the parameterized vertical fluxes (Siebesma
et al., 2007; Villalba-Pradas and Tapiador, 2022).

To overcome these inconsistencies, Siebesma and Teixeira (2000) and Siebesma et al.
(2007) proposed a new scheme that combines the parameterizations of convection
and boundary layer turbulence in a single unified scheme, known as the eddy-
diffusivity mass-flux (EDMF) scheme. Originally proposed to avoid the need for
ad hoc countergradient fluxes in simulations of dry boundary layer convection
(Siebesma et al., 2007), the scheme has since been successfully applied to a wide
range of convective regimes, including stratocumulus and shallow cumulus clouds
(Soares et al., 2004; Neggers, 2009).

The EDMF scheme relies on the same statistical decomposition into subdomains
Ω0, . . . ,Ω𝑛 of each atmospheric volume Ω as classic mass flux schemes, with a
few generalizations. First, EDMF schemes lift the assumption of field homogeneity
within the environment. This allows them to capture environmental turbulent fluxes
within the same framework. The covariance decomposition (2.4) then becomes

𝜌⟨𝑤∗𝜙∗⟩ ≈ 𝜌𝑎0𝑤
′
0𝜙

′
0 +

𝑛∑︁
𝑖=0

𝜌𝑎𝑖 (�̄�𝑖 − ⟨𝑤⟩)(𝜙𝑖 − ⟨𝜙⟩), (2.10)

where (·)′
𝑖
denotes deviations about the subdomain average (·)𝑖, and 𝑤′

0𝜙
′
0 represents

the vertical turbulent flux of 𝜙 in the environment. Contrary to the mass flux
decomposition, the EDMF statistical decomposition does not solve the closure
problem in the grid-averaged equation (2.1) given entrainment and detrainment
rates; a closure is still required for unresolved fluxes within the environment (i.e.,
𝑤′

0𝜙
′
0). In EDMF schemes, these turbulent fluxes are parameterized as diffusive,

𝑤′
0𝜙

′
0 = −𝐾𝜙

𝜕𝜙0
𝜕𝑧

, (2.11)

where 𝐾𝜙 is the environmental eddy diffusivity of field 𝜙. Retaining the diffusive
term (2.11) in the definition of the unresolved flux (2.10) allows EDMF schemes to
decompose the atmospheric column into updrafts and environment from the ground
up, instead of relying on a different turbulence parameterization within the boundary
layer.
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Using the EDMF decomposition, the equation for ⟨𝜙⟩ can be written as

𝜕⟨𝜙⟩
𝜕𝑡

+ ⟨uℎ⟩ · ∇⟨𝜙⟩ + ⟨𝑤⟩ 𝜕⟨𝜙⟩
𝜕𝑧

=
1
𝜌

𝜕

𝜕𝑧

(
𝜌𝑎0𝐾𝜙

𝜕𝜙0
𝜕𝑧

−
𝑛∑︁
𝑖=1

𝑀𝑖 (𝜙𝑖 − ⟨𝜙⟩)
)
+ 𝑆⟨𝜙⟩ .

(2.12)

Some EDMF schemes make the approximation 𝑎0 ≈ 1, such that the area fraction
does not enter the equation (2.12). In cases where the environmental area fraction
is retained, 𝑎0 can be diagnosed from equation (2.2) if the updraft area fractions
are known. Common implementations of the EDMF scheme set each updraft area
fraction to a constant (Suselj et al., 2013; Neggers, 2015; Suselj et al., 2019b),
and diagnose the mass flux by solving an equilibrium equation for the updraft
vertical velocity similar to (2.9). Note that this procedure implicitly prescribes the
detrainment rate through equation (2.7).

A schematic of the EDMF scheme decomposition is shown in Figure 2.2. In this
case, mass flux terms in equation (2.12) represent both dry and moist convection;
there is no discontinuity at cloud base. The EDMF decomposition circumvents
the need to implement empirical countergradient transport terms below the lifting
condensation level (Deardorff, 1966). It also eliminates moist convection triggers,
an important advantage given that the physical basis for commonplace trigger func-
tions (Kuo, 1974) is strongly questioned (Emanuel, 1991; Emanuel et al., 1994).
Moist convective processes arise naturally when moisture within updrafts condenses
(Neggers, 2009). Further, the continuous parameterization of the subgrid-scale flux
⟨𝑤∗𝜙∗⟩ ensures a consistent representation of transport across vertical levels.

EDMF schemes such as the ones proposed by Siebesma et al. (2007) and Soares
et al. (2004) have been extensively tested in a wide range of atmospheric regimes
(Neggers, 2009; Suselj et al., 2013; Suselj et al., 2019a; Smalley et al., 2022),
and recently in several configurations of oceanic convection (Giordani et al., 2020).
They have been used in operational weather models to some extent for over 15
years now. The implementation of the EDMF scheme in the European Centre
for Medium-Range Weather Forecasts (ECMWF) operational model led to drastic
improvements in the representation of marine stratocumulus and winter stratus,
although it is still not used operationally above the boundary layer in said model
(Köhler, 2005; Köhler et al., 2011). Its implementation in the operational Navy
Global Environmental Model led to reduced cold biases in the low troposphere over
oceans, and an increase in geopotential height prediction skill (Hogan et al., 2014;
Suselj et al., 2014).
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Figure 2.2: Schematic of the EDMF scheme decomposition within an atmospheric
column, from the surface to some height below the highest cloud top. Updrafts
are initialized at the surface, and interact with the environment through entrainment
(blue arrows) and detrainment fluxes (orange arrows). Updrafts are unsaturated
below their lifting condensation level, which may be different for different plumes,
and become saturated above. Turbulent mixing induces further vertical transport in
the environment at all heights (green arrows).

The demonstrated effectiveness of the EDMF scheme, together with its appealing
physical explainability, have sparked considerable interest in the scientific commu-
nity over the last decade (Witek et al., 2011a; Suselj et al., 2013; Neggers, 2015;
Kurowski and Teixeira, 2018; Tan et al., 2018; Suselj et al., 2019a; E. Wu et al.,
2020; Lopez-Gomez et al., 2020; Cohen et al., 2020; Q. Li et al., 2021), and a
push toward the implementation of this scheme in operational weather and climate
models (Kurowski et al., 2019; Suselj et al., 2021). As the horizontal resolution of
weather and climate models approaches the 10–100 km scale, some of the assump-
tions of EDMF schemes inherited from earlier mass flux parameterizations are no
longer justifiable. Plumes and convective clouds may cover time-varying and non-
negligible fractions of each computational grid-box, and equilibrium assumptions
about updraft properties may not hold when the ensemble of thermals they represent
decreases in size (Randall, 2013; Neggers, 2015; Neggers and Griewank, 2022).

These challenges have prompted recent work on the derivation and analysis of
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EDMF-like schemes through a systematic coarse-graining of the governing equa-
tions of fluid motion. The objective is to rigorously trace, and potentially revisit, all
approximations used in the resulting parameterizations of atmospheric turbulence
and convection. Such studies include the multi-fluid approach of Thuburn et al.
(2018), Weller and McIntyre (2019), and Thuburn et al. (2022a); and the extended
EDMF scheme of Tan et al. (2018), Cohen et al. (2020) and Lopez-Gomez et al.
(2020). Section 2.4 focuses on the derivation of the extended EDMF scheme, fol-
lowing the formulation presented in Cohen et al. (2020). The full set of equations
employed by the scheme is outlined in Section 2.5. Similarities and differences with
respect to the multi-fluid approach and steady-state EDMF schemes are discussed
in Section 2.6, followed by some concluding remarks. The extended EDMF scheme
is then used as the basis for the turbulence closures and simulation results presented
in Chapters 3–5.

2.4 Derivation of the extended EDMF scheme
The dynamics of atmospheric fluid flow are governed by the compressible Navier-
Stokes equations, an equation defining the thermodynamic state of air, and the
conservation of its energy and constituents (i.e., water species). Moist adiabatic
processes due to the condensation, evaporation and freezing of water have a con-
siderable impact on atmospheric dynamics, so a prognostic equation for the total
water specific humidity 𝑞𝑡 is retained. Conservation of energy is imposed through
a thermodynamic balance law that defines the energy of the fluid once the specific
humidity 𝑞𝑡 is known. The exact thermodynamic balance law used is a design
choice; formulations in terms of dry static energy (Tiedtke, 1989), entropy (Pressel
et al., 2015; Thuburn et al., 2022a), or a moist adiabatic potential temperature (Tan
et al., 2018; Cohen et al., 2020) may all be found in the literature. Here, we choose
to retain an equation for the liquid-ice potential temperature 𝜃𝑙 (Deardorff, 1976),

𝜃𝑙 =
𝑇

𝜋
exp

(
−𝐿𝑣 (𝑞𝑙 + 𝑞𝑖)

𝑐𝑝𝑇

)
, (2.13)

where 𝜋 is the Exner function, 𝐿𝑣 is the effective latent heat of water (Pressel et al.,
2015), 𝑞𝑙 and 𝑞𝑖 are the liquid and ice water specific humidities, 𝑐𝑝 is the isobaric
specific heat of air and 𝑇 is the temperature. We approximate 𝑐𝑝 as constant and,
consistent with Kirchhoff’s law, the latent heat of vaporization 𝐿𝑣 to be a linear
function of temperature (Romps, 2008).
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The full set of equations in conservation form reads

𝜕𝜌

𝜕𝑡
+ ∇ℎ · (𝜌uℎ) +

𝜕 (𝜌𝑤)
𝜕𝑧

= 0, (2.14)

𝜕 (𝜌uℎ)
𝜕𝑡

+ ∇ℎ · (𝜌uℎ ⊗ uℎ) +
𝜕 (𝜌𝑤uℎ)

𝜕𝑧
= −∇ℎ𝑝† + 𝜌𝑆uℎ

, (2.15)

𝜕 (𝜌𝑤)
𝜕𝑡

+ ∇ℎ · (𝜌uℎ𝑤) +
𝜕 (𝜌𝑤𝑤)
𝜕𝑧

= 𝜌𝑏 − 𝜕𝑝†

𝜕𝑧
+ 𝜌𝑆𝑤, (2.16)

𝜕 (𝜌𝜃𝑙)
𝜕𝑡

+ ∇ℎ · (𝜌uℎ𝜃𝑙) +
𝜕 (𝜌𝑤𝜃𝑙)
𝜕𝑧

= 𝜌𝑆𝜃𝑙 , (2.17)

𝜕 (𝜌𝑞𝑡)
𝜕𝑡

+ ∇ℎ · (𝜌uℎ𝑞𝑡) +
𝜕 (𝜌𝑤𝑞𝑡)
𝜕𝑧

= 𝜌𝑆𝑞𝑡 , (2.18)

𝑝 = 𝜌𝑅𝑑𝑇𝑣 . (2.19)

The momentum sources 𝑆uℎ
and 𝑆𝑤 include the effect of molecular viscous stress

and Coriolis forces. In equations (2.17) and (2.18), the sources 𝑆𝜃𝑙 and 𝑆𝑞𝑡 represent
the effect of molecular diffusion, microphysical processes, and radiation. In the
momentum equations, a reference pressure profile 𝑝ℎ (𝑧) in hydrostatic balance with
a reference density 𝜌ℎ (𝑧) is removed to improve numerical stability:

𝜕𝑝ℎ

𝜕𝑧
= −𝜌ℎ𝑔,

where 𝑔 is the gravitational acceleration. Therefore, the perturbation pressure

𝑝† = 𝑝 − 𝑝ℎ

and the buoyancy
𝑏 = −𝑔 𝜌 − 𝜌ℎ

𝜌

replace the full pressure 𝑝 and gravitational acceleration 𝑔 in the momentum equa-
tions. In the equation of state (2.19), 𝑇𝑣 is the virtual temperature,

𝑇𝑣 =
𝑅𝑚

𝑅𝑣
𝑇, (2.20)

where 𝑅𝑚 and 𝑅𝑑 are the gas constants for moist and dry air, respectively. The
temperature 𝑇 and the distribution of 𝑞𝑡 among water species are obtained from the
thermodynamic variables 𝜃𝑙 , 𝜌, and 𝑞𝑡 through a saturation adjustment procedure
(Bryan and Fritsch, 2002); we do not consider deviations from thermodynamic
equilibrium in our formulation, although this assumption can easily be relaxed by
adding prognostic equations for the condensed species.
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Grid-averaged equations of motion
In practice, a discrete resolution (Δ𝑥,Δ𝑦,Δ𝑧) must be used when the system of
equations (2.14)–(2.18) is solved numerically. Analytically, this amounts to solving
the weak form of equations (2.14)–(2.18), averaged over some volume Ω. Denoting
Favre averages over this volume as ⟨·⟩, deviations about the Favre average as (·)∗,
Reynolds averages as ⟨·⟩𝑅, and the Reynolds-averaged fluid density as 𝜌 B ⟨𝜌⟩𝑅,
the resulting equations are

𝜕𝜌

𝜕𝑡
+ ∇ℎ · (𝜌⟨uℎ⟩) +

𝜕 (𝜌⟨𝑤⟩)
𝜕𝑧

= 0, (2.21)

𝜕 (𝜌⟨uℎ⟩)
𝜕𝑡

+ ∇ℎ · (𝜌⟨uℎ⟩ ⊗ ⟨uℎ⟩) +
𝜕 (𝜌⟨𝑤⟩⟨uℎ⟩)

𝜕𝑧
=

− ∇ℎ · (𝜌⟨u∗
ℎ ⊗ u∗

ℎ⟩) −
𝜕 (𝜌⟨𝑤∗u∗

ℎ
⟩)

𝜕𝑧
− ∇ℎ⟨𝑝†⟩𝑅 + 𝜌𝑆⟨uℎ⟩, (2.22)

𝜕 (𝜌⟨𝑤⟩)
𝜕𝑡

+ ∇ℎ · (𝜌⟨uℎ⟩⟨𝑤⟩) +
𝜕 (𝜌⟨𝑤⟩⟨𝑤⟩)

𝜕𝑧
=

− ∇ℎ · (𝜌⟨u∗
ℎ𝑤

∗⟩) − 𝜕 (𝜌⟨𝑤∗𝑤∗⟩)
𝜕𝑧

+ 𝜌⟨𝑏⟩ − 𝜕⟨𝑝†⟩𝑅
𝜕𝑧

+ 𝜌𝑆⟨𝑤⟩, (2.23)

𝜕 (𝜌⟨𝜃𝑙⟩)
𝜕𝑡

+ ∇ℎ · (𝜌⟨uℎ⟩⟨𝜃𝑙⟩) +
𝜕 (𝜌⟨𝑤⟩⟨𝜃𝑙⟩)

𝜕𝑧
=

− ∇ℎ · (𝜌⟨u∗
ℎ𝜃

∗
𝑙 ⟩) −

𝜕 (𝜌⟨𝑤∗𝜃∗
𝑙
⟩)

𝜕𝑧
+ 𝜌𝑆⟨𝜃𝑙⟩, (2.24)

𝜕 (𝜌⟨𝑞𝑡⟩)
𝜕𝑡

+ ∇ℎ · (𝜌⟨uℎ⟩⟨𝑞𝑡⟩) +
𝜕 (𝜌⟨𝑤⟩⟨𝑞𝑡⟩)

𝜕𝑧
=

− ∇ℎ · (𝜌⟨u∗
ℎ𝑞

∗
𝑡 ⟩) −

𝜕 (𝜌⟨𝑤∗𝑞∗𝑡 ⟩)
𝜕𝑧

+ 𝜌𝑆⟨𝑞𝑡 ⟩, (2.25)

⟨𝑝⟩𝑅 = 𝜌𝑅𝑑 ⟨𝑇𝑣⟩. (2.26)

In equations (2.22)–(2.25), none of the subgrid-scale (SGS) covariances can be
resolved numerically, they must parameterized. As discussed in earlier sections, our
focus here is on obtaining a unified scheme to represent vertical SGS fluxes arising
from turbulence and convection; horizontal SGS fluxes are typically represented by
eddy diffusion. To this end, we follow a statistical decomposition of the fluid flow
into subdomains, as done by earlier EDMF schemes.
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The subdomain-averaged equations
The extended EDMF scheme decomposes each grid-cell volume Ω into subdomains
Ω0, . . . ,Ω𝑛, each of them occupying a volume fraction 𝑎𝑖 that, importantly, is
not necessarily negligible nor stationary. The sum of volume fractions satisfies
equation (2.2). We make the following approximations regarding the subdomains
in our derivation:

• The fluid is approximated as anelastic, meaning that the Reynolds-averaged
subdomain density 𝜌𝑖 is taken to be a function of height and constant across
subdomains, 𝜌𝑖 ≈ 𝜌. This approximation is used everywhere except in buoy-
ancy terms, where the true subdomain densities are retained through the
definition of the subdomain buoyancy �̄�𝑖,

�̄�𝑖 = −𝑔 𝜌𝑖 − 𝜌ℎ
𝜌

; (2.27)

• The horizontal velocity is assumed constant across subdomains, ūℎ,𝑖 = ⟨uℎ⟩.
This essentially enforces convection to be a vertical process at the subdomain
scale, limiting horizontal transport processes to diffusion and large-scale ad-
vection.

In practical implementations of the extended EDMF scheme, other approximations
are made, the most important being the neglect of subgrid-scale variability within
the updrafts Ω1, . . . ,Ω𝑛 (Cohen et al., 2020). This is an approximation done a
posteriori; here we retain all subgrid-scale variability when deriving the equations.

The equations of motion for subdomain Ω𝑖 are obtained by averaging equations
(2.14) – (2.18) over its volume. Considering the total water specific humidity
equation (2.18) as an example,∫

Ω𝑖 (𝑡)

𝜕 (𝜌𝑞𝑡)
𝜕𝑡

𝑑𝑉 +
∫
Ω𝑖 (𝑡)

∇ · (𝜌𝑞𝑡u)𝑑𝑉 =

∫
Ω𝑖 (𝑡)

𝜌𝑆𝑞𝑡 𝑑𝑉. (2.28)

We do not assume steady state of each subdomain Ω𝑖 as done in earlier EDMF
schemes, so the domain of integration in equation (2.28) generally has moving
boundaries. Let us express the subdomain boundary 𝜕Ω𝑖 as the union 𝜕Ω𝑖 =

𝜕Ω
𝑔

𝑖
∪𝜕Ω𝑠𝑔

𝑖
, where 𝜕Ω𝑔

𝑖
= 𝜕Ω𝑖∩𝜕Ω is the part of the subdomain boundary 𝜕Ω𝑖 that

coincides with the grid-box boundary 𝜕Ω, and 𝜕Ω𝑠𝑔

𝑖
the subdomain boundary that

remains within the volume Ω. The domain and subdomain boundaries are related
through

∑
𝑖 𝜕Ω

𝑔

𝑖
= 𝜕Ω. The subgrid boundary 𝜕Ω𝑠𝑔

𝑖
is a free moving surface with
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velocity u𝑏, while boundary 𝜕Ω𝑔

𝑖
may only move within 𝜕Ω, by definition. Using

the Reynolds transport theorem for the transient term in equation (2.28),

𝜕

𝜕𝑡

∫
Ω𝑖 (𝑡)

𝜌𝑞𝑡𝑑𝑉+
∫
Ω𝑖 (𝑡)

∇·(𝜌𝑞𝑡u)𝑑𝑉 =

∫
𝜕Ω

𝑠𝑔

𝑖
(𝑡)
𝜌𝑞𝑡u𝑏 ·n𝑑𝑆+

∫
Ω𝑖 (𝑡)

𝜌𝑆𝑞𝑡 𝑑𝑉, (2.29)

where n is the outward-pointing unit vector normal to the surface over which the inte-
gration is performed. Since u𝑏 · n = 0 over 𝜕Ω𝑔

𝑖
, no relative transport term through

this boundary appears in equation (2.29). Then, using the Gauss-Ostrogradsky
theorem for the divergence term, and rearranging the surface integrals yields

𝜕

𝜕𝑡

∫
Ω𝑖 (𝑡)

𝜌𝑞𝑡𝑑𝑉 +
∫
𝜕Ω

𝑔

𝑖

𝜌𝑞𝑡u · n𝑑𝑆 = −
∫
𝜕Ω

𝑠𝑔

𝑖
(𝑡)
𝜌𝑞𝑡 (u − u𝑏) · n𝑑𝑆 +

∫
Ω𝑖 (𝑡)

𝜌𝑆𝑞𝑡 𝑑𝑉.

(2.30)
The first term on the right-hand side is the flux out of subdomain Ω𝑖 into other
subdomains within the same grid box, and the second term on the left-hand side
is the flux out of subdomain Ω𝑖 into a neighboring grid-box. The total grid-scale
divergence equals the sum of fluxes from all subdomains across the grid box,∫

Ω

∇ · (𝜌𝑞𝑡u)𝑑𝑉 =
∑︁
𝑖≥0

∫
𝜕Ω

𝑔

𝑖

𝜌𝑞𝑡u · n𝑑𝑆. (2.31)

Commutativity of the divergence and the volume average is exact for uniform grids
and results in a small error otherwise (Fureby and Tabor, 1997). Using this property,

∇ ·
∫
Ω

(𝜌𝑞𝑡u)𝑑𝑉 = ∇ · (𝜌𝑉𝑇 ⟨𝑞𝑡u⟩) =
∑︁
𝑖≥0

∫
𝜕Ω

𝑔

𝑖

𝜌𝑞𝑡u · n𝑑𝑆, (2.32)

where 𝑉𝑇 is the total volume of Ω. The divergence term in equation (2.32) can
be written in terms of the sum of the subdomain-mean values through the domain
decomposition (2.3),∑︁

𝑖≥0
∇ · [𝜌𝑉𝑖 (𝑞𝑡u)𝑖] =

∑︁
𝑖≥0

∫
𝜕Ω

𝑔

𝑖

𝜌𝑞𝑡u · n𝑑𝑆, (2.33)

where𝑉𝑖 is the volume of subdomain Ω𝑖, and (2.33) holds generally. The divergence
in equation (2.33) acts on the grid scale. The diagnosis of the contribution of each
subdomain flux on the right-hand side of equation (2.33) to the grid-mean divergence
requires an assumption regarding the fraction of the grid-cell boundary 𝜕Ω covered
by each subdomain, 𝜕Ω𝑔

𝑖
. Here, we assume that 𝐴𝑔

𝑖
= 𝑎𝑖𝐴

𝑔

𝑇
, where 𝐴𝑔

𝑖
and 𝐴𝑔

𝑇
are

the areas of surfaces 𝜕Ω𝑔

𝑖
and 𝜕Ω, respectively. We further assume that for each Ω𝑖

the average over 𝜕Ω𝑔

𝑖
equals the subdomain mean. From this it follows that∫

𝜕Ω
𝑔

𝑖

𝜌𝑞𝑡u · n𝑑𝑆 = ∇ · [𝜌𝑉𝑖 (𝑞𝑡u)𝑖] = ∇ · [𝜌𝑉𝑖 (𝑞𝑡,𝑖ū𝑖 + 𝑞′𝑡,𝑖u′
𝑖
)] . (2.34)
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Equation (2.34) cannot be obtained from the divergence theorem, since 𝜕Ω𝑔

𝑖
is not

a closed surface. Using equality (2.34) and dividing by the grid-box volume 𝑉𝑇 , we
can rewrite (2.30) as

𝜕 (𝜌𝑎𝑖𝑞𝑡,𝑖)
𝜕𝑡

= −∇ · [𝜌𝑎𝑖 (𝑞𝑡,𝑖ū𝑖 + 𝑞′𝑡,𝑖u′
𝑖
)] − 1

𝑉𝑇

∫
𝜕Ω

𝑠𝑔

𝑖
(𝑡)
𝜌𝑞𝑡u𝑟 · n𝑑𝑆 + 𝜌𝑎𝑖𝑆𝑞𝑡 ,𝑖 , (2.35)

where u𝑟 = u − u𝑏. Since the vertical extent of the volumes is fixed at the model
vertical resolution, 𝑉𝑖/𝑉𝑇 = 𝐴𝑖/𝐴𝑇 = 𝑎𝑖, with 𝑎𝑖 as the area fraction, 𝐴𝑇 = Δ𝑥Δ𝑦,
and 𝐴𝑖 the average horizontal cross-sectional area of subdomain Ω𝑖.

Thus, the subdomain humidity equation (2.35) can be obtained from a statistical
domain decomposition and the subdomain interior-boundary homogeneity assump-
tion (2.34). The divergence of the flux 𝑞′

𝑡,𝑖
u′
𝑖
represents within-subdomain turbulent

transport, and the integral term represents transport across the subdomain boundary
to other subdomains, which we refer to as entrainment and detrainment processes.
These two terms require closures in terms of subdomain-mean variables for equation
(2.35) to be solvable.

Entrainment and detrainment fluxes
The net entrainment flux in equation (2.35) can be expressed as the sum of a bulk
entrainment flux, denoted dynamical entrainment, and an entrainment flux due to
turbulent correlations between the across-subdomain velocity u𝑟 and the prognostic
variable, denoted turbulent entrainment,

1
𝑉𝑇

∫
𝜕Ω

𝑠𝑔

𝑖
(𝑡)
𝜌𝑞𝑡u𝑟 · n𝑑𝑆 = 𝜌

𝐴
𝑠𝑔

𝑖

𝑉𝑇
( 𝑞𝑡𝑢𝑟,𝑛︸︷︷︸
dynamical

+ �𝑞′𝑡𝑢′𝑟,𝑛︸︷︷︸
turbulent

)𝑖, (2.36)

where symbol (̂·) represents the average over the surface 𝜕Ω𝑠𝑔

𝑖
, 𝑢𝑟,𝑛 = u𝑟 · n, and

𝐴
𝑠𝑔

𝑖
is the total area of surface 𝜕Ω𝑠𝑔

𝑖
.

The net dynamical entrainment flux is taken to be the sum of mass entrainment and
detrainment processes that carry the mean properties of the subdomain they detrain
from (de Rooy et al., 2013),

−
𝐴
𝑠𝑔

𝑖

𝑉𝑇
(𝜌𝑞𝑡𝑢𝑟,𝑛)𝑖 =

∑︁
𝑗≠𝑖

(𝐸𝑖 𝑗𝑞𝑡, 𝑗 − Δ𝑖 𝑗𝑞𝑡,𝑖), (2.37)

where 𝐸𝑖 𝑗 is the mass entrainment into subdomain Ω𝑖 from Ω 𝑗 , and Δ𝑖 𝑗 is the
detrainment out of Ω𝑖 into Ω 𝑗 . Both of these terms are positive semidefinite, due
to our upwind model for 𝑞𝑡 : expression (2.37) assumes that the average specific
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humidity over 𝜕Ω𝑠𝑔

𝑖
depends on the sign of 𝑢𝑟,𝑛: it is equal to the subdomain-mean

𝑞𝑡,𝑖 if air is being detrained from Ω𝑖, and equal to 𝑞𝑡, 𝑗 if air is being entrained
from a different subdomain Ω 𝑗 . Other models of dynamical entrainment, based on
preferential sorting arguments, have been proposed in the literature (Thuburn et al.,
2022b).

Since density is taken constant across subdomains, the dynamical entrainment and
detrainment fluxes satisfy

−
𝐴
𝑠𝑔

𝑖

𝑉𝑇
(𝜌𝑢𝑟,𝑛)𝑖 =

∑︁
𝑗≠𝑖

(𝐸𝑖 𝑗 − Δ𝑖 𝑗 ). (2.38)

The turbulent entrainment flux does not involve net mass exchange between sub-
domains, and it is modeled as a downgradient diffusive flux across the subdomain
interface (Asai and Kasahara, 1967; Cohen et al., 2020),

−
𝐴
𝑠𝑔

𝑖

𝑉𝑇
(𝜌�𝑞′𝑡𝑢′𝑟,𝑛)𝑖 = ∑︁

𝑗≠𝑖

�̂�𝑖 𝑗 (𝑞𝑡, 𝑗 − 𝑞𝑡,𝑖). (2.39)

where �̂�𝑖 𝑗 = �̂� 𝑗𝑖 is the turbulent entrainment rate between Ω 𝑗 and Ω𝑖. Note that in
regions where both 𝐸𝑖 𝑗 and Δ𝑖 𝑗 are positive, the entrainment offset by detrainment
acts as a turbulent entrainment term similar to (2.39) (Tiedtke, 1989).

Using the decomposition (2.36), expressions (2.37) and (2.39) for the entrainment
fluxes, and taking the large-scale horizontal velocity to be constant across subdo-
mains, equation (2.35) may be written as

𝜕 (𝜌𝑎𝑖𝑞𝑡,𝑖)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎𝑖𝑞𝑡,𝑖 ⟨uℎ⟩) +
𝜕 (𝜌𝑎𝑖𝑞𝑡,𝑖�̄�𝑖)

𝜕𝑧
= −∇ · (𝜌𝑎𝑖𝑞′𝑡,𝑖u′

𝑖
)

+
∑︁
𝑗≠𝑖

(𝐸𝑖 𝑗𝑞𝑡, 𝑗 − Δ𝑖 𝑗𝑞𝑡,𝑖) +
∑︁
𝑗≠𝑖

�̂�𝑖 𝑗 (𝑞𝑡, 𝑗 − 𝑞𝑡,𝑖) + 𝜌𝑎𝑖𝑆𝑞𝑡 ,𝑖 . (2.40)

Equation (2.40) is the subdomain-averaged balance law for total water specific hu-
midity. The sum of this equation over all subdomains yields the grid-mean equation
(2.25). The equations for all other subdomain-averaged thermodynamic fields, such
as the liquid-water potential temperature 𝜃𝑙,𝑖, follow an identical formulation,

𝜕 (𝜌𝑎𝑖𝜃𝑙,𝑖)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎𝑖𝜃𝑙,𝑖 ⟨uℎ⟩) +
𝜕 (𝜌𝑎𝑖𝜃𝑙,𝑖�̄�𝑖)

𝜕𝑧
= −∇ · (𝜌𝑎𝑖𝜃′𝑙,𝑖u

′
𝑖
)

+
∑︁
𝑗≠𝑖

(𝐸𝑖 𝑗𝜃𝑙, 𝑗 − Δ𝑖 𝑗𝜃𝑙,𝑖) +
∑︁
𝑗≠𝑖

�̂�𝑖 𝑗 (𝜃𝑙, 𝑗 − 𝜃𝑙,𝑖) + 𝜌𝑎𝑖𝑆𝜃𝑙,𝑖 . (2.41)
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Since density is taken to be constant across subdomains, except in terms accounting
for buoyancy effects, the subdomain-averaged continuity equation becomes a balance
law for the subdomain area fraction 𝑎𝑖,

𝜕 (𝜌𝑎𝑖)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎𝑖 ⟨uℎ⟩) +
𝜕 (𝜌𝑎𝑖�̄�𝑖)

𝜕𝑧
=

∑︁
𝑗≠𝑖

(𝐸𝑖 𝑗 − Δ𝑖 𝑗 ). (2.42)

Equation (2.42) follows the same derivation as (2.40), substituting 𝑞𝑡 → 1, so all
covariances in the equation vanish. Note that this balance law is a generalized
version of the steady-state mass flux equation (2.7) used in mass flux schemes and
steady EDMF schemes.

A sketch of the extended EDMF decomposition is shown in Figure 2.3, including
updrafts for deep, shallow, and decaying convection. Contrary to steady EDMF
schemes, net entrainment processes and large-scale horizontal convergence may
modify the updraft area fraction and mass flux both in time and space. These
additions enable a more realistic representation of cloud cover, endow the extended
EDMF scheme with convective memory, and enable a consistent representation of
transient processes such as the diurnal cycle of convection (Tan et al., 2018; Cohen
et al., 2020).

Finally, the subdomain-averaged vertical momentum equation includes two addi-
tional terms with respect to the thermodynamic balance laws, related to buoyancy
forces and pressure gradients. Buoyancy forces are computed using an SGS anelastic
approximation, following Pauluis (2008). Within this approximation, the subdomain
density �̄�𝑖 used to compute the subdomain buoyancy (2.27) is defined as

𝜌𝑖 =
⟨𝑝⟩𝑅
𝑅𝑑𝑇𝑣,𝑖

, (2.43)

which ensures that the virtual temperature 𝑇𝑣 satisfies the Favre average

𝜌⟨𝑇𝑣⟩ =
𝑛∑︁
𝑖=0

𝜌𝑖𝑎𝑖𝑇𝑣,𝑖 . (2.44)

The Reynolds-averaged subdomain perturbation pressure 𝑝†
𝑖

is defined consistently
with this definition of buoyancy, and following hydrostatic balance, as shown in
Appendix C of Cohen et al. (2020). From the SGS anelastic approximation and
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Figure 2.3: Schematic of the extended EDMF scheme decomposition within an
atmospheric column, from the surface to some height below the highest cloud top.
Arrows as in Figure 2.2. The thermodynamic state of the updrafts at the surface,
along with entrainment and detrainment processes, determine their area fraction,
mass flux, and termination height. Transient terms allow mature convective clouds
to dissipate over a finite amount of time.

definition of buoyancy, the subdomain-averaged vertical momentum equation reads

𝜕 (𝜌𝑎𝑖�̄�𝑖)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎𝑖 ⟨uℎ⟩�̄�𝑖) +
𝜕 (𝜌𝑎𝑖�̄�𝑖�̄�𝑖)

𝜕𝑧
= −∇ · (𝜌𝑎𝑖u′

𝑖
𝑤′
𝑖
)

+
∑︁
𝑗≠𝑖

[
(𝐸𝑖 𝑗 + �̂�𝑖 𝑗 )�̄� 𝑗 − (Δ𝑖 𝑗 + �̂�𝑖 𝑗 )�̄�𝑖

]
+ 𝜌𝑎𝑖 �̄�𝑖 − 𝜌𝑎𝑖

𝜕

𝜕𝑧

(
𝑝
†
𝑖

𝜌

)
+ 𝜌𝑎𝑖𝑆𝑤,𝑖 . (2.45)

This equation is the extended EDMF version of the equilbrium equation (2.9) used in
steady EDMF schemes. Here, large-scale horizontal advection, pressure gradients,
and turbulent fluxes within the subdomain may modify the subdomain vertical
velocity evolution. Importantly, no empirical parameter multiplies the buoyancy
and entrainment terms. This highlights that parameters 𝑐1 and 𝑐2 in equation (2.9)
represent a closure of the pressure gradient term; explicit perturbation pressure
gradient closures typically follow a similar functional form (J. He et al., 2021).

Closures within the extended EDMF scheme
Equations (2.40)–(2.45) define the subdomain dynamics given the grid-mean equa-
tions and parameterizations for the following unresolved processes:
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• All within-subdomain turbulent fluxes of the form u′
𝑖
𝜙′
𝑖
. These include hori-

zontal and vertical turbulent fluxes;

• Dynamical entrainment 𝐸𝑖 𝑗 , detrainment Δ𝑖 𝑗 , and turbulent entrainment �̂�𝑖 𝑗 ;

• Subdomain perturbation pressure gradients 𝜕 (𝑝†
𝑖
/𝜌)/𝜕𝑧 in the vertical mo-

mentum equations;

• Heating (or cooling) and moistening (or drying) due to cloud microphysical
processes, which partially define the terms 𝑆𝑞𝑡 ,𝑖 and 𝑆𝜃𝑙,𝑖 in equations (2.40)
and (2.41) and can have a strong influence in moist atmospheric dynamics.

Parameterizations of these processes are necessarily imperfect approximations of
their real effect on the dynamics of the atmosphere, be they entirely data-driven
or based on simplified physical balances (Schneider et al., 2017b; Lopez-Gomez
et al., 2022b). As such, they introduce important representation or model errors
in the dynamics (Brynjarsdóttir and O’Hagan, 2014; van Leeuwen, 2015). These
errors have been shown to be major contributors to the biases and uncertainty in
state-of-the-art climate projections, which is why improving parameterizations is
one of the core efforts in atmospheric dynamics research today (Sherwood et al.,
2014; Zelinka et al., 2020). Examples of closures designed for extended EDMF
schemes are the diffusive turbulent flux closure proposed in Lopez-Gomez et al.
(2020), the entrainment and detrainment closures found in Cohen et al. (2020), and
the perturbation pressure gradient closure introduced by J. He et al. (2021); the first
of these closures is the subject of Chapter 3.

The subdomain covariance equations
Many proposed parameterizations for unresolved processes do not have a closed
diagnostic form. Instead, they rely on additional prognostic equations that carry
information about subgrid-scale variability. By computing spatially filtered versions
of products of the equations (2.14)–(2.18), we may obtain prognostic equations for
higher order statistical moments of the state {u, 𝜃𝑙 , 𝑞𝑡}. A hierarchy of systems
of equations can then be obtained by selecting the highest order of the statistical
moments for which prognostic equations are retained. Mellor and Yamada (1974)
provide a description of this hierarchy when filtering at the scale of the grid-volume
Ω; a similar hierarchy applied to the subdomain equations is given by Thuburn et al.
(2022a).
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The extended EDMF scheme proposed by Tan et al. (2018) and Cohen et al. (2020)
introduce additional equations for the environmental turbulence kinetic energy, and
for the environmental covariance of the moist adiabatic variables 𝑞𝑡 and 𝜃𝑙 . The
environmental turbulence kinetic energy is used as an ingredient for all within-
subdomain turbulent flux closures, and the thermodynamic covariances are used
to estimate the average effect of processes that depend nonlinearly on the thermo-
dynamic state of the fluid due to phase transitions (Lopez-Gomez et al., 2020).
No covariance equations are carried for the updrafts, wherein correlations between
turbulent fluctuations of all fields are assumed negligible; updraft variability can
be captured by increasing the number of subdomains. In the Mellor and Yamada
(1974) hierarchy, the extended EDMF scheme combines an environmental level 3
model with an updraft "level 0" model3. Common hierarchies for EDMF schemes
involve the use of an environmental level 2.5 model, which retain a single second-
order moment equation for the turbulence kinetic energy (Mellor and Yamada, 1982;
Kurowski and Teixeira, 2018).

The derivation of the subdomain covariance equation for two thermodynamic fields,
for instance 𝑞𝑡 and 𝜃𝑙 , follows a similar structure to the derivation of the subdomain
mean equation outlined in previous pages. Consider equation (2.35) with the change
of variable 𝑞𝑡 → 𝑞𝑡𝜃𝑙 ,

𝜕 (𝜌𝑎𝑖𝑞𝑡,𝑖𝜃𝑙,𝑖)
𝜕𝑡

= −∇ · [𝜌𝑎𝑖 (𝑞𝑡,𝑖𝜃𝑙,𝑖ū𝑖 + (𝑞𝑡,𝑖𝜃𝑙,𝑖)′u′
𝑖
)]

− 1
𝑉𝑇

∫
𝜕Ω

𝑠𝑔

𝑖
(𝑡)
𝜌𝑞𝑡𝜃𝑙u𝑟 · n𝑑𝑆 + 𝜌𝑎𝑖𝑆𝜃𝑙,𝑖 ,𝑞𝑡 ,𝑖 . (2.46)

Using the entrainment decomposition (2.36),

𝜕 (𝜌𝑎𝑖𝑞𝑡,𝑖𝜃𝑙,𝑖)
𝜕𝑡

= −∇ · [𝜌𝑎𝑖 (𝑞𝑡,𝑖𝜃𝑙,𝑖ū𝑖 + (𝑞𝑡,𝑖𝜃𝑙,𝑖)′u′
𝑖
)]

−
𝐴
𝑠𝑔

𝑖

𝑉𝑇

(
𝜌𝑞𝑡𝜃𝑙𝑢𝑟,𝑛 + 𝜌 �(𝑞𝑡𝜃𝑙)′𝑢′𝑟,𝑛)

𝑖
+ 𝜌𝑎𝑖𝑆𝜃𝑙,𝑖 ,𝑞𝑡 ,𝑖 . (2.47)

The equation for covariance 𝑞′
𝑡,𝑖
𝜃′
𝑙,𝑖

can be obtained from equation (2.47), the
subdomain-mean equations (2.40) and (2.41), and the subdomain continuity equa-

3Level 1, the lowest level in the Mellor-Yamada hierarchy, provides diagnostic equations for
turbulent covariances. Here, we refer to a lower level in which all covariances are neglected.
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tion (2.42),

𝜕 (𝜌𝑎𝑖𝑞′𝑡,𝑖𝜃′𝑙,𝑖)
𝜕𝑡

=
𝜕 (𝜌𝑎𝑖𝑞𝑡,𝑖𝜃𝑙,𝑖)

𝜕𝑡

− 𝜃𝑙,𝑖
𝜕 (𝜌𝑎𝑖𝑞𝑡,𝑖)

𝜕𝑡
− 𝑞𝑡,𝑖

𝜕 (𝜌𝑎𝑖𝜃𝑙,𝑖)
𝜕𝑡

+ 𝑞𝑡,𝑖𝜃𝑙,𝑖
𝜕 (𝜌𝑎𝑖)
𝜕𝑡

, (2.48)

which after substution reads

𝜕 (𝜌𝑎𝑖𝑞′𝑡,𝑖𝜃′𝑙,𝑖)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎𝑖 ⟨uℎ⟩𝑞′𝑡,𝑖𝜃′𝑙,𝑖)) +
𝜕 (𝜌𝑎𝑖𝑤𝑖𝑞′𝑡,𝑖𝜃′𝑙,𝑖)

𝜕𝑧
=

− ∇ · (𝜌𝑎𝑖u′
𝑖
𝑞′
𝑡,𝑖
𝜃′
𝑙,𝑖
) − 𝜌𝑎𝑖𝑤′

𝑖
𝑞′
𝑡,𝑖

𝜕𝜃𝑙,𝑖

𝜕𝑧
− 𝜌𝑎𝑖𝑤′

𝑖
𝜃′
𝑙,𝑖

𝜕𝑞𝑡,𝑖

𝜕𝑧

− 𝜌
𝐴
𝑠𝑔

𝑖

𝑉𝑇

( �𝑞′𝑡𝜃′𝑙𝑢′𝑟,𝑛 − (𝜃𝑙,𝑖 − 𝜃𝑙) �𝑢′𝑟,𝑛𝑞′𝑡 − (𝑞𝑡,𝑖 − 𝑞𝑡) �𝑢′𝑟,𝑛𝜃′𝑙) 𝑖
− 𝜌

𝐴
𝑠𝑔

𝑖

𝑉𝑇

(
�̂�𝑟,𝑛 (𝑞𝑡 − 𝑞𝑡,𝑖) (𝜃𝑙 − 𝜃𝑙,𝑖) + �̂�𝑟,𝑛𝑞′𝑡𝜃′𝑙

)
𝑖

− 𝜌𝑎𝑖𝐷𝑞′
𝑡 ,𝑖
𝜃 ′
𝑙,𝑖
+ 𝜌𝑎𝑖 (𝑆′𝑞𝑡 ,𝑖𝜃′𝑙,𝑖 + 𝑆

′
𝜃𝑙,𝑖
𝑞′
𝑡,𝑖
), (2.49)

where 𝐷𝑞′
𝑡 ,𝑖
𝜃 ′
𝑙

is the turbulent covariance dissipation. Here, differences between
subdomain-means and the interface value, 𝜙𝑖 − 𝜙, must be modeled as 𝜙∗

𝑖
= 𝜙𝑖 − ⟨𝜙⟩

to ensure conservation of the grid-mean covariance. The last term in equation (2.49)
follows from the decomposition (2.48), given that

𝑆𝑞𝑡 ,𝑖𝜃𝑙,𝑖 = 𝑞𝑡,𝑖𝑆𝜃𝑙,𝑖 + 𝜃𝑙,𝑖𝑆𝑞𝑡 ,𝑖 . (2.50)

Finally, substituting the entrainment fluxes (2.37) and (2.39) in equation (2.49), we
obtain

𝜕 (𝜌𝑎𝑖𝑞′𝑡,𝑖𝜃′𝑙,𝑖)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎𝑖 ⟨uℎ⟩𝑞′𝑡,𝑖𝜃′𝑙,𝑖)) +
𝜕 (𝜌𝑎𝑖𝑤𝑖𝑞′𝑡,𝑖𝜃′𝑙,𝑖)

𝜕𝑧
=

− ∇ · (𝜌𝑎𝑖u′
𝑖
𝑞′
𝑡,𝑖
𝜃′
𝑙,𝑖
)︸               ︷︷               ︸

turb. transport

− 𝜌𝑎𝑖𝑤′
𝑖
𝑞′
𝑡,𝑖

𝜕𝜃𝑙,𝑖

𝜕𝑧︸           ︷︷           ︸
turb. production

− 𝜌𝑎𝑖𝑤′
𝑖
𝜃′
𝑙,𝑖

𝜕𝑞𝑡,𝑖

𝜕𝑧︸           ︷︷           ︸
turb. production

+
∑︁
𝑗≠𝑖

(
�̂�𝑖 𝑗 (𝑞′𝑡, 𝑗𝜃′𝑙, 𝑗 − 𝑞

′
𝑡,𝑖
𝜃′
𝑙,𝑖
)︸                     ︷︷                     ︸

turb. entrainment

+ 𝜃∗𝑙,𝑖 �̂�𝑖 𝑗 (𝑞𝑡,𝑖 − 𝑞𝑡, 𝑗 ) + 𝑞
∗
𝑡,𝑖 �̂�𝑖 𝑗 (𝜃𝑙,𝑖 − 𝜃𝑙, 𝑗 )︸                                            ︷︷                                            ︸

turb. entrainment production

)

+
∑︁
𝑗≠𝑖

(
𝐸𝑖 𝑗𝑞

′
𝑡, 𝑗
𝜃′
𝑙, 𝑗︸      ︷︷      ︸

dyn. entrainment

− Δ𝑖 𝑗𝑞
′
𝑡,𝑖
𝜃′
𝑙,𝑖︸    ︷︷    ︸

dyn. detrainment

+ 𝐸𝑖 𝑗 (𝑞𝑡,𝑖 − 𝑞𝑡, 𝑗 ) (𝜃𝑙,𝑖 − 𝜃𝑙, 𝑗 )︸                           ︷︷                           ︸
dyn. entrainment flux

)

− 𝜌𝑎𝑖𝐷𝑞′
𝑡 ,𝑖
𝜃 ′
𝑙,𝑖︸       ︷︷       ︸

turb. dissipation

+ 𝜌𝑎𝑖 (𝑆′𝑞𝑡 ,𝑖𝜃′𝑙,𝑖 + 𝑆
′
𝜃𝑙,𝑖
𝑞′
𝑡,𝑖
)︸                      ︷︷                      ︸

turb. source correlations

. (2.51)
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The subdomain covariance equation (2.51) is very general, and current implementa-
tions of the extended EDMF scheme simplify it in some ways. The main simplifica-
tion comes from the assumption that only one of the subdomains, the environment,
has significant subgrid-scale variability. In all other subdomains, turbulent cor-
relations are neglected. Then it follows that equation (2.51) is only retained for
the environment, and that all fluxes 𝑞′

𝑡, 𝑗
𝜃′
𝑙, 𝑗

for 𝑗 > 0 are neglected, yielding the
simplified environmental covariance equation

𝜕 (𝜌𝑎0𝑞
′
𝑡,0𝜃

′
𝑙,0)

𝜕𝑡
+ ∇ℎ · (𝜌𝑎0⟨uℎ⟩𝑞′𝑡,0𝜃

′
𝑙,0)) +

𝜕 (𝜌𝑎0𝑤0𝑞
′
𝑡,0𝜃

′
𝑙,0)

𝜕𝑧
=

− ∇ · (𝜌𝑎0u′
0𝑞

′
𝑡,0𝜃

′
𝑙,0) − 𝜌𝑎0𝑤

′
0𝑞

′
𝑡,0
𝜕𝜃𝑙,0

𝜕𝑧
− 𝜌𝑎0𝑤

′
0𝜃

′
𝑙,0
𝜕𝑞𝑡,0

𝜕𝑧

+
∑︁
𝑗>0

(
− �̂�0 𝑗𝑞

′
𝑡,0𝜃

′
𝑙,0 + 𝜃

∗
𝑙,0�̂�0 𝑗 (𝑞𝑡,0 − 𝑞𝑡, 𝑗 ) + 𝑞∗𝑡,0�̂�0 𝑗 (𝜃𝑙,0 − 𝜃𝑙, 𝑗 )

)
+

∑︁
𝑗>0

(
− Δ0 𝑗𝑞

′
𝑡,0𝜃

′
𝑙,0 + 𝐸0 𝑗 (𝑞𝑡,0 − 𝑞𝑡, 𝑗 ) (𝜃𝑙,0 − 𝜃𝑙, 𝑗 )

)
− 𝜌𝑎0𝐷𝑞′

𝑡 ,0𝜃
′
𝑙,0
+ 𝜌𝑎0(𝑆′𝑞𝑡 ,0𝜃′𝑙,0 + 𝑆

′
𝜃𝑙,0
𝑞′
𝑡,0). (2.52)

Here, the turbulent transport and shear production terms in the second line require
additional closures. These are typically modeled as diffusive, using expression
(2.11), where 𝜙 → {𝑞𝑡𝜃𝑙 , 𝑞𝑡 , 𝜃𝑙} in each of the unresolved terms in equation (2.52).

A distinctly important covariance is the environmental turbulence kinetic energy
(TKE) 𝑒0, since it is used in level 2.5 and level 3 schemes of the Mellow-Yamada
hierarchy,

𝑒0 =
u′

0 · u′
0

2
=

1
2
(𝑢′0𝑢

′
0 + 𝑣

′
0𝑣

′
0 + 𝑤

′
0𝑤

′
0). (2.53)

It is generally used to construct diagnostic models of within-subdomain turbulent
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fluxes. Its prognostic equation in flux form reads

𝜕 (𝜌𝑎0𝑒0)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎0⟨uℎ⟩𝑒0) +
𝜕 (𝜌𝑎0�̄�0𝑒0)

𝜕𝑧
=

−
𝜕 (𝜌𝑎0𝑤

′
0𝑒

′
0)

𝜕𝑧︸          ︷︷          ︸
vert. turb. transport

−∇ℎ ·
(
𝜌𝑎0u′

ℎ,0𝑒
′
0

)
︸               ︷︷               ︸
horiz. turb. transport

+ 𝜌𝑎0𝑤
′
0𝑏

′
0︸    ︷︷    ︸

buoy. production

+
∑︁
𝑖>0

𝜌𝑎𝑖 (�̄�∗
𝑖 − �̄�∗

0)
𝜕Ψ̄∗

𝑖

𝜕𝑧︸                  ︷︷                  ︸
pressure - velocity corr.

− 𝜌𝑎0

[
𝑤′

0𝑢
′
0
𝜕⟨𝑢⟩
𝜕𝑧

+ 𝑤′
0𝑣

′
0
𝜕⟨𝑣⟩
𝜕𝑧

+ 𝑤′
0𝑤

′
0
𝜕�̄�0
𝜕𝑧

]
︸                                                   ︷︷                                                   ︸

vertical shear production

− 𝜌𝑎0D︸︷︷︸
turb. dissipation

− 𝜌𝑎0

(
u′
ℎ,0𝑢

′
0 · ∇ℎ⟨𝑢⟩ + u′

ℎ,0𝑣
′
0 · ∇ℎ⟨𝑣⟩ + u′

ℎ,0𝑤
′
0 · ∇ℎ�̄�0

)
︸                                                                  ︷︷                                                                  ︸

horizontal shear production

+
∑︁
𝑗

[
𝐸0 𝑗

1
2
(�̄� 𝑗 − �̄�0)2︸               ︷︷               ︸

conv. energy entrainment

− (Δ0 𝑗 + �̂�0 𝑗 )𝑒0︸           ︷︷           ︸
detrainment

− �̂�0 𝑗 �̄�
∗
0(�̄�

∗
𝑗 − �̄�∗

0)︸               ︷︷               ︸
turb. entrainment production

]
, (2.54)

where Ψ = 𝑝/𝜌 is the pressure potential. The environmental TKE is only a fraction
of the total turbulence kinetic energy, which also includes the convective energy
due to the subdomain velocities �̄�𝑖. However, no additional equations are necessary
for convective TKE, since it is explicitly resolved through the subdomain mean
momentum equations. The energetic pathways between environmental TKE and
convective TKE are given in Appendix B of Chapter 3.

2.5 The full system of equations
The full system of equations necessary to evolve the dynamics of the extended
EDMF scheme is formed by:

• The grid-averaged equations (2.21)–(2.26),

𝜕𝜌

𝜕𝑡
+ ∇ℎ · (𝜌⟨uℎ⟩) +

𝜕 (𝜌⟨𝑤⟩)
𝜕𝑧

= 0, (2.55)

𝜕 (𝜌⟨uℎ⟩)
𝜕𝑡

+ ∇ℎ · (𝜌⟨uℎ⟩ ⊗ ⟨uℎ⟩) +
𝜕 (𝜌⟨𝑤⟩⟨uℎ⟩)

𝜕𝑧
=

− ∇ℎ · (𝜌⟨u∗
ℎ ⊗ u∗

ℎ⟩) −
𝜕 (𝜌⟨𝑤∗u∗

ℎ
⟩)

𝜕𝑧
− ∇ℎ⟨𝑝†⟩𝑅 + 𝜌𝑆⟨uℎ⟩, (2.56)
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𝜕 (𝜌⟨𝑤⟩)
𝜕𝑡

+ ∇ℎ · (𝜌⟨uℎ⟩⟨𝑤⟩) +
𝜕 (𝜌⟨𝑤⟩⟨𝑤⟩)

𝜕𝑧
=

− ∇ℎ · (𝜌⟨u∗
ℎ𝑤

∗⟩) − 𝜕 (𝜌⟨𝑤∗𝑤∗⟩)
𝜕𝑧

+ 𝜌⟨𝑏⟩ − 𝜕⟨𝑝†⟩𝑅
𝜕𝑧

+ 𝜌𝑆⟨𝑤⟩, (2.57)

𝜕 (𝜌⟨𝜃𝑙⟩)
𝜕𝑡

+ ∇ℎ · (𝜌⟨uℎ⟩⟨𝜃𝑙⟩) +
𝜕 (𝜌⟨𝑤⟩⟨𝜃𝑙⟩)

𝜕𝑧
=

− ∇ℎ · (𝜌⟨u∗
ℎ𝜃

∗
𝑙 ⟩) −

𝜕 (𝜌⟨𝑤∗𝜃∗
𝑙
⟩)

𝜕𝑧
+ 𝜌𝑆⟨𝜃𝑙⟩, (2.58)

𝜕 (𝜌⟨𝑞𝑡⟩)
𝜕𝑡

+ ∇ℎ · (𝜌⟨uℎ⟩⟨𝑞𝑡⟩) +
𝜕 (𝜌⟨𝑤⟩⟨𝑞𝑡⟩)

𝜕𝑧
=

− ∇ℎ · (𝜌⟨u∗
ℎ𝑞

∗
𝑡 ⟩) −

𝜕 (𝜌⟨𝑤∗𝑞∗𝑡 ⟩)
𝜕𝑧

+ 𝜌𝑆⟨𝑞𝑡 ⟩, (2.59)

⟨𝑝⟩𝑅 = 𝜌𝑅𝑑 ⟨𝑇𝑣⟩; (2.60)

• The subdomain-mean equations (2.40)–(2.45) for 𝑛 subdomains, the updrafts,

𝜕 (𝜌𝑎𝑖)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎𝑖 ⟨uℎ⟩) +
𝜕 (𝜌𝑎𝑖�̄�𝑖)

𝜕𝑧
=

∑︁
𝑗≠𝑖

(𝐸𝑖 𝑗 − Δ𝑖 𝑗 ), (2.61)

𝜕 (𝜌𝑎𝑖�̄�𝑖)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎𝑖 ⟨uℎ⟩�̄�𝑖) +
𝜕 (𝜌𝑎𝑖�̄�𝑖�̄�𝑖)

𝜕𝑧
= −∇ · (𝜌𝑎𝑖u′

𝑖
𝑤′
𝑖
)

+
∑︁
𝑗≠𝑖

[
(𝐸𝑖 𝑗 + �̂�𝑖 𝑗 )�̄� 𝑗 − (Δ𝑖 𝑗 + �̂�𝑖 𝑗 )�̄�𝑖

]
+ 𝜌𝑎𝑖 �̄�𝑖 − 𝜌𝑎𝑖

𝜕

𝜕𝑧

(
𝑝
†
𝑖

𝜌

)
+ 𝜌𝑎𝑖𝑆𝑤,𝑖,

(2.62)

𝜕 (𝜌𝑎𝑖𝜃𝑙,𝑖)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎𝑖𝜃𝑙,𝑖 ⟨uℎ⟩) +
𝜕 (𝜌𝑎𝑖𝜃𝑙,𝑖�̄�𝑖)

𝜕𝑧
= −∇ · (𝜌𝑎𝑖𝜃′𝑙,𝑖u

′
𝑖
)

+
∑︁
𝑗≠𝑖

(𝐸𝑖 𝑗𝜃𝑙, 𝑗 − Δ𝑖 𝑗𝜃𝑙,𝑖) +
∑︁
𝑗≠𝑖

�̂�𝑖 𝑗 (𝜃𝑙, 𝑗 − 𝜃𝑙,𝑖) + 𝜌𝑎𝑖𝑆𝜃𝑙,𝑖 , (2.63)

𝜕 (𝜌𝑎𝑖𝑞𝑡,𝑖)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎𝑖𝑞𝑡,𝑖 ⟨uℎ⟩) +
𝜕 (𝜌𝑎𝑖𝑞𝑡,𝑖�̄�𝑖)

𝜕𝑧
= −∇ · (𝜌𝑎𝑖𝑞′𝑡,𝑖u′

𝑖
)

+
∑︁
𝑗≠𝑖

(𝐸𝑖 𝑗𝑞𝑡, 𝑗 − Δ𝑖 𝑗𝑞𝑡,𝑖) +
∑︁
𝑗≠𝑖

�̂�𝑖 𝑗 (𝑞𝑡, 𝑗 − 𝑞𝑡,𝑖) + 𝜌𝑎𝑖𝑆𝑞𝑡 ,𝑖 , (2.64)

𝜌𝑖 =
⟨𝑝⟩𝑅
𝑅𝑑𝑇𝑣,𝑖

. (2.65)
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The decomposition (2.3) couples all subdomain equations with the grid-
averaged equations, such that the equations for one subdomain are defined
implicitly. Cohen et al. (2020) take the environmental mean equations to be
defined implicitly;

• An equation for the environmental turbulence kinetic energy 𝑒0

𝜕 (𝜌𝑎0𝑒0)
𝜕𝑡

+ ∇ℎ · (𝜌𝑎0⟨uℎ⟩𝑒0) +
𝜕 (𝜌𝑎0�̄�0𝑒0)

𝜕𝑧
= −

𝜕 (𝜌𝑎0𝑤
′
0𝑒

′
0)

𝜕𝑧
+ 𝜌𝑎0𝑤

′
0𝑏

′
0

− 𝜌𝑎0

[
𝑤′

0𝑢
′
0
𝜕⟨𝑢⟩
𝜕𝑧

+ 𝑤′
0𝑣

′
0
𝜕⟨𝑣⟩
𝜕𝑧

+ 𝑤′
0𝑤

′
0
𝜕�̄�0
𝜕𝑧

]
+ 𝜌

∑︁
𝑖>0

𝑎𝑖 (�̄�∗
𝑖 − �̄�∗

0)
𝜕Ψ̄∗

𝑖

𝜕𝑧

+
∑︁
𝑗

[
𝐸0 𝑗

1
2
(�̄� 𝑗 − �̄�0)2 − (Δ0 𝑗 + �̂�0 𝑗 )𝑒0 − �̂�0 𝑗 �̄�

∗
0(�̄�

∗
𝑗 − �̄�∗

0)
]
− 𝜌𝑎0D

−∇ℎ ·
(
𝜌𝑎0u′

ℎ,0𝑒
′
0

)
−𝜌𝑎0

(
u′
ℎ,0𝑢

′
0 · ∇ℎ⟨𝑢⟩ + u′

ℎ,0𝑣
′
0 · ∇ℎ⟨𝑣⟩ + u′

ℎ,0𝑤
′
0 · ∇ℎ�̄�0

)
;

(2.66)

• Equations for the environmental covariances 𝜃′
𝑙,0𝑞

′
𝑡,0, 𝑞′2

𝑡,0 and 𝜃′2
𝑙,0,

𝜕 (𝜌𝑎0𝑞
′
𝑡,0𝜃

′
𝑙,0)

𝜕𝑡
+ ∇ℎ · (𝜌𝑎0⟨uℎ⟩𝑞′𝑡,0𝜃

′
𝑙,0)) +

𝜕 (𝜌𝑎0𝑤0𝑞
′
𝑡,0𝜃

′
𝑙,0)

𝜕𝑧
=

− ∇ · (𝜌𝑎0u′
0𝑞

′
𝑡,0𝜃

′
𝑙,0) − 𝜌𝑎0𝑤

′
0𝑞

′
𝑡,0
𝜕𝜃𝑙,0

𝜕𝑧
− 𝜌𝑎0𝑤

′
0𝜃

′
𝑙,0
𝜕𝑞𝑡,0

𝜕𝑧

+
∑︁
𝑗>0

(
−�̂�0 𝑗𝑞

′
𝑡,0𝜃

′
𝑙,0 + 𝜃

∗
𝑙,0�̂�0 𝑗 (𝑞𝑡,0 − 𝑞𝑡, 𝑗 ) + 𝑞∗𝑡,0�̂�0 𝑗 (𝜃𝑙,0 − 𝜃𝑙, 𝑗 )

)
+

∑︁
𝑗>0

(
− Δ0 𝑗𝑞

′
𝑡,0𝜃

′
𝑙,0 + 𝐸0 𝑗 (𝑞𝑡,0 − 𝑞𝑡, 𝑗 ) (𝜃𝑙,0 − 𝜃𝑙, 𝑗 )

)
− 𝜌𝑎0𝐷𝑞′

𝑡 ,0𝜃
′
𝑙,0
+ 𝜌𝑎0(𝑆′𝑞𝑡 ,0𝜃′𝑙,0 + 𝑆

′
𝜃𝑙,0
𝑞′
𝑡,0), (2.67)

𝜕 (𝜌𝑎0𝑞
′2
𝑡,0)

𝜕𝑡
+ ∇ℎ · (𝜌𝑎0⟨uℎ⟩𝑞

′2
𝑡,0)) +

𝜕 (𝜌𝑎0𝑤0𝑞
′2
𝑡,0)

𝜕𝑧
= −∇ · (𝜌𝑎0u′

0𝑞
′2
𝑡,0)

− 2𝜌𝑎0𝑤
′
0𝑞

′
𝑡,0
𝜕𝑞𝑡,0

𝜕𝑧
+

∑︁
𝑗>0

(
−�̂�0 𝑗𝑞

′2
𝑡,0 + 2𝑞∗𝑡,0�̂�0 𝑗 (𝑞𝑡,0 − 𝑞𝑡, 𝑗 )

)
+

∑︁
𝑗>0

(
− Δ0 𝑗𝑞

′2
𝑡,0 + 𝐸0 𝑗 (𝑞𝑡,0 − 𝑞𝑡, 𝑗 )2

)
− 𝜌𝑎0𝐷𝑞

′2
𝑡 ,0
+ 2𝜌𝑎0𝑆

′
𝑞𝑡 ,0𝑞

′
𝑡,0, (2.68)
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𝜕 (𝜌𝑎0𝜃
′2
𝑙,0)

𝜕𝑡
+ ∇ℎ · (𝜌𝑎0⟨uℎ⟩𝜃

′2
𝑙,0)) +

𝜕 (𝜌𝑎0𝑤0𝜃
′2
𝑙,0)

𝜕𝑧
= −∇ · (𝜌𝑎0u′

0𝜃
′2
𝑙,0)

− 2𝜌𝑎0𝑤
′
0𝜃

′
𝑙,0
𝜕𝜃𝑙,0

𝜕𝑧
+

∑︁
𝑗>0

(
−�̂�0 𝑗𝜃

′2
𝑙,0 + 2𝜃∗𝑙,0�̂�0 𝑗 (𝜃𝑙,0 − 𝜃𝑙, 𝑗 )

)
+

∑︁
𝑗>0

(
− Δ0 𝑗𝜃

′2
𝑙,0 + 𝐸0 𝑗 (𝜃𝑙,0 − 𝜃𝑙, 𝑗 )2

)
− 𝜌𝑎0𝐷𝜃

′2
𝑙,0
+ 2𝜌𝑎0𝑆

′
𝜃𝑙,0
𝜃′
𝑙,0. (2.69)

In total, evolving the extended EDMF scheme in time requires integrating 10 + 4𝑛
prognostic equations. This number can be reduced to 7 + 4𝑛 if an environmental
model of level 2.5 is selected instead, by neglecting transience in the thermodynamic
covariance equations.

2.6 Similarities between the extended EDMF scheme and other approaches
The extended EDMF scheme is one of many candidate frameworks developed to
unify parameterizations of low tropospheric mixing in Earth System Models. Here
we briefly describe its similarities and differences with other recently developed
schemes in the literature.

The multi-fluid scheme
Parallel to the development of the extended EDMF scheme (Tan et al., 2018; Cohen
et al., 2020; Lopez-Gomez et al., 2020), a similar framework known as the multi-
fluid scheme has been developed (Thuburn et al., 2018; Weller and McIntyre, 2019;
Shipley et al., 2022; Thuburn et al., 2022a). Both frameworks are derived from
spatial averaging of the governing equations over free moving subdomains; a pro-
cess that can also be described as conditional filtering (Thuburn et al., 2022a). By
considering subdomains with moving boundaries, they generalize traditional EDMF
schemes by allowing updrafts to expand and contract as a function of the forcing. Re-
taining transience in the subdomain volume equations endows the extended EDMF
and multi-fluid schemes with convective memory.

One important difference between the extended EDMF scheme and the multi-fluid
scheme is that the latter remains fully compressible; the subdomain density is
retained in the subdomain continuity equations. In this case, the continuity equation
for area fraction (2.61) is replaced by an equation for the subdomain mass fraction
𝑚𝑖 = 𝜌𝑖𝑎𝑖, which is then used in the rest of subdomain equations (Thuburn et al.,
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2022b). The area fraction becomes a diagnostic quantity 𝑎𝑖 = 𝑚𝑖/𝜌𝑖, given the
subdomain density 𝜌𝑖 = 𝜌𝑖 (𝜃𝑙,𝑖, 𝑞𝑡,𝑖).

Another generalization of the multi-fluid scheme is its retention of the subdomain
covariances within the updrafts. This is also done in the derivation of the extended
EDMF scheme in Section 2.4, but practical implementations do neglect them (Cohen
et al., 2020; Lopez-Gomez et al., 2020). Retaining second-order moments within
the updrafts increases the number of equations of the scheme to 10 + 8𝑛. Due to the
increased computational cost, (Thuburn et al., 2022b) truncate the scheme at level
2.5 in the Mellor-Yamada hierarchy; neglecting transience, advection and third-order
terms in all thermodynamic covariances. This reduces the number of prognostic
equations to 7 + 5𝑛. Whether retaining diagnostic second-order moments for all
subdomains or prognostic ones for the environment leads to improved performance
remains to be investigated.

All other differences relate to the closure of the entrainment fluxes (2.36), and the
treatment of pressure-velocity correlations and third-order terms appearing in the
covariance equations (2.66) –(2.69). Regarding dynamical entrainment, Thuburn
et al. (2022b) propose

−
𝐴
𝑠𝑔

𝑖

𝑉𝑇
(𝜌𝜙𝑢𝑟,𝑛)𝑖 =

∑︁
𝑗≠𝑖

(𝐸𝑖 𝑗𝜙 𝑗𝑖 − Δ𝑖 𝑗𝜙𝑖 𝑗 ), (2.70)

where the entrained quantity is a linear combination of the averages over the subdo-
mains involved in the mass exchange,

𝜙 𝑗𝑖 = 𝛼𝜙 𝑗 + (1 − 𝛼)𝜙𝑖 . (2.71)

This term reduces to the extended EDMF closure (2.37) for 𝛼 = 1. The mixing ratio
𝛼 is treated as a learnable parameter and diagnosed from large-eddy simulations in
McIntyre et al. (2022). However, the authors note that adjustments to the diagnosed
values of 𝛼 are necessary when the multi-fluid system is used prognostically, for
velocities in the boundary layer to remain realistic.

The mass entrainment and detrainment fluxes 𝐸𝑖 𝑗 and Δ𝑖 𝑗 are parameterized as the
sum of contributions from 4 processes: entrainment by static instability, due to
relaxation to a pre-defined reference, due to turbulent mixing, and finally forced
detrainment of negatively buoyant air at the boundary layer top.

In addition, Thuburn et al. (2022a) introduce the turbulent entrainment closure

−
𝐴
𝑠𝑔

𝑖

𝑉𝑇
(𝜌�𝜙′𝑢′𝑟,𝑛)𝑖 = 1

𝜌

[∑︁
𝑗≠𝑖

𝑚 𝑗∇ · (𝑚𝑖u′
𝑖
𝜙′
𝑖
) − 𝑚𝑖

∑︁
𝑗≠𝑖

∇ · (𝑚 𝑗u′
𝑗
𝜙′
𝑗
)
]
. (2.72)
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This turbulent entrainment closure homogenizes contributions from SGS fluxes due
to area fraction gradients across subdomains. The authors show this term to be
necessary if one wants to enforce that subdomains with identical thermodynamic
states and different area fractions experience similar turbulent tendencies. In the
extended EDMF scheme, where updraft turbulent fluxes are neglected, this term
would reduce to

−
𝐴
𝑠𝑔

𝑖

𝑉𝑇
(𝜌�𝜙′𝑢′𝑟,𝑛)𝑖 = −𝑎𝑖∇ · (𝜌𝑎0u′

0𝜙
′
0), 𝑖 > 0, (2.73)

and in the environment,

−
𝐴
𝑠𝑔

0
𝑉𝑇

(𝜌�𝜙′𝑢′𝑟,𝑛)0 =
∑︁
𝑗=0
𝑎 𝑗∇ · (𝜌𝑎0u′

0𝜙
′
0). (2.74)

This turbulent entrainment closure could be combined with the diffusive closure
(2.39). Similar turbulent entrainment closures may be found for the covariance
equations, by homogenizing the area fraction contribution from second and third
order terms. Their expressions are derived in Section 6 of Thuburn et al. (2022a).

The implemented versions of the extended EDMF scheme and the multi-fluid frame-
work use different closures for all unresolved terms, and for sources related to mi-
crophysical sources. However, these are easily interchangeable when the differences
discussed above are taken into account. The multi-fluid model has been successfully
used to simulate a range of canonical dynamical regimes, including dry convection
(Thuburn et al., 2019), Rayleigh–Bénard convection (Shipley et al., 2022), and shal-
low convection (McIntyre et al., 2022). Results of the scheme under other dynamical
regimes such as stratocumulus-topped boundary layers, stable boundary layers, or
deep convection, have not been published as of this writing.

The steady-state multiplume EDMF scheme: JPL-EDMF and ED(MF)𝑛

The extended EDMF and multi-fluid schemes leverage a time and vertically varying
partition of the grid-mean flow to regulate the intensity of convective overturning and
retain convective memory. Although these schemes allow for an arbitrary number
of updrafts, using more than one updraft in the extended EDMF scheme does not
lead to significant performance improvements in practice – rendering the linear
increase in number of equations unjustifiable (Cohen et al., 2020; Lopez-Gomez
et al., 2020). This also seems to be the case for the multi-fluid approach, since
numerical implementations in the literature use a single updraft (Thuburn et al.,
2022b; McIntyre et al., 2022).
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In contrast, research efforts focused on the steady-state EDMF scheme discussed in
Section 2.3 have evolved to include a significantly higher number of updrafts. Here,
we focus our attention on two models: the JPL-EDMF (Suselj et al., 2013; Suselj
et al., 2019a) and the ED(MF)𝑛 scheme (Neggers, 2015). The computational cost
of evaluating these models scales more favorably with the number of updrafts, since
the subdomain equations (2.61)–(2.64) are substituted by one-dimensional ordinary
differential equations for the vertical velocity (Eq. 2.9), and for all thermodynamic
fields,

𝜕𝜙𝑖

𝜕𝑧
= 𝜖𝑖0(𝜙0 − 𝜙𝑖) +

𝑆𝜙𝑖

�̄�𝑖
. (2.75)

In equation (2.75), 𝜖𝑖0 = 𝐸𝑖0/(𝜌𝑎𝑖�̄�𝑖) is the fractional dynamical entrainment rate
of environmental air. The mass flux (2.6) is then defined by an area fraction profile
that is fixed a priori. Scalability is improved even further in some implementations,
where a single updraft initialized at the surface is split into multiple updrafts above
its lifting condensation level (Suselj et al., 2013). This splitting represents a trigger
function much like the ones used in early mass flux schemes (Section 2.2), so most
state-of-the-art EDMF schemes now initialize all updrafts at the surface (Suselj
et al., 2019b).

The excellent performance of these schemes in standard benchmarks (Suselj et al.,
2019a; Suselj et al., 2022; Neggers and Griewank, 2022) suggests that increasing
the number of updrafts can partially compensate for structural errors due to the
simplified description of their dynamics given by equations (2.9) and (2.75). To
look for compensation mechanisms in multiplume schemes, it is useful to first distill
the approximations in their dynamics that are absent in the extended EDMF scheme.

One significant simplification is the approximation of the updraft area fraction as a
step function,

𝑎𝑖 =


𝑎 if �̄�𝑖 > 0,

0 otherwise,
𝑖 = 1, . . . 𝑛, (2.76)

where 𝑎 is a user-defined constant (Neggers, 2015; Suselj et al., 2019a). Apart
from forced detrainment of the entire area fraction when updraft velocities become
negative, mass exchange processes do not modify the updraft area fraction. This
constraint makes it impossible for steady-state EDMF schemes with a single updraft
to reproduce the vertical structure of convective clouds, characterized by a varying
cloud fraction with several maxima and minima (Singer et al., 2021). The use of
multiple updrafts with different lifting condensation levels and termination heights
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can compensate for this (Neggers, 2015; Neggers and Griewank, 2022), since the
total updraft area fraction then becomes

𝑎𝑢 =
∑︁
𝑖>0

𝑎𝐻 (−�̄�𝑖), (2.77)

where 𝐻 (·) is the Heaviside step function. This can be seen in Figure 2.2. The
vertical smoothness of the area fraction (2.77) is a function of the number of updrafts;
a typical value found in the literature is 𝑛 ∼ 10. Although multiplume schemes with
fixed area fraction allow for vertical variations in cloud fraction, below cloud base
the total updraft area fraction is strictly non-increasing, which can be detrimental to
model performance. Neggers and Griewank (2022) address this issue by introducing
an empirical model of 𝑎𝑖 within the mixed-layer that increases linearly with height
and depends on updraft size. They show that this model reduces the misfit of their
scheme with respect to resolved simulations of shallow cumulus convection.

Fixing the updraft area fraction also defines the fractional detrainment rate 𝛿𝑖0 =

𝐷𝑖0/(𝜌𝑎𝑖�̄�𝑖), given a closure for entrainment. Comparing the implied net entrain-
ment rate to closures used in unsteady schemes can provide insight into potential
models for area fraction in multiplume steady EDMF schemes. From the steady-state
mass flux equation (2.7),

𝜖𝑖0 − 𝛿𝑖0 =
𝜕

𝜕𝑧
[ln(𝜌�̄�𝑖)], �̄�𝑖 > 0. (2.78)

There is net entrainment in regions of accelerating ascent, and net detrainment
in regions of updraft deceleration. For a given stratification, the net entrain-
ment/detrainment can be written in terms of the wavenumber �̄�𝑖/�̄�2

𝑖
if equation

(2.9) is used for the vertical velocity,

𝜖𝑖0 − 𝛿𝑖0 =
𝜕

𝜕𝑧
[ln(𝜌)] + 𝑐1

�̄�𝑖

�̄�2
𝑖

− 𝑐2𝜖𝑖0, �̄�𝑖 > 0. (2.79)

Cohen et al. (2020) show improved performance of the extended EDMF scheme
when the difference 𝜖𝑖0−𝛿𝑖0 is a function of the relative humidity difference between
updrafts and the environment, as previously suggested by the idealized theoretical
analysis of Savre and Herzog (2019). This dependence could be introduced in
parameterizations of the area fraction in steady EDMF schemes.

Finally, two additional simplifications separate steady multiplume models from the
extended EDMF scheme: the absence of horizontal advection and transient terms in



34

the subdomain equations. Retaining transient terms represents a form of convective
memory (Cohen et al., 2020). In the context of the ED(MF)𝑛 scheme, Neggers
and Griewank (2022) present an alternative approach to retain history dependence.
They couple their multiplume EDMF scheme to a thermal population model, based
on two-dimensional cellular automata (Wolfram, 1983), that regulates the area
fraction occupied by different populations with time. A benefit of this model is
that it provides a scale-aware mechanism to parameterize convective aggregation,
a phenomenon that is difficult to encode using a single-plume extended EDMF (or
multi-fluid) scheme (Gentine et al., 2018).

Whether transient schemes such as the extended EDMF or steady-state multiplume
schemes like ED(MF)𝑛 are the best choice for implementation in global models
remains to be seen. Transient schemes are by construction more complete models,
but the outcome of a comparison is far from evident when the implementation
is conditioned by a finite computational budget. A systematic comparison of the
hierarchy of schemes, given pre-defined spatial and time resolutions, would provide
insight into this question.

2.7 Discussion
Aggregate models of atmospheric turbulence and convection have undergone sub-
stantial change since the early work of Manabe in the 1960s. The mass flux schemes
that had their roots in insight gained from observational campaigns (Yanai et al.,
1973; Arakawa and Schubert, 1974) have been integrated into frameworks that
unify the description of turbulence, dry, shallow, and deep convection (Siebesma
and Teixeira, 2000; Siebesma et al., 2007; Soares et al., 2004; Suselj et al., 2019a).
Transient versions of these schemes consistent with a systematic filtering of the gov-
erning equations of motion have recently been derived (Tan et al., 2018; Cohen et al.,
2020; Thuburn et al., 2022a), providing even more flexible and seamless frameworks
to parameterize unresolved processes that remain consistent across scales.

Most of these advances, however, have not been implemented in operational models.
Climate models in CMIP6 still largely employ separate schemes for boundary layer
turbulence, shallow convection, and deep convection (Stevens et al., 2013; T. Wu
et al., 2019; Walters et al., 2019; Madeleine et al., 2020). In the best of cases,
the parameterizations of turbulence and shallow convection have been unified, but
remain independent from deep convection closures (Danabasoglu et al., 2020). The
added cost of implementing new parameterizations and making them efficient and
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stable, the laborious process of model calibration (Mauritsen et al., 2012; Hourdin
et al., 2017), the requirement to produce an ever-increasing number of climate
simulations for intercomparison projects (Eyring et al., 2016; Haarsma et al., 2016),
and the limiting timescale of the CMIP cycle, are all reasons that may explain why
this is the case. The gap between recently developed turbulence and convection
schemes and those implemented operationally is also apparent in numerical weather
prediction (Cottrill et al., 2013; Han et al., 2017; Takaya et al., 2018).

This gap often leads to mistrust in the turbulence and convection schemes of today,
based on the biases introduced by older, now operational schemes (Gentine et al.,
2018). Although advances in data-driven parameterization schemes in recent years
are promising (Brenowitz and Bretherton, 2018; Brenowitz et al., 2020; Yuval and
O’Gorman, 2020; Yuval et al., 2021; X. Wang et al., 2022), biases will remain if the
gap between operational and state-of-the-art models is not reduced. A concerted
effort toward the adoption of unified schemes that have extensively shown improved
skill over a wide range of atmospheric regimes in single-column settings (Suselj
et al., 2019a; Cohen et al., 2020; Lopez-Gomez et al., 2020) and global simulations
(Hogan et al., 2014; Suselj et al., 2014; Suselj et al., 2021) would represent a worthy
step forward in climate modeling.

The derivation of the extended EDMF scheme, its historical context, and its similar-
ities and differences with closely related turbulence and convection schemes have
been discussed in this chapter. As stated in Section 2.4, none of these schemes pro-
vide a closed system of equations. They constitute sets of prognostic equations that
enable a description of complex atmospheric dynamics in terms of more elementary
processes that still need to be modeled; with the added benefit that conservation
laws are engrained in the schemes. Examples of remaining unresolved processes
are turbulent mixing and entrainment. For some of these processes, closures may
be found by making additional approximations about the leading order dynamics
governing them. One such example is the closure of turbulent diffusion within
the quasi-isotropic environment surrounding convective updrafts; this closure is the
topic of the next chapter.
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C h a p t e r 3

A GENERALIZED MIXING LENGTH CLOSURE FOR
EDDY-DIFFUSIVITY MASS-FLUX SCHEMES OF

TURBULENCE AND CONVECTION

Lopez-Gomez, Ignacio, Yair Cohen, Jia He, Anna Jaruga, and Tapio Schneider
(2020). “A generalized mixing length closure for eddy-diffusivity mass-flux
schemes of turbulence and convection”. In: Journal of Advances in Modeling
Earth Systems 12, e2020MS002161. doi: 10.1029/2020MS002161.

3.1 Abstract
Because of their limited spatial resolution, numerical weather prediction and climate
models have to rely on parameterizations to represent atmospheric turbulence and
convection. Historically, largely independent approaches have been used to represent
boundary layer turbulence and convection, neglecting important interactions at the
subgrid scale. Here we build on an eddy-diffusivity mass-flux (EDMF) scheme that
represents all subgrid-scale mixing in a unified manner, partitioning subgrid-scale
fluctuations into contributions from local diffusive mixing and coherent advective
structures and allowing them to interact within a single framework. The EDMF
scheme requires closures for the interaction between the turbulent environment and
the plumes and for local mixing. A second-order equation for turbulence kinetic
energy (TKE) provides one ingredient for the diffusive local mixing closure, leaving
a mixing length to be parameterized. Here, we propose a new mixing length
formulation, based on constraints derived from the TKE balance. It expresses
local mixing in terms of the same physical processes in all regimes of boundary
layer flow. The formulation is tested at a range of resolutions and across a wide
range of boundary layer regimes, including a stably stratified boundary layer, a
stratocumulus-topped marine boundary layer, and dry convection. Comparison
with large eddy simulations (LES) shows that the EDMF scheme with this diffusive
mixing parameterization accurately captures the structure of the boundary layer and
clouds in all cases considered.
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3.2 Introduction
Turbulence is ubiquitous in the planetary boundary layer. Small-scale chaotic air
motions enhance mixing of energy and moisture in the lower troposphere. Under
statically unstable conditions, convective updrafts and downdrafts further increase
the vertical transport of energy and moisture between the surface and the air aloft.
Together, turbulence and convection shape the vertical distribution of temperature
and water vapor that sustains clouds. However, these processes act on scales far too
small to be resolved in global climate models (GCMs), with resolutions constrained
by current computational power (Schneider et al., 2017a). Although the unabated
increase in processing power will make globally resolving deep convective processes
routine in the coming years (Kajikawa et al., 2016), resolving turbulent mixing
and shallow convection will remain an intractable problem for decades. Instead,
parameterizations have to be used to approximate the average effect of these subgrid-
scale processes on the grid scale.

Conventional parameterizations consider atmospheric turbulence and convection as
independent processes, neglecting interactions that alter their combined effect on the
large scale. These parameterizations are often regime-dependent, leading to models
that artificially split the spectrum of atmospheric conditions into a discrete number
of cases. Examples of such case-dependent approaches include parameterizations of
cumulus (Arakawa, 2004) and stratocumulus clouds (Lilly, 1968; Schubert, 1976).
However accurate, the use of disparate schemes for different conditions complicates
a seamless representation of subgrid-scale processes in the lower troposphere.

Several approaches to obtain a unified model of turbulence and convection have
been proposed (Lappen and Randall, 2001; Park, 2014; Thuburn et al., 2018). Here
we focus on the extended formulation of an eddy-diffusivity mass-flux (EDMF)
scheme developed in Tan et al. (2018), which in turn built on work by Siebesma
and Teixeira (2000), Soares et al. (2004), and Siebesma et al. (2007) and Angevine
et al. (2010), among others. In the EDMF framework, the flow within each grid cell
is decomposed into several distinct subdomains, representing coherent convective
structures and their relatively isotropic turbulent environment. Convective transport
is captured by mass flux terms that depend on differences between subdomain-
mean properties; more isotropic turbulent transport, associated with small-scale
fluctuations within each subdomain, is captured by eddy diffusion closures.

The extended EDMF framework uses additional prognostic equations for subdomain
variables, such as the environmental turbulence kinetic energy, and it requires clo-
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sures for local turbulent fluxes and for the mass exchange between subdomains (Tan
et al., 2018). Even though the EDMF framework arises from the need for a unified
model of turbulence and convection, the parameterizations used for entrainment and
turbulent mixing are usually defined differently for each regime (Suselj et al., 2013;
Witek et al., 2011b). The development of regime-independent parameterizations
for the required closures is the last step in the construction of a unified model of
atmospheric turbulence and convection.

Here, a regime-independent closure for turbulent mixing within the EDMF frame-
work is proposed. Section 2 reviews the decomposition of subgrid-scale fluxes in
the extended EDMF scheme. Section 3 introduces the formulation of the closure.
Section 4 illustrates the performance of the EDMF scheme with the turbulent mixing
closure in boundary layer regimes where vertical transport is strongly dependent on
the turbulence closure used: the stable boundary layer (SBL), the stratocumulus-
topped boundary layer (STBL), and dry convection. The performance of the ex-
tended EDMF scheme with this closure in moist-convective cases is demonstrated in
a companion paper (Cohen et al., 2020). Finally, Section 5 summarizes the results
and conclusions.

3.3 EDMF framework
In the EDMF framework, each grid-cell volume is decomposed into 𝑛 updrafts or
downdrafts (labeled by index 𝑖 = 1, . . . , 𝑛) and an environment (labeled by index
𝑖 = 0) in which they are embedded. Following this decomposition, the grid-mean
value of variable 𝜓 may be written as

⟨𝜓⟩ =
𝑛∑︁
𝑖≥0

𝑎𝑖�̄�𝑖 . (3.1)

Here, angle brackets ⟨·⟩ denote the grid mean, �̄�𝑖 denotes the Favre average of 𝜓
over subdomain 𝑖, and 𝑎𝑖 is the mean horizontal cross-sectional area covered by
subdomain 𝑖 within the grid cell. This partition is motivated by the anisotropy of
turbulent convective flows, in which isotropic turbulent eddies coexist with coherent
columnar structures that induce a strong vertical transport (Bjerknes, 1938). The
subdomain decomposition is simplified for the horizontal velocity vector uℎ, which
is taken to have the same mean value for all subdomains, ūℎ,𝑖 = ⟨uℎ⟩. Applying
the subdomain decomposition to higher-order moments introduces additional terms
associated with the difference between grid and subdomain means. For the vertical
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subgrid-scale flux of 𝜓, this leads to

⟨𝑤∗𝜓∗⟩ =
𝑛∑︁
𝑖≥0

𝑎𝑖

(
𝑤′
𝑖
𝜓′
𝑖
+ �̄�∗

𝑖 �̄�
∗
𝑖

)
. (3.2)

Here, 𝑤 is the vertical velocity, 𝜓∗ = 𝜓 − ⟨𝜓⟩, 𝜓′
𝑖
= 𝜓 − �̄�𝑖, and �̄�∗

𝑖
= �̄�𝑖 − ⟨𝜓⟩.

The decomposition (3.2) partitions the subgrid-scale flux into contributions from
small-scale fluctuations, associated with turbulence, and subdomain-mean terms,
representative of convection. In the following, we will refer to these contributions
as turbulent and convective fluxes, respectively.

The subdomain-mean terms can be explicitly solved for by introducing 𝑛 prognostic
subdomain equations for each variable and an additional equation for each plume
area fraction 𝑎𝑖, which may be diagnostic or prognostic. Cohen et al. (2020)
derive the subdomain equations used in the EDMF framework, starting from the
Navier-Stokes equations. The use of prognostic subdomain equations means that
convective fluxes such as �̄�∗

𝑖
�̄�∗
𝑖

in (3.2) are explicitly solved for, while turbulent
fluxes like 𝑤′

𝑖
𝜓′
𝑖

must be modeled. Turbulent fluxes within each subdomain are
modeled as downgradient and proportional to an eddy diffusivity 𝐾𝜓,𝑖, where 𝜓 is
the property being transported. For the vertical turbulent flux in (3.2), this gives

𝑤′
𝑖
𝜓′
𝑖
= −𝐾𝜓,𝑖

𝜕�̄�𝑖

𝜕𝑧
. (3.3)

The eddy diffusivity 𝐾𝜓,𝑖 is proportional to a characteristic velocity scale and the
length scale of the eddies driving the transport, both of which must be parameterized.

Proposed closures for the eddy diffusivity vary from simple diagnostic expressions
to second-order models that introduce prognostic equations for both scales (Umlauf
and Burchard, 2003). The 1.5-order turbulence kinetic energy (TKE) model is a
particularly popular choice due to its balance between accuracy and computational
efficiency (Mellor and Yamada, 1982). The 1.5-order model, also referred to as
the Level 2.5 model in the Mellor-Yamada hierarchy, makes use of a prognostic
equation for TKE and a diagnostic expression for the mixing length. In the EDMF
framework, the grid-mean TKE ⟨𝑒⟩ can be decomposed following expression (3.2)
for second-order moments as

⟨𝑒⟩ =
𝑛∑︁
𝑖≥0

𝑎𝑖

(
𝑒𝑖 +

�̄�∗
𝑖
�̄�∗
𝑖

2

)
, (3.4)

where 𝑒𝑖 is the TKE of subdomain 𝑖, and the second term represents the correspond-
ing convective kinetic energy. This expression can be simplified by assuming that
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for the updrafts and downdrafts (𝑖 > 0), the contribution to the grid-mean TKE from
small-scale turbulence is negligible compared to the convective term, an assumption
commonly made in EDMF schemes:

⟨𝑒⟩ = 𝑎0𝑒0 +
𝑛∑︁
𝑖≥0

𝑎𝑖
�̄�∗
𝑖
�̄�∗
𝑖

2
. (3.5)

Thus, grid-mean TKE is given by the sum of environmental TKE and convective
TKE. The TKE decomposition (3.5) can also be obtained by assuming a small updraft
and downdraft area fraction and similar turbulence intensity in all subdomains
(Siebesma et al., 2007). However, the equations derived for the subdomain second-
order moments with these two approaches differ in the source terms that appear
due to entrainment processes between subdomains. The former approximation is
favored here to allow for the use of this framework in high-resolution models, where
the assumption of slender updrafts may become inadequate (Randall, 2013).

Given an updraft area fraction 𝑎𝑖, which may be diagnostic or prognostic (Tan et
al., 2018), the grid-mean TKE is determined by the environmental TKE 𝑒0 and
the subdomain-mean vertical velocities �̄�𝑖. The subdomain-mean vertical velocity
equation for subdomain 𝑖 is

𝜕 (𝜌𝑎𝑖�̄�𝑖)
𝜕𝑡

+
𝜕 (𝜌𝑎𝑖�̄�2

𝑖
)

𝜕𝑧
+ ∇ℎ · (𝜌𝑎𝑖ūℎ,𝑖�̄�𝑖) = −

𝜕 (𝜌𝑎𝑖𝑤′
𝑖
𝑤′
𝑖
)

𝜕𝑧
− ∇ℎ · (𝜌𝑎𝑖u′

ℎ,𝑖
𝑤′
𝑖
)

+
∑︁
𝑗≠𝑖

[
𝐸𝑖 𝑗 �̄� 𝑗 − Δ𝑖 𝑗 �̄�𝑖 + �̂�𝑖 𝑗 (�̄� 𝑗 − �̄�𝑖)

]
+ 𝜌𝑎𝑖 �̄�𝑖 − 𝜌𝑎𝑖

𝜕Ψ̄
†
𝑖

𝜕𝑧
, (3.6)

where ∇ℎ is the horizontal gradient operator, Ψ = 𝑝/𝜌 is the pressure potential and
the turbulent transport terms on the right-hand side are negligible for all subdomains
except the environment (𝑖 = 0). Subgrid density changes are only considered in the
buoyancy term, such that 𝜌 = ⟨𝜌⟩ in the previous equation, in order to avoid
creation of spurious acoustic modes through the subdomain decomposition (Cohen
et al., 2020). The buoyancy �̄�𝑖 and the pressure potential anomaly Ψ̄

†
𝑖

are defined
with respect to a reference hydrostatic pressure profile 𝑝ℎ (𝑧) and density 𝜌ℎ (𝑧),
related by 𝜕𝑧𝑝ℎ = −𝜌ℎ𝑔:

�̄�𝑖 = −𝑔 �̄�𝑖 − 𝜌ℎ
𝜌

,
𝜕Ψ̄

†
𝑖

𝜕𝑧
=
𝜕

𝜕𝑧

(
𝑝𝑖

𝜌

)
+ 𝑔 𝜌ℎ

𝜌
. (3.7)

Here, 𝑝𝑖 is the subdomain-mean pressure. Density appears inside the pressure
gradients in (3.6) and (3.7) to ensure thermodynamic consistency of the subgrid-
scale anelastic approximation (Cohen et al., 2020). Interactions between subdomains
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are captured by entrainment and detrainment fluxes. In the vertical velocity equation
(3.6), Δ𝑖 𝑗 is the dynamical detrainment of air mass from subdomain 𝑖 into subdomain
𝑗 , and 𝐸𝑖 𝑗 and �̂�𝑖 𝑗 are the dynamical and turbulent entrainment from subdomain
𝑗 into subdomain 𝑖, respectively. It is assumed that entrainment events occur over
timescales much shorter than the eddy turnover rate 𝐾𝜓,𝑖/𝑒𝑖, so that entrained air
carries the properties of the subdomain it detrains from. In addition, for now we
assume entrainment occurs only between convective plumes and the environment,
not among plumes.

The prognostic equation for environmental TKE can be written in non-conservative
form as (Cohen et al., 2020)

𝜕𝑒0
𝜕𝑡

+ �̄�0
𝜕𝑒0
𝜕𝑧

+ ⟨uℎ⟩ · ∇ℎ𝑒0 = −𝑤′
0𝑢

′
0
𝜕⟨𝑢⟩
𝜕𝑧

− 𝑤′
0𝑣

′
0
𝜕⟨𝑣⟩
𝜕𝑧

− 𝑤′2
0
𝜕�̄�0
𝜕𝑧

+ 𝑤′
0𝑏

′
0 − P

− 1
𝜌𝑎0

𝜕

𝜕𝑧

(
𝜌𝑎0𝑤

′
0𝑒

′
0

)
+
∑︁
𝑖>0

[
Δ𝑖0
𝜌𝑎0

(
(�̄�𝑖 − �̄�0)2

2
− 𝑒0

)
− �̂�𝑖0
𝜌𝑎0

(
�̄�∗

0(�̄�𝑖 − �̄�0) + 𝑒0
) ]
−D

− 1
𝜌𝑎0

∇ℎ ·
(
𝜌𝑎0u′

ℎ,0𝑒
′
0

)
− u′

ℎ,0𝑢
′
0 · ∇ℎ⟨𝑢⟩ − u′

ℎ,0𝑣
′
0 · ∇ℎ⟨𝑣⟩ − u′

ℎ,0𝑤
′
0 · ∇ℎ�̄�0. (3.8)

Here, ⟨𝑢⟩ and ⟨𝑣⟩ are the components of ⟨uℎ⟩, P is the velocity-pressure gradient
correlation, andD is the turbulent dissipation. All sources and sinks of 𝑒0 account for
unresolved processes on the grid scale, so they must be parameterized. Subdomain
covariances in (3.8) are modeled diffusively, with the environmental eddy diffusivity
𝐾𝜓 defined as

𝐾𝜓 = 𝑐𝜓𝑙𝑒
1/2
0 , (3.9)

where 𝑙 is the mixing length, and 𝑐𝜓 is a fitting parameter. The subscript 0 in the
eddy diffusivity is dropped to simplify notation. The coefficient 𝑐𝜓 is taken to be
equal to 𝑐ℎ for the diffusion of all fields except for momentum, for which 𝑐𝜓 = 𝑐𝑚.
The eddy viscosity 𝐾𝑚 is related to 𝐾ℎ through the turbulent Prandtl number Pr𝑡 ,
such that 𝐾𝑚 = Pr𝑡𝐾ℎ.

Under the assumption that subgrid-scale pressure work on the grid mean is neg-
ligible, P is taken as opposite to the pressure work on the plumes (Tan et al.,
2018),

P =

[
𝑤′

0

(
𝜕Ψ

𝜕𝑧

)′
0
+ 𝑢′0

(
𝜕Ψ

𝜕𝑥

)′
0
+ 𝑣′0

(
𝜕Ψ

𝜕𝑦

)′
0

]
= −

∑︁
𝑖>0

𝑎𝑖

𝑎0
(�̄�∗

𝑖 − �̄�∗
0)
𝜕Ψ̄∗

𝑖

𝜕𝑧
. (3.10)

The last term in (3.10) appears as a sink term in the convective TKE balance,
which is derived in 3.8. Hence, P acts as a return-to-isotropy term on the full grid,
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transferring momentum from the strongly anisotropic coherent structures into the
relatively isotropic eddies in the environment. The pressure work on the plumes is
formulated in terms of contributions from a virtual mass term (Gregory, 2001), an
advective term and a drag term (Romps and Charn, 2015), yielding the following
expression for the velocity-pressure gradient correlation:

P = −
∑︁
𝑖>0

𝑎𝑖

𝑎0
(�̄�∗

𝑖 − �̄�∗
0)

(
𝛼𝑏 �̄�

∗
𝑖 − 𝛼𝑎�̄�∗

𝑖

𝜕�̄�∗
𝑖

𝜕𝑧
+ 𝛼𝑑

(�̄�∗
𝑖
− �̄�∗

0) |�̄�
∗
𝑖
− �̄�∗

0 |
𝐻𝑖

)
, (3.11)

where 𝛼𝑎 and 𝛼𝑑 are constant parameters, 𝐻𝑖 is the plume height and 𝛼𝑏 is a
function of the aspect ratio of the plume. Finally, assuming statistical equilibrium at
scales 𝑙 (Vassilicos, 2015), turbulent dissipation can be estimated from the spectral
transport relation that follows from Kolmogorov’s theory of inertial turbulence,
giving Taylor’s dissipation surrogate

D = 𝑐𝑑
𝑒

3/2
0
𝑙
. (3.12)

Here, 𝑐𝑑 is an empirical coefficient and 𝑙 is the dissipation length, taken to be equal to
the mixing length in our model. Expressions (3.3) and (3.5)–(3.12) provide closure
to a 1.5-order model of turbulence within the EDMF framework, given diagnostic
expressions for the mixing length 𝑙 and for entrainment and detrainment.

3.4 Mixing length formulation
We seek to obtain a regime-independent eddy diffusivity closure that provides an
accurate representation of turbulent subgrid-scale fluxes, over a wide range of host
model resolutions. Thus, the eddy diffusivity should reduce to an LES-type closure
at high resolution, while being able to account for the processes that modify turbulent
fluxes at larger scales. The formulation of the closure is organized following this
logic.

In section 3.4, we first adapt a minimum TKE dissipation closure proposed for
LES subgrid models (Abkar and Moin, 2017) to the EDMF framework. Given
the diffusive closure (3.3) and the eddy diffusivity (3.9), the minimum dissipa-
tion assumption can be used to construct a mixing length closure. This mixing
length closure is shown to be equivalent to other proposed closures (e.g., Griso-
gono (2010)) for stable stratification, but additional entrainment terms appear in
the general case. Section 3.4 highlights the limitations of this closure for climate
modeling and weather prediction purposes when a prognostic TKE equation is used.
Section 3.4 then introduces a modified mixing length closure, which builds on the
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minimum dissipation model and corrects its shortcomings by introducing additional
mechanisms of net TKE dissipation.

Minimum Dissipation of Environmental TKE
As in Verstappen (2011) and Abkar and Moin (2017), we assume that at the small
scales represented by the environment in the EDMF scheme, TKE is dissipated at
least at the rate at which it is produced. This condition translates into an inequality
for the production and dissipation terms in the environmental TKE budget (3.8):

𝑤′
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′
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𝑖>0

[
Δ𝑖0
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2
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− �̂�𝑖0
𝜌𝑎0

(
�̄�∗

0(�̄�𝑖 − �̄�0) + 𝑒0
) ]

≤ D .

(3.13)

Here, the terms involving TKE injection from entrained air are also taken to be
locally balanced by dissipation, consistent with the assumption that entrainment
events occur over timescales much shorter than the eddy turnover time 𝐾𝜓,𝑖/𝑒𝑖. Note
that the net dissipation condition (3.13) does not include redistribution terms, such
as the turbulent transport or the velocity-pressure gradient correlation P. Moreover,
the inequality (3.13) represents a local condition for the environment, and it does not
preclude net subgrid-scale energy production due to processes such as convection,
represented by plumes. Denoting the difference between the right-hand side and the
left-hand side of (3.13) as the net environmental TKE dissipation 𝛾0, the prognostic
environmental TKE equation (3.8) reduces to

𝜕𝑒0
𝜕𝑡

+ �̄�0
𝜕𝑒0
𝜕𝑧
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𝜌𝑎0u′

ℎ,0𝑒
′
0

)]
− P − 𝛾0.

(3.14)
Here, P captures the effect of plumes on the environmental TKE. The evolution
of the grid-mean TKE that follows from decomposition (3.5) and the simplified
prognostic equation (3.14) is
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.

(3.15)

A detailed derivation of this equation and the subgrid-scale kinetic energy pathways
in the extended EDMF scheme is described in 3.8. Under the net dissipation closure
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(3.13), grid-mean TKE production occurs through the first two terms on the right-
hand side of (3.15): the convective buoyancy flux and the subdomain-scale shear
production.

The net dissipation condition (3.13) can be written in terms of the mixing length
by introducing the closures described in section 3.3. Using Taylor’s dissipation
surrogate (3.12) and downgradient closures for the shear and buoyancy terms of the
form

3∑︁
𝑗=1

3∑︁
𝑘=1

−𝑢′
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′
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𝜕𝑏0
𝜕𝑧

, (3.16)

the inequality (3.13) leads to a condition for the maximum value of the mixing
length 𝑙 at which the net dissipation 𝛾0 is still positive semidefinite:{ 3∑︁
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𝑐𝑚
𝑒0. (3.17)

Here, the environmental buoyancy gradient is computed following Tan et al. (2018),
taking into account possible phase change effects. In (3.16) and (3.17), 𝑥𝑘 and
𝑢𝑘,0 represent the 𝑘-th coordinate and 𝑘-th velocity component in the environment,
respectively. From the inequality (3.17), an expression for the mixing length that
minimizes turbulent dissipation can be obtained by solving for 𝑙. This is equivalent
to setting 𝛾0 = 0 in (3.14) and (3.15). For the resulting value of the mixing length,
production and dissipation of TKE are locally balanced:

𝑙tke =

√
Δ − I

2(S𝑙 + B𝑙)
= − I

2(S𝑙 + B𝑙)
+

√︁
I2 + 4(S + B)D

2(S𝑙 + B𝑙)
. (3.18)

Here, Δ is the discriminant and the different terms are given by
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S + B = (S𝑙 + B𝑙)𝑙.

(3.19)

In (3.18), the product (S + B)D is independent of the mixing length, so 𝑙tke can be
readily evaluated. Although the term (S + B) is sign-indefinite, the discriminant

Δ = I2 + 4(S + B)D
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in (3.18) can be shown to remain positive semidefinite even when the shear and
buoyancy terms result in TKE destruction, provided that the inequality (3.13) holds.
This is because the minimum dissipation balance requires

I = D − (S + B), (3.20)

so that the expression for the discriminant Δ is of the form

Δ = [D − (S + B)]2 + 4(S + B)D = [D + (S + B)]2 ≥ 0. (3.21)

The mixing length 𝑙tke depends on local characteristics of the environment and
on the vertical velocity difference between subdomains, which enters the injection
term I in (3.19). Hence, convection modifies the environmental diffusive transport
directly through entrainment processes. In addition, convection also regulates the
time evolution of turbulent fluxes through its effect on the prognostic environmental
TKE equation (3.14), captured by P.

This approach can also be applied to turbulence models that retain covariance terms
𝑤′
𝑖
𝜓′
𝑖

for other subdomains, and not only for the environment. In this case, the
minimum dissipation condition may be used to obtain a characteristic mixing length
𝑙tke,𝑖 for each subdomain. However, variance within plumes can also be accounted
for by variance among plumes when the number of subdomains is increased.

In stably stratified boundary layers, where convection is inhibited, pressure work
and entrainment fluxes in (3.6) act to homogenize the different subdomains, such
that �̄�∗

𝑖
→ 0 for any variable 𝜓 and 𝑎0 → 1 (i.e., there are no convective plumes).

Under these conditions, the minimum dissipation mixing length (3.18) reduces to
the expression proposed by Grisogono (2010) for steady-state stable boundary layer
(SBL) flow:
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− 1
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. (3.22)

The balance between shear production, destruction due to stratification, and dissi-
pation, which arises when using this mixing length, is a well-known leading-order
state in neutral (Spalart, 1988) and moderately stable boundary layer flows (D. Li
et al., 2016).
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Limitations of the Minimum-Dissipation Closure
Expression (3.18) for the mixing length 𝑙tke captures the leading-order balance in
the environmental TKE budget at small scales. However, a model with a diffusive
closure based on 𝑙tke cannot fully describe the dynamics of the boundary layer at
the coarse resolutions typical of GCMs, on the order of 104 m in the horizontal
and 10–100 m in the vertical. At these scales, the resolved horizontal gradients are
weak, and the environmental TKE equation (3.14) that results from using 𝑙tke can be
simplified using the boundary layer approximation (neglecting horizontal relative to
vertical derivatives):

𝜕𝑒0
𝜕𝑡

+ �̄�0
𝜕𝑒0
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= − 1
𝜌𝑎0
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(
𝜌𝑎0𝑤

′
0𝑒

′
0

)
− P . (3.23)

Note that we set 𝛾0 = 0 to obtain (3.23), since we are considering the case where
𝑙 = 𝑙tke and production locally balances dissipation. In stable conditions (P = 0),
integrating the conservative form of (3.23) from the surface layer (𝑧𝑠) to the free
troposphere above (𝑧𝑖) yields the evolution equation for the vertically integrated
environmental TKE:∫ 𝑧𝑖

𝑧𝑠

𝜕 (𝜌𝑎0𝑒0)
𝜕𝑡

𝑑𝑧 = − [𝜌𝑎0𝑤0𝑒0]𝑧𝑖𝑧𝑠 ≈ − 𝜌𝑎0𝐾𝑚
𝜕𝑒0
𝜕𝑧

����
𝑧𝑠

. (3.24)

In stable conditions, 𝑎0 ≈ 1 and �̄�∗
𝑖
≈ 0 for any variable 𝜓. In addition, the absence

of plumes implies that detrainment and entrainment processes are negligible. From
(3.24), it follows that the evolution of the vertically integrated TKE under the
minimum dissipation closure only depends on the flux from the unresolved surface
layer in stable conditions. But unbalanced TKE dissipation has been observed
to become increasingly important as stratification develops in field studies of the
atmospheric boundary layer (D. Li et al., 2016), and it can be expected to play a role
in conditions of strong surface cooling. The budget (3.24) cannot capture unbalanced
TKE destruction within the boundary layer due to stratification. Furthermore, the
minimum dissipation mixing length 𝑙tke leads to enhanced eddy diffusion with
increasing stratification, as deduced from (3.22). This is contrary to the evidence
of turbulent mixing being inhibited in strong stratification, such as near strong
inversions.

The limitations of a minimum dissipation model also become apparent in con-
vectively unstable boundary layers. Integrating the TKE equation (3.23) in the
vertical, the evolution of the vertically integrated environmental TKE in convective



47

conditions reads∫ 𝑧𝑖
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+
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𝑖>0

(Δ𝑖0 − 𝐸𝑖0)𝑒0 𝑑𝑧. (3.25)

Here, the last term only accounts for changes in environmental area fraction and does
not result in a source or sink of 𝑒0 (Tan et al., 2018). A major difference between
the SBL budget (3.24) and the convective budget (3.25) is the contribution of the
velocity-pressure gradient correlation. From the velocity-pressure gradient relation
(3.11), pressure work captures the important energization of turbulence in the envi-
ronment owing to ascending or descending plumes (Schumann and Moeng, 1991).
At the grid scale, the source of this subgrid-scale energy term is the convective
buoyancy flux in (3.15), which accelerates the plumes in convective conditions.

The TKE balance (3.25) shows that, in convective conditions, the source of environ-
mental TKE from updrafts or downdrafts can only be compensated by the flux from
the unresolved surface layer. This is often a source term rather than a sink term,
because shear production is surface intensified. Thus, the TKE balance (3.25) sug-
gests an unbalanced growth of TKE in convective boundary layers. This continuous
TKE increase in convective conditions is inconsistent with LES results showing
quasi-stationary TKE levels in convective boundary layers (Nieuwstadt et al., 1993).

The TKE balances (3.24) and (3.25) highlight the shortcomings of the minimum
dissipation balance (3.18) as a general closure for diffusive mixing in the boundary
layer in stable and convective conditions. The lack of net dissipation mechanisms in
the vertically integrated TKE balance hinders the correct representation of important
processes, such as the shallowing of the boundary layer in the late afternoon or the
sharp mixing inhibition near inversions. Moreover, it precludes reaching a quasi-
stationary state in statically unstable boundary layers. Nevertheless, the limitations
of the minimum dissipation model can be used to inform the construction of a
generalized master length scale based on the TKE production–dissipation inequality
(3.13).

The limitations of the minimum dissipation balance showcased in this section are not
necessarily applicable to other turbulence models. For example, Y. He et al. (2019)
use the production–dissipation condition to diagnose TKE and eddy diffusivity from
a mixing length 𝑙. This allows an instantaneous adjustment of TKE to a new balanced
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state, at the cost of representing convection with an empirical parameterization that
has no subgrid interaction with turbulent diffusion.

Constrained Minimization of TKE Dissipation
A master length scale that corrects the limitations of the minimum-dissipation
model can be constructed by taking dissipation to be higher than production under
certain circumstances. Using closures of the form (3.9) and (3.16) for the turbulent
fluxes and (3.12) for the dissipation, it follows from the production–dissipation
inequality (3.13) that excess dissipation occurs for 𝑙 < 𝑙tke. Hence, unbalanced TKE
dissipation arises naturally in regions of the boundary layer where the characteristic
size of environmental eddies is constrained to be smaller than 𝑙tke. A general mixing
length capturing this condition can be written as

𝑙 = 𝑠min(𝑙tke, 𝑙1, 𝑙2, . . .), (3.26)

where 𝑙 𝑗 ( 𝑗 = 1, 2, . . . , 𝑁) are candidate mixing lengths based on flow constraints,
and 𝑠min(x) is a smooth minimum function defined in 3.7. The TKE production–
dissipation inequality (3.17) with the closures substituted implies that the minimum
length scale (3.26) provides maximum TKE dissipation among the candidate length
scales. Thus, the use of the minimum length scale (3.26) is equivalent to the
minimization of TKE dissipation in (3.13) subject to the constraint that dissipation
exceeds the candidate dissipation rates,

D ≥ D|𝑙=𝑙 𝑗 ∀ 𝑗 , (3.27)

where D|𝑙=𝑙 𝑗 is the candidate dissipation rate evaluated at length scale 𝑙 𝑗 .

Our suggestion for choosing a general mixing length as a smooth minimum of
various candidates contrasts with the common practice (e.g., Y. He et al., 2019; Han
and Bretherton, 2019) to use the expression suggested by Blackadar (1962),

𝑙ℎ =

(
1
𝑙1

+ 1
𝑙2

)−1
, (3.28)

for a master length scale 𝑙ℎ. This length scale 𝑙ℎ, proportional to the harmonic
mean of the candidates 𝑙1 and 𝑙2, is smaller than both 𝑙1 and 𝑙2. If closures similar
to (3.9) and (3.12) are used in a prognostic equation for TKE, the mixing length
(3.28) results in an unrealistic intensification of TKE dissipation in regions where
the candidate length scales 𝑙1 and 𝑙2 are similar. This undesirable characteristic is
avoided by using the smooth minimum (3.26).
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We consider two limiting factors for the characteristic length scale of turbulent
motion in boundary layer flows: stable stratification and the distance to solid bound-
aries.

Stratification Constraints

Environmental stratification constrains the size of turbulent eddies by inhibiting the
vertical displacement of air masses. Stably stratified turbulence is known to show
high vertical variability and reorganization into layered structures, with most mixing
occurring within the layers (Waite, 2011). The thickness of these layers is determined
by the vertical scale at which the governing dynamic equations become self-similar
(Billant and Chomaz, 2001; Augier et al., 2012), known as the buoyancy scale 𝑙𝑏.
For a flow with an imposed stratification given by the Brunt-Väisälä frequency 𝑁𝑒,
this length scale is

𝑙𝑏 = 𝑐𝑏
(𝑒0)1/2

𝑁𝑒
, (3.29)

where 𝑐𝑏 is an empirical coefficient. It is important to note that imposing 𝑙𝑏 as
an upper bound for the size of eddies is similar to doing so by the Ozmidov scale
𝑙𝑜 ∼

√︁
D/𝑁3

𝑒 only if turbulent motions at the scale in question are assumed to be in
the inertial subrange, such that (3.12) holds. In this case, an expression equivalent
to (3.29) for the Ozmidov scale is

𝑙𝑜 =

(
𝑐3
𝑏

𝑐𝑑

D
𝑁3
𝑒

)1/2

. (3.30)

However, recent experimental studies suggest that under strong stratification, tur-
bulence may not display an inertial subrange (Grachev et al., 2013). In that case,
expression (3.12) and the Ozmidov scale (3.30) may not be applicable (D. Li et al.,
2016), whereas the buoyancy scale (3.29) still holds.

The buoyancy frequency of moist air depends on the latent heat release and evap-
orative cooling associated with the vertical displacement of air parcels. In general,
the effective static stability 𝑁𝑒 lies between the dry and the moist adiabatic limits.
In the same spirit as O’Gorman (2011), we use an effective static stability of the
form

𝑁2
𝑒 =

𝑔

𝜃𝑣,0

(
𝜕𝜃𝑣,0

𝜕𝑧
− 𝜆 𝜕𝜃𝑣,0

𝜕𝑧

����
𝜃𝑣𝑙,0

)
=

𝑔

𝜃𝑣,0

[
(1 − 𝜆) 𝜕𝜃𝑣,0

𝜕𝑧
+ 𝜆 𝜕𝜃𝑣,0

𝜕𝜃𝑣𝑙,0

𝜕𝜃𝑣𝑙,0

𝜕𝑧

]
,

(3.31)
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where 𝜃𝑣 is the virtual potential temperature, 𝜆 represents the area fraction of envi-
ronmental air undergoing phase change, and 𝜃𝑣𝑙 is the liquid-water virtual potential
temperature, defined below. In expression (3.31), we have used the definition

𝜕𝜃𝑣,0

𝜕𝑧

����
𝜃𝑣𝑙,0

=
𝜕𝜃𝑣,0

𝜕𝑧
− 𝜕𝜃𝑣,0

𝜕𝜃𝑣𝑙,0

𝜕𝜃𝑣𝑙,0

𝜕𝑧
. (3.32)

Expression (3.31) differs from that presented in O’Gorman (2011) in the diagnosis
of 𝜆 and the use of 𝜃𝑣𝑙,0 instead of the saturated equivalent potential temperature.
These differences arise from the much smaller vertical scale considered here. At
scales of 10–100 m, the occurrence of phase changes is not necessarily correlated
with the sign of the vertical velocity of air parcels (O’Gorman and Schneider, 2006;
O’Gorman, 2011). Thus, 𝜆 cannot be diagnosed from vertical velocity statistics. In
the non-precipitating cases considered here, 𝜆 is given by the environmental cloud
fraction 𝑓𝑐,0. Cloud fraction diagnosis is cloud-type dependent in many current
GCMs (Collins et al., 2004). In our EDMF scheme, we use a regime-independent
probabilistic cloud scheme (see 3.9).

The liquid-water virtual potential temperature 𝜃𝑣𝑙 appearing in the effective static
stability measures the buoyancy of cloudy air parcels when moist-adiabatically
returned to clear conditions (Grenier and Bretherton, 2001; Marquet, 2011),

𝜃𝑣𝑙 ≈ (1 + 𝜂𝑞𝑡) 𝜃𝑙 ≈ 𝜃𝑣 exp
(
−𝐿𝑣𝑞𝑙
𝑐𝑝𝑇

)
. (3.33)

We use 𝜃𝑣𝑙 instead of the saturated equivalent potential temperature because 𝜃𝑣𝑙
converges to 𝜃𝑣 in the dry limit, while also including the effects of latent heat
release. Here, 𝜂 = 𝑅𝑣/𝑅𝑑 − 1, 𝐿𝑣 is the latent heat of vaporization, 𝑐𝑝 is the
specific heat of air, 𝑞𝑡 and 𝑞𝑙 are the total and liquid water specific humidities, 𝜃𝑙 is
the liquid water potential temperature, 𝑇 is the temperature and 𝑅𝑣, 𝑅𝑑 are the gas
constants for water vapor and dry air, respectively. Expression (3.33) can be used
to evaluate 𝜕𝜃𝑣,0/𝜕𝜃𝑣𝑙,0 in (3.31) and (3.32). Note that the effective static stability
(3.31) converges to the dry limit when 𝑞𝑙 → 0 for all values of 𝜆; it reduces to
𝑁2
𝑒 = (1 − 𝜆)𝑁2, with dry buoyancy frequency 𝑁 , in conditions that are well mixed

in 𝜃𝑙 and 𝑞𝑡 .

Wall Constraints

The presence of boundaries also imposes an upper limit on the size of eddies near
them. Following Monin and Obukhov (1954), the eddy diffusivity in the surface
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layer has the form
𝐾𝜓,𝑤 =

𝑢∗𝜅𝑧

𝜙𝜓 (𝜉)
(3.34)

where 𝜉 = 𝑧/𝐿, 𝜙𝜓 (𝜉) is an empirical stability function, 𝜅 is the von Kármán
constant, 𝐿 is the Obukhov length, and 𝑢∗ is the friction velocity. The upper bound
for the mixing length near the surface is obtained by matching this eddy diffusivity
with the expression (3.9) for the eddy diffusivity:

𝑙𝑤 =
𝜅

𝑐𝜓𝜅∗𝜙𝜓 (𝜉)
𝑧. (3.35)

Here, 𝜅∗ = 𝑒
1/2
0 /𝑢∗ is the ratio of rms turbulent velocity to the friction velocity in

the surface layer. The friction velocity in our model is diagnosed using the flux-
profile relationships of Byun (1990), except in free convective conditions. When the
conditions for free convection are satisfied, the diagnostic of 𝑢∗, which is a function
of the horizontal wind speed at the lowest model level, is modified following Beljaars
(1995).

The choice of a common master length for momentum and tracer diffusion implies
𝑐ℎ𝜙ℎ = 𝑐𝑚𝜙𝑚, such that 𝜙ℎ = Pr𝑡𝜙𝑚. In our formulation, the turbulent Prandtl
number is taken to be a function of the gradient Richardson number Ri, based on
a simplified cospectral budget of momentum and heat transport (Katul et al., 2013;
D. Li, 2019):

Pr𝑡 =
2Ri

1 + 𝜔2Ri −
√︁
−4Ri + (1 + 𝜔2Ri)2

Pr𝑡,0. (3.36)

Here, 𝜔2 = 40/13 is a phenomenological constant, and Pr𝑡,0 is the turbulent Prandtl
number in neutral conditions. The stability function 𝜙𝑚 is often written in the form
(Businger et al., 1971; Nakanishi, 2001)

𝜙𝑚 = [1 + 𝑎1(𝜉)𝜉]𝑎2 (𝜉) , 𝑎𝑖 = 𝑎
−
𝑖 + (𝑎+𝑖 − 𝑎−𝑖 )𝐻 (𝜉), (3.37)

where 𝐻 (·) is the Heaviside function and 𝑎−
𝑖
, 𝑎+
𝑖

are empirical functions. The values
of 𝑎−

𝑖
are taken as negative definite to reflect the convective elongation of eddies in

unstable conditions. In stable conditions, self-similarity of the flow requires that
𝑎+2 = 1 and 𝑎+1 > 0, such that under strong stratification, the mixing length (3.35)
becomes independent of 𝜉. As shown by Monin and Obukhov (1954), the asymptotic
limit of 𝜙𝑚 under strong stratification also requires that 𝑎+1 = Pr𝑡 (Rist)/Rist. Here,
Rist is the asymptotic Richardson number at 𝜉 ≫ 1/𝑎+1 in the surface layer.

The empirical function (3.37) has been shown to become increasingly inaccurate
with stability for 𝜉 > 0.5 (Sorbjan and Grachev, 2010; Optis et al., 2016). Moreover,
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extending the use of the limiting scale 𝑙𝑤 above the surface layer precludes the use
of 𝑎+1 ≠ 0 in stable conditions, since the Obukhov length characterizes stratification
only in the constant flux layer near the surface. Although the use of 𝑙𝑤 in expression
(3.26) mandates 𝑎+1 = 0, the effect of stability in eddy diffusion is still captured by
𝑙𝑏. In the constant flux layer, the limiting length 𝑙𝑏 is equivalent to the use of the
empirical function (3.37) in the strongly stable limit, with

𝑎+1 =
1

(𝜅2
∗𝑐𝑚𝑐𝑏)2

Pr𝑡 , 𝜉 ≫ 1
𝑎+1
. (3.38)

Under weaker stratification, turbulence in the surface layer can reach a quasi-steady
state (Spalart, 1988). In this case, the limiting scale 𝑙𝑤 should converge to 𝑙tke.
Assuming that entrainment processes are limited to dynamical entrainment by the
plumes in the surface layer, the ratio of the two length scales can be written as

𝑙𝑤

𝑙tke

����
𝑒0

=
(1 − Ri/Pr𝑡)1/2

(𝑐𝑑𝑐𝑚)1/2𝜅2
∗
, (3.39)

which is constant under neutral stratification and is slowly varying with Ri due to
the opposing effect of the Prandtl number (3.36). From (3.39), the convergence of
𝑙tke to 𝑙𝑤 in the surface layer is satisfied for (𝑐𝑑𝑐𝑚)1/2𝜅2

∗ ≈ 1.

The use of a soft minimum function for the mixing length (3.26) allows for a
smooth transition from Monin-Obukhov similarity theory near the surface to a local
turbulent closure farther away from it, where the use of Monin-Obukhov scaling
may be inaccurate (Optis et al., 2016). In addition, the expressions (3.38) and (3.39)
show that this transition is asymptotically consistent.

Master Mixing Length

Finally, the smooth minimum of the three candidate length scales determines the
mixing length,

𝑙 = 𝑠min(𝑙tke, 𝑙𝑤, 𝑙𝑏), (3.40)

where

𝑙tke = − I
2(S𝑙 + B𝑙)

+
√︁
I2 + 4(S + B)D

2(S𝑙 + B𝑙)
, (3.41)

𝑙𝑏 = 𝑐𝑏
(𝑒0)1/2

𝑁𝑒
, (3.42)

and
𝑙𝑤 =

𝜅

𝑐𝑚𝜅∗𝜙𝑚 (𝜉)
𝑧. (3.43)
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The proposed diffusive closure is implemented using equations (3.40)–(3.43), as well
as the prognostic environmental TKE equation (3.8) in flux form (see Eq. (3.51)).
The mixing length (3.40) depends on a group of nondimensional parameters C that
must be obtained empirically:

C = {𝑐𝑚, 𝑐𝑑 , 𝑐𝑏, 𝜅, 𝜅∗, 𝑎−1 , 𝑎
−
2 , Pr𝑡,0}. (3.44)

Values for these parameters are reported in studies of boundary layer turbulence,
obtained from field observations (Businger et al., 1971) or LES (Nakanishi, 2001).
However, the direct use of some of these values in the EDMF scheme is not justi-
fied due to the decomposition of the subgrid-scale flow into different subdomains.
Because of the large size of the parameter space C and the presence of other pa-
rameters in the EDMF scheme, we limit the parameter optimization process to
C∗ = {𝑐𝑚, 𝑐𝑑 , 𝑐𝑏} in this study. C∗ contains the parameters that appear in the
closures that are most strongly affected by the domain decomposition. All other
parameters in C, except Pr𝑡,0, arise from similarity theory arguments for the unre-
solved surface layer. Here, it is assumed that similarity arguments are valid outside
convective updrafts, and all values are taken from Nakanishi (2001). For the simu-
lations reported in the next section, the parameter space used is shown in Table 4.1.
The rest of parameters used in the EDMF scheme, which do not appear explicitly in
the formulation of the mixing length closure, are reported in Cohen et al. (2020).

Table 3.1: Parameters in the mixing length closure and values used in this study.

Symbol Description Value
𝑐𝑚 Eddy viscosity coefficient 0.14
𝑐𝑑 Turbulent dissipation coefficient 0.22
𝑐𝑏 Static stability coefficient 0.63
𝜅 von Kármán constant 0.4
𝜅∗ Ratio of rms turbulent velocity to friction velocity 1.94
𝑎−1 Empirical stability function coefficient −100
𝑎−2 Empirical stability function coefficient −0.2
Pr𝑡,0 Turbulent Prandtl number in neutral conditions 0.74

3.5 Results for single-column simulations
Here we focus on case studies targeting the simulation of the Arctic stable boundary
layer (SBL), stratocumulus clouds, and dry convection. The performance of the ex-
tended EDMF scheme in moist-convective cases is explored in Cohen et al. (2020),
using the same set of closures and parameters. The extended EDMF scheme is tested
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for horizontal resolutions typical of GCMs. Invoking the boundary layer approxima-
tion (neglecting horizontal derivatives), we perform simulations in a single-column
model (SCM). The SCM is a one-dimensional vertical model that aims to represent
a single atmospheric column within a GCM. Results from single-column simula-
tions using the extended EDMF scheme are then compared to horizontal averages
obtained from LES over the same domain. LES are set up by further discretizing the
atmospheric column horizontally and using horizontal doubly-periodic boundary
conditions.

The EDMF scheme used here differs from the one described in Tan et al. (2018)
in the parameterizations of the eddy diffusivity 𝐾𝜓 , the vertical pressure anomaly
gradients in (3.6) and (3.10), entrainment and detrainment, and the addition of
turbulent entrainment �̂�𝑖 𝑗 . The parameterization of the eddy diffusivity follows
(3.9) and (3.40)–(3.43). The entrainment parameterization is described in Cohen
et al. (2020), and the treatment of the pressure anomaly term is shown in (3.11). In
addition, although the theoretical framework presented here allows for the use of
downdrafts, the implementation used in this section decomposes the domain solely
into one updraft and its turbulent environment.

LES are performed using PyCLES, an anelastic fluid solver in which the subgrid-
scale fluxes are treated implicitly by the WENO scheme used to discretize the
prognostic equations (Pressel et al., 2015). Implicit LES using WENO numerics
have been shown to result in higher effective resolution than other combinations of
numerics and explicit SGS closures (Pressel et al., 2017). Finally, LES results from
previous model intercomparison projects are also reported where available.

Stable Boundary Layer
Statically stable conditions in the boundary layer inhibit convection, reducing the
EDMF scheme to a diffusive closure. In the implementation of the scheme, this
translates to conditioning the surface updraft area fraction on the sign of the surface
buoyancy flux, such that it becomes zero in conditions of surface cooling. With no
updrafts or downdrafts, the only contribution to the subgrid-scale flux (3.2) comes
from the environmental downgradient turbulent flux (3.3). This leads to a high
sensitivity of SCM simulations to changes in the mixing length formulation. Here
we focus on the GEWEX Atmospheric Boundary Layer Study (GABLS), discussed
in Beare et al. (2006).
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Simulation Setup

The initial and boundary conditions of the simulation are adapted from observations
during the Beaufort and Arctic Seas Experiment (Curry et al., 1997) and follow
Beare et al. (2006). The velocity field is initialized as (⟨𝑢⟩, ⟨𝑣⟩) = (𝑢𝑔, 0), where
the geostrophic velocity is 𝑢𝑔 = 8 m s−1. The initial temperature sounding is given
by a mixed layer with potential temperature 𝜃 = 265 K up to 100 m, overlain by an
inversion with a potential temperature gradient of 10 K km−1. The surface boundary
condition is given by constant cooling, ¤𝜃𝑧=0 = −0.25 K h−1.

For both the SCM and LES, the domain height is 400 m. In the LES configuration,
the domain spans 400 m in both horizontal directions as well. The LES data is
generated using an isotropic mesh with Δ𝑥𝑖 = 3.125 m resolution, which translates
into 2 × 106 degrees of freedom. The full range of LES results from Beare et
al. (2006), using the same resolution, is also included for reference. The SCM
simulations are performed at vertical resolutions of Δ𝑧 = 3.125 m, 12.5 m, and
50 m (128, 32, and 8 degrees of freedom, respectively). This range characterizes the
performance of the EDMF scheme both at high resolution and for coarser resolutions
typical of regional and global climate models in the lower troposphere. The time
steps used in the SCM simulations, in order of increasing Δ𝑧, are Δ𝑡 = 5, 15, and
60 s.

Results

Figure 3.1 shows vertical profiles of ⟨𝜃⟩, ⟨𝑢⟩ and ⟨𝑣⟩ time-averaged over the 9th hour
of simulation. The EDMF scheme captures well the boundary layer height and the
intensity of the low-level jet, with little resolution dependence of the mean profiles
up to Δ𝑧 = 12.5 m. At 50 m resolution, the SCM predicts a slightly deeper boundary
layer. The EDMF-simulated TKE follows closely the LES data, as shown in Figure
3.2. The timeseries show periods of TKE growth due to the subgrid momentum
flux from the surface layer, and periods of decay due to the increasing stratification.
These changes in vertically integrated TKE are much smaller than the integrated
TKE production and dissipation terms, as shown in Figure 3.3. The domain-mean
TKE budget, which coincides with the environmental budget for stable conditions,
is shown in Figure 3.3.

The two main causes of grid-sensitivity at 50 m resolution are the inability to capture
the region of maximum shear production close to the surface, and the deterioration
of the friction velocity diagnosis. The effect of the former can be observed in Figure
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Figure 3.1: Profiles of (a) potential temperature and (b) horizontal velocity averaged
over the 9th hour of the GABLS simulation. Results are shown for LES and for the
EDMF-based SCM with Δ𝑧 = 3.125 m, Δ𝑧 = 12.5 m, and Δ𝑧 = 50 m. The shaded
region represents the spread of LES results with Δ𝑧=3.125 m reported in Beare et al.
(2006).

3.3. Even if the budget is correctly captured above 50 m, the absence of grid-
cells at the lower levels results in a significant reduction of the vertically integrated
production and dissipation. In addition, the diagnosis of 𝑢∗ based on Byun (1990)
overestimates the friction velocity at coarser resolutions. This can be observed by
comparing the normalized TKE profile to the vertically integrated timeseries in
Figure 3.2.

The dominant mixing length throughout the simulation is shown in Figure 3.2 for
all heights. Initially, the wall-limited mixing length 𝑙𝑤 is dominant below the
inversion, due to the absence of mean shear and stratification. As the shear and
stratification develop, the dominant mixing length profile attains a three-layered
structure. Closest to the bottom boundary, the distance to the wall constrains the
size of eddies. Farther away from the surface, the mixing length is determined by the
local TKE balance. As stratification increases with height, the stratification-limited
mixing length 𝑙𝑏 becomes dominant, depleting TKE and limiting turbulent mixing.
The eddy diffusivity, shown in Figure 3.2, is maximum near the transition from 𝑙tke

to 𝑙𝑏, where the mixing length is largest. Again, the overestimation of the friction
velocity and the absence of grid-points in the lower layers result in an overestimation
of the eddy diffusivity at coarse resolutions.

Both the LES and EDMF budgets show the quasi-balance of TKE sources and
sinks throughout the boundary layer, even in regions where 𝑙tke is not dominant.
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Figure 3.2: (a) Contours of eddy diffusivity 𝐾𝑚 (m2 s−1) as a function of time and
height for the GABLS simulation using the SCM with Δ𝑧 = 12.5 m. Colors show
the dominant (minimum) mixing length. (b) Profiles of eddy diffusivity averaged
over the 9th hour. LES diffusivity is diagnosed from the shear production term S
and the grid-mean shear. (c) Time series of vertically integrated TKE 𝐸𝑖𝑛𝑡 . (d)
Profiles of 𝑢∗-normalized TKE averaged over the 9th hour. In (d), 𝑢∗ is the average
friction velocity during the 9th hour, with 𝑢∗ = 0.25 m s−1 for LES and 𝑢∗ = 0.26,
0.26 and 0.30 m s−1 for the SCM cases, in order of increasing Δ𝑧. In (b), (c), and
(d), results are shown for LES (solid line), EDMF with Δ𝑧 = 3.125 m (dashed line),
Δ𝑧 = 12.5 m (dash-dotted line), and 𝑧 = 50 m (dotted line). The shaded region
represents the spread of LES results withΔ𝑧=3.125 m reported in Beare et al. (2006).

The downgradient parameterization of shear production S, buoyant production B,
and the turbulent transport T results in profiles that follow closely the LES data,
particularly at higher resolution. This validates the assumptions used to model the
second-order moments in the extended EDMF scheme under stable stratification.

Stratocumulus-Topped Boundary Layer
The ability of the extended EDMF scheme to represent the dynamics of the STBL is
tested using as a baseline the second Dynamics and Chemistry of Marine Stratocu-
mulus (DYCOMS-II) field study (Stevens et al., 2003), performed near the coast
of San Diego, California. In particular, the conditions observed during the first
research flight (RF01) are considered, for which precipitation was not observed.
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Figure 3.3: Profiles of TKE budget terms averaged over the 9th hour of GABLS
simulation. Profiles shown in (a) are for shear production S, dissipation D and the
pressure term P. Shown in (b) are the buoyant production term B and turbulent
transport T . (c) Time evolution of the vertically integrated TKE (𝐸𝑖𝑛𝑡) production
and dissipation terms. The rate of change of 𝐸𝑖𝑛𝑡 in LES is included as a reference.
Results are shown for LES (solid line) and for EDMF with Δ𝑧 = 3.125 m (dashed
line), Δ𝑧 = 12.5 m (dash-dotted line), and 𝑧 = 50 m (dotted line). The shaded
region represents the spread of LES results with Δ𝑧=3.125 m reported in Beare et al.
(2006).
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Simulation Setup

The simulation setup for DYCOMS-II RF01 is reported in Stevens et al. (2005).
The base state is initialized with a two-layer structure in 𝜃𝑙 and 𝑞𝑡 , separated by a
strong inversion at 𝑧𝑖 = 840 m. The bottom layer is well-mixed in both conserved
variables, with saturation and cloud formation occuring above 600 m. The cloud-
top, located at 𝑧𝑖, is characterized by Δ𝜃𝑙 = 8.5 K and Δ𝑞𝑡 = −7.5 g kg−1. The
free troposphere is warmer and drier than the mixed layer, with a 𝜃𝑙-lapse rate of
(1/3) (𝑧− 𝑧𝑖)−2/3 K m−1 and constant 𝑞𝑡 . The surface sensible and latent heat fluxes
are set to 15 and 115 W m−2, respectively. The vertical water distribution induces
radiative cloud-base warming and radiative cooling at cloud-top and in the free
troposphere.

The domain height is 1.5 km. In the LES, the horizontal domain extent is set
to 3.36 km. The resolution used for the LES is Δ𝑧 = 5 m in the vertical and
Δ𝑥 = 35 m in the horizontal. This corresponds to 2.76 × 106 degrees of freedom.
The SCM simulations are performed with vertical resolutions of Δ𝑧 = 5 m, 20 m,
50 m, and 75 m, or 300, 75, 30, and 20 degrees of freedom, respectively. In the
SCM simulations, the time step is diagnosed from a CFL condition based on the
maximum updraft velocity in the domain, using a Courant number of 0.9. This
results in average time steps of 3 s, 14 s, 39 s, and 63 s, respectively.

Results

The mean profiles obtained with the extended EDMF scheme display very little
resolution sensitivity compared to the spread of results from LES, as shown in
Figure 3.4. LES of stratocumulus-topped boundary layers are strongly dependent on
the discretization numerics and the treatment of subgrid-scale fluxes (Pressel et al.,
2017). Overly diffusive LES models result in excessive cloud-top mixing, reducing
the water content of the cloud layer and transitioning to decoupled cumulus-like
conditions.

Similarly, the ability of SCM simulations to capture the stratocumulus-cloud layer
is contingent upon the cloud-top mixing not being too strong. With large gradients
in 𝑞𝑡 and 𝜃𝑙 across the inversion, the mixing length is the main limiter of cloud-top
diffusive mixing. As shown in Figure 3.5a, the buoyancy scale (3.29) is crucial to
limit the cloud-top eddy diffusivity and maintain a sharp inversion over the mixed
layer (see 3.10 for details). It is important to note that in our formulation, the mixing
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length may be smaller than Δ𝑧. This allows to maintain a coupled cloud layer even
at coarse vertical resolution.

How the dominant mixing length varies with height in the STBL is shown in Figure
3.5a. Throughout most of the boundary layer, environmental mixing is determined
by the minimum-dissipation balance. Mixing is constrained by stratification at cloud
top and in the lower part of the cloud, where the environmental cloud fraction 𝑓𝑐,0

is less than unity. The vertically integrated TKE obtained in the SCM simulations
is similar across resolutions and follows closely the WENO-based LES statistics,
as shown in Figure 3.5b. Again, the variation of TKE with resolution in the SCM
simulations is significantly lower than the spread of values obtained with different
LES, not all of which successfully simulate the presence of a stratocumulus cloud
layer.

The liquid water path (LWP) time series from the SCM simulations are in agreement
with the LES results. At coarse resolution, cloud-top entrainment of dry air is too
low, which leads to an overestimation of 𝑞𝑙 and LWP, as shown in Figures 3.4d and
3.5c. However, even at this resolution, the water content bias obtained with the
EDMF scheme is significantly lower than the dry bias of some of the LES models.

The vertical heat and moisture fluxes, as well as the contributions from the turbulent
flux (eddy diffusivity) and subdomain-mean terms (mass flux), are shown in Figure
3.4. The SCM simulations slightly overestimate the heat flux in the cloud layer
and underestimate the moisture flux throughout the boundary layer. These biases
compensate each other to some extent, leading to a small bias in the buoyancy
flux. Similar biases are reported for models using the EDMF scheme and different
parameterizations (E. Wu et al., 2020).

In the extended EDMF scheme, the environmental turbulent flux is the leading
contributor to the buoyancy flux. The context of this decomposition should be
considered when comparing these results to LES studies of the dynamics govern-
ing the STBL (e.g., Davini et al., 2017). Since we do not consider downdrafts in
our SCM simulations, the environment contains all dynamic structures of the flow
except updrafts. Therefore, the turbulent flux here also represents the transport
due to downdrafts. Although LES studies emphasize the importance of convec-
tive transport due to downdrafts in stratocumulus clouds (Davini et al., 2017), we
find that their implementation is not necessary to reproduce the STBL using the
extended EDMF scheme. This is in agreement with E. Wu et al. (2020), where the
authors show that the implementation of downdrafts in an EDMF scheme does not
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significantly improve simulations of the STBL.

Vertical profiles of TKE and eddy diffusivity are shown in Figure 3.6. The magnitude
of TKE is underestimated by the SCM in the cloud layer, while the SCM maintains
similar values to LES in the subcloud-layer. The eddy diffusivity is also diagnosed
from LES, with the Prandtl number expression (3.36) used in our model imposed as
a constraint. From the closures (3.16), and since the simulations are performed in
a single column (i.e., the horizontal derivatives in (3.16) are zero), we can estimate
the eddy diffusivity from the environmental shear and buoyancy production as

𝐾 les
𝑚 = −1

2


3∑︁
𝑗=1

𝑤′
0𝑢

′
𝑗 ,0

𝜕𝑢 𝑗 ,0/𝜕𝑧
+ Pr𝑡

𝑤′
0𝑏

′
0

𝜕𝑏0/𝜕𝑧

 . (3.45)

In the diagnosis of (3.45), updraft and environment identification is performed using
the methodology proposed in Couvreux et al. (2010). The eddy diffusivity in the
SCM simulations follows a similar profile to 𝐾 les

𝑚 below the cloud layer, underes-
timating 𝐾 les

𝑚 at coarser resolution but converging toward 𝐾 les
𝑚 as the resolution is

refined. The peak in 𝐾 les
𝑚 within the cloud layer is due to a positive 𝑤′

0𝑏
′
0 under a

vanishing �̄�0 gradient. This environmental buoyancy production may be attributed
to convective downdrafts, which are considered to be part of the environment in our
analysis.

Dry Convection
The dry convective boundary layer differs from the previous cases in that the mass-
flux term is the leading order contribution to the subgrid-scale vertical transport
throughout most of the boundary layer. However, an accurate parameterization of
the eddy-diffusivity contribution is still necessary for a correct simulation of the dry
convective boundary layer.

Simulation Setup

The simulation setup follows Nieuwstadt et al. (1993). The base state is initialized
as a mixed layer with potential temperature 𝜃 = 300 K up to 𝑧1 = 1350 m, above
which potential temperature increases at a rate of 3 K km−1. The flow, which is
initialized with a horizontal velocity of 1 cm s−1, is driven by a constant surface
heat flux of ⟨𝑤∗𝜃∗⟩ = 6 K cm s−1.

The simulation is performed in a domain spanning 3.75 km in the vertical. For
the LES, the horizontal cross-sectional area is 6.4 × 6.4 km2, and the resolution is
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Figure 3.4: Profiles of (a) liquid water potential temperature, (b) total water specific
humidity, (c) liquid water specific humidity, (d) vertical buoyancy flux, (e) vertical
transport of 𝑞𝑡 and (f) vertical transport of 𝜃𝑙 . Profiles averaged over the 4th hour of
the DYCOMS-II RF01 simulation. In (e) and (f), the eddy diffusivity (SCM𝐸𝐷) and
mass flux (SCM𝑀𝐹) components of the vertical flux are shown (plotting conventions
follow the legend in panel (a)). The shaded region represents the spread of LES
results reported in Stevens et al. (2005). Observations are also reported in Stevens
et al. (2005).

Δ𝑧 = 25 m in the vertical andΔ𝑥 = 50 m in the horizontal. The SCM simulations are
performed with vertical resolutions of 25, 50, and 150 m. As for the DYCOMS-II
simulations, the time step is diagnosed from a CFL condition. The average time
step for these simulations is 14 s, 30 s, and 100 s, respectively.

Results

Time-averaged profiles of potential temperature and vertical buoyancy flux are
shown in Figure 3.7 for the 5th hour of simulation. The potential temperature
mixed layer and its associated vertical heat flux are well captured for all resolutions
considered, with little resolution sensitivity. The convective heat flux is roughly
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Figure 3.5: (a) Contours of eddy diffusivity 𝐾𝑚 (m2 s−1) as a function of time
and height for the DYCOMS-II RF01 simulation using the SCM with Δ𝑧 = 5 m.
Colors show the dominant (minimum) mixing length. (b) Time series of vertically
integrated TKE 𝐸𝑖𝑛𝑡 . (c) Time series of liquid water path (LWP). In (b) and (c),
results are shown for LES (solid line), EDMF withΔ𝑧 = 5 m (dashed line),Δ𝑧 = 20 m
(dash-dotted line), 𝑧 = 50 m (dotted line) and 𝑧 = 75 m (×).
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Figure 3.6: Profiles of (a) normalized turbulence kinetic energy and (b) eddy dif-
fusivity. Profiles averaged over the 4th hour of the DYCOMS-II RF01 simulation.
In (a), 𝑢∗ is the average friction velocity during the 4th hour, with 𝑢∗ = 0.22 m s−1

for LES and 𝑢∗ = 0.26, 0.25, 0.24, and 0.24 m s−1 for the SCM cases, in order of
increasing Δ𝑧. In (b), the eddy diffusivity diagnosed from LES follows (3.45). The
shaded region represents the spread of LES results reported in Stevens et al. (2005).
Plotting conventions follow the legend in panel (a).

constant throughout the boundary layer, while the diffusive flux decreases with
height.

All simulations show a small cold bias throughout the boundary layer and a warm
bias below the inversion. The latter is due to the absence of plume overshooting
in the SCM simulations, as shown in Figure 3.7b. The evolution of the boundary
layer depth, diagnosed as the height of minimum buoyancy flux (Stevens, 2007), is
shown in Figure 3.7d. The boundary layer growth in the SCM simulations is slower
than in LES, with the bias decreasing as the vertical resolution is refined.

Reducing these biases with the extended EDMF scheme is possible, albeit with a
different set of parameters controlling the pressure closure (3.11). These results are
not shown here, since the goal of the model is to simulate all boundary layer regimes
with a single set of parameters. Learning a set of parameters that minimizes these
and other biases in the results shown here and in Cohen et al. (2020) is left for future
work.

Finally, Figure 3.8 shows vertical profiles of TKE and eddy diffusivity. All SCM
simulations display a TKE bias above 1500 m due to the absence of plume overshoot-
ing, which leads to zero convective TKE following equation (3.5). Eddy diffusion,
which is a function of environmental TKE in our model, is not affected by this
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Figure 3.7: Profiles of (a) potential temperature, (b) vertical buoyancy flux, and
(c) vertical flux of potential temperature. Profiles averaged over the 5th hour of
dry convection simulation. In (c), the eddy diffusivity (SCM𝐸𝐷) and mass flux
(SCM𝑀𝐹) components of the vertical flux are shown separately. (d) Time evolution
of the boundary layer depth 𝑧𝑏𝑙 , computed as the level of minimum buoyancy flux
⟨𝑤∗𝑏∗⟩. Plotting conventions follow the legend in panel (a).

convective bias. Indeed, the diffusive closure (3.9) leads to an accurate prediction
of the depth of the diffusive layer, as shown in Figure 3.8b.

3.6 Summary and discussion
The mixing length formulation proposed in this study provides a regime-independent
closure of turbulent fluxes for EDMF schemes. The results for the stable boundary
layer, stratocumulus-topped boundary layer, and dry convection demonstrate the
ability of EDMF schemes with this mixing length closure to accurately describe
the structure of the boundary layer in regimes where existing parameterizations
currently in use in climate models fail or are inaccurate.

In the stable boundary layer, where convection and the subdomain decomposition
in the EDMF scheme do not play a role, the proposed closure is able to reproduce
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Figure 3.8: Profiles of (a) normalized turbulence kinetic energy and (b) eddy dif-
fusivity for the dry convective boundary layer. Profiles averaged over the 5th hour
of simulation. In (a), 𝑢∗ is the average friction velocity during the 5th hour, with
𝑢∗ = 0.18 m s−1 for LES and 𝑢∗ = 0.24 m s−1 for all SCM cases. In (b), the eddy
diffusivity diagnosed from LES follows (3.45). Plotting conventions follow the
legend in panel (a).

the vertical structure and time evolution of turbulence over a range of vertical
resolutions, down to 𝑂 (10 m). In the stratocumulus-topped boundary layer, where
convective fluxes do play a role, the transport owing to environmental diffusion still
provides the leading-order contribution to the subgrid-scale vertical fluxes in our
EDMF scheme. The way in which environmental stratification limits the mixing
length seems to be the crucial feature that allows our EDMF scheme to reproduce
the sharp inversion at the stratocumulus cloud-top, even at relatively coarse vertical
resolution.

Several characteristics differentiate this closure from others proposed in the liter-
ature. First, choosing the smooth minimum (3.40) of various candidate mixing
lengths is consistent with the idea that estimates of the mixing length arising from
different physical arguments should converge to a similar master length scale if they
are simultaneously valid. For widely used expressions such as the harmonic mean
(3.28), this does not hold, leading to unrealistic reductions in mixing. Second,
our formulation explicitly links the eddy diffusivity to the effect of convective cells
on the environment, leading to a consistently closed TKE balance. This results,
for example, in the TKE injection term I appearing in the length scale (3.18), for
which TKE production and dissipation are in balance. Third, the mixing length
does not depend on integral quantities such as the boundary layer thickness or Dear-
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dorff’s convective scale. The inclusion of these terms in other models often leads to
regime-dependent nonlocal terms that are non-causal and hence difficult to justify
in general. Finally, the closure smoothly connects with Monin-Obukhov similarity
theory near the surface with no assumptions about the height at which the transition
occurs. This is particularly relevant for climate models with low vertical resolution,
for which the use of similarity theory even in the first model level may be inaccurate.

A similar approach to the one shown here may be used to develop increasingly com-
plex closures for high-order turbulence models. As an example, the net dissipation
argument used in the TKE production–dissipation inequality (3.13) can also be ap-
plied to the temperature variance budget to diagnose the turbulent Prandtl number.
The same could be done for other second-moment budgets in models with additional
second-order prognostic equations, to obtain independent diffusivities for different
tracers.

Finally, the optimization of the full parameter space was beyond the scope of this
study and is left for future work. The access to LES data for a wider range of
atmospheric conditions is necessary to enable a more comprehensive optimization
of the parameter space in the EDMF scheme.

3.7 Appendix A: Smooth minimum function
We define as a smooth minimum any function 𝑓 : R𝑁 → R of differentiability class
𝐶∞ that approximates the min(x) operator. Our implementation of (3.40) is based
on the softmin function sΛ(x), which is a smooth approximation to the argmin(x)
function (Titsias, 2016), with

𝑠Λ𝑗 (x) =
𝑒−𝑥 𝑗/Λ∑𝑁
𝑖=1 𝑒

−𝑥𝑖/Λ
. (3.46)

Here, Λ is a regularization parameter. The inner product of sΛ with x yields an
approximation of the min(x) operator,

𝜎Λ(x) = x · sΛ(x̃) =
∑𝑁
𝑖=1 𝑥 𝑗𝑒

−𝑥 𝑗/Λ∑𝑁
𝑖=1 𝑒

−𝑥𝑖/Λ
, (3.47)

where 𝑥 𝑗 = 𝑥 𝑗−min(x). In (3.47), the translational symmetry sΛ(x) = sΛ(x+c) with
𝑐 𝑗 = 𝑐 is used to avoid errors due to finite precision arithmetic. The function 𝜎Λ(x)
converges to min(x) as Λ → 0. In practice, a nonzero regularization parameter
is chosen to ensure smoothness. The value of Λ may be obtained by imposing a
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monotonically decreasing contribution of each 𝑥 𝑗 to 𝜎Λ(x):

𝜕

(
𝑥 𝑗 𝑠

Λ
𝑗
(x)

)
𝜕𝑥 𝑗

≤ 0 ∀𝑥 𝑗 if Λ ≤ min(x). (3.48)

Alternatively, Λ may be defined by enforcing an upper bound on the value of 𝜎Λ(x)
under certain assumptions about x. Let the elements of x be ordered such that
𝑥 𝑗 ≤ 𝑥 𝑗+1 for all 𝑗 . Assuming 𝑥2 ≈ 𝑥𝑛 ≪ 𝑥𝑛+1, then

𝜎Λ(x) ≤ min(x) (1 + 𝜖) if Λ ≤ Λ0 =
𝜖

𝑊 ( 𝑛−1
𝑒
)

min(x), (3.49)

where𝑊 (𝑥) is the Lambert𝑊 function. In the implementation of (3.40), we use

𝑠min(x) = 𝜎Λ∗
0 (x) with 𝜖 = 0.1. (3.50)

Here, Λ∗
0 = max(Λ0, 1 m), so the smoothing scale is constrained to be at least 1 m.

Although a large value of 𝑛 results in a closer approximation to the minimum, (3.46)
may become difficult to evaluate in finite precision arithmetic. Because of the low
dimensionality of x in (3.40) and the limitation given by Λ∗

0, finding a compromise
is not necessary, and we set 𝑛 = 𝑁 .

3.8 Appendix B: Subgrid kinetic energy in the extended EDMF scheme
According to the TKE decomposition (3.5), the grid-mean TKE includes the envi-
ronmental TKE and the subgrid kinetic energy of the plumes, or convective TKE.
The environmental TKE equation in flux form reads
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(3.51)

The prognostic equation for the convective kinetic energy in subdomain 𝑖 can be
obtained as
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Summing over all subdomains, we obtain the subgrid-scale convective TKE balance
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where, under the EDMF assumptions, all terms involving within-subdomain covari-
ances are only nonzero in the environment (𝑖 = 0). The first and second terms on
the right-hand side are turbulent transport terms. The third term represents shear
production of convective energy. The fourth and fifth terms yield shear production
of subdomain TKE by the convective flow, representing an advective sink in the
balance (3.53). The sixth and seventh terms are the convective components of the
buoyant production and velocity-pressure gradient terms. Finally, the dynamical and
turbulent entrainment terms act to transfer subgrid kinetic energy from the plumes
to within-subdomain variance. Note that the velocity-pressure gradient term can be
rewritten as ∑︁

𝑖≥0
𝜌𝑎𝑖
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since
∑
𝑖 𝑎𝑖𝜕Ψ̄

∗
𝑖
/𝜕𝑧 = 0. This yields the definition of the pressure work on the

plumes used in expression (3.10).

Some of the terms in budgets (3.51) and (3.53) transfer subgrid energy among the
environment and plumes, resulting in a null contribution to the global budget. The
grid-mean TKE prognostic equation that results from their sum is

𝜕 (𝜌⟨𝑒⟩)
𝜕𝑡

+ ∇ℎ · (𝜌⟨uℎ𝑒⟩) +
𝜕 (𝜌⟨𝑤𝑒⟩)

𝜕𝑧
= 𝜌⟨𝑤∗𝑏∗⟩ − 𝜌𝑎0D

− 𝜌
(
⟨𝑤∗𝑢∗⟩ 𝜕⟨𝑢⟩

𝜕𝑧
+ ⟨𝑤∗𝑣∗⟩ 𝜕⟨𝑣⟩

𝜕𝑧
+ ⟨𝑤∗𝑤∗⟩ 𝜕⟨𝑤⟩

𝜕𝑧

)
− 𝜌

(
⟨uℎ∗𝑢∗⟩ · ∇ℎ⟨𝑢⟩ + ⟨uℎ∗𝑣∗⟩ · ∇ℎ⟨𝑣⟩ + ⟨uℎ∗𝑤∗⟩ · ∇ℎ⟨𝑤⟩

)
, (3.55)

where there is no contribution from pressure-velocity correlations in our model.
The evolution of the grid-mean TKE under the net dissipation closure (3.13) can be
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Figure 3.9: Schematic of subgrid kinetic energy reservoirs and pathways in the
extended EDMF scheme under the net dissipation closure. Notation follows equation
(3.56). Dashed lines represent energy pathways that result in implicit grid-mean
TKE dissipation under the net dissipation closure (3.13). Summation over 𝑖 =

0, . . . , 𝑛 is implied.

obtained by subtracting (3.13) from (3.55):
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,

(3.56)

where 𝛾0 is the net environmental dissipation. According to (3.56), grid-mean TKE
is generated through convective buoyant production B∗ and the vertical convergence
term S∗. Both dynamical and turbulent entrainment act as a transfer term from
subgrid-scale convective kinetic energy to environmental TKE, resulting in a grid-
mean TKE sink under the net dissipation closure. A schematic of the energetic
pathways between budgets (3.51) and (3.53) and the overall evolution of grid-mean
TKE under the mixing length closure presented here is shown in Figure 3.9.

3.9 Appendix C: Probabilistic model for cloud fraction
We consider 𝜃𝑙 and 𝑞𝑡 to be log-normally distributed with expected values 𝜃𝑙,0
and 𝑞𝑡,0, variances 𝜎2

𝜃𝑙
and 𝜎2

𝑞𝑡
, and covariance 𝜎2

𝑞𝑡 ,𝜃𝑙
.The log-normal distribution
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is preferred over the commonly used Gaussian distribution (e.g., Sommeria and
Deardorff, 1977) for two reasons: both 𝜃𝑙 and 𝑞𝑡 remain non-negative, and positive
skewness is allowed. Under the Gaussian assumption, negative values of 𝑞𝑡 may
be drawn from the distribution if 𝜎2

𝑞𝑡
/𝑞2

𝑡,0 is not sufficiently small (Mellor, 1977).
In addition, distributions with positive skewness have been shown to capture the
development of cumulus convection better (Bougeault, 1981).

The expected value of cloud fraction 𝑓𝑐,0 can be computed as (Mellor, 1977)

𝑓𝑐,0 =

∫ ∞

−∞

∫ ∞

−∞
𝐻 (𝑞𝑙 (𝜃𝑙 , 𝑞𝑡))𝑝(𝜃𝑙 , 𝑞𝑡) 𝑑𝜃𝑙 𝑑𝑞𝑡 , (3.57)

where𝐻 (·) is the Heaviside function and 𝑝(𝜃𝑙 , 𝑞𝑡) is the probability density function
(PDF) of the log-normal bivariate distribution with marginal probability density
functions (PDFs) given by

𝑞𝑡 ∼ LN(𝜇𝑞𝑡 , 𝑠2
𝑞𝑡
), 𝜇𝑞𝑡 = ln

©«
𝑞2
𝑡,0√︃

𝜎2
𝑞𝑡 + 𝑞2

𝑡,0

ª®®¬ , 𝑠2
𝑞𝑡
= ln

(
𝜎2
𝑞𝑡

𝑞2
𝑡,0

+ 1

)
(3.58)

and

𝜃𝑙 ∼ LN(𝜇𝜃𝑙 , 𝑠2
𝜃𝑙
), 𝜇𝜃𝑙 = ln

©«
𝜃2
𝑙,0√︃

𝜎2
𝜃𝑙
+ 𝜃2

𝑙,0

ª®®¬ , 𝑠2
𝜃𝑙
= ln

(
𝜎2
𝜃𝑙

𝜃2
𝑙,0

+ 1

)
. (3.59)

The conditional PDF of 𝜃𝑙 given 𝑞𝑡 is the log-normal distribution

𝜃𝑙 |𝑞𝑡 ∼ LN(𝜇𝑐, 𝑠2
𝑐), 𝜇𝑐 = 𝜇𝜃𝑙 +

𝑠2
𝜃𝑙 ,𝑞𝑡

𝑠2
𝑞𝑡

(ln(𝑞𝑡) − 𝜇𝑞𝑡 ), 𝑠2
𝑐 = 𝑠

2
𝜃𝑙
−
𝑠4
𝜃𝑙 ,𝑞𝑡

𝑠2
𝑞𝑡

,

(3.60)
where

𝑠2
𝜃𝑙 ,𝑞𝑡

= ln

(
𝜎2
𝑞𝑡 ,𝜃𝑙

𝑞𝑡,0𝜃𝑙,0
+ 1

)
. (3.61)

The cloud fraction (3.57) can be calculated by Gaussian quadrature as

𝑓𝑐,0 ≈ 1
𝜋

𝑛𝑖∑︁
𝑖

𝑤𝑖

𝑛 𝑗∑︁
𝑗

𝑤 𝑗𝐻 (𝑞𝑙 (𝜃𝑙, 𝑗 , 𝑞𝑡,𝑖)), (3.62)

where 𝑤 𝑗 and 𝑤𝑖 are the Gauss-Hermite weights corresponding to evaluation points
𝜃𝑙, 𝑗 and 𝑞𝑡,𝑖, respectively. The evaluation points (𝜃𝑙, 𝑗 , 𝑞𝑡,𝑖) of the log-normal dis-
tributions (3.58) and (3.60) are related to the Gauss-Hermite mass points (𝜉 𝑗 , 𝜒𝑖)
through the normal distributions 𝑥 and 𝑦 with same parameters:

𝜃𝑙, 𝑗 = 𝑒
𝑥 𝑗 , 𝑥 𝑗 = 𝜇𝑐 +

√
2𝑠𝑐𝜉 𝑗 , 𝑥 ∼ 𝑁 (𝜇𝑐, 𝑠2

𝑐) (3.63)
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and
𝑞𝑡,𝑖 = 𝑒

𝑦𝑖 , 𝑦𝑖 = 𝜇𝑞𝑡 +
√

2𝑠𝑞𝑡 𝜒𝑖, 𝑦 ∼ 𝑁 (𝜇𝑞𝑡 , 𝑠2
𝑞𝑡
). (3.64)

Note that the evaluation points 𝜃𝑙, 𝑗 are drawn from the conditional PDF (3.60). In
(3.62), the liquid water specific humidity 𝑞𝑙 is obtained as 𝑞𝑙 = 𝑞𝑡,𝑖 − 𝑞𝑠 (𝜃𝑙, 𝑗 , 𝑞𝑡,𝑖)
for 𝑞𝑡,𝑖 > 𝑞𝑠 (𝜃𝑙, 𝑗 , 𝑞𝑡,𝑖), where 𝑞𝑠 is the equilibrium saturation specific humidity.
Thus, supersaturation is not considered and all excess water vapour is immediately
converted to liquid water condensate. The equilibrium saturation specific humidity
is found iteratively using a saturation adjustment procedure (see Bryan and Fritsch,
2002, for details). Consistent with this approach, the environmental liquid water
specific humidity 𝑞𝑙,0 is computed as

𝑞𝑙,0 =
1
𝜋

𝑛𝑖∑︁
𝑖

𝑤𝑖

𝑛 𝑗∑︁
𝑗

𝑤 𝑗 [𝑞𝑡,𝑖 − 𝑞𝑠 (𝜃𝑙, 𝑗 , 𝑞𝑡,𝑖)]𝐻 (𝑞𝑡,𝑖 − 𝑞𝑠 (𝜃𝑙, 𝑗 , 𝑞𝑡,𝑖)). (3.65)

In this study, the probabilistic cloud model is implemented using 𝑛𝑖 = 𝑛 𝑗 = 3.

3.10 Appendix D: Results with alternative mixing length formulations
The importance of the different length scale restrictions in the mixing length closure
(3.40) is shown in Figures 3.10, 3.11, and 3.12 for the simulation of the SBL, the
STBL, and dry convection. We consider three alternative formulations to (3.40):
one without wall constraints (no 𝑙𝑤), one without stratification constraints (no 𝑙𝑏),
and another one without entrainment effects (I = 0 in 𝑙tke). These alternative
formulations are denoted as NLW, NLB, and NED, respectively.

Simulations of the SBL and STBL are most strongly affected by the omission of
stratification constraints, as shown in Figures 3.10 and 3.11. In the case of the
STBL, omitting 𝑙𝑏 in formulation (3.40) leads to a decoupling of the cloud layer
from the boundary layer. In both dry convection and the stable boundary layer, the
absence of 𝑙𝑏 leads to a deeper boundary layer and stronger buoyancy fluxes near
the inversion.

The effect of the entrainment term I in the formulation of 𝑙tke is noticeable in the
buoyancy flux and LWP of the STBL, both of which show a positive bias with respect
to LES in Figure 3.11. The effect of the entrainment term I is more significant in
the dry convective case, where its absence leads to very low diffusive mixing in the
boundary layer and low TKE compared to LES. Finally, the results for NLW show
that the implied balance in 𝑙tke can approximate the wall constraints relatively well,
leading only to small biases in the stable boundary layer simulation.
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Figure 3.10: Profiles of (a) potential temperature, (b-c) horizontal velocity, (d)
buoyancy flux, (e) normalized TKE, and (f) eddy diffusivity for the 9th hour of the
GABLS simulation. Results shown for LES and for the SCM (Δ𝑧 = 50 m) with
alternative mixing length formulations: original (OG), no 𝑙𝑤 (NLW), and no 𝑙𝑏
(NLB). Shaded region as in Figure 3.1.
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Figure 3.11: Profiles of (a) liquid water potential temperature, (b) total water specific
humidity, (c) liquid water specific humidity, (d) buoyancy flux, (e) normalized TKE
and (f) eddy diffusivity for the 4th hour of the DYCOMS-II RF01 simulation. The
time evolution of the liquid water path is shown in (g). Results shown for LES and
for the SCM (Δ𝑧 = 50 m) using alternative mixing length formulations: original
(OG), no 𝑙𝑤 (NLW), no 𝑙𝑏 (NLB) and no entrainment term I in equation (3.41)
(NED). Shaded region as in Figure 3.4.
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Figure 3.12: Profiles of (a) potential temperature, (b) buoyancy flux, (c) normalized
TKE, and (d) eddy diffusivity for the 5th hour of the dry convection simulation.
Results shown for LES and for the SCM (Δ𝑧 = 150 m) with alternative mixing
length formulations.
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C h a p t e r 4

TRAINING PHYSICS-BASED MACHINE-LEARNING
PARAMETERIZATIONS WITH GRADIENT-FREE ENSEMBLE

KALMAN METHODS

Lopez-Gomez, Ignacio, Costa Christopoulos, Haakon Ludvig Langeland Ervik,
Oliver R. A. Dunbar, Yair Cohen, and Tapio Schneider (2022). “Training physics-
based machine-learning parameterizations with gradient-free ensemble Kalman
methods”. In: Journal of Advances in Modeling Earth Systems 14, e2022MS003105.
doi: 10.1029/2022MS003105.

4.1 Abstract
Most machine learning applications in Earth system modeling currently rely on
gradient-based supervised learning. This imposes stringent constraints on the na-
ture of the data used for training (typically, residual time tendencies are needed),
and it complicates learning about the interactions between machine-learned param-
eterizations and other components of an Earth system model. Approaching learning
about process-based parameterizations as an inverse problem resolves many of these
issues, since it allows parameterizations to be trained with partial observations or
statistics that directly relate to quantities of interest in long-term climate projec-
tions. Here we demonstrate the effectiveness of Kalman inversion methods in
treating learning about parameterizations as an inverse problem. We consider two
different algorithms: unscented and ensemble Kalman inversion. Both methods in-
volve highly parallelizable forward model evaluations, converge exponentially fast,
and do not require gradient computations. In addition, unscented Kalman inversion
in its regularized version provides a measure of parameter uncertainty. We illustrate
how training parameterizations can be posed as a regularized inverse problem and
solved by ensemble Kalman methods through the calibration of an eddy-diffusivity
mass-flux scheme for subgrid-scale turbulence and convection, using data generated
by large-eddy simulations. We find the algorithms amenable to batching strate-
gies, robust to noise and model failures, and efficient in the calibration of hybrid
parameterizations that can include empirical closures and neural networks.
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4.2 Introduction
The remarkable achievements of machine learning over the past decade have led
to renewed interest in informing Earth system models with data (Schneider et al.,
2017b; Reichstein et al., 2019). The spotlight is often on creating or improving
models of processes that are deemed important for the correct representation of the
Earth system as a whole. Examples of these processes include moist convection
(Brenowitz et al., 2020), cloud microphysical and radiative effects (Seifert and Rasp,
2020; Villefranque et al., 2021; Meyer et al., 2022), and evapotranspiration (W. L.
Zhao et al., 2019), among others.

Processes governed by poorly understood dynamics, such as biological processes,
are obvious candidates for representation by purely data-driven models. On the
other end of the spectrum are fluid transport processes, which are governed by the
Navier-Stokes equations. Uncertain representation of these processes comes from
a lack of resolution, not lack of knowledge about the underlying dynamics. Hybrid
modeling approaches that incorporate domain knowledge and augment it by learning
from data are attractive for such processes, because they reduce what needs to be
learned from data.

For processes with known dynamics, data-informed models fall into three broad
categories according to their leverage of domain knowledge. In the first category
are models that try to learn the entire dynamics using a sufficiently expressive
hypothesis set, such as deep neural networks. This approach has proved successful
for predicting precipitation over short time horizons (Ravuri et al., 2021), and it
has been explored for medium-range weather forecasting (Rasp and Thuerey, 2021;
Pathak et al., 2022; Lopez-Gomez et al., 2022a). An advantage of these models is
that they are typically easy to implement and cheap to evaluate. They can afford very
large time steps (Weyn et al., 2021), or they may learn directly mappings from the
initial state to a probability distribution of final states with no need of time marching
or ensemble forecasting (Sønderby et al., 2020). A deficiency of these models is that
they often require an extreme amount of data to constrain the many (often > 106)
parameters in them and to achieve acceptable performance.

Methods in the second and third categories employ models of subgrid processes to
solve the closure problem that arises when coarse-graining the known dynamics,
which are retained. Retaining the coarse-grained equations of motion ensures
conservation of mass, momentum, and energy, which is more difficult when using
models in the first category (Beucler et al., 2021; Brenowitz et al., 2020). The
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second category encompasses methods that try to learn the functional form of
these closures avoiding the use of empirical laws. For example, Zanna and Bolton
(2020) use relevance vector machines to prune a library of functions, resulting in a
closed form expression of mesoscale eddy fluxes in ocean simulations; Ling et al.
(2016) learn a neural network closure of the Reynolds stress anisotropy tensor while
explicitly encoding rotational invariance in the context of 𝑘−𝜖 models of turbulence.

Finally, the third category refers to methods that seek to learn the parameters that
arise in empirical closures of subgrid processes. In general, models in the third
category are more restrictive, and they may be expected to underperform with respect
to those in the second category given sufficient data on the target distributions.
However, the limited parametric complexity of these closures makes them amenable
to physical interpretation, robust to overfitting, and better suited for learning in the
low-data regime. This may be attractive for Earth system models, for which online
learning from limited high-resolution data may be a useful strategy to assimilate
computationally generated data of the changing climate (Schneider et al., 2017b).

A barrier delimiting data-driven and empirical subgrid-scale closures is the access
to practical calibration tools. Neural network parameterizations are easily calibrated
using stochastic gradient descent through backpropagation, which limits datasets to
those including output labels, and models to those that afford automatic differenti-
ation with respect to their parameters. Empirical closures, which may depend on
time-evolving terms with memory (e.g., Lopez-Gomez et al., 2020) or yield unob-
servable outputs (e.g., turbulent versus dynamical entrainment in Cohen et al., 2020)
cannot be trained using this approach. Traditional Bayesian inference techniques,
like random walk Metropolis (Metropolis et al., 1953) or sequential Monte Carlo
(Moral et al., 2006), can be used in this context if the number of parameters is small
and the model to be trained is cheap to evaluate. Such methods additionally provide
uncertainty quantification, but they become intractable for expensive models with
many parameters (e.g., Cotter et al., 2013; Souza et al., 2020). Model-agnostic
tools that enable fast calibration of subgrid-scale closures from diverse data are a
necessary step toward the development of hybrid closures that leverage the strengths
of all modeling approaches.

With this goal in mind, we present calibration strategies for models of subgrid
processes, formulating the learning task as an inverse problem (Kovachki and Stuart,
2019). Solutions to the inverse problem are sought using the ensemble and unscented
Kalman inversion algorithms (Iglesias et al., 2013; D. Z. Huang et al., 2022a).
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Emphasis is given to practical aspects of this specific inverse problem, which have
not previously been explored in the literature. These include the construction of
a domain-agnostic loss function from high-dimensional observations, a heuristic
a priori estimate of model error, systematic handling of model failures during the
training process, and the use of the Kalman inversion algorithms when only noisy
evaluations of the loss function are available.

The strategies presented here are designed to have several attractive properties
compared to other learning algorithms. First, framing learning as an inverse problem
enables the use of partial observations or statistically aggregated data. Second,
calibration is performed using gradient-free methods, which are well suited for
stochastic models and/or models whose derivatives do not exist or are difficult to
obtain. Finally, the strategies presented are amenable to parallelization and the
use of high-dimensional correlated observations. The last two properties draw
heavily on the use of Kalman inversion algorithms to tackle the inverse problem,
which themselves build on the success of the ensemble Kalman filter (EnKF) for
data assimilation (Evensen, 1994; Houtekamer and Mitchell, 1998; Burgers et al.,
1998) and are closely related to iterative EnKF (Chen and Oliver, 2012; Emerick
and Reynolds, 2013; Bocquet and Sakov, 2013). The methods presented here
are applicable to models of subgrid-scale processes, within the second and third
categories described above. They provide an alternative to learning algorithms that
impose stringent requirements on either the model architecture, its computational
cost, or the nature of the training data.

The article is organized as follows. Section 4.3 casts learning about parameteri-
zations as an inverse problem, which can be solved through the minimization of
a regularized low-dimensional encoding of the data-model mismatch. Section 3
reviews the application of the ensemble and unscented Kalman inversion algorithms
to inverse problems and proposes modifications to their update equations that enable
training models that may experience failures. Section 4 then applies these ensem-
ble Kalman algorithms to the calibration of closures within an eddy-diffusivity
mass-flux (EDMF) scheme of turbulence and convection, using data generated from
large-eddy simulations (LES). The robustness of these learning strategies is demon-
strated by calibrating the EDMF scheme using noisy loss evaluations and partial
information, and their flexibility is emphasized by learning the parameters in a hy-
brid model containing both empirical and neural network closures. Finally, Section
5 ends with a discussion of the findings and concluding remarks.
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4.3 Learning about parameterizations as an inverse problem
We consider the problem of learning the parameters 𝜙 of a dynamical model Ψ(𝜙),
using noisy observations 𝑦 of the true dynamical system 𝜁 that Ψ(𝜙) seeks to
represent. In the context of subgrid parameterizations, Ψ(𝜙) represents a closed
version of the coarse-grained dynamical system (e.g., the filtered Navier-Stokes
equations), where closures are parameterized by 𝜙. The model Ψ(𝜙) maps a user-
defined initial state 𝜑0 and a forcing 𝐹𝜑 (𝑡) to a state trajectory �̂�(𝑡). Thus, our
definition of Ψ(𝜙) can be interpreted as the iterative application of the resolvent
operator on the initial field 𝜑0 (Brajard et al., 2021). In the following, we denote any
set of initial and forcing conditions collectively as the configuration 𝑥𝑐 = {𝜑0, 𝐹𝜑}𝑐;
the definition of all symbols is summarized in the appendix.

For each configuration 𝑥𝑐, the dynamical model can be related to the observations 𝑦𝑐
by the observational map H𝑐, which encapsulates all averaging and post-processing
operations necessary to yield the model predictions associated with the observations.
More precisely, the relationship between the observations 𝑦𝑐, the true dynamics 𝜁 ,
and the dynamical model Ψ(𝜙) for a given configuration may be expressed as

𝑦𝑐 = H𝑐 ◦ 𝜁 (𝑥𝑐) + 𝜂𝑐 = H𝑐 ◦ Ψ(𝜙; 𝑥𝑐) + 𝛿(𝑥𝑐) + 𝜂𝑐, (4.1)

where 𝜙 ∈ R𝑝 is the vector of learnable parameters, 𝜂𝑐 is the observational noise
associated with 𝑦𝑐, and 𝛿(𝑥𝑐) is the model or representation error, which we define
as the mismatch between the denoised observations H𝑐 ◦ 𝜁 (𝑥𝑐) and the output of a
best-fitting model H𝑐 ◦ Ψ(𝜙∗; 𝑥𝑐), following Kennedy and O’Hagan (2001). Thus,
the model error is approximated as additive (Cohn, 1997; van Leeuwen, 2015) and
defined with respect to the observational map H𝑐 and the optimal parameters 𝜙∗

that minimize its contribution to the data-model relation (4.1).

Observations are taken to come from finite spatial and temporal averages of fields
such as temperature. Learning from averages can help prevent overfitting to trajec-
tories in chaotic systems by focusing on the statistics of the dynamics (Morzfeld
et al., 2018). It also improves numerical stability when coupling to a parent model
(Brenowitz and Bretherton, 2018). Under this definition of observations, it is rea-
sonable to assume the noise 𝜂𝑐 to be additive and Gaussian. In the following, we
will further consider 𝛿(·) to be a centered Gaussian, although this constitutes a
significantly stronger assumption (e.g., that the model is unbiased) and may not be
appropriate for a detailed characterization of posterior uncertainty (van Leeuwen,
2015; Brynjarsdóttir and O’Hagan, 2014). The construction of more precise error
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models remains a challenge beyond the scope of this work. These assumptions
enable us to write 𝛿(𝑥𝑐) + 𝜂𝑐 ∼ N(0, Γ𝑐).

In general, we are interested in minimizing the mismatch between 𝑦𝑐 and the model
output for a wide range of configurations 𝐶 = {𝑥𝑐, 𝑐 = 1, . . . , |𝐶 |} that are repre-
sentative of the conditions in which the model will operate. This defines the global
data-model relation

𝑦 = H ◦ Ψ(𝜙) + 𝛿 + 𝜂, (4.2)

where 𝑦 = [𝑦1, . . . , 𝑦 |𝐶 |]𝑇 ∈ R𝑑 , 𝛿 = [𝛿(𝑥1), . . . , 𝛿(𝑥 |𝐶 |)]𝑇 , 𝜂 = [𝜂1, . . . , 𝜂 |𝐶 |]𝑇 ,
H◦Ψ(𝜙) = [H1◦Ψ(𝜙; 𝑥1), . . . ,H|𝐶 |◦Ψ(𝜙; 𝑥 |𝐶 |)]𝑇 and 𝛿+𝜂 ∼ N(0, Γ). In addition,
implicit in the definition of the dynamical model Ψ(𝜙) is a discrete resolution Δ.
This dependence may be lifted if the closures are designed to be scale-aware or
scale-independent, in which case the relation (4.2) should be augmented by stacking
copies of 𝑦 and evaluating H ◦ Ψ(𝜙,Δ𝑖) for different discretizations Δ𝑖.

In practice, the parameters 𝜙 are often defined over some subspace𝑈 ⊂ R𝑝 outside
of which the model trajectories are unphysical or numerically unstable. Examples
of these are parameters controlling the diffusion or turbulent dissipation of a scalar
field, for which negative values are not physically valid. On the other hand, many
algorithms designed to solve inverse problems assume 𝜙 ∈ R𝑝. This obstacle may
be circumvented by defining a transformation T : 𝑈 → R𝑝, such that the global
data-model relation (4.2) can be defined in an unconstrained parameter space,

𝑦 = G(𝜃) + 𝛿 + 𝜂, (4.3)

where
G B H ◦ Ψ ◦ T −1, 𝜙 = T −1(𝜃). (4.4)

In expressions (4.3) and (4.4), 𝜃 ∈ R𝑝 is the parameter vector in unconstrained space
and G : R𝑝 → R𝑑 is the map from transformed parameters to model predictions,
which represents the forward model. The task of learning a set of model parameters
𝜃 under relation (4.3) can be cast as the Bayesian inverse problem of finding the
posterior (Kaipio and Somersalo, 2006; Tarantola, 2005; D. Z. Huang et al., 2022b)

𝜌(𝜃 |𝑦, Γ) = 𝑒−L(𝜃;𝑦)

𝑍 (𝑦 |Γ) 𝜌prior(𝜃), L(𝜃; 𝑦) = 1
2
| |𝑦 − G(𝜃) | |2Γ, (4.5)

where 𝑍 (𝑦 |Γ) is a normalizing constant, | | · | |2
Γ

denotes the Mahalanobis norm
⟨·, Γ−1·⟩, L is the loss or negative log-likelihood, and 𝜌prior(𝜃) is the prior density.
We stress that the posterior 𝜌(𝜃 |𝑦, Γ) is conditioned on our approximation of the
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noise 𝛿 + 𝜂; see Kennedy and O’Hagan (2001) for a discussion on the usefulness
and caveats of such an approach. Given the inverse problem (4.3)–(4.5), we may be
interested in finding the maximum a posteriori (MAP), approximations of the density
𝜌(𝜃 |𝑦, Γ) around the MAP for uncertainty quantification, or simply the maximum
likelihood estimator (MLE) if we have no prior information about 𝜃. Algorithms to
perform these tasks are described in Section 4.4.

The error covariance Γ𝑐 appearing in each model-data relation (4.1), and ultimately
defining the inverse problem (4.3)–(4.5), is yet to be defined. In Section 4.3, we
suggest an estimate of Γ𝑐 relevant to the calibration of models with an unknown error
structure 𝛿(·). In addition, the choice of observational map H𝑐 may not be evident
when training dynamical models that aim to represent complex dynamical systems
𝜁 with many observable fields. Section 4.3 suggests a model-agnostic definition of
H𝑐 that can be used to construct a regularized inverse problem.

Estimate of noise covariances
Since the structure of the representation or model error 𝛿 is unknown a priori, we
must either parameterize it and calibrate it as well (Brynjarsdóttir and O’Hagan,
2014), or use a heuristic to capture its magnitude. Here, we follow the second route
and offer a heuristic that has worked well for us in practice. If we take 𝑦𝑐 = 𝑦𝑐 (𝑡)
to be an observation of the true system in configuration 𝑥𝑐 aggregated over a time
interval [𝑡, 𝑡 + 𝜏], we can write equation (4.1) as

𝑦𝑐 (𝑡) − 𝑦𝑐 (0) = H𝑐 ◦ Ψ(𝜙; 𝑥𝑐, 𝑡) − 𝑦𝑐 (0) + 𝛿(𝑥𝑐; 𝑡) + 𝜂𝑐 (𝑡). (4.6)

If we further consider a model with no predictive power of the first kind (Lorenz,
1975; Schneider and Griffies, 1999), such that H𝑐 ◦Ψ(𝜙; 𝑥𝑐, 𝑡) ≈ 𝑦𝑐 (0) for all times
𝑡, the covariance of (4.6) from 𝑡 = 0 to 𝑡 = 𝑡𝑐 ≫ 𝜏 reads

Γ𝑐 = Cov(𝑦𝑐) ≈ Cov(𝛿(𝑥𝑐)) + Cov(𝜂𝑐), (4.7)

which yields an estimate of the aggregate noise 𝜂𝑐 + 𝛿(𝑥𝑐) ∼ N (0, Γ𝑐) from the
variability of the observation 𝑦𝑐 over a time interval [0, 𝑡𝑐]. For non-stationary
conditions or finite-time averages, Γ𝑐 depends on 𝑡𝑐. Estimating the magnitude
of the aggregate noise from the internal variability of the true dynamics ensures
that the loss or negative log-likelihood L(𝜃; 𝑦) penalizes models Ψ(𝜙) that produce
unrealistic outputs, and it represents a form of error inflation if the best-fitting model
is expected to outperform the aforementioned unskillful model. The heuristic (4.7)
is most appropriate when the dynamical model Ψ(𝜙) is expressive enough to closely
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replicate the initial observations 𝑦𝑐 (0), such that any mismatch in the initial condition
can be lumped together with the observation error.

Design of the observational map
Application to problems with high-resolution data

High-resolution data are becoming increasingly common, from reanalysis products
(Muñoz-Sabater et al., 2021), satellite imagery (Schmit et al., 2017), and partial
differential equation (PDE) solvers such as LES (Shen et al., 2022). Although
computationally generated and thus suffering from their own limitations (e.g., mi-
crophysical processes still need to be parameterized in LES), data from PDE solvers
have some particularly desirable properties for the calibration of dynamical models:

• All variables appearing in the coarse-grained equations of motion are ob-
servable. As a consequence, the nature of the observational map H used to
constrain the model is largely a design choice.

• Data can be obtained systematically for all configurations 𝑥𝑐 of interest, which
may be chosen to minimize parameter uncertainty through active learning
(Dunbar et al., 2022). In contrast, data drawn from physical measurements
(e.g., field observations) are often sparse in the space of forcing and boundary
conditions.

High-resolution data are often high-dimensional, which poses particular difficulties
regarding the conditioning and tractability of linear systems of equations when
solving inverse problems. The guidelines for the construction of the observational
map H presented here are tailored to solve these issues, with a focus on data from
high-fidelity solvers.

Model calibration

We define model calibration as the minimization of the mismatch between the
observed dynamics and the dynamics induced by the model. We will use this
definition to construct a domain-agnostic map H . As an example, consider a system
𝜁 with coarse-grained dynamics

𝜕�̄�

𝜕𝑡
+ �̄� · ∇�̄� + ∇ · (𝒗′𝜑′) = 𝐹𝜑, (4.8)

where (·) denotes spatial filtering, (·)′ subfilter-scale fluctuations, and 𝐹𝜑 is the
forcing. The field �̄� is prescribed and 𝒗′𝜑′ is the term parameterized in Ψ(𝜙). Let
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𝑆(𝑡) = [�̄�(𝑡), 𝒗′𝜑′(𝑡)]𝑇 be the true state augmented with subgrid-scale fluxes, and
𝑆(𝑡) the augmented state predicted by the model. For an incompressible fluid model,
𝑆(𝑡) would contain the fluid momentum, energy, and the subgrid advective fluxes of
these fields.

Model calibration then entails finding the minimizer of the expected state mismatch
E[∥𝑆 − 𝑆∥] with respect to some norm and time interval, where the expectation
is taken to allow for the calibration of stochastic models. Observations of the
augmented state 𝑆(𝑡), which includes subgrid-scale fluxes, are not always available.
Therefore, this definition of model calibration is representative of the ideal learning
scenario. In scenarios where the full state is not observable, we will consider 𝑆(𝑡)
to be an observed state formed by all relevant observable spatial fields.

Observations in physical space

Following our definition of model calibration, we preliminarily define the obser-
vations in the model-data relation (4.1) as finite-time averages of the normalized
observed state 𝑠𝑐 for a set of configurations 𝐶,

�̃�𝑐 =
1
𝑇𝑐

∫ 𝑡𝑐

𝑡𝑐−𝑇𝑐
𝑠𝑐 (𝜏)𝑑𝜏, 𝑠𝑐 =


𝑣𝑐,1

. . .

𝑣𝑐,𝑛𝑐

 =


𝑉𝑐,1/𝜎𝑐,1
. . .

𝑉𝑐,𝑛𝑐/𝜎𝑐,𝑛𝑐

 , 𝑐 = 1, . . . , |𝐶 |,

(4.9)
where 𝑇𝑐 is the averaging time, 𝑣𝑐, 𝑗 ∈ Rℎ𝑐 are the normalized spatial fields com-
prising 𝑠𝑐, 𝑉𝑐, 𝑗 are the components of the state 𝑆𝑐 prior to normalization, 𝑛𝑐 is the
number of fields observed in configuration 𝑥𝑐, and ℎ𝑐 is the number of degrees of
freedom of each field. As an example, the first configuration’s observed state 𝑆1

may include as fields atmospheric soundings of temperature and specific humidity
(𝑛1 = 2) measured at ℎ1 vertical locations above the surface, and the second con-
figuration’s state 𝑆2 may include these fields as well as horizontal velocity profiles
(𝑛2 = 4), measured at ℎ2 different locations. Normalization of the observed state 𝑆𝑐
is performed using the pooled time standard deviation 𝜎𝑐, 𝑗 of each field 𝑉𝑐, 𝑗 , with

𝜎2
𝑐, 𝑗 = ℎ

−1
𝑐 tr

[
Cov(𝑉𝑐, 𝑗 )

]
. (4.10)

Covariances are computed over a time 𝑡𝑐 ≥ 𝑇𝑐 following the heuristic of Section 4.3
to capture the expected magnitude of the data mismatch,

Cov(𝑉𝑐, 𝑗 ) =
1
𝑡𝑐

∫ 𝑡𝑐

0
𝑉𝑐, 𝑗𝑉

𝑇
𝑐, 𝑗𝑑𝜏 −

1
𝑡2𝑐

( ∫ 𝑡𝑐

0
𝑉𝑐, 𝑗𝑑𝜏

) ( ∫ 𝑡𝑐

0
𝑉𝑐, 𝑗𝑑𝜏

)𝑇
. (4.11)
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We resort to pooled normalization, instead of normalizing each of the dimensions
of the observed state 𝑆𝑐 by their standard deviation, because some of the dimensions
of the spatial fields𝑉𝑐, 𝑗 may not vary with a given forcing, resulting in zero-variance
components. For example, in the atmospheric boundary layer, observations of liquid
water specific humidity will always be zero below the lifting condensation level.

Stacking the observations from all configurations together, the full observation
vector �̃� is

�̃� =


�̃�1

. . .

�̃� |𝐶 |

 ∈ R𝑑 , 𝑑 =

|𝐶 |∑︁
𝑐=1

𝑑𝑐 =

|𝐶 |∑︁
𝑐=1

𝑛𝑐ℎ𝑐 . (4.12)

Following again the heuristic in Section 4.3, the noise covariance associated with
each observation vector �̃�𝑐 ∈ R𝑑𝑐 is Γ̃𝑐 = Cov(𝑠𝑐), computed as in equation (4.11).
Given that the noise is estimated independently for each configuration, the full noise
covariance is the block diagonal matrix

Γ̃ =


Γ̃1 0

. . .

0 Γ̃|𝐶 |

 ∈ R𝑑×𝑑 , Γ̃𝑐 = Cov(𝑠𝑐) ∈ R𝑑𝑐×𝑑𝑐 , (4.13)

where Γ̃𝑐 is the noise covariance matrix of configuration 𝑐.

Observations in a reduced space

Each covariance matrix Γ̃𝑐, possibly associated with high-dimensional observations
and a finite sampling interval, is likely to be rank-deficient and have a large condition
number 𝜅 = 𝜇𝑐,1/𝜇𝑐,𝑟𝑐 , where 𝜇𝑐,𝑖 is the 𝑖-th largest eigenvalue of Γ̃𝑐 and 𝑟𝑐 is
the approximate rank of the matrix (Hansen, 1998). Numerically rank-deficient
problems arise when 𝑑𝑐 is greater than or equal to the number of samples used to
construct Γ̃𝑐, or when there exist eigenvalues 𝜇𝑐,𝑖 such that 𝜇𝑐,𝑖/𝜇𝑐,1 ≲ 𝜖𝑚, where
𝜖𝑚 is a measure of data or machine precision. An efficient regularization method
for rank-deficient problems is to project the data from each configuration onto a
lower-dimensional encoding, adding Tikhonov regularization to limit the condition
number of the resulting global covariance matrix. If the lower-dimensional encoding
is obtained through principal component analysis (PCA),

𝑦𝑐 = 𝑃
𝑇
𝑐 �̃�𝑐, Γ𝑐 = 𝑑𝑐𝑃

𝑇
𝑐 Γ̃𝑐𝑃𝑐 + 𝜅−1

∗ 𝜇1𝐼𝑑𝑐 , (4.14)

where 𝑦𝑐 ∈ R𝑑𝑐 , 𝑃𝑐 is the projection matrix formed by the 𝑑𝑐 leading eigenvectors of
Γ̃𝑐, 𝐼𝑑𝑐 is the identity matrix, 𝜇1 is the leading eigenvalue of the unregularized global
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covariance and 𝜅∗ is the limiting condition number of the global covariance, which
should be chosen to be 𝜅∗ < 𝜖

−1/2
𝑚 . The encoding dimension 𝑑𝑐 should be chosen

such that 𝑑𝑐 ≤ 𝑟𝑐 ≤ 𝑑𝑐, where 𝑟𝑐 is the approximate rank of Γ̃𝑐. The actual value of
𝑑𝑐 may be chosen through the discrepancy principle, generalized cross validation,
or based on the preservation of a given fraction of the total variance, among other
criteria (Reichel and Rodriguez, 2013; Hansen, 1998). The Tikhonov inflation term
regularizes problems where PCA is performed between eigenvalues that are close in
value, or where the range of configuration variances tr(Γ̃𝑐) is large (Hansen, 1990).
In projection (4.14), since the number of retained principal components may differ
among configurations for a given truncation criterion, each block covariance matrix
is scaled by 𝑑𝑐.

Projection (4.14) enables the use of arbitrarily correlated observations by regulariz-
ing the linear system Γ−1(G(𝜃) − 𝑦) that appears in the gradient of the loss

∇L(𝜃; 𝑦) ∝ (𝐷G(𝜃))𝑇Γ−1(G(𝜃) − 𝑦), (4.15)

and lowering its computational cost. Here, 𝐷G(𝜃) ∈ R𝑑×𝑝 is the Jacobian matrix of
G evaluated at 𝜃. Although the ensemble Kalman algorithms presented in Section
4.4 do not compute the gradient (4.15) explicitly, they do rely on approximations of
it, so this regularization effect still applies.

Since Γ̃ in equation (4.13) is block diagonal, PCA can be performed in parallel for
different configurations. The projection (4.14) maximizes the projected variance
for each configuration; it is different than performing PCA on Γ̃ in that it does not
discriminate based on the total variance of each configuration. Disparities between
the two approaches are discussed in 4.7. Finally, the regularized observation vector
and noise covariance matrix read

𝑦 =


𝑦1

. . .

𝑦 |𝐶 |

 ∈ R𝑑 , Γ =


Γ1 0

. . .

0 Γ|𝐶 |

 ∈ R𝑑×𝑑 , (4.16)

which define a regularized inverse problem of the form (4.3)–(4.5). A schematic of
the inverse problem construction process is given in Figure 4.1. The construction
of 𝑦𝑐 from each dynamical system configuration 𝜁 (𝑥𝑐) defines the observational
map H𝑐, used to obtain the forward model evaluation G𝑐 : R𝑝 → R𝑑𝑐 for the same
configuration from the dynamical model. The construction of each (𝑦𝑐, Γ𝑐) pair,
and the evaluation of G𝑐 (·), can be done in parallel.
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Figure 4.1: Schematic of the strategy used to construct a regularized inverse problem
from observations of a dynamical system 𝜁 . The two branches represent different
configurations of the dynamical system. From left to right: (a) the observed state is
obtained following Section 4.3 or from any observable fields for each configuration 𝑐;
(b) the observed state is normalized; (c) mean and covariance of the normalized state
are computed; (d) �̃�𝑐 and Γ̃𝑐 are projected onto a lower dimension and regularized;
(e) the statistical summaries of each configuration are aggregated, defining the global
inverse problem (4.3)–(4.5).

Bayesian interpretation of the loss and batching
Once the data and noise estimate encodings (4.16) have been defined, iterative
methods to solve inverse problem (4.3)–(4.5) require evaluating the loss L(𝜃; 𝑦) at
each iteration, which entails running the dynamical model in all configurations 𝐶
and can be very computationally demanding. A less onerous alternative is to use a
mini-batch of configurations 𝐵 ⊂ 𝐶 to evaluate the average configuration loss,

𝐿 (𝜃; 𝑦𝐵) =
1

2|𝐵 |

|𝐵 |∑︁
𝑐=1

| |𝑦𝑐 − G𝑐 (𝜃) | |2Γ𝑐 =
1
2

|𝐵 |∑︁
𝑐=1

| |𝑦𝑐 − G𝑐 (𝜃) | |2|𝐵 |Γ𝑐 , (4.17)

which acts as a surrogate of the configuration-averaged loss 𝐿 (𝜃; 𝑦) = L(𝜃; 𝑦)/|𝐶 |.
The use of 𝐿 (𝜃; 𝑦𝐵) in lieu of 𝐿 (𝜃; 𝑦) may be regarded as using noisy evaluations of
the loss for each parameter update. From a Bayesian perspective, using 𝐿 (𝜃; 𝑦) in
expression (4.5) leads to the same MAP estimator as L(𝜃; 𝑦) but a wider uncertainty
about it, since we no longer consider configurations independent. This is important
when interpreting the posterior uncertainty. To employ the loss (4.17), we only need
to use the scaling Γ𝑐 → |𝐵 |Γ𝑐; to approximate the aggregate loss L(𝜃, 𝑦) when
batching, we can use Γ𝑐 → (|𝐵|/|𝐶 |)Γ𝑐 instead.

Batching is widely employed in data assimilation (Houtekamer and Mitchell, 2001)
and deep learning, where it has been shown to help avoid convergence to local min-
ima that generalize poorly (M. Li et al., 2014; Keskar et al., 2016). Understanding
the behavior of algorithms when using mini-batches is crucial for online learning,
where observations become available sequentially and the full loss cannot be sam-



88

pled. Moreover, it provides insight into the appropriateness of training sequentially
on seasonal or geographically sparse data in Earth system modeling applications.
We explore the effect of batching on the solution of the inverse problem in Sec-
tion 4.5, training sequentially on randomly sampled configurations with markedly
different dynamics.

4.4 Ensemble Kalman methods
We consider two highly parallelizable gradient-free algorithms to solve the inverse
problem defined in Section 4.3: ensemble Kalman inversion (EKI, Iglesias et al.,
2013) and unscented Kalman inversion (UKI, D. Z. Huang et al., 2022a). Both
algorithms are based on the extended Kalman filter and draw heavily on Gaussian
conditioning for their derivation: underlying their update rules is the approximation
of the parameter distribution as Gaussian. They afford a Bayesian interpretation
when augmented with prior information at every iteration (D. Z. Huang et al.,
2022b); how to do this is discussed in Section 4.4. If prior information is not used,
which may be desirable when training for instance neural networks, they can be
regarded as derivative-free methods to obtain the MLE.

EKI and UKI have been used succesfully in a wide variety of inverse problems
(Iglesias et al., 2013; Iglesias, 2016; Xiao et al., 2016; Kovachki and Stuart, 2019;
D. Z. Huang et al., 2022a). We demonstrate them here in the context of training
models that may experience numerical instabilities for a priori unknown parameter
combinations, starting with a brief review of the algorithms.

Ensemble Kalman inversion (EKI)
Ensemble Kalman inversion searches for the optimal 𝜃∗ given an inverse prob-
lem (4.3)–(4.5) through iterative updates of an initial parameter ensemble Θ0 =

[𝜃 (1)0 , . . . , 𝜃
(𝐽)
0 ], used to obtain empirical estimates of covariances between parame-

ters and the model output at each step of the algorithm. We form the initial ensemble
by randomly sampling 𝐽 parameter vectors 𝜃 ( 𝑗)0 ∈ R𝑝 from a Gaussian N(𝑚0, Σ0).
The EKI update equation for the ensemble at iteration 𝑛 is (Schillings and Stuart,
2017)

Θ𝑛+1 = Θ𝑛 + Cov(𝜃𝑛,G𝑛)
[
Cov(G𝑛,G𝑛) + Δ𝑡−1Γ

]−1
𝜀(Θ𝑛), (4.18)

whereΘ𝑛 ∈ R𝑝×𝐽 ,Δ𝑡 is the nominal learning rate of the algorithm, and 𝜀(Θ𝑛) ∈ R𝑑×𝐽

encodes the mismatch between the forward model evaluations and the data,

𝜀(Θ𝑛) = [𝑦 (1)
𝑛+1 − G(𝜃 (1)𝑛 ), . . . , 𝑦 (𝐽)

𝑛+1 − G(𝜃 (𝐽)𝑛 )], (4.19)
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where
𝑦
( 𝑗)
𝑛+1 = 𝑦 + 𝜉 ( 𝑗)

𝑛+1, 𝜉
( 𝑗)
𝑛+1 ∼ N(0,Δ𝑡−1Γ). (4.20)

All covariances in update (4.18) are estimated as sample covariances of the 𝐽

ensemble members,

Cov(𝜃𝑛,G𝑛) =
1
𝐽

(
Θ𝑛 −

1
𝐽

∑︁
𝑗

𝜃
( 𝑗)
𝑛 1𝑇

) (
GΘ𝑛

− 1
𝐽

∑︁
𝑗

G(𝜃 ( 𝑗)𝑛 )1𝑇
)𝑇
, (4.21)

Cov(G𝑛,G𝑛) =
1
𝐽

(
GΘ𝑛

− 1
𝐽

∑︁
𝑗

G(𝜃 ( 𝑗)𝑛 )1𝑇
) (
GΘ𝑛

− 1
𝐽

∑︁
𝑗

G(𝜃 ( 𝑗)𝑛 )1𝑇
)𝑇
, (4.22)

where GΘ𝑛
= [G(𝜃 (1)𝑛 ), . . . ,G(𝜃 (𝐽)𝑛 )], and 1 ∈ R𝐽 is the all-ones vector. Note that

the sample covariances (4.21) and (4.22) have at most ranks min(min(𝑑, 𝑝), 𝐽 − 1)
and min(𝑑, 𝐽 − 1), respectively. From definitions (4.14) and (4.16), rank(Γ) = 𝑑 by
construction, so the linear system in (4.18) is well-defined even for 𝐽 < 𝑑.

Through iterative application of the update (4.18), the ensemble Θ minimizes the
projection of the model-data mismatch on the linear span of its 𝐽 members. In this
study, we limit the use of EKI and UKI to the calibration of dynamical models for
which using an ensemble size 𝐽 ∼ 𝑝 is feasible. For models with a large number
of parameters, localization or sampling error correction techniques can be used to
maintain performance with 𝐽 ≪ 𝑝 members (Y. Lee, 2021; Tong and Morzfeld,
2022), like in EnKF for data assimilation (J. L. Anderson, 2012). The update (4.18)
also drives the ensemble toward consensus, in the sense that |Cov(𝜃𝑛,G𝑛) | → 0
as 𝑛 → ∞; a popular method to control collapse speed is additive inflation (J. L.
Anderson and S. L. Anderson, 1999; Tong and Morzfeld, 2022). This collapse
property precludes obtaining information about parameter uncertainties directly
from EKI. However, the sequence of parameter-output pairs {Θ𝑛,GΘ𝑛

} can be used
to train emulators for uncertainty quantification (Cleary et al., 2021).

Addressing model failures within the ensemble

For some parameters 𝜃 𝑓 , simulations may be physically or numerically unstable.
For instance, the Courant–Friedrichs–Lewy condition in fluid solvers may change
nonlinearly with model parameters, or the initialized weights from a neural network
parameterization may lead to unstable trajectories. In such situations, we need to
modify update (4.18) to account for model failures within the ensemble.

Here we propose a novel failsafe EKI update based on the successful parameter
ensemble. Let Θ𝑠,𝑛 = [𝜃 (1)𝑠,𝑛 , . . . , 𝜃 (𝐽𝑠)𝑠,𝑛 ] be the successful ensemble, for which each
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evaluation G(𝜃 ( 𝑗)𝑠,𝑛 ) is stable or physically consistent, and let 𝜃 (𝑘)
𝑓 ,𝑛

be the ensemble
members for which the evaluation of the forward model G(𝜃 (𝑘)

𝑓 ,𝑛
) fails. We update

the successful ensemble Θ𝑠,𝑛 to Θ𝑠,𝑛+1 using expression (4.18), and redraw each
failed ensemble member from a Gaussian defined by the successful ensemble

𝜃
(𝑘)
𝑓 ,𝑛+1 ∼ N

(
𝑚𝑠,𝑛+1, Σ𝑠,𝑛+1

)
, (4.23)

where

𝑚𝑠,𝑛+1 =
1
𝐽𝑠

𝐽𝑠∑︁
𝑗=1
𝜃
( 𝑗)
𝑠,𝑛+1, Σ𝑠,𝑛+1 = Cov(𝜃𝑠,𝑛+1, 𝜃𝑠,𝑛+1) + 𝜅−1

∗ 𝜇𝑠,1𝐼𝑝 (4.24)

are the sample mean and regularized sample covariance matrix of the updated
successful ensemble. In expression (4.24), 𝜅∗ is a limiting condition number and 𝜇𝑠,1
is the largest eigenvalue of the sample covariance Cov(𝜃𝑠,𝑛+1, 𝜃𝑠,𝑛+1). This update
has proved very effective for us in practice, even in situations where 𝐽𝑠 < 𝐽/2; we
use it throughout Section 4.5. The failsafe update may be combined with other
conditioning techniques at initialization. For instance, the initial ensemble Θ0

may be drawn recursively until the number of failed members is reduced below an
acceptable threshold.

Bayesian regularization in ensemble Kalman methods
EKI implicitly regularizes the inverse problem by searching for the optimal solution
𝜃∗ over the finite-dimensional space spanned by the initial ensemble. Although
UKI does not share this property, both algorithms can be equipped with Bayesian
regularization by considering the augmented data-model relation (Chada et al.,
2020)

𝑦𝑎 = G𝑎 (𝜃) + 𝜉 B
[
𝑦

𝑚𝑝

]
=

[
G(𝜃)
𝜃

]
+

[
𝛿 + 𝜂
𝜆

]
, (4.25)

instead of expression (4.3). Here, 𝑚𝑝 ∈ R𝑝 is the parameter prior mean, 𝜆 ∼
N(0, 2Λ) defines the degree of regularization, 𝛿 + 𝜂 ∼ N(0, 2Γ), and 𝜉 ∼ N(0, Γ𝑎)
is the augmented error defined by relation (4.25). In practice, using expression
(4.25) amounts to substituting {G, 𝑦, Γ} by {G𝑎, 𝑦𝑎, Γ𝑎} in both algorithms. The
Kalman inversion solution to the inverse problem defined by relation (4.25) then
satisfies

𝜃∗ = arg min
𝜃

[
L(𝜃; 𝑦) + 1

2
| |𝜃 − 𝑚𝑝 | |2Λ

]
. (4.26)

From a Bayesian perspective, the solution (4.26) approximately maximizes the
posterior density (4.5) for the Gaussian prior 𝜌prior ∼ N(0,Λ). This is particularly
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interesting for UKI, which provides parametric uncertainty estimates (D. Z. Huang
et al., 2022b). When using a nominal learning rate Δ𝑡 ≠ 1, the scaling Λ → Δ𝑡 · Λ
must be used to retain the Bayesian interpretation of Λ as the prior variance, due to
the fact that Δ𝑡 effectively modifies the noise in update (4.18) to be Δ−1Γ. As noted
before, if the original data-model relation (4.3) is used instead of the augmented
relation (4.25), UKI and EKI provide maximum likelihood estimators.

Unscented Kalman inversion (UKI)
Unscented Kalman inversion seeks a Gaussian approximation of the posterior
𝜌(𝜃 |𝑦, Γ) around the MAP (given relation (4.25)), or an approximation of the
likelihood around the MLE (given (4.3)), by deterministically evolving an initial
Gaussian estimate N(𝑚0, Σ0) through updates

𝑚𝑛+1 = 𝑚𝑛 + Cov𝑞 (𝜃𝑛,G𝑛)
[
Cov𝑞 (G𝑛,G𝑛) + Δ𝑡−1Γ

]−1
𝜀(𝑚𝑛), (4.27)

Σ𝑛+1 = (1 + Δ𝑡)Σ𝑛 − Cov𝑞 (𝜃𝑛,G𝑛)
[
Cov𝑞 (G𝑛,G𝑛) + Δ𝑡−1Γ

]−1 Cov𝑞 (𝜃𝑛,G𝑛)𝑇 ,
(4.28)

where 𝑚𝑛 and Σ𝑛 are the mean and covariance estimates of the Gaussian after 𝑛
iterations of the algorithm, and 𝜀(𝑚𝑛) = 𝑦 − G(𝑚𝑛) is the data-model mismatch of
the mean estimate. The covariances Cov𝑞 (𝜃𝑛,G𝑛) and Cov𝑞 (G𝑛,G𝑛) in expressions
(4.27) and (4.28) are computed through quadratures over 2𝑝+1 sigma points defined
as

𝜃
( 𝑗)
𝑛 = 𝑚𝑛 + 𝑎

√
𝑝 [

√︁
Σ𝑛 (1 + Δ𝑡)] 𝑗 , 1 ≤ 𝑗 ≤ 𝑝, (4.29)

𝜃
( 𝑗+𝑝)
𝑛 = 𝑚𝑛 − 𝑎

√
𝑝 [

√︁
Σ𝑛 (1 + Δ𝑡)] 𝑗 , 1 ≤ 𝑗 ≤ 𝑝,

where [
√
Γ] 𝑗 is the 𝑗-th column of the Cholesky factor of Γ, 𝑎 = min(

√︁
4/𝑝, 1) is a

hyperparameter defined in D. Z. Huang et al. (2022a), and 𝜃 (0)𝑛 = 𝑚𝑛 is the central
sigma point. The quadratures are then defined as

Cov𝑞 (𝜃𝑛,G𝑛) =
2𝑝∑︁
𝑗=1
𝑤 𝑗 (𝜃 ( 𝑗)𝑛 − 𝑚𝑛) (G(𝜃 ( 𝑗)𝑛 ) − G(𝑚𝑛))𝑇 , (4.30)

Cov𝑞 (G𝑛,G𝑛) =
2𝑝∑︁
𝑗=1
𝑤 𝑗 (G(𝜃 ( 𝑗)𝑛 ) − G(𝑚𝑛)) (G(𝜃 ( 𝑗)𝑛 ) − G(𝑚𝑛))𝑇 , (4.31)

where 𝑤 𝑗 = (2𝑎2𝑝)−1 are the quadrature weights.

A limitation of this algorithm is that the number of sigma points scales linearly with
𝑝, which precludes its use when training models with a large number of parameters.
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However, for situations where using an ensemble of 2𝑝+1 members is tractable, UKI
improves upon EKI by providing uncertainty quantification, instead of collapsing
to a point estimate. In particular, when updates (4.27) and (4.28) are applied to
the augmented data-model relation (4.25), UKI ensures that Σ𝑛 in the limit 𝑛 → ∞
converges towards a Gaussian estimate of parametric uncertainty (D. Z. Huang et al.,
2022b),

Σ∞ ≈ Cov𝑞 (𝜃∞,G𝑎,∞)
[
Δ𝑡 · Cov𝑞 (G𝑎,∞,G𝑎,∞) + Γ𝑎

]−1 Cov𝑞 (𝜃∞,G𝑎,∞)𝑇 , (4.32)

which involves the augmented forward model G𝑎 (·) and covariance Γ𝑎 defined in
Section 4.4. Σ∞ approximates the covariance of the posterior (4.5) around 𝑚∞ if
the full loss is evaluated at every UKI iteration and Δ𝑡 = 1 (D. Z. Huang et al.,
2022b). When batching, an equivalent approximation can be recovered by using
Δ𝑡 = |𝐶 |/|𝐵 | to compensate for sampling errors in the construction of the empirical
covariances (4.30) and (4.31); this is demonstrated in Section 4.5.

Finally, note that the limit (4.32) does not depend on Σ0, only on the Bayesian prior
covariance Λ. This enables using a tight initial guess (i.e., tr(Σ0) ≪ tr(Λ)), which
can reduce the fraction of model failures within the ensemble. To ensure robustness
to the model failures that may still arise, we propose a modification of the UKI
dynamics robust to model failures, similar to the one proposed for EKI, in 4.8.

4.5 Application to an atmospheric subgrid-scale model
In this section, the framework and algorithms discussed in Sections 4.3 and 4.4 are
used to learn closure parameters within an EDMF scheme of atmospheric turbulence
and convection. The EDMF scheme is derived by spatially filtering the Navier-
Stokes equations for an anelastic fluid, and then decomposing the subgrid flow
into 𝑛 > 1 distinct subdomains with moving boundaries (Cohen et al., 2020). In
practice, the subdomain decomposition requires the use of 𝑛−1 additional equations
per grid-mean prognostic field, and 𝑛 − 1 additional equations tracking the volume
fraction of each subdomain within the grid (Tan et al., 2018). We retain second-order
moments for one of the subdomains, the environment. Covariances within the other
subdomains (updrafts) are neglected, which circumvents the need for turbulence
closures therein. In the end, the EDMF equations require closure for the turbulent
diffusivity and dissipation in the environment, and the mass, momentum, and tracer
fluxes between environment and updrafts. In what follows, we consider an EDMF
scheme with a single updraft (𝑛 = 2).
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We consider the EDMF scheme discussed in Cohen et al. (2020) and Lopez-Gomez
et al. (2020), which is implemented in a single-column model (SCM). Within this
SCM, we first seek to learn 16 closure parameters: 5 describing turbulent mixing,
dissipation, and mixing inhibition by stratification (Lopez-Gomez et al., 2020), 3
describing the momentum exchange between subdomains (J. He et al., 2021), 7
describing entrainment fluxes between updrafts and the environment (Cohen et al.,
2020), and another one defining the surface area fraction occupied by updrafts. In
Section 4.5, we substitute the empirical dynamical entrainment closure proposed
in Cohen et al. (2020) by a neural network, and train the resulting physics-based
machine-learning model.

To showcase the versatility of the algorithms, UKI is used for approximate Bayesian
inference of empirical parameters (using relation (4.25)), and EKI is used for both
MAP estimation of empirical parameters (relation (4.25), Sections 4.5, 4.5) and
MLE estimation of neural network parameters (relation (4.3), Section 4.5). In all
cases, we employ our failsafe modifications of the algorithms (Section 4.4 and 4.8).
The name, prior range𝑈, and reference to the definition of each empirical parameter
in the literature are given in Table 4.1. The prior mean is taken to be equal to the
parameter values used in Lopez-Gomez et al. (2020) and Cohen et al. (2020). The
prior in unconstrained spaceN(𝑚𝑝,Λ) is obtained from the physical prior mean and
range through transformations defined in 4.9. Finally, we initialize EKI ensembles
from the prior, N(𝑚0, Σ0) ≡ N (𝑚𝑝,Λ), and all UKI sigma points from a tighter
initial guess N(𝑚𝑝,Λ/16) to demonstrate the ability of UKI to decouple from the
initial guess.

Description of LES data and model configurations
The data used for training and testing the EDMF scheme are taken from the LES
library described in Shen et al. (2022). This library contains high-resolution sim-
ulations of low-level clouds spanning the stratocumulus-to-cumulus transition in
the East Pacific Ocean. The large-scale forcing used for these simulations is de-
rived from the cfSites output of the HadGEM2-A model, retrieved from the Coupled
Model Intercomparison Project Phase 5 (CMIP5) archive. In particular, the monthly
climatology of the cfSites output is computed over the 5-year period 2004-2008, and
used to initialize and force large-eddy simulations for a period of 6 days. Radiative
forcing is computed interactively using the Rapid Radiative Transfer Model (RRTM,
Mlawer et al., 1997).
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Table 4.1: Parameters 𝜙 considered for calibration in this study. The prior mean
values are taken from LG2020 (Lopez-Gomez et al., 2020), C2020 (Cohen et al.,
2020) and H2021 (J. He et al., 2021), where a physical description of the parameters
may be found.

Symbol Description Prior range Prior mean
𝑐𝑚 Eddy viscosity coefficient (0.01, 1.0) 0.14, LG2020
𝑐𝑑 Turbulent dissipation coefficient (0.01, 1.0) 0.22, LG2020
𝑐𝑏 Static stability coefficient (0.01, 1.0) 0.63, LG2020
Pr𝑡,0 Neutral turbulent Prandtl number (0.5, 1.5) 0.74, LG2020
𝜅∗ Ratio of rms turbulent velocity to friction velocity (1.0, 4.0) 1.94, LG2020
𝑐𝜀 Entrainment rate coefficient (0, 1) 0.13, C2020
𝑐𝛿 Detrainment rate coefficient (0, 1) 0.51, C2020
𝑐𝛾 Turbulent entrainment rate coefficient (0, 10) 0.075, C2020
𝛽 Detrainment relative humidity power law (0, 4) 2.0, C2020
𝜇0 Entrainment sigmoidal activation parameter (10−6, 10−2) 4 · 10−4, C2020
𝜒𝑖 Updraft-environment buoyancy mixing ratio (0, 1) 0.25, C2020
𝑐𝜆 Turbulence-induced entrainment coefficient (0, 10) 0.3, C2020
𝑎𝑠 Updraft surface area fraction (0.01, 0.5) 0.1, C2020
𝛼𝑏 Updraft virtual mass loading coefficient (0, 10) 0.12, H2021
𝛼𝑎 Updraft advection damping coefficient (0, 100) 0.001, H2021
𝛼𝑑 Updraft drag coefficient (0, 50) 10.0, H2021

The SCM runs are initialized from the coarse-grained LES fields after 5.75 days of
simulation and are run for 6 hours. This runtime was chosen to be much longer
than the equilibration time of the SCM to the steady forcing; experiments using a
runtime of 12 hours resulted in no statistical changes of the results. Large-scale
forcing is identical to that of the LES, and the radiative heating rates are given by
the horizontal mean of the rates experienced by the high-resolution simulations.
The observational map used to define the inverse problem follows the guidelines
of Section 4.3, using time and horizontally averaged vertical profiles from the last
𝑇𝑐 = 3 hours of simulation, at a vertical resolution of Δ𝑧 = 50 m; this is also the
resolution of the SCM simulations, which employ 80 vertical levels. Following the
strategy in Figure 4.1, we extract the observations from each configuration as

𝑆𝑐 = [�̄�, �̄�, 𝑠, 𝑞𝑙 , 𝑞𝑡 , 𝑤′𝑞′𝑡 , 𝑤
′𝑠′]𝑇 , (4.33)

where (·) denotes time and horizontal averaging, �̄� and �̄� are the horizontal velocity
components, 𝑠 is the entropy, 𝑞𝑡 is the total specific humidity, 𝑤′𝑞′𝑡 and 𝑤′𝑠′ are
vertical fluxes of moisture and entropy, and 𝑞𝑙 is the liquid water specific humidity.
The pooled variances for normalization and covariance matrix Γ̃𝑐 associated with
the observed state 𝑆𝑐 are obtained from the full 6 day statistics of the LES to
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capture the internal variability of the system. Finally, a low-dimensional encoding
is obtained from the normalized time-averaged observations through truncated PCA
as in equation (4.14), truncating the dimension of the noise covariance matrix so as
to preserve 99% of the total noise variance. Calibration results using fewer observed
fields at a coarser resolution are discussed in Section 4.5.

As training data we include a total of 60 LES configurations from the Atmospheric
Model Intercomparison Project (AMIP) experiment, spanning the months of Jan-
uary, April, July and October, and locations from the coasts of Peru and California
to the tropical Pacific. Results are also shown for a validation set, which includes
January and July simulations from an AMIP4K experiment, where sea surface tem-
perature is increased by 4 K with respect to AMIP. This temperature increase leads
to 10–20% weaker large-scale subsidence, higher cloud tops, and reduced cloud
cover; see Shen et al. (2022) for a detailed comparison. Validation results are repre-
sentative of the generalizability of the trained model for the simulation of a warming
climate; the model was not trained on these warmer conditions.

Calibration using mini-batch loss evaluations
To demonstrate the effectiveness of Kalman inversion in settings where evaluat-
ing all configurations of interest per iteration may be too expensive or impossible
(e.g., due to sequential data availability), we present calibration results using mini-
batches. Batching introduces noise in the loss evaluations due to sampling error.
For this reason, the behavior of Kalman inversion algorithms using mini-batches
is representative of their robustness to other sources of noise, such as noise in the
data or stochasticity of the dynamical model. To correct for sampling noise due to
batching, we use Δ𝑡 = |𝐶 |/|𝐵 | as discussed in Section 4.4.

For training, data are fed to the algorithm by drawing |𝐵 | configurations randomly
and without replacement from the training set at every iteration. Configurations
are reshuffled at the end of every epoch (i.e., every full pass through the training
set). Figure 4.2 shows the evolution of the training and validation errors for UKI
and EKI, using training batches of 5 and 20 configurations. Since the total number
of configurations in the training set is 60, an epoch requires 12 iterations when
using |𝐵| = 5 and 3 when using |𝐵 | = 20. For many geophysical applications, the
cost of evaluating an ensemble of long-term statistics G(·) from a forward model is
significantly higher than performing the inversion updates (4.18) or (4.27). In these
situations, a training epoch has similar computational cost for any value of |𝐵 |.
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The training error is evaluated in normalized physical space with respect to the
current batch,

MSE(𝜃; �̃�𝐵) =
1
𝑑𝐵

| | �̃�𝐵 − G̃𝐵 (𝜃) | |2 =
1∑|𝐵|

𝑐=1 𝑑𝑐

|𝐵 |∑︁
𝑐=1

| | �̃�𝑐 − G̃𝑐 (𝜃) | |2, (4.34)

where �̃�𝐵 ∈ R𝑑𝐵 . The validation error is defined similarly, but it is computed
over the entire validation set at every iteration. Thus, variations in the validation
error are only due to changes in the model parameters; there is no random data
sampling. The training and validation errors decrease sharply during the first epoch
(Fig. 4.2). Subsequent epochs fine-tune the model parameters, further reducing
the data-model mismatch. It is remarkable and important that the validation error
decreases by about the same magnitude as the training error, demonstrating that the
parameterization approach that leverages a physical model generalizes successfully
out of the present-climate training sample to a warmer climate.
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Figure 4.2: Batch (a) training and (b) validation MSE as defined in equation (4.34).
Lines represent the error of the ensemble mean 𝜃, MSE(𝜃; �̃�𝐵), and the shading
represents the ensemble standard deviation of MSE(𝜃; �̃�𝐵) around the optimal point
estimate 𝜃. All errors are normalized with respect to the largest initial MSE𝑣(𝜃; �̃�𝐵),
so they can be compared. Results are shown for EKI and UKI, using 𝐽 = 2𝑝 + 1
and training batch sizes |𝐵 | = 5, 20. Errors for |𝐵 | = 5 are averaged using a rolling
mean of 20 configurations to enable comparison with |𝐵 | = 20. In (b), the inset
focuses on the validation error evolution for a longer training period.

Both EKI and UKI display efficient training in the low batch-size regime: the
validation error tends to be lower for smaller batches after a fixed number of epochs.
Hence, decreasing batch size in EKI and UKI can help reduce the computational cost
of training models. The optimal batch size will depend on the CPU and wall-clock
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time constraints of the user. Although using smaller batches reduces CPU time, it
requires more serial operations, so using larger batches can reduce wall-clock time.

The sampling noise due to the use of different configurations (e.g., stratocumulus
versus cumulus regimes) increases for smaller batches. Although both algorithms
achieve convergence for a wide range of batch sizes, we find that EKI is more robust
than UKI to high levels of noise. This is shown in the inset of Figure 4.2b for
|𝐵 | = 5, and in 4.10 for |𝐵| = 1. Other differences between UKI and EKI are
observed in Figure 4.2. The consensus property of EKI leads to a collapse of the
model error spread after a few iterations, converging to a point estimate. On the
other hand, the UKI ensemble converges to an MSE spread characteristic of the
parameter uncertainty as approximated by the distribution N(𝑚𝑛, Σ𝑛).

The evolution of the parameter estimate (𝑚𝑛, Σ𝑛) is depicted in Figure 4.3 for the
turbulent dissipation 𝑐𝑑 , updraft advection damping 𝛼𝑎 and surface area fraction 𝑎𝑠.
The initial parameter estimate depends on the stochastic initialization for EKI. The
UKI estimate provides information about parameter uncertainty, whereas EKI only
provides a point estimate (i.e., 𝑚𝑛). From the UKI estimate, we observe that the
training set constrains the likely values of the turbulent dissipation (𝑐𝑑) and surface
area fraction (𝑎𝑠) to a significantly smaller region than the prior. However, the
magnitude of updraft advection damping (𝛼𝑎) is not identifiable using this dataset:
the corresponding diagonal element of Σ𝑛 converges to the prior variance used in
the regularized problem (4.25) (Figure 4.3b).

The covariance estimate Σ𝑛 also provides information about correlations between
model parameters and total reduction of uncertainty (Figure 4.4). For the current
stratocumulus-to-cumulus transition dataset, our EDMF model shows moderate cor-
relations between parameters regulating the turbulence kinetic energy budget in the
boundary layer (𝑐𝑏, 𝑐𝑚, 𝑐𝑑 , see Lopez-Gomez et al., 2020). We also find entrainment
to be negatively correlated with surface updraft area fraction, detrainment and drag.
These correlations can be used to improve parameterizations at the process level by
identifying or developing a set of uncorrelated parameters. Figure 4.4b shows how
Σ𝑛 converges to a quasi-steady state estimate of the posterior covariance after ∼ 30
iterations.

Vertical profiles of 𝑞𝑙 , 𝑤′𝑞′𝑡 and �̄� from the validation set are compared to the
reference LES profiles in Figure 4.5. The calibrated model yields smoother and
more accurate profiles than the model before training. In particular, calibration
significantly reduces biases in liquid water specific humidity and moisture transport
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Figure 4.3: Parameter evolution of the turbulent dissipation (a), updraft advection
damping (b), and updraft surface area fraction (c). All values are given in physical
space. The solid lines describe the trajectories of the mean estimate, T −1(𝑚𝑛). For
UKI, the marginal ±𝜎 uncertainty band is included in shading. This uncertainty is
equal to ±T −1(

√︁
(Σ𝑛)𝑖,𝑖) for the 𝑖-th parameter. The black dashed lines are the ±𝜎

uncertainty bands of the prior used for regularization. Legend as in Figure 4.2.
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Figure 4.4: Parameter correlations estimated from UKI using |𝐵 | = 20 (a), and
evolution of the total parameter variance from UKI using |𝐵 | = 20, 10 and 5,
normalized by the prior variance tr(Λ) = 16 (b). Note that the initial covariance
estimate used in UKI (with tr(Σ0) = 1) is decoupled from the prior. Symbols follow
Table 4.1.

for both stratocumulus and cumulus cloud regimes in the 4 K-warmer AMIP4K
experiment. These results confirm that the dynamical model can be trained using a
low-dimensional encoding of the time statistics, as proposed in Section 4.3. They
also highlight the generalizability of sparse physics-based models.
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Figure 4.5: Prior, posterior and LES profiles of liquid water specific humidity (𝑞𝑙),
subgrid-scale moisture flux (𝑤′𝑞′𝑡) and zonal velocity (�̄�) for cfSites 5 (top) and 14
(bottom) using July forcing from the AMIP4K experiment as in Shen et al. (2022).
The gray shading represents the internal variability of the LES simulations over 6
days of steady forcing, and the full lines represent 3-hour time-averaged profiles.
EKI prior and posterior results are point estimates evaluated at the parameter vector
closest to the ensemble mean. The UKI posterior shading spans the central 68% of
the profile posterior distribution. All Kalman methods used |𝐵 | = 5 and 𝐽 = 2𝑝 + 1.

Calibration using partial observations
Another application of synthetic high-resolution data is the study of calibration
sensitivity to data resolution and partial loss of information. Such sensitivity studies
can inform the technical requirements of future observing systems or field campaigns
(Suselj et al., 2020), and are easily implemented with ensemble and unscented
Kalman inversion through modifications of the observational map H .

Here, we employ the EKI and UKI algorithms for this task by using coarser training
data at a vertical resolution of Δ𝑧 = 200 m. In addition, we consider only a subset
of fields for which observational data may be obtained in practice: the liquid water
potential temperature 𝜃𝑙 , the total water specific humidity 𝑞𝑡 and the liquid water
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specific humidity 𝑞𝑙 (National Academies of Sciences, Engineering, and Medicine,
2018; Suselj et al., 2020). Figure 4.6 compares calibration results using this reduced
setup with the results obtained using the full high-resolution observations of Section
4.5. The loss of information is evident in the inability of the algorithms to find the
same minimum reached with richer observations. Nevertheless, Kalman inversion
significantly reduces the validation error from the prior even with sparser data and
a limited number of fields.
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Figure 4.6: Evolution of the validation error (a) and estimates of the turbulent
dissipation (b) and entrainment coefficient (c) for calibration processes using obser-
vations of the state (4.33) at 50 m resolution (UKI 𝑓 , EKI 𝑓 ), or from 𝜃𝑙 , 𝑞𝑡 and 𝑞𝑙 at
200 m resolution (UKI𝑜, EKI𝑜). All inversion processes use |𝐵 | = 20. Shading is
defined as in Figures 4.2 and 4.3.

The identifiability of individual parameters as a function of the observational map
H can be inferred from the UKI Σ𝑛 diagnostic. Figure 4.6 shows that the partial
observations of temperature and humidity are enough to constrain the entrainment
coefficient in the EDMF scheme. However, the loss of information with respect to the
original observations leads to much poorer constraints on the turbulent dissipation
coefficient. The same comparison can be performed for any parameter of interest
to inform observational requirements to constrain models at the process level. This
diagnostic is an important advantage of UKI over EKI; identifiability is not directly
inferable from ensemble Kalman inversion due to the ensemble collapse. However,
this information can be recovered through the emulation of the forward map (Cleary
et al., 2021).

The use of partial observations also highlights the benefits of learning from time
statistics instead of tendencies. Learning from statistics not only ensures that the
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calibrated dynamical model is stable, which requires a leap of faith when training
on instantaneous tendencies (Bretherton et al., 2022). It also couples the evolution
of thermodynamic and dynamical fields, which can improve the forecast of fields
unseen during training. An example is shown in Figure 4.7. The model calibrated
using thermodynamic profiles improves upon the prior model in the forecast of
horizontal velocities within the boundary and cloud layers. A common reason to
use tendencies for calibration is that they enable the use of supervised learning
techniques, which are easy to implement for neural network architectures (e.g.,
Bretherton et al., 2022). In the next subsection, we demonstrate the power of UKI and
EKI to calibrate hybrid models with embedded neural network parameterizations.
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Figure 4.7: Prior, posterior and LES profiles of liquid water specific humidity (𝑞𝑙),
vertical moisture flux (𝑤′𝑞′𝑡) and zonal velocity (�̄�) for cfSite 3 using July forcing
(top) and cfSite 14 using January forcing (bottom) from the AMIP4K experiment
(Shen et al., 2022). Posterior results are shown for a model calibrated using the
high-resolution state (4.33) (Full Obs.), and coarse-resolution observations of 𝜃𝑙 , 𝑞𝑡
and 𝑞𝑙 (Partial Obs.). Shadings and legend as in Figure 4.5. Results obtained using
UKI with |𝐵 | = 20.



102

Calibration of a hybrid model with embedded neural network closures
We consider now a hybrid EDMF scheme that substitutes the dynamical entrainment
and detrainment closures proposed by Cohen et al. (2020) with a three-layer dense
neural network. We define the fractional entrainment (𝜖) and detrainment (𝛿) rates
as [

𝜖

𝛿

]
=

1
𝑧

NN3(Π1, . . . ,Π6), (4.35)

where 𝑧 is the height, and the hidden layers of NN3 have 5 and 4 nodes, from
input to outputs. Our closure (4.35) seeks to learn local expressions for the 𝑧-
normalized entrainment/detrainment rates, which have been shown to vary weakly
in empirical studies of shallow cumulus convection (Siebesma, 1996; de Roode
et al., 2000). The neural network inputs Π1, . . . ,Π6 are 6 nondimensional groups
on which entrainment and detrainment may depend, defined as

Π1 =
𝑧(𝑏𝑢𝑝 − 𝑏𝑒𝑛)

(𝑤𝑢𝑝 − 𝑤𝑒𝑛)2 + 𝑤2
𝑑

, (4.36a)

Π2 =
𝑎𝑢𝑝𝑤

2
𝑢𝑝 + (1 − 𝑎𝑢𝑝)𝑤2

𝑒𝑛

2(1 − 𝑎𝑢𝑝)𝑒𝑒𝑛 + 𝑎𝑢𝑝𝑤2
𝑢𝑝 + (1 − 𝑎𝑢𝑝)𝑤2

𝑒𝑛

, (4.36b)

Π3 =
√
𝑎𝑢𝑝, (4.36c)

Π4 = RH𝑢𝑝 − RH𝑒𝑛, (4.36d)

Π5 = 𝑧/𝐻𝑢𝑝, (4.36e)

Π6 = 𝑔𝑧/𝑅𝑑𝑇ref . (4.36f)

In expressions (4.36),𝑤𝑑 = (𝐻inv𝑤′𝑏′|𝑠)1/3 is the Deardorff convective velocity,𝐻inv

is the inversion height, 𝑤′𝑏′|𝑠 is the surface buoyancy flux, 𝑔 is the gravitational
acceleration, 𝑅𝑑 is the ideal gas constant for dry air and𝑇ref is a reference temperature.
The subscripts 𝑢𝑝 and 𝑒𝑛 denote updraft and environment: 𝑎𝑢𝑝 is the updraft area
fraction, 𝐻𝑢𝑝 the updraft top height, and 𝑒𝑒𝑛 the environmental turbulence kinetic
energy. The relative humidity RH, vertical velocity with respect to the grid mean
𝑤, and buoyancy 𝑏 are defined for both updraft and environment.

The neural network closure (4.35) introduces 63 additional coefficients with respect
to the entrainment and detrainment closure calibrated in Sections 4.5 and 4.5, for
a total of 79 parameters. As the closure complexity increases, it is most practical
to use EKI for calibration, since it enables the use of ensembles with 𝐽 < 2𝑝 + 1
members. In Figure 4.8, we present training and validation errors for the hybrid
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model using ensemble sizes 𝐽 = 50, 100, and 159, and for the empirical EDMF
scheme with 𝐽 = 2𝑝 + 1 = 33 ensemble members. We initialize the neural network
weights as 𝜃NN ∼ N(𝜃0

NN, 𝐼) with 𝜃0
NN ∼ 𝑈 (−0.05, 0.05). In all cases, we use

Bayesian regularization as discussed in Section 4.5 for all model parameters except
for the neural network weights. We calibrate all parameters of the empirical and
hybrid models, to compare the optimal performance of both closures.

Both the empirical and hybrid EDMF schemes generalize well to the validation
set, with training and validation errors reaching levels of about 5% of the largest
a priori validation error. The strong generalization to 4 K-warmer cloud regimes
contrasts with results from approaches that try to learn unresolved tendencies di-
rectly, without encoding the physics (Rasp et al., 2018). Using a physics-based
hybrid approach, all learned closures are consistently placed within the coarse-
grained dynamics of the system (Cohen et al., 2020), which also vastly reduces data
requirements. Further, targeting closure terms that isolate a single physical pro-
cess lends itself to interpretability in a manner difficult for purely machine-learning
based parameterizations that simultaneously model many physical processes. After
training, relationships between EDMF variables and targeted physical quantities like
entrainment can be teased out using partial dependence plots or ablation studies. In
addition, the learned relationships are point-wise and causal.

The inset in Figure 4.8b shows how the higher-complexity hybrid model moderately
overfits to the training set after ∼ 10 epochs, a behavior that is not observed with
the empirical model. Hence, in the low-data regime (𝑑 ≲ 𝑝), adoption of tech-
niques such as early stopping (Prechelt, 1998) or sparsity-inducing regularization
(Schneider et al., 2020) becomes necessary. The compact support property of EKI,
which mandates that the solution be in the linear span of the initial ensemble, also
regularizes the learned hybrid model with decreasing 𝐽; for 𝐽 = 50 < 𝑝 overfitting is
significantly reduced. Thus, reducing the ensemble size is an efficient regularization
technique when training large machine-learning models that tend to overfit, at the
expense of reduced expressivity. Additional EKI-specific regularization techniques
for deeper networks are discussed in Kovachki and Stuart (2019).

Another difference between the empirical and the hybrid models is that for the
latter, we do not know a priori the parameter ranges for which the model trajectories
remain physical. During the training sessions shown in Figure 4.8, the hybrid models
experienced a maximum of 25 (𝐽 = 50), 30 (𝐽 = 100) and 72 (𝐽 = 159) failures in a
single iteration, all occurring during the first epoch. The use of the failsafe update
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proposed in Section 4.4 proved crucial to enable training in the presence of model
failures, and it reduced the number of failures to a small fraction of the 𝐽 ensemble
members after a few EKI iterations.
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Figure 4.8: Batch (a) training and (b) validation normalized MSE for the hybrid
(EDMF+NN) and empirical (EDMF) models. Lines, shading and inset as in Figure
4.2. Results are shown for calibration with EKI, using 𝐽 = 50, 100 and 2𝑝 + 1 =

159 ensemble members for the hybrid model. The empirical model training uses
𝐽 = 2𝑝 + 1 = 33. All inversion processes use batch size |𝐵 | = 10.

Profiles of 𝑞𝑙 , 𝑞𝑡 and 𝑤′𝑞′𝑡 are shown in Figure 4.9 for the trained empirical and
hybrid EDMF models. To produce the profiles with the hybrid model, we retain
the parameters learned at the iteration with lowest validation error from a training
session spanning 25 epochs, effectively similar to early stopping. As expected
from the validation error, the hybrid model slightly improves upon the skill of the
empirical model, predicting more accurate profiles of 𝑞𝑙 within the cloud layer.
This is, of course, at the cost of a significantly higher parameter complexity of the
closure.

As shown here, ensemble Kalman inversion allows for rapid prototyping and com-
parison of closures within an overarching black-box model. Importantly, this com-
parison can be done during training in terms of the online performance of the fully
calibrated dynamical model.

4.6 Discussion and conclusions
Ensemble Kalman methods such as ensemble and unscented Kalman inversion are
powerful tools for training possibly expensive models. By leveraging covariances
between the model output and its parameters, they do not impose any constraint
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Figure 4.9: Prior, posterior and LES profiles of liquid water specific humidity (𝑞𝑙),
total water specific humidity (𝑞𝑡) and vertical moisture flux (𝑤′𝑞′𝑡) for cfSite 14 using
July forcing (top) and cfSite 8 using January forcing (bottom) from the AMIP4K
experiment (Shen et al., 2022). Definitions of prior, posterior and shading as in
Figure 4.5. Posterior results are shown for the EDMF model with empirical closures
(EDMF), and with the neural network entrainment closure (4.35) (EDMF+NN),
using early stopping and 25 epochs of training. Results obtained using EKI with
|𝐵 | = 10.

on the data used for learning, or the architecture of the closures to be calibrated.
This means that ensemble Kalman methods can be used to learn all parameters
within complex overarching models, regardless of where those parameters appear
in the formulation of the model. Furthermore, the Gaussian approximation of
the parameter distribution makes them far more efficient than standard Bayesian
inference techniques, at the cost of neglecting uncertainty beyond the second moment
of the posterior, and the possible convergence to local minima (as for stochastic
gradient descent and other optimization methods).

This enables training physics-based machine-learning parameterizations, as demon-
strated here by substituting an internal component of the EDMF model by a neural
network, which required no change in the data or framework used for training. The



106

benefits of combining physics and data are demonstrated by the performance of our
trained hybrid closure in simulations of clouds typical of conditions 4 K warmer
than the clouds in the training set.

To use these algorithms, parameter learning must be framed as an inverse problem.
This allows great flexibility, but raises the problem of choosing a reasonable ob-
servational map H and noise covariance Γ to define an inverse problem. Through
a domain-agnostic strategy and a reasonable heuristic about the expected model
error, we have demonstrated a systematic way of constructing a well-defined inverse
problem from high-dimensional data. This strategy is designed to maximize the
information content through a lossy principal component encoding H and to allow
the use of time averages as observations, making it amenable to harnessing, e.g.,
satellite observations in addition to computationally generated data. The success
of this strategy is demonstrated in a variety of settings, using empirical and hybrid
models.

The flexibility of the inverse problem allows to define the observational map H
through any observable diagnostic of the model, be it differentiable or not. For
instance, Barthélémy et al. (2021) use a neural network as the mapping H , to train
a low-resolution dynamical model directly from features at high resolution. One
could also envision the construction of H through other statistics of the model
dynamics, such as the variance or skewness. These choices may be preferable for
particular tasks, such as the prediction of extreme events or the correct representation
of emergent phenomena.

Given an inverse problem, we have shown that EKI and UKI are robust to noise
and amenable to batching strategies. This establishes the ability of the Kalman
algorithms to train models using sequentially sampled data. The same robustness
can be expected for other sources of noise, such as stochasticity in the model
(Schneider et al., 2021a). In addition, we have proposed modifications of the EKI
and UKI updates that enable calibrating models that may fail during training, which
is often the case for Earth system models.

Although similar, each ensemble Kalman algorithm presents its own relative strengths
in our analysis. Calibration through EKI appears to be more robust to noise, and
the number of ensemble members may be chosen to be lower than for UKI when
the parameter space is high-dimensional. Indeed, Kovachki and Stuart (2019) show
successful results for EKI when the number of parameters (e.g., 𝑝 ∼ 106) is two
orders of magnitude higher than the ensemble size. Using fewer ensemble members
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than parameters also introduces a regularization effect. On the other hand, UKI
provides information about parametric uncertainty and correlations, which can be
used to improve models at the process level, and to rapidly compare the added value
of increasingly precise observing systems. Other ensemble Kalman methods, such
as the sparsity-inducing EKI (Schneider et al., 2020) or the ensemble Kalman sam-
pler (Garbuno-Inigo et al., 2020), can provide solutions to the inverse problem with
other useful properties. In addition, all these ensemble methods generate parameter-
output pairs that can be used to train emulators for uncertainty quantification that
can capture non-Gaussian posteriors (Cleary et al., 2021).

Finally, ensemble Kalman methods may be used for the rapid comparison of param-
eterizations in terms of the online skill of an overarching Earth system model. The
same framework could be used to train Gaussian processes, random feature models
(Nelsen and Stuart, 2021), Fourier neural operators (Z. Li et al., 2020), or stochastic
closures (Guillaumin and Zanna, 2021), for example. These are some of the exciting
research avenues that we will be exploring in the future.

4.7 Appendix A: Configuration-based principal component analysis
Performing PCA on each configuration allows retaining principal modes from low-
variance configurations while filtering out trailing modes from high-variance con-
figurations. The importance of this is demonstrated in Figure 4.10 for three config-
urations of our LES solver (Pressel et al., 2015) based on observational campaigns
of a stable boundary layer, a stratocumulus-topped boundary layer, and shallow
cumulus convection (Beare et al., 2006; Stevens et al., 2005; Siebesma et al., 2003).
Performing global PCA is equivalent to using a cutoff 𝜇𝑐,𝑖 > 𝜇∗𝑐 in Figure 4.10a,
where we need to choose between neglecting most modes from certain configu-
rations (e.g., GABLS in Figure 4.10a) or retaining highly oscillatory modes from
others (e.g., Bomex), as measured by the number of zero-crossings of the eigenmode
(Hansen, 1998). Highly oscillatory modes may have a disproportionate contribution
to the loss when calibrating imperfect models. On the other hand, performing PCA
on each Γ̃𝑐 alleviates this problem by aligning the eigenspectra before applying the
cutoff, as shown in Figure 4.10b. Appropriate conditioning of the global covari-
ance matrix is still enforced when applying configuration-based PCA through the
Tikhonov regularizer in equation (4.14).
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Figure 4.10: (a) Scatter plot of covariance eigenvalues 𝜇𝑐,𝑖 and the number of
zero-crossings of their corresponding eigenmode for three different configurations
of an LES solver. (b) The same plot, with eigenvalues normalized by the leading
eigenvalue of each configuration (𝜇𝑐,1). Trailing eigenvalues are associated with
high-wavenumber oscillatory modes with frequent sign changes.

4.8 Appendix B: Addressing model failures with unscented Kalman inversion
In the presence of model failures, we perform the UKI quadratures over the suc-
cessful sigma points. Consider the set of off-center sigma points {𝜃} = {𝜃𝑠} ∪ {𝜃 𝑓 }
where 𝜃 ( 𝑗)𝑠 , 𝑗 = 1, . . . , 𝐽𝑠 are successful members and 𝜃 (𝑘)

𝑓
are not. For ease of

notation, consider an ordering of {𝜃} such that {𝜃𝑠} are its first 𝐽𝑠 elements, and
note that we deal with the central point 𝜃 (0) separately. We estimate the covariances
Cov𝑞 (G𝑛,G𝑛) and Cov𝑞 (𝜃𝑛,G𝑛) from the successful ensemble,

Cov𝑞 (𝜃𝑛,G𝑛) ≈
𝐽𝑠∑︁
𝑗=1
𝑤𝑠, 𝑗 (𝜃 ( 𝑗)𝑠,𝑛 − 𝜃𝑠,𝑛) (G(𝜃 ( 𝑗)𝑠,𝑛 ) − Ḡ𝑠,𝑛)𝑇 , (4.37)

Cov𝑞 (G𝑛,G𝑛) ≈
𝐽𝑠∑︁
𝑗=1
𝑤𝑠, 𝑗 (G(𝜃 ( 𝑗)𝑠,𝑛 ) − Ḡ𝑠,𝑛) (G(𝜃 ( 𝑗)𝑠,𝑛 ) − Ḡ𝑠,𝑛)𝑇 , (4.38)

where the weights at each successful sigma point are scaled up, to preserve the sum
of weights,

𝑤𝑠, 𝑗 =

( ∑2𝑝
𝑖=1 𝑤𝑖∑𝐽𝑠
𝑘=1 𝑤𝑘

)
𝑤 𝑗 . (4.39)
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In equations (4.37) and (4.38), 𝜃𝑠,𝑛 and Ḡ𝑠,𝑛 must be modified from the original
formulation if the central point 𝜃 (0) = 𝑚𝑛 results in model failure,

𝜃𝑠,𝑛 =


𝑚𝑛 if 𝜃 (0) successful,
1
𝐽𝑠

∑𝐽𝑠
𝑗=1 𝜃

( 𝑗)
𝑠,𝑛 otherwise,

(4.40)

Ḡ𝑠,𝑛 =

G(𝑚𝑛) if 𝜃 (0) successful,
1
𝐽𝑠

∑𝐽𝑠
𝑗=1 G(𝜃 ( 𝑗)𝑠,𝑛 ) otherwise.

(4.41)

These modified UKI quadrature rules are used throughout Section 4.5 to deal with
model failures. Since UKI can be initialized from a tighter prior than EKI, due to
the absence of ensemble collapse, failures are much easier to avoid than with EKI.

4.9 Appendix C: Parameter transformation and prior
Given a prior range [𝜙𝑖, 𝜙 𝑓 ] for a parameter 𝜙 ∈ R, we define the transformation

𝜃 = T (𝜙) = ln
𝜙 − 𝜙𝑖
𝜙 𝑓 − 𝜙

, (4.42)

such that the interval midpoint is mapped to 𝜃 = 0, and the bounds to ±∞. An
unconstrained Gaussian prior may then be defined for 𝜃 given the prior mean in
physical (constrained) parameter space 𝜙𝑝 as

𝜃0 ∼ N(T (𝜙𝑝), 𝜎2
0 ), (4.43)

where 𝜎2
0 is a free parameter controlling the size of the region within the interval

[𝜙𝑖, 𝜙 𝑓 ] containing most of the probability. This means that the magnitude of
𝜎0 is already normalized with respect to the prior range, so we will generally
choose 𝜎0 ∼ O(1). The 𝑝−dimensional prior N(𝑚0, Σ0) is then constructed as an
uncorrelated multivariate normal with marginal distributions given by expression
(4.43). The normalization induced by (4.42) also enables the use of isotropic
regularization in equations (4.25)–(4.26), even though the physical parameters 𝜙
may differ in order of magnitude. For more examples of parameter transformations
in the context of EKI and UKI, see D. Z. Huang et al. (2022a), Schneider et al.
(2021b), and Dunbar et al. (2022).

4.10 Appendix D: Calibration using very noisy loss evaluations
The Kalman inversion results are expected to deteriorate above some noise threshold,
as the signal-to-noise ratio in the training process decreases. We explored the
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sensitivity of UKI and EKI to noise by sampling a single configuration per iteration
from the training set described in Section 4.5. As shown in Figure 4.11, UKI fails to
converge to the minimum found with larger batches in this limit. The validation error
is characterized by large oscillations due to strong changes in the value of model
parameters like the entrainment coefficient 𝑐𝜖 or the eddy diffusivity coefficient 𝑐𝑚.
On the other hand, EKI proves robust to noise even in this limit, converging to the
minimum found by UKI employing larger batches.

In the context of Kalman inversion, decreasing the step size Δ𝑡 is equivalent to
increasing the noise variance, as shown in updates (4.18) and (4.27). We investigate
the time step role in the small batch limit by performing the ensemble Kalman
inversion with Δ𝑡 = |𝐶 |−1 = 1/60. The smaller time step increases the parameter
uncertainty, which leads to a reduction in parameter oscillations and estimates
closer to the prior. This is accompanied by a moderate reduction in validation error
oscillations. We performed additional inversions using even smaller time steps,
which resulted in a convergence of the parameter estimates towards the prior and a
minor reduction in validation error with respect to the initialization. We conclude
that decreasing Δ𝑡 in UKI can reduce oscillations due to high levels of noise, but it
does not result in the same robustness as EKI.
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Figure 4.11: Evolution of the validation error (a) and estimates of the entrainment
(b), and eddy diffusivity (c) coefficients. Results shown for UKI using batch sizes
of 10 and 1, and EKI using a batch size of 1. Parameter uncertainty only shown for
UKI10 and UKI1, Δ𝑡 = 1/60 for clarity. All results shown use Δ𝑡 = |𝐶 |/|𝐵 | unless
otherwise specified. Shading as in Figures 4.2 and 4.3.

4.11 List of Symbols
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Table 4.2: List of all symbols used in the chapter, their dimensions when applicable,
and a short description.

Symbol Description
𝜙 ∈ R𝑝 Learnable parameters, in physical space
𝜃 ∈ R𝑝 Transformed learnable parameters, in unconstrained space
𝜃∗ ∈ R𝑝 Optimal unconstrained parameter estimate (MAP or MLE)
𝜑0 Initial dynamical state
𝐹𝜑 Dynamical forcing
𝑥𝑐 = {𝜑0, 𝐹𝜑}𝑐 Configuration of the dynamical system
𝜁 (𝑥𝑐) : 𝜑0 → 𝜑(𝑡) True dynamical system evolution
Ψ(𝜙; 𝑥𝑐) : 𝜑0 → �̂�(𝑡) Dynamical model evolution
H𝑐 Observational map for configuration 𝑐
𝑦𝑐 ∈ R𝑑𝑐 Observation vector for configuration 𝑐
𝜂𝑐 ∈ R𝑑𝑐 Observation error for map H𝑐

𝛿(𝑥𝑐) ∈ R𝑑𝑐 Model or representation error for configuration 𝑐
Γ𝑐 ∈ R𝑑𝑐×𝑑𝑐 Covariance of the Gaussian noise 𝜂𝑐 + 𝛿(𝑥𝑐)
G𝑐 : R𝑝 → R𝑑𝑐 Forward model for configuration 𝑐
𝐶 = {𝑥𝑐, 𝑐 = 1, . . . , |𝐶 |} Set of configurations
𝑦 = [𝑦1, . . . , 𝑦 |𝐶 |]𝑇 ∈ R𝑑 Global observation vector
𝛿 = [𝛿(𝑥1), . . . , 𝛿(𝑥 |𝐶 |)]𝑇 Global representation error
𝜂 = [𝜂1, . . . , 𝜂 |𝐶 |]𝑇 Global observation error
Γ ∈ R𝑑×𝑑 Global noise covariance matrix
T : 𝑈 → R𝑝 Parameter transformation to unconstrained space
G : R𝑝 → R𝑑 Forward model
𝜌(𝜃 |𝑦, Γ) Parameter posterior probability density, given Γ and 𝑦
𝜌prior(𝜃) Parameter prior probability density, independent of Γ
L : R𝑝 × R𝑑 → R Loss or negative log-likelihood given Γ

𝑆𝑐 (𝑡) ∈ R𝑑𝑐 Observed state
𝑉𝑐, 𝑗 (𝑡) ∈ Rℎ𝑐 Spatial field 𝑗 within the observed state 𝑆𝑐
𝑠𝑐 (𝑡) ∈ R𝑑𝑐 Normalized observed state
𝑣𝑐, 𝑗 (𝑡) ∈ Rℎ𝑐 Forward model for configuration 𝑐
𝜎𝑐, 𝑗 ∈ R Pooled time standard deviation of 𝑉𝑐, 𝑗
𝑇𝑐 ∈ R Time-averaging window used in map H𝑐

�̃�𝑐 ∈ R𝑑𝑐 Counterpart of 𝑦𝑐 prior to encoding
�̃� ∈ R𝑑 Global observation vector prior to encoding
Γ̃𝑐 ∈ R𝑑𝑐×𝑑𝑐 Counterpart of Γ𝑐 prior to encoding
Γ̃ ∈ R𝑑×𝑑 Counterpart of Γ prior to encoding
𝑎 Continued on the next page.
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Table 4.3: (cont.) List of all symbols used in the chapter.

Symbol Description
𝐼𝑑 ∈ R𝑑×𝑑 Identity matrix of size 𝑑 × 𝑑
𝜇𝑐,𝑖 ∈ R 𝑖-th largest eigenvalue of Γ̃𝑐
𝜅 ∈ R Approximate condition number of a matrix
𝑟𝑐 ∈ R Approximate rank of matrix Γ̃𝑐
𝜖𝑚 ∈ R Machine or data precision
𝜅∗ < 𝜖

−1/2
𝑚 Limiting matrix condition number

𝑃𝑐 ∈ R𝑑𝑐×𝑑𝑐 Truncated PCA projection matrix
𝐷G(𝜃) ∈ R𝑑×𝑝 Jacobian of forward model at 𝜃
𝐵 = {𝑥𝑐, 𝑐 = 1, . . . , |𝐵 |} Mini-batch of configurations
𝐿 : R𝑝 × R𝑑 → R Configuration-averaged loss
𝑦𝐵 ∈ R𝑑𝐵 Observation vector for batch 𝐵
�̃�𝐵 ∈ R𝑑𝐵 Counterpart of 𝑦𝐵 prior to encoding
G̃𝐵 : R𝑝 → R𝑑𝐵 Forward model corresponding to observations �̃�𝐵
Θ𝑛 ∈ R𝑝×𝐽 Parameter ensemble at iteration 𝑛
𝑚𝑛 ∈ R𝑝 Mean parameter estimate at iteration 𝑛
Σ𝑛 ∈ R𝑝×𝑝 Parameter covariance estimate at iteration 𝑛
GΘ𝑛

∈ R𝑑×𝐽 Forward model evaluation ensemble at iteration 𝑛
𝜀(Θ𝑛) ∈ R𝑑×𝐽 Data-model mismatch ensemble at iteration 𝑛
Δ𝑡 ∈ R Nominal learning rate
Θ𝑠,𝑛 ∈ R𝑝×𝐽𝑠 Successful parameter ensemble at iteration 𝑛
𝜃
(𝑘)
𝑓 ,𝑛

∈ R𝑝 𝑘-th failed parameter vector at iteration 𝑛
𝑚𝑝 ∈ R𝑝 Parameter prior mean
Λ ∈ R𝑝×𝑝 Gaussian prior covariance
𝑦𝑎 ∈ R𝑑+𝑝 Observation vector augmented with 𝑚𝑝

G𝑎 (𝜃) ∈ R𝑑+𝑝 Forward model augmented with 𝜃
𝜉 ∈ R𝑑+𝑝 Aggregate noise in the augmented data-model relation
Γ𝑎 ∈ R(𝑑+𝑝)×(𝑑+𝑝) Covariance of the aggregate noise 𝜉
𝜃
( 𝑗)
𝑛 ∈ R𝑝 𝑗-th sigma point for UKI quadrature
Π 𝑗 𝑗-th nondimensional input to neural network
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C h a p t e r 5

SKILLFUL REPRESENTATION OF LOW CLOUD REGIMES
WITH THE EXTENDED EDDY-DIFFUSIVITY MASS-FLUX

SCHEME

5.1 Abstract
Unresolved tropospheric mixing processes remain one of the leading sources of
uncertainty in climate projections, due to their strong influence on low-cloud cover.
Low clouds cool the Earth, due to their high albedo and small net contribution
to the greenhouse effect. Although there is growing consensus about the positive
sign of the low-cloud climate feedback, its magnitude remains highly uncertain due
in part to the inability of current climate models to represent atmospheric turbu-
lence and convection accurately. Here, we demonstrate the ability of an extended
eddy-diffusivity mass-flux (EDMF) scheme to model these atmospheric transport
processes, and to capture their aggregate effect on the thermodynamic structure of
the low troposphere over a wide range of tropical and subtropical low lying cloud
regimes. The extended EDMF scheme is calibrated using large-eddy simulations
(LES) forced by present day simulations from a single climate model, and its per-
formance is evaluated against LES of clouds forced by multiple climate models,
and representative of different baseline climates. We find that the extended EDMF
scheme is able to accurately reproduce important aspects of the stratocumulus-to-
cumulus transition over the eastern Pacific Ocean in a single-column basis, and to
strongly generalize to forcing conditions outside the training data set. We further
show that the response of the extended EDMF scheme to a uniform 4 K warming of
Earth’s surface is consistent with the LES response for subgrid-scale transport and
cloud vertical extent, but less so for cloud fraction and liquid water path.
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5.2 Introduction
Turbulent mixing and convective overturning in the lower troposphere, together with
aerosols and microphysical processes, remain the leading source of uncertainty in
climate projections, largely due to their prominent role in the dynamical balance
that sustains tropical and subtropical low lying clouds (Bony and Dufresne, 2005;
Boucher et al., 2013; Sherwood et al., 2014; Schneider et al., 2017a). Low clouds
shield Earth’s surface from a sizable fraction of the incoming shortwave radiation,
while contributing little to greenhouse warming due to their relatively high emission
temperature (Hartmann et al., 1992). There is growing consensus about the fact that
low clouds represent a positive climate feedback; higher surface temperatures lead
to low-cloud cover thinning, which then fosters a further increase in surface tem-
peratures as more sunlight reaches the surface (Bretherton et al., 2013; Bretherton,
2015; Zelinka et al., 2016; Zelinka et al., 2017). However, the magnitude of this
feedback mechanism remains highly uncertain due in part to the inability of current
models to predict changes in low tropospheric mixing accurately (Sherwood et al.,
2014; M. Zhao, 2014; Webb et al., 2015; Gettelman and Sherwood, 2016).

For this reason, considerable effort is still devoted to improving and unifying param-
eterizations of turbulent and convective processes that act beyond the necessarily
coarse resolution of current climate models (Han and Bretherton, 2019; Suselj et
al., 2019a; Cohen et al., 2020; Lopez-Gomez et al., 2020; E. Wu et al., 2020;
Thuburn et al., 2022a; Thuburn et al., 2022b; Neggers and Griewank, 2022; Shin
and Baik, 2022). One particularly promising parameterization approach is the
extended eddy-diffusivity mass-flux (EDMF) scheme, which generalizes EDMF
schemes (Siebesma and Teixeira, 2000; Siebesma et al., 2007; Neggers, 2009) by
considering updrafts with variable area fraction, and retaining convective memory
through transient terms (Tan et al., 2018; Cohen et al., 2020).

The extended EDMF scheme, coupled with generalized formulations of eddy dif-
fusion, entrainment, and detrainment, has been shown to skillfully reproduce the
structure of Arctic stable boundary layers, marine stratocumulus clouds, shallow
cumuli, and deep cumulonimbus clouds; all with a single set of ∼ 20 parameters
(Lopez-Gomez et al., 2020; Cohen et al., 2020). Aside from demonstrations of its
ability to capture the dynamics of these archetypical regimes, whether the model can
simulate transitions between them or perform just as well in less idealized settings
remains to be seen.

In this context, the library of large-eddy simulations (LES) of Shen et al. (2022)



115

provides a useful testbed to validate the predicted response of subgrid-scale (SGS)
parameterizations to large-scale conditions typical of the stratocumulus-to-cumulus
transition (SCT) in the eastern Pacific Ocean, where cloud cover biases in climate
models are particularly large (J.-L. Lin et al., 2014; Brient et al., 2019; Konsta
et al., 2022; H.-H. Lee et al., 2022). The library includes simulations of the SCT
characteristic of all seasons in the current climate, and simulations over the same
geographical region forced by large-scale conditions representative of a climate
with 4 K warmer surface temperatures. The library simulations are each forced by
one of three operational climate models, spanning two generations of the Coupled
Model Intercomparison Project (HadGEM-2A and CNRM-CM5 from CMIP5, and
CNRM-CM6-1 from CMIP6).

Here, we leverage the library of Shen et al. (2022) to investigate the skill of the
extended EDMF scheme at reproducing the thermodynamic structure of the lower
troposphere under forcings typical of the eastern Pacific SCT, as simulated by
LES. Since the large-scale forcings are derived from climate model output, this
study represents a more realistic assessment of the performance of the scheme than
tests that focus on idealized cases (Siebesma et al., 2003; Stevens et al., 2005).
To evaluate the robustness and generalization of the results, the extended EDMF
scheme is trained on simulations forced by current-climate large-scale conditions
from a single climate model, and evaluated against current and warmer climate
conditions simulated by all three models available in the library. This strategy also
enables comparing the response of the scheme and LES to climate perturbations not
seen during training; a particularly difficult task for data-driven parameterizations
of turbulence and convection (O’Gorman and Dwyer, 2018; Rasp et al., 2018).

We analyze the response in a single-column basis, which has both advantages
and disadvantages with respect to performing global simulations. Single-column
simulations enable comparing the SGS scheme output to LES, where the only pa-
rameterized processes are those related to cloud microphysics. This methodology is
only possible at the single-column scale due to computational constraints (Schneider
et al., 2017a). In addition, single-column models (SCMs) represent a controlled en-
vironment for targeted analysis of the merits and deficiencies of the extended EDMF
scheme; free of interactions with confounding sources of error, such as large-scale
circulation feedbacks or parameterized radiative transfer processes (Pincus et al.,
2003; Cole et al., 2005; Klinger et al., 2017; Singer et al., 2021).

From this advantage also comes their most important limitation, namely the po-
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tential mismatch between the response of the scheme in isolation and in a fully
coupled Earth System Model (M. Zhang et al., 2012; M. Zhang et al., 2013). We
acknowledge this and suggest interpreting our results as characterizing the potential
of the extended EDMF scheme to track the true LES response to a wide range of
realistic large-scale forcings. Beyond this, Brient et al. (2019) demonstrated through
short term hindcasts that a large fraction of the bias in the representation of marine
stratocumulus in CNRM-CM6-1 is due to local parameterized processes and inde-
pendent of feedbacks with the large-scale circulation; Dal Gesso and Neggers (2018)
found that the single-column response to a climate perturbation of the EC-EARTH
model largely agrees with the response of the same column in a global model; and
Hwong et al. (2022) recently showed that the single-column response of 5 popular
convection schemes is representative of their multi-column response in the absence
of convective aggregation. These studies suggest that in the SCT region, the single-
column response may be a good proxy for the expected behavior of the scheme in a
global simulation.

The article is organized as follows. Section 5.3 describes the LES data used as
the ground truth, the methodology used to drive a single-column model (SCM)
implementation of the EDMF scheme using the forcing seen by the LES, and our
calibration and evaluation strategy. Section 5.4 compares the EDMF and LES
response across regimes within the SCT regions in the eastern Pacific. The climate
change response of the EDMF scheme is then analyzed in Section 5.5, and Section
5.6 ends with a discussion of our findings and some conclusions.

5.3 Data and methods
We focus our analysis on a set of marine locations along two eastern Pacific transects,
one in the subtropics connecting the coasts of California and Hawai’i (Teixeira et al.,
2011), and another one in the South Tropical Pacific between the Chilean-Peruvian
border and French Polynesia (Wood et al., 2011). These cross sections, shown in
Figure 5.1, span the dynamical regime transition from the stratocumulus-topped
boundary layers found off the west coast of continents to the shallow cumulus
convective regions farther away from the coast. High-frequency climate model data
at these locations are available as part of the cfSites product of CMIP, starting from
Phase 5 (Webb et al., 2015).

We consider data from the AMIP and AMIP4K experiments, which are representa-
tive of present-day and a 4 K uniformly warmer climate, respectively. The large-scale
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conditions along these transects are characterized by surface latent heat fluxes on
the order of 50 − 200 Wm−2 increasing from east to west, subsidence reaching up
to 1 cm s−1 in the stratocumulus regions, and advective cooling and drying of the
boundary layer (Shen et al., 2022).
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Figure 5.1: Location of cfSites considered in this study (black dots), and average
observed low-level cloud fraction over the ocean during the period 2007-2012. Low-
level cloud fraction is derived from CALIPSO-GOCCP for clouds below 680 hPa
(Chepfer et al., 2010).

LES Library
The data used as ground truth come from limited-area high-resolution simulations
described in detail in Shen et al. (2022), and generated using the PyCLES solver
(Pressel et al., 2015; Pressel et al., 2017). PyCLES is an anelastic fluid dynamics
solver with weighted essentially non-oscillatory numerics that uses specific entropy
and total water specific humidity as prognostic variables. Cloud microphysical
processes are parameterized in PyCLES through the one-moment warm-rain scheme
of Kessler (1995). The LES are run using time-averaged large-scale forcing from the
cfSites output of three climate models: HadGEM-2A, CNRM-CM5, and CNRM-
CM6-1. The first two are chosen as representative of models with a high and low
tropical low-cloud albedo response to global warming, respectively (Brient and
Schneider, 2016); CNRM-CM6-1 is chosen as representative of changes across
CMIP model generations (Saint-Martin et al., 2021).

For each model and location, 8 high-resolution simulations are performed: 4 using
forcings derived from the AMIP experiment, and another 4 forced using the AMIP4K
experiment. The 4 simulations per experiment are each driven by 5-year (2004-2008)
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averaged large-scale forcings corresponding to the climatology of January, April,
July, and October. Using time-averaged forcing allows for a shorter equilibration
time to statistically steady state, and it results in reduced internal variability, so that
climatological solutions can be computed using much shorther integration times
(Shen et al., 2022). Radiative forcing is computed interactively using the Rapid
Radiative Transfer Model (RRTM, Mlawer et al., 1997), and surface fluxes are
diagnosed from a bulk scheme based on Monin-Obukhov similarity theory (Byun,
1990). To focus our analysis on low clouds, only simulations that resulted in
clouds with tops below 3 km are considered; yielding a grand total of 406 unique
simulations.

SCM Experimental Setup
The extended EDMF scheme is implemented in an SCM, covering the same vertical
extent as the LES, with a domain top at 4 km. The prognostic thermodynamic
variables of the SCM implementation are liquid water potential temperature and
total specific humidity. The closures for eddy diffusion, entrainment fluxes, and
perturbation pressure gradients are described in Lopez-Gomez et al. (2020), Cohen
et al. (2020) and J. He et al. (2021), respectively. The closures used for microphysical
processes are identical to the ones used in LES (Kessler, 1995).

We consider two SCM configurations, which we denote ESM-EDMF and ISO-
EDMF. The first configuration is characteristic of the vertical resolution of CMIP6
Earth System Models (ESMs), with 55 levels from the surface to 𝑧𝑡 = 45 km
(Ingram and Bushell, 2021), a near-surface resolution of Δ𝑧𝑠 = 30 m, and a top-of-
atmosphere resolution of Δ𝑧𝑡 = 8 km. The definition of the grid stretching and the
truncation procedure used to reach the 4 km domain top exactly are described in
Section 5.7. After truncation, the SCM domain in the ESM-EDMF configuration
has 28 degrees of freedom within the bottom 4 km of the atmosphere.

The ISO-EDMF configuration characterizes the response of the extended EDMF
scheme at a significantly higher isotropic resolution of 20 m, or 200 degrees of free-
dom within the domain. Comparison between the two configurations quantifies the
fraction of structural error that may be reduced by increasing the vertical resolution,
which has been shown to be substantial when using the CLUBB parameterization
scheme (H.-H. Lee et al., 2022). In addition, this configuration enables compar-
ison with studies that employ a similar resolution to evaluate the performance of
turbulence and convection schemes (Smalley et al., 2022).
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The SCM simulations are initialized from horizontal and time averages of the LES
profiles of liquid water potential temperature ⟨𝜃𝑙⟩, total water specific humidity ⟨𝑞𝑡⟩,
and horizontal velocity ⟨uℎ⟩; ⟨·⟩ denotes horizontal averaging. The initial profiles
are averaged using a 1 hour window well after a statistically steady state is reached in
the LES. SCM simulations are run for 6 hours after initialization. The SCM forcing
follows closely the LES forcing described in Shen et al. (2022), with differences
regarding the surface and radiative forcing:

• Horizontal advection and vertical eddy advection are identical to the tenden-
cies used in the LES, and come from the time-averaged cfSites output.

• The same constant large-scale subsidence �̃� is applied to the moist adiabatic
variables ⟨𝜃𝑙⟩ and ⟨𝑞𝑡⟩. Here, ˜(·) represents a time-averaged prescribed value.

• Due to the absence of momentum forcing in the cfSites product, horizon-
tal winds are relaxed to time-averaged profiles from the cfSites output at a
frequency of 4 day−1. The temperature and specific humidity in the free tro-
posphere above 𝑧𝑟 = 3.5 km are relaxed to the cfSites profiles at a frequency
of 1 day−1, and with a sinusoidally decreasing frequency below 𝑧𝑟 vanishing
at 𝑧𝑟 − 0.5 km, following Shen et al. (2022). All relaxation profiles are the
same as those used to force the LES.

• The radiative tendencies and surface fluxes are constant and equal to the final
6-hour averaged LES values, which ensures that these terms have the same
net energetic contribution in the LES and SCM runs.

This LES-SCM forcing framework, originally established in Lopez-Gomez et al.
(2022b), is designed to investigate whether the SGS fluxes and microphysical sources
given by the extended EDMF scheme can achieve a dynamical equilibrium with the
large-scale forcing similar to the one attained by the LES. Prescribing the radiative
fluxes facilitates this comparison by eliminating contributions from structural errors
in radiative transfer parameterizations (Pincus et al., 2003; Singer et al., 2021).
The steady-state dynamical balances enforced by this framework below the free
troposphere may be written as

�̃�
𝜕⟨𝑞𝑡⟩
𝜕𝑧

+ 1
𝜌

𝜕

𝜕𝑧
(𝜌⟨𝑤∗𝑞∗𝑡 ⟩) − 𝑆mp = 𝑆hadv + 𝑆veddy, (5.1)

�̃�
𝜕⟨𝜃𝑙⟩
𝜕𝑧

+ 1
𝜌

𝜕

𝜕𝑧
(𝜌⟨𝑤∗𝜃∗𝑙 ⟩) − Π−1𝑄mp = Π−1(�̃�rad + �̃�hadv + �̃�veddy), (5.2)
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1
𝜌

𝜕

𝜕𝑧
(𝜌⟨𝑤∗u∗

ℎ⟩) − Γ𝑚 (ũℎ − ⟨uℎ⟩) = 0. (5.3)

On the left-hand side of equations (5.1)–(5.3) are all terms that depend on the
subgrid-scale dynamics of the EDMF scheme. 𝑆mp and 𝑄mp are moistening and
heating rates due to microphysical processes, (·)∗ represents a deviation from the
grid-mean ⟨·⟩, Π is the Exner function, uℎ is the horizontal velocity, ũℎ is the
reference horizontal velocity from the forcing climate model, and Γ𝑚 = 4 day−1 is
the momentum relaxation frequency.

The EDMF-dependent terms must balance moistening and heating rates due to large-
scale horizontal advection (𝑆hadv, �̃�hadv), vertical eddy advection (𝑆veddy, �̃�veddy),
and radiation (�̃�rad); equations (5.1)–(5.3) provide a relationship between the grid-
mean state, the SGS fluxes, and the microphysical tendencies. In LES, the actual
equilibrium state depends on the resolved dynamics, the microphysics closure, and
their interaction. In the SCM implementing the EDMF scheme, it depends on
the SGS and microphysics closures. Therefore, this forcing framework provides a
controlled testbed for the analysis of the EDMF scheme and its closures.

Calibration of the EDMF scheme
To ensure robustness of the results and assess the degree of overfitting, we calibrate
the free parameters within the extended EDMF scheme using LES data from a single
model (HadGEM2-A) and climate (AMIP). This partitioning results in a training
dataset of 76 unique configurations. We calibrate 16 free parameters related to
entrainment processes, environmental mixing, and SGS pressure gradients; the
closures where they appear are described in Cohen et al. (2020), Lopez-Gomez et
al. (2020) and J. He et al. (2021). Only one parameter differs from those calibrated
in Lopez-Gomez et al. (2022b). We no longer calibrate the updraft advection
damping coefficient, which was shown to be non-identifiable in the aforementioned
study. Instead, we introduce a turbulent Lewis number, defined as the ratio between
turbulent heat and moisture diffusion (Chakraborty and Cant, 2009).

Calibration is performed using ensemble Kalman inversion, following Lopez-Gomez
et al. (2022b). The loss function is constructed using ⟨𝜃𝑙⟩, ⟨𝑞𝑡⟩, the liquid water
specific humidity ⟨𝑞𝑙⟩, the liquid water path (LWP), and the SGS fluxes of entropy
⟨𝑤∗𝑠∗⟩ and moisture ⟨𝑤∗𝑞∗𝑡 ⟩, all averaged over the last 3 hours of simulation for both
the LES and the SCM.
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5.4 Dynamics of low cloud regimes: LES vs. EDMF
We compare the EDMF and LES results using a set of scalar key performance
indicators (KPIs), defined in Table 5.1. The vertically integrated SGS fluxes of
moisture and entropy quantify the aggregate effect of turbulent and convective
transport on the thermodynamic structure of the lower troposphere, and they are
a crucial parameterization output (Siebesma, 1998; Arakawa, 2004). They are
independent of the domain top because they vanish in the free troposphere. The
cloud-top height 𝑧𝑐𝑡 and cloud thickness ℎ𝑐 are important indicators of cloud regime
(Bretherton, 2015). Finally, LWP and the average cloud fraction 𝑓𝑐𝑙 have a strong
influence on the radiative properties of the simulated cloud layer (Stephens, 1978;
Pincus et al., 2003). We define 𝑓𝑐𝑙 as

𝑓𝑐𝑙 =
1
ℎ𝑐

∫ 𝑧𝑐𝑡

𝑧𝑐𝑏

𝑓 𝑑𝑧, (5.4)

where 𝑧𝑐𝑏 is the cloud-base height. We choose this KPI instead of cloud cover or
maximum cloud fraction, because it is independent of cloud overlap assumptions
and less sensitive to model resolution.

Table 5.1: Symbol and description of key performance indicators (KPIs) of the ex-
tended EDMF scheme in the stratocumulus-to-cumulus transition. Each KPI is as-
sociated with a predictor that explains a large fraction of its variance across regimes.
LHF stands for latent heat flux, and 𝐷 is the decoupling parameter (Bretherton and
Wyant, 1997). All KPIs computed over the lower 4 km of atmosphere.

KPI Description Predictor
⟨𝑤∗𝑞∗𝑡 ⟩𝐼 Vertically integrated subgrid-scale moisture flux LHF
⟨𝑤∗𝑠∗⟩𝐼 Vertically integrated subgrid-scale entropy flux LHF
𝑧𝑐𝑡 Cloud-top height LHF
ℎ𝑐 Cloud thickness LHF
LWP Liquid water path 𝐷

𝑓𝑐𝑙 Average cloud fraction 𝐷

To compare dynamical regime transitions between LES and the extended EDMF
scheme, we aggregate simulations into bulk regimes defined by a set of predictors
that explain a large fraction of the variance of each KPI across the transects. The
integrated SGS fluxes, cloud-top height and thickness are shown in Figure 5.2 as
a function of the surface latent heat flux (LHF) for the ESM-EDMF configuration.
The EDMF scheme captures well the increase in turbulent transport and cloud height
with LHF, compared to LES. The variance of the multi-model distribution is also
similar in LES and the ESM-EDMF configuration.
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Figure 5.2: Bin-averaged values (left) and biases per forcing model (right) of the
vertically integrated subgrid-scale fluxes of (a, b) moisture and (c, d) entropy, (e, f)
cloud-top height, and (g, h) cloud thickness. Results for all simulations in the library
are shown (dots), binned in 30 W m−2 intervals of surface latent heat flux (LHF).
Error bars define the central 68% of the bin distribution, using the median-unbiased
estimator of Hyndman and Fan (1996). Shading shows the bootstrapped standard
deviation of the bin-averaged bias.
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The ESM-EDMF configuration displays a negative bias in moisture flux, cloud
height, and cloud thickness. The sign and magnitude of these biases is robust across
models, as shown in Figure 5.2. Biases in moisture and entropy SGS fluxes increase
with LHF, and can represent about 15% and 10% of the LES values, respectively.
Biases in cloud height and thickness are relatively insensitive to the forcing and on
the order of 100 m.

Biases in the moisture SGS flux are significantly reduced in the ISO-EDMF config-
uration, at the cost of a slight increase in the entropy flux bias, still under 10% of
the LES value (Fig. 5.3a-d). Overall, the extended EDMF scheme shows a tendency
to either underpredict moisture transport or overpredict entropy transport. Since
turbulent transport is modulated by a learnable Lewis number in our model, we
attribute this to potential deficiencies in convective transport. For instance, turbu-
lent entrainment processes may result in different moisture and heat fluxes between
updrafts and the environment, even though we model them as identical (Cohen et al.,
2020).

As expected, biases in cloud top height and thickness are significantly reduced at
the ISO-EDMF resolution (Fig. 5.3e-h). From all these KPIs, cloud top-height has
been shown to be the easiest to match to LES in other single-column studies (M.
Zhang et al., 2013). To verify the sensitivity of these KPIs to the SGS dynamics, we
include results using a miscalibrated model in Section 5.8, where it is shown that
the goodness of fit is not constrained by the large-scale forcing.

LWP and 𝑓𝑐𝑙 are plotted in Figure 5.4 as a function of the decoupling parameter
(Bretherton and Wyant, 1997), diagnosed from LES as

𝐷 = log
(LHF
Δ𝐿

ℎ𝑐

𝑧𝑐𝑡

)
, (5.5)

where Δ𝐿 is the net cloud radiative cooling, computed as in Schneider et al. (2019).
Negative values of the decoupling parameter are associated with stratocumulus-
topped boundary layers, and positive values are characteristic of cumulus clouds
decoupled from the well-mixed boundary layer below. The multi-model distribution
of these KPIs as diagnosed from the forcing climate models is also shown as a
reference, but it should be noted that in this case the models experienced the fully
coupled and transient dynamics of the climate system (Fig. 5.4a, c).

The ESM-EDMF configuration reproduces the transition of both LWP and 𝑓𝑐𝑙 as 𝐷
changes sign. This is not the case for the ensemble mean response of the forcing
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Figure 5.3: Same as Figure 5.2, but for the ISO-EDMF configuration.

models, which predicts a slight increase in both quantities as 𝐷 increases from
𝐷 < 0 to 𝐷 ∼ 3. The ESM-EDMF configuration tends to forecast more extreme
values of LWP and 𝑓𝑐𝑙 than LES in the coupled regime (𝐷 < 0); this regime is
also where the bias is highest (Figure 5.4). The sign of the LWP and 𝑓𝑐𝑙 biases
in the stratocumulus regime varies across forcing models; the ESM-EDMF scheme
overpredicts these quantities under CNRM-CM5 forcing, but underpredicts them
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Figure 5.4: Bin-averaged values (left) and biases per forcing model (right) of (a, b)
liquid water path and (c, d) average cloud fraction. Individual simulations (dots)
are binned in decoupling parameter intervals with bounds [−1.15, 0, 1, 2, 3, 4]. Bin-
averaged values from the forcing climate models are also shown (GCM). Error bars
and shading as in Figure 5.2.

under CNRM-CM6-1. This is also the case in the ISO-EDMF configuration, which
has a tendency to predict higher LWP and 𝑓𝑐𝑙 than ESM-EDMF (Fig. 5.5).

In the strongly decoupled regime, both the ESM-EDMF and ISO-EDMF config-
urations underpredict LWP across all models, although the bias is lower than in
the coupled regime, as shown in Figure 5.6. Bias patterns are similar for 𝑓𝑐𝑙 in the
ESM-EDMF configuration, with the largest biases in the stratocumulus regime. The
biases of the extended EDMF scheme in both configurations are significantly lower
than the biases of the forcing models (Fig. 5.6). Biases in cloud fraction are about
25% (of the total area) lower in the stratocumulus regime, and biases in LWP can
be as much as 20 g m−2 lower. Overall, the increase in vertical resolution leads to a
significant reduction in cloud fraction bias, but has little effect on the LWP bias of
the scheme.

To investigate in more detail the response of the ESM-EDMF configuration, the
vertical structure of the boundary layer at two HadGEM2-A AMIP4K cfSites is
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Figure 5.5: Same as Figure 5.4, but for the ISO-EDMF configuration.

shown in Figure 5.7. The time-averaged profiles from the forcing model are included
as a reference, although we emphasize that these are the result of unsteady forcing
conditions, unlike those used in LES and the SCM. The ESM-EDMF configuration
captures the strong inversion around 𝑧 ∼ 1 km at cfSite 17 off the coast of California
(Fig. 5.7a, b), enabling it to sustain a stratocumulus cloud layer. The ability of the
extended EDMF scheme to maintain sharp inversions at coarse resolution is mostly
due to the mixing length parameterization introduced in Lopez-Gomez et al. (2020).
The forcing model is unable to capture the sharp inversion, resulting in a thicker
cloud layer with lower condensate concentration (Fig. 5.7c). In the lower half of the
boundary layer, both the HadGEM2-A model and the ESM-EDMF configuration
show a similar moist and cold bias.

At cfSite 23, biases in 𝜃𝑙 and 𝑞𝑡 are smaller in both models, although the EDMF
scheme still maintains a sharper inversion. The cloud extent is well captured by the
EDMF scheme, but the amount of condensate is underpredicted, especially near the
anvil. This bias is opposite to the one found in the original HadGEM2-A model.
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5.5 Response to a uniform 4 K warming: LES vs. EDMF
The response of a cloud-topped boundary layer to a climate perturbation is the
result of a balance between competing mechanisms arising from changes in surface
temperature, radiative cooling efficiency, wind speed, subsidence, and inversion
strength (Bretherton et al., 2013; Bretherton, 2015). The 203 AMIP/AMIP4K
simulation pairs in the LES library facilitate analyzing the response to perturbations
that combine a realistic balance between these mechanisms, as simulated by the
forcing climate models.

The changes in average cloud fraction and decoupling resulting from the 4 K climate
perturbation for each LES AMIP/AMIP4K pair are shown in Figure 5.8a. The
uniform increase in surface temperature leads to regime transitions from coupled
stratocumulus to decoupled cumulus clouds in many of the AMIP stratocumulus
sites. Regime transitions are characterized by sharp increments in the decoupling
parameter as it changes sign, fostered by cloud thickening (Δ(ℎ𝑐/𝑧𝑐𝑡) > 0) and
reduced radiative cooling due to a diminishing cloud fraction.
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Figure 5.7: Vertical profiles of (a,d) liquid water potential temperature, (b,e) total
water specific humidity, and (c,f) liquid water specific humidity from LES, the
EDMF scheme at ESM resolution, and HadGEM2-A. Results shown for cfSites 17
(top) and 23 (bottom) of the AMIP4K experiment run with HadGEM2-A and with
July forcing.

The EDMF scheme is able to reproduce this decoupling at similar values of 𝐷, given
the true radiative tendencies used in our experimental setup (Fig. 5.8b, c). However,
the resulting decoupled states in the ESM-EDMF configuration concentrate in two
𝑓𝑐𝑙 bands; a bistability that is not observed in LES. This bistability, whose signature
is also visible in LWP, leads to errors in the prediction of the climate change
response of the EDMF scheme at individual sites (Fig. 5.9e, f). Matching the
response to climate perturbations has recently been reported to be more challenging
than reducing errors in individual climates, using data-driven corrective tendencies
trained on both current and warmer climates (Clark et al., 2022). The same seems
to be the case for the EDMF scheme response.

The bistability and cloud fraction gap between the two regions disappears as the
vertical resolution is increased; the phase space of the ISO-EDMF configuration is
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very similar to the LES phase space (Fig. 5.8c). This significantly increases the
correlation between the LES and EDMF climate response, as shown in Figure 5.10.
Even in the presence of bistability at coarse resolution, the extended EDMF scheme
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captures the sign of changes in cloud fraction and LWP when these are large in LES,
although it slightly underestimates them.
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Figure 5.9: Scatter plot of AMIP4K-AMIP differences in KPI values as simulated
by LES (x-axis), and ESM-EDMF (y-axis). The legend of each panel shows the
coefficient of determination of the EDMF change in terms of the LES change; the
linear regression model is shown as a blue line. Dashed lines show the zero-line
and the identity.

The observed bistability in the shallow cumulus regime does not have a signature in
the integrated vertical SGS fluxes, nor in the cloud top and thickness. As shown in
Figure 5.9, the EDMF response to a climate perturbation measured by these KPIs
tracks the LES response very well; the EDMF scheme captures over 70% of the
LES integrated flux variance and about 90% of the LES variance in cloud thickness
and top height. The magnitude of the forecast changes also agree on average. In
the ISO-EDMF configuration, the correlations increase by about 10% in these KPIs
and 30% in the case of LWP and 𝑓𝑐𝑙 (Fig. 5.10).
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Figure 5.10: Same as Figure 5.9, but for the ISO-EDMF configuration.

5.6 Discussion
The dynamical equilibria reached by the extended EDMF scheme across a wide
range of low-cloud regimes, spanning subtropical and tropical stratocumulus-to-
cumulus transition transects in the eastern Pacific Ocean, are largely consistent with
the resolved LES dynamics. This has been verified both at CMIP6-like resolution
and at high isotropic resolution. Particularly, the vertically integrated transport of
entropy and moisture, the cloud thickness, and the cloud top, all follow closely the
corresponding LES values. The bulk dependence of liquid water path and cloud
fraction on the decoupling parameter of Bretherton and Wyant (1997) predicted by
the scheme is consistent with the LES response; this is far from being the case in
the forcing climate models.

The analysis of the response to realistic climate perturbations shows that the extended
EDMF scheme can robustly predict changes in subgrid-scale fluxes, cloud top height,
and cloud thickness. On the other hand, the response of liquid water path and cloud



132

fraction when the EDMF is used at a CMIP6-like resolution only agree with the LES
on average, and not necessarily at individual sites. This is due to a bistability of the
decoupled shallow cumulus states when using the scheme at coarse resolution, and
disappears as the resolution is increased. Since the LES climate change response of
shallow cumuli is weak (Bretherton et al., 2013; Bretherton, 2015; Shen et al., 2022),
this bistability suggests a higher climate change sensitivity of the parameterized
response at a regional level. Understanding the climate implications of the larger
sensitivity of the shallow cumulus clouds simulated by the extended EDMF scheme
will require further analysis using global coupled simulations. Nevertheless, the
scheme is able to predict regime transitions from coupled to decoupled states at both
tested resolutions, and spans a similar phase space, as shown in Figure 5.8.

Biases in all variables are similar in order of magnitude across simulations forced
by three different climate models; two of them covering the lower and higher ends
of low-cloud feedback responses in the CMIP5 model ensemble, and another one
from the newer CMIP6 generation. In this study, the extended EDMF scheme was
calibrated using present climate data from one of the models, which highlights the
robustness and generalization of the scheme to unseen conditions. This also serves
as an example of the usefulness of sparse physics-based models in the presence of
distributional shifts between training and testing sets; such strong generalization
properties are difficult to match when large data-driven SGS models are used (Rasp
et al., 2018; O’Gorman and Dwyer, 2018).

Overall, our analysis demonstrates that the closures within the extended EDMF
scheme adequately model the unresolved dynamics of the low-troposphere in regimes
spanning tropical and subtropical stratocumulus-to-cumulus transitions in the east-
ern Pacific. Only then can a turbulence and convection scheme achieve a dynamical
balance similar to LES in our setup, as discussed in Section 5.3. An example of
the response of a poorly calibrated scheme in Section 5.8 further shows that the
exact quasi-steady equilibrium is largely unconstrained by the large-scale forcing
and depends on the internal EDMF dynamics.

Some deficiencies of the current scheme are apparent in the results, related to the
amount and horizontal distribution of condensate in the cloud layer, particularly at
CMIP6-like resolution. These deficiencies are exacerbated when the climate change
response at individual sites is considered. Cloud fraction and liquid water path
largely determine the radiative properties and feedbacks of clouds (Stephens, 1978;
Bretherton, 2015), so improvements of the scheme on this front are of paramount
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importance.

Embedding more expressive data-driven closures within the EDMF scheme, as
demonstrated in Lopez-Gomez et al. (2022b), is a potential way to reduce biases.
The resulting hybrid EDMF scheme could then be trained across climates to further
reduce errors in the climate change response. We leave this for future work here,
since it would require expanding our LES library to include simulations across
more than two climates, so that validation against unseen climates is still possible.
Retaining unseen climates for validation is important because the two-way coupling
between large-scale and parameterized dynamics can introduce similar distributional
shifts in the large-scale forcing when the trained model is integrated in global
simulations. Bias-correcting machine learning could also provide a path forward in
the faithful representation of these properties at coarse resolution (Clark et al., 2022).
Algorithmic advances that enable the use of localized higher vertical resolution in
climate models, as proposed by H.-H. Lee et al. (2022), may provide another
alternative path forward.

We reiterate that the scope of our conclusions is limited to the assessment of struc-
tural errors in the dynamical SGS and microphysical closures of the EDMF scheme.
The effects of large-scale forcing feedbacks or radiative flux biases are not included
in this analysis, which enabled a process-based assessment of the scheme but pre-
cludes the interpretation of our results as proof of the skill of the scheme in fully
coupled global simulations. An analysis of global climate simulations using the ex-
tended EDMF scheme as the unified closure for turbulent and convective processes
in the atmosphere is left for future work.

5.7 Appendix A: Stretched grid definition
The vertical discretization employed in the SCM follows the functional form

𝑧(𝜉; 𝑧𝑡 ,Δ𝑧𝑠,Δ𝑧𝑡) = 𝑧t · Φ(𝜉, ℎ(Δ𝑧𝑠,Δ𝑧𝑡)) (5.6)

Φ(𝜉, ℎ) = −ℎ · log[1 − (1 − 𝑒−1/ℎ)𝜉], (5.7)

where 𝜉 ∈ [1/𝑛𝑧, 2/𝑛𝑧, . . . , 1] is a nondimensional coordinate, 𝑛𝑧 is the number of
vertical levels, and Δ𝑧𝑠 and Δ𝑧𝑡 are the vertical resolution near the surface and near
𝑧𝑡 , respectively. In equation (5.7), ℎ is the linear stretching function

ℎ(𝜉) = ℎ𝑠 +
(
𝜉 − 1

𝑛𝑧

) ( ℎ𝑡 − ℎ𝑠
1 − 2/𝑛𝑧

)
, (5.8)
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and ℎ𝑠, ℎ𝑡 are defined implicitly as

Φ

( 1
𝑛𝑧
, ℎ𝑠

)
=
Δ𝑧𝑠

𝑧𝑡
, Φ

(
1 − 1

𝑛𝑧
, ℎ𝑡

)
= 1 − Δ𝑧𝑡

𝑧𝑡
, (5.9)

such that the discretization is uniquely defined by parameters {𝑧𝑡 , 𝑛𝑧,Δ𝑧𝑠,Δ𝑧𝑡}.

We first define a discretization 𝑧 using equation (5.6), 𝑧𝑡 = 45 km, and values
of Δ𝑧𝑠, Δ𝑧𝑡 , 𝑛𝑧 representative of current ESMs or NWP models, as specified in
Section 5.3. The grid is then truncated to match the LES domain by preserving the
number of degrees of freedom 𝑛𝑙 covering the bottom 𝑧𝑙 = 4 km, such that the final
discretization is defined as 𝑧 = 𝑧(𝜉; 𝑧𝑙 ,Δ𝑧𝑠,Δ𝑧𝑙) with

Δ𝑧𝑙 = 𝑧

(
𝑛𝑙

𝑛𝑧

)
− 𝑧

(
𝑛𝑙 − 1
𝑛𝑧

)
. (5.10)

5.8 Appendix B: Results for miscalibrated models
To demonstrate the sensitivity of the KPIs to the SGS closures within the turbulence
and convection scheme, we analyzed the response of a version of the extended EDMF
scheme where the entrainment closures of Cohen et al. (2020) were substituted by
a poorly calibrated random feature model (Nelsen and Stuart, 2021). The resulting
model produces dynamical equilibria with fog near the surface in most simulations,
and dramatically underpredicts the turbulent and convective transport of entropy
and moisture, as shown in Figure 5.11.

We also assessed the climate perturbation response of the extended EDMF scheme
without substituting any of the SGS closures, but modifying parameters related to
diffusion, entrainment and updraft pressure drag. Figure 5.12 shows that in this case
the LES and EDMF response to the climate perturbation are weakly correlated, in
terms of the vertically integrated fluxes, cloud top height and cloud thickness. This
shows that the goodness-of-fit of the perturbation response for these KPIs is not
constrained by the forcing.
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Figure 5.11: Same as Figure 5.2, but for a miscalibrated extended EDMF scheme
with a random feature closure for entrainment fluxes, at ESM resolution.
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Figure 5.12: Same as Figure 5.9, but for a miscalibrated extended EDMF scheme at
ESM resolution.
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C h a p t e r 6

CONCLUSIONS

This dissertation addresses several challenges in the pursuit of an operational unified
model of atmospheric turbulence and convection for climate prediction. The equa-
tions within the extended eddy-diffusivity mass-flux (EDMF) scheme are shown to
be consistent with a systematic partition and filtering of the governing equations for
an anelastic fluid. The assumptions necessary to yield the model are highlighted and
compared with assumptions used in other turbulence and convection schemes, which
provides valuable insight into the expected differences in the modeled dynamics.

The extended EDMF scheme requires closures for turbulent diffusion, microphysical
processes, and mass and momentum exchange between convective regions and their
environment. A generalized model of turbulent diffusion derived from a leading
order balance between turbulent production and dissipation is shown to enable the
accurate representation of dynamical regimes that continue haunting climate models,
like stratocumulus-topped boundary layers and high-latitude stable boundary layers
(Brient et al., 2019; H.-H. Lee et al., 2022; Konsta et al., 2022).

Together with closures for entrainment, detrainment, and momentum exchange be-
tween subdomains, the extended EDMF scheme provides a comprehensive repre-
sentation of tropospheric mixing processes. The unified scheme is shown to remain
skillful in atmospheric conditions ranging from the Arctic to the Amazon, all with
a single set of ∼ 20 parameters. The increasing availability of data from high-
resolution simulations and satellite observations represents a valuable opportunity
to reduce parametric uncertainty even further and learn better closures from data.

These data, however, are typically not directly informative about the closures under-
lying parameterization schemes within climate models. This constraint either limits
what can be learned from data to a differentiable correction of the model dynamics
if supervised learning is employed (Brenowitz and Bretherton, 2018; Rasp et al.,
2018; Bretherton et al., 2022), or requires the use of flexible optimization tools
that allow indirect learning. This thesis demonstrates the feasibility of the second
approach, by leveraging Kalman inversion processes (Iglesias et al., 2013; D. Z.
Huang et al., 2022a; D. Z. Huang et al., 2022b) to learn from noisy and indirect
data. This approach is shown to provide an efficient method to learn about the pa-
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rameters within complex geophysical models, such as the extended EDMF scheme,
even if the models are imperfect or if they become numerically unstable for certain
parameter combinations.

Ensemble Kalman processes enable informing the extended EDMF scheme with
data, and the rapid evaluation of different closure formulations in terms of their
best possible online performance. The online performance of the extended EDMF
scheme with the closures presented in Lopez-Gomez et al. (2020), Cohen et al.
(2020) and J. He et al. (2021) is evaluated under realistic climatological conditions
typical of the stratocumulus-to-cumulus transition in the eastern Pacific Ocean. The
data-informed model, trained on present climate data from a single climate model,
is shown to be skillful at forecasting low clouds and tropospheric mixing processes
under previously unseen conditions, including large-scale conditions from a 4 K
warmer climate. Some biases related to cloud condensate amount and horizontal
distribution are still evident when the model is used at operational resolution. In-
direct learning through ensemble Kalman processes can accelerate the discovery of
better closures within the scheme to reduce these biases.

Although the skill shown by the scheme on a single-column setting far exceeds the
performance of the forcing climate models1 under similar large-scale conditions,
the effective improvement in climate simulations of global models integrating the
scheme remains to be shown. Global simulations are subject to additional constraints
to prevent climate drift, such as matching the globally-averaged top-of-atmosphere
outgoing longwave flux to the incoming shortwave flux (Mauritsen et al., 2012;
Hourdin et al., 2017). This is often done by recalibrating parameters related to
clouds, due to their strong modulation of the radiative properties of the atmosphere,
which may potentially require the introduction of unphysical compensating mecha-
nisms (Konsta et al., 2022). Other sources of bias, such as parameterized radiation
(Pincus et al., 2003; Singer et al., 2021), will also need to be investigated in future
work. Significant improvements in the skill of global weather models that have
integrated other versions of the EDMF scheme to represent turbulence and shal-
low convection are empirical evidence that improved skill in single-column settings
translates into better global performance (Köhler et al., 2011; Suselj et al., 2014;
Hogan et al., 2014; Suselj et al., 2021). Taking the integration of the scheme one
step further by representing all unresolved convective processes with a single unified
model, including deep convection, is an exciting avenue of future research.

1Spanning Phases 5 and 6 of the Coupled Model Intercomparison Project.
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