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ABSTRACT 

The total synthesis of complex natural products often requires the development of 

mild, selective transformations. Once developed, these methods can serve as starting points 

for related methodologies, fundamental mechanistic studies, or applied in other total 

syntheses. Herein, a series of projects that embody this relationship are described. Inspired 

by unexpected challenges in the synthesis of complex diterpenoid alkaloid talatisamine, a 

Ni-catalyzed enol-triflate-halogen exchange reaction was developed. In addition to finding 

application toward the synthesis of talatisamine, this reaction found further use in an 

attempted route toward enmein-type ent-kauranoid natural products.  

En route to the synthesis of these natural products, a need for meso-anhydride 

functionalization was identified which inspired a research program dedicated to Ni-

catalyzed reductive desymmetrization of meso-anhydrides. During these studies, an 

underexplored class of bisoxazoline (BOX) ligands was identified, which enables a catalyst 

controlled doubly-stereoselective cross-electrophile coupling of meso-anhydrides and sec-

alkyl halides in good yield and exceptional enantio- and diastereo- selectivity. It is 

anticipated that this method will enable the rapid synthesis of tricyclic compounds which 

serve as intermediates toward members of ent-kauranoid, diterpenoid alkaloid, and steroid 

natural products.  
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