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ABSTRACT

This thesis covers topics in gravitational wave physics, including optomechani-
cal measurement theory, novel detection schemes (£7 -symmetric interferometer,

matter-wave interferometer), and modeling of binary black hole ringdown waveform.

Measurements are accomplished through the interaction between signal and mea-
surement devices. Identifying the nature of couplings is an important step in design-
ing setups for specific applications. In Chapter II, we develop a general framework
based on the system Hamiltonian to unambiguously classify optomechanical cou-
plings. We add the new type, “coherent coupling”, where the mechanical oscillation
couples several non-degenerate optical modes supported in the cavity. We give
examples of different couplings, discuss in detail one particular case of the coherent
coupling, and demonstrate its benefits in optomechanical experiments. Our general
framework allows the design of optomechanical systems in a methodological way,

to precisely exploit the strengths of some particular optomechanical couplings.

Conventional resonant detectors are subject to bandwidth-peak sensitivity trade-
off, which can be traced back to the quantum Cramer-Rao Bound. Chapters III
and IV in this thesis are devoted to the study of 7 -symmetric amplifier, which
is a stable quantum amplification scheme enabled by two-mode non-degenerate
parametric amplification. In Chapter III, we study stability and sensitivity improve-
ments for laser-interferometric gravitational-wave detectors and microwave cavity
axion detectors, under Hamiltonian formalism adopting single-mode and resolved-
sideband approximations. In Chapter IV, we go beyond these approximations and
consider realistic parameters in the optomechanical realization of 7 -symmetric
interferometer for gravitational detection. We show that the main conclusion con-
cerning stability remains intact using Nyquist analysis and a detailed time-domain

simulation.

The detection method of gravitational waves is developed with linear quantum
measurement theory. In Chapter V, we extend the usage of this theory to another
kind of measurement device — matter-wave interferometers, which have been widely
discussed as an important platform for many high-precision measurements. This
theory allows us to consider fluctuations from both atoms and light and leads to
a detailed analysis of back-action (of light back onto the atoms) and its effect on

dynamics and measurement noise in atom interferometry. From this analysis, we
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obtain a Standard Quantum Limit for matter-wave interferometry. We also give a
comparison between the LIGO detector and matter-wave interferometer from the

perspective of quantum measurement.

In Chapter VI, we switch focus from measurement to gravitational wave sources.
Specifically, we study high-frequency gravitational radiation from the ringdown
of a binary black hole merger. We study the high-precision modeling on both
temporal and spatial features of ringdown wave to propose a more complete test of
General Relativity. We show that spin-weighted spheroidal harmonics, rather than
spin-weighted spherical harmonics, better represent ringdown angular patterns. We
also study the correlation between progenitor binary properties and the excitation of
quasinormal modes, including higher-order angular modes, overtones, prograde and
retrograde modes. This chapter seeks to provide an analytical strategy and inspire
the future development of ringdown tests using data from real gravitational wave

events.
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Chapter 1

INTRODUCTION

1.1 Preface

Gravitational waves (GW) are the ripples of space-time predicted by Einstein’s
theory of General Relativity (GR). The detection of gravitational waves from a
Binary Black Hole (BBH) merger in 2015 [1] opened a new window of astronomy

observation.

Embedded in perturbation of space-time curvature, GWs can be treated as weak
classical signals in experimental measurements. Oscillators are often used to mea-
sure weak signals, for which the quantum uncertainty and the measurement-induced
back-action play important roles. Therefore, the analysis of such precision measure-

ment processes must be carried out in a linear quantum measurement framework.

Many new methods and technology have been developed to enhance the detection
sensitivity spectrum, together with the science case discussion on astrophysical
sources for different frequency ranges. This thesis covers topics in these two aspects:
on the detection side, it involves the development of quantum theory for detector

improvement; on the source side, it involves modeling of BBH ringdown waveform.

1.2 Linear quantum measurement device for gravitational wave detection

In the early days of GW detection, excitations of mechanical oscillators (resonant
bars) were read out by inductive, capacitive [2], or parametric [3] transducers and via
a superconducting quantum interference device (SQUID) amplifer [2-4]. A more
sensitive technique is to read out the phase fluctuations in a light beam (Michelson
and Fabry-Perot type interferometers) [1, 5, 6] using photodetection. Signal recy-
cling [7] and Resonant Sideband Extraction (RSE) [8] techniques were designed

optimize GW sensitivity by tailoring the optical frequency response.

1.2.1 Optomechanics and the interaction classification

Cavity optomechanics [9—-12] studies the interaction between light and mechanical
systems embedded into optical resonators. The precision at which modern optome-
chanical experiments operate allows us to study the quantum properties of light and

matter, including the cooling of macroscopic oscillators to their quantum ground



2

state [13—15], optomechanical squeezing of quantum fluctuations in light [16—-19],
quantum entanglement between optical and mechanical degrees of freedom [20—
23] as well as between space-like separated mechanical oscillators [21, 24-27]
and non-classical states of mechanical oscillators [20, 27-30]. Optomechanics has
become an experimental platform for testing quantum mechanics in the macro-
scopic world [21, 24, 31, 32] and looking for potential paths towards quantum grav-
ity [27, 33-35]. Optomechanics has also been established as a toolbox for computa-
tional and metrological tasks, such as: frequency-converting microwaves to optical
light [36-39], on-chip signal modulation and processing [40], nanoscale torque de-
tection [41] and the detection of gravitational waves [1, 42, 43] with kilometer-scale
detectors (Advanced LIGO [44, 45], Advanced Virgo [46, 47], GEO600 [48, 49],
KAGRA [50, 51]).

While optomechanical systems vary in scale, frequency, and complexity, their
theoretical description on a fundamental level can be reduced to simple Hamilto-
nians. Conventionally the coupling between the optical and mechanical degrees of
freedom is classified based on intuitive physical picture of the setup. Most common
are the systems with dispersive coupling, where the mechanical oscillation mod-
ulates the cavity’s resonance frequency [9]. The simplest case of such systems is
a Fabry-Pérot cavity with a movable end mirror [52]. Another type of coupling
is dissipative [53]: the oscillation modulates the coupling between the system and
the environment. Any system with a movable mirror that simultaneously couples
with the cavity modes and the pumping field can be viewed as having dissipative
coupling, and the simplest example is a Fabry-Pérot cavity with a movable front
mirror [54]. There exists another type of interaction where the mechanical oscilla-
tion modulates the coupling between two or more cavity modes [55]. In practice,
a complex optomechanical system might not fit into one single type of interaction
presented above, or might be misclassified. Therefore, we want a mutually exclusive
and collectively exhaustive way of classification. Exploring such a problem defines
the theme of Chapter II. Our classification strategy will help physicists approach the
experimental design in a systematic way and choose the system that would perform

optimally.

1.2.2 Novel schemes to bypass bandwidth-sensitivity trade-off
Since the first detection in 2015 [1], BBH systems have so far been the most com-
monly measured GW sources [56, 57]. The demand for extracting richer properties

of the ringdown stage [58—62], as well as other astrophysical processes that produce
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pronounced gravitational waves at high frequencies, calls for the broadband and

high-frequency sensitivity of gravitational wave detectors.

In the canonical interferometer configuration [63], resonant arm cavities are used
to increase the relative signal strength by effectively extending the length of the
detector via repeated reflections of the optical field. However, the positive dispersion
of the arm cavity makes the signal at higher frequencies no longer resonant. This
leads to an inverse relationship between the peak sensitivity and bandwidth of
the detector, known as the Mizuno limit[64]. This can be traced back to the
energetic quantum limit [65, 66], which is also called the quantum Cramer-Rao
Bound (QCRB) [67], and is therefore limited by the quantum fluctuation of the
intracavity light field [68].

Bandwidth-sensitivity trade-off. — Early in 1990s, Mizuno noticed a trade-off
between bandwidth and peak sensitivity [64] — analogous to the gain-bandwidth
product in electronic amplifiers [69]. Braginsky et al. [65, 66] showed, using the
energy-phase uncertainty relation, that the power spectral density of equivalent
spacetime strain noise is S;(Q) > 4h?/Sg(Q) where Sg is the spectral density of
energy in the cavity, and

/+Oo dQ/(2m)S; 1 (Q) < AE?/(4h?) . (1.1)
0

This was also obtained by Tsang, et al. using Quantum Fisher Information [67], and
further elaborated in Refs. [68, 70—-72]. For coherent states, A&% = hiwoE, and in
this case, Eq. (3.1) is also referred to as the Energetic Quantum Limit (EQL) for
GW detection. The EQL trade-off applies to all quantum metrology experiments
that use oscillators at coherent states. Specifically, GW detectors (of the laser
interferometer type [1]) use optical resonators to increase the interaction between
the spacetime strain and the laser light field. Axion detectors [73] (of the Sikivie
Haloscope type [74]) use microwave resonators and a powerful permanent magnet to
increase the interaction with the axion field and the microwave field. In both cases,
the emphasis is on increasing the quality factor [75] of the resonance to maximize
the transduction coefficient between the physical signal and an electrical readout
variable. However, the EQL limits the useful bandwidth of the detector according
to the gain-bandwidth trade-off.

In GW detection, the EQL can be surpassed when non-classical states of light are
created for the arm cavity, with AE? > &%/N [76-79]. This can be implemented

via squeezing injection [63, 80], or internal ponderomotive squeezing achieved by
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optical springs [68, 81, 82]. To directly address the EQL, the concept of White-Light

Cavity (WLC), which resonates with a broader spectrum of frequencies without
sacrificing sensitivity, has been proposed [76-79, 83—87]. In the unstable WLC
(uWLC) design of Miao et al. [77], a negative-dispersion optomechanical filter
cavity is attached to the arm cavity [77], which can compensate for the phase gained
in the arm cavity. However, this scheme is dynamically unstable and an additional
stabilizing controller must be implemented, which makes the setup rather complex.
In a later study [88], it was found that converting the signal-recycling cavity (SRC)
into the optomechanical filter can lead to bandwidth broadening with a simpler
optical layout, while the parameter regime considered still leads to an unstable

system.

In Chapters III and IV, we introduce and model a parity-time (7 )-symmetric
coherent quantum control strategy [88—91] that not only leads to a stable spectrum

enhancement but also applies to a wide range of other quantum systems.

1.2.3 Matter-wave interferometer

Parallel to LIGO detector where the underlying principle is the interference of the
electromagnetic waves, other concepts of GW detectors have also been proposed,
even before the first detection event [1]. One particular attractive concept is the
atom-interferometer GW detector, first raised by Dimopoulos et al. [92, 93] and
later enriched by many further discussions [94-102]. Different from the LIGO, the
physical principles under the atom-interferometer GW detector is the interference

of the matter waves, rather than the light waves.

The advantage of the proposed application of atom interferometer in GW detec-
tion is mostly at low frequency (below 10 Hz), which can be understood as follows.
Since the test masses are connected to the ground through suspension system, the
sensitivity of a laser interferometer GW detector is seriously contaminated at low
frequencies partly through the coupling of the test masses with the sesmic oscilla-
tions, although the multi-stage vibration isolation technique has been applied [98].
For space-borne optical GW detector such as Laser Interferometer Space Antenna
(LISA), the test masses are also connected to the satellite platforms, thereby the
random motion of the satellites will be transfered onto the test masses and contam-
inate the GW signal. However, for the atom interferometer, since the atoms are
free-falling during the interferometry process, they are less sensitive to the seismic

perturbation (or the satellite motion in the space case). The laser noise can be re-
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Figure 1.1: Block diagram of a linear quantum measurement device.

moved by designing the detector configuration with common mode rejection. More
sophisticated designs such as implementing the large momentum transfer technique

or optical cavities have been also discussed [103—-107].

Typically, experimental devices such as GW detectors that targeted on measuring
extremely weak signals are affected by the quantum mechanics. The theory of
quantum measurement developed from the 1960s is a framework to analyze how
quantum mechanics affects the sensitivity of an experimental device [108]. As
shown in Fig. 1.1, in this framework, a quantum measurement device is divided into
probe and detector, where the probe dynamical quantity X is linearly coupled to G
— the information to be measured. The probe and detector are coupled through
linear Hamiltonian ﬁim = —a£F. The information of G will flow into the detector
through probe-detector interaction Hiy and then be read out as $(¢). The early
resonant bar GW detectors and the current laser interferometer GW detectors have
been extensively studied and understood using this quantum measurement theory
framework [108—110].

For atom interferometry, although the effect of quantum noise has been discussed
by various authors [111-114], a complete analysis under quantum measurement
theory has not been discussed in the current literature. Establishing such a theory
provides important insights in understanding the atom interferometer. In Chapter
V, we set up a quantum measurement theory framework for analyzing the physics
of atom interferometer based on the interaction between atom cloud and two optical
fields. A comparison between the LIGO detector and matter-wave interferometer is

also given from the perspective of quantum measurement.

1.3 Modeling of BBH ringdown gravitational waves

In gravitational wave observations, the prospective searches for ringdown wave-
forms [115, 116] would enable the tests of GR [117-120] from different aspects.
With the rapidly increasing number of binary coalescences observed [121-124]
by ground-based detectors like Advanced LIGO [125] and Advanced Virgo [126],
events with detectable higher-order modes [127-129] are observed, e.g., GW 190412 [130]
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and GW190814 [131]. The detectability of higher-order modes not only impacts the

parameter estimation [120, 132—136], but can be used to study angular emission as
well. Currently, in the ringdown stage, a high signal-to-noise ratio (SNR) is difficult
to achieve due to the lack of post-merger cycles and the degraded detector sensitivity
at high frequency range. However, the sensitivity of the proposed next-generation
detectors, including Einstein Telescope [137, 138], Cosmic Explorer [139, 140],
and NEMO [141], will be significantly improved [142], especially at the high fre-

quencies, opening more possibilities in the BBH post-merger studies [143].

The gravitational waves emitted at the final stage of a BBH merger, the ringdown
stage, consist of a series of quasinormal modes (QNMs) [144-148]. QNMs are
solutions to the homogeneous Teukolsky equation [149-152], i.e., the linearized
Einstein’s equations in the background of a Kerr black hole, as described by numer-
ous work since the 1970s [153-157]. The foundation for doing so follows models
that describe stellar collapses [153—-156] — the strong-field region “falls down” to-
ward the future horizon of the final black hole, revealing a spacetime region in which
perturbations satisfy the homogeneous Teukolsky equation with ingoing condition

near the horizon, and outgoing condition near infinity.

The homogeneous Teukolsky equation predicts the temporal dependence of the
ringdown waves, in terms of their complex spectra, as well as their spatial distri-
butions, in terms of angular emission patterns. There have been many studies on
black hole ringdown spectroscopy involving multiple angular frequencies by model-
ing it as the superposition of exponentially damped sinusoids [132, 134, 158-161],
or using other methods of frequency extraction [162, 163]. Recently, it has been
shown that the inclusion of overtones [147, 164] can improve the fitting of numerical
relativity (NR) waveforms and lead to better estimation of ringdown model parame-
ters [143, 161, 165], because of the better characterization of the post-merger signal

from an earlier time.

Although a single event could provide limited information about angular depen-
dence, combining multiple events and extracting angular-dependent features will
become possible with the expected large number of events in the future. That calls
for strategic studies of temporal-spatial emission patterns before more events with
high ringdown SNR are observed. Many phenomenological fitting studies based
on NR waveforms have been done [166-168], while most previous work focused
on the ringdown temporal properties. As the temporal-spatial consistency check

of ringdown emission can provide more complete tests of GR, exploring such a



problem defines the theme of Chapter VI.
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Chapter 2

CLASSIFICATION OF OPTOMECHANICAL INTERACTION
AND THE DISCOVERY OF COHERENT COUPLING

In most optomechanical systems, a movable mirror is a part of an optical cavity, and
its oscillation modulates either the resonance frequency of the cavity or its coupling
to the environment. There exists the third option — which we call “coherent
coupling” — when the mechanical oscillation couples several non-degenerate optical
modes supported by the cavity. Identifying the nature of the coupling can be
an important step in designing the setup for a specific application. In order to
unambiguously distinguish between different optomechanical couplings, we develop
a general framework based on the Hamiltonian of the system. Using this framework,
we give examples of different couplings and discuss in detail one particular case
of a purely coherent coupling in a ring cavity with a movable mirror inside. We
demonstrate that in certain cases coherent coupling can be beneficial for cooling the
motion of the mechanical oscillator. Our general framework allows us to approach
the design of optomechanical experiments in a methodological way, for precise

exploitation of the strengths of particular optomechanical couplings.

2.1 Introduction

Cavity optomechanics [1-4] studies the interaction between light and mechan-
ical systems embedded into optical resonators. The precision at which modern
optomechanical experiments operate allows us to study the quantum properties of
light and matter, including the cooling of macroscopic oscillators to their quantum
ground state [5—7], optomechanical squeezing of quantum fluctuations in light [8—
11], quantum entanglement between optical and mechanical degrees of freedom [12—
15], as well as between space-like separated mechanical oscillators [13, 16-19]
and non-classical states of mechanical oscillators [12, 19-22]. Optomechanics has
become an experimental platform for testing quantum mechanics in the macro-
scopic world [13, 16, 23, 24] and looking for potential paths towards quantum grav-
ity [19, 25-27]. Optomechanics has also been established as a toolbox for computa-
tional and metrological tasks, such as: frequency-converting microwaves to optical
light [28-31], on-chip signal modulation and processing [32], nanoscale torque de-

tection [33], and the detection of gravitational waves [34—36] with kilometer-scale
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detectors (Advanced LIGO [37, 38], Advanced Virgo [39, 40], GEO600 [41, 42],
KAGRA [43, 44]).

While optomechanical systems vary in scale, frequency, and complexity, their
theoretical description on a fundamental level can be reduced to simple Hamilto-
nians. Conventionally the coupling between the optical and mechanical degrees of
freedom is classified based on intuitive physical picture of the setup. Most common
are the systems with dispersive coupling, where the mechanical oscillation mod-
ulates the cavity’s resonance frequency [1]. The simplest case of such systems is
a Fabry-Pérot cavity with a movable end mirror [45]. Another type of coupling
is dissipative [46]: the oscillation modulates the coupling between the system and
the environment. Any system with a movable mirror that simultaneously couples
with the cavity modes and the pumping field can be viewed as having dissipative
coupling, and the simplest example is a Fabry-Pérot cavity with a movable front
mirror [47]. There exists another type of interaction where the mechanical oscilla-
tion modulates the coupling between two or more cavity modes [48]. In practice,
a complex optomechanical system might not fit into one single type of interaction
presented above, or might be misclassified. Therefore, we want a mutually exclusive

and collectively exhaustive way of classification.

To illustrate the necessity for such a classification, we show how the coupling could
be identified ambiguously when the description of one optomechanical system has
different forms depending on the choice of cavity basis modes. We consider two
optical modes a1, @, with frequencies w1, w; coupled via the mechanical oscillation

x. Such system is described by the following intuitive Hamiltonian:
Aeay = hiw1@1ay + hawodl s + higinx(alas + he.). (2.1)

If the system is classified simply based on this Hamiltonian, it could fall into
the category of "optical modes coupled by mechanical oscillation." However, this
Hamiltonian would have two different forms based on the parameters of the system.
The first case is when the frequencies of the modes a1, d; are equal (w; = w,). Then

Eq. (2.1) can be presented in another form:
A,y = h(w) — g12x)@, @) + h(wy + g12x)d5 " d), (2.2)

with the following choice of basis modes:

., adi1—ay ,, ar+ap
al: . a2:

V2

(2.3)
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Such Hamiltonian is a dispersive one: the resonant frequencies of the modes are
modulated by the mechanical oscillation. The second case is when the eigenfre-
quencies of the modes d  are separated by Aw = (w2 —w;)/2. Then we can define

a new basis of x-dependent modes a7, (x):

. . 12 . . R 12,
ay(x)=a - zi—wxaz, ay(x) =adr + i—wxal, (2.4)

where we assume mechanical oscillation to be small (gj2x < |Aw|) and keep only
the terms linear in x. Under this basis the Hamiltonian in Eq. (2.1) takes another
form:

A, = hw1d7 T (x)@ (x) + hwpdy (x)ay (x), (2.5)

where the modes themselves have x-dependence. Such a form of the optomechanical
coupling is distinct from either the dispersive or the dissipative coupling. We call
it coherent coupling and will define rigorously in the next section. These three
different forms of the Hamiltonian illustrate the ambiguity: Eq. (2.1) describes the
coupling between the two modes via the mechanical oscillation, but in different
regimes depending on Aw, it could also be either classified as dispersive coupling
in Eq(2.2), or have some new form in Eq.(2.5). However, one system should
have a unique classification, which is determined by the physical properties, not by
the choice of basis. Identifying the coupling correctly and uniquely is important
for optimizing the design of the experiment. Thus, an unambiguous classification

framework is necessary.

In this work, we establish a general framework for the unambiguous classification
of the optomechanical systems. The chapter is organized as follows: Sec. 2.2
provides a step-by-step strategy for expressing the Hamiltonian in a canonical form
and discriminating between different x-dependence. We make emphasis in this
section on the coherent coupling, which has not been widely recognized as a separate
type of optomechanical coupling. Sec. 2.3 gives some examples from the literature,
including possible ambiguities that could arise in identifying couplings and how
our approach helps to resolve them. We provide a further focus on the purely
coherent coupling in Sec. 2.4, where we investigate an optomechanical ring cavity
system [49-51]. We provide an application example where in certain cases this
coupling is beneficial for laser cooling of the mechanical oscillator to its ground

state. Sec. 2.5 includes a summary of the chapter and further discussion.
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2.2 Classification of optomechanical couplings

In this section we provide a step-by-step strategy that will lead to a unique
classification for each cavity optomechanical system and help to avoid potential
amiguity. We start by expressing the total optical Hamiltonian in a canonical form
that can describe any optomechanical system with multiple optical and mechanical

degrees of freedom:
A(x) = hat(x) (0A(x) +ik (ﬁ*(x) (x)b - h.c.) , (2.6)

where x = {x1,x»,...} are the displacements of mechanical oscillators from their
equilibrium positions; 4(x) = (d;(x), d2(x), ...)T are the cavity eigenmodes, such
that (x) = diag(w;(X),w>(X),...) is a diagonal matrix with the corresponding

eigenfrequencies; b= (131, 132, ...)T are the external electromagnetic modes, which

couple to cavity eigenmodes with coupling rates  (x) = diag(\/ 2y1(x), \/ 2y2(x), ...)

and the optical linewidths are y; .. (x). Note that X can be treated as quasi-stationary

parameters here because the time scale for optical relaxation is much smaller than the
mechanical one. For practical calculation, the x-dependence in 4(x), (x), (x)can
be expanded in series and x can be upgraded to dynamical variables and quantum
operators X following the canonical formulation [52-54]. We further consider a
conventional linear regime, where the mechanical oscillation x is much smaller than
the optical wavelength A, allowing the Hamiltonian to remain only linear x terms
for a good approximation. While this approximation is not necessarily applicable to

all optomechanical systems [55—-58], it covers most of the popular ones.

One system can be described by different Hamiltonians under different choices
of basis, as shown from Eq. (2.1) to Eq. (2.5), but the canonical form in Eq. (2.6) is
always unique. This serves as the starting point for establishing an unambiguous
classification. Position-dependence in (x) and (x) are intuitive and can be
directly understood as dispersive and dissipative couplings separately. We construct
a mutually exclusive and collectively exhaustive way of classification by considering
the last possible x-dependence: a(x), which we call coherent coupling. Such x-
dependent modes a(x) can be presented as linear combinations of unperturbed
modes a(0) coupled via the mechanical oscillation x, as follows from the linearity

of the optical system:

ai(x) = Y fa(x)a(0), 2.7)
/

where f;;(x) are the coupling coefficients and f;;(x) = 1 (no summation for the

repetitive 7).
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In order to classify an optomechanical system without any ambiguity, we formu-

late the following steps:

1. Write the total Hamiltonian of the optomechanical system including all the
optical and mechanical degrees of freedom and the coupling among them in

any convenient basis.

2. Transform the Hamiltonian to the canonical form shown by Eq. (2.6), where
(x) and (x) are diagonal and a(x) is the set of cavity eigenmodes. Envi-

ronmental modes b can be chosen correspondingly.

3. Classify the type of optomechanical interaction by the x-dependence feature

ina(x), (x),and (x).

We can follow these steps to illustrate the classification of the optomechanical
couplings into three types mentioned in the Introduction. We consider a specific
example with two cavity modes dp, d> and one mechanical degree of freedom x,
and expand the x-dependence up to a linear order in x, where g > and g,1 2 are the

expansion coefficients of diagonal terms in (x) and (x) matrices:

1. Dispersive coupling, where the eigenfrequencies depend on the mechanical

oscillation: (x), the example reads:

(x) = (w1 —gx 0 ) . (2.8)

0 w2 — gox

2. Dissipative coupling, where the rates of coupling to the external modes depend

on the mechanical oscillation: (x), the example reads:

(x) = V271 + 8y1X 0 (2.9)
0 V2y2 + gy2x ' '

3. Coherent coupling, where the eigenmodes depend on the mechanical os-
cillation: a(x), and the derivative of any optical mode d; with respect to

any mechanical displacement x; includes only the other optical modes (see

Eq. (2.7)): 5110
_ i\ X
- Z ox;

x=0  jz J

0d;(x)
ij

a;(0). (2.10)
x=0
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w1 Coherent \
Cwi v

Wa a2x) Dispersive
w2

Cw . .
2 Dispersive

w3 +a3x

\ w1 # w2 # w3 ..)

Figure 2.1: The comparison between coherent coupling and dispersive coupling:
the (x) matrix under the basis of a(0). Each color block represents a frequency
degenerate subspace, which can have one or more modes. Different blocks have
different frequencies, e.g., w; # wy # ws. The influence of mechanical oscillation
shows up as x-dependent perturbation, which will either directly add on to diagonal
terms as dispersive coupling, e.g., the a3x term, or will show up in off-diagonal terms
to couple different modes. The off-diagonal coupling within one color block, e.g.,
the apx term, will open the degeneracy and also cause dispersive coupling. While
the coupling between blocks, e.g., the a2x term, won’t change the eigenfrequencies
w12 and will cause coherent coupling. See main text for detailed discussion.

The simple example can be taken from Eq. (2.5) where the original modes

d1 2 become mixed by x (see Eq. (2.4)) and the corresponding eigenfrequency

"(x) = (wl 0 ) @2.11)

sz

matrix:

doesn’t depend on x: d " (x)/dx = 0.

Following our classification strategy, one can clearly distinguish among the different

types of interactions, even in cases where several couplings coexist.

In addition to the definition above, a physical picture of coherent coupling also
helps to understand this new concept. The difference between dispersive coupling
and coherent coupling can sometimes be not obvious: both of them can be expressed
as coupling of optical modes by mechanical motion under some specific cavity basis,
as showed the example in Eq. (2.1). The distinction between them is illustrated in
Fig. 2.1: when mechanical motion couples different optical modes, these modes are
either frequency-degenerate or have different frequencies. When the unperturbed
modes are frequency-degenerate, the coupling via the mechanical motion breaks

the degeneracy and leads to new x-dependent eigenfrequencies, which are the sign
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of dispersive coupling. On the other hand, when the unperturbed modes have dif-
ferent frequencies, the mechanical displacement leads to a coherent energy transfer
between these modes, and such coupling is coherent. Expressed in the canonical
Hamiltonian, up to linear order in x, the eigenfrequencies remain unchanged, but

the eigenmodes are the original ones mixed in a Xx-dependent way.

2.3 Example of different couplings
In this section, we provide some detailed examples of optomechanical coupling

of the above three categories. We also cover cases with coexisting couplings.

2.3.1 Dispersive coupling

Dispersive coupling is the most well-studied type of optomechanical interac-
tions [1]. The physical origin of dispersive coupling is the dependence of cavity
resonant frequencies on the mechanical oscillation x. The Hamiltonian of a single

cavity, shown in Fig. 2.2, reads:

T

I:Icav = h(wa - gwx)aA a, (2.12)

where w, is the resonant frequency not affected by the mechanical oscillation,
gw = wq/L is the dispersive coupling strength, x is the end mirror displacement

from its equilibrium position (see detailed derivation in App. 2.6).

In this section, we discuss a metrological system that features the dispersive
coupling: the Laser Interferometer Gravitational-Wave Observatory (LIGO) [38,
48]. This detector takes advantage of two Fabry-Pérot cavities in the arms of
the Michelson interferometer (arm cavities), which sense the gravitational-wave-
induced displacement of the test masses. The two arm-cavity modes are represented
by 4, b and their resonance frequencies are by wy. These two modes have the same

dispersive coupling strength g, but they couple to two different displacements x1, x3.

<& »
< »

L

=2 4

Figure 2.2: Single cavity with a movable end mirror. L is the original cavity length,
x is the end mirror displacement from its equilibrium position, 4 is the cavity optical
mode.



28

The cavity Hamiltonian can be expressed as:
Heay = h(wo — gx1)a"a + h(wy — gx2)b7b. (2.13)

Defining the common and differential mechanical and optical modes as x; = (x; +
xz)/\/i,x_ = (x1 — xz)/\/i; éy = (a+ lA))/\/i, é_=(a- l;)/\/i, the transformed
Hamiltonian takes the form:

Heaw = h(wo — gx)& ¢ + hgx_¢T o8, (2.14)

where & = (¢,, ¢_)T and o is the x-component of Pauli matrix. Only the differential
motion x_ carries the gravitational wave strain signal, so we don’t consider the
common motion x,. After this operation the transformation from ¢4, ¢ to d,lA) is
equivalent to the transformation from day, d, to d’l, d’2 in Eq.(2.3). Even though
the Hamiltonian can be expressed in different forms in Egs. (2.13) and (2.14), in
our classification strategy, the coupling will always be classified as dispersive with

eigenmodes d, b and x_-dependent eigenfrequencies: ws (x_) = wo + gx_.

2.3.2 Dissipative coupling
Dissipative coupling happens when the coupling of cavity modes to external

modes depends on x. For example, for a single cavity mode a:
A, = if (\2y + gyx) (a7h —hc.) (2.15)

where b is the external mode and \/Z + gy is the coupling rate, which gives rise to
the finite cavity linewidth. The g, x term describes the dependence of the dissipation
rate on the mechanical oscillation x. The form of dissipative coupling strength g,
depends on the specific physical realization.

One recent example is the on-chip dissipative optomechanical resonator [32]. As
schematically shown in Fig. 2.3, this system consists of a racetrack optical cavity,
which is also a mechanical resonator with out-of-plane vibrations, and a curved
input waveguide. Except for the material refractive indices, the optical coupling rate
between the racetrack cavity and the input waveguide is determined by the distance
between them. The racetrack cavity supports optical mode d and the out-of-plane
oscillation expressed by x, while the input waveguide carries optical mode b. The
mechanical oscillation x changes the distance between the racetrack cavity and the
input waveguide and thus changes the optical coupling rate between modes d and b.
The Hamiltonian describing the optical modes reads:

A

H = hwad'a +ih (\/Z + gyx) (a*é - h.c.) , (2.16)
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Figure 2.3: On-chip optomechanical coupling between the curved input waveguide
and the optical racetrack cavity, adapted from FIG. 1 in Ref. [32]. The upper right is
the top view of the chip, where blue line represents the input waveguide and the red
one represents that optical racetrack cavity which is also a mechanical resonator that
can have out-of-plane vibrations. The lower left is the schematic of the cross-section
inside the dashed area of the upper right. See the main context for discussion.

where neither the cavity mode @ nor its resonance frequency w, depends on x.
There exists only one cavity eigenmode and it already satisfies the canonical form
of Eq.(2.6). Thus, the x-dependence in d, b coupling rate shows the feature of

dissipative coupling.

2.3.3 Coherent coupling
The last interaction category to be discussed is coherent coupling where the x-
dependence appears in the eigenmodes themselves rather than the eigenfrequencies

of the optical modes.

One notable example of coherent coupling is the three-modes optoacoustic in-
teraction [59]. It can give rise to important non-linear optomechanical effects such
as parametric instability [60, 61], which complicates the operation of gravitational-
wave detectors. In a simplified model [59] as shown on the left side in Fig. 2.4, there
are two orthogonal transverse optical-cavity modes @ and b with different resonant
frequencies w; and w;. The acoustic mode has a torsional mode profile and x is
its generalized coordinate. The cavity Hamiltonian in this case has the form (see

App. 2.7 for detailed derivation):
Aew = hiwd'a + hiwab'h + hGox (d*é + h.c.) . 2.17)

Note that Eq. (2.17) has the same structure as Eq. (2.1) and thus follows the same
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Figure 2.4: Mapping from three-mode optoacoustic system to a power and signal-
recycled interferometer, adapted from FIG.2 in Ref. [59]. Although they share
a similar three-mode scheme, their physical origins and classification results are
different. See the main text in Sec. 2.3.1 and Sec. 2.3.3 for detailed discussion.

transformation process as in Eq. (2.4). Up to linear order in x, the eigenfrequencies
remain the same and the new eigenmodes are the original ones mixed by mechanical
oscillation x:

o~ Go o oooon o 0 Gy,
a(x)=a Zwab, b(x)—b+2waa, (2.18)

where Aw = (wy — w1)/2 is the frequency difference. The x-dependence in eigen-

modes shows the feature of coherent coupling.

Note that Ref. [62] was aware of the x-dependence that only happens in eigen-
modes, but didn’t notice the new coherent coupling category in optomechanics. In
Sec. 2.4 we will investigate a ring cavity system, where the coherent coupling is
mediated by the longitudinal oscillation of the mechanical center-of-mass degree of

freedom.

2.3.4 Coexisting coupling

In many cases, different types of optomechanical couplings can coexist. Some
optomechanical systems might show different coupling features depending on the
parameter regimes that they work in. Following our classification strategy, each

type in the coexisting couplings can be clearly distinguished.

One notable example is the Michelson-Sagnac interferometer [7, 46] with coex-
isting dispersive and dissipative couplings. With careful tuning [7], it can become

either pure dissipative coupling or pure dispersive coupling.

Another example of a system with coexisting couplings is the system of two

coupled cavities separated by a movable mirror, as shown in Fig. 2.5. The coupling
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Figure 2.5: The coupled cavity configuration. L > are the length of two subcavities,
r and t are the amplitude reflectivity and transmittance of the mirror inside, and x is
membrane oscillation around its equilibrium position. In the main text we consider
membrane with low transmittance + < 1. It is then reasonable to claim that the
left and right subcavities can support @ and b modes separately. The bare optical
frequencies of the two modes are w1 > and the optomechanical coupling constants
are g1 2 = w1 2/L1 . Different parameter regime can lead to different classification
results. See main text for details.

in such a system can be classified as dispersive, or coherent, or coexisting, depending
on the position and optical properties of the central mirror [5, 62, 63]. In the
following contents, we give a theoretical description of this system and classify it

using our strategy.

When the transmittance of the central mirror is relatively low, t < 1, we can
define two optical modes d, b for the left and the right subcavities respectively,
which are coupled at a characteristic sloshing frequency w;. In terms of these

modes the cavity Hamiltonian can be expressed as:
Heay = Hwi — g1x)a"a + h(wa + g2x)b™b + hwy (a'h + h.c.). (2.19)

For convenience, we define the average frequency wo = (w; + w)/2 and the
frequency difference Aw = (w; — w1)/2. We then convert the Hamiltonian in
Eq.(2.19) into the canonical form in Eq.(2.6) as required by our classification

procedure.

When the central mirror is perfectly reflective [5], the sloshing frequency becomes
zero (ws = 0) and Eq. (2.19) is already in the canonical form. No optical coupling
can happen between d, b modes and they remain to be cavity eigenmodes. The
corresponding eigenfrequencies w; — g1x, wy + g>x are x-dependent. In this case,

the system has pure dispersive coupling.

When w; # 0, Eq.(2.19) needs to be transformed to the canonical form. The

interaction with the mechanical oscillation x couples the original optical eigenmodes

¢4(0) = (—Aw £ | AW? + w2)a + w,b, (2.20)
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and they become:

81+ 82

Ci(x) =¢4(0) £ ————
4AW? + w?

x¢+(0), (2.21)

with the corresponding eigenfrequencies:

- A
wi(x):woi,/Aw2+w§+(g2 1. BI48)AO) 02 222)

2 2VAW? + w?

Both the eigenmodes and eigenfrequencies depend on x, which reveals the coexisting

coherent and dispersive couplings.

The system can have a purely coherent coupling if the central mirror has low
transmittance and the two subcavities have the same length L = L; [62, 63]. In this
case, the sub cavity frequencies and the corresponding coupling rates in Eq. (2.19)
become equal: w; = wy = wo, Aw = 0,g; = g>. The original eigenmodes are
¢,(0) o b + a and the dispersive feature is absent as the eigenfrequencies of

Eq. (2.22) no longer have x-dependence: w. = wq + ws.

The purely coherent coupling in this coupled cavity example only happens in
some specific parameter regimes. In the following section, we will discuss a ring

cavity system which always has a purely coherent coupling.

2.4 Purely coherent coupling in a ring cavity system

In this section we discuss an example of purely coherent coupling in an optome-
chanical ring cavity system where two resonant modes are coupled via the oscillation
of a partially reflective mirror, see Fig. 2.6. Similar ring cavity systems with one
or multiple scattering objects inside have been studied, including some cases with
membranes or mirrors [64—-66] and some other cases with cold atom clouds [67-74].
However, no systematic Hamiltonian construction with a clear definition of optical
modes has been done. That motivates our derivation in this section. We also an-
alyze how the coherent coupling helps the laser cooling of mechanical oscillation

and compare it with the single cavity dispersive coupling case [6].

2.4.1 Cavity modes and the Hamiltonian
The detailed derivation of the total Hamiltonian of the ring cavity system can be

found in App. 2.8. Here we only sketch the key steps of the derivation.

Without the membrane, the ring cavity can support degenerate clockwise and

counterclockwise modes that propagate independently. The membrane reflection
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Figure 2.6: Ring cavity configuration and field labeling. Here M is the front mir-
ror with amplitude reflectivity r¢ and transmittance ty, M;» are two fixed totally
reflective end mirror, M is the movable membrane with amplitude reflectivity r and
transmittance if. L is the total cavity length, L = L, = L/2 are the distances from
the My to the equilibrium position of M in clockwise and counterclockwise direc-
tions, x is the microscopic displacement of M from its equilibrium. For fields, ¢;»
are the counterclockwise, clockwise propagating field directly coupled from outside
continuum d;». Defined at the instantaneous position of the membrane, é; ;1 ( fl,z)
are the propagating fields towards (away from) the membrane in counterclockwise,
clockwise direction separately.

couples the two circulating waves and opens the mode degeneracy, as shown in
Fig. 2.7. We first consider resonant cavity modes assuming a perfectly reflective
front mirror M. In this case no outside field can couple into the cavity and the field

operator vector &(k) = (é(k), é2(k))T obeys the following matrix formula:
T.(k)é(k) =0, (2.23)

where T.(k) is the closed form transfer matrix:

1 — el —pelkL
—retkl 1 —jtetkL]” (2:24)

Te(k) = (
Solving this equation allows us to find wave numbers k.. of the resonant fields:
1 :
ki = —log(xr —it). (2.25)
iL

The two corresponding resonant frequencies w. = ck. within one free spectral

range (FSR) Awpsr = 2nc¢/ L are separated by:

w, = ey arcLsm " (2.26)
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Figure 2.7: Cavity modes splitting caused by different membrane reflectivity r.
The horizontal axis is a relative phase defined as 6 = (k,L + 7/2) — N2r and the
vertical axis is the ratio of the field amplitude in and out of the system from the
input port. The red and blue line correspond to r = 0.3, 1 respectively. As analyzed
in the main context, the cavity resonant frequencies do not depend on x while the
electromagnetic mode profiles depend on that. This optomechanical interaction is
called coherent coupling. The cavity free spectral range (FSR) is Awgsg = 27¢/L
and the linewidth is y = c73/2L.

The two resonant modes have the following feature (see Eq. (2.72)):

é1(ky) = éx(ky), (2.27a)
e1(k_) = —é>(k_), (2.27b)

and the field operators é; (k) are denoted by é; . in the following contents for

notational convenience.

We assume that the membrane has a low reflectively (r < 1), which allows us
to work only with two modes that are close to each other within one FSR, i.e.,
ws < Awrsr, as shown approximately by the red line in Fig. 2.7. In this case,
we do not need to consider the other optical resonances out of one FSR. We then
assign ¢ to represent the annihilation operator of the two cavity modes with optical

frequencies w.. The only nonzero commutators between them are:
[e_,éf]1=1, and [é4,¢1] =1. (2.28)

According to Eq. (2.27), ¢4 is named symmetric mode and ¢- is named antisym-
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metric mode. ¢ can be constructed from &1 >, fields :

€ tegt
¢, = , (2.292)
' V2
o= " %1 (2.29b)

such that é>, = é,/V2 and e, = é_/V2.

To quantitatively describe the electric field distribution, we introduce a coordinate
system inside the ring cavity, as shown in Fig. 2.6. The origin of this z-coordinate
is the front mirror M( and it increases clockwise along the optical axis of the ring
cavity. It becomes z, = L/2 + x at the instantaneous position of the membrane and
finally becomes z = L when it reaches the front mirror again. The coordinate system
here is circular and thus z = L represents the same position as z = 0. The electric
field inside the ring cavity can be represented by the standing wave distribution of

two optical modes (see Eq. (2.80)):
E*(z:x) = N(w-)P_(z:x)é- + N(w4) Py (2;X)é4, (2.30)

where N (w) = \hw/2AeyL is the frequency-dependent normalization factor for a
beam with cross-sectional area A inside the ring cavity, and P_(z;x), P,(z;x) are

the wavefunctions of ¢_, ¢; modes along z axis:

P_(zix) = 2isin(k_(z — x)) 7€ (0,zy), (231a)
eI g sin(k_(z—L—x)) z€ (zy, L), '

P (2ix) = 2cos(k+(z—x)) 2 € (0,2x), (231b)
e 2cos(ks(z =L —x)) z€ (z0L). '

P.(z;x) also represent the electric field standing wave distribution and are qual-
itatively shown in Fig. 2.8. The position of the nodes for both symmetric and
antisymmetric modes are shifted with the membrane position z, and P.(z;x) have

the following features:

P.(zy —¢mod L;x) = +P.(z, + { mod L; x), (2.32a)
|P_(z=x;x)| =0, (2.32b)
|P+(z =x;x)| = max |Py(z;x)], (2.32¢)

z€(0,L)

where { represents the distance from an arbitrary point to the membrane. That

is, starting from z, and going in two directions, the standing wave amplitude of
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Figure 2.8: Illustrating plot of ¢, wavefunction P.(z;x) in Eq.(2.81). We use
here a circle instead of a triangle to represent the space inside the ring cavity for
plotting convenience. The coordinate system is the same as that in Fig. 2.6: z =0
is the position of the front mirror My and z, is the position of the membrane. The
position of the nodes for both symmetric and antisymmetric modes are shifted with
the position of the membrane z,. Starting from z, and going in two directions, the
standing wave amplitude of ¢,(_) mode remains the same (opposite sign), until it
reaches maximum (zero) at z = x.

¢4+(-) mode remains the same (opposite sign), until it reaches the maximum (zero)
at z = x, which is L/2 away from z, both clockwise and counterclockwise. The
standing wave feature of ¢, () mode agrees with the naming of (anti)symmetric

mode.

The cavity Hamiltonian can be obtained from the total optical energy inside the

ring cavity [75] and it reads:
Heay = hw_¢lé_ + hw e e, (2.33)

It doesn’t have x-dependence because the ring cavity is a closed quantum system

until now, as shown by the x-independent equation Eq. (2.23) that we start from.

To obtain the total Hamiltonian and reveal the x-dependence, we consider the
coupling of the cavity modes to the outside modes by assuming the front mirror to
have low transmittance (¢yp << 1). The cavity linewidth y can be obtained from the

input-output relation (see Eq. (2.65)):

2
Cl‘O

—, 2.34
oL (2.34)

’)/:

and the ring cavity, as an open passive system, only supports the inside field with the

pumping frequency w, = k,c. The extent to which ¢. modes are excited depends
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on the detuning of the pumping frequency to the resonant ones: w, — w.. In the
following sections we will use the wavevector k, of the pumping field instead of
the resonant wavevectors k.. We use ¢, to represent the counterclockwise and
clockwise propagating fields that the environment fields d;, directly couples to.

Thus the cavity-environment interaction Hamiltonian can be expressed as:

A, = it2y(élar - he) +ilif2y(¢lar - hee). (2.35)

The front mirror position z = 0 is a natural choice of phase reference point for modes
¢1,2. However, the resonant modes ¢.. take the membrane position z, as the phase
reference point, as shown in Eq. (2.32a). Thus, the transformation between ¢ > and

¢ depends on x:

1 . . .
6y (x) = — e rLI2(e7Hhpxp) & oTkp¥ 2y, (2.36)

V2

where ¢, (0) is the original cavity modes that the outside modes d; » directly couple
to and they have distribution P. (z;x = 0). For the outside modes, ¢.(x) are the new
resonant modes when the membrane is displaced by x. It is equivalent to saying that
the mechanical oscillation x changes the way of interference between ¢ » that leads

to the formation of different resonant modes .. (x).

The cavity optomechanical Hamiltonian linearized with respect to x (see Eq. (2.89))
reads:
[:Iopt(x) = I:IO + ﬁint(x), (2.37)

where the free part Ay is equivalent to Eq. (2.33) with ¢, — ¢, (0) and the optome-

chanical interaction part I-Alim(t) reads:
Hin(x) = 2iwshk,,x(éi(0)é+(0) - h.c.). (2.38)

The feature of coherent coupling is shown in Eq. (2.38) explicitly: the mechanical
oscillation x induces the coupling between two original optical modes ¢.(0) which

have non-degenerate frequencies.

In the derivation until now, x merely works as a parameter. Alternatively, one
can start from the total Lagrangian including the mechanical degree of freedom and
follow the canonical formulation [52-54], where x can be upgraded to a dynamical

variable and further becomes a quantum operator X after quantization.

To describe the system in the general framework of Eq.(2.6), we need to ex-

press the total Hamiltonian in terms of the new resonant modes ¢.(X). Applying
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similar transformation as in Eq. (2.36), we can express the input modes d;> into

antisymmetric and symmetric ones:

1. .
Cain(R) = —=e*rl 2 (k%G 1 e

V2

Up to linear order in %, the cavity-environment interaction Hamiltonian in Eq. (2.35)

ik,%

). (2.39)

can be transformed to (see Eq. (2.94)):
A,(%) = ihy2y (éi (£)C-in(®) + L (0)24in(R) — h.c.). (2.40)

It is clear from Eq. (2.40) that the £ dependence only lies on optical modes ¢ i) (£)
themselves and the cavity-environment coupling rate y doesn’t depend on x. Thus,

this optomechanical coupling has no dissipative feature.

To sum up, the total Hamiltonian reads:
H(x) = Hopt(x) + Hy + Hp, (2.41)

where the cavity optomechanical part I-Alopt(x) is given in Eq.(2.37), the cavity-
environment interaction part I:Iy is given in Eq. (2.40) and the free mechanical part

1S:

~ P21
H, = Z— + -mQ2 #* - G#, (2.42)
2m 2

with G representing any external force exerted on the mechanical oscillator. If we

write it in the canonical form of Eq. (2.6), we obtain:

fw- 0 [iv2y 0
_(0 w+), _(0 i\/ﬂ)’ (2.43)

and the mode operators are (%) = (¢_(%), &+ (X)T, 4in(£) = (¢_in(X), 4in(X)T.
There is neither dispersive nor dissipative feature in the Hamiltonian above, and

thus the coherent coupling is verified.

In the next section, we will discuss the advantage of coherent coupling in enhanced

optomechanical cooling.

2.4.2 Application: Enhanced cooling

Mechanical oscillators can be cooled to their ground states by extracting thermal
phonons through laser light with a near-zero effective temperature bath [76]. Such
optomechanical cooling contributes to fundamental physics in studying the quantum
effects of macroscopic objects [23, 24]. It is also beneficial in the application aspect

of frequency conversion [28—31] and quantum information processing [32].
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In the Hamiltonian linearized with respect to x, the coherent coupling starts with
two non-degenerate optical modes and then couples them by mechanical oscillation.
This coupling doesn’t change the resonance frequency up to linear order in X.
Thus, the double resonance structure of coherent coupling systems can potentially
provide a more efficient cooling compared with the standard dispersive-coupling-
based cooling [6], because of the additional resonant enhancement of the pumping
field: When the mechanical frequency matches the frequency distance between the
two resonance peaks and the lower frequency is pumped, both the pumping field

and the upper mechanical sideband are resonant inside the cavity.

The optoacoustic interaction [59] in Sec. 2.3.3 has similar physics properties
with the ring cavity system. Contrary to the cooling described above, when the
cavity mode with upper frequency is pumped, both the pumping field and the lower
mechanical sideband are resonant and the enhanced heating occurs. That explains
the principle of parametric instability [60, 61]. Different from the optoacoustic
interaction which influences the transverse mechanical oscillation, the ring cavity
system interacts with the longitudinal mechanical oscillation. In this section, we
will focus on the cooling of the ring cavity system and compare it with the single

cavity dispersive coupling case.

The detailed derivation of optomechanical cooling and mechanical occupation
number limit in the ring cavity system can be found in App.2.9. Here we only list
the main results. Under the resolved sideband condition €2,, > 7y, we obtain the
optical damping rate (see Eq. (2.103b)):

2| Ajn|*k3 hewy
Yopt = 2 (2.44)
my

such that the equation of motion for mechanical operator £ becomes:
x o 2 A A
mx = Fyag — m&, & — m(y + Yop)X, (2.45)

where Fi,q is the x-independent part of fluctuating back-action force (see Eq. (2.102)

and the contents below it). The mechanical occupation number can be expressed as:

1] y? kT
iy = 1w _[72_7m]+ Ym kT (2.46)
Ym t Yopt 2 4Q5,  Yopt Ym t Yopt Quh
Under further condition yop > ym, we can obtain the ultimate cooling limit:
() = 2y T (2.47)

- Ym + Yopt Ym t Yopt



40

Amplitude/Peak

Figure 2.9: Pumping regime of sideband cooling. Coherent coupling has a poten-
tial advantage over dispersive coupling in sideband cooling because the pumping
frequency is also resonant inside the cavity. Dispersive coupling only has the right
resonance peak shown by the blue dashed line.

where ng, = kgT /Q,,h is the thermal occupation number and ny, = 72 / San is the

back-action limited occupation number.

We then compare the cooling rate in ring cavity (with coherent coupling) and the
one in a single cavity (with dispersive coupling). We assume the two systems have
the same optical bandwidth y and similar round-trip length L, Ly, and are used to
cool a mechanical oscillator with the same resonant frequency €2,,,. Both of the two
systems are pumped with frequency w,. For the ring cavity case, w, = w_ and
the pumping is injected from the left port as analyzed above. For the single cavity
case, w), is red detuned by ,, from its resonance. In both cases, €, < Awfgsr
and thus the two-mode or single-mode approximation is feasible. The ultimate
occupation number ny, is determined by the ratio between y and €,, and is the same
in the two cases. The advantage of coherent coupling is the simultaneous resonant
enhancement of pumping field and the upper sideband, which can support higher
intracavity field and thus provide larger optical damping . The intracavity field
amplitudes in two cases are:

C_= Ain in the ring cavity, (2.48a)

VY
~ V2YAin V2vAin

v +iQ, iQ,

in the single cavity, (2.48b)

SC

which are related as |C_| > |A| for the same input amplitude A;,. The optical
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damping rates of the ring cavity and the single cavity are:

2wikph
Yopt,rc = |C—| > (2.49a)
my
2
8sch
Yoptsc = m’;CQ.m |Asc|2, (2.49b)

where 2w, = Q,, is the setting of ring cavity resonance and gsc = 2w /Ly is the
dispersive coupling strength (see Eq. (2.58)) expressed in cavity round-trip length
Lg.. According to Eq.(2.38) with coherent coupling strength defined as g, =
2iwgk ,, the damping rate in Eq. (2.49a) takes the form:

g’ o
Yoptre = m’r)me [C-|7, (2.50)

which has the same as Eq. (2.49b). Assuming the same single-photon coupling rates,
the advantage of intracavity resonance in the coherent coupling case described in
Eq. (2.48) shows up. Substituting Eq. (2.48) in, we obtain the damping rates under
the same input amplitude:

Qukph
Yoptre = —zlAinl > (2.51a)
my
8wph
Yopt,sc = mh‘\iﬂ . (2.51b)
The ratio between the damping rates of the two cases is:
QL2
_ "®m¥sc
Ricsse = 8C2)/2 . (2.52)

The ring cavity has the advantage in cooling efficiency over a single cavity so long
as €, is larger than the geometric mean of Awgsr and v, i.e., Q,, > m.
Because of Egs. (2.26) and (2.34), the ratio above can also be expressed as:
R = 8L2 (arcsinr)* _ L2L2Q}

L] 214 c*

(2.53)

These equations demonstrates that the ring cavity can provide benefit in a larger-
scale optomechanical setup with long cavities or with high-frequency mechanical
oscillators. For example, if we compare a single and a ring cavity with a mechanical
membrane as an oscillator of frequency of 2.5 MHz [77], front mirror transmission
of 0.01%, and an equal length of ~ 40cm, we find that the cooling rate in the ring
cavity is 2.4 times higher than in a single cavity. The ring cavity thus could be
beneficial for long cavities, used, e.g., as optomechanical filters for gravitational-
wave detectors [78].
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2.5 Discussion

In this work, we build an unambiguous framework for classifying the optome-
chanical interaction in a unique way. This framework prescribes to express each
Hamiltonian in the canonical form and examine the dependence of its terms on the
mechanical oscillation. The canonical form of the Hamiltonian is unique for each
system, hence the classification based on that is mutually exclusive. No ambiguity
in classifying similar systems, as it was illustrated in the Introduction, can occur.
There are some limitations in our classification framework: we only consider Hamil-
tonians linear in x and linear in optical modes. Quadratic optomechanical coupling
and nonlinear optical effects, for example, are not covered in our framework and

need further consideration.

Based on our framework, we analyze several optomechanical systems, including
the newly investigated ring cavity system which exhibits purely coherent coupling.
We show that coherent coupling is fundamentally different from either dispersive or
dissipative coupling and allows us to complete our classification framework. Our
analysis reveals a previously underestimated relevance of coherent coupling in op-
tomechanical systems. It will show up whenever the system has two or more optical
modes with non-degenerate frequencies get coupled by mechanical oscillation. We
show that although coherent coupling occurs even in some well-studied systems, yet
it has never been identified as such. For instance, in the system of two coupled cav-
ities with a movable central mirror, both dispersive and coherent coupling coexist,

as we show in the Sec. 2.3.4.

The nature of the optomechanical coupling defines the strengths and weaknesses
of the system in one desired application. Our classification strategy will allow us to
approach the experimental design in a systematic way and choose the system that
would perform optimally. As a concrete result, we show that coherent coupling
allows for more effective laser cooling of the mechanical oscillation due to the

simultaneous resonant of pumping field and the upper mechanical sideband.

We anticipate our classification framework to serve as a methodological and
practical guide in the growing field of optomechanics. We believe the recognition
of the highlighted coherent coupling will lead to the development of novel quantum

optomechanical systems and new parameter regimes in the existing ones.
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2.6 Appendix: Dispersive Hamiltonian
The resonance condition gives wave vector k,(x) = nx/(L + x) and the corre-
sponding resonant frequency w;,(x) = ck,(x). The electric field inside a single

cavity is the superposition of modes with multiple resonant frequencies:

E*(2) = Z 4ﬂh:)(£) )2cos(kn(x)z)dn, (2.54)

with z ranging in (0, L + x). The counterintuitive node antinode distribution is

because we choose zero reflection phase in two cavity mirrors.

The cavity Hamiltonian can be obtained from the total optical energy [75]:

L+x
Heay (%) = / 2AeE () E* (2)dz, (2.55)
0

where the factor 2 accounts for both electric and magnetic energy. The integration
result of Eq. (2.55) is:

Howe (x) = Z hw, (x)al . (2.56)

Under single-mode approximation, only one specific mode n is considered and we

obtain the cavity Hamiltonian:

Ta, (2.57)

I:Icav(x) = hMwq - gwX)d

by defining w, = w,(0) for mode n. The dispersive coupling strength g, can be
extracted from the expressions above as:

Wq
g0 =7 (2.58)

2.7 Appendix: Optoacoustic Hamiltonian
The Hamiltonian of three-modes optoacoustic interaction [59] in Eq. (2.17) is

originated from the following cavity integral:
1
H o« / dri (L +xu;) [E(E() +E)*+—(Bo + 31)2}, (2.59)
u

where u, = u,(7.) is the transverse spatial profile of mechanical oscillation and
(Eo, Hy), (E1, Hy) are two optical modes TEMy, TEMy; with orthogonal transverse
profile fo(7.), f1(7.). The dispersive coupling and the three-modes coupling in this

system appear as:

1
€eE? + —B? ]
0,1 u 0,1

Hdisp o Z / dﬂxuz
0,1

(2.60)
1

H3 ode o< / d?Lqu [EE()El + —B()Bl] .
)i
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Apparently, they contain overlapping function Ag; = / dru, f()2,1 and Ag; =
f dr u, fyf1, respectively. In general, both terms should exist. The reason for
the vanishing of dispersive coupling here is simply because of the vanishing of the
overlapping function Ag ;. In Eq.(2.17) the coupling constant is defined as Go =

\/Ahwowl / (m€,, L?) with the geometrical overlapping factor A = (LAg;/V)?.

2.8 Appendix: Hamiltonian derivation of ring cavity system
2.8.1 Input-output relation

We start the rigorous derivation by writing down the input-output relations [23]
for the coupling of incoming electromagnetic fields d; > (k) of wavenumber £ to all
intracavity fields shown in Fig. 2.6. Unless claimed otherwise, we will view x as a
parameter in the following contents as the two counterpropagating fields é; (k) are
defined at the instantaneous position of the membrane. The input-output relations

can be derived from the frequency space field transfer matrices:

e(k) = Tec(ksx)e(k), (2.61a)
(k) = Tep(ks0)f(k) + Teha(k), (2.61b)
f(k) = Mé(k), (2.61¢)

where the field vectors are:

k) - (en(k)), b = (ﬁ(k))

&2 (k) fr(k),
(2.62)
1 (k 11(k
et = [P s = (1),
¢2(k) ar (k)
and the transfer matrices read:
0 ik (L/2+x)
Tec(k;x): eik(L/Z—x) O )
ik(L/2+x) 0
. _ roe
Ter(ksx) = 0 roeik(L/Z—x)) ’ (2.63)
T. = to O)’M:(F it).
0 1 it r

The é; (k) fields thus take the form:

e(k) =T,(k)e(k)+ Tin(k;x)a(k), (2.64)
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where T, (k) = T, (k;x) T r(k;x)Mis the transfer matrix describing the circulation
of €(k) inside the cavity and it no longer has x-dependence; Tin(k;x) = Toe (k;X)Teq
is the transfer matrix describing the process of a(k) coupling into the cavity and
propagating to join €(k). Eq. (2.64) can further be written as:

e(k) = To(k) ' Tin(k; x)a(k). (2.65)

where T.(k) is the closed form transfer matrix defined as:

1 —itetkl —pelkL
Te(k)=1-Ty(k) = ( i , (2.66)

—re 1 —ite'*L

and T.(k)~! works as the feedback kernel that describes the effect of cavity circu-

lation.

2.8.2 Resonance structure
To derive the Hamiltonian, we first consider resonant cavity modes assuming a

perfectly reflective front mirror M. In this case no outside field can couple in, i.e.,
Tin(k;x) = 0, and therefore Eq. (2.64) becomes:

T.(k)é(k) = 0. (2.67)

The resonance condition can be obtained from the nontrivial solutions of Eq. (2.67)
which requires det T, = 0. Within one FSR, the ring cavity can support two

resonances with different propagation phases:

Ml = —it, (2.68a)

et =—r—it, (2.68b)
where k. are the resonant wavenumbers that depend only on the total cavity length L
and the optical property r, t of the membrane. The distance between the frequencies
w4 = cky of the two modes within one FSR is:

w; —w_ carcsinr
2 L

(2.69)

Wy =

To work in a parameter regime which only involves two optical resonances closely
separated within one FSR, as shown approximately by the red line in Fig. 2.7, we
assume the membrane to have low reflectivity » < 1 such that wy; < Awpsr. In this

case, we don’t need to consider the other optical resonances out of one FSR. We
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then assign ¢. to represent the annihilation operator of the two cavity modes with

optical frequencies w.. The only nonzero commutators between them are:
[6_,671=1, and [é4,60]=1. (2.70)

The relation between €1 > in the two resonant modes ¢ can be obtained by plugging
k. into Eq. (2.66) and Eq. (2.67) thus becomes:

1 -1} [éi(k ~ [1 1) [é1(k- A
éy(ky) =0, éy(k-) ~0. 2.71)
-1 1) \éx(ky) 1 1) \éx(ko)
The two solutions €(k..) have the following feature:

é1(ky) = éx(ky), (2.72a)
é1(k_) =—-ér(k-). (2.72b)

The operator vector £(k) = (f1(k), f>(k))T is defined similarly as &(k), containing
two fields fl,z (k) that propagate away from the membrane, as shown in Fig. 2.6. f(k)
satisfies T.(k)f(k) = 0, the same as &(k) in Eq. (2.67), and its two solutions have
the same feature as €(k.) in Eq.(2.72). These field operators él,z(ki),fl,z(ki),
represented by €124, fl,zi in the following contents for convenience, are related by

the propagation phases:

el f (2.73a)
bry = L, (2.73b)

According to the spatial features mentioned above, ¢, is named symmetric mode

and ¢_ is named antisymmetric mode. They can be constructed from €1 ». fields as

follow:
€+ €14
= ———, (2.74a)
* V2
o= 82" (2.74b)

such that é,, = @+/\/§ and e;_ = é_/\/§ because of Eq. (2.72). We will use these

expressions above to construct the electric field in the following contents.

2.8.3 Electric field standing wave distribution
To quantitatively describe the electric field distribution, we construct a coordinate

system inside the ring cavity, as shown in Fig. 2.6. The origin of this z-coordinate
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is the front mirror M( and it increases clockwise along the optical axis of the ring
cavity. It becomes z, = L/2 + x at the instantaneous position of the membrane and
finally becomes z = L when reaching the front mirror again. The coordinate system

here is folded and thus z = L represents the same position as z = 0.

For a beam with cross-sectional area A inside the ring cavity, the frequency-

dependent normalization factor is:

hw

N =\3 7L’

(2.75)
such that the positive frequency part of the electric field at any spatial coordinate z

can be written as [46]:

+o00
E¥(z,t;x) = / doN(w)é(z,w/c;x)e™, (2.76)
0

where the mode function é(z, w/c;x) = é(z, k;x)e'®" with k = w/c can be con-
structed from é1,(k), fl,z(k) fields taking the membrane position z, as the phase

reference point:

e* @2 g (k) + e @) fi (k) z € (0,zy),

| . | 2.77
elk(Z—Zx)é‘z(k) + e_’k(Z_ZX)fz(k) Z € (Z)ﬁ L)’ ( )

é(z, kyx) = {
because the optical relaxation time is much less than the mechanical one and thus
the field distribution can adjust itself simultaneously when z, changes. The field
inside a perfect cavity is rigorously restricted by the resonance structure and thus
has a discretized frequency space distribution, as shown in Eq. (2.68). Therefore,
instead of an integral over the whole spectrum as in Eq. (2.76), the electric field

takes the summation of components with discretized frequencies w-.:
h
2AeL

Zi /_wieiki(Z—Zx)é‘li + Zi A /wie_iki(z_zx)ﬁi 7 € (0, Zx),
)N \/w_ieiki(z_ZX)fAZi + 2 Va)ie_iki(z_zx)éZi z € (zx, L).

Considering all Eqgs. (2.68)(2.72)(2.73)(2.74) and plugging them into Eq.(2.78),

where the process is actually a unitary transformation from (é., f.) basis to (¢é,, é-)

E*(z;x) =

X
(2.78)
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basis, the optical standing wave inside the ring cavity can be derived as:

N h
(o) —
E*(z:x) = 4ﬂ60LX
2isin(k_(z — x))\w-¢_ +2cos(ki(z — x))Vw+ ¢4 7€ (0, zy),
2isin(k_(z = L —x))\w-¢- +2cos(ki(z = L —x))\JwiCr 7€ (2x,L).
(2.79)
Or equivalently,
E*(z;x) = N(0-)P_(z:2)é- + N(w4) P4 (2004, (2.80)

where P_(z;x) and P, (z;x) are the wavefunctions of the two modes ¢_ and ¢, along

7 axis:
P (en) = { 2isin(k-(:=x) 2 (0.2, 2818
2isin(k_(z = L-x)) z€ (2 L),
Puoin) - { 2cos(ka(z=0)  z€(0.2), 2.51b)
2cos(ky(z—L—x)) z€ (zy,L).

P, (z;x) repersent the electric field standing wave distribution and are qualitatively
plotted in Fig. 2.8. The position of the nodes for both symmetric and antisymmetric

modes are shifted with the membrane position z, and P.(z;x) has the following

features:

P.i(zx — ¢ mod L;x) = +P.(z, + { mod L;x), (2.82a)
|P_(z =x;x)| =0, (2.82b)
|P+(z = x;x)| = max |Py(z;x)], (2.82¢)

z€(0,L)

where { represents the distance from an arbitrary point to the membrane. That is,
starting from z, and going in two directions, the standing wave amplitude of ¢, )
mode remains the same (opposite sign), until it reaches maximum (zero) at z = x,
which is L/2 away from z, both clockwise and counterclockwise. The standing

wave feature of ¢,(_) mode agrees with the naming of (anti)symmetric mode.

2.8.4 Conservative cavity Hamiltonian
The cavity Hamiltonian can be obtained from the total optical energy inside the

ring cavity [75]:
L
Ay = 2A€ / E™(z;x)E*(z;x)dz. (2.83)
0
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Substituting Eq. (2.79) in, we can obtain:
Heay = hw_¢élé_ + hw,éle,. (2.84)

The cavity Hamiltonian doesn’t have x-dependence because the ring cavity is a closed
quantum system until now, as shown by the x-independent equation Eq. (2.67) that
we start from. Explicitly illustrated in Eq. (2.82a), the field distribution relative to
the position of the membrane remains the same regardless of the value of x. As the

coordinate system is a folded one, the integration in Eq. (2.83) doesn’t contain x.

2.8.5 Interaction with the environment

To complete the total Hamiltonian derivation and reveal the x-dependence, we
consider the coupling of the cavity modes to the outside continuum by assuming
the front mirror to have low transmittance 9 < 1. The cavity linewidth y can be
obtained from the imaginary part of the pole of Eq. (2.65) and it only depends on L

and front mirror transmittance f:

2
C[O

=37 (2.85)

Y

Also according to Eq. (2.65), as an open passive system when Ti, (k; x) # O, the ring
cavity actually only carries the pumping frequency w, = k,c. The extent to which
¢+ modes are excited depends on the detuning of the pumping frequency to the
resonant ones: w, — wx. In the following contents we will use the wavevector k, of
the pumping field instead of the resonant wavevectors k.. We use ¢ 2 to represent
the counterclockwise and clockwise propagating fields that the environment fields
dy » directly couple to. According to T,.(k;x) in Eq. (2.63), the field operators ¢ »

and €1  are related by the propagation phases:

é1 = e'*rixg,, (2.86a)

&y = efrlmgy (2.86b)
The cavity-environment interaction Hamiltonian can be expressed as:

A, = il2y(¢la) - he.) +ihy2y(Elar - h.c.). (2.87)

For ¢ 5 as well as the fields leaking out from the ring cavity towards the detector,
the front mirror position is a natural choice of the phase reference point. However,
the resonant modes ¢ take the membrane position z, as the phase reference point,
as shown in Egs. (2.77), (2.78), and (2.79). The x-dependent way that ¢, get
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superimposed to form ¢, is revealed by Eqs. (2.74) and (2.86). The transformation

between ¢ and ¢, thus depends on x:

1 . . .
6y (x) = —erLI2(e7HhpXp) 1 oThp¥ e, (2.88)

V2

Note that ¢.(0) can be seen as the original optical modes that the outside modes
directly couple to and they have the specific distribution when the membrane stays
on its equilibrium x = 0. For the outside modes, ¢.(x) are the new resonant modes
when the membrane is displaced by x. It is equivalent to say that the mechanical
oscillation x changes the way of interference between ¢ » that leads to the formation

of different resonant modes ¢.(x).

To show the feature of optomechanical coupling, we linearize Eq. (2.88) with

respect to x:

¢_(x) = 6_(0) — ik x4 (0), (2.89a)
24 (x) = 6,(0) — ikpxé_(0). (2.89b)

Thus, the optomechanical Hamiltonian can be expressed as:

Aope(x) = liw_¢T (x)é_(x) + hiw, &L (x)é4.(x)

o (2.90)
= Ho + Hin (%),

where the free part Hy is equivalent to Eq. (2.84) and the optomechanical interaction

part Hin(¢) reads:
Hint(x) = 2iwshkpx(@i (0)2,(0) — h.c.). 2.91)

The interaction Hamiltonian in Eq. (2.91) explicitly shows the feature of coherent
coupling: the mechanical oscillation x induces the coupling between two original
optical modes ¢.(0) which have non-degenerate frequencies. Note that in the
previous derivation x merely works as a parameter. Alternatively, one can start with
the total Lagrangian including the mechanical degree of freedom and follow the
canonical formulation [52-54], x can thus be upgraded to be a dynamical variable
and further becomes a quantum operator X after quantization. To describe the system
under the general framework of Eq. (2.6), we need to express the total Hamiltonian
with the new resonant modes ¢.(%). Applying the same transformation as in
Eq. (2.88), we can express the input modes d; 7 into antisymmetric and symmetric
ones:

1 . o N
Cain(R) = —=e*rL2(e7Ro% G 1 %% d,). (2.92)

V2
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Thus, the cavity-environment interaction Hamiltonian in Eq. (2.87) can be trans-

formed to:
A, = iln2y (éi (0)é-in(0) + 1 (0)4in (0) — h.c.), (2.93)

which is equivalent to the generalized expression up to linear order in £:

Hyx)=) ih@(él (£)Cain(£) — h.c.)

+

~ > ihy2y ((1 — 2k242)éE (0)é4in(0) - h.c.) (2.94)
=H, + O(?).

It is clear from Eq. (2.94) that, even expressed in ¢.i,(X) for consistency under the
framework, the coupling rate with the environment doesn’t depend on X. Thus, the

optomechanical coupling has no dissipative feature.

2.9 Appendix: Optomechanical cooling limit in the ring cavity system
2.9.1 Coupled optical and mechanical equations of motion

For notational convenience, in the following contents, all expressions without
explicit arguments are by default in time domain with temporal argument #; all
derivatives represented by dot are with respect to ¢, i.e., ¢x = 0¢é./0t; Ci(in) are
used to represent €4 (in)(0); C+ = (¢4) are used to represent the expectation value of
optical modes, i.e., the classical amplitude. We assume single-port pumping from
d; with frequency w_ and amplitude A;. According to Eq.(2.92), the pumping
amplitude of cavity modes are Cyj, = A;/ V2. We work in the rotating frame with
pumping frequency w-. Based on the Hamiltonian in Eq. (2.41), the equations of

motion for ¢, modes read:

é- = 2wskpREs — yEo +2yC in, (2.95a)
&y = 2wy — 2wk pRE_ — yCy + A2yl 4in. (2.95b)

The intracavity amplitudes of the two modes are given by the static solutions of
Eq. (2.95) with £ = 0:

_ C—inV27 _ ﬂ
Y VY
_ C+inV27 _ AIW

oy 42wy +2iws

C- (2.96a)

(2.96b)

+

It can be seen from Eq. (2.96) that ¢_ mode is on resonance while ¢, mode is off

resonance.
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Each optical field can be divided into static amplitude and quantum fluctuation

¢+ — Ci + ¢+ and Eq. (2.95) can thus be linearized as:

éo =205k pRCy — yé- +2yéin, (2.97a)
&y = —2iwséy — 2wk pRC- — yéy + \2y¢1in. (2.97b)

The mechanical equations of motion are:

$=P (2.98a)
m

p =2iwsk,h(élé- —eleéy)
—dwskihe(ele. - éley) (2.98b)
+G - mﬁfnﬁ — MYpX.

The linearization of Eq. (2.98b) gives:
p =2iwsk,h(C;C- - C:Cy),
+ 2iwsk ,1(E1C. - &1 C - 6,C* +¢6.CY)

P T ¥ (2.99)

23
- 4wskphx(CfC_ -C;Cy)
2 A A
+ G — m&, X — mypX,
where the first line represents the static radiation pressure, the second line is fluctu-

ating radiation pressure and the third line represents optical trapping due to standing

wave energy distribution.

2.9.2 Sideband feature and optical damping

To solve the coupled optical and mechanical EOMs in Egs. (2.97), (2.98a), and (2.99),
we transfer them into frequency domain [3]. The X-dependence in sidebands of each
mode ¢, is obtained by scattering from the other mode amplitude Cs and can be

expressed as:

) Qwsk %
29 (4Q) = ¢, x =250t (2.100a)
v —iQ
) 2wk %
Q) =Crx —= ’;2 : (2.100b)
—1
. 2wk ,x
A(X) stp
Q) =C_x , 2.100
() v —i(Q - 2wy) ( 2
. 2wk %
AT(R) * s™vp
-Q)=C . 2.100d
& (=) _X’y—i(Q+2ws) ( )

Note that ¢ is gained by scattering from C, which is off-resonance in cavity

and the two sidebands ¢ (+Q) and ¢79(-Q) are symmetric. Similarly, éiﬁ) is
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gained by scattering from the resonant mode C_. However, as ¢, is peaked at a
higher frequency from pumping, the two sidebands ég) (+Q) and éi(i)(—Q) are
extremely unbalanced. See Fig.2.9 for illustration. Based on sideband expressions
in Eq. (2.100), we derive the £-dependent part in (CAIC_ ~ ¢ Cy—¢,C* +¢.CY) as

below:

(¢lc.-éfc, —e.crve )@

1 1
=2w.k,£|C_|? -
wskpf] |(7—KQ—2wQ y—KQ+2wQ)
1 1 2.101)
2wk ,£|Cy|? -
+‘%1“|”(y—mz 7—KJ
A 2 —4i
ﬂmmﬁ“| 19y

Y (y—iQ)? +4w?

The beating between C_ and two highly unbalanced sidebands in ¢, mode pro-
vides strong optical rigidity and damping to the mechanical oscillator. Note that
strong average field in each mode only beats with quantum fluctuation in the other
mode. This scattering-like interaction between non-degenerate optical modes is the
essential feature of coherent optomechanical couplings. Because the two optical
resonance is splitted by 2wy, the two sidebands will have maximum difference when
Q =~ 2w,. As aresult, optical cooling happens when we pump the antisymmetric

mode with frequency w_ and will be the strongest when ,,, = 2w.

We will focus on parameter regime Q ~ Q,, = 2wy in the following contents of

this section. The momentum equation of motion near that frequency is:
F D] = Foan(Q) + Ger — mQR(Q) + imyes QR (Q), (2.102)

where Fi,q is the x-independent part of radiation pressure force Ziwskh(cAIC_ -
e, -é,.cr + ¢_C}),Geg =G — 2|Ain|2k,,h is the offsetted external force, Qgﬁ =
Q7 + 3|Ain|*k3 hiwg /my is the mechanical resonance together with optical rigidity,
Yeff = ¥Ym + 2|Ain|2k§hws /my? is effective mechanical damping rate including
optical cooling. All expressions above are obtained under approximation condition
Q,, > . We can extract the optical spring and optical damping terms from the
approximated formulas above:

2 3| Ain|* k5 hewy
opt — my ’
2| Ain|* k3 By

my?

Optical spring: (2.103a)

Optical damping: Yopt = (2.103b)
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Compared with original mechanical properties, optical spring is always negligible
within reachable input power (Pj, < 1W) while optical damping is comparable
with mechanical damping when Pj, ~ 0.04W and is much bigger with higher input

power.

2.9.3 Quantum limit of mechanical occupation number

We then calculate the occupation number limit. In the case where the mechanical
object is a high-Q-oscillator, we represent the mechanical oscillation in terms of
mechanical creation and annihilation operators 72" and 7 in the rotating frame of

mechanical resonant frequency €,,,:
£ = xzpp (e ™ 4 T/, (2.104)

where xzpr = \/h/2mQ,, is the zero-point fluctuation of the mechanical oscillator.
Using w to represent the sideband frequency of mechanical oscillator around €2,,,

the Fourier components of 7 and 7" read:

+00d )
(1) = / ) %nﬁ(w)e“"‘”, (2.105a)
Q
. m d .
m'(t :/ %~T(—w)e_"‘”. (2.105b)

Although the upper and lower limits for both integrals in Eq. (2.105) can be extended
to infinity under condition w <« €,,, we keep this rigorous form for clearer future

reference. The average mechanical occupation number is defined as [79]:

(m(0ym' (1) +m' (t)m(r)) — 1

(n(1)) = 3 (2.106)
According to Eq. (2.105) 7i2(¢)r " (¢) and i (¢)i(t) can be expressed as:
w1’ (1) = // A it (e @, (2.107a)
-Q (27T)2
it (1) (r) = // T A i (w) el @ (2.107b)
-Qn (27'()2

To obtain the mechanical occupation number, we need to calculate the second-order
correlation function of mechanical operators <n~1(w)n~1*(w’)> and <nﬁT(w’)ﬁ1(w)>.
Therefore, we need to obtain equations of motion of i, " by rephrasing those of
X, p in Sec. 2.9.1 and Sec. 2.9.2.

Quoting Eq. (2.102) and ignoring the static force by letting G.g = 0, we obtain
the second-order equation of motion of %:

m% = Foan — mQZE — myegk. (2.108)
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Transferred into frequency domain, Eq. (2.108) becomes:
m(Qp, — Q% ~ iQyem)#(Q) = Foan (), (2.109)
which can be factorized under condition y.g < Q,, as:

|2 - i@ - Q| |5 - i@+ | 2@) = Fbaifg). (2.110)

According to Egs. (2.104) and (2.105), the Fourier Transformation of X reads:

+00
£(Q) = / diz(1)e™
:xZPF/ dt el( - m)t/ _m(w)e—lwt_'_ez( + m)z/ aw ~T(_w)€—zwt
- -Qu 27T —00 27T

= xzpr [ (Q — Q,)0(Q) +m' (-Q - Q,)8(-Q)] ,

2.111)

where 6(Q) is the Heaviside step function and §(€2) is the Dirac delta function.
Plugging Eq.(2.111) into Eq.(2.110) and considering the thermal force Fy,, we

obtain the equations of motion for 77, /i in their frequency domain:

m + ] n .
[y 270pt B iw]m () - zxzpp [Fbaﬂ(szm + ) + By (Q + w)], (2.112a)
+ : A A
[7m 27’opt 4 iw]nﬂ(w) _ _lxépF [Fbaﬂ(—(Qm +w)) + Fn(—(Q, + a)))],

(2.112b)

The fluctuating back-action force on the mechanical oscillator in the frequency

domain reads:
ﬁbaﬂ(Q) = 2iwshk), (Cjié_(Q) - C+cAi(—Q) - Cé,.(Q) + C_é+(—£2)), (2.113)

and satisfies the relation Fgaﬂ(Q) = Fian(—Q). The spectrum Sg(Q) of the back-

action force Fpuq(Q) is defined as:
(Foan (Q) Foan (Q)) =275 (@ + Q) Sp(Q) (2.114)

and takes the following expression:

1 1
+
v? (72 +(Q - 2a)s)2) (Y2 +Q2) (y2+ 4w§)

SF(Q) = 8AL wi R’ ky” . (2.115)

Also, the thermal force F;, has white spectrum:

(Fn(Q) Fin(Q)) = 276 (Q' + Q) 2mk g Ty, (2.116)
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Thus, the second-order correlation function of mechanical operators can be calcu-
lated by:
(m(w)ym' (o)) = 216(w - &) S+ (w), (2.117a)
(m'(W)m(w)) =216(w - w)S_(w), (2.117b)
with S, (w) and S_(w) defined as:
2 2
X e [SF(Q, + w) + 2mkgTy,,
5 (w) = 2ol M 1SEC 2) BTyl (2.118a)
('}’m";’opt ) + CL)Z

12 [SF(=(Qu + ) +2mkpTy,]

(ym";’opt )2 + (1)2

2
X
S ((U) = ZPF

(2.118b)

According to Eq. (2.107), the time-domain mechanical correlation functions can be

calculated as follows:

(o’ 0) = [ N Su@)52

— 4-Aiznfyzkl%hw% [ 1 + 1 ] + Ym kgT
me,, ('Ym + Vopt) 72 (72 + () - 2ws)2) 49;211“)% Ym + Yopt Quh’
(2.119a)
S e dw
(' (1) (t)) = / S_(a))z—
-Q,, T
(2.119b)

= 4Ai2n72k?7hw? [ 1 + ! ] + Ym B
me,, (7m + Vopt) 7’2 (Q +2wy) 2 49%10)% Ym t Yopt th.

Based on all derivation above, under condition £2,,, > v, the mechanical occupa-

tion number defined in Eq. (2.106) can be expressed as:

Yopt 1[72_7m]+ Ym  kgT

(n) = :
49%; Yopt Ym + Yopt @

- Ym t Yopt 2

(2.120)

Under further condition yop > ym, we can rewrite the expression above to get the

ultimate cooling limit:

() = —2" gy =P~ (2.121)
Ym + Yopt Ym t Yopt

where ng, = kpT /Q,,h is the thermal occupation number and np, = v/ 89%1 is the

back-action limited occupation number.
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Chapter 3

PT-SYMMETRIC AMPLIFIER: BROADBAND SENSITIVITY
IMPROVEMENT VIA COHERENT QUANTUM FEEDBACK

Conventional resonant detectors are subject to bandwidth-peak sensitivity trade-off,
which can be traced back to the quantum Cramer-Rao Bound. Anomalous dispersion
has been shown to improve it by signal amplification while leading to instability. We
propose a stable quantum amplifier enabled by two-mode non-degenerate parametric
amplification. Operated at the threshold, one amplifier mode is 7 -symmetric to
the original detector mode. Our scheme is applicable to all linear systems operating
at fundamental limits. Sensitivity improvements are shown for laser-interferometric

gravitational-wave detectors and microwave cavity axion detectors.

3.1 Introduction

Oscillators are often used to measure weak classical signals. In the early days of
gravitational-wave (GW) detection, excitations of mechanical oscillators (resonant
bars) were read out by inductive, capacitive [1], or parametric [2] transducers and via
a superconducting quantum interference device (SQUID) amplifer [1-3]. A more
sensitive technique is to read out the phase fluctuations in a light beam (Michelson
and Fabry-Perot type interferometers) [4—6] using photodetection. Signal recy-
cling [7] and Resonant Sideband Extraction (RSE) [8] techniques were designed
optimize GW sensitivity by tailoring the optical frequency response. In this pro-
cess, Mizuno noticed a trade-off between bandwidth and peak sensitivity [9] —
analogous to the gain-bandwidth product in electronic amplifiers [10]. Braginsky
et al. [11, 12] showed, using the energy-phase uncertainty relation, that the power
spectral density of equivalent spacetime strain noise is S,(Q) > 4h%/Sg(Q) where
S¢g is the spectral density of energy in the cavity, and

/ h dQ/(2m)S, (Q) < AE*/(4h?) . (3.1)
0

This was also obtained by Tsang, et al. using Quantum Fisher Information [13],
and further elaborated in Refs. [14—17]. For coherent states, AS? = hwo&, and in
this case Eq. (3.1) is also referred to as the Energetic Quantum Limit (EQL) for
GW detection. The EQL trade-off applies to all quantum metrology experiments

that use oscillators at coherent states. Specifically, GW detectors (of the laser
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interferometer type [6]) use optical resonators to increase the interaction between
the spacetime strain and the laser light field. Axion detectors [18] (of the Sikivie
Haloscope type [19]) use microwave resonators and a powerful permanent magnet to
increase the interaction with the axion field and the microwave field. In both cases,
the emphasis is on increasing the quality factor [20] of the resonance to maximize
the transduction coefficient between the physical signal and an electrical readout
variable. However, the EQL limits the useful bandwidth of the detector according
to the gain-bandwidth trade-off in Eq. (3.1).

In GW detection, the EQL can be surpassed when non-classical states of light are
created for the arm cavity, with AE? > &2 /N [21-24]. This can be implemented
via squeezing injection [25, 26], or internal ponderomotive squeezing achieved by
optical springs [14, 27, 28]. To directly address the EQL, the concept of White-Light
Cavity (WLC), which resonates with a broader spectrum of frequencies without
sacrificing sensitivity, has been proposed [21-24, 29-33]. In the unstable WLC
(uWLC) design of Miao et al. [22] (Fig. 3.1), an additional coherent quantum
feedback controller [34, 35] (enabled by an unstable optomechanical oscillator)
is attached to a laser interfereomter to provide an “anomalous dispersion” whose
negative group time delay cancels the positive group time delay in the interferometer,
achieving broadband signal amplification without increasing noise. The instability
of this quantum system can, in principle, be stabilized by a classical controller

without adding quantum noise [27, 28].

Y Arm
—
X Arm
Carrier M (a.4d") : diff. mode
-
@ B
M (b,b") : cavity mode
pumped at @, + »,, - sSWLC
i readout

,,

movable mirror (&, &)

Figure 3.1: Coherent quantum feedback for laser interferometer GW detectors. The
feedback controller (parametric amplifier) is achieved by the filter cavity pumped at
wo + w,;, and the movable mirror with oscillation frequency w,,. The uWLC scheme
(shown in gray) extracts signals from the arm cavity, while the sSWLC scheme
extracts signals at the end of the filter cavity (shown in black).
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In this chapter we introduce a parity-time (7 )-symmetric coherent quantum
control strategy [36-39] that not only leads to a stable WLC (sWLC), but also
applies to a wide range of quantum systems. We first consider the simplest sSWLC,
showing that it approaches an Exceptional Point (EP) [40-42] as the feedback gain
reaches the threshold, where the theoretical gain in sensitivity is infinite. We then
show the generality of this design strategy, since the controller’s Hamiltonian always
corresponds to the time reversal of that of the plant. We finally discuss applications
to GW detection and axion detection. Specifically, for the optomechanical GW
detection, we further introduce a more complete $7 -symmetric structure with a

fictitious “negative mass” to evade the measurement-induced back-action.

3.2 PT-symmetric amplifier
3.2.1 Theoretical model

Suppose the mode of a weak-signal sensor has annihilation/creation operators
(a,a"), which can be reorganized into quadrature operators d; = (d + a’")/V2,
d» = (4 - a%)/(¥2i), and the detector is coupled to a signal & via Vy = —ad  h. For
a GW detector, 4 is the cavity mode, i is GW strain, while « is achieved by strong

carrier field in the cavity (ignoring the radiation-pressure effects [26]).

As shown in Fig. 3.2, d and b are coupled with rate , while b and ¢ are amplified by

a non-degenerate amplifier with rate y, the Hamiltonian reads (Sec. 2 of Ref. [43]):
V =ihk(ab" — a'h) +ihy(bT¢T - be). (3.2)

The mode b is read out from 9, which in turn gives input quantum noise @. The

resulting Heisenberg equations reads:
G =iah— kb, & = yb, b =—yrb +«a + y¢' +2yzi, (3.3)

and ¥ = ii — v/2ygb. The combination
xa +ké' (3.4)

forms an internal mode that responds purely to the signal, i.e., d(yd + «¢")/dt =
i yah, with the vacuum noise coherently canceled out. When y = «, this internal

mode coincides with the extraction mode
k4 + yé' (3.5)

that directly couples to mode b, as shown in last equation in Eqgs. (3.2). A similar

system was analyzed in Ref. [36] as an amplifier to manipulate the injected signal,
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Figure 3.2: Mode interaction and stability analysis. a, A weak signal sensor
[mode (4, a"), plus (x, p) for the test mass in case of GW detectors] plus coherent
quantum feedback with modes (b, b"), (¢, ¢"). For the “sWLC readout”, the mode 4
couples to b (via dTlA)), which in turn couples to ¢ (via BTCA'T). The mode b is coupled
to an external continuum. The system is 7 -symmetric when k = y. Mode ¢ may
also couple to (X, P) with negative mass to evade the back-action noise caused by
a’s coupling to (x, p) (see Fig. 3.6). The uWLC scheme (in gray) is recovered when
a directly couples to continuum; further setting « — 0 reduces it to a conventional
detector. b, Poles trajectories of the two WLC dynamics in the complex plane,
where arrows show the directions for increasing y with « fixed. Left: the sSWLC has
a fixed pole at Q = 0, invisible to the input-output relation in Eq. (3.6); the other two
poles move up and down along the imaginary axis after meeting each other, until
one reaches 0 at y = k. For y > «, the system becomes unstable. Right: the uWLC
is unstable when y # 0.
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while our system was used to surpass the EQL that limits the sensitivity for weak
classical signal detection. The phase quadrature of the output field reads:

QL —iyrQ+ - K, 2+[yrKka
V) = - us - h. (36)
Q2 +iypQ+ x? — k2 Q2 +iyprQ+ x? — k2

As shown by pole trajectories in Fig. 3.2(b), for sWLC, increasing the y tends to
destabilize the system, while increasing « tends to stabilize it; the entire system is

stable when y < x. While for sSWLC, the dynamics is always unstable.
In the single-cavity (conventional) detector where d is read out directly, without
adding b and é, the output field has: 5 = (Q — iyg)/(Q + iyr)dr—2iyrah/ (Q + ivR).
For vacuum fluctuations, we have the spectrum S, a; = 0ijs and thus
(Q% — k2 + y2)? +7’12e92

2yrK2a?

2 2

con __
Sh - h

5 3.7
2yna? (3.7)

The gain in integrated sensitivity by amplification reads

+oo ampq—1
o dQ/ 2m)[S5en] !

which A — +c0 as y — «—. Both configurations have the same noise level in

A=

Vo, while the amplifier has higher signal amplitude, especially as y — «—. The

broadband improvement for an example case of k = 10y is shown in Fig. 3.3.

3.2.2 Connection to EP, PT-symmetry, and multi-mode generalization

On threshold at y = «, poles of the output field ¥, are at Q = 0, —iyg, making
Q = 0 a double pole (see Fig. 3.2). At this point, the internal mode (Eq.(3.4)) will
be parallel to the signal extraction mode (Eq.(3.5)), and the system only has two
independent eigenmodes, making it an Exceptional Point (EP) [40-42].

The system is also P7 -symmetric: the Hamiltonian is invariant if exchanging
a4 — ¢Tand ¢ — a'. Specifically, the P (parity) transformation swaps the (4, a")-
mode and the (¢, ¢")-mode, the 7~ (time-reversal) transformation swaps creation and

annihilation operators; combination of 7 transformation leaves b invariant.

For a multi-mode device with modes {d;} coupled to signal & with coefficients
{e;} and with }} B8;a, originally coupled to the external continuum, let us bring in
systems b and {¢ i}, with {é;} having the same equations of motion as {d,}, and b
coupled to {4}, {éj.} symmetrically:

é\j ZMjkﬁk+iC¥jh—Kﬁjf), CA‘j =Mjkci+/\/,3jl;, 3.9)

b= ~yrb +KkBjd; + xPB;C} + \2yri, § =i —2yb. (3.10)
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Figure 3.3: Coherent amplification of sensitivity by sSWLC (red) and uWLC (blue)
when k = 10yg, compared with the conventional detector (black), all lossless. For
the same choice of yg and y, uWLC tends to improve higher frequency sensitivity,
while sSWLC tends to improve lower frequency sensitivity.

These equations can be solved in a matrix form and lead to:

Q —iyg —iA . 2k BeGrai
V= —F—— |t —-iVy2 ——— | h, 3.11
Y (Q+i7R—iA)u : VRK(—iQwR—A G-1D)
where
A=(x*-«) Zﬁkal,Bz, G = (—iQI- M)~ (3.12)
kil

Similar to the single-mode case, P7 -symmetry at y = « allows A = 0, hence the
cancellation of response delay exists for {d,}, and leads to a broadband amplification

of signal — noise remains white, while signal transfer function is proportional to .

Previous studies of 7 -symmetric systems [44, 45] highlighted the feature of
gain-loss balance, usually in the context of non-Hermitian Hamiltonians constructed
by eliminating the external degrees of freedom. In our case, if the b mode is
adiabatically eliminated, the ({4, }) and ({¢;}) modes would have balanced effective

loss and gain, respectively [36, 39].

3.2.3 Effect of Decoherence
Suppose the (4, b, ¢) modes have dissipation rates y,, ¥, and Y., to their baths
respectively, and have noises A%, ﬁﬁ, ni; entering in return. The effect of decoherence

can be modeled by adding dissipation terms —yy¥ and noise terms Zyyﬁé Y =
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a,b,c)toEq. (3.3):

4 =iah — kb — y,4 + 2y AL, (3.13a)
&N = xb =yl + \2y.AlE, (3.13b)
b =—(yr +vp)b +kd + y¢' + \2ygit + 2yp0k, (3.13¢)
where the noise operators ﬁs b in the baths are associated with spectrum Sﬁ be?

respectively.

Depending on the different nature of noise sources, the decay rate and noise
spectrum vary. For the laser interferometer type GW detectors, the arm cavity mode
@ and filter cavity mode b decay to optical baths with vacuum fluctuation noise,
while the mechanical mode ¢ decays to a thermal bath. For the Sikivie Haloscope
type axion detectors [19], all modes decay to thermal baths. There are two thermal
noise sources: Nyquist noise from the resonator (narrowband), and amplifier noise
characterized by noise temperature (broadband). If the quality factor Q of the axion
field is greater than that of the resonators, both noise sources may appear broadband.
In this sense, the noise temperature is approximately the ambient temperature at the

resonant frequency before tuning.

The thermal fluctuation of a mechanical oscillator is driven by thermal noise
from the bath attached to it[22, 46], and therefore the occupation number for ¢;
needs to be kpTeny/(hwy,), with Ty, being the bath temperature and w,, being the
mechanical resonant frequency. Noting that

ey L1

7 =c c+§, (3.14)

at thermal equilibrium, for j = 1,2 we have

T dQ kT,
S, ={(¢3) = (Ny +1/2 ~ —. 3.15
| Sesa =@ = iax e (.15)
Meanwhile, without optomechanical coupling,
2Ym ,
S, = —m_gbath, (3.16)

ETETS

where §P3M is the spectrum of the thermal bath attached to mechanical ¢ mode, which
is supposed to have white noise. Thus, the single-sided thermal noise spectrum

reads:
th — 2k B Tenv

17
¢ hw,, 3.17)
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It can also be derived from first-principal using Bose-Einstein distribution under the

high-temperature limit kgT.ny > hw,,.

In the scenario of GW detectors, we can assume the decoherence rates to be
low compared with the readout rate yg [4—6], and only consider the noise effect.
Different noise sources are uncorrelated with each other, and thus the effect of

decoherence-induced noise to the #-normalized spectrum is given by:
Si = [2vaSq +2yp(Q/K)°Sy; + 2y (x [x)*SE1/ @, (3.18)

where Sﬁb . are the spectrum of ﬁf; . baths. If ¢ is a mechanical mode with

b,
eigenfrequency w,,, quality factor Q,,, and is kept at temperature 7T,y, we have
Ye = Wn/(2Q,) and SP is given by Eq.(3.17). Even though S is much greater

than unity, y. can be much lower than optical relaxation rates.

3.3 Comparison with the unstable amplifier
In this section, we will carry out a more detailed comparison between uWLC and

sWLC. Specifically, we will analyze the problem from the perspective of control
theory [47].

In SWLC, the mode b is read out by being coupled to a continuum Wwe of in-
coming (¢ < 0) and outgoing (£ > 0) fields at & = 0, with V, = i\/mm;o +
f_ :o dé [iwgagwg +h.c.|. In uWLC, instead of B, the original detector mode d is
coupled to the continuum, as shown in Fig.3.2a. We shall use # and ¥ to denote
Wwo- and wo., the field right before entering and right after leaving. Thus, different
from sWLC having Eq.(3.3), uWLC has the following equations of motion in phase

quadrature:
Gy = ah — kby — yras + \2yrila, (3.19)
by = ks — y 2, (3.20)
&2 = =ymby = xba + \2ymia, (3.21)

where #i; and W, represent the phase quadrature of optical vacuum and thermal noise
respectively. As in Sec. 3.2.3, we ignore the mechanical loss rate and only consider
the thermal noise, the solution reads:
o —iypQ + (¥~ KD)Q - ixyr
2T YR+ (x2 — kKB)Q+ix2yg "2
2iVYR[(x* + Q2)ah + Ky \ymW2]
D+ i+ (2 - K)Q+ix2yr

(3.22)
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Here we have the s#-normalized shot noise given by

02+ X2 _ 2 2
7'%Jrgz( @+ x? )
Sehor () = . , (3.23)
2a°yR
and the h-normalized thermal noise by
262%  kgT,
Sthermal (@) = X =B (3.24)

a2(x2+Q%2 hQ,

The regime which we proposed before is to have yg/x < 1, and then « close to
X, and both much larger than Q, so that the bandwidth is broadened. We have,

approximately,
Ssnot(Q) ~ Yr/(20°), (3.25)

within the bandwidth of roughly

YR

From the viewpoint of control theory [47], the sSWLC and uWLC have different
feedback loops because of their readouts, as shown in Fig.3.4b. For sWLC, the
@ — b interaction forms the open-loop signal transfer (the plant) and the ¢ mode
contributes to the feedback gain (the controller) through the interaction with b,
which is proportional to y2. While in the uWLC case, the d@ mode itself forms the
plant, which is the same as the conventional detector, and the b —¢ together composes
the feedback controller. If we formally represent the plant transfer function as P and

the controller transfer function as C, the open-loop gain will be expressed as
G,=CP, (3.27)

and the closed-loop gain can be represented as

P
T 1-G,’

G, (3.28)

The stability of the system is determined jointly by the stability of open-loop gain
G, and the condition when G, = 11.

The C, P transfer functions of sSWLC and uWLC are shown inside the colored
box labeled by plant and controller in Fig. 3.4 b, and the open-loop gains can be

'In the convention of G = 1/(1 + Gy), the gain margin should be G, = —1.
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Figure 3.4: The comparison between sWLC and uWLC. a, Mode interaction
structure (same as Fig.3.2a). b, The feedback loops of two WLCs from the view-
point of control theory, with the color code of plant/controller boxes following that
of the interacting modes in a. For each kind of WLC, the straight line on the top rep-
resents the open-loop transfer function, while the polyline on the bottom represents
the feedback gain. For sWLC, the plant is formed by the & — b modes together, and
the mode ¢ forms the feedback controller through the coupling with 5. While for
uWLC, d itself is the plant and the controller is formed by the b — ¢ modes together.
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Figure 3.5: Nyquist Plot for the open-loop gain of sWLC (upper) and uWLC
(lower) based on Egs.(3.29) and (3.30). The numbers shown near the solid lines
with different colors are (y/(10yr), «/(10yg)) for sSWLC or uWLC. The solid lines
represent gains with Q taking real values from —co to +co. The dotted lines with
decreasing opacity are € taking real values from —co to +oco plus some increasing
values of the imaginary part, i.e., they represent the grid image of mapping from
the upper half of the Q complex plane. The system will become unstable if the grid
image encloses the 1 + 0 i point. The right-top inserts of four subplots on the left
are the zoom-in near 1 + 0 i. See the main text for more details.
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expressed as:

2

(sSWLC) _ X
Co T i 529
; 2
(UWLC) _ 1 —iQk
G, = TR (3.30)

The feedback gain of uWLC is intrinsically unstable and the instability will be
inherited by the whole system; while for sSWLC, the stability depends on the relation
between feedback gain and the open-loop transfer function, i.e., the condition of
reaching G, = 1, which is determined by the value of y/«x. The open-loop gain
maps the complex plane of Q to the image complex plane. If the image of any point
in the upper half of Q complex plane touches the 1 + 0 7 point, instability will show
up in the closed-loop gain. Nyquist plots for the open-loop gains of sSWLC and
uWLC with different y/« values are shown in Fig.3.5. In our case, it is indicated

that uWLC is always unstable, while sSWLC becomes unstable only when y/x > 1.

The connection to feedback control provides another viewpoint on system dy-

namics and it agrees with the pole trajectory analysis in Fig. 3.2 in terms of stability.

3.4 Application to laser interferometer GW detectors
3.4.1 PT-symmetric amplifier for GW detection

The sWLC can be implemented in a GW detector by making a simple modification
of the uWLC: changing the location of signal extraction, as shown in Fig. 3.1.
To incorporate motions of mirrors under radiation pressure, we need to modify
the interaction Hamiltonian to include £ and p of the differential mode of mirror
motion [26]:

Vow = —agw (& = Lh)ai + p*/(2p). (3.31)

Here agw = V2P hwo/(Lc) = VEwy, P, is the circulating power in the arm
(& 1is the energy stored in each arm), wp is the carrier angular frequency, L is

the arm length, and u = M /4 is the reduced mass of the differential mode (M is
the mass of each mirror). In Fig. 3.6, we plot quantum noise spectrum (including
radiation-pressure noise) for sSWLC and uWLC configurations with yg/(27) =
S500Hz, (x, x)/vr = (10,9.86). We use the LIGO Voyager [48] parameters M =
200kg, L = 4km, circulating power of 3MW and a 2-um laser wavelength. We
did not include the effect of optical losses, but did consider thermal noise of the ¢
oscillator mode, with Q,, ~ 8 x 10° and T = 4 K [22, 46], which is the most serious

source of decoherence in our scheme.
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Figure 3.6: Example of GW noise spectra for sSWLC and uWLC (both with
k/(2r) = 5kHz, x/(2r) = 4.93kHz) configurations, only accounting for quan-
tum noise and thermal noise from the mechanical oscillator ¢. The solid red (blue)
curve represents sSWLC (uWLC), with the dotted pink (cyan) curve showing the
quantum noise contribution, while dashed magenta (purple) curve shows the BAE
configuration that requires additional nonlinear elements. The quantum noise spec-
trum for conventional detector without optical loss is shown in green for comparison.
All plotted cases have the same carrier wavelength, arm cavity power, WLC ¢-mode
mechanical loss, thermal bath condition, and readout rate yg/(27) = 500 Hz.

Our proposal may also be realizable by inserting a nonlinear crystal into the
signal recycling cavity, and pump with the sum frequency of the carrier frequency

and another cavity mode [24, 49].

3.4.2 BAE with effective negative mass

Furthermore, a full 7 -symmetry can be designed to achieve back-action evasion
(BAE) by coupling mode ¢ to an ancillary mode (X, P) that has an effective negative
mass [50-52] —u, with Hamiltonian VeaE = —agwX¢é1 — P2/ (2u). Viewed more
broadly in the context of coherent quantum control theory [47]: we are attaching
a controller that consists of a time reversal of the plant, which, by canceling the
inertia of the plant, helps drive up the closed-loop signal gain [53]. We shall leave
the details of this for future work, but show their potentially achievable sensitivity
in Fig. 3.6, in magenta and purple curves; aside from quantum noise, we have
only included ¢-oscillator thermal noise. This significant potential improvement

motivates further studies in this direction [54, 55].
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3.5 Application to microwave axion detectors
3.5.1 Introduction of microwave axion detector

The Sikivie Haloscope type axion detectors [19] we considered are designed to
detect the weak conversion of dark matter axions into microwave photons in the
presence of a strong magnetic field. For an axion detector consisting a station-
ary magnetic field By and a single mode E,, of a microwave resonator, it can be

characterized by the following interaction Hamiltonian:

Vaxion = gayyﬂ/ d3X I::m(x) ’ BO(X) > (3.32)

where gy, is axion-photon-photon coupling constant, A is the axion field (with
negligible spatial variation), and E,,(x) = E,,(x)(d + a")/V2 is the electric field
operator of the microwave mode, with (4, dT) being the annihilation and creation
operators, and the mode function E,, (x) satisfying / E2 (x)d?x = 4mhw, with wy
being eigenfrequency of the mode.

Using wy as carrier frequency, we can rewrite Eq. (3.32) as:
Vaxion = aaxion(lplél + \PZaA2)- (3.33)

Here d; , are the mode quadratures of the electric field, ¥; = (¥ + ¥*)/ V2, ¥,
(¥ — ¥*)/(V2i) are two quadratures of the oscillations of the axion field, A(r)
W(t)e ! + W* (1)@’ The coupling coefficient are defined as:

Qaxion = 47T77gayy VhwoEp, (3.34)

where &p 1s the energy of magnetic field, and 7 is the overlap between the static

magnetic field and the cavity mode:

n:/Em(x).Bo(x)d3x/[/|Eﬁ1|d3x-/|B%|d3x]l/2. (3.35)

Note that wy is the central frequency at which the device operates, and it needs to
be scanned over different values to search for the yet unknown Compton frequency

of axion.

We then discuss the figure of merit for axion searches [56, 57] — the effective scan
rate. As shown in Fig. 3.7, the broadband search for axion’s Compton frequency
requires many different such data stretches with duration 7 = I ;‘1, possibly using

different detector configurations. Let us divide the entire bandwidth of I" into
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Figure 3.7: Illustration of the axion search. The entire bandwidth I" is divided
into bins with width I'4, and to be covered by a (large) number of detectors (three
shown in the figure, in terms of their 1/Sy(Q)). Each bin can get contribution from
multiple detectors; for example, the highlighted bin is covered by both detectors 1
and 2.

discrete angular frequencies separated by I'4, which we label as A;, j = 1,2,...,n,
with
n=T/T4. (3.36)

We shall approximately view the search as to be carried out independently for each

of these bins.

Our requirement is that for the same fiducial axion amplitude Ag (eventually the
minimum detectable axion-field amplitude), we can cumulate at least /otzh for each
axion frequency bin. Note that to achieve the same statistical significance, ptzh should
increase as the number of bins (hence the independent trials) increase, but rather
mildly. Let us make a very crude estimation. Regarding our problem as having
n = I'/T'4 independent trials, an overall false-alarm probability of € requires each
bin to have

pra = €/N =€y, /T". (3.37)

In absence of axion field, in the ideal situation, each p satisfies an exponential

distribution, which means
P ~ Nog(eya /DI, (3.38)
which indeed depends very mildly on the number of bins.
For each run, let us assume that we have a noise spectrum of S;(€). For bin j,
we perform

2
+

2

. T . T .
z}”;' /0 2(1) cos Ajtdr /0 29(1) sin Ajedr (3.39)
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()
J
term with amplitud Ag and unknown phase ¢o. Thus we have (up to numerical

Here z;(t) = nj(t) + Agcos(A;t + ¢o) where the second term is a fiducial axion
factors):
(ZVy = 212+ S;(A)T,  VarZD) = $2(A)T?. (3.40)

It is the A( contribution to the expectation of Zﬁj ) that we are aiming to detect. We
do this by combining multiple observations. If we assign coefficient cgj ) for the J

observation, we will obtain

e L (3.41)
.Y
and the total SNR squared we get for the j-th bin is given by
, AST?
N? = 0
[pV]" = : (3.42)
ZJ: S7(A)

If we focus on each detector J, the figure of merit for axion detection should be

counted by the integral of total SNR squared:

1
/ %dQ, (3.43)

which is called the effective scan rate. We will use that to optimize the amplifier for

axion detection in the following section.

3.5.2 PT-symmetric amplifier for axion detection

The circuit diagram that can realize Hamiltonian (3.2) for axion detection is
shown in Fig. 3.8 a. The parametric amplification can be realized by a 3-wave mix-
ing device [58-60]; sSWLC corresponds to having 5 mode coupled to the external
continuum (“sWLC readout” in the figure), while uWLC corresponds to having a
mode coupled to the external continuum (“‘conventional/uWLC readout” in the fig-
ure). For conventional readout with x = 0, the circuit is reduced to be a conventional

detector.

Bode plots of the signal transfer function, i.e., from ¥ to v, in sWLC and con-
ventional schemes are shown in Fig. 3.8 b. From the feedback control viewpoint
discussed in Sec. 3.3 and in Fig. 3.4, the y = O lines represent the open-loop sig-
nal transfer function of sSWLC, while the y/x = 0.995, 1, 1.005 lines represent the
closed-loop ones. Note that the system is unstable for y/« = 1.005 > 1, shown
by the light blue lines, where the phase of signal transfer function decreases with
frequency around the resonance near DC, which is different from the red lines with

monotonically increasing phases.
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Figure 3.8: Microwave axion detector and the Bode plots for signal transfer
functions. a, Circuit diagram of an axion detector (dashed box on the right)
attached to a quantum amplifier (dashed box on the left). The parametric amplifier
is achieved by Josephson 3-wave mixer indicated by the X symbol in the figure, with
®(¢) indicating time-depending external flux that act as parametric pumping (see
Figure 9 of Ref. [59]). Coupling “sWLC readout” to a continuum results in a sWLC,
while keeping “conventional/uWLC readout” coupling to a continuum results in
uWLC, and for comparison, using “conventional/uWLC readout” without coupling
to “quantum amplifier” results in a conventional detector. b, Bode plot of the transfer
function from “signal” to “sWLC readout” with k = 10yg and y; = 0 (lossless),
with the black lines representing signal transfer function of conventional detector for
comparison. Note that the light blue lines represent an unstable parameter setting
in sSWLC scheme.



81

We will consider one axion field quadrature ¥; and account for squeezed vacuum

~2r  'We also assume the same loss rate

injection with spectral density Sz,;, = e
y, for @, b, and ¢ modes, assuming vacuum noise from each bath, and propagate
these noise contributions to the output by applying Eq. (3.13) to Egs. (3.3) (with &
replaced by W), leading to the W;-referred noise spectrum Sy (€2). For the figure
of merit of axion detection, we shall use the effective scan rate [56, 57] as discussed
in Sec. 3.5.1:

+00

R, = dQ/(2m)S¢ (Q), (3.44)
0

which is inversely proportional to the search time, assuming the axion field’s coher-
ence time to be very short compared with observation time, and no additional time
cost when switching between configurations centered at different frequencies. In
comparison with the EQL in Eq. (3.1), the effective scan rate favors peak sensitivity

more than bandwidth.

Considering the losses, numerical optimization is carried out on R : for values of

=2 search over «/y; and yg/yr. to achieve an optimal

x/vL and squeezing factor e
R4, and compare it with that of a single-cavity detector with the same y, (for which
the optimal yg/yr is 2 [56]). As shown in Fig.3.9, y improves R, substantially,
and in a way compatible with squeezing. The uWLC cases optimized with the same
procedure but showing less improvements are plotted for comparison. We also plot
the noise spectra of several configurations, which improve the scan rate R, (3.44) by
substantially broadening the detector bandwidth, thereby requiring far less switches

between different central frequencies.

3.6 Discussion

We proposed a quantum amplifier that can be attached to an existing sensor as a
coherent quantum feedback device, and improve its sensitivity-bandwidth product.
The improvement is achieved via signal amplification, and therefore, is robust against
readout losses. The sensitivity gain has an interesting connection to £7 -symmetry:
a mode b is coupled to the original sensor modes {4 1, as well as auxiliary modes
{¢,}, which is time reversal to {d;}; furthermore, the readout is carried out from
mode b which is the only one that couples to the continuum, and thus, coherent
noise cancellation is achieved when the couplings to original and auxiliary modes
match. Such a strategy can be used to substantially improve the sensitivity of laser
interferometer gravitational-wave detectors and microwave axion detectors. We

analyzed different figures of merit, Eqs. (3.8) and (3.44), for the two detector schemes
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Figure 3.9: Sensitivity improvement for axion detection. a, The enhancement of
effective scan rate R, achievable by sSWLC (black solid lines) and uWLC (red dashed
lines) axion detectors over the single-cavity one, as a function of the amplifier gain
x and squeezing factor e=%", optimized over the rate of d-b coupling « and readout
coupling yg. b, Examples of single-cavity (SC) and sWLC noise spectrum with
R,-optimized «, yg for different y and input squeezing levels (sqz) e=>" shown by
color dots in a. Note that all couplings are shown in the unit of the generic loss rate

YL-
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respectively. Furthermore, in optomechanical GW detection, a more complete P7 -

symmetric structure for back-action evasion is proposed using fictitious negative

resonance. We leave the more detailed study to future work.
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Chapter 4

OPTOMECHANICAL REALIZATION OF PT-SYMMETRIC
INTERFEROMETER

Quantum noise limits the sensitivity of precision measurement devices, such as laser
interferometer gravitational-wave observatories and axion detectors. In the shot-
noise-limited regime, these resonant detectors are subject to a trade-off between
the peak sensitivity and bandwidth. One approach to circumvent this limitation in
gravitational-wave detectors is to embed an anomalous-dispersion optomechanical
filter to broaden the bandwidth. The original filter cavity design, however, makes
the entire system unstable. Recently, we proposed the coherent feedback between
the arm cavity and the optomechanical filter to eliminate the instability via PT-
symmetry [1]. The original analysis based upon the Hamiltonian formalism adopted
the single-mode and resolved-sideband approximations. In this study, we go beyond
these approximations and consider realistic parameters. We show that the main
conclusion concerning stability remains intact, with both Nyquist analysis and a

detailed time-domain simulation.

4.1 Introduction

The detection of gravitational waves (GW) from a binary black hole merger in
2015 [2] opened a new window of astronomy observation. Binary black hole systems
have so far been the most commonly measured GW sources [3, 4]. The demand for
extracting richer properties of the ringdown stage [5-9], as well as other astrophysi-
cal processes that produce pronounced gravitational waves at high frequencies, e.g.,
the binary neutron star mergers [10—12] and core collapse supernovae [13—15], calls
for the broadband and high-frequency sensitivity of gravitational wave detectors.
For current advanced detectors and even future detectors including Einstein Tele-
scope [16, 17] and Cosmic Explorer [18], the quantum shot noise limits the detector
sensitivity from a few hundred Hz to kilo Hz[19]. Similarly, recently proposed
detectors of axion-like-particles in the galactic halo suffer from the photon shot

noise across their sensitivity bands [20-23].

In the canonical interferometer configuration [24], resonant arm cavities are used
to increase the relative signal strength by effectively extending the length of the

detector via repeated reflections of the optical field. However, the positive dispersion
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of the arm cavity makes the signal at higher frequencies no longer resonant. This
leads to an inverse relationship between the peak sensitivity and bandwidth of
the detector, known as the Mizuno limit[25]. This can be traced back to the
energetic quantum limit [26, 27], which is also called the quantum Cramer-Rao
Bound (QCRB) [28], and is therefore limited by the quantum fluctuation of the
intracavity light field [29].

One approach to broaden the bandwidth without sacrificing peak sensitivity is
to attach a negative-dispersion optomechanical filter cavity to the arm cavity [30],
which can compensate for the phase gained in the arm cavity and thus resulting in
a white light cavity effect. However, such a scheme is dynamically unstable and
thus an additional stabilizing controller must be implemented. We will call this
unstable white light cavity scheme as uWLC for short. In the original proposal [30],
in addition to the filter cavity, there are several auxiliary optics, either for impedance
match with the input mirror of the arm cavity or for steering the field to the filter,

which leads to a rather complex setup.

In a later study[31], it was found that converting the signal-recycling cavity
(SRC) into the optomechanical filter can lead to bandwidth broadening with a
much simpler optical layout, as illustrated in Fig. 4.1. The parameter regime
considered [31], however, still leads to an unstable system. We recently realized
that, when the optomechanical interaction strength is smaller than or equal to the
coupling frequency between the arm cavity and the filter cavity, the system will be
self-stabilized [1]. More interestingly, the peak sensitivity is improved together with
the bandwidth, not due to squeezing but a significant enhancement of the signal
response. We shall call this stably operated white light cavity scheme as sWLC for
short. So far, the sSWLC scheme has only been analyzed using the Hamiltonian in
the single-mode and the resolved-sideband approximation [1, 31], which treats the
arm cavity signal field, the mechanical oscillator, and the field in the filter cavity as
single modes, separately. The stability issue of the system is based on the poles of
the resulting input-output relation [1]. One natural question to ask is, whether the
stability and sensitivity improvement remain valid when these approximations are
removed by considering realistic parameters. Answering such a question defines the

theme of this work.

Note that in the low-frequency band (below 40Hz), quantum back-action in the
main interferometer will further restrict the sensitivity, because the radiation pressure

force from the strong field would interact with the test mass. Throughout the chapter,



91

p o ]
) + Wi

Figure 4.1: A schematics of the interferometer configuration with the signal-
recycling cavity (SRC) as the optomechanical filter. Both the main arm cavities
and the SRC resonant at wq, but they have different free spectral ranges due to the
different cavity lengths. One of the mirrors in the SRC acts as the mechanical degree
of freedom that resonant at w,,,. It couples to the signal sidebands around wq via
the radiation pressure due to the blue detuned SRC pumping field at wg + w,,. Note
that wy,,/w, = 1, with slight difference caused by the optical spring effect due to
the blue-detuned pumping (will be explained later near Eq. (4.17)). ITM: input test
mass, SRM: signal-recycling mirror.

we will be focusing on the shot-noise-limited sensitivity, leaving the consideration

and cancellation of back-action noise for future studies [1].

The outline of this chapter goes as follows: in Sec. 4.2 we revisit the idealized
Hamiltonian dynamics and stability requirement, and introduce the full analysis
method beyond the single-mode and resolved-sideband approximations. In Sec. 4.3,
we solve the system dynamics in the frequency domain. We also analyze the stability
using the Nyquist criterion and show the resulting sensitivity. In Sec. 4.4, we carry
out a detailed time-domain simulation, and show the agreement with the frequency-
domain analysis. Finally, in Sec. 4.6, we summarize our results and discuss further

possibilities.

4.2 From single-mode approximation to full analysis
In this section, we will first recap the idealized Hamiltonian dynamics under the

single-mode approximation as analyzed in Refs.[1, 31] for the sWLC, and also
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revisit the stability requirement. We will then introduce the analyzing framework
considering the realistic setup, by abandoning the approximations applied in the
previous treatment. The detailed analysis in the frequency and time domain will be

carried in Sec. 4.3 and 4.4, respectively.

The idealized sWLC mode interaction in the rotating frame of frequency wy, as

illustrated in Fig. 4.2, can be described by the following Hamiltonian:
Hi =ihwg(ab" —a'h) +ihG(b'¢" - b é), 4.1)

with @, b, ¢ being the quantum operators of the differential optical mode of the
arm cavity, the SRC (i.e., the filter cavity) optical mode, and the mechanical mode,
respectively. Here w; is the beam-splitter-type interaction strength between mode
@ and b, and G describes the optomechanical interaction strength between mode b

and mode ¢é.

Considering the GW strain signal input 2 with coupling strength «, as well as
the coupling to the external bath b;, with rate y [32], we obtain the Heisenberg
equations of motion for the three modes:

4(1) = —w,b(1) + iah(r)
(1) =G b(r), (4.2)
b(t) = —yb(t) + wsa(t) + GE' (1) + 2y bin(1) .

with outgoing field given by bou (r) = —bin(7) + /2y b(z). The above equations can
be solved in frequency domain via Fourier transform:

o0

mm:¢wm5/'mﬂ%m, (4.3)

—00

where Q is the sideband frequency in the rotating frame of frequency wg, and o
represents d, b, ¢, or ISin,out. The resulting solution for the outgoing field is:
iQ(y +iQ) — G? + w? .
. . 2 2 bln(Q)
iQy —iQ) +G* — w;
i2y wsa
iQ(y —iQ) + G2 — w?

Eout(g) =

h(Q) . 4.4)

Interestingly, regardless of the value of G and wy, the outgoing field is not squeezed,
as the modulus of input-to-output transfer function remains equal to unity. The

signal is contained entirely in the phase quadrature [33, 34] defined as Y = (Bout -
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Figure 4.2: Idealized mode interaction structure of the optomechanical system
illustrated in Fig. 4.1. (a) The sWLC scheme. Here a represents the differential
mode of the arm cavity which couples to the GW strain /, b represents the SRC
(filter) mode, and ¢ represents the mechanical mode of the suspended mirror. The
coupling between @ and b (b and ¢) is characterized by wy (G). Mode b is coupled
to the external ingoing field Ein, which carries the vacuum noise, and the outgoing
field by, which carries the signal and will be read out. (b) The uWLC scheme for
comparison. In the intracavity readout scheme presented in Ref. [30], the external
fields couple to the arm cavity mode d, rather than the filter cavity mode b. (c) The
frequency-domain mode structure under single-mode (for both 4 and b) and resolved
sideband (for b) approximations. The parametric interaction b¥¢" is realized by the
optomechanical coupling under blue-detuned pumping by the mechanical resonant
frequency. Note that all mode operators are defined in the rotating frame of frequency
wo, and Q is the sideband frequency with respect to it.

Ezut)/ (V2i). The resulting signal-referred shot noise spectral density when mea-
suring the phase quadrature is given by
Q¥+ (G? - wi +Q%)?

4.5
dywia? (4.5)

Shn(Q) =

The sensitivity given different relations between G and wy is plotted in Fig. 4.3.
One interesting case is when G = w; where the noise spectral density vanishes at

DC as the signal response diverges:

_QHQ+9Y)

Shn(Q)|G=w, = (4.6)

dyw3a?
The system stability, as analyzed in Ref. [1], is determined by the poles of the transfer
function in Eq. (4.4), i.e., the roots of

iQ(y —iQ) +G* —w? =0. 4.7)
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Figure 4.3: The signal-referred shot noise spectral density for different optomechan-
ical interaction strengths G. Different curves are plotted based on Eq. (4.5) with the
relation between G and w, shown near each line.

When the imaginary part of any root becomes positive, the system becomes unstable.
The locations of roots are determined by the relation between G and wy. It can be
proven [1] that whenever G is equal to or less than wy, there is no unstable root. The
critical point happens when G = wy, and there is a pole at DC, which is consistent
with the resulting signal response being infinite at DC, as can be seen in Eqgs. (4.4)
and (4.6). To summarize, under the idealized Hamiltonian, the system is stable with
G < wy and at the same time, the shot-noise-limited sensitivity will be improved.
In the following content, we will show that these features will remain intact even

after we relax the approximations applied in deriving the idealized Hamiltonian.

In terms of the physical parameters described in Table 4.1, the two approxima-
tions to produce the idealized Hamiltonian in Eq. (4.1) are: (i) the single-mode
approximations, i.e., QLym/c < 1 and 2w,,,Lsrc/c < 1, which treats the arm
cavity and the filter cavity as single modes each described by an annihilation oper-
ators @ and b, and (ii) the resolved-sideband approximation, i.e., Wy, Lsrc/c > v,
which treats the mechanical sidebands around wq as a single operator ¢, ignoring
the higher sidebands around wq + 2w,,, that should be involved in the interaction
between the blue detuned filter cavity and the mechanical oscillator. Note that all
the parameters wy, G, @, vy used in Egs. (4.1)—(4.7) above are effective parameters,
that can be approximately expressed in terms of the physical parameters. Under the

single-mode and resolved-sideband approximations, the mode interaction strength
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Table 4.1: A list of parameters and nominal values

Parameters Description Value
Lam arm cavity length 4km
Pam arm cavity power 800 kW
Titm ITM power transmissivity 0.5%
Lsrc SRC length 40m
Tsrm SRM power transmissivity 0.02

Py filter cavity power 6.4 kW
A laser wavelength 1064 nm
m oscillator mass 10mg
Wy [ (270) mechanical frequency 10° Hz
Onm mechanical quality factor oo 1

ws and G can be expressed as:

¢ VIrrm G 8n Py 4.8)

Wy = —————, ,
2 LamLsrc m A Wy Lsrc

where Pj is the power of the filter cavity pumping field that impinges on the
mechanical oscillator. Also, the signal coupling strength @ and the SRC cavity

half-bandwidth (i.e., the decay rate, or bath coupling rate) y are defined as:

o = /M, y = ¢ Tsrm ) (4.9)
C 4LSRC

For the full analysis, we adopt the approach in Ref.[24] by propagating the

fields through the interferometer and taking into account their interactions with the
mechanical degree of freedom via the radiation pressure. As all optical elements
are axisymmetric, for simplicity, the optical fields can be treated as 1D propagating

ones along the optical axis. At each location, the optical field is represented as:
E(t) = 6(t)e™™ + 6T (r) ' (4.10)

where () can represent d(7) and b(¢), the slowly-varying field operators in the
rotating frame of wq for the light inside the arm cavity and filter cavity respec-
tively. We can define sideband operators d(w) and b(w) via Fourier transform as
in Eq. (4.3), but for a large sideband frequency w up to the order of w,,,. Note
that so long as w < wy, the slowly-varying operators in time domain and sideband

operators in frequency domain will be well-defined.

'We effectively remove the mechanical damping to highlight that the system can be self-stabilized
without additional damping mechanism.
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Figure 4.4: The fields involved in the complete analysis of the scheme shown in
Fig. 4.1. The right figure is a simplified version of the left one when only looking at
the differential mode of the two arms, which is adopted in the analysis in the main
text. In the right figure, the sign convention for the mirror reflectivity is also shown.
The arm cavity and the SRC length are both tuned to be integer numbers times the
wavelength of the carrier at frequency wy.

The relevant fields fully describing the scheme in Fig. 4.1 are illustrated in Fig. 4.4.
We will focus on the differential mode of the two arm cavities, and the right panel of
Fig. 4.4 shows the simplified representation considered here. We assume both the
arm cavity and the SRC are tuned such that the cavity lengths are integer numbers
times the wavelength of the carrier at frequency wg. Since we are looking at
the linear dynamics, the equations of motion will only involve linear terms of the
sideband operators. The Heisenberg equation of motion is formally identical to the

classical Maxwell equation. The field operators are described by the following set
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of equations:
a1(1) = VTirm b3 (1) + VRirm d2(1) (4.11a)
(1) = a1 (1 = Tarm) + 2ikoAarm Larmh (2) , (4.11b)
ba(t) = \Tirm ax(t) = NRrow b3(1) (4.11c)
by (1) = ba(t — Tsre/2) + 2ikpApe "m0’ £ (1), (4.11d)
bs(1) = by (1 — tsre/2) + 2ikpApe 0’5 (1), (4.11e)
b1 (1) = NTsrum bin(t) = \Rsrm b(1) , (4.11)
bou(t) = \Tsrm b2(1) + VRsrm bin (1) - (4.11g)

Here the round-trip delay times are defined as Tarm = 2Larm/c and Tsge = 2Lsrc/c,
for the arm cavity and SRC respectively. The two cavities are pumped with frequency
wo and wg + wp,, With wave vectors being ko = wo/c and kj, = (wo + wy,)/c = ko
(wo > wy,) respectively. The steady-state field amplitudes A, and Ay are given

by Aarm = VParm/(2hwg) and A, = v/Pp/2hwo. The mechanical motion is driven

by the radiation pressure in the presence of the blue-detuned pump field:

. : Fraa(t)
P A 2 A _ Prad
X(1) + ymx (1) + w,, X(1) = — (4.12)
where the radiation pressure Faq reads:
A 2hwoAr A N
Fraa(t) = 2202 giomyt [y (1) + by(1)] +hoc. (4.13)
c
The displacement operator X is related to the mechanical mode operator ¢ by:
N h A —iwmyt | At iWmg !
x(t) = [c(t)e mot + &' (t)e'mo ] . (4.14)
2mwy,

4.3 Frequency-domain analysis
In this section, we will solve the system dynamics in the frequency domain, and

analyze the stability using the Nyquist criterion [35].

4.3.1 Formalism
In the frequency domain, Egs.(4.11a)—(4.11g) can be converted into algebra
equations in the matrix representation. For the slowly-varying field operators defined
in Eq. (4.10), we apply the time-shifting relation in the Fourier transform of optical
modes, i.e.
Flo(t—71)] = 6(w)e’T for6 =d and b, (4.15)
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Figure 4.5: Coupling between the optical modes and the mechanical modes rep-
resented in frequency domain. (a) Without optical spring compensation, the para-
metric interaction will be shifted by a small frequency (not to scale) which will
greatly ruin the designed filter response. (b) With optical spring compensation, the
correct sidebands are coupled. It is achieved by making the value of blue-detuning
to be slightly larger than the bare mechanical resonant frequency, as described in
Eq. (4.17). Insert: the best scenario for resolved-sideband is to set 2w,, around half
FSR;. It will make w,, larger than y, as much as possible and, at the same time,
make the influence from the higher FSR as little as possible. (c) The full circulation
loop within the signal channel (sidebands around wy, represented by the red box
in the upper panel) and the idler channel (sidebands around wg + 2w,,, represented
by the blue box in the lower panel). The idler channel is ignored in the idealized
Hamiltonian analysis.
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to connect propagating light inside the cavities, where w is the sideband frequency
in the rotating frame of wg. The Fourier transform of the mechanical mode in the
filter cavity reads:

Fle m'%(1)] = £(w — Wpy) - (4.16)

With the w,, blue-detuned pumping, the optomechanical interaction will couple
the optical sidebands at frequency w = +Q (Q < wy,) with the sidebands at
w = 2w, F Q. As mentioned in Fig. 4.1, the value of w,, is slightly different from
the mechanical resonant frequency w,,,. The difference is caused by the optical

spring effect,
Ppwo

2mw,, 21y

(4.17)

Wm = Wy +

when we consider the realistic scenario beyond the resolved-sideband approxima-
tion. As illustrated in Fig. 4.5 (a)—(b), when there is optical spring, the parametric
interaction will be shifted by a small frequency, causing the demanded sidebands
not to be correctly coupled. As our system works near a critical point of PT symme-
try [1], the effect of a rather small optical spring effect is fairly important and needs

to be carefully compensated.

As illustrated in Fig. 4.5 (¢), the sidebands around w( are named as the signal
channel, and the ones around wq + 2w,, are named as the idler channel. We will
first treat the filter cavity as an effective mirror, obtain the transformation relation
for signal and idler channels, as well as mixing between the channels, and then
combine it with the circulation loop of the arm cavity. As the filter cavity is pumped
with frequency wg + wy,, for convenience, we temporarily use 6(@) to represent the
sidebands in the rotating frame of wg + w,,, where 6 can be a or b, and @ is in
the order of magnitude of w,,,. The input-output relation of the filter cavity can be

represented as follows:

Bout(d)) Bin(d))
bl (-&) N | B (~o)
out = Mijer in : 4.18
i) (@) (@) @) (19
al(-@) al(-@)

where Mijer(®) is determined by the optomechanical interaction and the field

circulation inside the filter cavity.

Before connecting the filter cavity to the main interferometer, let’s comment on

the required functionality of its transfer function in the full circulation loop. Notice
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that in the lossless case, the open-loop circulation in the arm cavity will result
in a phase delay, without harming the amplitude. Thus, we expect the feedback
gain provided by the signal channel reflection d;(2) — @»(£2) to compensate
that effect by providing the same amount of phase advance with an amplitude
1. For the phase advance, we require 4woP s/ (Mmwmc*Titm) = ¢/ Lam [30] and
optical spring compensation to correctly amplify the demanded sidebands. For the
physical parameters shown in Table 4.1, the optical spring leads to a shift of the
mechanical frequency by around 77 Hz. In the actual simulation, this value will be
compensated numerically to avoid any tiny discrepancy. The influence of optical
spring in the signal-referred shot-noise and stability will be analyzed in the following
Sections 4.3.2 and 4.3.3. The other requirement is that the amplitude of reflection
should be 1, as we want the idler channel to mix with the signal channel as little
as possible. The best scenario for that purpose is to set 2w,, around half FSR;, as
shown by the insert of Fig. 4.5 (b). It will make w,, >> 7y, as much as possible and,
at the same time, suppress the higher FSR from amplifying the idler channel. In
addition, we want the mechanical loss to be as small as possible, as the filter cavity
contains a parametric process and thus the mechanical loss will ruin the reflection

amplitude.

By setting @ = Fw,, + Q, we can extract relevant matrix components to compose

the transformation matrices for the optical fields outside the filter cavity:

bou(Q) | bin(Q)
bl (2wm - Q . bl Qwy, — Q
°“t(A a()g) ) = Miiter (—wm + Q) ‘“(fu(n;z) ) , (4.19a)
ai a
| 4] Qwn-Q) | al (2w, — Q)
— Bout(za)m +Q) - Ein(—.Q.)
bl (-Q . bl 2w, —Q
R A Miiter (W +Q) | " (~ “ ) (4.19b)
a1 2wy + Q) a(—Q)
aj(-Q) | al(2wm — Q)
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For simplicity, we define M: = Mijer(Fw,, + Q) and thus have:

Rua(Q) =

Tab(g) =

Ry (Q) =

Tba (Q) =

[ M33, 0, 0,
0, MM ™

0 M3,4 M3,3

’ + +
Mi’3, 0’ 0’
[ M3, 0, o0,
0 M4,2 M4,1

D) + +

0 M3,2 1\7[3’1

D) + +
Mi’l’ O’ O’
[ MY0, o
0 MZ,Z M2,1

’ + +

0 MI,Z Ml,l

D) + +
M%’l, 0’ 0’
(M3 0, o
0 M2,4 M2,3

D) + +

0 M1,4 1\7[1’3

D) + +
M2 0, 0,

N34 |
0

, (4.20a)
, (4.20b)
, (4.20c)
, (4.20d)

where R,,(Q) represents the d, — a; reflection, T,;(€2) represents the by — a4

transmission, R, () represents the bin — by reflection, Tpa(Q) represents the

Gy — by transmission. Thus, the effect of filter cavity on the optical fields can be

expressed as follows:
ai(€)

al(-Q)
a1 Qwy, + Q)

42(Q2)
aAQ(_Q)

a’\;(zwm - Q) ]

bou(Q)

BZut(_Q)
bout(2wm + Q)
bl (2wn - Q) |

=Ry, (Q)

4> 2wy + Q)
al 2wy, — Q)

[;in(Q')
biy(-9)
binQwm + Q)
| b Qwn - Q)

+ Tab(g)

+ Tba(Q)

Bin(Q)
pT
. bin(_g)
binQw,, + Q)
l;:n(Zwm - Q) ]
(4.21a)
Q) |
AT
a2(_Q)
ar 2w, + Q)
a3 (2wm - Q) |
(4.21b)

In the idealized analysis in Secion. 4.2, the idler channel was ignored under

resolved-sideband limit.

The full analysis here will keep both signal and idler



102

channels. Further linking the filter cavity to the main interferometer, propagation in
the arm cavity will be considered for both channels to form a closed-loop transfer
function. GW strain signal will be added to the signal channel in the arm cavity and

the final input-output relation takes the following form:

8Ol.lt(S2')
bl Cwn, -Q)

Bin(g)

Bt (2w, - Q) +v(Q) h(Q), (4.22)

- M(Q) [

where M(Q) is a 2 X 2 matrix describing the transformation of the ingoing field
to the outgoing field, and v(Q) is a 2 X 1 column vector describing the response
of the outgoing field to the GW signal, with the v(€)>! component describing the
signal leading into the idler channel 13;(20),” — Q). The exact expressions for M(€)
and v(€) are quite complicated, and in the subsection that follows, we will use the

quantum noise spectral density to illustrate their frequency dependence.

4.3.2 Noise spectral density
The resulting noise spectral density from the full analysis is shown in Fig. 4.6 and
Fig. 4.7.

In Fig. 4.6, the optical spring effect is shown to play an important role in modifying
the sensitivity. As analyzed in Sec. 4.3.1, if left unattended, the optical spring will
cause an additional resonance in the sensitivity via shifting the central frequency
of signal sidebands in the filter cavity response. After compensating such a shift,
the full analysis and the idealized Hamiltonian analysis produce a similar result for
most of the frequencies, given the same set of parameters. However, they start to

deviate at low frequencies, where the full analysis shows a higher noise spectrum.

The deviation from idealized analysis is because of the coupling to the idler
channel at low frequencies, as shown in Fig. 4.7, where a larger amount of signal
will leak to the idler channel than what is output in the signal channel. Thus, the
idler channel has a much better sensitivity at low frequencies. We can extract the
signal information contained in the idler channel either by using the heterodyne
readout with the pump field at wg + w,, as the local oscillator or using an additional
at wo + 2w, for the homodyne readout of the idler channel. We will discuss the
details about the additional homodyne readout scheme in Sec. 4.5, and show the

final sensitivity by optimally combining the two readout schemes.

As we will show in Sec. 4.3.3, the parameters in Table 4.1 are within the stability
regime. Therefore, we can indeed obtain sensitivity improvement without sacrificing
the stability.
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Figure 4.6: The signal-referred shot-noise spectral densities from the full analysis
(red and blue) in comparison with the one obtained from idealized Hamiltonian (red

dotted curve). Compensating the frequency shift of the mechanical oscillator due
to the optical spring effect has a significant influence on the sensitivity.

10—22»

—— Idler channel
F— Signal channel

- T ] R Idealised Hamiltonian

- i G=0

iy

E L

210724}

63 N oo

10—25 R L e NN
10° 10! 10 10° 10*

f (Hz)

Figure 4.7: The noise spectral density for the idler channel, which can be read out
by using a local oscillator at wo+2w,y,, (blue), in comparison with the signal channel

(red). At low frequencies, the signal information contained in the idler channel is
even more than that contained in the signal channel.
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4.3.3 Stability analysis

In this section, we use the Nyquist technique [35] to analyze the system stability.
The criterion is a diagrammatic approach to test the stability of a system by only

using the open-loop transfer function, even with delay.

In the idealized analysis in Sec. 4.2, G = w; defines the boundary for stability.
Further increasing G through increasing the pumping power of the filter cavity will
destabilise the system. In the full analysis when the idler channel is also included, we
have a more complicated multi-input-multi-output (MIMO) system. In the sideband
picture, given the 2-dimensional open-loop transfer matrix Mop (L), the real and
imaginary part of the determinant of I + Mo (Q2), where I is the 2-dimensional
identity matrix, should not enclose the origin of the complex plain. This is limited
to the case where Mqp (Q) does not contain elements that have unstable poles, and
we therefore also need to be careful about the point where to extract the open-loop
transfer function, even though the stability of the final closed-loop transfer function
is independent of such a choice. We choose the interface near ITM as highlighted
by the red dashed line on the right panel of Fig. 4.4, where the top part is the arm
cavity and the bottom consists of the mechanical oscillator and SRM.

The open-loop and the closed-loop transfer matrices in our case are:
MoL () = Mopt(@)Mea (Q),  Mcr(Q) = (I+Mor (@) ™" (4.23)

The optomechanical transfer matrix My (£2) is defined as:

. T Toot + VR
Mopi(Q) = €'/ i R (4.24)
—VRsrM — Topt  —2VRsrM — Topt
where 5 5
i(1 + VRsrM) g TSRC W,
F- = —+/R + . 4.25
P VSR S [ Q = 2) + iy (@ = )] 42
Similarly, the passive cavity propagation matrix is:
Teav (L 0
M@ = | 7 , (426)
0 Ty Qe — Q)
where 0
BeTarm _ /R
Tear(Q) = — L (4.27)

1 - eiQTar"”/RITM

In Fig. 4.8, we show the resulting Nyquist plot for the nominal parameters in

Table4.1. Because the mechanical frequency is not an integer number of the FSR
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Figure 4.8: The plots for the determinant of the open-loop transfer matrix, given the
nominal parameters. The left plot shows the case without compensating the optical
spring, while the right one has the optical spring compensated and the contour
does not enclose the origin. The opacity of the curve is intentionally made smaller
when the magnitude of the frequency is large, which is to highlight the relevant low
frequencies.
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Figure 4.9: The plots for the determinant of the open-loop transfer matrix for G = wj
(left) and G = 1.01 wy (right), both with the optical spring shift compensated. For
clarity, we only show a tiny regime around the origin, but we have checked that only
the right plot has the origin enclosed when zooming out.
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of the arm cavity, the contour is quite complicated due to the phase factor ¢« Tam

of the idler channel. Nevertheless, we only need to check whether the origin is
enclosed or not to make a firm claim on the stability, while the complex feature of
the contour does not matter. It turns out that, compensating the optical spring shift
not only has a significant impact on the sensitivity, as shown in Fig. 4.6, but also
on the stability. As shown in the plot on the right-hand side of Fig. 4.8, with the
nominal values for the parameters, the system only becomes stable after the optical
spring shift is accounted for. This feature can be understood as follows: to meet the
PT-symmetry condition, the parametric interaction with the mechanical mode must
be achieved by the correct optical sidebands in the filter cavity; thus, only after the
optical spring is correctly compensated, it is possible and meaningful to discuss the

stability issue.

In Fig. 4.9, we further show the effect of the optomechanical coupling rate G on
the stability, after the necessary optical spring compensation. Indeed, the system is

stable when G < wy, which is consistent with the idealized Hamiltonian analysis [1].

4.4 Time-domain analysis

In this section, we perform a numerical time-domain simulation to confirm the
enhancement in sensitivity as derived above. The purpose of remaining in the time
domain is to capture behavior that may have been lost due to approximations used
in the frequency-domain analysis. It is also much easier for us to capture non-linear
behavior in the time domain, as we have no need to perform Fourier transforms in
this analysis. The primary limitation of this method is the relative lack of insight into
the physics that we can obtain, as it is difficult to “break open” the simulation and
understand the behavior of individual parts in isolation. As such, our time-domain
approach is a powerful complementary tool to the analysis performed thus far and

not a replacement.

We will begin by considering Eqs. (4.11a)—(4.11g). The principle of this sim-
ulation is to appropriately discretize the equations and enable the evolution of the
system forward in time using the knowledge of its previous state. The mechanism
through which the system steps forward and the way to recalculate relevant quanti-
ties are at the very heart of this simulation and, therefore, it is worthwhile to delve

into some details.
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4.4.1 Discretization of equations

The first step towards the time-domain simulation is the discretization of equa-
tions. The equations in our system can subdivided into three distinct types. The
treatment of the full system will be made clear after the functionality of each type

is explored.

The first type of equation comprises all quantities that are related to others in the
way of time-delay. For instance, the field quantities that propagate from one optical

component to another. The general form of this type of equations reads:
ar(t) =a(t—1), (4.28)

where 7 = L/c is the time delay caused by the propagation across the space of
distance L, with ¢ being the speed of light. This type of equations are discretized at
time step n as

ax[n] =ai[n—ng4], (4.29)

where ng is time-step delay (steps in the past at which the field must be evaluated).
It is given by ny; = 7/At, where At is the simulation time increment. This type of
equations encompass the forward evolution of the field quantities, whereby a field
at a new simulation step can be calculated only with reference to the previous value

of another field, which will have been calculated at their step.

The second type of equation comprises interactions of fields at an optical compo-
nent. This treatment follows a very standard approach, where the fields at a mirror

(as defined in Fig. 4.10) are given by:

ax(t) = tyaq(t) + rypa; (1), (4.30a)
az(t) = tyai (1) — rmas(t), (4.30b)

where r,,, and t,, are the mirror amplitude reflectivity and transmissivity respectively.

The discretization of these fields is rather trivial:

ar[n] = typaqan] + rpai[n], (4.31a)
az[n] = taq[n] — rpasn]. (4.31b)
+ -

a1 —> —> (a3
a9 <&— -<— (4

Figure 4.10: Field interactions at a mirror.
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However, care must be taken in choosing the order to calculate these fields, as the
field quantities are all initially unknown. The procedure for calculating these fields

will be discussed later in due course.

The final consideration is the treatment of Eq. (4.12). It can be approached in
many ways according to the choice of discretization for time derivative. Based on

its well-studied nature [36], a “symmetric” approach is implemented:

xX[n] +ymx[n] + w,%mx [n] = Fr%[n]’ (4.32a)
with i[n] = S I]Z_Atx[” -1 (4.32b)
and £[n] :x[n+1]—2x[n]+x[n—1]. (4.320)

At?

Note that substituting the latter two equations into Eq. (4.32a) allows for the x[n+1]
term to be rearranged in terms of quantities at previous time steps and, therefore, it

can be used to evolve the position of the mechanical oscillator without further issue.

4.4.2 Connecting the system

After categorizing the relative equations, the next to consider is connecting the
discretized equations into a consistent loop. The most challenging feature of the
system is the signal-recycling structure in the optical cavities, as the signal sent
“downstream” from the simulation inputs returns and combines with the upstream
signal in a feedback-like structure. For a system with many cavities, the cycling of

signal could become very complicated to handle.

Considering that the signal must traverse the space between optical components,
which induces a time delay, it allows us to break up the system into several indepen-
dent “compartments”. As the system is evolved forwards in time, when we consider
fields at step n, we can rely on the values for all steps < n that have already been cal-
culated. This naturally means that all terms of the Eq. (4.28) type can be calculated
immediately. To tackle the issue with Egs. (4.30), we can treat the right-hand side
quantities a; 4(t) as the “inputs” to the mirror, which are already available, as the
“outputs” or left-hand side of Eq. (4.28). This results in a logic flow, as shown in
Fig. 4.11. At the start of a new simulation step, we calculate all the “outputs” of the
Eq. (4.28) type first, which give all of the “inputs” quantities of the Eq. (4.30) types.
We then calculate the “outputs” of all Eq. (4.30) types, which then affect the input
fields in a neighboring compartment that links the whole system together. Note that

these links occur at a future time step and thus do not need to be calculated now,
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Figure 4.11: Logical flowchart of the time-domain simulation.

avoiding the trap of circular logic. This approach greatly simplifies the calculation
performed in each simulation cycle. By compartmentalizing the equations in this
way, we can create several independent systems with very few equations each. It is
thus very easy to add extra components to the system, without the need to rewrite
any existing elements in the simulation. Furthermore, the system is well set up for

optimization techniques such as parallelization.

The key issue in our approach is the large number of calculations to be performed,
as well as the large number of quantities that need to be stored. To suitably capture
the system behavior, the time increment in simulation needs to be smaller than the
shortest time-scale of the system, which in our case is the short cavity traversal time
around 100 ns. Although this MHz level of sampling is far above the frequency range
of interest (1 Hz - 10 kHz), it is necessary to capture the behavior of components
that affect the signal response within that frequency band. This will lead to a lot of

waste as we are simulating about 1000 times more data than what we are interested
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in. Furthermore, we want to simulate for at least 1 second, which consists of 10

million samples, resulting in rather a lot of data for a computer to store.

A further limitation is the requirement for integer values of n, in the discretization
of Eq. (4.29). For all cavities in the system, the traversal times must be some integer
multiple of Az. To enable the free choice of cavity lengths, particularly when there
are many cavities in the system, A¢ may have to be even smaller than the shortest
cavity traversal time. This is not a big issue in our case as cavity number can be
limited to be two. All the optical components are separated by a short delay time
75, except for the arm cavity with a long delay time 7,. For convenience, we can

choose 7, to be an exact multiple of 75, without any loss of physical insight.

4.4.3 Step-response stability analysis

The steady-state response is the most essentials in the sensitivity analysis of the
system. As the simulation loop relies on past values of the system, initialization
is required at some finite time from which the simulation starts. To resolve this
issue, all quantities in ¢+ < O are set to be 0, which corresponds to the off state.
After the simulation begins, the building-up process of the steady-state leads to an
initial transient effect, which might negatively affect the response estimate. Luckily,
in our simulation, this initialization takes about 0.03 s, which is sufficiently small

compared to the total runtime and will not cause any problem.

Interestingly, the transient behavior is more of an opportunity than a problem.
The time-domain response with custom inputs can be used to gain insight into some
aspects of the system that can not be easily studied using the frequency-domain
approach. One such test we can perform is to determine the stability of the system
using its step response. Inserting a constant signal from ¢ = 0 (step-function input)
to excite the system dynamics, the resulting time-domain behavior will clearly show
whether the system is stable (settling at a constant value or a steady oscillation)
or unstable (growing indefinitely towards an infinite amplitude). As shown in
Fig. 4.12, the position response of the mechanical oscillator in the cases with or
without compensating the optical spring clearly shows the stability or instability. It
further confirms the result shown in Fig. 4.8 that the system can be stabilized by

optical spring compensation.

4.4.4 Numerical noise spectral density
To check the consistency with the frequency-domain approach in Sec. 4.3.2, the

noise spectral density in this time-domain simulation will be determined in a two-
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Figure 4.12: In-loop step-response of the position of the undamped mechanical
oscillator. (a) When the pump field is offset by w,,, only. (b) When the pump field is
further offset by compensating the optical spring. The lighter solid fill contains rapid
oscillations with the dark bounding lines representing the amplitude envelope. The
inserts of (a) and (b) show the zoomed-in views of two sections in the time-series,
where the individual oscillations can be seen.

step approach. The noise power spectral density in the strain signal measurement is

given by:
AV (®)

(= Ty

where S7, () is the noise power spectral density of the appropriate quadrature of

(4.33)

bout (see Fig. 4.4) and T(Q) is the h — oy transfer function. The strain noise can
thus be obtained through two separate simulations: one to obtain 7(£2) and another
to obtain S, ().

For a preliminary consistency check, we compare the optical transfer function
T(Q) by injecting a noiseless random signal with a constant spectral density into
the channel of gravitational wave strain. By measuring the spectrum Sp;,(Q) of
the output variable Bout, the transfer function 7'(€2) can be determined through the

relation between cross- and power spectral density:
Spn(€2) = T(L)Snn(L). (4.34)

Two simulations are implemented only with a difference in mechanical quality

factor, as shown in Fig. 4.13, and a great agreement has been confirmed between
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Figure 4.13: Transfer functions for optical gain with optical-spring compensated.
The pump-off (G = 0) gain is shown in contrast to the pump-on gain for (a) a finite
mechanical quality factor of 5000, and (b) an undamped oscillator. The numerical,
time-domain approach shows very good agreement with the analytical, frequency-
domain approach.

the numerical and analytical approaches. In Fig. 4.14 we further show the optical
transfer function of the mechanically undamped system for both the signal and idler

channels, which also shows good agreements.

The second simulation is implemented by injecting all relevant noises with their
own spectral densities in the absence of strain signal. This provides S7, (€) and,
together with the optical transfer function 7(€2) obtained in the first simulation,
allows us to complete the calculation of strain noise spectral density according to
Eq. (4.33). The final results of the time-domain simulation are shown in Fig. 4.15,

which consistently corresponds to the frequency-domain analysis in Fig. 4.7.

4.5 Optimal readout scheme

In this section, we will investigate the readout scheme to optimally blend the
outputs from the signal and idler channels for achieving the best signal sensitivity.
Note that the approach we apply here can in general be used for any correlated

signals.

Consider a generic case with two noisy signals which measure the same observable
x, 71 and 2>, such that Z; = Tjx +73;, i = 1,2, with T; referring to the transfer function
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Figure 4.14: Optical gain transfer functions for the signal and idler channels in the
undamped, optical-spring-compensated system.

of x to the signal, and 7; being the corresponding noise. These signals can be

normalized such that z; = 7;/T; = x + n;.

In this case x is the gravitational wave signal, where in each measurement there
is differing sensitivity in different frequency bands such as that shown in Fig. 4.14.
In the frequency domain representation, the normalized signals z;, can be blended
together with frequency dependent filters, a(Q) and 1 — @(€2), which sum to one

over the entire frequency range:

Z(Q) = () 21(Q) + (1 - a(Q)) 22(%), (4.35)
with total noise given by n(Q) = a(Q)n;(Q) + (1 — a(Q))ny(Q). The power
spectrum of the total normalized noise can be represented as:

Sn(Q) =1(Q) Sy, () + 11 = () Sy, (Q)
+a(Q)(1 —a"(R2))Snn, () (4.36)
+ (1 - a(Q)a" (2)Sy,n, (),

with Sy,n; (€2) being the noise spectrum of (i = j) or correlation between (i # j)

n1(Q) and n,(). Minimising Eq. (4.36) with respect to the conjugate of the filter

a(Q), ie., %iff((g)) = 0, the optimal filter can be constructed for each frequency €
independently:

Sn2n2 (Q) - Sn2n| (Q)

@(Q) = Snin () + Snyny () = Spyny (Q) = Sy, ()

(4.37)
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Figure 4.15: The normalized noise spectrum for the signal and idler channels. The
signal channel (red) recovers the same response as the pump off case (magenta)
which is limited by the bandwidth of the cavity at frequencies of a few kHz and
above, which shows there is no degradation of the signal or the bandwidth of the
cavity. The idler channel (blue) has greater sensitivity below 30Hz. The ideal blend
(black) has greater sensitivity than both the signal and idler channels across the
blend frequency range of approximately 25Hz (green star).

Applying the filters to Eq (4.35), we can obtain the the power spectrum of the total
signal Z(Q):

S72(Q) =la(Q)*S,, (Q) + |1 — a(Q)]*S.,., (Q)
+a(Q)(1 - a*(Q))S;,,(Q) (4.38)
+(1 - a(Q)a* (Q)S,,, (Q),

whose noise power spectrum is the same as S,,(Q) in Eq.(4.36). When there is
correlation between n; and nj, the noise across the applied high- and low-pass
filters @(Q) and 1 — @(Q) can be further improved. When the cross-correlation
terms are zero, the final noise spectrum would be determined by the ability to create
the optimal blends between two filters, such as high-order roll-offs of the filters
with phase margin at the blending frequency. The advantage of this signal post-
processing scheme is to reduce the stability requirement if the system is operating

in a closed feedback loop.

In the simulation discussed in Sec. 4.4, the signal can be extracted from both the

signal channel around w( and the idler channel near wo+2w,,,. Applying the optimal
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blending strategy of Eq.(4.37), the overall noise spectrum can take advantage of
whichever channel with the better behavior at one frequency. As shown in Fig. 4.15,
the idler channel contributes more below 25Hz, while the signal channel dominates
at higher frequencies above 25Hz, and the optimal blending curve follows the better

one at all frequencies.

4.6 Discussion

In this work, we analyze in detail the realization of a PT-symmetric interferom-
eter [1] using an optomechanical filter cavity. We go beyond the idealized Hamil-
tonian analysis under single-mode and the resolved-sideband approximations, and
consider the real physical parameters in the filter cavity setup. We prove that, after
compensating the optical spring in the filter cavity, the stability and sensitivity im-
provement stated in the original proposal [1] remains valid in the realistic settings,

even when a portion of the signal gets mixed into the idler channel.

To perform full analysis, we implement numerical simulations in both frequency-
domain and time-domain. The methods’ consistencies have been checked with both
the signal transfer function and output noise spectrum. In the frequency-domain
analysis, the system stability is confirmed using Nyquist criteria, where the Nyquist
plot with the stable parameter setting does not enclose the origin. In the time-domain
simulation, the stability manifests itself in the transient behavior before the system
reaches its steady-state, where the stable parameter setting won’t make any system

quantity go to infinity.

Considering the unavoidable leakage of the signal into the idler channel in the
actual setups, we further constructed the blending scheme for the output of the
two channels. Applying the optimal output filter, one can take advantage of the
channel with better behavior at each frequency, to obtain optimal sensitivity at all
frequencies. Another scheme with an auxiliary mechanical cooling beam is under
investigation, where the information in the mechanical oscillator can be read out
supplemently. Together with the idler channel, they can provide more possibilities

for optimized blending readout.
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Chapter 5

ATOM INTERFEROMETRY: LINEAR QUANTUM
MEASUREMENT THEORY AND THE PRECISION LIMIT

The theory of linear quantum measurement has been developed for analyzing the
sensitivities of experimental devices that measure extremely weak signals, such as
gravitational waves. It has successfully contributed to the theoretical understanding
of laser interferometer gravitational-wave detectors (used by LIGO, VIRGO, and
KAGRA) and helped many important experimental upgrades. In this work, we
establish a linear quantum measurement theory for another kind of measurement
device — matter-wave interferometers — which has been widely discussed as an
important platform for many high-precision experiments. This theory allows us
to account for both atom and light fluctuations, and leads to a detailed analysis
of back-action in matter-wave interferometry (action of light back onto the atoms)
and its effect on dynamics and measurement noise. From this analysis, we obtain
a Standard Quantum Limit (SQL) for matter-wave interferometry. A comparison
between the LIGO detector and matter-wave interferometer is also given from the

perspective of quantum measurement.

5.1 Introduction

The detection of gravitational waves (GWs) from merging binary black holes [1]
and merging neutron star binaries [2] by an international network of gravitational-
wave detectors (LIGO, VIRGO, and KAGRA) opened the era of gravitational wave
astronomy (in this chapter we shall use "LIGO detector" to refer to a detector that is
used by LIGO [3], VIRGO [4], and KAGRA [5]). This detection is also a milestone
in the development of high-precision measurement physics, making LIGO detector
the most sensitive instrument that human beings ever built. Parallel to LIGO
detector where the underlying principle is the interference of the electromagnetic
waves, other concepts of GW detectors have also been proposed, even before the
first detection event. One particular attractive concept is the atom-interferometer
GW detector, first raised by Dimopoulos et al. [6, 7] and later enriched by many
further discussions [8—16]. Different from the LIGO, the physical principle under
the atom-interferometer GW detector is the interference of the matter waves, rather

than the light waves.
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The concept of atom interferometry can be traced back to the 1930s, when
Rabi demonstrated that the atoms’ internal quantum states can be altered using RF
Resonance [17]. In 1949, Ramsey firstly created and detected long-lived coherent
superposition of internal quantum states [18]. These pioneering works pave the
way for the further development of a field named atom optics, namely, one can
manipulate coherent beams of atoms as manipulating those of light fields [19]. Atom
interferometry is an art of atom optics and an important experimental platform for
high-precision measurement, which is now being used for measuring earth’s gravity

acceleration and testing fundamental physics [20-32].

The advantage of the proposed application of atom interferometer in GW detec-
tion is mostly at low frequency (below 10 Hz), which can be understood as follows.
Because the test masses are connected to the ground through a suspension system,
the sensitivity of a laser interferometer GW detector is seriously contaminated at
low frequencies partly through the coupling of the test masses with the sesmic oscil-
lations, although the multi-stage vibration isolation technique has been applied [12].
For space-borne optical GW detector such as Laser Interferometer Space Antenna
(LISA), the test masses are also connected to the satellite platforms, thereby the
random motion of the satellites will be transferred onto the test masses and con-
taminate the GW signal. However, for the atom interferometer, since the atoms are
free-falling during the interferometry process, they are less sensitive to the seismic
perturbation (or the satellite motion in the space case). The laser noise can be re-
moved by designing the detector configuration with common mode rejection. More
sophisticated designs such as implementing the large momentum transfer technique

or optical cavities have been also discussed [33-37].

Typically, experimental devices such as GW detectors that targeted on measuring
extremely weak signals can even be affected by quantum mechanics. The theory
of quantum measurement developed from the 1960s is a framework to analyze how
quantum mechanics affects the sensitivity of an experimental device [38]. The early
resonant bar GW detectors and the current laser interferometer GW detectors have
been extensively studied and understood using this quantum measurement theory
framework [38—40]. For atom interferometry, although the effect of quantum noise
has been discussed by various authors [41-44], a complete analysis under quantum
measurement theory has not been discussed in the current literature. Establishing
such a theory will provide important insights in understanding the atom interfer-

ometer. Here, it is useful to briefly overview such a framework, based on the
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block-diagram shown in Fig. 5.1. In this framework, a quantum measurement de-

G | Probe —aiF Detector
& (Z,F)

Figure 5.1: Block diagram of a linear quantum measurement device.

vice is divided into probe and detector, where the probe dynamical quantity X is
linearly coupled to G—the information to be measured. The probe and detector are
coupled through linear Hamiltonian Hiy = —afF. The information of G will flow

into the detector through probe-detector interaction and then be read out as y(¢):

t

P(t) = Z(t) + @ | Rgero (1) + Xsig (1) + / dt' ym(t—t)YE@)|, (5.1

—0o0

where £er0, Xsig, F are the zero-point fluctuation of X, the signal, and the back-action
force, a is the coupling strength and the y,, (#—¢’) is the dynamical response function
of the probe. Braginsky et al. shows that for measuring the GW tidal force, the zero-
point fluctuation of test masses does not contribute to the final sensitivity, thereby
Xzero can be simply ignored [45]. If Z and F have no correlation, the sensitivity will
be limited by the so-called standard quantum limit (SQL), given by (in the frequency
domain):

S (Q) = 2hlxum(Q)L, (5.2)

where € is the angular frequency of GWs. For advanced LIGO, the SQL is given
by SESL(Q) = 2h/(mQ?), with the mass of the test mirrors denoted by .

In this work, we set up a quantum measurement theory framework for analyzing
the physics of atom interferometer, which is based on the interaction between atom
cloud and two optical fields (passive and control laser). It is straightforward to

extend our result to other atom interferometer configurations.

5.2 Effective Hamiltonian of an atom interferometer

In an atom-interferometer GW detector, the GW information is carried by the
light field in the TT gauge, thereby the light field corresponds to the probe and the
detector corresponds to the atom cloud in the above quantum measurement model.
Concretely speaking, the atom cloud, as a phase meter, records the optical phase
(more precisely, the phase difference between the control and passive fields as we

shall see) imposed by the signal. In this section, we will establish a one-dimensional
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effective Hamiltonian for analyzing this system. Real systems are three-dimensional,
therefore this one-dimensional model is obtained by reducing a three-dimensional
system by paraxial approximation. This Hamiltonian can be derived from first
principle and the details are given in Apps. 5.8 and 5.9. In this section, we are going

to show how the back-action effect manifests itself in atom interferometers.

5.2.1 Effective Hamiltonian and dynamics of an interaction kernel

The basic physical process that happens in a typical atom interferometer is a
four-boson interaction, where the atomic transition between energy level |1) and |2)
happens through coupling to an intermediate energy level |3) by control and passive

fields, as shown in Fig 5.2.

The Hamiltonian describing the Raman interaction happens in an atom interfer-
ometer has the following structure:
Hop = 5 / [0xd ) cx — Hxa;xapx] +h.c.,
Hatom = thATA + théTé,
Hine = hx (A + A" (B + B (. +af)(a, +a)}),

(5.3)

where the Flopt describes the free control light d. and passive light 4, in x-space;
Hiom describes the whole atom clouds at two different energy levels and thereby does
not depend on x; Hjy describes the atom-light Raman interaction at one specific
spacetime location, the derivation of such a four-field interaction Hamiltonian is
shown in the Appendix. A and B are the effective annihilation operators for energy
levels |1) and |2), respectively. Their corresponding number operatorsare Ny = ATA

and N B = BTB, and we have the commutation relation [A, AT] = 1 (the same for

3) —

oy} oB

Passive
light

|2) —t— z

Figure 5.2: A four-boson Raman interaction kernel and its corresponding WKB
trajectory. For a detailed discussion of this process and the description using field
theory, see Apps. 5.8 and 5.9.
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B). For the continuous optical fields, we have [d,,, de/] = 6(x — x’) (the same for
dpyx), and it is related to particle number by N = f dxdixd”. The precise definition

of these effective operators will be presented in Section IV.

Note that under the rotating wave approximations, only the terms satisfying
wa + we = wp + wy, Will be kept while those non-rotating wave terms such as
Aédi&; etc. can be safely ignored, which leads us to a simpler form of interaction
Hamiltonian:

Hin = hyA'Bala, +hec, (5.4)
and the corresponding equations of motion for atomic clouds are given by:

A =-iyBala, B=-iyAa.al, (5.5)

Solving these equations perturbatively by writing the operators as: A = A4 + A,
and B = Ag+ A g (where the magnitude of A A/B 1s small compare to the Aa /B) leads

to the zeroth-order equations:
ALA = —iQABei‘p, ALB = —iQAAe_i"", (56)

where Q = yla.a,| is the Rabi-frequency, and ¢ = ¢. — ¢,, is the phase difference

between control field and passive field.

The rest terms satisfy the following equations:

 [Aa Ap(allapler +aylacle) Ape's (5.7)
Ag| Ag(aclaple'r + d;|5c|€_i‘pc) Yl—Agei |’ '
in which the differential operator £ takes the form of:
A 3, iQei‘p
|0, ) (5.8)
iQe™* 0

and the right-hand side of these equations describes the influence of optical fields to
the evolution of atom fields. The ¢; < ¢ is the signal phase carried by the optical

field, and we expand it to the linear order to obtain the signal terms.
The solutions for the optical fields, to the leading order, are given by:
Acout = dcins  Apout = Apins (5.9)
and the rest terms satisfy:
eout = Aein — ix (A4 Apd, + ALa,Ap + AdeAZ + A% Agad,),

o S A (5.10)
Apout = Apin — ix(ApARac + Apd Al + AyacAn + AaApac).
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The first terms in the brackets of the r.h.s. of the Eq.(5.10) are much smaller
than the rest terms (the ratio ~ \/m, where N, and N are the atom number
and photon number in the pulse), which can be ignored. Also note that the optical
operators on the r.h.s. of the above equations are defined at the interaction point,
in principle the Eq. 5.7 should be solved in the way that we substitute @, = (dpin +
dpout)/2 and d. = (d¢in + dcour)/2. However, since the atom-light interaction is
weak, if we ignore the term involving high orders of y, the r.h.s. of Eq.(5.10) can

be simply written in the way that d. = dcin , dp = dpin.

Substituting Eq. (5.10) into the equations of motion for the atom field Eq. (5.7),

we obtain: )
A |Aal Fffu+F£+F£‘y Ape'? S
Ap ﬁfu+Fg+F£ A e '

Here the terms on the r.h.s. can be understood as "optical force" acting on the atomic

fields, explained in detail as follows:

(1) The F ﬁu/ B have the form:

A U A 7 —i A 7 | A [pc

Fi = —ixAp(aple™rali, +1aclayime™), 51

AB . - _ . N _ 7 ¢ AJ. .
Fﬂu = _lXAA(lap|ewpacin +lacle ¥ a[gin)’

which is the optical Langevin force acting on the atom fields, due to the randomness

of the incoming states of optical fields.

(2) The FC?/ B have the form:

A_X 2 21 2 2
Fy = 7|AB| Ax(lapl® —lacl?),
5 (5.13)
Xyt 275 /1~ _
Fi = S 1Aal*Ap(la, | - lacl?),
which describes the pondermotive force exerted by the mean optical fields on the

atoms.
(3) The F(‘;;/ B have the form:
A X2 2 2N X A AT 24
Fay =51, = lac ) (A ApAl, + 1451 A ).

, (5.14)
2 )
Foy =501, = 13D (ApAsA} + 144 Ap).

These forces, which depend on the operators AS),AS) will modify the Rabi-

dynamics of the atom fields.
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In case of balanced passive and control fields (i.e., |d@,| = |a.| = ar), these
dynamical back-actions will vanish. In the following sections, we will focus on the

configuration with balanced passive and control fields.

The solution of these dynamical equations can be expressed in a more convenient
way by using the following basis: (1) A, = (Age™%/2 + Age'#/?) /\/2 for atom fields;
(2) 41 = (A€ + ale ™) V2, ap1 = (Gpe™™r +a)e#r) [ V2, 4y = (Gce™e —
ale ) [(V2i), dpy = (dpev — d;ei‘/’P)/(\/ii) for optical fields; (3) the common
and differential modes of incoming optical fields: dsini/2 = (dcin1/2 £ dpini/2)/ V2.

Under this basis, the equations of motion Eq. (5.7) can be transformed to:
(6, = iQ)Ai(t) = FQp Az (1) F ixa[As()Arint +iAz (1) in2], (5.15)

where y, = yar. Then the solution can be written as signal and noise parts,

respectively. The signal part is:

t
Asi(t) — ¢Q¢s‘/ dt/eiig(t_t’)gi(t,)
fo (5.16)

= Fp,A+(0) sin Q(r — 19).

The noise part is:
Au(t) = €™V A (1) + Asop (1), (5.17)

where
Aiopt(t) = AAi—am(l) + Aiph(t)a (5.18)

with

t
AAiam(t) = "_'i)(a/ dt,exlg(t_l/)Ai(t,)aAHnl(t/)’
" (5.19)
Ren(®) = 1, [ dre™ R0,
fo
Here, the e™2(~") ig the free propagator of the atom operators A,. The Aiph and
A_am are the quantum optical noise contribution to the atom clouds evolution, while

the A (to) is the initial quantum fluctuation of atom field.

5.2.2 Back-action noise
For the atom interferometer systems (both for a single atom interferometer and
for the GW detector configuration involving a pair of atom interferometers), there

exist such situations that the same control fields connect several different interation
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kernels. For example, in Fig. 5.3, the two 7/2 processes are connected by the same
control field. In the GW detector configuration proposed by Dimopoulos et al. (see
Fig. 5.4), all the interaction kernels of the two atom interferometers are connected
by the control fields. In these cases, the quantum fluctuation of the first interaction
kernel (e.g., denoted by a) can be carried by light field (probe) and then affects the
second interaction kernel (e.g., denoted by b), and finally affects the output atom
fields (detector). This would lead to a “back-action”" noise, somewhat similar to
the optomechanical system that the quantum fluctuation of light (detector) will be
carried by the test masses (probe), and then affect the output light field (detector).
Formally, to analyze such a system, we have to duplicate the Hamiltonian, and the

interaction should happen at two different spacetime points:

Hin = x A8 (a{aa)| ' + x AV BV (alaa)| . (5.20)

Following the same approach discussed in the last section, one can write down the
equations of motion for atom clouds of the second interaction kernel in an almost
identical form. The only difference is that the optical fields operators on the r.h.s.
of the atom equations of motion (Eq. (5.7)) can be connected to the optical fields

flying out of the atom-light interaction region of the first interaction kernel, that is:

a® = 4@ (5.21)

Cm Cout

Substituting this relation into the Langevin force Eq. (5.12) for the second inter-
action kernel, and keeping only those terms, which, due to the atom fluctuations
brought from the first interaction kernel, we obtain the “back-action force” acting

on the atom fields of the second interaction kernel as:
[F(b)]B 2A(b) (A(a)*A(“) A(a)A(fl)T)
A

(5.22)
b b a a a)x a
[FB( )]BA = —)(ZJA(§ )(A(B )A(! " + A(! ) A(B )).

In writing down these expressions, we have used the conditions of balanced control/
passive lasers |a,| = |a.| = ar and the optical field strength for these two interaction

kernels are identical a(Lb) = a(L“) =a

Adding these back-action force terms into the atom dynamical equations Eq. (5.11)
for the second interaction kernel, integrating the equations and expressing these back-

action equations in terms of A, d1 »./,, we have the back-action force contributions
ABA
AJ™ as

t
ABA<r>—+X2“ / ar' DA (OAW) + AD (OB, (523)

to
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where

At) = A DAY (1) + A* (AP (1) - hee.,

e R (5.24)
B@t) = AYOAYT (1) - A9 1) AW (1) +hec..

5.3 Interferometry solution

This section will give the solution of the atom interferometer. As an example,
we only show the solution of which the signal is contributed from the optical phase
imprinted on the atom cloud during the atom-light interaction. This is actually
the situation for the proposed atom-interferometer GW detectors. In many other
important applications, the signals are carried by the atom fields themselves. For
example, the atom interferometry gravity meter is based on the principle that the
gravitational acceleration will affect the propagation phase of the atom fields. In
an atom-interferometer GW detector, this effect is the physical origin of the gravity
noise, which is an important issue that needs to be taken care for the design since
the local gravitational field can not be screened. In this paper, we will not discuss
these issues (and all the classical noise sources) since they are not the subject of the
quantum measurement theory. For simplicity, we also do not consider the effects
such as distortion of the atom cloud for simplicity, and we assume that the free

propagation of atom fields is coherent.

5.3.1 Input-output relation

At the detection stage of an atom interferometer, firstly the particle numbers of A
and B atom species are detected respectively, and then the signal is extracted from
their difference. Since the detected quantity AN = N4 — Np is in the (A As A B)T
basis while the formulae of optical noise and back-action terms are more concise in
the (A4, A)T (see Eq. (5.19)), we will use the transformation matrix between these

two bases, defined as:

1 eitp/z ei(p/Z
T(y) = B oo _emien2|” (5.25)
and the transfer matrix of atom field in the (A4, Ap)” basis is given by:
cos 6; —isin@ e
M(8;, ¢;) = - A 5.26
(0).01) [—i sin@je"¥s cosf; ] (:20)

where 6; = Q1.
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For the beam-splitting process (named as step-1), we have:

A (1)
BW (1)

in which ¢¢ is the initial time of the interrogation process, and A/B(¢) can be

A(to)

, 5.27
B(to) 627

] = M(6;, ‘Psl)

decomposed into A/B(t) = Aa/p(t) + Aap(t), where Ay p(t) is the mean value
of the atom field while A4 /g(t) is the perturbation around the mean value. At
step-1, Ay /(1) contains the quantum fluctuation of atom field and also the quantum

fluctuation of light field, given as:

AV @) A(to) Al (1)
< , Ps T(O A+°Pt 5.28
Ag)(r)] M(6 1)[ st o)] (0) A(—lo)pt() (5.28)

After the step-1, we have 01 = n/4 with t; = 71/(4Q), and the A(¢) and B(t) fields
start to separate spatially. The 7 /2 processes for A-channel and B-channel connected
by the control light happen sequentially and they should be treated individually. Let
us denote the /2 processes of the A and B channels to be the step-2a and step-2b,
respectively. Clearly, the initial conditions of the step-2a and step-2b processes
are [A(l)(tl),Ag)]T and [Af),B(l)(Il)]T respectively, where AE‘/)B are the field
fluctuations injected at the 7/2 steps, shown in Fig.5.3.

During the /2 processes, the corresponding transfer matrices are given by:

Step-2a:
A2 ()] AN (1)) Al (1)
= M(6,, R +T(0 Asopt

EEXI0) Il I I R P Gt (5.29)
Step-2b: .
[ 42D (1)] [ A2 ] A (1) + A2 (1)

(2b) = M(92’ ()DSZ) (I)A +T(0) (2 t (Z%A
B2 (1)) B (1)) AP (1) + A%, 0|

where the upper indices a/b denote the A/B channels, respectively. Since step-2a
and step-2b are connected by the same control light, the control light after step-2a
will carry atom information of step-2a and impose a “back-action" on the step-
2b. Here the effect of this back-action is denoted by Afg (1), whose concrete

representation can be derived from Eq. (5.23)

As shown in Fig.5.3, only one component of the output fields from step-2a/2b

participates the recombination stage, while the other component is left unmeasured.
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Figure 5.3: Comparison between atom interferometer and optical Mach-Zender
interferometer. Left panel: space-time diagram of the 7/2 processes happening in
an atom interferometer. Right panel: an optical Mach-Zender interferometer. On
the optical Mach-Zender interferometer, part of the quantum noise injected at 2a and
2b stages is reflected away and left unmeasured. A similar situation also happens in
the atom interferometer, where part of the atom noise of A4, p channel injected to
2b/a interaction kernels will be reflected away and left unmeasured. However, the
difference is, in the atom interferometer, the “mirrors" that reflect the matter waves
are not uncorrelated as in the optical Mach-Zender interferometer. The control field
that connects the interaction kernel 2a/b is the same field.

For those recombined components, we form a new input field column for the recom-
bination stage as: [A?)(1,), B?9 (1,)]” ,where 1, = 7/(2Q).

The field’s evolution at the recombination stage now can be written as:

A® (1) 7 ACD) (1)) 7 |AD) ()
=M(03, = + ¢3) T(Z) | 5% , (5.30)
BO (1) 27TV B (1) |27 |AD) (13)

which completes its recombination process at t = t3 = 7/(4Q). Note that this
equation can be expanded perturbatively, since the signal terms containing phase ¢;
and the noise terms are small compared to the expectation values. The results are

given as follows:

e Mean field. — Expanding the output atom fields Eq. (5.30) to the zeroth order,

we obtain the final mean field as:

AV 1 e ]
A === | inja| Aa(0). 31
AE?(@] \/EL—MM A0 (53D
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e Signal field. — Expanding the output atom fields Eq. (5.30) to the first order, we
obtain the signal field as:

AAs
ABs

1 - 51 — (1 +1 +
_ —AA(0)2 l‘;'psl ( l?‘;DsZ P53 '
—lps1 + (1 + l)QDSZ — ¥s3

> (5.32)

e Atom noise. — Similarly, the noise contributed by the atom fluctuations can be

written as:
Af) ()| _ et 1 1| | A gini _ ixaA%(0) 141(92) + AI(BZ)T
AP (1) V2 |- Api|  av2Q |-AY - AP (5-33)
atom shot noise back-action noise

¢ Optical noise. — The formulae for optical noise are more complicated since they

contain contributions from four different steps and the results are:

A(3) (t ) — _[ 2ZA(1) +A(2a) A(Za) +A(2b) +A(2b)

A/B +opt +opt —opt +opt —opt ( 513 4)
N 203 3) '
+ (1) (AD + AD ).

Substituting the Egs. (5.18) and (5.19) leads to the representation of the above

formula in terms of incoming optical noise fields:

£(3) XA [T e A2a) p iy L o a(2D)
AV (t3) = dt’sin2Qt’[a>," (') £ ia’5 " (1')]
0

A/B 2
aA 7w /4Q
+e_z37r/4)(\/_ dt [A(3)(t ) + o2iQr A(3)(t )] (5.35)
A n/4Q
te i3r/4aXa dt [A(l)(t )+ ;o2 A(l)(t ).

\/_

5.3.2 Standard quantum limit for a single atom interferometer
Using Eqgs. (5.31)—(5.34), we can compute the particle numbers N4y = A"A and
Np = B'B after the recombination completes and expand to the first order of

perturbation:
1 - 1-
Nasp ~ 545(0) F SA3(0) (651 = 2052 + ¢13). (5.36)
Then the AN = Ng — N4, which is the atom number difference at states |2) and |1),

is linearly proportional to the signal:

A]vsignal = _Ai(o)(‘psl - 2Q0s2 + ()053)~ (537)
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Similar methods can be used to treat the quantum optical noise and the quantum

atom noise, the latter of which is given by:

X _ . XaA3(0)
ANzom = Ax (O) (ABim + A;ml) ;\/é

back-action noise

(AP + A0, (5.38)

atom shot noise

and the optical noise is given by:

o _AA0) L ara 2 () 472(1) 3)
ANopt \/E — [ 7 Aopt te il Aopt+ - \/iAopH
. (5.39)
~ (2 2 2b 2b
A - A AR AR e

Now, normalizing the particle number difference AN by the signal coefficient, the

estimator of the signal can be written as:
ANy = (‘10s3 - 2‘Ps2 + (Psl) + = —2 ( ) (ANOPt + A]\A]atom)- (540)

Here, we can approximate ¢ — 2050 + @51 = ¢5ST2, where T is the interrogation

time of the atom interferometer.

To estimate the scaling of the error contributed by these noises, we need to map the
parameters in the effective Hamiltonian model to the experimental parameters. It is
easy to prove that y2/Q = y?|ar|*/Q = (Qa/c)/N using the relation y|a|> = Q
and the fact that the photon number in the rectangular pulse is Ny = |dz|*l,/c where
[, is the width of the optical pulse. Then the scaling of the error can be estimated

as:

2
2 NA(QZ") 242 (5.41)

+ + —,
C N A N L
in which the first, second, and third terms are the orders of magnitude of the
errors contributed by back-action noise, atom shot noise, and purely optical noise,
respectively. Apparently the first and second terms have a trade-off when N, = Ny,

therefore the error has a minimum value

(5.42)

which is actually the photon shot noise (usually Q/,/c = /2 orn/4,i.e.,Ql,/c ~ 1).

This corresponds to the standard quantum limit given in Eq. (5.2).
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It is important to note that this Standard Quantum Limit can only be understood
in the sense of extrapolation. Actually when N, ~ N, the linear approximation
we used in analyzing the atom-light interaction will not be valid. The real atom
interferometer does not work in this fully-nonlinear region. Therefore, for real
devices, even in the most ideal situation, this Standard Quantum Limit is not as

accessible as that of LIGO. It only gives a bound to the device sensitivity.

5.4 Back-action in atom interferometer pair

The back-action effect discussed in the last section, as we have mentioned, also
exists for the system of a pair of atom interferometers. The detector configuration
of atom interferometer pair was proposed to measure low frequency GWs. Control
fields carrying the atom information of the first interferometer impose back-action
on the second interferometer. The calculation follows the same logic as in the above
sections, which is straightfoward but a bit tedious. We only give the final results and

discussions here.

The AN yom for the second interferometer is given by:

ANUD

atom

273
- A>(0) . .

A, A>T, Xafla (210) (21 f
AA(O)(ABIHI+ABIHI) W(AB +AB )

atom shot noise of Aly

back-action noise inside Aly;

2A3( )[( AV 4 ADT) 4 E(ACY — 2OV

(5.43)

20 A1n1
A (D 2 (DT 22D | 22DT
—(Agini + Apgin) + \/E(AB +Az )]

back-action noise brought from Aly

Here the indices (I) and (II) stand for the first (Al}) and second (Alyy) interferometers.
The first term in the above AN,¢om 1S the atom shot noise of the second interferometer
while the second term is the back-action noise contributed by atom fluctuations of
step-2a of the second interferometer, similar to the second term in Eq. (5.38). The
last term in Eq. (5.43) represents the back-action imposed by the first interferometer
via control light. This result is obtained under the condition that ASD (0) = AE‘I) 0) =
A4(0), that is, the two atom interferometers have the same atom initial states?.

The original expression for the ANyom for the second interferometer is: ANétIQn

AP A +A0 N+ (x2/2v2) [AL ()P ATV +ASD )+ (k2 29) [A(P (0012 AL (0) [(A]) .+
(I)
A

AI(L‘II)JI) + l\/_(AfI) Afw) (Agfm Bin) T \/E(A](;I) + A}(}}ZI)T)], where one can see the “beating”

of atom fields of these two interferometers. The result shown in the main text is obtained simply by
substituting qum 0) = Ag) (0) = A4(0).
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Figure 5.4: Atom interferometer gravitational wave detector configuration: this
is the configuration proposed by Dimopoulos et.al. Two atom interferometers are
connected by the control lights. The control fields flying out of the first atom
interferometer will carry the corresponding atom information and impose a back-
action noise on the second atom interferometer. The scales in this figure are for
illustrative purpose and do not reflect the real situation. The distance between
two interferometers in the real device is much larger than the length scale of atom
interferometers themselves.

The signal field is given by:

(1 2 1 1) 1
ANSp = A3 0) (1) =20 + ¢ ). (5.44)

Clearly, the noise terms described by Eq.(5.43) and Eq. (5.38) are correlated,
since there are terms with (Agi)ni + Agi);) and (Agl) + A%ZI)T) in Eq.(5.43). This
simply means that the two interferometers are entangled via the coupling to the
same control light fields, if the control light does not decohere strongly during its

propagation between two interferometers.

The optical noise in the case of atom interferometer pair consists of the contribu-

tion of three control lights and eight passive lights, which is very cubersome and not
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very interesting in the aspect of quantum measurement theory — it simply contains

the initial quantum fluctuation of the probes. We are not going to show it here.

Finally, for extracting the GW signal, we need to subtract the measurement results
of the two interferometers. Suppose ¢gw; = kxgw; for a GW-induced optical phase
modulation, then pgwi — 29wz + ¢ows ~ kagwT?, where agw = w?hgwlL is
the tidal acceleration (for a monochromatic gravitational wave with frequency w
and detector baseline length L) and 7 is the interrogation time. A more detailed
calculation [6] showed that the full result (for a monochromatic GW wave with

frequency w and strain hgw) is:

T\ sinwL
“ )Sm“’ sin wt, (5.45)

PGW ~ kl’lGWL Sil"l2 (7

in the limit of w7 < 1 (which can be easily satisfied from low frequency GW), it

w

reduces to the result here. For the noise part, it is easy to prove that the Eq. (5.41)
and Eq. (5.42) are still the same in terms of the orders of magnitudes. It is interesting
to note that, according to the general theory of linear quantum measurement, there
exists a fundamental quantum limit which is the so-called quantum Cramer-Rao
bound [46]. Eq.(5.42) is also the quantum Cramer-Rao bound of the atom inter-
ferometer since the signals directly couple to the optical fields (probes) in the TT
gauge and the probes’ fluctuations here are determined by their own initial quantum

states.

5.5 Dynamics of the effective operators: A more exact treatment
The exact definition of the operators A 4, A etc, and the coupling strength y in the
effective Hamiltonian can be determined by using a field theory approach developed

in the Apps. 5.8 and 5.9. This field theory approach is based on the following action:

Sim =g / x4 (095 (X) 6 () (1), (5.46)

where the coordinates x represents (z,z). The relationship between g and the
physical quantities describing the atom-light interaction such as the atom dipole
moments, frequencies of different energy levels, etc. are given in the Appendix.

The corresponding equations of motion are given by:

(0 +vad)d) = gadpd, e, (5.47a)
(0 +vBO,) g = g8b 4 &, b2 (5.47b)
(0 +0)b; = 8ch P (5.47¢)

(0 = 0,)$), = gpbadpde.- (5.47d)
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Here the ﬁj (j = A, B, c, p) are the slowly varying amplitude field operators of the
positive branch defined through q@}r (x) = qg;r (x)e~wiol=tjo)+ikjo(z=2j0) \where w jo are

the frequency of the free fields ¢; and are related to the wave vector k jo through
2

jO
velocity of atom wave packet A/B and the two optical fields are propagating along

w5, = k?o + m?o (for optical fields, the masses are zero). The v,,p is the WKB
the opposite directions. The coupling constants are defined as: g; = ig/(2wjo).
The ¢3]- is the corresponding negative branch field operators. As shown in detail in
App. 5.10, the initial states of the mean optical fields can be treated as plane waves,
and the initial states of the mean atom fields are zero and a Gaussian profile for the
¢p and ¢4, respectively. This Gaussian profile, in the spacetime-domain is given
by:

_ 1/2 2
_ CYAAA AA 2
¢A = W eXp | — T[Z — 20— V[l(t - tO)] s (548)

where the @4 is the coherent amplitude and the 1/A, is the width of the Gaussian

profile.

5.5.1 Perturbative solution to the optical fields: Effective operator for atoms

Typically, in an interferometric process, the light-atom interaction time is very
short compared to the free evolution time of the atom cloud, and the center-of-mass
velocity of the atom cloud is very low, typically ~ 2 cm/s. Therefore to the leading
order, we can treat the atom center-of-mass motion to be static during the interaction
process, that is, v4 = vp = 0. We also note that the spatial size of optical fields is
much larger than the size of the atom cloud, therefore we can approximate the mean
value of the optical fields to be almost constants during the interaction process. For
this calculation, we only care about control field because it transfers noise to the next
atom-light interaction kernel, while different kernels interact with different passive

fields, as shown in Fig. 5.3.

These equations can be solved in a perturbative way. For the equation of motion

of the control field, the formal solution of the first-order perturbation is given by:
S0 (t+2,2)—0¢ (1 —€,—€) =

z (5.49)
” / dyS[ 67 (t + v ) Bh (1 + 3, )85+, 9)],

€

where the atom cloud mostly distributed in [—¢, €], as shown in Fig. 5.5 (we move
the coordinate origin to the atom center-of-mass position). For brevity, we remove

the tilde on the operators. In the following, all operators are the slowly varying
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Figure 5.5: Atom-light interaction kernel. The atoms are undergoing the state
swapping interaction, and during the very short interaction time (typically ~ us),
the A and B atoms do not have enough time to fly apart. Our effective atom
operators @ are defined through integration over the atomic cloud profile on the
spatial direction. The discussion in the Section II will reduce the problem to be an
effective model describing the interaction of the effective atom operators with the
incoming light fields.

amplitude operators. Expanding the r.h.s. to the first order, we obtain:
Z —_ —_—
8c / dyd,dp(t+y,y)0¢,(t+y,y)
—€
Z
+gc/ dyd,d,(t+y,y)0¢p(t+y,y) (5.50)
—€
4
vec [ avdyeey0di+ 0084 )

€

The classical atomic fields can be written as (under the slow motion approximation):

G5 (1,3) = fa(al)p(0), (5.51)
where
611/2 1 2.2
Ja(y) = a0 AP [_ZA“y ] (5.52)

Since y € [—¢€, €] and € < 1, we can expand

an/(t+y) ~ aap(t) +yaapt). (5.53)
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Note that |yaa/p(t)| ~ Qy@p/a(r) and Qy < 1, we can simplify the terms in
Eq. (5.50) to be:

gcéz

a5 (1) / Ay o ()67 (1,y) + @, (1) / fa<y>6¢;<r,y>]

Z (5.54)
vec [ ava0aO 008504 )
—€
Now let us define the effective atom operators to be:
e
50%4(0) =lime— |y fu1)08%,(1.9). (5.55)

As we shall see later, these effective operators have a nice property that the com-
mutation relation of the associated creation and annihilation operators normalizes
to one. The physical interpretation of the effective operators is that it describes
the whole wavepacket of the atom field. Using these effective operators, the input-
output relation for a light ray passing through the atomic cloud can be written as

(for the passive field, it can be calculated in the same way):
0 eou(t) = 605, (1) =gcy, [ap (1)o@, (1) + @ (1) Pp(1)]
+gey (t)ap(t) /_ : dy f7 ()51 + ., y),
6 pout () = 8¢, (1) =gpde (AR (1D} (1) + @ (1) P ()]

+ 4@ ()T(0) / dy 120865t - 7).

(5.56)

The negative frequency branches simply obey the Hermitian conjugate of the above
equations. The ratio between the second term and the first term on the r.h.s. of the
equation is ~ y/N, /Ny < 1, therefore it can be safely ignored.

Furthermore, we introduce the creation and annihilation operators that correspond
to those effective atom operators and also the optical operators. Remember that the

operators here are related to the creation and annihilation operators as follows:

AAA/B(I) dc/pin(z»t)
5%y = L gt =

2w, N

where we take assumptions w¢o ® w,o = wy and note that d_DX B = @p/B/ Lwq).

(5.57)

Now we want to rewrite the equations of motion of the atom fields in a more
concise way, using these creation and annihilation operators. First, let us check the

dimension of the above defined creation and annihilation operators. We have

Aap(t) = / Az fu(2)anm(z D), (5.58)
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where d/p(z,t) has the standard commutation relation on one time slice ¢:

[da/B(2,1), dZ/B(Z/, Nl =6(z—-2). (5.59)

Using this commutation relation and the normalization condition for f,(z), it is

straightforward to show that:

[Aa/p(1), AT, PROIERE (5.60)

Note that A is a dimensionless operator, while d.in(z, ¢) has the dimension [Length] ~!/2.

The gravitational wave community is more familiar with the operator satisfying
[a(t),a’(t)] = 6(t —t'), so it is important to note that this is an equal time
commutation relation for propagating fields, and the operators here are related by
dein/dcin = ¢'/? where ¢ is the speed of light. In the following, we will use the @
and replace the tilde with hat, i.e., @ — a. Then Egs. (5.56) can be translated to:
Acout — Aei = iXLe_i‘pp [&B(Z)AAI\ + 6";: (I)AAB]a (5.61)
Apout — Gpi = ixre 9 [@}(Aa +a@a()AL],
where we have y; = |g.|¢7Vwr/w, under the approximation that w, = wp = Wi
and |¢5| = |¢f| = ¢ = ar/V2wr. Comparing this equation with Eq. (5.10), we

know that the y in the effective Hamiltonian has the form:
x — —g/QRwr) = gc = gp- (5.62)

5.5.2 Deriving the evolution of atom fields using field theory
Using Eq. (5.55), we integrate the perturbation equations of atom fields to obtain

the perturbation equations of effective atomic operators:
€
30D, +iQe'Y5Dj, :gagzgz / dzf.(2)@5(1,2)6¢; (1, 2)
reads [ f@B1.2503(0.2),
A (5.63)
816D} + Qe 50, =g, / dz (DB (1, 20667 (1, 2)

readt [ RQB1.56,(0.2)

Now, we substitute the formal solution of § ¢2—_L Ip into the above equations, which will

reveal the structure of the optical back-action on the atom fields.
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Let us take the first term on the r.h.s. of the 6®4 equation as an example. It has

the following form after substituting d¢_ (, z):
0u / dz o (DB (1, 667 (1,2)
~sudjont) [z 20,0+ saniazo) [ 005,00 G

+8co, [ dy fa(y)[@a(t)6dp(y, 1) + ag ()5 (v, t)]}-

Note that the f,(y) takes a Gaussian form symmetric around y = 0, which means

that we can write:
[ @z [ avrmssionn = jevio. 5.69)
where we have used the normalization condition for f,(z), and we have:
gaPy [ : dz fo(2) (1, 2)5¢, (1, 2) (5.66)

= 8aap(1)0¢, (1) + %lgagcll‘fgplz[a'A(t)a’B([)(Sq)]_g(t) + g (1) 6@} (1)].

Here, we ignore the gﬁ; term since it is much smaller than the other terms. In a

similar way, we have:
8adbe / dz fu(2) @ (1, 2)5¢, (1, 2) (5.67)
_ 1 _
= gad ap(1)6¢;, (1) - Elgagc||¢c|2[aA(t)aB(t)dcbg(t) +lap(1)?60% (1)].

Finally, we have the equations of motion for atom fields as:

0, 0@% +iQe 5% = g prap(t) e P8¢ (1) + ei“’66¢;in(t)]

. ~ (5.68)
06Dy +iQe 6D = g praa(t)|e "pl’égbcm(t) + e_"pcégbpm(t)]
Then we can obtain the exact form of equations of motion for atom cloud:
O AL +iQe¥Ag = iyp(t)[e ra (t) + €% dpin(0)],
’ - (5.69)

O Ap+iQe Ay =ixa(1)[€¥Pdcin(1) + e a;m(t)

where ¢ = ¢, — ¢, is the phase difference between control and passive lights, and

Xara(t) = | oo lgalBraa s (). (5:70)

The a+(t) = a+(0)exp[FQ¢] and y¢ := vw./cwr|galdr. Using the relation
Eq. (5.62), we can also map Eq. (5.69) to Eq. (5.7).
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5.6 Conceptual comparison with the laser interferometer GW detector
Now we can make some comparison between Laser Interferometer GW detector

and atom interferometer detector from several different aspects:

e Discrete or Continuous. — LIGO is a detector where the optical field continu-
ously monitors the position of the test masses, recording the continuous waveform
of the gravitational wave. The continuity of such a measurement is the reason
for the existence of SQL. However, the atom interferometer works differently, in a
somewhat discretized way. Basically, each interrogation process records one data
point of the waveform time-series, and the measurements of different data points
are mutually independent. To record the waveform of the GWs, the interrogation
process needs to be repeated many times. For each data point, the measurement is
continuous, with the time scale equal to the interrogation time scale of the matter-
wave interferometry. Therefore, the quantum limit discussed here is the limitations

to the data point recorded by each individual interrogation process.

e Measurement quantity. — Gravitational wave information is carried in the
curvature perturbation ¥ ~ /i, which corresponds to the acceleration of the test
masses. For LIGO, we have the equation of motion for the test masses as mi ~
mW¥ ~ mLh, where m and L are effective mass of the test masses motion and
the baseline length of the interferometer, respectively. The light field will directly
carry the information of test mass displacement, and thus the interferometer is
a displacement sensor. However, for an atom interferometer, each interrogation
process directly records the acceleration as shown in Eq. (5.44), therefore, an atom

interferometer is an acceleration sensor.

o Test mass quantization. — As we have shown in Eq. (5.1), test mass quantization
will generally have an impact on the measurement result. LIGO’s measurement
result will be in principle affected by the test mass quantization if we directly
apply Eq. (5.1). However, if we do the post-data processing to extract the curvature
perturbation (acceleration) information, we are targeted on x(2Ar) — 2x(At) +x(0).
Using the free mass evolution equation £(7) = Lh(t) + pot/m + X, it is easy to
prove that all the information about the initial test mass quantum state will be
eliminated when we extract the acceleration information. This important result
has been obtained by Braginsky et al. [45] The key for the elimination of test mass
quantization effect is the fact that the differential motion of the test masses of the two
arms is a single degree of freedom during the entire detection process. However,

for atom interferometer (Dimopolous configuration), four different pairs of laser
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beams are needed to complete one interrogation period and they belong to different
degrees of freedom. Therefore, the probe quantization effect can not be removed in
the same way as LIGO, that is why we need to consider the quantum fluctuation of
light field (or the probe in a more general sense) in discussing the sensitivity of the

atom interferometer.

e Back-action. — In LIGO, the back-action is contributed by the radiation pressure
force acting on the test mass. In the atom interferometer, the back-action comes
from the atom noise carried by the control fields linking two atom interferometers.
In LIGO, the back-action can not only be a noise source, but also can change the
dynamical behavior of the system in certain parameter regions. For example, if the
resonant frequency of the interferometer does not match the carrier laser frequency,
which can be done through tuning the signal recycling cavity, the dynamics of the
test mass and optical field will change and create an optical rigidity for the test mass.
In atom interferometer, the state transition dynamics (Rabi rate) of the atom cloud
can also be changed by the interaction between optical and atomic fields, if there is
an intensity unbalance between the control and passive fields, as we have shown in
detail in Section 5.2.1 and Section 5.5.2.

The above discussion qualitatively compares the physics of atom-interferometer
GW detector with the LIGO detector. It is also worth to comment the similarity
between atom-interferometer GW detector with the LISA detector. Unlike the
Michelson-type LIGO detector, the LISA detector is actually a transponder system
where pairs of test masses are connected by optical links and the optical phase
changes due to the gravitational waves are recorded with local interferometry set-
ups around each test mass. Atom interferometers also match with this picture, where
two atom clouds are connected by an optical link and the phase change of this optical
link is recorded. In LISA, only the optical sensing noise is worthy of consideration
and the quantum back-action is extremely weak since the optical power received
on each satellite is of picowatts. Zero-point fluctuation of the test masses on LISA
can be eliminated since it is also a displacement sensor. For a detailed study for
the comparison between atom-interferometer GW detector with LISA detector, see
Refs. [10, 47].

5.7 Discussion
In this chapter, the matter-wave interferometry, in particular the example of a

one-dimensional model of atom interferometer, is carefully added onto the jigsaw
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puzzle of the linear quantum measurement theory. Previous studies on the atom
interferometry [7, 48], although quite complete and careful, mostly worked in the
Schrédinger picture and did not speak in the langauge of quantum measurement
theory. Establishing such a theory for matter-wave interferometry can help the LIGO
community clearly understand the physics of atom-interferometer GW detectors.
Our result demonstrates in detail how the light-atom interaction affects the dynamical
and noise behavior of the atom clouds and gives the input-output relation for the
linear response of this device. Concretely, we clarify how the concepts of detector
shot noise, probe’s zero-point fluctuation, back-action noise, and dynamical back-
action manifest themselves in the atom interferometry. Similar to LIGO case, we

also obtain the formula for the Standard Quantum Limit in the atom interferometry.

The configuration raised by Dimipolous et al. is the most original one proposed for
detecting GWs. Other configurations were also raised [9, 11, 37], in particular, the so
called single-photon atom interferometer, where the interferometric process happens
via transition of Rabi oscillation of two-level atoms rather than Raman transition [9].
The advantage of this configuration is that the optical noise (zero-point fluctuations
of probe) can be removed in the ideal one-dimensional case through common mode
rejection. In order to increase the fringe visibility of the atom interferometer,
the distinguishbiliy of the atom cloud trajectory should be increased which means
we need a larger momentum transfer [33—35]. The formalism developed in this
paper can be extended to these configurations also. Moreover, the concept of
optical-cavity-assisted atom interferometry was also discussed and experimentally
tested [36, 37]; using our formalism to study these configurations will be a future

work.

The analysis in this work is targeted on revealing the physical principle. Therefore
we focus on the simplest case where we ignore the classical noise sources and optical
losses that would more seriously affect the sensitivity of atom interferometry. One
typical example is: The back-action noise carried by the control fields that propagate
from one interferometer to the other will not contribute to the sensitivity in the
current design of atom-interferometer GW detector. The reasons are the following:
(1) The real three-dimensional atom-light interactions happen in a point-scattering
way that the cross-sectional area of the light field is much larger than that of the
atom field. Therefore such a scattering itself is very lossy thereby noisy. (2) For
detecting GWs, these two interferometers must be separated in a relatively large

distance so that the atom clouds of the second interferometer will only interact with
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a small patch of the large wavefront propagated from the first interferometer. The
diffraction loss will erase most of the information of the atom cloud of the first
interferometer carried by the light field. Here, we want to emphasize that the loss of
back-action noise here does not imply that the current atom-interferometer designs
are perfect, quite contrary, it implies that current designs are too lossy to have the
back-action issue. It is probably insightful to study the method to mitigate these
issues in the future. General understanding tells us that the capability of any type
of interferometric experimental platform is determined by the coherence of every
physical step in the device, and the goal for reaching a better sensitivity is practically
realized by mitigating all the issues that decohere the waves in the interferometer.
To mitigate the first issue mentioned above, we have to design the system so that we
have a mode-matched atom-light interaction and thereby a more coherent scattering
of light by atom cloud, which is very difficult under the current technology; while
to mitigate the second issue, one way is to place the two atom interferometers in
some optical-cavity-assisted structures. This idea has been proposed for the MIGA
(Matter-wave laser Interferometric Gravitation Antenna) project [37]. Analyzing

the quantum noise for such a device will be a future extension of this work.

5.8 Appendix: Field formalism for atom interferometer

Usually, the light-atom interaction happens in a A-level system with lower energy
levels |1),|2) which are the hyperfine structures and a higher energy level |3), as
shown in Fig. 5.2. The atomic system is interacting with optical field which is
off-resonant with respect to the energy gap of |1) — |3) and |2) — |3). The dynamics
of this system can be reduced to an effective |1) — |2) dynamics by adiabatically
eliminating the energy level |3). Moreover, the atom states |1) and |2) are also
associated with different linear center-of-mass momentum. The non-relativistic

Hamiltonian of such a system, in a single-particle formalism, can be written as:

R V2
H= _ﬁ + Z haw;li)<i| + Ec(x)d13]1) (3| + Ep(x)d23]2) (3| +hc.,  (5.71)

where m is the inertia mass of the atom with center-of-mass momentum p; = —ihAV;,
w; corresponds to the energy of the internal electron state and d,; describes the dipole
moment of the electron and it is convenient to define them as real numbers. The
summation is over all three energy levels. Since the |1) — |2) transition is forbidden,
therefore djo = 0. For extension to the multi-particle system and furthermore

establishing a field-theoretique approach, we need to do second quantization [49].
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5.8.1 Free fields

For doing second quantization, we need to first distinguish the group of non-
interacting identical particles, or equivalently, free theory. Tracing out the internal

energy levels for the non-interaction single particle Hamiltonian, we have:

V2

H; = how; - % (5.72)

Assuming that there are N— identical particles in group i, we have a multi-particle

. \%3
%‘:Z[ﬁwi‘z—”’
m

where a is the index of particles, and V,; only act on the coordinate of a-th particle

Hamiltonian as:

) (5.73)

belong to group i.

Following the standard method of doing second quantization, and choosing the

orthnormal eigenfunctions of particles to be their momentum eigenstates, we have:

R 43 2 .
V—Ii:/ﬁ(ﬁwi+m+§—m)a;ap, (5.74)

where the rest mass term is also included here. Apparently, this is a non-relativistic

Hamiltonian. The full relativistic form is:

. d? e
H; = (2;;3 (,/mlz + p2) a;ap, (5.75)

where m; = m + hw; with the physical meaning that the internal electron-nuclei

interaction energy also contributes to the “rest mass" of the atom. It is clear that
such a Hamiltonian can be derived from a canonically quantized Klein-Gordon field

with the action: .
S; = / d*x (Eaﬂ¢ia#¢i + m,.2¢,.2) . (5.76)

Since we are now discussing a one-dimensional mode of atom interferometers, we
will apply the para-axial approximation in order to reduce the above 3+1 action to

a 1+1 action by integrating out the transversal components.

The relationship between 1+1 fields and the 3+1 fields is given as follows. The

plane wave expansion of the fields is:

dk, —iwt+ik,z ki iz,
= —— W ——=e"" M dr +c.c. 5.77
$3+1(x) /(2n)(2w)e Q¢ ke (5.77)
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We thus have the dimensional relation: [ay] = [m]?/2[Hz]'/2. While for 1+1 fields,

we have:

dk —iwt+i
¢1+1 (.x) = / W(;a))e r+ kzzakz + c.c, (5.78)

where [ay_ ] = [m] 1/2[Hz]'/?. Denoting the cross-sectional area of field beams as

A, we then integrate out the transversal components and define:

d*k
a.= | G )lza ceE A, (5.79)
so that
dk .
®3 (x):/—z e_lwt+lkzzakz+c.c
. (21) 2w) VA 5.50)
. .
= —¢14+1(x).
VA

The 3+1 form for electromagnetic field can be written as:

. &k /hwk sl i
o= | Gy ak/pe ont=k9) 4 ., (5.81)

and following the same approach, one can show that it can be effectively described

by a 1+1 scalar field under paraxial approximation:

/hcuc
Ejp(z.1) = 20, Tf(quc/p(z, ). (5.82)

5.8.2 Interacting fields
In a similar way, we can do second quantization to the interaction Hamiltonian as

follows: .
~LT % ; J, A i
Hp]’p = / d3xa¢’p'(xa)elEp tEc/p(xa)dij‘/’p(xa)e lEpl, (5.83)

where E ;, = m;+p?/(2m;), and ¥ »(x4) is the momentum eigenfunctions of atoms in
the coordinate representation. Using box normalization condition, we have i/, (x,) =

exp(—ipX,)/VV,. Substituting the second quantization form of the electromagnetic

field:
.\ Pk |howy | /P —ilwni—kx
E.,= (zn)3‘/ a/Pe k) yhe, (5.84)

AJT A d*x,d’k e
H _dl] ;j ;7 (2a )3 lr//p (Xa)l//p(xa)e lkz“el(EP EP wk)tack/p

leads to:

(5.85)
+ (dy — ak,k — —k,w — —w) +h.c..
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Performing the integral on x,, we have:

i hwo  dij ei(EZ;,—E;',—w,,,_,,)zdﬁdi s
PP\ gV2 (2m)3 N (5.86)

+ (non rotating wave terms) + h.c..

The energy difference in the exponential can be written as:

(p+ kc)2
2mj ’

pZ
m;+—+w./p,— |Mm; +
! zmi c/p ( J

(5.87)

which clearly describes the energy transfer of the photon-absorption process. In
practice, the non rotating-wave terms can be safely ignored. The total interaction

Hamiltonian will be:
H=) Hyp, (5.88)
p.p’

where p, p’ are discretized momenta. In the continuous case, we have:

a’3p d3p’ hwo dij it ai acp (E E —w )i
= (2n)3 2n)3 \ e (271)3al” ply e P P +he., o (5.89)

where for the atomic operators: d, — VV,d, (note that the dimension changes

correspondingly).

This Hamiltonian can be derived from the following interaction action:

Sl =g [ dx04 (083000, ), (5.90)
where:
o= P05 ) 12(20,) 2 (200, 2. (5.91)
e (2m)° b

Reducing it to 1+1 D case, the g will change as:

hwo _dij 1/2 1
= [ =% Qwa) " 2w) 2w, ', 5.92
8=\ od G 200 (200 Qo) (5.92)

and we have an 1+1 interaction action:

S=g13/dZdl¢A¢3¢c+823/dzdt¢3¢3¢p- (5.93)
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5.8.3 Effective interaction

The above full interaction Hamiltonian can be further reduced to an effective
Hamiltonian describing the transition between energy levels |1) —|2) by integrating
out the ¢3(x) field, which can be done by solving the Heisenberg equation of motions

for the field ¢3(x) (under canonical quantization).

The Heisenberg equation of motion for ¢3(x)corresponds to the above action is:

(O+md)ds = g13dade + 823656, (5.94)

Written in the rotating frame of w3g and k3¢ (they are the Compton frequency and

Compton wave vector for the atoms on level |3)), we have:
$3(x) = F3(x)e 00T 4 e, (5.95)

and the equations of motion for ¢3 is given approximately by:

(8, +v8,)d3(x) = 1813 qgcéAeiAwmt—iAksAz + lgl&pqueiAwwt—iAsz’ (5.96)
2w3p 2w3p

where we have already ignored the non-rotating-wave terms, which oscillates at
frequencies w3 + w¢/po F WA o OF W30 + We/po + Wa/Bo- The Awza/p, Ak p are
defined as:

Aw3a/p = W30 — We/p — WA/BO = W3A/3B — We/po +Va (k30 — kayBo), (5.97)

Ak3asp = k30 — kejp — kay/Bos
where w34,p are the energy level difference between [3) and [1),(2). In ideal
case, we assume that the phase matching is satisfied Ak34/p = 0. We also define
Awg = w3s — W = w3p — w, and if we further choose $3 to work in the rotating
frame of Awy, the equation becomes:

823

m@ése’”""t. (5.98)

Awod3(x) + (8, +vd,)d3(x) = ;’leoqgc(hemkcz +

Under the adiabatic approximation that the typical time scale of varying ¢3(x) is
much smaller than 1/Awy, the dynamics of ¢3(x) is solved by the right-hand side
of the equation above:

F3(0) ¥ e Gefae el 4 =22

——=——@,ppe" ! 5.99
2Aw0w30 2A(L)Q(l)30 ¢p ¢Be ’ ( )

while the positive frequency branch of $3(x) can be recovered by changing to the
original frame: @3 (x)exp[iAwot — iw3ot + ik3z]. Substituting $3(x) back into the
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interaction Hamiltonian Eq. (5.93), we have:
Fling = FE™ + HAS, with

int int °

2
ok = 513 / 4264 () Be ()6 ()84 (x)

" 2Awowso
& o (5.100)
i [ bbb (o).
ﬁi}étaman =2 Ziz—fjio ./ dZ(ﬁA (x)(ﬁC(x)‘ﬁp(x)fﬁB(X)-

Here, the (l:(iittark corresponds to the AC Stark shift of the mass of the atom fields,
which is typically very small compared to the internal energy and rest mass thereby
negligible 2.The ﬂﬁf‘man term is the one we are interested in, i.e., describing the
Raman transition between |1) and |2) induced by control and passive fields. This

term can also correspond to an effective four-scalar field interaction action:
Sm=g [ 040889008, (0). (5.101)

: : . Raman
where g represents the coupling coefficient in F_#™4".

5.9 Appendix: Field quantization
5.9.1 Definition of field operators

As discussed above, The one-dimensional light-atom interaction model can be
described by the following interaction action as:

St = ¢ / Pxpa(¥)5()be (X) by (1), (5.102)

where x = (¢,z). These free scalar fields, after canonical quantization can be

expanded as:

A dk ; . .
$ (x) = / 2712(1) : [d(kj)e“‘”f“"fo)“"f(Z‘W+h.c. , (5.103)
J

where the @ (k) is an annihilation operator which is covariant under Lorentz trans-

formation and j = A,B,c,p. The w; and k; are related by dispersion relation
2 _
=
reference point.

w; = k% +m3, while for optical fields m; = 0. The ;9,20 determine the phase

The mass correction due to AC Stark shift is position-dependent here, which is not surprising
since the light-atom interaction happens in a local region of space-time.
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When we introduce the interaction, the Heisenberg operators will be modified,
according to:
O(1,2) = U} (=0,0)0' (1, 2) Uy (=20, 0), (5.104)

where O (1, z) and O(t, z) are the operators whose evolution are governed by the
free and full Hamiltonian, respectively. The U;(t1,1,) is the evolution operator in
the interaction picture. Therefore, in the interaction case, one can have a full field

operator given by:

. dk; . . .
é:(x) = / L [A(k;,1)e i witt=tio+ikj(z=zj0) L p e, (5.105)
J 2n2w; [ / ]

where A(k;,1) = U] (0,0)A(k;,0)0](0,1).

Since all these fields have a WKB trajectory in real experiment, they can take a

scale-separated form as:
¢, (x) = G (x)e @it ikjo(z=20) 4 pc (5.106)

where the exponents describe the fast-oscillating part of the field and the tilde
operators describe the slowly varying amplitudes. Using the above definition, one

can obtain the relation between the A and ¢ operators as:

$i(t,2) = / 2d’2‘A [A(t, ke @imwit=tio+itki=k0)&=20) L e ], (5.107)
T wj

Also note that the transformation U (0,1), as an unitary transformation, will not

affect the commutation relation, therefore we have:
[A;(1,5), A5(1, )] = 20,8 (k = k). (5.108)

It is worth noting that in the spatial domain, the A and the ¢ is related by (take

A-field as an example):
FD(x) = At.z - 2y) | Qo). (5.109)

where 7 — z’A (z’A = z4(t9) + va(t — tp)) comes from the propagation and the first

t—argument comes from the perturbation due to the 4-scalar interaction.

5.9.2 Quantum states of fields
In the experimental setup, the control/passive field can be well approximated to

have a rectangular profile, and the state of, e.g., the control field is given by:

|Wc> = exXp

/ iﬁc (ac(kc)dj(kc) - h.c.)] 0)., (5.110)
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where

i ok
@e(ke) = Gt O% Sk = ke — koo, (5.111)

Vansk

and 2ma is the width of this rectangular wave and @, is the coherent amplitude.

It is easy to show the ¢ waveform:

S :/ %( 1 )— sinadk i (ko+SK) (x—t=x0+10)

o \/_ﬂék (5.112)
~ a—ReCta [x —t—x0+1p]e iko (x=t=x0+0)
20)0

Since the typical atom width is much smaller than the light pulse width, it can
be approximated as almost a plane wave in the atom-light interaction region by

lim,_,c0a sinc(max) = 6(x).

The initial state of atomic cloud is a Gaussian profile, given as:

dk .
)y =ep | [ 24 (antknal b ~he)| 00y, G113
with
@ (kg — kao)?
an(ky) = ﬁexp [—%‘ : (5.114)
(27T) AA A

while the B-field is a vacuum initially. Here the @4 is the atom coherent amplitude,

Ay 1s its width in the k-domain.

5.9.3 Equations of motion: Structures
Following the standard canonical quantization scheme, we have the Heisenberg

equations of motion for the atomic and optical field as:

(O+m%)da = 80bcdyp, Db = gbadpd),

SOUR A A (5.115)
(O+mp)dp =gdad:bp, Ud, =gdadpde.,

where O = 97 — V? (in 1-dimensional case here, [ = 87 — 92). These equations have
the same form as their classical counterparts, this is because different ¢ ; belongs to
different Hilbert space and their operators are commute with each other. Substituting
Eq. (5.106), we have the approximated equations for the slowly varying operator’s

positive frequency part (we take ¢ = 1 and their Hermitian conjugates are ignored
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for brevity):
(0 +vad)d) = gadpd, e,
(0: +vBd) by = gpd 4, b¢
(O +0)9¢ = 8ch by,
(0 = 0.)¢;, = 8pdadpde.
Here, v 4,5 the WKB velocity of atom wave packet A/B and the two optical fields are

(5.116)

propagating along the opposite directions. The coupling constants are defined as:
gj =1g/(2wjo), where j = A, B, c, p. In deriving the above equations of motion,
we take the leading non-relativistic approximation so that v4,p ~ ka/p/ma p and
we also use the rotating wave approximation, namely, we only keep those terms
satisfying:

kpo —keo = kao — kpo, wco — wpo = wpo — WAo- (5.117)

These conditions, under non-relativistic approximation and mp ~ m4, have the clear

physical meaning of relativistic Doppler effect:
weo — wpo = v(kao — kpo), (5.118)

where v = v4 = vp is the approximate speed of atom. The Hermitian conjugation
of these equations can also be easily obtained. In the following, we are going to

solve these equation in a perturbative way.

5.10 Appendix: Mean field solutions

Typically, in an interferometric process, the light-atom interaction time is very
short compared to the free evolution time of the atom cloud, and the center-of-
mass velocity of the atom cloud is very low, typically ~ 2cm/s. Therefore to the
leading order, we can treat the atom’s center-of-mass motion to be static during the
interaction process, thatis, v4 = vp =~ 0. We also note that the spatial size of optical
fields are much larger than the size of the atom cloud, therefore we can approximate
the mean value of the optical fields to be almost constants during the interaction

process.
The zeroth-order of the equations of motion is simple:

0dy = (8adpd)dp, (0, +0)¢: =0,

0dp = (889,00)4. (0 —0:)8, = 0.

We ignore the r.h.s. of the equation for the optical field because the photon number

(5.119)

is much larger than the atom number. Since ¢, and ¢, are almost constant, therefore
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we can rewrite the zeroth-order atom equations to be:
0 dh = —iQereh,  ,¢h = —iQe re g, (5.120)

where ¢, is the phase difference between the control field and passive field, Q is
the Ramsey frequency. Here, we make use of the approximation g4 = gp = g4

thereby Q = |g4¢,¢.|. The full solution of this equation is:

¢h (1) = ¢%(0) cos Qt — ig%(0)e'#r sin Qt,

] § i . (5.121)
¢p(t) = ¢5(0) cos Qr — i}, (0)e™"#<P sin Q.

The gravitational wave signal will be carried by the ¢.,. Clearly, this is where the

matrix M(6, ¢) in the main text comes from.
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Chapter 6

HIGH-PRECISION MODELING FOR GRAVITATIONAL WAVES
OF BBH REMNANTS

The gravitational radiation from the ringdown of a binary black hole merger is
described by the solution of the Teukolsky equation, which predicts both the temporal
dependence and the angular distribution of the emission. Many studies have explored
the temporal feature of the ringdown wave through black hole spectroscopy. In
this work, we further study the spatial distribution, by introducing a global fitting
procedure over both temporal and spatial dependences, to propose a more complete
test of General Relativity. We show that spin-weighted spheroidal harmonics are the
better representation of the ringdown angular emission patterns compared to spin-
weighted spherical harmonics. The differences are distinguishable in numerical
relativity waveforms. We also study the correlation between progenitor binary
properties and the excitation of quasinormal modes, including higher-order angular
modes, overtones, prograde and retrograde modes. Specifically, we show that the
excitation of retrograde modes is dominant when the remnant spin is anti-aligned
with the binary orbital angular momentum. This study seeks to provide an analytical
strategy and inspire the future development of ringdown tests using real gravitational

wave events.

6.1 Introduction

The gravitational waves emitted at the final stage of a binary black hole (BBH)
merger — the ringdown stage, consist of a series of quasinormal modes (QNMs) [1—
5]. QNMs are solutions to the homogeneous Teukolsky equation [6-9], i.e., the
linearized Einstein’s equations in the background of a Kerr black hole [10-14]. The
foundation for doing so follows models that describe stellar collapses [10-13] —
the strong-field region “falls down” toward the future horizon of the final black
hole, revealing a spacetime region in which perturbations satisfy the homogeneous
Teukolsky equation with ingoing condition near the horizon and outgoing condition

near infinity.

The homogeneous Teukolsky equation not only predicts the temporal dependence
of the ringdown waves, in terms of their complex spectra, but also their spatial

distributions, in terms of angular emission patterns. There have been many studies
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on black hole ringdown spectroscopy involving multiple angular frequencies by
modeling it as the superposition of exponentially damped sinusoids [ 15-20], or using
other methods of frequency extraction [21, 22]. Recently, it has been shown that the
inclusion of overtones [4, 23] can improve the fitting of numerical relativity (NR)
waveforms and lead to better estimation of ringdown model parameters [20, 24, 25],

because of the better characterization of the post-merger signal from an earlier time.

Many phenomenological fitting studies based on NR waveforms have been done [26—
28], while most previous works only focused on the ringdown temporal properties.
Our study further includes spatial dependence on different models, explicitly. Specif-
ically, when the final spin is not aligned with the initial orbital angular momentum,
the spatial properties for retrograde excitations [29-32] have not been carefully stud-
ied. As the temporal-spatial consistency check of ringdown emission can provide a
more complete test of General Relativity [33—-36], exploring such a problem defines
the theme of this work.

In gravitational wave observations, the prospective searches for ringdown wave-
forms [37, 38] would enable the test of the spatial-temporal features. With the
rapidly increasing number of binary coalescences observed [39-42] by ground-
based detectors like Advanced LIGO [43] and Advanced Virgo [44], events with
detectable higher-order modes [45-47] are observed, e.g., GW190412 [48] and
GW190814 [49]. The detectability of higher-order modes not only impacts the pa-
rameter estimation [18, 19, 36, 50-52], but can be used to study angular emission as
well. Currently, in the ringdown stage, a high signal-to-noise ratio (SNR) is difficult
to achieve due to the lack of post-merger cycles and the degraded detector sensitivity
at high frequency range. However, the sensitivity of the proposed next-generation
detectors, including Einstein Telescope [53, 54], Cosmic Explorer [55, 56], and
NEMO [57], will be significantly improved [58], especially at the high frequencies,
opening more possibilities in the BBH post-merger studies [25]. Although a single
event could provide limited information about angular dependence, combining mul-
tiple events and extracting angular-dependent features will become possible with
the expected large number of events in the future. That calls for strategic studies of
temporal-spatial emission patterns before more events with high ringdown SNR are

observed.

In this work, we study ringdown gravitational waves and show that the spin-
weighted spheroidal harmonics are essential in the faithful representation of the

temporal-spatial ringdown emission pattern [59], further confirming that the Teukol-
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sky equation describes the ringdown dynamics. We fit the NR simulated strain data
of merging binaries with different parameters provided in the Simulating eXtreme
Spacetimes (SXS) Collaboration catalog [60], without adding simulated noise. The
exclusion of nonlinear gravitational wave memory effects in SXS waveforms [61]
provides an ideal test bed for the linear perturbation theory. We infer the final black
hole spin and mass via parameter estimation [62, 63], as in the usual temporal-only
fitting. Our results show that when the spatial distribution is considered in addition
to the spectrum, more information could be extracted from the ringdown stage,
which would benefit the determination of the progenitor BBH properties and their
formation channels [64, 65]. Along this procedure, we describe various features
of the temporal-spatial emission pattern; in particular, we illustrate the physical
meaning of the two complex amplitudes of each QNM. We also study the cases
where retrograde modes [29-32, 66] are excited when the initial spin of the primary
progenitor black hole is large and anti-aligned with the orbital angular momen-
tum [64, 67], and thus the remnant spin is left anti-aligned with the binary orbital

angular momentum.

The structure of this chapter is organized as follows. In Sec. 6.2, we review the
QNM decomposition model under the spin-weighted spheroidal harmonic basis and
the spin-weighted spherical harmonic basis, respectively. In Sec. 6.3, we present the
temporal-spatial fitting strategy used in this work for memory-free NR waveforms.
In Secs. 6.4-6.5, we describe the fitting results for waveforms of a benchmark
binary and several nonspinning binaries with different mass ratios, and discuss
the distinguishability of the two decomposition models and the contributions of
higher-order modes and overtones. Then, in Sec. 6.6, we investigate the excitation
of retrograde modes when the remnant spin is anti-aligned with the binary orbital
angular momentum. Finally, in Sec. 6.7, we summarize and further discuss our

results.

6.2 Ringdown models

In this section, we define the coordinate frames used to describe outgoing waves
near infinity, carry out QNM decomposition in two types of bases, describe the
temporal and spatial dependences of the QNMs, and discuss the excitations of

prograde and retrograde modes.

In this work, the discussion is restricted to non-precessing binaries, for which

we establish two coordinate systems: the “orbital frame” adapted to the binary
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Figure 6.1: Convention of coordinate continuation from positive to negative values
of the final spin yr. (a) Spin-aligned case (x s > 0): when the final spin is aligned
with the orbital angular momentum, the final spin frame coincides with the orbital
frame, with « = 7 and ¢ = ¢. (b) Spin-anti-aligned case (xy < 0): when the final
spin is anti-aligned with the orbital angular momentum, we have ¢ = 7 — 7 and
p=21-¢.

orbital angular momentum, and the “final spin frame” adapted to the remnant spin
angular momentum. In the final spin frame, we decompose the temporal and
angular distribution of gravitational waves into a sum over QNMs. This analytical

decomposition will be fitted to the waveforms from NR simulations.

6.2.1 Coordinate frames

For the majority of BBH events detected so far, the inspiral stage often contributes
most of the SNR [35, 36, 40, 42]. The most natural coordinate system to describe
non-precessing binaries has its Z axis aligned with the direction of the orbital angular
momentum. We refer to this as the orbital frame and use (i, ¢) to label the polar
(inclination) and azimuthal angles, respectively. In particular, waveforms of non-
preceesing binaries from the SXS catalog adopt the orbital frame. On the other
hand, QNM decomposition is most easily performed by taking the Z axis along the

spin direction of the remnant black hole. We shall refer to this as the final spin frame
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and use (7, ¢) for its polar (inclination) and azimuthal angles.

The transformation between the orbital frame and the final spin frame in two
specific cases is illustrated in Fig. 6.1: (a) When the final spin of the remnant black
hole is aligned with the orbital angular momentum (spin-aligned case) [28], the
two frames coincide, i.e., t = I, ¢ = ¢. (b) When the final spin is anti-aligned
with the orbital angular momentum (spin-anti-aligned case), we have ¢ = 7 — 7 and
¢ = 2m — ¢. With such coordinate transformation, the parameter space of y is
constructed to be continuous across zero, thus linking the cases of aligned and anti-
aligned remnant spins. For more general cases of spin misaligned with the orbital
angular momentum, the orbital angular momentum precesses in time, and is neither

aligned nor anti-aligned with the final spin — this is left for future studies.

For consistency with the SXS data structure and most of the literature, we adopt the
orbital frame when describing the final remnant spin y s, with xy s < 0 corresponding
to the spin-anti-aligned case, and use |yy| to denote the spin magnitude. For
simplicity, we use the symbol Q= (¢, ) to represent coordinates in the orbital

frame.

6.2.2 QNM decomposition models
Let us now perform QNM decomposition of outgoing gravitational waves near
infinity in the final spin frame. From a start time 7y, the complex-valued ringdown

waveform can be written as [1, 5, 7, 8, 68]:

ST, @, 1)
=(hy —i hy) S (T, @, 1)

Imax M=l Nmax

Z Z Z 1(51-:1) it (= tO)—ZSlmn(')/lmn’ L, 95)"'

=2 m=-1 n=0
S— % o
Bl(m ) lwlmn(l to)—ZSImn(ylmmﬂ' - <P)], (61)

where /i, and hy are the plus- and cross- polarization components, respectively, r
is the distance from the source binary to the detector on Earth. The QNMs summed
over here are labeled by three integers: the angular indices (I, m) with [ = 2,3, ...
and |m| < [, and the overtone index n = 0, 1, .... Here we have only carried out the
summations up to finite maximal values of the angular quantum number /,,x and
the overtone number ny,x. The real and imaginary parts of each wy,,, correspond
to the (angular) frequency and decay rate of the QNM; the entire spectrum {w;,, }

is exclusively determined by the remnant black hole’s mass My and dimensionless



162

spin x s — the only two parameters that characterize a stationary uncharged black
hole, according to the no-hair theorem [25, 34, 69-73]. The angular functions
—281mn in Eq. (6.1) are the spin-weighted spheroidal harmonics, with dimensionless

spheroidicity parameter yi,,,, given by [8]:

Yimn = Xfowlmn- (62)

The dependence of the angular function on 7;,,,, can be attributed to the deformation

of bounded photon orbits due to a Kerr black hole’s spin.

In practice, on the other hand, the ringdown waveform is often approximated by
an expansion of decaying sinusoids with angular dependence given by spin-weighted

spherical harmonics {_»Y};, }:

W (@, @, 1)
=(hy —i hy) M (T, @, 1)

Mf Imax M=l Nmax
=== D DB e o8 7. g)+
[=2 m=-[ n=0

B(Y—)eiw,*mn(t—to)_zyl*m(,T —-7,9)]. (6.3)

Imn

For simplicity, we refer to the decompositions in Egs. (6.1) and (6.3) as S model
and Y model, respectively. The mode mixing between the two bases depends on the
spheroidicity yimn [8, 26, 68, 74]:

—ZSlmn (Ylmn» R ‘;5) = —2Ylm(z’ §5) + Yimn ch’lm —2Yl’m(t~’ 95)
1#l’

+ O (Yimn)*, (6.4)

where ¢}/, are the mixing coefficients between spin-weighted spheroidal harmonics
and spin-weighted spherical harmonics with different /” and / but the same m index.
To test the angular emission patterns of remnant black holes, we compare the two

models and check which one is more consistent with the QNM expansions.

For the convenience of readers, the notation and terminology specifically defined
and used in this chapter are listed in Table 6.1. It is worth pointing out that the
conventions for writing the QNM expansion in Eq. (6.1) are not all consistent in
the existing literature, e.g., Refs [5, 26, 68]. We will briefly comment on them in

Sec. 6.2.5 and summarize in Table 6.2.
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Table 6.1: Notations and terminology used in this chapter.

Notation Definition and description

S The QNM decomposition in spin-weighted spheroidal
harmonics, defined in Eq. (6.1), often labeled in super-
scripts.

Y The QNM decomposition in spin-weighted spherical
harmonics, defined in Eq. (6.3), often labeled in su-
perscripts.

Toffset The offset of starting time from the peak of 3;,,, |, (1) ?

(peak), defined in Eq. (6.6); it serves as the control hy-
perparameter in fitting.

¥’[h, g((,it/ Y)] The optimal distance over the searched (M, x y) param-
eter space, defined in Eq. (6.43), shortened as )(2 in the
figures.

trans Transition time, the value of 7, after which the optimal
distance converges to a stable level, defined in Sec. 6.4.2.

)(iin Minimum distance, the converged value of the optimal

distance after the transition time, defined in Sec. 6.4.2.

|AMy¢/My¢|, |Axr/xr| Relative errors, the quantities used to characterize
the accuracy of the estimated parameters, defined in
Egs. (6.17).

6.2.3 Temporal and spatial dependences of the modes
The physical meanings of the parameters and terms in Egs. (6.1) and (6.3) are

explained as follows:

Time dependence. — Each wy,;,,, represents one complex frequency of the QNMs
with index /mn, with the imaginary part being the decay rate. Among the QNMs,
the m > 0 modes are prograde, while the m < 0 terms are retrograde. In this work,
we obtain wy;,, numerically using the gnm python package [75]. As we vary xy,
the trajectories of a selected set of wy,,, appear as branches in the complex plane
in Fig. 6.2. Real parts of prograde-mode frequencies (solid curves) increase with
the spin magnitude |y |, while those of the retrograde-mode frequencies (dotted
curves) decrease with |yr|. Moreover, the decay rate increases with increasing
overtone number n, as shown in the upper (n = 0) and lower (n = 1) parts of

Fig. 6.2. Higher overtones play more important roles in the earlier stage of the
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Figure 6.2: Examples of complex QMN frequencies for y; € [0,0.99] (similar to
Fig. 6 in Ref. [68]). The horizontal axis represents the frequency (the real part) and
the vertical axis represents the decay rate (the imaginary part). The solid, dashed,
and dotted curves stand for prograde modes (m > 0), m = 0 modes and retrograde
modes (m < 0), respectively. Each curve is labeled by its /mn indices, starting with
the frequency value of yy = 0 and ending at the frequency value of xyy = 0.99.
When yr =0, QNM frequencies with the same [ index coincide, as indicated by
the black circles. We mark the frequencies corresponding to xr = 0.3725 (N9;
see waveform label in Table 6.3), yr = 0.6864 (N1) and s = 0.9 (the example in
Fig. 6.3) by plus, inverted triangle, and dot markers, respectively. For the modes
with the same /m indices, the ones with overtone n = 1 (lower curves) have larger
decay rates than the ones with n = 0 (upper curves).

ringdown [4, 23-25].

Spatial dependence. — For prograde (retrograde) modes with indices m > 0 (m <
0), the {B(S+)_251mn(ylmn, Lo}, {Bl(;;)_ngm(Z, @)} terms describe the emission

Imn
*

mainly towards the north (south) hemisphere, while the {Bl(;z:l)_zS lmn(ylmn,n -
Lo}, {Bl(:l;)_zYl”;n(n — T, @)} ones describe the emission mainly towards the south
(north) hemisphere. The coeflicients Bl(;f;/ %) are the corresponding excitations of
the /mn mode and are governed by the merging dynamics of the progenitor binary.

The temporal and spatial features of different terms are summarized in Table 6.2.



[a] [b] [c] [d]
Temporal-spatial profile e ) S000(¥220. 1. @) | €U’ 5850 (v220. T =1 @) | €T 580 50(y200. 1, @) | €' 585 (Y2207 — I, §)
: ; (+) (=) (+) (=)
Amphtude in Eq. (6.1) By B B, B,
Right-/Left-handed (R/L) R L R L
Prograde/Retrograde Prograde Prograde Retrograde Retrograde
Emission direction North South South North

(in final spin frame)

Angular eigenfunction

(standard form)
Amplitude in [68]! (2006)
Terminology in [26] (2014)
Amplitude in [30, 32] (2019)
Amplitude in [36] (2021)
Amplitude in [5] (2021)
Amplitude in [76] (2021)
Amplitude in [77, 78] (2021)

~28220(220, I, §)

Ao
Regular mode
Ao
Ao
Cri1220
Cono
Cxo

—282-20(=Y359, & P)

A, (mirror mode of [a])
Regular mode
Ao
Az-20
Cri12-20
C;_, (mirror mode of [c])
Cr—20

~282-20(¥2-20, T, §)

Az-20
Mirror mode of [b]
Az-20
(not included)
Cl-11220
Cr-20
C;_, (mirror mode of [b])

~285220(=Y3_50- & P)

A}, (mirror mode of [c])
Mirror mode of [a]
A 20
(not included)
Cl-112-20
CJ, (mirror mode of [a])
C;,, (mirror mode of [a])

Table 6.2: Conventions and notations for writing the QNM expansion, taking (/, m,n) = (2, £2, 0) for example.

IRef. [68] denotes GW strain tensor as i +1i hyx, thus we include a sign change in angular frequency when comparing the convention in [68] with other papers.

S91
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6.2.4 Excitations of prograde and retrograde modes

Let us now discuss the features of prograde and retrograde modes, and how they
should be excited in a merging binary. In Fig. 6.3, we illustrate the polarization
contents of each ringdown mode by plotting in 2D graphs the (/.(¢), hx(?)) observed
from the north (¢ = 0, ¢ = 0) and south (¢ = 7, ¢ = 0) poles in the orbital frame, for
t € [0,100M]. For illustration purposes, we choose yr = 0.9,/ =2, and m = +2
in the plot. We assign the same, arbitrarily chosen starting amplitude for all the
modes, (44(0), hx(0)) = (0.63,0). Since the modes oscillate and decay over time,

each mode traces a trajectory that spirals toward the center as time passes.

Here we emphasize that plotting 4. () along the x direction and &y (f) along
the y direction in the graph (instead of the opposite) illustrates the way that the
polarization patterns rotate: if a binary along with its emission pattern rotates about
the (¢, ¢) emission direction by an angle, say ¢, following right-hand rule, the
complex strain value & = hy — ihy will become e %¢h = e7%¢(h, — ihy) and the

pattern of (44(t), hx(¢)) in the plot will rotate by 2/ counterclockwise.

Spin-aligned case. — In the left panels (a) of Fig. 6.3, we study the spin-aligned
case, with yy > 0. At the north pole (¢« = 0, upper left panel), we observe that the

(+)
B

mao (Dlue solid curve) and B5n_<)0 (orange dashed curve) terms correspond to the
counterclockwise and clockwise trajectories in the (%, hx) plane, respectively. It is

B(+)

m<0’
at the north pole due to the properties of spin-weighted spheroidal harmonics. The

important to note that the other two terms, with amplitudes B;(n_>)o and vanish
counterclockwise (clockwise) trajectory corresponds to the positive (negative) value
of the real part in the QNM frequency of the B;(120 (B;(n_<)0) term. In this case, the
spin of the black hole is counterclockwise, therefore B;(Jio (Br(n_<)0) corresponds to
a prograde (retrograde) pattern of polarization rotation. One can also see that the
prograde BEL)O mode spirals decay “slower” toward the center than the retrograde
Bfr;)o mode (the blue solid curve reaches the gray dotted circle at r = 10M; while
the orange dashed curve reaches it before 1 = 10M ), because the prograde mode
has a higher quality factor (the ratio between absolute values of real and imaginary

parts of the QNM frequency).

At the south pole (¢« = «, lower left panel), again according to properties of the
spin-weighted spheroidal harmonics, we only observe the Br(n_>)0 (solid orange curve)
and Bf;io (dashed blue curve) terms, which represent the prograde and retrograde
modes, respectively. In comparison with the view from the north pole, the prograde

(retrograde) mode now spirals clockwise (counterclockwise). This is consistent
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Figure 6.3: Polarization contents (/4 (t), hx()) of the template ringdown waveform
indexed with (I,m) = (2,2), (2,-2), observed from the north pole (¢t = 0, ¢ = 0)
and south pole (¢ = 7, ¢ = 0) in the orbital frame for (a) spin-aligned (y s = 0.9)
and (b) spin-anti-aligned (y r = —0.9) cases. Each parametric curve starts at = 0
from (hy, hx)=(0.63,0) and evolves as a spiral over ¢ € [0, 100M¢]. The “Xx” marker
indicates the strain at t = 10M, and the gray dotted circle indicates the strain
magnitude of prograde mode at that moment for reference. The B,,~o and B«
terms represent the prograde and retrograde QNMs excitation, respectively. For
Biu>0 (Bim<0), the “(+)” superscript stands for the emission in the same (opposite)
direction as the spin. For (a) spin-aligned case, the B;(;lo and B£n_<)0 terms represent
the emission towards the north pole direction; for (b) spin-anti-aligned case, the

B and B terms represent the emission towards the north pole direction. In
m>0 m<0

either case, the B;(120 and Bfn_<)o terms represent the emission towards the remnant
spin direction.

with the fact that the black hole rotates clockwise when viewed from the south pole.
Mathematically, the signs of the real parts of the eigenfrequencies are flipped, while

the imaginary parts remain unchanged.

Spin-anti-aligned case. — In the right panels (b) of Fig. 6.3, we study the spin-anti-

aligned case, with y < 0. We still follow an expansion in the final spin frame (7, §)
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using Eq. (6.1) with dimensionless spin equal to | x 7|, but now need to carry out the
transformation (¢ = 7 — [, ¢ = 21 — @) to obtain the complex strain 4 in the orbital
frame. Because of this transformation, at the north pole (¢ = 0, upper right panel),

we observe the B,(I;)O (solid magenta curve) and B’(+)

»<o (dashed green curve) modes.

They still correspond to prograde and retrograde modes, respectively, although now
the prograde (retrograde) mode has its frequency with a negative real part and a
spiral pattern that goes clockwise (counterclockwise). These are consistent with the

fact that the spin direction of the black hole is clockwise viewed from the north pole.

At the south pole (¢ = &, lower right panel), we observe the Br(n?o (solid green
curve) and B;(n_<)o (dashed magenta curve) modes, which correspond to prograde
and retrograde modes, respectively. The black hole spins counterclockwise when

viewed from the south.

It is worth pointing out that both the remnant spin direction and the excitation
of prograde or retrograde mode are determined by the binary dynamics. They are
related to each other because the polarization patterns of the inspiral wave would
transition smoothly to the ringdown modes. During the inspiral stage, the orbital
motion of the binary appears counterclockwise (clockwise) when viewed from the
north (south) pole. When the progenitor black holes are nonspinning, the remnant
spin is contributed solely from the orbital angular momentum and thus aligned with
the orbital angular momentum. Therefore, we anticipate the prograde modes to be
more strongly excited. On the other hand, when the initial spin is anti-aligned with
the orbital angular momentum, there would be competition between the spin and
orbital angular momentum during the merger. The left-over stronger contribution
will determine the direction of remnant spin, as well as the excitation of prograde or
retrograde modes. Specifically, when the contribution from the negative individual
spin is larger, the remnant black hole is left with a spin-anti-aligned with the orbital

angular momentum, and we anticipate stronger excitations for retrograde modes.

6.2.5 QNM conventions

Before moving on to the following discussion, we briefly comment on the con-
ventions for writing the QNM expansion in Eq. (6.1) or (6.3) in this chapter and in
other literature. The QNM expansion consists of four parts corresponding to the
combinations of two frequencies (wjm, and —w;, ), as well as the prograde and

retrograde modes.

In our convention, we first add up the terms with conjugate frequencies explicitly,
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and then sum up prograde (the expressions with positive m’s) and retrograde modes
(with negative m’s) over all the /mn indices through the summation signs. The
convention and summation order in Ref. [5] are similar to ours. In Eq. (1) of [5],
the p = 1 terms represent the prograde modes (our m > 0 terms), and p = —1 terms
represent the retrograde modes (our m < 0 terms). When the retrograde modes are
not considered, the Eq. (3) of Ref. [5] is equivalent to our m > 0O terms in Eq. (6.1),

with (1)’ absorbed into the Bl(;i;) coeflicients to be determined.

In an alternative convention, one can sum up the terms with the same sign of
frequencies first. Specifically, the terminology of “mirror mode” was first mentioned
in [68] to describe the feature that half of the QNM frequencies are “degenerate in
modulus of the frequency and damping time,” as shown in Fig. 6 of [68]. Later in
Ref. [26], the terminology “mirror modes” was used to refer to the retrograde modes
with a different frequency sign from the corresponding prograde modes; while in
Ref. [76], it was used to refer to all terms with negative frequencies. In recent work
presented in [77, 78], the same terminology “mirror modes" is used to describe the
retrograde modes that emit to the same direction as the considered prograde modes
(Fig. 1 of Ref. [77]), while the remaining terms with the conjugate frequencies
are taken into account by symmetry. Since there is no consistent definition of
mirror modes yet, we choose not to use such terminology and, instead, define and
describe the prograde and retrograde modes, as well as the terms with conjugate
frequencies explicitly. We summarize the conventions and notations for writing the
QNM expansion in some existing literature in Table 6.2. More details are given in
App. 6.8.

6.2.6 Beyond linear ringdowns

We finally point out that in addition to QNMs, the gravitational waveform after the
merger phase also contains power-law tails [79] and gravitational wave memory [80—
82]. Power-law tails arise from the long-range nature of the black hole’s gravitational
potential. This contribution decay with time, following a power law, and is generally

believed to be negligible for binary black hole coalescence.

Gravitational wave memory originally refers to the change in spacetime geometry
at future null infinity before and after the passage of a transient gravitational wave.
Linear memory refers to changes that can be related to the initial and final momentum
distributions of the gravitational wave source [80], while non-linear memory is

induced by the non-linearity of the Einstein’s equations [81]; it can be further
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interpreted as arising from the gravity effect caused by the energy and momentum
of the gravitons [82]. For compact binaries, the memory waveform also refers to a
non-oscillatory component of the total waveform that starts off at zero and gradually
reaches the final value equal to the gravitational wave memory [83]. Memory
waveform can be computed from those waveforms obtained from perturbation theory

that do not account for the memory effect [84, 85].

Recent numerical simulations have also been able to decompose the full waveform
at null infinity into a memory piece and a memory-free piece [86]. It is also shown
that the previous SXS waveforms (including those approximated by the NR surrogate
models) correspond to the memory-free piece. In this study, we use the memory-free
waveforms, and show that they can be decomposed into QNMs, in terms of both
the temporal and spatial distributions. The memory waveform, on the other hand,

cannot be decomposed into QNMs.

6.3 Fit memory-free NR waveforms with QNM expansions

We now develop a strategy to use QNM expansions (6.1) and (6.3) to fit memory-
free NR waveforms. In our strategy, we do not focus on one wave-emission direction,
or one particular (/,m) mode, but rather consider the joint temporal and spatial
(angular) dependence of the ringdown gravitational waves. More specifically, for
each binary, and its ringdown waveform starting from a particular time ¢y, we find
the optimal set of parameters (M, xr) and coefficients {Bl(fjl/ Yi)} with which the
expansion in Egs. (6.1) or (6.3) best describes the h(ﬁ, t) obtained from numerical
relativity. From this approach, we are able to determine whether the S or the Y

model is the more faithful representation of the ringdown gravitational waves.

6.3.1 Target waveforms and templates
In this study, our (memory-free) target waveform h(ﬁ, t) is obtained from the
SXS catalog, which provides # in terms of the expansion in spin-weighted spherical

harmonics:
h(Q,1) = Z Yy () (2). (6.5)

Im
For each binary, we denote the time at which }};,, | A ()| is maximum by fpeak-
We then use templates in the forms of QNM expansion, either Eq. (6.1) or Eq. (6.3),
to approximate the target waveform during ¢ € [ty, +00)!. Here 7 is a starting time

1Practically, for all value of ¢y, we consider the waveform till #peox + 100M when it essentially
damps to 0.
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not far from f,eqx, with an offset

loffset = [0 — Ipeak- (6.6)

In order to evaluate the quality of the fit, we first define a temporal-spatial inner
product of the target waveform h(f), t) and the template waveform g(ﬁ, t) by doing

a double integral over both time and angular coordinates:
+00
(g | h) = / dZQ/ di [g*(g, (&, )] . 6.7)
fo

We can then characterize the distance between h(fl, t) and g(f), t) using

_$h-glh-g)

2
x“[h, gl i

(6.8)

For each binary configuration, the distance y? depends on the starting time
of ringdown fit, the mass and dimensionless spin (M, y) of the remnant black
hole, the set of QNM modes summed over (including whether we use the S or
the ¥ model), and their complex amplitudes {Bl(;)n }. The parameters (Mg, xr) are
intrinsic and need to be optimized numerically, the mode amplitudes {Bl(:;} can be
optimized analytically, while the starting time 7y works as the hyperparameter that

controls the fitting.

6.3.2 Strategy for minimizing y? over {Bl(:‘;l)n }
As it turns out, minimization of y? over {Bl(:%} can be carried out analytically,
because y? can be viewed as squared distance between % and a linear subspace

spanned by the spin-weighted harmonic basis by varying coefficients/coordinates
{ B(i) }

Imn

Let us do this explicitly for the S model, and the procedure for the ¥ model can
be obtained by simply switching S to Y. Let us first define the following quantities

for inner products:

+00
ki = [ @6 [ drgly) @@, (©9)
1
(0) 25 e @53 0@ (S
G o iommr = / d*Q /[ drg, )" (Q,0)g, ) (Q,1). (6.10)
0

Here o = +, and we further define

gl(;,)n(ﬁ’ t) = e_iwlmn (1=to) —2Slmn (')’lmm Z’ ()5), (6 1 1)
gV (@,1) = im0 58" (Vi 7~ T, §). (6.12)
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Note that (7, ¢) need to be converted to (¢, ¢) depending on whether we have spin-

aligned or spin-anti-aligned binaries. We can now view Bl(gzl and K Z(Zr)l as the
o,0’)

) ., as those of a Hermitian
mn,l’m’'n

components of column vectors B and K, and Gl(

matrix G. The inner product in Eq. (6.7) can thus be written as:
(glhy =B'K, (glg)=B'GB. (6.13)

This leads to the least-squares value of distance

K'GK
2
-1- , 6.14
which is achieved when the coefficients satisfy
B=G"'k. (6.15)

We then search the 2D parameter space of (M, ) to find the best estimates of
(M est, X 7.est) that yield the optimal distance x[h, g(()it/ Y)] for S and Y models,

respectively. Details of the numerical implementation can be found in App. 6.10.

6.4 Fitting the benchmark GW150921-like binary

In this section and the following Sec. 6.5, we focus on spin-aligned binaries, for
which the spin of the remnant black hole is in the same direction as the binary
orbital angular momentum. For both the S and ¥ models of QNM expansion,
starting from different times (described by the hyperparameter z,gse), we com-
pare the optimal distance y?[A, g((gt/ y)] (x? for short in the plot labels) and the
corresponding (M s est, X f.est), When different groups of angular (/,m) modes and
overtones are included. We demonstrate that, as expected, the S model describes
the NR waveforms better than the ¥ model. We carry out this study firstly for a
“benchmark binary” waveform, GO (with parameters similar to the first GW event
GW150914 [60, 87, 88]), and then nine non-spinning binaries with mass ratio g

ranging from 1 to 6, as listed in Table 6.3.

In Sec. 6.4.1, we introduce our strategy for choosing which angular (/, m) modes
to include in the QNM expansion. In Sec. 6.4.2, we present the fitting results for the

benchmark binary waveform GO.

TAll SXS waveforms [60] used in this work have the ID type “BBH_SKS”, and the levels listed
are the maximum available ones.

’The initial values are taken at the reference time after junk radiation [89]. At an accuracy
level of 1074, the spin components in £ and § directions are zero for all the primary, secondary, and
remnant black holes listed here.

3For simplicity, in the main text we use y r torepresent (7).
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Table 6.3: SXS BBH waveforms used in Secs. 6.4-6.5.

Label SXSID/Lev!  gres? ()_()ref,l)z2 ()_()ref,Z)z2 Xeff ()_()f)zz’3
GO 0305/Lev6 1.221 03300 -0.4399 -0.0166 0.6921
N1 1154/Lev3 1.000  0.0000 0.0000 0.0000 0.6864
N2 1143/Lev3 1.250 -0.0001 0.0000 -0.0001 0.6795
N3 0593/Lev3 1.500  0.0000 0.0001 0.0001 0.6641
N4 1354/Lev3 1.832 -0.0002 0.0001 -0.0001 0.6377
N5 1166/Lev3d  2.000  0.0000 0.0000 0.0000 0.6234
N6 2265/Lev3d  3.000 0.0000 0.0000 0.0000 0.5406
N7 1906/Lev3d  4.000 0.0001 —0.0001  0.0000 0.4718
N8 0187/Lev3d  5.039 0.0000 0.0000 0.0000 0.4148
N9 0181/Lev4  6.000 0.0000 0.0000 0.0000 0.3725

Aim

10" 5
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N1 =1.000
N2 g=1.250
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Figure 6.4: The relative importance ‘A;,,, defined in Eq. (6.16) as the strain com-
ponent in spin-weighted spherical mode (/, m) squared and integrated from 7pe,i to
tpeak + 100M . Groups 1-4 of the (/, m) modes are defined according to their relative
importance in the QNM expansion, and are added to the fitting models in order. See
details in Sec. 6.4.1.

6.4.1 Strategy for choosing angular modes

Even though the quadrupole (I, m) = (2,2) mode is the dominant component of
the inspiral, merger, and ringdown waves, gravitational wave detectors at present
and in the future are capable of detecting higher multipole modes that are also
excited [45]. This capability is the foundation for this study. The NR waveforms from
the SXS catalog include all (/, m) modes up to /y,.x = 8 [60]. However, incorporating
too many modes in the QNM expansion will eventually lead to overfitting and
numerical noise. We need a strategy to include the appropriate angular modes,
which should be based on: (i) the strength of excitation of the modes, and (ii) the

accuracy of the NR waveforms, and the sensitivity of our detectors.

Let us now address (i) above, while (ii) will be discussed at the end of Sec. 6.4.2.
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To investigate the excitation strength of each (/, m) mode, we can rank them in terms

of their relative importance for the QNM expansion:

fpeak+100M

A= [ dt i (D). (6.16)
tpeak

For GO and N1-N9 binaries, we plot their Ay, as vertical bars in Fig. 6.4. According

to the order of magnitude of Ay, for all ¢’s, the (I, m) modes can be qualitatively

categorized into four groups:

Group 1: (2,2),

Group 2: (3,3),(2,1),
Group 3: (4,4),(2,0),(3,2),
Group 4: (5,5), (4,3),(6,6).

In our studies, instead of testing each of the individual modes, we add modes to our
QNM expansion by groups, from Group 1 to Group 4 sequentially. The contribution
of each group can thus be quantified by comparing the fitting results before and after
adding that group.

Before moving on to the fitting, let us comment that the magnitude of the A;,,’s
can be traced qualitatively to the excitation of the corresponding (/, m) mode during
the inspiral stage. The initial magnitudes of (/,m) modes are determined by (a)
their post-Newtonian order, i.e., higher (/, m) modes are generally weaker, and (b)
the suppression due to symmetry, i.e., the (I, m) = (3, 3), (2,1),(5,5), (4,3) modes
are prohibited for equal mass ratio binaries (e.g., N1). As A;, is an integral over
time, the ranking of each Aj,, is determined jointly by the initial magnitude and the

decay rate of that specific mode.

6.4.2 Fittings results for the benchmark binary G0

In this section, we discuss the fitting results for the benchmark binary GO. This
binary waveform is used to verify the fitting algorithm described in Sec. 6.3, as it
has the best numerical precision in the SXS catalog to date [60, 87, 88]. We first
investigate the distinguishability of the S and Y models and the contributions of
higher-order angular modes and overtones. We then comment on the fitting error by
comparing the results obtained using waveforms at different numerical resolution

levels.

To characterize the accuracy of (M e, X r.est), We define the relative errors as
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follows:

|AMf/Mf| = |(Mf,est - Mf,true)/Mf,truela (6.17a)
IAX £/ xrl = (X Fest = Xrue) /X f truel (6.17b)

where the true values (M ¢ yrue, X f,uwue) are taken from the SXS metadata. In Fig. 6.5,

(S/Y)]

for both the S and Y models, we show results of the optimal distance )(2 [A, Sopt

and the relative estimation errors. The results obtained using the S and ¥ models
are presented by blue solid and orange dotted curves, respectively. All results are
shown with respect to gt defined in Eq. (6.6). Each row represents the fitting with
the same (/, m) modes but different numbers of overtones. Different rows display

the results with different groups of (I, m) modes.

Let us first discuss the influence of varying the hyperparameter t, or equivalently,

(S/Y)]
opt

decreases and converges to a stable level after some specific value of 7, Which

foffiset- As shown in each panel of Fig. 6.5, with the increasing #oset, )(2 [h,g

looks like a “flat tail” in the plot. We define that specific tofet as transition time
(tans), and the converged value of distance as minimum distance ()(ﬁlin). More
discussion about ft4,s and szni , can be found at the end of Sec. 6.5. Practically,
we define fans as the time when 30% of the maximum slope in logarithmic scale
of the fitting distance with respect to fogse¢ 1s reached. For the S model, in each
)(2 block, tans 1s marked by a vertical line and szm' , by a horizontal line, both in
translucent blue. The accuracies of My ey and y res (shown in blocks below each
x? block) oscillate, while in general the levels of accuracy agree with the evolution
of )(2 with respect to fofet, 1.€., the relative errors decrease significantly before #ins
and slightly oscillate around a stable level after that. Despite the oscillation, after
twans, the relative errors are generally bounded by some specific small error level
(similar to the reaching of sznin in the y? plot). As the fyans values generally agree
between y? and the accuracies of (M f.ests Xf.est), we simply refer to the optimal
distance when comparing the fitting results in the following discussions.

We then discuss the contribution of different (/, m) angular modes. The ranking
of each Aj,, (Fig. 6.4) indicates its significance in the fitting. The contribution of
higher-order angular modes can be observed by comparing among different rows in
Fig. 6.5. Specifically, the four panels in the first column show the results of fitting
with different (/, m) mode groups, with the fundamental n = 0 overtones only. From
top to bottom, the sznin values for the S and Y models are listed in Table 6.4. The

Xilin values for the S model are consistently smaller than those for the ¥ model.
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Figure 6.5: Fitting results for the benchmark binary G0O. Each three closely laid
blocks show the optimal distance y? and the relative error in estimated (M FXF)s
with respect to foset/ M. The solid blue and dotted orange curves correspond to the
S and Y models, respectively. Different rows, from top to bottom, correspond to
adding (/, m) modes sequentially in groups, as specified in the upper right corner of
each )(2 block. Within each row, different columns, from left to right, correspond
to adding overtones for the same set of (/, m) modes, as specified in the lower right
corner of each y? block.
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Figure 6.6: Fitting results for GO using SXS data with different numerical levels
(presented in different colors). The first and second rows correspond to fitting with
the S and Y models, respectively. Within each row, the columns, from left to right,
correspond to adding (/, m) modes sequentially in groups. In this comparison, the
models only contain the n = 0 fundamental modes without including overtones.

In the case of using the S model, adding Group 3, (I,m) = (4,4),(2,0), (3,2),
improves the results most significantly. It reduces Xﬁlin from ~ 107 to ~ 10™* and
the relative estimation error from ~ 1072 to ~ 1073, On the contrary, no order of
magnitude improvement is seen when using the Y model by adding (I, m) groups, as
the Y model is not accurate enough such that the errors due to missing higher-order
modes are smaller compared to the errors caused by the inaccuracy of the Y model
itself. As shown in Fig. 6.4, for binary GO, (I, m) = (3,2) in Group 3 and (3, 3) in
Group 2 are the subdominant modes except for the leading mode (2,2) in Group 1;
while Group 4 is the least important group among 1-4. Accordingly, in Fig. 6.5,
we can see that including Groups 2 and 3 leads to significant improvement while

including Group 4 does not.

On the other hand, the effect of overtones can be observed by comparing different
columns within each row. It is shown that adding overtones can bring fans to an
earlier time; the more overtones added, the earlier #..,s becomes. This effect can

be explained by referring to Fig. 6.2: the higher-order overtones have larger decay
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rates and usually play roles at the time closer to 7peak. By including overtones, the
ringdown model is more accurate at an earlier time after the merger and thus )(lfﬁ N

can be achieved with a smaller #qer.

The distinguishability between the S and Y models is influenced jointly by (I, m)
modes and overtones. With the same modes included, the S model can always yield
smaller )(fnin than the Y model. Moreover, the improvement in )(ﬁlin of using S
compared to Y is more significant when more (/, m) modes are added, and when
more overtones are included. This is illustrated by Eq.(6.4): there is a certain
difference between S and Y bases for each given /mn mode. Specifically, in the S
model, different overtones of the (/,m) mode have different angular distributions,
while they share the same distribution in the Y model. Therefore, adding more (/, m)
modes and overtones enlarges the difference between two models. Additionally, by
adding higher-order overtones, /\{rznin generally does not change, because higher-order
overtones are damped before #4,s and have negligible contribution to the converged
level of distance. In terms of the relative errors in (M s est, X f.est), the advantage of
using the S model only becomes obvious when adding modes up to Group 3. This

will be further discussed in Sec. 6.5 with other nonspinning binaries N1-NO.

Before the extensive comparison of binaries with various mass ratios in the next
section, we first comment on possible sources of fitting errors that could potentially
impact the conclusion of model distinguishability. In this study, no simulated noise
has been added. Thus, apart from the limitation of the model itself, the fitting errors
mostly come from numerical noises in the NR waveforms. The SXS waveforms are
provided at several numerical resolution levels labeled as Levl, Lev2, Lev3, etc.
For the same binary, a higher level has higher resolution; while between different
binaries, level numbers are not necessarily meaningful [60]. The uncertainties in
sznin and (M e, X f.est) are supposed to be bounded by the difference between the
results obtained from the numerical level used in Table 6.3 and the adjacent lower
level [60]. For the results in Fig. 6.5, we used the highest available numerical

level of GO, Lev6, as listed in Table 6.3. We now compare them with the results

Table 6.4: The values of Xﬁnn when fitting GO with different (/, m) modes (n = 0
only).

Model Group1l  Group 1,2 Group 1-3 Group 1-4
S 79x 1073 23x107° 22x107% 99x 107
Y 1.0x1072 51x103 3.1x1073 3.0x1073
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obtained from lower levels, Lev5—-Lev3. If the difference between using the S and
Y models at Lev6 is clearly larger than the difference of results obtained among
different levels, we are able to state that the two models are distinguishable. In
Fig. 6.6, we plot the results obtained from different levels, with different (I, m)
groups (n = 0 only). It is shown that the y? values obtained at different levels
are not distinguishable by eye, and are definitely smaller than the S/Y difference
shown in Fig. 6.5. Thus, the conclusion that the S model can be distinguished
from the ¥ model and is a more faithful representation of the NR waveform is not
impacted by the numerical errors. Note that not all SXS waveforms have such a
good numerical precision in the ringdown part for the purpose of this study, probably
due to memory residuals in the chosen Bondi-Metzner-Sachs (BMS) frame [90]. To
avoid this impact, we select the SXS waveforms that can produce consistent results
from different numerical levels. See App. 6.12 for more details. When the ringdown
waveform has significantly decayed, if the model is sufficiently accurate with Group
3 and Group 4 included, subtle ringdown residuals due to the choice of frame in the
numerical data will manifest as slightly increased )(2 values for 40 < foffser < 50 (see
Fig. 6.5 and App. 6.11). Potentially, subtractions of the late ringdown residuals [24]
could help improve the fitting in the range of 40 < fofer < 50. We do not
conduct such subtraction because it is not well motivated, and the small impact
from the residuals [91] does not quantitatively change the resulting transition time
and minimum distance in our analysis. Recent studies show that using the Cauchy-
characteristic extraction (CCE) and mapping to the super-rest frame would be a

proper approach to obtain the memory-free waveform [90, 91].

6.5 Nonspinning binaries with different mass ratios

In Sec. 6.4.2, we have verified the fitting algorithm with the benchmark binary GO.
To study the contributions of (/,m) modes and overtones in binaries with various
mass ratios [25], we apply the same method to a series of nonspinning binary
waveforms N1-N9 with mass ratios ranging from 1 to 6, as listed in Table 6.3. In
this section, we demonstrate that more modes are needed in order to achieve the
same level of )(Iznin with larger mass ratios, as the higher-order modes are more
strongly excited in larger mass-ratio binaries. We summarize the results in two plots

grouped by ([, m) groups and numbers of overtones: Fig. 6.7 shows the comparison

between the S and ¥ models in terms of szni o> Fig. 6.8 displays fians for the S model
when different modes and overtones are included. Detailed fitting results in the

same format as those of GO in Fig. 6.5 are presented in App. 6.11.
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Figure 6.7: The minimum distance X}%ﬁ , obtained for binaries GO and N1-N9 when
@n=0 M®n=0,1,(cn=20,1,2, and (d) n = 0,1,2,3 are considered.
The horizontal axes are arranged by (/,m) groups. Within each group, results for
different waveforms are shown by markers in different shapes, as indicated by the
legend in (a). For each binary waveform, the big colored and the small black markers
indicate )(fni , obtained using the S and ¥ models, respectively.
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In Fig. 6.7, for both the S and Y models, szmn decreases when more (/, m) modes
are added. For a binary with larger ¢, more significant improvement is seen when
adding more (/, m) modes. In the case of the S model, sznin for binary N1 (¢ = 1)
decreases from 2 x 1073 (Group 1) to 7 X 10~> (Group 1-4), with the accuracy level
improved by a factor of ~ 30; for binary N9 (¢ = 6), an improvement by a factor
of ~ 280 is achieved from Group 1 to Group 1-4. As indicated in Fig. 6.4, higher
angular modes are more strongly excited in binaries with larger mass ratios and thus
play a more important role in the QNM expansion. On the other hand, to reach an
accuracy of sznin < 0.01 in the S model, the fundamental (2, 2) mode is enough for
g < 1.25 ; while (I, m) modes up to Group 2 are needed for 1.25 < g < 4 binaries
and Group 1-3 are needed for g > 5. Comparing panels (a)—(d) in Fig. 6.7, we see
that adding more overtones does not result in any order-of-magnitude improvement
to sznin' That is because higher-order overtones decay faster and thus only influence
the ringdown waveform at an earlier time while having negligible impact on the

converged )(ﬁﬁn after fians.

Comparing results of different binaries in Fig. 6.7, the differences between S and
Y are the most and least significant for the ¢ = 1 and ¢ = 6 binaries, respectively.
Taking the last column of groups (Groups 1-4) in panel (a) for example, for binary
N1 (g = 1), we have y2. = 7 x 107 and 3 x 107 for the S and Y models,
respectively, with a factor of ~ 40 improvement in accuracy by using S versus Y;
while for binary N9 (g = 6), the accuracy is only a factor of ~ 1.8 better by using
S (x2. = 6.0x10"* for S and 1 x 107 for ¥). This is because the distinction
between the S and Y bases depends on the spheroidicities, as shown in Eq. (6.4),
which are proportional to |x¢|, M¢, and wy,,,’s. Meanwhile, when the progenitor
black holes are nonspinning, | Xf| decreases as g increases, e.g., xyr = 0.6864 for

N1 and y s = 0.3725 for N9.

Even though the S model results in better sznin than the Y model, it is not always
the case for the estimated parameters My ey and yres. The features of relative
errors defined in Eq. (6.17) are summarized below, with detailed results presented
in App. 6.11:

* For GO, N1-N4: Before adding (/,m) Group 3, Y model behaves better; S
turns better after adding Group 3.

* For N5: There is no clear S/Y distinction when including only Group 1; Y
behaves better after adding Group 2; S behaves better after adding Group 3.
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Figure 6.8: The S model transition time #;ans for binaries GO and N1-N9. Each panel
corresponds to a specific binary, labeled in the upper left corner. The horizontal axis
is toffset/ M, and the discretized vertical axis specifies the (I, m) groups. Markers
in different shapes indicate different numbers of overtones included, shown in the

legend in the top left panel.
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Figure 6.9: Example S model distances y? for binaries GO and N9, with respect to
fofiset- 1he left and right columns are for n = 0 and n = 0, 1, respectively. Curves
with different colors stand for different (/, m) Groups, as shown in the legend. The

translucent vertical and horizontal lines indicate #,,s and Xﬁlin’ respectively.

* For N6: Y behaves better before adding Group 3; there is no distinction after

adding Group 3 but not Group 4; S behaves better after adding Group 4.

* For N7: Y behaves better before adding Group 3; there is no distinction after

adding Group 3.

* For N8—N9: Y behaves better before adding Group 4; there is no distinction
after adding Group 4.

From the observations above, we notice that when not including enough (/,m)
modes, S model is not necessarily better than ¥ model in estimating parameters
of the remnant black hole. It indicates that the more accurate S model with spin-
weighted spheroidal harmonics are more impacted by the missing (/,m) modes,
while the less accurate Y model with orthogonal spin-weighted spherical harmonics
is less impacted. For binaries with larger ¢, more (/, m) modes have non-negligible
contributions to the ringdown waveform, and thus are all required for a precise
characterization when using the S model. Once those (/,m) modes are included,

the S model is consistently better than the Y model in both )(Iznin and the accuracy of

(Mf,est, Xf,est)-
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Based on the discussion above, we conclude that the spin-weighted spheroidal
harmonics (S model) is indeed the better representation of gravitational wave ring-
down signals compared to the spin-weighted spherical harmonics (¥ model), and

that the difference is distinguishable in NR waveforms.

Let us comment on the temporal behavior of fitting with different (/, m) modes
and overtones. Now we only consider the S model as we have demonstrated that
the S model is a better representation. In Fig. 6.8, we summarize f,,¢ for binaries
GO and N1-N9, and further in Fig. 6.9, we show the details of y? with respect to
foffset fOr two example binaries, GO and N9. Essentially, the transition time fans
happens when the missing overtones have mostly decayed in the NR waveform, with
x? reaching the minimum distance Xﬁlin determined by the precision that the model
can achieve. Adding overtones brings forward fyans, While adding (I, m) modes
postpones fans — When the model becomes more accurate, the achievable sznin 18
smaller and thus takes more time to arrive. In other words, when the model template
includes more (/, m) modes, more overtones are needed accordingly to reach the
transition at a similar time. Similarly, mass ratios also influence the transition time
as a result of different achievable Xiin levels. As shown in Fig. 6.8, with the same
sets of modes included in the template, 7,455 generally occurs earlier when g is larger,

because the achievable )(rzni , is relatively larger.

In this section, we have discussed the S/Y model distinguishability and contri-
bution of higher-order (I, m) modes and overtones. In the next section, we will
further consider the situations when the progenitor binaries have spins along the —Z

direction that leads to anti-aligned spins in remnant black holes.

6.6 Spinning binaries and retrograde excitation

For nonspinning binaries, only the orbital angular momentum contributes to the
remnant spin. While in general cases, the spin angular momentum of each individual
progenitor black hole also leaves imprints in the ringdown waveform. Specifically,
when the spins of the progenitor black holes are anti-aligned with the orbital angular
momentum [64, 67, 92] and are large enough, retrograde modes could be excited
in the remnant black hole. Retrograde excitations have been studied in the case
of extreme mass ratio inspirals [29-32] using black hole perturbation theory [7].
Features of the ringdown waveforms have also been numerically studied in superkick
BBH systems with equal mass [93], while not many studies have been done in the

intermediate mass ratio inspirals [94, 95].
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Table 6.5: SXS BBH waveforms used in Sec. 6.6.

Label! SXSID/Lev  qref (/\_/) ref,l)z ()? ref,2)z Xeff (/\_/) f )z
A0 0188/Lev3d 7.187 0.0000 0.0000 0.0000 0.3306
Al 1424/Lev3d 6.464 -0.6566 -0.7991 -0.6757 -0.0929
A2 1435/Lev3d  6.589 -0.7893 0.0673 -0.6764 —0.1828
A3 1422/Lev3d  7.953 -0.8001 -0.4588 -0.7620 -0.2721

To study the retrograde excitations, we apply the fitting method described above
to three binaries, A1-A3, with yr < 0 (| x| increases from Al to A3), as listed
in Table 6.5. A nonspinning binary AO with y s > 0 is included for comparison
purposes. The orbital angular momentum and the spin angular momentum of the
primary black hole, when in opposite directions, will cancel out to some extent in
the merger stage [67, 92]. Becasue of that, retrograde QNMs, excited when the anti-
aligned spin dominates, have smaller frequencies compared with the corresponding
prograde modes. During the merger, the inspiral polarization pattern transitions
smoothly to the dominating prograde or retrograde ringdown modes for remnant
spin yr > 0 and xy < O, respectively. This will be discussed in more details as

discussed in Sec. 6.2.4.

In this section, we describe the fitting strategy, again, based on the relative
importance of different modes in these waveforms (A0O-A3) and implement the
fitting with both prograde and retrograde modes included, or with prograde modes

only. We then analyze the results and discuss the features of QNM frequencies and

'Omit the same notes as in Table 6.3.

Alm
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100 ] BN A2, q=6.589, x; = —0.1828
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Figure 6.10: The relative importance Ay, of binaries AO—A3. The definitions of
Group 1-3 follow those in Fig. 6.4. Considering the computing cost with retrograde
modes added, we only include (/, m) modes up to Group 3 in Sec. 6.6.
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polarization patterns in the spin-anti-aligned case.

The relative importance (A;,, (defined in Eq. (6.16)) of binaries AO—A3 are plotted
in Fig. 6.10. We follow the convention in Fig. 6.1 to extend the parameter space
of the orbital frame spin y to include negative values. In Secs. 6.4-6.5 we have
demonstrated that the S model is more accurate compared to the Y model. In this
section, we focus on the fitting using the S model. We follow the grouping and
ranking of (/, m) modes discussed in Sec. 6.4.1. Given that the fitting including
retrograde modes is more computationally expensive (the number of modes doubled)
and that the main purpose here is to study the retrograde modes, we directly compare
the results between including only the prograde modes up to Group 3, i.e., (I, m) =
(2,2),(3,3),(2,1),(4,4),(2,0), (3,2), and the results including the corresponding
retrograde modes (I/,m) = (2,-2),(3,-3),(2,-1), (4,-4),(3,-2) as well. To
confirm the contribution of overtones, we implement two sets of fittings with n = 0
and n = 0, 1 for each of the two scenarios above. Also, since szni o, Will be stabilized
at some given level after 4,5, We carry out the fitting up to fofet = 35M in this

section.

The polarization patterns for AO—A3 have similar features at different emission
directions, as shown in Fig. 6.11 — they all look counterclockwise when viewed
from the north side (¢« < n/2) and clockwise when viewed from the south side

(¢ > ©/2). Combined with Fig. 6.3, we can see that the dominant excitations are
(S+) (S+)
m>0 m<0

aligned binaries. Thus the dominant QMNs should be prograde modes for AO but

either characterized by B for spin-aligned binaries, or by B for spin-anti-

retrograde modes for A1-A3.

Another feature we expect to see when comparing the fitting results with and
without the retrograde modes is associated with |y r|. As shown in Fig. 6.2, the
QNM frequencies of the retrograde modes correspond to the dotted curves, extending
towards lower frequencies when | y ¢| increases from the points with y y = 0, while the
curves of prograde modes extend towards higher frequencies when |y ¢| increases.
For larger | x 7|, the frequencies of a prograde mode and the corresponding retrograde
mode become more separated in the spectrum. Thus the difference in fittings with

and without the retrograde modes becomes more distinct.

The fitting results are shown in Fig. 6.12, where (a) and (b) correspond to the
cases with overtones n = 0 and n = 0, 1, respectively. When showing x 7 est, we
no longer use the relative error defined in Eq. (6.17), as it is not a good measure

when the true value is small and comparable to the level of oscillation, e.g., Al has
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Figure 6.11: Polarization contents (/. (t), hx(t)) of the ringdown waveform of
binaries AO-A3, with 1 = O starting at their own f,eax. The plotting convention
follows that of Fig. 6.3.
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Figure 6.12: Fitting results for binaries AO—A3 using the S model with (a) only
the fundamental modes n = 0 and (b) overtones n = 0, 1. For each binary (in each

column), (al) and (b1l) show the optimal distance )(2, the relative error in My e,

and xres; (a2) and (b2) show the magnitudes of the optimal coefficients. In (al)
and (bl), the solid cyan and dot-dashed magenta curves correspond to the results
without and with retrograde modes included, respectively. The dotted red line in
each yy block indicates the xf yue. In (a2) and (b2), the upper and lower blocks
show optimal coefficients when fitting without and with retrograde modes included,
respectively. The solid and dotted curves correspond to prograde and retrograde

modes, respectively. Note that Bl(nf;) and Bl(n‘j;

)

with the same [mn indices are

roughly conjugate to each other (in the spin-aligned or spin-anti-aligned cases). For
brevity, we only plot their absolute values.
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Figure 6.13: Fitting results for the binary waveforms A0-A3 using SXS data with
different numerical levels. The S model used for fitting only contains the fundamen-
tal n = 0 modes. Plot settings are the same as Fig. 6.6. The inset in the y? block of
the first column shows the results in a zoomed-in range.

X f.ue = —0.0929, while x 7 e oscillates up to ~ 0.1. Instead, we directly compare
X f.est 0O X 7 uue (the dotted red lines in Fig. 6.12).

In Fig. 6.12, the difference between excluding and including retrograde modes
becomes more significant from left (AO) to right (A3). Taking the n = 0 case
for example, we list the sznin values in Table 6.6. For the nonspinning binary A0,
the ratio between the Xﬁl ., Values obtained with models including and excluding
retrograde modes is close to unity, i.e., the difference is small. For binaries A1-A3,
including retrograde modes largely improves the fitting accuracy and the improve-
ment becomes more significant when |y | is larger. Again, we estimate the fitting
error by comparing the results obtained from different numerical resolution levels.
As shown in Fig. 6.13, for all binaries AO-A3, the difference of results obtained
between Lev3 and Lev2 is much smaller compared to the difference between using
models including and excluding retrograde modes. Thus the results are not impacted

by the numerical errors in the waveforms.

In terms of M ey and x 7 es, when adding the retrograde modes for AO, there

Table 6.6: The values of )(ilin when fitting with prograde modes only (P), versus
fitting with both prograde and retrograde modes (PR) (all modes fundamental n = 0).
The last row lists the ratio between the /\/rznin values obtained with and without
including retrograde modes.

Model A0 Al A2 A3
P 0.0037 0.0063 0.0090 0.0130
PR 0.0035 0.0041 0.0046 0.0055

Ratio (PR/P)  0.93 0.65 0.51 0.42
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is little difference in the fitting results. While for A1-A3, including retrograde
modes improves the accuracy of M o and xr e a lot. Specifically, in the cases of
Xf.ue < 0 when retrograde modes are not included, the algorithm tends to find a
lower spin value but does not go below y s = 0, even though we allow negative y s
values in the fitting in both cases. This is because the prograde modes for y s < 0

cannot satisfy the polarization patterns of the NR waveforms shown in Fig. 6.11.

The magnitudes of the optimal coefficients Bl(lf;) and Bl(i;)n are also plotted
in Fig. 6.12, characterizing the contribution of each mode. In (a2) and (b2), it is
shown that adding retrograde modes barely influences the prograde mode coefficients
(solid curves) at all discrete fogset Values for AQ (first column), and the prograde
mode coefficients are consistently larger than the coefficients of the corresponding
retrograde modes (dotted curves) by order(s) of magnitude. While for A1-A3, the
retrograde modes appear to be dominant (with larger coefficients) when they are
included in the fitting. In the case of A3 with n = 0, 1, as shown in the last column
of (b2), the retrograde mode coefficients are dominant at all 7, values. In other
cases, the retrograde mode coeflicients are larger at some #,g¢¢ Values but switch to
be smaller at other #,ff5e’s — and such a switch always happens when y 7 s flips its
sign. That is understandable from the polarization patterns of the data waveform,
and the following two facts: (1) The prograde modes dominate for y > 0 while
retrograde modes dominate for y < 0; (2) The dominating modes in both cases
have similar polarization patterns and frequencies, and thus can generate similar
waveforms. At earlier times, the incorrect results with dominant prograde modes
are caused by the lack of overtones that have non-negligible contributions before
tirans, and thus the model is not accurate enough to represent the waveform, and
more specifically, the correct frequencies. The switch happens at an earlier time for
binaries with a larger mass ratio (A3). For A1, there is another switch at 7ogset = 25M
as shown in the second column of (b2). This could be caused by numerical errors
or the random jumps in the (My, x r) parameter space — when |x 7 irue| has such a

small value of 0.0929, the estimates can easily oscillate around zero.

The results and analysis in this section are all consistent with our expectations
discussed in Sec. 6.2.4. An interesting follow-up study is to map the progenitor

black hole properties to the ringdown QNM excitations. We leave it to future work.
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6.7 Discussion

In this work, using results from numerical simulations, we verified predictions
of black-hole perturbation theory for gravitational waves emitted by remnant black
holes of binary mergers. In particular, we simultaneously fitted the temporal and
spatial dependences of the NR ringdown waveforms to models of QNM expansion.
Comparing between the spin-weighted spheroidal harmonics (S model) and the spin-
weighted spherical harmonics (¥ model), we have demonstrated that the S model,
as predicted by the Teukolsky equation, is the more faithful representation of the
ringdown waveform. The combination of temporal and spatial behaviors allowed a
more comprehensive study of the linearized Einstein’s equations in the background

of a Kerr black hole and complemented existing black hole spectroscopy studies.

With spatial dependence included, we reinforced conclusions in previous studies
of black-hole spectroscopy about higher-order (/, m) modes and overtones. When the
progenitor binary has asymmetric masses, higher-order angular modes are required
to accurately represent the ringdown waveform. For nonspinning binaries, the
necessity of taking into account the higher-order modes depends on the mass ratio

and the resulting remnant spin magnitude. The (/, m) = (2,2) fundamental mode
2

is enough to achieve an accuracy above 99% (i.e., x; ;. < 0.01) when modeling the
ringdown with the § model for g < 1.25, while for 1.25 < ¢ < 4 and g > 5, about
three and six modes are needed, respectively, to achieve that level of accuracy (with
changes subject to the grouping strategy, see Sec. 6.4.1). On the other hand, adding
overtones improves the accuracy of the model at an earlier time of the ringdown.
For binaries with higher mass ratios, when more (/, m) modes are included, more
overtones are needed accordingly to accurately represent the early stage ringdown
waveform. The fact that overtones can improve the QNM expansion when both
temporal and angular patterns are matched to numerical waveforms, and the fact
that the S model works better than the ¥ model, provide stronger evidence that

overtones are truly excited, and that such an improvement is not due to overfitting.

During the transition from inspiral to ringdown, the magnitudes, spatial depen-
dence, and polarization patterns of the gravitational waves during the inspiral stage
are transferred to the ringdown stage. Our study confirmed this transfer. The mag-
nitudes of the initial excitation of the (/,m) ringdown QNMs are determined by
the leading post-Newtonian order of the mode during inspiral, with possible sup-
pression due to symmetry. The polarization content of the mode (i.e., left- versus

right-hand) is determined by the direction of the orbital angular momentum of the
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binary. The remnant spin direction and the excitation of prograde or retrograde
mode are determined by the binary dynamics. When the remnant spin is aligned
(anti-aligned) with the orbital angular momentum, the prograde (retrograde) modes
are dominant. Including the retrograde modes is necessary to build an accurate
model of the ringdown waveform in the spin-anti-aligned case. The more general
cases with the remnant spin misaligned with the orbital angular momentum will be

left to future work.

Under the sensitivity of the currently working detectors, higher-order angular
modes, overtones, or retrograde modes generally do not play an important role
in the detection or parameter estimation for most of the events. However, events
with high signal-to-noise ratios (especially the high signal-to-noise ringdown) are
expected to be observed regularly with the next generation detectors [58]. Features

discussed in this work will be important for future studies of the source properties.

Finally, this work also provided a theoretical and analytical foundation for de-
veloping strategies for testing the temporal-spatial emission patterns of the ring-
down. Even though, practically, each binary is only observed from one particular
wave-emission direction, angular emission patter can be reconstructed by collecting

multiple events.

6.8 Appendix: QNM expansion conventions

Solutions to the Teukolsky equation can be written in the form of:
Y (.7, 8,8) = " Ry (r) Spann (D) ™. (6.18)

Here (1, m) are the angular quantum numbers, 7 is the overtone number, and R;,,;, ()
is the radial function. To avoid confusion, we continue using the notations defined in
the main text, i.e., the coordinates in the final spin frame (7, ¢) here and the remnant
black hole parameters (a s, M), although the solutions to the Teukolsky equation
apply to all Kerr black holes.

As it turns out, for each overtone number n, there is a family of modes with
Re(wimn) > 0 and another family with Re(wy;,,) < 0. They correspond to modes
with polarization patterns that either rotate counterclockwise or clockwise, when
the wave comes toward the observer directly face-on. We denote Re(a)fmn) >0
as right-handed (R) and Re(a)len) < 0 as left-handed (L). At r — +oo, for both
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families, we can write:

YR (1,1 — +00,1, @) ~ e T p7ISR  (7)eim?, (6.19)
WL (1,1 — +00,1, @) ~ e @i TP 7ISL  (7)e™?, (6.20)

where r* is the tortoise coordinate [9].

Note that a)fmn corresponds to the usual tabulated values of QNM frequencies, so
we write

wfmn = Wimn- (6.21)
Here m > 0 are prograde, and m < 0 are retrograde modes. We also have
Sfmn(z)eimgﬁ = _281mn (Xfowlmn, L, 85) (622)

The frequencies and the angular mode functions of the L and R modes are related,
and we wish to make this relation explicit. We notice thatif ¥ (¢, r, I, ¢) is an outgoing

solution to the Teukolsky equation, then ¥ * (¢, r, 71—, ¢) is also an outgoing solution,

with * denoting the complex conjugate. In this way, gl/llf:n(t, r,m—1,¢) is also a
QNM, with
wllf;n(t’ r’ T = Za ()5) = eiw;mn([_r*)r_l—257mn (/\/fowlmna T = Z? ()5) (623)

We can further write [9]

_257’"” ()(fowlmn, n-1,Q) = _257mn ()(fowlmn, T — T)e_im“b (6.24)
= S Myw),,, T =De™ ™ (6.25)
= (=D aSimmn(—xMw}, e ™%, (6.26)

leading to

yR (=1, @) = (=) e“im L8 (—x My, T @), (6.27)

Imn

By comparing Egs. (6.27) and (6.20) and replacing m with —m, we can see that
wh =—w k(L@ = (DR (-1 §). (6.28)

Using the symmetry above, we can expand the QNM in two different ways. To

avoid confusion, we intend to write out all arguments explicitly. The first way is
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to group in terms of (/,m) spin-weighted spherical harmonics (see Table 6.2 for
corresponding notations [a][b][c][d]):

Imax [ 7max

WL @) ~ > > > [AR kL @) + ALt (Lr L @)]  (6.29)
=2 m=-1 n=0

I I n
M max max . . ) B
=LY NS A O ISE e
1=2 m=—I n=0 (6.29b)

+ Alen(—l)lt//ﬁ*mn(t, r,m—1, (ﬁ)]

l I n
Mf max max p . o
) r ; ZZZO [AlRmne o171 )‘ZSlm”(Xfowlmn’L’ @)
=2 m=-I[ n=

[a] for m>0; [c] for m<0; (6.29¢)
+ AL el (1T )—ZSlmn(_)(fow;F—mn’ L¢) ] )

[d] for m>0; [b] for m<O.

In this way, AR

I @0d Alen correspond to the excited modes with different absolute

oscillation frequencies and decay rates; there is one prograde and one retrograde
mode in each /mn group. The two terms have different polarization patterns (R and
L), but the same emission direction: for m > 0, both terms emit toward the north,

while for m < 0, both terms emit toward the south.

Alternatively, switching m and —m for the Alen term in Eq. (6.29c), we can

regroup the summation as follows:

l [l n
M max max . .
h(t9 r, Z’ ‘15) = _f Z Z Z [Aﬁnne_lwlmn(t_r )_ZSlmn(Xfowlmn, Z, ‘75)
1=2 m=—I n=0 (6.30a)

+ AlL_mneiw;m"(l_r*)—ZSl—mn(_Xfow;cmn’ i, @)]

l | n
M. max max . X
= Tf Z Z Z I:Afmne_lwlmn(t_r )—ZSlmn (Xfowlmn, L, SZ)
1=2 m=-1 n=0 (6.30b)

F AL 9T (1Y 8T (Mg T~ T, ¢)]

l
M_ max . .
= _f Z Z Z [Al(’;:)ne—la)lmn(l—r )—ZSlmn (Xfowlmn, Z, QZ)

[a] for m>0; [c] for m<0; (6.30c)

+ Al(r;Leiw;an(l_r*)_ZS;mn (/\/fowlmna T = Z, ()5) ] .

[b] for m>0; [d] for m<O0.
Here we have defined

A(+) — AR A(_)

Imn lmn > Imn

= (-1)'AL (6.31)

[-mn *
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In this way of grouping, A™ and Al(;zz1 correspond to the excited modes with

Imn
different angular emission patterns (in terms of both polarization and direction), but
the same absolute oscillation frequency and decay rates. Prograde and retrograde
modes are not mixed into the same /mn group. Eq. (6.30c) has the same form as we
defined in the main text Eq. (6.1). We believe this is more convenient, since modes
in the same group tends to be either both excited or both not excited. For example,
the entire retrograde groups can be ignored in many situations, as is done in e.g.,

Ref. [36].

6.9 Appendix: Limitation of single-direction fittings

Here we briefly comment on the limitation of single-direction fittings, which is
one of the motivations of implementing a temporal-spatial fitting strategy in this
work. In brief, the §/Y models cannot be distinguished using the signal of a single

event without prior information about QNM excitations.

The excitation amplitudes {Bl(:;/ Yi)} are governed by progenitoz binary dynam-
ics, and the emission strength varies with the spherical coordinate €2, especially the
inclination angle ¢ [S8]. The waveform observed from a single direction cannot re-
veal angular distribution in the source frame, and thus we can only fit the waveform

with a single-direction model:

ax M=l Mmax
Imn

I
Me 3 . -
hSD(t) — sz Z [C(+) e {wWimnt +Cl(n—12[elwlmnl , (632)
=2

m=—1 n=0

with {C l(mi})'l} being the relative amplitudes of different frequency components. While
we do find that single-direction fitting is capable of finding the dominant frequency
components, the relative amplitudes {C l(;i} do not help in the S/Y model selection
unless the binary inclination is known from the inspiral stage. Taking the spin-

aligned case for an example, the {Cl(mil)1 } are related to {Bz(;f;/ Yi)} via:

C) = B St YVimns T ) B 5¥i (1, ), (6.33a)
- S9) s . Y-) s .
C) = BS) St Vi — 1, @), B ¥ (-1, @), (6.33b)

for the S/Y models, respectively. However, in practice, the inclination angle ¢ is
usually not well constrained, even from the full inspiral-merger-ringdown waveform

fitting. Thus, the S and Y models are not distinguishable from a single event.

In addition, due to the parameter degeneracy in single-direction fitting, it is
likely that different (My, x¢) values with different dominant QNMs could result
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in the same set of dominant frequencies. Thus, for non-face-on emission or more
complicated binaries with precession and/or misaligned spin [45, 76], the lack of
spatial information might lead to incorrect estimation of the source parameters. This
degeneracy could in principle be broken if we know the relative amplitude of each
QNM a priori, and we can, in turn, use the relative amplitudes of different frequency
components to estimate the inclination angle.

6.10 Appendix: Numerical implementation for optimizing {BI(;L}

In the fitting, the NR ringdown waveform is treated as data, h(ﬁ, t). The template
waveform g(5/Y) (ﬁ, t) is built from Eq. (6.1) and Eq. (6.3) for the S and Y models,
respectively, with excitation coefficients {Bl(,fjl/ Yi)} to be determined. In numerical
realization, we use discretized representation to express temporal-spatial functions
and their inner products. We define a N; X Ng matrix M, to represent the temporal-
spatial function h(ﬁ, t), where N; is the number of discretized time steps and N, is

the number of spatial points that include reasonably sampled ¢ and ¢ values:

Q1) h(Q1) ... h(Qity,)
h(Qo. t h(Qy. 1 o R(Q.t

M, = (Q2,11) (Q2,12) (Qa,1n,) . (6.34)
h(Qng.11) h(Qng.12) ... h(Qng.1n,)

In the matrix (6.34), i_z(ﬁ,-, tj) = \/Mh(fzi, t;) is the strain value at a specific
spatial point ﬁ,- = (4 ¢;) and a specific time step 7, weighted by v/sin;, the square
root of the Jacobian for a unit sphere. This weight factor is introduced because we
are going to represent the temporal-spatial inner product (Eq. (6.7)) using the vector
product in Eq. (6.36), and want to have the Jacobian sin ¢; shared equally by the data
and template waveforms. We further express the matrix in a 1 X N;Ng row vector:
\711 = (f_l(.é],l]), e il(é],l‘]\]t), f_l(ﬁz,ll),

. . . (6.35)
cees h(QNg—l’tNt)» ]’l(QNQ,tl), ey h(QNg’tN,))-

For the template waveform g(fl, t), using the similar matrix and vector represen-
tations as (6.34) and (6.35), the temporal-spatial inner product in Eq. (6.7) can be
represented by the vector product as follows (c.f. Eq.(6.13)):

(g | hy =V, V. (6.36)

With a given set of parameters (M, ), each Imn mode contributes to two
IXN;Nq(My, x r) vectors \71(5;/ rs) (My, xr), for §/Y model respectively. Combined
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with coeflicients Bl(Si/ Ye)

, we can construct the discretized template waveform
gSM(Q, 1; My, x¢) in the (6.35) vector form:

Imn Imn Imn Imn

(S/Y 2 S+/Y+) O(S+/Y S—/Y-) O (S-/Y-
Imn

(6.37)
Considering the + components, there are 2N, modes in total. We form a large

matrix for these 2N;,,;, modes:

T (S+/Y+)
V(lmn)1 (Mf’ Xf)

(S+/Y
VYD (M vp)

(S/Y) _| N,
Mg (Mf,)(f) = \7(S_/Y_)(M ) s (6.38)
(Imn), fXf
v (S=/Y-)
(lmn)Nlmn (Mf’ Xf)
and assemble the matrix with the coefficient vector,
R(S/Y) _ [ p(S+/Y+) (S+/Y+) (8-/¥-) (8-/Y-)
BOM = (Bwe, o B B LB ) (639)
such that the discretized template waveform (6.37) can be expressed as:
> (S/Y = S/Y
VO (M, xp) = BSOME™ My, xp). (6.40)

The fitting procedure is as follows: For each set of remnant parameters (M, x ),
we obtain the QNM frequencies {w;;,, } using the gnm package [75] and compose
the template waveform (6.38) for S and ¥ models, separately. We then apply multi-
variable linear regression [96] to determine the least-squares excitation coeflicients
B¥*/"*) (¢ f. Eq. (6.15)):

= (S)Y Y S/Y S/Y S/Y)% -1
B My xg) = [V (M xe )] IME My xe )M (M )]
(6.41)
such that the distance between the data waveform \7h and the template waveform

VO My xp) = B My, x )M (Myy, x ) s minimized (c.f. Eq. (6.14)):

= - N N T
(Vi =V My )| [V = VD (M x5)
= . (6.42)
YA

S/Y
x2h, g My, x )] =

Note that Egs. (6.37)—(6.42) are defined under values of M and ys. Then we carry

out a search in the 2D parameter space of (M, xr) to find the minimum point of
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¥2[h, gl(_‘z/ v) (Mg, x )] and define it as the optimal distance:
S/y : Y04
Kl gSM = min Pk, g™ (M. xp)]. (6.43)
(Mg .x¢)

The mass and spin that yield this optimal distance are denoted by (M est, X £ est)
(for S and Y models separately). The corresponding excitation coefficients (6.41)
computed with (M e, X r.est) are the optimal coefficients and are labeled as E(fgt/ Y)
Comparing results between the S and Y models, the one that yields a smaller optimal

distance demonstrates a better fit.

6.11 Appendix: Full fitting results for N1-N9
The full fitting results for N1-N9 are shown in Figs. 6.14-6.22, plotted in the
same way as Fig. 6.5.

6.12 Appendix: Numerical error in SXS waveforms

In the main text, we use the highest numerical resolution levels available for each
chosen binary, as listed in Tables 6.3 and 6.5. In this appendix, we show the results
of the lower SXS numerical resolution levels for binaries N1-N9. Figs. 6.23-6.25
are plotted in a similar way as Fig. 6.6 for both the S and ¥ models. It shows that all
the differences from various numerical levels are clearly smaller than the difference
from using different fitting models (S versus Y, or including different /mn modes).
Therefore, our conclusions in Sec. 6.5 are not impacted by numerical errors of the

waveforms.



199

(tm) = (2,2)] | (tm) = (2,2) (tm) = (2,2)

1 = S model
<+ Y model

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 1020 30 40 50

(I,m) =(2,2),(3,3),(2,1)| | (I,m) = (2,2),(3,3),(2,1)] | (I,m) = (2,2),(3,3),(2,1) (I,m) = (2,2),(3,3),(2,1)

devecons i et et etean et | n——— U b St

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

(I,m) = (2,2),(3,3),(2,1) (I,m) = (2,2),(3,3),(2,1)
(4,4),(2,0),(3,2) (4,4),(2,0),(3,2)
G L e G000

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Loftser/ M

Figure 6.14: Fitting results for binary waveform N1. Plot settings are the same as
Fig. 6.5.
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Figure 6.15: Fitting results for binary waveform N2. Plot settings are the same as

Fig. 6.5.
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Figure 6.16: Fitting results for binary waveform N3. Plot settings are the same as
Fig. 6.5.
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Figure 6.17: Fitting results for binary waveform N4. Plot settings are the same as
Fig. 6.5.
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Figure 6.18: Fitting results for binary waveform N5. Plot settings are the same as
Fig. 6.5.
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Figure 6.19: Fitting results for binary waveform N6. Plot settings are the same as
Fig. 6.5.
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Figure 6.20: Fitting results for binary waveform N7. Plot settings are the same as
Fig. 6.5.
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Figure 6.21: Fitting results for binary waveform N8. Plot settings are the same as
Fig. 6.5.
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Figure 6.22: Fitting results for binary waveform N9. Plot settings are the same as
Fig. 6.5.
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Figure 6.23: Fitting results for N1-N4 using SXS data with different numerical
levels. Plot settings are the same as Fig. 6.6.
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Figure 6.24: Fitting results for N5-N8 using SXS data with different numerical
levels. Plot settings are the same as Fig. 6.6.
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Figure 6.25: Fitting results for N9 using SXS data with different numerical levels.
Plot settings are the same as Fig. 6.6.
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