Citation
Xiao, Liting (2023) Searching for Gravitational Waves from Compact Binary Coalescences and Stochastic Backgrounds in the LIGO–Virgo Detector Network. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/zgtx-0582. https://resolver.caltech.edu/CaltechTHESIS:10202022-200320341
Abstract
Gravitational waves (GWs) are ripples in spacetime generated by accelerating masses, carrying away information about the underlying processes. There are four main astrophysical sources detectable in the sensitive band of the LIGO–VIRGO–KAGRA (LVK) GW detector network: compact binary coalescences, burst sources, continuous waves and stochastic gravitational-wave backgrounds. This thesis focuses on the detection methods of two of these categories, coalescing compact binaries and stochastic backgrounds, and their search results across LIGO–Virgo’s first three observing runs spanning from 2015 to 2020.
Compact binary coalescences of black holes and/or neutron stars are the only type of GW sources detected so far in the LVK frequency band. Such binary systems lose orbital energy via GW emission and are compact enough to merge within the age of the Universe. PyCBC is a matched-filter, all-sky pipeline for GW signals from compact binary mergers using a bank of modeled gravitational waveform templates. We describe the methods employed in PyCBC and present the developmental updates both in its archival and low-latency configurations for LIGO–Virgo’s third observing run. Using PyCBC to analyze the data from LIGO–Virgo’s first three observing runs, we summarize our results of the searches in gravitational-wave transient catalogs and characterize some exceptional events.
A stochastic gravitational-wave background consists of a large number of weak, independent and uncorrelated events of astrophysical or cosmological origin. The GW power on the sky is assumed to contain anisotropies on top of an isotropic component, i.e., the angular monopole. Complementary to the LVK searches, we develop an efficient analysis pipeline to compute the maximum-likelihood anisotropic sky maps in stochastic backgrounds directly in the sky pixel domain using data folded over one sidereal day. We invert the full pixel-pixel correlation matrix in map-making of the GW sky, up to an optimal eigenmode cutoff decided systematically using simulations. In addition to modeled mapping, we implement a model-independent method to probe spectral shapes of stochastic backgrounds. Using data from LIGO–Virgo's first three observing runs, we obtain upper limits on anisotropies as well as the isotropic monopole as a limiting case, consistent with the LVK results. We also set constraints on the spectral shape of the stochastic background using this novel model-independent method.
Item Type: | Thesis (Dissertation (Ph.D.)) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subject Keywords: | Gravitational waves; LIGO; compact binary coalescences; stochastic backgrounds; | ||||||||||||||||||||||||||||||
Degree Grantor: | California Institute of Technology | ||||||||||||||||||||||||||||||
Division: | Physics, Mathematics and Astronomy | ||||||||||||||||||||||||||||||
Major Option: | Physics | ||||||||||||||||||||||||||||||
Thesis Availability: | Public (worldwide access) | ||||||||||||||||||||||||||||||
Research Advisor(s): |
| ||||||||||||||||||||||||||||||
Group: | LIGO | ||||||||||||||||||||||||||||||
Thesis Committee: |
| ||||||||||||||||||||||||||||||
Defense Date: | 13 October 2022 | ||||||||||||||||||||||||||||||
Non-Caltech Author Email: | naomixiao824 (AT) gmail.com | ||||||||||||||||||||||||||||||
Record Number: | CaltechTHESIS:10202022-200320341 | ||||||||||||||||||||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechTHESIS:10202022-200320341 | ||||||||||||||||||||||||||||||
DOI: | 10.7907/zgtx-0582 | ||||||||||||||||||||||||||||||
Related URLs: |
| ||||||||||||||||||||||||||||||
ORCID: |
| ||||||||||||||||||||||||||||||
Default Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||||||||||||||||||||
ID Code: | 15045 | ||||||||||||||||||||||||||||||
Collection: | CaltechTHESIS | ||||||||||||||||||||||||||||||
Deposited By: | Liting Xiao | ||||||||||||||||||||||||||||||
Deposited On: | 25 Oct 2022 21:50 | ||||||||||||||||||||||||||||||
Last Modified: | 14 Jun 2023 17:22 |
Thesis Files
PDF
- Final Version
See Usage Policy. 12MB |
Repository Staff Only: item control page