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Complex motor skills like playing piano require precise tim-
ing over long periods, without errors accumulating between
subprocesses like the left and right hand movements. While
biological models can produce motor-like sequences, how the
brain quenches timing errors is not well understood. Motivated
by songbirds, where the left and right brain nuclei governing
song sequences do not connect but may receive low-dimensional
thalamic input, we present a model where timing errors in an
autonomous sequence generator are continually corrected by
one-dimensional input fluctuations. We show in a spiking neu-
ral network model how such input can rapidly correct tempo-
ral offsets in a propagating spike pulse, recapitulating the pre-
cise timing seen in songbird brains. In a reduced, more gen-
eral model, we show that such timing correction emerges when
the spatial profile of the input over the sequence sufficiently re-
flects its temporal fluctuations, yielding time-locking attractors
that slow advanced sequences and hasten lagging ones, up to the
input timescale. Unlike models without fluctuating input, our
model predicts anti-correlated durations of adjacent segments
of the output sequence, which we verify in recorded zebra finch
songs. This work provides a bioplausible picture of how tempo-
ral precision could arise in extended motor sequences and gen-
erally how low-dimensional input could continuously coordinate
time-varying output signals.

Complex motor sequences like playing the piano often re-
quire precision timing over extended periods. If small timing
errors accumulated over long sequences, this could lead to
substantial variability in sequence duration or desynchronize
different subprocesses like a sequence’s left and right mo-
tor components, if their errors accumulated independently.
While robust sequence generation by biological neural net-
work models has been studied extensively (1–9), how the ner-
vous system could prevent the accumulation of timing errors
remains largely unexplored.

Brain regions associated with sequence generation do not
operate in isolation but receive input from other areas. Mam-
malian motor cortex receives ongoing input from thalamus
during movement, which if inhibited disrupts cortical pat-
terning and limb kinematics (10). Feed-forward thalamic
inputs are also implicated in preserving temporal informa-
tion in sensory pathways (11). Although external inputs to
a sequence-generating network may play multiple roles, such
as initiating cortical state or movement (12–15), or gating sig-
nal transmission (16), one role relevant to timing control is
modulating the speed at which the sequence-generating net-
work’s dynamics unfold (17). It was shown that the level of
external input to a recurrent neural network could adjust the
interval from task start to output by smoothly scaling the indi-

vidual response time-courses of its internal units (17). If fluc-
tuating external input slowed or accelerated a network’s dy-
namics opposite their internal noisy temporal variations this
might compensate for ongoing timing errors.

One of the most well-studied precision motor sequences is
birdsong. Adult zebra finch song, a highly stereotyped vo-
calization sequence, lasts up to 2 seconds but varies only
about 1.5% in total duration across renditions (18); other
birds like canaries can sing for tens of seconds (19). Accom-
panying zebra finch song is a sparse, extremely precise spike
sequence in premotor area HVC (proper name); many neu-
rons burst during every song within a few-millisecond win-
dow surrounding a single song timepoint (20). While HVC
is thought to be the central sequence generator underlying
song timing (6), it requires input from the thalamic Uvae-
form nucleus (Uva), which if lesioned abolishes or substan-
tially distorts song (21). Uva activity is dynamic during song
but highly correlated across the nucleus (21), suggesting it
does not bequeath to HVC the complete sequential informa-
tion guiding song but acts instead a global modulation signal,
although its precise role is unknown. As songbirds have no
corpus callosum, left and right HVC do not directly commu-
nicate (22); Uva inputs could in principle help them remain
coordinated throughout song by dynamically controlling how
fast each HVC’s spike sequence unfolds.

Here we introduce a model in which timing in an au-
tonomous sequence generator is corrected purely via a one-
dimensional external input, inspired by Uva, that dynami-
cally modulates the sequence’s propagation speed. In an
HVC-like model network, we show how this input corrects
timing errors in a propagating spike pulse even without ac-
cess to the errors. Formulating the problem more generally
we show this error correction occurs when the 1-D input is
spread nonuniformly over the sequence so as to reflect the
input’s time-derivative spatially, which yields "time-locking
attractors" (fixed-point attractors (23) in a constant-velocity
moving reference frame) that slow advanced sequences and
hasten lagging ones. A key prediction of this model is an anti-
correlation between durations of adjacent output segments,
which we confirm in recorded zebra finch songs.

Significance. Complex motor skills like playing piano re-
quire precision timing over long periods, often among multi-
ple components like left and right muscle groups. Although
brain-like network models can produce motor-like outputs,
timing regulation is not well understood. We introduce a
model, inspired by songbird brains, where imprecise timing
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in a cortical-like system is corrected by a single thalamic in-
put regulating the sequential propagation, or tempo, of cor-
tical activity. This model illuminates a relation between the
input’s spatial structure and temporal variation that lets lag-
ging activity hasten and advanced activity slow, which makes
a prediction about output timing that we verify in real bird-
song. This work reveals a simple, neuroplausible mechanism
that may play a role in precision cortical or motor timing.

Results
Timing correction in a biological network model. To il-
lustrate our proposed timing control mechanism we modeled
a chain-organized neural network supporting the stable prop-
agation of a spike pulse, in line with previous HVC models
(5, 6, 24), but additionally modulated by an external 1-D in-
put (Fig 1A). The chain comprised small recurrent clusters
of adaptive spiking neurons connected via feed-forward ex-
citatory synapses, with additional connections from the exter-
nal input covering the whole chain, although nonuniformly.
When the first cluster, or "link", is stimulated, a brief spike
pulse emerges that travels down the chain, which we take as
our output sequence. Given that we will only consider se-
quences of a fixed order, the network state can be character-
ized during pulse propagation by x(t), the index (or "posi-
tion") of the sequence element active at time t (i.e. the chain
link whose neurons are spiking at t) (Fig 1A-C). A spike
pulse propagating at a constant speed, for example, would
be described by x(t) = vt.

The propagation speed of the spike pulse when passing
over a given link in the chain is determined by (1) the "in-
trinsic" chain speed (governed by the feed-forward connec-
tion strengths to and from that link), (2) the input weight
at that link, and (3) the (scalar) activation level of the in-
put when the pulse is passing over that link. Strong feed-
forward weights and active excitatory input hasten propaga-
tion; weak feed-forward weights and active inhibitory input
slow propagation. Active excitatory input can also cancel the
speed decrease from weak feed-forward weights, and active
inhibitory input can cancel the speed increase from strong
feed-forward weights. Here we assume a binary external in-
put level (on or off) oscillating at 10 Hz, in line with observed
Uva rhythms (21), although neither the specific frequency nor
periodicity are essential to our mechanism. Because the input
is 1-D, at any given time external inputs to the chain are all
active or all silent, reflecting the putatitve low-dimensional
nature of Uva (21). We let the spatial input profile alternate
between excitation and inhibition and the intrinsic speed pro-
file between weak, medium, and strong feed-forward weights
(Fig 1A). For simplicity we modeled our Uva-inspired input
as directly exciting or inhibiting different parts of the chain,
but real Uva-HVC projections could be purely excitatory, al-
though this is not yet known. It may thus be more realis-
tic that any effective Uva-HVC inhibitory modulation is me-
diated through Uva projections to inhibitory interneurons in
HVC, which in turn project to HVC excitatory neurons (25).

Given this network configuration we sought conditions un-
der which large offsets in spike pulse initiation times were

corrected by fluctuating input. An example solution is shown
in Fig 1B. Given a 100 ms temporal modulation period and
appropriate spatial variation (discussed shortly) in both the
feed-forward weights in the chain and the input weight pro-
file, spike pulses initialized either 40 ms before or after a
"correct" start time cleanly hastened or slowed, respectively,
after just a few hundred ms to approximately match the tim-
ing of the correct pulse. In an unmodulated chain network
with spatially constant feed-forward weights supporting the
same average propagation speed as the modulated chain, tim-
ing correction did not occur – spike pulses initiated 40 ms
before or after a correct pulse remained about 40 ms be-
hind or ahead (Fig 1C). Varying spike pulse initiation time
across several hundred milliseconds confirmed that the tem-
poral basin of error correction matched the 100 ms period of
the external input (Fig 1D), while spike pulse timing in the
unmodulated chain remained uncorrected regardless of start
time (Fig 1E). One-dimensional but appropriately shaped ex-
ternal input can thus cause the network dynamics to follow
the temporal structure of the input signal, while their sequen-
tial ordering is determined by the network’s internal connec-
tivity (the ordered chain links, here).

Sequence evolution through a spatiotemporal speed
landscape. To understand theoretically how timing correc-
tion, intrinsic speed, and external input interact we analyzed a
simplified, more general model of sequence propagation. For
an evolving sequence whose instantaneous position is given
by x(t) (the position of the propagating spike pulse in our
network model), let its speed be given by:

v(x,t) ≡ dx

dt
(x,t) = v0(x)+u(t)w(x). (1)

where v0(x), u(t), and w(x) are the intrinsic propagation
speed profile, time-varying scalar input level, and spatial in-
put weight profile. When u(t) = 0 (input is off) propagation
speed depends only on x and equals the intrinsic speed v0(x).
When u(t) = 1 (input on) the propagation speed evaluated at
x is the sum of the intrinsic speed v0 and input weight w
at x. Under what conditions does such a system cause se-
quences with perturbed start times to converge to the same
timecourse?

To gain intuition we first examine how to stabilize the
constant-speed sequence x(t) = t via the spatiotemporal
"speed landscape" given in (1). Arbitrary sequences z = f(t)
can be constructed by finding a map z = g(x) that transforms
the x coordinate into an arbitrary value or vector (akin to acti-
vating sets of motor neurons (26)), so that the stability of z(t)
follows the stability of x(t). As the input timecourse and spa-
tial profiles of the intrinsic speed and input weights and are
all 1-D, the speed landscape will have a rank-2 structure, the
key bio-inspired constraint on the problem we seek to solve.

Fig 2 shows a temporal square-wave input u(t) oscillating
between 0 and 1 and example v0(x) and w(x) that stabilize
x(t) = t. The contributions of each term to the full speed
landscape v(x,t) can be understood geometrically (Fig 2A-
C). As the intrinsic speed v0(x) has no temporal dependence
it admits variation only along the vertical x direction (Fig
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Fig. 1. Timing correction via 1-D input in a simple spiking network model. A. Network architecture: A chain-organized network supporting the propagation of a spike
pulse (right) is modulated by a 1-D input signal (blue) via either excitatory (triangles) or inhibitory (circles) weights that fall on distinct zones of the chain. When the input is on
spike pulses propagate more quickly through excited zones and more slowly through inhibited zones. Momentary propagation speed is determined by the absence/presence
and sign of the input and by the intrinsic chain speed governed by the feed-forward weights. B. Evolution of spike pulses in three separate trials, initiated at different start
times in the input-modulated network. Only spikes from an evenly spaced subset of neurons are shown, labeled by the neurons’ chain link. Blue line shows input timecourse,
black contour shows spatial modulation profile (left-inhibition, right-excitation), cyan contour shows three levels of intrinsic speed variation as a function of link position (slow,
medium, fast from left to right). C. Propagation of three spike pulses in an unmodulated chain network with constant intrinsic speed. D. Evolution of spike pulse position
(decoded from link positions of neurons spiking in a 2 ms window surrounding time point t) for a range of start times in the modulated network. E. As in D, but for the
unmodulated network.

2A), with certain horizontal bands corresponding to an in-
trinsic speed greater than 1 (purple) and others to an intrinsic
speed less than 1 (orange) (Fig 2A). The input-modulation
term u(t)w(x) admits both spatial and temporal variation,
yielding a rank-1 contribution to the speed landscape (Fig
2B); certain regions correspond a positive modulation that
increases propagation speed (purple) and others to a nega-
tive modulation that decreases propagation speed (orange).
Summing the contributions of the intrinsic speed v0(x) (Fig
2A) and input modulation u(t)w(x) (Fig 2B) yields the full
speed landscape v(x,t) under the fluctuating input (Fig 2C).
In this example, v(x,t) = 1 can arise in regions with unity
intrinsic speed and no modulation, regions with increased in-
trinsic speed but negative input modulation, or regions with
decreased intrinsic speed but positive input modulation. Re-
gions corresponding to v(x,t) < 1, which slow sequences
down, or v(x,t) > 1, speeding sequences up, can each arise
from either the intrinsic speed term v0(x) or the input mod-
ulation u(t)w(x). The temporal evolution of the output se-
quence is given by how x(t) moves through this landscape.

Sequences that begin at different times or positions take
different paths through the speed landscape. In our example
in Fig 2 the sequence x(t) = t travels at constant speed, as
desired, whereas sequences instantiated at slightly advanced
or delayed positions pass through more slow or fast zones,
respectively (Fig 2D). After a short time perturbed sequences
will approach the sequence x(t) = t if the perturbation lies
within a small enough window. This attractive effect in our

example is robust to small changes in the speed landscape
(Fig 2E), which only changes the basin of attraction. Thus the
external input corrects, or stabilizes, the timing of perturbed
sequences.

To identify formal conditions enabling timing correction
we define a time-locking attractor x(t) = t as a stable fixed
point in a constant-velocity moving reference frame. Letting
the position coordinate in the moving frame be y(t) ≡ x − t,
the function dy/dt = fy(y) describes the attraction or re-
pulsion of the system toward the target sequence x(t) = t.
Since v(x,t) is rank-2, dy/dt must also change over time be-
cause the local speed landscape surrounding y = 0 changes
throughout the sequence (Fig 2H-J). In our example the time
average ⟨dy/dt⟩ = ⟨fy(y)⟩ has a downward zero-crossing at
y = 0; thus, points y < 0 will hasten and points y > 0 will
slow, on average, stabilizing x(t) = t and yielding the de-
sired timing correction (Fig 2K). Crucially, for such a fixed
point to exist, neither the input timecourse u(t) nor weight
profile w(x) can be constant. When either is constant, all
sequences spend the same total time in either slow or fast
zones and thus have the same average speed and do not con-
verge (Fig 2F, G); ⟨dy/dt⟩ lacks a downward-crossing zero at
y = 0 so no correction occurs (Fig 2K). Thus, a scalar-valued
external input can correct timing errors only if it fluctuates in
both time and space. As shown in Fig 2-Supp-fig-1 and Fig
2-Supp-fig-2, time-locking attractors can also emerge under
constant intrinsic speed and either purely excitatory or purely
inhibitory modulation (reflecting the possible case that Uva
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Fig. 2. Time-locking attractors in example speed landscapes. A. Contribution of the position-dependent intrinsic speed profile to the speed landscape. Orange and purple
indicate zones of slowed and hastened speeds, respectively. B. Contribution of spatiotemporal input modulation profile to the speed landscape. C. Full speed landscape with
intrinsic speed and input modulation. Purple (fast) zones in input modulation profile cancel orange (slow) zones in intrinsic speed profile and vice versa, yielding a rank-2
checkerboard-like pattern. D. Multiple example sequences with different starting positions moving through speed landscape in C for one temporal period. Blue bars provide
reference positional ranges offset by one spatial period. Black trajectories are within the basin of attraction. E. As in D but for a slightly different speed landscape. F. As in E
but without temporal modulation. G. As in D/E/F but for a speed landscape without spatial modulation. H-J. Time-derivative of sequence position in a moving reference frame
y ≡ x − t at different time points corresponding to E. K. Time-average of dy/dt over one temporal period for examples in E, F, and G.

provides a single sign of modulation onto HVC), so long as
this modulation still fluctuates appropriately in both time and
space. The resulting stable trajectories are more complex,
however, since their propagation speed is not constant.

Conditions for time-locking attractors. For a time-
locking attractor to emerge generally, we found that it suffices
for the relationship among the input timecourse and spatial
profiles of the input weights and intrinsic speed to satisfy two
conditions. First, the propagation speed v(x,t) should equal
1 when x(t) = t: using (1) we require

v0(x)+u(t)w(x)
∣∣∣∣
t=x

= 1 ∀x. (2)

This condition creates a fixed point ⟨dy/dt⟩ = 0 correspond-
ing to x(t) = t. Taking the spatial derivative of (2) yields

dv0
dx

+u(t)dw

dx

∣∣∣∣
t=x

= −du

dt
w(x)

∣∣∣∣
t=x

(3)

For x(t) = t to be stable, we require from (1) that

dv

dx

∣∣∣∣
t=x

= dv0
dx

+u(t)dw

dx

∣∣∣∣
t=x

< 0 (4)

so that lagging trajectories x(t) = t − δ experience an
increased propagation speed, whereas advanced trajectories
x(t) = t + δ experience a decrease. Substituting (3) into (4)
yields the sufficient condition

du

dt
w(x)

∣∣∣∣
t=x

> 0 (5)
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which requires w(x) to have the same sign as u(t) evalu-
ated at t = x. Thus, when u(t) is increasing, w(x)|x=t should
be positive, and when u(t) is decreasing w(x)|x=t should be
negative. A simple (although not unique) solution is to let
w(x) be proportional to the time-derivative of u(t) evaluated
at t = x, and to then solve (2) to find v0(x) so that the stable
trajectory has a uniform speed.

Time-locking attractors thus emerge when the input weight
profile w(x) "reflects" spatially (has the same sign as) the in-
put’s time derivative. As an input u(t) is not likely to con-
tinually increase for an arbitrarily long period in a real sys-
tem, but will instead fluctuate in time, its spatial profile w(x)
must accordingly fluctuate in space, although (5) implies that
as long as the signs of du/dt and w match, their relationship
need not be fine-tuned.

This rule allows us to construct input timecourses and
weight profiles that propagate stable sequences. As an exam-
ple, for u(t) = cos(t) + 1 we can use (5) to choose w(x) =
−sin(x) and (2) to choose v0(x) = 1 + (cos(x) + 1)sin(x).
Sequences initiated across several start times and positions
reveal that these u(t), w(x), and v0(x) indeed yield a time-
locking attractor x(t) = t (Fig 3A). Periodicity is not re-
quired, however. Choosing w(x) and v0(x) via the above rule
when u(t) was a sample from a smoothed noise process also
yielded the attractor x(t) = t (Fig 3B). Plotting dy/dt in the
moving reference frame with y = x − t reveals that although
the momentary phase portrait in each example is highly vari-
able, its time average ⟨dy/dt⟩ yields a 1-D flow with a fixed
point at y = 0 (Fig 3C-F), thereby stabilizing x(t) = t. Thus,
given an arbitrary fluctuating 1-D input, there exist accompa-
nying spatial profiles of the input weights and intrinsic speed
that stabilize the evolution of the sequence x(t) = t, with the
local temporal basin of attraction depending on the timescale
of the input fluctuations.

Correlated fluctuations in motor output timing. Due to
the timing correction our model imposes, in the face of noise
we expect durations of adjacent segments of the output se-
quence near the timescale of the external input to be anti-
correlated. Segments shortened by noise will tend to be fol-
lowed by segments slowed by the input’s correction effect,
and vice versa for segments dilated by noise. We verified this
by generating noisy sequences over the range x ∈ [0,1] atop
an input-driven speed landscape according to

v(x,t) ≡ dx

dt
(x,t) = v0(x)+u(t)w(x)+η(t) (6)

where η(t) is an Ornstein-Uhlenbeck process (exponentially
filtered Gaussian white noise) with timescale τη = 1/30. Fig
4A shows example output sequences modulated by a periodic
speed landscape. Whereas unmodulated sequences (v(x,t) =
1 + η(t)) diffuse freely, modulation by the input-dependent
speed landscape constrains the spread (Fig 4A,B).

To investigate temporal structure in the output sequences
we split the output into even segments and examined the du-
rations over which they unfolded. Durations of sufficiently
short adjacent segments (noiseless duration ≪ τη) were posi-
tively correlated, regardless of modulation by the speed land-

scape, as they were likely to receive similar noise. In the
input-modulated sequences, however, sufficiently long seg-
ments became anti-correlated, a sign of timing correction that
was not present without the modulation (Fig 4C-E).

We tested our model’s prediction that durations of cer-
tain segments of motor output sequences should be anti-
correlated by analyzing real zebra finch songs. Songs were
produced by adult males in isolation ("undirected" song),
with the recorded audio converted to spectrograms using a
short-time Fourier transform (Fig 4F). Due to the impreci-
sion in determining exactly when an arbitrary moment x in a
song occurred (and spurious anti-correlations introduced by
jitter in such a labeling process), instead of splitting the song
into even segments we examined segments bounded by peaks
and valleys in the power of the spectrogram, retaining only
segment boundaries that could be reliably identified in every
song (Fig 4F-G). Indeed, durations of adjacent segments of
zebra finch song were anti-correlated (Fig 4H-I), as predicted
by and dependent on the input-modulation in our model, a
finding that held up across multiple birds (Fig 4-Supp-fig-1,
A-H). This suggests the neural song circuit in songbirds may
recruit a similar mechanism for timing control as the input-
dependent time-locking attractors we have investigated.

Discussion
We introduced a model of precision motor timing via scalar
input fluctuations and validated a key prediction in recorded
zebra finch songs. When a scalar input locally and dynam-
ically controls how fast a sequence unfolds and the input’s
spatial structure reflects its time derivative, time-locking at-
tractors emerge that continually correct timing errors without
requiring knowledge of the errors. Although timing errors
could accumulate in the input itself, they do not additionally
accumulate in the downstream sequence generator. This al-
lows multiple motor processes receiving the same input fluc-
tuations to stay coordinated for long periods, reflecting how
left and right HVC may receive similar input from left and
right Uva. Our work builds on previous observations of spa-
tiotemporal inhomogeneities in songbird HVC (27), provid-
ing new insight into how spatial and temporal signals may be
linked to temporally coordinate ongoing neural activity.

While neural spike time coordination has been explored at
length in "synfire" chain models (1, 3, 24, 28, 29), where syn-
chrony arises through extensive excitatory coupling among
neurons between network layers, our work addresses the dis-
tinct problem of quenching timing errors via external in-
put. For instance, HVC-inspired computational work showed
that zones of inhibitory feedback triggered by a propagating
spike pulse could keep the spikes within the pulse synchro-
nized without redundant excitatory connections (29). Our
model expands on this picture by explaining how a propa-
gating spike pulse or other sequential activity pattern could
be kept synchronized with an external input, and in turn with
other sequential activity patterns receiving the same input, all
without requiring feedback about timing errors. A separate
input-based model of neural timing showed how external os-
cillatory inputs matched to spike latencies in a feed-forward
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Fig. 3. General conditions for a time-locking attractor to emerge from 1-D input. A. Example intrinsic speed and modulation weight profile (middle) derived from
a periodic input timecourse (top), with w(x) ∝ du/dt|t=x. Examples of sequence evolution through modulated speed landscape for various start times and positions
(bottom). B. As in C but for an aperiodic input timecourse. C. Phase portrait of A in the moving reference frame y = x − t evaluated at several timepoints. D. Time average
of momentary phase portraits in C (corresponding to speed landscape in A). E. Phase portrait of B in the reference frame y = x − t at several timepoints. F. Time averaged
of phase portraits in E (corresponding to speed landscape in B). The time-averaged dynamics in D and F each exhibit a stable fixed point at y = 0 corresponding to the
sequence x(t) = t.

network could entrain the propagation of a spike pulse by
imposing specific windows at which spikes can occur (16),
suggestive of hippocampal spike sequences that are locked
to high-frequency "ripple" events (30). Our work presents
a distinct input-based mechanism grounded in speed control
rather than neuronal properties (although still applicable to
spiking networks [Fig 1]) and which requires time-varying
but not necessarily oscillating input.

Our model effectively splits each motor process into a dy-
namical system specifying sequence order and a scalar input
controlling timing. This is a simple and perhaps biologically
favorable alternative to directly coupling multiple motor net-
works, which for long sequences would require coupling at
many points over the sequence. During the course of devel-
opment allocating timing precision to an external input could
allow other features of the output sequence, such as syntax or
instantaneous spectral content (19, 31) to be learned indepen-
dently of timing, which might simplify and hasten learning.

How might the match between our input’s time-derivative
du/dt and spatial profile w(x) emerge or be maintained over
time, for instance in the face of random synaptic fluctua-
tions (32–34)? Recalling that w(x) in our spiking network
model (Fig 1) represents the synaptic weight from the ex-

ternal input onto the neurons at position x in the chain, the
relationship between du/dt and w(x) could potentially be
stabilized by local spike-timing-dependent synaptic plasticity
(STDP) rules (e.g. (35–39)). For instance, to keep the input
synaptic weight w(x) sufficiently positive when du/dt|t=x

is positive (following the constraint in Eqn. 5), it could suf-
fice to increase w(x) whenever a spike pulse passing through
the chain link at position x at time t is accompanied by ac-
celerating presynaptic spikes from the external input onto
that chain link at t. One average, one might expect such a
scenario to yield more postsynaptic-followed-by-presynaptic
spike pairs–if the presynaptic spike rate is increasing, then
in a small window around t there will be more presynap-
tic spikes in the later part of the window. An anti-Hebbian
STDP rule (38) might then suffice to increase w(x) in re-
sponse to the repeated occurrence of these spike pairs. Con-
versely, when du/dt|t=x is negative, so that w(x) should also
be sufficiently negative to satisfy (5), one might expect more
presynaptic-followed-by-postsynaptic spike pairs. If w(x)
were represented by an inhibitory synapse, a Hebbian STDP
rule (35, 36, 39) could increase the weight of that synapse
to make w(x) more negative. While more work will be re-
quired to illuminate the details of how such plasticity mech-
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Fig. 4. Correlated fluctuations in motor output timing. A. Example noisily propagating output sequences while modulated (blue) or not modulated (red) by underlying speed
landscape (background) generated by 1-D input fluctuations. B. Growth of standard deviation of sequence position over time for modulated and unmodulated sequences,
corresponding to 300 sample sequences as demonstrated in A. C. Pearson correlation (across trials) between durations of adjacent segments (averaged across segment
pairs) of the output sequence vs the noiseless segment duration, for modulated (black) and unmodulated (orange) trials. Stars indicate an average p < .05 (two-sided t-test
for zero-valued correlation coefficient) across segment pairs. D. Durations of second and third segments (given 4 equal segments total, each with a noiseless duration of .25)
across trials, and best fit line (R = −.324,p < 10−8). E. Correlation matrix between durations of all segment pairs in simulated motor output. Stars indicate correlations
with p < .05. F. Spectrogram of example zebra finch song motif, with log power overlaid in black. G. Log power of the same song motif across several bout renditions in one
bird. Blue lines show extrema used to define song segment boundaries before quantifying variation across renditions. H, I. As in D, E but for real zebra finch song segments
(N = 292). (R = -.62, p < 10−31 for best fit line in H.)

anisms could stabilize or even give rise to the spatial input
profile suggested by our model, the local nature of the plas-
ticity required along with the lack of fine-tuning in our model
suggest a bioplausible maintenance or development process
that could achieve this.

We expect the role of thalamocortical inputs we have pro-
posed to co-exist with other thalamic functions and multi-
area interactions. Baseline Uva input to HVC, for instance
(21), may be required for song production regardless of
temporal precision; thalamic inputs also likely contribute
to setting movement preparatory states in cortex (12–15).
Thus, one may expect to observe multiple functions super-
imposed in thalamocortical input dynamics measured ex-
perimentally. In birds Uva and HVC are embedded within
a larger brainstem-thalamocortical loop (22) that indirectly
couples the two hemispheres, which may be involved in
the slowing of song when HVC is only cooled unilaterally
(40). Our model posits that such coupling is nonetheless
strictly gated by low-dimensional Uva inputs to HVC, with
Uva sending predominantly timing signals, while all order-
ing and spectral information is contained within HVC’s re-
current and downstream connectivity (although other HVC
inputs may contain additional syntactic information, i.e. in-
fluencing the order in which HVC neurons fire (19)). Our
work thus contrasts with models of birdsong neurophysiol-
ogy in which the network connections encoding sequence
order are coiled around the brainstem-thalamocortical loop

(41, 42); we instead ascribe sequence ordering and timing
functions predominantly to HVC and Uva, respectively.

Although not easily dissociated from the multi-functional
system it is embedded in, our model makes additional pre-
dictions. First, it predicts that Uva inputs onto HVC should
exhibit significant spatial structure relative to song position.
Specifically, HVC neurons that spike during Uva increases
should receive more excitation from Uva, and those that
spike during decreases more inhibition (possibly via HVC in-
terneurons). Although technically challenging, one could test
this by tracing Uva-HVC projections and recording which
HVC neurons spike at different points during song. More
generally, our model predicts that removing temporal fluc-
tuations from thalamic input to motor cortex should preclude
timing error correction. This could be tested by silencing tha-
lamus and directly activating thalamocortical axon terminals
(10) with constant or ramping stimulation, which should in-
crease variability in the total durations of the accompanying
cortical and motor sequences, relative to stimulation matched
to real thalamic fluctuations.

The central mechanism in our model applies to sequence
generators beyond chain networks. One only requires a
sufficiently ordered sequence to support a notion of time-
varying position x(t), and a fluctuating input that modulates
dx/dt differently at different x. The first condition is met,
for instance, by neural activity that evolves along a time-
ordered manifold, a topology hypothesized to underlie dy-
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namics in several cortical areas (43), or through a sequence
of metastable network attractors (9). To model timing control
in such a system one could extend work on input-dependent
speed control of recurrent network dynamics (17) by mak-
ing the input itself (presumably coming from another brain
area) dynamic and localizing its slowing and/or accelerating
effects to different regions of the sequence. Finally, time-
locking attractors from scalar input fluctuations may have ap-
plications outside neuroscience, for instance in coordinating
cellular processes via fluctuating molecular concentrations or
synchronizing growth processes across a population of organ-
isms via fluctuating temperature or sunlight.

Methods
Neuron and synaptic dynamics. Our spiking network
used integrate-and-fire neurons, which receive conductance
inputs from excitatory and inhibitory neurons, and in which
adaptation is modeled as a self-inhibitory synaptic current:

cm

gm

dvi

dt
=− (vi −EL)+gi

E(t)(EE −vi)

+gi
I(t)(EE −vi)+gi

A(t)(EA −vi)+η(t),
(7)

where

gi
Q(t) =

∑
j

∑
k

wQ
ijh(t)∗ δ(t− tj

k) (8)

and vi is the i-th neuron’s membrane voltage; η is a white
noise current; cm = 1µF/cm2 and gm = 100µS/cm2 are
the membrane leak capacitance and conductance, yielding
a membrane time constant of τm = cm/gm = 10ms; EL =
−60mV,EE = 0mV,EI = −80mV,EA = −100mV are the
leak, excitatory, inhibitory, and adaptation reversal poten-
tials; gi

Q, Q ∈ {E,I,A} are the relative excitatory, inhibitory,

and adaptation conductances; wQ
ij is the weight of synapse

type Q onto neuron i from j; tj
k is the k-th spike time of

neuron j; and h(t) is an exponential filter with time con-
stants τE = τI = 2ms,τA = 10ms. Neurons spiked when
vi ≥ vth = −50mV and were reset to EL = −60mV for a
2ms refractory period. The simulation timestep was ∆t =
.5ms, and η∆t ∼ N (0,σ2 = .01nA2s).

Network architecture. Our spiking network comprised 321
chain "links", each containing 30 excitatory neurons. Recur-
rent (within a link) weights were only excitatory and equal to
wE

ij = 1.4 × 10−5 with probability .6 and 0 otherwise. Feed-
forward weights were excitatory and all-to-all from each link
to its successor with wE

ij = .65,1.0, or 1.4 × 10−5, corre-
sponding to weak, medium or strong connections (Fig 1B).
Adaptation "weights" for all neurons were wA

ii = 6 × 10−5.
All feed-forward weights being set to "medium" supported a
self-sustained spike burst (approx. 3-5 spikes over 5-10 ms
in each neuron) propagating from link to link. Last, neu-
rons received E and I synapses capable of transmitting Uva-
like input spikes, with wE

ij = 6 × 10−6 and wI
ij = 2 × 10−5

for E or I external inputs. In Fig 1B, contiguous sets of 58

chain links alternated between receiving external E or I in-
put synapses, and feed-forward weights alternated between
58 medium weights, 29 weak weights, 29 strong weights, etc.
(black). In Fig 1C, wE

ij = wI
ij = 0 for all external inputs, and

all feed-forward weights were medium. In Fig 1B, external
inputs alternated between a 50 ms "on" state and a 50 ms "off"
state corresponding to 800 Hz and 0 Hz input spike frequen-
cies, and in Fig 1C were off throughout the whole simulation.

Time-locking attractor simulations. Example output se-
quences in Fig 2D-G began at 9 evenly spaced start positions
spanning one spatial period of the shown speed landscape. In
Fig 3, simulations used an integration timestep of ∆t = .001.
In Fig 3D, u(t) was sampled from a white-noise process
smoothed with a Gaussian kernel with width .9/∆t; w(x)
was chosen to be .65du/dt|t=x, and v0(x) = 1−u(x)w(x).

Data analysis. Song renditions were recorded from adult
male zebra finches during an "undirected" song context (no
female present) and transformed into spectrograms using a
short-time Fourier transform. The power of the logarithm
of the spectrogram was computed at each timepoint to get a
scalar representation of song, from which peaks were identi-
fied and used to define song segment boundaries (only peaks
that could be reliably identified across renditions were used
as boundaries). Durations of each segment were then ex-
tracted and correlations among resulting segment durations
computed across song renditions.
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