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ABSTRACT

This thesis presents two tool development projects for neurobiology and one explo-
rative project to find organizing principles for autism.

The first project (Chap 2, Retina as Probe) was conceived to tackle the problem
that there hasn’t been a reliable model system for system-level neuropharmacology.
We introduce a testbed for this: the mammalian retina. The retina involves many
of the known neurotransmitters and modulators. Yet its synaptic wiring is well
understood, and quantitative models exist to explain its input-output functions.
One can connect the systems-level effects to the underlying cellular and molecular
causes. To demonstrate the retina’s use, we explored the effects of a range of general
anesthetics on the light responses of the mouse retina. At sub-anesthetic doses,
we found that certain anesthetics exert a paradoxical effect: they increase the light
response of some retinal neurons and suppress the response of others. Notably, this
occurred for alcohols and ketamine but not for isoflurane. We traced these effects to
transmitter release at a specific synapse and, in one case, to a specific presynaptic
ion channel. All the anesthetics silenced the output of the retina completely at
concentrations similar to their effective dose for anesthesia in humans. Sedatives
reduced retinal sensitivity but did not silence it. Finally, we used specific drugs that
target hypothesized molecular mechanisms to probe how much they each contribute
to anesthesia of the retina.

The second project which attempted to probe the principles of autism (Chap 3) was
conceptually a direct extension of the retina as a testbed. Similar to the situation
in seeking for what the mechanism of general anesthesia is, the field of autism
research also lacks a good testbed but for systemically comparing gene mutation -
circuit defect - behavior outcomes. Similarly, we utilized the retina as a platform to
identify circuit defects in four different autism model mice and followed through the
different mouse line’s behavior readouts using our lab’s maze navigation paradigm.
We discovered that the different autism mouse lines varied in the retinal circuits and
varied in their navigation preferences. Nevertheless, unlike the anesthetic project,
there wasn’t a simple mechanism to explain why or how these differences are coupled
together.

The last project, Electrode Pooling, (Chap 4) aimed to boost the yield of extracellular
recording electrode arrays with a novel method we named electrode pooling. The
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per-implant yield of extracellular recording leaped significantly from the order of
tens to the order of hundreds when engineers built multiple electrode arrays based
on silicon technology to replace tetrode wires. Unfortunately, this yield-per-site is
already maxed out with modern silicon technology. The constraint of the yield is
mainly biological, as explained in the chapter, and thus could not be further advanced
by improving the manufacturing processes of semiconductors. Our solution utilized
an approach that multiplexed the array recording sites (not the bottleneck) onto the
readout wires with accompanying filters (the actual bottleneck). Specifically, the
method proposes intelligently choosing many recording sites that carry signals and
connecting them to a single wire via manipulating the switches and later un-mixed
with a spike-sorting algorithm. We demonstrated the first proof-of-principle study
that shows that one could get more single-neuron recordings per implant site with
electrode pooling, and made recommendations on the hardware design that could
facilitate the advancement of probes that use pooling algorithms.
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C h a p t e r 1

INTRODUCTION

1.1 Retina as Testbed
1.1.1 Neuropharmacology is built on empirical findings and has not developed

a systematic approach like other fields in medicine
Imagine you are a medical history book author who is working on a new publication
that compares the progress of each field of treatment. You are most interested in
two subfields: oncology and neuro-psychiatry - after all, cancer is the king of all
maladies, and the brain is the most complex part of the human body.

Upon reading ancient works of literature, you found that neuro-related treatments
had a transient lead 4 millennia ago. Imhotep and his contemporaries were likely
prescribing opioid-like substances for analgesia, but only offered condolences to
cancer patients as there was nothing they could do –– not even empirical methods
were available.

Then fast forward 4000 years to 1970. You noticed the situation has flipped. Cancer
was still quite a mystery and was treated based on empirical clinical experience
–– Sidney Farber and his pupils were testing various combinations of empirically
found chemicals –– but the great minds of the time were close to coming up with
the foundations of the pathological principle of cancer. The central dogma of
modern biology linking DNA to protein was established. Temin and Baltimore
had their hands on the first solid causal-relationship protein substrate of reverse
transcriptase. In comparison, Domino et al. were testing ketamine fully empirically
by dosing up inmates and crushing their skin with hemostats, which is conceptually
no different from the Imhotep age’s clinical development except that now, there are
more chemicals to test with.

Fast forward again to the 2020s. You noticed that many new therapies via novel
modalities beyond the imagination of Farber were available to various cancers that
were still untreatable at the turn of the Millenium. In contrast, almost all new
pipelines for depression, schizophrenia, and Alzheimer’s have failed. Pharma and
biotech are laying off neuro programs one after another.

You interviewed a few experts and realized fundamentally, neuropharmacology
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hasn’t developed core principles and testbeds that have predictive values like on-
cology’s. It is not because developers don’t want it – but that neuro-psychiatry
functions in circuits – thus the leap in molecular biology which focuses on cellular
level modulations largely does not apply to neuro’s uses. Instead, clinical research
in this field relied on pathological animal models that tracked some features of the
disease state - and empirically tried to fix the animal by the best-guess treatments
which so far seem to have no predictive power.

1.1.2 Retina for reverse engineering neuropharmacology: From the rationale
to setup

What makes a good experimental platform to study these links between molecular
activity and systems function? One would like to work on a neural circuit complex
enough to exhibit all the hypothesized targets of GA drugs. The system should
have a clear functional readout that serves as a proxy for anesthesia. And it should
be experimentally accessible, allowing the rapid introduction and withdrawal of
drugs. Most importantly, this circuit’s cell types and connectivity should be well
understood, so one can trace any changes in system function back to cells and
synapses. Here we argue that the mammalian retina can serve this role.

The retina is a complex circuit of neurons in the back of the eye. Its task is to
convert light into a neural signal, filter and process this neural image, and convey
the result to the brain through the optic nerve. The circuit includes about 100
different cell types that fall into 5 major classes defined by synaptic connectivity
(Figure 2.1 upper). Much progress has been made to identify the ion channels,
receptors, transmitters, and modulators used by retinal neurons. The basic synaptic
circuit leading from photoreceptors to retinal ganglion cells is well understood.
Indeed, there exist computational models of this circuitry that successfully predict
the firing of the output neurons based on the visual image presented at the input.

Experimental access to the retina is superb: the circuit can be explanted intact
from the eye and continues to function in a dish for many hours or even days.
This allows complete optical access, for example, to present visual stimuli, to
visualize fluorescent neurons of a specific cell type, or record their activity by
calcium imaging. By placing the retina on a flat multi-electrode array one can
record simultaneously the spike trains of many of its output neurons. By delivering
visual stimuli and monitoring their transformation into spike trains one obtains a
sensitive measure of the system’s function. Drugs can be delivered within seconds
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by superfusing the retina in the dish, and the resulting effects on circuit function can
be recorded instantaneously.

We begin by defining a proxy for anesthesia: the visual response of retinal gan-
glion cells. We show that this activity gets silenced by diverse GA drugs at the
same concentrations which leads to loss of consciousness. Then we explore some
commonly-used drugs across a wide series of concentrations. We report a paradoxi-
cal effect induced by the alcohols and ketamine but not isoflurane. Taking advantage
of the retina’s known blueprint, we tie these effects to a specific presynaptic site.
Finally, we use some non-GA drugs with known molecular targets to evaluate al-
ternative hypotheses for the action mechanism of ethanol and ketamine. Based on
this experience we suggest that the retina will prove a valuable testbed for a broader
research program on the systems-level function of general anesthesia.

1.1.3 Probing mechanism of general anesthesia
General Anesthesia (GA) is an integral part of medicine. Every day, hundreds of
thousands of people undergo a pharmacologically controlled loss of consciousness
during a surgical procedure. Despite the enormous practical utility of anesthesia
and the long history of its use dating back to the 19th Century, some deep questions
remain about its biological mechanism.

One mystery lies in the extreme diversity of the class of chemicals that act as general
anesthetics, ranging from single-atom noble gases to complex molecules with many
ring structures. Early workers noted that despite this structural diversity, the efficacy
of a general anesthetic is directly proportional to its lipid solubility. The relationship
is not perfect, but it accounts for a huge fraction of the explainable variance over
many orders of magnitude of solubility. This simple empirical relationship between a
complex brain-level effect – loss of consciousness – and a simple molecular property
– the lipid partition coefficient – hinted that there might be a single biophysical
explanation for general anesthesia. Unfortunately, such a unifying mechanism has
so far failed to materialize.

Instead, recent research has focused on how diverse the anesthetic drugs are in their
chemical activities, and especially their interaction with various candidate target
molecules in the nervous system. Many drugs in the GA class have been associated
with neurotransmitter receptors or ion channels that control the polarization state
of nerve cells. For instance, ketamine, one of the best-studied GAs, is thought to
block NMDA-receptors, a type of channel that activates neurons (Anis et al., 1983).
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But it is also thought to block HCN-channels, leading to silence neurons (X. Chen,
Shu, and Bayliss, 2009). One would like to understand now how the systems-level
phenomenon of anesthesia is related to these molecular-level interactions. The
challenge, as illustrated with ketamine, is that the same drug may have multiple
activities and that the presumed targets of the drug are distributed through many
stages of the nervous system.

1.2 Autism
1.2.1 Current understanding of the autism spectrum disorder
Autism spectrum disorder (ASD) is a developmental disorder thought to derive from
the dysfunction of complex neuronal circuits. It has a strong genetic component,
and there is great interest in understanding the links between autism-related genes
and circuit-level dysfunctions. A large body of research has tackled this domain,
leading to a wide range of mechanistic proposals for circuit malfunctions: from
developmental abnormalities in the long-range connection between brain areas to
the imbalance between excitation and inhibition in local circuits (J. A. Chen et al.,
2015)

1.2.2 Rationale of our approach
Mouse models of ASD have played an important role in uncovering such mecha-
nistic relationships. Of particular interest are mouse lines created to carry genetic
mutations that are associated with ASD in humans. It is remarkable that many of
these mutant mice also show behavioral abnormalities reminiscent of human autism,
which spurs some confidence that common mechanisms are at work in the mouse
and human brains. The scientific challenge in finding those mechanisms results from
the fact that genes and brain function are separated by so many explanatory levels:
protein expression, cell biology of neurons and glia, the development of synaptic
connectivity, the signaling dynamics of individual neurons, and the collective func-
tion of synaptic networks. A typical research study of mutant mice will probe in
a directed fashion for abnormalities at one or more of these levels, with the hope
that any such observed defects can explain the change in system function. In this
enterprise, much of the focus has been on cortical areas, suspected to be the seat of
the higher functions that appear perturbed in ASD. Here we propose an alternative
and complementary approach.

The retina is one neural system in which the links between genes, proteins, circuits,
and neural function are particularly well understood already. In complexity, this
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network rivals the rest of the central nervous system. The retina contains ∼ 100
different types of neurons, many of which are defined quantitatively and geneti-
cally accessible (Zeng and Sanes, 2017). It includes >30 different microcircuits
(Sanes and Masland, 2015) — one for each type of output neuron -– and these
comprise every imaginable circuit motif (Gollisch and Meister, 2010), using most
every neurotransmitter and modulator known to neuroscience (Hoon et al., 2014).
Nevertheless, there are now neural circuits leading through the retina, from photore-
ceptors to ganglion cells, where all the important interneurons and their synapses are
known (Gollisch and Meister, 2010; Helmstaedter et al., 2013; Krishnaswamy et al.,
2015). Mathematical models of retinal circuits can predict the visual responses of
the output neurons in quantitative detail (Baccus et al., 2008). The historical reasons
for this depth of understanding compared to other parts of the brain lie in the unusual
experimental control one has over the retina, with complete access to its inputs and
outputs.

On this background, we propose to screen ASD mouse models for abnormalities in
the function of the retina. Our guiding hypothesis is that any mutation or environ-
mental perturbation that causes defects in neuronal circuits will leave a trace in the
functions of the retina. As detailed below, such measurements can be extremely
sensitive: there are many retinal microcircuits available to test, each with a different
configuration of synapses. The toolkit of visual stimuli is virtually unlimited and
can be tailored for specific hypotheses. Finally, the neural response measurements
are very reproducible across animals, allowing even small effects to be resolved.
Once one finds an abnormality in system function – in this case the processing of
visual inputs – one can quickly dissect the dysfunction and identify the underlying
synaptic and cellular defects. In homing into home in on the likely sources one
gets invaluable help from the extensive existing knowledge of retinal microcircuitry.
These mechanistic tests will include the classical tools of immunocytochemistry and
pharmacology. Effectively the retina can serve as a test bed in which one develops
circuit-level explanations that can then be tested in brain areas more likely to be
causally involved in ASD. Building on the results of the retina findings, we took
advantage of newly emerging opportunities to broaden the scope of the comparative
analysis. Specifically, we studied the behavior of mice from these same lines in
several natural tasks that are part of the essential rodent repertoire: escape from
predators, exploration of an environment, learning, and navigation in space. The
aim was to identify differences in these behaviors among the mutants and with
respect to the wild-type mouse and correlate any such differences with the class of
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phenomena found in the circuit-level analysis of the retina.

1.3 Electrode Pooling
1.3.1 The need for extracellular recording methods
Understanding brain function requires monitoring the complex pattern of activity
distributed across many neuronal circuits. To this end, the BRAIN Initiative has
called for the development of technologies for recording “dynamic neuronal activity
from complete neural networks, over long periods, in all areas of the brain”, ideally
“monitoring all neurons in a circuit” (BRAIN Working Group, 2014). Recent
advances in the design and manufacturing of silicon-based neural probes have
answered this challenge with new devices that have thousands of recording sites
(Jun et al., 2017; Dimitriadis et al., 2018; Rios et al., 2016; Torfs et al., 2010;
Steinmetz et al., 2021). Still, the best methods sample neural circuits very sparsely,
for example recording fewer than 104 cells in a mouse brain that has 108 (Stevenson,
2013).

1.3.2 Limitations and previous attempts of improving extracellular recording
In many of these electrode array devices, only a small fraction of the recording sites
can be used at once. The reason is that neural signals must be brought out of the brain
via wires, which take up much more volume than the recording sites themselves.
For example, in one state-of-the-art silicon shank, each wire displaces thirty times
more volume than a recording site once the shank is fully inserted in the brain (Jun
et al., 2017). The current silicon arrays invariably displace more neurons than they
record, and thus the goal of “monitoring all neurons” seems unattainable by simply
scaling the present approach (but see Kleinfeld et al., 2019). Clearly, we need a way
to increase the number of neurons recorded while avoiding a concomitant increase
in the number of wires that enter the brain.

A common approach by which a single wire can convey multiple analog signals
is time-division multiplexing (Obien et al., 2015). A rapid switch cycles through
the 𝑁 input signals and connects each input to the output line for a brief interval
(Figure 4.1a). At the other end of the line, a synchronized switch demultiplexes the
𝑁 signals again. In this way, a single wire carries signals from all its associated
electrodes interleaved in time. The cycling rate of the switch is constrained by the
sampling theorem (Shannon, 1949): it should be at least twice the highest frequency
component present in the signal. The raw voltage signals from extracellular elec-
trodes include thermal noise that extends far into the Megahertz regime. Therefore
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an essential element of any such multiplexing scheme is an analog low-pass filter
associated with each electrode. This anti-alias filter removes the high-frequency
noise above a certain cut-off frequency. In practice, the cut-off is chosen to match
the bandwidth of neuronal action potentials, typically 10 kHz. Then the multiplexer
switch can safely cycle at a few times that cut-off frequency.

Given the ubiquity of time-division multiplexing in communication electronics,
what prevents its use for neural recording devices? One obstacle is the physical
size of the anti-alias filter associated with each electrode. When implemented in
CMOS technology, such a low-pass filter occupies an area much larger than the
recording site itself (Shahrokhi et al., 2010), which would force the electrodes apart
and prevent any high-density recording. What if one simply omitted the low-pass
filter? In that case aliasing of high-frequency thermal fluctuations will increase the
noise power in the recording by a factor equal to the number of electrodes 𝑁 being
multiplexed. One such device with a multiplexing factor of 𝑁 = 128 has indeed
proven unsuitable for recording action potentials, as the noise drowns out any signal
(Eversmann et al., 2003). A recent design with a more modest 𝑁 = 8 still produces
noise power 4-15 times higher than in comparable systems without multiplexing
(Raducanu et al., 2017).

Other issues further limit the use of time-division multiplexing: the requirement
for amplification, filtering, and rapid switching right next to the recording site
means that electric power gets dissipated on location, heating up exactly the neurons
one wants to monitor. Furthermore, the active electronics in the local amplifier
are sensitive to light, which can produce artifacts during bright light flashes for
optogenetic stimulation (Jun et al., 2017; Kozai and Vazquez, 2015).

An alternative approach involves static electrode selection (Figure 4.1b). Again,
there is an electronic switch that connects the wire to one of many electrodes.
However the switch setting remains unchanged during the electrical recording. In
this way the low-pass filtering and amplification can occur at the other end of the
wire, outside the brain, where space is less constrained. The switch itself requires
only minimal circuitry that fits comfortably under each recording site, even at a pitch
of 20 µm or less. Because there is no local amplification or dynamic switching, the
issues of heat dissipation or photosensitivity do not arise. This method has been
incorporated recently into flat electrode arrays (Müller et al., 2015) as well as silicon
prongs (Jun et al., 2017; Lopez et al., 2017; Steinmetz et al., 2021). It allows the
user to choose one of many electrodes intelligently, for example because it carries
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a strong signal from a neuron of interest. This strategy can increase the yield of
neural recordings, but it does not increase the number of neurons per wire.

1.3.3 Innovation: Electrode pooling
On this background, we introduce a third method of mapping electrodes to wires:
select multiple electrodes with suitable signals and connect them to the same wire
(Figure 4.1c). Instead of rapidly cycling the intervening switches, as in multiplexing,
simply leave all those switches closed. This creates a "pool" of electrodes whose
signals are averaged and transmitted on the same wire. At first, that approach seems
counterproductive, as it mixes together recordings that one would like to analyze
separately. How can one ever reconstruct which neural signal came from which
electrode? Existing multi-electrode systems avoid this signal mixing at all costs,
often quoting the low cross-talk between channels as a figure of merit. Instead, we
will show that the pooled signal can be unmixed if one controls the switch settings
carefully during the recording session. Under suitable conditions, this method can
record many neurons per wire without appreciable loss of information.

We emphasize that the ideal electrode array device to implement this recording
method does not yet exist. It would be entirely within reach of current fabrication
capabilities, but every new silicon probe design requires a substantial investment
and consideration of various trade-offs. With this article we hope to make the
community of electrode users aware of the opportunities in this domain and start
a discussion about future array designs that use intelligent electrode switching,
adapted to various applications in basic and translational neuroscience.
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C h a p t e r 2

THE RETINA AS A NEUROPHARMACOLOGY TESTBED:
REVERSE ENGINEERING THE CIRCUIT LEVEL

MECHANISMS OF GENERAL ANESTHESIA

Ni, Yu-Li, Norianne Ingram, Alapakkam Sampath, and Markus Meister (2022).
“The Retina as a Neuropharmacology Testbed: Reverse Engineering the Circuit
Level Mechanisms of General Anesthesia”. In: Manuscript in Prep.

2.1 Abstract
General anesthetics have been widely used since the 19th century and are an essential
part of medicine. This is a remarkably heterogeneous class of neuroactive drugs,
ranging from noble gases to complex biomolecules. Much has been learned about the
molecular targets of these drugs, yet there remain open questions about the systems-
level mechanisms of general anesthesia. Here we introduce a systems-level testbed
for these biological mechanisms: the mammalian retina. This complex neural circuit
involves many of the known neurotransmitters and modulators. Yet its synaptic
wiring is well understood and quantitative models exist to explain its input-output
functions, so one can connect the systems-level effects to the underlying cellular and
molecular causes. We explored the effects of a range of general anesthetics on the
light responses of the mouse retina. At sub-anesthetic doses we found that certain
anesthetics exert a paradoxical effect: they increase the light response of some retinal
neurons and suppress the response of others. Notably, this occurred for alcohols
and ketamine, but not for isoflurane. We traced these effects to transmitter release
at a specific synapse, and in one case to a specific presynaptic ion channel. All the
anesthetics silenced the output of the retina completely at concentrations similar to
their effective dose for anesthesia in humans. Sedatives reduced retinal sensitivity
but did not silence it. Finally, we used specific drugs that target hypothesized
molecular mechanisms to probe how much they each contribute to anesthesia of the
retina.

2.2 Introduction
General Anesthesia (GA) is an integral part of medicine. Every day, hundreds of
thousands of people undergo a pharmacologically controlled loss of consciousness
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during a surgical procedure. Despite the enormous practical utility of anesthesia,
and the long history of its use dating back to the 19th Century, some deep questions
remain about its biological mechanism.

One mystery lies in the extreme diversity of the class of chemicals that act as general
anesthetics, ranging from the single-atom noble gases to complex molecules with
many ring structures. Early workers noted that despite this structural diversity, the
efficacy of a general anesthetic is directly proportional to its lipid solubility. The
relationship is not perfect, but it accounts for a huge fraction of the explainable
variance over many orders of magnitude of solubility. This simple empirical rela-
tionship between a complex brain-level effect - loss of consciousness - and a simple
molecular property - the lipid partition coefficient - hinted that there might be a sin-
gle biophysical explanation for general anesthesia. Unfortunately, such a unifying
mechanism has so far failed to materialize.

Instead, recent research has focused on how diverse the anesthetic drugs are in their
chemical activities, and especially their interaction with various candidate target
molecules in the nervous system. Many drugs in the GA class have been associated
with neurotransmitter receptors or ion channels that control the polarization state
of nerve cells. For instance, ketamine, one of the best studied GAs, is thought to
block NMDA-receptors, a type of channel that activates neurons (Anis et al., 1983).
But it is also thought to block HCN-channels, leading to silence neurons (Chen,
Shu, and Bayliss, 2009). One would like to understand now how the systems-level
phenomenon of anesthesia is related to these molecular-level interactions. The
challenge, as illustrated with ketamine, is that the same drug may have multiple
activities, and that the presumed targets of the drug are distributed through many
stages of the nervous system.

What makes a good experimental platform to study these links between molecular
activity and systems function? One would like to work on a neural circuit complex
enough to exhibit all the hypothesized targets of GA drugs. The system should
have a clear functional readout that serves as a proxy for anesthesia. And it should
be experimentally accessible, allowing the rapid introduction and withdrawal of
drugs. Most importantly, this circuit’s cell types and connectivity should be well
understood, so one can trace any changes in system function back to cells and
synapses. Here we argue that the mammalian retina can serve this role.

The retina is a complex circuit of neurons in the back of the eye. Its task is to convert
light into a neural signal, to filter and process this neural image, and to convey the



14

result to the brain through the optic nerve. The circuit includes about 100 different
cell types that fall into 5 major classes defined by synaptic connectivity (Figure
2.1 Upper). Much progress has been made to identify the ion channels, receptors,
transmitters, and modulators used by retinal neurons. The basic synaptic circuit
leading from photoreceptors to retinal ganglion cells is well understood. Indeed,
there exist computational models of this circuitry that successfully predict the firing
of the output neurons based on the visual image presented at the input.

Experimental access to the retina is superb: The circuit can be explanted intact
from the eye and continues to function in a dish for many hours or even days.
This allows complete optical access, for example to present visual stimuli, or to
visualize fluorescent neurons of a specific cell type, or to record their activity by
calcium imaging. By placing the retina on a flat multi-electrode array one can
record simultaneously the spike trains of many of its output neurons. By delivering
visual stimuli and monitoring their transformation into spike trains one obtains a
sensitive measure of the system’s function. Drugs can be delivered within seconds
by superfusing the retina in the dish, and the resulting effects on circuit function can
be recorded instantaneously.

We begin by defining a proxy for anesthesia: The visual response of retinal ganglion
cells. We show that this activity gets silenced by diverse GA drugs at the same
concentrations that leads to loss of consciousness. Then we explore some commonly
used drugs across a wide series of concentrations. We report a paradoxical effect
induced by the alcohols and ketamine but not isoflurane. Taking advantage of the
retina’s known blueprint, we tie these effects to a specific presynaptic site. Finally
we use some non-GA drugs with known molecular targets to evaluate alternative
hypotheses for the action mechanism of ethanol and ketamine. Based on this
experience we suggest that the retina will prove a valuable testbed for a broader
research program on the systems-level function of general anesthesia.

2.3 Results
2.3.1 The retina’s light response as a proxy for anesthesia
The mouse retina was isolated from the eye, then flat-mounted on a multi-electrode
array with the ganglion cell layer facing the electrodes (Fig 2.1). A 256-channel
acquisition system was used to record spike trains from many retinal ganglion
cells. Meanwhile a digital light projector delivered visual stimuli through an optical
system focused on the photoreceptor layer. A gravity superfusion system delivered
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oxygenated Ames’s solution to the retina. Most of the tested drugs were dissolved in
this Ames’s solution at the specified concentrations. Isoflurane, which evaporates
rapidly, was bubbled through the Ames’s solution continuously using an anesthesia
machine.

Figure 2.1: Retinal recording with a multi-electrode array. Right: Schematic of retinal
circuitry with photoreceptors (P), bipolar (B), horizontal (H), amacrine (A), and ganglion
(G) cells. The retina is placed in a superfusion chamber on top of a multi-electrode array
(M). A customized widget (W) ensures contact with the electrodes, and Ames’s solution
flows through the chamber via glass tubes at the inlet (I) and outlet (O). A digital light
projector (L) produces visual stimuli through a mirror (S) and objective lens (J) focused on
the photoreceptor (P) layer. Left: Top view of the retina in the superfusion chamber (top),
and enlargement showing the array of electrodes under the tissue (bottom). The electrode
spacing is 60 𝜇m. Bottom: An example of spike trains recorded from one ganglion cell.
Each row represents a repeat of the same visual stimulus (see bottom trace). Every tick
mark is an action potential. The firing rate curve shows the mean spike count across all the
trials.

We stimulated the retina with full-field flashes, alternating light and dark periodi-
cally. Each neuron responds to the visual input with a large modulation in firing rate,
precisely timed to the light transitions. The firing rate typically peaks within 100 -
200 ms of the excitatory phase of the flash, then decays to a lower value. During the
other half of the stimulus cycle, firing is strongly inhibited. The response is very
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reproducible across repeats of the same stimulus, ensuring that even small changes
over time will be detected reliably.

Then we exposed the retina to increasing concentrations of general anesthetics. As
seen in Figure 2.2, the light response of retinal ganglion cells declined and eventually
all firing ceased. At intermediate concentrations, the firing rate profile did not simply
scale proportionally: Instead the response became more transient, suggesting that
only the initial peak in firing was able to break through the suppression. Cells with
a more sustained response to the flash required a somewhat higher concentration of
the drug for complete silencing.

As a summary measure, we plotted the cummulative spikes within the flash response
segments of ganglion cells against the concentration of the drug (Fig 2.2). For all
the general anesthetics tested, the response dropped off very steeply over a narrow
range of concentrations. Typically the 20-80% change occurred over a factor of
2-4 in concentration. The effective concentration in the retina, namely the dose
for half-maximal response suppression, was closely related to the effective dose for
anesthesia. For illustration we plot our results from retinal responses along with
a classic Meyer-Overton curve based on righting reflexes in animals. Note, for
example, that the effective dose of the aliphatic alcohols varies with chain length in
the same way as observed for their anesthetic action.

We also tested midazolam, a benzodiazepine commonly used as a sedative. Unlike
many of the general anesthetics, midazolam’s effect on patients has a gentle concen-
tration dependence with lower risk of overdose. It does not block pain even at deep
sedation nor does it shut down breathing centers. Under midazolam the ganglion
cell flash response was gently suppressed, with lowered peaks and plateaus of the
firing rate. However, these effects saturated at a drug concentration of ∼ 1 𝜇M (Fig
2.2), similar to the concentration that produces sedation in humans (∼ 0.5𝜇M). The
ganglion cells still responded robustly to light even at 10 𝜇M.

In summary, all the general anesthetics we tested fully inhibited the firing of retinal
ganglion cells within a narrow window of concentration. In contrast, the sedative
midazolam failed to silence the retina even at concentrations far beyond the clinically
relevant dose for sedation. The close correspondence between the concentration-
dependence we observed on retinal responses and the observations on human anes-
thesia in the clinic suggests that light responses of the retina may serve as a useful
testbed for anesthesia.
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Figure 2.2: The Retinal Test-bed reflects known macroscopic and microscopic observa-
tions. (a) Examples of Retinal ganglion cells (RGCs) firing changes to flashes stimulation
in different drugs and concentrations. Repeats of 1-sec whole field bright (pink stripes)
then 1-sec dark flashes (white) was projected to stimulated the retina. Several alcohols and
Isoflurane fully inhibit the retina whereas midazolam do not even at extremely high con-
centration. (b) Summary of the flash-firing rate dose responses. Firing rate ratios (Y-axis)
were derived by normalizing firing rates in the drugs to the corresponding controls. Hill
Equation fits were superposed as dotted lines. (c) Meyer-Overton (M-O) correlation super-
posed with the retinal derived "M-O like" correlations. The Y-axis is the potency measured
as log10(1/𝐸𝐶50), where the EC50 is the halved-firing rate concentration derived from Hill
Equation fits (dotted lines in panel (b)). X-axis is the lipophilicity, measured as partition
coefficient log10(𝑙𝑖𝑝𝑖𝑑/𝑤𝑎𝑡𝑒𝑟). The M-O correlation was adapted from (R. Miller, 2015).
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2.3.2 RGCs’ firing rate increased paradoxically under ethanol and ketamine,
and this phenomenon is coupled with ON-OFF pathway

We’ve learned that GAs fully inhibited retinal circuits at concentrations that track
the dose-response of loss of righting reflex. Nevertheless, when the circuits were
fully inhibited, the circuit also cease to provide meaningful Input-Output responses
for probing mechanisms. Therefore, we then focused on clinically relevant - high
clinical concentrations where the retina is still light-responsive.

To our surprise, not all anesthetics behave like simple neural depressants. Amongst
the tested GAs, ketamine and ethanol excited the RGCs with increased firing in
a window of low-intermediate concentrations (See example cells in Fig 2.3 a, b,
leftmost panel). Nevertheless, when we further increased the dosage, these two
drugs still suppressed the firing of the ganglion cells and eventually fully inhibited
RGC activities at anesthetic concentrations.

After spike-sorting, we learned that actually only around half of the ganglion cells
in the intermediate concentrations have increased firing rate under ketamine and
ethanol (Fig 2.3 a, b, rightmost panel). The other half of retinal ganglion cells
are monotonically inhibited with decreased firing rate across dosage. Interestingly,
this dichotomy of opposite firing rate change was strongly coupled to the RGC’s
ON-OFF selectivity. To be specific, most cells that paradoxically increased activity
under low-intermediate dose drugs were ON cells and vice versa (Fig 2.3 d, e).

In contrast, isoflurane and midazolam inhibited both ON and OFF pathways in all
the concentrations tested (Fig 2.3 c, f).

2.3.3 The ON-OFF Dichotomy could be used to probe presynaptic v.s postsy-
naptic actions of drugs

The retina duplicated its signal pathway that encodes the same visual information
into two opposite copies, namely the ON and OFF pathways. As the name implies,
increased light intensity excites the ON ganglion cell, and inhibits the OFF ganglion
cells. The visual signals split into ON and OFF pathways respectively at the
photoreceptor-bipolar cell synapse (see Fig 2.4 a).

The photoreceptor synapses release glutamate vesicles steadily in the dark. When
the photoreceptor "sees" photons, a series of signal cascades hyperpolarize the
photoreceptor and reduce its vesicle release, leading to the reduced activity of the
OFF bipolar cell and the OFF Ganglion cells downstream. In contrast, the ON
pathway gets excited through a special sign-inverting synapse via metabotropic
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Figure 2.3: Paradoxical firing rate changes at clinically relevant drug concentrations.
(a) Baseline firing change of ganglion cells in ketamine. On cells increased firing (left
raster) whereas Off cells decreased firing (right raster) mildly at 3.6 𝜇𝑀 then strongly at
36 𝜇𝑀 . (b) Similar trend of firing rate changes for On vs Off cells in 50 mM Ethanol. (c)
Isoflurane inhibited both On and Off pathways. (a, b, c), right panels. Firing rate of ctrl
vs drug of all recorded RGCs. (d) Ketamine trials. At sub-anesthetic concentrations we
observed the paradoxical firing rate change. At high concentrations, both On and Off cells
are inhibited. (e) Ethanol Trials. We observed a similar paradoxical-then-inhibition trend.
(f,g) Isoflurane and Midazolam inhibited both pathways with a monotonic dose response.
Most cells are still firing at a rate around half of the control at an extreme dose of midazolam
(10 𝜇𝑀) in (g). (d) Ketamine: (OFF, ON cells counts): 3.6 𝜇𝑀 , n= (11, 16), 36 𝜇𝑀 , n=
(18, 31), 360 𝜇𝑀 , n= (7, 15). (e) Ethanol: 2.5e04 𝜇𝑀 n= (4, 6), 5.0e04 𝜇𝑀 n= (14, 28),
1.0e05 𝜇𝑀 n= (8, 11), 2.0e05 𝜇𝑀 n= (8, 11). (f) Isoflurane: 241 𝜇𝑀 n= (6, 7), 482 𝜇𝑀

n= (6, 7), 723 𝜇𝑀 n= (7, 5). (g) Midazolam: 0.1 𝜇𝑀 n= (5, 7), 1.0 𝜇𝑀 n= (5, 7), 10 𝜇𝑀

n= (5, 7). Box plots show the quartiles of the data. Whiskers extend to the full distribution.
Statistics: two-sided Welch’s t-test calculated with scipy. p-val: * : p ≤ 5.0e-02, **: p ≤
1.0e-02, ***: p ≤ 1.0e-03, ****: p ≤ 1.0e-04, ns: not significant, No annotation: var= 0.
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glutamate receptors. (Note that the ON and OFF pathways use inhibitory and
excitatory synapses in the photoreceptor-bipolar connection respectively, fig 2.4 a.)
The circuit downstream to the photoreceptor-bipolar synapse then stayed relatively
symmetric. This implied that the dichotomy of the ON vs OFF cell firing rate
changes originated from mechanisms at or before the signal-splitting synapse.

Thus, drugs that reduce synaptic strength (Simplified as "Presynaptic" actions in the
remaining text) would mimic seeing photons and enhance the ON-OFF dichotomy.
In contrast, mechanisms that inhibit post-synaptic activities such as increased inhi-
bition e.g. GABAa channel activated or decreased excitation e.g. AMPA/NMDA
receptor blocked) would result in the suppressed firing of both pathways ("Postsy-
naptic" actions).

Electrophysiology study of the Photoreceptors elucidated Ethanol’s
paradoxical effect

We first revisited the mechanisms of one of the most commonly used GA throughout
history - ethanol. In addition to the frequently reported GABAa agonist mechanism,
ethanol also acts presynaptically although less studied. From our recording, we
see that ethanol’s presynaptic effect played a significant role in changing the circuit
output readily at 25mM.

Ethanol’s reported presynaptic molecular actions included activating certain potas-
sium channels and/or blocking calcium channels. Either action could result in the
paradoxical firing we observed. Therefore to examine which (or both) mechanisms
are relevant in the functioning retina, we did patch-clamp recordings on the pho-
toreceptors. We would observe hyperpolarization of the membrane potential if the
potassium channel action is dominant; likewise, we would record reduced Ca current
should the Ca channel block is pertinent to the paradoxical changes.

As a result, current clamp of photoreceptors with ethanol perfusion showed no
obvious resting membrane voltage changes, which fluctuated near -40mV (Fig 2.4
b) in control (left most inset) and various time point in ethanol (remaining insets).
The hyperpolarizing membrane potential with respect to each flash also remained
similar to the control. Increased intensity of hyper-polarizing cascades would have
created extended and deepened troughs like (Barrow and Wu, 2009).

Next, we examine the calcium current which gates the synaptic vesicle release. To
isolate calcium current, we followed the protocol in Methods 2.5.5, which utilizes
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blockers to block the remaining non-Ca currents. Photoreceptor cells were held
at -70 mV and then depolarized with a series of voltage steps that covered the
working range (-30mV to -50mV) of the photoreceptor (Fig 2.4 c, d). As a result,
the peak calcium influx was reduced by two-folds in 25 mM ethanol in the working
range. This is equivalent to the retina being stimulated with more light, reducing
the presynaptic vesicle release and explaining the paradoxical firing changes.
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Figure 2.4: Electrophysiology study at the Photoreceptors verified Ethanol’s synaptic
block effect. (a) Schematic of the patch clamp studies on the photoreceptors. (b) Current
clamp of Cone Photoreceptor in control (Ames’s solution). Pulses of light hyperpolarize
the membrane with transient dips. Perfusion of ethanol does not further hyperpolarize the
resting membrane voltage. (Insets). (c) Voltage Clamp measurement of the isolated Ca
current of control (Lower) and EtOH (Upper). (d) I-V measurements derived from of the
peak current in (c). EtOH reduced the inward current of photoreceptors in working range
(-30mV to -50mV) by roughly 2-folds.
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2.3.4 Revisiting our understanding of neuropharmacology by pairing drugs
with their thought-to-be targets

One of the main problems that plagued the progress of neuropharmacology was
the ambiguity in identifying the actual target(s). Now that we have a testbed with
interpretable readouts, we could drive the hypothesized drug targets with a specific
agonist/ antagonist and compare the responses of that drug. Retinal response to
the drug and the specific target driver would align should the proposed target is the
actual drug action site and vice versa.
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Figure 2.5: Emulating the anesthetics features with target specific agonist/ antagonists.
(a) Muscimol,(GABAa receptor agonist) inhibits both ON and OFF pathways. At higher
concentration, muscimol fully inhibits the RGCs. (OFF, ON cells counts): n= (11, 17). (b)
d-AP5, (NMDA receptor antagonist) inhibits both ON and OFF pathways. However, the
inhibition plateaued and does not result in full inhibition like muscimol, n= (11, 8). (c)
ZD7288 (HCN channel blocker) Emulates the paradoxical firing of ON cell as well as fully
inhibits both pathways in higher concentrations. (OFF, ON cells counts): 0.5 𝜇𝑀 , n= (5,
9), 5.0 𝜇𝑀 , n= (9, 13), 10.0 𝜇𝑀 , n= (4, 4), 50.0 𝜇𝑀 , n= (5, 9). (d) Amlodipine, (L-type Ca
channel blocker). Tracked the paradoxical firing changes, strongly inhibited both pathways
in higher concentrations., n= (11, 21).

GABAa receptor agonist matched Isoflurane’s circuit perturbation profile

We began with activating the classic post-synaptic inhibitory target GABAa receptor
with muscimol. Muscimol reenacted the "orthodoxical" inhibition of both ON and
OFF cells similar to what we observed in isoflurane, as well as shuts the retinal
circuit at higher concentrations ( Fig 2.5 a).
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NMDA receptor blocker could not emulate Ketamine’s action on the retina

Next, we revisited ketamine. Given that ketamine is thought to exert its effect mainly
by blocking NMDA receptors, we paired it with the NMDA receptor blocker d-AP5.

Our results showed that d-AP5 also acted as an orthodoxical depressant and inhibited
both pathways (Fig 2.5 b). It did not reproduce the paradoxical firing changes even
when the median firing rate of OFF cells were as high as 57% of control (50 µM
d-AP5). In comparison, we still see paradoxical firing when the median firing rate
of OFF cells was as low as 18% of control at 36 µM ketamine). In addition, at
saturating NMDA receptor block concentration (50 µM d-AP5), the firing rate was
suppressed but far from fully inhibited like ketamine at anesthetic concentration.

HCN channel blocker emulated Ketamine

HCN channel block is the other advocated anesthetics target of ketamine. We thus
examined if circuit manifestations of HCN channel blocker matched ketamine.

We first tested Ivabradine, a commonly used HCN blocker for heart rate con-
trol. Ivabradine reproduced the paradoxical changes across all concentrations
tested (Supp Fig 2.1). Amongst the tested concentrations, the paradoxical effect
dichotomized maximally at 20 µM. The majority of ON cells were still more active
than Control at the extreme concentration of 100 µM.

Ivabradine was documented as a relatively safe drug with a ceiling effect in its use of
heart rate control. Given that the RGCs were far from fully inhibited like ketamine
in anesthetic concentration, we tested another common HCN blocker ZD7288 ( Fig
2.5 d). ZD7288 reproduced the paradoxical firing changes at low doses, then fully
inhibited both ON and OFF cells by 50 µM.

Ca Channel blocker reenacted Ethanol’s action

Last, we were interested in repeating ethanol’s Ca Channel blocking effect that
supposedly led to its paradoxical firing at low concentrations. Thus we delivered a
common hypertension prescription, the L-type Ca channel blocker Amlodipine to
pair the ethanol recordings.

Interestingly, Amlodipine also drove the retina to fire paradoxically in our tested
range of 2 µM - 12.5 µM. At the extreme concentration of 200 µM, Amlodipine also
nearly fully inhibits the action potentials.
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2.3.5 Mechanism for the full-inhibition feature of General Anesthetics is nu-
anced

With the standard drug versus anesthetics pairing experiments, we successfully
emulated the paradoxical effect of the sub-anesthetics dose ketamine and ethanol.
In contrast, the full-inhibition effect that initially appeared as an intuitive result of
the anesthetics was more diverse than we expected when reproduced with the target-
specific agonist/ antagonist. For example, the inhibition from saturated NMDA
channel block with d-AP5 was relatively light. In contrast, muscimol which targets
GABAa was extremely effective and fully quenched the retina below its saturating
concentration. On the other hand, HCN blocker ZD7288 and the common L-type
Ca Channel blocker Amlodipine were peculiarly potent at high dose.

Synaptic block is insufficient to fully inhibit the RGCs from firing

Given this heterogeneity, we are curious about what it takes to fully inhibit the retinal
circuit. One logical inference from the observation of the d-AP5 results was that
NMDAr are the auxiliary excitatory targets of the synapses, and it would naturally
require both the primary targets (AMPAr) and auxiliary targets to be blocked in
order to achieve full inhibition via synaptic block.

Therefore, we experimented with the combination of saturating dose of AMPAr
blocker CNQX (50 µM) with NMDAr blocker (50 µM). Surprisingly, both this
double-combination and the triple-combination (plus pre-synaptic block via the
addition of 200 µM Cadmium Chloride) do not completely stop the RGCs from
firing (Fig 2.6 a). To check if the receptors were fully saturated by the blocker
cocktails, we analyzed the correlation of the retinal ganglion cell light response to
the same stimuli. The triple-combination fully abolished spike train structures of
the in the RGC responses to stimuli that started with high fidelity in the control
solution. (See example RGC in Fig 2.6 b).

Expanded Retinal-Meyer-Overton plot showed duality in how the retinal
circuit was fully inhibited

Last, as the spontaneous RGC firing appeared to be robust against synaptic block
alone, we decided to analyze light response in the Meyer-Overton range concentra-
tions of drugs, which were much higher than the intended nominal concentration of
their targets.
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Figure 2.6: Duality of full RGC inhibition. (a) The combination of d-AP5 (50 µM) +
CNQX (50 µM) versus the combination of d-AP5 (50 µM) + CNQX (50 µM) + CdCl2 (200
µM). (b) Comparison of Spike trains of the same RGC to the repeated visual stimuli under
different drug combinations. The top panel is the odd number runs vs even number runs
in Ames’ solution, showing high fidelity of between the spike trains to the same stimuli.
Pearson’s correlation coefficient was calculated by comparing the averaged PSTH of 5
runs binned at 100 𝑚s. (c) Box plot of the Pearson’s correlation coefficient of all RGCs
in different conditions versus control. (d) The potency of quenching of Retinal response
to light flashes under different compounds, plotted against the compound’s lipid partition
coefficient, superposed on the Meyer-Overton correlation.

When we plotted the potency of RGC inhibition to flash responses like in Fig 2.2
against their lipophilicity, we found a duality amongst the drugs. The GABAa-
targeting muscimol fell off the M-O curve approx 1000-folds stronger than what
M-O would have predicted. Conversely, the remainders followed the correlation.

2.4 Discussion
2.4.1 Summary of results
In this work, we exploited drugs’ interaction with retinal circuits to probe the
on-going activities in neuronal circuits under anesthetic and sub-anesthetic concen-
trations.



26

At sub-anesthetic doses, we found that certain anesthetics exert a paradoxical effect.
They increase the light response of some retinal neurons and suppress the response
of others. Notably, this occurred for alcohols and ketamine, but not for isoflurane.
We traced these effects to transmitter release at a specific synapse, and in one case
to a specific presynaptic ion channel. All the anesthetics silenced the output of the
retina completely at concentrations similar to their effective dose for anesthesia in
humans. Sedatives reduced retinal sensitivity but did not silence it even at 10-folds
above clinical doses. We used specific drugs that target hypothesized molecular
mechanisms to probe how much they each contribute to anesthesia of the retina.
The specific drug-target pairs verified that HCN channels were a significant, if
not the main part of ketamine’s neuromodulation, and similarly, Voltage Gated Ca
channels in ethanol. Finally, we showed that the inhibition of retinal response under
all drugs tested in this project follows the Meyer-Overton correlation when pushed
to the relevant dosage, with the exception of muscimol which is several orders more
potent than the prediction.

2.4.2 Our observations complement current understanding of the mechanism
of general anesthesia

Specific, non-Specific, or both?

The field of anesthetics research is fastly moving away from the non-specific1,
membrane perturbation hypothesis that was the mainstream explanation for around a
century since Meyer and Overton (Overton, 1901) toward the specific, molecular-as-
target centered explanation, since the membrane-free assay on luciferase suggested
competitive action sites on a protein target could also follow the Meyer-Overton
correlations (Ueda and Kamaya, 1973; N. P. Franks and Lieb, 1984). More
recently, researchers seemed to have completely accepted that there are a set of
molecular targets general anesthetics bind to, and one should move on and explain the
functional results of general anesthesia- loss of consciousness, analgesia, immobility
- via neuronal networks and brain circuits that involve the thalamus and sleep centers
(Nicholas P. Franks, 2008).

Part of our data supports the more modern specific molecular target-brain circuits
explanation. Without inputs from other inhibitory nuclei, it is difficult to explain
how weak certain drugs are to result in obviously observable behavior manifestations
such as sedation. For instance, midazolam affected the retinal circuit only weakly

1Non-specific as not specifically bound to a protein target(s) as opposed to the specific hypothesis
that follows.
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even at 10-X the clinical dose. In comparison, anesthetics at their corresponding
clinical concentrations perturbed the retina immensely. We know at the 10X clinical
dose applied, it would have knocked a person into deep sedation. This suggests that
other brain circuits must have involved amplifying the thought-to-be circuit/system
level effects from midazolam, which are known to have a direct binding site on the
GABAa receptors. And in the other extreme, muscimol the specific GABAa agonist
fully quenched RGC spikes below its saturating dose and was much more potent
than what the MO correlation would have predicted. These two examples showed
that the non-specific hypothesis alone is insufficient to capture important features of
neuropharmacology.

However, other than muscimol which fell off from the M-O correlation, the rest of
the compounds tested largely followed the trend. Given that quite a few of them were
specific agonists/antagonists toward certain neuro-transduction targets, this seemed
odd.

A proposed explanation

One simple explanation is that Meyer and Overton measured a to-be-explained
nonspecific mechanism that perturbed arbitrary neuro circuits sufficiently at the
corresponding concentration with the form of full circuit inhibition. The mice retina
we tested on is merely an excerpt of all possible circuits rather than a special case.
The M-O correlation thus should be regarded as the lower bound of concentration
for each compound needed to reach the disruption threshold via the non-specific
mechanism2, which is comparatively weak as opposed to compounds that directly
interact with essential CNS targets. The direct interference with targets that functions
in circuit inhibition or action potential generation would have disrupted circuits with
a much lower concentration. For instance, muscimol in Figure 2.6 D. Likewise, Na
blocker blockers such as tetrodotoxin that directly interferes with action potential
would also have fallen off the curve. For example, Mao et al., 2001 used 50
nM tetrodotoxin to fully inhibit all spontaneous activity in brain slices. Being a
lipophobic agent, it will sit at the left-upper corner of the correlation plot, 4 orders
left and at least 1 order above muscimol (logP = -6.2, NIH PubChem, 2022b). In
contrast, agents with no significant interactions with the important molecular targets

2For simplicity, I will refer to the to-be-explained nonspecific mechanism as non-specific mech-
anism that should not be mixed with the original M-O based non-specific hypothesis that focuses on
changes of the fluidity of cell membranes.
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would sit close to the linear fit, such as the compounds tested in the classical M-O
series which are basically simple alkanols.

Unfamiliar as it might appear at first glance, this explanation derived from the non-
specific lineage has its strengths to complement findings that could not be reconciled
by the specific molecular target - brain circuits theory.

First, the concentration applied to human for compounds to anesthesize are orders
of magnitude higher than the majority of other modern medications. Biomedical
scientists who are already used to reagents with high affinity and specificity toward
their intended targets would have been appalled by the doses applied by us. The
mole fraction of the compounds partitioned into the lipid bilayer is 0.02 to 0.05
(Cantor, 2001). That is 1 drug compound for every 20 surrounding molecules! Take
the more familiar compounds that mostly have logP between 2 to 4 for example: It
requires 100 mM for ethanol and 200 µM for the more potent isoflurane (Krasowski
and Harrison, 1999) - which is still 100 X higher than muscimol - for anesthesia.
Admittedly, compounds with high logP would have a predicted lower aqueous
concentration needed to anesthetize, but the poor water solubility or high vapor
pressure basically prevented meaningful measurements yet is still cited as evidence
against the non-specific hypothesis which I will further discuss in section 2.4.3.

Second, anesthesia to the same compounds is conserved from worms to humans
that are evolutionary split for millions of years across many folds of difference in
nervous system complexity. While evolution might have endowed all life forms with
a nervous system with a convenient molecular switch(es) for anesthesia that could
be activated with hundreds of daily-life chemicals in the first chapters of organic
chemistry, it contradicts the trend to explain general anesthesia via specific molec-
ular targets embedded in dedicated brain circuits and nuclei. That is, organisms
with or without the proposed dedicated circuits both could be anesthetized. From
this perspective, our findings support the conventional explanation that GAs are
disrupting circuit processing to the extent that no meaningful information could be
relayed.

Third, molecules that could anesthetize take all kinds of forms, ranging from atoms
such as Xenon (Lynch et al., 2000; Neice and Zornow, 2016) to complicated com-
pounds of different chemical classes. This diversity of the compounds originally
guided people to ponder the mechanism as a non-specific one. I will continue this
discussion this in Section 2.4.3 on discovering how one family of exotic proteins
followed MO correlation doesn’t justify that it is actually the underlying mechanism,
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nor preclude that other non-specfic targets in the neuronal circuits. In addition to the
noble gases, one exotic yet more commonly encountered example that showcases
the diversity of general anesthetics is the nitrogen narcosis. Nitrogen has a log P
of 0.1, thus should be a harmless compound at normal conditions according to the
MO prediction as being two orders weaker than isoflurane (PubChem, 2022a). In
fact, we breathe in roughly 70 % v/v nitrogen at 1 a.t.m breath to breath and appear
conscious. However, during deep dives where the high pressure forced nitrogen
to dissolve into the bloodstream several times higher than the normal atmospheric
condition, divers experience symptoms of CNS perturbations as nitrogen accumu-
lates3. The symptoms exacerbate with depth, which in extreme depths leads to
unconsciousness and death.

The third point indicated almost all compounds in the known world could be general
anesthetics when they reach a sufficiently high concentration. This obviously con-
tradicts reality as we rarely see people inebriated by drinking a quart of milk. There
are obviously at least two additional criteria that had to be met, namely the capabil-
ity to cross the blood-brain barrier and sufficiently nontoxic for the compounds to
exert their effect in the CNS even if the non-specific hypothesis holds true. These
observations are intuitive for our platform but not necessary for the conventional
whole-organism-based behavioral tests and are further explained in the following
passage.

Retina as a testbed revealed observations that could have been masked or
actively avoided due to biological constraints

1. The need to cross the blood-brain barrier (BBB): Compounds would have
to first reach the CNS to exert their effects. With this layer of insulation,
around 98 % of all small molecules are not transported across the blood-brain
barrier and could not reach the neurons. For diffusion-based transportation,
rules of thumb suggested a compound has to be < 400 Da and forms < 8
hydrogen bonds to diffuse through the lipid layers (Pardridge, 2012). This
protection from the blood brain barrier immediately confined the observable
effect from infinite types of molecules to the ones that remained from itera-
tions of empirical trial-errors in the development of anesthetics: simple oily
compounds. The retina in vivo is also protected by a similar insulation called

3Perhaps oxygen also played a minor role with a logP at -1.1 but compensated with 2.5X more
soluble in the blood according to Henry’s law.
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blood-eye barrier. Being stripped off from the eye cup, our readouts unmasked
the bias of the permeability of drugs. Within our tested chemicals, ZD7288
and Amlodipine would not have crossed the BBB, thus would not have been
considered as general anesthetics nor as evidence of the non-specific theory.
Similarly, people rarely include IV-form compounds when comparing the bio-
physical properties or effects with the volatile ones due to realistic concerns
of pharmacokinetics in addition to the BBB. Our preparation showed that the
non-specific explanation is indeed quite invariant to the classes of chemicals
and extends to conventionally oral/IV-form drugs that were never considered
to be anesthetics.

2. Confined by safety: Another observational bias in addition to the need to cross
the BBB is that the neuropharmacology was weeding away lethal compounds
that kill the test animals without a safety margin that segregates the treatment
dose and lethal doses. For instance, drugs with potency orders stronger than
the ones on the MO correlation would in theory be potent GAs but are likely
to perturb other systems with excitable membranes such as the heart. These
compounds do not make it further down the drug development programs due
to their toxicology profile, instead, the inert and boring ones were selected.
Interestingly, GABAa agonist, despite being a strong CNS agent, is relatively
safe interacting with the heart which was regulated by a different part list
(GABAb) and is spared. In contrast, Na channel blockers such as lidocaine
which are classified as "local" anesthetics by jamming the peripheral nervous
system could likely be a GA but would have simultaneously paralyzed the
heart and killed the organism. Interestingly, fish researchers use Na channel
blockers routinely as a general anesthetics such as tricaine for fish studies
(Attili and Hughes, 2014) where the fish cardiology system seems to be using
variants of cation channel different from their CNS. Our platform is decoupled
from vital organs and would have seen through the non-neurological biases
such as application-oriented classifications based on safety rather than the
fundamental mechanisms.

Fully inhibiting the retina turned out to be nuanced

At first glance, giving high doses of arbitrary compounds to result in fully inhibit-
ing neural circuits is not surprising. It fits with thinking people’s expectation of
dosis sola facit venenum, the dose makes the poison, after all, we could also kill
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cultured cancer cells with a high enough concentration of table salt. Neverthe-
less, we find it more nuanced to emulate the same level of inhibition with just
standard agonist/antagonists applied at their saturating doses with the exception
of muscimol. The triple-mix cocktail that fully blocks synaptic transmission with
AMPA/NMDA/pre-synpatic blockers resulted in a different circuit state where RGCs
were stimuli irresponsive but still robustly firing. With this data, we think the end
result from the non-specific concentration effect aligned better with a voltage mem-
brane depression/ action potential block-based mechanism rather than a synaptic
transduction-block one.

Given the mounting evidence that there are various observations that could not be
explained intuitively by the specific hypothesis better, we decided to review the
evidence that the specific protein binding hypothesis supporters raised to decide the
non-specific theory outdated. These several prongs were so pervasively cited that
they are taken as fact without being further scrutinized or reexamined with modern
standards, as there is no one left on the non-specific side.

2.4.3 MO is flawed, but the several prongs of critiques compiled by advocates
of direct target theory were often not stringently conducted and were
rarely independently verified

1. The first argument people raise against the non-specific hypothesis is the excep-
tions in M-O correlations. Commonly cited examples include that 1-alkanols have
an abrupt cut-off of losing potency to abolish tadpole’s righting reflex after > 13
C (Pringle, Brown, and K. W. Miller, 1981), and fluorocarbons larger than carbon
tetrafluoride (CF4) do not anesthetize mice in hyperbaric chambers filled with fluo-
rocarbon gases. Upon revisiting, I found that 1-alkanols > 13 C do not permeate into
lipid bilayers. The fluorocarbon experiments were done in extreme conditions with
mice in a pressure chamber in order to compensate for the extremely low Henry’s
law constant that prevents the gases from partitioning into the bloodstream. So
extreme that the team predicted the partial pressure required for (CF4) in the lung
alveolar needed to reach 35 atm and never delivered to the nominal pressure, as the
mice are killed before 30 atm. For these molecules, not limited to fluorocarbons,
with extremely low water solubility yet with vapor pressure as high as several atm,
documenting dose response based on the animal’s behavioral outcome that required
chemicals to diffuse through several layers of interfaces (air-> liquid film on the
aveolar-> across lung epithelial cells -> across capillary endothelial cell membrane)
is difficult. Changing the subject to tadpole would not ameliorate the difficulty of
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having these extreme compounds permeate all the way into neurons. Not to say,
the final brain concentration was never reported as quality control for the negative
results.

2. "If membrane biophysical properties changes are the cause of anesthesia, then
physical perturbations that disrupt the membrane at the same order would also have
caused conscious change". Intriguingly, despite this notion being commonly cited as
evidence against the membrane fluidity hypothesis, there are various temperature-
related CNS examples such as hypothermia or hyperthermia-related loss of con-
sciousness in humans. Exothermic lifeforms such as insects could be readily knocked
out by cold. Though there are ample of examples, the underlying nervous system
mechanism is too unclear to serve as evidence for or against either hypothesis.

3. Evidence of direct protein-anesthetics binding. People often regard the finding
of the firefly luciferase-luciferin catalytic reaction being competitively inhibited
by various forms of general anesthetics as the nail in the non-specific hypothesis’
coffin. The luciferase assay demonstrated that direct binding sites in a protein target
could also follow the Meyer-Overton rule (N. P. Franks and Lieb, 1984). And
although we now know that the long chain alkanol experiment mentioned in the
first point could be a fluke, the paper intelligently used a lipophilic pocket in the
protein to explain why there was a cutoff of potency when the drug is too big to fit
into the pocket. However, since the 80s, people have yet to find essential protein
targets such as Na, GABA, and other CNS receptor that could be inhibited like
the luciferase reaction at clinical relevant concentration (Urban, Bleckwenn, and
Barann, 2006). In fact, almost all protein targets could form some kind of log -log
correlation according to Urban, Bleckwenn, and Barann, 2006, albeit with different
slope and potency. However, the measured effective dose usually missed the clinical
dose by several folds. Measurements like this were sporadically reported from time
to time for different anesthetics vs arbitrary proteins such as the myoglobin binds
with xenon (Schoenborn, Watson, and Kendrew, 1965) 4 that the luciferase seemed
like more of a one-of-a-kind hit that just happened to come out within the relevant
clinical concentration. In summary, finding an exotic protein that followed the MO
correlation does not justify that direct protein-anesthetic interaction is the underlying
mechanism, nor precluded other non-specific binding sites within the CNS to be the
actual mechanism.

4Perhaps one will also find a MO like binding affinity correlation with myoglobins as well after
throwing the arsenal of drug onto it
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4. Stereo Isomers with different potency. If a molecule’s stereoisomer exerted dif-
ferent potency, it almost guarantees that there is an underlying specific mechanism,
as the stereoisomers have the same biophysical property that would be invariant
in potency should the mechanism is non-specific. The isomer of etomidate R(+)
has a higher potency than S(-) and was commonly cited as evidence of this prong
(Tomlin et al., 1998; Krasowski and Harrison, 1999). Nevertheless, as the authors
should have known, etomidate is technically not a general anesthetics as it is not an
analgesic. Etomidate (Not considered as a BZD drug) targets GABAa receptor and
thus is not surprising to have different sedative potency. It is no more surprising to
claim isomers of benzodiazepines also have different strengths in the sleeping drive.

In summary, the dominant evidence cited against the non-specific hypothesis is
based on special cases where the compound has extreme biophysical properties,
the substrate is too irrelevant to actual protein targets in the brain, or confusing the
subject matter with sedatives that are not GAs. Despite that these findings might be
novel evidence when first discovered, with neurobiology as a field improved, people
should reexamine the stringency of these works, which have formed the current
textbook understanding of anesthesiology. Also, one should not ignore the other
90 percent of the oily compounds that followed the MO rule, with or without the 4
prongs listed.

Next, we transition into the sub-anesthetic dose findings. In contrast to the anesthetic
range effects that still required further explanations, drugs seem to exert their effect
through specific synaptic targets or ion channels. The retina highlighted interesting
targets to be important players in the sub-anesthetics dose circuit responses that were
previously sporadically reported but not taken seriously due to the first-comer effect
of mechanisms proposed earlier (see 2.4.4). Given that we still barely know about
how alcohol is acting in the brain, as well as how low-dose ketamine act as a rapid
anti-depressant, this part of the study again showed that using well-known circuits
as testbed revealed finding that should have been obvious if one simply changes the
scale of observations.
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2.4.4 Sub-anesthetic dose/ Direct Target: circuit approach highlighted targets
that may so far been overlooked

Voltage gate Ca Channels (CaV) and Hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels are relevant targets

Observations that led to the explanations for neuropharmacology came with a strong
first-comer effect. Often times the first available model system or the earliest
tested substrates with a positive result would be hailed as the actual mechanism.
Ketamine was coupled with NMDA receptor block when an experiment showed
that it specifically blocked NMDA receptors amongst several types of glutamate
receptors (Anis et al., 1983). No doubt this was a novel discovery as Ketamine
barely interacts with the popular GABAa at relevant concentrations, and a molecular
target was in need to explain its effects. Again, logically analogous to the luciferase
experiment, ketamine being a specific NMDAr blocker does not automatically justify
its dissociative anesthesia property from the NMDAr block. Chen, Shu, and Bayliss,
2009 alternatively showed that ketamine’s HCN antagonist effect was more likely
the underlying mechanism. It is known to experimental neurobiologists that specific
NMDAr blockers have only a mild circuit perturbation effect and do not lead to
an anesthetic state. Nevertheless, ketamine as an NMDAr blocker has become the
canonical textbook mechanism for effects exerted by ketamine (R. Miller, 2015).
We showed that the paradoxical firing caused by low dose ketamine could be reliably
repeated by two different standard HCN antagonists, and do not align with specific
NMDA blockers. This finding supports the argument that HCN rather than NMDA,
is more relevant to ketamine’s CNS effect.

On the other hand, the sub-anesthetic dose of ethanol that people encounter fre-
quently for recreation remained largely elusive and does not have a dominant ex-
planation. The recordings we have from extracellular recording and the following
patch clamp experiment showed that CaV block is the main cause of the low-dose
circuit changes and that CaV blocker Amlodipine could recreate the same effect.

Isoflurane’s effect starting at sub-anesthetic dose

In contrast to the ethanol and ketamine, we observed monotonically dose-correlated
depression across the concentration applied. As a result isoflurane’s interaction with
non-GABA targets is unlikely core to its pharmacological property. Isoflurane’s
data aligned with muscimol and suggest the net effect is inhibiting postsynaptic-ally
starting from the subanesthetic dose.
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Why haven’t people connected GAs with HCN (Or CaV) earlier if they are
potent?

Specific HCN blocker ZD7288 is a potent compound that could hyperpolarize
membrane potential by 5 mV in hippocampus patch recordings (Gasparini and
DiFrancesco, 1997) and abolish spikes. Mao et al. (2001) worked with cortical
slices imaging and also observed that HCN channel blockage by ZD7288 decimated
the spontaneous firings by several folds. Like us, they also reported surprise at how
little effect glutamatergic block had on firing rate.

Despite these prior findings, most HCN (and CaV) blockers do not pass the blood-
brain barrier and faced an observational bias like the aforementioned. For the
neuropharmacology field that largely relied on heuristic observations of animal
behaviour up till the 70s, such as crushing the skin of inmates with hemostats when
testing ketamine and its phencyclidine analogs (Domino, Chodoff, and Corssen,
1965), these two classes of drugs would not have exerted CNS manifestations of
interest and made it into the next stage.

2.4.5 Connection with the paradoxical firings of the brain in other studies
To the retina paradoxical firing (coined as different names in other studies) is an
intuitively understood phenomenon for drugs with presynaptic action. Here are a
few other studies that reported unexpected paradoxical firing. The underlying circuit
could be different thus the cause of paradoxical firing in these projects might not
simply be explained as pre-synaptic.

1. The ketamine and thought-to be NMDA blockers (Widman and McMahon,
2018). Attempt of interpreting how the circuit disinhibition worked was
convoluted. An HCN based explanation could result in the same phenomenon
with less assumption.

2. Found focal firing core in the hypothalamus that fires paradoxically under
many drugs: Iso and sevo-flurane, propofol, ketamine (Jiang-Xie et al., 2019)

3. Isoflurane also elicits paradoxical firing for some cells in the hippocampus
(Ou et al., 2020)
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2.4.6 Is the paradoxical firing related to the euphoric properties or anti-
depressant effect at lower doses?

Intriguingly, the paradoxical firing is hypothesized as the fast anti-depressant basis
of low-dose ketamine (Duman and Aghajanian, 2012; Duman, Aghajanian, et al.,
2016). There seems to be a gap of a leap of faith in how the connection was made.
In addition, ketamine is inheriting its NMDA blocker label, thus researchers directly
cite and interpret their increased firing also from NMDA block. Again, this showed
that there need to be a neuropharmacology testbed to standardize the interpretation
of mechanisms.

2.4.7 Future directions: Testbed beyond the general anesthetics
We demonstrated that by measuring interactions of drugs with a well-studied neural
circuit, one could immediately gain insights and interpret the actual targets.

Following this direction, the neuropharmacology field should aim for an overar-
ching goal of seeking more circuit-based platforms to complement molecular and
behavioral studies. New circuit based testbeds should be used to reexamine other
empirically derived use of chemicals for neuro disorders. For instance, movement
disorders.

2.5 Methods and Materials
2.5.1 Extracellular Retina Recording
We harvested retina from C57BL/6 mice (JAX:000664, Jackson Laboratory) aged
6 weeks-6 months. Mice were sacrificed by cervical dislocation after 1-hour dark
adaptation. We first remove the eyes from the mouse using curved tweezers. Then,
with the eyeball immersed in Ames’ solution (Sigma-Aldrich) filled petri dish, we
dissected away the cornea and lens to expose the retina. The Ames’ filled petri dish
was bubbled with carbogen (95 %𝑂2, 5%𝐶𝑂2) continuously during the dissection
to keep the retina viable.

The retina was then gently peeled off from the remaining eye cup with fine tweez-
ers. We cut the retina into 4 equal-sized slices, and transferred one slice onto a
customized widget as in (Fig 2.1 W). The widget held the flattened retina on a piece
of transparent hemodialysis membrane (Sigma-Aldrich) like a tightened drum head
against the multiple electrode array (MEA: 256MEA60/10iR-ITO, multichannel
systems). In this configuration, the retinal ganglion cells faced the electrodes, and
the photoreceptors faced the hemodialysis membrane on the widget. The MEA were
then mounted onto its data acquisition board (USB-MEA 256, multichannel sys-
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tems). The retina were perfused with continuously bubbled Ames’ solution through
a gravity-driven setup to remain light-responsive.

We waited 45 minutes for the retina to recover in dark. Then we light-adapted
the retina with background level light (See Method 2.5.2) for another 20 minutes
and started the recordings. The retinal slices that were not reactive to light after
adaption were discarded. A typical recording lasted 2-3 hours. All procedures were
performed in accordance with institutional guidelines and approved by the Caltech
IACUC.

2.5.2 Stimuli
Visual stimuli were programmed using the Psychtoolbox (Brainard, 1997; Kleiner et
al., 2007) package in MATLAB (Mathworks) and presented on a gamma-corrected
projector (LightCrafter: DLP3000, Texas Instrument).

2.5.3 Pharmacology
All drugs were dissolved in Ames solution for their delivery with the exception of
Isoflurane, which was bubbled into the Ames solution with an anesthesia machine.
We took the data that was collected 10 min after each transition of drug type or drug
concentration as the new steady state measurements.

Compounds Concentration Conventionally Declared Target Brand
Ethanol 25 - 150 𝑚𝑀 GABAa Sigma Aldrich
Butanol 4 - 40 𝑚𝑀 GABAa Sigma Aldrich
Hexanol 0.4 – 4 𝑚𝑀 GABAa Sigma Aldrich
d-AP5 10 - 50 𝜇𝑀 NMDAr abcam
CNQX 50 𝜇𝑀 AMPAr abcam

Isoflurane 0.5- 1.5 % V/V – Patterson
Muscimol 0.5 - 2 𝜇𝑀 GABAa abcam
Ivabradine 2 - 100 𝜇𝑀 HCN Channel Sigma Aldrich
ZD7288 0.5 - 50 𝜇𝑀 HCN Channel Sigma Aldrich

Midazolam 0.1 - 100 𝜇𝑀 GABAa Sigma Aldrich
Amlodipine 2 - 200 𝜇𝑀 L-type Ca Channel Sigma Aldrich

Cadmium Chloride 200 𝜇𝑀 Ca Channel Sigma Aldrich

Table 2.1: Table of pharmacology experiment conditions
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2.5.4 Spikesorting
We sorted spikes with KiloSort1 (Pachitariu et al., 2016). The sorted data were then
manually curated with phy (Rossant et al., 2016).

2.5.5 Whole cell Patch clamp
Using technique in Ingram, Sampath, and Fain, 2020, we performed Whole-cell
patch clamp in retinal slices (Cx36−/− mouse cones). In brief, mice were sacrificed
by cervical dislocation after overnight dark adaptation. The anterior portion of the
eye including the lens was removed, and the remaining eyecup was stored at 32°C
in a custom, light-tight storage container that allowed for the gassing of solutions.
For each slice preparation, half of the eyecup was dissected with a No.10 scalpel,
and the retina was gently peeled off from the retinal pigmented epithelium with fine
tweezers. The isolated retinal piece was embedded in 3 percent of low-temperature
gelling agar in Ames’-HEPES. In cold Ames’-HEPES, 200-𝜇m thick slices were cut
with a vibratome (Leica VT-1000S); the retina was cut vertically in an attempt to
maintain neural circuitry. Cut slices were either transferred to dishes for immediate
recording or stored in the light-tight container with the remaining pieces of the
eyecups. During recordings, slices were stabilized with handmade anchors. Bath
solution was maintained at 35 ± 1°C. Cones were identified by the position and
appearance of their somata, as well as from measurements of membrane capacitance
and sensitivity to a moderate-intensity flash. All light stimuli were brief (3–5 ms),
monochromatic flashes of 405-nm light, a value near the isosbestic point of the S-
cone and M-cone pigments. Monochromatic light was provided by ultra-bright light
emitting diodes driven with a linear feedback driver (Opto-LED; Carin Research).
Recordings were made with a Cs+ internal (pipette) solution, which contained both
Cs+ and TEA in sufficient concentrations to block BK channels.

2.5.6 Analysis Software
All analysis was performed with Matlab R2021a (Mathworks) and Python3.
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Figure 2.1: Supp Fig Ivabradine, (HCN channel blocker). Emulates the paradoxical firing
of ON cell while inhibiting the OFF cells in all concentrations tested. It does not fully
inhibit the retina in extremely high concentrations, n= (4, 6).
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C h a p t e r 3

AUTISM STUDY

3.1 Abstract
Similar to the situation in seeking what the mechanism of general anesthesia is, the
field of autism research also lacks a good testbed but for systemically comparing
gene mutation - circuit defect - behavior outcomes. Likewise, we utilized the retina
as a platform to identify circuit defects in 4 different autism model mice and followed
through the different mouse line’s behavior readouts using our lab’s maze navigation
paradigm. We discovered that for the different autism mouse lines differed in the
retinal circuits and varied in their navigation preferences. Nevertheless, unlike the
anesthetic project, there wasn’t a simple mechanism to explain why or how these
differences are coupled together

3.2 Introduction
Autism spectrum disorder (ASD) is a developmental disorder thought to derive from
the dysfunction of complex neuronal circuits. It has a strong genetic component,
and there is great interest in understanding the links between autism-related genes
and circuit-level dysfunctions. A large body of research has tackled this domain,
leading to a wide range of mechanistic proposals for circuit malfunctions: from
developmental abnormalities in the long-range connection between brain areas to
an imbalance between excitation and inhibition in local circuits (Chen et al., 2015)

Mouse models of ASD have played an important role in uncovering such mecha-
nistic relationships. Of particular interest are mouse lines created to carry genetic
mutations that are associated with ASD in humans. It is remarkable that many of
these mutant mice also show behavioral abnormalities reminiscent of human autism,
which spurs some confidence that common mechanisms are at work in the mouse
and human brains. The scientific challenge in finding those mechanisms results from
the fact that genes and brain function are separated by so many explanatory levels:
protein expression, cell biology of neurons and glia, the development of synaptic
connectivity, the signaling dynamics of individual neurons, and the collective func-
tion of synaptic networks. A typical research study of mutant mice will probe in
a directed fashion for abnormalities at one or more of these levels, with the hope
that any such observed defects can explain the change in system function. In this
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enterprise, much of the focus has been on cortical areas, suspected to be the seat of
the higher functions that appear perturbed in ASD. Here we propose an alternative
and complementary approach.

The retina is one neural system in which the links between genes, proteins, circuits,
and neural function are particularly well understood already. In complexity, this
network rivals the rest of the central nervous system. The retina contains 100
different types of neurons, many of which are defined quantitatively and genetically
accessible (Zeng and Sanes, 2017). It includes >30 different microcircuits (Sanes
and Masland, 2015) – one for each type of output neuron – and these comprise
every imaginable circuit motif (Gollisch and Markus Meister, 2010), using most
every neurotransmitter and modulator known to neuroscience (Hoon, Okawa, et al.,
2014). Nevertheless, there are now neural circuits leading through the retina, from
photoreceptors to ganglion cells, where all the important interneurons and their
synapses are known (Gollisch and Markus Meister, 2010; Helmstaedter et al., 2013;
Krishnaswamy et al., 2015). Mathematical models of retinal circuits can predict the
visual responses of the output neurons in quantitative detail (Baccus et al., 2008).
The historical reasons for this depth of understanding compared to other parts of the
brain lie in the unusual experimental control one has over the retina, with complete
access to its inputs and outputs.

On this background, we propose to screen ASD mouse models for abnormalities in
the function of the retina. Our guiding hypothesis is that any mutation or environ-
mental perturbation that causes defects in neuronal circuits will leave a trace in the
functions of the retina. As detailed below, such measurements can be extremely
sensitive: There are many retinal microcircuits available to test, each with a different
configuration of synapses. The toolkit of visual stimuli is virtually unlimited and
can be tailored for specific hypotheses. Finally, the neural response measurements
are very reproducible across animals, allowing even small effects to be resolved.
Once one finds an abnormality in system function – in this case the processing of
visual inputs – one can quickly dissect the dysfunction and identify the underly-
ing synaptic and cellular defects. In homing into home on the likely sources one
gets invaluable help from the extensive existing knowledge of retinal microcircuitry.
These mechanistic tests will include the classical tools of immunocytochemistry and
pharmacology. Effectively the retina can serve as a test bed in which one develops
circuit-level explanations that can then be tested in brain areas more likely to be
causally involved in ASD. Building on the results of the retina findings, we took
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advantage of newly emerging opportunities to broaden the scope of the comparative
analysis. Specifically, we studied the behavior of mice from these same lines in
several natural tasks that are part of the essential rodent repertoire: escape from
predators, exploration of an environment, learning, and navigation in space. The
aim was to item Identify differences in these behaviors among the mutants and with
respect to the wild-type mouse. and correlate any such differences with the class of
phenomena found in circuit-level analysis of the retina.

3.3 Results
3.3.1 Retinal Probing Results
A sample of recording and analysis

Figure 3.1 illustrates the range of measurements obtained from a single retinal
ganglion cell. When the retina was exposed to periodic flashes of light, this neuron
fired a sharp burst of 100 spikes per second following offset of the light (Fig 3.1
A): a classic Off-type cell. A white-noise analysis revealed the spatial profile of its
receptive field and the time course of its response kernel (Fig 3.1 B). This neuron had
a center diameter of 250 µm and a kernel time-to-peak of 50 ms. Finally, stimulation
with moving bars revealed that the neuron responds consistently to the dark edge of
a bar, with no overt preference for any movement direction (Fig 3.1 C).

These measurements were performed for several 1000 retinal ganglion cells from
the various mouse lines. About 830 neurons survived an initial step of data curation
based on the quality of the electrical recording and stability of the light response.
Then we compared the key parameters of the light response between mutant animals
and their respective controls, as described in the following sections.

Categorical cell classes

Retinal ganglion cells are coarsely classified as On, Off, or On-Off based on whether
their firing increases at the onset of a light flash, at the offset (Fig 3.1 A), or both
(Carcieri, Jacobs, and Sheila Nirenberg, 2003). This elementary aspect of the
neuron’s function is directly related to its morphology, specifically, whether the
dendrites arborize in the upper or the lower stratum of the inner plexiform layer
(Wässle, 2004). These strata contain the axonal terminals of On-type (lower) and
Off-type (upper) bipolar cells respectively. We found that some of the mutant lines
have an abnormal distribution of these response categories (Fig 3.2). Both the
Nlgn3 and the Mecp2 mutant have an abnormally high fraction of On-Off cells, at
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Figure 3.1: A: response to a uniform light flashing off (shaded) and on (white). The neuron’s
firing rate (measured in spikes per s, or Hz) is plotted as a function of time throughout one
period of this stimulus. B: The spatio-temporal receptive field (RF) of the cell, measured
with a white-noise flickering checkerboard stimulus. Top left: Profile of the RF center, with
the diameter indicated in red. Top right: Time course of the RF center, with time-to-peak
indicated in green, Bottom: Same for the RF surround. C: Here the retina was stimulated
with a black or white bar moving over a gray background in 8 possible directions. The
corresponding 8 graphs around the periphery each plot the cell’s firing rate as a function of
time. One sees a brief burst of firing when the bar crosses over the neuron’s receptive field.
A dark bar (black) produces a burst at the leading edge (the bright-to-dark transition) and
a white bar (red) at the trailing edge. The polar plot at the center summarizes the response
amplitude as a function of the direction of motion; for this cell, the response varied little
with direction.

Figure 3.2: The distribution of basic response types among retinal ganglion cells in the four
mutant lines investigated. On, Off, and On-Off types were identified by their response to
periodic light flashes (Fig 1A). The fraction of each response type in the observed ganglion
cell population is plotted along with its standard error. P-values are derived from a chi-
square test comparing the distributions in mutant and sibling control animals.

the expense of pure On and Off cells. By contrast, both Shank3 and 16P mutants
contain an abnormally high fraction of On cells and fewer Off cells (Fig 3.2 C-D).

Quantitative visual processing

To test for quantitative changes in retinal processing we analyzed the spatio-temporal
receptive field (RF) of each retinal ganglion cell (Fig 3.1 B). This is a first-order
description of how that neuron encodes visual stimuli (see Fig 3.1). Typically the
spatial receptive field includes an excitatory central region and an inhibitory sur-
round. This shape reflects neural pathways for convergence and lateral connectivity
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Figure 3.3: The spatio-temporal response properties of Alpha retinal ganglion cells. The
diameter and the time-to-peak of the receptive field center were measured for Alpha cells of
4 different types in the four mutant lines and their sibling controls. The ratio between the
mutant and control value is plotted, along with its standard error. P-values are derived from
a t-test comparing the ratio to 1.0; * p<0.05, ** p<0.01, *** p < 0.001.

from photoreceptors to retinal ganglion cells. By contrast the time course of the tem-
poral receptive field kernel reports on the dynamics of integration within the retina,
which is controlled primarily by cellular parameters of the component neurons,
such as the membrane time constant and speed of synaptic transmission. The mouse
retina comprises at least 30 types of retinal ganglion cell (Sanes and Masland, 2015)
with a wide range of receptive field properties. For a reliable comparison across
animals one must therefore focus on cells of the same type. Here we report on the
so-called alpha retinal ganglion cells. The alpha cells produce large action potentials
and have some of the largest receptive fields; thus they can be identified reliably in
extracellular recordings. Alpha cells come in four types that are distinguished easily
by the categorical differences in their response to light flashes (Krieger et al., 2017)
: There are two Off-types and two On-types. Each pair has one type with a transient
response to a light step and the other with a sustained response.

For each RGC we summarized the receptive field by just 2 parameters that reflect
spatial and temporal pooling respectively: the diameter of the receptive field center
and the time-to-peak of the time course (Fig 3.1 B). These were measured for neurons
from each of the 4 alpha RGC types in each of the 4 mutant lines and their sibling
controls. Then we computed how much that response parameter differs between
mutants and their sibling controls. If there were no difference, one expects a ratio
of 1.0 in all comparisons. The observed ratios are summarized in Fig 3.3.

The most dramatic result appeared in the Shank3 line: In the mutant, the time-
to-peak was considerably longer, and the center diameters were smaller. This
held for all 4 alpha RGC types, although more data would help in some cases to
confirm statistical significance. Effectively visual processing by these circuits was
slower than in the normal retina but also more restricted in space. The effect size
is substantial, up to 40 % or 50 % for both the spatial and temporal parameters.



48

A similar trend was seen in the 16P mutant mice, although the effect size there is
smaller. In the Nlgn3 mutant mice, visual processing was again slower, especially in
the On-S and Off-S types. Unlike in Shank3, however, the receptive field diameters
were larger than in non-mutant animals, especially for the On-S and Off-T types.
We conclude that there are substantial effects for some of these mutations that can
be resolved as quantitative differences in spatial and temporal processing. Of the
32 comparisons tested in this effort, 10 yielded departures from the normal retina
that were significant at alpha = 0.05. At the same time, more data would help to pin
these effects down further and perhaps resolve additional ones.

Specialty circuits for motion processing

Motion detection is a vital function for animal behavior, and it begins at the level
of the retina. So-called direction-selective ganglion cells (DSGCs) fire when an
object moves in the “preferred” direction but not in the opposite “null” direction.
Underlying this computation is a rather intricate circuitry, involving several types
of bipolar cells, nonlinear dendritic processing in at least two types of amacrine
cells, a highly selective synaptic connectivity onto the retinal ganglion cell dendritic
tree, and a balanced interplay of excitation and inhibition (Borst and Helmstaedter,
2015). There exist DSGCs of all three major response types: On, Off, and On-Off
(Sanes and Masland, 2015). Given this complexity, one expects that DSGCs would
be sensitive reporters of any circuit abnormality.

To our surprise, the Nlgn3 mutant displayed all 3 major types of DSGCs (see
also Hoon, Krishnamoorthy, et al. (2017), reporting on a different Nlgn3 knockout
mutant). In contrast, the Mecp2 mutant had only On-Off DS cells. Furthermore,
these DSGCs in this mutant showed distinctly abnormal light responses (Fig 3.4):
When probed with a flashing spot they fired at both ON and OFF transitions, as
expected. But when probed with moving bars they responded strongly only to the
black bar, not the white bar. Clearly, the wiring leading to the ON-OFF DS cells
is perturbed in the Mecp2 line, and this will offer a useful handle for follow-up
mechanistic studies (Aim 2 of our original proposal). In the Shank3 and 16p.11.2
mutants we have not found any DSGCs so far, but given the low prevalence of
DSGCs even in the normal retina, establishing the significance of this absence will
require further data collection.

Next We studied four mouse lines with autism-related mutations in the context of
natural behaviors. One study tested the so-called looming reaction: a sequence
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Figure 3.4: Examples of On-Off direction-elective cells in retinas of Nlgn3 and Mecp2
mutants. Responses to moving black or white bars displayed as in Fig 1C. Note the Nlgn3
cell produces two bursts of firing under both black and white bars: one to the leading edge
the other to the trailing edge. The Mecp2 cell produces only one burst. Nevertheless it has
an On-Off response to flashing lights, see inset top right.

of behaviors by which rodents escape from aerial predators (Yilmaz and Markus
Meister, 2013). In the normal mouse, this behavior involves visual perception,
discrimination of closely-related stimuli, directed escape, and freezing. The other
study observed the mice in a complex labyrinth (Rosenberg et al., 2021). The
animals are water-deprived and a source of water is hidden in the labyrinth. The
normal mouse engages in a sequence of behaviors including exploration of the
environment, the discovery of the water port, and rapid learning of the shortest
possible route for navigation to the port.

3.3.2 Looming reaction behavior
MECP2 mutant mice (n=3) showed clear anomalies in their reaction to looming
stimuli (Figure 3.5). In particular, they lacked any notable response to black ex-
panding disks, which would typically induce a robust freeze and/or escape, as seen in
both the non-mutant litter-mates (n=4) and C57Bl6/J WT mice (Yilmaz and Markus
Meister, 2013). In addition, these mutant animals froze and/or escaped in response
to white disk stimuli, which indicates that their lack of response is not attributable
to gross motor deficits.

We also found that the non-mutant litter-mates differed considerably from the
C57Bl6/J strain (Yilmaz and Markus Meister, 2013), producing escape responses
also to the ecologically innocuous shrinking disk stimuli (4 of 4 animals, Figure
3.5). Even though Jackson Labs uses C57Bl6/J males for breeding this line, there
may be remnants of genetic background other than the mutation of interest that
affects the behavior of the mutant animals. We had reported substantial background
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Line Mouse Rear Freeze Flee Rear Freeze Flee Rear Freeze Flee Rear Freeze Flee
Dark	Expand Dark	Shrink White	Expand White	Shrink

wt5	(190619,	190620,	190621) 1 1
20 1 1 1 1 1
21 1 1 1 1 1 1 1
23 1 1 1 1 1
26 1 1 1 1 1 1 1

WT (C57BL)

MECP2	WT

26 1 1 1 1 1 1 1
28 1 1
29 1 1
30 1 1 1 1 1

MECP2 WT

MECP2	
hemi

Figure 3.5: Reactions of MECP2 mutant mice and non-mutant siblings to the classic looming
stimulus and comparison displays. Each row is an individual mouse.

effects also in our retinal physiology study of Year 1.

By contrast, our analysis of retinal function in the MECP2 animals revealed no
overt deficit in visual signaling, as presented in our Year 1 report. In particular,
the proportion of ON-type and OFF-type ganglion cells is statistically within the
normal range. Also, a detailed analysis of Spatio-temporal receptive fields of the
alpha-RGCs revealed no peculiarities. A new study published today claims that one
of these alpha cell types (Off-transient) carries the visual signal essential for the
looming reaction Wang et al., 2021. We suggest therefore that the behavioral deficit
is not caused by retinal malfunction, but arises later in the visual pathway or in the
brain centers that coordinate the defensive reaction.

The other 3 mutant lines – NLGN3 (n=4), SHANK3 (n=4), and 16P (n=4) – all
showed statistically normal reactions to the four stimuli. This included appropriate
escape and freezing behaviors. The execution of these behaviors, for example, the
reaction time and speed of escape, appeared within normal limits as well. It is
conceivable that a study with larger numbers of animals would reveal some small
anomalies in these mutant lines, but at this stage, we find no substantial deficits in
the looming reaction. This indicates that visual processing, the discrimination of
different stimuli, and the behavioral control of escape and freezing are largely intact.

3.3.3 Maze learning Results
Initial response to the maze

Mice of lines NLGN3 and MECP2 entered the maze within a few minutes of the
tunnel opening, similar to WT (C57Bl6/J) mice (Rosenberg et al., 2021). By
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Figure 3.6: Delay between tunnel opening and the animal’s first entry into the maze. Mean
± SE across 10 animals for the C57Bl6/J wild type, and 3 animals each for the mutant lines.

contrast mice of lines 16P and SHANK3 were extremely reluctant to enter the maze,
requiring several hours before crossing the tunnel for the first time (Figure 3.6).

Some of the mice of lines 16P and SHANK3 never entered the maze over the 7 hours
of the study. For these animals, we extended the study to a second night in which we
placed the animal directly into the tunnel leading to the labyrinth and temporarily
closed off the opening to the home cage. From that point on these "reluctant" mice
entered the maze, explored it thoroughly, and then alternated freely between the
home cage and maze on a schedule similar to that of WT mice.

Early bouts of exploration

During the first entries into the maze, wild-type mice are somewhat tentative: They
spend only a few seconds at a time there, and over several visits, they gradually
make their way from the entrance to the first intersection (Rosenberg et al., 2021).
Mutant mice from the lines NLGN3, SHANK3, and 16P began their explorations
in a similarly hesitant manner (Figure 3.7A). However, the MECP2 mice acted very
differently: On the first bout, they typically explored the entire maze to the deepest
level, often discovering the water port in the process (Figure 3.7B). Over the first 5
visits to the maze the total time spent in the maze was 11.9 ± 2.5 min for WT mice,
but 42.9 ± 10.7 for MECP2 mice. The other 3 mutant lines all acted similarly to the
WT animals (Figure 3.7C).

The MECP2 trajectories involved a great amount of repetition. For example, the
mouse would focus on one-quarter or one-half of the maze and repeatedly cycle
through all the endpoints of the maze there, then move to another location for a
similar set of repeat sequences (see Figure 3.7B). Eventually, after several visits
to the maze, this repetitive behavior ceased, and the mouse adopted a schedule
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Entry

A B16P MECP2 C

Figure 3.7: Sample trajectories during early visits to the maze for a 16P mouse (A) and a
MECP2 mouse (B). Arrowhead marks entry into the maze, drop symbol marks the water
port. The trajectory of the animal’s nose is color coded with time in maze from purple
(early) to yellow (late). (C) Time spent on the first 5 bouts for the WT (C57) and mutant
mice, mean ± SE.

of brief visits much like the other mutant lines and the wild-type mice. In this
repetitive behavior, MECP2 mice are uncannily similar to mice that lack most
of the neocortex and hippocampus, either through acute lesions or developmental
mutations (our unpublished data).

Learning of the water location

At the start of the experiment the animal is water-deprived but has no knowledge
of the water port in the maze. Eventually, it discovers the port and receives a water
reward for poking its nose at it. Then the port remains inactive for a time-out delay
of 90 s, and the animal typically leaves the site to explore the maze further or return
to the cage (Rosenberg et al., 2021). After a few water rewards, the animal learns
the location of the port, and returns to it on a regular schedule. To reach the water
port from the maze entrance the animal must make 6 correct turns in a row (each
among 3 options, see Figure 3.7A).

Figure 3.8 shows the timing of every water reward received for all the mice in this
study, along with a group of 10 wild-type animals (Rosenberg et al., 2021). Note
that the time course of learning is very similar across all these mice. They typically
discovered the water port after a few minutes and then started collecting water at a
steady rate after about 10 rewards. One of the MECP2 animals (ME32) collected
rewards at a rather low rate. And the 3 NLGN3 animals did so at a relatively high
rate. But overall, the animals were efficient at finding the port and exploiting it, and
there is no dramatic difference between the mutants and the wild-type mice.
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MECP2

NLGN3

16P

C57

Figure 3.8: Timeline of all water rewards collected by the mice. Each row is one animal.
Red dots indicate the collection of a water reward, blue ticks mark every fifth reward. Data
from the C57 animals were previously reported in Rosenberg et al., 2021.

Exploration vs exploitation

To inspect the time course of learning and exploitation more closely we analyzed
the mouse’s ‘water runs‘, from the maze entrance to the first visit to the water port.
Normal WT mice follow a characteristic pattern shown in Figure 3.9A: Early on the
mouse travels a long distance through the maze, but after a few bouts the animal
learns to access the water port via the shortest possible path (6 steps between nodes
of the maze). Eventually, these ’perfect runs’ become routine. Nevertheless, even
at this late time, the WT animal will frequently begin its bout with a long excursion
(see the many runs with length>6 in Fig 3.9A). We assume this is for the purpose of
patrolling the maze for newly appearing resources or threats Rosenberg et al., 2021.

Among the mutants we inspected, the NLGN3 mice departed significantly from this
schedule. They also learned the perfect path to the water port, in fact somewhat
faster than the WT mice (1/𝑒 time of 7 rewards vs 10). However, once they mastered
this skill, they only used the perfect path, almost 100% of the time (Figure 3.9B).
Effectively they valued exploitation over exploration much more than the WT mice.
This was remarkably consistent for all 3 animals from that line.

3.4 Discussion
The behavioral phenotyping of autism mouse models has largely employed a bat-
tery of standardized tasks for which commercial equipment and consensus analysis
recipes exist. Many of these tasks, such as swimming across a pool of milk, have
only limited ecological relevance for a mouse. As a complementary approach here
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Figure 3.9: The length of runs from the entrance to the water port, measured in steps between
nodes, and plotted against the number of rewards experienced. Mice from lines C57 (A)
and NLGN3 (B). Main panel: All individual runs (cyan dots) and median overall mice (blue
circles). Exponential fit to the median (blue line) decays by 1/𝑒 over the number of rewards
indicated in the legend. Right panel: Histogram of the run length, note log axis; red: perfect
runs with the minimum length 6; green: longer runs. Top panel: The fraction of perfect
runs (length 6) plotted against the number of rewards experienced, along with the median
duration in seconds of those perfect runs.

we focused on behaviors that are closer to the core of the mouse operating system:
escaping from predators, finding resources in a complex environment, remembering
where they are, and navigating back to those locations. All the behaviors we studied
are innate, they require no conditioning, and we report only results from the animal’s
first exposure to the task. Do the mutations used to model autism disrupt those core
mouse functions?

Somewhat surprisingly we found that the four mutant mouse lines examined here
were remarkably competent at these innate behaviors, with a few exceptions. In
Figure 3.10 we list the most significant abnormalities encountered, including our
earlier results on retinal processing. Here we discuss some of these findings.

Looming response of the MECP2 mutants

The MECP2 mutant mouse stands out because it failed to respond to the classic
looming stimulus (a black expanding disk presented overhead) while initiating es-
cape in response to other stimuli. At the same time, retinal processing was largely
normal in this mutant, with no notable defect in the OFF channel.

The MECP2 null mutation is a mouse model for Rett’s syndrome (Chahrour and
Zoghbi, 2007). Visual abnormalities have been reported in both Rett’s patients
and MECP2 mice. Both exhibit lower amplitude visual evoked potentials (VEPs)
in response to drifting grating stimuli, as well as deficits in discriminating smaller
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SHANK3 NLGN3 MECP2 16P

RGCs  
ON/Off Ratio excess ON excess ON

⍺-RGC temporal 
processing slow some slow

⍺-RGC receptive 
field size small some large some small

Looming 
response

no response to 
black disks

Initial reponse 
to maze no entry to tunnel no entry to tunnel

Early 
exploration

long repetitive 
bouts

Exploitation of 
perfect path

faster learning

pure exploitation

Figure 3.10: A summary of abnormalities encountered in aspects of retinal visual processing,
the looming reaction, and maze learning and navigation. Only the most significant departures
are listed, obtained by comparison to wild-type or non-mutant sibling mice.

patterns at higher spatial frequencies (LeBlanc et al., 2015). In addition, MECP2-
deficient mice have a weak optomotor response to high-contrast moving gratings,
suggesting lower visual acuity than the wild-type (Durand et al., 2012). Vice versa,
male mice with a duplication of the MECP2 gene have been reported with superior
visual detection performance, as well as a preference for higher spatial frequency
stimuli in V1 neurons, suggesting higher visual acuity and contrast sensitivity (D.
Zhang et al., 2017). Taken together with our detailed study of retinal ganglion cell
signaling, the literature suggests that a defect in the looming response of MECP2
null mutants likely arises in the visual system downstream of the retina.

The other three mutant lines (NLGN3, SHANK3, 16P) appeared similar to non-
mutant sibling controls in their looming reaction. A recent report claims an impaired
looming response in the valproic acid mouse model of autism (Hu et al., 2017) and
attempts to relate that to the visual reactions of autistic children. Our results
emphasize that this behavioral abnormality cannot be used as a common phenotype
of autism model mice.
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Transient maze-phobia of SHANK3 and 16P mutants

Mice of lines SHANK3 and 16P have a remarkably similar profile in our survey,
extending across retinal and behavioral phenotypes (Figure 3.10). Both were highly
reluctant to enter the maze at first, an unusual behavioral trait among all the mice we
have observed so far. It may be tempting to diagnose this reaction as “anxiety”, which
is commonly listed as a phenotype in autism model mice. However, researchers
generally measure anxiety in mice based on whether they explore the center of an
open field. If you are a mouse then traversing an open field is dangerous, so avoiding
it is the rational choice. The mouse’s aversion towards open spaces is innate and
cannot be overcome by crossing the center of an open field once.

By contrast, whatever internal state kept these mutant animals from entering the
tunnel to the maze, it was overcome entirely by a single forced "exposure therapy”.
After being placed in the maze environment involuntarily once, the animals quickly
adapted and then explored the maze in a normal fashion on their own initiative.
If anything, this adjustment can be seen as a mark of cognitive flexibility and an
instance of one-shot learning. It would be interesting to see whether rodents can
improve on other cognitive tests as well after a brief behavioral intervention.

Efficient spatial learning in NLGN3 mutants

The NLGN3 mutant line we investigated carries the R451C substitution in the
neuroligin-3 protein that is found in a small fraction of human ASD patients (Tabuchi
et al., 2007). The original report on this mouse had already noted that it seems to
perform better than wild-type in the Morris milk pool test 1. Specifically, the
mutant reaches the hidden platform after swimming a shorter distance and for a
shorter time. However, this may reflect better spatial memory in the mutant or
greater exploitation of the same spatial memory. While the milk pool leaves that
unresolved, the more complex environment of the labyrinth allows a distinction. Late
in the experiment, it is clear that both normal and mutant animals have completely
mastered the perfect run to the water port; yet the wild-type mouse gets "distracted"
by preferring to explore the environment on ∼ 25% of the bouts (Figure 3.9A). The
single-mindedness of the NLGN3 mutant mouse may show some parallels to the
enhanced cognitive abilities in high-functioning individuals with ASD.

1I avoid the conventional term "water maze" here because the test wouldn’t work with water and
it isn’t a maze and it may be confused with the real maze in our experiments
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3.5 Methods
Animals

We acquired four lines of mutant mice from Jackson Labs: NLGN3 (Stock #
008475), SHANK3 (Stock # 017688), MECP2 (Stock # 003890), and 16P (16p11.2,
Stock # 013128). The choice of these lines was partly informed by their use in
other SFARI studies, which promises a future integration of our results with other
insights. Heterozygous animals were mated and the offspring were genotyped. For
experiments, we chose male mice, hemizygous for the X-linked mutations (NLGN3,
MECP2), heterozygous (16P), or homozygous (SHANK3), as well as non-mutant
litter-mates of each line, and wild-type mice of strain C57Bl6/J.

Retina as a Probe Method

Retinal physiology: The retina was isolated from the eye and placed ganglion-cells-
down in a dish with a 256-electrode array (Markus Meister, Pine, and Baylor, 1994;
S. Nirenberg and M. Meister, 1997). Movies were projected onto the photorecep-
tor layer while the electrodes recorded spikes from many retinal ganglion cells.
The stimuli were drawn from a broad palette: flashing spots, white-noise flicker,
moving bars, shifting gratings (Baden et al., 2016; Y. Zhang et al., 2012). We
used the resulting responses both to identify different categories of ganglion cells
and to measure their visual function with quantitative parametric models, following
established methods (Chichilnisky, 2001).

Looming reaction Methods

The experiments were conducted according to the protocol of Yilmaz (2013) (Yilmaz
and Markus Meister, 2013). In brief:

Arena: The mouse was placed in an empty square arena (ca 50 x 50 cm) that included
a shelter made of opaque material in one corner. The roof of the arena was a display
monitor. The animal was acclimated to the arena for ∼10 min. Then the operator
triggered a visual stimulus on the display monitor that lasted ∼10 s. The animal’s
reaction was tracked by multiple video cameras.

Stimuli: The classic looming stimulus is an expanding black disk, intended to
approximate the appearance of an approaching bird. A stimulus episode consisted
of the expanding disk repeated 10 times at intervals of 1 s. For comparison, we
also used stimuli that share some visual features but not the ecological significance:
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expanding white disk; contracting white disk; contracting black disk. An animal
was exposed to only one of these stimuli per day.

Analysis: Based on the video recordings we scored the behaviors of the animal
around the time of the visual stimulus. We focused on 3 motifs: ’rearing’, a posture
by which the animal stretches towards the ceiling; ’escape’, a sudden acceleration
and rapid locomotion that typically ends in the shelter; and ’freezing’, a period of
prolonged immobility.

Maze learning Methods

Here we followed the protocol of (Rosenberg et al., 2021). In brief:

Behavior and recording: The mouse’s home cage was connected by a short tunnel
to a labyrinth (∼ 60 x 60 x 5 cm), a system of short corridors about the width of
a mouse, connected by T-junctions. The labyrinth’s design followed a binary tree,
with 6 levels of branches and 64 endpoints (see Figure 3.7). One of these endpoints
was fitted with a water port that dispensed a single drop of water in response to a nose
poke. The construction materials were visually opaque and the experiments were
conducted in darkness. A video camera below the labyrinth monitored the animal’s
movements via infrared illumination. The mouse was mildly water-deprived and
then placed in the home cage or into the labyrinth at the start of the subjective
night. The animal was free to enter and leave the labyrinth as desired. We recorded
its behavior continuously over the subsequent 7 hours, with no interference by the
investigator. All results are from the animal’s first encounter with the labyrinth.

Analysis: From the video recording we tracked 7 key points on the mouse body using
DeepLabCut (Nath et al., 2019). Subsequent analysis focused on the trajectory of
the animal’s nose through the labyrinth. For the present report, we analyzed four
components of the behavior: (1) The readiness with which the animal first entered
the labyrinth; (2) how efficiently it explored the new environment; (3) how fast it
learned the location of the water port; (4) how consistently it exploited the shortest
route to the port. The behavior of mutant lines was compared to that of C57Bl6/J
("WT") reported (Rosenberg et al., 2021). Details of the analysis including all the
code used are available there (Rosenberg et al., 2021).

3.6 Significance
This study introduces a comparative analysis across 4 mutant mouse lines related
to ASD. It includes single-neuron measurements of visual processing in the retina,
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a visually-guided defensive behavior, and a suite of behaviors that support spatial
learning and navigation in a complex labyrinth. This was a pilot study, and its
tentative conclusions need to be probed more deeply. However, some potentially
impactful results include:

• These natural behaviors involving predator defense, spatial learning, and nav-
igation are largely intact in all these ASD-related mutants. Conceivably the
brain implements such vital behaviors more robustly and redundantly than
some of the abstract tasks that animals must complete in conventional behav-
ioral phenotyping. Is this a general principle?

• We found a similar physiological and behavioral profile in two lines with
entirely different mutations: SHANK3 and 16P. Is this merely a coincidence,
or do these two lines perhaps express a common intermediate-level defect?

• We replicated an intriguing case of enhanced cognitive function in the NLGN3
line and propose an alternative interpretation of its nature.
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C h a p t e r 4

ELECTRODE POOLING CAN BOOST THE YIELD OF
EXTRACELLULAR RECORDINGS WITH SWITCHABLE

SILICON PROBES

Lee, Kyu Hyun*, Yu-Li Ni*, Jennifer Colonell, Bill Karsh, Jan Putzeys, Marius
Pachitariu, Timothy D. Harris, and Markus Meister (2021). “Electrode pooling
can boost the yield of extracellular recordings with switchable silicon probes”. In:
Nature Communications 12.1, p. 5245. doi: 10.1038/s41467-021-25443-4.

4.1 Abstract
State-of-the-art silicon probes for electrical recording from neurons have thousands
of recording sites. However, due to volume limitations there are typically many
fewer wires carrying signals off the probe, which restricts the number of channels
that can be recorded simultaneously. To overcome this fundamental constraint,
we propose a method called electrode pooling that uses a single wire to serve
many recording sites through a set of controllable switches. Here we present the
framework behind this method and an experimental strategy to support it. We then
demonstrate its feasibility by implementing electrode pooling on the Neuropixels
1.0 electrode array and characterizing its effect on signal and noise. Finally we use
simulations to explore the conditions under which electrode pooling saves wires
without compromising the content of the recordings. We make recommendations
on the design of future devices to take advantage of this strategy.

4.2 Introduction
Understanding brain function requires monitoring the complex pattern of activity
distributed across many neuronal circuits. To this end, the BRAIN Initiative has
called for the development of technologies for recording “dynamic neuronal activity
from complete neural networks, over long periods, in all areas of the brain”, ideally
“monitoring all neurons in a circuit” (BRAIN Working Group, 2014). Recent
advances in the design and manufacturing of silicon-based neural probes have
answered this challenge with new devices that have thousands of recording sites
(J. J. Jun et al., 2017; Dimitriadis et al., 2018; Rios et al., 2016; Torfs et al., 2010;
Steinmetz et al., 2021). Still, the best methods sample neural circuits very sparsely,

https://doi.org/10.1038/s41467-021-25443-4
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Figure 4.1: Strategies for using a single wire to serve many recording sites in switchable
silicon probes. (a) Time-division multiplexing. Rapidly cycling the selector switch allows
a single wire to carry signals from many recording sites interleaved in time. Triangles
represent anti-aliasing filters. (b) Static switching. A single wire connects to one of many
possible recording sites through a selector switch. (c) Electrode pooling. Many recording
sites are connected to a single wire through multiple controllable switches.

for example recording fewer than 104 cells in a mouse brain that has 108 (Stevenson,
2013).

In many of these electrode array devices only a small fraction of the recording sites
can be used at once. The reason is that neural signals must be brought out of the brain
via wires, which take up much more volume than the recording sites themselves. For
example, in one state-of-the-art silicon shank, each wire displaces thirty times more
volume than a recording site once the shank is fully inserted in the brain (J. J. Jun
et al., 2017). The current silicon arrays invariably displace more neurons than they
record, and thus the goal of “monitoring all neurons” seems unattainable by simply
scaling the present approach (but see Kleinfeld et al., 2019). Clearly we need a way
to increase the number of neurons recorded while avoiding a concomitant increase
in the number of wires that enter the brain.

A common approach by which a single wire can convey multiple analog signals
is time-division multiplexing (Obien et al., 2015). A rapid switch cycles through
the 𝑁 input signals and connects each input to the output line for a brief interval
(Figure 4.1a). At the other end of the line, a synchronized switch demultiplexes the
𝑁 signals again. In this way a single wire carries signals from all its associated
electrodes interleaved in time. The cycling rate of the switch is constrained by the
sampling theorem (Shannon, 1949): It should be at least twice the highest frequency
component present in the signal. The raw voltage signals from extracellular elec-
trodes include thermal noise that extends far into the Megahertz regime. Therefore
an essential element of any such multiplexing scheme is an analog low-pass filter
associated with each electrode. This anti-alias filter removes the high-frequency
noise above a certain cut-off frequency. In practice the cut-off is chosen to match
the bandwidth of neuronal action potentials, typically 10 kHz. Then the multiplexer
switch can safely cycle at a few times that cut-off frequency.
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Given the ubiquity of time-division multiplexing in communication electronics,
what prevents its use for neural recording devices? One obstacle is the physical
size of the anti-alias filter associated with each electrode. When implemented in
CMOS technology, such a low-pass filter occupies an area much larger than the
recording site itself (Shahrokhi et al., 2010), which would force the electrodes apart
and prevent any high-density recording. What if one simply omitted the low-pass
filter? In that case aliasing of high-frequency thermal fluctuations will increase the
noise power in the recording by a factor equal to the number of electrodes 𝑁 being
multiplexed. One such device with a multiplexing factor of 𝑁 = 128 has indeed
proven unsuitable for recording action potentials, as the noise drowns out any signal
(Eversmann et al., 2003). A recent design with a more modest 𝑁 = 8 still produces
noise power 4-15 times higher than in comparable systems without multiplexing
(Raducanu et al., 2017).

Other issues further limit the use of time-division multiplexing: The requirement
for amplification, filtering, and rapid switching right next to the recording site
means that electric power gets dissipated on location, heating up exactly the neurons
one wants to monitor. Furthermore, the active electronics in the local amplifier
are sensitive to light, which can produce artifacts during bright light flashes for
optogenetic stimulation (J. J. Jun et al., 2017; Kozai and Vazquez, 2015).

An alternative approach involves static electrode selection (Figure 4.1b). Again,
there is an electronic switch that connects the wire to one of many electrodes.
However the switch setting remains unchanged during the electrical recording. In
this way the low-pass filtering and amplification can occur at the other end of the
wire, outside the brain, where space is less constrained. The switch itself requires
only minimal circuitry that fits comfortably under each recording site, even at a pitch
of 20 µm or less. Because there is no local amplification or dynamic switching, the
issues of heat dissipation or photosensitivity do not arise. This method has been
incorporated recently into flat electrode arrays (Müller et al., 2015) as well as silicon
prongs (J. J. Jun et al., 2017; Lopez et al., 2017; Steinmetz et al., 2021). It allows the
user to choose one of many electrodes intelligently, for example because it carries
a strong signal from a neuron of interest. This strategy can increase the yield of
neural recordings, but it does not increase the number of neurons per wire.

On this background we introduce a third method of mapping electrodes to wires:
select multiple electrodes with suitable signals and connect them to the same wire
(Figure 4.1c). Instead of rapidly cycling the intervening switches, as in multiplexing,
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simply leave all those switches closed. This creates a "pool" of electrodes whose
signals are averaged and transmitted on the same wire. At first that approach seems
counterproductive, as it mixes together recordings that one would like to analyze
separately. How can one ever reconstruct which neural signal came from which
electrode? Existing multi-electrode systems avoid this signal mixing at all cost,
often quoting the low cross-talk between channels as a figure of merit. Instead, we
will show that the pooled signal can be unmixed if one controls the switch settings
carefully during the recording session. Under suitable conditions this method can
record many neurons per wire without appreciable loss of information.

We emphasize that the ideal electrode array device to implement this recording
method does not yet exist. It would be entirely within reach of current fabrication
capabilities, but every new silicon probe design requires a substantial investment
and consideration of various trade-offs. With this article we hope to make the
community of electrode users aware of the opportunities in this domain and start
a discussion about future array designs that use intelligent electrode switching,
adapted to various applications in basic and translational neuroscience.

4.3 Theory
Motivation for electrode pooling: spike trains are sparse in time
A typical neuron may fire ∼10 spikes/s on average (Attwell and Laughlin, 2001).
Each action potential lasts for ∼1 ms. Therefore this neuron’s signal occupies
less than 1% of the time axis in an extracellular recording (e.g., see Figure 4.3b).
Sometimes additional neurons lie close enough to the same electrode to produce
large spikes. That still leaves most of the time axis unused for signal transmission.
Electrode pooling gives the experimenter the freedom to add more neurons to that
signal by choosing other electrodes that carry large spikes. Eventually a limit will be
reached when the spikes of different neurons collide and overlap in time so they can
no longer be distinguished. These overlaps may be more common under conditions
where neurons are synchronized to each other or to external events.

The effects of pooling on spikes and noise
What signal actually results when one connects two electrodes to the same wire?
Figure 4.2a shows an idealized circuit for a hypothetical electrode array that allows
electrode pooling. Here the common wire is connected via programmable switches
to two recording sites. At each site 𝑖, the extracellular signal of nearby neurons
reaches the shared wire through a total electrode impedance 𝑍𝑖. This impedance
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Figure 4.2: Pooling of signal and noise. (a) An idealized circuit for two electrodes connected
to a common wire along with downstream components of the signal chain, such as the
amplifier, multiplexer, and digitizer. 𝑍0, 𝑍1: total impedance for electrodes 0 and 1, with
contributions from the metal/bath interface and the external bath. 𝑍S: shunt impedance
at the amplifier input. Noise sources include biological noise from distant neurons (𝑁bio);
thermal noise from the electrode impedance (𝑁the), and common electronic noise from
the amplifier and downstream components (𝑁amp). (b) Numerical values of the relevant
parameters, derived from experiments or the literature (sections 4.4 and 4.5). (c, d) The
optimal electrode pool under different assumptions about the spike amplitude distribution
(top insets). The contour plots show the optimal pool size and the enhancement of the
neuron/wire ratio as a function of the parameters 𝛼 – the ratio of largest to smallest sortable
spike signals – and 𝛽 – the ratio of private to common noise. (c) Most favorable condition:
Each electrode carries a single large spike of amplitude 𝑆max, and spikes are sortable down
to amplitude 𝑆min. In this case the neurons/wire ratio is equal to the pool size. (d) Generic
condition: Each electrode carries a uniform distribution of spike amplitudes between 0 and
𝑆max. Red dots: Conditions of 𝛼 and 𝛽 encountered experimentally, based on the values in
panel b.
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has contributions from the metal/saline interface and the external electrolyte bath
(Seidl, Schwaerzle, et al., 2012; Robinson, 1968), typically amounting to 100 kΩ -
1 MΩ. By comparison the CMOS switches have low impedance, typically ∼ 100Ω
(Seidl, Schwaerzle, et al., 2012), which we will ignore.

In general one must also consider the shunt impedance 𝑍S in parallel to the amplifier
input. This can result from current leaks along the long wires as well as the internal
input impedance of the amplifier. For well-designed systems, this shunt impedance
should be much larger than the electrode impedances; for the Neuropixels device
we will show that the ratio is at least 100. Thus one can safely ignore it for the
purpose of the present approximations. In that case the circuit acts as a simple
voltage divider between the impedances 𝑍𝑖. If a total of 𝑀 electrodes are connected
to the shared wire, the output voltage𝑈 is the average of the signals at the recording
sites 𝑉𝑖, weighted inversely by the electrode impedances,

𝑈 =

𝑀∑︁
𝑖=1

𝑐𝑖𝑉𝑖 (4.1)

where

𝑐𝑖 =
1/𝑍𝑖

𝑀∑
𝑗=1

1/𝑍 𝑗

(4.2)

is defined as the pooling coefficient for electrode 𝑖. If all electrodes have the same
size and surface coating, they will have the same impedance, and in that limit one
expects the simple relationship

𝑈 =
1
𝑀

𝑀∑︁
𝑖=1

𝑉𝑖 . (4.3)

Thus an action potential that appears on only one of the 𝑀 electrodes will be
attenuated in the pooled signal by a factor 1

𝑀
.

In order to understand the trade-offs of this method, we must similarly account for
the pooling of noise (Figure 4.2a). There are three relevant sources of noise: (1)
thermal ("Johnson") noise from the impedance of the electrode; (2) biological noise
("hash") from many distant neurons whose signals are too small to be resolved;
(3) electronic noise resulting from the downstream acquisition system, including
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amplifier, multiplexer, and analog-to-digital converter. The thermal noise is private
to each electrode, in the sense that it is statistically independent of the noise at
another electrode. The biological noise is similar across neighboring electrodes that
observe the same distant populations (Harris et al., 2000). For widely separated
electrodes the hash will be independent and thus private to each electrode, although
details depend on the neuronal geometries and the degree of synchronization of
distant neurons (Schomburg et al., 2012). In that case the private noise

𝑁pri,𝑖 =
√︃
𝑁2

the,𝑖 + 𝑁2
bio,𝑖 . (4.4)

because thermal noise and biological noise are additive and statistically independent.

Finally the noise introduced by the amplifier and data acquisition is common to all
the electrodes that share the same wire,

𝑁com = 𝑁amp. (4.5)

In the course of pooling, the private noise gets attenuated by the pooling coefficient
𝑐𝑖 (Eq 4.2) and summed with contributions from other electrodes. Then the pooled
private noise gets added to the common noise from data acquisition, which again
is statistically independent of the other noise sources. With these assumptions the
total noise at the output has RMS amplitude

𝑁tot =

√√√
𝑁2

com +
𝑀∑︁
𝑖=1

𝑐2
𝑖
𝑁2

pri,𝑖 . (4.6)

If all electrodes have similar noise properties and impedances this simplifies to

𝑁tot =
√︃
𝑁2

com + 𝑁2
pri/𝑀. (4.7)

Theoretical benefits of pooling
Now we are in a position to estimate the benefits from electrode pooling. Suppose
that the electrode array records neurons with a range of spike amplitudes: from the
largest, with spike amplitude 𝑆max, to the smallest that can still be sorted reliably
from the noise, with amplitude 𝑆min. To create the most favorable conditions for
pooling one would select electrodes that each carry a single neuron, with spike
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amplitude ∼ 𝑆max (Figure 4.2c). As one adds more of these electrodes to the pool,
there comes a point when the pooled signal is so attenuated that the spikes are no
longer sortable from the noise. Pooling is beneficial as long as the signal-to-noise
ratio of spikes in the pooled signal is larger than that of the smallest sortable spikes
in a single-site recording, namely

𝑆max/𝑀√︃
𝑁2

com + 𝑁2
pri/𝑀

>
𝑆min√︃

𝑁2
com + 𝑁2

pri

. (4.8)

This leads to a limit on the pool size 𝑀 ,

𝑀 < 𝑀max =

√︄(
𝛽2

2

)2
+ (1 + 𝛽2)𝛼2 − 𝛽2

2
(4.9)

where

𝛼 = 𝑆max/𝑆min, 𝛽 = 𝑁pri/𝑁com (4.10)

If one pools more than 𝑀max electrodes all the neurons drop below the threshold
for sorting. So the optimal pool size 𝑀max is also the largest achievable number
of neurons per wire. This number depends on two parameters: the ratio of private
to common noise, and the ratio of largest to smallest useful spike amplitudes (Eq
4.10). These parameters vary across applications, because they depend on the target
brain area, the recording hardware, and the spike-sorting software. In general, users
can estimate the parameters 𝛼 and 𝛽 from their own experience with conventional
recordings, and find 𝑀max from the graph in Figure 4.2c.

Next we consider a more generic situation, in which each electrode carries a range
of spikes from different neurons (Figure 4.2d). For simplicity we assume a uniform
distribution of spike amplitudes between 0 and 𝑆max. As more electrodes are added
to the pool, all the spikes are attenuated, so the smallest action potentials drop
below the sortable threshold 𝑆min. Beyond a certain optimal pool size, more spikes
are lost in the noise than are added at the top of the distribution and the total
number of neurons decreases. By the same arguments used above one finds that the
improvement in the number of sortable neurons, 𝑛𝑀 , relative to conventional split
recording, 𝑛1, is
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𝑛𝑀

𝑛1
=

𝑀

(
𝛼 − 𝑀

√︃
1+𝛽2/𝑀

1+𝛽2

)
𝛼 − 1

(4.11)

The optimal pool size 𝑀max is the 𝑀 which maximizes that factor. The results are
plotted in Figure 4.2d.

The benefits of pooling are quite substantial if the user can select electrodes that carry
large spikes. For example under conditions of 𝛼 and 𝛽 that we have encountered in
practice, Figure 4.2c predicts that one can pool 8 electrodes and still resolve all the
signals, thus increasing the neuron/wire ratio by a factor of 8. On the other extreme
– with a uniform distribution of spike amplitudes – the optimal pool of 4 electrodes
increases the neuron/wire ratio by a more modest but still respectable factor of 2.3
compared to conventional recording. The following section explains how one can
maximize that yield.

Acquisition and analysis of pooled recordings
With these insights about the constraints posed by signal and noise one can propose
an overall workflow for experiments using electrode pooling (Figure 4.3a). A key
requirement is that the experimenter can control the switches that map electrodes
to wires. This map should be adjusted to the unpredictable contingencies of any
particular neural recording experiment. In fact the experimenter will benefit from
using different switch settings during the same session.

A recording session begins with a short period of acquisition in "split mode" with
only one electrode per wire. The purpose is to acquire samples of the spike wave-
forms from all neurons that might be recorded by the entire array. If the device
has 𝐸 electrodes and 𝑊 wires, this sampling stage will require 𝐸/𝑊 segments of
recording to cover all electrodes. For each segment the switches are reset to select
a different batch of electrodes. Each batch should cover a local group of electrodes,
ensuring that the entire "footprint" of each neuron can be captured.

During this sampling stage the experimenter performs a quick analysis to extract the
relevant data that will inform the pooling process. In particular this yields a catalog
of single neurons that can be extracted by spike-sorting. For each of those neurons
one has the spike waveform observed on each electrode. Finally, for every electrode
one measures the total noise. The amplifier noise 𝑁amp and thermal noise 𝑁the can
be assessed ahead of time, because they are a property of the recording system,
and from them one obtains the biological noise 𝑁bio. Now the experimenter has all
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Figure 4.3: Workflow proposed for electrode pooling. (a) Time line of an experiment,
alternating short split and long pooled recording sessions. (b) Electrode pooling using
the Neuropixels probe. Recording sites (black squares, numbered from 1 to 4) in the same
relative location of each bank can be pooled to a single wire by closing the switches (yellow).
This generates the pooled signal (black), which is a weighted average of the signals detected
in each bank (red and blue traces). From the pooled signal one recovers distinct spike shapes
by spike-sorting. A comparison to the spike shapes observed in split-mode recordings allows
the correct allocation of each spike to the electrodes of origin.

the information needed to form useful electrode pools. Some principles one should
consider in this process:

1. Pool electrodes that carry large signals. Electrodes with smaller signals can
contribute to smaller pools.

2. Pool electrodes with distinct spike waveforms.

3. Pool distant electrodes that don’t share the same hash noise.

4. Don’t pool electrodes that carry dense signals with high firing rates.

After allocating the available wires to effective electrode pools one begins the main
recording session in pooled mode. Ideally this phase captures all neurons with spike
signals that are within reach of the electrode array.

In analyzing these recordings the goal is to detect spikes in the pooled signals and
assign each spike correctly to its electrode of origin. This can be achieved by using
the split-mode recordings from the early sampling stage of the experiment. From the
spike waveforms obtained in split-mode one can predict how the corresponding spike
appears in the pooled signals. Here it helps to know all the electrode impedances 𝑍𝑖
so the weighted mix can be computed accurately (Eq 4.1). This prediction serves as
a search template for spike-sorting the pooled recording.
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By its very nature electrode pooling produces a dense neural signal with more
instances of temporal overlap between spikes than the typical split-mode recording.
This places special demands on the methods for spike detection and sorting. The
conventional cluster-based algorithm (peak detection - temporal alignment - PCA
- clustering) does not handle overlapping spikes well (Lewicki, 1998). It assumes
that the voltage signal is sparsely populated with rare events drawn from a small
number of discrete waveforms. Two spikes that overlap in time produce an unusual
waveform that cannot be categorized. Recently some methods have been developed
that do not force these assumptions (Yger et al., 2018; Pachitariu et al., 2016). They
explicitly model the recorded signal as an additive superposition of spikes and noise.
The algorithm finds an efficient model that explains the signal by estimating both the
spike waveform of each neuron and its associated set of spike times. These methods
are well suited to the analysis of pooled recordings.

Because the spike templates are obtained from split-mode recordings at the begin-
ning of the experiment, they are less affected by noise than if one had to identify
them de novo from the pooled recordings. Nonetheless it probably pays to monitor
the development of spike shapes during the pooled recording. If they drift too much,
for example because the electrode array moves in the brain (J. Jun et al., 2017), then
a recalibration by another split-mode session may be in order (Figure 4.3a). Alter-
natively electrode drift may be corrected in real time if signals from neighboring
electrodes are available (Steinmetz et al., 2021), a criterion that may flow into the
selection of switches for pooling. Chronically implanted electrode arrays can record
for months on end (Steinmetz et al., 2021), and the library of spike shapes can be
updated continuously and scanned for new pooling opportunities.

It should be clear that the proposed workflow relies heavily on automation by ded-
icated software. Of course automation is already the rule with the large electrode
arrays that include thousands of recording sites, and electrode pooling will require
little more effort than conventional recording. Taking the newly announced Neu-
ropixels 2.0 as a reference (5120 electrodes and 384 wires): Sampling for 5 minutes
from each of the 13 groups of electrodes will take a bit over an hour. Spike-sorting
of those signals will proceed in parallel with the sampling and require no additional
time. Then the algorithm decides on the electrode pools, and the main recording
session starts. Note that these same steps also apply in conventional recording: The
user still has to choose 384 electrodes among the 5120 options, and will want to
scan the whole array to see where the best signals are. The algorithms we advocate
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Figure 4.4: Pooling of signal and noise with the Neuropixels 1.0 device. (a) Pooling
coefficients on a pristine probe measured in saline, histogram across all sites in banks 0
(red) and 1 (green). (b) Thermal noise (RMS) during split recording in standard saline,
histogram across all sites in banks 0 and 1. (c) Amplifier noise (RMS), histogram across all
383 wires. (d) Biological noise (RMS) during brain recordings, histogram across all sites
in banks 0 and 1. (e) Pooling coefficients on a used probe, measured in saline (horizontal)
vs in brain (vertical). 47 pairs of sites in banks 0 and 1 with suitable action potentials. (f)
Biological noise in a pooled recording measured in brain (vertical) vs the prediction derived
from assuming uncorrelated noise at the two sites. ‘1 x’: identity. ‘

√
2 x’: expectation for

perfectly correlated noise.

to steer electrode pooling will simply become part of the software suite that runs
data acquisition.

4.4 Experiments
Pooling characteristics of the Neuropixels 1.0 array
To test the biophysical assumptions underlying electrode pooling, we used the
Neuropixels probe version 1.0 (J. J. Jun et al., 2017; Lopez et al., 2017). This
electrode array has a single silicon shank with 960 recording sites that can be
connected to 384 wires via controllable switches (Figure 4.3b). The electrodes are
divided into three banks (called Bank 0, Bank 1, and Bank 2 from the tip to the base
of the shank). In the present study only Banks 0 and 1 were used. Banks 0 and 1
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each contain 383 recording sites (one channel is used for a reference signal). Each
site has a dedicated switch by which it may connect to an adjacent wire. Sites at
the same relative location in a bank share the same wire. These two electrodes are
separated by 3.84 mm along the shank. Under conventional operation of Neuropixels
(J. J. Jun et al., 2017) each wire connects to only one site at a time. However, with
modifications of the firmware on the device and the user interface we engineered
independent control of all the switches. This enabled a limited version of electrode
pooling across Banks 0 and 1.

We set out to measure those electronic properties of the device that affect the efficacy
of pooling, specifically the split of the noise signal into common amplifier noise 𝑁amp

(Eq 4.7) and private thermal noise 𝑁the (Eq 4.4), as well as the pooling coefficients
𝑐𝑖 (Eq 4.2). These parameters are not important for conventional recording, and
thus are not quoted in the Neuropixels user manual, but they can be derived from
measurements performed in a saline bath (see Methods).

On a pristine unused probe, the pooling coefficients 𝑐0 and 𝑐1 for almost all sites
were close to 0.5 (Figure 4.4a), as expected from the idealized circuit (Figure 4.2a)
if the electrode impedances are all equal (Eq 4.2). Correspondingly the thermal
noise was almost identical on all electrodes, with an RMS value of 1.45 ± 0.10
µV (Fig 4.4b). The amplifier noise 𝑁amp exceeded the thermal noise substantially,
amounting to 5.7 µV RMS on average, and more than 12 µV for a few of the wires
(Figure 4.4c). Because this noise source is shared across electrodes on the same
wire, it lowers 𝛽 in Equation 4.9 and can significantly affect electrode pooling.

Neural recording
Based on this electronic characterization of the Neuropixels probe we proceeded
to test electrode pooling in vivo. Recall that each bank of electrodes extends over
3.84 mm of the shank, and one needs to implant more than one bank into the brain
to accomplish any electrode pooling. Clearly the opportunities for pooling on this
device are limited; nonetheless it serves as a useful testing ground for the method.

In the pilot experiment analyzed here, the probe was inserted into the brain of a
head-fixed, awake mouse to a depth of approximately 6 mm. This involved all of
Bank 0 and roughly half of Bank 1, and covered numerous brain areas from the
medial preoptic area at the bottom to retrosplenial cortex at the top. Following the
work flow proposed in Figure 4.3, we then recorded for ∼10 min each from Bank
0 and Bank 1 in split mode, followed by ∼10 min of recording from both banks
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Figure 4.5: Recordings from mouse brain. (a) Matching spike shapes from split- and
pooled-mode recordings. Top: Waveforms of two sample units (middle, black) detected in
pooled mode on the same set of wires. The left unit was matched to a unit recorded in split
mode from Bank 0 (red) and the right unit to one from Bank 1 (blue). Numbers indicate
the scaling of the signal of the pooled-mode unit relative to its split-mode signal. Bottom:
the mean firing rates and the interspike-interval distributions are similar for the matched
pairs. (b) Left: matrix of the cosine similarity between units recorded in pooled- and
split-mode, arranged by depth. Black dot indicates greater than the threshold at 0.9. Right:
distribution of the cosine similarity. Dashed line indicates threshold at 0.9. Inset zooms
into the 0.7-1 range of the distribution. (c) Fraction of units from the two split recordings
that are matched to a unit in the pooled recording as a function of spike amplitude. Three
different sorting conditions are shown: sorting all recordings by KiloSort1 followed by
manual curation (Manual), sorting all recordings by KiloSort2 (Cold sort), and sorting the
pooled recording by KiloSort2 with templates initialized from the split recordings (Hot
sort). Dashed line indicates 50%, or the ‘break-even’ point where the pooled-mode yields
as many simultaneous recordings as the average split-mode.
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simultaneously in pooled mode.

Unmixing a pooled recording
As proposed above, one can unmix the pooled recording by matching its action
potentials to the spike waveforms sampled separately on each of the two banks
(Figure 4.3b). Each of the three recordings (split Bank 0, split Bank 1, and pooled
Banks 0 + 1) was spike-sorted to isolate single units. Then we paired each split-
mode unit with the pooled-mode unit that had the most similar waveform, based on
the cosine similarity of their waveform vectors (Eq 4.16, Figure 4.5b). In most cases
the match was unambiguous even when multiple units were present in the two banks
with similar electrode footprints (Figure 4.5a). The matching algorithm proceeded
iteratively until the similarity score for the best match dropped below 0.9 (Figure
4.5b). We corroborated the resulting matches by comparing other statistics of the
identified units, such as the mean firing rate and inter-spike-interval distribution
(Figure 4.5a).

When spike-sorting the pooled-mode recording there is of course a strong expecta-
tion for what the spike waveforms will be, namely a scaled version of spikes from
the two split-mode recordings. This suggests that one might jump-start the sorting
of the pooled signal by building in the prior knowledge from sorting the split-mode
recordings. Any such regularization could be beneficial, not only to accelerate the
process but to compensate for the lower SNR in the pooled signal. We explored this
possibility by running the template-matching function of KiloSort2 on the pooled-
mode recording with templates from split-mode recordings ("hot sorting"). Then
we compared this method to two other procedures (Figure 4.5c): (1) sorting each
recording separately, using KiloSort1 with manual curation ("manual") and (2) sort-
ing each recording separately using KiloSort2 with no manual intervention ("cold
sorting").

Figure 4.5c illustrates what fraction of the units identified in both split mode record-
ings combined were recovered from the pooled recording, and how that fraction
depends on the spike amplitude. First, this shows that hot sorting significantly
outperforms cold sorting, and in fact rivals the performance of manually curated
spike sorting. This is important, because manual sorting by a human operator will
be unrealistic for the high-count electrode arrays in which electrode pooling may be
applied. Second, one sees that the fraction of spikes recovered from the combined
split recordings exceeds 0.5 even at moderate spike amplitudes of 100 µV. For spikes
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of that amplitude and above the pooled recording will contain more neurons than
the average split recording. Clearly, electrode pooling is not restricted to the largest
spikes in the distribution, but can be considered for moderate spike amplitudes as
well.

Recall that the Neuropixels 1.0 probe is not optimized for electrode pooling, in that
it has a fixed switching matrix, and only 2 banks of electrodes fit in the mouse
brain. Thus our pilot experiments were limited to brute-force pooling the two banks
site-for-site without regard to the design principles for electrode pools. Nonetheless
the "hot sorting" method recovered more neurons from the pooled recording (184)
than on average over the two split recordings (166). We conservatively focused this
assessment only on units identified in the split recordings, ignoring any unmatched
units that appeared in the pooled recording. This validates the basic premise of
electrode pooling even under the highly constrained conditions. Overall, the above
sequence of operations demonstrates that a pooled-mode recording can be produc-
tively unmixed into the constituent signals, and the resulting units assigned to their
locations along the multi-electrode shank.

Pooling of signal and noise in vivo
Closer analysis of the spike waveforms from split and pooled recordings allowed
an assessment of the pooling coefficients in vivo. When spikes are present on the
corresponding electrodes in both banks (as in Fig 4.5a) one can measure the pooling
coefficients 𝑐0 and 𝑐1 of Eq 4.2. Unexpectedly, instead of clustering near 0.5, these
pooling coefficients varied over a wide range (Figure 4.4e), at least by a factor of 3.
The two banks had systematically different pooling coefficients, suggesting that the
impedance was lower for electrodes near the tip of the array.

Following this in vivo recording we cleaned the electrode array by the recom-
mended protocol (tergazyme / water) and then measured the pooling coefficients
in saline. Again the pooling coefficients varied considerably across electrodes, al-
though somewhat less than observed in vivo (Figure 4.4e). Also the bath resistance
of the electrodes was larger on average than on an unused probe (30 kΩ as opposed
to 13 kΩ). This change may result from the interactions within brain tissue. For
example some material may bind to the electrode surface and thus raise its bath
resistance. This would lower the pooling coefficient of the affected electrode and
raise that of its partners. Because the thermal noise is never limiting (Figure 4.4b-d),
such a change would easily go unnoticed in conventional single-site recording. The
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precise reason for the use-dependent impedance remains to be understood.

To measure the contributions of biological noise in vivo we removed from the
recorded traces all the detected spikes and analyzed the remaining waveforms.
After subtracting (in quadrature) the known thermal and electrical noise at each site
(Figure 4.4b,c) one obtains the biological noise 𝑁bio. This noise source substantially
exceeded both the thermal and amplifier noise (Figure 4.4f). It also showed different
amplitude on the two banks, presumably owing to differences between brain areas
3.84 mm apart.

Given this large distance between electrodes in the two banks, one expects the bio-
logical noise to be statistically independent between the two sites, because neurons
near one electrode will be out of reach of the other. To verify this in the present
recordings we measured the biological noise in the pooled condition and compared
the result to the prediction from the two split recordings, assuming that the noise
was private to each site. Indeed the noise in the pooled signal was largely consistent
with the assumption of independent noise (Figure 4.4f). It seems likely that the
1-cm shank length on these and similar array devices suffices for finding electrodes
that carry independent biological noise.

4.5 Simulations
How many electrodes could experimenters pool and still sort every neuron with
high accuracy? Earlier we had derived a theoretical limit to electrode pooling based
solely on the signal and noise amplitudes (Figure 4.2). To explore what additional
limitations might arise based on the density of spikes in time and the needs of spike
sorting we performed a limited simulation of the process (Figure 4.6a). We simulated
units with an extracellular footprint extending over 4 neighboring electrodes, and
then pooled various such tetrodes into a single 4-channel recording. These pooled
signals were then spike-sorted and the resulting spike trains compared to the known
ground-truth spike times, applying a popular metric of accuracy (J. Magland et al.,
2020). This revealed how many neurons can be reliably recovered depending on
the degree of electrode pooling (Figure 4.6b). Then we evaluated the effects of
various parameters of the simulation, such as the amplitude of the largest spikes, the
biological noise, and the average firing rate.

For simplicity we focused on the favorable scenario of Figure 4.2c: It presumes that
the experimenter can choose for pooling a set of tetrodes that each carry a single
unit plus noise. The curves of recovered units vs pool size have an inverted-U
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Figure 4.6: Simulations of electrode pooling. (a) Workflow: Groups of 4 recording sites
("tetrodes") each carry a spike train from one simulated unit, superposed with electrode
noise and biological noise. Between 𝑀 = 1 and 12 of these tetrodes are then pooled into a
single 4-wire recording followed by addition of common noise. The pooled signal is sorted
and the resulting single-unit spike trains are matched with the ground truth spike trains from
the 𝑀 tetrodes. Units with an accuracy metric > 0.8 are counted as recovered successfully.
(b) Number of units recovered as a function of the pool size, 𝑀 , under various conditions
of simulation. Effects of varying different parameters. The "standard" condition serves as
a reference: Spike amplitude 𝑉 = 380 𝜇V, spike rate 𝑟 = 10 Hz, electrode noise 𝑁ele = 1.6
𝜇V, common noise 𝑁com = 5.7 𝜇V, biological noise 𝑁bio = 9 𝜇V. "lower ampl": 𝑉 = 205 𝜇V.
"higher rate": 𝑟 = 20 Hz. "higher bio": 𝑁bio = 15 𝜇V. "lower com": 𝑁com = 2.85 𝜇V. Each
parameter combination was simulated 3 times with noise and spike times resampled, error
bars are mean ± SD.

shape (Figure 4.6b). For small electrode pools one can reliably recover all the units.
Eventually, however, some of the units drop out, and for a large pool size all the
recovered units fall below the desired quality threshold. We will call the pool that
produces the largest number of recovered units the "optimal pool".

For the "standard" condition of simulations we chose a reasonably large spike
amplitude of 380 µV peak-to-peak (the 90-th percentile in a database of recordings
by the Allen Institute (Siegle et al., 2019)), a firing rate of 10 Hz, and all the noise
values as determined experimentally from the Neuropixels 1.0 device (Figure 4.4).
Under these conditions one can pool up to 5 electrodes per wire and still recover all 5
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of the units reliably (Figure 4.6b). This optimal pool size is sensitive to the amplitude
of the spikes: If the spike amplitude is reduced by a factor of 2, the optimal pool
drops from 5 to 3 electrodes. Similarly, if the biological noise increases to 15 µV,
the optimal pool is reduced to 4 electrodes. This indicates that the recovery of the
units from the pooled signal is strongly determined by the available signal-to-noise
ratio at each electrode. By contrast increasing the firing rate two-fold to 20 Hz did
not change the optimal pool from 5. Thus the temporal overlap of spikes is not yet a
serious constraint. Looking to the future, if the amplifier noise on each wire could
be reduced by a factor of 2 the optimal pool would expand significantly from 5 to 7
electrodes or more (Figure 4.6b).

How do these practical results relate to theoretical bounds of Figure 4.2? Recall
that this bound depends on the noise properties, but also on the ratio of largest to
smallest sortable spikes. In our "standard" simulation with a pool size of 1 (split
mode) we found that the smallest sortable spikes had an amplitude of 75 µV. This
also corresponds to the low end of sorted spikes reported by the Allen Institute (10-th
percentile (Siegle et al., 2019)). With these bounds on large and small spikes, and
the measured values of private and common noise, one obtains 𝛼 = 5.1 and 𝛽 = 1.6
in Equation 4.9, which predicts an optimal pool of 𝑀max = 8 (Fig 4.2c), compared to
the actually observed value of 5. The simple theory based purely on signal and noise
amplitude gives a useful estimate, but additional practical constraints that arise from
temporal processing and spike-sorting lower the yield somewhat from there.

In summary, under favorable conditions where the experimenter can select elec-
trodes, the pooling method may increase the number of units recorded per wire by a
factor of 5. Even for significantly smaller spikes or higher biological noise one can
expect a factor of 3. And with future technical improvements a factor of 7 or more
is plausible.

4.6 Discussion
Summary of results
This work presents the concept of electrode pooling as a way to multiply the yield
of large electrode arrays. We show how the signals from many recording sites can
be combined onto a small number of wires, and then recovered by a combination
of experimental strategy and spike-sorting software. The reduced requirement for
wires coursing through the brain will lead to slender array devices that cause less
damage to the neurons they are meant to observe. We developed the theory behind
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electrode pooling, analyzed the trade-offs of the approach, derived a mathematical
limit to pooling, and developed a recipe for experiment and analysis that implements
the procedure (Figures 4.2, 4.3). We also verified the basic assumptions about
signal mixing and unmixing using a real existing device: the Neuropixels 1.0 probe
(Figures 4.4, 4.5). We showed that signals from different neurons can be reliably
disambiguated and assigned back to the electrodes of origin. For the optimal
design of electrode pools and to analyze the resulting data, it is advantageous to
gather precise information about impedance and noise properties of the device. In
simulations we showed that with a proper selection of electrodes based on the signals
they carry, the method could improve the yield of neurons per wire by a factor of 3
to 7 (Figure 4.6).

Electrode pooling is categorically different from most data compression schemes
that have been proposed for neural recording systems (Linderman et al., 2008;
Olsson and Wise, 2005; Suo et al., 2014). In many of those applications the goal
is to reduce the bit rate for data transmission out of the brain, for example using
a wireless link. By contrast electrode pooling seeks to minimize the number of
electrode wires one needs to stick into the brain to sample the neural signals, thus
minimizing biological damage to the system under study. By itself, that doesn’t
reduce the bit rate, although it produces denser time series. For the optimal wireless
recording system, both objectives – lower wire volume at the input and lower data
volume at the output – should be combined, and their implementations are fully
independent.

Future developments
Hardware

The ability to service multiple recording sites with a single wire opens the door
for much larger electrode arrays that nevertheless maintain a slim form factor and
don’t require any onboard signal processing. On the commercially available Neu-
ropixels 1.0 device (J. J. Jun et al., 2017) the ratio of electrodes to wires is only
2.5, and thus there is little practical benefit to be gained from electrode pooling.
In most circumstances the user can probably use static selection to pick 40% of
the electrodes and still monitor every possible neuron. By contrast, the recently
announced Neuropixels 2.0 (Steinmetz et al., 2021) has an electrode:wire ratio of
13.3. Another device, currently in engineering test, will have 4416 sites on a single
45 mm shank, with electrode:wire ratio of 11.5. For the Neuropixels technology,
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Figure 4.7: Hardware schemes for flexible connection between electrodes and wires. (a)
In the current Neuropixels array each electrode can be connected to just one wire with
a controllable switch. (b) Two switches per electrode would allow a choice of 2 wires,
enabling many more pooling configurations. (c) Because neighboring electrodes often
carry redundant signals, one may want to choose just one from every group of 4. This
switch circuit matches that choice with one of 3 (or no) wires. (d) An optional inverter for
each electrode, controlled by a local switch.

the number of sites can grow with shank count and shank length while channel
count is limited by base area and trace crowding on the shank. These new probes
already offer substantial opportunities to pool electrodes. Indeed, Steinmetz et al
(Steinmetz et al., 2021) report an example of pooling two electrode banks, although
their approach to unmixing the signals differs from that advocated here.

The design of effective electrode pools requires some flexibility in how recording
sites are connected to wires. In the current Neuropixels technology each electrode
has only one associated wire, which constrains the choice of electrode pools. The
CMOS switch itself is small, but the local memory to store the switch state occupies
some silicon space (Seidl, Herwik, et al., 2011). Nonetheless one can implement
3 switches per electrode even on a very tight pitch (Dragas et al., 2017). When
arranged in a hierarchical network (Müller et al., 2015) these switches could effect
a rich diversity of pooling schemes adapted to the specifics of any given experiment
(Figure 4.7). For example, one could route any one electrode among a group of four
to any one of three wires with two 1:4 switches (Figure 4.7c). This requires just
1 bit of storage per electrode, as in the current Neuropixels probe (J. J. Jun et al.,
2017).

Another hardware design feature could greatly increase the capacity for electrode
pooling: An optional analog inverter at each electrode (Figure 4.7d). This is a
simple CMOS circuit that changes the sign of the waveform (Bae, 2019) depending
on a local switch setting. If half of the electrodes in a pool use the inverter, that
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helps to differentiate the spike shapes of different neurons. Because extracellular
signals from cell bodies generally start with a negative voltage swing, this effectively
doubles the space of waveforms that occur in the pooled signal. In turn this would
aid the spike-sorting analysis, ultimately allowing even more electrodes to share the
same wire.

Of course each of these proposals comes with some cost, such as greater power use
or added space required for digital logic. The overall design of a probe must take all
these trade-offs into account. The several-fold gain in recording efficiency promised
by electrode pooling should act as a driver in favor of fully programmable switches,
but deciding on the optimal design will benefit from close interaction between users
and manufacturers.

Software

Electrode pooling will also benefit from further developments in spike-sorting algo-
rithms. For example, a promising strategy is to acquire all the spike shapes present
on the electrode array using split-mode recordings, compute the expected pooled-
mode waveforms, and use those as templates in sorting the pooled signals. We
have implemented this so-called "hot sorting" method in KiloSort2 and have shown
that it can greatly increase the number of split-mode cells recovered in the pooled
recordings (Figure 4.5c). This idea may also be extended to cluster-based sorting al-
gorithms, by guiding the initialization of the clustering step. Indeed, knowing ahead
of time which waveforms to look for in the recording would help any spike-sorter.
We expect this method will also improve resolution of temporally overlapping spike
waveforms.

As one envisions experiments with 10,000 or more recording sites, it becomes
imperative to automate the optimal design of electrode pools, so that the user wastes
no time before launching into pooled recording (Figure 4.3). The pooling strategy
can be adapted flexibly to the statistics of the available neural signals, even varying
along the silicon shank if it passes through different brain areas. The user always
has the option of recording select sites in conventional mode; for example this might
serve to sample local field potentials at a sparse set of locations. Designing an
effective algorithm that recommends and implements the electrode switching based
on user goals will be an interesting challenge.
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High-impact applications
Finally, we believe that the flexible pooling strategy will be particularly attractive in
chronic studies, where an electrode array remains implanted for months or years. In
these situations, maintaining an updated library of signal waveforms is an intrinsic
part of any recording strategy. Round-the-clock recording serves to populate and
refine the library, enabling the design of precise spike templates, and effective
separation of pooled signals. The library keeps updating in response to any slow
changes in recording geometry that may take place.

A second important application for pooling arises in the context of sub-dural im-
plants in humans. Here the sub-dural space forces a low-profile chip with minimal
volume for electronic circuitry, whereas one can envision several slender penetrating
electrode shafts with thousands of recording sites. We estimate that some devices
that are now plausible (no published examples yet) will have an electrode-to-channel
ratio near 25. Clearly one will want to record from more than 1/25 of the available
sites, and electrode pooling achieves it without increased demand on electronic
circuitry.

In summary, while the devices to maximize pooling benefits are not yet available,
they soon may be. Consideration of pooling options would benefit the designers and
users of these devices. The advantage of pooling grows naturally as the same tissue
is recorded across sessions or time. The calculations and demonstrations reported
here are intended to inspire professional simulations and design of future devices
for a variety of applications, including human implants.

4.7 Methods
All analysis was performed with Matlab R2016b (Mathworks) and Python 3. All
the quoted uncertainties are standard deviations.

Control of Neuropixels switching circuitry
The Neuropixels 1.0 probe has 960 recording sites that can be connected to 384 wires
via controllable switches. The conventional mode of operation (split mode) was to
connect one electrode to one wire at a time. Electrode pooling was implemented by
modifying the Neuropixels API and the GUI software SpikeGLX to allow connecting
up to three electrodes to each readout wire.

https://billkarsh.github.io/SpikeGLX/
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Neuropixels device measurements
To characterize signal and noise pooling on the Neuropixels 1.0 array, we immersed
the probe in a saline bath containing two annular electrodes to produce an electric
field gradient (Fig 4.8a). The electrolyte was phosphate-buffered saline (Sigma-
Aldrich P4417; 1X PBS contains 0.01 M phosphate buffer, 0.0027 M potassium
chloride and 0.137 M sodium chloride, pH 7.4, at 25 °C). We recorded from all
383 wires (recall that one wire is a reference electrode), first closing the switches in
Bank 0 then in Bank 1, then in both banks (Figure 4.3b).

One set of measurements simply recorded the noise with no external field applied.
Then we varied the concentrations of PBS (by factors 10−3, 10−2, 10−1, 1, and 10),
which modulated the conductance of the bath electrolyte in the same proportions.
For each of the 15 recording conditions (5 concentrations x 3 switch settings)
we measured the root-mean-square noise on each of the 383 wires. Then we set to
explain these 5 x 3 x 383 noise values based on the input circuitry of the Neuropixels
device. After some trial-and-error we settled on the equivalent circuit in Figure 4.8b.
It embodies the following assumptions:

• Each electrode is a resistor 𝑅𝑖 in series with a capacitor 𝐶𝑖. The resistor is
entirely the bath resistance, so it scales inversely with the saline concentration.

• The shunt impedance 𝑍S across the amplifier input is a resistor 𝑅S in parallel
with a capacitor 𝐶S.

• The thermal noise from this R-C network and the voltage noise 𝑁amp from the
amplifer and acquisition system sum in quadrature.

With these assumptions one can compute the total noise spectrum under each condi-
tion. In brief, each resistor in Figure 4.8b is modeled as a white-spectrum Johnson
noise source in series with a noiseless resistor (Thevenin circuit). The various
Johnson noise spectra are propagated through the impedance network to the output
voltage 𝑈. That power spectrum is integrated over the AP band (300-10000 Hz) to
obtain the total thermal noise. After adding the amplifier noise 𝑁amp in quadrature
one obtains the RMS noise at the output 𝑈. This quantity is plotted in the fits of
Figure 4.8c.

The result is rather insensitive to the electrode capacitance𝐶𝑖 because that impedance
is much lower than the shunt impedance 𝑍S. By contrast the bath resistance (𝑅0, 𝑅1)
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has a large effect because one can raise it arbitrarily by lowering the saline con-
centration. To set the capacitor values, we therefore used the information from the
Neuropixels spec sheet that the total electrode impedance at 1 kHz is 150 kΩ,

𝐶𝑖 =
1

2𝜋 · 1000 Hz ·
√︃
(150 kΩ)2 − 𝑅𝑖

2
(4.12)

We also found empirically that the shunt impedance is primarily capacitive: 𝑅S

is too large to be measured properly and we set it to infinity. Thus the circuit
model has only 4 scalar parameters: 𝑅0, 𝑅1, 𝐶S, 𝑁amp. Their values were optimized
numerically to fit all 15 measurements. This process was repeated for each of the
383 wires. The fits are uniformly good, see Figure 4.8c for examples.

As expected the thermal noise increases at low electrolyte concentration because
the bath impedance increases (Figure 4.8c). However, the noise eventually saturates
far below the level expected for the lowest saline concentration. This reveals the
presence of another impedance in the circuit that acts as a shunt across the amplifier
input (Fig 4.2a). We found that 𝑍S ≈ 20 MΩ and is mostly capacitive. Because
the shunt impedance far exceeds the electrode impedances (∼ 150 kΩ (J. J. Jun
et al., 2017)), it has only a minor effect on signal pooling, which justifies the
approximations made in Equation 4.3.

The measured noise voltage also saturates at high saline concentration (Fig 4.8c),
and remains far above the level of Johnson noise expected from the bath impedance.
That minimum noise level is virtually identical for the two electrodes that connect
to the same wire, whether or not they are pooled, but it varies considerably across
wires (Figure 4.8d). We conclude that this is the amplifier noise 𝑁amp introduced
by each wire’s acquisition system (Figure 4.2a).

Figure 4.8e shows the best-fit values of the 4 circuit parameters, histogrammed across
all the wires on an unused probe. Note they fall in a fairly narrow distribution. The
bath impedance of the electrodes (in normal saline) is ∼13 kΩ, the shunt capacitance
is ∼10 pF, and the common noise 𝑁amp has a root-mean-square amplitude of ∼6 µV
integrated over the AP band (300-10000 Hz).

These measurements were performed on both fresh and used Neuropixels devices,
with similar results. On a device previously used in brain recordings the bath
impedance of the electrodes was somewhat higher: 30 kΩ instead of 13 kΩ).
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Figure 4.8: Methods for in vitro measurements of Neuropixels function. (a) The probe is
immersed in saline, with two annular electrodes producing an electric gradient along the
shank. (b) Equivalent circuit model to understand signal and noise pooling for one wire
of the array. (c) Measurements of noise only without an external field. RMS noise as a
function of the saline concentration under 3 conditions of the switches: split recording from
Bank 0, split recording from Bank 1, and pooled recording from both. Examples of two
different wires, one with high, the other with low amplifier noise 𝑁amp. (d) The noise at
the highest saline concentration, recording from electrode 1 vs electrode 0. Each dot is for
one of the 383 wires. This limiting noise is identical across the two electrodes on the same
wire. (e) Histograms of the best-fit circuit parameters derived for each of the 383 wires on
a pristine Neuropixels probe. 𝑅S is too large to be measured properly.
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To measure the pooling coefficients we applied an oscillating electric field (1000 Hz)
along the electrode array with a pair of annular electrodes (Figure 4.8a). From the
recorded waveform we estimated the signal amplitude by the Fourier coefficient at
the stimulus frequency. Two different field gradients (called A and B) yielded two
sets of measurements, each in the two split modes (𝑈0,A,𝑈1,A,𝑈0,B,𝑈1,B) and the
pooled mode (𝑈P,A,𝑈P,B). For each of the 383 wires we estimated the pooling
coefficients of its two electrodes by solving

[
𝑈0,A 𝑈1,A

𝑈0,B 𝑈1,B

] [
𝑘0

𝑘1

]
=

[
𝑈P,A

𝑈P,B

]
(4.13)

These mixing coefficients 𝑘0 and 𝑘1 express the recorded amplitude 𝑈P in terms of
the recorded amplitudes 𝑈0 and 𝑈1,

𝑈P = 𝑘0𝑈0 + 𝑘1𝑈1 (4.14)

whereas the pooling coefficients 𝑐0 and 𝑐1 (Eq 4.2) are defined relative to the input
voltages 𝑉0 and 𝑉1, namely

𝑈P = 𝑐0𝑉0 + 𝑐1𝑉1 (4.15)

The𝑈𝑖 differ from the𝑉𝑖 only by the ratio of electrode impedance to shunt impedance.
Given the measured value of 𝑍S ≈ 20 MΩ that ratio is less than 1%, a negligible
discrepancy. So the measured 𝑘0 and 𝑘1 are excellent approximations to the pooling
coefficients 𝑐0 and 𝑐1, which in turn reflect the ratio of the two electrode impedances
(Eq 4.2).

In vivo recording
We used a Neuropixels 1.0 probe (J. J. Jun et al., 2017) to record neural signals
from a head-fixed mouse (C57BL/6J, male, 9 months old). The probe entered the
brain at 400 µm from midline and 3.7 mm posterior from bregma at ∼45° and was
advanced for ∼6 mm, which corresponded to all of Bank 0 and roughly half of
Bank 1. This covered many brain areas, from retrosplenial cortex at the top to
medial preoptic nucleus at the bottom. Detailed description of the mouse surgery,
probe implantation, and post hoc histology and imaging of probe track can be found
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in a previous report (Lee et al., 2020). All procedures were in accordance with
institutional guidelines and approved by the Caltech IACUC, protocol 1656.

Once the probe was implanted, data were recorded in the following order: (1) split-
mode in Bank 0 (i.e. all 384 wires connected to recording sites in Bank 0); (2)
split-mode in Bank 1; (3) pooled-mode across Banks 0 and 1. Each recording lasted
for ∼10 min.

Following brain recordings the array was cleaned according to recommended pro-
tocol by immersion in tergazyme solution and rinsing with water.

Spike-sorting
For "manual" spike-sorting of the in vivo recordings we used KiloSort1 (downloaded
from https://github.com/cortex-lab/KiloSort on Apr 10, 2018). We ran
the automatic template-matching step; the detailed settings are available in the code
accompanying this manuscript. This was followed by manual curation, merging
units and identifying those of high quality. These manual judgements were based on
requiring a plausible spike waveform with a footprint over neighboring electrodes, a
stable spike amplitude, and a clean refractory period. This was done separately for
each of the three recordings (split-mode Bank 0, split-mode Bank 1, pooled-mode).

We implemented the “hot sorting” feature in KiloSort2 (downloaded from https:
//github.com/MouseLand/Kilosort2 on Mar 19, 2020). No manual curation
was used in this mode, because (1) we wanted to generate a reproducible outcome,
and (2) manual inspection is out of the question for the high-volume recordings where
electrode pooling will be applied. We first sorted the two split-mode recordings and
used their templates to initialize the fields W and U of rez2 before running the main
template-matching function on the pooled recording (see the accompanying code
for more details). Finally, the splits, merges, and amplitude cutoffs in Kilosort2
ensured that the final output contained as many well-isolated units as possible. We
then selected cells designated as high quality (KSLabel of Good) by KiloSort2,
indicating putative, well-isolated single neurons (Stringer et al., 2019).

To elaborate on the internal operations of Kilosort2: Spike-sorted units were first
checked for potential merges with all other units that had similar multi-channel
waveforms (waveform correlation >0.5). If the cross-correlograms had a large dip
(<0.5 of the stationary value of the cross-correlogram) in the range [-1 ms, +1 ms],
then the units were merged. At the end of this process, units with at least 300 spikes
were checked for refractory periods in their auto-correlograms, which is a measure

https://www.neuropixels.org/support
https://www.neuropixels.org/support
https://github.com/cortex-lab/KiloSort
https://github.com/MouseLand/Kilosort2
https://github.com/MouseLand/Kilosort2
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of contamination with spikes from other neurons. The contamination index was
defined as the fraction of refractory period violations relative to the stationary value
of the auto-correlogram. The default threshold in Kilosort2 of 10 percent maximum
contamination was used to determine good, well-isolated units.

Following spike sorting, we applied the matching algorithm based on cosine simi-
larity (Figure 4.5b) to determine how many cells identified in split recordings could
be recovered from the pooled recording. This was compared with the results from
“cold sorting,” in which the pooled recording was sorted on its own, as well as to
the conventional sorting that includes manual curation (Figure 4.5c).

Unmixing pooled signals
After sorting the split and pooled recordings, we computed the average waveform
of every cell. Specifically, for each cell we averaged over the first 𝑛 spikes, where 𝑛

was the lesser of 7500 or all the spikes the cell fired during the recording.

We then sought to identify every cell in the pooled recordings with a cell in the split
recordings. This was done by the following procedure: Let 𝑆 denote a cell sorted
from the split-mode recording (𝑆 ∈ S) and 𝑆𝑖 its waveform at channel 𝑖. Although
𝑖 can range from 1 to 384 (the total number of wires available in the Neuropixels
probe), we only focus on the 20 channels above and 20 channels below the channel
with the largest amplitude (𝑖′), i.e. 𝐽 = [𝑖′ − 20, 𝑖′ + 20]. We wish to find the cell 𝑃
from the pooled-mode recordings (𝑃 ∈ P) that is closest to 𝑆. To do so, we compute
the cosine similarity score for each pair (𝑆, 𝑃):

Σ(𝑆, 𝑃) = S · P
∥S∥∥P∥ (4.16)

where S and P are column vectors obtained by concatenating every 𝑆 𝑗 and 𝑃 𝑗

( 𝑗 ∈ 𝐽), respectively, and ∥ · ∥ is the ℓ2 norm. Σ is a |S|-by-|P | matrix. We identify
the largest element of Σ, which corresponds to the most similar pair of 𝑆 and 𝑃.
We then update Σ by removing the row and column of this largest element. This
process gets iterated until every 𝑃 ∈ P is given a best match. By manual inspection
we found that pairs with similarity score greater than 0.9 were good matches.

Estimating pooling coefficients in vivo
Once each 𝑃 ∈ P was assigned a match 𝑆 ∈ S, the pooling coefficient (𝑘) was
computed by solving the optimization problem below for each 𝑖 with a least squares
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method (mldivide in Matlab).

arg min
𝑘𝑖

∥𝑃𝑖 − 𝑘𝑖𝑆𝑖∥ (4.17)

Sometimes a single recording site detected action potentials from multiple cells.
As a result its pooling coefficient could be estimated from the signal of each of
these cells. Typically these estimates deviated from each other by less than 0.1. In
these cases we assigned the average of these values as the pooling coefficient of the
recording site.

When two recording sites that share a wire in pooled-mode each carry significant
signal, it enables the estimation of both of their pooling coefficients. Examples of
such sites are shown in Figures 4.5d-e (up to 50 pairs in Banks 0 and 1).

Simulation
Generating simulated data

We simulated extracellular voltage signals on 12 groups of 4 local electrodes
("tetrodes"). Each time series was sampled at 30,000 samples/s and extended
over 600 s. After combining signal and noise as described below, the time series
was filtered with a passband of 300-5000 Hz.

Each tetrode carried spikes from a single unit. The spike waveform of the unit was
chosen from an actual mouse brain Neuropixel recording, with a different waveform
on each tetrode. Within a tetrode, one electrode chosen at random carried this spike
at the nominal peak-to-peak amplitude, 𝑉 (Figure 4.6b). On the other 3 electrodes
the spike was scaled down by random factors drawn from a uniform distribution
over [0,1]. The spike train was simulated as a Poisson process with a forced 2-ms
refractory period, having average firing rate 𝑟 (Figure 4.6b).

Three sources of noise - biological noise 𝑁bio, thermal electrode noise 𝑁the, and
common amplifier noise 𝑁com - were generated as gaussian processes. The quoted
noise values (Figure 4.6b) refer to root-mean-square amplitude over the 300-5000
Hz passband. Thermal noise was sampled independently for each electrode, but the
biological noise was identical for electrodes within a tetrode, given that they likely
observe the same background activity.

Electrode pooling across 𝑀 tetrodes was implemented by combining the voltage
signals of the corresponding electrode on each tetrode, resulting in signals on 4
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wires. In the process each electrode signal was weighted by 1/𝑀 , then the amplifier
noise was added to the resulting average. Amplifier noise was sampled separately
for each wire.

Tetrodes were added to the pool in a sequence determined by the spike shape of their
units. We started with the two most dissimilar units as determined by the cosine
similarity of their spike waveforms. Then we progressively added the unit that had
the lowest similarity with those already in the pool.

Sorting simulated data

The simulated 4-wire time series was sorted using Kilosort2; detailed configuration
settings are available in the code accompanying this paper. We found it necessary to
turn off the "median voltage subtraction" during preprocessing, because that feature
somehow introduced artifacts in the 4 voltage traces. This did not occur when
processing electrode array data with many channels, for which the algorithm is
intended. We note that an effective means of subtracting the common signal across
wires may help suppress the biological noise and lead to better sorting results.

When large numbers of tetrodes were pooled the signal-to-noise ratio dropped to the
point where KiloSort2 could not form templates in the preprocessing step. Under
those conditions we report zero units recovered (Figure 4.6b).

Scoring simulated data

Following previous reports (Barnett, J. F. Magland, and Greengard, 2016; J.
Magland et al., 2020), the spike times of the sorted units and the ground truth
units were matched and compared using the confusion matrix algorithm from Bar-
nett, J. F. Magland, and Greengard, 2016. We set the acceptable time error between
sorted spikes and ground-truth spikes at 0.1 ms. Then we counted the number of
spike pairs with matching spike times, 𝑛match, the number of unmatched spikes in
the ground-truth unit, 𝑛miss, and the number of unmatched false-positive spikes in
the sorted unit, 𝑛fp.

To assess the quality of the match between ground-truth and sorted units we adopted
the Accuracy definition in (J. Magland et al., 2020):

Accuracy =
𝑛match

𝑛match + 𝑛miss + 𝑛fp
(4.18)
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Figure 4.9: Accuracy scores of one "standard" condition simulation, Related to Fig 4.6.
Units with accuracy score > 0.8 were counted as recovered.

Figure 4.9 shows the accuracy distribution obtained for various degrees of pooling.
Sorted units with accuracy > 0.8 were counted as "recovered" from the pooled signal.
For each parameter set we ran the simulation 3 times, randomizing the noise and the
spike times. Results from the 3 runs are reported by mean ± SD (Figure 4.6b).

Data availability
All data relevant to the reported results are available in a public repository: https:
//github.com/markusmeister/Electrode-Pooling-Data-and-Code. An
archived version is available from CaltechDATA:http://dx.doi.org/10.22002/
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Code availability
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https://github.com/markusmeister/Electrode-Pooling-Data-and-Code.
An archived version is available from CaltechDATA: http://dx.doi.org/10.
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4.8 Acknowledgements
This work was supported by a grant to MM from NINDS (5R01NS111477) and
an award to MM from the Tianqiao and Chrissy Chen Institute for Neuroscience.
YLN was supported by the Taipei Veterans General Hospital – National Yang-Ming
University Physician Scientists Cultivation Program, No.103-Y-A-003.

https://github.com/markusmeister/Electrode-Pooling-Data-and-Code
https://github.com/markusmeister/Electrode-Pooling-Data-and-Code
http://dx.doi.org/10.22002/D1.2032
http://dx.doi.org/10.22002/D1.2032
https://github.com/markusmeister/Electrode-Pooling-Data-and-Code
http://dx.doi.org/10.22002/D1.2032
http://dx.doi.org/10.22002/D1.2032


95

References

Attwell, D. and S. B Laughlin (Oct. 2001). “An Energy Budget for Signaling in the
Grey Matter of the Brain.” In: J Cereb Blood Flow Metab 21, pp. 1133–45.

Bae, Woorham (Aug. 2019). “CMOS Inverter as Analog Circuit: An Overview”.
In: Journal of Low Power Electronics and Applications 9, p. 26. doi: 10.3390/
jlpea9030026.

Barnett, Alex H., Jeremy F. Magland, and Leslie F. Greengard (2016). “Validation
of neural spike sorting algorithms without ground-truth information”. In: Journal
of Neuroscience Methods 264, pp. 65–77. issn: 0165-0270. doi: https://
doi . org / 10 . 1016 / j . jneumeth . 2016 . 02 . 022. url: http : / / www .
sciencedirect.com/science/article/pii/S0165027016300036.

BRAIN Working Group (2014). BRAIN 2025: A Scientific Vision. en. Tech. rep.,
p. 146. url: https://braininitiative.nih.gov/strategic-planning/
brain-2025-report (visited on 11/04/2019).

Dimitriadis, George et al. (Mar. 2018). “Why not record from every channel with
a CMOS scanning probe?” en. In: bioRxiv. doi: 10.1101/275818. url: http:
//biorxiv.org/lookup/doi/10.1101/275818 (visited on 08/28/2019).

Dragas, J. et al. (June 2017). “In Vitro Multi-Functional Microelectrode Array
Featuring 59 760 Electrodes, 2048 Electrophysiology Channels, Stimulation,
Impedance Measurement, and Neurotransmitter Detection Channels”. In: IEEE
Journal of Solid-State Circuits 52.6, pp. 1576–1590. issn: 0018-9200. doi: 10.
1109/JSSC.2017.2686580.

Eversmann, B. et al. (Dec. 2003). “A 128 x 128 cmos biosensor array for extracel-
lular recording of neural activity”. en. In: IEEE Journal of Solid-State Circuits
38.12, pp. 2306–2317. issn: 0018-9200. doi: 10.1109/JSSC.2003.819174.
url: http://ieeexplore.ieee.org/document/1253878/ (visited on
08/27/2019).

Harris, K. D. et al. (July 2000). “Accuracy of Tetrode Spike Separation as De-
termined by Simultaneous Intracellular and Extracellular Measurements.” In: J
Neurophysiol 84, pp. 401–14.

Jun, James et al. (2017). “Real-time spike sorting platform for high-density extra-
cellular probes with ground-truth validation and drift correction”. In: bioRxiv,
pp. 1–29. doi: https://doi.org/10.1101/101030.

Jun, James J. et al. (2017). “Fully integrated silicon probes for high-density recording
of neural activity”. In: Nature 551.7679, pp. 232–236. issn: 14764687. doi:
10.1038/nature24636. url: http://dx.doi.org/10.1038/nature24636.

Kleinfeld, David et al. (Sept. 2019). “Can One Concurrently Record Electrical Spikes
from Every Neuron in a Mammalian Brain?” en. In: Neuron 103.6, pp. 1005–
1015. issn: 08966273. doi: 10.1016/j.neuron.2019.08.011. url: https://

https://doi.org/10.3390/jlpea9030026
https://doi.org/10.3390/jlpea9030026
https://doi.org/https://doi.org/10.1016/j.jneumeth.2016.02.022
https://doi.org/https://doi.org/10.1016/j.jneumeth.2016.02.022
http://www.sciencedirect.com/science/article/pii/S0165027016300036
http://www.sciencedirect.com/science/article/pii/S0165027016300036
https://braininitiative.nih.gov/strategic-planning/brain-2025-report
https://braininitiative.nih.gov/strategic-planning/brain-2025-report
https://doi.org/10.1101/275818
http://biorxiv.org/lookup/doi/10.1101/275818
http://biorxiv.org/lookup/doi/10.1101/275818
https://doi.org/10.1109/JSSC.2017.2686580
https://doi.org/10.1109/JSSC.2017.2686580
https://doi.org/10.1109/JSSC.2003.819174
http://ieeexplore.ieee.org/document/1253878/
https://doi.org/https://doi.org/10.1101/101030
https://doi.org/10.1038/nature24636
http://dx.doi.org/10.1038/nature24636
https://doi.org/10.1016/j.neuron.2019.08.011
https://linkinghub.elsevier.com/retrieve/pii/S0896627319306956
https://linkinghub.elsevier.com/retrieve/pii/S0896627319306956


96

linkinghub.elsevier.com/retrieve/pii/S0896627319306956 (visited
on 11/05/2019).

Kozai, Takashi D. Y. and Alberto L. Vazquez (June 2015). “Photoelectric Artefact
from Optogenetics and Imaging on Microelectrodes and Bioelectronics: New
Challenges and Opportunities”. en. In: Journal of Materials Chemistry B 3.25,
pp. 4965–4978. issn: 2050-7518. doi: 10.1039/C5TB00108K.

Lee, Kyu Hyun et al. (Apr. 2020). “The sifting of visual information in the superior
colliculus”. eng. In: eLife 9. issn: 2050-084X. doi: 10.7554/eLife.50678.

Lewicki, Michael S. (1998). “A review of methods for spike sorting: the detection
and classification of neural action potentials.” In: Network 9 4, R53–78.

Linderman, Michael D. et al. (Jan. 2008). “Signal Processing Challenges for Neural
Prostheses”. English. In: Ieee Signal Processing Magazine 25.1, pp. 18–28. issn:
1053-5888. doi: 10.1109/MSP.2008.4408439.

Lopez, Carolina Mora et al. (2017). “A Neural Probe With Up to 966 Electrodes
and Up to 384 Configurable Channels in 0.13 µm SOI CMOS”. In: IEEE TRANS-
ACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 11.3, pp. 510–522.

Magland, Jeremy et al. (May 2020). “SpikeForest, Reproducible Web-Facing Ground-
Truth Validation of Automated Neural Spike Sorters”. In: eLife 9. Ed. by Markus
Meister, Ronald L Calabrese, and Markus Meister, e55167. issn: 2050-084X.
doi: 10.7554/eLife.55167.

Müller, Jan et al. (2015). “High-resolution CMOS MEA platform to study neurons at
subcellular, cellular, and network levels”. en. In: Lab on a Chip 15.13, pp. 2767–
2780. issn: 1473-0197, 1473-0189. doi: 10.1039/C5LC00133A. url: http:
//xlink.rsc.org/?DOI=C5LC00133A (visited on 11/05/2019).

Obien, Marie Engelene J. et al. (Jan. 2015). “Revealing neuronal function through
microelectrode array recordings”. en. In: Frontiers in Neuroscience 8. issn:
1662-453X. doi: 10.3389/fnins.2014.00423. url: http://journal.
frontiersin.org/article/10.3389/fnins.2014.00423/abstract
(visited on 11/05/2019).

Olsson, R. H. and K. D. Wise (Dec. 2005). “A Three-Dimensional Neural Recording
Microsystem with Implantable Data Compression Circuitry”. In: IEEE Journal
of Solid-State Circuits 40.12, pp. 2796–2804. issn: 1558-173X. doi: 10.1109/
JSSC.2005.858479.

Pachitariu, Marius et al. (2016). “Fast and accurate spike sorting of high-channel
count probes with KiloSort”. In: Advances in Neural Information Processing
Systems 29.Nips, pp. 4448–4456. issn: 10495258. url: https://papers.
nips.cc/paper/6326-fast-and-accurate-spike-sorting-of-high-
channel-count-probes-with-kilosort.pdf.

https://linkinghub.elsevier.com/retrieve/pii/S0896627319306956
https://linkinghub.elsevier.com/retrieve/pii/S0896627319306956
https://linkinghub.elsevier.com/retrieve/pii/S0896627319306956
https://doi.org/10.1039/C5TB00108K
https://doi.org/10.7554/eLife.50678
https://doi.org/10.1109/MSP.2008.4408439
https://doi.org/10.7554/eLife.55167
https://doi.org/10.1039/C5LC00133A
http://xlink.rsc.org/?DOI=C5LC00133A
http://xlink.rsc.org/?DOI=C5LC00133A
https://doi.org/10.3389/fnins.2014.00423
http://journal.frontiersin.org/article/10.3389/fnins.2014.00423/abstract
http://journal.frontiersin.org/article/10.3389/fnins.2014.00423/abstract
https://doi.org/10.1109/JSSC.2005.858479
https://doi.org/10.1109/JSSC.2005.858479
https://papers.nips.cc/paper/6326-fast-and-accurate-spike-sorting-of-high-channel-count-probes-with-kilosort.pdf
https://papers.nips.cc/paper/6326-fast-and-accurate-spike-sorting-of-high-channel-count-probes-with-kilosort.pdf
https://papers.nips.cc/paper/6326-fast-and-accurate-spike-sorting-of-high-channel-count-probes-with-kilosort.pdf


97

Raducanu, Bogdan C. et al. (Oct. 2017). “Time Multiplexed Active Neural Probe
with 1356 Parallel Recording Sites”. en. In: Sensors 17.10, p. 2388. doi: 10.
3390/s17102388.

Rios, Gustavo et al. (Nov. 2016). “Nanofabricated Neural Probes for Dense 3-
D Recordings of Brain Activity”. en. In: Nano Letters 16.11, pp. 6857–6862.
issn: 1530-6984, 1530-6992. doi: 10.1021/acs.nanolett.6b02673. url:
https://pubs.acs.org/doi/10.1021/acs.nanolett.6b02673 (visited
on 08/28/2019).

Robinson, D.A. (1968). “The electrical properties of metal microelectrodes”. en.
In: Proceedings of the IEEE 56.6, pp. 1065–1071. issn: 0018-9219. doi: 10.
1109/PROC.1968.6458. url: http://ieeexplore.ieee.org/document/
1448388/ (visited on 11/04/2019).

Schomburg, Erik W. et al. (Aug. 2012). “The Spiking Component of Oscillatory
Extracellular Potentials in the Rat Hippocampus”. en. In: Journal of Neuro-
science 32.34, pp. 11798–11811. issn: 0270-6474, 1529-2401. doi: 10.1523/
JNEUROSCI.0656-12.2012.

Seidl, Karsten, Stanislav Herwik, et al. (2011). “CMOS-Based High-Density Silicon
Microprobe Arrays for Electronic Depth Control in Intracortical Neural Record-
ing”. In: Journal of Microelectromechanical Systems 20, pp. 1439–1448.

Seidl, Karsten, Michael Schwaerzle, et al. (Dec. 2012). “CMOS-Based High-Density
Silicon Microprobe Arrays for Electronic Depth Control in Intracortical Neu-
ral Recording–Characterization and Application”. en. In: Journal of Microelec-
tromechanical Systems 21.6, pp. 1426–1435. issn: 1057-7157, 1941-0158. doi:
10.1109/JMEMS.2012.2206564. url: http://ieeexplore.ieee.org/
document/6249712/ (visited on 11/05/2019).

Shahrokhi, Farzaneh et al. (June 2010). “The 128-Channel Fully Differential Digital
Integrated Neural Recording and Stimulation Interface”. en. In: IEEE Trans-
actions on Biomedical Circuits and Systems 4.3, pp. 149–161. issn: 1932-4545,
1940-9990. doi: 10.1109/TBCAS.2010.2041350. url: http://ieeexplore.
ieee.org/document/5471738/ (visited on 11/05/2019).

Shannon, C. E. (Jan. 1949). “Communication in the Presence of Noise”. In: Pro-
ceedings of the IRE 37.1, pp. 10–21. issn: 0096-8390. doi: 10.1109/JRPROC.
1949.232969.

Siegle, Joshua H. et al. (2019). “A survey of spiking activity reveals a functional
hierarchy of mouse corticothalamic visual areas”. In: bioRxiv. doi: 10.1101/
805010. eprint: https://www.biorxiv.org/content/early/2019/10/
16/805010.full.pdf. url: https://www.biorxiv.org/content/early/
2019/10/16/805010.

Steinmetz, Nicholas A. et al. (Apr. 2021). “Neuropixels 2.0: A Miniaturized High-
Density Probe for Stable, Long-Term Brain Recordings”. en. In: Science 372.6539.
issn: 0036-8075, 1095-9203. doi: 10.1126/science.abf4588.

https://doi.org/10.3390/s17102388
https://doi.org/10.3390/s17102388
https://doi.org/10.1021/acs.nanolett.6b02673
https://pubs.acs.org/doi/10.1021/acs.nanolett.6b02673
https://doi.org/10.1109/PROC.1968.6458
https://doi.org/10.1109/PROC.1968.6458
http://ieeexplore.ieee.org/document/1448388/
http://ieeexplore.ieee.org/document/1448388/
https://doi.org/10.1523/JNEUROSCI.0656-12.2012
https://doi.org/10.1523/JNEUROSCI.0656-12.2012
https://doi.org/10.1109/JMEMS.2012.2206564
http://ieeexplore.ieee.org/document/6249712/
http://ieeexplore.ieee.org/document/6249712/
https://doi.org/10.1109/TBCAS.2010.2041350
http://ieeexplore.ieee.org/document/5471738/
http://ieeexplore.ieee.org/document/5471738/
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1101/805010
https://doi.org/10.1101/805010
https://www.biorxiv.org/content/early/2019/10/16/805010.full.pdf
https://www.biorxiv.org/content/early/2019/10/16/805010.full.pdf
https://www.biorxiv.org/content/early/2019/10/16/805010
https://www.biorxiv.org/content/early/2019/10/16/805010
https://doi.org/10.1126/science.abf4588


98

Stevenson, Ian (Oct. 2013). Tracking Advances in Neural Recording | Statistical
Neuroscience Lab. en-US. https://stevenson.lab.uconn.edu/scaling/.

Stringer, Carsen et al. (2019). “Spontaneous behaviors drive multidimensional,
brainwide activity”. In: Science 364.6437. issn: 0036-8075. doi: 10.1126/
science.aav7893. eprint: https://science.sciencemag.org/content/
364/6437/eaav7893.full.pdf. url: https://science.sciencemag.
org/content/364/6437/eaav7893.

Suo, Yuanming et al. (Oct. 2014). “Energy-Efficient Multi-Mode Compressed Sens-
ing System for Implantable Neural Recordings”. English. In: Ieee Transactions
on Biomedical Circuits and Systems 8.5, pp. 648–659. issn: 1932-4545. doi:
10.1109/TBCAS.2014.2359180.

Torfs, Tom et al. (Nov. 2010). “Two-dimensional multi-channel neural probes with
electronic depth control”. en. In: 2010 Biomedical Circuits and Systems Confer-
ence (BioCAS). Paphos, Cyprus: IEEE, pp. 198–201. isbn: 978-1-4244-7269-7.
doi: 10.1109/BIOCAS.2010.5709605. url: http://ieeexplore.ieee.
org/document/5709605/ (visited on 08/28/2019).

Yger, Pierre et al. (Mar. 2018). “A Spike Sorting Toolbox for up to Thousands of
Electrodes Validated with Ground Truth Recordings in Vitro and in Vivo”. eng.
In: eLife 7. issn: 2050-084X. doi: 10.7554/eLife.34518.

https://doi.org/10.1126/science.aav7893
https://doi.org/10.1126/science.aav7893
https://science.sciencemag.org/content/364/6437/eaav7893.full.pdf
https://science.sciencemag.org/content/364/6437/eaav7893.full.pdf
https://science.sciencemag.org/content/364/6437/eaav7893
https://science.sciencemag.org/content/364/6437/eaav7893
https://doi.org/10.1109/TBCAS.2014.2359180
https://doi.org/10.1109/BIOCAS.2010.5709605
http://ieeexplore.ieee.org/document/5709605/
http://ieeexplore.ieee.org/document/5709605/
https://doi.org/10.7554/eLife.34518


99

C h a p t e r 5

CONCLUSION & FUTURE REMARKS

Here I will briefly discuss about the implications of the projects and future directions
of them.

Well-studied circuits as a testbed
We demonstrated that by measuring interactions of drugs with a well-studied neural
circuit, one could immediately gain insights and interpret the actual targets.

Following this direction, the neuropharmacology field should aim for an overar-
ching goal of seeking more circuit-based platforms to complement molecular and
behavioral studies. Given our own finding that ketamine seems to deliver its action
through its HCN effect rather than the deep-rooted NMDAr block, this wave of new
testbeds should first also aim to reexamine another neuropharmacology use cases
that are currently still in an empirical phase that does not have a good mechanism
but somehow works. For instance, movement disorders medications.

In addition to exploring new testbeds and new applications, I think it is a riped
time to study the rapid anti-depression effect of ketamine, with the premise that
people have to know what they are optimizing for. As mentioned in Chap 2, the
depression research field took the default status of NMDAr IS as its mechanism of
anesthesia and is diving down this rabbit hole without further verifying of the actual
mechanism. One should take a step back to the drawing board and verify the actual
molecular switch of paradoxical firing in their platforms.

On the other branch of application, we were showing that the non-specific, concentration-
based explanation of anesthetics still made sense. Nevertheless, it is also unrealistic
to dis-prove each of the specific hypothesis arguments in a whack-a-mole fashion
despite it being the current mainstream theory. Therefore, I think it is fair to verify
the extreme cases one at a time. Such as the fluorocarbons experiments which are
borderline keeping the tested animals alive while using behavioral output as end-
points. Instead, a retina on an MEA should function fine in a hyperbaric chamber
without concern for animal vitality.
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Electrode Pooling
We believe that the flexible pooling strategy will be particularly attractive in chronic
studies, where an electrode array remains implanted for months or years. In these
situations, maintaining an updated library of signal waveforms is an intrinsic part of
any recording strategy. The round-the-clock recording serves to populate and refine
the library, enabling the design of precise spike templates, and effective separation
of pooled signals. The library keeps updating in response to any slow changes in
recording geometry that may take place.

A second important application for pooling arises in the context of sub-dural im-
plants in humans. Here the sub-dural space forces a low-profile chip with minimal
volume for electronic circuitry, whereas one can envision several slender penetrating
electrode shafts with thousands of recording sites. We estimate that some devices
that are now plausible (no published examples yet) will have an electrode-to-channel
ratio near 25. Clearly one will want to record from more than 1/25 of the available
sites, and electrode pooling achieves it without increased demand on electronic
circuitry.

In summary, while the devices to maximize pooling benefits are not yet available,
they soon may be. Consideration of pooling options would benefit the designers and
users of these devices. The advantage of pooling grows naturally as the same tissue
is recorded across sessions or time. The calculations and demonstrations reported
here are intended to inspire professional simulations and design of future devices
for a variety of applications, including human implants.
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