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ABSTRACT 

Atmospheric pollutants such as particulate matter (PM) and ozone (O3) are harmful to human 

health and intensify climate change. Secondary organic aerosol (SOA) is a main component 

of PM and is formed via atmospheric oxidation reactions of thousands of gas- and aerosol-

phase precursors. Regional-scale chemical transport models predict the formation of these 

pollutants by representing natural and human emissions of hundreds of species and their 

subsequent chemical and physical processing in the atmosphere. These models are useful in 

the absence of detailed measurements and allow researchers to investigate the impact of 

changing emissions and weather. Los Angeles has unique meteorology and anthropogenic 

emissions which lead to dangerous pollution events and make this region an important area 

to study SOA, PM, and O3 formation. As vehicles have become cleaner and their emissions 

have declined, other sources of emissions have become increasingly important. One 

important category of emissions is volatile chemical products (VCPs), which are consumer 

and industrial products that have high volatile organic compound (VOC) emissions that have 

not been well-constrained or studied in relation to their SOA and O3 formation potential. In 

this dissertation, I use the Community Multiscale Air Quality (CMAQ) model to represent 

the air quality of the Los Angeles Basin. First, a new chemical mechanism is developed to 

represent the formation of SOA from VCPs, implemented in the CMAQ model to simulate 

2010 California, and the impact of VCPs on atmospheric pollutants is quantified. Next, we 

created contemporary inputs to CMAQ by simulating the meteorology, emissions, and land 

surface of the Los Angeles Basin in 2020. Lastly, the new inputs and chemistry are applied 

to CMAQ to understand current air quality issues in Los Angeles. We quantify the impact of 

VCPs on SOA, PM, O3, and other pollutants in both 2010 and 2020. The apportionment of 

other emission sources and the impact of the COVID-19 pandemic are investigated, and 

pollutant concentrations are compared to measurements made throughout the Basin and 

specifically in Pasadena. This works demonstrates the importance of intentional policies to 

mitigate harmful air pollution events. Limiting NOx emissions is not sufficient to limit the 

formation of ozone and PM, and there must be a simultaneous reduction of VOC emissions.  
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C h a p t e r  1  

INTRODUCTION 

1.1 Motivation and Background 

Poor air quality affects billions of people across the globe. Air quality describes the 

composition of the atmosphere, and we can understand the causes and effects of poor 

air quality events by investigating thousands of pollutants which interact via chemical 

and physical processes in the atmosphere. Some of these pollutants are gases — e.g., 

ozone (O3), nitrogen oxides (NOx), and volatile organic compounds (VOCs) — while 

others are particles — e.g., fine particulate matter (PM2.5) and coarse particulate 

matter (PM10). Particles are in the aerosol phase, meaning they are liquids or solids 

suspended stably in the air; this is colloquially known as smog. Particulate matter 

(PM) is particularly harmful, as it damages human health (Lim et al., 2012), reduces 

visibility (Hyslop, 2009), and influences the climate and global warming 

(Intergovernmental Panel on Climate Change, 2014). Gas-phase species also have 

harmful effects. Ozone is harmful to human health (Nuvolone et al., 2018) and 

restricts plant growth (Leisner & Ainsworth, 2012). Nitrogen oxides (NOx = NO + 

NO2) and VOCs react to form ozone and large organic species that react to form PM. 

It is critical that we understand the processes impacting these pollutants so that we 

can make educated decisions which reduce poor air quality events and their harmful 

effects.  

Los Angeles (LA) is one of the most polluted cities in the United States, but the PM 

pollution in LA has been improving. Historically, vehicles were the main source of 

anthropogenic — or human-induced — emissions in LA. However, as catalytic 

converter technology advances and electric vehicles become more available, vehicles 

have become less important polluters (Khare & Gentner, 2018). Other sources of 

emissions, however, have not been reduced as quickly. One important emission 
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source is volatile chemical products (VCPs), a class of industrial and consumer 

products that emit reactive organic carbon (ROC), including VOCs and species with 

lower volatilities known as semivolatile organic compounds (SVOCs) and 

intermediate volatility organic compounds (IVOCs). Other important sources of 

anthropogenic emissions include off-road vehicles, oil and gas production, asphalt, 

agriculture, cooking, and road dust (Qin et al., 2021; Khare et al., 2020; McDonald 

et al., 2018; CARB, 2020). 

As the sources and composition of anthropogenic emissions have evolved, so has the 

composition and chemistry of the atmosphere. As stated above, NOx and VOCs react 

to form ozone and other oxidation products, typically large, oxidized organic species. 

As species become larger and more oxidized, their volatility decreases and they can 

condense to form secondary organic aerosol (SOA). SOA is a major component of 

total organic aerosol (OA; Jimenez et al., 2009) and total PM2.5 (Zhang et al., 2007). 

As the composition of gas-phase precursor emissions evolves, so does the 

composition and chemical formation pathways of SOA. In addition, NOx levels 

impact the formation of ozone, SOA, and other components of PM2.5 by impacting 

atmospheric oxidizing capacity, for example, the concentration of the hydroxyl 

radical (OH; Seinfeld & Pandis, 2016). LA and many other urban areas have 

traditionally been considered “NOx-saturated”, meaning that there are high 

concentrations of NOx, so reactions are more limited by VOC concentrations. But as 

NOx emissions decline, LA has potentially begun to enter a NOx-insensitive or even 

NOx-limited regime (Laughner & Cohen, 2019). The NOx regime has a large impact 

on the rate of pollutant formation. It is important to understand this so that informed 

policies can be developed to limit the occurrence of harmful air pollution events.  

Regional-scale air quality modeling is used to understand the processes that are 

important in the formation and evolution of atmospheric pollutants. Chemical 

transport models (CTMs) represent the emissions, chemistry, and transport of 

hundreds or thousands of pollutants in a three-dimensional (3D) grid. Gridded 
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emissions from multiple sources and boundary conditions define the species that are 

introduced to the modeling system, while meteorological inputs define the transport 

occurring inside and between each grid cell. CTMs also typically represent processes 

such as bi-directional land-surface fluxes, lightning NO emissions, and deposition 

rates. Internal to the CTM is the chemical mechanism, describing photochemical, 

gas-phase, aerosol-phase, aqueous, and heterogeneous reactions. As stated above, 

there are thousands of species in the atmosphere undergoing complex chemical 

reactions, but it is computationally impossible to represent all of those processes. So, 

models must condense the chemistry by modeling “surrogate species” that can 

represent an entire class of compounds with similar properties, and which undergo 

simplified chemical reactions. The Community Multiscale Air Quality (CMAQ) 

model is the US Environmental Protection Agency’s (EPA) 3D CTM that is widely 

used in the air quality modeling community and is used to inform regulatory 

standards (US EPA, 2020). The CMAQ model is used in our work. 

Predicting air quality events using CTMs is difficult and many parts of the models 

can be improved. Due to the complexity of atmospheric chemistry, there is inherent 

difficulty in developing a simplified model that best represents the chemistry. Many 

models exist to represent gas-phase and heterogeneous chemistry (e.g., Carter, 2010; 

Yarwood et al., 2010; Goliff et al., 2013), and others are being developed (e.g., Keller 

& Evans, 2019). It is also difficult to model SOA chemistry because it is both 

nonlinear and not well-understood. Traditionally, researchers have modeled SOA 

formation from VOC oxidation (e.g., Odum et al., 1996; Carlton et al., 2010). It has 

become an active area of research to investigate the oxidation of SVOCs and IVOCs, 

which likely yield higher SOA than VOCs due to their lower volatility (e.g., Donahue 

et al., 2011; Murphy et al., 2017). It is well-documented that SOA tends to be 

underpredicted in CMAQ (Murphy et al., 2017; Appel et al., 2021). The modeled 

emissions impact predicted concentrations, but often have nonnegligible uncertainty 

(Qin et al., 2021). In addition to these modeling challenges, there are inherent 

difficulties when modeling a complex system. For example, the chemistry leading to 
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pollutant formation is highly nonlinear (Seinfeld & Pandis, 2016). The chemistry 

becomes even more complicated when considered in areas with different 

meteorology. Also, there is a lack of detailed measurement data that can be used to 

constrain model parameters. While pollutants like ozone, PM2.5, and NO2 are 

regularly monitored throughout the United States (US EPA, 2013), these sites are 

widely distributed and often there are only 0-1 sites in a given area. Measurements 

of radical species and specific VOCs are only obtained during field campaigns, which 

are limited to a small region and are very expensive to carry out. Even though the 

lack of in situ data makes it difficult to parameterize or evaluate models, it also 

underscores the importance of models. Models fill in the gaps in our understanding 

and allow us to make predictions about important air quality issues. 

The goal of my dissertation work is to improve our understanding of atmospheric 

pollution using regional-scale modeling. 

1.2 Organization of Thesis 

Chapter 2 presents the work completed during my internship at the US EPA Office 

of Research and Development (ORD) and the following year upon my return to 

Caltech. I worked with the Atmospheric Chemistry and Aerosol Branch, which 

develops CMAQ. Specifically, I investigated the mechanism of SOA formation from 

VCPs, developed a condensed mechanism to represent this chemistry, and 

implemented the new model in CMAQ. This work was published in 2021 

(Pennington et al., 2021). 

Chapter 3 presents the methods employed to develop a model framework to represent 

all aspects of Los Angeles air quality in 2020. Many modeling studies have not 

developed complete meteorological simulations and emissions inventories to 

represent contemporary scenarios, so this work fills in an important gap in the 

literature. We explain models and their configurations used to develop the 
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meteorology, natural emissions, anthropogenic emissions, and boundary conditions 

that are used as input to CMAQ. 

Chapter 4 presents the results of applying our modeling framework from Chapter 3 

to predict air quality in Los Angeles in 2020. We investigate the impact of 

meteorology on pollutant transformation, the relative contribution of detailed 

emission sources, the impact of COVID-19 restrictions, and compare the predictions 

to measurements made throughout the Basin and in Pasadena. The work in chapters 

3–4 is being drafted for publication.  

Appendix A links to a page of the CMAQ documentation that I wrote. The 

documentation comprises a tutorial that teaches CMAQ users how to modify the 

chemical mechanism in CMAQ, with code examples. It also explains how to reflect 

these changes in Github. This tutorial was screened by the CMAQ team and made 

publicly available on their Github documentation site. 

Appendices B–F each present a published, submitted, or drafted paper that I am an 

author on, excluding my first author works which are described in Chapters 2–4. 
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C h a p t e r  2  

MODELING SECONDARY ORGANIC AEROSOL FORMATION 

FROM VOLATILE CHEMICAL PRODUCTS 

Pennington, E. A., Seltzer, K. M., Murphy, B. N., Qin, M., Seinfeld, J. H., & Pye, H. 

O. T. (2021). Modeling secondary organic aerosol formation from volatile 

chemical products. Atmospheric Chemistry and Physics, 21(24), 18247–18261. 

https://doi.org/10.5194/acp-21-18247-2021. 

 

2.0 Abstract 

Volatile chemical products (VCPs) are commonly-used consumer and industrial 

items that are an important source of anthropogenic emissions. Organic compounds 

from VCPs evaporate on atmospherically relevant time scales and include many 

species that are secondary organic aerosol (SOA) precursors. However, the chemistry 

leading to SOA, particularly that of intermediate volatility organic compounds 

(IVOCs), has not been fully represented in regional-scale models such as the 

Community Multiscale Air Quality (CMAQ) model, which tend to underpredict SOA 

concentrations in urban areas. Here we develop a model to represent SOA formation 

from VCP emissions. The model incorporates a new VCP emissions inventory and 

employs three new classes of emissions: siloxanes, oxygenated IVOCs, and 

nonoxygenated IVOCs. VCPs are estimated to produce 1.67 g m-3 of noontime 

SOA, doubling the current model predictions and reducing the SOA mass 

concentration bias from -75% to -58% when compared to observations in Los 

Angeles in 2010. While oxygenated and nonoxygenated intermediate volatility VCP 

species are emitted in similar quantities, SOA formation is dominated by the 

nonoxygenated IVOCs. Formaldehyde and SOA show similar relationships to 

temperature and bias signatures indicating common sources and/or chemistry. This 

work suggests that VCPs contribute up to half of anthropogenic SOA in Los Angeles 

and models must better represent SOA precursors from VCPs to predict the urban 

enhancement of SOA. 

https://doi.org/10.5194/acp-21-18247-2021
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2.1 Introduction 

Organic aerosol (OA) is a major component of fine particulate matter (PM2.5) in 

urban areas throughout the world (Zhang et al., 2007). PM2.5 influences human health 

(Lim et al., 2012), climate (Intergovernmental Panel on Climate Change, 2014), and 

visibility (Hyslop, 2009), so understanding OA composition is an important step in 

mitigating the adverse effects of PM2.5. Secondary organic aerosol (SOA) is often the 

dominant component of OA (Jimenez et al., 2009) and is formed when gas-phase 

volatile organic compounds (VOCs) react with atmospheric oxidants to form 

products that condense into the aerosol phase, where they can undergo further 

reaction. SOA is formed via thousands of atmospheric reactions (Goldstein & 

Galbally, 2007), so understanding its sources remains a challenge. 

Volatile chemical products (VCPs) are an important source of organic emissions that 

lead to SOA formation (McDonald et al., 2018; Qin et al., 2021). As vehicle exhaust 

becomes cleaner and mobile source emissions decline, the relative importance of 

VCP emissions increases (Khare & Gentner, 2018). Previous work suggests that 

during the 2010 California Nexus of Air Quality and Climate Change (CalNex) 

campaign in Southern California (Ryerson et al., 2013), VCPs contributed 

approximately 1.1 g m-3, or 41%, of observed SOA above background levels in the 

Los Angeles Basin (Qin et al., 2021). 

Modeling the formation of SOA in three-dimensional (3D) chemical transport 

models (CTMs) is challenging due to the complexity of VOC chemistry and 

computational constraints of regional-scale modeling. Models have tended to 

underpredict SOA mass in urban locations for a variety of reasons. For one, the SOA 

formation potential of intermediate volatility organic compounds (IVOCs) and 

semivolatile organic compounds (SVOCs)—or S/IVOCs—is not well constrained. 

Observations made during the CalNex campaign demonstrate that S/IVOCs are 

important sources of SOA, making up 10% of total gas-phase organic compound 

concentrations (Zhao et al., 2014) while contributing up to 80% of above-background 

SOA mass (Hayes et al., 2015). Although it is often impossible to identify all 



 

 

12 

individual species contributing to ambient S/IVOCs, these compounds may be 

classified based on their properties (e.g., volatility). Volatility basis set (VBS) models 

(Donahue et al., 2011) are often used to represent S/IVOC chemistry and partitioning, 

and have improved model estimates of SOA (Woody et al., 2016; Hayes et al., 2015; 

Robinson et al., 2007). Murphy et al. (2017) integrated a VBS model into the 

Community Multiscale Air Quality (CMAQ) model version 5.2 to represent the 

multigenerational aging of semivolatile primary organic aerosol (POA) leading to the 

production of SOA. Other studies have parameterized VBS models to represent 

S/IVOCs from mobile emissions (Lu et al., 2020; Jathar et al., 2017), but none have 

parameterized SOA formation from VCP S/IVOCs emissions. Additionally, the 

emissions of S/IVOCs are not well constrained and are often not included in detailed 

emissions inventories (Zhao et al., 2015). However even when S/IVOCs are included 

in emissions inventories, they are often assigned to nonreactive or nonvolatile model 

surrogates that do not participate in model chemistry (T. Shah et al., 2020). 

Improving the representation of SOA chemistry in CMAQ will allow for more 

accurate exposure estimates in health studies and source apportionment for air quality 

management decisions. 

Another source of error in CTMs is the lack of representation of oxygenated SOA 

precursors. Historically, mechanism development has focused on the oxidation 

chemistry of species emitted primarily from vehicles (e.g., BTEX: benzene, toluene, 

ethylbenzene, and xylene) or biogenic sources (e.g., isoprene, monoterpenes). While 

VCPs do emit some of these species, they also emit many oxygenated compounds 

(Seltzer et al., 2021; McDonald et al., 2018). The implications of a few important 

oxygenated precursors on air quality have recently been quantified (e.g., Janechek et 

al., 2017; Charan et al., 2020; L. Li & Cocker, 2018; W. Li et al., 2018), but many 

oxygenated precursors have not been studied in a laboratory setting. For the few 

oxygenated VCPs that have been studied in laboratory chambers, SOA yields were 

reported under unrealistic atmospheric conditions, e.g., high OH and aerosol seed 

concentrations (Charan et al., 2021). So, the SOA yields of these compounds have 

primarily been estimated using models such as the Statistical Oxidation Model 
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(SOM; Cappa & Wilson, 2012) or VBS (McDonald et al., 2018; R. U. Shah et al., 

2020). These oxygenated species are not included as SOA precursors in most models, 

and their chemistry is needed to improve predictions of SOA mass. 

In this work, we introduce a chemical mechanism to represent SOA formation from 

VCPs. Specifically, the potential of both oxygenated and nonoxygenated IVOCs to 

form SOA is developed and evaluated. We utilize a new VCP emissions inventory 

known as VCPy (Seltzer et al., 2021) to represent organic emissions from VCPs and 

to parameterize model species behavior in the chemical mechanism. The chemistry 

and emissions inventory are implemented in the CMAQ model version 5.3.2 to 

simulate air quality during the CalNex campaign in California in 2010. The model 

predictions are compared to measurements made in Pasadena during CalNex and the 

speciation of predicted SOA is examined. 

2.2 Methods 

2.2.1 VCPy emissions inventory implementation 

VCPy is a modeling framework that estimates reactive organic carbon emissions 

from VCPs (Seltzer et al., 2021). Within this framework, the complete VCP sector is 

disaggregated into several product use categories (PUCs; e.g., cleaning products, 

personal care products, adhesives and sealants, paints and coatings). U.S. nationwide 

usage of each PUC is estimated, and survey data are then used to quantify the mass 

fraction of organic, inorganic, and water proportions, as well as speciate the organic 

fraction. Physiochemical properties of each organic component are used to estimate 

the characteristic evaporation timescale, which is then compared to an assigned use 

timescale to determine whether a compound is retained or evaporated from each 

PUC. In the initial implementation of VCPy (version 1.0), which is representative of 

2016 conditions, the predicted nationwide and Los Angeles County VCP emission 

rates were 9.5 kg person-1 year-1 and 8.2 kg person-1 year-1, respectively. These 

emission rates are consistent with the low end of values seen in a previous study that 

used a top-down approach to estimate VCP emissions (Qin et al., 2021). In our work, 
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product use is based on data from 2010 with composition specified using data from 

the early 2000s to overlap with the CalNex campaign.  

Since the speciation of organic emissions from VCPy is explicit, the underlying 

chemical and physical properties of emissions are output from the framework. These 

properties, many of which are relevant to atmospheric oxidation and subsequent SOA 

formation, include the oxidation rate with the hydroxyl radical (kOH), molecular 

weight (MW), effective saturation concentration (C*), and oxygen-to-carbon ratio 

(O:C). SOA mass yields, which are defined as the mass of SOA formed per mass of 

ROC precursor reacted, were assigned based on compound-specific structure and 

volatility (Seltzer et al., 2021). 

A key step in implementing this inventory into CMAQ is ensuring that all compounds 

predicted to be emitted by VCPy are mapped to either an existing or a new model 

surrogate. Emissions of low-volatility organic vapors (C* < 106.5 g m-3) from all 

sources are prime SOA precursors but traditionally discarded from the gas-phase 

chemical mechanism used in many CTMs (e.g., represented as nonvolatile (NVOL), 

nonreactive (NROG), or unspecified IVOC species that are not used in the chemical 

mechanism of CMAQ). As a result, these species do not participate in atmospheric 

chemistry and thus do not impact radical concentrations or SOA mass. In addition, 

oxygenated compounds are not currently included as SOA precursors in many 

mechanisms because of the historic focus on SOA formation from nonoxygenated 

vehicle exhaust and traditional VOCs like single-ring aromatics and biogenic 

hydrocarbons. The work of Qin et al. (2021) specifically identifies this loss of emitted 

reactive carbon mass as a reason for underestimated SOA from the personal care 

sector in the CMAQ model. To account for the SOA potential of this previously 

neglected organic mass, all compounds currently mapped to NROG, NVOL, and 

IVOC are reviewed, with most of this mass routed to one of three newly added 

categories of model surrogates: siloxanes (SILOX), oxygenated IVOCs (SOAOXY), 

or nonoxygenated IVOCs (IVOCP3, IVOCP4, IVOCP5, IVOCP6, IVOCP5ARO, 

and IVOCP6ARO). The updated mechanism (with SOA pathways described in 
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Section 2.2) with the newly implemented speciation mapping is henceforth described 

as SAPRC07TIC_AE7I_VCP and the complete list of assignment rules is provided 

in the SI Methods. 

County-level VCPy emissions (Seltzer et al., 2021) were gridded at 4-km scale to fit 

the CalNex domain (Baker et al., 2015) using a variety of spatial surrogates. The 

spatial surrogates used depend on the category of VCP emissions being described: 

agricultural land is used as a proxy for all agricultural pesticide emissions, the density 

of oil and gas wells for the oil and gas solvent emissions, and population for all 

remaining VCP sources. While some categories of VCP emissions could feature 

more refined spatial surrogate proxies, the uncertainty associated with spatial 

allocation of sources may be lower than uncertainty in individual source strength. 

More specifically, if an entire VCP category could be matched to a single surrogate, 

allocation methods would still assume there is no variation in the strength of 

individuals within the population of that surrogate (Y. Li et al., 2021). 

All VCP emissions feature a sinusoidal diurnal profile with a peak at noon, with no 

application of day-of-week or seasonal profiles. Since the simulation period used in 

this study is a single month, no seasonal changes would be observable over this time 

frame and previous work suggests little seasonal variability in VCP emissions 

(Gkatzelis et al., 2021). Other emission sectors (e.g., mobile sources, agriculture) are 

adjusted for seasonal impacts based on meteorological conditions and known activity 

data.  

2.2.2 Parameterizing SOA formation from VCPs 

To better represent the atmospheric chemistry of VCPs, SOA formation is added for 

the three new categories of emissions (siloxanes, oxygenated IVOCs, and 

nonoxygenated IVOCs) in the SAPRC07TIC_AE7I_VCP chemical mechanism 

within CMAQ (Table 2.1). 

Cyclic volatile methylsiloxanes (cVMS), or siloxanes for short, are present in many 

personal care products, adhesives, and sealants. Collectively, siloxanes represent a 
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large fraction of VCP emissions (Seltzer et al., 2021). Decamethylcyclopentasiloxane 

(D5-siloxane) is the most prevalent siloxane in urban atmospheres (D.-G. Wang et 

al., 2013) and laboratory studies have found D5-siloxane SOA yields ranging from 

0% (Charan et al., 2021) to 50% (Janechek et al., 2019). The explicit oxidation 

mechanism is unknown and the SOA yields of other siloxanes are not well 

understood (Coggon et al., 2018). Here, siloxanes are treated separately from other 

oxygenated VCP species due to their anomalously low OH oxidation rate (Table 2.1). 

The mechanism of SOA formation used here utilizes an existing two-product model 

from Janechek et al. (2019) that was parameterized using oxidation flow reactor 

(OFR) experiments and photooxidation chamber data from Wu & Johnston (2017). 

In this implementation, the OH oxidation rate constant for D5-siloxane matches the 

rate reported in Janechek et al. (2017) and the hydroxyl radical is replenished after 

reaction.  

Few laboratory chamber studies have investigated the oxidation processes of other 

oxygenated gas-phase species (e.g., Charan et al., 2020; L. Li & Cocker, 2018), so 

little experimental data exist about the SOA yields or oxidation products of 

oxygenated SOA precursors. Additionally, many models that predict the products of 

oxidation reactions (e.g., SOM and VBS) have not been parameterized or evaluated 

using oxygenated precursors. Without these models and laboratory studies, little is 

known about the oxidation products of these precursors, which limits our ability to 

develop a detailed model of their SOA formation. Therefore, all non-siloxane 

oxygenated IVOC emissions are represented by a single surrogate (SOAOXY) that 

undergoes a one-step gas-phase reaction with the hydroxyl radical to form a 

nonvolatile aerosol surrogate (AOIVOC). This simple mechanism reduces the 

reliance on many parameters that are not well-constrained. The MW, kOH, C*, and 

SOA yield of this surrogate are calculated as a mass-weighted average of the 

oxygenated IVOC emissions from VCPs in Los Angeles County which are generally 

consistent with what would be calculated using nationwide information. 
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Nonoxygenated IVOC emissions are represented using the model described by Lu et 

al. (2020), which uses a VBS model and multigenerational aging scheme to represent 

the SOA from gasoline, diesel, and aircraft sources. Six surrogates are differentiated 

by structure (alkane vs. aromatic) and effective saturation concentration, and each is 

assigned a four-product yield distribution, generating SVOCs after one oxidation 

step. Many of the nonoxygenated IVOC species from mobile and VCP emission 

sources have similar structures (i.e., long and branched alkanes and aromatics), 

volatilities, and SOA yields (see Figure 2.S1), making the Lu et al. (2020) model a 

good representation of oxidation and SOA formation from nonoxygenated VCP 

IVOCs. 

Table 2.1. Properties of the VCP surrogates added to CMAQ version 5.3.2. 

 

aThe gas-phase siloxane (SILOX) MW is the average of the MW of all VCPy 

siloxane and silane species weighted by Los Angeles County emission rates. The 

MW of the higher-volatility siloxane products (SVSILOX2/ASILOX2J) is 

approximated as the sum of the MW of SILOX and one oxygen. The MW of the 
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lower-volatility products (SVSILOX1/ASILOX1J) has an additional two oxygens 

to represent its significant decrease in volatility. 
bThe gas-phase siloxane (SILOX) kOH is given in Janechek et al. (2017). 
cThe stoichiometric product yields (i) and C* of the siloxanes are given in Janechek 

et al. (2019). 
dEnthalpy of vaporization (Hvap) values for the siloxanes are estimated according to 

the method in Epstein et al. (2010). 
eAll OM/OC ratios and hygroscopicity parameters (κorg) are estimated using 

equations 5 and 12, respectively, in Pye et al. (2017). 
fHenry’s Law constants (H) at 298.15 K are estimated using the surrogate-based 

method in Hodzic et al. (2014). 
gThe MW, kOH, C*, and SOA yield of SOAOXY (gas) and AOIVOCJ (aerosol) are 

calculated as a mass-weighted average of the oxygenated IVOC emissions from 

VCPs in Los Angeles County. Because AOIVOC is formed via a single reaction 

with a constant SOA yield, it is treated as nonvolatile and therefore is not assigned 

a C* or Hvap. 
hAll nonoxygenated IVOC surrogate properties—including four stoichiometric 

product yields (i) for each surrogate used in the multigenerational scheme—are 

described in Lu et al. (2020). 

 

2.2.3 CMAQ model implementation 

2.2.3.1 CalNex model configuration 

The updated chemical mechanism and VCPy-derived emissions were implemented 

in CMAQ version 5.3.2 (US EPA Office of Research and Development, 2020). 

CMAQ version 5.3 and the subsequent minor releases are documented in Appel et 

al. (2021). The model was used to simulate air quality during the CalNex campaign 

from May 15 to June 15, 2010, with an additional 14-day spin-up period. Outside the 

VCP updates, the model configuration matches the implementation used in Qin et al. 

(2021) and Lu et al. (2020). The model domain has 4-km x 4-km horizontal resolution 

(325 x 225 grid cells) covering California and Nevada with 36 vertical levels reaching 

50 mbar. Meteorological inputs are derived from the Weather Research and 

Forecasting (WRF) Advanced Research WRF core Model version 3.8.1 (Skamarock 

et al., 2008). Gas-phase chemistry is represented using SAPRC07TIC (Pye et al., 

2013; Xie et al., 2013) with the addition of the VCP chemical mechanism 

summarized in Table 2.1. Aerosol-phase chemistry is simulated using an extended 

version of the AERO7 mechanism, depicted in Figure 2.1, including all AERO7 
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reactions plus those of the new VCP mechanism (boxed in red) and mobile IVOCs 

(boxed in red in the lower left) that participate in the multigenerational aging shown 

in the orange boxes (Lu et al., 2020). This diagram also includes a representation of 

the aqueous-phase cloud chemistry and removal used in the Asymmetric Convection 

Model (ACM) version 2 module (Binkowski & Roselle, 2003), which has been 

updated to include wet deposition properties for the new aerosol surrogates (Table 

2.1). 

All non-VCP anthropogenic emissions are based on the 2011 National Emissions 

Inventory (NEI) version 2 (US EPA, 2015). VCP emissions in the NEI are removed 

and replaced with VCPy predicted emissions using the Detailed Emissions Scaling, 

Isolation, and Diagnostic (DESID) module (Murphy et al., 2021). Mobile NOx 

emissions were reduced by 25% in all simulations to better match observational data 

from the CalNex campaign (Qin et al., 2021). Mobile IVOC emissions and the 

semivolatile treatment of mobile POA were treated according to the methods 

described in Lu et al. (2020). The IVOCs are assigned to the appropriate 

IVOCP3/4/5/6/5ARO/6ARO surrogates that are also used to treat nonoxygenated 

IVOCs from VCPs. Wind-blown dust emissions are neglected in this study. Biogenic 

emissions are calculated online using the Biogenic Emission Inventory System 

(BEIS) version 3.6.1 (Bash et al., 2016) as are sea spray aerosol emissions. 

2.2.3.2 Simulation cases 

Three simulations were evaluated against the observations collected during the 

CalNex campaign. A “zero VCP” case removes all VCP emissions. The 

“CMAQv5.3.2” case is a standard CMAQ simulation with base emissions (i.e., VCP 

emissions from the NEI) and base chemistry (i.e., no new VCP chemistry). Finally, 

the “CMAQv5.3.2+VCP” case adds both the VCP chemistry described above (i.e., 

SAPRC07TIC_AE7I_VCP) and replaces all NEI VCP emissions with VCPy-derived 

VCP emissions. Comparisons between the “zero VCP” case and the 

“CMAQv5.3.2+VCP” case illustrate the complete impact of VCPy emissions on 

modeled SOA. In contrast, comparisons between the “CMAQv5.3.2” case and the  
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Figure 2.1: Treatment of OA chemistry in the CMAQv5.3.2+VCP model. The thick 

black box surrounds all aerosol-phase species. All smaller black boxes depict 

species undergoing gas-phase oxidation from VOCs to semivolatile or nonvolatile 

SOA species. Orange font depicts the VBS model for S/IVOCs. Red font depicts 

particle-phase accretion reactions while purple font depicts particle-phase 

hydrolysis reactions. Green font represents heterogeneous processes. Blue font 

shows cloud-processed aerosol and yellow font shows aerosol water associated with 

the organic phase. Gray boxes are nonvolatile primary organic aerosol (POA) 

species. Double-sided arrows represent reversible processes and one-sided arrows 

represent irreversible processes. Dashed lines represent processes that are 

dependent on relative humidity. The diagram includes the AERO7 mechanism plus 

the three VCP-forming pathways specific to this work (thick boxes in red). See 

AE7I Species Table (2016/2021) for species descriptions. 

 

“CMAQv5.3.2+VCP” case illustrate the impact of the new representation of VCP  

emissions and chemistry against the current status of VCPs in CMAQ. Results from 

the CMAQv5.3.2 case are presented primarily in the SI. 

2.2.3.3 Comparison with observations 
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Observational data are provided by a suite of instruments deployed during the 2010 

CalNex campaign in Pasadena. There were two data collection sites in the CalNex 

campaign—Pasadena and Bakersfield—and model predictions are compared to 

measurements made at the Pasadena site, which is located in the Los Angeles Basin 

approximately 18 km downwind of the urban core (Ryerson et al., 2013). PM1 (fine 

particulate matter with diameter < 1 m) OA data were obtained with an aerosol mass 

spectrometer (AMS) and have been analyzed via positive matrix factorization (PMF) 

to determine its composition (Hayes et al., 2013). Formaldehyde (HCHO) data are 

provided in Warneke et al. (2011) and carbon monoxide (CO) data are available from 

Santoni et al. (2014). Ozone data throughout California were obtained from the EPA 

AQS monitoring network for 178 sites operating during the simulation period (US 

EPA, 2013). Hourly ozone concentrations were used to calculate daily maximum 8-

hour average (MDA8) ozone concentrations. 

2.3 Results & Discussion 

2.3.1 VCP emissions and implications for SOA 

VCP emissions were split almost equally between species that do and do not form 

SOA. The SAPRC07TIC_AE7I_VCP speciation mapping (Figure 2.2) indicates 

56.4% (4.8 x 107 kg year-1) of Los Angeles County VCP emitted mass does not form 

SOA. This mass includes small species commonly used as solvents, such as ethanol, 

acetone, and small alkanes. The remaining 43.6% (3.7 x 107 kg year-1) of Los Angeles 

County emissions are assigned to model surrogates that form SOA. 3.5% of the total 

emissions are assigned to siloxanes, 7.8% to oxygenated IVOCs, 11.8% to 

nonoxygenated IVOCs, and 20.4% to traditional SOA precursors, such as VOC 

alkanes, toluene, and other aromatics. The volatility and SOA yields of species in 

each category are summarized in Figure 2.S1. 

Figure 2.2 indicates that in traditional model processing, precursors to SOA are 

systematically discarded from chemistry calculations. As described in Section 2.1, 

low-volatility emissions (i.e., NROG, NVOL, and IVOC) do not participate in SOA 

or radical chemistry in traditional SAPRC07TIC_AE7I which is a key issue in 
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representing SOA mass. The inner ring of Figure 2.2 depicts the fraction of each 

category that was originally assigned to inactive species (NROG, NVOL, and IVOC; 

hatched) versus other existing surrogates (solid). 2.6 x 107 kg year-1 (30.7%) of the 

total VCP emissions were originally assigned to these surrogates and did not 

participate in any atmospheric chemistry processes. Using the new speciation and 

mechanism, 1.8 x 107 kg year-1 (21.2% of total VCP emissions) were reassigned to 

surrogates that form SOA in the model (hatched inner ring: red, blue, orange, and 

purple). The remaining 8.0 x 106 kg year-1 (9.4% of total VCP emissions; inner ring 

hatched green) is comprised of species with SOA yields of zero and were not 

reassigned to SOA-forming surrogates. 

Averaged over the duration of the CalNex campaign, VCPs are predicted to be a 

larger source of IVOCs than mobile sources, as shown by the increase in gas-phase 

IVOC mass in the CMAQv5.3.2+VCP case compared to the zero VCP case (Figure 

2.S2). Across mobile and VCP sources during CalNex, CMAQ predicts 6.4 g m-3 

of the gas-phase IVOC mass is nonoxygenated and 2.6 g m-3 of the IVOC mass is 

oxygenated (Figure 2.S2). The observed campaign-average total IVOC concentration 

was 10.5 g m-3 (Zhao et al., 2014), with 6.3 g m-3 attributed to hydrocarbon-like 

IVOCs and 4.2 g m-3 attributed to oxygenated IVOCs. However, this observed 

estimate of oxygenated IVOCs is conservative (lower bound) based on the 

experimental method employed by Zhao et al. (2014). Thus, the predicted 

nonoxygenated IVOC mass, which includes contributions from both mobile and VCP 

sources, reproduces observations with high fidelity. CMAQ, which only considers 

IVOCs from VCP and mobile sectors, underpredicts the mass of oxygenated IVOCs 

by 38%, suggesting additional missing products of oxidation or emissions. 

The new SOA systems combined with traditional SOA precursors in CMAQ resulted 

in an effective SOA yield for the VCP sector—defined as the emission-weighted 

average of the individual species’ mass-based SOA yields—of 5.6% for Los Angeles 

County. This Los Angeles County yield is in good agreement with the work of Qin 

et al. (2021), that found a 5% yield led to SOA predictions consistent with ambient 
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observational constraints. The U.S. effective VCP SOA yield (5.3%) is only slightly 

lower than the yield expected for Los Angeles, due to differences stemming from the 

variability in the composition of VCP emissions nationwide versus in Los Angeles. 

 

Figure 2.2: Percentage of the VCP emissions assigned to each category of CMAQ 

surrogates using the SAPRC07TIC_AE7I_VCP speciation profiles. The total rate 

of VCP emissions in Los Angeles County is 8.3 x 107 kg yr-1. The outer ring depicts 

the percentage of total VCPy-derived emissions assigned to each of the three new 

VCP categories (siloxanes in red, oxygenated IVOCs in blue, and nonoxygenated 

IVOCs in orange), the traditional SOA precursors described by existing model 

surrogates (purple), and existing surrogates that do not form SOA (green). The 

inner ring gives an indication of the original assignments of each of the outer ring 

categories. Hatching indicates emissions originally assigned to model surrogates 

that do not participate in model chemistry: IVOC, NVOL, and NROG. Solid colors 

represent other surrogate assignments. 

2.3.2 CMAQ results: SOA, ozone, and formaldehyde 

Modeled PM1 SOA increased considerably in response to the newly implemented 

VCP emissions and chemistry, bringing model predictions into closer agreement with 

observations. Daily maximum PM1 SOA concentrations increased from 1.4 g m-3 

(-79% mean bias) in the zero VCP case to 2.8 g m-3 (-58% mean bias) in the 

CMAQv5.3.2+VCP case, compared to the observed peak value of 6.6 g m-3 (Figure 

2.3a). The diurnal distributions resulted from photochemistry and the sinusoidal 
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distribution of VCP emissions that peak at 12:00 local time. Modeled PM1 SOA 

concentrations improved for all mass loadings and all hours of the day, with the slope 

of modeled versus observed concentrations increasing from 0.23 in the zero VCP 

case to 0.43 in the CMAQv5.3.2+VCP case (Figure 2.4a). Results for the 

CMAQv5.3.2 case are given in Figs. 2.S3 and 2.S4. Modeled PM2.5 SOA displayed 

similar behavior as PM1 SOA; i.e., the organic fraction and secondary organic 

fraction of PM2.5 was only marginally smaller than the corresponding fractions of 

PM1 and followed the same diurnal pattern. 

The difference between hourly averaged total (i.e., not size-resolved) SOA 

concentrations in the zero VCP and CMAQv5.3.2+VCP case are shown in Figure 

2.3b and the contributions to that difference from categories of SOA surrogates are 

shown in Figure 2.3c. Of the three new categories of VCP emissions, nonoxygenated 

IVOC precursors formed the most SOA in CMAQ. The increased SOA from the 

nonoxygenated IVOC VCP precursors reached a peak concentration of 1.14 g m-3, 

equal to 69% of the total noontime difference. This can be explained by the high SOA 

yields of the individual species (Figure 2.S1) and the model surrogates. 

SOA from oxygenated IVOC VCP precursors reached a peak concentration of 0.11 

g m-3 (6.7% of the SOA difference). While oxygenated IVOC emissions were 

similar in abundance to nonoxygenated IVOC emissions (Figure 2.2), these species 

lead to less SOA formation due to their lower SOA yields (Figure 2.S1); higher 

degrees of oxygenation tend to promote fragmentation upon reaction with OH 

(Jimenez et al., 2009), producing smaller molecules with higher volatilities and lower 

potential to form SOA. It is possible that the net yield of modeled SOA from 

oxygenated IVOC precursors will increase as the results from more laboratory studies 

become available, or if a more detailed model is used. For example, particle-phase 

oligomerization reactions from oxygenated IVOC precursors would produce 

nonvolatile aerosol products, but this chemistry has not yet been investigated in an 

atmospheric chamber.  
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Siloxanes formed very little SOA, reaching a maximum of 21 ng m-3 (1.3% of the 

SOA difference) at noon. Despite having nonnegligible SOA yields (Figure 2.S1) 

and emission rates (Figure 2.2), siloxanes react with OH on long time scales (Table 

2.1). As such, this results in low localized SOA mass, which is consistent with other 

modeling and laboratory studies that have predicted siloxanes to form SOA on the 

order of ng m-3 or less (Charan et al., 2021; Milani et al., 2021; Janechek et al., 2017). 

The low resultant SOA mass demonstrates that while gas-phase siloxanes serve as a 

useful tracer for personal care product and adhesive emissions from VCPs (Gkatzelis 

et al., 2021), particle-phase products from siloxane oxidation may not form quickly 

enough to serve as a reliable tracer for these emissions.  

While traditional species accounted for the greatest fraction of VCP SOA precursor 

emissions that lead to SOA formation (Figure 2.2), they contributed only 23% (0.39 

g m-3) of the increased noontime SOA in the CMAQv5.3.2+VCP case. These 

traditional SOA precursors form SOA less efficiently than the IVOC surrogates 

(Figure 2.S1), so they result in less SOA formation than IVOCs despite higher 

emissions. 

While this work indicates oxygenated IVOCs form much less SOA than 

nonoxygenated IVOCs, more work is needed to determine if this result is robust 

across all emission sectors and in future conditions. Oxygenated IVOCs represent a 

class of emissions that has traditionally been discarded from regional models, but 

have become an important research focus with the rising importance of VCP 

emissions (Khare & Gentner, 2018). The contribution of oxygenated IVOCs and 

siloxanes to ambient conditions may be spatially variable and continue to evolve as 

product formulations shift towards exempt VOCs which tend to be oxygenated.  

Oxygenated IVOCs from other emissions sources, such as meat cooking or wood 

burning, could be abundant but were not considered here. Additionally, we do not 

know if SOA from these precursors has a health impact higher or lower than average 

PM2.5. 
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The SOA from VCP IVOCs reached a daily maximum of 1.25 g m-3 on average at 

noon (Figure 2.3c). IVOCs from mobile sources contributed an additional 1.1 g m-

3 at noon (Lu et al., 2020). Therefore this updated CMAQ model predicted a total 

IVOC-derived SOA concentration of 2.35 g m-3, equivalent to 35% of the total 

observed above-background PM1 SOA concentration (6.6 g m-3). Previous work 

stated that 40-85% of above-background SOA concentrations in Pasadena are 

attributable to S/IVOCs (Hayes et al., 2015), suggesting that additional processes are 

still needed in the model. This will be discussed further in Section 3.3. 

 

Figure 2.3: a) Average hourly concentrations of background-corrected PM1 SOA 

observed and simulated by the zero VCP and CMAQv5.3.2+VCP modeling cases 

May 15–June 15. Box and whiskers show all hourly concentrations observed by 

AMS at the CalNex site. A constant background value was removed from all 

observed concentrations according to the method in Hayes et al. (2015). The 

background value of each simulation was determined by averaging the lower 50% 

of hourly concentrations from 00:00 LT to 04:00 LT and subtracting that from each 

curve. b) Average hourly concentration of total (not size-resolved) SOA for the two 

simulation cases and their difference (CMAQv5.3.2+VCP – zero VCP). c) 

Difference in hourly concentrations of total SOA by category. 

Formaldehyde is one of the most abundant VOCs in the atmosphere and observations 

of this compound can serve many purposes. Biomass burning, vehicles, and other 

urban sources emit formaldehyde, and because of its short lifetime (~hours), it can 

serve as a proxy for local organic emissions. It is also formed in the atmosphere when 

VOCs undergo radical reactions, oxidize, and fragment, so it serves as an indicator 
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for SOA chemistry since it is formed by many of the same reactions that also lead to 

SOA formation (Seinfeld & Pandis, 2016). In addition, it is depleted by photolysis 

and is an important source of radical initiation reactions (Griffith et al., 2016). 

Formaldehyde can be retrieved directly by satellites (Levelt et al., 2018), which can 

be used to validate ground data, evaluate model predictions, and predict OA 

concentrations remotely (Liao et al., 2019). For all of these reasons, formaldehyde is 

a useful indicator of VOC chemistry in a model. 

Predicted formaldehyde concentrations improved in response to the new VCP 

emissions and chemistry, indicating that model updates improve the representation 

of VOC chemistry beyond SOA in the model. Similar to predicted SOA, 

formaldehyde concentrations increased at all times, with the ratio of modeled to 

observed values increasing from 0.58 in the zero VCP case to 0.75 in the 

CMAQv5.3.2+VCP case (Figure 2.4b). The diurnal profile of hourly averaged 

formaldehyde concentrations is given in Figure 2.S3. This work focused primarily 

on improving the representation of SOA from VCPs, so radical chemistry for the new 

SOA precursors was treated using existing alkane-like behavior (surrogates 

ALK1/2/3/4/5). With a more detailed representation of VCP radical chemistry, 

predicted formaldehyde concentrations may improve further.  

The bias in predicted ozone concentrations was also reduced by including VCP 

chemistry. The ratio of modeled to observed concentrations increased from 0.72 in 

the zero VCP case to 0.95 in the CMAQv5.3.2+VCP case (Figure 2.4c). Improved 

ozone is also seen for all operational AQS sites in the California modeling domain, 

with the modeled to observed ratio increasing from 0.63 in the zero VCP case to 0.70 

in the CMAQv5.3.2+VCP case (Figure 2.S5). The diurnal profile of hourly averaged 

ozone concentrations is given in Figure 2.S3. This study focused on VCP behavior 

in relation to SOA formation and used existing model species to capture ozone 

formation. Future work focusing on the ozone chemistry of VCPs could change the 

magnitude and diurnal profile of predicted ozone. 
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SOA can be facilitated by increases in oxidant abundance and chemical pathways 

from precursors to semivolatile or low-volatility products. Average noontime total 

SOA mass increased from 1.96 g m-3 in the zero VCP case to 3.62 g m-3 in the 

CMAQv5.3.2+VCP case (Figure 2.3b), an increase of 84.7%. Ozone concentration 

can be used as an indicator of oxidant burden and oxidation rates due to its high 

responsiveness, while OH concentrations may be less responsive (Qin et al., 2021). 

The average noontime ozone concentration increased from 43.0 ppb in the zero VCP 

case to 49.2 ppb in the CMAQv5.3.2+VCP case (Figure 2.S3c), an increase of 14.4%. 

Assuming ozone can serve as a proxy for oxidation rates, the improved ozone 

concentration suggests that ~14.4% of increased model SOA concentrations are due 

to an increase in the oxidant burden and oxidation rates. The SOA mass increased by 

a larger percentage (84.7%), indicating emissions and chemistry updates combined 

were approximately 5 times [ (84.7% - 14.4%) / 14.4%] more effective than enhanced 

oxidant levels alone in increasing SOA. This is consistent with the work of Qin et al. 

(2021), which found that the lack of key emitted precursors in models—rather than 

their associated radical chemistry—had the largest impact on PM2.5 formation. 

Additionally, we note that the default CMAQ model (CMAQv5.3.2) with baseline 

chemistry and VCP emissions predicted about the same amount of SOA as the zero 

VCP case (Figure 2.S3a). In contrast, ozone increased in the default CMAQv5.3.2 

model with VCPs (Figure 2.S3c). Since the oxidant burden increased noticeably in 

the CMAQv5.3.2 case but did not equate to a large increase in PM1 SOA, results 

suggest the oxidant level alone does not have a large influence on enhancing SOA if 

the relevant precursor pathways are not also implemented. 

The response of formaldehyde can similarly be compared to the change in oxidant 

burden due to VCPs. At noontime, average formaldehyde increased from 2.41 ppb in 

the zero VCP case to 2.80 ppb in the CMAQv5.3.2+VCP case, an increase of 16.2%. 

As above, we attribute ~14.4% of the increase in pollutant concentration to the 

increase in oxidation rates. While formaldehyde does contribute to the oxidant 

burden via photolysis and radical initiation, the contribution of formaldehyde to the 
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ROx radical budget is likely small and on the order of 10% (e.g., Griffith et al., 2016; 

Kaiser et al., 2015; Luecken et al., 2018). Thus, the increase in formaldehyde 

concentrations between simulation cases is likely due primarily to the increase in 

oxidation rate. The increase in formaldehyde between simulation cases, therefore, 

cannot be largely attributed to the addition of S/IVOC emissions and their ability to 

form formaldehyde as a byproduct of oxidation. This is consistent with the work of 

Coggon et al. (2021), which showed that vehicle VOCs perturb formaldehyde to a 

larger degree than VCP VOCs do, suggesting that VCP emissions and fragmentation 

chemistry may not be directly responsible for formaldehyde, but rather modulate 

formaldehyde formation via changes in oxidant abundance. 

 

Figure 2.4: Modeled concentrations predicted by CMAQ zero VCP case (green) 

and CMAQv5.3.2+VCP case (blue) vs. observations from the CalNex Pasadena 

ground site. The line with a slope of 1 is indicated with a gray dashed line. a) 

Hourly PM1 SOA. b) Hourly formaldehyde (HCHO). c) MDA8 O3. Background 

values were not removed from any panels. 

2.3.3 Features of remaining model bias 

The residual PM1 SOA bias in Pasadena is well-correlated with ambient temperature 

(Figure 2.5a). PM1 SOA bias is defined as modeled hourly concentrations minus 

observed hourly concentrations. At cooler temperatures in the overnight hours, bias 

is low and fluctuates around zero. However, as temperature increases towards midday 

and SOA concentrations increase, the bias becomes more negative, indicating greater 

model underprediction.  
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SOA concentrations can be a function of temperature based on precursor emissions 

and chemistry throughout the day. Previous work demonstrated that observed OA in 

Los Angeles is positively correlated with temperature, and declining OA 

concentrations have been due largely to reductions of temperature-independent OA. 

Because this corresponds to a decline in anthropogenic emissions, they suggest that 

anthropogenically-derived OA is largely temperature-independent while 

biogenically-derived OA is largely temperature-dependent (Nussbaumer & Cohen, 

2021). Modeled OA is positively correlated with temperature, consistent with the 

observed Los Angeles OA, and is driven by the larger, secondary portion of OA, 

rather than POA (Figure 2.S7). However, the improvement to predicted SOA 

between simulation cases was seen unequally at different temperatures, as indicated 

by the larger reduction in absolute model bias at higher temperatures (Figure 2.5a). 

This suggests that the SOA derived from VCP species have a temperature-dependent 

response, in addition to the biogenic emissions cited in Nussbaumer & Cohen (2021). 

In particular, because nonoxygenated IVOCs were the dominant source of increased 

SOA predicted by the CMAQv5.3.2+VCP simulation, this work suggests that 

S/IVOCs are an important source of temperature-dependent SOA in Los Angeles.  

Because S/IVOCs have been shown to be a major constituent of modeled SOA and 

contribute to the correlation between SOA bias and temperature, other sources of 

S/IVOCs emissions may account for some of the remaining residual SOA bias in the 

model. For example, asphalt emissions are proposed to contribute 8-30% of total 

S/IVOC emissions in the South Coast Air Basin in Southern California and have 

SOA mass yields exceeding 10% (Khare et al., 2020). Their potential to form SOA 

is very large, and because asphalt emissions are highly temperature-dependent, the 

SOA increase would be seen largely during midday resulting in an improvement of 

high-temperature SOA bias. In addition, the underprediction of oxygenated gas-

phase IVOCs (Section 3.1) suggests that additional sources of oxygenated IVOC 

precursors may be missing from the complete inventory. One possible explanation of 

the temperature-dependence of the SOA bias is that modeled SOA volatility is too 
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high. But, oxygenated SOA is nonvolatile and nonoxygenated IVOC SOA is 

continually processed to lower volatility through gas-phase OH oxidation. 

Formaldehyde, CO, and POA are often used to understand the atmospheric evolution 

of SOA because they are products of the same anthropogenic activity and/or VOC 

oxidation chemistry that forms SOA. As such, they can be used to better understand 

the remaining sources of error in the model. POA is formed via combustion from 

vehicles, industrial processes, cooking, and biomass burning (Jathar et al., 2014; 

Huffman et al., 2009). CO and formaldehyde are emitted from many processes and 

formed as products of atmospheric VOC oxidation (Seinfeld & Pandis, 2016). These 

species are often used to understand the effect of dilution on SOA (Hayes et al., 

2013). Dilution is caused both by atmospheric transport away from emission sources, 

as well as the change in planetary boundary layer (PBL) height over the diurnal cycle. 

VCPs do not emit POA, CO, or formaldehyde, so any changes observed in their 

simulated concentrations were caused by chemical and physical processing in the 

existing model. 

The POA bias did not express the same temperature dependence as SOA, and thus 

POA is not affected in the same way in the model by the processes causing the 

temperature-dependence of SOA bias. Since VCPs do not emit POA and all other 

emission sources were consistent between simulation cases, the slight increase in 

POA concentrations between the zero VCP and CMAQv5.3.2+VCP cases (Figs. 2.5 

and 2.S7) is due to increased partitioning of semivolatile POA into the particle-phase 

resulting from higher total OA mass loadings (the treatment of semivolatile POA in 

CMAQ is described in Murphy et al. (2017)). The POA bias can be exclusively 

attributed to errors in combustion source emissions inventories and meteorological 

effects. The combustion source inventories also include emissions of gaseous SOA 

precursors, which may be incorrectly modeled even if the POA emissions are 

accurate, especially for cooking and biomass burning sources. While the POA bias 

does decrease with increasing temperature, it is positive at all temperatures and does 

not have larger underpredictions at higher temperatures (Figure 2.5b). Due to the 
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inconsistency between POA and SOA behavior, errors influencing the emission and 

transport of POA can likely not be used to describe the temperature dependence of 

SOA bias. The POA bias also does not provide information about the error in vapor 

emissions from combustion sources—including S/IVOCs—and their temperature-

dependence, and improving combustion emissions inventories may help to close the 

model-observation gap for SOA. 

CO is often used to account for the effects of dilution by scaling SOA to CO 

enhancement (∆CO = CO - CObackground). Negligible changes in the CO concentration 

were found between simulation cases considered here (Figure 2.S3) and the model 

CO bias is uncorrelated with temperature (Figure 2.5d). The consistency of predicted 

CO concentration between cases implies that CO is not affected by the emissions 

changes to the VCP sector and thus cannot separate SOA formation efficiency from 

lack of emitted precursors. CO enhancement serves as an effective indicator and 

correction factor for mobile source emissions in urban areas (e.g., Hayes et al., 2013; 

Ensberg et al., 2014; Woody et al., 2016), but this work indicates that CO is not an 

effective tracer for distinguishing VCPs from other sources. The lack of correlation 

between CO and temperature also implies that errors in the modeled PBL height at 

different times of day (and potential impact on dilution of pollutant concentrations) 

is not an important driver of the SOA bias temperature-dependence. 

In contrast to POA and CO, the formaldehyde bias demonstrated the same trend with 

temperature as SOA (Figure 2.5c). This suggests that formaldehyde is affected by 

emissions, chemistry, and dilution changes similarly to SOA. This is supported by 

the stronger correlation seen between SOA and formaldehyde compared to the 

correlation between SOA and POA or CO (Figure 2.S8). Therefore, formaldehyde 

may provide more information about the errors in modeling VOC chemistry and 

possibly SOA formation. It is possible that remaining formaldehyde bias is due to 

missing formaldehyde emissions. The VCP inventory includes near-zero emissions 

of formaldehyde, but formaldehyde is emitted from wooden furniture and emission 

rates increase with temperature (Y. Wang et al., 2021). This may account for some 
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of the temperature-dependence of formaldehyde bias, but likely not the entirety since 

the VCP emissions inventory has been evaluated with select ambient VOC 

measurements with low error (Seltzer et al., 2021). One possible explanation of the 

temperature-dependence of both the SOA and formaldehyde biases is missing 

sources of emissions and resulting chemistry. Previous work has shown that 

formaldehyde formation is particularly sensitive to the emissions/chemistry of 

alkenes (e.g., isoprene) and, to a lesser extent, alkanes and aromatics  (Luecken et al., 

2018), so these precursors likely indicate missing emissions as a source of error in 

our model. While the radical chemistry of these hydrocarbon precursors are included 

in the model, additional missing chemistry may be causing some of the error. 

Chemical processes that have not been included in the mechanism include 

autooxidation (Crounse et al., 2013)—which forms low-volatility SOA—and 

formaldehyde potentially formed from the fragmentation of S/IVOC precursors to 

SOA. The inclusion of these missing emissions and/or chemistry would further 

impact oxidant levels, which we have shown to be an important source of modeled 

SOA and formaldehyde. As stated above, the behavior of POA and CO bias suggest 

that errors in combustion emissions and PBL height cannot fully describe the 

temperature-dependence of SOA bias, and POA and CO are better indicators of 

mobile and industrial sources. Formaldehyde may instead serve as a better indicator 

of SOA production in urban areas where VCPs are important atmospheric 

constituents. While many factors may contribute to the temperature-dependence of 

SOA and formaldehyde bias, future work must investigate the importance of these 

factors and tracking the response of formaldehyde to these changes alongside SOA 

could provide insight.  
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Figure 2.5: Bias (modeled - observed) of hourly concentrations vs. modeled 

temperature for the zero VCP case (green) and CMAQv5.3.2+VCP case (blue). 

Hourly concentrations are binned into five temperature ranges of 5C each and the 

data in each bin is represented by a box-and-whisker plot. The horizontal midline 

depicts the median of the data, the edges of the box extend from the lower to upper 

quartile of the data, and the whiskers extend from the minimum to the maximum of 

the data. a) PM1 SOA bias (g m-3). b) PM1 POA bias (g m-3). c) Formaldehyde 

(HCHO) bias (ppb). d) CO bias (ppb). 

2.4 Conclusions and future work 

We have shown that VCPs are a major source of SOA in urban atmospheres by 

introducing updated emissions and VCP-relevant chemistry into CMAQ that better 

represents SOA precursors emitted from these sources. This includes three new 

categories of emissions: siloxanes, oxygenated IVOCs, and nonoxygenated IVOCs. 

VCP emissions from the VCPy framework (Seltzer et al., 2021) were used to 

parameterize the new chemistry, and the mapping of VCP emitted species to model 
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surrogates was reviewed and updated based on species structure, volatility, and 

estimated SOA yield. 

The new model chemistry and emissions inventory doubles the predicted SOA 

concentrations above background levels, increasing the average daily maximum PM1 

SOA concentration by 1.4 g m-3, equating to a 21% decrease in the absolute mean 

bias. Most of the increased SOA mass was formed from nonoxygenated IVOC VCP 

precursors, followed by SOA formed from traditional VOC precursors and 

oxygenated IVOC precursors, with little SOA formed from siloxanes. Improvements 

were additionally seen in simulated formaldehyde and ozone concentrations. 

Future work should consider how VCP emissions have evolved over time. VCPy 

version 1.0 requires information about VCP product composition and usage patterns 

from broad sources, including product surveys, economic statistics, and population 

distributions. These metrics change over time and will affect both the speciation and 

emission rates of organic compounds from VCPs. Diurnal and seasonal patterns of 

VCP emissions should also be updated to reflect more recent observations (Gkatzelis 

et al., 2021).  

The remaining error in VCP-derived SOA predictions may reflect our lack of 

understanding about the oxidation pathways of low-volatility and/or oxygenated 

species. More information is needed about the structure, volatility, and reactivity of 

the products of atmospheric oxidation reactions, plus the impacts of wall loss and 

NOx concentrations on SOA yields from experiments, so that models and 

parameterizations like the VBS can be developed. As this data become available, 

models can be improved to represent SOA formation from oxygenated precursors 

and S/IVOCs emitted from VCPs. In addition, the correlation between SOA 

concentration bias and temperature suggests residual model error is associated with 

missing sources of S/IVOC emissions, including emissions from asphalt (Khare et 

al., 2020), combustion sources, or other S/IVOCs that have large potential to form 

SOA. The formaldehyde bias demonstrates a similar relationship to temperature as 

the SOA bias, implying that investigations of formaldehyde could provide insight 
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into VOC chemistry leading to the formation of SOA from VCPs. Including S/IVOC 

emissions and their atmospheric chemistry will be important for future air quality 

models. 

2.5 Data Availability 

CalNex observations are publicly available at 

https://csl.noaa.gov/groups/csl7/measurements/2010calnex/. The full VCPy dataset 

is available by downloading VCPyv1.0 at https://doi.org/10.23719/1520157. The 

SAPRC07TIC_AE7I_VCP speciation profile, CMAQ chemical mechanism source 

code, and CMAQ output are posted at https://doi.org/10.23719/1522655 (U.S. EPA, 

2021b). 
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2.7 Supporting Information 

2.7.1 SAPRC07TIC_AE7I_VCP assignment rules 

Note: Mapping for SOA and radical chemistry are independently treated. Therefore, 

double mapping may occur. Rules are based on contents of SMILES, kOH, calculated 

log(C*), number of oxygens (nO), number of carbons (nC), and estimated SOA yield. 

SOA Chemistry -  

1. If SMILES string contains “Si” (i.e., it’s a siloxane or silane), add it fully 

(fraction = 1.0) to SILOX. 

2. If a species has a SPECIATE_ID = 9001-9032 (i.e., it’s new), follow these 

rules to assign it fully (fraction = 1.0) to one of the new surrogates. 

IVOP3/4/5/6/5ARO/6ARO definitions are based on Lu et al. (2020). If a 

species is mapped to IVOC, NVOL, or NROG (US EPA, 2019), follow these 

rules to re-assign the existing fraction. 

a. If the species has an estimated SOA yield = 0.0%, assign it to NONR. 

b. If the species has nO > 0 and an estimated SOA yield > 0.0%, assign it to 

SOAOXY. 

c. If the species has nO = 0, an estimated SOA yield > 0.0%, and has log(C*) 

> 6.5, assign it to SOAALK (both aromatic and aliphatic species). 

d. If the species has nO = 0, an estimated SOA yield > 0.0%, is aromatic, and 

has 5.5 < log(C*) < 6.5, assign it to IVOCP6ARO. 
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e. If the species has nO = 0, an estimated SOA yield > 0.0%, is aromatic, and 

has log(C*) < 5.5, assign it to IVOCP5ARO. 

f. If the species has nO = 0, an estimated SOA yield > 0.0%, is aliphatic, and 

has 5.5 < log(C*) < 6.5, assign it to IVOCP6. 

g. If the species has nO = 0, an estimated SOA yield > 0.0%, is aliphatic, and 

has 4.5 < log(C*) < 5.5, assign it to IVOCP5. 

h. If the species has nO = 0, an estimated SOA yield > 0.0%, is aliphatic, and 

has 3.5 < log(C*) < 4.5, assign it to IVOCP4. 

i. If the species has nO = 0, an estimated SOA yield > 0.0%, is aliphatic, and 

has log(C*) < 3.5, assign it to IVOCP3. 

3. If an existing species is mapped to ALK4/5 and has an estimated SOA yield 

> 0.0%, assign it fully (fraction = 1.0) to SOAALK. 

4. Four species are uniquely treated: 

a. Divinyl Benzene (SPECIATE_ID = 2081): assign fully (fraction = 1.0) 

to ARO2MN. 

b. Styrene (SPECIATE_ID = 698): assign fully (fraction = 1.0) to 

ARO2MN. 

c. Dimethyl Succinate (SPECIATE_ID = 420): assign fully (fraction = 1.0) 

to SOAOXY. 

d. Fragrances (SPECIATE_ID = 467): assign fully (fraction = 1.0) to 

IVOCP6 and fully (fraction = 1.0) to ALK5. 

5. Maintain all other original SAPRC07TC_AE7 assignments. 

6. Replace all ARO2 assignments with ARO2MN to match CMAQ’s EmissCtrl 

naming. 

Radical Chemistry -  

1. If SMILES string contains “Si” (i.e., it’s a siloxane or silane), ignore. 

According to the SAPRC07 database (Carter, 2010), siloxanes have a 

negative MIR. No applicable surrogate available in SAPRC07. 

2. If a species has a SPECIATE_ID = 9001-9032 (i.e., it’s new), follow these 

rules to assign it fully (fraction = 1.0) to ALK1/2/3/4/5. If a species is mapped 
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to IVOC, NVOL, or NROG, follow these rules to re-assign the existing 

fraction. kOH rules are based on definitions in CMAQ (US EPA Office of 

Research and Development, 2020). 

a. If 1.35E-13 < kOH < 3.38E-13 cm3 molec-1 sec-1, assign to ALK1. 

b. If 3.38E-13 < kOH < 1.69E-12 cm3 molec-1 sec-1, assign to ALK2. 

c. If 1.69E-12 < kOH < 3.38E-12 cm3 molec-1 sec-1, assign to ALK3.  

d. If 3.38E-12 < kOH < 6.77E-12 cm3 molec-1 sec-1, assign to ALK4. 

e. If 6.77E-12 > kOH, assign to ALK5. 

3. Maintain all other original SAPRC07TC_AE7 assignments. 
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Figure 2.S1: SOA mass yield vs. log(C*) for 401 VCPy species categorized by their 

SAPRC07TC_AE7_VCP assignments. White shading indicates the range of VOCs 

with log(C*) > 6.5, orange shading indicates the range of IVOCs with 2.5 < log(C*) 

< 6.5, and green shading indicates the range of SVOCs with log(C*) < 2.5. SOA 

yield increases with decreasing volatility. The method of assigning SOA yields to 

each species is described in Seltzer et al. (2021) and the SOA yield data is provided 

in Presto et al. (2010), Tkacik et al. (2012), Cappa & Wilson (2012), McDonald et 

al. (2018), Ng et al. (2007), Hildebrandt et al. (2009), Janechek et al. (2019), Wu & 

Johnston (2017), Li & Cocker (2018), and Charan et al. (2020). 
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Figure 2.S2: Average hourly concentrations of gas-phase IVOCs (oxygenated + 

nonoxygenated) predicted by the model for the zero VCP (green) and CMAQv5.3.2 

(blue) cases. Horizontal lines depict campaign-average values for hydrocarbon-like 

IVOCs (6.3 g m-3) and oxygenated + hydrocarbon-like IVOCs (10.5 g m-3) from 

Zhao et al. (2014). 
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Figure 2.S3: Average hourly concentrations observed and simulated by all three 

modeling cases May 15–June 15. Box and whiskers show all hourly concentrations 

observed at the Pasadena CalNex site. a) Background-corrected PM1 SOA. A 

constant background value was removed from all observed concentrations 

according to the method in Hayes et al. (2015). The background value of each 

simulation was determined by averaging the lower 50% of hourly concentrations 

from 00:00 LT to 04:00 LT and subtracting that from each curve. b) Formaldehyde 

(HCHO). Background values were not removed. c) Ozone (O3). Background values 

were not removed. d) Carbon monoxide (CO). Background values were not 

removed. Box and whiskers were removed because they obscured the y-axis scale. 
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Figure 2.S4: Modeled concentrations predicted by CMAQv5.3.2 case (red) and 

CMAQv5.3.2+VCP case (blue) vs. observations from the CalNex Pasadena ground 

site. a) Hourly PM1 SOA. b) Hourly formaldehyde (HCHO). c) MDA8 O3. 

Background values were not removed from any panels. 

 

 

Figure 2.S5: Modeled vs. observed MDA8 O3 concentration for 178 routine 

monitoring sites from the AQS monitoring network in California for the zero VCP 

case (a), CMAQv5.3.2 case (b), and CMAQv5.3.2+VCP case (c). 
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Figure 2.S6: Bias (modeled - observed) of hourly concentrations vs. hourly 

modeled temperature for the CMAQv5.3.2 case (red) and CMAQv5.3.2+VCP case 

(blue). a) PM1 SOA bias (g m-3). b) PM1 POA bias (g m-3). c) Formaldehyde 

(HCHO) bias (ppb). d) CO bias (ppb). 
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Figure 2.S7: PM1 SOA (a) and PM1 POA (b) vs. temperature for zero VCP case 

(green), CMAQv5.3.2+VCP case (blue), and CalNex observations (black). 

Background values were not removed from any concentrations. 

 

 

Figure 2.S8: PM1 SOA vs. PM1 POA (a), PM1 SOA vs. CO (b), PM1 SOA vs. 

HCHO (c) for zero VCP case (green), CMAQv5.3.2+VCP case (blue), and CalNex 

observations (black). Background values were not removed from any 

concentrations. 
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C h a p t e r  3  

DEVELOPMENT OF A NEW MODEL FRAMEWORK FOR LOS 

ANGELES METEOROLOGY AND AIR QUALITY IN LOS 

ANGELES IN 2020 

This work is in progress and will be completed and submitted for publication within 

the next few months. 

3.0 Abstract 

The Los Angeles Basin has high anthropogenic emissions and unique meteorological 

phenomena which makes it an important study location for understanding the 

chemistry of atmospheric pollutants and impact of mitigation policies. Chemical 

transport models (CTMs) provide regional-scale input by taking as input 

meteorology, emissions, and land surface information to represent complex chemical 

and physical processes. Here we develop those model inputs and new chemical 

frameworks to represent the Los Angeles Basin in 2020. We developed state-of-the-

science inputs of meteorology, volatile chemical product (VCP) emissions, onroad 

vehicle emissions, biogenic emissions, and other anthropogenic emissions to be used 

in the Community Multiscale Air Quality (CMAQ) model with new chemistry to 

represent secondary organic aerosol (SOA) and ozone formation from VCPs and 

onroad vehicles. The application of these inputs are discussed in Chapter 4. 

3.1 Background 

The Los Angeles (LA) area is a highly-studied region for air quality research due to 

its high urban emissions and unique meteorology. The greater LA area is often 

referred to as the LA Basin because the sprawling urban area is surrounded by ocean 

to the west and mountains to the east, north, and south (Figure 3.1). This traps 

pollutants into a basin, where intense solar radiation leads to the formation of 

secondary pollutants such as ozone (O3) and secondary organic aerosol (SOA). The 

precursors to these secondary species are gases and aerosol emitted from both human 
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and natural sources. Natural emissions from trees, soil, wildfires, and more are low 

in urban areas but can be transported from the ocean or from outside the basin. 

Anthropogenic emissions dominate the total mass of emitted material and include 

sources such as vehicles, cooking, oil and gas extraction, agriculture, and volatile 

chemical products (VCPs), which were introduced in Chapter 2. 

 

Figure 3.1: Los Angeles Basin. 

The composition of emissions have changed over time as vehicles have become 

cleaner, allowing other sources of emissions to become more important. In particular, 

VCPs are predicted to make up over half of anthropogenic emissions (Qin et al., 

2021). Despite these changes, modeling studies which focus on Los Angeles typically 

model 2010 to overlap with the CalNex campaign (Ryerson et al., 2013). We lack 

detailed modeling studies of more recent years, and obtaining a model framework for 

contemporary LA is one of our goals. 

The modeling period covers April, 2020, during the strict COVID-19 lockdown 

regulations in LA. Onroad vehicle miles traveled (VMT) declined significantly 

during this month as many people remained at home, and this altered the composition 

of anthropogenic emissions and resulting pollutant levels (Parker et al., 2020). 

However, this time period also overlapped with many weather patterns that are 

unusual to this spring period in LA, namely a rainy period and a very hot period. 

Untangling the relative impacts of decreased emissions versus meteorology is 

possible using the framework we develop here. Many studies in other parts of the 
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world investigated the impact of reduced vehicle emissions, specifically nitrogen 

oxide (NOx) decreases, and found O3 increases in many heavily polluted areas 

because of the O3 dependence on NOx reductions in a NOx-saturated regime. In 

contrast, some regions saw O3 decreases as NOx decreased, representative of a NOx-

limited regime. Recent work suggests that LA may be transitioning from NOx-

saturated to NOx-limited or NOx-insensitive, and we aim to understand this at 

multiple locations throughout the basin (Laughner & Cohen, 2019; Parker et al., 

2020). 

In this work, we develop a model framework to represent the LA Basin in 2020. We 

develop CMAQ model inputs which represent meteorology, anthropogenic 

emissions, natural emissions, and land surface properties. This framework combines 

state-of-the-science models in all categories to provide the newest and most accurate 

representation of the LA atmosphere. The model configurations described here can 

be used by other researchers to develop similar simulations in other locations 

throughout the United States, and the model inputs and outputs used in this study will 

be publicly available in a future publication for use by others. 

3.2 Model Development  

The model framework is summarized in Figure 3.2 and described in detail below. 

 

Figure 3.2: Model framework. 
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3.2.1 Meteorology 

Meteorological simulations are performed using the Weather Research and 

Forecasting (WRF) Model (Skamarock et al., 2008). WRF is a numerical model that 

takes as input climatological data measured on a coarse-scale grid and predicts 

weather patterns on a finer scale using theoretical and empirical schemes. We use 

climatological data from the ERA5 Reanalysis Dataset (Hersbach et al., 2018), which 

contains hourly data on a 0.25° x 0.25° grid at the surface and on 37 pressure levels 

from 100 to 1 hPa. We configure WRF to use three nested domains to resample and 

simulate the meteorological variables from the input resolution to 16-km, 4-km, and 

then 1-km resolution (Figure 3.3). WRF simulates variables such as temperature, 

pressure, wind speed, precipitation rates, albedo, soil properties, and water content 

on a 3D grid, which are used in the chemical transport model (CTM) to calculate 

transport of pollutants, solar irradiation, and deposition. 

 

Figure 3.3: Three nested domains used in the WRF simulations. The outer domain 

has a resolution of 16 km x 16 km, the middle domain has a resolution of 4 km x 

4 km, and the inner domain has a resolution of 1 km x 1km. 
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3.2.2 Chemical Transport Model (CTM)  

3.2.2.1 Base model configuration 

The Community Multiscale Air Quality (CMAQ) model is a CTM which predicts 

the hourly concentrations of atmospheric pollutants by simulating the emissions, 

transport, and chemical transformation of many species, as described in Chapter 1. 

We use CMAQ version 5.3.2 (US EPA Office of Research and Development, 2020), 

which is documented and evaluated in Appel et al. (2021). The gas-phase chemical 

mechanism used is SAPRC07TIC (Carter, 2010), the organic aerosol-phase chemical 

mechanism is AERO7 (Pye et al., 2013; Xie et al., 2013), the inorganic aerosol-phase 

chemical mechanism is ISORROPIA II (Fountoukis & Nenes, 2007), and the 

aqueous-phase chemical mechanism used is the Asymmetric Convection Model 

(ACM) version 2 (Binkowski & Roselle, 2003). The M3Dry module is the air-surface 

exchange module used to represent the dry deposition of gas- and particle-phase 

species (Pleim & Ran, 2011; Appel et al., 2021) and uses the Noah land surface model 

(Alapaty et al., 2008). 

CMAQ includes the Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) 

and Integrated Source Apportionment Method (ISAM) modules to aid in 

understanding the source apportionment of atmospheric pollutants. DESID allows 

for the separation of emissions inputs into multiple categories, the creation of 

chemical families, and complex scaling methods (Murphy et al., 2021). The scaling 

methods can be used to add, remove, or scale emissions of specified pollutants from 

individual emissions streams, which simplifies the process of modifying emissions 

and will be used in our source apportionment sensitivity simulations explained in 

Chapter 4. ISAM calculates the fractional contribution of multiple sources to 

concentrations of ozone and its precursors, all within a single simulation (Kwok et 

al., 2013; Kwok et al., 2015). For the concentrations of ozone, VOCs, and nitrogen-

containing species, the ISAM module calculates the contribution from each emission 

source, initial conditions, boundary conditions, and transport. The DESID and ISAM 

modules were released with the newest version of CMAQ and will be used to 
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understand the contribution of various sources to ozone, NOx, VOCs, and aerosol 

species, as described further in Chapter 4. 

3.2.2.2 Chemical mechanism updates 

The SAPRC07TIC_AE7I chemical mechanism was updated to include the emissions 

and chemistry of volatile chemical product (VCP) species and IVOCs from onroad 

mobile sources. The VCP emissions and chemistry treatment was described in 

Chapter 2 and Pennington et al. (2021). The onroad mobile IVOC chemistry was 

described in Q. Lu et al. (2020) and updated in the model by me. The SOA chemical 

mechanism is summarized in Figure 2.1. 

3.2.3 Emissions 

3.2.3.1 Onroad vehicles 

Onroad mobile emissions have historically been the most important source of 

atmospheric pollution in the LA Basin, but this has evolved as vehicles have become 

cleaner (Khare & Gentner, 2018). Onroad vehicles can be separated into two 

categories, light duty and heavy duty, based on the weight of the vehicle. Light duty 

vehicles are smaller, tend to be passenger cars, and tend to use gasoline fuel. On the 

other hand, heavy duty vehicles are larger, tend to be used for transport, and tend to 

use diesel fuel. These categories are represented separately in the model because 

there has been historical interest in understanding what class of vehicles and fuel to 

target for emissions regulations (e.g., Bahreini et al., 2012; Ensberg et al., 2014; 

Gentner et al., 2017; Q. Lu et al., 2020). Additionally, because of the different uses 

of these types of vehicles, their driving and therefore emissions patterns differ 

spatially and temporally. 

Onroad mobile emissions are represented by the EMission FACtor (EMFAC2017) 

emissions inventory and model projected to year 2020 (California Air Resources 

Board, 2018). The projection to year 2020 includes 2020-specific meteorological 

effects on emission rates. The Emissions Spatial and Temporal Allocator (ESTA) 

model uses 1 km x 1 km spatial surrogates and California Vehicle Activity Database 
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(CalVAD) temporal surrogates (Ritchie & Tok, 2016) to calculate hourly, gridded 

emissions on the LA domain. The speciation profiles used in ESTA include the 

surrogate NMOG (non-methane organic gases), but this surrogate is unused in 

SAPRC07TIC so these emissions are ultimately lost in the chemistry in CMAQ. To 

re-incorporate these emissions, the method of Q. Lu et al. (2020) was used to 

distribute the NMOG mass to nonoxygenated IVOC surrogates. 

EMFAC and ESTA were not designed to capture the effect of COVID-19 policies on 

vehicle use, so we modified the onroad emissions to capture those changes. The 

California Performance Measurement System (PeMS) uses in-situ detectors 

distributed throughout California to measure vehicle usage metrics (Caltrans, 2020). 

One such metric is vehicle miles traveled (VMT), which measures the miles traveled 

by different vehicle types, e.g., light and heavy duty vehicles. VMT changed directly 

in response to COVID-19 policies and human behavior changes, so it can be used to 

reduce onroad emissions in response to the pandemic. 

3.2.3.2 VCPs 

VCP emissions are predicted using the VCPy model framework (Seltzer, Pennington, 

et al., 2021), described in Chapter 2 and Appendix D. VCPy version 1.1 (Seltzer, 

Murphy, et al., 2021) was used to calculate VOC emission rates for 2018 over the 

contiguous United States (CONUS) on a 4 km x 4 km grid, which we regridded to 1 

km x 1 km to fit the LA domain grid. The year 2018 emissions are assumed to be 

representative of year 2020 emissions within the range of uncertainty present in 

VCPy, but sensitivity analyses will be performed to understand the impact of VCP 

emissions on air quality (Chapter 4). 

3.2.3.3 Natural 

Natural emissions are treated in-line in CMAQ using land surface descriptive files 

generated using the Spatial-Allocator tool (US EPA, 2017/2022). Gas-phase biogenic 

emissions and particle-phase seaspray emissions are modeled using the Biogenic 

Emission Inventory System (BEIS) version 3.6.1 (Bash et al., 2016). 
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3.2.3.4 Other emission sources 

All other emissions are calculated using the California Air Resources Board (CARB) 

emissions inventory (CARB, 2020). The emissions inventory includes data from 

sources including offroad vehicles, agriculture, oil & gas production, industrial, and 

other sources. Annual emission rates were calculated for base year 2017 and scaled 

to year 2020 using the California Emissions Projection Analysis Model (CEPAM) 

growth and control data (CARB, 2020). The inventory is processed in the Sparse 

Matrix Operator Kernel Emissions (SMOKE) model version 4.8 (CMAS, 2020) 

using spatial and temporal surrogates from 2019. SMOKE calculates both gridded 

area source emissions as well as point source emissions from individual smokestacks. 

3.2.4 Initial and boundary conditions 

A nested modeling domain setup was used to represent the boundary conditions for 

the Los Angeles Basin. The Los Angeles Basin is represented by the innermost 

domain shown in Figure 3.3, has a resolution of 1 km x 1 km, and is the domain of 

interest for this project. The initial and boundary conditions for the LA domain were 

provided by a coarse-grid CMAQ simulation performed over a larger domain (Figure 

3.4b). The outer domain covering California has a resolution of 4 km x 4 km and its 

air quality was simulated using the WRF and CMAQ scenarios described in Sections 

3.2.1 and 3.2.2. The emissions for this domain match the emissions described in Jiang 

et al. (2021). Publicly-available seasonal average hemispheric CMAQ output was 

used as initial and boundary conditions for the California domain (Hogrefe et al., 

2021). The CMAQ predictions from the coarse-grid California domain were used as 

initial and boundary conditions for the inner, finer-resolution LA domain. 

3.3 Model Framework Evaluation 

3.3.1 Observational data 

Observational data were obtained from the EPA Air Quality System (AQS), a routine 

monitoring network which collects data throughout the modeling domain of 

temperature, relative humidity, wind speed, wind direction, O3, NO, NO2, CO, SO2, 
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PM10, PM2.5, and select VOCs (US EPA, 2013). The monitoring site locations in the 

LA and California domains are shown in Figure 3.4a and b, respectively. 

 

 

Figure 3.4: EPA AQS monitoring site locations (red markers) located in the a) LA 

modeling domain and b) California modeling domain. Black lines represent 

county lines. 

Multiple statistics will be used to compare modeled data to observed data. These are 

mean bias (MB), normalized mean bias (NMB), root mean square error (RMSE) and 

r2 (the square of the Pearson correlation coefficient), defined below. In these 

equations, 𝑀 is modeled data, 𝑂 is observed data, �̅� is the mean of the modeled data, 

�̅� is the mean of the observed data, and 𝑁 is the number of data points. 
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3.3.2 Meteorology 

WRF predictions are illustrated spatially in Figure 3.5 and some important features 

emerge. The data in Figure 3.5 are either constant (terrain height, land use index) or 

averaged over the month of April, 2020 (surface temperature, relative humidity). The 

terrain height (Figure 3.5a) shows the mountainous regions that surround the LA 

Basin. Relative humidity (Figure 3.5d) is highest near the coast and decreases inland. 

Surface temperature (Figure 3.5c) is highest in the LA Basin at low elevation. The 

vertical temperature profile in the LA Basin often displays a unique quality which 

causes an inversion layer, in which temperature increases with height. This is 

atmospherically very stable and so little convection occurs, preventing the transport 

of pollutants up and out of the Basin. So, species are “trapped” in the Basin, allowing 

for long chemical aging to occur (R. Lu & Turco, 1995). Much of the Basin at low 

altitude and high temperature is urban (Figure 3.5b). The combination of the 

inversion layer and high urban emissions exacerbates the poor air quality in the LA 

Basin.  

 

Figure 3.5: WRF predictions of a) terrain height (m), b) land use category, c) 

surface temperature (°C), and d) relative humidity (%), averaged over April, 

2020. 
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April, 2020 demonstrates interesting meteorological patterns. Figure 3.6 shows 

domain-averaged surface temperature and column-total rain water mixing ratio—a 

proxy for precipitation—predicted by WRF. In the first third of April, temperatures 

were low and precipitation was high. As the month progressed, precipitation dropped 

off and temperatures rose. These meteorological patterns must be considered when 

understanding the contributions of various factors to pollutant concentrations. 

 

Figure 3.6: Hourly (dashed) and rolling daily average (solid) surface temperature 

(red) and column-total rain water mixing ratio (blue) predicted by WRF for the 

month of April, 2020, averaged over the LA domain. 

The WRF predictions are compared to EPA AQS monitoring site observational data 

in Table 3.1. Temperature is well predicted, with very low bias (MB and NMB) and 

low scatter (low RMSE and high r2). Relative humidity is fairly well-predicted, with 

low scatter (high r2) but nonnegligible bias (MB and NMB). Errors in relative 

humidity will likely only affect the water content of aerosols and the resulting 

partitioning of aqueous aerosol, which will be investigated in Chapter 4. Wind 

speed and direction tends to not be predicted well, with high bias and high scatter. 

This will potentially affect the transport between grid cells, which we will 

investigate in Chapter 4. An important consideration when investigating these 

statistics is that they capture data over a long time period and over multiple different 

sites. So, some sites may have much less or much more error and/or scatter as these 

summarized statistics contain. So, the error at individual sites must be investigated 
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when making site-specific comparisons. Despite the range of sites contained in 

these statistics, temperature performs well, demonstrating the robustness of our 

temperature predictions. This is critical, as temperature has the largest impact on 

atmospheric chemistry and reaction rates. 

Table 3.2: Statistical analysis of daily-averaged WRF predictions for the LA 

domain compared to EPA AQS monitoring site data. 

 Temperature 
Relative 

Humidity 
Wind Speed 

Wind 

Direction 

MB 1.08 °C -12.6% 0.87 m s-1 -15.1° 

NMB 6.65% -19.2% 50.1% -7.61% 

RMSE 1.32 °C 14.8% 0.91 m s-1 26.3° 

r2 0.98 0.85 0.30 0.31 

 

3.3.3 Emissions 

VMT data was summed for all PeMS monitoring sites in the LA domain—separated 

into heavy duty and light duty vehicles—and is shown in Figure 3.7a-b. VMT 

January through March (pre-pandemic) was relatively constant. These values were 

averaged and used as the baseline VMT, represented using the dashed black lines. In 

March, as COVID-19 policies were implemented, VMT decreased. It reached its 

lowest value in April and then slowly began to increase towards the baseline value. 

All weekly-averaged VMT values were divided by the baseline VMT to obtain 

scaling factors which are a proxy for vehicle emissions resulting from the decline in 

VMT and driving patterns (Figure 3.7c). The VMT scaling factors are not identical 

for light duty and heavy duty vehicles, consistent with the rationale for separating 

these vehicle types. There is a greater decrease in light duty VMT, since the pandemic 

primarily decreased the use of personal vehicles, with a lesser decrease of industrial 

transport vehicles’ use. 
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Figure 3.7: Hourly (gray), daily-averaged (blue), and weekly-averaged (red) VMT 

data for a) heavy duty vehicles and b) light duty vehicles. VMT averaged over 

January 1, 2020 to March 1, 2020 is represented by the dashed black line. c) 

Weekly-averaged VMT divided by the Jan.–Mar. mean for heavy duty (dark 

green) and light duty (light green). 

The annual emission rates in California for area and point sources in the CARB 

emissions inventory are summarized in Figures 3.S1 and 3.S2, respectively. 

Areawide CO emissions are dominated by off-road vehicles, which also contribute 

significantly to NOx emissions. Agriculture and food industries emit large amounts 

of NH3 and PM. Boats are the primary emitters of NOx and SOx. with trains also 

emitting significant NOx. There are high PM emissions from road dust and industrial 

sources. Industrial sources also emit high quantities of SOx. Total organic gas (TOG) 
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emissions are primarily from waste sources. TOG includes methane emissions, which 

are not included in CMAQ because of methane’s long chemical lifetime. Point source 

emissions are dominated by oil and gas production, with food, retail, and business 

contributing significant PM. 

The emissions from all sources are compared in Figure 3.8. The emissions were 

summed over the LA domain and diurnally averaged. CO emissions are dominated 

by area sources, which is itself dominated by off-road vehicles (Figure 3.S1), 

followed by onroad light duty vehicles. NH3 emissions are almost entirely from area 

sources, which is primarily due to agricultural and food sources (Figure 3.S1). NOx 

emissions are primarily from area sources (off-road, boats, and trains, Figure 3.S1), 

with important contributions from light duty and heavy duty vehicles. PM emissions 

are dominated by overnight seaspray emissions occurring along the coastline, 

followed by daytime area source emissions deriving from road dust, industrial 

processes, and agriculture (Figure 3.S1). SO2 emissions come mostly from area and 

point sources, which themselves come from oil and gas production, boats, and 

industrial processes (Figures 3.S1 and 3.S2). VOCs are emitted nearly equally from 

VCPs and biogenic sources, followed to a lesser extent by area sources (waste, 

industrial processes, oil and gas production, and agriculture, Figure 3.S1). All 

emissions, except seaspray, peak during midday due either to the importance of 

human behavior on or the temperature dependence of emissions. Seaspray emissions 

peak overnight because they are dependent on relative humidity and wind speed 

(Gantt et al., 2015). The emissions categories are displayed geographically in Figures 

3.S3-3.S8. Light duty and heavy duty vehicles have the highest emissions along 

freeways and major roads. Biogenic emissions are highest over the mountains, while 

seaspray emissions occur only at the coastline. Because area sources comprise many 

kinds of emission sources, the spatial pattern of area sources is variable and spread 

out. Point source emissions are zero or near-zero everywhere except for specific point 

sources, as implied by the name. VCP emissions correlate with human population, 

and the striations over the ocean are near-zero resulting from the regridding process. 
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Multiple issues with natural source emissions must be addressed in the application of 

these models and emissions inventories. First, seaspray emissions are very high. It 

will be investigated whether these high emissions affect only coastal areas or reach 

inland. Sensitivity simulations will be performed to scale seaspray emissions. 

Second, biogenic VOC emissions are also very high. The high biogenic emissions 

are located primarily in the mountainous regions of the LA domain, while the VCP 

VOC emissions are located in urban areas with high human population. This results 

in a much smaller biogenic contribution of VOCs in urban areas, but this amount of 

biogenic VOCs summed over the domain is too large. Biogenic VOCs have 

traditionally represented only about 20% (CARB, 2020) of total VOC emissions in 

the Los Angeles area, so our future work will investigate the error in CMAQ’s 

biogenic emissions module by performing sensitivity simulations to scale biogenic 

emissions.  

 

Figure 3.8: Diurnally averaged emission rates summed over the LA domain from 

all emission sources for a) CO, b) NH3, c) NOx, d) PM, e) SO2, f) VOC. 

The modeled emission rates can be approximately compared to the regional emission 

rates provided by CARB (CARB, 2020). While our domain does not completely align 
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with CARB’s definitions of air regions, we can approximate our domain as covering 

the South Coast, Ventura, and Antelope Valley air districts. These air districts do not 

cover the small fractions of the San Diego or Santa Barbara air basins present in our 

domain, but does include a larger portion of Riverside County than is in our domain. 

Thus it is an approximate, order-of-magnitude comparison between our summed 

emission rates and the CARB emission rates summed over the South Coast, Ventura, 

and Antelope Valley air districts. These data are presented in Table 3.2, along with 

the percent difference between CARB’s values and our study. CO emissions are 

underpredicted. CO does not impact PM mass in CMAQ, but it may have an impact 

on oxidants and O3 and that will be investigated. NH3 is only slightly underpredicted, 

and likely lies within the relatively high uncertainty of standard emissions 

inventories. NOx is significantly underpredicted according to this comparison, but 

there are many likely explanations for that. For one, NOx emissions were reduced by 

our VMT scaling method performed on onroad sources. Second, multiple studies 

have investigated LA’s transition from a NOx-abundant to a NOx-limited regime, and 

these data may support that (e.g., Laughner & Cohen, 2019; Parker et al., 2020). The 

impact of NOx will be investigated closely in our studies. PM is drastically 

overpredicted, likely due to the high seaspray emissions. The fifth row of Table 3.2 

presents the emissions used in this study with seaspray emissions removed, and the 

new percent error is shown in the sixth row. In this case, PM emissions are 

underpredicted. This likely suggests that seaspray emissions should not be entirely 

removed, but reduced. Additionally, some of the PM emissions that CARB assumes 

to be nonvolatile are treated in CMAQ as semivolatile, so some of the PM mass is 

reallocated to VOC mass. SO2 is underpredicted, which will not have a large impact 

on O3 or OA, but may impact sulfate aerosol and will be investigated. Finally, VOC 

emissions are overpredicted. As explained above, the biogenic VOC emissions are 

likely too high. When these biogenic emissions are removed, the percent error is 

reduced so that VOC emissions are within the range of reasonable emissions 

uncertainty (rows 5-6 of Table 3.2). Some of this overprediction may be caused by 

the reallocation of some PM species to semivolatile VOCs. 
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Table 3.3: Comparison of emission rates (tons/day) summed over our modeling 

domain ("this study") and CARB air basins (South Coast, Ventura, and Antelope 

Valley). CARB’s definition of reactive organic carbon (ROG) matches CMAQ’s 

definition of VOC. CARB reports SOx emissions while CMAQ reports SO2 

emissions. 

 CO NH3 NOx PM 
SOx, 

SO2 

ROG, 

VOC 

CARB 

(tons/day) 
2156 98 403 428 20 661 

This study 

(tons/day) 
1324 88 215 1133 16 1220 

Percent 

error 
-39% -10% -47% 165% -20% 85% 

This study 

(no biog.) 

(tons/day) 

- - - 181 - 805 

Percent 

error* 
- - - -58% - 22% 

 

3.3.4 Initial and boundary conditions 

The coarse-domain California simulation was performed and the predictions 

compared to EPA AQS monitoring site data (Table 3.3). O3 and PM2.5, the pollutants 

of most interest, are well-predicted based on their low MB, NMB, and RMSE. CO 

and NOx are both underpredicted (MB and NMB) with moderately high scatter 

(RMSE), while PM10 is less underpredicted with high scatter (RMSE). These errors 

will be taken into account in the LA simulations, and the importance of the errors in 

the initial and boundary conditions will be investigated using the ISAM module. 
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Table 3.4: Statistical analysis of daily-averaged CMAQ predictions for the 

California domain compared to EPA AQS monitoring site data. 

 O3 CO NOx PM2.5 PM10 

MB 1.17 ppb -103 ppb -2.81 ppb -0.29 µg m-3 -2.36 µg m-3 

NMB 3.49% -44.2% -34.7% -5.29% -14.2% 

RMSE 2.05 ppb 106 ppb 3.50 ppb 0.88 µg m-3 4.77 µg m-3 

r2 0.56 0.64 0.40 0.73 0.77 

 

Further investigations of the impact of initial and boundary conditions will be 

performed in Chapter 4. First, the ISAM module will be used to determine the time-

dependent fractions of O3, NOx, and VOC concentrations attributed to initial and 

boundary conditions. Second, a sensitivity simulation will be performed where the 

hemispheric boundary conditions are used for the LA domain simulations, and the 

results compared to the results using the initial and boundary conditions from the 

California domain. 

3.4 Future Work 

The technical framework developed here will be applied to understand the current 

state of air quality in the Los Angeles Basin. This chemical and meteorological 

evaluation is performed in Chapter 4. 
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Figure 3.S1: Annual emission rates of pollutants in CARB area source emissions 

inventory. 

 

 

Figure 3.S2: Annual emission rates of pollutants in CARB point source emissions 

inventory. 
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Figure 3.S3: Time-averaged (April, 2020) emission rate (tons/day) of CO from a) 

light duty onroad vehicles, b) heavy duty onroad vehicles, c) biogenic, d) area, and 

e) point sources. 

 

 

Figure 3.S4: Time-averaged (April, 2020) emission rate (tons/day) of NH3 from a) 

light duty onroad vehicles, b) heavy duty onroad vehicles, c) area, and d) point 

sources. 
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Figure 3.S5: Time-averaged (April, 2020) emission rate (tons/day) of NOx from a) 

light duty onroad vehicles, b) heavy duty onroad vehicles, c) biogenic, d) area, and 

e) point sources. 

 

 

Figure 3.S6: Time-averaged (April, 2020) emission rate (tons/day) of PM from a) 

light duty onroad vehicles, b) heavy duty onroad vehicles, c) seaspray, d) area, and 

e) point sources. 
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Figure 3.S7: Time-averaged (April, 2020) emission rate (tons/day) of SO2 from a) 

light duty onroad vehicles, b) heavy duty onroad vehicles, c) area, and d) point 

sources. 

 

 

Figure 3.S8: Time-averaged (April, 2020) emission rate (tons/day) of VOCs from 

a) light duty onroad vehicles, b) heavy duty onroad vehicles, c) biogenic, d) area, e) 

point, and f) VCP sources. 
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C h a p t e r  4  

APPLICATION OF A NEW MODEL FRAMEWORK FOR LOS 

ANGELES METEOROLOGY AND AIR QUALITY IN LOS 

ANGELES IN 2020 

This work is in progress and will be completed and submitted for publication within 

the next few months. 

4.0 Abstract 

The Los Angeles Basin has high anthropogenic emissions and unique meteorological 

phenomena which makes it an important study location for understanding the 

chemistry of atmospheric pollutants and impact of mitigation policies. Regional-

scale models allow for an understanding of complex chemical and physical processes 

where measurements are not available. Using the model inputs and configuration 

options described in Chapter 3, we run the Community Multiscale Air Quality 

(CMAQ) model over the Los Angeles region in April, 2020. We quantify model 

accuracy and explain the chemistry of pollutant formation, including processes that 

the model must improve on. We investigate source apportionment of pollutants on 

gas- and aerosol-phase species and describe the impact of the COVID-19 pandemic 

on vehicle-derived pollutants. Investigating the response of the COVID-19 

pandemic, we find that the urban core of the Los Angeles Basin displays NOx-

saturated behavior, but surrounding areas display NOx-limited behavior. Ozone and 

PM reductions are greatest when VOC emissions are reduced, particularly from 

volatile chemical products. 

4.1 Model Configuration and Analysis Methods 

4.1.1 Model configuration 

The model inputs and configuration options were described in Chapter 3. 

4.1.2 Model simulations 
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Multiple simulations were performed to investigate the source apportionment and 

nonlinear chemistry occurring in the LA atmosphere, and these are listed in Table 4.1 

along with the goal of each experiment. 

Table 4.1: CMAQ simulations performed in this study. 

Name Simulation Description Science Goal 

VMT 

(a.k.a. 

Base) 

All inputs and 

configuration options 

given in Chapter 3. 

To represent the Los Angeles 

atmosphere using the inputs described 

in Chapter 3. Can be considered a 

“base case”. 

0xVCP 
Remove all VCP 

emissions. 

To investigate the impact of VCPs on 

gas- and aerosol-phase species. 

0xonroad 
Remove all onroad (LDV 

& HDV) emissions. 

To investigate the impact of onroad 

sources on gas- and aerosol-phase 

species. 

0xother 

Remove all “other” source 

(i.e., area & point) 

emissions. 

To investigate the impact of other 

sources on gas- and aerosol-phase 

species. 

0xbio 
Remove all biogenic 

emissions. 

To investigate the impact of biogenic 

sources on gas- and aerosol-phase 

species. 

0xsea 
Remove all seaspray 

emissions. 

To investigate the impact of seaspray 

aerosol on gas- and aerosol-phase 

species. 

noVMT 

Do not apply PeMS VMT 

scaling to onroad 

emissions. 

To investigate the air quality in the 

absence of the COVID-19 pandemic. 

hemiBC 

Replace the initial and 

boundary conditions with 

2016 seasonal-average 

hemispheric CMAQ 

output. 

To investigate the impact of boundary 

conditions on gas- and aerosol-phase 

species. 

75VOC 

Scale all VOC emissions 

from anthropogenic 

sources by 0.75 

To investigate the VOC-NOx regime 

and the impact of VOC reductions on 

ozone, and to include the uncertainty 

associated with VCP emissions. 
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125VOC 

Scale all VOC emissions 

from anthropogenic 

sources by 1.25 

To investigate the VOC-NOx regime 

and the impact of VOC increases on 

ozone, and to include the uncertainty 

associated with VCP emissions. 

 

4.1.3 Observational data 

Observational data throughout the modeling domain are provided by the EPA AQS 

monitoring system (US EPA, 2013). These sites include measurements of O3, CO, 

NO, NO2, NOy, SO2, PM2.5, PM10, temperature, relative humidity, wind speed, and 

wind direction (not all sites contain all species at all times) and their locations are 

shown in Figure 4.1. In addition, gas- and aerosol-phase measurements were 

collected concurrent to our modeling period in Pasadena at Caltech. The Caltech air 

quality system (CITAQS) site measures O3, CO, NO, NO2, NOy, SO2, and PM2.5 

(Parker et al., 2020). Aerosol mass spectrometer (AMS) measurements of PM1 and 

its components (organic, NH4, NO3, SO4, and Cl) as described in Schulze et al. 

(submitted, 2022). Primary matrix factorization (PMF) was performed to obtain the 

composition of the organic fraction of PM1.  

4.1.4 Spatial analysis 

The model domain covers the region displayed in Figure 4.1 over 49 vertical layers. 

AQS measurement site locations are distributed throughout the full domain (black 

circles), and a few sites were studied in detail and were chosen to represent a variety 

of emission and meteorological qualities and to be consistent with the work of Parker 

et al. (2020). In addition, domain-wide averages were calculated using time- and 

space-averaged values using the masked, green region shown in Figure 4.1. The mask 

removes grid cells which contain water or lay above 600 m elevation. This elevation 

cutoff removes many rural or remote locations which are not representative of urban 

SOA, as well as many of the grid cells around the boundary which are more heavily 

impacted by boundary conditions. 
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Figure 4.1: LA modeling domain with AQS measurement sites (black markers). 

Green shading represents the domain-average mask which excludes grid cells 

containing water or over 600 m elevation. 

We primarily present surface concentrations since these are directly comparable to 

observations. However, many of the pollutants’ diurnal trends can be understood by 

considering the impact of the planetary boundary layer (PBL) height. Pollutants tend 

to be well-mixed inside the PBL with concentrations sharply declining outside of the 

PBL. As the height of the PBL changes throughout the day (Figure 4.2), species are 

diluted or concentrated. Multiplying surface concentrations by PBL height can 

provide insight into the total mass of a species present in a column and available for 

mixing. 

 

Figure 4.2: PBL height for the masked domain average for diurnal averages of T1 

(blue), T2 (green), T3 (red), and all times April 1–30, 2020 (dashed black). 
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4.1.5 Temporal analysis 

The modeling period covers April 1–30, 2020. We separate the month into 3 8-day 

periods, which have markedly different meteorology (Figure 4.3). Time period 1 (T1) 

runs from April 4 00:00 LT to April 12 00:00 LT and is uniquely cold with high 

precipitation. Time period 2 (T2) runs from April 13 00:00 LT to April 21 00:00 LT 

and has moderate, average temperature and very little precipitation. Time period 3 

(T3) runs from April 22 12:00 LT to April 30 12:00 LT and is very warm and dry. 

VMT is at its lowest during all 3 time periods, with slightly higher COVID vehicle 

impacts (i.e., more negative) in T1 and T2 (Fig 4.S1). Most emissions are consistent 

through all time periods, except biogenic emissions which are temperature-dependent 

and high during T3 and seaspray emissions, which depend on many factors (Figure 

4.S2). 

 

Figure 4.3: Hourly (dashed) and rolling daily average (solid) temperature (red) 

and precipitation (cm) averaged over the masked domain April 1–30, 2020. Gray 

shading represents T1, T2, and T3. 

4.2 Results and Discussion 

4.2.1 Evaluation of model predictions 

This section is forthcoming. 

4.2.2 Source apportionment 
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To investigate the contribution of each emission source to pollutant concentrations, 

we ran 5 additional simulations in which a single emissions source was removed in 

each simulation: 0xVCP, 0xonroad, 0xother, 0xbio, and 0xsea (Table 4.1). We 

investigate the overall impact on important pollutants such as O3 and PM2.5 by 

quantifying the change over the entire domain (Section 4.2.2.1). We investigate the 

detailed impact on SOA and PM composition by evaluating the change of SOA and 

PM1 composition in Pasadena, where concurrent AMS measurements were made 

(Section 4.2.2.2). We also consider the impact on SOA and PM1 composition in other 

locations in Section 4.2.2.3, which have different emission profiles and meteorology 

compared to Pasadena. 

4.2.2.1 Full domain 

The impact of removing each emission source on O3 (Figure 4.4), NOx (Figure 4.5), 

VOC (Figure 4.6), OH (Figure 4.7), PM2.5 (Figure 4.8), POA (Figure 4.9), and SOA 

(Figure 4.10) are presented alongside the concentration of each given species in the 

base (VMT) case. 

The O3 changes can be understood by investigating the changes in NOx, VOC, and 

OH. Onroad vehicles emit NOx, VOC, particles, and other inorganic gas-phase 

species. So when this emission source is removed, VOC and NOx concentrations 

decrease everywhere. However, OH and O3 do not have such clear impacts. In the 

urban core where VOC and NOx concentrations are high, OH and O3 increase in 

response to VOC and NOx reductions. This is characteristic of NOx-saturated 

conditions, which typically describe urban areas. In a NOx-saturated regime, the ratio 

of VOC to NOx concentrations is low, so that NO2 competes with VOC for reaction 

with OH. When NO2 concentration decreases, OH concentrations increase and more 

is available to react with VOCs to form peroxy radicals and O3. This chemistry 

describes the regions in the urban core with OH and O3 increases. In contrast, the 

outer regions display NOx-limited (or NOx-insensitive) behavior. In this case, the 

ratio of VOC to NOx concentrations is higher (relative to the NOx-saturated regime), 

so reaction with OH is dominated by VOCs. When VOC and NOx concentrations 
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decrease, the formation of peroxy radicals and the subsequent reactions to form O3 

are stunted. The reduction of other sources of emissions, which emit VOC, NOx, 

aerosol, and gas-phase inorganics, has a similar impact on O3. There is an increase of 

OH and O3 in the urban core, but a decrease of OH and O3 in the outer regions. 

 

Figure 4.4: a) Average O3 concentration predicted in base (VMT) case April 1–

30, 2020. b-f) Percent change in average predicted O3 concentration caused by 

removing each emission source. 

O3 decreased everywhere in response to the removal of VCP and biogenic emissions, 

in contrast to the removal of onroad and other emission sources. VCPs only emit 

VOCs, shown spatially by the decrease of VOC concentrations (Figure 4.6c). In 

response, OH and NOx concentrations increase downwind of the primary emission 

region. When VOCs are removed, the reaction between VOCs and OH slows, 

increasing the concentration of OH. The importance of transport and secondary aging 

processes is evident by the downwind location of most of the OH increase. Decreased 

VOCs also means that there are fewer peroxy radicals reacting with HO2 in HOx-

terminating reactions, further increasing OH. Fewer peroxy radicals also means 

slower reaction with NO to form NO2, so there is a high ratio of NO to NO2. This 
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leads to less NOx termination via the OH + NO2 reaction, and thus an increase in 

NOx. Because of the increased NOx and decreased peroxy radicals, O3 preferentially 

reacts with NO, instead of NO reacting with peroxy radicals, and so the O3 

concentration decreases. This chemistry is consistent with NOx-saturated behavior. 

The removal of biogenic emissions has a similar response, except biogenic sources 

emit NO, so there is a decrease of NOx concentrations in the regions where biogenic 

emissions are high, e.g., over the mountains outside of the urban core. However, there 

is a slight increase of NOx concentrations downwind of the urban core, and the same 

chemistry results here as with the VCP removal chemistry. In the outer region, the 

chemistry of the NOx-limited regime results. In this case, removal of VOC and NOx 

allows for an increase of OH because of the slowdown of HOx-terminating reactions, 

but the increase of OH does little to impact O3 because the necessary VOC and NOx 

are not available for the O3 forming reactions, and so O3 decreases in this regime.  

 

Figure 4.5: a) Average NOx concentration predicted in base (VMT) case April 1–

30, 2020. b-f) Percent change in average predicted NOx concentration caused by 

removing each emission source. 
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Removing seaspray emissions has a small impact on gas-phase concentrations 

because seaspray only emits aerosol-phase particles. The impact on VOC and NOx 

concentrations is near-zero because the seaspray emissions are only inorganic. The 

seaspray particles contain sulfate which can evaporate and react with OH, plus the 

particles themselves can react with OH. When all of these particles are removed, 

there is then more OH available in the system, as demonstrated by the ocean and 

coastal increase of OH.  

 

Figure 4.6: a) Average VOC concentration predicted in base (VMT) case April 1–

30, 2020. b-f) Percent change in average predicted VOC concentration caused by 

removing each emission source. 

We learn some important qualities about the LA atmosphere from this source 

apportionment study. The urban core of LA demonstrates NOx-saturated behavior. 

When NOx emissions are removed (while VOC concentrations are decreased to a 

smaller degree, as is the case when removing onroad and other emissions), O3 

increases. When VOC emissions are removed without NOx removal (as is the case 

when VCP emissions are removed), O3 decreases. Outside of the urban core, O3 

decreases in response to any level of either NOx or VOC removal, characteristic of a 
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NOx-limited regime, or at least a regime lying close to the O3- NOx-VOC ridgeline 

in the VOC-sensitive regime (Seinfeld & Pandis, 2016). The NOx regime is explored 

further in Section 4.2.3. Reducing ozone is a consistent goal for policymakers, and 

this work shows that O3 in Los Angeles is reduced by the removal of VOCs. NOx 

emission decreases are still important, as these decreases will move the Basin from a 

NOx-saturated regime closer to a NOx-insensitive regime. However, without 

concurrent or larger reductions in VOC concentrations, O3 pollution will become 

worse until the NOx-insensitive regime is reached. It is particularly important for 

policymakers to consider reducing emissions from VCPs, since these sources emit 

the highest amount of VOCs from anthropogenic activities. It is also important to 

consider the spatial distribution of emissions and reduction policies. Reducing 

emissions in the NOx-limited, outer regions of the domain will have a lesser impact 

than reductions in the urban core, or may have an opposite effect. Focusing on 

emissions in the urban core is critical and will effect downwind regions. 

 

Figure 4.7: a) Average OH concentration predicted in base (VMT) case April 1–

30, 2020. b-f) Percent change in average predicted OH concentration caused by 

removing each emission source. 
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PM2.5 concentrations decrease everywhere in response to emission reductions (Figure 

4.8). PM from onroad and other sources is mostly emitted directly, because most of 

the impact to PM2.5 is located in high emission regions. VCPs and biogenic sources 

only emit gas-phase species, so PM is formed via secondary processes. Biogenic PM 

is formed mostly over high emission areas like mountains, while VCP-derived PM is 

found in downwind regions, highlighting the importance of secondary formation 

during transport. Seaspray particles are reduced along the coastline where waves 

break, as expected.  

 

Figure 4.8: a) Average PM2.5 concentration predicted in base (VMT) case April 

1–30, 2020. b-f) Percent change in average predicted PM2.5 concentration caused 

by removing each emission source. 

POA and SOA changes are given in Figure 4.9 and Figure 4.10, respectively. 

Consistent with changes in PM2.5, POA decreases in areas of high emissions from 

onroad and other sources. SOA decreases from these sources are witnessed 

downwind of high-emission regions, as are the SOA changes from VCPs. VCPs and 

biogenic sources effect POA by decreasing partitioning into OA by lowering SOA 

and total OA mass, so some of the POA evaporates. Seaspray emits only inorganic 
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aerosols, so the impact on OA is small. Figure 4.7 demonstrated that removing 

seaspray emissions increased OH, which speeds up VOC oxidation and leads to 

higher SOA and thus higher POA via partitioning into the aerosol phase. 

 

Figure 4.9: a) Average POA concentration predicted in base (VMT) case April 1–

30, 2020. b-f) Percent change in average predicted POA concentration caused by 

removing each emission source. 

In Chapter 3, we predicted that emissions from natural sources are too high while 

emissions from anthropogenic sources are often too low. So, the relative impact of 

these sources on pollutant concentrations may be over- or under-estimated. For 

example, VCPs and biogenic gases had an almost equal impact on O3 concentrations 

(Figure 4.4), while in reality VCPs are likely more important than biogenic sources. 

Another source of this error could be the simplification of ozone chemistry used in 

the VCP chemical mechanism (Pennington et al., 2021). An updated mechanism 

which is developed with a focus on ozone may increase the ozone formation potential 

of VCPs. As another example, some emission sources in the “other” category may 

be underpredicted. Figure 3.S1 showed that most NOx and SOx emissions originate 

from boats, and this explains the large impact of removing other source emissions on 
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NOx, OH, and O3 in the ocean and near the Long Beach Port. NOx from other sources 

(e.g., offroad, agriculture) and VOCs from other sources (e.g., oil and gas) may be 

higher than predicted by the inventories used here, which would increase the impact 

of other sources over the land. These specific factors will be investigated in future 

work. 

 

Figure 4.10: a) Average SOA concentration predicted in base (VMT) case April 

1–30, 2020. b-f) Percent change in average predicted SOA concentration caused 

by removing each emission source. 

4.2.2.2 Pasadena 

This section is forthcoming. 

4.2.2.3 Other locations 

This section is forthcoming. 

4.2.3 COVID-19 vehicle impacts 

To understand the impacts of the COVID-19 pandemic, we compare the VMT 

(COVID) and noVMT (non-COVID) simulations (see Table 4.1). 

4.2.3.1 Full domain 
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Figure 4.11 shows the percent change of some gas-phase pollutant concentrations 

between the COVID (VMT) and non-COVID (noVMT) cases throughout the domain 

averaged over April 1–30, 2020. NOx and VOC concentrations decreased 

everywhere in response to emission decreases. The NOx percent decrease is larger 

because onroad vehicles emit significant NOx, but relatively little VOC compared to 

other sources (Figure 3.8). Despite the domain-wide decrease in emitted precursor 

gases, OH and O3 both increased in the urban core. This is characteristic of a NOx-

saturated regime, as explained in Section 4.2.2.1. The spatial correlation between 

increased OH and increased O3 (Figure 4.11a-b) is consistent with this logic. Also 

consistent with Section 4.2.2.1, the outer regions of the domain demonstrate NOx-

limited or NOx-insensitive behavior, where small decreases in NOx and VOC result 

in O3 decrease.  

 

Figure 4.11: Percent change ( [CCOVID - Cnon-COVID] / Cnon-COVID * 100 ) averaged 

April 1–30, 2020 for a) O3, b) OH, c) VOC, and d) NOx. Black circles represent 

all EPA AQS measurement sites and black stars represent Pasadena and Fillmore. 

The NOx regimes can be compared to those investigated by Parker et al. (2020). In 

that work, COVID-impacted 2020 concentrations of O3 and NO2 were compared to 

historical trends of those concentrations at routine monitoring sites throughout the 
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LA Basin. They compared 2020 concentrations with concentrations predicted by 

extrapolating the historical trend, and determined whether O3 and NO2 either 

increased or decreased relative to the historical prediction. Based on the relative signs 

of the O3 and NO2 changes, they were able to classify each site as NOx-saturated or 

NOx-limited/insensitive. The sites investigated in Parker et al. (2020) are labeled on 

this study’s April 1–30 average O3 change predictions in Figure 4.12. In this work, 

we determine that all sites except Banning are NOx-saturated, because the O3 

concentration increased in response to NOx decreases. Parker et al. determined that 

Pasadena, Azusa, Glendora, Pomona, San Bernardino, and UCLA displayed NOx-

saturated behavior, consistent with our results. They found NOx-limited or NOx-

insensitive behavior in Reseda, Upland, Fontana, Lake Elsinore, and La Habra, which 

is inconsistent with our findings. However, we note that the locations which were 

predicted in the prior study to have NOx-limited behavior have small O3 increases in 

our study. Taking the average O3 change in only T3 (Figure 4.12b), the O3 change 

becomes even smaller. Therefore, while our work suggests that most of these regions 

are still NOx-saturated, they are approaching NOx-insensitivity. This is especially true 

at the high temperatures of T3, which will become more prevalent as climate change 

worsens. T3 also had the highest NOx levels, so transitioning from NOx-saturated to 

NOx-limited is not simply dependent on reducing NOx concentrations; it depends on 

decreasing VOC concentrations as well, since the NOx regime is determined by the 

VOC-to-NOx ratio. 
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Figure 4.12: Percent change ( [CCOVID - Cnon-COVID] / Cnon-COVID * 100 ) of O3 

concentration averaged a) April 1–30, 2020 and b) T3. Black circles and labels 

represent the sites studied in Parker et al. (2020). 

Figure 4.13 shows the percent change of some aerosol-phase pollutant concentrations 

between the COVID (VMT) and non-COVID (noVMT) cases throughout the domain 

averaged over April 1–30, 2020. POA and PM2.5 decrease everywhere, especially 

along freeways where vehicle particulate emissions are high. SOA decreases in most 

regions, but increases in the center of the urban core where emissions are highest. 
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The spatial distribution of SOA increase is consistent with the spatial distribution of 

OH increase (Figure 4.11). SOA is formed when OH reacts with gas- or aerosol-

phase precursor species, so an increase in OH could increase SOA. Despite the 

decrease of POA and VOC precursor gases, the increase of OH was more important 

in terms of SOA formation. The ratio of SOA mass to POA mass increased 

everywhere (Figure 4.13c). This is due mostly to the decrease of POA concentrations. 

The increased ratio demonstrates the importance of considering secondary formation 

of pollutants when considering policy changes, as it is not enough to simply reduce 

the emissions of primary aerosols. 

 

Figure 4.13: Percent change ( [CCOVID - Cnon-COVID] / Cnon-COVID * 100 ) averaged 

April 1–30, 2020 for a) SOA, b) POA, c) the ratio of SOA / POA, and d) PM2.5. 

Black circles represent all EPA AQS measurement sites and black stars represent 

Pasadena and Fillmore. 

The percent change of the main components of PM1 are shown in Figure 4.14, and 

all components decrease. The importance of primary emissions on OM and SO4 is 

clear by the visibility of specific freeways in those maps. Secondary production of 

NH4 and NO3 is evident by the spatial distribution of those species, i.e., the largest 

decreases existing downwind of the high-emissions regions. 
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Figure 4.14: Percent change ( [CCOVID - Cnon-COVID] / Cnon-COVID * 100 ) averaged 

April 1–30, 2020 for PM1 components: a) OM, b) SO4, c) NH4, and d) NO3. Black 

circles represent all EPA AQS measurement sites and black stars represent 

Pasadena and Fillmore. 

Next, we take a closer look at predicted pollutant concentrations in 2 locations with 

opposite NOx regimes: Pasadena and Fillmore. These sites are labeled with stars in 

Figures 4.11, 4.12-14. We select Fillmore as the NOx-limited region to investigate 

because it is contained within the masked domain which describes urban LA (Figure 

4.1), as opposed to many of the other sites labeled in Figures 4.11 and 4.12-14 which 

are removed by the elevation mask.  

4.2.3.2 Pasadena: NOx-saturated 

Pasadena is a polluted area that has its own emission sources in addition to being 

located downwind from heavily-polluted areas downtown, and our results show that 

it is in a NOx-saturated regime (Figure 4.11). In response to COVID restrictions, 

emissions of CO, SO2, NOx, VOCs, and primary aerosols decreased, but OH and O3 

increased (Figure 4.15). The change in the nitrate radical (NO3) is near zero when 

averaging over the entire month, but has variable behavior when averaged over T1, 

T2, and T3 (Figure 4.15). NO3 increases in response to the pandemic in T1 and T2, but 
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decreases in T3, and the diurnal patterns are shown in Figure 4.S3. NO3 is rapidly 

photolyzed during the day, so it only forms at night via the reaction of NO2 and O3. 

NO3 then reacts with NO2 to form dinitrogen pentaoxide (N2O5), which reacts with 

water particles to form nitric acid (HNO3). HNO3, unlike NO3, does not photolyze 

during the daytime and so is a reservoir species which stores nitrogen and removes it 

from actively participating in reactions as NOx. In T3, NOx concentrations are the 

highest, which increases the rate of NO3 formation (Figure 4.S4) and subsequent 

N2O5 and HNO3 formation. This means that less NOx is available since more nitrogen 

is stored as daytime HNO3. This explains why the difference in NOx concentrations 

between the COVID and non-COVID simulations are the smallest in T3, and why a 

smaller increase in O3 is seen in T3. NO3 is an important overnight oxidant and 

contributes to the formation of inorganic NO3 aerosol and organic nitrate aerosol. So, 

it is important to consider the potentially disparate impact of declining NOx levels on 

NO3 levels. 

 

Figure 4.15: Percent change ( [CCOVID - Cnon-COVID] / Cnon-COVID * 100 ) of 

pollutant concentrations in Pasadena averaged April 1–30, 2020. 

SOA decreases during T3, increases during T2, and remains approximately 

unchanged during T1. The decrease during T3 is caused by a decrease in organic 

nitrate aerosol formation, explained by the decrease in the NO3 radical (Figure 4.S4). 

The increase during T2 is caused by increased daytime oxidation of precursors, as a 
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result of a slightly larger increase of the OH radical compared to other time periods 

(Figure 4.S3). However, this increase is very small, and almost negligible like the 

change seen in T1. During all 3 time periods, total PM of all sizes (PM1, PM2.5, and 

PM10) decreased (Figure 4.15). Despite increased oxidative capacity of the 

atmosphere, all components of PM (except SOA) decreased at all times due to 

decreased emissions of the aerosol components (e.g., NH4, POA) as well as decreased 

emissions of the aerosol precursors gases (e.g., SO2, NOx, NH3). Because SOA makes 

up a small fraction of PM as predicted by our model, the small changes in SOA had 

little impact on PM. In truth, SOA should make up a significant fraction of PM 

(Zhang et al., 2007; Jimenez et al., 2009), and so this is an inaccuracy in the model. 

4.2.3.3 Fillmore: NOx-limited 

Our results suggest that Fillmore exists in a NOx-limited or VOC-saturated regime, 

since O3 concentrations decreased in response to decreased NOx and VOC 

concentrations (Figure 4.11). In fact, the concentrations of most important pollutants 

decreased in response to the pandemic (Figure 4.16 and Figure 4.S5). The absolute 

percent reduction of NOx is lowest in T3 following the same reasoning as presented 

above for the reduced NOx (via increased HNO3) in Pasadena (Figure 4.S6), but to a 

lesser extent. 

 

Figure 4.16: Percent change ( [CCOVID - Cnon-COVID] / Cnon-COVID * 100 ) of 

pollutant concentrations in Fillmore averaged April 1–30, 2020. 
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4.2.4 Impact of boundary conditions 

This section is forthcoming. 

4.3 Conclusions 

This section is forthcoming. 
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4.5 Supporting Information 

 

Figure 4.S1: Vehicle miles traveled (VMT) scale fractions for heavy-duty (dark 

blue) and light-duty (light blue) vehicles averaged over the masked domain April 

1–30, 2020. Gray shading represents T1, T2, and T3. VMT was scaled according to 

in situ PeMS data (Caltrans, 2020), described in Chapter 3. 
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Figure 4.S2: Hourly emission rates from all sources averaged over the masked 

domain for a) NOx, b) VOCs, c) PM with seaspray emissions excluded, d) PM, e) 

NH3, f) CO, and g) SO2. Gray shading represents T1, T2, and T3. 
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Figure 4.S3: Percent change ( [CCOVID - Cnon-COVID] / Cnon-COVID * 100 ) of pollutant 

concentrations in Pasadena averaged over T1, T2, and T3. 
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Figure 4.S4: Diurnally-averaged concentration of NO3 in Pasadena for the COVID 

(VMT) simulation and non-COVID (noVMT) simulation using hourly data from a) 

all times, b) T1, c) T2, and d) T3. 
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Figure 4.S5: Percent change ( [CCOVID - Cnon-COVID] / Cnon-COVID * 100 ) of pollutant 

concentrations in Fillmore averaged over T1, T2, and T3. 
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Figure 4.S6: Diurnally-averaged concentration of NO3 in Fillmore for the COVID 

(VMT) simulation and non-COVID (noVMT) simulation using hourly data from a) 

all times, b) T1, c) T2, and d) T3. 
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A p p e n d i x  A  

MODIFYING A CHEMICAL MECHANISM IN CMAQ 

I wrote a section of the EPA’s publicly available CMAQ documentation on Github. 

The tutorial is available here: 

https://github.com/USEPA/CMAQ/blob/main/DOCS/Users_Guide/Tutorials/C

MAQ_UG_tutorial_chemicalmechanism.md. 
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ABSTRACT 

Volatile chemical products (VCPs) are a significant source of reactive organic carbon 

emissions in the United States, with a substantial fraction (>20% by mass) serving as 

secondary organic aerosol (SOA) precursors. Here, we incorporate a new nationwide 

VCP inventory into the Community Multiscale Air Quality (CMAQ) model, with 

VCP-specific updates to better model air quality impacts. Model results indicate that 

VCPs most enhance anthropogenic SOA in densely populated areas, with population-

weighted annual average SOA increasing 15 – 30% in Southern California and New 

York City due to VCP emissions (contribution of 0.2 - 0.5 µg m-3). Annually, VCP 

emissions enhance total population-weighted PM2.5 by ~5% in California, ~3% in 

New York, New Jersey, and Connecticut, and 1 – 2% in most other states. While the 

maximum daily 8-hr ozone enhancements from VCP emissions are more modest, 

their influence can cause a several ppb increase on select days in major cities. Printing 

Inks, Cleaning Products, and Paints & Coatings product use categories contribute 

~75% to the modeled VCP-derived SOA and Cleaning Products, Paints & Coatings, 

and Personal Care Products contribute ~81% to the modeled VCP-derived ozone. 

Overall, VCPs enhance multiple criteria pollutants throughout the United States, with 

the largest impacts in urban cores. 

INTRODUCTION 
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Emissions of reactive organic carbon (ROC) are a critical component of 

atmospheric photochemistry (Heald et al., 2020). These emissions, which include 

all non-methane gas-phase and aerosol organic compounds (i.e. organic aerosol; 

OA), regulate the abundance of oxidants and gas-phase reactivity in the atmosphere 

(Heald et al., 2020; Safieddine et al., 2017). In addition, ROC contributes to the 

formation of fine particulate matter (PM2.5) and tropospheric ozone (O3). The 

influence of ROC on PM2.5 can result from primary emission (i.e. primary organic 

aerosol; POA), secondary production via gas-phase oxidation of organics (i.e. 

secondary organic aerosol; SOA), or modulation of oxidants, which can influence 

the formation of inorganic PM2.5 components (e.g. NH4NO3). Since PM2.5 (Di et 

al., 2017), SOA (Pye et al., 2021), and O3 (Turner et al., 2016) are all associated 

with adverse impacts to human health and welfare (U.S. EPA, 2020; U.S. EPA, 

2019), understanding the sources and accurately modeling the evolution of ROC 

emissions in the atmosphere is important. 

Volatile chemical products (VCPs) are used in residential, commercial, 

institutional, and industrial settings and lead to ROC emissions. These sources 

include, but are not limited to, cleaners, personal care products, adhesives, sealants, 

paints, coatings, pesticides, and printing inks, all of which partially evaporate on 

atmospherically relevant timescales. Collectively, VCPs are a major source of 

anthropogenic ROC emissions throughout the United States (Mc Donald et al., 

2018; Seltzer et al., 2021) and the primary source of anthropogenic gas-phase ROC 

emissions in several urban regions (Gkatzelis et al., 2021; Khare & Gentner, 2018). 

In 2016, VCPs contributed ~3.1 Tg of ROC emissions in the United States (Seltzer 

et al., 2021), with ~20% of emissions by mass considered intermediate volatility 

organic compounds (IVOCs), which are efficient SOA precursors (Robinson et al., 

2007; Zhao et al., 2014). As such, VCPs represent an emission source with 

considerable potential to affect urban PM2.5 and O3. 

Despite their importance, adequate representation of VCP emissions in 

photochemical transport modeling is lacking (Qin et al., 2021). This partially stems 
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from the long-term focus on ROC emissions from combustion sources, which are 

largely non-oxygenated and have decreased dramatically in recent years due to 

targeted emission control efforts (Bishop & Stedman, 2008; McDonald et al., 

2013), as well as the preeminent concern for reducing ozone in urban areas. As a 

result, the source attribution and chemical composition of ROC emissions has 

changed in the past few decades (Khare & Gentner, 2018). In addition, modeling 

urban SOA experiences continuing challenges (Baker et al., 2015; Ensberg et al., 

2014; Woody et al., 2016) and representation of IVOC emissions and their 

multigenerational aging within chemical transport models (CTMs) is typically 

lacking (Murphy et al., 2017). Since VCPs have considerable SOA potential from 

their IVOC components (McDonald et al., 2018; Seltzer et al., 2021), representation 

of the complete volatility spectrum from VCP emissions is necessary to model their 

potential criteria pollutant impacts. These changes require updates to the chemical 

mechanisms within CTMs; which are used to predict air quality impacts from 

emissions. 

Here, we incorporate a new VCP inventory (Seltzer et al., 2021) into the 

Community Multiscale Air Quality (CMAQ) model, with VCP-specific chemistry 

updates (Pennington et al., 2021), to better represent VCP emissions and 

subsequent air quality impacts throughout the contiguous United States. These 

updates include representation of secondary air pollutant formation pathways for 

alkane-like IVOCs, oxygenated IVOCs, and siloxanes. We then simulate air quality 

throughout the continental United States and quantify the national-level 

contributions of VCPs to criteria pollutants (PM2.5 and O3). Contributions from 

various categorical aggregations are assessed and the relative importance of VCP 

contributions to PM2.5 and O3 are quantified. We also evaluate the model’s ability 

to simulate air quality following these updates and assess the potential burden that 

can result from additional assumptions related to VCP emissions, specifically 

marginal evaporation of potential semi-volatile organic compound (SVOC) 

ingredients. 
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METHODS 

Regional Emissions 

VCP emissions throughout the United States are estimated using VCPy.v1.1 (Seltzer 

et al., 2021). In VCPy, hundreds of individual VCPs (e.g. shampoo, glass cleaner, 

paint thinner) are aggregated into Product Use Categories (PUCs), which are split 

into sub-Product Use Categories (sub-PUCs) based on characteristic usage patterns. 

The methods of VCPy.v1.1 match the methods of VCPy.v1.0, as described in Seltzer 

et al. (2018). However, VCPy.v1.1 includes a substantial update to the organic 

composition of most sub-Product Use Categories (sub-PUCs), which incorporates 

the organic profiles reported in the latest California Air Resources Board (CARB) 

Consumer & Commercial Products survey (California Air Resources Board, 2020; 

Table S1). This update results in nearly no change to the estimated magnitude of VCP 

emissions, but some distinct variations in the volatility distribution and compound 

class make-up of emissions (Fig. S1). Notably, the proportion of IVOCs (3 x 102 μg 

m-3 < C* < 3 x 106 μg m-3) and oxygenated compounds increase.  

The emissions used here reflect 2016 conditions and yield a VCP national-average 

emission rate of 9.5 kg person-1 year-1. Prior analysis estimated that the sector-wide 

emission uncertainty, stemming from variables such as product usage and assigned 

product use timescale, is ±15% (Seltzer et al., 2021). Paints & Coatings contribute 

the largest fraction of ROC emissions and are predicted to be emitted at an average 

rate of ~3.1 kg person-1 year-1 nationally. Cleaning Products and Personal Care 

Products each contribute ~2.0 kg person-1 year-1, Adhesives & Sealants and Printing 

Inks both emit ~0.8 kg person-1 year-1, and pesticides emit ~0.6 kg person-1 year-1. 

Emissions from all other categories, including dry-cleaning, solvent usage in oil and 

gas operations, lighter fluids, and other miscellaneous products are estimated to emit 

~0.1 kg person-1 year-1. VCPy currently assumes that all emissions occurring indoors 

are fully transported to the ambient atmosphere. A first-order approximation that 

includes chemical loss pathways and reduced characteristic timescales of evaporation 
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in indoor environments yields a reduction of ~12% for the complete sector. However, 

a comprehensive analysis of indoor termination pathways for VCP emissions, which 

can be particularly important for reactive species (Nazaroff & Weschler, 2004; 

Singer et al., 2007; Singer et al., 2004), will be the focus of future VCPy work and 

these approximations will not be included in the present analysis.  

In VCPy, emissions are calculated at the national-level and allocated to the county-

level using several proxies, including population, employment statistics, agricultural 

pesticides use, and oil and gas well counts. County-level emissions are further 

processed and gridded at 12-km scale within the continental United States for input 

into CMAQ. County-level data on the density of agricultural land and oil and gas 

wells are used to grid the agricultural pesticides and oil and gas solvent sub-PUCs. 

Population density is used to grid the remaining sub-PUCs within each county. 

Seasonal and diurnal emission variations are then applied to most sub-PUCs using 

profiles reported in Gkatzelis et al. (2021; Table S2). Sub-PUCs for which no 

applicable tracer from Gkatzelis et al. (2021) are available use a sinusoidal diurnal 

emissions profile with a peak at noon and no seasonal variation.  

Other significant modeling updates include IVOC emissions and semi-volatile 

primary organic aerosol (SV-POA) profiles for all gasoline, diesel, and gas-turbine 

mobile sources (Lu et al., 2018). The implementation of mobile IVOC emissions 

follows the methodology of Lu et al. (2020). The remaining regional emission 

inputs come from the 2016 version 1 (U.S. EPA, 2021) emission modeling 

platform, which is built upon the U.S. Environmental Protection Agency’s (U.S. 

EPA) 2014 National Emission Inventory (NEI) version 2 (2014NEIv2) and 

summarized in greater detail in Appel et al. (2021). The simulations performed here 

do not apply the approach of Murphy et al. (2017), which accounts for the estimated 

potential SOA contribution from combustion sources using an empirical 

relationship derived from southern California observations. 
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Using a near-field exposure model (Isaacs et al., 2021), prior research has indicated 

that non-negligible quantities of residential personal care products, household 

products, and coatings contain SVOC (0.3 μg m-3 < C* < 3 x 102 μg m-3) ingredients 

(Qin et al., 2021), which can evaporate on atmospherically relevant timescales 

(Khare & Gentner, 2018). To test the implications of marginal SVOC evaporation 

from VCPs on SOA potential, a simulation that assumes 2% of all non-evaporative 

organics (i.e. assumed non-volatile components of VCPs) evaporate is performed. 

This is within the bounds of near-field exposure modeling uncertainty for many 

VCP categories (Qin et al., 2021) and translates to ~0.355 kg person-1 year-1. In this 

sensitivity test, the additional emissions of SVOCs are given sinusoidal diurnal and 

seasonal emissions profiles, with peaks at noon and in summer, and are allocated 

to the county-level using population density as a spatial surrogate.  

Chemical Transport Modeling 

Air quality is simulated using CMAQv5.3.2 at 12-km resolution over the contiguous 

United States. The domain includes 299 rows, 459 columns, and 35 vertical layers 

spanning from the surface to 50 hPa, with the mid-point of the lowest layer typically 

~10-m above ground level. All simulations include the complete 2016 calendar year 

with a 10-day spin-up beginning in December 2015 to minimize the influence of 

initial conditions. Additional modeling options largely follow the methods outlined 

in Appel et al. (2021), including: (1) no inline wind-blown dust, (2) the M3Dry 

deposition model with bi-directional NH3 exchange enabled (Pleim et al., 2019), (3) 

inline calculation of biogenic emissions using the Biogenic Emission Inventory 

System (BEIS) v3.61 (Bash et al., 2016), (4) the AERO7 aerosol module, (5) inline 

lightning NOx emissions calculated using the National Lighting Detection Network 

(Kang et al., 2019a; Kang et al., 2019b), (6) the CB6r3_AE7_AQ chemical 

mechanism (Yarwood et al., 2010), (7) ocean halogen chemistry and sea spray 

aerosol emissions (Sarwar et al., 2019), and (8) runtime emissions processing using 

the Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module (Murphy 

et al., 2020). Boundary conditions are generated from a 108-km Hemispheric CMAQ 
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simulation using CMAQv5.3 and meteorology inputs are generated from the Weather 

Research and Forecasting model v4.1.1 (see Appel et al. (2021) for more details).  

Substantial updates to VCP-relevant chemistry were added to both the emissions 

processing for CB6r3_AE7_AQ and the chemistry of AERO7. In current and 

previous public, operational versions of CMAQ, lower-volatility, gas-phase 

anthropogenic ROC emissions were not represented in the chemical mechanism (Qin 

et al., 2021). As a result, much of the VCP mass (~30%; Pennington et al., 2021), 

often dominated by IVOCs, was not considered for SOA or radical chemistry. Recent 

work (Pennington et al., 2021; Lu et al., 2020) introduced several new chemical 

components to the AERO7 module within CMAQ to alleviate this issue, with an 

focus on alkane-like IVOCs, oxygenated IVOCs, SVOCs, and siloxanes, and 

modeled Los Angeles air quality during the 2010 California Nexus of Air Quality 

and Climate Change (CalNex) campaign (Ryerson et al., 2013).  

Here, the mapping of all compounds emitted from VCPs are reviewed to ensure 

proper SOA and radical chemistry representation within CMAQ. For many VCP-

relevant species emitted in high quantities (e.g. ethanol, acetone, toluene), no updates 

are necessary as they are explicitly considered within the chemical mechanism. For 

the compounds that are not explicitly included in the chemical mechanism, the order-

of-operations for mapping explicit compounds to model species, with both SOA and 

radical chemistry considerations, is described in the Supporting Information. 

To quantify the criteria pollutant enhancements resulting from VCP emissions, two 

main simulations are performed. The first incorporates all emission and chemical 

mechanism updates described above (i.e. the “base” simulation) and the second 

eliminates all VCP emissions (i.e. the “zero VCP” simulation). Thus, the difference 

of the two represents the enhancement of air pollution attributable to the VCP 

emissions in the modeling system. Seven additional zero-out simulations are 

performed to quantify the criteria pollutant enhancements from aggregations of 

different sub-PUCs. These simulations individually assess Cleaning Products, 
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Personal Care Products, Adhesives & Sealants, Paints & Coating, Printing Inks, 

Pesticides, and all other categories. For the SVOC evaporation simulation, additional 

emissions are treated as semi-volatile with a C* of 100 μg m-3, undergo gas-phase 

oxidation chemistry, and have a SOA yield of ~65% at 10 μg m-3 (VSVPO3 model 

species; Murphy et al., 2017). 

Air Quality Observations & Model Evaluation 

Predictions of organic carbon (OC), total PM2.5, and maximum daily 8-hour O3 

(MDA8 O3) concentrations from the base simulation are compared with observations 

acquired from the U.S. Environmental Protection Agency’s Air Quality System 

(AQS) to evaluate model performance. Since SOA is not routinely measured, organic 

carbon is the only organic fraction of PM2.5 evaluated here. For OC and total PM2.5, 

24-hour filter samples are retrieved on a 1-in-3-day sampling schedule; whereas O3 

measurements are collected hourly, with the maximum daily 8-hour metric generated 

by the Atmospheric Model Evaluation Tool (AMET; Appel et al., 2011). Model 

predictions are paired in space and time with corresponding AQS observations using 

AMET. To assess model performance, the normalized mean bias (NMB) of daily 

model and observed pairings are sorted seasonally and regionally. We then evaluate 

whether the NMB from this study falls within the top 33rd percentile or the top 67th 

percentile of past evaluation applications, as reported by Emery et al. (2017). The top 

third of OC, PM2.5, and MDA8 O3, NMB are less than ±15%, ±10%, and ±5%, 

respectively, and the top two-thirds of NMB for OC, PM2.5, and MDA8 O3 are less 

than ±50%, ±30%, and ±15%, respectively.  

RESULTS 

Model Performance 

The modeling configuration, emissions, and chemistry updates used here yield 

improved predictions of OC (Fig. AB.1 vs. Fig. S2) with bias metrics that often rank 

among the top, previously published model evaluations. Of the 24 seasonal and 
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regional aggregations evaluated, 10 had NMB values smaller than ±10% and the 

remaining 14 had NMB values smaller than ±50%. OC predictions were within ±15% 

of observations throughout most of the country in the winter and fall months, as well 

as the northeast in the spring and summer and the southeastern spring. Despite the 

inclusion of a state-of-science VCP inventory and improved SOA chemistry, CMAQ 

underpredicted OC in broad swaths of the country outside the East Coast in the spring 

and summer months (-44% ≤ NMB ≤ -16%). In addition, the model overpredicted 

OC in the southeastern U.S. during the summer (NMB = 39%) and was persistently 

low biased in the southwest, which is dominated by monitoring locations in 

California.  

 

Figure AB.9. Modeling performance metrics for OC, PM2.5, and maximum daily 

8-hour O3, disaggregated by season and region. Note: NE – U.S. EPA Regions 1, 

2, 3; SE – U.S. EPA Region 4; MW – U.S. EPA Region 5; PL – U.S. EPA 

Regions 6, 7, 8; SW – U.S. EPA Region 9; NW – U.S. EPA Region 10; SON – 

fall months; DJF – winter months; MAM – spring months; JJA – summer months; 

NMB – normalized mean bias. See Table S3 in the supporting information for 

additional data related to the model evaluation. 

Predictions of total PM2.5 had a NMB smaller than ±10% in 14 seasonal and regional 

aggregations and smaller than ±30% in 8 others (Fig. AB.1). Model performance was 

generally good throughout the year and contiguous United States, except for a strong 

low bias along the West during cooler months. The cold season negative bias is 
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persistent in CMAQ (Appel et al., 2021) and has been attributed to biased predictions 

of nitrate during strong meteorological inversion episodes that could be alleviated 

using a finer modeling grid resolution (Appel et al., 2021; Kelly et al., 2019).  

MDA8 O3 was well predicted in all locations and seasons, with three notable 

exceptions. The model was persistently low biased throughout the United States in 

the spring, which has previously been attributed to underestimated ozone from the 

lateral boundary conditions (Appel et al., 2021; Sarwar et al., 2019). A separate 

possible mechanism for this bias could be the variability in the stomatal uptake of 

ozone, which is a major loss pathway for tropospheric ozone. This process initiates 

each year in the spring (Clifton et al., 2020), features year-to-year variability that is 

difficult to model (Clifton et al., 2017), and can perturb regional mean surface ozone 

concentrations by more than 5 ppb (Baublitz et al., 2020). Beyond this persistent 

springtime bias, the model results were also low biased in the southwest for all 

seasons, and generally high biased in the midwest for all non-springtime seasons. The 

correlation in low bias for OC and O3 in the southwest year-round suggests a possible 

systematic error, such as missing emissions, oxidants, planetary boundary layer 

issues, or other transport errors. 

Enhancements of Criteria Pollutants Attributable to VCP Emissions 

VCPs generate a spatially variable increase in SOA concentrations throughout the 

contiguous United States, with notable peaks in California, along much of the East 

Coast, and in the Upper Midwest (Fig. AB.2). Enhancements were highest in 

Southern California, with Los Angeles County featuring a population-weighted 

annual average enhancement of ~0.5 µg m-3. This translates to ~30% of the modeled, 

annual-average SOA mass in the county (Fig. S3). However, modeled organic carbon 

is still low biased in California (Fig. AB.1). This residual bias could be driven by 

additional missing emissions, inadequate process representations in the model, or 

systematic biases in meteorology. These factors can all influence the estimated 

increase in SOA attributable to VCPs found here. The greater New York City region 
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showed the second highest SOA enhancements attributable to VCPs, with annual 

increases generally spanning 0.2 – 0.3 µg m-3, which accounts for ~17% of the 

modeled, annual-average SOA mass. Outside of heavily populated cities, VCP 

enhancements of SOA dropped precipitously throughout the Great Plains and 

Northwest. Nonetheless, VCPs were an important contributor to anthropogenic SOA 

throughout the United States with a nationwide, annual-average, population-

weighted SOA enhancement of ~0.15 µg m-3, or ~10% of the modeled, population-

weighted SOA mass (Fig. S3). 

 

Figure AB.10. (Center) Annual-averge SOA enhancements attributable to VCP 

emissions. (Side Panels) Diurnal, population-weighted SOA enhancements 

attributable to VCP emissions for select counties. Line indicates the average VCP 

enhancements for each hour and shading represents the VCP enhancements for 

95% of all days. Note: colormap is non-linear. 

Seasonally, the magnitude of VCP-SOA enhancements was typically largest in the 

summer and fall months (Table S4), but the proportional contribution of VCPs to 

modeled SOA peaked in the cooler months (Table S5) when biogenic SOA is at a 

minimum. For example, the summer SOA enhancements in New York City (0.3 - 0.4 

µg m-3) were ~2.5x higher than the winter enhancements on an absolute basis, but 

VCPs contributed less on a relative basis in summer (~15%) than winter (~22%). 
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Diurnally, mean SOA enhancements peaked mid-afternoon along with 

photochemical intensity and fluctuated substantially from day-to-day (Fig. AB.2). In 

Los Angeles County, the population-weighted noontime-average SOA enhancement 

from VCPs was 0.9 µg m-3, and 95% of the individual days fall within a range of 0.1 

– 2.6 µg m-3. Notably, these daily fluctuations were persistent during both the warmer 

and cooler months. Daily variation was pronounced in other major populations 

centers, as well (e.g. Denver, New York City, Chicago), suggesting the influence of 

VCPs on urban SOA could be a substantial component of PM2.5 on select days 

throughout the United States.  

While the ambient PM2.5 enhancements from VCP emissions were dominated by 

SOA production, VCP chemistry can lead to the formation, or even reduction, of 

other PM2.5 components (Fig. AB.2 vs. Fig. S4). These changes are driven by the 

effect of VCPs on local radical concentrations. VCP emissions serve as a sink of 

hydroxyl via reaction, which reduce the formation of nitric acid and cascaded into 

marginally lower ammonium nitrate concentrations (generally < 0.01 µg m-3) 

throughout much of the United States. However, many urban cores are VOC-limited 

for O3 production in cooler months (Simon et al., 2015). During the winter season, 

VCP emissions in these locations (e.g. Los Angeles, New York City, Detroit) 

generated O3, which enhanced photochemistry and can produce up to ~0.3 µg m-3 of 

additional ammonium nitrate on select days. Annually, VCP emissions enhanced 

total PM2.5 most in Southern California (Fig. S4) through the SOA formation 

pathway, with a net increase in the statewide population-weighted PM2.5 of ~5%. 

Elsewhere, VCPs enhanced total PM2.5 by ~3% in New York, New Jersey, and 

Connecticut, and 1 – 2% in most other states. 

The spatial pattern of MDA8 O3 enhancements from VCP emissions closely followed 

the SOA enhancements, but the relative effects were more localized and modest. 

Nationally, VCPs enhanced annual, population-weighted MDA8 O3 by 0.4 ppb, 

which is ~1% of the modeled total (Fig. S5). The largest statewide enhancement in 

the population-weighted annual-average MDA8 O3 was 1.2 ppb in California (~3% 
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of the modeled total; Table S4-S5). In the South Coast Air Basin (SoCAB) counties, 

annual-average enhancements were higher and spanned 1.6 – 3.0 ppb (4 – 6% of the 

modeled total). These average increases, however, do mask the relative importance 

of VCPs to O3 on select days. For example, VCPs occasionally enhanced middle-of-

the-day O3 in Los Angeles County by 6-8 ppb (Fig. AB.3). Additionally, VCPs 

fractionally enhanced MDA8 O3 to a greater degree on high ozone days in these 

urban centers. On average, VCPs enhanced MDA8 O3 in SoCAB by ~4% when the 

daily MDA8 O3 was less than 50 ppb and by ~7% when the daily MDA8 O3 was 

greater than 60 ppb. MDA8 O3 in the New York City region was also sensitive to 

VCP emissions. Annual enhancements of MDA8 O3 averaged ~0.8 ppb in this region 

(2 – 3% of the modeled total), with larger contributions again on high ozone days. 

VCPs enhanced MDA8 O3 in NYC by ~2% when the daily MDA8 O3 was less than 

50 ppb and by ~3% when the daily MDA8 O3 was greater than 60 ppb. Outside 

California, the Northeast, and the upper Midwest, MDA8 O3 enhancements from 

VCPs were minor, with most states indicating annual increases in population-

weighted MDA8 O3 of 0.1 – 0.2 ppb due to VCP usage. 

 

Figure AB.11. (Center) Summertime-averge MDA8 O3 enhancements attributable 

to VCP emissions. (Side Panels) Diurnal, population-weighted O3 enhancements 

attributable to VCP emissions for select counties. Line indicates the average VCP 

enhancements for each hour and shading represents the VCP enhancements for 

95% of all days. Note: colormap is non-linear. 
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The influence of VCP emissions on O3 peaked in the summer and in urban centers 

where NOx emissions were highest (Fig. AB.3). Southern California again 

experienced the largest enhancement, with summer MDA8 O3 increasing by 1.7 – 

5.8 ppb (4 – 8%), on average, in the SoCAB counties. MDA8 O3 in the New York 

City region was also sensitive to VCP emissions. Summertime enhancements in 

this region averaged ~1.5 ppb, which is 3 – 4% of the modeled total. While the 

magnitude of peak O3 enhancements in the summertime were greater than in the 

winter, the effects of VCP emissions on O3 were more widespread in the cooler 

months (Table S4). The peak county-level increase in MDA8 O3 in the summer and 

winter season were 5.8 ppb (San Bernardino, California) and 1.5 ppb (Orange 

County, California), respectively. However, the median county-level increase of 

MDA8 O3 in the winter was ~5x the median county-level increase in the summer, 

reflecting the localized nature of VCP impacts on summer O3. 

Product Use Category Contributions to SOA and MDA8 O3 

Variability in the chemical composition and subsequent speciated emissions of VCP 

categories generated considerable differences in contributions to SOA enhancements 

by PUC (Fig. AB.4). Annual average, population-weighted SOA enhancements were 

largely driven by emissions from Printing Inks, Cleaning Products, and Paints & 

Coatings, with smaller contributions from Pesticides, Adhesives & Sealants, and 

Personal Care Products. Printing Ink emissions contain large quantities of IVOC 

alkanes (C12-C16 hydrocarbons, represented by n-Tetradecane here) and toluene, 

Cleaning Products are rich in fragrances (represented by terpenes, such as limonene, 

here), and Paints & Coatings have an assortment of straight, branched, and cyclic 

IVOC alkanes, as well as toluene and xylenes in their composition. While Personal 

Care Products were responsible for ~20% of national VCP emissions, their 

contributions to SOA were predicted to be small (~6%). Siloxanes are a significant 

potential source of SOA in Personal Care Products, but oxidize slowly (kOH = 1.55 x 

10-12 cm3 molec.-1 s-1) and thus generate little SOA in the source region. 
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Figure AB.12. Percent contributions to national emissions, population-weighted, 

annual average SOA concentrations, and population-weighted, summertime 

average MDA8 O3 concentrations by Product Use Category for the VCP sector. 

In contrast, contributions to the summertime averaged, population-weighted MDA8 

O3 from each VCP category were closely correlated with emissions magnitude. 

Cleaning Products, Paints & Coatings, and Personal Care Products contributed ~76% 

of the total VCP emissions considered here and made up the bulk (~81%) of the 

MDA8 O3 enhancements. The contributions from both Cleaning Products and 

Personal Care Products were driven by fragrances and glycols. Glycols and glycol 

ethers drove the response from architectural coatings, and toluene and xylene were 

the main contributors for aerosol and industrial coatings. The MDA8 O3 

contributions from both Adhesives & Sealants and Printing Inks were roughly 

proportional to their emissions magnitude. Lastly, emissions from pesticides and all 

other categories (i.e. dry-cleaning, solvent usage in oil and gas operations, lighter 
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fluids, and other miscellaneous products) together contribute ~2% of the MDA8 O3 

enhancement. 

Possible Role of SVOC Evaporation on Ambient SOA 

An emissions rate of ~0.355 kg person-1 year-1 of a SVOC model species with an 

effective SOA yield of 65% leads to ~114 Gg of ROC emissions and ~74 Gg of 

SOA potential. Following allocation of this SVOC using population density, the 

national-level, annual-average VCP-SOA increased ~8 – 17%, with the highest 

absolute increases over Southern California and New York City. These emissions 

led to non-negligible average SOA enhancements in urban centers (0.1 – 0.2 µg m-

3 in summer months) and increased summer, county-level VCP-SOA by 13 – 27% 

(maximum of 34%). While these emissions might be a potentially important source 

of VCP-SOA, their inclusion did not systematically improve the predictions of OC 

(Fig. S6). The biggest improvements occurred in the southwestern summer and 

throughout the contiguous United States in the fall months. However, there was 

added high bias in the northeastern and midwestern winter (Fig. AB.1 vs. Fig. S6). 

Since VCP emissions are correlated with population density (Gkatzelis et al., 2021; 

Coggon et al., 2018) and low bias in modeled OC often manifests in locations with 

low population (i.e. the northwest and Great Plains), this suggests missing VCP 

sources that scale nationally cannot alone explain the remaining differences 

between model predictions and observations. Other drivers of modeled OC bias 

could include VCP sources that are regional in nature (e.g. agricultural pesticides, 

solvent usage in oil and gas operations; Seltzer et al., 2021), other sectors that are 

regional in nature (e.g. residential wood combustion; U.S. EPA, 2021), systematic 

biases in meteorological input, or missing SOA production pathways within 

CMAQ.  

DISCUSSION 

The results shown here indicate that VCPs enhance multiple criteria pollutants 

throughout the contiguous United States and are particularly impactful in populated 
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cities. Of the criteria pollutants and their sub-components, VCPs most enhance 

anthropogenic SOA, which has historically been low biased in CTMs unless 

empirical representations of missing emissions and chemistry are added. While 

modeled OC performance improves when VCP emissions and SOA formation 

pathways are added, additional work is needed to further enhance the robustness of 

SOA predictions from VCPs. For example, due to data limitations, several of the 

product composition profiles used here are older (i.e., Printing Inks and Industrial 

Coatings) and their assumed composition might not reflect present-day formulations. 

A separate, but equally old Printing Ink composite profile from CARB’s organic 

profile database has an estimated effective SOA yield that is ~60% lower than what 

was used here. In addition, the alkane-like IVOC SOA parameterization implemented 

here was based on calculated precursor saturation concentration (C*) and did not 

consider the effect of compound structure on SOA yield (Lim & Ziemann, 2009; 

Tkacik et al., 2012). Oxygenated-IVOCs, which contribute ~6.5% of VCP emissions, 

are understudied SOA precursors and represented with a simple parameterization. 

Some chamber studies suggest these compounds may have substantially higher yields 

(10 – 100%; Charan et al., 2021; Li et al., 2018) than what was assumed here (4.5%). 

The effects of chamber wall loss (Krechmer et al., 2016; Matsunaga & Ziemann, 

2010) and NOx-dependence (Chuang & Donahue, 2016) on estimated SOA yields 

could also modify the magnitude of the VCP-SOA response. Furthermore, field 

studies that deploy instrumentation capable of detecting VCP-tracer compounds 

(Gkatzelis et al., 2021) will help constrain the overall magnitude and trends of VCP 

emissions, as well as provide insight into additional seasonal and diurnal patterns of 

emission. 

In the future, if emissions from the mobile sector continue their multi-decade decline, 

VCPs will inherit a growing proportion of the anthropogenic ROC emissions burden. 

Even at near-present emission conditions, the VCP IVOC emissions modeled here 

generate nearly double the population-weighted SOA concentrations that mobile 

IVOC emissions are predicted to produce. Future implications of VCP emissions on 

ozone air quality are less clear and thus are deserving of attention. Most summertime 
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O3 production in the United States occurs under NOx-limited conditions, except for 

a few major urban areas (Los Angeles, Chicago, and New York; Jin et al., 2020) 

where VCPs currently have large impacts. As NOx emissions are further reduced, 

even these NOx-saturated locations could become NOx-limited. However, many 

urban regions shift to NOx-saturated conditions during the winter (Jin et al., 2017). 

Several epidemiological studies have indicated that annual exposure to ozone can 

have deleterious impacts on human-health (Turner et al., 2016; Lim et al., 2019), 

which suggests ozone mitigation strategies could indicate an increasing effectiveness 

of controlling ROC from VCPs.  

In addition to criteria pollutants, oxidation of VCP emissions in the atmosphere can 

lead to other toxic compounds, such as formaldehyde (Fig. S3). In southern 

California and the New York City region, VCP emissions enhance modeled 

formaldehyde by 5 – 7% and 3 – 4%, respectively. These multiphase pollution 

endpoints (i.e., particle-phase, SOA, and gas-phase, O3 and HCHO), as well as the 

seasonal ammonium nitrate response previously discussed, underscore the need for 

chemical mechanisms that more tightly couple gas- and aerosol-phase chemistry, 

thus accommodating important but less recognized feedbacks. Such considerations 

will only increase in importance as additional chemistry updates (e.g. autoxidation, 

particulate organic nitrates, oligomerization) are incorporated into CTMs. 
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Abstract. Volatile chemical products (VCPs) are an increasingly important source 

of anthropogenic reactive organic carbon (ROC) emissions. Among these sources are 

everyday items, such as personal care products, general cleaners, architectural 

coatings, pesticides, adhesives, and printing inks. Here, we develop VCPy, a new 

framework to model organic emissions from VCPs throughout the United States, 

including spatial allocation to regional and local scales. Evaporation of a species from 

a VCP mixture in the VCPy framework is a function of the compound specific 

physiochemical properties that govern volatilization and the timescale relevant for 

product evaporation. We introduce two terms to describe these processes: 

evaporation timescale and use timescale, respectively. Using this framework, 

predicted national, per-capita organic emissions from VCPs are 9.5 kg person-1 year-

1 (6.4 kgC person-1 year-1) for 2016, which translates to 3.05 Tg (2.06 TgC), making 

VCPs a dominant source of anthropogenic organic emissions in the United States. 

Uncertainty associated with this framework and sensitivity to select parameters were 

characterized through Monte Carlo analysis, resulting in a 95% confidence interval 
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of national VCP emissions for 2016 of 2.61 – 3.53 Tg (1.76 – 2.38 TgC). This 

nationwide total is broadly consistent with the US EPA’s 2017 National Emission 

Inventory (NEI); however, county-level and categorical estimates can differ 

substantially from NEI values. VCPy predicts higher VCP emissions than the NEI 

for approximately half of all counties, with 5% of all counties having greater than 

55% higher emissions. Categorically, application of the VCPy framework yields 

higher emissions for personal care products (150%) and paints/coatings (25%) when 

compared to the NEI, whereas pesticides (-54%) and printing inks (-13%) feature 

lower emissions. An observational evaluation indicates emissions of key species 

from VCPs are reproduced with high fidelity using the VCPy framework (normalized 

mean bias of -13% with r = 0.95). Sector-wide, the effective secondary organic 

aerosol yield and maximum incremental reactivity of VCPs are 5.3% by mass and 

1.58 g O3 g-1, respectively, indicating VCPs are an important, and likely 

underrepresented to-date, source of secondary pollution in urban environments. 

1 Introduction 

 Reactive organic carbon (ROC), which includes both non-methane organic 

gases and organic aerosol (OA), is central to atmospheric oxidant levels and 

modulates the concentration of all reactive species (Heald and Kroll, 2020; 

Safieddine et al., 2017). Gas-phase ROC features both biogenic and anthropogenic 

sources and, following oxidation, can lead to the formation of tropospheric ozone 

(O3) and secondary organic aerosol (SOA). Organic aerosol is often the dominant 

component of total fine particulate matter (PM2.5) throughout the world (Jimenez et 

al., 2009; Zhang et al., 2007), and SOA is often the dominant component of OA in 

both urban and rural settings (Jimenez et al., 2009; Volkamer et al., 2006; Williams 

et al., 2010; Xu et al., 2015). Since ozone and PM2.5 are both associated with impacts 

on human health and welfare (U.S. Environmental Protection Agency, 2019a; U.S. 

Environmental Protection Agency, 2020) that are global in nature (Burnett et al., 

2018; Mills et al., 2018) and persist at low concentrations (Di et al., 2017; 

Kazemiparkouhi et al., 2020), accurately understanding the sources, magnitude, and 

speciation of organic emissions is critical. 
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 Historically, the leading source of anthropogenic organic emissions in the 

United States has been motor vehicles (Khare and Gentner, 2018; McDonald et al., 

2013; Pollack et al., 2013). However, successful emission reduction strategies 

implemented over several decades have dramatically reduced mobile emissions 

(Bishop and Stedman, 2008; Khare and Gentner, 2018; McDonald et al., 2013), 

resulting in substantial declines in both ambient gas-phase non-methane volatile 

organic compounds (NMVOCs) and OA concentrations (Gentner et al., 2017; 

McDonald et al., 2015; Pollack et al., 2013; Warneke et al., 2012). Due to these 

changes, volatile chemical products (VCPs) are now viewed as the foremost source 

of anthropogenic organic emissions (Khare and Gentner, 2018; McDonald et al., 

2018). The U.S. EPA has long accounted for VCPs in the National Emissions 

Inventory (NEI) as the “solvent sector.” In 1990, the mobile and VCP sectors were 

the two highest emitters of volatile organic compounds (VOCs; a regulatory defined 

collection of organic species that excludes certain compounds, such as acetone) at 

the national level. Mobile and VCP sources emitted 7.2 Tg and 5.0 Tg of VOCs, 

respectively (U.S. Environmental Protection Agency, 1995). By 2017, EPA estimates 

of VOC emissions from both the mobile and VCP sectors each dropped to 2.7 Tg 

(U.S. Environmental Protection Agency, 2020). For VCPs, factors driving the 

emissions decrease over this period include, but are not limited to, reformulation of 

consumer products (Ozone Transport Commission, 2016) and implementation of 

National Emissions Standards for Hazardous Air Pollutants regulations for industrial 

processes (Strum and Scheffe, 2016). Potentially complicating the trend and 

assessment of relative roles of different sectors, new inventory methods have 

suggested that VCP emissions in the NEI could be biased low by a factor of 2-3 

(McDonald et al., 2018). 

 The decades-long increasing relative contribution of VCPs to total 

anthropogenic organic emissions could have several important implications for 

modelling and improving air quality. First, modelling studies of SOA from 

anthropogenic VOCs have generally focused on combustion sources (Hodzic et al., 

2010; Jathar et al., 2017; Murphy et al., 2017), which are typically rich in aromatics 
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and alkanes (Gentner et al., 2012; Lu et al., 2018). In contrast, emissions from VCPs 

occur through evaporation and contain large fractions of oxygenated species (e.g. 

glycol ethers, siloxanes), many of which feature uncertain SOA yields (McDonald et 

al., 2018). Second, adequate chemical mechanism surrogates for species common in 

VCPs (e.g. siloxanes) are lacking (Qin et al., 2020). As VCPs and their components 

could have significant SOA potential (Li et al., 2018; Shah et al., 2020), revisiting 

VCP emissions mapping to chemical mechanisms could help reduce modelled bias, 

which has historically been difficult to resolve (Baker et al., 2015; Ensberg et al., 

2014; Lu et al., 2020; Woody et al., 2016). Third, VCPs feature substantial quantities 

of intermediate-volatility organic carbon (IVOC) compounds (CARB, 2019) and 

better representing their source strength could help resolve the high IVOC 

concentrations observed in urban atmospheres (Lu et al., 2020; Zhao et al., 2014). 

Fourth, if the VCP sector is systematically biased low in the NEI or select urban 

areas, there could be implications for ozone pollution (Zhu et al., 2019). Finally, 

reducing organic emissions from VCPs has traditionally been viewed through the 

lens of minimizing near-field chemical exposure (Isaacs et al., 2014) or mitigating 

ozone pollution (Ozone Transport Commission, 2018), both of which can be 

accomplished through product reformulation. For example, reducing the magnitude 

of regulatory VOC emissions from VCPs can be accomplished by reformulating a 

product with lower-volatility ingredients that are less likely to evaporate (Ozone 

Transport Commission, 2016). However, if these lower-volatility replacement 

ingredients eventually evaporate on atmospherically relevant timescales, they could 

be efficient SOA precursors (Li et al., 2018).  

 Given these implications, the need to understand and resolve differences 

among inventories becomes increasingly important. Here, we develop VCPy, a new 

framework to model organic emissions from VCPs throughout the United States, 

including spatial allocation to the county-level. In this framework, fate and transport 

assumptions regarding evaporation of a species in a product into ambient air are a 

function of the compound specific physiochemical properties that govern 

volatilization and the timescale available for a product to evaporate. We introduce 
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two terms to describe these processes: evaporation timescale and use timescale, 

respectively. Since product ingredients are considered individually, determination of 

emission composition is explicit. This approach also enables quantification of 

emission volatility distributions and the abundance of different compound classes. In 

addition, we test the sensitivity of predicted emission factors to uncertain parameters, 

such as evaporation timescale and use timescale, through Monte Carlo analysis, 

evaluate the VCPy inventory using published emission ratios, and estimate the 

effective SOA and ozone formation potential of both the complete sector and 

individual product use categories.  

2 Methods 

2.1 VCPy: A Framework for Estimating Reactive Organic Carbon Emissions 

from Volatile Chemical Products 

The VCPy framework is based on the principle that the magnitude and 

speciation of organic emissions from VCPs are directly related to (1) the mass of 

chemical products used, (2) the composition of these products, (3) the 

physiochemical properties of their constituents that govern volatilization, and (4) the 

timescale available for these constituents to evaporate (Fig. 1). Since the VCP sector 

includes residential, commercial, institutional, and industrial sources, a consistent 

stream of data sources for all product categories is difficult. As such, this work 

implements a hybridized methodology that utilizes the best features of prior emission 

inventory methods, while introducing new methods to make improvements where 

necessary. The result produces national-level, per capita emission factors for all 

product categories in the VCP sector that can be further tailored for regional or 

localized analysis. The per capita basis is useful for comparison across frameworks 

and over time, but emissions can be recast in other units as needed. Briefly, survey 

data are used to generate a 1st-order product composition profile for a composite of 

product types, which quantifies the fraction of organic, inorganic, and water 

components. The organic component is further divided into individual species (e.g. 

ethanol, isobutane, isopropyl alcohol). A variety of data sources are used to estimate 

the national-level product usage and each composite is assigned a use timescale, 
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reflecting the elapsed time between use and any explicit removal process. Finally, the 

characteristic evaporation timescale of each organic component is calculated using 

quantitative structure-activity relationship (QSAR) modelled physiochemical 

properties and compared to the assigned use timescale. If the characteristic 

evaporation timescale of the organic component is less than the assigned use 

timescale of the composite, it is assumed that the compound is emitted. Else, the 

compound is retained in the product or other condensed phase (e.g. water) and 

permanently sequestered.  

 

Figure 13: Conceptual overview of the VCPy framework. Note: PUC = Product 

Use Category.  
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2.1.1 Product Use Categories (PUCs) and sub-Product Use Categories (sub-

PUCs) 

VCPy disaggregates the VCP sector into several components called Product 

Use Categories (PUCs). An individual PUC is not exclusively used in a singular 

setting (e.g. residential vs. commercial) and examples include Personal Care 

Products, Cleaning Products, and Paints & Coatings. PUCs are further divided into 

sub-PUCs, which are composites of individual product types featuring similar use 

patterns. In addition to permitting tailored fate-and-transport assumptions, similar 

hierarchical product schema are also useful for models estimating near-field exposure 

to chemicals, through routes such as dermal contact and indoor inhalation (Isaacs et 

al., 2020). As an example, there are two sub-PUCs allocated to the Personal Care 

Product PUC: Short Use Products and Daily Use Products. These two sub-PUCs are 

differentiated by the length of use prior to removal (i.e. the use timescale). The mass 

of chemical products used and subsequent organic emission factors, which are the 

main output from VCPy, are calculated at the sub-PUC level (Fig. 1). Currently, there 

are ten PUCs and sixteen sub-PUCs implemented in VCPy (Table 1). 

Table 5: Description of all PUCs and sub-PUCs currently implemented in VCPy, 

their estimated mass usage for 2016, and product examples of each. See Table S2 

for a derivation of all product usage estimates. 

Product Use 

Categories 

(PUCs) 

Sub-Product Use 

Categories 

(sub-PUCs) 

2016 Annual 

Usage [kg 

person-1 year-1] 

Product Examples 

Cleaning 

Products 

Detergents & 

Soaps 
40.58 

Soaps, Detergents, Metal 

Cleaners, Scouring 

Cleaners 

General Cleaners 28.47 

Disinfectants, Air 

Fresheners, Glass & 

Bathroom Cleaners, 

Windshield Washer 

Fluid, Hand Sanitizer, 

Automotive & Floor 

Polishes, Bleaches, 

Surfactants 

Daily Use 

Products 
8.83 

Hair Products, Perfumes, 

Colognes, Cleansing & 
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Personal 

Care 

Products 

Moisturizing Creams, 

Sunscreens, Hand & 

Body Lotion and Oils, 

Cosmetics, Deodorants 

Short Use 

Products 
3.16 

Shampoo, Conditioners, 

Shaving Cream, 

Aftershave, 

Mouthwashes, 

Toothpaste 

Adhesives & 

Sealants 

Adhesives & 

Sealants 
15.23 

Glues and Adhesives, 

Epoxy Adhesives, Other 

Adhesives, Structural and 

Nonstructural Caulking 

Compounds and Sealants 

Paints & 

Coatings 

Architectural 

Coatings 
13.27 

Exterior/Interior 

Flat/Gloss Paints, 

Primers, Sealers, 

Lacquers 

Aerosol Coatings 0.39 

Paint Concentrates 

Produced for Aerosol 

Containers 

Allied Paint 

Products 
1.26 

Thinners, Strippers, 

Cleaners, Paint/Varnish 

Removers 

Industrial Coatings 7.42 

Automotive, Appliance, 

Furniture, Paper, 

Electrical Insulating, 

Marine, Maintenance, 

and Traffic Marking 

Finishes and Paints 

Printing Inks Printing Inks 3.20 

Letterpress, 

Lithographic, Gravure, 

Flexographic, 

Nonimpact/Digital Inks 

Pesticides & 

FIFRA 

Products 

FIFRA Pesticides  1.46 

Lawn and Garden 

Pesticides and 

Chemicals, Household 

and Institutional 

Pesticides and Chemicals 

Agricultural 

Pesticides 
10.32 

Agricultural and 

Commercial Pesticides & 

Other Organic Chemicals 

Dry Cleaning Dry Cleaning 0.03 Dry Cleaning Fluids 

Oil & Gas Oil & Gas 1.32 Cleaners, Deicers 
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Misc. 

Products 
Misc. Products 0.18 

Pens, Markers, Arts and 

Crafts, Dyes 

Fuels & 

Lighter  
Fuels & Lighter 2.80 

Lighter Fluid, Fire 

Starter, Other Fuels 

 

2.1.2 National-Level Product Usage 

To estimate VCP product use, some prior work has used national economic 

statistics, such as market sales or shipment values (e.g. U.S. Environmental 

Protection Agency, 2020; McDonald et al., 2018). Others have incorporated product 

usage statistics based on consumer habits and practices (e.g. Isaacs et al., 2014; Qin 

et al., 2020), but these statistics are generally unavailable for commercial and 

industrial chemical usage, which limits their application. To better ensure the capture 

of all chemical product usage, including usage in residential, commercial, 

institutional, and industrial settings, national economic statistics are utilized, where 

possible (Table S1). 

Product usage from twelve sub-PUCs is estimated using national-level 

shipment statistics, commodity prices, and producer price indices. National-level 

economic statistics are retrieved from the U.S. Census Bureau’s Annual Survey of 

Manufactures (ASM; U.S. Census Bureau, 2016a), which provides annual statistical 

estimates for all manufacturing establishments. Values are available for all 6-digit 

North American Industry Classification System (NAICS) codes, provided as product 

shipment values ($ year-1), and are reported with associated relative standard errors 

(generally < 5%). To translate shipment values ($ year-1) to usage (kg year-1), we use 

commodity prices ($ kg-1) from the U.S. Department of Transportation’s 2012 

Commodity Flow Survey (U.S. Department of Transportation, 2015). An exception 

is for all Paint & Coating sub-PUCs. Commodity prices for these sub-PUCs are taken 

from the U.S. Census Bureau’s Paint and Allied Products Survey (U.S. Census 

Bureau, 2011a) and representative of 2010. To translate these commodity prices, 

which are from 2010 and 2012, to values reflective of 2016, we use producer price 

indices reported by the Federal Reserve Bank of St. Louis (U.S. Bureau of Labor 

Statistics, 2020). Commodity price indices from the Federal Reserve Bank are 
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updated for all NAICS manufacturing codes monthly, which we average to create 

annual price indices (Table S2). An implicit assumption in this methodology is that 

manufacturing and product usage are, on average, annually balanced. 

We preferentially utilize product usage numbers derived from the above 

methodology, when possible, as all data sources have the following characteristics: 

(1) they are nationally derived and therefore less influenced by regional differences 

in manufacturing and formulation, and (2) all datasets are freely available to the 

public. However, due to data limitations, product usage for four sub-PUCs are 

estimated using other sources. The Dry Cleaning and Oil & Gas product usage 

estimates are derived from the national-level solvent mass usage reported by an 

industry study (The Freedonia Group, 2016). The Miscellaneous Products and Fuels 

& Lighter product usage estimates are derived from reported sales data, specific to 

California, from the California Air Resources Board’s 2015 Consumer and 

Commercial Products Survey Data (CARB, 2019). These sales numbers are scaled 

upwards to a national-level by assuming equivalent per-capita product usage.  

2.1.3 1st-Order and Organic Product Composition 

Each sub-PUC features two composite profiles. The initial composite is the 

1st-order product composition profile, which disaggregates the total mass of each sub-

PUC into its water, inorganic, and organic fractions (Table 2). The organic 

component is further decomposed into non-evaporative and evaporative organics. 

The quantification and accounting of evaporative organics in this framework are 

necessary as CARB’s organic profiles are processed to exclude organics that are not 

anticipated to evaporate on atmospherically relevant timescales. For ten sub-PUCS, 

the 1st-order product composition profile uses data from the California Air Resources 

Board’s 2015 Consumer and Commercial Products Survey (CARB, 2019). Various 

product types are sorted into each sub-PUC and the 1st-order product composition 

profiles are calculated on a weighted basis using the reported sales from 

manufacturers and formulators in California. Due to omissions stemming from 

confidentiality concerns, not all sales and composition data from the survey are 

available. We utilize the publicly available portions of the data, which constitutes 
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most of the survey and includes over 330 product types. For example, 126 product 

types and 20 product types were sorted into the General Cleaners and Adhesives & 

Sealants (Table S3) sub-PUCs, respectively.  

Table 6: 1st-Order product composition profiles and evaporative organics 

proportion for all sub-PUCs. 

Product 

Use 

Categorie

s (PUCs) 

Sub-

Product 

Use 

Categories 

(sub-

PUCs) 

Water Inorganic 

Non-

Evaporative 

Organicsa 

Evaporative 

Organicsa 

Cleaning 

Products 

Detergents 

& Soapsb 
67.8% 13.9% 15.4% 2.9% 

General 

Cleanersb 
73.3% 8.6% 11.1% 6.9% 

Personal 

Care 

Products 

Daily Use 

Productsb 
48.8% 10.7% 16.9% 23.7% 

Short Use 

Productsb 
72.2% 5.8% 17.7% 4.3% 

Adhesives 

& 

Sealants 

Adhesives 

& Sealantsb 
12.8% 53.2% 29.0% 5.0% 

Paints & 

Coatings 

Architectur

al 

Coatingsc 

45.5% 49.6% 0.0% 5.0% 

Aerosol 

Coatingsd 
12.7% 12.7% 0.0% 74.7% 

Allied 

Paint 

Productsb 

5.1% 3.5% 0.6% 90.8% 

Industrial 

Coatingse 
15.0% 70.0% 0.0% 14.0% 

Printing 

Inks 

Printing 

Inksf 
8.0% 67.0% 0.0% 25.0% 

Pesticides 

& FIFRA 

Products 

FIFRA 

Pesticidesb 
74.8% 4.9% 15.1% 5.1% 

Agricultura

l 

Pesticidesb 

74.8% 4.9% 15.1% 5.1% 

Dry 

Cleaning 

Dry 

Cleaningg 
0.0% 0.0% 0.0% 100% 
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Oil & Gas Oil & Gasg 0.0% 0.0% 0.0% 100% 

Misc. 

Products 

Misc. 

Productsb 
27.1% 14.6% 48.8% 9.5% 

Fuels & 

Lighter 

Fuels & 

Lighterb 
0.0% 92.9% 0.0% 7.1% 

a: “Non-Evaporative Organics” and “Evaporative Organics” sum to total product 

organics. “Evaporative Organics” represent the potentially evaporative organic 

fraction of the total product and excludes assumed “non-evaporative” (i.e. assumed 

non-volatile) organics, which are not included in the California Air Resource Board’s 

organic profiles. 

b: Source: California Air Resources Board 2015 Consumer and Commercial Products 

Survey Data (CARB, 2019). 

c: Source: California Air Resources Board 2005 Architectural Coatings Survey 

(CARB, 2007). VOC + Exempts is used for both organic and evaporative organics. 

Non-evaporative organic proportions not provided. Sales proportions of water vs. 

solvent-based architectural coatings based on California Air Resource Board 2014 

Architectural Coatings Survey (CARB 2014). 

d: Source: California Air Resources Board 2010 Aerosol Coatings Survey (CARB, 

2012). Only evaporative organics is provided. Remainder (~25%) is split evenly 

between water and inorganics. 

e: Source: Industrial Maintenance composition data from California Air Resources 

Board 2005 Architectural Coatings Survey (CARB, 2007). 

f: Source: Graphic Arts composition data from California Air Resources Board 2005 

Architectural Coatings Survey (CARB, 2007). 

g: All product usage is composed of organic functional solvents (The Freedonia 

Group, 2016). Therefore, all mass is assumed to be potentially evaporative.  
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For Architectural Coatings, Industrial Coatings, and Printing Inks, the 1st-

order product composition profile is derived from data in the California Air 

Resources Board’s 2005 Architectural Coatings Survey (CARB, 2007). The 

Architectural Coatings sub-PUC uses data from all profiles in the survey, which is 

dominated by flat paint, non-flat paints, and primers. Industrial Coatings and Printing 

Inks use the 1st-order product composition profiles of Industrial Maintenance 

coatings and Graphic Arts coatings, respectively. The 1st-order product composition 

profile for aerosol coatings uses data from the California Air Resources Board’s 2010 

Aerosol Coatings Survey (CARB, 2012), which includes more than 20 aerosolized 

product types. Only the evaporative organic composition of aerosol coating products 

was reported, so the remaining mass was evenly split between water and inorganics. 

For Dry Cleaning and Oil & Gas, as the product usage for these sub-PUCs were 

derived from the organic functional solvent mass usage, it is assumed that this mass 

is entirely evaporative organics. 

The second composite is the organic composition profile. Again, the 

California Air Resources Board’s 2015 Consumer and Commercial Products Survey 

(CARB, 2019) was used to derive a composite of product types for ten sub-PUCs 

(Table S4). These product types are then mapped to an associated organic profile 

(CARB, 2018; see Table S3) and weighted based on their evaporative organic 

contributions to the total sub-PUC. For Architectural Coatings, a 94% water-based 

and 6% solvent-based paint (CARB, 2014) composite is generated. Aerosol Coatings 

are calculated on a weighted basis using the potentially evaporative organic 

contributions reported by CARB’s 2010 Aerosol Coatings Survey (CARB, 2012). 

The organic composition profiles for Industrial Coatings, Printing Inks, and Dry 

Cleaning all utilize profiles (3149, 2570, 2422, respectively) from EPA’s 

SPECIATEv5.0 database (EPA, 2019b). Approximately 65% of the solvents used in 

the Oil & Gas sector are alcohols and the remainder are a broad range of 

hydrocarbons (The Freedonia Group, 2016). Since detailed composition data for Oil 

& Gas solvents are sparse, all Oil & Gas alcohols are assumed to be methanol, as it 

is widely used in and emitted from Oil & Gas operations (Lyman et al., 2018; 
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Stringfellow et al., 2017; Mansfield et al., 2018). The remaining 35% is allocated to 

naphtha, a blend of hydrocarbon solvents. 

Several components within CARB profiles are lumped categories or complex 

mixtures. This includes naphtha, mineral spirits, distillates, Stoddard Solvent, 

fragrances, volatile methyl siloxanes, and a series of architectural coating and 

consumer product “bins.” All naphtha, mineral spirits, distillates, and Stoddard 

Solvent occurrences in individual profiles are treated as a single mineral spirits 

profile (Carter, 2015). Volatile methyl siloxanes include several compounds (e.g. D4, 

D5, D6), all of which are emitted in varying proportions (Janechek et al., 2017). Here, 

the lumped volatile methyl siloxane identity is preserved but the physiochemical 

properties of decamethylcyclopentasiloxane is applied to the surrogate. Fragrances 

are a diverse mixture of organic compounds that include many terpenes and alkenes 

(Nazaroff and Weschler, 2004; Sarwar et al., 2004; Singer et al., 2006b). However, 

since the proportion of these constituents are unknown, all fragrances are physically 

treated as d-limonene since it is the most prevalent terpene emitted from fragranced 

products (Sarwar et al., 2004; Singer et al., 2006b). Finally, for the architectural 

coating and consumer product “bins,” we use the representative chemical 

compositions derived by Carter, 2015. 

2.1.4 Controls 

 There are two methods for controlling organic emissions from VCPs. The 

first method is through product reformulation, which would occur prior to product 

usage. Strategies that fit this definition include switching from a hydrocarbon 

solvent-based ingredient to one that is water-based, replacing an organic component 

with a non-organic component, and reformulating a product with lower-volatility 

ingredients that are less likely to evaporate (Ozone Transport Commission, 2016). 

VCP emissions that stem from residential, commercial, and institutional settings rely 

on these pre-use controls to reduce emissions. Regulators often set VOC content 

limits for chemical products (e.g. national standards: Section 183(e) of the Clean Air 

Act; 40 CFR 59), with California (e.g. CARB – Title 17 CCR) typically setting some 

of the most stringent limits in the country (Ozone Transport Commission, 2016). As 
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the 1st-order and organic composition profiles utilized here are almost exclusively 

derived from product composition data, pre-use controls are implicitly represented. 

In fact, since the product composition data is from manufacturers and formulators in 

California, where product VOC content limits are typically more stringent than 

national regulations, applying these profiles nationally likely results in conservative 

assumptions. 

 The second pathway of controlling organic emissions from VCPs is 

through post-use controls. Strategies that fit this definition include add-on controls, 

manufacturing process modifications, and disposal techniques. Add-on control 

strategies and manufacturing process modifications are limited to industrial and 

commercial emission sources, such as Industrial Coating (U.S. EPA, 2007; U.S. 

EPA, 2008) and Printing Ink (U.S. EPA, 2006a; U.S. EPA, 2006b) facilities. Since 

adoption of these technologies vary widely in space and time, assigning post-use 

controls via these strategies is not considered here. As several of these industrial 

sources (e.g. coatings, printing inks, dry cleaning) feature controls, as required by 

Section 112 of the Clean Air Act (40 CFR 63), this assumption could lead to localized 

high bias and will be refined in future work. Here, we only consider post-use controls 

through disposal techniques for the Oil & Gas and Fuels & Lighter sub-PUCs. For 

Oil & Gas, we assume that the solvents used in these processes become entrained in 

the produced water at these sites. Since produced water is largely (~89-98%) 

reinjected for enhanced oil and gas recovery or disposal (Lyman et al., 2018; Liden 

et al., 2018), we apply a post-use control efficiency of 94% (i.e. average of reported 

reinjection rates) to this sub-PUC. However, it should be noted that reinjection 

frequency and solvent usage can vary regionally. For Fuels & Lighters, we assume 

90% of the organics are destroyed through combustion upon use (CARB, 2019). 

2.1.5 Evaporation Timescale and Use Timescale 

Fate-and-transport in the VCPy framework is a function of the predicted 

compound specific evaporation timescale and the assigned use timescale of each sub-

PUC. It should be noted that this methodology explicitly results in the organic 

speciation of emissions differing from the organic composition of products from 
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which they volatilize. For example, the composition of organics within a product may 

differ from the speciation of emitted organics if the product contains low-volatility 

compounds that do not evaporate on relevant timescales. 

The evaporation timescale is the compound specific (i.e. independent of the 

sub-PUC of interest), characteristic timescale of emission from a surface layer and is 

calculated using previously published methods (Khare and Gentner, 2018; Weschler 

and Nazaroff, 2008). This timescale is defined as a relationship between the mass of 

a compound applied and the rate of its emission, which can be expressed by: 

 

𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒 [ℎ𝑟] =  
𝑀𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑅𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
⁄ =

𝐾𝑂𝐴 × 𝑑
𝑣𝑒

⁄    (1) 

 

where KOA is the octanol-air partitioning coefficient of the compound, d [m] is the 

assumed depth of the applied product layer, and ve [m/hr] is the mass transfer 

coefficient of the compound from the surface layer into the bulk air, which is a 

function of aerodynamic and boundary layer resistances. Median values for d [0.1 

mm] and ve [30 m/hr] from Khare and Gentner (2018) are selected here. It should be 

noted that ve can vary substantially based on outdoor vs. indoor atmospheric 

conditions and future work will incorporate a two-box model to better account for 

such differences. A compound’s KOA it is the ratio of an organic chemical’s 

concentration in octanol to the organic chemical’s concentration in air at equilibrium. 

It is often used to quantify the partitioning behaviour of an organic compound 

between air and a matrix. As experimental values of KOA are sparse, modelled 

estimates from the quantitative structure-activity relationship (QSAR) model 

OPERA (Mansouri et al., 2018) are used here. All physiochemical properties, 

including OPERA results, are retrieved from the U.S. EPA’s CompTox Chemistry 

Dashboard (https://comptox.epa.gov/dashboard; last access: August 31, 2020). 

Use timescale is the timescale available for a sub-PUC to evaporate and is 

based on the length of its direct use phase (i.e. the elapsed time between application 

and any explicit removal process). As this value is subjective, broad values are 
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applied to each sub-PUC (Table S5). For example, it is assumed that all products 

used in the bath and shower are quickly sequestered and washed down the drain, thus 

largely unavailable for emission (Shin et al., 2015). As such, Short Use Personal Care 

Products are assigned a “Minutes” use timescale. In contrast, it is also assumed that 

each person bathes once a day and associated Daily Use Personal Care Products are 

therefore assigned a “Days” use timescale.  

Emissions are determined by comparing the calculated evaporation timescale 

for each component with the assigned use timescale for the sub-PUC. If the use 

timescale for the sub-PUC is greater than the evaporation timescale for a compound, 

the compound is emitted. Else, the compound is retained in the product or other 

condensed phase and permanently sequestered. Overall, organic emissions (E) for 

the complete sector are calculated as a summation over all organic compounds, i, and 

sub-PUCs, j, as follows: 

 

𝐸 =

∑ {
0                                                        𝑖𝑓 𝑈𝑠𝑒 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑗 < 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑖

𝑈𝑗 × 𝑓𝐸𝑗
 × 𝑓𝑆𝑖,𝑗

× (1 − 𝑓𝐶𝑗
)       𝑖𝑓 𝑈𝑠𝑒 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑗 ≥ 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒𝑖

𝑖,𝑗     

                                    (2) 

 

where U is the product usage (Table 1), ƒE is the evaporative organic fraction (Table 

2), ƒS is the fraction of an organic compound in the evaporative organics portion of a 

sub-PUC (Table S4), and ƒC is the fraction of emissions that feature post-use controls 

on a mass basis. Application of Eqn. 2 determines the difference between organic 

product composition and organic emissions speciation. 

2.2 Uncertainty Analysis 

The sensitivity of emission estimates to a variety of input variables are tested 

through a systematic Monte Carlo analysis. We perform 10,000 simulations where 

product usage, evaporative organic proportions, variables associated with the 

characteristic evaporation timescale, the assigned use timescale, and post-use control 

assumptions are tested, both individually and collectively. For product usage, the 
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primary sources of uncertainty are shipment values provided by the ASM, 

commodity prices, the balance of imports (including tourism) and exports, and 

unused product disposal. The ASM provides standard error estimates for most 

shipment values and are typically less than 5%. Uncertainty estimates are not 

provided for commodity prices and national-level exports generally outweigh 

traditional imports for most sub-PUCs (~2-15%; U.S. Census Bureau, 2016), but 

there are also imports of personal care products through tourism. Therefore, we 

assume there is a ±25% uncertainty (95% CI) for all product usage estimates. CARB 

does not provide uncertainty estimates associated with the composition of product 

types or sales proportions. To account for these uncertainties, as well as the 

uncertainties associated with generating composites, we assume there is a ±25% 

uncertainty (95% CI) for all “Evaporative Organic” (Table 2) proportions. For the 

characteristic evaporation timescale, there are several layers of uncertainty. 

Application patterns vary by product type, which impacts assumptions regarding the 

depth of the chemical layer. In addition, indoor vs. outdoor product use and 

application of products to variable surface types (e.g. absorbing vs. non-absorbing) 

can impact mass transfer rates. As such, we apply broad uncertainties for variables 

associated with the characteristic evaporation timescale. We assume d (i.e. the depth 

of the applied chemical layer) is lognormally distributed with a median value of 0.1 

mm (95% CI ~ [0.01 mm – 1 mm]) and ve (i.e. the mass transfer coefficient) is 

normally distributed with a mean value of 30 m/hr (95% CI = [10 m/hr – 50 m/hr]). 

Since use timescales are categorical (e.g. minutes, days, years), we apply uncertainty 

by assuming the 95% CI of the assigned use timescale features a ±1 categorical 

uncertainty (e.g. mean: minutes; 95% CI = [seconds – hours]). Finally, for non-zero, 

post-use controls, we assume a ±25% uncertainty (95% CI) in the post-use control 

efficiency. It should be noted that additional avenues of uncertainty likely persist but 

are difficult to quantify and therefore not included here. For example, due to the 

scarcity of large-scale product surveys, many of the 1st-order product composition 

profiles (e.g. Architectural Coatings) and organic profiles (e.g. Printing Inks) used in 

this analysis are more than a decade old. As a result, the proportion of organics in 
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these product types and their organic components (i.e. the mean values applied here) 

may have changed in the interim period. Furthermore, the uncertainty associated with 

the evaporative organic composition of individual product types is not known or 

provided by the source data.  

2.3 Spatial Allocation of National-Level Emissions 

Emissions are calculated at the national-level and spatially allocated to the 

county-level using several proxies. Ten sub-PUCs, including all Cleaning Products 

and Personal Care Products, are allocated using population (Table S6; U.S. Census 

Bureau, 2020). Four sub-PUCs (Industrial Coatings, Allied Paint Products, Printing 

Inks, Dry Cleaning), all typically industrial in nature, are allocated using county-level 

employment statistics from the U.S. Census Bureau’s County Business Patterns (U.S. 

Census Bureau, 2018). The employment mapping scheme for these four sub-PUCs 

utilize the methods from the 2017 NEI (U.S. EPA, 2020). On occasion, data in the 

County Business Patterns (CBP) is withheld due to confidentiality concerns. In those 

instances, we take the mid-point of the range associated with each data suppression 

flag. For Agricultural Pesticides, emissions are allocated based on county-level 

agricultural pesticide use and again taken from the 2017 NEI (U.S. EPA, 2020). Oil 

& Gas emissions are allocated using oil and gas well counts (U.S. EIA, 2019). 

2.4 Inventory Evaluation 

Previously published emission ratios from the Los Angeles basin during the 

summer of 2010 (de Gouw et al., 2018; de Gouw et al., 2017) are used to evaluate 

the VCPy emissions inventory (Table S7). Emissions ratios are generated by post-

processing observed concentrations of organic gases, typically normalized to carbon 

monoxide (CO) or acetylene, to a period of “no chemistry” (Borbon et al., 2013; de 

Gouw et al., 2005; Warneke et al., 2007). As the air parcel is not photochemically 

aged (i.e. “no chemistry”), it is an ideal tool for evaluating an emissions inventory. 

An important caveat is that this method assumes the species being used for 

normalization (e.g. CO) is accurately inventoried and measured.  

Since the emission ratios are not specific to a sector and represent total 

emissions, all other sectors must be quantified and speciated. For this purpose, all 
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non-VCP anthropogenic emissions from the 2017 NEI (U.S. EPA, 2020) are 

collected and speciated using EPA’s SPECIATEv5.0 database (EPA, 2019b; Table 

S8). This includes all on road, nonroad, nonpoint, and point sources. All VCP 

emission from the 2017 NEI are also collected and speciated for supplementary 

evaluation. In addition, biogenic emissions of ethanol, methanol, and acetone for 

May and June of 2016, as simulated by the Biogenic Emission Inventory System 

(Bash et al., 2016), were included to capture non-anthropogenic sources of these 

compounds. May and June were selected to coincide with the observational sampling 

months (de Gouw et al., 2018; de Gouw et al., 2017). As the observed emission ratios 

are specific to the Los Angeles basin, we derive all VCPy inventory emission ratios 

using data for Los Angeles County. Total CO emissions, including all on-road, non-

road, non-point, and point sources, for Los Angeles County in 2017 are ~320 Gg. 

While the observed and VCPy inventory emission ratios are separated by 6-7 years, 

the ambient non-methane hydrocarbon to CO concentration ratio in Los Angeles has 

been consistent for several decades, indicating changes in emission controls feature 

similar improvements for both pollutants over time (McDonald et al., 2013). In 

addition, the magnitude of observed emission ratios for a given region do not 

appreciably change over marginal time horizons (Warneke et al., 2007).  

2.5 Air Quality Impact Potential 

Each organic compound is assigned a SOA yield and Maximum Incremental 

Reactivity (MIR) to facilitate an approximation of the potential air quality impacts of 

VCPs. For SOA, a wide collection of published yields, including both chamber 

results and prediction tools, were utilized (Fig. S1). These include: (1) all linear 

alkanes use a quadratic polynomial fit to the volatility basis set (VBS) data from 

Presto et al., 2010 at 10 µg/m3; (2) all cyclic alkanes use linear alkane yields that are 

three carbons larger in size (Tkacik et al., 2012); (3) all branched alkanes use yields 

obtained from the Statistical Oxidation Model (SOM; Cappa and Wilson, 2012), as 

reported in McDonald et al. (2018); (4) benzene and xylenes use the average yields 

from Ng et al., 2007 under high-NOx conditions; (5) toluene uses the average from 

Ng et al., 2007 under high-NOx conditions and the VBS data from Hildebrant et al., 
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2009 at 10 µg/m3; (6) all alkenes use yields obtained from SOM, as reported in 

McDonald et al. (2018); (7) volatile methyl siloxanes use the two-product model 

parameters from Janecheck et al., 2019, which includes additional SOA yields from 

Wu and Johnson 2017, at 10 µg/m3; (8) all glycol ethers use chamber results and 

molecular structure relationships from Li and Cocker 2018 for reported and 

unreported glycol ethers, respectively; (9) benzyl alcohol uses the average of the 

lower-bound yields reported by Charan et al., 2020; (10) all remaining non-cyclic 

oxygenates, where available, use the arithmetic average of SOM results and a 1-D 

VBS approach, as reported by McDonald et al., 2018; (11) all remaining cyclic 

oxygenates, where available, use yields obtained from SOM, as reported by 

McDonald et al., 2018; (12) all halocarbons and compounds with less than five 

carbons are assigned a yield of zero; and (13) all remaining species are conservatively 

assigned a yield of zero if the effective saturation concentration (i.e. 𝐶∗ =

 (𝑃𝑣𝑎𝑝 × 𝑀𝑊) (𝑅 × 𝑇)⁄ ) is ≥ 3 × 106 µ𝑔 𝑚3⁄  and assigned the same yield as n-

dodecane if the effective saturation concentration is < 3 × 106 µ𝑔 𝑚3⁄ . The MIR of 

each compound, which measures the formation potential of ozone under various 

atmospheric conditions where ozone is sensitive to changes in organic compounds 

(Carter, 2010b), is calculated using the SAPRC-07 chemical mechanism (Carter, 

2010a) and expressed as a mass of additional ozone formed per mass of organic 

emitted (Carter, 2010b).  

3 Results and Discussion 

3.1 National-Level PUC and sub-PUC Emissions 

National-level, per-capita organic emissions from VCPs are 9.5 kg person-1 

year-1 (6.4 kgC person-1 year-1) for 2016 (Table 3), which translates to 3.05 Tg (2.06 

TgC). When filtered to remove regulatory exempt organics, total emissions from 

VCPs are 2.6 Tg of VOC. In comparison, the 2017 NEI reports a combined total of 

2.6 Tg of VOC emissions for on-road mobile, non-road mobile, and other mobile (i.e. 

aircraft, commercial marine vessels, and locomotives) sources, respectively. 

Therefore, when measured as VOC, the VCP sector is equal in magnitude to the sum 

of all mobile sources nationally, which is broadly consistent with the national-level 
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emissions estimate from the 2017 NEI. Categorically, emission factors are largest for 

Paints & Coatings, which total 3.1 kg person-1 year-1 (2.2 kgC person-1 year-1) and 

are approximately 33% of the total sector (Table 3). The next largest PUCs are 

Personal Care Products and Cleaning Products, which contribute 2.1 kg person-1 year-

1 (22%) and 2.0 kg person-1 year-1 (21%), respectively. Printing Inks, Adhesives & 

Sealants, and Pesticides each account for 6-9% each, and the remaining PUCs 

contribute less than 2% in total.  

Table 7: National-level emissions, volatilization fraction, and proportion of all 

usage that is emitted for all sub-PUCs. 

Product 

Use 

Categories 

(PUCs) 

Sub-

Product 

Use 

Categories 

(sub-

PUCs) 

ROC Emissions 

Organic 

Volatilization 

Fraction 

[%]a 

Total 

Product 

Emitted 

[%] 

[kg 

person-1 

year-1] 

[kgC 

person-1 

year-1] 

Cleaning 

Products 

Detergents 

& Soaps 
0.12 0.06 1.6% 0.3% 

General 

Cleaners 
1.85 1.25 36.0% 6.5% 

Personal 

Care 

Products 

Daily Use 

Products 
2.04 1.12 56.9% 23.1% 

Short Use 

Products 
0.02 0.01 3.3% 0.7% 

Adhesives 

& Sealants 

Adhesives 

& Sealants 
0.76 0.56 14.7% 5.0% 

Paints & 

Coatings 

Architectur

al Coatings 
0.67 0.37 100%b 5.0% 

Aerosol 

Coatings 
0.29 0.22 100%b 74.7% 

Allied Paint 

Products 
1.14 0.80 99.2% 90.6% 

Industrial 

Coatings 
1.04 0.79 100%b 14.0% 

Printing 

Inks 

Printing 

Inks 
0.80 0.65 100%b 25.0% 

Pesticides 

& FIFRA 

Products 

FIFRA 

Pesticides 
0.07 0.06 25.2% 5.1% 

Agricultura

l Pesticides 
0.53 0.41 25.2% 5.1% 
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Dry 

Cleaning 

Dry 

Cleaning 
0.01 0.01 34.5% 34.5% 

Oil & Gas Oil & Gas 0.08 0.04 6.0% 6.0% 

Misc. 

Products 

Misc. 

Products 
0.02 0.01 16.3% 9.5% 

Fuels & 

Lighter 

Fuels & 

Lighter 
0.02 0.02 10.0% 0.7% 

Total 9.45 6.38 31.5% 6.9% 
a: Volatilization fraction represents the fraction of the total organic content of products 

that volatilize/emit to ambient air.  

b: The “Organic” portion of these sub-PUCs is entirely composed of “Evaporative 

Organics” (see Table 2). Only data from the California Air Resources Board’s 2015 

Consumer and Commercial Products Survey featured the disaggregation of 

evaporative and non-evaporative organics. Prior surveys typically combined the non-

evaporative organic portion of each profile with solids/inorganics.  

For the complete sector (Fig. 2), the most abundantly emitted compound 

classes were oxygenated species (53%), followed by alkanes (31%; including 

straight-chained, branched, and cyclic), aromatics (8%), alkenes (5%), and 

halocarbons (3%). Individually, organic emissions are dominated by ethanol (Daily 

Use Products, General Cleaners), acetone (Paints & Coatings, General Cleaners), 

isopropyl alcohol (Daily Use Products, General Cleaners), toluene (Paints & 

Coatings, Adhesives & Sealants), n-tetradecane (Printing Inks), fragrances (Daily 

Use Products, General Cleaners), propane (Aerosol Coatings, Industrial Coatings), 

and volatile methyl siloxanes (Daily Use Products, Adhesives & Sealants). Each of 

these species compose > 3% of total VCP organic emissions (see Table S9 for the 

top-200 emitted compounds).  
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Figure 14: Sector-wide volatility distribution of emissions by compound class. 

In terms of volatility classification (Donahue et al., 2012), as determined by 

the effective saturation concentration (i.e. C*), total emissions are predominately 

VOCs (𝐶∗ >  3 × 106 µ𝑔 𝑚−3), but there are also considerable contributions from 

IVOCs (3 × 102 µ𝑔 𝑚−3 < 𝐶∗ <  3 × 106 µ𝑔 𝑚−3; Fig. 2-3). IVOC emissions, 

which are efficient SOA precursors (Chan et al., 2009; Presto et al., 2010), are 

approximately 20% of total emissions. Of this 20% that are IVOCs, 52% are 

oxygenated compounds (e.g. Texanol™, propylene glycol, ethylene glycol, 

siloxanes, benzyl alcohol, and glycol ethers), 30% are n-alkanes, and the rest are 

largely branched and cyclic alkanes. The prominence of oxygenated IVOC emissions  

from VCPs is noteworthy, as SOA yields from these compounds have not historically 

been evaluated nor included as SOA precursors in model chemical mechanisms (Qin 

et al., 2020). However, work has been undertaken in recent years to better understand 

these compounds (e.g. Wu and Johnson 2017; Li and Cocker 2018; Janechek et al., 

2019; Charan et al., 2020). Overall, Paints & Coatings is the largest source of IVOC 

emissions (~760 g person-1 year-1; Fig. 3), followed by Printing Inks (~350 g person-

1 year-1), Cleaning Products (~180 g person-1 year-1), and Pesticides (~170 g person-1 

year-1). While Paints & Coatings emit more IVOCs by mass than all other PUCs, 
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Printing Ink and Pesticide emissions both feature greater proportions of IVOCs to 

their total emissions (~44% and ~28%, respectively).  

 

Figure 15: PUC and sector-wide volatility distribution of organic emissions. Other 

is summation of Dry Cleaning, Oil & Gas, Misc. Products, and Fuels & Lighter. Pie 

charts are 1st-order product composition and organic emission proportions for PUCs 

and the complete sector. Note: The “Organic” portion of all Paints & Coatings and 
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Printing Inks pie charts is entirely composed of “Evaporative Organics” (see Table 

2). 

These results also highlight how emissions from each PUC and sub-PUC are 

uniquely driven by mass of products used, organic composition, and use timescale. 

For example, the two largest sub-PUC sources are Daily Use Products and General 

Cleaners. Both are assigned a use timescale of 24-hr, but 40.6% of Daily Use 

Products are organic while General Cleaners are overwhelming composed of water 

(Table 2) and the annual mass usage of General Cleaners is ~3x higher than Daily 

Use Products (Table 1). As a result, net emissions of General Cleaners are within 

10% of those from Daily Use Products (1.85 kg person-1 year-1 and 2.04 kg person-1 

year-1, respectively). The emissions of Short Use Products, which is assigned a 

“Minutes” use timescale, can further illustrate the importance of considering fate-

and-transport. Under these use timescale assumptions, only high volatility 

compounds (i.e. 𝐶∗ >  3 × 107 µ𝑔 𝑚3⁄ ) are emitted and a majority (~97%) of its 

organics are retained (Table 3). Besides Daily Use Products and General Cleaners, 

all remaining sub-PUCs emit ≤ 1.14 kg person-1 year-1, with six emitting less than 0.1 

kg person-1 year-1 (Table 3). Generally, sub-PUCs with low emissions stem from 

minimal use (e.g. Misc. Products), short use timescales (e.g. Short Use Products), or 

high control assumptions (e.g. Oil & Gas, Fuels & Lighter). 

3.2 Uncertainty Analysis of National-Level Emission Factors 

Uncertainty associated with product usage, proportion of evaporative 

organics, assumptions related to evaporation and use timescale, and post-use 

controls, where applicable, result in a total sector-wide emission uncertainty of ±15% 

(Fig. 4; 9.5 kg person-1 year-1 [95% CI: 8.1 – 10.9]). Interestingly, the interaction of 

evaporation and use timescales can result in a threshold effect, where small changes 

in either do not necessarily translate into changes in the magnitude of emissions for 

a given sub-PUC (Fig. S2). For many PUCs, such as Paints & Coatings, Adhesives 

& Sealants, and Printing Inks, the use timescale is sufficiently long (i.e. years) for all 

evaporative organics to evaporate, regardless of the uncertainty associated with the 

evaporation and use timescales. Under such conditions, only uncertainty in product 



 

 

172 

usage and product composition affect uncertainty in the emission magnitude. As a 

result, these two variables are the largest drivers of uncertainty for the complete 

sector (Fig. S2). However, uncertainties associated with evaporation and use 

timescale assumptions can be important for certain sub-PUCs with moderate to low 

use timescales (see Cleaning Products in Fig. S2). For example, Detergents & Soaps 

is assigned a “Minutes” use timescale, which results in a 0.12 kg person-1 year-1 

emission factor (Table 3). If the use timescale for this sub-PUC was changed 

”Hours,” the emission factor would increase by a factor of 5.  

 

Figure 16: Monte Carlo sensitivity results for organic emissions. (a) Mean, 

interquartile range, and 95% confidence intervals for six PUCs and a combination 

of the remaining four (Dry Cleaning, Oil & Gas, Misc. Products, and Fuels & 

Lighter). (b) Probability distribution of sector-wide emission estimates. See Table 

S10 for a tabulation of this figure. 

From a national emissions perspective, these Monte Carlo results contain 

several important results. First, as mentioned above, the largest drivers of 

uncertainty are associated with a sub-PUC’s usage and composition, not 

assumptions related to fate-and-transport (i.e. evaporation and use timescales). 

Second, the most uncertain PUCs are Cleaning Products, Personal Care Products, 

and Paints & Coatings, and their uncertainty generates a significant amount of 
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emissions potential. The 95% confidence interval for all three span > 1.24 kg 

person-1 year-1, which is equivalent to > 400 Gg of organic emissions per year. 

Finally, the 95% confidence interval for the national-level emissions from the 

complete sector for 2016 is 2.6 – 3.5 Tg (1.8 – 2.4 TgC), which is broadly consistent 

with the US EPA’s 2017 NEI (2.8 Tg) and, largely due to differences in predicted 

evaporation, approximately half the emissions magnitude reported elsewhere 

(McDonald et al., 2018). 

3.3 State- and County-Level Emissions Allocation 

 The magnitude of VCP emissions varies substantially throughout the 

country, with the most populated states and counties featuring the highest ROC 

emissions (Fig. 5). California (349 Gg), Texas (247 Gg), and Florida (173 Gg) are 

the largest state-level emitters and contribute ~25% of all VCP emissions. In contrast, 

the 30 smallest state-level emitters (plus Washington, DC) together emit ~780 Gg. 

At the county-level, Los Angeles County, Cook County (Chicago), and Harris 

County (Houston) are the largest emitters. However, after normalizing by population, 

these three counties all feature per-capita emissions (8.21, 8.88, and 8.76 kg person-

1 year-1, respectively) less than the national average (9.45 kg person-1 year-1) due to 

less industrial activity.  

 National spatial variability in per-capita emissions are largely driven by 

sub-PUCs tied to industrial and commercial activity (Fig. 5c). These sub-PUCs 

include Allied Paint Products (1.14 kg person-1 year-1), Industrial Coatings (1.04 kg 

person-1 year-1), Printing Inks (0.80 kg person-1 year-1), Agricultural Pesticides (0.53 

kg person-1 year-1), and Oil & Gas (0.08 kg person-1 year-1). The employment proxies 

for Allied Paint Products, Industrial Coatings, and Printing Inks are usually consistent 

with the underlying population (Fig. S3), with peaks in California, Texas, Florida, 

New York, and the industrial Midwest. In contrast, emissions from Agricultural 

Pesticides and Oil & Gas drive the large per-capita emissions in the Midwest and 

Great Plains (Fig. 5c). Emissions from these two sub-PUCs are heavily concentrated 

in the central United States (Fig. S3), including North Dakota, South Dakota, Iowa, 

Nebraska, Kansas, and Oklahoma. Collectively, these States contain < 4.5 % of the 
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United States population but 24.1% and 17.5% of the Agricultural Pesticides and Oil 

& Gas VCP emissions, respectively. Both sub-PUCs also contribute to atypically 

high per-capita emissions in other States, such as Texas, Colorado, Idaho, and 

Wyoming. 

 

Figure 17: (a) State-level, (b) County-level, and (c) County-level per-capita VCP 

emissions. 

 While national VCP emissions from the 2017 NEI and the VCPy inventory 

are broadly consistent, county-level and categorical estimates can differ substantially 

between the two (Fig. S4). For example, VCPy reports > 35% lower emissions for 

5% of all counties and > 55% higher emissions for another 5% of all counties. When 
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compared to the 2017 NEI, the States with the greatest emissions increases were 

Delaware, California, and Colorado, and the States with the greatest emissions 

decreases were North Dakota and South Dakota. There are also many spatial 

similarities between the two inventories. Both feature peaks in per-capita emissions 

over the Midwest and Great Plains (Fig. S4) and approximately half of all county-

level emissions in the VCPy inventory are within 15% of their value in the 2017 NEI. 

To compare the two inventories categorically, all product use categories are mapped 

to individual Source Classification Codes (SCCs; Table S11). Categorically, VCPy 

reports higher emissions for Personal Care Products (150%) and Paints & Coatings 

(25%), whereas Pesticides (-54%) and Printing Inks (-13%) feature emission 

decreases. The VCPy inventory also includes marginal increases in Cleaning 

Products and Adhesives & Sealants emissions, while also quantifying solvent-borne 

emissions in Oil & Gas operations (included as “Other” in Fig. S5).  

3.4 Evaluation of Inventory Using Emission Ratios 

Predicted per-capita VCP emissions in Los Angeles County are 8.21 kg 

person-1 year-1 and consist of 250+ organic compounds. Observed emission ratios 

were available for 30 species (Table S7), including some of the most abundantly 

emitted (e.g. ethanol, acetone, isopropyl alcohol, toluene). In fact, of the 30 available 

emission ratios, 24 were for compounds that contributed more than 0.1% to total VCP 

emissions (Fig. 6), providing the opportunity to evaluate important markers. For most 

compounds, the VCPy estimate was well within a factor of 2 when compared to 

observations. Some important markers were marginally low biased (e.g. ethanol, 

isopropyl alcohol), while others were marginally high biased (e.g. acetone, methyl 

ethyl ketone, isobutane), illustrating the difficulty in precisely speciating organic 

emissions and uncertainties introduced by compositing. However, when considered 

as a whole, the complete VCPy inventory performs remarkably well with a 

correlation of 0.95. In total, the observed emission ratio for all 30 compounds was 

0.259 g (g CO)-1 and the inventory estimate is 0.226 g (g CO)-1, indicating a 13% low 

bias. In addition, the VCPy inventory shows a marked improvement over the 2017 

NEI, which reports 3.28 kg person-1 year-1 of VCP emissions in Los Angeles County. 
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For the 30 compounds considered here, the 2017 NEI reports 0.143 g (g CO)-1, which 

is 45% lower than observations (Fig. S6). Most notably, the emissions ratio of 

ethanol, acetone, isopropyl alcohol, and propane, all of which are emitted by VCPs 

in substantial quantities, were low by a factor of 2-3.  

 

Figure 18: Evaluation of organic emission ratios in Los Angeles County using 

observed emission ratios from summer 2010. VCPy inventory ratios utilize VCPy 

predicted emissions for VCPs and the 2017 NEI for all other sources. The scatter 

point colors represent the relative abundance of each compound (represented as 

“X” in the figure legend) in the complete VCP sector. For example, all green 

points represent compounds that are > 1% of the total VCP emissions in Los 

Angeles County. Black line – 1:1; Dark grey shading – 2:1; Light grey shading – 

5:1. Values available in Table S7.  



 

 

177 

 

While the residual, 13% low bias could suggest that additional organic 

emissions might be missing from the VCPy inventory, several other factors could 

explain discrepancies. First, emission ratios are equally sensitive to both organic and 

CO emissions. While CO appears to be represented and modelled well in current 

inventories (Lu et al., 2020), a marginal, systematic bias in CO can affect the results 

presented here. For example, if the CO inventory were systematically high bias by 

10%, the bias in the VCPy inventory emission ratios would be nearly eliminated. 

Second, since emission ratios are not sector-specific but reflect total emissions, 

missing organic emissions might be from other sources. Mobile sources, especially 

gasoline exhaust, is rich in small (≤ C6) hydrocarbons, including ethene, n-butane, n-

pentane, isopentane, methylpentanes, propene, and methylhexanes (Gentner et al., 

2013). Except for n-butane, none of the remaining compounds appreciably come 

from VCP sources and all are low biased in the complete inventory (Fig. S6). Finally, 

while the ambient NMVOC to CO concentration ratio in Los Angeles has been 

consistent for several decades (McDonald et al., 2013), it is possible that trends for 

these two pollutants could have diverged in recent years.  

3.5 Effective SOA Yields, O3 MIR, and Air Pollution Potential 

 Nationally, the effective SOA yield of the complete sector is 5.3% by mass 

(Table 4) and the most abundantly emitted SOA precursors are IVOC alkanes, 

aromatics, volatile methyl siloxanes, and fragrances. On a sub-PUC basis, the 

effective yield spans more than two-orders of magnitude, with Short Use Products 

and Printing Inks featuring an effective yield of 0.05% and 14.8%, respectively. For 

O3, the effective MIR of the complete sector is 1.6 (g O3) g-1 and, when compared to 

SOA yields, there is considerably less sub-PUC variability. While VCPs do emit 

aromatics and alkenes, both of which are photochemically reactive compound classes 

with high ozone potential, emissions are usually dominated by oxygenated 

compounds and alkanes, such as acetone, isopropyl alcohol, propane, and isobutane, 

which are minimally reactive. In fact, of the top fifteen highest emitting VCP 

compounds, seven feature a MIR < 1.0 (g O3) g-1. 
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Table 8: The national effective SOA yield and MIR for all sub-PUCs. These 

results are plotted in Fig. S7. 

Product Use 

Categories (PUCs) 

Sub-Product Use 

Categories 

(sub-PUCs) 

Effective 

SOA Yield 

[%] 

Effective MIR 

[(g O3) g-1] 

Cleaning Products 
Detergents & Soaps 0.00 1.48 

General Cleaners 4.74 1.88 

Personal Care 

Products 

Daily Use Products 3.26 1.38 

Short Use Products 0.05 1.27 

Adhesives & Sealants Adhesives & Sealants 6.19 1.51 

Paints & Coatings 

Architectural Coatings 1.92 1.92 

Aerosol Coatings 3.26 1.66 

Allied Paint Products 6.56 1.27 

Industrial Coatings 2.94 1.71 

Printing Inks Printing Inks 14.81 1.93 

Pesticides & FIFRA 

Products 

FIFRA Pesticides 8.10 1.01 

Agricultural Pesticides 8.10 1.01 

Dry Cleaning Dry Cleaning 3.47 1.13 

Oil & Gas Oil & Gas 2.21 1.03 

Misc. Products Misc. Products 1.94 2.26 

Fuels & Lighter Fuels & Lighter 5.35 1.15 

Total 5.29 1.58 

 

 While a sub-PUC may be a large source of organic emissions, this does not 

necessarily translate to a high potential impact on PM2.5 and ozone. This is best 

highlighted by Industrial and Architectural Coatings. Together, these two sub-PUCs 

constitute ~20% of all VCP emissions (Table 3), but only ~10% of the total SOA 

potential due to their low effective yields (2.9% and 1.9%, respectively). 

Architectural Coatings emissions feature significant quantities of Texanol™ (a 

highly branched oxygenate) and small glycols, such as propylene and ethylene 

glycol. A < 1% and 0% SOA yield is assigned to Texanol™ and both glycols, 

respectively. Though, it should be noted that this may be a lower bound as Li et al., 

2018 report moderate aerosol formation from propylene glycol. Similarly, Printing 

Inks contribute ~8% of all VCP emissions, which is nearly 2.5x less than Daily Use 

Products and General Cleaners nationally (Table 3). However, Printing Ink emissions 

are dominated by IVOC alkanes (C12-C16 hydrocarbons, represented by n-
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tetradecane here) and aromatics, resulting in a high effective SOA yield (14.8%). As 

a result, Printing Inks contribute significantly to the total SOA potential nationally 

(Fig. 7). Paints & Coatings are nonetheless the dominant contributor to SOA 

potential, but this is more so due to the high emissions of the component sub-PUCs 

rather than their modest effective SOA yields (1.9 – 6.6%). Both General Cleaners 

and Daily Use Products also have moderate quantities of SOA precursors and high 

emissions, which translates to 17.5% and 13.3% of the national VCP SOA potential, 

respectively. Since the effective MIR of each sub-PUC is not highly variable, O3 

potential is highly correlated with emissions magnitude. Overall, the three highest 

emitting PUC, Paints & Coatings, Cleaning Products, and Personal Care Products, 

are also the highest contributors to O3 potential (Fig. 7). 

 

Figure 19: National-level emissions, SOA potential, and O3 potential by PUC. 

Other is summation of Dry Cleaning, Oil & Gas, Misc. Products, and Fuels & 

Lighter. 

 These results also demonstrate how fate-and-transport assumptions can 

impact estimates of SOA production. For example, a prior study reported that both 

laundry detergent and a general-purpose spray cleaner can form appreciable 

quantities of SOA (Li et al., 2018). Here, the VCPy inventory reports an effective 

yield of 0.0% by mass of organic emitted for Detergents & Soaps and 4.7% for 

General Cleaners (Table 4). While the organic content of both sub-PUCs, by mass, 

is ≥ 18% (Table 2), Detergents & Soaps feature a dramatically smaller use timescale 

(Minutes vs. Days). As a result, not only is the total mass of organic emissions from 
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Detergents & Soaps smaller than General Cleaners, but the collection of compounds 

that are emitted feature systematically smaller evaporation timescales. Such 

compounds are highly volatile (i.e. 𝐶∗ >  1 × 108 µ𝑔 𝑚−3) and not SOA 

precursors. In contrast, General Cleaners are assigned a longer use timescale, which 

provides time for lower volatility organics (i.e. IVOCs) to evaporate and 

subsequently contribute to the formation of SOA.  

3.6 Non-Evaporative Organic Assumptions 

 The composition and volatility distribution of the organics assumed to be 

non-evaporative, which is ~60% of all organics (Fig. S8), is unidentified and assumed 

to be entirely non-volatile for the main analysis. However, there is evidence that a 

non-negligible portion of this mass may be SVOCs (0.3 µ𝑔 𝑚−3 < 𝐶∗ <

 300 µ𝑔 𝑚−3), which can evaporate on atmospherically relevant timescales (Khare 

and Gentner, 2018). SHEDS-HT, a near-field model used to prioritize human 

exposure to chemicals (Isaacs et al., 2014), reports that > 15%, > 5%, and > 2% of 

all organics found in residential personal care product, household product, and 

coatings, respectively, are composed of SVOCs (Qin et al., 2020). The treatment of 

non-evaporative organics and their potential emission can have a substantial impact 

on the modulation of SOA potential from VCPs. For example, if the assumption 

regarding evaporation of these organics is relaxed by assuming 1% of all non-

evaporative organics eventually do evaporate, sector-wide emissions would increase 

by 0.18 kg person-1 year-1 (i.e. < 2% of the VCP emissions). Such a scenario is 

possible for products featuring long use timescales (e.g. paints, pesticides), if SVOCs 

are considered non-evaporative, or if products featuring shorter use timescales (e.g. 

Daily Use Products, Cleaning Products) are not fully sequestered. Since this increase 

in emissions is minor (i.e. < 2%), there would be negligible impacts on the total 

emission magnitude and O3. However, these compounds, by definition, feature low 

vapor pressures, which makes them prime SOA precursor candidates. If these 

compounds were permitted to form SOA with 100% efficiency, the effective yield 

from the complete sector would increase from 5.3% to 7.0% by mass (Fig. S8). 

Correspondingly, if 2% of all non-evaporative organics were assumed to evaporate 
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with similar SOA formation assumptions, the effective yield from the complete 

sector would increase to 8.7% by mass.  

4 Additional Uncertainties 

 The current VCPy framework assumes all evaporated organics reach the 

ambient atmosphere, regardless of origin. However, VCP emissions occur both 

indoors and outdoors (Farmer et al., 2019; Nazaroff and Weschler, 2004; Singer et 

al., 2006a). In fact, the indoor concentration of prevalent VCP markers and secondary 

pollutants often exceeds outdoor concentrations (Farmer et al., 2019; Patel et al., 

2020). For ambient air emissions, consideration of VCP emissions indoors is 

important if there is a gas-phase loss mechanism occurring at a scale that is 

comparable to typical indoor air exchange rates (~0.5 hr-1; Murray and Burmaster, 

1995). Indeed, sorption of gas-phase organics (e.g. terpenes) into typical residential 

furnishing and dust has been shown to occur on relevant timescales (Singer et al., 

2007; Singer et al., 2004; Weschler and Nazaroff, 2008). Organics emitted indoors 

can also react with oxidants, leading to the formation of lower-volatility organics that 

can form particulates (Nazaroff and Weschler, 2004; Singer et al., 2006b). These 

particulates can deposit before outdoor exhaust occurs due to the high surface-to-

volume ratio of indoor settings (Abbatt and Wang, 2020; Farmer et al., 2019). 

Planned future VCPy functionality includes the incorporation of a two-box model to 

capture these possible termination mechanisms and distinguish between near-field 

and far-field exposure pathways. 

 In addition, the efficiency of post-use controls for several sub-PUCs can be 

highly uncertain and vary both in space and time. In particular, this includes Oil & 

Gas, which is assigned a post-use control based on average reported reinjection rates 

of produced water (Liden et al., 2018; Lyman et al., 2018), as well as Industrial 

Coatings and Printing Inks, which occur at facilities capable of add-on controls (U.S. 

Environmental Protection Agency, 2006a; 2006b; 2007; 2008). Here, post-use 

controls are not assigned for Industrial Coatings or Printing Inks. As such, emissions 

from these sub-PUCs could feature localized high bias, depending on regional control 

requirements for facilities that use associated products. Similarly, the spatial 
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allocation of nonpoint emissions features unique difficulties. For example, even if 

the allocation of nonpoint emissions was precisely matched to a quantifiable proxy, 

variation in the emission strength of individuals within that proxy (e.g. humans or 

employees) is often neglected (Li et al., 2020). 

5 Conclusions 

VCPy is a new framework to model organic emissions from volatile chemical 

products throughout the United States, including spatial allocation to regional and 

local scales. In VCPy, product volatilization is a function of the characteristic 

evaporation timescale of individual components and the use timescale for product-

use categories. National, per-capita organic emissions from VCPs are 9.5 kg person-

1 year-1 (6.4 kgC person-1 year-1) for 2016, which translates to 3.05 Tg (2.06 TgC) for 

the U.S. Paints & Coatings, Personal Care Products, and Cleaning Products 

contribute most to these emissions. When filtered to remove regulatory exempt 

organics, total emissions from VCPs are 2.6 Tg of VOC and equal in magnitude to 

the sum of all mobile sources nationally, thus highlighting the growing importance 

of the VCP sector. Organic emissions featured substantial (~20%) contributions from 

IVOCs, which are likely SOA precursors. Of this 20%, 52% are oxygenated 

compounds, 30% are n-alkanes, and the rest are largely branched and cyclic alkanes. 

Nationally, the effective SOA yield and O3 MIR, two metrics that facilitate an 

approximation of the potential air quality impacts, of VCPs is 5.3% by mass and 1.58 

(g O3) g-1, respectively. This effective SOA yield indicates VCPs are likely a 

significant source of SOA in urban environments (Qin et al., 2020).  

 Uncertainty associated with this framework was tested through Monte 

Carlo analysis. Notably, the dominant drivers of uncertainty were associated with 

estimated product usage and the composition of products, and not assumptions 

related to fate-and-transport. SOA formation from VCP emissions is especially 

sensitive to assumptions regarding evaporation of low volatility species. If 1% of all 

non-evaporative organics eventually do evaporate, sector-wide emissions would 

increase by 0.18 kg person-1 year-1 and the effective SOA yield from the complete 

sector could increase by > 1.5%. The 95% confidence interval for the national-level 
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emissions from the complete sector for 2016 is 2.61 – 3.53 Tg (1.76 – 2.38 TgC). 

This is broadly consistent with the 2017 National Emission Inventory (2.84 Tg) and 

half the emissions magnitude reported elsewhere (McDonald et al., 2018).  

 While the national-level emissions from the VCPy framework and the 2017 

NEI are comparable, regional and localized differences can be significant. This is 

most clear when evaluating the VCPy inventory to published emission ratios. For 

Los Angeles County, the VCPy inventory performs well (normalized mean bias of -

13% with r = 0.95) and is significantly improved over the reported 2017 NEI VCP 

emissions. Planned future work includes adoption of variable emission settings 

(indoor vs. outdoor) to account for loss mechanisms indoors (e.g. gas-phase sorption 

to surfaces), revisited mapping of VCP emissions to common chemical mechanisms 

for ease of research use in the chemical transport modelling community, estimation 

of SOA and ozone formation from VCPs using a chemical transport model and VCPy 

emissions inputs, and understanding the evolution of VCP emissions over time. 

Data Availability 

VCPy.v1.0 is available on data.gov (doi: 10.23719/1520157). All data presented in 

this manuscript can be retrieved and/or generated by downloading VCPy.v1.0. 

Guidance on using VCPy.v1.0 can be requested by contacting the corresponding 

author. 
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Abstract 

The large fluctuations in traffic during the COVID-19 pandemic provide an unparalleled 

opportunity to assess motor vehicle emission control efficacy. Here we develop a machine-

learning (ML) model, based on the large volume of real-time observational data during 

COVID-19, to predict surface-level NO2, O3, and fine particle concentration in the Los 

Angeles mega-city. Our ML model exhibits high fidelity in reproducing pollutant 

concentrations in the Los Angeles basin and identifies major factors controlling each species. 

During the strictest lockdown period, the traffic reduction led to decreases in NO2 and PM2.5 

by –27.8% and –17.5%, respectively, but a 6% increase in O3. Heavy-duty truck emissions 

contribute primarily to these variations. Future traffic emissions controls are estimated to 

impose similar effects as observed during the COVID-19 lockdown, but with smaller 

magnitude. Vehicular electrification will achieve further alleviation of NO2 levels. 

Significance Statement 

We capitalize on large variations of urban air quality during the COVID-19 pandemic and 

real-time observations of traffic, meteorology, and air pollution in Los Angeles to develop a 

machine-learning air pollution prediction model. Such a novel model can adequately account 

for the nonlinear relationships between emissions, atmospheric chemistry, and 

meteorological factors. Moreover, this model enables us to identify the key drivers of air 

quality variations during the COVID-19 pandemic in a megacity like Los Angeles and assess 

the effect of future traffic emissions control on air quality. We unambiguously demonstrate 

that the full benefit from fleet electrification cannot be attained if focused only on mitigation 

of on-road emissions. To continue to improve air quality in Los Angeles, off-road emissions 

and those of volatile chemical products need to be more strictly regulated. 

 

  



 

 

 

Main Text 

Introduction 

In the urban environment, vehicular traffic is a principal source of air pollutants, 

including nitrogen oxides (NOx=NO+NO2), carbon monoxide (CO), and carbonaceous 

particles. Secondary ozone (O3) and particulate matter (PM) have profoundly adverse 

impacts on human health (1), by inducing dysfunction and deterioration of cardiovascular, 

respiratory, and immune systems (2). The COVID-19 pandemic led to unprecedented 

decreases in traffic-related emissions in mega-cities worldwide (3–5). Owing to the short 

chemical lifetime of NOx and the pandemic-induced emission changes, the well-defined and 

abrupt decrease in NO2 has been captured by satellites as well as ground-based observations 

(6–8). However, changes in secondary pollutants like O3 and a major portion of PM2.5 (PM 

with aerodynamic diameters < 2.5 micrometers) during the pandemic were diverse in 

different regions (7, 9), for which the major drivers remain unclear. Atmospheric chemical 

reactions serve as essential nonlinear links between emissions and atmospheric composition. 

Moreover, local meteorological factors, such as air temperature and humidity, also strongly 

regulate photochemical formation of ozone and multiphase chemistry of secondary PM (6, 

9, 10). The response of secondary pollutants to COVID-19 induced emission changes 

remains poorly understood; existing studies provide limited insight into the consequent 

chemistry (7). Here, we disentangle the complex factors involving emissions, chemical 

reactions, pollutant transport, and meteorology to evaluate the effect of pandemic-induced or 

other dramatic emission changes on air quality.   

Los Angeles (LA) has long been one of the most polluted cities in the U.S. (11). 

Surrounded by mountains on three sides and bounded by the Pacific Ocean, ideal conditions 

exist for pollutant build-up over the LA Basin and downwind areas (12, 13). Owing to the 

strict sulfur oxides (SOx) emission control program established in 1978 and major 

improvements of motor vehicle engines, SO2 and black carbon levels have significantly 

declined (14). However, organic aerosol concentrations, contributing to more than half of 

PM2.5, have not declined as significantly as primary emissions (15, 16). The COVID-19 



 

 

 

induced variability of air quality provides an opportunity to evaluate the efficacy of traffic 

mitigation strategies. 

Diesel-powered heavy-duty vehicles (HDVs) and medium-duty vehicles (MDVs) 

comprise only a modest fraction of the total numbers of the on-road fleet in Los Angeles but 

disproportionately contribute to a large fraction of overall vehicle emissions (17, 18, 19). 

Even with installation of diesel particle filters (DPFs) and selective catalytic reduction (SCR) 

systems, unusually high emissions of NOx and lower SCR efficiency are still reported (19). 

In 2017, The California Air Resources Board (CARB) adopted a series of regulations 

including reduction of NOx emissions by 90% for new heavy-duty diesel trucks (20), 

requiring truck manufacturers to transition from diesel trucks and vans to electric zero-

emission trucks beginning in 2024, aiming for an all zero-emission short-haul drayage fleet 

in ports and railyards by 2035, and zero-emission “last-mile” delivery trucks and vans by 

2040 (21). An assessment of the air quality related benefit of the zero-emission delivery truck 

plan is lacking.  

Atmospheric chemical transport models have been widely used to examine the 

response of air pollutant concentrations to the changes of emissions and meteorological 

conditions. However, the challenge in preparing high-temporal-resolution emission profiles 

has limited a long-term, dynamic analysis of the air quality impacts resulting from the abrupt 

emission changes through the pandemic period. Recent studies have demonstrated the 

capability of predictive machine learning (ML) models to capture the timing, magnitude, and 

major factors influencing real-time atmospheric responses to emission control measures (22–

24). Compared with traditional chemical transport modeling, the ML technique has more 

flexibility in leveraging real-world data and possesses higher computational efficiency. Here, 

real-time data including traffic information from the California Department of Transportation 

(Caltrans) and in situ pollutant concentrations and surface level meteorology from the 

California Air Resources Board (CARB), population density and points of interest (physical 

location of compressed natural gas stations, power plants, landfills etc.) at the city level are 

used with a machine learning framework to develop a model that can directly link 

atmospheric composition with societal factors (Methods). We use this model to assess the 

sensitivity of NO2, O3 and PM2.5 in the Los Angeles Basin to traffic emission changes at 

different stages of the COVID-19 lockdown by comparing predicted concentration levels 



 

 

 

under different traffic emission scenarios. Moreover, by considering future climate changes 

and traffic emissions, we assess the possible benefits of future traffic evolution, including 

vehicular electrification, in 2035 and 2050 (SI Appendix, Fig. S1). 

Results 

Identifying Key Factors Using ML Models 

Machine-learned geostatistical models are developed here to predict the 

concentrations of three major pollutants: NO2, O3 and, PM2.5 in the Los Angeles basin, using 

traffic information, meteorological conditions, and other socio-economic factors as inputs 

(SI Appendix, Fig. S1). The models account for the nonlinear relationships among traffic 

emissions, atmospheric chemistry, and meteorological conditions. Additional model 

descriptions can be found in the Method and SI Appendix. To evaluate the performance of 

the ML models, a commonly used 5-fold cross validation method is used.  As shown in 

Figure 1, the models exhibit high fidelity in reproducing the observed NO2 and O3 

concentrations, with coefficients of determination (R2) of 0.91 and 0.87, respectively. The 

root-mean-square error (RMSE) of the predicted NO2 and O3 concentrations are 3.0 and 5.1 

ppb, respectively. The predicted PM2.5 concentrations also show reasonable agreement with 

the ground-based observations, but with a smaller R2 of 0.65. An underestimation of PM2.5 

starts to emerge when the PM2.5 concentrations exceed 20 𝜇g/m3 corresponding to the 90th 

percentile in the PM2.5 probability distribution function over LA. It is noted that ML models 

tend to have larger biases in predicting the extreme values due to fewer training data samples 

(25).  

An important output of the ML model is a ranking of the relative importance of all 

input parameters. For NO2, the three major governing factors are wind direction, non-truck 

VMT, and relative humidity (RH). The prominent rank of wind direction reflects the 

prevailing role of northwesterly and onshore winds in determining the spatially variable flow 

of pollutants received in the LA basin (26). The concentration of NO2 which is a short-lived 

species closely follows that of the traffic emission patterns. The high correlation between 

NO2 and RH is partly a result of their individual diurnal cycles, in which NO2 peaks in the 

afternoon while RH peaks at night. In contrast to NO2, ozone variations are largely regulated 

by meteorological conditions. Moreover, the top 7 factors are all  



 

 

 

 

Figure 1. Model performance and variable importance for three species. (A) NO2, (B) 

O3 and (C) PM2.5. Cross-validated model R2 and root mean squared error (RMSE) are 

calculated by using a 5-fold cross-validation modeling performance for 24-h average 

concentrations. The color indicates the sample size for each dot. The variables are listed in 

order of importance from top to bottom. The horizontal axis represents the Gini index from 

the Random Forest model. A larger value represents higher importance. The definitions of 

all predictors are provided in Table S2. 

  



 

 

 

meteorology related. Among them, the near-surface temperature (T2m) exerts the largest 

influence through the photochemical reactions to form ozone (27) and biogenic volatile 

organic compound (VOC) emission rates (28). Solar irradiance is a limiting factor that 

influences ozone-related photochemistry. For PM2.5 prediction, ozone ranks as the most 

prominent, indicating the secondary source of aerosols in LA. Boundary layer height is the 

most relevant meteorological factor with PM2.5 in the Gini importance ranking (see Methods 

in SI Appendix), followed by RH, T2m, and wind direction. Such a ranking of meteorological 

influence on PM2.5 in Los Angeles is consistent with current understanding (9). Notably, a 

recent study on eight-year ground-based observations in Beijing, China showed the same 

importance ranking of meteorological factors (29). By using the points of interest (SI 

Appendix, Fig. S2) in the ML model, the influence of spatial contribution from crucial 

industrial locations (e.g., airport, wastewater treatment plants, power plants, natural gas 

compressor stations) on air quality is identified. The model-predicted importance of airport 

emissions for NO2 corroborates that air quality impacts of major airports need to be addressed 

for emission control (30). Volatile consumer and industrial chemical products are estimated 

to be a significant source of reactive VOCs and SOA formation in the LA Basin (31). To test 

the importance of different predictors on a time scale longer than hours, we rebuild the ML 

models using the daily means of the input data. The results from those models show the 

generally similar ranking of predictors. The daily mean models retain 80%, 100%, and 80% 

of the top 5 most important predictors for NO2, O3, and PM2.5, respectively, compared with 

the hourly models (SI Appendix, Fig. S3). 

Role of Traffic Emission during COVID-19 

During the COVID-19 pandemic, traffic was abruptly reduced in late March and 

early April, and then gradually recovered to the pre-COVID-19 level (SI Appendix, Fig. S4). 

The time series of NO2 generally followed the temporal variation of traffic in LA during the 

COVID-19 period. O3 and PM2.5 concentrations remained at a relatively low level in March 

and early April due to rainy and windy weather conditions. We compare the observations 

and the ML model predictions with COVID-19 meteorology and pre-COVID-19 traffic 

information from on-road sensors (VMT, automobile type, etc.), to assess the influence of 

the COVID-19 induced traffic emission reductions (Figure 2A). During the strictest 

lockdown period (6 April - 12 April), traffic reduction led to decreases in NO2 and PM2.5 by 



 

 

 

2.6 ppb and 1.1 𝜇g/m3, corresponding to fractional changes of –27.8% and –17.5%, 

respectively. In the later recovery period (08 May - 30 June), the all-traffic induced fractional 

changes of NO2 and PM2.5 decrease to –17.0% and –6.0%, respectively. The traffic impacts 

on ozone differ from those of NO2 and PM2.5. A 2.1 ppb (6.0%) increase in maximum daily 

8-h average (MDA8) O3 by all traffic occurred during the strictest lockdown period. This is 

a result of the fact that ozone production in LA is in the NOx-saturated/VOC-limited regime 

under the traffic-as-usual scenario. Excessive NOx can serve as a sink for OH radicals thus 

retarding the oxidation of VOC, sequestering ozone, or suppressing its production (7). We 

further differentiate the impacts from truck and non-truck vehicles by altering only the on-

road truck activities according to the observations from different time periods (Figure 2B). 

During the strictest lockdown period, truck emission reductions account for 61.0%, 79.4%, 

and 70.4% of all-traffic induced changes in NO2, MDA8 O3, and PM2.5, respectively. This 

result reinforces the fact that diesel trucks are a major source in the entire traffic sector.  

To build a direct linkage between pollutant concentrations and traffic activity, we 

also develop an emulator for each species based on our ML model results. The emulator can 

predict the relative changes of emissions as a function of the fractional changes in truck and 

non-truck VMT relative to the year 2019 level. NO2 monotonically decreases along with the 

reduction in either truck or non-truck VMT (Figure 3A). The reduction slope is steeper for 

trucks, indicating the larger emission factor of NOx for diesel engines. MDA8 O3 generally 

increases with the reduction of truck traffic in a monotonic manner (Figure 3B), while an 

overall decrease in MDA8 O3 is found for the reduction of non-trucks. The distinctive 

impacts on ozone are likely explained by the fact that diesel trucks emit higher levels of NOx 

than non-trucks (32), but they share the similar non-methane VOC emission factor (33, 34). 

Therefore, truck and non-truck emissions fall in NOx-saturated and NOx-limited regimes, 

respectively. This is also consistent with larger NO2 susceptibility to reductions of truck than 

non-truck emissions. The PM2.5 linkage with traffic is more complicated, especially with 

regard to non-truck emissions. In contrast with the monotonic decrease of PM2.5 in response 

to the reduction in truck VMT, the bended-curve (Figure 3C)  

 

  



 

 

 

 

 

            

Figure 2. Comparison of observations and predictions. (A) Comparison of observations 

and predictions of normal traffic scenario and (B) the impact of traffic reduction from total 

fleet and truck fleet on NO2, O3 and PM2.5 concentrations during the lockdown period of 

the COVID-19 pandemic in Los Angeles. Each data point represents a weekly mean. The 

error bars are standard deviations for daily results in each week. 

  



 

 

 

response of PM2.5 is found along with the non-truck VMT reduction. Similar to MDA8 O3, 

the overall magnitude of fluctuation of PM2.5 is also smaller for non-truck (less than 0.1 

𝜇g/m3) than that for truck. In general, regulation of trucks can be a more efficient way to 

lower PM2.5 concentration than other vehicles. 

Air quality benefit for future on-road traffic decarbonization 

The Paris Agreement aims to increase the percentage of zero emission vehicles to 

25% by 2025, 80% by 2035, and 100% by 2050. Under the “Green New Deal” (GND), Los 

Angeles would build a clean and reliable power grid to empower the next generation of green 

transportation. The baseline future traffic emission changes are provided by the 2017 version 

of EMission FACtor (EMFAC), a model that estimates the official emission inventories of 

on-road mobile sources in California from 2000 to 2050 (35). Here we introduce three 

degrees of fleet electrification (also including other zero-emission vehicles like hydrogen 

fuel cell vehicles) based on the EMFAC emission inventories (SI Appendix, Methods and 

Table S1). All the fractional changes in the truck or non-truck vehicles for the future 

scenarios are within their ranges in our ML training dataset, i.e. hourly observations during 

2019 and 2020.  

The EMFAC model assumes that non-truck emissions will decrease by 54% in 2035 

and 58% in 2050 as compared with 2019 (SI Appendix, Fig. S5). For truck emissions, CARB 

recently estimated that the low-NOx omnibus regulation would lead to 29% of NOx emission 

reduction in 2050 as compared with the original EMFAC results, which have been used as 

the baseline truck emissions without additional electrification (36). On the other hand, the 

EMFAC inventories assume greater truck activity caused by increases in intensity of 

consumer goods delivery in 2050 than 2035. Therefore, compared to 2019, truck emissions 

would have comparable decreasing ratios in 2035 (by 55%) and 2050 (by 54%). The impacts 

of the future traffic emission reduction are pronounced: compared to 2019, NO2 would be 

reduced by 11.0% ± 1.2% in 2035 and 11.8% ± 0.8% in 2050, and PM2.5 would be reduced 

by 3.1% ± 0.4% in 2035 and 2.9% ± 0.4% in 2050 (Figure 4 A and F). Similar to its behavior 

during the lockdown period of COVID-19, MDA8 O3 is predicted to exhibit a reverse trend 

with a 0.6% ± 0.4% increase in 2035 and a 0.4% ± 0.3% increase in 2050. Of note, the 

reduction ratios of NO2 and PM2.5 concentrations increase  

  



 

 

 

  

 

Figure 3. Predicted annual-average concentrations. (A to C) Distribution of (A) NO2, 

(B) MDA8 O3 and (C) PM2.5 with different combinations of non-truck and truck activity 

fractional changes relative to the annual average level of 2019. 

 

significantly from 2020 to 2035 due to the efficient reduction of traffic emissions, while the 

reductions slow down and even slightly rebound from 2035 to 2050 with the relatively 

limited emission reductions (SI Appendix, Fig. S6). 

To further assess the impacts of fleet electrification on air quality, we alter 

independently electrification rates of total fleet mileage from the remaining parameters in 

EMFAC. Three scenarios are assessed here, representing moderate to aggressive 

electrification rates (SI Appendix, Table S1 and Fig. S7). Our first electrification scenario 



 

 

 

(E1) assumes moderate electrification rates, i.e., 10% and 5% for non-trucks and trucks in 

2035. The 2035 electrification rate of the truck fleet is close to the Advanced-Clean-Trucks 

regulation benefit estimated by CARB, because more than 60% of Class 8 trucks operating 

in California are registered as out-of-state vehicles that will not be mandatory to be electrified 

according to current federal plans (36). In 2035, as compared with 2019, E1 corresponds to 

emission reduction rates of 57% for non-truck and 57% for truck. In 2050, the electrification 

rates of E1 are 20% for non-truck and 10% for truck, corresponding to emission reduction 

rates of 65% for non-truck and 59% for truck. As shown in Fig. 4B, G, the ML model predicts 

that NO2 will decrease by 12.0 % ± 1.0% in 2035 and 12.9% ± 0.6% in 2050 under E1. Also, 

PM2.5 will drop by 3.0% ± 0.3% in 2035 and 2.9% ± 0.4% in 2050. MDA8 O3 is predicted 

to increase by 0.6% ± 0.4% in 2035 and 0.4% ± 0.3% in 2050. The other two future scenarios 

(E2 and E3) are more aggressive in electrifying vehicles than E1. Therefore, the magnitudes 

of the NO2 reduction are enlarged in E2 and E3, and the reduction ratio achieves 17.9% ± 

1.1% in 2050 under E3 with the most aggressive electrification ratios (i.e., 80% for non-

trucks, which is close to the estimated electrification rate from California’s Advanced Clean 

Cars program (37), and 40% for trucks). The increasing ratio of MDA8 O3 shrinks with 

higher electrification rates in both 2035 and 2050 (Figure 4 H and I). Such a change in MDA8 

O3 reveals that Los Angeles would be evolving to less NOx-saturated conditions with further 

reduction of NOX. However, PM2.5 levels are less sensitive to progressive electrification. One 

possible reason is the unbalanced emission reduction in truck and non-truck fleets for future 

electrification. According to Figure 3, PM2.5 is more sensitive to trucks than non-trucks. The 

relative higher emission contribution of trucks in the total fleet from E1 to E3 may explain 

the decrease in PM2.5 reduction. 

Future regional climate change on LA air quality 

The effect of climate change on meteorological conditions is a key factor in 

modulating urban pollution. The responses of different pollutants to four key meteorological 

variables are probed here via idealized perturbation experiments (SI Appendix, Fig. S8). The 

model shows that PM2.5 is enhanced by RH via the promotion of heterogeneous chemistry to 

form secondary aerosols in aerosol water (9) , while NO2 and O3 concentrations tend to be 

lower with larger RH. Increasing photochemistry via solar radiance tends to increase PM2.5 

and O3 at the expense of NO2. Both NO2 and PM2.5 concentrations are elevated by a lower 



 

 

 

boundary layer height. O3 shows the opposite responses due to concurrent O3 titration and 

lower boundary layer height at nighttime. Higher surface temperature fosters ozone 

production and further promotes secondary aerosol formation. 

Additional model predictions were performed to assess the impacts of future regional 

climate change on air quality in Los Angeles. Future meteorological variables near 2035 and 

2050 are projected from the multi-model ensemble simulations of the Climate Model Inter-

comparison Project Phase 6 (CMIP6, see Method in SI Appendix and Fig.S9), while the same 

traffic level as 2019 will be adopted. Our ML models predict that annual-average 

concentrations of NO2 and MDA8 O3 will decrease while PM2.5 will increase at different rates 

around 2035 and 2050 (Figure 4 E and J). The different changing trends for three pollutants 

are possibly dominated by increasing relative humidity, according to the responses of 

different pollutants to key meteorological variables (SI Appendix, Fig. S8). The rates of 

change for the three species in 2050 are not in proportion with the changes in 2035, reflecting 

the highly nonlinear climate change over a few decades. Future climate changes are estimated 

to exert a higher influence on O3 and PM2.5 concentrations than traffic amount and type in 

2035, demonstrating the impacts of meteorology on these two species. This result is 

consistent with the ranking of variable importance in the ML models (Figure 1). The 

uncertainty of future climate change is estimated by the spread among different CMIP6 

models and different ensemble members. 

In summary, we leverage the unprecedented large variations of road traffic spanning 

a few months in Los Angeles during the COVID-19 pandemic to probe the impacts of future 

decarbonization policies. A machine-learning model is developed for Los Angeles to predict 

NO2, O3, and PM2.5 concentrations based on real-time traffic data and meteorological 

measurements. Capitalizing on the high fidelity and computing efficiency of this predictive 

ML model, we demonstrate the significant contribution of traffic, especially from heavy-

duty trucks, to pollutant variations in the first few months of the COVID-19 pandemic. Future 

decarbonization policies are estimated to impose similar effects on air quality as COVID-19, 

but with smaller magnitude. Large-scale fleet 

  



 

 

 

 

Figure 4. Reduction ratios of NO2, MDA8 O3 and PM2.5 concentrations under 

different traffic scenarios in 2035 and 2050 relative to 2019. (A-E) and (F-J) represents 

baseline traffic emission scenario from EMFAC, three electrification scenarios and future 

climate change scenario in 2035 and 2050, respectively. The error bars represent 

uncertainty of model predictions calculated by the Monte Carlo method. Random sampling 

was repeated for 100 times considering uncertainty of each variable in prediction of each 

scenario. 

  



 

 

 

electrification will achieve further alleviation of NO2 levels and is likely to transition Los 

Angeles to a less NOx-saturated regime of O3 formation. However, the benefit from fleet 

electrification on PM2.5 may be not attained if focused only on mitigation of on-road 

emissions. Moreover, emission standards of out-of-state vehicles should be aligned with 

those of the local fleet under federal efforts, and off-road emissions and those of volatile 

chemical products need to be more strictly regulated. 

Methods 

A supervised ML algorithm, the random forest model, is employed to account for the 

nonlinear interactions between different input parameters without specifying any form of 

their relationships. Hourly data over 1.5 years (01/2019 - 06/2020) serve as input to the 

model. Key input parameters include processed traffic activity (truck/non-truck vehicle miles 

traveled, short as VMT), meteorology (wind speed/direction, near-surface temperature, 

boundary layer height, precipitation, solar radiation, pressure, relative humidity), temporal 

information (day of the week, holiday), population density, distance to nearby points of 

interest (POI), etc. Complete information can be found in the Supplementary Material. A 

wide range of temporal variability is explicitly considered, from diurnal, daily, weekly, to 

seasonal timescales. The hourly temporal resolution of the training data is sufficiently high 

to capture the lifetimes of the three targeted species. The predictive capability is separately 

developed at 11 sites for PM2.5, 18 sites for O3, and 22 sites for NO2, covering the populous 

urban areas in the LA basin (SI Appendix, Fig. S2). Additional data description and 

experiment designs can be found in SI Appendix. 
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