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ABSTRACT

Quantum computing is widely thought to provide exponential speedups over
classical algorithms for a variety of computational tasks. In classical comput-
ing, methods in artificial intelligence such as neural networks and adversarial
learning have enabled drastic improvements in state-of-the-art performance
for a variety of tasks. We consider the intersection of quantum computing
with machine learning, including the quantum algorithms for deep learning
on classical datasets, quantum adversarial learning for quantum states, and
variational quantum machine learning for improved physics simulation.

We consider a standard deep neural network architecture and show that con-
ditions amenable to trainability by gradient descent coincide with those nec-
essary for an efficient quantum algorithm. Considering the neural network
in the infinite-width limit using the neural tangent kernel formalism, we pro-
pose a quantum algorithm to train the neural network with vanishing error as
the training dataset size increases. Under a sparse approximation of the neu-
ral tangent kernel, the training time scales logarithmically with the number of
training examples, providing the first known exponential quantum speedup for
feedforward neural networks. Related approximations to the neural tangent
kernel are discussed, with numerical studies showing successful convergence be-
yond the proven regime. Our work suggests the applicability of the quantum
computing to additional neural network architectures and common datasets
such as MNIST, as well as kernel methods beyond the neural tangent kernel.

Generative adversarial networks (GANs) are one of the most widely adopted
machine learning methods for data generation. We propose an entangling
quantum GAN (EQ-GAN) that overcomes some limitations of previously pro-
posed quantum GANs. EQ-GAN guarantees the convergence to a Nash equi-
librium under minimax optimization of the discriminator and generator cir-
cuits by performing entangling operations between both the generator output
and true quantum data. We show that EQ-GAN has additional robustness
against coherent errors and demonstrate the effectiveness of EQ-GAN exper-
imentally in a Google Sycamore superconducting quantum processor. By ad-
versarially learning efficient representations of quantum states, we prepare an
approximate quantum random access memory and demonstrate its use in ap-
plications including the training of near-term quantum neural networks.
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With quantum computers providing a natural platform for physics simulation,
we investigate the use of variational quantum circuits to simulate many-body
systems with high fidelity in the near future. In particular, recent work shows
that teleportation caused by introducing a weak coupling between two entan-
gled SYK models is dual to a particle traversing an AdS-Schwarzschild worm-
hole, providing a mechanism to probe quantum gravity theories in the lab. To
simulate such a system, we propose the process of compressed Trotterization
to improve the fidelity of time evolution on noisy devices. The task of learn-
ing approximate time evolution circuits is shown to have a favorable training
landscape, and numerical experiments demonstrate its relevance to simulat-
ing other many-body systems such as a Fermi-Hubbard model. For the SYK
model in particular, we demonstrate the construction of a low-rank approx-
imation that favors a shallower Trotterization. Finally, classical simulations
of finite-N SYK models suggest that teleportation via a traversable wormhole
instead of random unitary scrambling is achievable with O(20) qubits, provid-
ing further indication that such quantum gravity experiments may realizable
with near-term quantum hardware.
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C h a p t e r 1

A QUANTUM ALGORITHM FOR TRAINING DEEP NEURAL
NETWORKS

1A. Zlokapa and S. Lloyd, A quantum algorithm for training wide and deep
neural networks, in preparation.

1.1 Introduction

While deep neural networks have achieved state-of-the-art results in numer-
ous relevant problems, the computational requirements of deep learning are
expected to be increasingly costly as datasets and neural network architec-
tures both grow in size. Founded in established complexity theory conjectures,
quantum computing is widely believed to be computationally more powerful
than classical computing. With experimental quantum computers currently
solving certain computational tasks faster than modern supercomputers [1–4],
quantum computers are expected to eventually achieve exponential and poly-
nomial speedups over a wide variety of classical algorithms, including essential
primitives in linear algebra and optimization [5–10]. Realizing an exponential
speedup in relevant settings often requires stringent theoretical caveats to be
satisfied such as sparsity and matrix conditioning [11], as well as advanced
quantum hardware such as a quantum random access memory (QRAM). Al-
though quantum machine learning algorithms have been proposed for common
classical approaches to classification, clustering, regression, and other tasks in
data analysis [12–16], the results vary in applicability due to these caveats. De-
spite the central importance of deep neural networks, proposals for quantum
neural networks analogous to widely used classical deep learning architectures
lack a rigorous demonstration of a quantum speedup for deep learning tasks
on classical data [17–20].

Recent work on the dynamics of overparameterized neural networks has in-
troduced the neural tangent kernel (NTK), representing large neural networks
as linearized models applied to nonlinear features [21]. In particular, deep
neural networks are empirically observed to achieve successful results [22–24],
with theoretical justifications including batch normalization [25] and improved
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conditioning [26]. This improved understanding of deep learning motivates a
quantum algorithm for the NTK, which has properties that favor both opti-
mization by gradient descent and by techniques from quantum computing.

Contributions. Within the NTK framework, we consider a standard fully-
connected neural network architecture with an additional normalization con-
dition on the activation function and reasonable dataset assumptions in a
standard setting. Our main contributions can be summarized as follows:

• Sparsified neural tangent kernels. We study a sparsified NTK with
a logarithmic number of nonzero off-diagonal elements. Deep neural
networks are shown to naturally be dominated by a small neighborhood
of nearby examples, causing the output of a sparsified NTK to converge
to that of a dense NTK as the size of the dataset increases. Empirical
examples are shown for both toy datasets and the MNIST dataset.

• Exponential quantum speedup for sparsified neural tangent ker-
nels. We show that computing the output of a sparsified NTK can be
performed exponentially more quickly with a quantum computer under
widely held complexity theory conjectures. Once the dataset is stored in
quantum memory, different neural networks can be trained with efficient
memory input/output and computation of predictions. In particular, the
precise well-conditioning properties of the NTK that allow efficient gra-
dient descent are shown to be critical for a quantum speedup. Empirical
experiments beyond the proven regime suggest that convolutional NTKs
and chaotic kernel methods beyond the NTK may also benefit from the
demonstrated quantum advantage.

• Diagonal neural tangent kernels. Due to the well-conditioning of a
deep neural network, we show that the output of an NTK can be also be
approximated by removing all off-diagonal elements of the NTK matrix.
Once again, a quantum algorithm is shown to evaluate the approximate
NTK’s predictions in time logarithmic in the number of training exam-
ples. Empirical evidence shows that the diagonal NTK rapidly converges
to the exact NTK, although it shown to have strictly greater error than
the sparsified NTK approximation. While the sparsified NTK requires
sparse matrix inversion and is thus likely robust to improvements in clas-
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sical algorithms, it is an open question if there exist efficient quantum-
inspired classical algorithms for the diagonal NTK, which may provide
further insight into the effectiveness of deep learning using small data
subsets.

Neural network preliminaries

We begin by describing the notation and initial assumptions for the neu-
ral network and data, adopting a framework similar to Agarwal et al. [26].
Consider a binary classification dataset S of n training examples {(xi, yi) ∈
Rd×{−1, 1}}ni=1. Throughout this work, we will require a notion of separability
between any two given data examples.

Definition 1.1.1 (Separability). The separability of data points xi,xj is given
by δij := 1− |xi · xj|.

We make the following standard assumption about separability across the
entire dataset [27–29] with an additional lower bound on the separability that
is commonly satisfied (see Sec. A.5 of the Appendix A).

Assumption 1.1.2. Assume that |xi ·xi| = 1 for all i. For some 0 < δ ≤ 1, let
|xi ·xj| ≤ 1− δ for all i, j ∈ [n] with i 6= j. Moreover, assume δ = Ω(1/poly n)

for a dataset of size n.

To ensure the dataset is well-behaved, i.e. labels do not change at an arbitrarily
small scale on the unit sphere, we require an additional assumption.

Assumption 1.1.3. Define the ε-neighborhood around a given data point x∗
sampled i.i.d. from the data distribution to be Nε = {i : x∗ ·xi ≥ 1−ε}. There
exists a constant ε such that with high probability yi = y∗ for all {yi : i ∈ Nε}.
Moreover, the distribution of xi within Nε is approximately uniform.

We consider a feedforward neural network with L hidden fully-connected layers
of width m and an activation function σ : R → R applied entry-wise. At
initialization, its weights are drawn i.i.d. from N (0, 1). Defining each weight
matrixWi at the ith hidden layer and output layer weights v ∈ Rm, the neural
network can be expressed as a function fNN : Rd → R that maps data x to
real-valued output y:
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fNN(x) := v · 1√
m
σ

(
WL

1√
m
σ

(
WL−1 . . .

1√
m
σ (W1x) . . .

))
. (1.1)

Training the NTK with squared loss for a single-output regression in the
wide limit yields at any timestep a Gaussian with mean E[f∗](t) and vari-
ance V[f∗(t)]. In the limit of t→∞, training the neural network converges to
an output distribution given by Lemma 1.1.1 [21, 30]:

Lemma 1.1.1. Let KNTK denote the NTK of the neural network in Eq. 1.1
as t→∞, and let f0 denote the output of the neural network at t = 0. Since
f0 produces Gaussian-distributed output, we can define the covariance between
xi and xj in the infinite width limit:

Kcov(xi,xj) = lim
m→∞

E [f0(xi) · f0(xj)] .

Consider a test data vector x∗. Defining (kNTK)∗, (kcov)∗ ∈ Rn as the vectors
generated by applying the corresponding kernel to the vector x∗ and the training
set S, the mean and variance of the Gaussian output f∗ of the converged NTK
as t→∞ are given by:

E[f∗] = (kNTK)T∗K
−1
NTKy (1.2a)

V[f∗] = Kcov(x∗,x∗) + (kNTK)T∗K
−1
NTKKcovK

−1
NTK(kNTK)∗

− ((kNTK)T∗K
−1
NTK(kcov)∗ + h.c.),

(1.2b)

where h.c. denotes the Hermitian conjugate.

We place additional conditions on the normalization of the activation function,
which is equivalent to the application of batch normalization at each layer of
a neural network [26].

Assumption 1.1.4. The activation function σ : R → R is normalized such
that

E
X∼N (0,1)

[σ(X)] = 0 and V
X∼N (0,1)

[σ(X)] = E
X∼N (0,1)

[σ2(X)] = 1. (1.3)

Following Agarwal et al. [26], we define the nonlinearity of the activation
function and note the effect of normalization on the resulting constant.
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Definition 1.1.5 (Coefficient of nonlinearity). The coefficient of nonlinearity
of the activation function σ is defined to be µ := 1−

(
EX∼N (0, 1)[Xσ(X)]

)2.

Corollary 1.1.2. Under Assumption 1.1.4, the nonlinearity of σ is bounded
to be 0 < µ ≤ 1.

We include an important result on convergence when training all the layers of
the neural network (more formally stated in Sec. A.1 of the Appendix A).

Theorem 1.1.3. Suppose σ is smooth, bounded, and has bounded deriva-
tives. If the width is a large enough constant (depending on L, n, δ) and L =

Ω
(

log(n/δ)
µ

)
, then gradient descent with high probability finds an ε-suboptimal

point in O(log(1/ε)) iterations.

This motivates the definition of a threshold depth for which convergence by
gradient descent is guaranteed:

Lconv :=
8 log(n/δ)

µ
, (1.4)

where a constant prefactor is included to ensure favorable properties of the
NTK. Efficiently computing a matrix element of the NTK with L = Θ(Lconv)

requires a minimum data separability.

Lemma 1.1.4. If L = Θ(Lconv) and δ = Ω(1/poly n), then an element of
the NTK can be computed in O(polylog (n)/µ) time given the inner product
between two data points.

Quantum preliminaries

We assume some basic familiarity with quantum computing [31] but provide
here the background on necessary quantum algorithms for the NTK. In par-
ticular, the quantum linear systems problem (QLSP) [32] provides the basis
for a robust exponential speedup.

Definition 1.1.6 (QLSP). Let A be an n×n Hermitian matrix with condition
number κ, unit determinant, and at most s nonzero entries in any row or
column. Let x,b be n-dimensional vectors such that x = A−1b. We define
the quantum states |b〉 , |x〉 such that

|b〉 :=

∑n
i=1 bi |i〉

||
∑n

i=1 bi |i〉 ||
and |x〉 :=

∑n
i=1 xi |i〉

||
∑n

i=1 xi |i〉 ||
. (1.5)
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Given access to a procedure PA that computes the locations and values of
the nonzero entries in A, and a procedure PB that prepares the state |b〉 in
O(polylog(n)) time, output a state |x̃〉 such that || |x̃〉 − |x〉 || ≤ ξ, succeeding
with probability larger than 1/2 and providing a flag indicating success.

The HHL algorithm [5] solves QLSP for general A: the assumption that A is
Hermitian can be dropped without loss of generality by constructing a linear
system defined by a Hermitian antidiagonal block matrix with components A
and A†. Further improvements of the QLSA beyond HHL obtain a runtime of
O(log(n)κs polylog(κs/ξ)) [6].

HHL can solve the problem of sparse matrix inversion, which is known to be
BQP-complete. Thus, it is widely thought that no classical algorithm can fully
replace HHL based on standard complexity conjectures. However, individual
cases may be classically addressed: recent work on low-rank linear systems
have yielded quantum-inspired classical algorithms [33]. Additionally, due to
the dependence of the QLSA on matrix condition number and sparsity, there
are several caveats that must be satisfied to achieve an exponential speedup
in n over known classical algorithms [11].

Remark 1.1.5 (Caveats to QLSA exponential speedup.). The following con-
ditions must be satisfied to achieve an exponential quantum speedup with a
quantum linear systems algorithm (QLSA).

1. The matrix A must be s-sparse with s = O(polylog(n)).

2. The matrix A must be well-conditioned with κ(A) = O(polylog(n)).

3. The matrix A must have rank at least Ω(poly(n)).

4. The procedure PA that provides the indices of nonzero elements in a given
column must take O(polylog(n)) time.

5. The procedure PB that loads the vector b into the quantum computer’s
memory must take O(polylog(n)) time.

6. The final state |x〉 must be efficiently read out, repeating the algorithm
at most O(polylog(n)) times.
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As is typical in many quantum machine learning algorithms [12–16], we as-
sume the existence of a quantum random access memory (QRAM) to store and
access any necessary quantum states. The following binary tree QRAM sub-
routine was proposed by Kerenidis and Prakash [34] and is applied commonly
in quantum machine learning [16, 35].

Theorem 1.1.6 (QRAM). For S ∈ Rn×d, there exists a data structure that
stores S such that the time to insert, update or delete entry Sij is O(log2(n)).
Moreover, a quantum algorithm with access to the data structure provides quan-
tum access in time O(polylog(nd)).

In the case of a quantum NTK algorithm, the training dataset must only be
loaded into QRAM once; training different neural networks afterwards will
only require logarithmic time in the training set size.

While sparse matrix inversion is BQP-complete and thus thought to be robust
to the development of future classical algorithms, other techniques also provide
quantum speedups. Using an approach similar to the q-means algorithm [16],
we also achieve an exponential speedup over the standard classical approach
to compute the NTK or its approximation. As with other quantum machine
learning results, such speedups may ultimately give rise to quantum-inspired
classical algorithms [33, 36–38]. Accordingly, we present two approximations
to the neural tangent kernel with exponential quantum speedups: the first
requires sparse matrix inversion, and the second has a slightly higher error
without sparse matrix inversion. Both approximations asymptotically con-
verge to the exact output of a deep neural network NTK.

1.2 Sparsified neural tangent kernel

We seek to approximate the NTK so as to converge to its expected output
E[f∗] = (kNTK)T∗K

−1
NTKy on a test data vector x∗. Classically, solving the

linear equation KNTKv = y with an arbitrary n × n matrix KNTK requires
time O(n3) to perform a Cholesky decomposition. In the sparsified NTK, we
replace KNTK with an s-sparse matrix K̃NTK, which has at most s = O(log n)

nonzero elements in any matrix or column. When solving an s-sparse, well-
conditioned system of linear equations, classical algorithms can estimate the
solution up to precision ξ in O(s n log(1/ξ)) time [39]. Using a QLSA, we will
obtain polylogarithmic dependence on n.
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Properties of the sparsified NTK

To address caveats of a quantum speedup discussed above, we must describe
several properties of the sparsified NTK as well as its convergence to the
exact NTK. (Proofs of these properties are found in Secs. A.1 and A.4 of the
Appendix A.) We begin by defining a sparsification procedure of the exact
NTK, which relies on the structure of an NTK for a deep neural network. The
use of a deep neural network has been recently shown to speed up optimization
via gradient descent due to the well-conditioning of the NTK [26]. In our
framework, the condition number approaches unity for neural networks deep
enough to provably converge by gradient descent.

Theorem 1.2.1 (Well-conditioning of the NTK). If L ≥ Lconv, then the con-
dition number 1 ≤ κ(K̃NTK) ≤ 1+1/n

1−1/n
converges to unity as the training set size

increases.

The well-conditioning occurs because off-diagonal elements of the NTK rapidly
vanish with larger datasets while all diagonal elements are equal. Since the
NTK for the neural network given in Eq. 1.1 only depends on the inner product
xi·xj for the (i, j)th matrix element, we can place precise bounds on the matrix
elements.

Lemma 1.2.2 (Upper bounds on the NTK). The diagonal of the NTK is equal
everywhere and given by constant (KNTK)11. If L ≥ Lconv, then we have the

following bounds on (KNTK)ij for i 6= j. If 0 < δij < 1/2,
∣∣∣ (KNTK)ij

(KNTK)11

∣∣∣ ≤ ( δ
δijn

)2

,

while for 1/2 ≤ δij ≤ 1,
∣∣∣ (KNTK)ij

(KNTK)11

∣∣∣ ≤ ( δn)2
.

As data vectors become more parallel, the value of the NTK increases until it
reaches a maximum when they are fully parallel. Since δ = Ω(1/poly n) by
Assumption 1.1.2, Lemma 1.2.2 shows that the largest off-diagonal elements
(where δij = δ) fall off more slowly (like 1/n2) than distant off-diagonal el-
ements (like 1/n5/2 if, for instance, δ ∼ n−1/2). As the dataset gets larger
and the neural network gets deeper, this effect focuses the NTK on the most
similar examples. We use this feature to sparsify the NTK matrix and prob-
abilistically select off-diagonal matrix elements as nonzero according to their
magnitude; such sparsification naturally conforms to the structure of the exact
NTK and thus the inverses converge in the asymptotic limit.



9

Theorem 1.2.3 (Convergence of the sparsified NTK to the exact NTK). Let
M = K̃NTK be a sparsification of the exact NTK KNTK with s = O(log n) off-
diagonal elements. The error of the matrix inverse vanishes as ||K̃

−1
NTK−K

−1
NTK||

||K−1
NTK||

=

O(1/n).

To efficiently prepare quantum states, we also require a normalization factor
that sets a maximum for any off-diagonal matrix element of the NTK. This is
later used to create the oracle PA and to ensure efficient readout. Since the
NTK depends only on the inner product, the NTK normalization threshold
is equivalent to a separability threshold between two data vectors. The scale
of this separability is set by Assumption 1.1.3, which requires data within the
neighborhood Nε = {i : 1 − x∗ · xi ≤ ε} around vector x∗ to have the same
label with high probability. If the dataset has dimension d = O(log n), one
can always choose constant ε′ such that ε′ < ε such that clipping NTK values
does not introduce more than O(1/n) error (see Sec. A.1 of the Appendix A).
The key property of the NTK that allows this is a lower bound on the NTK
matrix elements.

Lemma 1.2.4 (Lower bounds on the NTK). Consider any xi,xj with sepa-
rability δij such that xi · xj > 0. For an NTK of depth L = Lconv, we have

(KNTK)ij
(KNTK)11

≥ O(1) · δij
(

1− δ
n

)O(1)

, (1.6)

where the constants are given by the choice of activation function, ε′, and ε.

Quantum algorithm

From the classical properties of the NTK, we have satisfied caveats 1 through
3 of Remark 1.1.5 with the sparsified NTK, which converges to the exact NTK
up to O(1/n) error. Using the QRAM to store the training set, we have also
satisfied the efficient loading of quantum state |y〉 in the QLSP K̃NTK |v〉 =

|y〉. Two quantum subroutines are required to train the neural network: the
efficient computation of the NTK over the dataset in superposition, and the
efficient readout of the NTK prediction. To prepare the oracle PA for matrix
elements and the state |k∗〉 corresponding to the vector (kNTK)∗ in Eq. 1.2, we
require the following result, which uses the fact that the NTK only depends
on the inner product xi · xj.
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Theorem 1.2.5 (Kernel estimation). Let S ∈ Rn×d be the training dataset of
{xi} unit norm vectors stored in the QRAM described in Theorem A.3.1. For
test data vector x∗ ∈ Rd in QRAM and a constant ε′, there exists a quantum
algorithm that maps

1√
n

n−1∑
i=0

|i〉 |0〉 7→ 1√
P

n−1∑
i=0

ki |i〉 . (1.7)

Here, ki = K̂NTK(ρi)/K̂NTK(1 − ε′) is restricted to −1 ≤ ki ≤ 1, i.e. clipping
all |K̂NTK(ρi)| > K̂NTK(1−ε′). The state is prepared with error |ρi−x∗ ·xi| ≤ ξ

with probability 1− 2∆ in time Õ(polylog(nd) log(1/∆)/ξ).

Finally, we show that the NTK classification result sign
(

(kNTK)∗K̃
−1
NTKy

)
can

be read out efficiently.

Theorem 1.2.6 (Efficient readout). Given states |k∗〉 = 1√
P

∑n−1
i=0 ki |i〉 and

K̃−1
NTK |y〉 for |y〉 = 1√

n

∑n−1
i=0 yi |i〉, the quantity sign

(
(kNTK)∗K̃

−1
NTKy

)
can be

estimated up to O(1/n) error after a polylogarithmic number of measurements
in n.

The full quantum algorithm for the sparse NTK approximation is summarized
as follows.

Step 1: load data into QRAM. Given training dataset S of n training
examples {(xi, yi) ∈ Rd × {−1, 1}}ni=1, use the QRAM procedure of Kerenidis
and Prakash [34] to create a binary tree data structure with efficient quantum
access. Note that although creating the QRAM requires O(n) time to iterate
through the entire dataset, the cost only occurs once: changes to the data
structure and the training of different neural networks will only require time
polylogarithmic in n.

Step 2: prepare the state |p∗〉 = 1√
n

∑n−1
i=0 |i〉 |x∗ · xi〉 representing a

binary encoding of all inner products between test data example
x∗ and all training examples xi. Following the first half of the proof of
Theorem 1.2.5 (see Theorem A.3.5 in the Appendix A), we first access all xi in
superposition from the QRAM. Apply amplitude estimation [40] and median
evaluation [41] to compute all inner products between the test data state |x∗〉
and each entry |xi〉 of the training dataset.
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Step 3: compute the NTK |k∗〉 between the text data x∗ and all train-
ing examples xi. Since the NTK function only depends on inner products
xi ·x∗ and can be efficiently computed by Lemma 1.1.4, there exists a unitary
that can take the state from Step 2 and compute 1√

n

∑n−1
i=0 |i〉 |KNTK(x∗,xi)〉.

Normalizing by the NTK factor ε′, we perform controlled rotations on each bit
of the representation then post-select to obtain state |k∗〉 withKNTK(x∗,xi) en-
coded as an amplitude of |i〉. The post-selection requires time O(1/polylog n).

Step 4: solve QLSP K̃NTK |v〉 = |y〉 and output the result as a quantum
state. This is a straightforward application of HHL [5] or similar QLSA with
access to oracle PA that efficiently provides the indices of nonzero elements in
a given column. We use Theorem 1.2.5 similarly as in Steps 2-3 to identify
O(log n) nonzero elements in the NTK, choosing larger elements with higher
probability; to ensure the nonzero elements are distinct, the QRAM is modified
in O(polylog n) time after each measurement. Applying the well-conditioned
result of Theorem 1.2.1 and the imposed sparsity condition, the QLSA solves
K̃−1

NTK |y〉 with polylogarithmic cost in n.

Step 5: estimate the output of the NTK approximation, i.e. measure
sign

(
(kNTK)∗K̃

−1
NTKy

)
. Using Theorem 1.2.6, we prepare a state encoding the

relative sign of |k∗〉 and K̃−1
NTK |y〉 to estimate the sign of 〈k∗| K̃−1

NTK |y〉 via
an inner product estimation subroutine [42]. Because of Assumption 1.1.3 for
sufficiently large training sets, the overlap between these states is large enough
to ensure up to O(1/n) error with a polylogarithmic number of measurements
in n. Since the product (kNTK)∗K̃

−1
NTKy is proportional to 〈k∗| K̃−1

NTK |y〉 up
to a positive normalization factor and Theorem 1.2.3 ensures convergence to
the exact NTK output, the final classification can be performed up to O(1/n)

error of the wide and deep neural network.

1.3 Diagonal neural tangent kernel

As given by the upper bounds of Lemma 1.2.2, increasing neural network
depth causes the off-diagonal elements to vanish, and the NTK approaches
a matrix proportional to the identity matrix. While this behavior ultimately
causes deep neural networks to be well-conditioned and trainable by gradient
descent (Theorem 1.1.3), it also allows wide neural networks of depth L ≥
Lconv to be approximated directly by the inner product (kNTK)T∗ y instead of
(kNTK)T∗K

−1
NTKy.
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Theorem 1.3.1 (Convergence of the diagonal NTK to the exact NTK). Let
M = (KNTK)11 · I be proportional to the n × n identity matrix. The error of
the matrix inverse vanishes as ||M−K

−1
NTK||

||K−1
NTK||

= O(1/n).

While the asymptotic error of O(1/n) is the same as Theorem 1.2.3, the error
caused by taking the sparse matrix inverse is strictly less than the error caused
by the diagonal approximation due to the Gershgorin circle theorem applied
to the matrix inverse inequality underlying Theorem 1.3.1.

Theorem 1.3.2 (Sparse approximation vs. diagonal approximation). Given
sparse matrix K̃NTK with at most O(log n) nonzero off-diagonal elements in
every row and column, define E[f sparse

∗ ] = (kNTK)T∗ K̃
−1
NTKy. Under the diagonal

approximation, define E[fdiag
∗ ] = (kNTK)T∗ y/(KNTK)11. Compared to the exact

NTK E[f∗] = (kNTK)T∗K
−1
NTKy in expectation over x∗, we have |E[f sparse

∗ ] −
E[f∗]| < |E[fdiag

∗ ]− E[f∗]|.

The same quantum algorithm as given above applies, except the solution |v〉
to the QLSP K̃NTK |v〉 = |y〉 is replaced simply by |y〉. Since the efficient state
preparation and readout results hold, the diagonal approximation has asymp-
totically the same error as the sparsified NTK. However, the quantum speedup
of the sparsified NTK is likely robust to improved classical algorithms, since
the reliance on sparse matrix inversion ensures that it solves a BQP-complete
problem. In contrast, it is possible that quantum-inspired approaches may
approximate the diagonal NTK approximation through, for instance, Monte
Carlo estimation of the inner product (kNTK)T∗ y.

1.4 Numerical experiments

We provide numerical experiments that support claims of the NTK’s behavior,
the favorable scaling for a quantum speedup, and the resulting performance
of the NTK and its sparse and diagonal approximations on various toy and
benchmark datasets. The output of the infinite-width neural network defined
in Eq. 1.1 is evaluated with the neural-tangents package [43]. Additional
analysis can be found in Sec. A.6 of the Appendix A.

To provide intuition for Assumption 1.1.3 and define a toy dataset on which
empirical performance can be measured, we consider the dataset of (xi, yi) on
a d-dimensional unit sphere. Noisy labels yi = f(xi) + η with η ∼ N (0, 0.05)
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are assigned based on f(xi) =
∑d

j=1 sin
3π(xi)j

2
for xi = (x1, . . . , xd). The ε-

neighborhood of Assumption 1.1.3 defines a minimum angular resolution on
the sphere at which one can expect to find a single class; i.e., Assumption 1.1.3
sets the scale at which neighboring data examples can be assumed to belong
to the same class with high probability (Fig. 1.1).
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Figure 1.1: Left: true data distribution on a 3-dimensional sphere, where labels
are assigned by sign

∑d
j=1 sin

3π(xi)j
2

. Right: fraction of examples in Nε about
random y∗ such that yi = y∗; choosing ε = 0.01 for the d = 3 dataset provides
label homogeneity with probability > 90%.

The uniform spherical dataset satisfies Assumption 1.1.2 that δ = Ω(1/poly n);
similarly, an empirical evaluation of the MNIST and CIFAR-10 datasets show
that they also satisfy the assumption (see Sec. A.5 of the Appendix A). Hence,
the NTK can be efficiently evaluated as a unitary applied to inner products.

To prepare the state |k∗〉 = 1√
P

∑n−1
i=0 ki |i〉, post-selection requires O(1/P )

measurements as described in Theorem 1.2.5, where P =
∑n−1

i=0 k
2
i . To estimate

the inner product (〈k∗| K̃−1
NTK |y〉 or 〈k∗|y〉) and compute the expected NTK

output, the state overlap must scale at least like Ω(1/polylog n) to be measured
efficiently. As seen in Fig. 1.2, both the state preparation and readout are
efficient, consistent with the theoretical results.
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Figure 1.2: Scaling of the number of measurements required for state prepa-
ration (left) and of state overlap for efficient readout (right). As dataset size
increases, the number of measurements required for state preparation decreases
like 1/poly n. Similarly, the state overlap 〈k∗|y〉 decreases like Ω(1/polylog n),
ensuring that at most O(polylog n) measurements are required for the final
readout.

Hence, the quantum algorithm is confirmed to require at most a polyloga-
rithmic number of measurements in training set size for state preparation and
readout; this is sufficient for the diagonal NTK to achieve an exponential quan-
tum speedup. In the case of the sparsified NTK approximation, the kernel is
well-conditioned and constructed to be sparse, yielding a polylogarithmic cost
of QLSA and also providing an exponential speedup.

Finally, we observe the performance of the exact and approximate NTKs on
both the toy dataset and the MNIST dataset. While the toy dataset imple-
ments the neural network in Eq. 1.1, we also provide results on NTKs resem-
bling more standard deep learning architectures to explore the generality of
our result. For the MNIST dataset, we choose the non-residual convolutional
Myrtle network [44] due to its straightforward architecture and use in previ-
ous benchmarks [45, 46]. The Myrtle NTK is also seen to be well-conditioned
with rapidly vanishing off-diagonal elements (Sec. A.6 of the Appendix A),
which suggests that it may provide the necessary properties for achieving a
quantum speedup. As is expected, the performance of the NTK approxima-
tions approach the exact NTK rapidly, and the sparsified NTK has improved
performance compared to the diagonal NTK approximation (Fig. 1.3).
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Figure 1.3: The exact NTK, sparsified NTK, and diagonal NTK on the 3-D
spherical classification problem (left, Eq. 1.1) and MNIST 0/1 binary classifi-
cation (right, Myrtle network [44]). The sphere NTK uses depth L = Lconv/10
while the MNIST NTK has a fixed depth with the Myrtle49 architecture.
We expect the sparsified and diagonal approximations to converge to the ex-
act NTK with error O(1/n), and the sparsified NTK is expected to converge
slightly faster. Error bars show two standard deviations.

1.5 Discussion

We propose the study of approximate neural tangent kernels (NTKs) — either
sparsified or diagonal — corresponding to a wide fully-connected neural net-
work architecture under standard data assumptions. In the regime of a neural
network of sufficient depth to converge via gradient descent, we showed that
these approximate NTKs converge to the exact output of a wide and deep
neural network with O(1/n) asymptotic error, where the sparsified NTK has
strictly lower error than the diagonal NTK. Our main result is a quantum
algorithm that provides the output of these approximate NTKs with an ex-
ponential speedup over the known classical algorithms, scaling logarithmically
with the number of training examples. To the best of our knowledge, this rep-
resents the first quantum speedup for a classical feedforward neural network.
Since sparse matrix multiplication is known to be BQP-complete and hence
thought to be classically hard, we believe the result for the sparsified NTK is
largely robust to further progress of classical algorithms. The quantum algo-
rithm for the diagonal NTK also achieves an exponential speedup over current
classical approaches, although quantum-inspired classical approaches may be
possible; these may have implications for topics such as coresets [47, 48].

Although we only provide a theoretical treatment of a vanilla feedforward
neural network, empirical results suggest successful applicability of the NTK
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approximations to wide and deep convolutional deep learning architectures.
Due to the versatility of the NTK framework across standard neural network
architectures such as convolutional neural networks, graph neural networks,
and transformers [45, 49–51], we anticipate future work studying quantum al-
gorithms for additional architectures. Additionally, while our work focused
on the neural tangent kernel, the approximation introduced by a sparsified or
diagonal kernel may extend to any chaotic kernel [52, 53]. As the depth of
a chaotic kernel increases, similar data entries become increasingly dissimilar
due to random projections onto weight matrices; this may generally give rise
to the vanishing off-diagonal elements that is key to kernel well-conditioning
and successful approximation. Given the interest within the quantum ma-
chine learning community on kernel approaches due to the exponentially large
Hilbert space offered by quantum computing [13, 54–58], this work may open
new possibilities for improved machine learning methods amenable to quantum
computing.
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2.1 Overview

Generative adversarial networks (GANs) [1] are one of the most widely adopted
generative machine learning methods, achieving state-of-the-art performance
in a variety of high-dimensional and complex tasks including photorealistic
image generation [2], super-resolution [3], and molecular synthesis [4]. Given
access only to a training dataset S = {xi} sampled from an underlying data
distribution pdata(x), a GAN can generate realistic examples outside S. Cer-
tain probability distributions generated by quantum computers are thought to
be classically hard to sample from under plausible conjectures [5–7], and learn-
ing to generate these samples using a classical GAN can also be formidably
hard [8]. In this work, we focus on developing a fully quantum mechanical
GAN, where the true data is given by a quantum state; the task is then to
learn a generator circuit that can reproduce the same quantum state. Follow-
ing the framework of a GAN, a discriminator circuit is presented either with
the true data or with fake data from the generator. The generator and discrim-
inator are then trained adversarially [9]: the generator attempts to fool the
discriminator, while the discriminator attempts to correctly distinguish true
and fake data. While we focus on quantum data, we present viable applica-
tions of the resulting machine learning architecture in the context of classical
data.
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Recent work on a quantum GAN (QuGAN) [10, 11] has proposed a direct
analogy of the classical GAN architecture in designing the generator and dis-
criminator circuits. We show that the proposed QuGAN does not always
converge but rather in certain cases oscillates between a finite set of states
due to mode collapse, and in general suffers from a non-unique Nash equi-
librium. This motivates a new entangling quantum GAN (EQ-GAN) with a
uniquely quantum twist: rather than providing the discriminator with either
true or fake data, we allow the discriminator to entangle both true and fake
data. We prove the convergence of the EQ-GAN to the global optimal Nash
equilibrium. Numerical experiments confirm that the EQ-GAN converges on
problem instances that the QuGAN failed on.

While the EQ-GAN has favorable convergence properties, the task of learn-
ing a quantum circuit to generate an unknown quantum state may also be
solved in an entirely supervised approach. Rather than adversarially training
the discriminator to distinguish between fake and real data, one may freeze
the discriminator to perform an exact swap test, measuring the state fidelity
between the true and fake data. While this would replicate the original state
in the absence of noise, gate errors in the implementation of the discriminator
will cause convergence to the incorrect optimum. We show that the adversarial
approach of the EQ-GAN is more robust to such errors than the simpler super-
vised learning approach. Since training quantum machine learning models can
require extensive time to compute gradients on current quantum hardware, re-
silience to gate errors drifting during the training process is especially valuable
in the noisy intermediate-scale quantum (NISQ) era of quantum computing.

Other approaches to a quantum GAN may improve a quantum GAN’s conver-
gence properties — notably, recent work suggests that certain cost functions
such as the Wasserstein metric may provide more robust convergence [12].
However, we find that the EQ-GAN’s shallow discriminator is effective at sup-
pressing device errors, making the EQ-GAN particularly relevant for near-term
applications of quantum computing. Moreover, we demonstrate a proof-of-
concept for learning a variational QRAM with the EQ-GAN, including an
application in the broader context of quantum machine learning for classifying
classical dataset.
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2.2 Prior work

A GAN comprises of a parameterized generative network G(θg, z) and discrim-
inator network D(θd, z). The generator maps a vector sampled from an input
distribution z ∼ p0(z) to a data example G(θg, z), thus transforming p0(z) to a
new distribution pg(z) of fake data. The discriminator takes an input sample
x and gives the probability D(θd, x) that the sample is real (from the data) or
fake (from the generative network). The training corresponds to a minimax
optimization problem, where we alternate between improving the discrimina-
tor’s ability to distinguish real/fake samples and improving the generator’s
ability to fool the discriminator. Specifically, we solve minθg maxθd V (θg, θd)

for a cost function V :

V (θg, θd) = Ex∼pdata(x) [logD(θd, x)]

+ Ez∼p0(z) [log (1−D(θd, G(θg, z)))] .
(2.1)

If G and D have enough capacity, i.e. approach the space of arbitrary func-
tions, then it is proven in Ref. [1] that the global optimum of this minimax
game exists and uniquely corresponds to pg(x) = pdata(x). While a multilayer
perceptron can be used to parameterize D and G, the dimensionality of the
functional space can also be increased by replacing classical neural networks
with quantum neural networks. In the most general case, the classical data can
be represented by a density matrix σ =

∑
i pi |ψi〉 〈ψi| where pi ∈ [0, 1] are posi-

tive bounded real numbers and |ψi〉 are orthogonal basis states. In the first pro-
posal of a quantum GAN (QuGAN) [10, 11], the generative network is defined
by a quantum circuit U that outputs the quantum state ρ = U(θg)ρ0U

†(θg)

from the initial state ρ0. The discriminator takes either the real data σ or the
fake data ρ and performs a positive operator valued measurement (POVM)
defined by T whose outcome determines the probability of data being true,
or operator F whose outcome determines the probability of data being fake,
with ||T ||1, ||F ||1 ≤ 1. Hence, the discriminator predicts the probability that
an unknown input state ρin is true data by measuring the expectation value
of T :

D(θd, ρin) = Tr[Tρin]. (2.2)

Following Ref. [11], the QuGAN solves the minimax game

min
θg

max
T

(Tr[Tσ]− Tr[Tρ(θg)]) . (2.3)
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Unfortunately, minimax optimization might not converge to a good Nash equi-
librium. When ρ is close to σ, the optimal Hesltrom measurement operator
T = P+(σ − ρ) is close to orthogonal to the true quantum data σ and oppo-
site to ρ. The next step of training will try align the generator state ρ with
T to minimize the cost function in Eq. 2.3, perhaps overshooting σ. In the
subsequent generator update, T will again be opposite to ρ. This leads to the
oscillation of the generator and discriminator, possibly preventing convergence;
we show a case of infinite oscillation below.

2.3 Mode collapse example of QuGAN

We provide a concrete example of mode collapse in the original QuGAN ar-
chitecture [10, 11]. Consider a true data state σ and a generator initialized in
state ρ, where each state is defined by

σ =
1 + cos(π/6)σx + sin(π/6)σy

2
, (2.4)

ρ =
1 + cos(π/6)σx − sin(π/6)σy

2
. (2.5)

Maximizing Eq. 2.3 with a Helstrom measurement by decomposing σ − ρ =
σy

2
, the discriminator will take T = P+(σ − ρ) = 1+σy

2
. Optimizing over

the space of density matrices, the generator will rotate ρ to be parallel to
T , also giving ρ′ = 1+σy

2
. In the next iteration, the discriminator attempts

to perform a new Helstrom measurement to distinguish σ from ρ′, but this
results in T ′ = P+(σ − ρ′) = ρ. As the generator realigns to match the new
measurement operator, we find that ρ′′ = ρ. It is now straightforward to see
that if the QuGAN is trained to fully solve the minimax optimization problem
each iteration, it will never converge; instead, it will always oscillate between
states ρ and ρ′, neither of which are the Nash equilibrium of the minimax game
(Fig. 2.1) for the QuGAN performance under such mode-collapse.

More generally, we can consider the oscillation between a finite set of states.
Let the function Tσ(ρ) = P+(σ−ρ) denote the optimal Helstrom measurement
P+ =

∑
i

∣∣φ+
i

〉 〈
φ+
i

∣∣ obtained from the positive part of the spectral decompo-
sition of σ − ρ. If T (k)

σ is the k-fold composition of T with itself, then the
existence of some k > 1 such that T (k) = ρ is sufficient to ensure oscillation
between k states. For a system of n qubits, we may achieve this by preparing
the target and initial state separated by an angle of π/3 on the generalized
Bloch sphere.
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Figure 2.1: Performance of QuGAN [10, 11] learning the state defined in
Eq. (2.4) with initialization given by Eq. 2.5. Mode collapse manifests as an
oscillation in the generator and discriminator loss without converging to a
global optimum. The implementation is based on the original architecture in
Pennylane [13].

2.4 Convergence of EQ-GAN

To ensure convergence to a unique Nash equilibrium, we propose a new mini-
max optimization problem with a discriminator that is not directly analogous
to the discriminator of a classical GAN. Rather than evaluating either fake or
true data individually, the optimal discriminator is not only provided access
to the true data σ and an input state ρ(θg) prepared by the generator circuit
parameterized by θg, but also permited to perform a measurement on the joint
system that in certain parameter value gives fidelity measurement between the
two inputs:

Dfid
σ (ρ(θg)) =

(
Tr
√
σ1/2 ρ(θg)σ1/2

)2

. (2.6)

Notice that in comparison Eq. 2.3 is a linear function of input states, which
is not optimal in the state-certification problem [14] of evaluating quantum
generative models. Let the discriminator Dσ(θd, ρ(θg)) represent the proba-
bility of measuring state |0〉 at the end of the discriminating circuit. If there
exist parameters θopt

d that realize a perfect swap test, i.e. Dσ(θopt
d , ρ(θg)) =

1
2
+ 1

2
Dfid
σ (ρ(θg)), thenDσ is sufficiently expressive to reach the optimal discrim-

inator during optimization. Since a traditional swap test across two n-qubit
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states requires two-qubit gates that span over 2n qubits, implementation on
a quantum device with local connectivity incurs prohibitive overhead in cir-
cuit depth. Hence, we implement the discriminator with a parameterized
destructive ancilla-free swap test [15]. The EQ-GAN architecture adversari-
ally optimizes the generation of the state ρ(θg) and the learning of a fidelity
measurement Dσ (Fig. 2.2).

We define a minimax cost function closer to that of the classical GAN in
Eq. 2.1:

min
θg

max
θd

V (θg, θd) = min
θg

max
θd

[1−Dσ(θd, ρ(θg))], (2.7)

where Dσ(θd, ρ(θg)) is the parameterization of the swap-test result. We now
show that a Nash equilibrium exists at the desired location. Consider a swap
test circuit ansatz for the discriminator U(θd) = exp[−iθdCSWAP], which is
the matrix exponentiation of a perfect controlled swap gate with angle θd.
Under such ansatz, the input state ρin = |ψ〉 〈ψ| and σ = |ζ〉 〈ζ| will transform
under the discriminator circuit into:

HU(θd)H |0〉a |ψ〉 |ζ〉 =
i sin θd

2
|1〉a [|ζ〉 |ψ〉 − |ψ〉 |ζ〉]

+
1

2
|0〉a [(e−iθd + cos θd) |ψ〉 |ζ〉 − i sin θd |ζ〉 |ψ〉].

(2.8)

Given the circuit ansatz defined above with the predefined range for the swap
angle θ, the maximum value for distinguishing between two arbitrary states is
uniquely achieved by perfect swap test angle θ = π/2. More particularly, the
probability of measuring state |0〉 at the end of the parameterized swap test
depends on the swap angle θ according to

Dσ(θd, ρ(θg)) =
1

2
[1 + cos2 θd + sin2 θdD

fid
σ (ρ(θg))]. (2.9)

The discriminator aims to decrease the probablity of measuring |0〉, and thus
minimize Eq. 2.9 by getting close to θd = π/2 which corresponds to the perfect
swap test given Dfid

σ (ρ(θg))) ≤ 1. The next step is for the generator to maxi-
mize Dfid

σ (ρ(θg))) by moving closer to the true data. Ultimately, the generator
cannot improve when ρ(θg) = σ.
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Figure 2.2: EQ-GAN architecture. The generator varies θg to fool the discrim-
inator; the discriminator varies θd to distinguish the state. Since an optimal
discriminator performs a swap test, the global optimum of the EQ-GAN occurs
when ρ(θg) = σ. While we include an ancilla qubit in the figure for clarity, we
implement a destructive ancilla-free swap test [15].

The cost function defined in Eq. (2.7) does not assume that the input states σ
and ρ(θg) have to be pure states. For simplicity, the example we provided in
Eq. (2.8) does assume pure state input. Below, we discuss a proposal for EQ-
GAN to accommodate mixed state input by replacing the pure-state fidelity
with a mixed state fidelity measurement. Other discriminator architectures
may be chosen to ensure the existence of a Nash equilibrium. In the experi-
ments presented below, we use a hardware-efficient ansatz designed to correct
dominant coherent gate errors. Although a poorly chosen circuit parameteri-
zation may yield a non-convex loss function landscape and thus be difficult to
optimize by gradient descent, this is an issue shared with the QuGAN due to
the difficulty of expressing arbitrary unitaries as shallow quantum circuits as
well as with classical GANs. However, the EQ-GAN architecture successfully
converges on problem instances that are unreachable by a fully trained and
properly parameterized a QuGAN.

We implement an ancilla-free swap test to perform state discrimination (Fig. 2.3).
To evaluate the swap test on a Sycamore quantum device, we decompose each
CNOT gate into (I⊗H)CZ(I⊗H) operations to use the native CZ gate. As
discussed in Sec. 2.5, the CZ gate has unstable errors that can be effectively
modeled with Z rotations by an unknown angle on either qubit. The EQ-
GAN formalism can overcome the single-qubit phase error by applying RZ(θ)

gates directly after each CZ operation. During adversarial training, the free
angles θ are optimized with gradient descent to mitigate the two-qubit gate er-
ror. Due to the convergence properties provided by the generative adversarial
framework, the discriminator provably converges to the best state discrimina-
tor possible. This motivates early stopping (as shown in Fig. 2.6) when the
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discriminator loss indicates that the best state discriminator has been achieved.

Figure 2.3: Ancilla-free swap test between two 3-qubit states. By rewriting
the controlled-swap operation as CNOT and Toffoli gates and replacing com-
putational basis operations with classical post processing, the swap test can
be performed with an ancillary classical bit.

While classical GANs use a random latent vector to generate fake data, the
quantum GAN proposed here and in the existing literature does not require
any such random input. This comes with a price, especially when our goal is
to learn quantum data in a mixed state. As shown in Fig. 2.4, a factor of two
overhead in the number of qubits are needed for mixed-state learning based
on Choi’s theorem.

A closer look at the mathematical nature of a mixed state points us to a more
efficient representation through a hybrid classical-quantum network. A mixed
state represented in the most generic form ρ =

∑2n

i=1 Pi |ψi〉 〈ψi| is specified by
a classical probability distribution {Pi} over 2n discrete variables correspond-
ing to the set of quantum states {|ψi〉} that diagonalize the density matrix.
Naturally, one can efficiently represent the classical part of this representa-
tion, {Pi}, with a classical neural network, while a quantum circuit prepares
the state |ψi〉 given parameter set θgi . In this way, we will be able to output
a probabilistic mixture of the quantum state by sampling from {Pi} and then
prepare the associated state. This obviates the possible double exponential
overhead in learning the full quantum channel that transform a fixed initial
state to the desired mixed state, as illustrated in Fig. 2.4.
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(a) EQ-GAN for pure state (b) EQ-GAN for mixed state

Figure 2.4: Diagram for EQ-GAN architecture based on quantum swap tests.
(a) EQ-GAN for learning how to generate pure-state quantum data. (b) EQ-
GAN for learning how to generate mixed-state quantum data. The true input
data is represented by σ, and the fake input data ρ is prepared by a unitary
circuit Uθg . The discriminator QNN realizes a unitary transformation rep-
resented by U~θa jointly on the true data, fake data and the ancillary qubit.
Measurement on the ancillary qubit is used for the cost function similarly to
the EQ-GAN defined above.

2.5 Learning to suppress errors

We now show the improved robustness of an EQ-GAN against gate errors com-
pared to a more straightforward supervised learning approach to learning an
unknown quantum state. Rather than adversarially training the parameter-
ized swap test used as a discriminator in EQ-GAN, a perfect swap test could
be applied every iteration by a frozen discriminator. This may also cause the
generator circuit to converge to the true data, since the swap test ensures a
unique global optimum.

However, in the presence of gate errors in the swap test, this unique global
optimum will be offset from the true data. Since EQ-GAN is agnostic to the
precise parameterization of a perfect swap test, an appropriate ansatz can
learn to correct coherent errors observed on near-term quantum hardware. In
particular, the gate parameters such as conditional Z phase, single qubit Z
phase and swap angles in two-qubit entangling gate can drift and oscillate
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over the time scale of O(10) minutes [16, 17]. Such unknown systematic and
time-dependent coherent errors provides significant challenges for applications
in quantum machine learning where gradient computation and update requires
many measurements.

The large deviations in single-qubit and two-qubit Z rotation angles can largely
be mitigated by including additional single-qubit Z phase compensations. The
effectiveness and importance of such systematic error mitigation is recently
demonstrated in the success of achieving the-state-of-art accuracy in energy
estimation for fermionic molecules [18]. In learning the discriminator circuit
that is closest to a true swap test, the adversarial learning of EQ-GAN provides
a useful paradigm that may be broadly applicable to improving the fidelity of
other near-term quantum algorithms.

Suppose the adversarial discriminator unitary is given by U(θd), where U(θopt
d )

corresponds to a perfect swap test in the absence of noise. Given a trace-
preserving completely positive noisy channel E , the discriminator is replaced
by a new unitary operation Ũ(θd). While a supervised approach would apply
an approximate swap test given by Ũ(θopt

d ), the adversarial swap test will
generically perform better if there exist parameters θ∗d such that ||Ũ(θ∗d) −
U(θopt

d )||2 < ||Ũ(θopt
d ) − U(θopt

d )||2. Because the discriminator defines the loss
landscape optimized by the generator, the ρ(θg) produced by EQ-GAN may
converge to a state closer to σ than possible by a supervised approach if the
parameterization of the noisy unitary Ũ is general enough to mitigate errors.

|0⟩
|0⟩

H H
H{

{ {
𝜎

𝜌 g)𝜃( U d)𝜃(

X√ Z√
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Z 𝜃5

Figure 2.5: EQ-GAN experiment for learning a single-qubit state. The dis-
criminator (U(θd) is constructed with free Z rotation angles to suppress CZ
gate errors, allowing the generator ρ(θg) to converge closer to the true data
state σ by varying X and Z rotation angles.
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As an example, we consider the task of learning the superposition 1√
2
(|0〉+ |1〉)

on a quantum device with noise (Fig. 2.5). The discriminator is defined by
a swap test with CZ gate providing the necessary two-qubit operation. To
learn to correct gate errors, however, the discriminator adversarially learns the
angles of single-qubit Z rotations insert directly after the CZ gate. Hence, the
EQ-GAN obtains a state overlap significantly better than that of the perfect
swap test (Fig. 2.6). Although both methods do not stay at the optimal point,
this is typical of noisy gradient measurements and minimax optimization:after
convergence to the Nash equilibrium, discretization can induce perturbations
while non-zero higher-order gradients lead the training to deviate from the
global optimum [19].

Extremal 
discriminator loss

Perfect SWAP

Figure 2.6: Comparison of EQ-GAN and a supervised learner (perfect swap
test) on a physical quantum device. We experimentally confirm that the EQ-
GAN converges to a higher state overlap by learning to correct such errors
with additional single-qubit rotations. The “converged” EQ-GAN (dashed line)
coincides with the iteration where the discriminator loss is minimized.

We report the average error after multiple runs of the EQ-GAN and supervised
learner on an experimental device (Table 2.1).
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QML model Minimum error in state fidelity
Supervised learner (2.4± 0.5)× 10−4

EQ-GAN (0.6± 0.2)× 10−4

Table 2.1: Comparison of EQ-GAN and a supervised learner (perfect swap
test) on a Sycamore quantum device. The error of the EQ-GAN (i.e.
1 − state fidelity) is significantly lower than that of the supervised learner,
demonstrating the successful adversarial training of an error-suppressed swap
test. Uncertainties show two standard deviations.

2.6 Training EQ-GAN

While the original QuGAN architecture is shown to oscillate indefinitely for
an example constructed in Fig. 2.1, we provide numerical experiments here to
demonstrate the successful convergence of the proposed EQ-GAN architecture.

We illustrate a subtlety in the oscillatory analysis presented above. Within
the GAN formalism, the generator and discriminator iteratively optimize a
given loss function. When the optimization is allowed to converge to an ex-
tremum of the loss function in the QuGAN architecture specifically, the result
is determined by a Helstrom measurement. It is for this case that indefinite
oscillation is shown; in the case of learning the state σ constructed above,
oscillation between states ρ and ρ′ result in a constant state overlap of 3/4.

However, the iterative optimization procedure to move towards the optimal
Helstrom measurement may be only partly completed, i.e. the generator and
discriminator are not allowed to extremize the loss function. With such a selec-
tion of hyperparameters, we observe that oscillation between states continues
(Fig. 2.7), leading to unstable training for the QuGAN architecture. In com-
parison, the same hyperparameters perform well for the EQ-GAN architecture,
which steadily approaches the true data state. Unstable training is difficult to
overcome even in classical GAN architectures [20], and thus advances in un-
derstanding how to prevent such non-convergence are consequential for both
quantum and classical machine learning.
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Figure 2.7: Comparison of QuGAN [10, 11] and EQ-GAN learning the state
given by Eq. 2.4. Full training denotes training the generator for 50 epochs
then the discriminator for 50 epochs each iteration; partial training denotes
only 1 epoch per iteration. The QuGAN remains more unstable than EQ-GAN
during training with either training configuration.

To help ensure stable training of the EQ-GAN architecture, we introduce a
training procedure that capitalizes on the fact that the discriminator must
converge to a swap test at the optimal Nash equilibrium. Rather than training
both the generator and discriminator from the beginning, we pre-train the EQ-
GAN in a supervised setting. In the first phase, the discriminator is frozen
with the parameters of a perfect swap test, although the unitary Ũ(θopt

d ) may
be an imperfect swap test; the generator is trained until the loss converges. In
the second phase of training, the discriminator is allowed to vary adversarially
against the generator, seeking the parameters θ∗d. In the context of gate errors,
this second phase may yield a unitary closer to a true swap test. The example
shown in Fig. 2.6 on a physical quantum devices is replicated in Fig. 2.8 here,
showing the two phases of training and the benefit of an adversarial swap test
in the presence of noise.
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Figure 2.8: Comparison of EQ-GAN and a supervised learner for a simulated
noise model. Normally distributed noise on single-qubit rotations are applied
with a systematic bias away from zero, causing the discriminator of the super-
vised learner to force convergence to the incorrect state.

We provide additional motivation for using adversarial learning in the noiseless
case. In particular, we construct an example for which supervised learning fails
and adversarial learning successfully generates the true data state.

Given the generator ansatz shown in Fig. 2.9, define the data state to have an-
gles α0 = β0 = π/2 for corresponding rotations Rx(α0), Rz(β0). The generator
then optimizes angles α, β towards achieving full state overlap. In general, the
gradient of the state overlap is π

4

√
2− 2 cos(2πα) cos(2πβ). By initializing the

generator with α = β = 0, the gradient and all higher derivatives of the over-
lap vanish. Since a noiseless supervised learning approach with a perfect swap
test can only evaluate the gradient of a state overlap measurement, gradient
descent will fail to converge to the correct values.

|0⟩
|0⟩

X√Z√ Z√Z 𝜃2X𝜃1

Figure 2.9: Generator and data circuit with a vanishing gradient given data
defined by X and Z rotations of π/2 and a generator initialized with zero
angles.
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On the other hand, by allowing the discriminator to change, the issue of a
vanishing gradient is circumvented and the generator learns the data state
(Fig. 2.10). For simplicity, we use the same discriminator architecture as that
used for suppressing errors. Parameters are optimized with vanilla stochastic
gradient descent. The EQ-GAN learning rate schedule is manually tuned, and
we verify that no selection of learning rate allows the supervised learner to
converge.
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Figure 2.10: Demonstration of a vanishing gradient for a supervised learner
and convergence for the EQ-GAN. While the supervised learner cannot be
trained by gradient descent, the EQ-GAN achieves a state overlap of 0.97.

2.7 Application to QRAM

Many quantum machine learning applications require a quantum random ac-
cess memory (QRAM) to load classical data in superposition [21]. More par-
ticularly, a set of classical data can be described by the empirical distribution
{Pi} over all possible input data i. Most quantum machine learning algorithms
require the conversion from {Pi} into a quantum state

∑
i

√
Pi |ψi〉, i.e. a su-

perposition of orthogonal basis states |ψi〉 representing each single classical
data entry with an amplitude proportional to the square root of the classical
probability Pi. Preparing such a superposition of an arbitrary set of n states
takes O(n) operations at best, which ruins the exponential speedup. Given a
suitable ansatz, we may use an EQ-GAN to learn a state approximately equiv-
alent to the superposition of data. To demonstrate a variational QRAM, we
consider a dataset of two peaks sampled from different Gaussian distributions
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(Fig. 2.11).

(a) Empirical PDF (b) Variational QRAM

Figure 2.11: Two-peak total dataset (sampled from normal distributions, N =
120) and variational QRAM of the training dataset (N = 60). The variational
QRAM is obtained by training an EQ-GAN to generate a state ρ with the
shallow peak ansatz to approximate an exact superposition of states σ. The
training and test datasets (each N = 60) are both balanced between the two
classes.

Exactly encoding the empirical probability density function requires a very
deep circuit and multiple-control rotations; similarly, preparing a Gaussian
distribution on a device with planar connectivity requires deep circuits. Hence,
we select shallow circuit ansatzes (Fig. 2.12) that generate concatenated ex-
ponential functions to approximate a symmetric peak [22]. Once trained to
approximate the empirical data distribution, the variational QRAM closely
reproduces the original dataset.
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Figure 2.12: Variational QRAM ansatzes for generating peaks by learning θi
parameters [22]. Class 0 corresponds to a centered peak, and Class 1 corre-
sponds to an offset peak.
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To use the native CZ two-qubit gate, we implement a rank-4 entangling gate
G given by

G(θ) =


1 0 0 0

0 e−iθ 0 0

0 0 e−iθ 0

0 0 0 1

 , (2.10)

which is decomposed as shown in Fig. 2.13.

= Z
Rx(  )𝜋

2 Rz(  )𝜋
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Figure 2.13: Decomposition of the two-qubit entangling gate G(θ) used in the
QNN ansatz (Eq. 2.10).

Due to the planar connectivity of a Sycamore quantum device, we implement
the QNN shown in Fig. 2.14 with a four-qubit data state. The QNN is trained
in two ways: it is either trained via sampling (shown one training example each
iteration, as in Ref. [23]) or via superposition (shown a superposition over an
entire class each iteration), where the superposition methodology does not
use an exact superposition of the training dataset. Instead, it uses a shallow
approximation obtained by pre-training an EQ-GAN. We prepare a symmetric
concatenation of exponential functions to approximate a peak with minimal
circuit depth. In comparison, preparing a Gaussian distribution over n qubits
requires (n − 1)-controlled rotations, which must be decomposed into 2n−1

CZ gates to use the native gate basis (see Fig. 10 of [22]); additional swap
operations are required to prepare the state on a planar architecture. Given
the empirical dataset, we may also prepare an exact superposition of the data
following a state preparation procedure such as that proposed in Ref. [24].
However, this also requires n-controlled rotations, leading to an exponential
dependence in the number of qubits. All three versions of the QRAM are
shown in Fig. 2.15.
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Figure 2.14: Quantum neural network architecture (left) and its corresponding
layout on the Sycamore device (right). A four-qubit data state is constructed
with the circuits shown in Fig. 2.12 and placed in the |data〉 state on the blue
qubits. A readout qubit (orange) performs parameterized two-qubit interac-
tions shown in Fig. 2.13.
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Figure 2.15: QRAM ansatzes for n = 4 qubits in planar connectivity with (a)
exponential peaks (3 two-qubit gates), (b) Gaussian distribution (21 two-qubit
gates), and (c) exact superposition (57 two-qubit gates). We adopt ansatz (a)
because circuit depth scales polynomially for a QRAM with n qubits, while
(b) and (c) scale exponentially with n.

To ensure a fair comparison, we permit an equal number of queries to the
quantum device. Consequently, for N = 60 examples with 30 examples per
class, training via sampling is performed for 1 epoch with 60 corresponding
to 60 iterations performed on the quantum device. However, training via
superposition evaluates the superposition of each class 30 times (since there
are two classes), also accessing the quantum device for 60 iterations.

Additionally, Bayesian optimization is used to tune different learning rates for
the sampling and superposition methodologies. In simulation, we optimize over
Adam learning rates from 10−4 to 10−1 with 10 random parameter tries and
40 evaluations of the Gaussian process estimator. For each parameter query,
the output of the QNN is averaged over 10 trials to reduce any statistical
fluctuations. QNNs using the final learning rates (10−3.93 for sampling and



39

10−1.83 for superposition) are then evaluated over 50 trials to obtain the final
performance reported in Table 2.2 with computed standard deviations.

Training data Accuracy
Exact sampling 53%± 6%
Variational QRAM 69%± 2%

Table 2.2: Test accuracy (N = 60) of a quantum neural network (QNN) either
trained on the all samples of the training dataset (N = 60) for a single epoch
or trained on the variational QRAM for an equal number of circuit evaluations.
Although the QNN trained on the variational QRAM did not have direct access
to the original dataset, accuracy is evaluated on the raw dataset. Uncertainties
show two standard deviations.

As a proof of principle for using such QRAM in a quantum machine learn-
ing context, we train a quantum neural network [23] and compute hinge loss
either by considering each data entry individually (encoded as a quantum cir-
cuit) or by considering each class individually (encoded as a superposition in
variational QRAM). Given the same number of circuit evaluations to com-
pute gradients, the superposition converges to a better accuracy at the end of
training despite using an approximate distribution (Table 2.2).

2.8 Discussion

Motivated by limitations of preexisting quantum GAN architectures in the
literature, we propose the EQ-GAN architecture to overcome issues of non-
convexity and mode collapse. We adopt a parameterization of Hilbert-Schmidt
norm as the cost function as oppose to trace distance based on the optimality
of Hilbert-Scmidt norm in state-certification problems. Similar advantages of
Hilbert-Schmidt norm has been shown in quantum embedding design of quan-
tum kernel learning [25]. Other approaches to a quantum GAN may improve a
quantum GAN’s convergence properties — notably, recent work suggests that
certain cost functions such as the Wasserstein metric may provide more robust
convergence [12]. However, we find that the EQ-GAN’s shallow discriminator
is effective at suppressing device errors, making the EQ-GAN particularly rele-
vant for near-term applications of quantum computing. Moreover, we demon-
strate a proof-of-concept for learning a variational QRAM with the EQ-GAN,
including an application in the broader context of quantum machine learning
for classifying classical dataset.
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C h a p t e r 3

NEAR-TERM QUANTUM SIMULATION OF WORMHOLE
TELEPORTATION

1A. Zlokapa, J. Lykken, S. Davis, D. Jafferis, and M. Spiropulu, Near-term
quantum simulation of wormhole teleportation, in preparation.

2A. Zlokapa, R. Babbush, and H. Neven, Shallow variational circuits for time
evolution, in preparation.

3.1 Introduction

While quantum computers have been widely suggested as a tool to explore
quantum systems through simulation beyond the classical regime [1, 2], it
may be possible to also probe gravitational theories [3, 4]. In particular,
traversable wormholes may arise from the holographic principle realized in the
AdS/CFT correspondence [5] despite violating the notion from general rela-
tivity that a signal cannot be sent more quickly inside instead of outside a
wormhole [6]. The thermofield double state is an entangled pure state be-
tween two copies of any quantum mechanical system such that each of the
two copies is in the thermal density matrix with given temperature 1/β [7].
Considering gravity with AdS-like boundary conditions as the dual to a quan-
tum system, the thermofield double state between two boundary CFTs is dual
to an AdS-Schwarzschild wormhole [6]. By coupling the two quantum sys-
tems with an interaction, it is possible to send information from one system
to the other [8]. This perturbative coupling between either side of the eternal
AdS black hole allows the system to be probed behind the horizon without
issues of bulk locality by examining the experience of the information that
passes through the wormhole. Hence, the traversable wormhole provides a
mechanism to understand the ER=EPR relation between entanglement and
geometry [9]. Although the generality of the conjecture remains unclear, it
has been suggested that quantum computers can aid exploration of the topic
through simulations of quantum gravity [10].

We consider a recently proposed protocol [11] to realize wormhole teleporta-
tion with a Majorana SYK model [12, 13]. Two black holes, L and R, are
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prepared in the thermofield double state, and a qubit is teleported from L to
R by traveling through the dual wormhole. Rather than simply measuring
the teleportation fidelity, the system must be characterized in terms of the
causal propagator to distinguish it from other teleportation mechanisms: the
key feature of a traversable wormhole is the interaction bringing the left and
right sides of the black hole into causal contact. Achieving wormhole telepor-
tation is thus more difficult than using random unitary dynamics to achieve
teleportation [14], which experiences time inversion of transmitted quantum
information. The work of Gao and Jafferis [11] provides a concrete teleporta-
tion protocol amenable to implementation on a quantum computer using an
N -qubit fermionic system, leading to perfect teleportation in the infinite N
limit. While understanding the protocol for finite N is difficult via classical
simulation, the large Hilbert space of a quantum computer makes quantum
simulation a better tool to probe such wormhole teleportation.

In this work, we propose various procedures for realizing the wormhole tele-
portation protocol on a near-term quantum device. We study a low-rank SYK
model built with Dirac fermions [15, 16] to improve the efficiency of Trot-
terization to perform time evolution. Additionally, variational methods for
learning approximate quantum circuits are used to aid the simulatino. Be-
sides preparing the thermofield double state as the ground state of a known
Hamiltonian using a variational quantum eigensolver[17, 18], we propose a
new approach to actively learn a shallow circuit that performs time evolu-
tion with high fidelity. The method of compressed Trotterization promises a
smooth optimization landscape that avoids barren plateaus associated with
variational quantum circuits [19] and is shown to be applicable across differ-
ent Hamiltonian systems. Finally, we develop efficient classical simulations
to provide estimates of quantum circuit sizes required to observe wormhole
teleportation with finite N , suggesting that it may be achievable in the noisy
intermediate-scale quantum (NISQ) era of quantum computing [20].

3.2 Wormhole teleportation

We describe the original wormhole teleportation protocol proposed by Gao and
Jafferis [11] using the Majorana SYK model. Briefly, two SYK models of N
fermions each are entangled in a thermofield double state between two CFTs
(i.e. a two-sided eternal black hole in the AdS picture). At time t = −t0, a
qubit is swapped into the left system: this is the message being teleported.
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By t = 0, the chaotic system has fully scrambled the information across the
system. At this point in time, we apply a coupling term between the left and
right sides of the wormhole; if suitably chosen, this generates negative null
energy in the bulk. When the message hits the shockwave, it receives a time
advance instead of a time delay, causing the qubit to shift downwards in time
instead of being irretrievably lost in the singularity. At time t = t1, we can
swap out the qubit from the right side of the wormhole, recovering the original
message.

SWAP
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U(t0)
eiµV

U(t1)

SWAP

P Q L R T

|tfd⟩
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Figure 3.1: The wormhole teleportation protocol shown in the quantum in-
formation picture (left, quantum circuit) and gravity picture (right, Penrose
diagram). The unitary U(t) corresponds to time evolution under the left and
right SYK models, i.e. U(t) = e−i(HL+HR)t. Without the coupling eiµV between
the left and right systems at t = 0 (green), no shockwave would occur and the
message would continue to propagate in a straight line to enter the singularity.

As shown in Fig. 3.1, we can formally write down the wormhole teleporta-
tion protocol in the quantum information picture using quantum registers
P,Q, L,R, and T . The teleportation shall send a message from Q to T across
the thermofield double state between systems L and R, while P will be used
as a reference to verify the teleportation: we shall seek to entangle P and T
at the end of the protocol. Define the left and right Hamiltonians HL and HR

with an even number N of Majorana fermions ψ on each side according to the
Majorana SYK model with q couplings, i.e.

HL,R = iq/2
∑

1≤j1<···<jq≤N

JL,Rj1...jq
ψj1L,R . . . ψ

jq
L,R, (3.1)
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where the couplings are chosen from a Gaussian distribution with mean zero
and variance 〈(

JL,Rj1...jq

)2
〉

=
J2(q − 1)!

N q−1
. (3.2)

To simulate the protocol on a quantum device, we perform the following, where
times t0 ≈ t1 are chosen to be roughly equal to the scrambling time.

1. Prepare the thermofield double state |TFD〉 = 1√
Z

∑
n e
−βEn/2 |n〉L ⊗

|n〉R, where |n〉L,R are the eigenstates of the left and right systems.

2. Prepare a maximally entangled state |φ〉 = 1√
2
(|00〉+ |11〉) between reg-

isters P and Q.

3. At time t = −t0, apply a SWAP operation between Q and L to insert
the qubit in the wormhole.

4. At time t = 0, apply an interaction eiµV with V = 1
N

∑
i ψ

i
Lψ

i
R between

the left and right systems. Note that to send a negative energy shockwave
(Fig. 3.1), the sign of µ must be appropriately chosen.

5. At time t = t1, apply a SWAP operation between R and T to extract
the qubit from the wormhole.

At the end of the protocol, the register T will be maximally entangled with
the register Q.

3.3 Dirac SYK model

In the original protocol, the system of N Majorana fermions in each SYK
model are paired up into Dirac fermions and encoded within N/2 qubits. To
be more conducive to implementation on quantum hardware and encourage
use of a shallow Trotterization via a low-rank approximation (Sec. 3.4), we
modify the Majorana SYK system described above and apply the teleportation
protocol to a Dirac SYK system instead [15]. Hence, we replace Eq. 3.1 with
the Hamiltonian given by

H =
1

(2N)3/2

N∑
i,j,k,l=1

Jij;klc
†
ic
†
jckcl, (3.3)
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where the Dirac fermions obey

cicj + cjci = 0, cic
†
j + c†jci = δij, (3.4)

and complex Gaussian-distributed couplings are chosen with zero mean such
that

Jij;kl = −Jji;kl = −Jij;lk = J∗kl;ij, |Jij;kl|2 = J2. (3.5)

In the large N limit, the spectrum should be distributed as a Gaussian due
to the selection of Gaussian couplings [21]. To achieve successful wormhole
teleportation, we expect the spectrum to be approximately continuous between
energy levels. This provides a threshold value on N , suggesting that at least
N ≈ 10 is required (Fig. 3.2).

1.5 1.0 0.5 0.0 0.5 1.0 1.5
E/N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
eq

ue
nc

y

N = 6
N = 8
N = 10
N = 12

Figure 3.2: Spectrum of the Dirac SYK model for random instances of coeffi-
cients. A single SYK model must have an approximately continuous spectrum
for wormhole teleportation to occur.

3.4 Low-rank SYK

To successfully implement wormhole teleportation on near-term quantum hard-
ware, the key obstacle is fidelity: increasing the width (i.e. number of qubits)
or depth of a quantum circuit causes errors to compound. Under a depolar-
ization error model, the fidelity that decays like a power law with the addition
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of gates and qubits. For a gate set G, gate errors eg, qubit set Q, and qubit
errors (measurement and state preparation) eq, the fidelity of quantum hard-
ware is well-fitted by F =

∏
g∈G(1−eg)

∏
q∈Q(1−eq) [22]. Although preparing

the thermofield double state may require a deep circuit, variational quantum
eigensolvers have seen success with hardware-efficient ansatzes [17], suggest-
ing that the thermofield double state can be prepared with a shallow circuit.
Hence, the primary difficulty lies in performing the time evolution e−i(HL+HR)t.

To address this issue, we propose using a low-rank SYK model. In particular,
we may factorize an SYK Hamiltonian H into the product of two-body terms.
To satisfy the commutation relations of Eq. 3.5, we observe that J is Hermitian
to support commutation relations. Hence, we can diagonalize the tensor J with
indices i, j, k, l into an N2×N2 supermatrix W with composite indices ij and
kl such that W = PDP †. Note that W is not full rank, but rather has rank
L = O(N) < N/2 with limN→∞ L = N/2. Letting λk be the eigenvalues and
vk ∈ CN2 be the eigenvectors, define coefficients gpq,k that correspond to the
composite index pq in the kth eigenvector. The SYK Hamiltonian can then
be decomposed into

H =
L∑
k=1

λkf
†(k)f(k), f(k) =

N∑
p,q=1

gpq,kcpcq. (3.6)

Since the coefficients of the original SYK model are random, numerical exper-
iments can instead randomly select the coefficients in this factorized Hamilto-
nian. Taking a single term f †f , we recover the original Dirac SYK model form
to determine the appropriate distribution over gpq,k. Letting f =

∑N
i,j=1 gijcicj,

we find that the simple case of H = f †f gives

H =
N∑

i,j,k,l=1

g∗jigklc
†
ic
†
jckcl

=
∑

i,j,k,l=1

Jij;klc
†
ic
†
jckcl.

Since Jij;kl are normally distributed, the product of random variables g∗jigkl is
normally distributed. Moreover, the condition Jij;kl = −Jji;kl = −Jij;lk = J∗kl;ij
is equivalent to

g∗ijgkl = −g∗jigkl
g∗jiglk = −g∗jigkl
g∗lkgij = g∗jigkl.



49

The first two conditions imply that gij = −gji for all i, j. Entering this into
the final condition, we have g∗lkgij = g∗klgji = g∗jigkl. Since we require g∗klgji to
be real for arbitrary i, j, k, l, we use real coefficients.

To sample the coefficients gij such that gijgkl is normally distributed, we sample
i.i.d. from the distribution over random variables ueX where u is a Rademacher
random variable and X is given by [23]

X =
log 2

4
−G1/2,0 −

[
∞∑
i=1

G1/2,i

2i+ 1
− 1

4
log

(
1 +

1

i

)]
(3.7)

where G1/2,i = Gamma(1/2, 1) are random variables labeled by i. This is
numerically verified to produce a Gaussian distribution of coefficients when
returned to the original SYK model form (Eq. 3.3).

The Dirac SYK model is now approximated in the form of an L-rank Hamilto-
nian given by Eq. 3.6, which may be more amenable to decompose into Givens
rotations circuits Uk of linear depth and linear connectivity [24]

H =
L∑
k=1

Uk

(
N∑
p=1

hp,kc
†
pcp

)†( N∑
p=1

hp,kc
†
pcp

)
U †k . (3.8)

Since the Hamiltonian is now diagonalized, a single Trotter step has commuting
terms that can help reduce circuit depth, possibly using a SWAP network [25].

Although using a low-rank Hamiltonian may improve circuit depth and require
fewer gates, it may require a wider circuit due to a worsened spectrum. While
Fig. 3.2 suggested that N ≈ 10 Dirac fermions would be enough to generate a
sufficiently dense spectrum for wormhole teleportation, the low-rank spectrum
is less Gaussian and may require N ≈ 12 (Fig. 3.3).
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Figure 3.3: Spectrum of the Dirac SYKmodel with rank 2 for random instances
of coefficients.

3.5 Shallow circuit time evolution

Compressed Trotterization algorithm

To further reduce the circuit depth of the time evolution operation e−iHt,
we explore the possibility of using machine learning methods. In particular,
learning a variational quantum circuit that time evolves one particular state to
high fidelity may enable the use of shallower time evolution circuits. Although
preparing a quantum circuit that performs wormhole teleportation on generic
input messages may be more helpful to probe quantum gravity theories, a
specialized shallow circuit may be more effective for near-term demonstrations
of wormhole teleportation. In this section, we propose a method that applies
generically to Hamiltonians beyond the SYK model, and we provide examples
for a Fermi-Hubbard model and jellium model.

Using a parameterized ansatz V (θ), we may iteratively learn the full time
evolution operator

U(T ) ≈
N∏
j=1

exp

(
−iH(jT/N)

T

N

)
(3.9)

by first learning shallow approximations to U(T/N), U(2T/N), . . . for some
large N . This ensures that the optimization path is towards the true global
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minimum, while only providing small corrections to the existing approxima-
tion. Hence, we find parameters θk where

θ1 = argmin
θ
||e−iH(T/n)T/N − V (θ)||

θ2 = argmin
θ
||e−iH(2T/N)T/NV (θ1)− V (θ)||

...

θN = argmin
θ
||e−iH(T )(T/N)V (θN−1)− V (θ)||

and the notation ||A − B|| denotes a suitable norm (such as trace norm or
operator norm) of A − B. The final circuit V (θN) would then correspond to
an approximation of U(T ).

Note that we can minimize the trace norm by measuring over a complete basis
for an n-qubit system,

θk+1 = argmax
θ

2n∑
j=1

〈j|
(
e−iH(kT/N)(T/N)V (θk)

)†
V (θk+1) |j〉 (3.10)

where {|j〉} are orthogonal. However, approximating a full unitary would likely
require exponential time and result in a deeper circuit; hence, we proceed with
preparing time evolution for a single state. We only minimize the inner product
with the true time-evolved state, which can be evaluated with a swap test

θk+1 = argmax
θ

〈x(0)|
(
e−iH(kT/N)(T/N)V (θk)

)†
V (θk+1) |x(0)〉 (3.11)

as illustrated in Fig. 3.4.

Figure 3.4: Schematic for learning a shallow approximation to a Trotterization,
where the blue shaded region is optimized to maximize the value of the swap
test. Left: proposed method, where approximations V (θk) are learned by
iteratively adding the kth Trotter step e−iHt/n. Right: naive method, where the
approximation is learned with by swapping against the entire time evolution
circuit, requiring a much deeper circuit (and hence more noise).

Hence, the optimization method ensures that only shallow circuits are run,
accessing an approximation of a circuit with many Trotter steps while only
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evaluating few Trotter steps in the physical realization. As an ansatz for the
variational circuit V (θ), we use a single Trotter step but with each gate fully
parameterized. By allowing increased expressibility within the Trotter step
and removing constraints of equal rotations across different gates, we hope to
extend the set of states reachable by the variational ansatz.

While optimization of many variational quantum circuits are subject to bar-
ren plateaus [19], the structure of the proposed time evolution learner ensures
a smooth training landscape. Barren plateaus are characterized by poor di-
rectionality encoded in the expected gradient of random circuits (formalized
by Levy’s lemma); however, non-random selections such as those close to the
identity are shown to produce a stronger gradient. This behavior is empirically
seen in other variational optimization tasks, where the initialization of a cir-
cuit ansatz with identity blocks provides a strong gradient in the beginning of
optimization that vanishes as the procedure moves away from the identity [26].

In the proposed approach, we append a single Trotter step over a small
slice of time (i.e. T/N is small for large N) to the previous fit of V (θk) ≈
e−iH(kt/N)(T/N). This encourages the successful initialization of parameters θk+1

to ensure that
(
e−iH(kT/N)(T/N)V (θk)

)†
V (θk+1) is close to the identity at the

beginning of the next iteration’s optimization. That is, sufficiently large N
suggests that each successive θk+1 will only be a small perturbation away from
θk, and thus the entire optimization problem (step by step) will always remain
near the identity.

Numerical experiments

As an example to illustrate the applicability of this technique beyond the SYK
model, we consider two systems: a Fermi-Hubbard approximation of 20 Trotter
steps and a jellium system approximation of 16 Trotter steps, both compressed
into a circuit of depth equal to a single Trotter step.

We prepare a 2×2 (8-qubit) Fermi-Hubbard Hamiltonian with arbitrarily cho-
sen parameters (tunneling amplitude, Coulomb potential, chemical potential,
magnetic field) given by (1, 4, 1, 1). Optimization of the time evolution of an
initial state |x(0)〉 = X1X2X5X6 |0〉 is performed following the above approach
(Fig. 3.5). While a single Trotter step yields a fidelity of 2% at t = 1, the ap-
proximation maintains a fidelity of 85% with the same-depth circuit due to
approximating 20 Trotter steps.



53

Figure 3.5: Fidelity of an eight-qubit Fermi-Hubbard model simulation over
time. A single Trotter step is compared to learned time evolution, which has
the same circuit as a single Trotter step but learns gate parameters to compress
20 Trotter steps.

Similarly, a smaller jellium system with two electrons on a 2× 2 grid is bench-
marked against true Trotterization. We include a noisy simulation with de-
ploarizing noise to emphasize the additional advantages of having a shallow
time evolution approximation (Fig. 3.6). While compressing 16 Trotter steps
into a shallow circuit can already yield improvements over one and two Trotter
steps, the advantage is further increased when noise is considered due to the
lower fidelity of deeper Trotterizations. Although not shown in the figure, the
fidelity of the approximate jellium time evolution remains above 90% through
t ≈ 50.

Figure 3.6: Fidelity of a four-qubit jellium Hamiltonian over time without
noise (left) and with 0.5% depolarizing noise (right). Circuits with one and
two Trotter steps are compared to learned time evolution, which compresses
16 Trotter steps into a circuit with the depth of one Trotter step.
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3.6 Classical simulation of wormhole behavior

To view teleportation through the wormhole, we check two quantities: the
mutual information between P and T , and the left-right causal propagator
K. For both of these quantities, we expect an asymmetry in the sign of µ
for the interaction eiµV , since only one sign of µ will cause a negative energy
shockwave.

The mutual information IPT is defined by

IPT = S(P ) + S(T )− S(PT ), (3.12)

where S indicates von Neumann entropy. In perfect teleportation, IPT =

2 log 2. Teleportation can occur without going through the wormhole: in the
fully scrambled regime, the unitary eiHt is equivalent to a random unitary,
causing signals to appear on the right side of system in reverse time order [11].
However, such scrambling is symmetric in µ, allowing the wormhole telepor-
tation to be identified by checking for the asymmetry in µ.

In classical circuit simulations, memory (i.e. circuit width) provides the largest
hardware constraint. Performing a Jordan-Wigner transformation to encode
the Dirac fermions, we have creation operators of the form 1

2
(X − iY ) and an-

nihilation operators of the form 1
2
(X + iY ). For the nth fermion, we prepend

Z⊗(n−1) to the above creation/annihilation operators. Hence, a system of 2N

fermions (N on the left and N on the right) requires 22N qubits; including
the registers P,Q, and T , we have a total of 22N+3 qubits for the telepor-
tation protocol. Storing a time evolution matrix of the form e−iHt where
t ≈ tscramble over the entire system, the matrix will be approximately a ran-
dom unitary and thus dense. Hence, the memory required (taking a typical
128-bit encoding for complex numbers) reaches 64 GB at n ≈ 6. Counting
overhead on the diagonalization to perform the exponentiation (which uses a
Cholesky decompomsition with running time O(26N)), numerical simulations
with reasonable performance reach around N ≈ 5, which falls short of the es-
timated SYK models required to have an approximately continuous spectrum
(Fig. 3.2). Nevertheless, even for a teleportation protocol evaluated at N = 5,
some amount of asymmetry in µ is observed at |µ| ≈ 5 (Fig. 3.7).
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Figure 3.7: Mutual information of the teleportation protocol (left) and the
asymmetry of mutual information between positive and negative µ (right).
The time t0 = t1 = 0.3 is chosen to be approximately equal to the scrambling
time; inverse temperature is β = 10. Error bars show one standard deviation
across random instances of the Dirac SYK model.

The periodicity in µ is expected, as seen by the left-right causal propagator K
from the Majorana SYK teleportation [11]. From considering the density ma-
trix of the system under the teleportation protocol, the OTOC with Majorana
fermions ψL,R defined by

K = 〈{ψL(−t0), e−iµV ψR(t1)eiµV }〉 (3.13)

= Im

− e−iµ/(Nq)ω2/q

J2/q
[
coshω(t0 − t1)− J(e−iµ/N−1)

ω
sinhω(t1 − iβ/2) sinhωt0

]2/q


(3.14)

appears in the mutual information as

IPT =
1

4
[(K − 1)2 log(K − 1)2 + (K + 1)2 log(K + 1)2 + 2(1−K2) log

(
1−K2

)
],

(3.15)

which is close to maximal whenK approaches±1. Here, the interaction is given
by V = 1

N

∑
j ψ

j
Lψ

j
R and ω is an integral constant. Since K has dependence

like eiµ, we expect periodicity in µ for the mutual information. In wormhole
teleportation, a single period of Fig. 3.7 on the left should have asymmetry in
µ; this asymmetry will flip sign as the next half-periods are added on the right
and left, consistent with Fig. 3.7 on the right.

Note that although we numerically compute the Dirac SYK model, the behav-
ior is largely expected to be the same, since Majorana fermions can be coupled
into Dirac fermions with c = ψ1 + iψ2 and thus the Dirac SYK corresponds
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to a special selection of coefficients in the Majorana SYK model. In Eq. 3.13,
wormhole teleportation appears as a peak in K as a function of t = t0 = t1,
corresponding to the maximization of mutual information. Moreover, for fixed
µ, examining the denominator of Eq. 3.13 suggests that the peak should move
to the right with larger N (Fig. 3.8).
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Figure 3.8: Causal propagator K(t0, t1) for t0 = t1 ≈ tscramble on the Majorana
SYK. At larger times (not shown), the propagator asymptotically reaches K ≈
0.

To examine the causal propagator in the Dirac SYK model for larger N with
a continuous spectrum, we must modify our approach to coupling the left
and right systems. As shown in Fig. 3.1, the left and right systems undergo
independent time evolution; the only unitary across the entire system is eiµV .
In the case of the Dirac SYK, we take interaction V = i

N

∑
j(c

j
L)†cjR + cjL(cjR)†.

Applying the Jordan-Wigner transformation described above, the unitary eiµV

is an exponential of a sum of single-qubit Pauli operations. Expanding into a
series for small µ, this is equivalent to a Clifford circuit, which can be efficiently
simulated classically in polynomial time and space by the Gottesman-Knill
theorem [27]. Hence, only arbitrary unitaries e−iHLt, e−iHRt over half of the
qubits have exponential cost.

To take advantage of this, we prepare consecutive qubits corresponding to the
left SYK model, and a similar register for the right SYK model. For the Dirac
SYK, evaluating commutations relates the SYK model coefficients by

(Jij;klc
†
ic
†
jckcl)L → (Jij;klc

†
l c
†
kcjci)R. (3.16)

Each of the e−iHLt, e−iHRt time evolution operators can be prepared individu-
ally, then a sparse matrix with a tensor product to the identity gives the full
operator on the system.
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The last component that must avoid 22N memory is the preparation of the
thermofield double state. In the Majorana SYK case, the thermofield double
state is given by

|TFD〉 =
1√
Z
e−β(HL+HR)/4 |I〉 , (3.17)

where |I〉 is the maximally entangled state of the left and right systems, i.e.
is the state annihilated by complex fermions

(ψjL + iψjR) |I〉 = 0 (3.18)

for all j. Applying this condition, we find that |I〉 is the ground state of the
interaction term V . This fact allows us to efficiently prepare the thermofield
double state under the Dirac SYK interaction V .

Finally, we can evaluate the causal propagator K in the Dirac SYK teleporta-
tion protocol, where

K(t0, t1) = 〈Re{aL(−t0), e−iµV a†R(t1)eiµV }〉. (3.19)

Expanding the anticommutator, the expectation over the thermofield double
state is directly computed at our expected teleportation location of |µ| = 5

(Fig. 3.9). Using the Clifford circuit expansion of eiµV and applying separate
time evolution operators to the left and right systems, the memory-efficient
simulation allows us to reach N = 7. Higher N can be stored in memory, but
the cost of matrix diagonalization becomes prohibitive.
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Figure 3.9: Causal propagator K(t0, t1) for t0 = t1 ≈ tscramble. At larger times
(not shown), the propagator oscillates at K ≈ 0.

With increasing N , a peak corresponding to wormhole teleportation appears,
and the peak moves to the right with larger N . Although we did not derive the
precise form of K(t0, t1) for the Dirac SYK, we obtain the expected qualitative
behavior from the Majorana causal propagator analysis (Fig. 3.8).
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3.7 Near-term quantum simulation

From classical simulation, it appears that a Dirac SYK model with N = O(10)

may be sufficient to observe wormhole teleportation. With two SYK models
and additional registers to swap in and out a qubit from the wormhole, this
corresponds to a quantum devices with O(25) qubits. We can now summarize
the wormhole teleportation protocol in terms of the near-term approaches
described above.

1. Consider the thermofield double state |TFD〉 = 1√
Z

∑
n e
−βEn/2 |n〉L ⊗

|n〉R, where |n〉L,R are the eigenstates of two low-rank Dirac SYK Hamil-
tonians. To prepare the state, optimize a hardware-efficient variational
quantum eigensolver [17] to the Hamiltonian H = HL +HR + iνV . The
ground state is approximately the thermofield double state with inverse
temperature O(1/ν) [18].

2. Prepare a maximally entangled state |φ〉 = 1√
2
(|00〉+ |11〉) between reg-

isters P and Q.

3. Time evolve to t = −t0. Each Trotter step is a shallow circuit due to
the low-rank SYK Hamiltonian. Compress successive Trotter steps into
a shallow variational circuit by iteratively learning circuit parameters for
each appended Trotter step.

4. Apply a SWAP operation between Q and L to insert the qubit in the
wormhole.

5. Time evolve to t = 0; once again, this requires the compression of shallow
Trotter steps into a shallow variational circuit.

6. At time t = 0, apply interaction eiµV between the left and right systems.
Since µV has size O(1), the interaction can be decomposed into a series
of single-qubit operators with constant scaling with N . Note that this
is also an advantageous feature for near-term error-corrected quantum
computing, since the resulting Clifford circuits have no T gates, which
are not transversal in many quantum error-correcting codes and are thus
costly to correct [28].

7. Time evolve to t = t1; once again, this requires the compression of
shallow Trotter steps into a shallow variational circuit.
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8. Apply a SWAP operation between R and T to extract the qubit from
the wormhole.

While investigating quantum gravity through protocols such as wormhole tele-
portation may shed light on the ER=EPR conjecture, the proposed approaches
may find wider applicability in many-body systems more generally. Notably,
many-body teleportation without gravitational dynamics has been observed
in chaotic spin chains and high-temperature SYK models [], providing fer-
tile ground for further exploration [3, 4, 11]. Moreover, methods such as
compressed Trotterization were shown above to be applicable to Hamilto-
nian simulation in general, promising relevance to a wider class of problems.
For instance, Fermi-Hubbard dynamics with 16 qubits have achieved reason-
able fidelity on experimental quantum hardware up to a depth of 55 Trotter
steps [29]. If each Trotter step encoded O(10) Trotter steps with a variational
approximation (as shown in in Sec. 3.5 with an 8-qubit Fermi-Hubbard model),
the simulation time could be significantly extended. Hence, while the inves-
tigation of quantum gravity on a quantum computer may ultimately provide
insight into the effects of quantum and stringy corrections to a semi-classical
gravity picture, our work is shown to be relevant for the broader advancement
of quantum simulation.
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A p p e n d i x A

THEORETICAL FRAMEWORK OF THE QUANTUM
NEURAL TANGENT KERNEL

A.1 Properties of the neural tangent kernel

Before providing proofs of the central results presented in the main text, we
provide preliminary definitions and results related to the neural tangent kernel
(NTK) that are used throughout the SM.

Framework

To provide the necessary notation for the NTK, we repeat the definitions and
data assumptions of the main text. Consider a binary classification dataset
S of n training examples {(xi, yi) ∈ Rd × {−1, 1}}ni=1, where there are O(n)

examples in each class. To parameterize our results, we must define the sepa-
rability between data examples.

Definition A.1.1 (Separability). The separability of data points xi,xj is
given by δij := 1− |xi · xj|.

We make the following standard assumption about separability across the
entire dataset [1–3] with an additional lower bound on the separability that is
commonly satisfied (see Sec. A.5 of the SM).

Assumption A.1.2. Assume that |xi ·xi| = 1 for all i. For some 0 < δ ≤ 1, let
|xi ·xj| ≤ 1− δ for all i, j ∈ [n] with i 6= j. Moreover, assume δ = Ω(1/poly n)

for a dataset of size n.

We will be considering a classification problem on the dataset with yi = ±1

associated with each xi. To ensure the dataset is well-behaved (i.e. does not
change class at an infinitesimal scale), we require an additional assumption.

Assumption A.1.3. Define the ε-neighborhood around a given data point x∗
sampled i.i.d. from the data distribution to be Nε = {i : x∗ ·xi ≥ 1−ε}. There
exists a constant ε such that with high probability yi = y∗ for all {yi : i ∈ Nε}.
Moreover, the distribution of xi within Nε is approximately uniform.
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Finally, for the neural network with activation function σ, we require a nor-
malization constraint equivalent to applying batchnorm after every layer of
the neural network.

Assumption A.1.4. The activation function σ : R → R is normalized such
that

E
X∼N (0,1)

[σ(X)] = 0 and V
X∼N (0,1)

[σ(X)] = E
X∼N (0,1)

[σ2(X)] = 1. (A.1)

Following Agarwal et al. [4], we define the nonlinearity of the activation func-
tion and note the effect of normalization on the resulting constant.

Definition A.1.5 (Coefficient of nonlinearity). The coefficient of nonlinearity
of the activation function σ is defined to be µ := 1−

(
EX∼N (0, 1)[Xσ(X)]

)2.

Elements of the NTK

To write the elements of the NTK, we define the dual activation function σ̂

corresponding to the activation function σ [5].

Definition A.1.6. Consider data xi,xj ∈ Rd such that ||xi|| = ||xj|| = 1

and hence ρ = xi · xi ∈ [−1, 1]. Define the conjugate activation function
σ̂ : [−1, 1]→ [−1, 1] as follows:

σ̂(xi · xj) := Ew∼N (0, Id)[σ(w · xi)σ(w · xj)]. (A.2)

From Arora et al. [6], the elements of the NTK are given by

(KNTK)ij =
L+1∑
h=1

σ̂(h−1)(ρij)

(
L∏

h′=h

ˆ̇σ(σ̂(h′)(ρij))

)
(A.3)

for ρij = xi · xj. Throughout the text, we will use (KNTK)ij to denote the
ijth matrix element KNTK(xi,xj). Because Eq. A.3 only requires the inner
product xi ·xj, we will also define for convenience the function K̂NTK(xi ·xj) :=

KNTK(xi,xj).

For later use, we define a function B(L, δ, µ): for any µ ∈ (0, 1], δ ∈ (0, 1) and
a positive integer L, we let

B(L, δ, µ) :=
1

2

(
1− µ

2

)L−L0(δ,µ)

, where (A.4)

L0(δ, µ) := max

{⌈
log
(

1
2δ

)
log
(
1 + µ

2

)⌉ , 0

}
= O

(
log(1/δ)

µ

)
. (A.5)
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The theorems in the main text are given in terms of Lconv, which arises nat-
urally as the minimum depth for the neural network to converge by gradient
descent (see Sec. A.1 below). This minimum depth is given by

Lconv :=
8 log(n/δ)

µ
, (A.6)

which is related to L0(δ, µ) as follows.

Lemma A.1.1. For all µ, δ ∈ (0, 1] and n ≥ 2, we have that Lconv ≥ 2L0(δ, µ).

Proof. Since Lconv > 0, this is trivially satisfied if δ ≥ 1/2. For δ < 1/2, we
note that the derivative of Lconv/L0 with respect to δ is given by

∂

∂δ

Lconv

L0

=
4 log(2n) log(1 + µ/2)

δµ log2(2δ)
> 0, (A.7)

and thus evaluating the limiting case of δ → 0 is sufficient to bound Lconv/L0.
Since limδ→0 Lconv/L0 = 4 log(1+µ/2)

µ
> 1, we conclude that Lconv ≥ 2L0(δ, µ) for

all allowed parameter values.

Finally, we note some important properties of the conjugate activation function
(Def. A.1.6) from Daniely et al. [5] and Agarwal et al. [4].

Remark A.1.2. The following properties hold for an activation function nor-
malized under Assumption A.1.4, where h0, h1, . . . denote the Hermite polyno-
mials.

1. Let ai = Ez∼N (0,1)[σ(z)hi(z)]. Due to normalization of σ, a0 = 0 and∑∞
i=1 a

2
i = 1.

2. We have Hermite expansions σ(u) =
∑∞

i=1 aihi(u) and σ̂(ρ) =
∑∞

i=1 a
2
i ρ
i.

3. Due to normalization of σ, we have 0 < µ ≤ 1 and in particular µ =

1− a2
1.

4. If σ̇ denotes the derivative of σ, then ˆ̇σ = ˙̂σ.

NTK matrix element bounds

We will require bounds on the matrix elements of the NTK. The proof of an
upper bound may be found in Theorem 27 of Agarwal et al. [4], the result of
which we state here.
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Theorem A.1.3 (NTK element upper bound). Consider an NTK correspond-
ing to a neural network of depth L. The diagonal entries of KNTK are all equal
and given by (KNTK)ii =

ˆ̇σ(1)L+1−1
ˆ̇σ(1)−1

. Furthermore, if L ≥ 2L0(δ, µ), then∣∣∣∣ (KNTK)ij
(KNTK)11

∣∣∣∣ ≤ 2B(L/2, δij, µ), (A.8)

where |xi · xj| = 1− δij for i 6= j.

As a result of Lemma A.1.1, we observe that Theorem A.1.3 on the matrix
elements of the NTK is valid for all L ≥ Lconv. Moreover, we can simplify the
bound further.

Lemma A.1.4. If L ≥ Lconv, then we have the following bounds on (KNTK)ij

for i 6= j. If 0 < δij < 1/2 ∣∣∣∣ (KNTK)ij
(KNTK)11

∣∣∣∣ ≤ ( δ

δijn

)2

, (A.9)

while for 1/2 ≤ δij ≤ 1, ∣∣∣∣ (KNTK)ij
(KNTK)11

∣∣∣∣ ≤ ( δn
)2

. (A.10)

Proof. Since µ ∈ (0, 1], we find that for δij < 1/2

L0(δij, µ) = max




log
(

1
2δij

)
log
(
1 + µ

2

)
 , 0

 ≤ 5 log(1/δij)

2µ
, (A.11)

while for δij ≥ 1/2 we have L0(δij, µ) = 0. Accordingly, we can weaken the
bound on 2B(L/2, δ, µ) when the depth is set to L = αLconv ≥ 8 log(n/δ)

µ
, i.e.

α ≥ 1. Taking the more nontrivial case of δij < 1/2, we have

2B(L/2, δ, µ) =
(

1− µ

2

) 8α log(n/δ)
2µ

−
5 log(1/δij)

2µ

≤
(
δ

n

)−8α log(1−µ/2)/2µ(
1

δij

)−5 log(1−µ/2)/2µ

.

(A.12)

Since µ ∈ (0, 1], we can take limiting cases of the exponents and observe that
α = 1 places the loosest bound. This gives for δij < 1/2,

2B(L/2, δ, µ) ≤
(
δ

n

)2(
1

δij

)2

. (A.13)
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Repeating the analysis with L0 = 0 for δij ≥ 1/2, we have 2B(L/2, δ, µ) ≤(
δ
n

)2. Applying Theorem A.1.3 and noting that L0(δ, µ) ≥ L0(δij, µ) when
applying Lemma A.1.1, these results correspond to bounds on the NTK matrix
element.

Since δ = mini,j δij, we have the following corollary.

Corollary A.1.5 (Deep NTK upper bound). If L ≥ Lconv, then
∣∣∣ (KNTK)ij

(KNTK)11

∣∣∣ ≤
1
n2 for all i 6= j.

To show a lower bound, we must use some of the properties described in
Remark A.1.2. We begin with a few simple properties of the dual activation
function.

Lemma A.1.6. For any 0 < ξ < 1, the h-fold composition of the dual
activation function with coefficient of nonlinearity µ satisfies σ̂(h)(1 − ξ) ≥
(1− µ)h(1− ξ).

Proof. Let ρ = 1 − ξ > 0. In the expansion σ̂(ρ) =
∑∞

i=1 a
2
i ρ
i, each of the a2

i

coefficients are nonnegative and µ = 1 − a2
1. Hence, σ̂(ρ) ≥ a2

1ρ ≥ (1 − µ)ρ.
To bound σ̂(h)(ρ), we note that σ̂(σ̂(ρ)) ≥ σ̂(z) for any 0 < z ≤ σ̂(ρ), and thus
σ̂(h)(ρ) ≥ (1− µ)hρ.

Lemma A.1.7. For any 0 < ξ < 1, the derivative of the dual activation
function with coefficient of nonlinearity µ satisfies ˆ̇σ(1− ξ) ≥ 1− µ.

Proof. Let ρ = 1 − ξ > 0. Evaluating the derivative of the series given in
Remark A.1.2, we find ˆ̇σ(ρ) =

∑∞
i=1 ia

2
i ρ
i−1 ≥ a2

1 = 1 − µ. Thus, ˆ̇σ(1 − ξ) ≥
1− µ.

We can now apply the definition of the NTK to compute a lower bound on a
given matrix element.

Theorem A.1.8 (Deep NTK lower bound). Consider any xi,xj with separa-
bility δij such that xi · xj > 0. For an NTK of depth L = Lconv, we have

(KNTK)ij
(KNTK)11

≥ O(1) · δij
(

1− δ
n

)O(1)

. (A.14)
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Proof. Since xi · xj > 0 and the series expansion of Eq. A.3 has only positive
coefficients per Remark A.1.2, the NTK element will be positive. From The-
orem A.1.3, the diagonal of the NTK matrix is given by (KNTK)ii =

ˆ̇σ(1)L+1−1
ˆ̇σ(1)−1

where ˆ̇σ(1) > 1. Simplifying notation by letting ρ = xi · xj, we have

(KNTK)ij
(KNTK)11

=

∑L+1
h=1 σ̂

(h−1)(ρ)
(∏L

h′=h
ˆ̇σ(σ̂(h′)(ρ))

)
ˆ̇σ(1)L+1−1

ˆ̇σ(1)−1

(A.15)

≥
ˆ̇σ(1)− 1

ˆ̇σ(1)L+1 − 1
min

h∈[L+1]
(1− µ)h−1ρ

(
L∏

h′=h

(1− µ)

)
(A.16)

≥
ˆ̇σ(1)− 1

ˆ̇σ(1)L+1 − 1
(1− µ)Lρ. (A.17)

Taking L = Lconv = 8 log(n/δ)
µ

and using 0 < µ ≤ 1, this gives the lower bound

(KNTK)ij
(KNTK)11

≥ δij(ˆ̇σ(1)− 1) · (1− µ)8 log(n/δ)/µ

ˆ̇σ(1)8 log(n/δ)/µ · ˆ̇σ(1)− 1
(A.18)

≥ δij(ˆ̇σ(1)− 1) · (n/δ)8 log(1−µ)/µ

(n/δ)8ˆ̇σ(1)/µ · ˆ̇σ(1)− 1
(A.19)

≥ O(1) · δij
(
δ

n

)O(1)

, (A.20)

since µ and ˆ̇σ(1) are constants.

Gaussian-distributed output of the NTK

We briefly comment on the output distribution of a trained NTK in the limit
of t → ∞ (Lemma 1.1.1 of the main text). Consider a test data example
x∗ ∈ Rn, and let the corresponding evaluations of the kernel between x∗ and
the training set S be denoted by (kNTK)∗, (kcov)∗ ∈ Rn. Since the neural
network is initialized as a Gaussian distribution and the NTK describes an
affine transform, a neural network with linearized dynamics (i.e. in the wide
limit) will have Gaussian-distributed output. In particular, Corollary 1 of Lee
et al. [7] gives the mean and variance of the Gaussian output f∗ of the converged
NTK as t→∞:

E[f∗] = (kNTK)T∗K
−1
NTKy (A.21)

V[f∗] = Kcov(x∗,x∗) + (kNTK)T∗K
−1
NTKKcovK

−1
NTK(kNTK)∗

− ((kNTK)T∗K
−1
NTK(kcov)∗ + h.c.),

(A.22)

where h.c. denotes the Hermitian conjugate. Computing the output of a
trained wide neural network thus consists of computing these two quantities.
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Neural network depth for the convergence of the NTK

We now provide a more formal statement of Theorem 1.1.3 and, while the
result is standard, we outline the proof due the widespread usage of Lconv

throughout our work. Since Agarwal et al. [4] do not comment on L = Ω (Lconv)

specifically being a lower bound on the required neural network depth to
converge via gradient descent, we wish to justify that particular argument in
this section. As in our quantum algorithm, we assume a squared loss function
`(ŷ, y) = (ŷ − y)2 defines the empirical loss function over the neural network
parameterized by weights ~W :

L( ~W ) :=
1

n

n∑
i=1

`(f ~W (xi), yi). (A.23)

For smooth activation functions, we use a result of Lee et al. [7], reproduced
here directly from Agarwal et al. [4]:

Theorem A.1.9 (Convergence via gradient descent). Suppose that the acti-
vation σ and its derivative σ′ further satisfy the properties that there exists a
constant c, such that for all xi,xj

|σ(xi)|, |σ′(xi)|,
|σ′(xi)− σ′(xj)|
|xi − xj|

≤ c.

Then there exists a constant N (depending on L, n, δ) such that for width
m > N and setting the learning rate η = 2(λmin(KNTK)+λmax(KNTK))−1, with
high probability over the initialization the following is satisfied for gradient
descent for all t,

L( ~W (t)) ≤ e
−Ω

(
t

κ(KNTK)

)
L( ~W (0))

It thus suffices to show that the NTK is well-conditioned for L = Ω
(

log(n/δ)
µ

)
in order to show that L( ~W (t)) to converge to L( ~W (0)) via gradient descent.
This follows directly from the bounds placed on the maximum eigenvalue
(Lemma A.2.1) and minimum eigenvalue (Lemma A.2.2). Since increasing
L only increases the minimum eigenvalue and decreases the maximum eigen-
value, we conclude that L = Ω

(
log(n/δ)

µ

)
= Ω(Lconv) is a lower bound on the

necessary neural network depth. Throughout this paper, we will apply this re-
sulting depth to demonstrate the relevance of the regime for which a quantum
speedup is obtained.
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NTK normalization

We must determine the scaling of NTK matrix elements as the training set
size increases. Two intermediate results essential to the quantum algorithm
are provided, describing the behavior of ratios between NTK elements and a
normalization factor that will be used for post-selection of quantum states.

Lemma A.1.10. Given constants ε, ε′ such that 0 < ε′ < ε < 1, the ratio
of neural tangent kernels r = K̂NTK(1 − ε)/K̂NTK(1 − ε′) = Ω(1/poly L) for
L ≥ Lconv. In particular, if L = Lconv, then r = Ω(1/polylog n).

Proof. When computing an NTK matrix element with Eq. A.3, the compo-
sition of dual activation functions (and its derivative) is positive since the
coefficients of each series are positive by Remark A.1.2. Hence, r is positive.
Using induction, it can be shown that σ̂(L)(1− ε′)/σ̂(L)(1− ε) = O(poly L) and
thus ˆ̇σ

(
σ̂(L)(1− ε′)

)
/ˆ̇σ
(
σ̂(L)(1− ε)

)
= O(poly L). By Eq. A.3, this implies a

valid base case for the inductive assumption that K̂NTK(1− ε′)/K̂NTK(1− ε) =

O(poly L). Checking L+ 1, we have

KL+1(1− ε′)
KL+1(1− ε)

=
ˆ̇σ(σ̂(L+1)(1− ε′))KL(1− ε′) + σ̂(L+1)(1− ε′)
ˆ̇σ(σ̂(L+1)(1− ε))KL(1− ε) + σ̂(L+1)(1− ε)

= O(poly L)

(A.24)

and thus K̂NTK(1− ε′)/K̂NTK(1− ε) = O(poly L). Taking the inverse for the
ratio r defined in the lemma statement, we have r = Ω(1/poly L). From our
data assumptions, δ = Ω(1/poly n), and thus taking L = 8 log(n/δ)/µ ensures
that r = Ω(1/polylog n).

Lemma A.1.10 ensures proper normalization of the quantum states to prevent
exponentially small state overlap. Since the result is critical to establishing
the exponential speedup, we also illustrate an empirical example of the scaling
from a dataset sampled uniformly on a 10-dimensional sphere (Fig. A.1). For
ease of visualization, the figure shows 1/r = K̂NTK(1− ε′)/K̂NTK(1− ε), which
scales more slowly than log n for various values of ε, ε′.

Finally, we find that the normalization coefficient required to create valid
quantum states.

Corollary A.1.11. Define the NTK ratio r(ρ) = K̂NTK(ρ)/K̂NTK(1 − ε′)

clipped to enforce −1 ≤ r ≤ 1. Define P =
∑n−1

i=0 r
2(ρi), where ρi = xi · x∗ for
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some x∗ sampled i.i.d. from the same distribution as xi. We have the bounds
P0 ≤ P ≤ n for some P0 = Ω(n/polylog(n)).

Proof. The upper bound trivially follows from the clipping of r. By Lemma A.1.10,
each term in P contributes Ω(1/polylog n) to the sum; note that when apply-
ing Lemma A.1.10 to negative ρ, the same scaling with L occurs. Summing
over n such terms, we find a lower bound of size Ω(n/polylog n).

102 104 106 108

n

0.00

0.05

0.10

0.15

0.20

K N
TK

(1
′ )/

K N
TK

(1
)  = 0.1

 = 0.2
 = 0.5
 = 0.9

Figure A.1: Illustration of Lemma A.1.10 showing 1/r = K̂NTK(1 −
ε′)/K̂NTK(1 − ε) vs. n. The NTK is computed at neural network depth
L = Lconv (with µ = 0.5) and the we fix ε′ = 0.01 while showing different
values of ε. The scaling is observed to be bounded by a logarithmic function
(i.e. a straight line), consistent with the lemma.

A.2 Computing the diagonal NTK approximation

To evaluate the expectation of the exact NTK, we must evaluate E[f∗] =

(kNTK)T∗K
−1
NTKy. To efficiently approximate such an infinitely wide neural net-

work, we wish to show that E[f∗] is well-approximated by a value proportional
to (kNTK)T∗ y, i.e. dropping the matrix inverse K−1

NTK. It is this simpler inner
product that we will evaluate using the quantum algorithm. As seen below,
further reduction in error is also enabled by inverting a sparse matrix K̃−1

NTK

rather than replacing it with the identity.

Eigenvalue bounds of the NTK

We require bounds on the maximum and minimum eigenvalues of the NTK in
order to compute error bounds on the NTK approximation evaluated by the
quantum algorithm.



71

Lemma A.2.1 (Maximum eigenvalue of NTK). If L ≥ Lconv, then λmax(KNTK) ≤
(KNTK)11(1 + 1/n).

Proof. As given by Theorem A.1.3, the diagonal elements of the NTK are
equal and larger than the off-diagonal elements, since Lemma A.1.1 guaran-
tees sufficient neural network depth Lconv ≥ 2L0(δ, µ). By the Gershgorin
circle theorem, λmax ≤ (KNTK)11[1 + (n− 1)(2B(L/2, δ, µ))]]. Applying Corol-
lary A.1.5, this gives an upper bound of λmax ≤ (KNTK)11[1 + (n − 1)/n2] ≤
(KNTK)11(1 + 1/n).

Lemma A.2.2 (Minimum eigenvalue of NTK). If L ≥ Lconv, then λmin(KNTK) ≥
(KNTK)11(1− 1/n).

Proof. Similarly to above, the Gershgorin circle theorem with Corollary A.1.5
gives λmin(KNTK) ≥ (KNTK)11[1− (n− 1)/n2] ≥ (KNTK)11(1− 1/n).

From these bounds, we conclude that the NTK is well-conditioned when rep-
resenting a neural network deep enough to converge, consistent with the result
of Agarwal et al. [4].

Corollary A.2.3 (Conditioning of NTK). The condition number 1 ≤ κ(KNTK) ≤
1+1/n
1−1/n

converges to unity as n→∞.

Efficient computation of an NTK element

In addition to the above properties of the NTK matrix, data separability
ensures that a single element of the NTK.

Lemma A.2.4 (Efficient NTK element computation). If L = Θ(Lconv) and
δ = Ω(1/poly n), then an element of the NTK can be computed in O(polylog (n)/µ)

time given the inner product between two data points.

Proof. By Eq. A.3, a polynomial number of operations in L are required to
evaluate the NTK between two data points. Since Lconv = O(log(n/δ)/µ),
choosing δ = O(1/poly n) ensures that L = Θ(Lconv) = Θ(polylog(n)/µ).
Thus, an element of the NTKmatrix can be computed in O(polylog(n)/µ) time
given the inner product between data. An example of a dataset satisfying this
condition is described in the main text and further discussed in Sec. A.5.
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Convergence to exact NTK

To bound the error caused by sparsifying the NTK, we require a result on
matrix inverses (see Demmel [8] for a proof).

Lemma A.2.5 (Perturbation of matrix inverses). Let A be an n × n real
matrix. A small perturbation εX to A causes a small perturbation of A−1

bounded in spectral norm by

||(A+ εX)−1 − A−1||
||A−1||

≤ κ(A) · ||εX||
||A||

+O(||εX||2). (A.25)

Theorem A.2.6 (Convergence to the exact NTK). Let M = (KNTK)11 · I
be proportional to the n × n identity matrix. The error of the matrix inverse
vanishes as ||M−K

−1
NTK||

||K−1
NTK||

= O(1/n).

Proof. Define n×n matrix A = KNTK/(KNTK)11 and let εX = I−A. Since A
has a unit diagonal, εX has a zero diagonal. By Corollary A.1.5, all elements
of εX are bounded in magnitude by 1/n2. By the Gershgorin circle theorem,
the maximum eigenvalue of X is thus 1/n. Applying the results of Sec. A.2
and Lemma A.2.5, we find that

||(A+ εX)−1 − A−1||
||A−1||

≤ 1 + 1/n

1− 1/n
· 1/n

1 + 1/n
+O(1/n2) = O(1/n). (A.26)

Since KNTK = (KNTK)11A, this gives the required relation for the NTK itself.
Hence, the error vanishes rapidly with a polynomial increase in dataset size.

Corollary A.2.7. For a training dataset of size n, the expectation of an
infinite-width neural network f of depth L ≥ Lconv on test data x∗ can be
estimated as E[f∗] ≈ (kNTK)T∗ y up to O(1/n) error.

Finally, we will make the additional approximation caused by the clipping of
NTK elements within a distance 1 − xi · x∗ ≤ ε′, where ε′ < ε is within the
bound for which we expect yi = y∗.

Theorem A.2.8 (Approximate NTK). Let ε′ be a constant such that 0 <

ε′ < ε < 1, where ε denotes the neighborhood around x∗ such that yi = y∗

with high probability (see Assumption A.1.3). Define (k̃NTK)∗ as the NTK
evaluated between the single data point x∗ and all examples xi in the training
set, with an additional clipping constraint to ensure all vector elements are
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less than or equal to K̂NTK(1 − ε′) in magnitude. There exists sufficiently
large data dimension d of order O(log n) such that the inner product (k̃NTK)T∗ y

approximates (kNTK)T∗ y up to O(1/poly n) error.

Proof. Per Assumption A.1.3, there exists constant ε such that for all i in
the ε-neighborhood Nε = {i : 1 − xi · x∗ ≥ ε}, we have yi = y∗ with high
probability. Moreover, since the data is approximately uniformly distributed
within the ε-neighborhood, |Nε| can be approximated to be proportional to
the area of a spherical cap on a d-dimensional sphere.

We now consider a similar argument for ε′. Note that if ε′ is sufficiently
small that no examples in the training set satisfy x∗ · xi ≥ 1 − ε′, then no
truncation occurs and the theorem is trivially satisfied. Truncation occurs
beyond magnitude K̂NTK(1− ε′). Since 0 < ε′ < ε < 1, the error ξ introduced
by truncation is given by the excess magnitude within the ε′-neighborhood
Nε′ , i.e. ξ ∼

∑
i∈Nε′

(
KNTK(xi,x∗)

K̂NTK(1−ε′) − 1
)
. Applying the matrix element bounds

of Theorem A.1.8 and Corollary A.1.5, we have∑
i∈Nε′

KNTK(xi,x∗)

K̂NTK(1− ε′)
≤ |Nε′| ·

K̂NTK(1− δ)
K̂NTK(1− ε′)

≤ O(1)|Nε′ | ·
1/n2

(1− ε′)(δ/n)O(1)
.

(A.27)

Since δ = Ω(1/poly n), the error is upper-bounded by a term scaling like
|Nε′ | · nO(1). As argued for Nε, the size |Nε′ | is well-approximated by the area
of a spherical cap. Writing such an area in terms of regularized beta functions,
we find fractional error

|Nε′|
|Nε|

· nO(1) ≈
I1−(1−ε′)2((d− 1)/2, 1/2)

I1−(1−ε)2((d− 1)/2, 1/2)
· nO(1) ≤

(
ε′

2ε

)(d−1)/2

· nO(1) (A.28)

≤
(

2

d− 1

)log(2ε/ε′)

· nO(1). (A.29)

Hence, for sufficiently large data dimension d of size O(log n), the error intro-
duced by clipping (kNTK)∗ will be suppressed by small ε′.

A.3 Quantum algorithm

To evaluate the inner product E[f∗] ≈ (kNTK)T∗ y, we require several standard
quantum linear algebra routines. The results of the below theorems are em-
pirically seen in Sec. A.6 to verify that the quantum algorithm is efficient and
converges to the exact NTK.
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Quantum random access memory

A key feature of attractive applications in quantum machine learning is achiev-
ing polylogarithmic dependence on training set size. However, the initial en-
coding of a training set trivially requires linear time, since each data exam-
ple must be recorded once. To ensure that this linear overhead only occurs
once, quantum random access memory (QRAM) can be used to prepare a
classical data structure once and then efficiently read out data with quan-
tum circuits in logarithmic time. We use the binary tree QRAM subroutine
proposed by Kerenidis and Prakash [9] and applied commonly in quantum
machine learning [10, 11]. The QRAM consists of a classical data structure
that encodes a data matrix S ∈ Rn×d with efficient quantum access.

Definition A.3.1 (Quantum access). Let |Si〉 = 1
||Si||

∑d−1
j=0 Sij |j〉 denote the

amplitude encoding of the ith row of data S ∈ Rn×d. Quantum access provides
the mappings

• |i〉 |0〉 7→ |i〉 |Si〉

• |0〉 7→ 1
||S||F

∑
i ||Si|| |i〉

in time T for i ∈ [n].

The QRAM by Kerenidis and Prakash [9] provides quantum access in time T
that is polylogarithmic complexity with respect to both n and d.

Theorem A.3.1 (QRAM). For S ∈ Rn×d, there exists a data structure that
stores S such that the time to insert, update or delete entry Sij is O(log2(n)).
Moreover, a quantum algorithm with access to the data structure provides quan-
tum access in time O(polylog(nd)).

Because the mapping |i〉 |0〉 7→ |i〉 |Si〉 is efficient, we can prepare a uniform su-
perposition

∑n−1
i=0 |i〉 |0〉 7→

∑n−1
i=0 |i〉 |Si〉 of the entire dataset. While preparing

an arbitrary superposition is difficult, a uniform superposition is achieved with
a constant-depth quantum circuit by applying Hadamard gates to all qubits.
Hence, after a single O(n) operation to prepare the data structure in QRAM,
the dataset can be efficiently accessed by a quantum computer.

In our application of QRAM, we need to prepare states |x〉 = 1√
n

∑n−1
i=0 |xi〉

and |y〉 = 1√
n

∑n−1
i=0 yi |i〉. For the state |x〉, Assumption A.1.4 ensures that
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||xi|| = 1, allowing |x〉 to be directly prepared. For labels yi, the classification
problem ensures a known normalization factor

√
n.

Preparation of kernel states

To evaluate the neural network’s prediction under the approximation kT∗ y, the
NTK must be evaluated between a test data point x∗ and the entire training
set {xi}. In particular, we prepare the quantum state |k∗〉 =

∑n−1
i=0 |i〉 |ki〉,

where ki corresponds to an encoding of kernel elements KNTK(x∗,xi) up to
error ξ.

Since the NTK is only a function of the inner product ρi = x? · xi, we can
use previous work on inner product estimation [10] to construct the kernel
elements. By preparing this inner product in a quantum register, the NTK
— which is efficient to compute classically on a single pair of data points by
since δ = Ω(1/poly n) — can be efficiently evaluated between the test data
point and the entire training dataset. However, we first need the well-known
subroutines of amplitude estimation [12] and median evaluation [13] as well as
a basic translation from bitstring representations to amplitudes.

Lemma A.3.2 (Amplitude estimation). Consider a quantum algorithm A :

|0〉 7→ √p |v, 1〉 +
√

1− p |g, 0〉 for some garbage state |g〉. For any positive
integer P , amplitude estimation outputs p̃ ∈ [0, 1] such that

|p̃− p| ≤ 2π

√
p(1− p)P

+

( π
P

)2

(A.30)

with probability at least 8/π2 using P iterations of the algorithm A. If p = 0,
then p̃ = 0 with certainty, and similarly for p = 1.

Lemma A.3.3 (Median evaluation). Consider a unitary U : |0⊗m〉 7→
√
α |v, 1〉+

√
1− α |g, 0〉 for some 1/2 < α ≤ 1 in time T . Then there exists a quantum

algorithm that, for any ∆ > 0 and for any 1/2 < α0 ≤ α, produces a state |ψ〉
such that || |ψ〉 −

∣∣0⊗mL〉 |x〉 || ≤ √2∆ for some integer L in time

2T

⌈
log(1/∆)

2(|α0| − 1/2)2

⌉
. (A.31)

Lemma A.3.4 (Amplitude encoding). Given state 1√
n

∑n−1
i=0 |ki〉 with 0 ≤ ki ≤

1, the state 1√
P

∑n−1
i=0 ki |i〉 may be prepared in time O(1/P ) with P =

∑n−1
i=0 k

2
i .

Proof. We consider a single element |ki〉 in the superposition 1√
n

∑n−1
i=0 |ki〉.

Adding an ancilla to perform the map |ki〉 |0〉 7→ |ki〉 |arccos ki〉, each bit of the
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binary expansion |ki〉 |arccos ki〉 = |ki〉 |b1〉 . . . |bm〉 can be used as a rotation
angle. Specifically, insert the ancilla 1√

2
(|0〉+ |1〉) and apply m controlled ro-

tations exp(ibjσ
z/2j) to obtain the state |ki〉 |arccos ki〉 (|ki| |0〉+

√
1− k2

i |1〉).
By including an additional rotation controlled on the sign of ki, the state
ki |0〉 +

√
1− k2

i |1〉 can be prepared. Applying the above in superposition,
we have the state 1√

n

∑n−1
i=0 |i〉

(
ki |0〉+

√
1− k2

i |1〉
)
. Letting P =

∑n−1
i=0 k

2
i ,

post-selection on the final state gives 1√
P

∑n−1
i=0 ki |i〉 in time O(1/P ).

Lemmas A.3.2 through A.3.4 provide the basic quantum computing back-
ground required. We may now prepare a quantum state corresponding to
a superposition of KNTK(x∗,xi) for all i in the training set.

Theorem A.3.5 (Kernel estimation). Let S ∈ Rn×d be the training dataset
of {xi} unit norm vectors stored in the QRAM described in Theorem A.3.1.
Consider the neural tangent kernel described in Eq. A.3 with coefficient of
nonlinearity µ. For test data vector x∗ ∈ Rd in QRAM and constant ε′, there
exists a quantum algorithm that maps

1√
n

n−1∑
i=0

|i〉 |0〉 7→ 1√
P

n−1∑
i=0

ki |i〉 . (A.32)

Here, ki = K̂NTK(ρi)/K̂NTK(1 − ε′) is restricted to −1 ≤ ki ≤ 1, i.e. clipping
all |K̂NTK(ρi)| > K̂NTK(1−ε′). The state is prepared with error |ρi−x∗ ·xi| ≤ ξ

with probability 1− 2∆ in time Õ(polylog(nd) log(1/∆)/ξ).

Proof. Since the NTK is only a function of the inner product x∗ · xi, we can
compute the kernel elements after estimating the inner product between the
test data and training data, following a similar approach to Kerenidis et al.
[10]. Consider the initial state |i〉 1√

2
(|0〉 + |1〉) |0〉. Using the QRAM as an

oracle controlled on the second register, we can in O(polylog(nd)) time map
|i〉 |0〉 |0〉 7→ |i〉 |0〉 |xi〉 and similarly |i〉 |1〉 |0〉 7→ |i〉 |1〉 |x∗〉. (If |x∗〉 is not in
QRAM, this operation only takes O(d) time.) Applying a Hadamard gate on
the second register, the state becomes

1

2
|i〉 (|0〉 (|xi〉+ |x∗〉) + |1〉 (|xi〉 − |x∗〉)) . (A.33)

Measuring the second qubit in the computational basis, the probability of
obtaining the |1〉 state is pi = 1

2
(1− 〈xi|x?〉) since the vectors are real-valued.
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Writing the state |1〉 (|xi〉 − |x∗〉) as |vi, 1〉, we have the mapping

A : |i〉 |0〉 7→ |i〉 (√pi |vi, 1〉+
√

1− pi |gi, 0〉), (A.34)

where |gi〉 is a garbage state. The runtime of A is Õ(polylog(nd)).

Applying amplitude estimation with A, we obtain a unitary U that performs

U : |i〉 |0〉 7→ |i〉
(√

α |p̃i, g, 1〉+
√

1− α |g′, 0〉
)

(A.35)

for garbage registers g, g′. By Lemma A.3.2, we have |p̃i − pi| ≤ ε and
8/π2 ≤ α ≤ 1 after O(1/ε) iterations. At this point, we now have runtime
Õ(polylog(nd)/ε).

Applying median estimation, we finally obtain a state |ψi〉 such that || |ψi〉 −
|0〉⊗L |p̃i, g〉 || ≤

√
2∆ in runtime Õ(polylog(nd) log(1/∆)/ε). Performing this

entire procedure but on the initial superposition
∑n−1

i=0 |i〉
1√
2
(|0〉+ |1〉) |0〉, we

now have the final state
∑n−1

i=0 |ψi〉.

Since
∣∣p̃i − 1−x∗·xi

2

∣∣ ≤ ξ, we can recover the inner product x∗ ·xi as a quantum
state. In general, there exists a unitary V :

∑
x |x, 0〉 7→

∑
x |x, f(x)〉 for any

classical function f with the same time complexity as f . Hence, we can choose
f that recovers x∗ · xi ≈ 1 − 2p̃i up to O(ξ) error with probability 1 − 2∆.
Because δ = Ω(1/poly n), evaluating the NTK between two data points takes
time O(polylog(n)/µ) given their inner product. Again evaluating the classical
function, we obtain the state 1√

n

∑n−1
i=0 |i〉 |ki〉 where ki has ≤ O(ξ) error in time

Õ(polylog(nd) log(1/∆)/ξµ).

Finally, we need to prepare the state |k∗〉 = 1√
P

∑n−1
i=0 ki |i〉 for P =

∑
i(ki)

2,
where by Corollary A.1.11 we have P = Ω(n/polylog n). Applying Lemma A.3.4,
preparing |k∗〉 requires O(1/P ) time, which is efficient in the training set
size.

Efficient readout

To estimate the sign of (kNTK)T∗ y given our quantum states |k∗〉 and |y〉, pair-
wise measurements can be performed up to O(1/n) error. To estimate the
sign of 〈k∗|y〉, we encode the relative phase the states and perform an inner
product estimation procedure such that m measurements of the state gives
1/
√
m variance [14].

Lemma A.3.6 (Inner product estimation). Given states |k∗〉 , |y〉 ∈ Rn, esti-
mating 〈k∗|y〉 with m measurements has variance at most 1/

√
m.
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Proof. Prepare initial state 1√
2
(|0〉 |k∗〉+|1〉 |y〉). Applying a Hadamard gate to

the first qubit, we obtain state 1
2
(|0〉 (|k∗〉+|y〉)+|1〉 (|k∗〉−|y〉)). Measuring the

first qubit, the probability of obtaining |0〉 is p = 1
2
(1 + 〈k∗|y〉). The binomial

distribution over m trials given this probability has variance mp(1 − p), and
thus the variance of the estimate of p is p(1− p)/m. Transforming to get the

variance of the overlap estimate 〈k∗|y〉, we find variance of
√

1−(〈k∗|y〉)2
m

. Since
(〈k∗|y〉)2 ≤ 1, this is upper-bounded by 1/

√
m.

To make sure the inner product has sufficient overlap for efficient readout, we
provide the following result based on the data assumptions.

Theorem A.3.7 (Efficient readout). Given states |k∗〉 and |y〉, a test example
x∗ can be classified up to O(1/n) error with a logarithmic number of measure-
ments in n.

Proof. Under the identity matrix approximation of KNTK, the prediction of y∗
is given by the sign of kT∗ y. As stated in Corollary A.2.7, this approximation is
correct up to O(1/n) error. By Theorem A.2.8, clipping the kernel evaluations
of k∗ → k̃∗ with a 1−ε′ threshold only contributes O(1/n) error for sufficiently
high-dimensional data and sufficiently small ε′. The inner product k̃T∗ y is given
by

k̃T∗ y = 〈k∗|y〉 ·
√
Pn

K̂NTK(1− ε′)
(KNTK)11

. (A.36)

To show that 〈k∗|y〉 can be efficiently estimated by Lemma A.3.6, we must show
that the overlap is at least Ω(1/polylog n). This is seen by breaking down
states into positive and negative kernels and labels: |k+

∗ 〉 , |k−∗ 〉 , |y+〉 , |y−〉.
The presence of an ε-neighborhood implies that at least one of | 〈k+

∗ |y+〉 |2 or
| 〈k+
∗ |y−〉 |2 is at least Ω(1/polylog n). By Corollary A.1.11, the normalization

factor P+ corresponding to |k+〉 is upper-bounded by n, since we are summing
over O(n) terms of magnitude at least Ω(1/polylog n). By our data assump-
tions, yi = y∗ with high probability in Nε = {i : x∗ · xi ≥ 1 − ε}. Since ε is a
constant and examples are sampled i.i.d., |Nε| = O(n). By Lemma A.1.10 we
have k+

i ≥ k0 for some k0 = Ω(1/polylog n). Hence, we have for one of y+
i or

y−i (whichever corresponds to the majority label of neighborhood Nε) that

1√
P+
√
n

∣∣∣∣∣∑
i∈Nε

k+
i yi

∣∣∣∣∣ =
O(|Nε|)√
P+
√
n

∑
i∈Nε

ki ≥ O(1)k0 ∼ Ω(1/polylog n). (A.37)
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Thus, we are guaranteed at least one efficiently measurable quantity between
| 〈k+
∗ |y+〉 |2 and | 〈k+

∗ |y−〉 |2. We can expand 〈k∗|y〉 in terms of the positive and
negative components

〈k∗|y〉 =

√
P+√

(P+ + P−)(|Y+|+ |Y−|)

(√
|Y+| |

〈
k+
∗
∣∣y+

〉
| −
√
|Y−| |

〈
k+
∗
∣∣y−〉 |

−

√
|Y+|P−
P+

|
〈
k−∗
∣∣y+

〉
|+

√
|Y−|P−
P+

|
〈
k−∗
∣∣y−〉 |),

(A.38)

where Y+ = {i : yi = + = 1} and similarly for Y−. Since at least one of the
terms has Ω(1/polyylog n) size and the probability of non-negligible terms
fully cancelling is vanishingly small with O(n) labels assigned to both +1 and
−1, the product 〈k∗|y〉 will be of at least Ω(1/polylog n) size. Hence, we can
apply Lemma A.3.6 to perform a polylogarithmic number of measurements
and recover the sign of kT∗ y up to O(1/n) error by Eq. A.36.

A.4 Computing the sparsified NTK approximation

We show that the neural tangent kernel satisfies the caveats required for QLSA
to achieve an exponential speedup by inverting a sparsified NTK. Previously
we considered the equation E[f∗] = (kNTK)T∗K

−1
NTKy by approximating K−1

NTK

up to a matrix proportional to the identity, giving O(1/n) error. Here, we
approximate KNTK with a sparsification K̃NTK of the dense matrix. In partic-
ular, a logarithmic number of nonzero elements are allowed on each row and
column, selecting the largest elements by an empirical threshold (see Sec. A.5).
Although sparse matrix inversion is required, we use a quantum linear systems
algorithm to perform it exponentially more quickly than is classically possi-
ble. In Sec. A.6, we verify numerically that the sparse NTK approximation
converges more rapidly than the diagonal NTK approximation.

Quantum linear systems algorithm

To classically solve the quantum linear systems problem (QLSP, Definition 1.1.6),
a computational cost of at least O(n) is required for a sparse, well-conditioned
and positive definite n × n linear system. In particular, the conjugate gradi-
ent method [15] achieves O(ns

√
κ log(1/ξ)) time to precision ξ for a positive

definite matrix. Proposed by Harrow, Hassidim and Lloyd, the HHL algo-
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rithm [16] obtains an exponential speedup over this result. Informally, we
summarize it as follows.

1. Prepare the data state |b〉 = 1√
b·b

∑n−1
i=0 bi |i〉. Writing |b〉 in the eigenba-

sis {λi, |µi〉} of A, define coefficients βi such that |b〉 =
∑n−1

i=0 βi |µi〉.

2. Simulate the time evolution of |b〉 under the Hamiltonian defined by A
and apply a quantum Fourier Transform to obtain |ψ1〉 =

∑n−1
i=0 βi |λi〉 |µi〉,

where |λi〉 corresponds to a binary representation of λi up to some pre-
cision.

3. Introduce an ancillary qubit in state |0〉 and perform a controlled rotation
to obtain for some constant C

|ψ2〉 =
n−1∑
i=0

βi |λi〉 |µi〉

(√
1− C2

λ2
i

|0〉+
C

λi
|1〉

)
. (A.39)

4. Reverse the phase estimation to uncompute λi and measure the ancilla.
If measurement yields the |1〉 state, then the final state of the system is
|ψ3〉 = |x〉 =

∑n−1
i=0

βi
λi
|µi〉.

As described by Definition 1.1.6 in the main text, HHL solves the QLSP
A |x〉 = |b〉 corresponding to the linear equation Ax = b. We write this
formally in the following theorem; more details can be found in the summary
provided by Dervovic et al. [17].

Theorem A.4.1 (HHL algorithm). The quantum linear systems problem for
s-sparse matrix A ∈ Rn×n can be solved by a gate-efficient algorithm (i.e. with
only logarithmic overhead in gate complexity) that makes O(κ2spoly(log(sκ/ξ)/ξ))

queries to the oracle PA of the matrix A and O(κspoly(log(sκ/ξ))/ξ) queries
to the oracle to prepare the state corresponding to b. Using a quantum random
access memory for data access contributes a multiplicative factor of O(log n)

to the runtime.

As described by Childs et al. [18], the oracle PA must perform the map

|j, `〉 7→ |j, ν(j, `)〉 , (A.40)

for any j ∈ [n] and ` ∈ [s]. The function ν : [n]× [s]→ [n] computes the row
index of the `th nonzero entry of the jth column. Note that in our case, the
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NTK matrix is symmetric, so this is equivalent to compute a nonzero column
index of a row.

We describe a suitable QRAM in the following subsection. Note that by re-
placing the phase estimation subroutine with algorithms based on Chebyshev
polynomial decompositions, the dependence on precision can be improved.
Similarly, improvements on the Hamiltonian simulation subroutine further im-
prove the dependence on sparsity [19]. Based on these extension to HHL, QLSP
can be solved in O(log(n)κs polylog(κs/ξ)) time [18].

As a result of the efficient kernel estimation, we can prepare the state |k∗〉 in
polylogarithmic time in n. We now turn to the issue of constructing a sparse
matrix K̃NTK with a logarithmic number of nonzero elements in any row or
column. To apply HHL, we need an efficient oracle PA as required by The-
orem A.4.1, which must report nonzero indices of any column in logarithmic
time. In general, the NTK matrix is dense, and thus reporting any indices
will suffice. However, we can efficiently choose larger nonzero indices: since
the QRAM can be modified in logarithmic time, we can iteratively perform
measurements that choose distinct data points closer to each other, causing a
larger NTK matrix element.

Lemma A.4.2 (NTK oracle). Let PA denote an oracle that maps |j, `〉 7→
|j, ν(j, `)〉, i.e. computes the row index of the `th nonzero entry of the jth

column in A = KNTK. Given a training set stored in QRAM, there exists
a quantum circuit that implements the oracle in time polylogarithmic in the
training set size.

Proof. Assume we wish to find the nonzero elements of the jth column in the
NTK matrix. By Theorem A.1.3, the diagonal element (KNTK)jj is known to
be nonzero (and equal to all other diagonal elements). To find up to s other
nonzero elements in the column, we temporarily remove xj from the QRAM.
By Theorem A.3.1, it requires O(log2(n)) time to remove a single element; to
remove the entire vector xj ∈ Rd requires O(d log2(n)) time. We then prepare
the state 1√

P

∑
i ki |i〉 by Theorem A.3.5, which has runtime polylogarithmic in

n. Since ki ∝ KNTK(xi,xj), measuring the state in the computational basis will
cause it to collapse to |i〉 with probability proportional to (KNTK)2

jj. The index
corresponding to the measured bitstring i is taken to be nonzero. Although this
simply biases the nonzero elements of our sparsified NTK to larger elements
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of the exact NTK, we are still guaranteed that error will disappear by at most
O(1/n). Removing the measured index i from the QRAM and repeating the
process O(log n) times, the oracle PA runs in O(log n) time.

Convergence of the sparsified NTK

When returning s = O(log n) off-diagonal elements to the identity matrix ap-
proximation of the NTK, we require only minor modifications to the previously
shown eigenvalue bounds.

Lemma A.4.3 (Maximum eigenvalue of sparsified NTK). If L ≥ Lconv, then
λmax(K̃NTK) ≤ (KNTK)11(1 + 1/n).

Proof. As given by Theorem A.1.3, the diagonal elements of the NTK are
equal and larger than the off-diagonal elements, since Lemma A.1.1 guarantees
sufficient neural network depth Lconv ≥ 2L0(δ, µ). By the Gershgorin circle
theorem, λmax ≤ (KNTK)11[1 + s(2B(L/2, δ, µ))]]. Applying Corollary A.1.5,
this gives an upper bound of λmax ≤ (KNTK)11[1 + s/n2] ≤ (KNTK)11(1 + 1/n)

since s = O(log n).

Lemma A.4.4 (Minimum eigenvalue of sparsified NTK). If L ≥ Lconv, then
λmin(K̃NTK) ≥ (KNTK)11(1− 1/n).

Proof. Similarly to above, the Gershgorin circle theorem with Corollary A.1.5
gives λmin(KNTK) ≥ (KNTK)11[1− s/n2] ≥ (KNTK)11(1− 1/n).

From these bounds, we conclude that the NTK is well-conditioned when rep-
resenting a neural network deep enough to converge, consistent with the result
of Agarwal et al. [4].

Corollary A.4.5 (Conditioning of sparsified NTK). The condition number
1 ≤ κ(K̃NTK) ≤ 1+1/n

1−1/n
converges to unity as n→∞.

Hence, the sparsified NTK has a condition number that is well-suited to run-
ning HHL. Finally, we show that it converges to the exact NTK.

Theorem A.4.6 (Convergence of the sparsified NTK to the exact NTK).
Let M = K̃NTK be a sparsification of the exact NTK KNTK with the complete
diagonal and any subset of s = O(log n) off-diagonal elements. The error of
the matrix inverse vanishes as ||K̃

−1
NTK−K

−1
NTK||

||K−1
NTK||

= O(1/n).
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Proof. Define matrices A = KNTK/(KNTK)11 and Ã = K̃NTK/(KNTK)11. Let
εX = Ã−A. Since A and Ã both have unit diagonal, εX has a zero diagonal.
By Corollary A.1.5, all elements of εX are bounded in magnitude by 1/n2.
By the Gershgorin circle theorem, the maximum eigenvalue of X is thus 1/n.
Applying the results of Sec. A.2 and Lemma A.2.5, we find that

||(A+ εX)−1 − A−1||
||A−1||

≤ 1 + 1/n

1− 1/n
· 1/n

1 + 1/n
+O(1/n2) = O(1/n). (A.41)

Since KNTK = (KNTK)11A, this gives the required relation for the NTK itself.
Hence, the error vanishes rapidly with a polynomial increase in dataset size.

Since we sparsify the NTK instead of replacing by a diagonal matrix, the
Gerhsgorin circle theorem can be applied to the above results to find that the
sparsified NTK is expected to converge slightly more quickly than the identity
approximation; this is further assisted by the nonzero element oracle favoring
larger off-diagonal elements.

Corollary A.4.7 (Sparse approximation vs. diagonal approximation). Given
sparse matrix K̃NTK with at most O(log n) nonzero off-diagonal elements in
every row and column, define E[f sparse

∗ ] = (kNTK)T∗ K̃
−1
NTKy. Under the diagonal

approximation, define E[fdiag
∗ ] = (kNTK)T∗ y/(KNTK)11. Compared to the exact

NTK E[f∗] = (kNTK)T∗K
−1
NTKy in expectation over x∗, we have |E[f sparse

∗ ] −
E[f∗]| < |E[fdiag

∗ ]− E[f∗]|.

Since the matrix error is the same as in Theorem A.2.6, the result of The-
orem A.2.8 directly applies to the normalization of the initial state |k∗〉 and
the consequent convergence of the NTK approximation. Moreover, since the
modification only introduces log n number of elements bounded by 1/n, the
readout procedure (Theorem A.3.7) remains efficient with only polylogarith-
mic overhead.

A.5 Datasets

To efficiently compute the NTK between data xi,xj as is necessary to achieve
an exponential speedup, we require δ = Ω(1/poly n). Using a uniform distri-
bution on a sphere, we motivate the power law δ(n) ≈ a1n

−a2 with positive
constants. We show such power laws to empirically hold on common datasets
including MNIST and CIFAR-10, demonstrating that an exponential quantum



84

speedup can be achieved due to our dataset requirement of δ = Ω(1/poly n)

being satisfied.

Uniform distribution on a sphere

Define a dataset S of n training examples (xi, yi), where xi ∈ Rd has fixed
dimension and yi is bounded. Each xi is sampled uniformly on the sphere
Sd−1. We can define δ in terms of an n× n matrix G defined similarly to the
Gram matrix but with magnitudes of inner products, i.e. Gij = |xi · xj|. The
minimum dataset separability is given by 1 − ρmax, where ρmax is the largest
off-diagonal element of G.

Since the elements ofG are not drawn independently from a single distribution,
we instead define a symmetric n×n matrix A with elements drawn i.i.d. from
the distribution of inner product magnitudes. We show that a power law
δ(n) = a1n

a2 is satisfied for the matrix A.

Lemma A.5.1. Let A be a symmetric n×n matrix with elements Aij sampled
from the distribution of inner products |xi ·xj|. Each matrix element is sampled
i.i.d. with xi,xj drawn uniformly at random from Sd−1 with d ≥ 2. In the
limit of large n, the separability δ = mini,j(1 − Aij) is lower-bounded by δ =

Ω(1/poly n). In particular, δ ≈ Ω(n4/(1−d)) to leading order in large n.

Proof. We first determine the CDF of |xi·xj| for xi,xj ∈ Rd drawn uniformly at
random from Sd−1. Without loss of generality, let xi = (1, 0, . . . , 0). Since the
distribution is uniform on the surface of a sphere, symmetry under orthogonal
matrix multiplication implies that we can let xj = u

||u|| for u ∼ Nd(0, 1) for u =

(u1, . . . , ud). Hence, the distribution of xi · xj is equivalent to the distribution
of ρ ∼ u1/

√
u2

1 + · · ·+ u2
d. Considering the random variable ρ2, rearranging

terms gives a ratio of χ2 variables and hence an F -distribution with 1 and
d− 1 degrees of freedom. Evaluating the CDF for ρ = |xi · xj| in terms of the
hypergeometric 2F1 function gives

F (|ρ|) =
2Γ
(
d
2

)
√
πΓ
(
d−1

2

)2F1

(
1

2
,
3− d

2
;
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2
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|ρ|. (A.42)

Suppose we sample from the distribution m times, corresponding to the m ≈
n2/2 randomly chosen elements in the symmetric matrix A. To find the largest
|ρ| corresponding to the minimum separability, we seek the (1 − 1/m)th per-
centile of the m elements. Following Mosteller’s seminal work on order statis-
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tics [20], the largest |ρ| will be asymptotically normally distributed for large
m, with a mean of F−1(1 − 1/m). Since we expect |ρ| to converge to 1, we
Taylor expand |ρ| = 1− δ around δ = 0 to give

F (1− δ) ≈ 1 +
2
d−1
2 δ

d−1
2 Γ

(
d
2

)
√
πΓ
(
d+1

2

) . (A.43)

Solving for δ in F (1− δ) = 1− 1/m, we find that in expectation

δ = π
1
d−1

(
2

1
2
− d

2 Γ
(
d+1

2

)
mΓ

(
d
2

) ) 2
d−1

. (A.44)

Substituting back m ≈ n2/2 gives δ(n) = a1n
a2 with a2 = 4/(d − 1). Taking

a bounding case on d, we conclude that δ = Ω(n−1) = Ω(1/poly n) for all
d ≥ 3.

Although Lemma A.5.1 addresses an independently sampled matrix of in-
ner products, we confirm that it empirically describes the spherical dataset
(Fig. A.2).
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Figure A.2: Empirical fit of δ(n) for the sphere dataset with d = 10. We find
δ(n) ≈ 0.90n−0.46 (R2 = 0.96), showing good agreement with the prediction of
δ(n) ∝ n−0.44 by Lemma A.5.1.

Real-world datasets

For MNIST, we consider the binary classification task between digits 0 and
1 then empirically determine δ(n) by subsampling the dataset. Similarly, for
CIFAR-10, we consider the binary classification task between automobiles and
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cats. As in the case of the uniform distribution on a sphere, both datasets
cleary satisfy δ = Ω(1/poly n) (Fig. A.3).
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Figure A.3: Empirical fit of δ(n) for MNIST and CIFAR-10. We find δ(n) =
0.1n−0.3 (R2 = 0.991) for MNIST and δ(n) = 3.0n−0.6 (R2 = 0.98) for CIFAR-
10.

A.6 Numerical evaluation of the NTK

Fully-connected neural tangent kernel (sphere dataset)

We consider a training dataset of examples (xi, yi) sampled from a uniform
distribution on a sphere as in Sec. A.5, fixing the dimension d = 3. We
take yi = f(xi) + η with η ∼ N (0, 0.05) and f(xi) =

∑d
j=1 sin

3π(xi)j
2

for
xi = (x1, . . . , xd). For this dataset, we also consider Assumption A.1.3, which
requires the label to vary smoothly at a given data resolution. We numerically
determine ε such that the ε-neighborhood Nε = {i : x∗ ·xi ≥ 1−ε} about some
data point x∗ satisfies yi = y∗ with high probability. Choosing ε = 0.01 on
d = 3, for instance, would satisfy Assumption A.1.3 with over 90% probability.
See Fig. 1.1 in the main text for a visualization of both the dataset and the
choice of ε.

The neural network is defined by Eq. 1.1 in the main text with an erf function
used for activation (µ ≈ 0.086). We examine the performance of the sparsified
NTK for shallower neural networks than Lconv in order to probe larger datasets
while remaining within reasonable time and memory constraints. Despite re-
ducing the depth below the proven threshold, good convergence to the exact
NTK is found. This convergence is likely due to the loose upper bound on
the NTK matrix elements, which corresponds to an overestimate of the error
introduced by sparsification. Consistent with the analysis of an increasingly
strengthened diagonal, the NTK becomes well-conditioned for larger depths
in Fig. A.4.



87

4

3

2

1

0

lo
g 1

0
|K

ij|
/|K

11
|

(a) Depth 5

6

5

4

3

2

1

0

lo
g 1

0
|K

ij|
/|K

11
|

(b) Depth 31

14

13

12

11

10

lo
g 1

0
|K

ij|
/|K

11
|

(c) Depth 100

Figure A.4: NTK matrix elements on the sphere dataset with the diagonal
elements K11 = K22 = · · · = Knn normalized to unity. As the neural network
depth increases, the off-diagonal elements reduce in size compared to the di-
agonal, ensuring that the NTK is well-conditioned and that the prediction for
a test example is based on its closest neighbors in the training set.
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Figure A.5: Separability of the dataset for on a sphere with dimension d = 3,
where the dashed line indicates ε′. Kernel elements K̂NTK(ρ) are truncated to
K̂NTK(1 − ε′) where ρ > 1 − ε′, and thus datasets with size n ≥ 512 onwards
are subject to the normalization approximation of kernel vectors and matrix
elements.

We may evaluate the impact of the approximations required by the quan-
tum algorithm, as well as the theoretical results concerning the scaling of the
number of measurements required to achieve bounded variance. To perform
truncation with ε′ for state normalization, we choose ε′ = 10−5. This value
is selected to be larger than the data separability for the larger datasets we
examine (Fig. A.5). Thus, if truncating kernel elements by ε′ were to reduce
the NTK approximation’s performance, it would be observed by a discrepancy
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between the approximate NTK and the exact NTK when classifying larger
datasets.

As discussed in the main text (see Fig. 1.2), preparing the state |k∗〉 =
1√
P

∑n−1
i=0 ki |i〉 requires O(1/P ) measurements due to post-selection. For the

toy dataset, this number of measurements is observed to decrease like 1/poly n,
as is consistent with Corollary A.1.11 albeit with a slightly different exponent
due to a choice of L � Lconv for the numerical simulation. Similarly, the
state overlap 〈k∗|y〉 decreases like Ω(1/polylog n), ensuring that a logarithmic
number of measurements are required.

Finally, as expected, both the sparsified NTK (where KNTK → K̃NTK with a
logarithmic number of nonzero elements each row/column) and the diagonal
NTK (where KNTK → (KNTK)11I is diagonal) approximations are observed to
converge to exactly the same output as the exact NTK (Fig. 1.3). At very
small dataset sizes, the sparsified NTK performs better than the diagonal
NTK, as previously discussed. For the sphere dataset, sparsification allows at
most log n off-diagonal elements in the NTK.

Convolutional neural tangent kernel (MNIST)

To assess the generality of sparsification to more common deep learning archi-
tectures, we numerically evaluate the Myrtle [21] convolutional neural network
on the MNIST dataset. Introduced as a standard benchmark architecture
by Shankar et al. [22], the Myrtle architecture is a family of convolutional
neural networks with ReLU activation functions, 3 × 3 convolutional filters,
and 2× 2 average pooling. Unlike in the vanilla fully-connected architecture,
the Myrtle architecture does not satisfy the normalization condition of As-
sumption A.1.4 and does not yield and NTK with equal diagonal elements.
For the task of binary classification, we one-hot encode two output neurons.
Since sparsification can cause an effectively imbalanced dataset, a classifica-
tion threshold on the difference between the two output neurons is used to
decide the classification outcome. As described in the main text, a balanced
training and test set are guaranteed, and thus the classification threshold is
determined by the median of the output neuron values.

Similarly to the diminishing off-diagonal elements shown in Fig. A.4 for the
vanilla fully-connected architecture, the convolutional neural network becomes
well-conditioned and hence increasingly amenable to a quantum algorithm
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with increasing depth (Fig. A.6).
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Figure A.6: NTK matrix elements on the MNIST binary classification dataset,
with the maximum matrix element normalized to unity. As the neural net-
work depth increases, the off-diagonal elements reduce in size compared to the
diagonal, similarly to the simple neural network shown in Fig. A.4. The “0”
class is placed in the top left corner and the “1” class is placed in the bottom
right corner, illustrating the higher overlap within each class.

However, the Myrtle kernel does not experience as steep of a falloff as the
vanilla fully-connected network; while off-diagonal elements shown in Fig. A.4
are at most a fraction ∼ 10−11 of the diagonal, deepening Myrtle from 5 to
1000 layers only causes the largest off-diagonal to reduce from 0.9 to 0.7 com-
pared to the largest diagonal element. Hence, sparsification of KNTK can cause
a larger variation in the minimum eigenvalue of sparsified kernel K̃NTK, pos-
sibly even producing a zero or negative eigenvalue at the depths evaluated.
Hence, we add diagonal regularization K̃NTK → K̃NTK +σ2I as is standard for
improving matrix conditioning. While such conditioning could significantly
impact performance, we find in Fig. 1.3 of the main text that the sparsified
kernel remains competitive in performance to the exact kernel. For that NTK,
we implement a Myrtle49 network although the required depth equivalent to
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Lconv is likely far deeper. Additionally, while Lconv scales with n, we report
experiments with fixed depth for MNIST. Although the diagonal is seen to
dominate off-diagonal elements in Fig. A.6, the use of a Myrtle49 network can
prevent the sparsified NTK (with 5 log n nonzero off-diagonal elements) from
being positive definite. Consequently, we amplify the diagonal by adding the
identity matrix (scaled by the empirical NTK diagonal). This allows the spar-
sified Myrtle NTK to share the well-conditioned behavior of a deeper network.
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A p p e n d i x B

CODE: QUANTUM NEURAL TANGENT KERNEL

In Chapter 1, we provided results of the neural tangent kernel (NTK) for a
toy dataset on the sphere and the MNIST digit classification dataset. Here,
we include code for creating the datasets and coputing the NTK, sparsified
NTK, and diagonal NTK approximations.

1 from jax.config import config
2 config.update("jax_enable_x64", True)
3

4 import jax.numpy as np
5 from jax import jit
6 import functools
7 from jax import random
8 from jax.scipy.special import erf
9 import numpy as np2

10

11 import neural_tangents as nt
12 from neural_tangents import stax
13

14 import tensorflow_datasets as tfds
15 import itertools
16 from collections import namedtuple
17 from np.linalg import inv
18

19 seed = 12
20 key = random.PRNGKey(seed)
21

22 ds = tfds.as_numpy(
23 tfds.load('mnist:3.*.*', batch_size=-1)
24 )
25

26 selection = (1, 0)
27 depth = 48
28 data_sizes = [8, 16, 32, 64, 128]
29 test_size = 64
30 batch_size = 4
31 trials = np.maximum(np.ceil(4096 / np.array(data_sizes)).astype(int),
32 256*np.ones(len(data_sizes)).astype(int))
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33

34 # MNIST
35 def process_data(data_chunk, selection=[0, 1], class_size=None,

shuffle=True):↪→

36 # one-hot encode the labels and normalize the data.
37 global key
38 image, label = data_chunk['image'], data_chunk['label']
39 n_labels = 2
40

41 # pick two labels
42 indices = np.where((label == selection[0]) | (label == selection[1]))[0]
43

44 key, i_key = random.split(key, 2)
45 indices = random.permutation(i_key, indices).reshape(1, -1)
46

47 label = (label[tuple(indices)] == selection[0])
48

49 # balance if no class size is specified or class size too large
50 max_class_size = np.amin(np.unique(label, return_counts=True)[1])
51 if (class_size is None) or class_size > max_class_size:
52 class_size = max_class_size
53 print('class_size', class_size)
54

55 # select first class_size examples of each class
56 new_indices = []
57 for i in range(n_labels):
58 class_examples = np.where(label == i)[0]
59 new_indices += class_examples[:class_size].tolist()
60 key, j_key = random.split(key, 2)
61 if shuffle:
62 new_indices = random.permutation(j_key,

np.array(new_indices)).reshape(1, -1)↪→

63 else:
64 new_indices = np.array(new_indices).reshape(1, -1)
65

66 label = label[tuple(new_indices)].astype(np.int64)
67 label = np.eye(2)[label]
68

69 image = image[tuple(indices)][tuple(new_indices)]
70 image = (image - np.mean(image)) / np.std(image)
71 norm = np.sqrt(np.sum(image**2, axis=(1, 2, 3)))
72 image /= norm[:, np.newaxis, np.newaxis, np.newaxis]
73
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74 return {'image': image, 'label': label}
75

76

77 # sphere dataset
78 noise_scale = 5e-2
79 key, x_key, y_key = random.split(key, 3)
80 def target_fn(x):
81 out = np.zeros(len(x))
82 for i in range(0, x.shape[1]):
83 out += np.sin((i+1)*np.pi*x[:, i]*0.75)
84 return np.reshape(out, (-1, 1))
85 def create_data(N, test_points=64, d=None, rand=False, rand_train=False):
86 global key
87 if d is None:
88 d = 3
89 if rand_train:
90 key, train_x_key, train_y_key = random.split(key, 3)
91 else:
92 train_x_key = x_key
93 train_y_key = y_key
94 train_xs = random.normal(train_x_key, (N, d))
95 norms = np.sqrt(np.sum(train_xs**2, axis=1))
96 train_xs = train_xs / np.repeat(norms[:, np.newaxis], d, axis=1)
97

98 train_ys = target_fn(train_xs)
99 train_ys += noise_scale * random.normal(train_y_key, (N, 1))

100 train = (train_xs, np.sign(train_ys))
101

102 if rand:
103 key, test_x_key, test_y_key = random.split(key, 3)
104 test_xs = random.normal(test_x_key, (test_points, d))
105 norms = np.sqrt(np.sum(test_xs**2, axis=1))
106 test_xs = test_xs / np.repeat(norms[:, np.newaxis], d, axis=1)
107 else:
108 # query points on a single path on the sphere surface
109 t = np.linspace(0, 2*np.pi, test_points)
110 test_x_0 = np.reshape(np.sin(t), (-1, 1))
111 test_x_1 = np.reshape(np.cos(t), (-1, 1))
112 test_xs = np.concatenate((test_x_0, test_x_1, np.zeros((test_points,

d-2))),↪→

113 axis=1)
114

115 test_ys = target_fn(test_xs)
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116 test = (test_xs, np.sign(test_ys))
117

118 return train, test
119

120

121 # MNIST neural network
122 def MyrtleNetworkMNIST(depth, W_std=np.sqrt(2.0), b_std=0.):
123 width = 1
124 activation_fn = stax.Relu()
125 layers = []
126 conv = functools.partial(stax.Conv, W_std=W_std, b_std=b_std,

padding='SAME')↪→

127 if depth == 4:
128 depths = [2, 1, 1]
129 else:
130 depths = [depth//3, depth//3, depth//3]
131

132 layers += [conv(width, (3, 3)), activation_fn] * depths[0]
133 layers += [stax.AvgPool((2, 2), strides=(2, 2))]
134 layers += [conv(width, (3, 3)), activation_fn] * depths[1]
135 layers += [stax.AvgPool((2, 2), strides=(2, 2))]
136 layers += [conv(width, (3, 3)), activation_fn] * depths[2]
137 layers += [stax.AvgPool((2, 2), strides=(2, 2))] * 2
138

139 layers += [stax.Flatten(), stax.Dense(2, W_std, b_std)]
140

141 return stax.serial(*layers)
142

143

144 # sphere neural network
145 def calc_var(key, s, samples=10000):
146 key, my_key = random.split(key)
147 x = random.normal(my_key, (samples,))
148 return np.mean(s(x)**2)
149 def calc_mu(key, s, samples=10000):
150 key, my_key = random.split(key)
151 x = random.normal(my_key, (samples,))
152 return 1 - np.mean(x*s(x))**2
153 scale = calc_var(key, erf, samples=10**8)
154 mu = calc_mu(key, lambda x: np.sqrt(1/scale)*erf(x), samples=10**8)
155 print('mu =', mu)
156 def create_network(key, L):
157 layers = []
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158 for i in range(L):
159 layers.append(stax.Dense(512, W_std=np.sqrt(1/scale), b_std=0.0))
160 layers.append(stax.Erf())
161

162 init_fn, apply_fn, kernel_fn = stax.serial(
163 *layers,
164 stax.Dense(1, W_std=np.sqrt(1/scale), b_std=0.0)
165 )
166

167 apply_fn = jit(apply_fn)
168 kernel_fn = jit(kernel_fn, static_argnums=(2,))
169

170 return init_fn, apply_fn, kernel_fn
171

172 # if using the spherical dataset, k_thresh is computed from epsilon'
173 def compute_k_threshold(key, L, epsilon_norm, d):
174 col1 = 1 - epsilon_norm
175 col2 = np.sqrt(1 - col1*col1)
176 x0 = [1.0, 0] + [0]*(d-2)
177 x1 = [col1, col2] + [0]*(d-2)
178 x0 = np.array([x0])
179 data = np.array([x1])
180 init_fn, apply_fn, kernel_fn = create_network(key, L)
181 iterate_kernel = kernel_fn(data, x0, 'ntk')
182 norm = float(iterate_kernel.flatten()[0])
183 return np.abs(norm)
184

185

186 # here, we'll run the MNIST experiment
187 # select a k_thresh that corresponds to truncation occurring partway

through our example↪→

188 # set k_thresh to largest off-diagonal element (in magnitude)
189 k_thresh_n = 128
190 train = process_data(ds['train'], selection=selection,

class_size=k_thresh_n)↪→

191 pred_fn, _, kernel_fn = MyrtleNetworkMNIST(depth)
192 kernel_fn = nt.utils.batch.batch(kernel_fn, batch_size=batch_size)
193 kernel = kernel_fn(train['image'], train['image'], 'ntk')
194 k_thresh = np.amax(np.abs(kernel[np.triu_indices(k_thresh_n, 1)]))
195 print('k_thresh', k_thresh)
196

197 # k_thresh = 0.0031147142740780374 # for depth = 30, selection = (1, 0),
k_thresh_n = 128↪→
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198 # k_thresh = 0.0030612588922113663 # for depth = 30, selection = (3, 4),
k_thresh_n = 128↪→

199

200 def kernel_mag(row, k_thresh):
201 return normalize(row, k_thresh)**2
202

203 def normalize(m, k_thresh):
204 return np.clip(m/k_thresh, -1, 1)
205

206 # sparsify a matrix
207 # make nxn matrix have at most O(log(n)) nonzero elements per row/column
208 def sparsify(m, probability_function, k_thresh):
209 global key
210 target_sparsity = int(5*np.log(m.shape[1]))
211

212 out = np2.zeros(m.shape)
213 m2 = np2.array(m)
214

215 for i in range(len(m)):
216 # sample the other indices based on the probability function
217 probs = probability_function(m[i], k_thresh)
218 probs /= np.sum(probs)
219

220 key, p_key = random.split(key, 2)
221 nonzero_indices = random.choice(p_key, np.arange(len(m)),

shape=(target_sparsity,),↪→

222 replace=False, p=probs)
223 if i not in nonzero_indices:
224 nonzero_indices = np.concatenate((nonzero_indices, np.array([i])))
225 mask = np2.zeros(m.shape[1], dtype=bool)
226 mask[(tuple(nonzero_indices),)] = 1
227 row = m2[i] * mask
228 out[i] += row
229

230 return np.array(out)
231

232 # label given raw NTK output assuming a balanced test dataset
233 def classify(ntk_mean):
234 # find classification threshold given balanced output
235 ntk_mean = ntk_mean[:, 0] - ntk_mean[:, 1]
236 thresh = np.median(ntk_mean)
237 out = (np.sign(ntk_mean - thresh).flatten() + 1) / 2
238 return out
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239

240 for i in range(len(data_sizes)):
241 class_size = data_sizes[i]
242 for t in range(trials[i]):
243 print('trial', t+1)
244 prefix = 'output/mnist_seed' + str(seed) + '_select' + str(selection) +

'_depth'↪→

245 prefix = prefix + str(depth) + '_data' + str(class_size) + '_trial' +
str(t) + '_'↪→

246

247 print('depth =', depth, 'class size =', class_size)
248 train = process_data(ds['train'], selection=selection,

class_size=class_size)↪→

249 test = process_data(ds['test'], selection=selection,
class_size=test_size)↪→

250 labels = test['label']
251 np.save(prefix + 'labels.npy', labels)
252

253 pred_fn, _, kernel_fn = MyrtleNetworkMNIST(depth)
254 kernel_fn = nt.utils.batch.batch(kernel_fn, batch_size=batch_size)
255

256 # the sparsified kernel will be asymmetric, so we can't just use the
built-in cholesky↪→

257 # hence, we evaluate k_*^T K^{-1} y manually
258 kernel_train = kernel_fn(train['image'], train['image'], 'ntk')
259 kernel_test = kernel_fn(test['image'], train['image'], 'ntk')
260

261 kernel_train_sparse = sparsify(kernel_train, kernel_mag, k_thresh)
262 kernel_train_identity =

np.diag(kernel_train)*np.eye(kernel_train.shape[0])↪→

263 conditioning =
4*np.amax(np.diag(kernel_train_sparse))*np.eye(len(kernel_train_sparse))↪→

264 kernel_train_sparse = kernel_train_sparse + conditioning
265 kernel_test_normalized = k_thresh*normalize(kernel_test, k_thresh)
266

267 mean = kernel_test @ inv(kernel_train) @ train['label']

268 mean_sparse = kernel_test_normalized @ inv(kernel_train_sparse) @

train['label']↪→

269 mean_identity = kernel_test_normalized @ inv(kernel_train_identity) @

train['label']↪→

270

271 np.save(prefix + 'exact.npy', mean)
272 np.save(prefix + 'sparse.npy', mean_sparse)
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273 np.save(prefix + 'identity.npy', mean_identity)
274

275 acc = np.sum(classify(mean) == labels[:, 0])/len(labels)
276 acc_sparse = np.sum(classify(mean_sparse) == labels[:, 0])/len(labels)
277 acc_identity = np.sum(classify(mean_identity) == labels[:,

0])/len(labels)↪→

278 print('Exact classification accuracy:', acc)
279 print('Sparse classification accuracy:', acc_sparse)
280 print('Identity classification accuracy:', acc_identity)
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A p p e n d i x C

CODE: QUANTUM GENERATIVE ADVERSARIAL
NETWORK

In Chapter 2, we proposed the entangling quantum generative adversarial
network (EQ-GAN) architecture. Here, we provide an implementation that
demonstrates learned noise suppression under an unknown noise model/

1 import tensorflow as tf
2 import tensorflow_quantum as tfq
3

4 import cirq
5 import sympy
6 import numpy as np
7

8 # visualization tools
9 import matplotlib.pyplot as plt

10 from cirq.contrib.svg import SVGCircuit
11

12 def generator_circuit(qubits, rotations):
13 """Make a GHZ-like state with arbitrary phase using CZ gates.
14 For the purposes of the noise experiment, we don't apply Z phase
15 corrections, since the point is to match the generator and data
16 gate parameters to know that there's high state overlap.
17

18 Args:
19 qubits: Python `lst` of `cirq.GridQubit`s
20 rotations: Python `lst` indicating the X half rotations, Y half
21 rotations and Z half rotations.
22 """
23 if len(rotations) != 3:
24 raise ValueError("Number of needed rotations is 3.")
25

26 u = [cirq.Z(qubits[0])**rotations[0],
27 cirq.X(qubits[0])**rotations[1],
28 cirq.Z(qubits[0])**rotations[2]]
29 for q0, q1 in zip(qubits, qubits[1:]):
30 u.extend([cirq.Y(q1)**0.5, cirq.X(q1), cirq.CZ(q0, q1),
31 cirq.Y(q1)**0.5, cirq.X(q1)])
32 return cirq.Circuit(u)
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33

34 def discriminator_circuit(qubits_a, qubits_b, rotations):
35 """Make a variational swap test circuit with CZ as the two-qubit gate.
36

37 Args:
38 qubits_a: Python `lst` of `cirq.GridQubit`s indicating subsystem A's
39 qubits.
40 qubits_b: Python `lst` of `cirq.GridQubit`s indicating subsystem B's
41 qubits.
42 rotations: Python `lst` of shape [n_qubits, 2] containing Z rotation
43 parameters for the swap test.
44 """
45 if len(rotations) != len(qubits_a) or any(len(x) != 2 for x in

rotations):↪→

46 raise ValueError("rotations must be shape [len(qubits_a), 2]")
47

48 if len(qubits_a) != len(qubits_b):
49 raise ValueError("unequal system sizes.")
50

51 u = []
52 for i in range(len(qubits_a)):
53 q0 = qubits_a[i]
54 q1 = qubits_b[i]
55 u.extend([cirq.Y(q1)**0.5, cirq.X(q1), cirq.CZ(q0, q1),

cirq.Z(q0)**rotations[i][0],↪→

56 cirq.Z(q1)**rotations[i][1], cirq.Y(q1)**0.5,
cirq.X(q1)])↪→

57

58 # expanded Hadamard: H = X Y^(1/2)
59 for i, q in enumerate(qubits_a):
60 u.append(cirq.Y(q)**0.5)
61 u.append(cirq.X(q)**1.0)
62

63 return cirq.Circuit(u)
64

65 def swap_readout_op(qubits_a, qubits_b):
66 """Readout operation for variational swap test.
67

68 Computes the bitwise and of matched qubits from qubits_a and qubits_b.
69

70 When the states have perfect overlap the expectation of this op will be
-1↪→

71 when these states are orthogonal the expectation of this op will be 1.
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72

73 Args:
74 qubits_a: Python `lst` of `cirq.GridQubit`s. The qubits system A act on
75 qubits_b: Python `lst` of `cirq.GridQubit`s. The qubits system B act on
76 """
77

78 def _countSetBits(n):
79 count = 0
80 while n:
81 count += n & 1
82 n >>= 1
83 return count
84

85 def _one_proj(a):
86 return 0.5 * (1 - cirq.Z(a))
87

88 if len(qubits_a) != len(qubits_b):
89 raise ValueError("unequal system sizes.")
90

91 ret_op = 0
92 for i in range(1 << len(qubits_a)):
93 if _countSetBits(i) % 2 == 0:
94 tmp_op = 1
95 for j, ch in enumerate(bin(i)[2:].zfill(len(qubits_a))):
96 intermediate = _one_proj(qubits_a[j]) * _one_proj(qubits_b[j])
97 if ch == '0':
98 intermediate = 1 - intermediate
99 tmp_op *= intermediate

100 ret_op += tmp_op
101

102 return 1.0 - (ret_op * 2 - 1)
103

104 # add controlled phase and Z phase errors after each CZ gate
105 # CZ phase error is fully random
106 # Z phase error is always the same for a given qubit index
107 class CZNoiseModel(cirq.NoiseModel):
108 def __init__(self, qubits, mean, stdev, seed=0):
109 self.mean = mean
110 self.stdev = stdev
111

112 np.random.seed(seed)
113 single_errors = {}
114 for q in qubits:
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115 single_errors[q] = np.random.normal(self.mean[1], self.stdev[1])
116 self.single_errors = single_errors
117

118 def noisy_operation(self, op):
119 if isinstance(op.gate, cirq.ops.CZPowGate):
120 return [op,

cirq.ops.CZPowGate(exponent=np.random.normal(self.mean[0],
self.stdev[0]))(*op.qubits), cirq.ops.ZPowGate(exponent =
self.single_errors[op.qubits[0]])(op.qubits[0]),
cirq.ops.ZPowGate(exponent =
self.single_errors[op.qubits[1]])(op.qubits[1])]

↪→

↪→

↪→

↪→

↪→

121

122 return op
123

124 def get_data_maker():
125 """Get appropriate dataset maker for a given circuit type."""
126 return generator_circuit
127

128 def get_circuit_maker():
129 """Get appropriate circuit maker for a given circuit type."""
130 return generator_circuit
131

132 def num_data_parameters(n_qubits):
133 """Get number of true data circuit parameters for a circuit type."""
134 return num_gen_parameters(n_qubits)
135

136 def num_gen_parameters(n_qubits):
137 """Get number of generator model parameters for a circuit type."""
138 return 3
139

140 def num_disc_parameters(n_qubits):
141 """Get number of discriminator model parameters for a circuit type."""
142 return 2*n_qubits
143

144 def get_rand_state(n_qubits, data_noise):
145 """Get number of data preparation circuit parameters for a circuit

type."""↪→

146 return np.random.uniform(-data_noise, data_noise,
147 num_data_parameters(n_qubits))
148

149 def generate_data(data_qubits, generator_qubits, target_quantum_data,
150 data_noise, noise_model, n_points):
151 """Generate n_points data on data_qubits with generator_qubits linked for
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152 later copying."""
153 data_maker = get_data_maker()
154

155 target_circuits = []
156 target_real_data_circuit = []
157

158 rand_states = []
159 for i in range(n_points):
160 rand_states.append(get_rand_state(len(data_qubits), data_noise))
161 for rand_state in rand_states:
162 rand_circuit = data_maker(data_qubits, rand_state +

target_quantum_data)↪→

163 rand_circuit_true_data_on_generator_qubit = data_maker(
164 generator_qubits, rand_state + target_quantum_data)
165

166 c_data = rand_circuit.with_noise(noise_model)
167 c_gen =

rand_circuit_true_data_on_generator_qubit.with_noise(noise_model)↪→

168

169 target_circuits.append(c_data)
170 target_real_data_circuit.append(c_gen)
171 target_circuits = tfq.convert_to_tensor(target_circuits)
172 target_real_data_circuit =

tfq.convert_to_tensor(target_real_data_circuit)↪→

173

174 return target_circuits, target_real_data_circuit
175

176 class SharedVar(tf.keras.layers.Layer):
177 """A custom tf.keras.layers.Layer used for sharing variables."""
178 def __init__(self, symbol_names, operators, init_vals, backend,
179 use_sampled):
180 """Custom keras layer used to share tf.Variables between several
181 tfq.layers.Expectation."""
182 super(SharedVar, self).__init__()
183 self.init_vals = init_vals
184 self.symbol_names = symbol_names
185 self.operators = operators
186 self.use_sampled = use_sampled
187 self.backend = backend
188

189 def build(self, input_shape):
190 # Build a tf.Variable that is the shape of the number of symbols.
191 self.w = self.add_weight(shape=(len(self.symbol_names),),
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192 initializer=tf.constant_initializer(
193 self.init_vals))
194

195 def call(self, inputs):
196 # inputs[0] = circuit tensor
197 # inputs[1] = circuit tensor
198 # Their expectations are evaluated with shared variables between them
199 n_datapoints = tf.gather(tf.shape(inputs[0]), 0)
200 values = tf.tile(tf.expand_dims(self.w, 0), [n_datapoints, 1])
201 if not self.use_sampled:
202 return tfq.layers.Expectation(backend=self.backend)(
203 inputs[0],
204 symbol_names=self.symbol_names,
205 operators=self.operators,
206 symbol_values=values), tfq.layers.Expectation(
207 backend=self.backend)(inputs[1],
208 symbol_names=self.symbol_names,
209 operators=self.operators,
210 symbol_values=values)
211 else:
212 return tfq.layers.SampledExpectation(backend=self.backend)(
213 inputs[0],
214 symbol_names=self.symbol_names,
215 operators=self.operators,
216 symbol_values=values,
217 repetitions=10000), tfq.layers.SampledExpectation(
218 backend=self.backend)(inputs[1],
219 symbol_names=self.symbol_names,
220 operators=self.operators,
221 symbol_values=values,
222 repetitions=10000)
223

224 def build_generator(generator_qubits,
225 data_qubits,
226 generator_symbols,
227 lr,
228 generator_initialization,
229 noise_model,
230 backend=None,
231 use_sampled=False,
232 regularization=0.000001,
233 optimizer=None):
234 """Build a generator tf.keras.Model using standard circuits.
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235

236 Args:
237 generator_qubits: Python `lst` of `cirq.GridQubit`s indicating the
238 qubits that the generator should use.
239 data_qubits: Python `lst` of `cirq.GridQubit`s indicating the qubits
240 that the data will arrive on.
241 generator_symbols: Python `lst` of numbers or `sympy.Symbol`s
242 to use in the ansatze used for the generator.
243 lr: Python `float` the learning rate of the model.
244 backend: Python object for the backend type to use when running quantum
245 circuits.
246 generator_initialization: `np.ndarray` of initial values to place
247 inside of the generator symbols in the tensorflow managed
248 variables.
249 noise_model: `cirq.NoiseModel` to apply to circuits.
250 use_sampled: Python `bool` indicating whether or not to use analytical
251 expectation or sample based expectation calculation.
252 regularization: Python `float` added as margin to an orthogonal swap

test.↪→

253 optimizer: `tf.keras.optimizers` optimizer for training the circuit.
Default↪→

254 is tf.keras.optimizers.Adam.
255 """
256 if optimizer is None:
257 optimizer = tf.keras.optimizers.Adam
258

259 # Input for the circuits that generate the quantum data from the source.
260 signal_input = tf.keras.layers.Input(shape=(), dtype=tf.dtypes.string)
261

262 # Input for the swaptest circuits. These will have the variables from the
263 # discriminator resolved into them.
264 swap_test_input = tf.keras.layers.Input(shape=(), dtype=tf.dtypes.string)
265

266 data_and_generated = tfq.layers.AddCircuit()(signal_input,
267 append=generator_circuit(
268 generator_qubits,
269 generator_symbols).
270 with_noise(noise_model))
271

272 # Append the variational swap test on to the data on data_qubits
273 # and the "generated" data on generator_qubits.
274 full_swaptest = tfq.layers.AddCircuit()(data_and_generated,
275 append=swap_test_input)
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276

277 expectation_output = None
278 if not use_sampled:
279 expectation_output = tfq.layers.Expectation(backend=backend)(
280 full_swaptest,
281 symbol_names=generator_symbols,
282 operators=swap_readout_op(generator_qubits, data_qubits),
283 initializer=tf.constant_initializer(generator_initialization))
284

285 else:
286 expectation_output = tfq.layers.SampledExpectation(backend=backend)(
287 full_swaptest,
288 symbol_names=generator_symbols,
289 operators=swap_readout_op(generator_qubits, data_qubits),
290 initializer=tf.constant_initializer(generator_initialization),
291 repetitions=10000)
292

293 expectation_output = tf.add(expectation_output,
tf.constant(regularization))↪→

294 log_output = tf.math.log(expectation_output)
295

296 # Input is true data on data qubits, and swap_test_input for both qubits.
297 qgan_g_model = tf.keras.Model(inputs=[signal_input, swap_test_input],
298 outputs=[expectation_output, log_output])
299

300 optimizerg = optimizer(learning_rate=lr)
301 lossg = lambda x, y: tf.reduce_mean(y)
302 qgan_g_model.compile(optimizer=optimizerg, loss=lossg,

loss_weights=[0,1])↪→

303

304 return qgan_g_model
305

306 def build_discriminator(generator_qubits,
307 data_qubits,
308 discriminator_symbols,
309 lr,
310 discriminator_initialization,
311 noise_model,
312 backend=None,
313 use_sampled=False,
314 regularization=0.000001,
315 optimizer=None):
316 """Build a discriminator model.
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317

318 Args:
319 generator_qubits: Python `lst` of `cirq.GridQubit`s indicating the
320 qubits that the generator should use.
321 data_qubits: Python `lst` of `cirq.GridQubit`s indicating the qubits
322 that the data will arrive on.
323 discriminator_symbols: Python `lst` of numbers or `sympy.Symbol`s
324 to use in the ansatze used for the discriminator.
325 lr: Python `float` the learning rate of the model.
326 discriminator_initialization: `np.ndarray` of symbols to place
327 inside of the discriminator symbols in the tensorflow managed
328 variables.
329 backend: Python object for the backend type to use when running quantum
330 circuits.
331 use_sampled: Python `bool` indicating whether or not to use analytical
332 expectation or sample based expectation calculation.
333 regularization: Python `float` added as margin to an orthogonal swap

test.↪→

334 optimizer: `tf.keras.optimizers` optimizer for training the circuit.
Default↪→

335 is tf.keras.optimizers.Adam.
336 """
337 if optimizer is None:
338 optimizer = tf.keras.optimizers.Adam
339

340 # True data on data_qubits.
341 signal_input_d = tf.keras.layers.Input(shape=(), dtype=tf.dtypes.string)
342

343 # Generator data on generator_qubits.
344 load_generator_data_d = tf.keras.layers.Input(shape=(),
345 dtype=tf.dtypes.string)
346

347 # True data on generator_qubits.
348 load_true_data_d = tf.keras.layers.Input(shape=(),

dtype=tf.dtypes.string)↪→

349

350 # Swap circuit with input.
351 swap_test_input_d = tfq.layers.AddCircuit()(
352 signal_input_d,
353 append=discriminator_circuit(data_qubits, generator_qubits,
354 np.array(discriminator_symbols).reshape(-1, 2)).
355 with_noise(noise_model))
356
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357

358 # Swap test between the true data and generator.
359 swaptest_d = tfq.layers.AddCircuit()(load_generator_data_d,
360 append=swap_test_input_d)
361

362 # Swap test between the true data and itself. Useful for how close to the
363 # "true" swap test we are over time as we train.
364 swapontruedata = tfq.layers.AddCircuit()(load_true_data_d,
365 append=swap_test_input_d)
366

367 tmp = SharedVar(discriminator_symbols,
368 swap_readout_op(generator_qubits, data_qubits),
369 discriminator_initialization, backend, use_sampled)
370 expectation_output_d, expectation_output2 = tmp(
371 [swaptest_d, swapontruedata])
372

373 expectation_output_d = tf.add(expectation_output_d,
tf.constant(regularization))↪→

374 log_discrim_dist =
tf.math.log(tf.keras.backend.flatten(expectation_output_d))↪→

375 log_true_dist =
tf.math.log(tf.keras.backend.flatten(expectation_output2))↪→

376

377

378 final_output = -log_discrim_dist
379

380 qgan_d_model = tf.keras.Model(
381 inputs=[signal_input_d, load_generator_data_d, load_true_data_d],
382 outputs=[expectation_output_d, expectation_output2, final_output])
383

384 optimizerd = optimizer(learning_rate=lr)
385

386 # Difference between "generator vs true data" and "true vs true (given
387 # we many not be doing a perfect swap test yet)"
388 lossd = lambda x, y: -tf.reduce_mean(y)
389 qgan_d_model.compile(optimizer=optimizerd, loss=lossd,

loss_weights=[0,0,1])↪→

390

391 return qgan_d_model
392

393 def quantum_data_overlap(qubits, params_a, params_b):
394 """Compute overlap of quantum data circuits with params_a and

params_b."""↪→
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395 sim = cirq.Simulator()
396 circuit_maker = get_circuit_maker()
397 data_maker = get_data_maker()
398 circuit_a = circuit_maker(qubits, params_a)
399 circuit_b = data_maker(qubits, params_b)
400 res_a = sim.simulate(circuit_a)
401 res_b = sim.simulate(circuit_b)
402 overlap = np.abs(np.vdot(res_a.final_state_vector,

res_b.final_state_vector))↪→

403 return overlap
404

405 def run_experiment(d_learn, g_learn, d_epoch, g_epoch, batchsize,
n_episodes,↪→

406 n_qubits, target_quantum_data, use_perfect_swap,
407 gate_error_mean, gate_error_stdev, n_data=1, data_noise=0,
408 use_sampled=False, log_interval=10, backend=None, seed=0):
409 """Run a QGAN experiment.
410

411 Args:
412 d_learn: Python `float` discriminator learning rate.
413 g_learn: Python `float` generator learning rate.
414 d_epoch: Python `int` number of discriminator iterations per episode.
415 g_epoch: Python `int` number of generator iterations per episode.
416 batchsize: Python `int` number of entries to use in a batch.
417 n_episodes: Python `int` number of total QGAN training episodes.
418 n_qubits: Python `int` number of qubits to use for each susbsystem.
419 target_quantum_data: Python object. True target state.
420 use_perfect_swap: `bool` whether or not to train discriminator.
421 gate_error_mean: mean angle error on 2-qubit gates (`None` if no

noise).↪→

422 gate_error_stdev: standard deviation of angle error on 2-qubit gates.
423 n_data: Python `int` number of total datapoints to generate.
424 data_noise: Python `float` bounds on noise in real data preparation.
425 use_sampled: Python `bool` whether or not analytical or sampled exp.
426 backend: None or `cirq.SimulatesFinalState` or `cirq.Sampler`.
427 log_interval: Python `int` log every log_interval episodes.
428 seed: seed of run for noise model and training.
429 """
430

431 circuit_maker = get_circuit_maker()
432 generator_initialization = np.zeros(num_gen_parameters(n_qubits))
433 discriminator_initialization = np.array([[0.0, 0.0]] * n_qubits)
434
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435 # Create data and generator qubits
436 data_qubits = [cirq.GridQubit(1, k + 4) for k in range(n_qubits)]
437 generator_qubits = [cirq.GridQubit(2, k + 4) for k in range(n_qubits)]
438 ancilla = cirq.GridQubit(1, 5) # potentially unused.
439 all_qubits = data_qubits + generator_qubits
440

441 # Noise on single-qubit gates
442 if (gate_error_mean is None) or (gate_error_stdev is None):
443 noise_model = None
444 else:
445 noise_model = CZNoiseModel(all_qubits, gate_error_mean,

gate_error_stdev, seed=seed)↪→

446

447 # Generator and Discriminator symbols
448 discriminator_parameters = []
449 generator_parameters = []
450 for j in range(num_disc_parameters(n_qubits)):
451 discriminator_parameters.append(sympy.Symbol('Discrimx{!r}'.format(j)))
452 for j in range(num_gen_parameters(n_qubits)):
453 generator_parameters.append(sympy.Symbol('Genx{!r}'.format(j)))
454 target_circuits, target_real_data_circuit = generate_data(data_qubits,
455 generator_qubits, target_quantum_data, data_noise, noise_model, n_data)
456

457 # Generator and Discriminator models
458 qgan_d_model = build_discriminator(
459 generator_qubits, data_qubits, discriminator_parameters, d_learn,
460 discriminator_initialization, noise_model, backend, use_sampled)
461 qgan_g_model = build_generator(
462 generator_qubits, data_qubits, generator_parameters, g_learn,
463 generator_initialization, noise_model, backend, use_sampled)
464

465 # Tracking info
466 d_loss = []
467 g_loss = []
468 overlap_record = []
469 param_history = []
470

471 repeats = 1
472 if not use_perfect_swap: # introduce adversarial second phase
473 repeats = 2
474 n_episodes = n_episodes // 2
475

476 for r in range(repeats):
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477 if r == 0: # use perfect swap for first half
478 use_perfect_swap = True
479 elif r == 1: # use adversarial learning for second half
480 use_perfect_swap = False
481 # begin training
482 for k in range(1, n_episodes + 1):
483 if k != 0:
484 generator_initialization = qgan_g_model.trainable_variables[
485 0].numpy()
486

487 overlap_record.append(
488 quantum_data_overlap(data_qubits, generator_initialization,
489 target_quantum_data))
490 param_history.append([qgan_g_model.trainable_variables[0].numpy(),
491 qgan_d_model.trainable_variables[0].numpy()])
492

493 if not use_perfect_swap:
494 # prepare discriminator network input
495 gen_circuit = circuit_maker(generator_qubits,

generator_initialization)↪→

496 gen_circuit = gen_circuit.with_noise(noise_model)
497 load_generator_circuit = tf.tile(
498 tfq.convert_to_tensor(
499 [gen_circuit]),
500 tf.constant([n_data]))
501

502 historyd = qgan_d_model.fit(x=[
503 target_circuits, load_generator_circuit,

target_real_data_circuit], y=[ tf.zeros_like(target_circuits,
dtype=tf.float32), tf.zeros_like(target_circuits,
dtype=tf.float32), tf.zeros_like(target_circuits,
dtype=tf.float32)], epochs=d_epoch, batch_size=batchsize,
verbose=0)

↪→

↪→

↪→

↪→

↪→

504

505 d_loss.append(historyd.history['loss'])
506

507 # prepare generator network input
508 discriminator_initialization = qgan_d_model.trainable_variables[
509 0].numpy().reshape((-1, 2))
510

511 # evaluate noisy swap test
512 swap_test_circuit = discriminator_circuit(
513 data_qubits, generator_qubits, discriminator_initialization)
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514

515 swap_test_circuit = swap_test_circuit.with_noise(noise_model)
516 swap_test_circuit =

tf.tile(tfq.convert_to_tensor([swap_test_circuit]),↪→

517 tf.constant([n_data]))
518

519 # record history
520 history = qgan_g_model.fit(x=[target_circuits, swap_test_circuit],
521 y=[tf.zeros_like(target_circuits,
522

dtype=tf.float32),tf.zeros_like(target_circuits,↪→

523 dtype=tf.float32)],
524 epochs=g_epoch,
525 batch_size=batchsize,
526 verbose=0)
527

528 g_loss.append(history.history['loss'])
529

530 if k % log_interval == 0:
531 print(f'Step = {k}. Overlap={overlap_record[-1]}')
532 print(f'Step = {k}. g_loss={g_loss[-1]}')
533 if not use_perfect_swap:
534 print(f'Step = {k}. d_loss={d_loss[-1]}')
535 print(f'Step = {k}.

gen_params={qgan_g_model.trainable_variables[0].numpy()}')↪→

536 print(f'Step = {k}.
discrim_params={qgan_d_model.trainable_variables[0].numpy()}')↪→

537

538 print('-'*50)
539

540 return np.array(g_loss), np.array(d_loss), np.array(overlap_record),
np.array(param_history)↪→

541

542 d_epoch = 1
543 g_epoch = 1
544 batchsize = 4
545

546 target_quantum_data = [0.0, 0.5, 0.5]
547

548 n_qubits = 1
549 d_learn = 0.01
550 g_learn = 0.01
551 n_episodes = 80
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552

553 # format (radians): [controlled phase error, single-qubit Z phase error]
554 gate_error_mean = [0.0, 0.06]
555 gate_error_stdev = [0.005, 0.02]
556

557 # we run with a "perfect" swap test that is imperfect due to noise
558 use_perfect_swap = True
559 print('TRAINING PERFECT SWAP TEST')
560 g_loss_perf, d_loss_perf, overlap_perf, params_perf = run_experiment(
561 d_learn, g_learn, d_epoch, g_epoch, batchsize,
562 n_episodes, n_qubits, target_quantum_data,
563 use_perfect_swap, gate_error_mean, gate_error_stdev)
564 print()
565

566 # we run with adversarial training to see noise get suppressed
567 use_perfect_swap = False
568 print('TRAINING ADVERSARIAL SWAP TEST')
569 g_loss_adv, d_loss_adv, overlap_adv, params_adv = run_experiment(
570 d_learn, g_learn, d_epoch, g_epoch, batchsize,
571 n_episodes, n_qubits, target_quantum_data,
572 use_perfect_swap, gate_error_mean, gate_error_stdev)
573

574 def stopping_ind(d_loss, smoothing_period=5):
575 """Get overlap and parameters at minimum generator loss."""
576 # simple moving average
577 flattened_loss = np.array(d_loss).flatten()
578 if smoothing_period > 1:
579 smoothed = np.convolve(flattened_loss, np.ones(smoothing_period),

'valid')↪→

580 smoothed /= smoothing_period
581 else:
582 smoothed = flattened_loss
583

584 # find when the discriminator loss is lowest in the second half of
training↪→

585 # this corresponds to when the GAN is most fooled by the fake data
586 n_episodes = len(d_loss)*2
587 best_ind = n_episodes//2 + np.argmin(smoothed)
588 best_ind += smoothing_period // 2
589 if best_ind >= n_episodes:
590 best_ind = n_episodes - 1
591 return best_ind
592
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593 fidelity_perfect_swap = overlap_perf**2
594 fidelity_adversarial = overlap_adv**2
595 adv_best_ind = stopping_ind(d_loss_adv, smoothing_period=5)
596

597 plt.figure(figsize=(5, 3.9))
598 plt.plot(fidelity_perfect_swap, 'C1', label='Perfect SWAP')
599 plt.plot(fidelity_adversarial, 'C2', label='EQ-GAN')
600 plt.axvline(x=adv_best_ind, c='C2', linestyle='--')
601 plt.legend(fontsize=12)
602 plt.xlabel('Iteration', fontsize=14)
603 plt.ylabel('Fidelity $|\\mathrm{data} | \\mathrm{generated} \\rangle|^2$',

fontsize=14)↪→

604 plt.tight_layout()
605 plt.show()
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A p p e n d i x D

CODE: VARIATIONAL QUANTUM RANDOM ACCESS
MEMORY

In Chapter 2, we described the use of the entangling quantum generative ad-
versarial network (EQ-GAN) to prepare a quantum random access memory
(QRAM) representation of an approximation to the classical dataset in super-
position. By loading the approximate dataset from the variational QRAM, a
quantum neural network (QNN) is trained more quickly, showing a possible use
for the EQ-GAN architecture in preparing shallow circuit approximations of
deeper circuits. Here, we provide code to show that a QNN classifier converges
more quickly when trained from a superposition over the dataset instead of
individual data examples.

1 import tensorflow as tf
2 import tensorflow_quantum as tfq
3

4 import cirq
5 import sympy
6 import numpy as np
7

8 # visualization tools
9 import matplotlib.pyplot as plt

10 from cirq.contrib.svg import SVGCircuit
11

12 import collections
13 import itertools
14

15 from skopt import gp_minimize
16 from skopt.space.space import Real
17

18 hardware_backend = False
19

20 if hardware_backend:
21 project_id = 'google.com:quantum-engine-trail-run'
22 engine = cirq.google.Engine(project_id=project_id)
23 testsamplerxmon_rainbow = engine.sampler(processor_id=['rainbow'],

gate_set=cirq.google.XMON)↪→
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24 backend = testsamplerxmon_rainbow
25 else:
26 backend = None
27

28 # create 2-peak dataset
29 def create_data(seed, n, dataset_size=100):
30 np.random.seed(seed)
31 # sample data from Gaussian
32 data0_raw = np.random.normal(2**(n-1), scale=2, size=dataset_size)
33 bins = np.arange(2**n + 1).astype(np.float64)
34 bins[-1] = np.inf
35 counts0, _ = np.histogram(data0_raw, bins=bins)
36 data0 = np.clip(np.floor(data0_raw), 0, 2**n - 1)
37

38 data1_raw = np.random.normal(2**(n-2), scale=1, size=dataset_size)
39 counts1, _ = np.histogram(data1_raw, bins=bins)
40 data1 = np.clip(np.floor(data1_raw), 0, 2**n - 1)
41

42 return data0, data1
43

44 # create circuits from dataset (for sampling)
45 size = 120
46 n = 4 # number of qubits
47 data0, data1 = create_data(0, n, dataset_size=size)
48

49 bins = np.arange(2**n + 1).astype(np.float64)
50 bins[-1] = np.inf
51 probs0, _ = np.histogram(data0, bins=bins)
52 probs1, _ = np.histogram(data1, bins=bins)
53

54 print('Classical dataset probabilities')
55 plt.figure(figsize=(3.2, 2.8))
56 plt.scatter(bins[:-1], probs0, label='Class 0')
57 plt.scatter(bins[:-1], probs1, label='Class 1')
58 plt.legend()
59 plt.ylabel('Count')
60 plt.tight_layout()
61 plt.savefig('classical_data.pdf')
62 plt.show()
63

64

65 # get qubits for a rainbow chip
66 def get_exp_qubits(n, class_type=-1):
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67 # we hard-wire choice of qubits for n = 4 on quantum device
68 if class_type == 0:
69 return [cirq.GridQubit(2, 4), cirq.GridQubit(1, 4), cirq.GridQubit(2,

3),↪→

70 cirq.GridQubit(2, 5), cirq.GridQubit(3, 4)]
71 elif class_type == 1:
72 return [cirq.GridQubit(1, 4), cirq.GridQubit(2, 4), cirq.GridQubit(2,

3),↪→

73 cirq.GridQubit(2, 5), cirq.GridQubit(3, 4)]
74 else:
75 return [cirq.GridQubit(3, 4), cirq.GridQubit(1, 4), cirq.GridQubit(2,

3),↪→

76 cirq.GridQubit(2, 5), cirq.GridQubit(2, 4)]
77

78 # EQ-GAN generator for double exponential peaks
79 def build_qnn(qubits, model_type):
80 n = len(qubits)
81 u = []
82 angles = []
83 if model_type == 0:
84 center = 0
85 j = 0
86 for i in range(n):
87 if i == center:
88 u.extend([cirq.Y(qubits[i])**0.5, cirq.X(qubits[i])])
89 else:
90 theta = sympy.Symbol('t' + str(i))
91 angles.append(theta)
92 u.append(cirq.ry(2*theta).on(qubits[i]))
93 j += 1
94 for i in range(n):
95 if i != center:
96 u.extend([cirq.Y(qubits[i])**0.5, cirq.X(qubits[i]),
97 cirq.CZ(qubits[center], qubits[i]),
98 cirq.Y(qubits[i])**0.5, cirq.X(qubits[i])])
99 circuit = cirq.Circuit(u)

100 elif model_type == 1:
101 j = 0
102 center = 1
103 u.append(cirq.I.on(qubits[0]))
104 for i in range(1, n):
105 if i == center:
106 u.extend([cirq.Y(qubits[i])**0.5, cirq.X(qubits[i])])



119

107 else:
108 theta = sympy.Symbol('t' + str(i))
109 angles.append(theta)
110 u.append(cirq.ry(2*theta).on(qubits[i]))
111 j += 1
112 for i in range(1, n):
113 if i != center:
114 u.extend([cirq.Y(qubits[i])**0.5, cirq.X(qubits[i]),
115 cirq.CZ(qubits[center], qubits[i]),
116 cirq.Y(qubits[i])**0.5, cirq.X(qubits[i])])
117 circuit = cirq.Circuit(u)
118 return circuit, angles
119

120 # do a swap gate with CZ between q0 and q1
121 def compiled_swap(q0, q1):
122 u = []
123 u.extend([cirq.X(q0)**0.5])
124 u.extend([cirq.Z(q1)**-0.5, cirq.X(q1)**0.5, cirq.Z(q1)**0.5])
125 u.append(cirq.CZ(q0, q1))
126 u.extend([cirq.Z(q0)**-1, cirq.X(q0)**0.5, cirq.Z(q0)**1])
127 u.extend([cirq.Z(q1)**-1.5, cirq.X(q1)**0.5, cirq.Z(q1)**1.5])
128 u.append(cirq.CZ(q0, q1))
129 u.extend([cirq.X(q0)**0.5])
130 u.extend([cirq.Z(q1)**-0.5, cirq.X(q1)**0.5, cirq.Z(q1)**0.5])
131 u.append(cirq.CZ(q0, q1))
132 u.extend([cirq.Z(q0)**-0.5])
133 u.extend([cirq.Z(q1)**0.5])
134 return cirq.Circuit(u)
135

136 # get a learned circuit for a given dataset
137 def get_model(n, class_type):
138 # pre-trained weights from EQ-GAN on exactly the same training set
139 # QRAM is trained from 60 examples (half of the size = 120)
140 all_weights = [[1.3459893, 1.0012823, 0.94282967], [4.7395287,

0.96802247]]↪→

141

142 qubits = get_exp_qubits(n, class_type)
143 qnn, symbols = build_qnn(qubits[:-1], class_type)
144 resolver = {}
145 for i in range(len(symbols)):
146 resolver[symbols[i]] = all_weights[class_type][i]
147 resolved_qnn = cirq.resolve_parameters(qnn, resolver)
148
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149 all_qubits = get_exp_qubits(n)
150 resolved_qnn += compiled_swap(all_qubits[0], all_qubits[-1])
151 return resolved_qnn
152

153 simulator = cirq.Simulator()
154 qubit_order_0 = [cirq.GridQubit(2, 4), cirq.GridQubit(3, 4),

cirq.GridQubit(1, 4),↪→

155 cirq.GridQubit(2, 3), cirq.GridQubit(2, 5)]
156 result = simulator.simulate(get_model(n, 0),

qubit_order=qubit_order_0).final_state_vector↪→

157 probs_class_0 = np.abs(result)**2
158

159 qubit_order_1 = [cirq.GridQubit(2, 4), cirq.GridQubit(1, 4),
cirq.GridQubit(3, 4),↪→

160 cirq.GridQubit(2, 3), cirq.GridQubit(2, 5)]
161 result = simulator.simulate(get_model(n, 1),

qubit_order=qubit_order_1).final_state_vector↪→

162 probs_class_1 = np.abs(result)**2
163

164 print('Variational QRAM')
165 plt.figure(figsize=(3.2, 2.8))
166 plt.scatter(np.arange(2**n), probs_class_0[:2**n], label='Class 0')
167 plt.scatter(np.arange(2**n), probs_class_1[:2**n], label='Class 1')
168 plt.ylabel('PDF')
169 plt.legend()
170 plt.tight_layout()
171 plt.savefig('quantum_data.pdf')
172 plt.show()
173

174 def convert_to_circuit(data, n):
175 values = np.ndarray.flatten(data)
176 qubits = get_exp_qubits(n)
177 circuit = cirq.Circuit()
178 for i, value in enumerate(values):
179 circuit.append(cirq.X(qubits[i])**value)
180 return circuit
181

182 # helper function to replace np.unpackbits with a custom bitstring length
183 def unpackbits(x, num_bits):
184 xshape = list(x.shape)
185 x = x.reshape([-1, 1])
186 mask = 2**np.arange(num_bits).reshape([1, num_bits])
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187 return np.flip((x & mask).astype(bool).astype(int).reshape(xshape +
[num_bits]), axis=1)↪→

188

189 all_data = np.array([unpackbits(data0.astype(np.int64), n),
190 unpackbits(data1.astype(np.int64), n)])
191

192 x_circ = [convert_to_circuit(x, n) for x in all_data[0]]
193 x_circ = x_circ + [convert_to_circuit(x, n) for x in all_data[1]]
194 y = np.array([0]*len(all_data[0]) + [1]*len(all_data[1]))
195

196 # define the QNN classifier
197 class ClassifierCircuitLayerBuilder():
198 def __init__(self, data_qubits, readouts):
199 self.data_qubits = data_qubits
200 self.readouts = readouts
201

202 def add_layer(self, circuit, prefix):
203 for j, readout in enumerate(self.readouts):
204 for i, qubit in enumerate(self.data_qubits):
205 symbol = sympy.Symbol(prefix + '-' + str(j) + '-' + str(i))
206 u = []
207 u.extend([cirq.Z(qubit)**-0.5, cirq.X(qubit)**0.5,

cirq.Z(qubit)**0.5])↪→

208 u.append(cirq.CZ(qubit, readout))
209 u.extend([cirq.Z(qubit)**-1, cirq.X(qubit)**symbol,

cirq.Z(qubit)**1])↪→

210 u.append(cirq.CZ(qubit, readout))
211 u.extend([cirq.Z(qubit)**0.5, cirq.X(qubit)**0.5,

cirq.Z(qubit)**-0.5])↪→

212 circuit += cirq.Circuit(u)
213

214 def build_quantum_classifier(n_readouts=1):
215 """Create a QNN model circuit and readout operation to go along with

it."""↪→

216 readouts = []
217 qubits = get_exp_qubits(n)
218 for i in range(n_readouts):
219 readouts.append(qubits[-1])
220 circuit = cirq.Circuit()
221 data_qubits = qubits[:-1]
222

223 # prepare the readout qubit
224 circuit.append(cirq.X.on_each(readouts))



122

225 circuit.append((cirq.Y**0.5).on_each(readouts))
226 circuit.append(cirq.X.on_each(readouts))
227

228 builder = ClassifierCircuitLayerBuilder(data_qubits, readouts)
229

230 # add layer(s)
231 builder.add_layer(circuit, "layer1")
232

233 # prepare the readout qubit
234 circuit.append((cirq.Y**0.5).on_each(readouts))
235 circuit.append(cirq.X.on_each(readouts))
236

237 total = cirq.Z(readouts[0])
238 for readout in readouts[1:]:
239 total += cirq.Z(readout)
240 return circuit, total/len(readouts)
241

242 # create the QNN classifier
243 model_circuit, model_readout = build_quantum_classifier(1)
244

245 def hinge_accuracy(y_true, y_pred):
246 y_true = tf.squeeze(y_true) > 0.0
247 y_pred = tf.squeeze(y_pred) > 0.0
248 result = tf.cast(y_true == y_pred, tf.float32)
249

250 return tf.reduce_mean(result)
251

252 x_train_tfcirc = tfq.convert_to_tensor(x_circ[:size//2])
253 x_test_tfcirc = tfq.convert_to_tensor(x_circ[size//2:])
254 y_train = y[:size//2]
255 y_test = y[size//2:]
256

257 y_train_hinge = 2.0*y_train-1.0
258 y_test_hinge = 2.0*y_test-1.0
259

260 epochs = 1
261

262 # train non-superposition QNN classifier
263 def train_sample_qnn(n, averages=5, learning_rate=0.001):
264 sample_acc_data = []
265 for i in range(averages):
266 model = tf.keras.Sequential([
267 # The input is the data-circuit, encoded as a tf.string
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268 tf.keras.layers.Input(shape=(), dtype=tf.string),
269 # The PQC layer returns the expected value of the readout gate,

range [-1,1].↪→

270 tfq.layers.PQC(model_circuit, model_readout, repetitions=10000,
backend=backend),↪→

271 ])
272 model.compile(
273 loss=tf.keras.losses.Hinge(),
274 optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
275 metrics=[hinge_accuracy])
276

277 qnn_history_sample = model.fit(
278 x_train_tfcirc, y_train_hinge,
279 batch_size=1,
280 epochs=epochs,
281 verbose=0,
282 validation_data=(x_test_tfcirc, y_test_hinge))
283

284 qnn_results_sample = model.evaluate(x_test_tfcirc, y_test)
285 sample_weights = model.get_weights()[0]
286 sample_acc_data.append(qnn_results_sample[1])
287 print('Trained model', i+1)
288

289 return sample_acc_data
290

291 # train superposition QNN classifier
292 def train_superpos_qnn(n, averages=5, learning_rate=0.001):
293 gen_circuit_class_0 = get_model(n, 0)
294 gen_circuit_class_1 = get_model(n, 1)
295 superposition_acc_data = []
296 for i in range(averages):
297 model = tf.keras.Sequential([
298 # The input is the data-circuit, encoded as a tf.string
299 tf.keras.layers.Input(shape=(), dtype=tf.string),
300 # The PQC layer returns the expected value of the readout gate,

range [-1,1].↪→

301 tfq.layers.PQC(model_circuit, model_readout, repetitions=10000,
backend=backend),↪→

302 ])
303 model.compile(
304 loss=tf.keras.losses.Hinge(),
305 optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
306 metrics=[hinge_accuracy])
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307

308 x_superposition = tfq.convert_to_tensor([gen_circuit_class_0,
gen_circuit_class_1])↪→

309 y_superposition = np.array([-1, 1])
310

311 qnn_history_superposition = model.fit(
312 x_superposition, y_superposition,
313 batch_size=1,
314 epochs=epochs*len(x_train_tfcirc)//2,
315 verbose=0,
316 validation_data=(x_superposition, y_superposition))
317

318 qnn_results_superposition = model.evaluate(x_test_tfcirc, y_test)
319 superposition_weights = model.get_weights()[0]
320 superposition_acc_data.append(qnn_results_superposition[1])
321 print('Trained model', i+1)
322

323 return superposition_acc_data
324

325 tune = False # can tune hyperparameters with Bayesian optimization
326 if tune:
327 averages = 10
328 lr_range = [Real(-4, -1)]
329

330 def opt_helper_superpos(lr):
331 return -np.mean(train_superpos_qnn(averages=averages,

learning_rate=10**lr[0]))↪→

332 def opt_helper_sample(lr):
333 return -np.mean(train_sample_qnn(averages=averages,

learning_rate=10**lr[0]))↪→

334

335 res_sup = gp_minimize(opt_helper_superpos, lr_range, n_calls=50)
336 res_sam = gp_minimize(opt_helper_sample, lr_range, n_calls=50)
337 print("Superposition: x*=%.2f f(x*)=%.2f" % (res_sup.x[0], res_sup.fun))
338 print("Sample: x*=%.2f f(x*)=%.2f" % (res_sam.x[0], res_sam.fun))
339 else:
340 # pre-optimized parameter tunes
341 lr_tunes = {'superposition': 10**-1.83, 'sample': 10**-3.93}
342 averages = 20
343

344 superpos_qnn_data = train_superpos_qnn(n, averages=averages,
345 learning_rate=lr_tunes['superposition'])
346 superpos_mean = np.mean(superpos_qnn_data)
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347 superpos_std = np.std(superpos_qnn_data)/np.sqrt(averages)
348 print('QNN superposition accuracy (mean):', superpos_mean)
349 print('QNN superposition accuracy (stdev):', superpos_std)
350

351 sample_qnn_data = train_sample_qnn(n, averages=averages,
352 learning_rate=lr_tunes['sample'])
353 sample_mean = np.mean(sample_qnn_data)
354 sample_std = np.std(sample_qnn_data)/np.sqrt(averages)
355 print('QNN sample accuracy (mean):', sample_mean)
356 print('QNN sample accuracy (stdev):', sample_std)
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A p p e n d i x E

CODE: SHALLOW CIRCUITS FOR TIME EVOLUTION

In Chapter 3, we described the method of compressed Trotterization to learn
a shallow circuit representation of a Trotterized time evolution unitary e−iHt.
The code implementing the approach is provided below.

1 #
2 # approximate time evolution
3 #
4

5 import pickle
6

7 import numpy as np
8 import scipy
9 import sympy

10 import matplotlib.pyplot as plt
11

12 import cirq
13 import openfermion
14 import openfermioncirq
15 from openfermioncirq import trotter
16

17 import tensorflow as tf
18 import tensorflow_quantum as tfq
19

20 import cirq.contrib.noise_models
21 import sys
22

23 NOISY = False
24

25 def generate_LR_y(p, norm):
26 n = len(p)//2;
27 l = np.sum(p[:n]**2)
28 r = np.sum(p[n:]**2)
29

30 if r == 0:
31 return 0
32 t = 2*np.arcsin(np.sqrt(r / (l+r)))
33 return t
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34

35 def generate_LR_z(w, norm):
36 n = len(w)//2;
37 l = w[:n]
38 r = w[n:]
39 t = 0
40 for i in range(n):
41 t += r[i] - l[i]
42 return t/norm
43

44 def encode_state(coeffs, qubits):
45 p = np.abs(coeffs)
46 w = np.angle(coeffs)
47

48 n = len(qubits)
49 m = len(p)
50 norm = np.sum(p**2)
51

52 # CRy rotations
53 for i in range(n):
54 if i == 0:
55 t = generate_LR_y(p, norm)
56 yield cirq.ry(t)(qubits[0])
57 else:
58 divs = 2**i
59

60 # generate all binary strings of needed length
61 for j in range(divs):
62 start = m//divs * j
63 stop = m//divs * (j+1)
64 t = generate_LR_y(p[start:stop], norm)
65

66 if t == 0:
67 continue
68

69 # we need to control on zero, so use bit flips
70 # where mask is false, conjugate by X
71 mask = np.where(np.flip((((j & (1 << np.arange(i)))) >

0).astype(int)) == 0)[0]↪→

72 for k in mask:
73 yield cirq.X(qubits[k])
74 yield cirq.ry(t)(qubits[i]).controlled_by(*qubits[0:i])
75 for k in mask:
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76 yield cirq.X(qubits[k])
77

78

79

80 # 1D Hubbard model
81 def get_hubbard_n(scale):
82 return 2*scale*scale
83

84 def hubbard_h(scale):
85 tunneling = 1.0
86 coulomb = 4.0
87 chemical_potential = 1.0
88 magnetic_field = 1.0
89 params = [tunneling, coulomb, chemical_potential, magnetic_field]
90

91 n_qubits = get_hubbard_n(scale)
92 x_dim = scale
93 y_dim = scale
94

95 hubbard_model = openfermion.fermi_hubbard(x_dim, y_dim, params[0],
params[1], chemical_potential=params[2], magnetic_field=params[3])↪→

96 diag = openfermion.get_diagonal_coulomb_hamiltonian(hubbard_model)
97 return diag
98

99 def hubbard(qubits, n_steps, scale=3, time=1, order=1, hamiltonian=None):
100 if hamiltonian is None:
101 diag = hubbard_h(scale)
102 else:
103 diag = hamiltonian
104

105 circuit = cirq.Circuit(
106 openfermioncirq.simulate_trotter(qubits, diag, time=time,

n_steps=n_steps, order=order, omit_final_swaps=True)↪→

107 )
108 print('length before optimization', len(list(circuit.all_operations())))
109 cirq.google.ConvertToXmonGates().optimize_circuit(circuit)
110 print('length after optimization', len(list(circuit.all_operations())))
111 return circuit, diag
112

113 # prepare random bitstring in computational basis
114 def get_state_preparation_circuit(qubits, selection=None):
115 if selection is None:
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116 selection = np.random.choice(np.arange(len(qubits)),
size=np.random.randint(len(qubits)), replace=False)↪→

117 u = []
118 for s in selection:
119 u.append(cirq.X.on(qubits[s]))
120 for q in qubits:
121 u.append(cirq.I.on(q))
122 circuit = cirq.Circuit(u)
123 return circuit, selection
124

125

126 noise = cirq.contrib.noise_models.DepolarizingWithDampedReadoutNoiseModel(
127 depol_prob=0.005,
128 bitflip_prob=0.005,
129 decay_prob=0.005)
130 noisy_simulator = cirq.DensityMatrixSimulator(noise=noise)
131

132 def get_jellium_n(scale):
133 return scale*scale
134

135 def jellium_prep(scale, qubits):
136 # Set parameters of jellium model.
137 wigner_seitz_radius = 5. # Radius per electron in Bohr radii.
138 n_dimensions = 2 # Number of spatial dimensions.
139 grid_length = scale # Number of grid points in each dimension.
140 spinless = True # Whether to include spin degree of freedom or not.
141 n_electrons = 2 # Number of electrons.
142

143 # Figure out length scale based on Wigner-Seitz radius and construct a
basis grid.↪→

144 length_scale = openfermion.wigner_seitz_length_scale(
145 wigner_seitz_radius, n_electrons, n_dimensions)
146 grid = openfermion.Grid(n_dimensions, grid_length, length_scale)
147

148 # Initialize the model and print out.
149 fermion_hamiltonian = openfermion.jellium_model(grid, spinless=spinless,

plane_wave=False)↪→

150 # print(fermion_hamiltonian)
151

152 # Convert to DiagonalCoulombHamiltonian type.
153 hamiltonian =

openfermion.get_diagonal_coulomb_hamiltonian(fermion_hamiltonian)↪→

154



130

155 # Obtain the Bogoliubov transformation matrix.
156 quadratic_hamiltonian =

openfermion.QuadraticHamiltonian(hamiltonian.one_body)↪→

157 _, transformation_matrix, _ =
quadratic_hamiltonian.diagonalizing_bogoliubov_transform()↪→

158

159 # Create a circuit that prepares the mean-field state
160 occupied_orbitals = range(n_electrons)
161 n_qubits = len(qubits)
162 state_preparation_circuit = cirq.Circuit(
163 openfermioncirq.bogoliubov_transform(
164 qubits, transformation_matrix, initial_state=occupied_orbitals))
165

166 # Print circuit.
167 cirq.DropNegligible().optimize_circuit(state_preparation_circuit)
168

cirq.google.ConvertToXmonGates().optimize_circuit(state_preparation_circuit)↪→

169

170 initial_circuit = cirq.Circuit([cirq.X.on(qubits[0]), cirq.CX(qubits[0],
qubits[1])])↪→

171 # initial_state = sum(2 ** (n_qubits - 1 - i) for i in occupied_orbitals)
172 # px = np.zeros(2**n_qubits, dtype=np.complex64)
173 # px[initial_state] = 1
174 # initial_circuit = cirq.Circuit(encode_state(px, qubits))
175

176 return hamiltonian, initial_circuit + state_preparation_circuit
177

178 def jellium_trotter(qubits, hamiltonian, n_steps, scale=3, time=1,
order=1):↪→

179

180 # Construct circuit
181 circuit = cirq.Circuit(
182 openfermioncirq.simulate_trotter(
183 qubits, hamiltonian, time, n_steps, order,
184 algorithm=trotter.LINEAR_SWAP_NETWORK,
185 omit_final_swaps=True),
186 strategy=cirq.InsertStrategy.EARLIEST)
187

188 # Print circuit.
189 cirq.DropNegligible().optimize_circuit(circuit)
190 cirq.google.ConvertToXmonGates().optimize_circuit(circuit)
191

192 return circuit
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193

194 def trotter_state(circuit, prep_circuit, noisy=False):
195 if noisy:
196 simulated_rho = cirq.DensityMatrixSimulator(noise=noise)
197 simulated_rho = simulated_rho.simulate(prep_circuit +

circuit).final_density_matrix↪→

198 else:
199 simulated_rho = cirq.DensityMatrixSimulator()
200 simulated_rho = simulated_rho.simulate(prep_circuit +

circuit).final_density_matrix↪→

201 return simulated_rho
202

203 def true_time_evolution_fidelity(H, circuit, prep_circuit, time,
noisy=False):↪→

204 hamiltonian_sparse = openfermion.get_sparse_operator(H)
205 initial_state = cirq.Simulator().simulate(prep_circuit).final_state
206 exact_state = scipy.sparse.linalg.expm_multiply(-1j * time *

hamiltonian_sparse, initial_state)↪→

207 exact_rho = np.outer(exact_state, exact_state.conj())
208 simulated_rho = trotter_state(circuit, prep_circuit, noisy=noisy)
209 return np.real(np.trace(np.matmul(simulated_rho, exact_rho)))
210

211

212 time_inc = 0.5
213 start_time = 2.0
214 end_time = 100.0
215 initial_s = int(np.round(start_time / time_inc)) + 1
216 final_s = initial_s + int(np.round((end_time - start_time) / time_inc))
217 scale = int(sys.argv[2])
218

219 n_qubits = get_jellium_n(scale)
220 qubits_fitting = cirq.GridQubit.rect(1, n_qubits)
221 qubits_fit = qubits_fitting
222 qubits_exact = qubits_fitting
223

224 H, prep_circuit_exact = jellium_prep(scale, qubits_exact)
225 H, prep_circuit_fit = jellium_prep(scale, qubits_fit)
226

227 circuit_inc = jellium_trotter(qubits_exact, H, 1, time=time_inc, order=0)
228 circuit_fit = jellium_trotter(qubits_fit, H, 1, time=start_time, order=0)
229

230 print('check fidelity', true_time_evolution_fidelity(H, circuit_fit,
prep_circuit_fit, start_time, noisy=False))↪→
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231

232 initial_state =
tf.convert_to_tensor(cirq.Simulator().simulate(prep_circuit_fit).final_state)↪→

233 op = openfermion.get_sparse_operator(H).todense()
234 H_tf = tf.convert_to_tensor(op.astype(np.complex64))
235

236 with open('circuit_fit.pkl', 'wb') as f:
237 pickle.dump(circuit_fit, f)
238 with open('circuit_inc.pkl', 'wb') as f:
239 pickle.dump(circuit_inc, f)
240

241 from typing import overload, Any, Callable, List, Optional, Tuple, Union
242

243 from cirq.study import resolver
244 from cirq import protocols
245 from cirq.study.flatten_expressions import ExpressionMap
246

247 class ParamSymbolifier(resolver.ParamResolver):
248 """A `ParamResolver` that resolves all circuit parameters to unique

symbols.↪→

249

250 This is a mutable object that stores new expression to symbol mappings
251 when it is used to resolve parameters with `cirq.resolve_parameters` or
252 `_ParamFlattener.flatten_circuit`. It is useful for replacing sympy
253 expressions from circuits with single symbols and transforming

parameter↪→

254 sweeps to match.
255 """
256

257 def __new__(cls, *args, **kwargs):
258 """Disables the behavior of `ParamResolver.__new__`."""
259 return super().__new__(cls)
260

261 def __init__(
262 self,
263 param_dict: Optional[resolver.ParamResolverOrSimilarType] =

None,↪→

264 *, # Force keyword args
265 get_param_name: Callable[[
266 sympy.Basic,
267 ], str] = None):
268 """Initializes a new _ParamFlattener.
269
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270 Args:
271 param_dict: A default initial mapping from some parameter

names,↪→

272 symbols, or expressions to other symbols or values. Only
sympy↪→

273 expressions and symbols not specified in `param_dict` will
be↪→

274 flattened.
275 get_param_name: A callback function that returns a new

parameter↪→

276 name for a given sympy expression or symbol. If this
function↪→

277 returns the same value for two different expressions,
`'_#'` is↪→

278 appended to the name to avoid name collision where `#` is
the↪→

279 number of previous collisions. By default, returns the
280 expression string surrounded by angle brackets e.g.

`'<x+1>'`.↪→

281 """
282 if hasattr(self, '_taken_symbols'):
283 # Has already been initialized
284 return
285 if isinstance(param_dict, resolver.ParamResolver):
286 params = param_dict.param_dict
287 else:
288 params = param_dict if param_dict else {}
289 symbol_params = {
290 _ensure_not_str(param): _ensure_not_str(val)
291 for param, val in params.items()
292 }
293 super().__init__(symbol_params)
294 if get_param_name is None:
295 get_param_name = self.default_get_param_name
296 self.get_param_name = get_param_name
297 self._taken_symbols = set(self.param_dict.values())
298 self.all_symbols = []
299 self.all_values = []
300

301 @staticmethod
302 def default_get_param_name(val: sympy.Basic) -> str:
303 if isinstance(val, sympy.Symbol):
304 return val.name
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305 return '<{!s}>'.format(val)
306

307 def _next_symbol(self, val: sympy.Basic) -> sympy.Symbol:
308 v = np.random.randint(1000000)
309 symbol = sympy.Symbol('param_' + str(v))
310 # name = self.get_param_name(val)
311 # symbol = sympy.Symbol(name)
312 # # Ensure the symbol hasn't already been used
313 collision = 0
314 while symbol in self.all_symbols:
315 collision += 1
316 symbol = sympy.Symbol('param_' + str(v + collision))
317 self.all_symbols.append(symbol)
318 return symbol
319

320 def value_of(self, value: Union[sympy.Basic, float, str]
321 ) -> Union[sympy.Basic, float]:
322 """Resolves a symbol or expression to a new symbol unique to that

value.↪→

323

324 - If value is a float, returns it.
325 - If value is a str, treat it as a symbol with that name and

continue.↪→

326 - Otherwise return a symbol unique to the given value. Return
327 `param_dict[value]` if it exists or create a new symbol and add

it↪→

328 to `param_dict`.
329

330 Args:
331 value: The sympy.Symbol, sympy expression, name, or float to

resolve↪→

332 to a unique symbol or float.
333

334 Returns:
335 The unique symbol or value of the parameter as resolved by this
336 resolver.
337 """
338 self.all_values.append(value)
339 return self._next_symbol(sympy.Symbol('_'))
340

341 # if isinstance(value, (int, float)):
342 # return value
343 # if isinstance(value, str):
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344 # value = sympy.Symbol(value)
345 # out = self.param_dict.get(value, None)
346 # if out is not None:
347 # return out
348 # # Create a new symbol
349 # symbol = self._next_symbol(value)
350 # self.param_dict[value] = symbol
351 # self._taken_symbols.add(symbol)
352 # return symbol
353

354 # Default object truth, equality, and hash
355 __eq__ = object.__eq__
356 __ne__ = object.__ne__
357 __hash__ = object.__hash__
358

359 def __bool__(self) -> bool:
360 return True
361

362 def __repr__(self) -> str:
363 if self.get_param_name == self.default_get_param_name:
364 return f'_ParamFlattener({self.param_dict!r})'
365 else:
366 return (f'_ParamFlattener({self.param_dict!r}, '
367 f'get_param_name={self.get_param_name!r})')
368

369 def flatten(self, val: Any) -> Any:
370 """Returns a copy of `val` with any symbols or expressions replaced

with↪→

371 new symbols. `val` can be a `Circuit`, `Gate`, `Operation`, or
other↪→

372 type.
373

374 This method mutates the `_ParamFlattener` by storing any new
mappings↪→

375 from expression to symbol that is uses on val.
376

377 Args:
378 val: The value to copy def symbolify(val: Any) -> Tuple[Any,

'ExpressionMap']:↪→

379 flattener = ParamSymbolifier()
380 val_flat = flattener.flatten(val)
381 # expr_map = ExpressionMap(flattener.param_dict)
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382 return val_flat, flattener.all_symbols, flattener.all_valueswith
substituted parameters.↪→

383 """
384 return protocols.resolve_parameters(val, self)
385

386 def symbolify(val: Any) -> Tuple[Any, 'ExpressionMap']:
387 flattener = ParamSymbolifier()
388 val_flat = flattener.flatten(val)
389 # expr_map = ExpressionMap(flattener.param_dict)
390 return val_flat, flattener.all_symbols, flattener.all_values
391

392 def symbolify(val: Any) -> Tuple[Any, 'ExpressionMap']:
393 flattener = ParamSymbolifier()
394 val_flat = flattener.flatten(val)
395 # expr_map = ExpressionMap(flattener.param_dict)
396 return val_flat, flattener.all_symbols, flattener.all_values
397

398 parameterized_circuit, symbols, default_values = symbolify(circuit_fit)
399 print('DEFAULT VALUES', len(default_values))
400 parameterized_circuit_inc, symbols_inc, default_values_inc =

symbolify(circuit_inc)↪→

401

402 class TimeEvolver:
403 def __init__(self, qubits, prep_circuit, trotter_circuit, symbols=None,

default_values=None):↪→

404 self.qubits = qubits
405 self.circuit = prep_circuit + trotter_circuit
406 self.n = len(qubits)
407 self.symbols = symbols
408 self.default_values = default_values
409

410 def get_state(self, params=None):
411 if params is None:
412 return self.circuit
413

414 my_params = params.astype(np.float64)
415 resolver = {}
416 for t in range(len(self.symbols)):
417 resolver[self.symbols[t]] = my_params[t]
418 return cirq.resolve_parameters(self.circuit, resolver)
419

420 approx = TimeEvolver(qubits_fit, prep_circuit_fit, parameterized_circuit,
symbols=symbols, default_values=default_values)↪→
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421

422 inc = TimeEvolver(qubits_exact, prep_circuit_exact,
parameterized_circuit_inc, symbols=symbols_inc,
default_values=default_values_inc)

↪→

↪→

423

424

425 from tensorflow_quantum.python.layers import Expectation
426 from tensorflow.keras import Input, Model
427 from tensorflow.keras.optimizers import Adam
428 import tensorflow.keras.backend as K
429

430

431 class haltCallback(tf.keras.callbacks.Callback):
432 def on_epoch_end(self, epoch, logs={}):
433 threshold = 1e-10
434 if(logs.get('loss') <= threshold):
435 print('Reached ' + str(threshold) + ' loss value so cancelling

training!')↪→

436 self.model.stop_training = True
437

438 trainingStopCallback = haltCallback()
439 earlyStoppingCallback = tf.keras.callbacks.EarlyStopping(monitor='loss',

patience=50, restore_best_weights=True)↪→

440

441

442 # radius goes from 0 to 1
443 def random_rotations(qubits, radius):
444 # do random single-qubit rotations on qubits
445 u = []
446 for q in qubits:
447 u.append(cirq.rx(2*(np.random.rand()-0.5)*radius*np.pi).on(q))
448 u.append(cirq.rz(2*(np.random.rand()-0.5)*radius*np.pi).on(q))
449 return cirq.Circuit(u)
450

451 # make training set with neighbors in prep circuit too
452 approx_neighbors = []
453 inc_neighbors = []
454 radius = float(sys.argv[1])
455 train_set_size = 20 # >= 1
456 for i in range(train_set_size - 1):
457 rand = random_rotations(qubits_fit, radius)
458 approx_neighbors.append(TimeEvolver(qubits_fit, rand + prep_circuit_fit,
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459 parameterized_circuit, symbols=symbols,
default_values=default_values))↪→

460 inc_neighbors.append(TimeEvolver(qubits_exact, rand + prep_circuit_exact,
461 parameterized_circuit_inc, symbols=symbols_inc,

default_values=default_values_inc))↪→

462

463 op = []
464 for q in qubits_fit:
465 op.append(1 - cirq.Z(q))
466

467

468 circuit_input = Input(shape=(), dtype=tf.string)
469 output = Expectation()(
470 circuit_input,
471 symbol_names=approx.symbols,
472 operators=op)
473 # output = tf.math.reduce_sum(output, axis=-1, keepdims=True)
474 print(tf.shape(output))
475

476 # Model compile
477 model = Model(inputs=circuit_input, outputs=output)
478 adam = Adam(learning_rate=0.0005)
479 model.compile(optimizer=adam, loss='mse')
480 model.set_weights(np.array([approx.default_values]))
481

482 overlaps = []
483 times = []
484 simulator = cirq.Simulator()
485 old_weights = np.array(approx.default_values)
486 prefix = f'jellium{scale}_blurred_noswap_clean_radius{radius}'
487 if NOISY:
488 prefix = f'jellium{scale}_blurred_noswap_noisy_radius{radius}'
489 for s in range(initial_s, final_s):
490 print(s, 'out of', final_s)
491 target_circuit = inc.get_state(old_weights) + circuit_inc
492 total_circuit = approx.circuit + target_circuit**-1
493 all_circuits = [total_circuit]
494

495 for i in range(len(approx_neighbors)):
496 target_neighbor = inc_neighbors[i].get_state(old_weights) + circuit_inc
497 all_circuits.append(approx_neighbors[i].circuit + target_neighbor**-1)
498

499 model_input = tfq.convert_to_tensor(all_circuits)
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500 print('**** checking prediction')
501 check_prediction = model.predict(model_input)
502 print(check_prediction)
503 print(tf.shape(check_prediction))
504 print('**** made prediction')
505 model_output = tf.convert_to_tensor([[0]*len(qubits_fit)]*train_set_size)
506 print(tf.shape(model_output))
507

508 history = model.fit(x=model_input, y=model_output, batch_size=1,
epochs=300, verbose=1,↪→

509 callbacks=[trainingStopCallback,
earlyStoppingCallback])↪→

510

511 old_weights = model.get_weights()[0].astype(np.float64)
512 base_circuit = approx.get_state(old_weights)
513 fit_state = simulator.simulate(base_circuit).final_state
514 time_evolver = tf.linalg.expm(-1j * s*time_inc * H_tf)
515 exact_state = tf.linalg.matvec(time_evolver, initial_state).numpy()
516

517

518 overlap = np.abs(fit_state.conj().dot(exact_state))**2
519 overlaps.append(overlap)
520 print(overlaps)
521 times.append(s*time_inc)
522 np.save(prefix + 'overlap.npy', [overlaps, times])
523 if s % 10 == 0:
524 model.save_weights(prefix + 'checkpoint')
525

526 model.save_weights(prefix + 'checkpoint')
527 print(np.array([overlaps, times]))
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A p p e n d i x F

CODE: WORMHOLE CAUSAL PROPAGATOR

In Chapter 3, we analyzed the causal propagator K(t0, t1) of the Dirac SYK,
finding a peak suggestive of teleportation through the wormhole. The code
computing the causal propagator is provided below, including preparation of
a low-rank SYK model.

1 #
2 # wormhole causal propagator
3 #
4

5 import numpy as np
6 import openfermion
7 import cirq
8 import sympy
9 from scipy.linalg import expm,eig

10 from scipy import sparse
11 from scipy.interpolate import interp1d
12 from openfermion.ops import MajoranaOperator, FermionOperator,

QubitOperator↪→

13 from openfermion.transforms import get_fermion_operator
14 import itertools
15 import matplotlib.pyplot as plt
16 import scipy
17

18 from openfermion.linalg.linear_qubit_operator import (
19 LinearQubitOperator,
20 LinearQubitOperatorOptions,
21 ParallelLinearQubitOperator,
22 apply_operator,
23 generate_linear_qubit_operator,
24 )
25

26 def identity(n):
27 return np.eye(2**n)
28 def s_identity(n):
29 return sparse.identity(2**n)
30

31 def dirac_creation(index, coeff=1):
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32 a_d = FermionOperator(term=(index, 1), coefficient=coeff)
33 return openfermion.jordan_wigner(a_d)
34

35 def dirac_annihilation(index, coeff=1):
36 a = FermionOperator(term=(index, 0), coefficient=coeff)
37 return openfermion.jordan_wigner(a)
38

39 def make_dirac_fermions(Nferm_tot, L_indices=None, R_indices=None):
40 a_left = []
41 a_d_left = []
42 a_right = []
43 a_d_right = []
44 if L_indices is None and R_indices is None:
45 L_indices, R_indices = make_wormhole_dirac_syk_indices(Nferm_tot)
46 for j in range(len(L_indices)):
47 a_d_left.append(dirac_creation(L_indices[j]))
48 a_left.append(dirac_annihilation(L_indices[j]))
49 a_d_right.append(dirac_creation(R_indices[j]))
50 a_right.append(dirac_annihilation(R_indices[j]))
51 return [[a_left, a_d_left], [a_right, a_d_right]]
52

53 def make_wormhole_dirac_syk_indices(Nferm_tot):
54 L_indices = list(range(0, Nferm_tot))
55 R_indices = list(range(Nferm_tot, 2*Nferm_tot))
56 return L_indices, R_indices
57

58 #make the coefficients
59 def make_coeffs(Nferm_tot, J, real=False):
60 variance = J**2/(2*Nferm_tot)**1.5
61 terms4 = []
62 coeffs4 = []
63 for i in range(Nferm_tot):
64 for j in range(Nferm_tot):
65 for k in range(Nferm_tot):
66 for l in range(Nferm_tot):
67 if real:
68 ijkl = np.random.normal(scale=variance) # real Dirac SYK
69 else:
70 ijkl = np.random.normal(scale=np.sqrt(variance/2),

size=(2)).view(np.complex128)[0]↪→

71 ind = [i, j, k, l]
72 if ind not in terms4:
73 if i == j:
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74 terms4.append(ind)
75 coeffs4.append(0)
76 if k != l:
77 terms4.append([i, j, l, k])
78 coeffs4.append(0)
79 elif k == l:
80 terms4.append(ind)
81 coeffs4.append(0)
82 # i != j
83 terms4.append([j, i, k, l])
84 coeffs4.append(0)
85 elif i == k and j == l:
86 terms4.append(ind)
87 coeffs4.append(np.real(ijkl))
88 terms4.append([j, i, k, l])
89 coeffs4.append(-np.real(ijkl))
90 terms4.append([i, j, l, k])
91 coeffs4.append(-np.real(ijkl))
92 terms4.append([j, i, l, k])
93 coeffs4.append(np.real(ijkl))
94 elif i == l and j == k:
95 terms4.append(ind)
96 coeffs4.append(np.real(ijkl))
97 terms4.append([j, i, k, l])
98 coeffs4.append(-np.real(ijkl))
99 terms4.append([i, j, l, k])

100 coeffs4.append(-np.real(ijkl))
101 terms4.append([j, i, l, k])
102 coeffs4.append(np.real(ijkl))
103 else:
104 terms4.append(ind)
105 coeffs4.append(ijkl)
106 terms4.append([j, i, k, l])
107 coeffs4.append(-ijkl)
108 terms4.append([i, j, l, k])
109 coeffs4.append(-ijkl)
110 terms4.append([k, l, i, j])
111 coeffs4.append(np.conj(ijkl))
112 terms4.append([l, k, i, j])
113 coeffs4.append(-np.conj(ijkl))
114 terms4.append([l, k, j, i])
115 coeffs4.append(np.conj(ijkl))
116 terms4.append([k, l, j, i])
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117 coeffs4.append(-np.conj(ijkl))
118 terms4.append([j, i, l, k])
119 coeffs4.append(ijkl)
120 return terms4, coeffs4
121

122 def dirac_syk_hamiltonians(Nferm_tot, coeffs, q=4, L_indices=None,
R_indices=None, low_rank=False):↪→

123 diracs = make_dirac_fermions(Nferm_tot, L_indices=L_indices,
R_indices=R_indices)↪→

124 a_l = diracs[0][0]
125 a_d_l = diracs[0][1]
126 a_r = diracs[1][0]
127 a_d_r = diracs[1][1]
128 syks = [QubitOperator(), QubitOperator()]
129 terms = np.array(list(itertools.product(np.arange(Nferm_tot), repeat=q)))
130 for i in range(len(terms)): # for each possible combo of N C q fermions
131 #construct each term of the SYK.
132 syks[0] += coeffs[0][i] * a_d_l[terms[i][0]] * a_d_l[terms[i][1]] *

a_l[terms[i][2]] * a_l[terms[i][3]]↪→

133 syks[1] += coeffs[1][i] * a_r[terms[i][3]] * a_r[terms[i][2]] *
a_d_r[terms[i][1]] * a_d_r[terms[i][0]]↪→

134 return syks, diracs
135

136 # put the right SYK on the left indices (like with left fermions)
137 def small_right_syk(Nferm_tot, coeffs, q=4, L_indices=None,

R_indices=None):↪→

138 diracs = make_dirac_fermions(Nferm_tot, L_indices=L_indices,
R_indices=R_indices)↪→

139 a_r = diracs[0][0]
140 a_d_r = diracs[0][1]
141 terms = np.array(list(itertools.product(np.arange(Nferm_tot), repeat=q)))
142 syk = QubitOperator()
143 for i in range(len(terms)):
144 syk += coeffs[1][i] * a_r[terms[i][3]] * a_r[terms[i][2]] *

a_d_r[terms[i][1]] * a_d_r[terms[i][0]]↪→

145 return syk
146

147 # creates left and right syk hamiltonians.
148 # doesn't work with q != 4
149 def wormhole_dirac_syk_hamiltonians(Nferm_tot, q=4, L_indices=None,

R_indices=None, J=1,↪→

150 low_rank=-1, sparse=False, seed=None):
151 if seed is not None:
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152 np.random.seed(seed)
153

154 terms = np.array(list(itertools.product(np.arange(Nferm_tot),
repeat=q))).tolist()↪→

155 coeffs = np.zeros((2, len(terms)), dtype=np.complex128)
156

157 if low_rank > -1:
158 coeffs[0] = make_coeffs_low_rank(Nferm_tot, J, rank=low_rank)
159 coeffs[1] = coeffs[0]
160 else:
161 terms4, coeffs4 = make_coeffs(Nferm_tot, J)
162 for i, t in enumerate(terms): # for each possible combo of N C q

fermions↪→

163 ind = terms4.index(t)
164 coeffs[0][i] = coeffs4[ind]
165 coeffs[1][i] = coeffs[0][i]
166

167 if sparse: # make half the coefficients 0
168 coeffs[0][np.random.choice(np.arange(len(coeffs[0])),

size=len(coeffs[0])//2,↪→

169 replace=False)] = 0
170 coeffs[1] = coeffs[0]
171 syks, diracs = dirac_syk_hamiltonians(Nferm_tot, coeffs, q=q,

L_indices=L_indices, R_indices=R_indices)↪→

172

173 return syks[0], syks[1], coeffs, diracs
174

175 from scipy.stats import normaltest
176

177 def sqrt_normal(size, series_terms=10):
178 # should work as series_terms -> infinity
179 s = 0
180 for i in range(1, series_terms+1):
181 s += np.random.gamma(0.5, size=size) / (2*i + 1) - np.log(1 + 1/i)/4
182 exponent = np.log(2) / 4 - np.random.gamma(0.5, size=size) - s
183 return np.random.choice([-1, 1], size=size) * np.exp(exponent)
184

185 # generate complex coefficients
186 def complex_coeff(size):
187 return sqrt_normal(size)/np.sqrt(2) + 1j*sqrt_normal(size)/np.sqrt(2)
188

189 # real Dirac SYK with given rank
190 def make_coeffs_low_rank(N, J, rank=1):
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191 variance = J**2/(2*N)**1.5
192 terms = np.array(list(itertools.product(np.arange(N), repeat=4)))
193 i1 = tuple(np.flip(terms[:, :2].transpose(), axis=0))
194 i2 = tuple(terms[:, 2:].transpose())
195

196 coeffs = np.zeros(len(terms))
197 if rank % 2 == 0:
198 lambdas = np.ones(rank) - 2*(np.arange(rank) % 2)
199 else:
200 lambdas = np.random.normal(size=rank)
201 lambdas /= np.sqrt(np.sum(lambdas**2))
202

203 for i in range(rank):
204 g = sqrt_normal((N, N))
205

206 # antisymmetrize
207 g = np.tril(g) - np.tril(g, -1).T
208 np.fill_diagonal(g, 0)
209

210 coeffs += np.conj(g[i1]) * g[i2] * lambdas[i] * np.sqrt(variance)
211 return coeffs
212

213 def make_exact_tfd(HL, HR, beta, time_reverse=True):
214 HL_sparse = openfermion.get_sparse_operator(HL).toarray()
215 HL_sparse = np.kron(HL_sparse,identity(1))
216 HR_sparse = openfermion.get_sparse_operator(HR).toarray()
217 H_sparse = np.add(HL_sparse, HR_sparse)
218 N = int(np.log2(np.shape(H_sparse[0])))
219 expH_diag = expm(-beta*H_sparse/4)
220 if time_reverse:
221 tfd = time_reversal(expH_diag@make_bell_pair(N))
222 else:
223 tfd = expH_diag@make_bell_pair(N)
224 Z = np.sqrt(np.vdot(tfd,tfd))
225 return tfd/Z
226

227 def make_bell_pair(N):
228 #print("N tfd: ",N)
229 zero = np.array([1,0])
230 one = np.array([0,1])
231 bell_pair = (np.kron(zero,zero)+np.kron(one,one))/np.sqrt(2)
232 epr = bell_pair
233 if N == 2:
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234 return epr
235 for i in range(int(N/2)-1):
236 epr = np.kron(bell_pair,epr)
237 return(epr)
238

239 def time_reversal(psi,right=True):
240 N = int(np.log2(np.shape(psi)[0]))
241 m = time_reversal_op(N,right=right)

242 return m @ np.conjugate(psi)

243

244 def time_reversal_op(N,right=True):
245 Y = np.array([[0,-1j],[1j,0]])
246 mr = np.kron(identity(1),-1j*Y)
247 ml = np.kron(-1j*Y,identity(1))
248 if right:
249 m = mr
250 else:
251 m = ml
252 if N>2:
253 for q in range(int(N/2)-1):
254 if right:
255 m = np.kron(m,mr)
256 else:
257 m = np.kron(m,ml)
258 return m
259

260 def is_hermitian(a, rtol=1e-05, atol=1e-08):
261 return np.allclose(a, np.conj(a.T), rtol=rtol, atol=atol)
262

263 def dirac_interaction(diracs, partial_interaction=False):
264 a_l = diracs[0][0]
265 a_d_l = diracs[0][1]
266 a_r = diracs[1][0]
267 a_d_r = diracs[1][1]
268

269 N = len(a_l)
270 H_int = QubitOperator()
271 indices = range(N)
272 if partial_interaction:
273 indices = range(1, N)
274 for k in indices:
275 H_int += 1j*(a_d_l[k]*a_r[k] + a_l[k]*a_d_r[k])
276



147

277 return H_int / N
278

279 def generate_Z_string(begin, end):
280 """Returns a product of Z operators at qubit [begin, end]."""
281 operator = QubitOperator('')
282 for i in range(begin, end+1):
283 operator = QubitOperator(((i, 'Z'),), 1) * operator
284 return operator
285

286 # create the |I> state by taking the ground of the interaction
287 def find_I_dirac_ground(N):
288 diracs = make_dirac_fermions(N)
289 H_int = dirac_interaction(diracs)
290 V = openfermion.get_sparse_operator(H_int, 2*N).toarray()
291 eigs, vecs = np.linalg.eig(V)
292 vecs = np.transpose(vecs)
293 state = vecs[np.argmin(np.real(eigs))]
294 return state / np.sqrt(np.conj(state)@state)
295

296 # hard-code the ground state preparation when the first half of qubits are
L and second half are R↪→

297 def find_I_dirac(N):
298 n_qubits = 2*N
299 vec = np.zeros(2**n_qubits)
300 vec[0] = 1
301 for k in range(N):
302 Iop = generate_Z_string(0,k-1)*QubitOperator((k, 'X'), -1j)
303 Iop += generate_Z_string(0,N+k-1)*QubitOperator((N+k, 'X'), 1)
304 Iop = generate_linear_qubit_operator(Iop, n_qubits,

options=LinearQubitOperatorOptions(2))↪→

305 vec = Iop*vec
306 Istate = vec/np.sqrt(2**N)
307 return (-1)**(N // 4 + 1) * Istate
308

309 from scipy.linalg import expm
310 from scipy.sparse import csc_matrix
311

312 # Convert openfermion QubitOperator X to a 2**N by 2**N scipy sparse matrix
313 def make_sparse(N, X):
314 Xsparse = openfermion.get_sparse_operator(X)
315 dl = int(np.log2(Xsparse.shape[0]))
316 if dl < N:
317 Xsparse = sparse.kron(Xsparse, s_identity(N-dl))
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318 return Xsparse
319

320 # convert openfermion QubitOperator X to a 2**N by 2**N scipy sparse matrix
exp(cX)↪→

321 def compute_expm(N, X, c=1):
322 return expm(c*csc_matrix(make_sparse(N, X)))
323

324 # make TFD with memory-efficient use of only H_L
325 def make_tfd(N, H_L, beta):
326 Istate = find_I_dirac(N)
327 upper_block = compute_expm(N, H_L, -beta/2)
328 tfd = sparse.kron(upper_block, s_identity(N))*Istate
329 Z = np.vdot(tfd, tfd)
330 tfd /= np.sqrt(Z)
331 return tfd
332

333 def compute_exact_exponential_mat(H, x):
334 return expm(x*openfermion.get_sparse_operator(H).toarray())
335

336 def compute_series_exponential_mat(N, H, x, return_list=False,
max_power=10,↪→

337 min_abs_coefficient=1e-11, tolerance =
0.0001):↪→

338 # Compute Exp(x*H) as a matrix power series
339 # N is the number of sites
340 # H is the Hamiltonian expressed as a QubitOperator
341 # x can be real e.g. x=-beta, or complex e.g. x=-i*t
342 # max_power is the maximum power allowed in the power series expansion
343 # min_abs_coefficient sets to zero any smaller QubitOperator coefficients
344 # tolerance determines when you have enough terms in the power series
345

346 # compute the highest power of 2 less than |x|
347 kmax = 0
348 for k in range(1, 500):
349 if 2**k > abs(x):
350 kmax = k - 1
351 break
352

353 # first we will compute Exp(x*H/2^kmax)
354 # then we will square the result kmax times to get Exp(x*H) =

(Exp(x*H/2^kmax))^(2^kmax)↪→

355 x = x/2**kmax
356
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357 Hterms = H.terms
358 expH_list = []
359

360 # the power series expansion of the matrix exponential starts with the
identity↪→

361 ExpxH = QubitOperator((),1)
362 expH_list.append(QubitOperator((),1))
363

364 # add x*H
365 Hp = x*H
366 ExpxH += Hp
367 expH_list.append(Hp)
368 Hp_prev = Hp
369

370 terms = ExpxH.terms
371 coeffs = [c[1] for c in list(terms.items())]
372 for p in range(2, max_power+1):
373 Hp_new = Hp_prev*Hp/p
374 Hp_new.compress(min_abs_coefficient ) # Eliminates terms with small

coefficients↪→

375 operators = list(Hp_new.get_operators())
376 if operators == []:
377 continue
378 Hp_prev = Hp_new
379 ExpxH += Hp_new
380 expH_list.append(Hp_new)
381 Hp_prev = Hp_new
382 terms = ExpxH.terms
383 coeffs = [c[1] for c in list(terms.items())]
384 terms_new = Hp_new.terms
385 coeffs_new = [c[1] for c in list(terms_new.items())]
386 if p == 2 or len(coeffs) != len(coeffs_minusone):
387 coeffs_minusone = np.full(len(coeffs),10)
388 ratio = np.divide(coeffs,coeffs_minusone)
389 if np.abs(ratio).max() < 1 + tolerance and np.abs(ratio).min() > 1 -

tolerance:↪→

390 break
391 coeffs_minusone = coeffs
392

393 # square the result kmax times:
394 for k in range(kmax):
395 ExpxH = ExpxH*ExpxH
396
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397 summed_op = QubitOperator()
398 for qubit_op in expH_list:
399 summed_op += qubit_op
400

401 if return_list:
402 return expH_list
403 else:
404 return openfermion.get_sparse_operator(ExpxH, n_qubits=N).toarray()
405

406 def make_expV(N, diracs, mu, initial_state, partial_interaction=False,
max_power=10, cores=20):↪→

407 final_state = np.zeros(2**(2*N), dtype=np.complex64)
408 ops = compute_series_exponential_mat(2*N, -1 * mu *

dirac_interaction(diracs,↪→

409 partial_interaction=partial_interaction), -1j, max_power=max_power,
return_list=True)↪→

410 for op in ops:
411 state = generate_linear_qubit_operator(op, 2*N,

options=LinearQubitOperatorOptions(cores))*initial_state↪→

412 final_state += state
413 final_state /= np.sqrt(np.sum(np.abs(final_state)**2))
414 return final_state
415

416 def make_expV_inv(N, diracs, mu, initial_state, partial_interaction=False,
max_power=10,↪→

417 cores=20):
418 return make_expV(N, diracs, -mu, initial_state,

partial_interaction=partial_interaction,↪→

419 max_power=max_power, cores=cores)
420

421 def compute_K(N, mu, beta, t, low_rank=-1, max_power=10, cores=20,
seed=None):↪→

422 H_L, H_R, coeffs, diracs = wormhole_dirac_syk_hamiltonians(N,
low_rank=low_rank, seed=seed)↪→

423 H_R_small = small_right_syk(N, coeffs)
424

425 # make TFD
426 tfd = make_tfd(N, H_L, beta)
427

428 # make time evolution operators
429 timeL = sparse.kron(compute_expm(N, H_L, -1j*t), s_identity(N))
430 timeLd = timeL.conjugate().transpose()
431 timeR = sparse.kron(s_identity(N), compute_expm(N, H_R_small, 1j*t))
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432 timeRd = timeR.conjugate().transpose()
433

434 # compute K
435 K = 0
436 final_state = np.zeros(2**(2*N), dtype=np.complex64)
437 for j in range(N):
438 print(j+1, 'out of', N)
439 ml = diracs[0][0][j] # a_L
440 ml = openfermion.get_sparse_operator(ml, n_qubits=2*N)
441 mleft = timeLd@ml@timeL
442 print('mleft')
443

444 mr = diracs[1][1][j] # a_R^\dagger
445 mr = openfermion.get_sparse_operator(mr, n_qubits=2*N)
446 mright = timeR@mr@timeRd
447 print('mright')
448

449 # first term in K: a_L U^\dagger a_R^\dagger U
450 state = make_expV(N, diracs, mu, tfd, max_power=max_power, cores=cores)
451 print('expV')
452 state = mright@state
453 state = make_expV_inv(N, diracs, mu, state, max_power=max_power,

cores=cores)↪→

454 print('expV inv')
455 state = mleft@state
456 Kterm = np.vdot(tfd, state)
457 K += Kterm
458

459 # second term in K: U^\dagger a_R^\dagger U a_L
460 state = mleft@tfd
461 state = make_expV(N, diracs, mu, state, max_power=max_power,

cores=cores)↪→

462 print('expV')
463 state = mright@state
464 state = make_expV_inv(N, diracs, mu, state, max_power=max_power,

cores=cores)↪→

465 print('expV inv')
466 Kterm = np.vdot(tfd, state)
467 K += Kterm
468 K /= N
469 return K
470

471 if __name__ == '__main__':
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472 ks = []
473 ts = np.linspace(0, 0.48, num=17)
474 for t in ts:
475 print('t =', t)
476 k = np.real(compute_K(7, 4, 10, t, max_power=4, cores=32, seed=0))
477 ks.append(k)
478 np.save('ks.npy', ks)


