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ABSTRACT

High dimensionality brings both opportunities and challenges to the study of applied
mathematics. This thesis consists of two parts. The first part explores the singularity
formation of the axisymmetric incompressible Euler equations with no swirl in R”,
which is closely related to the Millennium Prize Problem on the global singularity
of the Navier-Stokes equations. In this part, the high dimensionality contributes
to the singularity formation in finite time by enhancing the strength of the vortex
stretching term. The second part focuses on sampling from a high-dimensional
distribution using deep generative networks, which has wide applications in the
Bayesian inverse problem and the image synthesis task. The high dimensionality in
this part becomes a significant challenge to the numerical algorithms, known as the

curse of dimensionality.

In the first part of this thesis, we consider the singularity formation in two scenarios.
In the first scenario, for the axisymmetric Euler equations with no swirl, we consider
the case when the initial condition for the angular vorticity is C* Holder continuous.
We provide convincing numerical examples where the solutions develop potential
self-similar blow-up in finite time when the Holder exponent @ < «*, and this upper
bound a* can asymptotically approach 1 — % This result supports a conjecture
from Drivas and Elgindi [37], and generalizes it to the high-dimensional case.
This potential blow-up is insensitive to the perturbation of initial data. Based on
assumptions summarized from numerical experiments, we study a limiting case of
the Euler equations, and obtain * = 1 — % which agrees with the numerical result.
For the general case, we propose a relatively simple one-dimensional model and
numerically verify its approximation to the Euler equations. This one-dimensional
model might suggest a possible way to show this finite-time blow-up scenario
analytically. Compared to the first proved blow-up result of the 3D axisymmetric
Euler equations with no swirl and Holder continuous initial data by Elgindi in
[40], our potential blow-up scenario has completely different scaling behavior and
regularity of the initial condition. In the second scenario, we consider using smooth
initial data, but modify the Euler equations by adding a factor ¢ as the coeflicient
of the convection terms to weaken the convection effect. The new model is called
the weak convection model. We provide convincing numerical examples of the
weak convection model where the solutions develop potential self-similar blow-up

in finite time when the convection strength &£ < &*, and this upper bound £* should
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be close to 1 — % This result is closely related to the infinite-dimensional case of an
open question [37] stated by Drivas and Elgindi. Our numerical observations also
inspire us to approximate the weak convection model with a one-dimensional model.
We give a rigorous proof that the one-dimensional model will develop finite-time
blow-upife < 1 - % and study the approximation quality of the one-dimensional
model to the weak convection model numerically, which could be beneficial to a

rigorous proof of the potential finite-time blow-up.

In the second part of the thesis, we propose the Multiscale Invertible Generative
Network (MsIGN) to sample from high-dimensional distributions by exploring the
low-dimensional structure in the target distribution. The MsIGN models a transport
map from a known reference distribution to the target distribution, and thus is very
efficient in generating uncorrelated samples compared to MCMC-type methods.
The MsIGN captures multiple modes in the target distribution by generating new
samples hierarchically from a coarse scale to a fine scale with the help of a novel prior
conditioning layer. The hierarchical structure of the MsIGN also allows training
in a coarse-to-fine scale manner. The Jeffreys divergence is used as the objective
function in training to avoid mode collapse. Importance sampling based on the
prior conditioning layer is leveraged to estimate the Jeffreys divergence, which is
intractable in previous deep generative networks. Numerically, when applied to two
Bayesian inverse problems, the MsIGN clearly captures multiple modes in the high-
dimensional posterior and approximates the posterior accurately, demonstrating
its superior performance compared with previous methods. We also provide an
ablation study to show the necessity of our proposed network architecture and
training algorithm for the good numerical performance. Moreover, we also apply
the MsIGN to the image synthesis task, where it achieves superior performance
in terms of bits-per-dimension value over other flow-based generative models and

yields very good interpretability of its neurons in intermediate layers.
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Chapter 1

INTRODUCTION

1.1 Overview

High dimensionality brings both opportunities and challenges to the study of applied
mathematics. This thesis consists of two parts. The first part explores the singularity
formation of the axisymmetric incompressible Euler equations with no swirl in R”,
which is closely related to the Millennium Prize Problem on the global singularity
of the Navier-Stokes equations. In this part, the high dimensionality contributes
to the singularity formation in finite time by enhancing the strength of the vortex
stretching term. The second part focuses on sampling from a high-dimensional
distribution using deep generative networks, which has wide applications in the
Bayesian inverse problem and the image synthesis task. The high dimensionality in
this part becomes a significant challenge to the numerical algorithms, known as the

curse of dimensionality.

In the first part of this thesis, we consider the singularity formation in two scenarios:
the axisymmetric Euler equations with no swirl and with Holder continuous initial
data, and a weak convection model of the axisymmetric Euler equations with no swirl
and with smooth initial data. In both scenarios, we provide convincing numerical
evidence of the potential finite-time blow-up in R" that has not been studied before.
The potential finite-time blow-up is computationally robust with respect to the
perturbation of initial data, implying that the potential blow-up mechanism should
be quite generic and insensitive to the initial data. We propose simplified models
to understand the mechanism of the potential blow-up. Our numerical results also
support several conjectures on the finite-time blow-up of the Euler equations as

proposed in a recent survey paper [37].

In the second part of this thesis, we propose the Multiscale Invertible Generative
Network to sample from a high-dimensional distribution. The Multiscale Invertible
Generative Network generates samples by transporting a simple reference distribu-
tion to the target distribution. As a deep generative network, the Multiscale Invertible
Generative Network can control its capacity and computational cost by the number of
network parameters, thus making it quite scalable to the high-dimensional problems.

By exploring the low-dimensional structure in the high-dimensional distribution, we
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achieve superior performance over other approaches on the tested examples in the
Bayesian inverse problem and the image synthesis task, especially in distribution

approximation and multiple mode capturing.

1.2 Singularity Formation in the Euler Equations

The Question of Global Regularity

The study of fluid dynamics has an enormous amount of important applications that

tremendously influence the development of science and technology. In addition,

its physical model admits beautiful and profound mathematical structure and has

attracted mathematicians for centuries. In 1757, Leonhard Euler first established

the Euler equations for incompressible 3D inviscid flow, which takes the form
u+u-Vu=-Vp, (1.1a)

V-u=0, (1.1b)

where x = (x1,x2,x3) € R3isa point in the 3D Euclidean space,
u(x,t) :R*x[0,T) — R,

is the 3D velocity vector of the fluid, and
p(x,0) :R*x[0,T) >R,

is the scalar pressure field of the fluid. Since then, numerous people studied the
global well-posedness of solutions to the incompressible 3D Euler equations (1.1).
Specifically, the question is to ask that given a smooth and divergence-free vector

field u° as the initial data for velocity
u(x,0) =u°(x),
that satisfies either the rapid decay condition
10%u° (x)| < Cox (1 +|x)™®  onR?, forany o, K,
or the periodic condition
u(x+ej)=u’(x) forl<j<3,

whether we can extend the existence time [0,7") of smooth and unique solutions
of the 3D Euler equations (1.1) to [0, +c0) or not. This question has been widely
recognized as a major open problem in partial differential equations (PDEs) and
is closely related to the Millennium Prize Problem on the Navier-Stokes equations
listed by the Clay Mathematics Institute!.

'See https://www.claymath.org/millennium-problems/navier-stokes-equation.



Partial Analytical Results
One of the important physical quantities in fluid dynamics is the vorticity field w,
which is the curl of the velocity field, w = V X u. Applying the curl operator VX to

both sides of (1.1a), we have the vorticity equation

w+u-Vo=w-Vu. (1.2)

We can further take the curl of w and notice that
VXw=VX(Vxu)=V(V-u)—-Au=-Au,

where the incompressible condition (1.1b) is used. Therefore, we can recover the

velocity field u from the vorticity field w by
u=(-A)"(Vxw). (1.3)

This relation is called the Biot-Savart law. In R3, (1.3) can be written explicitly as

u(x) = / 2w (y)dy. (1.4)
r |x -yl

The term w - Vu in the right-hand side of (1.2) is named the vortex stretching term,
and it is absent in the 2D setting. The Biot-Savart law (1.4) implies that Vu is a

singular integral of w, and standard estimate shows that
cplloller < IVullzr < Cpllwllzr for 1 < p < +oo,

where ¢, and C), are constants depending on the choice of p. The above estimate
indicates that Vu is formally of the same order as w, and thus the vortex stretching
term w - Vu scales like a quadratic function of w. This heuristic argument implies
the potential formation of the finite-time singularity for w, and suggests the strong

connection between the vortex stretching term and the finite-time blow-up.

Despite that the ultimate question of global well-posedness remains open, there has
been a lot of progress towards it. For example, the celebrated Beale-Kato-Majda
(BKM) blow-up criterion [4, 43] gives a necessary and sufficient condition for the
finite-time singularity formation for the solutions of the 3D Euler equations at time
T

T
/0 lw(:, )]l Ldt = +oo. (1.5)
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In the 2D Euler equations, the vortex stretching term is absent, and thus we have the
following maximum principle for w:

sup |w(x, )| = sup |w(x,0)| foranyr > 0.

xeR2 xeR2
Consequently, the 2D Euler equations cannot develop a finite-time singularity. How-
ever, for the 3D Euler equations, it is hard to obtain estimates about the Beale-Kato-

Majda blow-up criterion.

In [25], Constantin, Fefferman and Majda asserted that there will be no finite-
time blow-up if the velocity u is uniformly bounded and the direction of vorticity
¢ = w/|w| is sufficiently regular (Lipschitz continuous) near the location of the
maximum vorticity. Their intuition is that such local geometric regularity of the
vorticity field could “drain” away the local vortex stretching. See also [32] for more

discussion.

In [40], Elgindi showed that given appropriate C- initial data for the velocity u
with @ > 0 small enough, the 3D axisymmetric Euler equations with no swirl can
develop finite-time singularity. In that work, Elgindi’s design of the initial data
for vorticity w has C* Holder continuity near r = 0 and z = 0. In [37], Drivas
and Elgindi conjectured that the 3D Euler equations should still allow finite-time
blow-up for @ < 1/3, and that the Holder continuity near r = 0 is already sufficient
for the blow-up formation. They also conjectured that in the infinite-dimensional
case, smooth initial data should also have a chance to develop finite-time blow-up.
We will discuss more about the blow-up mechanism of Elgindi’s scenario in Section
2.7. We will expand our discussion about the relation between dimension and the

finite-time blow-up in depth in Section 3.3.

There are also a lot of partial regularity results for the 3D Navier-Stokes equations

which model the viscous fluid using an extra diffusion term

us+u-Vu=-Vp +vAu, (1.6a)
V-u=0, (1.6b)

where v is the viscosity. These results [104, 112, 41, 84, 110, 11, 85, 122] offer rich

and critical inspiration to the regularity study for the 3D Euler equations.

Numerical Attempts
Aside from the analytical approach, there have been many numerical attempts in

search of the potential finite-time blow-up examples. These computational results
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numerically unravel the complicated nonlinear interaction within the Euler equations

and provide important insight to the potential singularity formation mechanism.

The finite-time blow-up in the numerical study was first reported by Grauer and
Sideris [49] and Pumir and Siggia [105] for the 3D axisymmetric Euler equations.
However, the later work of E and Shu [127] suggested that the finite-time blow-up
in [49, 105] could be caused by numerical artifact. E and Shu numerically studied
the 2D Boussinesq system, which is analog to the 3D axisymmetric Euler equations
away from the symmetry axis, with higher resolution and initial data completely

similar to [49, 105], but observed no formation of singularity in finite time.

Kerr and his collaborators [67, 10] presented finite-time singularity formation in
the Euler flows generated by a pair of perturbed anti-parallel vortex tubes. In [60],
Hou and Li reproduced Kerr’s computation using a similar initial condition and
higher resolutions and did not observe finite time blow-up. The maximum vorticity
grows slightly slower than double exponential in time. Indeed, Kerr used newly
developed analytic tools based on rescaled vorticity moments and confirmed in [66]
that the solutions from [67] eventually converge to a super-exponential growth and

are unlikely to lead to a finite-time singularity.

In [12, 114], Caflisch and his collaborators studied axisymmetric Euler flows with
complex initial data and reported singularities formation in the complex plane. The
review paper [45] lists a more comprehensive collection of interesting numerical

results with detailed discussion.

Due to the lack of stable structure in the potentially singular solutions, the previously
mentioned numerical results remain inconclusive. In [94, 95], Luo and Hou reported
that the 3D axisymmetric Euler equations with a smooth initial condition developed
a self-similar finite time blow-up in the meridian plane on the boundary of r = 1,
see also [93]. With more convincing numerical evidence, the Hou-Luo blow-up
scenario has generated a great deal of interest in both the mathematics and fluid
dynamics communities, and inspired the subsequent work in [74, 75, 73, 23, 17, 16,
18].

Axisymmetric Case with No Swirl

The 3D Euler equations with axial symmetry greatly simplify the Euler equations by
reducing the three-dimensional problem to an essentially two-dimensional equation,
but still maintain the nonlinear vortex stretching term. Thus it is easier both analyti-

cally and numerically to study the singularity formation using the 3D axisymmetric



Euler equations.

Let e,, eg, e, be the unit vectors of the cylindrical coordinate system

er = (ﬂ, 290) ,69 = (25 _ﬂ’o)’ez = (O’O’ l)
ror r.r

where r = \[x7 +x3 and z = x3. We say a vector field v is axisymmetric if it admits
the decomposition

v=v"(r,2)e, +v/(r,2)eg + v¥(r, 2)e-,

namely, v, v¥ and v are independent of the angular variable 6.
The incompressibility condition V - u = 0 (1.1b) implies the existence of a vector-

valued stream function ¢ such that V - ¢ = 0 and

u=Vxy, w=Vx((Vxy)=-Ay.

Collecting the #-component of the velocity equation (1.1a), the vorticity equation
(1.2), and the above relation u = V X ¢, w = —Ay, we arrive at the vorticity-stream

function form of the 3D axisymmetric Euler equations (1.1)

Ly

uf +uul + utul = ——u"uf, (1.7a)
r
2 1
W +u" ol + 0! = Zuful + —u" o, (1.7b)
r r
1 1
B2 el i T A (1.7¢)
1
W=yl ut =yl eyl (1.7d)
r

where we use subscripts to denote partial differentiations for simplicity.

If we assume the initial swirl to be zero: u?(r,z,0) = 0, (1.7a) implies that

ug(r, z,t) = 0 for t > 0. Thus it further simplifies the Euler equations to

1
wf + urwf + uzwg = ;urwe, (1.8a)
1 1
) =9l = —ul + 5y’ = o (1.8b)
r r2
1
u = —t//f, ut = —y? +yl. (1.8¢)
r

In this axisymmetric and no swirl setting, the velocity vector is reduced to u =

u"e, + u*e,, and the vorticity vector is reduced to w = wley.



We remark that in the no swirl case, (1.8c) can also be replaced by

1
u =yl Ut = _;M -yl (1.8¢”)

which, for example, is adopted in equations (2.1)—(2.3) of [40]. The equivalence

between these two conventions can be seen by introducing the change of variables

W(r,z) » - (r,2), vi(r.,2) » -y, 2).

Summary of Our Results

When the initial condition for the angular vorticity w? is smooth, the axisymmetric
Euler equations with no swirl (1.8) will not develop finite-time blow-up. So we
first consider the case when the initial condition for the angular vorticity w? is C®
Holder continuous. We provide a convincing numerical example of (1.8) by the
adaptive mesh method that develops potential finite-time blow-up. We study the
dynamic rescaling formulation [58, 16, 18], which adds extra scaling terms to the
Euler equations so that its steady state corresponds to the self-similar singularity
profile of the Euler equations. Using the operator splitting method and with the
late time solutions from the adaptive mesh method as initial data, we solve the
dynamic rescaling formulation and observe a steady state, implying that this potential
singularity is self-similar. Scaling analysis is also used to study the behavior of the
potential self-similar blow-up. We will demonstrate that this potential blow-up is
computationally robust with respect to the perturbation of initial data, suggesting
that the underlying blow-up mechanism is generic and insensitive to the initial data.
By introducing a parameter ¢ to control the stretching of the computational domain
and the initial data in the z-axis, we find that the C® Holder continuous initial data
can develop potential finite-time blow-up when the Holder exponent « is smaller
than some a*, and this upper bound ™ can asymptotically approach 1 — % aso — 0.
This result supports Conjecture 8 of [37] and generalizes it to the high-dimensional
case. Based on our numerical observations, we make a few assumptions about the
potential blow-up, and study the limiting case of 6 — 0. In this limiting case, we
obtain " =1 — %, which agrees with the numerical result. For the general case
of 0, we propose a relatively simple one-dimensional model that focuses on the
behavior of the equations along the z-axis. Our numerical experiment verifies that
the one-dimensional model is a good approximation of the original equations and
can develop approximately the same potential finite-time blow-up as the original
equations, which implies that the one-dimensional model might suggest a possible

way to prove this finite-time blow-up scenario analytically. Compared to the first
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proved blow-up result of the 3D axisymmetric Euler equations with no swirl and
with Holder continuous initial data by Elgindi in [40], our potential blow-up scenario
has completely different scaling behavior. In the 3D case, the scaling factor ¢; in
our scenario increases with @ and tends to infinity as @ approaches 1/3. In contrast,
the scaling factor ¢; in Elgindi’s scenario is 1/a, which decreases with a and tends
to infinity as « approaches 0. Another difference is that Elgindi’s initial condition
is C* continuous in p = VrZ + 72 and z, while ours is C1® continuous in o, but

smooth in z.

Next, we modify the equations (1.8) by adding an extra parameter € to (1.8a) as the
coeflicient of the convection terms to control the strength of the convection effect.
The modified equations, called the weak convection model, will recover the original
axisymmetric Euler equations with no swirl in the case of € = 1. We provide a
convincing numerical example of the weak convection model with smooth initial
data that develops potential self-similar finite-time blow-up, using the adaptive mesh
method and the dynamic rescaling method with operator splitting. We also conduct
scaling analysis on the potential self-similar blow-up. We observe that for the n-D
weak convection model, the smooth initial data can develop potential finite-time
blow-up when the convection strength & is smaller than some &, and this upper
bound &* should be close to 1 — % This result is closely related to the infinite-
dimensional case of Question 7 of [37]. Our numerical observations also inspire us
to approximate the weak convection model by another one-dimensional model. We
give a rigorous proof that the one-dimensional model will develop finite-time blow-
upife <1- % And we also study the approximation quality of the one-dimension
model to the weak convection model numerically, which could be beneficial to a

rigorous proof of the potential finite-time blow-up.

1.3 Sampling of High-Dimensional Distributions

In this part, we introduce the Multiscale Invertible Generative Network, which is ab-
breviated as the MsIGN, to sample from high-dimensional distributions. Sampling
from a distribution provides convenient ways to access the information carried by the
distribution, for example, mean, variance, and the expected value of any function of
the random variable. When the dimension of the distribution is high, calculating an
integral of the distribution becomes computationally infeasible, but using the Monte
Carlo method with samples of the distribution is still efficient. However, sampling
from a high-dimensional distribution is very challenging. The curse of dimen-

sionality significantly slows down algorithms that work well for low-dimensional



problems and spoils the quality of the samples.

The MsIGN is a deep generative network that maps samples from a simple reference
distribution to the target distribution. It makes use of the multiscale structure that
widely appears in many high-dimensional distributions in applications to design its
network architecture. As a deep generative network, the MsIGN can control its
capacity and computational cost by the number of network parameters, thus making
it quite scalable to the high-dimensional problems. We use the MsIGN to solve two
high-dimensional distribution sampling problems: the Bayesian inverse problem,
whose applications widely appear in fluid dynamics, geophysics and medical imag-
ing, and the image synthesis task, which is one of the core problems in machine

learning.

The Bayesian Inverse Problem

The inference of a parameter of interest of a complicated system from limited and
noisy observation is a far-reaching problem that has a wide range of applications,
including various scenarios in geophysics, fluid dynamics, and materials science. A

popular setting is when the noise is an additive Gaussian to the observation:
y=Fx)+e, &~N(OI), (1.9)

where x € X is the parameter of interest, and we assume that (X, || - ||x) is a
Banach space. Here y € R% is the finite-dimensional observation, £ € R% is the
centered Gaussian observational noise, and its covariance I' is a dy X d, positive
definite matrix. ¥ is referred to as the forward map that describes some underlying

dynamics of the system. We define the data-misfit functional from (1.9) as

1
®(x;y) = =5 lly = F@IIF, (1.10)
where we introduce the notation ||z||1% :=zIT 1z, for z € R%.

The Bayesian approach provides a powerful framework to the “inversion” from the
observation y to the parameter x that organically blends the prior knowledge with
the observation matching. More specifically, the Bayesian inverse problem casts a
posterior distribution v¥ on the parameter x by

1

:y), 1.11
Z(y)ll(x y) (1.11)

dv
E(X) =
with

L(x;y) = exp (-®(x;y)) (1.12)
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where u is the Borel prior probability measure on X, £(x;y) is the likelihood, and

the normalizing constant Z(y) is given by

Z(y) = / £ y)du(). (113)

The posterior (1.11) gives full characterization of all possible solutions to the inverse
inference of x based on y in (1.9), and this framework is very convenient in modeling
and quantification of uncertainty in the inference problem. We refer the reader to
[120, 31] for more theoretical discussion about the Bayesian framework presented

here.

When X is an infinite-dimensional Banach space, the practical treatment of the
posterior v requires discretization to a finite-dimensional space. This is typically
the case when the parameter x is a function or a field. Following Section 4.1 of
[56], we assume X admits an unconditional normalized Schauder basis, and project
x to a finite number of them. Under proper assumptions on the prior u in [56], the
projected posterior is consistent with the original posterior defined in (1.11) in the
sense of the Hellinger distance. More examples of the consistency of the projected
posterior to the original posterior can be found in [26, 120, 30, 64, 121]. Therefore,

we will let X = R? from now on, based on the practical and simplicity consideration.

The posterior distribution v¥ in (1.11) can be also characterized by its density ¢”,

which is the Radon-Nikodym derivative dv” /dx to the Lebesgue measure dx on R¢:
1
Z(y)

where p is the density function of the prior u. We remark that the normalizing

g’ (x) = p(x)L(x;y), (1.14)

constant Z(y) defined in (1.13) is often computationally intractable, due to the high

dimensionality of x.

In the following, since the observation y in (1.9) only helps in defining the posterior
distribution, but does not play an active role in our purposed method and analysis,

we will write v¥ as v in (1.11), and ¢” as g in (1.14) to simplify the notation.

We target at generating samples from the posterior distribution defined in (1.14)
given its unnormalized density function, which is a long-standing challenge espe-
cially when the dimension of x is high. Since samples help build the estimate of
quantities like E,, [ f (x)] for any measurable function f on R¢ by the Monte Carlo

method, the sample generation is of great importance in the Bayesian framework.
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The Curse of Dimensionality

While the posterior (1.11) in Bayesian inverse problems is very informative, its
samples are needed for building statistical quantification, like mean and variance, of
the inverse inference of x based on y. However, when x € R is high-dimensional,
sampling the posterior v becomes a long-standing challenge. For example, an arbi-
trary posterior can have its importance regions, also known as “modes”, anywhere
in the high-dimensional space, and as a consequence there will be an exponential
growth of computational cost with respect to the problem dimension, for example,
see [78, 53].

To deal with the curse of dimensionality, various Markov Chain Monte Carlo
(MCMC) algorithms [6, 7, 129, 99, 128, 27, 53, 22, 14, 36, 28] have been proposed
to improve the convergence rate by designing favorable proposals. For example, the
Langevin diffusion is leveraged to design a better proposal distribution with advan-
tages like higher acceptance rate in [6, 7, 128, 28]. The Hamiltonian dynamics, due
to its energy preserving property, is also utilized to improve acceptance rate and
lower sample correlation in [99, 22]. By considering proposal distributions well-
defined on the function space, [27, 28] designed MCMC samplers to be independent
of the discretization of the function. In [44, 129], the tempering method is used to
accelerate mixing for multimodal distributions. In [53, 36], the multi-level MCMC
samples a telescopic expansion of the discretization error using multiple correlated
MCMC chains at different levels. However, when it comes to high-dimensional
problems, MCMC-type methods still face challenges in computational cost, algo-
rithm tuning, sample correlation and mode collapse. For example, the Langevin
diffusion tends to move the MCMC chain toward the high density region, which
would easily lead to mode collapse in the high-dimensional case. For the MCMC
samplers independent of the discretization, detecting modes away from the current
state could also be difficult when the dimension is high, and thus might also suffer
from the mode collapse. The multi-level MCMC usually needs a lot of uncorrelated
samples from the coarse scale to run the MCMC chain in the fine scale, which would
be time consuming for high-dimensional problems. And for the tempering method,
the parameter tuning could be sensitive in order to control the computational cost

and avoid mode collapse, especially when the dimension is high.

Concurrently, the sampling problem is framed into a deterministic optimization by
variational inference, and numerous methods are based on different formulations of

the optimization, including the Stein variational gradient descent (SVGD) [91] and
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its related methods [86, 15, 20, 19], and the transport map approach [24, 98, 39,
102, 117, 63, 9, 77]. Despite the better robustness in algorithm tuning and reduced
sample correlation, these methods can still have a scalability issue or suffer from
mode collapse in high-dimensional cases. We will give a more detailed description
on the transport map approach in Section 5.1. We remark that [102, 117, 132, 20,
9, 19] invoked the low-dimensional structure in the likelihood, and showed good
potential in overcoming the high-dimension challenge. We will give a detailed
discussion on the comparison of the low-dimensional structure in our MsIGN and

other literature in Section 5.2.

The Image Synthesis Task

The image synthesis task looks for new, unseen samples x from a target distribution
q characterized by a data set of ground-truth example samples {x,-}f.\i |» Where x is an
image stored as a matrix or tensor. The density function of the target distribution ¢
is in general unknown. The dimension of the target distribution is determined by the
resolution of the image x (for example, 64 X 64), and the number of color channels
(for example, 3 for the RGB format of images). As a consequence, the problem

dimension can easily go beyond 103 or 10%.

The image synthesis task is one of the core problems in machine learning. As an
example of unsupervised learning (because there are no labels in the data), the image
synthesis task is an important tool to learn the realistic world model from a large
amount of data and can be extended to other similar tasks like image inpainting,
denoising, and colorization. Solutions to the image synthesis task can potentially
lead to more robust and data-efficient ways to simulate interactions with the real

world.

The image synthesis task gives a good show case on the model capacity of the
MSIGN, or in other words, the richness of the parametric family of transport maps
modeled by the MsIGN. Due to different types of objects appearing in the images,
the distribution of images is naturally multi-modal, and therefore, the result on the
image synthesis task can show the capacity of our method for very complicated
and multimodal target distribution. Besides, by benchmarking with other recent
flow-based generative models, we can also demonstrate the parameter efficiency of

our MsIGN design, and show the interpretability of internal neurons of our MsIGN.

There has been an enormous amount of studies on the image synthesis task, espe-

cially in the recent decade. Most studies follow the approach of generative adver-
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sarial networks (GANs) [47] or likelihood-based methods. Among the likelihood-

based methods, autoregressive models [54, 50, 125, 124] generate new images
pixel by pixel by sampling from the conditional distribution on the existing pix-
els. However, due to the sequential sampling strategy, it becomes troublesome
for the high-dimensional problems like high-resolution images. The variational
autoencoders [69, 72, 68] directly capture the distribution of the whole image by op-
timizing a lower bound on the log-likelihood of the data. The indirect optimization
on the lower bound of the objective makes the training of variational autoencoders
relatively challenging. The diffusion models [115, 51, 116] employ a stochastic
differential equation to diffuse the image distribution to random noise. For sample
generation, they solve the reverse-time diffusion process to move random noises to
images, which could be very time-consuming for high-dimensional problems. An-
other category of the likelihood-based methods is the flow-based generative models,
like the NICE [33], the Real NVP [34], the Glow [71], and the MsIGN, which
look for a bijective transport map between a simple reference distribution, which is
also called the latent space, and the target distribution. Compared to the generative
adversarial networks and variational autoencoders, the flow-based generative mod-
els allow density evaluation and are very efficient in latent-variable inference. As
a bijective map, the representation of an image in the latent space can be simply
obtained by the inverse of the map. Since the log determinant of the Jacobian of
the map is also accessible for flow-based generative models, the density evaluation
of images is also possible. Furthermore, the efficient latent-variable inference of
the flow-based generative models favors downstream tasks on the latent space, like

image manipulation and conditional image synthesis.

Summary of Our Results

We propose the Multiscale Invertible Generative Network (MsIGN) to sample from
high-dimensional distributions by exploring the low-dimensional structure in the
target distribution. The MsIGN models a transport map from a known reference
distribution to the target distribution, and thus is very efficient in generating uncor-
related samples compared to MCMC-type methods. The MsIGN captures multiple
modes in the target distribution by generating new samples hierarchically from a
coarse scale to a fine scale with the help of a novel prior conditioning layer. The
hierarchical structure of the MsIGN also allows training in a coarse-to-fine scale
manner. The Jeffreys divergence is used as the objective function in training to

avoid mode collapse. Importance sampling based on the prior conditioning layer is
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leveraged to estimate the Jeffreys divergence, which is intractable in previous deep
generative networks. In our numerical experiments applied to two Bayesian inverse
problems, our results show that the MsIGN clearly captures multiple modes in the
high-dimensional posterior and approximates the posterior accurately, demonstrat-
ing its superior performance compared with previous methods. We also provide the
ablation study to show the necessity of our proposed network architecture and train-
ing algorithm to the good numerical performance. Moreover, we apply the MsIGN
to the image synthesis task, where it achieves superior performance in terms of
bits-per-dimension value over other flow-based generative models and yields very

good interpretability of its neurons in intermediate layers.

1.4 Roadmap of the Thesis
In Part I, we discuss the singularity formation of the Euler equations in Chapter 2,
3, and 4.

We first consider the 3D axisymmetric Euler equations with no swirl in Chapter
2, where we present detailed numerical evidence of the potential finite-time self-
similar blow-up in Section 2.2, 2.3, and 2.4. Then we study two factors that influence
the behavior of the potential blow-up: the Holder exponent @ in Section 2.5, and
the stretching factor ¢ in z-axis in Section 2.6. Since recently Elgindi proved
the first blow-up result in the 3D axisymmetric Euler equations with no swirl and
with Holder continuous initial data in [40], we make a comprehensive comparison
between our scenario and his scenario in Section 2.7. We also study the robustness

of the potential blow-up to the initial data in Section 2.8.

In Chapter 3, we extend our blow-up scenario in Chapter 2 to the high-dimensional
case. To start with, we discuss the formulation of the n-D axisymmetric Euler
equations with no swirl in Section 3.1, and present detailed numerical evidence of
the potential finite-time self-similar blow-up in Section 3.2. Then in Section 3.3
we study the potential blow-up in different settings of the Holder exponent «, the
stretching factor ¢, and the dimension n and summarize our results. In Section 3.4,
a potential mechanism is proposed for the limiting case of 6 — 0, and together with
observations from numerical experiments, we derive the asymptotic behavior of the
scaling factor ¢; and the upper bound o* for « that could develop singularity. Both
of these results match our numerical results very well. In Section 3.5, we propose
a relatively simple one-dimensional model that approximates the original equations

pretty well, which could potentially benefit the analytical study of our scenario.
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In Chapter 4, we propose the weak convection model. In Section 4.1 we discuss our
motivation of the model, compare the model with previous models and study some
properties of our model. In Section 4.2, we present detailed numerical evidence
of the potential finite-time self-similar blow-up in the weak convection model. We
summarize the influence of the convection strength £ and the dimension n on the
potential blow-up in Section 4.3. And in Section 4.4, we propose a one-dimensional
model, and study its approximation to the weak convection model numerically. We
also give a rigorous proof of the finite-time blow-up in the one-dimensional model

in Section 4.4.
In Part I1, we discuss the sampling of high-dimensional distributions in Chapter 5.

In Section 5.1, we review several important concepts and recent studies in high-
dimensional distribution sampling using deep generative networks. The motivation
of the MsIGN is discussed in Section 5.2. In Section 5.3 and 5.4, we introduce
the network architecture and training strategy of the MsIGN in order to solve the
Bayesian inverse problem. Numerical results of the MsIGN on two Bayesian inverse
problems are shown in Section 5.5, and the ablation study that verifies the necessity
of our proposals is presented in Section 5.6. Then, we move on to the image
synthesis task and discuss the network architecture and training strategy of the
MsIGN in Section 5.7, and present our numerical results in Section 5.8. In Section

5.9, we provide discussion on interesting topics for future study.



Part I

Singularity Formation in the

High-Dimensional Euler Equations
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Chapter 2

SELF-SIMILAR FINITE-TIME SINGULARITY FORMATION
FOR HOLDER CONTINUOUS SOLUTIONS TO THE
INCOMPRESSIBLE EULER EQUATIONS ON R3

2.1 Problem Settings and Initial Data

Holder Continuous Initial Data

In this chapter, we study the 3D axisymmetric Euler equations with no swirl and
with Holder continuous initial angular vorticity. The initial data for w? is C* Holder

continuous, and is of the form w?

~ r% near r = 0, where « is the Holder exponent.
Such Holder continuity of the angular vorticity implies that the velocity field u is
C'® continuous. To remove the formal singularity in (1.8) near » = 0 and improve
regularity of the vorticity field in favor of numerical computation, we introduce the

new variables

1 1
(L)l(l", Z) = r—awg(r, Z)’ l//l(l", Z) = ;'7[/0(7,’ Z)' (21)

In terms of the new variables (w1, ¥), the 3D axisymmetric Euler equations with

no swirl have the following equivalent form

wiptu wiy+utw;=—-(1-a)y wi, (2.2a)
3 _

Vi = Y1z = S, =01t h (2.2b)

u' = 1Yz, ut = 24 + rg . (2.2¢)

Self-Similar Solution

For nonlinear PDEs, people are particularly interested in studying self-similar blow-
up solutions. A self-similar solution is when the local profile of the solution remains
nearly unchanged in time after rescaling the spatial and the temporal variables of
the physical solution. For example, for (2.2), the self-similar profile is the ansatz

N 1 X — Xo
wi(x,1) = (T—t)CwQ((T—t)CI)’

N 1 X — X
Yi(x,1) = (T—t)cw‘P((T—t)Cl)’

for some parameters c,,, ¢y, ¢;, Xxo and T. Here T is considered as the blow-up time,

(2.3)

and xo is the location of the self-similar blow-up. The parameters ¢, ¢y, ¢; are

called scaling factors.
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The 3D Euler equations (1.1) enjoy the following scaling invariant property: if

(u, p) is a solution to (1.1), then (u, ¢, 1) is also a solution, where

A (x t A2 o xt
ua,r(x,t)=;u (Z’¥)’ pa,r(x,t)=§p (E’?)’ (2.4)

and 4 > 0, 7 > 0 are two constant scaling factors. In terms of the equivalent
form (2.2) of 3D Euler equations, the scaling invariant property is equivalent to: if
(w1, Y1) is a solution of (2.2), then

(o (5 2)- 20 (5.

is also a solution.

If we assume the existence of the self-similar solution (2.3), then the new solutions
in (2.5) should also admit the same ansatz, regardless of the values of 1 and u. As

a result, we must have
co=1l+ac, cy=1-c¢. (2.6)

Therefore, the self-similar profile (2.5) of (2.2) only has one degree of freedom, for
example ¢y, in scaling factors. In fact, ¢; cannot be determined by straightforward

dimensional analysis.

As a consequence of the ansatz (2.3) and the scaling relation (2.6), we have

1 1
||CU9(X, Hllz= ~ -1 l1zCx, 0)|[ L ~ T_p (2.7)

which should always hold true regardless of the value of ¢;.

Boundary Condition and Symmetry
We consider the axisymmetric Euler equations with no swirl (2.2) in a cylinder
region

Deyi ={(r,z) : 0<r <1},

We impose a periodic boundary condition in z with period 1

a)l(r,z)=w1(r,z+l), $1(F,Z):lﬁ1(ra2+1)- (28)

In addition, we enforce that (w;, 1) are odd in z at z = 0,

(,()1(7', Z) = —(1)1(7', _Z)’ lﬁl(r, Z) = —Wl(r, _Z)- (29)
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And this symmetry will be preserved dynamically by the 3D Euler equations.

At r = 0, it is easy to see that u" (0, z) = 0, so there is no need for the boundary
condition for wq at r = 0. Since we = ry; will at least be C2-continuous, according
to [88, 87], ¥ must be an odd function of r. Therefore, we impose the following

pole condition for ¢/
¥1,(0,2) = 0. (2.10)

Since we assume a solid “wall” at the boundary at r = 1, we impose the no-flow

boundary condition

¥1(1,2) =0. (2.11)

This implies that u”(1,z) = 0. So there is no need for the boundary condition for

wp atr =1 as well.

Due to the periodicity and odd symmetry along the z direction, the equations (1.8)

only need to be solved on the half-periodic cylinder
D={(r,2):0<r<1,0<z<1/2}.

It is important to notice that the above boundary conditions of 9 allow no trans-

portation across its boundaries. Indeed, we have
u"'=0 on r=0,andr =1,

and
u“*=0 on z=0,andz=1/2.

Initial Data
Inspired by the potential blow-up scenario in [57], we propose the following initial

data for w in D,

. —12000 (1 - r2) " sin(2r2)
@1 = 1 +12.5c08%(nz) '

(2.12)

Later we will see in Section 2.8 that the self-similar singularity formation has some
robustness to the choice of initial data. We solve the Poisson equation (1.8b) to get
the initial value ¥/} of ¢;.

The 3D profile and pseudocolor plot of (w], ) can be found in Figure 2.1. Since
most parts of w] and y/{ are negative, we negate them for better visual effect when

generating figures.
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Figure 2.1: 3D profiles and pseudocolor plots of the initial value —«w] and —y7.
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Figure 2.2: Angular vorticity w? at ¢ = 0.

In Figure 2.2, we show the 3D profile and pseudocolor plot of the angular vorticity
w? at t = 0. We can see that there is a sharp drop to zero of —w? near r = 0, which

is due to the Holder continuous of w? at r = 0.

We plot the initial velocity field " and u* in Figure 2.3. We can see that u" is
primarily positive near z = 0 and negative near z = 1/2 when r is small, and u* is

mainly negative when r is small. Such a pattern suggests a hyperbolic flow near
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Figure 2.3: Initial velocity fields u” and u®.
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Figure 2.4: A heuristic diagram of the hyperbolic flow.

(r,z) = (0,0) as depicted in the heuristic di