
Mechanical Response of Lattice Structures under
High Strain-Rate and Shock Loading

Thesis by
John S. Weeks

In Partial Fulfillment of the Requirements for the
Degree of

Doctorate of Philosophy in Mechanical Engineering

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2023
Defended September 9, 2022



ii

© 2023

John S. Weeks
ORCID: 0000-0002-7971-5919

All rights reserved



iii

ACKNOWLEDGEMENTS

I will fondly recall the years I have spent at Caltech and the people I met during
my time at this institute. The culture and community here have given me countless
opportunities to learn and grow as a researcher and person, for which I will always
be grateful. The work conducted in this thesis would not have been possible without
the help of many individuals.

First and foremost, I would like to thank my advisor, Guruswami Ravichandran, for
his support and mentorship. I deeply appreciate not only the academic freedom and
advice that Ravi has given me over the course of my PhD but also the conversations
we have had about life outside of the lab. I would not have been able to accomplish
this without his guidance and positive perspectives after a failed experiment or
confusing result. It has been an absolute pleasure working with and learning from
Ravi, especially through the experimental mindset of “Just do it!”

I would also like to thank Kaushik Bhattacharya for his additional advising and
support. Our combined Ravi/Kaushik group meetings were always a highlight of
my week. These meetings made me a better researcher and taught me to truly enjoy
presenting my work. It was reassuring to know Kaushik’s door was open just down
the hall and I always appreciated and enjoyed our conversations and interactions.

I would like to thank my other committee members: Nadia Lapusta and Ares Rosakis
for serving in this capacity and providing valuable feedback on my thesis. Nadia and
Ares have also been a large part of my introduction and background to the field of
mechanics; Nadia, through teaching multiple courses in solid mechanics, and Ares
for whom I was a teaching assistant in continuum mechanics.

I gratefully acknowledge the funding support of US Department of Energy/National
Nuclear Security Administration Award No. DE-NA0003957. The support of the
Army Research Laboratory under the Cooperative Agreement Number W911NF-
12-2-0022 for the acquisition of the high-speed camera used in these investigations
is also acknowledged. I would also like to thank Kathy Faber (Caltech) for access to
the Autodesk Ember printer which was essential for specimen manufacture in this
work.

The Ravi/Kaushik group has been an incredible group of people who provided
their support and feedback over the years. Vatsa Gandhi, Andy Akerson, and Suraj
Ravindran have been a large part of my journey since the beginning and have been



iv

great friends in addition to being excellent colleagues. I would also like to thank
my other past group members and officemates in GT 305: Eric Ocegueda, Kevin
Korner, Sharan Injeti, Tomo Oniyama, Leah Ginsberg, Akshay Joshi, Tori Lee,
Hao Zhou, Zichen Gu, Barry Lawlor, Aakila Rajan, Sathvik Sanagala, and Amanda
Toledo Barrios.

This work would also not have been possible without the help of the staff. My
appreciation goes out to Holly Golcher, Jenni Campbell, Lynn Seymour, Maria
Cervantes, Donna Mojahedi, and Stacie Takase. Petros Arakelian and Ali Kiani
have also been instrumental to my work with their help in the lab and machine shop.

These acknowledgements would not be complete without the mention of my friend
and roommate, Prithvi Akella. From navigating COVID and living together for
most of our time at Caltech, I will always appreciate our friendship and time spent
together. I would also like to thank the friends I have made through Graduate Student
Council and the athletics community at Caltech who helped me find an albeit small
but similar-minded group of people to enjoy my hobbies with.

Finally, a huge part of finishing this work was due to the support network from my
entire family and close friends, even if they didn’t know what a lattice structure
was! My mom and dad, Jennifer and Steve, and brother Matthew have always given
me the support and motivation I needed when things got tough and encouraged me
when I needed it most. My girlfriend, Heather, was always there to listen, whether
it be a practice research talk or about my day at work, for which I am incredibly
grateful.

John (Jack) S. Weeks
Pasadena, California
September 2022



v

ABSTRACT

Lattice structures are a class of architected cellular materials composed of similar
unit cells with structural components of rods, plates, or sheets. Current additive
manufacturing (AM) techniques allow control and tunability of unit cell geometries,
which enable lattice structures to demonstrate exceptional mechanical properties
such as high stiffness- and strength-to-mass ratios and energy absorption. Lattice
structures exist on two length scales corresponding to the unit cell and continuum
material, and therefore demonstrate mechanical behavior dependent on structural
geometry and base material. These effects extend to the dynamic regime where
lattice structures demonstrate distinct deformation modes under varying strain-rate
loading. Experimental investigation of the dynamic and shock compression behavior
of lattice structures remains largely unstudied and is the central focus of this thesis
where the high strain-rate, transient dynamic, and shock compression behaviors of
different topologies of lattice materials are explored.

The first part of this thesis investigates the high strain-rate behavior of lattice
structures via polymeric Kelvin lattices with rod- and plate-based geometries and
relative densities of 15-30%. High strain-rate behavior is characterized by deforma-
tion modes similar to that of low strain-rate behavior. High strain-rate experiments
( ¤𝜖 ≈ 1000𝑠−1) are performed and validated using a viscoelastic polycarbonate split-
Hopkinson (Kolsky) pressure bar system coupled with high-speed imaging. Both
low and high strain-rate experiments show the formation of a localized deformation
band which initiates in the middle of the specimen. Strain-rate effects of lattice
specimens are observed to correlate with effects of the base polymer material and
mechanical properties depend strongly on the relative density of the lattice specimen
and exhibit distinct scaling with geometry type (rod, plate) and loading rate despite
a similar unit cell shape. Explicit finite element simulations with a tensile failure
material model are then used to validate deformation modes and scaling/property
trends, and match those observed in experiments.

The second part of this thesis explores the transient dynamic and transition to
shock compression behavior of lattice structures using polymeric lattices with cubic,
Kelvin, and octet-truss topologies with relative densities of about 8%. Transient
dynamic behavior is characterized by a compaction wave initiating at an impact
surface and additional deformation bands with modes similar to low strain-rate
modes of deformation. Dynamic testing is conducted through gas gun direct impact
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experiments (25 – 70 m/s) with high-speed imaging coupled with digital image
correlation (DIC) and a polycarbonate Hopkinson pressure bar. Full-field DIC
measurements are used to characterize distinct mechanical behaviors induced by
topology such as elastic wave speeds, deformation modes, and particle velocities.
At lower impact velocities, a transient dynamic response is observed. At higher
impact velocities, shock compression behavior occurs and is characterized by a sole
compaction wave initiating and propagating from the impact surface of the lattice.
One-dimensional continuum shock theory with Eulerian forms of the Rankine-
Hugoniot jump conditions is used with full-field measurements to quantify a non-
steady shock response and the varied effect of topology on material behaviors.

The final part of this thesis examines the steady-state shock compression behavior
of lattice structures through stainless steel 316L (SS316L) octet-truss lattices with
relative densities of 10-30%. Powder gun plate impact experiments (270 – 390
m/s) with high-speed imaging and DIC are conducted and reveal a two-wave struc-
ture consisting of an elastic precursor wave and a planar compaction (shock) wave.
Local shock parameters of lattice structures are defined using full-field DIC mea-
surements and a linear shock velocity (𝑢𝑠) versus particle velocity (𝑢𝑝) relation is
found to approximate measurements with a unit slope and linear fit constant equal to
the crushing speed. One-dimensional continuum shock analysis is again performed
using Eulerian forms of the Rankine-Hugoniot jump conditions to extract relevant
mechanical quantities. Explicit finite element simulations of the lattice specimens
using the Johnson-Cook constitutive model exhibit similar shock behavior to exper-
iments. The simulations reveal a linear 𝑢𝑠−𝑢𝑝 relation and corresponding Hugoniot
calculations agree with experimental trends. Notably, 1D shock theory is applied
to simulations without resorting to a 𝑢𝑠 − 𝑢𝑝 relation for the base material, which
characterizes this deformation regime and compaction wave as a ‘structural shock.’

Major contributions of this thesis include experimental demonstration of ranged
strain-rate behaviors for lattice structures of various base materials and topologies
including low strain-rate, high strain-rate, transient dynamic, and shock compression
regimes; use of full-field quantitative visualization techniques for local mechanical
behavior and shock analysis; and finally, characterization of a ‘structural’ shock
compression regime in lattice structures.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Cellular materials have long been used by engineers across a range of industries
including automotive, aerospace, and biomedical for a variety of applications such
as thermal insulation and heat exchangers, packaging, crash energy absorption,
vibration damping, implants, and lightweight structural materials [1–8]. Cellular
materials are composed of space-filling unit cells with solid edges or faces and
with relatively low densities which allows them to realize engineering design space
typically inaccessible to fully dense materials. Under compressive loading, these
types of materials demonstrate crushing deformation at low internal stresses which
makes them desirable for dynamic applications such as impact mitigation and energy
absorption [1].

Architected cellular materials with engineered microstructures [9, 10] have emerged
in recent years as an exciting new class of materials due to advancements in additive
manufacturing (AM) [11]. Control of material microstructure on small (𝑛𝑚, 𝑚𝑚)
length scales allows design and tunability of mechanical properties of cellular solids
for engineering applications on relevant length scales (𝑐𝑚, 𝑚) to the designer.

Lattice structures are a class of architected cellular material composed of periodic
unit cells with structural components such as rods, plates, or shells [4, 12–15]. Fig-
ure 1.1 shows examples of rod-based lattice structures with octet-truss and Kelvin
unit cells which exist on two length scales corresponding to the structural length
scale of the unit cell and bulk material length scale of the solid. Through careful de-
sign of unit cell microstructure, lattice structures demonstrate superior mechanical
properties such as stiffness and yield strength over conventional cellular materials
such as stochastic foams [4, 16]. Modern computational design techniques and man-
ufacturing capabilities have greatly expanded the design space of lattice structures
and make them prime material candidates for lightweight strength, multifunctional,
and dynamic engineering applications.

Under dynamic loading, materials support elastic, plastic, and shock waves as well
as mechanical phenomena such as strain-rate stiffening and strain-rate strengthening
[17]. These phenomena exist too in cellular materials [18], however, their inherent
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(a) (b)

Figure 1.1: Rod-based lattice structures with (a) octet-truss and (b) Kelvin unit cell topolo-
gies.

structural nature also induces mechanical effects related to unit cell architecture in
addition to effects of the base material. Deformation behavior in cellular materials
varies depending on strain-rate, base material, and structure, and it is important
to understand the contributions and coupling of these factors, including the role
of architected structures on the macroscopic mechanical response. Experimental
investigation of the dynamic and shock compression behavior of lattice structures
remains largely unstudied and is the central focus of this thesis.

1.2 Background
1.2.1 Classification of Lattice Structures
Lattice structure topology may be rod-based, plate-based, or sheet-based with exam-
ples shown in Fig. 1.2. Rod-based lattice structures may be classified into bending-
dominated or stretching-dominated structures based upon deformation mechanism
of the unit cells. The deformation mechanism of a unit cell may be determined using
structural analysis and Maxwell’s stability criterion [19] in three dimensions given
by:

𝑀 = 𝑏 − 3 𝑗 + 6 , (1.1)

where 𝑀 determines whether a structure is a mechanism (i.e., has more than one
degrees of freedom), 𝑏 is the number of struts, and 𝑗 is the number of joints. This
relation may be further generalized with the concept of self-stress [20]:

𝑀 = 𝑏 − 3 𝑗 + 6 = 𝑠 − 𝑚 , (1.2)

where 𝑠 is the number of states of self-stress, and 𝑚 is the number of mechanisms.
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When 𝑀 < 0, the structure behaves as a mechanism with one or more degrees
of freedom and is representative of the behavior of open-cell foams. Deformation
will occur through bending of unit cell members which is demonstrated by the
Kelvin geometry shown in Fig. 1.2(a) and the structure is classified as “bending-
dominated.”

When 𝑀 ≥ 0 and a load or displacement is applied to the structure, a state
of self-stress (stress within members of the unit cell) is induced. Tensile or
compression forces act within members and the structure is thereby classified as
“stretching-dominated” and rigid. The mechanics of stretching-dominated and
bending-dominated structures are further discussed in Section 1.2.3.

Maxwell’s stability criterion is a necessary, but not a sufficient condition; this
is demonstrated for M = 0 where there may be many states of self-stress and
mechanisms that are equal in number but not zero. It has been shown by Desphande
et al. [16] that a node connectivity of 𝑍 = 12 is a necessary and sufficient condition
for stretching-dominated behavior in a 3D framework such as with the octet-truss
unit cell shown in Fig. 1.2(b).

Rod-based: Bending-dominated 
(Kelvin)

(a)

Rod-based: Stretching-dominated 
(Octet-Truss)

(b) Sheet-based
(Gyroid)

(d)

Plate-based
(Kelvin)

(c)

Figure 1.2: Examples of various lattice structure topology: (a) rod-based bending-
dominated Kelvin unit cell, (b) rod-based stretching-dominated octet-truss unit cell, (c)
plate-based Kelvin lattice structure, and (d) sheet-based gyroid lattice structure [21].

Plate-based and sheet-based lattice structures have been realized and gathered recent
research interest due to superior stiffness and strength properties compared to rod-
based counterparts [21–25]. Plate-lattices have been shown to computationally
attain [26] the Hashin-Shtrikman [27] bounds for stiffness of isotropic materials,
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which has been experimentally realized using glassy nanolattices [28]. An example
of a plate-based topology is the plate-Kelvin lattice structures shown in Fig. 1.2(c)
which is designed by placing plate-like structures along the faces of a Kelvin unit
cell.

Sheet-based lattice structures have also been experimentally and computationally
realized to show superior mechanical properties to their rod-based counterparts [25,
29]. An example of this type of lattice is the gyroid geometry [21] shown in Fig.
1.2(d). Plate-lattices and sheet-lattices may also be characterized as stretching-
dominated or bending-dominated structures through determination of their scaling
coefficents of stiffness and initial yield strength with relative density, which is
discussed in Section 1.2.3.

1.2.2 Additive Manufacturing Techniques
Additive manufacturing (AM), or 3D printing, has greatly advanced in the last
decade in terms of print resolution, manufacturing speed, build volume, and ma-
terial variety [30]. AM permits complex designs by manufacturing components in
a layer-by-layer fashion from a computer-aided-design (CAD) model without the
need for casting, forging, or machining. The ability to manufacture features on
sub-millimeter length scales enables intricate unit cell design and fast build speeds
allow realization of lattice structures with relevant engineering dimensions, O(𝑐𝑚).
AM includes techniques on the nano-scale such as electron beam lithography, mi-
crostereolithography, and two-photon polymerization with feature resolution down
to 100 𝑛𝑚 which has also enabled studies of nano-architected materials [31].

The International Organization for Standardization (ISO)/American Society for Test-
ing and Materials (ASTM) 52900:2021 classifies AM into seven categories: binder
jetting, direct energy deposition, material extrusion, material jetting, powder bed
fusion, sheet lamination, and vat polymerization. These techniques enable manufac-
turing of polymers, ceramics, composites, metals, as well as hybrid combinations
with typical build volumes ranging from 200x200x200 𝑚𝑚3 to 1x1x1 𝑚3 [11].
Work in this thesis utilizes digital light processing vat polymerization and direct
metal laser sintering powder bed fusion technologies to manufacture polymeric and
metallic lattice structures on the centimeter length scale.

Vat polymerization (VP) entails polymerization of a liquid light-curable photoresin
into solid photopolymer through exposure to ultraviolet (UV) light and resultant
cross-linking of polymer chains [32]. VP technologies are classified according to
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the method of curing: two common technologies are stereolithography (SLA) and
digital light processing (DLP). SLA uses a point-based laser to trace out and cure
a printing layer while DLP uses a digital light projector to cure a full layer at once.
Due to a larger projected light source, DLP printers offer higher speeds than SLA
printers. Both these techniques may be performed using desktop 3D printers at a
low cost and are effective for rapid prototyping of materials. A large drawback of VP
is poor mechanical properties of photopolymer material; for example, specimens in
this thesis demonstrated properties such as swelling from submersion in isopropyl
alcohol baths and embrittlement due to drying.

Powder bed fusion (PBF) enables AM of metallic materials by fusing thin layers of
powder onto a build plate using a point-based energy source such as a laser or electron
beam [33]. PBF can be categorized into melting and sintering technologies based
upon the strength of the energy source and whether the powder fully melts during
the manufacturing process. Technologies include electron beam melting (EBM),
selective laser melting (SLM), selective laser sintering (SLS), and direct metal laser
sintering (DMLS). In contrast to melting, sintering does not fully melt the powder;
SLS is used as a general term and may be used to form structures made of plastics,
glasses, or ceramics, while DMLS refers to sintering using metallic alloys [34].
The melting/sintering process introduces microstructural effects on grain sizes and
shapes in the material–as a result, there is currently a large research focus on these
effects and characterization of AM metals which demonstrate different mechanical
properties than conventionally manufactured counterparts [35–37].

1.2.3 Low Strain-Rate Behavior of Lattice Structures
Cellular solids are characterized by relative density, 𝜌∗/𝜌𝑠: the density of the
cellular material (𝜌∗) divided by the density of the base material (𝜌𝑠), or similarly,
the volume of actual material divided by the space-filling volume of the solid. When
loaded, cellular materials exhibit an initial linear elastic regime followed by plastic
yield, fracture, or buckling of cell walls determined by unit cell topology and base
material. After yield, cellular materials subsequently show a crushing deformation
at a relatively constant plateau stress until densification, and eventual contact of cell
walls causes steep stiffening. A generalization of this stress-strain response is shown
schematically in Fig. 1.3(a).

Conventional scaling laws for bending-dominated and stretching-dominated lattice
structures may be derived through simple mechanical arguments found in Gibson



6

and Ashby [1] and Ashby [4]. Scaling laws for bending-dominated structures are
derived by considering an open-cell foam as a cubic array with members of length,
𝐿, and square cross-sectional thickness, 𝑡, as shown in Fig. 1.3(b). Typical bending-
dominated deformation is illustrated through the dashed blue lines.

(b)

Bending-Dominated

L

t

X X

XX

F

F

(a)

Stress

Strain

Stretching-Dominated

Bending-Dominated

Densification

Buckling, 
Fracture, 
or Yield

CrushingElastic

Figure 1.3: General mechanical behavior of lattice structures: (a) general stress-strain
response and (b) simple cubic foam used for modeling bending-dominated scaling laws.

A first-order approximation for relative density of the cubic foam (including double-
counting at edges) is calculated by considering the total volume of the strut members
(𝑉∗ = 12𝐿𝑡2) and space-filling volume of the cube (𝑉𝑠𝑝𝑎𝑐𝑒 = 𝐿3) such that:

𝜌∗/𝜌𝑠 = 𝑉∗/𝑉𝑠𝑝𝑎𝑐𝑒 ∝ (𝑡/𝐿)2 . (1.3)

Based on Eq. (1.3), dimensional analysis of mechanical properties using 𝐿 and 𝑡
allows relation of these properties to relative density.

Given a nominal compressive stress acting on the unit cell, 𝜎, a corresponding
force, 𝐹 ∝ 𝜎𝐿2 is exerted and produces a bending deflection, 𝛿. Following standard
beam theory [38], the displacement, 𝛿, is proportional to 𝛿 ∝ 𝐹𝐿3/(𝐸𝑠 𝐼) where 𝐸𝑠
is the Young’s modulus of the strut material and 𝐼 is the second moment of area
of the strut where 𝐼 ∝ 𝑡4 in a square cross-section with dimension 𝑡. The strain in
the cell, 𝜖 , is related to the displacement 𝜖 ∝ 𝛿/𝐿. A relation for the stiffness of a
bending-dominated open-cell foam, 𝐸∗

𝑏𝑒𝑛𝑑
, is therefore given by:

𝐸∗
𝑏𝑒𝑛𝑑 = 𝜎/𝜖 ∝ 𝐸𝑠 (𝑡/𝐿)

4 ∝ 𝐸𝑠 (𝜌∗/𝜌𝑠)2 . (1.4)
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Collapse of this structure occurs through plastic hinges developing at the locations
marked ‘X’ in Fig. 1.3(b). Plastic moment, 𝑀𝑝, of a square cross-section beam is
given by 𝑀𝑝 = 𝜎𝑦 (𝑡3/4) where 𝜎𝑦 is the yield strength of the strut material, which
is assumed to be elastic-perfectly plastic. Assuming the plastic moment is related
to the stress implies 𝑀𝑝 ∝ 𝐹𝐿 ∝ 𝜎𝐿3, then the plastic yield stress of the open-cell
structure may be found:

𝜎∗
𝑏𝑒𝑛𝑑 ∝ 𝜎𝑦 (𝑡/𝐿)

3 ∝ 𝜎𝑦 (𝜌∗/𝜌𝑠)3/2 . (1.5)

Base material of the cellular solid plays a role in the mechanical response through
the elastic modulus, 𝐸𝑠, and yield stress, 𝜎𝑦. This agrees with intuition that a
metallic foam would demonstrate a stiffer and stronger response than a polymeric
or elastomeric foam.

Similar dimensional analysis may be carried out on stretching-dominated structures.
Since there are no mechanisms in a stretching-dominated structure, it is assumed
that struts are loaded and fail in tension or compression, and therefore the stiffness
and yield stress are related to average properties of a strut member and scale linearly
with relative density. The structure is initially loaded by elastic stretching of the
struts, followed by yield of one or more sets of struts [4].

This may be interpreted by considering volume fraction of the lattice. As volume
fraction increases in each strut (i.e., the unit cell approaches full density), the stiffness
and yield stress will increase. The relative stiffness and yield for a stretching-
dominated structure scale linearly such that:

𝐸∗
𝑠𝑡𝑟𝑒𝑡𝑐ℎ ∝ 𝐸𝑠 (𝜌

∗/𝜌𝑠) , (1.6)

𝜎∗
𝑠𝑡𝑟𝑒𝑡𝑐ℎ ∝ 𝜎𝑦 (𝜌

∗/𝜌𝑠) . (1.7)

This linear scaling behavior has been demonstrated analytically for the octet-truss
topology by Deshpande et al. [39] who expressed the stiffness along the normal
direction to the front face as 𝐸∗ = 𝐸𝑠 (𝜌∗/𝜌𝑠)/9 and experimentally on the 𝜇𝑚 scale
by Al-Ketan et al. [40] with a scaling coefficient of 1.16. Al-Ketan et al. noted the
deviation from 1 may be attributed to non-rigid node geometries which have also
been demonstrated to affect the mechanical behavior of lattice structures by Portela
et al. [41]
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The scaling law coefficients for both types of structures demonstrate an increased
stiffness and initial yield strength of a stretching-dominated over bending-dominated
structure; (stiffness: stretching = 1 vs. bending = 2; yield strength: stretching = 1
vs. bending = 3/2). However, stretching-dominated structures also show post-yield
softening illustrated in Fig. 1.3(b) such as post-buckling softening. A lower scaling
exponent with relative density reflects a less severe decrease in stiffness and initial
yield strength as relative density decreases. The general behavior of these structures
demonstrates stretching-dominated lattices are effective for lightweight strength and
offer improved behavior at lower relative densities. However, bending-dominated
structures, while they may show a lower stiffness and initial yield strength, are better
for applications of energy absorption due to a constant crushing strength and absence
of post-yield softening.

1.2.4 High Strain-Rate Behavior of Lattice Structures
The high strain-rate behavior of lattice structures has been explored for a variety
of topologies and strain-rates and exhibits a dependency on both the geometry and
base material. Some examples of this coupled behavior for metallic and polymeric
lattice structures follow.

Metallic Ti-6Al-4V lattice structures have demonstrated strain-rate strengthening
which agrees with effects observed in bulk AM Ti-6Al-4V [42], but also show
dependence on geometry such as increased strain-rate effects in smaller unit cell
sizes [43], increased strain-rate effects in specimens with multiple layers of unit
cells (opposed to a single layer), and consistent effects with the behavior of bulk
material in graded specimens [44]. Inconel 718 lattice structures with similar mi-
crostructures have demonstrated effects related to heat-treatment of the base material
and strain-rate independent deformation trends related to flow stress enhancement
[45]. Stainless steel 316L (SS316L) octet-truss lattice structures have demonstrated
strain-rate strengthening [46] and hollow strut SS316L lattices have shown varying
strain-rate sensitivities depending on the microstructure [47]. Considering poly-
mers, octet-truss lattice structures made of two types of polymer material with the
same AM technology have demonstrated strain-rate effects in one material, but not
the other [48].

While for some metallic lattices the deformation modes do not change under dynamic
loading [43, 46], polymer plate-like Kelvin lattices have demonstrated varying
position of deformation bands dependent upon loading rate [49]. It is apparent
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the geometry, base material, and their coupled behavior plays a large role in the
dynamic response and strain-rate sensitivities of lattice structures. But, while many
case studies like these exist for the dynamic response of lattice structures, a relatively
unexplored regime is their shock compression behavior.

Shock Compression Behavior

Under high velocity impact loading, cellular solids demonstrate a compaction front
that propagates from the impact surface along the direct of impact as seen in Fig. 1.4.
This compaction front is the densification of material as the structure is compressed
and the cell walls are pressed into each other. This compaction wave is modeled as
a ‘shock’ wave initially proposed by Reid and Peng [50] for the dynamic crushing
of wood.

It has been established that shocks form in cellular materials when impacted above
some critical velocity [18, 51, 52] which has been demonstrated in honeycombs [53],
open-cell aluminum foams [54, 55], and more recently, lattice structures [56–61].

Reid and Peng [50] initially proposed a model with a rigid-perfectly-plastic-locking
(RPPL) response which assumes rigid (no elastic), perfectly plastic deformation
behavior with the strain behind the compaction front as a constant value. This RPPL
model was later extended to model the shock response of closed-cell aluminum foams
[62, 63] and has also been extended in contexts to elastic (elastic-perfectly-plastic-
locking) [64] and linear plastic hardening (rigid-linear-hardening-plastic-locking)
[52] behaviors. This uniform (locked) strain behind the shock is a key assumption
for utilizing one-dimensional uniaxial planar shock theory.

Figure 1.4: Schematic of shock wave in lattice structure.



10

One-dimensional uniaxial planar shock theory recognizes a shock wave as a discon-
tinuity in field variables in the material [17, 65] illustrated in Fig. 1.4. This may be
most intuitively recognized in cellular materials by considering density. 1D shock
theory relies on the conservation of mass, momentum, and energy to determine field
variables of density (𝜌), particle velocity ( ¤𝑥), stress (𝜎), and specific internal energy
(E) in a material without resorting to a constitutive relation.

Integral forms of the conservation of mass, momentum, and energy may be expressed
in terms of quantities behind and ahead of the shock using Rankine-Hugoniot jump
relations. These relations may be derived in both the Lagrangian (undeformed, 𝑋)
and Eulerian (deformed, 𝑥) coordinates and are shown for Eulerian coordinates in
Eqs. (1.8), (1.9), and (1.10) which represent the conservation of mass, momentum,
and energy, respectively:

⟦𝜌⟧𝑢𝑠 = ⟦𝜌 ¤𝑥⟧ , (1.8)

⟦𝜌 ¤𝑥⟧𝑢𝑠 = ⟦𝜌 ¤𝑥2 − 𝜎⟧ , (1.9)�
𝜌

(
E + 1

2
¤𝑥2
)�
𝑢𝑠 =

�
𝜌

(
E + 1

2
¤𝑥2
)
¤𝑥 − 𝜎 ¤𝑥2

�
. (1.10)

In typical conventional shock analysis, assumption of quantities ahead of the shock,
measurement of one field variable, a relation between shock speed (𝑢𝑠) and one
field variable such as particle velocity ( ¤𝑥) (a Hugoniot relation), and the three
conservation equations are used to determine the state of the shock compressed
material. However, variations of this analysis exist and it will be shown in this thesis
that the state ahead of the shock in lattice structures is non-quiescent and full-field
measurements of field variables ahead of the shock may be used to carry out full
characterization.

1.3 Thesis Outline
This thesis presents an exploration of the compressive mechanical response of lattice
structures under high strain-rate and shock loading investigated primarily through
experiments and supplemented with numerical simulations. A range of strain-
rates, lattice topologies, and lattice base materials are investigated and chapters are
presented in order of increasing strain-rate (Fig. 1.5).

In Chapter 2, the high strain-rate behavior of rod and plate-based polymeric Kelvin
lattice structures is studied. Experimental methods for design and manufacturing,
low strain-rate testing, and high strain-rate testing of lattice structures using a poly-
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carbonate split-Hopkinson (Kolsky) pressure bar technique are presented along with
corresponding numerical simulations. The strain-rate behavior of lattice specimens
is analyzed with respect to the base material and mechanical failure properties using
experimental and simulation results.

In Chapter 3, the behavior of polymeric lattice structures is explored at higher strain-
rates. The transient dynamic and shock response of polymeric lattice structures
with Kelvin, octet-truss, and cubic topologies is studied experimentally using direct
impact experiments with a polycarbonate Hopkinson pressure bar coupled with high-
speed imaging. Mechanical properties and deformation behaviors are extracted
using full-field measurements and the transition to shock-like behavior in lattice
structures is examined.

In Chapter 4, the shock compression behavior of stainless steel 316L octet-truss
lattice structures at high impact velocities is investigated using experiments and
numerical simulations. Powder gun plate impact experiments with high-speed
imaging and digital image correlation are used to define and analyze the shock
compression response of lattice structures. Numerical simulations are carried out
to validate experimental results and further study the mechanical response of a
‘structural shock.’

Finally, Chapter 5 provides a summary of the work and future outlook on research
in this field.

Chapter 2 Chapter 3 Chapter 4

Quasi-static High strain-rate Transient Dynamic Shock Compression

Figure 1.5: Illustration of response of lattice structures explored in successive chapters of
this thesis with increasing strain-rate.
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C h a p t e r 2

HIGH STRAIN-RATE COMPRESSION BEHAVIOR OF
POLYMERIC ROD AND PLATE LATTICE STRUCTURES

J.S. Weeks and G. Ravichandran. “High strain-rate compression behavior of polymeric
rod and plate Kelvin lattice structures.” Mechanics of Materials 166 (2022): 104216,
doi:10.1016/j.mechmat.2022.104216

Contributions: J.S.W participated in the conception of the project, designed and fabricated
specimens, designed and conducted experiments, performed the numerical simulations,
analyzed the data, and wrote the manuscript.

Abstract
The compressive high strain-rate behavior of polymeric Kelvin lattice structures
with rod-based and plate-based unit cells is investigated through experimental tech-
niques and finite element simulations. Polymeric lattice structures with 5x5x5 unit
cell geometries are manufactured on the millimeter scale using vat polymerization
additive manufacturing and tested at low (0.001 𝑠−1) and high (1000 𝑠−1) strain-
rates. High strain-rate experiments are performed and validated for a viscoelastic
split-Hopkinson (Kolsky) pressure bar system (SHPB) coupled with high-speed
imaging and digital image correlation (DIC). Experimental results at both low and
high strain-rates show the formation of a localized deformation band which is more
prevalent in low relative density specimens and low strain-rate experiments. Strain-
rate effects of lattice specimens strongly correlate with effects of the base polymer
material; both bulk polymer and lattice specimen demonstrate strain-rate hardening,
strain-rate stiffening, and decreased fracture strain under dynamic loading. Results
show mechanical failure properties and energy absorption depend strongly on the
relative density of the lattice specimen and exhibit distinct scaling between relative
density, geometry type (rod, plate), and loading rate. High relative density plate-
lattices demonstrate inferior mechanical properties to rod-lattices; however, there
exists a critical relative density for a given mechanical property (17%-28%) below
which plate-lattices outperform rod-lattices of similar mass. Finally, high strain-rate
explicit finite element simulations are performed and show good agreement with
mechanical failure trends and deformation modes observed in experiments.

2.1 Introduction
Plate-lattices have been shown through simulation and experiment to demonstrate
exceptional mechanical properties of stiffness and yield strength and to outperform
rod-lattices of equal mass [22–24]. For instance, geometries such as the octet-cubic
plate-lattice have computationally attained the theoretical Hashin-Shtrikman (H-
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S) [27] upper bounds on isotropic elastic stiffness [26] which has been supported
experimentally with pyrolytic carbon octet-cubic nanolattices whose quasi-static
stiffnesses and strengths are close to the H-S and Suquet upper bounds [28]. Sheet-
lattices have also been shown to outperform particular rod-lattices of equal mass [25,
40] and experiments on milliscale metallic lattices of varying topology show superior
mechanical performance in sheet-triply periodic minimal surface (TPMS)-based
geometries than rod- or skeletal-TPMS based geometries [21]. Rod-, plate-, and
sheet-lattices also appear in nature through biological cellular materials: cancellous
bone, toucan beak, and woodpecker cranial skull all exhibit combinations of rod,
plate and sheet structures [66–68].

Lattice structure mechanics inherently depend upon lattice topology and base ma-
terial behavior and many researchers have explored both material and geometric
effects. Studies have taken advantage of material size effects on the nanoscale
to attain high specific-strengths [69, 70] and flaw insensitivity [71, 72], and geo-
metric effects from node geometry [41] and manufacturing imperfections such as
strut waviness or thickness variation [73] have been shown to affect mechanical
properties. Geometric defects also affect lattice behavior and defects such as miss-
ing struts weaken the mechanical response and demonstrate different strength and
stiffness scaling properties than ideal geometries [74, 75].

Dynamic experiments on lattice structures have shown lattice strain-rate behavior
is material dependent. Both strain-rate strengthening and weakening effects have
been observed in polymeric octet-truss lattice specimens depending on the base
material used [48]. Experimental work by Tancogne-Dejean et al. suggests that
the dynamic-strengthening effect present in stainless steel 316L octet-truss lattice
specimen is attributed to the strain-rate effects of the base material [46]. Hazeli et al.
reports dynamic experiments on metallic heat-treated lattice structures that exhibit
strain-rate hardening and similar deformation trends at low and high strain-rates for
octet-truss, rhombic dodecahedron, and dode-medium unit cells [45]. Experiments
on polymeric plate-Kelvin lattices have shown the position of deformation bands can
be dependent on strain-rate, with high strain-rate deformation occurring at lattice
edges and low strain-rate deformation occurring in the middle of the specimen [49].

The behavior of various rod- and plate-lattices has been individually explored,
but not actively compared for a single unit cell geometry under dynamic loading.
Low-velocity impact experiments have been carried out on polymeric plate-lattices
[76] and high strain-rate experiments have been carried out on a single unit cell
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of a metallic plate-lattice [23], but high strain-rate experimental characterization
of full plate-lattices is lacking. In this chapter, we perform high and low strain-
rate experiments and simulations on polymeric rod- and plate-lattices with a 5x5x5
Kelvin unit cell geometry. Lattice specimens are manufactured using digital light
processing (DLP) vat polymerization and loaded at low strain-rates using a servo-
hydraulic machine and at high strain-rates using a polycarbonate split-Hopkinson
(Kolsky) pressure bar. The mechanical strength and failure properties are extracted
and the dynamic effects on lattice specimen are studied. Finally, finite element
simulations performed with Abaqus/Explicit are used to complement experiments,
which show good qualitative agreement with high strain-rate results.

2.2 Materials and Methods
2.2.1 Specimen Design and Manufacturing
Lattice specimens were designed using rod and plate structures with a Kelvin unit cell
[77]. Rod (R) geometries were designed by placing rod structures along the edges of
a unit cell and plate (P) geometries were designed by placing plate structures along
the faces of a unit cell. Computer-aided design (CAD) models were constructed in
SolidWorks (Dassault Systems) using a 5x5x5 Kelvin unit cell geometry composed
of rod or plate structures with relative densities of 15%, 20%, 25%, and 30%. Unit
cell lengths were kept constant and the thickness of the structural elements was
varied to obtain different relative densities. Relative density, 𝜌∗/𝜌𝑠, was calculated
in SolidWorks by taking the volume fraction of each unit cell specimen within a
space-filling bounding box. Table 2.1 shows the CAD dimensions for each of the
lattice unit cell specimen and the calculated relative densities.

Table 2.1: Dimensions of Kelvin cell characteristic length 𝐿, structure thickness 𝑡, relative
density 𝜌∗/𝜌𝑠, as-designed mass 𝑚𝐶𝐴𝐷 , and experimental mass 𝑚𝑒𝑥𝑝 for each lattice
specimen.

Specimen: Rod (R), Plate (P) L (mm) t (mm) 𝜌∗/𝜌𝑠 (-) 𝑚𝐶𝐴𝐷 (g) 𝑚𝑒𝑥𝑝 (g)

R15 1.10 0.51 0.15 1.48 1.49 ± 0.06
R20 1.10 0.63 0.20 1.80 1.80 ± 0.06
R25 1.10 0.75 0.25 2.16 2.16 ± 0.02
R30 1.10 0.89 0.30 2.58 2.57 ± 0.13

P15 1.25 0.18 0.15 1.64 1.64 ± 0.09
P20 1.25 0.25 0.20 1.93 1.92 ± 0.15
P25 1.25 0.34 0.25 2.20 2.22 ± 0.22
P30 1.25 0.43 0.30 2.45 2.50 ± 0.15
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Manufacturing of closed-cell structures remains an active challenge for the AM
community. In these plate-like specimens, small holes were placed in the plate
faces to avoid trapping of liquid photoresin inside of unit cells. Baseplates were
also attached on two opposite faces to improve manufacturability and ensure planar
loading during testing.

Specimens (Fig. 2.1) were manufactured using vat polymerization additive manu-
facturing (3D printing) with Digital Light Processing (DLP) technology. DLP 3D
printers utilize a layer-by-layer manufacturing technique to cure liquid photoresin
into solid photopolymer using UV light [11]. An Autodesk Ember DLP 3D printer
was used with Colorado Photopolymer Solutions PR57-W photoresin. The printer
uses a 405 nm wavelength light for 2.8 s exposure time per 25 𝜇𝑚 layer. Specific
machine parameters are detailed in Appendix A.1.

(b)

(a) (c) (d)

(e) (f)

5 mm

5 mm 5 mm

5 mm

Figure 2.1: Design and manufacture of rod and plate lattice specimens: (a) CAD model of
R15 specimen; (b) cross-sectional illumination of DLP manufacturing technique for layer
highlighted in (a); manufactured photopolymer lattice specimen with (c) R15, (d) R30, (e)
P15, and (f) P30 geometries.

Figure 2.1(b) shows an example of the cross-sectional illumination during printing
of a rod specimen. Manufacturing supports were attached to the baseplates to
improve print success and later removed. The print build area allowed for two lattice
specimens to be printed from one manufacturing run. After fabrication, specimens
were rinsed in an isopropyl alcohol bath to remove any excess photoresin. The
small holes in plate specimen (square faces – 0.225 mm diameter, hexagonal faces
– 0.300 mm diameter) allow uncured photoresin to be removed from the interior of
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the unit cells. Lattice dimensions showed around 5% shrinkage from as-designed
CAD values in the print direction and < 5% in lateral directions.

The density of the photopolymer was calculated as 1200 𝑘𝑔/𝑚3 and used to approxi-
mate the as-designed masses of each specimen in SolidWorks. The as-designed and
average experimental masses with standard deviation for each specimen are listed in
Table 2.1. The small difference between masses and low shrinkage demonstrate that
the resolution of the printer can resolve the as-designed dimensions and indicate the
experimental relative densities are consistent with the as-designed values.

In addition to the lattice structures, bulk photopolymer specimens were printed for
mechanical characterization of the base material. Cylindrical specimens with 10
mm diameter and 5 mm width were manufactured using the same print parameters
as the lattice specimens.

2.2.2 Low Strain-Rate Experiments
Low strain-rate experiments were performed using a servo-hydraulic actuator ma-
chine (MTS Model 358.10) with a 13.3 kN axial load capacity. Lattice specimens
were compressed at a rate of 1 mm/min and bulk photopolymer specimen were
compressed at a rate of 0.2 mm/min until the load capacity of the machine was
reached. These loading rates correspond to a nominal strain-rate of ¤𝜖 ≈ 0.001/𝑠.
A Fastec IL5 High-Speed Camera with a 100 mm Tokina AT-X Pro lens was used
to take experimental images at 24 frames per second with a continuous light source
(Techniquip FOI-150-UL). Images were resampled and analyzed at 1 fps to limit
the amount of data collected from the long timescale of the experiment. 2D digital
image correlation (DIC) software (Vic2D, Correlated Solutions, Columbia, SC) was
used to determine the displacement of the hydraulic crosshead. A random speckle
was placed on the crosshead and a subset size of 55 pixels with a step size of 5 pixels
was used in the DIC analysis.

2.2.3 High Strain-Rate Experiments
High strain-rate experiments were performed using the split-Hopkinson (Kolsky)
pressure bar (SHPB) technique [78]. Figure 2.2 shows a general diagram of the
SHPB set-up composed of an impactor, input, and output bar with strain gauge
locations. A pressurized gas gun is used to propel the impactor into the input
bar which generates a stress wave that compresses the sample between the input
and output bars. An 7075 aluminum SHPB system was used for testing of bulk
photopolymer specimens and a polycarbonate (PC) system was used for testing
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of lattice specimens. A Vishay 2310B signal conditioning amplifier and 2.5 GHz
Tektronix DPO 3014 digital oscilloscope were used for both SHPB systems to record
raw strain gauge voltage data.

v

High-Speed
Camera Laser

Impactor Input Bar Output Bard d

Strain gauge #1

x1

FL(t)   FR(t)

vL(t) vR(t)

 

Signal
Conditioner

Strain gauge #2

x2

Gas Gun

 
εinc εref εtrans

Oscilloscope

Figure 2.2: Schematic of split-Hopkinson (Kolsky) pressure bar set-up for high strain-rate
experiments with example of an experimental image and incident, reflected, and transmitted
strain signals shown.

A Shimadzu HPV-X2 camera with a 100 mm Tokina AT-X Pro lens was used to take
high-speed images of the lattice during dynamic deformation. A Cavitar Cavilux
Smart laser unit was used as a light source to send 20 ns incoherent laser pulses.
A field of view of 55 mm x 32 mm (7 pixels/mm) was used to capture 128 images
at 100,000 fps. 2D DIC code (Vic2D) was used to extract the displacements and
velocities of the input- and output-bar interfaces. A random speckle was applied
to the ends of the input and output bars (Fig. 2.2) and low-pass imaging with an
average subset size of 35 pixels with a step size of 3 pixels was used in the DIC
analysis.

7075 Aluminum SHPB System

The Al 7075 SHPB system consisted of impactor (0.45 m), input (1.83 m), and
output (1.83 m) bars of diameter 19.05 mm with Omega SGD-2D/350-LY11 strain
gauges (1/4 bridge circuit) located at the midpoints of the bars. Bending effects
are eliminated by taking the average of two strain gauges on diametrically opposing
sides of the bar. Conventional one-wave SHPB analysis [78] was used to obtain
the macroscopic stress-strain response of the test specimen. It is assumed excessive
dispersion or attenuation does not occur and no dispersion correction was applied.

Polycarbonate SHPB System

The polycarbonate system consisted of impactor (0.46 m), input (1.83 m), and out-
put (1.83 m) bars of diameter 24.50 mm with Vishay EA-06-031DE-350/LE strain
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gauges (1/4 bridge circuit) located at the midpoints of the bars, in a similar arrange-
ment to the Al 7075 system. Due to poor heat conduction in the polycarbonate, the
strain gauges were operated at a low input voltage (1.4 V) to avoid thermal drift in
measurements. In a viscoelastic medium such as polycarbonate there is consider-
able dispersion and attenuation of stress waves. Corrections of strain measurements
are necessary to extract accurate specimen stress-strain response in a viscoelastic
SHPB. A non-conventional SHPB analysis technique is thus required and is briefly
described here.

The dispersion and attenuation effects inherent in a viscoelastic medium are cor-
rected by applying a phase shift in the frequency domain to the strain measurements.
Following the work of Bacon [79]: the velocities (𝑣) and forces (𝐹) (for some po-
sition 𝑥) in a viscoelastic SHPB can be written in the frequency domain in terms of
angular frequency, 𝜔 = 2𝜋 𝑓 , where 𝑓 is frequency in Hz:

𝑣̂(𝑥, 𝜔) = −𝑖𝜔
𝛾

[𝑃̂(𝜔)𝑒−𝛾(𝜔)𝑥 + 𝑁̂ (𝜔)𝑒𝛾(𝜔)𝑥] , (2.1)

𝐹̂ (𝑥, 𝜔) = −𝜌𝐴𝜔2

𝛾2 [𝑃̂(𝜔)𝑒−𝛾(𝜔)𝑥 + 𝑁̂ (𝜔)𝑒𝛾(𝜔)𝑥] , (2.2)

𝛾(𝜔) = 𝛼(𝜔) + 𝑖 𝜔

𝑐(𝜔) . (2.3)

𝑃̂(𝜔) and 𝑁̂ (𝜔) represent the Fourier transforms of the strains at 𝑥 = 0 (correspond-
ing to the measurement location) due to the waves traveling in the directions of
increasing and decreasing 𝑥, respectively. 𝛾(𝜔) is the wave propagation coefficient
defined by attenuation coefficient 𝛼(𝜔) and phase velocity 𝑐(𝜔).Velocity and force
time histories in the bars are obtained using an Inverse Fourier Transform on Eqs.
(2.1) and (2.2). The wave propagation coefficient is found using a one-point mea-
surement experimental technique [79] and the average wave propagation coefficient
computed over 10 experiments is used in the analysis (see Appendix A.2).

We validate the polycarbonate SHPB by comparing bar-interface velocities com-
puted using SHPB (i.e., Eq. (2.1)) and DIC techniques. Error in measurement
is defined in time as the percent difference of the velocity measurements at the
bar-interfaces and is propagated onto force measurements. Figure 2.3(a) compares
the input bar and output bar interface velocities for a R20 specimen. There is good
agreement of peak velocities within 5−8% on the input bar and within 3−4% on the
output bar over the course of loading. Considering force equilibrium, Fig. 2.3(b)
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shows the incident and transmitted (left and right, respectively) force-time histories
of rod specimen. We observe good agreement between the right-interface and left-
interface forces for all specimen geometries. This indicates dynamic equilibrium is
attained during high strain-rate loading experiments. An improvement in dynamic
equilibrium is observed for higher relative density specimen. Additionally, plate
specimen demonstrated similar force-time histories to rod specimen.
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Figure 2.3: Validation of polycarbonate SHPB experimental technique: (a) SHPB-
computed and DIC-computed interface velocities of a R20 specimen experiment showing
good agreement; and (b) force-time histories of rod specimens of various relative densities
(15%, 20%, 25%, 30%) during loading.

2.2.4 Numerical Simulations
Numerical simulations were carried out using Abaqus/Explicit (Dassault Systems,
Providence, RI) finite element analysis. The simulation framework included a 5x5x5
lattice specimen geometry compressed between two rigid plates (Fig. 2.4(a)). The
bottom plate remained fixed while a constant velocity was applied to the top plate.
The velocity was implemented as a smoothed amplitude step during the initial 10% of
loading to decrease numerical oscillations. The “Brittle Cracking” Abaqus/Explicit
material definition was used; this model assumes linear elastic behavior with damage
from tensile cracking. This constitutive relation and the material parameters used in
the numerical model were chosen to match the qualitative macroscopic stress-strain
response and deformation behavior in dynamic experiments. A critical stress 𝜎𝐶
is defined using values for stiffness, 𝐸 = 1000 MPa (Young’s modulus) and 𝜖𝐶 =
0.2 (strain). A linear loss of strength is assumed from 𝜖𝐶 up to some 𝜖𝐷 = 0.3
(strain) at which the element is removed from the simulation (Fig. 2.4(b)). Mass
density was experimentally determined and defined as 1200 𝑘𝑔/𝑚3 and Poisson’s
ratio was taken as 𝜈 = 0.35, which is a typical value for polymers. A general
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contact algorithm was defined for self-contact of the specimen and surface-to-
surface contact properties with no normal separation were defined for the rigid
plate-lattice interactions. Tetrahedral meshing with a local mesh size of 0.20 mm
and quadratic C3D10M elements with deletion was used. Mass scaling was used to
increase the computational timestep which corresponded to < 0.1% percent change
in mass for all specimens.

(b)

Rigid 
plates

Fixed

v
x

x

RP1

RP2

(a)

Figure 2.4: Numerical simulation (a) framework with two rigid plates (defined by a reference
point RP) and a 5x5x5 lattice specimen imported from SolidWorks; and (b) parameters used
in “Brittle Cracking” material model and material response.

2.3 Results and Discussion
2.3.1 Base Material Characterization
The mechanical behavior of lattice structures is known to depend on both the
structural unit cell geometry and base material behavior [14, 15]. Therefore, strain-
rate characterization of the base photopolymer material is necessary to understand
the mechanical response of the lattice specimen. Low strain-rate experiments on
bulk photopolymer specimen were performed with a servo-hydraulic MTS testing
machine and DIC-computed displacements. High strain-rate experiments were
performed using an Al 7075 SHPB system with one-wave analysis [78]. Force
equilibrium was observed during high strain-rate experiments and it is assumed the
specimens were in dynamic equilibrium.

Figure 2.5 shows the compressive true stress-strain response (𝜎̄ − 𝜖) for the pho-
topolymer at various average strain-rates. Strain-rate was calculated for each spec-
imen using one-wave analysis and taken as the average value from the start of
loading until unloading of the stress wave. Specimens experienced approximately
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uniform strain-rate for 𝜖 > 0.03. All specimens demonstrated elastic, yielding, and
strain-hardening material responses. Strain-rate stiffening in modulus and strain-
rate hardening effects are observed. The dynamic enhancement factor 𝐷 (defined as
the ratio of the high strain-rate value over the corresponding low strain-rate value)
for material strength for ¤̄𝜖 = 0.001−1000/𝑠 is 𝐷 ≈ 6 at strain 𝜖 = 0.05 and 𝐷 ≈ 3.5
at 𝜖 = 0.10. Brodnik et al. has performed crack propagation experiments and sim-
ulations on a dyed form of the base photopolymer (PR-57 Black) and demonstrated
brittle material behavior with a fracture toughness of 0.2 𝑀𝑃𝑎

√
𝑚 [80]. High-speed

experimental images revealed fracture of specimens during dynamic testing. Speci-
mens that were observed to fracture in a typical brittle failure mode of axial splitting
during compressive loading are marked in Fig. 2.5. Fracture was observed during
high strain-rate experiments with 𝜖 > 0.25 and no fracture was observed during low
strain-rate experiments.
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Figure 2.5: Compressive true stress (𝜎̄) – true strain (𝜖) response of the bulk photopolymer
at various strain-rates.

2.3.2 Low Strain-Rate Experiments on Lattice Specimens
Low strain-rate experiments were performed on rod and plate specimen with relative
densities of 15%, 20%, 25%, and 30% at a nominal strain-rate of ¤𝜖 ≈ 0.001𝑠−1.
Each geometry was tested with at least two specimens. The nominal stress, 𝜎𝑁 , of
the specimen was computed using force measurements from the load cell divided by
the full area of the lattice and the nominal strain, 𝜖𝑁 , was computed using crosshead
displacements obtained using DIC divided by the length of the specimen. The use of
DIC-measured displacements allowed for correction of undesired crosshead motion.
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Figure 2.6(a) shows the low strain-rate nominal stress-strain response (𝜎𝑁 − 𝜖𝑁 )
of lattice specimens. Good repeatability of the results is demonstrated by the
modest differences across stress-strain response for each specimen geometry. All
lattice specimens demonstrated a general mechanical response with five distinct
regions: I) an initial linear response at low strains around 0.05; II) a monotonically
increasing non-linear response until a peak stress is reached; III) a large drop in
stress following the peak stress; IV) a long approximately constant plateau ‘collapse
stress’; and V) followed by steep stiffening. These regions represent the I) nominally
elastic response, II) yielding and strain-hardening of the specimen until failure, III)
specimen collapse into a localized band, IV) crushing of the localized band, and V)
densification. Approximate regions for R30 specimen are shown in Fig. 2.6(a).
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Figure 2.6: Low strain-rate (0.001 𝑠−1) (a) nominal stress (𝜎𝑁 ) – nominal strain (𝜖𝑁 )
response of lattice specimens with approximate regions of the mechanical response (I, II,
III, IV, and V) for R30 shown; and (b) deformation images for rod (R) and plate (P) specimens
with 𝜌∗/𝜌𝑠 = 15%, 20%, 25%, 30% at 𝜖𝑁 = 0, 0.2, and 0.4.
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The local stress fluctuations of the crushing region represent the microstructural
response and individual failure of each layer normal to the loading. It is observed that
densification strain decreases with relative density and stiffening occurs sooner; this
is expected due to the increase in material volume of the higher density specimens.

Experimental images as seen in Fig. 2.6(b) show that the specimens initially de-
formed uniformly, and slight misalignments of baseplates were corrected during
low strains less than 0.1. See Supplementary Video S1 for visualization of the full
deformation. As loading continued, individual strut failures started to occur and
initiation was largely sensitive to and would localize at any geometric defects present
from manufacturing. As the lattice localized at initial failures, the loss of strength
developed over the formation of a deformation band. The lattice then progressively
crushed from the localized band until densification, which led to the sharp steep-
ening of the stress-strain curve (Fig. 2.6(a)). Lower relative density (15%, 20%)
specimens were observed to have sharper localizations and narrower collapse bands
than higher relative density (25%, 30%) specimens. Mostly transverse (normal)
deformation bands were present at lower relative densities and a combination of
normal and shear deformation was observed at higher relative densities.

2.3.3 High Strain-Rate Experiments on Lattice Specimens
High strain-rate experiments using a polycarbonate SHPB system were carried out
on rod and plate specimens with relative densities of 15%, 20%, 25%, and 30% at
an average nominal strain-rate of ¤𝜖 ≈ 1000𝑠−1. At least two specimens were tested
for each geometry to ensure repeatability and consistency of material behavior. The
nominal stress, 𝜎𝑁 , of each specimen was computed using the transmitted SHPB
force obtained following dispersion correction (Section 2.2.3, Eq. (2.2)) divided
by the full area of the lattice. The nominal strain, 𝜖𝑁 , was computed using net
displacements of the SHPB interfaces measured using DIC divided by the initial axial
length of the specimen, 𝐿𝑠. The instantaneous strain-rate experienced by specimens
was calculated as the net difference in velocity of the SHPB interfaces measured
using DIC divided by the length of the specimen: ¤𝜖𝑁 (𝑡) = (𝑣𝐿 (𝑡) − 𝑣𝑅 (𝑡))/𝐿𝑠.
During a given experiment, the instantaneous strain-rate reached a mostly uniform
value for 𝜖𝑁 > 0.15 − 0.20. The average nominal strain-rate was then calculated
as the average value of measurements during initial loading (for 𝜖𝑁 > 0.01) until
unloading of the stress wave. This value varied from 930 𝑠−1 to 1180 𝑠−1 for all
specimens.
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Figure 2.7(a) shows the compressive high strain-rate nominal stress-strain response
(𝜎𝑁 − 𝜖𝑁 ). Again, we observe repeatability across specimen geometries. Similar
to low strain-rate experiments, specimens demonstrated a four-region response with
a I) initial linear region, II) yielding and strain-hardening, III) strut fracture and
failure, and IV) localization collapse. Densification was not fully observed due to
the finite loading pulse of the SHPB. Approximate regions for R30 specimen are
shown in Fig. 2.7(a).
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Figure 2.7: High strain-rate (1000 𝑠−1) (a) nominal stress (𝜎𝑁 ) – nominal strain (𝜖𝑁 )
response of lattice specimens with approximate regions of the mechanical response (I, II,
III, and IV) for R30 shown; and (b) deformation images for rod (R) and plate (P) specimens
with 𝜌∗/𝜌𝑠 = 15%, 20%, 25%, 30% at 𝜖𝑁 = 0, 0.2, and 0.4.

In contrast to the low strain-rate response, the drop in stress experienced as the
localization band forms is less steep. The lack of local stress peaks shows a progres-
sive crushing (rather than individual layer failure) for the duration of loading. High
strain-rate experiments produced high velocity debris which appeared to increase in
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volume with relative density. The high velocity debris produced an interesting result
in the P30 specimen which experienced no stress in the strain range of 0.2-0.25 due
to complete ejection of the material.

Figure 2.7(b) shows the high strain-rate experimental images at 𝜖𝑁 = 0, 0.2, and
0.4 for all specimens. Images show large localizations followed by progressive
crushing at these strains. See Supplementary Video S2 for visualization of the full
deformation. Deformation bands for R15 and P15 specimen appeared nearly planar
and normal to the loading direction. An interesting observation is the progressive
‘folding’ of the P15 specimen unit cells onto each other during crushing compared
to the strut fracture of the R15 specimen. Some non-axial shearing failure was
observed in higher density specimens, leading to an ‘X’-shaped deformation band
in the P30 specimen.

2.3.4 Mechanical Properties and Energy Absorption
The mechanical properties of lattice specimens were evaluated from the stress-
strain response. The following mechanical properties were identified: (1) failure
stress, 𝜎 𝑓 , (2) failure strain, 𝜖 𝑓 , (3) stiffness, 𝑆, and (4) specific energy absorption,
𝐸𝑎𝑏𝑠. 𝜎 𝑓 is defined as the maximum value of stress the specimen sustains and 𝜖 𝑓
the corresponding strain. Stiffness, 𝑆, is defined as the secant modulus (𝜎𝑁/𝜖𝑁 )
of the stress-strain curve at 𝜖𝑁 = 0.03. The specific energy absorption is defined
as: 𝐸𝑎𝑏𝑠 = 1

𝜌∗

∫ 0.5
0 𝜎𝑁𝑑 (𝜖𝑁 ), where 𝜌∗ represents the mass density of the lattice

specimen. We note that all specimens demonstrate dynamic equilibrium (as seen in
the force-time histories in Fig. 2.3(b)) by the time the specimen experiences failure.
However, by this definition, force equilibrium is not attained at the time the stiffness
S is calculated. We assume because the transmitted strain is used in the analysis this
can serve as a comparative measure across experiments. We can further assume this
is an appropriate approximation based upon the initial linear shape of the curves up
to 𝜖𝑁 = 0.03.

Cellular materials and lattice structures are widely characterized by scaling laws
with relative density [1, 4]. Figure 2.8 shows the mechanical failure properties
plotted against relative density on a log-log scale. For some property, 𝑋 ∝ (𝜌∗/𝜌𝑠)𝑘

where the scaling exponent, 𝑘 , can be extracted from the slopes of the lines in Fig.
2.8 and the results for the defined mechanical failure properties are shown in Table
2.2.
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Figure 2.8 shows the mechanical properties are clearly affected by strain-rate. 𝜎 𝑓 , 𝑆,
and 𝐸𝑎𝑏𝑠 increase and 𝜖 𝑓 decreases during high strain-rate loading for all specimens.
These trends draw parallels to the mechanical behavior of the polymeric materials,
which exhibit stiffening, strengthening, and decreased fracture strains under dynamic
loading [81].
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Figure 2.8: Mechanical properties of (a) failure stress𝜎 𝑓 , (b) failure strain 𝜖 𝑓 , (c) stiffness 𝑆,
and (d) specific energy absorption 𝐸𝑎𝑏𝑠, at high and low strain-rates for all lattice specimens
as a function of relative density (𝜌∗/𝜌𝑠).

Scaling exponents shown in Table 2.2 show a strong correlation between mechanical
properties and the relative density of lattice specimens. A higher value of the
exponent represents a larger effect of relative density. At both low and high strain-
rates, 𝜎 𝑓 , 𝑆, and 𝐸𝑎𝑏𝑠 show strong positive scaling (dependence) with relative
density while 𝜖 𝑓 appears to be independent of relative density. Rod specimens
also exhibited higher values of 𝜎 𝑓 , 𝑆, and 𝐸𝑎𝑏𝑠 at higher relative densities while
plate specimens exhibited higher values at lower relative densities. The transition
density at which rod or plate specimens outperform the other is represented by the
intersection of the scaling fit-lines and varies from about 0.17 to 0.28 depending on
the property. The trends in properties show plate specimens perform well at low
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relative densities, but are less effective than rod specimens for energy absorption
at higher relative densities. High strain-rate plate specimens show a slightly lower
scaling for 𝐸𝑎𝑏𝑠 than low strain-rate plate specimen (0.89 vs 1.48) which may be
explained by poor mechanical performance due to complete ejection of the material
for 𝜖𝑁 = 0.2−0.25. Stress concentrations on plate unit cells may also be more prone
to failure by fracture. Failure strain 𝜖 𝑓 was observed to be lower in plate specimens
than rod specimens at both loading rates and all relative densities.

Table 2.2: Scaling exponents (𝑘) of experimental mechanical failure properties with relative
density (𝜌∗/𝜌𝑠) of the lattice specimens: (𝜌∗/𝜌𝑠)𝑘 .

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑅𝑎𝑡𝑒 𝜎 𝑓 𝜖 𝑓 S 𝐸𝑎𝑏𝑠

𝑅𝑜𝑑𝐻𝑖𝑔ℎ 3.30 0.08 3.70 2.04
𝑅𝑜𝑑𝐿𝑜𝑤 3.54 0.13 3.55 2.05
𝑃𝑙𝑎𝑡𝑒𝐻𝑖𝑔ℎ 2.86 0.19 2.64 0.89
𝑃𝑙𝑎𝑡𝑒𝐿𝑜𝑤 2.96 0.66 2.79 1.48

Scaling laws have been largely developed through cellular models derived by Gibson
and Ashby [1] and have been applied to metallic foams [3]. Bending-dominated
open-cell foams scale with relative density, (𝜌∗/𝜌𝑠) with stiffness, 𝑆𝑜𝑝𝑒𝑛 ∝ (𝜌∗/𝜌𝑠)2

and compressive strength, 𝜎𝑐,𝑜𝑝𝑒𝑛 ∝ (𝜌∗/𝜌𝑠)3/2. Closed-cell foams scale with
relative density with 𝑆𝑐𝑙𝑜𝑠𝑒𝑑 ∝ (𝜌∗/𝜌𝑠)2 + (𝜌∗/𝜌𝑠) and 𝜎𝑐,𝑐𝑙𝑜𝑠𝑒𝑑 ∝ (𝜌∗/𝜌𝑠)2/3 +
(𝜌∗/𝜌𝑠). Adaptation of these scalings laws to brittle foams produce mostly similar
results but with 𝜎𝑐,𝑐𝑙𝑜𝑠𝑒𝑑 ∝ (𝜌∗/𝜌𝑠)3/2 + (𝜌∗/𝜌𝑠). Experiments on open- and
closed-cell foams show a range of scaling exponents from 𝑘 = 1 – 3 for stiffness,
and 𝑘 = 1 – 2 for compressive strength. The results from the present investigation
demonstrate higher scaling values for stiffness and compressive strength in the lattice
specimens than metallic foams. These values indicate the lattice specimens have a
higher dependence on relative density than metallic foams and are not well-modelled
within this density regime using classical approaches.

Dynamic Rate Effects
Strain-rate effects on the mechanical properties can be quantified using a dynamic
enhancement factor, 𝐷. The factor 𝐷 for each property is defined as the ratio of the
average high strain-rate value to the corresponding average low strain-rate value.
These ratios are plotted in Fig. 2.9 for each relative density and specimen type. Error
in the factor 𝐷 was found using error propagation from measurement uncertainty
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(determined from the percent difference in bar-interface velocities as shown in Fig.
2.3).
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Figure 2.9: Enhancement factor, 𝐷 for (a) failure stress 𝜎 𝑓 , (b) failure strain 𝜖 𝑓 , (c)
stiffness 𝑆, and (d) specific energy absorption 𝐸𝑎𝑏𝑠, for rod (R) and plate (P) geometries of
𝜌∗/𝜌𝑠 = 15%, 20%, 25%, 30%. A 𝐷 of 4 (𝜎 𝑓 , 𝑆, 𝐸𝑎𝑏𝑠) and 1 (𝜖 𝑓 ) is marked to estimate the
𝐷 extracted from base material characterization.

For all specimens, 𝐷 (𝜎 𝑓 ) ≈ 3.5 − 4. A higher 𝐷 (𝜎 𝑓 ) was generally observed in
rod specimens, but cannot be confirmed due to large uncertainty. For 𝜖 𝑓 , 𝐷 (𝜖 𝑓 )
is approximately 1 for the P15 specimen, but ≈ 0.8 for all others. A value below
1 represents a lower fracture strain during dynamic loading. 𝜖 𝑓 appears to be the
same across strain-rates for the P15 specimen while it decreases at high strain-rates
for all other specimens. 𝐷 (𝑆) of the stiffness, 𝑆, follows similar trends to 𝜎 𝑓 and
𝐷 (𝑆) ≈ 4 − 4.5 for all specimens. 𝐷 (𝐸𝑎𝑏𝑠) for the specific energy absorption was
observed to generally be lower for plate specimens than rod specimens and appeared
to decrease with 𝜌∗/𝜌𝑠 for plate specimens. This decrease may be associated with
poor mechanical performance due to the ejection of material previously discussed.
The values of 𝐷 (𝜎 𝑓 ) ≈ 3.5 − 4 correspond well with the 𝐷 values for strength in
the bulk polymer material of 𝐷 ≈ 6 at 𝜖 = 0.05 and 𝐷 ≈ 3.5 at 𝜖 = 0.1 (Fig. 2.5 in
Section 2.3.1).
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The Kelvin unit cell is known to display bending-dominated behavior [4] and can
be expected to have some dependence on both tensile and compressive properties of
the base material. The value for 𝐷 of the photopolymer is measured in compression,
but may serve as a baseline approximation for the high strain-rate effect. A value
of 𝐷 ≈ 4 is estimated from base material characterization and is marked in Fig.
2.9. Slight deviations in loading rates, geometric defects, and tensile weakening
effects may explain the deviation of lattice specimen 𝐷 values from that of the
photopolymer. Overall, the differences in lattice specimen 𝐷 values are small from
𝐷 = 4 and suggest that the dynamic strengthening of the lattice specimen is mostly
due to the rate hardening of the base polymer material.

2.3.5 Numerical Simulations
High strain-rate finite element simulations were performed on all lattice geometries
using Abaqus/Explicit (Dassault Systems). The velocity of the top rigid plate was
set to correspond to nominal strain-rate of ¤𝜖 = 1000/𝑠. The nominal stress-strain
response of the specimen was computed using the nodal forces and displacements
of the rigid end plates. Nominal stress, 𝜎𝑁 , was calculated using the rigid-plate
force over the full area of the lattice and averaged across the two plates to account
for dynamic equilibrium. Nominal strain, 𝜖𝑁 , was calculated using the rigid-plate
displacement and the axial length of each specimen. The “Brittle Cracking” ma-
terial model used includes element removal and thus introduces an inherent mesh
sensitivity. A mesh sensitivity study was carried out and required a mesh size of 0.20
mm to attain physically relevant and converging simulations. The explicit nature
of the simulation also required consideration of dynamic equilibrium of the speci-
men. The initial bumps in the stress-strain response at 𝜖𝑁 < 0.02 reflect that force
equilibrium is not attained. Beyond strain 𝜖𝑁 > 0.02 , stress equilibrium is reached
indicated by stress balance of the end plates, 𝜎𝑡𝑜𝑝 ≈ 𝜎𝑏𝑜𝑡 . A constant strain-rate
stiffening in modulus is assumed through the definition of 𝐸 (Young’s modulus)
in the material model. Low strain-rate experiments on bulk photopolymer (Fig.
2.5) allow extraction of the quasi-static modulus 𝐸 ≈ 400 MPa. Thus, assigning
𝐸 =1000 MPa in numerical simulations introduces an approximate stiffening effect
which was defined to qualitatively match experimental stress-strain response and
deformation behavior. This effect agrees with experimentally observed strain-rate
effects of the photopolymer material (Section 2.3.1).

Figure 2.10(a) shows the nominal stress-strain response (𝜎𝑁 − 𝜖𝑁 ) for rod-lattice
specimens and Fig. 2.10(c) shows the response for plate-lattice specimens. Despite
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the simplistic model, the simulation results capture the general mechanical behavior
and formation of the deformation band for each specimen. Numerical stress-strain
curves exhibit the same four-region mechanical response observed in all experiments
(I: elastic response, II: yielding and strain-hardening, III: strut fracture and failure,
and IV: localization collapse). This suggests the mechanical behavior of these lattice
specimen is largely dominated by brittle failure and that a brittle failure model is an
effective model for the base photopolymer material.
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Figure 2.10: Numerical simulation (a) nominal stress (𝜎𝑁 ) – nominal strain (𝜖𝑁 ) response
of rod specimens compared to average experimental values; (b) deformation images showing
Abaqus-computed nominal strains at 𝜖𝑁 = 0.20 for R15, R20, R25, and R30 compared to
experimental images; and similar plots for plate specimens: (c) 𝜎𝑁 − 𝜖𝑁 response; and (d)
deformation images for P15, P20, P25, and P30.

Figures 2.10(b) and 2.10(d) compare the experimental and simulation deformation
images for rod and plate specimens, respectively, at 𝜖𝑁 = 0.20. Good qualitative
agreement and trend is found between experimental and simulation deformation
modes. Lower density (15%, 20%) specimens showed a more localized deformation
band while higher density (25%, 30%) specimens show more uniform deformation.
A “X-shaped” deformation pattern can be observed in simulation of plate specimens
which was also present in the high strain-rate experiments on P25 and P30 specimens.
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This deformation mode shape has also been observed in literature in plate-Kelvin
cell lattice structures [49] and the in-plane response of hexagonal honeycombs [82].
Simulation deformation images also reveal higher stress concentrations at unit cell
boundaries in plate specimens than in rod specimens. This supports the role of
stress concentrations in the weakening of plate specimen due to failure by tensile
fracture.

The numerical stress-strain response also provides good validation of the mechanical
failure property trends. Figure 2.11 shows the mechanical properties plotted against
relative density on a log-log scale for high strain-rate experiments and simulations.
Experimentally observed trends of mechanical performance are also observed in
the numerical results: rod specimens exhibit higher values of 𝜎 𝑓 , 𝑆, and 𝐸𝑎𝑏𝑠

at higher relative densities, while plate specimens exhibit higher values at lower
relative densities.
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Figure 2.11: Comparison of scaling of mechanical properties with relative density (𝜌∗/𝜌𝑠)
for high strain-rate experiments and simulations for (a) failure stress 𝜎 𝑓 , (b) failure strain
𝜖 𝑓 , (c) stiffness 𝑆, and (d) specific energy absorption 𝐸𝑎𝑏𝑠.
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Table 2.3 shows the scaling exponent values 𝑘 for both high strain-rate experiment
and simulation. In both experiment and simulation, rod specimens exhibit higher
scaling exponent values for 𝜎 𝑓 , 𝑆, and 𝐸𝑎𝑏𝑠 and no clear trend is observed for 𝜖 𝑓 .
Differences in values may stem from experimental geometric defects, differences in
measurement resolution, or simplistic material modeling. Simulation results show
𝜖 𝑓 decreases slightly in plate specimen and increases slightly in rod specimen on the
order of 1%. This can be assumed to be outside of the experimental resolution and
thus consistent with the weak experimental scaling of 𝜖 𝑓 with 𝜌∗/𝜌𝑠. The match
between qualitative scaling in both experiment and simulation trends emphasizes
there is a transition in mechanical performance of the lattice specimen for the defined
mechanical properties.

Table 2.3: Scaling exponents (𝑘) of high strain-rate experimental and simulation mechanical
failure properties with relative density (𝜌∗/𝜌𝑠) of the lattice specimens: (𝜌∗/𝜌𝑠)𝑘 .

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝜎 𝑓 𝜖 𝑓 S 𝐸𝑎𝑏𝑠

𝑅𝑜𝑑𝐸𝑥𝑝 3.30 0.08 3.70 2.04
𝑅𝑜𝑑𝑆𝑖𝑚 2.82 0.13 2.74 1.75
𝑃𝑙𝑎𝑡𝑒𝐸𝑥𝑝 2.86 0.19 2.64 0.89
𝑃𝑙𝑎𝑡𝑒𝑆𝑖𝑚 1.74 0.15 1.71 0.78

2.4 Summary and Conclusions
The high strain-rate compressive behavior of rod and plate polymeric Kelvin lattice
structures was experimentally and numerically explored. Mechanical properties
such as failure strength, stiffness, and specific energy absorption of lattice speci-
mens show dependence on strain-rate and relative density. Strain-rate experiments
on lattice specimen and the base photopolymer material suggest the observed dy-
namic effects of strain-rate hardening, strain-rate stiffening, and decreased fracture
strain may be mostly attributed to the parent polymeric material. A brittle failure
material model with strain-rate dependent stiffness (Young’s modulus) is shown
to be sufficient to simulate lattice structure high strain-rate mechanical response.
At both low and high strain-rates, experimental and simulation results show there
exists a transition relative density under which plate-lattices outperform rod-lattices
of similar mass (relative density) for each mechanical property. Experimental and
simulation deformation images suggest no change in dynamic collapse mechanisms,
but reveal the formation of a localized failure band more prominent in low strain-rate
experiments and low relative density specimens.
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The mechanical effects of applying rod or plate geometries to unit cells must be
analyzed per geometry, loading rate, and relative density for optimal design. De-
spite poor performance at higher relative densities, polymeric plate-Kelvin-lattice
structures offer improved mechanical properties for lightweight, energy absorbing
materials on the millimeter length scale and may be readily manufactured using
current technologies for engineering applications.
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C h a p t e r 3

TRANSIENT DYNAMIC AND SHOCK RESPONSE OF
POLYMERIC LATTICE STRUCTURES

J.S. Weeks, and G. Ravichandran. “Effect of topology on transient dynamic and shock
response of polymeric lattice structures.” Submitted to: Journal of Dynamic Behavior of
Materials (2022).
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cated specimens, designed and conducted experiments, analyzed the data, and wrote the
manuscript.

Abstract
The static and dynamic behavior of polymeric lattice structures is investigated
through experiments on octet-truss, Kelvin, and cubic topologies with relative densi-
ties around 8%. Dynamic testing is conducted via gas gun direct impact experiments
(25 – 70 m/s) with high-speed imaging coupled with digital image correlation and a
polycarbonate Hopkinson pressure bar. Mechanical properties such as elastic wave
speeds, deformation modes, failure properties, particle velocities, and stress histo-
ries are extracted from experimental results. At low impact velocities, a transient
dynamic response is observed which is composed of a compaction front initiating
at the impact surface and additional deformation bands whose characteristics match
low strain-rate behavior. For higher impact velocities, shock analysis is carried out
using compaction wave velocity and Eulerian Rankine-Hugoniot jump conditions
with parameters determined from full-field measurements.

3.1 Introduction
Lattice structures exhibit behavior consistent with their base materials such as plas-
ticity [83, 84] and heat treatment effects [45] in metals, brittle fracture in ceramics
or glassy materials [60, 71, 85, 86], and large deformations in elastomers [87, 88]–
these material behaviors also extend to strain-rate effects. Under high strain-rate
(> 1000𝑠−1) loading, lattices have demonstrated material effects such as strain-rate
strengthening in metallic materials [43, 44, 46] and strain-rate stiffening in poly-
meric materials as seen in Chapter 2. Deformation modes in this regime are similar
to those of low strain-rate loading and collapse typically initiates in the middle of
the lattice specimen. However, under impact loading (> 250 m/s), a compaction
front develops and propagates from the impact surface of the lattice and has been
demonstrated experimentally in polymeric [56, 57] and metallic lattices [58]. This
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compaction ‘wave’ has been modeled as a shock in cellular materials such as wood
[50], honeycombs [53, 89], and foams [51, 54, 62, 63]. This shock response may
be modeled using 1D uniaxial planar shock theory and considering the compaction
wave front as a density discontinuity in the material. At lower impact velocities,
a transient dynamic response has also been demonstrated in honeycombs [53] and
foams [54]. Under these loading conditions, deformation does not propagate as dis-
continuities in density in the form of compaction and instead additional deformation
bands form within the cellular material. This behavior may also be expected in lat-
tice structures, but no prior studies have experimentally investigated such response
and the transition to the shock regime. Another relatively less explored topic is the
effect of topology (geometry of the UC) on this transient dynamic response and the
transition to shock-like behavior.

Typical planar shock experiments use laser interferometry to measure particle ve-
locities on a surface of a target material [17, 78] which is used to quantify the
bulk shock response in the form of a shock velocity–particle velocity equation of
state. Laser interferometry has been successfully applied to shock experiments on
periodic cellular materials [90], but does not capture details of the material de-
formation which may exist at the UC length scale. Full-field measurements are
therefore necessary to characterize the response of lattice structures and cellular
materials due to inhomogenous deformation. Techniques such as x-ray phase con-
trast imaging [91] have been used to study lattice structure shock behavior [56–58]
and while these techniques are effective in understanding the volumetric response,
they require powerful x-rays at advanced facilities such as synchrotrons, are limited
in measurement quantity (frames/images), and specimens exist typically at smaller
length scales (O(𝑚𝑚)). Digital image correlation (DIC) [92] has emerged as a pow-
erful technique in experimental mechanics which allows for full-field displacement
measurements and has been readily applied to foams [54, 93] and lattice structures
[44, 94]. While DIC is limited to surface measurements, it offers high measure-
ment quantity (number of images) based upon state-of-the-art camera capabilities
and requires simpler experimental set-ups; these advantages make DIC an excellent
experimental technique to study shock behavior of cellular materials.

In this chapter, the transient dynamic and shock response of polymeric lattice struc-
tures and the effect of topology is explored through gas gun direct impact ex-
periments. High-speed imaging and digital image correlation are used to extract
full-field measurements of kinematics during impact loading of lattice specimens



36

and the deformation modes and mechanical responses are analyzed. The low strain-
rate, transient dynamic, and shock behavior of cubic (CUB), Kelvin (KEL), and
octet-truss (OT) topologies are investigated. These topologies are chosen due to
having rod-based architectures with distinct mechanical behaviors: Kelvin lattices
demonstrate bending-dominated behavior [4, 95], octet-truss lattices demonstrate
stretching-dominated behavior [39], and cubic lattices are chosen as a simple geom-
etry with struts oriented along loading direction.

Section 3.2 describes the experimental methods of this work through specimen
design and characterization and description of low strain-rate and direct impact
experimental techniques. Section 3.3 then presents the experimental results and
discussion of the low strain-rate, compaction, and shock behavior of lattice structures
with different topologies. Finally, Section 3.4 presents the summary and conclusions
of this work.

3.2 Materials and Methods
3.2.1 Design and Manufacture of Polymeric Lattice Structures
Lattice structure specimens were designed using cubic, Kelvin, and octet-truss unit
cells with rod-based struts and a target relative density (volume fraction), 𝜌∗/𝜌𝑠, of
10% shown in Figs. 3.1(a)-(c).
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Figure 3.1: Design of lattice specimens: (a) cubic, (b) Kelvin, and (c) octet-truss unit cell
geometries with characteristic length, 𝐿0, and strut thickness, 𝑡; and cubic topology with
(d) CAD 5x5x5 UC geometry, (e) CAD 5x5x10 UC geometry, and (f) experimental 5x5x10
UC specimen with relevant dimensions.
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A low relative density was chosen such that topologies showed distinct behavior. At
higher relative densities, lattice structure deformation is typically yield-dominated
and behavior for various topologies may appear similar. For example, the octet-
truss topology transitions from a buckling-dominated response to yield-dominated
response around relative densities of 30% [46].

Unit cell geometries were created in SolidWorks (Dassualt Systemes, Providence,
RI) with characteristic length, 𝐿0, and strut thickness, 𝑡. Two types of specimen
were designed for each topology with a 5x5x5 unit cell (UC) geometry used for low
strain-rate testing and a 5x5x10 UC geometry used for direct impact testing. 𝐿0

was chosen for each topology to produce a unit cell width of 4.8 mm and the strut
thickness was chosen to match a relative density of computed-aided design (CAD)
5x5x10 specimens to 10%.

Values used in specimen design are shown in Table 3.1. Baseplates were also
added to improve manufacturability and help ensure planar loading; a 25 mm square
baseplate with 1.5 mm thickness was used for octet-truss and Kelvin specimens and
a 26 mm square baseplate with 1.5 mm thickness was used for cubic specimens.

Table 3.1: CAD dimensions for characteristic length, 𝐿0, and strut thickness, 𝑡, for cubic,
Kelvin, and octet-truss unit cell geometries.

Topology 𝐿0 [𝑚𝑚] t [𝑚𝑚]
Cubic 4.80 0.935
Kelvin 1.70 0.625

Octet-Truss 3.40 0.440

Lattice structures were additively manufactured using a vat polymerization technique
with Digital Light Processing (DLP) technology. The layer-by-layer projection
manufacturing technique of DLP allows for faster printing compared to point-based
stereolithography techniques and permits a self-supporting build direction along the
length of the specimen. An Autodesk Ember DLP 3D printer (San Rafael, CA)
with a 405 nm wavelength light and 2.8 s exposure time per 25 𝜇𝑚 layer was used
with Colorado Photopolymer Solutions (Boulder, CO) PR57-W photoresin. After
printing, specimens were rinsed in an isopropyl alcohol bath and allowed to dry for
at least 3 hours before testing.
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Relative density was calculated for all experimental specimens using dimensions
labeled in Fig. 3.1(f) and volume fraction measurements as follows:

𝜌∗/𝜌𝑠 =
𝑉𝑚𝑎𝑠𝑠 −𝑉𝑏

𝑉 𝑓
=
𝑉𝑚𝑎𝑠𝑠 − 𝑡𝑏𝐻𝑏𝑊𝑏

(𝐿 − 𝑡𝑏)𝐻𝑊
, (3.1)

where 𝑉𝑚𝑎𝑠𝑠 is the experimental volume of the full specimen found from mass
measurements and assuming a constant material density, 𝑉𝑏 is the volume of the
rectangular baseplate, and 𝑉 𝑓 is the space-filling volume of the lattice. The mass
density of the photopolymer was determined as 1200 𝑘𝑔/𝑚3 in Chapter 2 [95]. 𝑉𝑏
was calculated from thickness, 𝑡𝑏, width, 𝑊𝑏, and height, 𝐻𝑏, of the baseplate and
𝑉 𝑓 was calculated using the specimen length, 𝐿, width,𝑊 , and height, 𝐻.

3.2.2 Low Strain-Rate Experiments
Low strain-rate experiments were performed on 5x5x5 lattice specimens using a
MTS Model 358.10 servo-hyraulic actuator machine (Eden Prairie, MN) with a 13.3
kN capacity axial load cell. Preliminary experiments on 5x5x10 lattice specimens
demonstrated macroscopic out-of-plane bending behavior due to shear localizations
and long specimen lengths. This behavior is resultant from the structural geometry,
but does not adequately describe the general behavior of a lattice defined by its
topology and relative density, and therefore a 5x5x5 UC configuration was chosen
for low strain-rate testing.

Relevant experimental dimensions and corresponding relative density for specimens
used in low strain-rate experiments are shown in Table 3.2.

Table 3.2: Specimen characterization for low strain-rate experiments.

Experiment # 𝑚 [𝑔] 𝐿 [𝑚𝑚] 𝑊 [𝑚𝑚] 𝐻 [𝑚𝑚] 𝑡𝑏 [𝑚𝑚] 𝑊𝑏 [𝑚𝑚] 𝐻𝑏 [𝑚𝑚] 𝜌∗/𝜌𝑠 [%]
𝐶𝑈𝐵𝑄𝑆1 2.723 25.784 24.480 24.518 1.676 25.766 25.788 7.987
𝐶𝑈𝐵𝑄𝑆2 2.702 25.848 24.514 24.530 1.728 25.816 25.828 7.580
𝐶𝑈𝐵𝑄𝑆3 2.573 25.936 24.560 24.568 1.608 25.826 25.840 7.298
𝐾𝐸𝐿𝑄𝑆1 2.656 25.674 24.244 24.220 1.818 24.794 24.844 7.806
𝐾𝐸𝐿𝑄𝑆2 2.758 25.788 24.290 24.230 1.927 24.768 24.826 7.929
𝐾𝐸𝐿𝑄𝑆3 2.399 24.992 24.196 24.234 1.570 24.814 24.754 7.533
𝑂𝑇𝑄𝑆1 2.534 25.414 24.146 24.114 1.768 24.848 24.860 7.406
𝑂𝑇𝑄𝑆2 2.473 25.222 23.962 23.866 1.772 24.824 24.796 7.236
𝑂𝑇𝑄𝑆3 2.349 25.164 23.952 23.878 1.640 24.796 24.836 7.042

Lattice specimens were compressed at a rate of 1.5 mm/min, corresponding to a
nominal strain-rate of ¤𝜖 ≈ 0.001𝑠−1, until densification. Experimental images were
taken at 24 frames per second using a Fastec IL5 High-Speed Camera (San Diego,
CA) with a 100 mm Tokina AT-X Pro lens (Tokyo, Japan) and a Techniquip FOI-150-
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UL continuous light source (Pleasanton, CA). A speckle pattern was applied to the
hydraulic crosshead and 2D digital image correlation (DIC) using Vic2D (Correlated
Solutions, Columbia, SC) was conducted at 1 fps to extract displacements. A subset
size of 53 pixels (px) with a step size of 5 px was used for an area of interest of 36
mm × 16 mm (8 px/mm) in the DIC analysis.

3.2.3 Direct Impact Experiments
Direct impact experiments with high-speed imaging were conducted on 5x5x10
lattice specimens at impact velocities from 25 m/s to 70 m/s using a gas gun and
polycarbonate (PC) Hopkinson pressure bar (HPB) as shown in Fig. 3.2. A Delrin
disk (flyer) with 50.80 mm diameter and 25.40 mm length was used to impact
specimens inside a chamber with a transparent PC window. Lattice specimens were
taped to a PC anvil (31.75 mm diameter) which in turn was press fit onto a longer PC
bar (25.40 mm diameter, 1.83 m length) and surrounded by a C-shaped aluminum
stopper and two pieces of rubber. This ‘stopper’ prevented the flyer from fully
densifying the specimen and transmitting high forces that could inelastically deform
the pressure bar through high strains.

High-Speed
Camera

Lighting
Laser

Output Bar

Gas Gun

Trigger Laser

Polycarbonate
Window

Flyer

Lattice

Stopper
Strain Gauge

Experimental Image

A

B

Y
X

Figure 3.2: Schematic of direct impact experimental set-up with high-speed imaging and PC
Hopkinson pressure bar. Insert shows an experimental image of speckled Delrin flyer, cubic
lattice specimen and speckled PC anvil prior to impact. 𝑋 and 𝑌 are the axial (horizontal)
and transverse (vertical) coordinates, respectively, in the undeformed configuration.

High-speed images were taken using a Hyper Vision HPV-X2 camera (Shimadzu,
Kyoto, Japan) with a 100 mm Tokina AT-X Pro lens and lighting from a non-coherent
CAVILUX Smart laser (Cavitar, Tampere, Finland) with 40 ns pulse lengths. 128
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images were taken at a constant framing interval (8,500 ns – 22,500 ns) set to
maximize number of images taken during deformation depending on target impact
velocities of 30 m/s, 50 m/s, and 70 m/s. Image capture and data acquisition
was triggered using a Wilcom F6230A visual fault locator (Belmont, NH) directed
through the gas gun barrel using fiber optic cables, a Thorlabs PDA10A2 photodiode
(Newton, NJ), and a 2.5 GHz Tektronix DPO 3014 digital oscilloscope (Beaverton,
OR). A trigger was sent as the flyer interrupted the visual fault locator and a voltage
drop from the photodiode was registered for longer than 100 𝜇𝑠.

Specimen characteristics and imaging parameters for all direct impact experiments
are shown in Table 3.3.

Table 3.3: Specimen characterization and imaging parameters for direct impact experi-
ments.

Experiment # 𝑚 [𝑔] 𝐿 [𝑚𝑚] 𝑊 [𝑚𝑚] 𝐻 [𝑚𝑚] 𝑡𝑏 [𝑚𝑚] 𝑊𝑏 [𝑚𝑚] 𝐻𝑏 [𝑚𝑚] 𝜌∗/𝜌𝑠 [%] Δ𝑡 [𝑛𝑠] FPS 𝑣𝑖 [m/s]
𝐶𝑈𝐵𝐷𝐼1 4.191 49.594 24.552 24.550 1.703 25.834 25.784 8.171 20,000 50,000 24.21
𝐶𝑈𝐵𝐷𝐼2 4.090 49.608 24.552 24.560 1.598 25.878 25.810 8.089 12,000 83,333 49.34
𝐶𝑈𝐵𝐷𝐼3 3.806 48.810 24.650 24.660 0.840 25.936 25.880 8.942 8500 117,647 61.22
𝐾𝐸𝐿𝐷𝐼1 3.314 48.290 24.300 24.238 0.710 24.832 24.850 8.291 22,500 44,444 24.81
𝐾𝐸𝐿𝐷𝐼2 3.695 49.016 24.424 24.470 0.990 24.804 24.810 8.605 12,000 83,333 45.83
𝐾𝐸𝐿𝐷𝐼3 3.835 48.582 24.304 24.308 0.925 24.844 24.900 9.317 8,500 117,647 67.27
𝑂𝑇𝐷𝐼1 3.776 49.148 24.010 24.016 1.808 24.770 24.762 7.465 22,500 44,444 25.63
𝑂𝑇𝐷𝐼2 3.603 48.802 23.966 23.968 1.798 24.704 24.778 7.048 12,000 83,333 51.29
𝑂𝑇𝐷𝐼3 3.041 47.304 23.728 23.800 1.070 24.798 24.780 7.186 8,500 117,647 73.11

Digital Image Correlation Analysis

Digital image correlation (DIC) was performed on three areas of interest (AOI) in the
experimental images. The AOIs and corresponding DIC analyses for an octet-truss
lattice impacted at 73.1 m/s (Exp. #𝑂𝑇𝐷𝐼3) are shown in Fig. 3.3.

A Sharpie pen (Fine Point) was used to create a random speckle pattern on the
flyer for AOI1, black spray paint and tape were used to make the speckle pattern
on the anvil for AOI3, and the lattice geometry itself served as a unique subset for
AOI2. A subset size of 23 px (4.6 mm) was used for AOI1 and AOI3 and a subset
size of 27 px (5.4 mm) was used for AOI2 (corresponding to ∼ 1.2 of a unit cell)
with a step size of 1 px used in all analyses. While local strains of the lattice are
inherently smoothed during the analysis due to a subset size greater than the unit cell
size, these subset sizes remain relevant to approximate the material as a continuum.
Incremental correlation was used for all analyses due to large deformations of the
lattice and to remain consistent across all three areas of interest. Additionally, a
0.09 px confidence error threshold was used for data removal of highly deformed
or overexposed regions. Particle velocities shown in Fig. 3.3 were computed in
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Vic2D using a constant timing interval and three-point central difference numerical
method. The impact velocity of the flyer, 𝑣𝑖, in each experiment was computed from
DIC of the flyer (AOI1) prior to impact and is shown in Table 3.3. Anvil particle
velocities were O(10) mm/s and much smaller than the magnitudes of the flyer and
lattice particle velocities.

AOI1 AOI2
AOI3

𝒕 = 𝟎 𝒕 =153 𝝁𝒔

𝒕 =306 𝝁𝒔 𝒕 =459 𝝁𝒔

70

0

35

52.5

17.5

x [m/s]

𝟏𝟎𝒎𝒎

Figure 3.3: Digital image correlation analysis on Delrin flyer (AOI1), octet-truss lattice
specimen (AOI2), and PC anvil (AOI3) at times t = 0, 153 𝜇𝑠, 306 𝜇𝑠, and 459 𝜇𝑠 after
impact for Exp. #𝑂𝑇𝐷𝐼3. Particle velocity ( ¤𝑥) results from all AOI are superimposed on
each image.

Hopkinson Pressure Bar Analysis

Strain gauge measurements on the polycarbonate pressure bar allowed extraction of
the force acting on the distal (non-impacted) end of the lattice through conventional
Hopkinson pressure bar (HPB) analysis. Two Vishay EA-13-031CE-350/LE gauges
(1/4 bridge configuration) were placed diametrically opposite 0.6 m from the lattice-
anvil interface and a Vishay 2310B signal conditioning amplifier (Raleigh, NC) and
Agilent MSO9404A oscilloscope (20 GSa/s sample rate) (Santa Clara, CA) were
used to record strain gauge voltage data. A low input voltage of 1.4 V was used to
avoid heating effects in the strain gauges.

Following elastic HPB analysis [78], the particle velocity and force at the bar
interface may be found using:

𝑣(𝑡) = 𝑐0𝜖𝑆𝐺 (𝑡) , (3.2)

𝐹 (𝑡) = 𝐸𝐴𝜖𝑆𝐺 (𝑡) , (3.3)
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where 𝑣 is the velocity of the bar interface, 𝐸 is the Young’s modulus of the PC
bar taken as 2.37 GPa [96], 𝑐0 is the bulk wave speed in the PC bar taken as 1405
m/s (using 𝑐0 =

√︁
𝐸/𝜌 with density 𝜌 = 1200𝑘𝑔/𝑚3 [96]), 𝜖𝑆𝐺 is the strain-gauge

measurement in the bar, 𝐹 is the force experienced at the lattice-anvil interface, and
𝐴 is the cross-sectional area of the bar.

Viscoelastic analysis following Bacon [79] was also carried out using an additional
set of strain gauges placed 0.3 m from the lattice-anvil interface. Elastic analysis
matched viscoelastic analysis and typical strain measurements were low (O(100)𝜇𝜀)
which justified the use of elastic analysis in this loading regime and experimental
set-up.

A similar trigger was sent to imaging (high-speed camera) and HPB components
(strain gauges) and allowed comparison of time-linked measurements. Velocities
were extracted from both DIC and HPB analyses and used to validate strain gauge
measurements. Figure 3.4(a) shows the computed anvil velocities using DIC and
HPB techniques for all three topologies with 𝑣𝑖 ≈ 50 m/s. The corresponding
DIC location is marked as position 𝐴 in Fig. 3.2. Velocities of O(0.1 − 0.7) m/s
corresponded to sub-pixel resolution of the DIC analysis and the resulting DIC
confidence intervals were comparable to the magnitudes of HPB measurements.
However, an overall qualitative match in the shape and magnitude of the velocity
profiles was observed.
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Figure 3.4: Hopkinson pressure bar (HPB) measurements were validated through compar-
ison to DIC-computed velocities of the (a) anvil at impact velocity, 𝑣𝑖 ≈ 50 m/s and (b)
pressure bar at impact velocity, 𝑣𝑖 ≈ 70 m/s.

An additional set of validation experiments was carried out at 𝑣𝑖 ≈ 70 m/s with a DIC
location next to the strain gauges (corresponding to position 𝐵 in Fig. 3.2). Velocities
are shown in Fig. 3.4(b) and strain measurements showed good match with DIC
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measurements with differences comparable to that of anvil experiments. Qualitative
matching of velocities from both the anvil and pressure bar gives validation that
strain gauge measurements are accurate and differences in measurements may be
attributed to analysis techniques rather than effects of the anvil.

3.3 Results and Discussion
3.3.1 Low Strain-Rate Behavior of Lattice Structures
Low strain-rate experiments were performed on 5x5x5 lattice specimens at a nominal
strain-rate of ¤𝜖 ≈ 0.001𝑠−1. Three experiments were conducted for each topology
to verify repeatability of results and specimen characteristics for each experiment
are shown in Table 3.2. The nominal stress, 𝜎𝑁 , of each specimen was found by
dividing load cell force measurements by the full area of the lattice (𝐻 ∗𝑊) and
the nominal strain, 𝜖𝑁 , was found by dividing DIC-computed displacements of the
hydraulic crosshead by the length of the lattice (𝐿 − 𝑡𝑏). Deformation images were
taken during experiments and linked in time to mechanical measurements.

Figure 3.5(a) shows the low strain-rate nominal stress-strain response (𝜎𝑁 – 𝜖𝑁 ) for
each specimen. While variation between individual specimens exists, there is good
repeatability of the general response of each topology. Specimens demonstrated
behavior consistent with that of brittle cellular materials [1] which included an initial
linear elastic region before a critical failure stress (𝜎 𝑓 ) was reached and subsequent
softening occurred. Then, crushing of the lattice progressed at a relatively constant
plateau stress before struts began to contact and steep stiffening occurred due to
densification of the material.
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Figure 3.5: Low strain-rate (a) nominal stress (𝜎𝑁 ) – nominal strain (𝜖𝑁 ) response and
(b) deformation images of specimens at 𝜖𝑁 = 0, 0.1, 0.2, and 0.6 which are represented as
vertical lines in (a).
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Images shown in Fig. 3.5(b) demonstrate the deformation modes of each lattice
topology and show nominal strains of 𝜖𝑁 = 0, 0.1, 0.2 and 0.6. The cubic topology
showed a catastrophic failure deformation mode initiated by macroscopic buckling
at strains 𝜖𝑁 < 0.1 and fracture of vertical struts in a given horizontal layer of unit
cells for strains 𝜖𝑁 > 0.1 which then progressively failed in a layer-by-layer fashion.
This behavior is demonstrated in the 𝜎𝑁 − 𝜖𝑁 response by sharp rises and drops in
stress associated with the loading and failure of each layer. The octet-truss topology
showed the weakest 𝜎𝑁 − 𝜖𝑁 response and deformation images revealed a buckling-
dominated response which initiated after a peak failure stress. The progressive
crushing of the lattice continued through buckling and showed a low, constant
plateau stress until densification. This deformation mode and softening response is
expected due to the “stretching-dominated” behavior of the geometry [39]. Finally,
the Kelvin topology showed a strain-hardening response with “bending-dominated”
deformation concentrated at the strut nodes. This observation is consistent with
Maxwell’s stability criterion analysis of this geometry [16] as well as experimental
work on Kelvin lattices of the same material in Chapter 2 [95].

Low Strain-Rate Mechanical Properties

Low strain-rate mechanical deformation and failure properties were extracted from
the 𝜎𝑁 − 𝜖𝑁 response of each specimen. The following properties were calculated:
(1) stiffness, 𝑆, (2) specific energy absorption, 𝐸𝑎𝑏𝑠, (3) failure stress, 𝜎 𝑓 , and (4)
failure strain, 𝜖 𝑓 . 𝑆 was defined through the slope of the initial 𝜎𝑁 − 𝜖𝑁 response
and calculated using a linear fit of select data points (0.01 < 𝜖𝑁 < 0.05) with a
maximized R-squared value. 𝐸𝑎𝑏𝑠 was defined as: 𝐸𝑎𝑏𝑠 = 1

𝜌∗

∫ 0.6
0 𝜎𝑁𝑑 (𝜖𝑁 ) where

𝜌∗ is the mass density of the specimen and the upper integration bound of 𝜖𝑁 = 0.6
was chosen to represent a typical strain before densification effects (stiffening)
initiated. 𝜎 𝑓 was defined as the maximum stress the specimen sustains before
failure (softening) occurs, and 𝜖 𝑓 was defined as the corresponding strain at failure.

Figure 3.6 shows the low strain-rate mechanical failure properties for all lattice
specimens. Relative densities of the specimens were computed using Eq. (3.1) and
showed significant distinctness in values. Particularly, the lower relative densities of
the octet-truss specimens may be attributed to the smaller manufacturing dimensions
of the geometry and limitations of the printer resolution.

Cubic specimens demonstrated the highest stiffness by a factor of ∼ 5 compared
to the Kelvin and octet-truss topologies. This high stiffness is in agreement with
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Figure 3.6: Low strain-rate mechanical properties of lattice structures for (a) stiffness, 𝑆,
(b) specific energy absorption, 𝐸𝑎𝑏𝑠, (c) failure strain 𝜖 𝑓 , and (d) failure stress, 𝜎 𝑓 .

rigid “stretching-dominated” behavior which was demonstrated through an initial
buckling deformation mode. Maxwell’s stability criterion (as well as buckling
behavior) also describes the octet-truss topology as “stretching-dominated.” But,
while it is expected for a “stretching-dominated” geometry to have higher stiffness
than a “bending-dominated” geometry for a relative density around 10% [16], this
is not apparent from experimental results for the octet-truss and Kelvin specimens.
However, the stiffness of lattice structures is also dependent on relative density [4],
and lower density octet-truss specimens generated slightly higher stiffness values
than Kelvin specimens of higher densities. It is reasonable to conclude octet-truss
lattices of similar densities would demonstrate higher values than Kelvin lattices.

The octet-truss topology showed the lowest specific energy absorption, which may
be related to a buckling deformation response compared to bending (Kelvin) or frac-
ture (cubic). Meanwhile, cubic and Kelvin topologies showed similar 𝐸𝑎𝑏𝑠 values.
Considering failure properties: Kelvin specimens showed the highest failure strain
while octet-truss and cubic specimens showed lower values; and cubic specimens
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demonstrated the greatest failure stress, followed by Kelvin, and octet-truss speci-
mens. The failure stress results draw parallels to that of specific energy absorption
and may be considered a large contributing factor to the total energy absorbed during
low strain-rate loading. Densification strain was similar for all three lattice topolo-
gies with a value of ≈ 0.75 represented by convergence of the stiffening sections
of the 𝜎𝑁 − 𝜖𝑁 curves in Fig. 3.5(a). Lattice relative densities were distinct but
similar in values which agrees with experimental observations in foams that show
densification strain is a function of relative density [1].

3.3.2 Elastic Wave Speeds in Dynamic Experiments
Full-field measurements from DIC allow extraction of particle displacements over
the entire impacted lattice specimens. An example of particle displacement (𝛿)
as a function of undeformed coordinate (𝑋) profiles for an octet-truss specimen
impacted at 73.1 m/s (Exp. #𝑂𝑇𝐷𝐼3) is shown in Fig. 3.7(a). Particle displacements
were computed for each undeformed horizontal coordinate (𝑋) pixel and averaged
over 20 undeformed vertical coordinate (𝑌 ) pixels about the center of the specimen,
corresponding to the width across the center unit cell. Displacement – undeformed
coordinate (𝛿 − 𝑋) profiles are plotted for each time instance in Fig. 3.7(a) where
each line depicts data from one experimental image. Increasing time is recognized
as rightward translation of each profile and positive concavity illustrates the trend
of increasing displacement at all positions across the lattice.
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Figure 3.7: Elastic wave extraction: (a) particle displacement (𝛿) – undeformed coordinate
(𝑋) profiles with elastic wave front positions at 200 𝜇𝑚 and (b) corresponding elastic wave
front-time history for Exp. #𝑂𝑇𝐷𝐼3.

The elastic wave front was defined using a displacement criterion of 200 𝜇𝑚 which
was chosen to approximate 1 pixel (image resolution: ∼ 5 pixels/mm). The DIC
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analysis is capable of sub-pixel accuracy and error bars are plotted, which are
small (< ±1.5𝜇𝑚). Elastic wave speeds may then be extracted using displacement
measurements since the time instance of each experimental image is known. The
elastic wave front may be defined in position and time and is shown in Fig. 3.7(b)
for the corresponding data in Fig. 3.7(a). A linear fit was applied to the elastic front
position-time history and the slope was taken as the wave speed. The elastic wave
speed was calculated using positions 𝑋 < 35 mm to avoid boundary effects from
the baseplate.

The elastic wave speeds for all impact experiments are shown in Fig. 3.8. Figure
3.8(a) shows the dependence of elastic wave speed on relative density. Elastic wave
speeds appeared mostly constant for each topology with the cubic topology showing
the highest speed followed by octet-truss and Kelvin topologies. This relationship
closely follows trends of low strain-rate stiffnesses and agrees with the continuum
approximation of longitudinal wave speed as 𝑐 =

√︁
𝐸/𝜌where 𝐸 is Young’s modulus

(stiffness) of lattice specimens and density is similar for all specimens.
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Figure 3.8: Elastic wave speeds vs. (a) relative density, 𝜌∗/𝜌𝑠, and (b) impact velocity,
𝑣𝑖 , for cubic, Kelvin, and octet-truss specimens. Error was defined using a 95% confidence
bound and was large when few data points were used for fitting.

Figure 3.8(b) shows dependence of elastic wave speed on impact velocity. A slight
increase in elastic wave speed with impact velocity was observed for octet-truss
and Kelvin topologies, while no clear trend was discernible for the cubic topology.
Large confidence bounds for the cubic specimen impacted at 24 m/s (Exp. #𝐶𝑈𝐵𝐷𝐼1)
were a result of applying a fit to few data points (due to a high wave speed and low
framing rates). Though, a general increase in wave speed with impact velocity may
be realized in the data and interpreted by considering strain-rate stiffening of the
base material which was observed for the photopolymer in Chapter 2 [95].
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3.3.3 Compaction Behavior of Lattice Specimens
Deformation bands or strain concentrations occurring in different regions of cellular
materials may be used to define unique deformation regimes. Transient dynamic
behavior has been observed computationally in impact loading of honeycombs of
𝜌∗/𝜌𝑠 = 10% at 𝑣𝑖 = 10 m/s [53] and experimentally in aluminum 6061 foams
of 𝜌∗/𝜌𝑠 ≈ 8% at 𝑣𝑖 ≈ 35 m/s [54]. This type of behavior demonstrates defor-
mation occurring at distal ends (honeycomb) or mid-sections (foam) in addition to
deformation at the impacted surface. In contrast, a more uniform dynamic response
was found at strain-rates around 1000 𝑠−1 (corresponding to 𝑣𝑖 ≈ 15 − 20 m/s) in
Kelvin lattice structures of 𝜌∗/𝜌𝑠 = 15 − 30% in Chapter 2 of this thesis. These
materials demonstrated deformation bands in the middle of the specimen similar
to their low strain-rate behavior. During high velocity impact (e.g., 𝑣𝑖 > 250 m/s)
lattice structures exhibit another deformation mechanism–that of a sole progressing
compaction (crushing) front initiating at the impact surface [56–58]. There exists a
transition point between these deformation regimes dependent on the material, but
this transition has not yet been fully explored in lattices. Impact velocities of 25 – 70
m/s span a range of strain-rates in between the transient dynamic and shock regimes
for polymeric lattice structures investigated in this study. The mechanical response
of lattice specimens was analyzed in these regimes using DIC based full-field strain
and particle velocity measurements and HPB force measurements.

Deformation Modes

Deformation modes of each specimen were analyzed from full-field DIC measure-
ments. As previously described for particle displacements in Section 3.3.2, similarly,
data for each X-position pixel was averaged over the central 20 Y-position pixels of
the lattice AOI where 20 pixels was approximately the width of one UC.

Figure 3.9 shows deformation mode results for the octet-truss topology. Figure
3.9(a),(b),(c) show the longitudinal Lagrangian strain (𝜖𝑋𝑋) – undeformed coor-
dinate (𝑋) profiles for octet-truss specimens with impact velocities (𝑣𝑖) of 25.6
m/s, 51.3 m/s, and 73.1 m/s, respectively. Figure 3.9(d),(e),(f) show corresponding
strain-fields taken at nominal impact strains (𝜀 = Δ𝑥 𝑓 𝑙𝑦𝑒𝑟/(𝐿 − 𝑡𝑏)) of 0, 0.2, 0.4,
and 0.6. The 𝜖𝑋𝑋 − 𝑋 profiles of the time instances at these nominal impact strains
are represented using bold lines in Fig. 3.9(a),(b),(c).
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Figure 3.9: Deformation modes of octet-truss topology. Lagrangian strain (𝜖𝑋𝑋) – unde-
formed coordinate (𝑋) profiles for impact velocity 𝑣𝑖 of (a) 25.6 m/s, (b) 51.3 m/s, and (c)
73.1 m/s. Corresponding strain-fields at nominal impact strains of 𝜀 = 0, 0.2, 0.4, and 0.6
for 𝑣𝑖 of (d) 25.6 m/s, (e) 51.3 m/s, and (f) 73.1 m/s. Line transparency is increased at later
time instances to improve data visualization.

For 𝑣𝑖 = 25.6 m/s, Fig. 3.9(d) shows the initial development of a compaction front
at 𝜀 = 0.2 and formation of additional deformation bands ahead of the compaction
front by 𝜀 = 0.4. These bands may be realized through the shape of the 𝜖𝑋𝑋 − 𝑋
profiles in Fig 3.9(a). Figure 3.9(b),(e) show results for 𝑣𝑖 = 51.3 m/s and similarly
show the initial development of a compaction front from 𝜀 = 0 − 0.4 and an
additional deformation band forming by 𝜀 = 0.6. Figure 3.9(c),(f) show results
for 𝑣𝑖 = 73.1 m/s with a clearly propagating compaction front and a slight region
of deformation ahead of the deformation front at 𝜀 = 0.6. As impact velocity
increased, the prominence of the compaction front increased while that of the
additional deformation bands decreased. The deformation mechanism of these
bands matched the low strain-rate behavior via a buckling response. In contrast,
deformation at the compaction front demonstrated more crushing-like behavior.
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Figure 3.10 shows the 𝜖𝑋𝑋 − 𝑋 profiles and deformation images taken at 𝜀 =

0, 0.2, 0.4, 0.6 for Kelvin lattice specimens impacted at 24.8, 45.8, and 67.3 m/s.
For all impact velocities, a compaction front developed and became increasingly
prominent as impact velocity increased. The 𝜖𝑋𝑋 − 𝑋 profiles in Fig. 3.10(a) show
lines that appear to decrease somewhat linearly. This behavior is more representative
of a ‘transient dynamic’ response than a ‘shock’ response which will be discussed in
Section 3.3.4. The compaction wave also appeared to dissipate in all experiments,
represented by non-zero strains ahead of the front. Deformation ahead of the
compaction front is visualized in deformation images in Fig. 3.10(d),(e),(f) and
showed consistent bending-dominated behavior which was observed in the low
strain-rate response.
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Figure 3.10: Deformation modes of Kelvin topology. Lagrangian strain (𝜖𝑋𝑋) – undeformed
coordinate (𝑋) profiles for impact velocity 𝑣𝑖 of (a) 24.8 m/s, (b) 45.8 m/s, and (c) 67.3
m/s. Corresponding strain-fields at nominal impact strains of 𝜀 = 0, 0.2, 0.4, and 0.6 for 𝑣𝑖
of (d) 24.8 m/s, (e) 45.8 m/s, and (f) 67.3 m/s. Line transparency is increased at later time
instances to improve data visualization.
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Figure 3.11 shows the 𝜖𝑋𝑋 – 𝑋 profiles and deformation images taken at 𝜀 =

0, 0.2, 0.4, and 0.6 for cubic lattice specimens impacted at 24.2, 49.3, and 61.2 m/s.
For 𝑣𝑖 = 24.2 m/s, Fig. 3.11(a),(d) show deformation first initiates at the impact
surface and secondly initiates near the distal-most unit cell by 𝜀 = 0.2. Compaction
then occurs at both these locations similar to what is expected in a low strain-rate
response. Figure 3.11(b),(c) and Fig. 3.11(e),(f) show deformation modes for 𝑣𝑖 of
49.3 m/s and 61.2 m/s, respectively.
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Figure 3.11: Deformation modes of cubic topology. Lagrangian strain (𝜖𝑋𝑋) – undeformed
coordinate (𝑋) profiles for impact velocity 𝑣𝑖 of (a) 24.2 m/s, (b) 49.3 m/s, and (c) 61.2
m/s. Corresponding strain-fields at nominal impact strains of 𝜀 = 0, 0.2, 0.4, and 0.6 for 𝑣𝑖
of (d) 24.2 m/s, (e) 49.3 m/s, and (f) 61.2 m/s. Line transparency is increased at later time
instances to improve data visualization.

Unlike at 𝑣𝑖 = 49.3 m/s (Exp. #𝐶𝑈𝐵𝐷𝐼2) deformation ahead of the front exists
and strut fracture was observed at 𝑣𝑖 = 61.2𝑚/𝑠 (Exp. #𝐶𝑈𝐵𝐷𝐼3). This may have
resulted from manufacturing or geometric defects or a higher relative density of
the specimen (Exp. #𝐶𝑈𝐵𝐷𝐼3: 8.942% vs Exp. #𝐶𝑈𝐵𝐷𝐼2: 8.089%) and reflects
the influence of structure on the deformation response. In both cases, buckling



52

followed by brittle fracture of the struts was observed and a clear compaction front
developed. As with the Kelvin and octet-truss topologies, the cubic specimen
deformation modes were similar to their low strain-rate response.

Full-field strain measurements and varying impact velocities allowed for compar-
ison of the compaction response across topologies. In all topologies, a ‘transient
dynamic’ response occurred at the lowest impact velocity: deformation initiated
at the impact surface and additional deformation bands formed ahead of the com-
paction front. These bands demonstrated deformation mechanisms similar to the
lattices’ low strain-rate response. A ‘shock’ response may be generally defined
using the 𝜖𝑋𝑋 – X profiles. A square-wave type curve reflects a strong shock in
the material with two distinct regions of uniform strain. The strongest shocks were
observed at 𝑣𝑖 ≈ 70 m/s; impacts at 𝑣𝑖 ≈ 50 m/s generally induced deformation
which may be realized as a weak shock with two separate regions defined with a
lower sloped curve; and impacts at 𝑣𝑖 ≈ 25 m/s induced deformation which should
be recognized as (non-shock) compaction. The strongest shocks were found in cubic
specimen, followed by octet-truss, and Kelvin specimens based upon the steepness
of the 𝜖𝑋𝑋 − 𝑋 curves. The shock response of these lattices (considering 𝑣𝑖 > 45
m/s) is further analyzed in Section 3.3.4.

Some interesting observations are also noted as follows: particularly, strains ahead
of the front were higher in Kelvin lattices than other topologies which suggests an
increased dissipation effect in this topology; and the cubic topology did not display
compaction wave behavior at 𝑣𝑖 ≈ 25 m/s which demonstrates a higher initiation
velocity required for a compaction wave response.

Particle Velocity Profiles

Figure 3.12 shows particle velocities from full-field DIC measurements for each
direct impact experiment. Particle velocities were plotted for each X-position at all
time instances and measurements were taken as the average of 20 Y-pixels about
the center of the lattice as discussed in previous sections. Each experimental curve
corresponds to data from one X-pixel position and all experimental images.

Flyer velocity was calculated using DIC and plotted for each experiment. As time
increased, particle velocities of the lattice specimens converged to the speed of the
flyer. Sharp deceleration of the flyer sometimes resulted from hitting the ‘stopper’
in the experimental set-up such as for the octet-truss specimen at 𝑣𝑖 = 51.3 m/s
(Exp. #𝑂𝑇𝐷𝐼2). Otherwise, flyer velocity appeared to gradually decrease with time
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Figure 3.12: Particle velocities of lattice specimens and flyers during direct impact ex-
periments with initial impact velocity shown. Line transparency is increased for larger
X-positions to improve data visualization.

due to energy dissipation through deformation of the lattice. Convergence of the
lattice particle velocities to the flyer speed is also demonstrated in metallic lattice
specimens in Chapter 4 [61] and illustrates a ‘structural shock’ behavior.

Particle velocities in cubic specimens appeared to exceed that of the flyer which
may be attributed to the catastrophic failure mode of the topology and high kinetic
energy of the failed struts. Particle velocities in cubic specimen also appeared to
take longer to converge to the flyer speed than Kelvin or octet-truss specimens,
which represents a longer time for compaction initiation.

Sharper (smaller rise times) velocity profiles illustrate a stronger shock response
apparent in experiments at higher impact velocities. Particle velocity profiles showed
a precursor wave that decayed before the compaction wave arrived. This precursor
wave is related to the elastic wave and plastic response of the lattice specimen and
corresponding particle velocities appear to follow trends of low strain-rate behavior
shown in Fig. 3.5(a). Cubic specimens showed a steep profile and large drop in
value before the compaction shock arrived which is similar to the catastrophic failure
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mode observed at low strain-rates. Similarly, Kelvin specimens showed hardening-
like profiles and octet-truss specimens showed softening-like profiles resembling
the low strain-rate stress-strain (𝜎𝑁 − 𝜖𝑁 ) behavior.

Stress Histories

The force acting at the distal end of the lattice specimen was found using Eq. (3.3)
and strain measurements (𝜖𝑆𝐺) from the HPB. Figure 3.13 shows the nominal stress
(𝜎𝑁 ) – nominal impact strain (𝜀 = Δ𝑥 𝑓 𝑙𝑦𝑒𝑟/(𝐿 − 𝑡𝑏)) response for each direct impact
experiment. Due to varying time durations of experiments, nominal impact strain
was used as a comparable quantity. The nominal impact strain represents travel of
the flyer normalized by the length of the lattice rather than a representation of the
strain field of the specimen. An artifact of this method is that due to wave transit
times across the lattice specimen, higher impact velocities induce a larger nominal
impact strain before the stress wave arrives at the distal end and a non-zero stress
is encountered. Therefore, higher impact velocity experiments may be mistakenly
interpreted as exhibiting less stiff responses.
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Figure 3.13: Distal nominal stress (𝜎𝑁 ) – nominal impact strain (𝜀) response for lattice
specimens impacted at velocities of approximately 25, 50, and 70 m/s.

Across all topologies, the cubic specimens showed the stiffest and strongest response
while the octet-truss and Kelvin specimens exhibited forces commensurate with
each other. A slight strengthening may be realized as impact velocity increased,
however, variance of force measurements may also be related to relative density of
the specimens.
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For each topology, force measurements from 𝑣𝑖 ≈ 50 m/s and 𝑣𝑖 ≈ 70 m/s were
similar, but differed from force measurements at 𝑣𝑖 ≈ 25 m/s. This observation is
in line with the emergence of a dominant compaction (shock) wave at these impact
velocities. Overall, force measurements in these experiments resembled trends of the
low strain-rate 𝜎𝑁 − 𝜖𝑁 behavior of the lattice specimens (Fig. 3.5(a)). Considering
specimens with similar relative densities, results show a strain-rate strengthening
factor around 15 for cubic specimens, 15 for octet-truss specimens, and 5 for Kelvin
specimens.

3.3.4 Shock Response of Lattice Structures
While a compaction wave initiates at the impact surface of all lattice specimens
in this work, it is only realized as a shock wave when it exists as the dominant
deformation mechanism. This compaction front is also realized as a shock front in
metallic octet-truss lattices structures under high impact velocities and the equation
of state (EOS) for these materials is defined using a linear shock velocity – particle
velocity relation in Chapter 4 [61]. Properties such as density and stress behind the
shock front may be found by following one-dimensional continuum shock physics
theory using the notions of conservation of mass and momentum [65]. Shock jump
relations following the conservation of mass and momentum are shown in Eqs. (3.4)
and (3.5) as follows:

⟦𝜌⟧𝑢𝑠 = ⟦𝜌 ¤𝑥⟧ , (3.4)

⟦𝜌 ¤𝑥⟧𝑢𝑠 = ⟦𝜌 ¤𝑥2 − 𝜎⟧ , (3.5)

where bracket quantities ⟦𝑞⟧ represent the jump value (𝑞+−𝑞−) across the shock, 𝜌
is the density, ¤𝑥 is the Eulerian particle velocity, 𝜎 is the stress, and 𝑢𝑠 is the shock
velocity measured in the deformed or Eulerian coordinates. The Eulerian form of
the jump conditions were used to account for effects of non-negligible deformation
(e.g., strain, particle velocity) ahead of the shock as seen in DIC contours in Figs.
3.9, 3.10, and 3.11.

Parameters necessary to apply the shock jump relations were found using full-
field DIC measurements. The shock front was determined by considering the
particle velocity ( ¤𝑥) – undeformed (or, Lagrangian) coordinate (𝑋) relation for each
experimental image. An example of this data for the Kelvin topology impacted at
67.3 m/s (Exp. #𝐾𝐸𝐿𝐷𝐼3) is shown in Fig. 3.14.
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Figure 3.14: Particle velocity ( ¤𝑥) vs. undeformed coordinate (𝑋) profiles for the Kelvin
topology impacted at 67.3 m/s (Exp. #𝐾𝐸𝐿𝐷𝐼3) with shock front position (𝑋𝑠) and particle
velocity ahead of the shock ( ¤𝑥+𝑠 ) marked.

Each line in Fig. 3.14 represents data from one experimental image. The shock
front was defined as the point of maximum change in velocity for each time instance
and the shock velocity was computed using a three-point central difference method
on the shock front (𝑋𝑠) – time (𝑡) history. The shock front was determined for
each undeformed coordinate, 𝑋 , and mapped to the deformed coordinate, 𝑥, using
displacement measurements, 𝛿, such that 𝑥 = 𝑋 + 𝛿. Additionally, the particle
velocity ahead of the shock was approximated as the point of maximum curvature
ahead of the shock front position.

The density ahead of the shock, 𝜌+𝑠 , was found by considering the length of the
uncrushed lattice ahead of the shock. This density may be approximated by taking
the ratio between the initial length of the uncrushed section of the lattice and the
current length of the uncrushed section of the lattice:

𝜌+𝑠
𝜌0

=
𝐿 − 𝑡𝑏 − 𝑋𝑠

𝐿 − 𝑡𝑏 + 𝛿𝑎𝑛𝑣 − 𝑥𝑠
, (3.6)

where 𝐿 is the length of the full specimen, 𝑡𝑏 is the thickness of the baseplate, 𝛿𝑎𝑛𝑣
is the displacement of the anvil, 𝑥𝑠 is the deformed coordinate shock front position,
𝑋𝑠 is the undeformed coordinate shock front position, and 𝜌0 is the initial density
of the specimen.
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The conservation of mass (Eq. (3.1)) may be rewritten to obtain the density behind
the shock (𝜌−) in terms of known parameters:

𝜌− =
𝜌+𝑢𝑠 − 𝜌+ ¤𝑥+
𝑢𝑠 − ¤𝑥− . (3.7)

Figure 3.15(a) shows the density ahead of the compaction wave (𝜌+𝑠 ) calculated
using Eq. (3.6) and the density behind the compaction wave (𝜌−𝑠 ) calculated using
Eq. (3.7). The density ahead of the shock remains at a relatively constant value
during deformation while the density behind the shock varies widely. Figure 3.14
demonstrates the particle velocity ahead of the shock ( ¤𝑥+𝑠 ) varies widely during
loading as well. The density behind the shock, 𝜌−𝑠 , is dependent on this particle
velocity, ¤𝑥+𝑠 , and therefore has a dependence on the lattice topology.
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Figure 3.15: Shock parameter-time histories for (a) density behind the shock, 𝜌−𝑠 , density
ahead of the shock, 𝜌+𝑠 , and (b) deformed coordinate shock velocity, 𝑢𝑠, undeformed coordi-
nate shock velocity, 𝑈𝑠, and flyer speed, ¤𝑥 𝑓 𝑙𝑦 for the Kelvin topology impacted at 67.3 m/s
(Exp. #𝐾𝐸𝐿𝐷𝐼3).

Figure 3.15(b) shows the corresponding undeformed coordinate shock velocity (𝑈𝑠),
deformed coordinate shock velocity (𝑢𝑠), and flyer velocity ( ¤𝑥 𝑓 𝑙𝑦) for a Kelvin spec-
imen impacted at 67.3 m/s (Exp. #𝐾𝐸𝐿𝐷𝐼3). A large difference between the
undeformed and deformed coordinate quantities reflects an effect of finite deforma-
tions ahead of the shock. These values would converge if no elastic wave or inelastic
deformation ahead of the shock existed. The application of 1D shock theory may
be evaluated by considering the relationship between these shock velocity quantities
[65]:

𝑈𝑠 =
𝜌−𝑠
𝜌0

(
𝑢𝑠 − ¤𝑥−𝑠

)
. (3.8)
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The Lagrangian shock velocity, 𝑈𝑠, was found using Eq. (3.8) and calculated or
measured quantities of 𝜌+𝑠 , ¤𝑥−𝑠 , and 𝑢𝑠 and plotted in Fig. 3.15(b). Based upon
velocities shown in Fig. 3.12, the particle velocity behind the shock converged to
the speed of the flyer during deformation and therefore may be approximated as
the flyer speed, ¤𝑥 𝑓 𝑙𝑦. Equation (3.8) may be considered as a mapping of the shock
speed from 𝑢𝑠 (deformed) to 𝑈𝑠 (undeformed). Despite large differences between
experimentally measured𝑢𝑠 and𝑈𝑠 values, a qualitative match was observed between
the experimentally measured𝑈𝑠 values and the 1D shock theory-derived𝑈𝑠 values,
which validates application of this theory.

The compaction wave speeds for each experiment are taken as the deformed coor-
dinate shock speed, 𝑢𝑠, and are plotted as a function of flyer velocity in Fig. 3.16.
Increasing compaction wave speed was observed with flyer velocity which agrees
with other studies on shock compression of foams and lattices [54, 61]. Variation
in velocities existed in each experiment due to non-steady shock behavior result-
ing from initiation and baseplate effects. Based upon this variation, as well as
non-constant densities behind the compaction wave, these results are not under the
classical classification of a strong shock and are thus described as compaction waves.
A general linear trend may resemble the relations shown in Fig. 3.16, however more
data points should be collected within the steady shock regime to define a proper
𝑢𝑠 − 𝑢𝑝 equation of state.
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Figure 3.16: Compaction wave speed (taken as deformed coordinate shock velocity (𝑢𝑠))
vs. flyer velocity ( ¤𝑥 𝑓 𝑙𝑦) for all topologies with impact velocity 𝑣𝑖 > 45 m/s. Unit slope line
drawn for reference.
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The stress behind the compaction wave may be found using the conservation of
momentum (Eq. (3.5)) and HPB force measurements which were used to approx-
imate the stress state ahead of the shock, 𝜎+

𝑠 . Conservation of momentum may be
rewritten to solve for the stress behind the shock in Eq. (3.9):

𝜎− = 𝜎+ + 𝑢𝑠⟦𝜌 ¤𝑥⟧ − ⟦𝜌 ¤𝑥2⟧ . (3.9)

Stress versus nominal impact strain histories were computed for experiments with
𝑣𝑖 > 45 m/s and are shown in Fig. 3.17. Stress acting on the flyer was approxi-
mated by taking the product of DIC-computed accelerations and mass of the flyer.
It is noted that large scatter existed in the acceleration data and smoothing was
implemented in the results. There is general agreement between the 1D shock
theory-calculated stress behind the compaction wave and stress acting on the flyer
in terms of curve shape and magnitude, which demonstrates 1D shock theory as an
appropriate technique to approximate the stress behind the compaction wave.
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Figure 3.17: Validation of 1D shock theory stress calculations from stress (𝜎) – nominal
impact strain (𝜀) relations considering stress behind the compaction wave (𝜎−

𝑠 ), HPB nominal
stress measurements at the specimen distal face (𝜎𝑁 ), and DIC-computed acceleration based
stresses on the flyer. Dotted lines represent HPB data outside duration of shock analysis.

Factors such as air resistance in the chamber or experimental DIC resolution may
account for differences in measured values. The stress behind the compaction wave
showed higher values than the stress state ahead of the wave, but overall curve shapes
were similar. The difference between these values reflects effects of the compaction
shock which are significant and caused stress enhancement by a factor of 2 – 3.
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The stress behind the compaction wave is plotted as a function of flyer velocity
in Fig. 3.18. A general trend of increasing stress was observed with increasing
flyer velocity. The cubic topology demonstrated the highest stress values while
Kelvin and Octet-truss topologies showed lower values. A sharp peak in stress
was observed for the cubic specimen impacted at 61.2 m/s (Exp. #𝐶𝑈𝐵𝐷𝐼3) due
to the strong initial stress ahead of the shock apparent in Fig. 3.17 which may be
related to a higher relative density of the specimen. The stress behind the shock
strongly depended on the stress state ahead of the shock at these impact velocities.
This in turn depends on the lattice topology and base material strain-rate dependent
behavior.
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Figure 3.18: Stress behind the compaction wave (𝜎−
𝑠 ) vs. flyer velocity ( ¤𝑥 𝑓 𝑙𝑦) relation for

all topologies with impact velocity 𝑣𝑖 > 45 m/s.

3.4 Summary and Conclusions
The transient dynamic and shock response of polymeric lattice structures of three
different topologies was investigated through direct impact experiments with a poly-
carbonate Hopkinson pressure bar (HPB), high-speed imaging, and digital image
correlation (DIC). Polymeric lattice structures with cubic, Kelvin, and octet-truss
topologies were manufactured using Digital Light Processing vat polymerization
and characterized at low strain-rates and impact loading. DIC was used to vali-
date elastic HPB analysis as well as analyze the full-field mechanical response of
lattice structures. Due to inhomogeneous deformation in lattices, DIC serves as a
valuable tool to understand the full-field response and an excellent technique for
characterization of cellular materials.
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Deformation modes of lattice structures were realized in low strain-rate and im-
pact experiments with unique behavior demonstrated by each topology. Relevant
mechanical properties of stiffness, specific energy absorption, failure stress, failure
strain, and elastic wave speeds were extracted. At low to moderate impact velocities
(𝑣𝑖 = 25− 50 m/s), a mixed deformation mode of a compaction wave and additional
deformation band formed in all topologies. At high impact velocities (𝑣𝑖 > 50 m/s),
a well-defined compaction wave developed and was modeled using 1D continuum
shock physics theory. Experimental shock parameters were defined to validate this
theory and extract mechanical quantities such as stress behind the compaction wave.

The following conclusions are drawn from this work:

• Polymeric lattice structures demonstrate a transient dynamic deformation
regime that includes a compaction wave initiating at the impact surface and
dynamic deformation in other sections of the lattice. Higher impact velocities
induce a more prominent compaction response.

• Low strain-rate behavior such as stress-strain response and deformation modes
(buckling in octet-truss, fracture in cubic, bending in Kelvin) match trends
observed in impact experiments and may be used to estimate dynamic behav-
ior. Low strain-rate stiffnesses and elastic wave speeds also correlate between
topologies.

• Compaction wave behavior may be modeled as a compaction ‘shock’ in poly-
meric lattice structures and 1D theory may be used to calculate the stress at
the impacted surface.

• Full-field measurements using digital image correlation allow continuous
measurement of the compaction wave which permits characterization of non-
steady shock propagation and geometric defects.

• Inertial effects are significant, but not fully dominant, for shock-enhanced
stresses. The stress behind the compaction wave largely depends on the state
ahead of the wave which demonstrates strain-rate strengthening consistent
with the photopolymer base material behavior.

• Different compaction behaviors between topologies illustrate potential for en-
gineering applications. For example, Kelvin lattices dissipated the compaction
wave most while cubic lattices showed the highest impact stresses.
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This work provides an experimental demonstration of a mixed deformation regime
in lattice structures subject to impact loading. Additional experiments on lattices
of different topologies and base materials could expand the scope of the study:
impact tests with rigid anvils could be used to directly measure stress behind the
compaction wave; or additional impact tests at higher velocities could be used to
define the steady-state shock 𝑢𝑠−𝑢𝑝 relation. Future work may also entail modeling
and development of a simple theory defining lattice structure deformation across
a large range of strain-rates. Low strain-rate behavior of lattices drew similarities
to dynamic behavior and suggests modeling features such as general hardening,
softening, or failure-based responses dependent on topology and base material.
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C h a p t e r 4

SHOCK COMPRESSION BEHAVIOR OF STAINLESS STEEL
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tions, analyzed the data, and wrote the manuscript.

Abstract
The shock compression behavior of stainless steel 316L (SS316L) octet-truss lattice
structures is investigated through experimental techniques and numerical simula-
tions. Plate impact experiments with high-speed imaging are conducted at impact
velocities of 270 – 390 m/s on lattice specimens with 5x5x10 unit cell geometries
additively manufactured (AM) using direct metal laser sintering. High-speed imag-
ing together with digital image correlation is used to extract full-field measurements
and define a two-wave structure consisting of an elastic wave and planar compaction
(shock) wave which propagates along the impact direction. A linear shock velocity
versus particle velocity relation is found to approximate the measurements with a
unit slope and a linear fit constant equal to the crushing speed. The shock velocity
versus particle velocity relation, full-field measurements, and elastic limit together
with the Eulerian form of the Rankine-Hugoniot jump conditions are used to find
relations for the stress and internal energy behind the shock. Stress behind the
shock increases with relative density and particle velocity, and specific internal
energy converge to a single curve similar to that of bulk AM SS316L. Explicit
finite element analysis using the Johnson-Cook constitutive model demonstrates
similar shock behavior observed in experiments and a linear shock velocity versus
particle velocity relation and corresponding Hugoniot calculations are found to be
in agreement with experimental results. Numerical simulations confirm negligible
effects of exterior versus interior measurements and further validate the application
of one-dimensional shock theory.

4.1 Introduction
Lattice structures demonstrate excellent energy absorption properties across various
topologies [14, 97–99] which makes them well suited for impact applications and
shock mitigation. The study of shock physics in solid cellular materials, such as
foams, honeycombs, or periodic structures, serves as motivation for the analysis of
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lattice structures. Rankine-Hugoniot jump conditions for planar uniaxial shocks
following the conservation of mass, momentum, and energy have been extensively
applied in analytical models of the shock response of foams [52, 64, 100] but only
proposed in lattice structures [59]. In metallic foams, Barnes et al. [54] per-
formed experiments and Hugoniot shock analysis on low relative density open-cell
aluminum foams using a direct impact split-Hopkinson bar with complementary
numerical simulations by Gaitanaros and Kyriakides [55]. They observed a shock
developing above some critical impact velocity and computed Hugoniot values
agreed with experimental and simulation measurements. Additional simulations by
Gaitanaros and Kyriakides [101] on aluminum foams showed dependence of the
shock velocity-impact velocity relation, stress behind the shock, crushing energy
density, and Hugoniot strain on varying relative density. More recently, plate im-
pact experiments with velocimetry have quantified the compaction shock wave in
additively manufactured cellular materials [90], stochastic foams [102], and peri-
odic materials of layered rods [103]. At very high impact velocities, interesting
phenomena such as jetting of the periodic structure has also been observed [104].

The shock response of lattice structures has been studied in a limited manner across
various length scales and materials. Hawreliak et al. [56] and Lind et al. [57] have
conducted experiments on sub-millimeter UC polymeric materials which clearly
show a two-wave structure of an elastic precursor wave followed by compaction
shock wave. Branch et al. [58] conducted experiments on stainless steel 316L lattices
(2x2x3 UC) using phase contrast imaging and demonstrated significant effects of
experimental geometries on the shock response. On a smaller scale, Portela et
al. [60] investigated impact behavior of nano-scale brittle lattice structures which
showed a compaction shock response with distinct regions of intact and densified
material. Few shock experiments on metallic lattice structures on the engineering
scale (millimeter UC) have been carried out. The shock regime of lattice structures
has been introduced, but not fully explored and requires the development of a
consistent theory and analysis across length scales and materials.

In this chapter, shock definitions and parameters are developed for lattice structures
and 1D uniaxial planar shock theory is applied to stainless steel 316L octet-truss
lattice structures on the O(𝑐𝑚) length scale. Normal plate impact experiments are
conducted and Rankine-Hugoniot jump conditions are applied for the compaction
shock using full-field digital image correlation (DIC) measurements obtained using
high-speed imaging. General trends for the Hugoniot field variables are analyzed
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per particle velocity and relative density. Explicit finite element analysis is also
conducted to shed further light on experiments and the observed trends.

Section 4.2 details the experimental methods of this work through specimen design
and characterization, description of normal plate impact experiments, and DIC
techniques. Section 4.3 then presents the experimental results and defines and
develops Rankine-Hugoniot shock relations for shock velocity, stress, and internal
energy of lattice specimens. Section 4.4 presents the framework, results, and
Rankine-Hugoniot shock analysis for numerical simulations, and discusses these
results to validate effects of exterior versus interior measurements, application of
one-dimensional shock theory, and comparison to experiments. Finally, Section 4.5
presents the summary and conclusions of this work.

4.2 Experimental Methods
4.2.1 Specimen Design and Characterization
The design and manufacturing process of lattice structure specimens using an octet-
truss unit cell geometry [39] with 5x5x10 UC dimensions and one baseplate is
illustrated in Fig. 4.1.

DMLS

AM Lattice Specimen

30% 10 mm

Unit Cell

5x5x10 UC
+

Baseplate

Lattice Geometry

𝑳

𝑯𝒃 𝑾𝒃

𝑯 𝑾

𝒕𝒃

𝑳

𝑯𝒃 𝑾𝒃

𝑯 𝑾

𝒕𝒃

𝑳

𝑯𝒃 𝑾𝒃

𝑯 𝑾

𝒕𝒃

𝑳

𝑯𝒃 𝑾𝒃

𝑯 𝑾

𝒕𝒃

𝑳

𝑯𝒃 𝑾𝒃

𝑯 𝑾

𝒕𝒃

𝑳

𝑯𝒃 𝑾𝒃

𝑯 𝑾

𝒕𝒃

tL0

Figure 4.1: Design and DMLS additive manufacturing process of 5x5x10 UC SS316L
octet-truss lattice specimens with characteristic length, 𝐿0, strut thickness, 𝑡, lattice specimen
length, 𝐿, lattice width, 𝑊 , lattice height, 𝐻, baseplate thickness, 𝑡𝑏, baseplate width, 𝑊𝑏,
and baseplate height, 𝐻𝑏.
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Geometries with relative densities, 𝜌∗/𝜌𝑠, of 10%, 15%, and 30% were designed
using SolidWorks (Dassualt Systemes, Providence, RI). A characteristic length, 𝐿0,
was maintained in each unit cell geometry while the thickness, 𝑡, was varied to
modify relative density. Lattice structures were manufactured by Protolabs (Maple
Plain, MN, USA) using high-resolution (20 𝜇𝑚 layer) direct metal laser sintering
(DMLS) AM with stainless steel 316L (SS316L).

Table 4.1 shows relevant physical properties and dimensions of all lattice specimens.

Table 4.1: Design and experimental parameters for lattice specimen characterization. Mea-
sured dimensions of each specimen are used to compute the relative density.

CAD Specimen 𝑉 𝑓 𝑉𝑏

# 𝐿0 [𝑚𝑚] 𝑡 [𝜇𝑚] 𝜌∗/𝜌𝑠 [%] 𝑚 [𝑔] 𝑉𝑒𝑥𝑝 [𝑚𝐿] 𝜌[𝑘𝑔/𝑚3] 𝐿 [𝑚𝑚] 𝑊 [𝑚𝑚] 𝐻 [𝑚𝑚] 𝑡𝑏 [𝑚𝑚] 𝑊𝑏 [𝑚𝑚] 𝐻𝑏 [𝑚𝑚] 𝜌∗/𝜌𝑠 [%]
𝑂𝑇101 3.39 440 9.89 27.64 3.71 7450 49.84 24.44 24.44 1.59 24.99 24.97 9.43± 0.27
𝑂𝑇102 3.39 440 9.89 29.72 3.85 7746 49.89 24.43 24.44 1.65 25.02 25.02 9.74± 0.10
𝑂𝑇103 3.39 440 9.89 29.62 3.90 7617 49.91 24.45 24.44 1.60 25.01 25.05 9.99± 0.12
𝑂𝑇104 3.39 440 9.89 28.30 3.68 7710 49.84 24.46 24.49 1.57 25.03 25.04 9.30± 0.21
𝑂𝑇151 3.39 550 14.99 34.90 4.57 7656 49.81 24.54 24.51 1.53 25.00 24.98 12.40± 0.26
𝑂𝑇152 3.39 550 14.99 36.93 4.85 7630 49.62 24.47 24.53 1.28 24.93 25.00 13.92± 0.24
𝑂𝑇153 3.39 550 14.99 37.48 4.89 7677 49.79 24.55 24.56 1.50 25.02 25.02 13.55± 0.28
𝑂𝑇154 3.39 550 14.99 34.87 4.53 7706 49.79 24.55 24.73 1.48 25.00 25.00 12.28± 0.21
𝑂𝑇301 3.39 813 29.98 65.85 8.50 7764 50.01 24.77 24.79 1.61 24.97 25.00 25.15± 0.42
𝑂𝑇302 3.39 813 29.98 66.20 8.81 7535 50.03 24.77 24.77 1.63 24.98 24.99 26.17± 0.24

Relative density was calculated using volume fraction measurements as follows:

𝜌∗/𝜌𝑠 =
𝑉𝑒𝑥𝑝 −𝑉𝑏

𝑉 𝑓
=
𝑉𝑒𝑥𝑝 − 𝑡𝑏𝐻𝑏𝑊𝑏

(𝐿 − 𝑡𝑏)𝐻𝑊
, (4.1)

where𝑉𝑒𝑥𝑝 is the experimental volume of the full specimen found by an Archimedes’
principle suspension technique [105], 𝑉𝑏 is the volume of the rectangular baseplate,
and 𝑉 𝑓 is the space-filling box volume of the lattice. 𝑉𝑏 was calculated from
thickness, 𝑡𝑏, width, 𝑊𝑏, and height, 𝐻𝑏, of the baseplate and 𝑉 𝑓 was calculated
using the specimen total length, 𝐿, width,𝑊 , and height, 𝐻. Experimental error was
computed using measurement uncertainties and error propagation. Mass density
values were computed to verify repeatability of measurements and showed good
agreement around 7700 ± 100 𝑘𝑔/𝑚3, slightly lower than the expected value of
7960 𝑘𝑔/𝑚3 for AM SS316L [35]. Relative density for computer-aided design
(CAD) models was calculated using Eq. (4.1) and the corresponding measurements.
Due to difficulties in printing small features, experimental relative densities showed
significant deviation from CAD values ranging from 7% for 𝑂𝑇10, 10% for 𝑂𝑇15,
and up to 15% for 𝑂𝑇30.
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4.2.2 Normal Plate Impact Experiments
Normal plate impact experiments with high-speed imaging were conducted at
varying impact velocities for specimens with nominal relative densities 𝜌∗/𝜌𝑠 =

10%, 15%, and 30%. A slotted 38.7 mm bore diameter powder gun was used with
76.2 mm long and 38.7 mm diameter aluminum 6061 projectiles (flyers) to im-
pact lattice specimens at velocities of 270-390 m/s in a chamber with a transparent
polycarbonate (PC) window. Figure 4.2 illustrates the experimental set-up. Lattice
specimens were epoxied to an aluminum target holder and attached to a mounting
gimbal by alumina rods.
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      w/ mirror
[5] Lattice specimen
[6] Gimbal & target holder
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[8] Polycarbonate window
[9] High-speed camera

Figure 4.2: Normal plate impact powder gun experiments on lattice specimens: (a)
schematic of set-up and (b) photograph of laboratory set-up. One side of the protective
box is removed for visibility.

Experimental images were captured using a Hyper Vision HPV-X2 high-speed
camera (Shimadzu, Kyoto, Japan) with a Nikon 70-300mm f/4.5-5.6G lens and
lighting from a non-coherent CAVILUX Smart laser (Cavitar, Tampere, Finland)
with 40 ns pulse lengths which provided sufficient lighting and prevented motion
blur. A protective box with an interior mirror was used to protect the Cavitar laser
and redirect light onto the test specimen through a small PC window. 128 images
(400x250 pixels (px)) were captured at a constant framing rate (500,000 to 800,000
frames per second) set to maximize the number of images taken normal to the
side of the lattice through the PC window during shock compression of the lattice
specimen. The framing rate of the high-speed camera was determined by setting
the framing interval, Δ𝑡, based on target impact velocities of 270, 300, 330, and
380 m/s. Experimental image capture was triggered using an Agilent MSO9404A
oscilloscope (20 GSa/s sample rate), Wilcom F6230A visual fault locator, and
Thorlabs PDA10A2 photodiode. Interruption of the laser (placed ahead of the
specimen) by the flyer caused a measured voltage drop which triggered after a 1 𝜇𝑠
time duration.
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4.2.3 Digital Image Correlation
An example of experimental images taken during impact is shown in Fig. 4.3 and
full deformation can be visualized in Supplementary Video S3. 2D digital image
correlation (DIC) was performed on the high-speed images using Vic2D (Correlated
Solutions, Columbia, SC, USA). Lattice specimens were painted white to improve
contrast in experimental images and a random speckle pattern was applied to each
flyer. There were two areas of interest (AOI) for these experiments; AOI1: over the
flyer used to track rigid flyer displacements, and AOI2: over the lattice specimen to
track specimen particle displacements. A random speckle pattern was applied to the
flyer using a Sharpie pen (Fine Point) and produced unique subsets for correlation
analysis of AOI1, while the lattice geometry itself was used for correlation of AOI2.
A subset size of 29 px (4.35 mm) was used for AOI1 and 23 px (3.45 mm) for
AOI2 (corresponding to ≈3/4 of a unit cell) and step size of 1 px with incremental
correlation was used in both analyses. Due to the inherent periodicity of the lattice
specimen, DIC was able to correlate AOI2 subsets that were smaller than a unit cell
with seed points placed away from the impact surface. A maximum error of 0.15
px was set to remove highly decorrelated regions.
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Figure 4.3: Experimental images for #𝑂𝑇152 at𝑉𝑖𝑚𝑝𝑎𝑐𝑡 ≈ 300𝑚/𝑠 and 𝜌∗/𝜌𝑠 ≈ 15% with
(a) DIC areas of interest and (b)-(d) full-field measurements for particle velocity at time
instances, 𝑡 = 0, 36𝜇𝑠, 94𝜇𝑠, and 131𝜇𝑠 after impact.
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Some image distortion through the polycarbonate (PC) window was expected.
Therefore, calibration images were taken without the PC window and used to mea-
sure actual specimen dimensions using ImageJ [106]. These values were then used
as calibration lengths in the DIC analyses. The particle velocities of both AOI are
then numerically computed by applying the three-point central difference method on
the measured displacements at the constant framing rate. Figure 4.3(b)-(d) shows
the DIC results for particle velocity for experiment #𝑂𝑇152 on a 𝜌∗/𝜌𝑠 ≈ 15% spec-
imen at 𝑉𝑖𝑚𝑝𝑎𝑐𝑡 ≈ 300 m/s. A clear compression shock front is visible in the images
represented by the discontinuity of crushed and non-crushed regions of the speci-
men. This discontinuity can also be realized through the overlaid particle velocities
which show near zero values ahead of the front and high constant values behind the
front. Due to the large amount of deformation, some regions lose correlation and
values are removed from the results illustrated by the ‘holes’ in later images.

4.3 Experimental Results and Discussion
The experimental matrix for this study is shown in Table 4.2. Four impact velocities
are tested for 10% and 15% specimens, and two for 30% specimens. The velocities
of the flyers were extracted from each experiment using DIC displacements, and the
set Δ𝑡 and corresponding FPS are shown.

Table 4.2: Experimental matrix with frames per second (FPS) determined by setting the
framing interval (Δ𝑡) of the high-speed camera to maximize images captured during defor-
mation by a flyer traveling at the impact velocity, 𝑉𝑖𝑚𝑝𝑎𝑐𝑡 . The specimens are designated as
𝑂𝑇𝑃𝑃𝑄 where 𝑃𝑃 and 𝑄 are the nominal relative density (%) and experiment number for
that density, respectively.

# Δ𝑡 [𝑛𝑠] 𝐹𝑃𝑆 𝑉𝑖𝑚𝑝𝑎𝑐𝑡 [𝑚/𝑠]
𝑂𝑇101 1900 526,320 270
𝑂𝑇102 1700 588,240 303
𝑂𝑇103 1500 666,670 331
𝑂𝑇104 1300 769,230 381
𝑂𝑇151 1900 526,320 265
𝑂𝑇152 1700 588,240 295
𝑂𝑇153 1500 666,670 331
𝑂𝑇154 1400 714,290 391
𝑂𝑇301 1700 588,240 290
𝑂𝑇302 1400 714,290 381
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4.3.1 Wave Definitions and Extraction
Similar to shock behavior in bulk materials [17], a two-wave structure consisting
of (1) an elastic wave, and (2) a compaction (shock) wave was observed during
experiments. Similar observation has been well documented in polymeric lattice
structures on the sub-millimeter scale impacted around 200-600 m/s. [56, 57]. The
elastic wave and shock wave may be defined and the corresponding locations can be
extracted using full-field displacement and velocity measurements. Ravindran et al.
have used this technique to accurately define elastic and shock fronts in aluminum
foams [93]. Full-field measurements were averaged over the center (middle) row
of unit cells to approximate a uniaxial bulk material response. Displacement and
velocity measurements were taken as the average over 30 y-pixel (vertical) positions
corresponding to the center UC, for each x-pixel (horizontal) position.

The elastic wave front was defined using a 15 𝜇𝑚 displacement criterion based
on the maximum observed DIC error (confidence interval) of 0.1 px and average
image scale of 0.15 mm/px. The confidence interval for all experiments remained
under 0.1 px during elastic deformation and therefore the criterion is larger than the
experimental resolution. Wave definition and extraction for experiment #𝑂𝑇152 is
shown in Fig. 4.4.

Figure 4.4(a) shows particle displacement plotted against horizontal position (La-
grangian/undeformed coordinate) defined using the impact surface as 𝑋 = 0 and
time of impact as 𝑡 = 0. Each line represents a single time-instance taken from
one experimental image and the marker represents the position of the elastic front.
A stricter or looser displacement criterion may slightly alter results, however the
steepness and consistent spacing of displacement profiles imply similar results for
criteria of 10-20 𝜇𝑚.

The shock front and relevant parameters are defined in both position and time and
visualization is shown in Fig. 4.4(b). Figure 4.4(c) shows the particle velocity (𝑢𝑝)
– time (𝑡) history of all material points (x-pixel positions). Each material point of
the specimen shows an initial low-amplitude particle velocity from the elastic wave
followed by steep acceleration to a nearly constant particle velocity similar to the
flyer speed. The shock front was defined for each material point as the point of
largest change in velocity–equal to infinity in the case of a mathematically sharp
shock. Based upon this definition, the shock front may be defined: with respect to
time for one material point (pixel), or with respect to position for one time instance
(image).
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Figure 4.4: Wave definition and extraction for experiment #𝑂𝑇152: (a) displacement
position profiles with 15 𝜇𝑚 displacement criterion marking the location of the elastic wave
front (𝑋𝑒𝑙𝑎𝑠); (b) visualization of the shock definition and relevant parameters; and DIC
particle velocity (𝑢𝑝) profiles with respect to (c) time and (d) undeformed (Lagrangian)
coordinate, with the elastic wave ( ¤𝑥𝑒𝑙𝑎𝑠), flyer ( ¤𝑥 𝑓 𝑙𝑦), velocity ahead of the shock ( ¤𝑥+𝑠 ), and
shock front (𝑈𝑠) marked. Every 10𝑡ℎ line is highlighted to improve data visualization.

Figure 4.4(c) shows particle velocities with respect to time (𝑖 curves of 𝑗 data points)
and Fig. 4.4(d) shows particle velocities with respect to position ( 𝑗 curves of 𝑖 data
points) where 𝑖 is the number of horizontal pixels in experimental images ≈ 200
and 𝑗 is the number of images analyzed ≈ 90. Every 10𝑡ℎ line is highlighted to
improve data visualization. Determination of the shock front using 𝑑𝑢𝑝/𝑑𝑡 caused
‘lines’ of front positions to emerge in Fig. 4.4(c) due to the low temporal resolution
from the limited number of experimental images. Determination of the shock front
using 𝑑𝑢𝑝/𝑑𝑋 improved extraction of the shock wave as shown in Fig. 4.4(d) due
to an increased spatial resolution (𝑖 > 𝑗). The particle velocity ahead of the shock,
¤𝑥+𝑠 , was determined from the particle velocity-time history as the point of maximum
change in curvature before the shock front.

The wave fronts were extracted and plotted against time as shown in Fig. 4.5(a) and
visualized using experimental images in Supplementary Video S4. The elastic wave
front (𝑋𝑒𝑙𝑎𝑠) was determined using the displacement criterion, the flyer front (𝑥 𝑓 𝑙𝑦)
was determined using displacement measurements of the flyer, and the Lagrangian
shock front (𝑋𝑠) was determined using the spatial derivative technique in Fig. 4.4(d).
The term “Lagrangian” is used to describe parameters defined using the undeformed
coordinate system while the term “Eulerian” is used to describe parameters defined
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using the deformed coordinate system. The Eulerian shock front (𝑥𝑠) can be deter-
mined by mapping the Lagrangian shock front to the deformed coordinate system
using full-field displacement (𝛿) measurements: 𝑥𝑠 = 𝑋𝑠 + 𝛿. Flyer speed and shock
velocities were computed from the front-time histories using a three-point central
difference method. Figure 4.5(b) shows the calculated flyer speed, Lagrangian shock
velocity (𝑈𝑠), and Eulerian shock velocity (𝑢𝑠) as a function of time with the steady
shock defined from time 𝑡1 to 𝑡2 to avoid edge or smoothing effects.
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Figure 4.5: Wave front position and velocity profiles: (a) elastic (𝑋𝑒𝑙𝑎𝑠), flyer (𝑥 𝑓 𝑙𝑦), La-
grangian shock (𝑋𝑠), and Eulerian shock (𝑥𝑠) front-time histories; and (b) corresponding
flyer speed ( ¤𝑥 𝑓 𝑙𝑦) and shock velocities in the Lagrangian (𝑈𝑠) and Eulerian (𝑢𝑠) configura-
tions computed using a three-point central difference method. A 20% moving mean window
was applied to smooth experimental scatter of Eulerian shock velocities (𝑢𝑠) indicated by
the red solid line.

Deceleration of the flyer was observed in all experiments and scatter plots of the
shock velocities showed large variations in values. These variations may largely be
attributed to noise in experimental front locations combined with small timesteps
used in numerical derivative calculations. Eulerian shock velocities were smoothed
with a 20% moving mean window to eliminate scatter and resemble the smoothness
of the flyer speed. Front positions appear mostly linear in time which supports the
formation of a steady shock in the lattice specimens and justifies smoothing of data.

Experimental Elastic Wave Speeds

Elastic wave speeds were computed using a linear fit of the elastic front time history
and error is reported as the 95% confidence interval of the fit. Results for all exper-
iments are shown in Fig. 4.6. There is a clear trend showing positive correlation
between elastic wave speed and relative density which agrees with positive stiffness
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correlation with relative density found in lattice structures [4]. However, this trend
inherently depends on manufacturing defects and geometry which control the stiff-
ness and density of the specimen. Impact velocity does not appear to influence the
wave speeds which agrees with results from other studies [57]. This also implies
AM SS316L does not demonstrate strain-rate stiffening effects.
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Figure 4.6: Elastic wave speed as a function of relative density for all experiments. Elastic
wave speeds were computed using a linear fit of the elastic front time-history and error is
reported as the 95% confidence interval of the fit.

4.3.2 Rankine-Hugoniot Shock Analysis
Rankine-Hugoniot jump conditions were used to analyze the shock compression
behavior of lattice specimens. Full-field displacement measurements were used to
map between the undeformed and deformed coordinate systems and allowed for
extraction of field variables ahead and behind of the shock. These measurements
allow for application of the Eulerian forms of the jump conditions following the
conservation of mass, momentum, and energy [65]:

⟦𝜌⟧𝑢𝑠 = ⟦𝜌 ¤𝑥⟧ , (4.2)

⟦𝜌 ¤𝑥⟧𝑢𝑠 = ⟦𝜌 ¤𝑥2 − 𝜎⟧ , (4.3)�
𝜌

(
E + 1

2
¤𝑥2
)�
𝑢𝑠 =

�
𝜌

(
E + 1

2
¤𝑥2
)
¤𝑥 − 𝜎 ¤𝑥2

�
, (4.4)

where bracket quantities ⟦𝑞⟧ represent the jump value (𝑞+ − 𝑞−) across the shock,
𝜌 is the density, ¤𝑥 is the particle velocity, 𝜎 is the stress, and E is the specific
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internal energy. The Eulerian form of these equations was considered to account
for the effect of the elastic wave on shock behavior, namely the propagation of the
shock into non-quiescent material. Significant deviation of the Eulerian shock front
and Lagrangian shock front in Fig. 4.5(a) illustrates a non-negligible effect. The
difference in shock fronts is visualized in Supplementary Video S4 showing the
shock and flyer fronts overlaid on experimental images. The Eulerian (deformed)
coordinates show a true tracing of the shock that accounts for elastic deformation.

Shock Velocity (𝑢𝑠) – Particle Velocity (𝑢𝑝) Relation

Full Hugoniot characterization was carried out using known or approximated states
ahead of the shock, conservation equations Eqs. (4.1)-(4.4), and an additional
relation between shock velocity, 𝑢𝑠, and particle velocity, 𝑢𝑝. 𝑢𝑠 is the Eulerian
shock velocity shown in Fig. 4.5(b) and the particle velocity behind the shock,
𝑢𝑝, was approximated by the flyer speed, ¤𝑥 𝑓 𝑙𝑦, at the same time instant. This
approximation is based on the convergence of particle velocities to the flyer speed
as seen in Fig. 4.4(c). The 𝑢𝑠 − 𝑢𝑝 relation is shown in Fig. 4.7 for all experiments.
Each data point represents a single time instance at which particle velocities were
computed from one experimental image. Smoothed data with a 20% moving mean
window was used in the final results.
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Figure 4.7: Eulerian shock velocity (𝑢𝑠) – particle velocity (𝑢𝑝) relation for all specimens
and linear fits for 𝜌∗/𝜌𝑠 = 10%, 12%, 13%, and 25%. Each data point corresponds to a
measurement from one experimental image and stars represent linearized approximations.
Dotted lines show the ‘crushing speed approximation’ discussed in Section 4.3.2.
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Significant deceleration of the flyer induced a range of 𝑢𝑝 during experiments.
Linearized approximations were found by taking a linear fit of the flyer and shock
fronts in Fig. 4.5(a) and are shown as stars in Fig. 4.7. A linear fit was also applied
to scatter data to define the 𝑢𝑠 − 𝑢𝑝 relation. While there was significant scatter
in the results, the linear fit shows good agreement with linearized values. This
agreement suggests experimental noise as the major cause of variation and will be
further discussed and validated in Section 4.4.3 of the finite element analysis results.

The linear fit of the data was computed for four groups of relative density, 10%
(𝑂𝑇101 −𝑂𝑇104), 12% (𝑂𝑇151, 𝑂𝑇154), 13% (𝑂𝑇152, 𝑂𝑇153), and 25% (𝑂𝑇301,

𝑂𝑇302). Two groups (12%, 13%) were considered from the CAD 15% specimens
due to a significant 10% difference in measured relative density values. The linear
fit is of the form:

𝑢𝑠 = 𝑚 + 𝑆𝑢𝑝 , (4.5)

where 𝑚 is the constant coefficient and 𝑆 is the slope of the relation. Experimental
results for these fits are shown in Table 4.3 with error found using 95% confidence
bounds. The slope, 𝑆 ≈ 1 for all relative densities and 𝑚 increased with relative
density for Eulerian coordinate parameters. A consistent 𝑆 value and positive
correlation of 𝑚 with relative density matches trends observed in simulation of
aluminum foams [101]. The Lagrangian shock relations are shown for comparison
and demonstrate similar values for 𝑆 but no trend for 𝑚 can be determined due
to high errors. Lagrangian and Eulerian fit parameters are further compared and
discussed in simulation results in Section 4.4.2.

Table 4.3: Linear fit parameters for experimental linear shock velocity (𝑢𝑠,𝑈𝑠) – particle
velocity (𝑢𝑝) relations of Eulerian, 𝑥, and Lagrangian, 𝑋 , coordinate systems for 𝜌∗/𝜌𝑠 =

10%, 12%, 13%, and 25%.

𝜌∗/𝜌𝑠 [%] 𝑚𝑥 𝑆𝑥 𝑚𝑋 𝑆𝑋
10 37.98 ± 12.71 0.978 ± 0.041 50.02 ± 25.83 0.923 ± 0.084
12 59.09 ± 9.52 0.929 ± 0.030 59.89 ± 17.00 0.894 ± 0.054
13 58.99 ± 30.43 0.973 ± 0.105 58.97 ± 54.6 0.940 ± 0.188
25 99.15 ± 28.37 1.014 ± 0.096 50.83 ± 39.98 1.107 ± 0.136

Crushing Speed Approximation

Most bulk materials typically follow a linear 𝑢𝑠 − 𝑢𝑝 relation with 𝑚 ≈ 𝑐0, where
𝑐0 is the bulk sound speed of the material [65]. Elastic wave speeds 𝑐𝑒𝑙𝑎𝑠 ≈ 1600-
2400 m/s in the lattice specimens (Fig. 4.6) are much higher than the fitted 𝑚 ≈
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30-100 m/s values in Table 4.3. This constant, 𝑚, is therefore not equivalent to the
bulk sound speed of the material, but may be physically interpreted by assuming
𝑆 ≈ 1. An 𝑆 value of approximately one suggests a constant compaction strain in the
shocked region and modeling the lattice as an elastic-plastic rigid-locking crushable
material [64] where the particle velocity behind the shock is equal to the flyer speed.
Taking 𝑆 = 1 in Eq. (4.5), 𝑚 can be rewritten:

𝑚 = 𝑢𝑠 − 𝑢𝑝 =
𝑑

𝑑𝑡
(𝑥𝑠 (𝑡) − 𝑥 𝑓 𝑙𝑦 (𝑡)) =

𝑑

𝑑𝑡
𝑥𝑐 (𝑡) , (4.6)

where the shock velocity (𝑢𝑠) and particle velocity (𝑢𝑝) can be rewritten as time
derivatives of the front locations, 𝑥𝑠 (𝑡) and 𝑥 𝑓 𝑙𝑦 (𝑡), and the distance 𝑥𝑠 (𝑡) −𝑥 𝑓 𝑙𝑦 (𝑡) =
𝑥𝑐 (𝑡) is recognized as the crushed width of the lattice specimen computed as the
distance between the shock front and flyer front. The constant 𝑚 can then be
interpreted as the slope of a linear fit to the crush width-time history, or, a constant
crushing speed. Figure 4.8(a) shows the crushing width versus time plots for all
experiments. Experimental curves show some noise, but a linear fit can be applied.
The linear fit is shown through dotted lines in Fig. 4.8(a) and the slope of the plots
are extracted in Fig. 4.8(b) and plotted against relative density.
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Figure 4.8: Lattice specimen crush width and crushing speed relations: (a) crush width
(distance between flyer and shock front) of shocked specimens as a function of time with
linear fit lines; and (b) crushing speed (slope of linear fit of crush width time history) plotted
against relative density.
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The crushing speed shows a strong positive correlation to relative density and values
show good agreement with the calculated fit values for 𝑚. Using 𝑆 = 1 and 𝑚 as the
crushing speed may serve as a general approximation for the linear 𝑢𝑠 − 𝑢𝑝 relation
of lattice materials. These approximations are applied for 𝜌∗/𝜌𝑠 = 10%, 12%, 13%,
and 25% by taking 𝑚 as the average value for each group and are plotted as dotted
lines alongside experimental fits in Fig. 4.7. These approximations show good
agreement with experimental fit lines within the range of particle velocities.

Hugoniot Relations for Stress and Internal Energy

Stress and internal energy Hugoniot relations can be developed for both elastic and
shock waves with the elastic wave treated as a weak shock into a quiescent material
and the shock wave treated as a strong shock into a non-quiescent material. In
the elastic case, 𝑢𝑠 = 𝑐𝑒𝑙𝑎𝑠 where 𝑐𝑒𝑙𝑎𝑠 is the measured elastic wave speed and
independent of impact velocity.

The density ratio ahead of the shock, 𝜌+/𝜌0, was approximated by the ratio of
the length of the uncrushed region in the deformed coordinate to the length of the
uncrushed region in the undeformed coordinate. These lengths were found as the
distance between the shock fronts and non-impacted face of the lattice such that:
𝜌+/𝜌0 = (𝐿−𝑡𝑏−𝑋𝑠)/(𝐿−𝑡𝑏−𝑥𝑠) with specimen length, 𝐿, and baseplate thickness,
𝑡𝑏. Using full-field measurements of ¤𝑥+, ¤𝑥−, 𝑢𝑠, 𝜌+, and conservation of mass (Eq.
(4.1)), the density behind the shock, 𝜌−, may be determined:

𝜌− =
𝜌+𝑢𝑠 − 𝜌+ ¤𝑥+
𝑢𝑠 − ¤𝑥− . (4.7)

It is assumed the elastic wave propagates into quiescent material, or, ¤𝑥+
𝑒𝑙
= 0. The

particle velocity behind the elastic wave, ¤𝑥−
𝑒𝑙

, was defined as the corresponding ve-
locity at which the material point satisfies the displacement criterion. Divergence
of velocity values was observed for initial data points and so a constant value was
approximated for ¤𝑥−

𝑒𝑙
from the fourth image of each experiment (approximately de-

formation of 1/2 unit cell). The velocity ahead of the shock, ¤𝑥+𝑠 , was determined
from the particle velocity-time history as the point of maximum change in curvature
before the shock front chosen to most accurately depict the velocity. Particle veloc-
ities ahead of the shock in Fig. 4.4(c) appeared to gradually increase in time. This
may be related to material properties such as plasticity or experimental conditions
such as lateral movement of the specimen and must be accounted for in the analysis.



78

Assumption or measurement of the stress ahead of the shock, 𝜎+, and conservation
of momentum (Eq. (4.3)) may be used to find the stress behind the shock, 𝜎−:

𝜎− = 𝜎+ + 𝑢𝑠⟦𝜌 ¤𝑥⟧ − ⟦𝜌 ¤𝑥2⟧ . (4.8)

The stress behind the elastic wave, 𝜎−
𝑒𝑙

, was calculated assuming quiescent initial
conditions and used to approximate the stress ahead of the compaction shock, 𝜎+

𝑠 .
Equation (4.8) was solved for each data point for the 𝜎−

𝑠 − 𝑢𝑝 relation shown in Fig.
4.9 and 𝜎−

𝑠 showed a positive correlation with relative density and particle velocity.
Increasing the relative density at a constant particle velocity caused a larger increase
in stress than increasing particle velocity at a constant relative density.
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Figure 4.9: Experimental stress, 𝜎−
𝑠 , vs. particle velocity, 𝑢𝑝, Hugoniot relation. Stars

represent linearized values by assuming a constant shock velocity.

In addition to the stress, the internal energy behind the shock, E−, may be computed
in a similar way using conservation of energy (Eq. (4.4)):

E− =
𝑢𝑠⟦𝜌 ¤𝑥2⟧ − ⟦𝜌 ¤𝑥3⟧ + 2⟦𝜎 ¤𝑥⟧ + 2E+(𝜌+𝑢𝑠 − 𝜌+ ¤𝑥+)

2𝜌−(𝑢𝑠 − ¤𝑥−) . (4.9)

Elastic values for E−
𝑒𝑙

were solved assuming quiescent initial conditions and used to
approximate the internal energy ahead of the shock, E+

𝑠 . Specific internal energy is
defined per unit mass and was converted to per unit volume by multiplying by the
experimental density (𝜌∗). Figure 4.10 shows the E−

𝑠 − 𝑢𝑝 Hugoniot relation for all
experiments (a) per unit mass and (b) per unit volume.
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normalized per (a) unit mass and (b) unit volume. Stars represent linearized values by
assuming a constant shock velocity. The black dashed line shows the specific internal
energy for bulk AM SS316L [35].

The specific internal energy converged to a single curve for all particle velocities
and relative densities. The dotted black line in Fig. 4.10 represents values for
bulk Laser Engineering Net Shaping (LENS) additively manufactured stainless
steel 316L from shock experiments [35]. The bulk curve was calculated using
measured experimental parameters of LENS AM SS316L: bulk sound speed, 𝑐0 =
4474 𝑚/𝑠, longitudinal sound speed, 𝑐𝐿 = 5730 𝑚/𝑠, density, 𝜌 = 7960 𝑘𝑔/𝑚3,
velocity at the Hugoniot Elastic Limit (HEL), 𝑣𝐻𝐸𝐿 = 60 𝑚/𝑠 (approximated from
photonic doppler velocimetry wave profiles), and linear coefficient in the 𝑈𝑠 − 𝑢𝑝
shock relationship, 𝑠 = 1.54. The stress and specific internal energy ahead of
the shock were approximated using the conservation of momentum (Eq. (4.3))
and conservation of energy (Eq. 4.4) and used with a linear 𝑈𝑠 − 𝑢𝑝 relation for
LENS AM SS316L to calculate the specific internal energy behind the shock, E−

𝑠 .
The lattice structure curves overall show excellent agreement with the results for
the bulk material. Mechanical properties of Selective Laser Melting (SLM) AM
SS316L have been shown to vary based upon crystallographic textures [83, 107]
and therefore slight deviations between curves may occur due to differences in
mechanical properties from differing AM techniques (LENS vs DMLS). Specific
internal energy (per unit mass) of lattice specimens is therefore solely dependent
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on the parent material properties and particle velocity. Internal energy per unit
volume showed a positive correlation with particle velocity and relative density–this
is due to an increase of mass in higher relative densities, but little to no change in
space-filling volume of the specimens.

4.4 Numerical Simulations
Numerical simulations were used to investigate the validity of the application of
shock definitions and parameters and to explore additional trends in lattice structure
shock behavior. A finite element framework with the Johnson-Cook constitutive
model was used to model the AM SS316L lattice specimens. The elastic, flyer,
and shock front locations and speeds were extracted for each unit cell position and
Rankine-Hugoniot shock analysis was applied similar to experiments. Simulation
results were used to evaluate the effects of exterior node measurements and non-
constant impact velocities, and were also compared to experimental values.

4.4.1 Finite Element Model Framework
Numerical simulations were carried out using Abaqus/Explicit (Dassault Systemes,
Providence, RI) finite element analysis (FEA) software with 5x5x10 CAD geome-
tries used for AM of specimens. The baseplate of each specimen was fixed to an
analytically rigid plate and a second rigid plate was used to impact the lattice with
displacement boundary conditions corresponding to experimental flyer displace-
ments. A general contact algorithm was defined for self-contact of the specimen and
rigid plate-lattice interactions. Tetrahedral free meshing with quadratic C3D10M
elements was used with a local mesh size of 1.5 mm corresponding to 4-5 million
nodes and 2-3 million elements. Mass scaling was used to increase the computa-
tional timestep to 1 ns which corresponded to < 0.1% percent change in mass for
all specimens. Physical relevance of simulations was evaluated by comparing the
total energy to external work, internal energy, kinetic energy, and plastic dissipation
at each timestep. Total energy appeared constant with respect to these energies and
reached a maximum of 3.5% of the kinetic energy across all simulations, with an
average value approximately equal to 0.5%. Figure 4.11(a) shows the side-view
of the FEA 3D framework with lattice specimen and rigid plates and Fig. 4.11(b)
shows nodes of interest for the numerical analysis.

This framework allowed measurement and analysis of both interior and exterior
nodes of the lattice specimen. Exterior nodes provided a direct comparison to ex-
perimental measurements while interior nodes provided a more appropriate uniaxial
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(a) (b)

Rigid
Plate

Fixed

Figure 4.11: Finite element analysis framework: (a) front view of the 3D model of a 5x5x10
UC lattice specimen compressed between one fixed and one moving rigid plate; and (b)
interior and exterior nodes of interest.

strain approximation over the innermost unit cells. Displacements and velocities
for interior points were taken as the average over four nodes located at the middle
vertices of the unit cell. Validation and comparison of these two techniques is
discussed in Section 4.4.4.

To model the bulk material, the Johnson-Cook (JC) constitutive model [108] was
used for the AM SS316L material:

𝜎 = [𝐴 + 𝐵(𝜖 𝑝)𝑛]
[
1 + 𝐶𝑙𝑛

(
¤𝜖 𝑝
¤𝜖0

)] (
1 − 𝜃𝑚

)
, (4.10)

where 𝜖 𝑝 is the equivalent plastic strain, ¤𝜖 𝑝 is the equivalent plastic strain-rate, and
¤𝜖0 is the reference strain-rate. The non-dimensional temperature, 𝜃, is piecewise
defined by: (𝑇 −𝑇𝑟𝑒 𝑓 )/(𝑇𝑚𝑒𝑙𝑡 −𝑇𝑟𝑒 𝑓 ) for 𝑇𝑟𝑒 𝑓 < 𝑇 < 𝑇𝑚𝑒𝑙𝑡 ; 0 for 𝑇 < 𝑇𝑟𝑒 𝑓 ; and 1 for
𝑇 > 𝑇𝑚𝑒𝑙𝑡 . The melting temperature, 𝑇𝑚𝑒𝑙𝑡 , was taken as the melting temperature of
conventional SS316L [109] and a high reference temperature, 𝑇𝑟𝑒 𝑓 , was chosen to
limit temperature effects.

Material parameters for the JC constitutive model are shown in Table 4.4.

Table 4.4: Material parameters used for the Johnson-Cook (JC) constitutive model in
numerical simulations. Elastic parameters, physical parameters, and𝑚 are taken from typical
values for SS316L [109, 110] and the constitutive parameters are taken from experiments
on AM SS316L by Platek et al. [111].

𝜌[𝑘𝑔/𝑚3] E [GPa] 𝜈 [-] A [MPa] B [MPa] n [-] C [-] m [-] 𝑇𝑟𝑒 𝑓 [K] 𝑇𝑚𝑒𝑙𝑡 [K] ¤𝜖0 [-]
8000 193 0.27 542 303 0.293 0.028 0.6 1573.15 1673.15 0.001

AM techniques of metals induce different material properties due to grain elongation
and partial melting [83, 107] and constitutive modeling using conventional SS316L
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properties may lead to less accurate results. The parameters for the Johnson-Cook
model (𝐴, 𝐵, 𝑛, 𝐶, ¤𝜖0) were taken from experimental data collected by Platek et al.
[111] on SLM AM SS316L while elastic parameters, density, and 𝑚 were were
chosen from typical values for conventional SS316L [109, 110].

4.4.2 Simulation Results
Using the defined 3D model, numerical simulations were performed for each cor-
responding experiment in Table 4.2. Deformation images from simulation results
clearly show the two-wave structure seen in experiments. Figure 4.12(a) shows the
visualization of the shock front defined by particle velocities for 𝜌∗/𝜌𝑠 = 15% and
𝑉𝑖𝑚𝑝𝑎𝑐𝑡 ≈ 300 m/s (corresponding to experiment #𝑂𝑇152) and full deformation can
be visualized in Supplementary Video S3. A clear discontinuity in particle velocity
was observed between regions of near zero velocity ahead of the shock and high
constant velocity behind the shock.

Figure 4.12(b) shows the particle velocities extracted from the interior nodes shown
in Fig. 4.11(b). Particle velocities were extracted from 10 positions along the lattice
each corresponding to one unit cell. The shock front was defined using a maximum
𝑑𝑢𝑝/𝑑𝑡 (change in velocity with respect to time) criterion. This technique was
chosen over the maximum 𝑑𝑢𝑝/𝑑𝑋 technique used in experiments due to the higher
temporal resolution (number of frames) than spatial resolution (number of unit cell
positions) and therefore provided a more accurate calculation. The elastic wave and
velocity ahead of the shock were defined as in experiments: the elastic wave front
was defined using a 15 𝜇𝑚 displacement criterion and the velocity ahead of the
shock was defined from the velocity-time profile as the point of maximum change
in curvature before the shock front. Small oscillations of particle velocity behind
the shock were observed but clearly follow the deceleration of the flyer.

The computed elastic, flyer, and shock fronts are shown in Fig. 4.12(c) and closely
resemble trends from experiments. The position of the propagating elastic wave
front appears to be progressing linearly in time and elastic wave speed was extracted
by applying a linear fit. Differences between the shock fronts in undeformed and
deformed configurations were also observed, but smaller than those in experiments.

Flyer speed was set by experimental displacement boundary conditions and shock
velocities were computed using a three-point central difference method and are
shown in Fig. 4.12(d). The lower noise in the simulation results revealed trends
within the velocities: Eulerian shock velocity decreased with time while Lagrangian
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Figure 4.12: Wave definition and extraction in numerical simulation corresponding to
experiment #𝑂𝑇152: (a) deformation images from numerical simulations showed similar
shock structure to experimental images; (b) particle velocity profiles for each unit cell
position used to determine shock parameters and front locations; (c) elastic (𝑋𝑒𝑙𝑎𝑠), flyer
(𝑥 𝑓 𝑙𝑦), and shock (𝑋𝑠, 𝑥𝑠) front-time histories; and (d) corresponding shock velocity and
flyer speed with 1D shock theory calculations.

shock velocity increased with time. These opposite trends may be explained by
considering definitions of the shock velocity in Eulerian and Lagrangian coordinates
derived by Davison [65]:

𝑈𝑠 =
𝜌+

𝜌0
(𝑢𝑠 − ¤𝑥+) . (4.11)

Equation (4.11) quantifies the effect of the elastic wave and density ahead of the
shock on the Lagrangian shock velocity. This relation allows the computation of
shock velocity in either coordinate given known values for the density and velocity
ahead of the shock. The ratio density ahead of the shock, 𝜌+/𝜌0, was again defined
as the ratio of distances from the non-compacted lattice face to the shock front:
𝜌+/𝜌0 = (𝐿 − 𝑡𝑏 − 𝑋𝑠)/(𝐿 − 𝑡𝑏 − 𝑥𝑠). Values of both coordinate shock velocities
were computed using 𝑢𝑠, 𝑈𝑠, and Eq. (4.11) and are represented by the open
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data points in Fig. 4.12(d). These calculated values confirm the increasing and
decreasing trends of𝑈𝑠 and 𝑢𝑠, respectively. Analysis in either coordinate system is
valid, but only the deformed coordinate showed a positive correlation with the flyer
speed with both decreasing with time. This correlation serves as the justification for
defining the 𝑢𝑠 − 𝑢𝑝 relation in the deformed coordinate for the Rankine-Hugoniot
shock analysis.

4.4.3 Rankine-Hugoniot Shock Analysis
The Rankine-Hugoniot shock analysis of numerical simulations is shown in Fig.
4.13. Figure 4.13(a) shows the Eulerian shock velocity, 𝑢𝑠, flyer speed, 𝑢𝑝, relation
for 𝜌∗/𝜌𝑠 = 10%, 15%, and 30%. The linear relation, 𝑢𝑠 = 𝑚 + 𝑆𝑢𝑝, found in
experiments was more evident in simulation results and illustrated by the fit lines
along the individual scatter points. Linearized approximations for each simulation
are shown by diamond markers. The slope 𝑆 ≈ 1 for all simulations and appeared
to slightly increase with relative density while 𝑚 was similar to experimental values
and ranged from 30-100 m/s. Fit parameters are shown in Table 4.5 and are further
discussed in Section 4.4.4.

Figure 4.13(b) shows the crush width-time history and the corresponding crushing
speeds. Crush width (𝑥𝑠 (𝑡)−𝑥 𝑓 𝑙𝑦 (𝑡)) profiles appeared linear and speeds were found
by applying a linear fit. Crushing speed showed a positive correlation with relative
density and a slight dependence on particle velocity with higher crushing speeds
occurring at higher impact velocities. The 𝑢𝑠 − 𝑢𝑝 relation was again approximated
with 𝑆 = 1 and𝑚 as the crushing speed taken as the average for each relative density.
Crushing speed 𝑢𝑠 − 𝑢𝑝 approximations are shown as dotted lines in Fig. 4.13(a)
and show good agreement with data.

Rankine-Hugoniot jump conditions were applied for the elastic wave assuming
quiescent initial conditions and wave speed, 𝑐𝑒𝑙𝑎𝑠, which was measured using a
linear fit of the front positions as seen in Fig. 4.12(c). The velocity behind the
elastic wave, ¤𝑥−

𝑒𝑙
, was taken as the maximum velocity value of the elastic wave and

the stress behind the elastic wave, 𝜎−
𝑒𝑙

was approximated using Eq. (4.8). Each
data point represents results from one unit cell position (taken over four interior
nodes about the central UC) and used to calculate the Hugoniot response, similar
to full-field measurements of experiments. The density behind the shock, 𝜌−𝑠 , was
calculated using Eq. (4.7) and the stress behind the shock, 𝜎−

𝑠 , was evaluated using
Eq. (4.8). Additionally, the stress ahead of the shock is approximated as 𝜎+

𝑠 = 𝜎−
𝑒𝑙

as
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Figure 4.13: Shock Hugoniot relations for numerical simulations: (a) shock velocity (𝑢𝑠)
− particle velocity (𝑢𝑝) relation, (b) crushing width-time history and crushing speed versus
relative density, (c) stress behind the shock (𝜎−

𝑠 ) − particle velocity (𝑢𝑝) relation, and (d)
internal energy behind the shock (E−

𝑠 ) − particle velocity (𝑢𝑠) relation per unit mass and per
unit volume.

done in experiments. It is noted that calculation of 𝜌+/𝜌0 and subsequent parameters
is improved over the experimental approach due to the true fixed position (no lateral
motion) of the baseplate.

Reaction force measurements on the rigid impactor plate were extracted and directly
compared to calculated Hugoniot values. Figure 4.13(c) shows the 𝜎−

𝑠 − 𝑢𝑝 relation
with the rigid impactor reaction force outputs, Hugoniot calculations, and linearized
approximations. Excellent agreement between Hugoniot calculations and reaction
force outputs validates application of one-dimensional Rankine-Hugoniot shock
analysis.

Figure 4.13(d) shows the internal energy (E−
𝑠 ) − particle velocity (𝑢𝑝) relation

calculated using Eq. (4.9) and approximation of the state ahead of the shock as
E+
𝑠 = E−

𝑒𝑙
. Convergence of curves for internal energy per unit mass and divergence

of curves for internal energy per unit volume was observed as in experiments.
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4.4.4 Validation of Node Measurements
Exterior node measurements on the three-dimensional lattice structure may not
match internal node measurements due to lateral movement of exterior material
during loading. This difference in values is examined through the 𝑢𝑠 − 𝑢𝑝 relations
for these nodes. Figure 4.14(a) shows the numerical 𝑢𝑠 − 𝑢𝑝 relation for exterior
and interior nodes (shown in Fig. 4.11(b)) for 𝜌∗/𝜌𝑠 = 10% specimens with ex-
perimental displacements as applied boundary conditions. Exterior nodes showed
a lower intercept than interior nodes which may be interpreted as a lower crushing
speed. This decrease in crushing speed measured in the axial direction is consistent
with the presence of lateral velocities. Overall, differences between shock veloc-
ities were small and exterior node measurements adequately approximate interior
measurements. 𝑆 ≈ 1 with exterior and interior values differing around 2%. While
𝑚 values varied more, the corresponding shock velocities showed 4-6% difference
within relevant particle velocity ranges.
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Figure 4.14: Comparison of shock velocity (𝑢𝑠) − particle velocity (𝑢𝑝) relation for interior
and exterior nodes for applied boundary conditions of (a) experimental displacements and
(b) constant impact velocities for 𝜌∗/𝜌𝑠 = 10% specimens. The circles (◦) correspond to
the various nodal values and the diamonds (⋄) correspond to linearized values by assuming
a constant shock velocity.

Figure 4.14(b) show the 𝑢𝑠 − 𝑢𝑝 relation for exterior and interior nodes of 𝜌∗/𝜌𝑠 =
10% specimens impacted at constant velocities of 270, 300, 330, and 380 𝑚/𝑠.
Exterior nodes again showed a lower intercept than interior nodes consistent with a
lower axial-measured crushing speed due to lateral velocities. Scatter of 4−5% was
observed in shock velocities and can be attributed to measurement techniques and
resolution. Excellent agreement between linear 𝑢𝑠−𝑢𝑝 relations and linearized shock
velocity approximations justify the linearized approximations as relevant quantities.
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Table 4.5: The linear shock velocity (𝑢𝑠) − particle velocity (𝑢𝑝) parameters
(𝑆, 𝑚 𝑓 𝑖𝑡 , 𝑚𝑐𝑟𝑢𝑠ℎ) for exterior and interior nodes of experiments and simulations with ap-
plied experimental displacements (𝛿𝑒𝑥𝑝) for 𝜌∗/𝜌𝑠 = 10%, 15%, and 30% specimens and
constant impact velocities (𝑢𝑐𝑜𝑛𝑠𝑡 ) for 𝜌∗/𝜌𝑠 = 10% specimens.

𝜌∗/𝜌𝑠 [%] Node Loading S 𝑚 𝑓 𝑖𝑡 𝑚𝑐𝑟𝑢𝑠ℎ
10 Simulation Exterior 𝑢𝑐𝑜𝑛𝑠𝑡 1.094 ± 0.045 12.95 ± 14.47 44.47 ± 2.33
10 Simulation Interior 𝑢𝑐𝑜𝑛𝑠𝑡 1.047 ± 0.044 35.68 ± 14.04 49.41 ± 1.11
10 Experiment Exterior - 0.978 ± 0.041 37.98 ± 12.71 30.93 ± 2.23
10 Simulation Exterior 𝛿𝑒𝑥𝑝 1.085 ± 0.050 15.88 ± 15.39 43.56 ± 2.60
10 Simulation Interior 𝛿𝑒𝑥𝑝 1.063 ± 0.045 31.54 ± 13.83 49.34 ± 2.06
12 Experiment Exterior - 0.929 ± 0.030 59.09 ± 9.52 36.32 ± 4.41
13 Experiment Exterior - 0.973 ± 0.105 58.99 ± 30.43 52.10 ± 4.22
15 Simulation Interior 𝛿𝑒𝑥𝑝 1.089 ± 0.051 53.02 ± 15.30 80.79 ± 2.15
25 Experiment Exterior - 1.014 ± 0.096 99.15 ± 28.37 104.89 ± 3.09
30 Simulation Interior 𝛿𝑒𝑥𝑝 1.115 ± 0.123 101.8 ± 37.07 137.12 ± 6.21

Table 4.5 shows computed values for 𝑆, 𝑚 𝑓 𝑖𝑡 , and 𝑚𝑐𝑟𝑢𝑠ℎ where 𝑆 and 𝑚 𝑓 𝑖𝑡 were
found using a linear fit of all data points and 𝑚𝑐𝑟𝑢𝑠ℎ was computed as the average
crushing speed. Errors for 𝑆 and 𝑚 𝑓 𝑖𝑡 were found using 95% confidence bounds
and error for 𝑚𝑐𝑟𝑢𝑠ℎ was calculated as the standard error. These results provide
insights into the sensitivity of the 𝑢𝑠 − 𝑢𝑝 calculations. 𝑆 ≈ 1 within error for all
conditions while 𝑚 𝑓 𝑖𝑡 and 𝑚𝑐𝑟𝑢𝑠ℎ varied with significant errors. The difference in
fit values between experimental displacements and constant velocities was small (1-
2% for 𝑆, 10-20% for 𝑚 𝑓 𝑖𝑡 , and 2% for 𝑚𝑐𝑟𝑢𝑠ℎ) and verifies the use of experimental
displacements for 𝑢𝑠 − 𝑢𝑝 relations. Crushing speed was higher in simulations than
experiments for all relative densities which may be attributed to perfect geometries
and higher relative densities in simulations.

4.4.5 Comparison to Experiments
Numerical simulation results support the Hugoniot equation of state (EOS) in the
form of a linear 𝑢𝑠 − 𝑢𝑝 relation as a reasonable approximation of the shock re-
sponse of SS316L octet-truss lattices. The linearized results for all experiments and
simulations are shown in Fig. 4.15.

Differences between experiment and simulation may be attributed to the constitutive
model, additive manufacturing technique [83, 107], stiffness effects from geometric
imperfections [73], and lower relative densities from manufacturing defects. Similar
trends were observed in both experiment and simulation: a linear 𝑢𝑠 − 𝑢𝑝 relation
(Fig. 4.15(a)); linear crushing width-time histories and positive correlation between
crushing speed and relative density (Fig. 4.15(b)); increasing stress behind the
shock with particle velocity and relative density (Fig. 4.15(c)); and converged
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internal energy per unit mass behind the shock and diverged internal energy per
unit volume behind the shock (Fig. 4.15(d)). Higher values were observed for
all quantities in simulations which may be dependent on geometric defects and
distributions [58].
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Figure 4.15: Comparison between simulation and experiment for (a) shock velocity (𝑢𝑠) −
particle velocity (𝑢𝑝) relation with simulation fit lines, (b) crushing speed – relative density
relation, (c) stress (𝜎−

𝑠 ) − particle velocity (𝑢𝑝) relation, and (d) internal energy (E−
𝑠 ) −

particle velocity (𝑢𝑝) relation defined per unit mass and per unit volume. The dotted black
line represents experimental values for bulk AM SS316L [35].

Average elastic wave speeds are compared for all relative densities and reported
in Table 4.6. Infinite lattice approximations were found using effective elastic
properties from Bloch-wave homogenization of the octet-truss unit cell calculated
by Patil and Matlack [112]. Normalized effective uniaxial modulus was found as
a function of relative density with scaling 𝐸∗/𝐸𝑠 ∝ (𝜌∗/𝜌𝑠)1.2 and values were
extracted for 𝜌∗/𝜌𝑠 = 10%, 15%, 30%. Wave speed was approximated as 𝑐 =√︁
𝐸∗/𝜌∗ using these values. Experiment and simulation values were calculated

using linear fits of front profiles as previously discussed.
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In experiment, simulation, and Bloch-wave analysis, elastic wave speed increased
with relative density. Wave speeds were lower in experiments and showed better
agreement with both simulation and Bloch-wave values at higher relative densities.
Bloch-wave approximations of wave speeds showed excellent agreement with sim-
ulation values with 1% difference at 𝜌∗/𝜌𝑠 = 10% and 15%, and 6% difference at
𝜌∗/𝜌𝑠 = 30%. Experimental wave speed at 𝜌∗/𝜌𝑠 = 10% showed 18.6% difference
from simulation values, 𝜌∗/𝜌𝑠 = 15% showed 10.1% difference, and 𝜌∗/𝜌𝑠 = 30%
showed 4.9% difference.

Table 4.6: Average elastic wave speeds from experiments and simulations for 𝜌∗/𝜌𝑠 =

10%, 15%, and 30% specimens. Error was calculated as the standard error of the mea-
surements. Bloch-wave approximations of wave speeds were found using effective stiffness
calculations [112].

𝜌∗/𝜌𝑠 10% 15% 30%
Experiment 1709 ± 54 1934 ± 26 2322 ± 11.18
Simulation 2028 ± 5 2129 ± 10 2438 ± 6
Bloch-wave 2009 2142 2299

A major reason for this discrepancy in values could be manufacturing defects.
Manufacturing defects were observed frequently in the horizontal struts of lower
density specimens as seen in Fig. 4.16.

10%
25 mm 30%

25 mm

Defects

Figure 4.16: Manufacturing defects of 𝜌∗/𝜌𝑠 = 10% specimens present on horizontal struts
relative to print direction.

High quantities of manufacturing imperfections in 𝜌∗/𝜌𝑠 = 10% experimental speci-
mens suggest a loss of stiffness from geometric defects and support a larger observed
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difference in speeds. These defects may be attributed to the manufacturing limits of
DMLS technology for features at this length scale such as poor heat conduction due
to small feature dimensions or powder bed rollers disrupting weakened struts during
printing. The effects of geometric defects are accounted for in the shock analysis by
using the experimental elastic wave speed and relative density values.

4.5 Summary and Conclusions
The shock compression behavior of stainless steel 316L octet-truss lattice struc-
tures was explored and shock definitions and Rankine-Hugoniot shock theory were
applied to both experiments and simulations. SS316L octet-truss lattice structures
with 5x5x10 unit cell (5 mm/UC) geometries were additively manufactured using
DMLS. Normal plate impact experiments were conducted on specimens with nom-
inal relative densities (volume fraction) of 10%, 15%, and 30% at impact velocities
ranging from 270 m/s to 390 m/s. High-speed experimental images were taken at
500,000 – 800,000 fps and digital image correlation (DIC) was performed on the
lattice specimen and flyer to extract full-field particle velocities. Images showed a
distinct discontinuity between regions of highly densified and intact material with a
densification front propagating in the direction of impact. Particle velocities of the
densified material were approximately equal to the flyer speed while the velocities
of the intact region were near zero. A two-wave structure consisting of an elastic
wave and compaction shock wave was observed in agreement with prior work [56,
57]. The elastic wave was defined using a displacement criterion and elastic wave
speeds appear constant for all specimens at a given relative density. Experimental
and simulation elastic wave speeds were found to be around 30%-50% of the bulk
sound speed of the parent material.

The observed ‘structural shock’ can be modelled using Rankine-Hugoniot jump
conditions for one-dimensional planar shocks. The shock front was defined for each
material point at the point of maximum change of particle velocity and described
through position and time using full-field measurements of the lattice specimen.
Full-field measurements allow determination of density and velocity field variables
during shock propagation and permit application of the Rankine-Hugoniot jump
conditions in the Eulerian form. The elastic wave was treated as a weak shock and
jump conditions were used to approximate field variables of the material behind the
elastic wave, but ahead of the shock. Stress and internal energy behind the shock
were also estimated using the jump conditions and the experimental measurements.
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In addition to experiments, numerical simulations using finite element analysis
(Abaqus/Explicit) with the Johnson-Cook constitutive model also exhibit a highly
densified region with a steady front separated from the intact material. Numerical
results validate experimental techniques by verifying the negligible effects of ex-
terior node measurements and non-constant impact velocities, matching calculated
Hugoniot stress values to numerical outputs, and accurately computing shock veloc-
ities using 1D shock theory. Rankine-Hugoniot analysis of numerical simulations
matches experimental results leading to the following conclusions:

• A linear shock velocity, 𝑢𝑠, particle velocity, 𝑢𝑝, relation was found to describe
the equation of state for octet-truss lattice materials: 𝑢𝑠 = 𝑚+𝑆𝑢𝑝. Linearized
approximations of velocities were found by taking a linear fit of the front
position-time history and show excellent agreement with fits of the full data.

• A slope of 𝑆 ≈ 1 was found in both experiment and simulation and suggests
modeling lattice structures as elastic-plastic rigid-locking [64] crushable ma-
terials.

• The constant term, 𝑚, is correlated with the crushing front speed with values
O(10 − 100) m/s significantly lower than the elastic wave speeds of SS316L
lattices with values O(2000) m/s.

• Stress behind the shock showed a positive correlation with relative density
and particle velocity, while specific internal energy calculations showed a
correlation only with particle velocity.

• Specific internal energy of lattice specimens closely resembled values ob-
tained from bulk AM SS316L at similar particle velocities.

• 1D shock theory may be applied to numerical simulation results without
resorting to a 𝑈𝑠 − 𝑢𝑝 relation for the bulk material. Qualitative agreement
with experimental results shows the shock behavior of lattice structures is
dependent on the structural response.

In both experiments and numerical simulations, consistent definitions for shock pa-
rameters such as front locations and field variables (density, particle velocity) behind
and ahead of the shock have been developed, and 1D Rankine-Hugoniot analysis
may be identically applied. With these definitions and theoretical framework, future
work entails the exploration of shock behavior of lattice structures with varying
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topology and parent material. Homogenization and extrapolation of shock behavior
based on relative density and unit cell topology would allow for optimization of these
materials at a highly decreased computational cost. Extension to other topologies
would allow engineering design of impact-dissipative structures for applications of
energy absorption, and strong lightweight materials for dynamic applications.
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C h a p t e r 5

SUMMARY AND FUTURE WORK

5.1 Summary
In this thesis, we investigated the dynamic behavior of polymeric and metallic
lattice structures of varying topology and relative density on the centimeter length
scale. The mechanical response of these materials depends on topology, strain-rate,
and base material, and demonstrates various regimes of deformation based upon
strain-rate loading conditions. Experimental techniques are used to study the high
strain-rate, transient dynamic, and shock compression behavior of lattice structures
and numerical simulations are used to support, verify, and extend the experimental
analyses.

In Chapter 2, the high strain-rate response ( ¤𝜖 ≈ 1000𝑠−1) of rod-like and plate-like
polymeric lattice structures with Kelvin unit cells of varying relative density is ex-
plored. Distinct effects of rod and plate structural components are demonstrated by
mechanical behavior dependent on strain-rate, relative density, and topology despite
a similar unit cell shape. The high strain-rate deformation regime is characterized
through strain-rate effects and deformation modes; strain-rate effects in lattice speci-
mens are similar to those observed in the base material, and deformation bands form
in the middle of specimens at both high and low strain-rates which more strongly lo-
calize at low strain-rates and low relative densities. Engineering design implications
of rod versus plate structures are evaluated through mechanical failure properties:
plate-like lattices demonstrate superior properties at lower relative densities and rod-
like lattices demonstrate superior properties at higher relative densities. The scaling
of these properties with relative density is also calculated. Explicit finite element
numerical simulations are used to validate deformation modes and scaling/property
trends and relate those observed in experiments.

In Chapter 3, the transient dynamic and transition to shock response of polymeric
lattice structures with cubic, Kelvin, and octet-truss topologies at moderate to high
impact velocities (25-70 m/s) is discussed. Distinct mechanical behavior is again
observed across different topologies, but a new deformation regime persists due
to higher strain-rate loading. The transient dynamic regime ( ¤𝜖 ≈ 500𝑠−1) is char-
acterized by initiation of a compaction wave at the impact surface and additional
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deformation bands with modes similar to low strain-rate modes of deformation.
Low strain-rate mechanical properties, elastic wave speeds, deformation modes,
particle velocities, and distal stress histories are analyzed for each topology to char-
acterize lattice structure behavior. At high impact velocities (> 50 m/s), a sole
compaction wave is observed which characterizes the shock compression response
( ¤𝜖 ≈ 1200𝑠−1). This compaction wave is modeled as a ‘shock’ and one-dimensional
continuum shock theory is used with full-field measurements to quantify a non-
steady shock response and extract the stress behind the compaction wave. We
demonstrate that there is shock-induced stress enhancement at the impact surface
which is dependent on impact velocity, topology and dynamic material effects.

Finally, in Chapter 4 we explore the shock compression behavior ( ¤𝜖 ≈ 6500𝑠−1) of
metallic octet-truss lattice structures at higher impact velocities (> 250 m/s). We
demonstrate these lattice structures support an elastic and compaction shock wave
similar to polymeric lattice structures in Chapter 3, which supports this behavior
as a generalization. Rankine-Hugoniot 1D shock analysis is carried out using
full-field experimental measurements and validated using identical techniques on
numerical simulations. A linear shock velocity (𝑢𝑠) – particle velocity (𝑢𝑝) relation
for the equation of state (EOS) is approximated using a slope of one and constant
term equal to the linearized crushing speed which exhibits positive correlation
with relative density. Shock analysis reveals the stress behind the shock depends
on particle velocity and relative density while the specific internal energy behind
the shock depends only on particle velocity. Specific internal energy calculations
for lattice structures agree with approximations for the base material which has
engineering design implications that structure has limited effect on this quantity
for lattice structures under shock loading. Notably, one-dimensional continuum
shock theory is applied to numerical simulations using a Johnson-Cook strength-
hardening model without resorting to a 𝑢𝑠 − 𝑢𝑝 relation for the base material, which
characterizes this deformation regime and compaction wave as a ‘structural shock.’

5.2 Future Work
The field of architected materials will continue to grow as computational design
methods advance and additive manufacturing (AM) techniques improve and become
more accessible. The scope of this thesis covers experimental investigations on
lattice structures across varying strain-rates, but there remains a large research
avenue for future work in this field. The following sections outline particularly
interesting and attainable opportunities for further research.
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5.2.1 Experiments on Shock Compression
Plate and Sheet Lattice Structures
Shock compression behavior of cellular materials such as stochastic foams has been
well-studied [52, 54, 55, 62–64, 101, 103] and now recently investigated in rod-
based lattice architectures. Plate-lattices and sheet-lattices have been realized to
show superior mechanical properties to rod-based counterparts, but shock com-
pression behavior of these materials remains unstudied. It may be expected that at
comparable relative densities these lattices will show a structural shock response
while offering benefits of superior mechanical properties for dynamic applications.
However, manufacturability of closed-cell structures such as plate-lattices remains
a difficult challenge due to trapping of powder or liquid photoresin inside unit cells.
Advancement of AM technology that allows for realization of these structures would
enable increased experimental work on these materials and confirmation of these
deformation regimes. Improvements in experimental techniques of visible and x-
ray high-speed imaging and full-field measurement methods such as digital image
correlation will also permit observation of these phenomena at higher strain-rates
with increased resolution, allowing a closer inspection of the complex mechanics
and mechanisms at play.

Impact at Very High Velocities
At very high impact velocities (> 500 m/s), phenomena such as jetting [104, 113]
and ejecta [58] occur in periodic and lattice materials. Further work on shock
compression of lattice structures at these velocities would allow for exploration of
a potential deformation regime which surpasses the regime of ‘structural shock’ in
which the base material itself undergoes a change in density. This regime may be
relevant for high-velocity impact experienced by spacecrafts or structures. These
effects are not considered in this thesis, exemplified through numerical modeling
in Chapter 4 with elastic parameters and a Johnson-Cook strength model which
implies constant density in the strut material. Other shock regimes such as over-
driven shocks which exhibit velocities faster than the elastic wave are also currently
unexplored and remain an area for future work on architected materials.

Determination of Equation of State
Conventional shock physics revolves around the determination of an equation of
state (EOS) of materials found through a shock velocity (𝑈𝑠) – particle velocity (𝑢𝑝)
relation. This type of relation is discussed in Chapter 4, but further research needs
to be conducted to identify these relations for lattices of different topology, base
material, relative density, and length scales. While it appears relative density is the
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dominant factor for structural shock behavior, it remains to be seen experimentally
in various topologies and base materials under steady shock conditions. These rela-
tions may also change as deformation regime potentially transitions from ‘structural
shock’ in the architected material to ‘true’ shock in the base material, resulting in
multiple EOS for architected materials dependent on loading rate.

5.2.2 Theory and Analysis
Deformation regimes of lattice structures investigated in this work have an inher-
ent dependence on base material, topology, and relative density. Particularly, high
strain-rate behavior shows a large dependence on base material, and shock compres-
sion behavior shows a large dependence on relative density. With understanding of
these deformation regimes, it is feasible to construct theory and analysis connect-
ing the behavior of lattice structures across strain-rates. Future work may entail
development of analysis for a given unit cell and base material that would allow
approximation of the lattice response across all strain-rate deformation regimes.
Transition between a low strain-rate and high strain-rate regime may be derived
from base material strain-rate dependent constitutive behavior and transition to the
shock regime (shock initiation) may be predicted using relative density and topol-
ogy. While there has been work studying shock initiation in cellular materials such
as stochastic foams [51, 64], it has yet to be readily applied to lattice structures.

5.2.3 Computational Methods and Homogenization
The advancement of computational design has spurred the field of architected ma-
terials and continues to allow exploration of topology effects. Unit cell design in
this thesis uses previously designed structures but may be improved further with
techniques such as topology optimization [44] and machine learning [114, 115].

Computational techniques also allow for realization of unit cell designs of varying
density (graded structures), varying size (hierarchical structures), or combination
of topologies. While heterogeneous design is feasible, there is benefit in consid-
ering lattice structures at the unit cell level as a representative volume element
(RVE). Computational design and simulation of lattice structures is expensive due
to complex geometries, and while improvements in computation will advance these
abilities, modeling and analysis of a single unit cell remains at an incredibly inex-
pensive cost. Homogenization of the unit cell response, especially in the dynamic
regime, would allow for design of complex lattice structures and understanding of
macroscopic mechanical response at a low computational cost, cutting down design
time and increasing engineering efficiency.
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5.2.4 Thermomechanical Effects in Modeling
Plastic work and dissipation occur during deformation of lattice structures, particu-
larly with metallic base materials, which is supported through numerical simulation
results in Chapter 4. The thermomechanical conversion of plastic work to heat may
induce behaviors such as thermal softening in the base material, however, these
effects are not considered during modeling in this thesis. A high reference (onset of
effects) temperature was used in Section 4.4.1 for the definition of the Johnson-Cook
(JC) constitutive model of AM SS316L to prevent the onset of thermal effects. Ther-
momechanical effects in lattice structures remains an area of future work and may
be explored through varying this reference temperature in the JC model parameters
or with other temperature-dependent constitutive relations.

5.2.5 Unit Cell Size Effects
Size effects have been well-studied in cellular materials through 2D modeling of
foams [116] and lattice structures [117] which have shown the number of unit cells in
a given material volume affects the quasi-static mechanical response. These effects
have been extended to dynamic deformations experimentally demonstrated by Xiao
et al. [43] in titanium alloy 3D lattices with distinct high strain-rate behaviors of
3x3x3 5mm UC and 5x5x5 3mm UC specimens. Size effects may be expected for
lattice structures in this thesis in the “quasi-static” and “high strain-rate” deformation
regimes. However, size effects are not expected to play a large role in the “shock
compression” regime as the deformation is dominated by the volume fraction of the
specimens and compaction to a locking strain for each unit cell. A more complete
analysis of size effects in lattice structures across the various dynamic deformation
regimes remains an area for future work in this field.

In this thesis, lattice specimen geometries were selected as 5x5x5 (or 5x5x10) UC
based upon manufacturing resolutions and dimensions of experimental apparatus.
A 5x5 row geometry allowed for a well-constrained middle section of test specimens
with two unit cells on each side. Changing strut dimensions of lattice structures
would allow an increased or decreased number of unit cells for a given build volume
and may induce size effects. However, a trade-off exists due to current manufacturing
resolutions where defects present in the specimens will dominate the behavior at
very low strut thicknesses.
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A p p e n d i x A

A.1 3D Printer Manufacturing Parameters
Table A.1: Autodesk Ember DLP 3D Printer parameters used for manufacturing polymeric
lattice structure specimens in Chapters 2 and 3.

Wait time (before exposure) [s] Exposure time [s] Layer thickness [𝜇𝑚]
1.5 2.8 25

Separation slide velocity [rpm] Approach slide velocity [rpm] Angle of rotation [deg]
8.0 12.0 60.0

Separation Z-axis velocity [mm/s] Approach Z-axis velocity [mm/s] Z-axis overlift [mm]
1.5 1.5 0.75

Overpress [mm] Separation slide maximum jerk [𝑑𝑒𝑔/𝑠2(𝑥103)]
0.0 4630

A.2 Viscoelastic Parameters for Polycarbonate SHPB Correction
Wave propagation coefficient, 𝛾(𝜔), as a function of frequency (𝜔) used for disper-
sion and attenuation corrections of viscoelastic strain measurements of the polycar-
bonate split-Hopkinson (Kolsky) pressure bar (SHPB) system used in this thesis.
𝛾(𝜔) can be decomposed into the attenuation coefficient, 𝛼(𝜔), and phase velocity,
𝑐(𝜔), as in Eq. (2.3) and may be experimentally determined using a one-point
measurement technique [79]. Figure A.1 shows the experimental results and aver-
age values of 𝛼(𝜔) and 𝑐(𝜔). Strains and striker velocities of wave propagation
coefficient experiments were comparable to that of high strain-rate experiments on
lattice specimens.
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Figure A.1: Wave propagation coefficient for the polycarbonate SHPB system realized
through (a) attenuation coefficient, 𝛼(𝜔), and (b) phase velocity, 𝑐(𝜔), as a function of
frequency, 𝜔. The dark solid lines represent the averaged value of the measurements.
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A p p e n d i x B

SUPPLEMENTARY VIDEOS

The following supplementary videos are included:

Chapter 2:

Supplementary Video S1: Low strain-rate experimental deformation videos of rod-
like and plate-like photopolymer lattice structures coupled with instantaneous stress-
strain response.

Supplementary Video S2: High strain-rate experimental deformation videos of rod-
like and plate-like photopolymer lattice structures coupled with instantaneous stress-
strain response.

Chapter 4:

Supplementary Video S3: Full-field deformation videos for shock compression
experiments on stainless steel 316L octet-truss lattice structures (#𝑂𝑇102, #𝑂𝑇152,
and #𝑂𝑇301) and the corresponding numerical simulations.

Supplementary Video S4: Full-field deformation video of shock compression ex-
periment on stainless steel 316L octet-truss lattice structure (#𝑂𝑇152) with relevant
wave front positions marked and tracked.


