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Abstract 

Th e p resent study is prompted by t he fa ilme of convent iona l chaos control t heo ry to 

provide a pract icall y sound a lgo rith m fo r co ntrolling the chaos in genera l spat ia ll y 

extended experi me ntal systems . T he prim ary reason fo r t hi s fa ilure is t he presence of 

sym met ry, which is a feat ure of most extended dy nam ical systems a nd whi ch violates 

a nu mber of ass um pt ions of gener icity made by co nve nt ional control theory. T hese 

ass umpt ions can b e relaxed , but at a price that increases wit h in c reas ing symmet ry 

of the target state. T hi s p rice includes the la rge r number of ind ependent control 

paramete rs that must b e ad_justed to steer the system towards the target tra_j ecto ry, 

as well as t he la rger number of in dependent observables required to reconst rn ct t h e 

dyna mi cs of a n experim ental system with symm et ri es. 

Vve show th at spat ia ll y extend ed chaot ic systems can be controll ed by moni to rin g 

and pert urbing them at mul t iple spat ia l locat ions, or p inning sites, with separat io ns 

dete rmin ed by the noise in the system. vVe show t hat the a rra ngement of pinnin g 

s ites must comply with constraints dete rmin ed by the sy mm etry of the system in 

ord er to achi eve cont rol. vVe determin e how the system can be fo rced from th e 

spat iotem porall y chaot ic state in to the cont roll abl e target state. F in a ll y, we determin e 

the maxim al distance b etween p inning s ites a nd the maximal level of noise tolerated 

by a given a rrangement of p innin g sites fo r a model extend ed system. 
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Chapter 1 Introduction 

1. 1 Motivation 

T he des ire to improve p erform ance of ma ny p ract ically important systems a nd de

vices often call s for shift ing t heir op erat in g range in to a highl y nonlin ear a rea, whi ch 

afte r a se ri es of bifurcat io ns usually leads to irregul a r chaoti c b ehav ior. This kind of 

b ehav ior , h0vvever, is rarely des ired , whil e substa nt ia l benefi ts could be obtain ed by 

makin g the dy na mi cs regular. T hi s goal can typically be achi eved by a ppl y in g sma ll 

p reprogram med pert urba tions to steer th e system t0vvards a p eriodi c orbi t with de

sired p rop ert ies, whi ch is broadl y referred to as chaos cont rol. 

T he most d if6cul t type of chaos to cont rol , the spat iot emporal chaos is ubiqui to us 

m spat ia ll y extended nonlinear syst ems a nd ma nifests itself in phenom ena such as 

t urbul ence [1], plas ma [2] a nd co mbust ion [3] instabili t ies, cardi ac a rrhythmi a [4], a nd 

b rain epil epsy [5] . The ma,i ori ty of spat iotemporally chaot ic systems a re co nt inuous 

and a re p rop erl y describ ed by pa rti a l di ffe renti a l equa ti ons, bu t some are spa ti all y 

discrete a nd as such admi t a descrip t ion in te rms of co upl ed ordin a ry different ia l 

equat io ns (or sometimes delay different ia l equa tions) . Nevertheless, a ll th ese systems 

share enough comm on features, esp ec ially in t heir spat ial st ructure, to be t reated in 

a unify ing framevvork. 

Th e li st of p ract ically imp ortant syste ms and dev ices d ispl ay in g spat iote mporal 

chaos whi ch co uld b enefit from app li cat ion of control is rather long, so we ment ion 

_just a few characteri st ic exampl es. For in stance, stabilizat ion permi ts t he operat ion 

of' chemi cal reactors [6] b eyo nd th e normal limi t of their stability, whi ch may be 

des irabl e for in creased thermodynami c efficiency, produ ct yield , or produ ct puri ty. 

\ i\T ide ap erture semi co nducto r lasers [7] display uncont roll ed random beam steerin g 

a nd loss of spat ia l coherence at hi gh pumping levels needed to achi eve des ired outp ut. 

Ne ural networks [8] require control in ord er to be pl aced in a n adequa te (in t rin sicall y 

un stabl e) st ate for inform at ion process ing . F in all y, p owe r grids a re un stable t o certain 
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typ es of electri cal instabilities, which in th e absence of control co uld lead to power 

surges, ove rload and failure of const it uent compon ents . 

Unfor t un a t ely, despite a ll t he success achi eved in rece nt years in controlling rela

tively simple low-dim ension al chaot ic systems, most hi gh-dim ensional systems (w ith 

tens or more effect ive degrees of freedom), those just mentioned in clud ed , remain 

notori ously difficult to control a nd little progress has been made so far in the im

plementation of ex ist ing control techniques. In fact , discounting st irred chemi cal 

reactors , whose evolution has no spatia l dep endence [6 ; 9], there have been no reports 

of successful co ntrol achi eved in exp erimental spat ia ll y extended chaot ic systems up 

to date. This sit uat ion is not very surprising given the absence of a general th eory 

for control of spat iotemporal chaos. 

Spatially extend ed homogeneous systems can, in prin cipl e, be t reated as a spec ia l 

case of hi gh-dim ensional chaotic systems [10; 11 ; 12]. However, some of th e pract ical 

issues that a ri se in the control problem are quite specifi c and are probably b es t ha n

dl ed by taking into account the spatiotemporal structure of the system a nd th e target 

state in general, a nd their symmetry properties in part icular [13]. More important 

from the t heoretical point of view, the spat iotemporal st ruct ure with comm on charac

teri st ic features possessed by various extend ed systems provides th e nat ural context 

for a nalys is and reevalua tion of the exist ing techniqu es a nd results. 

Although spat ia lly extended chaot ic systems a re the primary focus of our attenti o n, 

arbitrary sy mm etric systems are, arguably, as interest in g and important. Hence, by 

making our a na lys is as general as poss ibl e, we can hope to obtain many resul ts whose 

range of applicabili ty fa r exceeds the class of systems t hat moti vated the present study. 

Th erefore, our goal can be summ a ri zed as a n attempt to correct some of th e short

co min gs of the ex ist ing theory a nd make the first step towards developin g a general, 

thorough a nd co nsistent control formalism appli cabl e to symm etri c chaot ic systems , 

in general, and spat ially extended chaotic systems, in pa rticul a r. Such formalism 

requires coll ect ion , systematizat ion a nd development of the fragmenta ry res ul ts a nd 

methods of data. a na lysis, deterministic chaos, lin ear systems and control, a nd gro up 

theory. 
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1.2 Outline 

The outline of the thesis is as follows. In chapte r 2 we begin with an overview of the 

t heoret ical advances in the a rea of controllin g spat iotemporal chaos . Vve review a nd 

compare t he techniques proposed by various a uthors to suppress chaos and target 

unstabl e steady and periodic states with desired properties in systems described by 

partial differential equations, coupled ordinary differential equat ions a nd co upled map 

latt ices . vVe also formulate the set of defi ning questions to b e answered by the rest 

of this st udy. 

In chapter .3 we proceed with an overview of the data a nalys is t echniques used to 

reconstruct th e spat iotemporal dynamics o f a n experimental system di splay ing chaot ic 

behavior using a tim e series measmement of a single output. vVe rev iew the ma_jor 

results concernin g t he continuous-time reconstruction of the globa l system dy nam ics 

a nd discrete-time reduct ion using the Poincare sect ion t echnique. \fve t hen tu rn to 

the question of local reconstruction a nd identifi cat ion of recurring points a nd propose 

a generali zed a lgorithm appli cable to periodic orbits of arb itrary periodicity. Finally, 

we give a brief overview of noi se reduction techniques proposed in the literat ure. 

In chapte r 4 we provide a n expanded di scuss ion of the resu lts concern ing t he effects 

of symmetry on the dynamics a nd control previously reported in [13]. Vve discuss why 

the standard control approach fa ils when appli ed to symmetric systems and show 

how it should be modified in order to achieve control. In particular, we show that 

when non tr ivial sym metries a re present one has to use multi-parameter control as 

opposed to the sin gle-paramete r co ntrol used in th e stand a rd approach. vVe compare 

th e results obtained for cont inuous- a nd discrete-time systems an d study the affect 

of weak symmetry violat ion . In the co nclusion of t he chapte r we show that th e 

problem of phase space reco nst ruction is affec ted by symmetr ies in a manner s imil a r 

to the control problem. We discuss hovv the data collection a nd ana lys is have to 

be modified to permit the reconstruction of symmet ri c chaotic attractors preservin g 

their symmetries . 

In chapte r 5 we t urn to the problem of feedback control. VVe review a nd compare 

the most widely used feedback control techniqu es developed on th e foundations o f' 
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nonlin ear dyna mics a nd co nt rol t heo ry. \Ne ana lyze two single-paramete r general

izat ions of the OGY control method a nd show how they can be extended for t he 

m ul t i-paramete r case. \Ne a lso show th at these methods, b eing deri ved in the as

sumpt ion of dete rminist ic dyna mics, become severely ha ndi capped when ap pli ed to a 

ce rtain class of stochast ic systems. Thi s has p rofound effect on the probl em of control 

of extended chaot ic systems, vvhi ch is t he p ri mary focus of om attent ion. \Ne a lso 

rev iew two general stochast ic cont rol methods which provide a systemat ic t reatment 

of t he probl em of fee dback cont rol as well as dynam ic state reconst ruct ion in th e 

presence of extern a l noise a nd measurement errors. 

In chapter 6 we apply the results of the preced in g chap t ers to th e probl em of 

controlling extend ed spat iotemporally chaotic systems. Foll owing t he prev io us st ud y 

[14], we int roduce a stochast ic generali zation of t he one-dim ensional coupled map 

latt ice as our model, a nd a rgue that it is generi c in the cl ass of general extend ed 

systems. vVe show that om model cann ot be contro ll ed by pert urb ing the in te rn a l 

syste m pa ram eters and , t herefore, call s for locali zed control. We a na lyze the meth od 

of p innin g cont rol introduced by Hu a nd Qu [1 5] a nd show how it can be modifi ed to 

achi eve great er fl exibili ty at the same t im e d rast icall y reducing t he de nsity of pinnin g 

sites. T his brings us to the method of control using a d_justabl e bound ary cond it io ns, 

whi ch p roves to be ext remely ve rsat ile and effect ive, a ll owing control of a rbi trary 

target states in a vari ety of condi t ions. Our resul ts a re illustrated with a numb er 

of num eri cal exp eri me nts. \Ne also di scuss how the methods of p innin g cont rol a nd 

cont rol at the b ounda ri es can b e combin ed to obtain a scala bl e di st ri buted cont rol 

approach applicable to systems of arbi trary size . In t he conclusion we show how t h e 

combin at ion of the nonlineari ty a nd stochast icity in our model leads to the blow up 

of noise a nd loss of control a nd deri ve theoret ical est im ates on the s ize of t he system 

at whi ch thi s ha ppens. 

F in a ll y, we summ arize our resul ts in chapte r 7 and di scuss th eir impli cati ons for 

the p robl em of co ntrollin g cont inuous (in space as well as t im e) extended chaot ic 

dynam ical systems in a n a rb itrary number of di me nsions. 
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Chapter 2 Overview 

2.1 Selective Targeting 

Tn order to determin e t he missing components of a general theory for control of 

spat io temporal chaos we proceed with the analys is of th eoretical ad vances in t he 

a rea. vVe begin by consid ering the cl ass of methods designed not _just to suppress 

chaos , but more spec ifi call y, to target a nd stabili ze a chosen unstable steady state or 

periodi c t ra _j ecto ry wit h d es ired prop erti es . Historically the first to ad dress t he issue 

of controlling spat iotemporal chaos, Hu a nd He [16] considered a one-dimensional 

periodica lly dri ve n system descr ib ed by a nonlin ear drift-vvave pa rt ia l differential 

equat ion of the form 

81) 83 1) 81) 81) . 
~+ a :::i :::i 2 + /3 -;:;- + WP-;:;- + 1 1J = E sm(x - Dt). 
ut utux ux ux 

(2 .1) 

Upon transforming into th e moving frame z = x -Dt , this partial differenti a l equat ion 

b ecomes a utonomous a nd (as any other similar a utonomous PDE) can be converted 

in to a n equi valent system of ordina ry differenti a l equ at ions expandin g t he solu t ion 

1Y(z, t) in the bas is of norma l modes 'lj;k(z) (which coincide with Fouri er modes due to 

the translational symmetry of equat ion (2 .1) , so ind ex k is _jus t a wave vector) : 

N 

cf>(z, t) = Jim L si.:(t)i/JJ; (z). 
N-+oo 

k=O 

(2 .2) 

Const ru ct in g a n infini te-dim ension al vecto r s(t) = [s 1 (t), s2 (t) , · · ·JY from t he coeffi

cients sk (l;) , a nd defining th e vector of parameters u = [a, /3, µ , 1 , E]r, on e can writ e 

the system of ODEs in t he form 

s(t) = <I>(s(t ), u) , (2.3) 

where <I> is some nonlin ear function of coeffic ients sk(t) a nd parameters of t he syste m . 
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Hu a nd He suggested two ways to stab ili ze a presc ribed un stable p eriodi c solu t ion 

¢(x, t) = ¢(x - Dt) of (2.1) . On e can p erturb a n approp ri ately chosen norm al mod e 

1/Ji(z) by adding a damping term ->. si (t) to the ith compon ent of equat ion (2.3), 

which can be in terpreted as locali zed control in t he Fomier space. Alternatively, one 

can apply locali zed damping at a single p oin t of the real space, add in g a term such as 

->.<5(x-x 0 )[¢(x, t)-¢(x-Dt)] to the ri ght-h and s ide of equation (2.1) . The first t yp e 

of fe edback is som ewhat more difficult to impl ement exp erimentall y than the second 

on e, because th e system has to b e p erturbed at every point of th e real space , but it 

can , in principle, b e implemented for t he ma,iority of spat ia ll y ex tend ed sys tems. In 

addi t ion , t he first type of feedb ack requires t he knowl edge of th e dyna mi cal equat ion s, 

whi le t he second one does not . 

As a resu lt of a seri es of num erical experiments , it was determ in ed tha t , when 

th e first typ e of feedback was used , for some choices of th e mod e nu mb er i, t he 

valu es of damping>. a nd system paramet ers u th e stabi li zat ion of t he target solu t ion 

¢(x - Dt) succeeded; fo r oth er choi ces it fa il ed. In stead, th e stabili zat ion of a vari ety 

of oth er periodi c and quazip eriod ic states was achieved , wh ich can b e traced to the 

poor selectivity of t his typ e of feedback. ·when th e second typ e of feedback ,vas 

used , however, th e target solu t ion was stabili zed more effect ively, especiall y for large 

da mpin g >.. \!ve will make two comm ents regarding this control t echniqu e. First of a ll , 

although the number of degrees of freedom is infini te, due to sma ll s ize (x E [O, 27!]) 

the system is on ly weakly chaotic (the number of exc ited norm al modes was est im a ted 

to b e of order N = 13) a nd , t herefore , is rather highly correlated sp a tially. Seco nd , 

although the nondri ven system is highl y symmet ri c, th e target st ate ¢(x - Dt) has 

a rath er low symm etry. It can b e shown th at both of th ese factors contribute to 

th e success of thi s technique (and are prerequisites of a lm ost every other exis ting 

techn iqu e for control of spat iotemporal chaos). 

Anoth er vers ion of control in Four ier space (appli cable to systems describ ed by 

PDEs as well as coupl ed ODEs) was proposed by Lourenco a nd Babloyantz [8]. Th ey 

suggested using t he Poincare surface of sect ion to reduce a cont inu o us-t im e evolu t ion 
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equ at ion of t he typ e (2.3) to a di screte- t ime map of th e typ e 

(2 .4) 

where sn represents t he valu e of t he vector s(t) at t he nth cross in g of t he smface 

a nd 'U is a scala r sys tem parameter. Ass uming that onl y a small number of modes 

a re excited near t he t a rget state (the system is again weakl y chaoti c), t he effect ive 

dim ension ality of t he map (2 .4) can be ma de fini te (and small ), t hus redu cing t he 

probl em to t he sta nda rd form used in convent iona l chaos control t heory [10; 17] . 

T he effect iveness of t his approach was demonst rated num eri cally by stabili zin g a 

nu mber of un stabl e p eri odi c orbi ts of t he small on e-dimensional a rray of coupled delay 

different ial equat ions with different (but supposedly low) spat iotemporal symm et ri es . 

T hi s method differs from th e one proposed in [16] in t hat the pert urbat ion of t he 

system parameter u is used in st ead of direct p ert urbat ion of th e state of t he system, 

whi ch can a lso be relat ively eas ily achi eved experimentally. In eith er case, however, 

a single cont rol paramet er is used . 

P etrov et al. used the Poincare sm face of sect ion t echni que to deri ve a co nt rol law 

withou t using t he dyna mical equat ions. In a seri es of pap er [3; 18] t he a ut hors con

sidered t he spat iall y extend ed co mbustion model defin ed by a Ku ramo t o-Sivashin sky 

equa ti on 

8x2 8x4 ' 
(2 .5) 

where t he vari able <f>(x, t ) represents t he plana r fron t of a p remi xed fl ame. However, 

in stead of a map of t he type (2 .4) describing t he evolu t ion of t he syst em b etween 

success ive cross ings of th e P oincare sect ion in the Fo uri er space, a simila r map in real 

space was const ructed using t he measurement of a scala r fun ct ion ~(t ) of t he state 

</J(x, t) of t he system in the vicinity of t he targeted orbi t </>(x, t) . T here is a sin gle 

paramete r in t he model, t he length l. T he system was considered for t he values of 

l where t he dyna mi cs are weakl y chaot ic, i. e., onl y a few normal modes a re exc ited 

and , as consequ ence, t he co nst ru ct ed map is effect ively low-di me nsional, so t ha t the 

system co uld again b e t reated usin g t he tools of t he conventi ona l chaos control t heo ry. 

It was demonstrated t hat control can be achi eved by p ert urbin g one of th e bo und ary 
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conditions. A very similar approach was used by Tziperman et al. [19] 1n order to 

control spatiotemporal chaos in a model used for vveath er prediction. 

As an alternative to the above approach Petrov et; al. sugges ted usin g the method 

of transfe r functions borrowed from control theory [20]. This method combines the 

two steps of the control problem, construction of the Poincare map and construction 

of feedback into a single step, which simplifies the analysis of the data obtained from 

the experimental system to a certain degree. This method was used to stabilize steady 

and periodic unstabl e flame profiles of the model (2.5) [18] as well unstable Turing 

pattern s in a react ion-diffusion system described by the Gray-Scott model [21]. In 

both cases the symmetry of the targeted states was relatively low a nd the syste ms 

where rather highl y correlated spatially. 

2.2 Suppression of Chaos 

In addition to the three control techniques already described, a number of oth er , 

much less sophisticated, techniques based on incorporating preset time delays in the 

feedback law have been proposed . Despite being conceptually simpl e, techniques of 

this type, as a rul e, provide very poor selectivity and thus should b e regarded a.s 

methods to suppress spatiotemporal chaos in favor of some sort of periodic b ehavior , 

rather than methods to stabilize a chosen unstable periodic tra,iectory. One of the 

simplest such methods was suggested by Battogtokh et al. [22], who considered the 

complex Ginzburg-Landau equation 

(2.6) 

describing a large class of (very weakly chaotic, again!) systems und ergoing a bifur

cation from regular oscillations to spatiotemporal chaos. One can use a time delayed 

global feedback proportion al to the spatial average of the field cjJ (x, t), which corre

sponds to adding to the right-hand side of equation (2.6) a term 

(2.7) 
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where Tis the time delay. ,\ and x are th e magnitude and phase of t he feedback, wh ich 

depending on the phase can act as eith er damping or amplifi cation of the spat ia ll y 

uniform mode 1/Jo(x) = consi. This type offeedback obviously favors uniform period ic 

states wit h period T , i.e. , states with very high spatial symmet ry. In the numerical 

experiments it was establi shed that the uniform steady state was indeed stabi lized for 

x = O (damping) and ce rt ain choices of the delay T, whil e choos in g xi- 0 resu lted in 

the stabili zat ion of osci ll at ing cellul ar patterns. Similar type of feedback was used to 

supp ress chaos in coupl ed ODEs [8], and coupled map lattices [23]. 

In order to faci li tate the stabilizat ion of nonuniform target states , one has to use 

a modification of the latter techniqu e, which uses local valu es of the field r/J( :r, t) 

instead of its spatial average. T hi s sort of generalizat ion was used by Bleich and 

Socolar [24] for the stab ili zation of traveling waves in the complex Ginzburg-Landau 

equation (2 .6). Certain unstable periodic states can be stab ili zed by apply in g the 

signal constructed from t he time-delayed state of the system as feedback at every 

point in space, which corresponds to adding to the right-hand side of equat ion (2.6) 

a term 
00 

\JJ(x, t) = L An[rf>(x, t) - q'>(x, t - nT)], (2 .8) 
n=l 

where T is the period of the targeted unstable state ( e.g., traveling wave) and Pn} 

is a sequence of damping coefficients (one should obviously have :z::::=n An = A < oo). 

Th is type of feedback is known as e.1:tended time-delay auto synchronization, and 

has been successfu lly applied to a number of low-dim ensional chaotic systems [25] . 

Sim il ar types of feedback were suggested to control spat iotemporal chaos in systems 

described by coupled ODEs [8] and coupled map lattices [23]. Stabilization of a 

variety of unstable periodic orbits was demonstrated numerically. 

Similarly to the case of delayed globa l feedback, this type of control does not 

require the knowledge of dynamical equations and has rather poor select ivity with 

respect to target states with desired properties. Since one can only ad,iust the time 

delay to match the period T of the targeted state, the stabi li zat ion is a matter of 

luck rather than choice. Besides, the area of practical applicab ility of this approach 

is e:r:tremely limi ted. Apart from optical systems, impl ement ing this type of feedback 
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in continuous systems borders on the impossible due to the fact that it uses a numbe1 

of control parameters equal to the number of degrees of freedom , whi ch is infini te . 

Even in appli cat ion to spat iall y discrete systems the complexity of t hi s method will 

likely prevent it from eve r being used in practice. 

The selectivity of the latte1 method can be improved by in troduc in g spat ial filtering 

of the field 1> (x , t). T he methods p1oposed by Lu et al. [26] and Bleich et al. [7] can 

be represented in the same general form by writing the feedback term as 

(2.9) 

where I<(x, x') is t he kernel of th e filtering operator, whi ch is ass um ed to be chosen 

appropriately for each target state. The global a nd local delayed feedback discussed 

above clearly correspond to choosing I<(x , x') = canst and K(x , x') = c5(x - x') , 

respectively. T hi s type of feedback is again effectively equ ivalent to usin g an infinite 

number of co ntrol parameters in continuous extended systems and thus is limi ted 

to applications for optical systems. Control of unstable traveling wave states was 

achi eved in the numerical model of a single longitudi na l mode lase1 [7] . A version of 

t hi s technique for coupled ODEs [8] a lso exists . 

2.3 Pinning Control 

We have seen a number of times that successfu l control of spat iotemporal chaos by 

applying feedback at a single spatial location was achieved only in systems whi ch 

possessed a high degree of spat ia l conelation. This , h0vvever, does not imply that 

weak ly conelated systems require appli cat ion of feedback at every spat ia l point. A 

mo1e econom ical a nd flexible approach is to monitor and perturb the system at mul

tiple locations separated by th e characterist ic length which depends on the st rength 

of noise and other system parameters. This approach was called pinning control, and 

spat ial locations used for feedback were respectively termed pinning sites or pinnings. 

A number of relatively successfu l attempts were made to employ pinning cont rol 

for stabi li zi ng unstable states in spat ia ll y discrete systems such as coupl ed ODEs [27] 
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a nd coupled map latt ices with symmetric coupling [15] 

(2.10) 

The results can be summar ized as follows. It was numerica lly demonstrated that 

a variety of un stable steady states and periodic tra_jectories could be successfu ll y 

stab ili zed. This , however, required an extremely high density of pinnings, with the 

distance between ad_jacent pinnings no large r than fom and three lattice spac in gs in 

the case of the coupled map lattice a nd coupled ODEs, respectively. 

Significantly lowe r density of pinnings can be used in the case of coupl ed map 

latt ice with broken symmetry 

(2.11) 

where E1 #- E2 . This surp ri sing, at first sight , resu lt has nothing to do with the spat ia l 

correlat ions in the system. On the contrary, as ,ve will see below , it can be expla ined 

by the difference in symmetry properties of equat ions (2.10) and (2.11). Successful 

control of the uniform steady target state of the model (2.11) has been achieved [28] 

with the distance between pinnings of up to 14 sites, in t he presence of noise of relative 

magnitude a= 10-10 . 

Bleich a nd Socolar [24] formulated three questions which should be a nswered by a 

consistent general theory of controlling spat iotemporal chaos: What is the minimum 

density of discrete controllers (actuators) needed in situations where spatially contin

uous processing in the .feedback loop is not possible (i.e., almost always)? What level 

of noise can be tolerated? How can one force the system from the spatiotemporally 

chaotic state into the desired controllable state? Detailed exam inat ion of t he problem 

reveals t hat one more question has to be added to the above li st: How should the spa

tial locations at which the system is monitored and perturbed be arranged? This last 

question is prompted by the intrinsic symmetries characteri st ic of spat ia ll y extended 

systems . 

Even though the importance of symmetries in chaot ic dynamics has been recog

ni zed by a number of autho rs [29; 30; 31; 32], symmetric systems did not rece ive 
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adequ ate t reatment in t he general framewo rk of chaos control prim a rily because t he 

quest ion of symmet ry is la rgely ignored by the theo ry of determinist ic chaos as well 

as data analys is a nd control th eory. All three di sc iplin es regard symmetric systems as 

nongeneri c and , th erefore, not very interes ting a nd imp ortant. However, ma ny prac

t ically important dyna mi cal systems , such as spat ia lly extended chaot ic ones , a re 

in t rin sicall y nongeneri c , and thus cann ot be successfull y t reated us in g the formali sm 

developed for gener ic systems. 
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Chapter 3 System Identification 

3.1 Time Delay Embedding 

T he pri mary cha ll enge one faces when p rese nted wit h a n ob,i ect ive to defeat the 

chaot ic b ehav ior in a real cont inu ous-t im e experi me ntal system is to dete rmin e t he 

laws governin g t he dy nam ics or, in other vvo rds , const ruct a mathemat ical mod el of 

t hat system using t he exp erim ental data. For now, we will ass ume t hat t he system 

un der co nsiderat ion is determini st ic, a nd defe r the t reatment of stochast ic systems 

un t il chapte r 5. vVe will a lso ass ume t hat t he evolu t ion takes place on a fi ni te

d imens ional chaot ic attracto r A a nd t he act ual dy nam ical equat ions can be wri tten 

in t he fo rm 

s(t) = 4> (s(t), u , t), ( 3.1) 

where s(t) E Q is t he n 5 -d imens iona l state of t he system, u E lRn" is the n1l

d imensional vector of system parameters, a nd 4> denotes a n un know n vector fi eld 

on th e ph ase space mani fo ld Q . Fo r ge nerali ty we will ass um e t hat n 5 is a rb itrary 

(or even infi ni te) and n1, 2": 1. Alt hough t he part icular fo rm (3.1) of t he dy nam ical 

equat io ns li m its t he ge nerali ty of t he proposed c1pp roach by excl ud ing the systems 

desc ri bed by di ffe rent ia l a lgebraic equat ions, it directly bears on t he validi ty of t he 

fo ll owin g resul ts , a nd t hus is essent ial here. 

Vve are primaril y in terested in t he two specia l cases of t he dy nam ical equat ion 

(3.1), whi ch represe nt t he two classes of systems most often enco un te red in p ract ice, 

a uto nomous a nd p eri od icall y dr iven . F irst , consi der a n a uto nomous system fo r whi ch 

o14> (s (t;) , u , t;) = 0 a nd, t herefo re, 

s(t) = 4> (s(t) , u). (3.2) 

T he complete in fo rmat ion abo ut the state o f a n expe ri me ntal system is rarely avc1il

able, so one typ icall y has to contend wit h having a measurement of a s ingle scala r 
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output of t he system (somet im es called a n observable) for t he descrip t ion of t he dy

na mi cs. T he output is, in general, a fun ction of the (unknown ) in t ern al state of th e 

system s(t): 

y(t) = G(s(t)). (3 .3) 

It tu rn s out th a t it is poss ibl e to reconst ruct both t he in tern al state of t he system 

and its dyna mi cs based on the tim e seri es measurement of t he ou tput y(t;) usin g t he 

proced m e origin a ll y proposed by Packa rd et al. [33]. The eas iest. way to obtain 

several signals from a sin gle one is to use t im e~ delays . Let us choose diffe rent delay 

t im es T1 , T2 , · · ·, Tn
0 

and construct an nz-d im ensiona l delay coo rdin a te vector 

z(t) = 

y(t + T1 ) 

y(t + T2 ) 

(3.4) 

Takens showed [34] th at fo r a scala r output (3 .3) a nd conveni entl y chosen delay t im es 

Ti, if t he dim ension nz of t he embedding space is such that nz 2: 2n; + 1, where n; 

is the Ha usdorff dim ension of the attractor A , the map P : s(t) --+ z(t) generi call y 

prov ides a global one-to-one representat ion of t he attractor and , hence, t he system 

state. As we vvill see b elow, t he genericity ass umption in th e Takens' embeddin g 

th eorem is not sat isfi ed for most of t he extended systems due to t he symm et ry-related 

degeneracy of t he evolution operators . However, sin ce the rest of th e algori t hm only 

dep ends on th e ex istence of the global embeddin g P : s (t) ---t z(t), we proceed 

wit h t he di scuss ion ass uming t hat t he th eo rem holds a nd con sid er t he modifi cat ion s 

required for nongeneri c systems in sect ion 4.5. 

Sin ce t he Ha usdorff dim ension of th e chaot ic attracto r is oft en much small er t h a n 

the numb er of degrees of freedom , n; « ns, even for systems of hi gh dim ensiona li ty 

a n un ambiguous representat ion of t he system stat e can usuall y b e obtain ed in a n 

embedding space of rather low dimension ali ty. For insta nce, Roux et al. [35] h ave 

shown that t he state of the Belousov-Zhaboti nskii system, whi ch is desc ri bed by more 

t ha n 30 independent vari abl es, can be represented ni cely in IR.3 . Even more important , 

as long as n; < oo, the reconst ru ction techni que can b e successfull y appli ed even to 
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infini te-d im ensional systems, such as t hose descr ib ed by pa rt ia l di ffe rent ia l equat ions. 

Several au thors , in cluding Romeiras et al. [17], fur ther suggested tha t , if onl y a local 

one-to-one rep resentat ion of the state in t he vicini ty of some peri odi c tra_j ecto ry is 

needed , nz = n~ is ty pi cally suffic ient , decreas in g t he dimensiona li ty of t he emb eddin g 

space even fur ther. 

T he next step in t he p rocedure a ll ows one to recreate t he dyna mi cal equat ions. 

In p rin cipl e, it is p oss ible to extract t he necessary info rmat ion ab out t he dy na mi cs 

usin g t he cont inuous-t ime measurement of t he reconst ructed state z (t). However, 

t he tra_j ectory generated by z (t) is usually ve ry complicated a nd may be di ffic ul t to 

in te rpret . A small nu mber of methods ex ist [36; 37], whi ch a ll ow one to recreate 

t he system of ordin ary di ffere nt ia l equat ions of the fo rm (.3.2) using th e reconst ructed 

tra_j ectory, but t hey are neit her general not p rec ise enough fo r t he control purposes . In 

t he co nclusion of t hi s sect ion we me ntion t hat in cases vv here t he mathemati cal model 

of a n in fi ni te-dim ensiona l extended system is avail able, t he tra_j ecto ry z (t) a nd the 

fi ni te-dim ensional rep resentat ion of the dy na mi cal equat ions can b e obtain ed us in g 

t he Galerkin method [38]. 

3.2 Discrete-Time Reduction 

T he p roblem of reco nst ructing the dynam ical equat ions can b e simplifi ed substanti a ll y 

by us in g t he P oin care sect ion technique [33], whi ch reduces the cont inuous tra_j ecto ry 

z (t) in t he nz -di mensional embedding space to a set of p oints in an (nz-1 )-dim ensio nal 

subspace. Let us defin e t he Po in care surface of secti on by th e equa tion </J( z(t)) = 0. 

T he cross ings of t he surface by t he tra_j ect ory of t he system generate a sequence of 

t im es t0, t 1 , t2, · · ·, which subsequent ly defin e a sequence of points zk = z (t1.:) t hrou gh 

the delay emb edding. T he choice of delay t im es Ti is, in prin cipl e, a rbi trary, bu t most 

ofte n a sequence of delay ti mes~= (i - l )To is used , vvhere T 0 < 0 is a "negat ive" 

bas ic delay (see, for example, [12; 17]) . T hi s choice is not always conveni ent fo r the 

p urpose of real- t ime da ta acqui sit ion , since it requires a n a priori kn owledge of the 

reference t imes tk . To co rrect t he sit uat ion we instead take T0 > 0. For instance , if 

one sets </J (z (t)) = z1 (t) - c, where c is a constant, one can extract t he com p onents 
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of t he vectors zk from t he meas ured signa l y(t) in real- t im e mode by t est in g t he 

conditi on y(tk) = c to determin e i1;: a nd th en measure z{ = y(f:1,: + (i - l )To) for 

i = 2, · · · , nz, 

Th e recon struction of periodi cally d riven systems can b e ha ndl ed in a very simil a r 

ma nner. If we denote th e period of the dri ving signal T F, t hen we should have 

<I>(s(t) , u , t + TF) = <I>(s( t ) , u , t ). Sin ce the dri v in g d efin es a natural frequ ency in th e 

system , on e can use th e stroboscopi c techniqu e to defin e a sequence of refer ence t im es 

t 0 , t1 , t2 , · · · usin g t he p eri od of dri vin g in stead of th e P oin care secti on. Specifi call y, 

one takes t1,: = t 0+kTp . A sequence of points zk = z (t,J is t hen det ermined ident icall y 

to t he case of a n a ut on omous syste m. 

Sin ce th e dy na mics is determinist ic, if th e syst em param eters a re fi xed , u = u, 
th en zk determin es z k+l, hence d efinin g th e first return ma p F: ]Rnz x lRn" ----+ ]Rnz 

(3 .5) 

In the control probl em system parameters a re kep t co nsta nt dming t he intervals 

t E [t1,:, ti,:+1], bu t t hey are cha nged di scon t inuously at t he t im es l1.:, so equat ion (3 .5) 

has to b e modifi ed . In ge neral , zH1 would dep end on z" as well as t he hi story of 

cha nge in u(t) during t he tim e interva l t E [t1;, tk+l + Tnzl • Ass uming th a t t he la rges t 

delay Tnz is chosen sma ll enough , such that i1.+ 1 + Tnz < t1,: +2, independent of k, a nd 

deno t in g uk the value of th e pa rameter vector u(t ) in the in te rval t E [/;Hi, t1;+2], 

one co nclud es t ha t th e state of th e system at t im e t1.:+ 1 depends on th e valu es of' 

parameters du r in g two success ive in tervals 

(3 .6) 

vvhi ch coin cides with t he equa tion obta in ed for negat ive basic delays [39]. 

F in a ll y, let us in t roduce a n expa nded state-plus-parameter vecto r 

k 
X = (3 .7) 
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a nd defin e a nevv map F : ]Rn .c X JR1Ln --t JR1L,c 

[
F(x5 ,u,xu) l 

F(x, u) = , 
u 

where nx = nz+nu . T his a llows equat ion (3 .6) to be rew ri tten in a more conventi ona l 

form 

(3 .9) 

It is imp orta nt to reali ze tha t t he maps (3.6) a nd (3.9) represent nothing but two com 

pl etely equivalent desc riptions of th e same dy nam ics in two different spaces a nd eit her 

description can b e used dep endin g on the circumstances. \ f./e will predomin a nt ly use 

t he map (3.9), s in ce it has th e form required by conventi ona l control t heo ry. 

·when the seq uence of stat es xk a nd the map (3 .9) a re reconst ructed from the 

outp ut y(t) of the exp erim ental system , it can be cla imed tha t t he dy namics of the 

sys tem is esse nt ia ll y understood . However, even though in certa in cases (s uch as t he 

Belousov-Zhabotinskii system [35]) findin g t he nonlinear map F that fit s the da ta 

well enough is relat ively easy, t hi s can rarely b e achi eved for typ ical high-dim ensiona l 

systems . On e, therefore, has to look for a more p ract ical a nd economi cal way to 

desc ribe t he system . 

3.3 Periodic Trajectories 

Fortun a t ely, t he problem can be simplifi ed even furth er by st rippin g th e red und a nt 

informat ion about t he globa l st ruct ure of th e chaot ic attracto r A contained in t he 

dyna mi cal equat ion (3.1). Ind eed , t he closure of t he attracto r, A, can be thought of 

as a uni on of a n infini te numb er of unstabl e periodic orbits and t hus t he vecto r fi eld 

<I> contains the in fo rm at ion about a ll t hese orbits . For t he purpose of control just 

one such orbit s(t) is selected as th e t a rget s tate. It turns out th at one only needs to 

kn ow th e local propert ies of th e equ at ion (3. 1) in the vicinity of t he target state in 

ord er to drive t he system towards it using t he method of lin ear feedback controL 

As a resul t of t he equivalence betwee n the full desc rip t ion of the system in te rm s 

of t he differenti a l equat ion (3 .1 ) a nd its redu ced descrip t io·n in te rms of t he map 
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(3.6) , continuous-time peri odic trajectories a re mapp ed to di sc rete-time peri od ic t ra

jecto ri es . Indeed , consider the projection P : s(t) --t z(t;) of the ta rget trajecto ry 

in to t he embedding space. As discussed above, the c ross ing of th e Poin care section 

by th e reconstructed trajecto ry z(t) generates a sequ ence of points z0 , z1, • • •. On 

the one hand, if th e target trajectory s(t) is t im e-inva ri a nt , so is z(t) a nd , therefore, 

zl.:+ l = zk, \/k, whi ch corresponds t o a fix ed point of the ma p (3 .6). On the other 

ha nd , if s(t) is t im e-periodi c, s(t + Tc) = s(t) , then z(t) is a lso tim e-peri od ic with t he 

same p eriod Tc - Trivi ally, if z(t) crosses the Poin care surface of section T times during 

t he first period t E [O , Tel, it will do so during each of th e consecutive peri ods , th us 

generating th e discrete-tim e trajectory z1; with peri od T, zl.:+T = z1". D efining 

. [ z"] x'·· = ) 

u 
(3. 10) 

we can conclude that each p eriodic traj ecto ry s(t) of the origin al system can be repre

sented either by a periodic trajectory z1
, · · ·, zT of the map (3.6) or by an equiva lent 

p eriodic trajectory :x: 1 , • • • , xT of the map (3.9) with T 2:: 1. From now on we can, 

in prin ciple, assum e that the dynamics of th e experimental syst em is described by 

the discrete-time evolution equat ion (3.9) and its target states a re represented by t he 

p eriodi c traj ectori es of the map F . 

Tn add it ion , on e can cla im that th e local properti es of t he differenti a l equ at ion (3 .1 ) 

in th e vicinity of th e ta rget state s(t) are completely desc ribed by th e lin eari zation of 

th e map (3.9) about the resp ective periodic traj ecto ry xk_ Denoting th e displ acement 

from the target traj ecto ry x1; as 6xk = x 1
·' - x1; a nd the perturbation of th e control 

parameters relat ive to the equilibrium values of parameters u as 6u1; = u 1; - u, one 

obtains the following lin eari zed equation 

(3.11) 

Here we introdu ced th e notat ions 

(3. 12) 
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fo r t he Jacobian of t he transfo rm at ion (3.9) a nd 

(3. 13) 

for t he lin ear respo nse of t he system to cha nges in the control paramete rs, vvhich we 

call th e control matri:.c. Clearly, t he matrices A1·: a nd B 1·: are periodic in t he ind ex k 

with t he same period T as the t a rget tra,iectory, Ak+T = A1·: a nd Bk+T = B 1·: . 

For pract ical purposes , however , it is often more conven ient to use a s imil a r lin

eari zat ion const ru cted fo r the map (3.6). Denoting l::,.zk = zk - z1.: , one obtains : 

(3 .] 4) 

T he mat ri ces A1·: a nd Bk can be trivi ally reexpressed in term s of Jik fJk a nd fJk us ing ' , L , 2 

t he defi ni t ion (3.8): 

(3.15) 

(Thi s equat ion itself is often taken as t he definition of Ak a nd B"', e.g., in Ding 

et al. [10].) The set of matrices {A"', B'"} (or {Ah, Bt, B~}) completely determin es 

t he local dy nam ics of t he system in t he tange nt space a nd , t herefore , provid es a ll 

the essent ial information needed fo r t he solu tion of the control probl em. Th e on ly 

difficulty is neith er th e map (3.9) nor t he p eriod ic t ra,i ec tory :x:1 , • • •, :X: 7
, whi ch we 

used to fo rm a ll y defin e the J acob ia n a nd t he control mat ri x , are kn ow n. 

3.4 Local Reconstruction 

Tn fact, it is much eas ier to extract the periodi c tra,i ectory and t he mat ri ces A"', iJ~: a nd 

Bt directl y from t he exp erimental data us in g the well-kn own techniqu e of recurrent. 

points [40 ; 41] t han it is to find th e map (3.9) a nd t hen use it to calcul ate A1·' a nd B1· 

from th e definition s (3.12) , (3 .13). Th e additional b enefit of us ing the lin eari zed form 

of t he dy na mical equ at ions is that t he maxim al dimension of t he embedding space 

required fo r t he reconst ru ct ion is reduced from 2n~ + 1 to n~. 
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Since the Ha usdorff dim ension of th e attractor 1s unlikel y to be known for a n 

experimental system , t he choice of the embedding dim ension n z will typ icall y have 

to be made usin g trial and error. One then needs to generate , for t he fi xed system 

pa rc1 meters, u = u, a sequence of points z0 , z 1 , · · · , zT a nd select fr om it n, 1 « n << 

T , recurring points zr 1 , • • · , zr" such t hat 

lzr-1 - zri+TI :; ... :; lzn - zrdT I :; min lz''' - z"'+Tl 
k-:;tri 

(3.16) 

A number E is then chosen, a nd t he recurring points z r_; a re sorted into classes Km 

acco rdin g to the following rul e . The p oint zr 1 a lways defin es (becomes the center 

of) th e first class K 1 . Th e next recurring point zr-2 is then attached to K 1 , if the 

distance lzr 1 - zr 2 I < E. Otherwise zr-2 defin es the new class K2 . T he rest of t he 

recurring points a re then tested, a nd each is either attached to an exist in g class K.i, 

if th e distance to its center is small er than E, or defin es a new class. As one in creases 

E from ze ro the number of classes decreases from n to one. Tf n is la rge enough , one 

expects t he number of classes to have a plateau at in t erm ediate values of E definin g the 

natura l partitioning of the set of recurring points into classes . Each class determin es 

the neighborh ood of either a fixed poin t of the ma p (3.6) or a point of a periodic 

tra,i ecto ry with p eri od Tor less (the period should b e a factor of T, though). 

Once a class K, = K.-i is found co rresponding to a point of peri od ic tra,iectory with 

p eri od T, one can use t he same sequence of data poin ts z0 , z 1, · · ·, zT to simul taneo usly 

determin e th e points zk of the target tra,iectory and the sequence of .Jacobi a n mat ri ces 

Ak. This is achi eved using t he least squares method to iterat ively find the best fi t for 

the linear approximation 

(3.1 7) 

for each k = ] , • • •, T . The x2 fun ct ion should b e co nst ructed to in co rp ornte t he 

inform at ion about t he tra_jectories of length T generated by each element of t he class 

K. For instance , one can take 

T 2 

X2 = L LP (lzri - z(p-1)1 ) lz~'~1 - zri+k + A?'v) (zr;+k-t - zt'P) )I ' (3.18) 
z'.iEK k=l 
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where th e subsc ript denotes t he level of approx im at ion. Th e 0th level approximat ion 

z(o) is ass um ed to b e give n by t he cente r of t he cl ass a nd t he least squ a res procedure 

is rep eated un t il th e est im ates A(\iJ a nd z("p) co nve rge . No nuniform weights p(d) can 

b e chosen to compensate for t he lack of data points in t he vicinity of t he target 

tra_j ectory. Ass ignin g a lower weight to tra.i ectori es whi ch a re farth er from the target 

trn_jectory reduces th e error caused by the nonlinearity of t he ori gin al map (3.6). For 

in stance , one can take p(d) = exp( - d2 /ri) , where a is a n ad_justabl e pa ra mete r or 
order t he rad ius E of t he class /C 

Th e opt imal emb eddin g dim ension nz is not kn ow n a priori, bu t can be determin ed 

usin g t he a dapti ve method simil a r to the one suggested by Petrov et al. [18]. T he 

idea is rather simpl e . O ne starts with the ori ginal sequence of points z0 , z 1, · · ·, z'' ' 

a nd calcul a tes the va lue of the x2 fun ct ion as described above. On e then decreases 

t he embedd in g dim ension by one, di scarding the last comp onent of all data po ints, 

y ieldin g a new sequence z?, Zi, · · ·, zf. Calcul at in g t he value or the x.'2 run ct ion once 

again a nd rep eating the process un t il the dim ension n z is exh a usted or poor conver

ge nce of th e est im a tes A(-~) a nd z?~J is observed , one obta ins a se ri es of valu es x2 (n 2 ) . 

T he optim al embedding dim ension is then chosen as the minimal value of nz for whi ch 

the fun ct ion x2 (nz) is close to its minim al va lue. 

Fin a lly, t he control matrices Bf a nd B~ can be found by generating a new sequence 

of points z 0 , z 1, · · · , zT, but now with system parameters that a re slight ly perturbed , 

a nd th e p ert urbat ions recorded as a separate data sequence 6.u0 , 6.u1 , • .. , 6.ur . On e 

then form s a new cl ass of poin ts JC by taking z1 as t he master point and eit her 

re_j ect in g or attachin g t he points zi to K' based on whether the di stance lzi - z11 is 

la rger or small er tha n th e radius E (the sam e as the on e used to const ruct the class 

K). The least squa res method is t hen used once again to find t he b est fi t for t he 

lin ear approximat ion 

(3 .19) 

for each k = I , ··· , T. Th e x.2 fun ct ion is co nst ructed simil a rl y to t he prev ious case, 
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with A'· and z!.: fi xed at their op t im al valu es calcul ated p rev iously, 

2 
X 

T 

(3 .20) 

Mini miz ing x2 with respect to B(" a nd B~ yields the sequence of control mat ri ces a nd 

gives us t he last b it of informat ion required to reconst ruct the local dyna mi cs of t he 

experim ental system . 

As po in ted out by P etrov et al. [18], t he co ntrol pertmbat io ns ~uk may shift 

t he system away from the attract ing ma nifold a nd thus exc ite addition al degrees 

of freedom effect ively absent in the unp ert urb ed dy na mi cs on th e attracto r A. For 

spat iotemporal systems m ost (but not all ) of t he norm al mod es wi ll decay rap idly 

compa red to the t ime t1;+ 1 - t1.: between successive cross ings of t he Poincare sect ion , 

so that the correspondin g degrees of freedom can be ignored in t he lin eari zation 

(.3.14). T he embedding dim ension in t hi s case should be increased to describ e th e 

slowly decay in g exc ited modes. Th e new valu e n~ can be adapt ively found as in the 

unpert urbed case, with one modifi cat ion . The fun ct ion x2 should be defined by (3 .20) 

with vari able zk, Ah, Bt and B~ instead of (3 .18). F in all y, th e matr ices A" and Bk 

and th e target trajectory xk in the extended state-plus-parameter space a re obtained 

usin g (3 .1 5) and (3.10). 

Of course, th is whole scena ri o is hi ghl y idealized , b ecause in pract ice th e measure

ments a re of fini te durat ion a nd noi sy, whi ch can lead to excess ive e rrors in th e deter

min at ion of both t he dynam ical equat ions a nd the p eriod ic traj ecto ri es. \/1/e are not 

go ing to di scuss t he techniqu es used to reduce t he effec ts of noise in detail a nd in stead 

_just g ive a few references. The two most popul ar methods are t he Karhun en-Loeve 

decomp os ition [42; 43] and the wavelet transfo rm [44]. The Karhun en-Loeve deco m

posit ion (also call ed sin gul a r syst em a nalys is, bi-orth ogona l deco mposition , etc. ) is 

based on choos in g a n appropri ate bas is of vecto rs to represent t he t im e se ri es . T he 

vecto rs a re dete rmin ed as a set o f eigenvectors of th e two-p oint co rrelat ion ma tr ix 

computed usin g th e experi mental data. The wavelet transform is a ge nera li zat ion o f 

t he Fourier transform whi ch rep resents t he translat ion a nd t he scalin g of components 
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of a sig na l. Both methods are ext remely useful a nd a re used rather extensively to 

reconst rnct t he dy na mi cs of high-d im ensiona l, a nd espec iall y spat iall y extend ed, dy

nami cal syste ms. T he range of applicat ions to t he co ntrol problem is rather li m ited 

so fa r (see, e.g., t he wo rk by T ri a nd af a nd Schwartz [45]) , b ut is expected to grow 

rapidly. 

Summ a ri zing t he res ul ts of thi s chap te r , we conclude that even when no math

emat ical model fo r t he system is availabl e, t he dyna mi cal equat ions describing its 

evolu t ion can b e extracted from the experim ental data. Bes ides, t he control p roblem 

onl y requi res t he kn owledge of t he lin eari zat ion of t hese equat ions abo ut th e selected 

tar get state, whi ch can be obtained even eas ier, and wit h better prec is ion , t ha n t he 

full nonlin ear equat ions. Vve can, t herefore, p roceed with t he a na lys is of t he control 

probl em ass uming th at t he dynam ical equ at ions are known. 
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Chapter 4 Symmetric Systems 

Despite t he recent wave of in terest towards controlling chaot ic dy na mics an in te rest ing 

and important quest ion of controlling systems wit h symmet ri es rece ived surprisin gly 

li tt le attent ion in t he phys ics li terature. T he imp ort a nce of sy mm et ri es in controlling, 

for instance, spatiotemp oral chaos is ev ident , sin ce t he systems typ icall y show rota

tiona l a nd translat ional symmetries. Such phenomena as fluid flows, convect ion or 

chemi cal react ions oft en take place ins id e symm et ri c contain ers - cylind ers, spheres, 

pipes a nd annuli . Even the dynami cs of unbounded systems is ofte n influenced by 

t he sym metri es o f t he phys ical space. Although the p resence of sy mm et ri es usuall y 

s ignifi cant ly simplifies th e a nalys is of t he dynamics , it a lso makes syste m ident ifi ca

t ion a nd control more compli cated du e to t he inh erent degenerac ies of t he evolu t ion 

operators. In fact , th e presence of sy mmet ri es , expli cit or impli cit, makes a numb er o f 

sin gle-control-paramete r methods fail [10 ; 17; 18], callin g fo r multi-paramete r control 

[11 ; 14; 46; 47] . 

In order to see how the control problem is affected by symm et ri es, we consider (fol

low ing the ana lys is conducted in [13]) a ge neral di sc rete-time system (the a rgum ents 

for cont inu ous-t im e systems a re very simil ar) , whose evolu t ion is describ ed by t he 

map (3.9). If th e target tra_j ectory xt of t he system is unstabl e, it can b e stab ili zed 

by an appropri ate feedback th rough the t ime-d epend ent control p e rturbat ion 6.u 1, 

provided t he mat ri ces At and B 1 in t he lin eari zat ion (3.11) sat isfy certa in condition s. 

In t he present chapter vve concentrate on select ing from the complete set of avail abl e 

system paramete rs a minim al set of control paramete rs whose p erturbat ion all ows 

th e stabilizat ion of t he target state, i.e., makin g a n appropriate choice of t he control 

matrix Bt, given th e J acobia n At. The di scuss ion of t he probl em of actuall y fin d in g a 

stabili z ing feedback is deferred until chapte r 5. Vile will see below t hat the constrain ts 

affect ing t he choice of control parameters can b e eas il y obtained from the sy mm et ry 

properti es of th e system a nd th e controll ed state . \tVhat is more in te restin g, symm e

t ry a ll ows one to determine t he m inim al number of co ntrol param eters even when t he 
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local dy nam ics desc ri bed by t he Jacobi a n At is unknown. 

As we have seen in t he prev ious cha pter , d isc rete-t im e evolu t ion equat ions o f type 

(3.9) are o fte n ob tained as a res ul t of phase space reconst ruct ion of a co nt inuous-t ime 

system when t he dy nam ical equ at ions descri b ing its evolu t ion a re unkn ow n. Ge ner

icall y, such reco nst ruct ion is p oss ible when t he measurement of a single scala r t im e

dep end ent signa l y(t), whi ch is a fun ct ion of the system state s (t), is avail abl e . Many 

pract icall y in terest ing syste ms, sym met ri c ones in pa rt icul a r , a re, however , ext remely 

nongeneri c a nd require a num ber of indep ende nt scala r s igna ls fo r t he compl ete re

co nst ru ct ion . Eckmann a nd Ruell e [48] ackn owledged t hat t he choice of signa ls has 

to be made carefull y by t ri a l a nd error. Certain ge neral rul es conce rnin g t hi s choice , 

however , can be establi shed on p urely t heo ret ical gro unds , sin ce t hi s problem too can 

be effect ively treated based on th e kn ovvledge of underly in g sy mmetri es [49] . 

4.1 Time-Invariant States 

4.1.1 Stabilizability and Controllability 

Alt hough our a na lys is is applicable to t ime- vary ing syste ms, we start fo r sim pli city 

by ass uming th a t th e cont roll ed state is t im e-in vari a nt, xt = x. T hen t he mat ri ces 

At a nd Bt b ecome constant , a nd we can d rop the t im e index in (3.11) to obtain 

( 4.1) 

Tt is useful to introdu ce a nd compare two characte ri zat ions of t he lin eari zed evolu t ion 

equati on (4.1) , whi ch extremely simplify t he a nalys is of feedback control a lgo ri t hm s: 

stabilizability a n cl controllability. 

T he dy na mi cal system (4 .1 ) or t he pa ir (A , B) is said to be stabilizable, if there 

ex ists a slate feedback 

(4 .2) 

makin g t he system ( 4.1) stable, i.e., it is p oss ible to fin d a .feedback gain matri:r; T< , 

such tha t all eigenvalues >-;,: of t he m atri x A' = A - B T< li e wit hin a uni t circle 

of the complex pla ne, l>-~:I < 1, '1::/k. O t herwise t he system or the pair (A , B) is 



26 

ca ll ed unstabilizable. Indeed , subst itu t in g t he feedback (4 .2) in to (4. 1) one obtain s 

t he lin eari zed evolu t ion equ at ion fo r t he closed-loop system 

( 4.3) 

wit h 6 x = 0 beco min g t he stable fi xed poin t of t he map (4.3) , if a nd onl y if A - B K 

is stable. 

Sin ce t he magni t ude of t he cont rol pe rt urbat ion 6u1 is p roport iona l to t he dev ia

t ion 6 x L of t he system from the target state, feedback of t he for m ( 4.2) is often call ed 

proportional in th e phys ics li terature, alt hough th ere a re a number of other te rms used 

to de note t hi s type of feedback. Control theory uses t he term state feedback to refer 

to t he fact t hat t he state of t he system is used to dete rm in e t he cont rol pert urbat io n. 

At fi rst sight equat ion ( 4 .2) seems to im pose st ri ct li m itat ions on th e all owed fo rm 

of t he feedback law. However, t hi s is p recisely t he fo rm dema nd ed by a nu mber of 

vv idely used control a lgorithms [10; 12; 17]. 

Stabili zabili ty is a property, which ofte n sensit ively dep ends on t he values of cont rol 

paramete rs. In t he majori ty of p ract ical appli cat ions, however, it is p referable to have 

a n adapt ive control t hat would stabili ze a given steady state :x: (u) fo r a rb itrary valu es 

of system parameters. This is esp ecia lly im p orta nt, if one is to t rack t he traj ecto ry 

:x: as parameters slowly cha nge, or use t he same set of co ntrol paramete rs to stab ili ze 

different steady ( or even peri odi c) states . Such a control scheme is obtain ed , if t he 

more res t r ict ive condi t ion of cont roll abili ty is imposed on th e mat ri ces A a nd B . 

T he nx-dim ensional lin ear system (4 .1) or t he pa ir (A , B) is said to be controllable 

if for a ny ini t ial state 6xt; = 6x t imes t1 - t > n. a nd fin al state 6 x 1 t he re 
' . i, 1, - :J, , ' 

ex ists a sequence of control pe rt urbat ions 6ut;, · · ·, 6 u1r 1 such t hat t he solu t ion 

of equat ion (4 .1) satisfi es 6 x t1 = 6 x 1. Otherwise, t he system or t he pair (A, B) is 

call ed uncontro llab le. 

Th e controll ab ili ty condi t ion can b e represented in a number of d iffe rent equi valent 

form s. To obtain one pa rt icul a rl y convenient fo rm , we make the t ri vial observat io n 

th at, if it is poss ible to dri ve t he lin ear system from a n a rb itrary ini t ial state 6 x i to 

an arb itrary fin a l state 6x1 in nx st eps, it is p oss ibl e to do t he same in a ny nu mber 
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of steps n exceedin g nx . Suppose we let t he system evolve under control for nx steps 

from th e initi al state t..xt. Th e fin al stat e will be given by 1 

nx 

t..xl+nc = (Atx 6xl + I)A yic - k Bt..ut+k- 1 _ ( 4.4) 

k=l 

Denote b m the mth column of the matrix B: 

( 4 .5) 

Regardin g th e terms (A )1'ckbm as vectors in th e tange nt space ffi.n" , 

( 4.6) 

and t he control perturbations t..u;;k- l as coordinates, we imm ed iately co nclud e t hat 

equat ion ( 4.4) rewritten as 

n :c 1ln 

6x1 - (Atx 6xi =LL t..u;;;-k- lh~ (4 .7) 
k=l m = l 

can only b e sati sfi ed , if and only if there a re nx linearly ind ependent vectors in t he 

set (4.6) , i. e., the set spans th e tangent space ffi.nx . This is equi valent to requiring 

that 

( 4 .8) 

where th e matrix 

( 4.9) 

is call ed th e controllability matri:r. Condition ( 4.8) was introduced into t he phys ics 

li terat ure from lin ear systems t heory by Romeiras et al. [17] as a simpl e, but practical 

test of the controll ability. 

In cont rast, the stabilizability co ndition requires that the set ( 4.6) span s only the 

unstabl e subspace Lu <;;; ffi.n , of th e J acobi a n A , instead of t he whol e tangent space 

ffi.11
" . If A is a diagona li zable matrix , stabili zability can b e formall y expressed in the 

1 Here and be low in t he text we use t he no t a t ion (A)n to indicate t hat A is taken tot.he powe r of n t o diffe rent.ia t<c> 
it li·orn the no t ation Ai., where index I defirws t he time dependence . 
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form identical to (4.8) . Let us defin e the numb er of stable a nd un stabl e2 eige nvalu e::; 

of t he J acobia n n~ a nd n~, respect ively (one obv iously has n~ + n~ = nx), a nd denote 

its n~ lin earl y in dependent stable eigenvectors ef, i = 1, · · · , n~. It can t hen b e show n 

using a n a ppropri ate coordinate transformation that th e pa ir (A, B) is stabilizab le if 

a nd onl y if 

rank(S) = nx , (4 .10) 

vvhere t he matri x 

S = [ef ( 4.11) 

can b e call ed t he stabilizability matri.r by a nalogy wit h the controll a bili ty m at ri x. 

On the one ha nd , unlike t he definition of stabili zabili ty, the definition of co nt roll a

bility does not requ ire feedb ack in a ny pa rti cular form . Th erefore, controll abili ty wi ll 

a ll ow us to a na lyze the impli cat ions of sym met ri es fo r t he control prnblem in general , 

rather t ha n for some parti cul a r feedback control scheme. On th e other ha nd , it is 

t ri via l to check [50] t hat t he controllabili ty condition guarantees that the eigenvalu es 

of th e matri x A - BK can be freely assigned (wit h complex ones in conjugate pairs) 

by a n apprnpriate choi ce of t he mat rix I<. Therefo re, if the system is contrnll able, it 

is stabili zable as well , a nd by requiring controll ability we sat isfy both condi t ions at 

once. 

In order to better understa nd t he rest ri ct ions imposed on t he co ntrol scheme by 

symm etries, it is beneficial to look at th e co nt rollability condition from t he geomet ri cal 

point of view, ass uming nu = l a nd , consequent ly, B = b . Th e controll ab ili ty in 

thi s context is equiva lent to th e vectors h 1, h 2 , · · · , h nc spa nnin g t he tangent space 

JR11
c . Generica ll y, t he matri x A is nond egenerate (has a nondegenerate spect rum ), 

so on e can a lways find a vecto r b , such that the resulting set ( 4.6) form s a bas is . 

However, if A is degenerate, whi ch is a usua l consequence of symm et ry, th ere will 

ex ist a n eigenspace of the J acobia n , U' C lRn'" , such t ha t x t A = Arxt , Vx E U' wit h 

th e dim ension dr = dim(U' ) > 1, where t denotes (complex conjugate) transpose 

of a matrix or vector. The dyna mics of the syst em in such a n eige nspace cannot b e 

2 For t he purpose of contro l we regard t he central direct.ions , d efi ned by t. he e igenval ues >. such t hat. l>-1 = l 
( Re( >.) = 0 in the cont inuous-t.ime case), as unstable. 
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co ntroll ed wit h just one control parameter (see [17] for a n exampl e of such a sit uat ion) , 

b ecause the vecto rs h k only span a one-d im ensiona l subspace of' U'. Indeed , sin ce 

d1 > l th ere will exist d1 - l adjo in t eige nvecto rs f i E U' orthogonal to b a nd each 

other. Th en 

(4.12) 

so eve ry bas is vecto r h" is o rt hogonal to eve ry eige nvector f i , _j = l , · · · , dr - l. 

Tt is often conve ni ent to d efin e t he not ion of controll ab ility fo r indi vidual eige nvec

to rs. Vve will say t ha t t he adjoint eige nvector f of th e J acob ia n A is co ntroll able , if' 

t here ex ists m, l '.S m '.S nu, such t hat (f · b m) i- 0. Respectively, t he eigenvecto r th a t 

is orth ogo nal to eve ry column of t he control matrix B is call ed un controll a bl e. Us ing 

these definitions we can , t herefore, conclude t hat t he controll ability of t he lineari zed 

system is equivalent to the controll ability of each a nd eve ry adjoint eigenvecto r of 

the J acob ia n mat ri x (also see [51]). Simil a rl y, the stab ilizability is equivalent to th e 

co ntroll ab ili ty of' each a nd eve ry unstab le adjoint eigenvector. 

If t he system dy nam ics in U' happe ns to be stabl e ( e.g., when t he sys tem is 

stabilizabl e, but un controllable) , t he system can st ill b e stabilized simila rly to t he 

nondegenerate case , but we have to ensure t he controllab ili ty in case the dy nam ics in 

t hi s eige nspace is un stable. This can b e achi eved by increas ing t he numb er of control 

pa rameters nu, which ex tends the set (4.6), un t il it spa ns eve ry eige nspace of ]Rn , . 

This would lead one to ass ume t hat t he minimal value of n1, should b e defined by th e 

hi ghest degeneracy of t he Jacobian mat ri x A. Vve will see, however, t hat vari ous kinds 

of degeneracy have a somewhat different e ffect on the co ntroll ability of t he system . 

4.1.2 Symmetries of the System 

Sym met ri es usuall y signifi cantly simplify th e a nalys is of syst em dy na mics , a nd th e 

control probl em is no exception . In pa rti cul a r, even vvhen t he exact form of t he 

J acobi a n mat ri x is unkn ow n, t he st ru ct ure of t he symm et ry gro up describin g t he 

sy mm et ri es of the system a ll ows one to reduce t he controll a bility condi t ion ( 4.8) to a 

set of much simpl er conditions, which prov ide a numb er of syste m-indep endent results . 



30 

Th e d iscuss ion b elow is based on bifurcat ion t heory [31] a nd closely parall els t he 

t reatment of degeneracy in qua nt um mecha ni cs a nd spontaneous sym met ry b reakin g 

in qua nt um fi eld t heory a nd ph ase trans it ions. 

In general we call t he syst em sy mm et ri c, if th e nonlin ear evolu t ion equ at ion pre

serves its form under a set of lin ear transformat ions _q : x ----1 x' = _q(x ) of t he phase 

space . i\!Io re form a ll y, we say t hat t he evolu t ion equat ion (3 .9) possesses a structural 

sy mm etry descri bed by a sy mm et ry grou p Q, if t he map F comm utes wit h a ll group 

act ions: 

F(.q( x ), u) = g(F (x, u)), V_q E Q, (4.13) 

or , in other wo rds, if t he fun ct ion F (x, u) is Q-equi vari a nt with respect to its First 

a rgument. Th e gro up Q is usua lly a byproduct of sy mmet ri es of t he un de rl y in g 

phys ical space, such as rotat iona l a nd transla ti ona l sym metry (doma in symmetry), 

a nd symmetries of t he ph ase space, such as ph ase sym met ry cf> ----1 cf>+ 21r (range 

sym met ry). Sin ce a ll in te rest in g physical sy mm etri es are uni tary (s uch rare except ions 

as t he Lorentz gro up a re ha rdly relevant in the co ntext of control probl em ), we will 

ass ume t hat Q is a uni tary gro up . 

Us uall y, the symmetry demonstrates itse lf in more tha n _just one way: often steady 

(as well as t ime-periodi c) states x of sy m met ri c systems too will be symm et ri c wit h 

resp ect to transformations g E Hx, where Hx ~ Q is a n isotropy subgroup o f x. 

In ge neral, t he target state x might a lso be sym met ri c wit h respect to transfo rm a

t ions whi ch do not belong to Q (we will see a n example in sect ion 4.3. l ) . T-Towever , 

consid erin g t hose does not p rov ide a ny add it iona l in fo rm at ion , so vve ass u me that 

g(x) = x, Vq E Hx- ( 4 .14) 

For t he p urpose of cont rol it is imp ortant to observe t hat upon lin eari zat ion abo u t 

th e target state x the structura l symm et ry of t he evolu t ion equat ion (3 .9) does no t 

di sappear , bu t is replaced with a re lated dynamical symmetry. In deed , using t he 

defini t ions (4.13), (4 .1 4) a nd t he fact t hat sy mm et ry transform at ions a re lin ear, one 
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obtains in t he lin ear approximat ion for a n a rbi trary g E 1-lx: 

x + g(Allx) g(x) + g(A llx ) = g(x + Allx) 

g(F(x, u) + Allx) = g(F(x + llx , u)) 

F (_r7(x + llx) , u) = F (g(x) + g(llx), u) 

F (x + g(llx) , u) = F (x , u) + Ag(llx) 

x + A_q(llx). (4 .15) 

Definin g [, th e full sym metry group of t he lin earized equat ion (4.l) in the absence 

of control (llul = 0) : 

g(A llx ) = A_q(llx) , \:Jg E £ , ( 4. 16) 

one co ncludes t hat t he gro up [, describing t he dy na mi cal symm et ry of t he system in 

the vicinity of the target state x includes a ll transformat ions g E 1-lx, a nd therefore: 

( 4.1 7) 

One can speculate that typi cally [, will coincide with 1-lx. As a consequence, if the 

target state x has low symm etry, t he symmet ry of the evolu t ion equat ion will be 

reduced upon lineari zat ion to a subgroup of (J. Hovveve r, as we will see in sect ion 

4.3 .1 , [, might be equa l to 9, or even in clu de 9 as a subgro up fo r hi ghly symm et ri c 

target states, with t he apparent symmetry increased by lin eari zat ion. 

It turns out t hat with t he help of group representation theory one can substanti a ll y 

simplify t he controll ability condition ( 4.8) a nd , as a resul t, ob tain a numb er of use ful 

rest ri ctions on t he set of cont rol paramete rs. Consider t he mat ri x representation 

T generated in t he tange nt space ]Rnx by t he act ion of transfo rm at ions _() from a n 

a rbitrary subgro up £' of t he full dy nam ical sy mmetry group £: 

U x 

(g(x)) i = (T(g)x) i = L Ti.i(.q)x.i, \:/x E JR.11
·" (4.18) 

:f=l 

where, acco rdin g to (4.16), a ll matri ces T(g) commute with t he .J acob ia n 

T(g )A = AT(g ), \:Jg E £' <;;;; £. (4.19) 
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The knowledge of t he rep resentat ion T is enou gh to derive a simpl e criteri on for 

t he adm iss ibili ty of t he co ntrol matrix. Obse rve t hat if T(g)B = B for a n a rb it ra ry 

tran sformation g E [,' t hen 

C [T (g)B AT(g)B 

[T(g)B T(g)AB 

(Arx-lT(.q)B] 

T(g)(Atx- 1 B] = T(.r;)C. ( 4.20) 

As a resul t, sin ce ~.i(.r;) =/= Oi,.i fo r a ny _r; =/= e (where we defi ned e as t he ident ity 

transformat ion : e(x) = x ), t he rows c:i of t he controll ab ili ty matrix become lin earl y 

depende nt , 

~ (Ti:i(g) - c5u)c.J = o, (4.21) 
.i=l 

a nd th e controll ab ili ty conditi on ( 4.8) is violated. Th erefore, we obtai n a necessary 

conditi on on the control matrix: 

T (g) B =/= B , \fg E £' \ { e}. ( 4.22) 

In other words, t he control a n a ngement should be chosen such t hat t he symmet ry o f 

the lin eari zed evolu t ion equ at ion (4. 1) is completely broken for (alm ost a ll ) non ze ro 

control perturbations 6u =/= 0. 

4.1.3 Group Coordinates 

Though simpl e a nd ge neral, criteri on ( 4.22) is not ve ry helpful for finding the minimal 

set o f co ntrol parameters sat isfy in g the co ntrollab ili ty co ndi t ion . In ord er to deri ve 

a more practically useful cri te ri on one has to ma ke a few more steps . VVe b egin wit h 

t he reduction of t he controll ab ility condition to a set of simpler condi t ions whi ch can 

be performed [50] be const ruct in g t he J ord a n block decom p os it io n of t he .J aco bian 

mat ri x. The task of const ruct ing this decomposition can be greatly simplifi ed by 

transfo rmin g to t he "group coord in ates," defined 'vV it h respect to t he basi s set com

posed of vecto rs whi ch transform acco rdin g to different irred ucibl e rep resentat ions 

contain ed in T, in whi ch t he .Jacobian is block-diagon a l. In pract ice, it is usua ll y 

impossible to determin e whether the isotropy group Hx exha usts t h e dynam ical sym-
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met ri es of t he system or the group £., contains some hidden symm et ri es as well. Tt. 

is, therefore, imp ortant to show that a numb er of rest ri ct ions on the set o f' control 

parameters can be obtain ed usi ng a n a rbitrary unitary subgroup £' of L 

Decompo::; in g the representat ion T in to a sum of irred ucible represe ntat ions T 1 or 

the group £.,' with respect ive dim ensionali t ies dr , we obtain : 

(4.23) 

wit h 

( 4.24) 

where Pr denotes t h e number of tim e:; each equivalent representc1t ion yr is rep eated 

in the decomposit ion ( 4.23) , a nd q is the total number of nonequ ivalent inedu cibl e 

representat ions. S ince £.,' is unitary, a ll irreducibl e representat ions yr in ( 4.23) can 

be chosen c1s uni tary [52] . 

Th e t a ngent spc1ce ]Rnc is simil arly decomposed into a sum of invar ia nt subspaces 

Lc,°! such th at T(g)x E Lc,°!, \Ix E Lc,°! a nd \lg E £': 

m,n,c _ Ll IT\ I 2 /'T\ /'T\ Lq 
m,. - L' w c; L ' w . . . w L' , ( 4 .25) 

where 

I r _ L rl ffi I r2 ffi ffi Lrp,. 
J C - L' \J.J J L' w ... w L' ( 4.26) 

a nd a = 1, ···,Pr indexes different invariant subspaces, whi ch belon g to the same 

group of equi valent irreducible representat ions yr. It should be noted t hat even 

t hough t he decomposit ion ( 4.25) is unique, t he decompos it ion ( 4.26) is not, unl ess 

p,,. = 1. Let us in troduce a bas is in each inva ri a nt subspace u;:,o: a nd denote t he basis 

vecto rs ei'-\ i = 1, · · · , dr· \Ne choose t he bas is vectors such t hat t hey transform 

acco rdin g to t he ir red ucibl e representat ion T r, i. e ., 

d,. 

T (.q) e;a = L TI; (g) e1
/ , \lg E £.,' . ( 4.27) 

.i=l 

For uni tary yr a generali zed ort hogonali ty condi t ion between basis vectors ei·a can 
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b e establi shed [52] as a consequ ence of (4.27): 

(4.28) 

In addi t ion, for Pr > 1 the decomposition (4.26) can a lways be p erform ed in such 

a way that (e?'3 · er" )= 6a,/3 (thi s, however, st ill leaves some freedom in choos in g 

the in vari a nt subspaces U;:,?) , so that th e complete set of basis vectors { er:" }, where 

r = 1, · · · , q, a = 1, ··· ,Pr , a nd i = 1, · · ·, rlr is made orthonorm al. \Ne , t herefore, 

conclude that t he matrix P defin ed by 

p = [ pl 1 ' 
pq r 

P{" 1 P r = : . ) 

pr 
cl,. 

is orthogonal, (P)- 1 = pt (or, more gen erall y, unita ry). 

( 4.29) 

Furthermore, according to the ·Wigner-Eckart t heorem [52], t he mat ri x elements 

of a n a rbitrary ma trix (and the J acobi a n A, in pa rti cul a r) inva ri a nt with respect to 

any group transformation 

T(g)AT- 1(g) = A, \lg E .c' , ( 4.30) 

sat isfy the following general formula: 

( r/3 A sac ) _ -- x ( r/3 A ra) ei . e_j - Or,sUi,_j ei . ei ) (4.31) 

a nd th e scalar product 

( 4.32) 

is indep endent of t he index i = 1, · · ·, rlr (bu t depends on the deco mposition (4.26)). 

As a result , on tran sformation to the grn up coordin ates the J acob ia n matrix beco mes 

block di ago nal: 

A = p AP-1 = r ,4 i · 1 
- A(J 

( 4.33) 
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where each block Ar is itself block-di ago na l 

[
ii' . - l 

j\r 

( 4 . .34) 

a nd consists of dr identical Pr x Pr blocks 1\r wit h t he matri x elements defin ed by the 

scala r produ ct (4 . .32). 

Tf no irreducible representat ion yr of .C' ente rs the decomposit ion ( 4 .2.3) more t ha n 

once, i. e., p 1 = · • • = pq = 1, the st ructure of the J acobia n mat ri x is co mpl etely re

solved: the transform ed .Jacobia n is di ago nal a nd its spectrum consists of eigenval ues 

Ar = 1\.\ 1 , r = 1. , · · · , q wit h mul t ipli city dr, while the bas is vectors er:i- b ecome th e co r

respondin g eige nvecto rs (and , consequent ly, defin e the normal modes of t he lin eari zed 

system). In thi s case t he invaria nt subspaces of the group .C' defin e t he eigenspaces of 

t he J acobi a n , U = L~, . Clearly, t he spect rum b ecomes degenerate, if t he sy mmetry 

is sufficient ly hi gh , such that Y contains a t least one irredu cible rep resentat ion yr 

with dim ens ionali ty la rge r than one. 

Degeneracy should not necessarily b e assoc iated wit h symm et ry a nd might be 

accidental (with resp ect to group£,' ). For instance, it can happen t hat 1\ :0' = 1\ 7d13 for 

some r-/= r', so that t he multiplicity of t he eige nvalue Ar is increased respect ively to 

dr + dr, . Acc idental degenerac ies can be a ltern at ively thought of as a consequence of 

hidden symmetries conta in ed in the full symm etry group [, of whi ch .C' is a subgro up . 

However , t he dege neracies not assoc iated with some phys ical sy mmetry a re likely 

to di sapp ear under a typ ical perturbat ion, such as a cha nge of syst em paramete rs 

a nd , t herefore, a re most conveni ent ly regard ed as accidenta l. Sin ce the full sy mmet ry 

group £ , in general, dep ends on system parameters a nd cannot be directly d educed 

from t he st rnct ural symmet ry group 9, it is typically more convenient to use its 

pa rameter-independent subgroup [,' = 1-lx instead. 

4.1.4 Jordan Decomposition 

Tf the sy mmet ry desc ribed by £,' is lm,v, a number of eq ui valent irreducibl e represen

tat ions will typ icall y be found in t he deco mposit ion (4.2.3), i. e., Pr > 1 for ce rtain 1· . 
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Tn t hi s case t he kn owledge of t he symmetry propert ies of the J acob ian mat ri x a lo ne 

is not suffic ient to completely determine its st ruct ure, whi ch might differ from one 

in vari ant J acobi an to th e other. As a result, one has to solve a secul a r equat ion 

( 4.35) 

for each block J..r with Pr > l in order to find t he eigenvalu es a nd eigenvecto rs in t he 

invari ant subspace L''c,,. However, here, unlike t he case of quant um mecha nics, t he 

J acob ia n matrix is, in ge neral, not Hermi t ian a nd , t herefore, might not b e diagonal

izabl e. Nevertheless, J\r can always be reduced to the J ordan norm al form by findin g 

t he coo rdin ate transformation (:Jr such that 

where p;. S Pr is t he number of di st inct eigenvalues a nd the Jord a n sup erbl ock 

co rresponding to t he eigenvalue Arn consists of Jrn Jordan blocks 

J\rn = 
t 

l 

( 4 .36) 

( 4.37) 

( 4.38) 

Tn the abse nce of acc idental degeneracy all eige nvalues of 1\r a re different , so t hat 

p;. = p, and .ira = l for all a, i. e., J\r is diagonal. 

Sin ce each block Ar of the transformed Jacobian ( 4.33) consists of dr identi cal 

blocks 1\r , apply ing t he coordi nate transformation defin ed by the block-di agona l ma-
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t ri x assembled from dr blocks (/ , 

( 4.39) 

reduces Ar to t he J ord a n normal form: 

(4.40) 

T he Jord a n blocks on t he di ago nal of Ar will not , in general, be arranged in su

perblo cks vv it h th e same eigenvalu e. This , however , can b e t ri v iall y co rrected by 

p ermuting the rows a nd columns of Ar to obtain the matrix 

(4.41) 

where R1 is th e permutation mat ri x a rranging the identi cal J orda n blocks next to 

each oth er, a nd t he J ord a n superblock corresponding to the eigenvalue Aro- has th e 

form 

( 4.42) 

Each block Ji:·o- 1s, in turn , composed of dr id enti cal Jorda n blocks A:·o-, defin ed by 

(4.38): 

(4 .43) 

Definin g th e block-diagonal coordinate transformation mat ri ces Q a nd R 

( 4.44) 
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we event uall y ob tain th e sequ ence of coo rdin a te transform a t ions red ucing t he .Jaco

bi a n mat ri x A to t he J ord a n norm al fo rm : 

A= (RQP )A (RQPt 1 = r .4, . . 1 
l )! ff 

( 4.45) 

where each block Ar, r = l, · · · , q is defin ed by (4.41) . 

4.1.5 Conditions for Controllability 

On ce th e J acob ia n is reduced to th e .J o rdan normal fo rm we can t urn to t he p rob

lem of redu cin g t he cont roll a bi lity condi t ion to a set o f simpl er co ndi t ions t hat will 

give us t he rest ri ct ions on the admiss ible set of co ntrol paramete rs. Sin ce t he con

t roll ab ili ty is a p roperty of t he system whi ch does not depend on th e choice of th e 

coordin ate system , cond it ion (4.8) is in vari a nt wit h respect to a ny (nonsingul a r) co

ordin ate transfo rmat ion [50], a nd is sat isfi ed fo r t he pa ir (A , B), if a nd only if it is 

sati sfi ed fo r t he pa ir (A, B), where B = (RQP)B is t he transform ed control mat ri x . 

Let us part it ion t he transform ed cont rol mat ri x B acco rdin g to t he block st ruct ure 

of A: 

r B,l 1 r B;" 1 r B'" 1 
il 

Br = 

B~P\ 

Bro:= Bro:= 

13.;;?; 
' 

( 4.46) 
i 

Bro: 
.11 ·( t. 

A A 

a nd denote bro: t he first row of t he mat ri x Bro: Next, defin e t he mat rix J3ro: us rn g D D . 

t he relat ions 

r 
B_-_:r°' 1 

Bro: = 
Bro: 

.11· 0 

( 4.4 7) 

In th e a bsence of accidenta l degeneracy b etween t he eige nvalues t hat co rrespond 

to different invari a nt subspaces L~, equat ion ( 4.42) ensures t hat t here a re exact ly 

rlr .Jrn .Jord a n b locks J\i·o: vv it h t he same eige nvalue Arn. If, however , t here is such a n 

accid enta l degeneracy involvin g s different invari a nt subspaces L~1, , · · · , Uj,, such t h a t 
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for certain CY1 , · · • , CYs 

t he number of Jorda n blocks corresponding to t he eigenvalu e Aro: in creases to 

., 
.ho:= 

( 4.48) 

( 4.49) 

Th e kn owledge of t he numb er of J orda n blocks is very importa nt , sin ce, accord 

in g to t he standa rd resul t of lin ear syst em t heo ry [50], it ul t imately determin es the 

minim al number of control parameters. Specifi call y, it can b e shown t ha t t he control

lability condition for t he pa ir of mat rices (A , B) is sat isfi ed , if a nd onl y if for eve ry r 

a nd CY (taken equal to r 1 a nd CY 1 b elow) 

( 4 .50) 

where t he indi ces r i a nd CYi are chosen acco rdin g to (4.48) . This, in t urn , can be 

achi eved if a nd onl )' if n > 7· 1
• for every r a nd CY . Hence in the most ge neral case ) . u - . 10: . ) 

t he minim a l numb er fl,u of independ ent control paramete rs should equ a l the max im al 

numb er of J ordan bl ocks wit h t he same eige nvalue Aro: : 

- ., 
nu = max max 

1 
.7ro:· 

r=l,- · ,q n=l,-··,p,. 
(4 .5 1) 

Note t hat s in ce the block tJro: has d .7· rovvs ra nk (tJro:) < d 1· fo r eve ry r a nd , 1 . ro: , _ r. ro: . 

CY . Us ing thi s fact, t he trivial mat ri x inequ ali ty 

rank ( 4. 52) 

a nd equ at ion ( 4.50) one obtains 

ra nk (tJro:) = dr.iro:, r = 1, · · · , q, CY = 1, ··· ,Pr· ( 4.53) 

Furt herm ore, acco rdin g to t he defini t ion (4.47) of t he mat ri x tJro: , for every rand o, 
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rank(Bro,) 2 rank(Brn), so on e can write 

i3rl 

ra nk(il') = rank r , 12 Q~,~~r,. rank(Brn) 2 dr Q~,~~r, .irQ• l Erp,. 

(4.54) 

In addition , since Qr a nd R r are nonsingul a r coordinate transformations which do 

not cha nge t he rank of a mat rix , 

( 4.55) 

vvhere we got rid of a ll system-sp ecifi c inform at ion , which was contain ed in the m a

tr ices Qr a nd Rr . 

Th e symm etry informa tion a lone is insuffi cient t o dete rmin e the valu es of' either 

.irn or .i;o, . However , by d efinition one has Pr 2 .irn 2 1 so that .i;o, 2 dr. As 

a consequence, we obtain two necessary conditions for contrnll ability. First o f' a ll , 

equat ion ( 4.51) y ields the lower bound on the minim al numb er of co ntrol paramete rs 

fiu 2 max d1 .. 

r=l, .. ·,q 
( 4.56) 

Second , in equality ( 4.54) combined with equa lity ( 4. 55) imposes a number of restric

tion on t he control mat rix B , 

rank(PrB) 2 dr, r = 1, · · ·, q, ( 4.57) 

wh ich can b e in terpreted as t he requirement of t he mu t ua l indep endence of cont rol 

paramete rs. vVe can therefore, conclude th at a n arbitrary (unitary) subgroup £,' of 

the full dy na mi cal sy mmetry group £ does not completely defin e the minim al set of 

co ntrol parameters. It does, however, defin e a set of necessary co nditions required for 

controll ability. In general, the knowledge of a ll dyn am ical symmet ri es, both unita ry 

a nd nonunita ry, described by the group £ is required in order to compl et ely resolve 

the st ructure of the Jacob ia n matrix a nd ob tain t he necessary a nd suffici ent condi t ion 

for controllability. 

Neve rtheless, even without knowin g t he full sy mm et ry group £ one can obtain 
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t he necessary and suffic ie nt cond it ions by makin g a num be r of ass umpt ions. F irst , 

ass ume t hat th ere a re no accidental degenerac ies (it is usua lly safe to do so if, e.g ., 

[,' = 7-1..x.: we ensure t hat a ll phys ical symmet ri es a re taken in to acco un t, a nd acc idental 

dege nerac ies shoul d onl y appear fo r ce rtain specia l valu es of system paramete rs). 

T hen .Jro: = l , .i:- o: = dn a nd tJm = f3m fo r a ll r a nd O', so cond it ion ( 4 .51) is 

eq ui valent to 

ri,u = max dr. 
r= l,- ··,q 

( 4.58) 

If, in addi t ion, no irred ucible rep rese ntat ion yr of [,' enters t he decom p os it ion ( 4.23) 

more t ha n once, such t hat Pr = 1. for a ll r , in stead of inequa li ty (4.57) one obtain s 

t he equa li ty: 

rank (PrB) = dn r = 1. , · · · , q. ( 4.59) 

Co nd it ions (4.57) a nd (4.59) can be simplifi ed even fur t her by defi nin g t he pro

_ject ion operator pr= (Pr)t p r onto t he invaria nt subspace Uc C JRn,c. T hi s op erator 

can b e obtain ed d irectly fro m t he mat ri x rep resentat ion Y for most symmetry gro ups 

of in terest. Fo r fi ni te di sc rete groups it is give n by 

pr = dr '""" . r ( )Y( ) 6 X _q g ' ny 
9E£. 

(4.60) 

where n9 is the nu mber of elements of t he gro up [,' a nd xr(g) is t he character of the 

gro up eleme nt _r; in t he rep rese ntat ion yr. Simil a rl y, for compact cont inu ous gro ups 

we have 

pr= dr / ' xr(g)Y(g) dµ (g) , 
. [. 

(4.61) 

where dµ(.q) is t he group meas ure [52] . Observin g t hat rank ( (Pr)t pr B) = rank (Pr B) , 

we can use t he proj ect ion operato rs to rewrite t he co nd it ion ( 4.59) in a n equi valent 

fo rm 

rank (P1B) = dr, r = l, · · · , q. ( 4.62) 

Summ ing up , we concl ude t hat wit h t he two ass um pt ions made above t he system 

is controll able, if a nd onl y if t he two cond it ions are met. T he first one requi res the 

nu mber ntt of cont rol parameters to be greater or equal to t he d imensionali ty dr of 
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t he la rgest irredu cibl e representation y r present in t he decomposit io n of t he mat ri x 

rep resenta tion T of th e s ubgroup £,' ~ .C in t he tangent space JRnc. Th e second on(-:! 

requires th e control pa ram eters to b e indep endent : th e columns b m of t h e control 

m a trix B have to b e chosen such that dr of th e pro.i ections farb m, m = l , ··• , n u 

are lin earl y ind ep endent (and , th erefore, spa n th e eigenspace U = LL,) for every 

r = l, · · · , q. Th e last requirem ent imposes a number o f rest ri ct ions o n t he admi ss ibl e 

form of th e lin ear resp onse of t he syst em t o pe rt urbat io ns of control parameters. 

A number of comm ents a re in order. First of a ll , as we have .ius t seen, t he numb c~ r 

of control param et ers is det ermined by the number of Jorda n blocks with th e sam e 

eige nvalu e, not th e multipli city of that eige nva lu e. It b ecom es intuitively clear wh y 

thi s is so , if one compa res th e action of different J acobian s a lread y redu ced to th e 

J ord a n form. For in st a nce , t he J acobi an 

( 4.63) 

ge nerates th e set o f t hree lin earl y dep endent vecto rs h0 = b, h 1 = ).b , h2 = ). 2 b 

(co mpa re to (4.6) ), th at spa n a on e-dim ens iona l subsp ace of JR3 for a n a rbi trary cho ice 

o f b. As a result , three control pa ram et ers a nd a control m a tri x wit h t hree lin earl y 

indep endent columns , B = [b1 b2 b3 ], a re necessary t o con t rol t he system. On 

t he contrary, th e J acobi a n 

( 4.64) 

ge nerates a lin earl y ind ep endent set of b asis vectors th a t sp a ns JR3
, requirin g .iust on e 

co ntrol param et er a nd a control m a tri x vvith a s in gle column B = b. 

Second , sy mm etry does not a lways m a ke t he J acobi a n degenerat e, a nd t he non

degenerate case can b e ha ndl ed in th e sam e way as th e on e with no symm etri es . 

Ne ith er does th e degeneracy by itself imply t ha t mul t i-pa ram et er control is required: 

even if the eigenvalue Ar'a' is dege nerate, but j~°' = dr = l for every r a nd a, ( th e 

degeneracy is accidenta l a nd limited t o a s ingle inva ri a nt subspace L~, ), o ne con

t rol param eter is suffi cient to ensure the co nt roll abili ty. In both cases , h oweve r, th e 
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dy na mi cal sym met ry should be rather law . Specifi call y, t he deco mp os it ion ( 4.23) 

of t he ma trix rep resentat ion T should not conta in a ny multi-dim ensiona l irreducibl e 

rep resentat ions. 

Fin a lly, th e condi t ions on the set of control param et ers t hat were obtain ed above 

a re imposed by t he contro llability condi t ion a nd guarantee t hat control can be achi eved. 

However , in ge neral, onl y t he weaker stabilizability condi t ion has to be sat is fi ed whi ch , 

acco rdin g to sect ion 4.1.1 , requires that eve ry unstable norm al mode of t he sys tern is 

co ntroll able, so t hat, onl y r a nd a such t ha t l.\ral :S 1 have to be considered in the 

co nditi ons (4.50) a nd (4 .51 ) . As a consequence, it might b e poss ibl e to stab ili ze hi ghl y 

symmetric st ates of compact extended systems with strong spatial correlat ion s usin g 

a sin gle control paramete r - if only a small numb er of mod es is exc ited , t here is a 

cha nce t hat a ll unstable modes will co rrespond to on e-dimens ional irred ucibl e repre

sentat ions yr_ Tn strongly chaot ic systems a la rge number of modes will b e unstabl e 

a nd ma ny of t hem will in ev itably b e degenerate, calling for multi-parameter control. 

S imil a r cons id erat ions ap ply to weakl y chaot ic systems with la rge spatial extent. 

4. 2 Time-Varying States 

The resul ts obtain ed a bove for the t im e-inva ri a nt case can b e generali zed for the t im e

vary in g and, in pa rt icul a r , t ime-peri od ic case, but first we have to defin e the not ions 

of controll ability a nd dy na mi cal symmet ry in the co ntext of t im e-vary in g tra,i ecto ri es. 

Indeed , in th e t im e-vary in g case t he J acobi a n At a nd t he co ntrol matrix Bt in th e 

lin eari zed evolu t ion equat ion (3 .11) a re t im e-dependent a nd , as a co nsequ ence , neit her 

t he defini t ion of contrnll ab ili ty give n in sect ion 4.1.1 nor t he condition (4.8) holds. 

Bes ides, it is not at a ll clear t hat t he sy mm et ry of the target tra,i ectory, a nd hence 

the dy na mi cal sy mmet ry group ,C can be uniquely a nd consistent ly de fin ed. 

Vve will see t hat a ll t hese noti ons generali ze in a rather straightforward way, so t hat 

Che same form ali sm as we used in t he prev ious sect ions appli es here as well. To begin 

with , we defin e t he controll ab ili ty of a ge neral t ime-vary ing lin ear system. Expand ing 

t he definition give n fo r t im e-invari a nt target states, we call t he nx-dimension al lin ear 

system (3.11) or t he sequences of matri ces {A 1
, Bt} controll abl e if, for a ny ini t ia l 
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state 6.x1
i = 6.xi, times t1 - ti 2: n x, a nd fin a l state 6.x1, th ere exists a sequ ence 

of control pert urbat ions 6.u1
i , · · · , 6.u11- 1 such that t he solu t ion of equation (3. 11 ) 

sat isfi es 6.xt1 = 6.x1 . 

The controllability condition can b e restated in t erms of th e mat ri ces A 1 a nd B 1 

cond uct ing t he analys is s imil a r to t hat of sect ion 4.1.1. Apply ing t he map (3.11) n,, 

tim es y ields 

nx- 1 
6.xt+nx = 1 t+n,c- l 6_xl + '"'1t+nx- l Bt+k6.u t+k 

nx L...t nx- 1-k ' ( 4.65) 
k=O 

vvhere we have introd uced a shorth and notation 

(4.66) 

for t he product of k consecuti ve J acob ia ns. A rgum ents id ent ical to t hose used to 

deri ve t he controll a bility condi t ion (4 .8) from equat ion (4.4) a ll ow us to conclud e 

that for time-vary in g states t he cont roll ability conditi on can again be wri tten in th e 

mat ri x fo rm: 

rank(Ct) = nx , Vt, ( 4.67) 

wh ere t he controll a bility ma trix ( 4.9) is now repl aced with t he sequ ence of matri ces 

( 4.68) 

Next we have to defin e t he dy na mi c symm etry group .l. Suppose the t a rget tra

_jectory :x.1 , :x.2 , • • • , x_T has peri od T, a nd t he sy mm et ry of the point xl on t he target 

traj ectory is described by th e group 1-lx:.1 ~ g. vVe can then write 

( 4.69) 

for every _q E 1-lxi-. Consequ entl y, 

( 4.70) 

whi ch means t ha t t he symm etry prop ert ies of all t he points on t he target tra jecto ry 
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a re t he same a nd the isot ropy symm et ry group of t he trajectory Hx can be uniquely 

defin ed usin g a n a rb itrary point :5c1, Hx = H x'·· 

Usi ng th e a rgum ents that lead to equation ( 4.1 5) we obtain fo r a n a rbitrary .9 E H x: 

g(:xH1
) + g(A16 x ) = g(:xH1 + A16x) 

_q(F(xt , u) + At6x) = g(F(x1 + 6x, u)) 

F (g(x1 + 6x) , u) = F (g(x1
) + g(6x) , u) 

F (x1 + _q(6x) , u) = F (:x:1, u) + A1g(6x) 

:5ct+l + A\7(6x). 

This , in turn, means t ha t t he symmetry group £,1 of the J acobi a n At sat isfies 

(4.71) 

(4. 72) 

Again , typi cally, we expect .Lt = Hx, so that £, too wou ld be unique for a ny give n 

periodic traj ec tory as would t he mat ri x rep resentation T , such th at 

(4.73) 

It is , therefore, enough to know the symm et ry properti es of a n a rbi trary point of t he 

p eriodic trajecto ry in o rd er to establi sh the requirements on the co ntrol scheme s imi

la rly to the tim e-in var iant case. If .Lt is not uniqu e, ,ve can st ill use t he comm utat ion 

relat ion (4.73) for t he subgroup £,' = Hx to obtain a lower bou nd on t he minim al 

numb er of co ntrol paramet ers. 

F in a ll y, we note that a lthough it is poss ibl e to obtai n certa in results for t im e

vary ing control mat ri ces B 1
, we assume , as is often the case in real systems , that Bt 

is constant a nd drop t he t im e index. As we will discover b elow, in the t im e-period ic 

case the restri ctions imposed by sy mm etry on th e structure of t he matrix B can 

typ icall y be determin ed without the deta il ed knowledge of th e J acobian matri ces , 

but based on t he sym met ry prop ert ies alone, simil a rl y to the time-in vari ant case . 

Ind eed , let us const ru ct t he represe ntat ion T of t he group [,' in the tange nt space 

lRn " a nd decom pose it in to t he sum of irreducibl e representat ions. Th is again defin es 

a set of in variant subspaces L1:,°! a nd a set of basis vecto rs {e?:' }, wh ich we use to 
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construct th e coordin ate tran sform at ion mat rix P acco rding to the definition (4.29). 

Since t he rank o f t he mat ri x ( 4.68) does not cha nge under a coordin ate transfor

mat ion , the co ntroll ab ility condi t ion (4.67) is equivalent to the condition 

rank(C) = n t x, t = l , ... ' T (4.74) 

where 

JtB l ( 4. 75) 

B = PB and JL = P Ji.,(P )- 1
. The products 11~ have the same sy mm et ry properties 

as the J acobian matr ices A1 for a rbitrary k and t , a nd , therefore , both th e matrices 

At a nd the products Jf block-di agona li ze in exactly th e same way: 

and 

J,~ = p JU p )- l = r Ji· I - - i 
1t.q 

I.: 

(4.76) 

(4.77) 

Simi la rl y to the t im e-invariant case, the blocks ,4t,r a nd J{,r a re themselves bl ock-

di agona l 

r 

A_l,r 1 
A I.,· = . . A'•' ( 4.78) 

and consist of rlr id entical Pr x Pr blocks N,r and f~t , resp ect ively, whose mat ri x 

elements a re defin ed by th e scala r produ cts 

(4 .79) 

Us in g the definiti on (4.66) one can check that for a ny t , k and r the matri x f\/ can 
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be represented as t he product 

Let us part it ion t he transform ed cont rol mat ri x B in to blocks J3r 

defin e t he red uced controll ab ili ty mat r ices 

(4 .80) 

p rB and 

(4.81) 

Us ing relat ion ( 4.24) a nd the fact t hat t he mat ri x C[ has drPr rows one can wri te 

rank (Ct) = rank ( 4 .82) 

to obtain as a co nsequence of ( 4 .74) t he set of reduced cont roll ab ili ty co nd it ions 

rank (C;) = drPr, r = l , · · · , q. ( 4.83) 

T he blocks J,'.,,rf3r of t he mat ri x (4.81) can become linearly depende nt fo r certain 

T , dr a nd Pr· In deed , it is t ri via l to see t hat fo r a sequence of n a rbi trary p x p 

mat ri ces Ri , it is always p oss ibl e to fin d a set of coefficients µ 0 , µ 1 , · · · , µ n such t hat 

( 4.84) 

as long as n 2: p2 . Equa lly easy to establi sh is t he fact t hat, if t he mat ri ces Ri a re 

not a rb itrary, b ut sat isfy t he condi t ion 

( 4.85) 

·where T!Vi is a sequence of a rbit rary p x p ma tri ces, such t hat T1Vi+7 = T1Vi, equat ion 

(4.84) can always be sat isfied fo r n 2: m in (p2,pT) . T he Pr XPr mat ri ces fi,r, · · ·, f;;:_ 1 

fo rm p rec isely t he sequence sat isfy ing t he co ndi t ion (4 .85). Bes ides, if t he co ndi t ion 

(4 .84) is sat is fi ed fo r Ri = f!,r , it is sat isfi ed fo r t he sequence Ri = Jf'1' as well. As a. 
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Jt ,r13r 
l 

p,r f3r] 
n-l ( 4.86) 

fo r n = min(p;,PrT) a nd arbi t ra ry f3 r. Therefore , in ord er for t he condi t io ns (4.83), 

a nd hence (4.67), to b e sat isfi ed , one should have 

( (dr dr)) rank(Pr B) 2: ceil max Pr , -; , r = l , · · · , q, ( 4.87) 

where ce il(x) denotes the small est integer numb er n such that n 2: x . Th e necessary 

co nditions on the control matrix B, defined by ( 4.87) a re the ge neralizat ion of the 

t im e-invari ant result (4.57). Instead of (4.56) one respect ively obtains the restriction 

on the minimal numb er of independent co ntrol parameters required to sat isfy t he 

controll ab ility condition ( 4.67) for a periodic target tra_j ecto ry: 

- ·1( (~ ~)) nu 2: ce1 max max - , - . 
r = l,-·· ,q Pr T 

( 4.88) 

It is interest ing to note that a periodic tra_jectory can be made co ntroll able usin g t he 

numb er of control parameters nu t hat could b e small er t ha n the number required for 

a steady state with the same sym met ry. 

Three specia l cases deserve separate considerat ion. First of a ll , suppose that t he 

J acobi a n matri ces At commute with each other, so th ey can be simul taneously diag

ona lized . In this case the conditi on ( 4.84) can be sat isfi ed by a n appropri ate cho ice 

of coeffic ients µ 1 , · · · , µn for n 2: Pr, so the necessary conditions (4 .88) a nd (4.87) will 

reduce to ( 4.56) a nd ( 4.57) , respectively, a nd fl,u will no longe r dep end on t he period 

T of th e target tra_jectory. 

Next , suppose there a re no acc idental degeneracies between the eigenvalues of the 

J acobi a ns At a nd their J)rodu cts J t and no irred ucibl e reJ)resentation of L' appears /,,) 

in the decomposition ( 4.23) more tha n once (so that J acob ian matrices can agai n be 

simulta neo usly diagonalized). Nm,v, however, identica ll y to th e time-invariant case 

one obtains the necessary a nd sufficient condi t ions ( 4.58) and ( 4.59) in stead of t he 

necessary co nditi ons (4.56) and (4.57). 

Finally, a lthough we used the fact that t he tra_j ecto ry is periodic to derive t he 

above results, t hi s requirement could be lifted , provided the symmetry of all points 
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on the target tra,iecto ry is th e same, a nd , t herefo re, t he condi t ion ( 4. 73) is sat is fi ed. 

A nonperi od ic tra,i ecto ry could t hen b e treated as a p eriod ic one, wit h pe ri od T = oo, 

a nd th e condi t ion ( 4.84) will b e sati sfi ed by a n a ppropr ia t e choice of coeffic ients 

µ 1 , • • • , µn fo r n 2'. p;. As a res ul t , in stead of t he rest ri ct ion (4.88) one will obta in 

( 4 .89) 

4.3 Continuous-Time Systems 

Most of th e results obtain ed in the previous sect ions can b e directly a nd naturall y 

ge nerali zed to co nt inu ous-tim e systems. Th is is a rath er valua ble asset of t he devel

oped t heory, s in ce continuous- t ime control is, in general, a much more fl exibl e a nd 

powerful techniqu e t ha n di screte-t im e control. Tn the presence of a dece nt continu ous

t im e mathemat ical mod el (3 .2) , cont inu ous-time control can often achieve far superi or 

results . Tt is, however, a mu ch more compli cated t echni q ue as well. For simplicity 

we only di scuss the contro l of tim e-invariant target states. Linearizin g the evoluti on 

equation (:3.2) around t he steady target state s, one obtains 

6s(!;) = A6s(t) + B6u(t), ( 4.90) 

where sim il a rly to t he d iscrete- t im e case vve defin e t he J acobi a n 

(4.91) 

a nd t he co ntrol mat ri x 

( 4.92) 

T he symmet ri es of the nonlinear evolu t ion equat ion (3.2) , t he target state s, a nd 

the lin eari zation (4.90) a re determin ed ident icall y to the di sc rete-tim e case us ing t he 

relat ions (4.13) , (4.14) , a nd (4 .16) , y ieldin g t he sy mm et ry groups 9, 1is, a nd £ , 

resp ect ively. T he definitions of t he not ions of stabilizability a nd controll ability in the 

continuous- t im e case a re completely a na logous to the ones give n in sect ion 4.1. l for 

t he di sc rete- t im e case. 
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T he dy na mi cal system descri bed by equat ion (4.90) or the pair (A, B) is said to 

be controll able if, fo r any ini t ia l state 6s(ti) = 6 si, t imes t1 - ti > 0 and fi nal state 

6 s1 , t here exists a (p iecewise cont inuous) control pe rt m bat ion 6 u (t) such that t he 

solu t ion of equat ion (4.90) sat isfi es 6s(t1) = 6s1 . Otherwise the system or the pair 

(A , B) is call ed uncontroll able. 

Sim il a rl y, t he dynamical system or the pair (A, B) is said to be stab il izable, if 

t here exists a state feedback 6u(t) = -I< 6s (t) makin g the system stable, such t hat 

a ll eigenvalu es of the mat ri x A' = A - BI< have a negat ive real par t, Re( ,,\;J < 0, \/k. 

Otherwise the system or the pai r (A, B) is call ed unstabilizabl e. 

T he controllab ili ty of the pair (A, B ) again ensures that a ll eigenvalu es of A' can be 

chosen appropriately, so t hat any controllable cont inuous-t ime system is stabilizable 

as well. T he controll ab ili ty of a cont inuous-t ime system is also establi shed usin g t he 

same cri te ri on ( 4.8) used to test fo r t he controll abili ty in t he di screte-t ime case. As a 

resul t , t he cond it io ns imp osed on the control mat rix B by the controll ab ili ty cond it ion 

in the p resence of symmet ry a re exactly the same as those obtained fo r d iscrete- t ime 

systems. 

4.3.1 Particle in a Symmetric Potential 

Th e mot ion of a part icle in a sym met ri c potent ial, such as a poin t cha rge in elect ri c 

fi eld, serves as a n example of the relat ion between the gro ups g a nd .C. T his a nd 

many other interest in g phys ical systems, e.g., in ve r ted pendulu m, or a satelli te in 

orb it , are described by t he second orde r ord inary di ffere nt ial equat ion 

( 4.93) 

which can be t ri v ially red uced to a system of first orde r d iffere nt ia l equat ions of 

the fo rm (3.2) in troducing add it ional coord in ate v = r. Suppose the potent ial V( r ) 

possesses t he cub ic sym met ry (descri bed by the group O whi ch is a subgroup o f 

S0(3)) , but is not spheri call y sym metr ic, for in stance: 

V(r ) = Vo cosh (kx) cosh (ky) cosh (kz). ( 4 .94) 
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T he gro up g = () defines the st ructural sy mmetry of t he evolu t ion equation (4 .93) . 

Lin eari z in g it about th e steady equilibrium point f = 0 we obtain 

( 4.95) 

where w 2 = -V0k2 /m, whil e O a nd T a re 3 x 3 ze ro a nd uni t blocks, respect ively. Tf 

V0 < 0 t he equili b rium is unstabl e, a nd cont rol should be appli ed to keep t he system 

close to the equ ilibrium state . 

Eq uat ion ( 4.95) is spheri cally symmetri c, with £' = SO(3) and, t herefore, 9 C £ , 

i.e., the symmetry of t he lin eari zed equation is higher than th e sym metry of th e 

orig in al non lin ear evolu tio n equat ion. (In fact , t he full symmetry group of equat ion 

(4.95) is [, = GL(3), but we choose to use its subgroup [,' = SO(3) , since it is 

phys icall y more relevant , completely resolves t he st ru cture of t he .Jacobian matrix 

and, as such , co rrec t ly rep rese nts the effect of sy mmetry on t he control setup.) 

Next we not ice that t he representation T of the group[,' in t he six-dim ension al tan

ge nt space {r , v} can be decomposed in to a sum of two equ ivalent t hree-dim ens iona l 

irreducible rep resentations of SO(3) (vector representat ions, which coin cid e wit h t he 

respective irreducible rep resentat ion of GL(3)): 

T = 2T1
, ( 4.96) 

T hi s indi cates that in order to control the unstable steady state f = v = 0 one needs 

at least t hree ind ependent control parameters, fi,u = 3. 

Arguably the simplest vvay to control such a system is to re-ad_just t he potenti a l 

(apply ing external fi elds , shift ing support point , etc.) based on t he instantaneous 

values of t he position r a nd velocity v of t he particle. This corresponds to picking 

t he co ntrol mat ri x in th e following form: 

0 
(4.97) 

where b1 , b2 , b3 could be chosen as a ny three lin early independent vecto rs in IR.3 . 
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4.4 Symmetry Violation 

In reali ty sym metr ies of phys ical systems d isplay ing dynam ical instab ili t ies a re almost 

never exact . Indeed, t he cylinde rs in a Taylor- Couette experim ent are never p erfect ly 

circ ul a r , t he temp erature inside a chemi cal reactor is neve r absolu tely unifo rm , neithe r 

a re t he rnto r blades of a t urboco mp resso r exactly ide nt ical. T he above a nalys is, o n 

t he other ha nd , has been cond ucted in the ass umpt ion of exact symmetry. T herefore, 

it is essent ia l to un derstand how t he obtained resul ts change, if t he sym met ry is not 

exact or, in other wo rds, what the effect of a vveak symmetry violat ion is. Such a n 

a na lys is is a lso crnc ial in th e vicini ty of poin ts in t he parameter space where symmet ry 

in creas ing accide ntal degeneracies occur . 

For simpli city let us again conside r the t im e-in variant case. T h e J acob ia n A of a 

weakl y pe rt urbed sym met ri c system takes the for m 

(4.98) 

where E de notes t he magni t ude of t he p ert urbat ion a nd the un perturbed J acob ia n A 0 

is exactly symmet ri c wit h respect to a ll transform at ions g of the group .C . For the 

grn up representat ion T we, thus, have 

T(_q)Ao - AoT(_q) = 0, V_q E L ( 4.99) 

In general, t he pe rt urbat ion c:A 1 will not be symm et ri c with respect to a ny element 

of the grnup .C , except the ident ity transfo rmat ion e : 

(4.100) 

T herefo re, s ince 

(4.101) 

t he pert urbation ( 4.98) completely destrnys the symmetry of the lin eari zed evolu

t ion equat ion (4.1) fo r any E =I=- 0. As a res ul t, t he pert urb ed system can b e made 

contrnll able using a sin gle contrnl parameter irrespect ively of the prnper ti es of t h e 

original symmetry group .C . For instance, calcul at ing the cont roll ab ili ty mat ri x of t he 
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pe rt urbed system wit h nu = l a nd B = b one obtain s 

(4.102) 

where we defi ned 

(Aot'•- 1b] , 

( (Ao yn,. -2 Al + ... + Al (Ao r ·- 2
) b i . ( 4.103) 

C0 is clearly the controll a bility mat ri x of th e unp erturb ed system with full symm et ry, 

whi ch does not have a full rank, if the decomposition ( 4.23) conta ins at least one 

irreducibl e rep resentat ion yr with t he dimensionality dr > l. Ind eed , in the abse nce 

of acc id enta l degeneracies that would mean 

If 

no= rank(Co) = LPr < nx · (4.104) 
r=l 

T he controllab ility matrix C of the perturbed system , on the other ha nd , h as full 

rank for a ny E ::j:. 0 because the sy mm et ry is compl etely destroyed by the pert urba

t ion. Therefore, the perturbed linear system becomes controllable even t hough t he 

unpert urbed system is not , for arbitrarily small perturbations. 

Th e co nt roll ab ili ty ensures that for a ny initi a l a nd final states of t he linear system 

(4.1) the control can be found mapping the initi a l state to t he final state in nci: 

iterat ions. Us in g ( 4.4) one obtains expli cit ly 

( 4.105) 

Formally, if the system is controll able, t he controll a bility mat ri x is in ve rtibl e, a nd the 

solution ( 4.105) is well defin ed for a ny 6x1 a nd t-..xt+n •. However, when the mat ri x 

C is close to b ein g s in gul a r its in verse is not well defin ed. Tt is conveni ent to use t he 

s in gul a r valu e deco mposition of the controll ab ili ty matrix 

( 4.106) 
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where Q = [ Q 1 Q 2 

nx x nx mat ri ces , a nd 

Qnx l a nd R rnx] a re some orthogona l 

Th e sin gul a r va lues a re ordered such t ha t o-1 (c:) > o-2 (c:) > 

Add it ionall y, equat ion (4.104) requires 

In terms of th e ma trices Q, I: , and R we can wri te t he in verse of' C as 

n x 

( C)- l = R (I:)- l Qt = L o-; l ( c:) r i qJ 
i=l 

a nd , th erefore , for small c: equation ( 4.10 5) gives 

As a consequence, vve obta in 

lim 16 Utl = oo . 
t--+ 0 

( 4.107) 

(4.108) 

( 4.109) 

(4.110) 

(4.111) 

T his relat ion means t hat a t least one control pert urbat ion of t he feedback sequence 

L'-. ut, • • • , L'-.ut+nx- l diverges as t he symmetry breaking p ert urbat ion c:A 1 of t he J aco

b ian van ishes . Sin ce no specifi c relat ion between the ini tial and the fin a l state of 

t he system was impli ed , t he obta in ed result is general , a nd does not dep end on t he 

control method used to calculate the feedback. 

In fact, a more ge nera l statement holds. Suppose t he sy mm etry is violated onl y 

pa rtiall y, such t hat t he pert urbed Jacobia n ( 4.98) remains exactly symm et ri c wit h 

respect to a subgroup .C' of t he full symmet ry grnup .C. Denote flu a nd n~l t he minim a l 

numb er of contrnl parameters requi red (assuming exact symm et ry) by t he groups .C 

a nd .C' , resp ect ively. T hen it can be shown that, simil a rl y to the single-paramete r 

case , at least one control perturbation of t he feedback sequence 6 u1, · · · , 6 u1+n " - 1 

diverges as th e sy mmetry breakin g pertmbation c:A 1 of t he .Jacob ia n vani shes when-
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ever n.:, ~ nu < fiu· Th e same res ul t is obtain ed if th e ind ependent with resp ect to 

the group £' control parameters become dep endent vv it h resp ect to t he group £ , as 

indi cated by th e viola.t ion of th e general ind ependence conditi on (4.50). ·we will call 

this situat ion parametric defici ency. 

Tn ot her words, alt hough it mi ght be poss ibl e to control a linear system with ap

proximate sy mm et ry usin g a numb er of control parameters whi ch is small er t ha n t hat 

required in th e ass umption of exact symmetry, the stabilization requires feedback of 

very la rge magnitude. Such systems a re call ed weakly controllable in t he la nguage of 

co ntrol t heory. However, the lin ear sys tem is onl y a n abstraction. T he lin ear approxi

mation (3.11) of the evolution equat ion (3.9) is only valid for small perturbat ion s 6.ut 

of the control parameters a nd small dev iat ions 6.x1 from t he target tra,i ectory. Be

sides , addition al rest ri ct ions on t he magni t ude of the feedback a re usua ll y imp osed by 

pract ical limi tations, size and energy constrain ts, etc., at the impl ementat ion stage. 

On e can, th erefore, conclude t hat , sin ce t he feedback scales lin earl y with the devi a

tion from the target trajectory, a nonlin ear syst em with parametric deficiency can be 

stabili zed using lin ear control only in a n asy mptotically contract in g neighborhood of 

t he target traj ecto ry. 

F in a ll y, consider t he vicinity of t he point u.0 in the parameter space Rn" a t whi ch 

an acc idental degeneracy occ urs, such t hat t he dynam ical symmet ry is desc ribed by 

t he gro up£' for u -=j: u.0 and is in creased to £ ( of which £' is a subgroup) for u = u.0 . 

Tn this case £ can be considered approx im ate sy mmetry in th e vicinity of 110 , and 

the di stance to t hat point determin es how st rongly ( or weakly) th e symmetry £ is 

viol a ted. Supp ose t he control scheme is such t hat th ere is a pa ra metric defici ency 

with respect to t he group £ , but not £'. Then the system will rema in controll abl e 

for ii -=j: ii0 . However, t he st rength of feedback required to control th e system will 

diverge as ii approaches ii0 , at whi ch point t he system will b ecome un co ntroll able. 

4. 5 System Identification 

In the conclusion of this chapte r we return to t he problem of ph ase space reconst ruc

tion di scussed in chapter 3. In t he present sect ion we concentrate on t he Takens ' em-
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b eddin g t heorem [34] which _ju st ifi es th e validity of t he delay coordin ate emb eddin g 

techni que. The theorem states t hat generically t he emb eddin g map P : s (t) -+ z (t) 

ge nerated by t he vector (3 .4) of suffic ient ly la rge d imensionali ty nz p rovides a globa l 

one-to-one representat ion of t he chaoti c a t tracto r. And whil e t hi s generi city ass ump

t ion is sat isfi ed fo r a ty pi cal system without sy m met ri es, it is usua ll y viola ted if 

symm et ri es a re present . In other words, most sym met ri c systems a re nongeneric in 

t he sense of Takens. As a resul t of t hi s nonge neri city t he state of t he system becomes 

impossible to reconst ruct us in g a s ingle scala r output , no matter how la rge t he di

mensionali ty n z of t he emb edd ing space is, locall y in t he vicini ty of certain symmet ri c 

p eri od ic tra,i ecto ri es. As a consequence , t he attracto r of t he system remain s fo lded at 

cer tain poin ts ( or , more generally, hype rsurfaces) of t he phase space, whi ch p revents 

t he global reconst ruct ion as well. Using t he la nguage of co nt rol t heory we will say 

t hat such systems a re unobservable locall y as well as globally. 

T he quest ion of symmetry-caused nonge neri city in t he framework of phase space 

reconst ruct ion of a general sy m metric system was first co nsidered by Kin g a nd Stewart 

[49], who dete rmin ed tha t t he reason for t he fa ilme of t he emb edd in g theo rem is t he 

violat ion of one of Takens' generi c ass umpt ions t hat t he fl ow defin ed by equat ion (3.2) 

has simple eige nvalues for lovv-pe ri od peri odi c t ra,i ecto ri es . As we have see n above, 

sym met ri c systems typ icall y (b ut not a lways) have degenerate e ige nvalu es (du e to 

t he fact t hat most nont ri via l irreducibl e rep resentat ions a re mul t i-dim ensional) a nd , 

as a consequence, a re nonge neri c. Kin g a nd Stewart we nt on to form ulate and p rove 

a generali zat ion of the Takens' embeddin g theorem , whi ch requi red t he out pu t to b e 

a vector, not a scalar, fun ct ion of t he act ua l state of t he system s (t): 

y (t) = G (s(t)), (4.112) 

mappin g the phase space Q of t he ori gin a l system onto a n ny-di mensiona l E ucli dean 
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space. T h e state of t he system can th en be represented by a delay coordin ate vecto r 

z(t) = 

y(t + Y1) 

y(t + T2) 
(4. ] 13) 

where now th e dim ens iona lity of th e embedd in g space is n z = nyne· Th e question we 

have to a nswer is what condi t ions should t he function G sat isfy in o rd er to a ll ow a 

local (o r global) one- to-one embedd ing. S in ce t he exact fo rm of the evoluti on equ a

t ions is rarely known, in ord er to find the answer one can onl y exploit t he symmet ry 

prop ert ies of t he system , which a re often easy to establi sh based on t he underl y in g 

symm et ri es of t he phys ical space. Fortunately, the symm et ry provides most of the 

necessary inform at ion. 

Since we are inte rested m t he iss ue of phase space reconst ruct ion only as fa r as 

it applies to t he probl em of linear co ntrol , we will ass ume a local character for th e 

obse rvab ility property, unl ess expli cit ly stated otherwi se. According to t he a na lys is 

co nducted in [49], local embedd in g in th e vi cini ty of the periodi c tra_j ecto ry s(t) 

requires JRn y to co nta in at least one copy of every in vari a nt subspace U;}' ge nerated 

by t he ( unita ry) irreducible representat ion yr of t he resp ect ive isot ropy symm et ry 

group ,C' = 1{5 _ T his wo uld lead one to ass um e t hat t he minima l dimens ion ny o f" 

th e output signal sh ou ld be determined by t he dimension of the la rgest irreduc ible 

representat ion yr. 

This ass ump t ion can be t ri via lly verifi ed using t he formali sm developed a bove fo r 

the co ntrol probl em in the prese nce of symmetry. In deed , let us again cons id er a 

t im e-in var ia nt target state s. Lin eari zing t he output (4.112) in th e vic ini ty of t he 

target state a nd denot ing t he di spl ace ment i:ly(t) = G (s(t)) - G (s) one obtains: 

i::ly(t) = C i:ls(t) , (4.11.4) 

where t he co nstant mat ri x C is defin ed thus: 

(4.115) 
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Th e dynam ical system defin ed by equ at ions (4.90) a nd (4.114) or the pa ir (A , C) 1s 

said to b e observable if, fo r a ny times t1 - ti > 0, t he ini t ia l state t:,.s(ti) = f:,_s i can b e 

determin ed from th e measurement of cont rol p ert urbat ion f:,_u(t) a nd outp ut 6y(t) 

in t he interva l t E: [ti , t 1]- Otherwise, t he system or t he pa ir (A , C) is said to be 

un obse rvable. 

It can b e eas il y seen t hat t he not ion of observabili ty is du a l to t he not ion of 

cont roll ability. Th e cru cial b enefi t of t hi s du ali ty is t he fact t hat t he obse rvab ili ty 

condition for t he pa ir (A, C) is equival ent [50] to th e co ntrollab ili ty co nditi on for t he 

pa ir (At, ct) . Sin ce th e commutation relat ion (4.19) directly impli es t ha t 

(4.116) 

t he symmetry propert ies of t he mat ri ces A a nd At a re essent iall y identi cal (as are 

th e st ructures of thei r sp ec tra, block-diago na l decompositions, et c.). As a res ul t , a ll 

res t ri ct ion imposed on t he control matrix B by t he controll ab ili ty condi t ion in t he 

presence of symmet ry should b e sat isfi ed for th e ma trix ct as well. 

For instance , in case t here are no accidental degeneracies a nd t he representat ion 

T contains at most one copy of each irreducibl e representat ion of t he gro up £' , one 

can cl aim t hat in o rd er to reconstruct t he dyna mi cs in t he vi cini ty of t he t im e

in vari a nt symm et ri c target state s t he numb er ny of measured scala r outpu t. signa ls 

Yi(t) should be no less t ha n t he minimal num ber fi,u of indep endent control paramete rs , 

i. e., 11,y = fi,u· Furt herm ore, th e outputs have to b e independ ent , so th a t rlr or th e 

pro,i ect ions farci, i = 1, · · · , ny a re lin early indep endent for every r, where far is t he 

pro,i ect ion operator defin ed by (4.60 ) a nd (4.61) , a nd c; is t he ith row o f t he mat rix 

C, which imposes a number of restri ct ions on t he a llowed form of t he fun ct ion G. 

Besides, simil a rly to t he ge neri c case, ne ~ n~ measurements of each output signa l 

have to b e perform ed to construct a one-to-on e representat ion ( 4.113) of th e system 

state, which in creases th e dim ension ali ty of t he embedding space to n z = fi,yn~ . 

Local observab ili ty can be simil a rl y defin ed for d iscrete-tim e syste ms (whi ch is clon e 

in sect ion 5.4.1 ). Careful consideration shows t hat sy mm et ry produces simil a r effects 

indep endent of t he pa rti cul a r desc ription. 
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In addi t ion to the not ion of controll ab ili ty of individua l eigenvectors it is ofte n a lso 

co nve ni ent to de fin e t he not ion of t heir obse rvab ili ty. Vve will say t hat t he eigenvector 

e of the .Jacob ia n A is obse rvable, if t here exists i, 1 S i S ny, such t hat ( e · ci) i- 0. 

R esp ect ively, a n eige nvecto r t hat is ort hogonal to every row of t he mat ri x C is call ed 

un obse rvable. Clearl y, t he observabili ty of t he lineari zed system is equi valent to t he 

obse rvab ili ty or each a nd every eigenvector of t he J acobi a n mat ri x. 

In t he co nclusion of t hi s sect ion we make a few com ments regard in g t he problem 

of globa l phase space reconst ruct ion . For many purp oses it is im po rtant to kn ow how 

the sy mm et ry or the co ntinu ous- t im e experim ental system transp ires in t he strnct ure 

of the di screte- t ime map (3 .9) obta ined as a res ult of tim e d elay embeddin g produced 

by a ge neral outp ut signa l (4.112) . K ing a nd Stewart [49] recogni zed that it is as 

im portant to p reserve t he sym met ry of t he attracto r as it is to p reserve its topology 

d urin g t he reconst ru ct ion . Acco rd ing to (4. 11 2) , usin g a n a rb itrary vecto r outp ut 

y (l) to ge nerate t he delay coordin ate rep resentat ion of t he system state co rresp onds 

to pi ckin g a fun ct ion G whi ch , in ge neral, d istorts th e symm et ry. In ord er to prese rve 

t he symm et ry of t he o ri gina l a t tractor t he fun cti on G has to be Q-equi vari a nt 

G (g(s (t)) = g( G (s(t) ), Vg E Q, ( 4. 11 7) 

where Q is the st ru ct ural symmet ry gro up of t he system (3.2) whi ch will , in general, 

act differentl y in t he phase space Q a nd E uclidean space ~nv . In addi t ion , the 

dim ensionali ty ny of t he E uclid ean space has to b e chose n high enough to avo id 

local fo lding (obv iously, ny should be no smaller t ha n t he nu mber fly evaluated fo r 

the p eri odi c tra_j ecto ry wit h t he highest isotropy symmet ry) . Finall y, a globa l one

to-one embedding can be achieved by choos ing ne 2: 2n~ + 1 to p reserve t he topology 

of the attracto r. T he map (3 .9) co nst ructed using thi s embedd ing will preserve a ll 

dy na mi cal symmet ri es of the ori g in al system. However , th e st rnct ural sy mm et ry o f" 

t he different ial equat ion (3 .2) a nd the map (3.9) will , in ge neral, be di ffe rent. 
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Chapter 5 Feedback Control 

O nce we have found the minimal numb er of control paramete rs fi,u a nd determin ed 

that t he linear response of t he syst em to pert urbat ion of t hese parameters, give n 

by the control mat ri x B , sat isfies t he requirements imp osed by t he cont roll ability 

co ndi t ion, we can t urn to t he fin al part of t he co ntrol problem , whern our ob_j ect ive is 

to find a feedback tha t would act uall y stabili ze th e target state , Th e controll ability 

conditi on dete rmin es whether such feedback exist s, but it does no t provid e us wit h a 

method to find it. As it t urns out , t he choice of feedback is not unique a nd depends 

on the informat io n avail a ble about the system and the ass ump t ions made. 

We rest ri ct t he scop e of t hi s chap ter to di sc rete- t im e lin ear feedback control tech

niqu es, whi ch is expl a in ed primarily by the fact t hat t he most conveni ent a nd prec ise 

desc rip t ion of reconst ructed chaot ic dy nami cs in act ua l exp erim ental systems is pro

vid ed in terms of di screte-t im e mappings of t he form (3.9) and th eir lin eari zation s 

(3.11). Th ese mappings a re deterministi c, a nd as such describ e id eali zed systems in 

t he absence of noise . In experim ent a certain amount of noise is a lways present, so 

real systems a re more adequately described by a stochasti c generali zat ion of t he map 

(3.9): 

( 5. l) 

where w t is a n nw -dim ensiona l un certain ty vector representin g t he effect of noise. 

St ill , t he ma_jority of algori thms a imed at controllin g chaotic dy na mi cs ass um e t hat 

t he effect of noise is negligibl e, w t = 0 , in t he deri vat ion of t he feedback la w. Th e 

resul t in g closed-loop syste ms usuall y can tolerate a certain a mount of noise witho u t 

b ein g destabilized . However, one can t ake a more active approach and des ign t h e 

feedback a imed a t suppress in g noi se, rath er th an ignoring it, which y ields fa r superior 

res ults . 

Durin g t he past fifty years or so control t heory has ge nerated a numb er of ext remely 

powerful a nd general lin ear feedback control t echni q ues, some of vv hi ch were late r 
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appli ed to t he problem of chaos cont rol and , occas iona ll y, give n new na mes. No nlin ear 

dyna mi cs , in addi t ion , cont ributed quite a number of state feedback control techniques 

specia lized to chaos co ntrol probl ems (see, for example, the rev iew by Lindn er a nd 

Ditto [53]). Most of th e t echniques used to cont rol chaos a re rather s impl e a nd 

in t uiti ve , but t he vas t ma,iority use sin gle control parameter. Those th at do empl oy 

multi-paramete r co nt rol [11 ; 46] required by symm etri c systems a re poorly sui ted to 

deal with stochast ic dy nam ical systems a nd cannot be easily generali zed to handl e 

th e output .feedback control probl em , whi ch a ri ses when co mpl ete informat ion about 

th e state of th e controll ed system is not avail able. 

Extended OGY control and dead-beat cont rol , t he two discrete- t im e techniqu es 

predomin a nt ly used to control chaoti c systems, use sin gle co ntrol parameter , but 

admit multi-paramete r generali zat ions. Although deri ved with t he ass umption o f 

dete rmini st ic dynami cs , t hese two techni q ues can b e adapted for use in t he stochas

t ic regim e by makin g ce rta in mod ificat ions necessary to reduce t he effect of no ise. 

Neverth eless, they still cannot match th e performan ce of optimal multi-paramete r 

co ntrol t echniques, such as linear-quadrati c (or H2) control a nd worst case (or H00 ) 

control, deri ved in t he ass umption of stochast ic dynam ics. P erh aps surpri singly, the 

opt im al control techniques produce b ette r res ul ts in t he dete rminist ic case as well , 

whi ch makes them preferable for controllin g ex tended chaot ic systems. 

5.1 OGY Approach 

Th e ori gin al OGY method was developed by Ott , Grebogi a nd Yorke (hen ce t he 

nam e OGY) [54] for a very rest ri cted class of problems. However, clu e to its easy 

geomet ri cal interpretat ion , t he method attracted considerable attent ion of t he phys ics 

a udi ence , a nd was subsequent ly developed [17; 10] into a powerful co ntrol techniqu e. 

Thi s t echnique success full y overcame ma ny of the limita ti ons of t he ori gin a l method 

to becom e th e tool predomin a ntl y used by phys icists to control sys tems di splay in g 

chaot ic behav ior. A number of low-dim ensional exp erim ental systems, such as a 

magnetoelast ic ri bbon [55], a pa ramet ri cally driven pendulum [56], a diode resonato r 

[5 7], nonlin ear lasers [58], a nd heart [4] a nd brain tissue [5] we re successfull y controll ed 
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Figure 5.1: OGY control of the unstable fi xed poin t : t he control per turbation 6. 11.t is chosen such 
that t he state vector x 1 is mapped onto t he stable mani fo ld vvs of t he fixed point :x:. 

usin g the O GY app roach . Despi te certain limi tat ions, whi ch we will di scuss below , 

thi s method is st ill in act ive use. 

5.1.1 Original OGY Method 

T he idea of the method is to make the maximal use of the hyp erboli c st rncture of 

the ma p (3. 9) in the vicini ty of t he fi xed point x, whi ch is to b e stabili zed. T he 

key idea is to adjust t he single avail able control parameter u such that t he state of 

t he system is mapp ed onto the stabl e ma nifo ld of the fixe d poin t at t ime t0 . Tn t he 

absence of noi se, t hi s is enough to guarantee that event ua ll y th e state of t he system 

x 1 will approach t he fi xed p oin t 

Jim x t = x 
t---+oo 

even without fur ther control, i.e. , fo r ut = u, t 2: t0 . 

(5.2) 

Co nsider a determ ini stic two-dimensional dy na mi cal system, descri bed by the map 

(3.9) with a fi xed poin t x, and suppose that the J acob ia n A = D xF (x , u) at t hi s po in t 

has one stabl e direct ion and one unstabl e d irection defi ned by the eigenvectors es a nd 

eu, respect ively. T hese direct ions dete rmin e the local ori entat ions of the stable a nd 

un stable ma nifolds ws a nd wu (see fi gure 5. 1). For such a system it is, in general, 

p oss ible to p ert urb the sin gle avail a bl e parameter v ,t in such a way that a n a rbitrary 
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state x t of t he system is mapp ed onto t he stabl e ma nifold , x t+l = F (xt , u+ 6.ut) E W S, 

a,t the next ite rat ion . Since t hi s co ndi t ion cannot be resolved wit h respect to 6.·ut 

in th e general nonlin ear case, its lin eari zat ion about x = x a nd ·u = u is used Lo 

obtain a,n a pproximate solu t ion. Substituting t he vector b = B = c\iF(x , fi,) in to t he 

lin eari zed evolu t ion equat ion (4.1) , one obtain s 

(5.3) 

where ci is a constant to b e dete rmin ed. Tf we defin e t he mat ri x 

(5.4) 

which coin cides with t he stabili zability mat rix (4.11) for t he mat ri ces A a nd B co r

responding to t he fixed point solution x, t he linear equation (5.3) can be t ri via ll y 

solved to y ield 

(5.5) 

provid ed t he mat ri x S is nons ingul a r , i.e., t he vector b is no t parall el to t he stable 

ma nifold ws. T hi s d efin es t he linear feedback solu t ion in t he form (4.2): 

6. ut = - I< 6.xt 
) (5.6) 

which stabili zes t he fixed point x of the map (3.9). According to (5.5) , the feedback 

gain mat ri x is give n by 

(5. 7) 

Tf, however , t he vec tor b is parall el to t he stabl e manifold , b = f3e8, it becom es a n 

eigenvec tor of the J acobia n A. As a consequence, the co rrespondin g controll a bility 

matrix b ecomes rank-defi cient , 

rank (C) = rank [b Asb] = 1 < nx = 2, (5 .8) 

a nd both t he stab ilizability a nd t he controll ab ili ty condi t ion a re violated. \Ale t hus 

co nclude that as long as the two-d im ens ional hyperboli c system is stabilizabl e, it 
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can be controll ed by pert urbing t he s ingle avail abl e paramete r usin g lin ear feedback, 

calcul a ted acco rding to t he OGY method. 

Nonlineari t ies and noise , whi ch a re always p rese nt in real exp erim ental systems 

desc ribed by equ at ion (5.1) rath er t ha n (3 .9) continu ously dri ve t he traj ecto ry away 

from the lin ear approxim a tion of t he stabl e ma nifol d. As a consequence , sett ing 

!~:ut = 0 for all t imes t aft er we first managed to bring t he sys t em to th e stable 

ma nifold , will not achi eve the desired stabilization of t he fixed p oin t . V-.Je, t herefo re , 

have to apply fee dback defin ed by (5.6) a nd (5. 7) repeatedl y a t every itera ti on in a n 

a ttempt to correct for t he destabili zing effect of th e nonlin eariti es a nd noise. Note 

t hat , acco rding t o (5.5) , t he feedback 6.ut va ni shes when t he system approaches t he 

stabl e ma nifold. R esp ect ively, th e magni t ud e of p erturbat ion required t o ma inta in 

cont rol in the stochast ic case decreases wit h dec reas in g noise, bu t never goes to zero 

as long as nonzero noi se is present. 

5.1.2 Time-Periodic States 

R omeiras et al. [17] noted th at th e origin al OG Y meth od , which was out lin ed in 

th e prev ious secti on , can be eas il y ge neralized to deal wit h tim e-p eriodi c states a nd 

sys tems with hi gher dimensionali ty a nd , most im po rta nt, with an a rbi trary numb er 

of unstable directions, n~ 2: 1. Indeed , th e t im e-vary ing na ture of t he t a rget state 

is not a n obstacle, sin ce any period-T t raject ory :x: 1
, :x:2 , · · · , :x:T of th e map (3.9 ) can 

b e thought of as a collect ion of fi xed points of t he superp os it ion FT of T maps F. 

Furt hermore, a n a rbi trary poin t of t he stable ma nifold , indep end ent o f th e ma ni fo ld 's 

dimensionali ty, is attracted to t he fi xed p oint. As a result , th e id ea of t he meth od 

can be preserved compl et ely: t he p ert urbati ons !:::. ut should be appli ed in such a way 

as to eventually brin g th e state of th e system onto t he stabl e ma ni fo ld. 

As far as th e calcula tion of th e fe edback is concern ed , however , a numb er of t ech

ni cal comments has to be made. First of a ll , sin ce t he target state :x:1 is not tim e

inva ri ant anymore, all t he matri ces in t he lin eari zat ion (3 .11 ) b ecom e tim e-d ep end ent , 

and we have to resto re th e t im e index, b earin g in mind tha t t he ma tri ces are periodi c 

in thi s ind ex wit h p eriod T , e.g ., At+T = A1. Second , t he eige nvecto rs of in stantaneous 

J acob ia ns A1 no longer defin e t he stable a nd unstabl e ma nifolds. In stead , we use th e 
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stabl e a nd un stable manifo lds of the fi xed poin ts x t of t he superp os it ion of maps FT, 

whose local o ri entat ion in t he t ime-pe ri odi c case is determin ed by the eige nvecto rs of 

t he ma t r ices J;+T-l defin ed by (4 .66) . Since the produ cts J; a nd J;' onl y differ by a 

cycli c permu tat ion for t#- t' , their spectra a re th e same. T he eigenvectors, hovvever , 

cha nge with t ime. As a consequ ence , t he ori entations of t he ma nifolds b ecome t ime

dep end ent , alt hough the dim ensions of both t he stable and t he un stabl e ma ni fo ld , 

whi ch we denote resp ect ively n~ a nd n~ , remain constant a nd sat isfy t he relat ion 

n~ + n~ = nx (we ass um e there is no acc idental degeneracy between eige nvalues of 

mat ri ces J;) . 

Third , if n~ > l, it b ecomes imp oss ible to map a n a rbi trary state vecto r x t onto t he 

stable ma ni fo ld apply in g a single control pe rt mbat ion. It can be eas il y seen t hat n~'. 

co nsecut ive co ntro l pert urbat ions a re required. Indeed , t he control mat ri ces defin ed 

by (3.1.3) beco me vectors in t he single-parameter case , Bt = b t, a nd start ing at t im e 

t one would have at t ime t + n: 

n - 1 

6 x t+n = 11+ n-1 6 x 1 + ~ j l+n - l b t+k 6 ut+k 
'n L ' n-1-k · (5 .9) 

k=O 

T he a lgo ri t hm requires t hat x 1+n li es on t he stable ma ni fo ld ws of t he point x t+u , 

whi ch in t he lin ear approx imation can be wri tten as 

(5. 10) 

where ef denote then~ lin earl y independ ent stable eige nvecto rs of the mat ri x J;+T-l, 

a nd cyL · · ·, a;1., a re t he constants to be determin ed. Equat ion (5.9) uni quely defin es 
.c 

t he pert urbat ion of t he cont rol parameter fo r t he t ime steps t t h rough t + n - l onl y 

fo r n + n~ = n:c a nd , t herefore, we shoul d set n = n~. 

If we defin e a sequence of mat ri ces 

(5.11) 
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the solu t ion for 6u1 through 6ut+n~- 1 can be obtained in the form simil a r to (5.5) 

A t+n"' -1 LlU X 

_ (S )-1 1 t+n;~- 1 J\ t 
- - t+n~-1 n~ uX , (5 .1 2) 

again prov ided the matrices St a re nonsingu lar or , equivalently, 

ran k (St) = nx , t = l , · · · , T. (5 .13) 

The sequence (5.11) is nothin g more than a t im e-d epend ent ge nerali zation of th e 

stabili zabi lity matrix (4.11), whil e t he condi t ion (5.13) replaces t he stabili zab ility 

co ndi t ion ( 4.10) for periodic target tra.iectories. 

Similarly to t he previous sect ion , in case of real experim enta l systems describ ed 

by equat ion (5.1) we choose to apply the feedback at every step to correct for t h e 

dev iat ions from the stable manifold caused by nonlinearity and noi se. Indeed, start in g 

at time t from the state x t and apply ing the sequence of control perturbations 6ul 

t hrough !::,.ut+n~- 1 calcu lated usin g (5.12), we a rri ve at a nother state x t+n~, whi ch 

genera lly will no t li e exactly on the stabl e manifold. Th erefore, we will have to repeat 

t he procedure by applying another sequence of n~ control p erturbation s calcu lated 

based on the state x t+n~ and so on. 

However, if t here are many un stable directions ( which is usually the case in spa

t iotemporall y chaot ic extended systems), t he sequence of precalculated control per

t lll'bat ions becomes very long a nd the above procedUl'e does not a ll ow the contrnl 

a lgorithm to react to noi se promptly enough . On e of th e possibl e soluti ons is to cal

cu late onl y th e first step 6 ut of the control sequence and then reset t he a lgorithm. 

Vve then repeat the process , evaluat in g 6ut+l based on the new state x t+ 1 usin g t he 

formula (5 .12) with t --+ t + l, etc. Doing so again res ults in linear proportion al 

feedback 

(5.14) 
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bu t now t he gain mat ri x becom es t ime-dependent 

J{l = [O 0 (5.15) 

In th e absence of noise a nd nonlineari t ies (5.12) a nd (5.14) give t he sam e result . For 

real ex perim ental systems the latte r approach is preferable, because usua ll y it can 

tolerate hi gher levels of noise a nd st ronger nonlin eari t ies . 

5.1.3 Multi-Parameter Control 

In the conve nt ional sin gle-control-parameter form the OGY technique is not appli ca

bl e to most chaot ic systems wit h nont ri via l sy mmet ri es, whi ch require a la rger num ber 

of control parameters, nu > l. Hm,veve r, t his approach is fl ex ible enough to all ow a 

multi-param ete r generalizat ion. Below we propose a simpl e way to achi eve such a 

ge nerali zat ion usin g a number of straightforward modifica tions of the algori t hm de

scribed in t he prev ious sect ion. First of a ll , we note th at in creas ing t he numb er o f' 

control param eters all ows a greate r degree of control , so th e target condi t ion (5.10) 

can be reached in a numb er of steps fewe r tha n the numb er n~ of unsta bl e direct ions. 

In the multi-parameter case t he control mat ri x Bt consists of a numb er of columns 

equal to t he number of control parameters. Using th e notat ion ( 4.5) for the columns 

of' Bt, we obtain instead of equat ion (5.9): 

n - 1 
;t+n-1 1::,.x t +""" ;t+n- 1 B t+k 6.ut+k 

n ~ n-1-k 
k=O 
1i- l n -u 

;t+n-1 1::,.xt + """""" y+n-l b t+k1::,.ut+k 
n ~ ~ n-1-k m m , (5.16) 

k=O m=l 

whi ch together wit h condi t ion (5.10) form s a system of nx linear equat ions in n1in+n;: 

unknown s. T herefo re, in ge neral , a sequ ence of n1 control pert urbat ions, where 

( 5 .17) 

is required to sat isfy t he target condi tion (5.10). 

For a typ ical high-d im ension al syst em '-Ne expect nu « n~ « n~. If n~ 1s a 
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multiple of nu, then we can take n = nt = n~/nu and proceed s imil a rl y to the 

s in gle-parameter case. If n~ is not a multiple of nu, on the other ha nd , t he system 

b eco mes underdete rmin ed a nd addition al conditions have to be imposed to obtain a 

uniqu e solution . Let us defin e nt as the small est integer sat isfy ing relat ion (5.17), i.e ., 

nt = ceil(n~/nu)- The ntnu - n~ missing conditions can be suppli ed in a number of 

ways. For instance, one can impose addition al conditions by requesting that aft er nt 

iterat ions the state of the system is mapped onto the subset of th e stabl e manifold 

defi ned by the nx - ntnu stable eigenvectors with smallest respect ive eigenvalu es . 

Assuming the stable eigenvalues a re labell ed in the order of in creas ing magnitude , 

l>- f I ::; l>- ~I ::; · · · ::; l>-~J, t hese addition al conditions can b e wri t ten as 

,,,,t+n,, = 0 ,i 1" n n + 1 77 s ucz , " = ' x - t u , · · · , ·x · (5.18) 

Condi t ion (5.18) effectively collapses the state a lon g the direct ions co rrespondin g to 

stabl e eigenvalues with magnitude close to one, which are especially susceptible to 

noi se. There are other ways to choose ntnu - n~ a ddition al condition s, e.g., by pro

ject ing 6xt+n, orthogonally to the intersect ion ma nifold defin ed by equat ion (5.10) , 

as suggested by \,Va rn cke et al. [11]. However, the advantages of the latte r choi ce 

are un clear, while the impli cit assumption that nu > n~ is hardl y ever sat is fi ed in a n 

experimental setting. 

Conditions (5.10) and (5.18) determine both the projection on the stable manifold 

ws a nd the control perturbat ion s 6 ut through 6ut+n,-l based on the knowledge of 

the state of the system at t ime t: 

_,,,,t+n,_ 
'--'·l 

_ (S~ )-l j l+n,_- 1 1\ t 
- - t+n,_- 1 , n,_ L.l.X , (5 .19) 
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where t he mat ri ces St a re give n by 

(5 .20) 

F in all y, using the first cont rol pert urba tion of t he sequ ence determined by (5. 19) 

sim il a rl y to t he single-parameter case we ob tain t he lin ear prop ort iona l feedback 

(5 .21) 

with t he t ime-peri odi c gain 

(5.22) 

In ord er for t he so lu t ion (5. 19) to be defin ed, t he mat ri ces St should be nons in

gul ar fo r eve ry t = l , · · · , T . This requires t he sat isfact ion of t he t ime-d ependent 

ge nerali zat ion of th e stab ili zabili ty condi t ion (5 .1 3) for t he sequence of stabilizabili ty 

matri ces 

(5 .23) 

Indeed, one can eas il y check that, since the mat rix St can b e ob tained from t he matri x 

S1 by re movin g a numb er of colu m ns, rank (S 1) ~ rank (S 1) . H owever, stabili zabili ty is 

onl y a necessary, not suffic ient, condi t ion a nd , th erefore, not a ll stabilizable syste ms 

can be co nt roll ed us in g t he multi-paramete r generali zat ion of t he OGY technique. In 

t he sin gle-parameter case S1 = S1 a nd stabilizabili ty b ecom es t he suffic ient co ndi t ion 

as well. 

5.2 Dead-Beat Control 

Equa ll y com pelling from t he geomet ri cal p oin t of view, t he dead-beat co nt rol tech

nique di sc ussed in t he framework of chaos control by a number of a uthors [12; 18; 46] 

in fact has several ad vantages over t he co nve nti onal OGY a pproach , a lt hou gh it im

poses slightl y more st rin ge nt condi t ions on t he system. Instead of con t rollin g t he 

system indi rect ly by stee rin g it towards t he stable manifo ld , one can t ry to stee r t he 
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system directly tovvards t he target trajecto ry xt. From the math emat ical point of 

view, t hi s is equi valent to replac ing t he target condition (5.10) wit h 

6xt+n = 0. (5.24) 

Keeping in mind t hat symmet ri c systems requ ire several control parameters, we as

sum e from the outset t hat n1, > 1. A mul t i-param ete r version of t he dead-b eat control 

has b een, in fact , discussed in the chaos control li terature [46]. Howeve r, t he proposed 

a lgori t hm , obtained as a sp ec ial case of t he pol e pl acement techniqu e, is unn ecessar

il y co mplicated and completely lacks t he intui t ive conn ection with the geomet ri cal 

in terp retat ion suggested above. 

Instead we propose a different a nd more illustrat ive approach . Simil a rl y to t he 

OGY a lgorithm , subst it ut ing (5 .24) in to (5.16) y ields a system of nx lin ear equat ions 

in nn1, unknown s. Th e target condi tio n (5 .24) can b e reached in a number of iterat ions 

n 2 nt, where 

(5.25) 

Let us taken= nt. In order to obtai n a unique solu t ion for t he perturbation .6.u l, if 

nx is not a multiple of nu , one has to sp ec ify ntnu - nx add it ional co ndi tions . Sin ce th e 

p erturbat ion vectors 6ut t hrough 6ut+n,-l are t he onl y unkn ow ns in t he problem, 

th e additional cond it ions have to be imposed on th eir components. For in stance, this 

can b e achi eved by requiring that t he system is mapped onto th e target tra_j ectory 

with out perturbing the last n 1nu - nx components of the parameter vector on th e last 

step of t he control sequence. In trod ucing t he shortha nd notation n c = n" - (n1. - l )nu 

t hi s can be written as 

(5.26) 

The solution for th e sequence of control perturbat ions 6ut, · · · , 6ut+n,-t driving 

the system from a n a rbi trary state x t directly to t he point xt+n, of th e t he targe t 



71 

tra_j ecto ry is then defined by (5.26) a nd the equat ion 

_ (C- )- l 1 t+n1. - l A t 
- - t+n1.-l ni. LlX , 

whe re the matrices Ct are given by 

Jt 3t-n1+l] 
' n1.- l · 

(5.27) 

(5.28) 

Again, discarding all but the first control perturbations of the sequence determined 

by (5.27) we obtain the linear proportional feedback (5.21) with the time-periodic 

gain 

Kt= [O 11n Xnx -nn 
J ] (C )- l jt+n1 - l n.,, xn.,, t+n 1. - l n 1. • • (5.29) 

As expected, in the single-parameter time-invariant case equation (5.29) coincides 

with the respect ive pole placement result. Indeed , we have nu = l , so that nt = nT 

and C1 = Ct, where C1 is the time-dependent controllability matrix defined by (4.68). 

Setting all eigenvalues in Ackermann 's formula [46] 

K = [O (5.30) 

to zero , Xl = · · · = >-;1 " = 0, one obtains the feedback gam matrix K making th e 

.Jacobian A' = A - BK of the closed-loop system not only stable , but nilpotent , 

(A')n 1 = 0. Closed-loop systems of this type are call ed dead-beat in control theory. 

The solution (5.27) is defined only when the matrices Ci a re non singul a r, which is 

equivalent to 

rank(Ct) = nx, t; = l, · · · , T. (5 .31) 

Furthermore, the matrix Ci can be obtained from the controllability matrix C, by 

removi ng a number of columns, so rank(C1) ~ rank(Ct) and, therefore, in the multi-



72 

param ete r case the controllability of th e sys tem is required for , but does not guaran

tee , the existence of the solu t ion (5.27). In t he single-parameter case controll ab ili ty 

b ecomes the suffic ient conditi on as well. 

Co mpa ring the ex tended OGY a pproach with t he dead-beat control method we 

see more simil a riti es than d ifferences , in cluding t he fact t hat the OGY approach 

redu ces to dead-beat control when there is no stable ma nifold . However, t here a re 

a num ber of distin ctions , whi ch could make one method preferabl e to the oth er in 

ce rtain condi t ions. Dead-beat control is simpl er: it does not requi re the knowledge 

of the eigenvalues a nd eigenvectors of the J acobi ans a nd their products, evalu at ion 

of which could be a rather compli cated a nd numeri call y costl y pro cedure, especia ll y 

for high-dimension al systems. T he OGY method perfo rms poorly when the re are 

stabl e eigenvalues with magnitude close to one. Since t he largest stable eigenvalu e 

determin es th e rate at whi ch the state approaches th e target tra_j ecto ry, such a system 

will typ icall y be very sensit ive to noi se. An illustrat ion of thi s effect is presented in 

figure 6.5, where the sensit ivity of different control tech niques to noise is co mpared fo r 

a sampl e high-dim ension al system. Th e peaks in th e noise a mplifi cat ion produ ced by 

the OGY-type feedback co rrespond to t he values of parameter E at which eigenvalu es 

of th e J acobian cross the uni t circle 1,\1 = l. Th e same figure, th ough , shows that 

the OGY control p erforms bette r t han the dead-b eat control for most othe r values of 

paramete r, esp ec ially fo r small E, where t he sample system has an in tr insic degeneracy. 

5.3 Linear-Quadratic Control 

Next, we turn to the lin ear-qu adrati c control technique which has become one of t he 

corn ersto nes of modern opt im al control theory [59]. Surpri singly, this method neve r 

found its way in to chaos control t heo ry, desp ite its ma ny advantages. Th e idea a nd 

methodology of lin ear-quadrati c control is rooted in the theo ry of stochast ic processes 

fam ili a r to phys icists and mathemat ici a ns a like. Un like the OGY approach and t h e 

dead-beat control techn ique, lin ear-quadrat ic control alone provides a fram ework fo r 

t he systematic a nd consistent t reatment of both the steady and tim e-peri odic contrnl 

probl em with or without noise, using full or parti a l informat ion abo ut the system 
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state . Another signifi cant b enefit of this t echniqu e 1s the poss ibility to tune the 

feed back to obtain the b est performance for a sp ec ifi c system. 

5.3.1 Time-Invariant States 

Tn the preceding sect ions we did no t make a di st in ct ion b etween t he deviation s frnm 

the lineari zed dyna mi cs described by equation (3.11) caused by nonlin eariti es a nd 

extern a l noi se . The noise in a n expe rim enta l system can be redu ced ; howeve r, t he 

nonlin eari t ies a re intrins ic a nd always have to be considered when the validity of lin ear 

feedback cont rol is cons idered. For simplicity let us ass um e that the target state x 

is time-invariant a nd that the noi se is absent. Any stabili zin g lin ear feedback of the 

form (4.2) will event uall y (and usua ll y rather rapidly) bring the system a rbi traril y 

close to the target state x, provided t he syst em is in the neighborhood N(x) of the 

target state when t he control is turned on. The neighborhood N(x) can be defined 

as t he basin of attraction of the steady state x of the nonlinear closed-loop system 

(5.32) 

T he ma,ior difference be tween lin ear control a lgori t hms in the determinist ic case is, 

therefore, in the size a nd shape of this basin of attraction. 

\Ne ass ume that the dynam ics of the system is chaotic , i.e ., the system evolves on 

a chaot ic attractor A , and the evolution is ergodic, so that t he system visits every 

neighborhood of any steady or periodic state emb edded in the attracto r as time goes 

on. Therefore, a nat ural (and often the only poss ibl e) way to enforce lin ear control for 

the target state x E A is to wait , with the co nt rol t urn ed off, until the systems gets 

in the neighborhood N(x) of the target state and then turn the control on. Howeve r, 

it is diffi cult to check if the condition x E N(x) is satisfied, since the shape of the 

basin of attract ion is usuall y very ir regular. 

Tn pract ice one in stead checks for x E P(x) , where P(x) C N(x) is a regularly 

shaped neighborh ood of x , which best approxim ates N(x) . The lin ear s ize c5x of P (x) 

is extremel y important , esp ec ia ll y for hi gh-dim ensional systems like the ones we study 

here, because it dete rmin es the probab ility for the system to visit this neighborhood , 
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which scales as (6x)n
1

~ , where n~ is the local pointwise dim ension of the attractor, a nd 

thus defin es the average time tc oc ((h)-n~ on e has to vvait to turn the control on (also 

called the capture tim e) . Therefo re , both the size a nd the shape of th e neighborhood 

N(x) are important , if th e lin ear control algorithm is to be practica ll y effect ive. 

The size of N(x) crucially dep ends on the ass umptions made during th e derivat ion 

of the lin ear control law. In particular, the lin ear a pproximation (4.1) is valid only 

when both the d ev iat ion 6.xt from the target state and the perturbation 6.ut of the 

control param eters are sufficiently small, so that the combined stat e-plu s-param eter 

vector belongs to a neighborhood M (x, u) C JRnx x ]Rn« of the point (x, u) insid e of 

which nonlinea r corrections are negligibl e. Choosing the feedback gain J{ produces 

t he constraint ( 4.2) proj ecting the set M (x, u) onto th e tangent space ]Rn ,, which 

y ields a first-order approximation 

N (ll (x) = {'v'x I (x , u - K [x - x]) E M(x , u)} (5.33) 

of the basin of attraction N(x) (one has to ensure that equation (4.1) is valid for all 

consecutive steps as well, i.e. , x + (A - BI<)t(x - x) E N(ll(x:) , t = l , 2, · · ·). As a 

result, the feedback gain I< usua lly has to be chosen such that the control p erturbat ion 

6.ut is minimized in order to maximi ze the size of N (1l(x:). Such feedback can b e 

found as an optimal solution , which minimizes th e function al 

00 

V(6.x0
) = L [Hs(6.x1

) + Hc( 6.u1
) ] , (5.34) 

t=O 

with the constraint (4.1) for every initial dev iat ion 6.x0
. 'l'/e introduced the followin g 

notations here: 

(5.35) 

where Q and R a re the feedback parameters, which could b e chosen as a rbitrary pos

itive semidefinit e sy mmetric matrices in order to tune the control scheme by "weight

ing" different components of the state and control vectors. 
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Although the dynami cs of the system is, in general, non-Ham il ton ia n, it is in

terest ing to note th e fo ll ow in g analogy with mecha ni cal description of Hamil to ni an 

systems: l-!8 (6. x ) a nd !{;(6.u) can be interp reted as the Ha miltonian fun ct ion of the 

lin eari zed sys tem and the energy of its interact ion with the controll er, so tha t t he 

fun ct ional V(6.x) represents the di screte-tim e action . 

Us in g vari at ion al calculus it can be trivi ally shown [59] that the minimal valu e 

of' the act ion (5 .34) is reached fo r 6.ut = -T< 6.xt and is quadrati c in the ini ti al 

dev iat ion , V(6.x) = 6.xt P6.x , wh ere Pis the solu t ion of t he di screte- t ime algebraic 

Riccati equat ion 

(5 .. 36) 

whi ch essentially is the di screte-time vers ion of the respect ive Hamilton-Jacobi equ a

t ion, and the feedback gain l{ is given by: 

(5.37) 

Tt can be also shown [59] t hat, if R is posit ive definite, Q = Dt D a nd the pairs 

(A, B) and (At, D t) are controll abl e, there exists a uniqu e positive definite solu t ion 

P to equ at ion (5.36), and the closed-loop system (4.3) with feedback gain (5 .37) is 

stable . Formally, the deri vat ion of the Ri ccat i equation is only valid f'or R # 0. 

However, sin ce th e limi t 

P = lim P(R) 
R--+ 0 

(5 .. 38) 

is usually well defin ed, the Riccati equat ion can be used to find th e optimal feedback 

for R = 0 as well. Although it is generally imposs ible to find the solution of th e 

Ri ccat i equa t ion analyt ically, extensive software exists for solving nonlinear mat ri x 

equations of thi s type num eri cally. T he eas ies t way to find the solu tion P num eri cally 

is by direc t iterat ion of equat ion (5.36). 



76 

5.3.2 Control of Stochastic Systems 

\ i\Then the extern a l noi se is not negli gibl e, w t I- 0 , the control probl em has to be 

considerably reformulated. First of a ll , feedback st ill has to be chosen such that the 

closed-loop system is stable. However, the system will never converge exactly to the 

target state, since noise will continuously dri ve it away. Therefore, now t he ob.iective 

of control is to keep the system as close as possible to the target state for arb itrary 

magni t ude of noi se . Second , the system becomes stochast ic a nd has to be described 

probabilistically instead of determini st icall y, us in g the stochast ic generali zat ion (5 .1 ) 

of the map (.3.9). Tn part icul a r, t he lin earizat ion (4.1) has to be replaced with 

(5.39) 

where we defi ned the new matrix E = DwF(x, 0, u) , while th e .J acob ia n a nd the 

control matrix are determined as stochast ic generali zat ions of equat ion s (3.12) a nd 

(3.13), A= DxF(x, 0, u) and B = DuF(x, 0, u). 

Similarly to the dete rminist ic case, the linearizat ion (5.39) has to be valid in order 

for lin ear control to succeed . Consequently, the range of permissible dev iat ions L.xl 

from the target trajectory is again maximized by minimi zing the control perturbation 

L.ut, which brings us back to the fun ct ional (5.34). A few cha nges should be made, 

h0vvever , in keeping with t he probabilistic description of the problem. To make the 

valu e of the fun ct ion a l (5 .34) ind ependent of noise, we average it over a ll poss ibl e 

noise s ignals w 0 , w1, • • •. In add ition , we replace the infinite sum with the infinite 

time average to ensure convergence: 

(5.40) 

Suppose t he noi se is desc ribed by a stat iona ry zero-m ean random process w 1, which 

is c5-correlated in t i me, such that 1 

(5 .41) 

1 'vVe choose to lower the t. irne index where approp ri ate for not.at.ional convenience. 
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where th e mat ri x ~ desc ribes the spati al co rrelat ions of t he process . Then the min

imum of the fun ct iona l (5 .40) is again reached for 6u1 = -K 6x1
, but now it is 

quadratic in noise, V = Tr(PE~Et), a nd is indep endent of th e ini t ial di splace ment 

6xi [59]. Th e mat ri x P is again calcul a ted as th e solution of t he Ri ccati equat ion 

(5 .36) , a nd t he feedback gain J{ is give n by t he same express ion (5.3 7) as in t he 

noise-free case. T hi s resul t is rather rema rkabl e. It t ell s us t ha t the feedback gain , 

calculated in t he ass umpt ion of compl etely dete rminist ic dyna mics is , in fact , optimal 

in the stochast ic case as ,veil. 

In the presence of nonva nishing noise a nd with the control turn ed on , t he system 

will flu ct uate about th e target state. Th e stati stical measure of t he am plitud e of thi s 

flu ct uat ion is give n by t he state correlat ion matrix Y = (6x16xi) , whi ch can be 

eas il y found a na lyt icall y, provid ed t he process noise is not con elated with t he system 

state, (6x1wi ) = 0. Ind eed , t he closed-loop system with fe edback gain J{ is described 

by th e dy na mi cal equation 

6xH 1 = (A - BT<)6x1 + Ew1
. (5.42) 

Multiply in g equ at ion (5.42) by its transpose a nd takin g t he average yields 

(5.43) 

a nd , sin ce th e matrix A - Bl{ is stable, t he solution in the form of th e convergent 

seri es is obtain ed: 
00 

Y = L)A - BK)11E~Et(A - BK)11t. (5.44) 
n = O 

vVe note that Y is a lin ear fun ct ion of~ , so t hat t he average devi at ion from the target 

state is lin earl y proportional to th e st rength of noi se . As a res ult , th e ratio of t he 

two is a n in vari a nt qu a ntity depend ent onl y on th e choice of feedback gain !{_ It is 

call ed th e noise amplification factor a nd is defin ed thus: 

(5 .45) 

Clearl y, th e small er I/ is, t he b ette r the control setup can suppress noise. Examin at ion 
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of the definition (5.40) with Q = J and R = 0 shows that 11 = Tr(P0 E::::Et) = Tr(Y 0). 

Consequently, the minimal value of the noise amplification factor 

(5.46) 

is achieved for the optimal feedback gain I< = I<0 calculated using equations (5.36) 

and (5.37) with Q = 1 and R = 0. 

5.3.3 Time-Periodic States 

So far our discussion of the lin ear-quadratic control method \Vas limited to time

invariant target states. If the target state is periodic with per iod T > l , the analysis 

does not change conceptually. However, minimal number of technical modifications 

of the algorithm have to be made in order to solve the time-periodic control problem 

using the formalism outlined in previous sections. Let us denote the target state x_l, 

where due to the periodicity xt+T = xt. Linearizing the stochastic evolution equation 

(5.1) about xt y ields 

(5.4 7) 

where the .Jacobian At = DxF(xt, 0, ii) , the control matrix Bl = DuF(xt, 0, ii) , and 

the matrix Et= DwF(xt, 0 , ii) all become time-varying and periodic in the index t. 

Similarly to the noisy time-invariant case, the ob_jective of control is to minimi ze 

the deviation from the target tra_jectory, simultaneously minimizing the magnitude 

of control perturbations. The optimal feedback that achieves this ob_jective can again 

be found by minimi zing the functional (5.40) with the weights Q and R which can, 

in principle, be chosen time-periodic, thus acquiring the time index as well. Th e 

minimum of the functional is again reached for 6.ut = -I<t6xt, where the feedback 

gain now also becomes tim e-periodic: 

(5.48) 

Th e matrix pl denotes the time-periodic solution of the system of T coupled Riccati 
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equat ions ( collect ively call ed the discrete p eriodi c Riccati equat ion) 

(5.49) 

whi ch can be form a lly red uced to a single Riccati equation of la rge r dimension ali ty 

using th e following a nsatz. 

Let us introduce the rnx x rnx cyclic-shift matrix 

0 0 l 

I O 0 
Z= (5.50) 

0 I 0 

co ns ist in g of nx x nx zero a nd uni t blocks (we set Z = I if r = 1), a nd form block

diagonal t im e-in variant matrices A, B, E, Q a nd R from the sequences of time

p eri odi c matrices At, Bl, Et, Qt a nd Rt, resp ect ively, accordin g to the rnl e 

(5.51) 

T hen th e solu t ion of the syste m of equat ions (5 .49) is obtain ed by findin g t he block

diagonal solution 

(5.52) 

or the Ri ccati equat ion 

(5.53) 

Thus, from the control point of vi ew, the time-periodic lin ear system (5.47) is formally 

equival e nt to t he t im e-in vari a nt linear system 

(5.54) 

A more techni cal discuss ion of vari ous num eri cal techniqu es used to solve the discrete 
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p eri odi c Riccat i equa tions of the fo rm (5.49) can b e fo und in [60]. 

5.4 Output Feedback Control 

Spat iotemp orall y chaot ic dy nam ics of weakl y co rrelated extend ed systems is usua ll y 

ext rem ely com pli cated due to a la rge nu mber of excited degrees of freedo m. In other 

words, t he Ha usdorff dimension n~ of the respect ive chaot ic attractor is very hi gh. 

As a res ul t, local dy nami cs in t he vicini ty of a typi cal target tra,i ecto ry xt embedded 

in the attractor will a lso involve a la rge nu mber of degrees of freedom . O n t he other 

ha nd , it can be a rgued tha t t he p rec ision in the evalua ti on of the lin ear model (3.11) 

obtain ed as a resu lt of t he local phase space reconst rnct ion is mu ch more im portant 

tha n the p rec ision in t he evaluat ion of the state of the system d min g co ntrol. As a 

consequence, one might b e fo rced to use a n ext ended set of n; >> fl.y ind epend ent 

observables during t he ident ificat ion stage, 

[ 
y (t) l Yr(t ) = , 
Ya(t) 

(5.55) 

where y(t) is t he set of ny observabl es used fo r both system ident ificat ion a nd contro l, 

a nd t he vector Ya(t) represents th e n; - ny addi t iona l obse rvables used onl y for 

system ide nt ifi cat ion. (In case of spat ia lly extended systems it m ight co rrespond to 

moni to ring the system at add it ional spat ial locat ions.) This is especia lly helpful if 

t here is considerable a mount of noise, in whi ch case the noise red uct ion techni ques 

ment ioned in sect ion 3.4 can be empl oyed to use add it ional data to im p rove t he 

accuracy of t he lin ear model. 

If ny < n;, we cannot const ruct t he st ate x k of t he system from the measureme nts 

of the outpu t y (t) no matter how ma ny success ive measurements y (ti.:) , y (t ,., +To) , · · · 

are made. Fur therm ore, sin ce the stat e of the system is not avail able, we cann ot use 

the control techni ques described ab ove to calcul a t e t he feed back 6. uh, because they a ll 

assume that the state is kn own. Fort un ately, t here is a way out. F irst of all , assum in g 

that the same delay t im es a re used during both system ident ifi cat io n a nd co nt rol, we 

conclud e that the measured outp ut is _just a lin ear fun ct ion of th e act ua l state x'·. 
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O ne can, t herefore, t ry to dy na mi call y const ruct a n est im ate xk of t he act ua l stat.<) 

o f' the system using t he o ut pu t a nd find t he fee dback based on thi s est im ate . T hat. 

t urn s out q ui te doable, prov ided t he mod el equat ions desc ribin g the local dy na mi cs 

a re avail able. T hi s approach is usuall y call ed output f eedback control. 

Simil a r sit uat ion occurs when the mod el equat ions fo r t he system und er considera

t ion a re kn ovvn a priori, b ut direct dete rmin at ion of t he system state is in co nve ni ent, 

impract ical, or _just imposs ibl e - t he sit uat ion ofte n encountered in real exp erim en

tal systems. Tn ord er to com p ensate fo r t he lack of kn owledge ab out th e state of the 

syste m , in addi t ion to t he cont rol st ru cture t hat em ploys feedback (co nt roll e r), we 

will need to in troduce a nother st ructure, usuall y call ed t he .filter, t hat wo uld moni tor , 

coll ect a nd process t he availa bl e in fo rm at ion about t he system wit h t he purpose of 

reco nst ru ct in g its act ua l stat e with t he b est accuracy p oss ib le. Sin ce t he erro rs in t ro

d uced by t he fil te r b ecome ampli fied by control, it is equally as important to h ave a n 

op t im a l fi lte r as it is to have opt im a l control. Opt ima l fil te rin g techni ques deri ved fo r 

t he dy nam ic stat e reco nst ru cti on problem [59] have mu ch in com mon with op t imal 

cont rol techni ques. As a consequence , s imil a r res ul ts often a pply. 

5.4.1 Dynamic State Reconstruction 

vVe a re in terested in reconst ruct ing t he system state only in t he vicini ty of t he target 

state xi, where t he dy na mi cs of t he system is descr ib ed wit h adequate prec is ion 

by t h e lin eari zed evolu t ion equ at ion (5.47). Assume t hat a (vecto r) out put y l o f' 

the system can be measured . Tn general, t he measurements are im perfect, wit h t he 

dev iat ion from t he perfect valu es described by the meas urement errors, represented 

by a n nv-dim ensiona l vector v 1
: 

(5.56) 

For sim pli c ity let us a lso ass um e t hat t h e target stat e is t im e-in vari a nt. L in eari zing 

t he outp ut (5.56) in th e vicini ty of the target state a nd in troducin g t he notat ion 

t-,, y 1 = G (x1, v 1) - G (x, 0), one obtains: 

(5.5 7) 
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where C = DxG(x, 0) and D = DvG(x , 0). 

In general, t he problem of dy na mical state reconst ruct ion can be cast in a num

b er of different ways. Here we pursue the one whi ch is most eas il y t reated in the 

framework of optima l control. O ur goal is to use th e avail abl e in fo rm at ion about the 

system, i.e. , the t im e seri es of control a nd output signals, to const ru ct a vector t :,3:.t, 

whi ch vve call t he state estimate, t hat wou ld approximate the actual state 6x1. F irst 

of all , simila rl y to the dynam ics of the actual state , th e dy na mi cs of t he state es timate 

at t im e t shoul d dep end determinist ically on the p resent valu e of t he state es timate 

6:xt, the co ntrol p ertu rbat ion 6u1 and the outp ut 6y1
. Consistent with ou r lin ear 

approx im ation we obtai n the general dy nami cal equat ion of t he form 

(5.58) 

where A , B and K are some as yet und efin ed mat ri ces . Next, not ice t hat in t h e 

absence of noi se a nd measurement errors, if t he state est imate a nd the actua l state 

co in cide at tim e t0 , th ey should co in cid e at a ll later t im es t > t 0 as well , a nd , th erefore , 

equat ion (5.58) should co in cide wit h equat ion (4.1) upon subst itut ing (5 .57) wit h 

v 1 = 0 fo r a rbi trary 6 u t a nd 6:x.1 = 6x1: 

(5.59) 

Thi s requires A = A - kc a nd B = B , so that (5.58) y ields the dy na mical equat io n 

(5.60) 

where k. is call ed th e .filter gain matrix. Finally, we need 6:x1 to be a good es timate 

of the actual state, i.e., t he difference 6x1 = 6xt - 6:xt b etween the actua l state 

a nd its est ima t e should b e small even vvhen fini te noise or measurement erro rs a re 

present. Subt ract ing (5.60) from (5.39) and subst itu t in g (5.57) we obtain 

(5 .61 ) 

where w1 = Ew1 - k Dv1 denotes t he sum of a ll stochast ic te rm s on the ri ght-h a nd 
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side of equat ion (5.61). T hi s equat ion has t he same fo rm as equation (5.42) fo r t he 

closed-l oop system a nd , as a co nsequence, t he matrix A' = A - kc has to b e stable. 

A nu mber of com ments shoul d be made regard in g t he state reco nst ruct ion problem 

in t. he absence of no ise a nd measurement errors. F irst of a ll , if t he mat ri x A' is stable, 

t he est imate x + 6 :x.1 asym ptot icall y (in a fini te number of steps , if A' is nil potent) 

conve rges to t he actua l state x 1
. St ri ctly speakin g, if t he mat ri x A' is stable, bu t not 

nilpotent, t he est imate will neve r exactly coincide wit h the act ual state . However, 

s in ce t he convergence is exponent ial, a rb itraril y good approx im at ion is obtain ed afte r 

a logari t hmicall y small nu mber of steps. 

Seco nd, t he state reco nst ruct ion problem is effect ively equi valent to t he chaot ic 

sy nch ro ni zat ion probl em [61 ; 62] . Indeed, t he ori gin a l system (5.1) can b e t hought of 

as t he d ri ve system , t he fil te r (5.60) as t he response system , a nd t he outp ut (5 .56) as 

t he dri ving s igna l. C learl y t he two systems will become sy nchronized in t he vicini ty o f 

t he target state (see, e.g. , t he d iscuss ion in [62]), wit h t he respo nse system fo ll ow in g 

the evolu t ion of the dri ve system . 

T hird, unlike the system ident ificat ion p roblem considered in chapter 3 , in t he 

dy nam ic stat e reconst ru ct ion problem t he dy nam ical equat ions a re ass umed to be 

kn ow n a nd a re used to reconst ruct t he state of t he system. However , simil a rl y to t he 

state id ent ifi cat ion probl em , t he out pu t (5 .56) has to sat is{y a nu mb er of co ndi t ion!:> in 

orde r fo r t he state reconst ruct ion p roblem to have a solu t ion. Following t he d iscuss ion 

in sect ion 4.5 we defin e t he di sc rete-t ime version of the observability condi t ion fo r t he 

ma t ri x pair (A , C) whi ch ensures t hat t he state of t he system can be reco nst ructed 

give n t he meas urement of t he out put. T he dy na mical sys t em defin ed by equ at ions 

(4.1) a nd (5.57) or t he pai r (A , C) is said to be obse rvable if, fo r a ny t imes t 1-ti ~ n,~, 
the ini t ia l state 6x1

i = 6 x i can b e determined from t he measurement of cont rol 

p ert urbat ion 6 u 1 a nd outp ut 6y1 in t he in te rval t E [ti , t 1]. 

Simil a rl y to t he cont inuous-t ime case, t he obse rvabili ty condi t ion is for mall y equi v

alent a nd d ua l to t he co ntrollab ili ty co ndi t ion fo r t he ma t ri x pair (At , ct) a nd , as 

a res ul t , the restrict ions imposed on t he out pu t signal (5 .57) a re ident ical to t hose 

deri ved in sect ion 4.5. Vie , t herefo re, conclude t hat t he obse rvab ili ty cond it ion has 

t he sam e fund ame ntal ro le in the problem of dy nami cal state reconst ru ct ion as t he 
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co nt roll ability co ndi t ion has in t he control probl em. 

5.4.2 Linear-Quadratic Filter 

If nonze ro noise a nd /o r measurement errors a re present , t he est im ate does not con

verge to the actual state, but flu ct uates about it, b eing constantl y dri ve n away by 

noise. Th e prec ision wit h whi ch t he actual state is approxim ated depends not onl y 

on the st rength of noise , but also on the choice of the filt er gain K. Ass uming the 

measurement errors a re random , unbi ased, c5-con elated in t ime, 

(5.62) 

a nd un con elated wit h the process noise, (wtvJ,) = 0, we conclud e that v.l is a 

stat ionary ze ro-m ean random process vvit h correlat ion 

(5 .63) 

where we introdu ced th e shortha nd notat ions R = DGDt and Q 

consequence, t he opt im al fil ter gain can b e fo und using the lin ear-qu ad rat ic formali s m 

desc ribed in t he prev ious sect ions. Specifi call y, we dete rmin e the opt im al filter garn 

by requiring the est imat ion error of t he form 

1/ (e) = lim / 6.x;eet6.x1) Hoo\ (5 .64) 

to b e minimal for every vector e selected (e.g., e = (1, 0 , · · · , 0) , which co rresponds 

to minimizing t he mean-squa red error in the first co mpon ent of t h e state vec tor). 

It t urns out [59] that t he stochast ic t im e-inva ri a nt opt im al st ate es t im at ion prob

lem defined by equat ions (5.60) and (5.64) is fo rmally equivalent (and du al) to t h e 

dete rmini stic time-inva ri ant opt ima l control probl em defined by equat ions ( 4.1) a nd 

(5.34) , with the followin g co rrespondence betwee n parameters: A H At , B H ct, 

Q HQ, RH R, 6.x0 H e , P H Sand J{ H k t. As a result , t he minim al valu e of 

the est im at ion error, 'i/ (e) = T r(Seet) , is reached for 

(5.65) 
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where S is t he solution of yet a nother discrete-t im e Riccat i equation 

(5.66) 

As we have seen in sect ion 5.3.1 , in o rd er to guarantee the existe nce of a posit ive defi

nite solu t ion S to equation (5.66) , t he pair of matrices (At , Ct) shou ld b e co ntroll able 

or, equivalentl y, th e pair of mat ri ces (A, C) should b e obse rvable. 

T he ge nerali zat ion to periodic target states is rath er tr ivia l a nd can be acco m

plished using t he procedure di scussed in section 5.3.3. Assuming t he p eri od of t he 

target state is T, we const ruct the constant matrices A , C, Q a nd R from the resp ec

tive tim e-periodic matri ces acco rdin g to the rul e (5.51). The opt im al filt er gai n k 1 

beco mes t im e-periodic as well a nd is dete rmin ed by 

(5.67) 

where 51+-r = St, a nd S1 through 5-r a re t he blocks found on t he di ago nal of t he 

block-di agon al solution S of th e Riccati equa tion 

(5.68) 

Putting all t he pi eces together, on e finally concludes that t he time-periodic outp ut 

feedback control problem with addi t ive noise 

At 6xt + Et 6ut + E 1w 1, 

C 1 6xl + Dtv t, 

requ ires the feedback 6 u 1
, calculated acco rdin g to t he equat ions 

(At_ 8 tK t _ ktct) 6 x1 + k t6 Y1 , 

-Kti6. xt . 

(5.69) 

(5.70) 

T hi s construct ion is call ed th e Kalman-Bucy filter in co ntrol t heo ry. Fmtherm o re, 

using the fact tha t 6x1 a nd 6:x.1 a re un correlated , it can be shown [59] th at the 

feedback gain Kt a nd filt er gain kt in equ a tion (5.70) whi ch a re opt im a l wit h resp ect 
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to th e performance measure 

(5.71) 

are given by (5.48) a nd (5.67). 

Finally, we should note that in t he case of output feedback co ntrol one cann ot 

measure the di stance to the target tra,iectory directly, because the actual state of 

the system is not avail able. However, if th e system is suffic ientl y close to the point 

x: to at t ime t, t he difference y 1 
- G (x:to, 0) should b e sma ll. Verifying this cond it ion 

at a success ion of times usua lly ensures that the system indeed closely follows th e 

trajectory x:to, x: t0 +1, · · ·. The state estimate ~xt can be reset to zero vvhen the system 

is far from the target state a nd filtering should b e turned on s imul taneo usly wit h 

feedback when the system approaches one of the points 5cto, t 0 = 1, • • • , T of the 

target trajecto ry. 

5.4.3 Worst Case Control 

So fa r we assum ed that the noise wt and measurem ent errors v t are zero-m ean, ran

dom a nd un correlated with the state of the system a nd with each oth er. However, this 

assumption is a lso a n ideali zat ion. For instance, dev iat ions stemmin g from neglect in g 

nonlin ear terms in the evolu t ion equat ion (3.9) or from modeling errors (imprec ise 

evaluat ion of intern al paramete rs of the system) will , in ge neral, be both bi ased a nd 

correlated with the state of the syst em. As a result , the lin ear-quadratic analys is 

will be, st rictl y speaking, invalid. Since we usua ll y do not kn ow the prop erti es of 

either the noise w 1 or the measurement errors v t present in the system, it is oft en 

advantageo us to take a different approach to the control problem. 

First of all , th ere is no reason to distingui sh b etween noise and measurement errors , 

sin ce both act as a destabili zing factor in t he control problem. Vie, t herefo re , co mbine 

them in a single vecto r 

(5. 72) 
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Tf we a lso defin e t he matr ices 

the dyna mi cal equat ions (5 .69) can then be rew ri tten in t he equi valent fo rm 

.0. X Hl At D.xt + st D. u t + Ffw l) 

ct D.xl + fY w l. 

(5. 73) 

(5.74) 

T he ob.i ect ive of t he a lgo rithm presented b elow is to find a n ou t pu t feedback law 

simil a r to (5.70) t hat would achieve t he stabilizat ion of t he target tra_j ecto ry xt fo r t he 

worst case sequ ence of p ert urbat ions w0
, w1, • • • from the class of all pe rturbat ions 

bound ed in t he app rop ri ate vecto r norm (whi ch a utomat icall y guarantees stabili zat ion 

in the presence of a n arb itrary sequence of boun ded pert urbat ions). In t he mathe

mat ical te rms the goal of t he wo rst case control (also call ed H00 control in control 

t heo ry) can be stated as t he minimizat ion of t he induced power norm of t he transfe r 

operator T : w ----1 D.z defi ned as 

_ ll.6.zllP 
, = 11 TI IP = max 11 ~ 11 , llw llp<oo w p 

(5. 75) 

where t he nz -di me nsiona l p erfo rmance vecto r 

(5. 76) 

gives th e we ighted meas ure of the dev iat ion from th e target state, a nd th e power 

norm is defin ed as 

(5 .77) 

T he weight mat ri ces pt a nd G1 a re seen to be direct a nalogs of t he we ight mat ri ces 

Qt a nd Rt used in t he lin ear-quad rat ic approach . Ind eed , choos in g Gt a nd Ft such 
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that CJ F1 = 0, F/ Ft = Qt and GJGt = Rt, one obtains 

(5 .78) 

The solu t ion to t he time-periodic output feedback problem defined by equations 

(5 .74), (5 .75) a nd (5.76) can be obtained using t he generali zat ion of t he resu lts o f 

J-100 co ntrol theory [51] for lin ear time-invariant systems . In particular, Dullerud and 

Lall showed [63] that, if a stabili zing linear feedback ex ists, it could be writ te n as 

At i6.xt + f3t 6 Y1 

c;t i6.xt + fi i6.yt, ( 5. 79) 

where At, Bl, c;t, and jjt are matrices with the same periodicity T as t he t a rget orbit 

xt, and x.1 is the n5;-dimensiona l internal state of t he controll er. This setup can be 

co nsidered a direct generalizat ion of the Kalman-Bucy filter (5.70). 

Let us construct constant block-diagonal matrices A, B , C, D, E, F , and G ac

cord in g to the rule (5.51). Us in g these matrices it can be shown [63] that a stabili z in g 

feedback law of the form (5.79) with n5; 2 nx for the system (5.74) exists and the 

closed-loop performance inequali ty 1 < 1 is sat isfied, if a nd only if there exist positive 

definite block-diagonal matrices P a nd 5, satisfy in g linear matrix inequalities 

[~ -~l ~o (5.80) 

a nd l AtztszA - s Atztsz.t pt] [:1 ol - etztsz.t - r 
~l [:s ~] 1 

EtztszA < 0, 

F 0 

~ J l APA;; A~tpz 
AP Ft !J [ N: ~] [N! Ft PF - J < 0, (5.81) 

Et 0 
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where t he uni tary matrices Np and Ns sat isfy 

Tm Np 

Tm N 8 

ker [ Bt 

ker[ C (5.82) 

T he feedback law corresponding to thus found matrices P a nd S, in general, wi ll 

not be opt im al. The optimal feedback can be found by executing the foll owin g algo

ri t hm . Let us rescale th e we ight mat ri ces pt a nd Gt by t he factor of 1/10, such t hat 

the above conditi on tests for 1 < 10 instead of 1 < 1. Tf t he correspondin g ma t ri ces 

P a nd 5 can be found, we decrease 10 a nd repeat t he process until t he test fails. 

Stand a rd software exists to do this. Tf t here is any lin ear stabili zing controll er, we 

ca n, th erefo re, find it us ing this a lgori thm . St ri ctly speaking, t hi s algorithm will y ield 

a feed back that will no t be optimal , but will be ve ry close to t he opt im a l feedback , 

whi ch is adeq uate for a ll practical purposes. Once the block-diagonal matrices 

(5 .83) 

corresponding to the smallest 10 a re determined , the matrices in (5.79) can be found 

using t he following procedure. First , const rnct nonsingul a r matrices ]\;ft a nd Nt , such 

that 

(5 .84) 

and determin e X 1 as th e soluti on of the matrix equation 

(5.85) 

Next, define t he matrix 

x -1 - ./ l+ l At Et 0 
- t 

-Xt 0 ~t 
yt = 

At Ft 
p;t 0 - ! 0 L 

(5.86) 

0 Fl 0 -! 
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where we introduced the shorthand notat ions for the b locks 

a nd the matrices 

where ,ve denoted 

TiV; = [ 0 I] 
BI O ' 

and 

ut = [ 
0 0

] , 
l O 0 

pt= [ p OJ, 

[W{ WJ WJ T¥J], 

[ U{ Ui Ul UJ ], 

[ 
0 I l u1-

2 - ct o , 

Finally, t he mat ri ces At, Et, {;t a nd fJt can be extracted from the solution 

of the lin ear mat rix in equality 

(5.87) 

(5.88) 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

Despite the compli cated algebra, lin ear matrix in equaliti es such as (5 .80) a nd (5.92) 

can be co nveni entl y solved usin g the tools of convex opt imizat ion theory, which has 

one ve ry importa nt adva ntage compa red to the methods for solv ing nonlinear matrix 

equ at ions like the Riccati equat ion (5.36) - nam ely guaranteed co nverge nce. T hi s 

prop erty is espec iall y valuable if the evolu t ion operators of the lin eari zed system 

(5 . 74) a re highl y degenerate, wh ich routinely happ ens in weakly coupl ed extended 

chaotic systems ( we wi ll see a n exampl e of th is in chapte r 6). 
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5.5 Degeneracies and Blowups 

In th e co nclusion of the chapte r we retu rn to the state feedback control probl em, 

whi ch a ll ows on e to compare th e performance of th e four techniques we discm;sed 

above: OGY control , dead-beat control, lin ear-qu adrat ic control and worst case con

trol. Sin ce the latter two techniques a re op t imi zed for stochastic applicat ion s, they 

clearl y provide fa r superior p erforma nce in this case . Instead we consider th e deter

mini st ic case, where the benefits of th e optimal control techniques a re not imm ediately 

apparent. Alas, even in this case OGY control and dead-b eat control do not perform 

on pa r wit h the opt im al control techniques . 

Alt hou gh both OGY control a nd dead-beat control work adequately well in most 

circumstances , th ey have a common deficiency, whi ch limi ts their appli cabili ty to 

extended systems, which a re the focus of the present st udy. As we noted ab ove , the 

ass umpti on und er whi ch t he solu t ions (5.12) a nd (5.27) are defin ed is violated when 
- -

the matrices St and Ct , respect ively, become singular for some t. It is easy to see 

that t hi s routinel y happ ens in a seemingl y innocent sit uat ion when the Jacobian At 

b ecomes close to a multipl e of a uni t matri x at a certa in point on the ta rget trajectory: 

(5.93) 

where ct= 0(1) is a constant , E « 1 is a constant , a nd H is an a rbit rary matrix with 

the unit norm . This s ituat ion can b e a result of accidental degeneracy, but may a lso 

b e a consequ ence of the weak sym metry violation in a highl y symmet ric system (see , 

e.g. , t he discussion in sect ion 4.4 a nd later in sect ion 6.2 .2). 

For simpli city, conside r the single-parameter case and ass um e that the control 

ma trix is constant , B = b = canst. It is rather easy to see tha t th e magni t ude of 

the control perturbat ion calculated using both OGY a pproach and dead-beat control 

diverges during the iterat ion t = t0 - 1, l6.ut0 -
11 ----+ oo as the J acobian Ato a pproaches 

a multipl e of a uni t matrix , E ----+ 0. Ind eed , let us calculate th e feedback gain a t t im e 

l = to - l. For instance , for t he dead-beat control method nt = nx a nd (5.29) gives 

(5.94) 
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vv here t he mat ri x Cto +n.c -2 coin cid es wit h t he cont ro ll ability mat rix ( 4.68) evalu ated 

fo r t = lo + nx - 2: 

[b 
[b 

[b 

J to+nx- 2b J to+nx-2 b ] 
n x - 2 n x- 1 

J to+nc-2 b Jto+nx-2 Ato b ] 
n x - 2 n .c- 2 

J to +nx-2 b n ,J to+nx -2 b + J to+n.c-2 7-[b ] 
n .c -2 u. 71.c-2 EO: n x- 2 r: ' (5 .95) 

wit h t he two las t column s whi ch b ecom e degenerate as E vani shes . T n order to evalu ate 

th e feedback mat ri x K 10
-

1 one needs to calcul a t e th e inve rse of C10 +n.c - 2 whi ch is 

most eas il y accompli shed usin g th e singul a r va lu e decompos it ion C10 +11." _ 2 = QI:,Rt 

(compa re t hi s t o the the discussion in sect ion 4.4) . Next, defin e t he mat rix S such 

t hat 

whose two las t columns a lso b ecome degenerat e for vani shin g E for eve ry Q. Vve can 

use thi s fac t to obta in t he relat ion between t he elements of the two last rows of t he 

ma trix R: 

(5 .97) 

where CJi ( E) = I:,ii denote th e sin gula r values. Simil a rl y to sec ti on 4.4 we conclud e 

t hat t he sma ll est eige nvalue scales linearl y with E, CJn x (c) = O (c), whi le t he rest of t he 

eigenvalu es do not, CJi(E ) = 0(1) , i = 1, · · · , nx - l. Discardin g th e t erm s of ord er E 

we, th erefore, obtain R n xi = a R n x-li for a ll i = 1, · · · , nx - l. Th e relat ion for R nxn c 

a nd R n x-lnx can b e obta in ed using t he fact th at R is a n ort hogona l ma trix , so t hat 

nx 

L R ;ci = 1, 
i=l 

n x 

"""R2 i· = 1 L n :u- .'l ' 

i=l 

n :c 

L R ,,,ixi~i.c- li = Q. 

i=l 

Aft er t ri vial ma nipul at ions we ob tain ~ ix -lnx = - a ~ i .cn.c and , consequent ly, 

(5 .98) 
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Acco rdin g to equation (5.96), t he degen eracy onl y affects t he st ructure of t he mat ri ces 

Rand I: , b ut not Q, so all elements of Qare ge neri call y of ord er one a nd , in part icular , 

Q1,,n c = 0(1), k = l, · · ·, nx. Fin ally, writ ing down t he elements of t he feedback gain 

matrix (5.94) we obtain 

gto-l 
.1 

As a res ul t , th e fee dback 

n.c 

~ (R(I:)-lQt) .(Jto+n,c -2) .: L · Tl.ck n,; /,] 
k= l 
n a: n x 

L Rncci O'i
1 L Qki(J~~c+nx-

2)k.i 
i=l. k= l 

n x 

~ [a2 + 1i-1/20'.;cl L Q 1mJ J ,~oc+ncc-2)k:i · 

k=l 

n.i: 

6.ulrJ-l = _ L K;o- 16.:c_;o- l = O(c-1)16.x to-lj 

.i=l 

(5.100) 

(5.101) 

diverges for every 6.x10 -1. c/- 0 as c vanishes, leading to the divergence of t he noise 

a mplificat ion facto r (5 .45). 

The same statement holds fo r the OGY typ e control. According to (5.15), the 

evaluat ion of t he feedback gain !{10 -
1 requires takin g t he inverse of t he stabili zability 

mat ri x (5.12) with t =lo+ n~ - 2: 

S~ [ lo+n',~ -1 
to+n(;-2 = el (5.102) 

whose two last columns becom e degenerate fo r van ishin g E, sim il a rly to t he case of 

dead-beat co ntrol (compare with (5 .95)). Th erefo re, th e same analys is a nd conclu

sions apply. 

Sim il a r statements can be made in t he more general multi-parameter case . In other 

wo rds, the blowup of t he control pe rt urbat ion is not a n a rt ifact of the sin gle-param eter 

realizat ion of t he a bove techniques, but rather a generi c feat m e t hat transp ires in cer

tain condi t ions, specifically, when the J acob ia n beco mes highly degenerate at a ce rtain 

po in t on t he target tra,iecto ry. This kind of blowup app ears eve n more smpri sin g if 

lal < l , when t he matrix A 10 is stable and, int ui t ively, no control is needed. 
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It can be arg ued that t he s it uat ion considered above is highl y relevant fo r ma ny 

systems, sp ec ifi call y systems wit h symm et ries. Fo r instance, ma ny spat ia ll y extend ed 

chaot ic systems wit h low degree of spat ial co rrelat ion can b e thought of as a nu m

b er of ident ical spat iall y dist ribu ted a nd weakl y coupl ed subsystems. T he d iago na l 

elements of t he J acob ian mat ri x (5 .93) wo ul d then describ e local dynam ics of' each 

subsystem , vvhil e the off-d iagonal elements woul d con espond to weak in teract io ns 

between subsystems a nd will , t herefo re , be small. An exampl e of such a n extended 

syste m will be studied in detail in chapter 6. 

Here we consider another example, a system of two id ent ical chaot ic systems with 

mistun ed paramet ers, each modeled by a one-d im ensional chaoti c map. Sin ce t he 

choice of the map is not important, we take the most often used one, t he logist ic 

map . Fm therm ore, we assume that the systems a re weakl y a nd uni d irect iona lly 

co upled (bidirectional coupling can be chosen as well ), so that the combin ed dy nam ics 

is desc ri bed by the fo ll owing two-dimensional map: 

,,.l+ l 
·-"2 (5.1 03) 

where l:,.-ut denotes t he feedback we use to control t he syste m. T he parameters a re, 

respect ively, a 1 = 3.8 , a2 = 4.0, a nd c: = 0.01. As a target state we choose a peri od-s ix 

tra_j ecto ry xt, whi ch makes the J acobi a n 

(5.1 04) 

almost degenerate at t im e t = t0 = l, when a= a1 (1 - 2xD = a2( l - 2:.c~) + O(c:), 

such that 

(5 .105) 

T he feedback is chosen such that th e control mat ri x is const a nt 

B=b=[l l 
-1 

(5. 106) 
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Figure 5.2 : Basin of attraction of tl1e closed-loop system at the poi11 t x6 of t he period-six target. 
trajectory. The boundary is foun d numeri cally for feedback corresponding to dead-beat. control 
(soli d li11 e), linear-quadratic control (dashed line), and worst case control (dotted line). 

so that t he res ul ts of the above ana lysis directly apply. In order to illustrate t he 

blowup effect a nd compa re t he perfo rmance of different feedback control techni q ues, 

we num erically calculate t he bas in of attract ion of t he resul t ing closed- loop system 

obtain ed upon subst it u t ing t he respect ive feed back law at t ime t = (t0 -1) mod 6 = 6 

in to t he map (5.103). (Fo r t he worst case control, we set ct= I in (5.74) , so that t he 

outpu t 6y1 co in cides with the state 6xt.) T he resul ts are presented in fi gure 5.2 . 

On e can clearly see that the basin of attract ion N 08c(x.6 ) corresp onding to th e 

dead-b eat control techni q ue is extremely na rrow, due to t he blowup effect describ ed 

above. T he d irect ion a long which t he bas in of a ttract ion is a ligned can be eas il y 

extracted from (5.1 00) by solving t he equat ion 

(5.107) 

whi ch dete rmin es where t he divergin g contribu t ions to t he feedback (5.1 01) from 

d ifferent degrees of freedom cancel out . O n the contrary, the bas ins of attraction 

co rresponding to the lin ear-quadrati c control and worst case control a re rather la rge. 
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To get a qu ant itati ve description of the size of t he bas in of attract ion in each case , 

we calculated th e smallest distance c5x from the point :x:6 of th e t a rget t ra_j ecto ry to 

the boundary of th e bas in of a t tract ion . Th e numeri cal valu es, c5x 08c :::::; 2. 7 x 10-4, 

ihLQC :::::; 1.0 x 10- 2
, and 6xwcc :::::; 8.8 x 10-3 sp eak st rongly in favo r of th e opt im al 

cont rol techniques . As we determin ed in section 5.3. 1, the size of th e domain of 

att ract ion is cri t ical for t he success of linear feedback cont rol, espec ia ll y if th e sys t em 

is high-dim ensional, which makes eit her of t he op t imal control techniques a superi o r 

choice for con t rolling spatiot emporally chaot ic dynamics. 
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Chapter 6 Extended Chaotic Systems 

6.1 The Model 

Now th at we have co nst ructed th e fo rm alism that can ha ndl e sy mmet ri c determini st ic 

as well as stochast ic systems, t he p robl em of cont rollin g a general extended chaot ic 

system seems rather straight for ward. F irst we need a mathemat ical model, or a set 

of dy na mi cal equat ions desc ribing t he evolu t ion of a give n experim ental system. As

suming no t heo ret ical model of t he system is avail able, t he dy nam ics will have to be 

reconst ru cted using the t ime seri es measurement of a set of obse rvables consistent 

with t he sy mm etry, as d iscussed in chapter 3 a nd sect ion 4.5. T he reconst ruct ion has 

a hidden benefit . Extended systems are often infini te-dim ensiona l. T he methods of 

co nt rol t heory, t hough , a re onl y appli cabl e to fi ni te-dim ensional systems . T herefo re, 

some sort of d imensiona l reduct ion, such as a Galerkin t run cat ion [38], has to b e per

fo rm ed a nyway (d iscuss ion of other model red uct ion techni ques is avail able in many 

control t heo ry texts, e.g., [51]). Howeve r, sin ce t he chaot ic attracto r of fi ni te extended 

syste ms is typ ically fini te-dimensiona l, t he reconst ruct ed dy na mics will a utomat icall y 

be fini te-d ime nsiona l. 

Con sistent reconst ruct ion will y ield a model, which shoul d prese rve t he sy mm et ri es 

of the system. However, most of t he in fo rmat ion regarding t he local p ropert ies of t he 

ori g in a l system will b e lost . As we will see below, t he locali ty of in teract ions in t he 

system is impo rtant both for the a na lys is of t he co ntrol problem a nd fo r the in te rp re

tat ion of t he obtained resul ts. As a consequence, t he loss of t he local st ructure wo uld 

p revent us from gaining a valuable system-in dep endent insight . T herefore, instead 

of consid erin g the reconst ructed mathemat ical model of some specifi c ex perim ental 

system we select a model system whi ch , on t he one hand, has t he dyna mi cs a nd the 

spat ioternporal st ru cture characteri st ic of extended spat iotern p orall y chaot ic systems 

in ge neral and , on t he other ha nd , is simpl e enough to a na lyze a nd compu te. Tn 

part icul a r , we require t he model system to be sym met ri c. Tn order to fac ili tate t he 
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ana lys is we a lso require t he model to b e fi ni te-dim ensiona l, whi ch puts t he system 

on a spat ia l latt ice. Furt hermo re, s in ce t he a nalys is of cont inuous- a nd di sc rete-t ime 

systems is ve ry sim il a r, we choose to discret ize t im e as well. It can be a rgued that t he 

resul ts obtained a fter t hi s red uct ion should st ill b e appli cable to extended syste ms in 

general, cont inuous or disc rete in space as well as t im e. 

\Ve do not regard our model as a n exact descri pt ion of t he dy nam ics of any par

t icul a r system, b ut rather as a n approx imat ion t hat capt ures t he b ehav ior of t he 

domin a nt modes of t he actua l system. Th e state x t of our fi ni te-d ime nsiona l approx

imat ion cannot full y represe nt t he state of t he infi nite-d im ensio nal system eit her. 

Th erefore, t he dy nam ics of t he state vector x t shoul d be affected (however weakl y) 

by t he unmodeled dy na mi cs of un acco un ted degrees of freedom as well as t he unkn ow n 

interact ion wit h t he environment. Consequent ly, t he evolu t ion equat ion shoul d in

cl ude both determ ini st ic a nd stochast ic components . T he effect of t he latter is usua ll y 

rather small a nd can be treated as random noise w t ( often call ed t he process no ise). 

As a resul t , t he evolu t ion equat io n shoul d be of t he form (5.1) rather t ha n t he fo rrn 

(3 .9) ass umed in chapters 3 a nd 4 . 

Sin ce in teract ions in extended phys ical systems often have a rather shor t range, if 

we assoc iate one degree of freedom TI vv ith each s ite i of t he spat ia l latt ice , we can 

neglect t he depende nce of t he dy na mi cs of a variable :r; on the var iables :r_~ assoc iated 

wit h all latt ice sites _j, excep t t he few nearest neighbors of t he site i. (vVe do not con

s id er systems wit h long range in teract ions here to avo id unn ecessaril y compli cat in g 

t he d iscuss ion , a lt hough t hey can be treated equally successfull y us in g t he fo rmali s m 

out lin ed below.) Fo r s impli city t he latt ice can b e chosen as one-d imensional (t hi s 

is often _just ifi ed fo r la rge aspect rat io systems in hi gher d im ensions), a nd t hen o ur 

redu ced model is nat ura ll y rep resented by a stochast ic generalizat ion of t he deter

m ini st ic coupled map latt ice (CML) wit h nearest neighbor di ffus ive couplin g [64]: 

where in dex i = l, 2, · · · , nx labels t he latt ice s ites, a nd t he last te rm (we ass ume 

\JJ i(x , 0 ) = O for every i) rep resents t he net effect of stochast ic pert urbat ions at site i . 
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Tm1)os in g t he {)e ri odi c bounda ry condition xt = x 1 emulates th e translat ion a l (o r 
• l t+n .c tl 

rotat iona l fo r, e.g., a Taylor Couette system) in varia nce. \;Ve a lso ass um e th at both 

a and E are t he same th ro ughout the lattice. 

Th e local map .f(x , a) can be chosen as an a rbi trary (nonlin ear) fun ct ion with pa

rameter a, whi ch typically represents t he process of generat ion of chaotic flu ctuat ions 

by th e local dynami cs of the system, while diffusive coupling typica ll y plays th e op

pos ite role of dissipat ing local flu ct ua tions. Th erefore , th e parameters a a nd E specify 

t he degree of instability a nd t he st rength of di ssipat ion in t he system , respectively. 

Fo r th e purpose of control, however, detail s of the local map are not im po rtant. Th e 

onl y aspect of t he control probl em affected by a ny pa rti cular choice is t he set o f' 

ex ist ing unstable periodic tra,i ectori es. 

Our ul t im ate goal is to construct a lin ear control scheme abl e to stabilize any 

steady or t im e-periodi c state of t he CML (6.1) of arb itrary length nx in t he presence 

of nonzero noise a nd ass uming that complete informat ion about t he state of t he system 

is un avail able and has to be extracted from the noisy time series meas ureme nt o f' a 

limi ted numb er of scala r observables . Furtherm ore, we wo uld like t he control scheme 

to provide opt im al performa nce with or without noi se a nd be p ract icall y reali zable. 

Tn pa rti cul a r, we would like the number of indep endent control paramete rs to be mu ch 

less t han t he numb er of degrees of freedom. The ma,ior ingred ients of such a control 

scheme a re expected to be system-indep endent a nd , hence, applicable to extended 

spatiotemporally chaot ic systems in general. 

6.2 Control Parameters 

6.2.1 Symmetry of the Lattice 

Before we proceed with t he a nalys is of t he ge neral probl em of co ntrollin g a rbi trary 

time-periodi c target states of our noisy model (6.1) based on partial meas ure ments of 

t he state, we stud y the s impl est case of lin ear steady state control in t he absence of 

noise and ass umin g the full kn owledge of t he state of the system. T he solu t ion for the 

ge neral case is t hen obtain ed as a sequence of rather straightfo rward ge neralizations. 

T he first problem t hat we face here is t hat there is no natural choi ce of cont rol 
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parameters in t he problem. Besides , as vve will see short ly, not eve ry control parameter 

is su itable. 

T he a na lys is of t he controll a bili ty condi t ion co nducted in chapte r 4 shows that, 

if t he system is sy m met ri c, ce rtain symm et ry-im posed res t rict ions on t he choice of 

control parameters shoul d be sat isfi ed in orde r to achi eve control. In fact , our mod el 

is by const rnct ion h ighl y symmet ri c. T he symmet ry is t hat of t he spat ia l latt ice: t he 

evolu t ion equat ion (6.1) is invari a nt with respect to translat ions by a n in tege r nu mber 

of latt ice sites (period ic boundary condi t ion makes t he gro up fini te) a nd re fl ect ions 

about a ny site (or m idpla ne between a ny ad,i ace nt sites), whi ch map the latt ice back 

onto itself with ou t destroy ing the ad,i acency relat ionship . Th e co rrespo nd in g po in t 

group Cnxv (we ass ume nx - even) has a total of nx/2 + 3 nonequi valent irred ucib le 

rep resentat ions . T he fi rst fo ur are one-di me nsiona l, d 1 = d2 = d3 = d;t = l , whil e 

t he rest nx/2 - l a re two-d im ensional, dr = 2, r 2: 5. In comparison, b reakin g 

the refl ect ion symmet ry red uces t he gro up to Cn ,, whi ch only has one-d imensiona l 

irred ucible representat ions. 

T he dy nami cal symmetry group can be t ri via ll y obtain ed usin g the observati o n 

t hat t he J acobia n mat ri x in the lin earized evolut ion equat ion (5.47) of t he CML (6.1) 

can a lways be rep resented as a product of two matrices , A1 = !vf N 1
, where 

(6.2) 

desc ri bes diffusive couplin g, a nd 

(6.3) 

defi nes t he strength of local instabili ty, with oi,.i± l extended to comply with peri od ic 

boundary cond it ion. This part it ion of t he Jacob ian expli cit ly shows how t he symme

try gro up [, dep ends on t he symm et ry propert ies of t he nonlin ear evolu t ion equat io n 

(6.1) a nd t hose of t he controll ed state xt. T he mat ri x M has a ll t he symmetri es 

imposed by t he chosen in ter-site couplings of t he nonlin ear model: 

T(g)M = lV!T(.q) , V_q E Q, (6 .4) 



101 

whil e th e mat rix N 1 has a ll th e symmetries of the target st a t e :x.1: 

(6.5) 

where simil a rl y to chapter 4, T denotes t he mat ri x representat ion of .l. Sin ce t he 

.J acobian At co mmutes with a ll mat ri ces t hat commute wit h both M a nd N 1
, we 

obtain .C = Hx ~ 9 in agreement with the ge neral resul t (4.72). 

Sin ce t he a nalysis conducted in chapter 4 is valid fo r eve ry subgro up .C' of t he 

dy nam ical symmetry gro up , we take £' = .l. Const ruct ing t he nx-dim ensiona l rep re

sentat ion T of .C a nd d ecomposing it into the sum of t he irreducibl e representations 

of Cnxv we eas il y determin e th e rest ri ct ions imposed by t he sy mm et ry on th e min

im al number of control parameters nu a nd t he st ructure of t he control matri x B. 

For in stance, a zigzag state gives .C = Cnv with n = nx/2 a nd , accord ing to (4.58) , 

ii,u = d5 = 2; a non-refl ect ion-invar ia nt state with spat ia l period s corresponds to 

.C = Cn vv it h n = nx/ s a nd fi,u = d1 = 1, etc . 

Let us consider the uniform ta rget state, whi ch has t he hi ghest symmetry p oss ibl e, 

.C = Cn.cv, in more detail. The decomposit ion (4.23) gives 

T = T l EB T4 EB y5 EB ... EB ynx/2+3' (6.6) 

a nd t he co rresponding bas is of normal modes whi ch transform accord in g to t hese 

irreducibl e representat ions is g iven by the eigenvecto rs of t he op erators of translation 

a nd refl ect ion, i. e., Fouri er modes g i: 

(6 .7) 

Here </Ji a re a rbi trary ph ase shifts , a nd ki a re t he wavevectors defin ed t hus: k1 = 0, 

ki = ki+l = 1ri/nx for i = 2, 4, 6, · · ·, a nd , for nx - even , kn." = Jr . Fouri er modes with 

t he same wavevecto rs k d efin e invari a nt subspaces L" C ]Rn c . The subspaces Lk vv ith 

0 < k < 1r correspond to t he representa tion s yr wit h r 2'. 5, L0 corresponds to T 1
, a nd 

U' to T 4
. Sin ce t he two-dim ensiona l irred ucibl e representations are present in t he 

decompos it ion (6 .6) , 11,1, = d5 = 2. Th erefore, in order to control a n unstabl e uniform 

steady state of the coupl ed map latt ice we need at least two control parameters. Th is 
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is t he refl ect ion of sy mm et ri c couplin g in t he mod el (6 .1 ) . Note t hat , s in ce every 

two-dimensional irred ucibl e rep resentat ion occurs in t he deco mposit ion (6.6) once, 

p5 = · · · = Pn-c/2+3 = l, acco rdin g to the results of sect ion 4.2, the minim a l number 

of control parameters remains the same for a spat ia ll y uniform t arget tra,iectory of 

a rbitrary time p eriod T. 

O n the other ha nd , sin ce for a ny length n x of t he latt ice t he group Q = Cn cv 

onl y has one- a nd two-dim ensiona l irreducibl e rep resentat ion s a nd £ is a subgroup 

of Q, it is suffi cient to have _just two control parameters to make th e dynami cs o f 

the coupl ed map lat ti ce controll able in the vicinity of a target state with a rbi trary 

sym met ry prop erti es a nd temporal period . Choos ing the minim al number of control 

parameters, nu = 2, we can dete rmine the conditi ons makin g them ind epend ent with 

respect to t he target state: t he lin ear resp onse of t he CML to perturbat ion o f t he two 

parameters , given by the colu mns of the cont rol mat ri x B = [ b 1 b 2 ], has to sat isfy 

co ndi t ions ( 4.22) a nd ( 4.62). 

Fai lure to sat isfy the necessary condition ( 4.22) rul es out the possibility of usin g 

global paramete rs, such as the coupling E or parameter a of the local map .f (x, a) for 

control of sym met ri c steady states . Takin g u = (a, E), so that 

[ 

8,J(:1:1, a) ] 

b 1 = onF(x , 0 , u) = M ~ _ , 

8,J (:cnx, a) 

(6 .8) 

a nd 

[ 

.f (:7:1, a) ] 

b2 = aEF (x , o, u) = (l)- 1 (M - I) _ _ : _ , 

.f (xnx, a) 

(6 .9) 

we obse rve t hat conditi on (4.22) is only satisfied, if t he group£ is t ri via l , £ = {e}. 

This resul t holds for both steady and time-peri od ic symmet ri c target states. 

6.2.2 Locality and Pinning Control 

The two ma_jor resul ts of t he previous sect ion a re esp eciall y important. First of a ll , 

irresp ectively of the length of t he latt ice nx, it is imposs ibl e to control every steady 

or p eriod ic state of t he CML (6 .1 ) using a single control paramete r. Howeve r, a n 
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a rb it ra ry target state can be cont roll ed us in g two ( or more) ind epend ent control 

paramete rs. T he minim al nu mbe r of co ntrol paramete rs depends on t he sy mm et ry 

prop ert ies of t he target state, a nd t he hi gher t he symm et ry is , t he st ri cte r require

ments a re imposed on t he co ntrol scheme. Sin ce we a re lookin g to const ru ct a general 

co ntrol scheme indepe nd ent of t he detail s of t he pa rt icul a r target state, we ass um e 

that at least two cont rol para meters should be avail a bl e. 

Seco nd , it is im poss ible to control sym met ri c target states usmg global system 

paramete rs, such as a a nd E . As a consequence , feedback has to b e appli ed locally. 

O n the other ha nd, p ract ical considerat ions wo uld suggest t hat it is mu ch eas ier to use 

a number of act uato rs to p ert urb t he system locall y at di st in ct spat ia l locat ions, e.g ., 

apply ing local fi elds, local pressure gradi ents, inj ectin g chemi cal reactants, etc . T hi s 

typ e of feedback represents in teract ion with t he cont roll er cons id ered to be a par t of 

t he env iro nm ent, and cannot b e adequately describ ed usin g onl y t he in te rn al system 

para mete rs like those characteri zing the rate of growth of local chaot ic flu ct uat ions 

a nd the st rength of spat ia l d iss ipat ion. Instead , it is most naturall y desc ri bed by 

ge nerali zin g t he te rm 1]\(x 1
, wt) in equat ion (6.1) to include t he interact ion with t he 

co nt roll er , so t hat 

(6. 10) 

where now vecto r u t describes t he st rength of in teract ion with the controll er. T he 

equili brium value u can be selected a rb it ra rily, so we will ass um e u = 0 b elow . 

·without noise a nd cont rol the last te rm in (6 .10) vani shes , so one shoul d have 

\Jl (x, 0 , 0) = 0. Consequent ly, t he lin eari zat ion abo ut t he target state xt again y ields 

(5 .47), b ut now with Bt = Du \Jl (x, 0 , 0) a nd Et= D w \Jl (x, 0 , 0) . 

For s impli city we fu rther ass um e that t he in teract ion between the system a nd the 

co ntroll er is limi ted to onl y a few latt ice s ites im, whi ch we call pinnin gs fo ll ow ing Hu 

a nd Q u [15]: 
8\JJ (x w 0) 

i l l = 0 
ou.i 

(6.ll) 

for all _j a nd i i im, rn = l , 2, · ·· ,nu. T hen, vv it hout loss of ge nerality, t he con t rol 
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matrix B can be chosen as a matrix with dim ensions nx x nu: 

(6.12) 
rn=l 

such that l:i. ·u~ describes the strength of the co ntrol perturbation applied at th e lattice 

site i = im . T he number of pinnings ( equal to th e numb er of control parameters) can 

b e, in principle , chosen a rbi trar ily in the range fl,u :S nu :S nx, where fi.u = 2 as we 

establi shed above. 

In fact, the same minimal number of pinnings is required to control one-dimensional 

spat ia lly continuous extended system in the most frequently used geomet ry, a lin e seg

ment ,vith the periodic boundary co ndi t ion , or a n a nnulus. The respective symmetry 

group is C=v = S2 x S0(2) (translation restr icted by the periodic boundary condi t ion 

plus reflection). T he most surpris ing fact is that, in the absence of noise , t he minimal 

d ensity of pinnings is not bounded from below a nd is ind ependent of the number of 

excited modes a nd , consequently, st rength of spatial correlat ions in t he system. 

Vie model the effect of the process noise by apply ing un correlated random pertur

bations to each site of t he latt ice . Combin ed with t he chosen a rrange ment of pinnings, 

this corresp onds to picking t he stochast ic term in equat ion (6.10) as 

nn 
,T, ( l t t) ~ A° t t 
'l'i x , w , u = L ui,i ,,,um + wi , (6.13) 

m=l 

and , consequent ly, sett in g Et = Dww(x, 0, 0) = J in the lin earization (5 .47). Fur

thermore, we choose the indi vidua l perturbations wf as indep endent random vari ables 

uniform ly distributed in the inte rval [- CJw , CJw] , so that the noise correlat ion matrix 

is given by::=::= (CJ;,j3)l. This lat t er choice is made to simplify th e interp ret at ion of 

t he results a nd does not affect the co ntrol problem oth erwise. 

Localized co nt rol has its downside. In the weak coupling limi t , c --t 0, t he coupl ed 

map latt ice with local feedback b ecomes a weakl y controll able system. The symmet ry 

of the latt ice of un coupled maps is described by t he permutation group 9 = Sn,,, whil e 

the lin eari zat ion about a uniform target state in creases the symmetry to ,C = GL(nx): 

s in ce the respect ive J acob ia n is a multiple of t he unit matrix , Ai.i = 81:.f (i, a)r\,.i, t h e 
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lin eari zed system is sy mmetric wit h respect to a ll ( complex) non sin gul a r coord in ate 

transformat ions. \tVh en coupling is restored , E > 0, the sy mmetry of both the nonlin

ear evolu t ion equat ion (6.1) a nd its lin eari zation (5.47) reduces to Q' = £' = Cn cv · 

Th e ma trix rep resenta tion T of the group GL(nx) in Rn,c is a lready irred ucibl e. 

Consequentl y, nu = nx independent control parameters are required to control t he 

steady uniform state of the un coupl ed latti ce. This resu lt is rath er intuitive. Obvi

ously, one can no lon ger co ntrol t he system apply ing control perturbations at _just two 

latt ice sites, i 1 a nd i 2 . S ince th e control p ertmbation does not propagate to ad_j ace nt 

sites of t he latt ice, feedback has to be appli ed directly a t each site. 

If th e coupling is non zero , but very sma ll , t he controll abi li ty prop erty is resto red 

for nu = 2, but , accord in g to sect ion 4.4, feedback of very large magnitude is required 

to co ntrol the system due to parametric defic iency. Indeed, in order to affect th e 

dy nam ics a t site i away from i1 a nd i 2 the control has to propagate a certain di stance 

decay in g by rough ly a facto r of E p er iterat ion . As a resul t, the magnitude of the 

p erturbat ion required to control a n a rbitrary s ite of the latt ice diverges approxim a tely 

as c nc/2 for E ---1 0 , resul t in g in th e loss of control [14]. This effect will be discussed 

in more detail in sec tion 6.5.2. 

6.3 Periodic Array of Pinnings 

Symm etric target states are arguably the most practically interest in g a nd impor tant 

of all , so th ese will b e the focus of the di scuss ion th at follows. Tt is no accident 

that by fa r the most common ta rget state, a spatiall y uniform tim e-inva ri a nt state 

:l't = · · · = Xnc = x, is the state vvith th e high es t symm etry, a nd , as a conseque nce, 

the most difficult state to control as well. On the oth er ha nd , sy mm etry usua ll y 

s ignifi cantly simplifies t he a nalys is of system dyn a mics, a nd t he neighborhood of t he 

steady uniform state benefits most from this simplificat ion. All of this makes it th e 

perfect target state to t es t the ge neral res ul ts on. Since th e stead y uniform st a te is 

period one in both space a nd tim e, we will often use th e shortha nd notat ion Sl Tl for 

it. 

Naively it seems t hat the most na tural choice is to pl ace t he pinnings in a p eriodi c 
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Figure 6.1: Periodi c array of single pinning sites: minim a l coupli ng E as a fun ction of parameter r1 . 

The dots represent t he numeri cal results from fi gure 2 of (15], with E rescaled by a factor of two to 
m a ke it compatible with our definition . 

array, such t hat t he distance between all nu prnnrn gs is constant , Zm+i - Zm = nd, 

Vm. However , it can be shown that with thi s setup the uniform target state co uld 

only b e stabili zed with a rather dense array of p innin gs, a nd that the di sta nce nr1 

sensit ively depends on t he valu es of system parameters a and c F igm e 6.1 shows t he 

minim al coupling E fo r whi ch the stabilizat ion was achi eved in the abse nce of noise in 

the num eri cal experim ent [15] as a fun ct ion of parameter a fo r several values of nd· 

The logist ic map 

f(x, a)= ax(l - x) (6 .14) 

with the fixed point x = 1 - a- 1 was taken as the local chao ti c map . In parti cul a r , in 

t he phys icall y in terest ing in terval of paramete rs 3.57 < a < 4.0 where the independ ent 

logistic maps a re chaot ic, cont rol fa il s unl ess nd :S 3. It is interest in g to note th at th e 

di stance betwee n peri od icall y pl aced pinnings can be in creased s ignificantl y, if t h e 

symm et ry of t he system is lower, such as when the pari ty symm et ry is broken [28]. 

On e can easil y verify that the control mat ri x (6.12) calcu lated fo r a period ic a rray 

of pinning sites does not sat isfy the controll ability condition. I t is t rivi al to check 

that the eigenvecto rs of t he J acob ian 

A = 8 .f'(:1; a)M ~.. ) (6. 15) 
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a re give n by th e Fouri er modes (6.7). This 1s consistent with th e results of t he 

section 4 .1.3 : s in ce th e uniform state is in vari a nt with resp ect to both t ransla ti ons a nd 

refl ecti ons of th e la tti ce a nd no irreducibl e representa ti ons of th e respecti ve dy na mi cal 

symm etry g rou p [, = Cnxv occur in th e decompos iti on (6.6 ) more t ha n on ce, the 

bas is vec tors of t he inva ri a nt subspaces Lk should coincide wit h the eigenvectors of 

t he invari a nt J acobi a n . 

Let us again use the notation b m for th e m th column of th e matri x B. Accordin g 

to t he results of secti on 4. 1. 5, t he con t roll abili ty condi t ion is onl y sati sfi ed when the 

pro_j ec ti ons of th e vectors b m, m = 1, ··· ,nu spa n every in vari a nt subspace L1
·' . T he 

pinnin gs a re pl aced with p eri od n r1 , so 

(6.16) 

for every m , wheneve r </Ji = i 1 ki + 11 /2 a nd ki = 11 /nr1 , 211 /nr1 , 311 / nr1 , · · ·. As a conse

qu ence, onl y a one-dime nsiona l subspace of L"; vvill be spa nned , whil e dim (L") = 2, 

0 < k < 11 . Th erefore, feedback through th e p eriodi c a rray of pinnin gs does not 

affect t he norm al modes (6 . 7) whose nod es ha ppen to li e at th e pinnings, i.e ., modes 

with peri ods 211 / ki equ al to 2nr1, 2nr1/ 2, 2n r1 /3, etc. , provided t hose a re intege r. In 

oth er wo rds, such mod es a re un controll a ble. (By contrast, in th e sys t ems wi t h the 

broken pa rity symm etry, such as th e one consid ered in [28], inva ri a nt subspaces a re 

a ll one-dimension al , so t he same a rrange ment of pinnings leaves no norm al modes 

un controll abl e.) 

Th e co ntrol succeeds only when all uncon t roll a bl e normal modes a re stable, i. e ., 

wh en th e weaker stabili zability condition is sati s fi ed. This, however, imp oses excess ive 

res tri ct ions on t he dens ity of pinnings p = n,jnx = l/nr1, again du e to th e spa ti a l 

p eriodi city of t he a rray. The conditi on for st abilizability can be obta ined from th e 

sp ectrum of e ige nva lues of the J acobi a n ma tri x (6. 15) : 

( 6 .1 7) 
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where a= Bx.f (x, a) = 2 - a. Specifi call y, we need 

(6.18) 

for a ll .i = l, · · · , nx - 2, such that nr1/.i is integer. Us ing this criterion one can obtain 

th e relation between the minimal couplin g, the distance betvveen pinnings nr1, and 

parameter a of th e local chaot ic map for a stabilizable system . For instance, .i = l 

y ields 
a-3 

E = ----------
2 ( a - 2) ( 1 - COS ( r~d ) ) . 

(6.19) 

The curves defin ed by equation (6.19) a re plotted in figure 6.1 together with the 

num eri cal results of Hu a nd Qu [15] and a re seen to be in excell ent agreement. Alte r

nat ively, equation (6.19) can be used to find t he minimal value of p as a function of 

a a nd E for the target state SlTl. Similar rest ri ct ions on the minim al density of pin

nin gs can be obtained for target states of a rbit rary spat ial a nd temporal p eriodi city 

(e.g., S2Tl and S1T2 [65]). 

The anal ysis of sect ion 6.2 suggests that one can get rid of all unco ntroll able modes 

placing pinning sites differently. Arranging the pinnings, such that the controll ab ility 

condi t ion for the matrices (6.15) a nd (6.12) is sat isfied, will enable us to control t he 

system anywhere in the parameter space at the same t ime using a smaller number of 

pinnings, simplify in g the co ntrol setup . ·what is equally importa nt , s imil a r resu lts a re 

appli cable to spatially co ntinuous systems as well. This means that on e can obtain 

t he restrictions on the mutual a rrangement of pinnings for arb itrary extended systems 

using sym met ry consid erat ions alon e. 

6.4 Control at the Boundaries 

Let us take the minim al numb er of pinnings, nu = 2, and place them at the latti c<c~ 

sites i 1 an d i 2 . This results in the control matrix 

(6.20) 
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whi ch is indep endent of t he target state. T he rest ri ct ions im p osed by t h e controll a

b ili ty cond it ion on the m ut ual a rrangement of the pinnings i 1 a nd i 2 a re establi shed 

t ri via ll y. For instance, in t he case of t he steady uniform target state t h e length of 

the latt ice nx sh oul d not be a mul t iple of t he di st a nce between p innings [i2 - i 1 [, 

otherwise t he mode wit h th e pe ri od 2[i2 - i 1 I becomes un controll able. O ne part ic

ul a r a rrangeme nt, however , deserves sp ec ial attent ion: applying feedback t h ro ugh 

t he p innin gs placed at t h e "begin nin g" i 1 = 1 a nd t he "end" i 2 = nx of t h e latt ice 

is eq ui valent to controlling a spat ia lly uni fo rm system of fi n ite length adjust in g t he 

boundary condi t ions. 

Th e importance of t hi s a rrangement , hovvever , is rather d ub ious unl ess t h ere exists 

a whole class of period ic trajector ies t hat can be controll ed by adjust ing t he bou ndary 

co ndi t ions. In fact , us in g cond it ion ( 4.62) one can show t hat takin g the co nt rol mat ri x 

in t h e form (6.20) wit h i 1 = 1 a nd i 2 = nx ensures t he controll ab il ity of any ta rget 

state of t he CML (6.10) , irrespect ively of t he sym met ry propert ies of t hat state. In 

the absence of noise t hi s translates in to b ein g able to control a rbi trary steady o r t ime 

peri odi c states of t he co upled map latt ice wit h a n arbi trary (b ut fini te) length , switch 

betwee n states, track target states as t h e system parameters cha nge and so on , whi ch 

ensures ext reme fl exib ili ty of t he control scheme. If no ise is p rese nt, t he max imal 

length of the latt ice t hat can be controll ed is li m ited by t he nonlin eari ty. T hi s will 

be d iscussed in detail in sect ion 6.5.2. 

Choos ing the set of control parameters does not completely define th e control 

scheme. As the next a nd fi nal step, one shou ld choose t h e feedback control meth od. In 

p rin ciple, we can use a ny of t he methods desc ri bed in t h e p rev ious chapte r. However , 

give n th e ass ump t ions made, t here is a clear p reference . S in ce we a re lookin g to 

event ua ll y const ru ct a ge neral control scheme able to stabi li ze t he model system to a 

p rescr ibed target trajectory wit h des ired propert ies in t he p resence of noise of fini te 

a mplitu de and wit hou t, requirin g t he com plete kn owledge of t he system state, we have 

to select betwee n t he li near-quadrat ic a nd t he worst case control. F ur t hermore, s in ce 

we chose t he process no ise as random a nd uncorrelated wit h t he state of t he system, 

the lin ear-quadrat ic co ntrol shoul d achi eve t he opt imal res ul ts , so we choose it ove r 

the more complicated wo rst case control. 
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Before we pro ceed with t he calculation of feedback , we need to defin e th e we ight 

mat ri ces. U nl ess there is a very compelling reason to di st ingui sh b etween different 

points of a periodi c target traj ectory, it usually does not make much sense to ma ke 

the weights tim e-dependent, so we assume t hat th e we ight ma tri ces a re consta nt 

irresp ect ively of whether t he target state is p eriod ic or not. Furth ermore, sin ce t he 

model system (6.10) is translat ionally invari a nt , it is often natura l to choose t he 

weight ma trices as multipl es of a unit mat rix: 

Q = ql , q 2 0, 

R=rl, r2 0. (6 .21) 

Sin ce t he weigh t matri ces a re symmetric a nd t he minimizat ion probl em is in vari a nt 

with respect to rescaling the functional (5.40) , (nx(nx + l) + nu(nu + 1))/2 - l ind e

p end ent para meters a re t hus replaced wit h a sin gle adjustabl e parameter , q/r > 0 . 

The remaining adjustabl e parameter can b e chosen to sat is fy a selected criteri on, be 

that t he minimizat ion of th e noise a mplifi cation factor 1/ or th e max imizat ion of the 

la rgest magnitude of noi se Cfw tolerated by t he resul ting control scheme. 

Now t hat t he control scheme is completely defi ned , we can t urn to num eri cal 

exp erim ents and th e a nalysis of their results. Followin g Hu a nd Q u [15] we use the 

logist ic map (6.14) to describe t he local dy na mics . Also, t h roughout t he remaind er of 

t hi s sect ion we control t he co upled map latt ice by apply in g feedback at t he bounda ri es , 

·whi ch corresponds to setting 

(6.22) 

Num eri cal simulat ions show t hat the CML defin ed by equa tions (6.10) a nd (6.22) can 

b e stabili zed using t he lin ear- qua drati c control method in a wide ra nge of paramete rs 

a a nd E, as we expected . Th e results a re demon strated for a n in termedi ate valu e 

of couplin g, E = 0.33, a nd with t he parameter a = 4. 0 chosen in t he range~ whe re 

t he indi vidual logist ic m aps a re chaotic, whi ch ensures that every steady or peri od ic 

tra_j ec tory is unsta bl e. 

Consider t he steady uniform target state (whi ch we denoted as SlTl) with :c 



111 

6 ....-----,.----,---~----.--"""T""--..-----, 

5 

4 

/ 
2 / 

/ 
/ 

a· 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

-------'°'., 
/,er· ·,. 

' ·," 
\ 

\ 
\ ·, 

\ 
K \ 

lj \ 
"-·, ·, ·, ·, ·, ·, 

·c.. ____ _ 

o----~---------~--........ -----1 

1 2 3 4 5 6 7 8 
site 

Figure 6.2: Oµtimal feedback gain for t he steady state SlTl: feedback gains f(IJ and !('2.i for t l1 e 
two pinni1 1gs placed at tl1e sides of the lattice ('i. 1 = l ,'i'!. = 8) as functions of tl1e lattice site j for 
a = 4.0 and E = 0.33 . 

l-a- 1 = 0.75. The local dynam ics of the model system oflength n x = 8 in the v icinity 

of this state is character ized by three unstable a nd five stable norm al modes . T he 

solu t ion of equat ions (5.36) a nd (5.37) for the feedback gain matrix J{ is presented 

graphi call y in fi gure 6.2 fo r the choi ce of the weight mat ri ces Q = I a nd R = T. 

Nat urall y, the cont ri but ion I<rn.i6..x_; from the site _j far away from the p innin g site ·irn 

is la rger: s in ce the feedback is appli ed indirectly through co uplin g to the neighbors, 

t he perturbation introduced at the pin nin gs decays with increasing distance from the 

pin ning s ites . 

One m ight a rgue t hat t he latt ice with _ju st eight sites is too short to be a n adequate 

mod el fo r a typ ical extended dynamical system . However, t he purpose of th is sect ion 

is to illustrate the appli cat ion of d ifferent feedback control tech ni ques in trodu ced 

in the prev ious chapter to the problem of controllin g th e spat ia lly extended system 

modeled by a coupl ed map latt ice. Here we desc ri be how the control techniques can 

be used under vario us cond it ions in the context of our particular model rather than 

explore th eir li mits of appli cab ili ty, which is done later in sect ion 6.5 , where a scalable 

ge neralizat ion of the p resent control setup is introduced. 

F irst, we stabili ze the system in the absence of noi se, sett ing aw= 0. figure 6.3(a) 

shows t he state of the system as the evolu tion takes it a long a trajectory wh ich passes 
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Figure 6.3: State feedback control of the steady state SlTl: (a) system state, (b) its deviation a~ 
from the target state and magnitude of control pertmbations v.\ and '/J,t. Feedback is turned 011 at 
t = o. 

through the neighborhood N(x) of th e uniform target state, a nd subsequ ent ly as 

control , turned on at time t = 0, drives the system towards t he target state. On e can 

see tha t even though the dim ension ality of the system is mu ch larger than the number 

of control paramet ers, it only takes abo ut ten tim e steps for the observable dev iat ions 

from the uniform configuration to disappear. One can obtain a more qua nt itat ive 

desc ription of the convergence sp eed by looking at the stand a rd dev iat ion 

(6.23) 

from the target state as a function of time, presented in figme 6.3(b) a lon g with th e 

magnitude of cont rol p ertmbat ions 6.u\ a nd 6.u~ . 

Vve repeat the procedure for the latt ice of the same length a nd usin g the same 

feedback gain , but novv introducin g random noise of finite a mplitude aw= 10-5
_ Th e 

st ate of the system b efore and after the control is turned on is presented in figure 

6.4(a). Large fluctuation s about th e target state disappear aft er abo ut ten iterat ions, 

as in th e noi se-free case, although aft er t hat, instead of converging to the uniform 

target state at a consta nt rate , the syst em settles into smaller amplitude flu ct uat ion 
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Figure 6.4: State feedback control of t he steady state Sl T l wit h noise: (a) system state, (b) its 
deviatio11 rJ'.~ from t he target state and magnitude of control per turbations 'l.li and v.~. T he ampli tude 
of noise is flw = 10- 5 . Feedback is turned 0 11 at t = 0. 

dri ven by exte rn al noise, as ev id enced by t he standa rd dev iat ion CJ; presented in fi gure 

6.4(b ) a long wit h t he magni t ude of cont rol pe rt urba ti ons. 

Addin g even t he small est a moun t of noise prov ides a ve ry good indi cator o f how 

well a g ive n meth od p erfo rms wit h respect to other cont rol methods: t he perform a nce 

is characte ri zed by how well t he noise is suppressed. \ ;\Then t he noise is sm all com

pared to t he size c5x of t he bas in of attract ion N(x ) of t he target trajectory, such a 

cha racte ri st ic is provid ed by th e noise a mplificat ion facto r // 1 whi ch dete rmin es t he 

average dev iat ion of t he closed-l oop system from t he target trajectory in t he prese nce 

of noise of fi xed a mpli t ud e. \;\Then the noi se cannot be co nsidered sma ll , minimi z ing 

th e max im al strength o f noi se 8'w th at t he cont rol scheme can tolerate b ecomes a 

much more important cri te ri on t ha n minimizin g t he noise a mplifi cat ion facto r. Tn 

ge neral, a111 dep ends not onl y on 1/, b ut a lso on c5x whi ch , in turn , dep ends on the 

strength of fee dback. For th e CML (6. 10), however , it was fo und nu me ri call y t hat 

sett ing R = 0 to obtain t he sma ll est I/ usuall y yields t he la rgest a-111 , t hus sat isfy in g 

both cri te ri a. 

\ ;\Te compare t he noise a mpli ficat ion fac tor calcul a ted usmg (5.44) for t he lin ear

quad rat ic co ntrol method , t he mul t i-paramete r generalizat ion of t he OGY method , 
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a nd the dead-b eat control method using the latt ice with n x = 16 sites. As expected , 

the lin ear-quadrati c control performs considerably better (see figure 6.5) than the 

other two methods , esp ecia lly for small coupling wh en the degeneracy is most signif

icant. The linear-quadrat ic control method is a lso capable of tolerating the noise of 

much la rger ampli tude. Usin g the latt ice with nx = 8 sites we found iJw -;::::; 3 x 10-3 

for the linear-quadratic control versus iJw -;::::; 10- 7 for the other two methods - a 

difference of more than few orders of magnitude. Similar results were obtain ed for a 

number of target states besides SlTl, which shows sup erior robustn ess properties of 

the lin ear-quadratic control, _ju st ifying our choi ce of the control technique. 

Time-periodic target states can b e controlled equally successfull y usin g the time

dependent generali zat ion of the lin ear-quadratic control technique described in sect ion 

5.3.3. Let us again take the latt ice with nx = 8 sites. The model system of this length 

has a multitude of un stable periodic tra_j ectories. \Ale pick a per iod four nonuniform 

(S8T4) tra_jectory, which is invariant with respect to reflections about sites i = 4 and 

i = 8, as our target state. Since the period of this target state is four, the feedback 

gain matrix obtained by solving equat ion s (5.53) a nd (5.48) is a lso periodi c with th e 

same period .. um eri cal experim ents again show that the control scheme obtain ed is 

rather robust a nd can withstand noi se of considerable ampli tude. As seen from fi gure 
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Figure 6.6: Sta te feedback control of the periodic state S8T4 with noise: (a) system state, (b) it s 
deviation IT~ from the target state and magnitude of control perturbations 11\ and vt T he amplitude 
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6.6, by applying feed back calcu lated with Q = I a nd R = 0 we ma naged to stab il ize 

th e syst em desp ite the high level of noi se, <J10 = 8 x 10- 3 . 

Although the feedback gain (5.48) is by co nstruct ion optimal for both determ inist ic 

a nd stochast ic systems, it can b e furth er tuned by findin g th e weight mat rices opti

m izing th e perform a nce cri te ria selected in eith er case. For instance, in t he stochast ic 

case it is usuall y more d es irable to in crease the tolerance of the control scheme to 

noi se . Hence, for each target state we can set Q = I a nd R = r I a nd find the max imal 

noi se st rength 6w for various r, thus dete rmining t he opt imal weights. This process 

is ill ustrated using t he target state S8T4. As one can see from figure 6.7, th e value 

of c\11 varies ove r a lmost a n ord er of magni t ud e, reaching th e maximum of approxi

mately 8 x 10-3 for the smallest value of r considered , .vhich supports t he general 

obse rvat io n that in our model 6w is maxim ized by minimizing the noi se amplifi cat ion 

factor v . Different target states, however, a re sensitive to th e choi ce of the relat ive 

magni t ud e of Q a nd R to a different degree , e.g., for the steady uniform target state 

S1 Tl 6w ~ 3 x 10-3 is essent ia ll y indep end ent of the cho ice of weight matr ices. 

Finall y, we show how our model can b e stabilized us ing output feedback control 

when t he state of the syste m cann ot be determ ined directly. As we di scussed in sect ion 
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Figure 6.7: Maximal noise ampli tude tolerated by state feedback control: i'r,v is plotted for tl1 e 
periodic state S8T4 as a function of r , where R = r! . Matrix Q = ! is kept constant. 

5.4, the state can be dynamically reconstructed using a sequence of measurements 

of the output. During the observation one usually extracts information about an 

extended system locally at a number of distinct spatial locat ions. This comes as no 

surpr ise, since most sensors provide inform at ion of extremely local character. In the 

context of our particular model, t hi s impli es that the state of each sensor depends 

only on the state of the latt ice in some small neighborhood of that sensor. Similarly 

to the number of control parameters nu, the number of scalar output signals ny is 

bounded from below for highly symmetric target states by the observability condit ion. 

Placing sensors at the pinnings and assuming that the neighborhood only in clud es 

the pinning s ite itself, we conclud e that C = Bt , so that the observabi lity condit ion 

is sat isfied automat ically and ny = nu. In particular, this arrangement of sensors 

ensu res that there a re no unobservable normal modes. 

Vve illustrate the application of output feedback control using the latt ice of length 

nx = 8. The feedback and filter gains were calcu lated using equations (5.53) , (5.48) 

and (5.68) , (5.70), respectively. vVe successfu ll y stabili zed a number of steady and 

time-periodic states of the model (6.10) in the presence of both the process noise and 

measmement enors (measmement errors were assumed to be random , independ ent 

and uniforml y distributed in the interval [-av, av], similar to the process noise). The 

difference 6.xt between the actual and the reconstructed state of the system is plotted 
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Figure 6.8: Output feedback control of t he periodic state S8T4 with noise and imperfect rneasure
rnents: ( a) difference f::,. x.1

· between the actua l and t he estimated system state , (b) deviation O"~ frorn 
t l1 e target state and t he reconstru ction error O"t T he ampli tudes of t he process 11 oise and measure
me11 t errors are O"w = 10-3 and O"u = 10- 5 _ Feedback and fil tering are t urned on simul taneously at 
t = 0. 

in fi gure 6.8(a) fo r t he target state S8T4 wit h moderate level of noise, whil e fi gure 

6.8(b) shows t he dev iat ion CT; from t he same target state a nd the est imat ion erro r 

(6.24) 

6.5 Density of Pinnings 

6.5.1 Lattice Partitioning 

To fac ili tate pract ical im plementation, t he control a lgori t hm presented above should 

b e eas il y extendable to systems of a rb it ra ry size. However , even t hough it is t heo ret i

call y poss ible to control t he dete rm inist ic coupled map latt ice of a ny length usin g _j ust 

two p inning sites , p rac ti cal li mitat ions require t he in trod uct ion of add it iona l p inning 

sites as t he length of t he latt ice grows . Since t he total number of pinnings cha nges, 

when t he lo.,tt ice becomes la rge, it makes more sense to talk abo ut the m ini mal de nsity 

o f" pinnings, or t he max im al num ber of latt ice sites p er pinning, t hat a ll ows successful 

co ntrol un der give n condi t ions. 
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Furthermore, since couplin g b etween latt ice sites is local, the feedback u;n onl y 

a ffects the dy namics of the sites i which are suffic ient ly close to the pinning s ite im. 

Conversely, we expect t he feedback u~i to be essenti a lly independent of t he state of 

t he latt ice sites i far avvay from the pinning im. Using this observation allows one to 

s implify the construction of the control scheme substantially by expli cit ly defi ning t he 

neighborhood of each pinning im that contributes to, a nd is affected by, t he feedback 

u~i - Vve thus naturally a rrive at the idea of distribu ted cont rol. 

By a rranging the pinnings regularly we ensure that the latt ice is pa rti t ioned into a 

number of identical subdom a ins describ ed by identica l evolution equ at ions. To sim

plify the analysis we ass um e that each subdom ain conta in s the minim al number of 

pinnin g sites, i. e., two. Placing the pinnings at the boundaries of subdom a in s allows 

one to choose bound ary conditions for each of the subdom ains at will , so we ass um e 

that bound ary conditions are periodi c. This effect ively decoupl es adj ace nt subdo

mains, which can now b e treated independently. The general probl em of controlling 

t he latt ice of arb it rary length nx is thus reduced to t he simpler probl em of controllin g 

the lat ti ce of length n 11 « nx with two pinnin g sites, which was studi ed in detail in 

th e preced ing sect ions. 

Ind eed , le t th e domain span the sites i1 through i 2 = i 1 + nr1 - 1 of the latt ice . 

Then a rbitrary boundary conditions 

can b e imposed by adjust ing the feedback as follows : 

6.u; -+ 6.ui +Ef'(-1fh(xt, ··· ,xU)-Ef(:1:L_,), 

6.ut -+ 6.ut + Ef(1/J2 (xt, · · · , :r;J) - Ef(xL+1), 

(6.25) 

(6.26) 

which only requires the knowledge about the state of the system in side th e subdoma in 

a nd a t two adjacent sites i 1 -1 and i 2 + 1. If the exact form of the evolution equ at io n 

(6.10) is not known , the linearizat ion of th e rul e (6 .26) can be used instead. The 

nonlin ear vers ion , however, has a signifi cant additional benefit assoc iated with it : 
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Figure 6. 9: Stabilizing steady uniform state: a large lattice (nx = 128) is controlled by an an ay of 
doub le pinning sites , p laced at t he boundaries of subdomains with length nd = 8. The state of t l1 e 
system was p lotted at each 104 th step. 

no nlin ear decoupling of adjace nt subdomains d ramat icall y d ec reases t he capture t ime 

by decreas in g t he effect ive d imensionali ty of t he system. 

Vi/e dem onstrate the effect ive ness of nonlin ear decoupling by stab ili zin g t he target 

state Sl Tl of t he CML defi ned by equat ions (6.10) , (6.13) a nd (6 .14) wit h a= 4.0 

a nd E = 0.33. T he latt ice wit h nx = 128 sites was d ivided into subdomains of length 

nc1 = 8, each controll ed by two p inning sites placed at t he bounda ri es. T he resul ts 

presented in fi gure 6.9 show the evolu t ion of t he system fro m the ini t ia l condi t ion 

chose n to be a coll ect ion of random nu mbers in t he in te rval [0, 1] . T he a verage 

t ime to achi eve control in each of t he subdomai ns, le, is seen to be of o rde r 105 

iterat ions even t hough t he subdoma ins were chosen relat ively small. Tn ge neral, l e 

grows exponent ia ll y with t he po intw ise d im ension of t he attracto r, l e ex: (ch)-n'~, a nd , 

sin ce n~ ex: nr1 fo r la rge nr1, t he t ime l e can become p rohi b it ively large, impos in g 

restr ict ions on t he la rgest size of t he sub domain . 

T he major facto r limi t in g our ab ili ty to locall y control a rbitraril y la rge systems 

wit h local in teract ions, however, is noise. T he st rength of noise a nd the valu es of 
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system parameters determine the max im al length fi,x of the latt ice t hat can b e con

t roll ed wit h two pinnings placed at th e bounda ri es, which subsequ entl y defin es the 

minim al density of pinning sites p = 2/fl,x. It is interest ing to note t hat, at least fo r 

t he target state S1 Tl , th e length fi, x can b e est im ated analyti cally with a rather goo d 

prec ision using the condi t ions of cont roll abili ty a nd observabil ity, highli ght ing their 

fund amental rol e in t he control p roblem . 

6.5 .2 State Feedback 

First, ass um e t ha t t he state of th e syst em can be det ermined directly a t any t im e, so 

t hat state feedback con t rol can b e used . In the determini st ic case t he controll abili ty 

condition det ermin es wheth er t here exists a control sequ ence 6uti, • • • , 6 u 11- L, brin g

ing a n arbi trary initi a l sta t e 6xti to a n arbit rary fin al state lixtf, where t J = ti+ n :, . 

In the p resence of noi se and wit hou t assuming a ny fun ct ional relat ionship b etween 

t he state a nd the feedback we can wri te 

TL :r rL;i; 

lixti+nc = (At'"Lixti + I)Arc- kBliuti+k- 1 + I)At,ckEw l;+k-1 _ (6. 27) 
k= l k=l 

This equat ion is not exact , it is only a n approximat ion of the exact no nlinear evolu t io n 

equa tion (6.10) , valid when b oth 6x1 a nd 6ut a re suffic ient ly sm all for a ll tim es 

/; = ti, ·· ·, t1 - 1, as discussed in sect ion 5.3.1. The linear izat ion (5.39) on whi ch 

equa tion (6 .27) is based is valid for a rbi trary 6ut. However, sin ce feedback directly 

p erturbs the state of the system, its magni t ude is limi ted by nonlineariti es to t he 

same range c5x as the local devi ation li xi from the t a rget state. T herefore, t he cont rol 

sequence shoul d sati sfy both equ a tion (6 .27) a nd the rest r iction 

(6. 28) 

Taking 6xti = 6xt1 = O (th e initial a nd fin a l st a t es coincide wit h t he target state) 

equa ti on (6 .27) can b e rewri tten as 

nx nx 2 

z = -:I)Arx-kEwt;+k-1 = 0 + LL(Atx-kb m LiU~+k- l, (6.29) 
k=l k=l. m=l 
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which is formall y equi valent to t he problem of finding the feedback sequence brin ging 

the system from the initi a l state 6.xi = 0 to the final state 6.xf = z in nx steps in 

t he abse nce of noise . 

Again we assume that t he process noise w t is represented by a vector whose com

ponents wf a re ind ependent random variables uniforml y dist ributed in the interval 

[-a-w , a-w] - Noise is am plified roughly by a factor of A per iterat ion , where >- is th e 

la rgest eigenvalue (6.17) of th e Jacobia n (>- = O'. for E :S 0. 5 and >- = (1 - 4E)a for 

E > 0. 5). As a consequence, the left-hand side of equat ion (6.29) can also be rep re

sented as a vecto r with random components z i dist ributed in the interval [- ,60-w , ,60-wl, 

where 

(6.30) 

It could be argued that for the control to suppress a ny sequence of random pertur

bations w 1, every term (Ayi cc -l,:b m 6.u~i+l.:-l on the right-ha nd side of equation (6.29) 

should be of the same order of magnitude as the "worst case" amplified noi se z . The 

vector b 6.ut;+k-l rep resents local perturbat ion c5xt = ut;+h-l in troduced at t he m m ~ m 

site im at time t =ti+ k - 1, while the mat ri x (A) 71
"-/.: desc rib es the propagation of 

that p ertmbat ion throughout the latt ice. According to the st ructure of the matrix 

A, local pertmbat ion a t site im affects the dynamics of the remote site .i only afte r 

propagat ing a di stance l = lim -.ii in time 6.t = l , decaying (or being a mplifi ed) by a 

factor of etE per iterat ion. Consequently, the state of site .i at time tf will be affected 

by control 6.u~n appli ed only at times ti , ···, ti+ nx - l - 1. The pertmbation applied 

at i = ti+ nx - l - l is amplifi ed th e least and y ields the order of magnitude re lat ion 

(6.31) 

Due to t he periodic boundary condi t ion , 0 :S l :S nx/2. For weak coupling, E < ia!- 1
, 

t he propagat in g perturbation decays exponenti all y in magnitude , so the st rength of 

feedback is ultim ately determin ed by the la rgest di stance the sign a l has to travel, and 

we should take l = n:r/2 in (6.31). On the contrary, for st rnn g coupling, E 2 lal- L, th e 

propagating p ertu rbat ion is amplified and , therefore, suppress in g local noi se requires 

the strongest feedback, sett ing l = 0. 
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On the other hand, c5x can be est im ated by equat in g t he magnitud e of t he lin ear 

term with the magn itude of the next non linear te rm in t he Taylor expans ion of the 

local map function: 

f(x + c5x, a) = .f(:E , a)+ r,,(c5x + µ(c5x) 2 + • • •). (6 .32) 

For instance, t he logist ic map (6.14) gives c5x ~ µ- 1 = 2x - 1 = 1 - 2a- 1 . As a 

result , we obtain t he following est im ate on the size of the controll able domain for a n 

a rbitrary coupl ed map latt ice with the quadratic nonlinearity: 

(6.33) 

which is rather simil a r to t he ones obtain ed by Auerbach [28] a nd Aranson et al. [66] 

for t he latt ice with asymmet ri c coupling. Parameters ~ a nd ( in (6 .33) are defined 

t hus: ~ = (1,\1 - 1)-1
, whil e ( = l,\llw:l- 1

/
2 for E < lo,1-1 and ( = 1,\1 for E 2: lo,1-1

. 

vVe should note t hat the est im ate obtained for lal = 2 in [14] was derived in t h e 

ass umpti on of strong local instability, lal » 1, and (6.33) reduces to it in t he limi t 

µ = 1 and ~ = 1. 

Another method for the calcu lat ion of nx(o-w) was proposed by Egolf a nd Socolar 

[67], who suggested to use the act ua l feedback gain matrix I< to obtain more precise 

res ul ts for a spec ifi c control scheme. As we have seen in sect ion 5 .. 3.2, when a lin ear 

system is perturbed by t he noi se of a mpli t ude D"w, one can est im ate the average 

dev iat ion from the target tra,i ectory as D"x = 1,10-111 , where v is t he noi se amplifi cat ion 

factor defined by (5.45). In a nonlin ear system we in stead have 

(6 .34) 

where D"xx is the error resu lting from ignoring t he effect of nonlin ear terms in equa

tion (5 .. 39). For a coupled map latt ice with t he quadratic nonlinearity one obtains 

D"x:r: = µo-~ a nd thus 

(6.35) 



123 

T hi s is a quad rat ic equat ion in CJ; whi ch has solu t ions onl y when 

(6.36) 

t hus dete rm ining t he cri t ical no ise amplifi cat ion fac to r. For 1.1 > 17(aw) t he effect o r 

non lin ear terms can no longe r b e ignored a nd t he control scheme breaks dow n. Tn 

p rin cip le, one can stop here a nd num eri call y evaluate t he length of t he syst em at whi ch 

v = 17(aw) , thus obtainin g t he required fun ct ional dependence fi,x(aw) = nx(D(aw)) 

fo r a spec ific K. 

However , makin g one mo re step all ows one to eas ily extract t he a nalyt ic depe n

dence on t he st rength of noise . It can b e a rgued that for a ny J{ t he no ise ampli ficat ion 

facto r depe nds exponent ially on t he length of t he system 

(6.:37) 

where both x a nd 17 a re fun ct ions o f t he system parameters C\' a nd E a nd t he feedback 

gain mat ri x K. Subst it u t in g (6.36) into (6.37) y ields t he fin al resul t in t he fo rm 

sim il a r to equat ion (6.33): 

(6.38) 

Two important conclus ions can be draw n from thi s resul t. F irst of a ll , even t hough the 

length 11,x does depe nd on a part icul a r choice of the feedback gain , t hi s depe ndence is 

rather weak , because it is attenuated by t he logari thmi c fun ct ion , so t hat t he obtain ed 

est imate is vali d fo r a ny typ ical feedback gain t hat stabili zes t he system. Seco nd , 

t he depende nce on the strength of noise is also logari t hmi c and weak; however , the 

magni tud e of CJw is that crn cia l parameter t hat ul t imately dete rm in es t he scale fo r 

both fi,x and t he mini mal density of p innin g sites (). 

T he maximal length of the system that can act ua ll y be stabili zed by t he lin ear

quadrat ic control method wit h two p inning sites placed at t he boun dari es can be 

obtain ed num eri call y by choos in g t he target state as t he ini t ia l condi t ion a nd mon i

torin g t he evolu t ion of t he closed-l oop system in t he p resence of process no ise w l of 

ampli t ude CJw, apply ing feed back calcul ated usin g t he fo rm ula (5 .37) wit h Q = J a nd 
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Figure 6.10: The largest length of the lattice which can be stabili zed with two pinning sites using 

state feedback control: theoretical estimates fl~
1

) (solid line) and fl~
2

) (triangles), and numerical 
results (squares) obtained with the process noise of amplitude Uw = 10-s as fun ctions of coupling E 

for a= 4.0 . 

R = 0. As seen from figure 6.10, this length is quite large for a moderate level of noise 

an d is rather close to the values where the controllability breaks down accord in g to 

(6.33). T he agreement between the numerical resu lts an d theo ret ica l est imates (6.33) 

and (6 .38) is not p erfect, a lthough it is surprisingly good taking into acco un t the 

order of magnitude a rguments used in the derivations. The choi ce of the noise level 

was motivated by the need to separate th e effect of the dev iat ions O'xx in troduced by 

the nonlinearity from the precision of num erical calculat ions O'n = O(lo- 16
) in the 

evaluat ion of the feedback gain. Since, accord ing to (6 .34), O'w/O'xx = 0(1) when 

lin ear control breaks down, one needs 1 >> 0'111 >> O'n, so O'w = 10-s was taken here 

(as opposed to O'w = 10- 14 used in [14]) . 

The minimal density of pinning sites is red uced substant iall y by replac in g equa ll y 

spaced sin gle pinnin gs with equall y spaced pai red pinnin gs . For the uniform steady 

target state SI Tl, a = 4.0 and E = 0.4, for example, the est im ate (6.33) gives 

p2 = 2/nr1 = 1/11 for the noi se level O'w = 10-s (the actua l valu e of 1/12 is even 

lower as seen from figure 6.10) . If s ingle pinnings are used instead, equat ion (6.19) 

demands p1 = l/nr1 = 1/2 even in the abse nce of noi se, which is much higher than 
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6.5.3 Output Feedback 

F in all y, consider t he outpu t feedback co ntrol of t he target state SlTl. Let us ass um e 

th a t th e state of the syst em cann ot b e dete rmin ed directly. T nstead it has to be 

reconst ructed usin g t he measurements at t he pinnings, i.e. , us in g t he t im e se ri es o f' 

t he latt ice vari ables xt a nd x 1 . As we noted in section 6.4 thi s set up di ctates t hat 
Z l Z2 l 

C = B t in (5.69). To avoid unnecessarily compli cating t he p robl em we a lso ass um e 

that t he meas urements a re perfect , v t = 0 . 

In order to es t imate n,x wit h t hese ass umpt ions we will need to expl oit both t he 

co ntroll ab ili ty and t he observabili ty condi t ions. F irst , the state of t he system has to 

be reconst ructed usin g n x consecut ive measurements of t he vari ables at t he pinnin g 

sites. Hm,vever , because of t he nonzero p rocess noise t he reconst ructed state ,v ill 

dev iate from the actua l state. Arguments sim ila r to t he ones used in deri v ing (6.31) 

allow one to est imate t he order of magni t ude of t he reconst ruct ion error at a latt ice 

site with distance l to t he closest pinnin g: 

(6.39) 

Sin ce t he reconst ruct ion error <5i1 is substant ially la rge r t ha n t he st rength of noise 

CJw, t he for mer has to be substit uted fo r t he latter in (6.31) y ield in g 

(6.40) 

Event ua ll y, we obtain t he fo ll owing est imate of t he maxim a l s ize: 

(6.41) 

i. e ., one half of the size of t he latti ce t hat can be stabilized using state feedback. T hi s 

resul t can b e und erstood intuiti vely : when outpu t feedback is used , a signal in t he 

system has to travel tw ice t he distance in tw ice t he t im e, first from a remote latt ice 

site to t he p innin gs, carry ing in fo rmat ion about t he state of t he system, a nd then 

back in t he fo rm of feedback. T hi s is effect ively equi valent to do ubling t he s ize of the 

latt ice, hence t he facto r o f' one ha lf. 
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Figm e 6.11: The largest length of the la ttice which can be stabili zed with two µinni ng sites using 
output feedback control: theoretical estimates fi~

3
) (solid line) and Yi ~' ) (tria11 gles) and num erical 

resul ts (squares) obtained with t l1 e process noise of amp li tude aw = 10-s as fu1 1ctions of coupling c 
for a = 4.0. The measurement errors were assumed to be negligible. 

The same resu lt can be obtained using t he noise amplificat ion facto r. Observin g 

t hat, according to om assumptions At= A, R = 0, a nd Q = (a;j3)EEt, we conclud e 

t hat t he filt er gain a nd the feedback gain calcul ated fo r R = 0 a nd Q = qEEt a re 

d irectly related 1
, k = J{t , as are t he solu t ions of t he respect ive R iccat i equat ions, 

S = P. T herefore, the evolu tion equat ion (5.61) fo r th e reconst ru ct ion erro r reduces 

to 

(6.42) 

Comparing (6.42) wit h the evolu tio n equat ion (5.42) for t he cl osed-l oop system , we 

conclud e that t he noise ampli fication facto r of t he fil te r is equ al to t hat of t he con

trnll er , i) = ,/ . Sin ce both the process noise a nd t he dev iation caused by nonlin ear 

terms a re a mplifi ed first by th e fi lte r a nd t hen by t he feedback , (6.34) has Lo be 

mod ifi ed to read 

(6.43) 

with t he subsequent change in t he co ndition determinin g when the lin ear control 

1 This is a general resu lt.: as long as A= At and C = at, taking k = l(t guarantees that the filter is st.abl e even 
if' the feedback gain I ( is nut optimal. 
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breaks down: 

(6.44) 

Substituting this result into (6.37) yields 

( 6 .45) 

\ ,Ve compare the theoretical predictions (6.41) a nd (6.45) with the actua l num eri cal 

res ults for the CML subj ected to the noi se of amplitude CJ111 = 10-3 in figure 6.11. 

The target state Sl Tl is stabili zed U!:l ing output feedback co ntrol (5. 70) , where t he 

feedback gain K is calc ul ated us in g (5.37) with Q = I and R = 0 a nd the filter gain 

is set to k = J{t. Once again we conclude that, simil a rl y to the state feedback case, 

the num eri cal resu lts a re in very good agreement with the theoretical est imates based 

on the assumption that the breakdown of linear control is caused by the interpl ay 

between the stochasticity a nd the nonlin earity of the evolution equation (6.10). 
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Chapter 7 Con cl us_ions 

R ev iewing the results obtained in thi s t hesis one can conclude t hat the probl em of 

controlling chaos in symmetric systems in general, a nd spatiotemporal chaos in ex

tended systems in pa rticul a r, can be split in to three ma_j or parts: symmetry a nalys is, 

system identificat ion (if t he model equations a re not avail able a priori) , and controll er 

synthes is. The first part cons ists of a nalyzing hovv th e symmetry related degenerac ies 

of evolution op erators affect the control algorit hm . Th e results of t hi s a na lys is a re 

then used in th e second part to obtain symmetry preserving model equa tions describ

ing the local dy na mics of t he system in the vicinity of th e ta rget state. Fin a ll y, in 

th e th ird part t he model equations a nd th e st ru ct ure of the controll er determin ed in 

the first pa rt a re used to find t he optimal feedback driving th e system towards th e 

t a rget state . 

Th e first and t he most important conclusion of our theoret ical a na lys is can be 

summarized thus: if the system under consideration is symm et ri c, as a re most of 

extended chaot ic systems, it cannot b e consid ered generi c with respect to convent iona l 

chaos control t echniques, and its symmetry prop ert ies should b e understood prior 

to const rnct ing a co ntrol scheme, even if th e symm etry is onl y a pproximate. Th e 

failure to observe th e restrict ions imposed by the symmetry on th e strncture of the 

measured output signal will usua lly prevent the experim enta l reco nst ruct ion of th e 

system dy nam ics. Simila rly, an inappropriate choi ce of control parameters will res ul t 

in weak controll ability and, as a result , ex treme sensitiv ity to noise, or even worse, 

compl ete loss of control. 

From the pract ical point of v iew, th e most importa nt result of th e symmetry a naly

sis is th a t the minim al number of ind ependent control parameters required for control , 

as well as the minim al number of independ ent scala r obse rvabl es required for th e re

const rnction of local dynami cs, can typicall y be dete rmin ed with out a ny knowl edge 

of the evolution equations gove rning th e dy na mics of the system. One only needs to 

kn ow the symm et ry properti es, such as spat ia l a nd temporal periodi city, of t he target 
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state , a nd t he st ruct ural symm et ry of t he dy na mi cal equat ions, whi ch in t he case of 

extended chaot ic systems is often uni quely defin ed by t he geo met ry of t he underly ing 

phys ical space. O ne should , however, reali ze t hat thi s ty pical pa t te rn does not ap

ply to all sy m met ri c syst ems wit hout except ion. T he dy na mi cal equa ti ons might, in 

prin ciple, be sy mm et ri c vv it h resp ect to transform at ions unrelated to "geomet ri cal" 

symm et ri es , such as rotat iona l, re fl ect iona l, or translat ional in vari a nce. Addi t io nal 

"nonphys ical" symmet ri es can also be in troduced as a resul t of t he lin eari zat ion pro

cedure. 

A number of co mm ents have to be mad e regardin g accid ental degenerac ies . vVe 

fo und t hat when accidental degeneracies a re present, restri cti ons obtain ed using sym

met ry cons iderat ions alone p rov ide onl y t he necessary co ndi t ions fo r cont roll abili ty. 

Tn part icul a r, one obtain s a lower b ound on t he minim al nu mber of cont rol parame

ters . Exact dete rminat ion of t hat nu mbe r in t his case req uires add it iona l informat ion 

about t he st ructure of t he J acobi a n mat ri x, whi ch can b e gathered using ex perim ental 

reconstrnct ion. O n t he oth er ha nd , experimental reconstrn cti on itself is onl y poss i

ble, if th ere is a n adequa t e numb er of independent scala r obse rvables . This num be r, 

however , is sim il a rl y und ete rmin ed . Tn p ract ice, t hough , one rarely has to wor ry 

abo ut such compli cat ions, since acc idental degeneracies a re rare a nd unlikely to be 

a p robl em fo r actual ex perim ental syste ms. Bes ides, a n est im ate fo r t he minim a l 

numb er of obse rvabl es a nd cont rol parameters can a lways be eas il y ob tain ed us in g 

combin atori a l a rgum ents. Also, one should be careful in equat in g th e minim al num

b er of obse rvables or control paramete rs wit h the highest degeneracy of t he .Jacob ia n 

mat ri x, espec iall y if t hi s d egeneracy is at least pa r t ia ll y acc idental. It can be a rgued 

t hat accid ental dege neracies between eige nvalues from t he same irreducibl e in vari a nt 

subspace typi call y will not increase t he d imensiona li ty of t he respect ive eige nspace 

a nd , t herefo re will not lead to addi t iona l degeneracy in t he local dy na mi cs. 

Vve also establi shed t ha t it is not enough to find a n ad equate numb er of con t rol 

paramete rs (o r observables). T hese control paramete rs (observables) have to sat isfy 

ce rtain condi t ions. Tn part icul a r, pert urbat ion of t he control paramete rs should com

pletely break t he dy na mical symmetry. T he more st ri ct independe nce condi t ion is 

sp ecifi c to each target tra,i ecto ry a nd , on t he one hand , requires t he kn owledge of t he 
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system 's resp onse to variat ion of d ifferent control parameters (whi ch can be obtain ed 

experim entally, if necessary) , b ut, on t he other ha nd , all ows one to choose the minim al 

set of control parameters systemat ically, avoiding t ri al a nd error search. For exam pl e, 

in case of extended dynamical syst ems with local fee dback the independ ence condi

t ion usuall y imp oses rest ri ct ions on the mut ual a rra ngement of pinning sites, whil e 

t he nu mber of pinning sites is dete rmin ed by the number of control parameters. 

T he convent iona l approach to system ident ifi cat ion has to be mod ifi ed in the p res

ence of symm et ri es. In part icul ar, in order to p rese rve not only t he topology of t he 

ori gin al attractor, but also the sy mm et ry of the ori gin a l dynam ical equat ions, one 

has to use a number of simul taneously measured observabl es, whi ch have to be th e 

components of an equi variant vector fun ct ion of the act ua l state of t he system. T he 

rest ri ct ions on t he outpu t can be relaxed somewhat in the case of local reconst ruct ion 

in the vicini ty of some target tra,i ectory. However, even then a number of independ ent 

obse rvables should be used instead of _just a single one, as long as t he symmet ry of t he 

target state is nont ri vial, leadin g to t he in crease in the dim ension of the embed din g 

space. Otherwise, t he conve nt iona l approach carries over with min o r modifi cat ions . 

A nu mber of more spec ific conclusions can be made concernin g extended chaot ic 

systems. Th e a nalys is of t he simplifi ed model system containing t he den ning feat ures 

of a general spatia ll y extended dynam ical system suggests t hat t he locali zed control 

of spat iotemporal chaos , whi ch ass umes that the system is moni tored and pert urbed 

at a number of di st in ct spat ia l locat ion s (pinnin gs), is q ui te conve ni ent not onl y fro m 

the theoreti cal p oin t of view (thi s a pproach signi ficant ly s implifi es the a nalys is of th e 

in teract ion b etween the system and t he cont roll er) , but a lso from t he pract ical po in t 

of view. Ind eed , we have a rgued that in the exper im ental sett ing it is usua ll y mu ch 

eas ier to both apply feedback a nd extract in fo rmat ion ab out t he system locall y, whi ch 

is crucia l for p ract ical implementat ion of control methods based on thi s approach . 

Besides, as we have learn ed fro m the study of the model system , locali zed cont rol is 

qui te effecti ve in stabili z in g a vari ety of unstable per iodi c orbi ts. Equall y im portant 

from the pract ical standpo in t, one can track target tra,i ectories as system paramete rs 

slowly cha nge, or switch between di ffe rent t raj ectories by changin g feedback with o1d 

cha nging either t he density or the locat ion of pinnin gs. 
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Vi/e determined t hat in ord er to ma ke t he target st a t e controll a bl e, t he pinning 

s ites should be a rran ged properl y. Choos ing thi s a rrangement in accord a nce with t he 

underl y ing sy mmet ri es of the system affords a significant reduction of t he complex

ity with simulta neous in crease in the fl exibili ty of t he control algo rithm , allowin g it 

to control t a rget states vv it h a rbit rary spat iotemporal properti es , whil e at the same 

t im e requ iring a small er d ensity of pinnings p er uni t volume of the system. G enerall y 

sp eaking, t he pinnin g sites should be a rranged such that t here a re no un co nt roll a bl e 

norm al mod es. For instance , in case of syste ms wit h translat ion a l a nd reflection al 

in varian ce, th e pinnings should not be a n a nged in a periodi c a rray. One particular a r

rangement deserves sp ec ia l attent ion. We dete rmined that , if the noi se is su fficie ntl y 

weak , or t he syst em size is suffi ciently sm a ll , even hi ghly symm et ri c spatially ex

tended systems can be co ntroll ed by dy na mi cally ad_justi ng t he bounda ry conditi ons. 

T hi s can be co nsid ered as a "nonin trus ive" control that requires minima l modifica

tion of th e controll ed system a nd can be impl emented rather eas il y in a var iety of 

applicat ion s. 

The density of pinning sites required to achi eve control dep ends on many factors . 

P erhaps smprisingly, a lthough there is a minimal number of pinning sites, their mini

mal density is not bounded from below - in t he a bsence of noise a n exte nded sys tem 

of a rbit rary size can, in principl e, b e controll ed using the number of pinning sites 

equal to t he minim al number of co ntrol paramete rs, whi ch is determin ed by t he sy m

metry properti es a lone. (In practi ce ce rt a in restrictions appear due to the fact th at 

the volum e of t he bas in of attract ion shrinks exponentially wit h increas ing size of th e 

system.) However , when noise appears, the minimal dens ity of pinnin g sites depends 

on the st rengt h of noi se ( as well as parameters of t he system a nd t he type of feedback 

control m ethod used). Generall y, stro ngly chaot ic a nd weakly co upl ed syst ems will 

require a higher density of pinnin g sites t ha n weakl y chao ti c a nd st rongl y coupl ed 

sys tems. Conversely, the maximum level of noi se tolerated by co ntrol depends on 

t he density (and mutu al a rrangement) of pinnings a nd in creases with t he density of 

prnnrngs. 

This brings us to t he fin a l ingredi ent of a ge neral control algorithm a pplicabl e 

to extend ed spat iotemporally chaot ic systems - the feedback control method. As a 
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rule, practical cons id erat ions call for more than .iust stabilizat ion of a target tra.iectory 

with des ired properties. Additiona l and very signifi cant benefits can be obtained by 

maximizing t he doma in of attract ion in the deterministic case or by minimizing t he 

noi se a mplificat ion facto r in the stochast ic case . Both of these goals call for optimal 

feedback control. In fact, the numerical results obtained indicate that compared wit h 

conve nt ion al chaos control techniqu es, opt im al control techniques are able to tolerate 

hi gher levels of noi se a nd have shorte r transient p eriods when t he system wanders 

t hroughou t t he chaot ic attractor b efo re being capt ured by lin ear control in t he vicini ty 

of the target tra.i ectory. The difference in p erforma nce becomes especia ll y sign ifi cant 

for la rge a nd vveak ly coupl ed extend ed chaot ic systems. As a result , by using opt im al 

feedback control one can consid erably reduce t he density of pinnings, thus s implify in g 

t he issue of p ract ical impl ementat ion. 

Summ arizing, we can suggest the following sequence of steps in const ruct ing a 

control scheme for an expei·imenta l extended chaot ic system. First t he sy mm et ry 

properties of the system a nd the target state should be analyzed. The results of this 

ana lys is should b e used to determine the restrictions on the minimal numb er a nd 

mutual a rran gement of senso rs a nd act uato rs (the locat ions of act uators should not 

necessarily coincid e with the locat ion s of the senso rs, as was assum ed in t he analys is 

of the model system). If the symmetry is too low to determine the spat ia l st ru ct ure 

of t he controller completely, addition a l inform at ion a bou t the structure of the sys

tem Jacobian should be gathered usin g t ri a l and error experimenta l reconstruction. 

The t im e se ri es measurement of the sensors ' output should then be used for local 

reconst ruction of t he system dy nam ics in the vicinity of the target state us in g t he 

delay coordin ate emb edding . Finally, the optimal feedback should b e found based 

on the above inform at ion usin g eith er t he lin ear-qu ad rat ic or the worst case control 

technique. 
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