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Abstract

The present study is prompted by the failure of conventional chaos control theory to
provide a practically sound algorithm for controlling the chaos in general spatially
extended experimental systems. The primary reason for this failure is the presence of
symmetry, which is a feature of most extended dynamical systems and which violates
a number of assumptions of genericity made by conventional control theory. These
assumptions can be relaxed, but at a price that increases with increasing symmetry
of the target state. This price includes the larger number of independent control
parameters that must be adjusted to steer the system towards the target trajectory,
as well as the larger number of independent observables required to reconstruct the
dynamics of an experimental system with symmetries.

We show that spatially extended chaotic systems can be controlled by monitoring
and perturbing them at multiple spatial locations, or pinning sites, with separations
determined by the noise in the system. We show that the arrangement of pinning
sites must comply with constraints determined by the symmetry of the system in
order to achieve control. We determine how the system can be forced from the
spatiotemporally chaotic state into the controllable target state. Finally, we determine
the maximal distance between pinning sites and the maximal level of noise tolerated

by a given arrangement of pinning sites for a model extended system.
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Chapter 1 Introduction

1.1 Motivation

The desire to improve performance of many practically important systems and de-
vices often calls for shifting their operating range into a highly nonlinear area, which
alter a series of bifurcations usually leads to irregular chaotic behavior. This kind of
behavior, however, is rarely desired, while substantial benefits could be obtained by
making the dynamics regular. This goal can typically be achieved by applying small
preprogrammed perturbations to steer the system towards a periodic orbit with de-
sired properties, which is broadly referred to as chaos control.

The most difficult type of chaos to control, the spatiotemporal chaos is ubiquitous
in spatially extended nonlinear systems and manifests itself in phenomena such as
turbulence [1], plasma [2] and combustion [3] instabilities, cardiac arrhythmia [4], and
brain epilepsy [5]. The majority of spatiotemporally chaotic systems are continuous
and are properly described by partial differential equations, but some are spatially
discrete and as such admit a description in terms of coupled ordinary differential
equations (or sometimes delay differential equations). Nevertheless, all these systems
share enough common features, especially in their spatial structure, to be treated in
a unifying framework.

The list of practically important systems and devices displaying spatiotemporal
chaos which could benefit from application of control is rather long, so we mention
just a few characteristic examples. For instance, stabilization permits the operation
of chemical reactors [6] beyond the normal limit of their stability, which may be
desirable for increased thermodynamic efficiency, product yield, or product purity.
Wide aperture semiconductor lasers [7] display uncontrolled random beam steering
and loss of spatial coherence at high pumping levels needed to achieve desired output.
Neural networks [8] require control in order to be placed in an adequate (intrinsically

unstable) state for information processing. Finally, power grids are unstable to certain
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types of electrical instabilities, which in the absence of control could lead to power
surges, overload and failure of constituent components.

Unfortunately, despite all the success achieved in recent years in controlling rela-
tively simple low-dimensional chaotic systems, most high-dimensional systems (with
tens or more effective degrees of freedom), those just mentioned included, remain
notoriously difficult to control and little progress has been made so far in the im-
plementation of existing control techniques. In fact, discounting stirred chemical
reactors, whose evolution has no spatial dependence [6; 9], there have been no reports
of successful control achieved in experimental spatially extended chaotic systems up
to date. This situation is not very surprising given the absence of a general theory
for control of spatiotemporal chaos.

Spatially extended homogeneous systems can, in principle, be treated as a special
case of high-dimensional chaotic systems [10; 11; 12]. However, some of the practical
issues that arise in the control problem are quite specific and are probably best han-
dled by taking into account the spatiotemporal structure of the system and the target
state in general, and their symmetry properties in particular [13]. More important
from the theoretical point of view, the spatiotemporal structure with common charac-
teristic features possessed by various extended systems provides the natural context
for analysis and reevaluation of the existing techniques and results.

Although spatially extended chaotic systems are the primary focus of our attention,
arbitrary symmetric systems are, arguably, as interesting and important. Hence, by
making our analysis as general as possible, we can hope to obtain many results whose
range of applicability far exceeds the class of systems that motivated the present study.
Therefore, our goal can be summarized as an attempt to correct some of the short-
comings of the existing theory and make the first step towards developing a general,
thorough and consistent control formalism applicable to symmetric chaotic systems,
in general, and spatially extended chaotic systems, in particular. Such formalism
requires collection, systematization and development of the fragmentary results and
methods of data analysis, deterministic chaos, linear systems and control, and group

theory.



1.2 Outline

The outline of the thesis is as follows. In chapter 2 we begin with an overview of the
theoretical advances in the area of controlling spatiotemporal chaos. We review and
compare the techniques proposed by various authors to suppress chaos and target
unstable steady and periodic states with desired properties in systems described by
partial differential equations, coupled ordinary differential equations and coupled map
lattices. We also formulate the set of defining questions to be answered by the rest
of this study.

In chapter 3 we proceed with an overview of the data analysis techniques used to
reconstruct the spatiotemporal dynamics of an experimental system displaying chaotic
behavior using a time series measurement of a single output. We review the major
results concerning the continuous-time reconstruction of the global system dynamics
and discrete-time reduction using the Poincaré section technique. We then turn to
the question of local reconstruction and identification of recurring points and propose
a generalized algorithm applicable to periodic orbits of arbitrary periodicity. Finally,
we give a brief overview of noise reduction techniques proposed in the literature.

In chapter 4 we provide an expanded discussion of the results concerning the effects
of symmetry on the dynamics and control previously reported in [13]. We discuss why
the standard control approach fails when applied to symmetric systems and show
how it should be modified in order to achieve control. In particular, we show that
when nontrivial symmetries are present one has to use multi-parameter control as
opposed to the single-parameter control used in the standard approach. We compare
the results obtained for continuous- and discrete-time systems and study the affect
of weak symmetry violation. In the conclusion of the chapter we show that the
problem of phase space reconstruction is affected by symmetries in a manner similar
to the control problem. We discuss how the data collection and analysis have to
be modified to permit the reconstruction of symmetric chaotic attractors preserving
their symmetries.

In chapter 5 we turn to the problem of feedback control. We review and compare

the most widely used feedback control techniques developed on the foundations of



4

nonlinear dynamics and control theory. We analyze two single-parameter general-
izations of the OGY control method and show how they can be extended for the
multi-parameter case. We also show that these methods, being derived in the as-
sumption of deterministic dynamics, become severely handicapped when applied to a
certain class of stochastic systems. This has profound effect on the problem of control
of extended chaotic systems, which is the primary focus of our attention. We also
review two general stochastic control methods which provide a systematic treatment
of the problem of feedback control as well as dynamic state reconstruction in the
presence of external noise and measurement errors.

In chapter 6 we apply the results of the preceding chapters to the problem of
controlling extended spatiotemporally chaotic systems. Following the previous study
[14], we introduce a stochastic generalization of the one-dimensional coupled map
lattice as our model, and argue that it is generic in the class of general extended
systems. We show that our model cannot be controlled by perturbing the internal
system parameters and, therefore, calls for localized control. We analyze the method
of pinning control introduced by Hu and Qu [15] and show how it can be modified to
achieve greater flexibility at the same time drastically reducing the density of pinning
sites. This brings us to the method of control using adjustable boundary conditions,
which proves to be extremely versatile and effective, allowing control of arbitrary
target states in a variety of conditions. Our results are illustrated with a number
of numerical experiments. We also discuss how the methods of pinning control and
control at the boundaries can be combined to obtain a scalable distributed control
approach applicable to systems of arbitrary size. In the conclusion we show how the
combination of the nonlinearity and stochasticity in our model leads to the blowup
of noise and loss of control and derive theoretical estimates on the size of the system
at. which this happens.

Finally, we summarize our results in chapter 7 and discuss their implications for
the problem of controlling continuous (in space as well as time) extended chaotic

dynamical systems in an arbitrary number of dimensions.



Chapter 2 Overview

2.1 Selective Targeting

In order to determine the missing components of a general theory for control of
spatiotemporal chaos we proceed with the analysis of theoretical advances in the
area. We begin by considering the class of methods designed not just to suppress
chaos, but more specifically, to target and stabilize a chosen unstable steady state or
periodic trajectory with desired properties. Historically the first to address the issue
of controlling spatiotemporal chaos, Hu and He [16] considered a one-dimensional
periodically driven system described by a nonlinear drift-wave partial differential
equation of the form

1oJ0) P do

10J0)
ot ' = e ¢ = esin(z — Q). 21
o Ogias + B+ b+ ¢ = esin(z — Q) (2.1)

Upon transforming into the moving frame z = 2 —Q¢, this partial differential equation
becomes autonomous and (as any other similar autonomous PDE) can be converted
into an equivalent system of ordinary differential equations expanding the solution
®(z,1) in the basis of normal modes 1;,(2) (which coincide with Fourier modes due to
the translational symmetry of equation (2.1), so index k is just a wave vector):

N

d(2,1) = lim Z,s',;(t)/l/)/ﬂ(z). (2.

N —o0

[N}
[N
oot

=

Constructing an infinite-dimensional vector s(t) = [s1(t), sa(t), - --]" from the coeffi-
cients sp. (1), and defining the vector of parameters u = [, 3, i, v, €]”, one can write

the system of ODEs in the form
(1) = B(s(1), ), (2.3)

where @ is some nonlinear function of coefficients s;(¢) and parameters of the system.
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Hu and He suggested two ways to stabilize a prescribed unstable periodic solution

]

oz, 1) = ¢z — Q) of (2.1). One can perturb an appropriately chosen normal mode
¥i(2) by adding a damping term —As;(f) to the ith component of equation (2.3),
which can be interpreted as localized control in the Fourier space. Alternatively, one
can apply localized damping at a single point of the real space, adding a term such as
—AS(z—1z0)[¢(x, t) — d(z— Q)] to the right-hand side of equation (2.1). The first type
of feedback is somewhat more difficult to implement experimentally than the second
one, because the system has to be perturbed at every point of the real space, but it
can, in principle, be implemented for the majority of spatially extended systems. In
addition, the first type of feedback requires the knowledge of the dynamical equations,
while the second one does not.

As a result of a series of numerical experiments, it was determined that, when
the first type of feedback was used, for some choices of the mode number i, the
values of damping A and system parameters u the stabilization of the target solution
¢(x — Qt) succeeded; for other choices it failed. Instead, the stabilization of a variety
of other periodic and quaziperiodic states was achieved, which can be traced to the
poor selectivity of this type of feedback. When the second type of feedback was
used, however, the target solution was stabilized more effectively, especially for large
damping A\. We will make two comments regarding this control technique. First of all,
although the number of degrees of freedom is infinite, due to small size (z € [0, 27])
the system is only weakly chaotic (the number of excited normal modes was estimated
to be of order N = 13) and, therefore, is rather highly correlated spatially. Second,
although the nondriven system is highly symmetric, the target state ¢(z — Q) has
a rather low symmetry. It can be shown that both of these factors contribute to
the success of this technique (and are prerequisites of almost every other existing
technique for control of spatiotemporal chaos).

Another version of control in Fourier space (applicable to systems described by
PDEs as well as coupled ODEs) was proposed by Lourenco and Babloyantz [8]. They

suggested using the Poincaré surface of section to reduce a continuous-time evolution
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equation of the type (2.3) to a discrete-time map of the type
Sn+l — F(Sn, u)7 (24)

where s™ represents the value of the vector s(f) at the nth crossing of the surface
and u is a scalar system parameter. Assuming that only a small number of modes
are excited near the target state (the system is again weakly chaotic), the effective
dimensionality of the map (2.4) can be made finite (and small), thus reducing the
problem to the standard form used in conventional chaos control theory [10; 17].
The effectiveness of this approach was demonstrated numerically by stabilizing a
number of unstable periodic orbits of the small one-dimensional array of coupled delay
differential equations with different (but supposedly low) spatiotemporal symmetries.
This method differs from the one proposed in [16] in that the perturbation of the
system parameter u is used instead of direct perturbation of the state of the system,
which can also be relatively easily achieved experimentally. In either case, however,
a single control parameter is used.

Petrov et al. used the Poincaré surface of section technique to derive a control law
without using the dynamical equations. In a series of paper [3; 18] the authors con-
sidered the spatially extended combustion model defined by a Kuramoto-Sivashinsky

equation

0 _ (0\" _ &0 9 gy
E_<8.'L'> C 922 gt e
where the variable ¢(xz,t) represents the planar front of a premixed flame. However,
instead of a map of the type (2.4) describing the evolution of the system between
successive crossings of the Poincaré section in the Fourier space, a similar map in real
space was constructed using the measurement of a scalar function £(¢) of the state
¢(x,t) of the system in the vicinity of the targeted orbit ¢(z,¢). There is a single
parameter in the model, the length [. The system was considered for the values of
[ where the dynamics are weakly chaotic, i.e., only a few normal modes are excited
and, as consequence, the constructed map is effectively low-dimensional, so that the
system could again be treated using the tools of the conventional chaos control theory.

It was demonstrated that control can be achieved by perturbing one of the boundary
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conditions. A very similar approach was used by Tziperman et al. [19] in order to
control spatiotemporal chaos in a model used for weather prediction.

As an alternative to the above approach Petrov ef al. suggested using the method
of transfer functions borrowed from control theory [20]. This method combines the
two steps of the control problem, construction of the Poincaré map and construction
of feedback into a single step, which simplifies the analysis of the data obtained from
the experimental system to a certain degree. This method was used to stabilize steady
and periodic unstable flame profiles of the model (2.5) [18] as well unstable Turing
patterns in a reaction-diffusion system described by the Gray-Scott model [21]. In
both cases the symmetry of the targeted states was relatively low and the systems

where rather highly correlated spatially.

2.2 Suppression of Chaos

In addition to the three control techniques already described, a number of other,
much less sophisticated, techniques based on incorporating preset time delays in the
feedback law have been proposed. Despite being conceptually simple, techniques of
this type, as a rule, provide very poor selectivity and thus should be regarded as
methods to suppress spatiotemporal chaos in favor of some sort of periodic behavior,
rather than methods to stabilize a chosen unstable periodic trajectory. One of the
simplest such methods was suggested by Battogtokh el al. [22], who considered the

complex Ginzburg-Landau equation

2
% = (1 -w)p+ (1+ iaz)% — (1 —1B8)|8]*8, (2.6)

describing a large class of (very weakly chaotic, again!) systems undergoing a bifur-
cation from regular oscillations to spatiotemporal chaos. One can use a time delayed
global feedback proportional to the spatial average of the field ¢(x, 1), which corre-

sponds to adding to the right-hand side of equation (2.6) a term

Pl t) = —)\(zixw)(l‘, L—T))s, (2.

(N}
~lI
~
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where T is the time delay. A and y are the magnitude and phase of the feedback, which
depending on the phase can act as either damping or amplification of the spatially
uniform mode o (z) = const. This type of feedback obviously favors uniform periodic
states with period T, i.e., states with very high spatial symmetry. In the numerical
experiments it was established that the uniform steady state was indeed stabilized for
x = 0 (damping) and certain choices of the delay T', while choosing x # 0 resulted in
the stabilization of oscillating cellular patterns. Similar type of feedback was used to
suppress chaos in coupled ODEs [8], and coupled map lattices [23].

In order to facilitate the stabilization of nonuniform target states, one has to use
a modification of the latter technique, which uses local values of the field ¢(x,1)
instead of its spatial average. This sort of generalization was used by Bleich and
Socolar [24] for the stabilization of traveling waves in the complex Ginzburg-Landau
equation (2.6). Certain unstable periodic states can be stabilized by applying the
signal constructed from the time-delayed state of the system as feedback at every
point in space, which corresponds to adding to the right-hand side of equation (2.6)
a term

o0

Ulx,t) = Z A[op(z,t) — @z, t — nT)), (2.8)

n=1
where T is the period of the targeted unstable state (e.g., traveling wave) and {A,}
is a sequence of damping coefficients (one should obviously have > A, = A < o0).
This type of feedback is known as extended time-delay auto synchronizalion, and
has been successfully applied to a number of low-dimensional chaotic systems [25].
Similar types of feedback were suggested to control spatiotemporal chaos in systems
described by coupled ODEs [8] and coupled map lattices [23]. Stabilization of a
variety of unstable periodic orbits was demonstrated numerically.

Similarly to the case of delayed global feedback, this type of control does not
require the knowledge of dynamical equations and has rather poor selectivity with
respect to target states with desired properties. Since one can only adjust the time
delay to match the period T of the targeted state, the stabilization is a matter of
luck rather than choice. Besides, the area of practical applicability of this approach

is extremely limited. Apart from optical systems, implementing this type of {eedback
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in continuous systems borders on the impossible due to the fact that it uses a number
of control parameters equal to the number of degrees of freedom, which is infinite.
Even in application to spatially discrete systems the complexity of this method will
likely prevent it from ever being used in practice.
The selectivity of the latter method can be improved by introducing spatial filtering
of the field ¢(z,?). The methods proposed by Lu et al. [26] and Bleich et al. [7] can

be represented in the same general form by writing the feedback term as

Uiz, ) = Z Ag {(/)(.’5, t) — / K(z,2)p(z',t —nT)dz'|, (2.9)

=1

where K (z,z') is the kernel of the filtering operator, which is assumed to be chosen
appropriately for each target state. The global and local delayed feedback discussed
above clearly correspond to choosing K(z,z') = const and K(z,z') = 6(x — '),
respectively. This type of feedback is again effectively equivalent to using an infinite
number of control parameters in continuous extended systems and thus is limited
to applications for optical systems. Control of unstable traveling wave states was
achieved in the numerical model of a single longitudinal mode laser [7]. A version of

this technique for coupled ODEs [8] also exists.

2.3 Pinning Control

We have seen a number of times that successful control of spatiotemporal chaos by
applying feedback at a single spatial location was achieved only in systems which
possessed a high degree of spatial correlation. This, however, does not imply that
weakly correlated systems require application of feedback at every spatial point. A
more economical and flexible approach is to monitor and perturb the system at mul-
tiple locations separated by the characteristic length which depends on the strength
of noise and other system parameters. This approach was called pinning control, and
spatial locations used for feedback were respectively termed pinning sites or pinnings.

A number of relatively successful attempts were made to employ pinning control

for stabilizing unstable states in spatially discrete systems such as coupled ODEs [27]
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and coupled map lattices with symmetric coupling [15]

ot = ef (diny) + (1= 26) f(97) + ef (dir)- (2.10)

The results can be summarized as follows. It was numerically demonstrated that
a variety of unstable steady states and periodic trajectories could be successfully
stabilized. This, however, required an extremely high density of pinnings, with the
distance between adjacent pinnings no larger than four and three lattice spacings in
the case of the coupled map lattice and coupled ODEs, respectively.

Significantly lower density of pinnings can be used in the case of coupled map

lattice with broken symmetry

ot =e f(dl_) + (1 — e —e)f(d)) + 52./[((/)5-1—1)7 (2.11)

where €; # €5. This surprising, at first sight, result has nothing to do with the spatial
correlations in the system. On the contrary, as we will see below, it can be explained
by the difference in symmetry properties of equations (2.10) and (2.11). Successful
control of the uniform steady target state of the model (2.11) has been achieved [28]
with the distance between pinnings of up to 14 sites, in the presence of noise of relative
magnitude o = 1071,

Bleich and Socolar [24] formulated three questions which should be answered by a
consistent general theory of controlling spatiotemporal chaos: What s the minimum
density of discrete controllers (actuators) needed in situations where spatially contin-
uous processing in the feedback loop is not possible (i.e., almost always)? What level
of noise can be tolerated? How can one force the system [rom the spatiotemporally
chaolic state into the desired controllable state? Detailed examination of the problem
reveals that one more question has to be added to the above list: How should the spa-
tral locations al which the system is monitored and perturbed be arranged? This last
question is prompted by the intrinsic symmetries characteristic of spatially extended
systems.

Even though the importance of symmetries in chaotic dynamics has been recog-

nized by a number of authors [29; 30; 31; 32], symmetric systems did not receive
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adequate treatment in the general framework of chaos control primarily because the
question of symmetry is largely ignored by the theory of deterministic chaos as well
as data analysis and control theory. All three disciplines regard symmetric systems as
nongeneric and, therefore, not very interesting and important. However, many prac-
tically important dynamical systems, such as spatially extended chaotic ones, are
intrinsically nongeneric, and thus cannot be successfully treated using the formalism

developed for generic systems.
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Chapter 3 System Identification

3.1 Time Delay Embedding

The primary challenge one faces when presented with an objective to defeat the
chaotic behavior in a real continuous-time experimental system is to determine the
laws governing the dynamics or, in other words, construct a mathematical model of
that system using the experimental data. For now, we will assume that the system
under consideration is deterministic, and defer the treatment of stochastic systems
until chapter 5. We will also assume that the evolution takes place on a finite-
dimensional chaotic attractor A and the actual dynamical equations can be written
in the form

s(1) = ®(s(1), u, 1), (3.1)

where s({) € Q is the ns-dimensional state of the system, u € R* is the n,-
dimensional vector of system parameters, and ® denotes an unknown vector field
on the phase space manifold Q. For generality we will assume that ng is arbitrary
(or even infinite) and n, > 1. Although the particular form (3.1) of the dynamical
equations limits the generality of the proposed approach by excluding the systems
described by differential algebraic equations, it directly bears on the validity of the
following results, and thus is essential here.

We are primarily interested in the two special cases of the dynamical equation
(3.1), which represent the two classes of systems most often encountered in practice,
autonomous and periodically driven. First, consider an autonomous system for which

0y ®(s(t),u,t) = 0 and, therefore,
u). (3.2)

The complete information about the state of an experimental system is rarely avail-

able, so one typically has to contend with having a measurement of a single scalar
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output of the system (sometimes called an observable) for the description of the dy-
namics. The output is, in general, a function of the (unknown) internal state of the
system s(?):

y(t) = G(s(t)). (3.3)

It turns out that it is possible to reconstruct both the internal state of the system
and its dynamics based on the time series measurement of the output y(#) using the
procedure originally proposed by Packard el al. [33]. The easiest way to obtain

several signals from a single one is to use time delays. Let us choose different delay

times T, 7Ty, ---,T,. and construct an n,-dimensional delay coordinate vector
y(t+T>)
#t) = (3.4)
l/([ + T“:)

Takens showed [34] that for a scalar output (3.3) and conveniently chosen delay times
T;, if the dimension n, of the embedding space is such that n, > 2n” + 1, where n”
is the Hausdorff dimension of the attractor A, the map P : s(1) — z({) generically
provides a global one-to-one representation of the attractor and, hence, the system
state. As we will see below, the genericity assumption in the Takens’ embedding
theorem is not satisfied for most of the extended systems due to the symmetry-related
degeneracy of the evolution operators. However, since the rest of the algorithm only
depends on the existence of the global embedding P : s({) — z({), we proceed
with the discussion assuming that the theorem holds and consider the modifications
required for nongeneric systems in section 4.5.

Since the Hausdorfl' dimension of the chaotic attractor is often much smaller than
the number of degrees of freedom, n* < ng, even for systems of high dimensionality
an unambiguous representation of the system state can usually be obtained in an
embedding space of rather low dimensionality. For instance, Roux el al. [35] have
shown that the state of the Belousov-Zhabotinskii system, which is described by more
than 30 independent variables, can be represented nicely in R*. Even more important,

as long as n* < oo, the reconstruction technique can be successfully applied even to



15
infinite-dimensional systems, such as those described by partial differential equations.
Several authors, including Romeiras et al. [17], further suggested that, if only a local
one-to-one representation of the state in the vicinity of some periodic trajectory is
needed, n, = n is typically sufficient, decreasing the dimensionality of the embedding
space even further.

The next step in the procedure allows one to recreate the dynamical equations.
In principle, it is possible to extract the necessary information about the dynamics
using the continuous-time measurement of the reconstructed state z(t). However,
the trajectory generated by z(¢) is usually very complicated and may be difficult to
interpret. A small number of methods exist [36; 37], which allow one to recreate
the system of ordinary differential equations of the form (3.2) using the reconstructed
trajectory, but they are neither general not precise enough for the control purposes. In
the conclusion of this section we mention that in cases where the mathematical model
of an infinite-dimensional extended system is available, the trajectory z(¢) and the
finite-dimensional representation of the dynamical equations can be obtained using

the Galerkin method [38].

3.2 Discrete-Time Reduction

The problem of reconstructing the dynamical equations can be simplified substantially
by using the Poincaré section technique [33], which reduces the continuous trajectory
z(t) in the n -dimensional embedding space to a set of points in an (n,—1)-dimensional
subspace. Let us define the Poincaré surface of section by the equation ¢(z(t)) = 0.
The crossings of the surface by the trajectory of the system generate a sequence of
times %o, 11, {2, - - -, which subsequently define a sequence of points z* = z(#;,) through
the delay embedding. The choice of delay times T; is, in principle, arbitrary, but most
often a sequence of delay times T; = (¢ — 1)T) is used, where Tp < 0 is a “negative”
basic delay (see, for example, [12; 17]). This choice is not always convenient for the
purpose of real-time data acquisition, since it requires an a priori knowledge of the
reference times £,. To correct the situation we instead take T, > 0. For instance, il

one sets ¢(z(t)) = z,(t) — ¢, where ¢ is a constant, one can extract the components
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of the vectors z" from the measured signal y(¢) in real-time mode by testing the
condition y({;) = ¢ to determine #; and then measure :1’ = y(tp + (1 — 1)Tp) for
f =80, By,

The reconstruction of periodically driven systems can be handled in a very similar
manner. If we denote the period of the driving signal T, then we should have
P (s(t),u,t+Tp) = ®(s(t),u,t). Since the driving defines a natural frequency in the
system, one can use the stroboscopic technique to define a sequence of reference times
to,t1,ts, -+ using the period of driving instead of the Poincaré section. Specifically,
one takes t;, = to+kTr. A sequence of points z¥ = z(t;,) is then determined identically
to the case of an autonomous system.

Since the dynamics is deterministic, if the system parameters are fixed, u = 1,

then z* determines z**', hence defining the first return map F : R% x R* — R":

Zlc-}-l — F(Zl“', fl) (35)
In the control problem system parameters are kept constant during the intervals
L € [l Lgs1], but they are changed discontinuously at the times {;, so equation (3.5)

k

T “as well as the history of

has to be modified. In general, z would depend on z
change in u(¢) during the time interval ¢ € [ty {41 + T, ]. Assuming that the largest
delay T,,. is chosen small enough, such that ¢, + 7},. < {342, independent of k, and
denoting u® the value of the parameter vector u(¢) in the interval ¢ € [tj41, byl

one concludes that the state of the system at time {;; depends on the values of

parameters during two successive intervals
k1 _ fok koo k=1 o i3
2" = F{z", v, u" "), (3.6)

which coincides with the equation obtained for negative basic delays [39].

Finally, let us introduce an expanded state-plus-parameter vector
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and define a new map F : R* x R"* — R"

F (%, 1, %)
F(x,u) = : (3.8)
u
where n, = n,+n,. This allows equation (3.6) to be rewritten in a more conventional
form

= P, u"). (3.9)

It is important to realize that the maps (3.6) and (3.9) represent nothing but two com-
pletely equivalent descriptions of the same dynamics in two different spaces and either
description can be used depending on the circumstances. We will predominantly use
the map (3.9), since it has the form required by conventional control theory.

A

/ * and the map (3.9) are reconstructed from the

When the sequence of states x
output y(f) of the experimental system, it can be claimed that the dynamics of the
system is essentially understood. However, even though in certain cases (such as the
Belousov-Zhabotinskii system [35]) finding the nonlinear map F that fits the data
well enough is relatively easy, this can rarely be achieved for typical high-dimensional
systems. One, therefore, has to look for a more practical and economical way to

describe the system.

3.3 Periodic Trajectories

Fortunately, the problem can be simplified even further by stripping the redundant
information about the global structure of the chaotic attractor A contained in the
dynamical equation (3.1). Indeed, the closure of the attractor, A, can be thought of
as a union of an infinite number of unstable periodic orbits and thus the vector field
® contains the information about all these orbits. For the purpose of control just
one such orbit §(¢) is selected as the target state. It turns out that one only needs to
know the local properties of the equation (3.1) in the vicinity of the target state in
order to drive the system towards it using the method of linear feedback control.

As a result of the equivalence between the full description of the system in terms

of the differential equation (3.1) and its reduced description in terms of the map
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(3.6), continuous-time periodic trajectories are mapped to discrete-time periodic tra-
jectories. Indeed, consider the projection P : §(¢) — z(t) of the target trajectory
into the embedding space. As discussed above, the crossing of the Poincaré section
by the reconstructed trajectory z(f) generates a sequence of points z°,z',---. On
the one hand, if the target trajectory §(¢) is time-invariant, so is zZ(¢) and, therefore,
zh't! = zF Wk, which corresponds to a fixed point of the map (3.6). On the other
hand, if 5(¢) is time-periodic, (¢ +7.) = §(¢), then Z(¢) is also time-periodic with the
same period 7,. Trivially, if Z(¢) crosses the Poincaré surface of section 7 times during
the first period ¢ € [0,7.], it will do so during each of the consecutive periods, thus
Fh+T

generating the discrete-time trajectory z¥ with period 7, Z = z*. Defining

R* = : (3.10)

we can conclude that each periodic trajectory §(¢) of the original system can be repre-
sented either by a periodic trajectory z',---, 27 of the map (3.6) or by an equivalent
periodic trajectory %!, .-+, %7 of the map (3.9) with 7 > 1. From now on we can,
in principle, assume that the dynamics of the experimental system is described by
the discrete-time evolution equation (3.9) and its target states are represented by the
periodic trajectories of the map F.

In addition, one can claim that the local properties of the differential equation (3.1)
in the vicinity of the target state §(¢) are completely described by the linearization of
the map (3.9) about the respective periodic trajectory x*. Denoting the displacement

l

from the target trajectory x* as Ax* = x* — %% and the perturbation of the control

parameters relative to the equilibrium values of parameters @ as Au* = u* — @, one

obtains the following linearized equation
AX’H_I = Al.:AX/; + B"'Aul‘f (3] ])
Here we introduced the notations

AF = D,F(%" a) (3.1

(]
—
o
N—r
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for the Jacobian of the transformation (3.9) and
B" = D,F(x", 1) (3.13)

for the linear response of the system to changes in the control parameters, which we
call the control matriz. Clearly, the matrices A¥ and B* are periodic in the index k
with the same period 7 as the target trajectory, A¥*7 = A* and B*™ = B

For practical purposes, however, it is often more convenient to use a similar lin-

carization constructed for the map (3.6). Denoting Az¥ = z" — 7", one obtains:

AzHT! = AFAx + BFAuF + BEAub!, (3.14)

The matrices A¥ and B¥ can be trivially reexpressed in terms of A¥, B¥ and B% using
the definition (3.8):

o [ B [P

3.15
0 0 I ( )

(This equation itself is often taken as the definition of A* and B*, e.g., in Ding
et al. [10].) The set of matrices { A B¥} (or {A*, BX, B}) completely determines
the local dynamics of the system in the tangent space and, therefore, provides all
the essential information needed for the solution of the control problem. The only

T

difficulty is neither the map (3.9) nor the periodic trajectory X', -+, X7, which we

used to formally define the Jacobian and the control matrix, are known.

3.4 Local Reconstruction

In fact, it is much easier to extract the periodic trajectory and the matrices A, B{ and
I?é directly from the experimental data using the well-known technique of recurrent
points [40; 41] than it is to find the map (3.9) and then use it to calculate A* and B*
from the definitions (3.12), (3.13). The additional benefit of using the linearized form
of the dynamical equations is that the maximal dimension of the embedding space

required for the reconstruction is reduced from ‘27’),(j +1 to 'n,f.
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Since the Hausdorfl' dimension of the attractor is unlikely to be known for an
experimental system, the choice of the embedding dimension n, will typically have
to be made using trial and error. One then needs to generate, for the fixed system
parameters, u = 1@, a sequence of points z°,z', - -+ 27 and select from it n, 1 €< n <

T', recurring points 2", ---, 2" such that

e

|27 — 27| < - £ |2 — 272F7| < min |2F — 2517. (3.16)

- o k#r;

A number € is then chosen, and the recurring points z'i are sorted into classes KC,,
according to the following rule. The point z™ always defines (becomes the center
of) the first class IC;. The next recurring point z™ is then attached to K, if the

distance

z"" — 2| < e. Otherwise 2™ defines the new class Ky. The rest of the
recurring points are then tested, and each is either attached to an existing class K,
if the distance to its center is smaller than €, or defines a new class. As one increases
¢ from zero the number of classes decreases from n to one. If n is large enough, one
expects the number of classes to have a plateau at intermediate values of € defining the
natural partitioning of the set of recurring points into classes. Each class determines
the neighborhood of either a fixed point of the map (3.6) or a point of a periodic
trajectory with period 7 or less (the period should be a factor of 7, though).

Once a class K = K; is found corresponding to a point of periodic trajectory with

L ... 2" tosimultancously

period 7, one can use the same sequence of data points z°, z
determine the points z* of the target trajectory and the sequence of Jacobian matrices
AF_ This is achieved using the least squares method to iteratively find the best fit for

the linear approximation
2Mh = gh 1t AR(2F — 2F) (3.17)

for cach k = 1,---,7. The x? function should be constructed to incorporate the
information about the trajectories of length 7 generated by each element of the class

K. For instance, one can take

. g2
X° = z Z/) (‘Z” — Zé,,_n‘) \2251 — gy Aé‘p) (z"th=! — zé‘jp))‘ : (3.18)

z"i e k=1
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where the subscript denotes the level of approximation. The Oth level approximation
220) is assumed to be given by the center of the class and the least squares procedure
is repeated until the estimates iép) and Zé‘fm converge. Nonuniform weights p(d) can
be chosen to compensate for the lack of data points in the vicinity of the target
trajectory. Assigning a lower weight to trajectories which are farther from the target
trajectory reduces the error caused by the nonlinearity of the original map (3.6). For
instance, one can take p(d) = exp(—d*/a*), where a is an adjustable parameter of
order the radius € of the class K.

The optimal embedding dimension 7 is not known a priori, but can be determined
using the adaptive method similar to the one suggested by Petrov et al. [18]. The
idea is rather simple. One starts with the original sequence of points z°,z',---, 2"
and calculates the value of the y? function as described above. One then decreases
the embedding dimension by one, discarding the last component of all data points,
vielding a new sequence 2%, z!,--- 2z’ Calculating the value of the x* function once
again and repeating the process until the dimension n, is exhausted or poor conver-
gence of the estimates Aép) and Zé‘"p) is observed, one obtains a series of values x?(7.).
The optimal embedding dimension is then chosen as the minimal value of n, for which
the function x*(n,) is close to its minimal value.

Finally, the control matrices Z;’{‘ and Bé can be found by generating a new sequence
of points z°, z',--- 2" but now with system parameters that are slightly perturbed,
and the perturbations recorded as a separate data sequence Au’, Au',---, Au’. One
then forms a new class of points K' by taking z' as the master point and either

rejecting or attaching the points z' to K’ based on whether the distance |z' — z'| is

larger or smaller than the radius € (the same as the one used to construct the class
K). The least squares method is then used once again to find the best fit for the

linear approximation
2" = 7" 4 AM(Z" - 2%) + Bf Au® + BjAutT! (3.19)

for cach k =1,---,7. The x* function is constructed similarly to the previous case,
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with A% and z* fixed at their optimal values calculated previously,

v = Zi/}(‘zi—zll) (3.20)

zieK! k=1

: ” ; s : < : o2
Zl"+] _ Zz—f-l\v g Al" (ZZ—I—A—I _ ZA.) + B]A Auz-{—l\.—l A Y Bé Auz—i—l\—z .

Minimizing x? with respect to B{ and Bé yields the sequence of control matrices and
gives us the last bit of information required to reconstruct the local dynamics of the
experimental system.

As pointed out by Petrov el al. [18], the control perturbations Au* may shift
the system away from the attracting manifold and thus excite additional degrees
of freedom effectively absent in the unperturbed dynamics on the attractor A. For
spatiotemporal systems most (but not all) of the normal modes will decay rapidly
compared to the time #,,, — ¢, between successive crossings of the Poincaré section,
so that the corresponding degrees of freedom can be ignored in the linearization
(3.14). The embedding dimension in this case should be increased to describe the
slowly decaying excited modes. The new value n/, can be adaptively found as in the
unperturbed case, with one modification. The function x* should be defined by (3.20)
with variable z#, A% B and Bf instead of (3.18). Finally, the matrices A* and B*
and the target trajectory ¥ in the extended state-plus-parameter space are obtained
using (3.15) and (3.10).

Of course, this whole scenario is highly idealized, because in practice the measure-
ments are of finite duration and noisy, which can lead to excessive errors in the deter-
mination of both the dynamical equations and the periodic trajectories. We are not
going to discuss the techniques used to reduce the effects of noise in detail and instead
just give a few references. The two most popular methods are the Karhunen-Loeve
decomposition [42; 43] and the wavelet transform [44]. The Karhunen-Loeve decom-
position (also called singular system analysis, bi-orthogonal decomposition, etc.) is
based on choosing an appropriate basis of vectors to represent the time series. The
vectors are determined as a set of eigenvectors of the two-point correlation matrix
computed using the experimental data. The wavelet transform is a generalization of

the Fourier transform which represents the translation and the scaling of components
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of a signal. Both methods are extremely useful and are used rather extensively to
reconstruct the dynamics of high-dimensional, and especially spatially extended, dy-
namical systems. The range of applications to the control problem is rather limited
so far (see, e.g., the work by Triandaf and Schwartz [45]), but is expected to grow
rapidly.

Summarizing the results of this chapter, we conclude that even when no math-
ematical model for the system is available, the dynamical equations describing its
evolution can be extracted from the experimental data. Besides, the control problem
only requires the knowledge of the linearization of these equations about the selected
target state, which can be obtained even easier, and with better precision, than the
full nonlinear equations. We can, therefore, proceed with the analysis of the control

problem assuming that the dynamical equations are known.
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Chapter 4 Symmetric Systems

Despite the recent wave of interest towards controlling chaotic dynamics an interesting
and important question of controlling systems with symmetries received surprisingly
little attention in the physics literature. The importance of symmetries in controlling,
for instance, spatiotemporal chaos is evident, since the systems typically show rota-
tional and translational symmetries. Such phenomena as fluid flows, convection or
chemical reactions often take place inside symmetric containers — cylinders, spheres,
pipes and annuli. Even the dynamics of unbounded systems is often influenced by
the symmetries of the physical space. Although the presence of symmetries usually
significantly simplifies the analysis of the dynamics, it also makes system identifica-
tion and control more complicated due to the inherent degeneracies of the evolution
operators. In fact, the presence of symmetries, explicit or implicit, makes a number of
single-control-parameter methods fail [10; 17; 18], calling for multi-parameter control
[11; 14; 46; 47].

In order to see how the control problem is affected by symmetries, we consider (fol-
lowing the analysis conducted in [13]) a general discrete-time system (the arguments
for continuous-time systems are very similar), whose evolution is described by the
map (3.9). If the target trajectory X' of the system is unstable, it can be stabilized
by an appropriate feedback through the time-dependent control perturbation Au,
provided the matrices A* and B* in the linearization (3.11) satisfy certain conditions.
In the present chapter we concentrate on selecting from the complete set of available
system parameters a minimal set of conirol parameters whose perturbation allows
the stabilization of the target state, i.e., making an appropriate choice of the control
matrix BY, given the Jacobian A*. The discussion of the problem of actually finding a
stabilizing feedback is deferred until chapter 5. We will see below that the constraints
affecting the choice of control parameters can be easily obtained from the symmetry
properties of the system and the controlled state. What is more interesting, symme-

try allows one to determine the minimal number of control parameters even when the
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local dynamics described by the Jacobian A! is unknown.

As we have seen in the previous chapter, discrete-time evolution equations of type
(3.9) are often obtained as a result of phase space reconstruction of a continuous-time
system when the dynamical equations describing its evolution are unknown. Gener-
ically, such reconstruction is possible when the measurement of a single scalar time-
dependent signal (1), which is a function of the system state s(t), is available. Many
practically interesting systems, symmetric ones in particular, are, however, extremely
nongeneric and require a number of independent scalar signals for the complete re-
construction. Eckmann and Ruelle [48] acknowledged that the choice of signals has
to be made carefully by trial and error. Certain general rules concerning this choice,
however, can be established on purely theoretical grounds, since this problem too can

be effectively treated based on the knowledge of underlying symmetries [49].

4.1 Time-Invariant States

4.1.1 Stabilizability and Controllability

Although our analysis is applicable to time-varying systems, we start for simplicity
by assuming that the controlled state is time-invariant, X = x. Then the matrices

A" and B* become constant, and we can drop the time index in (3.11) to obtain
Ax"t! = AAX' 4+ BAU'. (4.1)

It is useful to introduce and compare two characterizations of the linearized evolution
equation (4.1), which extremely simplify the analysis of feedback control algorithms:
stabilizability and controllabality.

The dynamical system (4.1) or the pair (A, B) is said to be stabilizable, if there
exists a state feedback

Auf = —~KAx, (4.2)

making the system (4.1) stable, i.e., it is possible to find a feedback gain matriz K,
such that all eigenvalues A}, of the matrix A" = A — BK lie within a unit circle

of the complex plane, |X,| < 1, Vk. Otherwise the system or the pair (A4, B) is
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called unstabilizable. Indeed, substituting the feedback (4.2) into (4.1) one obtains

the linearized evolution equation for the closed-loop system
Ax*t! = (A - BK)Ax, (4.3)

with Ax = 0 becoming the stable fixed point of the map (4.3), if and only il A — BK
is stable.

Since the magnitude of the control perturbation Au' is proportional to the devia-
tion Ax" of the system from the target state, feedback of the form (4.2) is often called
proportional in the physics literature, although there are a number of other terms used
to denote this type of feedback. Control theory uses the term state feedback to refer
to the fact that the state of the system is used to determine the control perturbation.
At first sight equation (4.2) seems to impose strict limitations on the allowed form
of the feedback law. However, this is precisely the form demanded by a number of
widely used control algorithms [10; 12; 17].

Stabilizability is a property, which often sensitively depends on the values of control
parameters. In the majority of practical applications, however, it is preferable to have
an adaptive control that would stabilize a given steady state x(@) for arbitrary values
of system parameters. This is especially important, if one is to track the trajectory
X as parameters slowly change, or use the same set of control parameters to stabilize
different steady (or even periodic) states. Such a control scheme is obtained, if the
more restrictive condition of controllability is imposed on the matrices A and B.

The n,-dimensional linear system (4.1) or the pair (A, B) is said to be controllable
if, for any initial state Ax" = Ax;, times {; — {; > n,, and final state Ax;, there
exists a sequence of control perturbations Au’, ---, Au®~! such that the solution
of equation (4.1) satisfies Ax/ = Ax;. Otherwise, the system or the pair (A4, B) is
called uncontrollable.

The controllability condition can be represented in a number of different equivalent
forms. To obtain one particularly convenient form, we make the trivial observation
that, if it is possible to drive the linear system from an arbitrary initial state Ax; to

an arbitrary final state Ax; in n, steps, it is possible to do the same in any number
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of steps n exceeding n,. Suppose we let the system evolve under control for n, steps
from the initial state Ax*. The final state will be given by!

/_\XH—"'" - (A)n‘” AXL el Z(A)zLI—AtBAut—f—k—l. (44)

k=1

Denote b, the mth column of the matrix B:

B = [bl b9 CE b.nu ] . (4

<t
~—

Regarding the terms (A)"~*b,, as vectors in the tangent space R,

b = (A= by, k=1, ,ng m=1, 0y, (4.6)

t+hk—1

m

and the control perturbations Au as coordinates, we immediately conclude that

equation (4.4) rewritten as

Ty Ty
Axp— (AY=Ax;= > Y Aui*'hy, (4.7)
k=1 m=1

can only be satisfied, if and only if there are n, linearly independent vectors in the

set (4.6), i.e., the set spans the tangent space R* . This is equivalent to requiring

that
rank(C) = n,, (4.8)
where the matrix
C=[B AB (A)QB (A)”:L‘_IB] (4.9)

is called the controllability matriz. Condition (4.8) was introduced into the physics
literature from linear systems theory by Romeiras et al. [17] as a simple, but practical
test of the controllability.

In contrast, the stabilizability condition requires that the set (4.6) spans only the
unstable subspace L* C R™ of the Jacobian A, instead of the whole tangent space

R™ . If A is a diagonalizable matrix, stabilizability can be formally expressed in the

"Here and below in the text we use the notation (A)™ to indicate that A is taken to the power of n to differentiate
it from the notation A*, where index ¢ defines the time dependence.



28
form identical to (4.8). Let us define the number of stable and unstable? eigenvalues

of the Jacobian nf and n¥

Zp)

respectively (one obviously has n +n% = n,), and denote
its nf linearly independent stable eigenvectors €f,7 = 1,---,n. It can then be shown
using an appropriate coordinate transformation that the pair (A, B) is stabilizable if

and only if

rank(S) = n,, (4.10)
where the matrix
S=[e] =~ & B AB == (A}*B] (4.11)

can be called the stabilizability matriz by analogy with the controllability matrix.

On the one hand, unlike the definition of stabilizability, the definition of controlla-
bility does not require feedback in any particular form. Therefore, controllability will
allow us to analyze the implications of symmetries for the control problem in general,
rather than for some particular feedback control scheme. On the other hand, it is
trivial to check [50] that the controllability condition guarantees that the eigenvalues
of the matrix A — BK can be freely assigned (with complex ones in conjugate pairs)
by an appropriate choice of the matrix K. Therefore, if the system is controllable, it
is stabilizable as well, and by requiring controllability we satisfy both conditions at
once.

In order to better understand the restrictions imposed on the control scheme by
symmetries, it is beneficial to look at the controllability condition from the geometrical
point of view, assuming n, = 1 and, consequently, B = b. The controllability in
this context is equivalent to the vectors h!',h? --. h™ spanning the tangent space
R" . Generically, the matrix A is nondegenerate (has a nondegenerate spectrum),
so one can always find a vector b, such that the resulting set (4.6) forms a basis.
However, il A is degenerate, which is a usual consequence of symmetry, there will
exist an eigenspace of the Jacobian, L” C R* such that x'4 = \,x!, Vx € L" with
the dimension d, = dim(L") > 1, where T denotes (complex conjugate) transpose

of a matrix or vector. The dynamics of the system in such an eigenspace cannot be

2For the purpose of control we regard the central directions, defined by the eigenvalues A such that |[A| = 1
(Re(A) = 0 in the continuous-time case), as unstable.
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controlled with just one control parameter (see [17] for an example of such a situation),

T

because the vectors h* only span a one-dimensional subspace of L". Indeed, since

;)

d, > 1 there will exist d, — 1 adjoint eigenvectors f; € L" orthogonal to b and each

other. Then

(fy - B¥) = £1{A) 5 = A Mb= A Mz b =0, (4.12)
so every basis vector h* is orthogonal to every eigenvector f;, j =1,---,d, — 1.

It is often convenient to define the notion of controllability for individual eigenvec-
tors. We will say that the adjoint eigenvector f of the Jacobian A is controllable, if
there exists m, 1 < m < n,, such that (f-b,,) # 0. Respectively, the eigenvector that
is orthogonal to every column of the control matrix B is called uncontrollable. Using
these definitions we can, therefore, conclude that the controllability of the linearized
system is equivalent to the controllability of each and every adjoint eigenvector of
the Jacobian matrix (also see [51]). Similarly, the stabilizability is equivalent to the
controllability of each and every unstable adjoint eigenvector.

If the system dynamics in L™ happens to be stable (e.g., when the system is
stabilizable, but uncontrollable), the system can still be stabilized similarly to the
nondegenerate case, but we have to ensure the controllability in case the dynamics in
this eigenspace is unstable. This can be achieved by increasing the number of control
parameters n,, which extends the set (4.6), until it spans every eigenspace of R"*.
This would lead one to assume that the minimal value of n, should be defined by the
highest degeneracy of the Jacobian matrix A. We will see, however, that various kinds

of degeneracy have a somewhat different effect on the controllability of the system.

4.1.2 Symmetries of the System

Symmetries usually significantly simplify the analysis of system dynamics, and the
control problem is no exception. In particular, even when the exact form of the
Jacobian matrix is unknown, the structure of the symmetry group describing the
symmetries of the system allows one to reduce the controllability condition (4.8) to a

set of much simpler conditions, which provide a number of system-independent results.
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The discussion below is based on bifurcation theory [31] and closely parallels the
treatment of degeneracy in quantum mechanics and spontaneous symmetry breaking
in quantum field theory and phase transitions.

In general we call the system symmetric, if the nonlinear evolution equation pre-
serves its form under a set of linear transformations g : x — x’ = g(x) of the phase
space. More formally, we say that the evolution equation (3.9) possesses a structural
symmetry described by a symmetry group G, if the map F' commutes with all group
actions:

F(g(x),u) = g(F(x,u)), Vgeg, (4.13)

or, in other words, if the function F(x,u) is G-equivariant with respect to its first
argument. The group G is usually a byproduct of symmetries of the underlying
physical space, such as rotational and translational symmetry (domain symmetry),
and symmetries of the phase space, such as phase symmetry ¢ — ¢ + 27 (range
symmetry). Since all interesting physical symmetries are unitary (such rare exceptions
as the Lorentz group are hardly relevant in the context of control problem), we will
assume that G is a unitary group.

Usually, the symmetry demonstrates itself in more than just one way: often steady
(as well as time-periodic) states X of symmetric systems too will be symmetric with
respect to transformations ¢ € Hg, where Hg € G is an isolropy subgroup of X.
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