
116

A p p e n d i x B

SUPPLEMENTAL INFORMATION FOR CHAPTER 3: GRID
FRAP PATTERNING REVEALS A DISPERSIVE EFFECT

IN THE BULK OF A LINEARLY CONTRACTING
MICROTUBULE NETWORK

B.1 Materials and methods

B.1.1 Motor purification

Plasmids containing the gene encoding the motor-fluorescent protein-light-

activated dimerization-FLAG tag construct with the pBiex-1 vector are trans-

fected in Sf9 suspension cells for 60-72 hours at 27�C on shakers rotating at 120

rpm. Cells are then lightly centrifuged at 500 rpm for 12 minutes to remove the

supernatant before resuspending in lysis bu↵er (100 mM NaCl, 2 mM MgCl2,

0.25 mM EDTA, 0.5 mM EGTA, 0.25 % Igepal, 3.5% sucrose by weight, 10

mM imidazole pH 7.5, 10 µg/mL aprotinin, 10 µg/mL leupeptin, 1 mM ATP,

2.5 mM DTT, and 0.5 mM PMSF) and leaving on ice for 20 minutes. Cells

are then spun down for 30 minutes at 154k ⇥ g after which the lysate is trans-

ferred to tubes containing mouse monoclonal anti-FLAG resin (Sigma A2220)

and slowly rotated at 4�C for 1.5v3 hrs to allow protein binding to the resin

via the FLAG tag. Resin-bound protein are washed three times by spinning

down at 2000⇥ g, clearing the supernatant, then resuspending by tube inver-

sion in wash bu↵er containing 15 mM KCl, 0.5 mM, 0.1 mM EGTA, 0.1 mM

EDTA, 2 mM imidazole pH 7.5, 10 µg/mL aprotinin, 10 µg/mL leupeptin, 0.3

mM DTT, and ATP in 3 mM, 0.3 mM, and 0.03 mM concentrations for the

first, second, and third washes, respectively. After the third wash, the pro-

tein are spun down again at 2000⇥ g and most of the supernatant is removed,

leaving the resin bed and roughly an equivalent amount of supernatant by

volume in the tube. The resin bed is resuspended and FLAG peptide (Sigma

F4799 or Thermo Scientific A36805) is added at a final concentration of 0.5

mg/mL before rotating for 3 hrs at 4�C. After incubation to allow the peptide

to outcompete the protein for resin binding, the protein are spun down again

at 2000⇥ g with the supernatant extracted and further spun down using cen-

trifuge columns with v30 µm pore sizes to further separate proteins from any

collected resin beads. Flow-through of clarified protein are spin concentrated
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using a 50 kDa filter tube to a final concentration of 2-2.5 mg/mL before

diluting in 100% glycerol of the same volume for storage.

B.1.2 Stabilized microtubule polymerization

Fluorescently labeled stabilized microtubules are prepared as in [1, 2]. After

flash thawing at 37�C and kept on ice, a combination of ⇡ 1.5 mg unlabeled

and 100 µg labeled tubulin are diluted to 7.5 mg/mL and 0.5 mg/mL, respec-

tively, in M2B 6.8 containing DTT and GMP-CPP at final concentrations of

1 mM and 6mM, respectively. The tubulin mixture is then incubated on ice

for 5 minutes in an ultracentrifuge tube before ultracentrifugation at 90,000

rpm at 4�C for 8 minutes. Avoiding the pellet at the the bottom, the super-

natant containing tubulin monomers are then placed in a new Eppendorf tube

and incubated at 37�C for 1 hour, typically in a water bath, during which

the tubulin is polymerizing and stabilizing with GMPCPP. The microtubule

mixture is then aliquoted into individual PCR tubes while constantly being

suspended in the mixture by stirring with a pipette tip. PCR tubes are then

briefly spun down with a tabletop minicentrifuge before flash-freezing with liq-

uid nitrogen and placed in a -80�C freezer for long-term storage. Microtubules

are then prepared for experiments by immersing the PCR tube in 37�C water

immediately when taken out of the freezer to quickly thaw.

B.1.3 Glass slide treatment

Corning glass slides and No. 1.5 Deckgläser coverslips are coated with an acry-

lamide solution to prevent the adhesion of proteins from the light-dimerized ac-

tivation assay to the surface. The acrylamide coating is done similarly to that

demonstrated in [3]. Prior to application of the solution, slides and coverslips

are separated by placement in appropriately sized containers and rigorously

cleaned through a series of solutions and sonicating. First, slides are immersed

in 1% Hellmanex to remove dirt particulates, sonicated, repeatedly rinsed with

deionized water (DI H2O), then repeatedly rinsed with ethanol. Slides are then

sonicated in 200 proof ethanol before rinsing again with DI H2O. After rinsing,

slides are sonicated in 0.1 M KOH and subsequently rinsed in double-distilled

water (ddH2O). Finally, trace metals are removed by immersing in 5% HCl for

4 hours. After repeatedly rinsing in ddH2O, slides are stored overnight with

MilliQ ultrapure water.
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Upon cleaning and before the acrylamide coating, a silane solution is made

first by mixing 98.5% 200 proof ethanol and 1% acetic acid before adding

0.5% trimethoxysilyl methacrylate and immediately pouring into the contain-

ers holding the slides and coverslips. After roughly 30 minutes, slides are rinsed

twice in 200 proof ethanol before drying with N2 air and baking at 110�C for

10-15 minutes to cure silane onto surface with oxygen bonding.

The polyacrylamide solution is made by mixing 950 mL ddH2O with 50 mL

40% acrylamide and degassing under vacuum for 30 minutes. The solution

is then under constant mixing on a stir plate with a stir bar during which

time 350 µL TEMED and 700 mg ammonium persulfate (APS) are added to

the solution. The acrylamide solution is immediately added to the slides and

coverslips and incubated overnight. Slides are placed in 4�C for long-term

storage.

B.1.4 Flow cell chamber preparation

Flow cells for all light-dimerized activation assays are prepared by thoroughly

rinsing an acrylamide-coated glass slide and coverslip in ddH2O and air drying

with N2 gas. A piece of parafilm with three channels each cut 3 mm wide is

placed on the glass slide with the long axis of the channels running along the

length of the slide. The coverslip is placed on top of the parafilm with pressure

applied to flatten out the film. The flow cell is then briefly placed on a hot

plate set at 65�C to warm the parafilm, allowing extra pressure on the contact

points between the film and the glass to better seal the chambers.

B.1.5 Light-dimerized activation assay preparation

Photobleaching experiments require an energy mix to maintain stability and

function of microtubules and motors while constantly supplying kinesin motors

with ATP to contract the microtubule network. This energy mix is slightly

altered from that used by Ross et al. [1] with the major changes being a

change in acidity for K-PIPES from pH 6.8 to pH 6.1 and the absence of

catalase to allow for photobleaching. iLid- and micro-tagged motors with

the same fluorescent protein are each added to the reaction mixture at final

concentrations of 40-100 nM with stabilized microtubules added at a final

concentration of 1.5-2.5 µM tubulin. Concentrations of motors and tubulin

are tuned to ensure that microtubule network contracts into an aster without

an influx of microtubules from outside of the light-activation region.
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B.1.6 Optical set-up

The sample is imaged and photobleached using a super planar fluorescence

20x objective from Nikon (numerical aperture 0.45). Image acquisition is per-

formed using a FLiR Blackfly monochrome camera (BFLY-U3-23S6M-C) with

two filters in front of it: a Semrock Brightline dual-band pass filter centered

at 577 nm (28.3 nm FWHM bandwidth) and 690 nm (55.1 nm FWHM band-

width) and a Semrock StopLine single-notch filter at 532 nm (17 nm notch

bandwidth) to suppress transmission of the YFP YFP excitation to the cam-

era.

Fig. B.1 gives a general idea of the layout of the microscopy components.

Activation of motor dimerization and imaging of the microtubules is per-
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(A) Microtubule Photobleaching (B) Motor Dimerization (Blue) and
Microtubule Imaging (Red)

Figure B.1: Arrangement of the laser and projector. The laser and pro-
jector are set on di↵erent optical paths before reaching the sample. (A) The
projector shines white light that passes through a filter in order to clip to the
desired wavelength. These filters will either transmit blue light to perform the
iLid-micro motor dimerization or red light to image the microtubule fluores-
cence channel. (B) The laser performs the photobleaching of the microtubules
in a grid pattern by passing through a cylindrical lens array. The cylindrical
lens array is mounted on a rotation mount (not shown) to bleach vertical and
horizontal lines. A 20x Nikon objective is used for the imaging.
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formed using a digital light projector DLP Lightcrafter Display 4710 EVM

Gen2 from Texas Instruments. The DLP projects white light while a motor-

ized filter wheel sets the transmissible range of wavelengths onto the sample

(beam blocker for no light, 460/50 nm filter for blue light for iLid-micro dimer-

ization and 630/38 for microtubule imaging). Photobleaching of microtubules

is performed using a 645 nm laser. The laser path is set to pass through a

cylindrical lens array that transforms the collimated light pattern into a series

of lines along one axis. The cylindrical lens array is mounted onto a rotation

mount to allow for photobleaching of vertical and horizontal lines to generate

the grid pattern. To ensure that the photobleached lines persist for multiple

frames of the image, the laser passes through a gimbal-mounted mirror that

deflects the beam over a small range of angles. By deflecting the laser light o↵

of the mirror through two lenses with the same focal length f and a second,

stationary mirror placed 4 ⇥ f away from the gimbal-mounted mirror before

passing the laser through the cylindrical lense array, the transformed laser

lines can be swept out. We use this beam steering approach to photobleach

thicker lines.

To perform the activation and imaging patterns, we supply µManager with a

TIFF stacks of matching pixel dimensions as the projector and use a Bean-

shell script modified from Ross et al. to use the correct TIFF image in the

stack. The TIFF stack contains a blank image (all pixel values 0) for when

the laser is turned on (which is also used in conjunction with the beam blocker

to prevent light from passing onto the sample outside of the activation and

imaging cycles); a maximum pixel intensity image for the microtubule imag-

ing, and a circular pattern in a blank background for the circular iLid-micro

dimerization activation pattern. The primary modification to the Beanshell

script is the incorporation of a timer for when the photobleaching will be per-

formed. Once the experiment reaches the desired time, the imaging pauses

while the Beanshell script turns on the laser and executes a series of custom

written executables that sweep out the laser lines to create thicker parallel

photobleached lines, turn o↵ the laser, rotate the cylindrical lense array, then

reactivate the laser and sweep out the laser lines in the orthogonal direction

to generate the grid pattern. Upon finishing this command, the laser is shut

o↵ and imaging resumes. The entire photobleaching is performed within a

roughly 10-15 second window.
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B.2 Unit cell segmentation and fluorescence preservation in subse-

quent frames

Fluorescent unit cells of a photobleached microtubule network are segmented

in the cropped image sets where the microtubules outside of the activation

region are neglected. We first reduce the background signal in each image

by performing a heavy Gaussian blur (� = 20 pixels) and subtracting o↵ the

Gaussian blur from the original image. Images are then normalized to fall

between 0 and 1. In order to identify each fluorescent square, we use the tri-

angle thresholding algorithm [4] as it accurately segmented the unit cells in

the first image taken after the photobleaching was performed. Other thresh-

olding methods either segmented unit cells to be much smaller and therefore

misses a large amount of fluorescent regions of the unit cell or segmented unit

cells to be much larger, which a↵ects the amount of time that unit cells are

identified as distinct. After the thresholding is applied, the segmented image

is cleaned up by removing segmented objects that are too small (less than a

third of the area of a unit cell immediately after photobleaching), objects that

are too large (more than 3 times larger than an expected unit cell immediately

after photobleaching) or images that are too close to the border, which typ-

ically removes microtubules outside of the iLid-micro light-dimerized region.

To close o↵ any patches within a fluorescent unit cell due to the thresholding,

we perform a morphological closing is performed. With the segmented images,

the centroid position, area, and total fluorescence of each unit cell are obtained

as well as the pixel-weighted centroid of the entire segmented image to obtain

the microtubule network center.

Subsequent images of the same dataset undergo the same background sub-

traction to segmented image clean-up. However, as the some fraction of the

fluorescent microtubules begin to disperse, the image segmentation may not

pick up fewer of the fluorescent microtubules at the boundary of the unit cell

with the photobleached region as they may be considered too low in signal

to be distinguished from the background. As a result, for later images than

the first image after photobleaching, we correct the segmentation by adding

on pixels around the boundary of the segmented unit cells until we return to

the correct total fluorescence. To do this, each unit cell is then paired with

itself from the previous time step by determining nearest centroids. Due to the

minimal reduction in fluorescence intensity from the DLP during imaging as

shown in Section B.3, we compare the total fluorescence intensity of the unit
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cell in the frame of interest post-segmentation to its total intensity from the

first frame. If the total intensity is less than 99% of the initial intensity, we

continually add a single-pixel thick layer around the unit cell until the unit cell

finally falls within 99% of the initial intensity. If after an iteration the total

intensity becomes greater than the initial intensity, we remove the dimmest

pixel around the outer layer until the intensities roughly match. Unit cell

centroids, areas, and fluorescence intensities are then computed in addition to

the pixel-weighted center of the entire contracting network after this intensity-

adjusted processing for all of the unit cells. Image processing of a unit cell

terminates when it is found to overlap with another unit cell during the fluo-

rescence intensity correction scheme as this indicates that the unit cells have

begun to merge and by the next time point will no longer be distinguished.

B.3 Projector e↵ects on microtubule fluorescence intensity

In analyzing the photobleached microtubule field as the network contracts, we

used the total fluorescence intensity of the unit cells as a conserved quantity

during the unit cell segmentation. One concern might be whether the micro-

tubule fluorescence decreases in time due to the e↵ects of the projector, which

illuminates the field of view for imaging purposes. To investigate this, we

imaged the microtubule field without activating the iLid-micro dimerization

using the same exposure times (v100 ms) and imaging frequency (10 s per

frame). We then examined the mean image intensity and standard deviation

of the pixel intensity as a function of time.

SI Fig. B.2(A) illustrates the e↵ects of the projector on the microtubule field.

The mean intensity of the field of view, as normalized against the mean in-

tensity at t = 0 seconds, indicates that the fluorescence field fluctuates only a

few tenths of a percent but does not appear to decrease over an hour. These

fluctuations are likely due to the di↵usion of the microtubules in the flow cell,

as SI Fig. B.2(B) shows the normalized mean intensity of the microtubule

fluorescence channel but in the absence of microtubules. Here, we see that

that there are fewer fluctuations in the fluorescence intensity, further support-

ing that the small fluctuations in fluorescence intensity in successive imaging

stages comes from di↵usion of the microtubules. Nevertheless, we show here

that the fluorescence intensity is well preserved and use this as our justifica-

tion for using total fluorescence intensity as the conserved metric for unit cell

segmentation.
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Figure B.2: Image intensity of the microtubule field as a function of
time. (A) Mean intensity of the microtubule field normalized against that
of the first image. Blue shaded region represents one standard deviation in
the mean intensity (normalized by the same initial mean value). (B) Mean
intensity of the same fluorescence channel in the absence of microtubules. Blue
shaded region once again represents the standard deviation of the image region.

B.4 Data analysis

B.4.1 Contraction rate computation

In the main text, we use the centroids of fluorescent unit cells obtained as

outlined in Section B.2 of Appendix B to demonstrate that contraction speed

of the microtubule network scales linearly with distance from the network cen-

ter. We first obtain the speed that each unit cell centroid is moving toward

the center as a function of time. For each unit cell, we observe a linear re-

lation between the centroid distance from the network center and time after

photobleaching of the form

r = vc t+ r0, (B.1)

where r is the unit cell centroid distance from the network center, vc is the

speed of the unit cell (which will take to be positive here but directed toward

the origin), t is the time since photobleaching, and r0 is the initial centroid

distance from the network center immediately after photobleaching.

Using the extracted contraction speed and distances for all of the unit cells for a

given motor type, we next computed the rate of contraction of the microtubule

network. We note that we expect a linear relation between radius r and

centroid speed vc of the form

vc = ↵ r + v0, (B.2)
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where ↵ is the contraction rate and v0 is the contraction speed at the net-

work center. Although we expect the speed at the network center to be 0,

we relax this assumption for our analysis. To more carefully compute the

rate of contraction of the network and determine the range of credibility of

the computed rate, we use a Bayesian approach. Specifically, we compute

the probability of ↵ and v0 given our data on the contraction speeds for

each unit cell and their distance from the network center, P [↵, v0| {(r0, vc)i}],
where i denotes each unit cell. Here, we use the centroid distance immedi-

ately after photobleaching but found that another criterion such as the me-

dian of the centroid distance over the course of the time window analyzed

does not dramatically a↵ect the results due to the relatively small travel⇣
�r
r0

< 10% for �r the distance traveled over the entire time course
⌘
the unit

cells undergo.

We note from Bayes’ Theorem that

P [↵, v0| {(r0, vc)i}] =
P [{(r0, vc)i} |↵, v0]P (↵, v0)

P [{(r0, vc)i}]
,

=

Q
i P [(r0, vc)i |↵, v0]Q

i P [(r0, vc)i]
P (↵, v0) ,

/
Y

i

P [(r0, vc)i |↵, v0]P (↵, v0) , (B.3)

where we drop the denominator on the right-hand side as it does not involve

the parameters we want to find, thus making the two sides proportional to

each other. Here, P [(r0, vc)i |↵, v0] is the likelihood distribution of getting the

(r0, vc)i that we did given ↵ and v0 while P (↵, v0) is the prior distribution of

our two parameters.

We expect that our priors on ↵ and v0 are independent of each other, so we

can break up the probability function into a product of two:

P (↵, v0) = P (↵)P (v0) . (B.4)

Meanwhile, we can rearrange each likelihood function as a product of two prob-

abilities. The probability of getting (r0, vc)i given our parameters is also the

probability of getting vc,i given our parameters and r0,i times the probability

of getting r0,i, or

P [(r0, vc)i |↵, v0] = P (vc,i|↵, v0, r0,i)P (r0,i) ,

/ P (vc,i|↵, v0, r0,i) , (B.5)
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where we change to a proportionality again as P (r0,i) is independent of our

parameters. Here, we expect that our contraction speed for a given unit cell

vc,i comes from a Normal distribution where the mean value is ↵ r0,i + v0 and

standard deviation �. This means that we will also need a prior on �. This

means that our distribution really takes the form of

P [↵, v0, �| {(r0, vc)i}] / P (↵)P (v0)P (�)
Y

i

P (vc,i|↵, v0, �, r0,i) . (B.6)

As a result, we say that our likelihood takes the form

vc,i v Normal
�
↵r0,i + v0, �

2
�
. (B.7)

We then defined our priors to be that ↵ is drawn from the half-normal distri-

bution where ↵ > 0 as we are working with speeds of contraction, � is also

drawn from a half-normal distribution and enforced to be positive, and v0 is

drawn from a normal distribution about v = 0. We make the o↵set a normal

rather than a half-normal distribution as there may be a value of r > 0 for

which the contraction stops, which for a positive slope would mean a negative

speed at r = 0. Put together, we have the following priors:

↵ v Half-Normal (0, 1) , (B.8)

� v Half-Normal (0, 1) , (B.9)

v0 v Normal (0, 1) . (B.10)

We sampled the joint distribution of (↵, v0, �) by Hamiltonian Markov chain

Monte Carlo using the Stan probabilistic program [5]. From each (↵, v0) that

is sampled we compute the mean value µ = ↵ r+ v0 for 0  r  R where R is

the distance of the farthest centroid from the network center and report the

median and 95% credible region for at each distance r as presented in Fig. 2

of the main text and Fig. B.6.

B.5 Deformation of a square due solely to contraction

In the main text, we observed that each fluorescent unit cell on average con-

serves its area while its center of mass moves toward the network center with

speed that is linearly dependent on the distance from the center. We compute

the expected area of each unit cell had the network elastically contracted due

solely to the observed global contraction. We define the contraction velocity

field v(x, y) as

v(x, y) ⌘ �↵ (xx̂+ yŷ) , (B.11)
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where ↵ is the contraction rate as computed in SI Sec. B.4.1 and reported in

the main manuscript. This means that after a time interval �t a point (x, y)

subject to this advective flow will be displaced in the x- and y- directions

according to

dX = �↵x�t,

dY = �↵y�t, (B.12)

so the point at the later time (x0
, y

0) relates to its earlier time point by

x
0 = x+ dX = x (1� ↵�t)

y
0 = y + dY = y (1� ↵�t) . (B.13)

Suppose we looked at the four corners of a unit cell, labeled as A, B, C, D as

depicted in Fig. B.3. If we assign their coordinates as

A ! (xA, yA) ,

B ! (xB, yB) ,

C ! (xC, yC) ,

D ! (xD, yD) , (B.14)

we see that by picking a square, we can simplify any two diagonal points to be

dependent on coordinate values from the other two diagonal points, so with a

choice of using coordinates from A and D, the coordinates become

A ! (xA, yA) ,

B ! (xD, yA) ,

C ! (xA, yD) ,

D ! (xD, yD) . (B.15)

Under the deformation mapping, their new coordinates, labeled as A0, B0, C0,

and D0 get mapped on as

A0 ! [xA (1� ↵�t) , yA (1� ↵�t)] ,

B0 ! [xD (1� ↵�t) , yA (1� ↵�t)] ,

C0 ! [xA (1� ↵�t) , yD (1� ↵�t)] ,

D0 ! [xD (1� ↵�t) , yD (1� ↵�t)] . (B.16)
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Figure B.3: Schematic of unit cell contraction due purely to the advec-
tive velocity field. An advective velocity field scales linearly with distance
from the origin while pointing radially inward and are shown in blue. The
points at the corners of the square (A, B, C, D) are mapped after some time
�t to (A0, B0, C0, D0).

Eqs. B.16 tells us that under this particular velocity field, any two points

that are horizontally or vertically aligned will maintain the same horizontal

or vertical alignment, respectively, even at later times. Thus, a square will

preserve its shape in time.

We next examine what happens to the area of a unit cell had the only e↵ect

been the global contraction. In this case, we can compare the area of the

square before and after the deformation. To compute the area swept out by

(A,B,C,D), we multiply the line segment between B and D, LBD with the line

segment between C and D, LCD:

�(A,B,C,D) = LBD ⇥ LCD,

=

q
(xB � xD)

2 + (yB � yD)
2

�
⇥
q

(xD � xC)
2 + (yD � yC)

2

�
,

= (yA � yD)⇥ (xD � xA) , (B.17)

where we use Eq. B.15 to write in terms of the coordinates of A and D. In

comparison, the area of the deformed unit cell swept out by (A0, B0, C0, D0)
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takes the form

�(A0,B0,C0,D0) = LB0D ⇥ LC0D0 ,

=

q
(xB0 � xD0)2 + (yB0 � yD0)2

�
⇥
q

(xD0 � xC0)2 + (yD0 � yC0)2
�
,

= (yA0 � yD0)⇥ (xD0 � xA0) ,

= [yA (1� ↵�t)� yD (1� ↵�t)]⇥ [xD (1� ↵�t)� xA (1� ↵�t)] ,

= (yA � yD) (1� ↵�t)⇥ (xD � xA) (1� ↵�t) ,

= (yA � yD)⇥ (xD � xA) (1� ↵�t)2 ,

= �(A,B,C,D) (1� ↵�t)2 . (B.18)

Thus we find that the area of the unit cell subject solely to the contraction

would decrease by (1� ↵�t)2 after a time period�t. This comes in contrast to

the results that we present here where the area of the fluorescent unit squares

remains constant during the contraction process suggesting a mechanism that

disperses microtubules against the global contraction.

B.6 Microtubule length extraction

Stabilized microtubules imaged under total internal reflection fluorescence

(TIRF) microscopy such as the ones shown in Fig. B.4A were analyzed similar

to that discussed in [1] in order to extract their lengths. Briefly, due to the

even illumination that can occur in the image, images were first background

corrected using a local thresholding method known as Niblack thresholding

[6] with window size of 3 pixels and k value of 0.001, which determines how

many standard deviations below the mean pixel value that one sets the cut-

o↵ within the window. Although the array is a series of pixel values to be

weighed against the original image, we found that this array already improved

the image contrast. Due to better flattening of the image but a nonbinary

image, we used Otsu thresholding on the Niblack theshold array to extract

the microtubules from the background. The result is shown in Fig. B.4B.

Using the binary image which contains extracted microtubules, we imposed

a morphological closing algorithm to reconnect any microtubules that were

broken during the Niblack thresholding from being picked up as signal. This

closing was performed using a 3 pixel x 3 pixel square array, suggesting that

disconnected microtubules needed to be within 3
p
2 pixels of each other at

their ends to be connected again. From here, we removed any microtubules
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Figure B.4: Processing steps of microtubule images. (A) Raw image.
Scale bar denotes 10 µm. (B) Images processed after computing a Niblack
threshold and using Otsu thresholding on the Niblack threshold array. (C)
Putative MTs skeletonized after removing objects too close to the image border
or too small. (D) Removal of any MTs that cross over each other to get the
final MTs used for analysis.

that were too close to the edge of the image as they may extend outside of

the camera field of view, any objects that were fewer than 10 pixels in area

as we considered them too small to know with enough certainty whether they

were microtubules or small blemishes in the image. Putative microtubules

underwent a morphological thinning so that they were converted to one-pixel

wide lines along which we could compute their lengths. The result of the edge

and size exclusion and skeletonizing are shown in Fig. B.4C.

As a final step before measuring the lengths, we removed any microtubules

that seemed to cross over. This was performed by removing objects where two

line segments along the same microtubule strand formed angles of at least 75�,

leaving behind a processed image such as Fig. B.4D. From here, we used any

remaining microtubules and measured their lengths and compiled them. Fig.

B.5 shows empirical cumulative distribution functions of these microtubules

from the four MT polymerization assays performed over the course of the work

presented here. n denotes the number of microtubules that were extracted from

the image processing and used in the ECDF for each replicate. Here, we see

that for most of the work performed the MTs had lengths between 1 � 3 µm
with median lengths between 1.5� 2 µm.

B.7 Motor constructs

While several of the motors used here in the analysis are obtained from previ-

ous work, including K401 expressed in bacteria [1], K401 expressed in insects

and Ncd236 expressed in insects [7], we also designed constructs for the study

of Ncd281 [8]. Specifically, the sequences are inserted into pBiex-1 vectors and
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Motor Construct Sequence Layout
micro variant pBiex-1:FLAG-GG-mVenus-(GSG)2-micro-(GSG)4-Ncd281
iLid variant pBiex-1:FLAG-GG-mVenus-(GSG)2-iLid-(GSG)4-Ncd281

Table B.1: Ncd281 construct design. All constructs are designed in the
pBiex-1 vector and produced by Twist Biosciences.

includes a FLAG tag for protein purification, mVenus for motor fluorescence

visualization, either a micro or iLid domain as described in [9] and Ncd281

as described in [8]. Between these di↵erent domains are multiple repeats of

a ‘GSG’ amino acid sequence which o↵ers flexible links between the regions.

Table B.1 illustrates these sequences. Constructs were produced by Twist

Biosciences.

B.8 Measuring motor speeds and their e↵ects on contraction rate

and unit cell area

In the work shown in the main manuscript, we showed that by changing the

motor used in the system from Ncd236 to the slower Ncd281 the contraction

Figure B.5: Empirical cumulative distributions of microtubule length
from microtubules stabilized from polymerization preparations for
experiments used in this manuscript. Microtubules were prepared four
times over the course of the work presented here, thus shown as four di↵erent
datasets. Left and right plots show the same data but on di↵erent x-scales
(linear for the left plot and logarithmic scale on the right). The two polymer-
ization preparations performed in April 2021 were performed separately by
two of the authors of this manuscript on the same day. n denotes the number
of microtubules whose lengths were used in the ECDFs.
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rate of the microtubule network decreased while the unit cell area remained

uniform in time, suggesting that motor speed largely drives a local reorga-

nization of the microtubules in the bulk of the network despite the global

contraction. We similarly performed our photobleaching approach to the ac-

tive contraction assay on two motors that are faster than Ncd236. Both are

K401 constructs with one expressed in bacteria as in [1] while the other is

expressed in insects from the constructs designed in [7]. These motors have

di↵erent speeds, which we measure through gliding assays.

Fig. B.6 shows the e↵ects of the di↵erent motor speeds on contraction speed

as a function of distance from the center of the contracting network and nor-

malized area as a function of time. Unlike Ncd281 (column B) where the

contraction rate decreases relative to Ncd236 (column A), the insect-expressed

(column C) and bacterial-expressed (column D) K401, both of which are faster

than Ncd236, the contraction rate increases. Interestingly, despite the bacte-

rial K401 being slower than the insect K401, they have similar contraction

rates, with contraction rates of 0.0065+0.0009
�0.0008 s�1 and 0.0072 ± 0.0012 s�1, re-

spectively. Even so, we find that despite dramatic increases the contraction

rate, the unit cell areas on average remain constant.

Figure B.6: Contraction rates and unit cell area in time for four dif-
ferent motors. (Top row) Contraction speed against radius for unit cell
centroids with most likely contraction rate fit (red line) and 95% credible re-
gion (shaded region) and (bottom row) unit cell area as a function of time for
(A) Ncd236, (B) Ncd281, (C) K401 expressed in insect cells, and (D) K401
expressed in bacteria.
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B.9 The recovery of a typical FRAP-like disc is time-sensitive in

the advection-di↵usion model

As we derive in the Section B.12, the general solution to the PDE

@c

@t
= Dr2

c+r ·
h
vm

R
rc
i
, (B.19)

assuming no angular dependence takes the form
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2�2 + e
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where css is the coe�cient for the steady-state concentration term, � ⌘
q

DR
vm

,

ki are the eigenvalues specific to the boundary condition, ci are the coe�-

cients based on initial conditions, and 1F1(a; b; z) is the Kummer confluent

hypergeometric function

1F1(a; b; z) =
1X

l=0

(a)l
(b)l

z
l

l!
, (B.21)

where the Pochhammer symbol (a)l =
(a+l�1)!

(a�1)!
. The most well-known example

of Eq. B.21 is the case where a = b, which yields 1F1(a; a; z) = e
z. The

eigenvalues {ki} are found by satisfying the boundary conditions and are those

terms that satisfy the equation
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Eq. B.80 shows that the steady-state profile of the concentration is a Gaussian

distribution with standard deviation �.

We now seek to identify the coe�cients of the terms, which are specific to the

initial conditions. Here, we will analytically examine three cases for initial

conditions: 1) uniform concentration, 2) a uniform concentration except with

molecules removed in the region r  R0 as found in many FRAP assays, and

3) a FRAP-like removal of molecules in the region r  R0 after the system

initially reaches a steady-state Gaussian concentration profile.

B.9.1 Uniform concentration

We start with the case where the concentration is uniform everywhere:

c(r, 0) = c0. (B.23)
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Figure B.7: Radial advection-di↵usion for various initial conditions.
(A) Uniform concentration throughout the system. (B) Uniform concentration
for r > R0 and no molecules for r  R0. (C) A Gaussian distribution for
r > R0 and no molecules for r  R0. Analytical solutions are presented as
solid lines while solutions obtained by finite elements are shown as hollow
points. The initial condition for each situation is shown as a dashed red line.
For all studies, D = 0.1 µm2

s
, R = 10 µm, and vm = 0.1 µm

s
. For (B), we set

R0 =
R
2
while for (C) we set R0 =

R
4
. For (C), the steady-state profile prior to

removing molecules for r  R0 is shown as a dashed red line. All analytical
solutions use the first 12 eigenvalues that satisfy Eq. B.79.

The solution to the PDE with this initial condition takes the form of
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Fig. B.7A shows the concentration profile as a function of radius and for

various time points given this initial condition. Here, we used D = 0.1 µm2

s
,

R = 10 µm, and vm = 0.1 µm
s
. Solid lines indicate di↵erent time points for the

specific analytical solution given the uniform initial condition. These analytical

solutions also show strong agreement with simulations performed by FEM

which are denoted by hollow points. Here, we use the first 12 eigenvalues ki

for the analytical solution. Similar to the decomposition of a square wave into

a sum of sinusoidal functions yielding imperfect agreement with the original

function, we see here that the use of a limited number of eigenvalues that

satisfy Eq. B.79 leads to fluctuations about the original function for t = 0

(see Appendix B.14 on Gibbs phenomenon). Nevertheless, we see that these
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fluctuations in the analytical condition quickly smooth out for t > 0. For the

given parameters, the concentration at larger radii decreases quickly due to the

higher advection overcoming di↵usion. As shown at t = 20 seconds and t = 40

seconds, the concentration appears roughly uniform at lower concentrations

but the length scale of this uniformity appears to decrease. At t = 990 seconds,

the concentration profile reaches the Gaussian steady-state solution where the

concentration gradient allows di↵usion to counter the advective flow.

B.9.2 Uniform concentration for r > R0

We apply a similar initial condition as that used in Sec. B.9.1, but remove

any molecules within a distance R0 from the origin as typically performed in

FRAP experiments. This initial condition is mathematically described by

c(r, 0) =

8
<

:
0 if r  R0,

c0 if r > R0.

(B.25)

The solution for this initial condition is similar to Eq. B.24 but with di↵erent

limits of integration (see Appendix B.11 on Sturm-Liouville Theory and S2 for

application of the theory in 2D):
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where
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As R0 ! 0 in Eq. B.26 we recover Eq. B.24. Fig. B.7B shows traces of

the concentration profile at the same times as in Fig. B.7A. Here, R0 = R
2
.

Once again, we see that the analytical solution for t = 0 fluctuates about

the defined initial condition but quickly smooth out and agree well with FEM

results (hollow points) for t > 0. By removing molecules at r  R0, a wave

of molecules move toward the origin from a combination of advection toward

the origin and di↵usion moving molecules against the concentration gradient

while the concentration at r ! R recedes. Once again, we recover a Gaussian

profile, but at a lower maximum than that observed in Fig. B.7A due to the

lower initial number of molecules.
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B.9.3 Gaussian profile for r > R0

Finally, consider a situation where molecules in this advective-di↵usive system

are allowed to reach steady-state before photobleaching all molecules within a

certain radius of the center r  R0. The initial conditions would appear as

c(r, 0) =

8
<

:
0 if r  R0,

c0 e
� r2

2�2 if r > R0.

(B.28)

We show analytically that the concentration profile is
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where
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Once again the analytical solution agrees with simulations of the same initial

condition shown in Fig. B.7C for R0 =
R
4
. We note here that as R0 ! 0 we re-

cover the steady-state solution again as the time-dependent terms vanish and

the ratio of exponentials in the time-independent term goes to unity. Fig. B.7C

shows again the imperfection of the analytical solution for t = 0 and the ini-

tial condition but a strong agreement with FEM results. In this situation, the

concentration toward the outer edge of the system remains largely unchanged

as di↵usion and advection are balanced toward the boundary. However, at

smaller radii of the system, there is a shift in concentration as molecules enter

the r  R0 region and for the chosen parameter values, the overall concentra-

tion profile returns to a Gaussian distribution within 3 minutes.

Across all three initial conditions, the trend toward a Gaussian distribution

as the steady-state profile shows that in experimental systems exhibiting such

an advective-di↵usive behavior the use of FRAP becomes sensitive to the time

when photobleaching is applied. If the concentration profile in the system

has already begun to move away from a uniform distribution, such as the

initial contraction of a highly connected filament network, then the molecule
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redistribution until steady state is achieved will show di↵erent recovery profiles

from that of an experiment where photobleaching is applied at a time when

the system is already close to reaching the steady-state profile. Such results

provide the two extremes of “fluorescence recovery” in potential in vitro assays

that evolve from a uniform concentration to a Gaussian-shaped distribution

subject to this advection-di↵usion system.

B.10 1D telescoping model

In this work, we present a theory for the redistribution of particles influenced

by di↵usion and advection with a linear velocity profile directed toward the

origin. This theoretical analysis is meant to explore the filament concentration

when subject to a linear contraction velocity profile. We start by illustrating

this in a 1D system of length L. The velocity as a function of position is

described by

v(x) = �vm
x

L
, 0  x  L, (B.31)

where vm is the maximum particle velocity in this system, located at x = L. We

also note that the velocity is negative to indicate that the particles are moving

toward x = 0. The general one-dimensional advection-di↵usion equation says

that the concentration changes in space and time c(x, t) in the form
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2
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i
, (B.32)

for D the di↵usion constant. With a linear velocity profile, Eq. B.32 takes the

form
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To solve Eq. B.33, we apply a separation of variables where our ansatz for the

concentration of particles is

c(x, t) = �(x)T (t). (B.34)
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We apply Eq. B.34 to Eq. B.33 and divide by D�(x)T (t) to get
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Due to the left-hand and right-hand sides of the equation depending only on

t and x, respectively, we can say that both sides of Eq. B.35 are the same

constant �k
2. We then solve the left-hand side of Eq. B.35:

1
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We are left to solve the right-hand side of Eq. B.35. Here, we get
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We define a parameter ↵2 = vm
DL . When implemented into Eq. B.37, we get
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where we redefined x̃ = ↵x and k̃ = k
↵ .

In order to solve for �, we applied the ODE into Wolfram Alpha. The general

solution takes the form

�(x̃) = css e
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where Hn(x) is the nth Hermite polynomial and 1F1(a; b; z) is the Kummer

confluent hypergeometric function. When we apply no-flux boundary condi-

tions to the problem, we are looking to satisfy the conditions Jx|x=0 = 0 and
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Jx|x=L = 0. We note that Jx = D
d�

dx � v(x)�(x) rather than simply d�

dx = 0 at

the boundaries where the advection of material coming in must be countered

by di↵usion going outward to ensure that the number of particles is constant

in the system.

Fortunately, both boundary conditions are satisfied for the steady-state solu-

tion. However, when we apply these conditions to the Hermite polynomials,

the condition at x = 0 requires that k̃2 be an even integer, but the boundary

condition at x = L requires that

H
0
2n

⇣
↵Lp
2

⌘
= 0. (B.40)

To be able to satisfy this boundary condition, we would have to ensure that

the derivative of each even function of the Hermite polynomial is 0 at ↵Lp
2
.

However, as L, vm, and D are defined properties of the system, we are left to

argue that the coe�cients of the Hermite polynomials are 0. Finally, we check

that the Kummer confluent hypergeometric function can satisfy our boundary

conditions. We start with x = 0:
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Eq. B.41 shows that all terms of the function for � will satisfy the boundary

conditions without a need to specify k̃. Applying the boundary condition at

x = L gives:
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2

2
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3
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;
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2
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In order to get to this solution, we used the case that (a)l = (a)(a + 1)(a +

2)...(a+ l� 1) = a (a+ 1)l�1 so that we return to a Hypergeometric function.

In essence, we then need to solve for k̃ through Eq. B.42 in order to obtain

each value of k in our original problem.

Fig. B.8 plots the left-hand side of Eq. B.42 as a function of k̃ when ↵L = 1.

That is, for simplicity, we set all of the parameters of the system to unity. In
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Figure B.8: Zeros of k̃ for 1F1

⇣
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2
; 3
2
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2

2

⌘
= 0 where ↵L = 1. Red dots

are overlayed with the points where the Kummer confluent hypergeometric
function crosses the x-axis.

this case, we can see a roughly periodic nature to the hypergeometric function.

The first five solutions for k̃ are k̃ = 3.231, 6.329, 9.456, 12.589, and 15.727,

which we will refer to later.

So far, the solution to Eq. B.33 with no-flux boundary conditions is
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where kj is determined from finding the values of k̃j ⌘ kj
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Here, we have determined the first few values of kj that satisfy the no-flux

boundary condition. We now find the coe�cients {cj} from solving the initial
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condition. There are many possible initial conditions we could consider, but

suppose we let a one-dimensional aster assay carry out to form a steady-state

aster. At t < 0, the concentration of fluorescent molecules in the system is

the steady-state concentration profile css e
�x2

2 , but then we photobleach the

molecules at positions x < x0 < 1. In this case, our initial conditions appear

as

c(x, 0) =

8
<

:
0 if x  x0,

c0 e
�x2

2 if x > x0.

(B.45)

In order to solve the initial conditions, we must multiply both sides of Eq.

B.43 by an eigenfunction with some value of kh that satisfies the boundary
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We first tackle the left-hand side of Eq. B.46. By invoking a relation for

Kummer confluent hypergeometric functions of the first kind:
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, (B.47)
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the integral can be altered to take the form
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and by using (a)i(a+ i) = a(a+ 1)...(a+ i� 1)(a+ i) = a(a+ 1)i, and using

Eq. B.47 we get
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Where the first term in the penultimate line is 0 due to Eq. B.42.

Integrating the term with the steady-state solution simply leads to an integral

of the hypergeometric function:

Z
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�x2
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⌘
,

= 0. (B.50)

So the first integral on the right-hand side vanishes. This makes sense as the

steady-state function, being an eigenfunction of the PDE is orthogonal to the

eigenfunction chosen.

Finally, we solve for the second integral on the right-hand side. We showed

in Eq. B.66 of Sec. B.11 that for j 6= h, the integral is 0. This leaves only
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one integral to tackle, where j = h. For this problem, this integral must be

performed numerically. The coe�cients are then solved as

ch = �c0

x0e
�x20

2
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Finally, we determine the coe�cient for the steady-state solution. To achieve

this, we multiply both sides by the weighting function w(x) and the steady-

state eigenfunction as prescribed in Eq. B.62 of Sec. B.11. In this case, the

product of the two functions cancel, so we integrate each side over the system

size:
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where erf(x) is the Gauss error function and the integrals with the hypergeo-

metric functions vanish as demonstrated from Eq. B.50. When we assemble

all of the terms for this particular initial condition and reintroduce the param-

eters, the solution takes the form

c(x, t) = c0 e
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Fig. B.9A illustrates the initial Gaussian profile (red dashed line) prior to

photobleaching from x < x0 (solid black line). Fig. B.9B shows the FRAP

recovery process at various time units as solved in Eq. B.53. We observe that

the increase in concentration toward x = 0 and the decrease in concentration

toward x = L = 1 appear to generally match one another over the course of

the recover. We also see that by t = 0.500, we have returned to a Gaussian

profile as the steady-state profile, but with a reduced peak concentration.
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Figure B.9: FRAP for 1D advection di↵usion with linear velocity
profile. (A) Initial steady-state profile of the concentration (red dashed line)
before photobleaching the system for x < x0 (solid black line). The blue line is
obtained from Eq. B.53 for the first nonzero values of kj for the given problem.
(B) Time evolution of the concentration after photobleaching. Decreasing
shades of blue designate later time points of the concentration profile.

B.11 Sturm-Liouville Theory

The Sturm-Liouville theory says that all second-order linear ordinary di↵er-

ential equations can be written in the form

d

dx

h
p(x)

dy

dx

i
+ q(x) y(x) = ��w(x) y(x). (B.54)

Importantly, w(x) is the weighting function, which provides the means for

satisfying the orthogonality relations for finding coe�cients of each term in

the series solution to the partial di↵erential equation. Specifically, if we were

to write the ODE in the form

P (x) y00(x) +Q(x) y0(x) +R(x) y(x) = f(x), (B.55)

for functions P (x), Q(x), R(x), and f(x), then there is a multiplicative func-

tion that can be determined by

m(x) = exp
⇣Z

Q(x)� P
0(x)

P (x)
dx
⌘
. (B.56)
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This multiplicative function is then multiplied to Eq. B.55 and recast into the

form shown in Eq.B.54. Thus, with P (x̃) = 1 and Q(x̃) = x̃,

m(x̃) = exp
⇣Z

x̃ dx̃
⌘
,

= exp
⇣
x̃
2

2

⌘
, (B.57)

and the ODE takes the form

0 =
d
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2
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1 + k̃
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e
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2 , (B.58)

or in the form of Eq. B.54:

d

dx̃

h
e

x̃2

2
d�

dx̃

i
+ e

x̃2

2 � = �k̃
2
e

x̃2

2 �, (B.59)

so that p(x) = q(x) = w(x) = e
x̃2

2 and � = k̃
2. We note the weighting function

here is the same as the multiplicative function for the 1D advection-di↵usion

equation reported here.

Next, we show the orthogonality conditions of the eigenfunctions. Suppose

that solving Eq. B.54 creates a series of eigenfunctions {yj(x)}. Suppose that
a given eigenfunction yi(x) has the eigenvalue �i so that

d

dx

h
p(x)

dyi
dx

i
+ q(x) yi(x) = ��i w(x) yi(x). (B.60)

Suppose that each eigenfunction of the system, bounded by a  x  b, obeys

the boundary conditions

↵1yi(a) + ↵2y
0
i(a) = 0,

�1yi(b) + �2y
0
i(b) = 0. (B.61)

To test the orthogonality conditions, we multiply both sides by yj(x), a par-

ticular eigenfunction of the di↵erential equation, and integrate over the entire

system:
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Had Eq. B.60 involved yj(x) and we multiplied both sides of the equation by

yi(x), then Eq. B.62 would have the subscripts reversed:
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(B.63)

Suppose we subtracted Eq. B.63 from Eq. B.62 and applied our boundary

conditions:
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If i = j, then the left-hand side is already zero.
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(B.65)

We will return to the case where i = j to find the coe�cients of eigenfunction.

If i 6= j, then the eigenvalues are di↵erent here and the integral is zero:
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Z b

a

w(x) yi(x) yj(x)dx = 0, for i 6= j. (B.66)

Though not true for the 1D case, Eq. B.65 may serve as a convenient equation

for analytically solving the coe�cients for each eigenfunction.

B.12 2D telescoping model

In the 2D telescoping case, we assume that we are carrying out an aster as-

say experiment where we dimerize motors (and thus couple microtubules) in

a circular region of radius R. We assume that the distributions of motors and

microtubules are strictly radially dependent and thus have no angular depen-

dence. Finally, we model the velocity profile of the microtubule movement by

assuming radially inward advection of particles where those that lie further

away from the origin move faster than those toward the center:

v = �vm
r

R
r̂. (B.67)

The advection-di↵usion equation then takes the form
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We first follow the procedure of separation of variables c(r, t) = �(r)T (t)

and determine that the time-dependent component takes on the familiar form

of e�Dk2t. This ansatz is then applied to Eq. B.68 and rewrite the spatial

component of the concentration as

�k
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vmr
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We will define a new length scale �
2 ⌘ DR

vm
as well as a change of variables

⇢ ⌘ r
� and k̃ ⌘ �k. In this case, Eq. B.69 takes the altered form

0 = ⇢
d2�

d⇢2
+ (1 + ⇢
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2

⌘
⇢�. (B.70)
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We obtain the multiplicative function by following the prescription from Eq.

B.56 in Sec. B.11:

m(⇢) = e
⇢2

2 . (B.71)

When we multiply Eq. B.70 by the multiplicative function, we get
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Eq. B.72 shows that unlike the 1D advection-di↵usion telescoping model, the

weighting function di↵ers from the multiplicative function due to the inclusion

of the prefactor ⇢. In this case, the weighting function w(⇢) as well as p(⇢)

and q(⇢) are given as

w(⇢) = p(⇢) = q(⇢) = ⇢ e
⇢2

2 . (B.73)

Furthermore, we observe that, as in the 1D case, the eigenvalues take the form

k̃
2. Solutions of � from Eq. B.72 are obtained from Wolfram Alpha and take

the form
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where Gm,n
p,q

⇣
z

���a1,...,apb1,...,bq

⌘
is the Meijer G-function (we split up the eigenfunctions

as dynamic and steady-state terms for now). We note here that the arguments

of the Meijer G-function are such that the function diverges at the origin. As

our system is defined as 0  r  R, we can say that c2 = 0. Thus, our

eigenfunctions are

�ss(⇢) = css e
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2 ,
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where we note that in the case of k̃ = 0, we go from the dynamic eigenfunction

to the static eigenfunction.
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B.12.1 No-flux boundary condition

In the work presented here, there is no inflow or outflow of material at the

boundary. Thus, we impose the boundary condition J
���
r=R

= 0. This means

that

Jr
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r=R

= D
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dr
� v(R)�(R) = D
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���
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+ vm�(R) = 0. (B.76)

We know that Eq. B.76 is satisfied for the steady-state eigenfunction in the

same way that the 1D steady-state solution satisfied the boundary condition.

We then need to ensure that the boundary condition is satisfied for the dynamic

eigenfunction. We start by taking the derivative of the eigenfunction:
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so when applied to the boundary condition, we get
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We are then left with the simplified equation:
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Here, k = 0 is satisfied, which yields the steady-state solution. Fig. B.10

shows the zeros when we set R
� = 3.16. The first few non-zero eigenvalues are

then k̃ = 0.474, 0.759, 1.058, 1.354, and 1.672. Here, we observe a similar

oscillator pattern to the zeros of the system. Once again, we see that there

are multiple values of k that satisfy the boundary conditions. This means that

the solution to the advection-di↵usion problem once both boundary and initial

conditions are satisfied, is a superposition of the di↵erent eigenfunctions:

c(r, t) = css e
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We emphasize here the parallel between Eq. B.43 in the 1D case and Eq.

B.80 in the 2D case. The primary di↵erence between the two equations is

the second argument in the Kummer confluent hypergeometric function. For

simplicity, we will reintroduce the length scale � ⌘
q

DR
vm

so that the equation

is simplified as
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B.12.2 Initial condition: uniform concentration

In the manuscript, we show three analytical solutions to the PDE with zero flux

at the boundaries and each satisfying di↵erent initial conditions. We derive

the three specific solutions in the following subsections. Here, we will tackle

the uniform concentration initial conditions by examining the case where the

concentration is 0 for r  R0 and at uniform concentration c0 for r > R0.

Once we have solved this general case, we will show the case where R0 = 0.

Figure B.10: Zeros of k for �2k2

2 1F1

⇣
1 � �2k2

2
; 2; R2

2�2

⌘
= 0 where R

� =

3.16. Red dots are overlayed with the points where the Kummer confluent
hypergeometric function crosses the x-axis.
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The piecewise defined function then appears as

c(r, 0) =

8
<

:
0 if r  R0,

c0 if r > R0.

(B.82)

At t = 0, our equation looks like
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We multiply both sides by the weighting function w(r) = re
r2

2�2 and an eigen-

function of the di↵erential equation �h(r) = e
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We use the fact that (1)j = j! and (j + 1)! = (2)j so
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where we use Eq. B.79 to remove the upper bound of the integral involving the

hypergeometric function. We now find the coe�cients for the non-steady state

terms. We do so by multiplying both sides by �h(r) = e
� r2

2�2
1F1

⇣
��2k2h

2
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Fortunately, we have already done the first integral on the right-hand side of

the equation, so we only have to take care of the integral on the left-hand side.

We further argue that by the Sturm-Liouville theory all of the integrals in the

summation vanish except in the case where i = h. The equation then boils

down to
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where we numerically integrate the denominator. When assembled together,

the solution comes out to
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In the case where R0 = 0, the solution for uniform concentration throughout

the system is instead
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as shown in the manuscript.

B.12.3 Initial condition: Gaussian concentration for r > R0

We finish the 2D advection-di↵usion model with the initial condition of a

Gaussian concentration profile outside of a region r > R0 and 0 within that

region. Written explicitly, the initial condition is

c(r, 0) =

8
<

:
0 if r  R0,

c0 e
� r2

2�2 if r > R0.

(B.90)

We apply the same situation where we multiply both sides by the weighting

function w(r) = re
r2

2�2 and an eigenfunction of the di↵erential equation �h(r) =

e
� r2

2�2
1F1
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� �2k2h

2
; 1; r2

2�2

⌘
for identifying the coe�cients of the non-steady state

terms or �ss(r) = e
� r2

2�2 for determining the steady-state term. Relying on

integrals performed in Subsec. B.12.2, we start with identifying the coe�cients
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where we removed the terms i 6= h as shown from Eq. B.66. To determine

the initial conditions of the steady-state coe�cient term, we would instead

multiply by the weighting function and the steady-state eigenfunction e
� r2

2 to

yield
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When all is assembled, the solution with the no-flux boundary conditions and

FRAPed initial condition yields
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B.13 Numerically solving advection-di↵usion equations with COM-

SOL

COMSOL Multiphysicsr simulations are constructed with consideration of

four particular details in mind: design of the geometry, set-up of the di↵erential

equations, incorporation of images as initial conditions, and sweeping through

parameters. A discussion of the mesh is discussed in Sec. B.14.

B.13.1 Geometry

Because simulations would be performed using images as initial conditions, and

because the microtubule network has a roughly circular geometry, we designed

a circle geometry in COMSOL where the radius was a parameter based upon

the photobleach dataset used. This could range from as small as 70 µm for

the networks nearing the end of contraction and upwards of 250 µm which sets

the initial activation size for the experiments.

B.13.2 Setting up the di↵erential equations

Although there are multiple partial di↵erential equation forms in COMSOL

that can be used for the advection-di↵usion equation studied here, we elect

to use the coe�cient form PDE and define our variable of interest as u with

units of mol/m3 and a source term units of mol/(m3·s). Although our past

derivations use the variable c, we use u in the di↵erential equation due to the

occurrence of the coe�cient c in the coe�cient form PDE in COMSOL. We

note that the coe�cient form PDE as shown in COMSOL is of the form

ea
@
2
u

@t2
+ da

@u

@t
+r · (�cru� ↵u+ �) + � ·ru+ au = f, (B.94)

where ea, da, c, a, and f are scalar coe�cients while ↵, �, and � are vectors.

We note that since our advection-di↵usion (using u for concentration here) is

of the form
@u

@t
= Dr2

u+
vm

R
r · (ru) , (B.95)
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if we rewrite the equation a little bit to match the form of Eq. B.94, we get

@u

@t
+r ·

⇣
�Dru� vm

R
ru
⌘
= 0. (B.96)

We can see here that to make Eq. B.96 match Eq. B.94, then ea, a, all of the

elements of �, all of the elements of �, and f are all 0 while

da = 1 s�1
, (B.97)

c = D, (B.98)

↵ =

"
vm
R x

vm
R y

#
, (B.99)

where we note that we define D to take on dimensions of length2/time and vm
R

to have units of time�1 in COMSOL.

In our experiments, we were careful to ensure that there was negligible to no

detectable amount of microtubules flowing from outside of the light-activated

region into network. We similarly impose a no-flux boundary condition by

using the Zero Flux boundary condition option in COMSOL.

B.13.3 Incorporation of images as initial conditions

One of the conveniences of using COMSOL is the ability to use experimental

data as part of the simulations. Here, we elected to use the first photobleached

frame as our initial condition for our images. Before doing so, we took our

image of interest and imposed a small Gaussian smoothing (� = 1pixel) to

gently smooth out the microtubule concentration field before renormalizing

the image and returning it into an 8-bit image (‘uint8’). We then exported the

image as a TIFF file. Within COMSOL, under our Component ! Definitions

branch of the simulation, we defined an Image Function and gave it the nota-

tion u im. Within the image function, we selected the image of interest under

the Browse option. We then need to line up the image such that the center

of the contracting microtubule network is at the origin or else the advection-

di↵usion model will drive the advective contraction toward a di↵erent part of

the network. To do so, we specify the coordinates where we determine the

minimum and maximum x and y values based on the pixel-weighted center of

the network as discussed in Appendix B.2 and dimensions of the image. We

then import the image and verify the image was the one we wanted by plotting.
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When incorporating the image in COMSOL, under the Coe�cient Form PDE

node in the Initial Conditions tab, we set the initial time derivative of u to

0 while the initial value for u is set as u im(x, y), where (x, y) specifies the

spatial dimensions of the image. Fortunately, by the geometry we specify, we

will not pick up any parts of the image outside of the region of interest. We

further multiply this function by a coe�cient such that we obtain roughly the

correct units of concentration as required.

B.13.4 Parameter sweep

To perform the parameter sweep, we include the Parametric Sweep option

in the Study section of the simulation and define the parameters of interest

under Global Definitions ! Parameters. Within the parameters, we specify

the parameters D for our di↵usion constant and alpha for our contraction

rate, which replaces vm
R in the equations above, including our definition of ↵

in Eq. B.99. Under the Parametric Sweep, we can then chose D and alpha as

our parameters to be swept. By selected our range of alpha to be 0.0016 to

0.0024 s�1 in increments of 0.0002 s�1 while D ranged from 0.05 to 0.2 µm2/s

in increments of 0.05 µm2/s. All possible combinations of D and alpha were

permitted for the simulations.

B.14 Gibbs phenomenon in analytical solutions and mesh granu-

larity in FEM

A common observation found for many of the analytical solutions is the dis-

agreement between the analytical solution at t = 0 and the defined initial

condition that the solution is intended to recapitulate. As shown in Fig. 1 of

the main manuscript, the analytical solution, which is composed of twelve non-

zero eigenvalues and the steady-state function, creates oscillations about the

intended initial condition. This disagreement is a demonstration of the Gibbs

phenomenon, as famously revealed by the imperfect decomposition of a square

wave into a sum of sinusoidal functions. Fig. B.12 demonstrates the evolution

of each of the three analytical solutions examined in the main manuscript when

more eigenvalues are included in the solution. Specifically, for c(r, 0) = c0 (Fig.

B.12A), c(r > R0, 0) = c0 (Fig. B.12B), and c(r > R0, 0) = c0exp(�r
2
/2�2)

(Fig. B.12C), all of which are represented by dashed black lines, more eigen-

values reduce the level of error between the analytical solution and the initial

condition. For the two initial conditions involving a uniform concentration, the



157

use of one eigenvalue in addition to the steady-state solution (purple line) leads

to a large negative concentration at r = 0 but begins to better recapitulate

the initial conditions by the addition of 12 non-zero eigenvalues. Deviations

from the initial condition decrease dramatically by that point. This is fur-

ther observed for the clipped Gaussian distribution: while the Gaussian tail is

quantitatively captured by the the addition of only a few eigenvalues, the an-

alytical solution begins to better recapitulate the concentration profile about

r = R0 with the addition of more terms in the solution. Nevertheless, even

after using twelve eigenvalues, the solution shows small oscillations about the

exact initial condition and is a continued feature with the addition of more

eigenvalues.

The deviations in the constructed solutions from the true values are also ap-

parent in finite element methods through the choice of granularity in the mesh.

As FEM involves solving the governing equation over a particular domain, hav-

ing a very fine grained mesh allows for the FEM solution to more accurately

reflect the true solution to the problem at the cost of computational time. On

the other hand, a very coarse-grained mesh involves less computing power to

solve the original equations but may coarse grain away details smaller than

the element size, requiring a balance between accurately solving the original

PDE(s) and computational e�ciency.

Figure B.11: Gibbs phenomenon for analytical solutions. Concentration
profiles of the analytical solution for the initial conditions (A) c(r, 0) = c0, (B)
c(r > R0, 0) = c0, and (C) c(r > R0, 0) = c0exp(�r

2
/2�2) with the steady-

state solution and the first nonzero eigenvalue solution (purple line), the first
three nonzero eigenvalue solutions (blue), the first five terms (red), and the
first twelve terms (green). The intended initial conditions are represented as
dashed black lines.
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Figure B.12: E↵ects of mesh granularity on FEM solution. Concentra-
tion profiles at t = 0 for six di↵erent element sizes as defined by the COMSOL
Multiphysics physics-controlled mesh: (A) extremely coarse, (B) coarse, (C)
normal, (D) fine, (E) extra fine, and (F) extremely fine. Finite elements out-
put is represented by the blues lines while the true initial conditions are given
as the black dashed lines. For visualization purposes, the appearance of the
meshes used for the defined geometry are shown as insets in the upper right-
hand corner of the respective subfigures. Concentration profile is from a line
trace along the horizontal axis from the origin of the geometry to the bound-
ary.

Fig. B.12 shows how the granularity of the mesh a↵ects the FEM solutions. We

compare the concentration profiles produced by FEM (solid blue lines) against

the true initial condition (dashed black lines) for six di↵erent element sizes as

found in the physics-controlled mesh feature in COMSOL Multiphysics: (A)

extremely coarse, (B) coarse, (C) normal, (D) fine, (E) extra fine, and (F)

extremely fine. We see that using the most coarse-grained feature produces

a more sinusoidal shape of matching frequency and amplitude to the square

wave pattern of the initial condition. However, with successive decreases in

element size (increase in mesh fineness) the FEM solution more closely reflect

the initial condition. Fig. B.12B-E show that increase the mesh fineness leaves

fewer deviations from the true values, largely located near the discontinuities in

the profile. The insets in the upper right of each figure shows the mesh pattern

for the geometry for the study. As Fig. B.12F shows, while the extremely fine
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mesh does not overshoot above the c0 values or undershoot the c(r, 0) = 0

regions, the finite size of the elements in the mesh causes the discontinuous

region to take on a value between the two regions instead.

B.15 Parameter sweeping and Péclet numbers

In this section, we ask how changes in the di↵usion constant D and contrac-

tion velocity vm are reflected in the grid patterned advection-di↵usion model.

This interplay reveals itself by transforming Eq. B.19 into dimensionless form.

Suppose instead of vmax we wrote that out as a function of the speed of indi-

vidual motors which move along and move microtubules. We noted that the

maximum velocity occurred at the outer edge of the activation circle. Assum-

ing a telescoping model where a filament network contracts due to a series of

alternating filaments and motors connecting them, we start by treating the

maximum velocity as the speed of the motors multiplied by the minimum

number of filaments required to connect the origin to the outer edge of the

activation zone. This is simply a case of filaments being serially aligned at

their ends. This scheme then means that for a filament of average length L

and activation circle of radius R

vm = vL
R

L
(B.100)

where vL is a natural velocity scale. If we further redefine some variables to

make them dimensionless, such as x ! Lx̃ and t ! L
vL
t̃, we can alter Eq. B.68

to

@c

@t
= Dr2

c�r · (vc) ,

= Dr2
c+

vm

R
r · (rc) ,

vL

L

@c

@ t̃
=

D

L2
r̃2

c+
vL

L
r̃ · (r̃c),

@c

@ t̃
=

D

vL L
r̃2

c+ r̃ · (r̃c) ,

@c

@ t̃
=

1

Pe
r̃2

c+ r̃ · (r̃c) , (B.101)

where Pe is the Péclet number:

Pe ⌘ vL L

D
. (B.102)

This dimensionless parameter tells us how the contraction speed of a connected

network and the di↵usion constant dictate whether the contraction process
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or di↵usion process dominates. For fixed length L such as the length of a

microtubule, increasing Péclet number tells us that the advection is dominant

and thus Eq. B.101 is largely the advective term, while smaller values of Pe

tell us that di↵usion is the dominant term.

Amusingly, had we defined the natural time variable to be t̃ = D
L2 t, then Eq.

B.101 would be modified as

@c

@ t̃
= r̃2

c+ Per̃ · (r̃c), (B.103)

Pe illustrates the relationship between the advection in the system and the

di↵usion. For the parameters used for Fig. 4, if we take the characteristic

length scale to be on the order 1, roughly the length of the microtubule in

our experiments (see Appendix B.6 then vL = 0.01 µm
s

and we obtain a Péclet

number of 0.1. As this value is much smaller than unity, we see that the

di↵usion term dominates over the short timescale.

To further demonstrate the tradeo↵s between advection and di↵usion, we ex-

amined the redistribution of the concentration with the same gridlike pattern

for di↵erent Péclet numbers. To do so, we kept vm fixed and varied D for a

set of simulations while for another set of FEM studies we kept D fixed while

changing vm. Fig. B.13 shows the concentration along the x-axis that extends

from the origin to the boundary at r = 10 µm and as depicted by the purple

line in the t = 0 plot in Fig. 4A. Fig. B.13A looks at a time series of the

concentration profile for di↵erent di↵usion constants while vm is fixed at 0.1
µm
s

while Fig. B.13B shows the concentration profile for di↵erent vm with D

kept constant at 0.1 µm2

s
. Using the purple line in Fig. B.13A as the original

parameter combination used in Fig. 4, we see that increasing the di↵usion con-

stant (green and blue) causes the individual squares of initial concentration c0

to quickly disperse to create a more uniform concentration before the advec-

tion creates the Gaussian steady-state profile (and ones with longer standard

deviations than the original parameters). This observation makes sense as the

Péclet number gets lower and lower with increases in D, causing the di↵usion

term to dominate more than the advection. This increase in di↵usion further

illustrates the wider Gaussian distribution obtained at steady state, as the

length scale � depends on the square root of D and inversely on the advection

speed vm.
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(A)

(B)

Figure B.13: Traces of concentration as a function of radius for various
combinations of di↵usion constant D and velocity vm. (A) Concentra-
tion profiles for D spanning three orders of magnitude with the velocity fixed
at vm = 0.1 µm

s
. As shown in the yellow boxes for the heatmap for t = 0 sec,

the concentration throughout the black gridlines is 0 while the concentration
in the white cells is constant c0. (B) Concentration profiles for varying vm with

the di↵usion constant fixed at D = 0.1 µm2

s
Traces of all concentration profiles

are obtained from a 1D slice along the x-axis from the origin of the circle to
the boundary at R = 10 µm as shown by the purple line in Fig. 4A.

In contrast, decreasing the di↵usion constant which increases the Péclet num-

ber preserves the oscillatory pattern of the concentration profile as the advec-

tion pushes the material toward the origin. We see that by t = 50 sec, the

red and black curves that denote D = 0.03 µm2

s
(Pe = 0.3) and D = 0.01 µm2

s

(Pe = 1.0), respectively, still exhibit wave-like shapes at the t = 50 sec mark.

As a result of the reduced di↵usive e↵ects, the concentration at the center is

much higher and falls o↵ much more quickly as the length scale � is shorter

(1.7 µm for the red curve and 1 µm for the black curve).

Tuning the advection for fixed di↵usion constant as shown in Fig. B.13B sim-

ilarly demonstrates the competition between di↵usion attempting to level out
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the concentration profile and advective flow trying to concentrate molecules

toward the center. With the purple line corresponding with Pe = 1, we see that

decreasing advection and lowering Pe, as demonstrated earlier, causes the dif-

ferences between local minima and maxima in concentration to decrease faster

than the minima and maxima move toward the origin. On the other hand, by

increasing vm and thus increasing Pe to make advection more dominant (red

line of Fig. B.13B), we see that the advective flow causes the minima and

maxima to be pushed toward the origin in less than 5 sec and create a sharper

Gaussian peak (a discussion about the jagged profile for the vm = 3.16 µm
s

plot

can be founded in the Appendix on the Gibbs phenomenon and FEM mesh

setting). Taken together, when di↵usion dominates Pe < 1 the concentration

of molecules tends toward a more uniform behavior before advection pushes

them to the origin, causing peaks and troughs in the concentration to disperse

and become indistinguishable. On the other hand, when advection dominates

Pe > 1 peaks and troughs move toward the origin faster than they disperse,

and lead to more tightly distributed Gaussian steady-state profiles.
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