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ABSTRACT

With the emergence of the Internet of Things, communication systems, such as those
employed in distributed control and tracking scenarios, are becoming increasingly
dynamic, interactive, and delay-sensitive. The data in such real-time systems arrive
at the encoder progressively in a streaming fashion. An intriguing question is:
what codes can transmit streaming data with both high reliability and low latency?
Classical non-causal (block) encoding schemes can transmit data reliably but under
the assumption that the encoder knows the entire data block before the transmission.
While this is a realistic assumption in delay-tolerant systems, it is ill-suited to real-
time systems due to the delay introduced by collecting data into a block. This thesis
studies causal encoding: the encoder transmits information based on the causally
received data while the data is still streaming in and immediately incorporates the
newly received data into a continuing transmission on the fly.

This thesis investigates causal encoding of streaming data in three scenarios: causal
sampling, causal lossy compressing, and causal joint source-channel coding (JSCC).
In the causal sampling scenario, a sampler observes a continuous-time source pro-
cess and causally decides when to transmit real-valued samples of it under a con-
straint on the average number of samples per second; an estimator uses the causally
received samples to approximate the source process in real time. We propose a
causal sampling policy that achieves the best tradeoff between the sampling fre-
quency and the end-to-end real-time estimation distortion for a class of continuous
Markov processes. In the causal lossy compressing scenario, the sampling fre-
quency constraint in the causal sampling scenario is replaced by a rate constraint
on the average number of bits per second. We propose a causal code that achieves
the best causal distortion-rate tradeoff for the same class of processes. In the causal
JSCC scenario, the noiseless channel and the continuous-time process in the pre-
vious scenarios are replaced by a discrete memoryless channel with feedback and
a sequence of streaming symbols, respectively. We propose a causal joint source-
channel code that achieves the maximum exponentially decaying rate of the error
probability compatible with a given rate. Remarkably, the fundamental limits in
the causal lossy compressing and the causal JSCC scenarios achieved by our causal
codes are no worse than those achieved by the best non-causal codes. In addition
to deriving the fundamental limits and presenting the causal codes that achieve the
limits, we also show that our codes apply to control systems, are resilient to system
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deficiencies such as channel delay and noise, and have low complexities.



vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] N. Guo and V. Kostina. “Optimal causal rate-constrained sampling of the
Wiener process”. In: IEEE Transactions on Automatic Control 67.4 (Apr.
2022), pp. 1776–1791. doi: 10.1109/TAC.2021.3071953.
Nian Guo participated in the conception of the project, derived the results,
implemented the simulations, and wrote the manuscript.

[2] N. Guo and V. Kostina. “Reliability function for streaming over a DMC with
feedback”. In: IEEE International Symposium on Information Theory. June
2022, pp. 3204–3209. doi: 10.1109/ISIT50566.2022.9834852.
Nian Guo participated in the conception of the project, derived the results,
and wrote the manuscript.

[3] N. Guo and V. Kostina. “Reliability function for streaming over a DMC with
feedback”. In: submitted to IEEE Transactions on Information Theory (June
2022). url: https://arxiv.org/abs/2202.05770.
Nian Guo participated in the conception of the project, derived the results,
implemented the simulations, and wrote the manuscript.

[4] N. Guo and V. Kostina. “Instantaneous SED coding over a DMC”. In: IEEE
International Symposium on Information Theory. July 2021, pp. 148–153.
doi: 10.1109/ISIT45174.2021.9518087.
Nian Guo participated in the conception of the project, derived the results,
implemented the simulations, and wrote the manuscript. This paper was a
finalist for IEEE Jack Keil Wolf Student Paper Award.

[5] N. Guo and V. Kostina. “Optimal causal rate-constrained sampling for a class
of continuous Markov processes”. In: IEEE Transactions on Information
Theory 67.12 (Sept. 2021), pp. 7876–7890. doi: 10.1109/TIT.2021.
3114142.
Nian Guo participated in the conception of the project, derived the results,
and wrote the manuscript.

[6] N. Guo and V. Kostina. “Optimal causal rate-constrained sampling for a class
of continuous Markov processes”. In: IEEE International Symposium on In-
formation Theory. June 2020, pp. 2456–2461. doi: 10.1109/ISIT44484.
2020.9174333.
Nian Guo participated in the conception of the project, derived the results,
and wrote the manuscript.

[7] N. Guo and V. Kostina. “Optimal causal rate-constrained sampling of the
Wiener process”. In: Allerton Conference on Communication, Control, and
Computing. Sept. 2019, pp. 1090–1097. doi: 10.1109/ALLERTON.2019.
8919710.
Nian Guo participated in the conception of the project, derived the results,
implemented the simulations, and wrote the manuscript.

https://doi.org/10.1109/TAC.2021.3071953
https://doi.org/10.1109/ISIT50566.2022.9834852
https://arxiv.org/abs/2202.05770
https://doi.org/10.1109/ISIT45174.2021.9518087
https://doi.org/10.1109/TIT.2021.3114142
https://doi.org/10.1109/TIT.2021.3114142
https://doi.org/10.1109/ISIT44484.2020.9174333
https://doi.org/10.1109/ISIT44484.2020.9174333
https://doi.org/10.1109/ALLERTON.2019.8919710
https://doi.org/10.1109/ALLERTON.2019.8919710


vii

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . vi
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Causal frequency-constrained sampling . . . . . . . . . . . . . . . 2
1.2 Causal lossy data compression . . . . . . . . . . . . . . . . . . . . 5
1.3 Causal joint source-channel coding with feedback . . . . . . . . . . 9

Chapter II: Causal frequency-constrained sampling . . . . . . . . . . . . . . 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Optimal causal frequency-constrained sampling . . . . . . . . . . . 23
2.4 Successive refinement via causal frequency-constrained sampling . 28
2.5 Frequency-constrained sampling over imperfect channels . . . . . . 31
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Future research directions . . . . . . . . . . . . . . . . . . . . . . 37

Chapter III: Causal rate-constrained sampling . . . . . . . . . . . . . . . . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Optimal causal rate-constrained sampling . . . . . . . . . . . . . . 48
3.4 Optimal causal rate-constrained deterministic sampling . . . . . . . 52
3.5 Rate-constrained control . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 Successive refinement via causal rate-constrained sampling . . . . . 58
3.7 Rate-constrained sampling over imperfect channels . . . . . . . . . 60
3.8 Delay-tolerant rate-constrained sampling . . . . . . . . . . . . . . . 64
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.10 Future research directions . . . . . . . . . . . . . . . . . . . . . . 68

Chapter IV: Causal joint source-channel coding with feedback . . . . . . . . 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Instantaneous encoding phase . . . . . . . . . . . . . . . . . . . . 84
4.4 Joint source-channel coding reliability function . . . . . . . . . . . 88
4.5 Instantaneous SED code . . . . . . . . . . . . . . . . . . . . . . . 91
4.6 Streaming with random arrivals . . . . . . . . . . . . . . . . . . . 97
4.7 Low-complexity codes with instantaneous encoding . . . . . . . . . 102
4.8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.9 Streaming over a degenerate DMC with zero error . . . . . . . . . . 113
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



viii

4.11 Future research directions . . . . . . . . . . . . . . . . . . . . . . 117
Chapter V: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Appendix A: Causal frequency-constrained sampling: Proofs . . . . . . . . . 133

A.1 Sufficient condition for (S.2) . . . . . . . . . . . . . . . . . . . . . 133
A.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.3 Proof of Corollary 1.1 . . . . . . . . . . . . . . . . . . . . . . . . 142
A.4 Proof of Corollary 1.2 . . . . . . . . . . . . . . . . . . . . . . . . 143
A.5 Proof of Corollary 1.3 . . . . . . . . . . . . . . . . . . . . . . . . 144
A.6 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.7 Optimal sampling policy for the OU process . . . . . . . . . . . . . 147
A.8 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . 148
A.9 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Appendix B: Causal rate-constrained sampling: Proofs . . . . . . . . . . . . 154
B.1 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.2 Recovering Lt from Zt . . . . . . . . . . . . . . . . . . . . . . . . 155
B.3 Decomposition of Dop

DET(R) . . . . . . . . . . . . . . . . . . . . . 156
B.4 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 157
B.5 Proof of Lemma 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.6 Proof of Lemma 12 . . . . . . . . . . . . . . . . . . . . . . . . . . 160
B.7 Proof of Lemma 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.8 Proof of Lemma 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.9 Proof of Lemma 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.10 Converse proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . 168

Appendix C: Causal joint source-channel coding with feedback: Proofs . . . 169
C.1 A partition that satisfies (4.24) . . . . . . . . . . . . . . . . . . . . 169
C.2 Channel input distribution is equal to the capacity-achieving distri-

bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
C.3 Converse proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . 170
C.4 Proof of Lemma 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 172
C.5 Proof of Lemma 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 173
C.6 Proof of Lemma 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 175
C.7 Achievability proof of Theorem 9: A (fully accessible) DS . . . . . 175
C.8 Achievability proof of Theorem 9: A DSS with f =∞ . . . . . . . 177
C.9 Achievability proof of Theorem 9: A DSS with f <∞ . . . . . . . 178
C.10 Proof of Lemma 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 180
C.11 Proof of Lemma 24 . . . . . . . . . . . . . . . . . . . . . . . . . . 181
C.12 Decoding before the final arrival time . . . . . . . . . . . . . . . . 185
C.13 Proof of Remark 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 186
C.14 The approximating instantaneous SED rule ensures (4.67) . . . . . 188
C.15 Number of types for random arrivals . . . . . . . . . . . . . . . . . 189
C.16 Converse proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . 192
C.17 Achievability proof of Theorem 11 . . . . . . . . . . . . . . . . . . 193
C.18 Proof of Lemma 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 195
C.19 Proof of Lemma 26 . . . . . . . . . . . . . . . . . . . . . . . . . . 195



ix

C.20 Zero entropy rate of symbol arriving times . . . . . . . . . . . . . . 197
C.21 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . 197
C.22 Cardinality of common randomness . . . . . . . . . . . . . . . . . 197
C.23 Zero-error code for degenerate DMCs . . . . . . . . . . . . . . . . 198



x

LIST OF ILLUSTRATIONS

Number Page
1.1 Causal frequency-constrained sampling. . . . . . . . . . . . . . . . . 2
1.2 Causal compressing of streaming source symbols. . . . . . . . . . . 6
1.3 Causal compressing of a streaming continuous-time process. . . . . . 7
1.4 System model of quantized event-triggered control. . . . . . . . . . . 9
1.5 Communication over a channel with full feedback. . . . . . . . . . . 10
1.6 Real-time feedback communication system with a streaming source. . 11
2.1 System Model. Sampling times τi, i = 1, 2, . . . are determined by

the sampling policies. . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Symmetric threshold sampling of the Wiener process Wt. The black

curve represents the Wiener process. The gap between blue hori-
zontal lines represents the sampling threshold a(t) =

√
1
F

= 1
3
. A

down-arrow appears if the process innovation Wt −Wτi crosses the
negative threshold. An up-arrow appears if the process innovation
Wt −Wτi crosses the positive threshold. . . . . . . . . . . . . . . . 27

2.3 Ann-samplern-estimator system for successive refinement via causal
frequency-constrained sampling. . . . . . . . . . . . . . . . . . . . . 28

2.4 System model for causal frequency-constrained sampling over a packet-
drop channel with feedback. . . . . . . . . . . . . . . . . . . . . . . 33

3.1 System Model. Sampling time τi and codeword Ui are chosen by the
encoder’s sampling and compressing policies, respectively. . . . . . . 46

3.2 Decomposition of the encoder. . . . . . . . . . . . . . . . . . . . . . 50
3.3 MSE versus rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Control system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 System model for causal rate-constrained sampling over a BEC with

feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1 Real-time feedback communication system with a streaming source. . 80
4.2 A fully accessible source: 1 = t1 = t2 = . . . . . . . . . . . . . . . . 80
4.3 A streaming source: t1 = 1, t2 = 2, t3 = 4, t4 = t5 = 6, . . . . . . . . 81



xi

4.4 A DMC PY |X : {0, 1} → {0, 1, 2}. An arrow from channel input
x ∈ {0, 1} to channel output y ∈ {0, 1, 2} signifies PY |X(y|x) > 0.
Channel (a) is a non-degenerate DMC that satisfies (4.8). Channel (b)
is a degenerate DMC that satisfies (4.9) with y = 1, x = 1, x′ = 0.
Channel (c) does not satisfy (4.8)–(4.9) since y = 1 is not reachable. . 82

4.5 An example of group partitioning and channel input randomization
for a DMC with uniform capacity-achieving distribution P ∗

X(x) =

0.25, X = [4]. The horizontal axis represents a partition of 4 groups.
The vertical axis represents the prior probabilities of the groups. The
source alphabet [q]N(t) is partitioned into {Gx(yt−1)}x∈[4] such that
the partitioning rule (4.24) is satisfied. Groups Gx(yt−1), x ∈ {1, 2}
constitute X (yt−1) (4.26) and groups Gx(yt−1), x ∈ {3, 4} consti-
tute X (yt−1) (4.25). The probabilities {px→x}x∈{1,2},x∈{3,4} (4.27)–
(4.28) used to randomize transmitted group indices are colored. The
randomization matches the probability of transmitting group index
x ∈ [4] to P ∗

X(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 The error probability P[Ŝk
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C h a p t e r 1

INTRODUCTION

This thesis lifts the conventional assumption of non-causal (block) encoding in
classical information theory that allows the encoder to know the entire message
before the transmission. This thesis focuses on causal encoding: the encoder
transmits information based only on the causally received data, while the data is still
streaming in. This thesis derives fundamental limits of causal encoding and designs
causal codes that achieve the limits.

The investigation of causal encoding for streaming data is of great practical interest.
From smart transportation to industrial automation, we are now marching into an
era where numerous devices connect to each other sharing instant information. The
communication systems that enable such real-time information sharing are extremely
dynamic, interactive, and delay-sensitive. For such real-time communication sys-
tems, source messages arrive at the encoder progressively in a streaming fashion.
For example, the height and the speed data of an unmanned aerial vehicle stream
into the encoder in real time. To transmit such a source, the idea of causal encoding
naturally arises and fits the streaming nature of the data. In contrast, non-causal
(block) encoding schemes need to buffer the arriving data into a block and then
transmit the data block, causing significant performance degradation. For example,
for transmitting 16 i.i.d. equiprobable bits that arrive at the encoder one by one
over a binary symmetric channel with feedback at crossover probability 0.05 and
error probability 10−6, the rate empirically achieved by the best non-causal (block)
encoding scheme preceded by a buffer is only 60% of the rate empirically achieved
by the best causal encoding scheme (Fig. 4.9). As a consequence, re-evaluating
the fundamental limits in the causal encoding setting and designing novel causal
encoding schemes for streaming data that attain fundamental limits are critical.

This thesis investigates causal encoding of streaming data in three operational scenar-
ios: causal frequency-constrained sampling (Chapter 2), causal lossy compressing
(Chapter 3), and causal joint source-channel coding over a DMC with feedback
(Chapter 4). For each scenario, we analyze the causal encoding of streaming data
via the steps below:
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• Set up an information-theoretic framework: define causal codes, specify the
performance measure, and establish the tradeoff between the communication
rate (i.e., how fast the transmission is) and the communication fidelity (i.e.,
how reliable the transmission is) for causal encoding of streaming data.

• Derive the fundamental limit, i.e., the best tradeoff between the communica-
tion rate and the communication fidelity, and find the causal codes that achieve
the limit.

• Demonstrate the robustness of our causal codes in non-ideal systems and
demonstrate the applicability of our causal codes to multiple-input multiple-
output systems or control systems.

Next, for each of three operational scenarios, we briefly introduce the basic setup, the
recent advancements in prior literature, and the unsolved problems in prior literature
that are tackled in this thesis.

1.1 Causal frequency-constrained sampling
In Chapter 2, we consider a causal frequency-constrained sampling problem, which
is also known as the optimal scheduling or the remote causal estimation problem.
The basic task of causal frequency-constrained sampling is to sample a source
process based on the causally observed process under a constraint on the average
number of samples transmitted per second so that the source process can be approx-
imated from the samples in real time. The problem of causal frequency-constrained
sampling arises due to the development of the wireless sensor networks and network
control systems of the Internet of Things. In such systems, nodes are spatially dis-
persed, communication delays between nodes are undesirable, and communication
between nodes is a limited resource. A sampling frequency constraint is commonly
used as a communication constraint between nodes [1, 2, 3, 4, 5, 6, 7, 8, 9] as it
reflects the transmission rate of data packets.

sampler channel estimator

Figure 1.1: Causal frequency-constrained sampling.
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In the basic setup of the causal frequency-constrained sampling (see Fig. 1.1),
a sampler (i.e., a transmitting node) tracks a source process {Xt} and decides
a sequence of sampling times τ1, τ2, . . . based on the causally observed source
process. At each sampling time τi, the sample Xτi and the sampling time τi are
passed to an estimator without delay through a noiseless channel. At time t, the
estimator (i.e., the receiving node) yields a real-time estimate X̄t of the current
value of the source process based on all the causally received samples and sampling
times. The communication between the sampler and the estimator is subject to the
sampling frequency constraint.

In this thesis, we measure the fundamental limit of the causal frequency-constrained
sampling problem by a distortion-frequency function–the minimum end-to-end es-
timation distortion compatible with a given sampling frequency.

Causal sampling policies can be divided into two classes. One class comprises
signal-independent (or signal-agnostic, time-triggered, deterministic) sampling poli-
cies whose sampling times do not depend on the source process, e.g., a uniform
sampling policy that transmits samples at periodic times. The other class com-
prises signal-dependent (or signal-aware, event-triggered) sampling policies whose
sampling times causally depend on the source process, e.g., a symmetric threshold
sampling policy that transmits a sample if the process innovation falls outside a
symmetric interval.

Causal signal-dependent sampling policies have attracted great research interest.
One of the earliest works that analytically showed the advantage of signal-dependent
sampling policy over signal-independent sampling policy was presented by Åström
and Bernhardsson [10]. They considered two continuous-time scalar systems

dXt = Utdt+ dWt, (1.1)

dXt = aXtdt+ Utdt+ dWt, (1.2)

driven by the Wiener process Wt and controlled by Ut. Under the same average
control-injecting frequency (i.e., sampling frequency), they showed that injecting an
impulse control that resets the state to zero once the state falls outside a symmetric
interval leads to a smaller variance than injecting a minimum variance control
[11] periodically. This work reveals that a good causal sampling policy should
transmit surprising-enough samples that trigger certain uncommon events, while
the deterministic time distance between two samples does not discriminate between
surprising and non-surprising events and thus needs a higher sampling frequency to
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achieve the same distortion. This work also motivates further research on signal-
dependent sampling policies in the causal frequency-constrained sampling setting
[1, 2, 3, 4, 5, 6, 7, 8, 9]. Causal frequency-constrained sampling policies have
been studied for the i.i.d Gaussian random variables [1]; the Gauss-Markov process
[2]; the partially observed Gauss-Markov process [3]; the first-order autoregressive
Markov process Xt+1 = aXt + Vt driven by an i.i.d. process {Vt} with unimodal
and even distribution [4][5]; the finite time-horizon Wiener and Ornstein-Uhlenbeck
(OU) processes [6]; the infinite time-horizon multidimensional Wiener process [7];
the infinite-time horizon Wiener process [8], and the OU processes [9] with channel
delay.

Remarkably, the causal sampling policies that achieve the best tradeoff between the
sampling frequency and the estimation distortion in [1, 2, 3, 4, 5, 6, 7, 8, 9] all admit
a symmetric structure, that is, a sample is taken if the process innovation crosses
either of two symmetric thresholds. For example, in the infinite time horizon, under
the average sampling frequency F and the mean-square error (MSE) distortion
measure, the minimum MSE of causal sampling the Wiener process {Wt}∞t=0 is
achieved by [7]

τi+1 = inf

{
t ≥ τi : |Wt −Wτi | ≥

√
1

F

}
. (1.3)

We notice that all source processes considered in [1, 2, 3, 4, 5, 6, 7, 8, 9] have
even and unimodal pdf and satisfy the Markov property. In Chapter 2, we abstract
their similarities and show that for a class of continuous Markov processes satisfy-
ing symmetry and regularity conditions, the optimal causal frequency-constrained
sampling policy is a symmetric threshold sampling policy. This extends the prior
results in [1, 2, 3, 4, 5, 6, 7, 8, 9] to a wider class of stochastic processes.

While a sampling time carries information as it signifies an occurrence of an event,
silence also carries information. Here, the silence refers to the duration in-between
two consecutive sampling times. Take the symmetric threshold sampling policy
in (1.3) as an example. The silence due to the next sample not having been taken
implies that the source process still belongs to the symmetric interval. Yet, in [6,
7, 8, 9], a common assumption is that the estimator ignores the information carried
by the silence and purely depends on the past samples and sampling times. The
assumption allows one to solve the problem by applying Snell’s envelope, a classical
method for solving an optimal stopping problem that requires solving a stochastic
differential equation (SDE) [6, 7, 8, 9]. In Chapter 2.3, we use a different set of
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tools, namely, the majorization theory and the real induction, to find the fundamental
limit-achieving causal sampling policies without using the simplifying assumption;
we show that the silence is useless for a minimum mean-square error estimator due to
the symmetric structure of the optimal sampling policy, confirming the assumption
in prior literature.

In Chapter 2.4, we extend the point-to-point system to an n-sampler n-estimator sys-
tem, where the k-th estimator causally listens to the first k samplers, k = 1, 2, . . . , n,
and each sampler is subject to a sampling frequency constraint. For such a system,
we show that implementing symmetric threshold sampling policies at n samplers
attains the minimum real-time estimation distortions at all n estimators. In Chap-
ter 2.5, lifting the assumption that the channel in Fig. 1.1 is ideal, we show that
causal frequency-constrained sampling policies that attain the minimum distortion
for a channel with delay and a packet-drop channel remain symmetric threshold
sampling policies.

1.2 Causal lossy data compression
While the prior works [1, 2, 3, 4, 5, 6, 7, 8, 9] on causal frequency-constrained sam-
pling did not take the quantization effect into consideration, in almost all modern
communications, a real-valued sample carrying an infinite amount of information is
quantized before the transmission. In Chapter 3, we replace the sampling frequency
constraint in Chapter 2 by a bitrate constraint, routinely considered in information
theory, and we consider causal rate-constrained sampling–a causal lossy data com-
pression problem for continuous-time processes. We first review the basics of causal
lossy compression for discrete-time processes, we then set up the problem of causal
lossy data compression for continuous-time processes, and we finally introduce the
quantized event-triggered control as an important application.

Causal lossy data compression for discrete-time processes
The basic task of causal lossy data compression is to compress a discrete-time source
sequence only based on the causally received source symbols under a rate constraint
(bits per channel use) so that the source sequence can be reproduced via the causally
received codewords with the minimum distortion.

In the basic setup of the causal lossy data compression, the symbols of a source
sequence Sn (to be compressed) arrive at the encoder one by one at times t =

1, 2, . . . , n. The alphabet of the source sequence Sn, the alphabet of the decoded
sequence Ŝn, the probability distribution of the sourcePSn , and a distortion measure
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encoder decoder

Figure 1.2: Causal compressing of streaming source symbols.

dn : Sn × Ŝn → R+, which evaluates the fidelity of the estimation, are given. A
zero-delay source code (see Fig. 1.2) operates as follows: at time t, the encoder uses
the causally received symbols St as well as the past codewords Bt−1 to form a new
codeword Bt; the decoder uses the causally received codewords Bt as well as the
past estimate Ŝt−1 to form an estimate Ŝt of the source symbol St. Let Lt be the
length of the codeword Bt. The rate of a zero-delay source code is often measured
by the average number of bits transmitted per source symbol in the limit of large
source length, i.e., by R ≜ limn→∞

1
n
E [
∑n

t=1 Lt].

The fundamental limit of the causal lossy data compression is given by the minimum
achievable rate R compatible with a distortion D in the limit of large source length.
While Shannon set forth the concept of rate-distortion tradeoff in the classical block
encoding context [12, 13], the rate-distortion tradeoffs in the causal encoding setting
are often measured by the operational causal rate-distortion function Rop(D), that
is, the minimum R compatible with distortion D achieved by a zero-delay code;
and its information-theoretic counterpart–the informational causal rate-distortion
function Rit(D). The informational causal rate-distortion function, first introduced
by Gorbunov and Pinsker [14], replaces the operational rate R by the normalized
directed information [15] between the source sequence and the decoded sequence

1

n
I(Sn → Ŝn) =

1

n

n∑
t=1

I(St; Ŝt|Ŝt−1), (1.4)

and serves as a lower bound to Rop(D).

Causal rate-constrained sampling
While most existing works on causal rate-distortion tradeoffs considered discrete-
time source processes [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], in Chapter 3,
we establish the problem of causal lossy compression of continuous-time processes,
termed causal rate-constrained sampling.

In the basic setup of causal rate-constrained sampling (see Fig. 1.3), the encoder
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encoder channel decoder

Figure 1.3: Causal compressing of a streaming continuous-time process.

observes the continuous-time source process {Xt} and causally decides when and
what to transmit about the process. The encoder consists of a causal sampling
policy that decides the sampling times τ1, τ2, . . . and a causal compressing policy
that decides the codewords U1, U2, . . . to transmit at each sampling time. The
codeword Ui is passed to the decoder without delay through a noiseless channel.
The real-valued sampling time τi is also immediately known by the decoder since
the channel is delay-free. At time t, the decoder yields a real-time estimate X̂t of
the current value of the source process based on all the causally received codewords
and sampling times.

The fundamental limit of the causal rate-constrained sampling problem is measured
by a distortion-rate function, which quantifies the minimum end-to-end estimation
distortion compatible with a communication rate (i.e., the average number of bits
transmitted per second). The goal is to find the causal codes that achieve the
distortion-rate function.

In Chapter 3.3, for a class of continuous Markov processes satisfying symmetry
and regularity conditions, we present the causal code, termed the sign-of-innovation
(SOI) code, that achieves the best tradeoff between the rate and the distortion. It
transmits a bit representing the sign of the process innovation once the process
innovation crosses either of two symmetric thresholds. Since a transmission occurs
only if this event occurs, the sampling times carry information. Indeed, this is a
significant difference between the classical causal lossy compressing [14, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25] and our causal rate-constrained sampling: the sampling
times are also parameters to be optimized and are allowed to causally depend on the
source process. Due to the use of timing information, the distortion achieved by our
SOI code can even beat (be smaller than) that achieved by the best non-causal source
codes for the Wiener process (Chapter 3.8). Without using the timing information
and restricting the sampling times to be deterministic, we show in Chapter 3.4 that
the uniform sampling policy achieves the best rate-distortion tradeoff for the Wiener
process, but the achieved distortion is 5-fold worse than that achieved by the SOI
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code.

In Chapter 3.6, we re-consider the n-sampler n-estimator system in Chapter 2.4 with
the n frequency constraints replaced by n bitrate constraints. For such a system, we
show that appending an SOI compressor to each sampler gives n causal encoders
that attain the minimum estimation distortions at all n decoders. In Chapter 3.7, we
show that our SOI code is resilient to channel delay and noise.

Quantized event-triggered control
One important application of causal rate-constrained sampling schemes is quantized
event-triggered control. The problem arises since the real-valued state of the plant
is often quantized by the observer before it is received by the controller, and since
the event-triggered (i.e., signal-dependent) control demonstrates a better perfor-
mance than the time-triggered (i.e., signal-independent) control, e.g., [10, 26, 27].
Although the quantized event-triggered control is in a closed loop and the causal
rate-constrained sampling is in an open loop, they are related in the sense that the
controller can form a better control signal if it can causally estimate the plant more
accurately.

In the basic setup of quantized event-triggered control (see Fig. 1.4), the encoder
observes the plant Yt driven by the noise Xt and causally decides the sampling times
τ1, τ2, . . . and the codewords U1, U2, . . . to transmit at each sampling time. At each
sampling time, the codeword and the sampling time are passed to the decoder via a
channel. The decoder uses the causally received codewords and sampling times to
form a control signal Zt, aiming to stabilize the system.

Quantized event-triggered control schemes have been designed to stabilize different
systems, however, existing works [28, 29, 30, 26, 31, 32, 33, 34, 27, 35] did not
consider the optimality of the proposed schemes, that is, which control scheme can
minimize the deviation of the plant to zero with the minimum possible rate remained
unknown. In Chapter 3.5, we show that our SOI code, which achieves the best
rate-distortion tradeoff in the causal rate-constrained sampling setting, also applies
to quantized event-triggered control under regularity conditions. For the Wiener
process disturbance, our SOI control scheme reduces to Åström and Bernhardsson
[10]’s event-triggered control scheme.
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Figure 1.4: System model of quantized event-triggered control.

1.3 Causal joint source-channel coding with feedback
While in the basic setups of the causal frequency-constrained sampling and the
causal rate-constrained sampling (Chapters 2 and 3), the channel is noiseless, in
Chapter 4, we proceed to consider transmitting a sequence of streaming symbols
over a noisy channel with feedback via causal joint source-channel coding (JSCC).
We first review the basics of the classical non-causal channel coding with feedback.
We then introduce our novel setup–causal JSCC with feedback.

Non-causal channel coding with feedback
The basic task of non-causal (block) channel coding with feedback is to transmit
equiprobable messages that are fully accessible to the encoder before the transmis-
sion over a noisy channel with feedback, so that the transmitted message can be
identified at the decoder. The problem arises since the feedback, though unable
to increase the capacity of a memoryless channel [36], can simplify the design
of capacity-achieving codes [37, 38, 39] and improve achievable delay-reliability
tradeoffs [40, 41]. While the channel feedback can be used in a very limited way,
e.g., the feedback only contains one bit and is transmitted only once [41], here we
take the maximum advantage of the feedback by assuming that the feedback link
noiselessly communicates the full channel output to the encoder at every time.

In the basic setup of non-causal channel coding with feedback (see Fig. 1.5), a
variable-length channel code with block encoding operates as follows. At each time
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t, the encoder uses the message S ∈ [M ] as well as the past channel outputs Y t−1

to form a channel input Xt; upon receiving Yt, the decoder uses all the causally
received channel outputs Y t to adjust its belief about the message S and to decide
a stopping time η to output its estimate Ŝ ∈ [M ]. The rate of the code is R = logM

E[η]

nats per channel use.

encoder channel decoder

Figure 1.5: Communication over a channel with full feedback.

The classical fundamental limits of non-causal channel coding with feedback are the
channel capacity and the reliability function. The channel capacity C represents the
best (maximum) achievable rate below which the error probability vanishes in the
limit of large delay (i.e., blocklength). The underlying principle behind capacity-
achieving block encoding schemes with feedback [37, 42, 38, 39, 40, 43, 44, 45,
46], termed posterior matching [39], is to match the channel input distribution to
the capacity-achieving input distribution using the posterior of the message and to
transmit information that the decoder has not yet received. The reliability function
(a.k.a. optimal error exponent) measures the best delay-reliability tradeoff, namely,
it represents the maximum exponentially decaying rate of the error probability at
code rate R < C as the blocklength is taken to infinity. The reliability function
for transmitting equiprobable messages over a DMC with full feedback using a
variable-length channel code with block encoding is first shown by Burnashev [40]:

E(R) = C1

(
1− R

C

)
, (1.5)

where C1 is the maximum Kullback–Leibler divergence between channel transition
probabilities of the DMC, C is the channel capacity, and R is the rate. Variable-
length channel codes with block encoding that achieve Burnashev’s reliability func-
tion have been proposed in [40, 43, 44, 45, 46].

Causal joint source-channel coding with feedback
While the classical non-causal channel coding schemes with feedback [37, 42, 38,
39, 40, 43, 44, 45, 47, 46] assume that the source symbols are equiprobable and
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are entirely known by the encoder before the transmission, in Chapter 4, we con-
sider a streaming source, which emits non-equiprobably distributed source symbols
S1, S2, . . . at a sequence of times t1 ≤ t2 ≤ . . . . The basic task of causal JSCC
with feedback is to transmit a streaming source, based only on the causally received
source symbols and channel feedback, over a noisy channel, so that the streaming
source can be identified at the decoder.

encoder DMC decoder

Figure 1.6: Real-time feedback communication system with a streaming source.

In the basic setup of causal JSCC with feedback (see Fig. 1.6), a code with instan-
taneous encoding operates as follows. At each time t, the encoder uses the causally
received source symbols and channel feedback Y t−1 to form a channel input Xt; the
decoder uses the causally received channel outputs Y t to adjust its belief about the
streaming source and to form an estimate Ŝk

t of k source symbols.

In Chapter 4, we mainly focus on a class of codes with instantaneous encoding that
aims to recover a fixed number of source symbols k and outputs its estimate at a
stopping time ηk adapted to the filtration generated by the channel outputs. The rate
of the code is R = k

E[ηk]
symbols per channel use.

Similar to the works [40, 43, 44, 45, 46] on non-causal channel coding with feed-
back, this thesis measures the fundamental limit of causal JSCC with feedback by
the reliability function E(R)–the maximum exponentially decaying rate of the error
probability compatible with rate R achieved by a sequence of codes with instanta-
neous encoding for transmitting k streaming symbols over a DMC with feedback
as k → ∞. The JSCC reliability function for streaming is an appropriate perfor-
mance measure for causal JSCC since it displays the best delay-reliability tradeoff,
critical for time-sensitive applications. The goal is to find a sequence of codes with
instantaneous encoding that achieves the JSCC reliability function for streaming.

In Chapter 4.4, we show the JSCC reliability function for streaming, which extends
Burnashev’s reliability function (1.5) to JSCC and to the streaming sources. Sur-
prisingly, the JSCC reliability function for streaming is equal to the JSCC reliability
function for a classical fully accessible source, whose symbols are entirely known
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by the encoder before the transmission. This means that revealing symbols only
progressively to the encoder does not incur penalties on the reliability function.
The achievability of the JSCC reliability function for streaming is supplied by our
instantaneous encoding phase (Chapter 4.3). It operates during the symbol arriving
period and serves as a building block that can be inserted before any reliability
function-achieving block encoding scheme to attain the JSCC reliability function
for streaming.

Although the class of codes with instantaneous encoding that we focus on in Chap-
ter 4 has an appealing property–it overcomes the detrimental effect due to the
streaming nature of the source on the reliability function–few works have designed
such codes. Antonini et al.’s [47] proposed a code with instantaneous encoding that
transmits k streaming bits over a binary symmetric channel with feedback, but they
did not provide analytical results on the achievable rate and error exponent.

Yet, another class of codes with instantaneous encoding has already been investigated
in the field of control [48, 49, 50, 51], termed anytime codes. The class of anytime
codes is slightly different from the class of codes with instantaneous encoding that we
focus on in that an anytime code can choose to decode any number of source symbols
k at any time t with an error probability that decays exponentially with decoding
delay t − tk. Sahai and Mitter [48] showed that an anytime code can be used to
stabilize a discrete-time unstable scalar linear system with bounded noise over a noisy
channel with feedback. To do so, an anytime encoder is embedded in the observer
and treats the evolving plant as a streaming source; an anytime decoder is embedded
in the controller so that the control signals are formed based on decoder’s causal
estimations. In Chapter 4.5, we design an instantaneous small-enough difference
(SED) code for symmetric binary-input DMCs. It empirically behaves like an
anytime code, thus it can be used for system stabilization. Interestingly, a sequence
of instantaneous SED codes for transmitting k symbols also achieves the JSCC
reliability function for streaming as k →∞. We design low-complexity algorithms
to implement our instantaneous encoding phase and our instantaneous SED code in
Chapter 4.7.

In most existing works on causal encoding of a streaming source [47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58] with or without feedback, the decoder is assumed
to know the exact symbol arriving times. This assumption becomes unrealistic if a
streaming source emits symbols at random times. In Chapter 4.6, assuming that the
decoder only knows the symbol arriving distribution rather than the exact symbol
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arriving times of a streaming source, we generalize our instantaneous SED code to
transmit such a source and derive the JSCC reliability function for such a source.

In Chapter 4.9, we consider a class of DMCs whose transition probability matrix
contains zeros, meaning that some channel output is not reachable from a channel
input, e.g., a binary erasure channel belongs to this class. Taking advantage of this
property of the DMC, we design a sequence of codes with instantaneous encoding
that attains exactly zero error at any rate asymptotically below Shannon’s JSCC
limit. This extends Burnashev’s zero error code [40, Sec. 6] to JSCC and to the
streaming scenarios.
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C h a p t e r 2

CAUSAL FREQUENCY-CONSTRAINED SAMPLING

2.1 Introduction
In this chapter, we consider the following communication scenario: a sampler ob-
serves a stochastic process and causally decides when to sample it under a constraint
on the expected number of samples transmitted per second; an estimator uses the
causally received samples to approximate the process in real time; the channel is
delay-free and noiseless. As we have briefly discussed in Chapter 1.1, we refer to
this scenario as causal frequency-constrained sampling.

For a class of continuous Markov processes (e.g., Wiener process, continuous Lévy
process, and Ornstein-Uhlenbeck process) satisfying symmetry and regularity con-
ditions, we find the optimal causal sampling and estimating policies that minimize
the end-to-end estimation mean-square error (MSE) under a frequency constraint.
We show that the optimal sampling policy transmits a real-valued sample once the
process innovation passes one of two symmetric thresholds. The optimal estimator
only uses the last sample and the last sampling time to decide the running estimate
of the current process, until the next sample arrives.

Extending the single-sampler single-estimator system to an n-sampler n-estimator
system, we consider a scenario termed successive refinement via causal frequency-
constrained sampling: n samplers simultaneously track the source process and
causally sample it under a sequence of frequency constraints; the k-th estimator
receives the sample and the sampling times generated by the first k samplers,
k = 1, 2, . . . , n; n estimators use the causally received information to approximate
the process in real time. We design n causal sampling policies that successively
refine the estimation MSEs and attain the best distortion-frequency tradeoffs at all
n estimators.

Lifting the assumption that the channel is perfect, we show the optimal causal
frequency-constrained sampling policy of a continuous Lévy process for a channel
with a delay and for a packet-drop channel. For a channel with a fixed delay, we show
that the optimal causal sampling policy for a delay-free channel remains optimal.
For a packet-drop channel that either transmits a sample noiselessly or drops it, we
show that if the last sample is successfully delivered, then optimal causal sampling
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policy follows a symmetric threshold policy; otherwise, it retransmits the dropped
sample immediately.

Sections 2.2–2.3, which formulate the causal frequency-constrained sampling prob-
lem and present the optimal causal sampling and estimating policies, appear in the
research papers [59, 60]. Sections 2.4–2.5, which investigate the best distortion-
frequency tradeoffs for successive refinement and imperfect channels, appear for the
first time.

Prior work
In wireless sensor networks and network control systems of the Internet of Things,
nodes are spatially dispersed, communication between nodes is a limited resource,
and delays are undesirable. We study the fundamental limits of the communication
scenario: a transmitting node (sampler) observes a stochastic process, e.g., location,
speed, temperature, and wants to communicate it in real-time to the receiving node
(estimator); the receiving node (estimator) aims to recover the process in real time
using the causally received information.

Related work includes [1, 2, 3, 4, 5, 6, 7, 8, 9], where it is assumed that the encoder
transmits real-valued samples of the source process and that the communication is
subject to a sampling frequency constraint or a transmission cost. Finding sampling
policies at the encoder and estimation policies at the estimator to jointly minimize the
end-to-end distortion under transmission constraints falls into the realm of optimal
scheduling and remote sequential estimation problems. The causal sampling and
estimation policies that achieve the optimal tradeoff between the sampling frequency
and the distortion have been studied for the following discrete-time processes: the
i.i.d process [1]; the Gauss-Markov process [2]; the partially observed Gauss-
Markov process [3]; and, the first-order autoregressive Markov process Xt+1 =

aXt + Vt driven by an i.i.d. process {Vt} with unimodal and even distribution
[4][5]. Imer and Başar [1] considered causal estimation of i.i.d. processes under
MSE and the constraint on the number of transmissions over a finite time horizon,
and showed that the time-varying symmetric threshold sampling policy is optimal
for i.i.d. Gaussian processes. Lipsa and Martins [2] proved that a time-varying
symmetric threshold policy and a Kalman-like filter jointly minimize a discounted
cost function consisting of MSE and a communication cost, for scalar discrete-time
Gauss-Markov (GM) processes over a finite time horizon. For partially observed
discrete-time GM processes, Wu et al. [3] fixed an event-triggered policy, where
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the sampler transmits only if the L-infinity norm of the measurement innovation
exceeds a constant, and derived both the accurate and an approximate minimum
MSE (MMSE) estimator to combine with that sampling policy. Chakravorty and
Mahajan [4] showed that a threshold sampling policy with two constant thresholds
and an innovation-based filter jointly minimize a discounted cost function consisting
of the MSE and a transmission cost in the infinite time horizon. Molin and Hirche
[5] proposed an iterative algorithm to find the sampling policy that achieves the
minimum of a cost function consisting of a linear combination of the MSE and the
transmission cost in the finite time horizon, and showed that the algorithm converges
to a two-threshold policy.

The optimal sampling policies for some continuous-time processes have also been
studied: first-order stochastic systems with a Wiener process disturbance [10];
the finite time-horizon Wiener and Ornstein-Uhlenbeck (OU) processes [6]; the
infinite time-horizon multidimensional Wiener process [7]; the infinite-time horizon
Wiener process [8], and the OU processes [9] with channel delay. Åström and
Bernhardsson [10] compared uniform and symmetric threshold sampling policies in
first-order stochastic systems with a Wiener process disturbance. They showed that
the symmetric threshold sampling policy gives a lower distortion than the uniform
sampling under the same average sampling frequency. Rabi et al. [6] formulated the
problem of causal estimation of the Wiener process and the OU under the constraint
on the number of transmissions over a finite time horizon as an optimal stopping
time problem. Rabi et al. [6] showed that the optimal deterministic sampling
policy and the optimal event-triggered sampling policy for the Wiener process are
a uniform policy and a symmetric threshold policy, respectively. Nar and Başar [7]
extended the optimal stopping time problem in [6] to the multidimensional Wiener
process, and proved that a symmetric threshold policy remains optimal over both
finite and infinite time horizons. In particular, Nar and Başar [7] showed that the
optimal threshold over the infinite horizon is a constant depending on the average
sampling frequency. Sun et al. [8] proved that a symmetric threshold policy remains
optimal even when the samples of the Wiener process experience an i.i.d. random
transmission delay, but the threshold depends on the distribution of channel delay
and is different from the one in [7]. The optimal causal sampling policies for the
Wiener and the OU processes determined in [6, 7, 8, 9] are threshold sampling
policies, whose thresholds are obtained by solving optimal stopping time problems
via Snell’s envelope. The proofs in [6, 7, 8, 9] rely on a conjecture about the form of
the MMSE estimating policy, implying that the causal sampling policies in [6, 7, 8, 9]
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are optimal with respect to the conjectured estimating policy, rather than the optimal
estimating policy. Namely, Rabi et al. [6] conjectured that the MMSE estimating
policy under the optimal sampling policy is equal to the MMSE estimating policy
under deterministic (process-independent) sampling policies without a proof. Nar
and Başar [7] arrived at the MMSE estimating policy for the Wiener process by
referring to the results in [61], where the stochastic processes considered in [61]
are in discrete-time and the increments of the discrete-time process are assumed
to have finite support. Yet, the Wiener process is a continuous-time process with
Gaussian increments having infinite support. Sun et al. [8] and Ornee and Sun [9]
assumed that the estimating policy ignores the implied knowledge when no samples
are received at the estimator, neglecting the possible influence of the sampling policy
on the estimating policy. Nonparametric estimation of Lévy processes from uniform
non-causal samples has been studied in [62, 63].

In contrast to the scenarios in [1, 2, 3, 4, 5, 6, 7, 8, 9], where the communication
channel is assumed to be noiseless (perhaps with delays [8, 9]), [64, 65, 66] consider
noisy communication channels. Using dynamic programming, Gao et al. in [64] de-
rived the optimal sampling, encoding, and decoding policies for the event-triggered
sampling of an i.i.d. Laplacian source with subsequent transmission over a channel
with a Gamma additive noise, under an average power constraint. For discrete-time
first-order autoregressive Markov processes considered in [4, 5], Ren et al. [65]
introduced a fading channel between the sampler and the estimator, where a suc-
cessful transmission depends on both the channel gains and the transmission power,
and found the optimal encoding and decoding policies that minimize an infinite
horizon cost function combining the MSE and the power usage. For discrete-time
first-order autoregressive sources considered in [4, 5, 65], Chakravorty and Mahajan
[66] further proved that the optimal estimation policy is a Kalman-like filter and that
the optimal sampling policy is symmetric threshold policy when the communication
channel is a packet-drop channel with Markovian states.

Chapter organization and contribution
In Section 2.2, we formulate a single-sampler single-estimator (point-to-point)
causal frequency-constrained sampling problem, define causal frequency-constrained
codes, and define the distortion-frequency function D(F ) to quantify the tradeoffs
between frequency F and MSE d .

In Section 2.3, we present the causal sampling policy that achieves the distortion-
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frequency function for a class of continuous Markov processes (e.g., the Wiener
process, Lévy process, and the OU process). We show that the optimal causal
sampling policy transmits a sample of the source process if the process innovation
exceeds one of two symmetric thresholds. Compared to the previous work on sam-
pling of continuous-time processes [6, 7, 8, 9], our results apply to a wider class of
processes, namely, the processes satisfying (P.1)–(P.3) in Section 2.2. Furthermore,
we confirm the validity of the conjecture on the MMSE estimating policy in [6, 7].
To do so, we use a set of tools that differs from that in [6, 7]: where [6, 7] use Snell’s
envelope to find the optimal sampling policy under the conjecture on the form of the
MMSE estimating policy, we apply majorization theory and real induction to find
the jointly optimal sampling and estimating policies.

In Section 2.4, we extend the point-to-point communication system in Sections 2.2–
2.3 to an n-sampler n-estimator system and consider the successive refinement in
the causal frequency-constrained sampling setting. This problem arises if an esti-
mator can choose the number of samplers it listens to depending on the accuracy
of the estimate it aims to attain. This problem parallels the classical successive
refinement problem [67], which is a data compression problem: an encoder suc-
cessively compresses a source in n stages under n bitrate constraints Rn; a decoder
refines the source estimate as it receives more information bits, so that the code
pair achieves the distortion-rate function D(R1), D(R1 + R2), . . . , D (

∑n
k=1Rk)

at each stage. In Section 2.4, we replace the encoder and the decoder that oper-
ate in n stages by n samplers and n estimators, where the k-th estimator receives
samples and sampling times from the first k samplers, k = 1, 2, . . . , n; we replace
the sequence of rate constraints Rn by a sequence of frequency constraints F n; we
replace the distortion-rate function by the distortion-frequency function D(F ). We
show that n causal sampling policies that achieve the distortion-frequency functions
D(F1), D(F1 + F2), . . . D(

∑n
k=1 Fk) at n estimators cooperate with each other, so

that the optimal causal sampling policies at the first k samplers can be viewed as a
single sampling policy that operates under frequency

∑k
i=1 Fi.

In Section 2.5, we replace the perfect channel in Sections 2.2–2.3 by imperfect ones
and show how the distortion-frequency tradeoffs for a continuous Lévy process are
affected. For a channel with a fixed delay, we show that the optimal causal sampling
policy for a delay-free channel remains optimal. For a packet-drop channel with
1-bit feedback indicating whether or not the sample is dropped, we show that
the optimal causal sampling policy operates as follows. If the last sample is not
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dropped, it follows a symmetric threshold sampling policy; otherwise, it retransmits
the dropped sample immediately. This sampling policy transmits new samples at
a lower frequency than the optimal sampling policy for a noiseless channel, in
exchange for the retransmission opportunities of the dropped samples.

Notations
We denote by {Xt}rt=s the portion of the stochastic process within the time interval
[s, r], and denote by {Xt}rt>s the portion of the stochastic process within the time
interval (s, r]. For a possibly infinite sequence x = {x1, x2, . . . }, we write xi =

{x1, x2, . . . , xi} to denote the vector of its first i elements. For a continuous random
variable X , we denote its pdf by fX . We denote by Supp(fX) ≜ {x : fX(x) > 0}
the support of fX . We use σ(·) to denote the σ-algebra of its argument. We use
X ← Y to represent a substitution of X by Y .

2.2 Problem statement
Consider the single-sampler single-estimator system in Fig. 2.1. A source outputs
a real-valued continuous-time stochastic process {Xt}Tt=0 with state space (R,BR),
where BR is the Borel σ-algebra on R.

sampler noiseless 
channel estimator

Figure 2.1: System Model. Sampling times τi, i = 1, 2, . . . are determined by the
sampling policies.

A sampler tracks the source process {Xt}Tt=0 and causally decides to sample it at a
sequence of stopping times

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN ≤ T (2.1)

that are decided by a causal sampling policy. Thus, the total number of time stamps
N can be random. The time horizon T can either be finite or infinite. At time τi,
the sampler passes sample Xτi to the estimator without delay through a noiseless
channel. At time t, t ∈ [τi, τi+1), the estimator estimates the source process Xt,
yielding X̄t, based on all the received samples and the sampling time stamps, i.e.,
(Xτj , τj), j = 1, 2, . . . , i. Note that the sampler and the estimator can leverage
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the timing information for free due to the clock synchronization and the zero-delay
channel.

We formally define causal sampling and estimating policies.

Definition 1 ((F, d, T ) causal frequency-constrained code). A time horizon-T causal
frequency-constrained code for the stochastic process {Xt}Tt=0 is a pair of causal
sampling and estimating policies:

1. The causal sampling policy is a collection of stopping times τ1, τ2, . . . (2.1)
adapted to the filtration {Ft}Tt=0 at which samples are generated.

2. Given a causal sampling policy, the real-valued samples {Xτj}ij=1 and sam-
pling time stamps τ i, the MMSE estimating policy is

X̄t ≜ E[Xt|{Xτj}ij=1, τ
i, t < τi+1], t ∈ [τi, τi+1). (2.2)

In an (F, d, T ) code, the average sampling frequency must satisfy

E[N ]

T
≤ F (samples per sec), (T <∞), (2.3a)

lim sup
T→∞

E[N ]

T
≤ F (samples per sec), (T =∞), (2.3b)

where N is the total number of stopping times in (2.1), while the MSE must satisfy

1

T
E
[∫ T

0

(Xt − X̄t)
2

]
≤ d, (T <∞), (2.4a)

lim sup
T→∞

1

T
E
[∫ T

0

(Xt − X̄t)
2

]
≤ d, (T =∞). (2.4b)

Allowing more freedom in designing the estimating policy will not lead to a lower
MSE, since (2.2) is the MMSE estimator.

We present the assumptions on the source process and on the causal sampling
policies below. Throughout, we impose the following assumptions on the source
process {Xt}Tt=0. Let {Ft}Tt=0 be the filtration generated by {Xt}Tt=0.

(P.1) (Strong Markov property) {Xt}Tt=0 satisfies the strong Markov property: For
all almost surely finite stopping times τ ∈ [0, T ] and all t ∈ [0, T − τ ], Xt+τ

is conditionally independent of Fτ given Xτ .
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(P.2) (Continuous paths) {Xt}Tt=0 has continuous paths: Xt is almost surely con-
tinuous in t.

(P.3) (Mean-square residual error properties) For all almost surely finite stopping
times τ ∈ [0, T ] and all t ∈ [τ, T ], the mean-square residual error X̃t =

Xt − E[Xt|Xτ , τ ] satisfies:

(P.3-a) X̃t is independent of Fτ and X̃t has the Markov property, i.e., for all
r ∈ [τ, t], X̃t is conditionally independent of Fr given X̃r.

(P.3-b) X̃t can be expressed as

X̃t = qt(s)X̃s +Rt(s, τ), (2.5)

where s ∈ [τ, t], qt(s) is a deterministic function of (t, s), and Rt(s, τ)

is a random process with continuous paths, i.e., Rt(s, τ) is almost surely
continuous in t. Furthermore, the random variable Rt(s, τ) has an even and
quasi-concave pdf, and qt(t) = 1, Rt(t, τ) = 0.

We assume that the initial state X0 = 0 at time τ0 ≜ 0 is known both at the sampler
and the estimator. For example, the Wiener process satisfies (P.1)–(P.3), whose
definition is given below.

Definition 2 (Wiener process, e.g., [68]). A Wiener process {Wt}t≥0 is a stochastic
process characterized by the following three properties:

• For all non-negative s and t, Ws and Ws+t −Wt have the same distribution
(W0 = 0);

• The increments Wti −Wsi (i ≥ 1) are independent whenever the intervals
(si, ti] are disjoint;

• The random variable Wt follows the Gaussian distribution N (0, t).

Any stochastic process of the form Xt = g1(t)Wg2(t) + g3(t) satisfies (P.1)–(P.3),
where g1, g2, g3 are continuous deterministic functions of the time t, and g2 is positive
and non-decreasing in t. The parameters in (2.5) for this example process are qt(s) =
g1(t)
g1(s)

andRt(s, τ) = g1(t)Wg2(t)−g2(s). The Wiener process, the Ornstein-Uhlenbeck
(OU) process, and the continuous Lévy processes are special cases of this form.
These processes are widely used in financial mathematics and physics. There are
also other stochastic processes satisfying (P.1)–(P.3), e.g.,Xt = Wt+c1+c2Wt, where
c1, c2 ∈ R, which is expressed by (2.5) with qt(s) = 1, Rt(s, τ) = (1 + c1)Wt−s.



22

Definition 3 (time-homogeneous process). We say that a stochastic process {Xt}Tt=0

is time-homogeneous, if for a stopping time τ ∈ [0, T ] and a constant s ∈ [0, T − τ ],
Xs+τ − E[Xs+τ |Xτ ] follows a distribution that only depends on s.

We focus on causal sampling policies that satisfy the following assumptions.

(S.1) The sampling interval between any two consecutive stopping times, τi+1− τi,
satisfies

E[τi+1 − τi] <∞, i = 0, 1, . . . , (2.6)

and the MSE within each interval satisfies

E
[∫ τi+1

τi

(Xt − X̄t)
2dt

]
<∞, i = 0, 1, . . . (2.7)

(S.2) The Markov chain τi+1 − τi − {Xt}τit=0 holds for all i = 0, 1, . . .

(S.3) For all i = 0, 1, . . . , the conditional pdfs fτi+1|τi exist.

Note that (2.6) holds trivially if T < ∞. Sun et al. [8] and Ornee and Sun [9]
also assumed (2.6) in their analyses of the infinite time horizon problems for the
Wiener [8] and the OU [9] processes. We use (2.7) to obtain a simplified form
of the distortion-frequency tradeoff for time-homogeneous processes (see (2.13)
below). Furthermore, (2.7) allows us to prove that the optimal sampling intervals
τi+1 − τi form an i.i.d. process (see (2.12) below). We use (S.2), (S.3) to show
that the optimal sampling policy is a symmetric threshold sampling policy in the
frequency-constrained setting. See Appendix A.1 for a sufficient condition on the
stochastic process for the optimal sampling policy to satisfy (S.2). For example, in
the infinite time horizon, stochastic processes of the form Xt = cWat + bt satisfy
the sufficient condition. Assumption (S.2) implies that the stopping times form a
Markov chain. In contrast, the sampling intervals of causal sampling policies are
assumed to form a regenerative process in [8][9].

To quantify the tradeoffs between the sampling frequency (2.3) and the MSE (2.4),
we introduce the distortion-frequency function.

Definition 4 (Distortion-frequency function (DFF)). The DFF for causal frequency-
constrained sampling of the process {Xt}Tt=0 is the minimum MSE achievable by
causal frequency-constrained codes,

D(F ) ≜ inf{d : ∃ (F, d, T ) causal frequency-constrained code

satisfying (S.1), (S.2), (S.3)}.
(2.8)
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In the causal frequency-constrained sampling scenario, we say that a causal sampling
policy is optimal if, when succeeded by the MMSE estimating policy (2.2), it forms
an (F, d, T ) code with d = D(F ).

2.3 Optimal causal frequency-constrained sampling
In Theorem 1 below, we show that the optimal sampling policy is a two-threshold
policy that is symmetric with respect to the expected value of the process given
the last sample and the last sampling time, henceforth referred to as a symmetric
threshold policy. In Theorem 2, we show a simplified form of the policy for time-
homogeneous processes.

Theorem 1. The optimal causal sampling policy in either finite or infinite time
horizon for a class of continuous Markov processes satisfying assumptions (P.1)–
(P.3) in Section 2.2 is a symmetric threshold sampling policy of the form

τi+1 = inf{t ≥ τi :Xt − E[Xt|Xτi , τi] /∈ (−ai(t, τi), ai(t, τi))}, (2.9)

where the threshold ai is a non-negative deterministic function of (t, τi).

Proof sketch. In Appendix A.2, we first introduce Lemmas 2–5 that supply ma-
jorization and real induction tools. Then, fixing an arbitrary causal sampling policy,
we construct a symmetric threshold sampling policy that has the same sampling
frequency as the fixed policy. Using majorization and real induction tools, we show
that the MSE achieved by the symmetric threshold sampling policy is no larger than
that achieved by the fixed policy.

Theorem 1 shows that the optimal sampling policy is found within a much smaller set
of sampling policies than that allowed in Definition 4: the input stochastic process
{Xt}Tt=0 is sampled only if the process innovation passes one of two symmetric
thresholds. The thresholds depend on {Xt}Tt=0 only through the current time t, the
last sampling time, and the number of samples taken until t. Using the form of the
sampling policy (2.9), we show that the MMSE estimating policy (2.2) simplifies as
follows.

Corollary 1.1. In the setting of Theorem 1, under the optimal sampling policy (2.9),
the MMSE estimating policy reduces to

X̄t = E[Xt|Xτi , τi], t ∈ [τi, τi+1). (2.10)
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Proof. Appendix A.3.

In the frequency-constrained setting, the expectation in (2.10) can be calculated
at the estimator even without the knowledge of the sampling policy, whereas the
expectation in (2.2) depends on the sampling policy at the sampler through the
conditioning on the event that the next sample has not been taken yet, i.e., t < τi+1.
Corollary 1.1 confirms the conjecture in [6, Eq.(3)] and [7, Eq.(5)] on the form of
the MMSE estimating policy.

Corollary 1.2. In the setting of Theorem 1, the optimal causal sampling policy
satisfies (2.3) with equality.

Proof. Appendix A.4.

Corollary 1.2 indicates that the inequality in the sampling frequency constraint (2.3)
can be simplified to an equality.

Corollary 1.3. In the setting of Theorem 1, the threshold in (2.9) satisfies

lim
δ→0+

ai(t+ δ, τi) ≥ ai(t, τi), ∀t ∈ [τi, τi+1), i = 0, 1, . . . (2.11)

Proof. Appendix A.5.

Corollary 1.3 implies that the threshold ai(t, τi), at time t ∈ [τi, τi+1), is either
right-continuous or has a jump to a larger value. Thus, the continuous-path process
Xt − E[Xt|Xτi , τi] in (2.9) must hit one of the symmetric thresholds ±ai(τi+1, τi)

at t = τi+1.

Theorem 2. In the infinite time horizon, the optimal causal sampling policy for
time-homogeneous continuous Markov processes satisfying assumptions (P.1)–(P.3)
in Section 2.2 is a symmetric threshold sampling policy of the form

τi+1 = inf{t ≥ τi :Xt − E[Xt|Xτi , τi] /∈ (−a(t− τi), a(t− τi))}, (2.12)

where the threshold a is a non-negative deterministic function of t− τi. The optimal
threshold of (2.12) is the solution to the following optimization problem,

D(F ) = min
{a(t)}t≥0 :

E[τ1]= 1
F

E
[∫ τ1

0
(Xt − E[Xt])

2dt
]

E[τ1]
. (2.13)
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Proof sketch. The time homogeneity and the infinite time horizon allow us to treat
each sampling time τi as a new start as if the sampler forgot the past sampling times
and was about to take the first sample of process {Xt−E[Xt|Xτi , τi]}t≥τi , which has
the same distribution as the original process {Xt}t≥0. Thus, the sampling thresholds
reduce to (2.12). Since the sampling intervals are i.i.d. and the process is time-
homogeneous, the MSE accumulated in each sampling interval can be considered
as i.i.d. renewal rewards. Applying the renewal reward theory to the MSEs, the
long-term average MSE (2.4b) reduces to the MSE in the first interval only, thus
(2.13) holds. See details in Appendix A.6.

Remark 1. In the setting of Theorem 2, the sampling intervals τi+1−τi, i = 0, 1, . . .

under a symmetric threshold sampling policy of the form (2.12) are i.i.d.

Theorem 2 shows that the optimal sampling policy in Theorem 1 can be further
simplified for time-homogeneous processes in the infinite time horizon. As a con-
sequence of time homogeneity, thresholds in (2.12) only depend on the time elapsed
since the last sampling time. In contrast, the thresholds in (2.9) depend on the last
sampling time as well.

Next, we show examples of using (2.13) to solve for the optimal threshold in (2.12).
Before we show the examples, we introduce Lemma 1 below, which displays useful
properties of the Wiener process.

Lemma 1 (Theorem 2.40 [69], Theorem 2.44 [69], Lemma 3 [8], Corollary 2.42
[69]). Consider the Wiener process {Wt}∞t=0, and let τ ′ ≤ τ be stopping times such
that E[τ ] <∞. Then,

(a) (Wald’s lemma) E[Wτ ] = 0;

(b) (Wald’s second lemma) E[W 2
τ ] = E[τ ];

(c) E
[∫ τ

0
W 2

t dt
]
= 1

6
E[W 4

τ ];

(d) E[W 2
τ ] = E[W 2

τ ′ ] + E[(Wτ −Wτ ′)
2].

Example 1: Applying (2.13) to the Wiener process in Definition 2, we conclude that
the sampling threshold that achieves (2.13) is equal to a(t) =

√
1
F

, thus the optimal
causal sampling policy in (2.9) is

τi+1 = inf

{
t ≥ τi : |Wt −Wτi | ≥

√
1

F

}
, (2.14)
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and the DFF is equal to

D(F ) =
1

6F
. (2.15)

See Fig. 2.2 for the sampling policy for the Wiener process {Wt}∞t=0. While Nar and
Başar [7] showed the optimal sampling policy for the Wiener process via solving
Snell’s envelope which requires solving an SDE, we provide a much simpler method
below using (2.13).

Proof of Example 1. Converse: Plugging Xt ← Wt, we lower bound the objective
function of (2.13) as

E
[∫ τ1

0
W 2

t dt
]

E[τ1]
=

1

6

E
[
W 4

τ1

]
E[τ1]

(2.16a)

≥
E[W 2

τ1
]2

6E[τ1]
(2.16b)

=
E[τ1]
6

(2.16c)

=
1

6F
, (2.16d)

where (2.16a) holds due to Lemma 1 (c); (2.16b) holds by applying Jensen’s in-
equality to lower bound (2.16a); (2.16c) holds due to Lemma 1 (b); (2.16d) holds
by plugging the minimization constraint in (2.13) into (2.16c).

Achievability: Plugging the sampling threshold a(t) =
√

1
F

into (2.13), we obtain
D(F ) = 1

6F
.

Example 2: Applying (2.13) to the continuous Lévy process

Xt = cWat + bt, (2.17)

a, b, c ∈ R, a > 0, we conclude that the sampling threshold that achieves (2.13) is
equal to a(t) = c

√
a
F

, thus the optimal sampling policy in (2.12) is

τi+1 = inf

{
t ≥ τi : |Xt − X̄t| ≥ c

√
a

F

}
, (2.18)

and the DFF is equal to

D(F ) =
ac2

6F
. (2.19)
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Figure 2.2: Symmetric threshold sampling of the Wiener process Wt. The black
curve represents the Wiener process. The gap between blue horizontal lines repre-
sents the sampling threshold a(t) =

√
1
F
= 1

3
. A down-arrow appears if the process

innovation Wt −Wτi crosses the negative threshold. An up-arrow appears if the
process innovation Wt −Wτi crosses the positive threshold.

Example 3: Applying (2.13) to the Ornstein-Uhlenbeck (OU) process

dXt = θ(µ−Xt)dt+ σdWt, (2.20)

where µ, θ, σ are positive constants, we conclude that the sampling threshold that
achieves (2.13) is a(t) =

√
R−1

1

(
1
F

)
, thus the optimal causal sampling policy in

(2.12) is

τi+1 = inf

{
t ≥ τi : |Xt − X̄t| ≥

√
R−1

1

(
1

F

)}
, (2.21)

and the DFF is given by

D(F ) = F ·R2

(
R−1

1

(
1

F

))
, (2.22)

where
R1(v) ≜

v

σ2 2
F2

(
1, 1;

3

2
, 2;

θ

σ2
v

)
, (2.23)

R2(v) ≜ −
v

2θ
+

σ2

2θ
R1(v), (2.24)

where 2F2 is a generalized hypergeometric function. Under the assumption (S.1)
in Section 2.2 and the assumption that the sampling intervals form a regenerative
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process, Ornee and Sun [9] found the optimal sampling policy (2.21) for the OU
process in the infinite horizon by forming an optimal stopping problem. They
solved the optimal stopping problem via the Snell’s envelope which requires solving
an SDE. We provide an alternative method to find the optimal sampling policy for
the OU process in Appendix A.7 using (2.13).

2.4 Successive refinement via causal frequency-constrained sampling
We extend the single-sampler single-estimator system in Sections 2.2–2.3 to an n-
sampler n-estimator system, and we consider a successive refinement problem in a
novel causal frequency-constrained sampling setting as shown in Fig. 2.3.

sampler 1

sampler 2

sampler n

. 

. 

.

estimator 1

estimator 2

estimator n

Figure 2.3: An n-sampler n-estimator system for successive refinement via causal
frequency-constrained sampling.

All n samplers simultaneously track the source process {Xt}Tt=0. Based on the
causally observed process, the k-th sampler, k = 1, 2, . . . , n, decides the sampling
time stamps

0 ≤ τ
(k)
1 ≤ τ

(k)
2 ≤ · · · ≤ τ

(k)
Nk
≤ T, (2.25)

where Nk is a random variable that represents the total number of samples taken by
the k-th sampler within time [0, T ]. At time t, the k-th estimator uses all the samples
and the sampling times generated by the first k samplers by time t, denoted by

M
(k)
t ≜ ∪k

j=1

{(
X

τ
(j)
i
, τ

(j)
i

)
: τ

(j)
i ≤ t, i = 1, 2, . . .

}
, (2.26)

to form a real-time estimate X̄(k)
t of the source process.
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We define n causal sampling policies and n causal estimating policies for successive
refinement via causal frequency-constrained sampling below.

Definition 5 (An (F n, dn, T ) causal frequency-constrained code for successive
refinement). Fix a source process {Xt}Tt=0. An (F n, dn, T ) causal frequency-
constrained code for successive refinement consists of n causal sampling policies
and n causal estimating policies:

1. Each of n causal sampling policies, defined in Definition 1-1, is a collection
of stopping times (2.25);

2. Given the real-valued samples and the sampling times generated by the first k
causal sampling policies, i.e., M (k)

t (2.26), the k-th MMSE estimating policy
is

X̄
(k)
t ≜ E

[
Xt

∣∣∣M (k)
t

]
, k = 1, 2, . . . , n. (2.27)

The average sampling frequencies of all n causal sampling policies must satisfy
(2.3) with N ← Nk, F ← Fk k = 1, 2, . . . , n, while all n MSEs must satisfy (2.4)
with X̄t ← X̄

(k)
t , d← dk, k = 1, 2, . . . , n.

The estimating policy (2.27) ignores the knowledge that the next sample has not
been taken, yet this will not incur any penalty on the achievable estimation MSEs
for a class of source processes considered in Theorem 3 below due to Corollary 1.1.

To quantize the tradeoffs between the sampling frequencies F n and the MSEs
dn, we introduce the distortion-frequency region. Fix a source process {Xt}Tt=0.
A frequency-distortion tuple (F n, dn) is said to be achievable if there exists an
(F n, dn, T ) causal frequency-constrained code for successive refinement whose
first k causal sampling policies form a single causal sampling policy satisfying
assumptions (S.1)–(S.3) in Section 2.2 for all k = 1, 2, . . . , n. The distortion-
frequency regionR(F n) is the closure of the set of distortions dn such that (F n, dn)

is achievable.

Given a sampling frequency F , we denote by π(F ) the optimal causal sampling
policy (2.12) for an infinite-horizon, time-homogeneous source process {Xt}∞t=0

satisfying (P.1)–(P.3). We denote by πk the causal sampling policy of the k-th
sampler in Fig. 2.3, k = 1, 2 . . . , n. The distortion-frequency region R(F n) for a
class of source processes is shown below.
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Theorem 3. Consider an infinite-horizon, time-homogeneous source process{Xt}∞t=0

satisfying (P.1)–(P.3) whose optimal causal sampling policy π(F ) (2.12) has a
time-invariant sampling threshold, i.e., ∃ function θ(·) : R+ → R+ such that
a(t − τi) = θ(F ), ∀t ∈ [τi, τi+1), i = 0, 1, . . . If the sampling frequency con-
straints F n satisfy

θ
(∑k

j=1 Fj

)
θ
(∑k+1

j=1 Fj

) = zk, (2.28)

for some positive integer zk ∈ Z+ and for all k = 1, 2, . . . , n−1, then the distortion-
frequency regionR(F n) is

dk ≥ D

(
k∑

j=1

Fj

)
, k = 1, 2, . . . , n. (2.29)

Together with n causal estimating policies in (2.27), n causal sampling policies that
achieve the right side of (2.29) for all k = 1, 2, . . . , n are

π1 = π(F1), if k = 1, (2.30)

πk = π

(
k∑

j=1

Fj

)
\ π

(
k−1∑
j=1

Fj

)
, if k = 2, . . . , n. (2.31)

Proof. Converse: Given any frequency constraints F n, we show that the achievable
distortions dn ∈ R(F n) are lower bounded as (2.29). For the k-th estimator, the
samples and the sampling times that it receives from the first k samplers, i.e.,
M

(k)
t (2.26), can be viewed as the samples and the sampling times generated by

a single causal sampling policy satisfying (S.1)–(S.3) under sampling frequency
F ≤

∑k
j=1 Fj . Since the DFF D(F ) is a non-increasing function of F , the MSE dk

at the k-th estimator is lower bounded as (2.29).

Achievability: We show that for any F n satisfying (2.28), the sampling policies in
(2.30)–(2.31) achieve the converse bounds (2.29). The sampling policies in (2.30)–
(2.31) imply that the samples and the sampling times received by the k-th estimator
are equivalent to those generated by the causal sampling policy π

(∑k
j=1 Fj

)
. By

definition, π
(∑k

j=1 Fj

)
achieves (2.29) with equality. It remains to show that the

sampling policies in (2.30)–(2.31) satisfy the frequency constraintsF n. Since (2.28)
ensures that every sampling time in π

(∑k−1
j=1 Fj

)
also belongs to π

(∑k
j=1 Fj

)
, the
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sampling frequency of the k-th causal sampling policy is equal to

lim
T→∞

E[Nk]

T
=

k∑
j=1

Fj −
k−1∑
j=1

Fj = Fk, (2.32)

for all k = 1, 2, . . . , n.

The source processes that satisfy the assumptions in Theorem 3 include the Wiener
process, the continuous Lévy processes (2.17), and the OU processes (2.20), since,
as we have shown below Lemma 1, they all have time-invariant sampling thresholds.

Theorem 3 shows that the first 1 ≤ k ≤ n optimal causal sampling policies can
be jointly viewed as a single causal sampling policy π

(∑k
j=1 Fj

)
that operates

under frequency
∑k

j=1 Fj . The symmetric threshold sampling policies (2.30)–(2.31)
together with the estimating policies (2.27) successively refine the estimation MSEs
at n estimators to D(F1), D(F1 + F2), . . . , D(

∑n
k=1 Fk) (2.29). The achievability

of the DFFs implies that the knowledge that the next sample has not been taken can
indeed be ignored in the MMSE estimating policy (2.27) without loss of optimality.

2.5 Frequency-constrained sampling over imperfect channels
In this section, we show how the distortion-frequency tradeoffs for a continuous
Lévy process (2.17) are affected if the channel is imperfect.

Channel with delay
We consider the communication scenario in Fig. 2.1 with the delay-free channel
replaced by a channel that introduces a fixed channel delay δ ≥ 0 between the
sampling time and the sample-delivery time: if the sampling time is τi, then the
sample-delivery time is τi+δ. The sampler and the estimator are clock-synchronized,
meaning that the estimator knows the sampling time from the delivery time and the
fixed delay. We show that the optimal causal sampling policy for the continuous
Lévy process Xt = cWat + bt (2.17) remains the symmetric threshold sampling
policy in (2.18). We denote by Π the set of all causal sampling policies in the
infinite time horizon.

The DFF for a channel with fixed delay δ is defined as

Dch(F ) = inf
π∈Π:
(2.3b)

lim sup
T→∞

1

T
E

[
N∑
i=0

∫ τi+1+δ

τi+δ

(Xt − X̄ch
t )2dt

]
, (2.33)
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where, similar to [6]–[9], we use the MMSE estimating policy

X̄ch
t ≜ E[Xt|{Xτj}ij=1, τ

i] (2.34a)

= cWaτi + bt, t ∈ [τi + δ, τi+1 + δ), (2.34b)

where (2.34b) is by the strong Markov property of the continuous Lévy process.
Unlike Theorems 1–2 where we proved that the event t < τi+1 in the estimating
policy (2.2) can be ignored without loss of optimality, here we do not delve into the
issue of whether ignoring the known event t < τi+1+δ in the conditional expectation
(2.34) is optimal.

We show the optimal causal sampling policy that achieves Dch(F ).

Proposition 1. In causal frequency-constrained sampling of the continuous Lévy
process (2.17) with a fixed channel delay δ and the estimating policy (2.34), the
optimal causal sampling policy remains the symmetric threshold sampling policy in
(2.18) and achieves

Dch(F ) =
ac2

6F
+ ac2δ. (2.35)

Proof. Plugging (2.34) into the (2.33), we obtain the objective function of Dch(F )

as (Appendix A.8):

lim sup
T→∞

1

T
E

[
N∑
i=0

∫ τi+1

τi

(cWat − cWaτi)
2dt

]
+ ac2δ. (2.36)

Since the first term of (2.36) is the objective function of the DFF for a delay-free
channel and the second term ac2δ is a fixed number, we conclude that (2.36) is
minimized by (2.18). The first term in (2.36) is given by (2.19).

The first term on the right side of (2.35) is equal to the DFF (2.19) for a delay-free
channel. The second term on the right side of (2.35) is the penalty on the achievable
MSE due to the delay δ. The optimal sampling policy in the fixed-delay scenario
coincides with the optimal sampling policy in the delay-free scenario. This differs
from the result of [8], according to which the optimal causal sampling policy for
the Wiener process (a special continuous Lévy process with a = 1, b = 0, c = 1)
through a channel with an i.i.d. delay Yi is a symmetric threshold sampling policy:

τi+1 = inf{t+ τi + Yi : |Wt+τi+Yi
−Wτi | ≥ β}, (2.37)
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where β is a threshold that depends on the distribution of Yi and the sampling
frequency constraint. The setting in [8] is different from ours in Section 2.5, since
the channel in [8] only serves one sample at a time. Because samples must wait in
a queue before the previous sample is delivered, the optimal sampler in [8] takes
a new sample after the previous sample is delivered, whereas in our setting, the
sampler may take a new sample after or before the delivery of the previous sample.
This results in the policy in [8] attaining an MSE in the constant-delay scenario no
smaller than that indicated in (2.35).

Packet-drop channel with feedback
We replace the noiseless channel in Fig. 2.1 by a packet-drop channel, and we
consider the system in Fig. 2.4. We denote a packet drop by symbol e. The channel
transition probability of a packet-drop channel with packet-drop probability p is
given by

PY |X(x|x) = 1− p, ∀x ∈ R, (2.38a)

PY |X(e|x) = p, ∀x ∈ R. (2.38b)

We assume that the packet-drop channel is memoryless and a packet drop is inde-
pendent of the source process. We denote by Bτi a 1-bit feedback sent from the

sampler packet-drop
channel estimator

Figure 2.4: System model for causal frequency-constrained sampling over a packet-
drop channel with feedback.

estimator to the sampler at sampling time τi. If Bτi = 1, then the packet is not
dropped, i.e., Yτi = Xτi; otherwise, the packet is dropped, i.e., Yτi = e. Since by
assumption, both the sampler and the estimator know X0 = 0 at τ0 = 0, it holds that
Bτ0 ≜ 1. Given feedback bits {Bτj}ij=1, we denote the indices of all the successful
transmissions by

N
(
{Bτj}ij=1

)
≜ {j : Bτj = 1, j = 1, 2, . . . , i}, (2.39)

and we denote the time of the last successful transmission by time τi by

Si ≜ τmaxN({Bτj }
i
j=1)

. (2.40)
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We define an ⟨n, d, T ⟩ causal code for a packet-drop channel that transmits n real-
valued samples of a source process {Xt}∞t=0 within an expected time horizon T at
an MSE less than or equal to d.

Definition 6 (An ⟨n, d, T ⟩ causal code for a packet-drop channel). Fix a source
process {Xt}∞t=0 and fix a packet-drop channel with a single-letter transition prob-
ability PY |X : R→ R ∪ {e}. An ⟨n, d, T ⟩ causal code for a packet-drop channel is
a pair of causal sampling and estimating policies:

1. The causal sampling policy is a collection of n stopping times

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn (2.41)

adapted to the filtration generated by the source process {Xt}∞t=0 and the
feedback process {Bτi}ni=1.

2. Given channel outputs {Yτj}ij=1 and sampling times τ i, the estimating policy
is

X̄pd
t ≜ E

[
Xt

∣∣∣{Yτj , τj}j∈N({Bτj }
i
j=1)

]
. (2.42a)

The expectation of the n-th sampling time must satisfy

E[τn] = T, (2.43)

while the MSE must satisfy

1

T
E
[∫ τn

0

(
Xt − X̄pd

t

)2
dt

]
≤ d. (2.44)

The causal sampling policy is assumed to satisfy (S.1) in Section 2.2 as well as

(S.4) Given the number of unsuccessful transmissions i−maxN
(
{Bτj}ij=1

)
after

the last successful transmission, the sampling interval τi+1−τi is independent
of the source process {Xt}τit=0 and the feedback bits {Bτj}ij=1 by time τi,
i = 1, 2, . . . , n.

The estimating policy in (2.42) can be suboptimal since it ignores the knowledge
implied by the sampling times of the dropped packets. For a continuous Lévy
process in (2.17), the estimating policy X̄pd

t (2.42) reduces to

X̄pd
t = cWaSi

+ bt, t ∈ [τi, τi+1), (2.45)
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due to the strong Markov property of the Lévy process.

To quantify the tradeoffs among the number of samples n (2.41), the expected time
horizon T (2.43), and the MSE (2.44), we introduce the distortion-sample-time
function for a packet-drop channel.

Definition 7 (Distortion-sample-time function (DSTF) for a packet-drop channel).
Fix a source process {Xt}∞t=0. The DSTF for a packet-drop channel is the minimum
MSE (2.44) achievable by causal codes with n samples and expected horizon T :

Dpd(n, T ) ≜ inf{d : ∃ ⟨n, d, T ⟩ causal code for a packet-drop channel

satisfying (S.1), (S.4)}.
(2.46)

We present Dpd(n, T ) and the causal code for a packet-drop channel that achieves
it for a continuous Lévy process.

Theorem 4. Fix a continuous Lévy process {Xt}∞t=0 in (2.17) and fix a packet-drop
channel (2.38) with packet-drop probability p < 1

5
. Together with the estimating

policy in (2.42), the causal sampling policy that operates as:

• if Bτi = 1, then the next sampling time is

τi+1 = inf

{
t ≥ τi : |Xt − X̄pd

t | ≥ c

√
aT

1 + (n− 1)(1− p)

}
; (2.47)

• if Bτi = 0, then the next sampling time is τi+1 = τi;

achieves the DSTF for a packet-drop channel

Dpd(n, T ) =
ac2T

6(1 + (n− 1)(1− p))
. (2.48)

Proof sketch. We first show that the DSTF is lower bounded by a minimization
problem achieved by the causal sampling policy in Theorem 4. Then, we show that
under the causal sampling policy in Theorem 4, the DSTF coincides with its lower
bound. See details Appendix A.9.

The causal sampling policy in Theorem 4 operates as follows. If the last sample
is not dropped, then the sampler follows the symmetric threshold sampling policy
in (2.47) to determine the next sampling time; otherwise, the sampler immediately
retransmits the dropped sample until it is successfully received by the estimator.
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Considering n
T

as the sampling frequency, letting F ≜ n
T

, and taking n → ∞, we
rewrite the sampling policy (2.47) and Dpd(n, T ) in (2.48) in terms of frequency F

as

τi+1 = inf

{
t ≥ τi : |Xt − X̄pd

t | ≥ c

√
a

(1− p)F

}
, i = 0, 1, 2, . . . ; (2.49)

Dpd(F ) =
ac2

6(1− p)F
. (2.50)

We observe that the causal sampling policy in (2.49) employs a sampling threshold√
1

1−p
-fold larger than the sampling threshold for a noiseless channel. The lower

sampling frequency for transmitting new samples allows for the retransmission
opportunities.

2.6 Conclusion
We study the optimal causal frequency-constrained sampling for a class of con-
tinuous processes satisfying regularity conditions (P.1)–(P.3) in Section 2.2. We
show that the optimal causal frequency-constrained sampling policy is a symmetric
threshold sampling policy (Theorems 1), where the sampler transmits a new sample
once the process innovation crosses either of the two symmetric thresholds. As a
result of the symmetric structure of the optimal sampling policy, we confirm the
conjecture on the estimating policy in prior literature [6]–[7] for the Wiener process
and the OU process (Corollary 1.1), that is, the knowledge that the next sample has
not been taken is useless in reducing the estimation MSE. If the stochastic process
is also time-homogeneous (Definition 3), we show that in the finite time horizon,
the sampling threshold only depends on the time elapsed from the last sampling
time (Theorem 2), and we simplify the DFF to the minimization problem in (2.13).
As we show below Lemma 1, solving the simplified minimization problem is much
easier than solving an SDE (Snell’s envelope) in prior literature [6]–[9]. Extend-
ing the one-sampler one-estimator system to an n-sampler n-estimator system, we
consider the successive refinement problem in the causal frequency-constrained
sampling setting, which parallels the classical successive refinement problem in the
non-causal lossy compressing setting. For a class of source processes that have a
time-invariant sampling threshold, we show that the optimal causal sampling poli-
cies cooperate so that the first k sampling policies, k = 1, 2, . . . , n, can be viewed
as a single optimal causal sampling policy under the summed frequency

∑k
j=1 Fk.

The sampling policies successively refine the estimation MSEs and attain the DFFs
(Theorem 3). Dropping the assumption that the channel is delay-free, we show that
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the optimal causal sampling policy of a continuous Lévy process for a delay-free
channel remains optimal for a channel with a fixed delay (Proposition 1), revealing
the resilience of the optimal causal sampling policy to the channel delay. Dropping
the assumption that the channel is noiseless, we show the optimal causal sampling
policy of a continuous Lévy process for a packet-drop channel with feedback. It
transmits new samples following a symmetric threshold sampling policy but with a
threshold larger than that for a noiseless channel. The sampler thus transmits fewer
new samples in exchange for the opportunities to retransmit the dropped ones.

2.7 Future research directions
Based on the findings in Sections 2.2–2.5, we list several interesting directions for
future research.

Causal frequency-constrained sampling over a channel with a random delay
It would be interesting to find the optimal causal sampling policy for a channel with
a random delay. There are two possible ways to introduce the random delay.

Additive random delay: Assuming that the sampling time is τi, an additive random
delay Di leads to a sample delivery time τi + Di. The difficulties of solving the
optimal causal sampling policy for a channel with an additive random delay are in
two aspects. First, if one assumes that the additive random delays are i.i.d., then
the delay may mess up the order of the samples received by the estimator, e.g., it
is possible that τi + Di > τi+1 + Di+1. One needs to take the possibly permuted
sample order into consideration when finding the optimal causal sampling policy.
Second, if one drops the i.i.d. assumption on the random delays and assumes that
τi+Di ≤ τi+1+Di+1 holds almost surely for all i = 1, 2, . . . , then the dependency
between random delays makes solving the DFF difficult. These difficulties inspire
the formulation below.

Channel as a first-in first-out (FIFO) queue with random service time: Assume that
the channel is a FIFO queue with i.i.d. service time (i.e., random delay). The sample
is not served by the channel until the previous sample is delivered. As a result, it is
suboptimal to transmit a new sample when the queue is non-empty [8, 9]. This is
the setting considered in [8, 9], where the optimal causal sampling policies for the
Wiener process and the OU process are presented. In this setting, one can further
find the optimal causal sampling policy for a wider class of stochastic processes.
One possible method is to simplify the DFF to an optimization problem over just
one sampling interval (similar to (2.13)), and to solve the simplified problem using
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tools similar to those used in Theorem 1 and in [6, 7, 8, 9], e.g., the strong Markov
and the martingale properties of the source process, majorization theory, and Snell’s
envelope.

Causal frequency-constrained sampling over a noisy channel
It would be interesting to find the optimal causal sampling policy for different noisy
channels. The first difficulty is to solve the MMSE estimator (2.2). The MMSE
estimator can be difficult to solve even for sampling the Wiener process over an
AWGN channel that introduces a Gaussian noise Zt. This is because the stopping
time makes the random variable Wτi non-Gaussian, that is, E[Wt|Wτi +Zτi , τi] may
not be a linear function of Wτi + Zτi . Yet, one can use the linear MMSE estimator
as a potentially suboptimal estimator to solve for the causal sampling policy that
attains the minimum MSE under a sampling frequency constraint.

Causal frequency-constrained sampling for a wider class of source processes
It would be interesting to find the optimal causal sampling policy (Theorem 1) for a
wider class of stochastic processes.

Example 1: One can find the optimal causal sampling policy for a multidimensional
stochastic process of which each dimension is a scalar stochastic process satisfying
(P.1)–(P.3) in Section 2.2. One existing method for sampling a multidimensional
Wiener process [7] with independent dimensions is to establish an optimal stopping
problem for the multidimensional process and solving the problem via Snell’s en-
velope [6, 7]. The optimal causal sampling policy of the multidimensional Wiener
process is a symmetric threshold sampling policy that transmits a sample if the l2

norm of the multidimensional process innovation crosses a threshold [7]. Alterna-
tively, based on the proof for Theorem 1 in Appendix A.2, we conjecture that one can
first generalize all majorization tools to vectors and then apply real inductions on the
MSE over vectors. While this may only give a structural result on the optimal causal
sampling policy, one may also need to leverage other tools to specify the structural
result to an explicit policy. We conjecture that symmetric structure of the optimal
causal sampling policy for the multidimensional Wiener process remains optimal
for a wider class of multidimensional stochastic processes satisfying Markov and
symmetric properties (P.1)–(P.3).

Example 2: One can find the optimal causal sampling policy for a stochastic process
whose mean-square residual error does not have an even and quasi-concave pdf.
The even and quasi-concave assumption allows us to use the majorization tools
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in Lemmas 2–4. One can drop this assumption if the majorization tools can be
generalized to other pdfs. We conjecture that the optimal causal sampling policy
transmits a sample once the process innovation falls outside a typical interval in
which the innovation lies with high probability. For a general pdf, the optimal
causal sampling policy could have more than two sampling thresholds.

Causal frequency-constrained sampling for a partially observed system
While the source processes are assumed to be fully known by the sampler in Sec-
tions 2.2–2.5, it is practically important to find the optimal causal sampling policy
for a partially observed stochastic process.

Problem: Given a source process {Xt}Tt=0, we assume that the sampler only observes
{Yt}Tt=0, where Yt = Xt + Vt for some noise process {Vt}Tt=0. The sampler causally
decides the sampling times of the observed process {Yt}Tt=0. At time t ∈ [τi, τi+1),
i = 0, 1, . . . the estimator forms a real-time estimate of the source process using
the causally received samples {Yτj}ij=1 and sampling times τ i. One can try to find
the optimal causal sampling policy that minimizes the end-to-end estimation MSE
under a sampling frequency constraint.

Partially observed sampling vs. fully observed sampling: Assume that the es-
timator recovers the source process using the MMSE estimating policy X̄t ≜

E[Xt|{Yτj}ij=1, τ
i], t ∈ [τi, τi+1). Let X̄ ′

t ≜ E[Xt|{Ys}ts=0] be the causal esti-
mate of the source process using the partially observed process {Yt}Tt=0. One can
show that the end-to-end estimation MSE (2.4) can be decomposed as

1

T

(
E

[
N∑
i=0

∫ τi+1

τi

(Xt − X̄ ′
t)

2dt

]
+ E

[
N∑
i=0

∫ τi+1

τi

(X̄ ′
t − X̄t)

2dt

])
, (2.51)

where the first term in (2.51) represents the MSE due to the partial observation
independent of the sampling policy; the second term in (2.51) is the objective
function to be minimized over causal sampling policies. Once one shows that X̄t in
the second term is equivalent to the estimate of X̄ ′

t, i.e., X̄t = E[X̄ ′
t|{X̄ ′

τj
}ij=1, τ

i],
t ∈ [τi, τi+1), the second term can be viewed as the MSE due to causal sampling
{X̄ ′

t}Tt=0 under a frequency constraint, and the problem reduces to the fully observed
sampling problem stated in Section 2.2. The difficulties lie in evaluating X̄ ′

t at
stopping times and showing that X̄ ′

t satisfies the regularity conditions in Section 2.2.
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Causal frequency-constrained sampling for a wider class of distortion measures
One can change the MSE to other distortion measures and evaluate the optimal
causal sampling policy. For example, one can find the optimal causal sampling
policy that minimizes the age of information. Age of information is defined as
the time difference between the current time and the generation time of the last
sample received by a receiver, measuring the freshness of a sample. Sun et al. [8]
showed that minimizing the MSE for the Wiener process over a set of determin-
istic sampling policies is equivalent to minimizing the age of information. Ornee
and Sun [9] showed that minimizing the MSE for the OU process over a set of
deterministic sampling policies is equivalent to minimizing a non-linear function
of the age of information. These two findings demonstrate the close connection
between the operational distortion measure (i.e., MSE) and the age of information.
Evaluating the optimal causal sampling policies under different measures helps to
draw connections between them and gain insight into the operational meaning of
informational measures like the age of information.
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C h a p t e r 3

CAUSAL RATE-CONSTRAINED SAMPLING

3.1 Introduction
In digital communications, real-valued samples are quantized before the transmis-
sion. In this chapter, we replace the sampling frequency constraint in Chapter 2
by a bitrate constraint on the expected number of bits transmitted per second, and
we consider the following communication scenario: an encoder observes a stochas-
tic process and causally decides when and what to transmit about it, under a rate
constraint; a decoder uses the received codewords to causally estimate the process
in real time; the channel is delay-free and noiseless. As we have briefly discussed
in Chapter 1.2, we refer to this communication scenario as causal rate-constrained
sampling.

For a class of continuous Markov processes (e.g., Wiener process, continuous Lévy
process, and Ornstein-Uhlenbeck process) satisfying symmetry and regularity con-
ditions, we find the optimal causal encoding and decoding policies that minimize
the end-to-end estimation mean-square error under the rate constraint. We show that
the optimal encoding policy transmits a 1-bit codeword once the process innovation
passes one of two symmetric thresholds of the optimal causal sampling policy in
Chapter 2. The optimal decoder noiselessly recovers the last sample from the 1-bit
codewords and codeword-generating time stamps, and uses it to decide the running
estimate of the current process, until the next codeword arrives. Since the 1-bit
codewords represent the sign of the process innovations, we term the optimal causal
rate-constrained code as the sign-of-innovation (SOI) code. The SOI code applies
to rate-constrained control: it minimizes the mean-square cost of a continuous-time
control system driven by a continuous Markov process and controlled by an additive
control signal. The SOI code also applies to successive refinement in the causal
rate-constrained sampling setting.

Replacing the perfect channel by imperfect ones, we show that the SOI code is
resilient to channel delay and noise. For a channel with a fixed delay, the SOI
code, as the optimal causal rate-constrained code for a delay-free channel, remains
optimal. For a binary erasure channel (BEC), we show that the optimal causal rate-
constrained code is essentially the optimal causal frequency-constrained sampling
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policy for a packet-drop channel (Section 2.5) followed by an SOI compressor.

Surprisingly, for the Wiener process, the distortion-rate tradeoff achieved by the
SOI code is significantly better than that achieved by the best non-causal code.
This is because the SOI code leverages the free timing information supplied by the
zero-delay channel between the encoder and the decoder. The key to unlocking
that gain is the event-triggered nature of the SOI sampling policy. In contrast, the
causal distortion-rate tradeoffs achieved with deterministic sampling policies are
much worse. We show that the optimal deterministic sampling policy that achieves
an informational causal distortion-rate function is a uniform sampling policy. In
either signal-dependent or deterministic sampling, the optimal strategy is to sample
the process as frequently as possible and to transmit 1-bit codewords to the decoder
without delay.

Sections 3.2–3.5, 3.8, which formulate the causal rate-constrained sampling prob-
lem, present the optimal causal codes, show that the SOI code applies to rate-
constrained control, and discuss delay-tolerant rate-constrained sampling, appear in
the research papers [59, 60, 70, 71]. Sections 3.6–3.7, which investigate the best
distortion-rate tradeoffs for successive refinement and imperfect channels, appear
for the first time.

Prior work
Although the works [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 61, 64, 65, 66] on causal sampling in
Chapter 2 did not consider quantization effects, in digital communication systems,
real-valued numbers are quantized into bits before a transmission. In the field of in-
formation theory, researchers have investigated informational causal rate-distortion
functions for different Gaussian processes, e.g., [14, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25], which serve as lower bounds to the operational causal rate-distortion functions.
Yet, most of them focused on discrete-time processes. The rate-distortion tradeoffs
for continuous-time processes are largely studied in the non-causal setting. Berger
[72] derived the non-causal distortion-rate function for the Wiener process using
reverse water-filling over the power spectrum of the process. For the non-causal
lossy source coding of the uniformly sampled Wiener process, Kipnis et al. [73]
derived the tradeoffs among the sampling frequency, the communication bitrate, and
the estimation MSE, achievable in the limit of infinite delay. However, the infinite
delay introduced by classical rate-distortion theory in [72, 73] is unsuitable in many
delay-sensitive applications.
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Causal rate-constrained sampling is closely related to quantized event-triggered
control, which has attracted significant research attention in recent years [27, 30,
28, 32, 26, 31, 34, 35, 29, 33, 74]. Kofman and Braslavsky [27] designed a
quantized event-triggered controller for noiseless partially observed continuous-
time LTI systems to ensure asymptotic convergence of the system to the origin with
zero average rate, seemingly violating the data-rate theorem [75]. Similar to [27],
the fact that sampling time stamps of event-triggered policies carry information
is also exploited in [30, 28, 32, 26]. Pearson et al. [30] considered encoding the
deterministic and possibly nonuniformly sampled states of noiseless continuous-time
LTI systems into symbols in a finite alphabet with a free symbol representing the
absence of transmission. For discrete-time linear systems with additive disturbances,
Khina et al. [28] considered a setting where at each discrete-time instant, the encoder
either transmits 1 bit or transmits the free symbol, and designed a quantizer with three
bins using a Lloyd-Max algorithm with the quantization bin of the largest probability
corresponding to the free symbol. Ling [32] designed a periodic event-triggered
quantization policy to stabilize continuous-time LTI systems subject to i.i.d. feedback
dropouts, bounded network delay, and bounded noise, which leads to a stabilizing
rate that is lower than the one the data-rate theorem [75] requires for time-triggered
policies. Khojasteh et al. [26] considered sampling noiseless continuous-time LTI
systems where the state estimation error exceeds an exponentially decaying function.
They found that for small enough delays, the information transmission rate required
for stabilizing systems can be any positive value; it starts to increase once the delay
exceeds a critical value. Quantized event-triggered control has also been studied for
continuous-time LTI systems with bounded disturbances [31], for partially observed
continuous-time LTI systems without noise [34] and with bounded noise [35], for
discrete-time noiseless linear systems [29], and for partially observed continuous-
time LTI systems with time-varying network delay [76]. Event-triggered control
schemes to guarantee exponential stabilization were designed both for continuous-
time LTI systems with bounded disturbances under a bounded rate constraint [33]
and for noiseless continuous-time LTI systems under time-varying rates constraints
and channel blackouts [74].

Chapter organization and contribution
We adopt an information-theoretic approach to continuous-time causal estimation
by considering the optimal tradeoff between the achievable MSE and the average
number of bits communicated. This is different from the models studied in [1, 2,
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3, 4, 5, 61, 10, 6, 7, 8, 9, 64, 65, 66], where communication cost is measured
by the number of transmissions, and each infinite-precision transmission can carry
an infinite amount of information. For communication over digital channels, a
bitrate constraint, routinely considered in information theory, is more appropriate.
In contrast to [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] that compress discrete-time
processes and transmit codewords at consecutive times, we compress continuous-
time processes and allow the transmission times to causally depend on the process.
Our setting is different from [72, 73] in that we do not ignore delay: our distortion at
time t is measured with respect to the actual values of the process and the estimate
at time t; whereas [72, 73] permit an infinite delay, following a standard assumption
in information theory. In contrast to the works [27, 30, 28, 32, 26, 31, 34, 35, 29,
33, 74] that do not claim or consider the optimality of the proposed event-triggered
policies, we show the optimality of the SOI code for a rate-constrained control
problem.

In Section 3.2, we formulate a single-encoder single-decoder (point-to-point) causal
rate-constrained sampling problem. We define the causal rate-constrained codes
and the distortion-rate function D(R) to quantify the rate R and the distortion d

tradeoffs.

In Section 3.3, we show that the causal code that attains the optimal distortion-rate
tradeoff is the SOI code: it generates a 1-bit codeword representing the sign of the
process innovation once the innovation exceeds one of two symmetric thresholds.
This surprisingly simple structure is a consequence of both the real-time distortion
constraint, which penalizes coding delays, and the symmetry of the innovation
distribution (P.3), which ensures the optimality of the two-threshold sampling policy.
The SOI encoder can be implemented as a sampler followed by a compressor without
loss of optimality. To study the tradeoffs between the sampling frequency and the
rate per sample under a rate per second constraint R, we define the distortion-
frequency-rate function. It is achieved by the maximum frequency R (samples
per sec) and the minimum rate 1 (bit per sample), implying that transmitting 1 bit
codewords as frequently as possible is optimal.

In Section 3.4, we show the optimal distortion-rate tradeoff attained by causal rate-
constrained codes with deterministic sampling times. In the SOI code, the encoder
continuously tracks the process and generates a bit once the process passes a pre-set
threshold. To reconstruct the process, both those bits and their time stamps are
required at the decoder. In the scenario where the sampler is process-agnostic,
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or the decoder has no access to timing information, one has to adopt a process-
independent sampling policy. We prove that a uniform sampling policy achieves
the informational distortion-rate function (IDRF) for the Wiener process. To define
the IDRF for the deterministic sampling policies, we change the operational rate
constraint to a directed mutual information rate constraint, which serves as an
information-theoretic lower bound. To confirm that the IDRF is a meaningful gauge
of what is achievable in the zero-delay causal compression, we implement the greedy
Lloyd-Max compressor [28] to compress the process innovations, and we verify that
the performance of the resulting scheme is close to the IDRF.

In Section 3.5, we show that the SOI code remains optimal in a rate-constrained
control scenario with a stochastic plant driven by a process satisfying assumptions
(P.1)–(P.3) in Section 2.2. The SOI code minimizes the mean-square cost between
the desirable state 0 and the state of the stochastic plant.

In Section 3.6, we extend the point-to-point communication system to an n-encoder
n-decoder system and consider a successive refinement problem in the causal rate-
constrained sampling setting. Similar to classical successive refinement [67], which
is a non-causal data compression problem, the successive refinement in Section 3.6
also studies the tradeoffs between the rate and the distortion. Yet, the tradeoffs
are studied in the causal encoding setting. The successive refinement in the causal
rate-constrained sampling setting is equivalent to the successive refinement in the
causal frequency-constrained sampling setting (Section 2.4) with the frequency
constraints F n replaced by the rate constraints Rn. We show that appending an SOI
compressor to each of n optimal causal sampling policies in Section 2.4 gives n

causal encoding policies that successively refine the estimation MSEs at n decoders
to DRFs D(R1), D(R1 +R2), . . . , D(

∑n
k=1 Rk).

In Section 3.7, we drop the assumption that the channel is perfect and show the opti-
mal causal rate-constrained codes for imperfect channels. For a channel with a fixed
delay, we show that the SOI code remains optimal. For a BEC with 1-bit feedback
indicating whether or not the bit is erased, the optimal causal rate-constrained code
can be obtained by appending an SOI compressor to the optimal causal frequency-
constrained sampling policy for a packet-drop channel with feedback.

In Sections 3.8, we discuss how the achievable distortion-rate tradeoffs for the
Wiener process are affected if a delay is tolerable. Surprisingly, the distortion
achieved by the SOI code is smaller than that achieved by the best non-causal code.
This is because, in the SOI code, the encoder and the decoder know the random
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sampling times perfectly, whereas in the classical non-causal coding setting, the free
timing information is not considered. We also show that if the decoder is allowed
to wait for the next codeword before decoding, the achievable MSE can be further
decreased.

3.2 Problem statement
Consider the system in Fig. 3.1. A source outputs a real-valued continuous-time
stochastic process {Xt}Tt=0 with state space (R,BR), whereBR is the Borel σ-algebra
on R.

encoder channel decoder

Figure 3.1: System Model. Sampling time τi and codeword Ui are chosen by the
encoder’s sampling and compressing policies, respectively.

An encoder tracks the input process {Xt}Tt=0 and decides to disclose information
about it at a sequence of stopping times (2.1) that are decided by a causal sampling
policy. Thus, the total number of time stamps N can be random. The time horizon
T can either be finite or infinite. At time τi, the encoder generates a codeword
Ui according to a causal compressing policy, based on the process stopped at τi,
{Xt}τit=0. Then, the codeword Ui is passed to the decoder without delay through a
noiseless channel. At time t, t ∈ [τi, τi+1), the decoder estimates the input process
Xt, yielding X̂t, based on all the received codewords and the codeword-generating
time stamps, i.e., (Uj, τj), j = 1, 2, . . . , i. Similar to Chapter 2, the encoder and the
decoder can leverage the timing information for free due to the clock synchronization
and the zero-delay channel.

We formally define encoding and decoding policies, and define a distortion-rate
function (DRF) to describe the tradeoffs between the estimation distortion and the
communication rate.

Definition 8 ((R, d, T ) causal rate-constrained codes). A time horizon-T causal
rate-constrained code for the stochastic process {Xt}Tt=0 is a pair of encoding and
decoding policies. The encoding policy consists of a causal sampling policy and a
causal compressing policy.
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1. The causal sampling policy, defined in Definition 1-1, decides the stopping
times (2.1) at which codewords are generated.

2. The causal compressing policy, characterized by the Z+-valued process
{ft}Tt=0 adapted to {Ft}Tt=0, decides the codeword to transmit at time τi,

Ui = fτi . (3.1)

Given an encoding policy, the MMSE decoding policy uses the received codewords
and codeword-generating time stamps to estimate the process,

X̂t = E[Xt|U i, τ i, t < τi+1], t ∈ [τi, τi+1). (3.2)

In an (R, d, T ) code, the lengths of the codewords must satisfy the average commu-
nication rate constraint R bits per sec:

1

T
E

[
N∑
i=1

ℓ(Ui)

]
≤ R (bits per sec), (T <∞), (3.3a)

lim sup
T→∞

1

T
E

[
N∑
i=1

ℓ(Ui)

]
≤ R (bits per sec), (T =∞), (3.3b)

where ℓ : Z+ → Z+ denotes the length of its argument in bits, ℓ(x) = ⌊log2(x)⌋+1

for x > 0, ℓ(0) = 1, while the MSE must satisfy

1

T
E
[∫ T

0

(Xt − X̂t)
2dt

]
≤ d, (T <∞), (3.4a)

lim sup
T→∞

1

T
E
[∫ T

0

(Xt − X̂t)
2dt

]
≤ d, (T =∞). (3.4b)

Allowing more freedom in designing the decoding policy will not lead to a lower
MSE, because (3.2) is the MMSE estimator.

Definition 9 (Distortion-rate function (DRF)). The DRF for causal rate-constrained
sampling of the process {Xt}Tt=0 is the minimum MSE achievable by causal rate-R
codes:

D(R) ≜ inf{d :∃ (R, d, T ) causal rate-constrained code satisfying (S.1), (S.2), (S.3)}.
(3.5)

We say that a causal (R, d, T ) code is optimal if d = D(R).



48

3.3 Optimal causal rate-constrained sampling
We first present the optimal causal code that achieves the DRF. We then show that
the optimal encoder can be implemented as a causal sampler followed by a causal
compressor.

Optimal causal code: Sign-of-innovation code
We introduce a class of causal codes, namely, the sign-of-innovation (SOI) codes.
We prove that an SOI code is the optimal code as long as the process satisfies the
assumptions (P.1)–(P.3) in Section 2.2.

Definition 10 (A Sign-of-innovation (SOI) code). The SOI code for a continuous-
path process {Xt}Tt=0 consists of an encoding and a decoding policy. Given a
symmetric threshold sampling policy in (2.9) that satisfies (S.1)–(S.3), at each
stopping time τi, i = 1, 2, . . . , the SOI encoding policy generates a 1-bit codeword

Ui =

1 if Xτi − E[Xτi |Xτi−1
, τi−1] = ai−1(τi, τi−1)

0 if Xτi − E[Xτi |Xτi−1
, τi−1] = −ai−1(τi, τi−1).

(3.6)

At time τi, the MMSE decoding policy noiselessly recovers Xτi , i = 1, 2, . . . via the
received codewords U i,

Xτi = (2Ui − 1)ai−1(τi, τi−1) + E[Xτi |Xτi−1
, τi−1], (3.7)

and uses (2.10) as the estimate of Xt until Ui+1 arrives.

Theorem 5. In either finite or infinite time horizon, for a process {Xt}Tt=0 satisfying
assumptions (P.1)–(P.3) in Section 2.2, the SOI code, whose stopping times are
decided by the optimal symmetric threshold sampling policy (2.9) with average
sampling frequency (2.3) F = R, is the optimal causal code.

Proof. Converse: In Appendix B.1, we show that the DRF (3.5) is lower bounded
by the DFF (2.8) as

D(R) ≥ D(R). (3.8)

Achievability: We proceed to show that the equality in (3.8) is achievable by the
SOI code. Corollary 1.3 implies that the 1-bit codeword in (3.6) together with
the recovered samples {Xτj}i−1

j=1 suffices to recover Xτi , i = 1, 2, . . . noiselessly
at the decoder. Moreover, since ℓ(Ui) = 1 under a 1-bit SOI compressor, the rate
constraint (3.3) is equal the frequency constraint (2.3), i.e., E

[∑N
i=1 ℓ(Ui)

]
= E[N ].

Thus, (3.8) is achieved with equality under the SOI code.
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Theorem 5 shows that the optimal codeword-generating times are the sampling
times of the optimal causal sampling policy. Furthermore, the optimal decoding
policy only depends on the thresholds of the sampling policy and the sampling time
stamps. Thus, finding the optimal causal code is simplified to finding the optimal
causal sampling policy. Using the optimal causal sampling policy below Lemma 1
in Section 2.3 and Theorem 5, one can easily obtain the optimal causal code for the
Wiener process, the Lévy process (2.17), and the OU process (2.20) in the infinite
time horizon T =∞:

• (Wiener process) The SOI code generates 1-bit codewords Ui (3.6) at

τi+1 = inf

{
t ≥ τi : |Wt −Wτi | ≥

√
1

R

}
, (3.9)

and the DRF is equal to

D(R) =
1

6R
. (3.10)

Fig. 2.2 in Section 2.3 shows the SOI encoding policy for the Wiener process.
The gap between horizontal lines represents the sampling threshold

√
1
R

. A
down-arrow appears if the process innovation Wt −Wτi crosses the negative
threshold, and codeword Ui = 0 is transmitted. An up-arrow appears if the
process innovation Wt − Wτi crosses the positive threshold, and codeword
Ui = 1 is transmitted.

• (Continuous Lévy process (2.17)) The SOI code generates 1-bit codewords
Ui (3.6) at

τi+1 = inf

{
t ≥ τi : |Xt − X̄t| ≥ c

√
a

R

}
, (3.11)

and the DRF is equal to

D(R) =
ac2

6R
. (3.12)

• (OU process in (2.20)) The SOI code generates 1-bit codewords Ui (3.6) at

τi+1 = inf

{
t ≥ τi : |Xt − X̄t| ≥

√
R−1

1

(
1

R

)}
, (3.13)

and the DRF is given by

D(R) = R ·R2

(
R−1

1

(
1

R

))
, (3.14)

where R1(v) and R2(v) are defined in (2.23)–(2.24).
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As a consequence of Theorem 5, under the optimal causal encoding policy, i.e., the
SOI encoding policy, the MMSE decoding policy in (3.2) reduces to

X̂t = E[Xt|U i, τ i], t ∈ [τi, τi+1), (3.15)

which does not rely on the knowledge that the next codeword has not yet arrived,
i.e., t < τi+1.

Separation of sampling and compressing
Theorem 5 implies that the optimal encoding policy can be implemented as a sam-
pler followed by a compressor, see Fig. 3.2. The sampler takes measurements of the

sampler compressor

Figure 3.2: Decomposition of the encoder.

source process under the optimal causal sampling policy, i.e., the symmetric thresh-
old sampling policy (2.12), and outputs samples without delay to the compressor.
Upon receiving a new sample, the compressor immediately generates a codeword
under the SOI compressing policy described in Definition 10.

To gain insight into the tradeoffs between the sampling frequency F at the sampler
and the rate per sample Rs at the compressor, we define an (F,Rs, d, T ) causal
frequency- and rate-constrained code.

Definition 11 (An (F,Rs, d, T ) causal frequency- and rate-constrained code). An
(F,Rs, d, T ) causal frequency- and rate-constrained code for the source process
{Xt}Tt=0 is a triplet of causal sampling, compressing and decoding policies:

1. The causal sampling policy defined in Definition 8-1 satisfies the sampling
frequency constraint (2.3);

2. The causal compressing policy consists of a sequence of encoders eT ≜

{e1, e2, . . . } with ei : Ri × Zi−1 × Ri → Z that forms a codeword Ui ∈ Z at
time τi via

Ui = ei
(
{Xτj}ij=1, U

i−1, τ i
)
; (3.16)
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The codewords’ lengths must satisfy

1

E[N ]
E

[
N∑
i=1

ℓ(Ui)

]
≤ Rs (bits per sample); (3.17)

3. The decoding policy causally maps the received codewords and the sampling
times to a continuous-time estimate (3.15).

The causal sampling, causal compressing, and decoding policies must satisfy the
long-term MSE constraint in (3.4).

We quantify the tradeoffs among the sampling frequency F , the rate per sample Rs,
and the achievable distortion d using the distortion-frequency-rate function (DFRF)
defined below.

Definition 12 (Distortion-frequency-rate function(DFRF)). The DFRF for causal
frequency and rate-constrained sampling of the process {Xt}Tt=0 is the minimum
distortion achievable by causal frequency-F and rate-Rs codes:

D(F,Rs) ≜ inf{d : ∃ (F,Rs, d, T ) causal frequency- and rate-constrained code

satisfying (S.1), (S.2), (S.3)}. (3.18)

Theorem 5 indicates that the DRF and the DFRF are related as follows.

Corollary 5.1. In causal coding of a process {Xt}Tt=0 satisfying assumptions (P.1)–
(P.3) in Section 2.2, the DRF (3.5) and the DFRF (3.18) satisfy

D(R) = min
F>0,Rs≥1:

FRs≤R

D(F,Rs) (3.19a)

= D(R, 1), (3.19b)

where (3.19b) is achieved by the SOI code in Definition 10.

Proof. First, every pair of causal sampling policy and causal compressing policy in
Definition 11 is a causal encoding policy in Definition 8 provided that FRs ≤ R.
Thus, the DRF D(R) is upper bounded as

D(R) ≤ min
F>0,Rs≥1:

FRs≤R

D(F,Rs). (3.20)
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Second, the SOI code can be implemented as the symmetric threshold sampling
policy with sampling frequency R samples per sec followed by an SOI compressor
with Rs = 1 bit per sample. Thus, it holds that

D(R) = D(R, 1). (3.21)

From (3.20)–(3.21), we conclude (3.19).

Corollary 5.1 illuminates the working principle of the optimal causal code for the
stochastic processes considered in Section 2.2: the optimal encoding policy trans-
mits 1-bit codewords, representing the signs of process innovations, as frequently as
possible. In other words, the optimal causal code uses the minimum compression
rate (1 bit per sample) in exchange for the maximum average sampling frequency R

(samples per sec).

3.4 Optimal causal rate-constrained deterministic sampling
In this section, we first define the informational distortion-rate function (IDRF)
and the information distortion frequency-rate function (IDFRF) under deterministic
sampling policies for the Wiener process. We then show the optimal deterministic
sampling policy that achieves the IDRF for the Wiener process and display the
relation between the IDRFR and the IDRF.

A sampling policy is deterministic if its sampling times τ1, τ2, . . . , τN (2.1) are
deterministic. Under a deterministic sampling policy, the total number of samples
N within the time horizon [0, T ] is a constant. We denote by CT and ΠDET

T the set
of all compressing policies in Definition 8 and the set of all deterministic sampling
policies over the time horizon [0, T ], respectively.

We form an (R, d, T ) causal rate-constrained code with deterministic sampling by
restricting the causal sampling policy in an (R, d, T ) causal rate-constrained code
in Definition 8 to a deterministic sampling policy and simplifying X̂t to (3.15).

We define the operational DRF Dop
DET(R) for source process {Xt}Tt=0 under deter-

ministic sampling policies as:

Dop
DET(R) ≜ lim sup

T→∞
inf{d : (R, d, T ) causal rate-constrained code

with deterministic sampling}, (3.22)
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which can be decomposed as (Appendix B.3)

Dop
DET(R) = lim sup

T→∞
inf

πT∈ΠDET
T

1

T

{
E

[
N∑
i=0

∫ τi+1

τi

(Xt − X̄t)
2dt

]
(3.23a)

+ inf
{ft}Tt=0∈CT :

(3.3a)

E

[
N∑
i=0

∫ τi+1

τi

(X̄t − X̂t)
2dt

]}
, (3.23b)

where X̄t is defined in (2.10) and X̂t is defined in (3.15). For the Wiener process,
X̄t = Wτi , X̂t = Ŵτi . The expectation on the right side of (3.23a) is the distortion
due to causally estimating the source process from its samples. The expectation in
(3.23b) is the distortion due to quantization.

The informational counterpart of Dop
DET(R) for the Wiener process is defined below.

Definition 13 (Informational distortion-rate function (IDRF)). The IDRF for the
Wiener process under deterministic sampling policies is defined as

DDET(R) ≜ lim sup
T→∞

inf
πT∈ΠDET

T

1

T

{
E
[ N∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]
(3.24a)

+ inf⊗N
i=1 PŴτi |W

τi ,Ŵ
τi−1 :

I(WτN →ŴτN )
T

≤R

E
[ N∑

i=1

(τi+1 − τi)(Wτi − Ŵτi)
2

]}
. (3.24b)

The minimization problem (3.24b) in DDET(R) is the causal IDRF for the discrete-
time stochastic process formed by the samples. Note that (3.24b) is minimized over
the directed information rate, which gives an information-theoretic lower bound to
the rate in (3.3a). According to [77, Sec. II-C], we have

Dop
DET(R) ≥ DDET(R). (3.25)

To gain insight into the tradeoffs between the sampling frequency F at the sampler
and the rate per sample Rs at the compressor, we introduce informational distortion-
frequency-rate function below.

Definition 14 (Informational distortion-frequency-rate function (IDFRF)). The ID-
FRF for the Wiener process under deterministic sampling policies is defined as
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DDET(F,Rs) ≜ lim sup
T→∞

inf
πT∈ΠDET

T :
(2.3a)

1

T

{
E
[ N∑

i=0

∫ τi+1

τi

(Wt −Wτi)
2dt

]
(3.26a)

+ inf⊗N
i=1 PŴτi |W

τi ,Ŵ
τi−1 :

I(WτN →ŴτN )
N

≤Rs

E
[ N∑

i=1

(τi+1 − τi)(Wτi − Ŵτi)
2

]}
. (3.26b)

Similar to (3.24b), the optimization problem in (3.26b) is the causal IDRF for the
Guass-Markov (GM) process formed by the samples, but the rate in (3.26b) is the
rate per sample Rs rather than the rate per second R in (3.24b).

We show the optimal deterministic sampling policy that achieves the IDRF.

Theorem 6. In causal coding of the Wiener process, the uniform sampling policy
with the sampling interval equal to

τi+1 − τi =
1

R
, i = 0, 1, 2, . . . , (3.27)

achieves

DDET(R) = min
f>0,Rs≥1: fRs≤R

DDET(F,Rs) (3.28)

= DDET(R, 1) (3.29)

=
5

6R
. (3.30)

Proof sketch. See details in Appendix B.4. In Lemma 11, we write DDET(F,Rs) in
(3.26) as lim supN→∞DN(F,Rs) and write DN(F,Rs) as a minimization problem
building on existing results on the causal IDRF (3.26b) of discrete-time GM pro-
cesses. In Lemma 12, we provide a lower bound on DN(F,Rs). In Lemma 13, we
provide an upper bound onDN(F,Rs) achieved by uniform sampling. In Lemma 14,
we show that the lower bound and the upper bound coincide as N →∞ and obtain

DDET(F,Rs) =
1

2F
+

1

F (22Rs − 1)
. (3.31)

In Lemma 15, we prove (3.28) by showing that the minimization in (3.28) can be
interchanged with the limit in DDET(F,Rs). To prove (3.29), it remains to minimize
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DDET(F,Rs) in (3.28) over feasible F and Rs:

min
F>0,Rs≥1: FRs≤R

DDET(F,Rs) = min
Rs≥1

DDET

(
R

Rs

, Rs

)
(3.32a)

= DDET(R, 1) (3.32b)

=
1

2R
+

1

3R
=

5

6R
, (3.32c)

where (3.32a) holds because DDET(F,Rs) in (3.31) decreases monotonically in
F for any given Rs ≥ 1, and (3.32b) holds because DDET

(
R
Rs
, Rs

)
increases

monotonically as Rs increases in the range Rs ≥ 1. Thus, the minimum is achieved
at F = R, Rs = 1. Note that 1

2R
in (3.32c) comes from the sampling distortion and

1
3R

comes from the causal IDRF for the discrete-time samples.

Theorem 6 shows that the uniform sampling policy (3.27) operates at the maximum
sampling frequency R. Proposition 5.1 and Theorem 6 indicate that the working
principle of the optimal encoding policy is to transmit 1-bit codewords as frequently
as possible.

In the setting of Theorem 6, although evaluating DDET(R) does not give us an
operational compressing policy, we know that the stochastic kernel that achieves
the causal IDRF for discrete-time GM processes formed by the samples under
uniform sampling policies has the form

⊗∞
i=1 PŴτi |Wτi−Ŵτi−1 ,Ŵτi−1

[23, Eq. (5.12)],
suggesting that at the encoder, it is sufficient to compress the quantization innovation
Wτi−Ŵτi−1

only. The decoder computes the estimate Ŵτi as Ŵτi = Ŵτi−1
+qi(Wτi−

Ŵτi−1
), where qi = gi ◦ fi, fi

(
Wτi − Ŵτi−1

)
is the i-th binary codeword Ui, and

gi(·) ∈ R is the quantization representation point of its argument. In practice, one
can use the greedy Lloyd-Max quantizer [28] that runs the Lloyd-Max algorithm for
the quantization innovation in each step based on its prior pdf. Specifically, the prior
pdf for the (i+ 1)-th step quantization innovation Wτi+1

− Ŵτi can be computed by
convolving the pdfs of the quantization error Wτi − Ŵτi and the process increment
Wτi+1

−Wτi . The globally optimal scheme has a negligible gain over the greedy
Lloyd-Max algorithm even in the finite horizon [28].

Fig. 3.3 displays distortion-rate tradeoffs obtained in Theorems 5 and 6 for the Wiener
process, as well as a numerical simulation of the uniform sampler in Theorem 6

with the greedy Lloyd-Max quantizer. The symmetric threshold sampling policy
followed by the 1-bit SOI compressor leads to a much lower MSE than uniform
sampling. Indeed, according to Theorems 5 and 6, DDET(R)

D(R)
= 5, and Dop

DET(R) for
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Figure 3.3: MSE versus rate.

the uniform sampling is even higher than DDET(R) by (3.25). Note that the greedy
Lloyd-Max curve is rather close to the DDET(R) curve, indicating that the IDRF
is a meaningful gauge of what is attainable in zero-delay continuous-time causal
compression.

3.5 Rate-constrained control
The SOI code introduced in Definition 10 applies to the rate-constrained control
scenario in Fig. 3.4. The stochastic plant evolves according to

Yt = Xt + Zt, (3.33)

where Xt is a stochastic disturbance satisfying the assumptions (P.1)–(P.3) in Sec-
tion 2.2, andZt is the additive control signal output from the controller. The encoder
observes Yt, causally decides the stopping times τ1, τ2, . . . adapted to the filtration
generated by {Yt}Tt=0, and generates a codeword Ui at each stopping time τi based
on its past observations {Yt}τit=0. The controller collects the received codewords to
causally form the control signal Zt, with the goal to minimize the mean-square cost
on Yt deviating from the target state 0,

1

T
E
[∫ T

0

Y 2
t dt

]
. (3.34)
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stochastic plant encoder

controller

Figure 3.4: Control system.

We aim to find the encoding policy satisfying (S.1)–(S.3) and the control policy
that jointly minimize the mean-square cost (3.34) under the communication rate
constraint (3.3) between the encoder and the controller.

Proposition 2. In the rate-constrained control system, the optimal encoding policy
that minimizes the mean-square cost in (3.34) is the SOI code in Theorem 5, and the
optimal control signal is

Zt = −X̂t. (3.35)

Proof. Given the received codewords U i and the fact that the next codeword has not
been transmitted at t < τi+1, the optimal control signal Zt that minimizes (3.34)
is indeed the optimal MMSE decoding policy X̂t in (3.2). Substituting (3.33) and
(3.35) into (3.34), we obtain the following MSE,

1

T
E
[∫ T

0

(Xt − X̂t)
2dt

]
, (3.36)

which is the same as (3.4). Thus, the problem of finding the optimal encoding
policy in this rate-constrained control system reduces to the problem that we solved
in Section 3.3, whose result is given by Theorem 5.

Under the optimal control policy in Proposition 2, the optimal encoder does not rely
on the control signal to decide the codeword generating times.

In the traditional stochastic differential equation (SDE) formulation, e.g., [10, 78,
79], the evolution of the plant is described as

dYt = dXt + Ltdt, (3.37)
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where Lt is the control signal. The state evolutions (3.33) and (3.37) are the same
if and only if the control signals in (3.33) and (3.37) are related as∫ t

0

Lsds = Zt, ∀t ∈ [0, T ]. (3.38)

In Appendix B.2, we show how to recover {Lt}Tt=0 from {Zt}Tt=0 using (3.38).
Åström and Bernhardsson [10] considered the controlled system in (3.37) with
Xt ← Wt (i.e., Wiener process) and proposed a control policy that injects an
impulse signal to drive Yt to zero once |Yt| exceeds a threshold. The control signal
Lt corresponding to the optimal control Zt = −Wτi , t ∈ [τi, τi+1), i = 1, 2, . . .

in (3.35) recovers Åström and Bernhardsson’s impulse control policy [10] for the
Wiener process disturbance.

3.6 Successive refinement via causal rate-constrained sampling
We extend the successive refinement problem in causal frequency-constrained sam-
pling setting (Section 2.4) to causal rate-constrained sampling setting by replacing
sampling frequency constraints F n by bitrate constraints Rn. We show the optimal
causal rate-constrained sampling policies at n encoders using the SOI code in Def-
inition 10. We denote the sampling times of the k-th encoder by (2.25), we denote
the codewords generated at the sampling times (2.25) by U

(k)
1 , U

(k)
2 , . . . , and we

denote the codewords and the sampling times generated by the first k encoders by
time t by

Q
(k)
t = ∪kj=1

{(
U

(j)
i , τ

(j)
i

)
: τ

(j)
i ≤ t, i = 1, 2, . . .

}
. (3.39)

We formally define n encoding policies and n decoding policies for successive
refinement via causal rate-constrained sampling below.

Definition 15 (An (Rn, dn, T ) causal rate-constrained code for successive refine-
ment). Fix a source process {Xt}Tt=0. An (Rn, dn, T ) causal rate-constrained code
for successive refinement consists of n causal encoding policies and n causal de-
coding policies:

1. The k-th causal encoding policy is defined in Definition 8 with τi ← τ
(k)
i ,

Ui ← U
(k)
i , k = 1, 2, . . . , n;

2. Given the codewords and the sampling times generated by the first k causal
encoding policies, i.e., Q(k)

t (3.39), the k-th MMSE decoding policy is

X̂
(k)
t ≜ E

[
Xt

∣∣∣Q(k)
t

]
, k = 1, 2, . . . , n. (3.40)
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In an (Rn, dn, T ) causal rate-constrained code for successive refinement,
the average rates of all n causal encoding policies must satisfy (3.3) with
N ← Nk, R ← Rk k = 1, 2, . . . , n, while all n MSEs must satisfy (3.4) with
X̂t ← X̂

(k)
t , d← dk, k = 1, 2, . . . , n.

To quantize the tradeoffs between the rates Rn and the MSEs dn, we introduce
the distortion-rate region. Fix a source process {Xt}Tt=0. A rate-distortion tuple
(Rn, dn) is said to be achievable if there exists an (Rn, dn, T ) causal rate-constrained
code whose first k causal sampling policies form a single causal sampling policy
satisfying assumptions (S.1)–(S.3) in Section 2.2 for all k = 1, 2, . . . , n. The
distortion-rate region R(Rn) for the rate vector Rn is the closure of the set of
distortions dn such that (Rn, dn) is achievable.

Here we continue to use π(F ) and πk defined right above Theorem 3 in Section 2.4
to denote the optimal causal sampling policy at frequencyF and the causal sampling
policy at the k-th encoder. The distortion-rate region R(Rn) for a class of source
processes is shown below.

Theorem 7. Consider an infinite-horizon, time-homogeneous source process{Xt}∞t=0

satisfying (P.1)–(P.3) whose optimal causal sampling policy π(F ) (2.12) has a
time-invariant sampling threshold, i.e., ∃ function θ(·) : R+ → R+ such that
a(t − τi) = θ(F ), ∀t ∈ [τi, τi+1), i = 0, 1, . . . If the rate constraints Rn sat-
isfy

θ
(∑k

j=1 Rj

)
θ
(∑k+1

j=1 Rj

) = zk (3.41)

for some positive zk ∈ Z+ and for all k = 1, 2, . . . , n − 1, then the distortion-rate
regionR(Rn) is

dk ≥ D

(
k∑

j=1

Rj

)
, k = 1, 2, . . . , n. (3.42)

Together with n decoding policies in (3.40), n causal encoding policies that achieve
the right side of (3.42) for all k = 1, 2, . . . , n operate as follows. The k-th encod-
ing policy forms 1-bit codewords using the SOI compressor (3.6) compatible with
the symmetric threshold sampling policy π

(∑k
j=1Rj

)
but only transmits the bits
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generated at stopping times in πk:

π1 = π(R1), if k = 1, (3.43)

πk = π

(
k∑

j=1

Rj

)
\ π

(
k−1∑
j=1

Rj

)
, if k = 2, . . . , n. (3.44)

Proof. Converse: Given any rate constraints Rn, we show that the achievable
distortions dn ∈ R(Rn) are lower bounded as (3.42). For the k-th decoder, the
codewords and the sampling times that it receives from the first k encoders, i.e.,
Q

(k)
t (3.39), can be viewed as the codewords and the sampling times generated by

a single causal encoding policy under rate ≤
∑k

j=1 Rj . Since the DRF D(R) is a
non-increasing function of R, we conclude that the MSE dk at the k-th decoder is
lower bounded as (3.42).

Achievability: We show that for any Rn satisfying (3.41), the causal encoding
policies (3.43)–(3.44) together with the MMSE decoding policies (3.40) achieve
(3.42). The codewords and the sampling times received by the k-th decoder are
equivalent to those generated by the SOI code at rate

∑k
j=1Rj . Theorem 5 shows

that the SOI code achieves the DRF on the right side of (3.42). It remains to
show that the rate constraints Rn are satisfied at all n encoders. Since at each
sampling time, the SOI encoder only generates 1 bit, the rate of a causal encoding
policy is equal to its sampling frequency. According to the proof of Theorem 3, as
long as (3.41) holds, the causal sampling policies (3.43)–(3.44) satisfy all sampling
frequency constraints Rn simultaneously.

3.7 Rate-constrained sampling over imperfect channels
We replace the perfect channel in Section 3.2 by a channel with a fixed delay and
a binary erasure channel (BEC), respectively. For a channel with a fixed delay, we
show that the SOI code for a continuous Lévy process remains optimal. For a BEC,
we show that appending the SOI compressor (3.6) to the optimal causal sampling
policy for a packet-drop channel in Theorem 4 gives a code that attains the optimal
distortion-rate tradeoff.

Channel with delay
We re-consider the communication scenario in Section 2.5 with the sampling fre-
quency constraint (2.3b) in (2.33) replaced by the communication rate constraint
(3.3b). We denote by Π and C the set of all causal sampling policies and the set of
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all causal compressing policies in the infinite horizon, respectively. The DRF for a
channel with fixed delay δ is defined as

Dch(R) = inf
π∈Π,

{ft}∞t=0∈C :
(3.3b)

lim sup
T→∞

1

T
E

[
N∑
i=0

∫ τi+1+δ

τi+δ

(Xt − X̂ch
t )2dt

]
, (3.45)

where X̂ch
t is the MMSE decoding policy of the continuous Lévy process (2.17)

X̂ch
t ≜ E[Xt|U i, τ i], t ∈ [τi + δ, τi+1 + δ). (3.46)

We present the optimal causal code that achieves Dch(R) (3.45).

Proposition 3. In causal rate-constrained sampling of the continuous Lévy process
(2.17) with a fixed channel delay δ and the decoding policy (3.46), the optimal
causal code remains the SOI code in Theorem 5 and achieves

Dch(R) =
ac2

6R
+ ac2δ. (3.47)

Proof. Converse: We show that the DRF for a channel with fixed delay δ (3.45) is
lower bounded by the DFF for a channel with fixed delay δ (2.33) at F = R, i.e.,

Dch(R) ≥ Dch(R). (3.48)

We denote by X̄ ′
t ≜ E[Xt|{Xt}τit=0], t ∈ [τi + δ, τi+1 + δ) the MMSE estimator

given all the past process by time τi. Since σ(U i, τi) ⊆ σ({Xt}τit=0), the DRF with
channel delay Dch(R) is lower bounded by the right side of (3.45) with X̂ch

t ← X̄ ′
t,

(3.3b)←(2.3b), and F ← R. Since by the strong Markov property X̄ ′
t = X̄ch

t (2.34),
the lower bound reduces to Dch(R).

Achievability: We show that the SOI code achieves the converse bound (3.48).
Since the decoder can noiselessly recover the samples from the 1-bit codewords, the
MMSE decoding policy X̂ch

t in (3.46) is equal to X̄ch
t in (2.34). Since the length

ℓ(Ui) = 1, the rate constraint (3.3b) is equal to the frequency constraint (2.3b).

The first term in (3.47) is the DRF for a delay-free channel and the second term in
(3.47) is the penalty due to the channel delay δ. Proposition 3 demonstrates that our
SOI code is resilient to channel delay.
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Binary erasure channel
We consider the communication scenario in Fig. 3.5, which is similar to that in
Section 2.5 except that the packet-drop channel is replaced by a BEC and the
sampling frequency constraint is replaced by a rate constraint. Here, we slightly
abuse the notations to denote by 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn (2.41) a sequence of
bit-generating times and to denote by Ui ∈ {0, 1} a bit generated at time τi.

encoder BEC decoder

Figure 3.5: System model for causal rate-constrained sampling over a BEC with
feedback.

In Fig. 3.5, the encoder transmits bit Ui over a BEC(p), whose channel transition
probability is given by PV |U : {0, 1} → {0, 1, e},

PV |U(u|u) = 1− p, ∀u ∈ {0, 1}, (3.49a)

PV |U(e|u) = p, ∀u ∈ {0, 1}. (3.49b)

Upon receiving the channel output Vi at each sampling time τi, i = 1, 2, . . . , the
decoder sends a 1-bit feedback Bτi ∈ {0, 1} to inform the encoder whether bit Ui is
erased or not. If Bτi = 1, the bit is not erased, i.e., Vi = Ui; otherwise, the bit is
erased, i.e., Vi = e. Since both the encoder and the decoder know X0 = 0 at τ0 = 0,
it holds that Bτ0 ≜ 1.

We define an ⟨n, d, T ⟩ causal code for a BEC that transmits n bits of a source process
{Xt}∞t=0 within an expected time horizon T at an MSE less than or equal to d.

Definition 16 (An ⟨n, d, T ⟩ causal code for a BEC). Fix a source process {Xt}∞t=0

and fix a BEC with a single-letter transition probability PV |U : {0, 1} → {0, 1, e}.
An ⟨n, d, T ⟩ causal code for a BEC is a pair of encoding and decoding policies.
The encoding policy consists of a causal sampling policy and a causal compressing
policy.

1. The causal sampling policy is a collection of n stopping times (2.41) defined
in Definition 6-1;
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2. The causal compressing policy, characterized by the {0, 1}-valued process
{ft}t≥0 adapted to the filtration generated by the source process {Xt}∞t=0 and
the feedback bit process {Bτi}ni=1, decides the bit Ui to transmit at time τi,
Ui = fτi , i = 1, 2, . . . , n.

Given channel outputs {Vj}ij=1 and sampling times τ i, the decoding policy is

X̂BEC
t ≜ E

[
Xt

∣∣∣{Vj, τj}j∈N({Bτj }
i
j=1)

]
, t ∈ [τi, τi+1), (3.50)

where N
(
{Bτj}ij=1

)
is defined in (2.39), which contains all the indices of the

successful transmissions by time τi.

The expectation of the n-th sampling time must satisfy (2.43), while the MSE must
satisfy

1

T
E
[∫ τn

0

(Xt − X̂BEC
t )2dt

]
≤ d. (3.51)

The causal sampling policy is assumed to satisfy (S.1) in Section 2.2 and (S.4) in
Section 2.5. The decoding policy in (3.50) can be suboptimal since it ignores the
knowledge implied by the sampling times of the erased bits.

To quantify the tradeoffs among the number of bits n (2.41), the expected time
horizon T (2.43), and the MSE (3.51), we introduce the distortion-sample-time
function for a BEC.

Definition 17 (Distortion-sample-time function (DSTF) for a BEC). Fix a source
process {Xt}∞t=0. The DSTF for a BEC is the minimum MSE (3.51) achievable by
causal codes with n bits and expected horizon T :

DBEC(n, T ) ≜ inf{d : ∃ ⟨n, d, T ⟩ causal code for a BEC satisfying (S.1), (S.4)}.
(3.52)

For a continuous Lévy process (2.17), we show that appending the SOI compressing
policy (3.6) to the optimal causal sampling policy in Theorem 4 gives a causal code
for a BEC that achieves DBEC(n, T ).

Theorem 8. Fix a continuous Lévy process {Xt}∞t=0 in (2.17) and fix a BEC(p) with
erasure probability p < 1

5
(3.49). Together with the decoding policy in (3.50), the

causal encoding policy that operates as:
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• if Bτi = 1, then the next sampling time is (2.47) and the encoder transmits bit
Ui+1 using the SOI compressing policy (3.6);

• if Bτi = 0, then the next sampling time is τi+1 = τi and the encoder transmits
Ui+1 = Ui, i = 0, 1, . . . , n− 1;

achieves the DSTF for a BEC

DBEC(n, T ) =
ac2T

6(1 + (n− 1)(1− p))
. (3.53)

Proof. Converse: In Appendix B.10, we show that the DSTF for a BECDBEC(n, T )

is lower bounded by the DSTF for a packet-drop channel Dpd(n, T ), i.e.,

DBEC(n, T ) ≥ Dpd(n, T ). (3.54)

Achievability: The causal encoding policy in Theorem 8 together with the decoding
policy in (3.50) achieves the converse bound Dpd(n, T ) since the decoder can
noiselessly recover the samples at the sampling times using the successfully received
the 1-bit codewords, i.e., X̂BEC

t = X̄pd
t .

The optimal causal encoding policy for a BEC in Theorem 8 operates as follows: if
the last bit is not erased, then the encoder follows the symmetric threshold sampling
policy (4) and transmits a 1-bit codeword that describes the sign of the process
innovation at each sampling time; otherwise, the encoder retransmits the erased bit
immediately.

Considering n
T

as the rate, letting R ≜ n
T

, and taking n → ∞, we rewrite the
sampling policy (2.47) and DBEC(n, T ) in (2.48) in terms of rate R as

τi+1 = inf

{
t ≥ τi : |Xt − X̂BEC

t | ≥ c

√
a

(1− p)R

}
, i = 0, 1, 2, . . . ; (3.55)

DBEC(R) =
ac2

6(1− p)R
. (3.56)

3.8 Delay-tolerant rate-constrained sampling
In Sections 3.2–3.7, the distortion constraint (3.4) penalizes any delay at the encoder
or the decoder. While this is a realistic assumption in some scenarios of remote
tracking and control, in this section we consider how the achievable distortion-rate
tradeoffs for the Wiener process are affected if the assumption is weakened.
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Delay at the encoder and the decoder
In the scenario of encoding the entire process to preserve it for the future, a large
delay is permissible. In the extreme, the encoder and the decoder may wait until
the end of the Wiener process {Wt}Tt=0 before coding. This corresponds to the
classical scenario of non-causal (block) compression. The informational DRF for
this scenario is given by

Dnoncausal(R) = lim
T→∞

inf
P{Ŵt}Tt=0|{Wt}Tt=0

:

1
T
I({Wt}Tt=0;{Ŵt}Tt=0)≤R

E
[
1

T

∫ T

0

(Wt − Ŵt)
2dt

]
. (3.57)

Using reverse water-filling over the power spectrum of the process, Berger [72]
derived the informational DRF for the Wiener process:

Dnoncausal(R) =
2 log2 e

π2R
bits/s. (3.58)

The informational DRF (3.58) is a lower bound to its operational counterpart. As
for the achievability, Berger showed that given a rate R ≥ 0, and ϵ > 0, there exists
a code with rate R+ϵ that achieves the distortion Dnoncausal(R)+ϵ. Berger’s coding
scheme operates as follows [72]: the Wiener process is divided into successive time
intervals of a large enough length of T seconds. For each interval, the Karhunen-
Loève (KL) coefficients of the process are calculated, and at most 2T (R+ϵ) codewords
are used to jointly encode these coefficients with the resulting MSE per second equal
to Dnoncausal(R) + ϵ. In parallel with encoding the KL expansion coefficients, an
integrating delta modulator is employed to encode each endpoint of the length-T
intervals with MSE ϵ using ϵ bits on average.

Comparing Dnoncausal(R) in (3.58) with D(R) in Theorem 5, we see that, surpris-
ingly, the optimal zero-delay policy outperforms the best infinite delay one:

D(R)

Dnoncausal(R)
≈ 0.57. (3.59)

This is because in zero-delay causal coding the timing information is free. Indeed,
the decoder time-stamps the arrival of each codeword, and since the channel is
delay-free, it knows the codeword-generating times. In classical noncausal (block)
lossy compression, no encoder and decoder synchronization is assumed, and thus the
encoder is tasked with encoding both the values of the Wiener process and the times
corresponding to these values. In many operational scenarios of remote tracking and
control, the encoder and decoder are naturally synchronized, providing free timing
information. Since Berger’s distortion-rate function in (3.58) does not take that into
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account, it cannot adequately characterize the fundamental information-theoretic
limits in those scenarios.

Delay at the decoder
In the scenario of causal coding where a small delay is tolerable, e.g., speech
communication, one can leverage both the free timing information and the coding
delay to improve distortion-rate tradeoffs. A one sample look-ahead decoder waits
for the next codeword Ui+1 before estimating the source process at time t, τi ≤
t < τi+1, thereby introducing a maximum average delay of E[τi+1 − τi] =

1
R

at the
decoder. We show that the one sample look-ahead decoder greatly reduces the MSE
compared to the DRF of the Wiener process under the causal real-time estimation.

The one sample look-ahead decoder for the Wiener process Wt is given by

Ŵ look−ahead
t ≜ E[Wt|U i+1, τ i+1], t ∈ [τi, τi+1). (3.60)

We append the one sample look-ahead decoder to the SOI encoder in Theorem 5
and calculate the resulting MSE in the infinite horizon:

lim sup
T→∞

1

T
E

[
N∑
i=0

∫ τi+1

τi

(Wt − Ŵ look−ahead
t )2dt

]
. (3.61)

Since the one sample look-ahead decoder (3.60) can noiselessly recover the samples
{Wτj}i+1

j=1 via the causally received 1-bit codewords U i+1, it reduces to

Ŵ look−ahead
t = E[Wt|{Wτj}i+1

j=1, τ
i+1] (3.62a)

= E[Wt|Wτi ,Wτi+1
, τi, τi+1], t ∈ [τi, τi+1), (3.62b)

where (3.62b) holds because

Wt − (Wτi ,Wτi+1
τi, τi+1)− ({Wτj}i−1

j=1, {Wτj}Nj=i+1, {τj}i−1
j=1, {τj}Nj=i+1) (3.63)

is a Markov chain. In particular, when the sampling times are deterministic,
(Wτi ,Wt,Wτi+1

) is a Gaussian random vector, thus the estimate in (3.62b) is the
linear interpolation between Wτi and Wτi+1

. Under symmetric threshold sampling
policies, the samples are not Gaussian, and the linear interpolation is suboptimal.
Yet, if in (3.61) we substitute for Ŵ look−ahead

t the suboptimal estimate Wτi+1+Wτi

2
,

then the resulting the MSE is equal to 1
12R

, a two-fold improvement over (3.10).
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3.9 Conclusion
We study the optimal causal rate-constrained code for a class of continuous Markov
processes satisfying regularity conditions (P.1)–(P.3). Prior art on remote estima-
tion and optimal scheduling mostly considered a sampling frequency constraint,
whereas, in this work, we introduce a rate constraint. We show that the optimal
causal code is the SOI code that transmits 1-bit codewords representing the signs
of process innovations at the stopping times decided by the optimal frequency-
constrained sampling policy (Theorem 5). The SOI encoder can be implemented
as a sampler followed by a compressor. The SOI code can be easily obtained once
we know the optimal sampling policy, revealing the close connection between the
frequency-constrained and rate-constrained causal sampling problems. The per-
formance of the SOI code for the Wiener process is better than that achieved by
the best non-causal code (Section 3.8). This underscores the power of free timing
information, which is not explored in the non-causal compressing setting. The key
to transmitting information via timing is to use process-dependent rather than deter-
ministic sampling times because the latter contains zero information. The optimal
deterministic sampling policy for the Wiener process is the uniform sampling policy
(Theorem 6). In either signal-dependent or deterministic sampling setting, the best
strategy is to transmit 1-bit codewords as frequently as possible (Corollary 5.1, The-
orem 6). For the rate-constrained control, we show that the SOI code minimizes the
mean-square cost between the desirable state 0 and the state of the stochastic plant
driven by a process satisfying conditions (P.1)–(P.3) (Proposition 2). For the suc-
cessive refinement via causal rate-constrained sampling, we show that the optimal
causal encoding policies can be obtained by appending an SOI compressor to each
of the optimal causal sampling policies established in the frequency-constrained
setting (Theorem 7). Dropping the assumption that the channel is delay-free, we
show that the SOI code of a continuous Lévy process remains optimal for a channel
with a fixed delay (Proposition 3). Dropping the assumption that the channel is
noiseless, we show that the optimal causal code for a BEC with feedback can be
obtained by implementing the optimal causal sampling policy for a packet-drop
channel (Section 2.4) followed by an SOI compressor (Theorem 8): if the last bit is
successfully delivered, then the SOI compressor generates a new bit once the process
innovation crosses either of two symmetric thresholds; if the last bit is erased, the
SOI compressor retransmits the erased bit immediately. This shows that the SOI
code is resilient to channel delay and noise.
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3.10 Future research directions
Based on the findings in Sections 3.2–3.8, we list several interesting directions for
future research.

It would be interesting to replace the sampling frequency constraint by the bitrate
constraint in open problems 1–4 listed in Section 2.7. The replacement turns
the causal frequency-constrained sampling problems into causal rate-constrained
sampling problems, which are potentially more challenging. We discuss these open
problems one by one.

Causal rate-constrained sampling over a channel with a random delay
One can find the optimal rate-constrained code for a channel with a random delay
modeled as a FIFO queue with a random service time. Although the optimal causal
sampling policy of the Wiener process in this setting remains a symmetric threshold
sampling policy (2.37), we cannot construct the optimal causal rate-constrained
code by simply appending a 1-bit SOI compressor to the sampler. Note that the
optimal causal sampling policy in (2.37) transmits a new sample after the previous
sample is delivered. Since waiting for the delivery of the previous sample may cause
the thresholds not to be hit with equality at the time τi, i = 1, 2, . . . , the process
innovation Wτi+1

−Wτi may not be a binary random variable for all i = 0, 1, . . .

If one insists on using the 1-bit SOI compressor, the error due to quantization will
accumulate and blow up.

Causal rate-constrained sampling over a noisy channel
One can find the optimal causal rate-constrained code for a noisy channel (other
than BEC in Section 3.7). This is a joint source-channel coding problem extremely
sensitive to coding delay. Joint source-channel codes that can quickly incorporate
newly arrived information into a continuing transmission like the one we developed
in Chapter 4 will be instrumental for making progress in this direction.

Causal rate-constrained sampling for a wider class of source processes
One can find the optimal causal rate-constrained code for a wider class of stochastic
processes. The optimal causal code for stochastic processes satisfying symmetry
and regularity conditions admits the simple form because 1 bit is enough to describe
the binary process innovation noiselessly. We notice that as long as the sampling
thresholds and the process innovation all have continuous paths, the simple form of
the optimal causal code pertains even for an optimal frequency-constrained sampling
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policy with multiple sampling thresholds. At each time t, there must exist a narrowest
sampling interval formed by two sampling thresholds that contains the current value
of the process innovation. Due to the continuity of the sampling thresholds and
the process innovation, one of two boundaries of the interval must be hit at each
sampling time. Thus, a 1-bit SOI compressor describes the process innovation
noiselessly, and the distortion-rate function coincides with its lower bound: the
distortion-frequency function.

If a 1-bit SOI compressor fails to noiselessly describe the process innovation at each
sampling time, one has to adopt a more complicated compression scheme. The
possible difficulties include:

1) The operational DRF for the causal rate-constrained sampling of a general stochas-
tic process is very hard to solve. One may need to define and solve its informational
counterpart using directed information.

2) The difficulties of solving the IDRF are in three aspects. First, even if the IDRF is
decomposed as the MSE due to sampling and the MSE due to quantization like (3.23),
the compressor may need to compress blocks of a continuous-time process rather
than samples. Second, even if compressing samples suffices, the stopping times
make the probability distribution of samples intractable. For example, samples of the
Wiener process under deterministic sampling times form a Gauss-Markov process,
but the sample innovations of the Wiener process under the symmetric threshold
sampling policy form a Bernoulli process. Third, solving IDRF for a discrete-time
process itself is challenging. For example, for Gauss-Markov processes, the IDRF
needs to be solved via semi-definite programming [20].

Causal rate-constrained sampling for a partially observed system
Open problem 4 in Section 2.7 reduces to open problem 3 if minimizing the second
term of (2.51) can be considered as a causal frequency-constrained sampling prob-
lem. Thus, open problem 4 faces the same difficulties as open problem 3 under a
bitrate constraint.

Value of timing information
It would also be interesting to study the timing information. As we have shown that
the DRF achieved by the SOI code is even smaller than the DRF achieved by the best
non-causal code due to the leverage of the free timing information. Anantharam and
Verdú [80] showed that times carry information by evaluating the channel capacity
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of a single-server queue with an exponentially distributed service time and designing
capacity-achieving block codes. The codewords are independent realizations of a
Poisson process, representing vectors of time intervals. Sun et al. [8] distorted the
sample delivery times by a FIFO queue. Under the same sampling frequency, the
MSE achieved by the optimal causal sampling policy for the queue [8] is an upper
bound of the DRF achieved by the SOI code for the noiseless channel. One can
quantify the value of timing information by employing a channel that introduces
distortions to the times.

Example: One can consider a channel that only allows transmissions at discrete
times. This is equivalent to quantizing the real-valued sampling times into discrete
values d, 2d, 3d, . . . . If we use the SOI code and assume that the decoder can
distinguish the order of bits arrived at the same time, then the quantization of the
times can be reviewed as the channel delay. Namely, the decoder can still noiselessly
recover the samples but with delays.
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C h a p t e r 4

CAUSAL JOINT SOURCE-CHANNEL CODING WITH
FEEDBACK

4.1 Introduction
Conventionally, posterior matching is investigated in channel coding and block en-
coding contexts–the source symbols are equiprobably distributed and are entirely
known by the encoder before the transmission. In this chapter, we consider causal
joint source-channel coding (JSCC) of streaming source, whose symbols progres-
sively arrive at the encoder at a sequence of deterministic times.

We derive the joint source-channel coding reliability function for streaming over
a discrete memoryless channel (DMC) with feedback. We propose a novel in-
stantaneous encoding phase that operates during the symbol arriving period and
that achieves the JSCC reliability function for streaming when followed by a block
encoding scheme that achieves the JSCC reliability function for a classical source
whose symbols are fully accessible before the transmission. During the instanta-
neous encoding phase, the evolving message alphabet is partitioned into groups
whose priors are close to the capacity-achieving distribution, and the encoder de-
termines the group index of the actual sequence of symbols arrived so far and
applies randomization to exactly match the distribution of the transmitted index to
the capacity-achieving one. Surprisingly, the JSCC reliability function for stream-
ing is equal to that for a fully accessible source, implying that the knowledge of the
entire symbol sequence before the transmission offers no advantage in terms of the
reliability function.

For streaming over a symmetric binary-input DMC, we propose a one-phase in-
stantaneous small-enough difference (SED) code that not only achieves the JSCC
reliability function, but also, thanks to its single-phase time-invariant coding rule,
can be used to stabilize an unstable linear system over a noisy channel. Furthermore,
we show that the instantaneous SED code can be used to transmit a streaming source
whose symbol arriving times are unknown to the decoder. Using the instantaneous
SED code, we derive the JSCC reliability function for a streaming source whose
symbol arriving times have limited randomness.

For equiprobably distributed source symbols, we design low complexity algorithms
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to implement both the instantaneous encoding phase and the instantaneous SED
code. The algorithms group the source sequences into sets we call types, which
enable the encoder and the decoder to track the priors and the posteriors of source
sequences jointly.

While the reliability function is derived for non-degenerate DMCs, i.e., DMCs
whose transition probability matrix has all positive entries, for degenerate DMCs
we design a code with instantaneous encoding that achieves zero error for all rates
below the Shannon’s joint source-channel coding limit.

Most results in this chapter appear in the research papers [81, 82, 83]. The JSCC
reliability function for a streaming source whose symbol arriving times have limited
randomness in Section 4.6 appears for the first time.

Prior art
Designing good channel block encoding schemes with feedback is a classical prob-
lem in information theory [37, 42, 38, 39, 40, 43, 44, 45, 47, 46]. Although feedback
cannot increase the capacity of a memoryless channel [36], it renders the design
of capacity-achieving codes simpler [37, 42, 38, 39] and improves the tradeoffs
between the decoding delay and the reliability [40, 41]. The underlying principle
behind capacity-achieving block encoding schemes with feedback [37, 42, 38, 39,
40, 43, 44, 45, 47, 46], termed posterior matching [39], is to transmit a channel input
that has two features. First, the channel input is independent of the past channel
outputs, representing the new information in the message that the decoder has not
yet observed. Second, the probability distribution of the channel input is matched
to the capacity-achieving one using the posterior of the message.

While asymptotically achieving the channel capacity ensures the best possible trans-
mission rates in the limit of large delay, optimizing the tradeoff between delay and
reliability is critical for time-sensitive applications. The delay-reliability tradeoff is
often measured by the reliability function (a.k.a. optimal error exponent), which is
defined as the maximum rate of the exponential decay of the error probability at a
rate strictly below the channel capacity as the blocklength is taken to infinity. It is
a classical fundamental limit that helps to gain insight into the finite blocklength
performance of codes via large deviations theorems in probability. In the context of
channel coding, the reliability function of a DMC with feedback is first shown by
Burnashev [40]. Variable-length channel codes with block encoding that achieve
Burnashev’s reliability function are proposed in [40, 43, 44, 45, 46]. Burnashev’s
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[40] and Yamamoto and Itoh (Y-I)’s schemes [43] are structurally similar in that
they both have two phases. In the communication phase, the encoder matches the
distribution of its output to the capacity-achieving input distribution, while aiming to
increase the decoder’s belief about the true message. In the confirmation phase, the
encoder repeatedly transmits one of two symbols indicating whether the decoder’s
estimate at the end of the communication phase is correct or not. Caire et al. [44]
showed that the code transmitted in the communication phase of the Y-I scheme
can be replaced by any non-feedback block channel code, provided that the error
probability of the block code is less than a constant determined by the code rate as
the blocklength goes to infinity. Naghshvar et al. [45] challenged the convention of
using a two-phase code [40, 43, 44] to achieve Burnashev’s reliability function by
proposing the MaxEJS code, which searches for the deterministic encoding function
that maximizes an extrinsic Jensen-Shannon (EJS) divergence at each time. Since
the MaxEJS code has a double exponential complexity in the length of the message
sequence k, Naghshvar et al. [45] proposed a simplified encoding function for sym-
metric binary-input DMCs that is referred to as the small-enough difference (SED)
rule in [47]. The SED encoder partitions the message alphabet into two groups such
that the difference between the Bernoulli

(
1
2

)
capacity-achieving distribution and the

group posteriors is small. While the SED rule still has an exponential complexity in
the length of the message, Antontini et al. [47] designed a systematic variable-length
code for transmitting k bits over a binary symmetric channel (BSC) with feedback
that has complexity O(k2). The complexity reduction is realized by grouping mes-
sages with the same posterior. Yang et al. [46] generalized the Naghshvar et al.’s
SED rule-based code [45] to binary-input binary-output asymmetric channels.

While the message in [40, 43, 44, 45, 47, 46] is equiprobable on its alphabet, the
JSCC reliability function for transmitting a non-equiprobable discrete-memoryless
source (DMS) over a DMC has also been studied [84, 85, 86, 87]. For fixed-length
almost lossless coding without feedback, Gallager [84] derived an achievability
bound on the JSCC reliability function, which indicates that JSCC leads to a strictly
larger error exponent than separate source and channel coding in some cases; Csiszàr
[85] provided achievability and converse bounds on the JSCC reliability function
using random coding and type counting; Zhong et al. [86] showed that Csiszàr’s
achievability bound [85] is tighter than Gallager’s bound [84] and provided sufficient
conditions for the JSCC reliability function to be strictly larger than the separate
source and channel coding reliability function. For variable-length lossy coding
with feedback, Truong and Tan [87] derived the JSCC excess-distortion reliability
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function under the assumption that 1 source symbol is transmitted per channel use
on average. To achieve the excess-distortion reliability function, Truong and Tan
[87] used separate source and channel codes: the source is compressed down to its
rate-distortion function, and the compressed symbols are transmitted using the Y-I
communication phase, while the Y-I confirmation phase is modified to compare the
uncompressed source and its lossy estimate instead of the compressed symbol and
the estimate thereof. Due to the modification, some channel coding errors bear no
effect on the overall decoding error, and the overall decoding error is dominated by
the decoding error of the repetition code in the confirmation phase.

While most feedback coding schemes in the literature considered block encoding
of a source whose outputs are accessible in their entirety before the transmission,
[37, 42, 38, 39, 40, 43, 44, 45, 47, 46, 87], several existing works considered
instantaneous encoding of a streaming source [48, 88, 49, 50, 51, 52, 89, 81]. A
large portion of them [48, 88, 49, 50, 51] explores instantaneous (causal) encoding
schemes for stabilizing a control system. The evolving system state is considered as
a streaming data source, the observer instantaneously transmits information about
the state to the controller, and the controller injects control signals to the plant.
Sahai and Mitter [48] defined the anytime capacity at anytime reliability α as the
maximum transmission rate R (nats per channel use) such that the decoding error of
the first k R-nat symbols at time t decays as e−α(t−k) for any k ≤ t; they showed that
the scalar linear system can be stabilized provided that the logarithm of its unstable
coefficient is less than the anytime capacity; they suggested that codes that lead to an
exponentially decaying error have a natural tree structure (similar to Schulman’s code
[88] for interactive computing) that tracks the state evolution over time. Tree coding
schemes for stabilizing control systems have been studied in [49, 50]. Assuming that
the inter-arrival times of message bits are known by the decoder and that the channel
is a BSC, Lalitha et al. [51] proposed an anytime code [48] that achieves a positive
anytime reliability and derived a lower bound on the maximum rate that leads to
an exponentially vanishing error probability. Instantaneous encoding schemes have
also been studied in pure communication settings, where one may evaluate the
error exponent [52, 81], consider a streaming source with finite length [89, 81],
and allow non-periodic deterministic [51] or random [81] streaming times. Chang
and Sahai [52] considered instantaneous encoding of i.i.d. message symbols that
arrive at the encoder at consecutive times for the transmission over a binary erasure
channel (BEC) with feedback, and showed the zero-rate JSCC error exponent of
erroneously decoding the k-th message symbol at time t for fixed k and t → ∞.
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Antonini et al. [89] designed a causal encoding scheme for k < ∞ streaming bits
with a fixed arrival rate over a BSC and showed by simulation that the code rate
approaches the channel capacity as the bit arrival rate approaches the transmission
rate. In our previous work [81], we proposed a code that uses an adapted SED
rule [45] to instantaneously transmit k < ∞ randomly arriving bits and that leads
to an achievability bound on the reliability function for binary-input DMCs with
instantaneous encoding, and designed a polynomial-time version of it. While the
instantaneous encoding schemes in [48, 88, 49, 50, 51, 52, 89, 81] employ feedback,
transmission schemes for streaming data without feedback have been investigated
for finite memory encoders [53, 57, 90], for distributed sources [54], and for point-
to-point channels in the moderate deviations [56] and the central limit theorem [55,
58].

Streaming data has also been investigated in the field of computer and system
sciences. While traditional database management systems only allow one-time
queries over a static data set, in the past twenty years, researchers became interested
in developing efficient data stream management systems that can handle continuous
queries over streaming data [91, 92, 93, 94, 95, 96, 97, 98]. Due to the unbounded
size of streaming data, the main challenge of continuous queries is the unbounded
memory required to compute the exact answer [91, 96]. To overcome the challenge,
various algorithms [95, 97, 98] have been designed to approximate the answer with
low memory sizes.

Chapter organization and contribution
In Section 4.3, we propose a novel coding phase–the instantaneous encoding phase–
for transmitting a sequence of k source symbols over a DMC with feedback. It
performs instantaneous encoding during the arriving period of the symbols. At time
t, the encoder and the decoder calculate the priors of all possible symbol sequences
using the source distribution and the posteriors at time t − 1. Then, they partition
the evolving message alphabet into groups, so that the group priors are close to the
capacity-achieving distribution. In contrast to Naghshvar et al.’s SED rule [45] for
symmetric binary-input channels, our partitioning rule is applicable to any DMCs,
and it uses group priors instead of group posteriors for the partitioning. Using group
priors is necessary because if a new symbol arrives at time t, the posteriors at time
t − 1 are insufficient to describe the symbol sequences at time t. Feedback codes
with block encoding [37, 42, 38, 39, 40, 43, 44, 45, 47, 46, 87] only need to consider
the posteriors, since block encoding implies that the priors at time t are equal to the
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posteriors at time t − 1. Once the groups are partitioned, the encoder determines
the index of the group that contains the true symbol sequence it received so far
and applies randomization to match the distribution of the transmitted index to the
capacity-achieving one.

In Section 4.4, we derive the JSCC reliability function for the almost lossless
transmission of a discrete streaming source over a DMC with feedback. Since
allowing the encoder to know the entire source sequence before the transmission will
not decrease the reliability function, converse bounds for a classical fully accessible
source pertain. We extend Berlin et al.’s converse bound [99] for Burnashev’s
reliability function to JSCC. For fully accessible sources, we show that the converse
is achievable by a variable-length joint source-channel code with block encoding–
the MaxEJS code [45]. For a source whose symbols arrive at the encoder with an
infinite arriving rate (symbols per channel use) as the source length goes to infinity,
we show that the converse is achievable by the buffer-then-transmit code that idles
the transmissions and only buffers the arriving symbols during the symbol arriving
period and implements a block encoding scheme that achieves the JSCC reliability
function for a fully accessible source after the arriving period. For example, a
classical fully accessible source has an infinite symbol arriving rate because its
symbols arrive all at once. Yet, this buffer-then-transmit code fails to achieve the
JSCC reliability function for streaming if the source symbols arrive at the encoder
with a finite arriving rate of symbols per channel use. For streaming symbols
with an arriving rate greater than 1

H

(
H(P ∗

Y )− log 1
pmax

)
, we show that preceding

any code with block encoding that achieves the JSCC reliability function for a fully
accessible source by our instantaneous encoding phase will make it achieve the block
encoding error exponent as if the encoder knew the entire source sequence before the
transmission. Here H is a lower bound on the information in the streaming source
and is equal to the source entropy rate if the source is information stable, H(P ∗

Y )

is the entropy of the channel output distribution induced by the capacity-achieving
channel input distribution, and pmax is the maximum channel transition probability.
Thus, surprisingly, the JSCC reliability function for streaming is simply equal to
that for a fully accessible source. Furthermore, we show via simulations that the
reliability function gives a surprisingly good approximation to the delay-reliability
tradeoffs attained by the JSCC reliability function-achieving codes in the ultra-short
blocklength regime.

The above discussion highlights the existence of a sequence of codes with instan-
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taneous encoding indexed by the length of the source sequence k that achieves
the JSCC reliability function as k → ∞. However, in the remote tracking and
control scenarios, a single code that can choose to decode any k symbols of a
streaming source at any time t with an error probability that decays exponentially
with the decoding delay (i.e., an anytime code [48]) is desired. To this end, in
Section 4.5, we design the instantaneous small-enough difference (SED) code. The
instantaneous SED code is similar to the instantaneous encoding phase except that
it continues the transmissions after the symbol arriving period, drops the random-
ization step, and specifies the group partitioning rule to the instantaneous SED
rule. The instantaneous SED code is also similar to the instantaneous encoding
scheme in our previous work [81] designed for transmitting a streaming source
with random symbol arriving times unknown to the decoder, except that [81] used
an instantaneous smallest-difference rule. The instantaneous smallest-difference
rule minimizes the difference between the group priors and the capacity-achieving
probabilities, whereas the instantaneous SED rule only drives their difference small
enough. The instantaneous SED rule reduces to Naghshvar et al.’s [45] SED rule if
the source is fully accessible before the transmission. In contrast to the instantaneous
encoding phase followed by a block encoding scheme, the instantaneous SED code
only has one phase, namely, it follows the same transmission strategy at each time.
For transmitting i.i.d. Bernoulli

(
1
2

)
bits that arrive at the encoder at consecutive

times over a BSC(0.05), simulations of the instantaneous SED code show that the
error probability of decoding the first k = [4: 4 : 16] bits at times t ∈ [4, 70], t ≥ k,
decreases exponentially with an anytime reliability α ≃ 0.172, outperforming the
theoretical anytime reliability of Lalitha et al’s anytime code [51]. This implies that
the binary instantaneous SED code can be used to stabilize an unstable linear system
with bounded noise [48, 88, 49, 50, 51]. Although the achievability of a positive
anytime reliability is evidenced by the simulation, it is difficult to prove analytically
since one cannot leverage the submartingales and the bounds on the expected de-
coding time of a block encoding scheme in [40, 45]. Nevertheless, we show that a
sequence of instantaneous SED codes indexed by the length of the symbol sequence
k achieves the JSCC reliability function for streaming over a Gallager-symmetric
[84, p. 94] binary-input DMC. This result is based on our finding that after dropping
the randomization step, the instantaneous encoding phase continues to achieve the
JSCC reliability function when followed by a reliability function-achieving block
encoding scheme, but a cost of increasing the lower bound on the symbol arriv-
ing rate to 1

log 1
pS,max

(
log 1

pmin
− log 1

pmax

)
. Here, pS,max is the maximum symbol
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arriving probability and pmin is the minimum channel transition probability.

In Section 4.6, we consider a streaming source whose symbol arriving times are
random and are unknown to the decoder. We generalize the instantaneous SED code
to transmit such a source. For a streaming source whose symbol arriving times have
limited randomness, we show the JSCC reliability function using the instantaneous
SED code. It is equal to the JSCC reliability function for a streaming source with
deterministic symbol arriving times since the randomness in the symbol arriving
times becomes negligible as the source length goes to infinity.

Since the size of the evolving source alphabet grows exponentially in time t, the
complexities of the instantaneous encoding phase and the instantaneous SED code
are exponential in time t. In Section 4.7, for the source symbols that are equiprobably
distributed, we design low-complexity algorithms for both codes that we term type-
based codes. The complexity reduction is achieved by judiciously partitioning
the evolving source alphabet into types. The cardinality of the partition is O(t)

for deterministic symbol arriving times and is equal to O(t2) for random symbol
arriving times, i.e., the cardinality is exponentially smaller than the size of the source
alphabet. The type partitioning enables the encoder and the decoder to update the
priors and the posteriors of the source sequences as well as to partition source
sequences in terms of types rather than individual sequences. Since the prior and
the posterior updates have a linear complexity in the number of types, and the type-
based group partitioning rule has a log-linear complexity in the number of types due
to type sorting, our type-based codes only have a log-linear complexityO(t log t) for
deterministic symbol arriving times and have a polynomial complexity O(t2 log t)

for random symbol arriving times. Although Antonini et al.’s block encoding
scheme for BSCs [47] attains a reduction in complexity also by grouping message
sequences, the types in Antonini et al.’s scheme [47] are generated all at once
by grouping the message sequences that have the same Hamming distance to the
received channel outputs, while the types in our type-based instantaneous encoding
phase evolve with the arrival of source symbols. The empirical performances of
our type-based codes as well as their corresponding original codes are displayed in
Section 4.8.

In Section 4.9, for the transmission over a degenerate DMC, i.e., a DMC whose
transition matrix contains a zero, we propose a code with instantaneous encoding that
achieves zero error for all rates asymptotically below Shannon’s JSCC limit. While
feedback codes in most prior literature [43, 44, 45, 47, 46, 87] are designed for non-
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degenerate DMCs, i.e., a DMC whose transition probability matrix has all positive
entries, Burnashev [40, Sec. 6] constructed a channel code for degenerate DMCs
that achieves zero error for all rates asymptotically below the channel capacity. Our
code extends Burnashev’s code [40, Sec. 6] to JSCC and to the streaming source.
Similar to [40, 43, 44, 87], our code is divided into blocks, and each block consists
of a communication phase and a confirmation phase. Burnashev’s [40, Sec. 6]
communication phases use a block encoding scheme that can transmit reliably for
all rates below the channel capacity. The communication phase in the first block
of our scheme uses a code with instantaneous encoding that can transmit reliably
for all rates below Shannon’s JSCC limit; our ℓ-th communication phase transmits
the uncompressed source sequence to avoid compression errors, and uses random
coding to establish an analyzable probability distribution of the decoding time. Our
confirmation phase is the same as that of Burnashev’s code [40, Sec. 6]: the encoder
repeatedly transmits a pre-selected symbol that never leads to channel output y if the
decoder’s estimate at the end of the communication phase is wrong, and transmits
another symbol that can lead to y if the estimate is correct. The confirmation phases
rely on the degenerate nature of the channel to ensure zero error: receiving a y

secures an error-free estimate of the source.

Notations
log(·) is the natural logarithm. For any positive integer q, we denote [q] ≜

{1, 2, . . . , q}. We denote by [q]k the set of all q-ary sequences of length equal
to k. For a sequence of random variables Xk, k = 1, 2, . . . and a real number
a ∈ R, we write Xk

i.p.−→ a to denote that Xk converges to a in probability, i.e.,
limk→∞ P[|Xk − a| ≥ ϵ] = 0, ∀ϵ > 0. For any set A, we denote by 1A(x) an
indicator function that is equal to 1 if and only if x ∈ A. For two positive functions
f, g : Z+ → R+, we write f(k) = o(g(k)) to denote limk→∞

f(k)
g(k)

= 0; we write
f(k) = O(g(k)) to denote lim supk→∞

f(k)
g(k)

< ∞; we write f(k) = Ω(g(k)) to
denote lim supk→∞

f(k)
g(k)

> 0 [100].

4.2 Problem statement
Consider the setup in Fig. 4.1. We formally define the discrete source that streams
into the encoder as follows.

Definition 18 (A (q, {tn}∞n=1) discrete streaming source (DSS)). We say that a source
is a DSS if it emits a sequence of discrete source symbols Sn ∈ [q], n = 1, 2, . . .

at times t1 ≤ t2 ≤ . . . , where symbol Sn that arrives at the encoder at time tn is
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encoder DMC decoder

Figure 4.1: Real-time feedback communication system with a streaming source.

Figure 4.2: A fully accessible source: 1 = t1 = t2 = . . .

distributed according to the source distribution

PSn|Sn−1 , n = 1, 2, . . . (4.1)

Throughout, we assume that the entropy rate of the DSS

H ≜ lim
n→∞

H(Sn)

n
(nats per symbol) (4.2)

is well-defined and positive; the first symbol S1 arrives at the encoder at time t1 ≜ 1;
both the encoder and the decoder know the symbol alphabet [q], the arrival times
t1, t2, . . . , and the source distribution (4.1). The DSS reduces to the classical discrete
source (DS) that is fully accessible to the encoder before the transmission if

tn = 1, ∀n = 1, 2, . . . (4.3)

Fig. 4.2 and 4.3 display a fully accessible source and a streaming source. Opera-
tionally, symbol Sn represents a data packet. We denote the number of symbols that
the encoder has received by time t by

N(t) ≜ max{n : tn ≤ t, n = 1, 2, . . . }. (4.4)

Given a DSS (Definition 18) with symbol arriving times t1, t2, . . . , we denote its
symbol arriving rate by

f ≜ lim inf
n→∞

n

tn
(symbols per channel use) ∈ [0,∞]. (4.5)



81

Figure 4.3: A streaming source: t1 = 1, t2 = 2, t3 = 4, t4 = t5 = 6, . . .

The symbol arriving rate f = ∞ implies that the source symbols arrive at the
encoder so frequently that the number of channel uses increases slower than the
source length. For example, the DS (4.3) has f = ∞. The symbol arriving rate
f <∞ implies that the number of channel uses goes to infinity as the source length
goes to infinity. For example, if one source symbol arrives at the encoder every
λ ≥ 1 channel uses, λ ∈ Z+, i.e.,

tn = λ(n− 1) + 1, (4.6)

then

f =
1

λ
. (4.7)

We assume that the channel is a DMC with a single-letter transition probability
distribution PY |X : X → Y .

Definition 19 (Non-degenerate and degenerate DMCs). A DMC is non-degenerate
if it satisfies

PY |X(y|x) > 0, ∀x ∈ X , y ∈ Y . (4.8)

A DMC is degenerate if there exist y ∈ Y , x ∈ X , x′ ∈ X , such that

PY |X(y|x) > 0, (4.9a)

PY |X(y|x′) = 0. (4.9b)

A non-degenerate DMC is considered in [40, 43, 44, 45, 47, 46] e.g., a BSC. A
degenerate DMC is considered in [40, Sec.6], e.g., a BEC. Fig. 4.4 display examples
of DMCs. We denote the capacity of the DMC by

C ≜ max
PX

I(X;Y ), (4.10)
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and we denote the maximum Kullback–Leibler (KL) divergence between its transi-
tion probabilities by

C1 ≜ max
x,x′∈X

D(PY |X=x||PY |X=x′). (4.11)

Assumption (4.8) posits that C1 (4.11) is finite.

A DMC is symmetric (Gallager-symmetric [84, p. 94]) if the columns in its channel
transition probability matrix can be partitioned so that within each partition, all rows
are permutations of each other, and all columns are permutations of each other.

(a) non-degenerate (c) neither non-degenerate 
nor degenerate

(b) degenerate

Figure 4.4: A DMC PY |X : {0, 1} → {0, 1, 2}. An arrow from channel input
x ∈ {0, 1} to channel output y ∈ {0, 1, 2} signifies PY |X(y|x) > 0. Channel (a) is
a non-degenerate DMC that satisfies (4.8). Channel (b) is a degenerate DMC that
satisfies (4.9) with y = 1, x = 1, x′ = 0. Channel (c) does not satisfy (4.8)–(4.9)
since y = 1 is not reachable.

We proceed to define the codes that we use to transmit a DSS over a DMC with
feedback. All the codes in this chapter are variable-length joint source-channel
codes with feedback. We distinguish two classes of codes, one is called a code
with instantaneous encoding, and the other is called a code with block encoding.
Next, we define the code with instantaneous encoding designed to recover the first
k symbols of a DSS at rate R symbols per channel use and error probability ϵ.

Definition 20 (A (k,R, ϵ) code with instantaneous encoding). Fix a (q, {tn}∞n=1)

DSS and fix a DMC with a single-letter transition probability distributionPY |X : X →
Y . An (k,R, ϵ) code with instantaneous encoding consists of:
1. a sequence of (possibly randomized) encoding functions ft : [q]N(t)×Y t−1 → X ,
t = 1, 2, . . . that the encoder uses to form the channel input

Xt ≜ ft
(
SN(t), Y t−1

)
; (4.12)
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2. a sequence of decoding functions gt : Y t → [q]k, t = 1, 2, . . . that the decoder
uses to form the estimate

Ŝk
t ≜ gt(Y

t); (4.13)

3. a stopping time ηk adapted to the filtration generated by the channel output
Y1, Y2, . . . that determines when the transmission stops and that satisfies

k

E[ηk]
≥ R (symbols per channel use), (4.14)

P[Ŝk
ηk
̸= Sk] ≤ ϵ. (4.15)

For any rate R > 0, the minimum error probability achievable by rate-R codes with
instantaneous encoding and message length k is given by

ϵ∗(k,R) ≜ inf{ϵ : ∃ (k,R, ϵ) code with instantaneous encoding}. (4.16)

For transmitting a DSS over a non-degenerate DMC with noiseless feedback via
a code with instantaneous encoding, we define the JSCC reliability function for
streaming as

E(R) ≜ lim
k→∞

R

k
log

1

ϵ∗(k,R)
. (4.17)

If a DSS satisfies (4.3), i.e., a DS, a code with instantaneous encoding (i.e., causal
code) in Definition 20 reduces to a code with block encoding (i.e., non-causal code),
and the JSCC reliability function for streaming (4.17) reduces to the JSCC reliability
function for a fully accessible source.

Similar to classical codes with block encoding, a (k,R, ϵ) code with instantaneous
encoding in Definition 20 is designed to recover only the first k symbols of a DSS,
and E(R) (4.17) is achieved by a sequence of codes with instantaneous encoding
indexed by the length of the symbol sequence k as k →∞. We proceed to define a
code with instantaneous encoding that decodes the first k symbols at a time t ≥ tk

with an error probability that decays exponentially with delay t − tk, for all k and
t. Because the decoding time and the number of symbols to decode can be chosen
on the fly, this code is referred to as an anytime code and can be used to stabilize an
unstable linear system with bounded noise over a noisy channel with feedback [48].
We formally define anytime codes as follows.
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Definition 21 (A (κ, α) anytime code). Fix a (q, {tn}∞n=1) DSS and fix a DMC with
a single-letter transition probability distribution PY |X : X → Y . A (κ, α) anytime
code consists of:
1. a sequence of (possibly randomized) encoding functions defined in Definition 20-
1;
2. a sequence of decoding functions gt,k : Y t → [q]k indexed both by the decoding
time t and the length of the decoded symbol sequence k that the decoder uses to
form an estimate Ŝk

t ≜ gt,k(Y
t) of the first k symbols at time t.

For all k = 1, 2, . . . , t = 1, 2, . . . , t ≥ tk, the error probability of decoding the first
k symbols at time t must satisfy

P[Ŝk
t ̸= Sk] ≤ κe−α(t−tk) (4.18)

for some κ, α ∈ R+.

The exponentially decaying rate α of the error probability in (4.18) is referred to as
the anytime reliability. While Sahai and Mitter’s anytime code in [48, Definition
3.1] is defined to transmit a DSS that emits source symbols one by one at consec-
utive times, Definition 21 slightly extends [48, Definition 3.1] to a general DSS in
Definition 18.

In this chapter, we aim to find E(R) (4.17), the codes with instantaneous encoding
that achieve E(R), and an anytime code.

4.3 Instantaneous encoding phase
With the aim of transmitting the first k source symbols of a DSS, we present our
instantaneous encoding phase, which specifies the encoding functions {ft}tkt=1 in
Definition 20. We fix a DMC with a single-letter transition probability distribution
PY |X : X → Y and capacity-achieving distribution P ∗

X , and we fix a (q, {tn}∞n=1)

DSS with distribution (4.1). We denote the following functions of the channel
outputs,

ρi(Y
t) ≜ PSN(t)|Y t(i|Y t), (4.19)

θi(Y
t−1) ≜ PSN(t)|Y t−1(i|Y t−1), (4.20)

πx(Y
t−1) ≜

∑
i∈Gx(Y t−1)

θi(Y
t−1), (4.21)

where we refer to ρi(Y t) and θi(Y t) as the posterior and the prior of source sequence
i ∈ [q]N(t), respectively; we refer to πx(Y

t−1) as the prior of the group Gx(Y t−1)
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corresponding to channel input x ∈ X that we specify in (4.24) below. The
probability distributions PSN(t)|Y t and PSN(t)|Y t−1 are determined by the code below.

Algorithm: The instantaneous encoding phase operates during times t = 1, 2, . . . , tk.

At each time t, the encoder and the decoder first update the priors θi(yt−1) for all
i ∈ [q]N(t). At symbol arriving times t = tn, n = 1, 2, . . . , k the prior θi(yt−1),
i ∈ [q]N(t) is updated using the posterior ρiN(t−1)(yt−1) and the source distribution
(4.1), i.e.,

θi(y
t−1) = PSN(t)|SN(t−1)

(
i|iN(t−1)

)
ρiN(t−1)(yt−1), (4.22)

where iN(t−1) is the length-N(t − 1) prefix of sequence i. At times in-between
arrivals, i.e., at t ∈ (tn, tn+1), n = 1, 2, . . . , k − 1, the prior θi(yt−1) is equal to the
posterior ρi(yt−1) for all i ∈ [q]N(t), i.e.,

θi(y
t−1) = ρi(y

t−1). (4.23)

At each time t, once the priors are updated, the encoder and the decoder partition
the message alphabet [q]N(t) into |X | disjoint groups {Gx(yt−1)}x∈X such that for
all x ∈ X ,

πx(y
t−1)− P ∗

X(x) ≤ min
i∈Gx(yt−1)

θi(y
t−1). (4.24)

The partitioning rule (4.24) ensures that the group priors {πx(y
t−1)}x∈X are close

enough to the capacity-achieving distribution {P ∗
X(x)}x∈X . There always exists a

partition {Gx(yt−1)}x∈X of [q]N(t) that satisfies the partitioning rule (4.24), since the
partition given by the greedy heuristic algorithm [101] satisfies it, see the algorithm
and the proof in Appendix C.1.

Using the partition {Gx(yt−1)}x∈X , the encoder and the decoder construct two sets by
comparing the group priors {πx(y

t−1)}x∈X with the capacity-achieving distribution
{P ∗

X(x)}x∈X :

X (yt−1) ≜ {x ∈ X : πx(y
t−1) ≤ P ∗

X(x)}, (4.25)

X (yt−1) ≜ {x ∈ X : πx(y
t−1) > P ∗

X(x)}. (4.26)

Then, the encoder and the decoder determine a set of probabilities{px→x}x∈X (yt−1),x∈X (yt−1)

for randomizing the channel input, such that for all x ∈ X (yt−1), x ∈ X (yt−1), it
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holds that

πx(y
t−1)−

∑
x∈X (yt−1)

px→x = P ∗
X(x), (4.27)

πx(y
t−1) +

∑
x∈X (yt−1)

px→x = P ∗
X(x). (4.28)

The output of the encoder is formed via randomization as follows. The encoder first
determines the group that contains the sequence SN(t) it received so far:

Zt ≜
∑
x∈X

x1Gx(yt−1)

(
SN(t)

)
. (4.29)

Then, the encoder outputs Xt according to

PXt|Zt,Y t−1(x|z, yt−1) =


P ∗
X(z)

πz(yt−1)
, if x = z, z ∈ X (yt−1),

pz→x

πz(yt−1)
, if x ∈ X (yt−1), z ∈ X (yt−1)

1{z}(x), if z ∈ X (yt−1).

(4.30)

The decoder also knows the randomization distribution PXt|Zt,Y t−1 (4.30), since it
knows group priors {πx(y

t−1)}x∈X (4.24), sets X (yt−1) and X (yt−1) (4.25)–(4.26),
and probabilities {px→x}x∈X (yt−1),x∈X (yt−1) (4.27)–(4.28). Due to (4.25)–(4.30), the
channel input distribution at time t = 1, 2, . . . , tk, is equal to the capacity-achieving
channel input distribution, i.e., for all yt−1 ∈ Y t−1,

PXt|Y t−1(x|yt−1) = P ∗
X(x). (4.31)

See the proof of (4.31) in Appendix C.2. Fig. 4.5 below provides an example of
group partitioning and channel input randomization.

Upon receiving the channel output Yt = yt at time t, the encoder and the decoder
update the posteriors ρi(yt) for all possible sequences of source symbols i ∈ [q]N(t)

using the prior θi(yt−1), the channel output yt, and the randomization probability
(4.30), i.e.,

ρi(y
t) =

∑
x∈X PY |X(yt|x)PXt|Zt,Y t−1(x|z(i), yt−1)

P ∗
Y (yt)

θi(y
t−1), (4.32)

where z(i) is the index of the group that contains sequence i, i.e., it is equal to the
right side of (4.29) with SN(t) ← i; P ∗

Y is the channel output distribution induced by
the capacity-achieving distribution P ∗

X ; (4.32) holds due to (4.31) and the Markov
chain Yt −Xt − (Zt, Y

t−1)− SN(t).
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probability

Figure 4.5: An example of group partitioning and channel input randomization
for a DMC with uniform capacity-achieving distribution P ∗

X(x) = 0.25, X =
[4]. The horizontal axis represents a partition of 4 groups. The vertical axis
represents the prior probabilities of the groups. The source alphabet [q]N(t) is
partitioned into {Gx(yt−1)}x∈[4] such that the partitioning rule (4.24) is satisfied.
Groups Gx(yt−1), x ∈ {1, 2} constitute X (yt−1) (4.26) and groups Gx(yt−1), x ∈
{3, 4} constitute X (yt−1) (4.25). The probabilities {px→x}x∈{1,2},x∈{3,4} (4.27)–
(4.28) used to randomize transmitted group indices are colored. The randomization
matches the probability of transmitting group index x ∈ [4] to P ∗

X(x).

We conclude the presentation of the instantaneous encoding phase with several
remarks.

The randomization (4.25)–(4.30) of the instantaneous encoding phase is only used
for analysis: Theorem 9 in Section 4.4 continues to hold if the randomization step
(4.25)–(4.30) is dropped and the deterministic group index Zt (4.29) is transmitted,
but at a cost of imposing assumptions on the DSS that are stricter than assumptions
(a)–(b) in Theorem 9. See Remark 2 in Section 4.4 for details. From the perspective
of encoding, the randomization (4.30) turns the encoding function ft into a stochas-
tic kernel PXt|SN(t),Y t−1 . From the perspective of the channel, the randomization
PXt|Zt,Y t−1 (4.30) together with the DMC PY |X can be viewed as a cascaded DMC
with channel input (Zt, Y

t−1). The randomness in (4.29) is not common with the
decoder as it only needs to know the distribution PXt|Zt,Y t−1 to update posterior
ρi(y

t) in (4.32).

The complexity of the instantaneous encoding phase is O
(
qN(t) log qN(t)

)
if the

classical greedy heuristic algorithm (Appendix C.1) is used for group partition-
ing (4.24). For equiprobably distributed source symbols, we design an efficient
algorithm that reduces the complexity down to O(t log t) in Section 4.7.
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4.4 Joint source-channel coding reliability function
In this section, we show the JSCC reliability function for streaming E(R) (4.17)
using the instantaneous encoding phase introduced in Section 4.3. For brevity, we
denote the maximum and the minimum channel transition probabilities of a DMC
PY |X : X → Y by

pmax ≜ max
x∈X ,y∈Y

PY |X(y|x), (4.33)

pmin ≜ min
x∈X ,y∈Y

PY |X(y|x), (4.34)

and we denote the maximum symbol arriving probability of the DSS (4.1) by

pS,max ≜ max
n∈N,s∈[q],s′∈[q]n−1

PSn|Sn−1(s|s′). (4.35)

Theorem 9. Fix a non-degenerate DMC with capacity C (4.10), maximum KL
divergence C1 (4.11), and maximum channel transition probability pmax (4.33). Fix
a (q, {tn}∞n=1) DSS with entropy rate H > 0 (4.2) and symbol arriving rate f (4.5).
If the DSS has f <∞ (4.5), then we further assume that

(a) the information in the DSS is asymptotically lower bounded as

lim
n→∞

P
[
1

n
log

1

PSn(Sn)
≥ H

]
= 1 (4.36)

for some H ∈ (0,∞);

(b) the symbol arriving rate is large enough:

f >
1

H

(
H(P ∗

Y )− log
1

pmax

)
. (4.37)

Then, the JSCC reliability function for streaming (4.17) is equal to

E(R) = C1

(
1− H

C
R

)
, 0 < R <

C

H
. (4.38)

Proof Sketch. The converse proof is in Appendix C.3: allowing the encoder to
know the entire source sequence before the transmission will not reduce the JSCC
reliability function, therefore converse bounds for a (fully accessible) DS apply.
Namely, we lower bound the expected decoding time for any code with block
encoding to attain a target error probability using Fano’s inequality and a binary
hypothesis test. This extends Berlin et al.’s [99] converse bound on Burnashev’s
reliability function applicable to the channel coding setting to the JSCC setting.
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In the achievability proof, we fix a sequence of codes with instantaneous encoding
for transmitting the first k symbols of a DSS, k = 1, 2, . . . , over a non-degenerate
DMC with feedback, evaluate the asymptotic behavior of the code sequence as
k →∞, and conclude the achievability of E(R) (4.38).

For any (fully accessible) DS, the JSCC reliability function (4.38) is achievable by
the MaxEJS code [45, Sec. IV-C], and is achievable by the SED code [45, Sec.
V-B] if the channel is a symmetric binary-input DMC (Appendix C.7).

For any DSS with f =∞, including the DS (4.3), the buffer-then-transmit code for
k source symbols that achieves E(R) (4.38) operates as follows. It waits until the
k-th symbol arrives at time tk, and at times t ≥ tk + 1, applies a JSCC reliability
function-achieving code with block encoding for k symbolsSk of a (fully accessible)
DS with prior PSk (4.1) (e.g., the MaxEJS code or the SED code [45]). The buffer-
then-transmit code achieves (see details in Appendix C.8)

E(R) ≥ C1

(
1−

(
H

C
+

1

f

)
R

)
, (4.39)

which reduces to E(R) (4.38) for f = ∞. Indeed, f = ∞ means that the arrival
time tk is negligible compared to the blocklength. The buffer-then-transmit code
fails to achieve E(R) (4.38) if f <∞.

For any DSS with f < ∞ that satisfies the assumptions (a)–(b) in Theorem 9, the
code with instantaneous encoding for k source symbols that achieves E(R) (4.38)
implements the instantaneous encoding phase (Section 4.3) at times t = 1, 2, . . . , tk

and operates as a JSCC reliability function-achieving code with block encoding for
k symbols Sk of a (fully accessible) DS with prior PSk|Y tk at times t ≥ tk+1, where
Y1, . . . , Ytk are the channel outputs generated in the instantaneous encoding phase.
For example, we can insert the instantaneous encoding phase before the MaxEJS
code (or the SED code for symmetric binary-input DMCs). See Appendix C.9.

Assumption (a) holds with H = H for any information stable source since such
sources satisfy 1

n
log 1

PSn (Sn)

i.p.−→ H [102]. For example, H = H(S) if the source
emits i.i.d. symbols. Assumption (b) in Theorem 9 implies

f ≥ C

H
(4.40)

since H(Y |X) ≥ log2
1

pmax
and H ≥ H . The symbol arriving rate constraint

(4.40) ensures that all coding rates R < C
H

are achievable. Otherwise, if (4.40)
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is not satisfied and the DSS has pS,max < 1, the rate region achievable by any
code with instantaneous encoding is limited to R ≤ f . The limitation arises
because decoding Sk before the final arrival time tk results in a non-vanishing error
probability (Appendix C.12). For example, if the DSS emits i.i.d. symbols with
entropy rate H = 1 nat per symbol arriving at the encoder every 1000 channel uses,
and the DMC has capacity C = 1 nat per channel use, then the achievable rate is
limited by 1

1000
symbols per channel use, which is far less than Shannon’s JSCC

limit C
H

= 1 symbol per channel use.

Since the (fully accessible) DS (4.3) is a special DSS, Theorem 9 gives the JSCC
reliability function (4.38) for a fully accessible source. It generalizes Burnashev’s
reliability function [40] to the classical JSCC context, and generalizes Truong and
Tan’s excess-distortion reliability function [87] at zero distortion to the DS with
memory and to all rates R < C

H
.

Remarkably, Theorem 9 establishes that the JSCC reliability function for a streaming
source (satisfying assumptions (a)–(b)) is equal to that for a fully accessible source.
This is surprising as this means that revealing source symbols only causally to the
encoder has no detrimental effect on the reliability function.

While the instantaneous encoding phase in Section 4.3 achieves E(R) (4.38), in
fact, any coding strategy during the symbol arriving period that satisfies

lim
k→∞

I(Sk;Y tk)

tk
= C (4.41)

achieves E(R) (4.38) when followed by a JSCC reliability function-achieving code
with block encoding. This is because (C.42b)–(C.42c) in the achievability proof in
Appendix C.9 always hold for such a coding strategy. For equiprobably distributed
q-ary source symbols that arrive at the encoder one by one at consecutive times t =
1, 2, . . . , k and a symmetric q-input DMC, uncoded transmission during the symbol
arriving period t = 1, 2, . . . , k satisfies (4.41) and thus constitutes an appropriate
instantaneous encoding phase for that scenario. If q = 2, this corresponds to
the systematic transmission phase in [47]. Furthermore, even if the instantaneous
encoding phase in Section 4.3 drops the randomization (4.25)–(4.30) and transmits
Zt (4.29) as the channel input, it continues to satisfy the sufficient condition (4.41)
under a more conservative condition than (4.37) (see Remark 2 below).

Remark 2. Fix a non-degenerate DMC with the maximum and the minimum channel
transition probabilities pmax and pmin, and fix a (q, {tn}∞n=1) DSS with maximum
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symbol arriving probability pS,max < 1 and symbol arriving rate f <∞. If the DSS
satisfies

(b′) the symbol arriving rate is large enough:

f >
1

log 1
pS,max

(
log

1

pmin

− log
1

pmax

)
, (4.42)

then the instantaneous encoding phase in Section 4.3 that transmits the non-
randomized Zt (4.29) as the channel input at each time t = 1, 2, . . . , tk satisfies
(4.41), which means that it achieves E(R) (4.38), the JSCC reliability function for
streaming, when followed by a JSCC reliability function-achieving code with block
encoding.

Proof sketch. We show that under assumption (b′), all source priors θi(y
t−1), i ∈

[q]N(t), converge pointwise to zero in t during the symbol arriving period t ∈ [1, tk]

as k →∞. The convergent source priors and the partitioning rule (4.24) imply that
the group priors converge pointwise to the capacity-achieving distributionP ∗

X . Since
the encoder transmits a group index without randomization as the channel input, the
channel input distribution converges to the capacity-achieving distribution, yielding
(4.41). See Appendix C.13 for details.

Note that the result of Remark 2 does not require assumption (a) since PSn(sn) ≤
(pS,max)

n, ∀sn ∈ [q]n, already implies that it holds with H ← log 1
pS,max

.

Since H ≥ log 1
pS,max

and log 1
pmin

≥ H(P ∗
Y ), assumption (b′) is stricter than

assumption (b). The increase of the threshold is because 1) the channel output
distribution P ∗

Y in (C.52b) is replaced by PYt|Y t−1(·|·) ≥ pmin (C.64); 2) in the proof
of Remark 2, we show that all the source priors converge pointwise to zero (C.67)
during the symbol arriving period as k →∞ using the upper bound PSn|Sn−1(·|·) ≤
pS,max, whereas in Theorem 9, we only need that the source prior of the true symbol
sequence converges in probability to zero (C.55).

4.5 Instantaneous SED code
While the JSCC reliability function-achieving codes with instantaneous encoding
in Section 4.3 are designed to transmit the first k symbols of a DSS, and a sequence
of such codes indexed by the source length k achieves E(R) (4.38) as k → ∞, we
now show an anytime code (Definition 21) termed the instantaneous SED code. In
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Section 4.5, we present the algorithm of the instantaneous SED code for a symmetric
binary-input DMC. In Section 4.5, we show by simulations that the instantaneous
SED code empirically achieves a positive anytime reliability, and thus can be used
to stabilize an unstable linear system with bounded noise over a noisy channel. In
Section 4.5, we show that if the instantaneous SED code is restricted to transmit
the first k symbols of a DSS, a sequence of instantaneous SED codes indexed by
the length of the symbol sequence k also achieves E(R) (4.38) for streaming over a
symmetric binary-input DMC.

Algorithm of the instantaneous SED code
The instantaneous SED code is almost the same as the instantaneous encoding
phase in Section 4.3, expect that 1) it particularizes the partitioning rule (4.24)
to the instantaneous SED rule in (4.43)–(4.44) below; 2) its encoder does not
randomize the channel input and transmits Zt (4.29) at each time t; 3) it continues
to operate after the symbol arriving period. Fixing a symmetric binary-input DMC
PY |X : {0, 1} → Y and fixing a (q, {tn}∞n=1) DSS, we present the algorithm of the
instantaneous SED code.

Algorithm: The instantaneous SED code operates at times t = 1, 2, . . .

At each time t, the encoder and the decoder first update the priors θi (yt−1) for all
possible sequences i ∈ [q]N(t) that the source could have emitted by time t. If t = tn,
n = 1, 2, . . . , the prior is updated using (4.22); otherwise, the prior is equal to the
posterior (4.23).

Once the priors are updated, the encoder and the decoder partition the source
alphabet [q]N(t) into 2 disjoint groups {Gx}x∈{0,1} according to the instantaneous
SED rule, which says the following: if x, x′ ∈ {0, 1} satisfy

πx(y
t−1) ≥ πx′(yt−1), (4.43)

then they must also satisfy

πx(y
t−1)− πx′(yt−1) ≤ min

i∈Gx(yt−1)
θi(y

t−1). (4.44)

There always exists a partition {Gx(yt−1)}x∈{0,1} that satisfies the instantaneous SED
rule (4.43)–(4.44) since the partition that attains the smallest difference |π0(y

t−1)−
π1(y

t−1)| satisfies it [45, Appendix III-E].

Once the source alphabet is partitioned, the encoder transmits the index Zt (4.29)
of the group that contains the true source sequence SN(t) as the channel input.
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Upon receiving the channel output Yt = yt at time t, the encoder and the decoder
update the posteriors ρi (y

t) for all i ∈ [q]N(t) using the priors θi (y
t−1) and the

channel output yt, i.e.,

ρi
(
yt−1

)
=

PY |X(yt|z(i))∑
x∈X PY |X(y|x)πx(yt−1)

θi(y
t−1), (4.45)

where z(i) is the index of the group that contains sequence i, i.e., it is equal to the
right side of (4.29) with SN(t) ← i.

The maximum a posteriori (MAP) decoder estimates the first k symbols at time t as

Ŝk
t ≜ argmax

i∈[q]k
PSk|Y t(i|Y t). (4.46)

We conclude the presentation of the algorithm with several remarks.

We call the group partitioning rule in (4.43)–(4.44) instantaneous small-enough
difference (SED) rule since it reduces to Naghshvar et al.’s SED rule [45] if the
source is fully accessible to the encoder before the transmission. The rule ensures
that the difference between a group prior πx(y

t−1) and its corresponding capacity-
achieving probability P ∗

X(x) =
1
2
, x ∈ {0, 1} is bounded by the source prior on the

right side of (4.44).

Instantaneous SED code is an anytime code
We first provide numerical evidence showing that the instantaneous SED code is an
anytime code: it empirically attains an error probability that decreases exponentially
as (4.18). We then determine which unstable scalar linear systems can be stabilized
by the instantaneous SED code.

In Fig. 4.6, we display the error probability (4.18) of the instantaneous SED code,
where the y-axis corresponds to the error probability of decoding the length-k prefix
of a DSS at time t (4.18). At each time t, we generate a Bernoulli

(
1
2

)
source bit and a

realization of a BSC(0.05), run these experiments for 105 trials, and obtain the error
probability (4.18) by dividing the total number of errors by the total number of trials.
To reduce the implementation complexity, we simulate the type-based version of
the instantaneous SED code in Section 4.7, which has a log-linear complexity. The
type-based version is an approximation of the exact instantaneous SED code since it
uses an approximating instantaneous SED rule and an approximating decoding rule
to mimic the instantaneous SED rule (4.43)–(4.44) and the MAP decoder (4.46),
respectively, however, it performs remarkably close to the original instantaneous
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Figure 4.6: The error probability P[Ŝk
t ̸= Sk] of decoding the first k symbols of a

DSS at time t achieved by the type-based instantaneous SED code (Section 4.7). The
DSS emits a Bernoulli

(
1
2

)
bit at times t = 1, 2, . . . . The channel is a BSC(0.05).

SED code. See Section 4.7 for details. The slope of the curves corresponds to the
anytime reliability α (4.18) of the instantaneous SED code. The anytime reliability
for the source and the channel in Fig. 4.6 is approximately equal to α ≈ 0.172. The
simulation results in Fig. 4.6 align with our expectation: the error probability decays
exponentially with delay t− k (4.18), implying that the instantaneous SED code is
an anytime code.

We proceed to display the unstable scalar linear system that can be stabilized by
the instantaneous SED code. Consider the scalar linear system in Fig. 4.7, Zt+1 =

λZt+Ut+Wt, where λ > 1, Zt is the real-valued state, Ut is the real-valued control
signal, |Wt| ≤ Ω

2
is the bounded noise, and the initial state is Z1 ≜ 0. At time t, the

observer uses the observed states Zt as well as the past channel feedback Y t−1 to
form a channel input Xt; the controller uses the received channel outputs Y t to form
a control signal Ut. For a (q, {tn}∞n=1) DSS that emits source symbols one by one at
consecutive times tn = n, n = 1, 2, . . . , the anytime rate of a (κ, α) anytime code
in Definition 21 is defined as Rany = log q nats per channel use, e.g., for the DSS in
Fig. 4.6, Rany = log 2; the α-anytime capacity Cany(α) is defined as the least upper
bound on the anytime rates Rany such that the anytime reliability α is achievable
[48]. For such a DSS, Sahai and Mitter [48, Lemma 4.1 in Sec. IV-D] showed that
the unstable scalar linear system with bounded noise in Fig. 4.7 can be stabilized so



95

that η-th moment E[|Zt|η] stays finite at all times, provided that Cany(α) > log λ,
α > η log λ. Thus, the instantaneous SED code can be used to stabilize the η-th
moment of the unstable scalar linear system in Fig. 4.7 over a BSC(0.05) for any
coefficient

λ < emin{Rany,
α
η
} (4.47)

= min
{
2, e

0.172
η

}
. (4.48)

E.g., if η = 2, then λ < 1.09. In comparison, the theoretical results in [51,
Corollary 1, Fig. 2] with n = 1 show that, for the control over a BSC(0.05) in
Fig. 4.7, Lalitha et al.’s anytime code is only guaranteed to stabilize the η-th moment
of a linear system with λ = 1.

The control scheme [48, Sec. IV] that stabilizes the system in Fig. 4.7 employs an
anytime code and operates as follows. At each time t, the observer computes an
Rany-nat virtual control signal Ūt and acts as an anytime encoder to transmit Ūt as
the t-th symbol of a DSS over a noisy channel with feedback. Here, Ūt controls a
virtual state Z̄t+1 = λZ̄t + Wt + Ūt, and is equal to the negative of the Rany-nat
quantization of λZ̄t. It ensures the boundedness of Z̄t+1. Upon receiving the channel
output, the controller acts as an anytime decoder to refresh its estimate ˆ̄U t

t of Ū t and
forms a control signal Ut that compensates the past estimation errors of the virtual
control signals as if the plant {Zs}t+1

s=1 was controlled by ˆ̄U t
t heretofore. As a result

of applying Ut, the actual state Zt+1 is forced close to the bounded virtual state Z̄t+1

with the difference |Zt+1 − Z̄t+1| governed by the difference between Ū t
t and ˆ̄U t

t .
The exponentially decaying with t−k error probability of decoding Ūk

t achieved by
the anytime code together with the bounded Z̄t+1 ensures a finite E[|Zt+1|η]. In fact,
the full feedback channel in Fig. 4.7 can be replaced by a channel that only feeds
the control signal from the controller to the observer, since Zt, Zt−1, Ut−1 suffice to
compute Wt−1 and thereby to compute Ūt at each time t.

Instantaneous SED code achieves E(R)

We first restrict the instantaneous SED code in Section 4.5 to transmit only the
first k source symbols of a DSS, and we form a sequence of instantaneous SED
codes indexed by the length of the symbol sequence k. We then show that the
code sequence achieves the JSCC reliability function (4.38) for streaming over a
symmetric binary-input DMC as k →∞.

We restrict the instantaneous SED code in Section 4.5 to transmit the first k symbols
of a (q, {tn}∞n=1) DSS as follows.
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scalar system 
observer DMC controller

Figure 4.7: A scalar linear system controlled over a noisy channel with noiseless
feedback.

1) The alphabet [q]N(t) that contains all possible sequences that could have ar-
rived by time t is replaced by the alphabet [q]min{N(t),k} that stops evolving
and reduces to [q]k after all k symbols arrive at time tk. As a consequence,
for t ≥ tk +1 and all i ∈ [q]k, the priors θi(yt−1) are equal to the correspond-
ing posteriors ρi(y

t−1), the encoder and the decoder partition [q]k to obtain
{Gx(yt−1)}x∈{0,1}, and only the posteriors ρi(yt) are updated.

2) The transmission is stopped and the MAP estimate (4.46) of Sk is produced
at the stopping time

ηk ≜ min

{
t : max

i∈[q]k
PSk|Y t(i|Y t) ≥ 1− ϵ

}
, ϵ ∈ (0, 1). (4.49)

The MAP decoder (4.46) together with the stopping rule (4.49) ensures the er-
ror constraint in (4.15), since the MAP decoder (4.46) implies P[Ŝk

ηk
= Sk] =

E
[
E
[
1{Ŝk

ηk
}(S

k)
∣∣∣Y ηk

]]
= E

[
maxi∈[q]k PSk|Y ηk (i|Y ηk)

]
, which is lower bounded

by 1− ϵ due to the stopping time (4.49).

Theorem 10. Fix a non-degenerate symmetric binary-input DMC and a (q, {tn}∞n=1)

DSS satisfying assumption (b′) in Remark 2. The sequence of instantaneous SED
codes for transmitting the first k symbols of the DSS achievesE(R) (4.38) as k →∞.

Proof. First, we observe that after the symbol arriving period t ≥ tk + 1, the
instantaneous SED code reduces to the SED code [45, Sec. V-B] because the
instantaneous SED rule (4.43)–(4.44) reduces to the SED rule [45, Eq. (50)] if all k
source symbols are fully accessible (4.3) to the encoder. The SED code [45] achieves
the JSCC reliability function (4.38) for transmitting a fully accessible source over a
non-degenerate symmetric binary-input DMC (Appendix C.7).
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Second, we observe that during the symbol arriving period t = 1, 2 . . . , tk, the in-
stantaneous SED code corresponds to dropping the randomization step of the instan-
taneous encoding phase in Section 4.3. This is because for a symmetric binary-input
DMC, (4.43) implies πx′(yt−1) ≤ P ∗

X(x
′) = 1

2
, thus any partition {Gx(yt−1)}x∈{0,1}

that satisfies the instantaneous SED rule (4.43)–(4.44) also satisfies the partitioning
rule in (4.24). Therefore, Remark 2 implies that the instantaneous SED code at
times t = 1, 2, . . . , tk satisfies the sufficient condition (4.41) under assumption (b′).

As we have discussed in the proof sketch of Theorem 9, a JSCC reliability function-
achieving code with instantaneous encoding can be obtained by preceding a JSCC
reliability function-achieving code with block encoding by an instantaneous en-
coding phase that satisfies (4.41). The two observations above imply that the
instantaneous SED code achieves E(R) (4.38) in the setting of Theorem 10.

4.6 Streaming with random arrivals
Problem statement
While the DSS in Sections 4.2–4.5 emits symbols at a sequence of deterministic
arriving times {tn}∞n=1, in this section, we proceed to consider a DSS that emits
symbols at random symbol arriving times {τn}∞n=1. We continue to denote by N(t)

the number of source symbols that have arrived at the encoder by time t. Here, N(t)

is a random variable since the symbol arriving times are random. We denote by Qt

the set of all q-ary sequences of length less than or equal to t, i.e.,

Qt ≜ ∪1≤s≤t[q]
s. (4.50)

We denote by ⊞ the concatenation operation between two strings, e.g., 101 ⊞ 1 =

1011. We denote by ⊟ the truncation operation that deletes the last bit of a string,
e.g., 101⊟ = 10.

We say that a source is a q-ary DSS with random arrivals, if it emits a sequence
of source symbols Sn ∈ [q], n = 1, 2, . . . that streams into the encoder at random
times

τ1 < τ2 < . . . (4.51)

The strict inequality in (4.51) means that at each time t = 1, 2, . . . , the DSS only
emits one symbol or no symbols. As a result, the length of the source sequence
arrived by time t is less than or equal to t, i.e.,

SN(t) ∈ Qt, t = 1, 2, . . . (4.52)
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A new source symbol arrives at time t+ 1 according to the probability distribution

PSN(t+1)|SN(t) . (4.53)

Since at most one symbol can arrive at any time, the conditional probability
distribution PSN(t+1)|SN(t)(·|s) can only place non-zero masses at SN(t+1) = s,
SN(t+1) = s ⊞ s′ for s′ ∈ [q]. We assume that both the encoder and the decoder
know the symbol arriving probability distribution (4.53), the decoder does not know
the exact realizations of the symbol arriving times, and the first symbol arrives at
τ1 ≜ 1.

We define a code with instantaneous encoding that we use to transmit a DSS with
random arrivals over a non-degenerate DMC with feedback.

Definition 22 (A (k,R, ϵ) code with instantaneous encoding for random arrivals).
Fix a q-ary DSS with random arrivals and fix a non-degenerate DMC (4.8) with a
single-letter channel transition probability PY |X : X → Y . A (k,R, ϵ) code with
instantaneous encoding for random arrivals consists of:
1. A sequence of encoding functions ft : Qt × Y t−1 → X , t = 1, 2, . . . that the
encoder uses to form the channel inputs Xt (4.12).
2. A sequence of decoding functions gt, t = 1, 2, . . . defined in Definition 20-2.
3. A stopping time ηk defined in Definition 20-3, which satisfies both the rate
constraint R (4.14) and the error constraint ϵ (4.15).

For any R > 0, the minimum error probability achievable by rate-R codes with
instantaneous encoding for random arrivals and message length k is given by

ϵ̃∗(k,R) ≜ min{ϵ : ∃ (k,R, ϵ) code with instantaneous encoding for random arrivals}.

For transmitting a DSS with random arrivals over a non-degenerate DMC with
noiseless feedback via a code with instantaneous encoding for random arrivals, we
define the JSCC reliability function for random streaming as

Ẽ(R) ≜ lim
k→∞

R

k
log

1

ϵ̃∗(k,R)
. (4.54)

If the symbol arriving times are deterministic, a (k,R, ϵ) code with instantaneous
encoding for random arrivals reduces to a (k,R, ϵ) code with instantaneous encoding
in Definition 20, and the JSCC reliability function for random streaming Ẽ(R)

reduces to the JSCC reliability function for streaming E(R) (4.17).
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Instantaneous SED code for random arrivals
We generalize the instantaneous SED code in Section 4.5 to a DSS with random
arrivals. The key is to allow the encoder and the decoder to track the priors and the
posteriors of all possible sequences that could have arrived by time t. We fix a q-ary
DSS with random arrivals.

To generalize the anytime instantaneous SED code in Section 4.5 to a DSS with
random arrivals, we replace alphabet [q]N(t) in Section 4.5 by alphabet Qt that
contains all possible source sequences that could have arrived at the encoder by time
t. As a consequence, at times t = 1, 2, . . . , for all sequences i ∈ Qt, the priors are
updated as

θi(y
t−1) =

∑
j∈Qt−1

PSN(t)|SN(t−1)(i|j)ρj(yt−1); (4.55)

the encoder and the decoder partition Qt into groups {Gx(yt−1)}x∈{0,1} that satisfy
the instantaneous SED rule (4.43)–(4.44); the posteriors of all sequences in Qt are
updated as (4.45).

To restrict the anytime instantaneous SED code for random arrivals described above
to transmit only the first k symbols, we replace the alphabet Qt that contains all
possible sequences that could have arrived by time t by the alphabet Qmin{t,k} that
stops evolving at times t > k; we equip the code with the stopping time ηk in (4.49)
and the MAP decoder in (4.46).

Joint source-channel coding reliability function for random streaming
We derive the JSCC reliability function for random streaming Ẽ(R) (4.54) using
the instantaneous SED code for random arrivals. Similar to (4.35), we denote

p̃S,max ≜ max
t∈N,s∈Qt

PSN(t)|SN(t−1)(s|s) + PSN(t)|SN(t−1)(s|s⊟), (4.56)

where s⊟ is the sequence after truncating the last (newest) symbol of sequence s.

Theorem 11. Fix a non-degenerate symmetric binary-input DMC with channel
capacity C (4.10), maximum KL divergence C1 (4.11), maximum channel transition
probability pmax (4.33), and minimum channel transition probability pmin (4.34).
Fix a DSS with random arrivals that emits symbols S1, S2, . . . at a sequence of
random symbol arriving times τ1 < τ2 < . . . with entropy rate H > 0 (4.2) and
p̃S,max < 1. If the DSS with random arrivals satisfies
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(c) the symbol arriving times τ1, τ2, . . . are bounded: ∃ function h(·) : Z+ → Z+,
such that h(n) = o(n) and

τn ≤ n+ h(n), n = 1, 2, . . . ; (4.57)

(d) the entropy rate of the symbol arriving times is zero, i.e.,

lim
n→∞

H(τn)

n
= 0; (4.58)

(e) assumption (b′) in Remark 2 is satisfied with f ← 1, pS,max ← p̃S,max;

then, the JSCC reliability function for random streaming is equal to

Ẽ(R) = C1

(
1− H

C
R

)
, 0 < R <

C

H
. (4.59)

Proof sketch. The converse proof is in Appendix C.16: we show that converse
bounds on the JSCC reliability function for a fully accessible source apply to Ẽ(R).
The achievability proof is in Appendix C.17: we show that the detrimental effect on
the reliability function due to the randomness in the symbol arriving times vanishes
as the source length k →∞.

Assumptions (c)–(d) posit that the symbol arriving times of the DSS have limited
randomness. An example of such a source emits symbols as follows: among the
first n source symbols, n = 1, 2, . . . , there are h′(n) ≤ h(n) symbols that can
randomly select their symbol arriving times within h(n) time options, and the
remaining symbols arrive at deterministic times so that the n-th symbol arriving
time is bounded as (4.57). The symbol arriving times in the example satisfies (4.58),
see Appendix C.20. Such a source could appear in a time-slotted communication
scenario: a source emits packets with most packets arriving at the encoder at
deterministic times and a few packets arriving with random and bounded delays due
to system deficiencies.

Theorem 11 establishes that the JSCC reliability function for a DSS with random
symbol arriving times satisfying assumptions (c)–(e) is equal to that for a DSS
with deterministic symbol arriving times, i.e., Ẽ(R) = E(R). This means that even
though the decoder does not know the exact symbol arriving times, the instantaneous
SED code for random arrivals achieves Ẽ(R) (4.38) as if the decoder knew the
symbol arriving times.
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While the instantaneous SED code for random arrivals achieves Ẽ(R), in fact, any
coding strategy at times t = 1, 2, . . . , k + h(k) that satisfies (c.f. (4.41))

lim
k→∞

I
(
Sk;Y k+h(k)

)
k + h(k)

= C (4.60)

achieves Ẽ(R) when followed by the SED code. This is because plugging (4.60)
into (C.96) gives Ẽ(R) (4.59).

Relaxing assumption (c) and dropping assumptions (d)–(e) in Theorem 11, we
obtain an achievability bound on Ẽ(R).

Proposition 4. Fix a non-degenerate symmetric binary-input DMC with channel
capacity C (4.10) and maximum KL divergence C1 (4.11), and fix a DSS with
random arrivals that emits symbols S1, S2, . . . at a sequence of random symbol
arriving times τ1 < τ2 < . . . with entropy rate H > 0 (4.2). If the symbol arriving
times satisfies assumption (c) with the right side of (4.57) relaxed to E[τn] + h(n),
then, the JSCC reliability function for random streaming is lower bounded as

Ẽ(R) ≥ C1

(
1− lim sup

k→∞

(
H
(
Sk|Y E[τk]+h(k)

)
kC

+
E[τk]
k

)
R

)
, (4.61)

where Y1, Y2, . . . are the channel outputs in response to the channel inputs generated
by the encoder of the instantaneous SED code for random arrivals.

Proof. Appendix C.21.

In the setting of Proposition 4, a buffer-then-transmit code that idles the transmissions
at times t = 1, . . . , τk and operates as a code with block encoding at time t ≥ τk +1

only achieves (c.f. (4.39))

Ẽ(R) ≥ C1

(
1−

(
H

C
+ lim sup

k→∞

E[τk]
k

)
R

)
. (4.62)

The achievability bound in (4.61) is larger than or equal to the achievability bound
in (4.62) since Sk and Y E[τk]+h(k) are not independent. This means that in terms of
achievable error exponent, the instantaneous SED code for random arrivals performs
no worse than the best buffer-then-transmit code.
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4.7 Low-complexity codes with instantaneous encoding
We present the type-based algorithms for the instantaneous encoding phase in Sec-
tion 4.3, for the instantaneous SED code as an anytime code in Section 4.5, for
the instantaneous SED code restricted to transmit k symbols only in Section 4.5,
and for the instantaneous SED code for random arrivals in Section 4.6. The type-
based instantaneous encoding phase is the exact phase in Section 4.3, whereas the
type-based instantaneous SED codes (for random arrivals) are approximations of
the original codes in Sections 4.5 and 4.6. All the type-based algorithms for deter-
ministic arrivals have a log-linear complexity O(t log t) in time t. The type-based
instantaneous SED code for random arrivals has a polynomial complexityO(t2 log t)

in time t. The latter complexity is larger due to the decoder’s unawareness of the
random symbol arriving times.

We assume that the source symbols of the DSS are equiprobably distributed, i.e.,
the source distribution (4.1) satisfies

PSn|Sn−1(a|b) = 1

q
, (4.63)

for all a ∈ [q], b ∈ [q]n−1, n = 1, 2, . . .

In our type-based codes, the evolving source alphabet is judiciously divided into
disjoint sets that we call types, so that the source sequences in each type share
the same prior and the same posterior. Here, the same prior is guaranteed by the
equiprobably distributed symbols (4.63), and the same posterior is guaranteed by
moving a whole type to a group during the group partitioning process (see step
(iii) below). As a consequence of classifying source sequences into types, the prior
update, the group partitioning, and the posterior update can be implemented in terms
of types rather than individual source sequences, which results in an exponential
reduction of complexity.

We denote by S1,S2, . . . a sequence of types. We slightly abuse the notation
to denote by θSj

(Y t−1) and ρSj
(Y t) the prior and the posterior of a single source

sequence in type Sj at time t rather than the prior and the posterior of the whole type.
We fix a (q, {tn}∞n=1) DSS that satisfies (4.63) and fix a DMC with a single-letter
transition probability PY |X : X → Y .

Type-based instantaneous encoding phase
The type-based instantaneous encoding phase operates at times t = 1, 2, . . . , tk,
where k is the number of source symbols of a DSS that we aim to transmit.



103

(i) Type update: At each time t, the algorithm first updates the types. At t = 1, the
algorithm is initialized with one type S1 ≜ [q]N(1). At t = tn, n = 2, . . . , k, the al-
gorithm updates all the existing types by appending every sequence in [q]N(t)−N(t−1)

to every sequence in the type. After the update, the length of the source sequences in
each type is equal to N(t); the cardinality of each type is multiplied by qN(t)−N(t−1);
the total number of types remains unchanged. At t ̸= tn, n = 1, 2, . . . , k, the
algorithm does not update the types.

(ii) Prior update: Once the types are updated, the algorithm proceeds to update the
prior of the source sequences in each existing type. The prior θSj

(yt−1), j = 1, 2, . . .

of the source sequences in type Sj is fully determined by (4.22) with θi(y
t−1) ←

θSj
(yt−1), PSN(t)|SN(t−1)(·|·) ←

(
1
q

)N(t)−N(t−1)

, and ρiN(t−1)(yt−1) ← ρSj
(yt−1). If

the types are not updated, the priors are equal to the posteriors, i.e., θSj
(yt−1) ←

ρSj
(yt−1), j = 1, 2, . . .

(iii) Group partitioning: Using all the existing types and their priors, the algorithm
determines a partition {Gx(yt−1)}x∈X that satisfies the partitioning rule (4.24) via a
type-based greedy heuristic algorithm. It operates as follows. It initializes all the
groups {Gx(yt−1)}x∈X by empty sets and initializes the group priors {πx(y

t−1)}x∈X
by zeros. It forms a queue by sorting all the existing types according to priors
θSj

(yt−1), j = 1, 2, . . . in a descending order. It moves the types in the queue
one by one to one of the groups {Gx(yt−1)}x∈X . Before each move, it first deter-
mines a group Gx∗(yt−1) whose current prior πx∗(yt−1) has the largest gap to the
corresponding capacity-achieving probability P ∗

X(x
∗),

x∗ ≜ argmax
x∈X

P ∗
X(x)− πx(y

t−1). (4.64)

Suppose the first type in the sorted queue, i.e., the type whose sequences have the
largest prior, is Sj . It then proceeds to determine the number of sequences that are
moved from type Sj to group Gx∗(yt−1) by calculating

n ≜

⌈
P ∗
X(x

∗)− πx∗(yt−1)

θSj
(yt−1)

⌉
. (4.65)

If n ≥ |Sj|, then it moves the whole type Sj to group Gx∗(yt−1); otherwise, it
splits Sj into two types by keeping the smallest or the largest n consecutive1 (in
lexicographic order) sequences in Sj and transferring the rest into a new type, and

1This step ensures that all sequences in a type are consecutive. Thus, as we will discuss in the
last paragraph in Section 4.7, it is sufficient to store two sequences, one with the smallest and one
with the largest lexicographic orders, in a type to fully specify that type.
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it moves type Sj to group Gx∗(yt−1) and moves the new type to the beginning of the
queue. It updates the prior πx∗(yt−1) after each move.

(iv) Randomization: The type-based instantaneous encoding algorithm implements
the randomization in (4.25)–(4.30) with respect to a partition {Gx(yt−1)}x∈X .

(v) Posterior update: Upon receiving the channel output Yt = yt, the algorithm
updates the posterior of the source sequences in each existing type. The posterior
ρSj

(yt), j = 1, 2, . . . of the source sequences in type Sj is fully determined by
(4.32) with ρi(y

t)← ρSj
(yt), θi(yt−1)← θSj

(yt−1).

Using (4.65) and Appendix C.1, we conclude that the type-based greedy heuristic
algorithm ensures (4.24).

We show that the complexity of the type-based instantaneous encoding phase is log-
linear O(t log t) at times t = 1, 2, . . . , tk. We first show that the number of types
grows linearly, i.e., O(t). Since the type update in step (i) does not add new types,
the number of types increases only due to the split of types during group partitioning
in step (iii). At most |X | types are split at each time. This is because the ceiling in
(4.65) ensures that the group that receives the n sequences from a split type will have
a group prior no smaller than the corresponding capacity-achieving probability, thus
the group will no longer be the solution to the maximization problem (4.64) and
will not cause the split of other types. We proceed to analyze the complexity of each
step of the algorithm. Step (i) (type update) has a linear complexity in the number
of types, i.e., O(t). This is because the methods of updating and splitting a type in
steps (i) and (iii) ensure that the sequences in any type are consecutive, thus it is
sufficient to store the starting and the ending sequences in each type to fully specify
all the sequences in that type. As a result, updating a type is equivalent to updating
the starting and the ending sequences of that type. Step (ii) (prior update) and step
(v) (posterior update) have a linear complexity in the number of types, i.e., O(t).
Step (iii) (group partitioning) has a log-linear complexity in the number of types due
to type sorting, i.e., O(t log t). This is because the average complexity of sorting
a sequence of numbers is log-linear in the size of the sequence [103]. Step (iv)
(randomization) has complexity O(1) due to determining {px→x}x∈X (yt−1),x∈X (yt−1)

in (4.27)–(4.28).

Type-based instantaneous SED codes for deterministic arrivals
We present type-based codes for the anytime instantaneous SED code in Section 4.5
and for the instantaneous SED code restricted to transmit k symbols in Section 4.5,
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respectively.

The type-based anytime instantaneous SED code for a symmetric binary-input DMC
operates at times t = 1, 2, . . . :

(i′) Type update: At each time t, the algorithm updates types as in step (i) with
k =∞.

(ii′) Prior update: The algorithm updates the prior of the source sequences in each
existing type as in step (ii) with k =∞.

(iii′) Group partitioning: Using all the existing types and their priors, the algorithm
determines a partition {Gx(yt−1)}x∈{0,1} using an approximating instantaneous SED
rule that mimics the exact rule in (4.43)–(4.44) as follows. It forms a queue by sorting
all the existing types according to priors θSj

(yt−1), j = 1, 2, . . . in a descending
order. It moves the types in the queue one by one to G0(yt−1) until π0(y

t−1) ≥
P ∗
X(0) = 0.5 for the first time. Suppose the last type moved to G0(yt−1) is Sj . To

make the group priors more even, it then calculates the number of sequences n to
be moved away from Sj as

n ≜ argmin
n∈{n,n̄}

∣∣(π0(y
t−1)− nθSj

(yt−1)
)
−
(
π1(y

t−1) + nθSj
(yt−1)

)∣∣ , (4.66a)

n ≜

⌊
π0(y

t−1)− 0.5

θSj
(yt−1)

⌋
, (4.66b)

n̄ ≜

⌈
π0(y

t−1)− 0.5

θSj
(yt−1)

⌉
. (4.66c)

It splits Sj into two types by transferring the first or the last n (4.66a) lexicograph-
ically ordered sequences in Sj to a new type. It moves the new type and all the
remaining types in the queue to G1(yt−1).

(iv′) The randomization step in (iv) is dropped.

(v′) Posterior update: The algorithm updates the posteriors of the source sequences
in each existing type. The posterior ρSj

(yt), j = 1, 2, . . . , is fully determined by
(4.45) with ρi(y

t)← ρSj
(yt), θi(yt−1)← θSj

(yt−1).

(vi′) Decoding at time t: To decode the first k symbols at time t, where k can be
any integer that satisfies tk ≤ t, the algorithm first finds the type whose source
sequences have the largest posterior. Then, it searches for the most probable length-
k prefix in that type by relying on the fact that sequences in the same type share
the same posterior; thus, the prefix shared by the maximum number of sequences



106

is the most probable one. Namely, the algorithm extracts the length-k prefixes of
the starting and the ending sequences, denoted by ikstart and ikend, respectively. If
ikstart = ikend (Fig. 4.8-a), then the decoder outputs Ŝk

t = ikstart. If ikstart and ikend are
not lexicographically consecutive (Fig. 4.8-b), then the decoder outputs a length-k
prefix in between the two prefixes. If ikstart and ikend are lexicographically consecutive
(Fig. 4.8-c), then the algorithm computes the number of sequences in the type that
have prefix ikstart and the number of sequences in the type that have prefix ikend using
the last N(t) − k symbols of the starting and the ending sequences; the decoder
outputs the prefix that is shared by more source sequences.

000
000
...
000

0010000
0010001

...
0110000

000
000
001

1111110
1111111
0000000

... ...
001 1111111
010 0000000

010
010
011

1111110
1111111
0000000

011 0000001
011 0000010

(a) (b) (c)

Figure 4.8: Tables (a), (b), (c) represent three types at time t. Each row represents a
source sequence in the type. The first row and the last row in each type represent the
starting sequence and the ending sequence in that type, respectively. The first column
represents the length-k prefix of sequences in the type. The source sequences in a
type are lexicographically consecutive due to the methods of updating and splitting
a type in steps (i′) and (iii′). In (a), since ikstart = ikend = 000, the most probable
sequence is 000. In (b), since ikstart = 000 and ikend = 010 are not lexicographically
consecutive, the most probable prefix is 001. In (c), since ikstart = 010 and ikend = 011
are lexicographically consecutive, the number of sequences with prefix ikstart can be
computed by subtracting 1111110, the lastN(t)−k symbols of the starting sequence,
from 1111111 and adding 1; the number of sequences with prefix ikend is equal to
the last N(t) − k symbols of the ending sequence plus 1. Since (c) contains more
sequences with prefix 011, this is the most probable prefix.

We proceed to show that the complexity of the type-based anytime instantaneous
SED code is O(t log t). Similar to the type-based instantaneous encoding phase in
Section 4.7, the number of types grows linearly with time t since the number of
types increases only if a type is split in step (iii′), and at most 1 type is split at each
time t. The complexities of steps (i′), (ii′), (v′) are all linear in the number of types
O(t) due to the discussion at the end of Section 4.7. The complexity of step (iii′)
is log-linear in the number of types O(t log t) due to sorting the types. Since the
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sequences in a type are lexicographically consecutive due to the updating and the
splitting methods in steps (i′) and (iii′), it suffices to use the starting and the ending
sequences in a type to determine the most probable prefix in that type. Thus, the
complexity of step (vi′) is linear in the number of types due to searching for the type
whose sequences have the largest posterior.

Restricting the type-based anytime instantaneous SED code described above to
transmit only the first k symbols of a DSS is equivalent to implementing steps (i),
(ii), (iii′), (v) one by one, and performing decoding as follows.

(vi′′) Decoding and stopping: If there exists a type Sj that satisfies ρSj
(yt) ≥ 1− ϵ

and contains a source sequence of length k, then the decoder stops and outputs a
sequence in that type as the estimate Ŝk

ηk
.

The complexity of the type-based instantaneous SED code for transmittingk symbols
remains log-linear, O(t log t), since the complexity of step (vi′′) is O(t) due to
searching for the type that satisfies the requirements.

While the type-based instantaneous encoding phase in Section 4.7 is the exact
algorithm of the instantaneous encoding phase in Section 4.3, the type-based anytime
instantaneous SED code and the type-based instantaneous SED code for transmitting
k symbols are approximations of the original algorithms in Sections 4.5 and 4.5 due
to two reasons below:

First, in step (iii′) (group partitioning), we use the approximating instantaneous SED
rule to mimic the exact rule in (4.43)–(4.44). The minimum of the objective function
in (4.66a) is equal to the difference |π0(y

t−1)− π1(y
t−1)| between the group priors

of the partition {Gx(yt−1)}x∈{0,1} obtained by the approximating rule in step (iii′).
The difference is upper bounded as (Appendix C.14)

|π0(y
t−1)− π1(y

t−1)| ≤ θSj
(yt−1), (4.67)

where Sj is the last type moved to G0(yt−1) so that its group prior exceeds 0.5 for
the first time. If π0(y

t−1) ≥ π1(y
t−1), (4.67) recovers (4.44) since θSj

(yt−1) is the
smallest prior in G0(yt−1), thus the approximating instantaneous SED rule recovers
the exact rule. If π0(y

t−1) < π1(y
t−1), θSj

(yt−1) on the right side of (4.67) is the
largest prior in G1(yt−1), violating the right side of (4.44).

We use the approximating algorithm of the instantaneous SED rule (4.43)–(4.44)
since it is unclear how to implement the exact instantaneous SED rule with polyno-
mial complexity. In the worst case, the complexity of the latter is as high as double
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exponential O
(
2q

N(t)
)

due to solving a minimization problem via an exhaustive
search [45, Algorithm 1]. An exact algorithm for the SED rule with exponential
complexity in the source length is given by [45, Algorithm 2].

Second, in step (vi′) (decoding at time t) of the type-based anytime instantaneous
SED code, we only find the most likely length-k prefix in the type that achieves
maxj ρSj

(yt), yet it is possible that this prefix is not the one that has the globally
largest posterior (4.46). To search for the most probable length-k prefix, one needs to
compute the posteriors for all qk prefixes of length k usingO(t) types, resulting in an
exponential complexity O(qkt) in the length of the prefix k, whereas the complexity
of step (vi′) is only O(t) independent of k.

Although the type-based instantaneous SED code is an approximation, as we are
about to see in Fig. 4.10 Section 4.8, it is almost as good as the exact code.

Type-based instantaneous SED code for random arrivals
We generalize the type-based instantaneous SED code for deterministic arrivals in
Section 4.7 to random arrivals. We assume that a DSS with random arrivals emits
a sequence of equiprobable bits Sn ∈ {0, 1}, n = 1, 2, . . . following a Bernoulli-δ
process2, i.e., ∀b ∈ {0, 1}, s ∈ Qt,

PS1(0) = PS1(1) = 0.5, (4.68a)

PSN(t+1)|SN(t)(s⊞ b|s) = δ

2
, t ≥ 1. (4.68b)

We call a binary sequence s1 the parent of a binary sequence s2 if s1 = s2⊟, and
call a type Si the parent of a type Sj if all the parents of the strings in Sj are in Si.
We denote by p(j) the index of the parent of Sj , e.g., p(j) = i.

The type-based code for random arrivals differs from the type-based codes for
deterministic arrivals in that it creates new types at each time while keeping the
parent types. The type-based codes for deterministic arrivals in Section 4.7 need
not introduce the concept of parent types since the deterministic symbol arriving
times imply that the lengths of all the source sequences at time t are the same.

The type-based instantaneous SED code for random arrivals operates at time t =

1, 2, . . . as follows.
2The symbol arriving probability distribution must satisfy that PSN(t+1)|SN(t)(s ⊞ 0|s) =

PSN(t+1)|SN(t)(s ⊞ 1|s), otherwise, the binary sequences in a type will not share the same prior
probability. The type-based instantaneous SED code continues to apply if δ in (4.68) is time-varying
and/or has memory.
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(i′′′) Update types: At t = 1, the encoder and the decoder create two types S1 ≜ {0},
S2 ≜ {1}. At t ≥ 2, each type created at time t−1 generates a new type by appending
a 0 and a 1 to every binary sequence in that type, and the types that have already
been created by time t − 1 are kept. If the goal is to transmit the first k symbols
only, then the algorithm stops creating new types at times t ≥ k + 1; otherwise, the
algorithm keeps creating new types at each time t.

(ii′′′) Prior update: Once the types are updated, the algorithm proceeds to update
the prior of the binary sequences in each existing type. The prior θSi

(yt−1) (4.55),
i = 1, 2, . . . is fully determined by ρSi

(yt−1), ρSp(i)
(yt−1) and the symbol arrival

probability distribution (4.68).

(iii′′′) Group partitioning: The algorithm implements the approximating instanta-
neous SED rule in step (iii′). Note that the types whose parent type is split may have
two parents. To ensure that each type has one valid parent, we recursively search
for the types whose binary sequences have parents from more than one type and
split them accordingly. This guarantees that the posterior ρp(k)(t), k = 1, 2, . . . ,
t = 1, 2, . . . is deterministic.

(iv′′′) Updating posteriors: The posterior ρSi
(yt) (4.45), i = 1, 2, . . . is fully deter-

mined by θSi
(yt−1), the channel transition probability, Yt = yt, and the group priors

{πx(y
t−1)}x∈{0,1}.

(v′′′) The randomization step is dropped.

(vi′′′) Decoding: The algorithm implements step (vi′) as an anytime code, or it
implements step (vi′′) for transmitting k symbols.

For a BSC, a heuristic analysis in Appendix C.15 shows that the number of types
at time t is O(t2). Since steps (i′′′)(ii′′′)(iv′′′)(vi′′′) have a linear complexity in the
number of types, i.e.,O(t2), and step (iii′′′) has a log-linear complexity in the number
of types, i.e., O(t2 log t), the complexity of the type-based instantaneous SED code
for random arrivals is O(t2 log t).

Similar to the type-based instantaneous SED code for deterministic arrivals, the
type-based instantaneous SED code for random arrivals is an approximation of
the original code in Section 4.6 due to the use of the approximating instantaneous
SED rule in step (iii′′′). Yet, Fig. 4.11 below shows that the rate gap between the
instantaneous SED code for random arrivals and its corresponding type-based code
is negligible.
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4.8 Simulations
Fig. 4.9 shows the performance of our new instantaneous encoding schemes. Namely,
we fix an error probability ϵ = 10−6, a BSC(0.05), and a DSS that emits i.i.d. Bernoulli

(
1
2

)
bits one by one at consecutive times. We display the rate Rk ≜ k

E[ηk]
as a function of

source length k empirically attained by the instantaneous encoding phase followed
by the SED code [45, Algorithm 2] and the instantaneous SED code in Section 4.5,
and we compare achievable rates to that of the SED code for a fully accessible
source, as well as to that of a buffer-then-transmit code that implements the SED
code during the block encoding phase. We also plot the rate Rk obtained from the
reliability function approximation (4.17):

E(Rk) ≃
Rk

k
log

1

ϵ
. (4.69)

Due to the discussions in the proof sketch of Theorem 9, the instantaneous encoding
phase followed either by the MaxEJS code or by the SED code achieves the JSCC
reliability function for streaming (4.38). For the simulations in Fig. 4.9, we choose
the SED code since it applies to a BSC and its complexity, exponential in the source
length, is lower than the double-exponential complexity of the MaxEJS code. To
obtain the empirical rate in Fig. 4.9, at each source length k, we run the experiments
for every code for 105 trials, and we obtain the denominator E[ηk] of the empirical
rate by averaging the stopping times in all the experiments.

We observe from Fig. 4.9 that the achievable rate of the instantaneous encoding
phase followed by the SED code is significantly larger than that of the buffer-then-
transmit code, and approaches that of the SED code as k increases even though
the SED encoder knows the entire source sequence before the transmission. The
instantaneous SED code demonstrates an even better performance: it is essentially
as good as the SED code. The rate obtained from reliability function approximation
(4.69) is remarkably close to the empirical achievable rates of our codes with instan-
taneous encoding even for very short source length k ≃ 16. For example, at k = 16,
the rate obtained from approximation (4.69) is 0.58 (symbols per channel use) and
the empirical rate of the instantaneous SED code is 0.59 (symbols per channel use).
This means that the reliability function (4.17), an inherently asymptotic notion,
accurately reflects the delay-reliability tradeoffs attained by the JSCC reliability
function-achieving codes in the ultra-short blocklength regime. The achievable rate
corresponding to the buffer-then-transmit code is limited by (4.39).

Fig. 4.10 shows the performance of the type-based instantaneous SED code. We
fix an error probability ϵ = 10−6 (4.15), a BSC(p) with p = 0.05, 0.03, 0.01, and a
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Figure 4.9: Rate Rk (symbols per channel use) vs. source length k. The error
probability is constrained by ϵ = 10−6 (4.15). The DMC is a BSC(0.05). Naghshvar
et al.’s SED code [45, Algorithm 2] operates on a fully accessible block Sk of
independent Bernoulli

(
1
2

)
bits. The instantaneous encoding phase followed by the

SED code, the instantaneous SED code, and the buffer-then-transmit code operate
on k i.i.d. Bernoulli

(
1
2

)
source bits emitted one by one at times t = 1, 2, . . . , k. The

curves are displayed for the range of k’s where the complexities of the SED code
and the instantaneous SED code are not prohibitive.

DSS that emits i.i.d. Bernoulli
(
1
2

)
bits one by one at consecutive times. We plot rate

Rk =
k

E[ηk]
as a function of source length k empirically achieved by the instantaneous

SED code in Section 4.5 and its corresponding type-based code in Section 4.7, as
well as the rate obtained from the reliability function approximation (4.69). At
each source length k, we run the experiments using the same method as in Fig. 4.9.
The rate gap between the instantaneous SED code and the type-based instantaneous
SED code is negligible, meaning that the type-based instantaneous SED code with
only log-linear complexity is a good approximation to the exact code in Section 4.5.
Furthermore, it is interesting to see that even though the DSS has symbol arriving
rate f = 1 symbol per channel use, which is far less than that required in assumption
(b′), the achievable rates of the instantaneous SED code stay very close to the rates
obtained from the reliability function approximation. This suggests that assumption
(b′) on the symbol arriving rate, sufficient for the instantaneous SED code to achieve
E(R), could be conservative.

Fig. 4.11 shows the performance of the type-based instantaneous SED code for
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Figure 4.10: Rate Rk (symbols per channel use) vs. source length k. The error
probability is constrained by ϵ = 10−6 (4.15). The type-based instantaneous SED
code in Section 4.7 and the instantaneous SED code in Section 4.5 operate on k
i.i.d. Bernoulli

(
1
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)
source bits emitted one by one at times t = 1, 2, . . . , k.

random arrivals. We fix an error probability ϵ = 10−3, a BSC(0.02), a DSS that
emits i.i.d. Bernoulli

(
1
2

)
bits one by one at consecutive times, and a DSS with

random arrivals that emits i.i.d. Bernoulli
(
1
2

)
bits following (4.68) with δ = 0.98,

i.e., it emits a new bit with probability 0.98 at each time t. The achievable rates
of the instantaneous SED code for random arrivals and the achievable rates of its
corresponding type-based code have a negligible gap, meaning that the type-based
code for random arrivals with only a polynomial complexity is a good approximation
of the original code. The achievable rates for the DSS with random arrivals are
smaller than those for the DSS with deterministic and consecutive symbol arriving
times. This suggests that the instantaneous SED code for random arrivals might
not incorporate enough information in the random arriving times into its channel
inputs, and that the JSCC reliability function for random arrivals could depend
on the distribution for the random arriving times. Nevertheless, the instantaneous
SED codes for both deterministic and random arrivals significantly outperform the
buffer-then-transmit codes.
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Figure 4.11: Rate Rk (symbols per channel use) vs. source length k. The error
probability is constrained by ϵ = 10−3 (4.15). The type-based instantaneous SED
code in Section 4.7 and the instantaneous SED code in Section 4.5 operate on k
i.i.d. Bernoulli

(
1
2

)
source bits emitted one by one at times t = 1, 2, . . . , k. The type-

base instantaneous SED code for random arrivals in Section 4.7 and the instantaneous
SED code for random arrivals in Section 4.6 operate on k i.i.d. Bernoulli

(
1
2

)
source

bits emitted according to (4.68) with δ = 0.98. A buffer-then-transmit code starts
to implement the SED code [45] right after the arrival of the k-th bit.

4.9 Streaming over a degenerate DMC with zero error
In this section, we propose a code with instantaneous encoding for a degenerate DMC
(4.9) that achieves zero decoding error at any rate asymptotically below C

H
. Here,

our code does not exactly follow Definition 20 since it generalizes the code with
instantaneous encoding in Definition 20 by allowing common randomness U ∈ U ,
which is a random variable that is revealed to the encoder and the decoder before
the transmission. With common randomness U , the encoder ft (4.12) can use U to
form Xt, and the decoder gt (4.13) can use U to decide the stopping time ηk and the
estimate Ŝk

ηk
. We refer to such a code as a ⟨k,R, ϵ⟩ code with instantaneous encoding

and common randomness if it achieves rateR (4.14) and error probability ϵ (4.15) for
transmitting k symbols of a DSS. Common randomness is widely used to specify
a random codebook in the scenario where multiple constraints on expectations
of quantities that depend on the codebook must be satisfied simultaneously and
where Shannon’s probabilistic method is not sufficient to claim the existence of a
deterministic codebook satisfying all constraints, e.g., [43][41][87][104]. Since for
a fixed k, we seek to satisfy two constraints, on the rate and on the error probability,



114

the cardinality of U can be restricted as |U| ≤ 2 (Appendix C.22).

Theorem 12, stated next, establishes the existence of zero-error codes for the trans-
mission over a degenerate DMC at any rate asymptotically below C

H
.

Theorem 12. Fix a degenerate DMC with capacity C (4.10), fix a (q, {tn}∞n=1) DSS
with entropy entropy rate H > 0 (4.2) satisfying assumptions (a)–(b) in Theorem 9,
and fix any R < C

H
. There exists a sequence of ⟨k,Rk, 0⟩ codes with instantaneous

encoding and common randomness that satisfies

lim
k→∞

Rk = R. (4.70)

Proof sketch. Our zero-error code for degenerate DMCs extends Burnashev’s scheme
[40, Sec. 6] to JSCC and to streaming sources: to achieve Shannon’s JSCC limit C

H
,

a Shannon limit-achieving code is used in the first communication phase to compress
the source; to transmit streaming sources, we combine an instantaneous encoding
phase that satisfies (4.41) with a Shannon limit-achieving block encoding scheme
to form a Shannon limit-achieving instantaneous encoding scheme. To achieve zero
error, we employ confirmation phases similar to those in Burnashev’s scheme [40].
We say that a ⟨k,R, ϵk⟩ code with instantaneous encoding and common randomness
achieves Shannon’s JSCC limit C

H
if for all R < C

H
, a sequence of such codes in-

dexed by k satisfies ϵk → 0 as k →∞. Our zero-error code includes such Shannon
limit-achieving codes as a building block. Note that in contrast to the discussions
in Sections 4.4–4.5 focused on the exponential rate of decay of ϵk to 0 (4.17) over
non-degenerate DMCs, here merely having ϵk decrease to 0 suffices. The following
argument shows the existence of such codes for the class of channels that includes
both non-degenerate and degenerate DMCs.

We employ the joint source-channel code in [104, Theorem 2] due to the simplicity
of the error analysis it affords. The code in [104, Theorem 2] is a ⟨k,R, ϵk⟩ Shannon
limit-achieving code with block encoding and common randomness because its
expected decoding time to attain error probability ϵ is upper bounded as (C.30) in
Appendix C.7 withC1 ← C [104, Eq. (16)], implying that it achieves a positive error
exponent that is equal to (4.38) with C1 ← C for all R < C

H
. The block encoding

scheme in [104, Theorem 2] is a stop-feedback code, meaning that the encoder uses
channel feedback only to decide whether to stop the transmission but not to form
channel inputs. If the DSS has an infinite symbol arriving rate f = ∞ (4.5), a
buffer-then-transmit code using the block encoding scheme in [104, Theorem 2]
achieves the Shannon limit since it achieves the same error exponent as the code in
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[104, Theorem 2]. To see this, one can simply invoke (C.30) in Lemma 20 with
C1 ← C and follow the proofs in Appendix C.8. By the same token, if the DSS has
a finite symbol arriving rate f < ∞ (4.5), a code implementing an instantaneous
encoding phase that satisfies (4.41) followed by the block encoding scheme in [104,
Theorem 2] for k source symbols with prior PSk|Y tk achieves the Shannon limit with
the same error exponent as the code in [104, Theorem 2].

Our zero-error code with instantaneous encoding and common randomness for
transmitting k symbols over a degenerate DMC operates as follows (details in Ap-
pendix C.23). Similar to [40]–[44], [87], our code is divided into blocks. Each
block contains a communication phase and a confirmation phase. In the first block,
the communication phase uses a ⟨k,R, ϵk⟩ Shannon limit-achieving code with in-
stantaneous encoding and common randomness. The confirmation phase selects
two symbols x (4.9a) and x′ (4.9b) as the channel inputs (i.e., x′ never leads to
channel output y); the encoder repeatedly transmits x if the decoder’s estimate of
the source sequence at the end of the communication phase is correct, and transmits
x′ otherwise. If the decoder receives a y in the confirmation phase, meaning that
the encoder communicated its knowledge that the decoder’s estimate is correct with
zero error, then it outputs its estimate, otherwise, the next block is transmitted. The
ℓ-th block, ℓ ≥ 2, differs from the first block in that it does not compress the source
to avoid errors due to an atypical source realization and in that it uses random coding
whereas the first block can employ any Shannon-limit achieving code.

We proceed to discuss the error and the rate achievable by our code (details in
Appendix C.23).

Our code achieves zero error by employing confirmation phases that rely on the
degenerate nature of the channel: receiving a y in the confirmation phase guarantees
a correct estimate.

Our code achieves all rates asymptotically below C
H

because 1) the first block employs
a Shannon limit-achieving code in the communication phase, 2) the length of the
confirmation phase is made negligible compared to the length of the communication
phase as the source length k → ∞, meaning that the length of the first block
asymptotically equals the length of its communication phase, and 3) subsequent
blocks asymptotically do not incur a penalty on rate, as we discuss next. Since
the length of each block is comparable to the length of the first block, it is enough
to show that the expected number of blocks Tk transmitted after the first block
converges to zero. The refreshing of random codebook for all uncompressed source
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sequences in every block after the first block ensures that the channel output vectors
in these subsequent blocks are i.i.d. and are independent of the channel outputs in
the first block. Conditioned on Tk > 0, the i.i.d. vectors give rise to a geometric
distribution of Tk with failure probability converging to 0, which implies E[Tk]→ 0

as k →∞.

A stop-feedback code with block encoding that retransmits blocks with the overall
rate asymptotically equal to the rate of the first block is also used by Forney [105,
p. 213] for deriving a lower bound on the reliability function of a DMC.

4.10 Conclusion
We have derived the reliability function for transmitting a discrete streaming source
over a DMC with feedback using variable-length joint source-channel coding with
instantaneous encoding under regularity conditions (Theorem 9). Since a classical
fully accessible DS is a special DSS (see (4.3)), Theorem 9 extends Burnashev’s
reliability function to the classical JSCC scenario with block encoding, as well as to
a streaming scenario. The most surprising observation is that the JSCC reliability
function for a streaming source is equal to that for a fully accessible source. A naive
buffer-then-transmit code that idles the transmission during the symbol arriving
period does not achieve the JSCC reliability function for a non-trivial streaming
source (see (4.39)). To achieve the JSCC reliability function for such sources, we
have proposed a novel instantaneous encoding phase (Section 4.3). We have shown
that preceding a JSCC reliability function-achieving code with block encoding,
e.g., the MaxEJS code or the SED code [45], by our instantaneous encoding phase
(Section 4.3) will make it overcome the detrimental effect due to the streaming nature
of the source and make it achieve the same error exponent as if the encoder knew
the entire source sequence before the transmission. The instantaneous encoding
phase (Section 4.3) achieves the JSCC reliability function because it satisfies the
sufficient condition (4.41) on the statistics of the encoder outputs during the symbol
arriving period, for example, the instantaneous encoding phase continues to achieve
the sufficient condition (4.41) after it drops the randomization step, but at a cost
of increasing the threshold for the symbol arriving rate (Remark 2). While our
JSCC reliability function-achieving codes are designed to transmit k symbols of
a streaming source and stop, we have also designed an instantaneous SED code
(Section 4.5) that can choose the decoding time and the number of symbols to
decode on the fly. It empirically attains a positive anytime reliability (Fig. 4.6),
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thus it can be used to stabilize an unstable scalar linear system with a bounded
noise over a noisy channel. A sequence of such codes indexed by the source length
to decode also achieves the JSCC reliability function for streaming in the limit
of large source length (Theorem 12). Furthermore, the instantaneous SED code
can also be used to transmit source symbols with random symbol arriving times
that are unknown to the decoder. For a DSS whose symbol arriving times have
limited randomness, we derive the JSCC reliability function for random streaming
(Theorem 11) using the instantaneous SED code. It is equal to the JSCC reliability
function for deterministic streaming, meaning that the instantaneous SED code
performs as if the decoder knew the random times. For practical implementations,
we have designed type-based algorithms for the instantaneous encoding phase and
the instantaneous SED code (Section 4.7) with a log-linear complexity, and we have
designed a type-based algorithm for the instantaneous SED code for random arrivals
(Section 4.6) with a polynomial complexity. While the codes that achieve the JSCC
reliability function are designed for non-degenerate DMCs, we have also designed
zero-error codes with instantaneous encoding for degenerate DMCs (Section 4.9),
extending Burnashev’s zero-error channel code to the JSCC and to the streaming
scenarios.

4.11 Future research directions
Based on the findings in Sections 4.2–4.9, we list several interesting directions for
future research.

JSCC reliability function for a wider class of channels
It would be interesting to find the JSCC reliability function for a wider class of
channels.

Converse: As we have discussed in the converse proof of Theorem 9 (Appendix C.3),
converse bounds on the JSCC reliability function for a fully accessible source
continue to hold for the JSCC reliability function for a streaming source. This
observation simplifies the converse proof. If the reliability function does not exist
(e.g., AWGN channels), one can still use the achievable error probability of a block
encoding scheme as the baseline (e.g., Schalkwijk-Kailath (S-K)’s scheme [38]
for AWGN channels) and compare the error probability of a proposed code with
instantaneous encoding scheme with the baseline.

Achievability: One can design a code with instantaneous encoding for an AWGN
channel by transmitting the process innovation scaled to satisfy a power constraint
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at each time. Alternatively, discretizing the channel input of an AWGN channel, one
can construct a code with instantaneous encoding by implementing the instantaneous
encoding phase during the symbol arriving period 1, 2, . . . , tk and a modified S-K’s
[38] block encoding scheme for transmitting k source symbols with prior PSk|Y tk

after the symbol arriving period. The modification is to establish a pulse-amplitude
modulation with non-uniform gaps in the first step according to source prior PSk|Y tk ,
so that the amplitudes achieve the minimum error while satisfying a power constraint.

JSCC reliability function for a wider class of streaming sources
It would be interesting to find the JSCC reliability function for a wider class of
streaming sources.

1) One can try to find the JSCC reliability function for streaming symbols whose
symbol alphabet size q = ∞. Our current analysis is not compatible with such
streaming symbols since we make use of the fact log q

H
< ∞ both in (C.12) and

in showing that the right side of (C.33) is equal to (C.30). For symbol alphabet
size q = ∞, the group partitioning complexity (4.24) of using the greedy heuristic
algorithm (Appendix C.1) becomes infinite. It might be helpful to map every source
sequence in the source alphabet to a real number, and leverage a partitioning rule
similar to Horstein’s scheme [37] to partition an interval on the real line into |X |
disjoint sub-intervals.

2) One can try to relax assumption (b) on the symbol arriving rate of the streaming
source. While (4.40) gives a converse bound on the symbol arriving rate and (4.37)
guarantees achievability of E(R) (4.38), the existence of a critical symbol arriving
rate fcr such that for all f > fcr, E(R) (4.38) is achievable, and for all f < fcr,
E(R) (4.38) is not achievable, remains open. While E(R) (4.38) is not a function
of f , it is conceivable that for f < fcr, the reliability function (4.17) will depend
on f . This is reminiscent of the channel reliability function for transmitting over a
DMC without feedback via a fixed-length block code, which is known only for rates
greater than a critical value where its converse bound (sphere-packing exponent
[106]) coincides with its achievability bound (random-coding exponent [107]).

Our current method prevents us to relax the threshold in assumption (b) to C
H

. The
key to close the gap is to show that the logarithm of the numerator in (C.52a) can
be upper bounded by H(Y |X) in probability. Yet, in the current proof, we upper
bound it by log 1

pmax
to show that the source prior θSN(t)(Y t−1) converges to zero in

probability during the symbol arriving period. There is hope to close the gap since if
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we think inversely, i.e., given that the source prior converges to zero in probability, the
partitioning rule (4.24) drives the randomization probability PXt|Zt,Y t−1(x|x, Y t−1)

to 1 for any x ∈ X , and the logarithm of the numerator converges in probability to
H(Y |X). The difficulty of showing a sharper bound lies in the intermixed relation
between the randomization distribution and the source prior: the convergence of the
randomization distribution PXt|Zt,Y t−1 relies on the convergence of the source prior
while it in turn dominates whether the source prior converges (see (C.52a)). One
needs other tools to analyze the instantaneous encoding phase or needs a judicious
modification to the instantaneous encoding phase.

Low-complexity code for non-equiprobable symbols
While our type-based codes (Section 4.7) are designed for equiprobable symbols, it is
practically important to design low-complexity instantaneous encoding schemes for
a wider class of streaming sources. Type-based codes in Section 4.7 are suboptimal
for non-equiprobable symbols because the source sequences in a type will no longer
have the same prior after the code appends every symbol in [q] to every source
sequence in a type. As a suboptimal method, for symbols with a non-uniform
distribution on the alphabet [q], the encoder and the decoder can ignore the true
symbol distribution and assume that the symbols are equiprobable.

Analytical proof for an anytime code
It would be interesting to prove that the instantaneous SED code is an anytime code
analytically. It is difficult to extend our analysis for E(R) (4.38) to show that the
instantaneous SED code satisfies (4.18). The submartingales in [40][45] used to
compute the upper bound on the expected decoding time for a block encoding scheme
to attain a target error probability fail to hold if the encoder keeps incorporating
newly arrived symbols after time tk. Therefore, we cannot directly use Lemma 20
in Appendix C.7 to upper bound the expected decoding time, and different tools are
needed to analyze the anytime reliability.

Reliability function for lossy JSCC of streaming sources
While we focus on almost lossless coding, it would be interesting to derive the JSCC
reliability function for transmitting a streaming source using a variable-length lossy
joint source-channel code over a DMC with feedback. Truong and Tan [87] showed
such a reliability function (a.k.a. excess-distortion exponent) for a fully accessible
and memoryless discrete source at an average rate of 1 symbol per channel use.
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The reliability function can be easily extended to R symbols per channel use by
modifying the length of each confirmation phase in Truong and Tan’s code [87] to
k
R
− kR(D)

C
:

Eexcess(D,R) = C1

(
1− R(D)

C
R

)
, (4.71)

where D is the distortion level, R(D) is the distortion-rate function, and R is the
rate.

To extend (4.71) to our streaming scenario, we first notice that (4.71) serves as
a converse bound. As for achievability, one can try to design an instantaneous
encoding phase that achieves the converse bound (4.71) when followed by a relia-
bility function-achieving lossy block encoding scheme. Inspired by the underlying
principle (4.41) and the achievability proof in Appendix C.9, we conjecture that an
appropriate instantaneous encoding phase should judiciously shape the joint proba-
bility distribution of the source symbols Sk and the channel outputs Y tk during the
symbol arriving period, so that

1) after the symbol arriving period, R(D) for the source distribution PSk|Y tk

decreases compared to that for the initial source distribution PSk ;

2) the decreased amount exactly compensates the detrimental effect due to sym-
bol arriving time tk as k →∞.

Streaming with limited feedback
While we assume that the encoder receives full feedback at each time in Sections 4.2–
4.7, it is practically important to design good codes with instantaneous encoding
over a DMC with limited feedback. Example 1: One can consider that the feedback
link is used every d times, i.e., the encoder only knows the channel output vector
{Yt}(m+1)d

t=md+1 at time (m+ 1)d+ 1, m = 0, 1, 2, . . . We conjecture that for small d, a
good code with instantaneous encoding acts similarly to a code with full feedback
at each time, except that the encoder tries to 1) align its belief with decoder’s
belief by guessing the channel output via the channel transition probability when
the feedback is unavailable, and 2) re-synchronize its belief with decoder’s belief
when the feedback is available. We conjecture that for large d, a good code with
instantaneous encoding acts similarly to block encoding schemes.

Example 2: One can consider a scenario where the decoder is only allowed to
feedback a symbol Y ′

t from alphabet Y ′ at each time, and the size of Y ′ is smaller
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than the size of the channel output’s alphabet |Y ′| < |Y|. If |Y ′| = 2, the feedback
is often known as the ACK/NACK feedback. Allowing the encoder to know the
probability distribution PY ′

t |Yt of transmitting Y ′
t given the true channel output Yt,

one can optimize the probability distributionPY ′
t |Yt to minimize the error probability.

Example 3: One can also consider a scenario where the decoder can choose the
feedback times online, so that the error probability can be minimized with the
minimum number of feedback times. We conjecture that the decoder chooses to
feedback when it becomes uncertain about the source, in other words, a feedback
occurs if the entropy of the source posterior is larger than a threshold.

Streaming with bounded memory
It would be interesting to see whether a code with bounded memory can attain
the JSCC reliability function for streaming. To implement our type-based codes,
both the encoder and the decoder need to keep track of all the types by storing
the starting and the ending sequences in each type. Thus, the required memory
size grows linearly with time. The linear growth in memory size is practical for
transmitting a finite and fixed number of streaming symbols (Sections 4.3, 4.4, 4.5)
as the memory size remains bounded. Yet, it leads to an unbounded memory size if
the number of streaming symbols to decode is infinite. Since memory is a limited
resource, it is practically important to design an instantaneous encoding scheme with
bounded memory for transmitting an infinite number of streaming symbols. To do
so, one can constantly discard types with very low posteriors and only keep the most
likely types. Alternatively, one can use the sliding window technique developed
for transmitting streaming data without feedback [53, 57, 90]: At each time t, the
encoder only transmits symbols within a window of a fixed length, and the window
keeps dropping old symbols and incorporating fresh symbols with time.



122

C h a p t e r 5

CONCLUSION

This thesis exploits an encoding method known as causal encoding, critical for trans-
mitting streaming data in real-time communication scenarios such as remote tracking
and distributed control. While classical non-causal (block) encoding schemes intro-
duce communication delay due to buffering the streaming data into a block before
the transmission, causal encoding transmits information based on the causally re-
ceived data while the data is still streaming in, circumventing the undesirable delay.
Causal encoding is investigated in three operational scenarios: causal frequency-
constrained sampling, causal rate-constrained sampling (compression), and causal
joint source-channel coding with feedback. In these operational scenarios of causal
encoding, we derive the fundamental limits, namely, the distortion-frequency func-
tion, the distortion-rate function, and the JSCC reliability function for streaming.
We design causal encoding schemes that achieve the limits, apply to control systems,
adapt to system deficiencies such as delay and noise, and have low complexities. Our
causal encoding schemes demonstrate surprisingly good performance. For example,
in causal compressing of the Wiener process, we show that the distortion achieved
by our SOI code is even smaller than the distortion achieved by the best non-causal
code due to the leverage of free timing information. Timing information, rarely
used in the design of classical non-causal encoding schemes, is commonly available
in real-time systems. It opens the door to designing causal codes that outperform
the best non-causal codes. Even not using the timing information, in causal JSCC
with feedback, we show that the JSCC reliability function for a streaming source
is equal to the JSCC reliability function for a fully accessible source. Our find-
ings suggest that causal encoding can save communication time without sacrificing
communication fidelity. It is conceivable that causal encoding will become one
promising method to satisfy the ever-growing demand for ultra-reliable low latency
communications in the near future.
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A p p e n d i x A

CAUSAL FREQUENCY-CONSTRAINED SAMPLING: PROOFS

A.1 Sufficient condition for (S.2)
Before we show the sufficient condition in Proposition 5 below, we first characterize
the causal sampling policy in Definition 1.

Any causal sampling policy in Definition 1 can be characterized by a set-valued
process we term sampling-decision process. It is a BR-valued process {Pt}Tt=0

adapted to {Ft}Tt=0, which decides the stopping times

τi+1 = inf{t ≥ τi : X̃t /∈ Pt}, (A.1)

where the mean-square residual error process {X̃t}Tt=0 in (A.1) is defined as

X̃t ≜ Xt − E[Xt|Xτi , τi], ∀t ∈ [τi, τi+1). (A.2)

Given any sampling policy τ1, τ2, . . . and a realization of the process up to time t,
we can set

Pt =

At, t ̸= τi, i = 1, 2, . . . ,

Ac
t , t = τi, i = 1, 2, . . . ,

(A.3)

where At is any Borel set the realization of X̃t belongs to. Without assumption
(S.2), Pt for t ∈ [τi, τi+1) can depend on the input process {Xs}ts=0 up to time t.
Under assumption (S.2), Pt for t ∈ [τi, τi+1) can only depend on the stopping time
τi and {X̃s}ts=τi

(A.2).

We proceed to present the sufficient condition on the stochastic process under
which the optimal sampling policy satisfies (S.2). We define notations that will
be used in Proposition 5 below. Consider a sampling-decision process {Pt}Tt=τk

with stopping times τk, τk+1, . . . , the mean-square residual error X̃t (A.2), and the
MMSE decoding policy X̄t (2.2). The value of {Pt}Tt=τk

at time t ∈ [τk, T ] only
depends on {Xs − E[Xs|Xτk , τk]}ts=τk

and τk, i.e.,

Pt = Pt({Xs − E[Xs|Xτk , τk]}ts=τk
, τk), t ∈ [τk, T ]. (A.4)

Denote by Π[τk,T ] the set of all sampling-decision processes of the form (A.4). As
a result, the stopping times associated with {Pt}Tτk ∈ Π[τk,T ] only satisfy (S.2) at
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i = k. Let N
(
{Pt}Tt=τk

)
represent the number of samples taken between [τk, T ]

under {Pt}Tt=τk
. We denote

Dr(ϕ) ≜ min
{Pt}Tt=r∈Π[r,T ] :

1
T
E[N({Pt}Tt=r)|τk=r]≤ϕ

1

T
E
[∫ T

τk

(Xt − X̄t)
2dt

∣∣∣∣τk = r

]
. (A.5)

Consider an arbitrary sampling-decision process {P ′
t}Tt=0 (A.1) with stopping times

τ ′1, τ
′
2, . . . , the mean-square residual error X̃ ′

t, and the MMSE decoding policy
X̄ ′

t. The value of the sampling-decision process {P ′
t}Tt=0 at time t can depend on

{Xs}ts=0, i.e., for all t ∈ [τ ′k, T ],

P ′
t = P ′

t

(
{Xs}

τ ′k
s=0,

{
Xs − E[Xs|Xτ ′k

, τ ′k]
}t
s=τ ′k

, τ ′k

)
. (A.6)

Denote by Π′
[τ ′k,T ] the set of all sampling-decision processes of the form (A.6).

Proposition 5. For a stochastic process {Xt}Tt=0 satisfying (P.1)–(P.3), if Dr(ϕ) in
(A.5) is a convex function in ϕ for all k = 0, 1, . . . and r ∈ [0, T ], then the optimal
sampling policy satisfies (S.2).

Proof. Fix an arbitrary sampling-decision process {P ′
t}Tt=τ ′k

∈ Π′
[τ ′k,T ] at τ ′k = r. To

show that the optimal sampling policy of {Xt}Tt=0 satisfies (S.2), it suffices to show
that for all k = 0, 1, . . . , Dr

(
1
T
E[N({P ′

t}Tt=r)|τ ′k = r]
)

is no larger than the MSE
achieved by {P ′

t}Tt=r, i.e.,

E

[
1

T

∫ T

τ ′k

(Xt − X̄ ′
t)

2dt

∣∣∣∣∣τ ′k = r

]

≥ Dr

(
1

T
E[N({P ′

t}Tt=r)|τ ′k = r]

)
. (A.7)

We fix an arbitrary realization of {Xs}rs=0 = x that leads to τ ′k = r, and we construct
{Pt}Tt=r as

Pt = P ′
t

(
x, {Xs − E[Xs|Xr, r]}ts=r , r

)
. (A.8)

The sampling-decision process {Pt}Tt=r (A.8) satisfies the minimization constraint
in (A.5) with

ϕ =
1

T
E[N({P ′

t}Tt=r)|{Xs}rs=0 = x, τ ′k = r] (A.9)
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due to the reasons that follow. The process {Pt}Tt=r (A.8) belongs to Π[r,T ] since it
samples the input process after time r as if it has observed {Xs}rs=0 = x regardless
of the actual realization of {Xs}rs=0. Since {X̃t}t≥τk , at τk = r, is independent
of Fr by (P.3-a), and τi+1, i ≥ k, is conditionally independent of {Xs}rs=0 given
τk = r due to {Pt}Tt=r ∈ Π[r,T ], we conclude that under {Pt}Tt=r, the random
process {Xt − X̄t}Tt=r conditioned on τk = r has the same probability distribution
as {Xt − X̄ ′

t}Tt=r under {P ′
t}Tr=0 conditioned on {Xs}rs=0 = x, τ ′k = r. This implies

that {Pt}Tt=r (A.8) achieves average sampling frequency ϕ (A.9), and that

E

[∫ T

τ ′k

(Xt − X̄ ′
t)

2dt

∣∣∣∣∣{Xs}rs=0 = x, τ ′k = r

]

= E
[∫ T

τk

(Xt − X̄t)
2dt

∣∣∣∣{Xs}rs=0, τk = r

]
(A.10a)

= E
[∫ T

τk

(Xt − X̄t)
2dt

∣∣∣∣τk = r

]
(A.10b)

≥ Dr

(
1

T
E[N({P ′

t}Tt=r)|{Xs}rs=0 = x, τ ′k = r]

)
, (A.10c)

where (A.10c) holds because {Pt}Tt=τk
∈ Π[τk,T ]. Since (A.10c) holds for an arbitrary

realization of {Xs}rs=0 compatible with τ ′k = r, it holds almost surely that

E

[∫ T

τ ′k

(Xt − X̄ ′
t)

2dt

∣∣∣∣∣{Xs}rs=0, τ
′
k = r

]
(A.11)

≥ Dr

(
1

T
E[N({P ′

t}Tt=r)|{Xs}rs=0, τ
′
k = r]

)
.

Taking an expectation of (A.11), we conclude

E

[
1

T

∫ T

τ ′k

(Xt − X̄ ′
t)

2dt

∣∣∣∣∣τ ′k = r

]
(A.12)

≥ E
[
Dr

(
1

T
E[N({P ′

t}Tt=r)|{Xs}rs=0, τ
′
k = r]

)∣∣∣∣τ ′k = r

]
, (A.13)

and (A.7) follows via Jensen’s inequality.

A.2 Proof of Theorem 1
Tools
We first introduce Lemmas 2–5 that supply majorization and real induction tools for
proving Theorem 1.

Function f majorizes g, f ≻ g, if and only if for any Borel measurable set B ∈ BR
with finite Lebesgue measure, there exits a Borel measurable set A ∈ BR with the
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same Lebesgue measure, such that [2]∫
B
g(x)dx ≤

∫
A
f(x)dx. (A.14)

Function f : R→ R is even if f(x) = f(−x) for all x ∈ R.

Function f : R→ R is quasi-concave if for all x, y ∈ R, 0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≥ min{f(x), f(y)}. (A.15)

We denote by1(a,b)(x) an indicator function that is equal to 1 if and only if x ∈ (a, b).

Lemmas 2–4, stated next, show several majorization properties of pdfs.

Lemma 2. ([2, Lemma 2]) Fix two pdfs fX and gX , such that fX is even and quasi-
concave and fX ≻ gX . Fix a scalar c > 0, and a function h : R → [0, 1], such
that ∫

R
fX(x)1(−c,c)(x)dx =

∫
R
gX(x)h(x)dx, (A.16)

Then,
fX|X∈(−c,c) ≻ g′X , (A.17)

where the pdfs fX|X∈(−c,c) and g′X are given by,

fX|X∈(−c,c)(x) =
fX(x)1(−c,c)(x)∫

R fX(x)1(−c,c)(x)dx

g′X(x) =
gX(x)h(x)∫

R gX(x)h(x)dx
.

(A.18)

Lemma 3. ([108, Lemma 6.7]) Fix two pdfs fX and gX , such that fX is even and
quasi-concave and that fX majorizes gX , fX ≻ gX . Fix an even and quasi-concave
pdf rY . Then, the convolution of fX and rY majorizes the convolution of gX and rY ,

fX ∗ rY ≻ gX ∗ rY , (A.19)

Furthermore, fX ∗ rY is even and quasi-concave.

Lemma 4. ([2, Lemma 4]) Fix two pdfs fX and gX such that fX is even and
quasi-concave and that fX majorizes gX , fX ≻ gX . Then,∫

R
x2fX(x)dx ≤

∫
R
(x− y)2gX(x)dx, ∀y ∈ R. (A.20)
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Lemma 5, stated next, provides a mathematical proof technique called real induction.
We will use it to prove that the assertions in Lemma 6, stated below, hold on a
continuous interval.

Lemma 5. (Real induction [109, Thm. 2]) A subset S ⊂ [a, b], a < b is called
inductive if

1) a ∈ S;

2) If a ≤ x < b, x ∈ S, then there exists y > x such that [x, y] ∈ S;

3) If a ≤ x < b, [a, x) ∈ S, then x ∈ S.

If a subset S ⊂ [a, b] is inductive, then S = [a, b].

A technical lemma
We define the following notations for two sampling-decision processes {Pt}Tt=0 and
{Psym

t }Tt=0 (see Appendix A.1). Fix an arbitrary sampling-decision process {Pt}Tt=0

(A.1) satisfying (S.1)–(S.2). It gives rise to a sampling policy with stopping times
τ1, τ2, . . . via (A.1). We recall the definition of the mean-square residual error
(MSRE) process {X̃t}Tt=0 in (P.3) and denote the MSRE process under {Pt}Tt=0 as

X̃t = X̃t({Ps}Ts=0) (A.21a)

≜ Xt − E[Xt|Xτi , τi], t ∈ [τi, τi+1). (A.21b)

We define the residual error estimate (REE) process { ¯̃Xt}Tt=0 under {Pt}Tt=0 as

¯̃Xt = ¯̃Xt({Ps}Ts=0) (A.22a)

≜ X̄t − E[Xt|Xτi , τi] (A.22b)

= E[X̃t|{Xτj}ij=1, τ
i, t < τi+1] (A.22c)

= E[X̃t|τi, t < τi+1], t ∈ [τi, τi+1), (A.22d)

where X̄t = X̄t({Ps}Ts=0) is the MMSE decoding policy defined in (2.2); the
equality in (A.22c) holds since E[Xt|Xτi , τi] ∈ σ({Xτj}ij=1, τ

i, t < τi+1); (A.22d)
holds because X̃t is independent of {Xτj}ij=1, τ

i due to (P.3-a), and the event
{t < τi+1} is independent of {Xτj}ij=1, τ

i−1 given τi due to (S.2). We recall that
N({Pt}Tt=0) defined above Proposition 5 in Appendix A.1 represents the number of
stopping times in [0, T ], and we simplify this notation as

N ≜ N({Pt}Tt=0). (A.23)
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We denote the left-closed continuous interval

Ωτi+1
(s) ≜ {t ∈ [s, T ] : P[τi+1 > t|τi = s] > 0}, (A.24)

for all s ∈ Supp(fτi), and the left-open continuous interval

Ω̄τi+1
(s) ≜ Ωτi+1

(s) \ {s}. (A.25)

Given {Pt}Tt=0, we construct a sampling-decision process {Psym
t }Tt=0 (A.1) of the

form (2.9), which via (A.1) is associated with a sampling policy with stopping times
τ ′1, τ

′
2, . . . , such that the symmetric thresholds {ai(r, s)}Tr=s of {Psym

t }Tt=0 satisfy
for all s ∈ Supp(fτi), t ∈ [s, T ],

P[X̃ ′
r ∈ (−ai(r, s), ai(r, s)),∀r ∈ [s, t]|τ ′i = s]

= P[τi+1 > t|τi = s].
(A.26)

This is possible since by adjusting the thresholds, the left side of (A.26) can be
equal to any non-increasing function in t bounded between [0, 1]. Under {Psym

t }Tt=0

(A.26), for all s ∈ Supp(fτi), i = 1, 2, . . . , it holds that

Ωτi(s) = Ωτ ′i
(s), (A.27)

Ω̄τi(s) = Ω̄τ ′i
(s). (A.28)

We denote the MSRE and the REE processes and the number of stopping times on
[0, T ] under {Psym

t }Tt=0 respectively by

X̃ ′
t = X̃t({Psym

s }Ts=0), (A.29)
¯̃X ′
t =

˜̄Xt({Psym
s }Ts=0) = 0, (A.30)

N ′ = N({Psym
s }Ts=0), (A.31)

where (A.30) holds since we can write ¯̃X ′
t as (A.22d) with τi replaced by τ ′i using

the argument that justifies (A.22d); X̃ ′
t has an even and quasi-concave pdf due

to the assumption (P.3-b), and the pdf of X̃t conditioned on τ ′i , t < τ ′i+1 under a
symmetric threshold sampling-decision process of the form (2.9) is still even and
quasi-concave.

We denote the following probabilities

Qi(a, b, c, d) ≜ P[τi+1 > a|τi+1 > b, τi = c, X̃a = d] (A.32a)

Q′
i(a, b, c, d) ≜ P[τ ′i+1 > a|τ ′i+1 > b, τ ′i = c, X̃ ′

a = d]. (A.32b)
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We proceed to introduce Lemma 6 using the notations defined in (A.21)–(A.32b).
We will use the assertions in Lemma 6 to compare the MSEs achieved by {Pt}Tt=0

and {Psym
t }Tt=0.

Lemma 6. The pdfs fX̃t|τi=s,τi+1>t and fX̃′
t|τ ′i=s,τ ′i+1>t exist for all s ∈ Supp(fτi),

t ∈ Ω̄τi+1
(s). Furthermore, for all s ∈ Supp(fτi), t ∈ Ω̄τi+1

(s), it holds that

fX̃′
t|τ ′i=s,τ ′i+1>t ≻ fX̃t|τi=s,τi+1>t, (A.33)

fX̃′
t|τ ′i=s,τ ′i+1>t is even and quasi-concave. (A.34)

Proof of Lemma 6. We prove that fX̃t|τi=s,τi+1>t exists. The proof that fX̃′
t|τ ′i=s,τ ′i+1>t

exists is similar. Since X̃t at t ≥ τi = s, is independent of Fs by (P.3-a) and is equal
to Rt(s, s) by (P.3-b), we compute fX̃t|τi=s,τi+1>s using (2.5),

fX̃t|τi=s,τi+1>s = fRt(s,s). (A.35)

Thus, fX̃t|τi=s,τi+1>s exists since fRt(s,s) is a valid pdf by (P.3-b). To establish that
fX̃t|τi=s,τi+1>t(y) exists, we compute

fX̃t|τi=s,τi+1>t(y) = fX̃t|τi=s,τi+1>s,τi+1>t(y) (A.36a)

=
Qi(t, s, s, y)fX̃t|τi=s,τi+1>s(y)

P[τi+1 > t|τi = s, τi+1 > s]
, (A.36b)

where (A.36a) holds since τi+1 > t implies τi+1 > s. In (A.36b), we observe that for
all t ∈ Ω̄τi+1

(s), the pdf fX̃t|τi+1>s,τi=s exists by (A.35); the denominator of (A.36b)
is nonzero. We conclude that the pdf fX̃t|τi=s,τi>t exists for all s ∈ Supp(fτi),
t ∈ Ω̄τi+1

(s).

The assertion (A.33) holds if and only if

(a) for all s ∈ Supp(fτi), t ∈ Ω̄τi+1
(s) and for any Borel measurable set B ∈ BR

with finite Lebesgue measure, there exists a Borel measurable set A ∈ BR
with the same Lebesgue measure, such that

P[X̃ ′
t ∈ A|τ ′i = s, τ ′i+1 > t]

≥ P[X̃t ∈ B|τi = s, τi+1 > t],
(A.37)

holds. This is because (A.37) is a rewrite of (A.33) using the definition of majoriza-
tion (A.14).

The assertion (A.34) holds if and only if for all s ∈ Supp(fτi), t ∈ Ω̄τi+1
(s), all of

the following hold:
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(b) the conditional cdf P[X̃ ′
t ≤ y|τ ′i = s, τ ′i+1 > t] is convex for y < 0 and is

concave for y > 0;

(c) for any y > 0,
P[X̃ ′

t ∈ (0, y]|τ ′i = s, τ ′i+1 > t]

=P[X̃ ′
t ∈ [−y, 0)|τ ′i = s, τ ′i+1 > t].

(A.38)

This is because fX̃′
t|τ ′i=s,τ ′i+1>t is quasi-concave if and only if (b) holds, and fX̃′

t|τ ′i=s,τ ′i+1>t

is even if and only if (c) holds.

Items (a)–(c) facilitate proving that the assertions (A.33)–(A.34) hold on the left-
open interval Ω̄τi+1

(s). Real induction, which must be used on a left-closed interval,
does not apply to show (A.33)–(A.34) directly, since the densities in (A.33)–(A.34)
do not exist at t = s. Instead, we apply real induction to show (a)–(c). Using real
induction in Lemma 5, we verify that conditions 1), 3), 2) in Lemma 5 hold for
(a)–(c) in on t ∈ Ωτi+1

(s) one by one.

To verify that the condition 1) in Lemma 5 holds, we need to show that (a)–(c) hold
for t = s. This is trivial since

P[X̃ ′
s = 0|τ ′i = s, τ ′i+1 > s]

= P[X̃s = 0|τi = s, τi+1 > s]

= 1.

(A.39)

Next, we show that condition 3) in Lemma 5 holds, that is, assuming that (a)–(c) hold
for all t ∈ [s, r), r ∈ Ω̄τi+1

(s), we prove that (a)–(c) hold for t = r. Equivalently,
we show that (A.33)–(A.34) hold for t = r. Let δ ∈ (0, r − s]. At time t = r, we
calculate the left side of (A.33) as

fX̃′
r|τ ′i=s,τ ′i+1>r(y)

= lim
δ→0+

fX̃′
r|τ ′i=s,τ ′i+1>r−δ,τ ′i+1>r(y) (A.40a)

= lim
δ→0+

Q′
i(r, r − δ, s, y)fX̃′

r|τ ′i=s,τ ′i+1>r−δ(y)∫
R Q

′
i(r, r − δ, s, y)fX̃′

r|τ ′i=s,τ ′i+1>r−δ(y)dy
(A.40b)

= lim
δ→0+

1(−ai(r,s),ai(r,s))(y)fX̃′
r|τ ′i=s,τ ′i+1>r−δ(y)∫

R 1(−ai(r,s),ai(r,s))(y)fX̃′
r|τ ′i=s,τ ′i+1>r−δ(y)dy

, (A.40c)

where (A.40a) holds since the event τ ′i+1 > r implies the event τ ′i+1 > r − δ; the
pdf fX̃′

r|τ ′i=s,τ ′i+1>r−δ in (A.40b) exists since (A.36) holds with X̃t, τi = s, τi+1 > s,
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τi+1 > t replaced by X̃ ′
r, τ ′i = s, τ ′i+1 > s, τ ′i+1 > r− δ, respectively; (A.40c) holds

since
lim
δ→0+

Q′
i(r, r − δ, s, y) = 1(−ai(r,s),ai(r,s))(y). (A.41)

Similarly, replacing Q′
i in (A.40b) by Qi, we calculate the right side of (A.33) as

fX̃r|τi=s,τi+1>r(y)

= lim
δ→0+

Qi(r, r − δ, s, y)fX̃r|τi=s,τi+1>r−δ(y)∫
RQi(r, r − δ, s, y)fX̃r|τi=s,τi+1>r−δ(y)dy

, (A.42)

where the pdf fX̃r|τi=s,τi+1>r−δ(y) exists since (A.36) holds with X̃t, τi+1 > t

replaced by X̃r, τi+1 > r − δ respectively.

To check that (A.33) holds at t = r, we first prove that fX̃′
r|τ ′i=s,τ ′i+1>r−δ majorizes

fX̃r|τi=s,τi+1>r−δ. Note that Rr(r − δ, s) is independent of {X̃t}r−δ
t=0 due to (P.3-a),

and thus is independent of the event {τ ′i+1 > r − δ, τ ′i = s}. We obtain X̃ ′
r using

(2.5),
fX̃′

r|τ ′i=s,τ ′i+1>r−δ = fqr(r−δ)X̃′
r−δ|τ

′
i=s,τ ′i+1>r−δ ∗ fRr(r−δ,s). (A.43)

By (A.43) and the inductive hypothesis that (a)–(c) holds for t ∈ [s, r), the as-
sumptions in Lemma 3 are satisfied with fX ← fqr(r−δ)X̃′

r−δ|τ
′
i=s,τ ′i+1>r−δ, gX ←

fqr(r−δ)X̃r−δ|τi=s,τi+1>r−δ, rY ← fRr(r−δ,s). We conclude that

fX̃′
r|τ ′i=s,τ ′i+1>r−δ ≻ fX̃r|τi=s,τi+1>r−δ, (A.44)

fX̃′
r|τ ′i=s,τ ′i+1>r−δ is even and quasi-concave. (A.45)

Due to (A.45) and the fact that the indicator function in (A.40c) is over an interval
symmetric about zero, we conclude (A.34) holds for t = r. By (A.26), (A.44)
and (A.45), the assumptions in Lemma 2 are satisfied with fX ← fX̃′

r|τ ′i=s,τ ′i+1>r−δ,
gX ← fX̃r|τi=s,τi+1>r−δ, fX|X∈(−c,c) ← fX̃′

r|τ ′i=s,τ ′i+1>r, and g′X ← fX̃r|τi=s,τi+1>r,
c← ai(r, s), h← Qi(r, r− δ, s, y). Thus, we conclude that (A.33) holds for t = r.
Therefore, (A.33)–(A.34) hold for t = r, i.e., (a)–(c) hold for t = r.

To prove that the condition 2) in Lemma 5 holds, we assume (a)–(c) hold for t = r,
and prove that the following holds:

lim
δ→0+

fX̃′
r+δ|τ

′
i=s,τ ′i+1>r+δ ≻ lim

δ→0+
fX̃r+δ|τi=s,τi+1>r+δ, (A.46a)

lim
δ→0+

fX̃′
r+δ|τ

′
i=s,τ ′i+1>r+δ is even and quasi-concave. (A.46b)
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The right and the left sides of (A.46a) are equal to (A.40c) and (A.42) respectively
with r replaced by r + δ. It is easy to see that (A.43)–(A.45) and the assumptions
in Lemma 2 hold with r replaced by r + δ. Thus, we conclude that (A.46) holds.

Using the real induction in Lemma 5, we have shown that (a)–(c) hold for all
s ∈ Supp(fτi), t ∈ Ωτi+1

(s). Thus, (A.33)–(A.34) hold for all s ∈ Supp(fτi),
t ∈ Ω̄τi+1

(s).

Proof of Theorem 1
The sampling-decision process {Psym

t }Tt=0 leads to the same average sampling fre-
quency as {Pt}Tt=0. This is because (A.26) implies that for all s ∈ Supp(fτi),
t ∈ [s, T ],

P[τi+1 > t|τi = s] = P[τ ′i+1 > t|τ ′i = s]. (A.47)

Together with the Markov property of the stopping times (assumption (S.2)), (A.47)
implies that the joint distribution of τ1, τ2, . . . is equal to the joint distribution
of τ ′1, τ

′
2, . . . We conclude that {Pt}Tt=0 and {Psym

t }Tt=0 lead to the same average
sampling frequency

E[N ] = E[N ′]. (A.48)

Next, we show {Psym
t }Tt=0 achieves an MSE no larger than that achieved by {Pt}Tt=0.

Due to (A.22d), (A.30), and (A.33)–(A.34) in Lemma 6, we can apply Lemma 4
with fX ← fX̃′

t|τ ′i=s,τ ′i+1>t and gX ← fX̃t|τi=s,τi+1>t, yielding

E
[
(X̃t − ¯̃Xt)

2|τi = s, τi+1 > t
]
≥ E

[
X̃ ′2

t |τ ′i = s, τ ′i+1 > t
]
. (A.49)

Combining (A.47) and (A.49), we conclude by law of total expectation that{Psym
t }Tt=0

achieves an MSE no larger than that achieved by {Pt}Tt=0.

A.3 Proof of Corollary 1.1
Under a symmetric threshold sampling policy (2.9), the MMSE decoding policy in
(2.2) can be expanded as, for τi ≤ t < τi+1,

X̄t =E[Xt|{Xτj}ij=1, τ
i, t < τi+1] (A.50a)

= ¯̃Xt + E[Xt|Xτi , τi] (A.50b)

=E[Xt|Xτi , τi], (A.50c)

where ¯̃Xt in (A.50b) is equal to ¯̃X ′
t in (A.30), thus is equal to zero.



143

A.4 Proof of Corollary 1.2
Given any causal sampling policy such that (2.3) is satisfied with a strict inequality,
we construct a causal sampling policy that satisfies (2.3) with equality and leads to
an MSE no worse than that achieved by the given causal sampling policy.

Given an arbitrary symmetric threshold sampling policy (2.9) with stopping times
τ1, τ2, . . . , we denote by Nt the number of samples taken in [0, t]. Let t′, t′ ∈ (0, T )

be a dummy deterministic time. We decompose the MSE under the given sampling
policy as

E

[
Nt′−1∑
i=0

∫ τi+1

τi

(Xt − E[Xt|Xτi , τi])
2dt

]
(A.51a)

+E

[∫ t′

τNt′

(Xt − E[Xt|XτNt′
, τNt′

])2dt

]
(A.51b)

+E
[∫ τNt′+1

t′
(Xt − E[Xt|XτNt′

, τNt′
])2dt

]
(A.51c)

+E

 NT∑
i=Nt′+1

∫ τi+1

τi

(Xt − E[Xt|Xτi , τi])
2dt

 , (A.51d)

where τNT+1 ≜ T .

Under the given sampling policy τ1, τ2, . . . , we construct a sampling policy by
inserting an extra deterministic sampling time t′. The resultant MSE is the same as
(A.51) with (A.51c) replaced by

E
[∫ τNt′+1

t′
(Xt − E[Xt|Xt′ ])

2dt

]
, (A.52)

since a sample is taken at time t′ under the constructed sampling policy. Since

σ(XτNt′
, τNt′

) ⊆ σ(Ft′) (A.53a)

E[Xt|Ft′ ] = E[Xt|Xt′ ], (A.53b)

where (A.53b) is due to the strong Markov process (P.1) in Section 2.2, we conclude
that (A.51c) ≥ (A.52).

Thus, by introducing extra sampling times, we can achieve the same or a lower MSE.
We can express the difference between the frequency constraint F and the average
sampling frequency under the given sampling policy as

FT − E[NT ] = I +D, (A.54)
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where I ∈ N represents the non-negative integer part, and D ∈ (0, 1) represents
the decimal part. By introducing I different deterministic sampling times, we can
compensate the integer part I . By introducing a random sampling time stamp t with
probabilityD to sample and probability 1−D not to sample, we can compensate the
decimal part. Therefore, for any sampling policy whose average sampling frequency
is strictly less than F , we can always construct a sampling policy that achieves the
maximum sampling frequency F and leads to an MSE no worse than that achieved
by the arbitrarily fixed sampling policy.

A.5 Proof of Corollary 1.3
We show that symmetric thresholds {ai(r, s)}Tr=s in (A.26) must satisfy (2.11) for
all s ∈ Supp(fτi).

Due to (S.3), the probability on the right side of (A.26) is continuous in t ∈ [s, T ]

for all s ∈ Supp(fτi). Thus, for all s ∈ Supp(fτi), t ∈ [s, T ),

lim
δ→0+

P
[
X̃ ′

r ∈ (−ai(r, s), ai(r, s)),∀r ∈ [s, t+ δ]
∣∣∣τ ′i = s

]
(A.55a)

= P
[
X̃ ′

r ∈ (−ai(r, s), ai(r, s)),∀r ∈ [s, t]
∣∣∣τ ′i = s

]
. (A.55b)

By the continuity of X̃ ′
r in (P.3-b), (A.55) implies (2.11).

A.6 Proof of Theorem 2
First, we introduce Lemma 7, stated next, that will be helpful in proving (2.13).
Second, we prove that symmetric threshold sampling policies (2.9) in Theorem 1
can be reduced to (2.12) in the setting of Theorem 2, i.e., under the assumption that
{Xt}t≥0 has time-homogeneous property in Definition 3 and T = ∞. Then, we
show that Remark 1 holds and prove that (2.13) holds using Lemma 7.

Lemma 7. (e.g., [110, Proposition 1(ii)]) Suppose that Z0, Z1, . . . are i.i.d. Let
Qt ≜

∑∞
i=0 1[0,t]

(∑i
k=0 Zk

)
. Let R0, R1, . . . be i.i.d rewards, and let St ≜∑Qt

i=0Ri be the renewal reward process. If 0 < E[Zi] <∞, E[|Ri|] <∞, then

lim
T→∞

E[ST ]

T
=

E[R0]

E[Z0]
. (A.56)

Since the stochastic process considered in Theorem 2 is infinitely long, we use the
DFF in the infinite time horizon:

D∞(F ) = inf
{Pt}t≥0∈Π:

(2.3b)

lim sup
T→∞

1

T
E
[∫ T

0

(X̃t − ¯̃Xt)
2

]
, (A.57)
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where Π is the set of all sampling-decision processes (A.1) of the form (2.9) satis-
fying (S.1) and (S.2) in Section 2.2 over the infinite time horizon. Note that for any
stopping time τ , and for any t ≥ τ , we have

{X̃t}t≥τ and {X̃t−τ}t−τ≥0 have the same distribution, (A.58)

{X̃t}t≥τ is independent of {X̃t}τt=0, (A.59)

where (A.58) is due to the time-homogeneity of {Xt}t≥0 in Definition 3, and (A.59)
is due to (P.3-a) in Section 2.2.

Using (A.58)–(A.59) and assumption (S.1), we will prove that the sampling-decision
process that achieves the D∞(F ) for time-homogeneous continuous Markov pro-
cesses satisfying assumptions (P.1)–(P.3) is of the form (2.12).

Given an arbitrary sampling-decision process {Pt}t≥0 of the form (2.9), we define
its MSRE (A.21) and REE (A.22) processes as

X̃t ≜ X̃t({Ps}s≥0),

¯̃Xt ≜
¯̃Xt({Ps}s≥0).

(A.60)

Denote by τ1, τ2, . . . the stopping times of the causal sampling policy characterized
by {Pt}t≥0. Assume that the sampling-decision process that achievesD∞(F ) (A.57)
is
{
P(a)

t

}
t≥0

. We have,

D∞(F ) (A.61a)

= inf
{Pt}t≥0∈Π:

Pt=P(a)
t ,t≤τi,

(2.3b)

lim sup
T→∞

1

T
E
[∫ T

τi

(X̃t − ¯̃Xt)
2dt

]
(A.61b)

= inf
{Pt}t≥0∈Π:

(2.3b)

lim sup
T→∞

1

T
E
[∫ T−τi

0

(X̃t − ¯̃Xt)
2dt

]
(A.61c)

= D∞(F ), (A.61d)

where (A.61b) is due to assumption (S.1); (A.61c) is due to (A.58); the equality
in (A.61d) is achieved since (A.61c) is upper-bounded by (A.61d) and is equal to
(A.61a) simultaneously. Suppose that the sampling-decision processes that achieve
(A.61b)–(A.61c) are {P(b)

t }t≥0 and {P(c)
t }t≥0, respectively. From (A.61a) and

(A.61b), we observe that{
P(a)

t

}
t≥τi

=
{
P(b)

t

}
t≥τi

, i = 0, 1, . . . (A.62)
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We prove that under sampling-decision processes satisfying assumption (S.1), it
holds that

E
[∫ T

T−τi

(X̃t − ¯̃Xt)
2

]
<∞, (A.63)

so that using (A.61c), (A.61d), and (A.63), we conclude{
P(c)

t

}
t≥0

=
{
P(a)

t

}
t≥0

. (A.64)

By assumption (S.1) we know that there exist sampling-decision processes that lead
to

E
[∫ τi

0

(X̃t − ¯̃Xt)
2dt

]
<∞. (A.65)

Thus, there exist sampling-decision processes such that (A.63) holds. Since the
goal is to minimize the MSE, it suffices to consider sampling-decision processes
that lead to (A.63).

Due to (A.58), the probability distributions of X̃t, t ∈ [0, T − τi] in (A.61b)
and X̃t, t ∈ [τi, T ] (A.61c) are the same. Thus, the sampling-decision process
{Pt}t≥τi =

{
P(a)

t−τi

}
t−τi≥0

achieves the infimum in (A.61b). We conclude

{
P(b)

t

}
t≥τi

=
{
P(a)

t−τi

}
t−τi≥0

, i = 0, 1, . . . (A.66)

Using (A.62) and (A.66), we conclude that
{
P(a)

t−τi

}
t−τi≥0

=
{
P(a)

t

}
t≥τi

, i =

0, 1, . . . , i.e.,
a0(s, 0) = ai(s+ τi, τi). (A.67)

Thus, (2.12) follows.

Next, we show Remark 1 using (2.12). We conclude that the sampling intervals
Ti ≜ τi+1 − τi, i = 0, 1, . . . , are independent due to (A.59) and the fact that the
sampling-decision process (2.12) is independent of the process prior to the last
stopping time; the sampling intervals Ti, i = 0, 1, . . . , are identically distributed
due to (A.58) and the fact that the sampling-decision process (2.12) only takes
into account the time elapsed from the last sampling time t − τi, t ∈ [τi, τi+1),
i = 0, 1, . . .

We proceed to show that the optimization problem associated with D∞(F ) can be
reduced to (2.13) by Lemma 7. The assumptions in Lemma 7 are satisfied with
Zi ← Ti, Ri ←

∫ τi+1

τi
(Xt − E[Xt|Xτi , τi])

2dt. The sampling intervals T0, T1, . . .
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are i.i.d. due to Remark 1. The expectation of Ti is finite by assumption (S.1).
The reward random variables Ri are i.i.d. due to (A.58)–(A.59) and Remark 1.
Furthermore, the expectation of the reward is finite by assumption (S.1). Therefore,
using (A.56), we simplify the DFF in (2.8) to (2.13).

A.7 Optimal sampling policy for the OU process
Using (2.10), we calculate that for t ∈ [τi, τi+1),

Xt − X̄t = Ot−τi ≜
σ√
2θ

e−θ(t−τi)We2θ(t−τi)−1. (A.68)

Before we solve the optimization problem (2.13), we show several useful properties:
By solving Dynkin’s formula for R1(O

2
τ1
) and R2(O

2
τ1
) in (2.23)–(2.24), we obtain

[9, Eq.(44)]:

E
[∫ τ1

0

O2
t dt

]
= E

[
R2(O

2
τ1
)
]
, (A.69a)

E[τ1] = E[R1(O
2
τ1
)]. (A.69b)

Two functions R1 and R2 are related as follows:

E
[
R2(O

2
τ1
)
]
=

σ2

2θ
E[R1(O

2
τ1
)]− 1

2θ
E[O2

τ1
], (A.70a)

R2(E[O2
τ1
)]) =

σ2

2θ
R1(E[O2

τ1
])− 1

2θ
E[O2

τ1
]. (A.70b)

We proceed to solve (2.13). We lower bound the objective function of (2.13) as

E
[∫ τ1

0
O2

t dt
]

E[τ1]
(A.71a)

=
E
[
R2(O

2
τ1
)
]

E[R1(O2
τ1
)]

(A.71b)

=
σ2

2θ
E[R1(O

2
τ1
)]− 1

2θ
E[O2

τ1
]

E[R1(O2
τ1
)]

(A.71c)

≥
σ2

2θ
1
F
− 1

2θ
R−1

1 ( 1
F
)

1
F

(A.71d)

= F ·R2

(
R−1

1

(
1

F

))
, (A.71e)

where (A.71a) is obtained by plugging (A.68) into (2.13); (A.71b) holds by plugging
(A.69) into (A.71a); (A.71c) holds by plugging (A.70a) into (A.71b); (A.71d) holds
since 1) the minimization constraint of (2.13) together with (A.69b) implies that
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E[R1(O
2
τ1
)] = 1

F
, 2) R1 is a convex function such that R1(E[O2

τ1
]) ≤ E[R1(O

2
τ1
)] ≤

1
F

, 3) R1 is an monotonically increasing function such that 2) implies E[O2
τ1
] ≤

R−1
1

(
1
F

)
; (A.71e) holds by (A.70b).

Plugging (2.21) into (A.71b), we verify that the lower bound in (A.71e) is achieved
by the symmetric threshold sampling policy in (2.21).

A.8 Proof of Proposition 1
We show that the objective function of Dch(F ) in (2.33) can be decomposed as
(2.36). Plugging (2.34) into (2.33), we expand the objective function as

1

T
E

[
N∑
i=0

∫ τi+1+δ

τi+δ

(cWat − cWaτi)
2dt

]
(A.72a)

=
1

T
E

[
N∑
i=0

∫ τi+1

τi

(cWat − cWaτi)
2dt

]
− 1

T
E

[
N∑
i=0

∫ τi+δ

τi

(cWat − cWaτi)
2dt

]

+
1

T
E

[
N∑
i=0

∫ τi+1+δ

τt+1

(cWat − cWaτi)
2dt

]
, (A.72b)

where (A.72b) holds by splitting the integral in (A.72a). Replacing cWat−cWaτi ←
cWat− cWaτi+1

+ cWaτi+1
− cWaτi in the last term of (A.72b), we conclude that the

last term is equal to

1

T
E

[
N∑
i=0

∫ τi+1+δ

τi+1

(cWat − cWaτi+1
)2dt

]
+

1

T
E

[
N∑
i=0

δ(cWaτi+1
− cWaτi)

2

]
,

(A.73)

The time-homogeneity of the Wiener process implies that the second term in (A.72b)
is equal to the first term in (A.73). Lemma 1 (b) implies that the second term in
(A.73) is equal to ac2δ. Plugging (A.73) into (A.72b), we obtain (2.33).

A.9 Proof of Theorem 4
We first introduce Lemmas 8–10 that are useful for lower bounding the objective
function of the DSTF in (7). Using Lemmas 8–10, we establish a lower (converse)
bound on the DSTF (7). Finally, we show that under the causal sampling policy in
Theorem 4, the DSTF coincides with its lower bound.

Tools
In this section, we present Lemmas 8–10. We denote by Ti ≜ τi+1 − τi the i-th
sampling interval, i = 0, 1, 2 . . . , n− 1. We denote by B(k) the set that contains all
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feedback sequences bi of length i = k, k + 1, . . . , n − 1 that have k unsuccessful
transmissions after the last successful transmission:

B(k) ≜ ∪n−1
i=k

{
bi ∈ {0, 1}i : i−maxN (bi) = k

}
, (A.74)

k = 0, 1, . . . , n − 1. Thus, if bi ∈ B(k), then the time of the last successful
transmission (2.40) reduces to

Si = τi−k. (A.75)

Lemma 8, stated next, shows a conditional expectation of a sampling interval.

Lemma 8. Given any integers i, ℓ ≥ k and any bit sequences bi, bℓ ∈ B(k), k =

0, 1, . . . , n− 1, it holds that

E[Ti|{Bτj}ij=1 = bi] = E[Tℓ|{Bτj}ℓj=1 = bℓ]. (A.76)

Proof. First, assumption (S.4) implies that the sampling interval Ti is determined
by the innovation of the source process Xt − E[Xt|Xτi , τi] after time τi and the
number of unsuccessful transmissions i − maxN

(
{Bτj}ij=1

)
after the last suc-

cessful transmission. Second, the continuous Lévy process is time-homogeneous
(Definition 3), meaning that the distribution of Xt − E[Xt|Xτi , τi] only depends on
the time elapsed from the last sampling time. Third, the assumption bi, bℓ ∈ B(k)
means that i−maxN (bi) = ℓ−maxN (bℓ) = k. Therefore, the three observations
imply (A.76).

Lemma 9, stated next, shows the probability distribution of the channel feedback.

Lemma 9. The pmf of the bit sequence {Bτj}ij=1 is given by

P
[
{Bτj}ij=1 ∈ B(0)

]
= (1− p)1(0,n−1](i) (A.77)

P
[
{Bτj}ij=1 ∈ B(k)

]
= (1− p)1(0,i)(k)pk, k = 1, . . . , i. (A.78)

Proof. The pmf is obtained by the facts that 1) packet drops are i.i.d.; 2) packet
drops are independent of the source process; 3) B0 ≜ 1 at τ0 = 0.

Lemma 10, stated next, provides a lower bound on the MSE over one sampling
interval.
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Lemma 10. Given feedback bits bi ∈ B(k), it holds that

E
[∫ τi+1

τi

(Wt −WSi
)2dt

∣∣∣∣{Bτj}ij=1 = bi
]

(A.79a)

≥ 1

6
E[Ti|{Bτj}ij=1 = bi]2 + E[Ti|{Bτj}ij=1 = bi]

k∑
j=1

E[Ti−j|{Bτj}
i−j
j=1 = bi−j].

(A.79b)

Proof. Plugging (A.75) into (A.79a), we obtain

E
[∫ τi+1

τi

(Wt −Wτi−k
)2dt

∣∣∣∣{Bτj}ij=1 = bi
]

(A.80a)

= E
[∫ τi+1

τi

(Wt −Wτi)
2 + (Wτi −Wτi−k

)2

+ 2(Wt −Wτi)(Wτi −Wτi−k
)dt|{Bτj}ij=1 = bi

]
(A.80b)

= E
[∫ τi+1

τi

(Wt −Wτi)
2dt

∣∣∣∣{Bτj}ij=1 = bi
]

+ E[Ti|{Bτj}ij=1 = bi]E
[
(Wτi −Wτi−k

)2
∣∣{Bτj}ij=1 = bi

]
(A.80c)

=
1

6
E[W 4

Ti
|{Bτj}ij=1 = bi] + E[Ti|{Bτj}ij=1 = bi]

k∑
j=1

E[W 2
Ti−j
|{Bτj}ij=1 = bi]

(A.80d)

≥ 1

6
E[Ti|{Bτj}ij=1 = bi]2 + E[Ti|{Bτj}ij=1 = bi]

k∑
j=1

E[Ti−j|{Bτj}
i−j
j=1 = bi−j],

(A.80e)

where (A.80b) holds by replacing Wt − Wτi−k
← Wt − Wτi + Wτi − Wτi−k

in
(A.80a) and rearranging terms; the second term in (A.80b) is equal to the second
term in (A.80c) since assumption (S.4) implies that given the past feedback bits, the
sampling interval Ti is independent of Wτi−Wτi−k

; the third term in (A.80b) is zero
by the orthogonal principle of the MMSE estimator [111, Prop. V.C.2]; the first term
in (A.80d) holds by applying Lemma 1 (c) to the first term of (A.80c); the second
term of (A.80d) holds by applying Lemma 1 (d) to expand the last conditional
expectation in (A.80c); the first term in (A.80e) holds by first applying Jensen’s
inequality to lower bound the first term in (A.80d) by E[W 2

Ti
|{Bτj}ij=1 = bi]2 and

then applying Lemma 1 (b); the second term in (A.80e) holds by applying Lemma 1
(b) to the summands in the second term of (A.80d), and using the fact that the
sampling interval Ti−j is independent of the future feedback bits {Bτj}ij=i−j+1.
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Converse
In this section, we lower bound the DSTF (7) by a minimization problem and show
that the minimum is achieved by the causal sampling policy in Theorem 4. We
denote by tk the expected sampling time in (A.76) conditioned on a sequence of
feedback bits in B(k).

The objective function of the DSTF Dpd(n, T ) is lower bounded as

1

T
E

[
n−1∑
i=0

∫ τi+1

τi

(Xt − X̄pd
t )2dt

]

=
ac2

T
E

[
n−1∑
i=0

∫ τi+1

τi

(Wt −WSi
)2dt

]
(A.81)

≥ ac2

T

n−1∑
i=0

(
1

6
t20(1− p)1(0,n−1](i) +

i∑
k=1

(
1

6
t2k + tk

k∑
j=1

tk−j

)
(1− p)1(0,i)(k)pk

)
,

(A.82)

where (A.81) holds by plugging the continuous Lévy process (2.17) and the estimate
(2.45) into the MSE (2.44); (A.82) holds by plugging Lemmas 8–10 into (A.81).
Rewriting the lower bound in (A.82) in a matrix form and minimizing it under the
time constraint (2.43), we obtain a lower bound on the DSTF as

Dpd(n, T ) ≥ ac2

T
min

t=[t0,t1,...,tn−1]T∈Rn
+ :

d(p)T t=T

tTA(p)t, (A.83)

where

ci ≜ pi(1 + (1− p)(n− i− 1)), (A.84)

A(p) ≜



1
6
c0

c1
1
6
c1 0

c2 c2
1
6
c2

...
... . . .

cn−1 cn−1 cn−1 · · · 1
6
cn−1


. (A.85)

d(p)T ≜ [c0 c1 · · · cn−1]. (A.86)

We proceed to show that the minimum on the right side of (A.83) is achieved by the
causal sampling policy in Theorem 4. Fix any packet-drop probability p < 1

5
, fix tk
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for all k ̸= i, j, and let C ≜ T −
∑

k ̸=i,j cktk. Without loss of generality, we assume
i < j. We find ti, tj that minimize (A.83) by solving

min
ti,tj∈R+ : citi+cjtj=C

1

6
cit

2
i +

1

6
cjt

2
j + cjtitj + liti + ljtj, (A.87)

where the coefficients li and lj are given by

li ≜
i−1∑
k=0

citk +

j−1∑
k=i+1

cktk +
n−1∑

k=j+1

cktk (A.88)

lj ≜
i−1∑
k=0

cjt+ k +

j−1∑
k=i+1

cjtk +
n−1∑

k=j+1

cktk. (A.89)

Let x ≜ citi, x ∈ [0, C], we write the objective function in (A.87) as a function of
x as

f(x) ≜
x2

6ci
+

(C − x)2

6cj
+

x(C − x)

ci
+ li

x

ci
+ lj

(C − x)

cj
. (A.90)

The quadratic function f(x) is minimized at

x∗ =
(C + 3li)ci − 3(C + li)cj

ci − 5cj
, (A.91)

which lies in [C,∞] since

C − x∗ =
−2Ccj − 3(ljci − licj)

ci − 5cj
(A.92a)

=
−2Ccj − 3(cj

∑j−1
k=i+1(ci − ck)tk + (ci − cj)

∑n
k=j+1 cktk)

ci − 5cj
(A.92b)

≤ 0, (A.92c)

where (A.92b) holds by plugging (A.88)–(A.89) into (A.92a); (A.92c) holds since
1) ck ≥ ck′ for any k ≤ k′ implies that the numerator of (A.92b) is negative, and 2)
p < 1

5
implies that the denominator of (A.92b) is positive. Therefore, the minimum

of f(x) for x ∈ [0, C] is attained at x = C and the corresponding ti, tj are

ti =
C

ci
(A.93a)

tj = 0, i < j. (A.93b)

Using (A.93), we proceed to show that the minimum on the right side of (A.83) is
achieved at

t0 =
T

c0
=

T

1 + (1− p)(n− 1)
(A.94a)

t1 = · · · = tn−1 = 0 (A.94b)
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using the algorithm below. We start with an arbitrary vector t ∈ Rn
+ that satisfies

the constraint in (A.83), and we implement:

1. Initialize k ← n− 1;

2. If tk ̸= 0, then let tk−1 ← tk−1 +
cktk
ck−1

, tk ← 0;

3. If k > 0, let k ← k − 1, and go back to step 2; Otherwise, exit the loop.

The minimum of (A.83) is achieved at (A.94) since step 2 yields a new vector t
that satisfies the time constraint in (A.83) and leads to an MSE no larger than the
MSE before step 2, and the output of this program is always (A.94) regardless of
the starting vector.

From the definition of tk (A.76) and Lemma 1 (b), we conclude that the causal
sampling policy in Theorem 4 satisfies (A.94) and thus achieves the lower bound
(A.83) on the DSTF.

Achievability
Plugging the causal sampling policy in Theorem 4 into the objective function of
the DSTF (A.81), we conclude that the DSTF is equal to its lower bound (A.83).
Therefore, the causal sampling policy in Theorem 4 achieves the DSTF.
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A p p e n d i x B

CAUSAL RATE-CONSTRAINED SAMPLING: PROOFS

B.1 Proof of Theorem 5
We show the converse (3.8). Denote byΠT the set of all sampling-decision processes
(A.1) that satisfy (S.1)–(S.3) on [0, T ]. Denote byCT the set of all causal compressing
policies on [0, T ]. We lower bound the DRF in (3.5) as

D(R) = inf
{Pt}Tt=0∈ΠT ,

{ft}Tt=0∈CT :
(3.3a)

1

T
E

[
N∑
i=0

∫ τi+1

τi

(Xt − E[Xt|U i, τ i, t < τi+1])
2dt

]
(B.1a)

≥ inf
{Pt}Tt=0∈ΠT :

E[N ]
T

≤R

1

T
E

[
N∑
i=0

∫ τi+1

τi

(Xt − E[Xt|{Xs}τis=0, τ
i, t < τi+1])

2dt

]

(B.1b)

= inf
{Pt}Tt=0∈ΠT :

E[N ]
T

≤R

1

T
E

[
N∑
i=0

∫ τi+1

τi

(X̃t − E[X̃t|τi, t < τi+1])
2dt

]
(B.1c)

= D(R), (B.1d)

where (B.1b) holds since E[N ] ≤ E
[∑N

i=1 ℓ(Ui)
]
, and U i belongs to the σ-algebra

generated by the stochastic process {Xs}τis=0. The equality in (B.1c) is obtained by
subtracting and adding E[Xt|Xτi , τi] to Xt in (B.1b), where

E[X̃t|τi, t < τi+1]

= E[Xt|{Xs}τis=0, τ
i, t < τi+1]− E[Xt|Xτi , τi] (B.2)

holds due to the argument that justifies (A.22d) with {Xτj}ij=1 ← {Xs}τis=0.

While (B.1) shows that the converse (3.8) holds for the finite horizon (T < ∞),
the converse also holds for the infinite horizon (T = ∞). This is because (B.1)
continues to hold with the minimization constraints {Pt}Tt=0 ∈ ΠT , {ft}Tt=0 ∈ CT ,
(3.3a), and E[N ]

T
≤ R replaced by {Pt}t≥0 ∈ Π∞, {ft}t≥0 ∈ C∞, (3.3b), and

lim supT→∞
E[N ]
T
≤ R, respectively, and with lim supT→∞ inserted right before the

objective functions in (B.1a)–(B.1c).
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B.2 Recovering Lt from Zt

The two formulations (3.33) and (3.37) are related as follows. Any state evolution
described by (3.37) can be written in the form of (3.33) by setting Zt as in (3.38).
Conversely, a state evolution described by (3.33) can be written as (3.37) if and
only if Zt, when viewed as a function of t, is almost surely generalized absolutely
continuous in the restricted sense (ACG∗) between any consecutive discontinuous
points of {Zt}Tt=0 [112][113]. This is because control signal Ls in (3.38) is well-
defined if and only if Z∗

t satisfies the ACG∗ property. The function f : [a, b] → R
is said to be ACG∗ [112][113] over set E ⊂ [a, b] if f is continuous, and E is a
countable union of sets En on each of which f satisfies the following: for each ϵ > 0,
there exists δ > 0 such that

∑k
i=1 supx,y∈[xi,yi]

|F (x) − F (y)| < ϵ for all finite sets
of disjoint open intervals {(xi, yi)}ki=1 with endpoints in En and

∑k
i=1 |xi− yi| < δ.

For example, for stochastic processes of the form Xt = g1(t)Wg2(t) + g3(t), the
optimal control signal {Zt}Tt=0 (3.35) almost surely satisfies the ACG∗ property.
Here, g1(·), g3(·) are continuous and differentiable except perhaps on a countable
set, g2(·) is continuous, positive, and non-decreasing, and {Wt}Tt=0 is the Wiener
process.

We show how to recover Lt (3.37) from Zt (3.33), provided that {Zt}Tt=0 satisfies
the ACG∗ property. Denote by δ(·) the Dirac-delta function. Let νi be the i-th
discontinuous point of {Zt}Tt=0. For {Zt}Tt=0 in (3.35), νi is simply equal to the
sampling times τi, i = 1, 2, . . . Without loss of generality, we assume that {Zt}Tt=0

is right-continuous at the discontinuous point νi, since the mean-square cost in (3.34)
is not affected by the assumption. Denote by ν−

i the time just before time νi, where
Zν−i
̸= Zνi .

Proposition 6. Assume that {Zt}Tt=0 is almost surely ACG∗ on [νi, νi+1) and is
right-continuous at the discontinuous point νi. Then, control signal {Lt}Tt=0 in
(3.37) for t ∈ [νi, νi+1), i = 1, 2, . . . , is given by

Lt =


(
Zνi − Zν−i

)
δ(t− νi), t = νi,

limδ→0+
Zt−Zt−δ

δ
, t ∈ (νi, νi+1).

(B.3)
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Proof. For t ∈ [νi, νi+1), we rewrite (3.38) as∫ t

νi

Lsds = Zt − lim
δ→0+

∫ νi−δ

0

Lsds (B.4a)

= Zt − Zν−i
(B.4b)

= (Zt − Zνi) + (Zνi − Zν−i
), (B.4c)

which is equivalent to (B.3).

Note that Lνi is an impulse control at t = νi [10, 114, 115, 116, 117], and Lt,
t ∈ (νi, νi+1) is equal to the left-derivative of Zt. This is because Zt may not
be differentiable at t, but its left-derivative exists since the ACG∗ property of Zt

implies that it is differentiable almost everywhere on (νi, νi+1) [112]. For example,
if Xt = Wt, the optimal control signal (3.35) is Zt = −Wτi , t ∈ [τi, τi+1), and
the corresponding control signal in (3.37) is Lt = −(Wτi − Wτi−1

)δ(t − τi) for
t ∈ [τi, τi+1).

B.3 Decomposition of Dop
DET(R)

We show that Dop
DET(R) (3.22) can be decomposed as (3.23). We write Dop

DET(R)

as follows.

Dop
DET(R) = lim sup

T→∞
inf

πT∈ΠDET
T

{ft}Tt=0∈CT :
(3.3a)

1

T
E

[
N∑
i=0

∫ τi+1

τi

(Xt − X̂t)
2

]
(B.5a)

= lim sup
T→∞

inf
πT∈ΠDET

T

{ft}Tt=0∈CT :
(3.3a)

1

T
E

[
N∑
i=0

∫ τi+1

τi

(Xt − X̄t)
2 + (X̄t − X̂t)

2dt

]

+ 2E

[
N∑
i=0

∫ τi+1

τi

(Xt − X̄t)(X̄t − X̂t)dt

]
(B.5b)

= lim sup
T→∞

inf
πT∈ΠDET

T

{ft}Tt=0∈CT :
(3.3a)

1

T
E

[
N∑
i=0

∫ τi+1

τi

(Xt − X̄t)
2 + (X̄t − X̂t)

2dt

]
,

(B.5c)

where (B.5a) holds by definition; (B.5b) holds by applying Xt − X̂t ← Xt −
X̄t + X̄t − X̂t to (B.5a); (B.5c) holds since the last term in (B.5b) is zero by the
orthogonality principle of the MMSE estimator [111, Prop. V.C.2]. Since the
causal compressing policy only influences the second term in (B.5c), we move the
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minimization over the compressing policies CT directly in front of the second term
in (B.5c) to obtain (3.23).

B.4 Proof of Theorem 6
To obtain the IDRF DDET(R) (3.24) and the optimal deterministic sampling pol-
icy that achieves it, we first compute the IDFRF (3.26). We denote by TN ≜

{T0, T1, . . . , TN} a vector of sampling intervals that determines a deterministic
sampling policy, where

Ti = τi+1 − τi, i = 0, . . . , N − 1

TN = T − τN .
(B.6)

We denote by DN ≜ {D1, . . . , DN} a vector of quantization distortions, where
Di ≜ E[(Wτi − Ŵτi)

2]. Since the samples taken under a deterministic sampling
policy form a GM process, Lemma 11, stated next, expandsDDET(F,Rs) by building
on existing results on the causal IDRF (3.26b) of discrete-time GM processes.

Lemma 11. The IDFRF under deterministic sampling policies can be written as

DDET(F,Rs) = lim sup
N→∞

DN(F,Rs), (B.7a)

DN(F,Rs) = inf
TN≥0:

(B.8)

F

N

 N∑
i=0

T 2
i

2
+ min

DN≥0:
(B.9)

N∑
i=1

TiDi

 , (B.7b)

where the minimization constraints in (B.7) are

1

N

N∑
i=0

Ti =
1

F
, (B.8)

z
(
DN
)
≜

1

N

(
N−1∑
i=1

log2

(
1 +

Ti

Di

)
+ log2

(
T0

DN

))
≤ 2Rs, (B.9a)

Di−1 + Ti−1 ≥ Di, i = 1, . . . , N, D0 = 0. (B.9b)

Proof. Appendix B.5.

Lemma 12, stated next, provides a lower bound on the right side of (B.7a).
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Lemma 12. DN(F,Rs) in (B.7b) is lower-bounded as

DN(F,Rs) ≥ DN(F,Rs), (B.10a)

≜ inf
T0≥0,TN≥0

T0+TN≤N
F

F

2

(
T 2
0 + T 2

N + 2 log2 e λ
∗(F,Rs, N)

N
+

N − 1

N
T ∗(F,N)

√
T ∗(F,N)2 + 4 log2 e λ

∗(F,Rs, N)

)
, (B.10b)

where T ∗(F,N) is given by

T ∗(F,N) ≜
N

F (N − 1)
− T0 + TN

N − 1
, (B.11)

and λ∗(F,Rs, N) ≥ 0 is the unique solution to

z
(
DN∗) = 2Rs (B.12)

with DN in (B.9a) replaced by

D∗
i =
−Ti +

√
T 2
i + 4 log2 e λ

∗(F,Rs, N)

2
, i = 1, . . . , N − 1, (B.13a)

D∗
N =

λ∗(F,Rs, N) log2 e

TN

, (B.13b)

and Ti, i = 1, . . . , N − 1 in (B.9a) replaced by T ∗(F,N) (B.11).

Proof. Appendix B.6.

Lemma 13 provides an upper bound on the right side of (B.7a).

Lemma 13. DN(F,Rs) in (B.7b) is upper-bounded as

DN(F,Rs) ≤ D̄N(F,Rs) (B.14a)

≜
N

F (N + 1)2
+

log2 e λ
∗(F,Rs, N)F

N
+

N − 1

2(N + 1)

√(
N

F (N + 1)

)2

+ 4 log2 e λ
∗(F,Rs, N), (B.14b)

where λ∗(F,Rs, N) ≥ 0 is the unique solution to (B.12) with DN in (B.9a) replaced
by (B.13), and with TN in (B.9a) replaced by

T0 = T1 = · · · = TN =
N

F (N + 1)
. (B.15)
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Proof. Appendix B.7.

Using Lemmas 12 and 13, we obtain the IDFRF DDET(F,Rs).

Lemma 14. DDET(F,Rs) in (B.7a) is given by (3.31), where (3.31) can be achieved
by a uniform sampling policy with sampling intervals equal to Ti =

1
F
, i = 0, 1, . . .

Proof. Appendix B.8.

We proceed to show the IDRF DDET(R) using the IDFRF DDET(F,Rs) in (3.31).
Lemma 15, stated next, displays the relation between DDET(R) and DDET(F,Rs).

Lemma 15. The IDRF (3.26) under deterministic sampling policies satisfies (3.28).

Proof. The IDRFDDET(R) is related to the IDFRFDDET(F,Rs) in (B.7) as follows,

DDET(R) = lim sup
N→∞

inf
F>0,Rs≥1:

FRs≤R

DN(F,Rs), (B.16)

which does not directly imply (3.28), since the right side of (3.28) switches the
order of lim sup and inf in (B.16). In Appendix B.9, we show that lim sup and inf

in (B.16) are interchangeable.

B.5 Proof of Lemma 11
We denote by D̃N(Rs) (3.26b) the IDRF for discrete-time samples of the Wiener
process

Wτi+1
= Wτi + Vτi , Vτi ∼ N (0, Ti). (B.17)

Using the representation of its dual in [20, Eq. (18)] derived using a semi-definite
programming approach, we write

D̃N(Rs) = inf
Di≥0, i=1,...,N :

Di−1+Ti−1≥Di, i=1,2,··· ,N,

1
N (
∑N

i=1
1
2
log2(Di−1+Ti−1)− 1

2
log2 Di)≤Rs.

N∑
i=1

TiDi. (B.18)

Since the sampling intervals TN are deterministic, we calculate the summand in
(3.26a) as

E
[∫ τi+1

τi

(Wt −Wτi)
2dt

]
= E

[∫ Ti

0

W 2
t dt

]
=

T 2
i

2
. (B.19)
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Plugging (B.18) and (B.19) into (3.26), we write

DDET(F,Rs) = lim sup
T→∞

inf
πT∈ΠDET

T
(2.3a)

1

T

(
N∑
i=0

T 2
i

2
+ D̃N(Rs)

)
. (B.20)

Note that as T → ∞, the number of samples N must increase no slower than
√
T .

Since the largest sampling interval satisfies maxi=0,...,N Ti ≥ T
N+1

, the summand
in (B.20) maxi T

2
i

2T
≥ T

2(N+1)2
will blow up to infinity if N increases slower than√

T . Thus, we can replace the lim supT→∞ in (B.20) by lim supN→∞, replace T in
(B.20) by its equivalent F

N
in (3.3a), and replace the minimization constraint (3.3a)

in (B.20) by its equivalent (B.8).

B.6 Proof of Lemma 12
We split DN(F,Rs) into layered optimization problems:

DN(F,Rs) ≜ inf
T0≥0,TN≥0:

T0+TN≤N
F

DN(F,Rs, T0, TN), (B.21a)

DN(F,Rs, T0, TN) ≜ min
T1,...,TN−1≥0:

1
N

∑N−1
i=1 Ti=

1
F
−T0+TN

N

F

N

(
N∑
i=0

T 2
i

2
+DN

(
F,Rs, T

N
))

,

(B.21b)

DN

(
F,Rs, T

N
)
≜ min

DN≥0:
(B.9)

N∑
i=1

TiDi. (B.21c)

We denote by DN(F,Rs, T
N) the lower bound to DN(F,Rs, T

N) obtained by
deleting the minimization constraint (B.9b) in (B.21c), i.e.,

DN(F,Rs, T
N) ≜ min

DN≥0:
(B.9a)

N∑
i=1

TiDi, (B.22)

We denote byDN(F,Rs, T0, TN) the corresponding lower bound toDN(F,Rs, T0, TN)

in (B.21b):

DN(F,Rs, T0, TN) ≜ min
T1,...,TN−1≥0:

1
N

∑N−1
i=1 Ti=

1
F
−T0+TN

N

F

N

(
N∑
i=0

T 2
i

2
+DN

(
F,Rs, T

N
))

.

(B.23)
We calculate the corresponding lower bound to DN(F,Rs):

DN(F,Rs) ≜ min
T0≥0,TN≥0:

T0+TN≤N
F

DN(F,Rs, T0, TN). (B.24)
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We first show that the optimization problem in the right side of (B.22) is a convex
optimization problem that satisfies Slater’s condition, i.e., strong duality holds.
Then, we solve its Lagrangian dual problem to get the optimal D∗

1 . . . , D
∗
N in (B.13)

that achieve the minimum in the right side of (B.22), where λ∗(F,Rs, N) ≥ 0 is the
unique solution to (B.12).

The objective function
∑N

i=1 TiDi (B.22) is an affine function in DN . Furthermore,
z
(
DN
)

is a convex function since

∂2z
(
DN
)

∂D2
i

=
log2 eTi(2Di + Ti)

N(D2
i +DiTi)2

≥ 0, ∀i = 1, . . . , N − 1, (B.25a)

∂2z
(
DN
)

∂D2
N

=
log2 e

ND2
N

≥ 0, (B.25b)

∂2z
(
DN
)

∂Di∂Dj

= 0, ∀i, j = 1, . . . , N. (B.25c)

Therefore, the minimization problem in the right side of (B.22) is convex. Notice
that z(D,D, . . . , D) decreases from +∞ to−∞ as D increases from 0 to∞. Thus,
there exists a D̃ ≥ 0 such that Slater’s condition is satisfied, i.e.,

z
(
D̃, D̃, . . . , D̃

)
< 2Rs. (B.26)

We conclude that 1) the strong duality holds, 2)D(F,Rs, T
N) can be obtained via its

Lagrangian dual problem, and 3) there must exist an optimal Lagrangian multiplier
λ∗(F,Rs, N) ≥ 0 that satisfies the complementary slackness (B.12) in the KKT
conditions. Indeed, (B.12) always has a non-negative solution λ∗(F,Rs, N), since
as a function of λ∗(F,Rs, N), z

(
DN∗) is continuous and monotonically decreasing

from +∞ to −∞ as λ∗(F,Rs, N) increases from 0 to +∞.

DN∗ in (B.13) is the solution to the Lagrangian function:

min
DN

N∑
i=1

TiDi + λ∗(F,Rs, N)

(
N−1∑
i=1

log2

(
1 +

Ti

Di

)
+ log2

(
T0

DN

)
− 2Rs

)
,

(B.27)

where (B.13) is obtained by taking derivatives of the objective function of (B.27)
with respect to each Di, i = 1, 2 . . . , N .

PluggingDN∗ (B.13) into (B.22), we obtainDN

(
F,Rs, T

N
)

and proceed to evaluate
DN(F,Rs, T0, TN) in (B.23), which is

DN(F,Rs, T0, TN) = min
T1,...,TN−1≥0:

1
N

∑N−1
i=1 Ti=

1
F
−T0+TN

N

g(T1, . . . , TN−1), (B.28)
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where

g(T1, . . . , TN−1) ≜
F

2N

[
T 2
0 + T 2

N + 2 log2 e λ
∗(F,Rs, N)

+
N−1∑
i=1

Ti

√
T 2
i + 4 log2 e λ

∗(F,Rs, N)

]
.

(B.29)

We make use of the Schur-convexity of (B.29) to calculate DN(F,Rs, T0, TN).
Assume that a function f(xd) is symmetric, and its first partial derivative with
respect to each xi, i = 1, . . . , d exists. Then, f(xd) is Schur-convex if and only if

(xi − xj)

(
∂f(xd)

∂xi

− ∂f(xd)

∂xj

)
≥ 0, ∀ i, j = 1, . . . , d. (B.30)

It is clear that g(T1, . . . , TN−1) is symmetric since it is invariant to the permutations
of T1, . . . , TN−1. To calculate the partial derivatives of (B.29), we first compute the
implicit differentiation ∂λ∗(F,Rs,N)

∂Ti
by taking the derivative with respect to Ti on the

both sides of (B.12), yielding

∂λ∗(F,Rs, N)

∂Ti

=
1√

T 2
i + 4 log2 e λ

∗(F,Rs, N)
·

2λ∗(F,Rs, N)

1 +
∑N−1

k=1
Tk√

T 2
k+4 log2 e λ

∗(F,Rs,N)

.
(B.31)

Using (B.31) to compute the first partial derivative, we obtain

∂g(T1, . . . , TN−1)

∂Ti

=
F

N

√
T 2
i + 4 log2 e λ

∗(F,Rs, N). (B.32)

Using (B.32), we can verify that g(T1, . . . , TN−1) satisfies (B.30). Therefore,
g(T1, . . . , TN−1) is a Schur-convex function.

Let x = (x1, . . . , xd) ∈ Rd, y = (y1, . . . , yd) ∈ Rd be two non-increasing sequences
of real numbers. Recall that x is majorized by y if for each k = 1, . . . , d,

∑k
i=1 xi ≤∑k

i=1 yi with equality if k = d. For a Schur-convex function f , if x is majorized
by y, then f(x) ≤ f(y). In our case, the feasible Ti’s must satisfy the constraint in
(B.28). Any sequence T1, . . . , TN−1 that satisfies the constraint in (B.28) majorizes
the sequence in (B.11). Thus, the infimum in (B.28) is achieved by the sequence
T ∗
1 , . . . , T

∗
N−1 in (B.11). Finally, plugging T ∗

1 , . . . , T
∗
N−1 (B.11) into (B.28), and

further plugging (B.28) into the right side of (B.24), we complete the proof.
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B.7 Proof of Lemma 13
Plugging (B.15) into (B.13), we obtain:

D∗
1 = · · · = D∗

N−1 =
− N

F (N+1)
+

√(
N

F (N+1)

)2
+ 4 log2 e λ

∗(F,Rs, N)

2
, (B.33a)

D∗
N =

F (N + 1)

N
log2 e λ

∗(F,Rs, N), (B.33b)

where λ∗(F,Rs, N) is defined in Lemma 13. We first show that the TN in (B.15)
and the DN in (B.33) satisfy the deleted constraint (B.9b). Then, we plug TN (B.15)
and DN (B.33) as feasible solutions into the minimization problem associated with
DN(F,Rs) in (B.7b) to obtain the upper bound in (B.14).

For i = 2, . . . , N − 1, the deleted constraint (B.9b) is satisfied trivially, since
Di−1 = Di and Ti−1 ≥ 0. To prove that the deleted constraint (B.9b) also holds at
i = 1 and N , we upper bound λ∗(F,Rs, N) for every N > 2. If

T1 = · · · = TN−1, (B.34)

we can rearrange terms in the complementary slackness condition (B.12) and con-
clude x = λ∗(F,Rs, N) log2 e is the unique solution to the following equation,

hN(T0, TN , T1, Rs, x)− x = 0, (B.35)

where hN(T0, TN , T1, Rs, x) is defined to be equal to

T 2
1

22Rs+
2

N−1
Rs−

log2 T0+log2 TN
N−1

+
log2 x
N−1 − 1

+

(
T1

22Rs+
2

N−1
Rs−

log2 T0+log2 TN
N−1

+
log2 x
N−1 − 1

)2

.

(B.36)

The left side of (B.35) monotonically decreases as x increases.

Given Rs and plugging (B.15) into (B.35), we conclude that the λ∗(F,Rs, N) in
Lemma 13 is the unique solution to

hN

(
N

F (N + 1)
,

N

F (N + 1)
,

N

F (N + 1)
, Rs, x

)
− x = 0, (B.37)

Plugging

x =
N2

2F 2(N + 1)2
(B.38)

into (B.37), we observe that the left side of (B.37) is ≤ 0 for all N > 2. Thus, we
conclude

λ∗(F,Rs, N) log2 e ≤
N2

2F 2(N + 1)2
, ∀ N > 2. (B.39)
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Plugging (B.39) into (B.33), we obtain

D∗
1 ≤

√
λ∗(F,Rs, N) log2 e ≤

N

F (N + 1)
, (B.40a)

D∗
N ≤

N

2F (N + 1)
. (B.40b)

Substituting (B.15) and (B.40) into (B.9b), we conclude that (B.9b) holds for i = 1

and i = N . Now, we can plug (B.15) and (B.33) as feasible solutions into (B.7b) to
obtain the right side of (B.14).

B.8 Proof of Lemma 14
From Lemmas 12 and 13, and (B.7a), we have

lim inf
N→∞

DN(F,Rs) ≤ DDET(F,Rs) ≤ lim sup
N→∞

D̄N(F,Rs). (B.41)

We show that both bounds are equal to the right side of (3.31).

To compute the lower bound in (B.41), we need to understand the behavior of
T ∗(F,N), λ∗(F,Rs, N), and T ∗

0 , T ∗
N as N goes to infinity, where T ∗

0 , T ∗
N achieve

the minimum of the left side of (B.41). T ∗
0 and T ∗

N must increase as

T ∗
0 + T ∗

N = O
(√

N
)
, (B.42)

or T ∗
0
2+T ∗

N
2

N
in (B.10b) will blow up to infinity as N → ∞. Substituting (B.42) to

(B.11), we obtain

T ∗(F,N) =
1

F
+O

(
1√
N

)
. (B.43)

We proceed to compute
λ∗ ≜ lim

N→∞
λ∗(F,Rs, N). (B.44)

For given T ∗
0 , T ∗

N , and Rs, x = λ∗(F,Rs, N) log2 e is the unique solution to (B.35)
with T0, TN , and T (N) replaced by T ∗

0 , T ∗
N , and T ∗(F,N) in (B.11). We prove that

λ∗ log2 e ≥
1

22RsF 2
, (B.45a)

λ∗ log2 e ≤
1

2F 2
. (B.45b)

We substitute (B.42) and (B.43) into the left side of (B.35) and take limN→∞ to
conclude that

lim
N→∞

hN

(
T ∗
0 , T

∗
N , T

∗(F,N), Rs,
1

2F 2

)
− 1

2F 2
≤ 0. (B.46)



165

Since the left side of (B.35) is monotonically decreasing in x, we conclude (B.45a)
holds. To prove (B.45b), we similarly compute

lim
N→∞

hN

(
T ∗
0 , T

∗
N , T

∗(F,N), Rs,
1

22RsF 2

)
− 1

22RsF 2
≥ 0. (B.47)

Via the squeeze theorem, (B.45) implies

λ∗(F,Rs, N) = O(1). (B.48)

Plugging (B.42), (B.43), and (B.48) into (B.35), and taking N → ∞ on both sides
of (B.35), we obtain

λ∗ log2 e =
1

F 2(22Rs − 1)2
+

1

F 2(22Rs − 1)
. (B.49)

Plugging (B.42), (B.43), and (B.49) into (B.10b) and taking limN→∞, we compute
that limN→∞ DN(F,Rs) is equal to

1

2F
+

1

F (22Rs − 1)
+ lim

N→∞
inf

T0≥0,TN≥0

T0+TN≤N
F

F

2

(
T 2
0 + T 2

N

N

)
(B.50a)

=
1

2F
+

1

F (22Rs − 1)
, (B.50b)

where 0 is achieved in the last term of (B.50a) by choosing any pair of T0, TN ≥ 0

that satisfies
T0 + TN = o

(√
N
)
. (B.51)

We chooseT0 andTN in (B.15) that satisfy (B.51), such that together withT1, . . . , TN−1

in (B.15), the lower bound of DDET(F,Rs) in (B.41) is achieved.

Now, we compute the upper bound in the right side of (B.41). λ∗(F,Rs, N) log2 e

in (B.14b) is the unique solution to (B.35). Note that (B.49) holds for any T0 and
TN that satisfy (B.42). Since T0 and TN in (B.15) satisfy (B.42), we conclude that
the limN→∞ of λ∗(F,Rs, N) log2 e in (B.14b) is also equal to (B.49). Plugging
(B.49) into (B.14b) and taking lim supN→∞, we calculate that the upper bound of
DDET(F,Rs) in (B.41) is equal to (B.50b).

Furthermore, we observe that the uniform sampling intervals (B.15) achieving both
the upper and the lower bound of DDET(F,Rs), converge to 1

F
asymptotically. We

conclude that the uniform sampling policy with the sampling interval 1
F

achieves
DDET(F,Rs).
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B.9 Proof of Lemma 15
The max-min inequality and (B.16) imply that

DDET(R) ≤ min
F>0,Rs≥1:

FRs≤R

lim sup
N→∞

D̄N(F,Rs). (B.52)

On the other hand,

DDET(R) ≥ lim
N→∞

inf
F>0,Rs≥1:

FRs≤R

DN(F,Rs) (B.53a)

= inf
F>0,Rs≥1:

FRs≤R

lim
N→∞

DN(F,Rs), (B.53b)

where (B.53a) is by (B.16), and (B.53b) will be proved in the sequel. Using (B.41)
with both bounds equal to each other, (B.52), and (B.53), we complete the proof of
Lemma 15.

We proceed to prove (B.53b) via the fundamental theorem of Γ-convergence. Let
X be a topological space and GN : X → [0,+∞], N = 1, 2, . . . , be a sequence of
functions defined on X . A sequence of functions GN , N = 1, 2, . . . Γ-converges
[118] to its Γ-limit G : X → [0,+∞] if:

(i) For every x ∈ X , and for every sequence xN ∈ X , N = 1, 2, . . . converging to
x,

G(x) ≤ lim inf
N→∞

GN(xN). (B.54)

(ii) For every x ∈ X , there exists a sequence xN ∈ X , N = 1, 2, . . . converging to
x such that

G(x) ≥ lim sup
N→∞

GN(xN). (B.55)

A sequence of functions GN , N = 1, 2, . . . is equicoercive [118] if there exists a
compact set K independent of N s.t.

inf
x∈X

GN(x) = inf
x∈K

GN(x). (B.56)

The fundamental theorem of Γ-convergence [118] says that if GN is equicoercive
and Γ-converges to G : X → [0,+∞], then

min
x∈X

G(x) = lim
N→∞

inf
x∈X

GN(x). (B.57)

We will show that for any scalars F > 0, Rs ≥ 1 and for any sequences F(N) → F ,
Rs(N) → Rs, we have

lim
N→∞

DN(F(N), Rs(N)) = DDET(F,Rs), (B.58)
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which means in particular that DDET(·, ·) is the Γ-limit of DN(·, ·). We will also
prove that DN(F,Rs) is equicoercive, and (B.53b) will follow via the fundamental
theorem of Γ-convergence. By verifying that the reasoning in (B.42)-(B.50) goes
through replacing F and Rs by F(N) and Rs(N) respectively, we conclude that (B.58)
holds.

It remains to prove that DN(F,Rs) is equicoercive. Ignoring the two non-negative
λ∗(F,Rs, N) terms in (B.10b), we observe that DN(F,Rs) is lower bounded by

inf
T0≥0,TN≥0

T0+TN≤N
F

F

2

(
T 2
0 + T 2

N

N
+

N − 1

N
T ∗(F,N)2

)
(B.59a)

= inf
T0≥0,TN≥0

T0+TN≤N
F

1

2

(
F
T 2
0 + T 2

N

N
+

N

F (N − 1)

(
1− F (T0 + TN)

N

)2
)
, (B.59b)

where (B.59b) is obtained by plugging (B.11) into (B.59a). We denote the objective
function in (B.59b) by q(T0, TN). We prove that q(T0, TN) is a Schur-convex
function: 1) q(T0, TN) is symmetric, since it is invariant to the permutations of T0

and TN ; 2) the first-order partial derivatives of q(T0, TN) with respect to T0 and TN

are

∂q

∂T0

=
F

N
T0 +

F

N(N − 1)
(T0 + TN)−

1

N − 1
, (B.60a)

∂q

∂TN

=
F

N
TN +

F

N(N − 1)
(T0 + TN)−

1

N − 1
, (B.60b)

where (B.60) satisfies (B.30). Using the property of Schur-convex functions stated
in Lemma 12 after (B.32), we know that the minimum of q(T0, TN) is achieved by

T0 = TN = a, for some 0 ≤ a ≤ N

2F
. (B.61)

Plugging (B.61) into q(T0, TN), we find that the optimal a that minimizes q(a, a) is
given by

a =
N

(N + 1)F
. (B.62)

Plugging (B.61) and (B.62) into (B.59b), we obtain

DN(F,Rs) ≥
N2

2F (N + 1)2
. (B.63)

On the other hand, plugging (B.39) into the right side of (B.10), we obtain

D̄N(F,Rs) ≤
3N

2F (N + 1)2
+

√
3N(N − 1)

2F (N + 1)2
. (B.64)
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Choosing F = R in (B.64), we conclude that

inf
F>0,Rs≥1
FRs≤R

DN(F,Rs) ≤
3N

2R(N + 1)2
+

√
3N(N − 1)

2R(N + 1)2
. (B.65)

For any F ∈
(
0, R

3+
√
3

)
, the right side of (B.63) is larger than the right side of

(B.65). Thus, the infimum is attained in the following compact set:

F ∈
[

R

3 +
√
3
, R

]
, (B.66)

where the upper bound of F is obtained by lower-bounding Rs by 1. Correspond-
ingly, Rs lies in the following compact set:

Rs ∈
[
1, 3 +

√
3
]
, (B.67)

Using (B.66)–(B.67), we conclude that DN(F,Rs) is equicoercive.

B.10 Converse proof of Theorem 8
We show that the DSTF for a BEC is lower bounded by the DSTF for a packet-drop
channel (3.54). We denote by ΠBEC and CBEC the set of all causal sampling policies
and the set of all causal compressing policies in Definition 16. We lower bound the
DSTF for a BEC as

DBEC(n, T )

= inf
π∈ΠBEC

{ft}∞t=0∈CBEC :
(2.43)

1

T
E

[
n−1∑
i=0

∫ τi+1

τi

(Xt − X̂BEC
t )2

]
(B.68a)

≥ inf
π∈ΠBEC :

(2.43)

1

T
E

[
n−1∑
i=0

∫ τi+1

τi

(
Xt − E

[
Xt

∣∣∣{Xs}Si
s=0, {τj}j∈N({Bτj }

i
j=1)

])2]
(B.68b)

= inf
π∈ΠBEC :

(2.43)

1

T
E

[
n−1∑
i=0

∫ τi+1

τi

(Xt − X̄pd
t )2

]
(B.68c)

= Dpd(n, T ). (B.68d)

where (B.68b) holds since

σ
(
{Vj, τj}j∈N({Bτj }

i
j=1)

)
⊆ σ

(
{Xs}Si

s=0, {τj}j∈N({Bτj }
i
j=1)

)
, (B.69)

where Si is the time of the last successful transmission defined in (2.40); (B.68c)
holds since by the strong Markov property of the Lévy process, the estimate in
(B.68b) is equal to X̄pd

t in (2.42).
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A p p e n d i x C

CAUSAL JOINT SOURCE-CHANNEL CODING WITH
FEEDBACK: PROOFS

C.1 A partition that satisfies (4.24)
For any t = 1, 2, . . . and any yt−1 ∈ Y t−1, we show that the greedy heuristic
algorithm [101] yields a partition {Gx(yt−1)}x∈X that satisfies the partitioning rule
(4.24).

The greedy heuristic algorithm operates as follows. At time t, it initializes all the
groups {Gx(yt−1)}x∈X by empty sets and initializes all the group priors{πx(y

t−1)}x∈X
by zeros. It sorts all the source sequences in [q]N(t) according to their priors θi(yt−1),
i ∈ [q]N(t) in a descending manner. Starting from the sequence with the largest prior,
it moves the sequence in the sorted list to the group Gx∗(yt−1) whose current group
prior has the largest gap to the corresponding capacity-achieving probability, i.e.,

x∗ ≜ argmax
x∈X

P ∗
X(x)− πx(y

t−1). (C.1)

The group prior πx∗(yt−1) is updated after each move. The partitioning process
repeats until all the source sequences have been classified.

We show that the resulting partition {Gx(yt−1)}x∈X satisfies (4.24). We first notice
that the maximization problem on the right side of (C.1) must be strictly larger than
zero before all source sequences have been classified. If moving sequence i to group
Gx∗(yt−1) leads to

πx∗(yt−1)− P ∗
X(x

∗) < 0, (C.2)

then (4.24) is obviously satisfied. If moving sequence i to group Gx∗(yt−1) leads to

πx∗(yt−1)− P ∗
X(x

∗) ≥ 0, (C.3)

then (4.24) is satisfied since (C.2) holds before the move, and sequence i has the
smallest prior in Gx∗(yt−1) after the move. Furthermore, if the group Gx∗(yt−1)

satisfies (C.3), it will no longer be the solution to the maximization problem in (C.1)
and thus will no longer accept new sequences. This means that (4.24) holds for all
x ∈ X at the end of the greedy heuristic partitioning.
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C.2 Channel input distribution is equal to the capacity-achieving distribution
We show that (4.31) holds, i.e., the channel input distribution is equal to the capacity-
achieving distribution. For any x ∈ X and yt−1 ∈ Y t−1, we expand right side of
(4.31) as

PXt|Y t−1(x|yt−1) =
∑
z∈X

PXt|Zt,Y t−1(x|z, yt−1)PZt|Y t−1(z|yt−1) (C.4a)

=
∑
z∈X

PXt|Zt,Y t−1(x|z, yt−1)πz(y
t−1) (C.4b)

= PXt|Zt,Y t−1(x|x, yt−1)πx(y
t−1) (C.4c)

+
∑
z ̸=x

PXt|Zt,Y t−1(x|z, yt−1)πz(y
t−1), (C.4d)

where (C.4a) holds by the law of total probability and (C.4b) holds by the definition
of Zt in (4.29).

By the randomization distribution in (4.30), if x ∈ X (yt−1), then (C.4c) is equal to
P ∗
X(x) and (C.4d) is equal to 0, and if x ∈ X (yt−1), then (C.4c) is equal to πx(y

t−1)

and (C.4d) is equal to∑
z∈X (yt−1)

pz→x

πx(yt−1)
πx(y

t−1) = P ∗
X(x)− πx(y

t−1), (C.5)

where (C.5) uses (4.28).

C.3 Converse proof of Theorem 9
Inspired by Berlin et al.’s converse proof [99] for Burnashev’s reliability function,
we provide a converse bound on the JSCC reliability function for a fully accessible
source by lower bounding the expected stopping time of an arbitrary code with
block encoding using the error probability at the stopping time. The converse bound
continues to apply for the JSCC reliability function for streaming, since given a
DMC, every code with instantaneous encoding for transmitting the first k symbols
of a (q, {tn}∞n=1) DSS in Definition 20 is a special code with block encoding for
transmitting the first k symbols Sk ∈ [q]k of a DS (4.3).

We consider k symbols Sk ∈ [q]k of a DS with source distribution PSk , and we fix a
non-degenerate DMC with a single-letter transition probability PY |X : X → Y . We
fix an arbitrary code with block encoding with a stopping time ηk for transmitting
Sk over the non-degenerate DMC with feedback. We assume that the decoder is
a MAP decoder (4.46), since given any encoding function and any stopping time
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in Definition 20, the MAP decoder (4.46) achieves the minimum error probability
(4.15). For brevity, we denote the error probability of a MAP decoder given channel
outputs yt ∈ Y t by

Pe(y
t) ≜ 1− max

s∈[q]k
PSk|Y t(s|yt), (C.6)

and we denote the error probability of a MAP decoder at the stopping time ηk by

Pe ≜ E[Pe(Y
ηk)]. (C.7)

We define stopping time τδ as

τδ ≜ min{t : Pe(y
t) ≤ δ or t = ηk}. (C.8)

To obtain the converse bound on the JSCC reliability function for a fully accessible
source, we establish a lower bound on the expected decoding time E[ηk] using the
error probability Pe and and source distribution PSk . To this end, we lower bound
E[τδ] and E[ηk − τδ], respectively. The lower bound on E[τδ] is stated below.

Lemma 16 (Modified Lemma 2 in [99]). Consider k symbols Sk ∈ [q]k of a DS
with source distribution PSk (4.1) and fix a non-degenerate DMC with capacity C

(4.10). For any δ ∈
(
0, 1

2

]
, it holds that

E[τδ] ≥
H(Sk)

C

(
1−

(
δ +

Pe

δ

)
log qk

H(Sk)

)
− h(δ)

C
. (C.9)

Proof. Appendix C.4.

The lower bound on E[ηk − τδ] is stated below.

Lemma 17 (Modified Eq. (17) [99]). Consider k symbols Sk ∈ [q]k of a DS with
source distribution PSk and fix a non-degenerate DMC with transition probability
PY |X : X → Y and maximum KL divergence C1 (4.11). For any δ ∈

(
0, 1

2

]
, it holds

that

E[ηk − τδ] ≥
log 1

Pe
− log 4 + log(min

{
pminδ, 1−maxs∈[q]k PSk(s)

}
)

C1

, (C.10)

where pmin in (C.10) is the minimum channel transition probability (4.34).

Proof. Appendix C.5.
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Summing up the right sides of (C.9) and (C.10), we obtain the following lower
bound on the expected decoding time ηk of an arbitrary code with block encoding:

E[ηk] ≥
H(Sk)

C

(
1−

(
δ +

Pe

δ

)
log qk

H(Sk)

)
+

log 1
Pe

C1

(C.11)

+
− log 4 + log(min

{
pminδ, 1−maxs∈[q]k PSk(s)

}
)

C1

− h(δ)

C
.

The asymptotic performance of the lower bound (C.11) relies on two properties of
the DS in Lemma 18, stated next.

Lemma 18. Consider a DS with a well-defined and positive entropy rate H (4.2)
and a finite single-letter alphabet [q]. Then,

lim
k→∞

log qk

H(Sk)
=

log q

H
<∞, (C.12)

lim inf
k→∞

(
1− max

s∈[q]k
PSk(s)

)
> 0. (C.13)

Proof. The proof of (C.13) is in Appendix C.6.

Plugging (C.13)–(C.12) and δ = − 1
logPe

into the right side of (C.11), we obtain

E[ηk] ≥

(
H(Sk)

C
+

log 1
Pe

C1

)
(1− o(1)), (C.14)

where o(1) in (C.14) is a positive term that converges to 0 as both Pe → 0 and
k → ∞. Rearranging terms of (C.14), we conclude that E(R) is upper bounded
by the right side of (4.38). Similar to [40], [99, Eq. (5)], [87, Proposition 9], here
we need not consider the case where Pe does not converge to zero since this means
E(R) = 0.

C.4 Proof of Lemma 16
We follow Berlin et al.’s notations [99]: we denote byH(Sk|Y t) a random variable
that satisfies H(Sk|yt) = H(Sk|Y t = yt). Note that E[H(Sk|Y t)] = H(Sk|Y t).
If any step below has already been proved in [99], we avoid repeated reasoning by
referring to the proof in [99]. Compared to Berlin et al.’s proof in [99, Sec. IV], the
proof below does not assume that the source is equiprobably distributed–it keeps
the generic form of the source prior PSk .
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The sequence {H(Sk|Y t) + tC}t=0,1,... is a submartingale ([99, Lemma 2]). Us-
ing Doob’s optional stopping theorem [119], the initial state of the submartingale
{H(Sk|Y t) + tC}t=0,1,... is upper bounded as

H(Sk) ≤ H(Sk|Y τδ) + E[τδ]C. (C.15)

For δ ∈
(
0, 1

2

]
, the conditional entropy on the right side of (C.15) is upper bounded

as

H(Sk|Y τδ) ≤ h(δ) +

(
δ +

Pe

δ

)
log qk (C.16)

using Fano’s inequality (in the same manner as in [99, Eq. (14)–(16)]). Plugging
(C.16) to the right side of (C.15) and rearranging terms, we obtain (C.9).

C.5 Proof of Lemma 17
We obtain the lower bound on E[ηk − τδ] in Lemma 17 by constructing a binary
hypothesis test performed over a non-degenerate DMC with feedback. We first state
a lower bound on the error probability of such a test. Consider a binary hypothesis
test (H0, H1) performed over a DMC with feedback via a variable-length code with
block encoding. The encoder sends a sequence of symbols X1, X2, . . . , over the
given DMC with feedback, such that at the stopping time T , if H0 is true, then the
channel output vector Y T is distributed according to QH0 , otherwise, the channel
output vector Y T is distributed according to QH1 . At the stopping time, the decoder
uses the decoding function Ŵ : YT → {H0, H1} to form a decoded hypothesis. We
denote the set of channel outputs yT that leads to decoded hypothesis Hi, i ∈ {0, 1}
by

YHi
≜ {yT ∈ YT : Ŵ (yT ) = Hi}, i ∈ {0, 1}. (C.17)

We denote by pHi
, i ∈ {0, 1}, the prior probability of hypothesis Hi, i ∈ {0, 1}

before the transmission. We denote the error probability of the binary hypothesis
test at the stopping time T by

Pb ≜ pH0QH0(YH1) + pH1QH1(YH0). (C.18)

Lemma 19 (Lemma 1 in [99]). Consider a binary hypothesis test with hypotheses
H0 and H1 performed over a non-degenerate DMC with feedback that has maximum
KL divergence C1 (4.11) via a variable-length code with block encoding. The error
probability of the binary hypothesis test Pb at stopping time T is lower bounded as

Pb ≥
min{pH0 , pH1}

4
e−C1E[T ], (C.19)

where pH0 and pH1 are the prior probabilities of the hypotheses.
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We employ the same hypothesis test as that in [99, Section V]. Compared to Berlin
et al.’s proof [99, Sec. V], the proof below lower bounds the priors of the hypotheses
differently since we consider a generic source distribution whereas Berlin at al.’s
[99] considered equiprobable source symbols.

The binary hypothesis test (cf. [99, Section V]) starts at time τδ + 1 and operates
as follows. Given any Y τδ , we partition the alphabet [q]k into two sets G(Y τδ)

and [q]k \ G(Y τδ) (we will specify G in the sequel). The two hypotheses are
H0 : S

k ∈ G(Y τδ) and H1 : S
k ∈ [q]k \ G(Y τδ). At the stopping time ηk, the MAP

decoder outputs the estimate of the source Ŝk
ηk

using the channel outputs Y ηk . If
the estimate satisfies Ŝk

ηk
∈ G(Y τδ), then we declare H0, otherwise, we declare H1.

The error probability of decoding Sk is lower bounded by the error probability of
the binary hypothesis test ([99, the second paragraph below Prop. 2]), i.e., given
any t ≥ 0, yt ∈ Y t,

P[Ŝk
ηk
̸= Sk|Y τδ = yt] ≥ P[Ŝk

ηk
/∈ G(Y τδ), Sk ∈ G(Y τδ)|Y τδ = yt]

+ P[Ŝk
ηk
∈ G(Y τδ), Sk /∈ G(Y τδ)|Y τδ = yt].

(C.20)

We invoke Lemma 19 with pH0 ← P[H0|Y τδ = yt], pH1 ← P[H1|Y τδ = yt],
E[T ] ← E[ηk − τδ|Y τδ = yt] to further lower bound the left side of (C.20) and
obtain

P[Ŝk
ηk
̸= Sk|Y τδ = yt] ≥ min{P[H0|Y τδ = yt],P[H1|Y τδ = yt]}

4
e−C1E[ηk−τδ|Y τδ=yt].

(C.21)

To lower bound the minimization function on the right side of (C.21), we show that
alphabet [q]k can always be partitioned into two groups G(Y τδ) and [qk] \ G(Y τδ)

such that for all t ≥ 0, yt ∈ Y t, the priors of the hypotheses are lower bounded as

P[H0|Y τδ = yt] ≥ min

{
pminδ, 1− max

s∈[q]k
PSk(s)

}
, (C.22a)

P[H1|Y τδ = yt] ≥ min

{
pminδ, 1− max

s∈[q]k
PSk(s)

}
, (C.22b)

where pmin is defined in (4.34). The priors of the hypotheses are both lower
bounded by pminδ for any δ ∈

(
0, 1

2

]
if either event A1 ≜ {τδ ≥ 1} or event

A2 ≜ {τδ = 0,maxs∈[q]k PSk(s) ≤ 0.5} occurs, see [99, Section V]. The threshold
0.5 defining event A2 corresponds to Berlin et al.’s reasoning in [99, the second
case in the third paragraph after Prop. 2], which says at time τδ, if the posteriors1

1The source posterior at time 0 is equal to the source prior PSk .
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of all source sequences in [q]k are upper bounded by 1 − δ ∈ [0.5, 1], then [q]k

can be divided into two groups with the priors of both hypotheses lower bounded
by pminδ. In Berlin et al.’s [99] channel coding context where the source symbols
are equiprobably distributed, the union of the events A1 ∪ A2 occurs almost surely,
since PSk(s) = 1

qk
. Yet, in the JSCC context, it is possible that event A3 ≜ {τδ =

0,maxs∈[q]k PSk(s) > 0.5} occurs. WhenA3 occurs, we move the sequence s ∈ [q]k

that attains the maximum in event A3 to G(Y τδ), and move the remaining sequences
to the other group. This group partitioning rule implies (C.22). Plugging (C.22) into
(C.21), taking an expectation of (C.21) over Y τδ , and applying Jensen’s inequality
to e−x on the right side of (C.21), we obtain

Pe ≥
min{pminδ, 1−maxs∈[q]k PSk(s)}

4
e−C1E[ηk−τδ]. (C.23)

Rearranging terms in (C.23), we obtain (C.10).

C.6 Proof of Lemma 18
We show that (C.13) holds. We upper bound the entropy rate as

lim
k→∞

H(Sk)

k
≤ lim inf

k→∞

1

k

(
h

(
max
s∈[q]k

PSk(s)

)
+

(
1− max

s∈[q]k
PSk(s)

)
k log q

)
(C.24)

= lim inf
k→∞

(
1− max

s∈[q]k
PSk(s)

)
log q, (C.25)

where (C.24) holds since fixing the probability of the source sequence that attains
maxs∈[q]k PSk(s), the equiprobable distribution on the rest of qk − 1 sequences
maximizes the concave entropy function; (C.25) holds since the binary entropy
function in (C.24) is bounded between [0, 1]. Finally, (C.13) holds since the entropy
rate is positive by assumption.

C.7 Achievability proof of Theorem 9: A (fully accessible) DS
We show that both the MaxEJS code for all non-degenerate DMCs [45, Sec. IV-C]
and the SED code for non-degenerate symmetric binary-input DMCs [45, Sec. V-B]
achieve E(R) (4.38) for a DS. We denote a deterministic encoding function at time
t by

γt : [q]
k → X , (C.26)

we denote the vector of the message posteriors at time t by

ρ(Y t) ≜ [PSk|Y t(1|Y t), PSk|Y t(2|Y t), . . . , PSk|Y t(qk|Y t)], (C.27)



176

and we denote the extrinsic Jensen-Shannon (EJS) divergence [45] at time t by

EJS(ρ(Y t−1), γt) ≜ (C.28)
qk∑
i=1

PSk|Y t−1(i|Y t−1)D

(
PY |X=γt(i)

∣∣∣∣∣
∣∣∣∣∣∑
j ̸=i

PSk|Y t−1(j|Y t−1)

1− PSk|Y t−1(i|Y t−1)
PY |X=γt(j)

)
.

The MaxEJS code [45, Section IV.C] sets its encoding function γ∗
t at time t by

solving the maximization problem:

γ∗
t ≜ argmax

γt∈E
EJS(ρ(Y t−1), γt), (C.29)

where E is the set of all possible deterministic functions γt (C.26). The SED code
[45] corresponds to the instantaneous SED code in Section 4.5 for a fully accessible
source.

Lemma 20, stated next, will be used to examine whether a code with block encoding
achieves the JSCC reliability function for a fully accessible source.

Lemma 20. Consider k symbols Sk ∈ [q]k of a DS with prior probabilityPSk and fix
a non-degenerate DMC with capacity C (4.10) and the maximum KL divergence C1

(4.11). A code with block encoding achieves the JSCC reliability function (4.38) for
the fully accessible source if and only if its stopping time ηk and its error probability
ϵ (4.15) at the stopping time ηk satisfy

E[ηk] ≤
(
H(PSk)

C
+

log 1
ϵ

C1

)
(1 + o(1)), (C.30)

where o(1)→ 0 as k →∞.

Proof. If a code with block encoding satisfies (C.30), then it achieves E(R) (4.38)
because plugging (C.30) into (4.17) gives (4.38). Conversely, if a code with block
encoding achieves E(R) (4.38), then E[ηk] is upper bounded by the right side of
(C.30). This is because any achievability bound on E[ηk] that is asymptotically
larger than the right side of (C.30) cannot achieve (4.38).

We show that the MaxEJS code and the SED code both satisfy (C.30). While [45,
Eq. (32)] in [45, Theorem 1] is obtained by plugging a uniform prior of the message
to the entropy function in [45, Appendix II, Eq. (71)], we leave the prior in its
generic form and obtain a modified version of [45, Theorem 1] as follows.
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Lemma 21 (Modified Theorem 1 in [45]). Fix a non-degenerate DMC with capacity
C (4.10) and maximum KL divergence C1 (4.11), and consider k symbols Sk ∈ [q]k

of a DS with source distribution PSk . If the encoding functions γt, t = 1, . . . , ηk of
a code with block encoding with the MAP decoder (4.46) and the ϵ-stopping rule
(4.49) satisfy

EJS(ρ(Y t−1), γt) ≥ C, (C.31)

EJS(ρ(Y t−1), γt) ≥
(
1− 1

1 + max{log qk, log 1
ϵ
}

)
C1,

if max
i∈[q]k

ρi(Y
t−1) ≥ 1− 1

1 + max{log qk, log 1
ϵ
}
, (C.32)

then the expected decoding time of the code with block encoding is upper bounded
as

E[ηk] ≤
H(PSk) + log log qk

ϵ

C
+

log 1
ϵ
+ 1

C1

+
6(4C2)

2

CC1

, (C.33)

where C2 ≜ maxy∈Y
maxx∈X PY |X(y|x)
minx∈X PY |X(y|x) .

Since the MaxEJS code satisfies (C.31)–(C.32) for all non-degenerate DMCs by
[45, Proposition 2], and the SED code [45, Sec. V-B] satisfies (C.31)–(C.32) for
non-degenerate symmetric binary-input DMCs by [45, Proposition 4], we conclude
from (C.33) and (C.12) that they satisfy (C.30).

C.8 Achievability proof of Theorem 9: A DSS with f =∞
Fixing a (q, {tn}∞n=1)DSS with f =∞, we show thatE(R) (4.38) is achievable by a
buffer-then-transmit code that buffers the arriving symbols at times t = 1, . . . , tk and
operates as a JSCC reliability function (4.38)-achieving code with block encoding
for k symbols Sk of a (fully accessible) DS with prior PSk at times t ≥ tk + 1 (e.g.,
the MaxEJS code [45]). To this end, we show an achievability (upper) bound on the
expected stopping time of the buffer-then-transmit code.

We denote by η′k the stopping time of the buffer-then-transmit code. We denote by
ηk the stopping time of a code with block encoding that achieves the JSCC reliability
function (4.38) for a fully accessible source, and we denote by ϵk its error probability
at ηk (4.15). Since the decoding starts after time tk, we have

η′k = tk + ηk. (C.34)
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We invoke Lemma 20 with ϵ ← ϵk to upper bound E[ηk] on the right side of
(C.34) and obtain an achievability bound on the expected decoding time E[η′k] of
the buffer-then-transmit code:

E[η′k] ≤

(
H(PSk)

C
+

log 1
ϵk

C1

)
(1 + o(1)) + tk. (C.35)

Plugging (C.35) into (4.17), we obtain (4.39). Since f =∞, the achievability bound
(4.39) is equal to (4.38).

C.9 Achievability proof of Theorem 9: A DSS with f <∞
Fixing a (q, {tn}∞n=1)DSS with f <∞, we show thatE(R) (4.38) is achievable by a
code with instantaneous encoding that implements the instantaneous encoding phase
at times t = 1, 2, . . . , tk and operates as a JSCC reliability function (4.38)-achieving
code with block encoding for k symbols Sk of a (fully accessible) DS with prior
PSk|Y tk at times t ≥ tk + 1, where Y1, . . . , Ytk are the channel outputs generated in
the instantaneous encoding phase. To this end, we will use Lemmas 22–24, stated
below, together with Lemma 20 in Appendix C.7 to obtain an achievability (upper)
bound on the expected stopping time of the code.

We fix an error probability ϵk (4.15). We denote by ηk the stopping time that ensures
ϵk of a JSCC reliability function-achieving code with block encoding for k symbols
with prior PSk|Y tk . The stopping time η′k of the code with instantaneous encoding is

η′k = tk + ηk (C.36)

and its error probability is ϵk.

To upper bound the expected decoding time E[η′k], it suffices to upper bound E[ηk]
(C.36). Lemmas 22–24, stated below, show the behavior of the mutual information
I(Sk;Y tk) as k →∞ generated by the instantaneous encoding phase in Section 4.3.

Lemma 22. Fix a (q, {tn}∞n=1) DSS, and fix a non-degenerate DMC with capacity
C (4.10) and the maximum KL divergence C1 (4.11). The instantaneous encoding
phase that operates at times t = 1, 2, . . . , tk in Section 4.3 gives rise to

I(Sk;Y tk) = tkC − I(X tk → Y tk |Sk). (C.37)

Proof. Appendix C.10.
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Lemma 23, stated next, displays the implications of assumption (b) in Theorem 9.
Given a DSS, we extract all the distinct symbol arriving times from t1 ≤ t2 ≤ . . . ,
and we denote the sequence of distinct symbol arriving times by

d1 < d2 < . . . (C.38)

For example, if a DSS emits a source symbol every λ ≥ 1 channel uses (4.6),
then the symbol arriving times are equal to the distinct symbols arriving times, i.e.,
tn = dn, and Lemma 23 below trivially holds.

Lemma 23. Fix a (q, {tn}∞n=1) DSS with f < ∞ and f satisfying assumption (b)

in Theorem 9. Then,

(i) The time interval between consecutive symbol arriving times satisfies

tn+1 − tn = o(n), n = 1, 2, . . . ; (C.39)

(ii) The DSS has an infinite number of distinct symbol arriving times dn′ , n′ =

1, 2, . . . .

Proof. (i) Assumption (b) and f <∞ ensure that f ∈
(

1
H

(
H(P ∗

Y )− log 1
pmax

)
,∞
)

and that

f = lim inf
n→∞

n+ 1

tn+1

(C.40a)

=
1

1
f
+ lim supn→∞

tn+1−tn
n+1

, (C.40b)

where (C.40b) is by rewriting (C.40a). Now, (C.39) follows from (C.40a)=(C.40b).

(ii) The DSS has an infinite number of distinct symbol arriving times since 0 <

f <∞ implies that there exist two positive functions g1, g2 with g1(n) = Ω(n) and
g2(n) = O(n) such that the symbol arriving time is bounded between g1(n) ≤ tn ≤
g2(n), and the symbol arriving interval is constrained by (C.39).

Lemma 24, stated next, shows the asymptotic behavior of I(X tk → Y tk |Sk) in
(C.37).

Lemma 24. Fix a (q, {tn}∞n=1) DSS that satisfies (a)–(b) and f < ∞, and fix a
non-degenerate DMC with capacity C (4.10) and the maximum KL divergence C1
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(4.11). The instantaneous encoding phase that operates at times t = 1, 2, . . . , tk in
Section 4.3 satisfies

I(X tk → Y tk |Sk) = o(tk), (C.41)

where limk→∞
o(tk)
tk

= 0.

Proof. Appendix C.11.

Using Lemmas 20, 22–24, we obtain an achievability bound on the expected decod-
ing time E[ηk] (C.36):

E[η′k] ≤

(
H(Sk|Y tk)

C
+

log 1
ϵk

C1

)
(1 + o(1)) + tk (C.42a)

=

(
H(Sk)− I(Sk;Y tk)

C
+

log 1
ϵk

C1

)
(1 + o(1)) + tk (C.42b)

=

(
H(Sk)

C
+

log 1
ϵk

C1

)
(1 + o(1)) (C.42c)

where (C.42a) holds by upper bounding E[ηk] in (C.36) using (C.30) with PSk ←
PSk|Y tk=ytk and taking an expectation with respect to Y tk ; (C.42b) holds by ex-
panding H(Sk|Y tk) in (C.42a); (C.42c) holds by plugging Lemmas 22 and 24 into
I(Sk;Y tk) in (C.42b) and using the fact that o(tk)

H(Sk)
≤ o(tk)

tk

1
fH

= o(1), true due to
the assumptions that the entropy rate H and the symbol arriving rate f are both
positive. Plugging the achievability bound (C.42) into (4.17), we conclude that the
code with instantaneous encoding achieves (4.38).

C.10 Proof of Lemma 22
We first write the mutual information I(Sk, X t;Yt|Y t−1) in two ways:

I(Sk, X t;Yt|Y t−1) = I(Sk;Yt|Y t−1) + I(X t;Yt|Y t−1, Sk) (C.43a)

= I(X t;Yt|Y t−1) + I(Sk;Yt|Y t−1, X t), (C.43b)

where the second term on the right side of (C.43b) is equal to 0 since Yt −
(Y t−1, X t)− Sk is a Markov chain. Thus,

I(Sk;Yt|Y t−1) = I(X t;Yt|Y t−1)− I(X t;Yt|Y t−1, Sk). (C.44)
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We expand I(Sk;Y tk) on the left side of (C.37) as

I(Sk;Y tk) =

tk∑
t=1

I(Sk;Yt|Y t−1) (C.45a)

=

tk∑
t=1

I(X t;Yt|Y t−1)− I(X t;Yt|Y t−1, Sk) (C.45b)

= tkC − I(X tk → Y tk |Sk), (C.45c)

where (C.45a) is by the chain rule; (C.45b) is by plugging (C.44) into (C.45a);
(C.45c) is by applying the definition of the directed information to the second term
of (C.45b) and plugging (4.31) and the fact that Yi, i = 1, . . . , tk are i.i.d. according
to P ∗

Y into the first term of (C.45b). The channel outputs Y1, Y2, . . . are independent
since Yt − Xt − Y t−1 is a Markov chain and Xt is independent of Y t−1 (4.31).
The channel outputs Y1, Y2, . . . are identically distributed according to P ∗

Y since
X1, X2, . . . follow the capacity-achieving distribution P ∗

X (4.31).

C.11 Proof of Lemma 24
To show (C.41), we first upper bound the conditional directed information in (C.41)
as a sum of conditional entropies, and upper bound each conditional entropy by a
function of the source prior θSN(t)(Y t−1). Then, we show that θSN(t)(Y t−1) converges
in probability to zero in time t for t ∈ [1, tk] as k → ∞. Finally, we show that the
convergence of the source prior leads to the convergence of the entropy sequence
and conclude (C.41).

The conditional directed information in (C.41) can be upper bounded as

I(X tk → Y tk |Sk) =

tk∑
t=1

I(X t;Yt|Y t−1, Sk) (C.46a)

≤
tk∑
t=1

H(Xt|Y t−1, Sk) (C.46b)

=

tk∑
t=1

H(Xt|Zt, Y
t−1), (C.46c)

where (C.46a) is by the chain rule, and (C.46c) holds since Zt is a deterministic
function of (Y t−1, Sk) and Xt − (Zt, Y

t−1)− Sk is a Markov chain.

We upper bound each term in the sum of (C.46c) using θSN(t)(Y t−1). Given that
Zt = z, Y t−1 = yt−1, if z ∈ X (yt−1), we use (4.30) to conclude

H(Xt|Zt = z, Y t−1 = yt−1) = 0. (C.47)
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If z ∈ X (yt−1), we rearrange terms in (4.24) to obtain

1− P ∗
X(z)

πz(yt−1)
≤ 1− P ∗

X(z)

P ∗
X(z) + mini∈Gz(yt−1) θi(yt−1)

(C.48a)

≤
mini∈Gz(yt−1) θi(y

t−1)

minx∈X P ∗
X(x)

. (C.48b)

We upper bound H(Xt|Zt = z, Y t−1 = yt−1), z ∈ X (yt−1) by

H(Xt|Zt = z, Y t−1 = yt−1)

=
P ∗
X(z)

πz(yt−1)
log

πz(y
t−1)

P ∗
X(z)

+
∑

x∈X (yt−1)

pz→x log
1

pz→x

(C.49a)

≤ P ∗
X(z)

πz(yt−1)
log

πz(y
t−1)

P ∗
X(z)

+

(
1− P ∗

X(z)

πz(yt−1)

)
log

|X | − 1

1− P ∗
X(z)

πz(yt−1)

(C.49b)

=

(
1− P ∗

X(z)

πz(yt−1)

)
log(|X | − 1) + h

(
1− P ∗

X(z)

πz(yt−1)

)
(C.49c)

≤
mini∈Gz(yt−1) θi(y

t−1)

minx∈X P ∗
X(x)

log(|X | − 1) + 2

√
mini∈Gz(yt−1) θi(yt−1)

minx∈X P ∗
X(x)

, (C.49d)

where (C.49a) holds by (4.27) and (4.30); (C.49b) holds since the sum in the second
term on the right side of (C.49a) is maximized if pz→x is equiprobable on X (yt−1),
and |X (yt−1)| ≤ |X | − 1; (C.49c) holds by rearranging terms; (C.49d) holds by
applying the upper bound h(p) ≤ 2

√
p to the binary entropy function in (C.49c) and

plugging (C.48) into (C.49c). Therefore, each term in (C.46c) is upper bounded as

H(Xt|Zt, Y
t−1)

≤ log(|X | − 1)

minx∈X P ∗
X(x)

E
[

min
i∈GZt (Y

t−1)
θi(Y

t−1)

]
+

2√
minx∈X P ∗

X(x)
E

[√
min

i∈GZt (Y
tk−1)

θi(Y t−1)

]
(C.50a)

≤ log(|X | − 1)

minx∈X P ∗
X(x)

E
[
θSN(t)(Y t−1)

]
+

2√
minx∈X P ∗

X(x)
E
[√

θSN(t)(Y t−1)
]

(C.50b)

≤ αE
[√

θSN(t)(Y t−1)
]
, (C.50c)

where

α ≜ max

{
log(|X | − 1)

minx∈X P ∗
X(x)

,
2√

minx∈X P ∗
X(x)

}
; (C.51)
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(C.50a) holds by (C.47) and (C.49); (C.50b) holds since SN(t) ∈ GZt(Y
tk−1).

To obtain the asymptotic behavior of H(Xt|Zt, Y
t−1) in (C.50), we proceed to

analyze the asymptotic behavior of θSN(t)(Y t−1). The source prior θSN(t)(Y t−1) in
(C.50b) is upper bounded as

θSN(t)(Y t−1) = PSN(t)(SN(t))
t−1∏
j=1

∑
x∈X PY |X(Yj|x)PXj |Zj ,Y j−1(x|Zj, Y

j−1)

P ∗
Y (Yj)

(C.52a)

≤ PSN(t)(SN(t))
t−1∏
j=1

pmax

P ∗
Y (Yj)

, (C.52b)

where (C.52a) holds by (4.22) and (4.32); (C.52b) holds since the numerator in the
product term of (C.52a) is upper bounded by pmax (4.33). Given a DSS in Lemma 24
with distinct symbol arriving times dn′ , n′ = 1, 2, . . . (C.38) (n′ is not bounded due
to Lemma 23 (ii)), we denote the gap between the symbol arriving rate f and the
threshold on the right side of (4.37) by

γ ≜ f − 1

H

(
H(P ∗

Y )− log
1

pmax

)
∈ (0,∞). (C.53)

For any t ∈ [dn′ , dn′+1), n′ = 1, 2, . . . , the source prior θSN(t)(Y t−1) (C.52) satisfies

P
[
1

t
log θSN(t)(Y t−1) ≤ −γH

]
(C.54a)

≥ P

[
− 1

t

(
log

1

P
SN(dn′ ) (SN(dn′ ))

)
+

t− 1

t
log pmax +

1

t

t−1∑
j=1

log
1

P ∗
Y (Yj)

≤ −γH

]
(C.54b)

≥ P

[
N(dn′)

dn′+1 − 1

(
1

N(dn′)
log

1

P
SN(dn′ ) (SN(dn′ ))

)
≥ log pmax +H(P ∗

Y ) + γH,

(C.54c)

t− 1

t
log pmax +

1

t

t−1∑
j=1

log
1

P ∗
Y (Yj)

= log pmax +H(P ∗
Y )

]

≥ P
[

N(dn′)

dn′+1 − 1

(
1

N(dn′)
log

1

P
SN(dn′ ) (SN(dn′ ))

)
≥ log pmax +H(P ∗

Y ) + γH

]
(C.54d)

+ P

[
t− 1

t
log pmax +

1

t

t−1∑
j=1

log
1

P ∗
Y (Yj)

= log pmax +H(P ∗
Y )

]
− 1 (C.54e)
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→ 1, (C.54f)

as n′ →∞, where (C.54b) holds by plugging (C.52b) into (C.54a) and by replacing
N(t) ← N(dn′) since t ∈ [dn′ , dn′+1); (C.54c) holds since t ≤ dn′+1 − 1 and the
event in (C.54b) is implied by the events in (C.54c); (C.54d)–(C.54e) hold by apply-
ing Fréchet inequalities [120] to the probability in (C.54c); (C.54f) holds since both
probabilities in (C.54d)–(C.54e) converge to 1 asn′ →∞: the probability in (C.54d)
converges to 1 as n′ → ∞ by Lemma 23 (i), the fact that lim infn′→∞

N(dn′ )
dn′

≥ f

since
{

N(dn′ )
dn′

}∞

n′=1
is a subsequence of

{
n
tn

}∞

n=1
, the lower bound on the symbol

arriving rate (assumption (b)), the lower bound on the information in SN(dn′ ) (as-
sumption (a)), and the fact that N(dn′) → ∞ as n′ → ∞ since N(dn′) ≥ n′; the
probability in (C.54e) converges to 1 since the sum over the logarithms of i.i.d. ran-
dom variables Y1, Y2, . . . (they are i.i.d. by the argument below (C.45c)) in (C.54e)
converges to H(P ∗

Y ) by the law of large numbers, and t → ∞ as n′ → ∞ due to
t ≥ dn′ . Rearranging terms in (C.54a), we we conclude that for any δ ∈ (0, 1), there
exists nδ ∈ Z+, such that for all n′ ≥ nδ, t ∈ [dn′ , dn′+1), the probability in (C.56)
satisfies

P[θSN(t)(Y t−1) ≤ e−γHt] > 1− δ. (C.55)

We analyze the asymptotic behavior of H(Xt|Zt, Y
t−1) in (C.50) using (C.55).

Using the boundedness of the source prior θSN(t)(Y t−1) ∈ [0, 1], we upper bound
the expectations in the right side of (C.50c) as

E
[√

θSN(t)(Y t−1)
]
≤ P

[
θSN(t)(Y t−1) > e−γHt

]
+ e−

γH
2

tP
[
θSN(t)(Y t−1) ≤ e−γHt

]
(C.56)

< δ + e−
γH
2

dnδ (1− δ), ∀t ∈ [dn′ , dn′+1), (C.57)

where (C.57) holds due to (C.55) and the fact that the function f(p) = p+β(1−p),
β < 1, is monotonically increasing on p ∈ [0, 1].

Plugging (C.57) into (C.50c), we conclude that for all n′ ≥ nδ, it holds that

H(Xt|Zt, Y
t−1) < α

(
δ + e−

γH
2

dnδ (1− δ)
)
, ∀t ∈ [dn′ , dn′+1). (C.58)

We proceed to show (C.41) using (C.58). Dividing both sides of (C.46) by tk and
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taking k →∞, we upper bound the left side of (C.46) as

lim sup
k→∞

1

tk
I(X tk → Y tk |Sk)

≤ lim sup
k→∞

1

tk

tk∑
t=1

H(Xt|Zt, Y
t−1) (C.59a)

< lim sup
k→∞

1

tk

(
|tk − dnδ

|α
(
δ + e−

γH
2

dnδ (1− δ)
)
+ dnδ

log |X |
)

(C.59b)

= α
(
δ + e−

γH
2

dnδ (1− δ)
)
, (C.59c)

where (C.59a) holds by (C.46c); (C.59b) holds by upper boundingH(Xt|Zt, Y
t−1) ≤

log |X | for t ≤ dnδ
and upper bounding H(Xt|Zt, Y

t−1) by (C.58) for t > dnδ
;

(C.59c) holds since Lemma 23 (i) implies that dnδ
< ∞ for some nδ ∈ Z+, and

f <∞ implies that tk →∞ as k →∞.

Since δ can be made arbitrarily small while dnδ
can be made arbitrarily large, we

conclude (C.41).

C.12 Decoding before the final arrival time
For transmitting the first k source symbols of a (q, {tn}∞n=1) DSS with pS,max < 1,
we show that if we decode before the final arrival time tk, then the error probability
P[Sk ̸= Ŝk

t ], t < tk will not vanish with k for any code with instantaneous encoding.

For any t < tk, yt ∈ Y t, we lower bound the conditional error probability as

P[Sk ̸= Ŝk
t |Y t = yt] ≥ 1−max

i∈[q]k
PSk|Y t(i|yt), (C.60)

where the equality is attained by the MAP decoder. Taking an expectation of both
sides of (C.60), we obtain

P[Sk ̸= Ŝk
t ] ≥ 1− E

[
max
i∈[q]k

PSk|Y t(i|Y t)

]
(C.61a)

= 1− E

max
i∈[q]k

∑
j∈[q]N(t)

PSk|SN(t)(i|j)PSN(t)|Y t(j|Y t)

 (C.61b)

≥ 1− max
i∈[q]k,j∈[q]N(t)

PSk|SN(t)(i|j) (C.61c)

≥ 1−
k∏

n=N(t)+1

max
s∈[q],s′∈[q]n−1

PSn|Sn−1(s|s′) (C.61d)

≥ 1− (pS,max)
k−N(t) (C.61e)
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> 0, (C.61f)

where (C.61b) holds since Sk − SN(t) − Y t is a Markov chain; (C.61c) holds by
upper bounding PSk|SN(t)(i|j) in (C.61b) by its maximum; (C.61d) holds by writing
PSk|SN(t)(·|·) as a product of probabilities {PSn|Sn−1(·|·)}kn=N(t+1) and maximizing
each term in the product; (C.61e) holds by upper bounding each term in the product
by pS,max (4.35); (C.61f) holds by the assumption pS,max < 1.

C.13 Proof of Remark 2
We show that after the instantaneous encoding phase drops the randomization step
(4.25)–(4.30) and only transmitsZt (4.29) as the channel input, it continues to satisfy
the sufficient condition in (4.41) under assumption (b′). To this end, we first write
I(Sk;Y tk) in (4.41) as a sum of mutual informations. Then, we show that all source
priors converge pointwise to zero in time during the symbol arriving period [1, tk] as
k →∞; this implies that group priors converge pointwise to the capacity-achieving
probabilities. Finally, we show that the convergence of the group priors implies that
the summands of I(Sk;Y tk) converge to the capacity C and conclude (4.41). Given
channel outputs yt−1 ∈ Y t−1, we denote the source sequence in [q]N(t) that has the
maximum source prior by

i∗ ≜ argmax
i∈[q]N(t)

θi(y
t−1). (C.62)

To expand I(Sk;Y tk) in (4.41), we first notice that (C.43)–(C.45b) continue to hold,
thus I(Sk;Y tk) is equal to (C.45b). The second term on the right side of (C.45b) is
equal to zero since Xt is a deterministic function of (Y t−1, Sk), thus,

I(Sk;Y tk) =

tk∑
t=1

I(Xt;Yt|Y t−1). (C.63)

We proceed to analyze the asymptotic behavior of θi∗(y
t−1) (C.62). Since the

encoder drops the randomization step (4.25)–(4.30) and only transmits Zt (4.29)
as the channel input, the posterior update (4.32) becomes (4.45). Upper bound-
ing PSN(t)|SN(t−1)(·|·) in the prior update (4.22) by the maximum symbol arriving
probability p

N(t)−N(t−1)
S,max (4.35), and upper bounding the numerator by pmax and the

denominator by pmin in the fraction on the right side of (4.45), we obtain an upper
bound on the source prior θi∗(yt−1) as

θi∗(y
t−1) ≤ p

N(t)
S,max

(
pmax

pmin

)t−1

(C.64)
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for all i ∈ [q]N(t), yt−1 ∈ Y t−1. Given a DSS that satisfies assumption (b′) with
f < ∞ and distinct symbol arriving times dn′ , n′ = 1, 2, . . . (C.38) (n′ is not
bounded due to Lemma 23), similar to (C.53), we denote the gap between the
symbol arriving rate f and the threshold in assumption (b′) by

γ′ ≜ f − 1

log 1
pS,max

(
log

1

pmin

− log
1

pmax

)
. (C.65)

For any t ∈ [dn′ , dn′+1), n′ = 1, 2, . . . , the source prior θi∗(yt−1) for any i∗ ∈ [q]N(t),
yt−1 ∈ Y t−1 in (C.64) satisfies

lim sup
n′→∞

1

t
log θi∗(y

t−1) ≤ −
(
lim inf
n′→∞

N(t)

t
log

1

pS,max

)
+ log

pmax

pmin

(C.66a)

≤ −
(
lim inf
n′→∞

N(dn′)

dn′+1 − 1
log

1

pS,max

)
+ log

pmax

pmin

(C.66b)

≤ −f log
1

pS,max

+ log
pmax

pmin

(C.66c)

= −γ′ log
1

pS,max

, (C.66d)

where (C.66a) is by taking the logarithm, dividing by t, and taking n′ to infinity
on both sides of (C.64); (C.66b) holds since N(dn′ )

dn′+1−1
≤ N(t)

t
for all t ∈ [dn′ , dn′+1);

(C.66c) holds due to Lemma 23 (i) and the fact that
{

N(dn′ )
dn′

}∞

n′=1
is a subsequence

of
{

n
tn

}∞

n=1
; (C.66d) holds by plugging (C.65) into (C.66c). Rearranging terms of

(C.66), we conclude that the maximum source prior (C.62) converges pointwise: for
any yt−1 ∈ Y t−1,

lim
n′→∞

θi∗(y
t−1) = 0, ∀t ∈ [dn′ , dn′+1), (C.67)

where t→∞ for any t ∈ [dn′ , dn′+1) as n′ →∞.

The convergence of the source prior (C.67) implies the convergence of the group
prior. The partitioning rule in (4.24) ensures that the group prior πx(y

t−1), ∀x ∈ X
is simultaneously upper and lower bounded as

P ∗
X(x) + θi∗(y

t−1) ≥ πx(y
t−1) (C.68a)

≥ P ∗
X(x)− |X |θi∗(yt−1), (C.68b)

where the upper bound (C.68a) holds by (4.24) and (C.62); the lower bound (C.68b)
holds since all |X | group priors are upper bounded by (C.68a). From (C.67) and
(C.68), we conclude that for all x ∈ X , yt−1 ∈ Y t−1,

lim
n′→∞

πx(y
t−1) = P ∗

X(x), t ∈ [dn′ , dn′+1). (C.69)
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Next, we show the convergence of the group prior (C.69) implies the convergence of
the mutual information I(Xt;Yt|Y t−1) in the sum of (C.63). We expand the mutual
information I(Xt;Yt|Y t−1) as

I(Xt;Yt|Y t−1) = (C.70)∑
yt−1∈Yt−1

PY t−1(yt−1)
∑
y∈Y

∑
x∈X

PY |X(y|x)πx(y
t−1) log

PY |X(y|x)∑
x′∈X PY |X(y|x′)πx′(yt−1)

,

which achieves the channel capacity C if πx(y
t−1) = P ∗

X(x) for all x ∈ X , yt−1 ∈
Y t−1. Using (C.69) and (C.70), we conclude

lim
n′→∞

I(Xt;Yt|Y t−1) = C, t ∈ [dn′ , dn′+1). (C.71)

Since I(Xt;Yt|Y t−1) ≤ C, one can write the equivalent of (C.71) as: for all ϵ > 0,
there exists an nϵ ∈ N, such that for all n′ ≥ nϵ, it holds that

I(Xt;Yt|Y t−1) > C − ϵ, ∀t ∈ [dn′ , dn′+1). (C.72)

We proceed to show (4.41) using (C.63) and (C.72). Dividing both sides of (C.63)
by tk and taking k →∞, we lower bound the left side of (C.63) as

lim
k→∞

1

tk
I(Sk;Y tk) = lim

k→∞

1

tk

tk∑
t=1

I(Xt;Yt|Y t−1) (C.73a)

> lim
k→∞

1

tk
(tk − dnϵ)(C − ϵ) (C.73b)

= C − ϵ, (C.73c)

where (C.73b) holds by lower bounding I(Xt;Yt|Y t−1) by (C.72) for t > dnϵ , and
lower bounding I(Xt;Yt|Y t−1) by zero for t ≤ dnϵ .

Since ϵ in (C.73c) can be made arbitrarily small, and limk→∞
1
tk
I(Sk;Y tk) ≤ C by

data processing, we conclude by the squeeze theorem that under assumption (b′),
the instantaneous encoding phase satisfies (4.41) even if it does not randomize the
channel input.

C.14 The approximating instantaneous SED rule ensures (4.67)
We show that the approximating instantaneous SED rule in step (iii′) ensures (4.67).
Since the left side of (4.67) is equal to the minimum value on the right side of
(4.66a), it suffices to show that the latter is upper bounded by θSj

(yt−1).
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We denote

cn ≜ (π0(y
t−1)− nθSj

(yt−1))− (π1(y
t−1) + nθSj

(yt−1)) (C.74a)

= 2π0(y
t−1)− 1− 2nθSj

(yt−1), (C.74b)

and we rewrite the minimization problem in (4.66a) as

min
n∈{n,n̄}

|cn|. (C.75)

By definitions of n (4.66b) and n̄ (4.66c), it holds that n̄− n = 1. Thus

cn − cn̄ = 2θSj
(yt−1). (C.76)

Since cn ≥ 0 and cn̄ ≤ 0, we conclude from (C.76) that

min{cn, |cn̄|} ≤ θSj
(yt−1), (C.77)

which means that (C.75) is upper bounded by θSj
(yt−1).

C.15 Number of types for random arrivals
We aim to show that the number of types at time t is O(t2). We define the following
notations. We useB orA as the index of a random variable to signify that the random
variable is obtained before or after the group partitioning (step (iii′′′)). We denote by
∆B(t) and ∆A(t) the number of existing types at time t before and after the encoder
and the decoder partition G0(yt−1) and G1(yt−1), respectively. We denote by S∗(t)

the last type moved to G0(yt−1) at time t so that after S∗(t) is moved to G0(yt−1), the
group prior π̃0(y

t−1) exceeds 0.5 for the first time (step (iii′′′)). We denote byWB(t)

the set that contains all the new types created at time t right before the encoder and
the decoder partition G0(yt−1) and G1(yt−1) (see step (i′′′), e.g.,WB(1) = {S1,S2},
WB(2) = {S3,S4}). After the group partitioning (step (iii′′′)), some type inWB(t)

may be split. LetWA(t) be the set that consists of all subsets of the split types in
WB(t) and all unsplit types inWB(t) after the group partitioning.

We show by heuristic analysis that the average number of types at time t+1 is upper
bounded as

E[∆B(t+ 1)] ≤ 2− δ

2
t2 +

(
3− δ

2

)
t+ δ, t ≥ 1, (C.78)

E[∆A(t+ 1)] ≤ E[∆B(t+ 1)] + (1− δ)t+ 1, (C.79)

where δ is the bit arrival probability in (4.68).
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We define a sequence of events Et, t = 1, 2, 3, . . . as

E1 ≜ {S∗(1) is not split}. (C.80)

Et ≜ {S∗(t) is split} ∩ {sequences in S∗(t) are of lengthmin(⌊δt⌋, k)},

t > 1. (C.81)

Since at t = 1, |S1| = |S2| = 1, we have P[E1] = 1. Extensive simulations on the
evolution of types show that

P[Ect ]≪ 1, t = 2, 3, . . . (C.82)

In the heuristic analysis that follows, we assume

P[Et] = 1, t = 1, 2, . . . (C.83)

We will use rigorous analyses a)–d) below together with the assumption in (C.83)
to justify (C.78)–(C.79). The analyses b)–d) below solely follow the construction of
type-set instantaneous SED codes. The type update method in step (i′′′) Section 4.7
implies:

a) The binary sequences in a type are of the same length and can be ordered in
a consecutive lexicographic order, e.g., S3 = {00, 01}. To ensure that each
type has only one parent, once a type is fixed to be split, among all its child
types2, at most one of them needs to be split accordingly. This is due to the
reason that follows. Without loss of generality, we assume that we split an
arbitrary type Si that contains m binary sequences s1, s2, . . . , sm sorted in a
lexicographic order. The type-based SED rule (step (iii′′′)) cuts Si between
sn∗ and sn∗+1 to split it. Among all child types of Si, only the type that
contains both sn∗ ⊞ 1 and sn∗+1 ⊞ 0 will need to be split accordingly, and at
most one type Sj contains both two sequences simultaneously. Recursively,
due to the split of Sj , the encoder and the decoder at most further split one
child type of Sj . The recursion stops if the split type has no child types, or if
after the split of a type Si, no child types of Si contain sn∗ ⊞ 1 and sn∗+1 ⊞ 0

simultaneously.
2We call Sj a child type of Si if Si is the parent of Sj . According to type update method in step

(i′′′), any type Si at most generates 1 type Sj . If Sj is never split, Si has only one child type Sj . Yet,
if Sj is split during the group partitioning, Si has multiple child types.
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b) For t+1 ≤ k, only the types inWA(t) generate new types at time t+1 in step
(i′′′) right before the group partitioning (step (iii′′′)). These new types form
Wt+1,B. For t+ 1 > k,Wt+1,B andWt+1,A are empty since new types are no
longer generated at each time t+ 1 before the group partitioning.

c) By the definition ofWA(t), at time t, if a type to be split is originally inWt,B,
the two split subsets are in WA(t). The binary sequences of any types in
WB(t) are of length max(t, n).

Using (C.81) and a), we know:

d) Given Et (C.81) occurs, after the split of S∗(t), the encoder and decoder at
most further split t − ⌊δt⌋ types. This is because (a) implies that given the
split of S∗(t), the encoder and the decoder further split recursively at most 1
type of string length equal to ⌊δt⌋+ 1, ⌊δt⌋+ 2, . . . ,max(t, k).

Using b)–d), we conclude that the encoder and the decoder at most split one type in
WB(t), and the average cardinality ofWB(t), t = 1, 2, . . . evolves as

E[|WB(t+ 1)||Et] ≤ E[|WB(t)||Et] + 1, t ≥ 2, (C.84a)

|WB(1)| = |WB(2)| = 2, (C.84b)

where (C.84b) holds since no type is split at t = 1. Using b) and d), we conclude
that given Et, the average number of types evolves as

E[NB(t+ 1)|Et] ≤ E[∆B(t)|Et] + 1 + t− ⌊qt⌋+ E[|WB(t+ 1)||Et], (C.85a)

∆B(1) = 2. (C.85b)

Replacing ⌊δt⌋ by δt in (C.85a), plugging (C.84) into (C.85a), and using (C.83), we
obtain (C.78). Using (C.83), d), and (C.78), we obtain (C.79).

Simulation results confirm our heuristic analysis. The fitting curves (C.78) in
Fig. C.1 increase at a similar speed as the simulated curves, indicating that the
heuristic expressions in (C.78)–(C.79) are meaningful gauges of the average number
of types. The fitting curves in Fig. C.1 are slightly larger than the simulated curves
since (C.78)–(C.79) are upper bounds of E[∆B(t+ 1)] and E[∆A(t+ 1)].
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Figure C.1: Average number of types E[∆B(t)] versus time t over a BSC(0.9). The
bit arrival probability is δ in (4.68). The source length k = 99. The curves by
heuristic analysis are plotted as (C.78). We only present curves for BSC(0.9), since
according to our heuristic analysis, the upper bounds to the average number of types
(C.78)–(C.79) are not functions of the crossover probability of the BSC.

C.16 Converse proof of Theorem 11
In the converse proof, we show that the converse bounds on the JSCC reliability
function for a fully accessible source apply, i.e.,

Ẽ(R) ≤ E(R). (C.86)

Every code with instantaneous encoding for random arrivals (Definition 22) whose
decoder does not know the symbol arriving times is a special code with instantaneous
encoding whose decoder knows the random symbol arriving times, since the decoder
in the latter code can choose to use the arriving times or not. Thus, converse bounds
on the error exponent of the latter code applies to Ẽ(R). We denote by ηk the stopping
time of the latter code that ensures error probability ϵk. The latter code is indeed a
set of codes with instantaneous encoding (Definition 20) for deterministic arrivals,
each corresponds to a sequence of realizations of stopping times τ k = tk ∈ Zk

+. For
deterministic arriving times tk, we denote by ηk(t

k) the stopping time of a code with
instantaneous encoding, and we denote by ϵk(tk) the corresponding error probability
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at the stopping time. It holds that

E[ηk] = E[ηk(τ k)] (C.87)

ϵk = E[ϵk(τ k)]. (C.88)

Theorem 9 implies that the error exponent of every code with instantaneous encoding
for deterministic arriving times tk is upper bounded as

− lim
k→∞

log ϵk(t
k)

E[ηk(tk)]
≤ E(R). (C.89)

Therefore, the error exponent of the code whose decoder knows the random symbol
arriving times satisfies (C.89)

− lim
k→∞

log ϵk
E[ηk]

= − lim
k→∞

logE[ϵk(τ k)]
E[ηk(τ k)]

(C.90)

≤ − lim
k→∞

E[log ϵk(τ k)]
E[ηk(τ k)]

(C.91)

≤ E(R), (C.92)

where (C.91) holds by applying Jensen’s inequality to the numerator of (C.90)
since log(·) is a concave function; (C.92) holds by plugging the upper bound on
− log ϵk(t

k) in (C.89) into the numerator of (C.91).

C.17 Achievability proof of Theorem 11
Fixing a DSS with random arrivals that satisfies assumptions (c)–(e), we show that
Ẽ(R) is achievable by the instantaneous SED code for random arrivals in Section 4.6.
To this end, we show that the instantaneous SED code leads to Lemmas 25–26
stated below, and we use Lemmas 25–26 together with Lemma 20 to establish an
achievability (upper) bound on the expected stopping time of the instantaneous SED
code. We denote

d(k) ≜ k + h(k). (C.93)

Lemma 25. Fix a non-degenerate symmetric binary-input DMC, and fix a DSS with
random arrivals that satisfies (c). The instantaneous SED code for random arrivals
in Section 4.6 satisfies

H(Sk|Y d(k)) = H(Sk)− I(Xd(k) → Y d(k)) + I(τ k;Y d(k)|Sk). (C.94)

Proof. Appendix C.18.
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Lemma 26. Fix a non-degenerate symmetric binary-input DMC with channel ca-
pacity C, and fix a DSS with random arrivals that satisfies assumptions (c) and (e).
The instantaneous SED code for random arrivals in Section 4.6 satisfies

lim
k→∞

1

k
I(Xd(k) → Y d(k)) = C. (C.95)

Proof. Appendix C.19.

Since the k-th symbol must have arrived at the encoder by time d(k) by assumption
(c), the instantaneous SED code in Section 4.6 that operates at time t > d(k) reduces
to the SED code [45, Sec. V-B] for transmitting k symbols Sk of a (fully accessible)
DS in [q]k with prior PSk|Y d(k) . Since the SED code is a JSCC reliability function
(4.38)-achieving code for symmetric binary-input DMCs, we invoke Lemma 20 to
conclude that the stopping time ηk of the instantaneous SED code and the error
probability ϵ at the stopping time satisfy

E[ηk] ≤
(
H(Sk|Y d(k))

C
+

log 1
ϵ

C1

)
(1 + o(1)) + d(k). (C.96)

Plugging (C.96) into (4.54) and rearranging terms, we obtain an achievability bound
on Ẽ(R),

Ẽ(R) ≥ C1

(
1−

(
lim sup
k→∞

H(Sk|Y d(k))

kC
+

d(k)

k

)
R

)
. (C.97)

Using Lemmas 25–26 and (C.96), we proceed to calculate the conditional mutual
information in (C.97) as

lim
k→∞

H(Sk|Y d(k))

kC
= lim

k→∞

1

kC

(
H(Sk)− I(Xd(k) → Y d(k)) + I(τ k;Y d(k)|Sk)

)
(C.98a)

=
H

C
− 1 + lim

k→∞

1

kC
I(τ k;Y d(k)|Sk) (C.98b)

≤ H

C
− 1 + lim

k→∞

1

kC
H(τ k) (C.98c)

≤ H

C
− 1, (C.98d)

where (C.98a) holds by Lemma 25; (C.98b) holds by the definition of the entropy
rate (4.2) and Lemma 26; (C.98c) holds by upper bounding the conditional mutual
information in (C.98b) by the entropy in (C.98c); (C.98d) holds by assumption (d).
Plugging the lower bound in (C.98) into the right side of (C.97) and using the fact
limk→∞

d(k)
k

= 1, we obtain (4.59).
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C.18 Proof of Lemma 25
The left side of (C.94) is equal to

H(Sk|Y d(k)) = H(Sk)− I(Sk;Y d(k)) (C.99a)

= H(Sk)− I(Sk, τ k;Y d(k))− I(τ k;Y d(k)|Sk), (C.99b)

where (C.99b) holds by the chain rule of mutual information. We proceed to show
that the second term in (C.99b) is equal to the second term on the right side of
(C.94). We write the following conditional mutual information in two ways

I(Sk, τ k, Xt;Yt|Y t−1) (C.100a)

= I(Sk, τ k;Yt|Y t−1) + I(Xt;Yt|Y t−1, Sk, τ k) (C.100b)

= I(Xt;Yt|Y t−1) + I(Sk, τ k;Yt|Y t−1, Xt), (C.100c)

where the second term in (C.100b) is equal to 0 since Xt is a deterministic function
of (Y t−1, Sk, τ k) by (4.29); the second term in (C.100c) is equal to 0 since Yt −
(Y t−1, Xt)− (Sk, τ k) is a Markov chain. Thus, we conclude

I(Sk, τ k;Yt|Y t−1) = I(Xt;Yt|Y t−1). (C.101)

Using (C.101), we write the second term in (C.99b) as

I(Sk, τ k;Y d(k)) =

d(k)∑
t=1

I(Sk, τ k;Yt|Y t−1) (C.102)

= I(Xd(k) → Y d(k)). (C.103)

Plugging (C.102) into (C.99b), we obtain (C.94).

C.19 Proof of Lemma 26
To show (C.95), we first expand the left side of (C.95) as a sum of mutual informa-
tions. We show that the source prior converges pointwise to zero in time t ∈ [1, k] as
k →∞ under assumption (e), and conclude that each term in the sum converges as
the source prior converges. Finally, we show that the convergence of the summands
implies the convergence of (C.95).

The left side of (C.95) can be expanded as

I(Xd(k) → Y d(k)) =

d(k)∑
t=1

I(Xt;Yt|Y t−1). (C.104)
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At time t ≤ k, the prior θi(yt−1) (4.55) for all i ∈ Qt is upper bounded as

θi(y
t−1) = PSN(t)|SN(t−1)(i|i)ρi(yt−1) + PSN(t)|SN(t−1)(i|i⊟)ρi⊟(y

t−1) (C.105a)

≤ p̃S,maxmax{ρi(yt−1), ρi⊟(y
t−1)}, (C.105b)

where (C.105b) holds by the definition of p̃S,max in (4.56). The posterior ρi(yt−1)

(4.32) for all i ∈ Qt is upper bounded as

ρi(y
t−1) ≤ pmax

pmin

θi(y
t−1). (C.106)

From (C.105) and (C.106), we conclude that at time t ≤ k, the prior is upper
bounded as

θi(y
t−1) ≤

(
p̃S,max

pmax

pmin

)t

, ∀i ∈ Qt. (C.107)

Plugging the upper bound (C.107) into the right side of the instantaneous SED rule
(4.44), we obtain for all yt−1 ∈ Y t−1 and x ∈ {0, 1},∣∣πx(y

t−1)− P ∗
X(x)

∣∣ ≤ (p̃S,max
pmax

pmin

)t

. (C.108)

Since each term I(Xt;Yt|Y t−1) in (C.104) can be written as (C.70) and is equal to
C if πx(y

t−1) = P ∗
X(x) for all yt−1 ∈ Y t−1, we conclude from (C.108) that there

exists a function f : Z+ → R+ of time t that satisfies f(t)→ 0 and

I(Xt;Yt|Y t−1) ≥ C − f(t). (C.109)

We proceed to show (C.95). Dividing both sides of (C.104) by k and taking k →∞,
we lower bound the left side of (C.104) as

lim
k→∞

1

k
I(Xd(k);Y d(k)) = lim

k→∞

1

k

d(k)∑
t=1

I(Xt;Yt|Y t−1) (C.110a)

≥ lim
k→∞

1

k

k∑
t=1

I(Xt;Yt|Y t−1) (C.110b)

≥ lim
k→∞

1

k

k∑
t=1

C − f(t) (C.110c)

= C, (C.110d)

where (C.110a) holds by (C.104); (C.110b) holds since the mutual information is
non-negative and d(k) ≥ k; (C.110c) holds by (C.109); (C.110d) holds by applying
the Cesàro mean [121] to the converging sequence f(t). Since the left side of
(C.110a) is also upper bounded by C, we conclude (C.95).
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C.20 Zero entropy rate of symbol arriving times
The symbol arriving times in the example satisfy (4.58) since the entropy is upper
bounded as

H (τn) = log

(
h(n)

h′(n)

)
(C.111)

≤ log

(
e
h(n)

h′(n)

)h′(n)

(C.112)

= h′(n)

(
1 + log

h(n)

h′(n)

)
(C.113)

≤ h′(n) + h(n), (C.114)

where (C.111) holds since there are in total
(
h(n)
h′(n)

)
possible realizations of the

random symbol arriving times and the entropy function is concave; (C.112) holds
by applying the inequality

(
n
k

)
≤
(
en
k

)k to (C.111); (C.114) holds by applying the
inequalities log x < log(1 + x) < x for all x > 0 to the logarithm in (C.113).

C.21 Proof of Proposition 4
We show that the achievability bound in (4.61) holds. Since (C.97) in Appendix C.17
holds for any DSS whose random symbol arriving times are bounded as τn ≤
d(n), n = 1, 2, . . . , we replace d(k)← E[τk] + h(k) in (C.97) and obtain

Ẽ(R) ≥ C1

(
1−

(
lim sup
k→∞

H
(
Sk|Y E[τk]+h(k)

)
kC

+
E[τk]
k

)
R

)
, (C.115)

where Y1, Y2, . . . are the channel outputs in response to the channel inputs generated
by the encoder of the instantaneous SED code in Section 4.6.

C.22 Cardinality of common randomness
We adapt the proof in [41, Theorem 19] to our codes with instantaneous encoding to
show that for any ⟨k,R, ϵ⟩ code with instantaneous encoding that allows |U| = ∞,
there exists a ⟨k,R, ϵ⟩ code with instantaneous encoding that allows |U| ≤ 2. Fixing
a source length k, for u = 1, 2, . . . ,∞, we define Gu ⊆ R2 as

Gu ≜ {(R, ϵ) : ∃ ⟨k,R, ϵ⟩ code with instantaneous encoding that allows |U| ≤ u}.
(C.116)

We show that G1 is a connected set. To see this, we arbitrarily select two ele-
ments in G1, denoted by Λ1 ≜ (R1, ϵ1) and Λ2 ≜ (R2, ϵ2). We denote Λ3 ≜

(min{R1, R2},max{ϵ1, ϵ2}). According to the rate and the error constraints in
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(4.14)–(4.15), Λi ∈ G1, i ∈ {1, 2}, indicates that all elements (R, ϵ) that simultane-
ously satisfy R ≤ Ri and ϵ ≥ ϵi belong to G1 (see the shaded region in Fig. C.2).
As a result, the line segments Li ≜ {λΛi + (1− λ)Λ3, λ ∈ [0, 1]}, i = 1, 2, belong
to G1, and the arc L1 ∪ L2 joins Λ1 and Λ2.

Figure C.2: Elements Λ1 and Λ2 are jointed by the arc L1 ∪ L2.

Since G1 ⊆ R2, G1 is a connected set, and G∞ is a convex hull of G1, by Fenchel-
Eggleston-Carathéodory’s theorem for connected sets [122, Theorem 18(ii)], any
element in G∞ can be represented as a convex combination of 2 elements in G1, in
other words, G2 = G∞.

C.23 Zero-error code for degenerate DMCs
In Appendix C.23, we present our zero-error code with instantaneous encoding and
common randomness for transmitting k symbols of a DSS over a degenerate DMC.
In Appendix C.23, we present the proof that the code in Appendix C.23 achieves
zero error for any rate asymptotically below C

H
.

For a degenerate DMC (4.9) in Theorem 12, we denote by PY |X : X → Y its single-
letter transition probability and denote by P ∗

X its capacity-achieving distribution.
We relabel x in (4.9a) by ACK, and relabel x′ in (4.9b) by NACK. We denote
by EG(PY |X , Rc) Gallager’s error exponent [107], where Rc is the channel coding
rate in nats per channel use3. We denote by R(ℓ) the rate of the code used in the
communication phase of the ℓ-th block, and we denote by Ŝk(ℓ) the estimate formed
at the end of the communication phase of the ℓ-th block.

3For the consistency of notation, we use the same unit (i.e., nats per channel use) for Rc as that
in Gallager’s paper [107]. The unit of all other rates in this chapter is symbols per channel use.
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Zero-error code with instantaneous encoding and common randomness
Similar to [40, 43, 44, 87], our code is divided into blocks. Each block contains a
communication phase and a confirmation phase. The first block is different from the
blocks after it, since it uses a Shannon limit-achieving code in the communication
phase, whereas the blocks after the first block use random coding for all source
sequences in alphabet [q]k. We introduce the first block and the ℓ-th block, ℓ ≥ 2,
respectively.

The first block is transmitted according to steps i)–ii) below. See Fig. C.3 (a) below
for the diagram of the time division of transmitted blocks. See Fig. C.3 (b)–(c) for
the diagram of the first block.

i) Communication phase. The first k symbols Sk of the DSS in Theorem 12 is
transmitted via a Shannon limit-achieving code with instantaneous encoding and
common randomness at rate R(1) < C

H
symbols per channel use. (Such a code

has been presented in the proof sketch of Theorem 12. Namely, if f = ∞, we
use a buffer-then-transmit code that implements the block encoding scheme in
[104, Theorem 2]; if f < ∞, we precede the block encoding scheme in [104,
Theorem 2] by an instantaneous encoding phase that satisfies (4.41).) At the end
of the communication phase, the decoder yields an estimate Ŝk(1) of the source Sk

using the channel outputs that it has received in this phase.

ii) Confirmation phase. The encoder knows Ŝk(1) since it knows the channel
outputs through the noiseless feedback. The encoder repeatedly transmits ACK if
Sk = Ŝk(1), and transmits NACK if Sk ̸= Ŝk(1), for nk channel uses. We pick nk

as

nk = δk, (C.117)

where δ ∈ (0, 1) can be made arbitrarily small. At the end of the confirmation
phase, if the decoder receives a y, then it terminates the transmission and output
Ŝk
ηk

= Ŝk(1); otherwise, the encoder transmits the next block.

The ℓ-th block, ℓ ≥ 2, is transmitted according to steps iii)–iv) below.

iii) Communication phase. For every sequence in the alphabet [q]k of Sk, the en-
coder generates a codeword via random coding according to the capacity-achieving
distribution P ∗

X at rate R(2) < C
log q

symbols per channel use. At the end of the
communication phase, the maximum likelihood (ML) decoder yields an estimate
Ŝk(ℓ) of the source symbols Sk using the channel outputs that it has received in this
phase.



200

(a):

(b):

(c):

encoder decoder

next block

Figure C.3: (a) Time division of the transmitted blocks. The green regions represent
the communication phases, and the red regions represent the confirmation phases.
The expected length of the first communication phase is k

R(1)
. The length of the ℓ-th

communication phase, ℓ ≥ 2, is k
R(2)

since the random coding scheme has a fixed
length. The length of the confirmation phase is nk (C.117). (b) Communication
phase of the first block. The codeword length N can be random with expectation
E[N ] = k

R(1)
. (c) Confirmation phase of the first block.

iv) Confirmation phase. The encoder, the decoder, and the stopping rule are the
same as those in the first block with Ŝk(1)← Ŝk(ℓ).

The random codebook is refreshed in every retransmitted block and is known by the
decoder. This gives rise to the following observations:
1) The codewords transmitted in the communication phases of the ℓ = 1, 2, . . .

blocks are independent from each other;
2) As a result of 1), the channel outputs of the ℓ = 1, 2, . . . blocks are independent
from each other;
3) The codewords transmitted in the communication phase of the ℓ = 2, 3, . . . blocks
are i.i.d. random vectors. (The codeword in the first block is excluded since the first
block need not use random coding in the communication phase);
4) As a result of 3), the channel outputs of the ℓ = 2, 3, . . . blocks are i.i.d. random
vectors.
We will use observations 2) and 4) in the proof below.

Proof of Theorem 12
Fix any R < C

H
. We show that by adjusting R(1), the rate of the Shannon limit-

achieving code in the communication phase of the first block, to R, the code in
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Appendix C.23 achieves zero error with rate converging to R (4.70).

We denote by ηk and Tk the stopping time and the number of blocks transmitted
after the first block until the stopping time, respectively. We denote by Aℓ the event
that no y is received in the confirmation phase of the ℓ-th block.

Since the decoder will never receive y if ACK is transmitted in the confirmation
phase, the error probability of the code in Appendix C.23 is zero, i.e.,

P[Sk ̸= Ŝk(1 + Tk)] = 0, (C.118)

where 1 + Tk represents the total number of blocks transmitted until the stopping
time, and Tk is almost surely finite as a result of Lemmas 27 and 28 below. This
confirms that the code in Section C.23 achieves zero error (4.15).

To analyze the behavior of the rate Rk = k
E[ηk]

, we first observe that since the
expected length of the first block is k

R(1)
+ δk and the (fixed) length of the ℓ-th block,

ℓ ≥ 2, is k
R(2)

+ δk, the expected decoding time E[ηk] is equal to

E[ηk] =
k

R(1)
+ δk + E[Tk]

(
k

R(2)
+ δk

)
. (C.119)

We bound the expected number of blocks Tk transmitted after the first block using
Lemmas 27 and 28, stated next.

Lemma 27. The number of blocks Tk transmitted after the first block satisfies

E[Tk] ≤
P[Sk ̸= Ŝk(1)] + (1− PY |X(y|ACK))δk

1− P[Sk ̸= Ŝk(ℓ)]− (1− PY |X(y|ACK))δk
. (C.120)

Proof. Appendix C.23.

Lemma 28. Given a DSS with entropy rate H > 0 satisfying assumptions (a)–
(b) in Theorem 9, the probability of erroneously decoding Sk at the end of the
communication phase of the ℓ-th block is upper bounded as

P[Sk ̸= Ŝk(1)] ≤ e
− k

R(1)

(
C

1+o(1)
−

H(Sk)
k

R(1)

)
, (C.121a)

P[Sk ̸= Ŝk(ℓ)] ≤ e−
k

R(2)
EG(PY |X ,R(2) log q), ℓ = 2, 3, . . . (C.121b)

Proof. Since the block encoding scheme [104, Theorem 2] satisfies Lemma 20 with
C1 ← C, one can follow Appendices C.8–C.9 with C1 ← C to upper bound the
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expected decoding time of the Shannon limit-achieving code in [104, Theorem 2]
and thereby obtain (C.121a). The error probability (C.121b) holds since the random
encoder together with the ML decoder attains Gallager’s error exponent [107] for
channel coding rate (nats per channel use) below C. This holds regardless of
the distribution of the message because Gallager’s error exponent holds under the
maximum error probability criterion.

Plugging (C.120) and (C.121) into the right side of (C.119), we obtain the asymptotic
behavior of the rate as

lim
k→∞

Rk = lim
k→∞

k

E[ηk]
(C.122a)

≥ R(1)
1

1 +R(1)δ
. (C.122b)

Letting R(1) be arbitrarily close to C
H

and taking δ to an arbitrarily small number,
we conclude (4.70).

Proof of Lemma 27
We establish the pmf of Tk using the probabilities P[Aℓ], ℓ = 1, 2, . . . The comple-
mentary cdf of Tk is given by

P[Tk > 0] = P[A1], (C.123)

where (C.123) holds by the definition of A1 and the stopping rule of the code. We
proceed to show the pmf at Tk = t, t ≥ 1 conditioned on Tk > 0:

P[Tk = t|Tk > 0] = P[A2 ∩ · · · ∩ At ∩ Ac
t+1|A1] (C.124a)

=

(
t∏

i=2

P[Ai|A1, . . . , Ai−1]

)
P[Ac

t+1|A1, . . . , At] (C.124b)

= (P[A2])
t−1(1− P[A2]), (C.124c)

where (C.124a) is by the stopping rule of the code; (C.124b) is by expanding
(C.124a); (C.124c) is by observations 2) and 4) in Appendix C.23: observation
2) implies that event Ai and its complementary event Ac

i are both independent of
A1, . . . , Ai−1, i ≥ 2, observation 4) implies that P[Ai] = P[A2], i ≥ 2. Since the
conditional pmf P[Tk = t|Tk > 0] in (C.124) follows a geometric distribution with
success probability 1− P[A2], its mean is given by

E[Tk|Tk > 0] =
1

1− P[A2]
. (C.125)
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Using (C.123) and (C.125), we obtain E[Tk] as

E[Tk] =
P[A1]

1− P[A2]
. (C.126)

It remains to compute the probability of event Aℓ in (C.126) to conclude (C.120). In
the confirmation phase of the ℓ-th block, ℓ = 1, 2, . . . , conditioned on Sk = Ŝk(ℓ),
the probability of event Aℓ is given by4

P[Aℓ|Sk = Ŝk(ℓ)] = (1− PY |X(y|ACK))δk. (C.127a)

The probability of event Aℓ is upper bounded as

P[Aℓ] = P[Aℓ|Sk ̸= Ŝk(ℓ)]P[Sk ̸= Ŝk(ℓ)] + P[Aℓ|Sk = Ŝk(ℓ)]P[Sk = Ŝk(ℓ)]

(C.128a)

≤ P[Sk ̸= Ŝk(ℓ)] + P[Aℓ|Sk = Ŝk(ℓ)], (C.128b)

where (C.128b) holds by upper bounding the first and the last probabilities on the
right side of (C.128a) by 1. Plugging the upper bound in (C.128b) into the right
side of (C.126), we obtain (C.120).

4For practical implementations, one can choose ACK as the channel input that achieves the
maximum transition probability maxx∈X PY |X(y|x) to increase the probability of receiving a y.
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