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ABSTRACT

A granular material is a collection of discrete, solid particles. This substance is
ubiquitous in nature and industry, with examples ranging from soils, jointed rocks,
foodstuffs, ball bearings, powders, and even asteroids. As such, understanding
granular materials is necessary for making sense of the physical world. Tremendous
progress has been made in directly simulating granular materials in the previous
decades, in particular via the discrete element method (DEM). Nevertheless, there
remains ample opportunity for manipulating granular materials to achieve specific
outcomes by leveraging the DEM. The research presented in this thesis utilizes
DEM simulations to develop tools and strategies for manipulating granular material
to achieve desired attributes. These attributes include the shape of individual grains,
the structure of granular tunnels, and mesoscopic packing characteristics such as
packing fraction and coordination number. Optimization of granular materials
is considered at 3 different scales: at the single grain scale (100 grains), at the
scale of granular structures such as arches (101 grains), and at the mesoscopic
scale (103 grains). The first component of this thesis considers automated design
of individual grain shapes that embody user-specified morphological properties
via genetic algorithms. Next, excavation in granular materials is considered. It
is studied how ants can so successfully manipulate granular materials to achieve
stable systems by mapping the forces around real ant tunnels. Ant tunnels are
simulated using a DEM which can handle arbitrary shaped grains: the Level-Set
Discrete Element Method (LS-DEM). Finally, tools are developed for controlling
mesoscopic attributes of granular materials as a function of grain shape. To do so,
genetic algorithms and a deep generative model are combined with LS-DEM. The
methodologies introduced in this thesis serve as a foundation for controlling granular
material attributes. Such techniques can be leveraged to engineer granular materials,
with applications ranging from swarm robotics, robotic grippers, mechanically
tunable fabrics for armor, and robotic excavation.
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C h a p t e r 1

INTRODUCTION

1.1 Objective
Granular materials are any object composed of discrete, solid particles (Buarque de
Macedo, Marshall, and Andrade, 2018). These objects are ubiquitous in both nature
and industry, with examples ranging from sands, soils, foodstuffs, ball bearings to
even asteroid belts (Geng et al., 2001; Ji-Cheng et al., 2011; Coetzee and Els, 2009;
Guessasma and Machado, 2018; Hestroffer et al., 2019). In the last few decades,
tremendous effort has been exerted in understanding and modeling granular ma-
terials. In particular, simulations such as the discrete element method (DEM) for
simulating granular materials have gained popularity (Cundall and Strack, 1979a).
Recently, attempts have been made to leverage our understanding of granular materi-
als to control and design granular systems. Examples include aleatory architectures,
robotic grippers, fabrics with tunable stiffness, and automated excavations (Keller
and Jaeger, 2016; Brown et al., 2010; Wang, Li, et al., 2021; Cloud et al., 2021).

This dissertation concerns the control and optimization of granular material at-
tributes using a variety of computational techniques. By attributes, we mean the
structure and behavior of granular materials such as the shape of grains, the architec-
ture of granular tunnels and the porosity of a granular material. The tools developed
in this thesis serve as a foundation for granular control, as such principles may be
built upon by researchers attempting to manipulate granular materials.

In particular, the objectives of this work are:

• Development of methods to control the shape of individual particles to fit
specified morphological properties.

• Elucidation of biological strategies to control the structure of granular tunnels.

• Development of methods to control mesoscopic attributes of granular mate-
rials, such as packing fraction 𝜙, by controlling the shape of particles.

Taken as a whole, this thesis constitutes the development of methods and principles
to control granular material attributes at multiple scales: at the scale of individual
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particles (100 particles), we develop an algorithm to control the shape of grains,
at the scale of granular arches (101 particles), we explore biologic strategies for
controlling tunnel architecture, and at the mesoscopic scale (103 grains), we develop
foundational tools for controlling the packing characteristics of granular materials
see Figure 1.1.

(a) (b) (c)

(a) (b)

Number 
of grains

100 101 102 103

Figure 1.1: Examples of different scales for granular control. (a) Individual particle
scale (Buarque de Macedo, Marshall, and Andrade, 2018). (b) Ant tunnel arch
scale (Buarque de Macedo, Andò, et al., 2021). (c) Mesoscopic scale (Buarque
de Macedo, Karapiperis, et al., 2022).

These techniques are helpful to researchers entering the next stage of granular
understanding by attempting to engineer such materials.

1.2 Approach
This thesis spans the micro- to mesoscale of granular materials, beginning with the
former and increasing length scale with each chapter. At each scale, a particular
variable or variables (controlled variables) are modified to achieve a desired gran-
ular material attribute (optimized variables). The list of controlled variables and
corresponding optimized variables is given in Table 1.1.

Length Scale Controlled Variable Optimized Variable
Single particle (100 grains) Grain shape Morphological property
Arch scale (101 grains) Grains removed Arch stability/size
Mesoscale (103 grains) Morphological property Packing fraction/aspect ratio

Table 1.1: Table depicting controlled variables and optimized variables for each
scale.

The first component of this thesis considers optimizing grain shape to fit user-
specified morphological properties. Morphological properties are numerical de-
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scriptors of a particle’s shape. For instance, the roundness of a particle is a number
that describes the smoothness of a grain. This is an inherently challenging problem
because morphological properties are not necessarily independent, i.e. modifying
the roundness of a particle may effect it’s elongation, or aspect ratio. Thus, a genetic
algorithm is developed which can modify the shape of a particle until the shape
matches user-specified morphological properties to a given accuracy.

The second component of the thesis considers excavation in granular materials.
Excavation can be thought of as a granular optimization problem, where the opti-
mization variables are which grains to remove with the goal of controlling the size
and stability of the tunnel. It is investigated how nature has attempted to solve this
optimization problem by studying ant tunnels. Using x-ray computer tomography
(XRCT), every soil particle in a soil sample is imaged. During this imaging process,
ants tunnel through the soil sample. Then, a DEM simulation which simulates arbi-
trary shaped grains (Level set discrete element method, or LS-DEM) calculates the
forces in an in silico re-creation of every grain in the soil sample. It is discovered that
ants take advantage of granular arching to successfully tunnel in latently unstable
granular environments.

In the final piece of the thesis, a framework is developed for controlling mesoscopic
attributes of granular materials such as packing fraction 𝜙 (solid area/total area)
and coordination number 𝑍 (average number of particle contacts per grain). The
framework developed in this chapter lays the foundation for topology optimization
of granular material attributes. It is first investigated how morphological properties
such as roundness, aspect ratio and convexity affect these mesoscopic variables.
With this mapping, granular materials can be engineered for specific mesoscopic
properties by choosing the appropriate morphological property values. Then, a new
set of grain morphological properties are discovered through the use of a deep neural
network architecture: variational autoencoders (VAEs). It is demonstrated how
these new morphological properties offer advantages over traditional descriptors.
Further, it is demonstrated how these descriptors can be mapped to mesoscopic
variables. Finally, a methodology for topology optimization of granular materials
is proposed which leverages specific properties of the new, machine-discovered
morphological properties. Such a topology optimization framework can be used to
control mesoscopic attributes of granular materials by modifying grain shape.
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1.3 Organization
The thesis is organized as follows:

• Chapter 2 reviews the background information relevant to this thesis. It begins
with a general overview of granular materials and discrete element methods
(DEM), including the level set discrete element method (LS-DEM). Then the
effects of granular shape on material properties are reviewed. Finally, an
overview of excavation in granular materials with reinforced and unreinforced
tunnels is presented.

• Chapter 3 introduces the granular cloning methodology. This technique uses
genetic algorithms to create grains with user-specified morphological prop-
erties in 2 or 3 dimensions. The chapter overviews the technical details,
application and success rate of the technique.

• Chapter 4 introduces a study which uses XRCT and LS-DEM to learn how
ants can successfully manipulate granular materials to achieve stable tunnels.
The experimental methodology for imaging all granular materials in a soil
during ant tunnel construction is reviewed. Then, the results of an LS-DEM
re-creation of the experiment, with grain scale accuracy, is introduced. The
findings and implications for automated excavation are reviewed.

• Chapter 5 returns to granular cloning. Grains are created with specific mor-
phological traits using the methodology developed in Chapter 2. Then, map-
pings between morphological traits and mesoscale granular characteristics,
such as packing fraction 𝜙 and coordination number 𝑍 are explored via LS-
DEM simulations. These ‘forward’ mappings are developed such that they
can be easily inverted into ‘inverse’ mappings. Such ‘inverse’ mappings are
invaluable for topology optimization. Then, a deep learning algorithm is lever-
aged to create a new set of morphological traits that can uniquely describe
a particle’s shape. The application of this new technique towards topology
optimization is explored.

• Chapter 6 concludes the thesis and provides future outlooks.
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C h a p t e r 2

BACKGROUND

2.1 Granular materials
A granular material is a collection of discrete, solid objects (Duran, 2012). Granular
materials have been studied since antiquity, though primarily through the lens of soil
mechanics in recent centuries. Early attempts at understanding granular materials
include the works of Charles-Augustin de Coulomb in the 18𝑡ℎ century, who con-
ducted both pioneering studies into soil mechanics and developed Coulomb friction
(Oliveira, 2004) which later evolved into the ‘Coulomb friction law’ that is essential
to the study of granular materials (Metcalfe et al., 2002). Nevertheless, it is in fact
Leonard Euler who originally stated that ‘the resistance force exerted on a body by
a plane surface along which the body is sliding is proportional to the force pressing
the body to the surface’ (Zhuravlev, 2013).

Soil mechanics advanced significantly in the early 20𝑡ℎ century due to the works
of Karl Terzaghi. Terzaghi, known as the ‘father of soil mechanics’ (Goodman,
1999), was an engineer from Prague. In 1925, Terzaghi published a theory of soil
consolidation, as well as the theory of effective stress (Terzaghi, 1925). This equation
states that the stress in a saturated granular material could be additively decomposed
into the stress in the granular skeleton and the pressure in the pores. This equation
is foundational to the fields of soil mechanics and civil engineering. Terzaghi’s
groundbreaking work also encompassed the stability of slopes and investigations
of arching in soil (Terzaghi, 1962; Terzaghi, 1943a). Further, Terzaghi defined the
‘angle of repose’ of granular materials as the internal angle of friction in the material
(Terzaghi, 1943a). More visually, this angle can be defined as the slope a granular
material can rest at without becoming unstable (Day, 2010). For instance, the slope
of a sand pile is approximately the tangent of the material’s angle of repose.

As the 20𝑡ℎ century progressed, research into granular materials began to focus
more on the micromechanics, i.e. the behavior of the individual grains in a granular
material rather than Terzaghi’s continuum approaches. Such studies investigated
granular materials made of photoelastic discs: discs which refracted light as a
function of stress on said grain (Ramesh, 2000). These pioneering studies discovered
‘force chains’; the phenomenon of stresses propagating through granular materials
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unevenly, with some particles bearing significantly more of the material stress
than that which other particles endure (Bardenhagen, Brackbill, and Sulsky, 2000).
Further, the advent of computing provided significant insights into the mechanics of
granular materials at the grain scale.

2.2 Computational granular mechanics
In 1979, Peter Cundall and Otto Stract proposed the Discrete Element Method,
or DEM (Cundall and Strack, 1979a). The DEM is a computational method for
simulating individual grains in a granular material. In the original 2D DEM, grains
are modeled as circles. These grains interact through normal contact forces, with
force magnitude a function of particle overlap. This overlap is a proxy for small
particle deformations during contact. Further, grains can interact through a Coulomb
friction law and viscous damping forces. Within a decade, the DEM was extended
to three dimensional spheres (Cundall, 1988). DEM has been used to model a wide
variety of granular materials, including foodstuffs, ball bearings and even asteroids
(Coetzee and Els, 2009; Guessasma and Machado, 2018; Hestroffer et al., 2019).
These micromechanical studies predicted the continuum scale behavior quantified by
Terzaghi while also predicting real physical effects that do not manifest in traditional
continuum models, such as granular arching in cohesionless soils (Guo and Zhou,
2013).

One disadvantage of traditional DEM is that particles are spheres. However, real
granular materials are not necessarily composed of spherical particles. Further, it has
been shown experimentally that the shape of grains can have a significant impact on
behavior (Cho, Dodds, and Santamarina, 2006a). Methods to capture non-circular
shapes in DEM include sphere clustering and polyhedron approaches (Li, Xu, and
Meng, 2015; Nassauer, Liedke, and Kuna, 2013). Nevertheless, such methods are
not computationally efficient when representing arbitrary shapes as they require
contact checking between every pair of spheres or polyhedra on contacting grains.
With this in mind, the level set discrete element method (LS-DEM) was developed to
model particles of arbitrary shapes in a computationally efficient manner (Kawamoto
et al., 2016). In LS-DEM, each particle in the simulation is represented in two ways:
as a collection of points on the surface of the grain, and as a level set Φ. Φ is a
space-filling function, where at every point the absolute value of Φ is the distance
to the particle surface. Φ is by convention negative inside the particle surface and
positive outside. When one particle (A) intersects another (B), the penetration extent
can be quickly calculated by looking up the value of each point on A’s surface in
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B’s level set. If the level set value of a point is negative, an equal and opposite force
is applied on the particles at the corresponding point with direction normal to the
particles’ surface.

LS-DEM has been used to exactly simulate the shape, orientation and position
of every particle in a soil sample (Kawamoto et al., 2018). This information
was gleaned from the soil sample through x-ray computed tomography, or XRCT
(Kalender, 2006). With XRCT, x-rays are taken of the soil sample contained in
a cylinder from multiple angles. The x-rays can then be used to reconstruct a 3
dimensional image of the sample. From this image, a watershed algorithm can be
used to extract the morphology, location and orientation of every grain (Stamati
et al., 2020). The grains are converted into points and level sets which are used in
simulations. These simulations have a high degree of almost grain scale accuracy
in mechanical properties, such as deviatoric strain, when compared to experiments
(Kawamoto et al., 2018).

2.3 Particle shape
Grain shape plays a significant role in the emergent properties of granular materials.
This has been well studied experimentally. An increase in particle angularity (sharp-
ness of corners) can lead to an increase in material porosity, a decrease in stiffness
and an increase in the critical state friction angle (Cho, Dodds, and Santamarina,
2006b). With the introduction of DEM for non-circular particles within the last 2
decades, a wide range of granular materials with non-spherical particles has been
investigated.

One of the earlier attempts to move beyond spheres and circles in granular materials
was ellipsoidal and elliptical grains. These grains can be seen as a generalization
of circular/spherical particles. In 2D, ellipses can be characterized by their ‘aspect
ratio’ i.e. the ratio of the major axis to the minor axis of the ellipse. As a frictionless
ellipse is elongated from a circle, and aspect ratio moves away from 1, the packing
fraction 𝜙 for grains prepared by random deposition of frictionless ellipses oscil-
lates about 0.88 before monotonically decreasing as aspect ratio increases above 2
(Guises et al., 2009). On the other hand, coordination number 𝑍 (average number
of contacting grain neighbors per particle) increases with increasing aspect ratio,
beginning at about 𝑍 = 4.2 before approaching an asymptote at 𝑍 = 5.5. Frictional
ellipses follow similar trends, yet with lower values for both 𝑍 and 𝜙. Nevertheless,
one key difference is a clear maximum 𝜙 for frictional ellipses occurs at aspect
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ratio 1.6. Visually, ellipses begin to experience ‘nematic ordering’ as they are
elongated, which is amplified when when there is no friction (Guises et al., 2009).
With nematic ordering grains stack side-by-side, like nematic liquid crystals. This
particular ordering begets a higher porosity than the hexagonal packing of circles.
Additionally, ellipses require more contacts to reach static equilibrium than circles
and so 𝑍 increases with aspect ratio (Guises et al., 2009).

In 3D, spheres are conjectured to be the loosest packing convex object when packed
optimally (Graaf, Roij, and Dijkstra, 2011). However, for random deposition in a
container certain ellipsoids can pack more loosely than spheres (Zhou, Zou, et al.,
2011). For frictional ellipsoids, Zhou defines aspect ratio as to the ratio of the largest
over the smallest principle axis, and sets the two smaller principle axes as equal. As
aspect ratio is increased, trends are similar to that observed in ellipses. 𝜙 increases
until an aspect ratio of 2, followed by a decrease in 𝜙. Likewise, 𝑍 increases with
aspect ratio, approaching an asymptote at about an aspect ratio of 3. 𝑍 and 𝜙 are
both larger than in 2D ellipse systems, representing the larger degrees of freedom
available in 3 dimensions compared to 2.

The closest non-circular shape to an ellipse may be the capsule. Capsules have
pill-like shapes, and consist of two circles connected by a rectangle. These shapes
are also referred to as rounded cap rectangles (RCR) by some authors (Azéma and
Radjai, 2012). It is interesting to investigate whether the trends observed for ellipses
extend to capsules, as this may indicate general properties of grains as their shape is
elongated. Once again, such objects can be seen as a generalization of a circle. In
this case, the elongation of the particle can be defined by a constant 𝜂, which takes
a similar role as aspect ratio in ellipses (Azéma and Radjai, 2012). As elongation
increases, packing fraction initially increases, then decreases with the peak occurring
at 𝜂 = 0.4. 𝑍 behaves similarly to ellipses and ellipsoids, increasing until reaching
an asymtote at around 𝜂 = 0.2. The similarity in behavior between ellipses and
capsules implies there may be general packing characteristics that persists across
many elongated particle shapes. Chapter 5 investigates whether such behavior is
indeed universal among a large class of morphologies.

Another class of shapes commonly considered are polygons. Novel DEM variations
were created in the last 10 years which could handle larger variety of shapes, though
were not able to handle arbitrary shapes as in LS-DEM (Kawamoto et al., 2016).
One such method which could simulate polygons was used to investigate shapes with
2 to 11 sides (Wang, Dong, and Yu, 2015). Polygons were separated into two classes:
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those which could fill a plane perfectly (squares, triangles and hexagons) and the
rest which can not. It was observed that the random close packing of plane filling
particles was generally higher than all others. Nevertheless, the triangle had the
lowest packing fraction of plane filling shapes, with a packing fraction comparable
with circles. These behaviors persisted across a range of friction coefficients.
Coordination number 𝑍 generally increased with number of edges. Triangles have
a relatively low coordination number due to the 3-particle neighbor tessellation,
compared to shapes such as circles which have more neighbors in hexagonal packing.
On the other hand, hexagons have the largest 𝑍 and break the trend of 𝑍 increasing
with sides. This is due to the 6-neighbor tessellation which naturally forms under
random deposition. Such results also raise questions regarding generalizability. Do
shapes which are approximately polygonal, but contain some imperfections, follow
similar trends? How far can one deviate from a polygon and still maintain a similar
packing fraction? Such questions are relevant towards grain design, as their answers
may explain which morphological characteristics are most critical for achieving a
given mesoscopic state. These are the questions which are further explored in this
thesis, in particular Chapter 5.

Real granular materials found in nature are not ellipses or regular polygons, and
are better described by such measures as roundness, aspect ratio, sphericity and
convexity. Roundness measures the ‘bumpiness’ of a particle, aspect ratio and
sphericity measure elongation while convexity measures the amount a grain is
indented. For stricter definitions, see Equations 3.1, 5.1, 5.3, and 5.2. As pre-
LS-DEM methods struggle to capture the level of morphological complexity in
real grains, there exists a paucity of computational studies exploring the effects
of these real morphological parameters with most quoted values originating from
experimental studies (Cho, Dodds, and Santamarina, 2006a). That being said, there
has been increased interest in highly non-convex particles in the last decade. Non-
convex 3d staple-shaped particle can pack extremely loosely (Gravish, Franklin, et
al., 2012). These particles can be described by the ratio of their length to width. As
this ratio increases, 𝜙 decreases from about 0.25 to 0.1. These packing fractions are
substantially lower than those observed in ellipses, ellipsoids or regular polyhdrons.
2d non-convex particles have also been investigated by attaching 3 circles together
(Saint-Cyr et al., 2011). The non-convexity can be increased by controlling the
distance between circle centers. Interestingly, it is discovered that increasing non-
convexity initially leads to an increase in packing fraction followed by a decrease
as non-convexity increases. This implies the relationship between non-convexity



10

and packing fraction may not be simple, as small non-convexities could lead to
interlocking which increases 𝜙. It is important to note that this study considers
polydisperse grains, i.e. mixtures of grains with different sizes. Thus, the results
can not be directly compared to results which consider monodisperse (same size)
particles.

For attempting to control granular materials by changing grain shape, obtaining
a general mapping between particle morphology and 𝜙 or 𝑍 that can be quickly
evaluated would be invaluable. Such patterns described above can be understood as
subspaces of the function mapping morphology-to-mesoscale. While the limitations
of traditional DEM have prevented numerical investigations into general mappings,
there have been significant theoretical attempts. In (Baule and Makse, 2014), a
methodology for calculating the approximate packing fraction and coordination
number for arbitrary shaped particles is proposed. In this methodology, a grain is
decomposed into an addition of Voronoi volumes of spheres to calculate the voronoi
volume of the particular shape. The authors derive a formula for 𝜙 and 𝑍 using the
particle’s voronoi volume representation. This groundbreaking study created one
of the first instances of a ‘shape space’: a general mapping between many particle
shapes and mesoscopic properties. The authors propose that such an algorithm can
be used for optimization, as one can search for the shape that extremizes 𝑍 and 𝜙
using their formula. However, this theoretical calculation does not match numerical
and experimental results exactly and is therefore not equivalent to performing a
numerical or physical experiment. As such, it is unclear if the results of topology
optimization using this methodology will bear results which match simulations and
experiments.

In the thesis, we develop a tool for controlling particle shape given a morphological
property, such as roundness and aspect ratio (Chapter 3). We also develop a gen-
eralized mapping from morphological properties to mesoscopic properties. This
mapping can be inverted to perform topology optimization of granular materials.
For instance, attempting to find the particle morphology that when packed in bulk
gives a particular packing fraction 𝜙.

2.4 Modeling excavation
We now shift attention to modeling excavations. Excavation in granular materials
can be seen as an optimization, where the controlled variables are which grains to
remove and the optimized variables are the desired size and stability of the tunnel
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(Table 1.1). A focus of this thesis is on understanding and controlling ant tunnel-like
unreinforced excavations in soils, i.e. tunnels without additional support such as
linings and rock bolts in irregular-shaped grains. Yet most tunneling studies focus
on reinforced tunneling as this is most relevant to human excavation, particularly
when tunneling in soils rather than hard rock. Still, studying reinforced tunneling
can provide great insight into phenomenon such as soil arching which also is highly
relevant for unreinforced excavations.

Reinforced tunneling in granular materials is intimately linked with arching in
granular materials. Such a phenomenon was studied by Terzaghi who stated that a
loosened zone was created around the tunnel during construction with the loosened
zone’s weight supported by rock surrounding the tunnel (Chen, Huang, and Tseng,
2011). Terzaghi explored soil arching in greater detail in his treatise ‘Theoretical
Soil Mechanics’ (Terzaghi, 1943a). Here, Terzaghi states ‘arching is one of the
most universal phenomenon encountered in soils’ and occurs when one part of a soil
yields, for instance during tunneling. In this case, ‘the relative movement within
the soil is opposed by a shearing resistance within the zone of contact between the
yielding and stationary mass’ which ‘reduces pressure on the yielding part of the
support and increases pressure on the adjoining stationary parts.’

Reinforced tunnels in granular media have been extensively studied throughout
computational mechanics literature. Most studies take a continuum approach to
tunneling, using models such as the finite element method (FEM) to study exca-
vations. When grains are very small, such as in large scale excavation in clay, it
is reasonable to use continuum models as simulating each of the billions of par-
ticles involved in DEM would be prohibitively computationally expensive. This
is common in human-scale excavation to avoid tunnel collapse. For instance, Lin
et al studied the change in material stress around an earth pressure balance shield
(EPBS) during the process of tunnel excavation in sandy soil, incorporating a tunnel
lining (Lin et al., 2019). The authors leveraged a 3D FEM simulation with a Mohr-
Coulomb failure criterion. A Mohr-Coulomb failure criterion is a generalization of
Coulomb friction to a continuum, and dictates when and how an isotropic, frictional
brittle material (such as soil) will failure in tension (Labuz and Zang, 2012). A
zone of low stress due to soil arching develops around the tunnel during excavation.
This loosened zone expands primarily upwards and in front of the tunnel gradually
during tunneling. The authors also quantify the depth at which soil arching occurs
by identifying an inflection point in vertical stress 𝜎𝑧 (𝑧), where 𝑧 is vertical depth.
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This methodology is similar to that used in earlier studies (Chen, Huang, and Tseng,
2011).

Constitutive modeling in FEM is efficient compared to discrete-scale studies. Never-
theless, FEM has numerous disadvantages compared to DEM: constitutive models
like Mohr-Coulomb can not capture all relevant physical effects (Guo and Zhou,
2013) and depend on many ad-hoc variables to capture the effects of microscopic
properties such as particle shape (Yin, Wang, and Zhang, 2020). With increased
computation, recent studies have attempted to model tunneling using the DEM.
Most computational studies use spherical particles due to limitations of traditional
DEM. Earlier 3D DEM studies of reinforced excavation observed similar arching
effects around the tunnel as in FEM studies (Chen, Tang, et al., 2011). Further, it
was identified that as the horizontal displacement of the tunnel excavation grows,
the support pressure (pressure on the tunnel surface) decreases to a value known
as the ‘limit support pressure’ as arching occurs. Next, as the tunnel horizontal
displacement continues this stress will in fact grow to a value known as the ‘residual
support pressure.’ More recent studies have considered the effects of particle shape
in excavations using sphere clustering in DEM. In (Yin, Wang, and Zhang, 2020), a
coupled FDM-DEM (finite difference method — discrete element method) is used
to probe the effects of particle shape on 3D lining-reinforced tunneling. Near the
tunnel, a DEM is used to capture the large deformation behavior and arching. The
FDM is employed far from the tunnel surface due to the relatively smaller strains
in these areas, thereby minimizing unnecessary computational expense. 3 types of
particle shapes are investigated: spheres, elongated particles (2 clustered spheres),
and 4 clustered spheres in a tetrahedral configuration. A model of a tunnel boring
machine is used to construct the tunnel by first excavating forward to create the tun-
nel, then backwards. Similar to previous studies, it is seen that a large arching zone
occurs both infront and around the boring machine, greatly reducing stress near the
surface of the tunnel. Further, the authors discover that the deformed area around
the excavation is highly dependent on particle shape. During backwards movement
of the boring machine, spherical grains have much larger deformation than other
shapes. The authors suggest this could be due to material dilation. More angular
particles also lead to a lower supporting force around the tunnel, potentially due to
increased arching effects as grains interlock. These studies imply arching plays a
significant role in granular excavation, and its general behavior can be captured with
spherical particles. However, if one wishes to capture the behavior of a specific
soil, using the correct particle shape may be essential (at the cost of computational
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expense).

As stated above, unreinforced tunnels in soils are not as extensively studied in
literature due to lack of application. On the other hand, clogging of silos has
been heavily scrutinized in granular mechanics research. A silo can be viewed as
a container with a hole in the bottom. If a granular material flows through the
hole it may form an arch at the hole, ‘clogging’ the silo. Such a clog is similar
to an unreinforced tunnel, with the stability of the arch dependent upon grain-
scale forces and not external support. Thus, we review relevant studies on silo
clogging. Silo clogging is usually considered from a probablistic perspective. A
recent experimental study investigated the clogging probability of grains with a range
of morphologies flowing through orifices of different sizes (Hafez et al., 2021). The
shapes considered were 3D crosses, ‘2D’ crosses (cross prisms), cubes and spheres.
It was found that for all shapes as the size of the orifice increased the probability
of a clogging arch forming decreased with the hole size following a logistic curve
as a function of orifice size. As such, clogging probability was approximately 1
for low orifice sizes, until a critical orifice size value where the probability rapidly
decreases to zero. Cubes had the largest critical orifice size, followed by 3D crosses,
then 2D cross and finally spheres. The authors claim this is due to cubes forming
stable beam-like structures at the orifice and entanglement of cross-like particles.
This study demonstrates both the probabilistic nature of granular arching, and how
the stability of unreinforced tunneling is strongly dependent on particle morphology.
Analytical studies have also derived formulas for predicting the critical arch width
and height for cohesive and non-cohesive granular materials, discovering that while
arch width depends on cohesion arch height is a function of the material’s internal
friction angle (Guo and Zhou, 2013). DEM has also been used to study the effects
of cohesion on arch formation. In (Morrissey, Ooi, and Chen, 2013), spherical
particles flow through an orifice. Different amounts of cohesion are studied, with
cohesion modeled as an attractive force between non-contacting grains. As cohesion
is increased, the distance between grains at which the cohesive force acts increases.
With increasing cohesion, the critical orifice size for the material increases. Arches
which form at the orifice also become taller at intermediate cohesive strengths.
Finally, similar to reinforced tunnels significant arching effects around the orifice
are observed. These results imply cohesion and particle shape all play a substantial
role in arch stability.

Most studies of tunneling in unreinforced soils are either theoretical or based on
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continuum FEM simulations (Di Prisco et al., 2018; Yuliza et al., 2018). Such
studies usually rely on limit analysis theory, predicting upper bounds on stable
tunnel geometries given particular soil characteristics (Huang, 2014) or assume
highly ordered grain packings. However by not modeling the material at the grain
scale, as in DEM, certain important characteristics of tunneling are missed. As
demonstrated above, DEM simulations can capture the probablistic nature of arching
and can directly model the impact of grain shape on soil stability. Studies which
do model unreinforced tunnels at the grain scale usually pertain to jointed rocks.
Rocky materials can form arches due to the large size of the individual rock joints
and blocky shapes of the joints. Such behavior is explored in (Do and Wu, 2020),
where discontinuous deformation analysis (DDA) (Goodman et al., 1984) is used to
evaluate the stability of tunnels in jointed rocks. Similar to the previous studies, a
low-stress region forms around the opening, with forces forming ‘arches’ around the
low stress zone. Further, the authors discover the stability of these arches depends
heavily on the angular orientation of the rock joints.

There are few works that investigate unreinforced tunneling in soils at the grain
scale. The work in thesis aims to fill this gap by performing DEM simulations of
unreinforced tunnels in soils.

2.5 Predicting stability of unreinforced tunnels
In order to control the stability of unreinforced tunnels, it is necessary to first predict
the stability of the tunnel when particular grains are removed. While theoretical
methods such as limit analysis theory can supply upper bounds on tunnel size in
a particular soil, there is no robust method for predicting the stability of specific
unreinforced tunnels in granular materials (Di Prisco et al., 2018). Similar work has
focused on predicting whether an arch will form when grains are flowing through an
orifice. This study discovered that arch stability could be estimated by measuring
the angle between contacting grains in the arch. If the contact angle exceeded 180
degrees, the probability of arch stability decreased dramatically. Such high-angle
contacts were termed ‘defects’ (Lozano et al., 2012). Though, it is unclear if such
results generalize to tunnels rather than clogging arches and to non-circular particles.

With these results in mind, the author of this thesis collaborated on a project to predict
the stability of unreinforced non-cohesive granular tunnels in soil with realistically
shaped grains (Pal, Buraque de Macedo, and Andrade, 2021). In this study, a 2D
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Figure 2.1: 2D cross section of soil, with grain shapes cross sections of particles
imaged from XRCT. Black lines indicate contacts forces obtained from LS-DEM,
with contact force strength proportional to line thickness (Pal, Buraque de Macedo,
and Andrade, 2021).

cross section of a granular soil was considered, see figure 2.1. Grain shapes were
obtained from cross sections of particles imaged via XRCT. The goal of this study
was to discover whether there existed a formula for predicting the stability of a tunnel
formed from grain removal. In this case, a ‘tunnel’ is in fact a tunnel cross section,
i.e. a set of contiguous grains removed in the 2D cross section. An ant does not
have access to all information in the material when digging, but rather just on the
surface of the tunnel. As we were interested in the studies’ relevance to ant tunnels,
we attempted to see if a ‘local’ criterion could be discovered, i.e. a criterion for
stability which only used information on the surface of the tunnel. Further, as ant
tunnels tend to have a constant radius (Buarque de Macedo, Andò, et al., 2021) we
dug tunnels of predefined diameters.

The first stage of the study consisted of equilibrating the soil particles in LS-DEM to
obtain the interparticle forces, see Figure. 2.1. The next stage consisted of creating
constant radii tunnels at random points in the soil, and investigating what properties
controlled granular stability. Examples of tunnels before and after excavation are
given in Figure 2.2. It was quickly discovered that removing grains under high
interparticle forces (thick black lines in Figure 2.2) was more likely to induce
a collapse than removing grains under low interparticle forces. To quantify the
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Figure 2.2: Examples of tunnels before (above dotted line) and after (below dotted
line) excavation (Pal, Buraque de Macedo, and Andrade, 2021).

amount of force on a candidate set of grains for removal, we calculated a quantity
𝑓𝑝, with 𝑓𝑝 given by Equation 2.1, where 𝐹𝑖 𝑗 is the contact force between particles
i and j, 𝑥𝑖 is the position of particle i and 𝑅𝑡 is the radius of the tunnel.

𝑓𝑝 =

𝑁∑︁
𝑖, 𝑗 ;𝑖< 𝑗

𝛼𝑝 (𝑖, 𝑗) |𝐹𝑖 𝑗 |, 𝛼𝑝 (𝑖, 𝑗) =


1 if min( |𝑥𝑖 − 𝑥𝑝 |, |𝑥 𝑗 − 𝑥𝑝 |) < 𝑅𝑡
0 otherwise.

(2.1)

Tunnels with the 40 lowest and highest 𝑓𝑝 for a given 𝑅𝑡 were dug. It was discovered
that grains with the 40 lowest 𝑓𝑝 were occasionally stable, while none of the tunnels
with the 40 highest 𝑓𝑝 were stable. This can be considered the ‘Jenga’ principle:
removing grains under low interparticle forces is more likely to be stable than
removing grains under high interparticle forces in dry granular materials. This is
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similar to how one may play Jenga, feeling the force on a block to determine whether
its removal will cause a collapse. We restricted our attention to tunnels with the 40
lowest 𝑓𝑝.

Then, we investigated whether tunnel stability could be predicted a priori using local
variables. First, we investigated the ‘angle criterion’: if tunnels were universally
unstable when angles between contacting grains on the tunnel surface exceeded 180
degrees and vice-versa. Indeed, many tunnels with low contact angles formed arches
when grains were removed (Figure 2.2 d,g). On the other hand, some tunnels with
low contact angles between grains were still unstable. We hypothesized this was due
to unbalanced forces on the removed grains, i.e. the ‘Jenga’ principle. In fact, it has
been conjectured that ants use the amount of force on grains to determine whether
it is suitable for removal (Frost et al., 2017; Espinoza and Santamarina, 2010). A
new criterion was developed which judged tunnel stability by the imbalanced force
on grains on the tunnel surface if the grains that will be removed (green particles in
Figure 2.2). Again, while such a criterion was successful in many cases (Figure 2.2
a,d,f) certain tunnels with high unbalanced forces were in fact successful in forming
a stable arch under grain removal (Figure 2.2 e).

Finally, we questioned whether it was even possible to develop a general stability
criterion for granular tunnels using local information alone. In other words, is it
feasible to always correctly predict the stability of a granular tunnel using grain
shape, positions and forces on the tunnel surface a priori? To check this, we first
removed grains to create a tunnel. Then, instead of simulating all the grains in the
material, we only simulated grains within four particles of the tunnel surface. On
the outside of the outermost layer of the local domain, grains at the top are replaced
by directly applied forces matching the forces on the top layer prior to excavation.
Meanwhile, grains below the domain are fixed to their original position, see Figure
2.3 a. We discovered that certain tunnels were stable in the local situation, but not
when all grains in the domain are considered (and vice-versa). This implied that
the tunnel excavation problem in dry granular materials is inherently non-local, i.e.
predicting whether a given tunnel will be stable with 100% accuracy is infeasible
using only information on the tunnel surface.

Finally, we attempted to explore why the problem was inherently non-local. The
change in contact forces around a tunnel due to excavation was visualized (Figure
2.3 b). Clearly, the influence of the tunnel extends far beyond the tunnel surface.
This lead us to believe that the behavior of the tunnel is linked to the mechanics
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Figure 2.3: The local granular tunnel problem. (a) Diagram of grains simulated
in the ‘local’ problem. Grains at the bottom of the domain are fixed while grains
above the domain are removed and replaced by forces matching the initial contact
forces. (b) Change in grain-grain contact forces due to an excavation about a stable
tunnel. Grain contacts with increased force are blue, while decreased are red (Pal,
Buraque de Macedo, and Andrade, 2021)

of grains far from the surface via force chains, making exact prediction of tunnel
stability from local considerations alone generally infeasible in dry environments.
To extend these results to real ant tunnels, one must consider the effect of cohesion
and 3 dimensions. These parameters are explored in Chapter 4 of this thesis.
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C h a p t e r 3

GRANULAR OBJECT MORPHOLOGICAL GENERATION
WITH GENETIC ALGORITHMS FOR DISCRETE ELEMENT

SIMULATIONS
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A granular material is a collection of discrete, solid particles with examples includ-
ing sand, ice floes, soil, and in general any assembly of discrete objects. These
materials are ubiquitous and are found in many industries from food production
(stacking of foodstuffs) to civil engineering (soil mechanics) (Sperl, 2006; Hyslip
and Vallejo, 1997). The Discrete Element Method (DEM) is one common tech-
nique for simulating granular particle dynamics (Cil and Alshibli, 2012; Cundall
and Strack, 1979a; Vu-Quoc, Zhang, and Walton, 2000; Kawamoto et al., 2016).
However, many challenges arise when simulating these materials including the large
number of grains in an assembly, efficiently calculating contact between grains, and
how to accurately reproduce particle shape. In this work, we discuss new methods
that accurately reproduce particle shape and develop algorithms for generating new
unique shape morphologies for simulation from a smaller subset of input data.

When simulating a granular material via the DEM, one must decide the shape of
the computational grains. A natural first choice is to represent particles as spheres.
Spherical particles are common because calculating particle intersections and hence
forces are fast and easy (Kruggel-Emden et al., 2007). However, real grains are in
general not spheres (Kawamoto et al., 2016). Multiple studies have demonstrated
that particle morphology affects macroscopic granular material properties (Cho,
Dodds, and Santamarina, 2006b; Kawamoto et al., 2016; Lim, Krabbenhoft, and
Andrade, 2014; Guo and Su, 2007), highlighting the importance of granular shape.
A concrete example is that non-spherical particles can exhibit interlocking between
grains, which effects the shear resistance of the material (Guo and Su, 2007).

Numerous methods have been proposed for simulating non-spherical particles. The
cluster approach consists of building each non-spherical particle out of multiple
spherical particles, allowing contacts between particles to be calculated sphere-by-
sphere (Vu-Quoc, Zhang, and Walton, 2000). However, this method leads to bumpy
grains that may not be physical (Kawamoto et al., 2016). It has also been shown
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that increasing the number of spheres used to build a particle, while improving
morphological accuracy, can have a negative effect on simulation results (Höhner
et al., 2011).

Polyhedra have also been used to model non-spherical particles in the DEM (Cun-
dall, 1988). Using polyhedra, any set of geometries can theoretically be modeled.
However, achieving a high resolution particle morphology requires many polygons
per particle, and thus can be computationally expensive (Lim, Krabbenhoft, and
Andrade, 2014). Furthermore, it has been shown that these models suffer the
same morphological/mechanical accuracy tradeoffs exhibited by clustered sphere
models (Höhner et al., 2011).

Recently, the Level-Set Discrete Element Method (LS-DEM) (Kawamoto et al.,
2016) was developed, which can simulate morphologically accurate and arbi-
trarily shaped grains. This method captures granular behavior to an extent un-
matched by traditional DEM approaches and reproduces experiments with high
accuracy (Kawamoto et al., 2016; Kawamoto et al., 2018). However, this method
requires shape data for each grain in the simulation. One option for obtaining this
data is to take high-definition three dimensional images of each grain with tech-
niques such as x-ray computed tomography or laser scanning. This data collection
approach, while highly accurate can be time-consuming and cumbersome for sim-
ulations with 10,000s of particles. Consequently, a method for generating large
quantities of realistic computational grains without having to obtain images of every
particle is highly valuable.

Granular cloning is one approach to reduce the challenge of collecting exact particle
shape morphologies (Cobo, 2016). The cloning procedure starts by gathering data
of particle shape morphologies and creating particle avatars, these are the parent
particles. For an example of these parent particles, see Figure 3.1. New clone
particles are then generated from features of the parent particles. This generation
process could take many forms including perturbing existing particles geometries
or by randomly sampling from the distributions of morphological properties of the
parent particles. Examples of these properties include sphericity, roundness, and
roughness (Cho, Dodds, and Santamarina, 2006b). In this process, each clone is
unique from other clones and parent particles, yet the collection of cloned particles
would match the overall shape distributions of the granular material. Thus, from
images of a small number of grains, an indefinite number of computational grains
can be generated with realistic variation in morphological properties. These grains
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Figure 3.1: Exact grain morphology captured from 3D XRCT. These objects are
morphologically accurate computational representations of the particles which will
be cloned. In other words, each computational avatar has the same shape as an
imaged physical particle, from (Kawamoto et al., 2016).

can then be used in simulations.

An initial example of this type of method was recently developed (Cobo, 2016). In
that work, each avatar obtained from XRCT imaging is represented as a function of
polar and azimuthal angle 𝑟 (Φ,Θ). The value of 𝑟, or the radius, at a given Φ and Θ

is the distance from the particle centroid to the surface of the particle. Distributions
of 𝑟 for each of the two angles are gathered by performing measurements across
each grain avatar. In addition, particle roundness and the lengths of each particle’s
principal axes are recorded.

Clones are then generated from the collected data. First, an equivalent ellipsoid
is built by randomly sampling principal axes values from the parent principal axes
distribution. Following this, for each Θ and Φ on the clone, a new radius value is
sampled by using data from the parent particle distribution of 𝑟 (Φ,Θ). The ellipsoid
surface is perturbed to fit this new radius. The cloned particles are then smoothed
until the roundness matches a chosen value from the parent particle roundness
distribution. The result is a clone particle that is distinct from all parent particles,
but fits certain morphological properties of the original grains (Cobo, 2016).

Another cloning method uses spherical harmonics (Neil and Russ, 2012) and prin-
cipal component analysis (PCA) (Wold, Esbensen, and Geladi, 1987) to generate
new particles. This method first decomposes the voxelated images of each particle
into spherical harmonics, i.e. finding the vector representation of each particle in
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a basis formed by spherical harmonic functions, given that each particle is a func-
tion mapping polar and azimuthal angle to radius of surface at said angles. As
each particle is represented by an infinite series of spherical harmonic functions, a
maximum number of basis functions are chosen such that the accuracy of the series
representation is sufficient. Then, each particle is represented as a point in a high
dimensional space, where the 𝑖th dimension is the particle’s 𝑖th spherical harmonic
coefficient. Once a large number of points have been obtained by sampling many
particles from the granular material, PCA is performed to reduce the space to a
lower-dimension with an orthogonal set of coordinates to the original coordinates,
such that the points in this space maintains most of the variance of the original
distribution. This space is said to have the principal components (PCs) as a basis.
Finally, new clones are generated by picking a value for each principal component
of the clone from a normal distribution with a mean of zero and a standard deviation
derived from particle diameter distributions. These values are then projected from
PC space into the spherical harmonic space and a clone is constructed (Zhou and
Wang, 2016).

In this work, a new granular cloning method is developed that uses genetic algo-
rithms to build cloned particles that accurately capture distributions of any shape
properties, including roundness and sphericity. These properties can be sampled
from parent particles or directly provided. An advantage of this method is the ability
to build particles from specified, suitably defined, properties, thereby allowing the
investigation of granular materials with any desired morphological characteristic.
We demonstrate this method by generating clones which match the roundness and
sphericity distributions of the parent particles. Distributions of these clones are
compared against the original parent distributions to validate the cloning process.
The potential applications of this method are widespread, including building li-
braries of computational grains for granular material simulation without the need
for extensive imaging. Furthermore, by being able to generate particles from dif-
ferent morphological properties, our method can be used to finely control shape
parameters and understand their importance in the physics of granular media.

3.1 Methods
Measurement of Morphological Properties
We focus on generating particle clones using morphological properties, specifically
sphericity and a length scale dependent measure of normalized principal curvature.
As roundness is related to this second property in particular circumstances, our
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clones match the sphericity and roundness of the parent particles. Sphericity is an
approximate measure of how much a particle deviates from a sphere (Wadell, 1935),
see 3.1,

Ψ =
𝜋

1
3 (6𝑉𝑝)

2
3

𝐴𝑝
, (3.1)

where 𝑉𝑝 and 𝐴𝑝 are the volume and area of the particle and are calculated in this
work from meshes of a particle surface. Sphericity was chosen as a property for
inclusion in the cloning method due to the ease of numerical measurement and its
effectiveness at capturing particle morphology at a large length scale (Cobo, 2016).

Normalized principal curvatures were also chosen as a target property because
commonly used geomechanical properties like roundness and roughness (Neil and
Russ, 2012; Cho, Dodds, and Santamarina, 2006b) are related to the variations
in curvature on the particle surface. According to Cho, Dodds, and Santamarina
(2006b) roundness describes the scale of major surface features which are typically
one order of magnitude smaller than the particle size and is quantified as the average
radius of curvature of surface features relative to the radius of the maximum sphere
that can be inscribed in the particle. Additionally, according to Hyslip and Vallejo
(1997), roughness is the general shape and surface irregularity, of particulate soil.
Hence, curvature captures the essence of these classical geotechnical properties. In
general, curvature 𝜅 is the rate at which the unit tangent 𝑡 changes with respect to
𝑠 (arc length) (Riley, Hobson, and Bence, 2006), see Equation 3.2. Thus, a low
curvature at a given point indicates that the surface is flat near the point. On the
other hand, a high curvature signifies bending of the surface near this point.

𝜅 =

���� 𝑑𝑡𝑑𝑠 ���� (3.2)

In this work, particles are represented as two dimensional surfaces in three dimen-
sional space. At a point on a two dimensional surface in three dimensional space,
there will be a different curvature in every direction. The principal curvatures are
the direction and magnitude of the largest and smallest curvatures at said point.
Thus, we record the magnitude of principal curvatures at a given point i.e. the
maximum and minimum curvatures, see Figure 3.2. The curvature measured at
points of interest, using reference points spaced close to the point of interest, will be
a quantitative measure of particle irregularity. The rougher the particle, the higher
the curvature.
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Figure 3.2: Principal curvatures at a point will be the minimum and maximum
curvature at said point. For example, at the saddle point of the hyperbolic paraboloid
pictured above, the principal curvatures will be the curvatures of the red and green
curves at the point.

Figure 3.3: Measuring curvature at a point is dependent on the length scale of
interest. For example, a rapidly oscillating function appears flat on a large length
scale, yet has a high amount of curvature on a small length scale.

There is an additional subtlety for curvature, however. Given a set of discrete points
representing a continuous surface, the curvature at a given point will vary depending
upon which points surrounding the given point are used to calculate curvature. For
example, consider a seemingly flat line which, upon closer inspection, is in fact
very rough, see Figure 3.3. Furthermore, this line is represented by discrete points.
Measuring the curvature at a given point on the curve requires choosing a set of
surrounding points as references; one point alone is not sufficient information for a
curvature calculation. If reference points are chosen such that the distance between
the reference points and the point of interest is far greater than the perturbations
in the curve, they will record a small curvature indicating a flat line. However,
if reference points are picked such that the distance between the reference points
and the point of interest is on the order of the oscillations in the curve, they will
record a high curvature. We may record properties of a discrete function at multiple
resolutions by picking different reference points for calculations of curvature at a
given point.
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Figure 3.4: A particle, viewed along each of its principal axes. For each alignment,
a sphere is generated with radius equal to the particle’s extent along the principal
axis. These radii are averaged to obtain �̄�.

We utilize this multiple resolution capability to measure the mean and standard
deviation of principal curvatures on a particle surface at different length scales. The
length scale denotes the distance between points of interest and reference points
for calculating curvature. The smaller the length scale, the smaller the distance
between reference points and points of interest. By finding curvatures at different
length scales, a holistic quantitative understanding of granular shape morphology
can be captured. For example, roundness is related to the curvature of bumps
roughly the size of the diameter, 𝐷, of the particle divided by 10. Consequently, by
measuring curvatures of the particle using reference points separated from points
of interest by distances of about 𝐷

10 on the particle surface, we will achieve an
approximate measurement of particle roundness.

Nonetheless, this discussion is incomplete: principal curvature alone is a size
dependent property. For example, two spheres with different radii will have different
principal curvatures. Yet, we are trying to characterize particle shape, not size.
Curvature, thus needs to be normalized so there is a size-independent measure of
particle shape. Normalizing the curvature of a particle occurs by first aligning the
particle to its principal axis. Then, the distance of the particle’s surface to the
centroid along each of its three principal axes is calculated — denoted by 𝑅1, 𝑅2

and 𝑅3. These three values are averaged to obtain the radius �̄� of a sphere that is
approximately the size of the particle, see Equations 3.3 and 3.4.

�̄� =
𝑅1 + 𝑅2 + 𝑅3

3
(3.3)

Given previous definitions of roundness (Cobo, 2016; Cho, Dodds, and Santamarina,
2006b), the averaged radius (�̄�), and the average maximum principal curvature
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measured on the 𝐷/10 length scale (𝐶𝑚𝑎𝑥) we define the roundness of a particle in
3.4. The maximum principal curvature is chosen because we believe this direction
captures the greatest irregularities in a surface feature at a given point.

Roundness =
1

�̄�𝐶𝑚𝑎𝑥
(3.4)

Granular Cloning Method Overview
The granular cloning method developed takes as input either morphological property
distributions of parent particles directly, or extracts these distributions from parent
particle data. In this paper, morphological distributions are extracted from particle
data, though this is not to imply that direct input of morphological data is not worth
consideration, and may in fact be preferable depending on the situation. Specifically,
sphericity, normalized principal curvature distributions, and volume are captured for
approximately 1000 particles. After these characteristics are measured from images
of the parent particles, the process detailed below is repeated for the generation of
each clone.

1. An ellipsoid is generated with a randomly chosen sphericity and volume from
the parent particle sphericity and volume distribution.

2. A surface mesh is created for the particle.

3. The particle surface mesh is deformed until the normalized principal cur-
vature distribution (see Section 3.1) matches a randomly selected mean and
standard deviation of per particle curvature sampled from the curvature distri-
butions of the parent particles. Particle deformation follows an optimization
process, where the difference between the cloned particle’s normalized curva-
ture distribution properties and the randomly selected curvature distribution
properties are minimized by changing the position of vertices on the particle
surface.

4. The process is then repeated on any number of smaller length scales for
the cloned particle by perturbing vertices at the smaller length scale on a
finer mesh. Larger length scale perturbations modify the general shape of
the particle, while smaller length scale deformations maintain the large scale
structure of the particle, but add small local deviations from the overall particle
shape - which affect the roundness of the particles.
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Figure 3.5: Overview of granular cloning method.

Figure 3.5 shows an overview of the general method.

Curvatures at a given vertex are independent on different length scales. A particle
may have a generally flat shape, leading to a small curvature on large length scales.
Nonetheless, this same particle could be rough, leading to large curvatures on
smaller length scales. We differentiate between these lengths scales for sampling
data and particle construction so that we can capture this variability in structure
across distinct resolutions.

Currently, the optimization process is run on two length scales in order to capture
particle sphericity and roundness, though the method can be used to generate grains
on any number. Once the optimization process is completed on both length scales,
the cloned particle has been formed. This process is then repeated until the required
number of grains has been generated. These particles are all unique, and can
be converted directly into suitable formats for simulation methods like LS-DEM.
It is worth re-iterating that the method may also take as input apriori generated
morphological distributions, in which case there is no need to mesh a collection of
parent particles.
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Figure 3.6: A Parent particle mesh. Left: A coarse mesh fit to the parent particle
surface. Right: A finer mesh fit to the parent particle surface.

Data acquisition details
The granular cloning method developed herein takes as input level set representations
of all the particles in the parent sample. In this case, we use a parent sample size of
1000 grains. After level set data is obtained for each particle, a surface and volume
mesh is fit to the zero level set, in other words the surface. In our case, the mesh is
generated by passing the level set data into a CGAL meshing library, however any
library which can create surface meshes from level set data could be used (Fabri
and Pion, 2009). The coarseness of this mesh corresponds to the length scale
curvatures/sphericities to be measured via the mesh. For the largest length scale,
a particle surface mesh has around 30-60 elements. For the smaller length scale,
a particle surface mesh has around 100-150 elements. These numbers are chosen
such that modifying elements on the larger length scale corresponds to changing the
general shape of the particle, while elements on the smaller length scale are of size
on the order of 𝐷

10 . Thus, modifying the smaller elements approximately changes the
roundness of the particle. Nonetheless, the size of the elements on a given length
scale are not set, and can be modified as much as one desires. A parent particle
meshed at the smaller and larger length scale is displayed in 3.6.

Next, the mean and standard deviation of the normalized curvatures are recorded for
each parent particle at each length scale, from the volume and surface meshes at the
respective length scale. It is important to note that the mean and standard deviation of
the principal curvatures across all particles is not what is being gathered. Rather, the
mean and standard deviation of principal curvatures across each individual particle
is recorded. Consequently, our morphological data extracted from the parent particle
level sets is in the form of distributions of mean principal curvature and distributions
of standard deviation of principal curvature for both (minimum/maximum) principal
curvatures. Principal curvatures are measured via libraries in the open-source
software CGAL: The Computational Geometry Algorithms Library (Fabri and Pion,
2009). This particular library in CGAL measures curvatures by taking advantage of
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the techniques detailed in Cazals and Pouget (2005). As mentioned in the previous
section, these morphological distributions could instead be supplied directly by the
user, thereby bypassing the need for analysis of parent particles.

The meshing procedure implemented does not always produce a uniform mesh, in
that not all elements in a mesh are the same size, see Figure 3.6. For example,
consider the following mesh of a particle surface. On one side of the mesh, vertices
are spaced close to one another and elements are very small. On the other side of
the mesh, there are a few vertices placed far apart from one another. Consequently,
the elements are far larger on this side of the mesh. As a result, moving the
vertices that are part of larger elements will change the structure of the particle far
more than moving the vertices which correspond to smaller elements, as a larger
surface area of the particle will be perturbed by changing the position of the larger
element vertices. Thus, element size is taken into consideration when calculating
the mean and standard deviation of principal curvatures for a given particle. After
calculating the principal curvatures at each vertex, a weight 𝑤𝑖 is assigned to each
vertex, where 𝑤𝑖 is the sum of the areas of the elements that vertex i is part of.
This weight quantifies the fact that the position of vertices that are part of larger
elements will contribute more to particle properties than that of vertices that are part
of smaller elements. Once the principal curvatures and 𝑤𝑖’s have been calculated
for each vertex, the mean (see 3.5) and standard deviation (see 3.6) of the principal
curvatures for the individual particle are calculated as follows:

𝜇 𝑗 =
𝑅
∑𝑉
𝑖=0 𝑤𝑖𝑐𝑖, 𝑗∑𝑉
𝑖=0 𝑤𝑖

(3.5)

𝜎2
𝑗 =

∑𝑉
𝑖=0 𝑤𝑖 (𝑐𝑖, 𝑗 ∗ 𝑅 − 𝜇 𝑗 )2∑𝑉

𝑖=0 𝑤𝑖
, (3.6)

where 𝑐𝑖, 𝑗 is the 𝑗 𝑡ℎ principal curvature on the 𝑖𝑡ℎ vertex, 𝜇 𝑗 , 𝜎𝑗 are the mean and
standard deviation of 𝑗 𝑡ℎ principal curvature, and V is the total number of vertices on
the particle. These distributions of curvature means, curvature standard deviations,
sphericities, and volumes are used during clone generation.

Clone generation
In this section, the generation of a unique particle clone is explained. First, a random
sphericity and volume are sampled from the respective distributions of the parent
particles. Then, the three principal semi-axes lengths for an ellipsoid are chosen
such that the ellipsoid matches the volume and sphericity values sampled. This
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Figure 3.7: Starting coarse meshed ellipsoid for clone.

ellipsoid is the starting configuration of the clone. Next, a coarse surface mesh of
the ellipsoid is generated, see Figure 3.7. A volume mesh of the ellipsoid is also
constructed, such that the vertices on the volume mesh are the same as the vertices
on the surface mesh.

The vertices on the clone mesh are then optimized by minimizing a cost function of
the difference of the mean and standard deviation of the distributions of the principal
curvatures on the particle from the randomly sampled values, while maintaining the
sampled sphericity. As moving one point affects the curvature of all the points around
it, perturbing the particle to fit the target properties is a highly nonlinear optimization
process. Consequently, genetic algorithms are used to search the non-convex state
space for the optimal perturbation of the ellipsoid. Genetic algorithms (GAs) are
chosen because GAs have a proven history of solving non-convex optimization
problems efficiently when the search space is essentially unknown (De Jong, 1988).

GAs use evolutionary techniques to find the value of a variable or variables that
minimize a given cost function. The general GA procedure is outlined below.
First, a set of trial solutions to the optimization problem are proposed. These
solutions are the individuals, and may be randomly chosen or pre-selected. Then,
the trial solutions are evaluated; the individuals with the highest cost are discarded.
Subsequently, the properties of the remaining individuals are combined, or mated,
to create new individuals with a combination of the older solutions’ properties.
Finally, a randomly chosen subset of the current solutions are randomly perturbed,
or mutated, to obtain a slightly modified set of trial solutions.

This process is repeated until one of the solutions has minimized the cost function
sufficiently (De Jong, 1988).

In the case of the developed granular cloning method, the individuals targeted
for optimization are surface meshes, which represent potential clones. The cost
function is a measure of the difference between morphological properties of the
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individuals and randomly sampled values from the distributions of the parent particle
properties, see Equation 3.7. This function corresponds to a single particle, and
thus is minimized for each clone. The mating process consists of swapping the
spatial location of a randomly chosen subset of vertices on one mesh with the spatial
location of a subset of points on another mesh. Finally, the mutation step consists
of first randomly selecting individuals. Then, vertices on these individuals are
randomly selected. These vertices are then perturbed by a vector. Each component
of the vector is randomly sampled from a gaussian distribution with mean zero and
variance user-specified.

𝐶 = ( 𝜇𝐾1 − 𝜇𝑘1

𝜇𝑘1
)2 + ( 𝜇𝐾2 − 𝜇𝑘2

𝜇𝑘2
)2

+(𝜎𝐾1 − 𝜎𝑘1

𝜎𝑘1
)2 + (𝜎𝐾2 − 𝜎𝑘2

𝜎𝑘2
)2 + ( 𝑆 − 𝑠

𝑠
)2

(3.7)

In Equation 3.7, 𝜇𝑘1 and 𝜇𝑘2 are the average values of the minimum and maximum
principal curvatures of a cloned particle. 𝜎𝑘1 and 𝜎𝑘2 are the standard deviations
of the minimum and maximum principal curvatures of the cloned particle. The
corresponding parameters for the target curvature distribution properties randomly
sampled from the parent particle data are denoted with subscript capital 𝐾 . 𝑆 is
the randomly sampled sphericity, while 𝑠 is the sphericity of the cloned particle.
Minimizing this function corresponds to minimizing the square of the difference
between each morphological property of the clone and the corresponding randomly
sampled morphological property from the parent particle distribution as a fraction
of the current clone morphological property. We chose a least-squares approach
because of its simplicity, but more detailed cost functions can be constructed if de-
sired. This cost function can easily be modified for a variety of target morphological
parameters and length scales.

Properties and parameters such as the standard deviation of the mutation vector
distribution, number of individuals, number of iterations, or generations of the
genetic algorithm can all be tuned to enhance clone generation. In addition, if
the cost of a clone is over a threshold value after generation, then the particle is
rejected as it will be too difficult to perturb the particle to reach these sampled values
without compromising the physicality of the grain. For instance, if the difference
between a current and target measure of the curvature distribution on a particle is too
high the particle may be contorted in non-physical ways to match this distribution.
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Figure 3.8: Optimized clone on largest length scale.

Figure 3.9: Optimized clone on both length scales.

These contortions include overlapping mesh elements, or extremely high curvature
spikes around the grain surface. An arbitrary threshold value was added to the
cost for every vertex with a curvature more than 2 standard deviations away from
the mean curvature. The python package DEAP was utilized for minimizing the
cost function (De Rainville et al., 2012). Figure 3.8 shows an optimized clone
on the largest length scale. After the optimization process is complete for the
coarse-meshed clone, the mesh is refined, and the process is repeated with parent
distribution data measured at the corresponding length scale. Figure 3.9 shows a
cloned particle that has been optimized on two different length scales.

3.2 Results and discussion
Analysis
A total of 1000 clone particles were generated from distribution data measured from
an existing parent database of 1000 particles. The clones were generated following
the procedure and minimization of the cost function outlined above. Figure 3.10
shows the average normalized cost function and standard error for 1000 particles
for the first 100 generations of the genetic algorithm. The cost is normalized in
that, the cost for a given particle is divided by the particle’s cost at generation zero.
Figure 3.10 shows minimization of the cost function, which results in achieving
morphological properties close to the targeted values. The jumps in the cost at a
few random points, while initially concerning, are a characteristic of the genetic
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Figure 3.10: Average normalized cost function (the summation of the cost of each
clone at a given generation divided by the number of clones sampled) and standard
error (the standard deviation of the cost of the clones at a given generation, divided
by the square root of the number of clones sampled) for 1000 clones sampled, for
100 generations of the genetic algorithm.

algorithm and the nature of the nonlinear optimization problem. Specifically, the
spikes occur because a proposed particle was deformed to a high cost morphology.
This high cost morphology was quickly rejected and optimization continued at a
more reasonable cost level.

The method can produce a variety of morphological combinations. Figure 3.11
shows multiple cloned particles, sorted by sphericity and roundness. As roundness
decreases, the cloned particles have higher surface perturbations. As sphericity
increases, particles become less oblong and are closer in large scale morphology to
a sphere.

The resulting distributions of roundness and sphericity for the clones match closely
with the parent distributions, with each particle contributing one value to the his-
togram.

Figure 3.12 displays histograms of parent and clone particle sphericity, measured
on the final clone particles. Figure 3.13 displays histograms of parent and clone
particle roundness, measured on the final clone particles. Additional histograms
of parent and clone particle properties can be found in Figures 3.14 and 3.15. It
is important to note that the method was able to capture morphological property
distributions at different length scales and for different types of distributions. For
example the average maximum curvature on the larger length scale resembles a
Gaussian distribution, while the standard deviation of the minimum curvature on
the smaller length scale is similar to a binomial distribution. The capability to match
arbitrary property distributions gives the method tremendous flexibility in cloning
grains.
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Figure 3.11: Multiple grains generated by the granular cloning algorithm, sorted by
sphericity and average maximum normalized principal curvature.

Figure 3.12: Sphericity of parent and cloned particles after optimization.
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Figure 3.13: Roundness of parent and cloned particles after optimization.

Figure 3.14: Distributions of principal curvature properties on larger length scale.
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Figure 3.15: Distributions of principal curvature properties on smaller length scale.

3.3 Conclusions
In this work, a new method for generation of unique computational grains from
granular material statistics has been described and successfully demonstrated. The
method can build particles from any reasonable morphological property via modi-
fication of the cost function in the optimization step. We chose to target sphericity
and curvature distribution properties — which in certain cases is roundness — as
our chosen characteristics. A total of 1000 cloned particles were generated from
an existing parent particle dataset. The distribution of morphological properties of
these clones were compared to the distribution properties of the parent particles. It
was shown that the clone particles accurately reflect the morphological properties
of the parent particles.

The shape properties singled out for clone generation in this paper were chosen
because they represent morphological properties that are commonly measured. We
make no comment on whether these properties are the most important morphological
properties of grains in a granular material. Further analysis on shape parameters is
required to determine ideal properties to generate clones that match parent mechani-
cal properties. However, the ability of the granular cloning method to build particles
with any morphological property and variations of these properties allows the rapid
generation of different particle datasets to investigate the underlying physics. As
such, our method allows detailed numerical investigations of granular mechanics,
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where the importance of specific grain shape properties on mechanical behaviors
can be investigated.

There are several ways this method could be improved for future particle design.
Firstly, as in Jerves Cobo (2016), there are many knobs that can be turned to change
the optimization process. These include all the parameters of the genetic algorithm
(as explained in Section 3.1), the threshold value for particle rejection, the amount
of elements in a given length scale, in addition to all parameters used for meshing,
subdivision, particle deformation and curvature measurements that are determined
by the particular computer graphics software utilized. All of these parameters can
be toggled to potentially achieve a faster or more accurate cloning process.

Different particle properties can also be inserted into the cost function. We believe
that particle principal curvature mean and standard deviation and sphericity capture
many important particle shape properties, while striking a satisfactory balance
between clone generation accuracy and the amount of time necessary to generate
a clone. However, other morphological properties such as aspect ratio, volume to
surface ratio or higher order derivatives of the particle surface could be included
into the cost function, potentially increasing the accuracy of the generated clones or
the efficiency of the cloning process.

Future work will also compare mechanical properties captured in LS-DEM simula-
tion (stress-strain curves, failure strength, friction angle, etc.) between assemblies of
parent particles and clone particles. This will further validate the granular cloning
process. Additionally, systematic investigations of different shape properties would
help with understanding which morphologies are the most critical in relationship to
mechanical properties of granular systems.
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C h a p t e r 4

UNEARTHING REAL-TIME 3D ANT TUNNELING
MECHANICS
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Excavation is a vital component of both the natural world and modern civilization.
Mining alone constitutes an over 80 billion dollar industry nationally (US Mine
Production Increasing, Estimated Value of 86.3 Billion in Minerals 2020), provid-
ing an abundance of materials upon which society relies. In nature, insects such
as ants have evolved strategies for large-scale efficient and durable tunnel excava-
tion. Indeed, colonies of subterranean-nesting ant species can create nest structures
several meters in depth that can persist for decades (Tschinkel, 2003). This bio-
logical feat of engineering has fascinated both biologists and physicists alike (Frost
et al., 2017; Cassill, Tschinkel, and Vinson, 2002a; Khuong et al., 2016), but is
especially captivating from a mechanics perspective (Espinoza and Santamarina,
2010). As anyone who has played Jenga is aware (Hasbro, 1983), removing certain
blocks is more likely to cause a collapse than removing others. What principals
do ants follow such as to avoid removing structurally critical grains during excava-
tion? Do factors other than safety determine digging technique i.e. time and energy
efficiency? Do ants dig according to a simple, innate algorithm? By studying ter-
mite mounds, robots following termite-inspired algorithms have been implemented
for autonomous construction (Werfel, Petersen, and Nagpal, 2014). Similarly, un-
derstanding the innate, collective behavior algorithm that ants employ to excavate
tunnels could lead to more efficient and economical digging strategies for resource
extraction. Mining collapses can cost up to a 100 million dollars individually (Sousa
and Einstein, 2021), in addition to threatening the safety of the workers. Eventually,
an autonomous mining robot following said methodology may allow humans to
avoid dangerous excavations altogether (Hyder and Nah, 2018). Such a robot is
ideal for interplanetary mining (Sivolella, 2019); adapting to extreme and changing
conditions before a terrestrial human receives a signal.

There exists a rich body of literature investigating the mechanics and structure of
ant tunnels. Classically, the 3-dimensional forms of subterranean colonies were
elucidated by the pouring of coagulating fluids into an unoccupied (or euthanized)
colony. These landmark studies revealed the ordered chaos of the ant underworld:
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a byzantine collection of vertical or angled tunnels coalescing about horizontal
chambers (Tschinkel, 2003; Cassill, Tschinkel, and Vinson, 2002b). By contrast,
inferring how such structures were created by the ants has typically relied on the
use of far simpler, often two dimensional experimental nests. For example, the
effects of soil grain size distribution and saturation on tunneling diameter, stability
and structure was studied by observing quasi-2D ant farms housing harvester ants
Pogonomyrmex barbatus (Espinoza and Santamarina, 2010). For this species, it
was shown that the most effective tunnel excavation was observed when grains were
small enough such that workers could carry particles with their mandibles. Yet,
cohesion had to be high enough to support tunnel structures, but not so much as to
resist the ants’ pulling force. In another 2D study, it was found that the area and
digging rate of excavation depended on size of the fire ants involve. However, the
topological structure of the tunnels, i.e. the ratio of edges to vertices in a graph
representation of the tunnel, was independent across ant size scales (Gravish, Garcia,
et al., 2012). However, to elucidate features of the ant digging algorithm that lead
to robust tunnel formation, there is a critical need to both quantify how ants tunnel
in three dimensions, and deduce how their actions impact the mechanical properties
of the surrounding soil.

Nowadays, x-ray computed tomographic imaging (3D XRCT) offers a potential
solution for non-destructive analysis of 3D colonies. Minter et al leveraged such
technology to demonstrate how ants will change digging angle when encountering
gradients in soil density (Minter, Franks, and Brown, 2011). Gravish et al tracked
tunnel diameter via XRCT, illustrating how tunnel size is correlated with worker
ant morphology, in particular body length (Gravish, Monaenkova, et al., 2013).
Goldman et al (Monaenkova et al., 2015) utilized 3D XRCT images of ant tunnels
at multiple instances in time to demonstrate how increasing water content at low to
intermediate moisture levels correlates with the properties of tunnels dug by ants.
By measuring the yield force required to drag a rod on a robotic arm through the soil,
it is discovered that increases in yield force due to moisture content correlate with
increasing tunnel depth. This work suggests soils with higher yield strengths lead to
more robust and stable tunnels. Computer simulations have also emerged as a means
for probing ant tunnel mechanics. Frost employed Discrete Element Method (DEM)
simulations (Cundall and Strack, 1979b) — which model grains as rigid objects
obeying Newtonian physics — to discover that soil arching around rectangular
cavities increases the stability of surrounding openings, a possible explanation
for inter-woven tunnel geometries (Frost et al., 2017). Behaviorally, ants follow
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patterns when selecting grains for wall construction; exhibiting a preference for
heterogeneous grain sizes. Such a mixture will have a higher angle of repose,
and therefore stability, than homogeneous collections of grains (Aleksiev, Sendova-
Franks, and Franks, 2007) . Furthermore, ants will prioritize ease of grain removal
when digging over robustness of the resulting wall (Minter, Sendova-Franks, and
Franks, 2013). Clearly, ant tunnel construction is strongly influenced by the granular
makeup of the soil. Nevertheless, it remains unclear how exactly ants construct stable
tunnels in natural settings.

Unsaturated soils, like most granular materials, exhibits “force chains”: networks
of particles carrying the majority of stress (Radjai et al., 1996; Gili and Alonso,
2002). As mentioned in (Frost et al., 2017), removing particles in these chains is
likely to provoke instability, in addition to being harder to remove due to frictional
resistance. Do ants avoid extracting grains from such chains? More-so, if the
increase of interparticle forces leads to more robust tunnels, how do ants cope with
the increasing energetic cost of grain removal (Monaenkova et al., 2015)? These
questions are key towards the development of a bio-inspired tunneling algorithm
that minimizes the probability of collapse.

In this study, we employ 3DXRCT to map the forces around real ant tunnels during
naturalistic tunnel construction. We use this mapping to explore patterns relating
tunnel construction to force distributions in real time, in addition to other critical
granular material attributes. Because the shape, position and orientation of grains
are crucial for determining force distributions in a soil (Chen, Liu, et al., 2020;
Yin, Wang, and Zhang, 2020; Azéma and Radjai, 2012; Li, Marteau, and Andrade,
2019), we consider grain-scale properties of the excavated soil and their evolution
in time. With XRCT, we achieve sub-mm resolution 3D imaging on a frustum-
shaped container of ants and soil during tunnel excavation, during tunnel excavation.
Leveraging this data, we re-create the experiments in silico via a DEM simulation
which can model particles of arbitrary shapes — the Level Set Discrete Element
Method (LS-DEM) (Kawamoto et al., 2016). From this simulation, we calcaulate the
changing temporal dynamics of interparticle and grain-wall forces throughout the
entire sample as ants execute their tunneling behavioral program. This combination
of high resolution dynamic imaging of tunnel excavation complemented by grain-
scale mechanics unveils the spatio-temporal mesoscopic impact of tunneling ants
on the surrounding substrate, elucidating why ants are such efficacious tunnelers.
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Methods
To probe the effect of granular physics on ant tunneling behavior, we leverage XRCT
imaging at sub-millimeter resolution. 500 ml of quikrete soil with average grain
diameter of 2.3 mm (see SI) was mixed with 20 ml of water, and poured into the
frustum for a water content 𝜔 = 0.03 and initial porosity 0.42. The frustum was
encapsulated into a device specifically designed for our XRCT experiments (SI). The
device was placed into a CT scanner, and a forty-minute high-resolution scan was
performed of the entire sample. Fifteen (15) Pogonomyrmex occidentalis ants were
released into the top of the container, and the container was sealed (MacMahon,
Mull, and Crist, 2000). This number of ants were chosen before the experiment
through an optimization procedure performed using the same species of ant and
soil as the main experiment. Starting from 1 ant, increasing numbers of ants were
observed digging through soil in a laboratory environment. It was found that optimal
excavation rate was achieved starting at 15 ants. Following this, faster (four-minute)
half-resolution scans were taken every 10 minutes over the course of about a day.
Each scan captured the structure and orientation of almost all particles in the sample
in 3D. Six (6) instances of the experiment were performed overall, though due to
the machine occasionally pausing overnight (SI) only 3 studies collected continuous
data on ant tunneling. While the morphology of all 3 experiments are studied, the
first two experiments are primarily analyzed in this article, as they span the two
possible cases of tunnels on the boundary and in the bulk.

From these three-dimensional images, a digital avatar was created for each parti-
cle in the sample. As explained in the supplemental information (SI), a particle
avatar is a mathematical representation of a grain’s shape, position and orientation;
factors known to significantly influence force distribution (Nguyen et al., 2015).
Furthermore, by comparing images taken at different instances in time, the order of
grain removal by the ants could be determined — up to the frequency of the scans.
From here, the morphological properties of removed grains and kept grains were
compared, and an LS-DEM simulation utilizing these avatars was executed. All
four steps of the digital reconstruction are illustrated in Figure 4.1.

Results and Discussion
Tunnel and particle morphology
Tunnel and grain shape properties were analyzed before considering force chains, to
probe the mechanics at the tunnel scale. Splines were fit to tunnels for obtaining a
smooth representation of the tunnel axes. In Figure 4.2, a depiction of the spline —
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PROJECT DESCRIPTION

3 Project Research Plan
Proposal objective: The primary objective of this proposal is to utilize XRCT and LS-DEM to
investigate and understand grain scale interactions with subterranean structures and use the en-
hanced understanding and data to develop biologically inspired excavation algorithms.

The following synergistic tasks are proposed to achieve this objective:

Task 1: Image ant tunnel networks before, during, and after construction with 3D XRCT.

Task 2: Utilize the XRCT images to gather force and position data on all grains with LS-DEM.

Task 3: Develop excavation algorithms utilizing neural networks with the collected data.

3.1 Task 1: 3D XRCT Imaging of Ant Tunnel Networks
The completion of this task will be conducted in two distinct phases with the first phase taking
place at Caltech. This phase will develop a testing device suitable for use in an existing 3D XRCT
setup with collaborators in Grenoble. The design of the experimental setup will be principally
lead by two variables: the minimum representative size of the ant tunnels and the x-ray scanning
resolution such that grains can be precisely resolved in order to be able to pursue the grain-scale
work envisioned. In order to obtain 3D tomographic images, objects must be rotated through 360�

making a cylinder the ideal design shape. With this in mind, the proposed testing device shape will
by an 18 cm tall by 18 cm diameter cylinder filled with sand, enabling ant tunneling. A schematic
of the proposed device is shown in Figure 8.

Sand

Cylinder 
Wall

Cylinder 
Base

Free 
Space

Cylinder 
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Tunnels

X-rays
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Figure 8: Schematic of proposed cylindrical device modeling a 3D ant farm that is amenable to
XRCT.

Once the device is constructed a series of tests will be conducted at Caltech to determine sev-
eral experimental parameters including the ideal type of ant (the starting point will be the classic
Harvester Ant, widely available commercially); the rate of tunneling per ant in the device; the
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Figure 4.1: The 4 stages of LS-DEM recreation. Top left: Experimental design.
Top right: One viewpoint of a completed tunnel from x-ray imaging. Bottom left:
Alpha-shape fit to the locations of removed particle centroids for viewing the 3D
tunnel, with 𝛼 = 40 (Lou, Jiang, and Scott, 2013). Bottom right: Digital recreation
of particles removed by ants in initial location.

with tunnel axis direction obtained from the spline gradient — is presented for the 3
successful experiments on top. On the bottom are multiple measures for quantifying
the tunnel’s structure.

Ants tend to dig on the container’s boundary: in all cases, the initial tunnel began
from the container’s boundary. Out of all 5 tunnels pictured, only one tunnel (green)
passes through the interior during descent. This predilection for the boundary could
be simply a matter of geometry: ants start digging down once horizontal motion is
inhibited (e.g., by the container’s boundary). Or, it could be due to the difference in
cohesion between the container’s boundary and the particles compared to particle-
particle interactions. The latter explains why ants tend to stick to the boundary
during excavation.

The ants tend to dig in linear segments. Specifically, along piece-wise segments
the ants maintain an approximately constant digging angle 𝜙 (defined as the angle
of the tunnel axis with respect to a horizontal plane). This can be seen in all five
of the tunnels. However, the purple and blue tunnel do show gradual variation in
angle in parts. Almost vertical descents occur at the top. In the bulk, ants dig at or
below the angle of repose for the material (≈ 40 degrees, see SI). Yet, as pointed
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Figure 4.2: Spline fits to ant tunnels. Top) Interpolating spline fit to an ant tunnel,
with scale for height. Bottom) Digging angle to horizontal plane 𝜙, tunnel radius
and aspect ratio as a function of distance along tunnel axis obtained from splines.
For high resolution images of the 3 experiments with splines, see S.I (Figs S4 —
S8).

out above, the ants exploit the presence of boundaries where they can reach higher
digging angles 𝜙, such as in experiment 3 (purple/blue). This quantitative measure
of digging angles in a cohesive material is consistent with qualitative observations
in (Espinoza and Santamarina, 2010).

The aspect ratio of the tunnel at a given distance along the spline is calculated
by finding the centroids of all removed particles (pre-removal) which intersect a plane
with normal pointed in the direction of the spline, at the particular distance along
the spline. Principal component analysis was performed on the centroids projected
into this plane, and the ratio of the largest to smallest eigenvalue was taken as the
tunnel aspect ratio. Once a tunnel is born from the top excavation, tunnel diameter
and aspect ratio is mostly constant, with the green and red tunnels having the lowest
aspect ratio and diameter (≈ 4 times particle diameter, consistent with (Gravish,
Monaenkova, et al., 2013)). For tunnels dug against a boundary, tunnel morphology
is elliptical, raising the cross section aspect ratio. This shape could be the result of
ants excavating a segment of a circular tunnel.

The high resolution scan’s voxel edge length (70 𝜇𝑚) is about 1
40 of average particle

diameter. This level of detail for each grain means that the ants’ preferences for
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removing particles with certain attributes can be explored. The volume of the grains
has been quantified by counting the number of voxels in each particle via the spam
python library. The distributions of volume between removed and nonremoved
particles are compared for statistical significance using a Kolmogorov-Smirnov test,
see (figure S2). There appears to be a slight, yet statistically significant, bias
for lower volume grains. This result is consistent with experiments in (Espinoza
and Santamarina, 2010), in which ants prefer to remove particles with diameter
comparable to mandible size (1 - 2 mm).

Mechanics of Tunnel Surface
The forces localized on the tunnel surface are studied in this section, offering
insight into ant tunneling behavior. Multiple forces exist between adjacent grains
in an unsaturated granular material. At the scale of our particles (≈ 10−3𝑚) the
dominating forces are cohesion, friction, weight and contact between grains and
with walls (Espinoza and Santamarina, 2010; Richefeu, El Youssoufi, and Radjai,
2006). To calculate these forces we leverage LS-DEM, detailed in (SI). In summary,
we begin with a digital twin of the experiment. This means each particle in the
original physical frustum maps to a computational particle — as illustrated by the
bottom right image in Figure 4.1. The digital particles match the physical grains up
to the resolution of the scans — 0.07 mm. This resolution is sufficient to capture the
shape, orientation and position of the particles, see Figure S1 in the supplementary
material. The precise reproduction of each interparticle contact in LS-DEM may not
match reality exactly. Indeed, even if we matched the contacts precisely, we could
not guarantee an exact reconstruction of the forces due to the indeterminate nature of
force chains (Shaebani, Unger, and Kertész, 2009). Further, we could not image the
location and shapes of all the liquid bridges. Nonetheless, we are more interested
in capturing the general behavior of forces in our sample - such as the dependence
of force chain morphology on the growth of the tunnel. This emergent behavior
is more dependent on the distribution of particle shapes and boundary conditions
than on the specific contact locations (Chen, Liu, et al., 2020; Fang, Guo, and Hou,
2020). In this regard, LS-DEM has shown high efficacy (Kawamoto et al., 2018).

The DEM simulation of these grains is left to equilibrate under the aforementioned
forces. Cohesion is handled in our simulation using the bond model developed in
(Potyondy and Cundall, 2004). Details on this model are given in the supplementary
information, see (S.I.). Grains are then deleted in the order in which ants removed
the particles. Since scans were performed every 10 minutes, many grains (≈ 100) are
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Figure 4.3: Visualization of forces on grains in and around tunnel for experiment
1. Particles which will be removed in subsequent frame are colored blue. Top
row: Simulation after equilibration at specific frame. Bottom row: Simulation after
equilibration at a later frame. Column 1) Rendering of tunnel particles. Column 2)
Forces on tunnel particles. Column 3) Rendering of particles across red plane in
column 1. Column 4) Forces through particles in Column 3.

removed during each scan. After every round of particle removal, an equilibration
is performed. This methodology is similar to that of dissolution studies (Cha and
Santamarina, 2019). We number each equilibration chronologically, denoting this
number as the experiment’s ‘frame.’

The structure of forces for experiments 1 and 2 were analyzed. Figure 4.3 depicts
particles and simulated forces from experiment 1. The top row displays the system
of particles at a particular frame, while the bottom row corresponds to a temporally
later frame (70 minutes later). In the first column, the x-ray image is displayed,
with particles on the tunnel’s surface rendered individually. Particles which will
be removed in the immediate next frame are shaded dark. Column 2 illustrates the
forces between particles on the tunnel surface for the two frames. Each black line
is a branch vector — i.e. a vector which connects the center of masses between two
interacting particles. The thickness of the line is proportional to the magnitude of
the normal force between the participating grains. Branches of contiguous particles
woven together by high interparticle forces are identified as force chains, as defined
in the introduction. Column 3 is a projection of particles onto the red plane in column
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Figure 4.4: Distributions of sum of normal force magnitudes 𝐹𝑛 for kept and
removed particles across experiments 1 and 2, totalling 117000 grains — see text
for 𝐹𝑛 definition. The blue histogram is the distribution of 𝐹𝑛

𝑖
among all grains which

are never removed, at the frame before tunneling begins. The orange histogram is the
distribution of the same parameter among particles at the frame immediately before
said particle’s removal. The approximate ant pulling force is plotted in red (Espinoza
and Santamarina, 2010). Removed particles with 𝐹𝑛

𝑖
greater than the ant pulling

force may be a consequence of model errors in predicting which particles are in
force chains. The difference between the two distributions is statistically significant,
with 𝑝 << 0.005 under Kolmogorov–Smirnov test. The dark area represents the
overlap between the two histograms.

1. The set of particles projected are distances of approximately three tunnel radii
from the tunnel axis and two particle diameters from the plane. Such visualization
reduces the dimension of the data, revealing patterns influenced by the tunnel axis.
The final column presents the distribution of forces in this cross section. In addition,
a video of what an ant would see while traversing the green tunnel was compiled,
see movie S3.

We make a couple inferences from this data. Firstly, grain forces on the surface of
the tunnel tend to be significantly less than that of grains positioned deeper into the
bulk. In addition, surface forces are inclined to wrap-around the axis of the tunnel
rather than travel along it. This arching phenomena will be explored in section C.

In movie S2 the entire tunnel surface with its forces are rendered for 27 frames.
The arching and force relaxation behaviors described above are even more apparent
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Figure 4.5: Change in forces around tunnel due to ant excavation for green tunnel
in experiment 2, within the bulk. Left: intergranular forces in a tunnel cross section
before excavation. Middle: forces in same cross section after tunnel excavation.
Right: distribution of 𝐹𝑛 in particles which make the tunnel surface, before and after
excavation. The presence of the tunnel has reduced the stress in tunnel particles due
to arching, with 𝑝 << 0.005 under Kolmogorov–Smirnov test.

in the video. Next, we study these phenomena quantitatively by looking at the
distribution of normal forces in the sample. As the tunnel head reaches a cross-
section, contact forces decrease on the particles in said section. The force between
grains during slippage can be modeled by Coulomb friction (Cundall and Strack,
1979b). Therefore, the difficulty of removing a grain 𝑖 is given by 𝜇𝐹𝑛

𝑖
+ 𝐶, where

𝜇 is the coefficient of friction between grains, 𝐶 is the liquid bond strength that
must be broken to remove a grain, and 𝐹𝑛

𝑖
=
∑
𝑗 |𝐹𝑛𝑖 𝑗 | is the sum of the magnitude of

normal forces on the grain, where 𝐹𝑛
𝑖 𝑗

is the 𝑗 𝑡ℎ contact force acting on particle 𝑖, see
drawing in Figure 4.4. With lower normal forces, less pulling force is required to
overcome friction between each particle and its neighbors. Furthermore, low force
grains are less structurally critical and can be supported through cohesive bonds. As
ants remove particles at the tunnel head, the region of low force expands - granting
the ants a larger set of loose grains to safely remove. As the tunnel head diameter
is widened, the ants propagate the tunnel axis ever forward. Cohesive bonds and
contact forces support force chain arches which occur across the tunnel surface.
These arches re-form or strengthen as the tunnel is widened via ants “pruning”
grains from the tunnel side walls. Tunnel widening dwindles at a given depth when
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a particular tunnel diameter is reached. In precis, we see that ants avoid removing
high force grains due in part to this high force relaxation.

It is worth mentioning that the frustum shaped container may provide additional
stabilization due to the side walls. For instance, we see the largest tunnel —
experiment 1 — occurring along the sides. Nevertheless, arching behavior still
occurs within the bulk, as evident from results for experiment 2 (Figure 4.5) and
detailed in section C.

Soil Arching
The effects described in the previous section are consequences of soil arching, which
is considered in this section. As can be seen in Figure 4.3 and Movie S1, force chains
tend to wrap around the tunnel axis. It has been shown that the presence of a tunnel
in soil will cause this “arching” effect not only on the tunnel’s surface, but in a larger
zone centered around the tunnel axis (Chen, Tang, et al., 2011). This effect could
help explain why particles on the tunnel surface tend to transmit relatively lower
interparticle forces.

Arching is defined by Terzaghi as when “one part of a mass of soil yields while
the remainder stays in place” causing a “shearing resistance within the zone of
contact between the yielding and the stationary masses” (Terzaghi, 1943b). Visually,
arching often appears as force chains with an arch-like shape, emanating from a
discontinuity like a void. Crucially, arching displaces load from the discontinuity
to the surrounding area.

While a multitude of studies have analyzed stress fields around linear tunnels with
tunnel axes perpendicular to gravity (Wu et al., 2020; Lee et al., 2006; Yin, Wang,
and Zhang, 2020), there is a paucity of research on tunnels with variable axis
directions and complex particle shapes - though recently linear angled tunnels
have been considered in continuum models (Vitali, Celestino, and Bobet, 2018).
Consequently, the nature of arching in our experiment was investigated.

It was hypothesized that arches would wrap about the tunnel axis; changing orien-
tation with tunnel direction. To test this hypothesis, particles on planes intersecting
and with normal in the direction of the tunnel axis were visualized. An example of a
tunnel cross section for experiment 2 is given in Figure 4.5, where both the particles
and the intergranular forces are visualized. Experiment 2 is the only instance when
ants tunneled away from the container boundary, and is more reminiscent of condi-
tions found in nature. From inspection, forces at and near the tunnel surface have
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significantly decreased following excavation, in particular directly above the tunnel.
Forces above the tunnel also tend to arch about the tunnel axis - displacing the large
load from the soil weight away from the hole. Such arches act as a “stress shield,”
maintaining the low contact forces within their interior. This effect was recently
studied by Fang et al. (Fang, Guo, and Hou, 2020). Within the low stress zone,
cohesive forces comparable to the weight of one grain are strong enough to support
unloaded grains, allowing stable tunnels underneath pounds of earth. Therefore,
arching occurs multiple layers deep into the material, shielding the vulnerable grains
on the tunnel surface from forces which could trigger a collapse.

The histogram in Figure 4.5 quantifies the effect of stress shielding. The blue
histogram depicts 𝐹𝑛 for grains that constitute the tunnel surface post-excavation
(SI), at the frame before excavation begins. The orange plot corresponds to the
distribution of 𝐹𝑛 on the same grains, after excavation. Clearly, excavation has
reduced the load on the grains from the soil mass. To summarize, arches occurring
within the soil form and strengthen during excavation. These arches reduce the load
on particles at the tunnel surface. Thus, ants do not need to ‘know’ which grains
are in force chains before particle removal; by selecting any particle on the surface
of the tunnel, ants have a high probability of avoiding a structurally critical grain.

Closure
We have provided evidence that a subterranean-nesting ant species tends to dig in
piece-wise linear tunnel segments. In addition, we demonstrated that the ants have
a preference for removing smaller grains. Finally, we have demonstrated how ants
can safely remove particles in a soil, even when digging below the soil surface by
benefiting from force re-distributions via granular arching. We propose granular
arching provides an effective tunnel lining, while also reducing load at the head of
tunnel.

These results suggest that ants can maintain stable tunnels without needing to de-
termine which exact particles are in force chains. Such findings are not at odds
with how humans excavate, for instance when utilizing a tunnel boring machine.
Nonetheless, ants achieve stability by gradually removing particles without the need
for additional reinforcements — like tunnel linings and rock bolts. These results
are applicable to a new class of palm-sized robots which tunnel into soils (Borela
et al., 2021; Sadeghi, Mondini, and Mazzolai, 2017). Heuristics learned from our
simulations could aid these robots with finding minimum energy paths through soils.
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Even more, the principles discovered here may have applicability towards hard rock
mining, where tunnels consist of a handful of jointed rocks and are well suited to
DEM analysis (Boon, Houlsby, and Utili, 2015). It is the authors’ intent to zoom
out from the micromechanical world, and to leverage this framework in the creation
of automated excavation algorithms.

4.1 Supplementary Information
Constructing Experimental Apparatus
The testing apparatus was first designed and built at Caltech. This device consisted of
a small plastic container which could be filled with sand and ants, and placed within
an XRCT scanner. The container needed to be large enough such that the ants could
comfortably tunnel within the domain, yet small enough to obtain detailed x-ray
images of all the individual grains. Furthermore, the casing needed to be cylindrical
shaped so that it situated within the scanner. A plastic frustum was chosen as the
experimental container, which was 11.4 cm in height, 7 cm in minimum diameter
and 9.8 cm in maximum diameter. A plastic top for the container was 3D printed,
with a hole in the center for depositing the ants.

Soil and Ants
Quikrete soil of size 10/12 (Mesh (scale) 2020) was utilized for this experiment by
passing store bought sand through a mesh size 10 (2 mm) followed by a mesh size 12
(1.7 mm) sieve, and keeping the grains which passed through only the former sieve.
Later analysis revealed the sieved granular material’s average radius (maximum
distance from centroid to surface) was 2.34 mm. Pogonomyrmex harvester ants
were utilized for this experiment. Pogonomyrex ants were chosen because of their
prolific digging and ability to handle grains on the mm scale, such as those used in the
experiment that are ideal for XRCT imaging. Ants were ordered from antsalive.com.

Experimental Procedure
The goal of the experiments was to obtain the orientations and shape of each particle
in the device as ants were digging. To achieve image resolution on the order of 0.1
mm, x-ray tomography was performed.

The soil sample was prepared by mixing 500 ml of 10-12 quikrete soil with 20 ml of
water. This mix was poured into the plastic frustum. Multiple samples were created
for the experiment. The number of grains amounted to around 60,000 grains each
time. The sample was then placed into the x-ray tomographic scanner. An initial
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high resolution scan with voxel edge length 70µm was performed. Then, 15 ants
were released at the top of the sample, and the plastic top was secured on. Following
this, a half-resolution scan with voxel edge length 140µm (last 4 minutes) was taken
every ten minutes over the course of 20 hours, thereby tracking the dynamic states
of the sample. The lower resolution scans can discern particle details on the scale
of 1

20 of the average particle diameter: enough information such that one can track
the movement of all the particles imaged in the initial high resolution scan. Six
experiments were performed overall, however due to the XRCT machine shutting
off unintentionally over night, certain experiments were missing data points. Note
this did not affect the quality of experiments which were measured.

The results of these scans were 3D tiff files, each corresponding to a particular
experiment and time. These tiff files were then processed in the subsequent steps to
obtain interparticle forces. From these images, the porosity 𝜙 could be determined
via spam (Stamati et al., 2020).

Image Processing
To obtain forces between grains, we created digital particle avatars which mimicked
the morphology of particles in the sample. Each avatar is a 3d discrete level-set
of the grain surface, along with a collection of coordinates on the particle surface.
For a given particle, its level set representation is a scalar function defined over
three dimensional space, where its value at a point is the signed distance from said
point to the particle’s surface, see Figure 4.6. Before processing, x-ray tiff images
were adjusted for consistent orientation and lighting across time, and a watershed
algorithm isolated the voxels corresponding to each grain in the high resolution scan.
This analysis was performed via the Python library spam (Stamati et al., 2020).

The process of converting a tiff file into level set particles is detailed fully in (Vlahinić
et al., 2014). In summary, non-local means filtering is applied for denoising the
watershed. Then, the level set of each individual grain is calculated through the
process of re-initialization, as are its set of surface coordinates. Particle positions
and rotations are also recorded.

To determine the frame at which grains disappear, the lower resolution XRCT images
at different instances in time, or frames, were autonomously compared. For a low-
resolution scan taken at a particular frame, if the mean gray value of the voxels that
were occupied by a particle in the initial high resolution scan dropped below 128,
the grain was labeled as removed and the step at which the particle disappeared was
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recorded.

Tunnel Morphology Analysis
To generate Figure 2 in the text, a spline was fit to the initial positions of all particles
that were removed for each of the experiments. To do so, k-means clustering was
first utilized to isolate the centroids of the removed particles at each frame. The
distances between centroids were computed to discern tunnels from one another.
Then, a spline was fit to each set of centroids corresponding to a particular tunnel.
The spline knots could be manually perturbed for a finer fit. Then, the spline was
discretized into 300 points for further analysis.

Digging angle 𝜙 at a given point along the spline was determined by calculating the
spline’s derivative, then finding 90 — the angle between this direction and the z axis.
This measure was chosen because it was similar to the angle of repose for a sandpile
(Al-Hashemi and Al-Amoudi, 2018). For further analysis, the shape of the tunnel
cross section at each spline point was calculated as follows: a plane was fit at the
spline point with its normal vector pointed in the direction of the spline derivative.
The initial centroids of each removed particle about one grain diameter away from
the plane were projected onto the plane to form a 2 dimensional ‘slice.’ Next, a
convex hull was calculated from the projection of the removed particle centroids
in the 2d plane. The center of the convex hull was determined, and the average
distance from the edge of the hull to the center was taken to be the tunnel radius at
this spline point. To detect which particles were on the tunnel surface at a particular
frame, all grains within approximately one grain diameter (2.8 mm) were classified
as tunnel surface particles. Finally, principal component analysis was performed on
the projected centroids in the plane, and the ratio of the largest to smallest eigenvalue
was taken as the tunnel aspect ratio. All processing in this step was carried out by
the SciPy Python library.

LS-DEM Simulation
Once the level sets and surface points of all the particles in the sample were obtained,
the avatars could be used in simulation. As stated in the primary text, an extension
of the DEM was used - the level set discrete element method (LS-DEM). In DEM,
particles move according to classical rigid body mechanics. In the variant of
interest here, particles may overlap each other. For each point on one particle which
is overlapping another, a contact force is calculated. The normal force imparted
from one particle onto another is a multiple of overlap distance, with constant
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of proportionality 𝑘𝑛. Shear force, perpendicular to normal force, is determined
according to a Mohr-Coulomb failure criterion with coefficient of friction 𝜇 and
stiffness 𝑘𝑠. While calculating the overlap distance is trivial for spheres, it can be
difficult and computationally taxing for particles of arbitrary shape. By representing
the particles as level set avatars as in LS-DEM, overlap calculations for oddly shaped
particles were tractable and accurate. Wall interactions were handled through an
analytical expression relating position to wall overlap. See (Kawamoto et al., 2016)
for details on LS-DEM.

Some particles, typically at the top and bottom of the container, were not imaged
properly and their level set was non-physical. Thus, these avatars were removed
before simulation. Other particles began with too high an overlap between each
other, leading to high initial velocities in the simulation. This occurs usually due
to errors in the image processing step. Such particles had their volume reduced by
uniform contraction.

We use the calibration parameters similar to those in Kawamoto (Kawamoto et al.,
2018), which have been shown to predict the location and behavior of shear bands
within digital twins of triaxial test. We take particle density to be 2650 𝑘𝑔/𝑚3. 𝑘𝑛
is the same as that in Kawamoto at (3 ∗ 104), with a slightly reduced 𝑘𝑠 = 0.8𝑘𝑛.
As demonstrated in (Kawamoto et al., 2016), the specific value of 𝑘𝑛 does not have
a significant effect on results. We take 𝜇 = 0.45, which is similar to but slightly
lower than Kawamoto, which consisted of rougher grains. Furthermore, Kawamoto
demonstrates that in the low-strain regime, such as in our sample, the response of
the system to perturbation is not very sensitive to the coefficient of friction. Global
damping is set to 100 𝑠−1, as it was found that this value led to efficient convergence
to equilibrium, yet was large enough such that collapses and large displacements
could still occur. The coefficient of restitution for local damping between grains is
set to 0.4, to dampen spurious oscillations. Correctness was checked by following
procedures in (Tu and Andrade, 2008).

To include cohesion in the model, particle bonding was implemented according to
(Potyondy and Cundall, 2004). This model is equivalent to placing a beam between
each pair of particles within a specified distance, which ruptures when the normal
stress in the beam reaches a threshold 𝜎𝑐 = −|𝐹𝑛 |

𝐴
+ |𝑀𝑠 |𝑅

𝐼
=

𝐶𝑛

𝐴
or the shear stress

𝜏𝑐 =
|𝐹𝑠 |
𝐴

+ |𝑀𝑛 |𝑅
𝐽

=
𝐶𝑠

𝐴
, where 𝐴 is bond area, 𝐶𝑛 is the maximum bond force

in the normal direction and 𝐶𝑠 is for shear, 𝐹𝑛 and 𝐹𝑠 are the normal and shear
forces in the beam respectively, and 𝑀𝑛 and 𝑀 𝑠 are the normal and shear moments
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respectively. We take the bond area 𝐴 = 1𝑚𝑚 ((Richefeu, El Youssoufi, Peyroux,
et al., 2008)), and 𝐼 and 𝐽 are the area and polar moments of inertia of the beam.
The normal direction of a bond between two particles is given by the direction of
the vector connecting the two closest points on the aforementioned grains. While
typical liquid bond models in DEM do not provide shear or moment resistance, such
models have been developed primarily for spheres (Potyondy and Cundall, 2004).
We find that adding shear and moment resistance is necessary for maintaining
tunnel stability in all experiments. This is most likely due to the irregular shape of
particles, and the more complicated geometry of cohesive bonds between grains. To
validate our model, we perform angle of repose simulations along with experiments
(see below). We also reproduce the DEM simulations from Santamarina et al,
in which DEM particles are dropped through holes of increasing size in the flat
bottom of computational silos - see Figure 6 in (Espinoza and Santamarina, 2010).
We successfully predict the regions of stability/instability in accordance with the
experimental results in said paper.

This model was chosen as to minimize plastic contact breakage during simulation,
such that the closest approximation of the force distribution in the imaged sample
was obtained. The original bonding model was developed for spherical grains.
Thus, we extended this formalism by calculating bond displacement from the two
closest points between the participating grains at bond creation. The force needed
to break bonds was calculated from Equation (1) in (Espinoza and Santamarina,
2010):

𝐶 =
𝜋

2
𝜎𝑑 [2 − (8

9
𝜔𝐺𝑆)

1
4 ] (4.1)

with air-water surface surface tension 𝜎 = 0.073𝑁/𝑚, water content 𝜔 = 0.03,
specific gravity 𝐺𝑆 = 2.65 and particle diameter 𝑑 = 2.3 mm resulting in cohesive
strength C = 0.37 mN. Note this formula applies to spherical particles. We initially
assumed it was a sufficient approximation for non-spherical particles due to the
local smoothness of grains at contacting points. Nonetheless, it was discovered that
𝐶𝑛 ≥ 2 ∗ 𝐶 for tunnels to be stable in our simulations. This may be due to the
assumption of sphericity in the bond strength formula. During simulation, every
10 timesteps a particle bond is created between any unbonded pair of grains which
are within 0.28 mm of each other. The normal force needed to break bonds was
set to 𝐶𝑛 = 2𝐶, and shear 𝐶𝑠 = 0.8𝐶𝑛. Normal bond stiffness was 𝑘𝑛 = 2𝐶, and
𝑘𝑠 = 0.8𝑘𝑛.

For the first frame of the simulation, an equilibration step was conducted where par-
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Figure 4.6: Example of 4 particles used in LS-DEM simulation, obtained from
XRCT. 0 isosurface of levelset given by purple mesh, with surface points superim-
posed.

ticles settled from their starting configuration to a resting configuration. The simu-
lation was run until the kinetic energy converged to a value less than 5𝑘𝑔 𝑣𝑜𝑥2/𝑠2.
We also checked that the total force on each grain was sufficiently small, such that
the simulation total energy was at a stationary point.

The following was then performed for each frame: first, the final configuration of
the previous frame was used as the initial configuration for the current. Then, the
particles removed between the current and previous image were deleted from the
simulation. The new configuration was run to equilibrium, and the process was then
repeated for all imaged frames.

Angle of Repose
There is no agreed upon definition of the angle of repose (AOR) for a granular
material, nor is there a standardized method for determining the angle — particularly
for cohesive grains. For practical purposes, we define it as ‘the steepest slope of the
unconfined material, measured from the horizontal plane on which the material can
be heaped without collapsing’ (Al-Hashemi and Al-Amoudi, 2018).



58

Figure 4.7: Distribution of particle volumes of grains removed by ants (Removed
grains) and grains kept by ants (Kept grains) across all 3 experiments. The difference
between the two distributions is statistically significant, with 𝑝 << 0.005 under
Kolmogorov-Smirnov test.
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Figure 4.8: LS-DEM pluviation simulation to find AOR. Particles were dropped
through a filter into a conical pile (top left). Particle centroids were used to construct
a 2D cross section (top right), which is centered at the origin and rotated through
a circle (see movie S4). A convex hull is fit to the projection of centroids in each
plane (black lines). In a given cross section, centroids used for estimating AOR were
highlighted in green, with the red line denoting least squares fit. Bottom: rotation
angle of projection plane vs. AOR of cross section.
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Figure 4.9: Experiment 1 tunnel 1.

Figure 4.10: Experiment 2 tunnel 1.
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Figure 4.11: Experiment 2 tunnel 2.

Figure 4.12: Experiment 3 tunnel 1.



62

Figure 4.13: Experiment 3 tunnel 2.
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C h a p t e r 5

WHAT IS SHAPE? CHARACTERIZING PARTICLE
MORPHOLOGY WITH GENETIC ALGORITHMS AND DEEP

GENERATIVE MODELS
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Topology optimization — the automated design of a material’s structure to engi-
neer a desired property — has demonstrated promise across multiple fields (Jihong
et al., 2021). Due to exponential growth in computing power and algorithmic de-
velopments, computers have ‘invented’ functional structures, including: satellite
brackets, cantilevers and lattice materials (Rosinha et al., 2015; Jihong et al., 2021;
Cheng, Bai, and To, 2019). Nonetheless, topology optimization is inherently chal-
lenging due to the high dimension of the design space. As such, it is beneficial to
parameterize the solutions with as few variables as possible, effectively reducing the
dimension of the design space (Kumar and Kochmann, 2021). This process is prone
to loss of critical information and it requires a deep understanding of the optimiza-
tion problem. To overcome this, recent methods have leveraged deep learning to
automatically discover a reduced number of parameters needed to uniquely define
a class of solutions. For instance, Wang et al. utilized a deep learning architecture
known as a variational autoencoder (VAE) to construct a finite dimensional vector
space, or ‘latent space’ of microstructures (Wang, Chan, et al., 2020). Each vec-
tor in the latent space within certain bounds defined a unique and valid material
microstructure. Further, the dimension of the latent space was significantly lower
than that of the original binary image of the microstructure. Such a vector space is
invaluable to topology optimization, as optimization algorithms can be easily run in
the continuous, complete and relatively low dimensional latent space. In this work,
we apply recent developments in topology optimization to granular materials.

Granular materials — any collection of discrete-solid objects — are ubiquitous in
both nature and industry (Oda and Iwashita, 2020). Soils, ball bearings, and even as-
teroids can be classified as granular, and their behavior is approximated by rigid body
dynamics (Makse, Johnson, and Schwartz, 2000; Kollmer, Lindauer, and Daniels,
2016). Thus, certain attributes persist across granular materials on multiple scales.
One such phenomenon is jamming: when a collection of particles transition from
a fluid-like flowing state to a solid-like locked state (Behringer and Chakraborty,
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2018). Recently, engineers and artists have attempted to design granular materials
which take advantage of this unique jamming property for achieving desired func-
tionality. Examples include self-supporting structures for housing, fabric which can
transition from soft to stiff with pressurization and robotic grippers. (Keller and
Jaeger, 2016; Wang, Li, et al., 2021; Brown et al., 2010) . A primary challenge in
designing such substances is picking the shapes of the individual grains. Spherical
particles tend to pack tightly, but do not have tensile strength when uncompressed.
On the other-hand non-convex grains may entangle with each other and provide
tensile strength, but pack loosely (Graaf, Roij, and Dijkstra, 2011). Consequently,
finding the optimal morphology for a set of design specifications remains an open,
yet crucial, problem.

Discovering the ideal grain structure for optimizing a macroscopic property such
as tensile strength is a daunting task because of the infinite number of shapes
one may consider. One method of exploring the high dimensional phase space of
shapes is with genetic algorithms (GAs) (Holland, 1992). Jaeger et al. (Jaeger
and Pablo, 2016; Miskin and Jaeger, 2013; Miskin and Jaeger, 2014) utilized GAs
to evolve a particle morphology in order to maximize packing fraction in discrete
element method (DEM) simulations (Cundall and Strack, 1979a). Nonetheless, the
technique was limited to clumps of spheres due to the limitations of traditional
DEM. On the other hand, Makse et al developed a formula for estimating packing
fraction and coordination number for arbitrary particle shapes by constructing the
Voronoi volumes from sphere clusters (Baule and Makse, 2014). Such an equation
could be invaluable for use in topology optimization, as unlike simulations it can be
quickly evaluated. Nonetheless, it assumes maximum packing density, and may not
be accurate when meta-stable states such as arches occur in samples.

A way to reduce the computational requirement of automated grain design is by
finding a function mapping from grain shape to material-scale behavior that can be
quickly evaluated. One can then invert this ‘forward’ mapping from morphology-
to-behavior to obtain an ‘inverse’ mapping from behavior-to-morphology. Creating
this ‘inverse’ mapping is highly non-trivial and non-unique but of great scientific
interest. In the last few years, such a mapping has been investigated for a multitude of
shapes and behaviors using experiments and simulations, as analytical solutions for
even simple shapes remain elusive. Commonly explored shapes in jammed particle
simulations include spheres, cylinders, superballs, staples, ellipses and ellipsoids,
sphere clusters, crosses, spherocylinders, tetrahedra, frustums, platonic solids, and
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realistically shaped grains - though for the latter there are few computational efforts
due to technical limitations (An et al., 2009; Gan and Yu, 2020; Salerno et al.,
2018; Gravish, Franklin, et al., 2012; Guises et al., 2009; Graaf, Roij, and Dijkstra,
2011; Meng et al., 2012; Li, Lu, et al., 2013; Zhao et al., 2011; Baker and Kudrolli,
2010; Jerves, Kawamoto, and Andrade, 2016). In all such cases, material properties
continuously vary with particle shape.

The above studies suggests that a continuous function exists mapping particle shape
to characteristic mesoscopic properties like average coordination number and pack-
ing fraction. However, each study only considers a small ‘slice’ of the entire func-
tion’s domain. In this work, we demonstrate a methodology for constructing the
general mapping from shape to material properties by parameterizing particle shape,
and finding relationships between the chosen parameters and granular material prop-
erties. Tackling this herculean task is now possible due to recent technological
advancements. These being: 1) the level-set discrete element method (LS-DEM), a
DEM which can efficiently simulate particles of arbitrary shape (Kawamoto et al.,
2016), 2) granular cloning, which allows the generation of particle shapes with
user-specified properties (Buarque de Macedo, Marshall, and Andrade, 2018), and
3) neural-network based generative models, which can dramatically reduce the di-
mension of high-dimensional phase spaces by leveraging non-linear patterns in the
data (Doersch, 2016).

We first explore human chosen parameterizations of particle shape (morphological
descriptors), and how these parameters affect packing fraction 𝜙 (ratio of solid to
total area in a granular material) and coordination number 𝑍 (average number of
grain-grain contacts per particle). In particular, we see how grain roundness, aspect
ratio and convexity affect material properties. As these three parameters can not
uniquely define a shape, we utilize a VAE to develop a 20-dimensional granular
particle latent space. In such a space, each vector represents a unique particle
shape. Finally, we demonstrate how such a latent space can be utilized for shape
optimization, see Figure 5.1. By attempting to define the shape of a particle with the
minimum number of parameters, we ask: what is necessary to define a morphology?
In other words, what is shape?

This paper is organized as follows. First, the methods of generating unique particles
shapes is detailed in 5.1. Next, the simulation engine and methods are explained in
5.2. The results are then presented and analyzed in 5.3, followed by the conclusion
and suggestions for future work in 5.4.
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Figure 5.1: Overview of topology optimization framework. (a) Obtain diverse
collection of particle shapes from GAs which match specified (R,C,A) values. (b)
Parameters for calculating (R,C,A). (c) Create continuous vector space of shapes
with VAE. 𝑧𝐿,𝑖 denotes the 𝑖𝑡ℎ latent space vector, as described in section 5.1.
Sampling of shapes shown at evenly spaced vectors along a plane in latent space,
with axes 𝑧𝐿,3 and 𝑧𝐿,4. The plane is defined by S (Equation 5.6). (d) Run simulation
for each shape at grid points (black dots) in latent space and obtain material property
(𝑍). Use interpolation or optimization to find optimal particle shapes between grid
points.

5.1 Particle generation methods
Generation with genetic algorithms
To start, we choose to continuously vary the convexity 𝐶, roundness 𝑅 and aspect
ratio 𝐴 of the particles as it is well documented that such properties have a significant
effect on material behavior (Jerves, Kawamoto, and Andrade, 2016; Yang and Luo,
2015). Thus, each shape generated can be represented as a point in this three-
dimensional parameter space, with coordinates given by (𝑅,𝐶, 𝐴). We investigate
whether these dimensions are sufficient for predicting the properties at the mesoscale,
or if more dimensions are required. These shape descriptors are defined for a given
particle as follows:

𝑅 =

∑𝑁
𝑖=1

𝑟𝑖
𝑁

𝑟𝑚𝑎𝑥
(5.1)

𝐶 =
𝑎ℎ𝑢𝑙𝑙

𝑎
(5.2)

𝐴 =
𝜆1

𝜆2
(5.3)

where 𝑁 is the number of corners on a particle, 𝑟𝑖 is the radius of curvature 𝑟 of
the 𝑖𝑡ℎ corner, 𝑟𝑚𝑎𝑥 is the radius of the largest circle that can fit entirely within the
particle, 𝑎 and 𝑎ℎ𝑢𝑙𝑙 are, respectively, the area of the particle and the area of the
convex hull of the shape and 𝜆1 ≤ 𝜆2 are the principal component magnitudes of
the points on the surface of the particle, see Figure 5.1. Note all 3 parameters take
values between 0 and 1, with 1 corresponding to the values for a disk.
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In order to investigate how 𝜙 and 𝑍 change with these three dimensions, it is
necessary to generate a wide range of particle shapes covering the (𝑅,𝐶, 𝐴) space.
Generating new particle shapes autonomously, or ‘granular cloning,’ is an active
area of research (Jerves, Kawamoto, and Andrade, 2017; Zhou and Wang, 2017; Shi
et al., 2021). Most methods require an external repository of particle shapes which
are used as a blueprint for new shapes. However, we wish to generate particles from
shape descriptors alone. The method proposed in (Buarque de Macedo, Marshall,
and Andrade, 2018) allows one to do this. Here, a GA morphs a particle’s shape
until the grain matches the shape descriptors to a certain tolerance. Clearly, multiple
realizations of particle shape may correspond to the same (𝑅,𝐶, 𝐴) value. Hence
we generate 10 particle realizations for each point on a grid in (𝑅,𝐶, 𝐴) space,
evenly spaced by 0.1, with 𝑅 ∈ [0.2, 1.0], 𝐶 ∈ [0.7, 1.0] and 𝐴 ∈ [0.2, 1.0].
We restrict our attention to 𝐶 ≥ 0.7 which still leads to pronounced nonconvexity
(see Figure 5.3) while ensuring that the genetic algorithm produces physically valid
morphologies.

The engine used for the GE is python DEAP (Fortin et al., 2012). To summarize,
the method deforms an ellipse to match a target set of morphological properties. In
this case, the properties are a specified roundness, aspect ratio and convexity. The
method begins by placing 8 equally spaced points along the perimeter of an ellipse,
with the ellipse having the specified aspect ratio and area equal to 300. Then, a
genetic algorithm perturbs the points until the morphological properties of the par-
ticle are within a tolerance of the specified properties. By using 8 points uniformly
distributed across the surface to build the particle, we have chosen a ‘scale’ for the
morphology of about particle diameter d/10. This is a common length scale for
quantifying particle roundness (Cho, Dodds, and Santamarina, 2006a).
The genetic algorithm consists of 3 steps: mutation, combination and selection. The
algorithm begins with 50 equivalent ellipses, or ‘individuals.’ Random individuals
are selected for mutation with probability 0.5. For individuals undergoing mutation,
points on the particle boundary are selected with probability 0.5. In polar coordi-
nates, the radial component 𝑟 of the particle is moved in the radial direction by a
random number sampled from the Gaussian Δ𝑟 ∼ N(0.0, 1.0) and change in polar
angle Δ𝜃 ∼ N(0.0, 0.05) .
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Next, the ‘cost’ of each individual is calculated for selection. The cost of an
individual is given by

cost = (𝐶 − 𝐶𝑡𝑎𝑟𝑔𝑒𝑡)2 + (𝑅 − 𝑅𝑡𝑎𝑟𝑔𝑒𝑡)2 + (𝐴 − 𝐴𝑡𝑎𝑟𝑔𝑒𝑡)2+

100
𝑁∑︁
𝑖=1

𝛿( 𝑟𝑖

𝑟𝑚𝑎𝑥
< 0.08) + 100𝑆𝐼 + 100𝐵𝑁. (5.4)

The subscript ‘target’ is the specified shape parameter value, and the squared differ-
ence is the squared error, a measure of the difference between the current individual
and the target morphology. The fourth term in the cost function heavily penalizes
the morphology for each corner with a normalized radius of curvature 𝑟𝑖

𝑟𝑚𝑎𝑥
less

than 0.08, thereby avoiding non-physical sharp edges. The 𝑆𝐼 term is equal to 1
if the particle self-intersects, heavily penalizing this non-physical behavior. The
parameter is checked using the Bentley-Ottmann algorithm (Bentley and Ottmann,
1979). The 𝐵𝑁 term heavily penalizes ‘bottlenecks’ in the shape, i.e. when two
points on opposite sides of the particles are squeezed close to one-another. It is
equal to 1 when two opposite points are within a distance 7 of one-another. It is
difficult to create consistent level sets from grains with bottlenecks. Minimizing
this cost function produces a particle with the specified morphological parameters
that is physical. In the selection step, pairs of individuals are randomly chosen,
and the individual with a higher cost is eliminated. The remaining individuals are
duplicated until the population size is back to 50.

Measuring particle roundness requires identifying corners on the particle at a rele-
vant length scale. Given the points on the particle surface, the corners are identified
as follows: First, a third-order spline is fit to the points. The spline is then smoothed,
from which 500 ordered points on the smoothed particle surface are generated. The
radius of curvature can be calculated at each of these points due to the smoothness
of the spline. For each point, the radius of curvature of all points 20 ahead and
behind are checked. If the radius of curvature of the current point is the minimum
out of all the checked points, it is considered a corner. The radius of the maximum
sized circle that can be fit in the particle is easily calculated from the level set:
𝑟𝑚𝑎𝑥 = | min(Φ) |, see Figure 5.2.

Finally, in the combination step pairs of individuals are randomly selected with
probability 0.2. A new individual, or ‘child’ is created by randomly swapping
boundary points on both grains.
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Figure 5.2: Diagrams of particle corners and level set. (a) Corners detected by
corner detection algorithm, with normalized radius of curvatures shown. (b) Points
on the surface of a particle, with the grain’s level set Φ given as a heatmap.

This entire processes is repeated for 500 ‘generations,’ or until the minimum cost of
an individual is below the tolerance 𝜖 = 0.0005. After convergence, the individual
with minimum cost is taken to be the solution. The location of the points are
saved, and the level set for the particle is automatically generated. If generation
500 is reached and convergence has not occurred, the algorithm selects a different
combination of target parameters. Note that all parameters can be modifieid to
genereate different classes of shapes.

For each realization of an (𝑅,𝐶, 𝐴) point, a simulation is performed to generate a
packing and subsequently 𝜙, 𝑍 are calculated. An example of a generated grain for
each sampled point in (𝑅,𝐶, 𝐴) space is given in Figure 5.3.

Generation with deep learning
While the classical, intuition based descriptors (𝑅,𝐶, 𝐴) can capture a significant
amount of information about a particle’s shape, they are not sufficient to fully
quantify grain morphology. For instance, an infinite number of unique shapes
could have the same (𝑅,𝐶, 𝐴) coordinate. The limitations of these descriptors
can be seen in the results for 𝜙 in section 5.3 for high convexity and in 𝑍 for low
convexity morphologies. Here, the dependence of 𝜙 on roundness and aspect ratio is
complicated, implying there may be additional dimensions necessary to fully classify
the grains. Consequently, we pose the question: what is the minimum number of
dimensions necessary to sufficiently quantify 2D particle shape, in relation to its
collective packing properties? Further, what are these dimensions?
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Figure 5.3: Example of grains generated at grid points in 𝑅,𝐶, 𝐴 space. Empty
boxes indicate the algorithm was unable to generate a particle with the prescribed
(𝑅,𝐶, 𝐴) values. Each box represents a different convexity, with A as row and R as
columns.
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Advances in machine learning offer tools for answering these questions. We utilize
a VAE (Pu et al., 2016), which has recently been leveraged for generating unique
and realistic granular particles (Shi et al., 2021). The input to a VAE is an array
of numbers, which in our case is the grey-values in a pixelated 64x64 2D image
of a particle. The array is acted on by a series of matrix operations and non-
linear functions, referred to as ‘dense’ layers. These operations include multiple
convolutions, a commonly used operation in networks learning with image data.
The transformed data is then fed into two arrays: 𝜇 and 𝜎. Both of these vectors
are the same length 𝑑, which is a parameter chosen by the user. This first half of
the network is dubbed an ‘encoder,’ as it compresses the data from the original
image into 𝑑 dimensions. Next, a ‘sample’ 𝑧 is chosen by sampling from the
distribution 𝑧 = 𝜇 + 𝜎 ⊙ 𝜖 , where 𝜖 is a random standard normal variable sampled
at evaluation time and ⊙ is the element-wise dot product. The second half of the
network is a series of convolutions that reconstructs the original image from 𝑧. This
section of the network is called the ‘decoder.’ The loss function for the network
is a measurement of the difference between the input image and the reconstructed
image, and the similarity between the distribution of the training data in the latent
space and a standard normal distribution. The parameters in the network are trained
via back-propagation. Once trained, the network has learned how to compress the
image into 𝑑 dimensions such that the loss function is minimized.

The architecture of the encoder, which takes 64x64 black and white (single channel)
images as input is given in table 5.2, while the decoder architecture is given in
table 5.3 (Appendix). A general diagram of the architecture is displayed in Figure
5.4.

The VAE parameters 𝜂 and 𝜃, representing the weights connecting neurons in the
encoder and decoder network respectively, are tuned during training as to minimize
the following loss function for each of the data points where 𝑥𝑖 is the 𝑖𝑡ℎ training
data point:

𝑙𝑖 = −Ez∼𝑞𝜃 (z|𝑥𝑖) [log(𝑝𝜂 (x𝑖 |z))] + 𝐾𝐿 (𝑞𝜃 (z|x𝑖) | |𝑝(z)) (5.5)

The first term is the ‘reconstruction loss,’ and measures the difference between the
input and the output image for data point 𝑥𝑖, while the second term (Kullback–Leibler
divergence) encourages the distribution of data in the latent space z to be Gaussian.
𝑝 and 𝑞 represent probability distributions learned by the network. For details on all
terms and derivation, see (Doersch, 2016). Code for variational autoencoder from
(Rath, 2021).
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We train a VAE on 10,000 unique images of particles generated by the genetic
algorithm across a uniform sampling in (𝑅,𝐶, 𝐴) space. The grains are rotated
and translated such that the principal axis of the grain is horizontal, and the grain
centroid is in the middle of the image. The grain is converted into a black and white
image, with the particle being white and the outside the particle black. The image
is then subdivided into 62 pixels horizontally and vertically, with two empty pixels
used to pad the sides of the image. These images are then used to train the network.
We find that 𝑑 = 20 is the lowest value of 𝑑 necessary for successful reconstruction.
Any lower, and the reconstruction loses too much structure when compared to the
original image. Once trained, the encoder section of network can generate 2 unique
𝑑-dimensional vectors, 𝜇 and 𝜎, for any given particle shape. Likewise, for any
sample vector 𝑧 the decoder can generate a unique particle shape. The 𝑑 dimensional
vector space of 𝑧 is a latent space, where each vector defines a unique grain.

With the VAE, we achieve the goal of finding a complete set of dimensions for fully
describing particle shape, such that the number of dimensions are minimized to
avoid redundancy. By discovering a function with this latent space as the domain,
and mesoscal variables such as 𝜙 as the range, we would have a means of quickly
predicting the mechanical properties of granular materials with arbitrary shaped
grains.

We compute a 𝑧 for each particle in the training data. The data is then scaled

σ

μ
z

Encoder Decoder

Input Output

Figure 5.4: Diagram of a VAE. On the left is the input, which is a pixelated image
of a grain in this case. On the right is the reconstructed image that is output by the
network. Note the network smooths the particle somewhat, representing a certain
degree of lost information.
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and rotated to reduce remaining correlations between the data points in the latent
space using principal component analysis (PCA) (Jolliffe and Cadima, 2016). The
transformed 𝑧 vectors are given by 𝑧𝐿 , with 𝑖𝑡ℎ components 𝑧𝐿,𝑖. Each 𝑧𝐿 lives in the
𝑑-dimensional latent space, with basis vectors (𝑏1, ..., 𝑏𝑑). It is found that outside
of the range −4 ≤ 𝑧𝐿,𝑖 ≤ 4 , corresponding particles tend to be non-physical, i.e.
containing disconnected regions. For computational tractability, only latent vectors
in the somewhat arbitrary subspace 𝑆 are simulated in this study, where:

𝑆 = {(0,−4, 𝑧𝐿,3, 𝑧𝐿,4, 0, ..., 0) ∈ R20}. (5.6)

However, the methods applied here are valid in any subspace of the latent space.
𝑆 is chosen because of the high diversity of particle shapes defined by the space.
A uniformly spaced 2D grid is defined in 𝑆 with grid spacing 0.8 between bounds
−4 ≤ 𝑧𝐿,3, 𝑧𝐿,4 ≤ 4. A particle is generated from each 𝑧𝐿 grid point for use in
simulation. The particle shapes corresponding to each grid point are displayed in
figure 5.1.

5.2 Simulation methodology
In order to measure 𝜙, 𝑍 and any other mesoscopic quantity for a range of shapes,
we leverage a specialized 2D DEM simulation. DEM was developed for disks
that obey rigid body mechanics (Cundall and Strack, 1979a). In DEM, disks are
allowed to overlap by a very small amount. The contact force between two disks is a
function of the overlap extent between two particles. Nonetheless, LS-DEM (level
set DEM) allows DEM simulation of arbitrarily shaped grains, and thus is capable
of simulating any physically possible shape created by the generative models.

LS-DEM (Kawamoto et al., 2016) stores the location of a collection of points on
the surface of the particle, in addition to the level set of each grain. The level set Φ
for a given particle surface is a function defined in all of space, such that its value
at a given point is the signed distance to the surface of the grain. Φ is positive
outside the grain, and negative inside, pictured in Figure 5.2. When the surface of
one grain intersects another, the penetration extent is easily computed by looking
up one particle’s level-set value at the location of the other particle’s surface points,
and performing linear interpolation on the level-set value if necessary.

Each (𝑅,𝐶, 𝐴) simulation consists of 900 particles at a gas state, i.e. randomly
distributed in an evenly spaced non-overlapping grid such that grains are not touching
one-another with uniformly distributed random velocity and rotation. The horizontal
and vertical grid spacing is 6 𝑚, with 15 particles per row. The initial speed is a
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Parameter (R,C,A) sims VAE sims
Box width 𝑙𝑥 (𝑚) 108 64
Box height 𝑙𝑦 (𝑚) 402 402
Particle area (𝑚2) 6 variable
Density (𝑘𝑔/𝑚3) 2650 2650

Normal spring constant 𝑘𝑛 (𝑘𝑔/𝑠2) 1011 1011

Tangential spring constant 𝑘𝑠 (𝑘𝑔/𝑠2) 1011 1011

Coefficient of friction 𝜇 0.5 0.5
Normal coefficient of restitution 𝐶𝑛𝑟𝑒𝑠 0.4 0.4
Shear coefficient of restitution 𝐶𝑠𝑟𝑒𝑠 0.5 0.5

Number of unique grain shapes per simulation 10 1
Total number of grains 900 1800

Table 5.1: Table of simulation parameters

randomly chosen number between -20 to 20 𝑚𝑠−1 in a random direction, with 0
angular velocity. The initial conditions are chosen randomly in order to make sure
the final sample is less dependent on initial conditions.

Each particle in the (𝑅,𝐶, 𝐴) simulation has the same area. Simulations for VAE
generated grains contain 1,800 particles, as it is found for very non-convex particles
generated by the VAE the representative volume element (RVE) requires more grains
(see below). Particles generated from the VAE are scaled such that each pixel edge
length in the 64x64 image is equal to 0.045 m. Particles are arranged in a grid with
the same spacing as in (𝑅,𝐶, 𝐴) simulations. Simulations parameters are given in
table 5.1.

The grains are left to fall under the influence of gravity until they reach a loosely
packed jammed state. The simulation is run until the system is at rest. The packing
fraction, in 2D, is calculated for the jammed state by first performing a Voronoi
tessellation on the points on the particles’ surface in order to calculate the area
of the domain, then using the known area of the grains to calculate 𝜙 for a given
RVE. 𝑍 is computed by measuring the average number of grains a given particle is
contacting.

Calculation of material properties such as 𝜙 and Z requires defining a representative
volume element (RVE), i.e. an area in the simulation domain over which these
parameters can be found. The RVE size of a granular material requires calibration.
If the RVE is too small, it is not representative of the mesoscopic properties.
However, too large of an RVE will include the rigid wall boundaries, which will
skew results. We take a circle of radius 𝐷 = 50 m centered at the centroid of grain
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positions to be the RVE, from which 𝑍 and 𝜙 are calculated for each simulation. The
value of 𝐷 = 50 is determined by testing for convergence in mesoscale properties,
see appendix section 5.5.

Each simulation is repeated 5 times, with the same particles but different initial
velocities, positions and orientations. The average 𝜙, 𝑍 of these 5 simulations are
recorded. Examples of simulations before and after pluviation are displayed in
figure 5.5B.

5.3 Results and analysis
(R,C,A) simulations
𝜙 and 𝑍 measurements are given in Figure 5.5A. The data exhibits multiple patterns.
The most obvious trend is that decreasing convexity decreases both packing fraction
and coordination number. This is also evident from Figure 5.5B and comparing
figure 5.6A,D,G and J: as convexity decreases, the porosity of the material increases
substantially. This is due to contact occurring at corners of highly non-convex grains
leading to empty space within the grain’s non-convex indent, or arches forming
within the material around large voids (Figure 5.6J) similar to cohesive granular
materials (Rognon et al., 2006).

For high convexity grains 𝐶 = 1, 𝜙 gradually changes in the 𝑅, 𝐴 plane, ex-
cept for very low 𝐴, at which 𝜙 rapidly decreases. The high values of 𝜙 at
(𝑅,𝐶, 𝐴) = (1.0, 1.0, 1.0) and (𝑅,𝐶, 𝐴) = (0.2, 1.0, 0.2) are due to the hexagonal-
like (Figure 5.6A) and tessellating (Figure 5.6B) packings that occur with grain
shapes near these locations, respectively.

𝑍 is strongly affected by 𝐴 for all 𝐶 >= 0.7 Elongated grains exhibit local nematic
order by tending to pack side-by-side (Figure 5.6C,F,I,L). This packing is similar
to what is observed with ellipses. So is the trend in Z: elongating the particles
increases the average number of contacts. However, as convexity decreases, the
elongated grains exhibit less orientational order and the trends in Z become more
complex (Guises et al., 2009).

The patterns in 𝜙 in the 𝐶 = 0.9, 𝐶 = 0.8 and 𝐶 = 0.7 plane are similar: maxima is
achieved in the (𝑅, 𝐴) plane at (𝑅, 𝐴) ≈ (0.7, 0.4) (Figure 5.6E,H) for 𝐶 = 0.8/0.9,
and (𝑅, 𝐴) ≈ (0.6, 0.3) for𝐶 = 0.7(Figure 5.6K) . Interlocking is present for both of
these maxima, yet the prevalence decreases with decreasing convexity. Particles far
from the maxima exhibit less interlocking and pack loosely (Figure 5.6D,G,J). The
decrease in 𝜙 as R is decreased for low convexities is related to loss of interlocking.
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(a) (b)

Figure 5.5: RCA simulation data. (a) Average 𝜙, 𝑍 in 𝑅,𝐶, 𝐴 space. Top row: 𝜙 val-
ues. Bottom row: 𝑍 values. Columns correspond to convexity, matching Figure 5.3.
White blocks are locations where there are too few points for interpolation. (b) final
state of two R,C,A simulations at (0.7,1.0,0.7) (top) and (0.3,0.7,0.2) (bottom).

In general, the (𝑅,𝐶, 𝐴) basis is effective at categorizing this diverse collection of
shapes. The function mapping (𝑅,𝐶, 𝐴) to 𝑍 and 𝜙 appears smooth. Nonetheless,
in the 𝐶 = 1 plane the 𝜙 values vary more non-smoothly. Further, the space is full
of ‘holes’ where a particle shape could not be found. These observations imply
additional dimensions may be necessary to quantify shape in a continuous and
complete sense. Exploring such additional coordinates is the subject of the next
section.

VAE-generated particle simulations
For each particle on the uniformly spaced grid in 𝑆 (see 5.1.) a pluviation simulation
of 1,800 identical copies of the particle is carried out, as detailed in 5.2. The results
for 𝜙 and 𝑍 in the subspace 𝑆 are given in Figure 5.7. Unlike Figure 5.5, the 𝜙,𝑍
function is defined for all of 𝑆, as a shape is guaranteed to exist for any vector -
though the probability of a consistent shape decreases outside the −4, 4 bounds.
In 𝑆, the particle with the highest packing fraction is predicted to be in the top
right, or the (4, 4) location. This corresponds with a relatively convex shape, see
inset. Meanwhile, the particle with the maximum coordination number is around
the (−1.5, 0.5), matching the elongated ‘bar bell’ shape in Figure 5.1 - a stretched,
lower aspect ratio shape. Both optimums are consistent with observations in section
5.3. As neither of these particles were in the training data for the VAE, the program
has ‘invented’ an entirely new shape for optimizing a material attribute.

This research has focused on the ‘forward’ problem of granular design: mapping
particle shape to mesoscopic or bulk properties. That being said, these tools can
be applied towards the ‘inverse’ property-to-bulk problem. With an approximate
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(a) (0.8,1.0,0.8)(a) (0.8,1.0,0.8)

(b) (0.8,1.0,0.8)

(c) (0.6,1.0,0.2)

(d) (0.2,0.9,0.5)

(e) (0.7,0.9,0.4)

(f) (0.6,0.9,0.2)

(g) (0.2,0.8,0.3)

(h) (0.7,0.8,0.4)

(i) (0.6,0.8,0.2)

(j) (0.2,0.7,0.2)

(k) (0.6,0.7,0.3)

(l) (0.6,0.7,0.2)

Figure 5.6: Examples of pluviated packing configuration across (R,C,A) space.
Corresponding (R,C,A) value for each packing given in top-right corner. Particles
exhibit hexagonal packing (a), tessellation (b), nematic ordering (c,f), interlocking
(e,h,k), arching (j) and propensity for corner contact (d,g,j).

forward mapping from latent space vector to bulk property in hand, one can search
the latent space for areas of optimal bulk properties such as yield stress. Once an area
in latent space has been identified, LS-DEM simulations can be run using particles
sampled from this area to achieve a finer sample of bulk properties. This process
can be repeated for other candidate areas of the latent space, thereby performing
topology optimization (see Figure 5.1). This is similar to the method in (Gladstone
et al., 2021), which performs optimization within the lower dimensional latent space
to reduce the complexity of the problem.

5.4 Conclusions
In this work, we have investigated mappings from parameterized spaces of particle
shape to mesoscale material quantities, 𝑍 and 𝜙. We have shown how parameterizing
morphology by roundness, sphericity and aspect ratio can successfully be used to
predict material properties. In particular, we have found that 𝜙 and 𝑍 continuously
vary throughout the shape space due to intuitive changes in packing geometry
characterized by tessellation, local nematic ordering, hexagonal packing, arching
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(a) (b)

Figure 5.7: Average 𝜙 (a) and 𝑍 (b) measured for uniform square grid in S space
where 𝑧𝑖

𝐿
denotes the 𝑖𝑡ℎ latent space vector (see Section 5.1) with interpolation

between points. Particles close in latent space to maxima shown.

and interlocking. We have also outlined a method for fully and automatically
parameterizing particle shape via VAEs.

In future work, the techniques developed can be easily extended to 3 dimensions.
Future work should also consider larger collections of particles, such to further
minimize the effects of wall boundaries. Next, our results have only considered
pluvation-prepared samples. However, mesoscale properties in granular materials
are highly dependent on initial conditions (Staron and Hinch, 2007). Thus, it would
be useful to understand how the 𝜙 and 𝑍 values corresponding to a particular shape
change with preparation method. For instance, particles could be compressed or
tapped to achieve higher packing fractions. Also, it would be valuable to see how
results change with frictionless grains as qualitatively different packing configu-
rations may be achieved. Further, the methodologies presented can be applied to
any mesoscale or bulk material property — including tensile strength and critical
state parameters. This mapping could also be used in coarse grained data-driven
models, where model parameters are learned from lower-scale simulations (Kara-
piperis et al., 2021). Additionally, it could facilitate the ‘engineering’ of a confined
fluid’s thermodynamics (Monfared et al., 2020). Finally, our results suggest particle
morphology can be fully characterized using a few number of variables. Exploring
the meaning of the dimensions chosen by the generative model could shed light on
the nature of shape.

This methodology contains certain limitations. The genetic algorithm will not con-
verge for certain morphological parameters, leading to the ‘gaps’ in RCA space.
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Further, the genetic algorithm requires manual tuning, including mutation param-
eters and start conditions. The VAE overcomes many of these limitations as it
can learn to generate particle shapes with minimal hand-tuning. Nonetheless, it is
difficult to control the output of the autoencoder to only output particles of a certain
class, such as with a constant convexity or roundness.

Previous research into granular materials was limited by the types of shapes one
could simulate or obtain experimentally. Shape optimization of granular materials
was limited to a small number of clustered of spheres, or relied upon theoretical
results which may not always match DEM simulations. With these results, we open
research avenues for exploring high-dimensional spaces of arbitrary grain shapes is
LS-DEM simulations.

5.5 Appendix
Frictionless ellipse validation
We perform simulations of frictionless ellipses with a range of aspect ratios to
validate our findings against previous results, see Figure 5.8. Results are generally
very similar, with 𝜙 oscillating about 0.88 as the ellipse is elongated from a circle,
followed by a decrease in 𝜙 that starts as A moves below 0.5. The insensitivity
of the packing fraction to particle elongation in the aspect ratio range 0.5 to 1 in
figure 5.8 differs from previous studies (Schreck, Xu, and O’Hern, 2010; Donev
et al., 2007) which observed a decrease in 𝜙 as an aspect ratio 1 is approached.
However, these studies used bi-disperse particles to prevent crystallization, while in
our simulations of identical, frictionless particles the tendency to crystallize keeps
the packing fraction high. Indeed, we note that LS-DEM produces almost perfect
hexagonal packing for frictionless circles (A = 1), with 𝜙 slightly below 0.9.

Determination of RVE size
To discover the minimum RVE size for a given complete simulation, circles of
increasing diameter 𝐷 centered at the average of all the particles’ centroids are
considered, where 𝐷𝑖 corresponds to the 𝑖𝑡ℎ circle of increasing diameter in steps of
1 m. 𝑍𝑖 is determined for the particles within each 𝐷𝑖 diameter circle. A moving
average of 𝑍𝑖 is computed by averaging 𝑍𝑖 with 𝑍𝑖−1 and 𝑍𝑖+1. Then, |𝑍𝑖 − 𝑍 | is
calculated. This function quantifies the size of fluctuations in the value of Z as a
function of D. As D is increased, this value is initially large due to the small RVE.
However, the function oscillates about a smaller constant when D is sufficiently large
enough to capture the general RVE behavior. As D is further increased, the RVE
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Layer Operation Output dimension kernel size stride padding Activation function

1 2DConv (64,33,33) 4 2 2 ReLU
2 2DConv (128,17,17) 4 2 2 ReLU
3 2DConv (256,9,9) 4 2 2 ReLU
4 2DConv (512,5,5) 4 2 2 ReLU
6 2DConv (1024,3,3) 4 2 2 ReLU
7 avg. pool (1024,1) N/A N/A N/A None
8 linear (2048,1) N/A N/A N/A None
9 linear (20,1) N/A N/A N/A None

Table 5.2: Architecture of encoder. Input is a 64x64 black and white image (single
channel) of the particle. Output is the 𝜇 vector and 𝜎 vector of latent space size d,
20. From here a sample 𝑧 can be drawn.

Layer Operation Output dimension kernel size stride Activation function

1 linear (1024,1) N/A N/A N/A
2 2DConvTranspose (512,3,3) 3 2 ReLU
3 2DConvTranspose (256,7,7) 3 2 ReLU
4 2DConvTranspose (128,15,15) 3 2 ReLU
5 2DConvTranspose (64, 31,31) 3 2 ReLU
5 2DConvTranspose (64, 64) 4 2 Sigmoid

Table 5.3: Architecture of decoder. Input is sample 𝑧 of size (d,1), drawn from
normal distribution with mean 𝜇 and standard deviation 𝜎, obtained from encoder.
Output is a 64x64 reconstruction of the original image.

encompasses the boundary, and the value of the fluctuations suddenly change due to
the boundaries’ effect. The optimal value of D is when the domain is large enough
to minimize the size of the fluctuations, but is minimally affected by the boundaries.
This function of D becomes constant at about 𝐷 = 50 m for the simulations, see
Figure 5.9. The convergence of |𝑍𝑖 − 𝑍 | for 900 particles and 1800 for (𝑅,𝐶, 𝐴) and
VAE simulations, respectively, in addition to the small variation in calculated 𝜙 and
𝑍 from the simulations indicates that the number of grains used in the simulations
is satisfactory.

VAE parameters
See Tables 5.3 and 5.2.
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Figure 5.8: Packing fraction of frictionless ellipses, comparing results from current
study with Guises et al., (2009)
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(a) (b)

Figure 5.9: Data used to choose the RVE size. (a) Finished simulation of 1800
identical particles with RVE of diameter 𝐷 = 50 m bounds shown in blue. Axis
ticks in m. (b) |𝑍𝑖 − 𝑍𝑖 | as a function of D for 10 simulations, with values for each
simulation given by a unique color, see section 5.2. Convergence begins at about
𝐷 = 50 m. Values after 𝐷 = 60 m are unreliable as the RVE is greater than the box
size.
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C h a p t e r 6

CONCLUSIONS AND OUTLOOK

6.1 Findings
In this thesis, we explored methods for optimizing granular material attributes at
multiple scales. This ranged from autonomously controlling the shape of grains
to achieve user-specified morphological properties, learning how ants manipulate
granular materials to achieve stable tunneling, to the creation of a mapping from
morphological attributes to emergent mesoscale properties that can be inverted for
topology optimization.

In Chapter 3, genetic algorithms were utilized to build particles that matched the
principle curvature and sphericity distributions of real grains. We found that tasking
the genetic algorithm with matching these particular morphological characteristics
lead to convergence, and that the morphological descriptor distributions of 3D
generated particles closely matched that of the original grains.

In Chapter 4, XRCT images were taken of a soil sample during ant tunnel construc-
tion. Each grain was imaged, and an in silico re-creation of the experiment was
performed in LS-DEM. We found that ants tended to dig at constant angles to the
vertical direction, preferred to dig on the boundaries and had a slight preference
for smaller particles. Further, we discovered that arches formed around the ant
tunnels as the ants dug, stabilizing tunnels and reducing load on grains on the tunnel
surfaces.

In Chapter 5, we leveraged the granular cloning algorithm developed in Chapter
3 to develop a mapping between grain morphological property and mesoscopic
properties. We found that grains could be successfully generated using the genetic
algorithm which matched a specified aspect ratio, roundness and convexity. We
developed a mapping from these morphological properties to mesoscopic proper-
ties 𝜙 and 𝑍 using 2D LS-DEM simulations. We found that 𝜙 and 𝑍 smoothly
varied as a function of these descriptors. Further, we discovered that variations in
these mesoscopic properties with morphology could be explained by interpretable
geometric characteristics such as tesselation, nematic ordering, hexagonal packing,
arching and interlocking. Next, we used a vational autoencoder (VAE) to develop a
latent space of particle shapes. In this space, every vector corresponded to a unique
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shape. Additionally, the latent space was continuous. As before, 𝜙 and 𝑍 appeared
to smoothly vary in this space.

6.2 Outlook
The research in this thesis opens the door to many exciting directions for under-
standing and controlling granular materials. The 3D genetic cloning algorithm can
be used to develop particles with a wider range of grain morphological properties,
such as convexity. The algorithm can be tested on a wide range of parent datasets,
generating libraries of grain morphologies which can be used in LS-DEM simula-
tions. It would also be interesting to see how modifying the initial conditions for the
genetic algorithm can affect the final results. Changing the initial conditions from
a coarse ellipsoid to something else (such as a cube) could lead to more diverse
clones.

The work in Chapter 4 implies that the arching phenomenon can be used to create
stable tunnels in unreinforced granular environments. It would be interesting to see
if this behavior scales to different soil environments, i.e. soils with different particle
sizes, cohesion, friction and morphology. As ants can excavate in a wide variety of
environments (Espinoza and Santamarina, 2010), it is worth investigating whether
a generalized ant excavation strategy exists. Next, an algorithm could be developed
which replicates the techniques used by ants for tunneling in granular environments.
The algorithm could be run in environments more suitable to human excavation,
such as in jointed rocks. This should be feasible in LS-DEM simulations with
appropriate scaling of parameters (Rosakis et al., 2021). Whether this ant tunneling
algorithm is practical for human excavation would be of great practical interest.
Finally, the algorithm could be implemented in a robotic excavation system. If the
robot contains a haptic feedback module that is able to sense force on grains and
a visual component for determining tunnel size, the robot could choose where to
dig such as to minimize the probability of tunnel collapse. The system could also
be used for search and rescue missions as the robot could choose which piece of
rubble, or ‘grain,’ to remove as to minimize collapse.

The methods developed in Chapter 5 lay the foundation for many novel research
directions. As in 3D, new morphological properties could be specified to the ge-
netic algorithm to generate new classes of particles. For instance, grain roughness
could be a new parameter specified to control particle properties on a smaller length
scale. Initial conditions can also be modified to generate larger classes of shapes.
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Indeed, starting from an ellipse may not be the optimal initial condition for highly
non-convex grains. Next, other mesoscopic or bulk properties can be investigated
corresponding to the generated particles. One could investigate components of the
material’s stiffness tensor such as Young’s modulus, constrained modulus, and Pois-
son’s ratio. Further, critical state parameters corresponding to each shape could be
probed including internal friction angle, yield stress and residual stress. It would
be interesting to see if these bulk variables smoothly vary as a function of mor-
phological property, and which descriptors lead to the most significant changes in
these variables. Regarding the deep learning component, the latent space can be
made richer by training on both new grains generated by the genetic algorithm and
on real particle shapes obtained from XRCT. While it is not feasible to obtain the
mesoscopic or bulk properties for all infinite particles in the latent space, intelligent
sampling and interpolation could be performed to obtain an approximate mapping
from latent space vector to mesoscopic/bulk variables. The high amount of struc-
ture in the latent space — such as particles with similar convexity and aspect ratio
clustering together — means that using interpolation to ‘guess’ the values of bulk
variables in unsampled areas could be very effective. Finally, as stated in Chapter 5
the latent space is particularly useful for topology optimization of granular materials.
For instance, a genetic algorithm could be run in the latent space that attempts to
maximize the stiffness of the granular material. With a learned function that maps
latent space value to bulk property obviating the need to always run a simulation
for each morphology, topology optimization of granular materials becomes feasi-
ble. Applications of topology optimization of granular materials include structured
fabrics which can stiffen by a user-specified amount as in (Wang, Li, et al., 2021).
Topology optimization could be leveraged to discover the ideal grain shape for con-
structing such materials. These materials have applications ranging from armor to
temporary housing. Further, a granular material composed of non-convex shapes
with high Young’s modulus and low 𝜙 would be a desirable lightweight material
(Wegst and Ashby, 2004). Discovering grain shapes which would build such a
material is a promising application of the tools developed in this thesis.

It is the author’s hope that the results in this thesis will inspire new, exciting research
into the control of granular systems.
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