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Abstract

Laminar flame modeling is an important element in turbulent combustion research. The

accuracy of a turbulent combustion model is highly dependent upon our understanding

of the laminar flames and their behavior in many situations. How much we understand

various phenomena can only be measured by a model that describes the phenomena and

by how well the model describes and predicts them. One of the most commonly used

methane combustion models is GRI-Mech 3.0. However, how well the model describes

the reacting flow phenomena is still uncertain, even after many attempts to validate the

model or quantify uncertainties. This is because, in flames, chemisty is coupled with fluid

mechanics, thermodynamics, and transport process, and the separation of one from another

is not easy, if at all possible.

In the present study, the behavior of laminar flames under different aerodynamic and

thermodynamic conditions is studied numerically in a stagnation-flow configuration. The

present study follows an experimental study by J. Bergthorson conducted earlier in our

group. In numerical study of reacting flows, a one-dimensional model is commonly used

to assess the performances of chemical kinetics models. The model describes stagnation

flames along the symmetric axis through several key assumptions. One such assumption

is a uniform pressure-eigenvalue assumption, i.e., that the curvature of the pressure field

is uniform throughout. Although it is shown that this assumption does not hold through

more sophisticated numerical studies capable of a two-dimensional description, it is shown

that the model works reasonably well in the case of non-reacting (cold) flow and diluted

hydrogen flames. However, how well the assumption holds and whether or not the model

approximates hydrocarbon flames well are not known. The present study employs the

full chemical kinetics model of methane combustion, and a realistic transport model that

accommodates differential-diffusion effects within an axisymmetric two-dimensional flow

modeling. This allows direct comparisons of two-dimensional and one-dimensional models,
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as well as numerical and experimental data, to quantify modeling errors that arise from the

use of one-dimensional hydrodynamics model and the chemical-kinetics model.

In order to make such a numerical study possible, the spectral element method is refor-

mulated to accommodate the large density variations in methane reacting flows. In addition,

a new axisymmetric basis function set for the spectral element method that satisfies the cor-

rect behavior near the axis is developed that avoids the well-known singular behavior there.

This basis function satisfies all the parity requirements, by construction, that axisymmetric

fields must meet. To accomodate computationally expensive detailed methane combustion

and transport models, efficient integration techniques are developed to accurately model

axisymmetric reacting flow within a reasonable amount of computational time. The nu-

merical method is implemented using an object-oriented programming technique, and the

resulting computer program is verified with several different methods.

First, cold-flow simulation is conducted to understand the nature of the underlying flow

field without chemical reactions. It is shown that detailed modeling of the experimental

apparatus is important for a direct comparison of numerical simulation and experiments to

be meaningful.

Reacting flow simulations are conducted in three phases: one-dimensional simulations by

Cantera, two-dimensional simulations with an idealized representation of the experimental

configuration, and finally, simulations with full details of experimental setup. It is shown

that, although the plug-flow boundary condition cannot be used, as is, to predict flame

locations, the model can reliably be used to predict flame speed under strain. Through a

direct simulation of laboratory flames that allows direct comparison to experimental data,

the present study then shows variances with the commonly used GRI-Mech 3.0 chemical

kinetics model. It is shown that the methane combustion model based on GRI-Mech 3.0

works well for methane-air mixtures near stoichiometry. However, GRI-Mech 3.0 leads

to an overprediction of laminar flame speed for lean mixtures and an underprediction for

rich mixtures. This result is slightly different from conclusions drawn in previous work, in

which experimental data are compared with a one-dimensional numerical solution. Detailed

analysis reveals that flame speed is sensitive to even slight flame front curvature as well as

to its finite extension in the radial direction. Neither of these can be incorporated in one-

dimensional flow modeling.
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Chapter 1

Introduction

Often, it is people rather than the technology itself who pose the greater challenge to solving an

otherwise technical problem.—John Lakos

1.1 Motivation

The behavior of laminar flames and insights into such phenomena have many implications

to our understanding of turbulent as well as laminar flames. Even when the underlying flow

is turbulent, as is the case in internal combustion or jet engines, the flame in the case of fast

kinetics (high Damköhler number) is considered as an ensemble of stretched laminar flames

called flamelets (Williams, 1975). Recent advances in flamelet modeling are due, in part, to

the understanding of the laminar flame structure and behaviors both experimentally and

numerically (Law, 1988; Law & Sung, 2000; Williams, 2000). In particular, the laminar flame

speed under the influence of aerodynamic effects such as stretch and strain, flame curvature,

or heat losses has been studied experimentally. Numerical simulations have also previously

been employed to model such flame behavior, but with limited success. This is mostly

because simulation of combustion phenomena and its interaction with fluid mechanics is

computationally expensive and oversimplified models required to obtain numerical results

within a practical amount of time were insufficient to reveal important aspects of the full

phenomenology.

Simulation is used everywhere. Automobile and aerospace industries are among the ma-

jor users of Computer-Aided Engineering (CAE), including Computational Fluid Dynamics

(CFD), but the application of CAE goes beyond such traditional users and now extends to

semiconductors, pharmaceuticals, food processing (Lange, 2007), high-performance sport-
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ing goods (McKee, 2004), and so on. The use of computer simulations in science and

engineering is now widespread. For example, simulations used in product design allows

engineers to develop products quickly for market. The short development cycle can lead to

low R&D costs and therefore cost competitiveness in the market, in addition to the direct

savings from replacing some expensive laboratory experiments. Sometimes, even when cost

does not come at the top of the priority list, simulations are the only possibility to conduct

science, due to safety concerns when highly toxic or explosive materials are involved, or due

to conditions which are either impossible or difficult to attain in the laboratory.

However, there is a down side to this rapid growth of the application of computational

engineering. Toyota Motor Corp., which is known for its quality automobiles, recently

suffered multiple waves of recalls, and after internal investigation, the president of the

company had to say (Shirouzu, 2006):

“We relied on computer-aided engineering and other computer analysis and

didn’t conduct as many quality checks as we should have.”

It reminds us that simulation software—when used naively or incorrectly—can lead to a

devastating result. A main part of the problem lies in the growing complications in the

software.

Often, simulations are used for complicated problems in which verification of the cor-

rectness of the numerical results is not easy, and this makes simulation software prone to

human mistakes, including programming errors (commonly referred to as ‘bugs’) and mis-

use. Even though it is impossible to prove the correctness of software† it is still possible to

develop useful and reliable software. For example, there is a formal protocol called Soft-

ware Quality Assurance (SQA) to ensure the reliability of software, as well as techniques

to develop large-scale software such as Object-Oriented Programming (OOP) and design

patterns (Gamma et al., 1994). Every computational scientific work needs to address this

issue, and the approach used in this study is described in Chapter 3.

Besides such human errors, there are two additional kinds of errors in every computer

simulation: modeling errors and numerical errors (including discretization errors, conver-

gence errors, and round-off errors). Modeling errors are a deviation of the mathematical

†“Complete testing, erroneously used to mean 100% branch coverage. The notion is specific to a test
selection criterion: i.e., testing is ‘complete’ when the tests specified by the criterion have been passed.
Absolutely complete testing is impossible.”—from “Software Testing Techniques” by Beizer (1990).
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description of the physical system (i.e., model) from the real physical system. Some flow

systems offer a better description than others. For example, a uniform-density, low Mach

number flow is believed to be well described by the incompressible, uniform-density Navier-

Stokes equations, and simulations employing such validated mathematical models are at

least as accurate as thoughtfully and carefully conducted experiments. Indeed, some au-

thors have attempted to estimate and quantify measurement errors from numerical data.

However, for some types of flow systems, we do not yet have such a sufficiently high-fidelity

mathematical description. One such example is chemically reacting flow systems, which

is the topic of the present study. Although significant work has been done in this area,

there has been only limited progress in obtaining reliable chemical kinetics models for the

combustion of hydrocarbon fuels. There have been much theoretical, experimental, and nu-

merical work on laminar flames and flamelets. However, theoretical work has been limited

to cases with oversimplified assumptions, such as flames with no heat release, or infinitely

thin flames. The numerical work has relied on reduced chemistry models or oversimplified

hydrodynamic models.

Only few recent reports exist that used a detailed hydrocarbon combustion model with

realistic fluid mechanical models. For example, Najm & Knio (2005) proposed an operator-

splitting scheme for low Mach number, chemically reacting flows with GRI-Mech 1.2 that

involves 32 species and 177 reactions‡ to demonstrate their algorithm. Bell et al. (2005a)

used the reaction mechanism of Glarborg et al. (2000) that includes 65 species and 447

elementary reactions to simulate a laminar diffusion flame. Many other simulations of

combustion phenomena using multi-dimensional models have been reported using reduced

chemistry models. For a simulation of a turbulent flame, Bell et al. (2005b) used a subset of

GRI-Mech 1.2 mechanism that includes 20 species and 84 elementary reactions to simulate

a turbulent V-flame. This is probably one of the biggest simulation in terms of the number

of species and reactions used in turbulent combustion simulations, and while the resutls are

very impressive, the numerically predicted angle of the V-flame is wider than that observed

in the experiment by 10%. There are many chemical kinetics models proposed for methane

combustion, but the lack of an appropriate framework—a multi-dimensional simulation of

laboratory-scale flames that allows direct comparison of numerical data to experimental

ones—limits our understanding of laminar flames, and consequently turbulent flames.
‡These numbers include argon whereas numbers in Table 1.1 do not.
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Table 1.1: The chemical kinetics models. M is the total number of species involved, and K
stands for the number of reactions in the mechanism. The reaction model number indicates
reactants considered, e.g ., HCN indicates Hydrogen, Carbon (Hydrocarbons) and Nitrogen
oxidation reaction set. Reduced mechanisms are indicated by lower-case model IDs. This
list is by no means complete.

Model ID. Name M K References
HCN1 GRI-Mech 3.0 53 325 (Smith et al.)
HCN2 GRI-Mech 2.11 49 277 Predecessor of HCN1
HCN3 Glarborg00 65 447 (Glarborg et al., 2000; Bell et al., 2005a)
HC1 GRI-Mech 3.0 35 217 Sub-mechanism of HCN1
HC2 GRI-Mech 1.2 31 175 Predecessor of HCN2
HC3 SD05 (Rel. 03/10) 39 175 (San Diego mechanism)
HC4 DLW99 71 469 Based on HC2, (Davis et al., 1999, 2002b)
HC5 Wang99 52 367 (Wang et al., 1999)
HC6 Marinov99 57 383 (Marinov, 1999)
HC7 WF97 33 192 (Wang & Frenklach, 1997)
HC8 Tan94 78 473 (Tan et al., 1994)
HC9 EDL92 30 171 (Egolfopoulos et al., 1992)
hc1 Smooke92 26 83 (Smooke et al., 1992; Day & Bell, 2000)
hc2 Smooke86 16 46 (Smooke et al., 1986)
hc3 DRM-19 20 84 Subset of HC2, Bell et al. (2005b)
hc4 1-step model 4 1 (Westbrook & Dryer, 1981)
H1 GRI-Mech 3.0 9 28 Sub-mechanism of HC1
H2 SD05 (Rel. 03/10) 9 22 Sub-mechanism of HC3
H3 DLW99 9 28 Sub-mechanism of HC4
H4 YDR91 9 19 (Yetter et al., 1991; Frouzakis et al., 1998)
H5 MW88 9 37 (Maas & Warnatz, 1988)

This is very unfortunate because our everyday life relies heavily on combustion: fur-

nance, gas turbine, and automobile engines, just to name a few. Presently in this country,

slightly more than three quarters of our electricity supply relies on combustion§.

There are several chemistry models for methane combustion available. For example,

Egolfopoulos & Dimotakis (2001) used and compared several natural gas combustion mod-

els including those of Tan et al. (1994), GRI-Mech (Smith et al.), Wang & Frenklach (1997),

Marinov (1999) and Wang et al. (1999). Bergthorson (2005) used San Diego mechanism,

and a C-3 mechanism by Davis et al. (1999), in addition to GRI-Mech 3.0, to study laminar

flame speed at various conditions. These mechanisms are summarized in Table 1.1. All

are comprised of a seemingly sufficient set of elementary reactions. However, numerical
§Energy Information Administration, Form EIA-906, “Power Plant Report.”
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results obtained from each of these models vary significantly (Egolfopoulos & Dimotakis,

2001; Bergthorson, 2005). Many of them take elementary reaction parameters from experi-

mental data and evaluate rate coefficients of a single reaction to assemble a complete set of

elementary reactions. However, this approach can fail due to correlations in uncertainties

in the parameters, and the best-fit values to the individual parameters do not necessarily

comprises the best chemical kinetics model (Frenklach et al., 1992). GRI-Mech takes a

slightly different approach that is based on a systematic optimization method called solu-

tion mapping (Frenklach et al., 1992), through which the mechanism is optimized to several

independent flame conditions, including shock-tube ignition delay, methyl radical concen-

tration, and laminar premixed flame speeds. As a consequence, this mechanism is regarded

as the best methane combustion model without problem-specific fine tuning of parameters.

These chemical kinetics models have been primarily used in numerical studies that

employ a one-dimensional formulation developed by Kee et al. (1988) that represents a

significant advance in combustion research. Inclusion of these detailed methane combus-

tion models in a multi-dimensional numerical simulation is computationally expensive, and

numerical studies of laminar flames in multi-dimensions have typically used reduced mech-

anisms such as (Smooke et al., 1986, 1992) that include a subset of all species involved and

reduced reaction sets. It is not obvious if comparison of one-dimensional numerical solutions

to laboratory-generated experimental data is valid, even when they agree. When they do

not agree, it is not clear if the chemical kinetics model is the cause of error or the simplified

fluid mechanics model in the one-dimensional model is responsible, or some combination of

the two.

There are three problems here. One is that there has been no appropriate validation

of chemical kinetics models that gives us confidence in these models and in the numerical

results in studying flame behavior, or designing reaction systems. This is primarily because

of the difficulty in realistic multidimensional simulations of hydrocarbon flames because of

excessive computational costs. An algorithm and software that allow direct simulation of

chemically reacting flows are required, and this is the second problem. The third problem is

the reliability of the simulation software itself. Knupp & Salari (2003) collected appropriate

procedures for testing programs for computational science and engineering, but attention

has been paid to this subject only very recently.
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1.2 Objective

The primary objective of the present study is to understand the validity and applicability

of the GRI-Mech 3.0 chemistry model and to make progress toward a universal natural-gas

(methane) combustion model that works for every fuel in every situation, including both

rich and lean conditions, as well as under low or high pressure.

To achieve this goal, a computational framework that allows us to evaluate the accuracy

of the chemistry model is required. An efficient and accurate algorithm to simulate a labo-

ratory flame directly, including appropriate initial and boundary conditions, was developed.

The spectral element method originally developed by Patera (1984) for incompressible flow

will be extended to accommodate capabilities to simulate chemically reacting flows with

large density variation efficiently. Second, error sources to computational simulations will

be identified, and then the list of methods to quantify or identify errors stemming from

each error source will be discussed. It will be subsequently shown that the code used in

this study is correct and accurate with respect to the selected test criteria. Third, the

developed computing framework will be used to study the behavior of a chemical-kinetics

model. Namely the behavior of GRI-Mech at various strain and equivalence ratios will be

studied for premixed methane flames. The aim is to clarify the validity of one-dimensional

modeling of stagnation flow so that computationally simpler, one-dimensional models can

be used judiciously. Through these developments, how aerodynamic effects such as strain,

stretch, dilatation, and flow non-uniformity that creates flame front curvature can affect

flame speed and flame behavior are investigated. These studies are of interest in their own

light, but can also provides a good validation of the GRI-Mech 3.0 model, if the numerical

results are in agreement with a theory or experimental prediction.
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Chapter 2

The simulation methods

Simulation: 3. The technique of imitating the behaviour of some situation or process (whether

economic, military, mechanical, etc.) by means of a suitably analogous situation or apparatus, esp.

for the purpose of study or personnel training. Freq. attrib. —Oxford English Dictionary (emphasis

added by the author)

2.1 Introduction

As the definition of the word “simulation” suggests, for a numerical study to also be a sim-

ulation it must be a “suitably analogous” situation or apparatus. Many numerical studies

do not include every detail of the situation or apparatus, or do not “imitate the behavior”

at a reasonable accuracy (as inclusion of curved geometry, for example, usually deterio-

rates the accuracy of numerical methods). For example, Bell et al. (2005b) computed a

laboratory-scale turbulent V-flame using a reduced methane chemistry model. Although

this calculation used a large number of reaction and species sets compared to other tur-

bulent combustion simulations, the numerically predicted angle of V-flame was wider than

experiment by 10%. Use of reduced chemistry is certainly one cause of error, but more

importantly, this might have been caused by not modeling the nozzle exit area where the

flow around the anchoring rod is modified by the attached V-flame, as noted by the authors.

On the other hand, the KIVA code (Amsden et al., 1985, 1989; Amsden, 1993, 1997, 1999)

developed at the Los Alamos National Laboratory over decades is a significant achievement

in the simulation of mixing and combustion of internal combustion engines and used by

many researchers including Han & Reitz (1995), Celik et al. (2000), and Sone & Menon

(2003). Although the code has the capability to accomodate arbitrary-shaped cylinders as
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well as valve and piston movements, it is very diffusive due to its first-order temporal and

spatial accuracy, and its reliability is uncertain.

As the title of this thesis suggests, the present study is about a simulation of spe-

cific laboratory phenomena, and techniques were developed with this purpose in mind to

model flames in a laboratory with a suitably analogous setup with sufficient accuracy. The

detailed modeling of the experimental setup have not been done in previous works on nu-

merical studies of laminar flames. The methodology used in this study is described in this

chapter. First, the governing equations of chemically reacting flow are reviewed. Then the

numerical method employed in this study, including discretization of the governing equa-

tions, is introduced. Details on the implementation of the algorithm will be deferred to the

next chapter.

2.2 Mathematical models of reacting flows

2.2.1 The governing equations for axisymmetric flow at low Mach number

The governing equations of the fluid mechanics of chemically reacting flow are the com-

pressible form of the Navier-Stokes equations. The unsteady equations have been used in

many studies (Amsden et al., 1989; Kim et al., 1999; Haworth & Jansen, 2000). However,

these studies are mostly concerned with turbulent reacting flow, and the trouble is that

the laminar methane flames exhibit flame speeds far less than those of turbulent flames.

Therefore, the flow time scale is usually far smaller than that of acoustic waves, and the ex-

plicit integration of equations for compressible flows leads to a very restrictive time step size

compared to the time scale of the phenomena. In addition, if the compressible equations are

used for low-speed flows, the pressure-gradient term becomes singular as the Mach number

approaches to zero and some sort of corrections must be applied (Ramshaw et al., 1985;

Amsden et al., 1989). To circumvent these issues, self-consistent equations for low-speed

reacting flow have been derived (Majda & Sethian, 1985; McMurtry et al., 1986) using low

Mach number asymptotic analysis, and similar equations are derived and used by many

others to study laminar flames. This formulation, often called a low Mach number formu-

lation, or a zero Mach number formulation, effectively removes the propagation of sound

waves as a means of equilibrating pressure, and thus allows larger timestep size, replacing

this dynamical step by a Poisson-solver for pressure. Suppose for example, for the current
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problem, the flame thickness is 1.0 × 10−4 m and 10 collocation points are necessary to

resolve the flame. The advection timescale is ∆tAdv
compress ∼ 3.0× 10−8 sec. However, when a

low Mach number formulation is employed, the speed of sound constraint disappears from

the denominator of the advection timescale and ∆tAdv
lowMach ∼ 1.0 × 10−5 sec. Significant

savings in computational time can be achieved when the interaction of acoustic waves and

flame is not of interest or importance.

The low Mach number formulation used in this study is conceptually different in how

bulk viscosity is treated. The derivation of the following equations for density, velocity,

temperature, and species used in the present study is described in Appendix A.

∂ρ

∂t
+∇ · (ρu) = 0, (2.1a)

∂u
∂t

+ u · ∇u = −1
ρ
∇p∗ + Le(u) + Li(u) + f , (2.1b)

∂Ym

∂t
+ u · ∇Ym = Dm∇2Ym +

1
ρ
∇ρDm · ∇Ym + ω̇m, (2.1c)

ρCp,mix
DT

Dt
= λT∇2T +∇λT · ∇T − ρ

∑
m

hmω̇m, and (2.1d)

ρ = p0/(R̄gasT ), (2.1e)

where ρ is the density, u is the velocity, T is the temperature, and Ym is the mass fraction

of species m.

The viscous terms in the momentum equation are

Li(u) =
µ

ρ
∇2u (2.2a)

Le(u) =
µ

ρ
∇ [∇ · u] +

∇µ
ρ
·
[
∇u +∇ut

]
. (2.2b)

These equations exhibit a dependence on the external force, f , the species-production

rate, ω̇m, the enthalpy of the species m, hm, mixture-averaged specific heat capacity, Cp,mix,

ambient pressure, p0, and the specific gas constant, R̄gas—as well as on transport properties,

µ and λT , which are the viscosity and thermal conductivity of the gas mixture, respectively,

and Dm the diffusion coefficient of species m.

In the momentum equation, p∗ is the perturbational pressure, which is different from p0
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in the equation of state, and defined by

p∗(x, t) = (p(x, t)− p0)−
(
µB −

2
3
µ

)
∇ · u (2.3)

where p0 is the leading-order pressure term, which is an ambient pressure and treated as

a constant (101.3 kPa) throughout this study, and µB is the bulk viscosity. Note that p∗

includes bulk-viscosity effects. It is possible to factor this term out, which leads to a different

value of p∗, but one still obtains the same velocity field. This is because inclusion of the

last term of Eqn.(2.3) in the momentum equation (2.1b), rather than in Eqn.(2.3), corrects

p∗ such that it will cancel the term when the momentum equations are integrated. When

this term is comparable to the ambient pressure, p0, the governing equation itself is invalid

and the compressible form of the equations must be used. In the present study, a posteriori

analysis shows the divergence is on the order of 103/s within the flame, and even when

µB/µ is on the order of 103, this term is still on the order of 10, which is far less than the

ambient pressure, and therefore, it seems this is a reasonable formulation for the current

problem.

The species and temperature transport equations used here assume the Fickian diffusion

model with mixture-averaged transport properties. No Soret, Dufour, or pressure-gradient

diffusion effects are considered. Implications of these assumptions are discussed in Appen-

dix A.

These equations seemingly overspecify the density field. There is an evolution equation,

Eqn.(2.1a), also the equation of state, Eqn.(A.28e). On the other hand, there is no equation

for the pressure (p∗). To resolve this imbalance of variables and equations, the pressure

Poisson equation (PPE) is derived and employed. The derivation of PPE depends upon the

discretization of the momentum equations and will be discussed later in the chapter.

In the present study, these unsteady equations are integrated until the numerical solution

reaches steady state.

In addition to the governing equations for reacting flows at low Mach numbers, two

additional models are used in this study. One is a model for an axisymmetric uniform density

flow to study non-reacting flows, and the other is a one-dimensional model of stagnation

flames developed by Kee et al. (1988).
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2.2.2 Axisymmetric incompressible uniform-density flow

With the additional assumption of uniform density, the following equations can be derived

from the above low Mach number equations. The governing equations for uniform-density

flow are the Navier-Stokes equations with a divergence-free constraint on the velocity field,

and those are the equations for which the spectral element method was originally developed

by Patera (1984). These equations are later used to analyze cold (non-reacting) flows to

evaluate discrepancies between simulations and experiments when no chemical reactions are

involved:

∇ · u = 0, (2.4a)

∂u
∂t

= N(u)−∇p̃+ νL(u). (2.4b)

Here, L is a linear operator ∇2, and N is a non-linear operator whose form is given

later. In the momentum equation, p̃ denotes the scaled perturbational pressure, p∗, divided

by density, and is frequently referred to as the kinematic pressure.

One of the difficulties in solving these equations numerically is the divergence-free con-

straint, as discussed in Gresho (1991). In the spectral element method, this constraint is

satisfied through pressure projection along with a splitting method (Ianenko, 1971). Kar-

niadakis et al. (1991) derived a high-order splitting method that preserves high-order tem-

poral accuracy. However, more importantly, their splitting method is consistent with the

divergence-free constraint and is used in this study as well.

2.2.3 Axisymmetric one-dimensional model for reacting flow

In an important contribution, Kee et al. (1988) proposed a further simplification to axisym-

metric stagnation-flow modeling. In addition to the symmetry, they assumed a particular

form of the streamfunction, Ψ(x, r) = r2U(x), which is the leading order of the Taylor

series of an arbitrary axisymmetric streamfunction. The third assumption is a constant

pressure eigenvalue, i.e., 1/r(∂p/∂r) is assumed constant throughout the domain. The first

two assumptions effectively separate the variables in the definition of the velocity field,

u(x) = 2U(x)/ρ(x), (2.5)
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and

v(x, r) = −rU ′(x)/ρ(x). (2.6)

The last assumption makes it possible to decouple the axial momentum equations and the

velocity is determined by the radial momentum balance only,

Λ ≡ 1
r

∂p

∂r
=

d

dx

(
2U
ρ

dU

dx

)
− 3
ρ

(
dU

dx

)2

− d

dx

[
µ
d

dx

(
1
ρ

dU

dx

)]
. (2.7)

This equation can be obtained by dividing the radial momentum equation, Eqn.(A.47),

by r, and using the Stokes hypothesis (µB = 0). Let V be a spreading rate, dv/dr, which is

related to the axial velocity gradient through the continuity equation. The above equation

becomes

V = − 1
2ρ
d(ρu)
dx

, (2.8a)

Λ = − d

dx
(ρuV )− 3ρV 2 +

d

dx

(
µ
dV

dx

)
. (2.8b)

These equations, along with four boundary conditions, typically u and V specified at

both ends, yield a one-dimensional solution of the stagnation flame. The axial momentum

equation may be used to recover the pressure field from the velocity field if desired:

∂p

∂x
= −4U

d

dx

(
U

ρ

)
− 2µ

d

dx

(
1
ρ

dU

dx

)
+

4
3
d

dx

[
2µ

d

dx

(
U

ρ

)
+
µ

ρ

dU

dx

]
. (2.9)

This equation, along with the temperature and the species balance equations along the

axis (∂/∂r = 0 due to axisymmetry), comprise the one-dimensional model. This formulation

is relatively simple, and there are ready-to-use codes available such as CHEMKIN or more

recently, Cantera (Goodwin, 2003) (both of which implement this model). It has been

widely used in the combustion community partly because there have been no practical

alternatives in studying combustion problems numerically, since combustion simulations are

computer intensive, and inclusion of detailed chemical-kinetics models has been prohibitive

in multidimensional simulations in the past.

Although widely used, there is a difficulty with this model. Quoting from the original

paper right after Eqn.(6),
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∂

∂x

(
1
r

∂p

∂r

)
=

1
r

∂

∂r

(
∂p

∂x

)
= 0.

This is the logic behind assuming that the pressure eigenvalue, Λ = 1/r(∂p/∂r), is

constant. However, the last equality does not hold in general. Since

∂

∂r

(
∂p

∂x

)
→ 0 (2.10)

as r → 0, the entire fraction may be finite. When the streamfunction is given by the assumed

form, ∂/∂x is only a function of x as given in Eqn. (2.9), and indeed Λ is a constant.

Therefore, how well the one-dimensional model works depends on how well the assumed

form of streamfunction is satisfied in a real flow. The consequence of this simplification will

be discussed later.

In the present study, the Cantera software package (Goodwin, 2003) is used to solve the

above one-dimensional model.

2.2.4 The chemical reaction model

In addition to flow modeling, chemistry source terms and the transport properties that

appear in the governing equation must be modeled and evaluated. This part follows practice

used in CHEMKIN / Cantera, with more details in Kee et al. (2003).

The source term, ω̇m, in the species transport equations, Eqn.(2.1c), represents the

creation and destruction of a particular species during the combustion process. Suppose

there are K reactions and M species. The k-th reaction can be described by

∑
m∈M

ν
(r)
mkm ⇔

∑
m∈M

ν
(p)
mkm (2.11)

where νmk denotes stoichiometric coefficients of species m in reaction k, and the set M

contains all species relating to the given reaction system (M = |M|). The superscript (r)

denotes reactants and (p) denotes products.

Then the rate-of-progress variable of the k-th reaction, qk, is

qk = kfk

∏
m∈M

[m]ν
(r)
mk − krk

∏
m∈M

[m]ν
(p)
mk (2.12)
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where kfk and krk are the forward and backward reaction rates, and are usually expressed

in Arrhenius forms,

kf = ATn exp (−EA/RuT ) , (2.13)

with [m] the molar concentration of species m. The reaction index k is suppressed from

this expression for conciseness, but parameters A, n, and EA are all reaction-dependent.

Each one of these parameters is usually supplied by reaction models such as GRI-Mech

3.0. Although the backward reaction rate may be obtained by the same formula, it is more

accurate to use the equilibrium constant Kc to obtain Kr through (e.g ., Denbigh, 1955;

Turns, 2000)

Kc =
kf

kr
, (2.14)

where

Kc = Kp

(
pref

RuT

)s

, (2.15)

where s =
∑
ν(p) −

∑
ν(r), and

Kp = exp

(∑
m∈M

[
ν

(r)
m

gm

RuT
− ν

(p)
m

gm

RuT

])
. (2.16)

The molar production rate is

ω̇c
m =

K∑
k=1

(
ν

(p)
mk − ν

(r)
mk

)
qk. (2.17)

The mass fraction production rate can be obtained by

ω̇m =
Wm

ρ
ω̇c

m. (2.18)

2.2.5 The mixture-averaged transport model

In addition to a chemical-kinetics model, transport properties that appear in the equations

must be modeled and evaluated. Models used in the present study are described here for

completeness, and more details can be found in Kee et al. (1986). The Wilke formula is
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used to evaluate the viscosity of the given gas mixture,

µ =
∑

m∈M

Xmµm∑
nXnΦmn

, (2.19)

where

Φmn =
1√
8

(
1 +

Wm

Wn

)−1/2
(

1 +
(
µm

µn

)1/2(Wn

Wm

)1/4
)2

. (2.20)

Xm is the mole fraction of species m, µm is the dynamic viscosity of species m, which is

given by kinetic theory,

µm =
5
16

√
πmmkB

πσ2
mΩ(2,2)∗ , (2.21)

where σm is the Lennard-Jones collision diameter, mm is the molecular mass (Wm/NA where

NA is the Avogadro number), and kB is the Boltzmann constant. The collision integral

Ω(2,2)∗ values are evaluated through the tables given in Monchick & Mason (1961).

The thermal conductivity of a gas mixture is computed using a combination averaging

formula:

λT =
1
2

(∑
m

XmλT m +
1∑

mXm/λT m

)
. (2.22)

The thermal conductivity of each individual species can be obtained by

λT m =
µm

Wm
(ftransCv,trans + frotCv,rot + fvibCv,vib) , (2.23)

where

ftrans =
5
2

(
1− 2

π

Cv,rot

Cv,trans

A

B

)
, (2.24)

frot =
ρDmm

µm

(
1 +

2
π

A

B

)
, (2.25)

and

fvib =
ρDmm

µm
. (2.26)

The constants that appear in these expressions are

A =
5
2
− fvib, (2.27)
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Table 2.1: The values of Cv

monatomic linear nonlinear
Cv,trans/Ru 3/2 3/2 3/2
Cv,rot/Ru 0 1 3/2
Cv,vib/Ru 0 Cv/Ru − 5/2 Cv/Ru − 3

and

B = Zrot +
2
π

(
5
3
Cv,rot

Ru
+ fvib

)
, (2.28)

where Zrot is the rotational relaxation collision number, and its value at 298 K is given as

an input.

The molar heat capacities in Eqn.(2.23) depend on the geometry of molecules and are

collected in Table 2.1.

The self-diffusion coefficient is given by,

Dmm =
3
16

√
2πk3

BT
3/mm

p0πσ2
kΩ

(1,1)∗ . (2.29)

The mixture-averaged diffusion coefficient is given by Mathur et al. (1967) (see Kee

et al., 1986)

Dm =
W̄ −XmWm

W̄
∑

n6=mXn/Dmn
, (2.30)

where Dmn is the binary diffusion coefficient between species m and n,

Dmn =
3
16

√
2πk3

BT
3/mmn

pπσmnΩ(1,1)∗ , (2.31)

where mmn is the reduced molar mass for the species pair and is given by

mmn =
mmmn

mm +mn
. (2.32)
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2.3 The numerical method

2.3.1 Introduction

There are many methods for solving partial differential equations numerically. However, for

the purpose of this study, the requirements are: flexibility to handle complex geometry as

set up in a laboratory, efficiency to make it possible to integrate computationally expensive

reacting flow equations, and accuracy to manage numerical error so that the errors in the

chemical kinetics models can be evaluated and assessed. The spectral element method,

originally proposed by Patera (1984) for incompressible flows (e.g ., Henderson & Karni-

adakis, 1995; Henderson & Barkley, 1996; Henderson, 1999a,b; Blackburn & Henderson,

1999; Tomboulides & Orszag, 2000; Blackburn & Lopez, 2002), can be adapted to satisfy

all these requirements after its applicability is extended to accommodate flows with large

density variations. Although the original method was intended for an incompressible flow,

Tomboulides et al. (1997) and Tomboulides & Orszag (1998) later extended it to variable-

density low Mach number flow. However their approach is still not sufficiently efficient to

simulate methane flames with detailed combustion and transport models because their al-

gorithm solves the reaction-diffusion equations without operator splitting. A new algorithm

has been developed and is presented here.

2.3.2 Expansion basis

In the spectral element method for two-dimensional problems, the approximate solution is

expanded in a given expansion basis as follows,

u(x, y) =
∑
i,j

ui,jhi(x)hj(y), (2.33)

where hi(x) is a compactly supported Lagrange polynomial based on the roots of Jacobi

polynomials and has the following properties:

hi(xj) = δij , (2.34)

∫
Ωe

u(x)dx ≈
∑

i

ωiu(xi), (2.35)
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and ∫
Ωe

hi(x)hj(x)dx ≈

 ωi i = j

0 i 6= j
, (2.36)

where Ωe is a finite size domain over which the basis functions, hi(x), have support.

The basis function hi(x) can be constructed using many different orthogonal polynomi-

als, but Legendre polynomials with Gauss-Lobatto quadrature are most often used (Hen-

derson & Karniadakis, 1995; Blackburn & Sherwin, 2004), and they will also be used in this

study (hereafter called GLL—Gauss-Lobatto-Legendre—basis) except for the expansion in

the radial direction within elements that are adjacent to the axis. For this special case, a

new basis function has been developed and will be described next.

2.3.3 Polar axis treatment for axisymmetric flow

Simulation of fluid flow in an axisymmetric domain requires a proper treatment of the axis

singularity. There are essentially two issues: One is that the governing equation itself con-

tains a singularity when written in polar-coordinate form, and the other is that there are

certain requirements in the behavior of each azimuthal Fourier mode, and those require-

ments must be satisfied by each expansion basis function. These issues are addressed in

the context of the spectral method by several authors (Leonard & Wray, 1982; Matsushima

& Marcus, 1995; Mohseni & Colonius, 2000) (see Boyd, 2000), but the second issue has

been mostly ignored in the spectral element method (Tomboulides et al., 1997; Blackburn

& Sherwin, 2004). In those studies that employed the spectral element method in axisym-

metric coordinates, only the leading order behavior is specified. Higher-order conditions

are ignored with the expectation that they will be satisfied in the process of convergence.

However, although there are cases in which high-order conditions can be satisfied without

specifying them, there are cases in which the smooth numerical solution does not satisfy

some particular required property. To this end, a new basis function that incorporates the

correct behavior has been developed.

An arbitrary function in polar coordinates can be expanded as a Fourier series in θ,

f(r, θ) =
∞∑

m=0

(fm(r) cos (mθ) + gm(r) sin (mθ)) . (2.37)

If f(r, θ) is a scalar and the function is analytic at r = 0, the following conditions must be
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satisfied (Boyd, 2000):

(i) fm(r) and gm(r) have m-th order zeros at r = 0.

(ii) If m is even, then fm(r) and gm(r) are both symmetric about r = 0 and their power

series contain only even powers of r.

(iii) If m is odd, then fm(r) and gm(r) are both antisymmetric about r = 0 and their

power series contain only odd powers of r.

When f(r, θ) is the axial velocity in the cylindrical coordinates or is the product of r

with the radial or tangential velocity in polar coordinates, the same conditions apply. For

axisymmetric problems, as considered in this paper, the requirement translates to the fact

that scalars and axial velocity must be even functions about the axis, while radial velocity

must be an odd function about the axis, and we need to implement this property in the

basis function itself.

In the standard coordinate, ξ ∈ [−1, 1], mapping to the physical coordinate is provided

by isoparametric mapping (Karniadakis & Sherwin, 1999). The approximate solution is

expanded in the following form:

f(ξz, ξr) =
Q−1∑
i=0

Q−1∑
j=0

f̂ijhi(ξz)hr
j(ξr) (2.38)

where hi(z) are Lagrange polynomials of order P (= Q − 1). For the expansion of all

elements in the axial direction and for the expansion in the radial direction (except for

those elements adjacent to the axis), GLL collocation points are used to construct the

Lagrange polynomials such that hm(ξn) = δmn, where ξm(m = 0, 1, . . . , Q − 1) are a set

of Q GLL points. This is a standard basis in the spectral element method and further

details are given in Karniadakis & Sherwin (1999). For hr
m(ξ), depending on the parity

requirements for the approximate solution, either heven
m (ξ) or hodd

m (ξ) are used—which are

even and odd functions of ξ, respectively—or hm(ξ) is used if there is no parity requirement.

For the radial expansion of elements adjacent to the axis, let η = [(ξ + 1)/2]1/2 ∈ [0, 1].

Following Leonard & Wray (1982), and Matsushima & Marcus (1995), a function with even

parity about η = 0 can be expressed as

heven
m (η) = hm(2η2 − 1). (2.39)
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Leonard & Wray (1982) used a quadratic basis function to obtain the desired parity and

the divergence-free constraint in their numerical study using a spectral method. Later,

Matsushima & Marcus (1995) derived a more general form of basis functions with parity

that can represent any non-symmetric smooth function with the required parity property.

The basis function used by Leonard & Wray (1982) is a special case of the one derived by

Matsushima & Marcus (1995).

Effectively, we construct a Lagrange polynomial using quadratic monomials (x2) to

obtain a desired parity, and a required matching condition at the outer boundary. However,

this is still a GLL approximation in the original polynomial space, and we can achieve

spectral accuracy, as shown later. Since {Lm(x)}m=0,...,Q−1 is a complete basis for a space

of polynomials of order P , this basis function spans a space of even polynomials of order

2P . The new basis functions are not orthogonal analytically (so are the original GLL

polynomials), but they both satisfy the discrete orthogonality conditions.

The basis function hm(η) is an even function in η and hm(ηn) = δmn so that the discrete

orthogonality condition is satisfied.

For the odd function basis, one may use heven
m (η) as a building block, and then

hodd
m (η) =

η

ηm
heven

m (η) (2.40)

satisfies all the requirements.

Simple arithmetic shows that the collocation derivative matrices for these bases are

Deven
ij = 4

ri
R2

Dij , (2.41)

and

Dodd
ij =

1
ri
δij +

ri
rj
Deven

ij (2.42)

where Dij is the collocation differentiation matrix for the original basis, and R is the length

of the radial domain in physical space. The even and odd basis functions can be constructed

through Eqns.(2.39) and (2.40) once the base basis function, hm in Eqn.(2.39) is selected.

The Gauss-Radau-Legendre (GRL) polynomial has the desired property of containing only

one boundary collocation point so that it allows connectivity conditions to be incorporated

at the outer element boundary while it spans all polynomial space less than the given
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Figure 2.1: The radial expansion bases for elements adjacent to the axis. Note that each
basis function satisfies the correct parity requirements. Each basis function consists of up
to (2Q− 1)-th order polynomials and satisfies the discrete orthogonality property.

polynomial order. In addition, the GRL basis conveniently avoids evaluating singular terms

in the governing equation by avoiding a collocation point on the axis.

The Gaussian quadrature weights are weven
i = wodd = (R2/4)wi. These new bases are

shown in Fig. 2.1, for the case of Q = 6, and they will be referred to as Gauss-Radau-

Legendre with parity (GRLp) bases in this study. As can be seen in the figure, the colloca-

tion points associated with this basis function have fewer clustered collocation points toward

the axis, where the function expanded is expected to be smooth. Therefore, it is slightly

computatinally advantageous compared to other basis functions used in earlier works on

spectral element method for axisymmetric problems (Tomboulides et al., 1997; Blackburn

& Sherwin, 2004).
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∫ R
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∫ 1

0

∑
m

fmh
even
m (η)ηdη

= R2
∑
m

fm

∫ 1

0
heven

m (η)ηdη

=
R2

4

∑
m

fm

∫ 1

−1
hm(ξ)dξ

=
R2

4

∑
m

fm

(∑
n

wnhm(ξn)

)

=
R2

4

∑
m

fmwm

=
∑
m

fmw
even
m .

The same is true for the odd basis:
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even
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Development of basis functions with appropriate parity and desired behavior for the

non-axisymmetric case, i.e., m > 0, near the axis is a straightforward extension of the

approach described here and the work of Matsushima & Marcus (1995), using one-sided
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Table 2.2: The mixed stiffly stable scheme coefficients (Karniadakis et al., 1991)

Coefficient γ0 α0 α1 α2 β0 β1 β2

1st order 1 1 0 0 1 0 0
2nd order 3/2 2 -1/2 0 2 -1 0
3rd order 11/6 3 -3/2 1/3 3 -3 1

Jacobi polynomials.

2.3.4 The spectral element method for uniform-density flows

We first introduce the spectral element method for uniform-density flow, as we will use the

same building blocks later to construct a method for reacting flows.

First, the momentum equations are discretized in time using a mixed stiffly stable

scheme (Karniadakis et al., 1991). The idea of a mixed stiffly stable scheme is to use

an extrapolation to estimate the implicit flux of the nonlinear term in the context of a

stable backward-differentiation scheme.

γ0un+1 −
∑Je−1

q=0 αqun−q

∆t
=

Je−1∑
q=0

βqN(un−q)−∇pn+1 + νL(un+1) (2.43)

where N(u) = −u · ∇u, and L(u) = ∇2u. In the above equations, αq, βq, and γ0 are the

weighting coefficients for stiffly stable time-integration method of order Je, and the values

are tabulated in Table 2.2.

Splitting this equation into terms gives,

û−
Je−1∑
q=0

αqun−q = −∆t
Je−1∑
q=0

βq (u · ∇u)n−q (2.44a)

̂̂u− û = −∆t∇pn+1 (2.44b)

γ0un+1 − ̂̂u = ν∆t∇2un+1, (2.44c)

where û and ̂̂u are intermediate velocities in the time-stepping scheme, defined by Eqns.(2.44a)

and (2.44b), respectively.

By taking the divergence of the equation for the pressure projection, Eqn. (2.44b), the

pressure Poisson equation is obtained. Note that ∇ · ̂̂u = 0 by taking the divergence of the
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last equation. Finally, the governing equations are integrated by the following four steps:

û−
Je−1∑
q=0

αqun−q = −∆t
Je−1∑
q=0

βq (u · ∇u)n−q (2.45a)

∇2pn+1 =
1

∆t
∇ · û (2.45b)

̂̂u− û = −∇pn+1∆t (2.45c)

γ0un+1 − ̂̂u = ν∆t∇2un+1. (2.45d)

It may be observed that the building blocks for the spectral element method for incom-

pressible uniform density flows are the explicit advection equation,

∂u

∂t
= f(u), (2.46)

and the implicit Helmholtz equation,

∇2u− λu = f(u). (2.47)

The former is solved by an explicit collocation method while the latter is solved by the

Galerkin method.

2.3.5 The spectral element method for variable-density flows

When extending the spectral element method to the chemically reacting flows with large

density variations, additional difficulties arise.

First, unlike in the compressible counterpart, pressure must be obtained by deriving and

solving the pressure Poisson equation rather than the equation of state. This is because

pressure in the equation of state is not the same as that in the momentum equation. Second,

when solving the compressible equations explicitly, the continuity equation can be omitted

in favor of the species-conservation equations and the constraint,
∑

m Ym = 1. Then the

density field can be obtained simply by adding partial densities, i.e., ρ =
∑

m ρm. Again, this

is not possible in the low Mach number case as the continuity equation is needed to derive

the pressure Poisson equation, and therefore, one of the species conservation equations is

redundant and must be abandoned. Third, the equation of state is now a constraint between
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Pressure Poisson Equation

Equation of State

Figure 2.2: Integration dependency for low Mach number formulation

Equation of State

Figure 2.3: Integration dependency for explicit com-
pressible formulation

Pressure projection 
& Viscous Helmholtz equation

Figure 2.4: Integration depen-
dency for uniform density for-
mulation

density, compositions through the specific gas constant, and temperature—and among these

unknowns, only density does not have a formula that updates it in time. Therefore, the

equation of state must be used to specify the density field, given the temperature and mass

fractions. This is a major difference from the work of Day & Bell (2000), in which the

continuity equation was used to update density while the equation of state is incorporated
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in the divergence constraint as a penalty barrier.

The updating scheme is summarized in Fig. 2.2. For comparison, the same depen-

dency diagrams for a compressible formulation (Fig. 2.3) and a uniform-density formula-

tion (Fig. 2.4) are shown here as well. As can be seen from this diagram, a density update

must be obtained before integrating the momentum equations. Therefore, temperature and

species must be updated first.

In addition, the left hand side operator of the pressure Poisson equation now contains the

reciprocal of the density, 1/ρ, and a technique for solving such equations must be developed.

One could choose not to include this 1/ρ factor inside the operator by multiplying through

ρ to the momentum equations before taking the divergence of the entire equation. However,

this formulation limits the size of the timestep, ∆t, compared to the current formulation

and was not used in this study.

The discrete form of the governing equations is introduced in the order in which they

are updated:

γ0T
n+1 −

∑Je−1
q=0 αqT

n−q

∆t
=

Je−1∑
q=0

βq (−u · ∇T+(
1

ρCp,mix
)∇λT · ∇T )n−q + αn∇2Tn+1

(2.48)

γ0Y
n+1
m −

∑Je−1
q=0 αqY

n−q
m

∆t
=

Je−1∑
q=0

βq

(
−u · ∇Ym +

1
ρn
∇ρDm · ∇Ym

)n−q

+Dn
m∇2Y n+1

m

(2.49)

for m ∈M′ where M′ contains all species in M except N2. Then,

YN2 = 1−
∑

m∈M′

Ym, (2.50)

and

ρn+1 =
p0

RuTn+1
W̄ =

p0

RuTn+1

1∑
m∈M(Y n+1

m /Wm)
. (2.51)

Once the updated density, temperature, and mass fractions are obtained, the rest follows

the procedure for incompressible non-uniform density flows, which will be described next.

Now that species and temperature fields are updated, transport properties can be updated
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at this time, i.e.,

µn+1 = µ(Y n+1
m , Tn+1) (2.52a)

λn+1
T = λT (Y n+1

m , Tn+1) (2.52b)

Dn+1
m = Dm(Y n+1

m , Tn+1, p0) (2.52c)

Once all thermodynamic states at the new time-level are obtained, the momentum

equations are finally integrated,

û−
Je−1∑
q=0

αqun−q = ∆t
Je−1∑
q=0

αq (−u · ∇u + Le(u) + f)n−q) (2.53a)

∇ ·
(

1
ρ
∇p∗

)
=

1
∆t

(
∇ · û−∇ · ̂̂u) (2.53b)

̂̂u− û = −∆t∇p∗ (2.53c)

γ0un+1 − ̂̂u =
µ

ρ
∆t∇2un+1, (2.53d)

where, again as is in the uniform-density equations, û and ̂̂u are the intermediate velocities

in the time-stepping scheme, defined by Eqns.(2.53a) and (2.53c), respectively.

In the above expressions, Je in summations is the order of the time-integration scheme,

and appropriate coefficients (αq, βq, and γ0) for each case are recorded in Table 2.2. In con-

trast with the uniform-density case, the second term on the right-hand side of the pressure

Poisson equation does not disappear. Now, to obtain the unknown quantity that appears

in the right hand side of Eqn.(2.53b), we use Eqn.(2.53d),

∇ · ̂̂u = γ0Q
n+1 −∆t∇ ·

[
µ

ρ

(
∇ (∇ · u)−∇×∇× u

)]
, (2.54)

where Qn+1 is the divergence constraint that must be satisfied at time tn+1, which must be

obtained through the continuity equation,

Qn+1 ≡ ∇ · un+1 = −1
ρ

Dρ

Dt
= −1

ρ

γ0ρ
n+1 −

∑Je−1
q=0 αqρ

n−q

∆t
+

Je−1∑
q=0

βq(u · ∇ρ)n−q

 .

(2.55)

Other studies (Tomboulides et al., 1997; Day & Bell, 2000) used the Lagrange derivative

of the equation of state to decompose Dρ/Dt into DT/Dt and DYm/Dt, and used the tem-
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perature transport equation and the species transport equations to obtain Qn+1. However

this approach is costly and accumulates round-off errors.

2.3.6 Boundary condition for the pressure Poisson equation

The pressure Poisson equation requires boundary conditions. Typically, uniform-pressure

boundary condition is specified at the outflow where the ambient pressure can be specified.

For other boundaries, such as inflow and wall, where the velocity components are specified,

the Neumann boundary condition for the pressure field must be derived from the momentum

equation. Assuming the steady boundary condition, we have,

1
ρ

∂p∗

∂n
= n · (N(u) + L(u)) , (2.56)

where N(u) = −u · ∇u.

Using the vector identity,

∇2u = ∇ (∇ · u)−∇×∇× u, (2.57)

the viscous term can be rewritten as,

L(u) =
µ

ρ
(2∇Q−∇×∇× u) +

2
ρ
∇µ · S, (2.58)

where S = (∇u +∇uT )/2.

2.3.7 Helmholtz equations

Solving Eqns. (2.48), (2.49), (2.53b), and (2.53d) requires solving the Helmholtz equations.

We define the inner-product to describe Galerkin formulation,

(ψ,Φ) =
∫

Ω
ψ(x)Φ(x)dΩ, (2.59)

(ψ,Φ)w =
∫

Ω
ψ(x)Φ(x)w(x)dΩ, (2.60)

and

〈ψ,Φ〉 =
∫

∂ΩN
ψ(x)∇Φ(x) · ndS. (2.61)
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2.3.7.1 Cartesian coordinate

In this case,

∇2u− λ2u = f(u), (2.62)

or in differential form,
∂2u

∂x2
+
∂2u

∂y2
− λu = f(u). (2.63)

We multiply the equation by a test function v(x, y) and integrate over the entire domain

to obtain,

(∇v,∇u) + λ(v, u) = −(v, f) + 〈v, u〉. (2.64)

Using the basis functions described earlier, this equation can be cast into the linear

system.

[L + λM]u = −Mf + uδN (2.65)

where

Lij =
∫

Ω
h′i(x)h′j(x)dΩ. (2.66)

2.3.7.2 Cylindrical coordinate

Again, we start with the same equation,

∇2u− λ2u = f(u), (2.67)

which in differential form is,

∂2u

∂z2
+

1
r

∂

∂r

(
r
∂u

∂r

)
− λ2u = f(u). (2.68)

We multiply this equation through by r to obtain (Blackburn & Sherwin, 2004),

∂

∂z

(
r
∂u

∂z

)
+

∂

∂r

(
r
∂u

∂r

)
− λ2ru = rf(u). (2.69)

Again we apply the method of weighted residuals with a test function v(z, r),

(∇v,∇u)r + λ2(v, u)r = −(v, f)r + 〈v, u〉r. (2.70)
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As it appears in the pressure Poisson equation, an equation with a variable factor inside

the operator needs to be solved:

∇ ·
(

1
ρ
∇u
)
− λ2u = f(u), (2.71)

which in differential form is,

∂

∂z

(
r

ρ

∂u

∂z

)
+

∂

∂r

(
r

ρ

∂u

∂r

)
− λ2ru = rf(u). (2.72)

Again, the factor r has been applied to the entire equation. Applying the method of

weighted residuals with a test function v(z, r) then yields,

(∇v,∇u)r/ρ + λ2(v, u)r = −(v, f)r + 〈v, u〉r. (2.73)

In the exact Galarkin formulation, the weight term must be evaluated by expansion,

i.e., the stiffness matrix should be:

Lij =
∫

Ωe

φ′i(x)φ
′
j(x)∑Q

l=1 ρlφl(x)
dΩe.

However, using the property of the Lagrange polynomial, we have,

Lij =
Q∑

l=1

ωl

φ′i(xl)φ′j(xl)
ρl

.

This form of the stiffness matrix is used in this study.

2.3.8 Solution method for the linear system

Now that a matrix system has been obtained for the viscous Helmholtz equations, or pres-

sure Poisson equations, the linear system may be solved directly, or iteratively. In the

spectral element method, the stiffness matrix usually has a localized structure and the

static condensation technique is the most efficient technique for solving the equation.
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Create local stiffness matrix

Assemble global stiffness matrix

Eliminate internal DOFs to obtain statically condensed boundary matrix

Collect boundary matrices from all processors

Add Helmholtz constants (if applicable)

MPI communication

Compute Cholesky factorization of boundary system

Solve boundary system

Solve interior system

dpbtrf (LAPACK)
or 
pdpbtrf (ScaLAPACK)

dpbtrs (LAPACK)
or 
pdpbtrs (ScaLAPACK)

Check if matrix exists

No Yes

Check if matrix factorized

No Yes

Figure 2.5: The activity diagram (flow chart) of the stiffness matrix construction and solu-
tion. Note that the Cholesky factorization is the most expensive process.
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Given a matrix equation, Au = f , decompose it into a block form,

 A11 A12

A21 A22

 u1

u2

 =

 f1

f2

 . (2.74)

By multiplying  I −A12A
−1
22

0 I

 (2.75)

from the left, this equation can be factored into the block triangle form:

 A∗11 0

A21 A22

 u1

u2

 =

 f1 −A12A
−1
22 f2

f2

 (2.76)

where A∗11 = A11 − A12A
−1
22 A21, which is known as the Schur complement (Karniadakis &

Sherwin, 1999).

By assigning the boundary degrees of freedom to u1 and the internal degrees of freedom

to u2, the boundary (shared) degrees of freedom can be solved first, then the rest forms a set

of K independent matrix equations, where K is the number of elements. The matrix A∗11 is

a symmetric banded matrix by construction whereas the matrix A22 is a block-structured

matrix, each of which is a positive definite matrix.

2.3.9 Computationally efficient integration of the diffusion terms

Parallelization of the algorithms and their efficient implementation is crucial in obtaining

numerical solution of reacting flows. The static condensation technique described in the

previous section allows a natural decomposition of the entire degrees of freedom into those

on the boundary of elements and those not on the boundary. Since the interior degrees

of freedom are fully decompled from the boundary degrees of freedom, the interior points

can be solved with perfect scalability up to the number of elements in the computational

domain. On the other hand, the matrix for the boundary degrees of freedom (the Schur

complement, A∗11 in Eqn. 2.76) couples all degrees of freedom on element boundaries as

well as domain boundaries. This poses a challenge in solving the Schur matrix efficiently,

particulaly using message-passing techniques. Since, for the spectral element method, the

Schur complement is usually a symmetric positive definite banded matrix, this matrix can
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be solved by either an iterative method, such as conjugate gradient method, or a direct

method, such as Gaussian elimination. Fischer et al. (1988) implemented a parallel iterative

technique using a conjugate gradient and multigrid method. Subsequent work is documented

in Fischer & Patera (1991), Fischer & Rønquist (1994), and Deville et al. (2002). However,

for reacting flows, the condition number of the matrix can be significantly larger than that

for incompressible flow due to large density variations, and therefore the direct method

is used in the present work. dpbtrf and dpbtrs in LAPACK or pdpbtrf and pdpbtrs

in ScaLAPACK libraries, both of which implement Cholesky factorization and backward

substitution, can be used for this purpose. The Cholesky factorization is the most expensive

operation when solving the matrix Eqn. (2.76) among the processes shown in Fig. 2.5.

To gain further computational efficiency, Eqns.(2.48) and (2.49) are rewritten to improve

performance.

Tn+1 − Tn

∆t
=
(
−u · ∇T +

(
1

ρCp,mix

)
∇λT · ∇T + (αn − α0)∇2T

)n

+ α0∇2Tn+1 (2.77)

and

Y n+1
m − Y n

m

∆t
=
(
−u · ∇Ym +

1
ρn
∇ρDm · ∇Ym + (Dn

m −D0
m)∇2Ym

)n

+D0
m∇2Y n+1

m , (2.78)

where α0 and D0
m are the initial values of the thermal diffusion coefficient and the diffusion

coefficient of each species, respectively.

By factoring out the time-dependent part of the diffusion operator, factorization of the

matrix is required only once at the beginning of iterations. ‖αn − α0‖ (or ‖Dn
m −D0

m‖) is

computed at every timestep, and when it exceeds a predetermined criterion, α0 (or D0
m) is

updated and the matrix is factorized again.

Fig. 2.6 shows execution speed per iteration per number of collocation points for reacting

flow. Without the efficient method presented here, the code experiences a slowdown in

execution speed after np = 4, when the ScaLAPACK library (Blackford et al., 1997) is not

used. When ScaLAPACK is used, it shows good scalability; however it shows a significant

overhead and overall, the code does not run any faster than when ScaLAPACK is not used.

When the efficient method described here is used, the code scales well both with and without
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the ScaLAPACK library. In particular, use of ScaLAPACK almost halves execution time.
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Original (Q=6, Nel=3000)

Figure 2.6: Computational performance of the Omega code used in the present study.
Without the efficient integration, the code does not scale beyond np = 4. When the new
method is employed, along with high-order polynomial basis, the code scales well up to
np = 16 and speed up can be observed until np = 32. Use of ScaLAPACK enables the code
to execute significantly faster. The benchmark test is one of Phase II simulations reported
in Chapter 4. The execution time was measured on SHC cluster at the Caltech Center for
Advanced Computing Research (CACR) with the code compiled with pathscale compilers.



35

Chapter 3

Software implementation,
verification, and validation

An article about computational science in a scientific publication is not the scholarship itself, it is

merely advertising of the scholarship. The actual scholarship is the complete software environment

and the complete set of instructions which generated the figures.—D. Donoho

3.1 Introduction

In the field of computational science, it is important to have an accurate simulation environ-

ment so that we can be confident of the results and can actually rely on them in designing

new products or in building better experiments.

As briefly mentioned in Chapter 1, care must be taken to ensure the correctness of the

result obtained by computations. There are three kinds of error in every numerical study:

modeling, numerical, and human errors.

εtotal = ferror(εmodeling, εnumerical, εhuman) (3.1)

By driving these three error sources to zero, the total error should converge to zero,

and the process by which the errors are small enough so that numerical solutions can be

trusted is called verification or validation, depending on the type of error and the process

and information employed.

The modeling error is an error in the governing equation that describes the physical

system. For example, the uniform-density low Mach number flow is well described by the

incompressible Navier-Stokes equations, i.e., Eqn. (2.4), which are considered to offer a very
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accurate description of the flow. However, for a chemically reacting system, the kinetics

mechanism models may bring in more uncertainty than fidelity. Besides chemical kinet-

ics models, transport models and coefficients may contain relatively large errors. There is

a process that ensures the correctness or appropriateness of the model used in the com-

putation, which is called validation. A validation is usually performed by comparing the

obtained numerical solution to suitable experiments, and it checks if the agreement between

them is reasonable. In other words, a validation is a process to quantify the modeling error.

The numerical error can be divided into three types, according to Ortega (1990): dis-

cretization error, convergence error, and rounding error. The discretization error arises

whenever we approximate continuum equations by discrete ones and is the difference be-

tween the solutions to the continuum equations and the discrete equations. The convergence

error arises when an infinite series is approximated by a finite sum. The rounding error—

sometimes called quantization, approximation, or truncation error—is due to the inability of

computers to represent real numbers to arbitrary precision. For modern computers, 64-bit

floating point description is sufficient to make this error insignificant; 32-bit floating point

descriptions may be used in a limited situation with caution.

The discretization error can usually be computed theoretically, while convergence error

can be estimated by so-called convergence tests. There usually is no necessity to estimate

rounding error, but if desired, one can do so by systematically driving discretization and

convergence errors down.

The last kind of error, human error, includes both programmer and user error. Bugs

in the coding process, wrong specification of the input parameters, and wrong usage of the

code are typical examples of this type of error. This type of error is hard to quantify and

is usually the biggest concern of all three. The programming part of the human error, at

least the one that affects the accuracy of the numerical results, can be mostly eliminated by

going through processes called regression testing (Lakos, 1996) and code verification (Roy,

2005).

Reducing user error is another big challenge in every field of engineering. A good strategy

is to use a standardized and easy-to-use human interface. For example, the FORTRAN style

inputs, that force users to align inputs exactly as they are read in, is a common source of

user errors.
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Definition 1 (Verification) A verification is a process that ensures εnumerical and εhuman

are smaller than a tolerance criterion. The verification can be further divided into two

categories: code verification that quantifies the programming error and the discretization

error, and solution verification that quantifies the convergence error and the user error.

Definition 2 (Validation) A validation is a process by which εmodeling is quantified. Val-

idation is possible only when other two kinds of errors, namely εnumerical and εhuman, are

known and smaller than εmodeling. Therefore, the verification process must be conducted

before going through the validation process.

Models such as turbulence models, transport models, or chemical-kinetics models are

ones that must be validated; codes, including an algorithm and its implementation, should

be verified but cannot be validated. This fact is important because, quite often, inappro-

priate verification is used to certify a code. Customarily, numerical data are compared

against similar experiments to claim that the code is “validated.” As will be shown in a

later chapter of this thesis, modeling the experimental apparatus without full details is usu-

ally not appropriate for validation, let alone the fact that the comparison to experimental

data can never provide verification of any kind. Another naive verification often reported

is to compare multidimensional simulation results against simpler numerical models such

as a one-dimensional model. These may be regarded as a validation of simpler models via

multidimensional simulations, but not the opposite.

We will discuss how the current program is implemented and how the object-oriented

design can help minimize the probability of bugs and errors in the code, compared to the

conventional function-oriented design in the first section.

Another important factor is speed or efficiency. The time it takes to obtain compu-

tational results can be broken down to three components: development time, compilation

time, and execution time. Although the object-oriented technique was originally adopted

to reduce any chance of introducing coding bugs in the code in the present study, it also

helped reduce the development and maintenance time significantly as the evolving code

became more complex.

There are some drawbacks of coding in C++. One of them is that the resulting code

may not be as fast as C or FORTRAN programs in execution time. Another problem is

that many, if not all, compilers are not fully compatible with the ANSI C++ standard,
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and portability issues arise even when the code is written in a way that conforms to the

standard.

3.2 Implementation

3.2.1 The structure of the Omega code

The Omega code developed as part of this project contains approximately 60,000 lines

of source code, including header and implementation files, plus external libraries such as

MPI (Gropp et al., 1994, 1999) and LAPACK (Anderson et al., 1999; Blackford et al.,

1997), which are not counted. Although traditionally computational scientists have pre-

ferred the use of FORTRAN programming languages due to performance reasons (Dowd &

Severance, 1998), such a function-oriented technique is more error-prone. Object-oriented

programming has an edge over function-oriented programming in keeping the bug density

in the code small when the techniques are properly used, and therefore, the result is more

scientifically reliable.

The implementation of the Omega code follows the protocols for a large-scale program-

ming project, such as described in Lakos (1996), Stroustrup (1991), and Gamma et al.

(1994).

3.2.1.1 Package structure

First, the static structure of the code is shown in Fig. 3.1. Each package is a collection of

source files organized as a physically cohesive unit (Lakos, 1996). For example, the “do-

main” package is responsible for managing computational domain of the problem, consisting

of 19 header files and 16 source files. As can be seen from the diagram, the packages are

structured so that the dependency among packages are acyclic and unambiguously leveliz-

able†, i.e., a level n package may depend on components of level n− 1 or below only. Such

dependency is important not only in implementing codes efficiently but also in maintaining

software reliably, as each component can be tested independent of any other packages of

the same level or above. These diagrams are described in a language called Unified Model-

ing Language (UML) and interested readers are encouraged to refer to Miles & Hamilton

†Such words as “levelizable” or “levelization” or their meaning may not be found in the Oxford English
Dictionary but they are defined and used in Lakos (1996).
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sys gen extern chem

nla fileiobcmesh

geom domain ted

sem fld

pde

prob

omega

Level 1

Level 2

Level 3

Level 4

Level 5

arg

Level 6

Figure 3.1: A static structure of the packages used in the Omega code. Note each package is
acyclic and fully levelized, meaning that it can clearly define what other packages it depends
on without cyclic dependency. Summary of responsibility of each package is described in
Table 3.1.

(2006).

3.2.1.2 Domain structure

One of the problems with so many flow solvers written by so many people is the lack of

consistency. Ideally, the whole CFD community should have a single program that computes

every flow problem including aerodynamics, supersonic flow (including shockwaves), and

low-speed or turbulent combustion. Traditionally, that was not an option because such an

approach would make the software less efficient by loading many unnecessary capabilities.

However, by not doing so, a significant amount of development time and code verification

time is wasted. Although the Omega code does not have such a multipurpose capability

currently, it is designed with such extensions in mind. In designing such multi-purpose
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Table 3.1: Responsibility of each package

Name Level Description
omega Driver program
prob 6 Problem (e.g ., laminar flame) description and specification
pde 5 Partial and ordinary differential equations
sem 4 Spectral element method
fld 4 Field variables such as pressure and velocity

geom 3 Geometry of computational domain
domain 3 Abstract computational domain and coordinate system

ted 3 time-evolving data for multi-step time-integration
mesh 2 Computational mesh within element or domain (1D & 2D)
bc 2 Boundary conditions
nla 2 Numerical linear algebra

fileio 2 Input / output functions
arg 1 Commandline argument processing unit
sys 1 Definition of system dependent variables
gen 1 Generic library (e.g ., smart pointers)

extern 1 Wrapper for external library functions
chem 1 Chemistry and transport properties

codes, it is important to extract common structure among different methods and capability

and implement them efficiently. Design patterns (Gamma et al., 1994) can be very useful

for this purpose.

An example is the bridge pattern used in implementing the computational domain in

the Omega code, as in Fig. 3.2. A client who needs to compute the divergence of the

velocity field does not need to know in which coordinate system the velocity is defined.

All he has to know is that the divergence is defined. How the divergence is computed is

passed to the actual coordinate representation such as Cartesian or Cylindrical, for example.

Then this coordinate system dictates how to compute the divergence in terms of derivative

operators, i.e., ∂u/∂x + ∂v/∂y for Cartesian and ∂u/∂x + ∂v/∂y + v/y for Cylindrical.

These differentiations along coordinates (∂/∂x and ∂/∂y) are then evaluated in the actual

numerical method implementation, such as the spectral element method (SEM) or finite

difference method (FDM). In so doing, one can implement different coordinate systems,

dimensions of the problem, and discretization methods in a single code with a uniform

structure and interface.

Using this structure, the code can be extended beyond a two-dimensional axisymmetric
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+div()
+grad()
+curl()

Domain

+ddx()
+ddy()
+1/y()

DomainImp

+div()
+grad()
+curl()

CylindricalDomain

+div()
+grad()
+curl()

CartesianDomain

+ddx()
+ddy()
+1/y()

SEMDomainImp

+ddx()
+ddy()
+1/y()

AnotherDomainImp

du/dx+dv/dy+v/y du/dx+dv/dy

Use collocation differentiation 
to evaluate coordinatewise derivative

It may use 
another way 
to evaluate derivatives

Bridge pattern

Figure 3.2: This is how the bridge pattern is used in the Omega code. The use of the bridge
pattern allows decoupling of the coordinate representation (Cartesian or Cylindrical) from
the discretization methods.

problem solver. In fact, the present code has a capability to handle problems in two-

dimensional Cartesian coordinates. In addition, it should be easy to implement other dis-

cretization techniques, as necessary. One obvious advantage of having a computer program

that solves problems in several different coordinate systems is its breadth and the capability

to solve different kinds of problems. A less-obvious advantage, but certainly a compelling

reason to choose such an implementation, is that it makes verification easy and makes the

code more reliable. For example, by sharing many parts of the code when an erroneous

outcome is identified that appears only when the code is used to solve problems in a partic-

ular coordinate system, then the “bug” is most likely to be in the part that is responsible

for that specific coordinate. Since verification can be done in various problems in different

coordinate systems, exercising many common components, it gives the user more confidence

in the correctness of the code. It also contributes to reducing user errors by maintaining a

uniform user interface.

3.2.1.3 Boundary / boundary condition structure

Incorporating boundary conditions is one of the most difficult parts of implementing flow

solvers. This difficulty stems in part from the fact that the boundary conditions are as-
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fld_Base
-_dbc : bc_Container
-_nbc : bc_Container

fld_BC bc_Container

1 *1 1 +getValues()

bc_BCBas

1 *

domain_Domain domain_BoundaryContainer

domain_BoundaryImp

1 1 1

*
1 *

may access to BOUNDARY information 
through the domain that includes 
the boundary.

Each field must have a BC 
to be solvable.

Contains all boundary 
associated with the same 
kind of boundary condition
(Dirichlet, Neumann or Robin)

Figure 3.3: Static structure of boundary and boundary conditions

+getValues()

bc_BCBase

bc_Homogeneous
-*_value : double
-_size : int

bc_Inhomogeneous

+update() : void

-_t0 : double
-_t1 : double

bc_Unsteady

-_value0 : double
-_value1 : double

bc_UnsteadyIncremental
-_amp : double
-_phaseShift : double

bc_Sinusoidal

domain_BoundaryImp

sem_BoundaryImp

1 *

This actually defines boundary representation.
It enables to integrate along the boundary,
compute normal vector and so on.

Figure 3.4: Use of bridge pattern in structuring boundary and boundary conditions

sociated with the boundary on which the conditions are defined, as well as conditions by

which field values such as velocity or pressure are constrained. To make matters worse,

the way in which boundary conditions are applied can depend on discretization methods.

This three-way interaction makes the design of the boundary condition implementation a

difficult task.

Shown in Fig. 3.3 is the static structure of the boundary and boundary conditions relat-

ing to domain and field variables. fld_Base is an object that represents a field variable such

as velocity, and contains its own boundary conditions, fld_BC. The fld_BC object then in-

cludes two different containers, namely Dirichlet boundary conditions and Neumann bound-

ary conditions. Each container contains as many bc_BCBase objects as necessary when that

type of boundary condition is used in the problem specification. Each bc_BCBase object

then contains a pointer or a reference to the boundary object that defines the boundary of

the computational domain and numerical value (conditions) associated with this boundary
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(and the field). In the other branch, domain_Domain is a representation of a computational

domain, which contains a domain_BoundaryContainer that contains all boundary objects

(domain_BoundaryImp) which define the boundary of the computational domain. Fig. 3.4

shows the interaction of boundary conditions with their discrete representation. Again the

bridge pattern is used to separate the type of boundary conditions—such as homogeneous,

inhomogeneous, or unsteady—to a particular representation of the domain—such as the

spectral element method.

3.2.2 Procedure in solving matrix equations

Client

pde_Helmholtz<<create>>

sem_2dStiffnessMatrix

solve(initialCondition:fld_Data, Forcing:fld_Data):Matrix

getMatrix()

<<create>>

getRHS()

solve(rhs)

Figure 3.5: The sequence on how the client solves the Helmholtz equation

Shown in Fig. 3.5 is the sequence of how the Helmholtz equations are solved numerically.

When a client requests the Helmholtz equation to be solved with a given right-hand side, the

pde_Helmholtz object forms an appropriate operator matrix as well as the right-hand side

vector, and solves the matrix equations. As described in the previous chapter (see page 30),

the static condensation and the direct inversion of each resulting matrix is used to solve

the linear system. Although an iterative method, such as a conjugate gradient, scales well

in a parallel-computing environment, the condition number of the matrix system can be as

large as 700 million for one of the cases investigated here, and an iterative method is not a

viable option. While preconditioning was not explored in this study, we proceed with the

direct method. Fig. 3.6 shows the elaborated sequence of processes used in obtaining the

operator matrix for the Helmholtz equation, and Fig. 3.7 shows the sequence of solving the
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pde_Helmholt sem_DomainImp

getMatrixAssembler()

markDBClocations()

getLaplaceOperator()

sem_StiffnessMatrix<<create>>

getElementalOp()

setElementalMatrix()

addDiagonalTerm()

Client

getMatrix()

Figure 3.6: When the getMatrix method is used, this is the sequence that follows to obtain a
weak form of the Laplace operator. Note the getMatrix method only computes elemental-
level matrices, and assembly of the global operator due to direct stiffness summation is
deferred until the assembled matrix is needed.

matrix equation.

3.2.3 Evaluation of transport properties

As discussed in the previous chapter, the viscosity and the self-diffusion coefficients of each

species have a dependence on the collision integrals. Since they are a function of temperature

only, it is customary to evaluate these transport properties a priori, and to tabulate or

store them in terms of polynomial coefficients by fitting a polynomial instead of evaluating

Eqn.(2.21) or Eqn.(2.31) directly during computation, to save computational time. In the

present study, the polynomial fitting approach is adopted following Cantera (Goodwin,

2003), and the viscosity and diffusivities are expressed as follows:

µm(T ) = Tα

(
3∑

n=0

µm,n (log(T ))n

)
(3.2)
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sem_2dStiffnessMatrix

computeSchurComplement()

assembleGlobalMatrix()

assembleBoundaryForcing()

solve()

nla_SPDBandedMatrix<<create>>

dpbtrf()

(Sca)LAPACK

dpbtrs()

solveInterior()

Client

solve(rhs)

Figure 3.7: When the solve method in sem 2dStiffnessMatrix is used, the matrix object
tries to factorize the matrix and assemble the global matrix when necessary. For exam-
ple, computeSchurComplement computes A∗11 in Eqn.(2.76) at each element level, followed
by assembleGlobalMatrix that assembles all contributions to A∗11 from each element to
compute a symmetric positive definite banded matrix. A LAPACK function, dpbtrf (or
pdpbtrf if ScaLAPACK is used), is responsible for Cholesky factorization of A∗11.

Dpq(T ) = T 1+α

(
3∑

n=0

Dpq,n (log(T ))n

)
. (3.3)

α = 0.69 is used after optimization for the temperature range of 300 K to 2200 K.

3.2.4 Chemistry ODE and Jacobian estimation

The chemical source terms in the species-transport and temperature-transport equations

require special treatment because of their stiffness. The temporal evolution of a chemically

reacting system is described by chemistry ODEs that arise after splitting the chemical source



46

terms from the entire governing equations for reacting flows:

dYm

dt
= ω̇m (3.4)

dT

dt
= ω̇T = −

∑
m hmω̇m

Cp,mix
. (3.5)

The right-hand side source terms are evaluated by a Fuego-generated C source code (Aivazis,

2002; Hung, 2003). Fuego is an object-oriented toolkit for chemical kinetics applications

developed by Michael Aivazis. It parses a CHEMKIN format chemical mechanism file and

produces a C source code that is CHEMKIN link-compatible, but provides increased effi-

ciency by eliminating loops, conditional statements, and other computational overheads.

CVODE (Cohen & Hindmarsh, 1994) is used to integrate these equations. Although

CVODE can integrate stiff ODEs without a user-supplied Jacobian routine, it is impor-

tant to have a good estimate of the Jacobian to integrate stiff ODEs such as this one

efficiently.

From the Law of Mass Action, we obtain the rate of reaction in molar form,

ω̂m(c, T ) =
K∑

k=1

ω̂m,k(c, T ), (3.6)

where c denotes a set of concentrations of each species. This along with a chain rule of

derivatives yield the following Jacobian structure in symbolic form:

J =


∂ω̇m
∂Yn

∂ω̇m
∂T

∂ω̇T
∂Yn

∂ω̇T
∂T

 . (3.7)

Let the upper-left submatrix of J be J0
mn, which is

J0
mn ≡

∂ω̇m

∂Yn
= JY

mn +
W̄

Wn

(
ω̇m −

∑
l

JY
mlYl

)
(3.8)

∂ω̇T

∂Yn
= − 1

Cp,mix

(∑
m

hmJ0
mn + ω̇TCp,n

)
(3.9)
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where

JY
mn =

Wm

Wn
Jc

mn, (3.10)

and

Jc
mn =

∂ω̂m(c, T )
∂cn

, (3.11)

where m is an index of species m. Eqn.(3.10) is supplied by the fejay_ function in the

Fuego-generated C source code.

Symbolic evaluation of ∂ω̇m/∂T and ∂ω̇T /∂T terms is more complicated as the explicit

form of such derivatives is quite lengthy. We use finite-difference approximations to the last

column of the Jacobian matrix.

By using this almost symbolic Jacobian, about a 20% reduction of the number of calls

to the function that computes chemical source terms and a 100% improvement in execution

speed was achieved in one case.

3.3 Code verification

To make sure that the code does what the developer intends it to do, the importance of

verification can never be overemphasized. Within the context of the three errors in numerical

simulations mentioned earlier, verification is conducted to quantify errors stemming from

numerical errors and the programming part of human error. First, a convergence study of

component solvers will be described to make sure that the error decays as we refine spatial

and temporal sampling intervals, so that we have a control of discretization errors.

Throughout this study, the error is measured by the L2 norm,

‖f(x, y)‖ =
(∫

Ω
(f(x, y))2 dΩ

)1/2

≈

∑
i,j

wi,jf
2
i,j

1/2

, (3.12)

unless otherwise noted.

3.3.1 Verification of components

As described in the previous chapter, the flow solvers for the incompressible Navier-Stokes

equations make extensive use of the Poisson equation and the Helmholtz equations. In this

section, we will investigate the convergence rate of the Helmholtz equation solver to ensure
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that the advertised rate of convergence is achieved.

Fig.(3.8) shows a convergence study of the Helmholtz solver in cylindrical coordinates,

for a synthesized problem. The solution is u(z, r) = sin(πz) cos(πr) with even radial parity,

and the boundary condition and the forcing term are such that the solution satisfies the

Helmholtz equation, ∇2u+ λu = f where λ = −π2 sin(πx) cos(πy).

In the case of h-refinement, in which polynomial orders are kept constant while the

number of elements is increased (thus the element size being refined), it is expected to

converge at fifth order; and for p-refinement, in which elements are fixed and polynomial

orders are increased, exponential convergence is expected. This property can be seen in

Fig.(3.8).
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Figure 3.8: h-refinement case shows fifth-order convergence while p-refinement shows faster
convergence.

3.3.2 Verification by the method of exact solution

One of the advantages of being able to solve Cartesian problems in addition to cylindrical

ones within the same software is that it makes it possible to conduct verification tests that

are otherwise not possible. Kovasznay flow in a Cartesian coordinate system is one of the
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Table 3.2: Convergence data of Helmholtz equation solver

K Q N NNet Error
2 6 72 32+34 6.81278e-005
8 6 288 128+103 8.87486e-006
18 6 648 288+208 7.61115e-007
32 6 1152 512+349 1.41611e-007
72 6 2592 1152+739 1.61071e-008
128 6 4608 2048+1273 3.64283e-009
2 8 128 72+48 4.39157e-007
2 10 200 128+62 1.96032e-009
2 12 288 200+76 6.43544e-012
2 14 392 288+90 2.30857e-013
2 16 512 392+104 3.9094e-013

few exact solutions of the Navier-Stokes equations that exercise every term in the equation

(Kovasznay, 1948).

The Kovasznay flow is described by

u(x, y;λ) = 1− exp(λx) cos(2πy) (3.13)

v(x, y;λ) =
λ

2π
exp(λx) sin(2πy) (3.14)

p(x;λ) = 1− exp(2λx)/2 (3.15)

where

λ = Re/2−
√

Re2/4 + 4π2. (3.16)

This solution has been used in verification in the past (Karniadakis et al., 1991; Black-

burn & Sherwin, 2004). In particular, Blackburn & Sherwin (2004) used this exact solution

to verify their implementation in three-dimensional cylindrical coordinates by translating

this solution in two-dimensional Cartesian coordinates into a three-dimensional cylindrical

coordinate system.

As shown in Fig. 3.9, the expected rate of convergence is observed using h-refinement

with seventh-order accuracy, as well as the high-order convergence using p-refinement.
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Figure 3.9: h-refinement case shows seventh-order convergence while p-refinement case
shows faster convergence.

3.3.3 Verification of the code via the method of manufactured solution

The verification of a code through an exact solution is very powerful. However, quite often

there is no exact solution available in closed form without oversimplifications. The method

of manufactured solution is universally applicable to verification of a code whether or not

an exact solution is available (Roy, 2005). In the present study, an exact solution based on

the Kovasznay flow solution is used to create a problem with an exact solution:

ρ(z, r) = exp(λz/2) (3.17a)

u(z, r) = exp(−λz/2)− exp(λz/2) cos(2πr) (3.17b)

v(z, r) = λ exp(λz/2) sin(2πr)/(2π) (3.17c)

p(z) = (1− exp(2az))/2 (3.17d)

T (z, r) = T0/(exp(C0z)(C1 + C2 cos(2πr) + C3 sin(2πz))) (3.17e)

YH2 = Y10 + Y11 sin(2πz) + Y12 cos(2πr) (3.17f)

YN2 = 1− Y10 − Y11 sin(2πz)− Y12 cos(2πr) (3.17g)
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where T0 = −688.0862031843639, C0 = (5 −
√

25 + 4π2)/2, C1 = −9.815178, C2 = C3 =

−1.299873, Y10 = 0.3, Y11 = Y12 = 0.05 are used.

This solution satisfies the divergence constraint, ∇ · ρu = 0, and the mass-fraction

constraint,
∑
Ym = 1. The exact solution of temperature is somewhat complicated due to

its coupling to density and mass fraction fields through the equation of state. The required

forcing term to balance these manufactured solution on the governing equations is computed

using Mathematica®, and the C source code generated by Mathematica®is used to evaluate

the forcing terms.

Figure 3.10 shows the decay of errors for both h-refinement, in which the number of

elements is increased with fixed polynomial order, and p-refinement, in which polynomial

order is increased with the number of elements fixed.
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Figure 3.10: The method of manufactured solution provides verification of the code. h-
refinement case shows seventh-order convergence while p-refinement case shows faster con-
vergence. Both error decay rates are in line with the expected rate.

3.3.4 Verification of the code against another numerical solution

Although this test is not exactly verification in the sense of the definition given above, it is

still a useful comparison to gain confidence on the newly developed code. Frouzakis et al.
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(1998) reported non-premixed opposed-jet hydrogen flames at a Reynolds number of 100,

using a spectral element method and the hydrogen oxidation kinetic mechanism by Yetter

et al. (1991) (H4 mechanism in Table 1.1). The opposed jet flame is very similar in nature

to a stagnation flame, and therefore, is an appropriate test case for the present work. We

have set up a computational domain using the same elements, as reported in Frouzakis et al.

(1998), with the same polynomial order. Shown in Fig. 3.11 is the computational domain

used for this study. Hydrogen diluted with nitrogen is introduced from the right between

0 ≤ r ≤ 0.005 m with the inlet velocity of 0.15925 m/s, and air is introduced from the left

at the same velocity. The top part of the domain (r = 0.02 m) is an outflow boundary

condition, and the rest is an isothermal wall, kept at 300K.

0 0.005 0.01
0

0.005

0.01

0.015

0.02

Figure 3.11: Computational domain for opposed-jet hydrogen flame study taken from
Frouzakis et al. (1998). It includes 120 elements; each contains 6 by 6 collocation points.
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Shown in Figs. 3.12–3.15 are comparisons of hydrogen and hydroxyl radicals, temper-

ature, and axial velocity profiles between the Omega code, developed in the present work,

and the two-dimensional numerical solution by Frouzakis et al. (1998). One-dimensional

solutions using CHEMKIN, reported in Frouzakis et al. (1998) are also plotted in each figure

for reference. The same hydrogen kinetics model (Yetter et al., 1991) is used in all cases.

Despite some differences in the formulation and transport models, the two two-dimensional

solutions are in good agreemeent.
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Figure 3.12: The mass fraction of the hydroxyl radical profile is compared among the Omega
code (solid line) developed in the present work, the two-dimensional solution reported in
Frouzakis et al. (1998) (dashed line), and the one-dimensional solution using CHEMKIN
also reported in Frouzakis et al. (1998) (double-dot-dashed line).

3.4 The validation of the model

Validation refers to comparison to experimental data or a theoretical prediction that can

support the correctness of the numerical solution. For example, it is easy to verify that the

numerical solution actually satisfies the set of equations by looking at the residuals after

substituting the numerical solutions to the equations. However, this does not mean that

the numerical solution is the right one; there might be a modeling error. In addition to
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Figure 3.13: Comparison of the mass fraction of hydrogen atom profile. (Legend as in
Fig. 3.12.
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Figure 3.14: Comparison of the temperature profile. (Legend as in Fig. 3.12.)
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Figure 3.15: Comparison of the axial velocity profile. (Legend as in Fig. 3.12.)

modeling of fluid mechanics, there are three model components used in the numerical study

of reacting flows: thermodynamics (such as enthalpy and heat of formation), the transport

model and coefficients, and the chemical kinetics. Although each of the three components

needs to be improved, and is improving today, it is expected that the chemical kinetics

model contains more uncertainty and error (Williams, 2000). The validation of reacting-

flow models is one of the main themes of the present study and will be discussed in the

following chapter.

It is worth noting that the modeling error, εmodeling in Eqn. (3.1), can be quantified only

by simulating experiments directly. For example, if the study of an ideal stagnation flame

that extendes to infinity in radial direction with perfectly flat flame shape is considered,

and this ideal setting is modeled in both experiments and numerical study, it is impossible

to quantify εmodeling because experiments represent a different situation since such an ideal

flame cannot be realized in the laboratory. However, by simulating flames observed in

a laboratory directly, instead of modeling idealized flames, it is possible to quantify the

modeling error that appears in mathematical models, εmodeling. The availability of the recent

high-quality experimental data and all necessary experimental implementation details from
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the work of Bergthorson et al. (2005b) and Bergthorson (2005), along with the necessary

computational resources and support, permitted this approach to be adopted in the present

study.


