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ABSTRACT

A warming trend larger than the global average is changing high-latitude terrestrial
ecosystems. The impact of climate change at high latitudes is especially notable on
the seasonality of vegetation photosynthesis, such as the Arctic greening, length-
ened growing season, and increased peak production in the growing season. As a
critical component of the global carbon cycle and land carbon sink, continuously
monitoring the seasonal trajectory of ecosystem-level photosynthesis, Gross Pri-
mary Production (GPP), is much needed to better understand the climate change
impacts and the sensitivity of high-latitude plant communities under global climate
change. GPP has been estimated from both ground and space. However, sparsely
distributed ground-level measurements are not representative of heterogeneous land
cover and complex terrain in high latitudes. Remote sensing techniques provide
extensive spatial coverage for comparing GPP at the regional scale. In this thesis,
I carefully examine the advances in remote sensing for monitoring GPP at high
latitudes, including using hyperspectral reflectance and Solar-Induced chlorophyll
Fluorescence (SIF). We show that reflectance near 531 nm can track the seasonality
of Light Use Efficiency (LUE), complementing conventional normalized difference
vegetation index which is only a proxy of Absorbed Photosynthetic Active Radiation
(APAR). Tracking both LUE and APAR is critical for improving GPP estimation,
especially in evergreen forests with photosynthetic phenology but sustained canopy
color — a typical land cover type at high latitudes. Satellite-measured SIF can also
track both LUE and APAR. Here, it is shown that the empirical model predicting
GPP using SIF is land cover dependent. The presence of snow and surface, hetero-
geneous land cover, and complex terrains in the high latitudes further complicate the
interpretation of the SIF-GPP relationship. To improve the accuracy of interpreting
SIF in complex terrain, a geometric model is developed to account for variations in
APAR on tilted slopes. The results of this thesis enhance the use of both reflectance
and SIF to help improve terrestrial biosphere models simulating GPP and cope with
model-data uncertainties. The results are also a useful reference for future satel-
lite missions designing instruments and correcting topographic impacts. Overall,
this thesis contributes to better evaluating GPP and constraining climate projection
uncertainties.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Terrestrial ecosystems are a critical part of the global carbon cycle. Plant carbon
uptake via photosynthesis, as the largest carbon sink for atmospheric CO2 (Ciais
et al., 2014), contributes to vegetation-climate feedback through carbon, water, and
energy exchange between the land and atmosphere (Peñuelas and Filella, 2009;
Richardson et al., 2013). However, an amplified warming trend and more frequent
warming events have occurred at high latitudes (Field, 2014; Ford et al., 2015;
Post et al., 2019; Stocker et al., 2013; Walsh and Brettschneider, 2019), threatening
current high-latitude plant communities (Box et al., 2019; Ernakovich et al., 2014).
The impact of climate change at high latitudes is especially notable in the seasonality
of vegetation photosynthesis, such as the Arctic greening (Berner et al., 2020),
lengthened growing season (Park et al., 2016), and increased peak production in the
growing season (Elmendorf et al., 2012). These changes create high uncertainties in
the projection of the sign and magnitude of the land carbon sink (Loisel et al., 2021;
McGuire et al., 2009; Zona et al., 2022). To better understand climate change impacts
on plant communities, continuously monitoring the seasonal trajectory of ecosystem-
level photosynthesis, Gross Primary Production (GPP) is much needed. While
net carbon fluxes, i.e. Net Ecosystem Exchange (NEE), are ultimately governing
atmospheric CO2 abundances, my thesis will focus on the engine of biogeochemical
cycles here, i.e. the uptake through photosynthesis. In the future, the thawing of
permafrost could lead to the release of additional CO2, which could counteract some
of the arctic greening that we observe.

1.2 Overview of conventional GPP measurements
GPP has been estimated from both ground and space. On the ground, Eddy Covari-
ance (EC) techniques can derive GPP from directly measured net land-atmosphere
CO2 flux at the ecosystem level (Pastorello et al., 2020). There are hundreds of flux
towers around the world measuring GPP (Falge et al., 2017). Yet the EC towers
at high latitudes are often sparsely located in easily accessible regions. Hence, a
large portion of high latitudes has no GPP measurement. In addition, the temporal
coverage of EC towers differs among towers. Therefore, GPP derived from EC
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towers is often inadequate to be representative at regional scales at high latitudes
(Pallandt et al., 2022).

Remote sensing techniques enable global and almost continuous monitoring of GPP
from space. The extensive spatial coverage and consistent time range allow for
comparisons of GPP across heterogeneous land cover types (Funk et al., 2004) and
complex terrain (Roland et al., 2019) in the high latitudes where EC towers have
limited access. Although the temporal resolution of satellite products is often coarser
than ground-based measurements, it is sufficient for extracting the seasonality of
GPP.

Remotely sensed GPP is indirectly inferred from proxies of the plant photochemical
processes. The simplest model for inferring GPP in remote sensing is as follows:

�%% = 5 %�’ � %�’ � !*�� (1.1)

Here, PAR is the photosynthetically active radiation, and fPAR is the fraction of PAR
absorbed by a canopy. Thus, Absorbed PAR (APAR) = fPAR�PAR. APAR is mostly
partitioned between photosynthesis (Photochemical Quenching, PQ) and heat dis-
sipation (Non-Photochemical Quenching, NPQ) (Björkman and Demmig-Adams,
1995; Schreiber et al., 1986). LUE describes the effective daily photosynthetic
efficiency of APAR (Monteith, 1972; Monteith and Moss, 1977).

Conventional remote sensing tools are proxies of APAR, such as the Normalized
Difference Vegetation Index (NDVI; Tucker 1979), kernel-based NDVI (kNDVI;
Camps-Valls et al. 2021), and Near-Infrared Reflectance of Vegetation (NIRv; Bad-
gley et al. 2017), which essentially calculate the difference in reflectance between
red and far-red bands, also known as the red edge. The red edge is sensitive to the
green leaf area and the total amount of chlorophyll in the canopy within the field of
view (Goward et al., 1985; Justice et al., 1985; Tucker et al., 1985). However, the
greenness of a canopy only represents the potential GPP without constraining LUE.
The GPP products solely using conventional VIs needs to parameterize LUE from
empirical relationships of LUE and meteorological conditions (Krinner et al., 2005;
Running et al., 2004). Inevitably, the LUE model limits the accuracy of the derived
GPP. This drawback is especially problematic in evergreen forests, a main land
cover type at high latitudes, with seasonally changing photosynthetic efficiencies
but sustained canopy color.
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1.3 Advances in remote sensing techniques
Advances in remote sensing techniques have shown promise to track LUE in addition
to APAR, such as evaluating NPQ and Solar-Induced chlorophyll Fluorescence (SIF).

Evaluating NPQ
The Photochemical Reflectance Index (PRI) and Chlorophyll/carotenoid Index (CCI)
represent a genre of vegetation Indices (VIs) that can provide information on
NPQ. PRI and CCI highlight the spectral regions sensitive to dynamic changes in
leaf/needle photoprotective pigment composition (Gamon et al., 2016, 1997), show-
ing promise for tracking seasonal changes in photosynthesis of evergreen forests
(Adams and Demmig-Adams, 1994; Björkman and Demmig-Adams, 1995). How-
ever, these have mainly been investigated with intermittent field campaigns (Hall
et al., 2008; Hilker et al., 2011) or with narrow-band spectrometers in these ecosys-
tems (Gamon et al., 2016; Huemmrich et al., 2019). The evaluation of pigment-
driven spectral changes in evergreen forests over the course of a season is necessary
to determine where, when, and why certain wavelength regions could advance our
mechanistic understanding of canopy photosynthetic and photoprotective pigments.
However, using continuously measured canopy hyperspectral reflectance and in situ
pigment samples has not been done with both empirical and process-based methods.

Evaluating SIF
SIF is another approach to infer GPP from space, which is defined by a small amount
of photons (650-850 nm) re-emitted from chlorophyll at longer wavelength during
the process of light harvesting in photosynthesis (Genty et al., 1989; Krause and
Weis, 1991). Because spaceborne SIF is not only a proxy for APAR in deciduous
canopies (Dechant et al., 2020), it also partially tracks the partitioning of APAR
between PQ and NPQ, i.e. LUE (Magney et al., 2019). Magney et al. (2020)
reviewed that satellite measured SIF linearly correlated with GPP in multiple biomes.
These benefits make satellite-measured SIF a useful tool for estimating GPP on a
large scale with various land cover types.

As more satellites measuring SIF globally have been launched in recent years (such
as TROPOMI Köhler et al. (2018) and OCO-2 Frankenberg et al. (2014); Sun et al.
(2017)), the regions of interest using SIF to infer GPP are expanding to higher
latitudes in recent studies (Jeong et al., 2017; Luus et al., 2017; Walther et al., 2016,
2018). Turner et al. (2021) and Liu et al. (2022) reported the scale factor of SIF-GPP
relationships as a function of land cover. However, the resulting scale factor from
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previous studies in lower latitudes (Liu et al., 2022; Turner et al., 2021) cannot
represent the heterogeneous land cover with unique vegetation composition at high
latitudes (Bliss et al., 1992). The studies at high latitudes are either limited to the
area with EC towers for validation purposes (Luus et al., 2017) or focus only on
very few land cover types at high latitudes Luus et al. (2017); Walther et al. (2016).
Due to these limitations, the SIF-GPP relationship across land cover types at high
latitudes is not well understood.

Another limitation of SIF is that the satellite measured SIF is an instantaneous value
driven by PAR at the overpass time. For studies focusing on seasonal variations,
the SIF measurement needs to be corrected to the daily averaged value. The current
correction strategy assumes the surface is flat so that the Solar Zenith Angle (SZA)
is sufficient to approximate the solar irradiance (Köhler et al., 2018). However, this
assumption breaks down in complex terrains because the solar irradiance depends on
the angle between the direction of the Sun and the surface normal (Solar Incidence
Angle, SIA), which does not equal SZA. The simple SZA strategy also assumes an
ideal clear-sky condition, ignoring weather that changes the actual PAR. On a large
scale, the impact of topography and weather on solar irradiance is non-negligible.

1.4 Thesis outline
My thesis focuses on evaluating remote sensing advances in tracking the season-
ality of GPP at high latitudes, including mechanistically explaining hyperspectral
reflectance tracking LUE (Chapter 2), assessing the SIF-GPP relationship across
high-latitude land cover types (Chapter 3), and the topographic correction on SIF
(Chapter 4).

In Chapter 2 (Cheng et al., 2020), we focused on tracking LUE seasonality using
spectrally resolved reflectance. We continuously measured daily-averaged vege-
tation reflectance (400–900 nm) using a canopy spectrometer system, PhotoSpec
(Grossmann et al., 2018), mounted on top of an eddy-covariance flux tower in a
subalpine evergreen forest at Niwot Ridge, Colorado, USA. We analyzed driving
spectral components in the measured canopy reflectance using both statistical and
process-based approaches. The decomposed spectral components around 531 nm
co-varied with needle-scale carotenoid content, chlorophyll to carotenoid ratios, and
GPP (Figure 2.7), supporting the interpretation of the PRI and CCI, while little sea-
sonal variation in both NDVI and NIRv in this ecosystem. Reconstructing GPP from
vegetation reflectance using Partial Least Squares Regression (PLSR) explained ap-
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proximately 87% of the variability in observed GPP. Our results link the seasonal
variation of reflectance to the pool size of photoprotective pigments, highlighting all
spectral locations within 400–900 nm associated with LUE seasonality in evergreen
forests.

In Chapter 3, we made breakthroughs in evaluating the SIF-GPP relationship with
extensive spatial coverage across heterogeneous high-latitude land cover types with
unique vegetation compositions. We evaluated the correlation and the goodness of
the fit between TROPOMI SIF (Köhler et al., 2018) and Fluxcom GPP, a state-of-
the-art GPP product upscaled from EC GPP and remotely sensed surface conditions
(Jung et al., 2020; Tramontana et al., 2016). We found a large variance in the
scale factor between SIF and GPP within the Arctic-Boreal region. Meanwhile,
we found the following uncertainties in the resulting SIF-GPP relationship: 1) high
bias in reflectance-based GPP products due to snow and water, 2) topographic
dependence of the SIF-GPP relationship, and 3) heterogeneous sub-pixel land cover
compositions across spatial scales. Taken together, our reported scale factor, statistic
metrics (Pearson’s r2 and reduced j2), and uncertainty evaluations can help improve
terrestrial biosphere models and cope with model-data uncertainties.

In Chapter 4, we reduce uncertainties in satellite-measured SIF due to weather
and topography. To account for the weather impact, we compared the length-
of-day correction using the idealized diurnal PAR cycle, i.e. SZA, versus the
actual diurnal PAR cycle. We found that the original approach using SZA is a
reliable approximation for flat surfaces under a clear sky. At longer time-scales,
a sampling (clear sky) bias might exist due to cloud-filtering of satellite data. In
the Amazon, the true monthly mean PAR can be 25% lower than the one for
cloud-filtered days, potentially inducing seasonal SIF biases on the same order. To
account for the topographic impact, we proposed a new length-of-day correction
factor with a geometric correction on direct PAR with SIA to replace the original
correcting strategy (Köhler et al., 2018) using SZA. In the San Gabriel Mountains,
California, USA, the modified DC is changed by as much as 500% for strongly
tilted surfaces. This modification is especially important for satellite instruments
with fine spatial resolutions, where surface slopes are not averaged out and can
have a substantial impact on reflectance and SIF. Overall, our refined length-of-day
correction factor and averaging strategy can help both satellite SIF and vegetation
indices interpretation. In addition, it will facilitate intercomparisons over a wide
range of spatio-temporal scales and overpass times.
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In summary, my thesis showcases the ability to track the seasonality of GPP from
the ground level to regional scales at high latitudes using advanced remote sensing
tools. My results not only mechanistically explain these tools but also provide ref-
erences for future satellite missions for better evaluating GPP by selecting spectral
bands, correcting topographic parameters, and coping with model-data uncertain-
ties. Although not all study regions in my thesis are from high latitudes, they were
chosen to be best suitable for addressing the scientific question in each project.
Thus, the methodology and results of these projects are applicable to global-scale
studies. Overall, my thesis will help better constrain the uncertainties of global GPP
estimation and the global carbon cycle.
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2.1 Abstract
Photosynthesis by terrestrial plants represents the majority of CO2 uptake on Earth,
yet it is difficult to measure directly from space. Estimation of Gross Primary
Production (GPP) from remote sensing indices represents a primary source of un-
certainty, in particular for observing seasonal variations in evergreen forests. Recent
vegetation remote sensing techniques have highlighted spectral regions sensitive to
dynamic changes in leaf/needle carotenoid composition, showing promise for track-
ing seasonal changes in photosynthesis of evergreen forests. However, these have
mostly been investigated with intermittent field campaigns, or with narrow-band
spectrometers in these ecosystems. To investigate this potential, we continuously
measured vegetation reflectance (400–900 nm) using a canopy spectrometer sys-
tem, PhotoSpec, mounted on top of an eddy-covariance flux tower in a subalpine
evergreen forest at Niwot Ridge, Colorado, USA. We analyzed driving spectral com-
ponents in the measured canopy reflectance using both statistical and process-based
approaches. The decomposed spectral components co-varied with carotenoid con-
tent and GPP, supporting the interpretation of the Photochemical Reflectance Index
(PRI) and the Chlorophyll/Carotenoid Index (CCI). Although the entire 400-900
nm range showed additional spectral changes near the red-edge, it did not provide
significant improvements in GPP predictions. We found little seasonal variation in
both Normalized Difference Vegetation Index (NDVI) and the Near Infrared Veg-
etation Index (NIRv) in this ecosystem. In addition, we quantitatively determined
needle-scale chlorophyll to carotenoid ratios as well as anthocyanin contents us-
ing full spectrum inversions, both of which were tightly correlated with seasonal
GPP changes. Reconstructing GPP from vegetation reflectance using Partial Least
Squares Regression (PLSR) explained approximately 87% of the variability in ob-
served GPP. Our results linked the seasonal variation of reflectance to the pool size
of photoprotective pigments, highlighting all spectral locations within 400–900 nm
associated with GPP seasonality in evergreen forests.

2.2 Introduction
Terrestrial Gross Primary Production (GPP), the gross CO2 uptake through pho-
tosynthesis, is the largest uptake of atmospheric CO2 (Ciais et al., 2013), yet the
uncertainties are large, hampering our ability to monitor and predict the response of
the terrestrial biosphere to climate change (Ahlström et al., 2012). Hence, accurately
mapping GPP globally is critical. In contrast to unevenly distributed ground-level
measurements such as Fluxnet (Baldocchi et al., 2001), satellites can infer GPP glob-
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ally and uniformly. Remote sensing techniques are based on the optical response of
vegetation to incoming sunlight, which can track photosynthesis via the absorption
features of photosynthetic and photoprotective pigments (Gamon et al., 1992, 2016;
Liu and Huete, 1995; Rouse Jr et al., 1974). Progress is particularly important
for evergreen forests, which can have large seasonal dynamics in photosynthesis
but low variability in canopy structure and color. However, these promising tech-
niques still lack a comprehensive evaluation/validation using both continuous in-situ
measurements as well as process-based simulations.

GPP can be expressed as a function of photosynthetically active radiation (PAR), the
fraction of PAR absorbed by the canopy (fPAR) and Light-Use Efficiency (LUE):

GPP = PAR � fPAR � LUE� (2.1)

with LUE representing the efficiency of plants to fix carbon using absorbed light
(Monteith, 1972; Monteith and Moss, 1977). The accuracy of remote sensing
derived GPP is limited by the estimation of LUE, which is more dynamic and difficult
to measure remotely than PAR and fPAR, particularly in evergreen ecosystems.
There have been many studies inferring the light absorbed by canopies (i.e. fPAR)
from Vegetation Indices (VIs) that estimate the ’greenness’ of canopies (Glenn
et al., 2008; Robinson et al., 2018; Running et al., 2004; Zhao et al., 2005), such as
the Normalized Difference Vegetation Index (NDVI; Rouse Jr et al., 1974; Tucker,
1979), the Enhanced Vegetation Index (EVI; Huete et al., 1997; Liu and Huete,
1995) and the Near Infrared Vegetation Index (NIRv; Badgley et al., 2017). Current
GPP data products derived from Equation (2.1) rely on the modulation of abiotic
conditions to estimate LUE (Xiao et al., 2004). LUE is derived empirically by
defining a general timing of dormancy for all evergreen forests with the same plant
functional type (e.g. Krinner et al., 2005) or the same meteorological thresholds (e.g.
Running et al., 2004). However, within the same climate region or plant functional
type, forests are not identical — leading to uncertainties in estimated LUE (Gamon
et al., 2016; Stylinski et al., 2002; Zuromski et al., 2018), which propagate to the
estimation of GPP.

Because evergreen trees retain most of their needles and chlorophyll throughout the
entire year (Bowling et al., 2018), LUE in evergreens is regulated by needle biochem-
istry. As LUE falls with the onset of winter due to unfavorable environmental con-
ditions and seasonal downregulation of photosynthetic capacity, evergreen needles
quench excess absorbed light via thermal energy dissipation that involves xantho-
phyll cycle and other pigments (Adams and Demmig-Adams, 1994; Demmig-Adams



17

and Adams, 1996; Verhoeven et al., 1996; Zarter et al., 2006). Thermal energy dissi-
pation is a primary de-excitation pathway measured by pulse-amplitude fluorescence
as non-photochemical quenching (NPQ; Schreiber et al. (1986)). At the same time,
a small amount of radiation, Solar-Induced Fluorescence (SIF), via the de-excitation
of absorbed photons is emitted by photosystem II (Genty et al., 1989; Krause and
Weis, 1991).

Some vegetation indices are sensitive to photoprotective pigments (e.g. carotenoids)
and can characterize the seasonality of evergreen LUE with some success. For in-
stance, the Photochemical Reflectance Index (PRI; Gamon et al., 1992, 1997) and
Chlorophyll/Carotenoid Index (CCI; Gamon et al., 2016) both use wavelength re-
gions that represent carotenoid absorption features around 531 nm at the leaf level
(Wong and Gamon, 2015a,b; Wong et al., 2019) and show great promise for es-
timating photosynthetic seasonality (Hall et al., 2008; Hilker et al., 2011a). Due
to the relatively invariant canopy structure in evergreen forests, CCI and PRI have
been applied at the canopy level as well (Gamon et al., 2016; Garbulsky et al.,
2011; Middleton et al., 2016). In addition, the Green Chromatic Coordinate (GCC;
Richardson et al., 2009, 2018; Sonnentag et al., 2012), an index derived from the
brightness levels of RGB canopy images, is also capable of tracking the seasonality
of evergreen GPP (Bowling et al., 2018). However, the full potential of spectrally
resolved reflectance measurements to explore the photosynthetic phenology of ever-
greens has not been comprehensively explored at the canopy scale. The evaluation
of pigment-driven spectral changes in evergreen forests over the course of a season is
necessary to determine where, when, and why certain wavelength regions could ad-
vance our mechanistic understanding of canopy photosynthetic and photoprotective
pigments. However, this has not been done with both empirical and process-based
methods using continuously measured canopy hyperspectral reflectance and in situ
pigment samples.

Here, we used continuous measurements in both spectral space (full spectrum
between 400–900 nm) and time (daily over an entire year) to evaluate the potential
of hyperspectral canopy reflectance for better understanding the sensitivity of VIs to
pigment changes that regulate GPP in evergreen forests. Continuous measurements
of spectrally resolved reflectance at the canopy scale have so far been sparse at
evergreen forest sites (Gamon et al., 2006; Hilker et al., 2011b; Porcar-Castell et al.,
2015; Rautiainen et al., 2018; Wong et al., 2020). There are only a few empirical
studies on hyperspectral canopy reflectance in evergreen forests (Singh et al., 2015;
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Smith et al., 2002). Yet, empirically decomposed canopy spectral reflectance has
been used as a predictor of maximum photosynthetic capacity (Barnes et al., 2017;
Dechant et al., 2017; Meacham-Hensold et al., 2019; Serbin et al., 2012; Silva-Perez
et al., 2018), GPP (Dechant et al., 2019; DuBois et al., 2018; Huemmrich et al.,
2017, 2019; Matthes et al., 2015), and other physiological properties (Asner et al.,
2011; Serbin et al., 2014; Ustin et al., 2004, 2009).

In contrast to empirical methods, process-based approaches, such as canopy Radia-
tive Transfer Models (RTMs) can help to quantitatively link canopy photosynthesis
with leaf-level contents of photosynthetic/photoprotective pigments (Feret et al.,
2008; Jacquemoud et al., 2009). With RTMs, we can use spectrally resolved re-
flectance to directly derive leaf pigment contents (Féret et al., 2017; Jacquemoud
et al., 1995) and plant traits (Féret et al., 2019) .

In addition to seasonal changes in pigment concentrations, canopy SIF was found
to correlate significantly with the seasonality of photoprotective pigment content in
a subalpine coniferous forest (Magney et al., 2019). Steady state SIF is regulated
by NPQ and photochemistry (Porcar-Castell et al., 2014), and it provides comple-
mentary information on canopy GPP. Yang and van der Tol (2018) justified that
the relative SIF, SIF normalized by the reflected near-infrared radiation, is more
representative of the physiological variations of SIF as it is comparable to a SIF
yield (Genty et al., 1989; Guanter et al., 2014). Our continuous optical measure-
ments make it possible to differentiate mechanisms undergoing seasonal changes
by comparing the decomposed reflectance spectrum against relative far-red SIF.
Additionally, using relative SIF can effectively correct for incoming irradiance and
account for the sunlit/shade fraction within the observation Field of View (FOV) of
PhotoSpec (Magney et al., 2019).

In the present study, we analyzed continuous canopy reflectance data from PhotoSpec
at a subalpine evergreen forest at the Niwot Ridge AmeriFlux site (US-NR1) in
Colorado, US, and sought to understand the mechanisms controlling the seasonality
of photosynthesis using continuous hyperspectral remote sensing. We first explored
empirical techniques to study all seasonal variations in reflectance spectra, identified
specific spectral regions that best explained the seasonal changes in GPP, and then
linked these spectral features to pigment absorption features that impacted both
biochemical and biophysical traits. We also used full spectral inversions using a
canopy RTM to infer quantitative estimates of leaf pigment pool sizes. Finally,
we compared the spring onset of photosynthesis captured by different methods,
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VIs, and relative SIF to determine the underlying mechanisms that contributed to
photosynthetic phenology.

2.3 Material and methods
Study site
The high-altitude (3050 m above sea level) subalpine evergreen forest near Niwot
Ridge, Colorado, US, is an active AmeriFlux site (US-NR1, Lat: 40.0329 °N, Lon:
105.5464 °W; tower height: 26 m; Blanken et al., 2019; Burns et al., 2015, 2016;
Monson et al., 2002). Three species dominate: subalpine fir (Abies lasiocarpa
var. bifolia), Englemann spruce (Picea engelmannii), and lodgepole pine (Pinus
contorta) with an average height of 11.5 m, a leaf area index of 4.2 (Burns et al.,
2016), and minimal understory. The annual mean precipitation and air temperature
are 800 mm and 1.5 °C, respectively (Monson et al., 2002). The high elevation
creates an environment with cold winters (with snow present more than half the
year), while the relatively low latitude (40°N) allows for year-round high solar
irradiation (Monson et al., 2002). Thus, trees have to dissipate a considerable
amount of excess sunlight during winter dormancy, which makes this forest an ideal
site for studying seasonal variation of NPQ including the sustained component of it
during dormancy (Bowling et al., 2018; Magney et al., 2019).

Continuous tower-based measurements of canopy reflectance
PhotoSpec (Grossmann et al., 2018) is a 2D scanning telescope spectrometer unit
originally designed to measure SIF. It also features a broad-band Flame-S spectrom-
eter (Ocean Optics, Inc., Florida, USA), used to measure reflectance from 400 to 900
nm at a moderate (full-width-at-half-maximum = 1.2 nm) spectral resolution with a
FOV of 0.7° (more details in Grossmann et al. (2018); Magney et al. (2019)). In the
summer of 2017, we installed a PhotoSpec system on the top of the US-NR1 eddy-
covariance tower, from where we can scan the canopy by changing both viewing
azimuth angle and zenith angles. On every other summer day and every winter day,
PhotoSpec scans the canopy by changing view zenith angle with small increments
at fixed view azimuth angles, i.e. elevation scans. Only one azimuth position is
kept after Oct 18, 2017 to protect the mechanism from potentially damaging winter
conditions at the site. Spectrally resolved reflectance was calculated using direct
solar irradiance measurements via a cosine diffuser mounted in the upward nadir
direction (Grossmann et al., 2018) as well as reflected radiance from the canopy.
The reflectance data used in this study are from Jun 16, 2017, to Jun 15, 2018.
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Here, we integrated all elevation scans to daily-averaged reflectance (every other day
before Oct 18, 2017) by using all scanning viewing directions with vegetation in the
field of view over the course of a day, filtering for both low light conditions and thick
clouds by requiring PAR to be both at least 100 ‘mol<�2B�1 and 60% of theoretical
clear-sky PAR. A detailed description of data processing can be found in appendix B.
To further test whether bi-directional reflectance effects impacted our daily averages,
we compared the NDVI and NIRv at various canopy positions given a range of solar
zenith and azimuth angles (Figure 2.10-2.12). Neither of the daily averaged VIs
was substantially impacted by the solar geometry supporting the robustness of daily
averaged canopy reflectance. An additional analysis (Figure 2.13) has also shown
the variation in phase angle at a daily time step is not a critical factor for the change
in reflectance.

About 49 winter days exhibited significantly higher reflectances, attributable to snow
within the field of view, which we corroborated with canopy RGB imagery from
the tower. After removing data strongly affected by snow and excluding the days of
instrument outages, 211 valid sample days remained, among which 96 valid sample
days were between DOY 100-300. The daily-averaged reflectance was computed
as the median reflectance from all selected scans for a single day, which was then
smoothed by a 10-point (3.7 nm) box-car filter over the spectral dimension (400
- 900 nm) to remove the noise in the spectra. Figure 2.1(a) shows the seasonally
averaged and spectrally resolved canopy reflectances measured by PhotoSpec.
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Figure 2.1: (a) Seasonally averaged canopy reflectance in winter dormancy (red)
and the growing season (black) from PhotoSpec. (b) Seasonally averaged negative
logarithm transformation of reflectance (400 - 900 nm). For comparison, we nor-
malized the reflectance by the value at 800 nm on each day. Here, we referred to
Nov 13 - Apr 18 as dormancy, and Jun 2 - Aug 21 as the main growing season. The
seasonal averaged canopy reflectance is composed of 39 daily-average reflectance
in the growing season and 113 daily-averaged reflectance in the dormancy.

To further emphasize the change in reflectance as a result of changes in pigment
contents, we transformed the reflectance (shown as ’_) using the negative logarithm
(Equation (2.2)), as light intensity diminishes exponentially with pigment contents
(Horler et al., 1983).

’_ / 4G?„�� � f„_”” (2.2a)

� � f„_” / �;>6„’_” (2.2b)

with f = absorption cross section of pigments.

Therefore, the log-transformed reflectance (Figure 2.1(b)) should correlate more
linearly with pigment contents (shown as �). We also considered a variety of
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typical VIs using the reflectance data from PhotoSpec, such as:

NDVI =
’800 � ’670
’800 ‚ ’670

(Rouse Jr et al., 1974) (2.3a)

NIRv = NDVI � ’800 (Badgley et al., 2017) (2.3b)

PRI =
’531 � ’570
’531 ‚ ’570

(Gamon et al., 1992) (2.3c)

CCI =
’526�536 � ’620�670
’526�536 ‚ ’620�670

(Gamon et al., 2016) (2.3d)

GCC =
’�A44=

’’43 ‚ ’�A44= ‚ ’�;D4
(Richardson et al., 2009)� (2.3e)

In order to calculate GCC, we convolved the reflectance using the instrumental
spectral response function (Figure 2.17; Wingate et al., 2015) of the StarDot NetCam
SC 5 MP IR (StarDot Technologies, Buena Park, CA, USA), which is the standard
camera model used by the PhenoCam Network protocol (Sonnentag et al., 2012).

In addition to the reflectance measurments, we also included relative SIF, far-red
SIF normalized by the reflected near-infrared radiance at 755 nm. The far-red
SIF (745–758 nm, Grossmann et al., 2018) was measured simultaneously with
reflectance with a QEPro spectrometer (Ocean Optics, Inc., Florida, USA). The
daily relative SIF was processed in the same fashion as the reflectance.

Eddy covariance measurements and LUE
Observations of Net Ecosystem Exchange (net flux of CO2, NEE), PAR, and mete-
orological variables made at the US-NR1 tower are part of the official AmeriFlux
Network data (Burns et al., 2016). GPP was estimated in half-hourly intervals
(Reichstein et al., 2005) using the REddyProc package (Wutzler et al., 2018), allow-
ing us to compute LUE (Gamon et al., 2016; Goulden et al., 1996) at half-hourly
intervals.

According to the light response curves, GPP is a nonlinear function of PAR (Fig-
ure 2.2; Harbinson, 2012). Magney et al. (2019) showed that fPAR does not
significantly vary with seasons. We started to observe a photosynthetic saturation
between 500-1000 ‘mol <�2B�1 of PAR (Figure 2.2), when the carboxylation rate,
driven by maximum carboxylation rate (Vcmax), became the limiting factor (Far-
quhar et al., 1980). Thus, we defined the light-saturated GPP (GPPmax), as the
mean half-hourly GPP at PAR levels between 1000 and 1500 ‘mol <�2B�1, a range
which was covered throughout the year (Figure 2.2), even in winter. Therefore,
GPPmax was less susceptible to short term changes in PAR. Yet due to the lower




