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ABSTRACT

A warming trend larger than the global average is changing high-latitude terrestrial
ecosystems. The impact of climate change at high latitudes is especially notable on
the seasonality of vegetation photosynthesis, such as the Arctic greening, length-
ened growing season, and increased peak production in the growing season. As a
critical component of the global carbon cycle and land carbon sink, continuously
monitoring the seasonal trajectory of ecosystem-level photosynthesis, Gross Pri-
mary Production (GPP), is much needed to better understand the climate change
impacts and the sensitivity of high-latitude plant communities under global climate
change. GPP has been estimated from both ground and space. However, sparsely
distributed ground-level measurements are not representative of heterogeneous land
cover and complex terrain in high latitudes. Remote sensing techniques provide
extensive spatial coverage for comparing GPP at the regional scale. In this thesis,
I carefully examine the advances in remote sensing for monitoring GPP at high
latitudes, including using hyperspectral reflectance and Solar-Induced chlorophyll
Fluorescence (SIF). We show that reflectance near 531 nm can track the seasonality
of Light Use Efficiency (LUE), complementing conventional normalized difference
vegetation index which is only a proxy of Absorbed Photosynthetic Active Radiation
(APAR). Tracking both LUE and APAR is critical for improving GPP estimation,
especially in evergreen forests with photosynthetic phenology but sustained canopy
color — a typical land cover type at high latitudes. Satellite-measured SIF can also
track both LUE and APAR. Here, it is shown that the empirical model predicting
GPP using SIF is land cover dependent. The presence of snow and surface, hetero-
geneous land cover, and complex terrains in the high latitudes further complicate the
interpretation of the SIF-GPP relationship. To improve the accuracy of interpreting
SIF in complex terrain, a geometric model is developed to account for variations in
APAR on tilted slopes. The results of this thesis enhance the use of both reflectance
and SIF to help improve terrestrial biosphere models simulating GPP and cope with
model-data uncertainties. The results are also a useful reference for future satel-
lite missions designing instruments and correcting topographic impacts. Overall,
this thesis contributes to better evaluating GPP and constraining climate projection
uncertainties.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Terrestrial ecosystems are a critical part of the global carbon cycle. Plant carbon
uptake via photosynthesis, as the largest carbon sink for atmospheric CO2 (Ciais
et al., 2014), contributes to vegetation-climate feedback through carbon, water, and
energy exchange between the land and atmosphere (Peñuelas and Filella, 2009;
Richardson et al., 2013). However, an amplified warming trend and more frequent
warming events have occurred at high latitudes (Field, 2014; Ford et al., 2015;
Post et al., 2019; Stocker et al., 2013; Walsh and Brettschneider, 2019), threatening
current high-latitude plant communities (Box et al., 2019; Ernakovich et al., 2014).
The impact of climate change at high latitudes is especially notable in the seasonality
of vegetation photosynthesis, such as the Arctic greening (Berner et al., 2020),
lengthened growing season (Park et al., 2016), and increased peak production in the
growing season (Elmendorf et al., 2012). These changes create high uncertainties in
the projection of the sign and magnitude of the land carbon sink (Loisel et al., 2021;
McGuire et al., 2009; Zona et al., 2022). To better understand climate change impacts
on plant communities, continuously monitoring the seasonal trajectory of ecosystem-
level photosynthesis, Gross Primary Production (GPP) is much needed. While
net carbon fluxes, i.e. Net Ecosystem Exchange (NEE), are ultimately governing
atmospheric CO2 abundances, my thesis will focus on the engine of biogeochemical
cycles here, i.e. the uptake through photosynthesis. In the future, the thawing of
permafrost could lead to the release of additional CO2, which could counteract some
of the arctic greening that we observe.

1.2 Overview of conventional GPP measurements
GPP has been estimated from both ground and space. On the ground, Eddy Covari-
ance (EC) techniques can derive GPP from directly measured net land-atmosphere
CO2 flux at the ecosystem level (Pastorello et al., 2020). There are hundreds of flux
towers around the world measuring GPP (Falge et al., 2017). Yet the EC towers
at high latitudes are often sparsely located in easily accessible regions. Hence, a
large portion of high latitudes has no GPP measurement. In addition, the temporal
coverage of EC towers differs among towers. Therefore, GPP derived from EC
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towers is often inadequate to be representative at regional scales at high latitudes
(Pallandt et al., 2022).

Remote sensing techniques enable global and almost continuous monitoring of GPP
from space. The extensive spatial coverage and consistent time range allow for
comparisons of GPP across heterogeneous land cover types (Funk et al., 2004) and
complex terrain (Roland et al., 2019) in the high latitudes where EC towers have
limited access. Although the temporal resolution of satellite products is often coarser
than ground-based measurements, it is sufficient for extracting the seasonality of
GPP.

Remotely sensed GPP is indirectly inferred from proxies of the plant photochemical
processes. The simplest model for inferring GPP in remote sensing is as follows:

𝐺𝑃𝑃 = 𝑓 𝑃𝐴𝑅 × 𝑃𝐴𝑅 × 𝐿𝑈𝐸. (1.1)

Here, PAR is the photosynthetically active radiation, and fPAR is the fraction of PAR
absorbed by a canopy. Thus, Absorbed PAR (APAR) = fPAR×PAR. APAR is mostly
partitioned between photosynthesis (Photochemical Quenching, PQ) and heat dis-
sipation (Non-Photochemical Quenching, NPQ) (Björkman and Demmig-Adams,
1995; Schreiber et al., 1986). LUE describes the effective daily photosynthetic
efficiency of APAR (Monteith, 1972; Monteith and Moss, 1977).

Conventional remote sensing tools are proxies of APAR, such as the Normalized
Difference Vegetation Index (NDVI; Tucker 1979), kernel-based NDVI (kNDVI;
Camps-Valls et al. 2021), and Near-Infrared Reflectance of Vegetation (NIRv; Bad-
gley et al. 2017), which essentially calculate the difference in reflectance between
red and far-red bands, also known as the red edge. The red edge is sensitive to the
green leaf area and the total amount of chlorophyll in the canopy within the field of
view (Goward et al., 1985; Justice et al., 1985; Tucker et al., 1985). However, the
greenness of a canopy only represents the potential GPP without constraining LUE.
The GPP products solely using conventional VIs needs to parameterize LUE from
empirical relationships of LUE and meteorological conditions (Krinner et al., 2005;
Running et al., 2004). Inevitably, the LUE model limits the accuracy of the derived
GPP. This drawback is especially problematic in evergreen forests, a main land
cover type at high latitudes, with seasonally changing photosynthetic efficiencies
but sustained canopy color.
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1.3 Advances in remote sensing techniques
Advances in remote sensing techniques have shown promise to track LUE in addition
to APAR, such as evaluating NPQ and Solar-Induced chlorophyll Fluorescence (SIF).

Evaluating NPQ
The Photochemical Reflectance Index (PRI) and Chlorophyll/carotenoid Index (CCI)
represent a genre of vegetation Indices (VIs) that can provide information on
NPQ. PRI and CCI highlight the spectral regions sensitive to dynamic changes in
leaf/needle photoprotective pigment composition (Gamon et al., 2016, 1997), show-
ing promise for tracking seasonal changes in photosynthesis of evergreen forests
(Adams and Demmig-Adams, 1994; Björkman and Demmig-Adams, 1995). How-
ever, these have mainly been investigated with intermittent field campaigns (Hall
et al., 2008; Hilker et al., 2011) or with narrow-band spectrometers in these ecosys-
tems (Gamon et al., 2016; Huemmrich et al., 2019). The evaluation of pigment-
driven spectral changes in evergreen forests over the course of a season is necessary
to determine where, when, and why certain wavelength regions could advance our
mechanistic understanding of canopy photosynthetic and photoprotective pigments.
However, using continuously measured canopy hyperspectral reflectance and in situ
pigment samples has not been done with both empirical and process-based methods.

Evaluating SIF
SIF is another approach to infer GPP from space, which is defined by a small amount
of photons (650-850 nm) re-emitted from chlorophyll at longer wavelength during
the process of light harvesting in photosynthesis (Genty et al., 1989; Krause and
Weis, 1991). Because spaceborne SIF is not only a proxy for APAR in deciduous
canopies (Dechant et al., 2020), it also partially tracks the partitioning of APAR
between PQ and NPQ, i.e. LUE (Magney et al., 2019). Magney et al. (2020)
reviewed that satellite measured SIF linearly correlated with GPP in multiple biomes.
These benefits make satellite-measured SIF a useful tool for estimating GPP on a
large scale with various land cover types.

As more satellites measuring SIF globally have been launched in recent years (such
as TROPOMI Köhler et al. (2018) and OCO-2 Frankenberg et al. (2014); Sun et al.
(2017)), the regions of interest using SIF to infer GPP are expanding to higher
latitudes in recent studies (Jeong et al., 2017; Luus et al., 2017; Walther et al., 2016,
2018). Turner et al. (2021) and Liu et al. (2022) reported the scale factor of SIF-GPP
relationships as a function of land cover. However, the resulting scale factor from
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previous studies in lower latitudes (Liu et al., 2022; Turner et al., 2021) cannot
represent the heterogeneous land cover with unique vegetation composition at high
latitudes (Bliss et al., 1992). The studies at high latitudes are either limited to the
area with EC towers for validation purposes (Luus et al., 2017) or focus only on
very few land cover types at high latitudes Luus et al. (2017); Walther et al. (2016).
Due to these limitations, the SIF-GPP relationship across land cover types at high
latitudes is not well understood.

Another limitation of SIF is that the satellite measured SIF is an instantaneous value
driven by PAR at the overpass time. For studies focusing on seasonal variations,
the SIF measurement needs to be corrected to the daily averaged value. The current
correction strategy assumes the surface is flat so that the Solar Zenith Angle (SZA)
is sufficient to approximate the solar irradiance (Köhler et al., 2018). However, this
assumption breaks down in complex terrains because the solar irradiance depends on
the angle between the direction of the Sun and the surface normal (Solar Incidence
Angle, SIA), which does not equal SZA. The simple SZA strategy also assumes an
ideal clear-sky condition, ignoring weather that changes the actual PAR. On a large
scale, the impact of topography and weather on solar irradiance is non-negligible.

1.4 Thesis outline
My thesis focuses on evaluating remote sensing advances in tracking the season-
ality of GPP at high latitudes, including mechanistically explaining hyperspectral
reflectance tracking LUE (Chapter 2), assessing the SIF-GPP relationship across
high-latitude land cover types (Chapter 3), and the topographic correction on SIF
(Chapter 4).

In Chapter 2 (Cheng et al., 2020), we focused on tracking LUE seasonality using
spectrally resolved reflectance. We continuously measured daily-averaged vege-
tation reflectance (400–900 nm) using a canopy spectrometer system, PhotoSpec
(Grossmann et al., 2018), mounted on top of an eddy-covariance flux tower in a
subalpine evergreen forest at Niwot Ridge, Colorado, USA. We analyzed driving
spectral components in the measured canopy reflectance using both statistical and
process-based approaches. The decomposed spectral components around 531 nm
co-varied with needle-scale carotenoid content, chlorophyll to carotenoid ratios, and
GPP (Figure 2.7), supporting the interpretation of the PRI and CCI, while little sea-
sonal variation in both NDVI and NIRv in this ecosystem. Reconstructing GPP from
vegetation reflectance using Partial Least Squares Regression (PLSR) explained ap-
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proximately 87% of the variability in observed GPP. Our results link the seasonal
variation of reflectance to the pool size of photoprotective pigments, highlighting all
spectral locations within 400–900 nm associated with LUE seasonality in evergreen
forests.

In Chapter 3, we made breakthroughs in evaluating the SIF-GPP relationship with
extensive spatial coverage across heterogeneous high-latitude land cover types with
unique vegetation compositions. We evaluated the correlation and the goodness of
the fit between TROPOMI SIF (Köhler et al., 2018) and Fluxcom GPP, a state-of-
the-art GPP product upscaled from EC GPP and remotely sensed surface conditions
(Jung et al., 2020; Tramontana et al., 2016). We found a large variance in the
scale factor between SIF and GPP within the Arctic-Boreal region. Meanwhile,
we found the following uncertainties in the resulting SIF-GPP relationship: 1) high
bias in reflectance-based GPP products due to snow and water, 2) topographic
dependence of the SIF-GPP relationship, and 3) heterogeneous sub-pixel land cover
compositions across spatial scales. Taken together, our reported scale factor, statistic
metrics (Pearson’s r2 and reduced 𝜒2), and uncertainty evaluations can help improve
terrestrial biosphere models and cope with model-data uncertainties.

In Chapter 4, we reduce uncertainties in satellite-measured SIF due to weather
and topography. To account for the weather impact, we compared the length-
of-day correction using the idealized diurnal PAR cycle, i.e. SZA, versus the
actual diurnal PAR cycle. We found that the original approach using SZA is a
reliable approximation for flat surfaces under a clear sky. At longer time-scales,
a sampling (clear sky) bias might exist due to cloud-filtering of satellite data. In
the Amazon, the true monthly mean PAR can be 25% lower than the one for
cloud-filtered days, potentially inducing seasonal SIF biases on the same order. To
account for the topographic impact, we proposed a new length-of-day correction
factor with a geometric correction on direct PAR with SIA to replace the original
correcting strategy (Köhler et al., 2018) using SZA. In the San Gabriel Mountains,
California, USA, the modified DC is changed by as much as 500% for strongly
tilted surfaces. This modification is especially important for satellite instruments
with fine spatial resolutions, where surface slopes are not averaged out and can
have a substantial impact on reflectance and SIF. Overall, our refined length-of-day
correction factor and averaging strategy can help both satellite SIF and vegetation
indices interpretation. In addition, it will facilitate intercomparisons over a wide
range of spatio-temporal scales and overpass times.
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In summary, my thesis showcases the ability to track the seasonality of GPP from
the ground level to regional scales at high latitudes using advanced remote sensing
tools. My results not only mechanistically explain these tools but also provide ref-
erences for future satellite missions for better evaluating GPP by selecting spectral
bands, correcting topographic parameters, and coping with model-data uncertain-
ties. Although not all study regions in my thesis are from high latitudes, they were
chosen to be best suitable for addressing the scientific question in each project.
Thus, the methodology and results of these projects are applicable to global-scale
studies. Overall, my thesis will help better constrain the uncertainties of global GPP
estimation and the global carbon cycle.
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2.1 Abstract
Photosynthesis by terrestrial plants represents the majority of CO2 uptake on Earth,
yet it is difficult to measure directly from space. Estimation of Gross Primary
Production (GPP) from remote sensing indices represents a primary source of un-
certainty, in particular for observing seasonal variations in evergreen forests. Recent
vegetation remote sensing techniques have highlighted spectral regions sensitive to
dynamic changes in leaf/needle carotenoid composition, showing promise for track-
ing seasonal changes in photosynthesis of evergreen forests. However, these have
mostly been investigated with intermittent field campaigns, or with narrow-band
spectrometers in these ecosystems. To investigate this potential, we continuously
measured vegetation reflectance (400–900 nm) using a canopy spectrometer sys-
tem, PhotoSpec, mounted on top of an eddy-covariance flux tower in a subalpine
evergreen forest at Niwot Ridge, Colorado, USA. We analyzed driving spectral com-
ponents in the measured canopy reflectance using both statistical and process-based
approaches. The decomposed spectral components co-varied with carotenoid con-
tent and GPP, supporting the interpretation of the Photochemical Reflectance Index
(PRI) and the Chlorophyll/Carotenoid Index (CCI). Although the entire 400-900
nm range showed additional spectral changes near the red-edge, it did not provide
significant improvements in GPP predictions. We found little seasonal variation in
both Normalized Difference Vegetation Index (NDVI) and the Near Infrared Veg-
etation Index (NIRv) in this ecosystem. In addition, we quantitatively determined
needle-scale chlorophyll to carotenoid ratios as well as anthocyanin contents us-
ing full spectrum inversions, both of which were tightly correlated with seasonal
GPP changes. Reconstructing GPP from vegetation reflectance using Partial Least
Squares Regression (PLSR) explained approximately 87% of the variability in ob-
served GPP. Our results linked the seasonal variation of reflectance to the pool size
of photoprotective pigments, highlighting all spectral locations within 400–900 nm
associated with GPP seasonality in evergreen forests.

2.2 Introduction
Terrestrial Gross Primary Production (GPP), the gross CO2 uptake through pho-
tosynthesis, is the largest uptake of atmospheric CO2 (Ciais et al., 2013), yet the
uncertainties are large, hampering our ability to monitor and predict the response of
the terrestrial biosphere to climate change (Ahlström et al., 2012). Hence, accurately
mapping GPP globally is critical. In contrast to unevenly distributed ground-level
measurements such as Fluxnet (Baldocchi et al., 2001), satellites can infer GPP glob-
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ally and uniformly. Remote sensing techniques are based on the optical response of
vegetation to incoming sunlight, which can track photosynthesis via the absorption
features of photosynthetic and photoprotective pigments (Gamon et al., 1992, 2016;
Liu and Huete, 1995; Rouse Jr et al., 1974). Progress is particularly important
for evergreen forests, which can have large seasonal dynamics in photosynthesis
but low variability in canopy structure and color. However, these promising tech-
niques still lack a comprehensive evaluation/validation using both continuous in-situ
measurements as well as process-based simulations.

GPP can be expressed as a function of photosynthetically active radiation (PAR), the
fraction of PAR absorbed by the canopy (fPAR) and Light-Use Efficiency (LUE):

GPP = PAR · fPAR · LUE, (2.1)

with LUE representing the efficiency of plants to fix carbon using absorbed light
(Monteith, 1972; Monteith and Moss, 1977). The accuracy of remote sensing
derived GPP is limited by the estimation of LUE, which is more dynamic and difficult
to measure remotely than PAR and fPAR, particularly in evergreen ecosystems.
There have been many studies inferring the light absorbed by canopies (i.e. fPAR)
from Vegetation Indices (VIs) that estimate the ’greenness’ of canopies (Glenn
et al., 2008; Robinson et al., 2018; Running et al., 2004; Zhao et al., 2005), such as
the Normalized Difference Vegetation Index (NDVI; Rouse Jr et al., 1974; Tucker,
1979), the Enhanced Vegetation Index (EVI; Huete et al., 1997; Liu and Huete,
1995) and the Near Infrared Vegetation Index (NIRv; Badgley et al., 2017). Current
GPP data products derived from Equation (2.1) rely on the modulation of abiotic
conditions to estimate LUE (Xiao et al., 2004). LUE is derived empirically by
defining a general timing of dormancy for all evergreen forests with the same plant
functional type (e.g. Krinner et al., 2005) or the same meteorological thresholds (e.g.
Running et al., 2004). However, within the same climate region or plant functional
type, forests are not identical — leading to uncertainties in estimated LUE (Gamon
et al., 2016; Stylinski et al., 2002; Zuromski et al., 2018), which propagate to the
estimation of GPP.

Because evergreen trees retain most of their needles and chlorophyll throughout the
entire year (Bowling et al., 2018), LUE in evergreens is regulated by needle biochem-
istry. As LUE falls with the onset of winter due to unfavorable environmental con-
ditions and seasonal downregulation of photosynthetic capacity, evergreen needles
quench excess absorbed light via thermal energy dissipation that involves xantho-
phyll cycle and other pigments (Adams and Demmig-Adams, 1994; Demmig-Adams
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and Adams, 1996; Verhoeven et al., 1996; Zarter et al., 2006). Thermal energy dissi-
pation is a primary de-excitation pathway measured by pulse-amplitude fluorescence
as non-photochemical quenching (NPQ; Schreiber et al. (1986)). At the same time,
a small amount of radiation, Solar-Induced Fluorescence (SIF), via the de-excitation
of absorbed photons is emitted by photosystem II (Genty et al., 1989; Krause and
Weis, 1991).

Some vegetation indices are sensitive to photoprotective pigments (e.g. carotenoids)
and can characterize the seasonality of evergreen LUE with some success. For in-
stance, the Photochemical Reflectance Index (PRI; Gamon et al., 1992, 1997) and
Chlorophyll/Carotenoid Index (CCI; Gamon et al., 2016) both use wavelength re-
gions that represent carotenoid absorption features around 531 nm at the leaf level
(Wong and Gamon, 2015a,b; Wong et al., 2019) and show great promise for es-
timating photosynthetic seasonality (Hall et al., 2008; Hilker et al., 2011a). Due
to the relatively invariant canopy structure in evergreen forests, CCI and PRI have
been applied at the canopy level as well (Gamon et al., 2016; Garbulsky et al.,
2011; Middleton et al., 2016). In addition, the Green Chromatic Coordinate (GCC;
Richardson et al., 2009, 2018; Sonnentag et al., 2012), an index derived from the
brightness levels of RGB canopy images, is also capable of tracking the seasonality
of evergreen GPP (Bowling et al., 2018). However, the full potential of spectrally
resolved reflectance measurements to explore the photosynthetic phenology of ever-
greens has not been comprehensively explored at the canopy scale. The evaluation
of pigment-driven spectral changes in evergreen forests over the course of a season is
necessary to determine where, when, and why certain wavelength regions could ad-
vance our mechanistic understanding of canopy photosynthetic and photoprotective
pigments. However, this has not been done with both empirical and process-based
methods using continuously measured canopy hyperspectral reflectance and in situ
pigment samples.

Here, we used continuous measurements in both spectral space (full spectrum
between 400–900 nm) and time (daily over an entire year) to evaluate the potential
of hyperspectral canopy reflectance for better understanding the sensitivity of VIs to
pigment changes that regulate GPP in evergreen forests. Continuous measurements
of spectrally resolved reflectance at the canopy scale have so far been sparse at
evergreen forest sites (Gamon et al., 2006; Hilker et al., 2011b; Porcar-Castell et al.,
2015; Rautiainen et al., 2018; Wong et al., 2020). There are only a few empirical
studies on hyperspectral canopy reflectance in evergreen forests (Singh et al., 2015;
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Smith et al., 2002). Yet, empirically decomposed canopy spectral reflectance has
been used as a predictor of maximum photosynthetic capacity (Barnes et al., 2017;
Dechant et al., 2017; Meacham-Hensold et al., 2019; Serbin et al., 2012; Silva-Perez
et al., 2018), GPP (Dechant et al., 2019; DuBois et al., 2018; Huemmrich et al.,
2017, 2019; Matthes et al., 2015), and other physiological properties (Asner et al.,
2011; Serbin et al., 2014; Ustin et al., 2004, 2009).

In contrast to empirical methods, process-based approaches, such as canopy Radia-
tive Transfer Models (RTMs) can help to quantitatively link canopy photosynthesis
with leaf-level contents of photosynthetic/photoprotective pigments (Feret et al.,
2008; Jacquemoud et al., 2009). With RTMs, we can use spectrally resolved re-
flectance to directly derive leaf pigment contents (Féret et al., 2017; Jacquemoud
et al., 1995) and plant traits (Féret et al., 2019) .

In addition to seasonal changes in pigment concentrations, canopy SIF was found
to correlate significantly with the seasonality of photoprotective pigment content in
a subalpine coniferous forest (Magney et al., 2019). Steady state SIF is regulated
by NPQ and photochemistry (Porcar-Castell et al., 2014), and it provides comple-
mentary information on canopy GPP. Yang and van der Tol (2018) justified that
the relative SIF, SIF normalized by the reflected near-infrared radiation, is more
representative of the physiological variations of SIF as it is comparable to a SIF
yield (Genty et al., 1989; Guanter et al., 2014). Our continuous optical measure-
ments make it possible to differentiate mechanisms undergoing seasonal changes
by comparing the decomposed reflectance spectrum against relative far-red SIF.
Additionally, using relative SIF can effectively correct for incoming irradiance and
account for the sunlit/shade fraction within the observation Field of View (FOV) of
PhotoSpec (Magney et al., 2019).

In the present study, we analyzed continuous canopy reflectance data from PhotoSpec
at a subalpine evergreen forest at the Niwot Ridge AmeriFlux site (US-NR1) in
Colorado, US, and sought to understand the mechanisms controlling the seasonality
of photosynthesis using continuous hyperspectral remote sensing. We first explored
empirical techniques to study all seasonal variations in reflectance spectra, identified
specific spectral regions that best explained the seasonal changes in GPP, and then
linked these spectral features to pigment absorption features that impacted both
biochemical and biophysical traits. We also used full spectral inversions using a
canopy RTM to infer quantitative estimates of leaf pigment pool sizes. Finally,
we compared the spring onset of photosynthesis captured by different methods,
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VIs, and relative SIF to determine the underlying mechanisms that contributed to
photosynthetic phenology.

2.3 Material and methods
Study site
The high-altitude (3050 m above sea level) subalpine evergreen forest near Niwot
Ridge, Colorado, US, is an active AmeriFlux site (US-NR1, Lat: 40.0329 °N, Lon:
105.5464 °W; tower height: 26 m; Blanken et al., 2019; Burns et al., 2015, 2016;
Monson et al., 2002). Three species dominate: subalpine fir (Abies lasiocarpa
var. bifolia), Englemann spruce (Picea engelmannii), and lodgepole pine (Pinus
contorta) with an average height of 11.5 m, a leaf area index of 4.2 (Burns et al.,
2016), and minimal understory. The annual mean precipitation and air temperature
are 800 mm and 1.5 °C, respectively (Monson et al., 2002). The high elevation
creates an environment with cold winters (with snow present more than half the
year), while the relatively low latitude (40°N) allows for year-round high solar
irradiation (Monson et al., 2002). Thus, trees have to dissipate a considerable
amount of excess sunlight during winter dormancy, which makes this forest an ideal
site for studying seasonal variation of NPQ including the sustained component of it
during dormancy (Bowling et al., 2018; Magney et al., 2019).

Continuous tower-based measurements of canopy reflectance
PhotoSpec (Grossmann et al., 2018) is a 2D scanning telescope spectrometer unit
originally designed to measure SIF. It also features a broad-band Flame-S spectrom-
eter (Ocean Optics, Inc., Florida, USA), used to measure reflectance from 400 to 900
nm at a moderate (full-width-at-half-maximum = 1.2 nm) spectral resolution with a
FOV of 0.7° (more details in Grossmann et al. (2018); Magney et al. (2019)). In the
summer of 2017, we installed a PhotoSpec system on the top of the US-NR1 eddy-
covariance tower, from where we can scan the canopy by changing both viewing
azimuth angle and zenith angles. On every other summer day and every winter day,
PhotoSpec scans the canopy by changing view zenith angle with small increments
at fixed view azimuth angles, i.e. elevation scans. Only one azimuth position is
kept after Oct 18, 2017 to protect the mechanism from potentially damaging winter
conditions at the site. Spectrally resolved reflectance was calculated using direct
solar irradiance measurements via a cosine diffuser mounted in the upward nadir
direction (Grossmann et al., 2018) as well as reflected radiance from the canopy.
The reflectance data used in this study are from Jun 16, 2017, to Jun 15, 2018.
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Here, we integrated all elevation scans to daily-averaged reflectance (every other day
before Oct 18, 2017) by using all scanning viewing directions with vegetation in the
field of view over the course of a day, filtering for both low light conditions and thick
clouds by requiring PAR to be both at least 100 𝜇mol 𝑚−2𝑠−1 and 60% of theoretical
clear-sky PAR. A detailed description of data processing can be found in appendix B.
To further test whether bi-directional reflectance effects impacted our daily averages,
we compared the NDVI and NIRv at various canopy positions given a range of solar
zenith and azimuth angles (Figure 2.10-2.12). Neither of the daily averaged VIs
was substantially impacted by the solar geometry supporting the robustness of daily
averaged canopy reflectance. An additional analysis (Figure 2.13) has also shown
the variation in phase angle at a daily time step is not a critical factor for the change
in reflectance.

About 49 winter days exhibited significantly higher reflectances, attributable to snow
within the field of view, which we corroborated with canopy RGB imagery from
the tower. After removing data strongly affected by snow and excluding the days of
instrument outages, 211 valid sample days remained, among which 96 valid sample
days were between DOY 100-300. The daily-averaged reflectance was computed
as the median reflectance from all selected scans for a single day, which was then
smoothed by a 10-point (3.7 nm) box-car filter over the spectral dimension (400
- 900 nm) to remove the noise in the spectra. Figure 2.1(a) shows the seasonally
averaged and spectrally resolved canopy reflectances measured by PhotoSpec.



21

Figure 2.1: (a) Seasonally averaged canopy reflectance in winter dormancy (red)
and the growing season (black) from PhotoSpec. (b) Seasonally averaged negative
logarithm transformation of reflectance (400 - 900 nm). For comparison, we nor-
malized the reflectance by the value at 800 nm on each day. Here, we referred to
Nov 13 - Apr 18 as dormancy, and Jun 2 - Aug 21 as the main growing season. The
seasonal averaged canopy reflectance is composed of 39 daily-average reflectance
in the growing season and 113 daily-averaged reflectance in the dormancy.

To further emphasize the change in reflectance as a result of changes in pigment
contents, we transformed the reflectance (shown as 𝑅𝜆) using the negative logarithm
(Equation (2.2)), as light intensity diminishes exponentially with pigment contents
(Horler et al., 1983).

𝑅𝜆 ∝ 𝑒𝑥𝑝(−𝐶 · 𝜎(𝜆)) (2.2a)

𝐶 · 𝜎(𝜆) ∝ −𝑙𝑜𝑔(𝑅𝜆) (2.2b)

with 𝜎 = absorption cross section of pigments.

Therefore, the log-transformed reflectance (Figure 2.1(b)) should correlate more
linearly with pigment contents (shown as 𝐶). We also considered a variety of
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typical VIs using the reflectance data from PhotoSpec, such as:

NDVI =
𝑅800 − 𝑅670
𝑅800 + 𝑅670

(Rouse Jr et al., 1974) (2.3a)

NIRv = NDVI ∗ 𝑅800 (Badgley et al., 2017) (2.3b)

PRI =
𝑅531 − 𝑅570
𝑅531 + 𝑅570

(Gamon et al., 1992) (2.3c)

CCI =
𝑅526−536 − 𝑅620−670
𝑅526−536 + 𝑅620−670

(Gamon et al., 2016) (2.3d)

GCC =
𝑅𝐺𝑟𝑒𝑒𝑛

𝑅𝑅𝑒𝑑 + 𝑅𝐺𝑟𝑒𝑒𝑛 + 𝑅𝐵𝑙𝑢𝑒

(Richardson et al., 2009). (2.3e)

In order to calculate GCC, we convolved the reflectance using the instrumental
spectral response function (Figure 2.17; Wingate et al., 2015) of the StarDot NetCam
SC 5 MP IR (StarDot Technologies, Buena Park, CA, USA), which is the standard
camera model used by the PhenoCam Network protocol (Sonnentag et al., 2012).

In addition to the reflectance measurments, we also included relative SIF, far-red
SIF normalized by the reflected near-infrared radiance at 755 nm. The far-red
SIF (745–758 nm, Grossmann et al., 2018) was measured simultaneously with
reflectance with a QEPro spectrometer (Ocean Optics, Inc., Florida, USA). The
daily relative SIF was processed in the same fashion as the reflectance.

Eddy covariance measurements and LUE
Observations of Net Ecosystem Exchange (net flux of CO2, NEE), PAR, and mete-
orological variables made at the US-NR1 tower are part of the official AmeriFlux
Network data (Burns et al., 2016). GPP was estimated in half-hourly intervals
(Reichstein et al., 2005) using the REddyProc package (Wutzler et al., 2018), allow-
ing us to compute LUE (Gamon et al., 2016; Goulden et al., 1996) at half-hourly
intervals.

According to the light response curves, GPP is a nonlinear function of PAR (Fig-
ure 2.2; Harbinson, 2012). Magney et al. (2019) showed that fPAR does not
significantly vary with seasons. We started to observe a photosynthetic saturation
between 500-1000 𝜇mol 𝑚−2𝑠−1 of PAR (Figure 2.2), when the carboxylation rate,
driven by maximum carboxylation rate (Vcmax), became the limiting factor (Far-
quhar et al., 1980). Thus, we defined the light-saturated GPP (GPPmax), as the
mean half-hourly GPP at PAR levels between 1000 and 1500 𝜇mol 𝑚−2𝑠−1, a range
which was covered throughout the year (Figure 2.2), even in winter. Therefore,
GPPmax was less susceptible to short term changes in PAR. Yet due to the lower
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light intensity during storms, GPPmax was not always available. As suggested by
the low PAR value at which light saturation happened, plants remained in a light
saturated condition for most of the daytime. A higher GPPmax indicates a greater
Vcmax and maximum electron transport rate (Jmax) when the variation of GPPmax is
independent from stomatal conductance and intercellular CO2 concentration (Le-
uning, 1995). Therefore, GPPmax was closely correlated with daily LUE driven by
physiology (see section 2.4 in the supplementary material).

We refrained from normalizing GPPmax by APAR due to some of APAR measure-
ments (see section 2.1 in the supplementary material) not available in the beginning
of growing season. GPPmax was significantly linearly correlated with normalized
GPPmax by APAR (Figure 2.20).

We also included Air Temperature (Tair) and Vapor Pressure Deficit (VPD) provided
from the AmeriFlux network data. Daytime daily mean Tair and VPD were computed
from averaging the half-hourly Tair and VPD when PAR was greater than 100 𝜇mol
𝑚−2𝑠−1.

Figure 2.2: Half-hourly GPP as a function of PAR during the measurement period.
Points were colored by month. Bold points were the median GPP when PAR was
binned every 100 𝜇mol 𝑚−2𝑠−1 approximately. The solid lines represent the canopy
light response curve.

Pigment measurements
To link canopy reflectance with variations in pigment contents, we used pigment
data (Bowling and Logan, 2019; Bowling et al., 2018; Magney et al., 2019) at
monthly intervals over the course of the sampling period. Here, we focused on the
xanthophyll cycle pool size (Violaxanthin + Antheraxanthin + Zeaxanthin, V+A+Z),
total carotenoid content (car) and total chlorophyll content (chl) measured on Pinus
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contorta and Picea engelmannii needles with units of moles per unit fresh mass. car
includes V+A+Z, lutein, neoxanthin, and beta-carotene. We also computed the ratio
of chlorophyll to carotenoid contents (chl:car), because CCI derived from Moderate
Resolution Imaging Spectroradiometer (MODIS) can track chl:car (Gamon et al.,
2016). Overall, we can match 10 individual leaf-level sampling days for both pine
and spruce samples with reflectance measured within ± 2 days. Among these 10
valid sample days, 6 sample days are between DOY 100-300.

Data-driven spectral decomposition
We assumed that the spectrally resolved reflectance is a result of mixed absorption
processes by different pigments. This allowed us to apply an Independent Compo-
nent Analysis (ICA; Hyvärinen and Oja, 2000) to decompose the log-transformed
reflectance matrix (day of the year in rows and spectral dimension in columns) into
its independent components. An advantage of the ICA is that it can separate a
multivariate signal into additive subcomponents that are maximally independent,
without the condition of orthogonality (Comon, 1994). We extracted three inde-
pendent components, which explained more than 99.99% of the variance, using
the ICA algorithm (fastICA, python package scikit-learn v0.21.0; section 4 in the
supplementary material), such as:

−𝑙𝑜𝑔(𝑅𝜆,DOY) =
∑︁

𝑖=1,2,3
(spectral component 𝑖𝜆 · temporal loading 𝑖

DOY), (2.4)

where i is the i’th component in spectral space.

The decomposed spectral components revealed characteristic features that explain
most of the variance in the reflectance matrix, which dictated the time-independent
spectral shapes of pigment absorption features based on Equation (2.2). The corre-
sponding temporal loadings showed temporal variations of these spectral features,
i.e. the variations of pigment contents. We will introduce the method of extracting
pigment absorption features in a quantitative model-driven approach in section 2.3.

In addition to analyzing the transformed reflectance alone, we empirically correlated
the reflectance with GPPmax using Partial Least Squares Regression (PLSR, python
package scikit-learn v0.21.0). PLSR is a predictive regression model which solves
for a coefficient that can maximally explain the linear covariance of the predictor
with multiple variables (Geladi and Kowalski, 1986; Wold et al., 1984). PLSR
has been used to successfully predict photosynthetic properties using reflectance
matrices in previous studies from the leaf to canopy scales (e.g. Barnes et al.,
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2017; Serbin et al., 2012, 2015; Silva-Perez et al., 2018; Woodgate et al., 2019).
Applying the PLSR to the hyperspectral canopy reflectance and GPPmax resulted in
a time-independent coefficient that emphasizes the key wavelength regions which
contribute to the covariation of reflectance and GPPmax, such as:

GPPmax,DOY = −𝑙𝑜𝑔(𝑅𝜆,DOY) × PLSR coefficientGPPmax
𝜆

. (2.5)

We implemented another set of PLSR analyses on the reflectance with individual
pigment measurement as the target variable, such as the mean values of V+A+Z,
car, and chl:car, such as:

pigment measurement = −𝑙𝑜𝑔(𝑅𝜆,DOY) ×PLSR coefficientpigment measurement
𝜆

. (2.6)

We did not include chl as one of the target variables in this PLSR analysis since
Bowling et al. (2018) and Magney et al. (2019) have already shown chl did not vary
seasonally in our study site. Fitting the minimal variance in chl will lead to over
fitting the PLSR model.

Comparing the PLSR coefficient of pigment measurements at the leaf level with the
PLSR coefficient of GPPmax connected the changes in GPPmax to the pool size of
photoprotective pigments, because the reflectance is regulated by the absorption of
pigments.

Process-based methods
PROSPECT+SAIL (PROSAIL, Jacquemoud et al., 2009) is a process-based 1-D
canopy RTM that models canopy reflectance, given canopy structure information
(SAIL) as well as leaf pigment contents (PROSPECT) (Jacquemoud and Baret,
1990; Vilfan et al., 2018).

We used PROSAIL (with PROSPECT-D, Féret et al., 2017) to compute the deriva-
tive of the daily-averaged negative logarithm transformed reflectance with respect
to individual pigment contents, namely chlorophyll content (chlorophyll Jacobian,
𝜕−log(R)
𝜕Cchl

) and carotenoid content (carotenoid Jacobian, 𝜕−log(R)
𝜕Ccar

) (Dutta et al., 2019).
This helped explain the decomposed spectral components from the empirical anal-
ysis.

We also used PROSAIL to infer pigment contents (i.e. Cchl, Ccar, Cant) by optimizing
the agreement between PROSAIL-modeled reflectance and measured canopy daily-
mean reflectance from PhotoSpec. We fixed canopy structural parameters (e.g. the
LAI to 4.2, as reported in Burns et al. (2015)) and fitted leaf pigment compositions
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as well as a low order polynomial for soil reflectance (appendix C), similar to Vilfan
et al. (2018) and Féret et al. (2017). The cost function J in Equation (2.7) represents
a least-squares approach, where �̂� is the modeled reflectance.

J =
800𝑛𝑚∑︁

𝜆=450𝑛𝑚
(𝑅𝜆 − �̂�𝜆)2. (2.7)

We used the spectral range between 450 and 800 nm, which encompasses most
pigment absorption features.

2.4 Results and discussion
Seasonal cycle of GPPmax and environmental conditions
As can be seen in Figure 2.3, the subalpine evergreen forest at Niwot Ridge exhibits
strong seasonal variation in GPP, Tair, VPD, GPPmax, and PAR. GPP and GPPmax

dropped to zero while sufficient PAR, required for photosynthesis, was still available
in the dormancy, which suggests that the abiotic environmental factors impact
photosynthesis seasonality nonlinearly and jointly.

Abiotic factors played a strong role in regulating GPPmax in this subalpine evergreen
forest over the course of the season. For instance, there was a strong dependence of
GPPmax with Tair. However, photosynthesis completely shut down during dormancy,
even when the Tair exceeded 5°C (Figure 2.3). During the onset and cessation
periods of photosynthesis, GPPmax rapidly increased with temperature (Figure 2.22
left panel), potentially because needle temperature co-varied with Tair, and needle
temperature controls the activity of photosynthetic enzymes which affect Vcmax.
Spring warming approaches the optimal temperature for photosynthetic enzymes,
leading to activation of photosynthesis, while cooling in the early winter inhibits
these enzymes (Rook, 1969). Warming in spring melted frozen boles and made
them available for water uptake (Bowling et al., 2018), and thus caused the recovery
of GPPmax (Monson et al., 2005). Once the temperature was around the optimum (in
the growing season), Tair was no longer the determining factor for photosynthesis.
Higher VPD caused by rising Tair can stress the plants such that stomata closed,
intercellular CO2 reduced and photosynthesis decreased (Figure 2.22 right panel).
When intercellular CO2 concentration was not a limiting factor, GPPmax was more
representative of Vcmax and did not vary T significantly.

Seasonal cycle of reflectance
In Figure 2.4, the Jacobians show the maximum sensitivity of the reflectance spectral
shape to carotenoid content at 524 nm, and near 566 nm and 700 nm for chlorophyll.
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Figure 2.3: Daily-averaged time series of Air Temperature (Tair), Vapor Pressure
Deficit (VPD), Photosynthetically Active Radiation (PAR), Gross Primary Produc-
tion (GPP) from half-hourly data when PAR was greater than 100 𝜇mol 𝑚−2𝑠−1,
and time series of GPPmax. DOY 166 (2017) was the first day of observation. The
vertical dashed line divides the observations from Day of Year (DOY) for year 2017
and 2018.

The first peak of the chlorophyll Jacobian covers a wide spectral range in the visible,
while the second peak around the red edge is narrower.

It can be seen that the first spectral ICA component has a similar shape as the
chlorophyll Jacobian. The corresponding temporal loading has a range between
-0.2 to 0.2 without any obvious seasonal variation, consistent with a negligible
seasonal cycle in chlorophyll content as shown in the pigment analysis. However,
there is a gradual increase before DOY 50 in the first temporal loading, which
appears to be anti-correlated with the temporal loading of the second ICA structure.

Two major features in the second spectral component can be observed. One is a
negative peak centered around 530 nm, which aligns with the carotenoid Jacobian.
At the negative logarithm scale, the negative values resulting from the negative
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Figure 2.4: A set of three spectral components (top, colored) and corresponding
temporal loadings (bottom, colored) from ICA decomposition. The first spectral
component is overlaid with the chlorophyll Jacobian ( 𝜕−log(R)

𝜕Cchl
, dash-dotted), and

the second spectral component is overlaid with the carotenoid Jacobian ( 𝜕−log(R)
𝜕Ccar

,
dotted). The third spectral component is overlaid on the annual mean shape of
transformed reflectance spectra. Temporal loadings are overlaid with GPPmax (grey
line). The axis of Jacobians is not shown because its magnitude is arbitrary here.
The vertical dashed line divides the observations from DOY for year 2017 and 2018.

ICA spectral peak multiplied by the positive ICA temporal loadings (growing sea-
son in Figure 2.4 middle plots) indicate there were fewer carotenoids during the
growing season (Equation (2.2) and Equation (2.4)). Conversely, positive values
resulting from a negative spectral peak multiplied by the negative temporal loadings
(dormancy in Figure 2.4 middle plots) indicate there were more carotenoids during
dormancy (i.e. sustained photoprotection via the xanthophyll pigments; Bowling
et al., 2018). Another feature is the valley-trough shape, which is co-located with
the chlorophyll Jacobian center at the longer wavelength in the red-edge region.
The center of this feature occurs at the shorter-wavelength edge of the chlorophyll
Jacobian but does not easily explain changes in total chlorophyll content, which
should show equal changes around 600 nm. The corresponding temporal loading
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apparently varied seasonally with GPPmax.

The second temporal loading transitioned more gradually from dormancy to the
peak growing season than GPPmax. Unfortunately, we were missing data to evaluate
the relative timing of GPPmax cessation.

The third spectral component is similar to the mean shape of reflectance spectra. Its
temporal loading held around zero throughout the year.

Overall, the second ICA spectral component is more representative of the seasonal
variation in the magnitude of total canopy reflectance than the other spectral com-
ponents. The spectral changes around the red-edge in the second component is
interesting and might be related to structural needle changes in chlorophyll-a and
chlorophyll-b contributions (de Tomás Marín et al., 2016; Rautiainen et al., 2018),
which are not separated in PROSPECT.

CCI and PRI(Figure 2.5(a-b)) followed the seasonal cycle of GPPmax closely. CCI
and PRI use reflectance near the center of the 530 nm valley feature (Equation (2.3)c-
d), the spectral range that is most sensitive to the change of carotenoid content, so
that they matched changes in GPPmax very well. PRI was the smoothest throughout
the year, without any significant fluctuations within the growing season, as opposite
to what was observed in GPPmax, which co-varied with Tair and VPD (Figure 2.22
and 2.23). This performance is intriguing given that PRI was originally developed
to track short term variations in LUE (Gamon et al., 1992), such as day-to-day and
sub-seasonal scales.

GCC (Figure 2.5(c)) also correlated well with GPPmax, but less than CCI and PRI.
As can be seen in Figure 2.17, the peak of the green channel used for GCC is
close to the carotenoid Jacobian peak, while the red channel feature covers a part of
chlorophyll Jacobian feature. This explained the sensitivity of the GCC to changes in
both carotenoid content as well as chlorophyll. The bands used in GCC are broader
than the ones used by PRI and CCI, however it still captured these variations and
can be computed using RGB imagery. Gentine and Alemohammad (2018) found
that the green band helps to reconstruct variations in SIF using reflectances from
MODIS. While they speculated that most variations in SIF are related to variations
in PAR · fPAR (Gentine and Alemohammad, 2018), we suggest here that the green
band indeed captures variations in LUE as well.

NDVI (Figure 2.5(e)) and NIRv (Figure 2.5(f)) did not show an obvious seasonal
variability.
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Figure 2.5: Magenta points are time series of VIs: (a) CCI, (b) PRI, (c) GCC, (d)
relative SIF (e) NDVI (f) NIRv.The grey points in the background show GPPmax.
The Pearson-r2 values of regressing VIs and GPPmax are noted in each plot. The p
values of all correlations in this figure are less than 0.005. The vertical dashed line
divides the observations from DOY for year 2017 and 2018.

Similar to the ICA components, all VIs were quite noisy during dormancy, especially
prior to DOY 50. This noise may be due to snow because we only removed the
reflectance when the canopy was snow covered. Scattered photons possibly still
reached the telescope when there was snow on the ground, which is true for our
study site as snowpack exists in winter (Bowling et al., 2018).
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Figure 2.6: (a) The PLSR coefficient of reflectance with GPPmax is the blue line.
The overlaid dash-dotted and dotted lines are chlorophyll and carotenoid Jacobians,
respectively. The overlaid orange solid line is the second ICA spectral component,
which was scaled to fit to the plot without a y-axis. (b) The reconstructed GPPmax
(blue) by PLSR is overlaid with the observed GPPmax (red). The vertical dashed
line divides the observations from DOY for year 2017 and 2018.

PLSR coefficients of reflectance with GPPmax and pigment measurements
The spectral shape of the PLSR coefficient with GPPmax highlighted a peak (cen-
tering at 532 nm) near that of the carotenoid Jacobian with the same valley-trough
feature observed near the second peak of the chlorophyll Jacobian (Figure 2.6(a)).

The reconstructed GPPmax captured the onset and cessation of growth, while the day-
to-day noise in reflectance during dormancy propagated to the reconstructed GPPmax

(-2 to 5 𝜇mol 𝑚−2𝑠−1). During the growing season, the day-to-day variations in
GPPmax were not captured by any of the methods using pigment absorption features
(Figure 2.5(a-c) and Figure 2.6(b)), which indicates those variations were not related
to pigment content, but rather changes in environmental conditions that lead to day-
to-day changes in photosynthesis (Figure 2.22). Overall, the observed GPPmax was
significantly correlated with the PLSR reconstruction (Pearson-r2=0.87), but very
similar compared to CCI and PRI. A similar PLSR model of reflectance but with
pigment measurements (Figure 2.7) showed a direct link between pigment contents
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Figure 2.7: (a) PLSR coefficients of reflectance and three pigment measurements.
The overlaid dash-dotted and dotted lines are chlorophyll and carotenoid Jacobians,
respectively. The overlaid solid grey line is the second ICA spectral component,
which is scaled to fit to the plot without a y-axis. (b) The reconstructed pigment
measurements (blue) by PLSR is overlaid with the measured mean pigment mea-
surements (red). The error bar is one standard deviation of the measurements. The
vertical dashed line divides the observations from DOY for year 2017 and 2018.

and reflectance. It can be seen that the PLSR coefficients of reflectance are very
similar, irrespective of the target variable. They feature a valley near the peak
of the carotenoid Jacobian and a valley-trough feature near the peak at the longer
wavelength of chlorophyll Jacobian. This spectral shape is also very similar to the
second ICA spectral component and PLSR coefficients of GPPmax. V+A+Z, chl:car,
and car were all nicely reconstructed by using the PLSR coefficients and reflectance
(Figure 2.7(b)). The reconstructed V+A+Z, car, and chl:car are correlated with the
measured ones with Pearson-r2 values of 0.84, 0.71 and 0.93, respectively.
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The second ICA component and PLSR empirically showed the seasonality of re-
flectance using two different empirical frameworks. ICA only used the reflectance,
while the PLSR model accounts for variations in both reflectance and GPPmax or
pigment content. Yet both ICA and PLSR agreed on similar spectral features that
co-varied seasonally with GPPmax. This indicates that the resulting spectral features
were primarily responsible for representing this seasonal cycle. The overlap of
these features with the chlorophyll/carotenoid absorption features showed that the
seasonality of GPPmax was related to variation in pigment content at the canopy
scale, which was directly validated with similar PLSR coefficient of reflectance and
pigment contents. These results are consistent with leaf-level measurements of a
higher ratio of chlorophyll to carotenoid content during the growing season in this
forest (Figure 2.7).

The highlighted spectral feature around 530 nm from ICA and PLSR closely overlaps
with one of the bands used in CCI, PRI, and GCC (Equation (2.3)) which provides
a justification that these VIs can remarkably capture the LUE seasonality. The
comparable Pearson r2 values of PLSR, CCI, and PRI with GPPmax suggest the
pigment-driven seasonal cycle of GPPmax is sufficiently represented by CCI and
PRI. The spectral feature around the red-edge does not make PLSR significantly
more correlated with GPPmax than CCI or PRI, which implies the feature is not
driven by total chlorophyll or carotenoid contents.

Process-based estimation of pigment content
PROSAIL inversion results further supported the link between canopy reflectance,
pigment contents and GPPmax. Figure 2.8 shows a continuous time-series of Cchl,
Ccar, Anthocyanin content (Cant), and Cchl

Ccar
derived from the PROSAIL canopy RTM

inversion model. Examples of simulated and measured reflectance spectra shown
are in Figure 2.15. Anthocyanins are another type of photoprotective pigment
(Gould, 2004; Lee and Gould, 2002; Pietrini et al., 2002) that protects the plants
from high light intensity (Hughes, 2011). The pigment inversions closely matched
the seasonality of GPPmax. Cchl

Ccar
showed the greatest sensitivity in capturing the

seasonal cycle, with the strongest correlation to leaf level measurements (Figure 2.8
(c)). The inverted Cchl had the weakest empirical relationship with the measured
one (Figure 2.8(a) right panel). Apparently, some of the inversion errors of in-
dividual Ccar and Cchl contents canceled out in the ratio, making the ratio more
stable. Cant performed similarly as Ccar, since they both are photoprotective, and
the anthocyanins absorb at 550 nm (Sims and Gamon, 2002), which is close to the
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Figure 2.8: The left panels are the estimations of (a) Cchl, (b) Ccar, Cant and (c) Cchl
Ccar

from the PROSAIL overlaid with the GPPmax. We normalized two metrics because
they report the pigment contents in different units. The vertical dashed line divides
the observations from DOY for year 2017 and 2018. The plots on the right compare
the pigment contents from leaf-level measurements and using PROSAIL: (a) chl vs.
Cchl, (b) car vs. Ccar, and (c) chl:car vs. Cchl

Ccar
. The correlations are statistically

significant except Cchl.

center of carotenoid absorption feature. Even though we lacked field measurements
of anthocyanins to validate anthocyanins retrievals, the inversions showed that more
than just carotenoid content can be obtained from full-spectral inversions.

Strictly speaking, the complex canopy structure of evergreens makes the application
of 1D canopy RTMs such as PROSAIL difficult (Jacquemoud et al., 2009; Zarco-
Tejada et al., 2019). Yet, Ali et al. (2016); Moorthy et al. (2008); Zarco-Tejada et al.
(2019) reasonably discussed the pigment retrieval in conifer forests with careful
applications. In our study, the reflectance was collected from needles with a very
small FOV, and our study site has a very stable canopy structure throughout a year
(Burns et al., 2016). Thus, the inversion results are meaningful for discussing the
seasonality of pigment contents. In the future, radiative transfer models that properly
describe conifer forests, such as LIBERTY (Dawson et al., 1998), could be used.



35

Comparison across methods
Although decomposing the hyperspectral canopy reflectance and using relative SIF
(Figure 2.5(d)) both successfully tracked the seasonal cycle of evergreen LUE, they
underlie different de-excitation processes. During the growing season, environ-
mental conditions primarily drove the day-to-day variations in GPPmax. Relative
SIF responded to such environmental stresses (vander Tol et al., 2014) so that it
appeared to track sub-seasonal variations better than reflectance, particularly during
the growing season (Figure 2.25f). Yet reflectance decompositions and VIs were
less sensitive to such day-to-day variations (Figure 2.6, Figure 2.23).

There was also some variability between reflectance-based methods and relative
SIF during the transition periods between the growing season and dormancy. We
focused on the growing season onset since the reflectance measurements were not
available during the cessation period. The onset (DOY 60 to 166) described by all
the methods mentioned above as well as the relative SIF are compared in Figure 2.9,
using a sigmoid fit to available data (Figure 2.16). The observed GPPmax had the
most rapid yet latest growing onset. The methods and VIs derived from or related to
the pigment contents increased earlier than GPPmax — such as the ICA component,
PLSR coefficient, PROSAIL Cchl

Ccar
, and CCI. However, they built up slowly to reach the

maximum, which suggests that reduction of the carotenoid content is a slower process
than the recovery of LUE. Reflectance-based VIs (Figure 2.5) and decomposing
methods (Figure 2.4 and 2.8(b,c)) had a slower growing season onset than GPPmax,
as found in Bowling et al. (2018) as well. On the other hand, relative SIF started the
onset at almost the same time as the GPPmax, and it quickly reached the maximum.
Therefore, using both SIF and reflectance to constrain the LUE prediction (vander
Tol et al., 2014) can further improve the prediction accuracy.
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CCI
relative SIF
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Figure 2.9: Temporal evolution of the growing season onset using sigmoid fits
(scaled) of PLSR, ICA, CCI, chlorophyll to carotenoid ratio and relative SIF.
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2.5 Conclusion and future work
In this study, we analyzed seasonal co-variation of GPP and the spectrally resolved
visible and near infrared reflectance signal, as well as several commonly used VIs.
The main spectral feature centered around 530 nm is most important for inferring
the seasonal cycle of reflectance (400 – 900 nm) and LUE, which corresponds to
changes in carotenoid content. This explains why CCI, PRI, and GCC track GPP
seasonality so well, as most variations are driven by carotenoid pool changes. Our
analysis included RTM simulation and in-situ pigment measurements throughout
the season, confirming the link between reflectance/VIs and pigment contents. The
comparison of reflectance/VIs and relative SIF reveals differences in the timing of
the growing season onset, pigment changes and SIF, indicating the potential of using
both reflectance and SIF to track the seasonality of photosynthesis. However, the
close correspondence between both SIF and reflectance suggest that hyperspectral
reflectance alone provides mechanistic evidence for a robust approach to track pho-
tosynthetic phenology of evergreen systems. Because seasonal variation in pigment
concentration plays a strong role in regulating the seasonality of photosynthesis in
evergreen systems, our work will help to inform future studies using hyperspectral
reflectance to achieve accurate monitoring of these ecosystems. While indices like
PRI and CCI are performing sufficiently as our methods which uses the full spec-
trum analysis at the canopy scale, the application of the full spectrum might be more
robust for space-based measurements. In addition, we found seasonal changes of
canopy reflectance near the red-edge region, which could be related to leaf structural
changes or chlorophyll-a and b changes. Our PLSR coefficients are good references
for customizing VIs to infer the photosynthetic seasonality in evergreen forest when
there are restrictions to use the specific bands from currently existing VIs (such as
PRI and CCI). While our current study is limited to a subalpine evergreen forest
and canopy-scale measurements, applications to other regions, vegetation types, and
observational platforms will be a focus for future research.

2.6 Appendix
Appendix A. Bi-directional reflectance effect
Appendix A1. NDVI and NIRv

The impact of geometry and small FOV are relatively negligible. First, our method
only used the scans when FOV is on the needles by setting a NDVI threshold. Second,
we plotted the NDVI and NIRv against the solar geometry at each individual tree
targets throughout a year. NDVI/NIRv are quite homogeneous regardless of various
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solar geometries as shown in the following figures.
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Figure 2.10: NDVI and NIRv of all scans targeting on a pine at different solar
azimuth angles and solar zenith angles throughout a year.

20 30 40 50 60 70 80
SZA

100

150

200

250

300

SA
Z

Fir NDVI

0.60

0.65

0.70

0.75

0.80

0.85

0.90

20 30 40 50 60 70 80
SZA

100

150

200

250

300

SA
Z

Fir NIRv

0.0

0.1

0.2

0.3

0.4

0.5

Figure 2.11: NDVI and NIRv of all scans targeting on a fir at different solar azimuth
angles and solar zenith angles throughout a year.
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Figure 2.12: NDVI and NIRv of all scans targeting on a spruce at different solar
azimuth angles and solar zenith angles throughout a year.

Appendix A2. PLSR on phase angle and reflectance

We did a PLSR analysis on individual measurements of phase angle and reflectance
for 3 summer days (2017-7-1 to 2017-7-3). The results are the same from other
sample days. Indeed, the reflectance has different sensitivities to the phase angle.
However, the poor correlation of PLSR reconstructed phase angle and the measured
one suggests the variations in phase angle should not be the critical factor for the
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change in reflectance. In our study, we primarily removed the bi-directional impact
by averaging all the individual reflectance that was measured at different solar
geometry and viewing geometry.

Figure 2.13: PLSR analysis on phase angle and reflectance.

Appendix B. Detailed processes on integrating daily-averaged canopy reflectance
First, we chose scans targeting vegetation only by requiring an NDVI greater than 0.6.
Second, it is important to ensure that the solar irradiation did not change between
the acquisition of the solar irradiance and the reflected radiance measurement. To
achieve this, we matched the timestamps of a PAR sensor (LI-COR LI-190SA,
LI-COR Environmental, Lincoln, Nebraska, US) to the timestamps of PhotoSpec,
and compared the PAR value from the PAR sensor during the PhotoSpec irradiance
acquisition with PAR during the actual target scan of the reflected radiance from
vegetation. We only used the scans when the ratio of the two was 1.0±0.1, ensuring
stable PAR conditions. Third, in order to avoid unstable PAR because of clouds
(Dye, 2004), we also removed cloudy scenes by requiring PAR to be at least 60%
of a theoretical maximum driven by solar geometry (Figure 2.14). Further, only
data when PAR was greater than 100 𝜇mol 𝑚−2𝑠−1 were considered to eliminate the
impact of low solar angles on reflectance data. The VIs shown in Figure 2.5 were
extracted in the same fashion as above.
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Figure 2.14: The distribution of ratio the measured PAR to the PAR at theoretical
maximum from all individual scans.

Appendix C. PROSAIL fits
We used the following range constraints for variables included in the state vector of
PROSAIL inversion:

• Leaf mesophyll structure (N): 0.9–1.1

• Chlorophyll content (𝐶𝑐ℎ𝑙): 0–120 𝜇mol cm−2

• Carotenoid content(𝐶𝑐𝑎𝑟): 0–70 𝜇mol cm−2

• Anthocyanin content(𝐶𝑎𝑛𝑡): 0–10 𝜇mol cm−2

• Brown pigments(𝐶𝑏𝑟𝑜𝑤𝑛): 0–0.6

• Water content (𝐶𝑤): 0–0.2 cm

• Dry matter content (𝐶𝑚): 0–0.2 g cm−2

• Xanthophyll cycle status (𝐶𝑥) 0–1

• Leaf area index (LAI): fixed to 4.2
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Figure 2.15: The observed and fitted reflectance spectra at low (left) and high (right)
Cchl
Ccar

Appendix D. Sigmoid fit
The sigmoid equation is:

𝑦 = 𝑏 + 𝑎 − 𝑏

1 + 𝑒𝑥𝑝( 𝑑−𝑥
𝑐
)

In this form, a and b represent the maximum and minimum values of the sigmoid
fit. And d is the half maximum of the fit. We obtained the optimal values of these
parameters.

Proof:

If 𝑥 → +∞, 𝑒𝑥𝑝( 𝑑−𝑥
𝑐
) → 0. So,

lim
𝑥→+∞

𝑦 = 𝑎

If 𝑥 → −∞, 𝑒𝑥𝑝( 𝑑−𝑥
𝑐
) → +∞. So,

lim
𝑥→−∞

𝑦 = 𝑏

The first derivative of y is

𝑑𝑦

𝑑𝑥
=

𝑎 − 𝑏

(1 + 𝑒𝑥𝑝( 𝑑−𝑥
𝑐
))2

𝑒𝑥𝑝( 𝑑 − 𝑥

𝑐
) 1
𝑐

At the half maximum point (x = xhalf), 𝑦 = 𝑎+𝑏
2 . Therefore, we need to solve:

𝑎 + 𝑏

2
= 𝑏 + 𝑎 − 𝑏

1 + 𝑒𝑥𝑝( 𝑑−𝑥ℎ𝑎𝑙 𝑓
𝑐

)

Hence, xhalf = d.
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Figure 2.16: Individual sigmoid fits of the onset of growth from different methods
and more VIs. The fitted curve has been expressed as the derivation as above. The
pearson-r2 and p values listed in each subplot were calculated from the correlation
of observed and fitted variables. The residual was calculated as the average L2
norm of the difference between observed (𝑦) and fitted variables (�̂�) normalized by
the observation, i.e. 1

𝑛

∑
𝑖 (

𝑦−�̂�
𝑦
)2. The fittings are overall good. Because the ICA

loading lacks a clear sigmoid shape, ICA has a larger residual.

2.7 Supplement
S1. GCC convolution functions
S2. Three regimes of LUE
S2.1. APAR measurement

Seven pairs of up and down-looking PAR sensors (SQ-500-SS; Apogee Instruments,
Utah, US) above and below the canopy was used to calculate fPAR in half-hourly
intervals. One pair of sensors was installed above the canopy on the same tower
where PhotoSpec is located (measuring incoming PAR and reflected PAR). The
other six pairs of sensors were installed below the canopy (measuring reflected and
transmitted par). The derivation of APAR is shown in the following graph. fPAR
was smoothed with an 8-point (4 hour) running mean and 20-day running mean to
remove the noise in the measurements. The first fPAR measurement started on 8
Aug 2017 (DOY 220).
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Figure 2.17: The convolution function of RGB channels used in GCC (Sonnentag
et al., 2012) is overlaid with the chlorophyll Jacobian ( 𝜕−log(R)
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Figure 2.18: A demonstration for APAR calculation.



43

Figure 2.19: A demonstration of calculating LUElightL and LUEtotal.

S2.2. Light limited and daily averaged LUE

At low light intensity, photosynthesis is light limited. We followed the format of
Equation (1) to define light-limited LUE (LUElightL) as the fitted slope of APAR
against GPP at PAR between 100 and 500 𝜇mol 𝑚−2𝑠−1. We calculated LUElightL

from half-hourly GPP and APAR for each day. We also defined a more generalized
effective daily LUE (LUEtotal) as the daily averaged ratio of GPP to APAR during the
day. This effective daily LUE would be most applicable for empirical LUE models
that work on daily time-steps.

LUElightL is the fitted slope of GPP and APAR when PAR is between 100-500 𝜇mol
𝑚−2𝑠−1. The fit was forced to go through the origin as the equation has no intercept.

LUEtotal is the daily average of GPP
APAR during the day.

Here is a demonstration of how LUElightL and LUEtotal were calculated. Given a
day (DOY =278 as an example), we selected the GPP measurements when the PAR
level is between 100-500 𝜇mol 𝑚−2𝑠−1. Then, we did a linear regression of those
GPP measurements with their APAR levels (the cyan dots and dashed line). The
slope of this regression is LUElightL. On the same day, all the GPP measurements
that happened when the PAR level is above 100 𝜇mol 𝑚−2𝑠−1 are the orange crosses
in the plot. We calculated the ratio of GPP and APAR of those orange points, and
the daily mean of the ratio is the LUEtotal.
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Figure 2.20: Normalized GPPmax and Unnormalized GPPmax.

S2.3. Two ways calculating GPPmax

There were only a few days when PAR is so low that LUE did not reach light
saturation for most of the day when LUEtotal is more comparable to LUElightL. Also,
there is a 26-day gap in APAR measurement at the beginning period of our study.
Therefore, we only showed the results of GPPmax in the main text as it is more
representative than LUElightL and more physiology-driven than LUEtotal. Because
of the missing APAR, we did not normalize GPPmax with APAR. However, the
normalized GPPmax and unnormalized GPPmax are significantly linearly correlated
(Figure 2.19). Although GPP normalized by PAR results in the correct unit of LUE,
it is easily mistaken as fPAR has been considered. To avoid this confusion, we chose
to use mean GPP at PAR between 1000 and 1500 𝜇mol 𝑚−2𝑠−1.

S2.4. Comparing the three regimes of LUE

Needles use light most efficiently at low light levels (LUElightL) for a fraction of
the day. We started to observe a photosynthetic saturation at low PAR values (∼
500 𝜇 mol 𝑚−2𝑠−1; Figure 2), which is represented by GPPmax, resulting in low
efficiencies under high light conditions. LUEtotal represents the mean light use
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Figure 2.21: Time series of GPPmax, LUElightL and LUEtotal. DOY 166 (2017) is
the first day of observation. The vertical dashed line divides the observations from
Day of Year (DOY) for year 2017 and 2018.

Figure 2.22: Scatter plots of GPPmax against Tair (top left) and VPD (top right).
The definition of seasons follows the same convention as in Figure 1. The onset
is the transitioning period from dormancy to the growing season. The cessation is
the transitioning period from the growing season to the dormancy. The Pearson-r2

values are shown in the legend. The statistically insignificant value is in parentheses
if the p-value is greater than 0.005.

scheme throughout the day. Hence, LUElightL was slightly higher than LUEtotal

during most of the growing season (Figure 2.20).

S3. GPPmax and PRI as a function of Tair and VPD in different seasons
The correlations with Tair and VPD are similar because Tair and VPD are signifi-
cantly correlated.

S4. ICA algorithm
We used the fastICA algorithm from scikit-learn v0.21.0 (https://scikit-learn.
org/stable/modules/generated/sklearn.decomposition.FastICA.html).
Because ICA minimizes the dependencies of the second-order moment (variance)
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Figure 2.23: Scatter plots of PRI against Tair (left) and VPD (right). The definition
of seasons follows the same convention as in Figure (1) and S3a. The onset is
the transitioning period from dormancy to the growing season. The cessation is
the transitioning period from the growing season to the dormancy. The Pearson-r2

values are shown in the legend. The statistically insignificant value is in parentheses
if the p-value is greater than 0.005.

Figure 2.24: Scatter plot of VPD and Tair. The definition of seasons follows the
same convention as in Figure (1) and 2.22. The Pearson-r2 values are shown in
the legend. The statistically insignificant values are in parentheses if the p-value is
greater than 0.005.
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Figure 2.25: Comparison between SIF and relative SIF, and the correlation of them
with GPPmax during the growing season.

and higher, the randomness during the minimization makes the explained variance
and order of individual components unclear. In our calculation, the ICA algo-
rithm reduced the dimension of the input matrix by eigenvalue decomposition first,
from which the first three second-order independent/orthogonal components yielded
99.99% of the variance. Then, the algorithm extracted the independent components
of high-order moments from these orthogonal components.

S5. SIF vs relative SIF
Relative SIF is SIF normalized by the reflected near-infrared radiance at 755nm.
This normalization will make SIF more comparable to a ‘SIF yield’, as it is a
ratio effectively correcting for incoming irradiance, and sunlit/shaded fraction. The
attached plot is similar as we did in Figure 5d but with SIF and relative SIF. The
seasonal cycles of relative SIF and SIF are well correlated. Relative SIF is more
correlated with the GPPmax in seasonal variations. However, the sub-seasonal change
in the growing season is captured more by relative SIF.

S6. PLSR analysis
Based on four-fold cross-validations, we set n_components = 4 in the analysis of
GPPmax and 2 in the analysis of pigment measurements. All the PLSR coefficients
are similar (Figure 4) because LUElightL, LUEtotal, and GPPmax are similar in terms
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Figure 2.26: PLSR coefficients of reflectance with GPPmax, LUElightL, and LUEtotal.
The overlaid dash-dotted and dotted lines are chlorophyll and carotenoid Jacobians,
respectively. The overlaid solid grey line is the second ICA spectral component.
The vertical dashed line divides the observations from DOY for year 2017 and 2018.

of the seasonal trend.

2.8 Code and data availability
Our data presented in this paper are provided at https://data.caltech.edu/
records/1597 and https://data.caltech.edu/records/1231. The PRO-
SAIL model in the Julia programming language used in our study can be obtained
from https://github.com/climate-machine/LSM-SPAM.
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3.1 Abstract
Photosynthesis of terrestrial ecosystems in the Arctic-Boreal region is a critical part
of the global carbon cycle. Solar-Induced chlorophyll Fluorescence (SIF), a promis-
ing proxy for photosynthesis with physiological insight, has been used to track Gross
Primary Production (GPP) at regional scales. Recent studies have constructed em-
pirical relationships between SIF and eddy covariance-derived GPP as a first step
to predicting global GPP. However, high latitudes pose two specific challenges:
1) Unique plant species and land cover types in the Arctic-Boreal region are not
included in the generalized SIF-GPP relationship from lower latitudes, and 2) the
complex terrain and sub-pixel land cover further complicate the interpretation of the
SIF-GPP relationship. In this study, we focused on the Arctic-Boreal Vulnerability
Experiment (ABoVE) domain and evaluated the empirical relationships between
SIF for high latitudes from the TROPOspheric Monitoring Instrument (TROPOMI)
and a state-of-the-art machine learning GPP product (FluxCom). For the first time,
we report the regression slope, linear correlation coefficient, and the goodness of
the fit of SIF-GPP relationships for Arctic-Boreal land cover types with extensive
spatial coverage. We found several potential issues specific to the Arctic-Boreal
region that should be considered: 1) unrealistically high FluxCom GPP due to the
presence of snow and water at the subpixel scale; 2) changing biomass distribution
and SIF-GPP relationship along elevational gradients, and 3) limited perspective
and misrepresentation of heterogeneous land cover across spatial resolutions. Taken
together, our results will help improve the estimation of GPP using SIF in terres-
trial biosphere models and cope with model-data uncertainties in the Arctic-Boreal
region.

3.2 Introduction
As a critical part of the global carbon cycle and land carbon sink for atmospheric
CO2, terrestrial photosynthesis in the Arctic-Boreal region can play a key role
in mitigating global climate change (Beer et al., 2010; Mishra and Riley, 2012).
Due to exceedingly high warming trends at high latitudes (Post et al., 2019; Walsh
and Brettschneider, 2019), Arctic-Boreal ecosystems are undergoing more rapid
changes than the rest of the world (Box et al., 2019; Canadell et al., 2021), such as in
photosynthetic productivity, growing season phenology, and vegetation composition
(Myers-Smith et al., 2020). As a result, the future direction and magnitude of
terrestrial ecosystem change in these systems has become highly uncertain (Loisel
et al., 2021; McGuire et al., 2009; Zona et al., 2022). To better evaluate climate
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impacts on the Arctic-Boreal region and understand vegetation-climate feedbacks,
monitoring the status of Arctic-Boreal terrestrial photosynthesis is essential (Fisher
et al., 2014).

Plant carbon uptake via photosynthesis at the ecosystem scale, Gross Primary Pro-
duction (GPP), can only be estimated indirectly from the ground or space. On
the ground, tower-based Eddy Covariance (EC) techniques directly measure net
ecosystem CO2 exchange (Baldocchi, 2003), which is then partitioned into GPP
and ecosystem respiration. EC towers in the Arctic-Boreal region are unevenly
and sparsely distributed in space (Figure 3.1, Table 3.1), which make it difficult
to represent the spatial variability of GPP across heterogeneous Land Cover (LC)
in the Arctic-Boreal region (Curasi et al., 2022; Pallandt et al., 2022). EC tech-
niques are also prone to error in complex terrain, which plays an important role in
above-ground biomass distributions in the Arctic-Boreal region (Bruun et al., 2006;
Dobrowski, 2011; Riihimäki et al., 2017).

Similar to EC towers, satellite remote sensing techniques indirectly infer GPP.
An advantage of satellite remote sensing techniques is a more extensive spatial
coverage, enabling the comparison of GPP across heterogeneous LC (Funk et al.,
2004; Roland et al., 2021) and complex Arctic-Boreal terrain (Roland et al., 2019).
However, satellite remote sensing techniques also have higher uncertainties due to
more assumptions made in the derivation of GPP (Ryu et al., 2019; Tramontana
et al., 2015).

Remote sensing techniques often rely on canopy optical properties that can ap-
proximate Absorbed Photosynthetic Active Radiation (APAR) by vegetation. The
fraction of APAR used for photosynthesis is referred to as Light Use Efficiency
(LUE). So, GPP can be derived as

GPP = APAR × LUE . (3.1)

Remote sensing GPP products, such as from the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Running et al., 2004; Zhao et al., 2005), are primarily
derived from the normalized difference in the surface reflectance between red and
near-infrared regions, which is a proxy for the fraction of incoming light absorbed
by the canopy, or APAR. However, APAR changes alone are not representative of
the seasonal cycle in boreal evergreen ecosystems well, as vegetation photosynthetic
activity ceases while maintaining chlorophyll throughout the season (Bowling et al.,
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2018; Cheng et al., 2020; Magney et al., 2019). Thus, quantifying variations in LUE
is crucial for accurately estimating Arctic-Boreal GPP.

Remote sensing of Solar-Induced chlorophyll Fluorescence (SIF) from space opens
up a new possibility to infer GPP remotely. SIF is a small amount of energy emitted
from leaf chlorophyll, which is driven by APAR. SIF appears to be a good indicator
of the partitioning of APAR between photochemical quenching for photosynthesis
and non-photochemical quenching, i.e. LUE (Magney et al., 2019; Pierrat et al.,
2022), especially in challenging environments that are snowy or have low solar
angles (Walther et al., 2016, 2018). Thus, satellite-based SIF is a promising tool for
inferring GPP at the regional scale in the Arctic-Boreal region.

Similar to Equation 3.1, SIF can be conceptualized as:

SIF = APAR ×Φ𝐹 × 𝑓𝑒𝑠𝑐 , (3.2)

where Φ𝐹 is the quantum yield of fluorescence, and 𝑓𝑒𝑠𝑐 is the escape ratio of SIF
from the canopy (Guanter et al., 2014; Zeng et al., 2019). To predict GPP using
SIF, recent studies have built an empirical linear model between daily mean GPP
from EC towers and daily mean SIF (SIFdc) from the TROPOspheric Monitoring
Instrument (TROPOMI; Köhler et al. 2018), assuming linearity between SIFdc and
GPP (Liu et al., 2022; Turner et al., 2021):

GPP = k · SIFdc. (3.3)

Thus, the regression slope k can be generalized in different plant functional types to
account for varying photosynthetic yields, SIF yields, and canopy structures since
it is a function of LUE, Φ𝐹 , and 𝑓𝑒𝑠𝑐:

k ∼ 𝐿𝑈𝐸

Φ𝐹 × 𝑓𝑒𝑠𝑐
. (3.4)

Solving and categorizing k by plant functional types has improved the ability of
biosphere models to simulate GPP in temperate regions (Delaria et al., 2021; Wu
et al., 2021). However, the resulting k values from Turner et al. (2021) and Liu
et al. (2022) lack representativeness in the Arctic-Boreal region because they are
categorized by general definitions of plant functional types at the global scale, which
cannot fully explain the unique vegetation composition and LC’s in the Arctic-Boreal
region.

Hence, the goal of this study is to quantitatively evaluate the empirical SIF-GPP
relationship (Equation 3.3) and its uncertainty in the context of the Arctic-Boreal
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region at the regional scale using remote sensing techniques. We chose to focus on
the core region Arctic-Boreal Vulnerability Experiment (ABoVE) domain, where
LC types have been defined and validated in the context of Arctic-Boreal species
and canopy structures (Figure 3.1a; Wang et al. 2019). To obtain extensive spatial
coverage we fit the empirical SIF-GPP relationship and solved for k using TROPOMI
SIFdc and a state-of-the-art machine learning gridded GPP product (FluxCom RS;
Jung et al. 2020). To help biosphere modelers cope with the model-data uncertainties
(Keenan et al., 2011; Xiao et al., 2014), we evaluated the goodness of empirically
fitted SIF-GPP relationships with Pearson’s r2 values and reduced 𝜒2 given the
uncertainties in both FluxCom GPP and TROPOMI SIFdc.

We also address three other sources of uncertainties in the SIF-GPP relationship: 1)
snow contamination in remote sensing products, 2) changing biomass distribution
along elevational gradients, and 3) limited perspective and misrepresentation of
heterogeneous LC across spatial resolutions. Here, we present the opportunities and
limitations of remote sensing and machine learning tools for studying GPP in the
Arctic-Boreal region (Section 3.5).

3.3 Data and methods
Gridded datasets and their uncertainties
FluxCom GPP

We used the ensemble median of 2018-2019 8-day GPP from the FluxCom Remote
Sensing (RS) ensembles (Jung et al., 2020; Tramontana et al., 2016) with a spatial
resolution of 0.08333°× 0.08333°. FluxCom RS ensembles include 18 members
from 9 machine learning models and 2 GPP flux partitioning methods. Using GPP
from EC towers as training data (Tramontana et al., 2016), all ensemble members
predict GPP with the same predictors, including land surface temperature, land
cover, the fraction of absorbed photosynthetically active radiation, and Normalized
Difference Vegetation Index (NDVI) from MODIS land products. We took the
standard deviation of the predicted GPP of all ensembles as the uncertainty of
FluxCom GPP.

Because the FluxCom RS GPP is predicted by remote sensing products, snow
contamination in MODIS products (Cihlar, 1996) can propagate into FluxCom
GPP. To evaluate the impact of snow contamination on the SIF-GPP relationship,
we compared the seasonal trajectory of FluxCom GPP with and without snow
filtering. We used the 2018-2019 8-day MODIS L3 0.05°global snow cover product
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MOD10C2 (Hall and Riggs, 2021) as a snow filter, which reports the area fraction
of snow cover (dimensionless) in each grid. The snow cover data in the study area
were interpolated to the same spatial and temporal resolution as the FluxCom GPP
product. Here, we define FluxCom GPP as snow-free when the snow cover is less
than 0.1.

Additionally, the uncertainty of FluxCom GPP can be also due to the extrapolation
of trained parameters due to limited EC towers sampling. Jung et al. (2020) has
developed an Extrapolation Index (EI) to address this issue by illustrating the total
distance of an extrapolated point to the nearest training data in the space of all
predictors. Here, we reproduced the multi-year average (2001-2018) of annual
mean EI and its seasonal range in the study domain to qualitatively examine the
representativeness of FluxCom GPP.

TROPOMI SIF

We gridded individual SIF soundings from TROPOMI at 740 nm between 2018 and
2019 in the study area to the same spatial and temporal resolutions as FluxCom
GPP. Because satellite-based SIF is an instantaneous value indicative of the light
condition at the time of measurement, the daily mean SIF, SIFdc, was scaled from
the instantaneous measurement using a length-of-day correction factor based on the
diurnal cycle of solar radiation (Köhler et al., 2018). To account for varying numbers
of soundings across grids, we took the standard error of SIFdc from individual
soundings falling in each grid as the uncertainty of TROPOMI SIF, which is derived
as the standard deviation divided by the square root of the number of soundings.

Orthogonal distance regression

With snow-free FluxCom GPP and TROPOMI SIFdc as well as their uncertainties,
we fit the linear model in equation 3.3 without an intercept using the orthogonal
distance regression (Boggs et al., 1992) for each grid cell, where the regression
slope k, Pearson’s r2, and reduced 𝜒2 were computed.

Previous studies (Liu et al., 2022; Wu et al., 2022) have often used Pearson’s r2 as
the only metric for explanatory power even though measurement noise can reduce
Pearson’s r2, although the measurements themselves might be accurate but just less
precise. Thus, we use both Pearson’s r2 and reduced 𝜒2 together to evaluate the
linear empirical model between GPP and SIFdc from the perspective of correlation
(Pearson’s r2) as well as the goodness of the fit (reduced 𝜒2). High reduced 𝜒2
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suggests the linear model is underfitting the data. When reduced 𝜒2 is lower than 1,
it suggests that the linear model is overfitting the given uncertainties on FluxCom
GPP and grid TROPOMI SIFdc. A reduced 𝜒2 around 1 represents a good fit,
regardless of Pearson’s r2 value.

Arctic-Boreal land cover map

In the context of Arctic-Boreal species and canopy structures, we categorized the
fitted k, Pearson’s r2, and reduced 𝜒2 by 15 Arctic-Boreal LC types based on
2014 ABoVE Land Cover (LC) dataset from (Wang et al., 2019). The original
spatial resolution of the LC dataset is 30 m × 30 m (LC30M), which we aggregated
into 0.08333°× 0.08333°(LC008333D) grids to align with FluxCom GPP. The LC
pixels of LC30M were counted within each LC008333D grid. The LC type with
the maximal area fraction in the LC008333D grid is defined as the dominant LC
type (Figure 3.1a), while the maximal area fraction is defined as the dominant LC
fraction (Figure 3.1b). Heterogenous LC is associated with a lower dominant LC
fraction.

Surface water is common in Arctic-Boreal ecosystems (Muster et al., 2013; Stow
et al., 2004). However, NDVI obtained from mixed pixels including both vegetation
and water surface is often close to that of vegetation only. Because water surfaces
are very dark (Jiang et al., 2005), few of the reflected photons measured from
space emanate from water surfaces. To estimate the influence of the underestimated
surface water on FluxCom GPP which uses NDVI (Tramontana et al., 2016), we
calculated the area fraction per LC008333D grid occupied by wetland LC types
including Fen, Bog, and Water. Here, we neglected Shallows/littoral LC type as it
is non-vegetation dominated and dominates less than 0.1% of all LC008333D grids.
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Figure 3.1: In the study area (core region of the Arctic-Boreal Vulnerability Experi-
ment (ABoVE) domain) and the resolution of 0.08333°× 0.08333°: (a) the dominant
Land Cover (LC) types Wang et al. (2019); (b) the area fraction of grid taken by
the dominant LC types in panel (a); (c) the 95 percentile of SIFdc (mW m−2 sr−1

nm−1); (d) the 95 percentile of snow-free FluxCom GPP (gC m−2 day−1); (e) the
day of year when SIFdc peaks; and (f) the day of year when GPP peaks. The black
cross scatters show the locations of EC towers with GPP data within the ABoVE
LC map. The triangle scatter denotes the location of CA-Obs which has both GPP
data and tower-based SIF data. In (a) the triangle scatter is colored in dark green to
show that the LC type of CA-Obs footprint is Evergreen Forest. In (c)-(f), the maps
are extended to the area surrounding CA-Obs since data are available.
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Topography
We decomposed the resulting k, Pearson’s r2, and reduced 𝜒2 as a function of
elevation. The elevation data in the study area were obtained from the USGS Global
30 Arc-Second elevation dataset (GTOPO30; Earth Resources Observation And
Science (EROS) Center 2017). We regridded the elevation data to the same spatial
resolution as FluxCom GPP using Google Earth Engine (Gorelick et al., 2017).

Ground-level GPP and SIF
Due to highly heterogeneous LC (Myers-Smith et al., 2020; Wang et al., 2020) in the
Arctic-Boreal region, the SIF-GPP relationships at different observational scales can
vary. Satellite footprints often cover a larger area than the footprints of EC towers
so the dominant LC of the two scales may not match despite the satellite footprints
centering on the location of towers. To address the difference and correspondence
across scales, we compared the observations from towers against satellite pixels of
the same LC types.

We used half-hourly gap-filled GPP data of EC towers from Principal Investigators
(PIs) and the Fluxnet2015 dataset (Papale et al. 2015; Table 3.1) in the study area
and calculated the daily mean EC GPP. Because of various temporal ranges for
different towers, we calculated the multi-year average of daily mean EC GPP at the
8-day interval aligned with the temporal interval of FluxCom GPP. We defined the
LC types for EC towers based on the description of tower footprints from site PIs.

We evaluated the TROPOMI SIFdc data against a tower-based SIF product in CA-
Obs (Pierrat and Stutz, 2022; Pierrat et al., 2022), which is close to our study
area but outside the LC map. A 2-D scanning telescope measures SIF at 745-
758nm across a canopy representative loop that repeats every half hour, from which
we calculated daily mean SIF at 8-day intervals. The International Geosphere-
Biosphere Programme (IGBP) classification of CA-Obs is Evergreen Needleleaf
Forests (ENF). Thus, we used it to benchmark FluxCom GPP and gridded TROPOMI
SIFdc in Evergreen Forest.
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Table 3.1: EC towers with GPP data used in this study. LC30M is the LC type based on the original spatial resolution (30 m × 30 m) of
Wang et al. (2019). LC008333D is the dominant LC type in the resolution of 0.08333°× 0.08333°, which is aggregated from LC30M.
IGBP is the LC type reported by principal investigators based on the International Geosphere-Biosphere Programme (IGBP). ENF, OSH,
WET are evergreen needle leaf forests, open shrublands, and permanent wetlands, respectively. Footprint LC is the estimated dominant
LC in the EC tower footprints in the scheme of Wang et al. (2019) based on the description from PIs and previous studies.

Name LC30M LC008333D IGBP tower footprint LC mean canopy height (m) elevation (m) start month end month reference
CA-HPC Fen Woodland ENF Woodland 3.93 80 2017.4 2017.11 Sonnentag and Marsh (2021b)
CA-Obs - - ENF Evergreen Forest 14 629 2019.7 2020.12 Black (2016); Pierrat and Stutz (2022)
CA-SMC Woodland Water ENF Evergreen Forest 6.15 150 2017.7 2017.11 Sonnentag (2021)
CA-TVC Herbaceous Low Shrub OSH Low Shrub 0.25 85 2017.5 2017.10 Sonnentag and Marsh (2021a)
DEJU Evergreen Forest Woodland ENF Evergreen Forest 10 529 2018.1 2021.9 NEON (2022)

US-An1 Sparsely Vegetated Tussock Tundra OSH Sparsely Vegetated 0.6 600 2017.6 2017.8 Rocha et al. (2016b)
US-An3 Tussock Tundra Tussock Tundra OSH Tussock Tundra 0.2 600 2017.6 2017.8 Rocha et al. (2016a)
US-Atq Low Shrub Sparsely Vegetated WET Tussock Tundra 0.12 15 2017.1 2017.12 Oechel et al. (2014)
US-BZB Woodland Deciduous Forest WET Fen 1 100 2017.1 2017.12 Euskirchen (2021c)
US-BZF Low Shrub Deciduous Forest WET Fen 1 95 2017.1 2017.12 Euskirchen (2021b)
US-BZS Woodland Deciduous Forest ENF Evergreen Forest 2.5 100 2017.1 2017.12 Euskirchen (2021a)
US-ICh Low Shrub Tussock Tundra OSH Low Shrub 0.1 940 2017.1 2017.12 Euskirchen et al. (2016c)
US-ICs Tussock Tundra Tussock Tundra WET Fen 0.1 920 2017.1 2017.12 Euskirchen et al. (2016b)
US-ICt Tussock Tundra Tussock Tundra OSH Tussock Tundra 0.1 930 2017.1 2017.12 Euskirchen et al. (2016a)
US-Ivo Herbaceous Low Shrub WET Tussock Tundra 0.1 568 2004.1 2007.12 Zona and Oechel (2016)
US-Prr Woodland Woodland ENF Evergreen Forest 2.9 210 2017.1 2017.10 Kobayashi et al. (2016)
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3.4 Results
Seasonal trajectories of SIF and GPP
The 95th percentiles of TROPOMI SIFdc and snow-free FluxCom GPP are not
consistent across space (Figure 3.1c,d), suggesting that the regression slope k is not
homogeneous in the Arctic-Boreal region. Tussock Tundra on the northern slope
of the Brooks Range has a higher 95th percentile of SIFdc than the surrounding
area, while the 95th percentile of GPP is similar to the surrounding area. The
95th percentile of SIFdc is high in the southern portion of our study area, which
may be attributed to agricultural land located in southern Alberta and Saskatchewan
(Guanter et al., 2014).

Categorized by LC types, the dynamic ranges of GPP and SIFdc vary by LCs (Figure
3.2). The growing season maximal GPP is the lowest in LCs with lower statures,
such as Low Shrub and Tussock Tundra. The growing season maximal SIFdc is
often lower than 0.5 mW m−2 sr−1 nm−1 except in Deciduous Forest, Woodland,
Tall Shrub, and Herbaceous.

In Woodland, the linear SIFdc-GPP relationship splits (Figure 3.2d) because Wood-
land is a heterogeneous LC type coexisting with other LC types by definition (Wang
et al., 2019). Thus, the SIFdc-GPP relationship of Woodland contain the features of
both high- and low-statured LC types.

The linear correlation of GPP and SIFdc from gridded products is comparable to
tower-based measurements (Figure 3.2). However, the maximum EC GPP is lower
than FluxCom GPP in Evergreen Forest, suggesting that FluxCom GPP may be
overestimated in this LC type. EC GPP can be negative during winter, which is an
artifact of the flux partitioning (Hagen et al., 2006; Wutzler et al., 2018). The daily
mean SIF from the tower-based instrument in CA-Obs nicely falls in the dynamic
range of TROPOMI SIFdc (Figure 3.2a).

On average, the highest regression slope k among the vegetation dominated LC types
occurs in Evergreen Forest (33.84 (gC m−2 day−1)/(mW m−2 sr−1 nm−1)), while the
lowest k value is in Tussock Tundra (12.89 (gC m−2 day−1)/(mW m−2 sr−1 nm−1)).
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Figure 3.2: The hexbins are pixels categorized by the dominant LC types in Figure
3.1a based on all data of 2018-2019 8-day TROPOMI SIFdc (mW m−2 sr−1 nm−1)
and FluxCom GPP (gC m−2 day−1) in the study area. The color of hexbins represents
the pixel recurrence at a given pair of SIFdc and GPP bins. The white solid contours
are the 95 percentile of the recurrence when the snow cover is less than 0.1 (snow-
free). The white dashed contours are the 95 percentile of the recurrence when the
snow cover is greater than 0.1. The dotted white contour in (d) is the 95 percentile
of grids where the dominant LC (a.k.a Woodland) fraction is greater than 80%.
The blue crosses are the multi-year average of 8-day TROPOMI SIFdc and daily
mean EC GPP from CA-Obs. The blue triangles are the multi-year average of 8-day
tower-based daily mean SIF and daily mean EC GPP from CA-Obs. The cyan
crosses are the multi-year average of 8-day TROPOMI SIFdc and daily mean EC
GPP from all other EC towers according to LC types. The gray line is the mean
SIF-GPP relationship with the math expression noted in each land cover type. Panel
(o) shows the area fraction occupied by Fen, Bog, and Water.
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Spatial patterns of the SIF-GPP relationship
The spatial distribution of the resulting regression slope k (Figure 3.3a) is primarily
a function of LC types (Figure 3.1a). Similar to Figure 3.2, k is higher in Evergreen
Forest, which is in the southwest part of the study area, and lower in Tussock Tundra
on the northern slope of the Brooks Range.

The goodness of the fit of the linear model (Equation 3.3) depends on the linearity of
the seasonal trajectories of SIFdc and GPP. When SIFdc and GPP peak synchronously,
the SIF-GPP relationship becomes more linear. Generally, SIFdc and GPP peak
simultaneously across our study area (Figure 3.1ef). In Western Alaska and North
of the Rocky mountains SIFdc and GPP peak earlier than in Northern Canada,
suggesting the fit of the linear regression model of SIFdc and GPP (Equation 3.3)
may not be equally good across space.

Most of our study area has moderate to high Pearson’s r2 (Figure 3.3b). In the
Sparsely Vegetated northeastern part of the study area, the annual mean EI (Figure
3.3f) is high, indicating that the FluxCom models predict GPP in this region with
few training samples and thus yield higher uncertainties. The high seasonal range in
EI (Figure 3.3d) suggests the extrapolation is more severe in winter than in summer.

The reduced 𝜒2 is much higher than 1 near glacial lakes in Northern Canada (Figure
3.3a) and Deciduous Forest, indicating the empirically fitted SIF-GPP relationship
is underestimated and does not fully capture the seasonal trajectories in SIFdc and
GPP. One possible reason is that most training samples used by FluxCom models
in the Arctic-Boreal are not Deciduous Forest (Figure 3.3f and 3.1a). Thus, the
FluxCom models have to extrapolate from training samples that are less similar
to the environment of the region so that the FluxCom GPP has a higher error in
Deciduous Forest.
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Figure 3.3: Maps of (a) resulting regression slope k, (b) Pearson’s r2, (c) reduced
𝜒2 from fitting snow-free FluxCom GPP and TROPOMI SIFdc. Panel (e) is the
elevation map of the study region. The scatters in (a-c) and (e) are the EC towers
with ground-level GPP data and/or SIF measurements, which are used in Figure 3.2.
Panels (d) and (f) are the multi-year average of seasonal range (winter (Januaray and
Feburary) - summer (June and July)) and annual mean of Extrapolation Index (EI)
from Jung et al. (2020). The scatters in (d) and (f) are the EC towers used to train
FluxCom models. The maps are extended to the area surrounding CA-Obs since
data are available.
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Overestimated FluxCom GPP in wetlands
We found FluxCom GPP may be overestimated in wetlands. In Fen, FluxCom GPP is
substantially higher than EC GPP (Figure 3.2 k) and other non-wetland herbaceous
LC types (Figure 3.2). In Bog and Water, FluxCom GPP is also unrealistically
high while SIFdc is around 0. These results suggest a potential overestimation of
FluxCom GPP in wetland.

This bias caused by water is more significant in the area with a high fraction of
wetlands (Figure 3.2o), where the annual mean and seasonal range of EI are also
high (Figure 3.3df).

Topographic impact on the SIF-GPP relationship
There is a topographic dependence of k and Pearson’s r2. k (Pearson’s r2) is higher
(lower) along the Brooks Range, the Mackenzie River, the Alaska Range, and the
north end of the Rocky Mountains (Figure 3.3abce). Meanwhile, the reduced 𝜒2 is
mostly around 1, which suggests the fitted SIF-GPP relationship is reliable.

The resulting k of Evergreen Forest shows a strong dependence on elevation as the
dominant LC fraction varies (Figure 3.4a, Funk et al. 2004; Roland et al. 2021).
For example, when Evergreen Forest becomes more abundant, k is higher between
1000-1500 m in elevation. Above the tree line (∼1500m), k drops as the fraction
of grid taken by Evergreen Forest reduces. The highest k in Evergreen Forest is
obtained at a 2000 m elevation which can be noisy because the reduced 𝜒2 is much
less than 1 suggesting the linear model overfits the data.
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Figure 3.4: The resulting k, Pearson’s r2, reduced 𝜒2 and the dominant LC fraction
categorized by dominant LC types as a function of surface elevation. The color
lines are the results from snow free data (snow cover is less than 0.1). The gray
dashed lines are the results from snow contaminated data (snow cover is greater than
0.1). The shades are the interquartile range of the results from all grid-time in each
dominant LC type. Bog has too few grids to show the dependence on elevation.
Barren and Water LC types are omitted since they are not vegetation dominated.
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Snow contamination and snow impact on the SIF-GPP relationship
FluxCom GPP is occasionally unrealistically high during winters, when SIFdc is
around zero (Figure 3.2). We found that this is a sign of snow contamination,
especially in the LC types with lower canopy heights, such as Low shrub, Herba-
ceous, and Tussock Tundra (Figure 3.2ehi). After snowy pixels were filtered, the
distribution of TROPOMI SIFdc and FluxCom GPP is more towards linear.

Although the change in resulting k due to snow filtering is small, snow filtering
has substantially improved the goodness of fit by increasing Pearson’s r2 and/or
pushing the reduced 𝜒2 towards 1 across all LC types and all elevations, especially
in low-statured LCs, such as Low shrub, Herbaceous, and Tussock Tundra (Figure
3.4ehi) where the split distribution pattern due to snow contamination is observed in
Figure 3.4. In forests (Figure 3.4abc), although Pearson’s r2 decreases, the reduced
𝜒2 has been improved by getting closer to 1.

3.5 Discussion
Opportunities for remotely evaluating photosynthetic phenology in the Arctic-
Boreal region
We reported and evaluated the SIF-GPP relationship in the context of Arctic-Boreal
LC types at the regional scale. The extensive spatial coverage of our study and
validation from EC GPP and tower-based SIF data underscores the potential of
using remote sensing and machine learning techniques in the Arctic-Boreal region
if remote sensing data are carefully filtered for snow contamination.

Benefiting from the extensive spatial coverage, FluxCom GPP and TROPOMI SIF
fill the gaps in LC types that are too remote to be extensively sampled by ground-
based measurements (Virkkala et al., 2022) or in complex terrain where eddy-
covariance techniques are challenging to apply (Baldocchi, 2003; Paw U et al.,
2000). However, large uncertainties are still associated with limited training data.
Our study provided both Pearson’s r2 and reduced 𝜒2 to help biosphere modelers
use the resulting k judiciously considering the uncertainty.

The heterogeneous LC and complex terrain in the Arctic-Boreal region further
complicate the interpretation of the fitted SIF-GPP relationship and resulting k
values. Even though the dominant LC types are unchanged, the elevational gradient
of sub-pixel LC contributes to the uncertainties in the relationship of SIFdc and GPP
among the pixels of the same dominant LC types.

Overall, remote sensing and machine learning techniques provided extensive spatial
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coverage of SIFdc and GPP in our study. We found it is challenging to find a universal
k or a one-model-fits-all approach to estimate GPP using SIFdc in the Arctic-Boreal
region, especially across multiple LC types or even within the same dominant LC
types. For future studies, comprehensive sampling of the physiological traits (such
as LUE, Φ𝐹 , and 𝑓𝑒𝑠𝑐; Equation 3.4) across LCs can help mechanistically explain
the difference in k.

k values across latitudes
In low-statured LC types including Low Shrub, Herbaceous, and Tussock Tundra,
the k values in this study are similar to the k values for grassland in Turner et al.
(2021).

In high-statured LC types, our k values are largely different from the k values in
other studies fortemperate regions derived from EC GPP (Liu et al., 2022; Turner
et al., 2021). For example, the average k value of Evergreen Forest in our results is
33.84 (gC m−2 day−1)/(mW m−2 sr−1 nm−1), while the k value of Evergreen Forest
is less than 20 (gC m−2 day−1)/(mW m−2 sr−1 nm−1) in the continental US (Turner
et al., 2021) or globally (Liu et al., 2022).

On the other hand, the reported k is closer to Liu et al. (2020) (22.9±2.6 (gC m−2

day−1)/(mW m−2 sr−1 nm−1)) and Sun et al. (2018) (27.43 (gC m−2 day−1)/(mW
m−2 sr−1 nm−1)) for boreal evergreen forests, both of which have used FluxCom
GPP.

If FluxCom GPP can accurately represent the seasonal trajectory of EC GPP, the
disagreement in k of the same LC types across latitudes may indicate different
vegetation composition, photosynthetic productivity, fluorescence yield, sub-pixel
variability across latitudes, and/or canopy openness (Crous et al., 2022; Kreyling,
2020; Prock and Körner, 1996) as suggested in Equation 3.4. However, we found
that FluxCom GPP can be biased, which will be discussed next.

Limitations in FluxCom GPP
Snow contamination

Although the original FluxCom GPP product has already removed some snowy
pixels by using MODIS quality flags (Jung et al., 2020), we found some snow
contamination still exists (Figure 3.2). In this study, we used a more conservative
snow filter (<0.1) to showcase the snow contamination in FluxCom GPP propagated
from remote sensing products (Jin et al., 2017; Myers-Smith et al., 2020). More
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importantly, our results suggest that quantitative and standalone information on
snow coverage in addition to quality flags is helpful for improving future machine
learning products (Chen et al., 2018).

Snow contamination does not impact all LC types equally. Low-statured LC types
are more likely to have unrealistically high FluxCom GPP before the growing season
starts (Figure 3.2). Thus, the universal snow filter we used in this study may be
too conservative. For future studies, rigorous validation of snow measurements at
regional scales will greatly improve canopy radiative transfer simulations and optical
remote sensing retrievals at the Arctic-Boreal region (Chen et al., 2018; Kobayashi
and Iwabuchi, 2008; Kobayashi et al., 2007).

Underrepresented water

Contrary to attributing the high k values in wetlands to underestimated SIF Chen
et al. (2021), our results suggest the unrealistically high FluxCom GPP is the reason
for high k values in wetland LC types. FluxCom GPP has been overestimated
because NDVI of water surface in mixed pixels with both vegetation and water
surface is understated (Jiang et al., 2005, 2006). Using near-infrared reflectance
of vegetation (NIRv) for FluxCom models may better account for the dark surface
water reflectance than NDVI and improve the SIF-GPP relationship (Badgley et al.,
2019).

This bias further compounds the uncertainty due to a lack of sampling as high EI
and high wetland area fractions collocate. Taken together, these two issues can limit
the application of FluxCom GPP in the Arctic-Boreal region (Figure 3.2o; Muster
et al. 2013; Stow et al. 2004).

Extrapolation of training data

Because the spread in FluxCom GPP ensembles may not fully represent the dis-
agreement between FluxCom and EC GPP when there are few EC towers as training
samples for FluxCom (Pallandt et al., 2022), the resulting k values may be more
reliable where FluxCom and EC GPP are similar (such as Tussock Tundra and
Low Shrub; Figure 3.2ei) than the ones where the FluxCom GPP is substantially
overestimated (such as Evergreen Forest and Fen; Figure 3.2ak).

Nevertheless, there is a time mismatch between FluxCom GPP and EC GPP (Table
3.1) in this study, where the inter-annual variability of GPP seasonality is ignored.
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More active EC towers with continuous and high-quality GPP products are needed
in future studies.

Heterogeneous sub-pixel LC
We showed that LC in the Arctic-Boreal region is highly heterogeneous at sub-
pixel. The dominant vegetated LC types on average occupy less than 50% of the
area in each 0.08333°× 0.08333°grid (Figure 3.1b). It is challenging to unmix
the contribution of subpixel LC types at the current spatial scale. This results in
a few notable limitations in our study: 1) The LC definitions of EC towers are
different according to 30-m vicinity (LC30M), 0.08333°vicinity (LC008333D), and
the actual footprint of towers based on PI’s descriptions (tower footprint LC in table
3.1). As a result, there may be a mismatch of LC types when we benchmark the
FluxCom GPP with EC GPP. 2) As discussed in Sect. 3.5, the presence of surface
water contributes to the sub-pixel variations in other dominant LC types and adds to
the ambiguity of our results (Myers-Smith et al., 2020). 3) The LC definition used
here does not consider agricultural land cover, which is not negligible in southern
Alberta and Saskatchewan (Guanter et al., 2014) and yields a different SIF-GPP
relationship than the non-agriculture land cover types. And 4) given the rapid
changes in the Arctic-Boreal region (Box et al., 2019; Canadell et al., 2021; Curasi
et al., 2022; Hobbie et al., 2017), our LC information from 2014 (Wang et al., 2019)
can be outdated, which will impact our definition of dominant LC types and the
classification of results.

3.6 Conclusions
In this study, we evaluated the empirical linear relationship of SIFdc and GPP across
the Arctic-Boreal region from the perspectives of Pearson’s r2 and the goodness
of fit. Our results show the promise of monitoring Arctic-Boreal vegetation using
novel remote sensing tools after careful quality control. For the first time, our study
reports the fitted regression slope k as well as the uncertainties of fitted SIFdc-GPP
relationship for the land cover types that are unique to the Arctic-Boreal region.
The resulting k, Pearson’s r2, and reduced 𝜒2 together can help biosphere modelers
improve the estimation of GPP in the Arctic-Boreal regions and cope with model-
data uncertainties.
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4.1 Abstract
Solar-Induced Chlorophyll Fluorescence (SIF) has been increasingly used as a novel
proxy for vegetation productivity. Several space-borne instruments can retrieve SIF
at varying overpass time, which complicates the interpretation as SIF is driven by
absorbed Photosynthetically Active Radiation (PAR) at the acquisition time. To
facilitate comparisons across sensors, satellite-based SIF is upscaled to daily aver-
ages with a length-of-day correction factor (DC). In conventional DC calculations,
the light intensity over a day is approximated geometrically by the cosine of the
Solar Zenith Angle (SZA), neglecting changes in atmospheric extinction and topo-
graphic effects. Here, we use reanalysis PAR data for DC calculations to evaluate
the impact of atmospheric extinction and diffuse radiation individually. We find
that the simple SZA approach is a reliable approximation for flat surfaces, where
the overall atmospheric impact on DC is less than 10% as large individual effects
on direct and diffuse PAR partially compensate each other. At longer time-scales,
a sampling (clear sky) bias might exist due to cloud-filtering of satellite data. We
find that in the Amazon the true monthly mean PAR can be 25% lower than the
one for cloud-filtered days, potentially inducing seasonal SIF biases on the same
order. An additional factor impacting PAR during a day is topography. For complex
terrain, direct light in the DC expression requires a correction for surface slopes.
For example in the San Gabriel Mountains, California, USA, the modified DC is
changed by as much as 500% for strongly tilted surfaces. This modification is espe-
cially important for satellite instruments with fine spatial resolutions, where surface
slopes are not averaged out and can have a substantial impact on reflectance and
SIF. Overall, our refined DC-corrections and averaging strategy can help satellite
SIF interpretation as well as intercomparisons over a wide range of spatio-temporal
scales and overpass times.

4.2 Introduction
Photosynthesis is the dominant driver of land-atmosphere carbon exchange with
poorly known climate feedbacks (Richardson et al., 2013). Solar-Induced Chloro-
phyll Fluorescence (SIF) has become a popular proxy for photosynthesis because
it is linked to the electron transport rate in the light reactions of photosynthesis
(Porcar-Castell et al., 2014). Many studies have used SIF to study photosynthesis
on the global scale (Mohammed et al., 2019), including the estimation of gross pri-
mary production, canopy water deficit, and crop yield (Gentine and Alemohammad,
2018; He et al., 2020; Zuromski et al., 2018). Global scale studies in particular
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benefit from space-borne observations of SIF, which are relatively coarse in the
spatial domain but a valuable tool for monitoring photosynthesis without requiring
sub-pixel homogeneity. As more satellites measure SIF, comparisons across sensors
are challenging due to varying times of measurement (𝑡𝑚).

SIF inferred from satellite measurements (SIF𝑡𝑚) represents the radiance emitted by
chlorophyll that primarily depends on the amount of Absorbed Photosynthetically
Active Radiation (APAR) at 𝑡𝑚 (Joiner et al., 2020; Magney et al., 2020; Mohammed
et al., 2019), which is a product of Photosynthetically Active Radiation (PAR)
reaching the canopy at 𝑡𝑚 and the fraction of PAR absorbed by the canopy (fPAR).
Because PAR varies across ground tracks (Joiner et al., 2020; Köhler et al., 2018)
and with satellite orbital parameters, while the diurnal cycle of fPAR is negligible
compared to the diurnal cycle of PAR (Lin et al., 2019), SIF𝑡𝑚 is an instantaneous
value associated with PAR at 𝑡𝑚. In order to compare SIF across different satellites
with various 𝑡𝑚 (Zhang et al., 2018), studies (Frankenberg et al., 2011; Hu et al.,
2018; Köhler et al., 2018; Zhang et al., 2018) have to scale SIF𝑡𝑚 to a daily-average
SIF (SIFdc) using a length-of-day correction factor (DC), which is calculated based
on the diurnal cycle of PAR under the assumption that SIF scales linearly with PAR:

SIFdc = SIF𝑡𝑚 × DC , (4.1a)

DC =
1

PAR𝑡𝑚

∫ 𝑡𝑚+12h

𝑡𝑚-12h
PARt 𝑑t . (4.1b)

Conventionally, the diurnal cycle of PAR in the calculation of DC (Equation 4.1b)
is approximated geometrically by the cosine of Solar Zenith Angle (SZA), denoted
as 𝜇 (Frankenberg et al., 2011; Köhler et al., 2018). Thus, the derivation of the DC
can be simplified to

DCSZA =
1
𝜇𝑡𝑚

∫ 𝑡𝑚+12h

𝑡𝑚-12h
𝜇t H(𝜇t) 𝑑t , (4.2)

where H is the Heaviside step function, i.e. zero for SZAs greater than 90°
(nighttime).

This straightforward approach generates SIFdc via DCSZA without the need to know
true PAR as 𝜇𝑡 can simply be computed using ephemeris calculators, which provide
the solar geometry at a given location and time based on orbital parameters of the
Earth in the solar system. The approximation is thus a simple yet possibly inaccurate
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proxy for PAR at the top of canopy, as the approach neglects atmospheric effects,
e.g. changing cloud, as well as topography (Frankenberg et al., 2011). As there
is no detailed quantitative evaluation of the impact of atmospheric absorption and
scattering as well as topography on the DC calculation, the potential errors in SIF
averages are still hard to assess.

To characterize potential errors in conventional daily-average SIF calculations as
well as in temporal (e.g. monthly) averages, we have to consider the following
effects, illustrated using simple examples: I) Diurnal atmospheric effects: diurnal
cycles in atmospheric conditions (e.g. convective systems building up during a day)
can cause biases when using a simple geometric approach and these will depend
on the time of measurement; II) Day-to-day atmospheric effects: cloud filtering
of satellite data can cause a clear-sky bias in longer-term SIF averages, as the
measurements passing the quality filters are more likely obtained during cloud free
days; III) Topography effects: topography can create highly asymmetric diurnal
PAR cycles, as we have to consider the geometry of a tilted surface with respect to
the sun.

Our study aims to quantify these impacts individually so that SIF measurements
across sensors and temporal-spatial scales can be better compared and interpreted.
In section 4.3, we develop correction models (summarized in Table 4.1) for DC.
Using global PAR datasets, solar angle information, detailed topography, and actual
SIF soundings, as outlined in Section 4.4, we evaluate the DC calculations in Section
4.5. At the global scale, we highlight areas where temporal upscaling SIF is prone to
biases by atmospheric effects and use regional examples to quantify the individual
bias in areas with strong seasonal variations in cloud cover (e.g. the Amazon) and
complex terrain (e.g. the San Gabriel Mountains).

4.3 Methods
Atmospheric effects
Upscaling SIF𝑡𝑚 to SIFdc

Downwelling PAR at the surface can be divided into two components: direct PAR
(PARdirect) and diffuse PAR (PARdiffuse). PARdirect is the transmitted part of the
incoming collimated solar beam reaching the surface after being diminished by
atmospheric extinction by trace gases, aerosols, and clouds along the light path.
Despite its reduced amplitude, PARdirect preserves the direction of the incoming
PAR, which is represented by the SZA. Because PAR at the top of atmosphere is



97

directly proportional to 𝜇, the difference between the diurnal cycles of PARdirect and
𝜇 results from atmospheric extinction along the light path. Hence, we can evaluate
this impact on SIFdc by comparing DCSZA with DCdirect, which is calculated with
actual PARdirect:

DCdirect =
1

PARdirect,𝑡𝑚
×
∫ 𝑡𝑚+12h

𝑡𝑚-12h
PARdirect,t 𝑑t. (4.3)

PARdiffuse is constituted by scattered PAR that ultimately reaches the surface.
PARdiffuse can also be the major energy source for photosynthesis when PARdirect is
strongly reduced through atmospheric scattering, e.g. at high latitudes or in areas
with frequent cloud cover. Thus, in order to accurately account for changes in total
PAR, a comprehensive DC correction factor needs both PARdirect and PARdiffuse:

DCtotal =
1(

PARdirect,𝑡𝑚 + PARdiffuse,𝑡𝑚
)

×
∫ 𝑡𝑚+12h

𝑡𝑚-12h
(PARdirect,t + PARdiffuse,t) 𝑑t.

(4.4)

Thus, the difference between DCtotal and DCdirect is due to the impact of diffuse
light. It is worth noting that plants can use diffuse light more efficiently than direct
light (Gu et al., 1999, 2019; Lu et al., 2020), as it is distributed more evenly across
all leaves. Here, we neglect this and focus on variations in total PAR, i.e. assume
that both PARdirect and PARdiffuse have a similar impact on SIF.

To isolate the impact of clouds, we can make use of the fact that meteorological
reanalysis data are provided for both all-sky conditions (including all atmospheric
effects as modeled) as well as clear sky conditions (providing radiation fields as
if no clouds had been present). This allows us to separate the atmospheric effects
on SIFdc for cloud free conditions in Sect. 4.5 and all-sky (i.e. most realistic)
conditions in Sect. 4.5. With the help of these globally modeled PAR datasets, we
can highlight regions where atmospheric effects are important to consider in SIFdc

with and without clouds.

Upscaling SIFdc to monthly mean SIF (𝑆𝐼𝐹)

In addition to scaling biases from the instantaneous SIF signal to a diurnal average,
sampling biases can occur when aggregating individual daily averages in time, for
instance to monthly scales. Unlike vegetation indices, SIF is not only representing a
slowly varying canopy structure but is also driven by highly variable incoming PAR,
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which is strongly impacted by clouds. As cloudiness is also as a selection criteria
for satellite data quality filtering, this can cause potential sampling biases.

Often, monthly-mean SIF (SIF) is calculated as the cloud filtered arithmetic mean
of SIFdc within the temporal averaging window (Badgley et al., 2017; Sun et al.,
2018). However, cloud filters preferentially keep samples with low cloud cover, i.e.
higher PAR conditions, potentially resulting in a clear sky bias (Badgley et al., 2017;
Sun et al., 2018) which can vary seasonally.

Thus, seasonal variations in the number of cloud filtered samples (n) relative to
total number of samples (N) can be used as a metric for the potential clear sky
bias. In Sect. 4.5, we use statistics from the TROPOspheric Monitoring Instrument
(TROPOMI) as well as reanalysis data to investigate when and where globally the
clear sky bias is likely to occur.

To quantify the actual clear sky bias, Hu et al. (2021) suggested weighing SIFdc by
daily mean PAR. Here, we upscale SIFdc to SIF using the daily mean all-sky PAR
(PARday) just from measurement days and from all days in a month. Then, the actual
clear sky bias is the difference between PAR-weighted SIF and the arithmetic SIF,
which is defined as

PAR-weighted SIF =
1
𝑁

𝑁∑︁
day=1

PARday ×
1
𝑛

𝑛∑︁
day=1

(
SIF𝑡𝑚 × DCtotal

)
day /PARday,

(4.5a)

arithmetic SIF =
1
𝑛

𝑛∑︁
day=1

(
SIF𝑡𝑚 × DCtotal

)
day . (4.5b)

In Sect. 4.5, we quantitatively demonstrate the clear sky bias using the Amazon
Forests as an example, which exhibits a strong seasonal cycle in cloudiness as well
as heavily debated responses of photosynthesis in the dry season (Doughty et al.,
2021; Morton et al., 2014; Saleska et al., 2007, 2016; Samanta et al., 2010).

Topographic impact on upscaling SIF𝑡𝑚 to SIFdc

Adjusting PAR according to topography

Previously, we only discussed atmospheric effects that can bias the scaling from
instantaneous to daily average SIF. However, the slope and orientation of the surface
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can dramatically change the diurnal cycle of received radiation, for example in east
or west facing slopes, which can have peak diurnal PAR shifted towards the morning
and evening, respectively.

In complex terrain, the diurnal cycle of direct PAR received by a surface is not
determined by the SZA but by the angle between the incident direct light and the
surface normal (Solar Incidence Angle - SIA, Figure 4.1a). For example, terrain
oriented towards the sun (SIA < SZA) receives substantially more direct light per
projected unit area. As a result, complex terrain results in spatially heterogeneous
total PAR as well as the ratio of PARdiffuse and PARdirect. This can even lead to
spatial variations in hydro-climate conditions that vegetation acclimates to (Bilir
et al., 2021; Kutiel, 1992; van der Tol et al., 2007). Therefore, neglecting the
topographic impact on PAR can bias SIFdc as observed from space. Here, we aim
to quantify this bias for SIFdc and validate our correction scheme using reflectances
—which are impacted by the same bias— and classical vegetation indices, for which
directional effects mostly cancel out.

To evaluate this impact, we add topographic information to the expression of DCtotal

(Equation 4.4) on a flat surface.

a) 3D view b) Front view c) Top view

Figure 4.1: The Solar Incidence Angle (SIA) and Solar Zenith Angle (SZA) are not
equivalent on a tilted slope as demonstrated in a) a 3D view, b) a front view, and c)
a top view. SIA is the angle between the incident direct light and the tilted surface
normal. SZA is the angle between the incident direct light and flat surface normal.
SIA’ and SZA’ are the projection of SIA and SZA on the front view, respectively.
𝛼⊙, 𝛽, and 𝛼 are solar azimuth angle, surface inclination, and surface azimuth,
respectively.

We first correct PARdirect given the surface inclination angle (𝛽) and azimuth angle
(𝛼) using a simple photometric function (Klein, 1977; Teillet et al., 1982):

PARdirect,DEM,t = PARdirect,t
cos(SIA)

𝜇t
H(cos(SIA𝑡)). (4.6)
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Given the geometry in Figure 4.1, the SIA can be derived as

SIA = sin(SZA) sin(𝛽) cos(𝛼⊙−𝛼)+𝜇 cos(𝛽) (Duffie and Beckman, 2013) , (4.7)

where 𝛼⊙ is solar azimuth angle.

We preserve the expression for PARdiffuse assuming isotropic diffuse PAR, which is
less dependent on surface orientation. Here, we only include self-shading (i.e. if the
SIA is larger than 90°, no direct radiation reaches the surface) but ignore shading by
mountain ranges in the vicinity. Thus, the total PAR projected on a tilted surface is:

PARtotal,DEM,t = PARdirect,t
cos(SIA)

𝜇t
H(cos(SIA𝑡𝑚)) + PARdiffuse,𝑡𝑚 . (4.8)

Validating the topographic adjustment on PAR

To validate this simple topographic adjustment on PAR in Equation 4.8, we make
use of the fact that measured reflectances experience the same bias if they are not
topographically corrected. However, reflectance ratios are not as affected as the bias
cancels out in the ratio. Comparing novel indices that might be susceptible to the
topography bias against those that are more robust with respect to slope variations
thus provide an indirect validation of our correction approach.

We first apply the adjusted PAR to reflectance (R):

RDEM = R ×
PARdirect,𝑡𝑚 + PARdiffuse,𝑡𝑚

PARdirect,DEM,𝑡𝑚 + PARdiffuse,𝑡𝑚
, (4.9)

where RDEM is the topographically corrected R (if the surface slope was neglected
during retrievals).

To intuitively interpret the topographic adjustment on PAR, we compare the Vege-
tation Indices (VIs) built with RDEM against R in Sect. 4.5. We choose VIs that are
proxies for the greenness of canopy, which varies across slopes (Bilir et al., 2021;
Kutiel, 1992; van der Tol et al., 2007), such as the Normalized Difference Vegetation
Index (NDVI; Silleos et al. 2006), kernel-based NDVI (Camps-Valls et al. 2021),
and NIRv(Badgley et al., 2017):

NDVI =
𝑅nir − 𝑅red
𝑅nir + 𝑅red

, (4.10a)

kNDVI = tanh(NDVI2), (4.10b)

NIRv = NDVI × 𝑅nir. (4.10c)
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For band-ratio VIs like NDVI and kNDVI, the corrections should be negligible as
measured reflected radiance in the red and NIR spectral bands are affected similarly
by surface slope changes, because atmospheric scattering is similar in both bands. It
is a valid assumption as both bands are spectrally nearby and only mildly impacted
(less than 5%; Figure 4.8) by Rayleigh scattering (Bates, 1984).

However, for more complex VIs such as the NIRv or the Enhanced Vegetation Index
(Xiao et al., 2003), the effect of surface slopes does not cancel out. For NIRv, the
effect is directly proportional to the bias in the derived RNIR, which is why we focus
on the simple NIRv correction here, as it provides an analogue to our assumptions
for the SIF correction, hence also an indirect validation.

Topographic adjustment on upscaling SIF𝑡𝑚 to SIFdc

The only difference between our topographic correction on R and DC is that the
R correction considers PAR at 𝑡𝑚 only, while the DC correction requires the full
diurnal cycle of PAR. This is because reflectance-based VIs are related to intrinsic
properties of the canopy, such as the potential photosynthesis (Badgley et al., 2017;
Camps-Valls et al., 2021; Silleos et al., 2006; Xiao et al., 2003).

We derive a Digital Elevation Model (DEM) based length-of-day correction DCDEM

as:

DCDEM =
1(

PARdirect,DEM,𝑡𝑚 + PARdiffuse,𝑡𝑚
)

×
∫ 𝑡𝑚+12h

𝑡𝑚-12h
(PARdirect, DEM,t + PARdiffuse,t) 𝑑t.

(4.11)

To focus on the topographic impact, we only use clear-sky PAR to explicitly express
DCDEM. The difference between DCDEM and DCtotal reflects the topographic impact
on SIFdc

In Sect. 4.5, we use the San Gabriel Mountains in California as an example to evaluate
the topographic impact on SIFdc aggregated across various sensor footprints. The
strong radiation contrast between north and south facing slopes in the San Gabriel
Mountains make this region an ideal study site.



102

Table 4.1: Summary of all DC models used in this study. A glossary of all variables
used in this study is in Sect. 4.8.

DC models atmospheric effects topography equation resultsdirect PAR diffuse PAR
DCSZA ✗ ✗ ✗ 4.2
DCdirect ✓ ✗ ✗ 4.3 Sect. 4.5

Sect. 4.5DCtotal ✓ ✓ ✗ 4.4
DCDEM ✓ ✓ ✓ 4.11 Sect. 4.5

4.4 Data
Global PAR data
Because there is lack of global-scale ground observation of PAR, we utilize global
reanalysis radiation data from the ECMWF ReAnalysis (ERA5), which assimilate
various available observations. ERA5 data have been validated independently and
enable us to perform a much more thorough analysis than any other dataset (Babar
et al., 2019; Urraca et al., 2018; Yang and Bright, 2020). We calculate PAR as a fixed
fraction (0.46) of the direct and diffuse surface downwelling shortwave radiation
(Howell et al., 1983; Zhang et al., 2020) obtained from ERA5 hourly data in 2020 at
0.5° × 0.5° spatial resolution (Albergel et al., 2018). ERA5 simulates downwelling
shortwave radiation at the surface both with clouds (all-sky conditions) and without
clouds (clear-sky conditions). In both cases, the ERA5 simulation uses the exact
same atmospheric conditions, such as temperature, humidity, ozone, trace gases,
and aerosols (Muñoz-Sabater et al., 2021). Therefore, we can differentiate the
atmospheric impact under clear-sky and all-sky conditions. The ERA5 variables
are listed in 4.8.

For the integrals in the DC expressions (Equations 4.3, 4.4, and 4.11), we interpolate
hourly PAR data to 10-min time steps using cubic splines, focusing on land pixels
only.

Solar angles
Given 𝑡𝑚, longitude, and latitude of a surface point, Solar Zenith Angle (SZA)
and Solar Azimuth Angle (𝛼⊙) are calculated using the PyEphem astronomy tool
(https://github.com/brandon-rhodes/pyephem), which provides the exact
Sun-Earth geometry at a given time using orbital characteristics.

We obtain surface elevation (in meters; Figure 4.6a) from the NASA Shuttle Radar
Topography Mission (SRTM) version 3 with 30-m spatial resolution (NASA JPL,
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2013). The inclination angle (𝛽) and azimuth angle (𝛼) of surface pixels (Figure 4.6b
and c) are calculated from the surface elevation using the hill shading algorithm
(Horn, 1981) implemented in RichDEM (Barnes, 2016). With SZA, 𝛼⊙, 𝛽, and 𝛼,
we then calculate SIA using Equation 4.7.

SIF data
We use the TROPOMI SIF data described in Köhler et al. (2018) for our analysis
because TROPOMI provides a fine spatial and temporal resolution (Köhler et al.,
2018) and a much higher sampling frequency compared to all current satellites that
are capable of retrieving SIF. The wide swaths with viewing angles of up to 60°
allow for a near-daily global coverage. In this study, we use two levels of processed
TROPOMI SIF products: 1) instantaneous SIF from individual soundings; and 2)
gridded SIF with a temporal resolution of 16 days and a spatial resolution of 0.0833°
× 0.0833° , which is aggregated from individual SIF measurements in 2020. We grid
all unfiltered TROPOMI soundings as well as the filtered data with cloud fractions
smaller than 0.8, which also includes additional retrieval quality filter criteria and is
the suggested standard filter for public use of SIF data (Köhler et al., 2018). We then
compute the number of averaged soundings per grid cell in both cloud-filtered (n)
and unfiltered (N) cases, the latter of which represents the total number of potential
TROPOMI soundings. We then evaluate the measurement yield in each grid, defined
as the fraction of measurements that passed the cloud filter (the ratio of n to N), as
a function of space and time.

Reflectance data
We use R from LandSat Collection 2 Level 2 data (30-m spatial resolution) on July
3, 2020. The mean LandSat 𝑡𝑚 in the San Gabriel Mountains is 10:31 am Local
Solar Time (LST) when SZA and 𝛼⊙ are 22.5° and 335.4° , respectively. The
azimuth angle is measured in degrees counter-clockwise from East. Then, the grids
of R and surface elevation products are matched and transformed to degrees using
the Geospatial Data Abstraction Library (GDAL; https://gdal.org), while the
30-m spatial resolution is preserved.

4.5 Results
Here, we discuss the impact of atmospheric variations on DC, both for scaling from
instantaneous SIF to daily averages as well as aggregating daily SIF averages to
longer-term temporal averages. The impact of topography is discussed separately.
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Atmospheric effects
Atmospheric effects on DC under clear-sky conditions

For clear-sky conditions, we first examine the validity of the simple approximation
used in DCSZA, where the diurnal cycle of PAR is approximated geometrically by 𝜇.
Figure 4.2a shows that the zonal-mean daily integral of 𝜇H(𝜇) is a smooth function
of time and latitude, and the spatiotemporal pattern is consistent with the daily
integral of PARdirect computed from ERA5 in Figure 4.2b. The consistency confirms
that DCSZA mainly accounts for the diurnal cycle in PARdirect, as expected from a
geometric scaling using 𝜇. PARdiffuse is much smaller than PARdirect (Figure 4.2c)
in most cases (especially for valid solar angles) and thus has no large impact for
clear-sky conditions.

DCtotal derived from the sum of PARdirect and PARdiffuse (Equation 4.4) is smaller
than DCSZA but only by less than 10% assuming a 𝑡𝑚 at noon local time (Figure 4.2g).
More importantly, the atmospheric impact on DCtotal/DCSZA (left column in Fig-
ure 4.2) is homogeneous across latitudes and seasons, underlining that the simple ge-
ometric correction is not creating spatially varying biases. For DC𝑑𝑖𝑟𝑒𝑐𝑡 /DCSZA (cen-
ter column in Figure 4.2), the patterns and amplitudes are similar to DCtotal/DCSZA

but have somewhat more absolute variations and spatio-temporal variations. This
can only be explained by atmospheric aerosols in ERA5, which can reduce direct
and increase diffuse radiation, thus leading to partial compensation in total PAR.
Adding PARdiffuse to DCdirect has an opposite but smaller impact (Figure 4.2i) since
PARdiffuse is larger for longer light paths, which partially cancels out the error from
ignoring atmospheric extinction in the SZA approximation of PARdirect. It should
be mentioned that although the impact of PARdiffuse can be more extreme at high
latitudes during winter, SIF soundings are typically filtered out due to limited light
intensity when the SZA at 𝑡𝑚 is greater than 80°(regions north or south of the black
lines in Figure 4.2d-i).

The magnitude of biases in DCSZA, compared against DCtotal, depends on 𝑡𝑚 as well.
The ratio of DCtotal to DCSZA is less than 5% (Figure 4.2d and j) when 𝑡𝑚 is 10 am
or 2 pm Local Solar Time (LST). As 10 am and 2 pm are both about two hours away
from local solar noon, local PAR is almost identical at these times under clear-sky
conditions. Hence, Figures 4.2d-f and Figures 4.2j-l are symmetric. Overall, the
errors in the simple DCSZA approach when compared to using ERA5 PAR data
(DCtotal) in clear sky conditions are surprisingly small (< 10%) and can likely be
ignored.
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Figure 4.2: The zonal-mean impact of atmospheric extinction and PARdiffuse on DC
calculation under clear-sky conditions. DCs are calculated using clear-sky PAR.
Zonal means are calculated from land pixels only. Panels a and b show the daily
integral of 𝜇 and PARdirect during daytime. Panel c is the daily integral of PARdiffuse
relative to PARdirect. The ratio of DCtotal to DCSZA (panels d, g, and j) underscores
the total impact of atmospheric extinction and PARdiffuse. The ratio of DCdirect to
DCSZA (panels e, h, and k) isolates the impact of atmospheric extinction. The ratio
of DCtotal to DCdirect (panels f, i, l) isolates the impact of PARdiffuse. Panels d-f
assume the overpass time is 10 am Local Solar Time (LST). Panels g-i assume the
overpass time is at local noon. Panels j-l assume the overpass time is 2 pm LST.
The black lines are the contour of SZA = 80° at 𝑡𝑚. SZA is greater than 80 ° north
(south) of the contour in Northern (Southern) Hemisphere.

Atmospheric effects on DC under all-sky conditions

To show the impact of clouds on DC, we repeat the calculations of DCtotal and DCdirect

as shown before with all-sky conditions. As expected, in all-sky conditions PARdirect
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is lower (Figure 4.3b) while PARdiffuse is higher compared to clear-sky conditions.
In regions with frequent cloud cover, such as the inter-tropical convergence zone
(Figure 4.3c), PARdiffuse can often contribute equally to total PAR. Specifically at
high latitudes, PARdiffuse is larger than PARdirect due to longer atmospheric light
paths. In contrast, PARdiffuse in the subtropics is smaller because of large-scale
atmospheric subsidence, resulting in both a dry climate and less frequent cloud
cover.

There is only a little increase in the overall magnitude of DCtotal/DCSZA under all sky
conditions (Figures 4.3d, g, and j) compared to the the clear sky case (Figures 4.2d,
g, and j), even in regions with frequent cloud cover. At first, this is surprising as we
expected a much stronger bias in DCSZA under cloudy conditions. If we consider
direct light only, the DCtotal/DCSZA variations are in fact much larger, with strong
latitudinal and temporal changes (Figures 4.3e, h and k). In regions with the highest
discrepancies in DCtotal/DCSZA , much stronger PARdiffuse due to cloud scattering in
all-sky condition contributes more to DCtotal. As can be seen in Figure 4.3f, i and l,
the impact of diffuse light can increase the ratio of DCtotal/DCdirect by up to 30% and
counteract the variations in DCdirect/DCSZA. Hence, the aggregated atmospheric
impact (DCtotal/DCSZA) is more homogeneous across latitudes and time.

Under all-sky conditions, the atmospheric impact on DC is often larger when 𝑡𝑚 is
2 pm (Figure 4.3j-l), because convective systems often forms clouds in the afternoons
when the surface is heated. Thus, unlike in the clear-sky case, Figure 4.3d-f and j-i
are asymmetric, which can represent an important aspect for comparing satellites
with different overpass times.
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Figure 4.3: The zonal-mean impact of atmospheric extinction and PARdiffuse on DC
calculation under all-sky conditions. DCs are calculated using all-sky PAR. Zonal
means are calculated from land pixels only. Panels a and b show the daily integral
of 𝜇 and PARdirect during daytime. Panel c is the daily integral of PARdiffuse relative
to PARdirect. The ratio of DCtotal to DCSZA (panels d, g, and j) underscores the total
impact of atmospheric extinction and PARdiffuse. The ratio of DCdirect to DCSZA
(panels e, h, and k) isolates the impact of atmospheric extinction. The ratio of
DCtotal to DCdirect (panels f, i, and l) isolates the impact of PARdiffuse. Panels d-f
assume the overpass time is 10 am LST. Panels g-i assume the overpass time is at
local noon. Panels j-l assume the overpass time is 2 pm LST. The black lines are the
contour of SZA = 80° at 𝑡𝑚. SZA is greater than 80° north (south) of the contour
in Northern (Southern) Hemisphere.

Overall, this section highlights counteracting effects of scattering for correcting bi-
ases in DCSZA. In clear-sky conditions, atmospheric extinction dominates the impact
on DCtotal. In all-sky conditions, PARdiffuse becomes more important, specifically
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in regions with frequent cloud cover. The simple DCSZA approach is a surprisingly
good proxy for DCtotal in both cases, as overall changes in direct and diffuse PAR
negatively co-vary, reducing the bias to less than 10% at coarse spatial and temporal
scales.

Effects of cloud filtering on (𝑆𝐼𝐹) and clear sky biases

When using real satellite data for SIF, we have to take into account that a clear sky
sampling bias might exist, which can vary seasonally. Based on reanalysis data, we
can evaluate the potential impact and identify regions in which seasonal biases can
be most prominent.

Spatial patterns of potential clear sky biases

At the global scale, the measurement yield (n/N) varies spatially and seasonally. The
highest seasonal dynamic range in measurement yields occurs in regions with strong
seasonal cycles of cloudiness, such as regions with monsoon climate including the
Amazon, South of the Sahel, India, and North Australia (stippled area in Figure 4.4,
indicating > 40% seasonal variations in data yield). These regions with large
seasonal variation in SIF measurement yields are potentially subject to seasonally
varying clear sky biases.

For high latitudes and non-vegetated areas, such as over ice and desert, the SIF
measurement yield is the lowest (Figure 4.4) due to high SZAs during the shoulder
seasons and polar nights (Figure 4.13). However, the sampling rate during summer
months is much better (Figure 4.14) thanks to overlapping ground tracks (incomplete
daily coverage occurs between +/- 7deg). These changes in measurement yield at
high latitudes are mostly driven by the SZA cutoff and radiance thresholds, and
hence are less prone to clear-sky biases.
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Figure 4.4: The seasonal mean measurement yield of SIF soundings, defined as the
fraction of measurements that passed the cloud filter (cloud fraction < 0.8), in a)
December, January, and February; b) March, April, and May; c) June, July, and
August; and d) September, October, and November. The stippled areas are where
the absolute difference between a) and c) is larger than 40%. The red star in the
Amazon is the location with regional maximum absolute difference between a) and
c).

Quantitative clear sky bias in SIF seasonality

How large can the clear sky bias actually be over different seasons? Here, we
demonstrate the impact of clouds on the SIF seasonality using the Amazon as an
example. We use individual TROPOMI measurements falling into a 0.25°×0.25°
box around the location of the red star in Figure 4.5a, a region with highly varying
data yields (2.75° N, 55.5° W) from March, 2018 to October 2020. The measurement
yield can decrease by up to 60% (Figure 4.4 and Figure 4.5b) during the wet
season (shaded periods in Figure 4.5a) as fewer soundings pass the cloud filter.
PAR-weighted SIF is about 25% smaller than the arithmetic mean (Figure 4.5c),
indicating that SIF may be overestimated during periods of frequent cloud cover.
Compared to biases in DC, the clear sky bias of > 10% can thus be substantial. The
overestimation is more significant when fewer filtered soundings are available.
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Figure 4.5: Impact of clear sky biases on the seasonality of SIF. In panel a, the
scatters are the SIFdc of individual soundings, and the lines are arithmetic (solid) and
PAR-weighted (dashed) monthly mean SIF (SIF) filtered by the Cloud Fraction (cf)
of 0.8 (blue) and 0.3 (red). Panel b demonstrates the number of SIF measurements
filtered by the two cf values, while the black curve is the monthly mean cf. The
solid lines in panel c compare the ratio of PAR-weighted SIF to arithmetic SIF by
the two cloud filters. Panel c also compares the impacts of the clear sky bias (solid
lines) and diurnal changes in cloudiness discussed in Sect. 4.5.3 (dashed lines with
circles). The impact of clear sky bias is defined as the ratio of PAR-weighted SIF
to arithmetic SIF, where DCtotal is calculated from all-sky PAR for both SIF. The
impact of diurnal changes in cloudiness is evaluated as the ratio of arithmetic SIF
with DCtotal calculated by all-sky PAR to clear-sky PAR. The shaded periods are
wet seasons with high cf from October to May.

We compared the arithmetic SIF calculated from DCtotal in the Amazon using all-sky
PAR (as in Figure 4.3) against clear-sky PAR (as in Figure 4.2), which highlights
the impact of the diurnal cycle in cloudiness. Although the amplitude of the diurnal
cycle biases can be comparable to the clear sky bias, the DC can either be over
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or underestimated, unlike the consistent overestimation due to the clear sky bias
(Figure 4.5c). A stricter cloud filter often has a larger impact on SIFdc, suggesting
that using a relaxed cloud filter can avoid some of the clear sky bias caused by the
diurnal changes in PAR.

Doughty et al. (2021) reported the seasonal dynamic range of the arithmetic SIF is
only about ± 20% of the annual average in Amazon rain forests. An overestimation
of SIF by 25% in wet seasons due to the clear sky bias can cause large biases when
interpreting this small season dynamic of SIF. Therefore, the impact of cloudiness
on both DC and upscaling SIF to long-term averages should be considered.

Topographic effects
Topographic corrections on PAR

The San Gabriel Mountains, California, USA (34°N– 34.6 °N, 118.4 °W – 117.4°W)
are located north of the Los Angeles basin and are oriented east-west over 500 km,
and their elevation ranges from 0 to more than 2500 m (Figure 4.6). The mountains
have higher vegetation coverage, inferred from NDVI, kNDVI, and NIRv, than the
north or south of the mountains where deserts and cities are located. In general, the
south facing slopes are more barren than north facing slopes (Figure 4.7a) because
strong radiation increases skin temperature and potential evapotranspiration, which
stresses plants in this dry climate.
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Figure 4.6: Surface elevation (a), inclination (b), and azimuth (c) in the San Gabriel
Mountains (CA, USA). Panel d shows the frequency distribution of inclination and
azimuth from 30-m pixels binned by 2° intervals. Azimuth is measured in degrees
counter-clockwise from East.

Our topographic correction has no impact on NDVI and kNDVI, because the cor-
rection factor cancels out for both indices. However, the correction changes the
NIRv (Figure 4.7i and 4.8f), which scales with the derived RNIR correction. As the
San Gabriel Mountains are very rugged with surfaces facing towards all azimuth
directions (Figure 4.6d), there are no large-scale features on the map changing dra-
matically in NIRv before and after the topographic correction (Figure 4.7c and f).
However, the NIRv values of west(east)-facing slopes are higher(lower) after the
correction (Figure 4.7i).

Figure 4.7d-e and g-h show that our topographic correction improves the correlation
coefficients (𝑟2) between NIRv and NDVI (kNDVI) by 11% (12%) in LandSat pixels
where the absolute changes in NIRv is larger than 0.02. For pixels with smaller
changes in NIRv (between 0.01 and 0.02), the improvements in 𝑟2 are smaller
(about 4%). Meanwhile, the root mean squared errors (rmse) are also improved.
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The correlations of NIRv with NDVI and kNDVI become nonlinear at high values,
which may be attributed to the saturation of NDVI and kNDVI.

Figure 4.7: Impact of topographic correction on surface reflectance using the San
Gabriel Mountains (CA, USA) as example, with a LandSat satellite overpass local
time 𝑡𝑚 of 10:31 am on July 3, 2020. SZA and 𝛼⊙ are 22.5° and 335.4° , respectively.
Azimuth is measured in degrees counter-clockwise from East. Panels a and b show
LandSat based NDVI and kNDVI. Panels c and f are LandSat based NIRv before
and after topographic correction. Panel i is the difference between panels c and f.
Panels d and e are the frequency distribution of NIRv before topographic correction
plotted against NDVI and kNDVI. Panels g and h are the frequency distribution of
NIRv after topographic correction plotted against NDVI and kNDVI. In panels d,
e, g, and h, the correlation coefficients (𝑟2) and root mean squared error (rmse) are
grouped by absolute difference in NIRv before and after the topographic correction.

In general, NDVI and kNDVI are higher on northwest facing slopes (Figure 4.8a-b),
showing a clear preference for vegetation in a dry environment such as Los Angeles.
Because the Sun is due East (𝛼⊙ is 335.1°) at the time of the LandSat overpass,
east facing slopes have a smaller SIA (Figure 4.8d) and receive more direct PAR.
Therefore, raw NIRv is higher on east facing slopes (Figure 4.8c). Our topographic
correction decreases NIRv on southeast facing (sun facing in the morning) slopes
and increases NIRv on the northwest facing (sun shaded in the morning) slopes
(Figure 4.8e).
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Using NIRv without topographic corrections could result in a wrong interpretation as
to which surface slopes are more vegetated, as shown in the stark differences between
panels a and c in Figure 4.8. While the NIRv has shown a better correspondence
with gross primary production (Badgley et al., 2017), one has to keep this potential
bias in mind, as the NIRv looses one key advantage of the NDVI, namely that many
error sources cancel out in simple ratio approaches (Frankenberg et al., 2021).

Figure 4.8: Impact of topographic correction on surface reflectance in polar maps
using the San Gabriel Mountains (CA, USA) as example, with a LandSat satellite
overpass local time 𝑡𝑚 of 10:31 am on July 3, 2020. SZA and 𝛼⊙ are 22.5° and
335.4° , respectively. Azimuth is measured in degrees counter-clockwise from East.
Panels a-c and f are the same as Figure 4.7a-c and f but in polar coordinates. Surface
inclination is on the diameter axis, and surface azimuth is on the angular axis. The
cosine of SIA is shown in panel d. Panel e is the ratio of panel f to panel c.
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After the topographic correction, all three VIs are higher on northwest facing slopes
(Figure 4.8a,b, and f), providing a consistent representation of vegetation distribution
as a function of surface orientation. Our topographic correction is also comparable
to a rigorous semi-empirical modified cosine correction (Soenen et al., 2005; Teillet
et al., 1982)(Sect. sect:SCSC) proving that our general approach to correct PARdirect

(Equation 4.6) can properly account for the various illumination conditions due to
topography. Therefore, we can apply the topographic adjustment to the DCDEM

calculation.

Topographic effects on DC

When calculating DCDEM, we consider the different 𝑡𝑚 and spatial resolutions from
TROPOMI and the upcoming Fluorescence EXplorer (FLEX) mission. TROPOMI
overpasses the San Gabriel Mountains at 1:29 pm LST on July 3, 2020, when SZA
and 𝛼⊙ are 22.6° and 204.6° , respectively. FLEX has a prospective 𝑡𝑚 at 10:00 am
LST (Drusch et al., 2017), when the SZA and 𝛼⊙ are 27.9° and 343.7°. The spatial
resolution of TROPOMI is 5 km × 3.5 km at nadir (up to 14 km at the edges of the
swath) (Köhler et al., 2018). The prospective spatial resolution of FLEX is 300 ×
300 m2. We first calculate DCdem at the 30-m DEM resolution and then aggregate
DCDEM to the spatial resolutions of TROPOMI and FLEX using LandSat NDVI as
weights.

DEMtotal is homogeneous in the San Gabriel Mountains because Equation 4.4 omits
the surface inclination and azimuth. However, DCDEM calculated with Equation 4.11
is a function of inclination and azimuth angles as well as 𝑡𝑚. The theoretical ratio of
DCDEM to DCtotal is demonstrated in Figure 4.9b and e. The overall magnitude of
the theoretical DCDEM can be as large as 500% of DCtotal (Figure 4.9b and e) at the
30-m DEM resolution. These extremely large corrections can happen when the SIA
approaches or exceeds 90°, at which only a very low amount of direct PAR reaches
the respective surface.

The pattern and amplitude of DCDEM also depend on 𝑡𝑚. When TROPOMI over-
passes the San Gabriel Mountains, the northeast facing (sun-shaded) slopes have
higher DCDEM than the southwest facing (sun-facing in the afternoon) slopes (Fig-
ure 4.9b and c). Other sensors may overpass the same region at different 𝑡𝑚 resulting
in different patterns and magnitudes in DCDEM. For example, when FLEX over-
passes 10:00 am LST, the northwest facing (sun-shaded in the morning) slopes have
higher DCDEM than the southeast facing (sun-facing) slopes (Figure 4.9e and f).
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Figure 4.9: Topographic corrections on DC with various 𝑡𝑚 in San Gabriel Moun-
tains. Panels a-c are the ratio of DCDEM to DCtotal, the ratio of theoretical DCDEM to
DCtotal, and cosine of SIA at 𝑡𝑚 of TROPOMI at 1:29 pm LST on July 3, 2020, when
SZA and 𝛼⊙ are 22.6° and 204.6° , respectively. Azimuth is measured in degrees
counter-clockwise from East. Panel d-f are the same as a-c but at the prospective
overpass of FLEX at 10:00 am LST, when SZA and 𝛼⊙ are 27.9° and 343.7°. Panels
b, c, e, and f are in polar coordinates, if the surface inclination is from 0 – 90 ° ,
and the surface azimuth is from 0-360 °. The surface inclination is on the diameter
axis, and surface azimuth is on the angular axis. The grids in panels a and d are
TROPOMI footprints, where the footprints with maximum and minimum NDVI-
weighted DCDEM

DCtotal
are plotted in red and blue, respectively.

For SIF observed from satellites, the topographic impact on DC is aggregated
among the sub-pixels within satellite footprints. In the San Gabriel Mountains, the
topographic dependence of illumination and vegetation distribution covary at the
sub-pixel scale. Regions with a larger ratio of DCDEM to DEMtotal also have higher
NDVI at both overpass time (Figure 4.10h and 4.11h). According to Figure 4.8,
these sub-pixels with high NDVI values mostly face north, as expected in a semi-arid
climate. Therefore, to account for the varying vegetation coverage across sub-pixel
slopes in the aggregated DCDEM over TROPOMI and FLEX footprints, we average
the sub-pixel variations of DCDEM in each footprint by weighting them by NDVI
(Deng et al., 2007; Turner et al., 2020).

Our results show that although the full dynamic range of DCDEM at 30-m sub-pixel
resolution is 75–500% of DCtotal (Figure 4.9a-b and d-e), the TROPOMI footprint
with the maximum NDVI-weighted mean DCDEM in the scene (red outline) is only
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9% larger than DCtotal (Figure 4.10a). On the other extreme, the TROPOMI footprint
with the minimum NDVI-weighted mean DCDEM (blue outline) is only 1% larger
than DCtotal (Figure 4.11a). The bias dynamic range is thus on the order of about
10% for TROPOMI. The upcoming FLEX mission has a much finer footprint (300
× 300 m2, Coppo et al. 2017). Thus, for increasingly smaller footprints, such as
for FLEX (grids in Figure 4.10c-d and 4.11c-d), a topographic slope correction will
become more important.

In summary, if one wants to study vegetation dynamics in mountains, corrections
on both SIF and surface reflectance play a crucial role, as otherwise even the
greenness variations as a function of surface slope and orientation can be severely
misinterpreted. While individual effects of highly tilted surfaces can be substantial,
they might be reduced at coarser spatial scales, where mean slopes are smaller. For
very rugged terrain like the San Gabriel Mountains, the sub-pixel variations are
mostly smoothed out within the comparatively coarse TROPOMI footprint (grids
in Figure 4.9). Other mountain ranges might have more spatially extended slopes,
which could even be important for coarser-scale sensors such as TROPOMI. Overall,
biases in the length-of-day correction due to surface slopes are of similar magnitude
as the overall atmospheric effects but will become increasingly crucial for high
surface slopes and for smaller footprints sizes.
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Figure 4.10: In the TROPOMI footprint with maximum NDVI-weighted mean
DCDEM
DCtotal

(the red outlined footprint in Figure 4.9), DCDEM
DCtotal

of all sub-pixels is presented
in a histogram (panel a) and a zoomed-in map (panel c) when 𝑡𝑚 is at TROPOMI
overpass (1:29 pm LST on July 3, 2020). Panels b and d are the same as panels a
and c but at prospective FLEX overpass (10:00 am LST on July 3, 2020). The black
lines in panels a and b indicate the ratio of NDVI-weighted mean DCDEM to DCtotal
in this TROPOMI footprint. The red frame in all maps depicts actual TROPOMI
footprint. The grids in c) and d) are the prospective FLEX footprints.
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Figure 4.11: In the TROPOMI footprint with minimum NDVI-weighted mean DCDEM
DCtotal

(the blue outlined footprint in Figure 4.9), DCDEM
DCtotal

of all sub-pixels is presented in
a histogram (panel a) and a zoomed-in map (panel c) when 𝑡𝑚 is at TROPOMI
overpass (1:29 pm LST on July 3, 2020). Panels b and d are the same as panels a
and c but at prospective FLEX overpass (10:00 am LST on July 3, 2020). The black
lines in panels a and b indicate the ratio of NDVI-weighted mean DCDEM to DCtotal
in this TROPOMI footprint. The blue frame in all maps depicts actual TROPOMI
footprint. The grids in c) and d) are the prospective FLEX footprints.
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4.6 Discussion
Significance of atmosphere on DC
In this study, we use reanalysis PAR data to evaluate the impact of neglected
atmospheric extinction in the conventional calculation of DC for SIF. We find that
the overall bias in the simple geometric approach that is widely used in SIF studies is
surprisingly small, both for cloudy and cloud free conditions. In most case, the bias
is smaller than 10% at coarse spatial and temporal scales. The main reason for the
small bias is a compensating effect of a reduction in direct light and enhancement
of diffuse light when clouds and aerosols are present. To be more accurate, our
proposed DC corrections can use actual PAR data from meteorological reanalysis
data but in most cases, the simple DCSZA should suffice and our results support the
previously unvalidated simple approach to scale instantaneous SIF to daily averages.

Significance of clear sky bias in temporal averages
When SIFdc is upscaled in time, e.g. to monthly averages, changes in daily PAR
within the averaging window should be taken into account, especially in regions
with low measurement yields due to frequent cloud cover. This way, the upscaled
monthly SIF is not biased by SIF measurements from clear days only. We find that
seasonal clear-sky biases can be on the order of 25% larger than most of the biases in
the simple DC correction. While our approach uses just reanalysis data, one might
also apply actual PAR measurements at field sites for the correction, if available.
However, only reanalysis data can provide corrections for the clear sky bias at global
scales.

Significance of topography on DC
Topography can be an important factor to consider for interpreting satellite measured
SIF as well as NIRv in complex terrain because their magnitudes depend on the
radiation projected on tilted surfaces. The significance of topographic corrections
on SIF and NIRv depends on the relative scale of surface roughness and satellite
footprints. For example, the impact of very rugged terrain in San Gabriel Mountains
is mostly smoothed out within kilometer-wide TROPOMI footprints, while the
topography can be significant in the footprints of upcoming FLEX mission which
has 300-wide footprints.

The topographic impact on DC also compounds with the dependence of vegetation
distribution on topography. Thus, the heterogeneous vegetation distribution should
be considered when aggregating varying sub-pixel DC due to topography. In the
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meantime, topographically corrected SIF and VIs in fine spatial resolutions can
benefit vegetation studies across environmental gradients related to topography,
which are restricted by conventional observation tools, such as Eddy Covariance
techniques.

Uncertainties in explicitly expressed DC models
The current calculation for DCtotal and DCDEM may inherit errors from the reanalysis
data. For example, we assume PAR is a constant fraction of shortwave radiation at
the surface since the current ERA5 version does not provide accurate PAR data. The
absolute value of this constant is less important here since it is canceled out when
calculating DCs. However, this assumption may not hold since the atmospheric
scattering along the light path is wavelength dependent (Bates, 1984). Blue light is
more sensitive to Rayleigh scattering than longer wavelengths. Under different cloud
cover and light path lengths, the spectral shape of incident PAR at the surface can
be different from the spectral shape at the top of atmosphere, which would require
a scene dependent scaling factor between short-wave totals and PAR. To further
improve the accuracy of DCs, accurately calculated PAR data should be used when
it is published in future ERA5 versions. In the future, analyzing the uncertainty
caused by reanalysis data and validating the result with in-situ PAR data might be
needed.

In addition, future corrections might treat direct and diffuse light separately and
take into account that GPP can saturate at high PAR levels while SIF is only mildly
reduced. A simple non-linear scaling function for PAR in all our correction schemes
could takes some of these effects into account but is omitted here as we wanted to
focus on potential biases under the most benign assumptions.

4.7 Conclusion
Instantaneous SIF measurements require correction factors to scale these measure-
ments to daily averages, which can then be aggregated within longer time scales.
We focus on three factors impacting daily average SIF and its temporal averages
spanning multiple days: atmospheric scattering, clear-sky biases, and topography.
Overall, we find that the simple and frequently used DCSZA approach is a convenient
yet surprisingly accurate tool for calculating DC on a flat surface, which yields less
than 10% biases compared to using exact PAR. In extreme cases, such as a high SZA
at 𝑡𝑚 and cloudy days, using DCSZA is less accurate for SIFdc and its seasonality
since the biases can reach up to 20%.
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When aggregating measurements in time, we find that clear-sky biases can arise.
For regions experiencing significant seasonal changes in cloudiness, PAR-weighted
monthly mean SIF benefits the interpretation of SIFdc seasonality. This can even
compound the interpretation of seasonal SIF dynamics that have a low seasonal
dynamic range in SIF but large variations in cloudiness. This holds for the Amazon
basin in regions with distinct dry and wet seasons, for which SIF in periods with
frequent cloudiness can be overestimated by about 25%, which is significant given
the overall seasonal dynamic range in SIF is only ±20%.

For complex terrains, we find that an additional correction for surface slopes and
orientation is required. Our topographically corrected expression for DC is not
negligible, specifically for satellites with small footprints, which can observe highly
tilted surfaces within their footprints. In our examples, the biases in DC due to
topography can be up to 500% and also impact reflectance measurements, especially
the novel NIR𝑣 index.

As more space-borne SIF measurements become available, our length-of-day cor-
rection and monthly averaging methods are useful for homogenizing and comparing
SIF measurements across a variety of overpass and spatiotemporal scales. In com-
plex terrain, including the topography to the calculation of DC is especially critical
for satellites with finer footprints but can also be relevant for coarser spatial scales,
e.g. if regions of the size of the satellite footprint are sloped.

4.8 Appendix
Appendix A. Cosine Correction on VIs
We correct the surface reflectance with a semi-empirical method. For vegetated
pixels (NDVI>0.3), we use the Sun-Canopy-Sensor (SCS+C) topographic correction
(Soenen et al., 2005). For less-vegetated pixels (NDVI≤0.3), we use the slope-aspect
correction (Teillet et al., 1982). The C factor in both corrections were calculated
from regressing the surface reflectance and cos(SZA) in less-vegetated pixels. Thus,
the C factor is wavelength-dependent. This explains the small changes in NDVI and
kNDVI after the correction in Figure 4.12. Overall, the corrected NIRv using our
method (Figure 4.8e-f) is very similar to using the semi-empirical correction method
for R (Figure 4.12j-k).
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Figure 4.12: a) original NDVI; b) topography corrected NDVI; c) topography
corrected NDVI/original NDVI; d) cos(SZA) at LandSat overpass time (10:31 am
on July 3, 2020); e) original kNDVI; f) topography corrected kNDVI; g) topography
corrected kNDVI/oiginal kNDVI; h) same as d); i) original NIRv; j) topography
corrected NIRv; and k) topography corrected NIRv/original NIRv; and l) same as
d). In these polar maps, surface slope is on the diameter axis, and surface aspect is
on the angle axis.

Appendix B. Details of calculating PARdirect and PARdiffuse using ERA5 reanal-
ysis data
variables used in this study ERA5 variable names

clear-sky PARdirect 0.46×Clear-sky direct solar radiation at surface
PARdiffuse 0.46×(Surface solar radiation downward, clear sky - Clear-sky direct solar radiation at surface)

all-sky PARdirect 0.46×Total sky direct solar radiation at surface
PARdiffuse 0.46× (Surface solar radiation downwards - Total sky direct solar radiation at surface)
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Appendix C. Maximum Number of Soundings
We use the same gridded SIF product as Sect 4.5, which is aggregated from individ-
ual SIF measurements in 2020 and has a temporal resolution of 16 days and a spatial
resolution of 0.0833° × 0.0833°. The number of averaged soundings per grid cell is
n in cloud-filtered and N in unfiltered cases, the latter of which represents the total
number of potential TROPOMI soundings.

The maximum numbers of soundings are higher at high latitudes (Figure 4.14)
because of overlapping ground tracks. However, due to larger SZA (Figure 4.13),
the measurement yield is smaller at high latitudes (Figure 4.4).

Figure 4.13: The mean SZA at 𝑡𝑚 per 16 days averaged over December, January,
and February (left panel) and June, July, and August (right panel)

Figure 4.14: The total numbers of unfiltered soundings (N) per 16 days averaged
over December, January, and February (left panel) and June, July, and August (right
panel)

Appendix D. List of variables
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acronym term
𝑡 time
𝑡𝑚 time of measurement

SZA solar zenith angle
𝛼⊙ solar azimuth angle
𝜇 cosine of SZA
𝛽 surface inclination angle
𝛼 surface azimuth angle

SIA solar incidence angle
SIF𝑡𝑚 instantaneous SIF at 𝑡𝑚
SIFdc daily-average SIF
PAR photosynthetic active radiation

PARdirect direct PAR
PARdiffuse diffuse PAR

DC length-of-day correction factor
DCSZA conventional DC using cosine SZA
DCdirect DC using PARdirect only
DCtotal DC using both PARdirect and PARdiffuse

PARdirect, DEM direct PAR corrected by surface topography
DCDEM DC considering surface topography

R reflectance
RDEM topographically corrected R

n number of cloud filtered samples
N number of total amount of samples (before cloud filtering)

PARday daily mean PAR
PARmonth monthly mean PAR

SIF monthly mean SIF
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C h a p t e r 5

CONCLUSIONS

This thesis presents novel methods to improve the estimation of terrestrial ecosystem
photosynthesis (Gross Primary Production, GPP) at high latitudes. It focuses on two
remote sensing techniques, hyperspectral reflectance and Solar-Induced chlorophyll
Fluorescence (SIF), which provide physiological insights into the seasonality of
GPP.

In Chapter 2, we mechanistically explained the seasonal co-variation of GPP and
the spectrally resolved visible-near infrared reflectance signal. We found the canopy
reflectance around 531 nm is critical for inferring the seasonal variations in light
use efficiency due to changes in photoprotective pigments. While indices like
chlorophyll/carotenoid index and photochemical reflectance index are performing
sufficiently as our methods at the canopy scale, the application of the full spectrum
might be more robust for space-based measurements. Our work provides future
studies and satellite missions a convenient reference using hyperspectral reflectance
to achieve accurate monitoring of GPP in evergreen forests. Although our current
study is limited to a subalpine evergreen forest and canopy-scale measurements, the
results of this study have been referenced in studies at high latitudes and/or using
other observational platforms (Maguire et al., 2021; Seyednasrollah et al., 2021;
Woodgate et al., 2020; Zeng et al., 2022).

In Chapter 3, we evaluated the accuracy and uncertainty of predicting GPP using
SIF across the Arctic-Boreal region. For the first time, our study reports the fitted
regression slope k as well as the uncertainties of SIF-GPP relationship for the land
cover types that are unique to the Arctic-Boreal region. Meanwhile, We found sev-
eral potential issues specific to the Arctic-Boreal region that should be considered:
1) unrealistically high FluxCom GPP due to the presence of snow and water at the
subpixel scale, 2) changing biomass distribution and SIF-GPP relationship along
elevational gradients, and 3) limited perspective and misrepresentation of hetero-
geneous land cover across spatial resolutions. Taken together, our results will help
improve the estimation of GPP using SIF in terrestrial biosphere models and cope
with model-data uncertainties in the Arctic-Boreal region.

SIFdc is scaled from instantaneous SIF measurements, which requires a length-of-
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day correction factor (DC). In Chapter 4, we highlighted two factors impacting DC
and SIFdc: clear-sky biases and topography. The clear-sky biases are significant
for regions with large seasonal changes in cloudiness. This can even compound
the interpretation of seasonal SIF dynamics. In the Amazon basin, for which SIF
in periods with frequent cloudiness can be overestimated by about 25%, which is
significant given the overall seasonal dynamic range in SIF is only ±20%. For com-
plex terrains, topographic corrections on DC are required, specifically for satellites
observing highly tilted surfaces within their footprints. In San Gabriel Mountains,
CA, the biases in DC due to topography can be up to 500%. As more space-borne
SIF measurements become available, our length-of-day correction and monthly av-
eraging methods are useful for homogenizing and comparing SIF measurements
across a variety of overpass and spatiotemporal scales.

Taken together, the results of this thesis can improve the prediction of GPP at high
latitudes using remote sensing techniques. The methodology of this thesis can be
expanded to the global scale, which will further help constrain the uncertainty in
the global carbon budget and future climate projections.
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