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We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

—T. S. Eliot (1888-1965), Little Gidding

For Elasticity is the temper of matter to recover its place with vehemence

—Christopher Smart (1722-1771), Jubilate Agno
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ABSTRACT

The motion of the Earth’s tectonic plates creates a gradual accumulation of stress
at their boundaries, followed by a rapid release in earthquakes, a process known
as the earthquake cycle. Studying this process is important because of the haz-
ards earthquakes pose, but presents challenges due to the multi-scale nature of the
problem—stresses build up over hundreds to thousands of years, while earthquakes
break narrow fault zones in a matter of seconds. In this thesis, we combine a va-
riety of techniques to study the earthquake cycle on multiple temporal and spatial
scales, including satellite-based interferometric synthetic aperture radar (InSAR) to
observe the slow deformation of the Earth over wide areas, and high-performance
computational simulations to model faults during earthquakes. We begin by present-
ing a method for removing the signal of plate-tectonic motion in large-scale InSAR
measurements, allowing for better observation of small ground deformations. We
then use these corrections to study the Makran subduction zone, on the Iran-Pakistan
border. Our InSAR-derived ground velocity map can resolve motions at the level
of millimeters per year over an area of nearly one million square kilometers, and
we use it to place constraints on the degree of coupling on the subduction megath-
rust. Next, we show how InSAR can be combined with deep learning techniques
to rapidly map earthquake damage in all weather conditions, day and night. Such
products will hopefully prove useful in future disaster response. Finally, we present
computational simulations of dynamic earthquake ruptures with enhanced dynamic
weakening due to thermal pressurization. We apply our simplified model to the
creeping section of the San Andreas Fault, which is generally thought to be a bar-
rier to earthquake rupture. Our results show how thermal pressurization can allow
earthquakes to propagate partially or completely through the creeping section for a
range of physically reasonable parameters. Our work illustrates how results from
multiple fields can be combined to deliver new insights into the earthquake cycle
and the hazards that it poses.
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2.19 Profiles at 60°E for the low coupling model shown in Figure 2.4.
(a) Profiles through the LOS velocity and estimated uncertainties
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3.1 Schematic of the existing Coherence Change Detection (CCD) method
for damage mapping (Yun et al., 2015), presented for the town of
Sarpol-e-Zahab, damaged during the November 2017 Iran-Iraq earth-
quake. A pre-event coherence image (𝑥𝑇−1) is subtracted from the
co-event coherence image (𝑥𝑇 ) in order to calculate the coherence
loss. The coherence loss is thresholded and plotted to produce a
damage proxy map. Optical data from Google, CNES/Airbus, taken
July 27th 2020. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Schematic of our proposed recurrent neural network (RNN) method
presented for the town of Sarpol-e-Zahab, damaged during the Novem-
ber 2017 Iran-Iraq earthquake. The transformed coherence values (𝑥)
are used to train a recurrent neural network to make a Gaussian fore-
cast of the co-event coherence with mean 𝜇′

𝑇+1 and standard deviation
𝜎′
𝑇+1. The forecast is compared with the observed co-event coher-

ence, 𝑥𝑇+1, to calculate the z-score, 𝑧 (see Eq. 3.10). The z-score
is thresholded and plotted to produce a damage proxy map. A more
detailed illustration of the neural network architecture can be found
in Fig. B.1. Optical data from Google, CNES/Airbus, taken July
27th 2020. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 RNN DPM for the town of Amatrice, Italy, badly damaged during the
2016 Mw 6.2 central Italy earthquake. The center of the town, which
was largely destroyed, is clearly highlighted by elevated damage proxy
values towards the top left of the map. Z-score values below 4.93
(chosen from the F0.5 score, Eq. 3.11) are masked, values above 12
are set to red as indicated by the color bar. Ground truth damage data
are presented in Figure B.3. Optical imagery from Google, taken
July 6th 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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3.4 Quality metrics for the CCD and RNN damage classification methods.
(a) Precision-recall curves for Amatrice damage proxy maps using
the CCD (blue line) and RNN (red line) methods. For a perfect
classifier we can choose a threshold that gives precision and recall
equal to one, indicated in the top right corner. A random classifier
gives a constant precision, equal to the fraction of the data set that
is truly damaged, with recall varying with the threshold, indicated
by the grey horizontal line at the bottom of the plot. The larger
area under the curve (AUC) for the RNN method indicates improved
performance. The black crosses show the position of maximum F0.5

score identified in figures (b) and (c). (b) F0.5 score (see Eq. 3.11)
for varying z-score damage thresholds using the RNN method. (c)
F0.5 score for varying coherence loss damage thresholds using the
CCD method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Comparison of CCD (a) and RNN (b) DPMs for Sarpol-e-Zahab,
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chosen using the maximum value of the F0.5 curve for the Amatrice
data set (see Table 3.1). The upper threshold of the color scales are
chosen such that both plots have the same number of points above the
threshold. The white dashed lines highlight example areas where the
CCD method gives false positive damage detection in regions outside
of the city that are no longer classified as damaged by the proposed
RNN method. The black dashed line shows an area over a rocky ridge
where greater damage is shown by the RNN method compared to the
CCD method. Ground truth damage data are presented in Figure B.4.
Optical imagery from Google, CNES/Airbus, taken July 27th 2020. . 75
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3.6 Sarpol-e-Zahab RNN damage map along with coherence time se-
ries and Gaussian forecasts for four representative locations ((a)-(d))
around the city. The z-score indicates the number of standard devia-
tions between the forecast and the ground truth, and the coherence is
plotted in logit space (i.e., it has been transformed into an unbounded
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data is acquired. The “Coherence” plotted on the y-axis is the logit
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3.7 Ridgecrest RNN damage proxy map with different thresholds. (a) All
points with 𝑧 < 4.93 are masked. Black lines indicate mapped sur-
face ruptures from Ponti et al. (Ponti et al., 2020). The white dashed
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4.1 Examples of Mw 6 and Mw 7-style events. Blue contours show
accumulated inter-seismic slip every four years. Red lines show ac-
cumulated co-seismic slip every 0.5 seconds. (a) Mw 6-style event. A
25-km-long velocity-weakening patch is placed between two velocity-
strengthening patches, the crustal plane thickness is 𝐻𝑠𝑒𝑖𝑠 = 2 km.
The velocity-strengthening patch on the left has TP with Λ = 0.34
MPa/K,𝑤 = 10 mm and 𝛼ℎ𝑦 = 10−4 m2/s for this case; the parameters
are varied in other simulations (Table 4.1). The TP with these param-
eters is not efficient enough for the Mw 6-style event to propagate into
the creeping section. (b) Mw 7-style event. The velocity-weakening
patch is expanded to 80 km long, and crustal plane thickness in-
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4.2 Evolution of parameters with slip for a point within the creeping
section (position -15 km) during a Mw 7-style event that fully ruptures
the creeping section. TP parameters are Λ = 0.34 MPa/K, 𝑤 = 10
mm, and 𝛼ℎ𝑦 = 10−5 m2/s. (a) Shear stress (𝜏) with slip. (b) Effective
normal stress (𝜎𝑒 𝑓 𝑓 ) with slip. (c) Coefficient of friction (𝜏/𝜎𝑒 𝑓 𝑓 )
with slip. (d) State variable term (ln[𝑉∗𝜃/𝐷𝑅𝑆]) with slip. (e) Slip
velocity with slip. The dashed line indicates the mean slip velocity
since the start of the event. Note the 15 m/s slip velocity limit. (f)
Temperature change with slip. . . . . . . . . . . . . . . . . . . . . . 97

4.3 Schematic evolution of shear stress, 𝜏, with slip for a point in the
creeping section of the fault that experiences TP due to incoming
dynamic rupture. The quantities illustrated are used in the theoretical
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(the rate-and-state direct effect) and then a decay to 𝜏𝑠𝑒𝑖𝑠, controlled
by the steady-state rate-and-state parameter. TP can then be activated
due to the resulting shear heating, causing the stress to continue to
decrease. Given sufficient slip before the rupture arrests, the stress
could decrease back to 𝜏𝑐𝑟𝑒𝑒𝑝 over a slip of 𝛿𝑑𝑟𝑜𝑝, and then even below
this level, allowing for a positive stress drop in the creeping section.
A simulation output of this evolution can be seen in Figure 4.2(a). . . 99

4.4 Fraction of the creeping section ruptured for a Mw 6-style event and
varying TP parameters. The value of the TP coupling coefficient, Λ,
increases from (a) to (d), resulting in increasingly efficient TP and
greater rupture fractions. Points within black squares are those mod-
els for which the event fully ruptures the creeping section, indicating
that TP is too efficient to be consistent with the observation of the
2004 Mw 6 event arresting in the creeping section. . . . . . . . . . . 104
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4.5 Fraction of the creeping section ruptured for a Mw 7-style event and
varying TP parameters. The size of the TP coupling coefficient,
Λ, increases from (a) to (d), resulting in increasingly efficient TP
and greater rupture fractions. Points within black boxes are those
that fully ruptured the creeping section for Mw 6-style events (Figure
4.4), indicating that TP is too efficient to be consistent with the
observation of the 2004 Mw 6 event arresting in the creeping section.
Points within red boxes are those that arrested in the creeping section
for Mw 6-style events, but fully rupture the creeping section for Mw

7-style events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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4.6 Variation in the slip 𝛿∗
𝑑𝑟𝑜𝑝

(top row) required for a positive stress drop,
assuming the slip-on-a-plane solution, as we change TP parameters
𝑤, 𝛼ℎ𝑦 and Λ, and validity of the approximation (bottom row). The
simulated rupture fraction values are also shown, for a Mw 7-style
event. (a) Colorbar shows variation of 𝛿∗

𝑑𝑟𝑜𝑝
with 𝑤 and 𝛼ℎ𝑦, for

Λ = 0.1 MPa/K. Each color change delineates an order of magnitude
change in 𝛿∗

𝑑𝑟𝑜𝑝
, which only varies with 𝛼ℎ𝑦 given the assumption of

an infinitesimally thin fault in the corresponding analytical solution.
The approximation is expected to work for faults that are thin enough
compared to diffusion time scales; this regime is highlighted with
bright colors (see panel (c)), with the rest of the panel muted. The
dashed black and red lines show where 𝛿∗

𝑑𝑟𝑜𝑝
= 𝛿𝑒𝑣𝑒𝑛𝑡 for the Mw

6-style and Mw 7-style events, respectively. Note that, within the
region of the validity of the analytical approximation (bright colors),
the red dashed line predicts the transition from rupture propagation
over the creeping section to rupture arrest. (b) Same as (a), except
with Λ increased by an order of magnitude to 1 MPa/K. This in-
creased efficiency of TP results in 𝛿∗

𝑑𝑟𝑜𝑝
decreasing by two orders of

magnitude for each value of 𝛼ℎ𝑦. (c) Validity for the slip-on-a-plane
approximation with Λ = 0.1 MPa/K. The colorbar shows variation
of 𝛿𝑑/𝛿∗𝑑𝑟𝑜𝑝. The thick black contour delineates 𝛿∗

𝑑𝑟𝑜𝑝
= 10𝛿𝑑 . The

blue area to the left and top of this line satisfies 𝛿∗
𝑑𝑟𝑜𝑝

> 10𝛿𝑑 , the
range for which we take the slip-on-a-plane fault model to be a good
approximation, as marked in (a). (d) Same as (c), except with Λ = 1
MPa/K. This increased efficiency of TP results in a reduced 𝛿∗

𝑑𝑟𝑜𝑝
, as

shown in (b). This decrease causes the validity bound for the slip-on-
a-plane approximation to shift to the left, reducing the number of our
fault models that are well approximated by the slip-on-a-plane fault
regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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4.7 Same as Figure 4.6, except for the adiabatic, undrained fault solution
(i.e. replacing 𝛿∗

𝑑𝑟𝑜𝑝
with 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

). Note that the order of magnitude
change in Λ between (a) and (b) causes an order of magnitude change
in 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

, compared to two orders of magnitude for 𝛿∗
𝑑𝑟𝑜𝑝

(shown in
Figure 4.6). As the adiabatic, undrained fault solution assumes no
transfer of fluid or heat out of the fault zone, 𝛿(𝑐)

𝑑𝑟𝑜𝑝
depends only on the

fault zone width. The thick black contour in (c) and (d) now delineates
𝛿
(𝑐)
𝑑𝑟𝑜𝑝

= 0.1𝛿𝑑; models to the right of this line satisfy 𝛿
(𝑐)
𝑑𝑟𝑜𝑝

< 0.1𝛿𝑑 ,
the range for which we take the adiabatic, undrained solution to be
a good approximation to our models. As we go from (c) to (d),
the increasing efficiency of TP results in a shorter 𝛿(𝑐)

𝑑𝑟𝑜𝑝
, reducing the

diffusion length scales and making more parameter combinations well
approximated by the adiabatic, undrained regime. Similar to Figure
4.6, the red dashed line in (a) and (b) shows where 𝛿(𝑐)

𝑑𝑟𝑜𝑝
= 𝛿𝑒𝑣𝑒𝑛𝑡 and

marks a transition in the fraction of the creeping section ruptured. . . 111
4.8 Logarithm of the fraction of the creeping section ruptured against

the logarithm of the ratio between the total slip for the event in the
absence of TP, 𝛿𝑒𝑣𝑒𝑛𝑡 , and the estimated slip required for a positive
stress drop due to TP, 𝛿𝑑𝑟𝑜𝑝. For each combination of TP parameters,
𝛿𝑑𝑟𝑜𝑝 is estimated for the slip-on-a-plane solution (𝛿∗

𝑑𝑟𝑜𝑝
) and the

adiabatic, undrained solution (𝛿(𝑐)
𝑑𝑟𝑜𝑝

). Only points for estimates that
are expected to be good are plotted, defined by 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

< 0.1𝛿𝑑 and
𝛿∗
𝑑𝑟𝑜𝑝

> 10𝛿𝑑 , as established based on Figures 4.6 and 4.7. Points
with estimates of 𝛿∗

𝑑𝑟𝑜𝑝
outside of these validity bounds are plotted

in Figure 4.9. The color of the symbols gives the log of the ra-
tio between the hydrothermal diffusion distance, 𝛿𝑑 , and 𝛿𝑑𝑟𝑜𝑝, for
the relevant end-member model. Values increasingly greater than 1
indicate that the fault model is increasingly closer to the adiabatic,
undrained regime over the slip 𝛿𝑑𝑟𝑜𝑝, while values less than -1 indi-
cate increasing closeness to the slip-on-a-plane fault regime. The line
𝛿𝑒𝑣𝑒𝑛𝑡 = 𝛿𝑑𝑟𝑜𝑝 captures the transition from ruptures arresting in the
creeping region to increasingly large fraction of the creeping section
being ruptured in our models. . . . . . . . . . . . . . . . . . . . . . 112

4.9 Same as Figure 4.8, except for estimates of 𝛿𝑑𝑟𝑜𝑝 that are outside of
the validity bounds we choose (i.e. 𝛿(𝑐)

𝑑𝑟𝑜𝑝
> 0.1𝛿𝑑 and 𝛿∗

𝑑𝑟𝑜𝑝
< 10𝛿𝑑). 113
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A.1 Cumulative impact of corrections on the InSAR-derived velocity field
for Sentinel-1, track 20 (DSC) over the Makran subduction zone.
Panels are as described in Figure 1.2. Note the substantial difference
in the long-wavelength ionospheric correction between ASC (Figure
1.2(f)) and DSC tracks ((f)). The burst discontinuities due to the
ionosphere can be clearly seen in (f) (Liang et al., 2019). . . . . . . . 161

A.2 Cumulative impact of corrections on the InSAR-derived velocity field
for Sentinel-1, track 87 (ASC) over the Gulf of Aqaba. Panels are as
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A.3 Cumulative impact of corrections on the InSAR-derived velocity field
for Sentinel-1, track 21 (DSC) over the Gulf of Aqaba. Panels are as
described in Figure 1.2. . . . . . . . . . . . . . . . . . . . . . . . . 163
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A.7 Impact of accounting for plate motion on the calculation of horizontal
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performed for the overlapping region between tracks 86 (ASC) and
20 (DSC) over the Makran subduction zone, with horizontal motion
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mance for the town of Amatrice, damaged during the August 24,
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age levels are supplied by the Copernicus Emergency Management
Service (Copernicus Emergency Management Service, 2016), then
simplified as described in Section B.3. Note that the optical imagery
in this figure was taken a little under a year after the earthquake, and
structures have been built that do not appear in the damage assess-
ment. Optical imagery for the figure is from Google, taken July 6th
2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175



xxvii

B.4 Location of 683 potentially damaged buildings manually mapped
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1

INTRODUCTION

0.1 Background
Why do earthquakes happen? The Greek philosopher Aristotle (384-322 BCE)
thought the culprit was the escape of evaporating water from the Earth, while for the
ancient Chinese, who made the first written records of earthquakes, such events were
the sign of an imbalance between heaven and Earth, and a harbinger of the ruling
dynasty’s fall from power (Needham, 1959). In 132 CE, the Chinese polymath
Zhang Heng (78-139 CE) created the first seismoscope, a device that allowed the
direction of distant earthquakes to be measured, even when seismic waves were
imperceptible. The seismoscope could help the government dispatch relief to the
affected areas; however, the underlying cause of earthquakes remained elusive.

In 1755, the Portuguese city of Lisbon was hit by a devastating earthquake and
tsunami, triggering political and philosophical upheavals across Europe. The event
was notable in the history of seismology for the detailed surveying of the shaking and
damage, directed by the Portuguese chief minister, the Marquis of Pombal (1699-
1782).1 While interpreted as a sign of God’s wrath, the disaster also prompted more
naturalistic explanations, such as German philosopher Emmanuel Kant’s (1724-
1804) proposal that earthquakes were produced by the reaction of sulphur and ion
with water in caverns beneath the Earth’s surface (Reinhardt & Oldroyd, 1983).

It was not until 1910 that a key element in our modern understanding of earthquakes
fell into place. In 1906, a rupture along the San Andreas Fault, in California, badly
damaged the city of San Francisco. Harry Fielding Reid (1859-1944), professor of
geology at Johns Hopkins University, found that the ground surface along the San
Andreas Fault had deformed in the 50 years before the earthquake. Reid proposed
that this deformation, or “strain,” stored energy in the rocks beneath the surface,
which was then released in the devastating earthquake: the “elastic-rebound theory”
(Reid, 1910).

Reid’s theory allowed him to suggest how future earthquakes could be predicted, by
measuring where and by how much the Earth was deforming:

“As strains always precede the rupture and as the strains are sufficiently
great to be easily detected before the rupture occurs, in order to foresee

1Technically he did not gain the “Marquis of Pombal” title until 1769.
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tectonic earthquakes it is merely necessary to devise a method of deter-
mining the existence of the strains; and the rupture will in general occur
in the neighborhood of the line where the strains are greatest, or along
an older fault-line where the rock is weakest” (Reid (1910), p. 31).

Reid went on to suggest a method for how this deformation could be measured:

“To measure the growth of strains, we should build a line of piers, say
a kilometer apart, at right angles to the direction which a geological
examination of the region, or past experience, indicates the fault will
take when the rupture occurs; a careful determination from time to time,
of the directions of the lines joining successive piers, their differences
of level, and the exact distance between them, would reveal any strains
which might be developing along the region the line of piers crosses”
(Reid (1910), p. 31).

Reid was only able to speculate as to what was driving the deformation of the Earth,
suggesting that “flows below the surface may have been the origin of the forces we
have been considering” (Reid (1910), p. 27). In 1912, German meteorologist Alfred
Wegener proposed “continental drift,” the idea that the present continents had once
been part of a single land mass, and had slowly drifted apart. By the 1960s, this
idea had developed into the modern theory of plate tectonics: the brittle outer layer
of the Earth (the lithosphere2) is divided up into plates that slowly move past each
other at a few centimeters per year (McKenzie & Parker, 1967). At their boundaries,
the plates are stuck together, and so slowly bend as they move, storing up energy
which is then released in earthquakes. The combination of the steady forcing from
plate motion, with regular elastic rebound during earthquakes, suggests the idea
of an “earthquake cycle”, a potentially periodic repetition of stress build up (the
“inter-seismic” phase) followed by stress release (the “co-seismic” phase).

The picture of the Earth storing up elastic energy in the lithosphere, which is
then released in earthquakes along faults (planes of weakness in the Earth), is
complicated by more detailed observations of fault behavior. Faults do not just
slip during earthquakes, they can also move slowly, at a speed of millimeters per

2In this introduction, I will use the terms “crust” and “lithosphere” interchangeably. This is
technically incorrect—the lithosphere is the rigid outer layer of our planet, while the crust is the
upper part of the lithosphere that is distinguished by its chemical composition. Sue me ,
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year, in a process known as “creep.” These observations can be explained by
dividing faults into “velocity-strengthening” and “velocity-weakening” regions (e.g.,
Scholz (1998)). Velocity-strengthening sections of faults become stronger as the
stresses build up and cause the fault to slip more quickly. Such strengthening
behavior should make the fault unable to host earthquakes; fast slip on the fault
causes a dramatic increase in strength, which rapidly slows any rupture. Within
this model, velocity-strengthening sections should deform only by creep and act
as barriers to earthquakes. Velocity-weakening sections, on the other hand, are
“seismogenic”—they can rupture in earthquakes. With a build up in stress, the fault
begins to move, growing weaker as it does. Such weakening allows it to slip faster,
creating more weakening in a feedback loop that results in an earthquake. After this
sudden slip, the fault becomes locked, once again storing up energy to be released
in a future earthquake.

Measurements of the Earth’s surface allow us to identify regions of faults that are
slowly creeping, and those that are locked (e.g., Burgmann (2000)). For example,
we can divide the San Andreas Fault into locked sections in the north (where the
1906 earthquake occurred) and south, separated by a 140-km-long creeping section
(e.g., Jolivet et al. (2015)). These measurements are easiest where faults are well
exposed on land, as they are for the San Andreas, and are more challenging for
offshore faults, such as the gigantic “megathrust” faults found at subduction zones,
where one of the Earth’s plates slides under the other. Nevertheless, if we are able to
identify the locked and creeping areas of faults, as well as the rate at which energy
is being stored in the crust around the fault, such measurements can offer some
indication of where, and how big, an earthquake might be (e.g., Avouac (2015)).

There are, however, numerous factors that further complicate this model. For exam-
ple, not all energy that is used to deform the rock is necessarily recovered during the
earthquake—some amount can be used in creating permanent crustal deformation,
both during the inter-seismic and co-seismic phases, as well as during a “post-
seismic” phase of deformation triggered by the earthquake (e.g., Avouac (2015),
Johnson (2013), Perfettini and Avouac (2004), Shen et al. (1994), and K. Wang
et al. (2021)). The straightforward division of faults into velocity-strengthening
and velocity-weakening areas, leading to creeping and seismogenic behavior, re-
spectively, is also being increasingly challenged by observations and experiments
showing that apparently velocity-strengthening materials can dramatically weaken
when driven at fast slip rates, a process known as “dynamic weakening” (Di Toro
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et al., 2011; Tsutsumi & Shimamoto, 1997; Tullis, 2007). If velocity-strengthening
patches can undergo dynamic weakening, then the idea that they represent barriers
to earthquake rupture is in doubt (Noda & Lapusta, 2013).

Because of such complexities, understanding the earthquake cycle requires studying
the Earth over many scales of time and space. The stresses in the Earth are built
up by planetary scale motions of the Earth’s lithosphere, which can load faults for
hundreds to thousands of years between major earthquakes. While the interseismic
loading can span many human lifetimes, the co-seismic rupture is orders of mag-
nitude faster—the rupture propagates at kilometers per second, with meters of slip
accumulating in just a few seconds (Heaton, 1990). During this rupture, dynamic
weakening can allow faults to go from apparent barriers to earthquake rupture to
dramatically weaker in a fraction of a second, and the width of the fault zone that
slips can be tiny, as small as micrometers by some estimates (e.g., Chester and
Chester (1998) and Platt et al. (2014)).

To do such multi-scale work, geoscientists must combine many fields of study.
Geodesy, or the measurement of the shape of Earth’s surface, can tell us about
the deformation of the Earth over decades. In 1910, Reid was limited to the
results of ground-based triangulation surveys of fixed locations before and after the
earthquake. The development of space-based geodetic techniques, such as Global
Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar
(InSAR) now allow us to measure motions of millimeters per year, with dense
temporal sampling, on a global scale (Blewitt, 2015; Simons & Rosen, 2015).
These techniques can provide high resolution imaging of each stage of the earthquake
cycle, from inter-seismic strain accumulation, to co-seismic offsets and post-seismic
deformation (e.g., Avouac (2015), Fialko et al. (2001), Hsu et al. (2006), and Simons
et al. (2011)).

Geodesy alone can only give us information over the time scales of the surveys.
Given that the interval between large earthquakes on particular faults can be cen-
turies, it is necessary to look to other techniques to gain a fuller understanding of the
history of each fault—i.e., when and how big its previous earthquakes were. Large
earthquakes can cause several meters of slip and alter the rocks and soil surrounding
the fault. The field of paleoseismology searches for signs of these processes to create
histories of previous earthquakes on major faults, potentially going back thousands
of years (e.g., Sieh (1978b) and Sieh et al. (1989)). Geological investigations of fault
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zones can be used to understand the total amount of slip on the fault, and how that
slip was accommodated, over millions of years (e.g., Chester and Chester (1998))

The work described above is primarily observational—it relies on recording and un-
derstanding natural phenomena, rather than controlling them. Experiments present
an alternative approach; taking samples, potentially obtained directly from fault
zones, and measuring how they respond under different conditions. For example,
scientists can adjust the pressure and water saturation conditions of a fault sample,
and see how this affects its frictional strength at different sliding velocities, searching
for signs of dynamic weakening (French et al., 2014). The controlled conditions of
the laboratory allows for measurements on the scale of micrometers and microsec-
onds (e.g., Rubino et al. (2022)), providing insights that are impossible to obtain
directly from faults buried deep beneath the Earth’s surface.

The combination of observation and experimentation presents a messy, tangled
picture of the physical processes acting in the Earth. It is the job of modeling to
take this picture and reduce it to understandable parameters that give some insight
into the physical processes that are acting. A classic example is Newton’s second
law, which takes a series of observations of the world, from pushing a glass across a
table, to the orbit of the Earth around the Sun, and unifies them under one theoretical
model: 𝐹 = 𝑚𝑎. This equation tells us that the acceleration of a body (𝑎) is equal
to the net force we apply (𝐹), divided by its mass (𝑚), and allows us to explain
how bodies move in response to forces. In a similar fashion, Reid’s elastic rebound
theory reduced observations of ground deformation along the San Andreas fault into
a model of energy stored in and then released from an elastic crust.

Just as an experimentalist measures how their samples respond to different conditions
in the laboratory, models can be experimented with by varying their parameters and
calculating the output, then comparing the results with real-world observations.
When models are sufficiently complex, this experimentation can only be done with
the aid of computer simulations. For example, when studying the earthquake
cycle, computer simulations can be used to understand how the addition of dynamic
weakening to velocity-weakening and velocity-strengthening patches could affect
fault behavior over thousands of years, and compare these outputs with observed
earthquakes (Cubas et al., 2015; Noda & Lapusta, 2013).
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0.2 Thesis Overview
In this thesis, we draw on insights from a wide range of observational, experimental,
computational and theoretical studies to better understand different components of
the earthquake cycle. We focus our attention on geodetic measurements from InSAR,
computational simulations of earthquake rupture, and theoretical understanding of
these simulations.

We begin by discussing long-wavelength signals in InSAR measurements of ground
velocity (Chapter 1). InSAR is a powerful technique for measuring ground defor-
mation over wide areas; however, the data often contains contaminating signals that
limit the ability of InSAR alone to measure deformation over hundreds of kilome-
ters. This issue is generally solved by combining InSAR with GNSS measurements
to constrain long-wavelength deformation. We demonstrate that the movement of
the Earth’s tectonic plates creates long-wavelength signals in InSAR measurements
that could potentially be misinterpreted as deformation, and show how to remove
them using plate motion models.

Using the plate-motion corrections, we apply InSAR data to measure ground de-
formation over the Makran subduction zone, a 1000 km long megathrust where the
Arabian plate slides beneath the Eurasian plate on the Iran-Pakistan border (Chapter
2). The approach is similar in spirit to Reid’s 1910 proposal to understand the
earthquake cycle by measuring strain accumulation, but we have the advantage of
110 years of progress in geodesy. We are able to resolve on-going post-seismic de-
formation, co-seismic offsets, and rapid ground subsidence due to aquifer discharge
over an area of nearly one million square kilometers using 7.5 years of InSAR data,
without the aid of GNSS. Of particular interest is the degree of “coupling” on the
subduction zone—i.e., how much of the motion between the plates is stored as elas-
tic energy that could be released in future earthquakes. Our measurements do not
allow us to unambiguously resolve the degree of coupling, but we use simple elastic
models to place constraints on the strength of coupling and compare the results to
previous studies.

In Chapter 3 we follow in the footsteps of Zhang Heng and the Marquis of Pombal
by developing a method to rapidly map earthquake damage over wide areas using
InSAR satellites. Using large amounts of InSAR data, combined with modern deep-
learning techniques, our method can locate collapsed buildings within hours to days
after major disasters, which could help to direct emergency response, particularly in
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remote areas. The use of InSAR means that our method works day and night, and
in all weather conditions.

For the final chapter, we shift our attention to high-performance computational sim-
ulations of earthquake rupture (Chapter 4). Building on work by Noda and Lapusta
(2013) and Cubas et al., 2015, we explore the conditions under which dynamic weak-
ening can allow creeping faults to rupture in earthquakes. We focus on a dynamic
weakening process known as “thermal pressurization” (Sibson, 1973), and use our
model to simulate the behavior of the creeping section of the San Andreas Fault
as we vary the efficiency of weakening. We find that thermal pressurization could
allow for ruptures to propagate through the creeping section within our simplified
model, potentially allowing ruptures to grow much larger than would be expected if
the creeping section was a barrier to earthquake rupture.

We finish with some conclusions and suggestions for future directions of research.
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C h a p t e r 1

THE IMPACT OF PLATE MOTIONS ON LONG-WAVELENGTH
INSAR-DERIVED VELOCITY FIELDS

1.1 Introduction
Interferometric Synthetic Aperture Radar (InSAR) is an active imaging technique
for measuring ground displacements that occur between repeat passes of an imaging
platform, such as a satellite (e.g., Hanssen (2001), Massonnet and Feigl (1998),
and Simons and Rosen (2015)). InSAR deformation measurements are generally
expressed relative to a single point, or ensemble of points, within the imaged
area, usually assumed to be stable through time (e.g., Mahapatra et al. (2018)).
While InSAR has been used extensively for measuring large amplitude (> 1 cm),
deformation over short-wavelengths (< 100 km) (e.g., Massonnet et al. (1993) and
Merryman Boncori (2019)), other signals present in the data challenge our ability to
measure deformation at the scale of millimeters per year over hundreds of kilometers.

InSAR observations at long wavelengths are the combination of motion of the Earth’s
surface, changes in the atmosphere, and measurement and processing errors. The
Earth motion signals comprise the surface deformation of interest, e.g., from tectonic
strain, volcanic activity or subsidence (Amelung et al. (1999), Massonnet and Feigl
(1998), and Massonnet et al. (1993)), along with solid Earth tides (SET) (X. Xu
& Sandwell, 2020), and ocean tidal loading (Dicaprio et al., 2008). Atmospheric
signals come from propagation delay through the ionosphere (Z.-W. Xu et al., 2004)
and troposphere (Tarayre & Massonnet, 1996). Error sources include the satellite
orbits (Massonnet & Feigl, 1998), local oscillator drift (Marinkovic & Larsen, 2015),
phase unwrapping (Biggs et al., 2007) and topography (Berardino et al., 2002).

These effects can obscure small amplitude, long-wavelength signals in InSAR due
to local tectonic processes, such as surface deformation from interseismic loading
(e.g., Fournier et al. (2011) and Parizzi et al. (2021)). Thus, it is common to not
interpret long-wavelength signals from InSAR alone, instead removing them by
empirically fitting 2D polynomial functions, known as “ramps”, to the data (e.g.,
Fialko (2006) and Jolivet et al. (2015)), or combining InSAR velocities with Global
Navigation Satellite System (GNSS) measurements in order to constrain the long-
wavelength deformation (e.g., Neely et al. (2020), Parizzi et al. (2020), Weiss et al.
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(2020), and X. Xu et al. (2021)). Such approaches are limiting when we wish to
measure large-scale deformation in regions of sparse GNSS coverage (Chaussard
et al., 2016; Neely et al., 2020).

The quality of InSAR data and correction methods have substantially increased over
the last several years. The European Space Agency’s (ESA) Sentinel-1 satellites have
been regularly acquiring data for significant portions of the planet since late 2014.
Sentinel-1 offers the advantages of improved orbital controls and uncertainties,
reducing the noise contribution from satellite orbits (Fattahi & Amelung, 2014), as
well as unrestricted data access. Split-band processing now allows for the estimation
of the ionospheric signal directly from the InSAR data (Fattahi, Simons, et al., 2017;
Gomba et al., 2016; Liang et al., 2019), and higher quality weather models have
improved the correction of the tropospheric phase (Doin et al., 2009; Jolivet et al.,
2011; Z. Li et al., 2005). Techniques for removing the SET (X. Xu & Sandwell,
2020) and ocean tidal loading signals (Dicaprio et al., 2008; Yu et al., 2020) have
also been developed, among other correction methods. After corrections, there may
still be long-wavelength residuals in multi-year Sentinel-1 time series, including
from the troposphere, which can contribute up to 5 mm/yr over 150 km (Parizzi
et al., 2021), and orbital errors, contributing around 0.5 mm/yr over 100 km for
Sentinel-1 (Fattahi & Amelung, 2014).

In this work, we focus on the contribution of coherent uniform motion of Earth’s
tectonic plates to the long-wavelength component of InSAR-derived velocity fields.
The satellite line-of-sight (LOS) vector varies systematically in the satellite range
direction (i.e., across the satellite track), causing a changing sensitivity to ground
deformation with range. Bulk motion of tectonic plates in the satellite frame of
reference, coupled with this LOS variation, can create quasi-linear gradients in
InSAR-derived velocity fields, resulting in ramps, predominantly in the satellite
range direction. This effect has been noted before, e.g., by Bähr et al. (2012), Bähr
(2013) and Parizzi et al. (2020). Here, we demonstrate that plate motion creates
ramps of several millimeters per year, across the 250 km track width, in six multi-
year Sentinel-1 InSAR time series. After other corrections have been applied, plate
motion is the dominant long-wavelength signal in our data, and we show that this
signal can be straightforwardly compensated for using plate motion models. This
adjustment is not currently part of several open-source InSAR time series analysis
packages (e.g., Agram et al. (2013), Hooper et al. (2012), Morishita et al. (2020),
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and Yunjun et al. (2019)), and we provide an implementation of the method in the
MintPy package (Yunjun et al., 2019).

1.2 The Reference Frame of InSAR Measurements
Quantifying ground deformation using InSAR requires a precise measurement of the
satellite orbit ephemerides (Fattahi & Amelung, 2014; Peter, 2021). For Sentinel-1
the orbit is measured with respect to the International Terrestrial Reference Frame
(ITRF) (Peter, 2021), an Earth-centered, Earth-fixed reference frame in which there
is no net rotation of the Earth’s surface (Altamimi et al., 2016). Observations of
absolute ground motion relative to the satellite are therefore also in ITRF (Bähr
et al., 2012; Lazecky & Hooper, 2022).

However, it is not possible for InSAR to record absolute motions due to the 2𝜋
ambiguity in the interferometric phase (e.g., Massonnet and Feigl (1998)). Instead,
displacement measurements are generally expressed relative to a reference point
within the imaged region, assumed to be stationary. Velocities can then be ob-
tained from functional fits to displacement time series, with inferred velocities also
expressed relative to this point.

Selecting the reference point is not equivalent to expressing the InSAR velocities in
a reference frame moving with that point (Bähr, 2013; Bähr et al., 2012). We must
therefore consider how velocities in ITRF appear in the InSAR deformation field.
We represent the 3D ITRF secular velocity field of the Earth’s surface as:

𝒗(𝒙) = 𝒗𝑝 (𝒙) + 𝒗𝑑 (𝒙). (1.1)

𝒗𝑝 (𝒙) is the velocity field due to the strain-free motion of the relevant rigid plate in
ITRF, and 𝒗𝑑 (𝒙) is the velocity due to internal deformation of the plate, for example
due to tectonic, volcanic, or hydrological processes.

Defining the LOS unit vector pointing from the ground to the satellite as 𝒍 (𝒙), the
LOS projection of the 3D velocity field, minus the InSAR reference velocity, can be
written as:

𝒗𝑙 (𝒙) = 𝒗(𝒙) · 𝒍 (𝒙) − 𝒗(𝒙′) · 𝒍 (𝒙′), (1.2)

where the reference is at point 𝒙′. 𝒗𝑙 (𝒙) is the secular velocity that will be measured
by the satellite, assuming all other signals and noise can be neglected.

In ITRF, 𝒗𝑙 (𝒙) has a contribution from the plate motion, which we can write as:

𝒗𝑙,𝑝 (𝒙) = 𝒗𝑝 (𝒙) · 𝒍 (𝒙) − 𝒗𝑝 (𝒙′) · 𝒍 (𝒙′). (1.3)
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The second term, from the reference, is constant, while the first term depends on
the spatial variation of 𝒗𝑝 (𝒙) and 𝒍 (𝒙). The LOS vector 𝒍 (𝒙) can vary substantially
over an image swath. For Sentinel-1, the incidence angle (the angle between the
LOS and the vertical) varies approximately from 29° in the near range to 46° in
the far range over the 250 km width of the imaging swath (for data acquired in
Interferometric Wideswath mode). The range-dependent variation in 𝒍 (𝒙) implies
a changing sensitivity to components of the 3D deformation field across the track,
with sensitivity to horizontal motion increasing and vertical motion decreasing as we
move from near range to far range. This range-dependent sensitivity causes uniform
plate motions to appear as velocity ramps in the range direction when projected into
the satellite LOS (Figure 1.1).

The plate velocity, 𝒗𝑝 (𝒙), also varies over an image swath. The motion of a rigid
plate on Earth’s surface can be represented by a rotation rate about an axis, known
as an Euler pole (McKenzie & Parker, 1967). Given the angular velocity of a chosen
plate, 𝛀, we can write the velocity of any point, 𝒙, on that plate as 𝒗𝑝 (𝒙) = 𝛀 × 𝒙,
where × is the cross product. Thus, the velocity field due to rigid plate motion varies
with distance from the plate’s Euler pole. This variation in 𝒗𝑝 (𝒙) also contributes
to the long-wavelength LOS velocity field.

Because of the effect of plate motions, InSAR velocity measurements should not
generally be considered to be in a local reference frame, despite the use of a local
reference point. Choosing a reference point within an InSAR image offsets InSAR
velocity measurements from the LOS projection of ITRF velocities by an unknown
constant (Equation 1.1), but does not remove the long-wavelength gradients that
can be induced by plate motion (Equation 1.3). If ITRF plate motion is negligible
when projected to the LOS, and does not vary substantially over the InSAR track,
or the satellite LOS variation across the track is small, then 𝒗𝑙,𝑝 (𝒙) ≈ 0. Choosing a
reference point that is stable with respect to the plate is then approximately equivalent
to putting the InSAR velocities into the reference frame of that plate; however, this
should not be generally assumed.

Several authors have investigated the reference frame of InSAR observations, gen-
erally in the context of using GNSS to put InSAR measurements into a terrestrial
reference frame (e.g., Johnston et al. (2021) and Mahapatra et al. (2018)). The influ-
ence of plate motion on InSAR velocities has been noted by Bähr et al. (2012) and
Bähr (2013), who term it the reference frame effect. Bähr et al. (2012) present this
phenomenon in terms of a temporally increasing correction to the interferometric
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Figure 1.1: Illustration of how uniform horizontal and vertical motions result in
ramps in InSAR-derived velocity measurements. (a) Satellite images acquired from
ascending (ASC) and descending (DSC) orbital tracks, which have a varying LOS
incidence angle across the track. The term “range” refers to the distance from the
ground target to the satellite, with near range and far range the closest and furthest
points from the satellite, respectively. Red and blue arrows represent the ground-
to-satellite LOS vector in the near range for ASC and DSC tracks, respectively.
Grey and black arrows represent plate motion in the reference frame of the satellite.
For illustration purposes we assume the ASC and DSC tracks are parallel to each
other but in opposite directions, and ignore Earth curvature. Figure not to scale.
(b) Profile of the horizontal plate velocity projected into the LOS of the ASC and
DSC tracks, against geographic distance along the ground. (c) Same as (b), except
for vertical plate motion, resulting in opposite gradients in the LOS profiles. The
observing geometry creates a small curvature in all profiles, which is exaggerated
in the figure. For InSAR measurements, the LOS velocity is expressed relative to
a point within the image, so each of these profiles would be vertically shifted to
intersect with the 𝑥 axis at the chosen reference point.
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baseline, while Bähr (2013) notes that this can also be framed in terms of the vary-
ing satellite LOS causing differing sensitivity to plate motion (the approach taken
here). Parizzi et al. (2020) used plate motion models to adjust their LOS velocity
fields after merging InSAR with GNSS. Authors have also noted the impact of plate
motions on SAR geolocation accuracy (Cong et al. (2012)). Our focus here is to
demonstrate that plate motions can explain a significant fraction of observed residual
long-wavelength surface velocities, after other corrections have been applied, and
without combining InSAR data with GNSS.

1.3 Data and Methods
1.3.1 Data Processing
We present several examples using InSAR data from the ESA’s Sentinel-1 satellites,
taken from ascending (ASC) and descending (DSC) tracks covering the Makran
subduction zone (Iran), the Gulf of Aqaba (at the northern end of the Red Sea), and
western Australia. For each track, we process at least 5 years of data using the InSAR
Scientific Computing Environment (ISCE) (Fattahi, Agram, et al., 2017; Rosen et
al., 2012). After forming the interferogram networks, we create deformation time
series using MintPy (Yunjun et al., 2019).

Before examining residual signals due to plate motion, we apply corrections for the
ionosphere, troposphere, SET, and digital elevation model (DEM) error. We use
split-band processing to correct for the ionosphere (Liang et al., 2019), PyAPS and
the ERA5 weather model to mitigate the tropospheric delay (Hersbach et al., 2020;
Jolivet, Agram, et al., 2014), the method of Fattahi and Amelung (2013) for DEM
error correction and PySolid to correct for SET (Milbert, 2018; Yunjun et al., 2022).
Further details of our data and processing are presented in Appendix A (Sections
A.2, A.3, and Table A.1).

1.3.2 Adjusting InSAR Measurements for Plate Motion
After all other corrections have been applied, we can then observe and account for
the signal of plate motion. InSAR observations of ground motion are generally
used to study regional deformation, rather than plate translations or rotations. For
such purposes, a useful reference frame is one that moves with the plate in which
we are trying to measure strain. Translating into this reference frame requires us
to remove the signal of plate motion in the satellite’s frame of reference, i.e., ITRF
(Bähr, 2013; Parizzi et al., 2020).
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GNSS networks can be used to connect InSAR measurements to ITRF (e.g., Johnston
et al. (2021) and Mahapatra et al. (2018)), which can then be transformed into a
reference frame moving with the chosen plate. In the absence of sufficient GNSS
coverage, we can estimate the transformation into the plate’s frame of reference
using the following steps:

1. Choose an InSAR reference point, 𝒙′, that is stable with respect to the plate

2. Find the velocity field of the plate within ITRF, i.e., 𝒗𝑝 (𝒙)

3. Project that velocity field into the satellite LOS direction

4. Subtract the LOS velocity of the reference point, 𝒗𝑙,𝑝 (𝒙′), from the projected
plate velocity to compute 𝒗𝑙,𝑝 (𝒙), which is then removed from the InSAR
velocity map.

Note that, after these steps, InSAR-derived velocities are still expressed relative to
a reference point, meaning that deformation and other signals seen at the reference
point will still affect the entire scene.

We use the geodetically constrained ITRF plate motion model of Altamimi et al.
(2017) to estimate the plate velocity field. For each study region, we identify our
reference plate (Table A.1), then use the modeled angular velocity of the plate to
calculate horizontal velocities for our observation region. We then project these
velocities into the LOS direction and remove them from the velocity map.

1.4 Results
1.4.1 The Importance of Removing Other Signals for Revealing Plate Motion
We expect plate motion to contribute below 8 mm/yr across the 250 km width of
the Sentinel-1 tracks for our chosen regions (Figure A.6), making it important to
remove other signals to show what fraction of the residual velocity can be explained
by plate motion. For ASC tracks in the Makran and Gulf of Aqaba, ionosphere
corrections have a particularly large effect on the long-wavelength velocity signal
(e.g., contributing a 25 mm/yr ramp along track 86 for the Makran, Figure 1.2),
with DSC tracks showing substantially less ionospheric signal. ASC tracks are
acquired at dusk—a period of greater ionosphere activity than dawn, when DSC
tracks are acquired. This impact is still notable in C-band Sentinel-1 data, even
though it suffers much less from ionospheric effects than L-band (Fattahi, Simons,
et al., 2017; Liang et al., 2019).
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We find that troposphere corrections have a less significant impact on the long-
wavelength velocity signal than the ionosphere for ASC tracks, and a comparable
effect for DSC tracks. Corrections for the SET have a small effect on the long-
wavelength secular velocity, contributing below 0.5 mm/yr over several hundred
kilometers. The range of DEM error corrections is less than ±0.5 mm/yr in our
results and has a minimal contribution to the long-wavelength velocity field. We
show the impact of the above corrections for all tracks in Figures 1.2 and A.1-A.5,
and present more details in Section A.3.

1.4.2 The Impact of Accounting for Plate Motion
After applying the suite of corrections we are left with residual velocity ramps in
all of our tracks, predominantly in the range direction. We present the results of
plate motion adjustments for several tracks in Figures 1.3 and 1.4. Our results
show that accounting for plate motion removes a significant fraction of the residual
velocity ramp in every case, reducing the across-track ramps from 4-7 mm/yr/track
to below 1.5 mm/yr/track. For our data the plate motion signal is comparable to the
troposphere in its effect on the long-wavelength velocity field.

The proximity of the Arabian plate Euler pole to the Gulf of Aqaba study area
results in the plate velocity field varying appreciably within the tracks (Altamimi
et al., 2017). This variation causes an additional LOS velocity ramp along the track,
with an opposite direction for the ascending and descending tracks. Figures 1.4 (a)
and (b) show how this along-track gradient can be clearly seen in the data, and is
well corrected for by the plate motion model. We do not see similar along-track
ramps for Australia and Makran, which is consistent with the plate motion velocity
field.

1.5 Discussion
Other authors have previously noted that plate motion will affect InSAR velocity
measurements (e.g., Bähr et al. (2012)). However, the narrower variation of the
satellite LOS angle for earlier satellites, more limited data, and the presence of
other significant long-wavelength signals, has made the signal difficult to isolate.
The quality of recently available data and correction methods, and the wide swath
of Sentinel-1, allow us to show the plate motion signal and the clear impact of
accounting for it. Our results from the Gulf of Aqaba illustrate that plate rotation is
an important part of the correction.
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Figure 1.2: Cumulative impact of corrections on the InSAR-derived velocity field
for Sentinel-1, track 86 (ASC) over the Makran subduction zone. For plotting
purposes, we remove the median value from each velocity field. Positive values
represent apparent motion towards the satellite. Color bars are re-scaled between
plots. Numbers in parentheses within the color bars refer to the 2nd and 98th per-
centiles of the velocity. “az” is the azimuth direction (satellite direction of motion),
and “rg” the range direction (perpendicular to the satellite direction of motion).
(a) No corrections applied. (b) Estimated ionosphere removed. (c) Tropospheric
model removed. (d) SET model removed and DEM error (Topo) correction applied.
(e) Plate motion correction applied. The positive signal around (28 °N, 62 °E) is
post-seismic deformation from the 2013 Khash earthquake (Barnhart, Hayes, Sam-
sonov, et al., 2014). (f) Applied ionospheric correction. (g) Applied tropospheric
correction. (h) Applied SET correction. (i) Applied DEM error correction. Larger
signals in the south may be bias from tropospheric residuals (Fattahi & Amelung,
2015). (j) Applied plate motion correction.
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Figure 1.3: The impact of plate motion adjustments for InSAR tracks over the
Makran subduction zone. For plotting purposes, we remove the median from each
velocity field. (a) track 86 (ASC). After plate motion correction, the post-seismic
signal from the 2013 Khash earthquake (Barnhart, Hayes, Samsonov, et al., 2014)
can be more clearly seen in the south-east of the figure. (b) track 20 (DSC). (c)
Location of tracks (a) and (b) and the velocity field of the Eurasian plate, used
to correct the tracks. (i) Velocity before plate motion correction, but after other
corrections have been applied. (ii) Velocity after plate motion correction. (iii)
Applied plate motion correction. (iv) Across-track profile of the velocity before
plate motion correction. The number below each profile is the gradient of the linear
least squares fit to the profile. Note that profiles are plotted as a function of ground
range, which increases with distance from the satellite. (v) Across-track profile of
the velocity after plate motion correction. (vi) Across-track profile of the applied
plate motion correction.
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Figure 1.4: Same as Figure 1.3, but showing the tracks for the Gulf of Aqaba and
Australia. (a) Gulf of Aqaba, track 87 (ASC). (b) Gulf of Aqaba, track 21 (DSC).
(c) Location of tracks (a) and (b) and the velocity field of the Arabian plate, used to
correct the tracks. (d) Australia, track 119 (DSC). (e) Australia, track 46 (DSC). (f)
Location of tracks (d) and (e) and the velocity field of the Australian plate, used to
correct the tracks. (i)-(vi) are as described in Figure 1.3.
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After adjusting for plate motion, remaining long-wavelength signals could be due to
the incomplete removal of some signals (predominantly the troposphere (Fattahi &
Amelung, 2015; Parizzi et al., 2021)), sources that we have not corrected for (e.g.,
ocean tidal loading (Dicaprio et al., 2008) and orbital errors (Fattahi & Amelung,
2014)), or actual strain accumulation in the lithosphere—the signal that InSAR
measurements often target. See Section A.3 for more details on the contributors to
long-wavelength residuals.

Deficiencies in the plate motion model, or motion of the InSAR track reference
point relative to the assumed plate, could also create long-wavelength residuals.
Motion relative to the plate will be of particular importance in areas of diffuse plate
boundary deformation, where it is not possible to choose a reference point that is
stable with respect to the rigid plate. This could be the case for tracks covering the
Makran subduction zone and the Gulf of Aqaba, both of which span plate boundary
zones. In these situations, plate motion models may not fully account for the impacts
of bulk motion, and using local GNSS measurements to put InSAR measurements
into a local terrestrial reference frame could be necessary (Bähr, 2013).

These results emphasise the importance of accounting for the reference frame before
interpreting long-wavelength InSAR-derived velocity fields. When using InSAR for
studies of tectonic deformation, the most natural reference frame is one that is fixed
to a stable region within the scene, so that we can interpret velocity gradients in
terms of tectonic strain rather than strain-free translation and rotation. There are
several situations in which failing to account for the reference frame could bias the
results:

1. Combining multiple tracks to estimate 3D deformation (Fialko et al., 2001;
Wright et al., 2004). In Section A.5 and Figure A.7, we show how plate
motion can bias estimates of the 3D velocity field when we use an overlapping
ascending and descending track to calculate horizontal and vertical velocities.

2. Modeling InSAR signals. If the long-wavelength signals in an InSAR ve-
locity field are being modeled, and the model is assumed to not be rotating
or translating, then a velocity ramp from plate motion may be modeled as
strain accumulation and bias the results (e.g., changing the locking depth in a
subduction zone model).

3. Comparisons between GNSS and InSAR. Both data sets must be in the same
reference frame (Parizzi et al., 2020). If the GNSS are in a local reference
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frame, the InSAR and GNSS velocities will diverge at long wavelengths due
to the signal of plate motion in the InSAR.

Studies which removed ramps from InSAR-derived velocities to account for or-
bital errors may have inadvertently removed the impact of plate motion in their
observations as well, reducing the biases we outlined above.

In this work, our primary focus is on the impact of horizontal plate motions, and
we have not considered the contribution of long-wavelength vertical velocities.
Horizontal plate motions in ITRF are generally at the scale of centimeters per year
(Altamimi et al., 2017), with long-wavelength vertical motions, for example due to
post-glacial rebound, significantly smaller at millimeters per year (e.g., Lau et al.
(2020) and Riddell et al. (2020)). If an InSAR track is taken within a region that is
experiencing constant vertical motion, this motion will also create a velocity ramp
in the satellite LOS velocity field, but with ASC and DSC tracks having opposite
gradients (Figure 1.1(c)). However, the amplitude of vertical velocities will result in
smaller velocity gradients across the satellite track than those caused by horizontal
motion (Section A.4, Figure A.6).

1.6 Conclusions
We have illustrated how InSAR velocity measurements are sensitive to tectonic
plate motion in the satellite reference frame. This motion will induce ramps in
the InSAR velocity fields, predominantly in the satellite range direction, of up to
several millimeters per year. In all of our multi-year time series, plate motion was
the dominant long-wavelength signal after ionospheric and tropospheric corrections
were applied. We have presented a simple adjustment method, which uses plate
motion models to remove the plate motion signal from the InSAR velocity field.
This adjustment substantially reduces long-wavelength ramps in multiple InSAR
tracks from three different regions of the Earth. Routinely accounting for plate
motion in InSAR could reduce biases when constraining long-wavelength tectonic
strain induced by local geophysical phenomena. This adjustment is likely to be
particularly useful where GNSS is not available to constrain the long-wavelength
deformation. The signal of plate motion in InSAR data could also be used to improve
plate motion models, which may be helpful where GNSS observations are sparse
but high-quality InSAR data are available.
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C h a p t e r 2

IMAGING THE MAKRAN SUBDUCTION ZONE WITH DENSE
INSAR TIME SERIES

2.1 Introduction
Interferometric synthetic aperture radar (InSAR) is increasingly being used to mea-
sure small deformation signals over wide areas, generally with the aid of the Global
Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS),
to help constrain the long-wavelength deformation (e.g., Weiss et al. (2020) and X.
Xu et al. (2021), and see Chapter 1). There are many obfuscating contributors to
InSAR observations that must be accounted for in order to maximize our ability to
discern long-wavelength, small-amplitude deformation without introducing GNSS.
The improvements in InSAR correction methods, including corrections for plate
motion we presented in Chapter 1, as well as the dramatic increase in the amount
of data available in the last five years, give us the opportunity to test the ability of
InSAR alone to constrain very long-wavelength deformation.

In this chapter, we test the ability of temporally-dense InSAR time series to constrain
deformation in the Makran subduction zone, an enigmatic megathrust that is one of
the least studied on the planet. The Makran subduction zone accommodates motion
of the Arabian plate under the Eurasian plate at a rate of about 3 cm/yr, over a 1000
km long fault along the southern coasts of Iran and Pakistan. Above the megathrust
lies a large accretionary prism, the sub-aerial portion of which is one of the largest
in the world (Fruehn et al., 1997). To the east, the subduction zone is bounded
by the left-lateral Chaman-Ornach-Nal fault, accommodating motion between the
Indian and Eurasian plates, while in the west the Minab-Zendan-Palami fault zone
marks the transition region between the subduction zone and the Zagros collision
belt (Figure 2.1, and see Nemati (2019)).

The eastern end of the subduction zone has hosted several large events, including
in 1765, 1851, and most recently a Mw 8.1 earthquake and associated tsunami in
1945 (Byrne et al., 1992). The number of casualties for this event is often cited
as 4000; however, this number is based on early estimates, with later numbers
closer to 300 (Hoffmann et al., 2013). Based on historic seismicity, the subduction
zone seems to be bifurcated, with large ruptures limited to the eastern end and no
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major ruptures conclusively attributed to the western end of the subduction zone
in historical records (Byrne et al., 1992; Musson, 2009). However, paleotsunami
evidence suggests that the western Makran may have hosted significant earthquakes,
including in 1008 and 1542 (e.g., Hoffmann et al. (2020), Prizomwala et al. (2018),
Rajendran et al. (2021), and Shah-hosseini et al. (2011)).

Previous efforts using geodesy to constrain potential coupling on the megathrust
include use of GNSS (Frohling & Szeliga, 2016; Khorrami et al., 2019; Penney
et al., 2017) and InSAR (Lin et al., 2015). These studies generally find significant
coupling on the megathrust at both the eastern and western ends, albeit with sub-
stantial uncertainty due to the limited availability of geodetic data. Results from
thermal modeling of the subduction zone have also indicated the potential for a wide
seismogenic zone (Khaledzadeh & Ghods, 2022; Smith et al., 2013). These studies
combine a calculated temperature distribution with assumptions about the temper-
ature range over which subduction zones are seismogenic to infer that the Makran
could host earthquakes as large as Mw 9 for ruptures along the entire length of the
fault. Such earthquakes, and associated tsunamis, present a substantial danger to the
growing population bordering the Arabian sea (e.g., (Qiu et al., 2022; Salah et al.,
2021). It is therefore important to better understand the behavior of the megathrust
and constrain the potential size of future ruptures.

In our work, we used data from the European Space Agency’s Sentinel-1 satellites
to study an area of nearly one million square kilometers over the Makran subduction
zone. We use images from six ascending and six descending tracks, totalling over
2000 acquisitions and spanning 7.5 years (from October 2014 to April 2022) to
examine the ability of InSAR data to measure deformation over wide areas, without
the aid of GNSS. We apply corrections, including for the ionosphere, troposphere,
solid Earth tides, DEM error and plate motion, and show their importance for
observing small signals over long wavelengths.

The resulting InSAR-derived velocity field allows us to observe numerous deforma-
tion processes, including post-seismic deformation in the accretionary prism from
the 2013 Mw 6.1 Minab and Mw 7.7 Balochistan earthquakes (Avouac et al., 2014;
Jolivet, Duputel, et al., 2014; Penney et al., 2015), and post-seismic deformation
from the 2013 Mw 7.7 Khash earthquake, an intraslab earthquake that occurred at
80 km depth (Barnhart, Hayes, Briggs, et al., 2014). We also measure creep and co-
seismic offsets along the Chaman fault (Dalaison et al., 2021) and rapid subsidence
due to aquifer depletion (Motagh et al., 2017).
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The use of ascending and descending tracks provides two components of the defor-
mation field improving our ability to discern signals of locking on the megathrust.
Post-seismic deformation at the eastern end of the subduction zone, and high tropo-
spheric noise, do not allow us to unambiguously resolve such a signal. However, by
comparing our velocity measurements with simple forward models, we can place
limits on the degree of coupling on the fault. Our results suggest that scenarios
where the western end of the megathrust is strongly coupled north of the coast are
unlikely to be consistent with InSAR observations, under the assumptions of our
simple linear elastic forward model. Coupling may therefore be less strong than
some previous studies have suggested, although further work is needed to robustly
constrain coupling on the megathrust.

2.2 Data and Methods
2.2.1 Interferogram Processing
We begin with Sentinel-1 Single Look Complex (SLC) data from the Alaska Satellite
Facility. We use all available data from the beginning of Sentinel-1 acquisitions in
October 2014 until early April 2022, resulting in approximately 7.5 years of data in
each track. We process 12 tracks in total, six ascending (ASC) and six descending
(DSC) from the coast up to 32°N. The details of each track are shown in Table 2.1.

We process the SLC data using the InSAR Scientific Computing Environment
(ISCE) (Fattahi, Agram, et al., 2017; Rosen et al., 2012). All tracks are processed
using the topsStack processing chain. We take 5 looks in azimuth and 20 looks in
range before unwrapping, but do not apply filtering. Each acquisition is used to
form interferograms with the next three acquisitions, resulting in roughly 500-550
interferograms per track (although the combination of Sentinel-1 A/B pairs for track
159 allows us to form 786 interferograms). We unwrap each full interferogram
(from the coast to 32°N), at once, rather than splitting the track into frames. De-
tails of unwrapping, ionosphere corrections, azimuth misregistration estimation and
phase unwrapping are as described in Chapter 1, with some modifications described
below. Note that, as we use the topsStack code, we do not take account of burst
discontinuities introduced by the ionosphere, as discussed in Appendix A and Liang
et al. (2019).

As a brief recap, ionosphere corrections rely on the dispersive nature of the iono-
sphere, allowing us to form interferograms at higher and lower frequency bands and
estimate the ionospheric phase screen from the difference between the two interfer-
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Figure 2.1: Map of the Makran region. Earthquakes and faults are shown in red,
coastlines and borders are shown in black. The large red arrow at 23°N indicated
the direction of convergence of the Arabian plate under the Eurasian plate used
in this study. S.H.: Strait of Hormuz. MZP: Minab-Zendan-Palami fault zone.
SSZ: Sistan Suture Zone. O-N/Ch: Ornach-Nal/Chaman fault zone. Approximate
locations of ruptures on the megathrust in 1765, 1851, and 1945 are taken from
Byrne et al. (1992). Focal mechanisms for three earthquakes in 2013 (Minab,
Khash, and Balochistan) are shown, along with the rupture trace for the Hoshab
fault, which hosted the Balochistan earthquake.
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ograms Liang et al., 2019. Forming sub-band interferograms increases the noise in
each interferogram, making it necessary to strongly filter the interferograms before
unwrapping (unwrapping refers to removing the 2𝜋 phase ambiguity inherent to
interferometry Chen and Zebker, 2002).

After unwrapping and calculating the ionospheric phase screen we inspect all iono-
sphere pairs and remove the small number of pairs that have large unwrapping errors.
For tracks 57, 93, and 166, the tracks contain land on the southern side of the Strait
of Hormuz. These disconnected land masses result in two areas of the ionospheric
phase screen that are correctly unwrapped; however, they have an unknown offset
between them as interferograms cannot be unwrapped across water. These separate
areas are known as disconnected components, and can result in biases when com-
puting the ionospheric phase that dominate the overall error budget. We therefore
mask out the disconnected areas before calculating the ionosphere for these tracks.

The same ionosphere issue arises whenever we have disconnected components in
the unwrapped ionospheric phase estimate (Liang et al., 2019). Such unwrapping
errors can be caused by a small area of low noise (high coherence) surrounded by
a narrow area of high noise (low coherence), which is in turn surrounded by high
coherence (for more details on coherence, see Chapter 3). The high coherence areas
unwrap individually; however, the low coherence zone between them can result in
an offset between the two areas in a similar fashion to the water discussed above.
Such unwrapping errors in small areas do not present significant issues for normal
interferogram processing, as we can just mask out the low coherence areas and
the small high coherence areas after time series processing. However, the need
to strongly filter the ionosphere can cause large unwrapping errors to bleed in to
adjacent areas in the ionospheric phase.

An example of how these errors affect the ionospheric velocity correction can be seen
in Figure 2.2. The error here is caused by sand dunes, which have low coherence in
interferograms due to their rapid change in surface properties, surrounding a small
patch of higher coherence which is not connected (via higher coherence paths) to
the rest of the scene. These unwrapping errors affect a significant number of our
ionospheric phase estimates and result in a large error in the ionospheric correction
to the InSAR velocity. In this case, the error is greater than 5 mm/yr over more than
2,500 km2, shown in Figure 2.2(a). The size of the area affected is related to the
width of the spatial filter, the extent of the low coherence area, and the size of the
isolated high coherence area. For narrower filters, wider low coherence areas, and
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smaller high coherence areas, we would not expect to see the error extending in to
the surrounding region.

Such unwrapping errors could be corrected in a similar fashion to the masking we
used to address errors across the Strait of Hormuz, described above. Unfortunately,
unlike with large landmasses separated by water, identifying the locations of iono-
sphere unwrapping errors caused by small disconnected patches of high coherence is
challenging in advance of computing the ionospheric phase screen for a large num-
ber of pairs. Such corrections require processing large volumes of data, visually
inspecting the processed data, and then hand-selecting the areas to be masked out
before reprocessing the data, taking additional time and computational resources.
In the future, automatically dealing with such unwrapping errors in the ionospheric
phase screen will be important for reliable ionospheric corrections when processing
large volumes of data.

Unwrapping errors affect a few specific regions of our study area, but we also find
that the descending ionosphere corrections seem to add a subtle velocity ramp, with
each track showing an approximately 0.5 mm/yr/track gradient in the satellite range
direction. It is unclear what the origin of these ramps is; however, the fact that
they appear to be very similar for every descending track suggests that they may be
an artefact of the processing, and not a genuine feature of the ionosphere. For the
descending tracks the expected ionospheric signal is small (e.g., Liang et al. (2019)),
and as we see several errors due to unwrapping, as well as range ramps, we therefore
do not apply the ionosphere corrections in the descending track for the final velocity
calculations. Ascending tracks have much more substantial ionosphere, causing the
actual ionospheric signal to be far greater than the errors and making ionospheric
corrections necessary. The size of the ascending ionospheric signal results in it
being hard to see if the ionospheric corrections have a systematic range-dependent
ramp, as we see for the descending tracks. We do find one region with particularly
prominent unwrapping errors at the southern end of ascending track 42, which we
mask in the final velocity map. We use the temporal coherence of the ionosphere
time series to define the mask, resulting in a smooth masking boundary that can
be seen in the bottom right of Figure 2.11 (Yunjun et al., 2019). Other areas may
also have errors due to issues with ionosphere unwrapping, although we have not
systematically explored this contribution to the error budget.

Descending track 122 contains unwrapping errors in the interferogram phase related
to low coherence areas around (29.7°N, 62°E). We deal with these by applying the
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Figure 2.2: Example of errors in the ionosphere calculation (a) Velocity from a
linear fit to the ionosphere correction time series for track 20 (descending). Note
the large negative velocity around (30°N, 61.5 °E) as a result of unwrapping errors.
There is also a subtle velocity ramp, of about 0.5 mm/yr, in the range direction,
which is also seen in the ionosphere of other descending tracks (b) Average spatial
coherence for all interferograms for track 20. Low coherence areas around (30°N,
61.5 °E) result in unwrapping errors which bias the ionospheric phase estimation.
Filtering of the ionospheric phase then causes this error to affect surrounding areas,
as can be seen in (a).

bringing unwrapping error correction method described by Yunjun et al. (2019).
This method substantially reduces the number of pairs with unwrapping errors, but
does not eliminate them entirely. We therefore visually inspect the interferograms
and remove the remaining pairs with obvious unwrapping errors.

Ascending track 159 has a roughly year-long gap in acquisitions from March 2017
to March 2018, after which the addition of Sentinel-1B acquisitions gives a 6-day
repeat period. As described by Liang et al. (2019) (Section III.F), ionospheric phase
estimation for Sentinel-1 A/B pairs requires removing an empirical ramp from the
phase. The error introduced by this ramp is unclear, so when we form pairs for
ionospheric phase estimation we limit the number of cross A/B pairs. Specifically
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we form a small number of cross A/B pairs at the beginning of the Sentinel-1 B
acquisitions (March 2018) and at the end (December 2021) to ensure the network
is fully connected, but other than that only form A/A and A/B pairs for ionosphere
estimation. We have not systematically explored how network choice affects the
quality of the final ionosphere estimation.

An issue also arises when estimating the ionospheric phase for pairs of acquisitions
that have different starting ranges, which can result in phase discontinuities between
adjacent subswaths (Liang et al. (2019), Section III.E). These errors can be estimated
and removed empirically; however, this potentially introduces additional errors into
the ionospheric phase estimation. To minimise the number of pairs with different
starting ranges used in the processing, we exclude any groups of acquisitions with the
same starting range that have fewer than 10 acquisitions before forming interferogram
networks.

2.2.2 Time Series Processing
Time series processing is also as described in Chapter 1 (using the SBAS method-
ology (Berardino et al., 2002), implemented in MintPy (Yunjun et al., 2019)), with
one modification to deal with outliers, described below. After inverting the in-
terferogram network and applying ionosphere, troposphere and solid Earth tides
corrections in the temporal domain, we fit a linear function to the time series and
calculate the root mean square of the residuals, using a temporal coherence threshold
of 0.7 to mask unreliable pixels (Yunjun et al., 2019). (Unless otherwise stated,
a temporal coherence threshold of 0.7 is used for masking in all velocity maps).
We then compute the median absolute deviations (MAD) of the residual RMS as
described in Yunjun et al. (2019), and exclude dates that have an RMS value of more
than 2 MAD when estimating the DEM error (Fattahi & Amelung, 2013). This
approach results in less bias from large residual tropospheric signals in the estima-
tion of the DEM error. When estimating the final linear velocity, after removing
the DEM error, we similarly exclude 2 MAD outliers to reduce the bias from the
noisiest scenes.

All processing up to this point is performed in radar coordinates. After calculating
the linear velocity for each track, we geocode the velocity on to a grid of 0.007 by
0.007 degrees, resulting in pixel sizes of approximately 780 meters in the latitude
direction, and a variable width in the longitude direction, from 710 meters at 24°N to
660 meters as 32°N. This additional averaging reduces spatial decorrelation noise.
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We then apply the plate motion correction in the geocoded domain, as described in
Chapter 1. For plate motion removal we use the Eurasian plate from the ITRF2014
plate motion model (Altamimi et al., 2017).

After applying all corrections we combine the velocity fields of adjacent tracks by
calculating an offset between the means of the overlap between the tracks, similar to
the approach taken by Fattahi and Amelung (2016). Note that this approach ignores
the difference in the satellite line-of-sight (LOS) vector in the overlapping region
(Shirzaei, 2015). As we will show in Section 2.3.2, this approach to merging will
create substantial biases in the final velocity field when we do not account for plate
motion.

We perform the merging separately for ascending and descending tracks. We then
take profiles through the merged ascending and descending track velocity fields.
When taking profiles we mask out any point that is not correctly unwrapped in
every interferogram (i.e., areas identified as unreliably unwrapped by the SNAPHU
algorithm (Chen & Zebker, 2002)). This masking approach removes pixels where
coherence is more variable, particularly areas covered by sand or agriculture, and
is more aggressive than a temporal coherence threshold of 0.7. Using this mask
allows us to focus on the more reliable pixels, at the expense of losing some spatial
coverage.

As well as calculating a velocity from our InSAR time series, we also wish to
estimate the uncertainty of this velocity. Under the assumption that residuals are
uncorrelated in time and normally distributed, the velocity uncertainty for each pixel
is the standard error of linear regression (e.g., Equation 10 of Fattahi and Amelung
(2015)):

𝜎𝑣 =

√√ ∑𝑁
𝑖=1(𝑑𝑖 − 𝑑𝑖)2

(𝑁 − 2)∑𝑁
𝑖=1(𝑡𝑖 − 𝑡)2

, (2.1)

where 𝑁 is the number of acquisitions used in the linear regression, 𝑑𝑖 is the InSAR
observation at epoch 𝑖, 𝑑𝑖 is the predicted value at 𝑖 from the linear fit, 𝑡𝑖 is the time
at 𝑖 and 𝑡 is the mean of all 𝑡𝑖 values. This quantity does not capture the uncertainty
due to temporally correlated noise, or systematic biases in the time series (Fattahi
& Amelung, 2015). It also does not give us the covariance between different pixels,
although we would expect residual troposphere to lead to a spatial covariance in the
velocity field (e.g., Lohman and Simons (2005)).
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Table 2.1: Summary of Sentinel-1 SAR Data used. ASC: Ascending track. DSC:
Descending track. Aqn. no.: Number of acquisitions used for interferogram
formation. Excl. no.: Number of acquisitions excluded using the 2 median absolute
deviation threshold for velocity calculation. All tracks use Sentinel-1A acquisitions
apart from track 159, which combines 1A and 1B. Tracks are listed from west to
east. Each track is 250 km wide and adjacent tracks have a roughly 50 km overlap.

Track Direction Start date End date Aqn. no. Excl. no.
57 ASC 20141021 20220325 185 55

159 ASC 20141016 20220401 264 69
86 ASC 20141023 20220327 188 54
13 ASC 20141123 20220322 186 48

115 ASC 20141025 20220329 188 56
42 ASC 20141008 20220324 188 62

166 DSC 20141029 20220402 173 41
93 DSC 20141012 20220328 177 38
20 DSC 20141007 20220323 181 43

122 DSC 20141014 20220330 183 51
49 DSC 20141021 20220325 178 48

151 DSC 20141016 20220401 174 49

2.2.3 Forward Modeling
To compare our InSAR results with possible signals from coupling on the subduc-
tion megathrust, we construct simple forward models of the subduction zone and
use different coupling distributions to predict the surface velocities that would be
observed by the ascending and descending satellites. These velocities can then be
compared to the InSAR observations. Given the uncertainties in our data, and small
size of the potential signal, we do not invert for a coupling distribution in this work.

We us the megathrust geometry from Slab2 (Hayes et al., 2018) and discretize the
fault into 504 triangular patches (Figure 2.3). For the shallowest part of the fault we
make an approximation as to how the fault comes to the sea floor. As this area is more
than 80 km from the coast, our onshore deformation predictions are not sensitive
to the assumptions that we make here. We use the backslip technique of Savage
(1983) and equations of Okada (1985) to model the surface deformation due to
coupling on the megathrust embedded in a linear elastic half space, implemented in
the Classic Slip Inversion software package (https://github.com/jolivetr/csi, Jolivet
et al. (2015)). We set a convergence rate of 30 mm/yr at an angle of 10°, the
same as the values used by Lin et al. (2015). The coupling value is defined as
1 − 𝑣𝑝𝑎𝑡𝑐ℎ/𝑣𝑝𝑙𝑎𝑡𝑒, where 𝑣𝑝𝑎𝑡𝑐ℎ is the creep rate of the fault patch and 𝑣𝑝𝑙𝑎𝑡𝑒 is the

https://github.com/jolivetr/csi
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Figure 2.3: Megathrust geometry used in our forward models. The geometry is
taken from Slab2 (Hayes et al., 2018), and we discretize the fault into 504 triangular
patches. Black lines indicate coastlines and borders.

convergence velocity of the place (i.e 30 mm/yr). A coupling value of 1 means that
the fault is fully locked, with elastic deformation accumulating at the convergence
rate, while a value of 0 means the fault is sliding without accumulating strain. For
a given coupling distribution we project the modeled 3-D velocity field into the
ascending and descending line of sight, and then compare the prediction with the
InSAR observations.

In this work we present results from two end member coupling distributions: low
coupling, where the fault starts at a coupling value of 0.5 at 13 km depth and is fully
decoupled below 20 km, and high coupling, where the fault is fully coupled to a
depth of 30 km, transitioning to decoupled below 40 km depth. These distributions
are illustrated in Figures 2.4 and 2.5, respectively. In both cases we assume that
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Figure 2.4: Low coupling model. The shallowest patches are all assumed to be
decoupled, although this makes minimal difference to the modeled on-shore de-
formation. Coupling is 0.5 at 13 km depth, then transitions linearly with depth to
decoupled below 20 km. Profiles of the modeled velocities at 60°E are shown in
Figure 2.19

fault patches that come to the surface have zero coupling, but this assumption has
minimal impact on our predicted velocities on the land.

2.3 Results
2.3.1 The Impact of Time Series Corrections
In Chapter 1, we illustrated the impact of each stage of the corrections on the long-
wavelength InSAR-derived velocity fields. We apply the same corrections in this
chapter, but also remove outliers before calculating the velocity. In Figures 2.7 and
2.8, we show the cumulative impact of corrections for an ascending and descending
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Figure 2.5: High coupling model. The shallowest patches are all assumed to be
decoupled, although this makes minimal difference to the on-shore deformation.
The fault is fully coupled to 30 km depth, then transitions linearly with depth to
decoupled below 40 km. Profiles at 60°E are shown in Figure 2.20.

track on InSAR time series near the Makran coast, relative to a point 667 km to the
north.

The initial time series shows scatter of tens of centimeters for both ascending
and descending tracks, with the ascending track having much greater noise at the
beginning of the time series due to ionosphere activity. Ionospheric corrections
substantially reduce the variance and secular trend in the time series for the ascending
track, while making a much smaller difference for the descending track. Troposphere
corrections, using the ERA5 weather model, reduce the time series variance for both
ascending and descending tracks. The solid Earth tide correction also reduces the
variance; however, it has very little impact on the overall secular trend in the time
series. The DEM error correction has the least impact on the time series.
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After the above corrections have been applied, the signal of plate motion is still
present in the time series (recall that we correct for plate motion in the velocity
domain, rather than correcting the time series). This signal can be seen by examining
the linear trend for tracks 86 and 20, shown in Figures 2.18(g) and (h) respectively.
As the two tracks have opposite orbital directions, the change in satellite range
between the reference point and time series location is positive for track 20 and
negative for track 86, resulting in the relative LOS plate motion velocity being
opposite for each track.

The final time series still show substantial scatter (e.g., around 10 cm for the
ascending track in Figure 2.18(g), and somewhat less for the descending track
in Figure 2.18(h)), likely due to residual troposphere (e.g., Parizzi et al. (2021)).
Fattahi and Amelung (2015) showed that tropospheric noise in the region varies
seasonally, and is particularly large near the coast, consistent with our results. We
find sharp tropospheric fronts in our time series, particularly affecting the summer
acquisitions, likely associated with the seasonal monsoon (Figure 2.6). Sharp
changes in the troposphere are not well corrected by tropospheric models, and the
residual tropospheric noise results in the coastal areas having the highest velocity
uncertainties (Figures 2.12 and 2.14). There is a noticeable difference between the
velocity uncertainties calculated for the ascending (Figures 2.12) and descending
(Figures 2.14) tracks. We attribute this difference to a more energetic troposphere
for the dusk-acquired ascending tracks compared to the dawn-acquired descending
tracks.

To reduce the influence of large residual tropospheric signals we exclude outliers
in the time series fit (Section 2.2.2). Our outlier threshold is aggressive, rejecting
over 20 percent of the data for each track (Table 2.1). The changes in velocity
due to outlier removal can be as high as +/- 2 mm/yr, illustrating the substantial
uncertainties, predominantly due to tropospheric residuals.

2.3.2 Plate Motion and Merging Tracks
After applying all time series corrections (but not correcting for plate motion), we
calculate the linear velocity and merge the tracks as described in Section 2.2.2.
We show the results of this merging for the ascending tracks in Figure 2.9 and
descending tracks in Figure 2.10. The across-track ramp induced by plate motion
combines to create a ramp in the range direction of around 30 mm/yr over 1200 km.
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Figure 2.6: Example of strong tropospheric fronts in the InSAR time series. All
2018 data from track 86 (asc) is shown, after ionosphere corrections but before other
corrections have been applied. The first date (2018-01-11) is taken as the temporal
reference, and the black point shows the spatial reference. Sharp tropospheric fronts
can be seen between July and August. The large inset on the bottom right highlights
a particularly strong front on 2018-08-27, with over 20 cm of apparent deformation
over a few kilometers.
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Figure 2.7: Impact of time series corrections for a point at (26°N, 60°E) relative to
(32°N 60°E) for track 86a. Correction time series (grey) are subtracted from the
displacement time series (black). Each time series is offset by 50 cm for display
purposes. Corrections are applied cumulatively, meaning the time series at the
bottom of the plot has had all the above corrections applied. Note that we do not
apply plate motion corrections in the time series domain, so the final time series
includes a secular trend due to plate motion. The final time series is shown on a
larger scale in Figure 2.18(g).
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Figure 2.8: Time series corrections for track 20d. Note the much weaker ionosphere
for the descending track. The final time series is shown on a larger scale in Figure
2.18(h). Caption is otherwise the same as Figure 2.7
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This ramp clearly illustrates the limitations of neglecting the LOS difference in the
overlap between the tracks when merging tracks without correcting for plate motion.

2.3.3 Exploring the Merged Velocity Fields
After removing the signal of plate motion from each track, we repeat the merging
process and plot the results for the ascending (Figure 2.11) and descending (Figure
2.13) tracks, along with their uncertainties (Figures 2.12 and 2.14). The merged
velocity fields no longer show large cross-track ramps, and allow us to discern the
details of ground deformation at the level of millimeters per year over an area of
nearly one million square kilometers.

There are noticeable discontinuities in the velocity between the tracks of up to
several millimeters per year. These discontinuities are particularly prevalent at the
southern end of the tracks. We attribute these discontinuities to two causes: (1)
different noise realisations between adjacent tracks, and (2) differing sensitivities to
tectonic deformation at the boundary between tracks. (1) is the likely cause of the
discontinuity around (26°N, 60°E) in Figure 2.11. (2) can clearly be seen around
(27°N, 64°E) in Figure 2.11, where a change of 15 degrees in the LOS incidence
angle at the track boundary, coupled with predominantly westward motion from
post-seismic deformation of the 2013 Balochistan earthquake (discussed below),
results in a clear discontinuity of around 2 mm/yr.

We plot profiles through the velocity fields and example deformation time series in
Figures 2.16 and 2.18 respectively. The locations of these profiles are illustrated
in 2.15, and locations of the time series are given in Table 2.2. Figure 2.16(a)
shows a profile through the ascending and descending merged velocity fields. The
dominant feature is post-seismic deformation from the 2013 Mw 2013 Balochistan
earthquake on the right of the profile (e.g., Jolivet, Duputel, et al. (2014), Lv et al.
(2022), and Peterson et al. (2018)), which is also visible in profiles (e) and (f)
and can be seen in Figures 2.11 and 2.13 as the dominant feature of the velocity
field around (26-28°N,64-66°E). Ascending and descending tracks have differing
sensitivities to east-west motion, resulting in different velocity profiles from the
ascending and descending tracks. This post-seismic deformation has been variously
attributed to after slip on the Hoshab fault combined with viscoelastic relaxation of
the accretionary prism (Peterson et al., 2018), or aseismic slip on the megathrust
(Lv et al., 2022). In Figures 2.18(a) and (b), we illustrate logarithmic post-seismic
deformation time series from Balochistan. The comparison between these two
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profiles illustrates the spatial correlation of tropospheric noise (e.g., Emardson et
al., 2003), with the time series showing deformation relative to a point 83 km away
(Figure 2.18(a)) showing much greater scatter than deformation relative to a point 1
km away (Figure 2.18(b)).

A more subtle feature in profile 2.16(a), at 700-800 km along the profile, we attribute
to post-seismic deformation from the 2013 Khash earthquake, a Mw 7.7 intraslab
earthquake that occurred at 80 km depth (Barnhart, Hayes, Briggs, et al., 2014).
Profile 2.16(d) gives a clearer picture of the velocity field from Khash post-seismic
deformation, with a negative velocity lobe between 100 and 300 km along the
profile and a positive velocity lobe between 300 and 400 km. These two lobes of
the deformation can clearly be seen in Figures 2.11 and 2.13 around (28°N, 62°E).
In Figure 2.18(c) we show a deformation time series from the area of peak LOS
deformation in the ascending tracks. While the deformation is substantially smaller
than for Balochistan post-seismic, we can see a logarithmic deformation profile with
a cumulative LOS offset of 5 cm over 7.5 years.

Another region of post-seismic deformation is caused by the 2013 Mw 6.1 Minab
earthquake, in the transition zone between the Makran subduction zone and the Za-
gros mountains (Penney et al., 2015). In Figure 2.18(d) we show a LOS deformation
time series across the fault. Previous modeling work has attributed this motion to
after slip (Plattner et al., 2021), and not viscoelastic relaxation. The deformation
seems to have stopped by about mid-2020, although the substantial tropospheric
noise makes it challenging to resolve small deformations without several years of
data.

In Figure 2.18(e), we show a time series of LOS deformation across the Chaman fault,
an 850 km long fault running through Afghanistan and Pakistan that accommodates
motion between the Eurasian and Indian plates through both aseismic creep and co-
seismic deformation (Figure 2.1). The time series exhibits both behaviors, showing
slow creep and a co-seismic offset from an earthquake on June 27th 2018 (Dalaison
et al., 2021).

Our velocity maps show numerous areas of rapid subsidence (< -2 cm/yr). These
areas are most clearly visible in the western portion of Figures 2.9 and 2.10, where
they can be seen despite the presence of the plate motion ramp. Rapid subsidence is
correlated with areas of agricultural land use, and previous studies have attributed
this motion to aquifer depletion due to over-extraction of water (e.g., Motagh et al.
(2017)). In Figure 2.18(f), we present an example deformation time series, near the
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Figure 2.9: LOS velocity for ascending tracks after applying all corrections other
than plate motion to every track, and merging. Plate motion creates a range-
dependent velocity ramp in each track, resulting in a large ramp across the entire
region. Track numbers are shown at the top of the figure. “az”: azimuth direction,
the satellite direction of travel. “rg”: range direction, the look direction of the
satellite. Positive velocities represent motion towards the satellite.

city of Rafsanjan, Iran, with a cumulative LOS offset of over 80 cm during the 7.5
year observation period.

All of our velocity maps rely on linear fits to our time series, but the data in Figure
2.18 shows deformation that is not linear in time. Behavior such as co-seismic steps
and post-seismic logarithms will bias a purely linear fit. An example is the 2017
Mw 6.3 Pasani earthquake, which occurred on the eastern megathrust and caused
2-4 centimeters of vertical ground deformation (Yang et al., 2022). The linear rate
around (25.5°N, 63°E) is biased by this offset. We choose a linear fit to illustrate the
broad deformation trends across the region; however, a better velocity field could be
calculated by modeling and removing earthquakes in the time series, and choosing
different functional forms appropriate to the specific processes being studied.

2.3.4 Forward Models
To place constraints on the behavior of the subduction zone, we take four north-south
profiles through our ascending and descending velocity fields, starting at the coast,
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Figure 2.10: Same as Figure 2.9, except for descending tracks.

Figure 2.11: LOS velocity for ascending tracks after removing the effect of plate
motion using a plate motion model.
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Figure 2.12: Estimated standard deviation of the time series velocity (𝜎𝑣) assuming
uncorrelated Gaussian errors and after outlier removal for ascending tracks. Un-
certainties are expressed relative to a reference point in each track (which has 0
uncertainty), with each reference point at a latitude of 29°N.

Figure 2.13: LOS velocity for descending tracks after removing the effect of plate
motion using a plate motion model.
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Figure 2.14: Uncertainties for the descending tracks. Caption is otherwise the same
as Figure 2.12.

Figure 2.15: Location of the velocity profiles plotted in Figure 2.16, shown over
the merged ascending track LOS velocities. Areas which do not unwrap in every
interferogram have been masked, and are excluded from profiles, other than for (g),
where the temporal coherence mask is used.
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Figure 2.16: Profiles through ascending (blue) and descending (red) track LOS
velocity fields. Locations of the profiles are shown in Figure 2.15, and profile
distances are calculated from the letter, to the letter primed (e.g., A to A’). (a)
Region-spanning profile. (b) South to north profile at 58°E (25.5°N to 32°N). (c)
South to north profile at 60°E (25°N to 32°N). (d) South to north profile at 62.1°E
(25°N to 32°N). The left side of the profile spans post-seismic deformation from the
2013 Khash earthquake. (e) South to north profile at 64.1°E (25°N to 32°N). The
left side of the profile spans post-seismic deformation from the 2013 Balochistan
earthquake. Note that profiles (b)-(e) are chosen to lie within individual tracks to
avoid offsets at the track boundaries. (f) Profile spanning post-seismic deformation
from the 2013 Balochistan earthquake. (g) Profile spanning rapid subsidence near
the city of Rafsanjan, Iran, likely due to aquifer depletion.
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Figure 2.17: Locations of time series (a)-(h) plotted in Figure 2.18, plotted over
ascending track velocities. All time series are plotted relative to a reference point.
The location of the time series is shown with a black triangle, and the location of
the reference point is shown with a white triangle. Note that all time series are
relative to a point within the same track as the chosen point, and are plotted before
the removal of the plate motion signal (which is only significant for points far from
their reference, such as G and H. Tracks and exact locations are given in Table 2.2.

.

Letter Name Track Location (°N, °E) Reference (°N, °E) Distance (km)
(a) Balochistan 115a 26.47, 64.44 26.08, 65.15 83
(b) Balochistan 115a 26.966, 65.421 26.959, 65.429 1
(c) Khash 13a 28.16, 62.15 27.15, 62.15 112
(d) Minab 57a 26.688, 57.928 26.67, 57.95 3
(e) Chaman 42a 30.511, 66.325 30.50, 66.363 4
(f) Rafsanjan 166d 30.505, 55.780 30.384, 55.655 18
(g) Makran 86a 26.0, 60 32.0, 60.0 667
(h) Makran 20d 26.0, 60 32.0, 60.0 667

Table 2.2: Details of the time series plotted in Figure 2.18. “Track” refers to the
Sentinel-1 track, with “a” and “d” referring to ascending and descending tracks
respectively. Time series are taken at the point given by “Location” and the InSAR
reference point is set at “Reference.” “Distance” refers to the distance between the
time series location and the reference point.

which are shown in Figures 2.16(b)-(e). The locations of these profiles are chosen
such that they lie entirely within a single ascending and descending track, so we do
not introduce additional uncertainties related to track merging. Of these profiles,
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Figure 2.18: InSAR LOS displacement time series illustrating a variety of different
temporal behaviors in our region. The locations of the time series and reference
points are given in Figure 2.17 and Table 2.2. (a) post-seismic deformation from the
2013 Balochistan earthquake near the point of peak deformation. (b) Post-seismic
deformation from the 2013 Balochistan earthquake across a portion of the fault
creeping at the surface. The proximity to the reference point (1 km away) results
in much lower tropospheric noise compared to (a). (c) post-seismic deformation
from the 2013 Khash earthquake. (d) post-seismic deformation from the 2013
Minab earthquake. (e) Creep on the Chaman fault, and co-seismic offset from an
earthquake on 2018-06-27 (Dalaison et al., 2021). (f) Rapid subsidence near the
city of Rafsanjan, Iran, likely due to aquifer discharge (Motagh et al., 2017). (g)
Time series near the coast for track 86 after corrections shown in Figure 2.7. A
linear trend partly due to plate motion can be seen. (h) Same as (g), but for track
20, after corrections shown in Figure 2.8.

.
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2.16(d) and (e) have substantial signals from Khash and Balochistan earthquake
post-seismic signals respectively, and (b) lies in the transition zone between the
Makran subduction zone and the Zagros mountains collision zone (e.g., Penney et
al. (2015) and Regard et al. (2005)). We therefore cannot straightforwardly compare
deformation in these profiles to different models of coupling on the megathrust. The
profile (c), at 60°E, does not seem to have obvious sources of contamination, so we
select this profile for comparison with forward models.

In Figures 2.19 and 2.20, we compare our velocity profiles with predicted LOS
deformation rates from the two coupling models presented in Figures 2.4 and 2.5.
Note that we plot these profiles in terms of distance from the subduction trench. The
high sediment input means there is not a clear trench in the bathymetry (Schlüter
et al., 2002), but we can still locate a deformation front, which is at around 24°N for
our profile along 60°E. We add to the velocity profiles uncertainty estimates based
on the calculated 𝜎𝑣 (Equation 2.1). For a conservative estimate of the error, we set
our error range to be +/- 2𝜎𝑣. This choice gives us an error range of around +/- 2
mm/yr near the coast, relative to a point around 400 km to the north.

For our simple linear elastic forward models, the transition between coupled and
decoupled behavior on the megathrust corresponds to a peak in the surface velocity,
with the size of that peak related to the strength of coupling and depth ranges over
which that transition occurs. The assumed convergence direction of 10° means
that megathrust coupling results in an eastward component of the deformation field.
As a result of their differing lines of sight, ascending and descending tracks have
different sensitivities to this eastward motion, making the combination of ascending
and descending tracks a key tool for constraining potential coupling. This difference
in sensitivity can be seen prominently in the high coupling model (Figure 2.20),
where the predicted ascending and descending track LOS velocities differ by over 4
mm/yr near the coast.

The low coupling model in Figure 2.19 gives velocity predictions that lie well within
the bounds of our observational uncertainty. Therefore, this coupling scenario can-
not be ruled out by our data. Lower coupling scenarios, including a completely
unlocked megathrust, are also possible, and coupling could be somewhat stronger,
particularly off the coast where we have little sensitivity. We illustrated such an in-
termediate coupling model in Figure 2.21, which is at the limit of what is compatible
with our data, given the conservative error bounds. For the high coupling model in
Figure 2.20, the predicted velocities are clearly not consistent with the observed ve-



48

locity fields, lying well outside of the observational uncertainty bounds for much of
the 200 km closest to the coast. A visual inspection of the other north-south profiles
in Figure 2.16 does not show any clear evidence for the kind of strong coupling north
of the coast that we use in Figure 2.20, although, as previously mentioned, there are
other signals present in these profiles that could hide coupling signals. These results
suggest that, under the simplifying assumptions of our fault geometry, convergence
velocity, and forward model, strong coupling on the megathrust is unlikely to be
present north of the coastline, at least for the western part of the subduction zone.
However, these results do not rule out the potential for a significant earthquake on
this part of the subduction zone.

2.4 Discussion
2.4.1 Quality of the InSAR-Derived Velocity Fields
The uncertainties we presented in Figures 2.12 and 2.14 represent the estimate of the
error on the velocity, relative to the reference point within the track, and under the
assumption of temporally uncorrelated Gaussian errors (Fattahi & Amelung, 2015).
It does not capture biases in the velocity, for example related to incomplete removal
of plate motion, or errors in the offsets between the tracks used when merging.
Within each track the error is likely dominated by residual tropospheric signal (e.g.,
see Fattahi and Amelung (2015) and Parizzi et al. (2021), and our discussion of
uncertainties in Appendix A), with some small contribution from neglecting the
burst discontinuities when correcting the ionosphere (Liang et al. (2019), and see
Appendix A). Treating the error as uncorrelated in time is an approximation, as
there is seasonal variability in the tropospheric signal (Fattahi & Amelung, 2015).
Quantifying the uncertainties using the residuals from a purely linear fit is therefore
potentially an overestimate of the uncertainty in the velocity.

Our InSAR velocity uncertainties are substantially larger than those found by Lin
et al. (2015) (around 0.5 mm/yr, see their Figure 2(b)) for three Envisat tracks
in the eastern Makran, in spite of their lack of ionosphere corrections, and much
smaller quantities of data. Their use of dusk-acquired descending tracks, which are
much less affected by the ionosphere, and were mostly acquired during a relative
low in solar activity during the period 2006-2010 (Liang et al., 2019), means the
ionosphere likely has a small effect. They also make use of direct observations
of the troposphere from the Medium Resolution Imaging Spectrometer on board
Envisat, which increases the accuracy of their tropospheric corrections. However, it
is still surprising that their estimated errors are so much lower with no more than 23
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Figure 2.19: Profiles at 60°E for the low coupling model shown in Figure 2.4. (a)
Profiles through the LOS velocity and estimated uncertainties (2𝜎𝑣) for ascending
(asc) track 86 and descending (dsc) track 20. All velocities and uncertainties are
relative to the reference point. Thin blue (asc) and red (dsc) lines show the running
median of the InSAR data. Thick blue (asc) and red (dsc) lines show the predicted
LOS velocity from the forward model. (b) Profile through the megathrust depth,
with the color showing the coupling. (c) Plot of the coupling from (b). (d) Surface
elevation profile.
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Figure 2.20: Same as Figure 2.19, but with higher coupling on the megathrust
(coupling as shown in Figure 2.5). The increased coupling results in larger variations
in the predicted InSAR LOS velocity, which are not consistent with our observations.
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Figure 2.21: Same as Figures 2.19 and 2.20, but with intermediate coupling on the
megathrust. This coupling is at the limit of what is compatible with our data, given
the conservative errors bounds we have chosen.
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acquisitions in a track. This comparison supports the idea that our error estimates
are likely overly conservative.

Our approach of rejecting outliers and then performing an unweighted linear fit to the
time series is a sub-optimal approach to extracting the velocity and its uncertainty. A
more rigorous approach would be to quantify the uncertainty in each interferogram,
then propagate that uncertainty through the calculation of the time series and then
the velocity. This propagation of uncertainty could be done assuming that the
sole contributor to the uncertainty is from residual troposphere (e.g., Parizzi et al.
(2021)), or by using a full noise model for the InSAR time series (e.g., Agram
and Simons (2015)). Such approaches allow for the use of all available data, with
noisier acquisitions down-weighted in the calculation of the velocity, and provide
a more rigorous estimate of the error on the final velocity. The Makran region
presents specific challenges to such approaches, as the tropospheric signal can show
sharp north-south variation. This variation means that the method of calculating
a single tropospheric covariance function for the entire track will likely not give a
representative uncertainty (e.g., Emardson et al. (2003) and Lohman and Simons
(2005)). It may therefore still be necessary to reject acquisitions that show strong
variations in tropospheric noise, or better account for this spatial variability in
applying corrections and quantifying the uncertainty (e.g., Cao et al. (2021) and
Murray et al. (2021)). A rigorous estimate of the data uncertainty is a key element
of any probabilistic estimate of megathrust coupling, and is particularly important
given the apparently small signal to noise ratio in the Makran region.

The above discussion applies to the uncertainties within individual tracks, but not
the merged tracks. When merging tracks, we are attempting to take velocity fields
that are expressed relative to a separate reference point within each track, and create
a single velocity field that is relative to one reference point, i.e., putting all tracks into
the same reference frame. With all tracks showing deformation relative to the same
reference frame, we can interpret long wavelength signals across multiple tracks in
terms of regional tectonics. The process of putting multiple InSAR tracks into the
same reference frame is often done with the aid of GNSS (e.g., Weiss et al., 2020;
X. Xu et al., 2021). While algorithms for combining multiple InSAR tracks without
GNSS have been developed, they generally rely on the assumption that the LOS
displacement does not vary significantly between overlapping tracks (e.g., Shirzaei
(2015)).
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As mentioned in Section 2.3.3, ground motion with the overlapping region between
the tracks can bias the calculated offset due to the projection of that deformation into
the different satellite lines of sight. This bias will then propagate as each subsequent
track is merged, with the merged tracks before plate motion correction providing a
clear example (Figures 2.9 and 2.13). These biases are effectively errors in reference
frame estimation. Even after plate motion removal, our merged tracks contain biases
in the offset estimation, for example due to the Balochistan post-seismic signal. It
is hard to quantify the impact of these errors without comparison to dense GNSS
stations; however, it seems reasonable that the bias could be in the range of 1-2
mm/yr from visual inspection of profiles crossing multiple tracks.

In the ideal case, if the reference region for every track is placed in a point that
is stationary with respect to the overall plate, and subject to low noise, no offset
between the tracks will actually be necessary, as each track will already be expressed
relative to the plate and so can be directly compared. Given that we are unlikely
to pick perfectly stationary and noise free reference regions, we could attempt to
merge tracks by using only the overlap regions which are least affected by noise and
ground deformation, which would likely reduce the biases that we see in our current
merged velocity fields. Beyond approaches to merge InSAR tracks that are each
relative to a separate reference, work on absolute phase change recovery in InSAR
(X. Xu & Sandwell, 2020), and SAR geolocation (Cong et al., 2012; Eineder et al.,
2011) may also prove useful for combining multiple SAR/InSAR tracks without the
aid of GNSS.

2.4.2 Interpretation of Modeling Results
Based on comparisons between our linear elastic forward models and InSAR velocity
profiles, we claim that scenarios where the fault is strongly coupled north of the
coast are unlikely. The assumed convergence direction, combined with the two lines
of sight from ascending and descending tracks, provide a useful tool for resolving
strong coupling scenarios, as we would expect them to create resolvable differences
in the ascending and descending track profiles. Given the conservative error bars we
place on our velocity profiles, the coupling scenario Lin et al. (2015) presented for
the eastern end of the subduction zone is possible at the western end, highlighting
the importance of precise errors when measuring coupling.

There are several limitations to our model. Low seismicity and logistical challenges
of working in the region have resulted in the megathrust geometry being relatively
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poorly constrained, and the Slab2 model does not include data from recent studies
(e.g., see Priestley et al. (2022), and references therin). While the slab geometry
could be wrong, if the convergence direction and assumption of linear elastic defor-
mation are reasonable approximations, we would still expect to be able to resolve
high coupling north of the coast, as it would create differences between the ascending
and descending tracks on the order of several millimeters per year.

The assumption that strain is accommodated purely elastically in the accretionary
wedge is clearly an approximation, as evidenced by co-seismic and post-seismic
deformation from the 2013 Balochistan and Minab earthquakes. If a substantial
fraction of the convergence was accommodated by permanent deformation, that
would reduce the amount of stored elastic energy that could be released in an earth-
quake. Haghipour et al. (2012) find that 3% of the Arabian-Eurasian convergence
is accommodated by internal deformation of the accretionary wedge in the Iranian
Makran, suggesting that the assumption of elasticity is not unreasonable. Our model
could likely be improved by the use of a layered elastic half space, as was used by
Lin et al. (2015).

We use the constant convergence velocity of Lin et al. (2015) (30 mm/yr, at 10°),
based on results from DeMets et al. (2010) and Argus et al. (2010). However, this
value relies on sparse GNSS stations, we would expect it to vary somewhat along the
megathrust (Khorrami et al., 2019). Lin et al. (2015) explored the impact of varying
the convergence direction on the fit to their data, finding that a westward component
to the convergence gave a worse fit to the data at the eastern end of the subduction
zone (see their supplementary Figure 8). Looking at the velocities over the coastal
region of the western Makran in Figure 2.11 (around (26°N, 59°E)), and the profiles
in Figure 2.16, we can see areas near the coast where the ascending track velocity
is larger than the descending track velocity (at 100 km in profile 2.16(b), 50 km
in profile 2.16(c), and 100 km in profile 2.16(d)). Such a pattern could potentially
indicate westward motion (i.e., moving away from the descending satellite, towards
the ascending satellite), rather than the eastward motion predicted by our chosen
convergence direction. These velocity differences are within our uncertainties, so
we cannot interpret them in terms of deformation, but reducing the noise level with
more data and better corrections may allow such differences between the ascending
and descending tracks to be interpreted as variations in the convergence direction
along strike. The overlap region between adjacent tracks of the same direction
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could also be used to provide an additional look angle (assuming the tracks have
been merged using a non-deforming part of the overlap region).

While our work suggests that a fully coupled megathrust in the western Makran is
unlikely, this does not rule out a substantial rupture. Previous computational work
(Noda & Lapusta, 2013), and simulations that we present in Chapter 4, illustrate
how dynamic weakening can allow ruptures to propagate through areas of faults
with low coupling. We therefore caution that constraining the coupling distribution
alone is not sufficient to fully rule out larger magnitude events.

2.5 Conclusions
We test the ability of InSAR to constrain deformation over wide areas after correc-
tions for the ionosphere, troposphere, solid Earth tides and plate motion. We study
the Makran subduction zone, on the Iran-Pakistan border, revealing deformation
from fault creep, co-seismic and post-seismic offsets, and aquifer depletion. Our
results show the importance of plate motion corrections when combining multiple
tracks. One notable observation is that of ongoing post-seismic deformation from
the 2013 Mw 7.7 Khash earthquake, which ruptured the subducting slab at a depth
of 80 km.

Tropospheric noise and post-seismic deformation results in us being unable to
resolve deformation due to coupling on the megathrust. However, by comparing our
velocity measurements with simple forward models we can place constraints on the
likely degree of coupling. The combination of ascending and descending tracks is
particularly useful for resolving coupling signals due to the differing sensitivities to
east-west motion between the tracks and the eastward component of the convergence
direction between the plates. Comparisons between our models and observations
suggest that the western Makran is unlikely to be strongly coupled north of the coast.
However, significant uncertainties remain, and we cannot rule out the possibility of
a significant earthquake in the western Makran.

Future work could focus on rigorous handling of data errors, allowing more data
to be used and a reliable uncertainty on the final velocity to be derived. This
uncertainty could then be used for a probabilistic inversion of coupling. More data
and improved tropospheric correction methods will further help to reduce the noise.
Further work is also needed on the ionospheric correction method to automatically
deal with unwrapping errors when processing large volumes of data.
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C h a p t e r 3

DEEP LEARNING-BASED DAMAGE MAPPING WITH INSAR
COHERENCE TIME SERIES

3.1 Introduction
In the wake of major natural disasters, emergency services need a rapid and ac-
curate assessment of the damage over a wide area in order to quickly direct their
response and estimate losses. However, damage to infrastructure and communica-
tions networks often makes prompt on-the-ground damage assessment difficult or
impossible. Under these circumstances, remote sensing can either complement, or
provide a useful alternative to, ground-based assessments (Voigt et al., 2016).

Assessments of damage due to a natural disaster can be obtained by comparing
satellite observations from before and after the event. One approach is the use of
change detection on very high resolution optical data (≈ 50 cm × 50 cm pixels)
(Dalla Mura et al., 2008; Pesaresi et al., 2007). However, the utility of optical
images for disaster response can be hampered by the need for timely data, requiring
cloud free conditions and sufficient solar illumination (Brunner et al., 2010).

Satellite-based synthetic aperture radar (SAR) is an imaging technique that offers
advantages over optical data by providing images in all weather conditions, day or
night (e.g., Rosen et al. (2000) and Ulaby and Long (2015)). SAR relies on active
imaging using microwave (centimeter-scale) wavelengths emitted by the satellite,
with the sensor recording the amplitude and phase of the reflected radar pulse to
produce images at meter-scale resolution. The availability of SAR images depends
only on the orbital parameters of the satellite.

Damage detection using SAR relies on separating normal changes in the radar
backscatter properties of the ground (e.g., due to agricultural activities, vegetation
growth, snow, rainfall, and even vehicle motion in a car park) from anomalous
changes attributed to disaster-induced damage. The changes can be quantified
using the coherence of the radar echo between subsequent acquisitions (Zebker and
Villasenor (1992), and see Eq. 3.1). One current method of mapping damage uses
a pair of SAR acquisitions just before the event and a pair of acquisitions that span
the event, allowing for a comparison between the amount of ground surface change
without any damage to the amount of ground surface change that occurs during
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the event (Yun et al., 2015). This method relies on human judgment in setting
an appropriate threshold for classifying areas as damaged, usually assumed to be
constant for all locations in the SAR scene, as well as for selecting suitable pre-event
acquisitions (Yun et al., 2015).

There are now satellite SAR missions with revisits on a time-scale of days, and many
parts of the Earth have repeat observations by the same satellite constellation going
back several years. These developments allow for the possibility of using pre-event
multi-year time series to separate out regularly occurring anthropogenic and natural
surface changes from changes caused by a given natural disaster. These data have
only recently begun to be exploited by researchers for damage mapping purposes
(Jung et al., 2018; Karimzadeh et al., 2018; Washaya et al., 2018). The desire and
opportunity to perform damage classification on large and complex SAR data sets
motivates us to explore the use of deep learning techniques.

Deep learning relies on feeding input data through multiple layers of non-linear
parameterized functions, also known as a deep learning architecture, to transform
input data into desired outputs which can be used for regression or classification
(3Blue1Brown, 2017; Goodfellow et al., 2016; LeCun et al., 2015). In supervised
deep learning, the function parameters are optimised, during a process known as
training, to minimise the misfit between the functions’ output and known training
data (ground truth). For example, in image classification, the function input is an
image with a known classification (e.g., “dog,” “cat,” “tree,” etc.), and the function
outputs are the probabilities of the image having each classification, with the set of
possible classifications finite and fixed. The functions’ parameters are optimized to
maximize the probabilities assigned to correct classifications for images in a data
set, and the final resulting function can then be used to classify previously unseen
images. Generally, in supervised learning, the functions are trained using data from
the training set and then evaluated on a separate data set, the validation set, which is
unseen during training to ensure the learned functions represent generalizable rules,
rather than just a memorization of the training set.

Deep learning has proven to be an effective way to extract insights from large data
sets with little or no assumptions about the underlying data, and minimal human
intervention (LeCun et al., 2015). The growing body of available satellite data has
prompted recent work to combine satellite data with deep learning techniques to
study volcanoes (Anantrasirichai et al., 2019), fires (Kong et al., 2018) and flooding
(Y. Li et al., 2019) among other examples.
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Recurrent neural networks (RNNs) are a type of deep learning architecture particu-
larly well suited to dealing with sequential (e.g., time-ordered) data (Lipton et al.,
2015; Olah, 2015). RNNs have been applied to a wide range of tasks, from predict-
ing the next character in a word (Sutskever et al., 2014) to precipitation forecasting
(Shi et al., 2015) and seismic phase association (Ross, Yue, et al., 2019). By training
an RNN on a large number of previously observed time series, the network can be
used to classify new time series observations and to forecast future time steps. When
using an RNN for time series forecasting, the deviation between forecast values and
observations can be used for anomaly detection (Malhotra et al., 2015).

The ability of RNNs to learn generalized rules from large time series data sets makes
them a good candidate for application to large satellite time series observations, and
RNNs have recently begun to be used on satellite data for tasks such as forecasting
(Shi et al., 2015), classification (Ndikumana et al., 2018) and anomaly detection
(Kong et al., 2018).

In this study, we frame the damage detection problem as one of detecting anomalies
in sequential InSAR coherence time series. We train an RNN on a time series
of sequential InSAR coherence data taken before a damage event, then use the
trained RNN to make a probabilistic forecast for the co-event InSAR coherence
(i.e., the coherence of the radar echo between pre- and post-event acquisitions).
The probabilistic nature of the forecast allows us to capture the distribution of the
coherence values we expect for each location in the absence of any damage. We
then calculate the number of standard deviations of the forecast distribution between
the forecast mean and the observed co-event coherence value for each point in the
region of study. The number of standard deviations between the forecast mean and
observed values is used to quantify how anomalous each coherence value is, with
anomalously low coherence values attributed to damage. The use of a probabilistic
forecast for each pixel allows us to create a location-dependent threshold for damage
which depends on the specific time series characteristics of that location.

In what follows, we summarize the underlying SAR methodology and give a brief
overview of previous work on using SAR for damage mapping (Section 3.2). We
then discuss how damage mapping can be formulated in terms of a machine learning
problem, and present our method for deploying recurrent neural networks for damage
detection (Section 3.3). We apply our method to three earthquakes, which had either
substantial building damage or surface rupture (Section 3.4):
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• The August 24, 2016 Mw 6.2 central Italy earthquake

• The November 12, 2017 Mw 7.3 Iran-Iraq earthquake

• The July 2019 Mw 6.4 and Mw 7.1 Ridgecrest, California, USA earthquakes.

Through these examples, we illustrate how combining a long pre-event SAR time
series with RNN-based anomaly detection can improve results compared to an
existing SAR damage mapping method (Section 3.5). We discuss the strengths
and limitations of our proposed method (Section 3.6) then present conclusions and
outline potential further work (Section 3.7). Further details of our deep learning
architecture as well as the satellite data, damage assessments, and example code
used in this study are presented in the supplementary materials.

3.2 Background and Previous Work
3.2.1 Synthetic Aperture Radar
Synthetic Aperture Radar (SAR) is a coherent active imaging method operating
at microwave wavelengths used for mapping the Earth’s surface (Ulaby & Long,
2015). The method relies on satellite-based illumination of the ground with 1–30
cm wavelength microwaves, then recording the amplitude and phase of the reflected
wave. In our work, we begin with processed full-resolution data known as single
look complex (SLC) images. Each SLC pixel in the image corresponds to a region
on the Earth’s surface and records the amplitude and phase of the radar echo from
that region. The reflected wave depends on the properties of the Earth’s surface,
with the echo being a combination of the coherent sum of the backscatter from all
of the reflectors within an SLC pixel, or resolution element (e.g., Section 3.12.2 of
Simons and Rosen (2015)), as well as delays accrued during propagation through
the atmosphere (e.g., Section 3.12.4.2 of Simons and Rosen (2015)).

3.2.2 Change Detection using Synthetic Aperture Radar
Changes in the imaging or viewing geometry, surface roughness, and dielectric
properties of the ground within a resolution element will affect the measured radar
return (Jordan et al., 2020; Zebker & Villasenor, 1992). For example, the collapse
of buildings changes the path length travelled by the radar wave and randomly
rearranges the radar reflectors within a given SLC pixel, leading to a random change
in each SLC pixel’s phase.
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Comparing SAR images of the same point on Earth from the same satellite taken
at different times provides proxies for changes in the Earth’s surface. These mea-
surements can be classified as coherent or incoherent, depending on whether or not
the SAR phase is used (Jung & Yun, 2020). In this study, we focus on coherent
change detection where the change between two SAR acquisitions can be quantified
by calculating the magnitude of the complex correlation coefficient, also known as
the interferometric coherence, or simply coherence, between the two complex SAR
signals. For a given SLC pixel, coherence is defined as:

𝛾𝑖, 𝑗 =

 |⟨Γ𝑖Γ∗
𝑗
⟩|√︃

⟨|Γ𝑖 |2⟩⟨|Γ 𝑗 |2⟩

 , (3.1)

where Γ𝑖 is the complex amplitude and phase for SAR acquisition at time step 𝑖,
∗ represents complex conjugation, and ⟨⟩ denotes an ensemble average, generally
approximated as a local spatial average (e.g., see Section 3.12.2.5 of Simons and
Rosen (2015)). 𝛾𝑖, 𝑗 is known as the coherence of the signal between SAR acquisitions
at time steps 𝑖 and 𝑗 . This measure incorporates information about changes in both
the amplitude and phase of the SAR signal. The coherent nature of SAR means that
it is possible to sense changes on the scale of the radar wavelength (1-30 cm) when
using phase information, allowing for very sensitive change detection compared to
most optical data.

The use of a local spatial average in the coherence calculation means that the
resolution of the coherence image is necessarily lower than the original SAR SLC
image, as multiple pixels in the SLC image (SLC pixels) are used to calculate a
single pixel in the coherence image (coherence pixel). Unless stated otherwise, the
term pixel refers to coherence pixels for the rest of this paper.

For completely coherent echos 𝛾𝑖, 𝑗 = 1, whereas 𝛾𝑖, 𝑗 = 0 implies that the two
echos are completely uncorrelated (a low or zero coherence value is also known
as decorrelation). Stable, concrete structures, for example, will reflect radiation in
the same manner through time, and thus exhibit high coherence, whereas bodies of
water, which change their radar scattering properties on a time-scale of less than a
second, will completely decorrelate (Bamler & Hartl, 1998).

Coherence for a given pixel will tend to decrease with the time between SAR
acquisitions due to natural changes in the Earth’s surface properties, with the rate of
decrease depending on the rate of change of the Earth’s backscattering properties at
length scales similar to the radar wavelength (Zebker & Villasenor, 1992). However,
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the presence of seasonal effects such as snow can also lead to seasonal coherence
variations as the ground surface is covered and uncovered, and rainfall can lead
to sudden drops in coherence (Jordan et al., 2020). The time between the two
acquisitions, known as the temporal baseline, is therefore an important indicator
of how much coherence loss to expect. Increasing the spatial separation, known
as the spatial baseline, between the SAR sensor’s image acquisition position for
repeat images will also lead to a decrease in coherence (Zebker & Villasenor, 1992).
Currently orbiting satellites have tight orbital control, such that spatial baseline
decorrelation is a less significant problem than it was for previous generations of
sensors.

A spatial image of coherences calculated from two SAR acquisitions, acquired at
different times, allows for mapping of changes in the Earth’s surface properties,
on the scale of the radar wavelength. For example, Simons et al. (2002) used the
spatial pattern of low coherence to map the location of fault surface rupture due
to the 1999 Mw 7.1 Hector Mine, California earthquake. However, decorrelation
effects from regularly occurring natural processes often occur together with those
induced by damage events (Jung et al., 2018). Within a coherence image spanning
an earthquake (co-event coherence), we may detect decorrelation due to collapsed
buildings as well as, for example, agricultural activity, vegetation growth and the
changing position of vehicles in a car park, making the isolation of damage effects
challenging.

The need to separate changes in surface properties due to damage from other changes
motivates the framing of this problem as one of anomaly detection. If we are able
to identify the nominal distribution of coherence (at a given temporal baseline) for
each pixel before any damage has occurred, we can then identify which pixels have
an anomalously low co-event coherence with respect to their pre-event distribution
and use the presence of anomalous coherence as a proxy for damage. This nominal
distribution may be a complicated function of underlying physical properties, and
may not be stationary in time.

One way to characterize the pre-event coherence is to calculate the coherence be-
tween two SAR SLCs acquired as close as possible before the event. The co-event
coherence can then be compared to the pre-event coherence and the magnitude of the
relative coherence loss can be used to identify areas where the coherence has dropped
anomalously. Generally, a threshold for the amount of coherence loss required for
a pixel to be marked as damaged is chosen manually, by including areas where it
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is known that no damage occurred and setting the threshold so that these undam-
aged areas are correctly classified. This method is sometimes known as Coherence
Change Detection (CCD) (e.g., see Bouaraba et al. (2012), Fielding et al. (2005),
Geudtner et al. (1996), and Yun et al. (2015) and Fig. 3.1), and is based on the
assumption that the calculated pre-event coherence image is a good representation
of the normal pre-event coherence. In cases where coherence between sequential
SAR acquisitions has a high variance (i.e., there is a lot of variation in the amount of
surface change for a given temporal baseline), a single pre-event coherence image
will not be a good characterization of the pre-event coherence distribution for the
given temporal baseline, and the CCD damage map is likely to be noisy.

To better characterize the pre-event coherence, researchers have begun using the
long time series of regular SAR acquisitions that are increasingly available (Jung
et al., 2018; Karimzadeh et al., 2018). By calculating the coherence between
sequential SAR acquisitions, the mean and standard deviation of the sequential pre-
event coherence can be calculated for each pixel. The number of standard deviations
between the mean pre-event coherence and the co-event coherence can then be used
to detect anomalous co-event decreases in coherence (Olen & Bookhagen, 2018;
Washaya et al., 2018). These methods rely on characterising the pre-event coherence
with a single distribution through time for each pixel, which can cause problems
when the coherence distribution varies substantially through time, for example due
to changing precipitation with the seasons.

Additional information can be gained by calculating the coherence between all
possible SAR pairs, leading to coherence images with a wide range of temporal
baselines (Jordan et al., 2020; Monti-Guarnieri et al., 2018). These coherence
values can be used to estimate the parameters, for each pixel, of a model for the
various contributors to temporal decorrelation (Jung et al., 2016; Jung et al., 2018).
This model can then be used to detect anomalies in coherence images which span the
event. Similar to the mean and standard deviation method, these methods generally
rely on inferring a single set of physical parameters for each pixel, without taking
into account the possible variation of these parameters through time.

Supervised machine learning has also been used for damage mapping with SAR
data, using comprehensive damage assessments, often available several months after
major events, as ground truth to train damage classifiers (Endo et al., 2018; Y. Li
et al., 2019; Wieland et al., 2016). While supervised machine learning approaches
avoid the problem of manually selecting a uniform damage threshold in CCD, they
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Figure 3.1: Schematic of the existing Coherence Change Detection (CCD) method
for damage mapping (Yun et al., 2015), presented for the town of Sarpol-e-Zahab,
damaged during the November 2017 Iran-Iraq earthquake. A pre-event coherence
image (𝑥𝑇−1) is subtracted from the co-event coherence image (𝑥𝑇 ) in order to
calculate the coherence loss. The coherence loss is thresholded and plotted to
produce a damage proxy map. Optical data from Google, CNES/Airbus, taken July
27th 2020.

rely on extensive ground truth damage assessment data for training. Additionally, if
the damage classifiers are to be useful for future events, the trained classifiers must
be applied to new areas and it is unclear to what extent this training readily transfers
to totally different regions of the Earth’s surface.

In our work, we seek to make use of all available SAR data before an event in order
to make a deep learning-based, time-dependent forecast of a co-event coherence
distribution that we would expect without any damage event. This approach allows
us to detect anomalous changes in coherence. As we only use ground truth damage
data to quantify our damage detection algorithm, and not for training, our method
does not depend on ground truth damage data.

3.3 Proposed Approach
3.3.1 Notation
We have a total of 𝑇 + 2 SAR acquisitions, ordered in time and indexed from 0
to 𝑇 + 1; the last acquisition, 𝑇 + 1, is post-event, while all others are pre-event.
Between all pairs of consecutive acquisitions we compute the coherence values
which we map to an unbounded space using a logit transform on the squared
coherence (discussed below, see Eq. 3.9). We write the coherence between time
steps 𝑡 − 1 and 𝑡 as 𝛾𝑡,𝑡−1 and the transformed coherence as 𝑥𝑡 . Throughout the rest
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Figure 3.2: Schematic of our proposed recurrent neural network (RNN) method
presented for the town of Sarpol-e-Zahab, damaged during the November 2017
Iran-Iraq earthquake. The transformed coherence values (𝑥) are used to train a
recurrent neural network to make a Gaussian forecast of the co-event coherence
with mean 𝜇′

𝑇+1 and standard deviation 𝜎′
𝑇+1. The forecast is compared with the

observed co-event coherence, 𝑥𝑇+1, to calculate the z-score, 𝑧 (see Eq. 3.10). The
z-score is thresholded and plotted to produce a damage proxy map. A more detailed
illustration of the neural network architecture can be found in Fig. B.1. Optical data
from Google, CNES/Airbus, taken July 27th 2020.

of the paper, coherence refers to the transformed coherence unless otherwise stated.
Let 𝑥≤𝑇 = {𝑥1, ..., 𝑥𝑇 } denote the sequence of 𝑇 pre-event sequential coherence
values for a given coherence pixel location, with 𝑥𝑇+1 the co-event coherence.
Additionally, let D𝑡 denote the collection of 𝑀 coherence sequences that we have
available for training (i.e., coherence sequences from 𝑀 different coherence pixels),
each containing𝑇 pre-event coherence values. We also haveD 𝑓 , the set of coherence
sequences on which we wish to perform forecasting and anomaly detection for 𝑥𝑇+1,
which contains 𝑇 pre-event (𝑥≤𝑇 ) and one co-event (𝑥𝑇+1) coherence values for each
pixel.

Our goal is to train a model that can capture the range of possible behaviors across
time for the sequences in D𝑡 . We can then use the model to make a forecast, 𝑥′

𝑇+1 (we
use ′ to denote a forecast value), for each co-event coherence pixel in D 𝑓 , based on
the coherence time series of that pixel. We can detect anomalies by comparing the
forecast with the ground truth co-event coherence value, 𝑥𝑇+1, at each pixel, mapping
anomalous changes in ground surface properties that have occurred between SAR
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acquisitions 𝑇 and 𝑇 +1. Note that the model does not see 𝑥𝑇+1, or any damage data,
during training.

3.3.2 Recurrent Neural Networks
Motivated by the sequential nature of our data, we use a recurrent neural network
(RNN) as our model for forecasting the coherence time series. RNNs are a class of
models frequently used on sequential data for machine learning tasks such as speech
recognition, machine translation, motion tracking and time series classification and
forecasting (Lipton et al., 2015; Olah, 2015). RNNs maintain a fixed-length hidden
state vector, ℎ𝑡 , that summarizes a sequence up to time 𝑡, and is updated at every
time step with observations:

ℎ𝑡 = 𝑓𝜙 (ℎ𝑡−1, 𝑥𝑡), (3.2)

where 𝑓 is a deterministic function, learned during training and parameterized by
𝜙, and 𝑥𝑡 is the transformed coherence (Eq. 3.9), calculated from SAR data, at
time step 𝑡 for a given pixel. Forecasting future values involves another function 𝑔

parameterized by 𝜓:
𝑥′𝑡+1 = 𝑔𝜓 (ℎ𝑡). (3.3)

In general one can optimize for parameters 𝜙 and 𝜓 to minimize some loss, or
cost function, between the model forecast and the coherence ground truth (here the
transformed coherence values, see Eq. 3.9), for example the mean-squared error:

𝜙∗, 𝜓∗ = arg min
𝜙,𝜓

∑︁
𝑥≤𝑇∈D𝑡

𝑇∑︁
𝑡=1

(𝑥𝑡 − 𝑥′𝑡)2. (3.4)

RNNs use neural networks as function approximators for 𝑓 and 𝑔, and this opti-
mization can be solved with some form of gradient descent (e.g., Kingma and Ba
(2014)). See Section B.2 for more details.

3.3.3 Probabilistic Formulation
We aim to forecast the probability distribution over all possible values given the pre-
event coherence values. This probabilistic forecast lets us evaluate the probabilities
that our model assigns to the coherence values that are actually observed. We locate
anomalies by identifying coherence values that have a low probability of occurring
given the previous observations. To make a probabilistic forecast, we modify 𝑔 in
Eq. 3.3 to output the parameters of a probability distribution instead of a single
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value. In this work we use a Gaussian output probability, so we have:

[𝜇′𝑡+1, 𝜎
′
𝑡+1] = 𝑔𝜓 (ℎ𝑡), (3.5)

where 𝜇′
𝑡+1 and 𝜎′

𝑡+1 are the forecast mean and standard deviation, respectively. The
probability our model assigns to the ground truth co-event coherence, 𝑥𝑡+1, is then:

𝑝(𝑥𝑡+1; 𝜇′𝑡+1, 𝜎
′
𝑡+1) =(2𝜋𝜎

′2
𝑡+1)

− 1
2

× exp

(
−

(
𝑥𝑡+1 − 𝜇′

𝑡+1
)2

2𝜎 ′2
𝑡+1

)
.

(3.6)

Instead of minimizing the mean-squared error, as shown in Eq. 3.4, the probabilistic
forecast allows us to maximise the probability that our model assigns to ground
truth sequences in D𝑡 . Computationally, probability maximization is best achieved
by minimizing the negative log-likelihood that the model assigns to ground truth
sequences in D𝑡 :

𝜙∗, 𝜓∗ = arg min
𝜙,𝜓

∑︁
𝑥≤𝑇∈D𝑡

− log𝑒 𝑝(𝑥≤𝑇 )

= arg min
𝜙,𝜓

∑︁
𝑥≤𝑇∈D𝑡

𝑇∑︁
𝑡=1

− log𝑒 𝑝(𝑥𝑡 |𝑥<𝑡),
(3.7)

where in the second step we factorize the conditional probabilities using the rela-
tionship 𝑝(𝑥≤𝑇 ) = Π𝑇

𝑡=1𝑝(𝑥𝑡 |𝑥<𝑡). In our case, all of the information from previous
elements in the time series is summarised by the 𝜇′ and 𝜎′ terms given by the
forecast in Eq. 3.5, so we have that 𝑝(𝑥𝑡 |𝑥<𝑡) = 𝑝(𝑥𝑡 ; 𝜇′𝑡 , 𝜎′

𝑡 ). Therefore, combining
Eq. 3.6 and Eq. 3.7 we have:

𝜙∗, 𝜓∗ = arg min
𝜙,𝜓∑︁

𝑥≤𝑇∈D𝑡

𝑇∑︁
𝑡=1

(
1
2

log𝑒 (2𝜋𝜎′2
𝑡 ) +

(𝑥𝑡 − 𝜇′𝑡)2

2𝜎′2
𝑡

)
.

(3.8)

Eq. 3.8 gives us a loss function that takes into account both the mean and standard
deviation of the forecast, allowing us to optimize a probabilistic forecast for the
coherence. We can optimize for the parameters in Eq. 3.8 using some form of
gradient descent (e.g., Kingma and Ba (2014)).

Note that a Gaussian distribution assigns nonzero probability everywhere in R, a
distribution that is inconsistent with coherence as defined in Eq. 3.1, which is by
definition bounded (i.e., 𝛾𝑡−1,𝑡 ∈ [0, 1]). We therefore transform the coherence
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to an unbounded space before training the RNN. We choose the inverse-sigmoid
transform (also known as the logit transform) on the square of the coherence values:

𝑥𝑡 = 𝑆−1(𝛾2
𝑡−1,𝑡) = log𝑒

(
𝛾2
𝑡−1,𝑡

1 − 𝛾2
𝑡−1,𝑡

)
, (3.9)

which maps the domain from [0, 1] to (−∞,∞). This choice of transform is moti-
vated by near mathematical equivalence between the logit transform of coherence
squared and the logarithm of the variance of the interferometric phase, see Section
B.1 for more details. We refer to the new unbounded space as the logit space. Our
model will then forecast Gaussian distributions over the unbounded logit space.

3.3.4 Model and Training Details
The RNN model we use in this work (represented by 𝑓𝜙 in Eq. 3.2) is called a
gated recurrent unit (GRU), chosen for its ability to learn long-term dependencies
in time series (Cho et al., 2014). The hidden state output from 𝑓𝜙 is fed into a
feed-forward neural network, represented by 𝑔𝜓 (Eq. 3.5) which then outputs the
parameters of the forecast distribution. To find the optimum model parameters
(Eq. 3.8), we train the model using the Adam optimizer (Kingma & Ba, 2014).
See Section B.2 for more details of the model and training, as well as further
references. An implementation of our deep learning model can be found on GitHub:
https://github.com/olliestephenson/dpm-rnn-public.

3.3.5 Anomaly Detection for Co-event Coherence
To construct a proxy for damage we normalize the difference between the forecast
co-event mean, 𝜇′

𝑇+1, and the observed co-event coherence, 𝑥𝑇+1, by the standard
deviation of the forecast 𝜎′

𝑇+1. This quantity is termed the z-score, which we define
as:

𝑧 =
𝜇′
𝑇+1 − 𝑥𝑇+1

𝜎′
𝑇+1

. (3.10)

Note that we have switched the order of 𝜇′
𝑇+1 and 𝑥𝑇+1 terms compared to usual

definition of the z-score. With this definition, a large positive z-score implies that the
coherence is many standard deviations below the forecast coherence, i.e., we have
an anomalous drop in coherence, possibly due to damage. We use this definition of
the z-score as the basis of our proxy for damage.

https://github.com/olliestephenson/dpm-rnn-public
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3.4 Data
3.4.1 Coherence Calculation
We use data from the Copernicus Sentinel-1 satellites, a pair of C-band SAR satellites
operated by the European Space Agency. We download freely available Level-1
Single Look Complex (SLC) images acquired in interferometric wideswath mode
(European Space Agency, n.d.). We then create a coregistered stack of SLCs
covering the region of interest. To generate coherence values, as defined in Eq. 3.1,
we average over a rectangle, or chip, of SLC pixels. In this case we use a chip
of 15 SLC pixels in range (across the satellite track) and 5 in azimuth (along the
satellite track) corresponding to a region of approximately 50 m by 70 m. Note
that the resolution in range (across-track) of Sentinel-1 SLCs is higher than in the
azimuth (along-track) direction. As stated above, the use of a chip to calculate
coherence means that the coherence map is lower resolution than the SLC image as
each coherence pixel contains information from a 50 m by 70 m area.

For each study area, we produce two separate coherence data sets: one for training
the network (D𝑡), and one for forecasting purposes (D 𝑓 ). We construct the training
data set to have a large number of pixels drawn from a wide area surrounding the
area of interest, while the forecasting data set focuses just on the area of interest to
be mapped. More details on how these data sets are constructed can be found in
Section B.3.

3.4.2 Study Areas
In this study, we consider three earthquakes:

August 24, 2016 Mw 6.2 central Italy earthquake

This event destroyed much of the town of Amatrice in central Italy. (United States
Geological Survey, 2016). The Copernicus Emergency Management Service pro-
duced a damage map assessing the damage level of every building in the town
(Copernicus Emergency Management Service, 2016). This comprehensive damage
assessment allows us to quantitatively validate the RNN and CCD methods against
the known damage levels.

November 12, 2017 Mw 7.3 Iran-Iraq earthquake

This event damaged the city of Sarpol-e-Zahab on the Iran-Iraq border (United
States Geological Survey, 2017). The United Nations Institute for Training and
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Research (UNITAR) produced a damage map for Sarpol-e-Zahab in the wake of the
earthquake (United Nations Institute for Training and Research, 2017), allowing for
a qualitative test of our damage proxy map and comparison with the CCD method.

July 2019 Mw 6.4 and Mw 7.1 Ridgecrest, California, USA earthquakes

To explore the ability of our method to capture other forms of anomalous ground
disturbances, we also consider the Ridgecrest earthquakes which struck the Mojave
desert, California, in early July 2019. The Ridgecrest sequence contained two
earthquakes with substantial surface rupture tens of kilometers long: an Mw 6.4
event on July 4th, and, 34 hours later, an Mw 7.1 event (Kendrick et al., 2019; Ponti
et al., 2020; Ross, Idini, et al., 2019). The earthquakes also caused liquefaction,
small rock falls and minor damage to buildings (Brandenberg et al., 2019; Hough
et al., 2020; Zimmaro et al., 2020). The mapping of surface ruptures and location
of liquefaction allows us to qualitatively compare the damage map to the location of
known ground surface changes.

In Section B.3, we give more detailed information about these three earthquakes
and the available data for each event.

3.5 Results
We present damage proxy maps for the coherence change detection (CCD) and our
proposed RNN methods, then use available independent damage data to validate the
efficacy of each method. For each method, we calculate a numerical damage proxy
for every pixel, then threshold that damage proxy to create damage proxy maps.
For Sarpol-e-Zahab and Ridgecrest, the limited nature of the ground truth data only
allows for a qualitative comparison between the methods. For Amatrice, however,
more comprehensive ground truth allows us to carry out a quantitative comparison.
For Sarpol-e-Zahab, we also explore the forecasts the RNN makes through time for
pixels in different locations. We find that the RNN method yields qualitative and
quantitative improvements over the the CCD method.

August 24, 2016 Mw 6.2 earthquake, Amatrice, Italy
Fig. 3.3 shows the RNN method applied to mapping the damage in the town of
Amatrice due to the August 24, 2016 central Italy earthquake. We use ground truth
damage data from the Copernicus Emergency Management Service (Copernicus
Emergency Management Service, 2016) to choose an optimum threshold for damage
(discussed below), and mask values below that threshold. Details of the damage



70

6 8 10 12
Damage Proxy (z)

13.286°E 13.290°E 13.294°E 13.298°E
42.624°N

42.626°N

42.628°N

42.630°N

42.632°N

200 m

Figure 3.3: RNN DPM for the town of Amatrice, Italy, badly damaged during the
2016 Mw 6.2 central Italy earthquake. The center of the town, which was largely
destroyed, is clearly highlighted by elevated damage proxy values towards the top
left of the map. Z-score values below 4.93 (chosen from the F0.5 score, Eq. 3.11)
are masked, values above 12 are set to red as indicated by the color bar. Ground
truth damage data are presented in Figure B.3. Optical imagery from Google, taken
July 6th 2017.

data are presented in Section B.3. The ground truth damage data also allows for a
direct quantitative comparison between the CCD and RNN methods.

We seek to classify each coherence chip as either “damaged” or “undamaged” and
compare the classification ability of the CCD and RNN methods. Comparing the
classifiers relies on assigning each chip a score (the z-score for the RNN method
and the coherence loss for the CCD method), setting a threshold for damage, and
then comparing the damaged/undamaged classifications with the ground truth. For
every set of classifications, we have four categories: assigned damaged and truly
damaged (true positive), assigned damaged but actually undamaged (false positive),
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Figure 3.4: Quality metrics for the CCD and RNN damage classification methods.
(a) Precision-recall curves for Amatrice damage proxy maps using the CCD (blue
line) and RNN (red line) methods. For a perfect classifier we can choose a threshold
that gives precision and recall equal to one, indicated in the top right corner. A
random classifier gives a constant precision, equal to the fraction of the data set
that is truly damaged, with recall varying with the threshold, indicated by the grey
horizontal line at the bottom of the plot. The larger area under the curve (AUC)
for the RNN method indicates improved performance. The black crosses show the
position of maximum F0.5 score identified in figures (b) and (c). (b) F0.5 score (see
Eq. 3.11) for varying z-score damage thresholds using the RNN method. (c) F0.5
score for varying coherence loss damage thresholds using the CCD method.

assigned undamaged and truly undamaged (true negative) and assigned undamaged
but actually damaged (false negative).

In this case the ground truth damage data are building footprints, each with a
damage score, which we separate into “damaged” and “undamaged” classes (see
Section B.3). To determine the ground truth associated with each coherence chip, we
calculate the proportion of each chip’s area that is occupied by damaged buildings.
Coherence chips that have at least one third of their area (roughly 1200 m2, see
the discussion in Section 3.6) occupied by the footprints of damaged buildings, we
assign to be truly damaged. Note that as the radar is side-looking, the 3D nature
of the buildings means their radar footprint does not exactly match their ground
footprint, a fact that we do not take into account in this work.
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To compare the two methods quantitatively, we use a standard precision-recall curve
(Davis & Goadrich, 2006) (Fig. 3.4). We calculate precision (the fraction of chips
classified as damaged that are actually damaged) and recall (the fraction of truly
damaged chips that are classified as damaged) for a range of damage proxy thresholds
for each method. For a general classifier that is imperfect but better than random,
precision and recall will trade off against one another. For example, with a high
threshold, only a few points will be classified as damaged, and many of these will
be truly damaged, leading to a high precision. However, with a high threshold the
recall is low as most truly damaged points are incorrectly classified as undamaged.
A low threshold means that many of the damaged points are above the threshold;
however, there are also many false positives, leading to low precision and high
recall. As our classes are unbalanced (there are many more undamaged points than
damaged points) the precision-recall curve is preferred over the receiver operating
characteristic (ROC) curve that is also used to assess the quality of classifiers (Davis
& Goadrich, 2006).

Different classification methods can be quantitatively compared by calculating the
area under the precision-recall curve (known as PR AUC). A perfect classifier will
have an area of unity, with better algorithms having PR AUCs closer to this value.
The PR AUC for a random classifier will be equal to the fraction of the data set that
is truly damaged. Note that the PR AUC is distinct from the ROC AUC which is also
used to compare classifiers (Berrar & Flach, 2012). Our PR AUC results presented
in Fig. 3.4(a) show a clear quantitative improvement when using the RNN method
over the CCD method, with a PR AUC of 0.70 for the RNN method and 0.61 for the
CCD method. We achieve this improvement using the RNN method in spite of the
relatively poor quality training data (see discussion in Section 3.6).

To compute the optimum threshold for damage for each method, we can use the
F𝛽 score, which is the weighted harmonic mean of the precision and the recall,
computed as:

F𝛽 = (1 + 𝛽2) precision · recall
(𝛽2 · precision) + recall

. (3.11)

F𝛽 will vary with the threshold, and we can choose a threshold that maximizes the
score. This weighting considers recall 𝛽 times as important as precision. In our case
we set 𝛽 = 0.5 and thus compute the F0.5 score for all possible thresholds for both
methods. Our choice of 𝛽 weights precision as twice as important as recall, based
on the assumption that we wish to direct finite emergency response resources to
the places most likely to be damaged and thus favor higher precision at the expense
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Table 3.1: Optimum threshold and corresponding precision and recall values for
both methods using the Amatrice data set, selected using the maximum value of the
𝐹0.5 score, along with the area under the precision-recall curves (PR AUC).

Method Optimum
threshold

Optimum
precision

Optimum re-
call

PR AUC

RNN 4.93 0.72 0.56 0.70
CCD 0.47 0.71 0.38 0.61

of lower recall. At the maximum F0.5 values, both methods have a precision just
over 0.7, meaning over 70% of the points classified as damaged are truly damaged;
however, the RNN method has recall of 0.56, compared to 0.38 for the CCD method,
a clear quantitative improvement. The F0.5 scores are presented in Fig. 3.4(b) and
(c), and the optimum threshold and corresponding precision and recall for each
method are given in Table 3.1.

Note that we perform the quantification on a pixel-by-pixel basis (using coherence
pixels) rather than a building-by-building basis. Building areas can vary greatly,
and, for the same level of damage, a small building and a large building can have very
different effects on the coherence. Therefore a building-by-building quantification
would combine metrics with very different sensitivities, whereas in theory each
coherence chip should respond in a more similar way when a given fraction of its
area is occupied by buildings with the same level of damage. We also note that
in actual deployment scenarios, building footprints may not be available, and we
may also be interested in investigating other forms of anomalous surface change (for
example fault ruptures and landslides).

November 12, 2017 Mw 7.3 earthquake, Sarpol-e-Zahab, Iran-Iraq Border
In Fig. 3.5, we present damage proxy maps for the town of Sarpol-e-Zahab, damaged
during the Iran-Iraq earthquake of November 12, 2017, for both the CCD and RNN
methods. Using results from Amatrice (Table 3.1) the threshold for damage is set
at 𝑧 = 4.93 for the RNN method, and coherence loss = 0.47 for the CCD method,
with damage proxies below these thresholds masked out. For display purposes we
again choose the upper limit of the RNN color bar to be 𝑧 = 12 and set the limit of
the CCD color bar such that the same number of points are above the color bar limit
as for the RNN case to provide a fair visual comparison. The damage data from the
UN (United Nations Institute for Training and Research, 2017) (Figure B.4) allows
us to qualitatively compare the damage maps to the documented damage in the city.
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Within the city, both methods highlight neighborhoods where the UN located many
collapsed buildings (for example in the northwest of the city) However, they also
have elevated damage proxies over areas in the city where the UN did not record
damage, possibly due to the sensitivity of InSAR coherence to small changes in
surface properties, and possibly due to significant damage that was missed in the
UN damage map. This seems to be more significant for the RNN method, which
finds a larger amount of damage in the city than the CCD method.

Looking outside the city yields a clearer difference between the methods. In Fig.
3.5, we use white dashed lines to highlight several areas where the CCD method
has agricultural fields outside the city with high damage scores that are no longer
highlighted in the RNN damage map, indicating that the co-event coherence for
these areas was within the bounds of the normal variability for those pixels. This
difference between the methods indicates the advantage of taking into account the
full temporal behavior of each pixel. In Fig. 3.5, we also highlight one area outside
the city where the RNN method has a higher damage proxy than the CCD method.
As this area is over a rocky ridge, it is possible that the RNN damage proxy is
capturing surface change due to rockfalls caused by the earthquake shaking.

To better understand the damage map produced by the RNN, we select four locations
in and around the town that show different styles of coherence time series. We apply
this analysis to Sarpol-e-Zahab due to the larger amount of pre-event data compared
to Amatrice, and the wider variety of pixel behaviors in a small area compared
to Ridgecrest. In Fig. 3.6, we present the coherence time series, as well as the
mean and standard deviation of the RNN coherence forecast and resulting z-score
through time. For each case, the forecast at each time step is made based on Eq. 3.5,
using the hidden state that is output from the trained model with the input being the
coherence time series at that pixel up to that time.

For pixel (a) of Fig. 3.6, over a rocky ridge, we see a high, stable coherence through
time, with no substantial drop in coherence co-seismically, hence a low co-event
z-score. Pixel (b) is over a river, where surface properties change rapidly between
SAR acquisitions, hence the pixel has a low coherence and higher uncertainty, but
again has no co-event drop in coherence. Pixel (c) is within one of the badly damaged
areas of the town. The pre-event coherence is high and relatively stable through time,
causing a narrow uncertainty in the forecast. The co-event coherence is around 19
standard deviations below the forecast (𝑧 ≈ 19), implying that the pixel is well out of
the bounds of normal behavior. We infer that this is due to building damage. Finally,
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Figure 3.5: Comparison of CCD (a) and RNN (b) DPMs for Sarpol-e-Zahab,
damaged in the November 12, 2017 Mw 7.3 Iran-Iraq earthquake. For each plot we
mask values below a threshold, with the threshold chosen using the maximum value
of the F0.5 curve for the Amatrice data set (see Table 3.1). The upper threshold
of the color scales are chosen such that both plots have the same number of points
above the threshold. The white dashed lines highlight example areas where the CCD
method gives false positive damage detection in regions outside of the city that are
no longer classified as damaged by the proposed RNN method. The black dashed
line shows an area over a rocky ridge where greater damage is shown by the RNN
method compared to the CCD method. Ground truth damage data are presented in
Figure B.4. Optical imagery from Google, CNES/Airbus, taken July 27th 2020.

pixel (d), covering an agricultural field, has highly variable coherence through time,
which causes a large variance in the forecast coherence. The co-event coherence is
substantially below the final pre-event coherence, meaning the CCD method shows
elevated damage proxy values. However, in the context of the entire time series we
see that this coherence is well within the bounds of the forecast coherence variability
and thus the z-score is small.

July 2019 Ridgecrest earthquakes, California, USA
The earthquakes that struck near the town of Ridgecrest, California, in July 2019
(Ross, Idini, et al., 2019) provide an opportunity to test our proposed method on
other forms of anomalous changes in ground surface properties, including fault
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Figure 3.6: Sarpol-e-Zahab RNN damage map along with coherence time series and
Gaussian forecasts for four representative locations ((a)-(d)) around the city. The
z-score indicates the number of standard deviations between the forecast and the
ground truth, and the coherence is plotted in logit space (i.e., it has been transformed
into an unbounded space, see Eq. 3.9). Note that the shape of the coherence chip
on the ground changes depending on the topography due to the way SAR data is
acquired. The “Coherence” plotted on the y-axis is the logit transform of the squared
coherence (Eq. 3.9). Optical imagery from Google, CNES/Airbus, taken July 27th
2020.

surface rupture, landslides and liquefaction (Brandenberg et al., 2019; Hough et al.,
2020; Kendrick et al., 2019; Ponti et al., 2020; Zimmaro et al., 2020). In Fig. 3.7, we
plot the RNN damage proxy map with two different z-score thresholds. The higher
threshold allow us to focus on points that have had more anomalous coherence drops
compared to their previous behavior through time. Using a threshold of 𝑧 = 4.93
from the Amatrice data above (Fig. 3.7 (a)) we see that the largest anomalies lie on
the Mw 7.1 and Mw 6.4 surface ruptures (running NW-SE and NE-SW, respectively)
and liquefaction in the Searles Lakebed area, around (35.6°N, 117.3°W).

In Fig. 3.7 (b), we plot all points below 𝑧 = 0 as black, more clearly showing smaller
coherence anomalies surrounding the ruptures. Comparison with the mapped rup-
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tures shows that some of these anomalies are due to smaller off fault ruptures, and
we can also locate a small amount of damage in the town of Ridgecrest (Hough et al.,
2020). The correlation with topographic slope of many of the smaller anomalies (for
example around (35.80°N, 117.50°W)) suggest that these are due to small rockfalls
or landslides induced by the earthquake. Damage maps such as these could be useful
for directing mapping of ground failure in the aftermath of earthquakes.

3.6 Discussion
3.6.1 Importance of the training data
The goal of the RNN method is to produce the best possible forecast of the distribu-
tion of the co-event coherence value at each location, in the absence of any damage,
given that location’s pre-event coherence time series and the trained model. The
forecast at every location depends on the trained model and thus contains infor-
mation from every coherence time series used in the training. In this way, every
forecast uses information learned from a wide spatial area.

Different parts of a given geographic region will be affected by processes that affect
coherence (e.g., rain and snow) in a similar fashion, meaning that some amount of
correlation between coherence time series in the region is likely. For example, a
storm could cause consistent amounts of change in the surface properties across a
wide area, leading to a sudden, correlated drop in coherence for many of the time
series in the region.

When training the RNN, we split the overall training set D𝑡 into training (D𝑡,𝑡) and
validation (D𝑡,𝑣) components. D𝑡,𝑡 is used to optimize the RNN parameters, whereas
D𝑡,𝑣 is used to evaluate the model performance according to Eq. 3.7 and choose the
model with the best loss (note the ultimate task of damage classification is not part
of model selection). When the training set D𝑡 is split into its training and validation
components, any correlation between time series from the same geographic area
could lead to data leakage (Kaufman et al., 2011), whereby information from the
validation set can also be found in the training set.

Data leakage can result in the RNN making artificially good forecasts as the RNN
memorizes correlated patterns in the data, effectively over-fitting rather than learning
generalizable rules. For example, we might get an unexpectedly good forecast of a
sudden coherence drop in a time series which the RNN had not previously seen, due
to the same pattern also being present in time series used in training. A possible case
of this can be seen in time series (a) of Fig. 3.6; in late 2015 there is a sudden drop in
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Figure 3.7: Ridgecrest RNN damage proxy map with different thresholds. (a) All
points with 𝑧 < 4.93 are masked. Black lines indicate mapped surface ruptures from
Ponti et al. (Ponti et al., 2020). The white dashed line indicates the approximate
extent of the dry Searles Lakebed that saw substantial liquefaction (Zimmaro et al.,
2020). Global CMT focal mechanisms are plotted for the Mw 6.4 and Mw 7.1
earthquakes (Dziewonski et al., 1981; Ekström et al., 2012). The inset shows a
regional map with simplified Quaternary faults. (b) Same damage proxy map as
(a) except with no masking and points with 𝑧 < 0 plotted in black. This threshold
allows less intense off-fault anomalous change to be more clearly seen.
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coherence (from around 3 to 0 in logit space) which is closely mirrored by the mean
and variance of the forecast distribution. It seems unlikely that this coherence drop
would be so accurately forecastable unless the network had seen many examples
of similar patterns during training. Ideally, the network would instead learn that
sudden drops in coherence can occur, and would broaden its uncertainty (i.e., the
forecast standard deviation) accordingly.

Since data leakage can lead to artificially high performance on supervised machine
learning tasks (Kaufman et al., 2011), we ask if data leakage during RNN training
could lead to artificially improved damage classification. In our case, there can be
no leakage of the actual ground truth damage data, which is the target for our RNN-
based classifier but is not used in training. There can only be leakage in correlated
patterns in the pre-event coherence time series. As detailed above, data leakage
could cause over-fitting, making the forecast overly confident, i.e., with a standard
deviation (𝜎′) that is too small. An overly confident forecast will lead to a z-score
that is larger for the same difference between observed coherence (𝑥) and the mean
of the forecast (𝜇′), making the z-score noisier and meaning the likely result of data
leakage is a worse performing damage classifier, not one with artificially improved
performance.

The quality of the RNN forecast will depend on the training data which we use. In
general, training data acquired over a shorter time span and over a smaller spatial area
will not sample the full scope of representative coherence behavior. We expect that
more limited training data will cause the model to give a less representative forecast
coherence distribution, as the network will see fewer examples of how coherence
can vary in time and space. In Section B.4, we explore how decreasing the time
span of the training data affects the quality of the damage map for the Amatrice
example, finding that the results are highly variable when less than a year of data
is used. Based on these results, we emphasize the importance of testing the RNN
method on a wider variety of disasters, in different geographic regions, to ensure
robust performance.

A smaller geographic region is more likely to have strongly correlated coherence
time series, leading to more significant data leakage problems and over-fitting during
training. Drawing pixels from a very wide geographic area, or potentially many
different geographic areas all over the Earth, could ameliorate this problem. A
systematic exploration of the relationship between the input SAR data and the
quality of the final damage map is beyond the scope of this paper.
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Coherence images with longer temporal baselines will generally have lower coher-
ence than images from a similar time period and region with a shorter temporal
baseline (Zebker & Villasenor, 1992). Our current RNN training approach ignores
the temporal baseline of the coherence images, effectively assuming that all coher-
ence images have the same temporal baseline. However, our coherence time series
have some variation in temporal baselines due to the varying acquisition frequency
of Sentinel-1 SAR data, with the repeat frequency tending to become more stable
and more frequent with time (see Section B.3 for details of the data). A variable
temporal baseline adds an extra noise term due to changing amounts of temporal
decorrelation. Therefore, the likely effect of a variable temporal baseline is to make
the coherence time series noisier, thus decreasing the confidence of the forecast and
reducing the sensitivity to damage.

For the Amatrice case, the timing of the event meant that we had less than two years
of Sentinel-1 data preceding the earthquake, and the data had a higher variance in
the temporal baseline. The lack of data and variable temporal baseline degrades the
performance of the RNN, so the precision-recall results presented are likely a lower
bound on the possible performance for damage mapping in this area.

3.6.2 Sensitivity to damage in different geographic areas
Random motion of scatterers within a resolution element on the scale of the wave-
length of the satellite radar signal (≈5.6 cm for this work) will cause decorrelation
between two radar echoes (Zebker & Villasenor, 1992). Different regions of any
study area will have different background rates of change in their surface properties,
and these rates may vary through time. High rates of surface change will lead to
low coherence, and variability through time in the rate of change will create a larger
standard deviation in the coherence time series.

Robust damage detection relies on separating normal changes from damage induced
changes, and the ability to do this separation depends on the rate of surface change
and how much this rate varies in time. At a given time step, for a given pixel, the
RNN forecasts the average rate of change with the mean of the forecast (𝜇′), and
the variability with its standard deviation (𝜎′), both of which are used to calculate
the z-score (Eq. 3.10). A high background rate of surface change will lead to a
low 𝜇′, thus obscuring coherence drops due to damage as 𝜇′ − 𝑥 will be small.
Similarly, large coherence variability will cause larger 𝜎′ values leading to smaller
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z-scores, making it hard to separate coherence drops that are natural from those that
are damage induced.

Differing behavior of pixels means that, for two different pixels, the same z-score
does not necessarily imply the same level of damage, but instead the same ratio
of coherence change to background coherence variability. Thus, when interpreting
the z-score map, it may also be useful to consider the forecast mean and standard
deviation to understand the noise level for each pixel, with low mean and high
standard deviation indicating noisy pixels and thus lower sensitivity to damage.
We note that stable, human-made structures typically have higher and less variable
coherence, whereas areas with vegetation, water and snow typically have lower and
more variable coherence.

For the Ridgecrest damage proxy map (Fig. 3.7), it is noticeable that the largest
z-scores appear to correspond to the most significant ground disruption, specifically
the surface ruptures from the Mw 6.4 and Mw 7.1 earthquakes and liquefaction near
the town of Trona (Brandenberg et al., 2019; Hough et al., 2020; Zimmaro et al.,
2020). The apparent link between z-score magnitude and intensity of ground surface
change may be due to the desertic conditions in the area. The dry, stable conditions
mean that most pixels have similar behavior through time, i.e., they have a similar
noise level, meaning z-scores are more directly comparable between pixels. More
generally, we should be able to use z-scores as proxies for levels of damage within
groups of pixels that have similar forecast standard deviations. However, the z-score
is less comparable between groups of pixels with very different forecast means and
standard deviations.

The desertic conditions in the Ridgecrest area mean that coherence is comparatively
high and stable through time. Because of this stability, the single pre-event image
used in the CCD method is a better proxy for the pre-event coherence than the single
images used in the other regions, causing the RNN and CCD methods to be more
similar than for the other two case studies (we do not present the CCD results here).

Damaged buildings that are smaller or on poorly orientated slopes with respect to
the satellite line of sight will occupy a smaller fraction of the coherence chip. These
buildings will therefore have a smaller effect on the coherence, making them harder
to identify using coherence based methods. The choice of the fraction of the chip
area which has to be occupied by damaged buildings in order for that chip to be
in the “truly damaged” class can therefore have a substantial effect on the final
precision-recall area under the curve (PR AUC) values for the Amatrice data set.
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We choose one third of the chip area (roughly 1200 m2) as it gives approximately the
largest PR AUC values, although the change in PR AUC values between fractions of
20% and 50% are small (RNN PR AUC in the range 0.68-0.70) The decrease of the
RNN PR AUC below 20% building fraction suggests that our method has difficulty
identifying damage where the damaged area occupies less than around 700 m2 of the
coherence chip, meaning, for example, our method could have difficulties correctly
classifying an isolated damaged building that is smaller than 25 m × 25 m. With
the present resolution, this method is likely most useful for detecting large damaged
buildings and damaged blocks, rather than damage to individual smaller buildings.

3.6.3 The choice of change metric and forecast distribution
While coherence has proven useful for surface change detection, metrics such as
the SAR amplitude correlation can also be used (Jung & Yun, 2020). Using the
amplitude can be particularly useful when the InSAR coherence is low. We suspect
that a similar RNN-based anomaly detection approach would also work on time
series of other metrics used for SAR change detection, and could also be combined
with the coherence metric; however, we do not pursue this here.

When calculating coherence, we approximate an ensemble average for a given SLC
pixel with a spatial average around that SLC pixel when evaluating Eq. 3.1 (e.g., see
Section 3.12.2.5 of Simons and Rosen (2015)). In our case, we use a local chip (15
by 5 SLC pixels in size) and assume that these SLC pixels are drawn from the same
statistical distribution of amplitude and phase. There is a trade off in the choice
of chip size—smaller chips are more likely to combine pixels that demonstrate the
same statistics through time (as a result of being over the same type of land surface).
However, they also contain fewer samples with which to estimate the coherence,
leading to a larger variance in the estimate and a noisier coherence time series.
Larger coherence chips contain more samples, but are more likely to include SLC
pixels with greater differences in statistical behavior through time, less consistent
with the assumption that we used to approximate the ensemble average. Larger
chips also provide lower spatial resolution. Limited testing with the data presented
in this study indicates that the results are made worse by reducing the chip size to 9
by 3 SLC pixels; however, we have not systematically explored how the results vary
with chip size.

The choice of forecasting a Gaussian distribution on the logit transform of coherence
squared is motivated by the desire to use an unbounded distribution on an unbounded
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space, and the mathematical relationship to the logarithm of the phase variance
(Section B.1). However, the specific transform and distribution are ad-hoc and in
general they may not produce the optimal forecast. We leave the exploration of the
best transform and distribution to future work.

Rather than using a local chip to estimate coherence, a stack of SAR images can be
used to identify a non-local neighborhood of SLC pixels, within some distance of
a central SLC pixel, that behave in a statistically similar pattern through time. The
coherence can then be evaluated over those SLC pixels, which has been shown to
give a better coherence estimate (Ferretti et al., 2011). However, using a non-local
coherence evaluation introduces problems when doing damage mapping. Damage
will change the statistical characteristics of an SLC pixel, meaning that co-event
SLC pixels may no longer be in their pre-event statistical groupings. For example,
some of the SLC pixels may be over collapsed buildings, with other SLC pixels over
buildings that remained undamaged. On the other hand, SLC pixels in a local chip
are more likely to have been affected by the same process (e.g., building collapse).
Thus, while a non-local coherence calculation may give improved results for pre-
event coherence calculations, our method requires us to use a local chip for the
coherence calculation.

3.6.4 Near real-time deployment
When deploying damage mapping for rapid response, delivering timely products,
ideally within hours, is exceptionally important. While the wait time for a Sentinel-1
post-event acquisition could be up to six days, in many cases we will have an image
before this, allowing the information to feed in to rapid disaster response. Other SAR
satellites also acquire data; however, they do not have the same long time series of
open access acquisitions that is available from Sentinel-1. Planned SAR missions,
such as NISAR (Sharma, 2019) and ALOS-4 (Motohka et al., 2019) should improve
the availability of frequently acquired SAR data.

A near real-time deployment could follow this workflow, which would ideally be
almost completely automated:

1. Identify the natural disaster

2. Find the SAR satellite which has a sufficient time series of existing obser-
vations, and will have an overflight of the affected area in the immediate
future
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3. Download the existing SAR data, coregister, and calculate a coherence time
series

4. Train the RNN and forecast the co-event coherence

5. Obtain the first post-event acquisition, coregister and calculate co-event co-
herence

6. Compare with the forecast to calculate the damage proxy map

7. Inspect DPM and distribute to first responders via previously established
channels of communication, ensuring that they have a clear understanding of
the information the damage proxy map is providing.

The most computationally demanding step of this process is the coregistration of the
large quantities of pre-event SAR data, with the coherence time series calculation
and RNN training also requiring substantial computational resources. Combined,
these steps can take several days of computing using our current codes and resources,
potentially impacting response times. However, steps 1–4 do not necessarily affect
the post-disaster response time, as they can either be pre-computed and regularly
updated, or in some cases, be completed before the essential post-event acquisition
becomes available. Additionally, the use of cloud computing resources and improved
algorithms can greatly decrease processing time. Free and open data, accessible with
minimal latency, are vital for the effective deployment of such a disaster monitoring
system.

The quality of the damage map could be further enhanced by combination with other
damage assessments, e.g., maps of shaking intensity and on-the-ground reports, as
well as previously identified zones of higher risk for building collapse, fault surface
rupture, landslides and liquefaction (Loos et al., 2020).

3.7 Conclusions
In this work, we present a deep learning-based damage mapping algorithm for syn-
thetic aperture radar (SAR) sequential coherence time series. Coherence represents
a proxy for ground surface change, and thus by separating out anomalous from
expected coherence values after a natural disaster we can find regions that have had
anomalous surface change, potentially due to building collapse, surface rupture,
landslides or other hazards. We use a recurrent neural network to learn the nor-
mal behavior of coherence through time by training on SAR coherence time series
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spanning a large area, then forecast the probability distribution of the coherence
we expect without any disaster. We then use the deviation between the observed
and forecast coherence to locate anomalous coherence changes, which we assume
to be due to collapsed buildings. A comparison with on-the-ground building dam-
age assessments shows that this method is quantitatively better than an alternative
method of damage mapping based on coherence loss. We discuss the advantages
and limitations of our proposed SAR damage mapping method and outline how it
could be deployed in disaster response scenarios.

The problem of RNN over-fitting due to the correlated nature of coherence time
series in a single region could potentially be ameliorated by simultaneously training
on a large number of coherence time series drawn from areas all over the planet
displaying very different temporal behaviors. Furthermore, including additional
training features such as the spatial and temporal baseline and the amount of precip-
itation between sequential SAR acquisitions might allow the network to learn the
dependence on additional physical parameters relevant to coherence, thus improv-
ing its forecast. The ability to learn from many different input features without a
physical model is a key advantage of the deep learning approach.

The work presented here has been using C-band (5.6 cm wavelength) SAR data. As
coherence is sensitive to surface disruptions on the scale of the radar wavelength, it
could be that we are picking up many false positives caused by superficial damage.
Investigating the same disasters with 24 cm wavelength L-band data may provide
damage maps that are less prone to pick up small surface disturbances. Unfortu-
nately, dense time series of L-band SAR data are not easily available, although the
future launches of L-band SAR satellites (e.g., NISAR Sharma (2019) and ALOS-4
Motohka et al. (2019)) will allow for further exploitation of L-band SAR data for
damage mapping. NISAR will also image selected regions using S-band radar,
allowing the use of SAR data at multiple wavelengths to further increase the ability
of the damage map to distinguish different types of surface change.
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C h a p t e r 4

EXPLORING THE EFFECT OF THERMAL PRESSURIZATION
ON EARTHQUAKE PROPAGATION THROUGH A CREEPING

FAULT USING SIMPLIFIED 2-D MODELS

4.1 Introduction
Faults accommodate strain via rapid slip during earthquakes, or slow slip, known as
creep (Avouac, 2015; Burgmann, 2000; Simons et al., 2011). Based on long-term
geodetic observations, faults are often divided into locked and creeping sections,
with their behavior explained by the frictional properties of each section (Harris,
2017). Locked sections are thought to have velocity-weakening friction, which pro-
motes a stick-slip response to loading. Creeping sections, on the other hand, can
be modeled as having velocity-strengthening friction, allowing stress to be accom-
modated via gradual creep, rather than dynamic rupture. Within this framework,
creeping sections of faults represent barriers to earthquake rupture. Properly clas-
sifying faults as locked or creeping can therefore allow the possible locations and
magnitudes of future earthquakes to be estimated (Kaneko et al., 2010).

The idea that creeping faults represent barriers to earthquake rupture has been
challenged by evidence that faults can dramatically weaken at high slip rates (Di
Toro et al., 2011; Tsutsumi & Shimamoto, 1997; Tullis, 2007), potentially allowing
a fault to exhibit both creep due to velocity-strengthening behavior at slow slip rates,
and rapid dynamic failure. One proposed dynamic weakening mechanism is thermal
pressurization of pore fluids (Lachenbruch & Sass, 1980; Mase & Smith, 1987; Rice,
2006; Sibson, 1973), whereby rapid fault slip at high stresses generates heat, which
in turn raises the pressure of fluids infiltrating the fault zone. This increase in
pressure reduces the effective normal stress on the fault, resulting in a decrease in
fault strength. Evidence from lab experiments (Badt et al., 2020; Faulkner et al.,
2011; French et al., 2014), direct observations of fault zones (Kuo et al., 2022; Ujiie
et al., 2010), seismological observations (Viesca & Garagash, 2015), computational
models (Cubas et al., 2015; Noda & Lapusta, 2013), and theory (Lachenbruch, 1980;
Mase & Smith, 1987; Rice, 2006; Sibson, 1973) suggests that thermal pressurization
(TP) can play a significant role in weakening natural faults at high slip rates, and can
allow dynamic ruptures to propagate into creeping sections. A variety of processes
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other than TP have been proposed that would lead to substantial decreases in fault
strength during sliding. These include flash heating, gel lubrication, nanoparticle
lubrication, decarbonation, dehydration, and fault melting (Di Toro et al., 2011);
however, we focus on TP in this work.

The efficiency of TP depends on numerous factors, including the rate of heat gen-
eration in the fault zone, the coupling between pore fluid temperature and pressure
changes, and the time scales of diffusion of heat and fluid out of the fault zone. A
slow rate of heat generation, or rapid diffusion of pore fluid pressure, can result in TP
playing a limited role, while the generation and maintenance of high temperatures
and pressures can rapidly reduce fault strength (e.g., Lachenbruch (1980) and Rice
(2006)). Many of the parameters governing TP are highly uncertain, and can vary in
space and time (Aben et al., 2020; Rice, 2006). This uncertainty makes predicting
when TP would occur a challenging prospect, leading to significant uncertainties
in understanding the behavior of creeping faults when interacting with dynamic
ruptures.

The San Andreas Fault (SAF) in California (USA) exhibits both stick-slip and
creeping behavior. A long creeping section stretches for around 140 km, from the
town of Parkfield in the south to San Juan Baptista in the north (Scott et al., 2020),
and is bounded by locked sections to the north and south which have hosted large
earthquakes. At the southern end, the transition zone between locked and creeping
segments has hosted repeated Mw 6 earthquakes (Bakun et al., 2005; Bakun &
Lindh, 1985) and has been the site of intensive study, including direct drilling in to
the creeping fault as part of the San Andreas Fault Observatory at Depth (SAFOD)
project (Lockner et al., 2011).

The creeping section has not hosted a major earthquake historically, and paleoseismic
studies do not show evidence of a major rupture within the past 5000 years (Toké
et al., 2011; Toké et al., 2006; Toké & Arrowsmith, 2015). However, geodetic
measurements indicate a slip deficit within the creeping section (Jolivet et al.,
2015; Maurer & Johnson, 2014) that could potentially be released by seismic slip.
French et al. (2014) found that the material from the creeping fault zone at SAFOD
could dramatically weaken at seismic slip rates, providing a possible mechanism for
ruptures to propagate into the creeping segment. Their results were consistent with
TP playing a significant role in the weakening. Recent results by Coffey et al. (2022)
present evidence of repeated dynamic ruptures within the creeping section, based
on the use of biomarker thermal maturity to calculate previous temperature rises
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from SAFOD samples. They calculated temperature rises of between 570-1100 °C
within a zone that they estimated to have hosted more than 100 earthquakes.

Motivated by these observations, we seek to understand the role that TP can play
in allowing earthquakes to rupture the creeping section of the SAF. We construct a
highly simplified 2-D model of the fault, centered around Parkfield, with a creeping
section that exhibits stable, velocity-strengthening behavior at slow slip rates but
can undergo dramatic co-seismic weakening due to TP. We nucleate events on a
nearby velocity-weakening patch, then explore how these dynamic ruptures interact
with the creeping section as we vary the efficiency of TP. We use a computational
methodology that allows us to efficiently model decades-long periods of creep,
followed by rapid dynamic ruptures in the presence of TP (Lapusta et al., 2000;
Noda & Lapusta, 2010).

Parameters controlling TP are often determined by laboratory measurements (e.g.,
Tanikawa and Shimamoto (2009) and Wibberley and Shimamoto (2003)), and are
then used in simulations (e.g., Cubas et al. (2015) and Noda and Lapusta (2013)).
However, several of the parameters controlling TP are uncertain, and can potentially
vary substantially during the rupture process (e.g., Aben et al. (2020), Badt et al.
(2020), and Brantut and Mitchell (2018)). In this study, we focus on three of the
parameters that are least well constrained: the width of the shearing zone, the
hydraulic diffusivity, and the coupling coefficient between temperature rise and
pressure rise. Proposed values span several orders of magnitude, and we draw
on published results to determine the ranges for each parameter. We use these
parameters to vary the strength of TP within the creeping zone.

We begin by modeling events in the style of the 2004 Mw 6 Parkfield earthquake.
This rupture rapidly arrested in the creeping section of the SAF (Barbot et al., 2012),
and we use this observation to rule out the parameter choices for which TP allows
a Mw 6-style rupture to propagate substantially into the creeping section. We then
simulate larger events, in the style of a hypothetical future Mw 7 rupture on the
Cholame segment of the SAF, and observe how they interact with the creeping
section. We find a range of physically reasonable TP parameters for which Mw

6-style events rapidly arrest, but Mw 7-style events propagate partially or totally
through our simulated creeping section, allowing the event to grow much larger.
We also present some simple analytical models that give further insight into the
conditions which allow for the creeping section to be ruptured, and discuss the
limitations of our simulations.
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4.2 Methods
We apply the computational methods developed by Lapusta et al. (2000) and Noda
and Lapusta (2010) to simulate long sequences of inter-seismic slip, followed by
earthquake nucleation, propagation, and arrest. In order to efficiently explore a wide
parameter space, we limit our study to ruptures propagating along a one-dimensional
(1-D) fault embedded in a 2-D linear elastic isotropic medium. To approximate the
effects of a finite width of the seismogenic zone on a strike-slip fault, we adopt a
crustal plane model (Kaneko & Lapusta, 2008; Lapusta, 2001; Lehner et al., 1981).
The only non-zero component of slip is along-strike, averaged over the assumed
depth of the fault, 𝐻𝑠𝑒𝑖𝑠. Below 𝐻𝑠𝑒𝑖𝑠, the medium is coupled to a substrate moving
at the loading rate, 𝑣𝑝𝑙 . The parameters we adopt in this study are given in Table
4.1, and further description is given in Section 4.2.4.

4.2.1 Rate-and-State Friction
We model the shear resistance of the fault as the product of the effective normal stress
and the friction coefficient given by the standard laboratory-derived rate-and-state
law (Dieterich, 1978; Ruina, 1983): :

𝜏 = 𝜎𝑒 𝑓 𝑓 𝑓 (𝑣, 𝜃) (4.1)

= (𝜎 − 𝑝)
[
𝑓 ∗ + 𝑎 log

( 𝑣

𝑉∗

)
+ 𝑏 log

(
𝜃𝑣∗

𝐷𝑅𝑆

)]
, (4.2)

where 𝜏 is the shear strength which is equal to the shear stress, 𝜎𝑒 𝑓 𝑓 (= 𝜎 − 𝑝) is
the Terzaghi effective stress, 𝜎 is the normal stress, 𝑝 is the pore fluid pressure, 𝑓

is the rate-and-state friction coefficient, 𝑣 is the sliding velocity, 𝑓 ∗ is the reference
friction coefficient, defined as the steady state value of 𝑓 when sliding at the reference
velocity 𝑉∗, 𝐷𝑅𝑆 is the characteristic slip for the evolution of the state variable, and
𝑎 and 𝑏 are the rate-and-state constitutive parameters.

The evolution of the state variable, 𝜃, is given by the aging law:

¤𝜃 = 1 − 𝑣𝜃

𝐷𝑅𝑆

. (4.3)

At steady state, ¤𝜃 = 0 and the friction coefficient reduces to:

𝑓𝑠𝑠 (𝑣) = 𝑓 ∗ + (𝑎 − 𝑏) log
( 𝑣

𝑉∗

)
. (4.4)



90

Equation 4.4 shows that the steady-state friction is governed by the sliding velocity
𝑣 and the parameter (𝑎 − 𝑏). When (𝑎 − 𝑏) > 0, friction increases with sliding
velocity, a situation known as velocity strengthening. Velocity strengthening results
in stable sliding when a steady load is applied. Patches with (𝑎− 𝑏) < 0 are referred
to as velocity weakening, and can potentially nucleate seismic ruptures (e.g., Rice
and Ruina (1983) and Rubin and Ampuero (2005)).

4.2.2 Enhanced Dynamic Weakening via TP
To simulate the evolution of temperature due to shear heating and the resulting
changes in pore fluid pressure, we use the following two coupled partial differential
equations (Noda & Lapusta, 2010):

𝜕𝑇

𝜕𝑡
= 𝛼𝑡ℎ

𝜕2𝑇

𝜕𝑦2 + 𝜏𝑣

𝜌𝑐

exp(−𝑦2/2𝑤2)
√

2𝜋𝑤
, (4.5)

𝜕𝑝

𝜕𝑡
= 𝛼ℎ𝑦

𝜕2𝑝

𝜕𝑦2 + Λ
𝜕𝑇

𝜕𝑡
, (4.6)

where 𝑇 is the temperature, 𝛼𝑡ℎ is the thermal diffusivity, 𝜏 is the shear stress on the
fault, 𝑣 is the sliding velocity, 𝜌𝑐 is the specific heat, 𝑝 is the pore fluid pressure, 𝛼ℎ𝑦

is the hydraulic diffusivity, and Λ is the coupling coefficient that gives the change
in pore pressure for a given change in temperature under undrained conditions.
We assume a Gaussian distribution of the shearing rate, with 𝑤 being the root-
mean-square half-width of the shear-rate distribution and 𝑦 being the perpendicular
distance from the fault.

4.2.3 Model Setup
Our model is designed as a highly simplified representation of the southern portion
of the creeping section of the SAF, and the locked Cholame segment, centered
around the town of Parkfield, California. At Parkfield, the fault transitions from
locked in the south, to the creeping segment in the north. This transition zone has
hosted repeated Mw 6 earthquakes over the last century (Bakun et al., 2005; Bakun
& Lindh, 1985).

We draw on the work of Barbot et al. (2012) in constructing a 2-D model consisting
of a velocity-weakening patch with velocity-strengthening segments on either side.
When loaded, these velocity-strengthening sections creep at the plate rate, set at 23
mm/yr based on observed creep rates (Titus, 2006). This creep loads the velocity-
weakening patch, causing dynamic ruptures to nucleate. We put a small initial
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stress perturbation near the right-hand edge of the velocity-weakening patch, which
results in the events nucleating from the right and propagating to the left, where they
hit the creeping section (Figure 4.1). Our model setup gives a total length of the
creeping section of around 80 km. While this is shorter than the creeping section
of the SAF, in practice this makes little difference to our results and reduces the
computational burden. The velocity-strengthening patch on the right-hand side of
the model is similar to the modeling approach used by Barbot et al. (2012). It allows
the velocity-weakening patch to be loaded from the right-hand side in order to create
ruptures that propagate to the left. However, the patch does not directly relate to
observed creep rates on the SAF, which decrease rapidly to the south of Parkfield.
We note that our goal is to focus on the impact of variable TP efficiency in the
creeping section, and not to realistically model the potentially complex transition
zone around Parkfield (e.g., Simpson et al. (2006)).

We seek to understand the response of the creeping section to the incoming ruptures
of different sizes as the efficiency of TP varies. TP parameters are constant through-
out the left-hand side creeping section, with no TP in other regions (Λ = 0 MPa/K).
In our simulations, we create incoming ruptures of two different styles. The first
type of rupture is designed to be similar to the 2004 Mw 6 Parkfield event. We use
the observation that this event rapidly arrested in the creeping section to place con-
straints on the efficiency of TP. We also simulate a larger event, with a magnitude of
around Mw 7 in the absence of TP. To control the event size, we vary two parameters:
the length of the velocity-weakening patch, 𝜆𝑣𝑤, and the crustal plane width, 𝐻𝑠𝑒𝑖𝑠.
We determine the approximate event sizes by examining the rupture behaviour in
the absence of TP, where the rupture is constrained to the velocity-weakening patch.
In Figure 4.1, we illustrate our model setup and slip profiles for the two styles of
events, and describe them in more detail below.

The crustal plane model is used to approximate the depth-averaged slip over the
seismogenic fault depth 𝐻𝑠𝑒𝑖𝑠, with the fault loaded at 𝑣𝑝𝑙 at the bottom, and a free
surface at the top (Lapusta, 2001; Lehner et al., 1981). 𝐻𝑠𝑒𝑖𝑠 can also be regarded
at the half-width of a fault that is constrained to move at 𝑣𝑝𝑙 from the bottom and
the top, with no free surface. This situation is more akin to the 2004 Parkfield
earthquake, which was predominantly confined to below 5-km depth and did not
rupture to the surface (e.g., Barbot et al. (2012)).

For the Mw 6-style events, we base our geometry on the inferred rupture parameters
for the Mw 6 2004 Parkfield earthquake. This event propagated to the north,
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rupturing a patch roughly 25 km long by 4 km wide, and rapidly arrested in the
creeping section (e.g., Barbot et al. (2012)). We create a velocity-weakening patch
25 km long, and set the crustal plane thickness, 𝐻𝑠𝑒𝑖𝑠, to 2 km, or half of the inferred
rupture patch width. This model setup effectively constrains ruptures to a 4-km
wide patch along the entire length of the fault. In reality, in situations where TP
allowed ruptures to propagate substantially into the creeping section, the rupture
would likely expand over more of the fault depth. This artificial constraint on the
depth extent of the ruptures acts to inhibit propagation into the creeping section for
the Mw 6-style events.

For the Mw 6-style events, our choice of frictional parameters results in slip of
around 66 cm along most of the velocity-weakening patch (Figure 4.1(a)). This
number is consistent with the maximum slip, found at around 7 km depth, in the
kinematic inversions and simulations of Barbot et al. (2012), although is larger than
that found by some other authors (e.g., Johanson et al. (2006) and Langbein et al.
(2006)). The use of the crustal plane model means that the slip in our model is the
average over the depth of the patch, so the magnitude of our events is somewhat
larger than the observed Mw 6; however, this difference should not significantly
affect our conclusions.

For the Mw 7-style events, we extend the velocity-weakening patch to be 80 km
long, and set the seismogenic depth to be larger, 𝐻𝑠𝑒𝑖𝑠 = 8 km, resulting in ruptures
with slip of around 2.2 m along most of the velocity-weakening patch. 𝐻𝑠𝑒𝑖𝑠 is here
used to represent the full depth of the rupture, which is assumed to span from the
surface to a depth of 8 km. These parameters are not directly based on observational
constraints, but are designed to produce an intermediate size of event, larger than
the Mw 6-style, but still much smaller than the M 7.7 1857 Fort Tejon earthquake
(e.g., Zielke et al. (2012)), the most recent major earthquake to rupture the SAF
near Parkfield. Note that the Fort Tejon event likely nucleated around the Parkfield
transition zone, then propagated from the north to the south (Sieh, 1978a), unlike
the ruptures in our simulations.

4.2.4 Parameters Controlling TP
Equations 4.2, 4.5, and 4.6 describe a coupled system whereby the shear stress
controls the rate of heat production, which in turn governs the evolution of pore
pressure, which feeds back into the shear stress via the effective normal stress. In
order for TP of pore fluids to occur, there must be sufficient heat generated to increase
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the pore fluid pressure, and this heat and pressure must remain sufficiently confined
to the shearing layer over the time scales of seismic slip. The relative weight of these
processes is controlled by the thermal and hydraulic diffusivities𝛼𝑡ℎ and𝛼ℎ𝑦, specific
heat 𝜌𝑐, fault zone half-width𝑤, and coupling coefficientΛ. Of these parameters, the
values of 𝛼𝑡ℎ = 10−6 m2/s and 𝜌𝑐 = 2.7 MPa/K are relatively well constrained from
laboratory results and have been used in previous computational work (e.g., Noda
and Lapusta (2010, 2013), Rice (2006), and Wibberley and Shimamoto (2005)).

We therefore focus our attention on Λ, 𝛼ℎ𝑦, and 𝑤. Given these parameters are
uncertain, we search the literature for the range of values proposed for each of these
quantities, and explore that range in our simulations. We assume that each parameter
is fixed during each simulation, which may not be the case in reality (see Section
4.5.2). Exploring the effects of potential evolution of these quantities during rupture
should be the subject of future work.

The coupling coefficient, Λ, depends on the degree of damage to the fault gouge
material, and also evolves with the pressure-temperature conditions. Rice (2006)
draws on experimental results (including from gouge drawn from the Median Tec-
tonic Line, Japan, presented by Wibberley and Shimamoto (2003)) to suggest values
between 0.31 and 0.98 MPa/K, with higher damage resulting in lower values and
thus less efficient TP. Noda and Lapusta (2013) calculate values of 0.036 and 0.069
MPa/K based on laboratory measurements from Tanikawa and Shimamoto (2009)
of material taken from different points in the Chelungpu fault zone, Taiwan. Aben
et al. (2020) give values in the range 0-2 MPa/K depending on the depth and degree
of damage. In our work, we vary Λ over the range from 0.01 MPa/K to 1 MPa/K.
Most of these values would be appropriate for the fault with off-fault damage due to
the rupture, with the simulations essentially ignoring the transition from undamaged
to damaged conditions and considering the values for the damaged fault.

The hydraulic diffusivity, 𝛼ℎ𝑦, also depends on the degree of damage and the
pressure-temperature conditions. Rice (2006) gives values between 0.86 − 6.04 ×
10−6 m2/s, with higher damage resulting in larger hydraulic diffusivities. Noda and
Lapusta (2013) calculate values of 3.5 × 10−2 and 7.0 × 10−5 m2/s, again based on
the results of two different samples presented by Tanikawa and Shimamoto (2009).
Aben et al. (2020) gives a wide range of parameters, from ∼ 10−8 to 10−2 m2/s,
depending on the depth and degree of damage. For our work, we vary the hydraulic
diffusivity over the range 10−5 to 10−2 m2/s.
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Theoretical, observational, and experimental results can be used to place bounds
on the half-width 𝑤 of the shearing zone during seismic slip. Field observations of
faults often find broad zones of damage, on the scale of meters, surrounding narrow
zones of ultracataclasite and fault gouge, centimeters to millimeters wide, which host
earthquake slip (e.g., Mitchell and Faulkner (2009) and Sibson (2003)). Microstruc-
tural analysis indicates that, within these narrow zones, slip can be accommodated
over narrower “principle slip zones,” on the order of 0.1 to 1 mm thick (e.g., Chester
and Chester (1998), De Paola et al. (2008), and Heermance et al. (2003)). Rice et al.
(2014) and Platt et al. (2014) argued that fault gouge at seismogenic depths would
tend to undergo extreme shear localization, resulting in shear being accommodated
over zones 5-40 𝜇m wide. Coffey et al. (2022) examined material drawn directly
from the SAFOD bore hole in the creeping section of the SAF, finding multiple slip
layers with thicknesses between 100 𝜇m and 1.8 cm, with an average of 2 mm. To
encapsulate the broad range of the proposed shear-zone widths, we vary the half-
width, 𝑤, from 0.01 mm (10 𝜇m) to 100 mm. These values remain constant during
slip; however, we acknowledge that the wider shearing layers may be unstable, and
localize, over extended slip (Platt et al., 2014; Rice et al., 2014).

We set the initial effective normal stress, 𝜎𝑒 𝑓 𝑓 , at 120 MPa, the approximate value
at 7 km depth with hydrostatic pore pressure. Based on experimental results from
material obtained from SAFOD we choose 𝑓 ∗ = 0.15 within the creeping section
(Lockner et al., 2011). The steady-state velocity dependence of the rate-and-state
friction is governed by the quantity 𝜎𝑒 𝑓 𝑓 (𝑎−𝑏) (Equation 4.4), which we set to 0.48
MPa within the creeping section, consistent with values determined from inversions
of post-seismic slip (Barbot et al., 2009; Barbot et al., 2012; Chang et al., 2013) and
experimental measurements of fault properties (Lockner et al., 2011). Properties
within the velocity-weakening section are chosen to give events of the desired size,
as discussed by Barbot et al. (2012). All parameters are given in Table 4.1.

The dramatic weakening caused by TP can lead to very rapid increases in slip rates,
resulting in high strain rates. In reality, such high strain rates would lead to inelastic
yielding, i.e. damage, off the fault around the rupture front. Such behavior can be
approximated by imposing a slip velocity limit that varies with the normal stress
(Andrews, 2005; Lambert et al., 2021). We set 𝑣𝑙𝑖𝑚 = 15 m/s, to approximate the
behavior at roughly 7 km depth.
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Figure 4.1: Examples of Mw 6 and Mw 7-style events. Blue contours show accumu-
lated inter-seismic slip every four years. Red lines show accumulated co-seismic slip
every 0.5 seconds. (a) Mw 6-style event. A 25-km-long velocity-weakening patch
is placed between two velocity-strengthening patches, the crustal plane thickness is
𝐻𝑠𝑒𝑖𝑠 = 2 km. The velocity-strengthening patch on the left has TP with Λ = 0.34
MPa/K, 𝑤 = 10 mm and 𝛼ℎ𝑦 = 10−4 m2/s for this case; the parameters are varied in
other simulations (Table 4.1). The TP with these parameters is not efficient enough
for the Mw 6-style event to propagate into the creeping section. (b) Mw 7-style
event. The velocity-weakening patch is expanded to 80 km long, and crustal plane
thickness increased to 𝐻𝑠𝑒𝑖𝑠 = 8 km. TP parameters have the same values as in
(a). The larger event now activates sufficient TP to propagate through the creeping
section and hit the boundary of our model (not shown here), allowing the event to
grow well beyond Mw 7.
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4.2.5 Example of Simulated Rupture in the Creeping Section
In Figure 4.1(b), we illustrated a Mw 7-style event propagating through the creeping
section due to TP. In Figure 4.2, we also show the evolution of the physical parameters
at a point on the edge of the creeping section during a period of creep, followed by a
Mw 7-style event that propagates into the creeping section. Figure 4.2(a) shows the
evolution of shear stress: steady creep occurs at a background stress set by the rate-
and-state parameters, before seismic slip creates a spike to a peak stress and rapid
evolution to a higher stress level, again controlled by the rate-and-state parameters
(the evolution of the state parameter is shown in Figure 4.2(e)). Without TP, this
increase in shear stress would rapidly arrest the ruptures. However, TP causes shear
stress to decay exponentially with slip, due to the reduction in effective normal stress
(Figure 4.2(b)). The dramatic reduction in stress allows several meters of slip to
accumulate with temperature change limited to 370 °C (Figure 4.2(d)).

4.3 Analytical Models of Thermal Pressurization
4.3.1 TP Weakening Length Scales
Previous authors have derived analytical solutions for the evolution of stress due to
TP (Lachenbruch, 1980; Mase & Smith, 1987; Rice, 2006). These models allow us
to gain some insight into how TP parameters may control the rupture of the creeping
section. Two end-member solutions have been derived, one for constant velocity
slip on a plane, in which the very existence of the solution is crucially dependent on
the off-fault diffusion of heat and fluids, and the other for adiabatic, undrained shear
over a zone of finite width, which is only valid if the layer is wide enough for the
heat and fluid diffusion to be negligible for the duration of the event.

For slip on a plane (i.e. the case with an infinitely thin shear zone), one has (Mase
& Smith, 1987; Rice, 2006):

𝜏 = 𝑓 (𝜎𝑛 − 𝑝𝑜) exp
(
𝛿

𝐿∗

)
erfc

(√︂
𝛿

𝐿∗

)
, (4.7)

where:

𝐿∗ = 4
(
𝜌𝑐

𝑓Λ

)2 (√𝛼ℎ𝑦 +
√
𝛼𝑡ℎ)2

𝑣𝑠𝑒𝑖𝑠
, (4.8)
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Figure 4.2: Evolution of parameters with slip for a point within the creeping section
(position -15 km) during a Mw 7-style event that fully ruptures the creeping section.
TP parameters are Λ = 0.34 MPa/K, 𝑤 = 10 mm, and 𝛼ℎ𝑦 = 10−5 m2/s. (a) Shear
stress (𝜏) with slip. (b) Effective normal stress (𝜎𝑒 𝑓 𝑓 ) with slip. (c) Coefficient of
friction (𝜏/𝜎𝑒 𝑓 𝑓 ) with slip. (d) State variable term (ln[𝑉∗𝜃/𝐷𝑅𝑆]) with slip. (e)
Slip velocity with slip. The dashed line indicates the mean slip velocity since the
start of the event. Note the 15 m/s slip velocity limit. (f) Temperature change with
slip.
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and 𝑣𝑠𝑒𝑖𝑠 is the representative seismic slip rate, 𝑓 is the representative dynamic
friction coefficient (both assumed constant), 𝛿 is the accumulating slip, 𝑝0 is the
ambient pore fluid pressure, and the other quantities are as defined above.

The case of adiabatic, undrained shear over the zone of width ℎ gives (Lachenbruch,
1980):

𝜏 = 𝑓 (𝜎 − 𝑝𝑜) exp
(
− 𝛿

𝛿𝑐

)
, (4.9)

where:

𝛿𝑐 =
𝜌𝑐ℎ

𝑓Λ
. (4.10)

Note that this solution assumes that shearing is uniformly distributed over the layer
of thickness ℎ, compared to our simulations which use a Gaussian distribution of
shear rate with root-mean-square half-width𝑤. We assume the approximation ℎ = 𝑤

when evaluating 𝛿𝑐 for our simulations.

4.3.2 Estimating When TP Allows Propagation Through the Creeping Section
If slip propagates into the creeping section, there would be an initial increase in
stress due to the velocity-strengthening properties of the fault, potentially followed
by weakening due to TP (Figure 4.3). To estimate the conditions under which TP
would allow an event to rupture the creeping section, we estimate the slip required
for TP to overcome the velocity-strengthening effect and cause a positive stress drop
(Noda & Lapusta, 2013). For a point in the creeping section, undergoing stable
creep at the plate rate, 𝑣𝑝𝑙 , its initial stress 𝜏𝑐𝑟𝑒𝑒𝑝 is set by the rate-and-state friction
properties of the interface:

𝜏𝑐𝑟𝑒𝑒𝑝 = 𝜎𝑒 𝑓 𝑓

[
𝑓 ∗ + (𝑎 − 𝑏) ln

(𝑣𝑝𝑙
𝑉∗

)]
. (4.11)

The incoming rupture would initially cause the stress to jump to a peak value, the
so-called “direct effect” of rate-and-state friction (e.g., Scholz (1998)). Assuming
a representative seismic slip velocity, 𝑣𝑠𝑒𝑖𝑠, is supported for a sufficient amount of
slip (see Equation 4.21) due to incoming dynamic loading, this stress would then
evolve to its steady-state value, 𝜏𝑠𝑒𝑖𝑠:
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Figure 4.3: Schematic evolution of shear stress, 𝜏, with slip for a point in the
creeping section of the fault that experiences TP due to incoming dynamic rupture.
The quantities illustrated are used in the theoretical estimates of Section 4.3.1.
Steady aseismic creep happens with the slip velocity 𝑣𝑝𝑙 and stress 𝜏𝑐𝑟𝑒𝑒𝑝. When an
event propagates into the creeping section, there is an initial rapid increase of stress
to 𝜏𝑝𝑒𝑎𝑘 (the rate-and-state direct effect) and then a decay to 𝜏𝑠𝑒𝑖𝑠, controlled by the
steady-state rate-and-state parameter. TP can then be activated due to the resulting
shear heating, causing the stress to continue to decrease. Given sufficient slip before
the rupture arrests, the stress could decrease back to 𝜏𝑐𝑟𝑒𝑒𝑝 over a slip of 𝛿𝑑𝑟𝑜𝑝, and
then even below this level, allowing for a positive stress drop in the creeping section.
A simulation output of this evolution can be seen in Figure 4.2(a).

𝜏𝑠𝑒𝑖𝑠 = 𝜎𝑒 𝑓 𝑓

[
𝑓 ∗ + (𝑎 − 𝑏) ln

(𝑣𝑠𝑒𝑖𝑠
𝑉∗

)]
. (4.12)

The length scale of evolution to steady-state is controlled by the rate-and-state
critical slip distance, 𝐷𝑅𝑆, which is set to 4 mm for our simulations. This value
is large compared to laboratory results, but values on this scale are often used
in computational work to make the problem tractable (e.g., Barbot et al. (2012),
Erickson et al. (2020), and Noda and Lapusta (2013)). Smaller values of 𝐷𝑅𝑆 would
promote rupture, since the slip needed to evolve the shear stress from the larger
direct-effect peak to the smaller steady-state seismic resistance would be lower.
When applying the slip-on-a-plane and adiabatic, undrained theoretical solutions
given above, we assume both a constant seismic slip velocity and a constant friction
coefficient over length scales relevant for TP. These assumptions imply that rate-
and-state evolution occurs much faster than TP, which we analyse further in Section
4.5.3.
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A necessary condition to sustain the rupture in the creeping section is to achieve a
positive dynamic stress drop. Given the velocity-strengthening properties of this part
of the fault the shear stress is greater when sliding and seismic rates (𝜏𝑠𝑒𝑖𝑠 > 𝜏𝑐𝑟𝑒𝑒𝑝),
and TP must lower the stress to below 𝜏𝑐𝑟𝑒𝑒𝑝 for the stress drop to be positive. The
amount of slip required for such stress evolution, 𝛿𝑑𝑟𝑜𝑝, can be estimated from the
analytical solutions presented in Section 4.3.1. We define 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

as the estimate of
𝛿𝑑𝑟𝑜𝑝 assuming adiabatic, undrained conditions, and 𝛿∗

𝑑𝑟𝑜𝑝
as the estimate assuming

slip on a plane. For the adiabatic, undrained solution, the slip for a positive stress
drop, 𝛿𝑑𝑟𝑜𝑝 can be derived from Equation 4.9:

𝛿
(𝑐)
𝑑𝑟𝑜𝑝

= 𝛿𝑐 ln
(
𝜏𝑠𝑒𝑖𝑠

𝜏𝑐𝑟𝑒𝑒𝑝

)
. (4.13)

For the slip-on-a-plane solution, Equation 4.7 gives us an expression for required
slip:

exp

(
𝛿∗
𝑑𝑟𝑜𝑝

𝐿∗

)
erfc ©«

√︄
𝛿∗
𝑑𝑟𝑜𝑝

𝐿∗
ª®¬ =

𝜏𝑐𝑟𝑒𝑒𝑝

𝜏𝑠𝑒𝑖𝑠
, (4.14)

which can be solved numerically.

To calculate 𝜏𝑠𝑒𝑖𝑠 and 𝛿∗
𝑑𝑟𝑜𝑝

, we must choose a seismic slip rate that is representative
for a point on the edge of the creeping section over the slip range 𝛿𝑑𝑟𝑜𝑝. At a
point within the velocity-weakening patch, but close to the creeping section, our
simulations give an average slip velocity slightly greater than 6 m/s over the entire
event for both the Mw 6 and Mw 7-style events. Based on these averages, we choose
𝑣𝑠𝑒𝑖𝑠 = 6 m/s. We provide further discussion of this value in Section 4.5. For our
chosen velocity-strengthening rate-and-state parameters (Table 4.1), and 𝑣𝑠𝑒𝑖𝑠 = 6
m/s, 𝜏𝑐𝑟𝑒𝑒𝑝 ≈ 15 MPa, 𝜏𝑠𝑒𝑖𝑠 ≈ 25 MPa, and we can calculate 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

≈ 0.53𝛿𝑐 and
𝛿∗
𝑑𝑟𝑜𝑝

≈ 0.30𝐿∗.

4.3.3 The Transition Between Adiabatic, Undrained Solutions and Slip-on-a-
Plane Solutions

Our simulated faults have finite widths and non-zero diffusivities, so are never
truly in the slip-on-a-plane or adiabatic/undrained regimes. We therefore need to
consider the circumstances under which each of these models would be a useful
approximation to the full solution. The adiabatic, undrained case would be most
applicable when the diffusion length scales are small compared with the width of
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the fault for the duration of seismic slip. The slip-on-a-plane solution would be most
applicable when the diffusion length scales are large with respect to the fault width
(Rempel & Rice, 2006).

Garagash (2012) and Viesca and Garagash (2015) define a lumped hydrothermal
diffusivity, 𝛼 = (√𝛼ℎ𝑦 +

√
𝛼𝑡ℎ)2, which they use to calculate a length scale for hy-

drothermal diffusion, 𝑙𝑑 =
√

4𝛼𝑡. From this length scale, they derive a hydrothermal
diffusion timescale, the time at which the hydrothermal diffusion length scale is
equal to the fault zone width: 𝑡𝑑 = ℎ2/(4𝛼).

Assuming that the fault slips at a constant rate 𝑣𝑠𝑒𝑖𝑠, the distance slipped during the
diffusion timescale would be 𝛿𝑑 = 𝑣𝑠𝑒𝑖𝑠𝑡𝑑 . Taking the definition of 𝑡𝑑 , 𝐿∗ and 𝛿𝑐

from above, Viesca and Garagash (2015) derived a relationship for the 𝛿𝑑 in terms
of the weakening length scales 𝛿𝑐 and 𝐿∗:

𝛿𝑑 =
𝛿2
𝑐

𝐿∗ , (4.15)

which can also be expressed directly in terms of fault zone parameters as:

𝛿𝑑 =
ℎ2𝑣𝑠𝑒𝑖𝑠

4𝛼
. (4.16)

This consideration implies that, for slip 𝛿 << 𝛿2
𝑐/𝐿∗, the diffusive length scale would

be small compared with the fault width, so the shear zone would be in the adiabatic,
undrained regime. 𝛿 >> 𝛿2

𝑐/𝐿∗ implies that the diffusive length scale is much wider
than the fault zone, making the slip-on-a-plane solution the better approximation.

For our parameter combinations, the hydraulic diffusivity varies over several orders
of magnitude, and is at least an order of magnitude greater than the thermal diffu-
sivity, resulting in the lumped hydrothermal diffusivity being approximately equal
to hydraulic diffusivity. 𝛿𝑑 therefore is best used to determine the slip at which fluid
diffusion reaches the scale of the fault width, i.e. the boundary between undrained
and drained models. The smaller value of thermal diffusivity means that greater
slip than 𝛿𝑑 would be required before thermal diffusion reaches the scale of the fault
width and the slip can no longer be approximated as adiabatic. This slip can be
estimated from the expression 𝛿𝑑,𝑡ℎ = (𝛿2

𝑐/𝐿∗) (𝛼/𝛼𝑡ℎ). In this work, we are pri-
marily interested in the variation in fault strength, which is governed directly by the
evolution of pore fluid pressure. As 𝛿𝑑 approximately determines the transition from
undrained to drained behavior, we use this value to determine which end-member
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model best determines the evolution of pore fluid pressure, and thus fault strength,
ignoring the fact that this is not the same as the adiabatic boundary. See Section
3.1 of Rice (2006), as well as Rempel and Rice (2006), for more discussion of this
issue.

To determine which end-member model of TP best approximates the behavior over
the slip required for a positive stress drop, 𝛿𝑑𝑟𝑜𝑝, we compare the diffusive length
scale 𝛿𝑑 (Equation 4.15) to the relevant expression for 𝛿𝑑𝑟𝑜𝑝, which depends on the
chosen model. For the adiabatic, undrained case, we have:

𝛿𝑑

𝛿
(𝑐)
𝑑𝑟𝑜𝑝

≈ 1.90
(
𝛿𝑐

𝐿∗

)
(4.17)

= 1.90
(
𝑓Λℎ𝑣𝑠𝑒𝑖𝑠

4𝜌𝑐𝛼

)
. (4.18)

For the slip-on-a-plane case:

𝛿𝑑

𝛿∗
𝑑𝑟𝑜𝑝

≈ 3.28
(
𝛿2
𝑐

𝐿∗2

)
(4.19)

= 3.28
(
𝑓Λℎ𝑣𝑠𝑒𝑖𝑠

4𝜌𝑐𝛼

)2
. (4.20)

Note that both expressions contain the same physical parameters. The adiabatic,
undrained solution would be a good approximation over the slip length required for
a positive stress drop when 𝛿𝑑/𝛿(𝑐)𝑑𝑟𝑜𝑝

>> 1, i.e. 𝛿𝑐 >> 0.53𝐿∗. The slip-on-a-plane
solution would be a good approximation when 𝛿𝑑/𝛿∗𝑑𝑟𝑜𝑝 << 1, i.e 𝛿𝑐 << 0.55𝐿∗.
Therefore, there is a transition at around 𝛿𝑐 ≈ 𝐿∗/2 for which solution is a better
approximation, but the ratio between 𝛿𝑑 and 𝛿𝑑𝑟𝑜𝑝 scales differently between the
two end-member solutions as the physical parameters are varied.

4.4 Rupture Propagation Into the Creeping Section
4.4.1 Simulation results
As we vary the parameters of TP in the velocity-strengthening section, the simulated
ruptures span the range from rapidly arresting to propagating through the entire
section. In Figures 4.4 and 4.5, we show the fraction of the creeping section that
is ruptured for Mw 6 and Mw 7-style events, respectively, as we vary the hydraulic
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diffusivity (𝛼ℎ𝑦), fault half-width (𝑤), and TP coupling (Λ) over several orders of
magnitude. For Λ = 0.01 MPa/K, there is negligible influence of TP for both event
sizes and all combinations of 𝛼ℎ𝑦 and 𝑤 within our chosen ranges, and the rupture
rapidly dies out due to the velocity-strengthening rate-and-state properties of the
creeping section. TP also has negligible effects when 𝑤 = 100 mm. Some enhanced
propagation into the creeping section is possible when 𝛼ℎ𝑦 = 10−2 m2/s, but the
creeping section never fully ruptures when the hydraulic diffusivity is this high.

The coupling coefficient of Λ = 0.1 MPa/K is sufficient to allow Mw 6-style ruptures
to propagate several kilometers into the creeping section for the thinnest faults and
lowest diffusivities (Figure 4.4(b)). For Λ = 0.34 and 1 MPa/K, we find numerous
parameter combinations for which Mw 6-style events rupture the entire creeping
section, resulting in events much larger than Mw 6 (Figure 4.4(c)-(d)). Using the
observation that the 2004 Mw 6 Parkfield event arrested in the creeping section,
we can rule out these fault models as having overly efficient TP. We mark these
parameter combinations with black boxes.

For the Mw 7-style events shown in Figure 4.5, the larger event size results in greater
propagation through the creeping section for every parameter combination. For
Λ = 0.1 MPa/K and larger, we find several combinations of parameters for which
the Mw 6-style events arrest in the creeping section, but the Mw 7-style events rupture
the whole fault. These parameter combinations are highlighted by red boxes. Note
we also run simulations for Λ = 0.069 MPa/K. These results are included in Figures
4.8 and 4.9 but are not plotted in Figures 4.4 or 4.5.

4.4.2 Application of Analytical Models
For each combination of parameters, we use the analytical solutions of Section 4.3.1
to estimate the slip required for TP to give a positive stress drop, 𝛿𝑑𝑟𝑜𝑝, and compare
these values to the fraction of the creeping section ruptured by Mw 7-style events
(Figures 4.6(a)-(b) and 4.7(a)-(b)).

We also evaluate 𝛿𝑑/𝛿𝑑𝑟𝑜𝑝 for each set of parameters; this ratio allows us to determine
whether conditions assumed for the analytical solution are a good approximation
to our models (see Section 4.3.3). For the adiabatic, undrained solution to be a
good approximation, we need the hydrothermal diffusion length scale to be small in
comparison to the fault width over the relevant slip distance, and we set a threshold of
𝛿
(𝑐)
𝑑𝑟𝑜𝑝

< 0.1𝛿𝑑 (recall that 𝛿𝑑 is the slip required for diffusion scales to be comparable
to the fault zone width). For the slip-on-a-plane solution, the approximation should
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Figure 4.4: Fraction of the creeping section ruptured for a Mw 6-style event and
varying TP parameters. The value of the TP coupling coefficient, Λ, increases from
(a) to (d), resulting in increasingly efficient TP and greater rupture fractions. Points
within black squares are those models for which the event fully ruptures the creeping
section, indicating that TP is too efficient to be consistent with the observation of
the 2004 Mw 6 event arresting in the creeping section.
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Figure 4.5: Fraction of the creeping section ruptured for a Mw 7-style event and
varying TP parameters. The size of the TP coupling coefficient, Λ, increases from
(a) to (d), resulting in increasingly efficient TP and greater rupture fractions. Points
within black boxes are those that fully ruptured the creeping section for Mw 6-style
events (Figure 4.4), indicating that TP is too efficient to be consistent with the
observation of the 2004 Mw 6 event arresting in the creeping section. Points within
red boxes are those that arrested in the creeping section for Mw 6-style events, but
fully rupture the creeping section for Mw 7-style events.
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work best for faults that are thin compared to the diffusion lengths, and we require
the hydrothermal diffusion length scale to be much larger than the fault width. This
condition can be expressed as 𝛿∗

𝑑𝑟𝑜𝑝
> 10𝛿𝑑 . In Figures 4.6(c)-(d) and 4.7(c)-(d), we

use these thresholds of 𝛿𝑑/𝛿𝑑𝑟𝑜𝑝 to illustrate the expected validity of the analytical
solution, indicating which simulations we expect to be well approximated by the
slip-on-a-plane and adiabatic, undrained regimes. For clarity, we shade out areas
in Figures 4.6(a)-(b) and 4.7(a)-(b) where the relevant analytical solution is invalid
according to our chosen bounds. These plots demonstrate that lower hydraulic
diffusivities and larger fault widths move us towards the adiabatic, undrained regime,
as they favor the retention of heat and pressure within the fault zone. Increasing
the TP coupling coefficient, Λ, shortens the distance 𝛿𝑑𝑟𝑜𝑝, resulting in less time
for hydrothermal diffusion and therefore also shifting us towards the adiabatic,
undrained regime (see Equations 4.17 and 4.14).

One would expect that if the dynamic rupture brings a sufficient amount of seismic
slip to the velocity-strengthening region, in comparison with 𝛿𝑑𝑟𝑜𝑝, the associated
shear heating could activate TP and allow the rupture to propagate. This is exactly
what we observe. Specifically, in Figures 4.6(a)-(b) and 4.7(a)-(b), we highlight the
point at which 𝛿𝑑𝑟𝑜𝑝 is equal to the Mw 7 slip (𝛿𝑒𝑣𝑒𝑛𝑡) with a red dashed line. For
models that lie within their approximation bounds, this contour marks a transition
point for the fraction of the creeping section ruptured. Where 𝛿𝑒𝑣𝑒𝑛𝑡 > 𝛿𝑑𝑟𝑜𝑝, which
indicates that the incoming event brings sufficient seismic slip for a positive stress
drop from TP, we see a substantial or complete rupture of the creeping section,
whereas 𝛿𝑒𝑣𝑒𝑛𝑡 < 𝛿𝑑𝑟𝑜𝑝 results in the events rapidly arresting in the creeping section.

To summarize the outcomes for all combinations of parameters in a single figure,
we plot the fraction of the creeping section ruptured by each event against the ratio
between the total slip of the incoming rupture pulse without TP, 𝛿𝑒𝑣𝑒𝑛𝑡 , and the
estimated slip required for TP to give a positive stress drop, 𝛿𝑑𝑟𝑜𝑝. (𝛿𝑒𝑣𝑒𝑛𝑡 ≈ 66 cm
and 2.2 m for the Mw 6 and Mw 7-style events, respectively). We compute 𝛿𝑑𝑟𝑜𝑝

using both the adiabatic, undrained solution (𝛿(𝑐)
𝑑𝑟𝑜𝑝

) and the slip-on-a-plane solution
(𝛿∗

𝑑𝑟𝑜𝑝
). We then separate data points with estimates 𝛿𝑑𝑟𝑜𝑝 obtained from analytical

models within our chosen bounds, shown in Figure 4.8, and the rest, shown in Figure
4.9.

Figure 4.8 clearly highlights the transition in the fraction of the creeping section
ruptured as the total event slip becomes sufficient to create a positive stress drop
in the velocity-strengthening region. When 𝛿𝑒𝑣𝑒𝑛𝑡 << 𝛿𝑑𝑟𝑜𝑝, TP is inefficient at
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overcoming rate-and-state velocity-strengthening properties, and the (small) rupture
fraction is determined mainly by the amount of strengthening set by the rate-and-
state parameters. As the Mw 7 rupture brings more slip than the Mw 6 event, it
can propagate a longer distance into the creeping section without TP, resulting in a
larger minimum rupture fraction. Between 𝛿𝑒𝑣𝑒𝑛𝑡 = 𝛿𝑑𝑟𝑜𝑝 and 𝛿𝑒𝑣𝑒𝑛𝑡 = 10𝛿𝑑𝑟𝑜𝑝, the
simulations give at least partial ruptures of the creeping section (most in the range
of 10-50%), and for 𝛿𝑒𝑣𝑒𝑛𝑡 > 10𝛿𝑑𝑟𝑜𝑝 all simulations rupture the entire creeping
section.

Figure 4.9 shows that estimates of 𝛿𝑑𝑟𝑜𝑝 based on less relevant analytical models
do an overall poor job of estimating when the creeping section would be ruptured.
The adiabatic, undrained solution neglects the transport of heat and fluid out of
the fault zone, and therefore gives the upper limit on the efficiency of TP for each
combination of parameters. The adiabatic, undrained analytical approach applied
to conditions where diffusion is significant, i.e. 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

> 𝛿𝑑 , often suggests that
the creeping section should be fully ruptured (i.e. 𝛿𝑒𝑣𝑒𝑛𝑡 >> 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

) when this is
not observed, as can be seen for the large number of points in the bottom right of
the plots in Figure 4.9. Similarly, when the slip-on-a-plane solution is applied to
conditions for which 𝛿𝑑𝑟𝑜𝑝 < 𝛿𝑑 , the finite width of the fault zone results in more
distributed heat generation and thus less efficient TP than the solution predicts. The
symbols with white fill represent approximations of 𝛿𝑑𝑟𝑜𝑝 that can still be good, just
somewhat outside the bounds established earlier, and some of them may belong in
Figure 4.8.

To study the validity bounds of each approximation (rather than assuming factors of
10 as done so far), we can compare the analytical estimates of 𝛿𝑑𝑟𝑜𝑝 with its values
from our simulations. This is the direction of ongoing work.

4.4.3 Summary of Expressions
Summarizing the expressions defined above, we have the slip-on-a-plane and adia-
batic, undrained TP weakening length scales (Equations 4.8 and 4.10):

𝐿∗ = 4
(
𝜌𝑐

𝑓Λ

)2 (√𝛼ℎ𝑦 +
√
𝛼𝑡ℎ)2

𝑣𝑠𝑒𝑖𝑠
,

𝛿𝑐 =
𝜌𝑐ℎ

𝑓Λ
.
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We also have the shear stress values at creep and seismic velocities (Equations 4.11
and 4.12):

𝜏𝑐𝑟𝑒𝑒𝑝 = 𝜎𝑒 𝑓 𝑓

[
𝑓 ∗ + (𝑎 − 𝑏) ln

(𝑣𝑝𝑙
𝑉∗

)]
,

𝜏𝑠𝑒𝑖𝑠 = 𝜎𝑒 𝑓 𝑓

[
𝑓 ∗ + (𝑎 − 𝑏) ln

(𝑣𝑠𝑒𝑖𝑠
𝑉∗

)]
.

We use the TP solutions from Equations 4.7 and 4.9 to define the slip required for
a positive stress drop from TP for each end-member solution (Equations 4.13 and
4.14):

𝛿
(𝑐)
𝑑𝑟𝑜𝑝

= 𝛿𝑐 ln
(
𝜏𝑠𝑒𝑖𝑠

𝜏𝑐𝑟𝑒𝑒𝑝

)
exp

(
𝛿∗
𝑑𝑟𝑜𝑝

𝐿∗

)
erfc ©«

√︄
𝛿∗
𝑑𝑟𝑜𝑝

𝐿∗
ª®¬ =

𝜏𝑐𝑟𝑒𝑒𝑝

𝜏𝑠𝑒𝑖𝑠
.

Finally, we can use the ratio of the hydrothermal diffusion slip and the relevant 𝛿𝑑𝑟𝑜𝑝
to determine the applicability range of each solution (Equations 4.17 and 4.19):

𝛿𝑑

𝛿
(𝑐)
𝑑𝑟𝑜𝑝

≈ 1.90
(
𝛿𝑐

𝐿∗

)
,

𝛿𝑑

𝛿∗
𝑑𝑟𝑜𝑝

≈ 3.28
(
𝛿2
𝑐

𝐿∗2

)
.

We choose 𝛿
(𝑐)
𝑑𝑟𝑜𝑝

< 0.1𝛿𝑑 for adiabatic, undrained solutions to be applicable, and
𝛿∗
𝑑𝑟𝑜𝑝

> 10𝛿𝑑 for slip-on-a-plane solutions to be applicable.

Our results suggest an approximate approach for considering the potential effect
of different model parameters, including TP parameters, and different incoming
seismic ruptures, without dynamic modeling, by comparing potential 𝛿𝑒𝑣𝑒𝑛𝑡 and
analytically estimated 𝛿𝑑𝑟𝑜𝑝. Specifically:

• If 𝛿𝑒𝑣𝑒𝑛𝑡 > 10𝛿𝑑𝑟𝑜𝑝, then full rupture.

• If 𝛿𝑑𝑟𝑜𝑝 < 𝛿𝑒𝑣𝑒𝑛𝑡 < 10𝛿𝑑𝑟𝑜𝑝, then partial to full rupture.

• If 𝛿𝑒𝑣𝑒𝑛𝑡 < 𝛿𝑑𝑟𝑜𝑝, then no rupture.

where 𝛿𝑑𝑟𝑜𝑝 = 𝛿∗
𝑑𝑟𝑜𝑝

for the slip-on-a-plane regime and 𝛿𝑑𝑟𝑜𝑝 = 𝛿
(𝑐)
𝑑𝑟𝑜𝑝

for the
adiabatic, undrained regime.
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Figure 4.6: Variation in the slip 𝛿∗
𝑑𝑟𝑜𝑝

(top row) required for a positive stress drop,
assuming the slip-on-a-plane solution, as we change TP parameters 𝑤, 𝛼ℎ𝑦 and Λ,
and validity of the approximation (bottom row). The simulated rupture fraction
values are also shown, for a Mw 7-style event. (a) Colorbar shows variation of
𝛿∗
𝑑𝑟𝑜𝑝

with 𝑤 and 𝛼ℎ𝑦, for Λ = 0.1 MPa/K. Each color change delineates an order of
magnitude change in 𝛿∗

𝑑𝑟𝑜𝑝
, which only varies with 𝛼ℎ𝑦 given the assumption of an

infinitesimally thin fault in the corresponding analytical solution. The approximation
is expected to work for faults that are thin enough compared to diffusion time scales;
this regime is highlighted with bright colors (see panel (c)), with the rest of the
panel muted. The dashed black and red lines show where 𝛿∗

𝑑𝑟𝑜𝑝
= 𝛿𝑒𝑣𝑒𝑛𝑡 for the

Mw 6-style and Mw 7-style events, respectively. Note that, within the region of
the validity of the analytical approximation (bright colors), the red dashed line
predicts the transition from rupture propagation over the creeping section to rupture
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arrest. (b) Same as (a), except with Λ increased by an order of magnitude to 1
MPa/K. This increased efficiency of TP results in 𝛿∗

𝑑𝑟𝑜𝑝
decreasing by two orders of

magnitude for each value of 𝛼ℎ𝑦. (c) Validity for the slip-on-a-plane approximation
with Λ = 0.1 MPa/K. The colorbar shows variation of 𝛿𝑑/𝛿∗𝑑𝑟𝑜𝑝. The thick black
contour delineates 𝛿∗

𝑑𝑟𝑜𝑝
= 10𝛿𝑑 . The blue area to the left and top of this line

satisfies 𝛿∗
𝑑𝑟𝑜𝑝

> 10𝛿𝑑 , the range for which we take the slip-on-a-plane fault model
to be a good approximation, as marked in (a). (d) Same as (c), except with Λ = 1
MPa/K. This increased efficiency of TP results in a reduced 𝛿∗

𝑑𝑟𝑜𝑝
, as shown in (b).

This decrease causes the validity bound for the slip-on-a-plane approximation to
shift to the left, reducing the number of our fault models that are well approximated
by the slip-on-a-plane fault regime.

4.5 Discussion
4.5.1 Temperature Variation
Coffey et al. (2022) used measurements of biomarker thermal maturity from SAFOD
samples to infer that peak temperatures on the fault had reached the range 570-1100
°C. They suggested that a large number of ruptures had broken the fault at this
point in the creeping section. Based on assumptions about the evolution of friction
during sliding, they calculated a slip range of 0.5-2.9 m associated with these
peak temperatures. Our results provide a possible mechanism for these ruptures,
consistent both with the arrest of Mw 6 ruptures, and the propagation of larger events
with temperatures consistent with the results of Coffey et al. (2022).

For example, with Λ = 0.34 MPa/K, 𝑤 = 10 mm and 𝛼ℎ𝑦 = 10−5 m2/s, Mw 6-style
events rapidly arrest in the creeping section, but Mw 7-style events are able to rupture
all the way through. Figure 4.2 illustrates the evolution of the fault parameters with
slip for a point on the creeping section at the approximate location of the SAFOD
drill site in our model. As shown in Figure 4.2(f), TP allows for 4 meters of slip
with a peak temperature change of 370 °C. Assuming an ambient temperature of
200 °C, representative of around 7 km depth, these results give a peak temperature
of 570 °C, consistent with the measurements of Coffey et al. (2022).

However, the SAFOD samples are taken from 2.7 km depth, where ambient temper-
atures are closer to 110 °C (Lockner et al., 2011). We would also expect the stress
state and efficiency of TP to vary with depth (Brantut & Platt, 2017), meaning our re-
sults cannot be straightforwardly applied to inferred rupture parameters at SAFOD.
Our results do indicate how incorporating TP into the evolution of shear strength
could allow for slip significantly greater than the 2.9 m upper bound calculated by
Coffey et al. (2022), with peak temperatures still in their measured range.
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Figure 4.7: Same as Figure 4.6, except for the adiabatic, undrained fault solution
(i.e. replacing 𝛿∗

𝑑𝑟𝑜𝑝
with 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

). Note that the order of magnitude change in Λ

between (a) and (b) causes an order of magnitude change in 𝛿
(𝑐)
𝑑𝑟𝑜𝑝

, compared to two
orders of magnitude for 𝛿∗

𝑑𝑟𝑜𝑝
(shown in Figure 4.6). As the adiabatic, undrained

fault solution assumes no transfer of fluid or heat out of the fault zone, 𝛿(𝑐)
𝑑𝑟𝑜𝑝

depends
only on the fault zone width. The thick black contour in (c) and (d) now delineates
𝛿
(𝑐)
𝑑𝑟𝑜𝑝

= 0.1𝛿𝑑; models to the right of this line satisfy 𝛿
(𝑐)
𝑑𝑟𝑜𝑝

< 0.1𝛿𝑑 , the range
for which we take the adiabatic, undrained solution to be a good approximation to
our models. As we go from (c) to (d), the increasing efficiency of TP results in
a shorter 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

, reducing the diffusion length scales and making more parameter
combinations well approximated by the adiabatic, undrained regime. Similar to
Figure 4.6, the red dashed line in (a) and (b) shows where 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

= 𝛿𝑒𝑣𝑒𝑛𝑡 and marks
a transition in the fraction of the creeping section ruptured.



112

-5 -3 -1 0 1 3 5
Log 10 ( d / drop )

Slip-on-a-plane model
Adiabatic, undrained fault model

ev
en

t=
dr

op
Half ruptured

Fully ruptured

-5 -4 -3 -2 -1 0 1 2 3 4 5
Log 10 ( event / drop )

-2

-1.5

-1

-0.5

0

Lo
g 10

(R
up

tu
re

fra
ct

io
n)

Mw 6 Event

ev
en

t=
dr

op

-5 -4 -3 -2 -1 0 1 2 3 4 5
Log 10 ( event / drop )

Mw 7 Event

Figure 4.8: Logarithm of the fraction of the creeping section ruptured against the
logarithm of the ratio between the total slip for the event in the absence of TP, 𝛿𝑒𝑣𝑒𝑛𝑡 ,
and the estimated slip required for a positive stress drop due to TP, 𝛿𝑑𝑟𝑜𝑝. For each
combination of TP parameters, 𝛿𝑑𝑟𝑜𝑝 is estimated for the slip-on-a-plane solution
(𝛿∗

𝑑𝑟𝑜𝑝
) and the adiabatic, undrained solution (𝛿(𝑐)

𝑑𝑟𝑜𝑝
). Only points for estimates that

are expected to be good are plotted, defined by 𝛿
(𝑐)
𝑑𝑟𝑜𝑝

< 0.1𝛿𝑑 and 𝛿∗
𝑑𝑟𝑜𝑝

> 10𝛿𝑑 ,
as established based on Figures 4.6 and 4.7. Points with estimates of 𝛿∗

𝑑𝑟𝑜𝑝
outside

of these validity bounds are plotted in Figure 4.9. The color of the symbols gives
the log of the ratio between the hydrothermal diffusion distance, 𝛿𝑑 , and 𝛿𝑑𝑟𝑜𝑝, for
the relevant end-member model. Values increasingly greater than 1 indicate that the
fault model is increasingly closer to the adiabatic, undrained regime over the slip
𝛿𝑑𝑟𝑜𝑝, while values less than -1 indicate increasing closeness to the slip-on-a-plane
fault regime. The line 𝛿𝑒𝑣𝑒𝑛𝑡 = 𝛿𝑑𝑟𝑜𝑝 captures the transition from ruptures arresting
in the creeping region to increasingly large fraction of the creeping section being
ruptured in our models.
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Figure 4.9: Same as Figure 4.8, except for estimates of 𝛿𝑑𝑟𝑜𝑝 that are outside of the
validity bounds we choose (i.e. 𝛿(𝑐)

𝑑𝑟𝑜𝑝
> 0.1𝛿𝑑 and 𝛿∗

𝑑𝑟𝑜𝑝
< 10𝛿𝑑).

For events that propagate into the creeping section in our simulations, the peak values
of temperature can vary by two orders of magnitude. Lower TP efficiency, that is still
sufficient to allow ruptures in the creeping section, promotes larger temperature rises.
For some parameter combinations, the temperature change can peak at thousands
of degrees, well past the melting threshold of around 1000 °C (Rice, 2006). Such
high temperatures are inconsistent with the lack of melting observed in SAFOD
cores (Coffey et al., 2022). The assumed fault constitutive law does not incorporate
melting, so the onset of melting leads to a lack of self-consistency in our calculations
(Noda & Lapusta, 2010). However, as long as the melting temperature is crossed
towards the end of the slip, incorporating melting would likely not affect our overall
results with regards to the fraction of the creeping section ruptured. Analyzing all
our simulation results for peak and average temperatures reached is a subject of
ongoing work.

Note that all of our simulations are consistent with the absence of heat anomaly
around the SAF (Lachenbruch & Sass, 1980), since the average shear stresses acting
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on the creeping section in our models are within the corresponding constraint of 20
MPa. This stress is ensured by the choice of 0.15 as the reference friction coefficient
and 120 MPa as the initial effective normal stress, which results in a steady-state
value of shear stress at the plate rate in the creeping segment of about 15 MPa, with
even lower values during thermal pressurization of pore fluids (e.g., Figure 4.2(a)).

4.5.2 Limitations of our Modeling
Our simplified modeling allows us to consider, in a tractable way, variations of
several orders of magnitude in parameters that govern TP. However, the modeling
does not account for a number of additional mechanisms that can affect rupture
propagation and need to be investigated in future modeling.

As mentioned in the introduction, other dynamic weakening processes have been
proposed, including flash heating, gel lubrication, nanoparticle lubrication, decar-
bonation, dehydration, and fault melting (Di Toro et al., 2011). Not all of these
processes would necessarily occur in the clay rich fault gouge found in the creeping
section in the SAF, but the conditions under which each mechanism is significant is
an important component of future work.

Our models do not include fault dilatancy, which can accompany an increase in slip
rate and lead to a drop in pore pressure, resulting in a reduced effective normal
stress and increased fault strength (e.g., Segall and Rice (1995)). This effect would
contribute to the peak shear resistance of the creeping section as the dynamic rupture
enters it, requiring more efficient TP to produce positive stress drops for a given slip.
Experimental results and theories of dilatancy are limited to the slow-slip regime
and remain subject of active ongoing research; its role in shear, especially rapid, of
the mature fault gouge found in the creeping section of the SAF remains uncertain
(Brantut, 2020; Rice, 2006).

In order to capture different event styles in 2-D, we use two separate models for the
Mw 6 and Mw 7-style ruptures. As a result of the different loading phases before
rupture nucleation, the different event styles have different stress heterogeneities at
the edge of the creeping section. A more realistic approach would be to capture
both the Mw 6 and Mw 7-style events in a single 3-D model, allowing multiple Mw 6
events to rupture before a larger Mw 7 event occurred. 3-D models would also allow
us to incorporate depth dependent properties. Such simulations would be much
more computationally expensive, potentially requiring weeks of run time, making it
challenging to explore a wide range of TP parameters given current computational
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constraints. The results of our 2-D parameter exploration can be the starting point
for 3-D simulation, such as simulating the cases that arrest our simulated Mw 6-style
event and allow our Mw 7-style event to propagate in 2-D.

Our simulated events have average slip rate of about 6 m/s, which is higher than
the average of 1 m/s often cited for large events (Heaton, 1990). Higher slip rates
increase the rate of shear heating and hence promote TP in models in which heat
diffusion is important compared to the layer thickness, such as our fault models
with very narrow shear layers that are well approximated by slip-on-a-plane solution
(Figure 4.6). However, the effect would be more minor in fault models that are in
the adiabatic, undrained regime (Figure 4.7), in which the weakening depends on
total shear heat input and hence slip, and not as much on slip rate. Note that the
fault model that provides a good match to the field results of Coffey et al. (2022)
discussed in Section 4.5.1 is in the latter regime, and hence should not be much
affected by its specific average slip rate. Considering the effect of incoming ruptures
with different average slip rate (but the same slip) is a subject of ongoing work.

Our models assume a planar fault geometry, although the transition between the
locked and creeping sections of the SAF is more complex, with the upper ∼ 6 km
of the fault showing a warp over a 50 km long section (Simpson et al., 2006).
This geometry could act as a barrier to earthquake rupture, even in the presence of
efficient TP. The fault is likely more planar at depth (Simpson et al., 2006), and even
large stepovers in faults will not necessarily prevent rupture (H. Wang et al., 2020),
so while the geometry may reduce the likelihood of rupture propagation for a given
set of TP parameters, it would likely not eliminate it entirely.

Measurements at the SAFOD drill hole show that the fault is divided into two actively
creeping strands, separated by less than 100 meters (Lockner et al., 2011). Coffey
et al. (2022) found that the temperature rise from seismic slip was confined to a zone
adjacent to one of the creeping strands of the fault, in a region previously identified
as potentially having hosted seismic slip (Bradbury et al., 2011). Experimental
tests by French et al. (2014) of SAFOD samples from one of the creeping strands
showed dynamic weakening at seismic slip rates, which they attributed to TP. These
observations highlight two possibilities, not considered by our model: 1) that a
dynamic rupture could break two or more fault strands simultaneously, and 2) that
the rupture could break a fault strand that is not actively creeping. If multiple,
parallel, faults ruptured simultaneously that may result in lower slip rates and slips
on each fault, reducing the amount of TP weakening. If the rupture follows an
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alternative path to the currently creeping sections, the rate-and-state parameters
inferred for the properties of the creeping section, that we have assumed here, may
not apply to the propagation of dynamic ruptures.

We keep the TP parameters constant in time; however, the evolution of TP parameters
during an event can lead to significant changes in fault behavior. Rice et al. (2014)
and Platt et al. (2014) argued that relatively wide shearing zones would be unstable,
resulting in rapid shear localization to a narrow (5-40 𝜇m) principle slip zone
during seismic slip. That would imply evolving, and potentially decreasing, shear-
zone width during an event, which could promote TP. Recent work by Stathas and
Stefanou (2022) has suggested that the principle slip zone would not be stationary
within the fault gouge at large slips, potentially resulting in oscillatory behavior in
the frictional strength.

The coupling coefficient, Λ, and hydraulic diffusivity, 𝛼ℎ𝑦, likely evolve during a
rupture, both as a result of damage due to high stresses at the rupture tip, and chang-
ing pressure-temperature conditions (e.g., Aben et al. (2020), Badt et al. (2020),
Brantut and Mitchell (2018), and Rice (2006)). Our parameters partially account for
the effect of damage, as they include values taken from studies that approximated the
effect of damage by modifications including increases to the fault gouge permeability
and pore space compressibility from the lab-measured values, resulting in larger 𝛼ℎ𝑦

and lower Λ values, thus less efficient TP (e.g., Rice (2006)). Later work by Brantut
and Mitchell (2018) suggested that these modifications gave a reasonable approxi-
mation for the impact of damage in faults which showed evidence of melting. To take
account of parameter variation with pressure and temperature, Rice (2006) com-
puted quantities averaged along representative pressure-temperature paths. Based
on comparisons to solutions with pressure and temperature dependent properties in
Rempel and Rice (2006), Rice (2006) argues that these path averages are a reasonable
approximation.

The likely time scale and magnitude of the variation in parameters is important when
considering the applicability of the models presented in this work. If the initial stress
concentration at the rupture tip causes rapid damage-induced changes in TP proper-
ties, and further evolution, e.g., due to changes in pressure and temperature, is mild,
then our use of fixed parameters during rupture could be justified. However, a larger
event may create more significant damage due to higher stress concentrations, caus-
ing different events to be governed by different TP parameters. Fully incorporating
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these effects into modeling efforts would require a detailed understanding of how
material properties evolve during rupture (e.g., Aben et al. (2020)).

4.5.3 Applicability of the Analytical Solutions
We apply analytical solutions for both slip on a mathematical plane and adiabatic,
undrained conditions to gain physical insight into our simulations (Lachenbruch,
1980; Mase & Smith, 1987; Rice, 2006). Both solutions assume a constant coeffi-
cient of friction, 𝑓 , and the thin fault solution assumes a constant seismic velocity,
𝑣𝑠𝑒𝑖𝑠. To apply the analytical solutions, we set 𝑓 = 0.15 and 𝑣𝑠𝑒𝑖𝑠 = 6 m/s. In the
following, we discuss these choices and their limitations.

It is common to use a 𝑣𝑠𝑒𝑖𝑠 of 1 m/s in evaluating 𝐿∗, based on the results of Heaton
(1990) (e.g., Noda and Lapusta (2013), Rempel and Rice (2006), and Rice (2006)).
In our work, we have chosen 6 m/s, based on the average slip velocity on the edge
of the velocity-weakening patch (discussed above). However, this average conceals
substantial variation, with the slip velocity rapidly increasing to the limit of 15 m/s
in under 5 cm of slip, remaining at the peak slip velocity for around 10 cm and 40
cm for the Mw 6 and Mw 7-style events, respectively, then decaying back down over
the remaining slip.

The variation of slip velocity in the creeping section is highly dependent on the
strength of the TP weakening. For strong TP, the slip velocity increase is even
more rapid than within the velocity-weakening section; when TP is weaker the slip
rate evolution is less abrupt; and there is no seismic slip over most of the creeping
section when the TP falls below a certain threshold. The total slip of the incoming
event, 𝛿𝑒𝑣𝑒𝑛𝑡 , the variation of the slip velocity during the event, and the ratio of
𝛿𝑒𝑣𝑒𝑛𝑡 to 𝛿𝑑𝑟𝑜𝑝, will all affect the most representative velocity to use when we look
to understand when an event will propagate (see Figure 4.2 for an example). As the
average slip rate over our events without TP is approximately 6 m/s, we use a value
of 𝑣𝑠𝑒𝑖𝑠 = 6 m/s in the calculation of 𝐿∗; however, we acknowledge that our choice,
and the assumption of constant velocity, are highly approximate.

The evolution of the rate-and-state friction coefficient, 𝑓 = 𝜏/𝜎𝑒 𝑓 𝑓 , is governed by
both by the slip rate and the rate-and-state characteristic slip distance 𝐷𝑅𝑆. The most
significant change is during the initial evolution from creep to seismic slip, where
the friction coefficient jumps to a peak value (the direct effect), then evolves to a
steady state value. By using a constant coefficient of friction when calculating 𝐿∗

and 𝛿𝑐, we assume both a constant slip velocity, and that the rate-and-state evolution
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of the friction coefficient occurs rapidly compared to the TP weakening, therefore
allowing us to calculate 𝛿𝑑𝑟𝑜𝑝 assuming steady-state sliding.

The slip over which the rate-and-state friction coefficient evolves from steady-state
creep to steady-state seismic slip can be estimated from the equation (Bizzarri &
Cocco, 2003):

𝐷 = 𝐷𝑅𝑆 ln
(
𝑣𝑠𝑒𝑖𝑠

𝑣𝑐𝑟𝑒𝑒𝑝

)
. (4.21)

The creeping section moves at the plate rate, 𝑣𝑐𝑟𝑒𝑒𝑝 = 𝑣𝑝𝑙 = 23 mm/yr in steady
state, and we set 𝑣𝑠𝑒𝑖𝑠 = 6 m/s, giving a value of 𝐷 ≈ 20𝐷𝑅𝑆, or around 8 cm for
our 𝐷𝑅𝑆 value of 4 mm.

We show an example of the evolution of stress within the creeping section in Figure
4.2(a). This simulation lies within the adiabatic, undrained regime, and the slip
𝛿𝑑𝑟𝑜𝑝 needed to achieve positive stress drop in the creeping region should be well
approximated by 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

, which is ∼56 cm. Figure 4.2(a) shows an initial quasi-
linear weakening over < 10 cm of slip (governed by the state variable shown in
Figure 4.2(e)), consistent with the estimate 𝐷 of Equation 4.21, followed by ∼ 40
cm of exponential decay in shear stress until it falls below its initial value, 𝜏𝑐𝑟𝑒𝑒𝑝.
Hence the 𝛿𝑑𝑟𝑜𝑝 from the numerical simulation is indeed well approximated by the
analytically determined 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

. In this case, RS friction evolves sufficiently faster
than TP weakening to make 𝛿

(𝑐)
𝑑𝑟𝑜𝑝

a reasonable approximation.

For parameter combinations leading to stronger TP, the TP weakening length scale
can be comparable to, or less than, the rate-and-state evolution distance 𝐷. For
example, for Λ = 1 MPa/K, 𝛼ℎ𝑦 = 10−5 m2/s, and assuming 𝑣𝑠𝑒𝑖𝑠 = 6 m/s, 𝐿∗ ≈ 4
mm. When the TP and rate-and-state length scales are comparable, we can no
longer assume that all rate-and-state friction evolution occurs before TP becomes
relevant. The rate-and-state direct effect would therefore cause the TP weakening
to begin from a higher stress, with a higher friction coefficient, than we assume
in applying the analytical solution. TP with such a small slip-weakening scale
as to be comparable to the rate-and-state evolution scales—much smaller than the
incoming seismic slip—also implies very efficient TP, and all such fault models
result in rupture propagation through the entire creeping section. The analytically
inferred 𝛿∗

𝑑𝑟𝑜𝑝
would also be quite small, and hence the analytical solution would still

predict propagation through the creeping region. Hence, this potential discrepancy
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between the actual and assumed friction coefficient for TP evolution does not have
a significant impact on the results presented here.

4.6 Conclusions
We have investigated whether dynamic ruptures can propagate through the creeping
section of the San Andreas Fault due to co-seismic thermal pressurization (TP) of
pore fluids using a highly simplified 1-D fault model embedded in a 2-D elasto-
dynamic medium. Our results show that, within the highly simplified framework
of our model, a wide range of TP parameters cause a Mw 6-style event to rapidly
arrest in the creeping section, but a Mw 7-style event to propagate partially or totally
through.

Analytical solutions for TP show that the point at which events begin to substantially
rupture the creeping section in our simulations is well explained by the requirement
that the seismic slip in the incoming dynamic event is greater than the analytical
estimates of slip needed for a positive stress drop due to TP in the otherwise velocity-
strengthening creeping region. The full rupture of the creeping section always occurs
in our simulations when the incoming seismic slip is 10 or more times larger than the
analytical estimate of the slip needed for a positive stress drop. Our results suggest an
approach for considering the potential effect of different model parameters, including
TP parameters, and different incoming seismic ruptures, without dynamic modeling,
by comparing potential slip during an event (𝛿𝑒𝑣𝑒𝑛𝑡) to an analytically estimated slip
required for a positive stress drop ( 𝛿𝑑𝑟𝑜𝑝). When applying the analytical solutions,
it is important to consider the width of the diffusive zones in relation to the width
of the shearing layer, to determine whether the slip-on-a-plane regime—in which
heat and fluid diffusion are essential and accounted for—or the adiabatic, undrained
regime is a good approximation.

These results suggest a mechanism for the creeping section of the San Andreas
Fault to rupture during a major earthquake, offering a possible explanation for the
inferred ruptures in the creeping section presented by Coffey et al. (2022). Further-
more, we identify models with physically plausible parameters that have temperature
increases in the range suggested by Coffey et al. (2022) and find that such ruptures
can accumulate even larger seismic slip in the creeping section than estimated by
Coffey et al. (2022). The parameters of such models include conservative choices
for the efficiency of TP, such as low rate-and-state friction coefficients with the
reference friction value of 𝑓∗ = 0.15 (and the resulting “creeping” shear stress of
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15 MPa; higher values would promote TP), time-independent TP parameters more
appropriate for damaged rocks, such as hydraulic diffusivity of 10−4 to 10−5 m2/s
(using initial values for undamaged rocks may promote TP), and time-independent
shear-layer width of 10 mm (whereas shear localization to narrower zones with slip
may further promote TP). At the same time, our modeling does not include several
ingredients that can reduce the efficiency of TP, including inelastic shear layer dila-
tancy and complex fault structure with multiple fault strands in the creeping region,
which need to be investigated in future work.

Our work highlights the importance of further constraining fault physics through
lab experiments coupled with computational and theoretical work, especially the
evolution of hydraulic diffusivity, dilatancy, and shear-layer structure/width with
ongoing seismic slip. Improved modeling of this problem would include expanding
these simulations to 3-D in order to incorporate depth-dependent properties; in-
corporating dilatancy and evolution of TP parameters during the dynamic rupture;
studying more realistic fault geometry; and including the possibility and effects of
melting and other dynamic weakening mechanisms.
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Table 4.1: Summary of simulation parameters. Parameters that we vary in this
study are indicated in bold at the bottom, along with their ranges. DW: dynamic
weakening. VW: velocity-weakening. VS: velocity-strengthening.

Parameter Symbol Value
Fault length 𝜆 200 km

Frictional fault length 𝜆 𝑓 𝑟𝑖𝑐 180 km
Rate-and-state VW section length for Mw 6-style events 𝜆𝑣𝑤 25 km

Crustal plane width for Mw 6-style events 𝐻𝑠𝑒𝑖𝑠 2 km
Rate-and-state VW section length for Mw 7-style events 𝜆𝑣𝑤 80 km

Crustal plane width for Mw 7-style events 𝐻𝑠𝑒𝑖𝑠 8 km
Cell size Δ𝑥 5 m

Plate loading rate 𝑣𝑝𝑙 23 mm/yr
Slip velocity limit 𝑣𝑙𝑖𝑚 15 m/s

P wave speed 𝑐𝑝 5.2 km/s
S wave speed 𝑐𝑠 3.0 km/s

Shear modulus 𝐺 30 GPa
Poisson ratio 𝜈 0.25

Initial effective normal stress 𝜎 − 𝑝0 120 MPa
Rate-and-state reference slip velocity 𝑉∗ 10−6 m/s
Rate-and-state critical slip distance 𝐷𝑅𝑆 4 mm

𝑎 0.005
Rate-and-state properties in VW region 𝑏 0.007

𝑓 ∗ 0.3
𝑎 0.01

Rate-and-state properties in VS regions 𝑏 0.006
𝑓 ∗ 0.15

Specific heat 𝜌𝑐 2.7 MPa/K
Thermal diffusivity in DW region 𝛼𝑡ℎ 10−6 m2/s

Hydraulic diffusivity in DW region 𝛼ℎ𝑦𝑑 10−5 − 10−2 m2/s
Undrained 𝑑𝑝/𝑑𝑇 in DW region Λ 0.01-1.0 MPa/K

Half-width of shear zone in DW region 𝑤 0.01-100 mm
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CONCLUSIONS AND OUTLOOK

This thesis has illustrated how we can draw on a diverse range of techniques to study
the earthquake cycle over multiple temporal and spatial scales. We combined large
InSAR data sets with modern processing techniques to study both the deformation
of the Earth and the damage that earthquakes do over wide areas. Additionally, we
used high-performance computational simulations of earthquakes, and analytical
models, to explore how dynamic weakening via thermal pressurization can allow
creeping sections of faults to rapidly rupture in earthquakes. Below, we review
some suggestions for further work in each project, before providing some closing
thoughts.

Our work in Chapter 1 showed how InSAR measurements can be corrected for the
signal of plate motion. Until now, it has been common practice to either fit and
remove the long-wavelength component of InSAR data, or use GNSS measurements
to constrain the long-wavelength (e.g., Jolivet et al. (2015) and Weiss et al. (2020)).
With the plate motion correction, combined with previously developed correction
methods, it will be useful to explore how well InSAR can constrain very long-
wavelength deformation without the aid of GNSS in a variety of different settings.
The troposphere will likely be the dominant source of noise for time series spanning
a few years (Parizzi et al., 2021), but with data spanning a decade or more the
reduction in noise may be sufficient to recover long-wavelength secular signals
below the level of 1 mm/yr, allowing greatly improved resolution in calculations of
fault coupling.

The sensitivity to InSAR of plate motion also suggests that InSAR may be able
to supplement GNSS data when constraining plate motion models, particularly in
regions where GNSS is sparse. Given the small size of the plate motion signal, this
would likely require long time series of InSAR data in order to get measurements of
sufficient quality.

Using plate motion models to adjust InSAR data is roughly equivalent to expressing
the InSAR measurements in a reference frame that is moving with the relevant
plate. This correction may be less useful in zones of distributed deformation, for
example, at plate motion boundaries, and how best to adjust InSAR measurements
in this context, particularly without dense GNSS, is another important question that
requires further study.
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The results we presented for the Makran subduction zone in Chapter 2 show that,
with plate motion corrections, as well as other adjustments, particularly for the
ionosphere and troposphere, we are able to resolve tectonic deformation over a wide
area with InSAR alone. While we were able to make broad statements about the
degree of coupling on the megathrust, before such data can be fully interpreted
we need more rigorous estimates of the noise levels (predominantly from residual
troposphere) for our velocity measurements. Methods for estimating the noise in
InSAR time series have already been developed (e.g., Agram and Simons, 2015;
Lohman and Simons, 2005; Parizzi et al., 2021) and could be straightforwardly
applied to our data, although we may need to take account of spatial variations in the
noise. We also need to quantify the uncertainties introduced when we merge adjacent
tracks in order to understand how well our merged velocity field is able to measure
deformation spanning several tracks. It would also be sensible to experiment with
more sophisticated approaches to merging tracks, for example incorporating data
uncertainties and masking areas of known deformation when merging.

Our model of the subduction zone could also be improved, for example by using a
layered elastic structure and updated fault geometry. There is some suggestion in the
comparison between ascending and descending InSAR tracks that the convergence
direction varies along the fault, with some amount of westward motion at the western
end of the subduction zone, although this cannot be claimed with any certainty given
our noise levels. Incorporating a variable convergence direction into our model
might therefore be necessary. With the combination of an improved model and
better estimates of the noise, it should be possible to invert the surface velocities for
coupling on the megathrust. Using a Bayesian approach would allow a probabilistic
coupling map to be derived (e.g., Lin et al. (2015)), revealing the impact of data and
model uncertainties on the final coupling map, and the resulting uncertainties in the
estimated size of potential future earthquakes.

The presence of significant post-seismic deformation at the eastern end of the
subduction zone will likely make it challenging to invert for coupling in that region.
Recent work has suggested that post-seismic deformation from the Balochistan
earthquake is driven by creep on the megathrust (Lv & Shao, 2022), suggesting
that the fault is fully decoupled north of 220 km from the deformation front of the
accretionary prism. The eastern end is the only part of the megathrust to have hosted
large earthquakes in historic time, making understanding coupling there an important
issue. It may be possible to simultaneously invert for post-seismic deformation
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from the Khash and Balochistan earthquakes, as well as the coupling signal on
the megathrust, possibly making use of the different temporal characteristics of
post-seismic deformation and interseismic coupling, and the multiple different look
directions provided by overlapping InSAR tracks. At the very least, a probabilistic
inversion may be able to show us that the coupling cannot be resolved given the
currently available data and ongoing post-seismic deformation.

Beyond our specific work, the clear hazard presented by the Makran subduction zone
necessitates greater study from a variety of different angles. More geodetic work,
ideally including the deployment of a dense network of GNSS stations on shore,
and potentially ocean bottom geodesy, would allow for greater resolution of the
megathrust coupling in space and time. Further work on measuring paleotsunamis
is also necessary to piece together the seismic history of the western end of the
subduction zone.

The damage mapping work of Chapter 3 showed how we could exploit part of the
InSAR signal generally regarded as noise to rapidly map damage over wide areas.
In our work, we quantify the quality of our damage classification using building
damage data from the 2016 Amatrice earthquake. For this data set, every building
in the town was inspected, and its level of damage recorded, allowing us to compute
the precision and recall of our damage classifier. However, the data is limited to a
small geographic region, and we cannot be sure if our method will maintain similar
performance in other areas of the world. To ensure the reliability of this method,
and test potential improvements, future work should focus on the development of
high quality benchmarks—a global data set of natural disasters that are well covered
by SAR data, and also have comprehensive damage assessments against which the
classifier can be tested. Such benchmarks would allow our method to be tested
across a wide range of conditions, providing more assurance that the method will
perform well on future disasters. Organizations such as the Copernicus Emergency
Management Service (https://emergency.copernicus.eu/), the Geotechnical Extreme
Events Reconnaissance Association (https://geerassociation.org/), and the Human-
itarian OpenStreetMap Team (https://www.hotosm.org/) may be useful places to
look for damage mapping products and expertise.

There are several potential methodological developments that could also be explored,
both in the input data, and damage classification algorithm, all of which could be
tested against the benchmarks described above. The goal of the damage mapping
algorithm is to get the best estimate of the probability distribution of the coherence

https://emergency.copernicus.eu/
https://geerassociation.org/
https://www.hotosm.org/
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under normal conditions, so that anomalies can be detected. To this end, the InSAR
data could be augmented with spatial and temporal baselines, as well as potentially
precipitation records, as these variables will all affect coherence, and could allow
the deep learning algorithm to improve its forecast. Adding extra connections to
the interferometric network, so that we have more than just sequential coherence
images, may also be useful. Ultimately the best option may be to work directly with
the amplitude and phase of the SLCs, rather than computing coherence.

On the algorithm side, it will be important to take advantage of the rapid progress
in machine learning. The current method only makes use of individual time series
when forecasting, meaning that potentially useful spatial correlations between ad-
jacent time series are ignored. Architectures such as convolutional LSTMs allow
spatial and temporal information to be incorporated when making forecasts (Shi
et al., 2015); however, more recent developments in transformer architectures offer
advantages over LSTM-based approaches (Vaswani et al., 2017; Zhou et al., 2021).

Rapid calculation of damage maps will benefit from quick coregistration of SAR
images and computation of coherence. Currently, this process can be slow, partic-
ularly for large volumes of data, both because of processing and download times.
Future work could therefore also go towards making these stages faster by improving
the code, and deploying the code on high performance computers that can process
many SAR images in parallel.

Along with technical work, efforts should also be made to better understand the re-
quirements of end users, and how these damage maps can be integrated into existing
emergency response pipelines. The ability to deliver timely products, in an under-
standable format, to emergency managers with whom there is a pre-existing relation-
ship, is vital if these damage maps are to have practical applications. Important steps
could include conducting interviews with disaster response experts, testing different
data visualization approaches, and putting products on an easily accessible platform.
It would be sensible to build on the knowledge of disaster response organizations that
bridge the gap between scientists and emergency managers, such as the USGS Emer-
gency Response (https://www.usgs.gov/emergency-operations-portal) and NASA’s
Disasters program (https://appliedsciences.nasa.gov/what-we-do/disasters). With
these connections made, much of the mapping process could be automated, and
products directly supplied to first responders with minimal outside intervention.
The increasing availability of SAR data will hopefully make this possible within
hours in the coming years.

https://www.usgs.gov/emergency-operations-portal
https://appliedsciences.nasa.gov/what-we-do/disasters
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Our dynamic rupture simulations presented in Chapter 4 highlighted the potential
role of thermal pressurization in allowing the creeping section of the San Andreas
Fault (SAF) to rupture co-seismically. Such results have important implications for
the hazard posed by the SAF, and so require further investigation. The immediate
development of this project could consist of extending the models to 3-D, and
incorporating a wider variety of physical processes in to the model. A 3-D model
would allow Mw 6 and Mw 7-style events to be simulated together, although this
would present substantial computational challenges. It may be necessary to reduce
the computational burden, for example by substantially truncating the size of the
creeping section and Mw 7 patch, in order to explore parameter combinations in a
manageable amount of time. The use of 2-D models and analytical solutions will
be important in narrowing the parameter space.

Direct experimental observations of thermal pressurization in laboratory settings
remain limited, the parameters controlling its efficiency are highly uncertain, and the
the situations under which other weakening mechanisms could dominate are unclear
(e.g., Aben et al., 2020; Badt et al., 2020; Brantut and Mitchell, 2018). Modeling
efforts rely on physical observations to determine the relevant processes, but can
also inform future experiments by indicating which parameter uncertainties have
the greatest influence on the model behavior. Our modeling work has highlighted
several particularly important parameters, and future experimental work should be
able to place better constraints on these.

The coming decade will see a continual increase in the availability of data and
computing power, promising exciting new results, but also many potential pitfalls.
In 1810, German polymath Johann Wolfgang von Goethe stated:

“The modern age has a false sense of superiority, because of the great
mass of data at its disposal. But the valid criterion of distinction is
rather the extent to which [humanity] knows how to form and master
the material at [its] command.”1

Goethe’s words are a reminder that it is not just humanity’s ability to collect and
process large volumes of data that pushes forward our understanding of the world,

1This quote sits on my advisor’s wall, and is generally attributed to Goethe’s “Theory of Colors,”
published in 1810 in German, with an English translation appearing in 1840. I have been unable to
find a direct version of this quote in the 1840 translation, but the quote is attributed to Goethe by the
1949 book “Goethe: Wisdom and Experience.” I therefore include the attribution with some caution.
As Abraham Lincoln famously said: “Remember that not everything you read on the internet is true.”
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but also our ability to intelligently “form and master” the material at our command,
combining insights from the smallest to the largest scales to tell a coherent story
about our Earth.

The scientific advances to come promise profound benefits to humanity, but it is
ultimately a question of politics and policy that determines how they will be used. In
this thesis we have examined natural processes that can lead to enormous destruction,
but there are no natural disasters. Who lives and who dies, which buildings collapse
and which remain standing—these are questions that depend on the decisions made
by those with power. These decisions must be informed by the best science, and
made for the benefit of everyone. It is to this endeavor that I now turn my attention.
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A p p e n d i x A

SUPPLEMENTARY MATERIALS FOR CHAPTER 1: THE
IMPACT OF PLATE MOTIONS ON LONG-WAVELENGTH

INSAR-DERIVED VELOCITY FIELDS

A.1 Introduction
Here, we present more details on the SAR data sources (Table A.1) and processing
steps (Section A.2) from Chapter 1. In Section A.3, we give further details on the
corrections that we apply to our data and the possible sources of residual signals
after these corrections are applied. In Figures A.1-A.5, we present the velocity
corrections for all tracks other than Makran track 86, which is shown in the main
text (Figure 1.2). In Section A.4, we provide further information on how bulk
vertical and horizontal motions impact InSAR velocity fields, and in Figure A.6, we
present a figure that can be used to estimate the scale of velocity ramp for ascending
(ASC) and descending (DSC) tracks for a given plate velocity. In Section 1.5,
we stated that plate motion could bias calculations of 3D velocities from multiple
overlapping InSAR tracks, which we illustrate in Section A.5 and Figure A.7.

A.2 InSAR Processing Details
We download Sentinel-1 Single Look Complex (SLC) data from the Alaska Satellite
Facility. We process our data using the InSAR Scientific Computing Environment
(Rosen et al. (2012), and see https://github.com/isce-framework/isce2). For the
Makran data (tracks 86 and 20), we use the topsApp processing chain, where
each interferometric pair is processed separately. Other tracks are processed using
topsStack, which coregisters all SLCs to a single reference image at the start of the
processing. topsStack therefore avoids the need to repeat the coregistration for every
interferometric pair, reducing computational expense compared to topsApp.

Each acquisition is used to form interferograms with the next three SLCs. We use
satellite orbits from the Copernicus Precise Orbit Determination service and digital
elevation models from the Shuttle Radar Topography Mission to remove the phase
contribution from the viewing geometry. To correct for azimuth misregistration we
apply enhanced spectral diversity (ESD) (De Zan et al., 2014) for each pair. When
processing data using topsStack, we estimate azimuth misregistration for each date
in a network sense based on ESD results for each pair (Fattahi, Agram, et al., 2017),

https://github.com/isce-framework/isce2
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but do not use the network approach for topsApp. The different approaches are
unlikely to have a significantly different impact on the long wavelength velocity
field from long time series. Two dimensional phase unwrapping is performed using
the SNAPHU algorithm for each interferogram (Chen & Zebker, 2002).

We use the range split-spectrum method of Liang et al. (2019) to estimate the
ionospheric phase screen in each interferogram. For topsStack data, the ionospheric
phase is estimated for each interferogram, then for each date by network inversion
(Fattahi, Simons, et al., 2017). The ionosphere correction is then applied in the
time series domain. For topsApp data, the ionospheric phase screen is estimated
and removed before final phase unwrapping. As long as we remove interferograms
where there are clear unwrapping errors in the ionosphere, we expect the difference
between these approaches to be insignificant.

We calculate InSAR time series from the interferometric network using the SBAS
methodology (Berardino et al., 2002), implemented in MintPy (Yunjun et al., 2019).
The secular velocity is obtained from a linear, least-squares fit to the time series. We
use the PyAPS software package to apply corrections for the troposphere with ERA-
5 weather models (Jolivet et al., 2011; Jolivet, Agram, et al., 2014). Solid Earth
tides removal is performed using PySolid (Milbert, 2018; Yunjun et al., 2022), and
the Digital Elevation Model (DEM) error is estimated from the correlation between
the residual time series and perpendicular baseline, as described in Fattahi and
Amelung (2013). All of the above corrections are applied to the deformation time
series. We apply the plate motion adjustment in the velocity domain. As we are
performing linear least-squares fits to the time series, the plate motion correction
could be straightforwardly applied to the time series (assuming a constant plate rate)
with identical results. All other corrections could similarly be applied either in the
velocity domain or the time series domain and result in the same final velocity,
assuming that we obtain the velocities from a linear fit to the time series.

For the Makran and Aqaba data sets we mask out unreliable data based on the union
of connected component masks from every interferogram (i.e., areas identified as
unreliably unwrapped by the SNAPHU algorithm (Chen & Zebker, 2002)). This
is a conservative approach to masking that removes a large amount of the data,
but allows us to focus on long-wavelength features. The lower coherence for our
Australian tracks means that the connected component mask removes too much data
to view the spatial velocity pattern, so we instead mask out points with an average
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spatial coherence below 0.82. This less conservative masking strategy leads us to
include noisier data, possibly biasing our estimation of the across track ramp.

A.3 Further Details on InSAR Corrections and Residuals
To illustrate the influence of the corrections on the final secular velocity, we perform
a linear, least-squares fit to the time series of each of the applied corrections (these
fits are shown in the second row of Figures 2 and A.1-A.5). While we fit a linear
velocity term for the figures to show how the corrections affect the measured secular
velocity, we do not expect these corrections to have a linear variation in time.
As these corrections are not perfect, and we have not accounted for all potential
contributors to our velocity fields, we also need to consider what other residuals
may remain in our time series. Of particular interest is the extent to which the
velocity ramps before plate motion correction can be attributed to sources other
than plate motion. Below, we present more details on these corrections and the
residuals that may remain in our data.

The strength of ionospheric signals is controlled by the density of charged particles
in the ionosphere (Gomba et al., 2016). Ionization is mainly due to solar radiation,
meaning the ionospheric signal depends on factors such as the time of day, the
geomagnetic latitude, and the approximately 11-year solar cycle (Liang et al., 2019).
Sentinel-1 ascending tracks are acquired at dusk (around 6 pm local solar time), and
suffer from much stronger ionospheric impacts than the Sentinel-1 descending tracks
which are acquired at dawn (around 6 am local solar time). The most recent peak
of solar activity occurred in April 2014, decreasing to a minimum in December
2019, meaning that data earlier in our time series (which start in late 2014 for Aqaba
and Makran) have much stronger ionospheric effects than later dates. This long-
term variation in the ionosphere means that we cannot average out the ionospheric
signal by fitting to several years of data, making the ionosphere the most significant
correction to the secular velocity for the ascending tracks we study.

Ionospheric corrections clearly substantially reduce long-wavelength velocity ramps
for the ascending tracks we present here, but it is hard to quantify what residual
ionospheric signals may be left without comparing to external data. Liang et al.
(2018) compared the long-wavelength signal with GNSS velocities after ionosphere
correction using the split-spectrum method. They found good agreement between
the long-wavelength InSAR and GNSS velocities, suggesting that residual iono-
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sphere was not having a significant impact on the long-wavelength InSAR signals
after correction.

Errors in the ionosphere estimation can be introduced by unwrapping errors in the
sub-band interferograms (Gomba et al., 2016; Liang et al., 2019) and before time
series processing we examine the ionospheric phase estimates and remove those that
have obvious unwrapping errors. Unwrapping the sub-band interferograms requires
strong filtering (Liang et al., 2019), meaning that the split-spectrum method is not
able to capture short-wavelength variations in the ionospheric signal. We observe
the strength of the calculated long-wavelength ionospheric signal to vary with solar
activity, which declined from a peak in April 2014 to a minimum in December 2019,
and we would expect the short wavelength ionosphere to follow the same pattern. If
we have a substantial component of short wavelength ionospheric noise, this might
then show up as larger residuals in the time series for the earlier dates (2014-15)
compared to dates in late 2019. To test this, we first fit and remove from every
pixel a functional form (a linear term plus the amplitude and phase of annual and
semi-annual sinusoids), then calculate the root mean square (RMS) of the residuals
for every acquisition. The primary variation in the residual RMS is seasonal (e.g.,
varying between about 10 mm and 45 mm for track 86 (ASC) in the Makran), likely
due to incompletely removed tropospheric delays. There is not a strong trend in the
RMS over longer timescales, suggesting the short wavelength ionosphere remaining
in our data is not having a substantial effect, particularly compared with residual
troposphere.

The geometry of the Sentinel-1 bursts can result in ionospheric phase discontinuities
at the burst boundaries (see Section III.C in Liang et al. (2019)). The topsApp
code is able to compute and remove these discontinuities as part of the ionosphere
estimation. The removal of burst discontinuities due to the ionosphere can be
most clearly seen in the ladder-like pattern of the velocity in Figure A.1(f), which
is the calculated ionospheric signal removed from A.1(a). Here, the ionosphere is
contributing ramps of up to 0.5 mm/yr over the 20 km along-track width of the bursts,
with sharp discontinuities of up to 0.5 mm/yr at the burst boundaries. These ramps
and discontinuities are removed by the ionosphere correction. The burst ramps and
discontinuities are also present in the ionosphere estimation of the ascending track
(Figure 1.2(f)), which is also performed using topsApp, but cannot be seen in the
figure due to the wider dynamic range of the ionosphere.
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The topsStack code is not yet able to take account of the burst geometry when
computing the ionospheric phase screen. For the tracks processed using topsStack
(Aqaba and Australia), the lack of accounting for the burst geometry results in small
discontinuities in the velocity field at the burst boundaries in the final velocity field,
which can be seen on close inspection of Figures A.2-A.5. These discontinuities are
below the 1 mm/yr level, and are short-wavelength ramps within the bursts, meaning
they do not affect the long-wavelength velocity field.

If there are errors in the long-wavelength ionospheric phase removal, and these
errors are proportional to the size of the ionospheric signal, they could be revealed
by differences in the long-wavelength residual velocity field between ascending
and descending tracks covering the same region. For both Makran and Aqaba,
there do not seem to be substantial differences in the long-wavelength residuals
between the ascending and descending tracks that could reasonably be attributed to
uncompensated ionosphere. These results suggest that the ionosphere corrections
are able to remove a substantial fraction of the long-wavelength ionospheric signal,
but we are not able to precisely quantify the residual long-wavelength ionosphere.

Unlike ionospheric signals, the tropospheric phase is dominated by seasonal variabil-
ity, meaning longer time series will reduce the tropospheric effect on the estimated
secular velocity (Fattahi & Amelung, 2015; Parizzi et al., 2021). The troposphere
signal varies depending on the location, but can have an amplitude equivalent to
tens of centimeters of ground deformation. This signal can be mitigated, but not
eliminated, by tropospheric models (Bekaert et al., 2015; Fattahi & Amelung, 2015;
Parizzi et al., 2021). Fattahi and Amelung (2015) examined the tropospheric noise
just to the west of the Makran subduction zone, finding that, after corrections with
the ERA-Interim weather model, the tropospheric delay would lead to uncertainties
in the InSAR-derived velocities of 2 mm/yr over 100km and 4 mm/yr over 400km
with 7 years of Envisat data. Parizzi et al. (2021) evaluated the tropospheric contri-
bution to InSAR-derived velocity uncertainties for locations including the Markan
and Gulf of Aqaba. They estimated that uncertainties were in the range 2-4 mm/yr
over 150 km for the Makran, and 1-2 mm/yr over 150 km in the Gulf of Aqaba,
using at least four years of Sentinel-1 data and corrections from the ERA5 weather
model from ECMWF. They stated that tropospheric signals are the limiting factor
for measuring large-scale deformation using InSAR, as the residuals from the iono-
sphere and solid Earth tides are negligible after correction, and the contribution of
orbital errors is also not significant compared with the troposphere.
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Table A.1: Summary of Sentinel-1 SAR data used. ASC: Ascending track. DSC:
Descending track. Aqn. no.: Number of acquisitions. Makran and Aqaba use only
Sentinel-1A data, Australia uses only Sentinel-1B. The plates used for plate motion
corrections are listed in the final column and are taken from Table 1 of Altamimi
et al. (2017).

Region Track Direction Start date End date Aqn. no. Plate
Makran 86 ASC 20141023 20210401 158 EURA
Makran 20 DSC 20141007 20210328 150 EURA
Aqaba 87 ASC 20141104 20220102 203 ARAB
Aqaba 21 DSC 20150815 20210503 160 ARAB

Australia 46 DSC 20161003 20211212 157 AUST
Australia 119 DSC 20160926 20211217 158 AUST

Our data spans 5-7 years, with 150-200 acquisitions per track (Table A.1), and
we use the ERA5 weather model in our corrections (Hersbach et al., 2020). We
therefore expect the contribution of the troposphere to the velocity field to be at or
below the levels outlined by Parizzi et al. (2021) for Makran and Aqaba, but we have
not directly estimated this for our data. We also do not have comparable estimates
for the Australian tracks.

Tracks in the same region acquired at the same time of day should have statistically
similar tropospheric signals in terms of the amplitude and spatial correlation of
the phase in each acquisition. Tropospheric signals can therefore create similar
InSAR velocity uncertainties for nearby tracks (e.g., Fattahi and Amelung (2015)).
However, the troposphere is uncorrelated at timescales longer than a day (Emardson
et al., 2003), meaning tracks in the same region whose acquisitions are separated
by more than a day (as is the case for all of our tracks in the same region) will
have different realisations of the tropospheric phase in each acquisition. We would
therefore expect the long-wavelength velocity residuals from the troposphere to
be different for each track in a given region, rather than systematically contributing
velocity ramps in a particular direction. This expectation also applies to tropospheric
residuals that remain after troposphere corrections have been applied.

Orbital errors can also create long-wavelength artefacts in individual interferograms,
which can impact the velocity estimate. Fattahi and Amelung (2014) found that for
Sentinel-1, orbital errors would lead to velocity uncertainties at the level of 0.5
mm/yr over 100 km, assuming 15 acquisitions per year for 8 years. Similarly to the
troposphere, we would expect the orbital error to have different realisations in each
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track, meaning that the velocity ramps from orbital errors would not be expected to
occur systematically in any particular direction.

The solid Earth tides (SET) are another long-wavelength signal. SET can contribute
along-track InSAR phase ramps, and the varying satellite line-of-sight (LOS) will
also mean that SET deformation creates ramps in the range direction as well (X.
Xu & Sandwell, 2020), in a similar fashion to the LOS projection of plate motion.
The SET are periodic, and the Sentinel-1 sampling frequency causes diurnal and
semi-diurnal tidal periods to be aliased to longer periods of up to a year (X. Xu
& Sandwell, 2020). Using multi-year time series reduces the influence of these
periodic terms on the secular velocity estimation. The SET estimate is accurate to
better than 1 mm (Petit & Luzum, 2010), so after correction we expect its residual
contribution to the long-wavelength velocity to be much smaller than other signals
discussed here.

We do not correct for the deformation due to ocean tidal loading (OTL) in this
work (Dicaprio et al., 2008). OTL is a periodic, long-wavelength signal, much
like the SET, and the satellite LOS variation causes changing sensitivity to this
deformation in the range direction. The periodic nature of the signal means that
it will cause a smaller bias in the estimated secular velocity in longer time series
(Yu et al., 2020), similarly to the SET. We expect deformation due to OTL to decay
with distance from the ocean, meaning the direction and magnitude of any long-
wavelength velocity residuals due to OTL will be different for each of our regions.
Yu et al. (2020) identified regions of the Earth where OTL corrections would be
significant for reducing long-wavelength residuals (see Figure 1 in Yu et al. (2020)).
As all of our study areas lie outside these regions, we believe that the OTL signal
will have a smaller influence on the velocity than corrections such as the ionosphere,
troposphere and plate motion, but may be comparable to the SET, particularly for
the Makran.

The DEM error signal is generally short wavelength, as well as depending on the
satellite baseline (Fattahi & Amelung, 2013), which is well controlled for Sentinel-1
(Z. Li et al., 2016) and varies largely randomly in time. The DEM error signal
is estimated from correlation between the perpendicular baseline and time series
residuals, meaning that large residuals from other sources, such as the troposphere,
can potentially bias the DEM error estimation (Fattahi & Amelung, 2013). It is
possible that we see this biasing in Figure 1.2(i) at around (26°N, 60°E), but the
impact is still small, at around 0.5 mm/yr over 100 km. Even with the biasing from



160

residual troposphere, we expect residual long-wavelength noise from DEM error to
be well below residuals from other sources after correction.

Decorrelation is an additional source of noise in InSAR measurements (Zebker &
Villasenor, 1992). Changes in the surface properties can alter the interferometric
phase, which causes noise in the estimates of the deformation time series and thus
greater errors in the calculated secular velocity. We do not expect this noise source
to vary systematically over long distances, so it is unlikely to create significant
biases in the long-wavelength velocity field. The impact of decorrelation can be
seen by comparing tracks from Australia and the Makran. Lower coherence of the
Australian interferograms compared with the Makran causes the Australian track
velocity profiles to have a larger scatter in the velocities (Figure 1.4).

Another source of noise comes from the closure phase introduced as a result of mul-
tilooking combined with phase-changing physical processes on the Earth’s surface
(Ansari et al., 2021; Zheng et al., 2022). While this can bias velocity estimates,
we would not expect to see systematic spatial biases in the velocity over hundreds
of kilometers, so we do not expect this signal to contribute substantially to the
long-wavelength velocity field.

Even when a term does not contribute to the long-wavelength velocity field (say,
varying on a scale of well under 100 km), it can still bias the estimate of the across
track ramp, with the bias being more pronounced for shorter tracks. It is possible
that this explains the larger residual across track ramp for track 46 (Australia). This
track is the shortest in our data set, and also has the largest across track residual after
plate motion correction, at 1.5 mm/yr/track. For longer tracks, the bias on the ramp
estimation by short-wavelength terms is reduced. This reduction in bias is similar
to longer time series having a secular velocity that is less biased by periodic terms.

The expected amplitude and spatial wavelength of the residuals discussed above, as
well as the consistency between multiple tracks, including ascending and descend-
ing tracks covering the same area, gives additional credence to the claim that the
long-wavelength range-dependent ramps that we observe in our data after applying
corrections are primarily due to plate motion. Plate motion and ionosphere are
the two signals that have secular trends over several years, whereas signals such as
the troposphere and SET are dominated by seasonal variations. It is this temporal
variation that explains why the ionosphere and plate motion are dominant contribu-
tors to the long-wavelength velocities in our multi-year time series, while the large
amplitude of troposphere variation results in it also contributing substantially.
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Figure A.1: Cumulative impact of corrections on the InSAR-derived velocity field
for Sentinel-1, track 20 (DSC) over the Makran subduction zone. Panels are as
described in Figure 1.2. Note the substantial difference in the long-wavelength
ionospheric correction between ASC (Figure 1.2(f)) and DSC tracks ((f)). The
burst discontinuities due to the ionosphere can be clearly seen in (f) (Liang et al.,
2019).
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Figure A.2: Cumulative impact of corrections on the InSAR-derived velocity field
for Sentinel-1, track 87 (ASC) over the Gulf of Aqaba. Panels are as described in
Figure 1.2.

A.4 Further Details on the Signal of Vertical and Horizontal Plate Motions
in InSAR Measurements

In Figure A.6, we show estimates of the scale of the velocity ramp in the satellite
range direction for given vertical or horizontal plate translation. The values are
calculated by subtracting the LOS projection of plate motion in the satellite far
range from the projection in the satellite near range (see Figure 1, but note that the
ramps in Figure 1 are plotted as a function of distance along the ground (ground
range), not distance from the satellite (slant range)). These plots can be used for
an estimate of the expected InSAR-derived velocity ramps given values of the plate
motion velocity. Figure A.6 shows that, for a given plate speed, the impact on
the LOS velocity is largest when the plate is moving parallel to the heading angle
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Figure A.3: Cumulative impact of corrections on the InSAR-derived velocity field
for Sentinel-1, track 21 (DSC) over the Gulf of Aqaba. Panels are as described in
Figure 1.2.

of the LOS vector (i.e., approximately perpendicular to the satellite direction of
motion). Note that in Figure A.6 we use the line-of-sight vectors from the ascending
and descending tracks over Aqaba (track 87 and track 21, respectively). While the
pattern of LOS incidence angle variation across the track will be very similar for all
tracks acquired in interferometric wideswath mode, the satellite orbit heading angle
(and therefore the LOS heading angle) will vary with latitude due to the near-polar
orbit of the Sentinel-1 satellites. The LOS heading angle also has a small variation
across the track, which can be seen from the LOS geometry files (not shown here).
Users should therefore examine the true LOS vector for their study area, and only
use Figure A.6 for a quick estimate of the ramps they could expect in their study
regions.
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Figure A.4: Cumulative impact of corrections on the InSAR-derived velocity field
for Sentinel-1, track 46 (DSC) over western Australia. Panels are as described in
Figure 1.2.

Vertical secular bulk motion will have a different signature in ASC and DSC tracks
compared to horizontal secular velocity. For horizontal plate motion to the east, for
example, the ASC track will have a line of sight velocity gradient that is negative with
increasing range and the descending track will have the opposite, assuming a right-
looking satellite such as Sentinel-1 (Figure A.6). When translated into geographic
coordinates, this will result in both ASC and DSC tracks having negative velocity
gradients to the east (Figure 1). In contrast, a constant, positive, vertical velocity
will appear as negative LOS velocity gradients in range for ASC and DSC, which
translates to a negative LOS velocity gradient to the east in the ASC track and a
positive gradient to the east in the DSC track. The gradients would be reversed for
negative vertical velocities. This effect is illustrated in Figure 1(c), and we show
examples of the ramp sizes for varying horizontal and vertical plate motion in Figure
A.6.
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Figure A.5: Cumulative impact of corrections on the InSAR-derived velocity field
for Sentinel-1, track 119 (DSC) over western Australia. Panels are as described in
Figure 1.2.

Altamimi et al. (2017) and Altamimi et al. (2012) have noted that plate motion mod-
els may be contaminated by the inclusion of stations undergoing glacial isostatic
adjustment (GIA). Therefore it may not be appropriate to investigate GIA by sub-
tracting a plate motion model from a velocity field, and a more careful investigation
of the local velocity field might be warranted.

As suggested in the Conclusion, the signal of plate motion in InSAR data could be
used to better constrain plate motion models. This could be limited to constraining
horizontal plate motions, but if the direction of horizontal plate motion is known,
then the velocity gradients of ascending and descending tracks combined could po-
tentially be used to constrain the amplitude of horizontal and vertical plate motions
together. Such constraints could prove useful for improving plate models, particu-
larly where GNSS points are sparse. However, this approach could prove challenging
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Figure A.6: Size of velocity ramp in range for the 250 km wide Sentinel-1 swath for
varying horizontal and vertical bulk motion. These calculations assume a constant
plate velocity (i.e., no rotation), ignore the slight curvature in the across-track ramps
(Figure 1), and take the LOS geometry from the ASC and DSC Sentinel-1 tracks
over Aqaba (87 and 21, respectively). The LOS vector points from the ground to the
satellite. Heading angles are measured clockwise from north. “LOS heading angle”
is the heading angle of the horizontal projection of the LOS vector. “Heading angle
of horizontal motion” is the heading angle of the bulk plate motion. A positive
cross-track ramp means that LOS velocity increases with increasing satellite range.
(a) Size of velocity ramp for horizontal motion in an ASC track. (b) Size of velocity
ramp for horizontal motion in a DSC track. (c) Size of velocity ramp for vertical
velocity motion. For vertical motion, the ramp has the same variation with range
for ASC and DSC tracks.
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if there were substantial contributions from noise sources and tectonic deformation,
and would likely require long InSAR time series to reduce biasing of the velocity
by non-secular terms, and long tracks to avoid biasing by short-wavelength velocity
residuals.

A.5 The Impact of Plate Motion on 3D Velocity Fields Derived from InSAR
While individual InSAR tracks only provide one line-of-sight for each point on the
ground, multiple tracks with different LOS angles can be combined to constrain
the 3D velocity field (Fialko et al., 2001; Wright et al., 2004). When an ascending
and descending track covering the same region are available, these can be used
to derive the horizontal and vertical velocities by assuming the direction of the
horizontal velocity, and choosing the same reference point for both of these tracks,
which is implicitly assumed to be stable in the reference frame of the satellite
(e.g., Wright et al. (2004)). By assuming that this point is stable, we further
assume that the ascending and descending track velocities can be explained purely
by motions relative to this point, which means our solution cannot contain any
overall translation. The assumption of a constant horizontal velocity direction also
prohibits any rotational component in our inferred velocities. If there is in fact an
overall translation or rotation of our observed region, this could lead to a biasing of
our calculated horizontal and vertical velocities.

In Figure A.7, we illustrate how plate motion biases our estimation of the 3D
velocity field. We use the overlapping region of tracks 86 and 20 over the Makran
subduction zone, and first apply the corrections show in Figures 2 and A.1, (f)-(i), to
each tracks 86 and 20, respectively. Using these two lines-of-sight we then calculate
the horizontal and vertical velocities, assuming that horizontal velocity is purely
due east. When we perform this calculation before plate motion correction, the
east and vertical components contain long-wavelength velocity ramps (Figure A.7
(a)-(b)). The vertical velocity has a ramp of around 3 mm/yr/100 km in the east-west
direction, and the eastward velocity has a ramp of approximately 1.5 mm/yr/100 km
in the north-south direction. These velocity ramps are primarily a bias from plate
motion combined with the assumption that the reference point is fixed.

After removing the plate motion contribution to the ascending and descending tracks
and repeating the calculation, the long-wavelength velocity ramps in the calculated
horizontal and vertical maps are substantially reduced (Figure A.7 (c)-(d)). There
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Figure A.7: Impact of accounting for plate motion on the calculation of horizontal
and vertical velocities from ASC and DSC tracks. The calculation is performed
for the overlapping region between tracks 86 (ASC) and 20 (DSC) over the Makran
subduction zone, with horizontal motion assumed to be purely east-west. The black
square represents the reference point, which is assumed to be stationary with respect
to the satellite. (a) Calculated eastward motion before plate motion correction, but
after other corrections have been applied. Note the apparent north-south velocity
gradient. (b) Calculated vertical motion before plate motion correction. Note the
apparent east-west velocity gradient. (c), (d) Same as (a) and (b), respectively, but
with the plate motion correction applied to each track before calculating the horizon-
tal and vertical terms. Long wavelength velocity gradients have been substantially
reduced.

may be some remaining bias from the assumption that horizontal motion is purely
east-west.

The bias from plate motion would not be present if the InSAR observations had had
a ramp fitted and removed before the calculation (as is often done), as this would
remove the plate motion velocity ramp. The bias would also be less obvious if the
area studied was smaller, or the tectonic signal was larger. The results in Figure A.7
emphasize the importance of accounting for the reference frame of our observations
before combining separate tracks.
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A p p e n d i x B

SUPPLEMENTARY MATERIALS FOR CHAPTER 3: DEEP
LEARNING-BASED DAMAGE MAPPING WITH INSAR

COHERENCE TIME SERIES

B.1 Phase variance and the logit transform
The Cramer-Rao bound on the variance of the interferometric phase, 𝜎2

𝑝ℎ𝑎𝑠𝑒
, can be

written (Rodriguez & Martin, 1992):

𝜎2
𝑝ℎ𝑎𝑠𝑒 =

1
2𝑁𝐿

1 − 𝛾2

𝛾2 , (B.1)

where 𝛾 is the coherence between two SLCs and 𝑁𝐿 is the number of SLC pixels
in the chip used to estimate the coherence. The phase variance asymptotically
approaches this limit as the number of looks increases, with the limit being a good
approximation for 𝑁𝐿 > 4. In this work our chip size gives us 𝑁𝐿 = 75.

Taking the logarithm of the phase variance gives us:

log𝑒 (𝜎2
𝑝ℎ𝑎𝑠𝑒) = log𝑒

(
1 − 𝛾2

𝛾2

)
− log𝑒 (2𝑁𝐿). (B.2)

We also have the logit transform of coherence squared (Eq. 3.9), which is:

𝑆−1(𝛾2) = log𝑒

(
𝛾2

1 − 𝛾2

)
. (B.3)

We therefore have the relationship:

𝑆−1(𝛾2) = − log𝑒 (𝜎2) − log𝑒 (2𝑁𝐿), (B.4)

meaning the logit transform of the coherence squared only differs from the logarithm
of the phase variance by an additive constant and sign.

B.2 RNN Model and Training Details
The basis of RNNs are artificial neural networks. These are layers of matrix-vector
multiplications, interspersed with non-linear activation functions, that transform
input data into a desired output. The matrix values (known as weights) are var-
ied, or trained, to get the desired mapping between input and output data. For a
quick pedagogic introduction to artificial neural networks, we refer the reader to
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3Blue1Brown (2017), more detail on artificial neural networks and RNNs can be
found in Goodfellow et al. (2016).

So-called vanilla (basic) RNNs have trouble learning long-term dependencies, which
in our case means learning how to make forecasts when the desired output at a given
step depends on data received many steps in the past (Bengio et al., 1994). Long
short-term memory RNNs (LSTMs) were created to solve the problem of long-
term dependencies (Hochreiter & Schmidhuber, 1997). LSTMs have a series of
gates—learned weights combined with non-linear activation functions—that allow
the network to decide what information to add, retain, and forget when each new
observation is fed in, in such a way as to better store information over many time
steps compared to a vanilla RNN. For a pedagogic introduction to LSTMs, we refer
the reader to Olah (2015). The weights are learned during training, so that the
network is able to decide what information is most useful for a given set of time
series. A single set of weights are learned for all the time series that are given to the
network.

Gated recurrent units (GRUs) are a gating mechanism for RNNs, similar to LSTMs
but with fewer parameters and thus less computationally expensive to train. GRUs
have been found to have similar performance to LSTMs on a range of tasks (Cho
et al., 2014), and are what we use in this work.

As an example for our data, one could imagine trying to forecast the coherence for
a region with dry summers, and wet winters. During the dry summer, the ground
surface may be relatively undisturbed, leading to high InSAR coherence. However,
rain and snow during the wet winters could often disturb the Earth’s surface, leading
to large drops in coherence. If we had at least one year of coherence time series
data, and were trying to forecast the coherence at the beginning of the summer, the
recent coherence measurements from the winter months may not be the most useful
data to make this forecast. Instead, we would want the network to make a forecast
based on similar sequences that it had see during previous summer periods.

By training the network on a large number of coherence time series containing winter
and summer behavior, the gating mechanisms should learn the relevant information
to use when forecasting during summer and winter sequences. Note that this is not
simply learning a periodicity in the signal. If there was an unusually wet summer or
dry winter, the network should be able to adjust its forecast based on new data and
its training.
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The following equations describe 𝑓𝜙 (Eq. 3.2) for the GRU that we use in this work:

𝑧𝑡 = 𝑆(𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (B.5)

𝑟𝑡 = 𝑆(𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (B.6)

ℎ̄𝑡 = tanh(𝑊ℎ𝑥𝑡 +𝑈ℎ (𝑟𝑡 ◦ ℎ𝑡−1) + 𝑏ℎ) (B.7)

ℎ𝑡 = (1 − 𝑧𝑡) ◦ ℎ𝑡−1 + 𝑧𝑡 ◦ ℎ̄𝑡 , (B.8)

where 𝑆 is the sigmoid activation function, ◦ is the Hadamard (element-wise)
product, 𝑧𝑡 is the update gate vector, 𝑟𝑡 is the reset gate vector, ℎ̄𝑡 is the candidate
hidden state, and 𝜙 = [𝑊,𝑈, 𝑏] are the learnable parameters of 𝑓 . We use a
hidden state of size 256, with the initial state ℎ0 set to all zeros. For 𝑔𝜓 (Eq. 3.5),
we use a fully connected, feed-forward neural network to map the RNN hidden
state to parameters of a Gaussian distribution. This neural network has 3-layers,
with Rectified Linear Unit (ReLU) activation functions and hidden layer sizes of
128. The resulting output is finally passed through two separate linear layers to
obtain the mean and natural logarithm of the variance (we output the logarithm for
improved numerical stability). Figure B.1 shows how the different components are
connected. In total, our model has 265,090 learnable parameters. Hyperparmeters
of the architecture are chosen according to rules of thumb, and at this stage we have
not performed a cross-validation or hyperparameter search. This search can be done
to further improve the forecast made by the RNN, for example by varying the size
of the hidden state and the number of layers in the fully connected neural network.

We randomly select 80% of sequences in the training set D𝑡 to train our model (D𝑡,𝑡)
and use the remaining 20% as validation sequences for model selection (D𝑡,𝑣). We
emphasize that the model does not see any of the validation sequences and only sees
pre-event information during training.

We train for 20 epochs with a batch size of 256 using the Adam optimizer with
a learning rate of 0.0005 (Kingma & Ba, 2014). Each epoch sees each training
sequence once and has a total run time of several minutes on a Tesla P100 GPU
(depending on the number and length of training sequences, which varies by region).
The trained network is then applied to the forecasting data set D 𝑓 to generate co-
event coherence forecasts at each time step and location. Details of how D𝑡 and D 𝑓

are calculated are included in Section B.3.

Non-determinism can be introduced in the RNN training, for example due to the
implementation of GPU algorithms and the random selection of batches during
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Figure B.1: Graphical model for our recurrent neural network for a series of time
steps. We use gated recurrent units for 𝑓𝜙 and a feed-forward neural network for 𝑔𝜓 .
For each pixel the hidden state (ℎ) summarizes the coherence information (𝑥) up to
that point, and is used to forecast the mean (𝜇′) and standard deviation (𝜎′) of the
logit-transformed squared coherence. We initialize the hidden state ℎ0 as all zeros.
The final hidden state, ℎ𝑇 , is used to forecast the co-event coherence distribution
parameters (𝜇′

𝑇+1, 𝜎
′
𝑇+1).

training. From limited trials on the Amatrice data set we find that repeated training
with the same data and training parameters can lead to small differences in the PR
AUC (less than 0.05), but this variability does not affect our overall conclusions.
It is possible that the data leakage issue, discussed in Section 3.6, is leading to
overfitting, and thus to a larger variance in the co-event forecast for repeated re-
training, thus causing a larger variation in the PR AUC. We therefore caution that
the specific values indicated in this paper shouldn’t be taken as representative of the
values likely to be obtained in all circumstances, and reiterate that further testing in
a wider variety of cases is necessary.

An implementation of our deep learning model can be found on GitHub: https:
//github.com/olliestephenson/dpm-rnn-public.

B.3 Study Areas and Data
A summary of the SAR data used for each study area is presented in Table B.1, and
more details are given in this section. In all cases we use data starting in October
2014 (when the Sentinel-1A satellite began acquiring data) until the first post-
event SAR acquisition. We start with Level-1 Single Look Complex (SLC) images
acquired in interferometric wideswath mode (European Space Agency, n.d.), then,
using the InSAR Scientific Computing Environment (ISCE) (Rosen et al., 2012),
we create a coregistered stack of SLC images, which are corrected for the flat Earth
and topographic phase contributions. For each region, we calculate 𝑁 −1 sequential

https://github.com/olliestephenson/dpm-rnn-public
https://github.com/olliestephenson/dpm-rnn-public
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coherence images from 𝑁 SAR acquisitions. The post-event and final pre-event
SAR acquisitions are used to generate a co-event coherence image, which is not
seen during RNN training but is used to calculate the size of the coherence anomaly.
While the time between SAR acquisitions varied for each region, in all three cases
the first post-event image was taken six days after the final pre-event image. Note
that we keep the data in radar coordinates for the coherence calculation and do not
interpolate or resample once the SLC stack is coregistered.

To calculate the coherence time series in D𝑡 , we set the stride (distance between
adjacent center SLC pixels of the chip, or averaging window) to be equal to the chip
width in each direction so that each SLC pixel is only used to estimate coherence in
one chip (Fig. B.2(a)). We use data spanning a wide area surrounding the specific
region we are searching for damage.

For calculating D 𝑓 , we only use SAR data in the area of interest (i.e. the damaged
region we would like to map), but set the stride of the coherence chip to one, giving us
a larger number of coherence pixels in the same area. Coherence pixels are therefore
spaced at approximately 3 m and 14 m in range and azimuth, respectively; however,
each coherence chip contains information from a 50 m by 70 m (15 by 5 SLC pixel)
chip (Fig. B.2(b)). Note that the exact size of the chip on the ground depends on the
local topography. The stride of the chip means that adjacent coherence chips in D 𝑓

will share a large number of SLC pixels, and thus have a high degree of correlation
in their time series.

Note that as the area of interest lies within the training region a small fraction of
the coherence time series in D𝑡 will also be in D 𝑓 , leading to a small amount of
data leakage (i.e. the model is trained on some of the time series that it is trying
to forecast). This could lead to some overconfidence in the coherence forecast,
reducing the quality of the damage map. However, model selection is done using
the validation set (D𝑡,𝑣), i.e. the 20% of D𝑡 that is not used for training, and the data
leakage is a tiny fraction of the total number of time series used for training.

August 24, 2016 Mw 6.2 central Italy earthquake
Our first data set is from the Mw 6.2 August 24, 2016 central Italy earthquake. At
least 299 people were killed, with more than 400 injured and major damage done
to the Italian town of Amatrice (United States Geological Survey, 2016). For this
event, the Copernicus Emergency Management Service produced a damage map
by manually reviewing high resolution pre- and post-event optical satellite imagery.
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1 2 1 32

(a) stride = chip width (b) stride = one pixel

Figure B.2: Schematic of the different coherence calculation methods for (a) D𝑡 ,
and (b) D 𝑓 . The small squares represent SLC pixels and the large, numbered,
squares represent coherence chips, here represented as three by three SLC pixels for
illustration purposes.

Every building in Amatrice had its geographic footprint determined and each foot-
print was classified into one of five damage levels, from “unaffected” to “completely
destroyed.” This data was made available online (Copernicus Emergency Manage-
ment Service, 2016). This data set was constructed via visual inspection of high
resolution optical imagery taken before and after damage to the town. In our work we
further simplify the data set by putting damage levels “not affected” and “negligible
to slight damage” into an “undamaged” class, and “moderately damaged,” “highly
damaged” and “completely destroyed” into a “damaged” class. The resulting dam-
age map is plotted in Fig. B.3. As every building within the centre of the town was
assessed, we can use this as ground truth with which to quantitatively compare the
RNN and CCD methods.

The pre-event SAR repeat time was irregular, mostly 12 or 24 days between acquisi-
tions, which creates a source of noise for our RNN method due to variable temporal
decorrelation. The data in the training region, D𝑡 , covers the area around and east
of Amatrice.

November 12, 2017 Mw 7.3 Iran-Iraq earthquake
The city of Sarpol-e-Zahab lies on the Iran-Iraq border and was hit by a Mw 7.3
earthquake on November 12, 2017, causing substantial damage, over 7000 injured
and at least 630 fatalities (United States Geological Survey, 2017). The United
Nations Institute for Training and Research (UNITAR) produced an earthquake
damage map for Sarpol-e-Zahab in the aftermath of the earthquake. By manually
reviewing high resolution post-event optical satellite data, UNITAR mapped the
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Figure B.3: Ground truth data used for quantifying damage classification perfor-
mance for the town of Amatrice, damaged during the August 24, 2016 Mw 6.2
central Italy Earthquake. Building polygons and damage levels are supplied by the
Copernicus Emergency Management Service (Copernicus Emergency Management
Service, 2016), then simplified as described in Section B.3. Note that the optical
imagery in this figure was taken a little under a year after the earthquake, and struc-
tures have been built that do not appear in the damage assessment. Optical imagery
for the figure is from Google, taken July 6th 2017.

location of 683 “potentially damaged” buildings (United Nations Institute for Train-
ing and Research, 2017) (Fig. B.4). However, the data does not contain damage
levels or building footprints for every building, meaning we are unable to constrain
which buildings are undamaged and so can’t perform the same quantification as for
Amatrice.

Before the earthquake, the satellite repeat time was 12 days (with six 24 day inter-
vals). The post-event acquisition was six days after the final pre-event image. The
data in the training region, D𝑡 , spans the city and the region to the north and west
of Sarpol-e-Zahab.
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Figure B.4: Location of 683 potentially damaged buildings manually mapped from
optical satellite imagery by the United Nations Institute for Training and Research
(United Nations Institute for Training and Research, 2017) for the town of Sarpol-
e-Zahab, damaged during the November 12, 2017 Mw 7.3 Iran-Iraq earthquake.
Optical imagery for the figure is from Google, CNES/Airbus, taken July 27th 2020.
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Table B.1: Summary of SAR data used for each study area. N𝑎𝑞𝑛: number of pre-
event acquisitions used, N𝑡, 𝑓 : number of pixels in the training (D𝑡) and forecasting
(D 𝑓 ) sets, respectively, E𝑡, 𝑓 : spatial extent of the training and forecasting regions,
Track: Sentinel-1 orbital track and direction of flight.

Event Date (MM/DD/YY) N𝑎𝑞𝑛 N𝑡 E𝑡 (km × km) N 𝑓 E 𝑓 (km × km) Track
Central Italy 08/24/16 48 3,396,828 140 × 70 70,000 2.4 × 1.4 Descending 22

Iran-Iraq 11/12/17 89 11,056,389 210 × 210 750,000 5.2 × 7.0 Ascending 174
Ridgecrest 07/04/19 97 2,860,000 60 × 60 2,860,000 60 × 60 Ascending 64

July 2019 Mw 6.4 and Mw 7.1 Ridgecrest, California, USA earthquakes
Numerous groups conducted mapping of surface ruptures, liquefaction and building
damage in the aftermath of the Ridgecrest earthquakes (Brandenberg et al., 2019;
Hough et al., 2020; Kendrick et al., 2019; Ponti et al., 2020; Zimmaro et al., 2020),
allowing for a qualitative comparison with our damage proxy map (Fig. 3.7). Our
area of interest is significantly larger than the previous two, and to cover the entire
rupture we need to use the whole of D𝑡 in D 𝑓 . We use strides of 5 and 15 (the same
as for D𝑡) as we are more interested in larger scale signals. The fact that the training
and forecasting regions are the same means that the model will have been trained on
80% of D 𝑓 ; however, as usual the optimum model is chosen from the performance
on the 20% of D𝑡 (D𝑡,𝑣) that is not seen during training.

The pre-event SAR acquisition interval in the Ridgecrest region was more variable
than data for the other two areas, starting out at a modal value of 24 days in October
2014, then reducing to 12 days and finally 6 day intervals from March 2019 until
the event. Again, the post-event acquisition was six days after the final pre-event
image. While the acquisition interval was overall more variable than the other two
regions, the several months of 6 day intervals before the event likely improves the
quality of the RNN forecast.

B.4 Training with a Variable Amount of Pre-Event Data
In order to explore how the quality of the RNN damage map depends on the amount
of data, we repeat the training and forecasting for the Amatrice data set, decreasing
the temporal span of the pre-event data used and calculating the Precision-Recall
Area Under Curve (PR AUC) for each trained model. We use the Amatrice data set
for this exploration, as this is the only location where we have comprehensive ground
truth and so are able to obtain precision-recall curves. Training and forecasting data
are generated as described in Section B.3, but then only coherence images that use
data acquired on or after specific dates are used in training.
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These results are presented in Figure B.5(a), along with a comparison to the CCD
PR AUC as a baseline. The CCD method uses a single pre-event coherence image
along with the co-event image. When we use all available data, we obtain the result
previously presented in Figure 3.4 (PR AUC=0.7). As we move the cut-off date later
in time, we observe a steady decrease in the PR AUC until late 2015, where there is
a sudden drop to around 0.5 (well below CCD performance), followed by an overall
increase up to the final point, which only uses two pre-event coherence images.

If every coherence image was adding information that could allow for a better forecast
of the coherence distribution, then we would expect that more training data would
improve the results. The sudden drop in PR AUC when the data cut-off is in late
2015, followed by the increase in performance as we reduce the amount of training
data, conflicts with these expectations. This behavior suggests that the coherence
data in the year leading up to the earthquake are potentially less representative of
the distribution that we are trying to forecast, meaning that training only on this data
decreases performance.

We can gain some indication of the variability of coherence through time by looking
at the mean of coherence data (in logit space) used for training, presented in Figure
B.5(b). These results show anomalously high coherence values in late 2015, lining
up with the decrease in PR AUC. It is important to note that all training with a cut-
off date earlier than late 2015 includes these anomalously high coherence values.
However, it is possibly the case that as we increase the amount of data beyond a year,
the fraction of the training data which is anomalous decreases and so the results
improve.

The results presented in this section suggest that performance can be unreliable when
training is done on less than a year of coherence data. However this conclusion is
likely highly dependent on the specific attributes of the local region. For example,
we would probably not observe the same effects in a dry desert area, where coherence
is more stable through time. Further testing is necessary to explore how the results
depend on the time span of the training data.

As noted in Section B.2, non-determinism in the RNN training leads to variability
in the exact PR AUC values when training is repeated for the same data. This
variability leads to some scatter in the results; however, it does not affect the overall
results presented in this section.
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Figure B.5: Impact of varying the amount of training data. (a) RNN Precision-
recall area under curve (PR AUC) for the Amatrice data set, with varying amounts
of pre-event training and forecasting coherence data (red line). Only data acquired
on or after the indicated date are used in training and forecasting. The PR AUC
for the CCD method is also presented for comparison (horizontal dashed blue line).
Training that uses all data is indicated at the top left. Training that only uses two
pre-event coherence images is indicated on the right hand side. (b) Mean of the
logit transform of the squared coherence against the date of the first SAR acquisition
in that coherence image. Values are presented up to the final pre-event coherence
image. The co-event coherence is not used in training, so its mean is not presented
here. Generally SAR images in each coherence image are separated by 12 or 24
days. The date of the August 2016 central Italy earthquake is indicated by “EQ” on
the right of the both plots.
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A p p e n d i x C

SOME THOUGHTS ON PRODUCTIVITY AND DOING A PHD

C.1 My Approach
While this thesis (hopefully) contains some insights about my scientific work, it says
little about how that science was done on a day-to-day basis. Tasks that take months
of effort can gain barely a line of text, and there is nothing at all about the patterns
of work and time management that have (and have not) worked for me. I wanted to
provide a few details of how I have tried to manage my time and attention during
my PhD, and the various successes and failures along the way. At the bottom, I’ve
listed some specific tools that I use to implement the systems I describe, and given
suggestions for further reading. While some life skills can only be learned through
experience, I believe that time management is something that can be improved with
a relatively small amount of deliberate effort. I feel it would be good if these kinds
of things were discussed more frequently; it often seems to me that some people
naturally arrive at systems that work for them, while many people don’t realize that
they might be able to get a lot more out of their days with a few tweaks.

Before going any further, I want to emphasize that everyone’s approach to work can
be very personal, and different methods can work well for different people. Your
mileage may vary greatly with the suggestions below. More important than any
particular approach, in my opinion, is regularly reviewing what you’re doing, seeing
what’s working and what isn’t, and gradually improving your systems. However,
many people will not have the flexibility that I have had, perhaps because of family
or teaching commitments. Furthermore, my goal here is not to say that it is your fault
if you’re struggling with time management. Academia can be a hostile environment
for any kind of work-life balance, and while most of this appendix is focused on
personal time management, working to change this broader environment is a vital
activity.

A key lesson is to remember that a PhD is a marathon, not a sprint. I think a
good approach is to set a minimum goal of focused, productive work a week, track
your work to ensure you are meeting the goal, and then give yourself actual regular
time off. By setting and tracking your goals over the long term you can see if you
are regularly falling above or below where you want to be, and make adjustments
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accordingly. An approach like this helps to avoid the incessant guilt of never having
done enough, which, in my experience, leads to cycles of overwork and burnout.

What counts as productive work? Here I am defining it very restrictively. Whenever
I take a break, check my email, chat to someone, get distracted by social media, etc,
I stop the clock. I will generally not count casual academic conversations, seminars
where I am not 100% engaged, and skimming through abstracts. This definition does
mean that I end up not counting things that are valuable, and necessary, components
of my work, but it allows me to concentrate on the component where I make the most
progress—the extended periods of time where I am deeply focused on a specific
problem and working to solve it.1 I also want to emphasize that I am not saying that
anything outside of this definition is necessarily “unproductive”.

Once we have some definition of “productive”, there is then the question of what
minimum goal to set. In theory, graduate students at Caltech are entitled to (a
laughably small) 21 days off per year. Assuming a (very ambitious) 40 hours of
productive work per week, for around 48 weeks a year, for five and a half years, that
translates into 10560 hours over the PhD. I would be surprised if many people get
close to this. I have found that I was only able to sustain over 40 hours of genuinely
productive work a week by making substantial sacrifices in many other areas of my
life.2 Actually getting above 40 hours of productive work required me to spend a
lot more than 40 hours actually at my desk, as I fought with distractions and general
fatigue. Importantly, if I had not been tracking the amount of work I was doing, I
would probably have estimated that I was working 60 or more hours, giving me a
false impression of how productive I was actually being.

With “productive work” defined restrictively, I believe that a target of around 25
hours a week, for 40 weeks of the year, is a reasonable and sustainable goal. This
translates into 1000 hours a year, 5500 hours of work over a 5.5 year PhD, or a bit
over half of the 10560 hours given above. There are a lot of other things that have
to happen on top of this number (e.g., administrative tasks, teaching, community
service, activism, organising, etc.). But, by setting a goal like this, it’s possible to
ensure that you are making progress on your main PhD projects, as well as spending
time dealing with all of the other things that you want/need to get done. By setting

1Worth mentioning here that I consider having the freedom to do this to be an immense privilege.
2These comments apply predominantly to the kind of work that most people in Caltech’s Seismo-

lab are doing, which is generally desk-based. For those who have substantial lab or field components
to their work I think this picture could be very different, although much of what I say could still apply
to components of their work that are similar in style to the kind of work I am referring to (e.g., paper
writing, data analysis, etc).



182

a goal around 25 hours, that hopefully preserves lots of the week for staying active
and engaged in both your academic community, and the wider world.3

During my PhD, I would often finish a week which had felt immensely busy, but in
reality I had spent my time running between a series of minor tasks that were not
actually that important, and hadn’t moved my main scientific work forward. I think
it is easy to feel like you are doing lots of work because you have spent many hours
at your desk, but find that you’re not really moving forwards, which is more likely
to push you towards burnout. By being intentional, setting achievable goals, and
tracking your time, you can spend less time at your desk and do more of what you
actually wanted to do.

Ok, so I’ve set myself some work time goals, and I’m tracking them. Next is the
question of how to actually spend that time. As a very rough division, I think
it’s worth spending something like 60% of your time on implementation for your
core projects, 30% of your time on core reading, and 10% on what I’ll loosely call
“broader exploration”.4 Exactly what each of these terms mean, and the distribution
between them, will change between projects, and the stages of those projects.

Let me give some illustrations of what I’m getting at. For my earthquake simu-
lations presented in Chapter 4, I had several core tasks. These included running
simulations, plotting and analyzing the outputs, and working through theoretical
understandings of what was going on. These tasks could often be very time con-
suming, involving lengthy hunts for bugs in the code parallelization or writing long
scripts to simultaneously process hundreds of simulation outputs. These are the
kinds of tasks that I think should have 60% of the overall time you allocate to the
project. However, unlike core reading or broader exploration, these are the tasks
that determined whether or not I’d have anything to show my advisor at our next
meeting, and so the short-term incentives always pushed me to work more on these.
I would often spend nearly all of my time on these items, at the expense of reading
and broader exploration.

My simulations work was informed by a series of core papers that dealt with
computational, theoretical and experimental results. I advocate for spending about

3I received some feedback that setting a specific work hour goal could be seen as “presen-
teeism”—just spending a certain number of hours working for appearances, rather than actually
getting anything done. Remember that the goal is to get science done, not just sit at your desk for
a certain number of hours. Planning what you want to get done, and reviewing what you did each
week can help you discern if you’re spending the time as you want to.

4This division just applies to the time you allocate to your main scientific projects (i.e., 25
hours/week, or whatever you choose), and doesn’t include things like compulsory classes and TAing.
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30% of your weekly hours on this, but I was way under this target for most of my
PhD (it was generally around 10%, rising to closer to 25% over the final year). A
lack of time dedicated to reading was a major mistake—it reduced my ability to go
beyond the suggestions my advisor had made and come up with my own insights
into the project. I suggest keeping a running list of papers that you want to read,
roughly prioritized, then set aside dedicated time to spend on these. At the end of
each week, look back at how much time you’ve spent reading, and adjust your next
week based on how close you were to your goal. For particularly important and/or
complicated papers, you will want to read them in detail several times, and come
back to them as you gain more experience. For less significant papers you can limit
yourself to the abstract, introduction and conclusion, then come back to them if they
turn out to be helpful.

Beyond the core implementation and reading, there were a series of broader topics
that I didn’t need to know in the moment to develop the project, but could potentially
prove fruitful further down the line. Examples include learning more about parallels
between friction during earthquakes, landslides and glacier motion, and reading
about the preservation of pseudotachylytes. The key point is to be broadening your
horizons, in a way that could inform future research directions, but not at the expense
of making sustained progress on your main projects. I cheerfully admit that I was
terrible at this for the majority of my PhD, spending a significant amount of time on
areas that were unlikely to do much for my main projects (e.g., I went to a reading
group on the scientific history of climate change, took a class on sustainability,
and did some side-work on glaciology, along with a wide variety of less scientific
endeavours).

Related to the exploration portion of your time is the question of how to pick
problems to work on. I was advised to regularly go to Seismolab coffee hour to
get ideas for my work. I didn’t take this up as much as I should have done, but
it’s clear to me that picking good problems relies on regularly interacting with a
broad range of scientists, along with reading and attending seminars. Being part of
these interactions can really help you put your finger on the active debates in your
field. Reading papers is helpful for this, of course; however, I frequently found that
I could read through a paper and still be confused about what lines of research it
pointed to, whereas a quick conversation with someone could highlight ideas that
I had totally missed during reading. Much like reading, making time for general
scientific conversations rarely felt like a priority for me. That’s why it’s essential to
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deliberately carve out time for these kind of interactions. They don’t really fit within
my very restrictive definition of “productive”, but as a very loose guide I think it’s
worth spending at least an hour a week in wide-ranging scientific conversations with
your peers, along with intense periods of interaction during conferences.

After thinking about my weekly working hours, and how to allocate them, I need to
decide how to spend each day. I found that when I didn’t have a clear daily plan,
I would naturally gravitate towards tasks that felt some combination of easy and
urgent, which generally didn’t lead to significant progress on my scientific work.
After much experimentation, I found a couple of approaches that helped me get
more done. The first was to keep a big list of tasks that I needed to do for each of my
projects, sorted into high, medium and low priority. At the beginning of the day I
would review this list, removing tasks that I had finished or were no longer relevant,
and then select a series of tasks that I wanted to work on during the day. I would
aim to select these predominantly from the list of high priority tasks, but would
also add other tasks that were less important but might be easier or more satisfying
to achieve. I would then plan out my day by timeboxing—planning out what I
wanted to do with each hour of the day.5 Initially I did this using pen and paper,
but later migrated to my calendar app. While it’s possible to get quite granular with
timeboxing, allocating specific tasks to each block of the day, I would generally just
choose the overall project, and then use the allocated time to work through the list
of tasks that I had already chosen.

When dividing up my day, I would allocate work slots in 1.5 hour chunks, generally
intermingled with breaks, other meetings/commitments, and exercise.6 Depending
on what else was happening in the day, I would aim to put three to six of these
chunks on my calendar, and then schedule other things around these. During these
sessions I would aim to do focused work, with all notifications (e.g., phone, email,
etc.) muted. Without a system like this, I found that I was constantly trying to decide
between several projects (both scientific and non-scientific), and what to prioritize
within each of those projects. The key element here is to limit the number of times
during the day at which you’re having to choose what to do next. I found that I
would rarely stick perfectly to my plan, but it would always provide me with a useful
sense of structure so I could have extended periods of focus.

5Here’s a basic overview: https://hbr.org/2018/12/how-timeboxing-works-and-why-it-will-
make-you-more-productive.

6If you struggle with taking time off, it could be helpful to explicitly time box this as well.

https://hbr.org/2018/12/how-timeboxing-works-and-why-it-will-make-you-more-productive
https://hbr.org/2018/12/how-timeboxing-works-and-why-it-will-make-you-more-productive
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The systems I’ve proposed here require forming specific habits (e.g., time tracking,
time boxing). I spent a long time vaguely feeling like these systems would be
helpful, but rapidly abandoning each attempt at actually implementing them. In the
end, what has worked for me is trying to change one thing at a time, then regularly
reviewing how I think the experiment has gone, and what I could change to improve
it. For example, when I first started timeboxing, I would allocate two hours of
focused work, followed by a five minute break, then another two hours of work. I
found that I was rarely able to be productive for this long, and the system rapidly
fell apart. I then dialed it back, starting by just allocating 45 minute work sessions,
split up by breaks and easier admin tasks, before increasing the length of my work
sessions.

Overall, the best approach for me has been to start with a system that isn’t very
ambitious, get that bedded in, and then gradually increase my targets. I found the
book Atomic Habits (see reading list below) helpful in thinking about this approach.
It was also very useful for me to do a weekly review, so I could reflect on how things
were going and what I wanted to experiment with over the next week.7

Productivity systems have a tendency to become a goal in and of themselves. Having
a weekly review also helped me limit the time I was spending tweaking my approach.
When I had an unproductive day, I would sometimes feel the need to immediately
spend time reading about new systems and tools and trying to reconfigure everything
about how I was managing my time. If I know I’m going to do some kind of weekly
review, I can write down new ideas/tools that I come across, then look into them
during the review, rather than constantly wondering if I could do much more work
if only I learnt how to use this shiny new app. When doing a weekly review, I found
that the best approach was to create a Google form with a specific set of questions
that I could go through each week (e.g., what did you experiment with last week,
and how could it be improved? What will you experiment with next week? Are you
spending your time as you want to?). This method makes the weekly review nice
and straightforward.

The point of all of this is not to try and squeeze every ounce of productivity from
every second of the day, or to make a beautiful daily plan, but rather to help find
some amount of balance between life’s competing priorities; something that I think

7For some general advice on how to do a weekly review, see here: https://todoist.com/
productivity-methods/weekly-review.

https://todoist.com/productivity-methods/weekly-review
https://todoist.com/productivity-methods/weekly-review
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most PhD students struggle with.8 It’s really important to make sure you’ve got
time for family, friends, hobbies, sleep, eating well, and exercise. I also believe that
academics have a responsibility to share their science outside of the lab, and work
to ensure that the academic environment is welcoming to all, both of which can be
time consuming activities that often fall on people who are already marginalised
in academia. Overall, you don’t want to have your identity so wrapped up in your
research that you need your work to be going well in order to feel good about
yourself. When things aren’t going so well (which will definitely happen), you
will feel much better if you have a rich life outside of the lab. You also shouldn’t
hesitate to look for mental health support if you’re having a tough time, although
unfortunately stigma can make this a challenge.9

Finally, I should caveat that it is a lot easier to give advice than to take it. Most of
my learning has come from error, with a few successes along the way. Hopefully
some of this will be useful to you!

C.2 A Few Extra Pieces of Scattered Advice

• If you’re writing code that only you are going to use, think about the end
user as yourself in six months. When you come back to this after forgetting
the details, will you be able to quickly understand what you were doing
and rerun the code? You will not regret taking the time to add in clear
comments/docstrings.

• Figure out the format your thesis will have to be in, and write your papers
using that format. It’s a lot easier to take a bunch of papers in LATEX and put
them into a thesis template in Overleaf than converting from Word.

• When you’re making figures, try and make as much of each figure using code,
and keep modifications from a vector graphics editor to a minimum. This
advice applies mostly when there’s a high chance that you’ll have to remake
the figures during paper revisions.

• Spend a bit of time deliberately developing communication skills, for example
by taking a specific scientific communications class. I found that these were

8I’m not spending much time on the broader systemic problems in academia in this appendix,
but here’s a related polemic: https://www.benkuhn.net/grad/.

9Mental health in grad school is a really significant issue. If you’re having a hard time, you’re
definitely not the only one!

https://www.benkuhn.net/grad/
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skills that could be rapidly developed with minimal effort, but at the same
time neglected by many people in the community.

• Figuring out a good desk setup will help you avoid neck and back trouble
and save you a world of pain. Caltech offers (or at least did offer) workplace
ergonomic consultations10 that can really help. I found that removing the
arms from my desk chair helped me slide further under the desk so I wasn’t
stretching forwards, and also stopped me constantly leaning to one side.

• Blocking distracting apps on my phone late at night helped me avoid endless
late night scrolling. I also deleted the Twitter and Facebook apps from my
phone, just using the website versions when I wanted to access them on
my phone. The fact that the tech companies really want you to install the
apps should tell you something about how much more addictive the apps are
compared to the websites.

• Your brain is bad at remembering long lists of things. If you need to remember
to do something, write it down.

• Relatedly, always have some method of taking notes with you when meeting
with your advisor. By the end of the meeting, try to have agreed on a clear set
of tasks to do next, and a rough prioritisation.

• If you come up with systems that work for you, share them! The more people
having discussions like this the better.

C.3 Some Specific Tools That I Have Found Helpful

• toggl (https://toggl.com/). A cross-platform time tracking app with a free
option.

• Freedom (https://freedom.to/). An app for restricting access to distracting
websites.

• Microsoft OneNote (https://www.onenote.com/download) and Notion (https:
//www.notion.so/). Two note-taking apps that I’ve used for keeping track
of projects. There are lots of these, with different features, e.g., Obsidian,
(https://obsidian.md), which is good for building connections between topics.

10See here https://safety.caltech.edu/root-pages/ergonomics. You can also consult: https://www.
mayoclinic.org/healthy-lifestyle/adult-health/in-depth/office-ergonomics/art-20046169.

https://toggl.com/
https://freedom.to/
https://www.onenote.com/download
https://www.notion.so/
https://www.notion.so/
https://obsidian.md
https://safety.caltech.edu/root-pages/ergonomics
https://www.mayoclinic.org/healthy-lifestyle/adult-health/in-depth/office-ergonomics/art-20046169
https://www.mayoclinic.org/healthy-lifestyle/adult-health/in-depth/office-ergonomics/art-20046169
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I think it’s best to start simple, then gradually experiment with different
features.

• Todoist (https://todoist.com/). A todo-list app. I used this for keeping track
of a wide range of administrative tasks, but generally kept the specific tasks
for my scientific projects in my note-taking apps.

• Google scholar (https://scholar.google.com/). I set up alerts for several key
phrases so I would get emails when new papers were published in relevant
areas. I also found it very helpful to look at papers that had cited the paper
I was currently reading so I could find more recent advances in the field.
There are more sophisticated versions of this (e.g., ResearchRabbit, https:
//www.researchrabbit.ai/), although I haven’t experimented with them.

• A reference manager, e.g., Zotero (https://www.zotero.org/). You definitely
want to avoid keeping all of your papers as pdfs stored in random locations
on your hard drive. Save all papers that you read in your reference manager,
then use it to generate a Bibtex file for future use in LATEX.11

• Overleaf (https://www.overleaf.com/). An online LATEX editor.

• Timeout (https://www.dejal.com/timeout/). An app that gets you to take
regular breaks from your computer so you can stand up and stretch.

• Headspace (https://www.headspace.com/). A guided meditation app.

• A cheap Bluetooth thermometer (e.g., https://us.govee.com/collections/home-
improvement/products/govee-bluetooth-hygrometer-thermometer-h5075). I
found this very helpful for figuring out comfortable working and sleeping
temperatures.

C.4 Recommended Reading
Much of my advice from above has been adapted from a variety of “business pro-
ductivity” books. They can be rather limited in their world view, and make appeals
to research of dubious quality. I could spend longer discussing their limitations12,

11If you don’t know what these things mean, you can start here: https://www.overleaf.com/learn/
latex/Free_online_introduction_to_LaTeX_(part_1).

12For some criticism, see here: https://www.newyorker.com/culture/office-space/the-frustration-
with-productivity-culture. For some spicy criticism, see here: https://jacobin.com/2018/03/four-
hour-workweek-tim-ferriss-work.

https://todoist.com/
https://scholar.google.com/
https://www.researchrabbit.ai/
https://www.researchrabbit.ai/
https://www.zotero.org/
https://www.overleaf.com/
https://www.dejal.com/timeout/
https://www.headspace.com/
https://us.govee.com/collections/home-improvement/products/govee-bluetooth-hygrometer-thermometer-h5075
https://us.govee.com/collections/home-improvement/products/govee-bluetooth-hygrometer-thermometer-h5075
https://www.overleaf.com/learn/latex/Free_online_introduction_to_LaTeX_(part_1)
https://www.overleaf.com/learn/latex/Free_online_introduction_to_LaTeX_(part_1)
https://www.newyorker.com/culture/office-space/the-frustration-with-productivity-culture
https://www.newyorker.com/culture/office-space/the-frustration-with-productivity-culture
https://jacobin.com/2018/03/four-hour-workweek-tim-ferriss-work
https://jacobin.com/2018/03/four-hour-workweek-tim-ferriss-work
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but these books contain specific tips that have helped me in my day-to-day work,
and I think are worth consulting:

• Deep Work: Rules for Focused Success in a Distracted World (Cal Newport).
Basically, we have lots of distractions in our lives, and these stop us from
doing extended period of focused work.

• Indistractable: How to Control Your Attention and Choose Your Life (Nir
Eyal). Pairs well with Deep Work, with some specific advice about how to
remove distractions.

• Getting Things Done: The Art of Stress-Free Productivity (David Allen). A
system for managing your todo-lists. Quite an intricate system, and the book
is a bit out of date, but still helpful. The key concept is that your brain is
bad at storing tasks, so you should write everything down, then regularly sort
through these tasks so you have clear priorities.13

• The Effective Executive: The Definitive Guide to Getting the Right Things
Done (Peter Drucker). Originally published in the 1960s, but has some useful
suggestions about tracking your time.

• Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad
Ones (James Clear). A good book if you want to work on building the kind
of habits you need to do the things suggested in the other books.

• Houston, We Have a Narrative: Why Science Needs Story (Randy Olson).
Not a productivity book, but a great resource for thinking about how to
communicate your science.

• While I’ve got you here, I also want to recommend: I’ve Got the Light of
Freedom: The Organizing Tradition and the Mississippi Freedom Struggle
(Charles M. Payne). This book probably won’t help you manage your weekly
schedule, but it’s a truly masterful book that changed how I see American
history.

13For a review of different productivity systems, see: https://todoist.com/productivity-methods.
My basic approach is a simplified version of the Getting Things Done method, roughly what is
described here: https://todoist.com/productivity-methods/systemist.

https://todoist.com/productivity-methods
https://todoist.com/productivity-methods/systemist
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Is the truth depressing? Some may find it so. But I find it liberating, and consoling.
When I believed that my existence was such a further fact, I seemed imprisoned in
myself. My life seemed like a glass tunnel, through which I was moving faster every
year, and at the end of which there was darkness. When I changed my view, the
walls of my glass tunnel disappeared. I now live in the open air.

—Derek Parfit (1942-2017), Reasons and Persons (Chapter 13, p. 281)
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