
Production and Characterization of Ytterbium
Monohydroxide (YbOH) for Next-Generation Parity and

Time-Reversal Violating Physics Searches

Thesis by
Nickolas Hovanec Pilgram

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2023
Defended August 4, 2022



ii

© 2023

Nickolas Hovanec Pilgram
ORCID: 0000-0002-5467-3783

All rights reserved except where otherwise noted



iii

Acknowledgements

First, I would like to thank my advisor, Nick Hutzler. His guidance has been a
critical component of my graduate work and has helped shape me into a much better
scientist. As one of his first students, I have experienced first-hand what it takes to
build and run a laboratory.

Additionally, I would like to thank Timothy Steimle, who has often acted as a second
advisor to me. Much of the work described here was completed under his guidance
and direction. It has been an honor and a privilege to learn the theory, techniques,
and practices of molecular spectroscopy from one of the best.

Working with the members of the Hutzler Lab has been one of the true highlights
of my time in graduate school and one of the things I will miss the most. Ashay
Patel, Yi Zeng, Chandler Conn, Phelan Yu, and Yuiki Takahashi, even though I was
the more senior student, I have learned a great deal from all of you. For that I am
grateful. I want to especially acknowledge Arian Jadbabaie, with whom I worked
to build the experiment from the ground up. Working with someone as brilliant and
talented as Arian has been a privilege and has made me a better scientist.

I would also like to thank the other members of the PolyEDM collaboration, in-
cluding students, postdocs, and P.I.s, for their advice and help. I would like to
thank William Hargus for his mentorship and guidance. My work with him is what
originally set me on the path to a PhD. I would like to thank my friend Robert Burns
for always keeping me grounded. I would like to thank Eric and Kathie Oleson for
welcoming me into their home and allowing me to write a significant portion of this
dissertation at their kitchen counter.

Thank you to my family. I am so grateful and thankful for your continuous love
and support. To my sister Jessica: your support and understanding has been critical
in this journey. Though we are at separate universities, pursuing a PhD in physics
at the same time as someone who knows me as well as, and only like, you do has
been an immense blessing and privilege. To my parents Mark and Kathy Pilgram,
thank you for teaching me the value of hard work and perseverance, for keeping me
grounded, and for encouraging me to never settle. I owe much of who I am and what
I have accomplished to you. I would also like to specifically thank my Mom, Kathy,
for pushing me (even if somewhat motivated by her desire to keep me in Southern
California) to apply to Caltech for graduate school, despite my doubts about getting



iv

accepted. It turned out to be a life-changing decision.

Most of all, I want to thank my fiancée1 Susannah. Susannah, thank you for
supporting and putting up with me during my time in graduate school. Your support
and encouragement has been critical; I could not have done this without you. This
achievement is also yours. Of all the things I have accomplished and completed
during my time at Caltech, the most important was meeting and proposing to you.
Susannah, I love you and will always love you.

Last, and most importantly, I thank God for blessing me with the amazing oppor-
tunity to study a minute part of his creation, through which I have gained a greater
appreciation for the beauty of His universe. I thank God for blessing me with the
talents and abilities needed to complete this work. All of these blessings ultimately
come through the grace and salvation He has provided to me through the sacrifice
of His son, Jesus Christ, on the cross, for which I am eternally grateful. All glory
and honor be to my Lord and savior Jesus Christ, who lives and reigns with God the
Father and the Holy Spirit, one God, now and forever. Amen.

1On and after August 13, 2022, Susannah will be my wife. If one is reading this after that date
please mentally substitute fiancée with wife.



To God the Father, God the Son, and God the Holy Spirit, one God, now and
forever.

“For what can be known about God is plain to them, because God has shown it to
them. For his invisible attributes, namely, his eternal power and divine nature,

have been clearly perceived, ever since the creation of the world, in the things that
have been made.” Romans 1:19-20a ESV



vi

Abstract

New sources of parity (P) and time-reversal (T) violating physics are motivated
by several unanswered questions in fundamental physics, including the observed
imbalance between matter and anti-matter in the universe. P,T-violating effects
can induce permanent electric dipole moments (EDMs) in atoms and molecules,
allowing them to act as sensitive probes of new physics. The linear, triatomic
molecule ytterbium monohydroxide (YbOH) has emerged as a promising candi-
date for next-generation molecular EDM searches, because it possesses both an
electronic structure amenable to optical cycling and parity doublets in the bend-
ing mode. These features enable laser cooling, highly polarizable science states,
and internal comagnetometry which promises an order-of-magnitude improvement
to current EDM sensitivities. Additionally, different isotoplogues of YbOH of-
fer sensitivity to different sources of P,T-violating physics: leptonic sources via
a measurement of the electron’s EDM in 174YbOH and hadronic sources via a
measurement of the nuclear magnetic quadrupole moment (NMQM) of the 173Yb
nucleus in 173YbOH. In this dissertation, I describe the design, construction, and
optimization of a YbOH cryogenic buffer gas beam (CBGB) source, including
the implementation of laser-enhanced chemical reactions for increased molecular
production. Direct and frequency modulated (FM) absorption spectroscopy and
laser-induced fluorescence measurements (LIF) were implemented in the CBGB
source, and LIF and separated field pump/probe microwave optical double reso-
nance spectroscopy was conducted in a supersonic molecular beam source. Addi-
tionally, laser-enhanced chemical reactions were utilized to develop a novel spec-
troscopic technique critical to the observation of the spectrum of the odd isotopo-
logues. FM absorption spectroscopy in the CBGB source allowed the observation
of the previously unobserved, weak 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0), [17.68], and
[17.64] vibronic bands. The 𝑋̃2Σ+(0, 0, 0) ground state has been characterized at
high precision and the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band of 174YbOH and the
𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of the odd 171,173YbOH isotopologues have
been characterized for the first time. This work provides much of the spectroscopic
knowledge needed to implement next-generation P,T-violating physics searches in
YbOH.
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C h a p t e r 1

Introduction

1.1 The Baryon asymmetry and fundamental symmetry violation
The Standard Model of particle physics is one of the most successful scientific
theories to date, surviving every challenge in the laboratory. Despite the standard
model’s success in describing the observable constituents of matter (quarks and lep-
tons) and their interactions (through the electromagnetic, weak, and strong forces),
it fails to provide a complete description for of the origin of these fundamental
particles and forces. More specifically, the standard model fails to explain the large
observed asymmetry between the amounts of matter and anti-mater in the universe.
This observed asymmetry between matter and anti-matter is known as the Baryon
asymmetry of the universe (BAU) [1, 2]. Sakharov noted that the BAU can occur if
several conditions are met, including the violation of charge-parity (CP) symmetry1

[2]. However, the magnitude of CP-violation in the standard model (generated by the
flavor-changing weak interactions in the CKM matrix [3]) is too small to explain the
BAU [4, 5]. New unobserved processes are then needed to explain this discrepancy.

There are three fundamental symmetries, charge (C), parity (P), and time reversal
(T). Each of these symmetries can be represented as one of the following operations;

• Charge (C): the inversion of the electric charge of all particles (+ ↔ −). This
is essentially converting all matter to anti-matter or vice versa.

• Parity (P): the inversion of all spatial coordinates (𝑥 → −𝑥, 𝑦 → −𝑦, 𝑧 → −𝑧).

• Time reversal (T): reversing time (𝑡 → −𝑡) or all momenta (−→𝑝 → −−→𝑝 ,
−→
𝐿 → −−→𝐿 ).

These operations are referred to as good symmetries if their application leaves the
physics unchanged, e.g., the same set of equations correctly describe the physics
both before and after the symmetry operation. The C, P, and T symmetries are all
conserved (e.g., good symmetries) in classical and non-relativistic quantum theories;
however, they are violated in the standard model (a relativistic quantum field theory)

1The other conditions are charge (C) symmetry violation, baryon number violation, and a
departure from thermal equilibrium.
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[6–8]. While each of these symmetries are violated in the standard model, there
are strong reasons to expect that the their total combination, CPT, is conserved [9].
Therefore, under the CPT theorem, CP-violation is equivalent to T-violation and the
two may be used interchangeably.

As described above, the standard model does not contain sufficient CP-violation (T-
violation) to explain the BAU. Therefore, the existence of the BAU strongly suggests
that additional sources of CP-violation beyond the standard model (BSM) exist. This
additional CP-violation could manifest itself as new CP-violating particles or forces
[10–12]. Detecting these new particles or forces could provide an explanation for
the BAU. Additionally, many classes of theories which extend the standard model
generically introduce new sources of CP-violation and are well motivated on other
grounds besides the BAU [13].

1.2 T-violating electromagnetic moments
Electric dipole moments (EDMs)
Any fundamental (quark, electron, etc.) or composite (proton, neutron, nucleus,
etc.) particle that possesses a permanent electric dipole moment violates both P and
T symmetry. Consider any spin 1/2 particle, such as the electron. If the electron
has a permanent electric dipole moment,

−→
𝑑 , it must be aligned (or anti-aligned)

with the electron’s spin,
−→
𝑆 , as this is the only internal vector which describes

the particle. If the orientation of
−→
𝑑 and

−→
𝑆 is not fixed then the electron would

have an additional degree of freedom. This additional degree of freedom would
allow, according to the Pauli exclusion principal, for four electrons to occupy an
atomic 𝑠 orbital, which is not the case. Let us consider the case where

−→
𝑆 and

−→
𝑑 are

aligned (the following argument also applies to the anti-aligned case). Now consider
applying the P operator. Under a parity transformation, the electric dipole moment
reverses direction (

−→
𝑑 → −−→𝑑 ) (an electric dipole moment represents a spatial charge

separation) while the spin (the intrinsic angular momentum of the electron) remains
unchanged. If

−→
𝑆 and

−→
𝑑 were originally aligned, a parity transformation would

result in them being anti-aligned. As discussed above, the orientation of
−→
𝑆 and

−→
𝑑

must be fixed and, therefore, a parity transform will result in a different electron than
we started with, one that cannot exist. Thus, the electron possessing a permanent
electric dipole moment violates P. If we instead applied the T operator we would
reverse the spin (an angular momentum) and

−→
𝑑 would remain unchanged. Again,

this results in a distinguishable electron and, therefore, the electron possessing a
permanent electric dipole moment would violate T as well.
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If the electron does have a permanent electric dipole moment (EDM), it is the
result of T-violating (or CP-violating) physics. In the context of the standard model
this arises through interaction of the electron with the quarks and the W boson.
The lowest-order contribution to the electron’s electric dipole moment (eEDM)
then comes at third order (three-loop Feynman diagrams). However, it has been
shown that all the three-loop diagrams cancel [14]. Therefore, the standard model
contribution to the eEDM results from fourth- or higher-order interactions and is
expected to be exceedingly small, |𝑑𝑒 | ∼ 10−44𝑒 ·cm [15]. However, the existence of
new T-violating BSM particles could also result in a non-zero eEDM. Interactions
between the electron and the T-violating particle could result in a non-zero value of
the eEDM. This is similar to the leading contributions to the electron’s anomalous
magnetic moment arising from one-loop interactions with the photon. One-loop
Feynman diagrams which contribute to the anomalous magnetic moment of the
electron and the eEDM (in the case of a super symmetric BSM model) are shown
in Fig. 1.1 of Ref. [16].

Consider the case where a new particle 𝐹, of mass 𝑀𝐹 exists, and couples to a
standard model fermion, 𝑓 , with CP-violating phase 𝜙𝐶𝑃𝑉 . Then at the 𝑙 loop level,
dimensional arguments indicate that the interaction with the new particle 𝐹 will
result in the standard model fermion 𝑓 possessing an EDM, 𝑑 𝑓 , of magnitude [17]

𝑑 𝑓 ∼ 𝑒𝑞 𝑓 sin 𝜙𝐶𝑃𝑉
(
𝑔2

16𝜋2

) 𝑙
𝜂𝐹𝑉

𝑚 𝑓

𝑀2
𝐹

. (1.1)

Where 𝑞 𝑓 and 𝑚 𝑓 are the charge and mass of the standard model fermion, 𝑔 is a
coupling constant, and 𝜂𝐹𝑉 is a possible enhancement factor from flavor violation.
Eq. 1.1 indicates that the magnitude of the EDM is inversely proportional to the
square of the new particles mass, 𝑀𝐹 . Therefore, a measurement of (or limit on)
the EDM of a standard model fermion, such as the electron, provides and indirect
measurement (or bound) on the mass scale at which new T-violating BSM physics
occurs.

Measurements of the eEDM are only sensitive to T-violating physics which couples
to the electron. However, the same or other T-violating physics can also couple to
hadrons. This can result in the quarks, the proton, the neutron, or nuclei possessing
EDMs and other CP-violating observables. Experiments searching for these EDMs
are complimentary to eEDM experiments as they probe T-violation in the hadronic
sector, as opposed to leptonic sector. Experiments aiming to measure or improve
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the limit on the proton [17, 18], neutron [19–23], and nuclear2 [25–30] EDMs are
currently underway. To date, no experimental measurements of a non-zero EDM of
either a fundamental or composite particle have been made [17].

Nuclear magnetic qudrapole moments (NMQMs)
T-violating physics can result in permanent EDMs. However, EDMs are not the only
permanent P,T-violating electromagnetic moment that can result from P,T-violating
physics. Following an EDM the next-lowest order P,T-violating electromagnetic
moment is a magnetic quadrupole moment (MQM). An MQM is a tensor quantity
and therefore, can only exist in a particle or nucleus of spin 𝑆 ≥ 1. Since all the
quarks and leptons, as well as the proton and neutron, have a spin of 1/2, they cannot
have an MQM. However, many atomic nuclei have 𝑆 ≥ 1 and, therefore, can have a
nuclear MQM (NMQM).

In a classical picture, an MQM looks like two oppositely circulating current loops
separated by some distance 𝑑. This classical current configuration can also be
realized by an orbiting EDM. Therefore, if a valence nucleon (proton or neutron) in
a nucleus has an EDM, when it orbits the nuclear core it will create a NMQM [31].
In spherically shaped nuclei the NMQM is dominated by the contributions from
the valence nucleons. However, in quadrupole deformed nuclei, a nucleus with a
elliptically shaped mass distribution, ∼ 𝐴2/3 of the nucleons are in open shells and
will contribute to the NMQM3, providing a large enhancement [32, 33]. In addition
to contributions from the EDMs of the nucleons, an NMQM can also result from
P,T-violating inter-nuclear forces, whose contributions can be one to two orders of
magnitude larger than those from the nucleon EDMs [33]. Even though NMQMs
are the result of a multitude of P,T-violating sources, they provide an indirect
measurement of P,T-violating physics in the hadronic sector and compliment eEDM
experiments. NMQM experiments also complement nuclear EDM searches since a
measurement of both an NMQM and an nuclear EDM in several different systems
will allow the exact source of the hadronic P,T-violating physics to be pinpointed.
Currently, the only limit on an NMQM comes from measurements of the Cs atom
[34].

2The experiments referenced here are aiming to measure nuclear Schiff moments, the residual
nuclear EDM not screened by the electrons in an atom or molecule [24].

3Here 𝐴 is the total number of nucleons in the nucleus.
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1.3 EDMs in molecules
The goal of an EDM experiment is to measure an EDM or NMQM. Since NMQMs
are more complicated than EDMs, we will first use an EDM measurement, specif-
ically an eEDM measurement, as an example and address NMQM measurements
afterward. If you place an electron with an EDM,

−→
𝑑𝑒, in an electric field

−→E , the
electric field will exert a torque on the EDM, −→𝜏 =

−→
𝑑𝑒 ×
−→E . This torque will cause

the EDM (and the spin of the electron) to precess at a frequency 𝜔 = 𝑑𝑒E/ℏ. After
a precession time 𝜏, the spin of the electron will have precessed through an angle
𝜙 = 𝑑𝑒E𝜏/ℏ. A measurement of this precession angle can be used to determine the
eEDM 𝑑𝑒. However, this experimental method with a fixed lab electric field has one
problem: if the electron is placed in a constant electric field it will be accelerated
away, completely preventing the spin precession measurement from occurring4.

To circumvent this problem we can instead examine the interaction of the eEDM
with the internal electric field of an atom or molecule,

−→E 𝑖𝑛𝑡 . Ostensibly, performing
EDM measurements in neutral atomic or molecular systems presents issues as well.
One of these issues was addressed by Schiff [35]. Schiff noted that when a neutral
system, such as an atom or molecule, is placed in a constant electric field, it is not
accelerated. Therefore, all the charged components of the atom or molecule (nuclei
and electrons) must organize in a way so that the net electric field they experience is
zero. In this case the electron must experience an average internal electric field of
zero, and so the expectation value of the eEDM interaction is zero, ⟨−−→𝑑 𝑒 ·

−→E 𝑖𝑛𝑡⟩ = 0.
While this is true for non-relativistic systems, when relativistic effects are considered
it results in a nonzero expectation value for the eEDM interaction, ⟨−−→𝑑 𝑒 ·

−→E 𝑖𝑛𝑡⟩ ≠ 0
[36, 37]. Sanders showed [38] that these relativistic effects not only give non-
zero expectation values for the eEDM interaction but also enhance it. In this case,
−−→𝑑 𝑒 ·

−→E 𝑖𝑛𝑡 = −𝑑𝑒E𝑒 𝑓 𝑓
−→
𝑆 · 𝑛̂ where 𝑛̂ is the unit vector along the internuclear axis and

E𝑒 𝑓 𝑓 = ⟨
−→
𝑑 𝑒 ·
−→E 𝑖𝑛𝑡⟩/⟨

−→
𝑑 𝑒⟩ ∼ 10 − 100 GV/cm is the effective internal electric field.

These extremely large effective internal electric fields (∼ 106 times larger than the
maximum electric field that can be created in a laboratory) make molecules very
sensitive systems for EDM measurements.

Since the internal electric field results from relativistic effects, it is maximized
when the electron is accelerated to high relativistic speeds. This occurs in atoms or
molecular states with a large overlap of the electron’s wavefuction and the nucleus,

4You could circumvent this problem by doing the experiment in a storage ring. However,
performing the experiment with an atomic or molecular system provides many advantageous features
as we shall see.
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meaning states with large s- and p-like content. Additionally, the internal electric
field scales with the atomic number roughly as 𝑍3 [36], making heavy atoms or
molecules containing heavy atoms extremely sensitive to EDM measurements.

The eEDM interaction in an atom or molecule is described by the P,T-violating
effective atomic/molecular Hamiltionian

𝐻̂𝑑 = −
−→
𝑑𝑒 ·
−→E 𝑒 𝑓 𝑓 , (1.2)

where
−→E 𝑒 𝑓 𝑓 = E𝑒 𝑓 𝑓 𝑛̂, and 𝑛̂ is the internuclear axis. In the absence of external fields,

the total atomic or molecular Hamiltonian is rotationally symmetric and, therefore,
the expectation value of the parity-odd vector quantity ⟨−→E 𝑒 𝑓 𝑓 ⟩ = 0. If an external
electric field,

−→E 𝑒𝑥𝑡 , is applied, it breaks the rotational symmetry and polarizes or
orients the atoms or molecules in the lab frame by mixing states of opposite parity.
In this case, ⟨−→E 𝑒 𝑓 𝑓 ⟩ ≠ 0 and is now proportional to the degree to which the atom or
molecule is polarized, thus ⟨−→E 𝑒 𝑓 𝑓 ⟩ ∝ 𝑃 where 0 ≤ 𝑃 < 1 is the polarization. The
expectation value of the internal electric field takes its maximum value when the
atom or molecule is fully polarized, maximizing the eEDM sensitivity. The atom
or molecule is fully polarized when the external electric field completely mixes the
opposite parity states. This occurs when the energy of the interaction of external
field with the atom’s or molecule’s CP-conserving dipole moment, −→𝐷 , is much larger
than the energy separation of the opposite parity states (Δ𝐸), −→𝐷 · −→E 𝑒𝑥𝑡 ≫ Δ𝐸 .

In order to estimate the magnitude of electric field needed to fully polarize the atom
or molecule (and maximize the eEDM sensitivity) we can make the approximation5,
𝑃 ∼ −→𝐷 · −→E 𝑒𝑥𝑡/Δ𝐸 . The atom or molecule is fully polarized when 𝑃 ∼ 1, which
corresponds to an electric field of |−→E 𝑒𝑥𝑡 | ∼ Δ𝐸/|−→𝐷 |. For atoms, the closest states of
opposite parity are electronic states which are separated by ∼ 10 − 100 THz. If we
make the justified assumption that the atomic (or molecular) dipole moment is about
one atomic unit |−→𝐷 | ∼ 𝑒𝑎0, then we need an electric field of E𝑒𝑥𝑡 ∼ 1, 000− 10, 000
kV/cm to fully polarize the atom. This is challenging since the largest electric field
that can be created in vacuum over reasonably large volumes in the laboratory6

is ∼ 100 kV/cm. At these fields, an atom would only have a polarization of
𝑃 ∼ 10−3, which would only project a very small fraction of E𝑒 𝑓 𝑓 for the EDM

5This approximation is good in the low-polarization limit, 𝑃 ≪ 1, but becomes less accurate as
the polarization increases. However, it is still helpful for making order of magnitude estimates. An
analytic expression for the polarization of a two-level system can be found in Sec. 2.1 of Ref [39].

6Above this threshold, arcing between the materials creating the electric field occurs preventing
higher fields from being realized. However, careful engineering can result in fields as high as 500
kV/cm [40] though with many design constraints.
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measurement. Diatomic molecules, however, have opposite parity rotational states
which are typically separated by ∼ 1 − 100 GHz. Therefore, a diatomic molecule
can be fully polarized with a field of E𝑒𝑥𝑡 ∼ 10 − 100 kV/cm. Since molecules
can be fully polarized, they are ∼ 1000 times more sensitive to EDMs compared to
atoms. Finally, certain diatomic molecules and generally all polyatomic molecules
have parity doublets, closely spaced states of opposite parity. These parity doublets
are generally separated by ≲ 100 MHz and therefore allow the molecule to be fully
polarized in fields of E𝑒𝑥𝑡 ≲ 100 V/cm. These parity doublets will be discussed in
more detail later in this section.

Finally, I would like to note that the quantity
−→E 𝑒 𝑓 𝑓 , known as the effective internal

electric filed, is a parameter which describes how sensitive a molecular state is to
energy shifts from an EDM. Dimensionally,

−→E 𝑒 𝑓 𝑓 takes on the units of an electric
field and even though it is not physically observable, treating it as an electric field
provides good intuition7. The NMQM interaction in a molecule is parameterized
by a similar parameter 𝑊𝑀 . 𝑊𝑀 is similar to E𝑒 𝑓 𝑓 as it describes the sensitivity of
a molecular state to an NMQM, is proportional to the degree to which the molecule
is polarized, and is enhanced by relativistic effects [33]. Therefore, the discussion
above is also applicable to NMQM measurements as well.

Measuring EDM energy shifts
When performing an EDM measurement, we want to fully polarize the molecules
with an external electric field so that ⟨𝐻̂𝑑⟩ = ⟨−

−→
𝑑𝑒 ·
−→E 𝑒 𝑓 𝑓 ⟩ ≠ 0 andE𝑒 𝑓 𝑓 is maximized.

In this case, the eEDM interaction results in the following energy shift

𝐸𝑑 = −
−→
𝑑𝑒 ·
−→E 𝑒 𝑓 𝑓 = −𝑑𝑒E𝑒 𝑓 𝑓

−→
𝑆 · 𝑛̂ = −𝑑𝑒E𝑒 𝑓 𝑓Σ, (1.3)

where Σ is the projection of
−→
𝑆 on the internuclear axis 𝑛̂. When fully polarized, 𝑛̂ is

aligned or anti-aligned with the external electric field (which defines the lab z-axis).
If we consider preparing a superposition of two states with opposite eEDM shifts
(e.g., opposite values of Σ so that ⟨𝜓1 |𝐻̂𝑑 |𝜓1⟩ = −⟨𝜓2 |𝐻̂𝑑 |𝜓2⟩), then the eEDM
interaction will cause the states to precess at a frequency of

𝜔𝑑 = −2𝑑𝑒E𝑒 𝑓 𝑓Σ. (1.4)

This precession frequency can be measured experimentally. Upon reversal of the
internal electric field

−→E 𝑒 𝑓 𝑓 the precession frequency will reverse. The key experi-
mental signature that distinguishes the energy shift of an eEDM from other energy

7Additionally,
−→E 𝑒 𝑓 𝑓 behaves like an electric field in the effective Hamiltionian describing the

molecular energy shifts which result from an eEDM.
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shifts in the molecule is a change of the measured precession frequency correlated
with the reversal of the effective internal electric field,

−→E 𝑒 𝑓 𝑓 .

One way to reverse
−→E 𝑒 𝑓 𝑓 is to reverse the external electric field E𝑒𝑥𝑡 . However,

reversals of laboratory electric fields are imperfect and can result in systematic
errors. However, in molecules with parity doublets, the internal electric field can
be reversed spectroscopically, e.g., by changing quantum states. As previously
mentioned parity doublets are closely spaced opposite parity states. They result
when a molecule has a non-zero projection of angular momentum on the internuclear
axis (or symmetry axis for nonlinear polyatomic molecules). In diatomic molecules
this can only result from a non-zero projection of the electronic angular momentum
on the internuclear axis (Λ), called lambda-doublets. In polyatomic molecules the
angular momentum projection can come from the ligand degrees of freedom, such
as angular momentum associated with bending modes (𝑙 and 𝑙-doublets) or rotation
about the symmetry axis. Bending angular momentum and 𝑙-doublets are discussed
in more detail in Section 2.3, while the details of non-linear molecules are beyond
the scope of this dissertation and will not be discussed further. For the following
discussion we will use the quantum number 𝐾 to denote the projection of angular
momentum on the internuclear axis8. For any angular momentum with a non-zero
projection on the inter nuclear axis, the projection can take one of two values | +𝐾⟩
and | − 𝐾⟩. These correspond to opposite alignments on the internuclear axis. In
free field, the eigenstates must be rotationally symmetric (no directionality) so the
eigenstates are equal superpositions of the two, creating two states of opposite parity

|±⟩ = 1
√

2
( |𝐾⟩ ± | − 𝐾⟩) , (1.5)

where |+⟩ is the state of positive parity and |−⟩ is the state of negative parity. These
states are nominally degenerate; however, the rotation of the molecule breaks this
degeneracy, resulting in the parity doublets. As previously mentioned these doublets
allow the molecule to be fully polarized in relatively small electric fields. When fully
polarized the parity doublets are fully mixed, resulting in the following quantum
states

|𝜓±⟩ =
1
√

2
( |+⟩ ± |−⟩) = | ± 𝐾⟩. (1.6)

The | + 𝐾⟩ state corresponds to the molecule internuclear axis, and
−→E 𝑒 𝑓 𝑓 , being

aligned to the lab electric field
−→E 𝑒𝑥𝑡 , and | − 𝐾⟩ corresponds to the molecule

8In linear molecules 𝐾 = Λ + 𝑙. In the following discussion one can replace 𝐾 with Λ or 𝑙.
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internuclear axis, and
−→E 𝑒 𝑓 𝑓 , anti-aligned with the lab electric field

−→E 𝑒𝑥𝑡 . If the
experiment is first performed in | + 𝐾⟩, spectroscopically switching to the | − 𝐾⟩
state will reverse

−→E 𝑒 𝑓 𝑓 without changing
−→E 𝑒𝑥𝑡 . This internal field reversal is not

subject to the same systematics as reversing the external laboratory field. Pairs of
states which allow the spectroscopic reversal of

−→E 𝑒 𝑓 𝑓 are often referred to as internal
comagnetometer states.

Internal comagnetometers allow the rejection of critical systematic errors associated
with lab electric field reversals. The two experiments which set the most stringent
limits on the value of the eEDM rely on internal comagnetometers to reach their
exceptional sensitivities [41, 42]. Therefore, it is desirable, if not critical, that future
molecular EDM experiments utilize these internal comagnetometer states as well.

Now we will examine the NMQM energy shifts in a molecule and their experimental
signature. The effects of a NMQM on the energy levels of a molecule are described
by the effective P,T-violating MQM Hamiltonian [33]:

𝐻̂𝑀𝑄𝑀 = − 𝑊𝑀𝑀

2𝐼 (2𝐼 − 1)ST̂𝑛̂, (1.7)

where 𝑀 is the magnitude of the NMQM, 𝑆 is the spin of the electron, 𝐼 is the
magnitude of the spin of the nucleus, and T̂ is a second-rank tensor9 which relates
the NMQM shift to the orientation of the nuclear spin. As mentioned before, 𝑊𝑀

is a coupling constant which describes the sensitivity of a molecular state to the
NMQM interaction. 𝑊𝑀 behaves similarly to E𝑒 𝑓 𝑓 , so that the expectation value of
𝐻̂𝑀𝑄𝑀 is maximized when the molecule is fully polarized and switches sign when
the internal comagnetometer state is switched or the external lab field is reversed.
The energy shift resulting from 𝐻̂𝑀𝑄𝑀 is dependent on the projection of the nuclear
spin on the lab z-axis, 𝐼𝑧 (when the molecule is fully polarized this is equivalent to
the projection on the internuclear axis). When the projection of the nuclear spin is
maximized, 𝐼𝑧 = 𝐼, the NMQM energy shift is [33]

𝐸𝑀𝑄𝑀 (𝐼𝑧 = 𝐼) = −
1
3
𝑀𝑊𝑀Σ. (1.8)

If you compare Eq. 1.8 to Eq. 1.3 you can see that the energy shifts behave in the
same way (just differing by a factor of 1/3) with a direct correspondence between
𝑑𝑒 and 𝑀 and E𝑖𝑛𝑡 and 𝑊𝑀 . Therefore, a NMQM experiment is performed in the

9In Eq. 1.7, S and 𝑛̂ are first rank tensors (vectors). The product of these two first rank tensors
with the second rank tensor, T̂, results in a scalar, ST̂𝑛̂ =

∑
𝑖, 𝑗 𝑆𝑖𝑇𝑖, 𝑗𝑛 𝑗 .
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same way as the eEDM experiment; preparing a superposition of two states with
opposite NMQM shifts and measuring the precession frequency

𝜔𝑀𝑄𝑀 (𝐼𝑧 = 𝐼) = −
2
3
𝑀𝑊𝑀Σ. (1.9)

Again the experimental signature of an NMQM is the change in the precession
frequency with a reversal of𝑊𝑀 . Lastly, the background in an NMQM experiment
will include effects from a possible eEDM. However, eEDM shifts are constant with
respect to 𝐼𝑧 while the NMQM energy shifts will depend on the value of 𝐼𝑧. If the
precession frequency is measured in states with different projections of 𝐼𝑧 then the
NMQM shift can be isolated from the eEDM shift.

Improving EDM sensitivity
Here I will briefly examine the sensitivity of EDM measurements in the context
of how they can be improved. Again, I will use the eEDM as an example. Since
eEDM and NMQM measurements are performed using the same spin precession
method, everything discussed regarding an eEDM can be applied to the NMQM.
The current best limit on the eEDM is |𝑑𝑒 | < 1.1 × 10−29𝑒 · cm [41]. This limit
was set by the ACME collaboration using a molecular beam of ThO molecules.
Experiments aimed at improving this limit are currently underway [43–46]. For an
eEDM measurement the ultimate shot noise limit is set by [47]

𝛿𝑑𝑒 =
ℏ

2E𝑒 𝑓 𝑓 𝜏
√
𝑁
, (1.10)

where 𝜏 is the coherence time (spin precession time) and 𝑁 is the total number of
molecules. Increasing sensitivity is accomplished by decreasing 𝛿𝑑𝑒. Therefore,
next-generation eEDM experiments want to maximize E𝑒 𝑓 𝑓 , 𝜏, and 𝑁 . As discussed
before, E𝑒 𝑓 𝑓 (or 𝑊𝑀) is maximized by performing the EDM experiment with a
heavy polar molecule. The ACME experiment was able to produce large numbers
of molecules using a cryogenic buffer gas source; however, the coherence time is
limited by the beam transit to ∼ 1 − 10 ms. Therefore, gains in sensitivity can be
made by increasing the coherence time. This can be accomplished by performing
the experiment with a laser cooled and trapped molecular sample as opposed to a
molecular beam.

In the past decade not only has the laser cooling and trapping of molecules been
accomplished but the field has also seen tremendous progress. Multiple species, both
diatomic [48–52] and polyatomic [53–56] molecules have been laser cooled. Several
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of these species have been magneto-optically trapped [57–60] and some loaded into
conservative traps [61–66]. A brief overview of molecular laser cooling is provided
in Section 2.10. Performing an EDM measurement with a laser cooled and trapped
sample can increase the coherence time, and therefore the EDM sensitivity, by orders
of magnitude [67].

Upgrades to current EDM experiments [44, 68] are projected to improve EDM
sensitivity by an order of magnitude (10−30 e cm) in the next few years (by 2024).
Experiments utilizing the laser cooling and trapping of molecules [43] are projected
to provide an additional order of magnitude improvement in EDM sensitivity (10−31

e cm) in the next ∼5 years (2027). For more details on improvements to EDM
sensitivity see Ref. [17], particularly Fig. 5.

1.4 YbOH for EDM measurements
Based on the discussions in this chapter, an ideal molecule with which to perform
an eEDM or NMQM experiment will meet the following criteria:

• Contain a heavy atom (large 𝑍): E𝑒 𝑓 𝑓 ∝ 𝑍3 and𝑊𝑀 ∝ 𝑍2 so this will provide
large E𝑒 𝑓 𝑓 ,𝑊𝑀 .

• Have a science state comprised of valence electron orbitals derived from the
atomic 𝑠 orbitals of the heavy atom: Due to relativistic effects, E𝑒 𝑓 𝑓 and𝑊𝑀

are larger in states where the valence electron has a large overlap with the
heavy nucleus.

• Have a science state with parity doublets: Allows the molecule to be fully
polarized in small fields and provides systematic error rejection via internal
comagnetometer states.

• The molecule can be produced in a cryogenic buffer gas source: This allows
the production of a large number of molecules.

• Can be laser cooled: Will allow very large coherence times.

• In the case of an NMQM measurement, the heavy nucleus should have a spin
of 𝑆 ≥ 1 and a large quadrupole deformation.

The linear triatomic molecule ytterbium monohydroxide (YbOH) meets all of the
above criteria (as I will describe below) and is therefore an excellent molecule with
which to develop next-generation EDM experiments. First, the Yb atom is heavy,
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𝑍 = 70, and the ground 𝑋̃2Σ+ electronic state is largely comprised of 6𝑠𝜎 molecular
orbitals (correlated to the Yb+ 6𝑠 orbital) 10. This provides large E𝑒 𝑓 𝑓 and𝑊𝑀 which
have been calculated to be E𝑒 𝑓 𝑓 = 23.4 GV/cm [69] and𝑊𝑀 = −1.067× 1033 Hz/(𝑒
cm2) [70] in the ground 𝑋̃2Σ state11. Second, the excited bending mode of the 𝑋̃2Σ+

state has parity doublets, in the form of 𝑙-doubles, due to the angular momentum
associated with the bending motion. These 𝑙-doublets are expected to be split by
∼ 10 MHz [67] and will provide full polarization and internal comagnetometers.
Third, YbOH is chemically and electronically similar to the alkaline earth fluorides
and hydroxides (CaF, SrF, SrOH, etc.) which were produced in a cryogenic buffer
gas source prior to the work described in this dissertation [71]. Fourth, YbOH
has an electronic structure that is amenable to laser cooling [67] and similar to
SrOH which was laser cooled prior to the start of this work [53]. Finally, Yb has
multiple isotopologues. The most abundant isotope, 174Yb, has a nuclear spin of
𝑆 = 0, making 174YbOH ideal for eEDM searches. The 173Yb nucleus has a spin
of 𝑆 = 5/2 and a large quadrupole deformation making 173YbOH ideal for NMQM
searches.

1.5 Overview
The work described in this dissertation is focused on the production and spec-
troscopic characterization of YbOH for the development of eEDM and NMQM
searches. The work related to the eEDM search is part of the PolyEDM collab-
oration which aims to perform a next-generation eEDM experiment with a laser
cooled and trapped sample of polyatomic molecules. The NMQM experiment aims
to perform the first NMQM measurement in a molecular system using a cold molec-
ular beam of YbOH. Following generations of the NMQM experiment will aim to
increase sensitivity by adding laser cooling. The work described here lays much of
the groundwork for these experiments.

This dissertation is organized in the following way. Ch. 2 provides an overview
of molecular structure and spectroscopy. Ch. 3 describes the design, construction,
and testing of our 4 K cryogenic buffer gas beam source. Ch. 4 presents the pure
rotational spectroscopy of the 𝑋̃2Σ+(0, 0, 0) state of 174YbOH. Ch. 5 presents the
spectroscopy of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of the odd isotopologues,
171,173YbOH, as well as a novel spectroscopic technique based on laser-enhanced

10The hyperfine measurements of the odd isotopologues of YbOH, described in this dissertation
indicate, that the 𝑋̃2Σ+ state is ∼ 54% 6𝑠𝜎.

11The hyperfine measurements of the odd isotopologues of YbOH described in this dissertation
provided experimental conformation of the computational methods used to calculate these values.
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chemical reactions. Ch. 6 describes the implementation of frequency modulated
absorption spectroscopy in the cryogenic buffer gas source and the measurement
of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0), [17.68], and [17.64] bands of 174YbOH.
Finally, Ch. 7 provides an overview of the relevance of this work to the eEDM
and NMQM experiments and the ongoing and future work that the work of this
dissertation has enabled.
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C h a p t e r 2

Molecular Structure

In this chapter I describe the general molecular structure of linear molecules with a
single valence electron which is applicable for describing the quantum mechanical
structure of YbOH. Though the goal is to describe YbOH, the molecular structure
described here is general and applicable to many diatomic and linear polyatomic
molecules with doublet (spin = 1/2) electronic states. In addition to YbOH (and
YbF) all alkaline earth metal (AEM) fluoride and and some alkaline earth metal
hydroxide molecules are described by this molecular classification. These molecules
are extremely relevant in the context of atomic, molecular, optical physics as several
of the AEM fluorides and hydroxides have been laser cooled [48, 49, 52–55] and
trapped [57, 59–65], and several of these molecules are highly sensitive to new
physics [43, 67]. The various isotopologues of YbOH themselves have structures
amenable to laser cooling and (as discussed in Ch. 1) are highly sensitive probes
for measuring either an eEDM, NMQM [67], or NSD-PV [72].

2.1 Born–Oppenheimer approximation and separation of molecular wave-
function

The quantum mechanical structure of a molecule is determined by solving the time-
independent Schrödinger equation

𝐻̂𝑡𝑜𝑡Ψ = 𝐸Ψ, (2.1)

where 𝐻̂𝑡𝑜𝑡 is the total electrostatic Hamiltonian of the molecular system, Ψ is the
molecular wavefunction describing a quantum state, and 𝐸 is the energy of the state
Ψ. 𝐻̂𝑡𝑜𝑡 describes the total energy of the molecular system, both kinetic an potential
and is given by [73, 74],

𝐻̂𝑡𝑜𝑡 = 𝑇𝑒 + 𝑇𝑛 + 𝑉̂𝑒,𝑒 + 𝑉̂𝑒,𝑛 + 𝑉̂𝑛,𝑛. (2.2)

The terms in 𝐻̂𝑡𝑜𝑡 are as follows:

• the kinetic energy of the electrons of mass 𝑚

𝑇𝑒 = −
ℏ2

2𝑚

𝑁𝑒∑︁
𝑖=1
∇2
𝑖 ; (2.3)
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• the kinetic energy of the nuclei, each of mass 𝑀 𝑗

𝑇𝑛 = −
ℏ2

2

𝑁𝑛∑︁
𝑗=1

1
𝑀 𝑗

∇2
𝑗 ; (2.4)

• the repulsive electrostatic potential between the electrons, located at 𝑟𝑖

𝑉̂𝑒,𝑒 =
𝑒2

4𝜋𝜖0

∑︁
𝑖′<𝑖

𝑁𝑒∑︁
𝑖=1

1
|𝑟𝑖 − 𝑟𝑖′ |

; (2.5)

• the attractive electrostatic potential between the electrons, located at 𝑟𝑖, and
the nuclei, each of charge 𝑍 𝑗 and located at 𝑅 𝑗

𝑉̂𝑒,𝑛 = −
𝑒2

4𝜋𝜖0

𝑁𝑒∑︁
𝑖=1

𝑁𝑛∑︁
𝑗=1

𝑍 𝑗

|𝑟𝑖 − 𝑅 𝑗 |
; (2.6)

• the repulsive electrostatic potential between the nuclei

𝑉̂𝑛,𝑛 =
𝑒2

4𝜋𝜖0

∑︁
𝑗 ′< 𝑗

𝑁𝑛∑︁
𝑗=1

1
|𝑅 𝑗 − 𝑅 𝑗 ′ |

. (2.7)

This Hamiltonian does not include the electronic and nuclear spin degrees of free-
dom. The interactions arising from these degrees of freedom are generally treated as
perturbations to the electrostatic Hamiltonian and are discussed in detail in sections
2.7 and 2.8.

The Hamiltonian given in Eq. 2.2 can’t be solved exactly, so numerical methods
and well-justified approximations are needed [73]. One such simplification is the
Born-Oppenheimer (BO) approximation [73, 75]. This approximation relies on
the fact that the much lighter electrons move significantly faster than the heavier
nuclei and therefore the electrons can rapidly adjust to any change in the nuclear
configuration. In this case, the nuclear motion can be treated as a perturbation to
the electronic Hamiltonian,

𝐻̂𝑒 = 𝐻̂𝑡𝑜𝑡 − 𝑇𝑛 = 𝑇𝑒 + 𝑉̂𝑒,𝑒 + 𝑉̂𝑒,𝑛 + 𝑉̂𝑛,𝑛. (2.8)

In this approximation, the electron configuration for a fixed nuclear configuration,
𝑅0, can be determined. In the BO approximation, the motions of the nuclei, both
vibrations and rotations, do not couple to the electrons so that the molecular wave-
function can be factored into two separate parts,
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Ψ𝑡𝑜𝑡 ≈ 𝜓𝑒 (𝑟, 𝑅)𝜒𝑛 (𝑅). (2.9)

The electronic wavefuction, 𝜓𝑒 (𝑟, 𝑅), describes the motion and positions of the
electrons and depends on the electron, 𝑟, and nuclear, 𝑅, coordinates while the
nuclear wavefuction, 𝜒𝑛 (𝑅), describes the motion of the nuclei and only depends on
the nuclear coordinates, 𝑅. The electronic wavefuction is a solution to the electronic
Schrödinger equation,

𝐻̂𝑒𝜓𝑒 (𝑟, 𝑅) = 𝐸𝑒 (𝑅)𝜓𝑒 (𝑟, 𝑅), (2.10)

which can be solved for a fixed nuclear configuration, 𝑅0. Plugging Eq. 2.8 and 2.9
into Eq. 2.1 gives [73],

(𝐸𝑒 (𝑅) + 𝑇𝑛)𝜒𝑛 (𝑅) = 𝐸𝜒𝑛 (𝑅), (2.11)

where 𝐸 = 𝐸𝑒 +𝐸𝑛 and 𝐸𝑛 is the energy from the nuclear motion. Eq. 2.11 indicates
the energy of a given configuration of the electrons, 𝐸𝑒 (𝑅), determines the potential
in which the nuclei move.

Finally, if we work in a molecule fixed frame which rotates with the molecule we
can further separate the vibrational and rotational parts of the nuclear wavefuction,
𝜒𝑛 = 𝜓𝜈𝜓𝑅 [73]. This allows the total molecular wavefuction to be expressed as,

Ψ = 𝜓𝑒𝜓𝜈𝜓𝑅 . (2.12)

This is especially useful since the energies associated with the electronic states,
nuclear vibration, and nuclear rotation are generally orders of magnitude different
(𝐸𝑒 > 𝐸𝜈 > 𝐸𝑅). We can therefore view each electronic state as having its own
manifold of vibrational states and each of these vibrational (vibronic) states as having
its own manifold of rotational states.

2.2 Electronic structure
Potential energy surface and molecular geometry
The electronic states of the molecule, 𝜓𝑒,𝑖 (𝑅), are determined by solving Eq.2.10.
Each electronic state, 𝜓𝑒,𝑖 (𝑅) has an associated energy, 𝐸𝑒,𝑖 (𝑅) which depends on
the nuclear configuration. The functional dependence of 𝐸𝑒,𝑖 (𝑅) on the nuclear
coordinates determines the potential energy surface (PES) for the electronic state.
If the PES has a minimum, the electronic state is bound; if not, then the state
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Figure 2.1: Example one-dimensional potential energy surfaces (PESs) as a func-
tion of internuclear distance 𝑟. The solid colored lines provide examples of a strongly
bound, weakly bound, and an unbound PES. Dashed horizontal lines indicate the
dissociation energies of the bound states. Vertical dot-dashed lines mark the minima
of the PESs and give the equilibrium bond distances for each electronic state. Also
show are the vibrational states, the dotted horizontal lines, for each bound PES.

is unbound and no molecule forms, or it disassociates. If the electronic state is
bound the nuclear configuration which minimizes the PES, 𝑅0, gives the equilibrium
molecular geometry (bond lengths and angles). If the PES has multiple minima than
each minimum corresponds to a different stable, or psudo-stable, geometry; each of
these geometries is a separate isomer (same set of atoms in different configuration).
Each electronic state of the molecule has its own associated PES and therefore
its own equilibrium geometry. Examples of weakly bound, strongly bound, and
unbound one-dimensional PESs (for a diatomic molecule) are shown in Fig. 2.1.

Molecular orbitals and ligand field theory
Atoms bond to form molecules to lower the total energy of the combined system. The
bonds are made via the occupation of bonding molecular orbitals (MOs). Though
these bonding orbitals (and non-bonding MOs as well) can be very delocalized, it
can still be helpful to think of them in the more localized atomic orbital (AO) basis.
Consider the case of a Yb (or an alkaline-earth metal Mg, Ca, Sr, etc.) bonding to
the halogen F (or other halogen or pseudo-halogen Cl, OH, etc.). The F has two
filled and one half-filled atomic p-orbitals while the Yb has a filled s-orbital. The



18

Yb and the F bond by filling a bonding orbital which is comprised of some linear
combination of the Yb and F AOs. In this case, a simple intuitive picture is that the
bonding orbital is comprised of the linear combination of the half-filled F p-orbital
and the Yb s-orbital. This bonding MO is completely filled, one electron from the
F and one from the Yb, resulting in a lowered total energy. Since the total number
of available orbitals stays the same, the combination of the two atomic orbitals (the
Yb s orbital and F p orbital) results in two molecular orbitals, the bonding orbital
and another antibonding orbital. The other Yb s-electron resides in this antibonding
orbital. The more covalent the bond, the more delocalized the MOs become, and
the AO basis becomes an increasingly non-intuitive description as the MOs are
comprised of more AOs. However, more ionic bonds result in more localized MOs
and therefore viewing the MOs in the AO basis is quite useful.

In the case of an Yb bonded to F or OH, the bond is very ionic and results in a
bonding orbital fairly localized around the F atom or OH radical. The picture then
looks like the F or OH grabbing one of the valence s electrons from the Yb and
leaving the other localized on the metal. In this case the valence electron is centered
on the Yb metal 2+ ion (Yb2+) which is ionically bonded to the negatively charged
F− or OH−. With the localized valence electron on the metal, the electronic structure
of the molecule can then be well described by ligand field theory [76–78]. Ligand
field theory treats the electric field, called the ligand field (LF) in this case, from
the negatively charged halogen or psudo-halogen as a perturbation to the states of
the atomic metal ion M2+ (M=Yb in the example above). The Hamiltonian for the
valence electron is then [76, 79],

𝐻̂𝑣𝑎𝑙𝑒𝑛𝑐𝑒 = 𝐻̂
0 + 𝐻̂′ = 𝐻̂𝑀2+ + 𝐻̂𝐿𝐹 . (2.13)

The LF perturbs the AOs of the metal ion in multiple ways. First, the energies of
the AOs are shifted by the LF. Second, the LF breaks the degeneracy between AOs
which have different angular momentum projections (𝑚𝑙) on the bonding axis, via
the Stark effect. Last, the LF mixes AOs with the same 𝑚𝑙 to form the MOs. In
this case the valence MOs can be well described by linear combinations of a small
number of AOs.

Labeling of electronic states
Atomic single-electron states are labeled by lower case letters corresponding to the
electron’s orbital angular momentum; s,p,d, and f for angular momenta of 0, 1ℏ,
2ℏ, and 3ℏ respectively. Multi-electron atomic states are labeled with capital letters
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corresponding to the total electron angular momenta; S, P, D, F, etc, with the capital
letters corresponding to the same angular momentum as the lower case ones. In
linear molecules, the molecular bond breaks the spherical symmetry of the system so
that only the projection of the orbital angular momentum on the molecular axis, Λ, is
relevant. Lower case Greek letters (𝜎, 𝜋, 𝛿, 𝜙) and capital Greek letters (Σ,Π,Δ,Φ)
correspond to single electron and total electronic angular momenta projections of
0, 1ℏ, 2ℏ, and 3ℏ respectively.

Atomic electronic states are denoted by the term symbols 2𝑆+1𝐿𝐽 where 𝑆 is the total
electron spin, 𝐿 is the total electronic angular momentum (S, P, D, F, etc.), and 𝐽 is
the total angular momentum, 𝐽 = 𝐿 + 𝑆. The term symbols for molecular electronic
states follow a similar convention where each electronic state is denoted by the
term symbol 2𝑆+1ΛΩ where 𝑆 again is the total electron spin, Λ is the projection
of the total electronic angular momentum on the internuclear axis (Σ,Π,Δ,Φ for
Λ = 0, 1ℏ, 2ℏ, 3ℏ), and Ω = Λ + Σ which is the projection of the total electronic
angular momentum 𝐽𝑒 along the internuclear axis. Here, Σ denotes the projection
of the total electron spin on the internuclear axis (not to be confused with the term
symbol of Σ for an electronic state with Λ = 1). Oftentimes one can think of
molecular Σ states (e.g., 2Σ1/2 states) as being similar to atomic S states (e.g., 2S1/2

states) and similarly for molecular Π, and Δ states and atomic P and D states.

2.3 Vibrational structure
Each electronic state has a ladder of vibrational states. The vibrational energies and
wavefunctions are given by solving the vibrational Schrödinger equation, 𝐻̂𝜈𝜓𝜈 =

(𝑇𝑛 + 𝑉̂𝑛)𝜓𝜈 = 𝐸𝜈𝜓𝜈, where 𝑉̂𝑛 is the PES given by solving Eq. 2.10 and 𝑇𝑛 is
the kinetic energy of the nuclei. If the amplitude of the vibrations is small, such
that the nuclei do not move far from the equilibrium position, the PES can be
approximated as a harmonic potential1. Working in the normal coordinate system
the vibrational Hamiltonian can then be expressed2 as a sum of 3𝑁𝑛 − 5 harmonic

1More accurate potentials which better describe the actual PES can also be used. One example
is the Morse potential for which exact analytical solutions to the Schrödinger equation are known
[80].

2Linear molecules have 3𝑁𝑛−5 vibrational degrees of freedom. All molecules have 3𝑁𝑛 degrees
of freedom but in the linear case there are 3 degrees of freedom for translation and only 2 for rotation,
leaving 3𝑁𝑛 − 5 vibrational degrees of freedom. Linear molecules only have 2 rotational degrees
of freedom because they are symmetric about their internuclear axis. Non-linear molecules are not
limited in this manner and have 3 rotational degrees of freedom.
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oscillator Hamiltonians [81],

𝐻̂𝜈 =

3𝑁𝑛−5∑︁
𝑖=1

(
−ℏ

2

2
𝜕2

𝜕𝑄𝑖
+ 1

2
𝜔2
𝑖𝑄

2
𝑖

)
, (2.14)

where 𝑄𝑖 are the 3𝑁𝑛 − 5 normal coordinates and 𝜔𝑖 are the vibrational frequencies
of each normal mode. In this normal coordinate system the vibrational Schrödinger
equation factors into 3𝑁𝑛−5 independent single quantum harmonic oscillator equa-
tions allowing each of the 3𝑁𝑛 − 5 normal vibrational modes of the molecule to be
treated separately. The solution to the quantum harmonic oscillator is known and
the total vibrational wavefunction of the molecule is given by the product of the
individual vibrational wavefunctions of each normal mode,

𝜓𝜈 =

3𝑁𝑛−5∏
𝑖=1

𝜓𝜈,𝑖 (𝑄𝑖). (2.15)

The total vibrational energy is then given by the sum of the energy of each normal
mode,

𝐸𝜈 =

3𝑁𝑛−5∑︁
𝑖=1

𝐸𝑖 =

3𝑁𝑛−5∑︁
𝑖=1

ℏ𝜔𝑖

(
𝜈𝑖 +

𝑑𝑖

2

)
, (2.16)

where 𝑑𝑖 is the degeneracy of the vibrational mode.

In reality the vibrational potential is not perfectly harmonic and aharmonic terms
must be added, which becomes especially important when dealing with larger vi-
brations. These aharmonic terms mix the wavefunctions of the different normal
modes so that the resulting eigenstates are linear combinations of the harmonic
wavefunctions. The energies of the vibrational states are then given by [82],

𝐸𝜈

ℏ
=

3𝑁𝑛−5∑︁
𝑖=1

𝜔𝑖

(
𝜈𝑖 +

𝑑𝑖

2

)
+

3𝑁𝑛−5∑︁
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∑︁
𝑘≥𝑖

𝑥𝑖𝑘

(
𝜈𝑖 +

𝑑𝑖

2

) (
𝜈𝑘 +

𝑑𝑘

2

)
+

3𝑁𝑛−5∑︁
𝑖=1

∑︁
𝑘≥𝑖

𝑥𝑖𝑘𝑔𝑖𝑘 𝑙𝑖𝑙𝑘 ,

(2.17)

where 𝑥𝑖𝑘 and 𝑔𝑖,𝑘 are the aharmonicity constants and 𝑙𝑖 and 𝑙𝑘 are the angular
momentum of the degenerate bending vibrations.

Bending modes in linear polyatomic molecules
In linear polyatomic molecules there are two types of vibrational modes: streching
modes and bending modes. For example, the linear triatomic molecule YbOH has
three vibrational modes: two stretching modes, the Yb-O and O-H stretch, and
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one bending mode, the molecule bending so the angle between the Yb-O and O-H
bonds is smaller then 180◦. Unlike stretching modes, bending modes are doubly
degenerate, one mode bending in the x,z-plane and the other in the y,z-plane (here
the z-axis is the internuclear axis). In this case, the Hamiltonian for the bending
vibrations can be represented as that of a two-dimensional harmonic oscillator
instead of two separate one-dimensional oscillators with the same normal frequency
[83, 84],

𝐻̂𝑏𝑒𝑛𝑑 = −
ℏ2

2

(
𝜕2

𝜕𝑄𝑥
+ 𝜕2

𝜕𝑄𝑦

)
+ 1

2
𝜔2
𝑏𝑒𝑛𝑑

(
𝑄2
𝑥 +𝑄2

𝑦

)
. (2.18)

If the two-dimensional oscillator is solved in polar planar coordinates (𝑄𝑥 = 𝑟 cos(𝜙)
and 𝑄𝑦 = 𝑟 sin(𝜙), where 𝑟 is bending amplitude and 𝜙 bending angle), the
wavefunctions take the form 𝜓𝑏𝑒𝑛𝑑 (𝑟, 𝜙) = 𝜓(𝑟) exp(𝑖𝑙𝜙) where 𝑙 must take in-
teger values [83]. Plugging this solution into the bending Schrödinger equation
(𝐻̂𝑏𝑒𝑛𝑑𝜓𝑏𝑒𝑛𝑑 = 𝐸𝑏𝑒𝑛𝑑𝜓𝑏𝑒𝑛𝑑) and integrating over 𝜙 results in a one-dimensional
Schrödinger equation with an effective potential,

𝑉𝑏𝑒𝑛𝑑,𝑒 𝑓 𝑓 =
ℏ𝜔𝑏𝑒𝑛𝑑

2

(
𝑟2 + 𝑙

2

𝑟2

)
. (2.19)

This effective potential corresponds to a harmonic oscillator with an angular mo-
mentum barrier due to the rotation of the bent molecule about the internuclear
axis. The projection of this rotational angular momentum along the internuclear
axis is given by ℏ𝑙. This bending angular momentum must take on values of
𝑙 = 𝜈, 𝜈 − 2, 𝜈 − 4, ....,−𝜈, where 𝜈 is the quanta of the bending vibration. Addition-
ally, the solutions to Eq. 2.19, 𝜓(𝑟), with 𝑙 ≥ 1 take on values of zero (𝜓(𝑟) = 0)
at 𝑟 = 0 [83]. Therefore, when there is bending angular momentum due to rota-
tion, 𝑙 ≥ 1, the molecule never assumes a linear configuration, 𝑟 ≠ 0, and instead
resembles a bent molecule rotating about the “former” internuclear axis.

A more intuitive classical picture of the bending modes and their associated angular
momentum can be gained by returning to the picture of degenerate bending motions
in the separate x,z and y,z-planes. Since these modes are degenerate any linear
combination of them is also a solution. If these two x and y bends are combined
with a 90◦ phase difference it corresponds to a “bent” molecule orbiting around
the “former” internuclear axis. This orbiting nuclei has an associated angular
momentum which must be quantized along the internuclear axis in integer units of
ℏ.

The states with opposite values of 𝑙 (the parity eigenstates are actually the linear
combinations 1√

2
( | + 𝑙⟩ ± | − 𝑙⟩)) are nominally degenerate. However, this degener-
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acy is broken by the end-over-end rotation of the molecule (Coriolis interactions).
This is described in more detail in Section 2.7. The degeneracy between bending
states of the same bending quanta, 𝜈𝑏𝑒𝑛𝑑 , but different values of 𝑙, is broken by
aharmonic terms in the vibrational Hamiltonian.

Due to the additional angular momentum from the bending vibrations, it is con-
vention to label bending vibronic states by the combination of the total electronic
and vibrational angular momentum, 𝐾 = Λ + 𝑙. Then vibronic states are denoted
by the term symbol 2𝑆+1𝐾𝑃 where 𝑃 = Λ + Σ + 𝑙 is now the projection of the total
angular momentum 𝐽 on the internuclear axis. Capital Greek letters are still used to
denote the values of 𝐾 (Σ,Π,Δ,Φ for 𝐾 = 0, 1ℏ, 2ℏ, 3ℏ). The degeneracy between
the states of different 𝐾 in the same electronic state are broken by vibronic pertur-
bations. Note that this can often lead to confusion as a molecule can be in a 2Π

vibronic state while in a 2Σ electronic state. This is the case for the lowest bending
mode of the ground electronic state of YbOH.

Vibronic Interactions: The Renner-Teller effect
So far we have assumed that the motion of the nuclei, e.g., vibrations, does not
affect the electronic configuration of the molecule. This approximation is good for
molecules in electronic states with Λ = 0 or for stretching vibrations; however, it
breaks down for degenerate electronic states with bending vibrations. Electronic
states with non-zero projections of orbital angular momentum,Λ ≥ 1, are degenerate
due to the cylindrical symmetry of the linear molecule. When the molecule begins
to bend, the cylindrical symmetry is broken and the bending induces an electric
dipole moment which perturbs the electronic structure and mixes electronic states.
This creates a coupling between the orbital and vibrational angular momenta, Λ
and 𝑙, and breaks the degeneracy of the electronic state. This coupling is called
the Renner-Teller effect and it can be included as a perturbation with the following
Hamiltonian [85],

𝐻̂𝑅𝑇/ℎ𝑐 = 𝑉11

(
𝑄+𝑒

−𝑖𝜃 +𝑄−𝑒𝑖𝜃
)
+𝑉22

(
𝑄2
+𝑒
−2𝑖𝜃 +𝑄2

−𝑒
2𝑖𝜃

)
+ O

(
𝑄3
±

)
, (2.20)

where 𝑄± are the bending vibrational angular momentum raising and lowering
operators (see Ref. [84, 85] for the matrix elements), 𝜃 is the electron azumuthal
angle, 𝑒±𝑖𝜃 acts as a raising and lowering operator for Λ, and 𝑉11 and 𝑉22 quantify
the strength of the coupling. The first term in 𝐻̂𝑅𝑇 mixes states with Δ𝜈𝑏𝑒𝑛𝑑 = ±1,
Δ𝑙 = ±1, ΔΛ = ∓1, and Δ𝐾 = 0 while the second term mixes states with Δ𝜈𝑏𝑒𝑛𝑑 =

±2, Δ𝑙 = ±2, ΔΛ = ∓2, and Δ𝐾 = 0. 𝐻̂𝑅𝑇 acts to mix neighboring electronic states
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with the same value of 𝐾 . For example, in a Π state 𝐻̂𝑅𝑇 mixes in neighboring Σ

and Δ electronic states.

For Π electronic states, an effective Hamiltionian which encompasses the effects
of the Renner-Teller interaction but only operates within the manifold of the Π

electronic state can be derived [84],

𝐻̂𝑅𝑇,Π/ℎ𝑐 =
1
2
𝜖𝜔2

(
𝑞2
+𝑒
−2𝑖𝜃 + 𝑞2

−𝑒
2𝑖𝜃

)
+ 𝑔𝐾 (𝐺𝑧 + 𝐿𝑧) 𝐿𝑧, (2.21)

where𝜔2 is the frequency of the bending vibration, 𝑞± =
√︃
ℎ𝑐𝜔2
ℏ2𝜇2

𝑄± (𝜇2 is the reduced
mass of the bending vibration), and𝐺 𝑙,𝑧 and 𝐿𝑍 are the projections of the vibrational
and electron orbital angular momentum,𝐺 𝑙 3 and 𝐿, along the internuclear axis. The
parameters 𝜖𝜔2 and 𝑔𝐾 are what are spectroscopically determined, and their relation
the the parameters in Eq. 2.20 are [84]:

𝜖𝜔2 = 𝜖 (1)𝜔2 + 𝜖 (2)𝜔2 (2.22)
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𝑔𝑘 =
ℏ2

4ℎ𝑐
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′⟩
��2

(Δ𝐸)2
. (2.25)

In the above equations 𝑉 ′
𝑖𝑖
= 2𝑉𝑖𝑖/(𝜇2)𝑖/2, 𝜂 and 𝜂′ refer to the Π or Σ and Δ states

respectively, 𝑠 is even or odd with respect to Σ+ and Σ− states respectively, Δ𝐸 =

𝐸0(𝜂′,Λ′) − 𝐸0(𝜂,Λ) is the energy difference between the zero-order electronic
states, and 𝑝 is even or odd forΣ andΔ states respectively. More detailed descriptions
of the Renner-Teller effect can be found in [84–88].

2.4 Rotational structure
The rotational structure of diatomic and linear molecules can be obtained by con-
sidering the molecule as a rigid rotor. In the case of a linear molecule, the molecule
can only rotate about a single axis,4 corresponding to end-over-end rotation of the

3The angular momentum associated with bending vibrations is traditionally denoted by𝐺 in the
literature but here we use 𝐺𝑙 to avoid confusion with the intermediate quantum number 𝐺 = 𝑆 + 𝐼 in
the Hund’s case b𝛽𝑆 coupling scheme which deals with strong hyperfine couplings (see section 2.6).

4A linear molecule has two moments of inertia of equal magnitude which correspond to rotations
about axes perpendicular to the internuclear axis and each other. The cylindrical symmetry of the
molecule makes these axes indistinguishable such that there is only one distinct rotation, end-over-
end motion. A linear molecule can not rotate about its axis of symmetry since the moment of inertia
along this axis is zero.
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molecule. The rotational Hamiltonian, 𝐻̂𝑅, is the kinetic energy due to the angular
momentum of this rotation. The energies and wavefunctions of the rotational states
are found by solving the Schrödinger equation for a quantum rigid rotor [81],

𝐻̂𝑅𝜓𝑅 =
ℏ2

2𝐼
J2𝜓𝑅 = 𝐸𝑅𝜓𝑅, (2.26)

where J is the angular momentum of the rotation and 𝐼 is the moment of inertia of
the molecule about the rotational axis (𝐼 =

∑
𝑖 𝑚𝑖𝑟𝑖 where the sum is over all nuclei

of mass 𝑚𝑖, and 𝑟𝑖 is the distance from the center of mass). The solution to Eq. 2.26
in spherical coordinates are the spherical harmonics [81],

𝜓𝑅 = 𝑌𝑀𝐽 (𝜃, 𝜙) = |𝐽, 𝑀⟩, (2.27)

where here 𝑙 is the angular momentum of the quantum state (𝐽 in the equation above)
and 𝑚 is the projection of 𝐽 along the z-axis (the internuclear axis). The energies of
the rotational states are [81],

𝐸𝑅 =
ℏ2

2𝐼
𝐽 (𝐽 + 1) = 𝐵𝐽 (𝐽 + 1). (2.28)

Here we have introduced the rotational constant, 𝐵, such that the rotational levels are
separated by 𝐵𝐽 (𝐽 + 1). Since 𝐵 depends on the moment of inertia of the molecule,
measurements of the rotational constant can allow the bond distances in the molecule
to be determined. Additionally, since changing molecular isotopologues changes
both the center of mass and the masses of the nuclei, the rotational constant differs
between different isotopologues of the same molecule and scales as 1/𝐼.

2.5 The effective Hamiltonian
The BO approximation has allowed the separation of the molecular wavefunction
into electronic, vibrational, and rotational parts. This is especially useful since the
energies associated with these different interactions are orders of magnitude dif-
ferent; ∼104-105 cm−1 for electronic states, ∼102-103 cm−1 for vibrational states,
and ∼10−1-1 cm−1 for rotational states. High-resolution molecular spectra can re-
solve spectral features separated by 10-100 MHz (much less than the rotational
energy scale, noting that 1 cm1 ∼ 30 GHz) and therefore interactions with energy
scales equivalent or less than the rotational energies are relevant. Additionally,
to adequately describe the energy levels of a molecule to the level needed to per-
form precision measurements and laser cooling, the fine and hyperfine structure of
molecule must be included. Therefore, most of the relevant molecular interactions
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occur at energy scales less than or equal to the rotational energy. When studying
these interactions, it is often most convenient to construct an effective Hamiltonian,
𝐻̂𝑒 𝑓 𝑓 , that only operates in the subspace of a single vibronic state. This can be
accomplished by considering all interactions with energy scales smaller than the
vibrational energy as pertubations5. The total Hamiltonian can then be written as
[89],

𝐻̂𝑡𝑜𝑡 = 𝐻̂0 + 𝜆𝐻̂1. (2.29)

𝐻0 is the zeroth-order Hamiltonian that includes the electronic and vibrational
Hamiltonians such that

𝐻̂0 |𝜂, 𝑖⟩0 = 𝐸0
𝜂 |𝜂, 𝑖⟩0, (2.30)

where 𝐸0
𝜂 = 𝐸𝑒 + 𝐸𝜈 is the energy of the vibronic state and |𝜂, 𝑖⟩0 is the zeroth-order

eigenfuction of the vibronic state. 𝜂 denotes all the quantum numbers that describe
the vibronic state (which is a solution to Eq. 2.30) and 𝑖 describes all the degenerate
quantum numbers for the state |𝜂⟩0 (the rotational, electronic spin and nuclear spin
degrees of freedom). What we are interested in determining are the eigenstates of
the total Hamiltonian, |𝜂, 𝑘⟩,

𝐻̂𝑡𝑜𝑡 |𝜂, 𝑘⟩ = (𝐸0
𝜂 + 𝐸𝜂,𝑘 ) |𝜂, 𝑘⟩. (2.31)

Here |𝜂, 𝑘⟩ are a linear combination of the zero-order eigenfuctions,

|𝜂, 𝑘⟩ =
∑︁
𝜂′,𝑖

𝑐𝑘𝜂′,𝑖 |𝜂′, 𝑖⟩0. (2.32)

We want to derive an effective Hamiltonian that only operates in the subspace
of a single vibronic state, |𝜂⟩0 and returns the correct eigenvalues given by the
total Hamiltonian. Therefore, the effective Hamiltonian will satisfy the following
eigenvalue equation,

𝐻̂𝑒 𝑓 𝑓 (𝜂)
∑︁
𝑖

𝑑𝑘𝜂,𝑖 |𝜂, 𝑖⟩0 = (𝐸0
𝜂 + 𝐸𝜂,𝑘 )

∑︁
𝑖

𝑑𝑘𝜂,𝑖 |𝜂, 𝑖⟩0. (2.33)

If we define a projection operator

𝑃𝜂 =
∑︁
𝑖

|𝜂, 𝑖⟩0⟨𝜂, 𝑖 |0, (2.34)

5This section summarizes the derivation of 𝐻𝑒 𝑓 𝑓 given in ch. 7.2 of Ref. [89], to which the
reader is referred for more details.
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which projects a state |𝜂′, 𝑘⟩ into the vibronic subspace |𝜂⟩0, such that 𝑃𝜂 |𝜂, 𝑘⟩ =∑
𝑖 𝑐
𝑘
𝜂,𝑖
|𝜂, 𝑖⟩0, and the opposite of the projection operator,

𝑈 =
∑︁
𝑘

∑︁
𝑖

𝑏𝑘𝜂, 𝑗 |𝜂, 𝑘⟩⟨𝜂, 𝑗 |0, (2.35)

such that𝑈
∑
𝑖 𝑐
𝑘
𝜂,𝑖
|𝜂, 𝑖⟩0 = |𝜂, 𝑘⟩, then it can be shown [89]

𝐻̂𝑒 𝑓 𝑓 (𝜂) = 𝐻̂0 + 𝜆𝑃𝜂𝐻̂1𝑃𝜂 + 𝜆2𝑃𝜂𝐻̂1
𝑄𝜂

𝑎
𝐻̂1𝑃𝜂 + O(𝜆3) (2.36)

up to second order in 𝜆 (see Ref. [89] Eq. 7.43 for higher-order terms). Here

𝑄𝜂

𝑎𝑟
=

∑︁
𝜂′≠𝜂

∑︁
𝑖

|𝜂′, 𝑖⟩0⟨𝜂′, 𝑖 |0
𝐸𝜂 − 𝐸′𝜂

. (2.37)

In Eq. 2.36 the zeroth-order term gives the zero-order energies for the vibronic
state and is a diagonal matrix with the values of the vibronic energy 𝐸𝑒 + 𝐸𝜈 on the
diagonal. The higher-order terms project the effects of the perturbing Hamiltonian,
𝐻̂1, into the vibronic subspace, at different orders in perturbation theory, while
preserving its effects on determining the correct eiganvalues of 𝐻̂𝑡𝑜𝑡 . The effects of
terms in 𝐻̂1 that are off diagonal in 𝜂 (mix different vibronic states) are included in
parameters in the effective Hamiltonian.

To illustrate this we can derive the effective rotational Hamiltonian for a single
electronic state. The rotational Hamiltonian is

𝐻̂𝑅 = 𝐵R2 = 𝐵(N − L)2 = 𝐵(N2 − 𝑁2
𝑧 + L2 − 𝐿2

𝑧 − 𝑁+𝐿− − 𝑁−𝐿+), (2.38)

where R is the angular momentum of the en-over-end rotation of the molecule (J
was used in Section 2.4 to better match the literature). As can be seen above, the
operator R2 has terms off diagonal with respect to the electronic state (the 𝑁+𝐿− and
𝑁−𝐿+ terms) and therefore the rotational Hamiltonian has been expressed in terms
of N = R+L6, the total angular momentum minus spin. N2 is diagonal with respect
to each vibronic state and, therefore, is considered by some to be the more natural

6This formulation of N is for a non-bending state, for a bending state N +R + L +G𝑙 . The extra
terms added by the addition of the bending angular momentum which are off diagonal with respect to
the vibronic state can be treated in the same way as those off diagonal with respect to the electronic
state and will only add additional terms in the definition of the effective rotational constant (see the
definition below).
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way to frame the rotational Hamiltonian7. The L2 − 𝐿2
𝑧 term is diagonal in the

vibronic state and can be neglected as it simply adds to the zero-order Hamiltonian
as a constant energy offset.

We can now derive the form of the effective rotational Hamiltonian which operates
in the subspace of a single vibronic state |𝜂⟩ by setting 𝐻̂1 = 𝐻̂𝑅 in Eq. 2.36. To
first order we have

𝐻̂
(1)
𝑅,𝑒 𝑓 𝑓

= 𝑃𝜂𝐻̂𝑅𝑃𝜂

= |𝜂⟩⟨𝜂 |𝐵(N2 − 𝑁2
𝑧 − 𝑁+𝐿− − 𝑁−𝐿+) |𝜂⟩⟨𝜂 | = 𝐵(1) (N2 − 𝑁2

𝑧 )
(2.39)

where
𝐵(1) = ⟨𝜂 |𝐵 |𝜂⟩. (2.40)

Note above that we have dropped the 𝑖 quantum numbers in kets since they define
the basis we are projecting into, and we used the fact that for any operator 𝑂̂ that is
diagonal in the space of vibronic states (e.g., ⟨𝜂 |O|𝜂′⟩ = 𝛿𝜂,𝜂′𝜆𝑂 ) 𝑃𝜂𝑂̂𝑃𝜂 = 𝑂̂. The
second-order term in 𝐻̂𝑅,𝑒 𝑓 𝑓 is

𝐻̂
(2)
𝑅,𝑒 𝑓 𝑓

= 𝑃𝜂𝐻̂𝑅
𝑄𝜂

𝑎
𝐻̂𝑅𝑃𝜂

= |𝜂⟩
∑︁
𝜂′≠𝜂

⟨𝜂 | − 𝐵(𝑁+𝐿− + 𝑁−𝐿+) |𝜂′⟩⟨𝜂′| − 𝐵(𝑁+𝐿− + 𝑁−𝐿+) |𝜂⟩
𝐸𝜂 − 𝐸𝜂′

⟨𝜂 |,
(2.41)

where we have not included the diagonal terms in |𝜂⟩ as they are equal to zero. For
each value of 𝜂′ in Eq. 2.41, there are four terms, ⟨𝜂 | − 𝐵𝑁±𝐿∓ |𝜂′⟩⟨𝜂 | − 𝐵𝑁±𝐿∓ |𝜂′⟩
and ⟨𝜂 | − 𝐵𝑁±𝐿∓ |𝜂′⟩⟨𝜂 | − 𝐵𝑁∓𝐿± |𝜂′⟩. Noting that 𝑁± is diagonal in |𝜂⟩ and |𝜂′⟩
and that only the terms with opposite L raising and lowering operators are non-zero
we get

𝐻̂
(2)
𝑅,𝑒 𝑓 𝑓

=
∑︁
𝜂≠𝜂

⟨𝜂 |𝐵𝐿∓ |𝜂′⟩⟨𝜂′|𝐵𝐿± |𝜂⟩
𝐸𝜂 − 𝐸𝜂′

𝑁±𝑁∓ = 𝐵
(2) (𝑁2

𝑥 + 𝑁2
𝑦 ) = 𝐵(2) (N2 − 𝑁2

𝑧 )

(2.42)
7Describing the rotational Hamiltonian in terms of R2 is known as the R2 formalism while

describing the rotational Hamiltonian in terms of N is known as the N2 formalism. As to which
formalism is more appropriate is up for debate. The R2 formalism more accurately models the end-
over-end rotation (R is the angular momentum of the end-over-end rotation) but requires evaluating
matrix elements involving L. The N2 formalism avoids the matrix elements involving L but since
the rotational Hamiltonian is described by N2 it does not represent the end-over-end rotation as
accurately as the R2 formalism. Either formalism will accurately represent and model the rotational
spectra. Which formalism is used is generally only important if you are trying to reproduce the
calculated rotational energy levels. For a more detailed discussion see Ref. [90]
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where
𝐵(2) =

∑︁
𝜂′≠𝜂

⟨𝜂 |𝐵𝐿∓ |𝜂′⟩⟨𝜂′|𝐵𝐿± |𝜂⟩
𝐸𝜂 − 𝐸𝜂′

. (2.43)

Notice that 𝐻̂ (2)
𝑅,𝑒 𝑓 𝑓

has the same form as 𝐻̂ (1)
𝑅,𝑒 𝑓 𝑓

so we can write

𝐻̂𝑅,𝑒 𝑓 𝑓 = 𝐵𝑒 𝑓 𝑓 (N2 − 𝑁2
𝑧 ) (2.44)

with
𝐵𝑒 𝑓 𝑓 = 𝐵

(1) + 𝐵(2) . (2.45)

We have constructed an effective Hamiltionian, 𝐻̂𝑅,𝑒 𝑓 𝑓 , which operates only within
the vibronic subspace |𝜂⟩ that incorporates all the effects of the total Hamiltonian
𝐻̂𝑅. The first-order term, 𝐵(1) , incorporates the effects of 𝐻̂𝑅 that operate only within
|𝜂⟩ (e.g., the end-over-end rotation) while the second-order term, 𝐵(2) , incorporates
the effects of 𝐻̂𝑅 mixing different vibronic states and projects them into the |𝜂⟩
subspace. Higher-order terms can be included in 𝐻̂𝑒 𝑓 𝑓 and will include higher-order
mixings of vibronic states, however the effects of higher-order terms have a smaller
and smaller effect on the eigenvalues of 𝐻̂𝑒 𝑓 𝑓 and therefore can be neglected.

The operator 𝑁2
𝑧 gives a value of Λ2 + 𝑙2 in any vibronic state. Therefore, the

term 𝐵𝑒 𝑓 𝑓 𝑁
2
𝑧 provides a constant offset to the initial energy of the vibronic state.

Therefore, the effective rotational Hamiltonian can be expressed as,

𝐻̂𝑅,𝑒 𝑓 𝑓 = 𝐵𝑒 𝑓 𝑓N2. (2.46)

The beauty of the effective Hamiltonian approach lies in the fact the energy levels
of a vibronic state can be computed without diagonalizing the full Hamiltonian of
the molecule. Therefore, to predict the spectrum for a single vibronic band, the
energies and wavefunctions of each state can be calculated separately and then the
transitions between each set of states computed. If you fit a measured spectrum to
the calculated one, the parameters in the effective Hamiltonian can be determined.
These parameters provide insight into each moleuclar state as well as other excited
states in the molecule (through higher-order contributions to these parameters, such
as 𝐵(2)). In addition to rotation, fine and hyperfine terms are also included in
the effective Hamiltionian, and the terms relevant for modeling YbOH and other
molecules in doublet states are given in Sections 2.7 and 2.8.

2.6 Angular momentum coupling and Hund’s cases
When diagonalizing an effective Hamiltonian it is often best to choose a basis (the
𝑖 quantum numbers in |𝜂, 𝑖⟩0) in which 𝐻̂𝑒 𝑓 𝑓 is most diagonal. While 𝐻̂𝑒 𝑓 𝑓 can be
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diagonalized in any basis, choosing the one in which 𝐻̂𝑒 𝑓 𝑓 is most diagonal will result
in the eigenfunctions of 𝐻̂𝑒 𝑓 𝑓 having a large overlap with the basis functions, |𝜂, 𝑖⟩0.
The eigenfunctions closely resembling the basis function allow one to develop a
good intuition for what the eigenstates look like in terms of the basis functions. The
basis in which 𝐻̂𝑒 𝑓 𝑓 is most diagonal is determined by the relative strength of the
interactions in 𝐻̂𝑒 𝑓 𝑓 and how these interactions couple the angular momentum in the
molecule. These angular momentum couplings are described by Hund’s coupling
cases [89]. There are five Hund’s coupling cases but we will only describe the first
two, as the molecular states of YbOH are best described by these two cases. First
we will describe the coupling cases in the absence of hyperfine structure (no nuclear
spins) and then introduce the coupling cases in the presence of hyperfine structure.
The relevant angular momenta and their projections on the internuclear axis 𝑛̂, in
the absence of nuclear spins, are shown in Table 2.1.

Hund’s case (a)
For Hund’s case (a) to provide a good description of the molecular state, two
conditions must be met. First, the electron orbital angular momentum is strongly
coupled to the internuclear axis and, second, that the electron spin S is strongly
coupled to L via spin orbit coupling (spin orbit coupling is discussed in Section
2.7). In this case L and S precess rapidly about the internuclear axis so that their
projections on the internuclear axis, Λ and Σ respectively, are well defined [89].
The quantum number Ω = Λ + Σ is also well defined. Additionally, if the molecule
is in a bending state, Ω couples to the bending angular momentum G𝑙 to give the
quantum number 𝑃 = Ω + 𝑙 . 𝑃 (or Ω if 𝑙 = 0) couples to the end-over-end rotation
R to give the total angular momentum J. The basis vectors for Hund’s case (a) are

|𝜂,Λ; 𝜈𝑏𝑒𝑛𝑑 , 𝑙; 𝑆, Σ; 𝐽,Ω, 𝑀𝐽⟩ = |𝜂,Λ⟩|𝜈𝑏𝑒𝑛𝑑 , 𝑙⟩|𝑆, Σ⟩|𝐽,Ω, 𝑀𝐽⟩, (2.47)

where here 𝜂 again refers to all the quantum numbers specifying the vibronic state
defining the space in which 𝐻̂𝑒 𝑓 𝑓 operates. 𝑀𝐽 is the projection of the total angular
momentum J onto the laboratory z-axis. In the absence of external electric or
magnetic fields, the different 𝑀𝐽 states are (2𝐽 + 1)-fold degenerate. The right side
of Eq. 2.47 is included to indicate that this basis vector is an uncoupled basis where
the kets can be separated. Hund’s case (a) is generally relevant for vibronic states
with non-zero projections of L on the internuclear axis (Λ ≥ 0)8.

8The more technical definition for when Hund’s case (a) is relevant is that the spin orbit interaction
is much larger than the rotation, 𝐴Λ ≫ 𝐵𝐽.
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Table 2.1: Relevant molecular angular momenta, in the absence of nuclear spins,
and their projections on the internuclear axis 𝑛̂ [89, 91].

Angular Momentum Projection on 𝑛̂ Description

L Λ total electron orbital angular
momentum

S Σ total electron spin angular
momentum

G𝑙 𝑙 bending angular momentum

R rotational angular momen-
tum (end-over-end)

N = R + L +G𝑙
𝑎 𝐾 = Λ + 𝑙 total angular momentum mi-

nus spin

J = N + S 𝑃 = 𝐾 + Σ total angular momentum

J𝑒 = L + S Ω = Λ + Σ 𝑏 total electronic angular mo-
mentum

𝑎 Also given by N = J − S.
𝑏 In diatomic molecules and linear molecules with no bending vibrations Ω is the
projection of the total angular momentum J. The quantum number 𝑃 is not used in
this case since 𝑃 = Ω.

Hund’s case (b)
In the situation where there is little or no spin orbit coupling (e.g., Λ = 0), the spin is
decoupled from the internuclear axis and Hund’s case (b) provides a good description
of the molecular state [89]. Since the spin is decoupled from the internuclear axis,
N, the total angular momentum minus spin, and it’s projection, 𝐾 = Λ + 𝑙, are good
quantum numbers. Additionally, Σ and Ω are not well defined. The electron spin,
S, will then couple to the nuclear rotation, N (via spin rotation discussed in Section
2.7), to give the total angular momentum J. The basis vectors for Hund’s case (b)
are

|𝜂,Λ; 𝜈𝑏𝑒𝑛𝑑 , 𝑙; 𝑁, 𝐾, 𝑆, 𝐽, 𝑀𝐽⟩. (2.48)
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Hund’s case (b) provides a good description for molecular states with Λ = 0 or
the rare case where the energy scale of the spin orbit coupling is smaller than the
rotation [89].

Angular momentum coupling with nuclear spins
If one or more nuclei in the molecule has a non-zero spin, I, the nuclear spin will
couple to the other angular momenta present in the molecule. Here we describe two
special cases of coupling schemes involving the nuclear spin. The first is Hund’s
case (a𝛽𝐽). Just as in Hund’s case (a), in Hund’s case (a𝛽𝐽) L and S are coupled to
the internuclear axis so that Λ, Σ, Ω, and 𝑃 are well defined and 𝑃 couples to R to
give J. Hyperfine interactions (discussed in Section 2.8) couple the nuclear spin to
J to give the total angular momentum9 F = J + I. The basis vectors for Hund’s case
(a𝛽𝐽) are

|𝜂,Λ; 𝜈𝑏𝑒𝑛𝑑 , 𝑙; 𝑆, Σ; 𝐽,Ω, 𝐼, 𝐹, 𝑀𝐹⟩. (2.49)

Hund’s case (a𝛽𝐽) is a good description of molecular states with Λ ≥ 1 and spin
orbit coupling.

In the absence of spin orbit coupling (Λ = 0) and when the hyperfine interactions
are strong, Hund’s case (b𝛽𝑆) provides a good description of the molecular state.
As in Hund’s case (b) the electron spin is decoupled from the internuclear axis;
however, now the strong hyperfine interactions cause the electron spin, S to couple
to the nuclear spin I before coupling to the rotation N. The coupling of S to I gives
the intermediate quantum number G = S + I which then couples to the rotation to
give the total angular momentum10 F. The basis vectors for Hund’s case (b𝛽𝑆) are

|𝜂,Λ; 𝜈𝑏𝑒𝑛𝑑 , 𝑙; 𝑆, 𝐼, 𝐺, 𝑁, 𝐾, 𝐹, 𝑀𝐹⟩. (2.50)

Hund’s case (b𝛽𝑆) is a good description of molecular states withΛ = 0 and hyperfine
interactions whose energy scales are larger than the rotational energy scale.

2.7 Fine structure and parity doublets
Now that we have introduced the various basis sets defined by the Hund’s cases
we can look at the various terms in the effective Hamiltonian. In addition to

9If the molecule contains more than one nuclear spin, following the coupling of J to the first
nuclear spin I1, denoted F1 in this case, the intermediate quantum number F𝑖 will sequentially couple
to each nuclear spin, I𝑖+1, to give the final total angular momentum F.

10If there is another nuclear spin with which the hyperfine interactions are smaller, G will first
couple to N to give F1 before coupling with the other nuclear spins to give the total angular momentum
F.
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the molecular rotation, the other terms in the effective Hamiltonian generally fall
into two classes: fine and hyperfine structure. This section will cover the fine
structure terms which describe the interactions of the the electron spin with the
other angular momenta (not including the nuclear spins) in the molecule. The
effective Hamiltionian for the fine structure of the molecule is given by

𝐻̂𝐹𝑆 = 𝐻̂𝑆𝑂 + 𝐻̂𝑆𝑅 + 𝐻̂Λ𝐷 + 𝐻̂𝑙𝐷 + 𝐻̂𝐶𝐷 . (2.51)

The terms in 𝐻̂𝐹𝑆 are as follows; spin orbit, spin rotation, Λ doubling, 𝑙 doubling,
and centrifugal distortions. We will discuss each term in more detail below11.

Spin orbit
The spin orbit interaction results from the coupling of the magnetic moment of the
electron with the magnetic field seen by the electron as it moves through the Coulomb
field of the nucleus. This causes the electron spin S to couple to the orbital angular
momentum of the electron, L. Therefore, 𝐻̂𝑆𝑂 ∝ L · S = 𝐿𝑧𝑆𝑧 + 1

2 (𝐿+𝑆− + 𝐿−𝑆+)
which has terms which mix electronic states that must be dealt with in a manner
similar to how we dealt with the off-diagonal terms in the rotational Hamiltonian
(see Ref. [89] for a derivation of the effective spin orbit Hamiltonian to second
order). The effective spin orbit Hamiltonian takes the form [89]

𝐻̂𝑆𝑂 = 𝐴𝐿𝑧𝑆𝑧, (2.52)

where 𝐴 = 𝐴(1)+𝐴(2) and 𝐴(1) accounts for the first-order terms and 𝐴(2) accounts for
the second-order terms that result from the mixing of electronic states. Definitions
of 𝐴(1) and 𝐴(2) can be found in Eq. 7.109 and 7.120 in Ref. [89].

The effects of the spin orbit interaction can be seen by looking at the diagonal matrix
elements of 𝐻̂𝑆𝑂 in a case (a) basis,

⟨𝜂,Λ; 𝜈𝑏𝑒𝑛𝑑 , 𝑙; 𝑆, Σ; 𝐽,Ω, 𝑀𝐽 |𝐴𝐿𝑧𝑆𝑧 |𝜂,Λ; 𝜈𝑏𝑒𝑛𝑑 , 𝑙; 𝑆, Σ; 𝐽,Ω, 𝑀𝐽⟩ = 𝐴ΛΣ. (2.53)

𝐻̂𝑆𝑂 shifts the energy of each state by 𝐴ΛΣ. Consider a 2Π electronic state where
Λ = ±1, Σ = ±1/2, and Ω = ±1/2,±3/2. If Λ and Σ are aligned (Ω = ±3/2) then
ΛΣ = 1/2 and the state is shifted up by 𝐴/2. If Λ and Σ are anti-aligned (Ω = ±1/2)
then ΛΣ = −1/2 and the state is shifted down by 𝐴/2. This results in the separation
of Ω = 1/2 and Ω = 3/2 components of a 2Π state by 𝐴. This separation of the

11We have not included the spin-spin interaction 𝐻̂𝑆𝑆 in the fine structure Hamiltonian as it is
only non-zero for states with S ≥ 1 and we are constraining our discussion to doublet molecular
states (S = 1/2).
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different Ω components of an electronic state is known as spin orbit splitting. Note
that for an electronic state with Λ = 0, the spin orbit interaction is not relevant as
𝐻̂𝑆𝑂 = 0. At a fundamental level, the spin orbit interaction is a relativistic effect
and therefore its strength increases with increasing atomic number. For molecules
containing heavy nuclei, the spin orbit splitting can become so large the different
spin orbit components are treated as separate electronic states. This is the case in
YbOH.

Spin rotation
The spin rotation interaction accounts for the interaction of the electron’s spin with
the rotation of the molecule, N. The rotation of a linear molecule will generate a
magnetic field (the nuclei are charged and therefore their rotation will generate a
current) which will interact with the magnetic moment of the electron. The effective
Hamiltonian for the spin rotation interaction for a molecule of any symmetry is given
in Equation (2.3.29) and (2.3.30) in [85], where the strength of the spin rotation
coupling is parameterized by the tensor 𝑇 𝑘 (𝜖). 𝑇 𝑘 (𝜖) describes the coupling of the
spin to the molecule’s three-dimensional rotation (similar to how the moment of
inertia tensor describes the rotation of a rigid body in three-dimensional space). For
an axially symmetric molecule𝑇 𝑘 (𝜖) has only three non-zero elements, the diagonal
elements 𝜖𝑥𝑥 , 𝜖𝑦𝑦, and 𝜖𝑧𝑧 (again similar to how the moment of inertia tensor for an
axially symmetric body is diagonal), and the spin rotation Hamiltonian is reduced
to

𝐻̂𝑆𝑅 = (𝜖𝑥𝑥 + 𝜖𝑦𝑦) (N · S − 𝑁𝑧𝑆𝑧) + 2𝜖𝑧𝑧𝑁𝑧𝑆𝑧 = 𝛾(N · S − 𝑁𝑧𝑆𝑧) + 𝛾′𝑁𝑧𝑆𝑧 . (2.54)

For an axially symmetric molecule 𝜖𝑥𝑥 = 𝜖𝑦𝑦 = 𝛾/2, where 𝛾 is the spin rotation
parameter and 𝛾′ = 2𝜖𝑧𝑧 is the parameter describing the coupling of spin to rotation
about the axis of symmetry. 𝐻̂𝑆𝑅 has different effects in bending and non-bending
states so we will examine each separately.

Spin rotation in linear vibrational states (𝑙 = 0)

For a diatomic molecule or a linear molecule in a state with 𝑙 = 0, rotation about the
internuclear axis is not possible, resulting in 𝛾′ = 2𝜖𝑧𝑧 = 0. Therefore only end-over-
end rotation is possible and results in rotaional angular momentum perpendicular
to the internuclear axis such that 𝑁𝑧 = 0. Taking this into account, the effective
Hamiltonian for the spin rotation interaction in a linear state with 𝑙 = 0 reduces to
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12 [89]
𝐻̂𝑆𝑅 = 𝛾N · S. (2.55)

In a given rotational level, N, the spin rotation interaction given in Eq. 2.55 lifts the
degeneracy between states with different values of J (J = N + S and J = N − S) so
that they are separated by an energy of 𝛾(1/2 + N). This splitting is known as spin
rotation splitting.

As with other parameters in the effective Hamiltonian, the spin rotation parameter
can have contributions from first- and higher-order terms, 𝛾 = 𝛾 (1)+𝛾 (2)+O(3). The
first-order contribution, 𝛾 (1) , comes directly from the coupling of the electron’s spin
to the magnetic moment of the rotating nuclei. However, the contribution of 𝛾 (1) to
𝛾 is very small due to the very small magnetic moment generated by the orbiting
nuclei. Therefore, the spin rotation parameter is dominated by the second-order
contributions given by 𝛾 (2) . The second-order contributions arise from interactions
of the off diagonal terms in the rotation and spin orbit Hamiltonians which, when
projected into the vibronic subspace, result in an effective operator of the form N ·S.
The second-order contributions to the spin rotation parameter are given by [89]

𝛾 (2) = −2
∑︁
𝜂′

[
⟨𝜂,Λ, Σ |𝐵𝐿− |𝜂′,Λ + 1, Σ⟩⟨𝜂′,Λ + 1, Σ |𝐻̂𝑆𝑂 |𝜂,Λ, Σ + 1⟩

(𝐸𝜂 − 𝐸𝜂′)⟨𝑆, Σ |𝑆− |𝑆, Σ + 1⟩ +

⟨𝜂,Λ, Σ |𝐻̂𝑆𝑂 |𝜂′,Λ − 1, Σ + 1⟩⟨𝜂′,Λ − 1, Σ + 1|𝐵𝐿− |𝜂,Λ, Σ + 1⟩
(𝐸𝜂 − 𝐸𝜂′)⟨𝑆, Σ |𝑆− |𝑆, Σ + 1⟩

]
.

(2.56)

𝛾 (2) results from the combination of the rotation and spin rotation mixing in other
electronic states with Λ′ = Λ ± 1 and therefore measurements of 𝛾 can provide
information about other electronic states in the molecule. The effects of excited
electronic states on the value of 𝛾 in the 𝑋̃2Σ+ state of YbOH are discussed in more
detail in Section 4.3 and 6.5.

Spin rotation in bending states (𝑙 ≥ 1)

If the molecule is in an excited bending state with 𝑙 ≥ 1, then𝑁𝑧 ≠ 0 and the molecule
“rotates” about the interculear axis due to the bending angular momentum. This
rotation about the internuclear axis also results in 𝛾′ = 2𝜖𝑧𝑧 ≠ 0. In this case, the
operator form of 𝐻̂𝑆𝑅 given in Eq. 2.55 does not correctly account for the rotation

12While using the functional form 𝐻̂𝑆𝑅 = 𝛾N · S for the spin rotation interaction is correct for
diatomic molecules and linear molecules in states with 𝜈𝑏𝑒𝑛𝑑 = 0, since 𝑁𝑧𝑆𝑧 component of N · S
is zero, it is incorrect for states with 𝑙 > 0 since 𝑁𝑧 = 𝑙 ≠ 0, and the form of the spin rotation
Hamiltonian given in Eq. 2.54 must be used.
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about the internuclear axis and Eq. 2.54 must be used. The form of Eq. 2.54 is
easily understood. For the value of 𝛾 to be consistent with the linear definition
(describing the coupling of S to the end-over-end rotation), the contribution from
the bending angular momentum, 𝑁𝑧𝑆𝑧 must be subtracted. However, this bending
angular momentum will also couple to S and is accounted for by the second 𝛾′ term.
For states with 𝑙 ≥ 1, the spin rotation interaction still creates an energy splitting
between the J = N ± S states, but now the spin rotation splitting is given by [91]

Δ𝑆𝑅 =
(2𝑁 + 1)

(
𝑁 (𝑁 + 1) − 𝑙2

)
2𝑁 (𝑁 + 1) 𝛾 + (2𝑁 + 1)𝑙2

𝑁 (𝑁 + 1) 𝛾
′. (2.57)

The first-order contribution to 𝛾′ is very small, again due to the small magnetic
moment generated by the rotating nuclei. Therefore, for the 𝛾′ term in Eq. 2.54
to make any significant contribution to the effective Hamiltonian, the second-order
contributions to 𝛾′ must be significant.

Parity doubling
In the absence of external electromagnetic fields, 𝐻̂𝑒 𝑓 𝑓 conserves parity and therefore
the eigenstates of 𝐻̂𝑒 𝑓 𝑓 have well-defined parity. These states are given by taking the
sum and difference of the states with opposite projections of each angular momentum

|𝐽, +⟩ = |𝜂,Λ; 𝜈𝑏𝑒𝑛𝑑 , 𝑙; 𝑆, Σ, 𝐽, 𝑃⟩ + (−1)𝐽−𝑆 |𝜂,−Λ; 𝜈𝑏𝑒𝑛𝑑 ,−𝑙; 𝑆,−Σ, 𝐽, 𝑃⟩, (2.58)

|𝐽,−⟩ = |𝜂,Λ; 𝜈𝑏𝑒𝑛𝑑 , 𝑙; 𝑆, Σ, 𝐽, 𝑃⟩ − (−1)𝐽−𝑆 |𝜂,−Λ; 𝜈𝑏𝑒𝑛𝑑 ,−𝑙; 𝑆,−Σ, 𝐽, 𝑃⟩. (2.59)

In the non-rotating molecule, the opposite parity states 1√
2
( |Λ⟩ ± | − Λ⟩) and

1√
2
( |𝑙⟩ ± | − 𝑙⟩), are degenerate. However, the rotation of the molecule lifts this

degeneracy and gives rise to parity doublets. An intuitive explanation of the origin
of parity doubling can be found in Appendix A.4 of [47]. More technically, these
parity doublets are generated by second-order interactions in the effective Hamilto-
nian. If we expand the rotational Hamiltonian 𝐻̂𝑅 = 𝐵N2 = 𝐵(J − L − G𝑙 − S)2,
we find cross terms of the form 𝐵J · L and 𝐵J · G𝑙 . These terms are known as the
Coriolis terms and are responsible for parity doubling.

Λ doubling

The lifting of the degeneracy between the states 1
2 ( |Λ⟩ ± | − Λ⟩) is known as

Lambda-doubling (Λ-doubling). As mentioned above, Λ-doubling arises at sec-
ond order in the effective Hamiltonian. More specifically, it is the result of a
combination of off diagonal terms from the spin orbit and rotational Hamiltonians
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which connect states with | ±Λ⟩ to states with | ∓Λ⟩ through the mixing with other
electronic states [89]. The effective Λ-doubling Hamiltonian is given by 13

𝐻̂Λ𝐷 = −1
2
𝑞(𝐽2
+𝑒
−2𝑖𝜃 + 𝐽2

−𝑒
2𝑖𝜃) + 1

2
(𝑝 + 2𝑞) (𝐽+𝑆+𝑒−2𝑖𝜃 + 𝐽−𝑆−𝑒2𝑖𝜃), (2.60)

where 𝜃 is the electron azumuthal angle and 𝑒±𝑖𝜃 acts as a raising and lowering
operator for Λ so that ⟨Λ = ±1|𝑒±2𝑖𝜃 |Λ = ∓⟩ = −1, and 𝑝 and 𝑞 quantify the strength
of the interaction due to the mixing with other electronic states. 𝑝 results from
the mixing with other electronic states due to the combination of the spin orbit and
rotational Hamiltonians, while 𝑞 results solely from mixing with other electronic
states due to the rotational Hamiltonian. The expressions for 𝑝 and 𝑞 to second
order can be found in Eq. (7.142) and (7.143) of [89].

l-doubling

The lifting of the degeneracy between the states 1
2 ( |𝑙⟩ ± | − 𝑙⟩) is known as 𝑙-

doubling. 𝑙-doubling arises in a similar fashion to Λ-doubling with the only dif-
ference being that the terms involve bending angular momentum G𝑙 instead of the
electronic orbital angular momentum L. Therefore, 𝑙-doubling also only arises at
second and higher orders in the effective Hamiltonian that cause mixing with other
bending vibrational states. This is due to the combination of terms in the rotational
Hamiltonian and the analogous spin orbit interaction for the bending angular mo-
mentum, G𝑙 · S14, which connect states with | ± 𝑙⟩ to states with | ∓ 𝑙⟩. The effective
Hamiltonian for 𝑙-doubling is given by15 [84, 87]

𝐻̂𝑙𝐷 = −1
2
𝑞𝜈2(𝐽2

+𝑒
−2𝑖𝜙 + 𝐽2

−𝑒
2𝑖𝜙) + 1

2
(𝑝𝜈2 + 2𝑞𝜈2) (𝐽+𝑆+𝑒−2𝑖𝜙 + 𝐽−𝑆−𝑒2𝑖𝜙), (2.61)

where ⟨𝑙 = ±1|𝑒±2𝑖𝜙 |𝑙 = ∓1⟩ = +1 and 𝑝𝜈2 and 𝑞𝜈2 quantify the mixing with other
bending states and ultimately the strength of the 𝑙-doubling interaction. 𝑝𝜈2 and 𝑞𝜈2

are directly analogous to their counterparts in the Λ-doubling Hamiltonian.

Centrifugal distortions
So far we have treated the rotation of the molecule as that of a rigid rotor. However,
the molecule is not a rigid rotor, and as the molecule rotates, the nuclei will experi-
ence a centrifugal force that will cause the nuclei to separate, increasing the effective

13We have omitted the term (1/2) (𝑜+ 𝑝 +𝑞) (𝑆2
+𝑒
−2𝑖 𝜃 + 𝑆2

−𝑒
2𝑖 𝜃 ) since it is only non-zero for states

with S ≥ 1.
14This interaction is accounted for in the effective Hamiltonian by the 𝛾′ term in 𝐻̂𝑆𝑅 in Eq. 2.54.
15Just as with Λ-doubling we have again dropped the term proportional to (𝑆2

+𝑒
−2𝑖𝜙 + 𝑆2

−𝑒
2𝑖𝜙)

since it is only non-zero for states with S ≥ 1.
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bond length. This increase in the bond length will increase the moment of inertia
for the rotation and therefore decrease the effective rotational constant [81]. This
effective bond lengthening will increase with increasing molecular rotation J. The
effect of these centrifugal forces on the rotational Hamiltonian is called centrifugal
distortion. The effective Hamiltonian for centrifugal distortion is given by [89, 92]

𝐻̂𝐶𝐷 = −𝐷N2N2 = −𝐷N4, (2.62)

where 𝐷 is the centrifugal distortion parameter. The effect of 𝐻̂𝐶𝐷 is to change the
energy of the rotational levels such that

𝐸𝑅 = 𝐵𝐽 (𝐽 + 1) − 𝐷 (𝐽 (𝐽 + 1))2 = (𝐵 − 𝐷𝐽 (𝐽 + 1))𝐽 (𝐽 + 1), (2.63)

so that there is a corrected rotational constant of 𝐵 − 𝐷𝐽 (𝐽 + 1). The magnitude
of 𝐷 is generally several orders of magnitude smaller than 𝐵 so that the effects
of centrifugal distortions on the energies of lower rotational states are negligible.
However, the inclusion of 𝐻̂𝐶𝐷 in the effective Hamiltonian is needed to accurately
describe higher rotational states. Higher-order terms can also be added to account
for higher-order corrections [81].

Centrifugal distortions also impact the other interactions in the effective Hamiltonian
as well. Take spin rotation for example. If centrifugal distortions change the
energy of the molecular rotations then they will change how the spin couples to
that rotation in a manner that scales with the rotational quantum number J. This
centrifugal interaction between the spin rotation and the rotation is described by the
spin rotation centrifugal distortion effective Hamiltonian [93]

𝐻̂𝑆𝑅𝐶𝐷 =
1
2
𝛾𝐷 [N · S,N2]+, (2.64)

where 𝛾𝐷 is the spin rotation centrifugal distortion parameter and [𝐴, 𝐵]+ = 𝐴𝐵 +
𝐵𝐴, is the anticommutator. In general, any interaction described by a term in
the effective Hamiltonian will have corrections due to centrifugal distortions. For
an interaction described by an effective Hamiltionian of the form 𝐻̂Ô = 𝛼𝑂̂, the
corresponding effective Hamiltonian for the centrifugal corrections is given by

𝐻̂Ô𝐶𝐷 =
1
2
𝛼𝐷 [Ô,N2]+, (2.65)

where 𝛼𝐷 is the centrifugal correction to the parameter 𝛼. In this manner, the
centrifugal correction to the spin orbit (paramatarized by 𝐴𝐷) can be obtained by
substituting Ô = 𝐿𝑧𝑆𝑧 in Eq. 2.65. Other interactions such as Λ-doubling can be
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accounted for as well. Oftentimes, and especially for low-rotational states, these
corrections will not make any significant or measurable changes to the energy levels,
and they do not need to be included in the effective Hamiltonian.

2.8 Hyperfine structure
If the molecule contains one or more nuclei with non-zero nuclear spin, I, hyperfine
interactions will be present. The hyperfine interactions describe the magnetic and
electronic interactions of the nuclear, electric, and magnetic moments with other
angular momenta present in the molecule. Here we will only consider the interac-
tions due to the nuclear magnetic dipole and nuclear electric quadrupole moments.
The effects of hyperfine interactions are generally much smaller than those resulting
from the fine structure, and therefore it is usually only necessary to include the first-
order contributions to the effective Hamiltionian. These are the only contributions
we will discuss here.

Magnetic dipole terms
The magnetic dipole terms describe the magnetic interactions between the magnetic
dipole of the nucleus and the other magnetic moments in the molecule. Several of
these interactions arise from interactions between the spin of the electron and the spin
of the nucleus. These nuclear-electron spin-spin interactions are characterized by
three terms in the effective Hamiltonian: the Fermi contact, dipole-dipole coupling,
and the parity-dependent dipole-dipole terms. The effective Hamiltionian for the
Fermi contact interaction is [89, 94]

𝐻̂𝑏𝐹 = 𝑏𝐹I · S, (2.66)

where 𝑏𝐹 is the Fermi contact parameter and is defined as [89, 94]

𝑏𝐹 =
𝜇0

4𝜋ℎ
8𝜋
3Σ
𝑔𝑒𝑔𝑁𝜇𝐵𝜇𝑁 ⟨𝜂,Λ; 𝑆, Σ |

∑︁
𝑖

s𝑖𝛿(𝑟) |𝜂,Λ; 𝑆, Σ⟩. (2.67)

In Eq. 2.67, 𝜇0 is the vacuum permeability, 𝑔𝑒 and 𝑔𝑁 are the electron and nuclear
g-factors, 𝜇𝐵 and 𝜇𝑁 are the Bohr and nuclear magneton, s𝑖 is the spin angular
momentum of the 𝑖th electron, 𝛿(𝑟) is the Dirac delta function, 𝑟 and 𝜃 (not used
in Eq. 2.67 but will be used below) are polar coordinates, and the sum runs
over all unpaired electrons. The Fermi contact interaction describes the magnetic
contact interaction between the electron and nuclear spins arising from the overlap
of the electron wavefunction with the nucleus (the 𝛿(𝑟) in Eq. 2.67). Therefore,
measurements of the Fermi contact parameter provide information about how much
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overlap the electron wavefunction has with the nucleus. Comparison of determined
𝑏𝐹 values to atomic 𝑏𝐹 values can provide experimental information on the atomic
orbital composition of the MO.

The second magnetic dipole interaction is referred to as the anisotropic dipole-
dipole interaction and describes the magnetic dipole-dipole interaction between the
electron and nuclear magnetic dipole moments. The effective Hamiltionian for the
dipole-dipole interaction is [89, 94]

𝐻̂𝑐 =
1
3
𝑐(3𝐼𝑧𝑆𝑧 − I · S), (2.68)

where 𝑐 is the dipole-dipole coupling parameter and is defined as

𝑐 =
𝜇0

4𝜋ℎ
3

2Σ
𝑔𝑒𝑔𝑁𝜇𝐵𝜇𝑁 ⟨𝜂,Λ; 𝑆, Σ |

∑︁
𝑖

s𝑖
(3𝑐𝑜𝑠2𝜃𝑖 − 1)

𝑟3
𝑖

|𝜂,Λ; 𝑆Σ⟩. (2.69)

𝑐 is again dependent on the valence electron’s wavefunction and therefore measure-
ments of it can provide information about the valence MOs.

In Eq. 2.68 and 2.69, we only considered the terms from the magnetic dipole-
dipole interaction which were diagonal in Λ. There are also terms off-diagonal in
Λ, specifically those which connect states of |Λ = ±1⟩ to states with |Λ = ∓1⟩16.
These off-diagonal terms provide a hyperfine contribution to the Λ-doubling so that
one component of a Λ-doublet obtains a different hyperfine shift than the other.
Therefore, if the state in question has a non-zero value of Λ, the parity-dependent
hyperfine interaction must be included. The effective Hamiltonian for this interaction
is given by [89, 94]

𝐻̂𝑑 =
1
2
𝑑 (𝑆+𝐼−𝑒−2𝑖𝜙 + 𝑆−𝐼+𝑒2𝑖𝜙), (2.70)

where 𝑑 is the parity-dependent hyperfine parameter and is given by

𝑑 =
𝜇0

4𝜋ℎ
3
2

𝑔𝑒𝑔𝑁𝜇𝐵𝜇𝑁√︁
𝑆(𝑆 + 1) − Σ(Σ + 1)

⟨𝜂,Λ = −1; 𝑆, Σ + 1|
∑︁
𝑖

s+𝑖
(𝑠𝑖𝑛2𝜃𝑖𝑒

−2𝑖𝜙𝐼 )
𝑟3
𝑖

|𝜂,Λ = +1; 𝑆, Σ⟩
(2.71)

where s+
𝑖

is the spin-raising operator for a single electron and 𝜙𝑖 is the azimuthal
angle for the 𝑖th electron.

16There are also terms which change Λ by 1 and therefore would mix electronic state. These
effects would only show up at second-order in the effective Hamiltonian and provide energy shifts
much below any measurable limit so they are generally not included. These second order terms only
become measurable when there are nearly degenerate electronic states [94].
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Finally, if the molecular state has Λ ≥ 1, there will be an additional magnetic
hyperfine interaction describing the magnetic dipole interaction between the nuclear
spin and the magnetic moment generated by the orbiting electron. This is analogous
to the spin orbit interaction. The effective Hamiltonian for the nuclear spin orbit
interaction to first order17 is given by [94]

𝐻̂𝑎 = 𝑎𝐼𝑧𝐿𝑧, (2.72)

where 𝑎 is the nuclear spin orbit parameter and is given by

𝑎 =
𝜇0

4𝜋ℎ
𝑔𝑒𝑔𝑁𝜇𝐵𝜇𝑁

1
Λ
⟨𝜂,Λ; 𝑆, Σ |

∑︁
𝑖

𝑙𝑧𝑖

𝑟3
𝑖

|𝜂,Λ; 𝑆, Σ⟩. (2.73)

In the above equation 𝑙𝑧𝑖 is the z-component of the single electron angular momentum
operator of the 𝑖th electron. Note in the above discussion we have assumed that there
is only one nucleus with non-zero spin. If the molecule contains multiple nuclei
with non-zero spin then the above interactions with each nucleus must be accounted
for separately. Therefore, if the molecule has 𝑗 nuclei, the total magnetic dipole
hyperfine effective Hamiltonian is give by18

𝐻̂dipole 𝐻𝐹𝑆 =
∑︁
𝑗

𝐻̂𝑎 𝑗 + 𝐻̂𝑏𝐹 𝑗 + 𝐻̂𝑐 𝑗 + 𝐻̂𝑑𝑗 . (2.74)

Electric Quadrupole terms
If a nucleus has a nuclear spin of I ≥ 1 then the nucleus could have an observable
quadrupole moment, a non-spherical distribution of mass and charge so that the
nucleus resembles an ellipsoid. This non-spherical charge distribution will result
in the nucleus having an electric quadrupole moment. This electric quadrupole
moment will interact with the electric field gradient created between the positively
charged nucleus and the negativly charged electrons. This will lead to different
orientations of the quadrupole deformed nucleus in the electric field gradient having
different energies. Since the orientation of the nucleus is given by the orientation
of the nuclear spin, this will result in an interaction that is dependent on both
the nuclear spin orientation and the magnitude of the electric field gradient. The
effective Hamiltonian that describes this electric quadrupole interaction is [89]

𝐻̂𝐸𝑄0 = 𝑒2𝑄𝑞0
(3𝐼𝑧 − I2)
4𝐼 (2𝐼 − 1) , (2.75)

17Technically 𝐻̂𝑎 = 𝑎I · L but, just as with the spin orbit interaction, the effective operator is
given by only the elements diagonal in 𝜂, 𝐼𝑧𝐿𝑧 .

18We have not included the nuclear spin rotation (analogous to fine structure spin rotation) terms
in the effective dipole hyperfine Hamiltonian as they are not relevant for describing the structure of
YbOH. The nuclear spin rotation effective Hamiltonian is 𝐻̂𝑁 𝑆𝑅 = 𝐶𝐼I · J.
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where 𝑒 is the charge of the electron and 𝑄 is the quadrupole moment of the
nucleus. 𝑞0 is the expectation value of the electric field gradient over the electronic
wavefunction

𝑞0 = −2⟨𝜂,Λ|𝑇2
𝑞=0(∇𝐸) |𝜂,Λ⟩ =

−1
4𝜋𝜖0ℎ

⟨𝜂,Λ|
∑︁
𝑖

(3𝑐𝑜𝑠2𝜃𝑖 − 1)
𝑟3
𝑖

|𝜂,Λ⟩, (2.76)

where 𝜖0 is the electric constant, 𝑇2
𝑞=0(∇𝐸) is the 𝑞 = 0 component of the second-

rank spherical tensor describing the electric field gradient19, and the sum over 𝑖 is
now taken over all electrons.

In Eq. 2.75 we have only included terms diagonal in Λ; however, the electric
quadrupole interaction also has terms off diagonal in Λ. As with the dipolar interac-
tions, the terms which mix states with ΔΛ = ±1 will cause electronic states to mix
and will only become relevant at higher order. These terms are not included in the
effective Hamiltionian. The off diagonal terms which connect states with ΔΛ = ±2
are included in the non-axial electric quadrupole effective Hamiltonian

𝐻̂𝐸𝑄2 = −𝑒2𝑄𝑞2
(𝑒−2𝑖𝜃 𝐼2

+ + 𝑒2𝑖𝜃 𝐼2
−)

4𝐼 (2𝐼 − 1) . (2.77)

𝑞2 is the non-axial electric quadrupole coupling parameter and is determined by the
non-diagonal effects of the electric field gradient

𝑞2 = −2
√

6
∑︁
𝑞=±2
⟨𝜂,Λ = ±1|𝑇2

𝑞 (∇𝐸) |𝜂,Λ = ∓1⟩, (2.78)

where now the 𝑇2
𝑞=±2(∇𝐸) are the 𝑞 = ±2 components of the second-rank spherical

tensor describing the electric field gradient. 𝐻̂𝐸𝑄2 has the selection rules ΔΣ = 0
and ΔΛ = 2 and therefore will only connect states with ΔΩ = 2. Therefore, in a
2Π state, 𝐻̂𝐸𝑄2 will only connect states from different spin orbit components, the
Ω = 1/2 and Ω = 3/2 states.

2.9 Molecular transitions
It is not possible to directly observe the energy levels of a molecule but only the
transitions between two molecular states. These transitions are driven by the inter-
action of electromagnetic radiation (photons) and the molecule. These photons can
directly interact with either the electrons to cause the electron to change states or
the dipole moment of the molecule itself. The former induces rovibronic transitions

19An overview of spherical tensors including there relation to the Cartesian operators can be
found in Ch. 5 of Ref. [89].
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(a transitions between different rovibronic states) while the latter induces rotational
transitions within a single vibronic state. By observing either the absorption or
emission of photons when these transitions are driven, we can determine the tran-
sition frequencies and ultimately the energies of the states involved. In addition
to providing a means to observe and measure molecules, molecular transitions can
also be utilized to control and manipulate molecules (laser cooling, coherent state
preparation, etc.).

We are interested in understanding electric dipole transitions 20, how the electric
dipole operator (first term in the multipole expansion of the electric field of the laser
or microwaves) connects two different molecular states. For two given molecular
states, the transition intensity or strength is given by the expectation value of the
electric dipole operator, 𝜇̂, between the two states

𝐼 = |⟨𝛼 | 𝜇̂ |𝛽⟩|2. (2.79)

Here 𝛼 and 𝛽 describe all the quantum numbers of the ground and excited states.

Vibrational transitions
If we only consider vibronic transitions (e.g., the laser is broad enough that transitions
from many rotational/fine/hyperfine states are excited at once so that the rotational,
fine and hyperfine structure is unresolved) then the intensity is given by [81]

𝐼𝑣𝑖𝑏𝑟𝑜𝑛𝑖𝑐 = |⟨𝜂′′, 𝜈′′| 𝜇̂ |𝜂′, 𝜈′⟩|2 = |⟨𝜈′′|𝜈′⟩⟨𝜂′′| 𝜇̂ |𝜂′⟩|2 = 𝑞𝜈′′,𝜈′
��𝜇𝜂′′,𝜂′��2 , (2.80)

where here we use 𝜂 and 𝜈 to describe the electronic vibrational wavefuctions
respectively, and we have used the spectroscopic notation of the double prime and
prime reffering to the ground and excited states respectively. In Eq. 2.80 we have
used the fact 𝜇̂ does not operate on the vibrational coordinates. 𝑞𝜈′′,𝜈′ is known
as the Frank Condon factor (FCF) which is the overlap integral of the vibrational
wavefunctions

𝑞𝜈′′,𝜈 = |⟨𝜈′′|𝜈′⟩|2 =

����∫ 𝜓𝜈′′𝜓
∗
𝜈′𝑑𝜏

����2 . (2.81)

If the electronic PES is known for both the ground and excited states, 𝑞𝜈′′,𝜈′ can be
easily calculated. 𝜇𝜂′′,𝜂′ is the transition dipole moment (TDM) and is dependent on
the specific nature of the electronic wavefunctions. While it is possible to calculate

20There are also magnetic dipole, electric quadrupole, and higher-order transitions, however they
are largely suppressed compared to electric dipole transitions and, for the transitions of interest here,
are not discussed.
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the TDM using numerical methods, it is often a measured quantity. For the set of
different vibrational transitions between two electronic states, 𝜇𝜂′′,𝜂′ is constant and
the relative transition intensities are only dependent on the FCFs.

Following excitation to an excited state |𝜂′, 𝜈′⟩ the molecule will decay back down
to the ground state (or some other lower state). The probability that the molecule
will decay to a given vibrational state |𝜂′′, 𝜈′′⟩ is given by the vibrational branching
ratio [91]

𝑏𝜈′→𝜈′′ =
𝑞𝜈′′,𝜈′𝜔

3
𝜈′′,𝜈′∑

𝜈′′ 𝑞𝜈′′,𝜈′𝜔
3
𝜈′′,𝜈′

, (2.82)

where 𝜔𝜈′′,𝜈′ is the frequency of the transitions from |𝜂′′, 𝜈′′⟩ to |𝜂′, 𝜈′⟩. Therefore
the probability of a vibrational decay is dependent on the FCF. This fact becomes
important when laser cooling molecules.

Vibrational selection rules

Whether or not a vibrational transition is allowed is determined by 𝑞𝜈′′,𝜈′. From
Eq. 2.81 we know that 𝑞𝜈′′,𝜈′ = 0 if the product 𝜓𝜈′′𝜓∗𝜈′ is odd with respect to the
origin of the coordinate system. This occurs when one of the wavefunctions is even
and the other is odd. For a linear molecule, all stretching mode wavefunctions are
even with respect to the origin and therefore nothing inherently prevents vibrational
transitions between different stretching modes. However, for bending vibrations the
situation is different. All bending wavefunctions with odd values of 𝑙 are odd while
even values of 𝑙 are even. This results in the following vibrational selection rules
for linear molecules: Δ𝑙 = 0 and therefore Δ𝜈𝑏𝑒𝑛𝑑 = 0,±2,±4, ... More intuitively,
this can be though of in the following way. Since the photon only interacts with
the valence electron’s charge or the molecule’s dipole moment, it can not cause a
change in the bending angular momentum (similar to how a photon can’t change
the spin), and Δ𝑙 = 0. For a more rigorous description of vibrational selection rules
with respect to the molecular symmetry, see Ref. [81, 82].

It is important to note that forbidden Δ𝑙 ≠ 0 transitions due occur and are due to
mixing from vibronic perturbations such as the Renner-Teller effect. For example
consider the case of a 2Σ+(𝜈𝑏𝑒𝑛𝑑 = 1) →2 Π1/2(𝜈𝑏𝑒𝑛𝑑 = 0) transition which is
normally forbidden. Vibronic and spin orbit interactions can mix the 2Π1/2(𝜈𝑏𝑒𝑛𝑑 =
0) state with the bending mode of an excited Σ− state so that the true wavefunction
of the 2Π1/2(𝜈𝑏𝑒𝑛𝑑 = 0) state is now 𝜓 = |2Π1/2(𝜈𝑏𝑒𝑛𝑑=0⟩ + 𝜖 |2Σ−(𝜈𝑏𝑒𝑛𝑑 = 1)⟩.
The 2Σ+(𝜈𝑏𝑒𝑛𝑑 = 1) →2 Σ−(𝜈𝑏𝑒𝑛𝑑 = 1) transitions is not forbidden which will now
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allow the 2Σ+(𝜈𝑏𝑒𝑛𝑑 = 1) →2 Π1/2(𝜈𝑏𝑒𝑛𝑑 = 0) to occur via intensity borrowing. A
thorough calculation and measurement of this “forbidden” vibrational branching for
CaOH, SrOH, and YbOH was done in Ref. [95].

Rotational and rovibronic transitions
If the rotational, fine, and hyperfine structure are resolved, then the transition inten-
sity will also depend on the specifics of the rotational/fine/hyperfine states involved.
Taking this into account, the transition intensity is given by

𝐼𝑟𝑜𝑣𝑖𝑏𝑟𝑜𝑛𝑖𝑐 = |⟨𝜂′′, 𝜈′′, 𝜅′′| 𝜇̂ |𝜂′, 𝜈′, 𝜅′⟩|2 = 𝑞𝜈′′,𝜈
��𝜇𝜂′′,𝜂′��2 𝑆𝜅′′,𝜅′ (2.83)

where 𝑆𝜅′′,𝜅′ is the Hönl-London factor and 𝜅 denotes the quantum numbers which de-
scribe the rotational/fine/ hyperfine state. In a case (a) basis
|𝜂, 𝜈, 𝜅⟩ = |𝜂,Λ; 𝜈, 𝑙; 𝑆, Σ; 𝐽, 𝑃⟩. In reality the state |𝜂, 𝜅⟩ will be some linear
combination of the basis functions which will be determined by diagonalizing 𝐻̂𝑒 𝑓 𝑓
and therefore the values of 𝑆𝜅′′,𝜅′ will depend on the specifics of the effective Hamil-
tonian.

Rotational and rovibronic transitions have the following selection rules for the total
angular momentum and parity; Δ𝐽 = 0,±1 (Δ𝐹 = 0,±1 when there is hyperfine
structure), and parity + ↔ − [96]. There are also the following approximately good
selection rules; Δ𝑆 = 0, ΔΣ = 0, ΔΛ = ΔΩ = 0,±1. The value of Δ𝐽 is used to
label different rotational branches. Δ𝐽 = −1 transitions form the P branch, Δ𝐽 = 0
transitions form the Q branch, and Δ𝐽 = +1 transitions form the R branch.

More specifically, each transition is labeled with the following branch designation,
Δ𝑁Δ𝐽𝐹 ′

𝑖
,𝐹 ′′

𝑖
(𝑁′′) where Δ𝑁=O,P,Q,R,S for Δ𝑁 = −2,−1, 0, 1, 2 and Δ𝐽=P,Q,R for

-1,0,1. Here 𝐹𝑖 does not refer to the angular momentum F but denotes the spin orbit
and spin rotation components of the ground and excited states. For a 2Σ+ →2 Π

transitions 𝐹′
𝑖

= 1 or 2 if the transition is to the Ω = 1/2 or 3/2 spin orbit components
respectively and 𝐹′′

𝑖
= 1 or 2 if the transitions comes from the 𝐽 = 𝑁 + 1/2 or

𝐽 = 𝑁−1/2 spin rotation components respectively [97]. An example of a 2Σ+ → 2Π

transitions with the branch designations is shown in Fig. 2.2.

2.10 Overview of laser cooling molecules
Now that we have introduced general molecular structure we will take a slight aside
to give a brief overview of laser cooling molecules. For a more thorough and
complete discussion of molecular laser cooling and trapping see [98, 99].
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Laser cooling of atoms and molecules is accomplished by utilizing the interaction of
the atom or molecule with laser light to exert forces on the atom or molecule. When
a laser’s frequency is resonant with an atomic or molecular transition, the atom or
molecule will absorb a photon and transition to an excited state. This absorption will
provide a momentum kick of ℏ𝑘 in the direction of the laser propagation. The atom
or molecule will then decay from the excited state emitting a photon. This process
of photon absorption and emission is known as photon scattering. Upon decay,
the emitted photon has no preferred propagation direction. Therefore, after many
photon scatters, the momentum transfer from each photon emission will cancel, on
average, resulting in each photon scatter providing an average momentum kick of
ℏ𝑘 in the direction of the laser propagation. Therefore, if an atom or molecule of
mass 𝑚 moves with velocity 𝑣 then the atom or molecule can be brought to a stop
after 𝑁𝑠𝑡𝑜𝑝 = 𝑚𝑣/ℏ𝑘 photon scatters. In general, to laser cool and trap an atom or
molecule, about 10,000 photon scatters are needed. This repeated process of photon
absorption and emission is referred to a photon cycling.

In order to actually cool and trap an atom or molecule, it must contain a closed
cycling transition so that thousands to millions of photons can be scattered. By
closed, we mean that upon excitation, the atom or molecule will not decay to a state
unaddressed by the laser and stop scattering photons. While finding closed cycling
transitions in certain atoms is fairly easy, it is much more difficult in molecules
due to the addition of vibrational and rotational branching. The strict angular
momentum and parity selection rules for rotational transitions can be utilized to
provide rotational closure [100]. For a 2Σ+ → 2Π1/2 transition, this is accomplished
by driving transitions from the negative parity 𝑁 = 1 state to the even parity 𝐽 = 1/2
state (the 𝑃𝑄12(1) and 𝑃𝑃11(1) transitions in Fig. 2.2). The angular momentum and
parity selection rules enforce that a 𝐽 = 1/2 positive parity state can only decay to
𝐽 = 1/2, 3/2 negative parity states. There are no 𝐽 = 3/2 negative parity states in a
2Σ+ electronic state so the molecule will always decay back to the original 𝑁 = 1,
𝐽 = 1/2, 3/2 states, providing rotational closure.

The lack of strict selection rules for vibrational transitions makes addressing vibra-
tional branching much more difficult. From Eq. 2.82 we know that the vibrational
branching is proportional to the FCF. Therefore, if we choose a molecule with
diagonal FCFs (𝑞𝜈′′,𝜈′ ≈ 1 for 𝜈′′ = 𝜈′), then the branching to higher vibrational
modes not addressed by the cooling lasers will be small. In this case only a small,
experimentally feasible, number of repumping laser will be needed to optically
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pump the population in these higher vibrational states back into the cooling cycle.
Diagonal FCFs are achieved when the vibrational wavefunctions of the ground and
excited state are very similar, which occurs when the ground and excited state PESs
are almost nearly identical. This occurs when the valence electron involved in the
optical cycling is decoupled from the bonding electrons. As discussed in Section
2.2, this is the case for molecules formed by the bonding of alkaline earth or alkaline
earth-like metals to halogens or psudo-halogens, but it occurs in other cases as well
[50, 101–104]. To date, several diatomic [48–52] and polyatomic [53–56] molecules
have been laser cooled several of which have been trapped as well [57–60].

2.11 Overview of YbOH
Finally, we conclude this chapter with a brief overview of our molecule of choice,
ytterbium monohydroxide (YbOH). Prior to the development of experiments to
search for a NMQM and eEDM in YbOH, a single spectroscopic study of YbOH
had been performed using a high-temperature sample [105]. This study found that
YbOH is indeed similar to the alkaline earth hydroxides (CaOH and SrOH), a linear
molecule with a ground 𝑋̃2Σ+ electronic state and a first exited 𝐴̃2Π1/2 state. Here
we have introduced the spectroscopic notation where the ground state is denoted by
an 𝑋̃ and all other excited states are denoted by capital letters in alphabetical order,
first excited is 𝐴̃, second excited is 𝐵̃, etc.21 Additionally, this study confirmed that
YbOH has a very large spin orbit splitting in the 𝐴̃2Π state, 𝐴 = 1350 cm−1, so
that the 𝐴̃2Π1/2 and 𝐴̃2Π3/2 states are separated by 1350 cm−1. In this case the
𝐴̃2Π1/2 and 𝐴̃2Π3/2 states are considered to be separate electronic states rather than
different spin orbit components of the same electronic state. This original study did
contain an error which resulted in an incorrect value for the spin rotation parameter.
The correct value of the spin rotation parameter was determined as part of the work
described in this dissertation, and resulted in a reanalysis of the high-temperature
study [106]. The state ordering (not to scale) of the first few rotational levels of the
𝑋̃2Σ+(0, 0, 0) and 𝐴̃2Π1/2(0, 0, 0) states of YbOH is presented in Fig. 2.2.

YbOH is a linear triatomic molecule and will have three vibrational modes: Yb-O
stretch denoted 𝜈1, Yb-O-H bend denoted 𝜈2, and O-H stretch denoted 𝜈3. Vibra-
tional states are indicated in parentheses (𝜈1, 𝜈2, 𝜈3) following the electronic state
designations. Similar to CaOH and SrOH, the strong ionic bond between the Yb
and OH provides very diagonal FCFs making YbOH amenable to laser cooling.

21Sometimes the state labeling is out of order when lower excited states are experimentally
observed after higher-lying excited states.
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Figure 2.2: Example of the rotational transitions of of the 𝐴̃2Π1/2(0, 0, 0) −
𝑋̃2Σ+(0, 0, 0) band of YbOH. The transitions shown here are typical for a 2Π1/2−2Σ+

band. The spacing between the molecular states is not to scale. The state ordering of
the rotational and fine structure components of the 𝐴̃2Π1/2(0, 0, 0) and 𝑋̃2Σ+(0, 0, 0)
states is representative of YbOH. The negative value of 𝛾 in the 𝑋̃2Σ+(0, 0, 0) state
results in the 𝐽 = 𝑁 − 𝑆 state residing higher in energy than the 𝐽 = 𝑁 + 𝑆 state.
Similarly, the negative value of the (𝑝 + 2𝑞) parameter in the 𝐴̃2Π1/2(0, 0, 0) state
reverses the ordering of the parity components compared to similar alkaline earth
metal fluorides and hydroxides. One or more transitions from each of the six
branches typical for a 2Π1/2 −2 Σ+ band are shown and labeled. All transition labels
are to the left of the arrow designating the transition except the 𝑄𝑅12(2) line, which is
to the right. The six different branches are color coded: 𝑂𝑃12 red, 𝑄𝑄11 green, 𝑃𝑃11
yellow, 𝑃𝑄12 light blue, 𝑄𝑅12 orange, and 𝑅𝑅11 dark blue. The branch designations
are described in the text.

The vibrational branching ratios of YbOH have been measured to high precision
[107]. The vibrational branching from the 𝐴̃2Π1/2(0, 0, 0) state (for branching ra-
tios ≥ 0.01%) are presented in Fig. 2.3. In addition to diagonal FCFs, the bending
mode of the ground electronic state, 𝑋̃2Σ+(0, 1, 0), will have parity doublets due to
the 𝑙-doubling. This parity doubling can be used for internal comagnetometry and,
therefore, the 𝑋̃2Σ+(0, 1, 0) state will act as the science state for both the NMQM
and eEDM measurements.

Finally, Yb has seven naturally occurring isotopes with moderate abundances:
168Yb (0.1%), 170Yb (3.0%), 171Yb (14.3%), 172Yb (21.8%), 173Yb (16.1%), 174Yb
(31.8%), and 176Yb (12.8%). The even isotopes of Yb have no nuclear spin so



48

ሚ𝐴2Π1/2(000)

෨𝑋2Σ+ (000)
(010)

(100) (0220)

(0200)

(200)

(110) (1200)

(1220)

(300)

89.44% 0.054%

9.11%

0.335%

0.914%

0.010% 0.055%

0.067%

Figure 2.3: Vibrational branching of the 𝐴̃2Π1/2(0, 0, 0) state of YbOH. Only
known branching ratios ≥ 0.01% are presented and were taken from Ref. [107].

the only hyperfine interactions in the even isotopologues of YbOH result from the
nuclear spin of the H (I𝐻 = 1/2). However, the odd isotopes do have nuclear spins of
I171𝑌𝑏 = 1/2 and I173𝑌𝑏 = 5/2 which result in strong hyperfine interaction in the odd
isotopologues. Additionally, the 173Yb nucleus is quadrupole deformed and has an
electric quadrupole moment resulting in electric quadrupole hyperfine interactions.
The focus of the work described in this disertation is the production of YbOH and the
characterization of the ground and several excited electronic and vibrational states
of the even (174YbOH) and odd (171,173YbOH) isotopologues. These measurements
are essential for the implementation of laser cooling, spin precession, and EDM
measurements in YbOH.
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C h a p t e r 3

4 Kelvin Cryogenic Buffer Gas Beam Source

In order to study and ultimately perform measurements of P,T-violation with YbOH,
we must first produce it. YbOH is a free radical (molecule with an unpaired valence
electron) and is not chemically stable. Therefore, we must use production methods
that will avoid the loss of YbOH through chemical reactions. Furthermore, at room
temperature a sample of molecules will typically occupy thousands of different
rotational and vibrational states so we must also cool the molecules to cryogenic
temperatures where the thermal distribution of molecules is spread over only a
few rotational levels. We accomplish the production and cooling of the molecules
with cryogenic buffer gas cooling and ultimately extract the molecules to form a
cryogenic buffer gas beam (CBGB). In this chapter I provide a brief review of
CBGBs (more complete and thorough reviews and studies can be found in [108–
112]) and a description of our 4 K CBGB source, including the design, construction,
and characterization.

3.1 Cryogenic buffer gas beams
Cryogenic buffer gas cooling
At the heart of any CBGB source is buffer gas cooling. Buffer gas cooling utilizes
elastic collisions with a cold, inert buffer gas, typically helium or neon, to cool the
molecular species of interest. In practice this is accomplished inside of a cryogenic
buffer gas cell: a small volume, typically 10-50 cm3, which is cooled to cryogenic
temperatures, typically 1-10 K1. The buffer gas cell is filled with the buffer gas, in
our case Helium, which is thermalized to the cell temperature through collisions with
the cell walls. The molecular species of interest can be introduced into the cell via
laser ablation, capillary filling, or other methods [108]. Following the introduction
of the molecular species, collisions with the cold buffer gas will quickly cool the
rotational, and translational degrees of freedom of the molecules to near that of the
buffer gas2.

1These temperature are typical for a helium buffer gas, neon sources run hotter ∼ 20 K.
2The vibrational quenching collisional cross section for buffer gas collisions is typically much

smaller than the rotational quenching cross section [71] and therefore buffer gas cooling may not
efficiently cool the vibrational degrees of freedom resulting in an athermal vibrational population. It
is known that this athermal vibrational population also occurs in supersonic molecular beam sources.
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Buffer gas cooling relies on collisions, and therefore, is a generic method that can
be applied to almost any molecule. More importantly, the buffer gas is inert which
makes this technique especially attractive for free radicals such as YbOH. Buffer
gas cooling will result in a molecular sample cooled to a few Kelvin where the
molecules will occupy only a few tens of internal states, an ideal starting point for
both spectroscopy and experiments requiring specific quantum state control (e.g.
laser cooling or parity violation searches). Buffer gas cooling has been used to cool
atoms and small [109] and large molecules [113].

Cryogenic buffer gas beam properties
A cryogenic buffer gas molecular beam can be formed by putting an aperture,
typically 1-5 mm, in the cell and applying an constant buffer gas flow, typically
1-100 SCCM3. The buffer gas flow into the cell must equal the flow out of the
aperture and therefore the buffer gas density in the cell is dependent on both the
buffer gas flow and the size of the aperture [108]:

𝑛𝑏 ≈
4 𝑓𝑏

𝐴𝑎𝑝𝑣0,𝑏
, (3.1)

where 𝑓𝑏 is the buffer gas inlet flow, 𝐴𝑎𝑝 is the area of the aperture, and 𝑣0,𝑏 is the
mean thermal velocity of the buffer gas. The higher this density, the more collisions
per unit time which results in quicker thermalization.

Not only will the collisions with the buffer gas cool the molecules but it will entrain
them into the buffer gas flow and extract them from the cell to form a molecular
beam with high extraction efficiency [108, 114]. The extraction of the molecules
follows an exponential decay with a time scale given by [108]

𝜏𝑒𝑥𝑡𝑟𝑎𝑐𝑡 =
4𝑉𝑐𝑒𝑙𝑙
𝑣0,𝑏𝐴𝑎𝑝

(3.2)

where 𝑉𝑐𝑒𝑙𝑙 is the cell volume. This extraction time needs to be slower than the
thermalization time, so that the molecules can be cooled before they are extracted,
but quicker than the time it takes for the molecules to diffuse to the cell walls.

Buffer gas beams are often operated in an intermediate regime where the buffer
gas density is high enough that there are a significant number of collisions such
that the gas flow cannot be described by molecular flow (e.g. effusive beam) but
not high enough (or dense enough) to be described by hydrodynamics either. The

3SCCM or standard cubic centimeters per minute is a standard unit of gas flow. 1 SCCM is
equivalent to ∼ 4.5 × 1017 atoms per second.
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output velocity of the CBGB is highly sensitive to how close to the effusive or
hydrodynamic regimes the CBGB operates. We can quantify this using a quantity
called the Reynolds number, 𝑅𝑒. In the case of a CBGB it is most important to
consider the Reynolds number at the aperture, where it is approximately equal to
twice the number of collisions that occur within an aperture diameter away from
the aperture [108]. Since 𝑅𝑒 is proportional to the number of collisions near the
aperture, it directly tells indicates in which regime the buffer gas source is operating.
In terms of the CBGB properties, the Reynolds number is given by

𝑅𝑒 ≈ 8
√

2 𝑓𝑏𝜎𝑏𝑏
𝑑𝑎𝑝𝑣0,𝑏

, (3.3)

where 𝜎𝑏𝑏 is the buffer gas-buffer gas collision cross section, and 𝑑𝑎𝑝 is the diameter
of the aperture.

In the effusive regime, 𝑅𝑒 ≲ 1 there are almost no collisions near the aperture and the
flow is molecular. Since there are not many collisions, the buffer gas and molecules
randomly wander out of the aperture while diffusing around at their thermal velocity.
In this case the beam’s forward velocity, 𝑣𝑏𝑒𝑎𝑚 (here we refer to the velocity of the
species of interest not the buffer gas) is given by

𝑣𝑏𝑒𝑎𝑚 ≈ 1.2𝑣0,𝑠, (3.4)

where 𝑣0,𝑠 is the mean thermal velocity of the species of interest.

In the low end of the intermediate regime, 1 ≲ 𝑅𝑒 ≲ 10, there are now collisions
with the buffer gas near the aperture. These collisions will speed up the beam. In
this regime, the beam’s forward velocity can be approximated by

𝑣𝑏𝑒𝑎𝑚 ≈ 1.2𝑣0,𝑠 + 0.6𝑣0,𝑏𝑅𝑒
𝑚𝑏

𝑚𝑠

, (3.5)

where 𝑚𝑏 and 𝑚𝑠 are the mass of the buffer gas and molecular species of interest
respectively. As 𝑅𝑒 gets higher there are more collisions near the aperture which
will cause additional boosting of the beam velocity. At very high 𝑅𝑒, 𝑅𝑒 ≳ 100,
the buffer gas flow is almost fully hydrodynamic and results in a fully boosted beam
with a forward velocity of

𝑣𝑏𝑒𝑎𝑚 ≈ 1.4𝑣0,𝑏 . (3.6)

For intermediate 𝑅𝑒 higher than that described by Eq. 3.5 but lower than the fully
hydrodynamic regime,10 ≲ 𝑅𝑒 ≲ 100, the CBGB forward beam velocity is better
described by

𝑣𝑏𝑒𝑎𝑚 ≈ 1.4𝑣0,𝑏
√︁

1 − 𝑅𝑒−4/5. (3.7)
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Notice that the beam velocity given in Eq. 3.7 saturates to the fully hydrodynamic
value. CBGB sources are most often operated in the intermediate regime, 1 ≲ 𝑅𝑒 ≲
100 where the forward beam velocity is best described by Eq. 3.5 and 3.7.

It is often advantageous to produce the slowest molecular beam possible. This is
especially true for laser cooling as slower beams will make slowing and stopping
the molecular beam easier. Many techniques have been used to accomplish this,
including second stage cells and cooling the buffer gas cell to colder temperatures
[111]. These techniques were not used in this work so they will not be discussed
further.

3.2 4 K cryogenic buffer gas beam source
At the center of what will become the NMQM experiment is the 4 K CBGB source.
A description of this source is provided here, including the design principles and
lessons learned. Much of this system was custom designed and fabricated. Many of
the spectroscopic measurements detailed in this dissertation were measured using
this 4 K CBGB source.

To cool to cryogenic temperatures we utilized a Cryomech PT415 pulse tube refrig-
erator, referred to as the pulse tube. The pulse tube has two stages, the first stage
cooling to ∼40 K, referred to as the 50 K stage, and the second which cools to ∼3.5
K, referred to as the 4 K stage. The pulse tube, and all other cryogenic components,
are mounted in a custom aluminum 14.5 inch x 14.5 inch x 24.5 inch rectangular
vacuum chamber, referred to as the 300 K chamber. This chamber has removable
side, top, and bottom plates. The vacuum seals between the plates and the chamber
are made using Viton o-rings. All o-ring seals in the 4 K CBGB source are made
with Viton o-rings; Buna is avoided due to higher outgassing rates.

When the pulse tube is mounted directly to the top of the 300 K chamber, the 4 K
stage of the pulse tube rests near the bottom of the chamber. In order to maximize
the usable space and provide a beam output near the center of the 300 K chamber,
the pulse tube was mounted higher in the 300 K chamber. This was accomplished
by mounting the pulse tube to a custom 2.0-inch-thick octagon-shaped collar which
was in turn mounted to a custom 8.0-inch-diameter 7.315-inch-long nipple. This
nipple was mounted to the top of the 300 K chamber (a drawing of the octagon-
shaped collar and custom nipple can be found in Appendix B). The octagon-shaped
collar was used to adapt the mounting pattern of the pulse tube to that of the 300 K
chamber’s top plate, which is the same mounting pattern used for the custom nipple.
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All vacuum seals were made with Viton o-rings. When the pulse tube is mounted
to the custom nipple, the 50 K stage resides inside the nipple. An adaptor was made
to address this issue and is described in Section 3.2. A three dimensional CAD
drawing of the full 4 K CBGB assembly (excluding the buffer gas cell) is shown
in Fig. 3.1, including the mounting of the pulse tube using the octagon collar and
custom nipple.

Figure 3.1: Three-dimensional CAD drawing of the full 4 K CBGB assembly.
Both a side view and angled corner view are shown. For both views a cut was taken
down the center of the assembly so that the interior can be clearly seen. For the
corner view, one of the 300 K side plates is removed to show the side face of the 50
K shields. All labeled components are described in detail in the text. The buffer gas
cell and its mounting structure are not shown.

Radiation shields
The inner walls of the 300 K chamber will radiate 300 K blackbody radiation (BBR)
into the inside of the chamber. Mounting the cryogenic buffer gas cell directly inside
of the 300 K chamber, with no thermal shielding, will expose the cell to this large
300 K BBR heat load and prevent the cell from cooling down to 4 K. In order to
reduce the heat load on the cell it is surrounded with nested 50 K and 4 K radiation
shields (connected to the 50 K and 4 K stages of the pulse tube respectively). In
this configuration only the 50 K shields are exposed to the 300 K BBR while the 4
K shields are exposed to 50 K BBR and the cell is exposed to 4 K BBR. The lower
4 K heat load on the cell results in a lower operating temperature. It is important
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to note that while the 4 K shields reduce the BBR heat load, their existence does
not significantly lower the temperature of the cell, as the cell and the 4 K shields
are cooled by the same stage of the pulse tube. The 4 K shields, however, act as a
cold surface on which the cryopumping charcoal sorbs (to be discussed later) can
be mounted. With these shields, the 4 K CBGB source is essentially a cell mounted
in a 4 K box, mounted in a 50 K box, mounted in 300 K box.

Finally, it is important to note that all mechanical and thermal connections were made
using brass screws and Belleville spring washers. The brass screws provide the best
match (for non-custom fasteners) for the thermal contraction of both aluminum and
copper (the materials used for the 50 K and 4 K shields). This prevents thermal
contraction of the metals from making the contacts between different parts less
tight and reducing thermal conduction needed for cooling. The Belleville washers
prevent thermal contact from being lost during cool-down. These conical washers
act as springs when compressed and will keep the face to face connection of two
parts tight even when thermal contraction occurs. Lastly, the surfaces between parts
where good thermal contact is needed are coated with a thin layer of Apiezon N
thermal grease to increase thermal conduction.

50 K shields

All of the 50 K shields were fabricated using Aluminum 6061. Aluminum 6061 was
chosen due to the thermal properties at 50 K, cost, and ease of machining. Drawings
for all of the 50 K shield components can be found in Appendix B. The 50 K shields
form an approximately 11 inch x 11 inch x 16 inch box.

The 50 K top plate is 0.5 inches thick and has a 7.5-inch-diameter hole in the center
for the pulse tube to pass through. There are 4 additional 1.0 inch diameter holes
(on the corners of a 8.5 inch x 8.5 inch square) for gas lines and electrical wires to be
fed through. The rest of the surface of the plate is covered by a grid of 10-32 tapped
holes (to be used for mounting the 50 K stage to the pule tube or other components
to the 50 K stage) separated by 0.5 inches in both dimensions. The 50 K top plate
is suspended from the top4 of the 300 K chamber by four stainless steel threaded
rods5. The 50 K top plate rests on a pair of locked nuts threaded onto these threaded

4The threaded rods are screwed directly into the top plate of the 300 K chamber and are not
vented. Technically, this creates trapped volumes which are typically avoided in vacuum chambers.
However, since the 50 K and 4 K surfaces act as gigantic cryopumps, and we will be purposefully
flowing helium into the chamber, the gas load from these trapped volumes is negligible.

5Stainless steel threaded rods were used since stainless steel has relatively poor thermal conduc-
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rods, this allows the height of the 50 K stage to be adjusted. These rods can be seen
in Fig. 3.4 and 3.5.

The 50 K bottom plate is 0.25 inches thick and has a grid of 10-32 tapped holes.
A temperature diode is attached to the bottom plate for monitoring the temperature
of the 50 K stage. The 50 K top and bottom plates are connected by 0.5 inch x 0.5
inch x 16.0 inch rectangular connecting bars (vertical connecting bars). The bars
have tapped holes in the center of the ends, which are used to fasten to the top and
bottom plates. The sides of the connecting bars have a single line of 10-32 tapped
holes (thru all), separated by 1.0 inch and offset by 0.5 inches on adjacent sides
to prevent the holes from intersecting. These holes are used for fastening the side
plates. Additional connecting bars (horizontal connecting bars) are mounted to the
inner sides of the top and bottom plates to provide additional points for fastening the
side plates. The frame of the 50 K shields, comprised of the connecting bars and
the top and bottom plates, can be seen in Fig. 3.2a. Note that in the original design
the nuts on which the top plate rests contact the vertical connecting bars. The sides
of the connecting bars had to be filed down to prevent this.

The 11 inch x 16 inch side plates are too large to fit through the side of the 300 K
chamber so they were separated into two separate plates. First is the larger (50 K
side flange) 11 inch x 16 inch plate with a 8.5 inch x 13.0 inch rectangular hole offset
0.5 inches below the center. The second plate (50 K side cover plate) is 9.5 inch
x 14.0 inch plate which is attached to the 50 K side flange to cover the rectangular
hole. The smaller plate fits through the side flange in the 300 K chamber allowing
the inside of the 50 K stage to be accessed through the side flange of the 300 K
chamber. Access to the 4 K shields with the 300 K front plate and 50 K front side
cover plate removed is shown in Fig. 3.3. Both side plates are 0.25 inches thick. It
is important to note that in the original design the mounting screws extruded too far
out from the surface of the smaller side plates preventing the 300 K from fitting over
these screw heads so that the chamber could not be dropped without removing the
smaller 50 K side plates. This was fixed by trimming down the edges of the smaller
50 K side plates by 0.125 inches so that they sit 0.125 inches closer to the 50 K side
flange.

The side cover plates on the sides parallel to the beam direction have a 2 inch x
4 inch rectangular hole for a window. The windows are mounted using 0.25 inch
tivity at 4 K and 50 K. Therefore, these rods will not create a thermal short between the 50 K and 300
K stages. The heat transfer from the 300 K stage to the 50 K stage through these rods was calculated
and found to be negligible.
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thick rectangular window flanges and indium wire is placed between the window
and both the side cover plate and window flange. Rectangular borosilicate glass
windows are used. The front side cover plate (in front of the front of the cell) has a
3/8 in diameter hole counter bored on the outer face such that the hole is diverging
in the beam propagation direction. A side view of the fully assembled 50 K shields
is shown in Fig. 3.2b.

Figure 3.2: Frames of the 50 K and 4 K shields and assembled 50 K shields.
Detailed description of the labeled parts is given in the text. a.) Outer silver
(Aluminum 6061) and inner orange (Copper C10100) parts are the 50 K and 4 K
frames respectively. The frames consist of the top and bottom plates connected by
the vertical connecting bars. The horizontal connecting bars are also shown. The
50 K and 4 K bottom plates are not labeled. One side plate of the 4 K shields is
installed, the black region around the window hole is activated charcoal, or sorb,
used for cryopumping. The first generation of the buffer gas cell is mounted inside
the 4 K frame. The completed copper braid connections of the 50 K and 4 K shields
to the respective stages of the pulse tube are visible at the top of each frame, though
not labeled. b.) Side view of fully assembled 50 K shields. The window is mouted
on the inside of the 50 K side plate so that the window mounting flange is not seen.

4 K shields

All of the 4 K shields were fabricated using high purity Copper 101, specifically
alloy6 C10100. Copper 101 was chosen as it provides the best thermal conduction

6"Copper 101" or "Copper C101" is not a defined alloy, and different vendors unfortunately use
this to mean either C10100 or C11000, the latter of which is more commonly known as C110. In
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at 4 K. The 4 K shields form a 8.2 inch x 8.2 inch x 11 inch box. The design of the
4 K shields is nearly the same as that of the 50 K shields. As with the 50 K shields,
the 4 K top and bottom plates are connected with vertical connecting bars and the
side plates are fastened to the sides of these bars as well as to horizontal connecting
bars mounted to the inside of the top and bottom plates (shown in Fig. 3.2). The
4 K top plate is 0.5 inches thick and is oversized to 10 inches x 10 inches so that it
hangs over the sides of the 4 K shields7. This provides more room for connections
with the 4 K stage of the pulse tube to be made. As with the 50 K shields, there are
four 1.0 inch diameter holes for gas lines and electrical wires to be passed through.
The 4 K top plate is suspended by threaded rods attached to the 50 K top plate,
shown in Fig. 3.5. The 4 K top plate also has a grid of tapped holes for mounting.
However, due to the soft and gummy nature of copper, all tapped holes for the 4
K stage have stainless steel helicoil inserts to prevent damage to the threads from
repeated fastening and unfastening.

The 4 K bottom and side plates are all 0.125 inches thick. Each side plate has a 4.5
inch x 4.5 inch square hole in the center. This hole is covered by a blank plate in the
back of the shield (behind the cell) and by plates with a 2 inch x 3 inch window hole
on the sides. In contrast to the 50 K shields, these window holes are left open and
not covered by a window. In the front of the 4 K shield the square hole is covered by
a plate with a 0.25-inch-diameter hole used to skim and collimate the CBGB after it
leaves the cell and before it leaves the CBGB source. As with the 50 K collimator,
the 0.25-inch hole has a conical counter bore on the front. In order to improve beam
quality, this collimater was eventually replaced by a skimmer. This is discussed
in more detail in Section 3.2. The inner walls of the 4 K shields are coated with
activated charcoal (sorb), shown in Fig. 3.2, 3.13, and 3.14. These sorbs drastically
increase the cryopumping capacity of the CBGB, allowing the background Helium
to be efficiently pumped away. However, the sorbs eventually fill up and have to
be periodically emptied by heating up the 4 K stage to ∼12-15 K and letting the
desorbed Helium be mechanically pumped away. A side and front view of the fully
assembled 4 K shields is shown in Fig. 3.3. Drawings of all of the components of
the 4 K shields can be found in Appendix B.

this dissertation I will use Copper 101 to refer to C10100.
7The corners of the 4 K top plate had to be filed off as they contacted the 50 K shields.
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Figure 3.3: Fully assembled 4 K shields. a.) Side view of the 4 K shields. Here
the 4 K shields are in the assembled 50 K shields with the 50 K side flange and 50
K side cover plate removed. b.) Front view of assembled 4 K shields. Here the 4 K
collimator can be seen. This is where the CBGB passes out of the source and into
the beam region. This view is shown with the 300 K side plate and 50 K side cover
plate removed, illustrating how the design allows the internal portion of the CBGB
source to be accessed with minimal disassembly.

Thermal connections with pulse tube refrigerator
While the top plate of the 4 K shields sits right below the 4 K stage of the pulse
tube, allowing easy connections, the 50 K stage of the pulse tube resides inside of
the custom nipple, above the top plate of the 300 K chamber. In order to thermally
anchor the 50 K shields to the 50 K stage, a thermally conductive surface must
extend down through the custom nipple from the 50 K stage to near the 50 K top
plate. This is accomplished with what we call the 50 K hexagonal extender. The 50
K hexagonal extender is comprised of seven parts, all fabricated from Copper 101.
Again, all tapped holes have stainless steel helicoil thread inserts installed. The
first piece is the 50 K hexagonal thermal plate, which is a 0.5-inch-thick hexagonal
shaped plate which attaches directly to the 50 K stage of the pulse tube. The top
of six 2.0 inch x 5.86 inch x 0.5 inch bars (50 K extender bars) is attached directly
to the 50 K hexagonal thermal plate so that they hang vertically down to provide
thermal contact with the 50 K top plate. The assembled 50 K hexagonal extender
mounted to the pulse tube (before the pulse tube was mounted in the custom nipple)
is shown in Fig. 3.4. Where the 50 K hexagonal extender sits with relation to the 50
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K top plate when the pulse tube is mounted with the custom nipple is shown in Fig.
3.5, and its position in the full assembly is shown in the three-dimensional CAD
drawing in Fig. 3.1. Drawings of the parts of the 50 K hexagonal extender can be
found in Appendix B.

Figure 3.4: 50 K hexagonal extender. Detailed descriptions of the labeled parts are
given in the text. Here, the mounting of the 50 K hexagonal extender to the 50 K
stage of the pulse tub is shown. This was before the pulse tube was mounted with
the custom nipple. In the final configuration the 50 K stage and the top of the 50 K
hexagonal extender reside in the custom nipple above the 300 K top plate.

Even though the 4 K stage sits just above the 4 K top plate, an adaptor plate (4
K thermal plate) to make thermal connections was used. The uses of the 4 K
thermal plate were twofold: first, to provide more surface area with which thermal
connections could be made and second, to prevent direct damage to the threaded
holes on the 4 K stage of the pulse tube. The 4 K thermal plate was fabricated from
Copper 101 and all tapped holes have stainless steel helicoil thread inserts installed.
The plate is 6.0 inches x 6.0 inches and 0.5 inches thick. A drawing of the 4 K
thermal plate can be found in Appendix B. Where the 4 K thermal plate sits with
respect to the 50 K and 4 K top plates is shown in Fig. 3.5 (this can also bee seen
in the CAD drawing in Fig. 3.1).

When thermally anchoring the shields to the pulse tube, it is important that the
connections provide good thermal contact but are not mechanically rigid. The pulse
tube refrigerator can be easily bent, and made inoperable, when small or moderate
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Figure 3.5: Relative positions of the 4 K top plate, 50 K top plate, 4 K thermal
plate, and 50 K hexagonal extender. Detailed descriptions of the labeled parts are
given in the text. The 300 K top plate (not labeled) is at the top of the image. This
was before the thermal connections between the 4 K thermal plate/50 k hexagonal
extender and the 4 K/50 K shields were made. The stainless steel threaded rods
from which the 50 K and 4 K top plates are suspended can be seen.

amounts of torque are applied to it. When assembling or disassembling the radiation
shields, torques that could damage the pulse tube can be both purposefully and
inadvertently applied. Therefore, thermally conductive yet mechanically non-rigid
connections between the radiation shields and the pulse tube are needed to protect
the pulse tube from damage. These connections were accomplished using Copper
101 braided wire8.

The thermal connections between the radiation shields and the pulse tube were made
by compressing the Copper braid between either the 4 K top plate, 50 K top plate, 4
K thermal plate, or the 50 K hexagonal extender and a small 0.5-inch-thick Copper
101 bar. We refer to these thermal connections as heat links. The Copper bars are
compressed down with brass screws and bellville washers. The heat links between
the 50 K top plate and the 50 K hexagonal extender are shown in Fig. 3.6a. The heat
links between 4 K top plate and the 4 K thermal plate are shown in Fig. 3.6b. A full
view of the completed heat link connections can also be seen in Fig. 3.2a. When
making the thermal heat link connections, the copper bars must be fully fastened

8Cooner Wire, NER 7710836 B-OFE (Bare OFE C101001 copper braided wire, 2/0 braid,
7x7x108/36 strands).
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down and then left for approximately a day before being re-tightened to allow the
copper braid to compress fully. If the copper bars are not re-tightened then the heat
links may not provide adequate thermal connection.

Figure 3.6: Heat link thermal connections between the radiation shields and the
pulse tube stages. a.) Heat links between the 50 K top plate and the 50 K hexagonal
extender. The thermal connection is provided by compressing the copper braid with
0.5-inch-thick copper bars. The position of a temperate diode on the 50 K top plate
is indicated. Also indicated is the 50 K heat exchanger used for cooling the Helium
to 50 K before it reached the 4 K stage. b.) Heat links between the 4 K top plate and
the 4 K thermal plate. These connections are also made by compressing the copper
braid with 0.5 inch copper bars. The 4 K heat exchanger is shown, which cools the
Helium to 4 K before it reaches the buffer gas cell.

Buffer gas cell
The internal volume of the buffer gas cell is a 0.5-inch-diameter cylinder, which can
vary in length. The variable length is achieved using a modular design which allows
different portions of the cell to be swapped out, added, or removed. This allows the
cell length, available optical access, cell aperture, or gas inlet to be changed at any
time without requiring a new cell to be fabricated. All cell parts are fabricated from
Copper 101 and all tapped holes have stainless steel helicoil thread inserts. The
modular cell pieces are created by machining a 0.5-inch-diameter cylindrical hole
through the center of at 1.5 inch x 1.5 inch copper bar of varying lengths. All cell
pieces have four 4-40 clearance holes on the corners of a 1.0 inch x 1.0 inch square
and parallel to the boar of the cell. These 4-40 holes are used to connect the cell
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pieces.

The body of the cell is formed by two different types of modular cell pieces. First
are blank cell pieces which are comprised of the 0.5-inch hole that forms the cell.
All sides of the blank pieces have a grid of 4-40 tapped holes. The blank sections
provide surface area with which thermal and mechanical connections can be made.
The blank cell pieces vary in length from 0.25 inches to 1.0 inch in 0.25-inch
increments. A 0.5-inch blank cell piece is shown in Fig. 3.7a.

a.)

b.)

c.)

Cell bore

Window 
port

4-40 holes for 
assembly

0.5 in. 
window 
piece

0.75 in. 
window 
piece

Window port

Figure 3.7: Various cell pieces used to form a modular buffer gas cell. a.) 0.5-inch
blank cell piece. The cell bore and the 4-40 through holes used for assembling the
cell are labeled. The grid of mounting holes can be seen on the side of the piece.
The surface is machined copper; the lines are due to lighting in the photograph.
b.) 0.5-inch and 0.75-inch window pieces. The cell bore and the window ports are
labeled. The tapped holes surrounding the window port are used for mounting the
window. c.) Three-dimensional CAD drawing of the diffuser plate. The helium
enters the cell 0.125 inches before this plate on the center line of the plate. The
arc-shaped slots function to push the helium flow towards the outside of the cell so
that the helium is more evenly distributed over the cell volume.

The second type of cell piece is a window cell piece. Compared to the blank cell
pieces, the window cell pieces have an additional cylindrical hole cut perpendicular
to the cell bore and completely through the entire piece (referred to as the window
port). Window cell pieces come in three lengths, 0.5 inch, 0.75 inch, and 1.0 inch.
The diameter of the window ports are 0.25 inch, 0.5 inch, and 0.75 inch for the
0.5-inch, 0.75-inch, and 1.0-inch window pieces respectively. Four tapped holes are
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also added parallel to the window port for mounting windows to the cell. Examples
of a 0.5-inch and 0.75-inch window pieces are shown in Fig. 3.7b.

A window flange is used to fasten a window to the cell. Before the window is
compressed between the flange and the side of the window cell piece, both the
side of the window cell and the flange are coated in several layers of kapton tape.
Borosilicate glass windows were used. Mounted windows can be seen in Fig. 3.8.
The window cell pieces provide optical access to the interior of the cell for laser
ablation, cell diagnostics, or spectroscopy.

The section of the cell used for laser ablation has the window extended from the
side of the window cell piece by a snorkel. This allows the window through which
the ablation laser passes to be further removed from the ablation targets to prevent it
from becoming coated with ablation products. The snorkel is made by brazing two
flanges to the ends of a copper tube. The snorkel is shown in Fig. 3.8d. Even though
the snorkel helps the ablation window from becoming coated it does not prevent
it completely, and the ablation window (and other windows) need to be changed
periodically. Opposite the snorkel the targets are mounted to the cell in place of a
window. This is accomplished by attaching the targets to a blank window flange
(target plate) with stycast epoxy before attaching the flange to the cell. Initially we
used Aluminum 6061 for the target plates but have switched to Copper 101 for better
thermal conduction.

The helium is introduced into the cell through the gas inlet. The gas inlet is made
by brazing a 0.125-inch Copper 101 tube to a blank 0.25-inch cell piece which has
a 0.125-inch hole instead of the normal 0.5-inch cell bore. The back of a gas inlet
plate is shown in Fig. 3.8c. Though it was not initially used, a diffuser plate was
added to the back of the cell. This plate has arc-shaped slots cut in it which act to
disperse the helium flow more evenly throughout the cell volume. A CAD drawing
the the diffuser plate is shown in Fig. 3.7c. The diffuser plate is separated from the
gas inlet by a 0.125-inch blank cell piece.

Unless otherwise stated the cell aperture is a 5-mm-diameter circular hole. The
aperture plate is made by cutting a 5-mm-diameter hole in the center of a 0.25-inch
blank cell piece (no 0.5-inch hole was cut in this piece). A 0.5-inch-diameter pocket
is then milled down approximately 0.1875 inches so that the aperture is only 1/16th
of an inch thick. The aperture can be seen in Fig. 3.8a.

The cell is assembled by stacking the desired cell pieces on 4-40 threaded stainless
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Figure 3.8: Buffer gas cells assemblies a.) Front/side view of first buffer gas cell
assembly. The aperture, window flange, and target plate are labeled. The 4-40
threaded rods used to assemble the cell are visible and labeled. b.) Back/side view
of first cell assembly. A window flange, target plate and 4-40 threaded rods are
labeled as in a. c.) Back view of the first buffer gas cell assembly. This shows
the back of the gas inlet plate. The helium gas inlet tube with which the helium is
introduced into the cell is labeled. Also labeled are the 4-40 threaded rods used for
assembly. d.) Side view of later buffer gas cell assembly which has a mesh aperture
(see Section 3.5). Here the snorkel used to separate the ablation widow from the
cell is shown.

steel rods and compressing them together with nuts and stacked bellville washers.
The first cell assembly, shown in Fig. 3.8a, b, and c, was comprised of (in order):
gas inlet, 0.5-inch blank, 0.75-inch window piece for ablation, 0.5-inch blank, 0.5-
inch window piece for diagnostics, and 0.25-inch aperture. Note that this original
cell assembly did not have a snorkel, though it was added soon after. The cell
assembly has varied over time. The current cell assembly is comprised of: gas inlet,
0.125-inch blank, diffuser plate, 0.5-inch blank, 1.0-inch window piece for ablation
(with snorkel), 0.5-inch blank, 0.5-inch window piece for diagnostics/spectroscopy,
and 0.25-inch aperture plate. Drawings for all cell pieces can be found in Appendix
B.
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Mounting the buffer gas cell

The buffer gas cell is mounted to the inside of the 4 K top plate. This is accomplished
with a system of mounting bars. First two 0.5 inch x 0.5 inch copper 101 bars (plate-
to-bar mounts) are attached to the inside of the 4 K top plate. These plate-to-bar
mounts have a pattern of 4-40 tapped holes on the side (with helicoil inserts) which
the cell mounting bars are attached to. The cell mounting bars are 8.0 inches long,
0.25 inches think, and vary from 0.25 to 1.0 inches wide (in 0.25-inch increments).
These cell mounting bars are attached to the sides of the blank cell pieces with 4-40
brass screws and bellville washers. A thin layer of Apiezon N thermal grease is also
used. We later replaced all the cell mounting bars with 0.5 inch thick mounting bars
for better thermal conduction so that the cell would operate at a lower temperature.
Two mounted cells are shown in Fig. 3.9. Drawings of the plate-to-bar mounts and
the 0.25-inch-wide cell mounting bars can be found in Appendix B.

Figure 3.9: Mounted buffer gas cells a.) Front view of first buffer gas cell
configuration mounted in the CBGB source. The plate-to-bar mounts and cell
mounting bars are labeled. b.) Side view of a later buffer gas cell configuration
mounted in the CBGB source. The plate-to-bar mounts and cell mounting bars are
labeled.

Helium gas manifold

The helium is introduced into the buffer gas cell through the helium gas manifold.
A piping and instrumentation diagram of the helium gas manifold is shown in Fig.
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3.10. The helium is sourced from a gas cylinder and the pressure is stepped down
and regulated with a pressure regulator. Following the pressure regulator, is a mass
flow controller (MFC), with a range of 0-10 SCCM, which controls the flow of
helium provided to the cell. There is a hand valve9 after the MFC which allows the
helium gas manifold to be isolated from the CBGB source. After this hand valve,
the helium enters the 300 K vacuum chamber through a fluid feedthrough. Before
reaching the buffer gas cell the helium passes through a 50 K and 4 K heat exchanger
which are thermally anchored to the 50 K and 4 K top plates respectively. These
heat exchangers cool the helium to 50 K and then 4 K before it reaches the buffer
gas cell. This reduces the heat load on the cell and makes the buffer gas cooling
more efficient. The heat exchangers are made by coiling copper 101 tube around a
copper 101 rod and brazing the outside of the tubing to the rod. The 50 K and 4 K
heat exchangers are shown in Fig. 3.6a and Fig. 3.6b respectively.

Pump out port

CBGB source

Pressure 
regulator

Mass flow 
controller

Hand valve

Fluid 
feedthrough

50 K heat 
exchanger

4 K heat 
exchanger

Hand valve

Buffer gas cell

He cylinder

Figure 3.10: Helium gas manifold. The helium is provided by the He cylinder and
the pressure in the manifold is regulated by a pressure regulator. The helium flow
rate is controlled by the mass flow controller. The 50 K and 4 K heat exchangers
cool the helium before it reaches the buffer gas cell. The pump out port is used to
pump out or leak check the gas manifold.

After the pressure regulator, all connections are made using Swagelok VCR metal
face seal gaskets and fittings and all of the components are "all metal." Prior to the
50 K heat exchanger and between the 50 K and 4 K heat exchangers, stainless steel

9Swagelok SS4BKV31 bellows sealed valve.
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tubing is used. Stainless steel tubing has relatively poor thermal conductivity and
will not create a significant thermal short between the 300 K chamber and the 50 K
top plate or the 50 K and 4K top plates. After the 4 K heat exchanger only copper
101 tubing is used.

Beam extension and vacuum system
After the buffer gas beam is skimmed and collimated by the skimmers in the front
of the 4 K and 50 K shields, it exits the CBGB source through a KF 50 port in
the 300 K chamber and enters a room-temperature vacuum region called the beam
extension. Except for a custom ordered 10-way KF 50 cross, the beam extension
is comprised of off the shelf KF and CF vacuum components. Again, all o-ring
seals are made using only viton o-rings. A manually operated gate valve is attached
directly to the KF 50 port of the 300 K vacuum chamber. This gate valve allows the
beam extension to be isolated from the CBGB source. The beam extension region
allows optical access to the CBGB with which beam diagnostics or spectroscopic
measurements can be made or state preparation or spin precession tests performed.
In the final NMQM experiment, the beam extension will connect to or be replaced by
the NMQM science chamber in which the NMQM measurement will be performed.

Originally, the custom 10-way KF 50 cross followed the gate valve and provided
optical access. More recently, a 6-way KF 50 cross was inserted between the gate
valve and the 10-way cross to provide a second region with optical access. AR-
coated KF 40 windows (from AccuGlass) are attached to the KF crosses via KF 40
nipples and adaptors. More recently, the two windows on the 10-way cross (which
provide laser access perpendicular to the CBGB) have been replaced by custom
Brewster angle windows. The entire interior surface of all KF components (both
crosses, all nipples, and all adaptors) is coated with air-brushed Alion MH2200
black paint to reduce laser scatter. A light pipe is attached to the top port of the
10-way cross for light collection and a metal mirror was recently mounted below
the light pipe to reflect downward emitted molecular fluorescence back into the light
pipe. A KF 50 window is mounted on the top port of the 6-way cross for light
collection.

Vacuum pumping for both the CBGB source and the beam extension is provided by
the combination of an Agilent IDP 10 dry scroll pump and a Agilent TwisTorr 84FS
Turbo pump. A piping and instrumentation diagram of the vacuum system for the
CBGB source and beam extension is shown in Fig. 3.11. Only dry, oil-free pumps
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Figure 3.11: Diagram of vacuum system for the CBGB source and beam extension.
Pumping is provided by the combination of the TwisTorr 84FS turbo pump and IDP
10 scroll pump. The turbo pump is always backed by the scroll pump when operated.
Under normal operating conditions hand valves 2 and 3 and the gate valve are open
and all others are closed, so the system is pumped by the turbo pump through the
beam extension. Closing the gate valve and hand valve 3 while opening hand valve
1 isolates the beam extension from the CBGB source. Hand valve 2 allows the scroll
pump to be isolated when leak checking, and hand valve 4 isolates the vent/leak
checking port.

are used on the system. Oil lubricated pumps can back-flow oil into the system
which would contaminate the CBGB source, especially the activated charcoal sorbs,
and destroy the cryopumping capacity. The turbo pump is mounted to the bottom of
the 10-way cross and provides the pumping for the beam extension. The turbo pump
is backed by the sroll pump. The scoll pump also provides vacuum pumping for the
CBGB source when the beam extension is isolated. Pressure gauges are mounted
directly to both the CBGB source (an Instrutech convectron) and the 10-way cross
(a MKS multi-ion gague). When operating with both the CBGB source and beam
extension under vacuum hand valve 1 (see Fig. 3.11) is closed so that the system is
pumped through the beam extension. When this valve was not closed we observed
ice formation in the source due to back flow through the IDP-10 scroll pump. Further
upgrades to the vacuum system have been made and are discussed in Section 3.2
below.



69

Background gas issues and solutions
While optimizing the CBGB source to perform spectroscopy of weak YbOH bands,
we observed that the magnitude of the laser induced fluorescence (LIF) signal
decreased with increasing buffer gas flow. This indicated that we had a buildup
of background gas in our system that was attenuating the molecular beam. The
background gas buildup could be occurring in any or all of the folowing regions; in
the 4 K shields, in the space between the 4 K and 50 K shields or 50 K shields and
300K chamber, or in the beam extension. We solved the issue by increasing both
the mechanical and cryopumping capacity of the system.

Mechanical pumping capacity was increased with the addition of two turbo pumps.
A diagram of the upgraded vacuum system is shown in Fig. 3.12. A large TwisTorr
304FS turbo pump was added to the bottom of the 6-way KF 50 cross. This
drastically increased the pumping capacity in the beam extension and acted to keep
background gas from collecting in the 6-way cross. In order to increase the pumping
rate near the CBGB output and near the space between the radiation shields and the
300 K chamber, an additional TwisTorr 74FS turbo pump was added to the front
plate of the 300 K chamber. This turbo pump was mounted directly above the beam
output. Manual valves are placed in the system so that this 74FS turbo pump can
pump on the CBGB source even when the beam extension is isolated and open to
atmosphere. All turbo pumps are backed by the same IDP 10 scroll pump.

The cryopumping capacity of the CBGB source was increased with the addition
of more activated charcoal sorbs. The additional sorbs were added in the form
of vertical sorb plates, 0.125-inch-thick copper 101 plates coated with activated
charcoal on both sides. These vertical sorb plates are mounted to the sides of square
copper bars (sorb bars) which are mounted to the inside of the 4 K bottom plate.
The vertical sorb plates and mounting bars are shown in Fig. 3.14. Drawings of the
vertical sorb plates and sorb bars can be found in Appendix B.

When making the upgrades, we discovered that the sorb on the 4 K skimmer plate
had become coated with debris, shown in Fig. 3.13. This prompted the replacement
of the 4 K skimmer plate with a conical skimmer. The conical skimmer is shown
in Fig. 3.14b. The conical skimmer acts to both skim the beam and reflect any
background gas away from the output of the buffer gas cell.
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Figure 3.12: Diagram of upgraded vacuum system for CBGB source and beam
extension. Pumping capacity was increased by adding a TwisTorr 304 FS and
TwisTorr 74 FS turbo pumps. All turbo pumps are backed by the same IDP 10 scroll
pump. Under normal operating conditions hand valves 2, 3, and 5 and the gate
valve are open while all other valves are closed. Compared to the vacuum system in
Fig. 3.11, the CBGB source is now pumped both through the beam extension and
directly by the 74FS turbo pump. The beam extension also has additional pumping
from the 304 FS tubo pump. Closing the gate valve and hand valve 3 isolates the
beam extension from the CBGB source while still pumping the CBGB source with
the 74FS turbo pump. Closing hand valve 5 and opening hand valve 1 will pump
the CBGB source with the IDP 10 directly, bypassing the 74 FS turbo pump. Hand
valves 2 and 4 operate just as they did in Fig. 3.11. An additional vent/leak check
port was added (not labeled), isolated by hand valve 6, so that the CBGB source and
the beam extension can be leak checked separately.

3.3 Diagnostics: Absorption and fluorescence
All beam diagnostics and spectroscopic measurements are performed via either ab-
sorption or laser-induced fluorescence (LIF). We perform absorption measurements
in and in front of the buffer gas cell and LIF measurements in the beam extension.
Laser beam attenuation due to absorption is measured with a photodiode while LIF
is measured with a photomultiplier tube (PMT). A simple diagram showing the
optical paths with respect to the CBGB source and beam extension is shown in Fig.
3.15. The ablation laser path is shown as well.

When a laser beam passes through a gas of molecules or atoms, the molecules or
atoms will absorb photons from the laser if the laser frequency is resonant with a
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Figure 3.13: Debris in activated charcoal sorb of 4 K skimmer plate.

transition in the atom or molecule. This will cause the intensity, or power, of the
laser beam to be attenuated. In the limit of low intensity (e.g., saturation < 1), this
attenuation is given by the Beer-Lambert law [115],

𝑃𝑇 = 𝑃0𝑒
−𝜎(𝜔)𝑛(𝑡)𝑙 , (3.8)

where 𝑃𝑇 is the transmitted power, 𝑃0 is initial power incident on the molecu-
lar/atomic cloud, 𝜎(𝜔) is the absorption cross section, 𝑛(𝑡) is the number density
of molecules/atoms per unit area, and 𝑙 is the interaction length of the laser with
the molecular/atomic cloud. The absorption cross section, 𝜎(𝜔), depends on the
frequency of the laser and this frequency dependence is the absorption line shape.
The number density of molecules/atoms per unit area, 𝑛(𝑡), is dependent on time
due to the pulsed nature of the CBGB source. By measuring 𝑃0 and 𝑃𝑇 , we can
determine the optical depth (OD)

𝑂𝐷 (𝜔, 𝑡) = 𝑙𝑛 𝑃0
𝑃𝑇

= 𝜎(𝜔)𝑛(𝑡)𝑙, (3.9)

and the integrated OD

𝑂𝐷𝑖𝑛𝑡 (𝜔) =
∫

𝑂𝐷 (𝑡)𝑑𝑡 = 𝜎(𝜔)𝑙
∫

𝑛(𝑡)𝑑𝑡. (3.10)

Measuring the frequency dependence of 𝑂𝐷𝑖𝑛𝑡 results in a measurement of the
absorption spectrum of the molecules/atoms. The total number of molecules/atoms
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Figure 3.14: Vertical sorb plates and conical skimmer. a.) Front view of vertical
sorb plates. The vertical sorb plates and the mounting bars are indicated. b.) Side
vies of vertical sorb plates and the conical skimmer, both are indicated.

that interact with the laser for a given amount of time, 𝑑𝑡, is 𝑑𝑁 = 𝐴𝑛(𝑡)𝑣𝑑𝑡, where
𝐴 is the cross sectional area of the laser beam and 𝑣 is the velocity of the molecular
beam. Integrating gives 𝑁𝑡𝑜𝑡 = 𝐴𝑣

∫
𝑛(𝑡)𝑑𝑡. Using Eq. 3.10 results in the total

number of molecules/atoms as a function of the integrated OD,

𝑁𝑡𝑜𝑡 =
𝐴𝑣

𝜎(𝜔)𝑙 𝑂𝐷𝑖𝑛𝑡 . (3.11)

Therefore, a measurement of the integrated OD can also be used to determine the
total number of molecules/atoms interacting with the laser beam.

After absorbing a photon and transitioning to an excited state, the molecule or atom
will soon, typically after nanoseconds to microseconds, decay emitting a photon.
This laser-induced fluorescence (LIF) can be detected using a PMT. The magnitude
of the LIF is proportional to the number of molecules/atoms that absorb a photon
initially, 𝜎(𝜔), and, therefore, measuring the frequency dependence of the LIF
provides a measurement of the spectrum of the molecule or atom. Additionally, LIF
can be used to measure the Doppler shift of molecular or atomic transitions due to
the velocity of the molecular/atomic CBGB. This provides accurate measurements
of the CBGB velocity and velocity distribution. When dealing with molecules, the
decay can occur to multiple vibrational states (see Section 2.9) and filters can be
used to obtain background free detection of off-diagonal transitions.
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Figure 3.15: Simple diagram of the optical setup (not to scale). Absorption lasers
pass through the 300 K chamber, the 50 K shields, and the 4 K shields before being
detected by photodiodes. The in-cell beam passes through the buffer gas cell while
the in-front-of-cell probe passes in front of the cell aperture. LIF detection beams
pass through the 6-way or 10-way KF 50- crosses. LIF is detected by PMTs mounted
above the 6-way or 10-way crosses. The ablation laser and target are shown as well.

3.4 YbOH production
Laser Ablation
YbOH molecules (and Yb atoms) are produced in the buffer gas cell via laser
ablation. This is accomplished by focusing a doubled, pulsed Nd:YAG laser (532
nm)10 onto a pressed powder target (Yb foil for the case of Yb atoms). The high-
intensity laser light vaporizes the surface of the target and forms a plasma. YbOH
molecules are formed in the plasma and then cooled via collisions with the buffer
gas. We typically ablate with pulse energies in the range of 10-50 mJ/pulse (most
often operating near 30 mJ/pulse) and repetition rates from 4-10 Hz. A lens is used
to focus the ablation laser, with the focal point overlapping with the target location.
We find that angling this lens can improve the molecular yield from the ablation.
Exact positioning and angling of the lens is done in situ while monitoring the in cell
absorption signals.

10Early in the experiment we utilized a Continuum Minilight laser for ablation but switched to a
Big Sky Nd:YAG laser and have not switched back.
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Target production and testing
Homemade pressed powder targets are used for YbOH production. The targets are
made by mixing various ratios of Yb powder with other powdered compounds which
contain oxygen and hydrogen. The target-making procedure is as follows11. First the
powdered compounds (the Yb powder and other compounds containing oxygen and
hydrogen, such as Yb(OH)3) are mixed and ground with a mortar and pestle until
they pass through a 230 mesh sieve. The powder mixture is then combined with 4%
polyethylene glycol (PEG8000, often referred to simply as PEG) by weight, which
acts as a binder. Several targets containing Te(OH)6 used KF as a binder instead of
PEG12. The mixture is then pressed in an 8-mm die at ∼10 MPa for ∼15 minutes.
The dye components are coated in dry-moly lubricant prior to pressing. A summary
of the targets made and tested during the work described in this dissertation is given
in Table 3.1.

The quality of a target is assessed using two metrics: overall yield, and how fast
(number of ablation shots) the YbOH production decreases or decays. These quan-
tities are measured using in-cell absorption spectroscopy. The integrated OD is
proportional to the total number of molecules created in each pulse, therefore mon-
itoring the OD as a function of number of ablation shots provides a measurement
of the total yield and the decay. Tests comparing the integrated OD vs number
of ablation shots for three targets (Stoichiometric Yb to Yb(OH)3 + 4%PEG, 0.17
Te(OH)6 to 3 Yb to 1.83 KF, and 0.25 Te(OH)6 to 3 Yb to 1.75 KF) were conducted
at various YAG ablation energies. For all YAG energies tested, the stoichiomet-
ric Yb + Yb(OH)3 target had a significantly higher yield for the first few hundred
ablation shots. However, the YbOH yield (integrated OD) from the stoichiometric
Yb + Yb(OH)3 target decayed significantly over the first several hundred ablation
shots, sometimes decaying to values near that of the Te(OH)6 + Yb+ KF targets. In
contrast to the stoichiometric Yb + Yb(OH)3 target the yield from the two Te(OH)6

+ Yb+ KF targets decayed at a much slower rate, essentially providing relatively
constant integrated ODs over the range of ablation shot numbers tested.

When operating the CBGB source decay in the YbOH signals is compensated for
by adjusting the ablation laser so that it hits a fresh spot on the target, reviving the
signal. The consistency and lack of decay from the Te(OH)6 + Yb+ KF targets
prompted us to use the Te(OH)6 + Yb+ KF targets tested here in spectroscopic

11This target-making procedure was taught to us by Elizebeth West.
12These targets were made in coordination with Richard Mawhorter and Graceson Aufderheide.
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Table 3.1: Summary of YbOH targets.

Target composition Mixture ratio

Yb(OH)3 Yb(OH)3 + 4%PEG

Yb + Yb(OH)3 Stoichiometric𝑎 mixture of Yb and Yb(OH)3 + 4% PEG

Yb + Yb(OH)3 Yb(OH)3 + 10%Yb + 4%PEG

Yb + PVOH𝑏 Stoichiometric mixture of Yb and PVOH

Yb + Al(OH)3 Stoichiometric mixture of Yb and Al(OH)3 + 4%PEG

Yb + Te(OH)6 + KF𝑐 0.25 Te(OH)6 to 3 Yb to 1.75 KF by number

Yb + Te(OH)6 + KF𝑐 0.5 Te(OH)6 to 3 Yb to 1.5 KF by number

Yb + Te(OH)6 + KF𝑐 0.17 Te(OH)6 to 3 Yb to 1.83 KF by number

Yb + Te(OH)6 Stoichiometric mixture of Yb and Te(OH)6

Yb + Te(OH)6 Stoichiometric mixture of Yb and Te(OH)6 + 4%PEG

𝑎 Stoichiometric mixture refers to equal ratio of Yb to O to H by num-
ber.
𝑏 PVOH is polyvinyl alcohol.
𝑐 These target recipes were determined by Graceson Aufderheide.

studies. Unfortunately, other batches of Te(OH)6 + Yb+ KF targets performed much
more poorly, and we abandoned the Te(OH)6 + Yb+ KF targets due to this lack
of reproducibility from target to target. On the other hand, the stoichiometric Yb
+ Yb(OH)3 targets produce large amounts of YbOH and the performance is very
consistent from target to target. Additionally, when testing the other target compo-
sitions and recipes listed in Table 3.1, we found that all other recipes performed, at
best, equivalently but often worse than the stoichiometric Yb + Yb(OH)3 targets.
The stoichiometric Yb + Yb(OH)3 targets have become our standard as we have not
found any targets that perform better.

The parameter space of both mixture ratios and OH-containing compounds has
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only been minimally explored by the set of targets given in Table 3.1. It is very
possible that a target composition and recipe which produces targets which surpass
the stoichiometric Yb + Yb(OH)3 targets in performance exists. Therefore, further
testing of different target compositions and recipes is warranted. Additionally,
production procedures which differ or expand upon the simple grind and press
procedure used here could very well produce targets with better properties. All
the targets described here suffer from the fact that they are relatively soft and
powdery compared to sintered or metal targets. Experimental efforts have shown
that harder, denser, and more homogeneous targets tend to ablate better (higher
yield, more consistent, less decay)13. Unfortunately, sintering is not beneficial for
YbOH targets, as the OH bond tends to dissociate at temperatures lower than those
needed to cause the target structure to reorganize into a denser more solid form.
However, other production methods besides sintering may be able to create denser,
harder, and more homogeneous YbOH targets.

3.5 Testing cell with mesh aperture
In addition to the initial testing of the CBGB source, we experimented with a new
cell aperture made from copper mesh. This section describes the testing of this
aperture. Note that, outside of this section, the data described in this dissertation
was taken with a different aperture which consisted of a 5-mm-diameter hole in
a solid copper plate. Though copper mesh had been used for second-stage cell
apertures [111], to our knowledge, it had not been used to make an aperture for
a single stage buffer gas cell. The aperture was made by punching a 3/16th-inch
hole in the center of a 1.5 inch x 1.5 inch square of copper 101 size 80 mesh. 4-40
clearance holes were also punched in the mesh so that it can be mounted using the
4-40 threaded rods. In front of the mesh, a 0.25-inch-thick mesh holder was placed
to clamp down the copper mesh. A front view of the mesh aperture is shown in Fig.
3.16. The cell assembly used with the mesh aperture is as follows (in order from
gas inlet to aperture); gas inlet, 0.5 inch blank, 1.0 inch window with snorkel, 0.5
inch blank, 0.5 inch window, mesh aperture, 0.25 inch mesh holder.

Experimentation with the mesh aperture resulted from our hypothesis that an aper-
ture of this type may be able to provide a more effusive and therefore slower beam.
The copper mesh would provide a semi-transparent end to the cell which helium (and
the species of interest) would be both reflected from and flow through. The partial
reflection of the helium should keep the helium density in the cell high enough so

13For example, solid metals like Yb generally ablate better than the pressed powder targets.
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Figure 3.16: Mesh aperture. The aperture consists of a 3/16th-inch-diameter hole
in copper 101 size 80 mesh. The darker circle surrounding the aperture hole is the
cylindrical bore of the buffer gas cell.

that adequate thermalization can occur while providing the helium an alternative
path (other than the aperture) to flow out of the cell. With a normal aperture, all
the helium must exit the cell through the aperture. This causes the helium density
near the aperture to increase, causing more collision near the aperture to occur.
This results in boosting. The semi-transparent nature of the mesh aperture should,
in theory, allow the helium to flow out through it while still directing some out of
the open aperture. The alternative flow path through the mesh should lower the
helium density and the number of collisions near the aperture compared to a normal
aperture. Less collisions near the aperture will result in a lower 𝑅𝑒 and a more
effusive, slower beam.

Testing of the cell with the mesh aperture and the resulting CBGB properties was
performed with Yb atoms. CBGB properties (see Section 3.1) depend on either
the buffer gas properties (mass, thermal velocities, etc.) or the ratio of the mass
of the buffer gas to that of the species of interest, 𝑚𝑏/𝑚𝑠. For Yb and YbOH,
𝑚𝑏/𝑚𝑌𝑏 ≈ 𝑚𝑏/𝑚𝑌𝑏𝑂𝐻 and therefore a Yb and YbOH CBGB will have essentially
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the same properties. Significantly larger amount of atomic Yb are produced via
laser ablation, in comparison to YbOH, resulting in much larger signals, simplifying
detection for CBGB diagnostics.

Extraction
Extraction of Yb atoms was measured using front-of-cell absorption spectroscopy on
the 1𝑆0 → 1𝑃1 atomic Yb transition. The absorption probe laser passed directly in
front of the cell aperture (see Fig. 3.15), and the integrated OD as a function of buffer
gas flow was measured at two different ablation pulse energies. The number of atoms
leaving the cell was determined using Eq. 3.11. The beam velocity 𝑣was determined
using a combination of time-of-flight measurements and velocity measurements
(velocity measurements are described below). Time-of-flight measurements were
made via an absorption spectroscopy of the same Yb transition 47.3 cm downstream.
Using the time of the peak of the front-of-cell and 47.3 cm-downstream absorption
signals, the velocity was estimated. The measurements were made on resonance
where𝜎(𝜔𝑟𝑒𝑠) = 𝜎0

𝑔𝑢𝛾0
𝑔𝑙𝛾𝑡𝑜𝑡

, where 𝑔𝑢 and 𝑔𝑙 are the upper and lower state degeneracies
of 3 and 1 respectively, 𝜎0 = 𝜆2/2𝜋, 𝛾0 = 1/2𝜋𝜏 is the natural line width, and 𝛾𝑡𝑜𝑡
is the total linewidth from all broadening mechanisms. For the 1𝑆0 → 1𝑃1 atomic
Yb transition, 𝜆 = 398.9 nm and 𝜏 = 5.5 ns. 𝛾𝑡𝑜𝑡 was measured by measuring the
integrated OD as a function of laser frequency.

The number of Yb atoms in front of the cell as a function of buffer gas flow rate
at ablation energies of 4.2 and 6.2 mJ/pulse is shown in Fig. 3.17. At an ablation
energy of 4.2 mJ/pulse the extraction increases with increasing gas flow. The relative
increase in extraction seems to decrease above 5 SCCM. For an ablation energy of
6.2 mJ/pulse, the extraction increases with increasing buffer gas flow up to 5 SCCM,
but then the extraction decreases with increasing gas flow for buffer gas flows above
5 SCCM. For a given flow rate, the total number of atoms extracted is always greater
for 6.2 mJ/pulse vs 4.2 mJ/pulse ablation energies as expected. The decrease in
extraction at 6.2 mJ/pulse for the 6.2 mJ/pulse ablation energy may indicate that the
mesh aperture may have a maximum limit on total number of extracted atoms (or
molecules). This may be due to the fact that the mesh provides alternative flow paths
out of the cell that the atoms (or molecules) may more readily pass through at higher
buffer gas flow rates. It is possible that this maximum in extraction was not seen at
an ablation energy of 4.2 mJ/pulse as the total number of extracted molecules was
always below the maximum reached at 6.2 mJ/pulse. However, this explanation is
speculative and more extraction data at both higher flow rates and ablation energies
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Figure 3.17: Number of atoms in front of cell aperture vs buffer gas flow rate at
ablation laser pulse energies of 4.2 and 6.2 mJ/pulse. The number of atoms provides
a relative measure of the extraction of atoms from the buffer gas cell through the
mesh aperture. The data at 4.2 mJ/pulse was collected by Arian Jadbabaie.

would be needed to confirm this.

Beam velocity
CBGB velocity measurements were obtained via LIF measurements of the Doppler
shift of the 1𝑆0 → 1𝑃1 atomic Yb transition. All velocity measurements were
obtained with an ablation pulse energy of 3.4 mJ/pulse and performed in the beam
extension region, 43.7 cm downstream from the cell. The observed frequency of
an atomic/molecular transition due to the Doppler shift from the atoms/molecules
moving at a velocity 𝑣 is 𝑓 = (1 − 𝑣

𝑐
) 𝑓0, where 𝑐 is the speed of light and 𝑓0 is the

resonance frequency at zero velocity. The beam velocity can than be measured by
measuring this Doppler shift,

𝑣 = − 𝑐
𝑓0
( 𝑓 − 𝑓0), (3.12)

Both the transverse and forward velocities of the beam were measured. The trans-
verse velocity was measured with a probe beam perpendicular to the CBGB beam
direction (transverse probe) while the forward velocity was measured with a laser
beam directed down the axis of the CBGB beam, counter propagating with the
CBGB beam direction (longitudinal probe). The transverse velocity probe is only
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sensitive to components of the velocity perpendicular to the beam’s forward direc-
tion and will therefore be centered at the zero velocity resonance frequency, 𝑓0. The
mean frequency of the transverse LIF vs laser frequency provides a measurement of
𝑓0 while the width of the transverse LIF vs laser frequency provides a measurement
of the transverse velocity spread. The transverse LIF as a function of velocity14 at
a buffer gas flow rate of 3 SCCM is shown in Fig. 3.18a. A Gaussian fit to this
data resulted in a measured transverse velocity of 10.3 ± 0.3 m/s. The longitudinal
LIF (LIF from the longitudinal probe laser beam) vs velocity15 for a buffer gas flow
rate of 3 SCCM is shown in Fig. 3.18b. A Gaussian fit to the longitudinal LIF vs
velocity resulted in a measured mean CBGB velocity of 90.7±0.3 m/s and a forward
velocity spread of 22.8 ± 0.4 m/s. A colormap of the longitudinal LIF magnitude
as a function of both time and velocity, for a 3 SCCM buffer gas flow rate, is shown
in Fig. 3.19. The two-dimensional colormap provides a more full picture of the
CBGB velocity. The solid black curve in Fig. 3.19 is the time-of-flight curve, the
time at which an atom/molecule leaving the buffer gas cell with velocity 𝑣 at time
𝑡 = 0 (the ablation time) should reach the detection region 47.3 cm downstream.
Integrating Fig. 3.19 over the time axis results in the LIF vs velocity data shown in
Fig. 3.18b.

To understand the effect of the buffer gas flow rate on the CBGB velocity, velocity
measurements at lower (1 SCCM) and higher (6 SCCM) flow rates were performed.
A two-dimensional colormap of the longitudinal LIF as a function of time and
velocity at a 6 SCCM buffer gas flow rate is shown in Fig. 3.20. A Gaussian fit
to the LIF vs velocity data resulted in a measured forward velocity at 6 SCCM of
106.7 ± 1.4 m/s and a forward velocity spread of 22.8 ± 1.8 m/s. The transverse
velocity data resulted in a measured transverse velocity spread of 13.2 ± 0.8 m/s.
The increased forward velocity with increased buffer gas flow rate is expected (see
Eq. 3.5, 3.7, and 3.3).

A two-dimensional colormap of the longitudinal LIF intensity as a function of time
and velocity for a 1 SCCM buffer gas flow rate is shown in Fig. 3.21. The Gaussian
fit to the LIF vs velocity data provided a measured forward velocity of 64.3±1.4 m/s
and a forward velocity spread 22.7 ± 2.4 m/s for a buffer gas flow rate of 1 SCCM.
The transverse LIF resulted in a measured transverse velocity spread of 8.0 ± 0.5

14The transverse LIF vs laser frequency was measured and then converted to velocity using Eq.
3.12 with the mean of a Gaussian fit of the LIF vs frequency as the value of 𝑓0.

15Again the LIF vs laser frequency was measured and the frequency was converted to velocity
using Eq. 3.12 and the measured value of 𝑓0.



81

a.)

b.)

Figure 3.18: 1𝑆0 →1 𝑃1 atomic Yb LIF from transverse and axial probes as
a function of velocity at a buffer gas flow rate of 3 SCCM. Gaussian fits were
applied to the data to determine the mean velocity and velocity spread. a.) LIF
from transverse probe. Mean from fit provides measurement of the zero velocity
resonance frequency of the 1𝑆0 →1 𝑃1 atomic Yb transition. Measured transverse
velocity spread of 10.3±0.3 m/s b.) LIF from axial probe. Measured mean forward
CBGB velocity of 90.7 ± 0.3 m/s and forward velocity spread of 22.8 ± 0.4 m/s.

m/s.

The LIF signal at 1 SCCM in Fig. 3.21 falls below the time of flight curve, in
contrast to the LIF data at 3 and 6 SCCM falling above the time of flight curve in
Fig. 3.19 and 3.20. This indicates that the atoms are detected earlier than they
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Figure 3.19: Two-dimensional colormap of 1𝑆0 →1 𝑃1 atomic Yb LIF magnitude
vs time and velocity. Date recorded with buffer gas flow rate of 3 SCCM. Solid
black curve is the time-of-flight curve 𝑣 = 𝑧/𝑡 where 𝑧 = 43.7 cm is the distance
from the cell aperture to the detection region. Integrating over the time axis results
in the data shown in Fig. 3.18b. Measured mean forward velocity of 90.7± 0.3 m/s
and forward velocity spread of 22.8 ± 0.4 m/s.

should for the velocity with which they are traveling. This could only be possible if
the atoms were slowed after leaving the cell. The longitudinal probe beam is directly
overlapped and counter propagating with the CBGB and therefore the atoms can
scatter photons along the entire path from the cell to the detection region, resulting
in laser slowing of the beam. We can estimate the initial velocity of the CBGB using
the following kinematic equations,

𝑣2
𝑓 = 𝑣

2
0 + 2𝑎𝑑 (3.13)

and
𝑣 𝑓 = 𝑣0 + 𝑎𝑡. (3.14)

The detection region is 43.7 cm downstream and the atoms arrive at approximately
6 ms. Using 𝑑 = 43.7 cm and 𝑡 = 6.0 ms, we can solve for the acceleration by
plugging Eq. 3.14 into Eq. 3.13. This gives an acceleration of −2840 m/s2. Using
this acceleration in Eq. 3.14 gives and initial CBGB velocity of 81.3 m/s. This is



83

Figure 3.20: Two-dimensional colormap of 1𝑆0 →1 𝑃1 atomic Yb LIF magnitude
vs time and velocity at a buffer gas flow rate of 6 SCCM. Solid black curve is the
time-of-flight curve 𝑣 = 𝑧/𝑡 where 𝑧 = 43.7 cm is the distance from the cell aperture
to the detection region. Measured mean forward velocity of 106.7 ± 1.4 m/s and
forward velocity spread of 22.8 ± 1.8 m/s. The measured fluorescence occurring at
∼ 2 ms is from another Yb isotope.

a more realistic estimation of the CBGB forward velocity at 1 SCCM. Each photon
scatter results in a momentum transfer of ℏ𝑘 where 𝑘 = 2𝜋/𝜆 is the magnitude of
the wavevector. Therefore, the change in momentum is given by, Δ𝑝 = 𝑚Δ𝑣 =

𝑁𝑝ℎ𝑜𝑡𝑜𝑛ℏ𝑘 , and the total number of photons scattered is 𝑁𝑝ℎ𝑜𝑡𝑜𝑛 ≈ 3000.

The measured CBGB velocity as a function of buffer gas flow rate and a linear fit is
shown in Fig. 3.22. Eq. 3.3 and Eq. 3.5 indicate that the forward velocity should
be linearly dependent on the buffer gas flow for the Reynolds numbers in the range
1 ≲ 𝑅𝑒 ≲ 10. Fig. 3.22 indicates that the forward velocity vs flow rate is very linear
for the buffer gas flow rates measured and therefore indicates that the buffer gas cell
with the mesh aperture is operating in the 1 ≲ 𝑅𝑒 ≲ 10 regime.

The ∼ 80 m/s CBGB obtained at a 1 SCCM flow rate is much slower than typical
single stage CBGB forward velocities of ∼ 120 m/s [108]. This is especially
promising for laser slowing applications. While more thorough characterizations
of this mesh aperture are needed, the initial results presented here indicate that this
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Figure 3.21: Two-dimensional colormap of 1𝑆0 →1 𝑃1 atomic Yb LIF magnitude
vs time and velocity at a buffer gas flow rate of 1 SCCM. Solid black curve is the
time-of-flight curve 𝑣 = 𝑧/𝑡 where 𝑧 = 43.7 cm is the distance from the cell aperture
to the detection region. Measured mean forward velocity of 64.3 ± 1.4 m/s and
forward velocity spread of 22.7 ± 2.4 m/s. Note that the LIF falls below the time of
flight curve. This is due to unintentional laser slowing of the beam, described in the
text.

aperture design may be very beneficial for the production of very slow CBGBs. This
mesh aperture may prove advantageous in combination with a second-stage cell as
well.



85

Figure 3.22: CBGB forward velocity vs buffer gas flow rate. The solid line shows
the linear fit to the data and indicates that the velocity is linearly dependent on the
flow rate. This indicates that the buffer gas cell with the mesh aperture is operating
in the 1 ≲ 𝑅𝑒 ≲ 10 intermediate regime.
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C h a p t e r 4

The Pure Rotational Spectrum of YbOH

This chapter describes the pump-probe microwave optical double resonance (PP-
MODR) spectroscopy of the 𝑋̃2Σ+(0, 0, 0) state of the 174YbOH isotopologue. Prior
to our work, only one spectroscopic study of YbOH had been performed [105], which
characterized the 𝐴̃2Π1/2(0, 0, 0)−𝑋̃2Σ+(0, 0, 0) and 𝐴̃2Π1/2(1, 0, 0)−𝑋̃2Σ+(0, 0, 0)
bands of YbOH in a high-temperature sample (𝑁 ≥ 30). With the onset of our
experiments, Timothy Steimle and his group at ASU remeasured these bands at
high resolution using a cold sample derived from a supersonic molecular beam
source [116]. The PPMODR spectroscopy of the 𝑋̃2Σ+(0, 0, 0) state, described
here, supplemented the re-characterization of these bands as the microwave mea-
surements allowed the parameters of 𝑋̃2Σ+(0, 0, 0) state to be determined to much
higher precision than could be achieved with optical measurements. This PPMODR
study also resolved the YbOH proton hyperfine splitting for the first time. The
𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) origin band is the main cycling transition used in
the laser cooling of YbOH and also often used for molecular detection when char-
acterizing CBGB performance. The work described in this chapter was published
in [93].

4.1 Pump Probe Microwave Optical Double Resonance (PPMODR) spec-
troscopy

PPMODR spectroscopy combines the high resolution of microwave measurements
with the efficiency of optical detection. Here we used PPMODR spectroscopy to
record the pure rotational spectrum of the 𝑋̃2Σ+(0, 0, 0) state of 174YbOH. The
measurements described here were performed in the laboratory of Timothy Steimle
at ASU. A simplified diagram of the PPMODR experimental setup and method is
shown in Fig. 4.1. This work utilized a supersonic YbOH molecular beam, gen-
erated using laser ablation as described in previous PPMODR studies [117, 118].
Following ablation, molecular production, and expansion cooling, the rotational
population of the molecules is distributed according to an approximate 10 K Boltz-
mann distribution. To illustrate how the technique works we will focus on only two
rotational levels of the 𝑋̃2Σ+(0, 0, 0) ground state, 𝑁′ and 𝑁′′ (Fig. 4.1a). Following
molecular production, the molecular beam is exposed to a strong pump laser (∼ 100
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mW) resonant with the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) transition originating from
the 𝑁′ rotational level of the 𝑋̃2Σ+(0, 0, 0) ground state (Fig. 4.1b). The pump
laser will optically pump population out of the 𝑁′ rotational state. Following the
pump beam, the molecules are exposed to microwave radiation (Fig. 4.1c). Finally,
the molecular beam is measured with a weak (∼5 mW) probe beam, resonant with
the same 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) rotational transition as the pump beam,
and the resulting LIF is detected with a PMT (Fig. 4.1d). When the microwave
radiation is resonant with the 𝑁′′ → 𝑁′ rotational transition in the 𝑋̃2Σ+(0, 0, 0)
state, molecular population will be transferred from 𝑁′′ into 𝑁′ and there will be
an increase in the monitored LIF signal. By measuring the LIF as a function of
the microwave frequency, rotational transitions terminating in the 𝑁′ rotational state
are measured. Different pump/probe transitions will allow the measurement of ro-
tational transitions terminating in different 𝑁′ rotational states. This method avoids
the radiative broadening of the excited states as it maps population from one state to
another using narrow microwave transitions. The optical excitations are used only
for state preparation and readout and, therefore, the high resolution provided by the
microwave transitions is preserved.

The pump/probe laser beams were generated from the same cw-dye laser, ensuring
they are at exactly the same frequency. The microwave radiation was generated using
a 0-20 GHz synthesizer and active harmonic multipliers. A rubidium standard was
utilized as the time base for the synthesizer. Approximately 1 𝜇W of microwave
radiation was introduced into the chamber with a homemade 26◦ “H-plane” horn
antenna. Microwave powers above 1 𝜇W resulted in broadening of the spectral lines.
The frequency of the the microwave radiation was stepped in increments of 6 kHz
and, the LIF from ∼600 ablation shots was summed at each frequency step. The LIF
from excitation of the 𝑋̃2Σ+(0, 0, 0) → 𝐴̃2Π1/2(0, 0, 0) transition was detected on
resonance using photon counting techniques. In principal, PPMODR spectroscopy
is a background-free technique if 100% pumping efficiency is achieved.

4.2 Microwave spectrum of the 𝑋̃2Σ+(0, 0, 0) state
Observation and analysis
Rotational transitions terminating in the 𝐽 = 𝑁 + 𝑆 spin rotation components
were detected using pump/probe light resonant with the 𝑄11 branch features of
the 𝑋̃2Σ+(0, 0, 0) → 𝐴̃2Π1/2(0, 0, 0) transition while rotational transitions ter-
minating in the 𝐽 = 𝑁 − 𝑆 spin rotation component were detected with the
pump/probe laser resonant with the 𝑄12 or 𝑅12 branch features [116]. Using the
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Figure 4.1: Pump-probe microwave optical double resonance spectroscopy (PP-
MODR) experimental setup and method. a.) A supersonic molecular beam (T ∼
10 K) is produced with rotational populations (𝑁′ and 𝑁′′) distributed according to
a thermal Boltzmann distribution. b.) The YbOH beam is exposed to strong (∼100
mW) pump beam resonant with a 𝑋̃2Σ+(0, 0, 0) → 𝐴̃2Π(0, 0, 0) transition originat-
ing from the 𝑁′ level of the 𝑋̃2Σ+(0, 0, 0) state. This depletes the population in the
𝑁′ rotational state. c.) Following depletion of the 𝑁′ rotational state, the molecular
beam is exposed to tuneable microwave radiation. When the microwave radiation
is on resonance with a rotational transitions terminating in the 𝑁′ rotational state,
population will be transferred from another rotational state, 𝑁′′ to 𝑁′. d.) Finally,
the molecular beam is exposed to a weak probe beam (∼5 mW), resonant with the
same 𝑋̃2Σ+(0, 0, 0) → 𝐴̃2Π(0, 0, 0) transition as the pump beam, and the resulting
LIF is measured with a PMT. If a rotational transition in the 𝑋̃2Σ+(0, 0, 0) state is
driven by the microwave radiation it will result in an increase in the measured LIF.

PPMODR technique, 12 rotational lines were measured and assigned to 18 ro-
tational transition frequencies. The measured spectral feature of the overlapped
𝑁′′ = 5, 𝐽′′ = 11/2, 𝐹′′ = 5 → 𝑁′ = 6, 𝐽′ = 13/2, 𝐹′ = 6 and 𝑁′′ = 5, 𝐽′′ =
11/2, 𝐹′′ = 6→ 𝑁′ = 6, 𝐽′ = 13/2, 𝐹′ = 7 transitions is presented in Fig. 4.2. The
energy levels and assignments for these transitions is also presented in Fig. 4.2. The
measured transition frequencies and the associated quantum number assignments
for the transitions can be found in Table A.1 in Appendix A.

The energy levels of the 𝑋̃2Σ+(0, 0, 0) state of YbOH were modeled using the
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Figure 4.2: PPMODR spectral feature and associated energy levels of the
overlapped 𝑁′′ = 5, 𝐽′′ = 11/2, 𝐹′′ = 5 → 𝑁′ = 6, 𝐽′ = 13/2, 𝐹′ = 6 and
𝑁′′ = 5, 𝐽′′ = 11/2, 𝐹′′ = 6 → 𝑁′ = 6, 𝐽′ = 13/2, 𝐹′ = 7 pure rotational tran-
sitions in the 𝑋̃2Σ+(0, 0, 0) ground state of YbOH. This figure was prepared by
Timothy Steimle and is from Ref. [93].

following effective Hamiltonian:

𝐻̂𝑒 𝑓 𝑓

(
𝑋̃2Σ+

)
=𝐵N2 − 𝐷 (N2)2 + 𝛾N · S + 𝛾𝐷 [N · S,N2]+

+ 𝑏𝐹 (𝐻)I · S +
𝑐(𝐻)

3
(3𝐼𝑧𝑆𝑧 − I · S).

(4.1)

This effective Hamiltonian accounts for rotation (𝐵), centrifugal distortion (𝐷), spin
rotation and spin rotation centrifugal distortion (𝛾 and 𝛾𝐷), and the Fermi contact
(𝑏𝐹) and dipole-dipole (𝑐) magnetic hyperfine interactions due to the proton in
the H atom. The energy levels were calculated by constructing and diagonalizing
a 4x4 Hamiltonian1 in a case (a𝛽𝐽) basis. The matrix elements for the terms in
𝐻̂𝑒 𝑓 𝑓 were taken from Ref. [89, 92]. The eigenvalues and the measured transition
frequencies were input into a non-linear least squares fitting algorithm to determine
the parameters (𝐵, 𝐷, 𝛾, 𝛾𝐷 , 𝑏𝐹 , and 𝑐) of the 𝑋̃2Σ+(0, 0, 0) state. The results of
the fit are presented in Table 4.1. The fit residuals (observed-calculated transition
frequencies) are presented in Table A.1 in Appendix A. The standard deviation of
the fit was 23 kHz which is commensurate with the measurement error.

1The effective Hamiltonian is block diagonal in 𝐹 and therefore can be split into 4x4 blocks.
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Results and discussion
The optimal spectroscopic parameters for the 𝑋̃2Σ+(0, 0, 0) state of YbOH deter-
mined in this PPMODR study are given in Table 4.1. Also presented in Table 4.1
are the previous values from the high-temperature study [105] and the equivalent
parameters for the 𝑋2Σ+(𝜈 = 0) state of YbF [119]. The rotational (𝐵) and cen-
trifugal distortion (𝐷) parameters are similar to those determined in the previous
high-temperature study but more precise. If we assume that the O-H bond length
is the same as it is in BaOH, 0.9270 𝐴̊, [120] the rotational constant measured here
gives a Yb-O bond length of 2.0397 𝐴̊. This is extreamly similar to the Yb-F bond
length of 2.0165 𝐴̊ for the isoelectronic molecule 174YbF [119].

Table 4.1: Optimal parameters for the 𝑋̃2Σ+(0, 0, 0) state of YbOH obtained from
the PPMODR measurements. Also presented for comparison are the previous values
from the higher-temperature study of YbOH and the equivalent parameters for the
𝑋2Σ+(𝜈 = 0) state of 174YbF.

Parameter PPMODR Values𝑎 Previous Values𝑏 174YbF (𝜈 = 0)𝑐

𝐵 7348.40053(29) 7357.92(39) 7233.827(17)

𝐷 0.006084(39) 0.006535(84) 0.007159(fixed)

𝛾 −81.150(57) 28.90(42) −13.41679(13)

𝛾𝐷 0.00476(56) 0.0039840(15)

𝑏𝐹 4.80(18) 170.26374(20)

𝑐 2.46(48) 85.4028(19)

𝑎 Numbers in parenthesis represent estimated 2𝜎 error.
𝑏 Ref. [105].
𝑐 Ref. [119].
This table was reproduced from [93].

While the rotational parameters between this PPMODR study and the high-temperature
analysis are in good agreement, the determined spin rotation parameters, 𝛾, have
a large discrepancy (−81.150(57) MHz vs 28.90(42) MHz). The value for 𝛾 de-
termined from the PPMODR spectra is not only about three times larger than the
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value determined with the high-temperature sample but it is also of the opposite
sign. This large discrepancy prompted a re-analysis of the high-temperature data by
the original authors [106] in which a re-assignment of the 𝑄11 and 𝑅12 branches of
the 174YbOH and 172YbOH high-temperature data produced a negative value of 𝛾
consistent with the value measured in this PPMODR study. The negative value of 𝛾
and a comparison with YbF is discussed in detail in Section 4.3 below.

Finally, the high-resolution provided by the PPMODR technique allowed the mag-
netic hyperfine parameters due to the hydrogen to be determined. The measured
values of 𝑏𝐹 (𝐻) (4.80(18)MHz) and 𝑐(𝐻) (2.46(48)MHz) are very small and sim-
ilar to those measured for the 𝑋̃2Σ+(0, 0, 0) state of SrOH, 𝑏𝐹 (𝐻) = 1.713(2) MHz
and 𝑐(𝐻) = 1.673(5) MHz [121]. Additionally, the measured values of 𝑏𝐹 (𝐻)
and 𝑐(𝐻) for YbOH are over an order of magnitude smaller than the equivalent
values for the isoelectronic molecule YbF (here the magnetic hyperfine is due to
the F instead of H). The smaller hyperfine splittings in YbOH were expected and
result from the spin polarization of two bonds (as oppposed to one in YbF). This
essentially results in the hydrogen residing further from the Yb-centered valence
electron. The small hyperfine splitting due to the H was not observed in the optical
spectrum of YbOH [116]. This small hyperfine splitting indicates that the hyperfine
components will not need to be individually addressed when optically cycling on
the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) transition.

4.3 Negative spin rotation parameter and perturbing states
As discussed in Section 2.7, the spin rotation parameter, 𝛾, is dominated by
second-order effects, 𝛾 (2) . These second-order effects arise from the mixing of
the 𝑋̃2Σ+(0, 0, 0) state with other excited vibronic states through the combination of
the rotational and spin orbit interactions. Therefore, even though we only measured
rotational transitions in the 𝑋̃2Σ+(0, 0, 0) ground state, the determined spin rotation
parameter can provide a significant amount of insight into the excited electronic
states of YbOH. For the 𝑋̃2Σ+(0, 0, 0) ground state Λ = 0, therefore the second term
in Eq. 2.56 is zero and the second-order contribution to 𝛾 arises solely from the
mixing with excited 2Π states. In this case, the dominate contribution to 𝛾 is given
by [89, 122],

𝛾 (2) = 2
∑︁

2Π, 𝜈′

|⟨𝜈′′|𝜈′⟩|2
⟨2Σ+−1/2 |𝐵𝐿− |

2Π1/2⟩⟨2Π1/2 |
∑
𝑖 𝑎𝑖𝑙

+
𝑖
𝑠−
𝑖
|2Σ+1/2⟩

𝐸Π, 𝜈′ − 𝐸Σ, 𝜈′′
, (4.2)
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where the sum is taken over all excited 2Π states and all vibrational levels, 𝜈′, of
each excited 2Π state. Here, 𝜈′′ = 0 and is the vibrational level of the 2Σ+ state.
|⟨𝜈′′|𝜈′⟩|2 is the FCF between the 𝜈′′ and 𝜈′ levels of the 2Σ+ and 2Π states. In Eq.
4.2 we have used the microscopic form of 𝐻̂𝑆𝑂 , where 𝑙+

𝑖
and 𝑠−

𝑖
are the raising and

lowering operators for the single electron angular momentum and spin respectively
and the sum is taken over all electrons.

In the alkaline earth mono-halides (e.g., CaF) the observed spin-rotation parameter,
𝛾, of the 𝑋2Σ+ state can be quantitatively predicted using Eq. 4.2 and the known
electronic state distribution. Specifically, 𝛾(𝑋2Σ+) for CaF (=0.0131 cm−1) is read-
ily predicted by including only the 𝑋2Σ+ ↔ 𝐴2Π1/2 interactions in Eq. 4.2 [123].
Like YbOH (and YbF), the 𝑋2Σ+ and 𝐴2Π1/2 states of the alkaline earth mono-
halides are atomic in nature and can be well approximated by linear combination of
atomic orbitals. Therefore, if the electronic state distributions and FCFs for YbOH
are reasonably well known, 𝛾 can be estimated using Eq. 4.2 and the known atomic
parameters of the Yb+ ion.

When comparing the determined 𝛾 value of YbOH (and YbF) with that of the
alkiline earth mono-halides, the most striking difference is that it is of opposite sign,
negative as opposed to positive. The negative value of 𝛾 determined in this study
indicates that YbOH has other interacting excited 2Π states. We can see this by first
considering the contributions to 𝛾 (2) that arise from the 𝐴̃2Π1/2 state.

The ground state of YbOH has a valence electron configuration given by

𝑋̃2Σ+ : [𝑋𝑒]4 𝑓 14𝜎1
𝑌𝑏+ (6𝑠6𝑝) . (4.3)

Here we have only considered the Yb-centered electrons and neglected the valence
configuration of the OH− radical as it acts as a closed shell and does not contribute
to matrix elements in Eq. 4.2. The [𝑋𝑒]4 𝑓 14 term indicates that the Yb+ ion has the
same filled electron configuration as Xe surrounded by a filled 4 𝑓 14 shell. 𝜎1

𝑌𝑏+ (6𝑠6𝑝)
indicates that YbOH has a single unpaired electron in a 𝜎 orbital comprised of a
combination of the Yb+ 6𝑠 and 6𝑝 hybrid atomic orbitals. The wavefunction of the
𝑋̃2Σ+ state can then be approximated by2

| 𝑋̃2Σ+⟩ ≈ 𝑥𝑠 |6𝑠𝜎⟩ + 𝑥𝑝 |6𝑝𝜎⟩, (4.4)

where |6𝑠𝜎⟩ = |𝑛 = 6, 𝑙 = 0, 𝜆 = 0⟩ and |6𝑝𝜎⟩ = |𝑛 = 6, 𝑙 = 1, 𝜆 = 0⟩ (𝜆 is the
projection of 𝑙 on the internuclear axis) are the Yb+ 6𝑠𝜎 and 6𝑝𝜎 atomic orbitals.

2We have neglected contributions from the Yb+ 5𝑑𝜎 and 4 𝑓 13𝜎 orbitals as the contributions
should be small.
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Measurements of the hyperfine parameters of the odd isotopologues (see Section
5.5) indicate that |𝑥𝑠 |2 ≈ 0.54. Assuming contributions from other atomic orbitals
(e.g., 5𝑑𝜎) are small, < 1%, gives |𝑥𝑝 |2 ≈ 0.46.

The configuration for the 𝐴̃2Π1/2 state is given by

𝐴̃2Π : [𝑋𝑒]4 𝑓 14𝜋1
𝑌𝑏+ (6𝑝5𝑑) , (4.5)

where here 𝜋1
𝑌𝑏+ (6𝑝5𝑑) indicates a single unpaired electron in a 𝜋 orbital comprised

of a combination of the Yb 6𝑝 and 5𝑑 hybrid atomic orbitals. The wavefunction of
the 𝐴̃2Π1/2 state can be approximated by

| 𝐴̃2Π1/2⟩ ≈ 𝑎𝑝 |6𝑝𝜋⟩ + 𝑎𝑑 |5𝑑𝜋⟩, (4.6)

where |6𝑝𝜋⟩ = |𝑛 = 6, 𝑙 = 1, 𝜆 = 1⟩ and |5𝑑𝜋⟩ = |𝑛 = 5, 𝑙 = 2, 𝜆 = 1⟩ are the Yb+

atomic 6𝑝𝜋 and 5𝑑𝜋 orbitals. If we parameterize the atomic spin orbit interaction
as 𝜁𝑛,𝑙 𝑙 · 𝑠 [124] and use the Yb+ atomic ion values, 𝜁6𝑝 = 2220 cm−1 and 𝜁5𝑑 = 549
cm−1 [125], as well as the measured spin orbit parameter of the 𝐴̃2Π state of YbOH,
𝐴 = 1350 cm−1 [105], we estimate |𝑎𝑝 |2 ≈ 0.48 and |𝑎𝑑 |2 ≈ 0.52.

We can use the electronic wavfunctions given in Eq. 4.4 and 4.6 and the pure
precession hypothesis [89]

𝑙± |𝑛, 𝑙, 𝜆⟩ =
√︁
𝑙 (𝑙 + 1) − 𝜆(𝜆 ± 1) |𝑛, 𝑙, 𝜆 ± 1⟩ (4.7)

to determine the matrix elements of Eq. 4.2. Note that the 𝑙± operator will only
connect atomic states with Δ𝑛 = Δ𝑙 = 0 and Δ𝜆 = ∓1. Therefore, the 𝐿− =

∑
𝑖 𝑙
−
𝑖

and 𝑙+
𝑖

operators will only result in non-zero matrix elements between the |6𝑝𝜎⟩
and |6𝑝𝜋⟩ components of the | 𝑋̃2Σ+⟩ and | 𝐴̃2Π1/2⟩ wavefunctions. Therefore, the
matrix elements in Eq. 4.2 for the 𝐴̃2Π1/2 state are

⟨𝑋̃2Σ+ |𝐵𝐿− | 𝐴̃2Π1/2⟩ = 𝐵𝑥𝑝𝑎𝑝 ⟨6𝑝𝜎 |𝑙−𝑖 |6𝑝𝜋⟩ = 𝐵𝑥𝑝𝑎𝑝
√

2 (4.8)

and

⟨𝐴̃2Π1/2 |
∑︁
𝑖

𝑙+𝑖 𝑠
−
𝑖 | 𝑋̃2Σ+⟩ = 𝑎𝑝𝑥𝑝 ⟨6𝑝𝜋 |𝜁6𝑝𝑙

+
𝑖 |6𝑝𝜎⟩ = 𝑥𝑝𝑎𝑝𝜁6𝑝

√
2. (4.9)

Note that the 𝑠−
𝑖
|2Σ+⟩ = |2Σ+⟩ and 𝜁6𝑝 = 2220 cm−1 [124, 125].

The FCFs and energies, 𝐸2Π, 𝜈′, can be estimated using the harmonic approximation,
the measured vibrational frequencies, 𝜔𝑖, [116] of the Yb-O stretching mode and
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the measured bond lengths3 of the 𝑋̃2Σ+ and 𝐴̃2Π1/2 states. We have neglected
the FCFs involving the bending and O-H streching modes as they are extremely
small. Using the measured values, the harmonic approximation gives the following
FCFs: |⟨𝜈′′ = 0|𝜈′ = 0⟩|2 = 0.8723, |⟨𝜈′′ = 0|𝜈′ = 1⟩|2 = 0.1123, |⟨𝜈′′ = 0|𝜈′ =
2⟩|2 = 0.0138, |⟨𝜈′′ = 0|𝜈′ = 3⟩|2 = 0.0014, and|⟨𝜈′′ = 0|𝜈′ = 1⟩|2 = 0.001. FCFs
from higher vibrational states were not included as they are extremely small. In
the harmonic approximation, the energies of the 𝐴̃2Π1/2 state are given by 𝐸2Π, 𝜈′ =

𝑇0( 𝐴̃2Π1/2) + 𝜔( 𝐴̃2Π1/2)𝜈′. Using these FCFs, energies, and the matrix elements
given in Eq. 4.8 and 4.9 results in the following value for the contribution to the
spin rotation parameter from the 𝐴̃2Π1/2 state

𝛾( 𝐴̃2Π1/2) = +0.0276 cm−1 = +828 MHz. (4.10)

Contributions to 𝛾 from the 𝐴̃2Π1/2 state are only positive and cannot account for
the negative value of 𝛾. Therefore, interactions with additional 2Π states must be
contributing to the sum in Eq. 4.2. More specifically, the additional 2Π states must
provide negative contributions to 𝛾 that are larger in magnitude than those from the
𝐴̃2Π1/2 state. Adding additional single-electron 2Π states (derived from 𝑝𝜋 and 𝑑𝜋
orbitals) will not resolve the issue as the contributions from these states will also be
positive.

Now consider the case where one of the Yb 4 𝑓 electrons jumps up to the 𝜎𝑌𝑏+ (6𝑠6𝑝)
orbital. It is reasonable to assume states of this nature exist in YbOH as there
are similar states in the Yb+ ion (e.g., the 2𝐹𝑜7/2 and 2𝐹𝑜5/2 states derived from
the [𝑋𝑒]4 𝑓 136𝑠2 configurations [126]). This will result in the following electron
configuration:

[𝑋𝑒]4 𝑓 13𝜎2
𝑌𝑏+ (6𝑠6𝑝) . (4.11)

It is convenient to think about this 4 𝑓 13 configuration as a single hole (e.g. a
positron) in a single Yb 4 𝑓 orbital instead of 13 electrons (12 paired and 1 unpaired)
in the 4 𝑓 shell. This 4 𝑓 hole has 4 possible projections of angular momentum on the
internuclear axis, 𝑚𝑙 = 0, 1, 2, 3. Therefore, the configuration given in Eq. 4.11 will
result in 4 electronic states, 2Σ+, 2Π, 2Δ, and 2Φ. Only the 2Π state will contribute
to 𝛾 (2) and we will write this electron configuration in the following way:

(4 𝑓 13)2Π : [𝑋𝑒]𝜋1+
𝑌𝑏+ (4 𝑓 )𝜎

2
𝑌𝑏+ (6𝑠6𝑝) , (4.12)

3𝑟𝑒 ( 𝑋̃2Σ+) was measured in this study, 𝑟𝑒 ( 𝐴̃2Π1/2) was determined from the rotational constant
measured in Ref. [116].
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where 𝜋1+
𝑌𝑏+ (4 𝑓 ) indicates a hole in the Yb 4 𝑓 orbital. Since the charge of the hole

is opposite of the electron, it will result in a negative value of 𝑎𝑖 in the spin orbit
interaction4. Therefore, states derived from the electron configuration given in Eq.
4.12 result in negative contributions to 𝛾 (2) . Therefore, the only way to account for
the negative value of 𝛾 determined in this work is the existence of 2Π states in YbOH
which contain contributions from the electron configuration given in Eq. 4.12. We
refer to the states resulting from a Yb 4 𝑓 13 configuration as perturbing states.
Additionally, the negative value of 𝛾 also indicates that the negative contributions
from the perturbing states outweigh those from the 𝐴̃2Π1/2 or other excited 2Π states.

The isoelectronic molecule YbF also has a negative spin rotation parameter in the
𝑋2Σ+(𝜈 = 0) ground state [119], and it was concluded that this is also the result of
4 𝑓 13 perturbing states [122, 124]. However, the value of 𝛾 for YbF is approximately
6 times smaller than that of YbOH. This indicates that the perturbing states provide
a larger contribution to 𝛾 in YbOH than they do in YbF.

4This is observed in the Yb+ atomic ion energy levels, the 2𝐹𝑜
7/2 state is lower in energy than the

2𝐹𝑜
5/2 state, e.g., 𝜁4 𝑓 +1 < 0.
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C h a p t e r 5

Spectroscopy of Odd Isotopologues, 171,173YbOH

This chapter details both the development of enhanced YbOH production via
laser-enhanced chemical reactions and the observation, assignment, and analysis
of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of 171YbOH and 173YbOH. The elec-
tric quadrupole deformation of the 173Yb nucleus is proposed to make it extremely
sensitive for measurements of an NMQM [33], and 173YbOH is the YbOH isotopo-
logue with which we are developing experiments to measure a NMQM. The nuclear
spin (𝐼 = 1/2) of the 171Yb nucleus makes the 171YbOH isotopologue sensitive for
measurements of NSD-PV [127], though we are not pursuing the development of
such experiments. A simultaneous measurement and analysis of the 171YbOH and
173YbOH spectra provided a systematic check of the analytical methods since the
measured magnetic hyperfine parameters scale by the magnetic moments of each
respective nuclei. Finally, measurements of the spectral features of the odd isotopo-
logues proved extremely difficult due to the complex, overlapping structure of all
the YbOH isotopologues. In order to simplify the otherwise overlapped spectra, a
novel spectroscopic technique utilizing the laser-enhanced chemical reactions was
developed and utilized. The development of the increased YbOH production via
laser-enhanced chemical reactions is published in Ref. [128] and the spectroscopic
studies of 171,173YbOH are published in Ref. [129]. Some portions of the material
published in Ref. [129] are reproduced here with permission from AIP.

5.1 Laser-enhanced chemical reactions: Enhancement of YbOH production
Gas-phase YbOH created by ablation of a solid precursor is believed to be produced
primarily in the high-temperature plasma created by ablation. Collisions with the
buffer gas cool this plasma resulting in a quenching of the chemical reactions as the
reactants cool to cryogenic temperatures. In addition to YbOH, the ablation process
also produces atomic Yb (orders of magnitude more than YbOH), indicating that
unused reactants are still present in the buffer gas cell following the cooling of
the ablation produced plasma. Chemical reactions of ground state (1𝑆0) Yb atoms
with many reactants, such as H2O, are endothermic at cryogenic temperature and
therefore do not proceed in the buffer gas cell. However, excitation of the Yb atoms
to an excited electronic state can provide exothermic reaction pathways through
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which YbOH production can proceed. Studies of excited state chemistry have
shown that reactants in excited states have access to additional reaction pathways
and transition states [130] and can result in modified product state distributions
[131]. Laser excitation of reactants has also been used to produce the molecular
species of interest in spectroscopic studies [132, 133].

We find that excitation of the 3𝑃1 ← 1𝑆0 atomic Yb transition results in a factor
of ∼ 10 increase of the number of YbOH molecules both inside the buffer gas cell
and in the CBGB. Unless otherwise stated, all data was collected when driving the
3𝑃1 ← 1𝑆0 transition of the 174Yb isotope and probing the 174YbOH isotopologue.
Experimentally, we observed this increased YbOH production by monitoring the in
cell OD and in front of cell OD with and without the 3𝑃1 ← 1𝑆0 laser excitation (en-
hancement light or enhancement laser) applied. The optical depth was measured via
absorption spectroscopy of the 𝑄𝑄11(2) line of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0)
174YbOH transition [116], directly probing the number of molecules in the 𝑁 = 2
rotational level of the 𝑋̃2Σ+(0, 0, 0) state. With the enhancement light blocked, there
is an un-enhanced yield of 4 × 1010 molecules in the cell and 7 × 109 molecules in
front of the cell. With the enhancement light unblocked there is an enhanced yield
of 3 × 1011molecules in the cell and 8 × 1010 molecules in front of the cell. In both
cases, in cell and in front of cell, the number of molecules is increased by a factor of
∼ 10. This enhancement is dependent on the geometry in which the enhancement
laser is introduced into the cell. We found that the largest enhancement in YbOH
production occurs when the enhancment light is introduced thought the absorption
probe window, as opposed to down the cell bore through the aperture or through the
ablation window attached to the snorkel.

To characterize the enhanced production we define a quantity called the enhancement
factor, the ratio of the integrated OD with the enhancement light on and off. This ratio
of the integrated ODs is equal to the ratio of the number of YbOH molecules with and
without the enhancement light. We observe that the frequency dependence of the
enhancement factor follows that of an atomic resonance. The enhancement factor is
maximized when the enhancement laser is on resonance with the 3𝑃1 ← 1𝑆0 atomic
Yb transition and decreases exponentially when the enhancement laser is detuned
from the atomic resonance. For large detunings from the atomic resonance, the
enhancement factor reaches a value of 1 (same amount of YbOH with and without
the enhancement light), indicating that the off resonant light does not increase
YbOH production. The power dependence of the enhancement factor also indicates
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that the enhanced YbOH production is due to driving an optical resonance. The
enhancement factor increases linearly for low powers and saturates at high powers,
with the crossover occurring for an intensity of ∼ 10 W/cm2. This saturation
indicates that the enhancement is proportional to the excited 3𝑃1 Yb population.

The resonant nature of the enhancement factor allows specific selection of which
YbOH isotopologue has enhanced production: driving the 3𝑃1 ← 1𝑆0 transition
of one Yb isotope only1 enhances the production of that isotopologue of YbOH2.
For the odd isotope/isotopologue 173Yb/173YbOH, we investigated the effect of
driving different hyperfine components of the 1𝑆0 →3 𝑃1

173Yb transition on the
enhancement factor. The enhancement factor for both the 𝐺 = 2 and 𝐺 = 3
(𝐺 = 𝐼 + 𝑆 see Section 2.6) hyperfine states of 173YbOH when driving each of
the three (𝐹 = 5/2 → 𝐹′ = 3/2, 5/2, 7/2) 173Yb transitions is shown in Fig.
5.1. The enhancement factor for the 𝐺 = 2 and 𝐺 = 3 states of 173YbOH were
probed through absorption spectroscopy of the 𝑜𝑃12(2) and 𝑜𝑃13(2)3 lines of the
𝑋̃2Σ+(0, 0, 0) → 𝐴̃2Π1/2(0, 0, 0) 173YbOH transition respectively. For all 173Yb
transitions, the enhancement factor in the 173YbOH𝐺 = 2 and𝐺 = 3 states is equal in
magnitude, as expected for a thermalized sample. However, the enhancement factor
is smaller when driving the 𝐹 = 5/2→ 𝐹′ = 3/2 173Yb transition. We attribute this
decrease in the enhancement factor to the overlap of the 173Yb 𝐹 = 5/2→ 𝐹′ = 3/2
and 171Yb 𝐹 = 1/2→ 𝐹′ = 3/2 transitions, which are separated by only ∼ 3 MHz
[134]. This overlap will result in excitation of both 171Yb and 173Yb to the 3𝑃1

state which will allow production of 171YbOH as well. The increased 171YbOH
production will deplete the available population of reactions with which 173YbOH
can be formed.

It is important to note that in addition to the enhancement of a specific isotopologue
of YbOH, we also observe a small increase in the populations of other YbOH iso-
topologues. For example, when driving the 174Yb transition we observe an increase
in the population of 172YbOH. We call this effect cross enhancement. The cross en-
hancement factor is small, a factor of ∼2-3, compared to the resonant enhancement.
Interestingly, the cross enhancement is a resonant effect as well. When detuning
the Yb excitation light off of the 174Yb transition and toward the 172Yb transition,
the cross enhancement decreases and eventually disappears. Therefore, the cross

1We see some cross enhancement between YbOH isotopologues, discussed below.
2For example driving the 1𝑆0 →3 𝑃1

174Yb transition enhances the production of 174YbOH
while driving the 1𝑆0 →3 𝑃1

172Yb transition enhances the production of 172YbOH.
3Here the branch designations are given by Δ𝑁Δ𝐽1𝐺 (𝑁 ′′). This is described in more detail in

Section 5.4.
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Figure 5.1: Enhancement of the 𝑁 = 2,𝐺 = 2, 3 hyperfine states of 173YbOH when
driving each of the three 𝐹 = 5/2 → 𝐹′ = 3/2, 5/2, 7/2 atomic 173Yb transitions.
𝐺 = 𝑆 + 𝐼𝑌𝑏 results from the coupling of the electron spin to the spin of the 173Yb
nucleus.

enhancement is not due to power broadening as it would increase when tuning the
laser towards the 172Yb transition. Instead the cross enhancement is proportional
to the amount of excited 174Yb. This perhaps suggests that excitation exchanging
collisions are occurring inside the buffer gas cell, resulting in exited 172Yb (and other
isotopes) when only one isotope, 174Yb, is resonantly excited. We have observed
cross enhancement in other isotopologues of YbOH in addition to 172YbOH.

Finally, we investigated the effect of the laser enhanced chemical reactions on the in-
ternal state distributions of the resulting YbOH molecules. The enhancement factor
as a function of rotational and vibrational state is shown in Fig. 5.2. The rotational
states were probed via absorption spectroscopy of the 𝑄𝑄11(𝑁) transitions of the
origin band [116]. The enhancement factor of the 𝑋̃2Σ+(1, 0, 0) vibrational state
were measured via absorption spectroscopy of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(1, 0, 0)
transition at 17378.58 cm−1 [116], while the 𝑋̃2Σ+(0, 22, 0) was probed via absorp-
tion spectroscopy of a tentatively assigned line at 17345.09 cm−1. Based on initial
dispersed LIF (DLIF) measurements of YbOH [135], the line at 17345.09 cm−1 was
believed to a rotational component of the diagonal 𝑋̃2Σ+(0, 1, 0) → 𝐴̃2Π1/2(0, 1, 0)
band. However, recent high-resolution spectroscopic measurements (described in
Section 6.6) indicate that this original assignment may be incorrect, and a tentative
re-assignment attributes the band at 17345 cm−1 to the 𝑋̃2Σ+(0, 22, 0) → [18.00]
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transition. Here, [18.00] designates an excited state residing around 18000 cm−1.
The existence of an excited state at around 18000 cm−1 is speculative and, at the
time of writing, direct excitation from the 𝑋̃2Σ+(0, 0, 0) state to [18.00] has not yet
been observed. Experiments to definitively confirm the existence of the [18.00]
state are underway.
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Figure 5.2: Enhancement of the rotational and vibrational states of 174YbOH.
a.) Enhancement as a function of ground state rotational level, 𝑁 . The rotational
populations were probed via absorption spectroscopy of the 𝑄𝑄11(𝑁) lines of the
𝑋̃2Σ+(0, 0, 0) → 𝐴̃2Π1/2(0, 0, 0) transition. b.) Enhancement as a function of the
ground state vibrational level. Here (𝜈1, 𝜈

𝑙
2, 𝜈3) indicates the vibrational quanta in the

Yb-O stretch, O bend, and O-H stretch respectively, and the superscript 𝑙 indicates
the projection of the bending angular momentum along the molecular symmetry
axis. The enhancement factor for the 𝑋̃2Σ+(0, 0, 0) state is an average of the 𝑁 = 0
through 𝑁 = 4 values shown in a. The 𝑋̃2Σ+(1, 0, 0) state was probed via absorp-
tion spectroscopy of the 𝑋̃2Σ+(1, 0, 0) → 𝐴̃2Π1/2(1, 0, 0) transition at 17378.58
cm−1. The 𝑋̃2Σ+(0, 22, 0) state was probed via the tentatively assigned transition at
17345.09 cm−1. A more thorough description of this tentative assignment is given
in the text.

The energy scales of the Yb excitation, and therefore the chemical reactions, are
orders of magnitude larger than the rotational or vibration energies of YbOH. Due
to this large energy difference, we expect the resulting YbOH population to be
distributed over many rotational and vibrational states. However, following the
chemical reactions, the product YbOH should collide with the background 4 K
helium, quickly thermalizing the rotational and transnational degrees of freedom
of the molecules. The relatively uniform enhancement factor for the lowest rota-
tional states, Fig. 5.2a, indicates that this rotational thermalization does indeed
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occur. Conversely, helium collisions provide poor vibrational thermalization [71]
which results in non-thermal vibrational distributions in CBGB sources. There-
fore, we expect this lack of vibrational thermalization to result in an enhanced
non-thermal vibrational population (uniform enhancement factor across multiple
vibrational states). This enhanced non-thermal vibrational population is indeed
observed and shown in Fig. 5.2b.

Laser-enhanced chemical reactions are not limited to the production of YbOH and
have recently been used for the production of a CaOH CBGB for the laser cooling and
trapping of CaOH [60]. Enhanced production via laser excitation of atomic metal
centers could also aid in the production of other Yb, Ca, Sr, Ba, Ra, or Al containing
molecules, especially for the case of rare isotopoluges where efficient production is
critical. Laser-enhanced chemical reactions also prove to be a useful spectroscopic
resource. The increased population of excited vibrational states following the reac-
tions provides a non-thermal molecular sample in which spectroscopy of transitions
originating from these excited vibrational states can be performed. We utilized
this to measure and characterize the 𝐴̃2Π1/2(1, 0, 0) → 𝑋̃2Σ+(3, 0, 0) transition of
YbOH and identify the vibrational repumping transitions for laser cooling, see Sec-
tion 6.5. Additionally, comparing molecular spectra with and without the chemical
enhancement will allow the disentangling of complex isotopologue structure and
identification of the spectrum of specific molecules and molecular isotopologues.
The development and implementation of a novel spectroscopic technique utilizing
these laser-enhanced chemical reactions is described in Sections 5.3 and 5.4. This
techique was critical for the observation of the spectrum of the odd isotopologues,
171,173YbOH, decribed in this chapter. Characterizations of the laser-enhanced
chemical reactions with respect to additional laser and CBGB source parameter as
well as quantum chemical calculations of these chemical reactions can be found in
[128].

5.2 Experimental setup for 171,173YbOH spectroscopy
Initial studies of 171,173YbOH were performed using the molecular beam LIF spec-
trometer at ASU. This spectrometer was used in the previous high-resolution optical
studies of 172,174YbOH [93, 116]. Briefly, YbOH is produced by laser ablating (532
nm, ∼10 mJ/pulse, 20 Hz) a Yb rod in the presence of a methanol/argon supersonic
expansion. The resulting beam is skimmed to produce a well-collimated beam with
a temporal pulse width of ∼40 𝜇s in the detection region. The molecular beam is
probed by an unfocused (∼5 mm), low power (∼5 mW), single-frequency cw-dye
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laser approximately 0.5 m downstream. It is estimated that the laser probes ap-
proximately 1 × 109 YbOH molecules in each molecular beam pulse. The resulting
on-resonance LIF signal was viewed through a 580± 10 nm bandpass filter, detected
by a photomultiplier tube (PMT), and processed using gated photon counting. Typ-
ically, the photon counts from 35 ablation pulses at each excitation laser frequency
are summed. The absolute excitation wavelength is determined by co-recording
a sub-Doppler I2 spectrum [136], and the relative wavelength is measured by co-
recording the transmission of an actively stabilized etalon (free spectral range of
751.393 MHz).

High-resolution absorption spectroscopy measurements of 171,173YbOH were recorded
at Caltech using the 4 K CBGB source described in Ch. 3. The cell configuration
used for these measurements is as follows: gas inlet, 0.125-inch blank, diffuser
plate, 0.5-inch blank, 1.0-inch window piece for ablation (with snorkel), 0.5-inch
blank, 0.5-inch window piece for spectroscopy (spectroscopy window), and 0.25-
inch aperture plate (5-mm aperture). All measurements were performed inside the
buffer-gas cell, as opposed to in the extracted beam. YbOH molecules created by
ablating (532 nm, ∼30 mJ/pulse, ∼5 Hz) either a stoichiometric Yb + Yb(OH)3 or a
Yb + Te(OH)6+KF target. The mixture ratios for the Yb + Te(OH)6+KF were 0.17
: 3 : 1.83 and 0.25 : 3 : 1.75 (Te(OH)6 : Yb : KF).

To measure the absorption spectra, three cw-laser beams are passed through the
spectroscopy window: the primary tunable absorption spectroscopy beam (1 mm
diameter, ∼30 𝜇W), the normalization laser (1 mm diameter, ∼40 𝜇W) used to
monitor the shot-to-shot fluctuations in YbOH production, and the chemical en-
hancement laser (3 mm diameter, ∼300 mW), which increases the molecular yield
by exciting atomic Yb to the metastable 3𝑃1 state as described above in Section 5.1.

The normalization laser is fixed to either the 𝑂𝑃12(2) or 𝑅𝑅11(2) line of the
𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) transition of 172YbOH at 17322.1732 cm−1 and
17327.0747 cm−1, respectively [116], and is used to monitor molecular produc-
tion. The 𝑂𝑃12(2) or 𝑅𝑅11(2) line of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) transition
of 172YbOH were used for normalization as they are unblended. The frequency
of the enhancement laser is fixed to the 3𝑃1 ← 1𝑆0 transition of the desired
Yb isotope. Specifically, the 174Yb(17992.0003 cm−1), 176Yb(17991.9685 cm−1),
𝐹′′ = 1/2 → 𝐹′ = 1/2 171Yb (17991.9292 cm−1) and the 𝐹′′ = 5/2 → 𝐹′ = 7/2
173Yb (17991.9207 cm−1) transitions [137] were used. The fixed lasers are locked to
a stabilized HeNe laser via a scanning transfer cavity and active feedback (∼5 MHz
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resolution). The primary absorption laser is continuously scanned in frequency and
the resulting absorption is detected with a photodiode. The absolute frequency of
the primary absorption laser is monitored by a digital wavemeter, and the relative
frequency is tracked in a separate transfer cavity with respect to a stabilized HeNe
laser (∼7 MHz resolution). The absolute transition frequencies are calibrated using
known 172YbOH and 174YbOH spectral features [116]. The light of the enhance-
ment laser is switched on and off using a mechanical shutter so that both enhanced
and unenhanced spectra of the desired isotopologue can be measured in successive
shots.

5.3 Novel spectroscopic technique utilizing laser-enhanced chemical reactions
The seven fairly abundant naturally occurring isotopes of Yb (see Section 2.11 for
abundances) result in a very complicated and congested isotopologue spectroscopic
structure in YbOH. The small isotopic spectral shifts (due to the similarity of
the potential energy surfaces of 𝑋̃2Σ+(0, 0, 0) and 𝐴̃2Π1/2(0, 0, 0) states) result in
an especially congested spectrum in the bandhead region of the 𝐴̃2Π1/2(0, 0, 0) −
𝑋̃2Σ+(0, 0, 0) band, from 17323.50 cm−1 to 17323.85 cm−1. Though this region
of the spectrum contains many overlapped lines from all seven isotopologues, it is
dominated by the two most abundent 172YbOH and 174YbOH isotopologues. The
absorption spectrum of this bandhead region is shown in Fig. 5.3 with some of
the dominate 172,174YbOH spectral features indicated. Several "strong" isolated
173YbOH features are also indicated in in Fig.5.3. As can be seen, the 173YbOH
lines are several factors smaller than those of the more dominant even 172,174YbOH
isotopologues. Therefore, observation and assignment of the 173YbOH spectral
features in this region using traditional methods is extremely challenging due to
their overlap with the much stronger even 172,174YbOH features. The same situation
occurs with 171YbOH isotopolgue as well, though in contrast to 173YbOH, not even
a single line is isolated enough to be observed.

In order to observe the spectrum of the odd isotopologues in the bandhead and other
regions, we developed a novel spectroscopic technique which utilizes the laser-
enhanced chemical reactions (chemical enhancement). This technique is illustrated
for 171YbOH in Fig. 5.4 and described below. Both the enhanced and non-enhanced
spectra are recorded using in cell absorption spectroscopy. The OD is integrated
over the duration of the molecular pulse and normalized by the integrated OD of
the normalization probe. The normalization accounts for shot to shot fluctuations in
molecule production so that the intensities of different lines can be reliably compared.
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Figure 5.3: Absorption spectrum of the bandhead region of the 𝐴̃2Π1/2(0, 0, 0) −
𝑋̃2Σ+(0, 0, 0) band of YbOH. Several 𝑃𝑄12 and 𝑃𝑃11 branch features of the
172,174YbOH isotopologues are indicated as well as several isolated 173YbOH fea-
tures.

The normalized signal at a single laser frequency without the enhancement light
(Fig. 5.4a) is 𝑆𝑈𝐸 = 𝑆171 + 𝑆𝐵, where 𝑆171 is the measured integrated OD for
171YbOH, and 𝑆𝐵 is the background integrated OD from all other overlapping
YbOH isotopologues or other molecules. The measured normalized integrated OD
with the enhancement light on and on resonance with the atomic 171Yb transition
(Fig. 5.4b) is 𝑆𝐸 = 𝐸𝑆171+𝑆𝐵. Here, 𝐸 = 𝑁𝐸/𝑁0 is the enhancement factor (defined
in Section 5.1) or the ratio of the number of molecules (171YbOH molecules in this
case) produced with the enhancement laser on, 𝑁𝐸 , to the number produced with
the enhancement laser off, 𝑁0. Taking the difference between the enhanced and
non-enhanced signals 𝑆𝐸 − 𝑆𝑈𝐸 = (𝐸 − 1)𝑆171 (Fig. 5.4c) results in the spectrum
from only the 171YbOH isotopologue. For the odd isotopologues it is observed that
the in-cell enhancement factor, 𝐸 , is typically ∼ 4 to 8. As shown in Fig. 5.4,
this novel technique utilizing the chemical enhancement both isolates the spectrum
of the desired isotopologue and increases the signal to noise ratio by a factor of
(𝐸 − 1) ∼ 3 − 5. Finally, this technique generalizes to all other isotopologues
of YbOH and other molecules that can be produced via laser-enhanced chemical
reactions.
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Figure 5.4: Extraction of the 171YbOH spectral features in the region of the even
isotopologue 𝑅𝑅11(2) lines using chemical enhancement. The data was collected via
absorption spectroscopy in the buffer gas cell. a.) The spectrum with no chemical
enhancement (with the chemical enhancement laser blocked). The lines of each
isotopologue are indicated. The 174YbOH 𝑅𝑅11(2) line is overlapped with a much
weaker 171YbOH line. b.) The spectrum with 171YbOH chemical enhancement
(with the chemical enhancment laser unblocked and on resonance with the 171Yb
transition). c.) Difference of the enhanced and non-enhanced spectrum (a-b), this
spectrum is purely from the 171YbOH isotoplogue. This figure was reproduced from
Ref. [129] with permission from AIP.
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5.4 Observation of the 171,173YbOH spectra
The analysis here focuses on the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of the odd
isotopologues, 171,173YbOH. A description of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0)
band for the even isotopologues, 172,174YbOH, can be found in Ref. [116]. The
spectrum of the odd isotopologues is much more complex than that of the even
isotopologues due to the strong 171Yb (𝐼 = 1/2, 𝜇 = +0.49367𝜇𝑁 ) and 173Yb
(𝐼 = 5/2, 𝜇 = −0.67989𝜇𝑁 ) magnetic hyperfine interactions as well as the large
nuclear electric quadrupole hyperfine interaction (𝑄 = 280.0±4.0 fm2) in 173YbOH
[138]. This strong magnetic hyperfine interaction in the odd isotopologues results
in coupling of the electron spin, 𝑆, to the nuclear spin of the Yb, 𝐼𝑌𝑏 to give the
intermediate approximately good quantum number 𝐺 = 𝑆 + 𝐼𝑌𝑏. 𝐺 then couples
to the rotation to give the intermediate quantum number 𝐹1 = 𝐺 + 𝑁 which in
then couples to the proton nuclear spin, 𝐼𝐻 , to give the total angular momentum
𝐹. Therefore, the low rotational energy levels of the 𝑋̃2Σ+(0, 0, 0) state of the odd
isotopologues are best described by a Hund’s case (b𝛽𝑆) coupling scheme and the
corresponding coupling limit wavefunction, | (𝑆𝐼𝑌𝑏)𝐺, (𝐺𝑁)𝐹1, (𝐹1𝐼𝐻)𝐹⟩. On the
other hand, both the Yb and H hyperfine interactions in the excited 𝐴̃2Π1/2(0, 0, 0)
state are small compared to the rotation and Λ-doubling such that the energy levels
of the 𝐴̃2Π1/2(0, 0, 0) state of the odd isotopologues are best described by a near
sequentially coupled Hund’s case (a𝛽𝐽) coupling scheme and the corresponding
coupling limit wavefunction, |𝜂,Λ⟩|𝑆, Σ⟩|𝐽,Ω, (𝐽𝐼𝑌𝑏)𝐹1, (𝐹1𝐼𝐻)𝐹⟩. Besides small
broadening of the low rotational branch features of the molecular beam LIF spectra,
no evidence of the proton hyperfine splitting was observed.

Here we used the same branch designations previously utilized for the description
of the 𝐴2Π1/2(𝜈 = 0) − 𝑋2Σ+(𝜈 = 0) band of the even and odd isotopologues
of YbF [139]. The even isotopologues of YbOH exhibit 6 bands, 𝑃𝑃11, 𝑄𝑄11,
𝑅𝑅11, 𝑃𝑄12, 𝑂𝑃12, and 𝑄𝑅12, which are labeled according to the Δ𝑁Δ𝐽𝐹 ′

𝑖
,𝐹 ′′

𝑖
(𝑁′′)

convention appropriate for a 2Π1/2 (Hund’s case (a)) - 2Σ (Hund’s case (b)) band.
For the odd isotopologues of YbOH, these six branches split and regroup into eight
branches labeled 𝑂𝑃1𝐺 , 𝑃𝑃1𝐺 +𝑃 𝑄1𝐺 , 𝑄𝑄1𝐺 +𝑄 𝑅1𝐺 , and 𝑅𝑅1𝐺 , appropriate for a
2Π1/2 (Hund’s case (a𝛽𝐽)) - 2Σ (Hund’s case (b𝛽𝑆)) band. For 171YbOH𝐺 = 0 and 1
and for 173YbOH 𝐺 = 2 and 3. The 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of YbOH
exibits a blue degraded bandhead formed by the low rotational lines of the 𝑃𝑄12 and
𝑃𝑃11 even isotopologue and 𝑃𝑃1𝐺 +𝑃 𝑄1𝐺 odd isotopologue branches. The 𝑂𝑃12

and 𝑅𝑅11 even isotopologue and 𝑂𝑃1𝐺 and 𝑅𝑅1𝐺 odd isotopologue branches form
relatively unblended progressions in 𝑁′′, with adjacent separations of ∼ 4𝐵′′, to the
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red (𝑂𝑃12 and 𝑂𝑃1𝐺) and blue (𝑅𝑅11 and 𝑅𝑅1𝐺) of the band head. As discussed in
the previous section, the small isotope shifts result in the even isotoplologue 𝑃𝑃11,
𝑃𝑄12, 𝑄𝑄11, and 𝑄𝑅12, and odd isotopologue 𝑃𝑃1𝐺 +𝑃 𝑄1𝐺 , and 𝑄𝑄1𝐺 +𝑄 𝑅1𝐺

branches to be severely overlapped (Fig. 5.3).
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Figure 5.5: Observed molecular beam LIF spectra and calculated predictions of
the 𝑂𝑃12(3) even isotopologue and 𝑂𝑃1𝐺 odd isotopologue branch features of the
𝐴̃2Π1/2(0, 0, 0)− 𝑋̃2Σ+(0, 0, 0) band of YbOH. The even isotopologue spectrum was
predicted using the optimized parameters (or isotopically scaled values) given in
Ref. [116]. The predicted 171,173YbOH spectra were calculated using the optimized
parameters determined in this study and given in Table 5.1. A temperature of 15 K
and Lorentzian full width at half maximum (FWHM) of 30 MHz was used for all
predictions. The lines marked with * are unidentified. This figure was reproduced
from Ref. [129] with permission from AIP.

The molecular beam LIF data and calculated spectrum in the region of the even
𝑂𝑃12(3) and odd 𝑂𝑃1𝐺 (3) lines is shown in Fig. 5.5. The calculated spectrum for
the even 172,174YbOH isotopologues were obtained using the optimized parameters
given in Ref. [116], while for the even 170,176YbOH isotopologes these parameters
were scaled by their expected isotopic dependence. The calculated spectrum for the
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odd isotopologues was obtained using the optimized parameters determined in this
study and given in Table 5.1. For all calculated spectra, a rotational temperature of
15 K and a Lorentzian line shape with a full width at half maximum (FWHM) of 30
MHz was used.

For a Hund’s case (b𝛽𝑆) state, the Fermi contact hyperfine interaction has only
diagonal matrix elements which are given by [140]

⟨(𝑆𝐼𝑌𝑏)𝐺, (𝐺𝑁)𝐹 |𝑏𝐹I · S| (𝑆𝐼𝑌𝑏)𝐺, (𝐺𝑁)𝐹⟩

=
𝑏𝐹

2
[𝐺 (𝐺 + 1) − 𝐼 (𝐼 + 1) − 𝑆(𝑆 + 1)],

(5.1)

where here we have neglected the effects of the proton nuclear spin as they are
unresolved in the spectrum. For a 2Σ+ state (the ground state of the odd isotopologues
of YbOH) the quantum number 𝐺 takes two values, 𝐺1 = 𝐼 + 𝑆 and 𝐺2 = 𝐼 − 𝑆, and
the Fermi contact interaction splits these two states by 𝑏𝐹

2 [𝐺1(𝐺1+1)−𝐺2(𝐺2+1)].
This splitting results in the separation of the 𝑂𝑃10(3) and 𝑂𝑃11(3) lines of 171YbOH
by ∼ 𝑏𝐹 ∼ +6750 MHz and the 𝑂𝑃12(3) and 𝑂𝑃13(3) lines of 173YbOH by ∼ 3𝑏𝐹 ∼
-5660 MHz. Additionally, the ordering of the energy levels of different 𝐺 values is
opposite in 173YbOH compared to 171YbOH, with the lower 𝐺 states (𝐺 = 0) lower
in energy in 171YbOH while the higher𝐺 states (𝐺 = 3) lower in energy in 173YbOH.
The opposite ordering is due to the opposite sign of the nuclear magnetic moments
of the 171Yb and 173Yb nuclei. This is reflected in the opposite ordering of the
𝑂𝑃1𝐺 (3) lines in Fig. 5.5 (states lower in energy result in higher energy transitions).
The splitting between the 𝑂𝑃1𝐺 (𝑁′′) (and also the 𝑅𝑅1𝐺 (𝑁′′)) branches remains
constant for different values of 𝑁′′ since the energy splitting from the Fermi contact
interaction remains constant over all rotational states.

As discussed in Section 5.3 and shown in Fig. 5.3, the bandhead region of the YbOH
spectrum is dominated by the 𝑃𝑃11, 𝑄𝑄11, 𝑃𝑄12, and 𝑄𝑅12 even isotopologue branch
features. The dominance of the even isotopologues makes the observation and as-
signment of the odd isotopologue 𝑃𝑃1𝐺 +𝑃 𝑄1𝐺 and 𝑄𝑄1𝐺 +𝑄 𝑅1𝐺 branch features
nearly impossible. Therefore, utilizing the chemical enhancement technique, de-
scribed in Section 5.3, proved critical in the measurement of the odd isotopologue
branch features in the band head region. The observed and predicted high-resolution
absorption spectrum of the cryogenic buffer gas cooled (CBGC) sample in the band-
head region is presented in Fig. 5.6. Fig. 5.6a is the spectrum with no enhancement
light (same as Fig. 5.3), while Fig. 5.6b is the spectrum with the enhancement
light applied and on resonance with the atomic 173Yb transition. The enhanced pro-
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duction due to the atomic excitation provides approximately a factor of 4 increase
in the 173YbOH signals. The difference between the enhanced and non-enhanced
spectra (b-a) is presented in Fig. 5.6c and is the spectrum of only the 173YbOH
isotopologue. The prediction of the 173YbOH spectrum in this region is presented
in Fig. 5.6d. The prediction was made using the optimized parameters determined
in this study (Table 5.1), a rotational temperature of 5 K, and a 90 MHz FWHM
lineshape. A comparison of Fig. 5.6a and c shows that the chemical enhancement
technique developed here provides a significant simplification of the observed spec-
trum as well as an improvement in the signal to noise ratio. While the chemical
enhancement technique allowed the isolation of the 173YbOH spectrum, the spectral
features presented in Fig. 5.6c are still a blend of many lines. The feature marked
"A" in Fig. 5.6 is primarily a blend of the 𝑃𝑃12 +𝑃 𝑄12(1) (𝐹′′1 = 3 → 𝐹′1 = 3)
and 𝑃𝑃12 +𝑃 𝑄12(2) (𝐹′′1 = 4→ 𝐹′1 = 4) 173YbOH transitions. The feature marked
"B" in Fig. 5.6 is primarily a blend of the 𝑃𝑃12 +𝑃 𝑄12(3) (𝐹′′1 = 5 → 𝐹′1 = 5),
𝑃𝑃12 +𝑃 𝑄12(1) (𝐹′′1 = 2 → 𝐹′1 = 3), and 𝑃𝑃12 +𝑃 𝑄12(3) (𝐹′′1 = 4 → 𝐹′1 = 4)
173YbOH transitions.

The high-resolution absorption spectrum in the bandhead region is also presented
in Fig. 5.7. Fig. 5.7a is again the spectrum without chemical enhancement but now
Fig. 5.7b is the spectrum with chemical enhancement of 171YbOH via the excitation
of the 𝐹′′ = 1/2 → 𝐹′ = 1/2 3𝑃1 −1 𝑆0

171Yb transition. The difference between
the enhanced 171YbOH and unenhanced spectrum (a-b) is shown in Fig. 5.7c, this
is the spectrum from only the 171YbOH isotopologue. A prediction of the 171YbOH
spectrum in the bandhead region is presented in Fig. 5.7d. Here, the prediction was
also made using the optimized parameters given in Table 5.1, a rotational temperature
of 5 K, and a 90 MHz FWHM lineshape. The 171YbOH bandhead at 17323.55 cm−1

is an unresolved blend of the 𝑃𝑃11 +𝑃 𝑄11(1), 𝑃𝑃11 +𝑃 𝑄11(2), and 𝑃𝑃11 +𝑃 𝑄11(3)
features. In contrast to the 173YbOH spectrum (shown in Fig. 5.6c), the 171YbOH
spectrum has several unblended features in the bandhead region. For example the
feature labeled "A" in Fig. 5.7 is the 𝑄𝑄11 +𝑄 𝑅11(1) (𝐹′′1 = 1→ 𝐹′1 = 1) transition,
the feature labeled "B" is the 𝑃𝑃11 +𝑃 𝑄11(5) (𝐹′′1 = 5→ 𝐹′1 = 5) transition and the
feature marked "C" is the 𝑄𝑄11 +𝑄 𝑅11(2) (𝐹′′1 = 2→ 𝐹′1 = 2) transition.

Though the odd isotopologue 𝑅𝑅1𝐺 branch features are relatively isolated (similar to
the 𝑂𝑃1𝐺 features shown in Fig. 5.5), recording the chemically enhanced absorption
spectrum proved critical for the disentanglement and assignment of the branch
features in this region as well. The disentangling of the 171YbOH 𝑅𝑅11(2) lines is
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demonstrated in Fig. 5.8. The left side of Fig. 5.8 presents the molecular beam
LIF in the region of the even isotopologue 𝑅𝑅11(2) and odd isotopologue 𝑅𝑅1𝐺 (2)
lines. The right side of Fig. 5.8 presents the CBGC absorption spectrum in this
same region. The predicted spectrum presented in Fig. 5.8 used the optimized
YbOH parameters, rotational temperatures of 15 K and 5 K, and FWHM linewidths
of 30 MHz and 90 MHz for the molecular beam LIF and CBGC absorption spectra
respectively. Fig. 5.8a is the CBGC absorption spectrum with no enhancment
light, while Fig. 5.8b, c, and d are the absorption spectra with 176YbOH, 174YbOH,
and 171YbOH enhancement respectively. Each isotopologue is enhanced by driving
the 3𝑃1 −1 𝑆0 transition of each respective Yb isotope (176Yb, 174Yb, and 171Yb).
The pure 171YbOH spectrum is shown in Fig. 5.8e and was obtained by taking
the difference of the enhanced and unenhanced spectra, d-a. The pure 171YbOH
spectrum in Fig. 5.8e reveals a small 171YbOH feature that was obscured in the high-
resolution LIF data by the much stronger 174YbOH 𝑅𝑅11(2) line. This illustrates the
power and ability of the novel chemical enhancement based spectroscopic technique
to produce model-independent isolation of the 171YbOH spectrum.

A total of 94 spectral features of the 𝐴̃2Π1/2(0, 0, 0)−𝑋̃2Σ+(0, 0, 0) band of 173YbOH
were measured and assigned to 128 transitions. The measured transition wavenum-
bers, assignments, associated quantum numbers, and the difference between the
observed and calculated transition wavenumbers are given in Table A.2 in Appendix
A. A total of 65 spectral features of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of
171YbOH were measured and assigned to 70 transitions. The measured transition
wavenumbers, assignments, associated quantum numbers, and the difference be-
tween the observed and calculated transition wavenumbers are given in Table A.3
in Appendix A.

5.5 Analysis and discussion
Analysis of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) bands of 171,173YbOH
The optimal effective Hamiltonian parameters for the 𝑋̃2Σ+(0, 0, 0) and 𝐴̃2Π1/2(0, 0, 0)
states of 171,173YbOH were determined via a weighted least-squares optimization
routine that utilized the measured transition wavenumbers (given in Tables A.2 and
A.3 in Appendix A) as inputs. The molecular beam LIF data was given twice the
weight compared to the CBGB absorption data due to the higher spectral resolution
and the fact that the absolute frequency was more accurately calibrated with the co-
recorded I2 spectrum. The effective Hamiltonian used to model the 𝑋̃2Σ+(0, 0, 0)
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state is

𝐻̂𝑒 𝑓 𝑓 ( 𝑋̃2Σ+) =𝐵R2 − 𝐷R2R2 + 𝛾N · S
+ 𝑏𝐹 (171,173𝑌𝑏, 𝐻)I · S

+ 1
3
𝑐(171,173𝑌𝑏, 𝐻) (3𝐼𝑧𝑆𝑧 − I · S)

+ 𝑒2𝑄𝑞0(173𝑌𝑏)
3𝐼2
𝑧 − I2

4𝐼 (2𝐼 − 1) .

(5.2)

This effective Hamiltonian accounts for rotation (𝐵 and 𝐷), spin rotation (𝛾), the
Fermi contact and dipole-dipole magnetic hyperfine interactions of either the 171Yb
or 173Yb nucleus and also the H nucleus (𝑏𝐹 and 𝑐), and in the case of 173YbOH, the
nuclear electric quadrupole interaction (𝑒2𝑄𝑞0). Note that this effective Hamiltonian
is cast in the R2 formalism, as opposed to the N2 formalism discussed in Ch. 2. The
effective Hamiltonian used to model the 𝐴̃2Π1/2(0, 0, 0) state is

𝐻̂𝑒 𝑓 𝑓 ( 𝐴̃2Π1/2) =𝑇00 + 𝐴𝐿𝑧𝑆𝑧 + 𝐵R2 − 𝐷R2R2

+ 1
2
(𝑝 + 2𝑞) (𝐽+𝑆+𝑒−2𝑖𝜃 + 𝐽−𝑆−𝑒+2𝑖𝜃)

+ 𝑎(171,173𝑌𝑏)𝐼𝑧𝐿𝑧

+ 1
2
𝑑 (171,173𝑌𝑏) (𝑆+𝐼+𝑒−2𝑖𝜃 + 𝑆−𝐼−𝑒+2𝑖𝜃)

+ 𝑒2𝑄𝑞0(173𝑌𝑏)
3𝐼2
𝑧 − I2

4𝐼 (2𝐼 − 1) .

(5.3)

This effective Hamiltionian accounts for the origin (𝑇00), spin-orbit (𝐴), rotation
(𝐵 and 𝐷), Λ-doubling (𝑝 + 2𝑞), magnetic hyperfine (𝑎) and parity-dependent
magnetic hyperfine (𝑑) interactions from the 171Yb or 173Yb nucleus, and in the
case of 173YbOH the nuclear electric quadrupole interaction (𝑒2𝑄𝑞0). For the
𝐴̃2Π1/2(0, 0, 0) state hyperfine interactions from the H nucleus are very small and
were not included. The data set is not sensitive to the perpendicular nuclear electric
quadrupole interaction, 𝑒2𝑄𝑞2, which only has matrix elements between the far
separated 𝐴̃2Π1/2 and 𝐴̃2Π3/2 spin-orbit components.

The 𝐴̃2Π1/2(0, 0, 0) state is best described by a Hund’s case (a𝛽𝐽) basis, in which the
diagonal matrix elements of the magnetic hyperfine interactions are given by [141]

⟨𝜓(𝑎𝛽𝐽) |𝑎𝐼𝑧𝑆𝑧 + 𝑏𝐹I · S + 1
3
𝑐(𝐼𝑧𝑆𝑧 − I · S) |𝜓(𝑎𝛽𝐽)⟩

=

(
𝑎 − 𝑏𝐹

2
− 𝑐

3

)
𝐹 (𝐹 + 1) − 𝐼 (𝐼 + 1) − 𝑆(𝑆 + 1)

4𝐽 (𝐽 + 1) .

(5.4)
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Therefore, the magnetic hyperfine interaction is only dependent on the linear combi-
nation ℎ1/2 ≡ 𝑎− 𝑏𝐹2 −

𝑐
3 , and the effect of the three magnetic hyperfine interactions is

indistinguishable. Due to this, only the diagonal 𝑎𝐼𝑧𝑆𝑍 term is needed to effectively
model the magnetic hyperfine interaction in the 𝐴̃2Π1/2(0, 0, 0) state.

The energy levels of the 𝑋̃2Σ+(0, 0, 0) and 𝐴̃2Π1/2(0, 0, 0) states were calculated
by diagonalizing the 24 x 24 (= (2𝑆 + 1) (2𝐼1 + 1) (2𝐼2 + 1)) and 48 x 48 (= 2(2𝑆 +
1) (2𝐼1 + 1) (2𝐼2 + 1)) matrices for 173YbOH and 8 x 8 and 16 x 16 matrices for
171YbOH. The matrices for both states were constructed in a sequentally coupled
Hund’s case (a𝛽𝐽) basis. A Hund’s case (a𝛽𝐽) basis set was used for the 𝑋̃2Σ+(0, 0, 0)
instead of the more appropriate Hund’s case (b𝛽𝑆) basis set to simplify the intensity
calculations (described below) resulting from additional change of basis operations.

In the analysis, optimizations were performed for various combinations of floated
parameters. In all optimization cases, the proton magnetic hyperfine parameters of
the 𝑋̃2Σ+(0, 0, 0) state were fixed to the values determined in the microwave study
of 174YbOH (𝑏𝐹 = 4.80 MHz and 𝑐 = 2.46 MHz, see Ch. 4) [93]. The spin orbit
parameter was fixed to the previously determined value, 𝐴 = 1350 cm−1 [105].
The results of the analysis are relatively insensitive to the value of 𝐴, other than
the general offset in the value of 𝑇00. The rotationally induced spin-uncoupling
effect is negligible in the 𝐴̃2Π1/2(0, 0, 0) state, e.g. 𝐵/𝐴 ∼ 10−4. It was found
that floating the centrifugal distortion parameter, 𝐷, for both the 𝑋̃2Σ+(0, 0, 0) and
𝐴̃2Π1/2(0, 0, 0) states and the spin rotation parameter, 𝛾, for the 𝑋̃2Σ+(0, 0, 0) state
had little to no effect on the optimization results and they were therefore fixed to the
values predicted from the extrapolation of the 174YbOH values using the expected
isotopic dependence. The 173YbOH dataset was adequately fit by optimizing 10 pa-
rameters and the 171YbOH dataset was fit by optimizing 8 parameters. The standard
deviation of the fits was 27 and 25 MHz for 171YbOH and 173YbOH respectively,
both commensurate with the estimated weighted measurement uncertainty. The
optimized parameters and associated errors for 171,173YbOH are presented in Table
5.1. Also presented are the equivalent values for 171YbF [142, 143] and 173YbF
[139] for comparison.

Predictions of the molecular spectra were critical for both the assignment and anal-
ysis of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) bands of 171,173YbOH. The spectral
predictions were obtained in the following manner. The electric dipole transition
moment matrix was calculated in a sequentially coupled Hund’s case (a𝛽𝐽) ba-
sis which was then cross multiplied by the eigenvectors to obtain the transition
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moments. The relative transition intensities were determined by the product of
the square of the transition moment, a Boltzmann factor, and the relative Yb iso-
topic abundance. The spectra was then predicted using the transitions frequencies,
relative intensities, and a Lorentzian lineshape. The 171YbOH and 173YbOH pa-
rameters determined in this study were used in the predictions. The parameters
for 174YbOH[𝑋̃2Σ+(0, 0, 0)] were taken from the microwave analysis (Ch. 4) [93],
while the parameters for 174YbOH[ 𝐴̃2Π1/2(0, 0, 0)], 172YbOH[𝑋̃2Σ+(0, 0, 0)], and
172YbOH[ 𝐴̃2Π1/2(0, 0, 0)] were taken from the previous optical analysis [116].
The parameters for 170YbOH and 176YbOH were determined via extrapolation of
the known 171YbOH, 172YbOH, 173YbOH, and 174YbOH parameters using the ex-
pected mass dependence. For all isotopologues, the 𝑋̃2Σ+(0, 0, 0) proton magnetic
hyperfine parameters were fixed to the 174YbOH values determined in the microwave
study, while the proton hyperfine parameters in the 𝐴̃2Π1/2(0, 0, 0) state were set
to zero. The parameters for the 𝑋̃2Σ+(0, 0, 0) and 𝐴̃2Π1/2(0, 0, 0) states of all the
YbOH isotopologues of YbOH that were used in these predictions can be found in
Table S3 of the supplementary material of Ref. [129].
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Figure 5.6: High-resolution absorption spectra in the bandhead region of the
𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of YbOH. a.) The spectrum with no chemical
enhancement. b.) The spectrum with chemical enhancement of the 173YbOH
isotopologue. Here the enhancement laser excited the 𝐹′′ = 5/2 → 𝐹′ = 7/2
3𝑃1 −1 𝑆0

173Yb transition. c.) Difference of the enhanced and unenhanced spectra
(b-a). This is the spectrum due to only the 173YbOH isotopologue. d.) Prediction
of the 173YbOH spectrum using the optimized parameters given in Table 5.1, a
rotational temperature of 5 K, and a FWHM linewidth of 90 MHz. The y-axis of d
is arbitrary. The features marked "A" and "B" are described in the text. This figure
was reproduced from Ref. [129] with permission from AIP.
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Figure 5.7: High-resolution absorption spectra in the bandhead region of the
𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of YbOH. a.) The spectrum with no chemical
enhancement. b.) The spectrum with chemical enhancement of the 171YbOH
isotopologue. Here the enhancement laser excited the 𝐹′′ = 1/2 → 𝐹′ = 1/2
3𝑃1 −1 𝑆0

171Yb transition. c.) Difference of the enhanced and unenhanced spectra
(b-a). This is the spectrum due to only the 171YbOH isotopologue. d.) Prediction
of the 171YbOH spectrum using the optimized parameters given in Table 5.1, a
rotational temperature of 5 K, and a FWHM linewidth of 90 MHz. The y-axis of d
is arbitrary. The features marked "A", "B", and "C" are described in the text. This
figure was reproduced from Ref. [129] with permission from AIP.
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Figure 5.8: Molecular beam (MB) LIF (left side) and cryogenic buffer gas cooled
(CBGC) absorption spectra (right side) in the region of the even isotopologue
𝑅𝑅11(2) and odd isotopologue 𝑅𝑅1𝐺 (2) lines of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0)
transition of YbOH. Predicted MB LIF spectrum was calculated with a 15 K rota-
tional temperature and FWHM=30 MHz linewidth while the predicted CBGC ab-
sorption spectrum was calculated with a 5 K rotational temperature and a FWHM=90
MHz linewidth. Both predictions used the optimized YbOH parameters given in
Table S3 of the supplemental material of Ref. [129]. a.) Absorption spectrum with
no chemical enhacement (enhancement laser blocked). b.) Absorption spectrum
with 176YbOH enhancement, excitation of the 3𝑃1 −1 𝑆0

176Yb transition. c.) Ab-
sorption spectrum with 174YbOH enhancement, excitation of the 3𝑃1 −1 𝑆0

174Yb
transition. d.) Absorption spectrum with 171YbOH enhancement, excitation of the
𝐹′′ = 1/2 → 𝐹′ = 1/2 3𝑃1 −1 𝑆0

171Yb transition. e.) Difference of d and a
(d-a). This is purely the spectrum from the 171YbOH isotopologue. This provides
direct, model-independent isolation of the 171YbOH spectrum from that of the other
isotopologues. This figure was reproduced from Ref. [129] with permission from
AIP.
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Table 5.1: Optimized parameter for the 𝑋̃2Π1/2(0, 0, 0) and 𝐴̃2Π1/2(0, 0, 0) states
of 171YbOH and 173YbOH and the 𝑋2Σ+(𝜈 = 0) and 𝐴2Π1/2(𝜈 = 0) states of 171YbF
and 173YbF. All parameters are given in cm−1. Numbers in parenthesis represent
the 2𝜎 error. This table was reproduced from Ref. [129] with permission from AIP.

Par. 171YbOH 171YbF𝑎,𝑏 173YbOH 173YbF𝑐

𝑋̃2Σ+

𝐵 0.245 497(22) 0.241 710 98(6) 0.245 211(18) 0.241 434 8 (12)

𝐷 × 106 0.252 4(fix) 0.219 8(17) 0.219 0(fix) 0.227(fix)

𝛾 −0.002 697 (fix) −0.000 448(1) −0.002 704(fix) −0.000 446 4 (24)

𝑏𝐹(Yb) 0.227 61(33) 0.242 60(37) −0.062 817(67) −0.067 04 (8)

𝑐(Yb) 0.007 8(14) 0.009 117(12) −0.002 73(45) −0.002 510 (12)

𝑒2𝑄𝑞0 N/A N/A −0.110 7(16) −0.109 96 (6)

𝑏𝐹(H or F) 0.000 160(fix) 0.005 679(fix) 0.000 160(fix) 0.005 679(fix)

𝑐(H or F) 0.000 082(fix) 0.002 849(fix) 0.000 082(fix) 0.002 849(fix)

𝐴̃2Π1/2

𝐴 1 350 (fix) 1 365.3(fix) 1 350.0(fix) 1 365.294 (fix)

𝐵 0.253 435(24) 0.248 056 8(35) 0.253 185(16) 0.247 79 (6)

𝐷 × 106 0.260 8 (fix) 0.203 2 (fix) 0.240 5(fix) 0.203 2 (fix)

𝑝 + 2𝑞 −0.438 667(82) −0.397 62(fix) −0.438 457(64) −0.397 20 (fix)

𝑎(Yb) 0.014 8(15) 0.012 8(61) −0.004 22(20) −0.005 07(18)

𝑑(Yb) 0.031 99(58) 0.033 1(16) −0.008 73(13) −0.008 85 (18)

𝑒2𝑄𝑞0(Yb) N/A N/A −0.064 2(17) −0.064 7(12)

𝑇00 17 998.636 19(24) 18 788.650 2(4) 17 998.602 68(13) 18 788.859 39

𝑎 𝑋2Σ+(𝜈 = 0) values from Ref. [142].
𝑏 𝐴2Π1/2(𝜈 = 0) values from Ref. [143].
𝑐 From the combined fit of optical and microwave data, Ref. [139].
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Discussion
The primary goal of this study was to precisely determine the parameters of the
𝑋̃2Σ+(0, 0, 0) and 𝐴̃2Π1/2(0, 0, 0) states of 171,173YbOH and to demonstrate the
chemical enhancement spectroscopic technique. The odd isotopolouge parameters
determined here will allow the accurate calculation of the 173YbOH energy levels
needed for the design of NMQM experiment state preparation and readout schemes.
Additionally, the spectroscopic work here provides an essential starting point for
the investigation of excited electronic and vibrational states of 173YbOH, such as
the 𝑋̃2Σ+(0, 1, 0) science state, needed for the finial implementation of an NMQM
measurement with 173YbOH. The chemical enhancement spectroscopic technique
demonstrated in this work will be critical in the characterization of other states in
the odd isotopologues of YbOH.

In addition to the design and implementation of an NMQM measurement, the char-
acterization of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) bands of the odd isotopologues
allows the identification of rotationally closed photon cycling schemes for 171YbOH
and 173YbOH. For the even isotopologues, this is accomplished by driving the
𝑃𝑄12(1) and 𝑃𝑃12(1) transitions terminating in the 𝐽 = 1/2 + parity level of the
𝐴̃2Π1/2(0, 0, 0) state. For the even isotopologues the 𝐽 = 1/2 + parity state can
only decay back down to the 𝑁′′ = 1 levels of the 𝑋̃2Σ+(0, 0, 0) state, provid-
ing rotational closure. For the odd isotopologues, the measurements performed
in this study indicate that the branching ratio for the (𝐽 = 1/2, +) 𝐴̃2Π1/2(0, 0, 0)
→ (𝑁 = 3,−) 𝑋̃2Σ+(0, 0, 0) transition is approximately 1% relative to the (𝐽 =

1/2, +) 𝐴̃2Π1/2(0, 0, 0) → (𝑁 = 1,−) 𝑋̃2Σ+(0, 0, 0) branching. Therefore, the
equivalent 𝑃𝑄1𝐺 +𝑃 𝑃1𝐺 (1) transitions of 171YbOH and 173YbOH are not rota-
tionally closed and leakage to the 𝑁′ = 3 level of the 𝑋̃2Σ+(0, 0, 0) state will occur
after about 100 photon scatters. This branching to the 𝑁 = 3 state is primarily due
to the hyperfine interactions mixing the 𝐽 = 1/2 and 𝐽 = 3/2, + parity levels of
𝐴̃2Π1/2(0, 0, 0) state.

We can estimate the extent of this mixing with first-order perturbation theory. The
free field the eigenstates are best described in the parity symmetrized Hund’s case
(a𝛽𝐽) basis,

|𝐽, 𝐹1,±⟩ =
1
√

2
( |𝜂,Λ⟩|𝑆, Σ⟩|𝐽,Ω, (𝐽𝐼𝑌𝑏)𝐹1⟩

± (−1)𝐽−𝑆 |𝜂,−Λ⟩|𝑆,−Σ⟩|𝐽,−Ω, (𝐽𝐼𝑌𝑏)𝐹1⟩).
(5.5)

Here the only the total angular momentum minus the proton nuclear spin, 𝐹1 is con-
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sidered since the proton hyperfine effects in the 𝐴̃2Π1/2(0, 0, 0) state are negligible.
To see the effect of the mixing we will split the Hamiltonian into two parts so that
𝐻̂ = 𝐻̂0 + 𝐻̂1, where 𝐻̂0 is the zero-order Hamiltonian and 𝐻̂1 is the perturbing
Hamiltonian causing the mixing. The zero-order Hamiltonian includes the rotation,
Λ-doubling, and the diagonal components of the hyperfine interactions,

𝐻̂0 = 𝐻̂𝑅 + 𝐻̂Λ𝐷 +
∑︁
𝐽,𝐹1

⟨𝐽, 𝐹1,±|𝐻̂𝐻𝐹 |𝐽, 𝐹1,±⟩. (5.6)

We have neglected the origin and spin-orbit contributions as they provide a constant
offset to all states and are not relevant. Centrifugal distortions are not included
since we will only be considering the lowest rotational levels and where centrifugal
distortion effects are negligible. The perturbing Hamiltonian is then the off-diagonal
hyperfine terms,

𝐻̂1 =
∑︁
𝐽≠𝐽 ′
⟨𝐽, 𝐹1,±|𝐻̂𝐻𝐹 |𝐽′, 𝐹1,±⟩. (5.7)

The hyperfine Hamiltonian is given by,

𝐻̂𝐻𝐹 =𝑎(171,173𝑌𝑏)𝐼𝑧𝐿𝑧 +
1
2
𝑑 (171,173𝑌𝑏) (𝑆+𝐼+𝑒−2𝑖𝜃 + 𝑆−𝐼−𝑒2𝑖𝜃)

+ 𝑒2𝑄𝑞0(173𝑌𝑏)
3𝐼2
𝑧 − I2

4𝐼 (2𝐼 − 1) ,
(5.8)

where the electric quadrupole term is only included for 173YbOH. To first-order in
perturbation theory the “true” 𝐽 = 1/2, + parity state is given by

|1/2, 𝐹1, +⟩′ = |1/2, 𝐹1, +⟩ +
⟨1/2, 𝐹1, +|𝐻̂1 |3/2, 𝐹1, +⟩
𝐸𝐽=1/2,𝐹1,+ − 𝐸𝐽=3/2,𝐹1,+

|3/2, 𝐹1, +⟩, (5.9)

where the unprimed states and the energies, 𝐸 , are the solutions to the zero order
Hamiltonian. The diagonal and off diagonal hyperfine matrix elements can be found
in [144],

⟨𝐽, 𝐹1, +|𝐻̂𝐻𝐹 |𝐽, 𝐹1, +⟩ =
(
𝑎 − (−1)𝐽−𝑆𝑑 (𝐽 + 1/2)

) 𝑅(𝐽, 𝐼, 𝐹1)
4𝐽 (𝐽 + 1)

+ 𝑒2𝑄𝑞0𝑊 (𝐽, 𝐼, 𝐹1) (3/4 − 𝐽 (𝐽 + 1))
(5.10)

and

⟨𝐽 − 1, 𝐹1, +|𝐻̂𝐻𝐹 |𝐽, 𝐹1, +⟩ =

− 𝑃(𝐽, 𝐼, 𝐹1)
(
𝑎 − (−1)𝐽−𝑆 1

2
𝑑 + 3

2
𝑒2𝑄𝑞0𝑇 (𝐽, 𝐼, 𝐹1)

) (5.11)

where
𝑅(𝐽, 𝐼, 𝐹) = 𝐹 (𝐹 + 1) − 𝐼 (𝐼 + 1) − 𝐽 (𝐽 + 1) (5.12)
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𝑊 (𝐽, 𝐼, 𝐹) = 3𝑅(𝐽, 𝐼, 𝐹) (𝑅(𝐽, 𝐼, 𝐹) + 1) − 4𝐼 (𝐼 + 1)𝐽 (𝐽 + 1)
8𝐼 (2𝐼 − 1)𝐽 (𝐽 + 1) (2𝐽 − 1) (2𝐽 + 3) (5.13)

𝑃(𝐽, 𝐼, 𝐹) = 1
4𝐽

√︁
(𝐹 + 𝐼 + 𝐽 + 1) (𝐼 + 𝐽 − 𝐹) (𝐹 + 𝐽 − 𝐼) (𝐹 + 𝐼 − 𝐽 + 1) (5.14)

and

𝑇 (𝐽, 𝐼, 𝐹) = 𝑅(𝐽, 𝐼, 𝐹) + 𝐽 + 1
4𝐼 (2𝐼 − 1) (𝐽 − 1) (𝐽 + 1) . (5.15)

Using these matrix elements an estimate of the mixing of the 𝐽 = 1/2 and 𝐽 = 3/2
+ parity states is given by

|1/2, 𝐹1, +⟩′ = |1/2, 𝐹1, +⟩ + 𝜖 (𝐼, 𝐹1) |3/2, 𝐹1, +⟩, (5.16)

where

𝜖 (𝐼, 𝐹1) =
−𝑃( 32 , 𝐼, 𝐹1)

(
𝑎 + 1

2𝑑 +
3
2𝑒

2𝑄𝑞0𝑇 ( 32 , 𝐼, 𝐹1)
)

−3𝐵 − 3
2 (𝑝 + 2𝑞) + Δ𝐸𝐻𝐹 (𝐼, 𝐹1)

. (5.17)

Δ𝐸𝐻𝐹 (𝐼, 𝐹1) is the energy difference between the 𝐽 = 1/2 and 𝐽 = 3/2 + parity
states resulting from the hyperfine interaction and is given by

Δ𝐸𝐻𝐹 (𝐼, 𝐹1) =
1
3
𝑅(1

2
, 𝐼, 𝐹1) (𝑎 − 𝑑) −

1
15
𝑅(3

2
, 𝐼, 𝐹1) (𝑎 + 2𝑑)

+ 3𝑊 (3
2
, 𝐼, 𝐹1)𝑒2𝑄𝑞0.

(5.18)

Eq. 5.17 provides and estimate of the amount of 𝐽 = 1/2 and 𝐽 = 3/2 + parity
mixing resulting from the hyperfine interactions. For 171YbOH 𝐼 = 1/2, 𝐹1 = 1,
and there is no electric quadrupole interaction giving

𝜖171(
1
2
, 1) =

−
√

2
3 (𝑎 +

1
2𝑑)

−3𝐵 − 3
2 (𝑝 + 2𝑞) + 1

6 (2𝑎 + 𝑑)
= −0.010. (5.19)

For 173YbOH 𝐼 = 5/2, and there are two separate hyperfine states, 𝐹1 = 2 and
𝐹1 = 3 with which mixing of the 𝐽 = 1/2 and 𝐽 = 3/2 + parity levels occurs (the
hyperfine interactions preserve 𝐹1, Δ𝐹1 = 0). Additionally, the electric quadrupole
interaction will also add to the mixing. This gives (omitting the functional form)

𝜖173

(
5
2
, 2

)
= 0.028 (5.20)
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and
𝜖173

(
5
2
, 3

)
= 0.009. (5.21)

In both cases, 171YbOH and 173YbOH, these estimates indicate that the |𝐽 =

1/2, 𝐹1, +⟩′ state is approximately 1-3% |𝐽 = 3/2, 𝐹1, +⟩. This accounts for the
∼ 1% branching to the 𝑁 = 3 level of the 𝑋̃2Σ+(0, 0, 0) state.

Even though there are strong hyperfine interactions in 171,173YbOH, the mixing of
the 𝐽 = 1/2 and 𝐽 + 3/2 + parity states is primarily due to the small energy spacing
(∼ 3 GHz) between them. This results from the combination of the relatively small
rotational constant and the large, negative Λ-doubling parameter. The relatively
large (in comparison to the rotational parameter) Λ-doubling parameter results in
an energy level pattern with pairs of same-parity rotational levels of 𝐽 = 𝑁 ± 1/2
lying close in energy 4. This small separation of adjacent same-parity rotational
levels is what allows the hyperfine interactions to cause significant mixing. Eq. 5.17
provides a good estimate of the mixing of the 𝐽 = 1/2 and 𝐽 = 3/2 + parity levels
in a 2Π1/2 state and can be used to estimate if this mixing will cause significant
rotational losses when photon cycling in any molecule which utilizes an excited
2Π1/2 state in the cycling or repumping transitions.

The hyperfine parameters of 171,173YbOH measured in this study are especially
interesting as they are sensitive probes of the nature of the electronic wavefunctions
in the vicinity of the nucleus. Additionally, accurate predictions of these hyperfine
parameters provide the most direct experimental confirmation of the computational
methodologies used to calculate the molecular P,T-violating coupling constants,𝑊𝑠,
𝑊𝑑 , 𝑊𝑄 , and 𝑊𝑀 . These coupling constants are present in the P,T-odd effective
molecular Hamiltonian [33]

𝐻̂𝑃,𝑇 = (𝑘𝑠𝑊𝑠 +𝑊𝑑𝑑𝑒) S · 𝑛̂ +𝑊𝑄

𝑄

𝐼
I · 𝑛̂ − 𝑊𝑀𝑀

2𝐼 (2𝐼 − 1)ST̂𝑛̂, (5.22)

where 𝑘𝑠 is the P,T-odd scalar-pseudoscalar nucleon-electron current interaction
constant, 𝑑𝑒 is the eEDM, 𝑄 is the nuclear Schiff moment, 𝑀 is the NMQM and
𝑊𝑠,𝑊𝑑 ,𝑊𝑄 , and𝑊𝑀 are the corresponding P,T-violating coupling constants. 𝐻̂𝑃,𝑇
describes the P,T-violating energy shifts in a molecule resulting from any or all
of the P,T-violating electromagnetic moments or interactions, such as an eEDM or
NMQM. These energy shifts are what molecular eEDM or NMQM experiments aim

4This energy level pattern in the 𝐴̃2Π1/2 (0, 0, 0) state closely resembles that of a 2Σ− state.
However, 2Σ+ →2 Σ− transitions are electric dipole forbidden and not consistent with the observed
intensities.
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to measure. The P,T-violating coupling constants are critical to these experiments
as they allow the magnitude and value of the P,T-violating electromagnetic moment
to be determined from the measured molecular P,T-violating energy shifts. These
coupling constants are a purely theoretical quantity which cannot be measured ex-
perimentally. However, the computational methodologies used to calculate them
are nearly identical to those used to calculate the molecular hyperfine parameters.
Therefore, comparison of the measured and calculated hyperfine parameters can pro-
vide experimental confirmation, and benchmark the accuracy, of the methodologies
used to calculate𝑊𝑠,𝑊𝑑 ,𝑊𝑄 , or𝑊𝑀 .

As part of calculation of the NMQM coupling constant, 𝑊𝑀 , in YbOH [70], the
ground state magnetic hyperfine parameter 𝐴| | (= 𝑏𝐹 + 2

3𝑐) and the axial electric
quadrupole coupling constant 𝑒2𝑄𝑞0, were predicted. The calculations were per-
formed using numerical gradients of a four-component Dirac Coulomb Hamiltonian
with electronic correlation addressed using the multireference Fock-space coupled
cluster method (FSCC). Similarly, a calculation of both𝑊𝑑 and𝑊𝑠 for YbOH [145]
provided predictions of both ground state magnetic hyperfine parameters, 𝐴| | and
𝐴⊥(= 𝑏𝐹− 1

3𝑐) for 173YbOH. This calculation was carried out using quasi-relativistic
two-component calculations with many-body interactions at the level of complex
generalized Hartree-Fock (cGHF) and complex generalized KOHN-Sham (cGKS)
density functional theory. Finally, a prediction of the ground state value of 𝑒2𝑄𝑞0 for
173YbOH was made using analytic gradients formulated from spin-orbit CCSD(T)
theory, computed against an atomic mean-field scalar relativistic (SFX2C-AMF)
Hamiltionian [146]. These predictions are compared to the measured values in
Tables 5.2 and 5.3. There are no predictions for the𝐴̃2Π1/2(0, 0, 0) state hyperfine
parameters.

The 171,173YbOH hyperfine parameters calculated via relativistic coupled cluster
methods are in excellent agreement with the measured values. The magnetic hy-
perfine parameters differ by only 2.5% [70] while the 𝑒2𝑄𝑞0 parameters differ by
5.5% [70] and 5.2% [146]. The larger discrepancy in the electric quadrupole pa-
rameter may indicate that it is more difficult to calculate the core polarization than
the valence electron structure. The excellent agreement between the measured and
calculated hyperfine parameters suggests that the calculated value of 𝑊𝑀 for the
𝑋̃2Σ+(0, 0, 0) state of 173YbOH in Ref. [70] and the effective electric field, 𝐸𝑒 𝑓 𝑓
(𝑊𝑑), calculated in Ref. [69]5 are accurate. The values of 𝑊𝑀 and 𝐸𝑒 𝑓 𝑓 will be

5The calculation of 𝐸𝑒 𝑓 𝑓 in Ref. [69] and𝑊𝑀 in Ref. [70] used the same methods.
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relevant to the NMQM search in 173YbOH and the eEDM search in 174YbOH that
the work of this dissertation aids in developing. The magnetic hyperfine parameters
of 173YbOH calculated via DFT methods differed from the measured values by
∼ 15% and ∼ 31% for the cGHF and cGKS methods respectively.

Table 5.2: Comparison of measured hyperfine parameters of the 𝑋̃2Σ+(0, 0, 0) state
of 171,173YbOH to those calculated using relativistic couple cluster methods. All
values are in MHz. This table was reproduced from Ref [129] with permission from
AIP.

Isotopologue Parameter Measured Theory Ref. [70] Theory Ref. [146]

171YbOH 𝐴𝑎| | 6979 (35) 7174.9

171YbOH 𝐴𝑏⊥ 6745 (15)

173YbOH 𝐴| | −1929 (11) −1976.3

173YbOH 𝐴𝑏⊥ −1856 (5)

173YbOH 𝑒2𝑄𝑞0 −3319 (48) −3502 −3492

𝑎 For a 𝜎 orbital 𝐴| | = 𝑏𝐹 + 2
3𝑐 .

𝑏 For a 𝜎 orbital 𝐴⊥ = 𝑏𝐹 − 1
3𝑐 .

Table 5.3: Comparison of measured magnetic hyperfine parameters of the
𝑋̃2Σ+(0, 0, 0) state of 173YbOH to those calculated using density functional the-
ory (DFT) methods. All values are in MHz. Calculated values from Ref. [145].
This table was reproduced from Ref. [129] with permission from AIP.

Isotopologue Parameter Measured DFT method: DFT method:

cGHF cGKS

173YbOH 𝐴𝑎| | −1929 (11) −1600 −1300

173YbOH 𝐴𝑏⊥ −1856 (5) −1600

𝑎 For a 𝜎 orbital 𝐴| | = 𝑏𝐹 + 2
3𝑐 .

𝑏 For a 𝜎 orbital 𝐴⊥ = 𝑏𝐹 − 1
3𝑐 .

While advanced high-level relativistic calculation provide very accurate predictions
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of the hyperfine parameters, it is often useful to examine a molecular orbital based
approach, which uses atomic information, as well. While less accurate than the high-
level calculation, the molecular orbital based approach provides chemical insight,
allows trends between similar molecules to be examined, and can provide estimates
for excited state hyperfine parameters which are not provided by the high-level
calculations. The dependence of the 𝑋̃2Σ+(0, 0, 0) state hyperfine parameters on
various averages over the electron’s spatial coordinates are given in Section 2.8 (see
there for more details) and are reproduced here for convenience [89, 94],

𝑏𝐹/𝐻𝑧 =
𝜇0

4𝜋ℎ
8𝜋
3
𝑔𝑒𝑔𝑁𝜇𝐵𝜇𝑁

1
𝑆
⟨Λ, Σ = 𝑆 |

∑︁
𝑖

s𝑖𝛿(𝑟) |Λ, Σ = 𝑆⟩, (5.23)

𝑐/𝐻𝑧 = 𝜇0
4𝜋ℎ

3
2
𝑔𝑒𝑔𝑁𝜇𝐵𝜇𝑁

1
𝑆
⟨Λ, Σ = 𝑆 |

∑︁
𝑖

s𝑖
(3 cos2 𝜃𝑖 − 1)

𝑟3
𝑖

|Λ, Σ = 𝑆⟩, (5.24)

and
𝑒2𝑄𝑞0/𝐻𝑧 = −𝑄

𝑒2

4𝜋𝜖0ℎ
⟨Λ|

∑︁
𝑖

(3 cos2(𝜃𝑖) − 1)
𝑟𝑖

|Λ⟩, (5.25)

where for 𝑏𝐹 and 𝑐 the sum is only over the valence electrons while the sum is over
all electrons for 𝑒2𝑄𝑞0. The ratio of the measured 𝑋̃2Σ+(0, 0, 0) state Fermi contact
parameters, 𝑏𝐹 (171𝑌𝑏𝑂𝐻)/𝑏𝐹 (173𝑌𝑏𝑂𝐻) = −3.62±0.04 is in excellent agreement
with the ratio of the nuclear g-factors, 𝑔𝑁 (171𝑌𝑏)/𝑔𝑁 (173𝑌𝑏) = −3.630. The
ratio of the less well-determined dipolar parameter, 𝑐(171𝑌𝑏𝑂𝐻)/𝑐(173𝑌𝑏𝑂𝐻) =
−2.86 ± 0.57, is within two standard deviations of the g-factor ratio. The dominant
electron configuration of the 𝑋̃2Σ+(0, 0, 0) state can be approximated as a single
valence electron in a 6𝑠/6𝑝/6𝑑 hybridized 𝜎-type, Yb+-centered orbital that is
polarized away from the Yb-O bond. This hybridization is the result of stabilization
achieved through the polarization of the valence electron charge away from the
electrophillic end of the Yb+OH− molecule. If we assume that 𝑏𝐹 is primarily due
to the 6𝑠 component of the𝜎-orbital than a comparison of the measured 𝑏𝐹 values of
171YbOH and 171Yb+(4 𝑓 136𝑠1) (𝑏𝐹 = 0.4217 cm−1) [147], indicates that the 𝜎-type
orbital is ∼ 54% 6𝑠 character. When comparing to the isoelectronic molecule YbF,
the 𝑏𝐹 values of 171,173YbOH are ∼ 7% smaller than the corresponding 𝑏𝐹 values
of 171,173YbF. This indicates that the OH− ligand more effectively polarizes (larger
6𝑠/6𝑝/6𝑑 hybridization) the valence electron away from the bonding region than
the F− ligand. This is consistent with the point charge electrostatic model prediction
which correctly predicted the ground state electric dipole moments of YbOH and
YbF [116].
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In contrast to 𝑏𝐹 , the electric quadrupole parameter, 𝑒2𝑄𝑞0 in the ground states of
173YbOH and 173YbF are almost identical. This indicates that the core polarization
provides a significant contribution to 𝑒2𝑄𝑞0. We can recast Eq. 5.25 to separate the
contributions from the valence and core electrons

𝑒2𝑄𝑞0/𝐻𝑧 = −𝑄
𝑒2

4𝜋𝜖0ℎ

×
(
⟨Λ|

∑︁
𝑖

(3 cos2(𝜃𝑖) − 1)
𝑟𝑖

|Λ⟩ + ⟨Λ|
∑︁
𝑗

(3 cos2(𝜃 𝑗 ) − 1)
𝑟 𝑗

|Λ⟩
)
,

(5.26)

where now the sum over 𝑖 is over only the valence electrons and the sum over 𝑗 is
over the core electrons. Noting that there is only a single valence electron, we can
also recast Eq. 5.24 in the following way

𝑐/𝐻𝑧
(

2 × 4𝜋ℎ
3𝜇0𝑔𝑒𝑔𝑁𝜇𝐵𝜇𝑁

)
=

1
𝑆
⟨Λ, Σ = 𝑆 |s𝑖

(3 cos2 𝜃𝑖 − 1)
𝑟3
𝑖

|Λ, Σ = 𝑆⟩

=
1
𝑆
𝑆⟨Λ| (3 cos2 𝜃𝑖 − 1)

𝑟3
𝑖

|Λ⟩

= ⟨Λ| (3 cos2 𝜃𝑖 − 1)
𝑟3
𝑖

|Λ⟩.

(5.27)

Therefore, we can combine Eq. 5.26 and 5.27 to get the contribution to 𝑒2𝑄𝑞0 from
only the unpaired valence electron

𝑒2𝑄𝑞0(𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑) = −𝑐
(

2𝑄𝑒2

3𝜇0𝑔𝑒𝑔𝑁𝜇𝐵𝜇𝑁𝜖0

)
. (5.28)

Using a value of𝑄 = 280 fm2 and 𝑔𝑁 = -0.27195 gives 𝑒2𝑄𝑞0(𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑) = −0.0461
cm−1. This is ∼ 40% of the 𝑒2𝑄𝑞0 value determined for the ground 𝑋̃2Σ+(0, 0, 0)
state of 173YbOH. The remaining −0.0646 cm−1 is due to the core polarization.

Interpretation of the 𝐴̃2Π1/2(0, 0, 0) state magnetic hyperfine parameters is more
difficult as 𝑏𝐹 and 𝑐 were constrained to zero and the measured value of 𝑎 actually
corresponds to the linear combination 𝑎 − 𝑏 𝑓

2 −
𝑐
3 . However, the value of the parity-

dependent hyperfine parameter, 𝑑 is well determined. The dependence of 𝑑 on the
various averages of the electron’s spatial coordinates is given in Eq. 2.71. The
ratio of the measured 𝑑 values, 𝑑 (171𝑌𝑏𝑂𝐻)/𝑑 (173𝑌𝑏𝑂𝐻) = 3.66 is in agreement
with the ratio of the nuclear g-factors. Additionally, the measured values of 𝑑
are identical between 171,173YbOH and 171,173YbF. This indicates that the electron
configurations for the 𝐴 states of YbOH and YbF are similar and the same rational
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that was applied to the observed 𝑑 value of YbF can be applied to YbOH [141]. This
analysis indicates that the orbital of the sole unpaired electron in the 𝐴̃2Π1/2(0, 0, 0)
state of YbOH is a mixture of Yb+ 6𝑠, Yb ,6𝑠 and Yb 5𝑑 orbitals.

Upon excitation from the 𝑋̃2Σ+(0, 0, 0) state to the 𝐴̃2Π1/2(0, 0, 0) state, the electric
quadrupole parameter decreases from -0.1107 cm−1 to -0.0642 cm−1. The angular
expectation value for a 𝑝 orbital is given by

⟨𝑝𝑚 |3 cos2 𝜃 − 1|𝑝𝑚⟩ =
∫ 2𝜋

0
𝑑𝜙

∫ 𝜋

0
sin 𝜃 𝑑𝜃 𝑌𝑚𝑙=1(𝜃, 𝜙)

∗ (3 cos2 𝜃 − 1)𝑌𝑚𝑙=1(𝜃, 𝜙),
(5.29)

where 𝑚 = 0 for a 𝑝𝜎 orbital and 𝑚 = ±1 for a 𝑝𝜋 orbital. Therefore, the
angular expectation value for the 6𝑝 contribution to the valence 𝜎-orbital of the
𝑋̃2Σ+(0, 0, 0) state is ⟨𝑝0 |3 cos2 𝜃−1|𝑝0⟩ = 4/5 and for the 6𝑝 contribution valence
𝜋-orbital of the 𝐴̃2Π1/2(0, 0, 0) state is ⟨𝑝± |3 cos2 𝜃 − 1|𝑝±⟩ = −2/5. If we assume
that the 𝑋̃2Σ+(0, 0, 0) 𝜎-orbital and the 𝐴̃2Π1/2(0, 0, 0) 𝜋-orbital have the same
6𝑝 contribution, then 𝑒2𝑄𝑞0(𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑) in the 𝐴̃2Π1/2(0, 0, 0) state would be,
∼ 0.0231 cm−1, or −0.5 times that in the 𝑋̃2Σ+(0, 0, 0) state. If we assume that
the core polarization contribution to 𝑒2𝑄𝑞0 is the same in the 𝑋̃2Σ+(0, 0, 0) and
𝐴̃2Π1/2(0, 0, 0) states, then this estimation predicts an 𝑒2𝑄𝑞0 value of −0.0415
cm−1 for the 𝐴̃2Π(0, 0, 0) state. This value is in qualitative agreement with the
measured value considering the assumptions about the orbital compositions made.
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C h a p t e r 6

Frequency Modulation Spectroscopy of YbOH

This chapter describes the implementation of frequency modulation (FM) absorp-
tion spectroscopy in the cryogenic buffer gas cell and the spectroscopy of YbOH
performed using this FM technique. The final implementation provided a factor of
∼ 100 improvement in the signal to noise ratio (SNR) compared to direct absorption.
This allowed the spectra of weak bands in YbOH to be recorded. Specifically, the FM
absorption spectrum of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0), [17.68], and [17.64]
bands of 174YbOH were measured at high resolution. The FM spectrum was used to
identify the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) repumping transitions needed for laser
cooling as well as determine the molecular parameters of the 𝑋̃2Σ+(3, 0, 0) state for
the first time. The [17.68] and [17.64] bands were initially assigned to originate
from the 𝑋̃2Σ+(0, 0, 0) state and terminate in excited vibronic states at 17680 cm−1

and 17640 cm−1 respectively [135]. Dispersed LIF measurments of the [17.68]
and [17.64] bands indicated that these excited states should contain 𝐴̃2Π1/2(0, 1, 0)
character [135], which could be useful for state preparation and readout in both
the eEDM and NMQM experiments. However, the measurements described here,
indicate that the [17.68] and [17.64] bands do not originate from the 𝑋̃2Σ+(0, 0, 0)
ground state.

6.1 Frequency modulation absorption spectroscopy: Theory
Frequency modulation absorption spectroscopy (FM spectroscopy) allows the sen-
sitive measurement of the absorption (or dispersion) signals of very weak spectral
features [148–150]. This is accomplished by pushing the absorption and dispersion
signals into the radio frequency (rf) regime. Dealing with rf signals reduces the 1/ 𝑓
noise in the system while additional noise rejection is provided via phase-sensitive
detection of the rf signals. Working in the rf regime is especially beneficial in our
CBGB source as many of the noise sources are in the Hz-kHz range (the pulse
tube operates at 4 Hz and the laser locks at kHz frequencies) and FM spectroscopy
enables significant suppression of these noise sources.

A brief description of the theory behind FM spectroscopy is given below; more
thorough descriptions can be found in Ref. [148, 151, 152]. The electric field of a
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single-frequency laser is given by [148, 151]

𝐸0(𝑡) = 𝐸0 exp 𝑖𝜔0𝑡 + 𝑐.𝑐., (6.1)

where 𝜔0 is the carrier frequency of the unmodulated laser light. The laser beam
is then passed through a phase modulator that is driven by a sinusoidal rf field
of frequency 𝜔𝑚, the modulation frequency. Following the phase modulator, the
electric field of the laser is given by

𝐸𝑃𝑀 = 𝐸0 exp [𝑖(𝜔0𝑡 + 𝑀 sin𝜔𝑚𝑡)] + 𝑐.𝑐.

= 𝐸0 exp(𝑖𝜔0𝑡)
∞∑︁

𝑛=−∞
𝐽𝑛 (𝑀) exp(𝑖(𝜔0 + 𝑛𝜔𝑚)𝑡) + 𝑐.𝑐.,

(6.2)

where 𝐽𝑛 (𝑀) is the order 𝑛 Bessel function of argument 𝑀 . 𝑀 is the modulation
depth which is dependent on the amplitude of the rf field driving the phase modulator.
The frequency spectrum of the phase modulated laser will contain a component at
the carrier frequency, 𝜔0, and sideband components located at integer multiples of
±𝜔𝑚 from the carrier.

Now consider a sample with a frequency-dependent absorption coefficient, 𝛼(𝜔),
and frequency-dependent index of refraction, 𝜂(𝜔). The amplitude attenuation
(absorption1) is given by 𝛿(𝜔) = 𝛼(𝜔)𝑙/2 and the phase shift is given by 𝜙(𝜔) =
𝜂(𝜔)𝑙𝜔/𝑐 (dispersion)2. The frequency dependence of 𝛿(𝜔) and 𝜙(𝜔) are the
absorption and dispersion lineshapes, respectively. Then the transmission function
of the sample is [151]

𝑇 (𝜔) = exp [−𝛿(𝜔) − 𝑖𝜙(𝜔)] . (6.3)

If the frequency modulated laser is passed through the sample the electric field of
the resulting, transmitted laser beam is

𝐸𝑇 = 𝐸0 exp(𝑖𝜔0𝑡)
∞∑︁

𝑛=−∞
𝑇 (𝜔0 + 𝑛𝜔𝑚)𝐽𝑛 (𝑀) exp(𝑖(𝜔0 + 𝑛𝜔𝑚𝑡)) + 𝑐.𝑐. (6.4)

If the transmitted laser is detected with a fast photodiode, the signal will be pro-
portional to the intensity of the laser, 𝐼𝑇 (𝜔) =

��𝐸̄𝑇 ��2. The signal will then contain
frequency components at dc and at integer multiples of 𝜔𝑚, due to the beating of
any pair of the laser frequency components separated by integer multiples of 𝜔𝑚.

1If this expression is compared to Eq. 3.8 in Ch. 3, we can see that 2𝛿(𝜔) = 𝜎(𝜔)𝑛(𝑡)𝑙 and
therefore, 𝛼(𝜔) = 𝜎(𝜔)𝑛(𝑡).

2𝑐 is the speed of light and 𝑙 is path length.
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If phase sensitive detection is used, the terms oscillating at a frequency of 𝜔𝑚 can
be isolated. Expanding Eq. 6.4 in the limit of weak absorption and dispersion and
only keeping the terms with a frequency of 𝜔𝑚 gives��𝐸̄𝑇 ��𝜔𝑚

= 𝐸2
0 exp [−2𝛿(𝜔0)]

×
[
2 cos𝜔𝑚𝑡

∞∑︁
𝑛=0

𝐽𝑛 (𝑀)𝐽𝑛+1(𝑀) [𝛿(𝜔0 − (𝑛 + 1)𝜔𝑚) − 𝛿(𝜔0 + (𝑛 + 1)𝜔𝑚)

+𝛿(𝜔0 − 𝑛𝜔𝑚) − 𝛿(𝜔0 + 𝑛𝜔𝑚)]

+2 sin𝜔𝑚𝑡
∞∑︁
𝑛=0

𝐽𝑛 (𝑀)𝐽𝑛+1(𝑀) [𝜙(𝜔0 − (𝑛 + 1)𝜔𝑚) − 𝜙(𝜔0 − 𝑛𝜔𝑚)

+𝜙(𝜔0 + (𝑛 + 1)𝜔𝑚) − 𝜙(𝜔0 + 𝑛𝜔𝑚)]] .
(6.5)

Phase sensitive detection is accomplished by mixing the photodiode signal with a
pickoff of the original rf drive via an rf mixer. The resulting dc signal will depend on
the phase angle, 𝜃, the phase difference between the two paths from the rf oscillator
to the rf mixer. At an arbitrary value of 𝜃, the mixer output will be a sine and cosine
weighted mixture of the absorption and dispersion signals [151]

𝐼𝐹𝑀 (𝜔) = cos 𝜃𝐴𝐹𝑀 (𝜔) + sin 𝜃𝐷𝐹𝑀 (𝜔), (6.6)

where

𝐴𝐹𝑀 (𝜔) =𝐸2
0 exp [−2𝛿(𝜔)]

∞∑︁
𝑛=0

𝐽𝑛 (𝑀)𝐽𝑛+1(𝑀)

× [𝛿(𝜔 − (𝑛 + 1)𝜔𝑚) − 𝛿(𝜔 + (𝑛 + 1)𝜔𝑚)
+𝛿(𝜔 − 𝑛𝜔𝑚) − 𝛿(𝜔 + 𝑛𝜔𝑚)]

(6.7)

is the FM absorption signal and

𝐷𝐹𝑀 (𝜔) =𝐸2
0 exp [−2𝛿(𝜔)]

∞∑︁
𝑛=0

𝐽𝑛 (𝑀)𝐽𝑛+1(𝑀)

× [𝜙(𝜔 − (𝑛 + 1)𝜔𝑚) − 𝜙(𝜔 − 𝑛𝜔𝑚)
+𝜙(𝜔 + (𝑛 + 1)𝜔𝑚) − 𝜙(𝜔 + 𝑛𝜔𝑚)]

(6.8)

is the FM dispersion signal.

FM spectroscopy is often conducted in the low modulation depth limit,𝑀 ≲ 1, where
the frequency spectrum of the laser consists of the carrier and only the two first order
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sidebands. In this limit 𝐽0(𝑀) ≈ 1, 𝐽±1(𝑀) ≈ 𝑀/2, and 𝐽|𝑛|≥2(𝑀) ∼ O(𝑀2) ≈ 0
and Eq. 6.7 and 6.8 reduce to [151]

𝐴𝐹𝑀 (𝜔) [𝑀 ≤ 1] =
𝐸2

0
2

exp [−2𝛿(𝜔)] 𝑀 [𝛿(𝜔 − 𝜔𝑚) − 𝛿(𝜔 + 𝜔𝑚)] (6.9)

and

𝐷𝐹𝑀 (𝜔) [𝑀 ≤ 1] =
𝐸2

0
2

exp [−2𝛿(𝜔)] 𝑀 [𝜙(𝜔 − 𝜔𝑚) + 𝜙(𝜔 + 𝜔𝑚) − 2𝜙(𝜔)] .
(6.10)

Note that in the above equations the amplitude of both 𝐴𝐹𝑀 and 𝐷𝐹𝑀 are pro-
portional to 𝑀 , the modulation depth. Therefore, operating at higher modulation
depths will increase the FM signal size. However, at high enough modulation depths,
higher-order sidebands will no longer be negligible and will need to be accounted
for. Eq. 6.9 and 6.10 provide a good intuitive understanding of how FM absorption
works. The FM absorption signal is the result of the differential absorption between
the two sidebands, while the FM dispersion signal is the difference between the
average phase shift of the sidebands and twice the phase shift of the carrier.

The enhanced sensitivity provided by FM absorption is often used to measure weak
absorption features. In the case of weak absorption, the amplitude attenuation of the
carrier due to absorption of the sample will be negligible. In this limit (absorption
of ≲ 1%), the factor of exp [−2𝛿(𝜔)] ≈ 1 in Eq. 6.7, 6.8, 6.9, and 6.10. If the
absorption is ≳ 1%, then the carrier will be attenuated and this effect will need to
be accounted for in the lineshape.

𝐼𝐹𝑀 given in Eq. 6.6 is refered to as the in phase signal, the demodulated signal
that is in phase with the rf reference at the mixer. Experimentally, the phase angle
𝜃 describing the mixing of the absorption and dispersion components in 𝐼𝐹𝑀 is not
easily determined. Therefore, it is also convenient to measure the in-quadrature
signal as well. This is accomplished with an I and Q demodulator, which is a dual
output mixer, mixing the input signal with the rf reference (I channel) and the input
signal with the rf reference after a 90◦ phase shift is applied (Q channel). The
quadrature FM signal is given by [151]

𝑄𝐹𝑀 (𝑤) = sin 𝜃 𝐴𝐹𝑀 (𝜔) − cos 𝜃 𝐷𝐹𝑀 (𝜔). (6.11)

With a simultaneous measurement of both 𝐼𝐹𝑀 and 𝑄𝐹𝑀 the phase angle, 𝜃 can be
determined. Examples of absorption, dispersion, in-phase and in-quadrature FM
signals are shown in Section 6.2 and 6.3 below. A discussion of the lineshapes
themselves is also given.
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6.2 FM lineshapes and determining optimal modulation frequency
Both the 𝐴𝐹𝑀 (𝜔) and 𝐷𝐹𝑀 (𝜔) lineshapes have a critical dependence on the frac-
tional modulation frequency, the ratio of the modulation frequency (𝜔𝑚) to the
linewidth (the FWHM, Γ) of the absorption lineshape (𝛿(𝜔)). 𝐴𝐹𝑀 (𝜔) lineshapes
at various values of 𝜔𝑚/Γ resulting from a Gaussian absorption lineshape are
shown in Fig. 6.1. The Guassian absorption lineshape is also presented in Fig. 6.1.
𝐷𝐹𝑀 (𝜔) lineshapes at various values of𝜔𝑚/Γ resulting from a Gaussian dispersion
lineshape, as well as the Gaussian dispersion lineshape itself, are shown in Fig. 6.2.
The model used to generate these lineshapes is discussed in Section 6.3 below. For
the lineshapes presented here, and for all other lineshapes presented in this chapter,
the weak absorption limit was applied, e.g., exp(−2𝛿(𝜔)) ≈ 1, and the lineshapes
were modeled to second order, e.g., the effects of both the first- and second-order
sidebands were included.

The 𝐴𝐹𝑀 (𝜔) lineshapes take an intuitive form due to their origin from the differ-
ential absorption between the sidebands. The FM absorption lineshapes are always
comprised of a negative and positive peak separated by twice the modulation fre-
quency. The amplitude of these peaks grows with increasing 𝜔𝑚/Γ until around
𝜔𝑚/Γ ∼ 0.5 where the peak to peak amplitude saturates. For a single isolated line,
as shown in Fig. 6.1, 𝐴𝐹𝑀 (𝜔) = 0 at the resonance frequency of the transition,
𝜔𝑟𝑒𝑠. Therefore, the accuracy a measurement of the transition frequency is deter-
mined by the accuracy at which the zero-crossing between the negative and positive
peaks of the 𝐴𝐹𝑀 (𝜔) signal can be measured. With increasing values of 𝜔𝑚/Γ, the
separation between the negative and positive peaks of 𝐴𝐹𝑀 (𝜔) grows, resulting in a
reduction in the slope of 𝐴𝐹𝑀 (𝜔) at 𝜔𝑟𝑒𝑠 and ultimately a reduction in the accuracy
with which the zero crossing can be measured.

The form of the 𝐷𝐹𝑀 (𝜔) lineshapes is somewhat less intuitive, but their dependence
on 𝜔𝑚/Γ is clear. For low values of 𝜔𝑚/Γ the FM dispersion line shape, 𝐷𝐹𝑀 (𝜔),
resembles a smaller version of the absorption line shape. As was the case with the
𝐴𝐹𝑀 (𝜔), the amplitude of 𝐷𝐹𝑀 (𝜔) increases with increasing 𝜔𝑚/Γ and saturates
at 𝜔𝑚/Γ ∼ 1. As with 𝐴𝐹𝑀 (𝜔), 𝐷𝐹𝑀 (𝜔) = 0 at 𝜔𝑟𝑒𝑠. However, in contrast to
𝐴𝐹𝑀 (𝜔), the slope of the 𝐷𝐹𝑀 (𝜔) lineshape at𝜔𝑟𝑒𝑠 increases with increasing𝜔𝑚/Γ
saturating at a value of 𝜔𝑚/Γ ∼ 1.
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Figure 6.1: FM absorption lineshapes, 𝐴𝐹𝑀 (𝜔), at various values of the fractional
modulation frequency, 𝜔𝑚/Γ, for a Gaussian absorption lineshape, 𝛿(𝜔), with
FWHM of Γ. The 𝐴𝐹𝑀 (𝜔) lineshapes are intentionally offset by integer values
for clarity. The x-axis is the relative normalized frequency, (𝜔 − 𝜔𝑟𝑒𝑠)/Γ, where
𝜔𝑟𝑒𝑠 is the linecenter of the absorption lineshape. The absolute amplitude of the
the 𝐴𝐹𝑀 (𝜔) signals is arbitrary while the relative amplitude between different
lineshapes is accurate.



133

4 2 0 2 4

( )

4 2 0 2 4
Frequency ( res)/

0

1

2

3

4

D
FM

(
) A

m
pl

itu
de

m/ = 0.1

m/ = 0.25

m/ = 0.5

m/ = 1.0

m/ = 2.0

DFM( )

Figure 6.2: FM dispersion lineshapes, 𝐷𝐹𝑀 (𝜔), at various values of the fractional
modulation frequency, 𝜔𝑚/Γ, for a Gaussian dispersion lineshape, 𝜙(𝜔). Γ is the
FWHM of the corresponding absorption lineshape, 𝛿(𝜔). The 𝐷𝐹𝑀 (𝜔) lineshapes
are intentionally offset by integer values for clarity. The x-axis is the relative
normalized frequency, (𝜔 −𝜔𝑟𝑒𝑠)/Γ, where 𝜔𝑟𝑒𝑠 is the linecenter of the absorption
lineshape. The absolute amplitude of the the 𝐷𝐹𝑀 (𝜔) signals is arbitrary while the
relative amplitude between different lineshapes is accurate.
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The optimal modulation frequency at which to operate depends on the goal of the
FM measurement. In our case, we are utilizing FM spectroscopy to measure the
spectrum of weak bands of YbOH. In our measurements, we want to aim to optimize
the signal-to-noise ratio of the FM signal while preserving the ability to accurately
measure transition frequencies. Therefore, we want to maximize both the amplitude
of the FM signal as well as the slope at 𝜔𝑟𝑒𝑠. The peak to peak amplitude of both
𝐴𝐹𝑀 (𝜔) and 𝐷𝐹𝑀 (𝜔) as a function of 𝜔𝑚/Γ is shown in Fig. 6.3. The amplitude
of 𝐴𝐹𝑀 (𝜔) is maximized at 𝜔𝑚/Γ = 0.67 though it is very near maximum for
𝜔𝑚/Γ ≳ 0.5. 𝐷𝐹𝑀 (𝜔) has a maximum peak to peak amplitude at 𝜔𝑚/Γ = 1.18
and a peak to peak amplitude greater than that of 𝐴𝐹𝑀 (𝜔) for 𝜔𝑚/Γ ≳ 0.6. The
maximum FM sensitivity is obtained at the total maximum peak-to-peak amplitude
at 𝜔𝑚/Γ = 1.18. However, since the measured FM signals, 𝐼𝐹𝑀 (𝜔) and 𝑄𝐹𝑀 (𝜔),
are linear combinations of 𝐴𝐹𝑀 (𝜔) and𝐷𝐹𝑀 (𝜔), operating at values of𝜔𝑚/Γ above
∼ 0.5 where the amplitude of 𝐴𝐹𝑀 (𝜔) begins to saturate will only provide nominal
improvements in sensitivity. Utilizing FM spectroscopy for improved sensitivity
sets a minimum value for the modulation frequency of 𝜔𝑚/Γ = 0.5.
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Figure 6.3: Normalized peak-to-peak amplitude of 𝐴𝐹𝑀 (𝜔) and 𝐷𝐹𝑀 (𝜔) as a
function of the fractional modulation frequency, 𝜔𝑚/Γ, for a Gaussian absorption
lineshape, 𝛿(𝜔). Γ is the full width at half maximum (FWHM) of the absorption
lineshape. The peak-to-peak amplitude of both 𝐴𝐹𝑀 (𝜔) and 𝐷𝐹𝑀 (𝜔) were normal-
ized to the larger of the two maximum peak-to-peak amplitudes, that of 𝐷𝐹𝑀 (𝜔).
The horizontal dashed line indicates the modulation frequency at which we operate,
𝜔𝑚/Γ = 0.56.

In addition to improving sensitivity, we also want to measure the transition frequen-
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cies of YbOH lines at high resolution. Therefore, we want to operate in a regime
where the FM signals have a non-zero, and preferably large, slope at the transition
frequency, 𝜔𝑟𝑒𝑠. The slope (derivative) of the 𝐴𝐹𝑀 (𝜔) and 𝐷𝐹𝑀 (𝜔) lineshapes at
𝜔𝑟𝑒𝑠 as a function of 𝜔𝑚/Γ is shown in Fig. 6.4. When examining Fig. 6.4 it is
important to note that the value at which the combined amplitudes are maximized,
𝜔𝑚/Γ = 1.18, the slope of 𝐴𝐹𝑀 (𝜔) is near zero. Additionally, the slope of 𝐴𝐹𝑀 (𝜔)
is also very small when the slope of 𝐷𝐹𝑀 (𝜔) is maximized (𝜔𝑚/Γ = 0.91). Due
to the reduction of the slope of 𝐴𝐹𝑀 (𝜔) for 𝜔𝑚/Γ > 0.39, the combined slopes of
the absorption and dispersion FM signals is optimized near the point where they
cross, at 𝜔𝑚/Γ ≈ 0.45. While the slope of 𝐴𝐹𝑀 (𝜔) decreases for 𝜔𝑚/Γ ≳ 0.45,
the slope remains larger than half the maximum slope for 𝜔𝑚/Γ up to ≈ 0.79. Ad-
ditionally, the slope of 𝐷𝐹𝑀 (𝜔) is continually increasing, and larger than the max
slope of 𝐴𝐹𝑀 (𝜔), over this range. Therefore, operating at a modulation frequency
in the range 0.45 ≲ 𝜔𝑚/Γ ≲ 0.79 will allow the FM signals to have a nonzero and
relatively large slope at 𝜔𝑟𝑒𝑠.
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Figure 6.4: Normalized slope of 𝐴𝐹𝑀 (𝜔) and 𝐷𝐹𝑀 (𝜔) at the resonance frequency
(or linecenter of 𝛿(𝜔)), 𝜔𝑟𝑒𝑠, as a function of the fractional modulation frequency,
𝜔𝑚/Γ, for a Gaussian absorption lineshape, 𝛿(𝜔). Γ is the full width at half
maximum (FWHM) of the absorption lineshape. The slopes at𝜔𝑟𝑒𝑠 of both 𝐴𝐹𝑀 (𝜔)
and 𝐷𝐹𝑀 (𝜔) were normalized to the larger of the two maximum slopes, that of
𝐷𝐹𝑀 (𝜔). The horizontal dashed line indicates the modulation frequency at which
we operate, 𝜔𝑚/Γ = 0.56.

By considering the modulation frequencies which maximize signal size (𝜔𝑚/Γ >

0.5) as well as provide nonzero and relatively large slope at 𝜔𝑟𝑒𝑠 (0.45 ≲ 𝜔𝑚/Γ ≲



136

0.79) I determined that a modulation frequency in the range 0.5 ≲ 𝜔𝑚/Γ ≲ 0.79
is ideal for our spectroscopic purposes. Specifically, we operate at a modulation
frequency of 𝜔𝑚/Γ ≈ 0.56, indicated by the vertical dashed line in Fig. 6.3 and
6.4. The specific value of 𝜔𝑚/Γ was determined partially due to the fact that we
already had a 2𝜋× 50.3 MHz EOM in the laboratory. A 2𝜋× 50.3 MHz modulation
frequency falls in the optimal range for FM spectroscopy inside our buffer gas cell
(the measured in cell linewidth is Γ ∼ 2𝜋 × 90 MHz).

6.3 Modeling FM lineshapes
For isolated spectral lines, a measurement of the zero crossing of the FM lineshape,
either 𝐼𝐹𝑀 (𝜔), or 𝑄𝐹𝑀 (𝜔), or both, provides a very accurate measurement of the
transition frequency. However, for blended lines and in congested regions of the
spectrum, the FM lineshapes become distorted, and zero crossing measurements
may no longer provide an accurate measurement of the transition frequencies. Ad-
ditionally, when there are multiple transitions within a single spectral linewidth, the
FM signals will not have a zero crossing for each transition present and a simple
zero crossing measurement will not account for all the transitions. Therefore, fit-
ting the measured FM lineshapes to modeled FM lineshapes is the best method for
measuring the transition frequencies of blended features and in congested regions.
Here we describe our FM lineshape model and our fitting method.

Experimentally, we are measuring the FM spectrum in the buffer gas cell where
Doppler broadening dominates. Therefore, our absorption lineshape is best modeled
as a Gaussian

𝛿(𝜔) = 𝐴 exp
(
− (𝜔 − 𝜔𝑟𝑒𝑠)

2

2(Γ/2.355)2

)
, (6.12)

where 𝐴 is the amplitude of the lineshape, 𝜔𝑟𝑒𝑠 is the linecenter, and Γ is the full
width at half maximum (FWHM). The dispersion lineshape can be calculated from
the absorption lineshape using the Kramers-Kronig relationship [153]

𝜙(𝜔) = 1
𝜋
𝑃

∫ ∞

−∞

𝛿(𝜔′)
𝜔′ − 𝜔𝑑𝜔

′, (6.13)

where 𝑃 is the Cauchy principal value3. It turns out that the Kramers-Kronig relation
is a Hilbert transform of the absorption line shape [155]. The Hilbert transform of

3This integral, to my knowledge, does not have a closed form solution for a Gaussian line-
shape. However, the Kramers-Kronig relationship does have a closed form solution for a Lorentzian
lineshape [154].
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a function 𝑓 (𝑥) is given by

𝐻 ( 𝑓 ) (𝑦) = 1
𝜋
𝑃

∫ ∞

−∞

𝑓 (𝑥)
𝑦 − 𝑥 𝑑𝑥. (6.14)

Therefore, given the absorption lineshape, 𝛿(𝜔′) the dispersion line shape is given
by the negative Hilbert transform of the absorption lineshape

𝜙(𝜔) = −𝐻 (𝛿) (𝜔). (6.15)

If we make the substitution 𝑢 = (𝜔′ − 𝜔𝑟𝑒𝑠)/(
√

2𝜎) where 𝜎 = Γ/2.355 then
𝑑𝑢 = 1/(

√
2𝜎)𝑑𝜔′, 𝛿(𝜔′) = 𝑓 (𝑢) = 𝐴 exp(−𝑢2) and

𝜙(𝜔) = 1
𝜋
𝑃

∫ ∞

−∞

𝑓 (𝑢)
𝑢 − 𝜔−𝜔𝑟𝑒𝑠√

2𝜎

𝑑𝑢

=
1
𝜋
𝑃

∫ ∞

−∞

−𝐴 × exp(−𝑢2)
𝑡 − 𝑢 𝑑𝑢

= −𝐴 𝐻 [exp(−𝑢2)] (𝑡),

(6.16)

where 𝑡 = (𝜔 − 𝜔𝑟𝑒𝑠/(
√

2𝜎). The Hilbert transform of 𝑓 (𝑢) = exp(−𝑢2) is known
and is related to the Dawson function [155, 156]

𝐻 [exp(−𝑢2)] (𝑡) = 2
√
𝜋
𝐹 (𝑡), (6.17)

where 𝐹 (𝑡) is the Dawson function. Therefore, the dispersion lineshape is given by

𝜙(𝜔) = −𝐴 2
√
𝜋
𝐹

(
(𝜔 − 𝜔𝑟𝑒𝑠)√
2(Γ/2.355)

)
. (6.18)

The dispersion lineshape given in Eq. 6.18 is convenient for numerical modeling
since the Dawson function is a built in function in several programming languages4.
Simulated Gaussian absorption and dispersion lineshapes (Eq. 6.12 and 6.18) are
shown in the top left and right panels of Fig. 6.5, respectively.

Ultimately, we want to model a true absorption spectrum which will contain an
arbitrary superposition of Gaussian lineshapes

𝛿𝑡𝑜𝑡 (𝜔) =
∑︁
𝑖

𝛿𝑖 (𝜔) =
∑︁
𝑖

𝐴𝑖 exp
(
− (𝜔 − 𝜔𝑖)

2

2(Γ𝑖/2.355)

)
, (6.19)

4The Dawson function is a built in special function in python, which is the language used here
to model the FM lineshapes.
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where 𝑖 denotes the absorption lineshape due to the ith transition, and 𝜔𝑖 is the
resonance frequency of the ith transition. Therefore, the total dispersion lineshape
due to the combination of multiple transitions is given by

𝜙𝑡𝑜𝑡 (𝜔) =
1
𝜋
𝑃

∫ ∞

−∞

𝛿𝑡𝑜𝑡 (𝜔′)
𝜔′ − 𝜔 𝑑𝜔

=
∑︁
𝑖

𝐴𝑖
2
√
𝜋
𝐹

(
(𝜔 − 𝜔𝑖)√

2(Γ𝑖/2.355)

)
.

(6.20)

The simulated total Gaussian absorption and dispersion lineshapes for five closely
spaced and blended transitions are shown in the top left and right panels of Fig. 6.6,
respectively.

With Eq. 6.19 and 6.20, any arbitrary absorption and dispersion line shape can be
modeled. Any arbitrary FM lineshape can be modeled by using Eq. 6.19 and 6.20
in Eq. 6.7, 6.8, 6.6, and 6.11. However, Eq. 6.7 and 6.8 account for the attenuation
of the carrier due to strong absorption as well as the effects of the sidebands of all
orders. While modeling the FM lineshapes using Eq. 6.7 and 6.8 would provide the
most accurate models, including the aforementioned effects is excessive and could
complicate the fitting by providing too large of an optimization space.

We are specifically utilizing FM spectroscopy to measure weak absorption lines
so operating in the weak absorption limit, discussed in Section 6.1, is justified.
Therefore, in our FM linshape model we assume exp[−2𝛿(𝜔)] ≈ 1. Additionally,
Eq. 6.9 and 6.10 indicate that at lower modulation depth 𝐴𝐹𝑀 (𝜔)/𝐷𝐹𝑀 (𝜔) ∝ 𝑀
and therefore, operating at higher modulation depths will result in larger FM signals.
Experimentally, we observe this trend with larger signal sizes for larger modulation
depths. In order to maximize our FM signal sizes we operate at a modulation
depth of 𝑀 = 0.84. The modulation depth is fixed to this value for all modeled
FM lineshapes shown in this chapter. At this modulation depth we find that the
amplitude of the the first-order sidebands is ≈ 20% of the carrier amplitude and
the amplitude of second-order sidebands are ≈ 1% of the carrier amplitude. In
order to include the effects of the second order sidebands we model the 𝐴𝐹𝑀 (𝜔) and
𝐷𝐹𝑀 (𝜔) lineshapes to second order (the n=0,1 terms in Eq. 6.7 and 6.8). Therefore,
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in the small absorption limit the FM absorption lineshape is given by [153]

𝐴2𝑛𝑑
𝐹𝑀 (𝜔) = 𝐽0(𝑀)𝐽1(𝑀) [𝛿(𝜔 − 𝜔𝑚) − 𝛿(𝜔 + 𝜔𝑚)]

+ 𝐽1(𝑀)𝐽2(𝑀) [𝛿(𝜔 − 2𝜔𝑚) − 𝛿(𝜔 + 2𝜔𝑚) + 𝛿(𝜔 − 𝜔𝑚) − 𝛿(𝜔 + 𝜔𝑚)] ,
(6.21)

and the FM dispersion lineshape is given by

𝐷2𝑛𝑑
𝐹𝑀 (𝜔) = 𝐽0(𝑀)𝐽1(𝑀) [𝜙(𝜔 − 𝜔𝑚) + 𝜙(𝜔 + 𝜔𝑚) − 2𝜙(𝜔)]

+ 𝐽1(𝑀)𝐽2(𝑀) [𝜙(𝜔 − 2𝜔𝑚) + 𝜙(𝜔 + 2𝜔𝑚) − 𝜙(𝜔 − 𝜔𝑚) − 𝜙(𝜔 + 𝜔𝑚)] .
(6.22)

Given a set of transitions (each with transition frequency𝜔𝑖, width Γ𝑖, and amplitude
𝐴𝑖) and a phase angle, 𝜃, the 𝐼𝐹𝑀 (𝜔) and 𝑄𝐹𝑀 (𝜔) lineshapes are calculated using
Eq. 6.6 and 6.11 respectively, where 𝐴𝐹𝑀 (𝜔) is given by Eq. 6.21, 𝐷𝐹𝑀 (𝜔) is
given by Eq. 6.22, 𝛿(𝜔) is given by Eq. 6.19, and 𝜙(𝜔) is given by Eq. 6.20.
The simulated I and Q FM lineshapes at various values of 𝜃 between 𝜃 = 0 and
𝜃 = 𝜋 for a single transition with a Gaussian absorption lineshape are shown in
Fig. 6.5. A modulation frequency of 𝜔𝑚/Γ = 0.56, the same modulation frequency
used in our FM setup, was used when modeling the lineshapes in Fig. 6.5. The
simulated I and Q FM lineshapes at various values of 𝜃 between 𝜃 = 0 and 𝜃 = 𝜋

for five closely spaced transitions are shown in Fig. 6.6. Here, the FWHM of all
transitions was set to 90 MHz and a modulation frequency of 50.3 MHz was used
(𝜔𝑚/Γ = 0.56). In Fig. 6.6 several of the transitions are blended to illustrate the
resulting FM lineshapes when blended lines are present. In all cases, both isolated
transitions in Fig. 6.5 and blended transitions in Fig. 6.6, at a phase angle of 𝜃 = 0
𝐼𝐹𝑀 (𝜔) (𝜃 = 0) = 𝐴𝐹𝑀 (𝜔) and 𝑄𝐹𝑀 (𝜔) (𝜃 = 0) = −𝐷𝐹𝑀 (𝜔). As the phase angle
increases the I and Q signals become mixtures of 𝐴𝐹𝑀 (𝜔) and 𝐷𝐹𝑀 (𝜔) up to 𝜃 =

𝜋/2 where 𝐼𝐹𝑀 (𝜔) (𝜃 = 𝜋/2) = 𝐷𝐹𝑀 (𝜔) and 𝑄𝐹𝑀 (𝜔) (𝜃 = 𝜋/2) = 𝐴𝐹𝑀 (𝜔). For
phase angles between 𝜋/2 and 𝜋 the I and Q signals are again a mixture of 𝐴𝐹𝑀 (𝜔)
and 𝐷𝐹𝑀 (𝜔). At 𝜃 = 𝜋 𝐼𝐹𝑀 (𝜔) (𝜃 = 𝜋) = −𝐼𝐹𝑀 (𝜔) (𝜃 = 0) = −𝐴𝐹𝑀 (𝜔) and
𝑄𝐹𝑀 (𝜔) (𝜃 = 𝜋) = −𝑄𝐹𝑀 (𝜔) (𝜃 = 0) = 𝐷𝐹𝑀 (𝜔). For phase angles of 𝜋 < 𝜃 < 2𝜋
𝐼𝐹𝑀 (𝜔) (𝜃) = −𝐼𝐹𝑀 (𝜔) (𝜃′ = 𝜃 − 𝜋) and 𝑄𝐹𝑀 (𝜔) (𝜃) = −𝑄𝐹𝑀 (𝜔) (𝜃′ = 𝜃 − 𝜋). In
all cases 𝐼𝐹𝑀 (𝜔) (𝜃 + 2𝜋) = 𝐼𝐹𝑀 (𝜔) (𝜃) and 𝑄𝐹𝑀 (𝜔) (𝜃 + 2𝜋) = 𝑄𝐹𝑀 (𝜔) (𝜃).

Ultimately, we want to perform a simultaneous fit of our modeled I and Q FM
linshapes to the measured I and Q FM data. This is accomplished with a non-linear
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least squares optimization5 which takes the FM data and initial guesses for the phase
angle and the parameters of each transition present (the transition frequency, width,
and amplitude of each transition) as inputs. The optimization works to minimize
the set of residuals provided to it. To accomplish the simultaneous fit the following
residual function was used

𝑅(𝜔) =
√︃
[𝐼𝑐𝑎𝑙𝑐 (𝜔) − 𝐼𝑑𝑎𝑡𝑎 (𝜔)]2 + [𝑄𝑐𝑎𝑙𝑐 (𝜔) −𝑄𝑑𝑎𝑡𝑎 (𝜔)]2, (6.23)

where 𝐼𝑐𝑎𝑙𝑐 (𝜔) (𝑄𝑐𝑎𝑙𝑐 (𝜔)) is the calculated value of 𝐼𝐹𝑀 (𝑄𝐹𝑀) at the frequency 𝜔
and 𝐼𝑑𝑎𝑡𝑎 (𝜔) (𝑄𝑑𝑎𝑡𝑎 (𝜔)) is the measured value of 𝐼𝐹𝑀 (𝑄𝐹𝑀) at the frequency 𝜔.
The sum of the squares of the individual I and Q residuals as opposed to just the sum
of the I and Q residuals was used to prevent the residual from taking on inaccurately
small values due to a cancellation resulting from the I and Q residuals being opposite
in sign. In the fit, the phase angle 𝜃 and the lineshape parameters 𝜔𝑖, Γ𝑖, and 𝐴𝑖

are floated. Any arbitrary number of transitions can be fit by the algorithm. An
example of a fit of the model to FM data is shown later in this chapter in Fig. 6.11.
For isolated lines, we find that the linecenters extracted from the fit exactly match
our zero crossing measurements and have equivalent or smaller errors.

5The lmfit Python package [157] is used for the non-linear least squares fitting.
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Figure 6.5: Simulated in-phase, 𝐼𝐹𝑀 (𝜔), and in-quadrature, 𝑄𝐹𝑀 (𝜔), FM signals
for an isolated spectral feature with a Gaussian absorption, 𝛿(𝜔), and dispersion,
𝜙(𝜔), lineshape. The in-phase and in-quadrature signals are shown for various phase
angles, 𝜃, ranging from 𝜃 = 0 to 𝜃 = 𝜋. For phase angles > 𝜋 𝐼𝐹𝑀 (𝜔) (𝜃 = 𝜋 + 𝜙) =
−𝐼𝐹𝑀 (𝜔) (𝜃 = 𝜙) and 𝑄𝐹𝑀 (𝜔) (𝜃 = 𝜋 + 𝜙) = −𝑄𝐹𝑀 (𝜔) (𝜃 = 𝜙) for 0 ≤ 𝜙 ≤ 𝜋.
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Figure 6.6: Simulated in-phase, 𝐼𝐹𝑀 (𝜔), and in-quadrature, 𝑄𝐹𝑀 (𝜔), FM signals
for five closely spaced and blended spectral features. All five spectral features were
modeled with a Gaussian absorption, 𝛿(𝜔), and dispersion, 𝜙(𝜔), lineshape. The
in-phase and in-quadrature signals are shown for various phase angles, 𝜃, ranging
from 𝜃 = 0 to 𝜃 = 𝜋. For phase angles > 𝜋 𝐼𝐹𝑀 (𝜔) (𝜃 = 𝜋 + 𝜙) = −𝐼𝐹𝑀 (𝜔) (𝜃 = 𝜙)
and 𝑄𝐹𝑀 (𝜔) (𝜃 = 𝜋 + 𝜙) = −𝑄𝐹𝑀 (𝜔) (𝜃 = 𝜙) for 0 ≤ 𝜙 ≤ 𝜋. A modulation
frequency of 50.3 MHz and a FWHM for all transitions of 90 MHz were used in the
simulations. The absolute value of the frequency of the x-axis is arbitrary.
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6.4 Experimental implementation of FM absorption in buffer gas cell
A diagram of the experimental FM absorption spectroscopy setup is shown in Fig.
6.7. In our case we are performing FM spectroscopy inside a cryogenic buffer gas
cell. As previously mentioned, the measured spectral linewidths inside the cell are
≈ 90 MHz and dominated by Doppler broadening. The tunable laser laser light
used for the FM spectroscopy is derived via the sum-frequency generation of a CW
Ti:Sapph and 1550 nm fiber laser6. This laser system can tune over much of the
visable range and has a linewidth of < 50 kHz.

Sidebands are applied to the laser with a resonant electro-optic phase modulator
(EOM) (Thorlabs EO-PM-R-50.3-C4). The EOM is driven by a 69.8 mW (18.44
dBm) 50.3 MHz sinusoidal rf drive. This rf power corresponds to a modulation depth
of 𝑀 = 0.84. The EOM was pre-calibrated to determine the relationship between
applied rf power and modulation depth. This was accomplished by measuring the
amplitude of the carrier, first-, and second-order sidebands as a function of the
applied rf power with a scanning Fabry-Perot cavity. The normalized amplitudes
(normalized to the amplitude of the carrier when with no rf power applied) vs rf
power of the carrier, first- and second-order sidebands were fit to the square of the
𝑛 = 0, 1, 2 Bessel functions, 𝐽2

𝑛 (𝑀 = 𝑎
√
𝑃), respectively. The fits determined the

proportionality coefficient, 𝑎, which allows the conversion of the applied rf power
𝑃 to the modulation depth. Experimentally, this conversion was found to be very
accurate and reproducible.

The 50.3 rf drive is supplied from a Novatech (409B) signal generator. The amplitude
of the Novatech output is set such that there is 69.8 mW of rf power at the EOM.
The output of the Novatech is immediately split with a 50/50 splitter. One output
of the 50/50 splitter feeds a 24 dB amplifier (Mini-Circuits ZHL-3A+) which in
turn drives the EOM. The other output of the 50/50 splitter passes through a 25 dB
low-noise amplifier (Mini-Circuits ZX60-P103LN+), a 1 dB attenuator, a voltage
controlled phase shifter (Mini-Circuits JSPHS-51+), and into the local oscillator
(LO) port of the I and Q demodulator (Pulsar Microwave Corp. IDO-03-412). The
25 dB amplifier and 1 dB attenuator set the rf power going into the phase shifter to
7.6 dBm. It was experimentally found that this phase shifter input power optimized
the FM signal SNR. Phase shifter input powers higher than ∼7 dBm provided no
significant improvement in the SNR. The phase shifter allows the phase of the rf

6Sirah Mattise Ti:Sapph and and NKT ADJUSTIK+BOOSTIK (1550 nm fiber laser) combined
in a Sirah MixTrain.



144

Tunable 
Laser

EOM

Buffer Gas Cell

Photodiode

25kHz-125 MHz

40 dB 
Amp

41-58 MHz 
Bandpass

24 dB 
Amp

RF Oscillator 

50/50 
Splitter

25 dB 
Amp

1 dB 
Attenuator

Phase 
Shifter

I & Q 
Demodulator

LO

RF

Q

I

1.9 MHz 
Low Pass

1.9 MHz 
Low 
Pass

SRS SR560
3 kHz Low Pass
20x Amp

SRS SR560
3 kHz Low Pass
20x Amp

𝐼𝐹𝑀(𝜔) 𝑄𝐹𝑀(𝜔)

50.3 MHz 

Figure 6.7: Diagram of experimental FM absorption spectroscopy setup. The
green lines indicate the laser path and the black lines indicate the rf (or DC after
demodulation) signal path. Detailed descriptions of the components and their
functions are given in the text.

reference to be tuned, which allows the phase angle, 𝜃, of the 𝐼𝐹𝑀 (𝜔) and 𝑄𝐹𝑀 (𝜔)
signals to be adjusted. We generally operate at a phase shifter voltage where the
𝐼𝐹𝑀 (𝜔) and 𝑄𝐹𝑀 (𝜔) signals are approximately equal in magnitude.

After sidebands are applied to the laser with the EOM, the laser beam passes through
the buffer gas cell and is detected with an AC-coupled fast photodiode (New Focus
1801 photoreceiver) with a 25 kHz - 125 MHz bandwidth. The resulting AC signal
is then amplified with a 40 dB low-noise amplifier (Mini-Circuits ZKL-1R5+) and
passed through a 41-58 MHz band pass filter before being input into the RF port of
the I and Q demodulator. Multiple combinations of a second amplifier and additional
bandpass, low-pass, and high-pass filters were tried, none resulted in improved SNR
compared to the single amplifier and bandpass filter.

The I and Q demodulator is essentially two rf mixers and a 90◦ phase shifter. The
output of the I port is the in-phase demodulated DC signal resulting from the mixing
of the photodiode signal (RF port) and the rf reference (LO port). The output of
the Q port is the in-quadrature demodualted DC signal resulting from the mixing
of the photodiode signal (RF port) and the rf reference (LO port) with a 90◦ phase
shift. The outputs of both the I and Q ports are passed through 1.9 MHz low-pass
filters and input into SRS SR560 low noise pre-amplifiers. The SR560s are set to
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have a 12dB/oct 3 kHz low-pass filter and 20x amplification. Due to the fact that the
molecular pulse is ∼ 1 ms long, setting the low-pass filter cutoff any lower begins
to filter out the DC FM signal. The outputs of both of the SR560s are the measured
𝐼𝐹𝑀 (𝜔) and 𝑄𝐹𝑀 (𝜔) signals.

It is important to note that before we used the rf circuit described above, we originally
tried to accomplish FM detection using an SRS SR 844 rf lock-in amplifier. This rf
lock-in had all the same features as the discrete rf circuit in one package and with
the ability to tune the filter cutoffs and amplification. However, we found that the
lock-in introduced a large amount of ∼60 Hz and ∼120 Hz line noise which could
not be easily filtered out. Therefore, we abandoned the rf lock-in and moved to the
discrete rf circuit as it provided much better SNR.
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Figure 6.8: DC absorption and in-phase FM absorption of two lines of the [17.68]
band of YbOH. For this scan four ablation shots were taken at each frequency step
and averaged. A frequency step of 9 MHz was used. Both the integrated DC optical
depth and the integrated 𝐼𝐹𝑀 signal were normalized by the integrated OD from a
normalization probe fixed to the 𝑅𝑅11(0) line of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0)
band of YbOH [116].

The implementation of FM absorption spectroscopy in the cryogenic buffer gas cell
provided a factor of ∼10 improvement in the SNR. This improvement in SNR is
illustrated in Fig. 6.8 and 6.9 where comparisons of DC and FM absorption signals
of spectral features of the weak [17.68] band of YbOH7 are shown. In Fig. 6.8
and 6.9, both the DC (integrated OD) and FM (integrated 𝐼𝐹𝑀 signal) signals are

7The spectrum of this band is discussed later in Section 6.6.
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normalized to the integrated OD from a normalization probe fixed to the 𝑅𝑅11(0)
line of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of YbOH [116]. Fig. 6.8 shows a
slow scan over two isolated lines from in the [17.68] band. Here the laser frequency
was stepped in 9 MHz intervals and the average of four ablation shots at each
frequency step was taken. The resulting DC OD and in-phase FM signal, 𝐼𝐹𝑀 , were
integrated over the time of the molecular pulse to obtain the spectrum in Fig. 6.8.
The DC absorption spectrum in Fig. 6.8 has a SNR of 1.6 while the in-phase FM
spectrum has a SNR of 17.2, a factor of 10.7 improvement. Here SNR is defined as
the ratio of the DC or FM signal amplitude8 to the max positive amplitude of the
noise.

Another portion of the [17.68] spectrum recorded at a faster scanning speed, a speed
more typically used when taking broadband high-resolution spectra, is shown in Fig.
6.9. For this faster scan, the laser was continuously scanned at ∼10 MHz/sec, data
collected at a repetition rate of 8.7142 Hz and every eight neighboring data points
averaged to provide DC and FM signals every ∼10 MHz. In this case, essentially no
spectral features are visible in the DC absorption spectrum. However, the drastically
improved SNR from the FM absorption allows clear identification of many spectral
features including very weak features such as the one observed at ∼17681.77 cm−1.
It is clear that the implementation of FM absorption spectroscopy in the buffer gas
cell allows the measurement of weak transitions which are otherwise impossible to
measure via more traditional means, such as DC absorption.

8In the case of the FM signals this is the maximum of the positive peak of the FM signal.
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Figure 6.9: DC absorption and in-phase FM absorption of a portion of the [17.68]
band of YbOH. Here the laser was continuously scanned, ablation shots were taken
every ∼1.3 MHz, and sets of the 8 nearest ablation shots were averaged resulting in
data points every ∼10 MHz. Both the integrated DC optical depth and the integrated
𝐼𝐹𝑀 signal were normalized by the integrated OD from a normalization probe fixed
to the 𝑅𝑅11(0) line of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of YbOH [116].

6.5 FM spectroscopy of 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band of 174YbOH
The one-dimensional laser cooling of 174YbOH has been accomplished [54]; how-
ever, when this laser cooling was performed, only the 𝑋̃2Σ+(1, 0, 0), 𝑋̃2Σ+(2, 0, 0),
and 𝑋̃2Σ+(0, 20, 0) vibrational losses were addressed and only about ∼500 photons
were scattered. In order to laser cool and trap YbOH, ∼10,000 photons need to
be scattered and, therefore, higher vibrational losses must be addressed. FM spec-
troscopy in a cryogenic buffer gas cell is an optimal method with which to identify
repumping transitions for two major reasons. First, FM spectroscopy provides the
needed sensitivity to be able to measure weak repumping transitions. Second, as
discussed in Section 5.1, the laser-enhanced chemical reactions which occur in our
cell increase the population of excited vibrational states and provide the needed ex-
cited state vibrational populations from which repumping transitions can be driven.
Here, we measure the spectrum of the 𝐴̃2Π1/2(1, 0, 0)− 𝑋̃2Σ+(3, 0, 0) band of YbOH
using in cell FM spectroscopy.

Experiment
The same experimental FM spectroscopy setup described in Section 6.4 was used
to measure the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) transition. The following buffer



148

gas cell configuration was used (see Section 3.2): gas inlet, 0.125-inch blank,
diffuser plate, 0.5-inch blank, 1.0-inch window piece for ablation (with snorkel),
0.5-inch blank, 0.5-inch window piece for spectroscopy (spectroscopy window),
and 0.25-inch aperture plate. Molecule production is accomplished by ablating a
stoichiometric Yb + Yb(OH)3 + PEG target with a pulsed Nd:YAG laser (532 nm, 42
mJ/pulse). Laser-enhanced chemical reactions were driven with the enhancement
laser (∼3 mm in diameter, ∼ 300 mW) which is fixed to the 3𝑃1 ← 1𝑆0

174Yb
transition at 17992.0003 cm−1 [137]. The enhancement laser was introduced into
the cell through the spectroscopy window and was applied for every ablation shot.
In the absence of the enhancement light, no FM signals were present and, therefore,
the FM signals observed with the enhancement light present were due to only the
174YbOH isotopologue.

FM spectroscopy was performed with a 3.5 mW CW laser (∼1 mm in diameter)
which was derived from, as described previously, the sum-frequency generation of
a CW Ti:Sapph and 1550 nm fiber laser. The FM laser is introduced into the cell
through the spectroscopy window. To record the spectrum, the FM spectroscopy
laser was continuously scanned and the signal from every five consecutive shots
averaged, resulting in ∼10 MHz spacing between data points. The frequency of
the FM laser is continuously recorded with a HighFinesse wavemeter (WS7-30
VIS/Standard model) which is used to track the relative frequency spacing between
data points. The sub-Doppler saturated absorption spectrum of I2 is co-recorded with
the FM spectrum and used for absolute frequency calibration. Absolute frequency
calibration with the sub-Doppler I2 spectrum results in an absolute frequency error
of ≲ 6 MHz.

In addition to the FM spectroscopy laser, a normalization laser is also introduced
into the cell through the spectroscopy window. The normalization laser is fixed
to the 𝑅𝑅11(0) line of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of YbOH [116]
and is used to track the shot-to-shot fluctuations in molecular production. The
measured in-phase and in-quadrature FM signals are integrated over the duration of
the molecular pulse and normalized by the integrated DC OD from the normalization
probe to produce the in-phase, 𝐼𝐹𝑀 (𝜔), and in-quadrature, 𝑄𝐹𝑀 (𝜔), spectrum.

Observation and assignment
The observed in-phase, 𝐼𝐹𝑀 (𝜔), and in-quadrature, 𝑄𝐹𝑀 (𝜔), FM spectrum of a
portion of the bandhead region of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) spectrum of
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174YbOH is presented in Fig. 6.10. Also presented are the predicted in-phase
and in-quadrature FM spectra. The predictions were made using the optimized
parameters determined in this study (Table 6.1), a phase angle of 5.90 radians, a
linewidth of 108 MHz9, a temperature of 5 K, and the FM lineshape model described
in Section 6.3. The utilization of the laser-enhanced chemical reactions allowed the
isolation of only the 174YbOH spectrum. The chemical enhancement technique
used to isolate 174YbOH spectrum is similar to the approach used to isolate the
odd isotopologue spectra in Section 5.3 and [129]. No evidence of H (I = 1/2))
hyperfine splittings was observed in the spectrum and, therefore, the typical 2Π

Hund’s case (a) - 2Σ+ Hund’s case (b) branch designation Δ𝑁Δ𝐽𝐹 ′
𝑖
𝐹 ′′
𝑖

is used to label
the measured transitions. For the 𝑋̃2Σ+(3, 0, 0) state 𝐹′′

𝑖
= 1 for 𝐽′′ = 𝑁′′ + 1/2 and

𝐹′′
𝑖
= 2 for 𝐽′′ = 𝑁′′ − 1/2. For the 𝐴̃2Π1/2(1, 0, 0) state 𝐹′

𝑖
= 1.

The 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band of 174YbOH contains a blue degraded
bandhead comprised of the low-𝐽 𝑃𝑃11, 𝑄𝑄11, 𝑃𝑄12, and 𝑄𝑅12 branches. As with
the previously measured 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band [116], the large Λ-
doubling parameter, 𝑝+2𝑞′ > 2𝐵′, in the 𝐴̃2Π1/2(1, 0, 0) state results in an abnormal
spectral pattern in the bandhead region where 𝑄𝑄11 and 𝑄𝑅12 branch features fall
to the red of the 𝑃𝑃11 and 𝑃𝑄12 branch features. To the red of the bandhead lies the
relatively unblended 𝑂𝑃12 branch. Only a single feature of this branch, the 𝑂𝑃12(2)
line, was measured in this study. To the blue of the bandhead lies the also relatively
unblended 𝑅𝑅11 branch. Two of the features of this branch, the 𝑅𝑅11(0) and 𝑅𝑅11(1)
lines, were measured in this study.

The observed intensities of the 𝑃𝑄12 and 𝑄𝑄11 branch features (Fig. 6.10a and c) are
weaker than those of the 𝑄𝑅12 and 𝑃𝑃11 branches. This is in contrast to the predicted
intensities (Fig. 6.10b and d) where the opposite is the case. This discrepancy
between the observed and predicted relative intensities between different branch
features was also observed the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band [116]. The
reduction of the intensities of the 𝑃𝑄12 and 𝑄𝑄11 branch features (or the increase
in the intensity of the 𝑄𝑅12 and 𝑃𝑃11 branch features) may be due to perturbations
arising from the mixing of the 𝑋̃2Σ+ and/or the 𝐴̃2Π1/2 states with other vibronic
states.

The transition wavenumbers were determined via a simultaneous non-linear least
squares fit of the measured in-phase and in-quadrature FM lineshapes to the lineshape

9The phase angle and spectral linewidth used in the predictions are the average of the measured
phase angles and linewidths determined from a non-linear least squares fit of the FM lineshapes.
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model described in Section 6.3. The simultaneous fit of the 𝑃𝑄12(4), 𝑄𝑄11(5), and
𝑃𝑃11(4) lines is presented in Fig. 6.11. The line centers (transition wavenumber),
linewidths (FWHM), and relative heights of the Gaussian absorption profiles as well
as the phase angle between the in-phase and in-quadrature FM signals are floated in
the fit. The data set was cut so that a minimum number of spectral features were fit
at a single time. An average phase angle of 5.90 radians and an average linewidth of
108 MHz were measured from the fits of the FM data. This linewidth is consistent
with the previously measured DC absorption linewidth of ∼ 90 MHz.

Assignments of the spectral features were made using both combination differences10
and spectral predictions. Combination differences were used to assign low 𝐽 spectral
features and determine the energies of the𝑁 = 1, 𝐽 = 3/2, 𝑁 = 2, 𝐽 = 3/2 and𝑁 = 2,
𝐽 = 5/2, levels of the 𝑋̃2Σ+(3, 0, 0) state. These energy levels were then used to
estimate the origin,𝑇0, the rotational constant, 𝐵′′, and spin rotation parameter, 𝛾′′, of
the 𝑋̃2Σ+(3, 0, 0) state. These estimated parameters were then used in conjunction
with the previously determined parameters for the 𝐴̃2Π1/2(1, 0, 0) state [116] to
predict the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) spectrum, with which the remaining
spectral assignments were made. The 35 measured transition wavenumbers along
with the assignments and associated quantum numbers are presented in Table A.4 of
Appendix A. Also presented in Table A.4 are the differences between the observed
and calculated transition frequencies. The calculated transition frequencies were
obtained using the optimized parameters given in Table 6.1. In addition to the 35
assigned transitions, 3 unassigned transitions were also observed and are listed in
Table A.4.

10Combination differences are matching frequency spacings between the measured spectral fea-
tures and, in this case, the calculated energy levels of the 𝐴̃2Π1/2 (1, 0, 0) state. The energy levels
of the 𝐴̃2Π1/2 (1, 0, 0) state were calculated using the previously determined parameters [116]. A
combination difference match indicates that a pair of transitions originate from the same ground state
and provides a definitive assignment of the excited state of each transition.
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Figure 6.10: Measured and predicted FM spectrum in the bandhead region of
the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band of 174YbOH. Several features of the 𝑄𝑅12,
𝑄𝑄11, 𝑃𝑃11, and 𝑃𝑄12 branches are indicated in separate plots for clarity. a.)
Measured in-phase FM spectrum, 𝐼𝐹𝑀 (𝜔). b.) Predicted in-phase FM spectrum.
c.) Measured in-quadrature FM spectrum, 𝑄𝐹𝑀 (𝜔). d.) Predicted in-quadrature
FM spectrum. The predicted in-phase and in-quadrature FM spectra were obtained
using the FM lineshape model described in Section 6.3. The transition frequencies
and relative amplitudes input into the module were calculated using the optimized
parameters given in Table 6.1. A phase angle of 5.90 radians, FWHM Gaussian
absorption linewidth of 108 MHz, and a temperature of 5 K were used in the
predictions.
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Figure 6.11: Simultaneous fit of the in-phase and in-quadrature FM spectrum of
the (in order of increasing frequency) 𝑃𝑄12(4), 𝑄𝑄11(5), and 𝑃𝑃11(4) lines of the
𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band of 174YbOH to the FM lineshape model given
in Section 6.3. The line center, linewidth, and relative amplitude of the Gaussian
absorption lineshape of each transition, as well as the overall phase angle between
the in-phase and in-quadrature signals were floated in the fit. The line centers
resulting from the fit provide a measurement of each transition frequency.



153

Analysis
The 35 transition frequencies of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band, mea-
sured here, were combined with the 65 previously measured transitions frequen-
cies of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band (measured via molecular beam
LIF) [116] and used as inputs in a non-linear least squares fitting procedure. The
two data sets share the same excited 𝐴̃2Π1/2(1, 0, 0) state and simultaneous fit of
both data sets was performed in order to obtain the optimized parameters of the
𝑋̃2Σ+(3, 0, 0) state as well as improved parameters for the 𝐴̃2Π1/2(1, 0, 0) state.
The 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) FM transitions frequencies were determined to
approximately a factor of two higher precision as compared to the molecular beam
LIF data of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band and, therefore, the FM data of
the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band was weighted twice that of the previously
recorded 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) molecular beam LIF data in the fitting
procedure. The increased precision of the FM data is due to both the high intrinsic
sensitivity of the FM absorption method for measuring transition frequencies (mea-
suring simultaneous zero crossing of in-phase and in-quadrature line shapes) as well
as the isolation of the 174YbOH spectrum from that of the the other isotopolouges
with the laser-enhanced chemical reactions.

The energy levels of the 𝑋̃2Σ+(0, 0, 0), 𝑋̃2Σ+(3, 0, 0), and the 𝐴̃2Π1/2(1, 0, 0) states
were modeled using an effective Hamiltonian approach. The effective Hamiltonian
used to model the 𝑋̃2Σ+(0, 0, 0) state is

𝐻̂𝑒 𝑓 𝑓
[
𝑋̃2Σ+(0, 0, 0)

]
= 𝐵R2 − 𝐷R2R2 + 𝛾N · S + 𝛾𝐷

[
N · S,R2]

+ (6.24)

which accounts for rotation (𝐵), centrifugal distortions (𝐷), spin-rotation (𝛾), and
spin-rotation centrifugal distortions (𝛾𝐷). In the least-squares fit and for all spectral
predictions the parameters of the 𝑋̃2Σ+(0, 0, 0) state were fixed to the values de-
termined with PPMODR microwave spectroscopy (see Ch. 4) [93]. The effective
Hamiltonian used to model the 𝑋̃2Σ+(3, 0, 0) state is

𝐻̂𝑒 𝑓 𝑓
[
𝑋̃2Σ+(3, 0, 0)

]
= 𝑇0 + 𝐵R2 − 𝐷R2R2 + 𝛾N · S. (6.25)

This effective Hamiltonian is the same as that of the 𝑋̃2Σ+(0, 0, 0) state with the
addition of an origin (𝑇0) to account for the vibrational energy and the removal of
the term accounting for the spin-rotation centrifugal distortions. The FM spectrum
recorded in the cryogenic buffer gas cell only probed lower 𝐽 transitions and is not
sensitive to spin-rotation centrifugal distortions. The effective Hamiltonian used to
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model the 𝐴̃2Π1/2(1, 0, 0) state is

𝐻̂𝑒 𝑓 𝑓
[
𝐴̃2Π1/2(1, 0, 0)

]
=𝑇0 + 𝐴𝐿𝑧𝑆𝑧 + 𝐵R2 − 𝐷R2R2

+ 1
2
(𝑝 + 2𝑞) (𝐽+𝑆+𝑒−2𝑖𝜃 + 𝐽−𝑆−𝑒+2𝑖𝜃)

+ (𝑝 + 2𝑞)𝐷
[
1
2
(𝐽+𝑆+𝑒−2𝑖𝜃 + 𝐽−𝑆−𝑒+2𝑖𝜃),R2

]
+

(6.26)

which accounts for the origin of the electronic state (𝑇0), spin-orbit (𝐴), rotation
(𝐵), centrifugal distortions (𝐷), Λ-doubling (𝑝 + 2𝑞), and Λ-doubling centrifugal
distortions ((𝑝 + 2𝑞)𝐷). Since no evidence of hyperfine splittings due to the H were
observed, hyperfine interactions were not included in the effective Hamiltonians.

Even though the 𝑋̃2Σ+(0, 0, 0) and 𝑋̃2Σ+(3, 0, 0) states are best described by a
Hund’s case (b) basis, all effective Hamiltonian’s were constructed in a Hund’s case
(a) basis, |𝜂,Λ⟩|𝑆, Σ⟩|𝐽,Ω⟩. The energy levels and eigenstates of the 𝑋̃2Σ+(0, 0, 0)
and 𝑋̃2Σ+(3, 0, 0) states were determined by constructing and diagonalizing the
full 34×34 (2(𝑁𝑚𝑎𝑥 + 1)) Hamiltonian for all 𝑁 = 0 − 𝑁 = 16 rotational levels
while the energy levels and eigenstates of the 𝐴̃2Π1/2(1, 0, 0) state were determined
by construction and diagonalizing the full 66×66 (4𝑁𝑚𝑎𝑥 + 2) Hamiltonian for all
𝑁 = 1 − 𝑁 = 16 rotational levels. The matrix elements used in the calculation of
the effective Hamiltonians were taken from Ref. [89, 92].

The origin (𝑇0), rotational parameter (𝐵′′), and the spin-rotation parameter (𝛾′′) of
the 𝑋̃2Σ+(3, 0, 0) state and the origin (𝑇0), rotational parameter (𝐵′), Λ-doubling
parameter (𝑝+2𝑞), andΛ-doubling centrifugal distortion parameter ((𝑝+2𝑞)𝐷) were
floated (a total of seven parameters) in the final least-squares fit to the measured
transition frequencies. The spin-orbit parameter, 𝐴, of the 𝐴̃2Π1/2(1, 0, 0) state
was fixed to the value from the high temperature analysis [105]. Fits floating
various parameters were performed and an f-test with a 95% confidence interval
was used to determine if floating additional parameters (such as (𝑝 + 2𝑞)′

𝐷
, 𝐷′′,

or 𝐷′) was statistically justified. While the f-test indicated floating 𝐷 in both the
𝑋̃2Σ+(3, 0, 0) and 𝐴̃2Π1/2(1, 0, 0) states was statistically justified, the error in the
resulting fit 𝐷 parameters was ∼ 20% of the fitted value. This indicated that floating
the 𝐷 parameters resulted in optimized values for 𝐷′′ and 𝐷′ that were not well
determined. Therefore, the value of 𝐷 in the 𝑋̃2Σ+(3, 0, 0) state was fixed to the
the value extrapolated from the 𝐷 values of the 𝑋̃2Σ+(0, 0, 0) and 𝑋̃2Σ+(1, 0, 0)
states using the expected vibrational dependence [81]. The value of 𝐷 in the
𝐴̃2Π1/2(1, 0, 0) state was fixed to the extrapolated value given in Ref. [116]. The
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optimized parameters of the 𝑋̃2Σ+(3, 0, 0) and 𝐴̃2Π1/2(1, 0, 0) states resulting from
the least-squares fit to the transition frequencies are presented in Table 6.1. Also,
presented in Table 6.1 are the parameters of the 𝑋̃2Σ+(1, 0, 0) state for comparison.
The fit resulted in an RMS of the residuals of 25 MHz (0.00084 cm−1), which is
commensurate with the measurement uncertainty of the combined data set. The
difference between the observed and calculated transition frequencies (fit residuals)
for the 𝐴̃2Π1/2(1, 0, 0, ) − 𝑋̃2Σ+(3, 0, 0) and 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) bands
are given in Table A.4 and A.5, respectively, in Appendix A.

Spectral predictions were made in the following manner. First, the transition moment
matrix is calculated in a Hund’s case (a) basis and cross multiplied by the eigen-
vectors to determine the transition moments. The relative transition amplitudes are
given by the product of the square of the transition moment and a Boltzmann factor.
To produce simulated FM spectra, such as those shown in Fig. 6.10, the total absorp-
tion lineshape, 𝛿𝑡𝑜𝑡 (𝜔), is calculated by summing individual Guassian lineshapes for
each transition, using Eq. 6.19. The transition frequencies and relative amplitudes
from the spectral predictions are used for the line centers and amplitudes of the
Guassian lineshapes and a FWHM of 108 MHz (the averaged measured linewidth)
is used as the linewidth for all transitions. The total dispersion lineshape, 𝜙𝑡𝑜𝑡 (𝜔)
is calculated in a similar manner using Eq. 6.20. Finally, the simulated in-phase,
𝐼𝐹𝑀 (𝜔), and in-quadrature, 𝑄𝐹𝑀 (𝜔), FM lineshapes are calculated using Eq. 6.21
and 6.22 and a phase angle of 5.90 radians, the average of the measured phase angle.



156

Table 6.1: Spectroscopic parameters of the 𝑋̃2Σ+(0, 0, 0), 𝑋̃2Σ+(3, 0, 0), and
𝐴̃2Π1/2(1, 0, 0) states of 174YbOH. The parameters of the 𝑋̃2Σ+(1, 0, 0) state are
also presented for comparison. All values are in cm−1. Values in parenthesis are the
standard errors resulting from the combined fit of the 𝐴̃2Π1/2(1, 0, 0)− 𝑋̃2Σ+(0, 0, 0)
and 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) bands.

Electronic Vibrational State

State Parameter (0,0,0) (1,0,0) (3,0,0)

𝑋̃2Σ+ 𝐵′′ 0.245116257𝑎 0.243681𝑏 0.240795(4)

107𝐷′′ 2.029𝑎 2.168𝑏 2.45𝑐 (fixed)

𝛾′′ -0.002707𝑎 -0.00369𝑏 -0.00575(3)

107𝛾′′ 1.59𝑎

𝑇0 529.3269𝑏 1570.6697(2)

𝐴̃2Π1/2 𝐴′ 1350𝑑 (fixed)

𝐵′ 0.253197(2)

107𝐷′ 2.478𝑏 (fixed)

𝑝 + 2𝑞′ -0.53459(4)

106(𝑝 + 2𝑞)′
𝐷

-17.3(3)

𝑇0 18582.8707(1)

𝑎 Fixed to PPMODR values in fit, Section 4 and Ref [93].
𝑏 From Ref. [116].
𝑐 Fixed to value extrapolated from that of the 𝑋̃2Σ+(0, 0, 0) and (1, 0, 0) states.
𝑑 Fixed to value from high-temperature analysis [105].

Discussion
The main goals of this study were to demonstrate the utility of laser-enhancement
and FM spectroscopy for measuring transitions originating from excited vibrational
states, to identify the 𝑋̃2Σ+(3, 0, 0) repumping transitions needed to laser cool and
trap YbOH, and to determine the spectroscopic parameters of the 𝑋̃2Σ+(3, 0, 0)
state. The measured FM spectrum of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band
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demonstrates that the chemical enhancement does indeed provide enough excited
vibrational state population for transitions originating from excited vibrational states
to be observed. Additionally, the in buffer gas cell FM absorption technique provides
the needed sensitivity to observe the weak 𝐴̃2Π1/2(1, 0, 0)−𝑋̃2Σ+(3, 0, 0) band. This
combination of chemical enhancement and in cell FM absorption spectroscopy is
a promising technique with which to measure transitions originating from excited
vibrational states, in both YbOH and other molecules.

The majority of the interest in the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band of YbOH
stems from its utility as a repumping pathway through which population lost to
the 𝑋̃2Σ+(3, 0, 0) state when laser cooling can be returned to the cooling cycle.
Repumping is accomplished by driving the rotationally closed 𝑃𝑄12(1) and 𝑃𝑃11(1)
transitions11 [100]. While the analysis of the data assigned the 𝑃𝑃11(1) line to the
transition at 16337.2431 cm−1, no assignment for the 𝑃𝑄12(1) line was originally
made. The prediction of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) spectrum using the
optimized parameters from Table 6.1 places the 𝑃𝑄12(1) line at 16337.2342 cm−1.
The in-phase and in-quadrature FM data and simulated spectra in the region of
the predicted 𝑃𝑄12(1) line and the measured 𝑄𝑅12(2),𝑄𝑄11(2) and 𝑃𝑃11(1) lines
are presented in Fig. 6.12. The simulated FM spectra were calculated using the
optimized parameters from Table 6.1, a Gaussian FWHM linewidth of 108 MHz,
a phase angle of 5.90 radians, and a temperature of 5 K. When comparing the
prediction to the data, particularly the in-phase data, the 𝑃𝑄12(1) line appears to
be missing. However, upon closer examination, the asymmetry in the in-phase and
in-quadrature positive and negative peak heights of the 𝑄𝑄11(2) line as well as the
small positive peak to the red of the 𝑄𝑄11(2) line in the in quadrature data indicate
that there is a small spectral feature just to the red of and blended with the 𝑄𝑄11(2)
feature. When fitting the data in this region to the FM lineshape model, fits both
with and without a line to account for this small feature were performed (fits to 3 or
4 spectral features). Adding a line to account for this small feature did not improve
the fit. Therefore, a line accounting for this small blended feature was not added to
the fit and no transition wavenumber was assigned to this feature. When examining
the FM data and the prediction made with the optimized parameters, particularly the
in-quadrature data and prediction, this small feature is almost directly overlapped
with the predicted 𝑃𝑄12(1) line. Therefore, even though the observed intensity
is much smaller than the predicted intensity, this small feature can be assigned to

11To achieve rotational closure both the 𝑃𝑄12 (1) and 𝑃𝑃11 (1) transitions must be simultaneously
driven.
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the 𝑃𝑄12(1) transition. The blending of this feature with the much more intense
𝑄𝑄11(2) line precludes measurement of the transition frequency via fitting to the
FM lineshape or by zero-crossing measurement. Instead the transition frequency
was measured by noting that the maximum of the positive peak of the in-quadrature
signal is ∼ 50.3 MHz to the red of the center of the Gaussian absorption lineshape.
Using this method the 𝑃𝑄12(1) line was assigned to 16337.2348 ± 0.0036 cm−1,
which disagrees with the predicted value by 18 MHz (0.0006 cm−1). The generous
error of one average measured linewidth is given due to the approximate method
used for measuring the transition frequency. The assigned valued of the 𝑃𝑄12(1)
and 𝑃𝑃11(1) transitions can be immediately used for the implementation of laser
cooling of YbOH.

The combined fit of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) and 𝐴̃2Π1/2(1, 0, 0) −
𝑋̃2Σ+(0, 0, 0) data sets allowed the parameters of the 𝑋̃2Σ+(3, 0, 0) state to be de-
termined for the first time. The determined value of the origin, 𝑇0 = 1570.6697(2)
cm−1, matches the value of 1572(5) cm−1 measured using a dispersed LIF technique
[95]. The vibrational dependence of the rotational constant, 𝐵, is [81]

𝐵𝜈 = 𝐵𝑒 − 𝛼𝑒 (𝜈 + 1/2). (6.27)

Fitting the measured values of 𝐵 for the 𝑋̃2Σ+(0, 0, 0) and 𝑋̃2Σ+(1, 0, 0) states to Eq.
6.27 (up to only the linear term) results in, 𝐵𝑒 = 0.245834 cm−1 and 𝛼𝑒 = 0.001435
cm−1. Using these values in Eq. 6.27 predicts 𝐵 for the 𝑋̃2Σ+(3, 0, 0) state of
0.240810 cm−1. This is in fairly good agreement with the measured value of
0.240795(4) cm−1, especially considering the quadratic and higher-order terms in
Eq. 6.27 were ignored.

The value of 𝛾 for the 𝑋̃2Σ+(3, 0, 0) state determined here is negative, as is the case
in the 𝑋̃2Σ+(0, 0, 0) and 𝑋̃2Σ+(1, 0, 0) states. As was discussed in Section 4.3, the
value of 𝛾 is dominated by second-order contributions which result from the mixing
of the 𝑋̃2Σ+ state with excited 2Π1/2 states through the combination of the rotational
and spin orbit interactions. The second-order contributions to gamma are given in
Eq. 4.2 which is reproduced here for convenience

𝛾 (2) = 2
∑︁

2Π, 𝜈′

|⟨𝜈′′|𝜈′⟩|2
⟨2Σ+−1/2 |𝐵𝐿− |

2Π1/2⟩⟨2Π1/2 |
∑
𝑖 𝑎𝑖𝑙

+
𝑖
𝑠−
𝑖
|2Σ+1/2⟩

𝐸Π, 𝜈′ − 𝐸Σ, 𝜈′′
. (6.28)

In Section 4.3, known YbOH molecular and Yb+ atomic information were used in
Eq. 6.28 to estimate the contribution to 𝛾 from the 𝐴̃2Π1/2 state, 𝛾𝜈1=0( 𝐴̃2Π1/2) =
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0.02761 cm−1. The same procedure can be used to estimate the contribution of the
𝐴̃2Π1/2 state to the value 𝛾 in the 𝑋̃2Σ+(1, 0, 0) and 𝑋̃2Σ+(3, 0, 0) states.

We can again assume that the wavefunction of the 𝑋̃2Σ+ state can then be approxi-
mated by

| 𝑋̃2Σ+⟩ ≈ 𝑥𝑠 |6𝑠𝜎⟩ + 𝑥𝑝 |6𝑝𝜎⟩, (6.29)

where |6𝑠𝜎⟩ and |6𝑝𝜎⟩ are the Yb+ 6𝑠𝜎 and 6𝑝𝜋 atomic orbitals. Measurements
of the 𝑏𝐹 hyperfine parameter of the odd isotopologues (see Section 5.5) indicate
that |𝑥𝑠 |2 ≈ 0.54, and assuming contributions from other atomic orbitals (e.g., 5𝑑𝜎)
are small, < 1%, gives |𝑥𝑝 |2 ≈ 0.46. The wavefunction of the 𝐴̃2Π1/2 state can be
approximated by

| 𝐴̃2Π1/2⟩ ≈ 𝑎𝑝 |6𝑝𝜋⟩ + 𝑎𝑑 |5𝑑𝜋⟩, (6.30)

where |6𝑝𝜋⟩ and |5𝑑𝜋⟩ are the Yb+ atomic 6𝑝𝜋 and 5𝑑𝜋 orbitals. As before, if we
parameterize the atomic spin orbit interaction as 𝜁𝑛,𝑙 𝑙 · 𝑠 and use the Yb+ atomic ion
values, 𝜁6𝑝 = 2220 cm−1 and 𝜁5𝑑 = 549 cm−1 [124, 125], as well as the measured
spin orbit parameter of the 𝐴̃2Π state of YbOH, 𝐴 = 1350 cm−1 [105], we estimate
|𝑎𝑝 |2 ≈ 0.48 and |𝑎𝑑 |2 ≈ 0.52. Using these wavefunctions, the electronic matrix
elements in Eq. 6.28 are

⟨𝑋̃2Σ+ |𝐵𝐿− | 𝐴̃2Π1/2⟩⟨𝐴̃2Π1/2 |
∑︁
𝑖

𝑎𝑖𝑙
+
𝑖 𝑠
−
𝑖 | 𝑋̃2Σ+⟩

= 𝐵 |𝑥𝑝 |2 |𝑎𝑝 |2⟨6𝑝𝜎 |𝑙−𝑖 |6𝑝𝜋⟩⟨6𝑝𝜋 |𝜁6𝑝𝑙
+
𝑖 |6𝑝𝜎⟩

= 2𝐵 |𝑥𝑝 |2 |𝑎𝑝 |2𝜁6𝑝,

(6.31)

where we have used the pure precession hypothosis, Eq. 4.7, to evaluate the atomic
matrix elements.

The FCFs, |⟨𝜈′′|𝜈′⟩|2, can be reliably estimated using the measured value of the
stretching vibrational frequency (𝜔𝜈1 = 529.3269 cm−1), the measured bond lengths
(𝑟𝑒 ( 𝑋̃2Σ+(0, 0, 0)) = 2.0397 𝐴̊ and 𝑟𝑒 ( 𝐴̃2Π1/2(0, 0, 0)) = 2.0062 𝐴̊), and the
harmonic approximation. The bending and O-H stretching modes can be ne-
glected as the FCFs between them and the stretching (or (0,0,0)) states are neg-
ligible. In the harmonic approximation, the energies of the 𝐴̃2Π1/2 state are
𝐸Π, 𝜈′ = 𝑇0( 𝐴̃2Π1/2(0, 0, 0, )) + 𝜔𝜈1𝜈1. Using the values of |𝑥𝑝 |2, |𝑎𝑝 |2, 𝜁6𝑝, and
𝜔𝑛𝑢1 indicated above, the measured value of 𝑇0( 𝐴̃2Π1/2(0, 0, 0)) [116], the values
of 𝐵 and 𝑇0 = 𝐸Σ, 𝜈′′ given in Table 6.1, and the FCFs calculated in the har-
monic approximation with Eq. 6.28 gives 𝛾𝜈1=1( 𝐴̃2Π1/2) = 0.02737 cm−1 and
𝛾𝜈1=3( 𝐴̃2Π1/2) = 0.02686 cm−1.
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These positive contributions from the 𝐴̃2Π1/2 state cannot account for the observed
negative values of 𝛾 nor would adding in additional 2Π states as those contribu-
tions would be positive as well. As was discussed in Section 4.3, the negative
values of 𝛾 in the 𝑋̃2Σ+ state are most likely the result of perturbing states derived
from a Yb+ [𝑋𝑒]4 𝑓 136𝑠𝜎2 electronic configuration. These states have negative
spin orbit parameters (e.g., 𝜁4 𝑓 < 0 for the 2𝐹0

7/2 and 2𝐹0
5/2 states of the Yb+ ion

[126]), which will result in negative contributions to 𝛾. Using the above esti-
mates and assuming that only the 𝐴̃2Π1/2 state and 4 𝑓 136𝑠𝜎2 states contribute to
𝛾 gives; 𝛾𝜈1=0( 𝑓 136𝑠𝜎2) = −0.03032 cm−1,𝛾𝜈1=1(4 𝑓 136𝑠𝜎2) = −0.03106 cm−1,
and 𝛾𝜈1=3(4 𝑓 136𝑠𝜎2) = −0.03261 cm−1, where 𝛾𝜈1 (4 𝑓 136𝑠𝜎2) indicates the sum
of the contributions to 𝛾𝜈1 from all electronic states derived from the 4 𝑓 136𝑠𝜎2 Yb+

atomic electronic configuration.

The three gamma values presented in Table 6.1 indicate that the vibrational depen-
dence of 𝛾 in the 𝑋̃2Σ+ state is linear with respect to the stretching vibration, 𝜈1,
with a slope of Δ𝛾/Δ𝜈1 ∼ −0.001 cm−1. Additionally, the values of 𝛾 increase in
magnitude with increased stretching vibration. This is in contrast to the vibrational
dependence of the estimated 𝐴̃2Π1/2 state contributions to 𝛾, which decrease in
magnitude with increasing stretching vibration at a linear rate which has a slope that
is about five times smaller than the observed rate of change of the 𝛾 values. This
further indicates that the determined values of 𝛾 in the 𝑋̃2Σ+ state can not be ac-
counted for by interactions solely with the 𝐴̃2Π1/2 state and other excited electronic
states must be involved.

In addition to determining the parameters for the 𝑋̃2Σ+(3, 0, 0) state, the combined
fit of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) and 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) data
sets allowed a more accurate determination of the parameters of the 𝐴̃2Π1/2(1, 0, 0)
state. The values of the origin,𝑇0, rotational constant, 𝐵, andΛ-doubling centrifugal
distortion parameter, (𝑝 + 2𝑞)𝐷 , agree with the previously measured values [116]
and are more precisely determined, with the estimated errors a factor of 2/3 to 3
smaller. The determined value of the Λ-doubling parameter, 𝑝 +2𝑞, not only agrees
with the previously determined value but is an order of magnitude more precise.
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Figure 6.12: Measured and predicted FM spectrum of the 𝑄𝑅12(2), 𝑃𝑄12(1),
𝑄𝑄11(2) and 𝑃𝑃11(1) transitions of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band of
174YbOH. a.) The measured in-phase FM spectrum, 𝐼𝐹𝑀 (𝜔). b.) The predicted in-
phase FM spectrum. c.) The measured in-quadrature FM spectrum, 𝑄𝐹𝑀 (𝜔). d.)
The predicted in-quadrature FM spectrum. Predictions were made using optimized
parameters from Table 6.1, a Gaussian FWHM linewidth of 108 MHz, a phase angle
of 5.90 radians, and a temperature of 5 K. Each transition is indicated in a different
plot for clarity.
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6.6 FM spectroscopy of the [17.68] and [17.64] bands of 174YbOH
Dispersed LIF (DLIF) measurements of YbOH identified several bands in the region
just to the blue of the the origin band. Of these bands, two are of particular interest
regarding state preparation and readout of the 𝑋̃2Σ+(0, 1, 0) science state. The
first band is at at 17680 cm−1, denoted [17.68], and the second at 17640 cm−1,
denoted [17.64] [135]. The measurements performed in Ref. [135] indicate that the
[17.68] and [17.64] bands both originate from the ground 𝑋̃2Σ+(0, 0, 0) state and
terminate at excited states residing at 17680 cm−1 and 17640 cm−1 respectively. The
DLIF study also measured the branching ratios of these excited states. The state at
17680 cm−1 was measured to have a branching ratio of 54.1% to the 𝑋̃2Σ+(0, 0, 0)
ground state and a branching ratio of 21.8% to the 𝑋̃2Σ+(0, 1, 0) science state.
The state at 17640 cm−1 was measured to have a branching ratio of 8.4% to the
𝑋̃2Σ+(0, 0, 0) ground state and a branching ratio of 73.1% to the 𝑋̃2Σ+(0, 1, 0)
science state [135]. These branching ratio measurements indicate that both these
states have strong bending character12 and are coupled to both the ground and science
states. Therefore, these states could prove useful for state preparation and readout,
especially as optical pumping pathways for initial population of the 𝑋̃2Σ+(0, 1, 0)
science state. Finally, since these states are strongly coupled to the 𝑋̃2Σ+(0, 1, 0)
state, characterization of these excited states may aid in the spectroscopy of the
𝑋̃2Σ+(0, 1, 0) science state.

Experiment
Since the [17.68] and [17.64] bands are weak compared to the origin band of YbOH,
∼ 100 times weaker, in-cell FM absorption spectroscopy was used to measure the
spectrum of these bands. The experimental FM setup is nearly the same as that used
for the FM absorption spectroscopy of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band,
Section 6.5. The same buffer gas cell configuration as that described in Section
6.5 was used. Just as before, molecules were produced via ablation of a pressed
stoichiometric Yb + Yb(OH)3 + PEG target with a pulsed Nd:YAG laser (532 nm,
∼30-40 mJ/pulse, ∼8.74 Hz). Again, laser-enhanced chemical reactions were driven
with the same enhancement laser (∼3 mm in diameter, ∼ 300 mW) which is fixed to
the 3𝑃1−1𝑆0

174Yb transition [137]. In the absence of the enhancement light, no FM
signals were present and, therefore, the FM signals observed with the enhancement
light present were due to only the 174YbOH isotopologue.

12The initial theory is that these states were some mixture of the 𝐴̃2Π1/2 (0, 1, 0) state and a
perturbing state derived from the 4 𝑓 136𝜎2 Yb+ electronic configuration.
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FM spectroscopy was performed using the same CW laser described in Section
6.4 and 6.5 with ∼100 𝜇W and ∼110 𝜇W of power for the [17.68] and [17.64]
bands respectively. The laser was continuously scanned, and the signal from every
consecutive 7 shots were averaged resulting in ∼10 MHz steps between data points.
The relative (and absolute) frequency between data points was monitored with a
High Finesse wavemeter (WS7-30 VIS/Standard model). For the [17.68] data the
phase shifter voltage was set to maximize (minimize) the in-phase (in-quadrature)
FM signal, while for the [17.64] data the phase shifter voltage was set to split the
FM signal evenly between the in-phase and in-quadrature channels. A portion of
the FM absorption beam was picked off after passing through the buffer gas cell
and directed into a DC photodiode to allow the simultaneous recording of both the
FM and DC absorption data. As before, a normalization probe fixed to the 𝑅𝑅11(0)
line of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band was used to monitor shot-to-shot
fluctuations in molecular production. The spectrum of both bands was co-recorded
with the subdoppler saturated absorption spectrum of I2.

Measurements of the observed transitions frequencies of the [17.68] and [17.64]
bands were made by measuring the frequencies of the zero crossings of the in-phase
FM lineshapes13. The error in the zero-crossing measurements was limited by the
step size between the data points to ∼10 MHz. In this case, the zero crossing
measurements were made using the High Finesse wavementer as the absolute and
relative frequency reference. The relative frequency between data points provided by
the High Finesse wavementer is accurate. For other scenarios, absolute frequency
calibration with the co-recorded I2 data results in the correction of the absolute
frequency measured with the wavemeter by accounting for a general offset in fre-
quency of −12 ± 3 MHz. Since the absolute frequency recorded by the High Finesse
wavemeter was used for the transition frequency measurements, each measurement
has an absolute frequency error of ∼12 MHz. However, since this error is common
and the same for all measured transition frequencies, measured spacings between
transition frequencies, such as those used for combination differences, are accu-
rate and only limited by the error in the zero-crossing measurements themselves.
From zero-crossing measurements a total of 65 and 62 transition frequencies were
measured for the [17.68] and [17.64] bands respectively. The measured transition
frequencies are listed in Table A.6 and A.7 in Appendix A.

13The transition frequencies measured via zero-crossing measurements are consistent with the
transition frequencies measured via simultaneous fitting of the in-phase and in-quadrature FM data
to the lineshape model.
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FM spectroscopy of the [17.68] band
The measured in-phase FM spectrum of the [17.68] band is presented in Fig. 6.13.
When examining the spectrum it is clear that the band is split into two distinct parts,
the red half and blue half, separated by ∼ 1 cm−1. A higher-resolution view of the
red half and blue half of the [17.68] spectrum are presented in Fig. 6.13 as well.
This large spacing resembles the spectrum of a 2Σ−2Σ transitions which would have
separated 𝑃 and 𝑅 branches and no 𝑄 branch. Spectra for 2Σ − 2Σ+ transitions14
were simulated and these indicated that there should be a transition originating from
the 𝑁 = 0 level of the ground state in the empty region of the spectrum, which was
not observed. Another plausible explanation for the gap in the spectrum is that the
red and blue halves of the spectrum result from transitions to two different Renner-
Teller components of an excited bending state. Another plausible explanation for the
observed spectral pattern is that the red half of the observed spectrum is primarily
comprised of the Δ𝐽 = −1, 0 𝑃 and 𝑄 branches with a red degraded bandhead and
the blue half of the spectrum is comprised of the Δ𝐽 = 0, 1 𝑄 and 𝑅 branches.

[17.68] and 𝑋̃2Σ+(0, 0, 0) combination differences

In Ref. [135], the [17.68] band was assigned to a transition originating from the
𝑋̃2Σ+(0, 0, 0) state and terminating in an excited vibronic state at 17680 cm−1. If
this assignment is correct then combination differences with the energy levels of
the 𝑋̃2Σ+(0, 0, 0) state should allow the measured transitions to be assigned. The
parameters of the 𝑋̃2Σ+(0, 0, 0) state are well determined (Ch. 4 and [93]) and
combination differences between the calculated ground state energy levels and mea-
sured [17.68] transition frequencies were determined15. A total of 23 combination
differences were found. Almost all of the combination differences were matches
of the spin rotation splittings in the ground state to line splittings in the [17.68]
spectrum. If the [17.68] band does originate from the 𝑋̃2Σ+(0, 0, 0) state, then each
of these combination differences provides and assignment for the ground state from
which each transition originates.

The [17.68] spectrum with the rotational level of the 𝑋̃2Σ+(0, 0, 0) state from which
the spin rotation splitting matches the [17.68] line spacing is presented in Fig. 6.14.

14In these simulations, the ground state parameters were fixed to the measured microwave param-
eters of the 𝑋̃2Σ+ (0, 0, 0) state and the parameters of the excited state were varied.

15A combination difference in this case is when a splitting between two measured transition
frequencies matches an energy splitting between two levels in the 𝑋̃2Σ+ (0, 0, 0) state. A combination
difference hit indicates that the two transitions originate from the pair of 𝑋̃2Σ+ (0, 0, 0) levels and
terminate in the same excited state.
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Figure 6.13: In-phase FM spectrum of the [17.68] band of 174YbOH. The full
recorded spectrum is shown in the top panel. Zoomed-in view of the red half and
blue half of the spectrum are shown in the middle and bottom panels respectively.

There is a clear pattern in both the red half and blue half of the spectrum with the
combination difference matches increasing in ground state rotational level going to
the red and to the blue in the red half and blue half of the spectrum respectively. Even
though there are clear patterns in the combination differences, there are multiple
anomalies as well. First, there were only a few combination differences involving
spacings between different rotational levels in the ground state. Second, there are
many strong pairs of lines that were not involved combination difference matches, as
seen in Fig. 6.14. Lastly, there were no combination differences matches involving
the 𝑁 = 0 and 𝑁 = 1 levels of the 𝑋̃2Σ+(0, 0, 0) state.

Depletion spectroscopy of the [17.68] band
Due to the anomalies in the combination differences between the [17.68] spectrum
and the 𝑋̃2Σ+(0, 0, 0) state energy levels, the ground state assignments made from the
spin rotation splitting matches, such as those indicated in Fig. 6.14, are in question.
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Figure 6.14: Combination differences matches of line splittings from the [17.68]
band and the spin-rotation splittings in the 𝑋̃2Σ+(0, 0, 0) state. The rotational
level, 𝑁 , of the 𝑋̃2Σ+(0, 0, 0) spin-rotation splitting which matches the [17.68] line
splittings are indicated. The top panel shows the red half of the [17.68] spectrum
while the bottom panel shows the blue half of the [17.68] spectrum.

To confirm that the [17.68] band originates from the 𝑋̃2Σ+(0, 0, 0) ground state and
to confirm the ground state assignments from the combination differences, depletion
spectroscopy of the [17.68]was performed. A diagram of the experimental depletion
spectroscopy setup is shown in Fig. 6.15. The depletion spectroscopy was conducted
in the beam extension region of the CBGB source, see Section 3.2, and works in
the following manner. First, the extracted molecular beam is exposed to a depletion
laser (∼300 mW, elliptical shaped and multi-passed ≳10 times) which is resonant
with a transition in the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band that originates from
the |𝑁, 𝐽⟩ rotational/spin-rotational level of the 𝑋̃2Σ+(0, 0, 0) state. The depletion
laser is shuttered on and off for consecutive molecular pulses using a mechanical
shutter so that the depletion laser is applied for every other molecular beam pulse.
When the depletion laser is unblocked, it depletes the molecular population in the
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|𝑁, 𝐽⟩ level of the 𝑋̃2Σ+(0, 0, 0) state. Downstream from the depletion region, the
molecular beam is exposed to a probe laser (∼700 𝜇W) resonant with a transition
in the [17.68] band and the resulting LIF is collected and detected by a PMT. If the
[17.68] transition probed by the probe laser originates from the same |𝑁, 𝐽⟩ level of
the 𝑋̃2Σ+(0, 0, 0) state depleted by the depletion laser, there will be a reduction in
the detected probe LIF when the depletion laser in unblocked as compared to when
the depletion laser is blocked. The depletion spectroscopy setup was calibrated with
the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band where depletion of the measured LIF was
clearly visible. The calibration also indicated that at the depletion laser power used,
the transitions were power broadened to a level where both spin-rotation components
of the 𝑁 rotational level, |𝑁, 𝐽 = 𝑁 + 𝑆⟩ and |𝑁, 𝐽 = 𝑁 − 𝑆⟩, were depleted.

𝑋2Σ+ 0,0,0 | ۧ𝑁, 𝐽

𝐴2Π Τ1 2(0,0,0) 17.68

PMT
Deplete ground state

Probe

Figure 6.15: Depletion spectroscopy setup. A CBGB of YbOH is produced in
the CBGB source (Ch. 3). The extracted molecular beam first passes through a
depletion laser which depletes the population of molecules in the |𝑁, 𝐽⟩ level of the
𝑋̃2Σ+(0, 0, 0) state. The depletion laser is turned on and off with a mechanical shutter
for alternating molecular beam pulses. Following the depletion, the molecular beam
passes through a probe beam, a laser beam resonant with a transition in [17.68]
band. If the transition in the [17.68] band originates from the |𝑁, 𝐽⟩ level of
the 𝑋̃2Σ+(0, 0, 0) state, the fluorescence from the probe will be reduced when the
depletion laser is on.

The spin-rotation combination difference matches with the 𝑋̃2Σ+(0, 0, 0) state pro-
vide ground state assignments for the [17.68] transitions involved in the combination
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difference match. Therefore, we used these assignments as a guide for which |𝑁, 𝐽⟩
level of the 𝑋̃2Σ+(0, 0, 0) state to deplete and which [17.68] transitions to probe. A
summary of the [17.68] depletion measurements is presented in Table 6.2, including
the [17.68] transitions probed, the ground state assignment from the combination
differences, which line of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band was used for
depletion, and if depletion was seen. No depletion was seen for any of the [17.68]
transitions probed, indicating that the combination differences involving those tran-
sitions are just happenstance.

Table 6.2: Summary of [17.68] depletion measurements.

[17.68] Line Ground State Depletion Line𝑏 Depletion?

(cm−1) Assignment (𝑁′′, 𝐽′′)𝑎

17682.4207 𝑁′′ = 2, 𝐽′′ = 1.5 𝑄𝑅12(2), 𝑄𝑄11(2) No

17684.7094 𝑁′′ = 2, 𝐽′′ = 1.5 𝑄𝑅12(2) No

17684.7155 𝑁′′ = 2, 𝐽′′ = 2.5 𝑄𝑅12(2), 𝑄𝑄11(2) No

17682.1071 𝑁′′ = 3, 𝐽′′ = 3.5 𝑄𝑅12(3), 𝑄𝑄11(3) No

17682.0972 𝑁′′ = 3, 𝐽′′ = 2.5 𝑄𝑅12(3), 𝑄𝑄11(3) No

17685.3197 𝑁′′ = 3, 𝐽′′ = 3.5 𝑄𝑅12(3), 𝑄𝑄11(3) No

𝑎 Ground state assignments were made using the combination differences
with the 𝑋̃2Σ+(0, 0, 0) state.
𝑏 The 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) transitions were used for depletion. Line
positions from Ref. [116].

Discussion of [17.68] measurements
The absence of depletion confirms that the combination difference matches involving
the 𝑁 = 2 and 𝑁 = 3 spin rotation splittings in the 𝑋̃2Σ+(0, 0, 0) state are incorrect.
Therefore, there are no combination difference matches with any of the 𝑁 = 0 −
3 levels of the 𝑋̃2Σ+(0, 0, 0) state in the [17.68] spectrum. This also puts the
other spin-rotation splitting matches into question. The lack of depletion, incorrect
combination differences, and a lack of combination differences involving splittings
between different rotational levels in the 𝑋̃2Σ+(0, 0, 0) state, provide strong evidence
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that the [17.68] band does not originate from the 𝑋̃2Σ+(0, 0, 0) state as previously
assigned [135]. Therefore, the combination difference matches found between
the [17.68] splittings and the 𝑋̃2Σ+(0, 0, 0) state energy levels are just due to
happenstance.

The group of Michael Heaven confirmed that the [17.68] band does indeed belong
to YbOH, as opposed to a contaminant such as YbO or YbOCH3, with resonant
enhanced multi-photon ionization (REMPI) spectroscopy16. Therefore, the [17.68]
band likely originates from an excited state in YbOH, most likely an excited vibra-
tional level of the 𝑋̃2Σ+ state. This would explain the lack of combination differences
with rotational splittings in the 𝑋̃2Σ+(0, 0, 0) state as higher vibrational states will
have different rotational constants. Additionally, all of the accidental spin rotation
splitting matches indicate that the ground state of the [17.68] band should have a
spin-rotation splitting (or other splitting) similar to that of the 𝑋̃2Σ+(0, 0, 0) state.
The spin-rotation splittings of the 𝑋̃2Σ+(0, 1, 0) state are expected to be similar to
that of the 𝑋̃2Σ+(0, 0, 0) state. Additionally, the bending angular momentum in the
𝑋̃2Σ+(0, 1, 0) state results in a reduced spin-rotation splitting in the 𝑁 = 1 state
(there is no 𝑁 = 0 state), see Section 2.7. The spin-rotation splitting for higher 𝑁
asymptotically approaches the linear case with increasing 𝑁 . This would account
for the lack of accidental 𝑁 = 1 and 𝑁 = 0 spin-rotation matches in the combination
differences. All this points to the [17.68] band originating from a 𝑋̃2Σ+(0, 1, 0)
ground state.

The experimental measurements of the [17.68] band presented here suggest that the
[17.68] band is actually a transition from the 𝑋̃2Σ+(0, 1, 0) state to an excited vi-
bronic state at≈18000 cm−1(here called the [18.00] state),𝑇0

(
𝑋̃2Σ+(0, 1, 0)

)
= 319

cm−1 [135]. This tentative re-assignment17 could be consistent with the previous
DLIF measurements as the decay from [18.00] → 𝑋̃2Σ+(0, 0, 0) would be over-
lapped with the decay of the strong3𝑃1 −1 𝑆0 atomic Yb transition at 17992.007
cm−1 which was excited by the amplified stimulated emission of the pulsed dye
laser [135]. Experiments aimed at confirming this assignment by measuring DLIF
to the blue of the excitation of the [17.68] band at 17680 cm−1 with a cw laser are
currently underway.

16Private communication from Michel Heaven.
17Arian Jadbabaie played a significant role in determining this assignment.
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FM spectroscopy of the [17.64] band
The in-phase FM absorption spectrum of the [17.64] band of YbOH is presented in
Fig. 6.16. The spectral patterns in the [17.64] band are much different from that of
the [17.68] band. Most importantly, there is no “gap” in the spectrum. There seem
to be three distinct sections in the [17.64] spectrum: a section to the red (second
panel from top in Fig. 6.16) which is comprised of the strongest and most congested
lines which resemble a red degraded bandhead; a middle section (third panel from
top in Fig. 6.16) which is comprised of four weak doublets; and a section to the
blue (bottom panel in Fig. 6.16). The blue section of the spectrum has two sets of
five lines which seem to be comprised of a pair of doubles followed by a single line.
The lines in the blue region of the spectrum are also larger in intensity than those in
the middle section yet smaller than the large lines in the red section of the spectrum.
There also is a weak line to the red of the red section of the spectrum that may be
one on the low 𝐽 lines of a 𝑃 branch.

Just as with the [17.68] state, combination differences between the [17.64] line
spacings and the energy levels of the 𝑋̃2Σ(0, 0, 0) state were determined. However,
in contrast to the [17.68] spectrum, several [17.64] line splittings matched rotational
splittings in the 𝑋̃2Σ(0, 0, 0) state. There were several spin-rotation splitting matches
with the [17.64] line splittings as well, though many of them contradicted each
other. Additionally, there are several strong and several weak lines which had no
combination difference matches. Ultimately, no definitive assignments were made
using the combination differences.

Depletion spectroscopy was performed on one line the the [17.64] spectrum, the line
at 17639.1319 cm−1. The combination differences assign the ground state of this line
to the |𝑁 = 2, 𝐽 = 2.5⟩ level of the 𝑋̃2Σ(0, 0, 0) state which was depleted by driving
the 𝑄𝑄11(2) line of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) transition. No depletion
was observed. As with the [17.68] band we believe that this lack of depletion and
assignments from the combination differences indicate that the [17.64] band may
also originate from the 𝑋̃2Σ(0, 1, 0) state. However, this claim is slightly more
speculative than that made about the [17.68] state as a depletion measurement of
only one line in the [17.64] band was taken.
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Figure 6.16: In-phase FM absorption spectrum of the [17.64] band. In addition to
a view of the entire [17.64] spectrum (top panel), a closer view of the red section
of the spectrum (panel second from top), the middle of the spectrum (panel second
from bottom), and the blue section of the spectrum (bottom panel) are also shown.
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C h a p t e r 7

Relevance of This Work to EDM Searches with YbOH

This dissertation describes the cryogenic buffer gas production and high-resolution
spectroscopy of ytterbium monohydroxide, YbOH, with the ultimate aim of devel-
oping next generation CP-violation experiments with cold polyatomic molecules.
These experimental efforts are still a work in progress, and I will defer detailed
discussions of these efforts to the future dissertations and manuscripts of my col-
leagues, who will perform this work. However, to provide a larger context for the
work described here, I will conclude by providing a brief overview of the current
status of these experiments as well as some “lessons learned” which may be of
benefit to future students.

The NMQM apparatus

The 4 K CBGB source described in this dissertation will serve as the molecular
source for the NMQM experiment, providing cold, high-intensity beams of YbOH
molecules. At the time of writing, initial spin precession tests on the ground state of
YbOH have been performed in the beam extension region of the 4 K CBGB source1.
Additionally, the first-generation NMQM science chamber, and associated optical
and electromagnetic field components, are under construction. This science chamber
will be integrated with the CBGB source, replacing or extending the current beam
extension. The selection of non-magnetic vacuum components has been completed2

and three-layer magnetic shields3 have been fabricated and are under assembly. The
shields will soon be integrated with the 4 K CBGB source and NMQM science
chamber.

Ongoing and future spectroscopy

As described in this dissertation, many of the prerequisite spectroscopic studies of
YbOH have already been completed. Characterization of the 𝑋̃2Σ+(0, 1, 0) science
state, which is critical for future eEDM and NMQM measurements with YbOH, is
currently underway. At the time of writing, this state has been observed in the 4 K
CBGB source by driving the extremely weak, symmetry-forbidden 𝐴̃2Π1/2(0, 0, 0)−

1These tests were carried out by Arian Jadbabaie and Yuiki Takahashi.
2The selections were made in collaboration with Arian Jadbabaie and Chandler Conn.
3The magnetic shields were designed by Chandler Conn.
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𝑋̃2Σ+(0, 1, 0) transition of the 174YbOH isotopologue and recording the off-diagonal
fluorescence at high resolution. From this spectrum, initial estimates of the molecu-
lar parameters of the 𝑋̃2Σ+(0, 1, 0) state have been obtained. Additionally, the stark
spectroscopy of selected lines of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 1, 0) transition have
been performed.

Our ability to observe the extremely weak 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 1, 0) band,
which is ∼ 1000 times weaker than the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) origin band,
is enabled by a series of technical features of the 4 K CBGB source. These features
include: 1.) cryogenic buffer gas production of cold, bright YbOH beams, 2.)
isotopologue-resolved laser enhancement of YbOH production including increased
production of excited, athermal vibrational populations, 3.) blackening and light
control in the beam extension region, 4.) increased cryogenic and mechanical pump-
ing to prevent beam attenuation, 5.) optimization of fluorescence light collection
and filtering. The high-sensitivity fluorescence, FM absorption (Ch. 6), and novel
technique utilizing laser enhancement for isotopologue resolution (Ch. 5) have
been essential for the measurement and interpretation of the weak, congested, over-
lapped, and/or perturbed bands of YbOH, such as the 𝐴̃2Π1/2(0, 0, 0)−𝑋̃2Σ+(0, 1, 0),
𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0), [17.68], and [17.64] bands of 174YbOH and the
𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) bands of 171,173YbOH. These capabilities and tech-
niques will become even more critical, if not essential, for the investigation of the
bending modes and perturbed excited states of the 173YbOH isotopologue, the iso-
topologue with which the NMQM measurement will be performed. The success of
the 4 K CBGB source as a high-sensitivity, high-resolution spectrometer will hope-
fully serve as an example and a guide for future cold, gas-phase, high-resolution
spectrometers.

State preparation, readout, and spin precession

In order to perform an eEDM or NMQM experiment, transitions which can be uti-
lized for state preparation and readout must also be characterized. To be utilized
for state preparation or readout, a transition must originate from the 𝑋̃2Σ+(0, 1, 0)
state. The [17.68] and [17.64] bands recorded in this work may be used for state
preparation and readout. Though transition assignments and the molecular param-
eters of the states involved in these transitions were not determined here, this work
provides extremely compelling evidence that these states do not originate from the
𝑋̃2Σ+(0, 0, 0) state, as previously assigned. Instead we expect these transitions
to originate from the 𝑋̃2Σ+(0, 1, 0) state. Experiments to definitively determine
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this are currently being designed. Additionally, if these transitions do originate
from the 𝑋̃2Σ+(0, 1, 0) state, then combination differences with the energy levels
of the 𝑋̃2Σ+(0, 1, 0) state will allow the assignment of the spectral features. Com-
bination differences using the initial estimates of the molecular parameters of the
𝑋̃2Σ+(0, 1, 0) state are promising, but tentative.

When designing state preparation and readout schemes, the energy levels of the
molecular state must be accurately modeled in magnetic and electric fields. To
achieve this, the molecular parameters of the state in question must be known to high
precision. The parameters of the 𝑋̃2Σ(0, 0, 0) state of 174YbOH were determined
to high precision in Ch. 4 and used to design the state preparation and readout
schemes in the initial spin precession tests mentioned above. The parameters of
the 𝑋̃2Σ+(0, 0, 0) and 𝐴̃2Π1/2(0, 0, 0) states of 173YbOH were determined at high
resolution in Ch. 5. These parameters can be used to implement initial ground
state spin precession tests with 173YbOH, as well as estimate the parameters of the
173YbOH bending mode for prototyping and simulating NMQM state preparation
and readout.

Laser cooling of YbOH

In order to achieve order of magnitude improvements in future eEDM sensitivity,
both high flux and long coherence times will be needed. The PolyEDM collabo-
ration aims to achieve this with the direct laser cooling and trapping of polyatomic
molecules. One-dimensional laser cooling of YbOH [54] has been demonstrated
by our PolyEDM collaborators in the Doyle group at Harvard. Three-dimensional
optical trapping and sub-doppler cooling have been demonstrated for the lighter,
isoelectronic, triatomic molecule CaOH [60]. Based on our collaborators’ experi-
ence trapping CaOH, it is believe that ∼ 10, 000 photons need to be scattered to slow
and trap YbOH. In the one-dimensional laser cooling of YbOH, the photon budget
was ∼ 500, which was accomplished by driving the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0)
transition, for which the PPMODR measurements of the 𝑋̃2Σ+(0, 0, 0) state are
detailed in Ch. 4, and repumping vibrational losses out of the 𝑋̃2Σ+(1, 0, 0),
𝑋̃2Σ+(2, 0, 0), and 𝑋̃2Σ+(0, 20, 0) states. High resolution DLIF measurements of
YbOH, in combination with quasi-diabatic ab initio vibronic calculations, [107]
indicate that vibrational losses to the 𝑋̃2Σ+(0, 1, 0), 𝑋̃2Σ+(1, 1, 0), 𝑋̃2Σ+(1, 20, 0),
and 𝑋̃2Σ+(3, 0, 0) states must be addressed in order to scatter ∼ 10, 000 photons.
The FM spectroscopy of the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band, recorded here
(Ch. 6), identified the repumping transitions for the 𝑋̃2Σ+(3, 0, 0) state. This FM
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study also demonstrated the utility of the FM technique for measuring repumping
transitions. Additionally, this study confirmed that the laser-enhanced chemical
reactions do indeed provide large populations of excited vibrational states on which
spectroscopy can be performed. This FM technique and the chemical enhancement
will allow the other repumping transitions to be identified quickly and efficiently.
This technique is not exclusive to YbOH and can be utilized to identify repumping
transitions for other molecules as well.

The negative spin rotation parameters of the 𝑋̃2Σ+(0, 0, 0) and 𝑋̃2Σ+(3, 0, 0) states
determined in this work indicate the existence of perturbing states in YbOH derived
from a Yb+ 4 𝑓 136𝑠𝜎2 electronic configuration. The isoelectronic molecule YbF
contains states of this nature as well [122, 124, 158], and experiments have found
that decays to these states become relevant at the 10−5 level [158]. Therefore, losses
to low-lying perturbing states will most likely need to be addressed if YbOH is to be
laser cooled and magneto-optically trapped. Though transitions from these states to
other excited states of YbOH may be weak, implementing a multi-pass (∼ 10 passes)
FM absorption setup may provide the needed sensitivity to measure these transitions.
Additionally, since the energies involved in the laser-enhanced chemical reactions
are larger than the energies of these perturbing states, the chemical enhancement
may naturally provide the needed population on which the spectroscopy can be
performed.

Finally, while the first-generation NMQM experiment will be performed in a beam,
future generations may benefit from the enhanced state preparation and readout ef-
feciency and longer coherence times provided by photon cycling and laser cooling.
The measurements of the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) transitions of the odd iso-
topologues have enabled rotationally closed photon cycling transitions in 171YbOH
and 173YbOH to be identified. At the time if writing, rotationally closed photon
cycling in the 171YbOH and 173YbOH isotopologues has been accomplished4.

4The work implementing photon cycling in the odd isotopologues was carried out by Yi Zeng.
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A p p e n d i x A

Measured YbOH Transitions

This appendix provides lists of all the YbOH transitions measured or used in this
work.
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A.1 Pure rotational spectra of the 𝑋̃2Σ+(0, 0, 0) state

Table A.1: Rotational transitions in the 𝑋̃2Σ+(0, 0, 0) state of YbOH measured with
PPMODR spectroscopy. Also presented are the differences between the observed
(Obs.) and calculated (Calc.) transition wavenumbers. The calculated wavenumbers
were obtained using the optimized parameters from the fit to the observed transition
wavenumbers.

𝑁′′, 𝐽′′, 𝐹′′ 𝑁′, 𝐽′, 𝐹′ Obs. (MHz)𝑎 Calc. (MHZ) Obs. − Calc. (MHz)

3, 7/2, 4 4, 9/2, 5 58745.1654 58745.1640 0.0014

3, 7/2, 3 4, 9/2, 4 58745.2594 58745.2642 -0.0048

3, 5/2, 3 4, 7/2, 4 58826.0166 58826.0104 0.0062

3, 5/2, 2 4, 7/2, 3 58826.1460 58826.1334 0.0126

3, 5/2, 3 4, 7/2, 3 58827.5935 58827.6040 -0.0105

4, 9/2, 5 5, 11/2, 5 73438.2470 73438.2575 -0.0105

4, 9/2, 5 5, 11/2, 6 73440.5890 73440.5464 0.0426

4, 9/2, 4 5, 11/2, 5 73440.5890 73440.6109 -0.0219

4, 7/2, 3 5, 9/2, 4 73521.3229 73521.3677 -0.0448

4, 7/2, 4 5, 9/2, 5 73521.3229 73521.2922 0.0307

5, 11/2, 6 6, 13/2, 7 88135.2297 88135.2115 0.0182

5, 11/2, 5 6, 13/2, 6 88135.2297 88135.2565 -0.0268

5, 9/2, 5 6, 11/2, 6 88215.8438 88215.8150 0.0288

5, 9/2, 4 6, 11/2, 5 88215.8438 88215.8662 -0.0224

6, 13/2, 7 7, 15/2, 8 102829.0317 102829.0140 0.0177

6, 13/2, 6 7, 15/2, 7 102829.0317 102829.0472 -0.0155

6, 11/2, 6 7, 13/2, 7 102909.4589 102909.4405 0.0184

6, 11/2, 5 7, 13/2, 6 102909.4589 102909.4776 -0.0187
𝑎Average error of 10 kHz
This table was reproduced from [93].
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A.2 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) bands of 171,173YbOH

Table A.2: The transition wavenumbers and assignments for
the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of 173YbOH. Also
presented are the differences between the observed (Obs.)
and calculated (Calc.) transition wavenumers. The calcu-
lated values were obtained using the optimized parameters
of the fit. Here 𝑝 indicates the parity of the molecular state.
This table is reproduced from Ref. [129] with permission
from AIP.

Lines 𝑁′′, 𝐺′′, 𝐹′′, 𝑝 𝐽′, 𝐹′, 𝑝 Obs. Obs.− Calc.

(−17300 cm−1) (MHz)

𝑂𝑃12 2, 2, 4, + 0.5, 3, - 22.0363 -13

2, 2, 2, + 0.5, 3, - 22.0504 -1

2, 2, 3, + 0.5, 3, - 22.0566 -8

2, 2, 2, + 0.5, 2, - 22.0771 29

2, 2, 3, + 0.5, 2, - 22.0826 0

3, 2, 5,- 1.5, 4, + 21.107 5

3, 2, 4, - 1.5, 4, + 21.1258 -33

3, 2, 4, - 1.5, 3, + 21.1303 -45

3, 2, 3, - 1.5, 2, + 21.1408 -24

3, 2, 2, - 1.5, 1, + 21.146 -28

4, 2, 6, + 2.5, 5, - 20.1905 -24

4, 2, 5, + 2.5, 4, - 20.2117 22

4, 2, 4, + 2.5, 3, - 20.2202 12

𝑂𝑃13 2, 3, 2, + 0.5, 3, - 22.2251 -6

Continued on next page
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Table A.2 – Continued from previous page

Lines 𝑁′′, 𝐺′′, 𝐹′′, 𝑝 𝐽′, 𝐹′, 𝑝 Obs. Obs. -Calc.

(−17300 cm−1) (MHz)

2, 3, 3, + 0.5, 3, - 22.2407 -7

2, 3, 4, + 0.5, 3, - 22.2463 -14

2, 3, 3, + 0.5, 2, - 22.2664 -8

3, 3, 1, - 1.5, 2, + 21.298 -3

3, 3, 2, - 1.5, 2, + 21.309 -10

3, 3, 5, - 1.5, 4, + 21.3176 17

3, 3, 4, - 1.5, 3, + 21.3223 32

4, 3, 2, + 2.5, 2, - 20.39 -15

4, 3, 3, + 2.5, 3, - 20.39 -33

4, 3, 4, + 2.5, 4, - 20.3951 -9

4, 3, 4, + 2.5, 3, - 20.402 -16

4, 3, 3, + 2.5, 2, - 20.402 -9

4, 3, 5, + 2.5, 4, - 20.402 -28

𝑃𝑄12 +𝑃 𝑃12 1, 2, 1, - 0.5, 2, + 23.4572 37

1, 2, 3, - 0.5, 2, + 23.4654 35

1, 2, 2, - 0.5, 3, + 23.4916 45

2, 2, 1, + 1.5, 2, - 23.4572 9

2, 2, 4, + 1.5, 4, - 23.4725 0

2, 2, 3, + 1.5, 3, - 23.4783 58

3, 2, 5, - 2.5, 5, + 23.4877 13

Continued on next page
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Table A.2 – Continued from previous page

Lines 𝑁′′, 𝐺′′, 𝐹′′, 𝑝 𝐽′, 𝐹′, 𝑝 Obs. Obs. -Calc.

(−17300 cm−1) (MHz)

3, 2, 4, - 2.5, 4, + 23.4916 34

4, 2, 4, + 3.5, 4, - 23.5181 42

4, 2, 6, + 3.5, 6, - 23.5181 46

4, 2, 5, + 3.5, 5, - 23.5212 28

5, 2, 7, - 4.5, 7, + 23.5642 80

5, 2, 5, - 4.5, 5, + 23.5642 46

6, 2, 7, + 5.5, 7, - 23.6277 35

𝑃𝑄13 +𝑃 𝑃13 1, 3, 2, - 0.5, 3, + 23.6474 1

1, 3, 3, - 0.5, 2, + 23.6762 21

2, 3, 2, + 1.5, 1, - 23.6535 29

2, 3, 3, + 1.5, 2, - 23.6633 56

2, 3, 4, + 1.5, 2, - 23.6672 28

3, 3, 2, - 1.5, 3, + 23.6535 -3

3, 3, 3, - 2.5, 3, + 23.6701 21

3, 3, 4, - 2.5, 2, + 23.6762 -4

3, 3, 6, - 2.5, 3, + 23.6802 10

3, 3, 5, - 2.5, 4, + 23.6802 -11

4, 3, 5, + 3.5, 4, - 23.707 5

4, 3, 6, + 3.5, 5, - 23.7114 9

4, 3, 7, + 3.5, 6, - 23.7114 1

Continued on next page
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Table A.2 – Continued from previous page

Lines 𝑁′′, 𝐺′′, 𝐹′′, 𝑝 𝐽′, 𝐹′, 𝑝 Obs. Obs. -Calc.

(−17300 cm−1) (MHz)

5, 3, 4, - 4.5, 3, + 23.7396 8

5, 3, 5, - 4.5, 4, + 23.7465 -4

5, 3, 6, - 4.5, 5, + 23.7534 12

5, 3, 7, - 4.5, 6, + 23.758 17

5, 3, 8, - 4.5, 7, + 23.758 -11

𝑄𝑅12 +𝑄 𝑄12 0, 2, 2, + 0.5, 3, - 23.5181 53

1, 2, 3, - 1.5, 4, + 23.5642 9

1, 2, 2, - 1.5, 3, + 23.5879 -35

1, 2, 1, - 1.5, 1, + 23.5879 18

2, 2, 4, + 2.5, 5, - 23.6277 -10

2, 2, 3, + 2.5, 4, - 23.6474 -5

2, 2, 2, + 2.5, 3, - 23.6474 -26

3, 2, 5, - 3.5, 6, + 23.707 -36

3, 2, 4, - 3.5, 5, + 23.7256 -6

3, 2, 1, - 3.5, 1, + 23.7351 -22

4, 2, 6, + 4.5, 7 ,23.802 -70

4, 2, 2, + 4.5, 2 ,23.8362 -38

5, 2, 7, - 5.5, 8, + 23.9167 11

5, 2, 6, - 5.5, 7, + 23.9315 -40

5, 2, 5, - 5.5, 6, + 23.9387 -24

Continued on next page
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Table A.2 – Continued from previous page

Lines 𝑁′′, 𝐺′′, 𝐹′′, 𝑝 𝐽′, 𝐹′, 𝑝 Obs. Obs. -Calc.

(−17300 cm−1) (MHz)

5, 2, 4, - 5.5, 5, + 23.9387 -44

5, 2, 3, - 5.5, 3, + 23.948 -16

10, 2, 9, + 10.5, 9, - 24.7546 20

10, 2, 8, + 10.5, 8, - 24.7546 -26

𝑄𝑅13 +𝑄 𝑄13 0, 3, 3, + 0.5, 2, - 23.7305 1

1, 3, 4, - 1.5, 4, + 23.7534 14

1, 3, 4, - 1.5, 3, + 23.758 6

1, 3, 2, - 1.5, 1, + 23.7734 9

1, 3, 3, - 1.5, 3, + 23.7802 4

1, 3, 3, - 1.5, 2, + 23.7907 -6

2, 3, 5, + 2.5, 5, - 23.8189 7

2, 3, 4, + 2.5, 4, - 23.8362 53

2, 3, 4, + 2.5, 3, - 23.844 -18

2, 3, 3, + 2.5, 2, - 23.8502 7

3, 3, 6, - 3.5, 6, + 23.9012 12

3, 3, 5, - 3.5, 5, + 23.9167 23

3, 3, 4, - 3.5, 4, + 23.9219 44

4, 3, 7, + 4.5, 7, - 23.9985 -14

4, 3, 2, + 4.5, 3, - 24.0052 4

4, 3, 1, + 4.5, 2, - 24.0052 -4

Continued on next page
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Table A.2 – Continued from previous page

Lines 𝑁′′, 𝐺′′, 𝐹′′, 𝑝 𝐽′, 𝐹′, 𝑝 Obs. Obs. -Calc.

(−17300 cm−1) (MHz)

4, 3, 6, + 4.5, 6, - 24.0111 -26

4, 3, 5, + 4.5, 5, - 24.0168 -10

4, 3, 4, + 4.5, 4, - 24.0168 -38

5, 3, 8, - 5.5, 8, + 24.1125 -20

5, 3, 2, - 5.5, 3, + 24.1192 47

5, 3, 7, - 5.5, 7, + 24.1254 21

5, 3, 6, - 5.5, 6, + 24.1305 20

5, 3, 5, - 5.5, 5, + 24.1305 -22

9, 3, 11, - 9.5, 11, + 24.7284 -3

9, 3, 10, - 9.5, 10, + 24.7411 19

9, 3, 9, - 9.5, 9, + 24.7411 -11

9, 3, 8, - 9.5, 8, + 24.7411 11

𝑅𝑅12 0, 2, 2, + 1.5, 3 ,24.9356 -7

0, 2, 2, + 1.5, 2 ,24.9356 -36

0, 2, 2, + 1.5, 1 ,24.9432 -11

1, 2, 1, - 2.5, 2, + 25.9187 3

1, 2, 1, - 2.5, 1, + 25.9239 19

1, 2, 3, - 2.5, 3, + 25.9239 1

1, 2, 1, - 2.5, 0, + 25.9272 24

1, 2, 3, - 2.5, 4, + 25.9272 -7

Continued on next page
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Table A.2 – Continued from previous page

Lines 𝑁′′, 𝐺′′, 𝐹′′, 𝑝 𝐽′, 𝐹′, 𝑝 Obs. Obs. -Calc.

(−17300 cm−1) (MHz)

1, 2, 2, - 2.5, 3, + 25.9448 18

2, 2, 0, + 3.5, 1, - 26.93 -7

2, 2, 4, + 3.5, 5, - 26.9355 -36

2, 2, 1, + 3.5, 2, - 26.9355 -18

2, 2, 1, + 3.5, 1, - 26.9401 -5

2, 2, 2, + 3.5, 3, - 26.9456 -16

2, 2, 3, + 3.5, 4, - 26.9509 -17

𝑅𝑅13 0, 3, 3, + 1.5, 3, - 25.1245 8

0, 3, 3, + 1.5, 4, - 25.1398 -21

1, 3, 4, - 2.5, 4, + 26.1179 43

1, 3, 4, - 2.5, 5, + 26.1331 -8

1, 3, 3, - 2.5, 4, + 26.1383 -13

2, 3, 3, - 3.5, 4, + 27.1351 -13

2, 3, 5, - 3.5, 6, + 27.144 -1

𝑂𝑃12 and 𝑂𝑃13 transitions measured via LIF:

average error of 0.0005 cm−1.

Other transitions measured via absorption spectroscopy:

average error of 0.001 cm−1.

Std. dev. of fit: 25 MHz (0.00082 cm−1); (128 lines to 94 features).
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Table A.3: The transition wavenumbers and assignments for
the 𝐴̃2Π1/2(0, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of 171YbOH. Also
presented are the differences between the observed (Obs.)
and calculated (Calc.) transition wavenumers. The calcu-
lated values were obtained using the optimized parameters
of the fit. Here 𝑝 indicates the parity of the molecular state.
This table was reproduced from Ref. [129] with permission
from AIP.

Lines 𝑁′′, 𝐺′′, 𝐹′′, 𝑝 𝐽′, 𝐹′, 𝑝 Obs. Obs.− Calc.

(−17300 cm−1) (MHz)

𝑂𝑃11 2, 1, 1, + 0.5, 0, - 22.1144 1

2, 1, 2, + 0.5, 1, - 22.1467 35

3, 1, 2, - 1.5, 1, + 21.1929 -5

3, 1, 3, - 1.5, 2, + 21.2133 -4

4, 1, 3, + 2.5, 2, - 20.2756 -27

4, 1, 4, + 2.5, 3, - 20.2969 -6

𝑂𝑃10 2, 0, 2, + 0.5, 1, - 22.376 5

3, 0, 3, - 1.5, 2, + 21.4437 -4

4, 0, 4, + 2.5, 3, - 20.5263 -39

𝑃𝑃11 +𝑃 𝑄11 1, 0, 2 - 0.5, 1, + 23.5567 -25

2, 1, 2, + 1.5, 2, - 23.55 12

2, 1, 3, + 1.5, 2, - 23.5567 42

2, 1, 1, + 1.5, 1, - 23.5641 1

3, 1, 3, - 2.5, 3, + 23.5641 53

Continued on next page
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Table A.3 – Continued from previous page

Lines 𝑁′′, 𝐺′′, 𝐹′′, 𝑝 𝐽′, 𝐹′, 𝑝 Obs. Obs. -Calc.

(−17300 cm−1) (MHz)

3, 1, 4, - 2.5, 3, + 23.5706 32

3, 1, 2, - 2.5, 2, + 23.5769 40

4, 1, 4, + 3.5, 4, - 23.5905 -18

4, 1, 5, + 3.5, 4, - 23.5997 0

4, 1, 3, + 3.5, 3, - 23.6034 7

4, 1, 4, + 3.5, 3, - 23.6045 -50

5, 1, 5, - 4.5, 5, + 23.6357 0

5, 1, 4, - 4.5, 4, + 23.647 12

6, 1, 6, + 5.5, 6, - 23.6966 16

6, 1, 5, + 5.5, 5, - 23.7056 -7

6, 1, 7, + 5.5, 6, - 23.7088 33

7, 1, 7, - 6.5, 7, + 23.7715 -27

7, 1, 6, - 6.5, 6, + 23.7802 -22

𝑃𝑃10 +𝑃 𝑄10 1, 0, 1, - 0.5, 1, + 23.7836 -6

2, 0, 2, + 1.5, 2, - 23.7802 2

3, 0, 3, - 2.5, 3, + 23.7836 9

4, 0, 4, + 3.5, 4, - 23.8212 -12

4, 0, 4, + 3.5, 3, - 23.8354 -39

5, 0, 5, - 4.5, 5, + 23.8665 4

5, 0, 5, - 4.5, 4, + 23.8824 24

Continued on next page
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Lines 𝑁′′, 𝐺′′, 𝐹′′, 𝑝 𝐽′, 𝐹′, 𝑝 Obs. Obs. -Calc.

(−17300 cm−1) (MHz)

6, 0, 6, + 5.5,6, - 23.928 30

6, 0, 6, + 5.5, 5, - 23.9424 2

𝑄𝑄11 +𝑄 𝑅11 0, 1, 1, + 0.5, 1, - 23.622 25

1, 1, 2, - 1.5, 2, + 23.6738 34

2, 1,2, + 2.5, 2, - 23.7164 -1

2, 1,2, + 2.5, 3, - 23.7329 -33

2, 1,3, + 2.5, 3, - 23.7384 -40

3, 1, 3, - 3.5, 3 + 23.7969 -41

3, 1, 3, - 3.5, 4, + 23.8157 10

3, 1, 4, - 3.5, 4, + 23.8212 -40

4, 1, 4, + 4.5, 4, - 23.8939 39

4, 1, 3, + 4.5, 4, - 23.8939 -50

4,1, 4, + 4.5, 5,- 23.9126 5

4, 1, 5, + 4.5, 5,- 23.9218 22

5, 1, 4,- 5.5, 5, + 24.0045 8

5, 1, 5, - 5.5, 5, + 24.0086 0

5, 1, 5, - 5.5, 6, + 24.0258 16

5, 1, 6, - 5.5, 6, + 24.0364 32

𝑄𝑄10 +𝑄 𝑅10 0, 0, 0, + 0.5, 1, - 23.8472 -46

1, 0, 1, - 1.5, 1, + 23.8816 51

Continued on next page



188

Table A.3 – Continued from previous page

Lines 𝑁′′, 𝐺′′, 𝐹′′, 𝑝 𝐽′, 𝐹′, 𝑝 Obs. Obs. -Calc.

(−17300 cm−1) (MHz)

1, 0, 1, - 1.5, 2, + 23.8989 7

2, 0, 2, + 2.5, 2, - 23.9472 14

2, 0, 2, + 2.5, 3, - 23.9647 11

3, 0, 3, - 3.5, 3, + 24.0294 15

3, 0, 3, - 3.5, 4, + 24.0466 23

𝑅𝑅11 0, 1, 1, + 1.5, 2, - 25.0257 14

1, 1,2, - 2.5, 3, + 26.0203 -37

1, 1, 1, - 2.5, 2, + 26.0323 4

2, 1,3, + 3.5, 4, - 27.033 -22

2, 1, 2, + 3.5, 3, - 27.0432 3

3, 1,4, - 4.5, 5, + 28.0612 -16

3, 1, 3, - 4.5, 4, + 28.0703 17

𝑅𝑅10 0, 0, 0, + 1.5, 1, - 25.2687 46

1, 0, 1, - 2.5, 2, + 26.2617 -21

2, 0, 1, + 2.5, 3, - 27.2721 -39

𝑂𝑃11 and 𝑂𝑃10 transitions measured via LIF:

average error of 0.0005 cm−1.

Other transitions measured via absorption spectroscopy:

average error of 0.001 cm−1.

Std. dev. of fit: 27 MHz (0.00089 cm−1); (70 lines to 65 features).
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A.3 𝐴̃2Π1/2(100) − 𝑋̃2Σ+(300) FM spectroscopy

Table A.4: The transition wavenumbers and assignments
for the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) band of 174YbOH
measured with in cell FM spectroscopy. Also presented
are the differences between the observed (Obs.) and cal-
culated (Calc.) transition wavenumbers. The calculated val-
ues were obtained using the optimized parameters from the
combined fit of both the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) and
𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) data [116]. Here 𝑝 indicates
the parity of the molecular state.

Lines 𝑁′′, 𝐽′′, 𝑝 𝐽′, 𝑝 Obs.𝑎 Obs.− Calc.

(cm−1) (MHz)

𝑂𝑃12 2, 1.5, + 0.5, - 16335.7340 15

𝑃𝑄12 2, 1.5, + 1.5, - 16337.2948 -4

3, 2.5, - 2.5, + 16337.3806 3

4, 3.5, + 3.5, - 16337.4909 1

5, 4.4, - 4.5,+ 16337.6261 -6

6, 5.5, + 5.5, - 16337.7863 -11

7, 6.5,- 6.5,+ 16337.9717 -10

8, 7.5, + 7.5, - 16338.1833 23

𝑃𝑃11 1, 1.5, - 0.5, + 16337.2431 9

2, 2.5, + 1.5, - 16337.3095 6

3, 3.5, - 2.5, + 16337.4005 -4

4, 4.5, + 3.5, - 16337.5166 -7

5, 5.5, - 4.5, + 16337.6577 -7

6, 6.5, + 5.5, - 16337.8237 -11

Continued on next page
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Table A.4 – Continued from previous page

Lines 𝑁′′, 𝐽′′, 𝑝 𝐽′, 𝑝 Obs.𝑎 Obs. -Calc.

(cm−1) (MHz)

7, 7.5, - 6.5 + 16338.0150 -6

8, 8.5, + 7.5, - 16338.2314 -1

𝑄𝑄11 0, 0.5, + 0.5, - 16337.1876 21

1, 1.5, - 1.5, + 16337.2004 4

2, 2.5, + 2.5, - 16337.2384 5

3, 3.5, - 3.5, + 16337.3004 -11

4, 4.5, + 4.5, - 16337.3875 -8

5, 5.5, - 5.5, + 16337.4993 2

6, 6.5, + 6.5, - 16337.6347 -10

7, 7.5, - 7.5, + 16337.7948 -11

8, 8.5, + 8.5, - 16337.9793 -9

9, 9.5, - 9.5, + 16338.1895 38

𝑄𝑅12 1, 0.5, - 0.5, + 16337.1922 17

2, 1.5, + 2.5, - 16337.2240 4

3, 2.5, - 3.5,+ 16337.2801 -16

4, 3.5, + 4.5, - 16337.3619 1

5, 4.5, - 5.5, + 16337.4674 -5

6, 5.5, + 6.5, - 16337.5974 -7

8, 7.5, + 8.5, - 16337.9305 -5

𝑅𝑅11 0, 0.5, + 1.5, - 16338.7486 9

Continued on next page
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Lines 𝑁′′, 𝐽′′, 𝑝 𝐽′, 𝑝 Obs.𝑎 Obs. -Calc.

(cm−1) (MHz)

1, 1.5, - 2.5, + 16339.8026 -6

Unassigned 16338.6793

Unassigned 16338.7399

Unassigned 16339.5994

𝑎Average error of 0.0003 cm−1.

RMS of combined fit with 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) data [116]:

25 MHz (0.00084 cm−1).

𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) transition 35 lines.

𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) transition 65 lines.



193

Table A.5: The transition wavenumbers and assignments
for the 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) band of 174YbOH
from Ref [116]. Also presented are the differences be-
tween the observed (Obs.) and calculated (Calc.) tran-
sition wavenumbers. The calculated values were obtained
using the optimized parameters from the combined fit of
both the 𝐴̃2Π1/2(1, 0, 0)−𝑋̃2Σ+(3, 0, 0) and 𝐴̃2Π1/2(1, 0, 0)−
𝑋̃2Σ+(0, 0, 0) data. Here 𝑝 indicates the parity of the molec-
ular state.

Lines 𝑁′′, 𝐽′′, 𝑝 𝐽′, 𝑝 Obs.𝑎 Obs.− Calc.

(cm−1) (MHz)

𝑂𝑃12 2, 1.5, + 0.5, - 17906.3830 35

3, 2.5, - 1.5, + 17905.4024 15

4, 3.5, + 2.5, - 17904.4382 8

5, 4.5, - 3.5, + 17903.4897 -7

6, 5.5, + 4.5, - 17902.5568 -29

𝑃𝑄12 1, 0.5, - 0.5, + 17907.8990 22

2, 1.5, + 1.5, - 17907.9442 29

3, 2.5, - 3.5,+ 17908.0046 6

4, 3.5, + 3.5, - 17908.0810 -24

5, 4.5, - 4.5, + 17908.1752 -8

6, 5.5, + 5.5, - 17908.2853 -5

7, 6.5, - 6.5, + 17908.4137 56

8, 7.5, + 7.5, - 17908.5533 -40

9, 8.5, - 8.5, + 17908.7132 -21

10, 9.5, + 9.5, - 17908.8897 0.3

Continued on next page
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Lines 𝑁′′, 𝐽′′, 𝑝 𝐽′, 𝑝 Obs.𝑎 Obs. -Calc.

(cm−1) (MHz)

11, 10.5, - 10.5, + 17909.0810 -31

12, 11.5, + 11.5, - 17909.2912 6

𝑃𝑃11 1, 1.5, - 0.5, + 17907.9028 15

2, 2.5, + 1.5, - 17907.9508 24

3, 3.5, - 2.5, + 17908.0145 19

4, 4.5, + 3.5, - 17908.0937 -8

5, 5.5, - 4.5, + 17908.1901 -7

6, 6.5, + 5.5, - 17908.3042 35

7, 7.5, - 6.5, + 17908.4335 43

8, 8.5, + 7.5, - 17908.5762 -40

9, 9.5, - 8.5, + 17908.7388 -21

10, 10.5, + 9.5, - 17908.9165 -43

11, 11.5, - 10.5, + 17909.1120 -28

12, 12.5, + 11.5, - 17909.3242 -9

13, 13.5, - 12.5, + 17909.5545 53

14, 14.5, + 13.5, - 17909.7992 47

𝑅𝑅11 2, 2.5, + 3.5, - 17911.5217 -34

3, 3.5, - 4.5, + 17912.5999 10

4, 4.5, + 5.5, - 17913.6912 -42

5, 5.5, - 6.5, + 17914.8019 -2

Continued on next page
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Lines 𝑁′′, 𝐽′′, 𝑝 𝐽′, 𝑝 Obs.𝑎 Obs. -Calc.

(cm−1) (MHz)

𝑄𝑄11 0, 0.5, + 0.5, - 17907.8571 15

1, 1.5, - 1.5, + 17907.8603 15

2, 2.5, + 2.5, - 17907.8793 10

3, 3.5, - 3.5, + 17907.9132 -25

4, 4.5, + 4.5, - 17907.9648 -4

5, 5.5, - 5.5, + 17908.0321 15

6, 6.5, + 6.5, - 17908.1130 -30

7, 7.5, - 7.5, + 17908.2113 -23

8, 8.5, + 8.5, - 17908.3256 -3

9, 9.5, - 9.5, + 17908.4542 -21

10, 10.5, + 10.5, - 17908.5992 -10

11, 11.5, - 11.5, + 17908.7604 24

12, 12.5, + 12.5, - 17908.9357 22

13, 13.5, - 13.5, + 17909.1231 -75

14, 14.5, + 14.5, - 17909.3319 14

15, 15.5, - 15.5, + 17909.5545 63

𝑄𝑅12 1, 0.5, - 1.5, + 17907.8571 41

2, 1.5, + 2.5, - 17907.8725 9

3, 2.5, - 3.5, + 17907.9036 -29

4, 3.5, + 4.5, - 17907.9535 22

Continued on next page
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Lines 𝑁′′, 𝐽′′, 𝑝 𝐽′, 𝑝 Obs.𝑎 Obs. -Calc.

(cm−1) (MHz)

5, 4.5, - 5.5, + 17908.0175 23

6, 5.5, + 6.5, - 17908.0953 -35

7, 6.5, - 7.5, + 17908.1908 -31

8, 7.5, + 8.5, - 17908.3035 21

9, 8.5, - 9.5, + 17908.4278 -45

10, 9.5, + 10.5, - 17908.5719 18

11, 10.5, - 11.5, + 17908.7297 30

12, 11.5, + 12.5, - 17908.9024 29

13, 12.5, - 13.5, + 17909.0869 -77

14, 13.5, + 14.5, - 17909.2931 13

𝑎Average error of 0.0005 cm−1.

RMS of combined fit with 𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) data:

25 MHz (0.00084 cm−1).

𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(3, 0, 0) transition, 35 lines.

𝐴̃2Π1/2(1, 0, 0) − 𝑋̃2Σ+(0, 0, 0) transitions 65 lines.
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A.4 [17.68] and [17.64] bands of 174 YbOH

Table A.6: Measured FM transition wavenumbers of the
[17.68] band of 174YbOH. All measured transition wavenum-
bers have a common ∼12 ± 3 MHz error in absolute fre-
quency. Errors reported are from the error in the zero-
crossing measurement of the in phase FM lineshape.

Transition Wavenumber (cm−1) Error (cm−1)

17682.8422 0.0003

17682.7940 0.0003

17682.5227 0.0004

17682.5171 0.0004

17682.4271 0.0004

17682.4207 0.0003

17682.2490 0.0004

17682.2404 0.0004

17682.1071 0.0004

17682.0972 0.0003

17682.0232 0.0004

17682.0110 0.0004

17681.8437 0.0004

17681.8353 0.0003

17681.8292 0.0004

17681.8219 0.0004

17681.7676 0.0004

Continued on next page
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Table A.6 – Continued from previous page

Transition Wavenumber (cm−1) Error (cm−1)

17681.7107 0.0004

17681.6929 0.0004

17681.6239 0.0004

17681.6099 0.0004

17681.6034 0.0003

17681.5930 0.0004

17681.5844 0.0003

17681.4323 0.0003

17681.4125 0.0003

17681.3016 0.0003

17681.2787 0.0004

17681.2658 0.0003

17681.1921 0.0004

17681.1821 0.0004

17681.1524 0.0011

17680.9758 0.0003

17684.0558 0.0003

17684.1530 0.0006

17684.3455 0.0003

17684.5641 0.0004

17684.5697 0.0004

Continued on next page
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Table A.6 – Continued from previous page

Transition Wavenumber (cm−1) Error (cm−1)

17684.7094 0.0005

17684.7155 0.0005

17685.1149 0.0003

17685.1238 0.0003

17685.3099 0.0003

17685.3197 0.0004

17685.5423 0.0004

17685.6539 0.0004

17685.6662 0.0014

17685.6924 0.0005

17685.7103 0.0005

17685.7224 0.0004

17685.9557 0.0005

17685.9689 0.0005

17686.1373 0.0003

17686.2797 0.0004

17686.3523 0.0004

17686.3668 0.0004

17686.6475 0.0004

17686.6641 0.0004

17687.0381 0.0002

Continued on next page
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Table A.6 – Continued from previous page

Transition Wavenumber (cm−1) Error (cm−1)

17687.0561 0.0003

17687.7913 0.0006

17687.4058 0.0004

17687.3853 0.0003

17680.9757 0.0003

17680.5414 0.0004

Table A.7: Measured FM transition wavenumbers of the
[17.64] band of 174YbOH. All measured transition wavenum-
bers have a common ∼12 ± 3 MHz error in absolute fre-
quency. Errors reported are from the error in the zero-
crossing measurement of the in phase FM lineshape.

Transition Wavenumber (cm−1) Error (cm−1)

17639.1217 0.0002

17639.1319 0.0003

17639.1388 0.0003

17639.1525 0.0003

17639.1615 0.0003

17639.1987 0.0003

17639.4283 0.0004

Continued on next page
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Transition Wavenumber (cm−1) Error (cm−1)

17639.4339 0.0004

17639.4917 0.0004

17639.4967 0.0004

17639.8509 0.0004

17639.8781 0.0004

17639.9196 0.0005

17640.1615 0.0003

17640.1718 0.0003

17640.4007 0.0004

17640.4182 0.0004

17640.6438 0.0005

17640.6651 0.0005

17640.7779 0.0005

17640.7832 0.0005

17640.8833 0.0006

17640.9134 0.0005

17638.9522 0.0003

17638.9036 0.0003

17638.8892 0.0003

17638.8713 0.0004

17638.8593 0.0003

Continued on next page
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Transition Wavenumber (cm−1) Error (cm−1)

17638.7352 0.0003

17638.7171 0.0017

17638.6976 0.0004

17638.6278 0.0003

17638.6125 0.0003

17638.4310 0.0003

17638.4120 0.0003

17638.3903 0.0004

17638.2794 0.0004

17638.2569 0.0004

17638.1744 0.0003

17638.1484 0.0003

17637.4855 0.0002

17637.0465 0.0003

17636.6820 0.0004

17641.1642 0.0010

17641.2966 0.0004

17641.3047 0.0004

17641.3099 0.0004

17641.3621 0.0015

17641.8599 0.0004

Continued on next page
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Transition Wavenumber (cm−1) Error (cm−1)

17641.8717 0.0003

17641.9568 0.0004

17641.9673 0.0004

17642.0719 0.0003

17642.4682 0.0004

17642.4840 0.0004

17642.5273 0.0004

17642.5418 0.0004

17642.7707 0.0004

17643.0064 0.0003

17643.0243 0.0004

17643.1211 0.0003

17643.1401 0.0003
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A p p e n d i x B

Technical Drawings

This appendix contains the technical drawings of the buffer gas cell and 4 K CBGB
parts. Parts described in Ch. 3 which have no equivalent drawings in this appendix
were custom machined by hand to the desired specifications. For example, no
drawing for the cell aperture plate or gas inlet are shown.

B.1 Cryogenic buffer gas cell
Blank cell pieces
The drawings of the blank cell pieces are below. Note that in these drawings there is
a 0.063-inch thru all hole in the center. Before using these pieces to make a cell, this
hole was machined out to 0.5 inches to create the cell body. The 0.25-inch blank
piece was used to make both the cell aperture plate and the gas inlet. A description
of how the aperture plate and the gas inlet were made from the 0.25-inch cell blank
are given in the caption to Fig. B.1.
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Figure B.1: 0.25-inch blank cell piece. The center 0.063-inch hole is machined out
to 0.5 inches before use. This blank piece was machined to create the cell aperture
and gas inlet. The aperture plate was made by drilling a 5-mm thru all hole and then
machining out a 0.5-inch diameter, ∼ 3/16-inch-deep pocket with a 0.5-inch counter
sink. The counter sink was used to give the pocket a conical shape leading up to
the aperture so that the aperture was just an opening in the cell and not a tube. To
create the gas inlet, the 0.063 inch hole was machined out to 1/8 inch and a 1/8 inch
copper 101 tube was soldered on.
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Figure B.2: 0.5-inch blank cell piece. The center 0.063-inch hole is machined out
to 0.5 inches before use.
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Figure B.3: 0.75-inch blank cell piece. The center 0.063-inch hole is machined out
to 0.5 inches before use.
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Figure B.4: 1.0-inch blank cell piece. The center 0.063-inch hole is machined out
to 0.5 inches before use.
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Figure B.5: 0.125-inch spacer. This piece was used to separate the diffuser from
the gas inlet.
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Window cell pieces

 1.500 

 1
.5

00
 

 0
.2

50
 

 0.250 

 1
.0

0 

 1.00 

 0.75 

 0
.7

5  0.50 THRU ALL

4 x  0.129 THRU ALL

 0.250 

 0
.1

25
 

 0.50 

 0
.2

5 

 0
.5

0 

 1.50 

6 x  0.120  0.23
Do Not Penetrate Center Hole

Max Depth 0.250
Tap for 4-40 Helicoil

Repeat Hole Pattern 
on Top and Bottom

 0
.3

75
 

 0.125 

 0.50 

 0.25 

 0
.7

5 

 0.250 THRU ALL

4 x  0.120  0.23
Do Not Penetrate 

Center Hole
Tap for 4-40 Helicoil

A A

B B

2

2

1

1

WEIGHT: 

0.5in_window_cell_v1

Copper 101 OFE

Nickolas Pilgram, npilgram@caltech.edu
Nick 2/12/2018

Hutzler Lab Modular 
Beam Cell 0.5 in 
Window SectionCOMMENTS:

SHEET 1 OF 1

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAMEDIMENSIONS ARE IN INCHES
TOLERANCES:
THREE PLACE DECIMAL  0.005

NEXT ASSY USED ON

APPLICATION DO  NOT  SCALE  DRAWING

FINISH

MATERIAL

REV.

A
DWG.  NO.SIZE

SCALE:2:1

Figure B.7: 0.5-inch window cell piece.
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Figure B.8: 0.75-inch window cell piece.
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Cell mounts and flanges
Drawings for the cell mounts used to mount and thermally anchor the cell to the 4
K top plate are below. Also below are drawings of a 1.0-inch snorkel and window
flange. Window flanges for other size widow cell pieces are scaled down versions
of the one shown.
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Figure B.10: Plate-to-bar mount. The through holes are used to mount these bars
to the inside of the 4 K top plate. The 4-40 tapped holes are for mounting the cell
mounting bars from which the cell is suspended.
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Figure B.11: 0.25-inch cell mounting bars. The pattern of through holes at the
bottom are used to attach to the side of the cell.
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Figure B.12: 1.0-inch window flange. This is used to clamp a window to the the
1.0-inch window cell piece or to the end of the snorkel.
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Figure B.13: 1.0-inch snorkel flange. The snorkel is made by brazing a 0.75-inch-
OD Copper 101 tube in between two of these flanges. One side is then attached to
the cell while the other has a window attached to it with a window flange.
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B.2 50 K thermal shields
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Figure B.14: 50 K top plate.
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Figure B.15: 50 K bottom plate.
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Figure B.16: 50 K side plate flange. As described in Ch. 3, 0.125-inch pockets
around the edges of the flange were machined so that the thickness of the edges of
the plate was only 0.125 inches. This allowed the plate to sit closer to the 50 K
frame allowing the 300 K chamber to be dropped without removing the 50 K side
plates.
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Figure B.17: Blank 50 K side cover plate.
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Figure B.18: 50 K side cover plate with hole for window.
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Figure B.19: 50 K vertical connecting bar.
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Figure B.20: 50 K horizontal connecting bar.
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Figure B.21: 50 K window flange. This is used to attach a window the the 50 K
side cover plate.
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B.3 4 K thermal shields

 1
0.

00
0 

±0
.0

05
 

 10.000 ±0.005 

 7
.7

50
 ±

0.
00

5 

 0.875 ±0.005 

 1.000 ±0.005 

 7
.0

00
 ±

0.
00

5 

 9.000 ±0.005 

 1
.0

00
 ±

0.
00

5 

 6.000 ±0.005 

 0
.5

00
 ±

0.
00

5 

 0.500 ±0.005 

4x 1.000 ±0.005 Hole 
Thru All on Corners of 

 4.00x4.00 Square

36 x  0.14 THRU ALL
 For 10-32 Helicoil Thread

Inserts (Clear with 13/64 Bit)

9 x  0.18 THRU ALL
#8 Clearence Hole

4 x  0.20 THRU ALL
#10 Clearence Hole

149 x  0.14 THRU ALL
For 10-32 Helicoil Thread Inserts

Evenly Spaced on 0.50x0.50 Grid
(Clear with 13/64 Bit)

 0
.5

0 

4K_TopPlate_v3
Material: Copper 101OFE
Contact: Nick Pilgram
npilgram@caltech.edu
Updated: 12/12/17

Figure B.22: 4 K top plate.
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Figure B.23: 4 K bottom plate.
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Figure B.24: 4 K side plate. The square hole in the center is covered by the 4 K
side cover flange.
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Figure B.25: Blank 4 K side cover flange. This flange is attached to 4 K side plate
to cover the square hole.
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Figure B.26: 4 K side cover flange with window hole. This flange is attached to 4
K side plate to cover the square hole. The window hole provides optical access to
the inside of the 4 K shields. It is left open and not covered by a window.
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Figure B.27: 4 K vertical connecting bar.
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Figure B.28: 4 K horizontal connecting bar.
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Figure B.29: Sorb bars. The through holes are used to attached to the inside of the
4 K bottom plate. The vertical sorb plates are attached to the side of these bars.



235

4 x  0.177 THRU ALL

 6.500 

 3
.5

00
 

A A

B B

2

2

1

1

WEIGHT: 

Vertical_Sorb_plate_v1

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN 
THIS DRAWING IS THE SOLE 
PROPERTY OF <COMPANY NAME >.  
ANY REPRODUCTION IN PART OR AS 
A WHOLE WITHOUT THE WRITTEN 
PERMISSION OF <COMPANY NAME> 
IS PROHIBITED.

COMMENTS:

SHEET 1 OF 1

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAMEDIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

NEXT ASSY USED ON

APPLICATION DO  NOT  SCALE  DRAWING

FINISH

MATERIAL

REV.

A
DWG.  NO.SIZE

SCALE:1:2

Figure B.30: Vertical sorb plates. Both sides of these plates are coated in activated
charcoal for cryopumping.
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B.4 Miscellaneous
The drawings for the custom nipple, octagon collar, and the components used to
thermally connect to the pulse tube are below.
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Figure B.31: Custom nipple used to connect the octagon collar and pulse tube to
the top of the 300 K chamber.
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Figure B.33: 50 K hexagonal thermal plate. This plate is attached directly to the
50 K stage of the pulse tube.
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