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ABSTRACT

Recent breathtaking advances in machine learning beckon to their applications in a
wide range of real-world autonomous systems. However, for safety-critical settings
such as agile robotic control in hazardous environments, we must confront several
key challenges before widespread deployment. Most importantly, the learning sys-
tem must interact with the rest of the autonomous system (e.g., highly nonlinear
and non-stationary dynamics) in a way that safeguards against catastrophic failures
with formal guarantees. In addition, from both computational and statistical stand-
points, the learning system must incorporate prior knowledge for efficiency and
generalizability.

This thesis presents progress towards establishing a unified framework that fun-
damentally connects learning and control. First, Part I motivates the benefit and
necessity of such a unified framework by the Neural-Control Family, a family of non-
linear deep-learning-based control methods with not only stability and robustness
guarantees but also new capabilities in agile robotic control. Then Part II discusses
three unifying interfaces between learning and control: (1) online meta-adaptive
control, (2) competitive online optimization and control, and (3) online learning
perspectives on model predictive control. All interfaces yield settings that jointly
admit both learning-theoretic and control-theoretic guarantees.
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C h a p t e r 1

INTRODUCTION

Since the 2010s, deep-learning-based decision making methods have made exciting
progress in many domains such as playing real-time strategy games. For example,
in 2016, AlphaGo (Silver et al., 2016) developed by DeepMind could master the
game of Go and defeat the human champion with a large margin, which had been
widely considered as a nearly impossible artificial intelligence task for a few decades.
Later on, this model-free reinforcement learning methodology quickly generalized
to multi-agent game settings: in 2019, another DeepMind team developed AlphaS-
tar (Vinyals et al., 2019) and achieved grandmaster-level performance in StarCraft,
which is a challenging real-time multi-agent strategy game.

Besides playing games, deep-learning-based decision making methods have also
shown fabulous progress in robotics. For instance, in 2022, a deep-learning-based
policy (Wurman et al., 2022) developed by researchers at Sony AI outraced the
world’s best drivers in the PlayStation game Gran Turismo, which faithfully repro-
duces the non-linear control challenges of real race cars while also encapsulating
the complex multi-agent interactions. Such a novel learned capability also exists
in real-world robotic control tasks. For example, in 2019, the OpenAI robotics
team developed a deep-learning-based strategy which could solve non-trivial ma-
nipulation tasks, such as solving a Rubik’s cube only using one hand (Akkaya et al.,
2019).

Although those novel capabilities in decision making enabled by deep learning are
fascinating, they are still limited in either game or highly controllable or non-safety-
critical settings. In those settings, data collection is relatively cheap and theoretical
guarantees are typically not required. For example, in the game of Go or StarCraft,
a crazy or unexpected move by the AI agent is acceptable; similarly, for a robotic
manipulator solving a Rubik’s cube, dropping the cube is not a big deal.

However, this is not the case in real-world tasks involving high stakes, such as
robotic control in hazardous environments, health care, and space exploration. In
these tasks, computational resources are limited, data collection is expensive, and
theoretical guarantees such as safety are extremely important. Unfortunately, deep-
learning-based methods are not ready to be deployed in those settings. For example,
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when visiting Caltech, an aerospace director said:

“I would love to incorporate deep learning into the design, manufac-
turing, and operations of our aircraft. But I need some guarantees.”

Such a concern is definitely not unfounded, because the aerospace industry has spent
over 60 years making the airplane safer and safer such that the modern airplane is
one of the safest transportation methods. In a recent talk “Can We Really Use
Machine Learning in Safety-Critical Systems?”1 at UCLA IPAM, Prof. Richard
Murray discussed the number of deaths from transportation every 109 miles in the
United States (see Table 1.1).

Human-driven car Buses and trains Airplane Self-driving car
7 0.1-0.4 0.07 ?

Table 1.1: Number of deaths from different transportation methods every 109 miles
in the United States.

Based on this analysis, if we travel from LA to San Francisco, on average, taking a
flight is 100 times safer than driving ourselves (also faster). Note that the question
mark “?” in Table 1.1 indicates that the self-driving car industry has not tested
enough to even get a statistically reliable number (i.e., the total mileage is much less
than 109 miles), although there have already been multiple lethal accidents from
deep-learning-based self-driving cars (Greenblatt, 2016).

To summarize, with the unprecedented advances of modern machine learning comes
the tantalizing possibility of smart data-driven autonomous systems across a broad
range of real-world settings, but we are still begging for answers to the following
question:

For deep-learning-based autonomous systems, how do we ensure a com-
parable level of safety to human or classic methods while maintaining
advantages from deep learning?

To answer this question, we must confront several key challenges before the widespread
deployment of machine learning: (1) Real-world systems have complex and time-
varying uncertainties, which require robust and adaptive learning methods. (2)

1Video link: https://youtu.be/Wi8Y---ce28

https://youtu.be/Wi8Y---ce28
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High-stakes tasks need control-theoretic guarantees such as safety and stability,
which require a framework to unify learning and control theoretical results. (3) In
order to be useful, such a theory needs to enable tractable system design.

In light of these challenges, this thesis is to lay the groundwork for learning and
control that enables the long-term autonomy of complex real-world systems, such as
urban air mobility, space exploration, and medical robots. In pursuit of this vision,
this thesis is centered around establishing a unified algorithmic and theoretical
framework that can simultaneously reason over trade-offs in learning and control
and using that theory to enable tractable system design to unlock new capabilities
in autonomous systems. The proposed unified framework supported by rigorous
yet practical theory advances the state of the art in that complex problems can be
simplified greatly in a modularized way, making it much easier to reason about
high-level goals.

1.1 Thesis Organization
This thesis consists of two parts. In this section, we briefly introduce these two parts
and their organizations.

Part I: Neural-Control Family: Deep-Learning-Based Nonlinear Control with
Learned Robotic Agility
Part I will build a holistic view on Neural-Control Family, which is a family of
deep-learning-based nonlinear controllers with not only theoretical guarantees but
also learned novel capabilities in agile robotic control.

A summary of Part I can be found in Table 2.1 in Chapter 2. In particular, Chapter 2
will give an overview about Neural-Control Family, define the research problem
in general robotic systems and specific drone systems, and introduce necessary
preliminaries. In Chapter 3, Chapter 4, Chapter 5, and Chapter 6, we will introduce
four “children” in the family. Finally, Chapter 7 discusses limitations and future
research directions.

Part II: Unifying Interfaces Between Learning and Control Theory
Part II will discuss three unifying interfaces between learning and control theory.
Such interfaces deepen the fundamental connections between the two fields, en-
able much more efficient translation, and bring new perspectives and algorithmic
principles.
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A summary of Part II can be found in Fig. 8.1 in Chapter 8. In particular, Part II
will focus on joint end-to-end learning and control theoretical guarantees in online
decision-making problems. Chapter 8 will give an overview and introduce necessary
preliminaries. In Chapters 9 to 11, we introduce the three interfaces, respectively.
Finally, Chapter 12 discusses future research directions.

1.2 Thesis Summary and Contributions
We summarize this thesis and its contributions from three aspects: robotics, theory,
and algorithm.

Robotics: Agile Control with Novel Capabilities and Certifiable Guarantees
This thesis focuses on reliable agile robot control with new capabilities which have
not been achieved by either pure control or learning methods. In particular, the
Neural-Control Family in Part I demonstrates state-of-the-art flight control perfor-
mance in the presence of unknown unsteady aerodynamics. Beyond flight control,
the Neural-Control idea has been successfully adopted by many other researchers
(e.g., for legged, underwater, soft robots), companies, and national agencies, in-
cluding JPL and DARPA. For the first time, Neural-Lander (Chapter 3) enables
agile maneuvers only a few millimeters from the ground; Neural-Swarm (Chapter 4)
enables close-proximity flights (minimum distance 24cm) of a heterogeneous aerial
swarm (16 drones), while prior works have to keep a safe distance of 60cm even
with 2-3 drones; Neural-Fly (Chapter 5) achieves accurate adaptive tracking with an
average error down to 3cm in gusty wind conditions up to 12m/s, which improves
baselines by one order of magnitude. All these systems run Deep Neural Net-
works (DNNs) onboard in the control loop but with safety, stability, and robustness
guarantees.

The connection between these robotic capabilities and the unified theoretical and
algorithmic framework is two-fold: (1) The unified framework allows tractable,
efficient, and safe real-world deployment due to its modularity and end-to-end
guarantees. For instance, Neural-Lander/Fly only needs 5/12-minute training data.
(2) Pushing the boundaries of agile robot control requires and inspires new unified
perspectives on control and learning. For example, for agile maneuvers in time-
varying wind conditions, we have to extract common representations shared by all
conditions, which requires and inspires the novel meta-adaptive control framework
(Chapters 5 and 9). This thesis systematically introduces the unified framework
and illustrates why it is necessary and sufficient for unlocking new capabilities in
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real-world autonomous systems.

Theory: Bridge Learning and Control in a Unified Framework
The theoretical parts of this thesis are driven by the quest for a unified framework to
characterize and safeguard learned control systems. This thesis is distinctive in three
ways. First, it studies how to integrate advanced concepts such as deep learning and
nonlinear control, for which unified learning-theoretic and control-theoretic analysis
is still in its infancy. Second, it studies how to reconcile fairly fragmented analyses
between the two fields (e.g., what does exponentially stable control imply about
online regret?), which will deepen the fundamental connections and enable more
efficient translation between the two fields. Third, it allows tractable real-world
implementations with novel capabilities.

From statistical learning with regularized DNNs to nonlinear stability and
safety. From both computational and statistical standpoints, the learning methods
must incorporate prior physics in real-world dynamical systems. For example, the
Neural-Control Family in Part I only learns complex aerodynamics which is hard
to model using classic approaches. A central question in this diagram is how to
leverage the structure in prior physics and translate statistical learning results to
stability and safety results in control. Chapter 3 connects generalization bounds
of properly spectrally regularized DNNs with input-to-state stability (ISS) bounds
in nonlinear control. The experiment found that poorly regularized DNNs without
desired Lipschitz properties can cause drones to crash because small noise may
destroy local stability. Chapter 4 and Chapter 5 extend this result to multi-agent
and real-time adaptation settings. Chapter 6 then generalizes this idea to sequential
control problems, by connecting uncertainty bounds under domain shift with safety
bounds. These results not only provide sufficient conditions for stable and safe
learning-based nonlinear control but also enable roboticists to reason more cleanly
between learning and control performance.

Meta-adaptive control. In order to have rapidly adaptable autonomous systems
operating in changing environments (e.g., varying wind conditions for drones), it is
crucial to extract common representations from all environments. However, existing
theoretical results focus on either representation/meta-learning with i.i.d. data (i.e.,
no dynamics) or adaptive control in a single environment. Therefore, this thesis
proposes a novel meta-adaptive control framework, where meta-learning optimizes
a representation shared by all environments. Then the representation is seamlessly
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used as basis functions for adaptive nonlinear control in low-dimensional space
(Chapters 5 and 9). Meta-adaptive control provides both new theoretical results
(the first end-to-end non-asymptotic guarantee for multi-task nonlinear control in
Chapter 9) and new capabilities in robotics (Chapter 5), both beyond a simple stack
of meta-learning and adaptive control.

Beyond no-regret: competitive online control. The recent progress in learning-
theoretic analyses for online control begs the question: What learning-theoretic
guarantees do we need for real-world systems? Existing results focus on linear
systems with classic no-regret guarantees. However, no-regret policies compare with
the optimal static controller in a specific class (typically linear policy class), which
could be arbitrarily suboptimal in real-world nonlinear or time-varying systems (see
examples in Chapter 10). Therefore, this thesis studies competitive online control,
which uses stronger metrics beyond regret, i.e., competitive ratio and dynamic regret
(competitive difference). Those metrics directly compare with the global optimum,
thus naturally suitable for real-world systems. This thesis designs competitive
policies in time-varying and nonlinear systems, via novel reductions from online
optimization to control (Chapters 10 and 11). Moreover, we show new fundamental
limits via novel lower bounds, e.g., the impact of delay (Chapter 10).

Understand MPC from learning perspectives. Another critical question is begged
in online learning and control: Do established control methods have strong learning
guarantees? In particular, Model Predictive Control (MPC) has been one of the most
successful methods in industrial control since the 1980s. However, many learning
theorists are studying RL algorithms, but few are analyzing MPC and why it is so
powerful. To close this gap, this thesis proves the first non-asymptotic guarantee
for MPC (Chapter 11), showing that MPC is near-optimal in the sense of dynamic
regret in online LQR control with predictable disturbance. Then Chapter 11 further
extends to settings with inexact predictions and LTV systems, in the competitive
online control framework. These results found common ground for learning and
control theory and imply fundamental algorithmic principles.

Algorithm: Reliable Decision Making Methods with Certifiable Guarantees
The algorithmic goal of this thesis is to translate the improved theoretical understand
(in particular, the established unified abstractions for learning and control) into
tractable algorithms that inherit both the flexibility and accuracy of learning and the
certifiable guarantees of control.
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Stable, robust, and adaptive deep-learning-based nonlinear control. As a power-
ful yet obscure black box, deep learning must incorporate principled regularizations
for reliable and tractable real-world implementations. First, Part I uses Lipschitz-
constrained DNNs to learn the residual dynamics, where the constraint is specified
by the established unified framework between regularized learning and nonlinear
stability. Such control-theoretic regularizations ensure the stability and robustness
of deep-learning-based nonlinear controllers, and also improve generalization to
unseen data (Chapters 3 to 5). The second type of regularization for learning is
invariance. Neural-Swarm (Chapter 4) leverages the permutation-invariance of
swarm dynamics to develop Heterogeneous Deep Sets for learning swarm interac-
tions in a decentralized manner, which enables generalization from 1-3 robots in
training to 5-16 in testing. Neural-Fly (Chapter 5) proposes the Domain Adver-
sarially Invariant Meta-Learning (DAIML) algorithm, which uses an adversarial
regularizer to train a domain-invariant representation for online adaptation. These
principled regularizations are critical for efficient and safe real-world deployment.

Safe exploration in nonlinear dynamical systems. Safety-critical tasks such as
space exploration and agile drone landing are challenging because (1) there is no
expert collecting data, and (2) there exists non-trivial domain shift (e.g., sim2real,
exploring to unseen states). Therefore, we have to quantify uncertainty and design
safe learning and exploration methods. Built on the connection between uncertainty
bounds and safety bounds in the unified framework, Chapter 6 proposes the first
safe exploration algorithm with robust end-to-end learning and control guarantees
under domain shift, in both deterministic and stochastic settings. The key idea is
to derive uncertainty bounds from distributionally robust learning and use them in
robust trajectory optimization.
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In this part of the thesis, we will build a holistic view on Neural-Control Family,
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C h a p t e r 2

OVERVIEW

Notations. In Part I, ∥ · ∥ indicates the 2-norm of a vector or the induced 2-norm of
a matrix. 𝜆min(·) and 𝜆max(·) denote the minimum or the maximum eigenvalue of
a real symmetric matrix. 𝑎 ◦ 𝑏 refers to the composition of two functions 𝑎 and 𝑏.
(·)† is the Moore-Penrose inverse of a matrix. Finally, ¤𝑥 denotes the time derivative
of a variable 𝑥, i.e., ¤𝑥 = 𝑑𝑥

𝑑𝑡
.

2.1 A Mixed Model for Robot Dynamics and the Nonlinear Control Law
Often times in real-world robotic systems, there are complicated uncertainties in
dynamics but we also have some prior knowledge. For example, as shown in later
chapters, for a quadrotor, it is very easy and standard to model the rigid body
dynamics in SE(3). However, it is in general much more difficult, if not impossible,
to model the aerodynamics such as ground effect, down wash effect, air drag and
wind effect (G. Shi, X. Shi, et al., 2019; G. Shi, Hönig, Yue, et al., 2020; G. Shi,
Hönig, X. Shi, et al., 2022; O’Connell et al., 2022).

To systematically and simultaneously study the known part and the unknown part
in the dynamics, in this part of the thesis, we will consider a mixed model for robot
dynamics in the form of the Euler-Lagrange equation. In particular, we consider the
following robot dynamics model:

𝑀 (𝑞) ¥𝑞 + 𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝑔(𝑞) = 𝐵𝑢 + 𝑓 (𝑞, ¤𝑞, 𝑢, 𝑡)︸        ︷︷        ︸
unknown

(2.1)

where 𝑞, ¤𝑞, ¥𝑞 ∈ R𝑛 are the 𝑛 dimensional position, velocity, and acceleration vectors,
𝑀 (𝑞) is the symmetric, positive definite inertia matrix, 𝐶 (𝑞, ¤𝑞) is the Coriolis
matrix, 𝑔(𝑞) is the gravitational force vector, 𝑢 ∈ R𝑚 is the control force and
𝐵 ∈ R𝑛×𝑚 is the actuation matrix. Most importantly, 𝑓 (𝑞, ¤𝑞, 𝑢, 𝑡) incorporates
unmodeled dynamics, and it is potentially time-variant (i.e., 𝑓 depends on time 𝑡).

Note that one important fact about the Euler-Lagrange equation in Eq. (2.1) is that
¤𝑀 − 2𝐶 is a skew-symmetric matrix. We will heavily use this fact for nonlinear

stability analysis in the following chapters.
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Tasks
Stable and robust trajectory tracking. In Part I, we consider the trajectory
tracking task, where we have a reference (or desired) trajectory 𝑞𝑑 (𝑡) which we
hope the robot can precisely track. In particular, our goal is to guarantee that the
controller is (globally) 𝑠𝑡𝑎𝑏𝑙𝑒 and 𝑟𝑜𝑏𝑢𝑠𝑡.

We say the closed-loop system is globally asymptotically stable if ∥𝑞 − 𝑞𝑑 ∥ → 0
asymptotically wherever 𝑞 starts (i.e., whatever 𝑞(0) is). Furthermore, we say the
closed-loop system is exponentially stable if ∥𝑞 − 𝑞𝑑 ∥ → 0 exponentially. Note
that exponential stability typically implies robustness in the sense of input-to-state
stability (ISS) (Khalil, 2002). In the context of robotic trajectory tracking, it means
that ∥𝑞 − 𝑞𝑑 ∥ will exponentially converge to an error ball 𝜖 , whose size is typically
proportional to the size of extra disturbance on top of 𝑓 or the learning error (the
gap between the estimation of 𝑓 and the true 𝑓 ) (Slotine and Li, 1991; O’Connell
et al., 2022). Therefore, having exponential stability is critical for learning-based
control because an exponentially stable controller can handle errors from imperfect
learning.

Safe motion planning and control. At this stage, readers may have the question
“where is the reference trajectory 𝑞𝑑 from?” The answer to this question is exactly
the motion planning problem, whose goal is to find a path 𝑞𝑑 (𝑡) for the robot to track.
Typically, we want to make sure such a path is safe in the state space. Formally
speaking, [𝑞𝑑; ¤𝑞𝑑] ∈ S where S is some safe set. For example, for multi-robot
planning we must consider collision and obstacle avoidance.

It is worth noting that safety is not only important in planning, but also in feedback
control. Once we have 𝑞𝑑 , the next question is naturally how to design a controller
such that the actual trajectory is also safe, i.e., [𝑞; ¤𝑞] ∈ S. Note that it is relatively
easy if the tracking is perfect (i.e., 𝑞 = 𝑞𝑑), but much more challenging if there exist
uncertainties.

Remarks and Assumptions
Remark (nonlinear, time-variant, unknown and non-affine systems). Control-
ling the system in Eq. (2.1) is challenging in four folds. (1) The 𝑓 term is unknown
and could be very complicated. (2) Both the known part and the unknown part
( 𝑓 (𝑞, ¤𝑞, 𝑢, 𝑡)) are highly nonlinear. (3) The 𝑓 term is in generally time-variant.
Note that most of theories developed in Part I still hold if the nominal part (i.e.,
𝑀,𝐶, 𝑔, 𝐵) is also time-variant, and we assume they are time-invariant for simplicity
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(also for all our experiments the nominal part is indeed time-invariant). (4) The
system is non-affine in 𝑢, and in particular, the unknown term 𝑓 (𝑞, ¤𝑞, 𝑢, 𝑡) might
depend on 𝑢. Controlling a non-affine linear system is notoriously challenging
because 𝑢 often appears in both sides of a controller equation (e.g., 𝐵𝑢 = 𝜋(𝑥, 𝑢)).

Assumption 2.1 (full actuation). In Part I, we focus on fully actuated systems, which
means rank(𝐵) = 𝑛 and 𝑚 ≥ 𝑛. Generally speaking, guaranteed safe learning and
control (especially adaptive control) in nonlinear systems with under actuation is
very challenging (Lopez and Slotine, 2021) and left for future directions. We will
revisit this point in Chapter 7. In the second part of this thesis (Part II), we will
study learning and control in some under-actuated linear systems.

Assumption 2.2 (full observation). In this thesis, we focus on fully observable
settings, which means we can directly observe the state of the robot (𝑞 and ¤𝑞). The
fully observable assumption matches robotic experiments in this thesis, because
we deploy external motion capture (mocap) systems to localize the robot in SE(3).
Nevertheless, note that some of control methods developed in Part I are robust for
outdoor experiments without mocap systems, where we first use estimators (e.g.,
extended Kalman filter) to estimate robot state and then use these estimations for
control (e.g., see outdoor experiments in Chapter 5). Having end-to-end guarantees
in nonlinear partially observable systems is another interesting future research topic
(see more discussions in Chapter 7).

The Nonlinear Control Law
In this subsection, we introduce the basic structure of controllers covered in Part I.
Note that each child in the family (Neural-Lander/Swarm/Fly) has different down-
stream control structures but the high-level structures are consistent. We start by
defining some notations. The composite velocity tracking error term 𝑠 and the
reference velocity ¤𝑞𝑟 are defined such that

𝑠 = ¤𝑞 − ¤𝑞𝑟 = ¤̃𝑞 + Λ𝑞 (2.2)

where 𝑞 = 𝑞 − 𝑞𝑑 is the position tracking error and Λ is a positive definite gain
matrix. Note when 𝑠 exponentially converges to an error ball around 0, 𝑞 will
exponentially converge to a proportionate error ball around the desired trajectory
𝑞𝑑 (𝑡) (see Lemma 2.3). Formulating our control law in terms of the composite
velocity error 𝑠 simplifies the analysis and gain tuning without loss of rigor.
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Our nonlinear control structure is given by

𝐵𝑢 = 𝑀 (𝑞) ¥𝑞𝑟 + 𝐶 (𝑞, ¤𝑞) ¤𝑞𝑟 + 𝑔(𝑞)︸                              ︷︷                              ︸
nonlinear feedforward

−𝐾𝑠︸︷︷︸
linear feedback

− 𝑓︸︷︷︸
learned feedforward

, (2.3)

where𝐾 is a positive definite control gain matrix and 𝑓 is a learned term to “compen-
sate” the unknown term 𝑓 in real time. Note that this nonlinear controller includes
feedback on position and velocity errors and feedforward terms to account for known
dynamics and desired acceleration, which allows good tracking of dynamic trajec-
tories in the presence of nonlinearities (e.g., 𝑀 (𝑞) and 𝐶 (𝑞, ¤𝑞) are non-constant in
drone attitude control). Moreover, this control law also “predicts” and then com-
pensates the unknown dynamics via the 𝑓 term. We will have different structures
for 𝑓 in different cases, e.g., a fixed regularized DNN in Neural-Lander (Chapter 3)
and a real-time adaptive DNN in Neural-Fly (Chapter 5).

2.2 Example: Quadrotor Dynamics and Control
In this section, we will provide a concrete and detailed example for the general robot
dynamics model (Eq. (2.1)) in Section 2.1: quadrotor dynamics with unknown
aerodynamics. Most of experiments in Part I also focus on drones.

Consider states given by global position, 𝑝 ∈ R3, velocity 𝑣 ∈ R3, attitude rotation
matrix 𝑅 ∈ SO(3), and body angular velocity𝜔 ∈ R3. Then dynamics of a quadrotor
are

¤𝑝 = 𝑣, 𝑚 ¤𝑣 = 𝑚𝑔 + 𝑅 𝑓𝑢 + 𝑓𝑎, (2.4a)
¤𝑅 = 𝑅𝑆(𝜔), 𝐽 ¤𝜔 = 𝐽𝜔 × 𝜔 + 𝜏 + 𝜏𝑎, (2.4b)

where 𝑚 is the mass, 𝐽 is the inertia matrix of the quadrotor, 𝑆(·) is the skew-
symmetric mapping, 𝑔 is the gravity vector, 𝑓𝑢 = [0, 0, 𝑇]⊤ and 𝜏 = [𝜏𝑥 , 𝜏𝑦, 𝜏𝑧]⊤

are the total thrust and body torques from four rotors predicted by the nominal
model. In particular, typical quadrotor control input uses squared motor speeds
𝑢 = [𝑛2

1, 𝑛
2
2, 𝑛

2
3, 𝑛

2
4]
⊤, and is linearly related to the total thrust and body torques:
𝑇

𝜏𝑥

𝜏𝑦

𝜏𝑧

︸︷︷︸
𝜂𝑜

=


𝑐𝑇 𝑐𝑇 𝑐𝑇 𝑐𝑇

0 𝑐𝑇 𝑙arm 0 −𝑐𝑇 𝑙arm

−𝑐𝑇 𝑙arm 0 𝑐𝑇 𝑙arm 0
−𝑐𝑄 𝑐𝑄 −𝑐𝑄 𝑐𝑄

︸                                          ︷︷                                          ︸
𝐵0

·


𝑛2

1
𝑛2

2
𝑛2

3
𝑛2

4

︸︷︷︸
𝑢

(2.5)
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where 𝑐𝑇 and 𝑐𝑄 are rotor force and torque coefficients, 𝑙arm denotes the length of
rotor arm, and 𝜂𝑜 is the output wrench. Note that 𝐵0 is an invertible matrix.

Control task. In this thesis, we are interested in the position trajectory tracking
problem for a quadrotor. Namely, there exists a time-variant desired position tra-
jectory 𝑝𝑑 (𝑡) and our goal is to design a controller such that the tracking error
𝑝 = 𝑝 − 𝑝𝑑 is near-zero in the presence of unknown aerodynamic disturbance 𝑓𝑎

and 𝜏𝑎.

Remark (generalize to other aerial robots). Generally speaking, the model in
Eq. (2.4) and Eq. (2.5) can also model other aerial vehicles with more than four
actuators (i.e., to make sure the actuation matrix satisfying rank(𝐵0) ≥ 4), such as
hexacopter, octocopter, and some hybrid vehicles (e.g., flying cars in (X. Shi et al.,
2018)).

Residual Aerodynamic Force and Torque
The key difficulty of precise drone control is the influence of unknown disturbance
forces 𝑓𝑎 = [ 𝑓𝑎,𝑥 , 𝑓𝑎,𝑦, 𝑓𝑎,𝑧]⊤ and torques 𝜏𝑎 = [𝜏𝑎,𝑥 , 𝜏𝑎,𝑦, 𝜏𝑎,𝑧]⊤ in Eq. (2.4), which
originate from complex aerodynamic effects. For example, ground effect when the
drone is flying close to the ground (or some other boundaries) (G. Shi, X. Shi, et al.,
2019), downwash effect when one drone is flying below the other ones (G. Shi,
Hönig, X. Shi, et al., 2022), and wind effect when the drone is flying in strong wind
conditions (O’Connell et al., 2022).

Generally speaking, the unknown force 𝑓𝑎 and torque 𝜏𝑎 depend on the drone’s
states (position, velocity, attitude, angular velocity), rotor speeds (𝑛1, · · · , 𝑛4), and
external environmental conditions (e.g., wind conditions). To summarize, 𝑓𝑎 and 𝜏𝑎
are unknown, nonlinear, and potentially time-variant.

In Part I’s experiments, we will use deep learning approaches to model 𝑓𝑎 and 𝜏𝑎.
We define the deep learned estimation as 𝑓𝑎 and 𝜏𝑎, respectively. Different chapters
have different learning structures (e.g., a fixed constrained DNN in Chapter 3 and
an online adaptive DNN in Chapter 5).

Hierarchical Control Structure and the Reduction to General Robot Dynamics
Note that Eq. (2.4) cannot be directly converted to Eq. (2.1) because quadrotor is
an underactuated system in SE(3). However, typical quadrotor control consists
of a cascaded or hierarchical control structure which separates the design of the
position controller, attitude controller, and thrust mixer (allocation). For both
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position controller and attitude controller, we can reduce them to Eq. (2.1).

Position controller. When designing the position controller, we assume that the
global rotor force vector 𝑅 𝑓𝑢 can be directly controlled. In other words, we can
cast the position dynamics in Eq. (2.4a) into the form of Eq. (2.1), by taking 𝑞 = 𝑝,
𝑀 (𝑞) = 𝑚𝐼, 𝐶 (𝑞, ¤𝑞) ≡ 0, 𝐵 = 𝐼, 𝑓 = 𝑓𝑎, and 𝑢 = 𝑅 𝑓𝑢. Corresponding to Eq. (2.3),
the nonlinear position controller has the following structure:

𝑓𝑑 = 𝑚 ¥𝑝𝑟 − 𝑚𝑔︸      ︷︷      ︸
feedforward

−𝐾𝑠︸︷︷︸
linear feedback

− 𝑓𝑎︸︷︷︸
learned feedforward

(2.6)

where 𝑠 = ¤𝑝− ¤𝑝𝑟 = ¤̃𝑝+Λ𝑝 is the composite velocity error (see details in Section 2.1),
𝑓𝑑 = (𝑅 𝑓𝑢)𝑑 is the desired rotor force and 𝑓𝑎 is a learned term to compensate the
unknown disturbance force 𝑓𝑎. Note that this controller includes linear feedback on
position and velocity errors and feedforward terms to account for gravity and desired
acceleration, which allows agile tracking of dynamic trajectories. Moreover, the 𝑓𝑎
term predicts and compensates the unknown disturbance.

Attitude controller. With the desired rotor force 𝑓𝑑 = (𝑅 𝑓𝑢)𝑑 , consequently, desired
total thrust 𝑇𝑑 and desired force direction 𝑘̂𝑑 can be computed as

𝑇𝑑 = 𝑓𝑑 · 𝑘̂ , and 𝑘̂𝑑 = 𝑓𝑑/∥ 𝑓𝑑 ∥ , (2.7)

with 𝑘̂ being the unit vector of rotor thrust direction (typically 𝑧-axis in quadrotors).
Using 𝑘̂𝑑 and fixing a desired yaw angle, desired attitude 𝑅𝑑 can be deduced (Morgan
et al., 2016).

Then we need to design a nonlinear attitude controller which uses the desired torque
𝜏𝑑 from rotors to track 𝑅𝑑 (𝑡). The quadrotor attitude dynamics Eq. (2.4b) is also a
special case of the general robot dynamics model Eq. (2.1) (Slotine and Li, 1991;
Murray et al., 2017), but it is worth noting that different choices of rotation errors
will yield different controllers. For example, one nonlinear attitude controller is
given by (X. Shi et al., 2018):

𝜏𝑑 = 𝐽 ¤𝜔𝑟 − 𝐽𝜔 × 𝜔𝑟︸             ︷︷             ︸
nonlinear feedforward

−𝐾𝜔 (𝜔 − 𝜔𝑟)︸           ︷︷           ︸
linear feedback

−𝜏𝑎︸︷︷︸
learned feedforward

, (2.8)

where the reference angular rate 𝜔𝑟 is designed similar to Eq. (2.2), so that when
𝜔 → 𝜔𝑟 , exponential trajectory tracking of a desired attitude 𝑅𝑑 (𝑡) is guaranteed.
Similarly, 𝜏𝑎 is a learned term to compensate the unknown torque 𝜏𝑎. Similar to the
position controller, the attitude controller also includes a nonlinear feedforward term



17

and a linear feedback term, and a 𝜏𝑎 term to account for the unknown aerodynamic
torque.

Thrust mixer (allocation). Finally, with the desired total thrust 𝑇𝑑 and the desired
torque 𝜏𝑑 , we can straightforwardly solve the rotor speed 𝑛1, · · · , 𝑛4 using Eq. (2.5).
Note that if the control limit (0 ≤ 𝑛𝑖 ≤ 𝑛̄,∀𝑖) becomes infeasible, a thrust mixer
typically compromises some maneuverability (especially yaw) to optimize the flight
performance. Some thrust mixers also consider motor delay to some extent, i.e.,
𝑛1, · · · , 𝑛4 cannot immediately change 𝑇 and 𝜏. We will discuss more about delay
compensation in Chapter 4.

Remark (benefits and limitations of the hierarchical control structure). The
aforementioned hierarchical controller can be summarized as the following steps:

1. The position controller accounts for the unknown aerodynamic force 𝑓𝑎, and
computes the desired rotor force 𝑓𝑑 .

2. Compute the desired total thrust 𝑇𝑑 and the desired attitude 𝑅𝑑 .

3. Given 𝑅𝑑 , the attitude controller accounts for the unknown aerodynamic torque
𝜏𝑎, and computes the desired torque 𝜏𝑑 .

4. Given 𝑇𝑑 and 𝜏𝑑 , the thrust mixer computes the rotor speed 𝑛1, · · · , 𝑛4.

This procedure has the following benefits:

• It is supported by rigorous theories, because both position and attitude con-
trollers follow the standard fully-actuated robot dynamics in Eq. (2.1).

• It is relatively easy to implement and debug. In particular, we do not need to
customize drones or flight controllers since most commonly-used off-the-shelf
controllers (such as PX4) support the “offboard” control mode, which only
needs a position control law (i.e., 𝑇𝑑 and 𝑅𝑑) and automatically tracks the
reference attitude 𝑅𝑑 . In experiments, the hierarchical control law is robust
even flying outdoors.

• In practice, the attitude controller is running at a much higher frequency
(e.g., 400Hz) than the position controller (e.g., 50Hz), which matches the key
assumption made in the cascading structure (i.e., the attitude controller runs
fast enough to track the desired attitude generated from the upstream position
controller).



18

However, this cascading structure implicitly assumes that the cross-error term be-
tween position and attitude control is bounded, and the attitude controller can track
arbitrary trajectories generated from the upstream controller. Therefore, such a
cascading structure may not be proper for acrobatic maneuvers such as flips. Al-
ternatively, we can also use a single optimization-based controller such as model
predictive control (MPC) to directly compute motor speed commands from de-
sired trajectories (Tal and Karaman, 2021; Hanover et al., 2021). Compared to the
cascading controller structure, it is very challenging to have stable and robustness
guarantees because of the nonlinear and underactuated nature. Moreover, the single
optimization-based controller requires full custom flight controllers and drones.

2.3 Organization of Part I: Unifying Learning and Nonlinear Control
In Part I, we will discuss four cases of Eq. (2.1) with the focus on the unknown term
𝑓 (𝑞, ¤𝑞, 𝑢, 𝑡). Meanwhile, we also introduce different corresponding drone dynamics
in Eq. (2.4) and controllers.

Neural-Control Family consists of these four different cases. Each case (chapter)
will answer the following questions:

1. What is the main challenge with the unknown term 𝑓 ?

2. How to design the learning and control strategy with theoretical guarantees?

3. In real-world robotic experiments, how does the proposed learning and control
method compare with baselines and state-of-the-art methods?

4. What new capabilities (in terms of robotic agility) does the proposed learning
and control method bring? In other words, why is the proposed learning and
control method crucial?

Answers to these questions can be summarized in Table 2.1.

Before diving into details, here we highlight how we unify learning and nonlinear
control in each chapter:

Neural-Lander (Chapter 3) considers the model 𝑓 = 𝑓 (𝑞, ¤𝑞, 𝑢). We use a deep
neural network 𝑓 (𝑞, ¤𝑞, 𝑢) to approximate 𝑓 . In this case, the challenge is to guarantee
that the controller in Eq. (2.3) is stable and robust with a DNN term 𝑓 . To that
end, we propose a control-theoretic Lipschitz-constrained deep learning framework
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Challenge Solution New capabilities

Neural-
Lander
(Chapter 3)

𝑓 depends on 𝑢

Control-theoretic
Lipschitz constraints
for stability guaran-
tees

Agile maneuvers very
close to the ground

Neural-
Swarm
(Chapter 4)

𝑓 depends on
heterogeneous
neighbors in a
swarm

Encoding permuta-
tion invariance in
learning and control

Close-proximity het-
erogeneous swarm
control

Neural-Fly
(Chapter 5)

𝑓 depends on
time-variant
environmental
conditions

Invariant meta-
learning and com-
posite adaptation

Precise flight in time-
variant strong winds

Safe Ex-
ploration
(Chapter 6)

No pre-
collected data

Uncertainty quantifi-
cation under domain
shift

Aggressive maneuvers
with end-to-end safety
guarantees

Table 2.1: The summary of Part I.
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to guarantee the nonlinear stability and robustness. This learning framework also
improves sampling efficiency and generalizability.

Neural-Swarm (Chapter 4) considers a multi-agent interactive setting, i.e., 𝑓 =

𝑓 (𝑞, ¤𝑞, neighbors’ states). In this case, we aim to design a decentralized learning
and control method which can generalize to different numbers of agents. With
this goal, we leveraged the permutation invariance property in the swarm system,
and modeled the multi-agent interaction using heterogeneous deep sets. We also
developed an interaction-aware motion planner and a delay compensator.

Neural-Fly (Chapter 5) considers 𝑓 = 𝑓 (𝑞, ¤𝑞, 𝑤(𝑡)) where 𝑤 describes potentially
time-variant environmental conditions (e.g., wind conditions for a drone). Our goal
is to develop an efficient online adaptation strategy such that the controller can adapt
in changing conditions in real time. Hence, we use 𝜙(𝑞, ¤𝑞)𝑎 to approximate 𝑓 ,
where 𝜙 is a pre-meta-trained representation shared by all conditions and 𝑎 is a
condition-dependent linear coefficient which will be adapted by adaptive control in
an online manner.

In Neural-Lander/Swarm/Fly, we all need pre-collected data to train or pre-train
our deep learning models. In Safe Exploration (Chapter 6), we have to learn
and control from scratch without pre-collect data or human in the loop. The key
challenge is to trade-off between exploration and safety such that we can gradually
achieve an aggressive control goal with safety guarantees in the whole process.

2.4 Preliminaries on Deep Learning
In this section, we will introduce some preliminaries which are heavily used in Part I.

ReLU Deep Neural Networks
In Part I, we often learn the unknown dynamics term 𝑓 in Eq. (2.1) using a DNN with
Rectified Linear Units (ReLU) activation. In general, DNNs equipped with ReLU
converge faster during training, demonstrate more robust behavior with respect to
changes in hyperparameters, and have fewer vanishing gradient problems compared
to other activation functions such as sigmoid (Krizhevsky et al., 2012).

A ReLU deep neural network represents the functional mapping from the input 𝑥 to
the output 𝑔(𝑥, 𝜃), parameterized by the DNN weights 𝜃 = 𝑊1, · · · ,𝑊𝐿+1:

𝑔(𝑥, 𝜃) = 𝑊𝐿+1𝜎(𝑊𝐿 (𝜎(𝑊𝐿−1(· · ·𝜎(𝑊1𝑥) · · · )))), (2.9)

where the activation function 𝜎(·) = max(·, 0) is called the element-wise ReLU
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function. We omit the bias term of each layer for simplicity. Note that omitting
the bias term does not change the Lipschitz property of the DNN so it will not
influence our theoretical analysis. ReLU is less computationally expensive than
tanh and sigmoid because it involves simpler mathematical operations. However,
deep neural networks are usually trained by first-order gradient based optimization,
which is highly sensitive on the curvature of the training objective and can be
unstable (Salimans and Kingma, 2016). To alleviate this issue, we apply the spectral
normalization technique (Miyato et al., 2018) and introduce the details as follows.

Spectral Normalization and Constrained Training
Spectral normalization stabilizes DNN training by constraining the Lipschitz con-
stant of the objective function 𝑔(𝑥, 𝜃). Spectrally normalized DNNs have also been
shown to generalize well (Bartlett et al., 2017), which is an indication of stability
in machine learning. Mathematically, the Lipschitz constant of a function ∥𝑔∥Lip is
defined as the smallest value such that

∀ 𝑥, 𝑥′ :
∥𝑔(𝑥) − 𝑔(𝑥′)∥2
∥𝑥 − 𝑥′∥2

≤ ∥𝑔∥Lip. (2.10)

It is well known that the Lipschitz constant of a general differentiable function 𝑔 is
the maximum spectral norm (i.e., induced 2-norm or maximum singular value) of
its gradient over its domain: ∥𝑔∥Lip = sup𝑥 ∥∇𝑔(𝑥)∥2. In particular, if 𝑔 is an affine
function 𝑔(𝑥) = 𝑊𝑥 + 𝑏, then ∥𝑔∥Lip = ∥𝑊 ∥2.

The ReLU DNN in Eq. (2.9) is a composition of functions. Thus we can bound the
Lipschitz constant of the network by constraining the spectral norm of each layer.
Using the fact that the Lipschitz norm of ReLU activation function 𝜎(·) is equal to
1, with the inequality ∥𝑔𝑎 ◦ 𝑔𝑏∥Lip ≤ ∥𝑔𝑎∥Lip · ∥𝑔𝑏∥Lip for two functions 𝑔𝑎 and 𝑔𝑏,
we can find the following bound on ∥𝑔∥Lip:

∥𝑔∥Lip ≤ ∥𝑊𝐿+1∥2 · ∥𝜎∥Lip · · · ∥𝑊1∥2 =

𝐿+1∏
𝑙=1
∥𝑊𝑙 ∥2. (2.11)

Given the upper bound in Eq. (2.11), we propose the stochastic gradient descent
(SGD) with spectral normalization algorithm (Algorithm 2.1). In Algorithm 2.1,
𝛾 > 0 is the intended upper bounded for the Lipschitz constant of the DNN 𝑔(𝑥, 𝜃),
𝜂 > 0 is the learning rate, and ℓ(𝑔(𝑥), 𝑦) could be any differentiable loss function,
e.g., squared loss ∥𝑔(𝑥) − 𝑦∥2. D is a dataset comprising 𝑁 input (𝑥) and label (𝑦)
pairs. Essentially, Algorithm 2.1 enforces the spectral norm of each layer matrix
upper bounded by 𝛾 1

𝐿+1 . The following lemma formally bounds ∥𝑔∥Lip:
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Algorithm 2.1: SGD with Spectral Normalization
Hyperparameter: Normalization constant 𝛾 > 0, learning rate 𝜂 > 0
Input: Dataset D = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 and a loss function ℓ(𝑔(𝑥), 𝑦)
Initialize: Neural network parameter 𝜃 = 𝑊1, · · · ,𝑊𝐿+1

1 repeat
2 Randomly sample a batch 𝐷 from the dataset D
3 Gradient descent on 𝐷:
4

𝜃 ← 𝜃 − 𝜂 ·
∑︁
(𝑥,𝑦)∈𝐷

∇𝜃ℓ(𝑔(𝑥, 𝜃), 𝑦) (2.12)

Spectral normalization of each layer:
5 for 1 ≤ 𝑙 ≤ 𝐿 + 1 do
6 if ∥𝑊𝑙 ∥2 > 𝛾

1
𝐿+1 then

7

𝑊𝑙 ←
𝑊𝑙

∥𝑊𝑙 ∥2
· 𝛾 1

𝐿+1 , (2.13)

8 until convergence

Lemma 2.1. Algorithm 2.1 guarantees that

∥𝑔∥Lip ≤ 𝛾. (2.14)

Proof. As in Eq. (2.11), we have ∥𝑔∥Lip ≤
∏𝐿+1
𝑙=1 ∥𝑊𝑙 ∥2 ≤

∏𝐿+1
𝑙=1 𝛾

1
𝐿+1 = 𝛾. □

Remark (spectral norm computation). Note that Algorithm 2.1 needs to compute
the spectral norm of 𝑊𝑙 ,∀𝑙 in each training epoch. Computing the largest singular
value of a large matrix could be computationally heavy. However, one can use the
power iteration method to estimate ∥𝑊𝑙 ∥2 (Miyato et al., 2018). Nevertheless, in
this thesis we focus on learning the dynamics so the DNN is in general small (within
100K parameters) so we directly use numpy.linalg.norm(W,2) to compute the
spectral norm.

Remark (optimization and back propagation). In practice, we use the Adam
optimizer to train the neural network 𝑔(𝑥, 𝜃). Note that the normalization step
𝑊𝑙 ← 𝑊𝑙

∥𝑊𝑙 ∥2 · 𝛾
1
𝐿+1 is not backward propagated, which is different from the original

implementation of spectral normalization in (Miyato et al., 2018). Miyato et al.
(2018) normalizes each layer’s spectral norm to exactly 1 in each step via back
propagation. Instead, after each optimization step, we “project” each layer to have
a 𝛾 1

𝐿+1 spectral norm if its norm is bigger than 𝛾 1
𝐿+1 . Alternatively, we can also
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directly deploy the standard spectral normalization implementation in PyTorch with
a scaling factor 𝛾 1

𝐿+1 . In practice, we found our implementation is easier to tune and
have slightly better performance.

Remark (looseness of Eq. (2.11)). It is not hard to notice that the lower bound
given in Eq. (2.11) could be loose, due to the nature of the composition inequality
∥𝑔𝑎 ◦ 𝑔𝑏∥Lip ≤ ∥𝑔𝑎∥Lip · ∥𝑔𝑏∥Lip. For instance, in the linear case ∥𝑊1𝑊2∥2 ≤
∥𝑊1∥2∥𝑊2∥2 is tight only if the first right-singular vector of𝑊1 aligns with the first
left-singular vector of𝑊2.

In general, computing the exact global Lipschitz constant of a DNN is NP-hard, and
there is a well-known trade-off between tightness and computational efficiency when
computing a Lipschitz upper bound (Fazlyab et al., 2019). For example, Fazlyab
et al. (2019) gives a tighter estimation based on SDP (semidefinite programming).
However, those optimization-based methods are in general much more computa-
tionally heavy than spectral normalization and very hard to be incorporated within
the training process. Moreover, since the DNNs implemented in this thesis are in
general small, the looseness from spectral normalization is acceptable.

Remark (robustness from spectral normalization). Although our motivation
of introducing spectral normalization is to guarantee control stability, it is worth
noting that another benefit from spectral normalization is that spectrally normalized
DNN is robust to input disturbance. Namely, since 𝑔 is 𝛾−Lipschitz continuous,
∥𝑔(𝑥 + Δ𝑥) − 𝑔(𝑥)∥ is always bounded by 𝛾∥Δ𝑥∥.

2.5 Preliminaries on Nonlinear Control Theory
Comparison Lemma
In Lyapunov stability analysis, we often use the following comparison lemma to
bound a solution of an ODE (ordinary differential equation).

Lemma 2.2. [adopted from (Khalil, 2002)] Suppose that a continuously differen-
tiable function 𝑎(𝑡) ∈ R≥0 ↦→ R satisfies the following inequality:

¤𝑎(𝑡) ≤ −𝑏 · 𝑎(𝑡) + 𝑐, ∀𝑡 ≥ 0, 𝑎(0) = 𝑎0

where 𝑏 > 0. Then we have

𝑎(𝑡) ≤ 𝑎0𝑒
−𝑏𝑡 + 𝑐

𝑏
(1 − 𝑒−𝑏𝑡), ∀𝑡 ≥ 0.

The first application of Lemma 2.2 will be analyzing the convergence of the position
tracking error 𝑞 = 𝑞 − 𝑞𝑑 when the composite velocity error 𝑠 = ¤̃𝑞 + Λ𝑞 converges.



24

Lemma 2.3. Suppose ∥𝑠(𝑡)∥ ≤ 𝑎(𝑡). Then we have

∥𝑞(𝑡)∥ ≤ ∥𝑞(0)∥𝑒−𝜆min (Λ)𝑡 + 𝑎(𝑡)
𝜆min(Λ)

(1 − 𝑒−𝜆min (Λ)𝑡).

Proof. Define a Lyapunov function as 𝑉 (𝑡) = 1
2 ∥𝑞∥

2. Then we have

¤𝑉 = −𝑞⊤Λ𝑞 + 𝑞⊤𝑠 ≤ −𝜆min(Λ)∥𝑞∥2 + 𝑎∥𝑞∥ = −2𝜆min(Λ)𝑉 + 𝑎
√

2𝑉.

Define𝑊 =
√
𝑉 and ¤𝑊 =

¤𝑉
2
√
𝑉

. Then we have

¤𝑊 ≤ −𝜆min(Λ)𝑊 +
𝑎
√

2
.

Applying Lemma 2.2 we have

∥𝑞(𝑡)∥ ≤ ∥𝑞(0)∥𝑒−𝜆min (Λ)𝑡 + 𝑎(𝑡)
𝜆min(Λ)

(1 − 𝑒−𝜆min (Λ)𝑡).

□

References

Bartlett, Peter L., Dylan J. Foster, and Matus J. Telgarsky (2017). Spectrally-
normalized margin bounds for neural networks. In: Advances in Neural Infor-
mation Processing Systems, pp. 6240–6249.

Fazlyab, Mahyar, Alexander Robey, Hamed Hassani, Manfred Morari, and George
Pappas (2019). Efficient and accurate estimation of Lipschitz constants for deep
neural networks. In: Advances in Neural Information Processing Systems 32.

Hanover, Drew, Philipp Foehn, Sihao Sun, Elia Kaufmann, and Davide Scara-
muzza (2021). Performance, precision, and payloads: Adaptive nonlinear MPC
for quadrotors. In: IEEE Robotics and Automation Letters 7.2, pp. 690–697.

Khalil, Hassan K. (2002). Nonlinear systems. Pearson Education. Prentice Hall.
isbn: 9780130673893.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). Imagenet classi-
fication with deep convolutional neural networks. In: Advances in Neural Infor-
mation Processing Systems 25.

Lopez, Brett T. and Jean-Jacques E. Slotine (2021). Universal adaptive control of
nonlinear systems. In: IEEE Control Systems Letters 6, pp. 1826–1830.

Miyato, Takeru, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida (2018).
Spectral normalization for generative adversarial networks. In: arXiv preprint
arXiv:1802.05957.



25

Morgan, Daniel, Giri P. Subramanian, Soon-Jo Chung, and Fred Y. Hadaegh (2016).
Swarm assignment and trajectory optimization using variable-swarm, distributed
auction assignment and sequential convex programming. In: The International
Journal of Robotics Research 35.10, pp. 1261–1285.

Murray, Richard M., Zexiang Li, and S. Shankar Sastry (Dec. 2017). A mathematical
introduction to robotic manipulation. 1st ed. CRC Press. isbn: 978-1-315-13637-
0. doi: 10.1201/9781315136370. url: https://www.taylorfrancis.com/
books/9781351469791.

O’Connell, Michael, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima
Anandkumar, Yisong Yue, and Soon-Jo Chung (2022). Neural-Fly enables rapid
learning for agile flight in strong winds. In: Science Robotics 7.66, eabm6597.
doi: 10.1126/scirobotics.abm6597.

Salimans, Tim and Diederik P. Kingma (2016). Weight normalization: A simple
reparameterization to accelerate training of deep neural networks. In: Advances
in Neural Information Processing Systems, pp. 901–909.

Shi, Guanya, Wolfgang Hönig, Xichen Shi, Yisong Yue, and Soon-Jo Chung (2022).
Neural-Swarm2: Planning and control of heterogeneous multirotor swarms using
learned interactions. In: IEEE Transactions on Robotics 38.2, pp. 1063–1079.
doi: 10.1109/TRO.2021.3098436.

Shi, Guanya, Wolfgang Hönig, Yisong Yue, and Soon-Jo Chung (2020). Neural-
Swarm: Decentralized close-proximity multirotor control using learned inter-
actions. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 3241–3247. doi: 10.1109/ICRA40945.2020.9196800.

Shi, Guanya, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli,
Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung (2019). Neural Lan-
der: Stable drone landing control using learned dynamics. In: 2019 International
Conference on Robotics and Automation (ICRA). IEEE, pp. 9784–9790. doi:
10.1109/ICRA.2019.8794351.

Shi, Xichen, Kyunam Kim, Salar Rahili, and Soon-Jo Chung (2018). Nonlinear
control of autonomous flying cars with wings and distributed electric propulsion.
In: 2018 IEEE Conference on Decision and Control (CDC). IEEE, pp. 5326–
5333.

Slotine, Jean-Jacques E. and Weiping Li (1991). Applied nonlinear control. Vol. 199.
1. Prentice Hall, Englewood Cliffs, NJ.

Tal, Ezra and Sertac Karaman (May 2021). Accurate tracking of aggressive quadro-
tor trajectories using incremental nonlinear dynamic inversion and differential
flatness. In: IEEE Transactions on Control Systems Technology 29.3, pp. 1203–
1218. issn: 1558-0865. doi: 10.1109/TCST.2020.3001117.

https://doi.org/10.1201/9781315136370
https://www.taylorfrancis.com/books/9781351469791
https://www.taylorfrancis.com/books/9781351469791
https://doi.org/10.1126/scirobotics.abm6597
https://doi.org/10.1109/TRO.2021.3098436
https://doi.org/10.1109/ICRA40945.2020.9196800
https://doi.org/10.1109/ICRA.2019.8794351
https://doi.org/10.1109/TCST.2020.3001117


26

C h a p t e r 3

NEURAL-LANDER

aerodynamics 
(ground effect)rigid body 

dynamics in SE(3)

Figure 3.1: Neural-Lander enables agile flight maneuver very close to the ground.

In Chapter 2, we introduced a general mixed robot dynamics model 𝑀 (𝑞) ¥𝑞 +
𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝑔(𝑞) = 𝐵𝑢 + 𝑓 where 𝑓 is the unknown dynamics. We also introduced
the corresponding drone dynamics model in Eq. (2.4). In this chapter, we focus
on the case 𝑓 = 𝑓 (𝑞, ¤𝑞, 𝑢), and the main challenge is to ensure nonlinear stability
and robustness when using a DNN to approximate 𝑓 . In drone experiments, the
nominal part refers to the standard rigid body dynamics in SE(3) and 𝑓 refers to
the unknown aerodynamics such as the ground effect when the drone is near-ground
(see Fig. 3.1). This chapter is mainly based on the following paper1 2:

Shi, Guanya, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli,
Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung (2019). Neural Lan-
der: Stable drone landing control using learned dynamics. In: 2019 International
Conference on Robotics and Automation (ICRA). IEEE, pp. 9784–9790. doi:
10.1109/ICRA.2019.8794351.

Abstract. Precise near-ground trajectory control is difficult for multi-rotor drones,
due to the complex aerodynamic effects caused by interactions between multi-rotor
airflow and the environment. Conventional control methods often fail to properly
account for these complex effects and fall short in accomplishing smooth landing.

1Summary video: https://youtu.be/FLLsG0S78ik
2Simulator code: https://github.com/GuanyaShi/neural_lander_sim_1d

https://doi.org/10.1109/ICRA.2019.8794351
https://youtu.be/FLLsG0S78ik
https://github.com/GuanyaShi/neural_lander_sim_1d
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In this chapter, we present a novel deep-learning-based robust nonlinear controller
(Neural-Lander) that improves control performance of a quadrotor during landing.
Our approach combines a nominal dynamics model with a Deep Neural Network
(DNN) that learns high-order interactions. We apply spectral normalization (SN)
to constrain the Lipschitz constant of the DNN. Leveraging this Lipschitz property,
we design a nonlinear feedback linearization controller using the learned model and
prove system stability with disturbance rejection. To the best of our knowledge, this
is the first DNN-based nonlinear feedback controller with stability guarantees that
can utilize arbitrarily large neural nets. Experimental results demonstrate that the
proposed controller significantly outperforms a Baseline Nonlinear Tracking Con-
troller in both landing and cross-table trajectory tracking cases. We also empirically
show that the DNN generalizes well to unseen data outside the training domain.

3.1 Introduction and Related Work
Unmanned Aerial Vehicles (UAVs) require high precision control of aircraft posi-
tions, especially during landing and take-off. This problem is challenging largely due
to complex interactions of rotor and wing airflows with the ground. The aerospace
community has long identified such ground effect that can cause an increased lift
force and a reduced aerodynamic drag. These effects can be both helpful and dis-
ruptive in flight stability (Cheeseman and Bennett, 1955), and the complications
are exacerbated with multiple rotors. Therefore, performing automatic landing
of UAVs is risk-prone, and requires expensive high-precision sensors as well as
carefully designed controllers.

Compensating for ground effect is a long-standing problem in the aerial robotics
community. Prior work has largely focused on mathematical modeling (e.g. Nonaka
and Sugizaki (2011)) as part of system identification (ID). These models are later
used to approximate aerodynamics forces during flights close to the ground and
combined with controller design for feed-forward cancellation (e.g. Danjun et al.
(2015)). However, existing theoretical ground effect models are derived based on
steady-flow conditions, whereas most practical cases exhibit unsteady flow. Alter-
native approaches, such as integral or adaptive control methods, often suffer from
slow response and delayed feedback. Berkenkamp, Schoellig, et al. (2016) employs
Bayesian Optimization for open-air control but not for take-off/landing. Given these
limitations, the precision of existing fully automated systems for UAVs are still
insufficient for landing and take-off, thereby necessitating the guidance of a human
UAV operator during those phases.
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To capture complex aerodynamic interactions without overly-constrained by conven-
tional modeling assumptions, we take a machine-learning (ML) approach to build
a black-box ground effect model using Deep Neural Networks (DNNs). However,
incorporating such models into a UAV controller faces three key challenges. First,
it is challenging to collect sufficient real-world training data, as DNNs are notori-
ously data-hungry. Second, due to high-dimensionality, DNNs can be unstable and
generate unpredictable output, which makes the system susceptible to instability in
the feedback control loop. Third, DNNs are often difficult to analyze, which makes
it difficult to design provably stable DNN-based controllers.

The aforementioned challenges pervade previous works using DNNs to capture
high-order non-stationary dynamics. For example, Abbeel et al. (2010) and Punjani
and Abbeel (2015) use DNNs to improve system ID of helicopter aerodynamics,
but not for controller design. Other approaches aim to generate reference inputs
or trajectories from DNNs (Bansal et al., 2016; Li et al., 2017; Zhou et al., 2017;
Sánchez-Sánchez and Izzo, 2018). However, these approaches can lead to challeng-
ing optimization problems (Bansal et al., 2016), or heavily rely on well-designed
closed-loop controller and require a large number of labeled training data (Li et
al., 2017; Zhou et al., 2017; Sánchez-Sánchez and Izzo, 2018). A more classi-
cal approach of using DNNs is direct inverse control (Frye and Provence, 2014;
Suprijono and Kusumoputro, 2017) but the non-parametric nature of a DNN con-
troller also makes it challenging to guarantee stability and robustness to noise.
Berkenkamp, Turchetta, et al. (2017) proposes a provably stable model-based Rein-
forcement Learning method based on Lyapunov analysis, but it requires a potentially
expensive discretization step and relies on the native Lipschitz constant of the DNN.

Contributions
In this chapter, we propose a learning-based controller, Neural-Lander, to improve
the precision of quadrotor landing with guaranteed stability. Our approach directly
learns the ground effect on coupled unsteady aerodynamics and vehicular dynamics.
We use deep learning for system ID of residual dynamics and then integrate it with
nonlinear feedback linearization control.

We train DNNs with layer-wise spectrally normalized weight matrices. We prove
that the resulting controller is globally exponentially stable under bounded learning
errors. This is achieved by exploiting the Lipschitz bound of spectrally normalized
DNNs. It has earlier been shown that spectral normalization of DNNs leads to good
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generalization, i.e. stability in a learning-theoretic sense (Miyato et al., 2018). It is
intriguing that spectral normalization simultaneously guarantees stability both in a
learning-theoretic and a control-theoretic sense.

We evaluate Neural-Lander on trajectory tracking of quadrotor during take-off,
landing and cross-table maneuvers. Neural-Lander is able to land a quadrotor much
more accurately than a Baseline Nonlinear Tracking Controller with a pre-identified
system. In particular, we show that compared to the baseline, Neural-Lander can
decrease error in 𝑧 axis from 0.13 m to 0, mitigate 𝑥 and 𝑦 drifts by as much as 90%,
in the landing case. Meanwhile, Neural-Lander can decrease 𝑧 error from 0.153 m
to 0.027 m, in the cross-table trajectory tracking task. We also demonstrate that the
learned model can handle temporal dependency, and is an improvement over the
steady-state theoretical models.

3.2 Problem Statement
General Robot Dynamics and Drone Dynamics Modelling
As introduced in Chapter 2, we consider the following mixed robot dynamics model:

𝑀 (𝑞) ¥𝑞 + 𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝑔(𝑞) = 𝐵𝑢 + 𝑓 (𝑞, ¤𝑞, 𝑢)︸     ︷︷     ︸
unknown

.
(3.1)

For the specific drone dynamics, recall Eq. (2.4) in Chapter 2:

¤𝑝 = 𝑣, 𝑚 ¤𝑣 = 𝑚𝑔 + 𝑅 𝑓𝑢 + 𝑓𝑎,
¤𝑅 = 𝑅𝑆(𝜔), 𝐽 ¤𝜔 = 𝐽𝜔 × 𝜔 + 𝜏 + 𝜏𝑎 .

As discussed in Chapter 2, we can reduce the drone dynamics model to Eq. (3.1)
using the cascading control structure. Therefore, for theoretical analysis we will
focus on the general model in Eq. (3.1) for generality and rotational simplicity.
Moreover, in drone experiments, as we mainly focus on landing and take-off tasks, the
attitude dynamics is limited and the aerodynamic disturbance torque 𝜏𝑎 is negligible.
Thus position dynamics and the aerodynamic force 𝑓𝑎 will our primary concern.

Learning and Control Goals
We first collect a data set D containing 𝑁 input and label pairs:

𝑥𝑖 = [𝑞𝑖; ¤𝑞𝑖; 𝑢𝑖], D = {𝑥𝑖, 𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜖𝑖}𝑁𝑖=1, (3.3)

where we define 𝑥 = [𝑞; ¤𝑞; 𝑢] for simplicity, and 𝑦𝑖 is a noisy measurement of 𝑓 (𝑥𝑖)
with 𝜖𝑖 an extra disturbance.
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With D, we aim to train a ReLU DNN 𝑓 (𝑥, 𝜃) to approximate 𝑓 . Then, our goal is
to design a stable and robust controller such that the tracking error ∥𝑞−𝑞𝑑 ∥ is small.
Training is done off-line, and the learned dynamics 𝑓 is applied in the on-board
controller in real-time to achieve smooth landing and take-off.

3.3 Dynamics Learning and Controller Design
We apply Algorithm 2.1 to train the ReLU DNN 𝑓 (𝑥, 𝜃) with a bounded Lipschitz
constant 𝛾. We select 𝛾 such that 𝛾 · ∥𝐵†∥ < 1 where 𝐵† is the Moore-Penrose
inverse of 𝐵. Thus from Lemma 2.1, we have

∥ 𝑓 ∥Lip ≤ 𝛾, 𝛾 · ∥𝐵†∥ < 1.

With 𝑓 , the controller structure is given as Eq. (2.3):

𝐵𝑢 = 𝑀 (𝑞) ¥𝑞𝑟 + 𝐶 (𝑞, ¤𝑞) ¤𝑞𝑟 + 𝑔(𝑞)︸                              ︷︷                              ︸
nonlinear feedforward

−𝐾𝑠︸︷︷︸
linear feedback

− 𝑓 (𝑞, ¤𝑞, 𝑢)︸       ︷︷       ︸
learned feedforward

. (3.4)

Because of the dependency of 𝑓 on 𝑢, the control synthesis problem in Eq. (3.4)
is non-affine. Therefore, we propose the following fixed-point iteration method for
solving Eq. (3.4):

𝑢𝑘 = 𝐵
†
(
𝑀 (𝑞) ¥𝑞𝑟 + 𝐶 (𝑞, ¤𝑞) ¤𝑞𝑟 + 𝑔(𝑞) − 𝐾𝑠 − 𝑓 (𝑞, ¤𝑞, 𝑢𝑘−1)

)
, (3.5)

where 𝑢𝑘 and 𝑢𝑘−1 are the control input for current and previous time step in the
discrete-time controller. In the next section, we prove the stability of the system and
convergence of the control inputs in Eq. (3.5).

3.4 Nonlinear Stability Analysis
In this section, the closed-loop tracking error analysis provides a direct correlation
on how to tune the neural network 𝑓 and controller parameter to improve control
performance and robustness.

Control Allocation as Contraction Mapping
We first show that the control input 𝑢𝑘 converges to the solution of Eq. (3.4) when
all states are fixed.

Lemma 3.1. Define mapping 𝑢𝑘 = F (𝑢𝑘−1) based on Eq. (3.5) and fix all current
states. If 𝑓 (𝑥) is 𝛾-Lipschitz continuous, and ∥𝐵†∥2 · 𝛾 < 1; then F (·) is a
contraction mapping, and 𝑢𝑘 converges to unique solution of 𝑢∗ = F (𝑢∗).
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Proof. ∀𝑢1, 𝑢2 ∈ R𝑚 and given fixed states as 𝑞, ¤𝑞, ¤𝑞𝑟 , ¥𝑞𝑟 , 𝑠, then:

∥F (𝑢1) − F (𝑢2)∥2 =




𝐵† ( 𝑓 (𝑞, ¤𝑞, 𝑢1) − 𝑓 (𝑞, ¤𝑞, 𝑢2)
)




2
≤ ∥𝐵†∥2 · 𝛾 ∥𝑢1 − 𝑢2∥2 .

Thus, ∥𝐵†∥2 · 𝛾 < 1 so F (·) is a contraction mapping. □

Stability of Learning-based Nonlinear Controller
Before continuing to prove the stability of the full system, we make the following
assumptions.

Assumption 3.1 (boundedness of the desired trajectory). The desired states along
the position trajectory 𝑞𝑑 (𝑡), ¤𝑞𝑑 (𝑡), and ¥𝑞𝑑 (𝑡) are bounded.

Assumption 3.2. One-step difference of control signal satisfies ∥𝑢𝑘 − 𝑢𝑘−1∥ ≤ 𝜌 ∥𝑠∥
with a small positive 𝜌.

Namely, we assume the control signal is changing smoothly. Here we provide
the intuition behind this assumption. From Eq. (3.5), we can derive the following
approximate relation with Δ(·)𝑘 = ∥(·)𝑘 − (·)𝑘−1∥:

Δ𝑢𝑘 ≤ ∥𝐵†∥
(
𝛾Δ𝑢𝑘−1 + 𝛾Δ𝑞𝑘 + 𝛾Δ ¤𝑞𝑘 + ∥𝐾 ∥Δ𝑠𝑘

+ Δ(𝑀 (𝑞) ¥𝑞𝑟)𝑘 + Δ(𝐶 (𝑞, ¤𝑞) ¤𝑞𝑟)𝑘 + Δ(𝑔(𝑞))𝑘
)
.

Note that for drone position controller, 𝐶 = 0 and 𝑀 and 𝑔 are both constant
(see more details in Chapter 2). Moreover, because update rate of the attitude
controller (> 200 Hz) and motor speed control (> 5 kHz) are much higher than
that of the position controller (≈ 50 Hz) and the desired trajectory 𝑞𝑑 (𝑡) is not
changing too fast, in practice, we can safely neglect Δ𝑠𝑘 , Δ𝑞𝑘 , Δ ¤𝑞𝑘 and Δ ¥𝑞𝑟,𝑘 in one
update (Theorem 11.1 Khalil (2002)). It leads to:

Δ𝑢𝑘 ≤ ∥𝐵†∥
(
𝛾Δ𝑢𝑘−1 + 𝑐

)
,

with 𝑐 being a small constant and ∥𝐵†∥ · 𝛾 < 1, we can deduce that Δ𝑢 rapidly
converges to a small ultimate bound between each position controller update.

Assumption 3.3 (bounded learning error). The learning error of 𝑓 (𝑥) over the
compact sets 𝑥 ∈ X is upper bounded by 𝜖𝑚 = sup𝑥∈X ∥ 𝑓 (𝑥) − 𝑓 (𝑥)∥.

DNNs have been shown to generalize well to the set of unseen events that are
from almost the same distribution as training set (Zhang et al., 2016; He et al.,
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2016). This empirical observation is also theoretically studied in order to shed
more light toward an understanding of the complexity of these models (Neyshabur,
Bhojanapalli, McAllester, and Nathan Srebro, 2017; Bartlett et al., 2017; Dziugaite
and Roy, 2017; Neyshabur, Bhojanapalli, McAllester, and Nati Srebro, 2017).

Based on the above assumptions, we can now present our overall stability and
robustness result.

Theorem 3.1. Under Assumptions 3.1 to 3.3, for a time-varying 𝑞𝑑 (𝑡), the controller
defined in Eq. (3.5) with 𝜆min(𝐾) > 𝛾𝜌 and 𝛾∥𝐵†∥ < 1 achieves the exponential
convergence of the tracking error ∥𝑞∥ = ∥𝑞 − 𝑞𝑑 ∥ to the following error ball

𝜆max(𝑀)
𝜆min(𝑀)𝜆min(Λ) (𝜆min(𝐾) − 𝛾𝜌)

· 𝜖𝑚 .

Proof. Plugging Eq. (3.5) into Eq. (3.1), we have the following closed-loop dynam-
ics

𝑀 ¤𝑠 + 𝐶𝑠 + 𝐾𝑠 = 𝑓 (𝑞, ¤𝑞, 𝑢𝑘 ) − 𝑓 (𝑞, ¤𝑞, 𝑢𝑘−1).

Note that this is a hybrid system in the sense that 𝑢 evolves in a discrete manner
but other variables changes continuously. We define the Lyapunov function as
𝑉 (𝑠) = 1

2 𝑠
⊤𝑀𝑠, and after taking the derivative we have

¤𝑉 =
1
2
𝑠⊤ ¤𝑀𝑠 + 𝑠⊤

(
−𝐶𝑠 − 𝐾𝑠 + 𝑓 (𝑞, ¤𝑞, 𝑢𝑘 ) − 𝑓 (𝑞, ¤𝑞, 𝑢𝑘−1)

)
(1)
= −𝑠⊤𝐾𝑠 + 𝑠⊤

(
𝑓 (𝑞, ¤𝑞, 𝑢𝑘 ) − 𝑓 (𝑞, ¤𝑞, 𝑢𝑘 ) + 𝑓 (𝑞, ¤𝑞, 𝑢𝑘 ) − 𝑓 (𝑞, ¤𝑞, 𝑢𝑘−1)

)
(2)
≤ −𝑠⊤𝐾𝑠 + ∥𝑠∥ (𝜖𝑚 + 𝛾∥𝑢𝑘 − 𝑢𝑘−1∥)
(3)
≤ −𝑠⊤𝐾𝑠 + 𝛾𝜌∥𝑠∥2 + 𝜖𝑚 ∥𝑠∥
≤ −(𝜆min(𝐾) − 𝛾𝜌)∥𝑠∥2 + 𝜖𝑚 ∥𝑠∥

where (1) is from the fact ¤𝑀 − 2𝐶 is skew-symmetric, (2) is from Assumption 3.3
and the Lipschitz property of 𝑓 , and (3) is from Assumption 3.2. Note that
1
2𝜆max(𝑀)∥𝑠∥2 ≥ 𝑉 ≥ 1

2𝜆min(𝑀)∥𝑠∥2, we have

¤𝑉 ≤ −(𝜆min(𝐾) − 𝛾𝜌)
2𝑉

𝜆max(𝑀)
+ 𝜖𝑚

√︄
2𝑉

𝜆min(𝑀)
.

Then define𝑊 (𝑡) =
√︁
𝑉 (𝑡). Note that ¤𝑊 =

¤𝑉
2
√
𝑉

. Therefore we have

¤𝑊 ≤ −𝜆min(𝐾) − 𝛾𝜌
𝜆max(𝑀)

𝑊 + 𝜖𝑚

√︄
1

2𝜆min(𝑀)
.
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Using the comparison lemma (Lemma 2.2), we have

𝑊 ≤ exp
(
−𝜆min(𝐾) − 𝛾𝜌

𝜆max(𝑀)
𝑡

)
𝑊 (0) + 𝜖𝑚𝜆max(𝑀)

𝜆min(𝐾) − 𝛾𝜌

√︄
1

2𝜆min(𝑀)
.

Recall that𝑊 =
√
𝑉 ≥ ∥𝑠∥

√︃
𝜆min (𝑀)

2 , so we finally have

∥𝑠∥ ≤ exp
(
−𝜆min(𝐾) − 𝛾𝜌

𝜆max(𝑀)
𝑡

) √︄
𝜆max(𝑀)
𝜆min(𝑀)

∥𝑠(0)∥ + 𝜆max(𝑀)
𝜆min(𝑀) (𝜆min(𝐾) − 𝛾𝜌)

· 𝜖𝑚

It can be shown that this leads to finite-gain L𝑝 stability and input-to-state stability
(ISS) (Chung et al., 2013). Further, with Lemma 2.3, we have ∥𝑞∥ exponentially
converges to the following error ball

𝜆max(𝑀)
𝜆min(𝑀)𝜆min(Λ) (𝜆min(𝐾) − 𝛾𝜌)

· 𝜖𝑚 .

□

Interpretation of Theorem 3.1
Potential trade-off when tuning 𝛾. Note that Theorem 3.1 has two conditions on
the Lipschitz constant of the DNN 𝑓 : 𝜆min(𝐾) > 𝛾𝜌 and 𝛾∥𝐵†∥ < 1. The latter one
is to make sure the fixed-point iteration method will converge, and the former one
guarantees the closed-loop stability. They both suggest 𝛾 = ∥ 𝑓 ∥Lip should be small
and bigger 𝛾 will influence the controller robustness against big 𝜌 (i.e., bigger delay).
However, the learning error 𝜖𝑚 might increase if 𝛾 gets too small, especially when
the ground-truth function 𝑓 has bad Lipschitz property. In that case, one should
look for higher-order methods than the fixed-point iteration (e.g., Newton method
or something like MPC) but those methods are in general much more involved and
it is unclear how they influence the closed-loop stability analysis. Nevertheless, in
our experiments we strictly followed 𝛾∥𝐵†∥ < 1 and the learning performance is
even better than the baseline method without Lipschitz constraints.

An alternative assumption on ∥𝑢𝑘−𝑢𝑘−1∥. Assumption 3.2 assumes ∥𝑢𝑘−𝑢𝑘−1∥ ≤
𝜌∥𝑠∥. Another assumption we can consider is ∥𝑢𝑘 − 𝑢𝑘−1∥ ≤ 𝜌̄ where 𝜌̄ is a small
constant. In this case, the Lyapunov analysis will change to

¤𝑉 ≤ −𝜆min(𝐾)∥𝑠∥2 + (𝜖𝑚 + 𝛾𝜌̄)∥𝑠∥

and the error ball for 𝑞 will be changed to

𝜆max(𝑀)
𝜆min(𝑀)𝜆min(Λ)𝜆min(𝐾)

· (𝜖𝑚 + 𝛾𝜌̄).
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With this alternative assumption, 𝛾𝜌̄ can be viewed as an add-on term on the learning
error. Similarly, bigger 𝛾 amplifies the delay constant 𝜌̄. Moreover, it is worth noting
that with this alternative assumption we no longer need to require the gain condition
about 𝜆min(𝐾).

3.5 Experiments
In our experiments, we evaluate both the generalization performance of our DNN
as well as the overall control performance of Neural-Lander. The experimental
setup is composed of a motion capture system with 17 cameras, a WiFi router for
communication, and an Intel Aero drone, weighing 1.47 kg with an onboard Linux
computer (2.56 GHz Intel Atom x7 processor, 4 GB DDR3 RAM). We retrofitted
the drone with eight reflective infrared markers for accurate position, attitude and
velocity estimation at 100Hz. The Intel Aero drone and the test space are shown in
Fig. 3.1.

In this section, we will focus on the drone dynamics given in Eq. (2.4) and Eq. (2.5).
We apply the proposed nonlinear learning-based controller Eq. (3.5) to the quadrotor
position dynamics Eq. (2.4a) via the reduction in Eq. (2.6). In particular, 𝑓𝑎 in
Eq. (2.6) is a ReLU DNN depending on the rotor control signal 𝑢. We call this drone
position controller Neural-Lander. See the original paper (Shi et al., 2019) for the
detailed structure and analysis of Neural-Lander in quadrotor dynamics.

Bench Test
To identify a good nominal model, we first measured the mass 𝑚, diameter of the
rotor 𝐷𝑟 , the air density 𝜌𝑎, and the gravity 𝑔. Then we performed bench test to
determine the thrust constant, 𝑐𝑇 , as well as the non-dimensional thrust coefficient
𝐶𝑇 =

𝑐𝑇
𝜌𝑎𝐷

4
𝑟
. Note that 𝐶𝑇 is a function of propeller speed 𝑛, and here we picked a

nominal value at 𝑛 = 2000 RPM.

Real-World Flying Data and Preprocessing
To estimate the disturbance force 𝑓𝑎, an expert pilot manually flew the drone at
different heights, and we collected training data consisting of sequences of state
estimates and control inputs {(𝑝, 𝑣, 𝑅, 𝑢), 𝑦} where 𝑢 = [𝑛2

1; 𝑛2
2; 𝑛2

3; 𝑛2
4] and 𝑦 is the

observed value of 𝑓𝑎.

We utilized the relation 𝑓𝑎 = 𝑚 ¤𝑣 −𝑚𝑔 − 𝑅 𝑓𝑢 from Eq. (2.4a) to calculate 𝑓𝑎, where
𝑓𝑢 is calculated based on the nominal 𝑐𝑇 from the bench test. For the acceleration
¤𝑣, we used the fifth-order numerical differentiation method. Our training set is a
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Part I Part II

Figure 3.2: Training data trajectory. Part I (0 to 250 s) contains maneuvers at
different heights (0.05 m to 1.50 m). Part II (250 s to 350 s) includes random 𝑥, 𝑦,
and 𝑧 motions for maximum state-space coverage.

single continuous trajectory with varying heights and velocities. The trajectory has
two parts shown in Fig. 3.2. We aim to learn the ground effect through Part I of the
training set, and other aerodynamics forces such as air drag through Part II.

DNN Prediction Performance
We train a deep ReLU network 𝑓𝑎 (𝑧, 𝑣, 𝑅, 𝑢), with 𝑧, 𝑣, 𝑅, 𝑢 corresponding to global
height, global velocity, attitude, and control input. We build the ReLU network
using PyTorch. Our ReLU network consists of four fully-connected hidden layers,
with input and the output dimensions 12 and 3, respectively. We use spectral
normalization (see Algorithm 2.1) to constrain the Lipschitz constant of the DNN.

We compare the near-ground estimation accuracy our DNN model with existing 1D
steady ground effect model (Cheeseman and Bennett, 1955; Danjun et al., 2015):

𝑇 (𝑛, 𝑧) = 𝑛2

1 − 𝜇( 𝐷𝑟8𝑧 )2
𝑐𝑇 (𝑛) = 𝑛2𝑐𝑇 (𝑛0) + 𝑓𝑎,𝑧, (3.6)

where 𝑇 is the thrust generated by propellers, 𝑛 is the rotation speed, 𝑛0 is the idle
RPM, and 𝜇 depends on the number and the arrangement of propellers (𝜇 = 1 for
a single propeller, but must be tuned for multiple propellers). Note that 𝑐𝑇 is a
function of 𝑛. Thus, we can derive 𝑓𝑎,𝑧 (𝑛, 𝑧) from 𝑇 (𝑛, 𝑧).

Figure 3.3(a) shows the comparison between the estimation of 𝑓𝑎 from the DNN 𝑓𝑎

and the theoretical ground effect model Eq. (3.6) at different 𝑧 (assuming 𝑇 = 𝑚𝑔

when 𝑧 = ∞). We can see that our DNN can achieve much better estimates than the
theoretical ground effect model. We further investigate the trend of 𝑓𝑎,𝑧 with respect
to the rotation speed 𝑛. Fig. 3.3(b) shows the learned 𝑓𝑎,𝑧 over the rotation speed
𝑛 at a given height, in comparison with the 𝐶𝑇 measured from the bench test. We
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Figure 3.3: DNN prediction performance. (a) Learned 𝑓𝑎,𝑧 compared to the ground
effect model with respect to height 𝑧, with 𝑣𝑧 = 𝑣𝑥 = 𝑣𝑦 = 0 m/s, 𝑅 = 𝐼, 𝑢 =

6400 RPM. Ground truth points are from hovering data at different heights. (b)
Learned 𝑓𝑎,𝑧 with respect to rotation speed 𝑛 (𝑧 = 0.2 m, 𝑣𝑧 = 0 m/s), compared to
𝐶𝑇 measured in the bench test. (c) Heatmaps of learned 𝑓𝑎,𝑧 versus 𝑧 and 𝑣𝑧. (Left)
ReLU network with spectral normalization. (Right) ReLU network without spectral
normalization.

observe that the increasing trend of the estimates 𝑓𝑎,𝑧 is consistent with bench test
results for 𝐶𝑇 .

To understand the benefits of SN, we compared 𝑓𝑎,𝑧 predicted by the DNNs trained
both with and without SN as shown in Fig. 3.3(c). Note that 𝑣𝑧 from −1 m/s to
1 m/s is covered in our training set, but −2 m/s to −1 m/s is not. We observe the
following differences:

1. Ground effect: 𝑓𝑎,𝑧 increases as 𝑧 decreases, which is also shown in Fig. 3.3(a).

2. Air drag: 𝑓𝑎,𝑧 increases as the drone goes down (𝑣𝑧 < 0) and it decreases as
the drone goes up (𝑣𝑧 > 0).
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3. Generalization: the spectral normalized DNN is much smoother and can also
generalize to new input domains not contained in the training set.

In Bartlett et al. (2017), the authors theoretically show that spectral normalization
can provide tighter generalization guarantees on unseen data, which is consistent
with our empirical observation. We will connect generalization theory more tightly
with our robustness guarantees in the future.

Baseline Controller

final error: zero
final error: 0.13 m

mean L1 error: 0.007 m
mean L1 error: 0.072 m

mean L1 error: 0.021 m
mean L1 error: 0.032 m

Baseline

Baseline

Baseline

Baseline

Figure 3.4: Baseline Controller and Neural-Lander performance in take-off and
landing. Means (solid curves) and standard deviations (shaded areas) of 10 trajec-
tories.

We compared the Neural-Lander with a Baseline Nonlinear Tracking Controller.
We implemented both a Baseline Controller similar to Eq. (2.6) with 𝑓𝑎 ≡ 0, as
well as an integral controller variant with 𝑠 = ¤̃𝑝 + 2Λ𝑝 + Λ2

∫ 𝑡

0 𝑝(𝜏)𝑑𝜏. Though
an integral gain can cancel steady-state error during set-point regulation, our flight
results showed that the performance can be sensitive to the integral gain, especially
during trajectory tracking. This can be seen in the demo video3.

3Demo videos: https://youtu.be/FLLsG0S78ik

https://youtu.be/FLLsG0S78ik
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Figure 3.5: Neural-Lander performance in take-off and landing with different DNN
capacities. 1 layer means a linear mapping 𝑓𝑎 = 𝐴𝑥 + 𝑏; 0 layer means 𝑓𝑎 = 𝑏;
Baseline means 𝑓𝑎 ≡ 0.

First, we tested the two controllers’ performance in take-off/landing, by commanding
position setpoint 𝑝𝑑 , from (0, 0, 0), to (0, 0, 1), then back to (0, 0, 0), with ¤𝑝𝑑 ≡ 0.
From Fig. 3.4, we can conclude that there are two main benefits of our Neural-
Lander. (a) Neural-Lander can control the drone to precisely and smoothly land
on the ground surface while the Baseline Controller struggles to achieve 0 terminal
height due to the ground effect. (b) Neural-Lander can mitigate drifts in 𝑥− 𝑦 plane,
as it also learned about additional aerodynamics such as air drag.

Second, we tested Neural-Lander performance with different DNN capacities.
Fig. 3.5 shows that compared to the baseline ( 𝑓𝑎 ≡ 0), 1 layer model could de-
crease 𝑧 error but it is not enough to land the drone. 0 layer model generated
significant error during take-off.

In experiments, we observed the Neural-Lander without spectral normalization can
even result in unexpected controller outputs leading to crash, which empirically
implies the necessity of SN in training the DNN and designing the controller.

Trajectory Tracking Performance
To show that our algorithm can handle more complicated environments where
physics-based modelling of dynamics would be substantially more difficult, we
devise a task of tracking an elliptic trajectory very close to a table with a period of 10
seconds shown in Fig. 3.6. The trajectory is partially over the table with significant
ground effects, and a sharp transition to free space at the edge of the table. We
compared the performance of both Neural-Lander and Baseline Controller on this
test.
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(a)

(b)

table

desired trajectory

Mean X error

Mean Y error

Mean Z error

Z variance

0.079m

0.052m

0.027m

0.014m

0.126m

0.061m

0.153m

0.026m

Figure 3.6: Heatmaps of learned 𝑓𝑎,𝑧 and trajectory tracking performance. (a)
Heatmaps of learned 𝑓𝑎,𝑧 versus 𝑥 and 𝑦, with other inputs fixed. (Left) ReLU
network with spectral normalization. (Right) ReLU network without spectral nor-
malization. (b) Tracking performance and statistics.

In order to model the complex dynamics near the table, we manually flew the drone in
the space close to the table to collect another data set. We trained a new ReLU DNN
model with 𝑥-𝑦 positions as additional input features: 𝑓𝑎 (𝑝, 𝑣, 𝑅, 𝑢). Similar to the
setpoint experiment, the benefit of spectral normalization can be seen in Fig. 3.6(a),
where only the spectrally-normalized DNN exhibits a clear table boundary.

Fig. 3.6(b) shows that Neural-Lander outperformed the Baseline Controller for
tracking the desired position trajectory in all 𝑥, 𝑦, and 𝑧 axes. Additionally, Neural-
Lander showed a lower variance in height, even at the edge of the table, as the
controller captured the changes in ground effects when the drone flew over the table.

In summary, the experimental results with multiple ground interaction scenarios
show that much smaller tracking errors are obtained by Neural-Lander, which
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is essentially the nonlinear tracking controller with feedforward cancellation of a
spectrally-normalized DNN.
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C h a p t e r 4

NEURAL-SWARM
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Figure 4.1: Overview of Neural-Swarm. We learn complex interaction between
multirotors using heterogeneous deep sets and design an interaction-aware nonlinear
stable controller and a multi-robot motion planner (a). Our approach enables close-
proximity flight (minimum vertical distance 24 cm) of heterogeneous aerial teams
(16 robots) with significant lower tracking error compared to solutions that do not
consider the interaction forces (b,c).

In Chapter 2, we introduced a general mixed robot dynamics model 𝑀 (𝑞) ¥𝑞 +
𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝑔(𝑞) = 𝐵𝑢 + 𝑓 where 𝑓 is the unknown dynamics. We also introduced
the corresponding drone dynamics model in Eq. (2.4). In Chapter 3, we discussed
the case 𝑓 = 𝑓 (𝑞, ¤𝑞, 𝑢) where the main challenge is to ensure nonlinear stability and
robustness when using a DNN to approximate 𝑓 . In this chapter, we will study a
multi-agent interactive setting, where

𝑓 = 𝑓 (𝑞, ¤𝑞, neighbors’ states)

and the main challenge is to design a scalable learning and control method which
can generalize to different numbers of agents. For example, in multirotor swarm
experiments in Fig. 4.1, 𝑓 refers to complex aerodynamic interactions between
multirotors. In addition to learning-based control methods, we will also discuss
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how to deal with motor delays and design learning-based motion planners. This
chapter is mainly based on the following papers1 2:

Shi, Guanya, Wolfgang Hönig, Xichen Shi, Yisong Yue, and Soon-Jo Chung (2022).
Neural-Swarm2: Planning and control of heterogeneous multirotor swarms using
learned interactions. In: IEEE Transactions on Robotics 38.2, pp. 1063–1079.
doi: 10.1109/TRO.2021.3098436.

Shi, Guanya, Wolfgang Hönig, Yisong Yue, and Soon-Jo Chung (2020). Neural-
Swarm: Decentralized close-proximity multirotor control using learned inter-
actions. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 3241–3247. doi: 10.1109/ICRA40945.2020.9196800.

Abstract. We present Neural-Swarm, a learning-based method for motion planning
and control that allows heterogeneous multirotors in a swarm to safely fly in close
proximity. Such operation for drones is challenging due to complex aerodynamic
interaction forces, such as downwash generated by nearby drones and ground ef-
fect. Conventional planning and control methods neglect capturing these interaction
forces, resulting in sparse swarm configuration during flight. Our approach com-
bines a physics-based nominal dynamics model with learned Deep Neural Networks
(DNNs) with strong Lipschitz properties. We make use of two techniques to accu-
rately predict the aerodynamic interactions between heterogeneous multirotors: i)
spectral normalization for stability and generalization guarantees of unseen data and
ii) heterogeneous deep sets for supporting any number of heterogeneous neighbors
in a permutation-invariant manner without reducing expressiveness. The learned
residual dynamics benefit both the proposed interaction-aware multi-robot motion
planning and the nonlinear tracking control design because the learned interaction
forces reduce the modelling errors. Experimental results demonstrate that Neural-
Swarm is able to generalize to larger swarms beyond training cases and significantly
outperforms a baseline nonlinear tracking controller with up to three times reduction
in worst-case tracking errors.

4.1 Introduction
The ongoing commoditization of unmanned aerial vehicles (UAVs) requires robots
to fly in much closer proximity to each other than before, which necessitates ad-

1Summary video: https://youtu.be/Y02juH6BDxo
2Data and code: https://github.com/aerorobotics/neural-swarm

https://doi.org/10.1109/TRO.2021.3098436
https://doi.org/10.1109/ICRA40945.2020.9196800
https://youtu.be/Y02juH6BDxo
https://github.com/aerorobotics/neural-swarm
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vanced planning and control methods for large aerial swarms (Chung et al., 2018;
Morgan, Subramanian, et al., 2016). For example, consider a search-and-rescue
mission where an aerial swarm must enter and search a collapsed building. In
such scenarios, close-proximity flight enables the swarm to navigate the building
much faster compared to swarms that must maintain large distances from each other.
Other important applications of close-proximity flight include manipulation, search,
surveillance, and mapping. In many scenarios, heterogeneous teams with robots of
different sizes and sensing or manipulation capabilities are beneficial due to their
significantly higher adaptability. For example, in a search-and-rescue mission, larger
UAVs can be used for manipulation tasks or to transport goods, while smaller ones
are more suited for exploration and navigation.

A major challenge of close-proximity control and planning is that small distances
between UAVs create complex aerodynamic interactions. For instance, one multi-
rotor flying above another causes the so-called downwash effect on the lower one,
which is difficult to model using conventional model-based approaches (Jain et al.,
2019). Without accurate downwash interaction modeling, a large safety distance
between vehicles is necessary, thereby preventing a compact 3-D formation shape,
e.g., 60 cm for the small Crazyflie 2.0 quadrotor (9 cm rotor-to-rotor) (Hönig et al.,
2018). Moreover, the downwash is sometimes avoided by restricting the relative
position between robots in the 2-D horizontal plane (Du et al., 2019). For hetero-
geneous teams, even larger and asymmetric safety distances are required (Debord
et al., 2018). However, the downwash for two small Crazyflie quadrotors hovering
30 cm on top of each other is only 9 g, which is well within their thrust capabilities,
and suggests that proper modeling of downwash and other interaction effects can
lead to more precise motion planning and dense formation control.

In this chapter, we present a learning-based approach, Neural-Swarm, which en-
hances the precision, safety, and density of close-proximity motion planning and
control of heterogeneous multirotor swarms. In the example shown in Fig. 4.1, we
safely operate the same drones with vertical distances less than half of those of prior
work (Hönig et al., 2018). In particular, we train deep neural networks (DNNs) to
predict the residual interaction forces that are not captured by the nominal models
of free-space aerodynamics. To the best of our knowledge, this is the first model for
aerodynamic interactions between two or more multirotors in flight. Our DNN ar-
chitecture supports heterogeneous inputs in a permutation-invariant manner without
reducing the expressiveness. The DNN only requires relative positions and veloci-
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ties of neighboring multirotors as inputs, similar to the existing collision-avoidance
techniques (Berg et al., 2009), which enables fully-decentralized computation. We
use the predicted interaction forces to augment the nominal dynamics and derive
novel methods to directly consider them during motion planning and as part of the
multirotors’ controller.

From a learning perspective, we leverage and extend two state-of-the-art tools to
derive effective DNN models. First, we extend deep sets (Zaheer et al., 2017) to
the heterogeneous case and prove its representation power. Our novel encoding is
used to model interactions between heterogeneous vehicle types in an index-free
or permutation-invariant manner, enabling better generalization to new formations
and a varying number of vehicles. The second is spectral normalization (see details
in Chapter 2 and Algorithm 2.1), which ensures the DNN is Lipschitz continuous
and helps the DNN generalize well on test examples that lie outside the training set.
We demonstrate that the interaction forces can be computationally efficiently and
accurately learned such that a small 32-bit microcontroller can predict such forces
in real-time.

From a planning and control perspective, we derive novel methods that directly
consider the predicted interaction forces. For motion planning, we use a two-
stage approach. In the first stage, we extend an existing kinodynamic sampling-
based planner for a single robot to the interaction-aware multi-robot case. In the
second stage, we adopt an optimization-based planner to refine the solutions of the
first stage. Empirically, we demonstrate that our interaction-aware motion planner
both avoids dangerous robot configurations that would saturate the multirotors’
motors and reduces the tracking error significantly. For the nonlinear control we
leverage the Lipschitz continuity of our learned interaction forces to derive stability
guarantees similar to Chapter 3. The controller can be used to reduce the tracking
error of arbitrary desired trajectories, including ones that were not planned with an
interaction-aware planner.

We validate our approach using two to sixteen quadrotors of two different sizes,
and we also integrate ground effect and other unmodeled dynamics into our model,
by viewing the physical environment as a special robot. To our knowledge, our
approach is the first that models interactions between two or more multirotor vehicles
and demonstrates how to use such a model effectively and efficiently for motion
planning and control of aerial teams.
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4.2 Related Work
The aerodynamic interaction force applied to a single UAV flying near the ground
(ground effect), has been discussed in Chapter 3. The interaction between two
rotor blades of a single multirotor has been studied in a lab setting to optimize
the placement of rotors on the vehicle (Shukla and Komerath, 2018). However, it
remains an open question how this influences the flight of two or more multirotors
in close proximity. Interactions between two multirotors can be estimated using
a propeller velocity field model (Jain et al., 2019). Unfortunately, this method is
hard to generalize to the multi-robot or heterogeneous case and it only considers the
stationary case, which is inaccurate for real flights.

The use of DNNs to learn higher-order residual dynamics or control actions is gaining
attention in the areas of control and reinforcement learning settings (Le et al., 2016;
Taylor et al., 2019; Cheng et al., 2019; McKinnon and Schoellig, 2019; Saveriano
et al., 2017; Johannink et al., 2019). For swarms, a common encoding approach is
to discretize the whole space and employ convolutional neural networks (CNNs),
which yields a permutation-invariant encoding. Another common encoding for
robot swarms is a Graphic Neural Network (GNN) (Scarselli et al., 2008; Tolstaya
et al., 2020). GNNs have been extended to heterogeneous graphs (Zhang et al.,
2019), but it remains an open research question how such a structure would apply
to heterogeneous robot teams. We extend a different architecture, which is less
frequently used in robotics applications, called deep sets (Zaheer et al., 2017).
Deep sets enable distributed computation without communication requirements.
Compared to CNNs, our approach: i) requires less training data and computation;
ii) is not restricted to a pre-determined resolution and input domain; and iii) directly
supports the heterogeneous swarm. Compared to GNNs, we do not require any
direct communication between robots. Deep sets have been used in robotics for
heterogeneous (Riviére et al., 2020) teams. Our heterogeneous deep set extension
has a more compact encoding and we prove its representation power.

For motion planning, empirical models have been used to avoid harmful interac-
tions (Morgan, Subramanian, et al., 2016; Morgan, Chung, et al., 2014; Hönig et al.,
2018; Debord et al., 2018; Mellinger et al., 2012). Typical safe boundaries along
multi-vehicle motions form ellipsoids (Hönig et al., 2018) or cylinders (Debord et al.,
2018) along the motion trajectories. Estimating such shapes experimentally would
potentially lead to many collisions and dangerous flight tests and those collision-free
regions are in general conservative. In contrast, we use deep learning to estimate
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the interaction forces accurately in heterogeneous multi-robot teams. This model
allows us to directly control the magnitude of the interaction forces to accurately and
explicitly control the risk, removing the necessity of conservative collision shapes.

4.3 Problem Statement
Similar to Neural-Lander in Chapter 3, Neural-Swarm can generally apply to any
robotic system and we will focus on multirotor UAVs in this chapter for notational
simplicity. In this section, we first recap single multirotor dynamics given in Eq. (2.4)
with an extra first-order motor delay model. Then, we generalize these dynamics
for a swarm of multirotors. Finally, we formulate our objective as a variant of an
optimal control problem and introduce our performance metric.

Single Multirotor Dynamics
We will keep using the multirotor model given in Eq. (2.4) but with extra delay
modelling:

¤𝑝 = 𝑣, 𝑚 ¤𝑣 = 𝑚𝑔 + 𝑅 𝑓𝑢 + 𝑓𝑎, (4.1a)
¤𝑅 = 𝑅𝑆(𝜔), 𝐽 ¤𝜔 = 𝐽𝜔 × 𝜔 + 𝜏 + 𝜏𝑎, (4.1b)

[𝑇 ; 𝜏𝑥; 𝜏𝑦; 𝜏𝑧]︸          ︷︷          ︸
𝜂𝑜

= 𝐵0𝑢, ¤𝑢 = −𝜆𝑢 + 𝜆𝑢𝑐 (4.1c)

where 𝜂𝑜 is the output wrench, 𝑢 is the control input to the system (i.e., squared
motor speeds), 𝑢𝑐 is the actual command signal we can control and 𝜆 > 0 is the time
constant of the delay model.

Compared to Eq. (2.4) in Chapter 2, in this chapter we consider a first-order delay
model in Eq. (4.1c). Moreover, the aerodynamic residual terms 𝑓𝑎 and 𝜏𝑎 are mainly
from the interaction between other multirotors and the environment.

Heterogeneous Swarm Dynamics
We now consider 𝑁 multirotor robots. We use 𝑥 (𝑖) = [𝑝 (𝑖); 𝑣 (𝑖); 𝑅(𝑖);𝜔(𝑖)] to denote
the state of the 𝑖th multirotor. We use 𝑥 (𝑖 𝑗) to denote the relative state component
between robot 𝑖 and 𝑗 , e.g., 𝑥 (𝑖 𝑗) = [𝑝 ( 𝑗) − 𝑝 (𝑖); 𝑣 ( 𝑗) − 𝑣 (𝑖); 𝑅(𝑖)𝑅( 𝑗)⊤].

We use I(𝑖) to denote the type of the 𝑖th robot, where robots with identical physical
parameters such as 𝑚, 𝐽, and 𝐵0 are considered to be of the same type. We assume
there are𝐾 ≤ 𝑁 types of robots, i.e.,I(·) is a surjective mapping from {1, · · · , 𝑁} to
{type1, · · · , type𝐾}. Let r(𝑖)type𝑘 be the set of the relative states of the type𝑘 neighbors
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of robot 𝑖:
r(𝑖)type𝑘 = {𝑥

(𝑖 𝑗) | 𝑗 ∈ neighbor(𝑖) and I( 𝑗) = type𝑘 }. (4.2)

The neighboring function neighbor(𝑖) is defined by an interaction volume function
V. Formally, 𝑗 ∈ neighbor(𝑖) if 𝑝 ( 𝑗) ∈ V(𝑝 (𝑖) ,I(𝑖),I( 𝑗)), i.e., robot 𝑗 is a
neighbor of 𝑖 if the position of 𝑗 is within the interaction volume of 𝑖. In this
chapter, we design V as a cuboid based on observed interactions in experiments.
The ordered sequence of all relative states grouped by robot type is

r(𝑖)I =

(
r(𝑖)type1

, r(𝑖)type2
, · · · , r(𝑖)type𝐾

)
. (4.3)

The dynamics of the 𝑖th multirotor can be written in compact form:

¤𝑥 (𝑖) = Φ(𝑖) (𝑥 (𝑖) , 𝑢(𝑖)) +


0

𝑓
(𝑖)
𝑎 (r(𝑖)I )

0
𝜏
(𝑖)
𝑎 (r(𝑖)I )


, (4.4)

whereΦ(𝑖) (𝑥 (𝑖) , 𝑢(𝑖)) denotes the nominal dynamics of robot 𝑖, and 𝑓 (𝑖)𝑎 (·) and 𝜏(𝑖)𝑎 (·)
are the unmodeled force and torque of the 𝑖th robot that are caused by interactions
with neighboring robots or the environment (e.g., ground effect and air drag).

Robots with the same type have the same nominal dynamics and unmodeled force
and torque:

Φ(𝑖) (·) = ΦI(𝑖) (·), 𝑓 (𝑖)𝑎 (·) = 𝑓
I(𝑖)
𝑎 (·), 𝜏(𝑖)𝑎 (·) = 𝜏I(𝑖)𝑎 (·) ∀𝑖. (4.5)

Note that the homogeneous case is a special case where 𝐾 = 1, i.e., Φ(𝑖) (·) = Φ(·),
𝑓
(𝑖)
𝑎 (·) = 𝑓𝑎 (·), and 𝜏(𝑖)𝑎 (·) = 𝜏𝑎 (·) ∀𝑖.

Our system is heterogeneous in three ways: i) different robot types have heteroge-
neous nominal dynamics ΦI(𝑖); ii) different robot types have different unmodeled
𝑓
I(𝑖)
𝑎 and 𝜏I(𝑖)𝑎 ; and iii) the neighbors of each robot belong to 𝐾 different sets.

We highlight that our heterogeneous model not only captures different types of
robot, but also different types of environmental interactions, e.g., ground effect (G.
Shi, X. Shi, et al., 2019) and air drag. This is achieved in a straightforward manner
by viewing the physical environment as a special robot type. We illustrate this
generalization in the following example.
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Example 4.1 (small and large robots, and the environment). We consider a hetero-
geneous system as depicted in Fig. 4.1(a). Robot 3 (large robot) has three neighbors:
robot 1 (small), robot 2 (small) and environment 4. For robot 3, we have

𝑓
(3)
𝑎 = 𝑓

large
𝑎 (r(3)I ) = 𝑓

large
𝑎 (r(3)small, r

(3)
large, r

(3)
env),

r(3)small = {𝑥
(31) , 𝑥 (32)}, r(3)large = ∅, r(3)env = {𝑥 (34)}

and a similar expression for 𝜏(3)𝑎 .

Interaction-Aware Motion Planning & Control
Our goal is to move the heterogeneous team of robots from their start states to goal
states, which can be framed as the following optimal control problem:

min
𝑢 (𝑖) ,𝑥 (𝑖) ,𝑡 𝑓

𝑁∑︁
𝑖=1

∫ 𝑡 𝑓

0
∥𝑢(𝑖) (𝑡)∥𝑑𝑡 (4.6)

s.t.



robot dynamics (4.4) 𝑖 ∈ [1, 𝑁]

𝑢(𝑖) (𝑡) ∈ UI(𝑖); 𝑥 (𝑖) (𝑡) ∈ XI(𝑖) 𝑖 ∈ [1, 𝑁]

∥𝑝 (𝑖 𝑗) ∥ ≥ 𝑟 (I(𝑖)I( 𝑗)) 𝑖 < 𝑗 , 𝑗 ∈ [2, 𝑁]

∥ 𝑓 (𝑖)𝑎 ∥ ≤ 𝑓
I(𝑖)
𝑎,max; ∥𝜏(𝑖)𝑎 ∥ ≤ 𝜏I(𝑖)𝑎,max 𝑖 ∈ [1, 𝑁]

𝑥 (𝑖) (0) = 𝑥 (𝑖)𝑠 ; 𝑥 (𝑖) (𝑡 𝑓 ) = 𝑥 (𝑖)𝑓 𝑖 ∈ [1, 𝑁]

where U (𝑘) is the control space for type𝑘 robots, X (𝑘) is the free space for type𝑘
robots, 𝑟 (𝑙𝑘) is the minimum safety distance between type𝑙 and type𝑘 robots, 𝑓 (𝑘)𝑎,max

is the maximum endurable interaction force for type𝑘 robots, 𝜏(𝑘)𝑎,max is the maximum
endurable interaction torque for type𝑘 robots, 𝑥 (𝑖)𝑠 is the start state of robot 𝑖, and 𝑥 (𝑖)

𝑓

is the desired state of robot 𝑖. In contrast with the existing literature (Debord et al.,
2018), we assume a tight spherical collision model and bound the interaction forces
directly, eliminating the need of manually defining virtual collision shapes. For
instance, larger 𝑓 I(𝑖)𝑎,max and 𝜏I(𝑖)𝑎,max will yield denser and more aggressive trajectories.
Also note that the time horizon 𝑡 𝑓 is a decision variable.

Solving Eq. (4.6) in real-time in a distributed fashion is intractable due to the
exponential growth of the decision space with respect to the number of robots. Thus,
we focus on solving two common subproblems instead. First, we approximately
solve Eq. (4.6) offline as an interaction-aware motion planning problem. Second, we
formulate an interaction-aware controller that minimizes the tracking error online.
This controller can use both predefined trajectories and planned trajectories from
the interaction-aware motion planner.
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Since interaction between robots might only occur for a short time period with
respect to the overall flight duration but can cause significant deviation from the
nominal trajectory, we consider the worst tracking error of any robot in the team as
a success metric:

max
𝑖,𝑡
∥𝑝 (𝑖) (𝑡) − 𝑝 (𝑖)

𝑑
(𝑡)∥, (4.7)

where 𝑝 (𝑖)
𝑑
(𝑡) is the desired trajectory for robot 𝑖. Note that this metric reflects the

worst error out of all robots, because different robots in a team have various levels
of task difficulty. For example, the two-drone swapping task is very challenging
for the bottom drone due to the downwash effect, but relatively easier for the top
drone. Minimizing Eq. (4.7) implies improved tracking performance and safety of
a multirotor swarm during tight formation flight.

4.4 Learning of Swarm Aerodynamic Interaction
We employ state-of-the-art deep learning methods to capture the unknown (or resid-
ual) dynamics caused by interactions of heterogeneous robot teams. In order to use
the learned functions effectively for motion planning and control, we require that the
DNNs have strong Lipschitz properties (for stability analysis), can generalize well
to new test cases, and use compact encodings to achieve high computational and
statistical efficiency. To that end, we introduce heterogeneous deep sets, a general-
ization of regular deep sets (Zaheer et al., 2017), and employ spectral normalization
for strong Lipschitz properties (see more details in Chapter 2).

In this section, we will first review the homogeneous learning architecture covered in
prior work (Zaheer et al., 2017). Then we generalize them to the heterogeneous case
with representation guarantees. Finally, we introduce our data collection procedures.

Homogeneous Permutation-Invariant Neural Networks
Recall that in the homogeneous case, all robots are with the same type (type1).
Therefore, the input to functions 𝑓𝑎 or 𝜏𝑎 is a single set. The permutation-invariant
aspect of 𝑓𝑎 or 𝜏𝑎 can be characterized as:

𝑓𝑎 (r(𝑖)type1
) = 𝑓𝑎 (𝜋(r(𝑖)type1

)), 𝜏𝑎 (r(𝑖)type1
) = 𝜏𝑎 (𝜋(r(𝑖)type1

))

for any permutation 𝜋. Since the aim is to learn the function 𝑓𝑎 and 𝜏𝑎 using DNNs,
we need to guarantee that the learned DNN is permutation-invariant. Therefore, we
consider the following “deep sets” (Zaheer et al., 2017) architecture to approximate
homogeneous 𝑓𝑎 and 𝜏𝑎:
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[
𝑓𝑎 (r(𝑖)type1

)
𝜏𝑎 (r(𝑖)type1

)

]
≈ ρ

©­­«
∑︁

𝑥 (𝑖 𝑗)∈r(𝑖)type1

ϕ(𝑥 (𝑖 𝑗))
ª®®¬ B

[
𝑓
(𝑖)
𝑎

𝜏
(𝑖)
𝑎

]
, (4.8)

where ϕ(·) and ρ(·) are two DNNs. The output of ϕ is a hidden state to repre-
sent “contributions” from each neighbor, and ρ is a nonlinear mapping from the
summation of these hidden states to the total effect.

Obviously the network architecture in Eq. (4.8) is permutation-invariant due to the
inner sum operation. We now show that this architecture is able to approximate
any continuous permutation-invariant function. The following Lemma 4.1 and
Theorem 4.1 are adopted from (Zaheer et al., 2017) and will be used and extended
in the next section for the heterogeneous case.

Lemma 4.1. Define ϕ̄(𝑧) = [1; 𝑧; · · · ; 𝑧𝑀] ∈ R𝑀+1 as a mapping from R to R𝑀+1,
and X = {[𝑥1; · · · ; 𝑥𝑀] ∈ [0, 1]𝑀 |𝑥1 ≤ · · · ≤ 𝑥𝑀} as a subset of [0, 1]𝑀 . For
x = [𝑥1; · · · ; 𝑥𝑀] ∈ X, define q(x) = ∑𝑀

𝑚=1 ϕ̄(𝑥𝑚). Then q(x) : X → R𝑀+1 is a
homeomorphism.

Proof. The proof builds on the Newton-Girard formulae, which connect the mo-
ments of a sample set (sum-of-power) to the elementary symmetric polynomials
(see Zaheer et al. (2017)). □

Theorem 4.1. Suppose ℎ(x) : [0, 1]𝑀 → R is a permutation-invariant continuous
function, i.e., ℎ(x) = ℎ(𝑥1, · · · , 𝑥𝑀) = ℎ(𝜋(𝑥1, · · · , 𝑥𝑀)) for any permutation 𝜋.
Then there exist continuous functions 𝜌̄ : R𝑀+1 → R and ϕ̄ : R→ R𝑀+1 such that

ℎ(x) = 𝜌̄
(
𝑀∑︁
𝑚=1

ϕ̄(𝑥𝑚)
)
, ∀x ∈ [0, 1]𝑀 .

Proof. We choose ϕ̄(𝑧) = [1; 𝑧; · · · ; 𝑧𝑀] and 𝜌̄(·) = ℎ(q−1(·)), where q(·) is
defined in Lemma 4.1. Note that since q(·) is a homeomorphism, q−1(·) exists
and it is a continuous function from R𝑀+1 to X. Therefore, 𝜌̄ is also a continuous
function from R𝑀+1 to R, and 𝜌̄

(∑𝑀
𝑚=1 ϕ̄(𝑥𝑚)

)
= 𝜌̄(q(x)) = ℎ(q−1(q(x))) = ℎ(x)

for x ∈ X. Finally, note that for any x ∈ [0, 1]𝑀 , there exists some permutation 𝜋
such that 𝜋(x) ∈ X. Then because both 𝜌̄(q(x)) and ℎ(x) are permutation-invariant,
we have 𝜌̄ (q(x)) = 𝜌̄ (q(𝜋(x))) = ℎ(𝜋(x)) = ℎ(x) for all x ∈ [0, 1]𝑀 . □
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Theorem 4.1 focuses on scalar valued permutation-invariant continuous functions
with hypercubic input space [0, 1]𝑀 , i.e., each element in the input set is a scalar.
In contrast, our learning target function [ 𝑓𝑎; 𝜏𝑎] in Eq. (4.8) is a vector valued
function with a bounded input space, and each element in the input set is also a
vector. However, Theorem 4.1 can be generalized in a straightforward manner by
the following corollary.

Corollary 4.1. Suppose x(1) , x(2) , · · · , x(𝑀) are 𝑀 bounded vectors in R𝐷1 , and
ℎ(x(1) , · · · , x(𝑀)) is a continuous permutation-invariant function from R𝑀×𝐷1 to
R𝐷2 , i.e., ℎ(x(1) , · · · , x(𝑀)) = ℎ(x𝜋(1) , · · · , x𝜋(𝑀)) for any permutation 𝜋. Then
ℎ(x(1) , · · · , x(𝑀)) can be approximated arbitrarily close in the proposed architecture
in Eq. (4.8).

Proof. First, there exists a bijection from the bounded vector space in R𝐷1 to
[0, 1] after discretization, with finite but arbitrary precision. Thus, Theorem 4.1 is
applicable. Second, we apply Theorem 4.1 𝐷2 times and stack 𝐷2 scalar-valued
functions to represent the vector-valued function with output space R𝐷2 . Finally,
because DNNs are universal approximators for continuous functions (Csáji et al.,
2001), the proposed architecture in Eq. (4.8) can approximate any ℎ(x(1) , · · · , x(𝑀))
arbitrarily close. □

Heterogeneous 𝐾-Group Permutation-Invariant DNN
Different from the homogeneous setting, the inputs to functions 𝑓

I(𝑖)
𝑎 and 𝜏

I(𝑖)
𝑎

in Eq. (4.5) are 𝐾 different sets. First, we define permutation-invariance in the
heterogeneous case. Intuitively, we expect that the following equality holds:

𝑓
I(𝑖)
𝑎

(
r(𝑖)type1

, · · · , r(𝑖)type𝐾

)
= 𝑓
I(𝑖)
𝑎

(
𝜋1(r(𝑖)type1

), · · · , 𝜋𝐾 (r(𝑖)type𝐾 )
)

for any permutations 𝜋1, · · · , 𝜋𝐾 (similarly for 𝜏I(𝑖)𝑎 ). Formally, we define 𝐾-group
permutation invariance as follows.

Definition 4.1 (𝐾-group permutation invariance). Let x(𝑘) = [𝑥 (𝑘)1 ; · · · ; 𝑥 (𝑘)
𝑀𝑘
] ∈

[0, 1]𝑀𝑘 for 1 ≤ 𝑘 ≤ 𝐾 , and x = [x(1); · · · ; x(𝐾)] ∈ [0, 1]𝑀𝐾 , where 𝑀𝐾 =∑𝐾
𝑘=1 𝑀𝑘 . ℎ(x) : R𝑀𝐾 → R is 𝐾-group permutation-invariant if

ℎ( [x(1); · · · ; x(𝐾)]) = ℎ( [𝜋1(x(1)); · · · ; 𝜋𝐾 (x(𝐾))])

for any permutations 𝜋1, 𝜋2, · · · , 𝜋𝐾 .
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For example, ℎ(𝑥1, 𝑥2, 𝑦1, 𝑦2) = max{𝑥1, 𝑥2}+2·max{𝑦1, 𝑦2} is a 2-group permutation-
invariant function, because we can swap 𝑥1 and 𝑥2 or swap 𝑦1 and 𝑦2, but if we
interchange 𝑥1 and 𝑦1 the function value may vary. In addition, the 𝑓 large

𝑎 function
in Example 4.1 is a 3-group permutation-invariant function.

Similar to Lemma 4.1, in order to handle ambiguity due to permutation, we define
X𝑀𝑘 = {[𝑥1; · · · ; 𝑥𝑀𝑘 ] ∈ [0, 1]𝑀𝑘 |𝑥1 ≤ · · · ≤ 𝑥𝑀𝑘 } and

X𝐾 =

{
[x(1); · · · ; x(𝐾)] ∈ [0, 1]𝑀𝐾 |x(𝑘) ∈ X𝑀𝑘 ,∀𝑘

}
.

Finally, we show how a𝐾-group permutation-invariant function can be approximated
via the following theorem.

Theorem 4.2. ℎ(x) : [0, 1]𝑀𝐾 → R is a 𝐾-group permutation-invariant continuous
function if and only if it has the representation

ℎ(x) = 𝜌̄
(
𝑀1∑︁
𝑚=1

ϕ̄1(𝑥 (1)𝑚 ) + · · · +
𝑀𝐾∑︁
𝑚=1

ϕ̄𝐾 (𝑥 (𝐾)𝑚 )
)
= 𝜌̄

(
𝐾∑︁
𝑘=1

𝑀𝑘∑︁
𝑚=1

ϕ̄𝑘 (𝑥 (𝑘)𝑚 )
)
,∀x ∈ [0, 1]𝑀𝐾

for some continuous outer and inner functions 𝜌̄ : R𝐾+𝑀𝐾 → R and ϕ̄𝑘 : R →
R𝐾+𝑀𝐾 for 1 ≤ 𝑘 ≤ 𝐾 .

Proof. The sufficiency follows from that ℎ(x) is 𝐾-group permutation-invariant by
construction. For the necessary condition, we need to find continuous functions 𝜌̄
and {ϕ̄𝑘 }𝐾𝑘=1 given ℎ. We define ϕ̄𝑘 (𝑥) : R→ R𝐾+𝑀𝐾 as

ϕ̄𝑘 (𝑥) = [0𝑀1; · · · ; 0𝑀𝑘−1;


1
𝑥
...

𝑥𝑀𝑘


; 0𝑀𝑘+1; · · · ; 0𝑀𝐾 ]

where 0𝑀𝑘 = [0; · · · ; 0] ∈ R𝑀𝑘+1. Then

q𝐾 (x) =
𝐾∑︁
𝑘=1

𝑀𝑘∑︁
𝑚=1

ϕ̄𝑘 (𝑥 (𝑘)𝑚 )

is a homeomorphism from X𝐾 ⊆ R𝑀𝐾 to R𝐾+𝑀𝐾 from Lemma 4.1. We choose
𝜌̄ : R𝐾+𝑀𝐾 → R as 𝜌̄(·) = ℎ(q−1

𝐾
(·)) which is continuous, because both q−1

𝐾

and ℎ are continuous. Then 𝜌̄(q𝐾 (x)) = ℎ(x) for x ∈ X𝐾 . Finally, because i)
for all x = [x(1); · · · ; x(𝐾)] in [0, 1]𝑀𝐾 there exist permutations 𝜋1, · · · , 𝜋𝐾 such
that [𝜋1(x(1)); · · · ; 𝜋𝐾 (x(𝐾))] ∈ X𝐾 ; and ii) both 𝜌̄(q𝐾 (x)) and ℎ(x) are 𝐾-group
permutation-invariant, we have 𝜌̄(q𝐾 (x)) = ℎ(x) for x ∈ [0, 1]𝑀𝐾 . □



55

Original Space 𝒳"

𝑥$
($)
1

Type1

… 	𝑀$

𝑥*+
($)

𝑥$
(")

Type𝐾

𝑥-
(")

…

𝑥*.
(")

…

+
…

+

Latent Space
{𝒒" 𝐱 |𝐱 ∈ 𝒳"}

Homeomorphism 𝒒" 𝐱

Target
Space

Continuous
Map

𝜌̅(𝒒"(𝐱)) = ℎ(𝐱)

	2	1 		𝑀"

Figure 4.2: Illustration of Theorem 4.2. We first find a homeomorphism q𝐾 (·)
between the original space and the latent space, and then find a continuous function
𝜌̄(·) such that 𝜌̄(q𝐾 (·)) = ℎ(·).

Figure 4.2 depicts the key idea of Theorem 4.2. Moreover, we provide a 2-group
permutation-invariant function example to highlight the roles of ϕ and 𝜌 in the
heterogeneous case.

Example 4.2 (2-group permutation-invariant function). Consider ℎ(𝑥1, 𝑥2, 𝑦1, 𝑦2) =
max{𝑥1, 𝑥2} + 2 · max{𝑦1, 𝑦2}, which is 2-group permutation-invariant. Then we
define ϕ𝑥 (𝑥) = [𝑒𝛼𝑥; 𝑥𝑒𝛼𝑥; 0; 0], ϕ𝑦 (𝑦) = [0; 0; 𝑒𝛼𝑦; 𝑦𝑒𝛼𝑦] and 𝜌( [𝑎; 𝑏; 𝑐; 𝑑]) =
𝑏/𝑎 + 2 · 𝑑/𝑐. Note that

𝜌(ϕ𝑥 (𝑥1) + ϕ𝑥 (𝑥2) + ϕ𝑦 (𝑦1) + ϕ𝑦 (𝑦2)) =
𝑥1𝑒

𝛼𝑥1 + 𝑥2𝑒
𝛼𝑥2

𝑒𝛼𝑥1 + 𝑒𝛼𝑥2
+ 2 · 𝑦1𝑒

𝛼𝑦1 + 𝑦2𝑒
𝛼𝑦2

𝑒𝛼𝑦1 + 𝑒𝛼𝑦2
,

which is asymptotically equal to max{𝑥1, 𝑥2} + 2 ·max{𝑦1, 𝑦2} as 𝛼→ +∞.

Similar to the homogeneous case, Theorem 4.2 can generalize to vector-output
functions with a bounded input space by applying the same argument as in Corol-
lary 4.1. We propose the following heterogeneous deep set structure to model the
heterogeneous functions 𝑓 I(𝑖)𝑎 and 𝜏I(𝑖)𝑎 :[

𝑓
I(𝑖)
𝑎 (r(𝑖)type1

, · · · , r(𝑖)type𝐾 )
𝜏
I(𝑖)
𝑎 (r(𝑖)type1

, · · · , r(𝑖)type𝐾 )

]
≈ ρI(𝑖)

©­­«
𝐾∑︁
𝑘=1

∑︁
𝑥 (𝑖 𝑗)∈r(𝑖)type𝑘

ϕI( 𝑗) (𝑥 (𝑖 𝑗))
ª®®¬ B

[
𝑓
(𝑖)
𝑎

𝜏
(𝑖)
𝑎

]
. (4.9)

Example 4.3 (Use of 3-group permutation-invariant function for multirotors). For
example, in the heterogeneous system provided by Example 4.1 (as depicted in
Fig. 4.1(a)), we have[
𝑓
(3)
𝑎

𝜏
(3)
𝑎

]
=

[
𝑓

large
𝑎 (r(3)small, r

(3)
large, r

(3)
env)

𝜏
large
𝑎 (r(3)small, r

(3)
large, r

(3)
env)

]
≈ ρlarge

(
ϕsmall(𝑥 (31)) + ϕsmall(𝑥 (32)) + ϕenv(𝑥 (34))

)
,
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for the large robot 3, where ϕsmall captures the interaction with the small robot 1
and 2, and ϕenv captures the interaction with the environment 4, e.g., ground effect
and air drag.

The structure in Eq. (4.9) has many valuable properties:

• Representation ability. Since Theorem 4.2 is necessary and sufficient, we
do not lose approximation power by using this constrained framework, i.e.,
any 𝐾-group permutation-invariant function can be learned by Eq. (4.9). We
demonstrate strong empirical performance using relatively compact DNNs for
ρI(𝑖) and ϕI( 𝑗) .

• Computational and sampling efficiency and scalability. Since the input
dimension of ϕI( 𝑗) is always the same as the single vehicle case, the feed-
forward computational complexity of Eq. (4.9) grows linearly with the number
of neighboring vehicles. Moreover, the number of neural networks (ρI(𝑖) and
ϕI( 𝑗)) we need is 2𝐾 , which grows linearly with the number of robot types.
In practice, we found that one hour flight data is sufficient to accurately learn
interactions between two to five multirotors.

• Generalization to varying swarm size. Given learned ϕI( 𝑗) and ρI(𝑖)

functions, Eq. (4.9) can be used to predict interactions for any swarm size.
In other words, we can accurately model swarm sizes (slightly) larger than
those used for training. In practice, we found that our model can give good
predictions for five multirotor swarms, despite only being trained on one to
three multirotor swarms. Theoretical analysis on this generalizability is an
interesting future research direction.

Curriculum Learning
Training DNNs in Eq. (4.9) to approximate 𝑓 I(𝑖)𝑎 and 𝜏I(𝑖)𝑎 requires collecting close
formation flight data. However, the downwash effect causes the nominally controlled
multirotors (without compensation for the interaction forces) to move apart from
each other. Thus, we use a curriculum/cumulative learning approach: first, we
collect data for two multirotors without a DNN and learn a model. Second, we
repeat the data collection using our learned model as a feed-forward term in our
controller, which allows closer-proximity flight of the two vehicles. Third, we repeat
the procedure with increasing number of vehicles, using the current best model.
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Note that our data collection and learning are independent of the controller used
and independent of the 𝑓

I(𝑖)
𝑎 or 𝜏I(𝑖)𝑎 compensation. In particular, if we actively

compensate for the learned 𝑓
I(𝑖)
𝑎 or 𝜏I(𝑖)𝑎 , this will only affect 𝜂𝑜 in Eq. (4.1) and

not the observed 𝑓
I(𝑖)
𝑎 or 𝜏I(𝑖)𝑎 .

4.5 Interaction-Aware Multi-Robot Planning
We approximately solve Eq. (4.6) offline by using two simplifications: i) we plan
sequentially for each robot, treating other robots as dynamic obstacles with known
trajectories, and ii) we use double-integrator dynamics plus learned interactions.
Both simplifications are common for multi-robot motion planning with applications
to multirotors (Morgan, Subramanian, et al., 2016; Luis and Schoellig, 2019). Such
a motion planning approach can be easily distributed and is complete for planning
instances that fulfill the well-formed infrastructure property (Čáp et al., 2015).
However, the interaction forces Eq. (4.9) complicate motion planning significantly,
because the interactions are highly nonlinear and robot dynamics are not independent
from each other anymore.

For example, consider a three-robot team with two small and one large robot as in
Fig. 4.1(a). Assume that we already have valid trajectories for the two small robots
and now plan a motion for the large robot. The resulting trajectory might result in a
significant downwash force for the small robots if the large robot flies directly above
the small ones. This strong interaction might invalidate the previous trajectories
of the small robots or even violate their interaction force limits 𝑓 small

𝑎,max and 𝜏small
𝑎,max.

Furthermore, the interaction force is asymmetric and thus it is not sufficient to only
consider the interaction force placed on the large robot. We solve this challenge
by directly limiting the change of the interaction forces placed on all neighbors
when we plan for a robot. This concept is similar to trust regions in sequential
optimization (Foust et al., 2020).

The simplified state is 𝑥 (𝑖) = [𝑝 (𝑖); 𝑣 (𝑖); 𝑓 (𝑖)𝑎 ] and the simplified dynamics Eq. (4.4)
become:

¤𝑥 (𝑖) = 𝑓 (𝑖) (𝑥 (𝑖) , 𝑢(𝑖)) =


𝑣 (𝑖)

𝑢(𝑖) + 𝑓 (𝑖)𝑎
¤̂
𝑓
(𝑖)
𝑎

 . (4.10)

These dynamics are still complex and nonlinear because of 𝑓 (𝑖)𝑎 , which is the learned
interaction force represented by DNNs in Eq. (4.9). We include 𝑓

(𝑖)
𝑎 in our state

space to simplify the enforcement of the bound on the interaction force in Eq. (4.6).
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We propose a novel hybrid two-stage planning algorithm, see Algorithm 4.1, lever-
aging the existing approaches while still highlighting the importance of considering
interactive forces/torques in the planning. The portions of the pseudo-code in Al-
gorithm 4.1 that significantly differ from the existing methods to our approach are
highlighted. In Stage 1, we find initial feasible trajectories using a kinodynamic
sampling-based motion planner. Note that any kinodynamic planner can be used for
Stage 1. In Stage 2, we use sequential convex programming (SCP) (Morgan, Sub-
ramanian, et al., 2016; Foust et al., 2020; Dinh and Diehl, 2010) to refine the initial
solution to reach the desired states exactly and to minimize our energy objective
defined in Eq. (4.6). Intuitively, Stage 1 identifies the homeomorphism class of the
solution trajectories and fixes 𝑡 𝑓 , while Stage 2 finds the optimal trajectories to the
goal within that homeomorphism class. Both stages differ from similar methods in
the literature (Morgan, Subramanian, et al., 2016), because they need to reason over
the coupling of the robots caused by interaction forces 𝑓 (𝑖)𝑎 .

Stage 1: Sampling-Based Planning using Interaction Forces
For Stage 1, any kinodynamic single-robot motion planner can be extended. For
the coupled multi-robot setting in this chapter, we modify AO-RRT (Hauser and
Zhou, 2016), which is is a meta-algorithm that uses the rapidly-exploring random
tree (RRT) algorithm as a subroutine.

Sampling-based planner. Our adaption of RRT (Lines 3 to 15 in Algorithm 4.1)
works as follows. First, a random state 𝑥rand is uniformly sampled from the state
space (Line 6) and the closest state 𝑥near that is already in the search tree T is found
(Line 7). This search can be done efficiently in logarithmic time by employing a
specialized data structured such as a kd-tree (Bentley, 1975) and requires the user to
define a distance function on the state space. Second, an action is uniformly sampled
from the action space (Line 8) and the dynamics Eq. (4.4) are forward propagated
for a fixed time period Δ𝑡 using 𝑥near as the initial condition, e.g., by using the
Runge-Kutta method (Line 9). Note that this forward propagation directly considers
the learned dynamics 𝑓 (𝑖)𝑎 . Third, the new state 𝑥new is checked for validity with
respect to i) the state space (which includes 𝑓 (𝑖)𝑎 ), ii) collisions with other robots,
and iii) change and bound of the neighbor’s interaction forces (Line 10). The first
validity check ensures that the interaction force of the robot itself is bounded, while
the third check is a trust region and upper bound for the neighbor’s interaction forces.

If 𝑥new is valid, it is added as a child node of 𝑥near in the search tree T (Line 11).
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Algorithm 4.1: Interaction-aware motion planning
Input: 𝑥 (𝑖)0 , 𝑥 (𝑖)

𝑓
, Δ𝑡

Result: X (𝑖)sol =
(
𝑥
(𝑖)
0 , 𝑥

(𝑖)
1 , 𝑥

(𝑖)
2 , . . . , 𝑥

(𝑖)
𝑇 (𝑖)

)
,U (𝑖)sol =

(
𝑢
(𝑖)
0 , 𝑢

(𝑖)
1 , 𝑢

(𝑖)
2 , . . . , 𝑥

(𝑖)
𝑇 (𝑖)−1

)
⊲ Stage 1: Find 𝑡 𝑓 and initial trajectories that are close to the goal state

1 𝑐(𝑖) ←∞,X (𝑖)sol ← (),U
(𝑖)
sol ← () ∀𝑖 ∈ {1, . . . , 𝑁}

2 repeat
3 foreach 𝑖 ∈ RandomShuffle({1, . . . , 𝑁}) do
4 T = ({x(𝑖)0 }, ∅)
5 repeat
6 𝑥rand ← UniformSample(XI(𝑖))
7 𝑥near ← FindClosest(T , 𝑥rand)

8 𝑢rand ← UniformSample(UI(𝑖))
9 𝑥new, 𝑐← Propagate(𝑥near, 𝑢rand, Δ𝑡, {X ( 𝑗)sol | 𝑗 ≠ 𝑖})

10 if StateValid(xnew, {X ( 𝑗)sol | 𝑗 ≠ 𝑖}) and 𝑐 ≤ 𝑐(𝑖) then
11 Add(T , 𝑥near → 𝑥new)

12 if ∥𝑥new − 𝑥 (𝑖)𝑓 ∥ ≤ 𝜀 then
13 𝑐(𝑖) ← 𝑐

14 X (𝑖)sol ,U
(𝑖)
sol ← ExtractSolution(T , 𝑥new)

15 break
16 until TerminationCondition1()
17 X (𝑖)sol ,U

(𝑖)
sol ← PostProcess(X

(𝑖)
sol ,U

(𝑖)
sol)

⊲ Stage 2: Refine trajectories sequentially; Based on SCP
18 repeat
19 foreach 𝑖 ∈ RandomShuffle({1, . . . , 𝑁}) do
20 X (𝑖)sol ,U

(𝑖)
sol ← SolveCP(Eq. (4.14), {X (𝑖)sol |∀𝑖}, {U

(𝑖)
sol |∀𝑖})

21 until Converged()

Finally, if 𝑥new is within an 𝜀-distance to the goal 𝑥 (𝑖)
𝑓

, the solution can be extracted
by following the parent pointers of each tree node starting from 𝑥new until the root
node 𝑥 (𝑖)0 is reached (Line 15).

We note that our RRT steering method departs from ones in the literature which
either sample Δ𝑡, use a best-control approximation of the steer method in RRT, or
use a combination of both Δ𝑡-sampling and best-control approximation (Hauser and
Zhou, 2016). We are interested in a constant Δ𝑡 for our optimization formulation
in Stage 2. In this case, a best-control approximation would lead to a probabilistic
incomplete planner (Kunz and Stilman, 2015). We adopt a technique of goal biasing
where we pick the goal state rather than 𝑥rand in fixed intervals, in order to improve
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Figure 4.3: Example for Stage 1 of our motion planning with learned dynamics.
Here, we have an initial solution for a small (blue) robot and plan for a large (orange)
robot. The created search tree of the large robot is color-coded by the magnitude
of the interaction force on the orange robot. During the search, we reject states that
would cause a significant change in the interaction force for the blue robot (edges in
blue).

the convergence speed.

While RRT is probabilistically complete, it also almost surely converges to a subop-
timal solution (Karaman and Frazzoli, 2011). AO-RRT remedies this shortcoming
by planning in a state-cost space and using RRTs sequentially with a monotonically
decreasing cost bound. The cost bound 𝑐(𝑖) is initially set to infinity (Line 1) and
the tree can only grow with states that have a lower cost associated with them (Line
10). Once a solution is found, the cost bound is decreased accordingly (Line 13)
and the search is repeated using the new cost bound (Line 2). This approach is
asymptotically optimal, but in practice the algorithm is terminated based on some
condition, e.g., a timeout or a fixed number of iterations without improvements
(Line 16).

Modification of sampling-based planner. We extend AO-RRT to a sequential
interaction-aware multi-robot planner by adding 𝑓 (𝑖)𝑎 and time to our state space and
treating the other robots as dynamic obstacles. As cost, we use a discrete approxima-
tion of the objective in Eq. (4.6). For each AO-RRT outer-loop iteration with a fixed
cost bound, we compute trajectories sequentially using a random permutation of the
robots (Line 3). When we check the state for validity (Line 10), we also enforce that
the new state is not in collision with the trajectories of the other robots and that their
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interaction forces are bounded and within a trust region compared to their previous
value, see Fig. 4.3 for visualization. Here, the red edges show motions that cause
large (≈ 10 g) but admissible interaction forces on the orange robot, because the
blue robot flies directly above it. The blue edges are candidate edges as computed
in Line 9 and are not added to the search tree, because their motion would cause
a violation of the interaction force trust region of the blue robot (condition in Line
10). Once the search tree contains a path to the goal region, a solution is returned
(orange path).

The output of the sequential planner (Line 15) is a sequence of states X (𝑖)sol and
actions U (𝑖)sol , each to be applied for a duration of Δ𝑡. Note that the sequences
might have different lengths for each robot. Implicitly, the sequences also define 𝑡 𝑓 .
Furthermore, the first element of each sequence is the robots’ start state and the last
element is within a 𝜀-distance of the robots’ goal state. We postprocess this sequence
of states to make it an appropriate input for the optimization, e.g., for uniform length
(Line 17). In practice, we found that repeating the last state and adding null actions,
or (virtual) tracking of the computed trajectories using a controller are efficient and
effective postprocessing techniques.

Other sampling-based methods can be used as foundation of the first stage as well,
with similar changes in sequential planning, state-augmentation to include the in-
teraction forces, state-validity checking, and postprocessing.

Stage 2: Optimization-Based Motion Planning
We employ sequential convex programming (SCP) for optimization. SCP is a local
optimization method for nonconvex problems that leverages convex optimization.
The key concept is to convexify the nonconvex portions of the optimization problem
by linearizing around a prior solution. The resulting convex problem instance is
solved and a new solution obtained. The procedure can be repeated until convergence
criteria are met. Because of the local nature of this procedure, a good initial guess
is crucial for high-dimensional and highly nonlinear system dynamics. In our case,
we use the searched trajectories from Stage 1 in Section 4.5 as the initial guess.

We first adopt a simple zero-order hold temporal discretization of the dynamics
Eq. (4.10) using Euler integration:

𝑥
(𝑖)
𝑘+1 = 𝑥

(𝑖)
𝑘
+ ¤𝑥 (𝑖)

𝑘
Δ𝑡. (4.11)
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Second, we linearize ¤𝑥 (𝑖)
𝑘

around prior states 𝑥 (𝑖)
𝑘

and actions 𝑢̄(𝑖)
𝑘

:

¤𝑥 (𝑖)
𝑘
≈ 𝐴𝑘 (𝑥 (𝑖)𝑘 − 𝑥

(𝑖)
𝑘
) + 𝐵𝑘 (𝑢(𝑖)𝑘 − 𝑢̄

(𝑖)
𝑘
) + 𝑓 (𝑖) (𝑥 (𝑖)

𝑘
, 𝑢̄
(𝑖)
𝑘
), (4.12)

where 𝐴𝑘 and 𝐵𝑘 are the partial derivative matrices of 𝑓 (𝑖) with respect to 𝑥 (𝑖)
𝑘

and 𝑢(𝑖)
𝑘

evaluated at 𝑥 (𝑖)
𝑘
, 𝑢̄
(𝑖)
𝑘

. Because we encode 𝑓
(𝑖)
𝑎 using fully-differentiable

DNNs, the partial derivatives can be efficiently computed analytically, e.g., by using
autograd in PyTorch (Paszke et al., 2019).

Third, we linearize 𝑓
( 𝑗)
𝑎 around our prior states 𝑥 (𝑖)

𝑘
for all neighboring robots

𝑗 ∈ neighbor(𝑖):

𝑓
( 𝑗)
𝑎 ≈ 𝐶 ( 𝑗)

𝑘
(𝑥 (𝑖)
𝑘
− 𝑥 (𝑖)

𝑘
) + 𝑓 ( 𝑗)𝑎 (r(𝑖)I (𝑥

(𝑖)
𝑘
)), (4.13)

where 𝐶 ( 𝑗)
𝑘

is the derivative matrix of 𝑓 ( 𝑗)𝑎 (the learned interaction function of robot
𝑗 , represented by DNNs) with respect to 𝑥 (𝑖)

𝑘
evaluated at 𝑥 (𝑖)

𝑘
; and r(𝑖)I (𝑥

(𝑖)
𝑘
) is the

ordered sequence of relative states as defined in Eq. (4.3) but using the fixed prior
state 𝑥 (𝑖)

𝑘
rather than decision variable 𝑥 (𝑖)

𝑘
in Eq. (4.2).

We now formulate a convex program, one per robot:

min
X (𝑖)sol ,U

(𝑖)
sol

𝑇∑︁
𝑡=0
∥𝑢(𝑖)

𝑘
∥2 + 𝜆1∥𝑥 (𝑖)𝑇 − 𝑥

(𝑖)
𝑓
∥∞ + 𝜆2𝛿 (4.14)

subject to:

robot dynamics Eq. (4.11) and Eq. (4.12) 𝑖 ∈ [1, 𝑁]

𝑢
(𝑖)
𝑘
∈ UI(𝑖) 𝑖 ∈ [1, 𝑁]

𝑥
(𝑖)
𝑘
∈ XI(𝑖)

𝛿
𝑖 ∈ [1, 𝑁], 𝛿 ≥ 0

⟨𝑝 (𝑖 𝑗)
𝑘
, 𝑝
(𝑖)
𝑘
− 𝑝 (𝑖)

𝑘
⟩ ≥ 𝑟 (I(𝑖)I( 𝑗)) ∥𝑝 (𝑖 𝑗)

𝑘
∥2 𝑖 < 𝑗 , 𝑗 ∈ [2, 𝑁]

𝑥
(𝑖)
0 = 𝑥

(𝑖)
𝑠 𝑖 ∈ [1, 𝑁]

|𝐶 ( 𝑗)
𝑘
(𝑥 (𝑖)
𝑘
− 𝑥 (𝑖)

𝑘
) | ≤ 𝑏 𝑓 𝑎 𝑖 < 𝑗 , 𝑗 ∈ [2, 𝑁]

|𝑥 (𝑖)
𝑘
− 𝑥 (𝑖)

𝑘
| ≤ 𝑏𝑥; |𝑢(𝑖)𝑘 − 𝑢̄

(𝑖)
𝑘
| ≤ 𝑏𝑢 𝑖 ∈ [1, 𝑁]

where XI(𝑖)
𝛿

is the state space increased by 𝛿 in each direction, the linearized robot
dynamics are similar to (Foust et al., 2020; Nakka et al., 2021), and the convexified
inter-robot collision constraint is from (Morgan, Subramanian, et al., 2016). We
use soft constraints for reaching the goal (with weight 𝜆1) and the state space (with
weight 𝜆2), and trust regions around 𝑥 (𝑖)

𝑘
, 𝑢̄(𝑖)

𝑘
, and the neighbors’ interaction forces

for numerical stability. Interaction forces are constrained in (4.14) because 𝑓
(𝑖)
𝑎 is

part of the state space XI(𝑖) .
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We solve these convex programs sequentially and they converge to a locally optimal
solution (Morgan, Subramanian, et al., 2016). For the first iteration, we linearize
around the trajectory computed during Stage 1 of our motion planner while subse-
quent iterations linearize around the solution of the previous iteration (Lines 18 to
21 in Algorithm 4.1). It is possible to implement Algorithm 4.1 in a distributed
fashion similar to prior work (Morgan, Subramanian, et al., 2016).

4.6 Interaction-Aware Tracking Controller

Desired
Trajectory

Position
Controller

Attitude
Controller

Interaction Estimation

Relative Neighbor States {𝐱($%)}

Delay Compensation

Vehicle
Dynamics

Thrust
Mixing

Environment

𝐟)
($) 𝝉)

($)

𝐟+,
($) 𝝉-,

($)

𝐮/
($)

𝐱($)

−

Figure 4.4: Hierarchy of control and planning blocks with information flow for
commands and sensor feedback. We use different colors to represent heterogeneous
neighbors. Note that the neighbors will influence the vehicle dynamics (dashed
arrow).

Given arbitrary desired trajectories, including ones that have not been computed
using the method presented in Section 4.5, we augment the hierarchical multirotor
controller discussed in Chapter 2 with delay compensation. The overall control
structure is shown in Fig. 4.4.

First, we recap a multi-agent integral variant of the hierarchical control structure
given in Chapter 2. For the 𝑖th agent, we have the following control law:

𝑓
(𝑖)
𝑑

= 𝑚 (𝑖) ¥𝑝 (𝑖)𝑟 − 𝑚 (𝑖)𝑔 − 𝐾 (𝑖)𝑠(𝑖) − 𝑓 (𝑖)𝑎

𝜏
(𝑖)
𝑑

= 𝐽 (𝑖) ¤𝜔(𝑖)𝑟 − 𝐽 (𝑖)𝜔(𝑖) × 𝜔(𝑖)𝑟 − 𝐾 (𝑖)𝜔 (𝜔(𝑖) − 𝜔(𝑖)𝑟 ) − Γ(𝑖)𝜔
∫
(𝜔(𝑖) − 𝜔(𝑖)𝑟 )𝑑𝑡 − 𝜏(𝑖)𝑎 .

Since most of theoretical analyses are covered in Chapter 2 and Chapter 3. Here we
highlight three main differences of the above controller from previous chapters:

Decentralized, heterogeneous, and interaction-aware. Note that in this chapter,
we consider a heterogeneous multi-agent setting, where the nominal dynamics (e.g.,
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𝑚 (𝑖) , 𝐽 (𝑖) , 𝐾 (𝑖)) depend on the agent type I(𝑖). Moreover, the learned interaction
term 𝑓

(𝑖)
𝑎 and 𝜏(𝑖)𝑎 are computed in real time in a decentralized manner:[

𝑓
(𝑖)
𝑎

𝜏
(𝑖)
𝑎

]
= ρI(𝑖)

©­­«
𝐾∑︁
𝑘=1

∑︁
𝑥 (𝑖 𝑗)∈r(𝑖)type𝑘

ϕI( 𝑗) (𝑥 (𝑖 𝑗))
ª®®¬ .

Integral control. We also enhance the controller in Chapter 2 by two integral
terms. In the position control law, the composite variable 𝑠(𝑖) contains an integral
term such that ¤̃𝑝 (𝑖) + 2Λ(𝑖) 𝑝 (𝑖) + Λ(𝑖)2

∫
𝑝 (𝑖) . The attitude control law also contains

an integral term Γ
(𝑖)
𝜔

∫
(𝜔(𝑖) − 𝜔(𝑖)𝑟 )𝑑𝑡. Adding integral terms makes the tracking

error bound depend on the maximum time-derivative of the approximation error
(i.e., 𝑑

𝑑𝑡
( 𝑓 (𝑖)𝑎 − 𝑓 (𝑖)𝑎 ) or 𝑑

𝑑𝑡
(𝜏(𝑖)𝑎 − 𝜏(𝑖)𝑎 )). See more details in G. Shi, Hönig, et al.

(2022).

Delay compensation. With the desired output wrench 𝜂(𝑖)
𝑜,𝑑

= [𝑇 (𝑖)
𝑑

; 𝜏(𝑖)
𝑑
] from the

position and attitude controller, the next step is to compute the control command 𝑢(𝑖)𝑐 .
Note that we can not directly control the motor speed 𝑢(𝑖) because of the first order
delay model in Eq. (4.1c). Therefore, we apply the following delay compensation
method:

𝑢
(𝑖)
𝑐 = 𝐵

(𝑖)†
0

©­«𝜂(𝑖)𝑜,𝑑 +
¤𝜂(𝑖)
𝑜,𝑑

𝜆(𝑖)
ª®¬ . (4.15)

The key idea of Eq. (4.15) is to “predict” the future of 𝜂(𝑖)
𝑜,𝑑

and account for it
according to the delay constant 𝜆(𝑖) . If the delay constant is accurate, one can show
that the actual output wrench 𝜂(𝑖)𝑜 will exponentially converge to the desired one (X.
Shi et al., 2020). With small modelling errors on 𝜆(𝑖) , it can robustly cancel out some
effects from delays and improve tracking performance in practice. Furthermore, it
can handle not only first-order motor delay, but also signal transport delays (X. Shi
et al., 2020). In case of the small quadrotors used in our experiments, such delays
are on the same order of magnitude as the motor delay, thus making Eq. (4.15)
essential for improving the control performance.

4.7 Experiments
We use quadrotors based on Bitcraze Crazyflie 2.0/2.1 (CF). Our small quadrotors are
Crazyflie 2.X, which are small (9 cm rotor-to-rotor) and lightweight (34 g) products
that are commercially available. Our large quadrotors use the Crazyflie 2.1 as
control board on a larger frame with brushed motors (model: Parrot Mini Drone),
see Table 4.1 for a summary of physical parameters. We use the Crazyswarm (Preiss
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et al., 2017) package to control multiple Crazyflies simultaneously. Each quadrotor
is equipped with a single reflective marker for position tracking at 100 Hz using a
motion capture system. The nonlinear controller, extended Kalman filter, and neural
network evaluation are running on-board the STM32 microcontroller.

Table 4.1: System identification of the used quadrotors.

Small Large

Weight 34 g 67 g
Max

Thrust 65 g 145 g

Diameter 12 cm 19 cm
𝜆 16 16

𝜓1(𝑝, 𝑣̂)
11.09 − 39.08𝑝 − 9.53𝑣̂ +

20.57𝑝2 + 38.43𝑝𝑣̂
44.1.0 − 122.51𝑝 − 36.18𝑣̂ +

53.11𝑝2 + 107.68𝑝𝑣̂

𝜓2( 𝑓 , 𝑣̂)
0.5 + 0.12 𝑓 − 0.41𝑣̂ −

0.002 𝑓 2 − 0.043 𝑓 𝑣̂
0.56 + 0.06 𝑓 − 0.6𝑣̂ −
0.0007 𝑓 2 − 0.015 𝑓 𝑣̂

𝜓3(𝑝, 𝑣̂) −9.86 + 3.02𝑝 + 26.72𝑣̂ −29.91 + 8.1𝑝 + 65.2𝑣̂

For the controller, we implement the delay compensation Eq. (4.15) by numerical
differentiation. The baseline controller is identical (including the chosen gains)
to our proposed controller except that the interaction force for the baseline is set
to zero. The baseline controller is much more robust and efficient than the well-
tuned nonlinear controller in the Crazyswarm package, which cannot safely execute
the close-proximity flight shown in Fig. 4.1(c) and requires at least 60 cm safety
distance (Hönig et al., 2018).

For data collection, we use the 𝜇SD card extension board and store binary en-
coded data roughly every 10 ms. Each dataset is timestamped using the on-board
microsecond timer and the clocks are synchronized before takeoff using broadcast
radio packets. The drift of the clocks of different Crazyflies can be ignored for our
short flight times (less than 2 min).

Calibration and System Identification of Different Robots
Prior to learning the residual terms 𝑓

(𝑖)
𝑎 and 𝜏

(𝑖)
𝑎 , we first calibrate the nominal

dynamics model Φ(𝑖) (𝑥, 𝑢). We found that existing motor thrust models (Bitcraze,
2015; Förster, 2015) are not very accurate, because they only consider a single motor
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and ignore the effect of the battery state of charge. We calibrate each Crazyflie by
mounting the whole quadrotor upside-down on a load cell (model TAL221) which
is directly connected to the Crazyflie via a custom extension board using a 24-bit
ADC (model HX711). The upside-down mounting avoids contamination of our
measurements with downwash-related forces. We use a 100 g capacity load cell
for the small quadrotor and a 500 g capacity load cell for the large quadrotor. We
randomly generate desired PWM motor signals (identical for all 4 motors) and collect
the current battery voltage, PWM signals, and measured force. We use this data to
find three polynomial functions: 𝜓1, 𝜓2, and 𝜓3. The first 𝑓 = 𝜓1(𝑝, 𝑣̂) computes
the force of a single rotor given the normalized PWM signal 𝑝 and the normalized
battery voltage 𝑣̂. This function is only required for the data collection preparation in
order to compute 𝑓 (𝑖)𝑎 . The second 𝑝 = 𝜓2( 𝑓 , 𝑣̂) computes the required PWM signal
𝑝 given the desired force 𝑓 and current battery voltage 𝑣̂. Finally, 𝑓max = 𝜓3(𝑝, 𝑣̂)
computes the maximum achievable force 𝑓max, given the current PWM signal 𝑝 and
battery voltage 𝑣̂. The last two functions are important at runtime for outputting the
correct force as well as for thrust mixing when motors are saturated (Faessler et al.,
2017).

We use the same measurement setup with the load cell to establish the delay model of
𝑇
(𝑖)
𝑑

with a square wave PWM signal. While the delay model is slightly asymmetric
in practice, we found that our symmetric model Eq. (4.1c) is a good approximation.
All results are summarized in Table 4.1. We use the remaining parameters (𝐽,
thrust-to-torque ratio) from the existing literature (Förster, 2015).

Data Collection
Table 4.2: 12 scenarios for data collection.

Scenario S S→S L→S {S, S}→S

Model ρsmall (ϕenv)
ρsmall (ϕenv +

ϕsmall)
ρsmall (ϕenv+ϕlarge)

ρsmall (ϕenv +
ϕsmall + ϕsmall)

Scenario {S, L}→S {L, L}→S L S→L

Model ρsmall (ϕenv +
ϕsmall + ϕlarge)

ρsmall (ϕenv +
ϕlarge + ϕlarge)

ρlarge (ϕenv) ρlarge (ϕenv+ϕsmall)

Scenario L→L {S, S}→L {S, L}→L {L, L}→S

Model ρlarge (ϕenv+ϕlarge)
ρlarge (ϕenv +
ϕsmall + ϕsmall)

ρlarge (ϕenv +
ϕsmall + ϕlarge)

ρlarge (ϕenv +
ϕlarge + ϕlarge)

Recall that in Eq. (4.9), we need to learn 2𝐾 neural networks for 𝐾 types of robots.
In our experiments, we consider two types of quadrotors (small and large) and also
the environment (mainly ground effect and air drag), as shown in Example 4.1.
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Therefore, we have 5 neural networks to be learned:

ρsmall, ρlarge, ϕsmall, ϕlarge, ϕenv, (4.16)

where we do not have ρenv because the aerodynamical force acting on the environ-
ment is not interesting for our purpose. To learn these 5 neural networks, we fly the
heterogeneous swarm in 12 different scenarios (see Table 4.2) to collect labeled 𝑓 (𝑖)𝑎
and 𝜏(𝑖)𝑎 data for each robot. For instance, Example 4.1 (as depicted in Fig. 3.1(a))
corresponds to the “{S, S}→L” scenario in Table 4.2, where the large robot has two
small robots and the environment as its neighbors.

We utilize two types of data collection tasks: random walk and swapping. For
random walk, we implement a simple reactive collision avoidance approach based
on artificial potentials on-board each Crazyflie (Khatib, 1985). The host computer
randomly selects new goal points within a cube for each vehicle at a fixed frequency.
These goal points are used as an attractive force, while neighboring drones contribute
a repulsive force. For swapping, the drones are placed in different horizontal planes
on a cylinder and tasked to move to the opposite side. All the drones are vertically
aligned for one time instance, causing a large interaction force. The random walk
data helps us to explore the whole space quickly, while the swapping data ensures
that we have data for a specific task of interest. Note that for both random walk and
swapping, the drones also move close to the ground, to collect sufficient data for
learning the ground effect. The collected data covers drone flying speeds from 0 to
2 m/s, where 7% are with relatively high speeds (≥0.5 m/s) to learn the aerodynamic
drag. For both task types, we varied the scenarios listed in Table 4.2.

To learn the 5 DNNs in Eq. (4.16), for each robot 𝑖 in each scenario, we col-
lect the timestamped states 𝑥 (𝑖) = [𝑝 (𝑖); 𝑣 (𝑖); 𝑅(𝑖);𝜔(𝑖)]. We then compute 𝑦 (𝑖) as
the observed value of 𝑓

(𝑖)
𝑎 and 𝜏

(𝑖)
𝑎 . We compute 𝑓

(𝑖)
𝑎 and 𝜏

(𝑖)
𝑎 using Eq. (4.4),

where the nominal dynamics Φ(𝑖) is calculated based on our system identification.
With Φ(𝑖) , 𝑦 (𝑖) is computed by ¤𝑥 (𝑖) − Φ(𝑖) , where ¤𝑥 (𝑖) is estimated by the five-point
numerical differentiation method. Note that the control delay 𝜆(𝑖) is also consid-
ered when we compute 𝑓

(𝑖)
𝑎 and 𝜏(𝑖)𝑎 . Our training data consists of sequences of(

{r(𝑖)type1
, · · · , r(𝑖)type𝐾 }, 𝑦

(𝑖)
)

pairs, where r(𝑖)type𝑘 = {𝑥 (𝑖 𝑗) | 𝑗 ∈ neighbor(𝑖) and I( 𝑗) =
type𝑘 } is the set of the relative states of the type-𝑘 neighbors of 𝑖. We have the
following loss function for robot 𝑖 in each scenario (see Table 4.2 for the detailed
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model structure in each scenario):




ρI(𝑖) ( 𝐾∑︁
𝑘=1

∑︁
𝑥 (𝑖 𝑗)∈r(𝑖)type𝑘

ϕI( 𝑗) (𝑥 (𝑖 𝑗))
)
− 𝑦 (𝑖)






2

2

, (4.17)

and we stack all the robots’ data in all scenarios and train on them together. There
are 1.4 million pairs in the full dataset.

In practice, we found the unmodeled torque ∥𝜏(𝑖)𝑎 ∥ is very small (smaller by two
orders of magnitude than the feedback term in the attitude controller), so we only
learn 𝑓

(𝑖)
𝑎 . We compute the relative states from our collected data as 𝑥 (𝑖 𝑗) = [𝑝 ( 𝑗) −

𝑝 (𝑖); 𝑣 ( 𝑗) − 𝑣 (𝑖)] ∈ R6 (i.e., relative position and relative velocity both in the world
frame), since the attitude information 𝑅 and ω are not dominant for 𝑓 (𝑖)𝑎 . If the type
of neighbor 𝑗 is “environment”, we set 𝑝 ( 𝑗) = 0 and 𝑣 ( 𝑗) = 0. In this work, we only
learn the 𝑧-component of 𝑓 (𝑖)𝑎 since we found the other two components, 𝑥 and 𝑦, are
much smaller and less varied, and do not significantly alter the nominal dynamics.
In data collection, the rooted means and standard deviations of the squared values of
𝑓𝑎,𝑥 , 𝑓𝑎,𝑦, and 𝑓𝑎,𝑧 are 1.6±2.5, 1.2±2.2, 5.0±8.9 grams, respectively (for reference,
the weights of the small and large drones are 34 g and 67 g). Therefore, the output
of our learning model in Eq. (4.9) is a scalar to approximate the 𝑧-component of the
unmodeled force function 𝑓

(𝑖)
𝑎 .

Learning Results and Ablation Analysis

Figure 4.5: 𝑓𝑎,𝑧 prediction from the trained {ρsmall,ρlarge,ϕsmall,ϕlarge,ϕenv} net-
works. Each heatmap gives the prediction of 𝑓𝑎,𝑧 of a vehicle in different horizontal
and vertical (global) positions. The (global) position of neighboring drones are
represented by drone icons.
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Each scenario uses a trajectory with a duration around 1000 seconds. For each
scenario, we equally split the total trajectory into 50 shorter pieces, where each one
is about 20 seconds. Then we randomly choose 80% of these 50 trajectories for
training and 20% for validation.

Our DNN functions of ϕ (ϕsmall,ϕlarge,ϕenv) have four layers with architecture
6 → 25 → 40 → 40 → 𝐻, and our ρ DNNs (ρsmall,ρlarge) also have 𝐿 = 4
layers, with architecture 𝐻 → 40→ 40→ 40→ 1. We use the ReLU function as
the activation operator, and we use PyTorch (Paszke et al., 2019) for training and
implementation of spectral normalization (see Chapter 2) of all these five DNNs.
During training we iterate all the data 20 times for error convergence.

Note that 𝐻 is the dimension of the hidden state. To study the effect of 𝐻 on
learning performance, we use three different values of 𝐻 and the mean validation
errors for each 𝐻 are shown in Table 4.3. Meanwhile, we also study the influence
of the number of layers by fixing 𝐻 = 20 and changing 𝐿, which is the number of
layers of all ρ nets and ϕ nets. For 𝐿 = 3 or 𝐿 = 5, we delete or add a 40 → 40
layer for all ρ nets and ϕ nets, before their last layers. We repeat all experiments
three times to get mean and standard deviation. As depicted in Table 4.3, we found
that the average learning performance (mean validation error) is not sensitive to
𝐻, but larger 𝐻 results in higher variance, possibly because using a bigger hidden
space (larger 𝐻) leads to a more flexible encoding that is harder to train reliably. In
terms of the number of layers, four layers are significantly better than five (which
tends to overfit data), and slighter better than three. To optimize performance, we
finally choose 𝐻 = 20 and use four-layer neural networks, which can be efficiently
evaluated on-board. We notice that 𝐻 and 𝐿 are the most important parameters, and
the learning performance is not sensitive to other parameters such as the number of
weights in intermediate layers.

Figure 4.5 depicts the prediction of 𝑓𝑎,𝑧, trained with flight data from the 12 scenarios
listed in Table 4.2. The color encodes the magnitude of 𝑓𝑎,𝑧 for a single small
multirotor positioned at different global (𝑦, 𝑧) coordinates. The big/small black
drone icons indicate the (global) coordinates of neighboring big/small multirotors,
and the dashed line located at 𝑧 = 0 represents the ground. All quadrotors are in
the same 𝑥-plane. For example, in Fig. 4.5(e), one large quadrotor is hovering at
(𝑦 = −0.1, 𝑧 = 0.5) and one small quadrotor is hovering at (𝑦 = 0.1, 𝑧 = 0.5). If
we place a third small quadrotor at (𝑦 = 0, 𝑧 = 0.3), it would estimate 𝑓𝑎,𝑧 = −10 g
as indicated by the red color in that part of the heatmap. Similarly, in Fig. 4.5(a)
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the small multirotor only has the environment as a special neighbor. If the small
multirotor is hovering at (𝑦 = 0, 𝑧 = 0.05), it would estimate 𝑓𝑎,𝑧 = 5 g, which is
mainly from the ground effect. All quadrotors are assumed to be stationary except
for Fig. 4.5(d), where the one neighbor is moving at 0.8 m/s.

Table 4.3: Ablation analysis. Top: 𝐿 = 4 and 𝐻 varies. Bottom: 𝐻 = 20 and 𝐿
varies. The error is the mean squared error (MSE) between 𝑓𝑎,𝑧 prediction and the
ground truth.

𝐻 10 20 40
Validation Error 6.70±0.05 6.42±0.18 6.63±0.35

𝐿 3 4 5
Validation Error 6.52±0.17 6.42±0.18 7.21±0.28

We observe that the interaction between quadrotors is non-stationary and sensitive to
relative velocity. In Fig. 4.5(d), the vehicle’s neighbor is moving, and the prediction
becomes significantly different from Fig. 4.5(c), where the neighbor is just hovering.
To further understand the importance of relative velocity, we retrain neural networks
neglecting relative velocity and the mean squared validation error degrades by 18%,
from 6.42 to 7.60. We can also observe that the interactions are not a simple
superposition of different pairs. For instance, Fig. 4.5(g) is significantly more
complex than a simple superposition of Fig. 4.5(a) plus three (b), i.e., ρsmall(ϕenv) +
ρsmall(ϕsmall)+ρsmall(ϕsmall)+ρsmall(ϕsmall). The maximum gap between Fig. 4.5(g)
and the superposition version is 11.4 g. Moreover, we find that the ground effect and
the downwash effect from a neighboring multirotor interact in an intriguing way. For
instance, in Fig. 4.5(b), the downwash effect is “mitigated” as the vehicle gets closer
to the ground. Finally, we observe that the large quadrotors cause significantly higher
interaction forces than the small ones (see Fig. 4.5(e)), which further emphasizes
the importance of our heterogeneous modeling.

Note that in training we only have data from 1-3 vehicles (see Table 4.2). Our
approach can generalize well to a larger swarm system. In Fig. 4.5, predictions for
a 4-vehicle team (as shown in Fig. 4.5(g,h)) are still reliable. Moreover, our models
work well in real flight tests with 5 vehicles (see Fig. 4.9) and even 16 vehicles (see
Fig. 4.1).

Motion Planning with Aerodynamics Coupling
We implement Algorithm 4.1 in Python using PyTorch 1.5 (Paszke et al., 2019)
for automatic gradient computation, CVXPY 1.0 (Diamond and Boyd, 2016) for
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convex optimization, and GUROBI 9.0 (Gurobi Optimization, 2020) as underlying
solver. To simulate the tracking performance of the planned trajectories, we also
implement a nonlinear controller, which uses the planned controls as feed-forward
term. We compare trajectories that were planned with a learned model of 𝑓𝑎,𝑧 with
trajectories without such a model (i.e., 𝑓𝑎,𝑧 = 0) using Algorithm 4.1 with identical
parameters. At test time, we track the planned trajectories with our controller, and
forward propagate the dynamics with our learned model of 𝑓𝑎,𝑧.

Y
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Y

Z

Planning with NN (Tracking)
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Z
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Figure 4.6: Example motion planning result for a three-robot swapping task in 2D
(blue and orange: small robots; green: large robot). Top row: 𝑦𝑧-state space plot,
where the arrows indicate the velocities every second, and the circles show the
robot collision boundary shape at the middle of the task. Bottom row: interaction
force for each robot over time (dashed: desired limit per robot). Left: Sampling-
based motion planning with neural network to compute trajectories where the large
robots moves below the small robots. Middle: Refined trajectories using SCP
(dashed) and tracked trajectories (solid). Right: Planned trajectories when ignoring
interaction forces (dashed) and tracked trajectories (solid). In this case, a dangerous
configuration is chosen where the large robot flies on top of the small robots,
exceeding their disturbance limits of 5 g.

We visualize an example in Fig. 4.6, where two small and one large robots are
tasked with exchanging positions. We focus on the 2D case in the 𝑦𝑧-plane to create
significant interaction forces between the robots. The first stage of Algorithm 4.1
uses sampling-based motion planning to identify the best homeomorphism class
where the small multirotors fly on top of the large multirotor (the interaction forces
would require more total energy the other way around). However, the robots do not
reach their goal state exactly and motions are jerky (Fig. 4.6, left). The second stage
uses SCP to refine the motion plan such that robots reach their goal and minimize
the total control effort (Fig. 4.6, middle). The planned trajectory can be tracked
without significant error and the interaction forces are very small for the two small
quadrotors and within the chosen bound of 10 g for the large quadrotor. We compare
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this solution to one where we do not consider the interaction forces between robots
by setting 𝑓𝑎,𝑧 = 0 in Algorithm 4.1. The planned trajectories tend to be shorter
(Fig. 4.6, right, dashed lines) in that case. However, when tracking those trajectories,
significant tracking errors occur and the interaction forces are outside their chosen
bounds of 5 g for the small multirotors.
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Figure 4.7: Motion planning results for different scenarios (e.g., SSL refers to two
small robots and one large robot) comparing planning without neural network (BL)
and planning with neural network (NN) over 5 trials. Top: Worst-case tracking error.
Ignoring the interaction force can result in errors of over 10 cm. Bottom: Worst-
case interaction force for small and large quadrotors. The baseline has significant
violations of the interaction force bounds, e.g., the SL case might create interaction
forces greater than 10 g for the small quadrotor.

We empirically evaluated the effect of planning with and without considering in-
teraction forces in several scenarios, see Fig. 4.7. We found that ignoring the
interaction forces results in significant tracking errors in all cases (top row). While
this tracking error could be reduced when using our interaction-aware control law,
the interaction forces are in some cases significantly over their desired limit. For
example, in the small/large, small/small/large, and large/large cases, the worst-case
interaction forces were consistently nearly double the limit (red line, bottom row).
In practice, such large disturbances can cause instabilities or even a total loss of
control, justifying the use of an interaction-aware motion planner.

Control Performance in Flight Tests
We study the flight performance improvements on swapping tasks with varying
number of quadrotors. For each case, robots are initially arranged in a circle when
viewed from above but at different 𝑧-planes and are tasked with moving linearly to
the opposite side of the circle in their plane. During the swap, all vehicles align
vertically at one point in time with vertical distances of 0.2 m to 0.3 m between
neighbors. The tasks are similar, but not identical to the randomized swapping tasks
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used in data collection because different parameters (locations, transition times) are
used.
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Figure 4.8: Flight test results comparing our solution with learned interaction
compensation (NN) with the baseline (BL) in different scenarios. For each case,
robots are initially arranged in a circle when viewed from above but at different 𝑧-
planes and are tasked with moving linearly to the opposite side of the circle in their
plane. For each swap, we compute the worst-case 𝑧-error of the lowest quadrotor
and plot the data over six swaps.

Our results are summarized in Fig. 4.8 for various combinations of two and three
multirotors, where we use “XY2Z” to denote the swap task with robots of type X
and Y at the top and a robot of type Z at the bottom. We compute a box plot with
median (green line) and first/third quartile (box) of the maximum 𝑧-error (repeated
over 6 swaps). In some cases, the downwash force was so large that we upgraded
the motors of the small quadrotor to improve the best-case thrust-to-weight ratio to
2.6. Such modified quadrotors are indicated as “S*”. We also verified that the 𝑥-
and 𝑦-error distributions are similar across the different controllers and omit those
numbers for brevity.

Our controller improves the median 𝑧-error in all cases and in most cases this
improvement is statistically significant. For example, in the “L2S” case, where a
large multirotor is on top of a small multirotor for a short period of time, the median
𝑧-error is reduced from 17 cm to 7 cm.

To estimate the limits of our learning generalization, we test our approach on larger
teams. First, we consider a team of five robots, where two large robots move
on a circle in the horizontal plane and three small robots move on circle in the
vertical plane such that the two circles form intertwined rings. In this case, the 𝑓𝑎,𝑧
prediction is accurate and the maximum 𝑧-error can be reduced significantly using
our neural network prediction, see Fig. 4.9 for an example. Second, we consider
a team of 16 robots moving on three intertwined rings as shown in Fig. 4.1(b,c).
Here, two large and four small robots move on an ellipsoid in the horizontal plane,
and five robots move on circles in different vertical planes. In this case, robots can
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Figure 4.9: Generalization to a team of five multirotors. Three small multirotor
move in a vertical ring and two large multirotor move in a horizontal ring. The
maximum 𝑧-error of a small multirotor in the vertical ring with powerful motors is
reduced from 10 cm to 5 cm and 𝑓𝑎 is predicted accurately.

have significantly more neighbors (up to 15) compared to the training data (up to
2), making the prediction of 𝑓𝑎,𝑧 relatively less accurate. However, the maximum
𝑧-error of a small multirotor in one of the vertical rings with powerful motors is still
reduced from 15 cm to 10 cm.

We note that a conceptually-simpler method is to estimate and compensate for 𝑓𝑎,𝑧
online without learning. However, online estimation will not only introduce sig-
nificant delays, but also be very noisy especially in close-proximity flight. Our
learning-based method has no delay (because it directly predicts 𝑓𝑎,𝑧 at the current
time step), and considerably mitigates the noise due to the use of spectral normal-
ization and delay-free filtering in the training process. In experiments, we observe
that the online estimation and compensate method would quickly crash the drone.
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C h a p t e r 5

NEURAL-FLY

Figure 5.1: Visualization of wind effect for a drone flying in Caltech Real Weather
Wind Tunnel.

In Chapter 2, we introduced a general mixed robot dynamics model 𝑀 (𝑞) ¥𝑞 +
𝐶 (𝑞, ¤𝑞) ¤𝑞+𝑔(𝑞) = 𝐵𝑢+ 𝑓 where 𝑓 is the unknown dynamics. We also introduced the
corresponding drone dynamics model in Eq. (2.4). In Chapter 3 and Chapter 4, we
discussed the case 𝑓 = 𝑓 (𝑞, ¤𝑞, 𝑢) and 𝑓 = 𝑓 (𝑞, ¤𝑞, neighbors’ states), respectively.

In this chapter, we will move to a more challenging time-variant setting, where

𝑓 = 𝑓 (𝑞, ¤𝑞, 𝑤(𝑡))

and 𝑤(𝑡) is an unknown environmental condition. For example, 𝑤 in Fig. 5.1 is
the unknown wind condition. In this case, the main challenge is to fast adapt the
controller in changing environments in an efficient and reliable manner. This chapter
is mainly based on the following paper1 2:

O’Connell, Michael, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima
Anandkumar, Yisong Yue, and Soon-Jo Chung (2022). Neural-Fly enables rapid
learning for agile flight in strong winds. In: Science Robotics 7.66, eabm6597.
doi: 10.1126/scirobotics.abm6597.

1Summary video: https://youtu.be/TuF9teCZX0U
2Data and code: https://github.com/aerorobotics/neural-fly

https://doi.org/10.1126/scirobotics.abm6597
https://youtu.be/TuF9teCZX0U
https://github.com/aerorobotics/neural-fly
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Abstract. Executing safe and precise flight maneuvers in dynamic high-speed winds
is important for the ongoing commoditization of uninhabited aerial vehicles (UAVs).
However, since the relationship between various wind conditions and its effect on
aircraft maneuverability is not well understood, it is challenging to design effective
robot controllers using traditional control design methods. We present Neural-
Fly, a learning-based approach that allows rapid online adaptation by incorporating
pre-trained representations through deep learning. Neural-Fly builds on two key
observations that aerodynamics in different wind conditions share a common rep-
resentation and that the wind-specific part lies in a low-dimensional space. To that
end, Neural-Fly uses a proposed learning algorithm, Domain Adversarially Invariant
Meta-Learning (DAIML), to learn the shared representation, only using 12 minutes
of flight data. With the learned representation as a basis, Neural-Fly then uses a
composite adaptation law to update a set of linear coefficients for mixing the basis
elements. When evaluated under challenging wind conditions generated with the
Caltech Real Weather Wind Tunnel with wind speeds up to 43.6 km/h (12.1 m/s),
Neural-Fly achieves precise flight control with substantially smaller tracking error
than state-of-the-art nonlinear and adaptive controllers. In addition to strong em-
pirical performance, the exponential stability of Neural-Fly results in robustness
guarantees. Finally, our control design extrapolates to unseen wind conditions, is
shown to be effective for outdoor flights with only on-board sensors, and can transfer
across drones with minimal performance degradation.

5.1 Introduction
The commoditization of uninhabited aerial vehicles (UAVs) requires that the control
of these vehicles become more precise and agile. For example, drone delivery
requires transporting goods to a narrow target area in various weather conditions.

Unmodeled and often complex aerodynamics (e.g., 𝑓𝑎 and 𝜏𝑎 discussed in Chapter 2)
are among the most notable challenges to precise flight control. Flying in windy
environments (as shown in Fig. 5.1) introduces even more complexity because of
the unsteady aerodynamic interactions between the drone, the induced airflow, and
the wind. These unsteady and nonlinear aerodynamic effects substantially degrade
the performance of conventional UAV control methods that neglect to account for
them in the control design. Prior approaches partially capture these effects with
simple linear or quadratic air drag models, which limit the tracking performance in
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agile flight and cannot be extended to external wind conditions (Foehn et al., 2021;
Faessler et al., 2018). Although more complex aerodynamic models can be derived
from computational fluid dynamics (Ventura Diaz and Yoon, 2018), such modelling
is often computationally expensive, and is limited to steady non-dynamic wind
conditions. Adaptive control addresses this problem by estimating linear parametric
uncertainty in the dynamical model in real time to improve tracking performance.
Recent state-of-the-art in quadrotor flight control has used adaptive control methods
that directly estimate the unknown aerodynamic force without assuming the structure
of the underlying physics, but relying on high-frequency and low-latency control
(Tal and Karaman, 2021; Mallikarjunan et al., 2012; Pravitra et al., 2020; Hanover
et al., 2021). In parallel, there has been increased interest in data-driven modeling
of aerodynamics (e.g., Torrente et al. (2021) and Chapters 3 and 4), however existing
approaches cannot effectively adapt in changing or unknown environments such as
time-varying wind conditions.

In this chapter, we present a data-driven approach called Neural-Fly, which is
a deep-learning-based tracking controller that learns to quickly adapt to rapidly-
changing wind conditions. Our method, depicted in Fig. 5.3, advances and offers
insights into both adaptive flight control and deep-learning-based robot control.
Our experimental demonstrates (e.g., Fig. 5.2) that Neural-Fly achieves centimeter-
level position-error tracking of an agile and challenging trajectory in dynamic wind
conditions on a standard UAV.

Our method has two main components: an offline learning phase and an online
adaptive control phase used as real-time online learning. For the offline learning
phase, we have developed Domain Adversarially Invariant Meta-Learning (DAIML)
that learns a wind-condition-independent deep neural network (DNN) representation
of the aerodynamics in a data-efficient manner. The output of the DNN is treated as
a set of basis functions that represent the aerodynamic effects. This representation is
adapted to different wind conditions by updating a set of linear coefficients that mix
the output of the DNN. DAIML is data efficient and uses only 12 total minutes of
flight data in just 6 different wind conditions to train the DNN. DAIML incorporates
several key features which not only improve the data efficiency but also are informed
by the downstream online adaptive control phase. In particular, DAIML uses
spectral normalization (see Chapter 2) to control the Lipschitz property of the
DNN to improve generalization to unseen data and provide closed-loop stability
and robustness guarantees. DAIML also uses a discriminative network, which
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Figure 5.2: Agile flight through narrow gates. (A) Caltech Real Weather Wind
Tunnel system, the quadrotor UAV, and the gate. In our flight tests, the UAV follows
an agile trajectory through narrow gates, which are slightly wider than the UAV
itself, under challenging wind conditions. (B-C) Trajectories used for the gate tests.
In (B), the UAV follows a figure-8 through one gate, with wind speed 3.1 m/s or
time-varying wind condition. In (C), the UAV follows an ellipse in the horizontal
plane through two gates, with wind speed 3.1 m/s. (D-E) Long-exposure photos
(with an exposure time of 5 s) showing one lap in two tasks. (F-I) High-speed photos
(with a shutter speed of 1/200s) showing the moment the UAV passed through the
gate and the interaction between the UAV and the wind.

ensures that the learned representation is wind-invariant and that the wind-dependent
information is only contained in the linear coefficients that are adapted in the online
control phase.

For the online adaptive control phase, we have developed a regularized composite
adaptive control law, which we derived from a fundamental understanding of how
the learned representation interacts with the closed-loop control system and which
we support with rigorous theory. The adaptation law updates the wind-dependent
linear coefficients using a composite of the position tracking error term and the
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aerodynamic force prediction error term. Such a principled approach effectively
guarantees stable and fast adaptation to any wind condition and robustness against
imperfect learning. Although this adaptive control law could be used with a number
of learned models, the speed of adaptation is further aided by the concise represen-
tation learned from DAIML.

Using Neural-Fly, we report an average improvement of 66 % over a nonlinear track-
ing controller, 42 % over an L1 adaptive controller, and 35 % over an Incremental
Nonlinear Dynamics Inversion (INDI) controller. These results are all accom-
plished using standard quadrotor UAV hardware, while running the PX4’s default
regulation attitude control. Our tracking performance is competitive even com-
pared to related work without external wind disturbances and with more complex
hardware (for example, Tal and Karaman (2021) requires a 10-time higher control
frequency and onboard optical sensors for direct motor speed feedback). We also
compare Neural-Fly with two variants of our method: Neural-Fly-Transfer, which
uses a learned representation trained on data from a different drone, and Neural-
Fly-Constant, which only uses our adaptive control law with a trivial non-learning
basis. Neural-Fly-Transfer demonstrates that our method is robust to changes in
vehicle configuration and model mismatch. Neural-Fly-Constant, L1, and INDI all
directly adapt to the unknown dynamics without assuming the structure of the un-
derlying physics, and they have similar performance. Furthermore, we demonstrate
that our method enables a new set of capabilities that allow the UAV to fly through
low-clearance gates following agile trajectories in gusty wind conditions (Fig. 5.2).

5.2 Related Work
Precise Quadrotor Control
Prior work on agile quadrotor control has achieved impressive results by considering
aerodynamics (Tal and Karaman, 2021; Hanover et al., 2021; Torrente et al., 2021;
Faessler et al., 2018). However, those approaches require specialized onboard hard-
ware (Tal and Karaman, 2021), full custom flight control stacks (Tal and Karaman,
2021; Hanover et al., 2021), or cannot adapt to external wind disturbances (Torrente
et al., 2021; Faessler et al., 2018). For example, state-of-the-art tracking perfor-
mance has been demonstrated using incremental nonlinear dynamics inversion to
estimate aerodynamic disturbance forces, with a root-mean-square tracking error of
6.6 cm and drone ground speeds up to 12.9 m/s (Tal and Karaman, 2021). How-
ever, Tal and Karaman (2021) relies on high-frequency control updates (500 Hz)
and direct motor speed feedback using optical encoders to rapidly estimate external
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Figure 5.3: Offline meta-learning and online adaptive control design. (A) The
online adaptation block in our adaptive controller. Our controller leverages the meta-
trained basis function 𝜙, which is a wind-invariant representation of the aerodynamic
effects, and uses composite adaptation (that is, including tracking-error-based and
prediction-error-based adaptation) to update wind-specific linear weights 𝑎̂. The
output of this block is the wind-effect force estimate, 𝑓 = 𝜙𝑎̂. (B) The illustration
of our meta-learning algorithm DAIML. We collected data from wind conditions
{𝑤1, · · · , 𝑤𝐾} and applied Algorithm 5.1 to train the 𝜙 net. (C) The diagram of our
control method, where the grey part corresponds to (A). Interpreting the learned
block as an aerodynamic force allows it to be incorporated into the feedback control
easily.

disturbances. Both are challenging to deploy on standard systems. Hanover et al.
(2021) simplifies the hardware setup and does not require optical motor speed sen-
sors and has demonstrated state-of-the-art tracking performance. However, Hanover
et al. (2021) relies on a high-rate L1 adaptive controller inside a model predictive
controller and uses a racing drone with a fully customized control stack. Torrente
et al. (2021) leverages an aerodynamic model learned offline and represented as
Gaussian Processes. However, Torrente et al. (2021) cannot adapt to unknown
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or changing wind conditions and provides no theoretical guarantees. Another re-
cent work focuses on deriving simplified rotor-drag models that are differentially
flat (Faessler et al., 2018). However, Faessler et al. (2018) focuses on horizontal,
𝑥𝑦−plane trajectories at ground speeds of 4 m/s without external wind, where the
thrust is more constant than ours, achieves ∼6 cm tracking error, uses an attitude
controller running at 4000 Hz, and is not extensible to faster flights as pointed out
by Torrente et al. (2021).

Adaptive Control
Adaptive control theory has been extensively studied for online control and iden-
tification problems with parametric uncertainty, for example, unknown linear co-
efficients for mixing known basis functions (Slotine and Li, 1991; Ioannou and
Sun, 1996; Krstic et al., 1995; Narendra and Annaswamy, 2012; Farrell and Poly-
carpou, 2006; Wise et al., 2006). There are three common aspects of adaptive
control which must be addressed carefully in any well-designed system and which
we address in Neural-Fly: designing suitable basis functions for online adaptation,
stability of the closed-loop system, and persistence of excitation, which is a property
related to robustness against disturbances. These challenges arise due to the cou-
pling between the unknown underlying dynamics and the online adaptation. This
coupling precludes naive combinations of online learning and control. For example,
gradient-based parameter adaptation has well-known stability and robustness issues
as discussed in Slotine and Li (1991).

The basis functions play a crucial role in the performance of adaptive control, but
designing or selecting proper basis functions might be challenging. A good set
of basis functions should reflect important features of the underlying physics. In
practice, basis functions are often designed using physics-informed modeling of
the system, such as the nonlinear aerodynamic modeling in X. Shi, Spieler, et al.
(2020). However, physics-informed modeling requires a tremendous amount of
prior knowledge and human labor, and is often still inaccurate. Another approach
is to use random features as the basis set, such as random Fourier features (Rahimi
and Recht, 2007; Lale et al., 2021), which can model all possible underlying physics
as long as the number of features is large enough. However, the high-dimensional
feature space is not optimal for a specific system because many of the features might
be redundant or irrelevant. Such suboptimality and redundancy not only increase the
computational burden but also slow down the convergence speed of the adaptation
process.
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Given a set of basis functions, naive adaptive control designs may cause instability
and fragility in the closed-loop system, due to the nontrivial coupling between
the adapted model and the system dynamics. In particular, asymptotically stable
adaptive control cannot guarantee robustness against disturbances and so exponential
stability is desired. Even so, often, existing adaptive control methods only guarantee
exponential stability when the desired trajectory is persistently exciting, by which
information about all of the coefficients (including irrelevant ones) is constantly
provided at the required spatial and time scales. In practice, persistent excitation
requires either a succinct set of basis functions or perturbing the desired trajectory,
which compromises tracking performance.

Recent multirotor flight control methods, including INDI (Tal and Karaman, 2021)
and L1 adaptive control, presented in (Mallikarjunan et al., 2012) and demonstrated
inside a model predictive control loop in (Hanover et al., 2021), achieve good results
by abandoning complex basis functions. Instead, these methods directly estimate
the aerodynamic residual force vector. The residual force is observable, thus, these
methods bypass the challenge of designing good basis functions and the associated
stability and persistent excitation issues. However, these methods suffer from lag in
estimating the residual force and encounter the the filter design performance trade
of reduced lag versus amplified noise. Note that Neural-Fly-Constant only uses
Neural-Fly’s composite adaptation law to estimate the residual force, and therefore,
Neural-Fly-Constant also falls into this class of adaptive control structures. This
chapter demonstrates that the inherent estimation lag in these existing methods limits
performance on agile trajectories and in strong wind conditions.

Neural-Fly solves the aforementioned issues of basis function design and adaptive
control stability, using newly developed methods for meta-learning and composite
adaptation that can be seamlessly integrated together. Neural-Fly uses DAIML and
flight data to learn an effective and compact set of basis functions, represented as
a DNN. The regularized composite adaptation law uses the learned basis functions
to quickly respond to wind conditions. Neural-Fly enjoys fast adaptation because
of the conciseness of the feature space, and it guarantees closed-loop exponential
stability and robustness without assuming persistent excitation.

Related to Neural-Fly, neural network based adaptive control has been researched
extensively, but by and large was limited to shallow or single-layer neural networks
without pretraining. Some early works focus on shallow or single-layer neural net-
works with unknown parameters which are adapted online (Farrell and Polycarpou,
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2006; Nakanishi et al., 2002; Chen and Khalil, 1995; Johnson and Calise, 2003;
Narendra and Mukhopadhyay, 1997). A recent work applies this idea to perform an
impressive quadrotor flip (Bisheban and T. Lee, 2021). However, the existing neural
network based adaptive control work does not employ multi-layer DNNs, and lacks
a principled and efficient mechanism to pretrain the neural network before deploy-
ment. Instead of using shallow neural networks, recent trends in machine learning
highly rely on DNNs due to their representation power (LeCun et al., 2015). In
this chapter, we leverage modern deep learning advances to pretrain a DNN which
represents the underlying physics compactly and effectively.

Multi-Environment Deep Learning for Robot Control
Recently, researchers have been addressing the data and computation requirements
for DNNs to help the field progress towards the fast online-learning paradigm.
In turn, this progress has been enabling adaptable DNN-based control in dynamic
environments. The most popular learning scheme in dynamic environments is meta-
learning, or “learning-to-learn,” which aims to learn an efficient model from data
across different tasks or environments (Finn et al., 2017; Hospedales et al., 2021).
The learned model, typically represented as a DNN, ideally should be capable of
rapid adaptation to a new task or an unseen environment given limited data. For
robotic applications, meta-learning has shown great potential for enabling autonomy
in highly-dynamic environments. For example, it has enabled quick adaptation
against unseen terrain or slopes for legged robots (Nagabandi et al., 2018; Song
et al., 2020), changing suspended payload for drones (Belkhale et al., 2021), and
unknown operating conditions for wheeled robots (McKinnon and Schoellig, 2021).

In general, learning algorithms typically can be decomposed into two phases: of-
fline learning and online adaptation. In the offline learning phase, the goal is to
learn a model from data collected in different environments, such that the model
contains shared knowledge or features across all environment, for example, learning
aerodynamic features shared by all wind conditions. In the online adaptation phase,
the goal is to adapt the offline-learned model, given limited online data from a new
environment or a new task, for example, fine tuning the aerodynamic features in a
specific wind condition.

There are two ways that the offline-learned model can be adapted. In the first class,
the adaptation phase adapts the whole neural network model, typically using one
or more gradient descent steps (Finn et al., 2017; Nagabandi et al., 2018; Belkhale
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et al., 2021; Clavera et al., 2018). However, due to the notoriously data-hungry
and high-dimensional nature of neural networks, for real-world robots it is still
impossible to run such adaptation on-board as fast as the feedback control loop
(e.g., ∼100Hz for quadrotor). Furthermore, adapting the whole neural network
often lacks explainability and robustness and could generate unpredictable outputs
that make the closed-loop unstable.

In the second class (including Neural-Fly), the online adaptation only adapts a rel-
atively small part of the learned model, for example, the last layer of the neural
network (O’Connell et al., 2021; McKinnon and Schoellig, 2021; Richards et al.,
2021; Peng et al., 2021). The intuition is that, different environments share a
common representation (e.g., the wind-invariant representation in Fig. 5.3(A)), and
the environment-specific part is in a low-dimensional space (e.g., the wind-specific
linear weight in Fig. 5.3(A)), which enables the real-time adaptation as fast as the
control loop. In particular, the idea of integrating meta-learning with adaptive con-
trol is first presented in O’Connell et al. (2021), later followed by Richards et al.
(2021). However, the representation learned in O’Connell et al. (2021) is ineffective
and the tracking performance in O’Connell et al. (2021) is similar as the baselines;
Richards et al. (2021) focuses on a planar and fully-actuated rotorcraft simula-
tion without experiment validation and there is no stability or robustness analysis.
Neural-Fly instead learns an effective representation using a new meta-learning al-
gorithm called DAIML, demonstrates state-of-the-art tracking performance on real
drones, and achieves non-trivial stability and robustness guarantees.

Another popular deep-learning approach for control in dynamic environments is
robust policy learning via domain randomization (J. Lee et al., 2020; Tobin et al.,
2017; Ramos et al., 2019). The key idea is to train the policy with random physical
parameters such that the controller is robust to a range of conditions. For example,
the quadrupedal locomotion controller in J. Lee et al. (2020) retains its robustness
over challenging natural terrains. However, robust policy learning optimizes average
performance under a broad range of conditions rather than achieving precise control
by adapting to specific environments.

5.3 Problem Statement
In this chapter, we consider the general robot dynamics model given in Eq. (2.1) in
Chapter 2:

𝑀 (𝑞) ¥𝑞 + 𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝑔(𝑞) = 𝑢 + 𝑓 (𝑞, ¤𝑞, 𝑤)︸      ︷︷      ︸
unknown

.
(5.1)
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Most importantly, 𝑓 (𝑞, ¤𝑞, 𝑤) incorporates unmodeled dynamics, and 𝑤 ∈ R𝑚 rep-
resents the underlying environmental conditions, which is potentially time-variant.
Specifically, in this chapter, 𝑤 represents the wind profile.

Neural-Fly can be broken into two main stages, the offline meta-learning stage and
the online adaptive control stage. These two stages build a model of the unknown
dynamics of the form

𝑓 (𝑞, ¤𝑞, 𝑤) ≈ 𝜙(𝑞, ¤𝑞)𝑎(𝑤), (5.2)

where 𝜙 is a basis or representation function shared by all wind conditions and
captures the dependence of the unmodeled dynamics on the robot state, and 𝑎 is
a set of linear coefficients that is updated for each condition. In the Appendix
(Section 5.7), we prove that the decomposition 𝜙(𝑞, ¤𝑞)𝑎(𝑤) exists for any analytic
function 𝑓 (𝑞, ¤𝑞, 𝑤). In the offline meta-learning stage, we learn 𝜙 as a DNN
using our meta-learning algorithm DAIML. This stage results in learning 𝜙 as a
wind-invariant representation of the unmodeled dynamics, which generalizes to
new trajectories and new wind conditions. In the online adaptive control stage,
we adapt the linear coefficients 𝑎 using adaptive control. Our adaptive control
algorithm is a type of composite adaptation and was carefully designed to allow for
fast adaptation while maintaining the global exponential stability and robustness of
the closed loop system. The offline learning and online control architectures are
illustrated in Fig. 5.3(B) and Fig. 5.3(A,C), respectively.

5.4 Offline Meta-Learning
In this section, we will present the methodology and details of learning the repre-
sentation function 𝜙. In particular, we will first introduce the goal of meta-learning,
motivate the proposed algorithm DAIML by the observed domain shift problem
from the collected dataset, and finally discuss key algorithmic details.

For notional simplicity, we define 𝑥 = [𝑞; ¤𝑞]. The offline meta-learning phase
optimizes an efficient representation 𝜙 given a multi-environment dataset D =

{𝐷𝑤1 , · · · , 𝐷𝑤𝐾 }, where

𝐷𝑤𝑘 =

{
𝑥
(𝑖)
𝑘
, 𝑦
(𝑖)
𝑘

= 𝑓 (𝑥 (𝑖)
𝑘
, 𝑤𝑘 ) + 𝜖 (𝑖)𝑘

}𝑁𝑘
𝑖=1

(5.3)

is the collection of 𝑁𝑘 noisy input-output pairs with wind condition 𝑤𝑘 .
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Meta-Learning Goal
Given the dataset, the goal of meta-learning is to learn a representation 𝜙(𝑥), such
that for any wind condition 𝑤, there exists a latent variable 𝑎(𝑤) which allows
𝜙(𝑥)𝑎(𝑤) to approximate 𝑓 (𝑥, 𝑤) well. Formally, an optimal representation, 𝜙,
solves the following optimization problem:

min
𝜙,𝑎1,··· ,𝑎𝐾

𝐾∑︁
𝑘=1

𝑁𝑘∑︁
𝑖=1




𝑦 (𝑖)
𝑘
− 𝜙(𝑥 (𝑖)

𝑘
)𝑎𝑘




2
, (5.4)

where 𝜙(·) : R2𝑛 → R𝑛×ℎ is the representation function and 𝑎𝑘 ∈ Rℎ is the latent
linear coefficient. Note that the optimal weight 𝑎𝑘 is specific to each wind condition,
but the optimal representation 𝜙 is shared by all wind conditions. We use a deep
neural network (DNN) to represent 𝜙. In the Appendix (Section 5.7), we prove
that for any analytic function 𝑓 (𝑥, 𝑤), the structure 𝜙(𝑥)𝑎(𝑤) can approximate
𝑓 (𝑥, 𝑤) with an arbitrary precision, as long as the DNN 𝜙 has enough neurons. This
result implies that the 𝜙 solved from the optimization in Eq. (5.4) is a reasonable
representation of the unknown dynamics 𝑓 (𝑥, 𝑤).

Domain Shift Problems
One challenge of the optimization in Eq. (5.4) is the inherent domain shift in 𝑥
caused by the shift in 𝑤. Recall that during data collection we have a program flying
the drone in different winds. The actual flight trajectories differ vastly from wind to
wind because of the wind effect. Formally, the distribution of 𝑥 (𝑖)

𝑘
varies between

𝑘 because the underlying environment or context 𝑤 has changed. For example, as
depicted by Fig. 5.4(C), the drone pitches into the wind, and the average degree of
pitch depends on the wind condition. Note that pitch is only one component of the
state 𝑥. The domain shift in the whole state 𝑥 is even more drastic.

Such inherent shifts in 𝑥 bring challenges for deep learning. The DNN 𝜙 may
memorize the distributions of 𝑥 in different wind conditions, such that the variation in
the dynamics { 𝑓 (𝑥, 𝑤1), 𝑓 (𝑥, 𝑤2), · · · , 𝑓 (𝑥, 𝑤𝐾)} is reflected via the distribution of
𝑥, rather than the wind condition {𝑤1, 𝑤2, · · · , 𝑤𝐾}. In other words, the optimization
in Eq. (5.4) may lead to over-fitting and may not properly find a wind-invariant
representation 𝜙.

To solve the domain shift problem, inspired by Ganin et al. (2016), we propose the
following adversarial optimization framework:

max
ℎ

min
𝜙,𝑎1,··· ,𝑎𝐾

𝐾∑︁
𝑘=1

𝑁𝑘∑︁
𝑖=1

(


𝑦 (𝑖)
𝑘
− 𝜙(𝑥 (𝑖)

𝑘
)𝑎𝑘




2
− 𝛼 · loss

(
ℎ(𝜙(𝑥 (𝑖)

𝑘
)), 𝑘

))
, (5.5)
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Figure 5.4: Training data collection. (A) The xyz position along a two-minute
randomized trajectory for data collection with wind speed 8.3 km/h (3.7 m/s), in the
Caltech Real Weather Wind Tunnel. (B) A typical 10-second trajectory of the inputs
(velocity, attitude quaternion, and motor speed PWM command) and label (offline
calculation of aerodynamic residual force) for our learning model, corresponding to
the highlighted part in (A). (C) Histograms showing data distributions in different
wind conditions. (C) Left: distributions of the 𝑥-component of the wind-effect
force, 𝑓𝑥 . This shows that the aerodynamic effect changes as the wind varies. (C)
Right: distributions of the pitch, a component of the state used as an input to the
learning model. This shows that the shift in wind conditions causes a distribution
shift in the input.

where ℎ is another DNN that works as a discriminator to predict the environment
index out of𝐾 wind conditions, loss(·) is a classification loss function (e.g., the cross
entropy loss), 𝛼 ≥ 0 is a hyperparameter to control the degree of regularization, 𝑘
is the wind condition index, and (𝑖) is the input-output pair index. Intuitively, ℎ and
𝜙 play a zero-sum max-min game: the goal of ℎ is to predict the index 𝑘 directly
from 𝜙(𝑥) (achieved by the outer max); the goal of 𝜙 is to approximate the label
𝑦
(𝑖)
𝑘

while making the job of ℎ harder (achieved by the inner min). In other words,
ℎ is a learned regularizer to remove the environment information contained in 𝜙.
In our experiments, the output of ℎ is a 𝐾−dimensional vector for the classification
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probabilities of 𝐾 conditions, and we use the cross entropy loss for loss(·), which is
given as

loss
(
ℎ(𝜙(𝑥 (𝑖)

𝑘
)), 𝑘

)
= −

𝐾∑︁
𝑗=1
𝛿𝑘 𝑗 log

(
ℎ(𝜙(𝑥 (𝑖)

𝑘
))⊤𝑒 𝑗

)
(5.6)

where 𝛿𝑘 𝑗 = 1 if 𝑘 = 𝑗 and 𝛿𝑘 𝑗 = 0 otherwise and 𝑒 𝑗 is the standard basis function.

Design of the DAIML Algorithm
Finally, we solve the optimization problem in Eq. (5.5) by the proposed algorithm
DAIML (described in Algorithm 5.1 and illustrated in Fig. 5.3(B)), which belongs
to the category of gradient-based meta-learning (Hospedales et al., 2021), but with
least squares as the adaptation step. DAIML contains three steps: (i) The adaptation
step (Line 4-6) solves an least squares problem as a function of 𝜙 on the adaptation
set 𝐵𝑎. (ii) The training step (Line 7) updates the learned representation 𝜙 on the
training set 𝐵, based on the optimal linear coefficient 𝑎∗ solved from the adaptation
step. (iii) The regularization step (Line 8-9) updates the discriminator ℎ on the
training set.

We emphasize important features of DAIML: (i) After the adaptation step, 𝑎∗ is a
function of 𝜙. In other words, in the training step (Line 7), the gradient with respect
to the parameters in the neural network 𝜙 will backpropagate through 𝑎∗. Note
that the least-square problem (Line 4) can be solved efficiently with a closed-form
solution. Namely, DAIML is a Hessian-free meta-learning algorithm because of the
closed-form inner loop. (ii) The normalization (Line 6) is to make sure ∥𝑎∗∥ ≤ 𝛾,
which improves the robustness of our adaptive control design. We also use spectral
normalization in training 𝜙, to control the Lipschitz property of the neural network
and improve generalizability (G. Shi, X. Shi, et al., 2019; G. Shi, Hönig, et al.,
2022; Bartlett et al., 2017). (iii) We train ℎ and 𝜙 in an alternating manner. In each
iteration, we first update 𝜙 (Line 7) while fixing ℎ and then update ℎ (Line 9) while
fixing 𝜙. However, the probability to update the discriminator ℎ in each iteration is
𝜂 ≤ 1 instead of 1, to improve the convergence of the algorithm (Goodfellow et al.,
2014).

We further motivate the algorithm design using Fig. 5.4 and Fig. 5.5. Figure 5.4(A,B)
shows the input and label from one wind condition, and Fig. 5.4(C) shows the
distributions of the pitch component in input and the 𝑥−component in label, in
different wind conditions. The distribution shift in label implies the importance
of meta-learning and adaptive control, because the aerodynamic effect changes
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Algorithm 5.1: Domain Adversarially Invariant Meta-Learning (DAIML)
Hyperparameter: 𝛼 ≥ 0, 0 < 𝜂 ≤ 1, 𝛾 > 0
Input: D = {𝐷𝑤1 , · · · , 𝐷𝑤𝐾 }
Initialize: Neural networks 𝜙 and ℎ
Result: Trained neural networks 𝜙 and ℎ

1 repeat
2 Randomly sample 𝐷𝑤𝑘 from D
3 Randomly sample two disjoint batches 𝐵𝑎 (adaptation set) and 𝐵 (training

set) from 𝐷𝑤𝑘

4 Solve the least squares problem 𝑎∗(𝜙) = arg min𝑎
∑
𝑖∈𝐵𝑎




𝑦 (𝑖)
𝑘
− 𝜙(𝑥 (𝑖)

𝑘
)𝑎




2

5 if ∥𝑎∗∥ > 𝛾 then
6 𝑎∗ ← 𝛾 · 𝑎∗

∥𝑎∗∥ ⊲ normalization
7 Train DNN 𝜙 using stochastic gradient descent (SGD) and spectral

normalization with loss∑︁
𝑖∈𝐵

(


𝑦 (𝑖)
𝑘
− 𝜙(𝑥 (𝑖)

𝑘
)𝑎∗




2
− 𝛼 · loss

(
ℎ(𝜙(𝑥 (𝑖)

𝑘
)), 𝑘

))
8 if rand() ≤ 𝜂 then
9 Train DNN ℎ using SGD with loss

∑
𝑖∈𝐵 loss

(
ℎ(𝜙(𝑥 (𝑖)

𝑘
)), 𝑘

)
10 until convergence

drastically as the wind condition switches. On the other hand, the distribution
shift in input motivates the need of DAIML. Figure 5.5 depicts the evolution of the
optimal linear coefficient (𝑎∗) solved from the adaptation step in DAIML, via the
t-distributed stochastic neighbor embedding (t-SNE) dimension reduction, which
projects the 12-dimensional vector 𝑎∗ into 2-d. The distribution of 𝑎∗ is more
and more clustered as the number of training epochs increases. In addition, the
clustering behavior in Fig. 5.5 has a concrete physical meaning: right top part of the
t-SNE plot corresponds to a higher wind speed. These properties imply the learned
representation 𝜙 is indeed shared by all wind conditions, and the linear weight 𝑎
contains the wind-specific information. Finally, note that 𝜙 with 0 training epoch
reflects random features, which cannot decouple different wind conditions as cleanly
as the trained representation 𝜙. Similarly, as shown in Fig. 5.5, if we ignore the
adversarial regularization term (by setting 𝛼 = 0), different 𝑎∗ vectors in different
conditions are less disentangled, which indicates that the learned representation
might be less robust and explainable.
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Training epoch 0 Training epoch 30 Training epoch 90

0.0 m/s
1.3 m/s
2.5 m/s
3.7 m/s
4.9 m/s
6.1 m/s

Without adversarial loss ( = 0)
Training epoch 90

t-SNE plots of the linear coefficients (a * ) in the training process

Figure 5.5: t-SNE plots showing the evolution of the linear weights (𝑎∗) during the
training process. As the number of training epochs increases, the distribution of
𝑎∗ becomes more clustered with similar wind speed clusters near each other. The
clustering also has a physical meaning: after training convergence, the right top
part corresponds to a higher wind speed. This suggests that DAIML successfully
learned a basis function 𝜙 shared by all wind conditions, and the wind-dependent
information is contained in the linear weights. Compared to the case without the
adversarial regularization term (using 𝛼 = 0 in Algorithm 5.1), the learned result
using our algorithm is also more explainable, in the sense that the linear coefficients
in different conditions are more disentangled.

5.5 Online Adaptive Control and Stability Analysis
During the offline meta-training process, a least-squares fit is used to find a set of
parameters 𝑎 that minimizes the force prediction error for each data batch. The least-
squares fit plays a crucial role in the offline training because it yields a Hessian-free
and efficient meta-learning algorithm. However, during the online control phase,
we are ultimately interested in minimizing the position tracking error. Thus, in this
section, we propose a more sophisticated adaptation law for the linear coefficients
based upon a Kalman-filter estimator. This formulation results in automatic gain
tuning for the update law, which allows the controller to quickly estimate parameters
with large uncertainty. We further boost this estimator into a composite adaptation
law, that is the parameter update depends both on the prediction error in the dynamics
model as well as on the tracking error, as illustrated in Fig. 5.3. This allows the
system to quickly identify and adapt to new wind conditions without requiring
persistent excitation. In turn, this enables online adaptation of the high dimensional
learned models from DAIML.
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Robust Composite Adaptive Controller Design
Our online adaptive control algorithm can be summarized by the following control
law, adaptation law, and covariance update equations, respectively.

𝑢 = 𝑀 (𝑞) ¥𝑞𝑟 + 𝐶 (𝑞, ¤𝑞) ¤𝑞𝑟 + 𝑔(𝑞)︸                              ︷︷                              ︸
nominal nonlinear feedforward

−𝐾𝑠︸︷︷︸
linear feedback

−𝜙(𝑞, ¤𝑞)𝑎̂︸      ︷︷      ︸
learning-based feedforward

(5.7)

¤̂𝑎 = −𝜆𝑎̂︸︷︷︸
ℓ2 regularization

−𝑃𝜙⊤𝑅−1(𝜙𝑎̂ − 𝑦)︸                  ︷︷                  ︸
prediction error term

+𝑃𝜙⊤𝑠︸ ︷︷ ︸
tracking error term

(5.8)

¤𝑃 = −2𝜆𝑃 +𝑄 − 𝑃𝜙⊤𝑅−1𝜙𝑃. (5.9)

Note that the controller in Eq. (5.7) can be viewed as an augmentation of Eq. (2.3)
in Chapter 2 with 𝑓 = 𝜙𝑎̂, ¤̂𝑎 as the online linear-parameter update, and 𝑃 as a
covariance-like matrix used for automatic gain tuning. Recall that the composite
error term 𝑠 = ¤̃𝑞 + Λ𝑞 (see Eq. (2.2)), so the tracking error term in Eq. (5.8)
updates 𝑎̂ based on the tracking error. The prediction error term in Eq. (5.8) instead
updates 𝑎̂ based on the mismatch between model prediction 𝜙𝑎̂ and 𝑦, which is
the measured aerodynamic residual force. In this controller, 𝐾 , Λ, 𝑅, 𝑄, and 𝜆
are all tunable positive definite gain matrices. The structure of this control law
is illustrated in Fig. 5.3. Figure 5.3 also shows further quadrotor specific details
for the implementation of our method. These blocks are discussed further in the
“Implementation of Our Control Methods and Baselines” section.

Some readers may note that the regularization term, prediction error term, and
covariance update, when taken alone, are in the form of a Kalman-Bucy filter.
This Kalman-Bucy filter can be derived as the optimal estimator that minimizes the
variance of the parameter error (Kalman and Bucy, 1961). The Kalman-Bucy filter
perspective provides intuition for tuning the adaptive controller: the damping gain
𝜆 corresponds to how quickly the environment returns to the nominal conditions,
𝑄 corresponds to how quickly the environment changes, and 𝑅 corresponds to the
combined representation error 𝑑 and measurement noise for 𝑦. However, naively
combining this parameter estimator with the controller can lead to instabilities in the
closed-loop system behavior unless extra care is taken in constraining the learned
model and tuning the gains. Thus, we have designed our adaptation law to include
a tracking error term, making Eq. (5.8) a composite adaptation law, guaranteeing
stability of the closed-loop system (see Theorem 5.1), and in turn simplifying
the gain tuning process. The regularization term allows the stability result to be
independent of the persistent excitation of the learned model 𝜙, which is particularly
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relevant when using high-dimensional learned representations. The adaptation gain
and covariance matrix, 𝑃, acts as automatic gain tuning for the adaptive controller,
which allows the controller to quickly adapt to when a new mode in the learned
model is excited.

In terms of theoretical guarantees, the control law and adaptation law have been
designed so that the closed-loop behavior of the system is robust to imperfect
learning and time-varying wind conditions. Specifically, we formally define 𝑑 (𝑎, 𝑡)
as the representation error and 𝜖 (𝑡) as the measurement noise as follows:

Definition 5.1 (Representation error and measurement noise). We define the rep-
resentation error 𝑑 (𝑎, 𝑡) as the gap between the ground-truth unknown dynamics
𝑓 and the learned representation 𝜙 multiplying the “true” linear parameter 𝑎(𝑡),
namely:

𝑓 (𝑞, ¤𝑞, 𝑤(𝑡)) = 𝜙(𝑞, ¤𝑞)𝑎(𝑡) + 𝑑 (𝑎(𝑡), 𝑡).

Note that 𝑑 (𝑎, 𝑡) depends on 𝑎. For example, if 𝜙 is perfect, there exists an oracle
𝑎∗ such that 𝑓 (𝑞, ¤𝑞, 𝑤(𝑡)) = 𝜙(𝑞, ¤𝑞)𝑎∗(𝑤(𝑡)) and 𝑑 (𝑎∗, 𝑡) = 0.

On the other hand, we define the measurement noise as

𝜖 (𝑡) = 𝑦(𝑡) − 𝑓 (𝑞, ¤𝑞, 𝑤(𝑡))

which is the gap between the ground-truth unknown dynamics 𝑓 and its online noisy
measurement 𝑦. Finally, we define the joint error 𝜖 as

𝜖 = 𝜖 + 𝑑.

In the next subsection, our theory shows that the robot tracking error exponentially
converges to an error ball whose size is upper bounded by ∥𝑑 (𝑎, 𝑡) + 𝜖 (𝑡)∥ = ∥𝜖 ∥
and ∥ ¤𝑎∥ (i.e., how fast the wind condition changes) for arbitrary 𝑎(𝑡).

Stability Analysis
Before discussing the main theorem and proof, let us consider the stability and
robustness properties of the feedback controller without considering any specific
adaptation law. Define the parameter estimation error 𝑎̃ = 𝑎̂ − 𝑎. Taking the
dynamics Eq. (5.1) and the control law Eq. (5.7),we find

𝑀 ¤𝑠 + (𝐶 + 𝐾)𝑠 = 𝑓 − 𝜙𝑎̂ = −𝜙𝑎̃ + 𝑑 (𝑎, 𝑡). (5.10)
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As the stability analysis in Chapter 3, we can use the Lyapunov function 𝑉 = 𝑠⊤𝑀𝑠

under the assumption of bounded 𝑎̃ to show that

lim
𝑡→∞
∥𝑠∥ ≤

sup𝑡 ∥𝑑 (𝑎, 𝑡) − 𝜙𝑎̃∥𝜆max(𝑀)
𝜆min(𝐾)𝜆min(𝑀)

for arbitrary 𝑎(𝑡). (5.11)

Taking this results alone, one might expect that any online estimator or learning
algorithm will lead to good performance. However, the boundedness of 𝑎̃ is not
guaranteed (Slotine and Li (1991) discuss this topic thoroughly). Even though ∥𝑎̃∥
is bounded, it may not converge and could be arbitrarily large. Therefore, in the
theorem and proof below, we formally show that [𝑠; 𝑎̃] will jointly converge.

Theorem 5.1 (Main stability and robustness guarantee). The adaptive controller
given in Eqs. (5.7) to (5.9) guarantees that the tracking error 𝑞 exponentially
converges to the following error ball:

lim
𝑡→∞
∥𝑞∥ ≤ sup

𝑡

[
𝐶1∥𝑑 (𝑎(𝑡), 𝑡)∥ + 𝐶2∥𝜖 (𝑡)∥ + 𝐶3 (𝜆∥𝑎(𝑡)∥ + ∥ ¤𝑎(𝑡)∥)

]
(5.12)

for arbitrary 𝑎(𝑡), where 𝐶1, 𝐶2, and 𝐶3 are three bounded constants depending on
𝜙, 𝑅, 𝑄, 𝐾,Λ, 𝑀 and 𝜆.

Proof. Combining the closed-loop dynamics Eq. (5.10) and the adaptation law
Eq. (5.8), we have the following joint closed-loop dynamics for the tracking error 𝑠
and the parameter error 𝑎̃:[
𝑀 0
0 𝑃−1

] [
¤𝑠
¤̃𝑎

]
+

[
𝐶 + 𝐾 𝜙

−𝜙𝑇 𝜙⊤𝑅−1𝜙 + 𝜆𝑃−1

] [
𝑠

𝑎̃

]
=

[
𝑑

𝜙⊤𝑅−1𝜖 − 𝜆𝑃−1𝑎 − 𝑃−1 ¤𝑎

]
.

(5.13)
We also have the following 𝑃−1 dynamics from Eq. (5.9):

𝑑

𝑑𝑡

(
𝑃−1

)
= −𝑃−1 ¤𝑃𝑃−1 = 2𝜆𝑃−1 − 𝑃−1𝑄𝑃−1 + 𝜙⊤𝑅−1𝜙. (5.14)

In this proof, we rely on the fact that 𝑃−1 is both uniformly positive definite and
uniformly bounded, that is, there exists some positive definite constant matrices 𝐴
and 𝐵 such that 𝐴 ⪰ 𝑃−1 ⪰ 𝐵 (see a proof when 𝜙 is bounded and 𝑄 ≻ 0 in Dieci
and Eirola (1994)).

Now consider the Lyapunov function 𝑉 given by

𝑉 =

[
𝑠

𝑎̃

]⊤ [
𝑀 0
0 𝑃−1

]
︸      ︷︷      ︸

M

[
𝑠

𝑎̃

]
. (5.15)
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Plugging in Eqs. (5.13) and (5.14), this Lyapunov function has the following time
derivative:

¤𝑉 = 2

[
𝑠

𝑎̃

]⊤ [
𝑀 0
0 𝑃−1

] [
¤𝑠
¤̃𝑎

]
+

[
𝑠

𝑎̃

]⊤ [
¤𝑀 0
0 𝑑

𝑑𝑡

(
𝑃−1) ] [

𝑠
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where we used the fact ¤𝑀−2𝐶 is skew-symmetric again. Since 𝑀, 𝑃−1, 𝐾 and𝑄 are
both uniformly bounded and positive definite, and 𝜙⊤𝑅−1𝜙 is positive semi-definite,
there exists some 𝛼 > 0 such that

K ⪰ 2𝛼M, ∀𝑡. (5.17)

Therefore we have

¤𝑉 ≤ −2𝛼𝑉 + 2∥𝐷∥

√︄
𝑉

𝜆min(M)
, ∀𝑡. (5.18)

Focusing on
√
𝑉 and following the analysis in Chapter 3, we have

√
𝑉 ≤

√︁
𝑉 (0)𝑒−𝛼𝑡 + ∥𝐷∥

𝛼
√︁
𝜆min(M)

. (5.19)

Therefore the joint state [𝑠; 𝑎̃] exponentially converges to the following error ball

lim
𝑡→∞







[
𝑠

𝑎̃

]




 ≤ sup
𝑡

∥𝐷∥
𝛼 · 𝜆min(M)

. (5.20)

Finally, the relation between 𝑠 and 𝑞 (Lemma 2.3) yields that ∥𝑞∥ exponentially
converges to

lim
𝑡→∞
∥𝑞∥ ≤ sup

𝑡

∥𝐷∥
𝛼 · 𝜆min(M)𝜆min(Λ)

(5.21)

which completes the proof. □
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5.6 Experiments
In this section, we first discuss the experimental platform for data collection and
experiments. Second, we discuss the implementations of our method and baselines.
Third, we discuss several experiments to quantitatively compare the closed-loop
trajectory-tracking performance of our methods to a nonlinear baseline method and
two state-of-the-art adaptive flight control methods, and we observe our methods
reduce the average tracking error substantially. In order to demonstrate the new
capabilities brought by our methods, we present agile flight results in gusty winds,
where the UAV must quickly fly through narrow gates that are only slightly wider
than the vehicle. Finally, we show our methods are also applicable in outdoor agile
tracking tasks without external motion capture systems.

Experimental Platform
All of our experiments are conducted at Caltech’s Center for Autonomous Systems
and Technologies (CAST). The experimental setup consists of an OptiTrack motion
capture system with 12 infrared cameras for localization streaming position mea-
surements at 50 Hz, a WiFi router for communication, the Caltech Real Weather
Wind Tunnel for generating dynamic wind conditions, and a custom-built quadrotor
UAV. For outdoor flight, the drone is also equipped with a Global Positioning System
(GPS) module and an external antenna. We now discuss the design of the UAV and
the wind condition in detail.

UAV design. We built a quadrotor UAV for our primary data collection and all ex-
periments, shown in Fig. 5.2(A). The quadrotor weighs 2.6 kg with a thrust to weight
ratio of 2.2. The UAV is equipped with a Pixhawk flight controller running PX4, an
open-source commonly used drone autopilot platform (Meier et al., 2012). The UAV
incorporates a Raspberry Pi 4 onboard computer running a Linux operation system,
which performs real-time computation and adaptive control and interfaces with the
flight controller through MAVROS, an open-source set of communication drivers
for UAVs. State estimation is performed using the built-in PX4 Extended Kalman
Filter (EKF), which fuses inertial measurement unit (IMU) data with global position
estimates from OptiTrack motion capture system (or the GPS module for outdoor
flight tasks). The UAV platform features a wide-X configuration, measuring 85 cm
in width, 75 cm in length, and 93 cm diagonally, and tilted motors for improved yaw
authority. This general hardware setup is standard and similar to many quadrotors.

To study the generalizability and robustness of our approach, we also use an Intel
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Aero Ready to Fly drone for data collection. This dataset is used to train a represen-
tation of the wind effects on the Intel Aero drone, which we test on our custom UAV.
The Intel Aero drone (weighing 1.4 kg) has a symmetric X configuration, 52 cm in
width and 52 cm in length, without tilted motors.

Wind condition design. To generate dynamic and diverse wind conditions for
the data collection and experiments, we leverage the state-of-the-art Caltech Real
Weather Wind Tunnel system (Fig. 5.2). The wind tunnel is a 3 m by 3 m array
of 1296 independently controllable fans capable of generating wind conditions
up to 43.6 km/h. The distributed fans are controlled in real-time by a Python-
based Application Programming Interface (API). For data collection and flight
experiments, we designed two types of wind conditions. For the first type, each fan
has uniform and constant wind speed between 0 km/h and 43.6 km/h (12.1 m/s).
The second type of wind follows a sinusoidal function in time, e.g., 30.6+8.6 sin(𝑡)
km/h. Note that the training data only covers constant wind speeds up to 6.1 m/s. To
visualize the wind, we use 5 smoke generators to indicate the direction and intensity
of the wind condition (see examples in Fig. 5.2 and the video).

Data Collection and Offline Meta-Training
To learn an effective representation of the aerodynamic effects, we have a custom-
built drone follow a randomized trajectory for 2 minutes each in six different static
wind conditions, with speeds ranging from 0 km/h to 22.0 km/h. However, in
experiments we used wind speeds up to 43.6 km/h (12.1 m/s) to study how our
methods extrapolate to unseen wind conditions (e.g., Fig. 5.7). The randomized
trajectory follows a polynomial spline between 3 waypoints: the current position
and two randomly generated target positions. This process allows us to generate
a large amount of data using a trajectory very different from the trajectories used
to test our method, such as the figure-8 in Fig. 5.2. By training and testing on
different trajectories, we demonstrate that the learned model generalizes well to new
trajectories.

Along each trajectory, we collect time-stamped data [𝑞, ¤𝑞, 𝑢]. Next, we compute
the acceleration ¥𝑞 by fifth-order numerical differentiation and compute the noisy
label of 𝑓 using Eq. (5.1). The data is collected at 50 Hz with a total of 36, 000
data points. Figure 5.4(A) shows the data collection process, and Fig. 5.4(B)
shows the inputs and labels of the training data, under one wind condition of
13.3 km/h (3.7 m/s). Figure 5.4(C) shows the distributions of input data (pitch) and
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label data (𝑥−component of the aerodynamic force) in different wind conditions.
Clearly, a shift in wind conditions causes distribution shifts in both input domain
and label domain, which motivates the algorithm design of DAIML. The same data
collection process is repeated on the Intel Aero drone, to study whether the learned
representation can generalize to a different drone.

On the collected datasets for both our custom drone and the Intel Aero drone,
we apply the DAIML algorithm (Algorithm 5.1) to learn two representations 𝜙
of the wind effects. The learning process is done offline on a normal desktop
computer, and depicted in Fig. 5.3(B). Figure 5.5 shows the evolution of the linear
coefficients (𝑎∗) during the learning process, where DAIML learns a representation
of the aerodynamic effects shared by all wind conditions, and the linear coefficient
contains the wind-specific information. Moreover, the learned representation is
explainable in the sense that the linear coefficients in different wind conditions are
well disentangled (see Fig. 5.5).

Implementation of Our Control Methods and Baselines
We following the cascading control structure in Chapter 2 to apply our controller and
baselines as position controllers for a drone. In particular, the position dynamics of
a drone in Eq. (2.4a) can be reduced to Eq. (5.1) by taking 𝑀 = 𝑚𝐼, 𝐶 = 0, 𝑞 = 𝑝,
𝑢 = 𝑅 𝑓𝑢 ∈ R3 and 𝑓 = 𝑓𝑎 ∈ R3.

Therefore, we implemented all control methods in the position control loop in
Python, and run it on the onboard Linux computer at 50 Hz. The PX4 was set to the
offboard flight mode and received thrust and attitude commands from the position
control loop. The built-in PX4 multicopter attitude controller was then executed at
the default rate. The online inference of the learned representation is also in Python
via PyTorch (Paszke et al., 2019).

We implemented three baselines:

• Globally exponentially-stabilizing nonlinear tracking controller for quadrotor
control (Morgan et al., 2016; G. Shi, X. Shi, et al., 2019; X. Shi, Kim, et al.,
2018). This controller uses an integral term

∫
𝑞 to compensate 𝑓 .

• Incremental nonlinear dynamics inversion (INDI) linear acceleration con-
trol (Tal and Karaman, 2021). In particular, we implemented the position
and acceleration controller from Sections III.A and III.B in Tal and Karaman
(2021).
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• L1 adaptive control (Mallikarjunan et al., 2012; Hanover et al., 2021). We fol-
lowed the adaptation law first presented in Pravitra et al. (2020), and augment
the nonlinear baseline control with 𝑓 = −𝑢L1 .

The primary difference between these baseline methods and Neural-Fly is how
the controller compensates for the unmodelled residual force (that is, each baseline
method has the same control structure, in Fig. 5.3(C), except for the estimation of the
𝑓 ). The integral gain in the first baseline is limited by the stability of the interaction
with the position and velocity error feedback, leading to slow model correction. In
contrast, both INDI and L1 decouple the adaptation rate from the PD gains, which
allow for fast adaptation. However, both INDI andL1 directly estimate the unknown
vector 𝑓 which might change very fast, thus limited by more fundamental design
factors, such as system delay, measurement noise, and controller rate.

We also implemented three variants of our methods, depending on the learned
representation 𝜙:

• Neural-Fly is our primary method using a representation learned from the
dataset collected by the custom-built drone, which is the same drone used in
experiments.

• Neural-Fly-Transfer uses the Neural-Fly algorithm where the representation
is trained using the dataset collected by the aforementioned Intel Aero drone.
This variant is included to show the generalizability and robustness of our
approach with drone transfer, i.e., using a different drone in experiments than
data collection.

• Neural-Fly-Constant uses the online adaptation algorithm from Neural-Fly,
but the representation is an artificially designed constant mapping (𝜙 = 𝐼).
Neural-Fly-Constant demonstrates the benefit of using a better representation
learned from the proposed meta-learning method DAIML. Note that Neural-
Fly-Constant is a composite adaptation form of a Kalman-filter disturbance
observer, that is a Kalman-filter augmented with a tracking error update term.

Neural network architectures and training details. In practice, we found that in
addition to the drone velocity, the aerodynamic effects also depend on the drone
attitude and the rotor rotation speed. To that end, the input state 𝑥 to the deep
neural network 𝜙 is a 11-d vector, consisting of the drone velocity (3-d), the drone
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attitude represented as a quaternion (4-d), and the rotor speed commands as a pulse
width modulation (PWM) signal (4-d) (see Figs. 5.3 and 5.4). The DNN 𝜙 has four
fully-connected hidden layers, with an architecture 11→ 50→ 60→ 50→ 4 and
Rectified Linear Units (ReLU) activation. We found that the three components of
the wind-effect force, 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧, are highly correlated and sharing common features,
so we use 𝜙 as the basis function for all the component. Therefore, the wind-effect
force 𝑓 is approximated by

𝑓 ≈

𝜙(𝑥) 0 0

0 𝜙(𝑥) 0
0 0 𝜙(𝑥)



𝑎𝑥

𝑎𝑦

𝑎𝑧

 , (5.22)

where 𝑎𝑥 , 𝑎𝑦, 𝑎𝑧 ∈ R4 are the linear coefficients for each component of the wind-
effect force.

Note that we explicitly include the PWM as an input to the 𝜙 network. The PWM
information is a function of 𝑢, which makes the controller law Eq. (5.7) non-affine
in 𝑢. We solve this issue by using the PWM from the last time step as an input to
𝜙, to compute the desired force 𝑢 at the current time step. Because we train 𝜙 using
spectral normalization (see Algorithm 5.1), this method is stable and guaranteed to
converge to a fixed point, as discussed in Chapter 3.

Trajectory Tracking Performance
We quantitatively compare the performance of the aforementioned control methods
when the UAV follows a 2.5 m wide, 1.5 m tall figure-8 trajectory with a lap time
of 6.28 s under constant, uniform wind speeds of 0 km/h, 15.1 km/h (4.2 m/s),
30.6 km/h (8.5 m/s), and 43.6 km/h (12.1 m/s) and under time-varying wind speeds
of 30.6 + 8.6 sin(𝑡) km/h (8.5 + 2.4 sin(𝑡) m/s).

The flight trajectory for each of the experiments is shown in Fig. 5.6, which includes a
warm up lap and six 6.28 s laps. The nonlinear baseline integral term compensates
for the mean model error within the first lap. As the wind speed increases, the
aerodynamic force variation becomes larger and we notice a substantial performance
degradation. INDI and L1 both improve over the nonlinear baseline, but INDI
is more robust than L1 at high wind speeds. Neural-Fly-Constant outperforms
INDI except during the two most challenging tasks: 43.6 km/h and sinusoidal
wind speeds. The learning based methods, Neural-Fly and Neural-Fly-Transfer,
outperform all other methods in all tests. Neural-Fly outperforms Neural-Fly-
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Figure 5.6: Depiction of the trajectory tracking performance of each controller in
several wind conditions. The baseline nonlinear controller can track the trajec-
tory well, however, the performance substantially degrades at higher wind speeds.
INDI, L1, and Neural-Fly-Constant have similar performance and improve over
the nonlinear baseline by estimating the aerodynamic disturbance force quickly.
Neural-Fly and Neural-Fly-Transfer use a learned model of the aerodynamic effects
and adapt the model in real time to achieve lower tracking error than the other
methods.

Table 5.1: Tracking error statistics in cm for different wind conditions. Two metrics
are considered: root-mean-square (RMS) and mean.
PPPPPPPPPMethod

Wind
[m/s] 0 4.2 8.5 12.1 8.5 + 2.4 sin(𝑡)

RMS Mean RMS Mean RMS Mean RMS Mean RMS Mean
Nonlinear 11.9 10.8 10.7 9.9 16.3 14.7 23.9 21.6 31.2 28.2

INDI 7.3 6.3 6.4 5.9 8.5 8.2 10.7 10.1 11.1 10.3
L1 4.6 4.2 5.8 5.2 12.1 11.1 22.7 21.3 13.0 11.6

NF-Constant 5.4 5.0 6.1 5.7 7.5 6.9 12.7 11.2 12.7 12.1
NF-Transfer 3.7 3.4 4.8 4.4 6.2 5.9 10.2 9.4 8.8 8.0

NF 3.2 2.9 4.0 3.7 5.8 5.3 9.4 8.7 7.6 6.9

Transfer slightly, which is because the learned model was trained on data from the
same drone and thus better matches the dynamics of the vehicle.

In Table 5.1, we tabulate the root-mean-square position error and mean position
error values over the six laps for each experiment. Figure 5.7 shows how the mean
tracking error changes for each controller as the wind speed increases, and includes
the standard deviation for the mean lap position error. In all cases, Neural-Fly and
Neural-Fly-Transfer outperform the state-of-the-art baseline methods, including the
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Figure 5.7: Mean tracking errors of each lap in different wind conditions. This figure
shows position tracking errors of different methods as wind speed increases. Solid
lines show the mean error over 6 laps and the shade areas show standard deviation of
the mean error on each lap. The grey area indicates the extrapolation region, where
the wind speeds are not covered in training. Our primary method (Neural-Fly)
achieves state-of-the-art performance even with a strong wind disturbance.

30.6 km/h, 43.6 km/h, and sinusoidal wind speeds all of which exceed the wind
speed in the training data. All of these results presents a clear trend: adaptive
control substantially outperforms the nonlinear baseline which relies on integral-
control, and learning markedly improves adaptive control.

Agile Flight Through Narrow Gates
Precise flight control in dynamic and strong wind conditions has many applications,
such as rescue and search, delivery, and transportation. In this section, we present
a challenging drone flight task in strong winds, where the drone must follow agile
trajectories through narrow gates, which are only slightly wider than the drone. The
overall result is depicted in Fig. 5.2 and the video. As shown in Fig. 5.2(A), the
gates used in our experiments are 110 cm in width, which is only slightly wider than
the drone (85 cm wide, 75 cm long). To visualize the trajectory using long-exposure
photography, our drone is deployed with four main light emitting diodes (LEDs) on
its legs, where the two rear LEDs are red and the front two are white. There are also
several small LEDs on the flight controller, the computer, and the motor controllers,
which can be seen in the long-exposure shots.

Task design. We tested our method on three different tasks. In the first task (see
Fig. 5.2(B,D,F-I) and the video), the desired trajectory is a 3 m by 1.5 m figure-8
in the 𝑥 − 𝑧 plane with a lap time of 5 s. A gate is placed at the left bottom part
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of the trajectory. The minimum clearance is about 10 cm (see Fig. 5.2(I), which
requires that the controller precisely tracks the trajectory. The maximum speed
and acceleration of the desired trajectory are 2.7 m/s and 5.0 m/s2, respectively.
The wind speed is 3.1 m/s. The second task (see Video 1) is the same as the
first one, except that it uses a more challenging, time-varying wind condition,
3.1+1.8 sin( 2𝜋5 𝑡)m/s. In the third task (see Fig. 5.2(C,E) and the video), the desired
trajectory is a 3 m by 2.5 m ellipse in the 𝑥 − 𝑦 plane with a lap time of 5 s. We
placed two gates on the left and right sides of the ellipse. As with the first task, the
wind speed is 3.1 m/s.

Performance. For all three tasks, we used our primary method, Neural-Fly, where
the representation is learned using the dataset collected by the custom-built drone.
Figure 5.2(D,E) are two long-exposure photos with an exposure time of 5 s, which is
the same as the lap time of the desired trajectory. We see that our method precisely
tracked the desired trajectories and flew safely through the gates (see the video).
These long-exposure photos also captured the smoke visualization of the wind
condition. We would like to emphasize that the drone is wider than the LED light
region, since the LEDs are located on the legs (see Fig. 5.2(A)). Figure 5.2(F-I) are
four high-speed photos with a shutter speed of 1/200s. These four photos captured
the moment the drone passed through the gate in the first task, as well as the complex
interaction between the drone and the wind. We see that the aerodynamic effects are
complex and non-stationary and depend on the UAV attitude, the relative velocity,
and aerodynamic interactions between the propellers and the wind.

Outdoor Experiments
We tested our algorithm outdoors in gentle breeze conditions (wind speeds measured
up to 17 km/h). An onboard GPS receiver provided position information to the EKF,
giving lower precision state estimation, and therefore less precise aerodynamic
residual force estimation. Following the same aforementioned figure-8 trajectory,
the controller reached 7.5 cm mean tracking error, shown in Fig. 5.8.

Discussions
State-of-the-art tracking performance. When measuring position tracking errors,
we observe that our Neural-Fly method outperforms state-of-the-art flight controllers
in all wind conditions. Furthermore, we observe a mean tracking error of 2.9 cm
in 0 km/h wind, which is comparable with state-of-the-art tracking performance
demonstrated on more aggressive racing drones (Tal and Karaman, 2021; Hanover
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Figure 5.8: Outdoor flight setup and performance. Left: In outdoor experiments,
a GPS module is deployed for state estimation, and a weather station records wind
profiles. The maximum wind speed during the test was around 17 km/h (4.9 m/s).
Right: Trajectory tracking performance of Neural-Fly.

et al., 2021) despite several architectural limitations such as limited control rate in
offboard mode, a larger, less maneuverable vehicle, and without direct motor speed
measurements. All our experiments were conducted using the standard PX4 attitude
controller, with Neural-Fly implemented in an onboard, low cost, and “credit-card
sized” Raspberry Pi 4 computer. Furthermore, Neural-Fly is robust to changes in
vehicle configuration, as demonstrated by the similar performance of Neural-Fly-
Transfer.

To understand the fundamental tracking-error limit, we estimate that the localization
precision from the OptiTrack system is about 1 cm, which is a practical lower
bound for the average tracking error in our system. This is based on the fact that
the difference between the OptiTrack position measurement and the onboard EKF
position estimate is around 1 cm.

To achieve a tracking error of 1 cm, remaining improvements should focus on
reducing code execution time, communication delays, and attitude tracking delay.
We measured the combined code execution time and communication delay to be
at least 15 ms and often as much as 30 ms. A faster implementation (such as
using C++ instead of Python) and streamlined communication layer (such as using
ROS2’s real-time features) could allow us to achieve tracking errors on the order
of the localization accuracy. Attitude tracking delay can be substantially reduced
through the use of a nonlinear attitude controller (e.g., X. Shi, Kim, et al. (2018)).
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Our method is also directly extensible to attitude control because attitude dynamics
match the Euler-Lagrange dynamics used in our derivations. However, further work
is needed to understand the interaction of the learned dynamics with the cascaded
control design when implementing a tracking attitude controller.

Challenges caused by unknown and time-varying wind conditions. In the real
world, the wind conditions are not only unknown but also constantly changing, and
the vehicle must continuously adapt. We designed the the sinusoidal wind test to
emulate unsteady or gusty wind conditions. Although our learned model is trained
on static and approximately uniform wind condition data, Neural-Fly can quickly
identify changing wind speed and maintains precise tracking even on the sinusoidal
wind experiment. Moreover, in each of our experiments, the wind conditions were
unknown to the UAV before starting the test yet were quickly identified by the
adaptation algorithm.

Our work demonstrated that it is possible to repeatably and quantitatively test quadro-
tor flight in time-varying wind. Our method separately learns the wind effect’s de-
pendence on the vehicle state (i.e., the wind-invariant representation in Fig. 5.3(A))
and the wind condition (i.e., the wind-specific linear weight in Fig. 5.3(A)). This
separation allows Neural-Fly to quickly adapt to the time-varying wind even as the
UAV follows a dynamic trajectory, with an average tracking error below 8.7 cm in
Table 5.1.

Computational efficiency of our method. In the offline meta-learning phase,
the proposed DAIML algorithm is able to learn an effective representation of the
aerodynamic effect in a data efficient manner. This requires only 12 minutes of
flight data at 50 Hz, for a total of 36,000 data points. The training procedure only
takes 5 minutes on a normal desktop computer. In the online adaptation phase, our
adaptive control method only takes 10 ms to compute on a compact onboard Linux
computer (Raspberry Pi 4). In particular, the feedforward inference time via the
learned basis function is about 3.5 ms and the adaptation update is about 3.0 ms,
which implies the compactness of the learned representation.

Generalization to new trajectories and new aircrafts. It is worth noting that
our control method is orthogonal to the design of the desired trajectory 𝑞𝑑 . In
this chapter, we focus on the figure-8 trajectory which is a commonly used control
benchmark. We also demonstrate our method flying a horizontal ellipse during the
narrow gate demonstration Fig. 5.2. Note that our method supports any trajectory
planners such as Foehn et al. (2021) or learning-based planners (Nakka et al., 2021;
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Loquercio et al., 2021). In particular, for those planners which require a precise
and agile downstream controller (e.g., for close-proximity flight or drone racing
(Foehn et al., 2021; G. Shi, Hönig, et al., 2022)), our method immediately provides
a solution and further pushes the boundary of these planners, because our state-
of-the-art tracking capabilities enable tighter configurations and smaller clearances.
However, further research is required to understand the coupling between planning
and learning-based control near actuation limits. Future work will consider using
Neural-Fly in a combined planning and control structure such as MPC, which will
be able to handle actuation limits.

The comparison between Neural-Fly and Neural-Fly-Transfer show that our ap-
proach is robust to changing vehicle design and the learned representation does
not depend on the vehicle. This demonstrates the generalizability of the proposed
method running on different quadrotors. Moreover, our control algorithm is formu-
lated generally for all robotic systems described by the Euler-Langrange equation
Eq. (5.1), including many types of aircraft such as X. Shi, Spieler, et al. (2020) and
Kim et al. (2021).

5.7 Appendix
The Expressiveness of the Learning Architecture
In this section, we theoretically justify the decomposition 𝑓 (𝑥, 𝑤) ≈ 𝜙(𝑥)𝑎(𝑤). In
particularly, we prove that any analytic function 𝑓 (𝑥, 𝑤) : [−1, 1]𝑛 × [−1, 1]𝑚 → R
can be split into a𝑤-invariant part 𝜙(𝑥) and a𝑤-dependant part 𝑎̄(𝑤) in the structure
𝜙(𝑥)𝑎̄(𝑤) with arbitrary precision 𝜖 , where 𝜙(𝑥) and 𝑎̄(𝑤) are two polynomials.
Further, the dimension of 𝑎̄(𝑤) only scales polylogarithmically with 1/𝜖 .

We first introduce the following multivariate polynomial approximation lemma in
the hypercube proved in Trefethen (2017).

Lemma 5.1. (Multivariate polynomial approximation in the hypercube) Let 𝑓 (𝑥, 𝑤) :
[−1, 1]𝑛 × [−1, 1]𝑚 → R be a smooth function of [𝑥, 𝑤] ∈ [−1, 1]𝑛+𝑚 for 𝑛, 𝑚 ≥ 1.
Assume 𝑓 (𝑥, 𝑤) is analytic for all [𝑥, 𝑤] ∈ C𝑛+𝑚 withℜ(𝑥2

1+· · ·+𝑥
2
𝑛+𝑤2

1+· · ·+𝑤
2
𝑚) ≥

−𝑡2 for some 𝑡 > 0, whereℜ(·) denotes the real part of a complex number. Then 𝑓

has a uniformly and absolutely convergent multivariate Chebyshev series

∞∑︁
𝑘1=0
· · ·

∞∑︁
𝑘𝑛=0

∞∑︁
𝑙1=0
· · ·

∞∑︁
𝑙𝑚=0

𝑏𝑘1,··· ,𝑘𝑛,𝑙1,··· ,𝑙𝑚𝑇𝑘1 (𝑥1) · · ·𝑇𝑘𝑛 (𝑥𝑛)𝑇𝑙1 (𝑤1) · · ·𝑇𝑙𝑚 (𝑤𝑚).

Define 𝑠 = [𝑘1, · · · , 𝑘𝑛, 𝑙1, · · · , 𝑙𝑚]. The multivariate Chebyshev coefficients satisfy
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the following exponential decay property:

𝑏𝑠 = 𝑂

(
(1 + 𝑡)−∥𝑠∥2

)
.

Note that this lemma shows that the truncated Chebyshev expansions

C𝑝 =
𝑝∑︁

𝑘1=0
· · ·

𝑝∑︁
𝑘𝑛=0

𝑝∑︁
𝑙1=0
· · ·

𝑝∑︁
𝑙𝑚=0

𝑏𝑘1,··· ,𝑘𝑛,𝑙1,··· ,𝑙𝑚𝑇𝑘1 (𝑥1) · · ·𝑇𝑘𝑛 (𝑥𝑛)𝑇𝑙1 (𝑤1) · · ·𝑇𝑙𝑚 (𝑤𝑚)

will converge to 𝑓 with the rate 𝑂 ((1 + 𝑡)−𝑝
√
𝑛+𝑚) for some 𝑡 > 0, i.e.,

sup
[𝑥,𝑤]∈[−1,1]𝑛+𝑚

∥ 𝑓 (𝑥, 𝑤) − C𝑝 (𝑥, 𝑤)∥ ≤ 𝑂 ((1 + 𝑡)−𝑝
√
𝑛+𝑚).

Finally we are ready to present the following representation theorem.

Theorem 5.2. 𝑓 (𝑥, 𝑤) is a function satisfying the assumptions in Lemma 5.1. For
any 𝜖 > 0, there exist ℎ ∈ Z+, and two Chebyshev polynomials 𝜙(𝑥) : [−1, 1]𝑛 →
R1×ℎ and 𝑎̄(𝑤) : [−1, 1]𝑚 → Rℎ×1 such that

sup
[𝑥,𝑤]∈[−1,1]𝑛+𝑚

∥ 𝑓 (𝑥, 𝑤) − 𝜙(𝑥)𝑎̄(𝑤)∥ ≤ 𝜖

and ℎ = 𝑂 ((log(1/𝜖))𝑚).

Proof. First note that there exists 𝑝 = 𝑂

(
log(1/𝜖)√
𝑛+𝑚

)
such that

sup
[𝑥,𝑤]∈[−1,1]𝑛+𝑚



 𝑓 (𝑥, 𝑤) − C𝑝 (𝑥, 𝑤)

 ≤ 𝜖 .
To simplify the notation, define

𝑔(𝑥, 𝑘, 𝑙) = 𝑔(𝑥1, · · · , 𝑥𝑛, 𝑘1, · · · , 𝑘𝑛, 𝑙1, · · · , 𝑙𝑚) = 𝑏𝑘1,··· ,𝑘𝑛,𝑙1,··· ,𝑙𝑚𝑇𝑘1 (𝑥1) · · ·𝑇𝑘𝑛 (𝑥𝑛)
𝑔(𝑤, 𝑙) = 𝑔(𝑤1, · · · , 𝑤𝑚, 𝑙1, · · · , 𝑙𝑚) = 𝑇𝑙1 (𝑤1) · · ·𝑇𝑙𝑛 (𝑤𝑚).

Then we have

C𝑝 (𝑥, 𝑤) =
𝑝∑︁

𝑘1,··· ,𝑘𝑛=0

𝑝∑︁
𝑙1,··· ,𝑙𝑚=0

𝑔(𝑥, 𝑘1, · · · , 𝑘𝑛, 𝑙1, · · · , 𝑙𝑚)𝑔(𝑤, 𝑙1, · · · , 𝑙𝑚).
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Then we rewrite C𝑝 as C𝑝 (𝑥, 𝑤) = 𝜙(𝑥)𝑎̄(𝑤):

𝜙(𝑥)⊤ =



∑𝑝

𝑘1,··· ,𝑘𝑛=0 𝑔(𝑥, 𝑘1, · · · , 𝑘𝑛, 𝑙 = [0, 0, · · · , 0])∑𝑝

𝑘1,··· ,𝑘𝑛=0 𝑔(𝑥, 𝑘1, · · · , 𝑘𝑛, 𝑙 = [1, 0, · · · , 0])∑𝑝

𝑘1,··· ,𝑘𝑛=0 𝑔(𝑥, 𝑘1, · · · , 𝑘𝑛, 𝑙 = [2, 0, · · · , 0])
...∑𝑝

𝑘1,··· ,𝑘𝑛=0 𝑔(𝑥, 𝑘1, · · · , 𝑘𝑛, 𝑙 = [𝑝, 𝑝, · · · , 𝑝])


,

𝑎̄(𝑤) =



𝑔(𝑤, 𝑙 = [0, 0, · · · , 0])
𝑔(𝑤, 𝑙 = [1, 0, · · · , 0])
𝑔(𝑤, 𝑙 = [2, 0, · · · , 0])

...

𝑔(𝑤, 𝑙 = [𝑝, 𝑝, · · · , 𝑝])


.

Note that the dimension of 𝜙(𝑥) and 𝑎̄(𝑤) is

ℎ = (𝑝 + 1)𝑚 = 𝑂

((
1 + log(1/𝜖)
√
𝑛 + 𝑚

)𝑚)
= 𝑂 ((log(1/𝜖))𝑚) .

□

Note that Theorem 5.2 can be generalized to vector-valued functions with bounded
input space straightforwardly. Finally, since deep neural networks are universal ap-
proximators for polynomials (Yarotsky, 2017), Theorem 5.2 immediately guarantees
the expressiveness of our learning structure, i.e., 𝜙(𝑥)𝑎(𝑤) can approximate 𝑓 (𝑥, 𝑤)
with arbitrary precision, where 𝜙(𝑥) is a deep neural network and 𝑎̂ includes the
linear coefficients for all the elements of 𝑓 . In experiments, we show that a four-layer
neural network can efficiently learn an effective representation for the underlying
unknown dynamics 𝑓 (𝑥, 𝑤).
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C h a p t e r 6

SAFE EXPLORATION

Figure 6.1: Motivating example: drone landing trajectories with different speeds.

In Chapter 2, we introduced a general mixed robot dynamics model 𝑀 (𝑞) ¥𝑞 +
𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝑔(𝑞) = 𝐵𝑢 + 𝑓 where 𝑓 is the unknown dynamics. In Chapters 3 to 5,
we discussed different settings for 𝑓 : 𝑓 depends on 𝑢, 𝑓 considers multi-agent
interactions, and 𝑓 depends on time-variant environmental conditions. However, all
these settings rely on pre-collected data to train or pre-train deep learning models. In
general, data collection for learning robotic agility needs either human supervision
or fine-tuned programs in well-controlled environments. For example, in Neural-
Lander (Chapter 3) an expert human pilot flied the drone for 5 min to collect data
where the drone was flying aggressively and very close to the ground.

In this chapter, we will discuss several key principles to safe learn an agile controller
under uncertainty from scratch, i.e., without any pre-collected data. Figure 6.1
depicts an example, where the drone must start from extremely slow but safe landing,
explore and learn new skills itself, and eventually achieve fast and safe landing. In
this process, we must avoid catastrophic failure such as the fast and unsafe landing
curve in Fig. 6.1. This chapter is mainly based on the following papers:

Liu, Anqi, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, and Yisong Yue
(2020). Robust regression for safe exploration in control. In: Learning for Dy-
namics and Control. PMLR, pp. 608–619. url: https://proceedings.mlr.
press/v120/liu20a.html.

https://proceedings.mlr.press/v120/liu20a.html
https://proceedings.mlr.press/v120/liu20a.html
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Nakka, Yashwanth Kumar, Anqi Liu, Guanya Shi, Anima Anandkumar, Yisong Yue,
and Soon-Jo Chung (2021). Chance-constrained trajectory optimization for safe
exploration and learning of nonlinear Systems. In: IEEE Robotics and Automation
Letters 6.2, pp. 389–396. doi: 10.1109/LRA.2020.3044033.

Abstract. We study the problem of safe learning and exploration in sequential
control problems. The goal is to safely collect data samples from operating in
an environment, in order to learn to achieve a challenging control goal (e.g., an
agile maneuver close to a boundary). A central challenge in this setting is how
to quantify uncertainty in order to choose provably-safe actions that allow us to
collect informative data and reduce uncertainty, thereby achieving both improved
controller safety and optimality. To address this challenge, we present a deep robust
regression model that is trained to directly predict the uncertainty bounds for safe
exploration. We derive generalization bounds for learning, and connect them with
safety and stability bounds in control. We demonstrate empirically that our robust
regression approach can outperform conventional Gaussian process (GP) based safe
exploration in settings where it is difficult to specify a good GP prior.

6.1 Introduction and Related Work
A key challenge in data-driven design for robotic controllers (e.g., Chapters 3 to 5) is
automatically and safely collecting training data. Consider safely landing a drone at
fast landing speeds (beyond a human expert’s piloting abilities). The dynamics are
both highly non-linear and poorly modeled as the drone approaches the ground, but
such dynamics can be learnable given the appropriate training data (see Chapter 3).
To collect such data autonomously, one must guarantee safety while operating in
the environment, which is the problem of safe exploration. In the drone landing
example, collecting informative training data requires the drone to land increasingly
faster while not crashing. Figure 6.1 depicts an example, where the goal is to learn
the most aggressive yet safe trajectory (orange), while not being overconfident and
execute trajectories that crash (green); the initial nominal controller may only be
able to execute very conservative trajectories (blue).

In order to safely collect such informative training data, we need to overcome
two difficulties. First, we must quantify the learning errors in out-of-sample data.
Every step of data collection creates a shift in the training data distribution. More
specifically, our setting is an instance of covariate shift, where the underlying true

https://doi.org/10.1109/LRA.2020.3044033
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physics stay constant, but the sampling of the state space is biased by the data
collection (Chen et al., 2016). In order to leverage modern learning approaches, such
as deep learning, we must reason about the impact of covariate shift when predicting
on states not well represented by the training set. Second, we must reason about
how to guarantee safety and stability when controlling using the current learned
model. Our ultimate goal is to control the dynamical system with desired properties
but staying safe and stable while data collection. The imperfect dynamical model’s
error translate to possible control error, which must be quantified and controlled.

In this chapter, we propose a deep robust regression approach for safe exploration
in model-based control. We view exploration as a data shift problem, i.e., the
“test” data in the proposed exploratory trajectory comes from a shifted distribution
compared to the training set. Our approach explicitly learns to quantify uncertainty
under such covariate shift, which we use to learn robust dynamics models to quantify
uncertainty of entire trajectories for safe exploration.

We analyze learning performance from both generalization and data perturbation
perspectives. We use our robust regression analysis to derive stability bounds for
control performance when learning robust dynamics models, which is used for safe
exploration. We empirically show that our approach outperforms conventional safe
exploration approaches with much less tuning effort in two scenarios: (a) inverted
pendulum trajectory tracking under wind disturbance; and (b) fast drone landing
using an aerodynamics simulation based on real-world flight data from Chapter 3.

Related Work in Safe Exploration
Most approaches for safe exploration use Gaussian processes (GPs) to quantify
uncertainty (Sui, Gotovos, et al., 2015; Sui, Zhuang, et al., 2018; Kirschner et al.,
2019; Akametalu et al., 2014; Berkenkamp, Schoellig, et al., 2016; Turchetta et al.,
2016; Wachi et al., 2018; Berkenkamp, Turchetta, et al., 2017; Fisac et al., 2018).
These methods are related to bandit algorithms (Bubeck, Cesa-Bianchi, et al., 2012)
and typically employ upper confidence bounds (Auer, 2002) to balance exploration
versus exploitation (Srinivas et al., 2010). However, GPs are sensitive to model
(i.e., the kernel) selection, and thus are often not suitable for tasks that aim to
gradually reach boundaries of safety sets in a highly non-linear environment. In
the high-dimensional case and under finite information, GPs suffer from bad priors
even more severely (Owhadi et al., 2015).

One could blend GP-based modeling with general function approximations (such as
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deep learning) (Berkenkamp, Turchetta, et al., 2017; Cheng, Orosz, et al., 2019), but
the resulting optimization-based control problem can be challenging to solve. Other
approaches either require having a safety model pre-specified upfront (Alshiekh et
al., 2018), are restricted to relatively simple models (Moldovan and Abbeel, 2012),
have no convergence guarantees during learning (Taylor et al., 2019), or have no
safety guarantees (Garcia and Fernández, 2012).

Related Work in Distribution Shift
The study of learning under distribution shift has seen increasing interest, owing to
the widespread practical issue of distribution mismatch. Our work frames uncer-
tainty quantification through the lens of covariate shift (Liu and Ziebart, 2014) with
rigorous guarantees. Dealing with domain shift is a fundamental challenge in deep
learning, as highlighted by their vulnerability to adversarial inputs (Goodfellow et
al., 2014), and the implied lack of robustness. Beyond robust estimation, the typical
approaches are to either regularize (Srivastava et al., 2014; Wager et al., 2013; Le
et al., 2016; Bartlett et al., 2017; Miyato et al., 2018; Benjamin et al., 2019; Cheng,
Verma, et al., 2019) or synthesize an augmented dataset that anticipates the domain
shift (Prest et al., 2012; Zheng et al., 2016; Stewart and Ermon, 2017). We also
utilize spectral normalization (see Chapter 2) in conjunction with robust estimation.

Related Work in Robust and Adaptive Control
Robust control (Zhou and Doyle, 1998) and adaptive control (see the related work
section in Chapter 5) are two classical frameworks to handle uncertainties in the
dynamics. GPs have been combined with nonlinear MPC for online adaptation and
uncertainty estimation (Ostafew et al., 2016). However, robust control suffers from
large uncertainty set, and it is hard to jointly analyse learning and control convergence
under the framework of model reference adaptive control. For example, in Chapter 5
we need to assume the representation error from the learned model is bounded by
𝑑, to be able to show exponential convergence to a bounded error ball. However,
how to quantify 𝑑 remains unclear. Ours is the first to explicitly consider covariate
shift in learning dynamics. We pick the region to estimate uncertainty carefully and
adapt the controller to track safe proposed trajectory in data collection.

6.2 Problem Statement
To simplify the notation, we define the robot state as 𝑥 = [𝑞; ¤𝑞] and rewrite the
robotic dynamics model in Chapter 2 as
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¤𝑥 = 𝑓0(𝑥, 𝑢)︸  ︷︷  ︸
nominal dynamics

+ 𝑓 (𝑥, 𝑢)︸  ︷︷  ︸
unknown dynamics

+ 𝜖 (𝑡)︸︷︷︸
bounded noise

(6.1)

where 𝜖 is a noise term and we assume ∥𝜖 ∥ ≤ 𝜖 . In this chapter, on top of the
dynamics model introduced in Chapter 2, we also consider a cost function 𝑐(𝑥, 𝑢),
a terminal cost function 𝑐 𝑓 (𝑥, 𝑢) and a safety set S. Our goal is to optimally move
a robot from its start state 𝑥0 to its goal state 𝑥 𝑓 at the terminal time 𝑡 𝑓 , which can
be framed as the following time-optimal control problem:

min
𝑢(𝑡),𝑥(𝑡),𝑡 𝑓

𝐽 =

∫ 𝑡 𝑓

0
𝑐(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 + 𝑐 𝑓 (𝑥(𝑡 𝑓 ), 𝑢(𝑡 𝑓 )) (6.2)

s.t.


dynamics in (6.1)

𝑥(𝑡) ∈ S, 𝑢(𝑡) ∈ U, ∀𝑡

𝑥(0) = 𝑥0, ∥𝑥(𝑡 𝑓 ) − 𝑥 𝑓 ∥ ≤ 𝛿 𝑓

whereU is the control feasible set and 𝛿 𝑓 is a threshold for the goal reaching.

As discussed in Chapter 4, solving Eq. (6.2) is very challenging because: (1) 𝑓 in
the dynamics is unknown and highly nonlinear; (2) the whole program is typically
highly non-convex and 𝑡 𝑓 is also a decision variable; and (3) the safety constraint
𝑥 ∈ S further complifies the problem. In this chapter, we address these challenges
by considering an episodic learning and control setting, which can be summarized
in Fig. 6.2. We discuss the three important modules in Fig. 6.2 (i.e., model learning
and uncertainty quantification, safe planning, and safe control) as follows.

model learning and 
uncertainty 

quantification 

safe trajectory 
generation

safe controller to 
collect new data

data
the next episode

Figure 6.2: Episodic learning and control diagram.

Model learning and uncertainty quantification under domain shift. The goal
for the learning module in Fig. 6.2 is to estimate the residual unknown dynamics
𝑓 (𝑥, 𝑢) in a way that admits rigorous uncertainty estimates for safety certification.
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The key challenge is that the training data (from previous episodes or trajectories)
and test data (the next episode) are not sampled from the same distribution, which
can be framed as covariate shift (Shimodaira, 2000). Generally speaking, covariate
shift refers to distribution shift caused by the input variables 𝑃(𝑥, 𝑢), while keeping
𝑃(𝑦 = 𝑓 (𝑥, 𝑢) |𝑥, 𝑢) fixed. In our motivating safe landing example, there is a
universal “true” aerodynamics model, but we typically only observe training data
from a limited source data distribution 𝑃src(𝑥, 𝑢). Certifying safety of a proposed
trajectory will inevitably cover (𝑥, 𝑢) that are not well-represented by the training,
i.e., data from a target data distribution 𝑃trg(𝑥, 𝑢). In other words, the distribution of
(𝑥, 𝑢) in a proposed trajectory (for the next episode) does not match the distribution
of (𝑥, 𝑢) in the training data.

The output of the learning module includes an estimate of the unknown dynamics,
𝑓 (𝑥, 𝑢), and the uncertainty quantification of 𝑓 (𝑥, 𝑢), i.e., bounding the learning
error 𝑑 (𝑥, 𝑢) = 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢). Note that such an uncertainty quantification could
be either deterministic in the worst case or stochastic in expectation. Moreover,
most importantly, the uncertainty quantification should be with respect to the target
data distribution 𝑃trg(𝑥, 𝑢) rather than the source.

Safe trajectory generation. Given the learned model 𝑓 (𝑥, 𝑢) and the quantified
uncertainty from the learning module, the next step is to optimize (or generate) a
safe and feasible reference trajectory {𝑥𝑑 (𝑡), 𝑢𝑑 (𝑡)}

𝑡 𝑓

𝑡=0 from solving Eq. (6.2).

However, as discussed before, solving Eq. (6.2) is typically intractable, so prior works
typically solve surrogates of Eq. (6.2), e.g., using sequential convex programming
(SCP, see Chapter 4 for an example). Another type of surrogate approximately
solves Eq. (6.2) by searching or sampling (e.g., see the AO-RRT method discussed
in Chapter 4).

Note that the true dynamics 𝑓 is unknown when solving Eq. (6.2). Therefore, we
must use 𝑓 and 𝑑 to solve a robust optimal control problem considering all possible
𝑓 given 𝑓 and the learning error 𝑑.

A typical technical assumption one needs to make to start the episodic process is
that, the safe trajectory generation problem is feasible in the beginning. Namely, we
need to assume that the aforementioned robust optimal control problem is feasible
when 𝑓 = 𝑓 (0) and 𝑑 = 𝑑 (0) where 𝑓 (0) is the initial guess of the unknown dynamics
(typically set to be 0) and 𝑑 (0) = 𝑓 (0) − 𝑓 is the initial uncertainty bound (typically
depending on the boundedness of 𝑓 and its Lipschitz properties). We make the same
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assumption in this chapter. It is not hard to show that the safe exploration problem
is ill-posed without such an assumption.

Safe controller design to collect new data. The safe trajectory generator outputs
a safe reference trajectory {𝑥𝑑 (𝑡), 𝑢𝑑 (𝑡)}

𝑡 𝑓

𝑡=0. Taking 𝑢𝑑 (𝑡) alone, one might expect
that it is enough to directly execute the open-loop control signal 𝑢𝑑 (𝑡) without any
feedback. However, the open-loop trajectory 𝑢𝑑 (𝑡) might be arbitrarily fragile and
not guaranteed to be safe because of higher order model uncertainty not covered in
Eq. (6.2) (this is thoroughly discussed in Åström and Murray (2021)).

Therefore, we still need to design a closed-loop tracking controller to guarantee
the closed-loop safety. Note that such a controller must also be robust to the
model uncertainty 𝑑. For example, the nonlinear tracking controllers developed in
Chapter 3 and the adaptive controllers developed in Chapter 5 are both robust and
safe in the sense that the tracking error ∥𝑥 − 𝑥𝑑 (𝑡)∥ will be proportionally bounded
by ∥𝑑∥. Another example of safe controller is based on robust Control Barrier
Functions (CBFs) (Ames et al., 2016; Cheng, Orosz, et al., 2019), which can be
viewed as a “safety filter” on top of 𝑢𝑑 (𝑡).

Trade-offs between exploration and exploitation. The exploration-exploitation
trade-off is one of the most important algorithmic considerations in bandits (Bubeck,
Cesa-Bianchi, et al., 2012) and active learning (Srinivas et al., 2010). Similarly, such
a trade-off is equally important in the episodic learning and control setting. Namely,
{𝑥𝑑 (𝑡), 𝑢𝑑 (𝑡)}

𝑡 𝑓

𝑡=0 is not always trying to minimize the cost function in Eq. (6.2) (i.e.,
exploitation). Often times, we need to design {𝑥𝑑 (𝑡), 𝑢𝑑 (𝑡)}

𝑡 𝑓

𝑡=0 such that they can
gather new information to reduce the uncertainty 𝑑 (i.e., exploration), rather than just
minimizing the cost given the current information. For more in-depth discussions
please see Nakka et al. (2021).

End-to-end theoretical guarantees: consistency and convergence. In the episodic
learning and control setting, we pursue end-to-end guarantees in the sense of con-
sistency and convergence. Note that we assume the initial episode is feasible so we
have an initial bounded cost 𝐽 (0) < ∞. We pursue the following two guarantees:
(1) all episodes are safe (𝑥𝑑 ∈ S and 𝑥 ∈ S); and (2) 𝐽 (𝑖+1) < 𝐽 (𝑖) , which is weaker
than lim𝑖→∞ 𝐽 (𝑖) = 𝐽∗ where 𝐽∗ is the optimal value of Eq. (6.2) with the perfect
knowledge of 𝑓 . To have as strong guarantees as lim𝑖→∞ 𝐽 (𝑖) = 𝐽∗, we need much
more assumptions regarding the problem structure (e.g., system is linear and cost
functions are quadratic).
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Stochastic variant of the optimal control problem. Equation (6.2) considers a
deterministic optimal control problem. In Nakka et al. (2021), we also consider a
stochastic variant, where 𝑥 is a stochastic random variable governed by a stochastic
differential equation (SDE). The safety requirement is changed to a chance constraint
Pr(𝑥 ∈ S) ≥ 1 − 𝛿𝑠. In this case, the goal is to generate a deterministic control
signal 𝑢𝑑 such that it minimizes the cost 𝐽 in expectation and also satisfies the chance
constraint for safety. We will focus on the deterministic optimal control problem in
this chapter for simplicity and refer to Nakka et al. (2021) for more details in the
stochastic case.

6.3 Uncertainty Quantification under Domain Shift
Recall that the key challenge of the learning module in Fig. 6.2 is that the training
data (from previous episodes or trajectories) and test data (the next episode) are
not sampled from the same distribution. More specifically, we observe training
data from a source data distribution 𝑃src(𝑥, 𝑢), and we need to quantify the model
uncertainty in a target data distribution 𝑃trg(𝑥, 𝑢). In this section, we will present a
robust regression framework for uncertainty quantification under domain shift.

General intuition. We use robust regression (Chen et al., 2016) to estimate the
residual dynamics under covariate shift. Robust regression is derived from a mini-
max estimation framework, where the estimator 𝑃(𝑦 |𝑥, 𝑢) tries to minimize a loss
functionL on target data distribution, and the adversary𝑄(𝑦 |𝑥, 𝑢) tries to maximize
the loss under source data constraints Γ:

min
𝑃(𝑦 |𝑥,𝑢)

max
𝑄(𝑦 |𝑥,𝑢)∈Γ

L. (6.3)

Using the minimax framework, we achieve robustness to the worst-case possible
conditional distribution that is “compatible" with finite training data if the estimator
reaches the Nash equilibrium by minimizing a loss function defined on target data
distribution.

Technical design choices. Our derivation hinges on a choice of loss function L and
constraint set for the adversary Γ, from which one can derive a formal objective,
a learning algorithm, and an uncertainty bound. We use a relative loss function
defined as the difference in conditional log-loss between an estimator 𝑃(𝑦 |𝑥, 𝑢)
and a baseline conditional distribution 𝑃0(𝑦 |𝑥, 𝑢) on the target data distribution
𝑃trg(𝑥, 𝑢)𝑃(𝑦 |𝑥, 𝑢):
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relative loss L := E𝑃trg (𝑥,𝑢)𝑄(𝑦 |𝑥,𝑢)

[
− log

𝑃(𝑦 |𝑥, 𝑢)
𝑃0(𝑦 |𝑥, 𝑢)

]
. (6.4)

To construct the constraint set Γ, we utilize statistical properties of the source data
distribution 𝑃src(𝑥, 𝑢):

Γ :=
{
𝑄(𝑦 |𝑥, 𝑢) | |E𝑃src (𝑥,𝑢)𝑄(𝑦 |𝑥,𝑢) [Φ(𝑥, 𝑢, 𝑦)] − c| ≤ 𝜆

}
(6.5)

where Φ(𝑥, 𝑢, 𝑦) correspond to the sufficient statistics of the estimation task, and
c = 1

𝑛

∑𝑛
𝑖 Φ(𝑥𝑖, 𝑢𝑖, 𝑦𝑖) is a vector of sample mean of statistics in the source data.

This constraint means the adversary cannot choose a distribution whose sufficient
statistics deviate too far from the collected training data.

The consequence of the above choices is that the solution has a parametric form:

𝑃(𝑦 |𝑥, 𝑢) ∝ 𝑃0(𝑦 |𝑥, 𝑢)𝑒
𝑃src (𝑥,𝑢)
𝑃trg (𝑥,𝑢) 𝜃

𝑇Φ(𝑥,𝑢,𝑦)
. (6.6)

This form has two useful properties. First, it is straightforward to compute gradients
on 𝜃 using only the training data. One can also train deep neural networks by
treating Φ(𝑥, 𝑢, 𝑦) as the last hidden layer, i.e, we learn a representation of the
sufficient statistics. Second, this form yields a concrete uncertainty bound that can
be used to certify safety. For specific choices of 𝑃0 andΦ, the uncertainty is Gaussian
distributed, which can be useful for many stochastic control approaches that assume
Gaussian uncertainty (see Nakka et al. (2021)). Moreover, our method generalizes
naturally to multidimensional output setting, where we predict a multidimensional
Gaussian.

The learning performance (i.e., the learning error 𝑑 (𝑥, 𝑢)) of robust regression ap-
proach can be analyzed from two perspectives: generalization error under covariant
shift and perturbation error based on Lipschitz continuity. The generalization er-
ror reflects the expected error on a target distribution given certain function class,
bounded distribution discrepancy, and base distribution. The perturbation error
reflects the maximum error if target data deviates from training but stays in a Lip-
schitz ball. These error bounds are compatible with deep neural networks whose
Rademacher complexity and Lipschitz constant can be controlled and measured
(e.g., spectrally normalized neutral networks).
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Generalization error bound (informal). In this case, we bound the generalization
error on the target data:

E𝑃trg (𝑥,𝑢,𝑦)
[
∥ 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢)∥2

]
≤ ( sup

𝑥,𝑢∼𝑃src (𝑥)

𝑃trg(𝑥, 𝑢)
𝑃src(𝑥, 𝑢)

) · 𝐶1 (6.7)

with probability 1 − 𝛿𝑔. 𝐶1 is from standard statistical learning theory and depends
on the Rademacher complexity, base distribution 𝑃0, the number of data points, and
log(1/𝛿𝑔). Most importantly, 𝐶1 is multiplied by the density ratio 𝑃trg (𝑥,𝑢)

𝑃src (𝑥,𝑢) , which
highlights the extra challenge from domain shifts. We refer to Liu, Shi, et al. (2020)
for the formal statement and proof.

Perturbation error bound (informal). Alternatively, if we assume that target
data samples in a ball B(𝛿𝑏) with diameter 𝛿𝑏 from the source data, we can also
bound sup𝑥,𝑢∈B(𝛿𝑏) [∥ 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢)∥

2] based on the Lipschitz properties of the
true dynamics 𝑓 and the learner 𝑓 . We refer to Liu, Shi, et al. (2020) for the formal
statement and proof.

6.4 Safe Planning and Control
In this chapter, we solve the planning problem with a finite pool of reference
trajectories: {𝑥𝑑,1(𝑡), · · · , 𝑥𝑑,𝑁 (𝑡)}. These trajectories are safe (i.e., 𝑥𝑑 ∈ S) but
with decreasing margins. For example, 𝑥𝑑,1 is very conservative (far away from
the boundary of S, e.g., the slow trajectory in Fig. 6.1) and 𝑥𝑑,𝑁 is very aggressive
(close to the boundary of S, e.g., the fast and safe trajectory in Fig. 6.1).

With 𝑓 (𝑥, 𝑢) and the learning error bound (i.e., the bound of ∥𝑑 (𝑥, 𝑢)∥ = ∥ 𝑓 (𝑥, 𝑢) −
𝑓 (𝑥, 𝑢)∥), we can apply the learning-based controller developed in Chapter 3. For
a reference trajectory candidate 𝑥𝑑 , we consider its neighborhood 𝑃trg. Define
𝑑 = sup𝑥∈𝑃trg ∥𝑑∥ as the worst-case learning error in the target domain. Then the
tracking controller will guarantee ∥𝑥 − 𝑥𝑑 ∥ ≤ 𝐶2 · (𝑑 + 𝜖).

Therefore, for trajectory generation, we select the most aggressive trajectory in the
pool such that the worst case closed-loop behavior is still safe. Namely, we select
𝑥𝑑,𝑖 such that 𝑥𝑑,𝑖 plus a 𝐶2 · (𝑑 + 𝜖) error tube remains safe.

This trajectory-pool-based method is simple, efficient, and commonly used in prac-
tice. However, as expected, it needs heuristics to design and typically yields a
sub-optimal solution. Therefore, we solve the full optimal control problem in
Nakka et al. (2021).
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6.5 Simulations
We conduct simulation experiments on the inverted pendulum and drone landing.
We use kernel density estimation to estimate the density ratios. We demonstrate that
our approach can reliably and safely converge to optimal behavior. We also compare
with a Gaussian process (GP) version of the proposed algorithm. In general, we find
it is difficult to tune the GP kernel parameters, especially in the multidimensional
output cases.

Both inverted pendulum and drone can be described by Eq. (2.1): 𝑀 (𝑞) ¥𝑞+𝐶 (𝑞, ¤𝑞) ¤𝑞+
𝑔(𝑞) = 𝐵𝑢 + 𝑓 (𝑞, ¤𝑞). For pendulum, 𝑓 is the unknown drag torque from an analytic
quadratic air drag model; for the drone landing problem, 𝑓 is represented as a DNN
learned in Chapter 3. For pendulum the safety set S is defined such that the angle
is within [−1.5, 1.5] radius; for drone it is defined such that the landing velocity is
small than 1 m/s.

Figure 6.3: Experimental results. Top: The pendulum task: (a)-(c) are the phase
portraits of angle and angular velocity; Blue curve is tracking the desired trajectory
with perfect knowledge of 𝑓 ; the worst-case possible trajectory is calculated accord-
ing to the uncertainty bound; heatmap is the difference between predicted dynamics
(the wind) and the ground truth; and (d) is the tracking error and the maximum
density ratio. Bottom: The drone landing task: (e)-(g) are the phase portraits with
height and velocity; heatmap is difference between the predicted ground effect) and
the ground truth; (h) is the comparison with GPs in landing time.

Main experimental results are shown in Fig. 6.3. Figure 6.3(a) to (c) and (e) to
(g) demonstrate the exploration process with selected desired trajectories, worst-
case tracking trajectory under current dynamics model, tracking trajectories with
the ground truth unknown dynamics model, and actual tracking trajectories. In
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both tasks, the algorithm selects conservative trajectories to guarantee safety at the
beginning, and gradually is able to select more aggressive trajectories while staying
the worst-case safety. We also demonstrate the decaying tracking error in each
iteration for the pendulum task in Fig. 6.3(d). We validate that our density ratio
is always bounded along the exploration. We examine the drone landing time in
Fig. 6.3(h) and compare against multitask GP models (Bonilla et al., 2008) with both
RBF kernel and Matern kernel. Our approach outperforms all GP models. Modeling
the ground effect is notoriously challenging (see Chapter 3), and the GP suffers from
model misspecification, especially in the multidimensional setting (Owhadi et al.,
2015). Besides, GP models are also more computationally expensive than our
method in making predictions. In contrast, our approach can fit general non-linear
function estimators such as deep neural networks adaptively to the available data
efficiently, which leads to more flexible inductive bias and better fitting of the data
and uncertainty quantification.
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C h a p t e r 7

DISCUSSION AND FUTURE WORK

In Part I, through Chapters 2 to 6, we have built a holistic view of the Neural-
Control Family, which is a family of deep-learning-based nonlinear controllers with
theoretical guarantees and learned new capabilities in robotics. See Table 2.1 for
a summary of four main members in the family: Neural-Lander, Neural-Swarm,
Neural-Fly, and Safe Exploration.

In this chapter, we will conclude Part I by discussing several important future
research directions.

7.1 Neural-Control for Other Robotic Systems
In Neural-Lander (Chapter 3), Neural-Swarm (Chapter 4), and Neural-Fly (Chap-
ter 5), we all considered a mixed robot dynamics model in Eq. (2.1):

𝑀 (𝑞) ¥𝑞 + 𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝑔(𝑞) = 𝐵𝑢 + 𝑓 (𝑞, ¤𝑞, 𝑢, 𝑡)︸        ︷︷        ︸
unknown

which is fully observable (we can directly observe 𝑞 and ¤𝑞) and fully actuated
(rank(𝐵) = dim(𝑞) = 𝑛). In this section, we will discuss how to generalize the
Neural-Control methodology to other systems.

Partially Observable Systems
By and large, learning and control with end-to-end theoretical guarantees in partially
observable systems is very challenging due to the following fundamental challenges.

Coupling between estimation and control. In linear time-invariant (LTI) systems,
the well-known separation principle (Åström and Murray, 2021) suggests that we
can safely decouple the design of the state estimator and the design of the feedback
controller. Moreover, one can show that in a LQG problem (a LTI system with
Gaussian noise and quadratic costs), an optimal Kalman filter plus an optimal LQR
controller is jointly optimal (Åström and Murray, 2021).

The separation principle is also widely applied in practice, and often yields satisfac-
tory performance. For example, in the outdoor flight experiment in Chapter 5 (see
Fig. 5.8), we first used a Kalman filter to estimate the drone state, and then use our
Neural-Fly method for control by treating the estimated state as the true state.
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However, generally speaking, for either time-variant or nonlinear systems, the sep-
aration principle is no longer true. That being said, a good estimator plus a good
controller does not necessarily imply a good policy. In the worst case, the overall
policy could even be unstable! Therefore, one must jointly analyze the estimation
and control in a loop. The analysis becomes further involved if either of them is
data-driven.

Fundamental limits of robustness. To apply data-driven methods in partially
observable systems, we must consider how learning error propagates through the
system and how to guarantee robustness against such an error. For fully observable
systems, we achieve this by designing exponentially stable feedback controllers,
which naturally guarantees robustness against imperfect learning (e.g., Theorem 3.1
and Theorem 5.1).

However, unfortunately, robustness in partially observable system raises a lot more
fundamental limits. For example, John Doyle constructed a simple counter example
in his well-known paper in 1978 (Doyle, 1978), to show that an optimal LQG
controller could be arbitrarily fragile in the sense of having an arbitrarily small
gain margin. Those fundamental limits suggest that, when designing learning and
control method for partially observable systems, we might have to trade-off between
optimality and robustness.

Uncertainty of vision-based deep learning models. One interesting future direc-
tion is to apply Neural-Control in vision-based control settings, i.e., only with raw
vision data.

However, deep-learning-based computer vision methods are typically overconfident,
especially under domain shift. For example, we show that state-of-the-art deep-
learning-based object pose detectors are very sensitive to the training data and could
be overconfident (Shi et al., 2021). In Fig. 7.1, we trained three different deep
pose detectors with different simulation data under different randomization, and
tested them in two real-world images for the milk object detection task. In the left
image, these three models highly disagree with each other but in the right image
(the only change is the light condition) they almost give identical detection results.
Figure 7.1 suggests that when designing learning and control methods with vision
input, we must carefully consider domain shift (especially sim-to-real shift) issues
and quantify the uncertainty of the deep learning model in principled ways.
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Figure 7.1: Detection results of the milk object of three deep learning models in
two images. In the left image, these three models disagree much more than the right
image.

Under-Actuated Systems
The fully-actuated structure in Eq. (2.1) has two major benefits in learning and
control: (1) We can freely command 𝐵𝑢 in R𝑛, which allows us to design a globally
exponentially stable controller for the nominal system. (2) The unknown term 𝑓

becomes a matched uncertainty term. Namely, we can compensate (or cancel) 𝑓 via
the certainty-equivalence principle.

For under-actuated systems, in general we need more structures for both (1) and
(2). For example, if we know a Control Lyapunov Function (CLF) a priori, we
can leverage the CLF for stabilization (e.g., Taylor et al. (2019)) or adaptive control
(e.g., Lopez and Slotine (2021)). Similarly, Westenbroek et al. (2019) designed a
particular reinforcement learning method assuming the system is feedback lineariz-
able with a known relative degree. However, those methods typically need strong
prior knowledge (e.g., a CLF).

Robotic Systems with Constraints
Another interesting future direction is to consider constraints. Here we briefly
discuss two types of constraints.

Control input constraint considers 𝑢 ∈ U where U is the control input feasible
set. Generally speaking, dealing with such a constraint needs multi-step planning
(e.g., via MPC) or reachability analysis.

Holonomic constraint augments Eq. (2.1) to

𝑀 (𝑞) ¥𝑞 + 𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝑔(𝑞) = 𝐵𝑢 + 𝑓 (𝑞, ¤𝑞, 𝑢, 𝑡)︸        ︷︷        ︸
unknown

+𝐽⊤(𝑞)𝜆

𝐽 (𝑞) ¥𝑞 + ¤𝐽 (𝑞) ¤𝑞 = 0

where 𝐽 is the Jacobian of the holonomic constraint and 𝜆 is the Lagrange multi-
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plier (Murray et al., 2017). Such a system can be used to model legged robots and
manipulators.

7.2 End-to-End Learning and Control Guarantees
Our tracking error bounds in Theorem 3.1 and Theorem 5.1 assume known learning
error bounds. More specifically, in Theorem 3.1 we need to know ∥ 𝑓 − 𝑓 ∥∞ in a
compact set, and in Theorem 5.1 we need to know that the learned representation 𝜙
can adapt sufficiently well in any new wind condition.

One interesting and important future research direction is to establish an end-to-end
guarantee, by quantitatively and directly bounding the tracking error as a function
of the number of data points. However, this could be very challenging because: (1)
Classic learning theory needs to assume i.i.d. data distribution in training and testing
data, but the nature of dynamical systems yields neither identical nor independent
data distribution. (2) Classic learning theory needs a non-vacuous nation of learning
model capacity (e.g., coverage number or Rademacher complexity, see details in
Vapnik (1999)), but modern neural networks are in general overparameterized,
which makes classic generalization error bound more or less vacuous.

By and large, end-to-end guarantees with “classic” learning method (e.g., least
squares) in “simple” systems (e.g., LQR) are tractable, and have been attracting
a lot of research attention recently (e.g., regret bounds for learning in LQR prob-
lems (Dean et al., 2020)). However, for nonlinear systems with “modern” learning
methods, the analysis is much more complicated and in general more structured
assumptions are required (e.g., we limited the spectral complexity of the DNN for
end-to-end non-vacuous guarantees in the episodic setting in Chapter 6).

7.3 Model-Free and Model-Based Learning
In Part I, we have been focusing on the model-based learning scheme, where we
first learn the model 𝑓 , and then design a policy based on the learned model.

The model-based methodology enjoys several properties: (1) It yields a clean inter-
face between learning theory and control theory, which allows us to build a unified
framework between control and learning. (2) Compared to the model-free approach,
it is much easier to have rigorous safety and robustness guarantees. (3) Often times,
model-based methods are more data-efficient and interpretable (Kaiser et al., 2019).

However, compared to the model-based approach, model-free policy learning is po-
tentially more flexible and more globally optimal. One future direction is to combine
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model-free policy learning and model-based methods. In particular, one promis-
ing direction is encoding control-theoretic knowledge to model-free reinforcement
learning. Most popular RL algorithms (e.g., TRPO, SAC) are universal for all
tasks. In contrast, drastically different nonlinear control methods are developed for
different systems/tasks, and their successes highly rely on structures inside these
systems/tasks. It is important and interesting to encode these structures into RL
algorithms in a principled manner.

7.4 Neurosymbolic Learning for Data-Efficient Decision Making

Neural-Lander/Fly
15K/36K data points

Symbolic structures from physics

Neural-Swarm
1.4M data points

Vision-based control

Multi-robot coordination

Human-robot interaction

Neurosymbolic learning

Figure 7.2: From Part I to future research (more data required from left to right).

In Part I, we found that more data is needed as tasks get more involved (Fig. 7.2).
Neural-Lander needs 15K data points (5-min flight) (Chapter 3); Moving to the
multi-environment case, Neural-Fly needs 36K points (12-min) (Chapter 5); For the
heterogeneous swarm case, Neural-Swarm needs 1.4M points (Chapter 4).

One key observation is that having symbolic structures in black box learning is
critical for learning in autonomous systems. For example, if we learn the full
dynamics instead of the residual for drone landing, we need 1hour of data instead
of 5min. Encoding permutation invariance and domain invariance also greatly
improves sample efficiency for Neural-Swarm and Neural-Fly, respectively.

However, these structures are from physics and relatively straightforward to discover.
Neurosymbolic learning (Chaudhuri et al., 2021) is required when moving to more
complex scenarios, including vision-based control, multi-robot coordination, and
human-robot interaction (depicted in Fig. 7.2). For these settings, data is often very
high-dimensional, and there is no clear symbolic prior such as the nominal dynam-
ics in Neural-Lander. Therefore we need to develop a principled neurosymbolic
learning framework that discovers symbolic priors from data and integrates these
priors with control theory. For instance, in vision-based control, we can discover
causal structures by learning a low-dimensional representation that causally relates
to the control task, then integrating these structures with robust and optimal control
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theory. Another example is multi-robot coordination with uncertainty: consider
three drones carrying a payload in strong winds. Drones need to share common
information (e.g., wind effect) and negotiate potential conflicts (e.g., which drone
moves first). We need to disentangle the shared and conflict parts and incorporate
them using game theory and hierarchical planning.

7.5 Other Residual Learning Methods
In Part I, we have been focusing on residual learning in the dynamics level. Namely,
we learn 𝑓unknown in ¤𝑥 = 𝑓known + 𝑓unknown. Note that there are at least two other
residual learning methods:

Action-level residual learning learns a residual action Δ𝑢 in 𝑢 = 𝑢nominal + Δ𝑢.
For example, Johannink et al. (2019) learns Δ𝑢 using deep RL methods on top of a
manully designed 𝑢nominal.

Program-level residual learning aims to learn the residual information in a “pro-
gram.” For example, Taylor et al. (2019) learns the projection of the residual
dynamics on a Lyapunov function, rather than the residual dynamics itself; Amos
et al. (2018) learns system parameters or cost functions via a differentiable MPC
program; Zhou et al. (2017) learns reference signals as an add-on block for the
nominal feedback controller.

In the future, it will be very interesting to compare these different levels of residual
learning and understand their trade-offs.
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In this part of the thesis, we will discuss three unifying interfaces between learning
and control theory. Such interfaces deepen the fundamental connections between
the two fields, enable much more efficient translation, and bring new perspectives
and algorithmic principles.

In particular, Part II will focus on joint end-to-end learning and control theoretical
guarantees in online learning and control problems. In Chapter 8, we will give an
overview. In Chapters 9 to 11, we introduce the three interfaces, respectively. This
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C h a p t e r 8

OVERVIEW

Notations. In Part II, ∥ · ∥ indicates the 2-norm of a vector or the induced 2-norm of
a matrix. ∥ · ∥𝐹 denotes the Frobenius norm of a matrix and 𝜆min(·) (𝜆max(·)) denotes
the minimum (maximum) eigenvalue of a real symmetric matrix. We use 𝜌(·) to
denote the spectral radius of a matrix. vec(·) ∈ R𝑚𝑛 denotes the vectorization of a
𝑚 × 𝑛 matrix, and ⊗ denotes the Kronecker product. Finally, we use 𝑥1:𝑡 to denote
a sequence {𝑥1, 𝑥2, · · · , 𝑥𝑡}.

8.1 The Importance of Building Interfaces Between Learning and Control
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Closed-loop stability
Steady-state error
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Adaptive nonlinear control
Model predictive control
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Deep representation learning
No-regret online control …

(Ch. 9) Meta-adaptive control
(Ch. 10) Online optimization & control
(Ch. 11) Online learning & MPC

Control
theoretician

Learning 
theoretician

Figure 8.1: Motivations of building the interface between learning and control, and
the organization of Part II.

The motivation of Part II is depicted in Fig. 8.1. In y-axis, control theory becomes
more and more sophisticated. For example, adaptive nonlinear control (Slotine and
W. Li, 1991; Krstic et al., 1995) and model predictive control (Rawlings, 2000) have
been heavily researched since the 1980s, because they can deal with highly nonlinear
and time-variant systems. Typically, control theoreticians focus on concepts such as
closed-loop stability, steady-state error, or robustness.
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On the other hand, in x-axis, learning theory (in particular, for decision making) also
gets more and more complicated. For example, online learning and control with
no-regret guarantees (a learning theory concept) has attracted a lot of attention since
2011 (Abbasi-Yadkori and Szepesvári, 2011). Generally speaking, learning theo-
reticians are interested in pursuing learning-theoretic guarantees such as algorithmic
stability or sample complexity.

However, it is worth noting that the top left of Fig. 8.1 has limited learning theory.
For instance, most adaptive nonlinear control methods focus on linear parametric
uncertainty with known basis functions (see the introduction of Chapter 5). The non-
parametric-uncertainty case is still very challenging under the framework of model
reference adaptive control (MRAC, Åström and Wittenmark (2013)). Combining
meta-learning or representation learning and adaptive control for the non-parametric
case is a promising direction with recently developed exciting algorithms and ex-
perimental results (e.g., Chapter 5 and Richards et al. (2021)), but there is no joint
or end-to-end learning and control theoretical analysis.

Similarly, the bottom right of Fig. 8.1 has limited control theory. For example, most
no-regret online control research focuses on linear time-invariant systems such as
LQR with classic static regret guarantees. However, most real robotic systems are
highly nonlinear or time-variant (e.g., considering the changing wind condition in
Chapter 5).

Since both learning and control perspectives have been developed to a mature level,
now is the time to focus on the interface (i.e., the orange dashed line in Fig. 8.1) and
deeply integrate learning and control theories. The benefit includes:

Building interfaces deepens the fundamental connections and enables more
efficient translation between the two fields. One of focuses in Part II is to study
how to reconcile fairly fragmented analysis between the two fields. For example,
for online control problems, what does exponentially stable control limply about
online regret (a notion of algorithm stability)? In Chapter 11, we will show that the
closed-loop exponential stability is the key reason behind MPC’s competitiveness
(a even stronger guarantee in online learning than regret). In Chapter 9, we will
show that exponential input-to-state stability (e-ISS) is the key to translate learning-
theoretic bounds to control-theoretic bounds. These examples demonstrate that
building interfaces can deepen understanding and translate rich results between the
two fields.
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Building interfaces brings new perspectives and new algorithms. Often times,
interfaces between learning and control yield “learning-inspired control algorithms”
or “control-inspired learning algorithms.” In Chapter 11, we analyze a well-known
and very successful control algorithm, Model Predictive Control (MPC), from learn-
ing theory perspectives. Chapter 11 not only provides new learning-theoretic per-
spectives of MPC, but yields new algorithms, e.g., a new variant of MPC from a
robustness-consistency trade-off perspective in online learning.

Building interfaces also has educational values. As mentioned before, Model
Predictive Control (MPC) has been one of the most successful methods in industrial
control since the 1980s. However, many learning theorists are studying RL algo-
rithms, but few are analyzing MPC and why it is so powerful. In particular, in his
blog1, Prof. Ben Recht said:

“So many theorists are spending a lot of time studying RL algorithms,
but few in the ML community are analyzing MPC and why it’s so
successful. We should rebalance our allocation of mental resources!
. . . I’d urge the MPC crowd to connect more with the learning theory
crowd to see if a common ground can be found to better understand how
MPC works and how we might push its performance even farther.”

Thus, building interfaces can find common ground for learning and control theory,
and also provide unique educational values in the sense of diversifying researchers’
research visions and methodology.

8.2 Organization of Part II: Three Interfaces
As shown in Fig. 8.1, in this thesis we will focus on the following three interfaces
between online learning and control theory:

Online meta-adaptive control (Chapter 9). In order to have rapidly adaptable
autonomous systems operating in changing environments (e.g., varying wind con-
ditions for drones), it is crucial to extract common representations from all envi-
ronments. However, existing theoretical results focus on either representation/meta-
learning with i.i.d. data (i.e., no dynamics) or adaptive control in a single envi-
ronment. Therefore, Chapter 9 proposes a novel meta-adaptive control framework,
where meta-learning optimizes a representation shared by all environments. Then

1Link: http://www.argmin.net/2020/06/29/tour-revisited/

http://www.argmin.net/2020/06/29/tour-revisited/
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the representation is fine-tuned by adaptive nonlinear control in a low-dimensional
space. Chapter 9 jointly analyzes outer-loop learning and inner-loop adaptive con-
trol under a unified framework, and provides the first end-to-end non-asymptotic
guarantee for multi-task nonlinear control.

Competitive online optimization and control (Chapter 10). The recent progress
in learning-theoretic analyses for online control begs the question: What learning-
theoretic guarantees do we need for real-world systems? Existing results focus
on linear systems with classic no-regret guarantees. However, no-regret policies
compare with the optimal static controller in a specific class (typically linear policy
class), which could be arbitrarily suboptimal in real-world nonlinear or time-varying
systems (see details in Chapter 10). Therefore, Chapter 10 builds interfaces between
competitive online optimization and control, which uses stronger metrics beyond
regret, i.e., competitive ratio and dynamic regret (competitive difference). Those
metrics directly compare with the global optimum, thus naturally suitable for real-
world systems. We have designed competitive policies in time-varying and nonlinear
systems, via novel reductions from online optimization to control. Moreover, we
show new fundamental limits via novel lower bounds, e.g., the impact of delay.

Online learning perspectives on model predictive control (Chapter 11). Another
critical question is begged in online learning and control: Do established control
methods such as MPC have strong learning guarantees? To close this gap, Chapter 11
proves the first non-asymptotic guarantee for MPC, showing that MPC is near-
optimal in the sense of dynamic regret in online LQR control with predictable
disturbance. Chapter 11 also extends to settings with delayed inexact predictions
and LTV systems. These results found common ground for learning and control
theory and imply fundamental algorithmic principles.

8.3 Preliminaries on Online Optimization and Learning
In this section, we introduce some preliminaries on online optimization and learning,
which will be heavily used in Part II. In online optimization and learning, an online
player (or learner) iteratively makes decisions. Most importantly, at the time of
each decision, the outcomes associated with the choices are unknown to the player.
Formally, at time step 𝑡 ∈ [1, 𝑇], the online player picks an action 𝑥𝑡 in a convex
action setK ⊂ R𝑑 and then a loss function 𝑓𝑡 : K → R is revealed. The player then
incurs a loss of 𝑓𝑡 (𝑥𝑡). Finally, the player moves to the next round 𝑡 + 1 and makes
a decision 𝑥𝑡+1 based on all previous information. Note that the losses 𝑓1:𝑇 can be
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adversarially chosen, and even depend on the action taken by the decision maker.

Convexity and Smoothness of Functions
For analysis and algorithm design, the loss functions’ convexity and smoothness
properties play a key role, so we recap related concepts.

Definition 8.1 (Convex). A function 𝑓 : K → R is convex if for all 𝑥, 𝑦 in the
relative interior of the domain of 𝑓 and 𝜆 ∈ (0, 1), we have

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆 𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦).

Definition 8.2 (𝑚-strongly convex). A function 𝑓 : K → R is 𝑚-strongly convex
with respect to a norm ∥ · ∥ if for all 𝑥, 𝑦 in the relative interior of the domain of 𝑓
and 𝜆 ∈ (0, 1), we have

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆 𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦) − 𝑚
2
𝜆(1 − 𝜆)∥𝑥 − 𝑦∥2.

Intuitively, the 𝑚-strongly convex property requires extra “curvature” on top of the
standard convexity. There are three commonly used equivalent conditions:

• 𝑓 − 𝑚
2 ∥𝑥∥

2 is convex.

• (when 𝑓 is differentiable) For all 𝑥, 𝑦 we have 𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨∇ 𝑓 (𝑥), 𝑦− 𝑥⟩ +
𝑚
2 ∥𝑦 − 𝑥∥

2.

• (when 𝑓 is twice differentiable) The Hessian is uniformly lower bounded by
∇2 𝑓 (𝑥) ⪰ 𝑚𝐼.

Definition 8.3 (𝑙-strongly smooth). A function 𝑓 : K → R is 𝑙-strongly smooth with
respect to a norm ∥ · ∥ if 𝑓 is everywhere differentiable and if for all 𝑥, 𝑦 we have

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝑙
2
∥𝑦 − 𝑥∥2.

Intuitively, compared to the second equivalent condition of the 𝑚-strongly convex
property, the 𝑙-strongly smooth property is “limiting” the curvature of 𝑓 . Similarly,
if 𝑓 is twice differentiable, 𝑓 is 𝑙-strongly smooth if and only if 𝑙 𝐼 ⪰ ∇2 𝑓 (𝑥).

We say a function is well-conditioned if it is simultaneously strongly convex and
strongly smooth. For example, a quadratic function 𝑓 (𝑥) = 1

2𝑥
⊤𝑄𝑥 is 𝜆min(𝑄)-

strongly convex and 𝜆max(𝑄)-strongly smooth.
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Metrics Used in Online Learning
Regret. A commonly used performance metric in online learning is (static) regret.
The static regret of an online algorithm is defined by

regret =
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡) − min
𝑥∗∈K

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥∗). (8.1)

Using this metric, an algorithm performs well if its regret is sublinear as a function
of 𝑇 , i.e. regret = 𝑜(𝑇), because this implies that the algorithm performs as well
as the best fixed strategy in hindsight on the average.

Dynamic regret (competitive difference). Although the classic regret is the pre-
dominant metric used in previous work, it cannot fully capture the dynamic nature
of 𝑓1:𝑇 . In particular, min𝑥∗∈K

∑𝑇
𝑡=1 𝑓𝑡 (𝑥∗) could be a weak benchmark if the mini-

mizer of 𝑓𝑡 is highly time-variant. For example, for robotic control applications, 𝑓𝑡
depends on some time-variant environmental conditions (e.g., the wind condition in
Chapter 5), and then the optimal policy at each time step is also time-variant.

Therefore, we also consider an alternative metric called dynamic regret (also as
known as competitive difference):

dynamic regret =
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡) −
𝑇∑︁
𝑡=1

min
𝑥∈K

𝑓𝑡 (𝑥) (8.2)

which is the difference between the online algorithm cost and the offline optimal
cost with the full knowledge of 𝑓1:𝑇 . Intuitively, pursuing sublinear convergence is
too good to be true using such a strong metric, so typically the goal is to bound the
dynamic regret as a function of path length, which measures the variation of 𝑓1:𝑇

(e.g., Y. Li et al. (2019)).

Competitive ratio. As mentioned before, dynamic regret analysis typically offers
problem-dependent bounds (i.e., depending on the path length). Therefore, we also
consider a even stronger variant called competitive ratio:

competitive ratio =

∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑡)∑𝑇

𝑡=1 min𝑥∈K 𝑓𝑡 (𝑥)
(8.3)

which studies the ratio between the online algorithm cost and the offline optimal cost.
Typically the theoretical goal is to have competitive ratios bounded by a constant
(e.g., Lin et al. (2021)).
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Online Gradient Descent (OGD) and the Regret Analysis
In this subsection, we introduce a natural and canonical algorithm in online opti-
mization, Online Gradient Descent (OGD), and analyze its regret.

The OGD algorithm runs as follows: it initializes 𝑥1 ∈ K. At time step 𝑡, it plays
𝑥𝑡 , observes the cost function 𝑓𝑡 , and then updates 𝑥𝑡+1 by

𝑥𝑡+1 = ΠK (𝑥𝑡 − 𝜂𝑡∇ 𝑓𝑡 (𝑥𝑡))

where ΠK is the projection onto K, i.e., ΠK (𝑦) = arg min𝑥∈K ∥𝑥 − 𝑦∥. Namely,
OGD makes the decision by a projected gradient descent step with a time-variant
learning rate 𝜂𝑡 . We have the following well-known guarantee:

Lemma 8.1 (Regret of OGD). Suppose 𝑓1:𝑇 (𝑥) is a sequence of differentiable
convex cost functions from R𝑛 to R, and K is a convex set in R𝑛 with diameter 𝐷,
i.e., ∀𝑥1, 𝑥2 ∈ K, ∥𝑥1 − 𝑥2∥ ≤ 𝐷. We denote by 𝐺 > 0 an upper bound on the norm
of the gradients of 𝑓1:𝑇 over K, i.e., ∥∇ 𝑓𝑡 (𝑥)∥ ≤ 𝐺 for all 𝑡 ∈ [1, 𝑇] and 𝑥 ∈ K.
Then OGD with learning rates {𝜂𝑡 = 𝐷

𝐺
√
𝑡
} guarantees the following:

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡) − min
𝑥∗∈K

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥∗) ≤
3
2
𝐺𝐷
√
𝑇. (8.4)

The proof can be found in the Chapter 3.1 of Hazan (2019).

Lower bounds. Perhaps surprisingly, the OGD algorithm attains a tight regret bound
up to a small constant factor in the worst case. Formally speaking, one can construct
a counterexample to prove that any online algorithm for online optimization with
convex cost functions incurs a 𝐺𝐷

√
𝑇 regret in the worst case.

Logarithmic regret with strongly convex functions. Even though the
√
𝑇 depen-

dence is unavoidable, it is possible to have much better regret bounds if the cost
function has strong curvature, namely, being strongly convex. One can show that
the same OGD algorithm with a different learning rate scheduling can achieve a
logarithmic regret 𝑂 (log𝑇) when 𝑓1:𝑇 is strongly convex.

8.4 Preliminaries on Online Optimal Control
Similar to online learning and optimization, in online optimal control, an online
policy (or agent) iteratively makes actions, and the goal is to minimize a sequence
of cost functions. However, the main difference and extra challenge is from the
underlying dynamics. Namely, in online optimal control, the policy can only decide
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the action 𝑢𝑡 instead of the state. The state 𝑥𝑡+1 is a (deterministic or stochastic)
function of 𝑥𝑡 and 𝑢𝑡 . Instead, in online optimization the player can directly select
𝑥𝑡 . Therefore, generally speaking, non-asymptotic optimality guarantees (e.g., re-
gret, dynamic regret, competitive ratio) in online optimal control are much more
challenging to obtain, and most existing optimal control theoretical results focus
on stability, robustness, and asymptotic convergence rather than those learning-
theoretic non-asymptotic guarantees.

In this section, we briefly introduce two commonly studied optimal control problems:
LQR and MPC. For more details, we refer to Anderson and Moore (2007), Kirk
(2004), and Camacho and Alba (2013).

Linear Quadratic Regulator (LQR)
Here we consider a generalized stochastic version of the classic LQR problem. In
particular, we consider a linear system initialized with 𝑥0 ∈ R𝑛 and controlled by
𝑢𝑡 ∈ R𝑚, with dynamics

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 and cost 𝐽 =

𝑇−1∑︁
𝑡=0
(𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡) + 𝑥⊤𝑇𝑄 𝑓 𝑥𝑇 (8.5)

where 𝑇 ≥ 1 is the total length of the control period, 𝑄 𝑓 is the terminal cost matrix,
and 𝑤0:𝑇−1 are i.i.d. with E[𝑤𝑡] = 0,E[𝑤𝑡𝑤⊤𝑡 ] = 𝑊 . The goal of the controller
is to minimize the expectation of the cost 𝐽 given 𝐴, 𝐵, 𝑄, 𝑅, 𝑄 𝑓 , 𝑥0 and 𝑊 , i.e.,
minE𝑤0:𝑇−1 [𝐽].

In the stochastic LQR problem, the controller choose 𝑢𝑡 after knowing the current
state 𝑥𝑡 but before knowing the current disturbance 𝑤𝑡 . Or equivalently, at time step
𝑡 the controller knows 𝑥0 and 𝑤0:𝑡−1. Therefore, at time step 𝑡, we need to solve an
optimal policy as a function of 𝑥0 and 𝑤0:𝑡−1, namely, 𝑢∗𝑡 (𝑥0, 𝑤0:𝑡−1).

Now let us solve Eq. (8.5) via dynamic programming. Define 𝑉𝑡 (𝑧) as the optimal
value function (or cost-to-go) from time step 𝑡 starting at 𝑥𝑡 = 𝑧. Namely:

𝑉𝑡 (𝑧) = min
𝑢𝑡:𝑇−1
E

[
𝑇−1∑︁
𝜏=𝑡

(𝑥⊤𝜏𝑄𝑥𝜏 + 𝑢⊤𝜏 𝑅𝑢𝜏) + 𝑥⊤𝑇𝑄 𝑓 𝑥𝑇

]
.

Obviously we have 𝑉𝑇 (𝑧) = 𝑧⊤𝑄 𝑓 𝑧, and the optimal total cost is 𝑉0(𝑥0). Moreover,
via dynamic programming, 𝑉𝑡 can be found by the following backward recursion
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(for 𝑡 = 𝑇 − 1, · · · , 0):

𝑉𝑡 (𝑧) = 𝑧⊤𝑄𝑧 +min
𝑢

{
𝑢⊤𝑅𝑢 + E𝑤𝑡 [𝑉𝑡+1(𝐴𝑧 + 𝐵𝑢 + 𝑤𝑡)]

}
.

After solving 𝑉0:𝑇 , the optimal policy at time step 𝑡 becomes

𝑢∗𝑡 = arg min
𝑢

{
𝑢⊤𝑅𝑢 + E𝑤𝑡 [𝑉𝑡+1(𝐴𝑧 + 𝐵𝑢 + 𝑤𝑡)]

}
.

Because the dynamics is linear and the cost is quadratic, one can show that the value
function 𝑉𝑡 has a nice quadratic form 𝑉𝑡 (𝑧) = 𝑧⊤𝑃𝑡𝑥𝑡 + 𝑞𝑡 for 𝑡 = 0, · · · , 𝑇 . And we
have the following recursion:

𝑃𝑇 = 𝑄 𝑓 , 𝑞𝑇 = 0

𝑃𝑡 = 𝑄 + 𝐴⊤𝑃𝑡+1𝐴 − 𝐴⊤𝑃𝐵(𝑅 + 𝐵⊤𝑃𝑡+1𝐵)−1𝐵⊤𝑃𝑡+1𝐴

𝑞𝑡 = 𝑞𝑡+1 + Tr(𝑊𝑃𝑡+1).

Moreover, the optimal policy 𝑢𝑡 is in a linear state feedback form: 𝑢∗𝑡 = −𝐾𝑡𝑥𝑡 where

𝐾𝑡 = (𝑅 + 𝐵⊤𝑃𝑡+1𝐵)−1𝐵⊤𝑃𝑡+1𝐴.

Finally, the optimal cost is

𝑉0(𝑥0) = 𝑥⊤0 𝑃0𝑥0 + 𝑞0 = 𝑥⊤0 𝑃0𝑥0 +
𝑇∑︁
𝑡=1

Tr(𝑊𝑃𝑡).

Some remarks:

• In classic (deterministic) LQR, 𝑊 = 0, so we have the same 𝑃𝑡 , 𝐾𝑡 while
𝑞𝑡 = 0,∀𝑡. Moreover, the optimal cost is 𝑥⊤0 𝑃0𝑥0.

• Due to the structure of the LQR system, the optimal policy 𝑢∗𝑡 has a nice linear
feedback form and it is independent of 𝑥0 and𝑊 .

• Infinite horizon. When 𝑇 →∞, we choose to minimize an average cost, i.e.,

min lim
𝑇→∞

1
𝑇
E𝑤0:𝑇−1

[
𝑇−1∑︁
𝑡=0
(𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡) + 𝑥⊤𝑇𝑄 𝑓 𝑥𝑇

]
.

In this case, the optimal average cost is given by Tr(𝑊𝑃), where 𝑃 satisfies

𝑃 = 𝑄 + 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴. (8.6)
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Equation (8.6) is called discrete algebraic Riccati equation (DARE). Moreover,
the optimal policy is a constant linear feedback policy 𝑢∗𝑡 = −𝐾𝑥𝑡 where
𝐾 = (𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴.

• Predictions and delays. Note that in the standard LQR setting, at time step
𝑡 the policy knows 𝑥0 and 𝑤0:𝑡−1, i.e., knowing the current state 𝑥𝑡 but not
knowing the current disturbance 𝑤𝑡 . In Chapter 11, we will generalize it
significantly to settings with predictions (knowing future 𝑤) and delays.

• I.i.d. disturbance. The simple structure of the value function 𝑉𝑡 and the
policy 𝑢 = −𝐾𝑡𝑥 also relies on the fact that the disturbance 𝑤 is i.i.d. and
zero-mean. In Chapter 11, we will also generalize it significantly to general
stochastic disturbance and adversarial disturbance.

Model Predictive Control (MPC)
Since the 1980s, Model Predictive Control (MPC) has been one of the most influ-
ential and popular process control methods in industries. The key idea of MPC is
straightforward: with a finite look-ahead window of the future, MPC optimizes a
finite-time optimal control problem at each time step, but only implements/executes
the current time slot and then optimizes again at the next time step, repeatedly. The
second part “only implements the current time slot and reoptimizes at each time
step” is one of the reasons MPC was not that popular before the 1980s, because
iteratively solving complex optimal control problems at high frequency was such a
luxury task before computational power took off.

In this subsection, we use a trajectory tracking problem to explain how MPC works
(visualized in Fig. 8.2).

desired trajectory

robot trajectory 𝑥!

𝑘	predictions
unknown and 

adversarial

Figure 8.2: A trajectory tracking problem to explain how MPC works.

Suppose a robot is tracking a trajectory 𝑑1, · · · , 𝑑𝑇 , and the robot’s dynamics follows
𝑥𝑡+1 = 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡) + 𝑤𝑡 , 0 ≤ 𝑡 ≤ 𝑇 − 1 where 𝑥𝑡 , 𝑢𝑡 , 𝑤𝑡 are state, control input
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and disturbance, respectively. At time step 𝑡, the cost the robot needs to pay is
(𝑥𝑡 − 𝑑𝑡)⊤𝑄(𝑥𝑡 − 𝑑𝑡) + 𝑢⊤𝑡 𝑅𝑢𝑡 where 𝑄 penalizes the tracking error and 𝑅 penalizes
the fuel cost (control energy). At each time step, the robot has 𝑘-step future
predictions: 𝑑𝑡+1:𝑡+𝑘 (trajectory), 𝑓𝑡:𝑡+𝑘−1 (dynamics) and 𝑤𝑡:𝑡+𝑘−1 (disturbance).

At each time stpe, MPC solves the following 𝑘-step optimal control problem:

min
𝑢𝑡:𝑡+𝑘−1

𝑘∑︁
𝑖=1

(
(𝑥𝑡+𝑖 − 𝑑𝑡+𝑖)⊤𝑄(𝑥𝑡+𝑖 − 𝑑𝑡+𝑖) + 𝑢⊤𝑡+𝑖−1𝑅𝑢𝑡+𝑖−1

)
+𝑉 (𝑥𝑡+𝑘 )

s.t. 𝑥𝑡+𝑖+1 = 𝑓𝑡+𝑖 (𝑥𝑡+𝑖, 𝑢𝑡+𝑖) + 𝑤𝑡+𝑖, 0 ≤ 𝑖 ≤ 𝑘 − 1

𝑢𝑡+𝑖 ∈ U, 𝑥𝑡+𝑖+1 ∈ X 0 ≤ 𝑖 ≤ 𝑘 − 1

where the terminal cost 𝑉 (·) regularizes the terminal state. Having a proper 𝑉 is
critical for the stability and performance of MPC. Suppose the optimal solution
from the above optimization problem is 𝑢∗

𝑡 |𝑡 , · · · , 𝑢
∗
𝑡+𝑘−1|𝑡 . A key feature of MPC is

that only the first solved action 𝑢∗
𝑡 |𝑡 is executed/used, and at the next step we need to

solve another optimization problem for 𝑢∗
𝑡+1|𝑡+1.

Why Beyond Regret in Online Control?
We finish this section by discussing why we prefer metrics beyond regret in Part II.

In Part II, we focus on non-asymptotic analyses of online control and learning
problems. In Chapters 10 and 11, we use global optimality metrics beyond (static)
regret, namely, dynamic regret and competitive ratio, as introduced in Section 8.3.

The reader may wonder why we choose those two metrics rather than the classic
regret, especially considering that no-regret online control has become an extremely
popular research area since 2011. However, we will use the following example to
show that we should consider metrics beyond regret in dynamic environments.

…

𝐽!"# 𝑢$∗(𝑤$:') 𝑢(∗(𝑤$:') 𝑢'∗ (𝑤$:')

𝑤$ 𝑤( 𝑤'

𝐽)∗∈+ 𝑢$ = 𝜋∗(𝑤$:') 𝑢( = 𝜋∗(𝑤$:') 𝑢' = 𝜋∗(𝑤$:')

Figure 8.3: An example illustrating why beyond regret.

Figure 8.3 revisits the drone-flying-in-wind example in Chapter 5. At every time
step, the drone experiences a new wind condition 𝑤𝑡 . The first row in Fig. 8.3
is the benchmark we use in dynamic regret or competitive ratio, which compares



152

against the globally offline optimal policy’s cost 𝐽OPT given the full sequence 𝑤1:𝑇

in hindsight. Note that the globally offline optimal policy might be highly nonlinear
and adaptive.

On the other hands, the second row in Fig. 8.3 is the benchmark we use in classic
regret, which compares against a fixed and stationary offline optimal policy 𝜋∗. Note
that 𝜋∗ is in some known and fixed policy class Π. The predominant Π used in
previous work is the linear controller class (e.g., Agarwal et al. (2019), Dean et al.
(2020), and Cohen et al. (2018)).

However, the cost of the optimal static policy 𝐽𝜋∗∈Π might be far from 𝐽OPT. In
Chapter 10, we will show that this gap could be arbitrarily large even in simple 1-d
systems. Therefore, achieving small regret may still mean having a significantly
larger cost than optimal.

Another reason we choose metrics beyond regret is that, it is in general intractable
to design or characterize a reasonable comparator policy class Π in dynamic envi-
ronments (i.e., time-variant systems). For example, MPC is exactly such a dynamic
algorithm. If we use regret to analyze MPC, it is extremely hard (if not impossible)
to define a reasonable comparator class Π.
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C h a p t e r 9

ONLINE META-ADAPTIVE CONTROL

Meta-/Representation 
Learning

Adaptive
(Nonlinear)

Control

Meta-
adaptive 
Control

Figure 9.1: The motivation of Chapter 9.

In order to have rapidly adaptable autonomous systems operating in changing en-
vironments (e.g., varying wind conditions for drones in Chapter 5), it is crucial
to extract common representations from all environments. However, as shown in
Fig. 9.1, existing theoretical results focus on either representation/meta-learning with
i.i.d. data (i.e., no dynamics) or adaptive control in a single environment. In this
chapter, we propose a novel meta-adaptive control framework, where meta-learning
optimizes a representation shared by all environments. Then the representation is
fine-tuned by adaptive nonlinear control in a low-dimensional space. Chapter 9
jointly analyzes outer-loop learning and inner-loop adaptive control under a unified
framework, and provides the first end-to-end non-asymptotic guarantee for multi-
task nonlinear control. This chapter is mainly based on the following paper1:

Shi, Guanya, Kamyar Azizzadenesheli, Michael O’Connell, Soon-Jo Chung, and
Yisong Yue (2021). Meta-adaptive nonlinear control: Theory and algorithms. In:
Advances in Neural Information Processing Systems (NeurIPS). Vol. 34. Curran
Associates, Inc., pp. 10013–10025. url: https://proceedings.neurips.
cc/paper/2021/file/52fc2aee802efbad698503d28ebd3a1f- Paper.
pdf.

Abstract. We present an online multi-task learning approach for adaptive nonlinear
control, which we call Online Meta-Adaptive Control (OMAC). The goal is to con-

1Code and video: https://github.com/GuanyaShi/Online-Meta-Adaptive-Control

https://proceedings.neurips.cc/paper/2021/file/52fc2aee802efbad698503d28ebd3a1f-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/52fc2aee802efbad698503d28ebd3a1f-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/52fc2aee802efbad698503d28ebd3a1f-Paper.pdf
https://github.com/GuanyaShi/Online-Meta-Adaptive-Control
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trol a nonlinear system subject to adversarial disturbance and unknown environment-
dependent nonlinear dynamics, under the assumption that the environment-dependent
dynamics can be well captured with some shared representation. Our approach
is motivated by robot control, where a robotic system encounters a sequence of
new environmental conditions that it must quickly adapt to. A key emphasis is
to integrate online representation learning with established methods from control
theory, in order to arrive at a unified framework that yields both control-theoretic
and learning-theoretic guarantees. We provide instantiations of our approach un-
der varying conditions, leading to the first non-asymptotic end-to-end convergence
guarantee for multi-task nonlinear control. OMAC can also be integrated with deep
representation learning. Experiments show that OMAC significantly outperforms
conventional adaptive control approaches which do not learn the shared represen-
tation, in inverted pendulum and 6-DoF drone control tasks under varying wind
conditions.

9.1 Introduction
One important goal in autonomy and artificial intelligence is to enable autonomous
robots to learn from prior experience to quickly adapt to new tasks and environ-
ments. Examples abound in robotics, such as a drone flying in different wind
conditions (Chapter 5), a manipulator throwing varying objects (Zeng et al., 2020),
or a quadruped walking over changing terrains (Lee et al., 2020). Though those
examples provide encouraging empirical evidence, when designing such adaptive
systems, two important theoretical challenges arise, as discussed below.

First, from a learning perspective, the system should be able to learn an “efficient”
representation from prior tasks, thereby permitting faster future adaptation, which
falls into the categories of representation learning or meta-learning. Recently, a
line of work has shown theoretically that learning representations (in the standard
supervised setting) can significantly reduce sample complexity on new tasks (Du
et al., 2020; Tripuraneni, Jin, et al., 2020; Maurer et al., 2016). Empirically, deep
representation learning or meta-learning has achieved success in many applica-
tions (Bengio et al., 2013), including control, in the context of meta-reinforcement
learning (Gupta et al., 2018; Finn, Abbeel, et al., 2017; Nagabandi et al., 2018).
However, theoretical benefits (in the end-to-end sense) of representation learning or
meta-learning for adaptive control remain unclear.

Second, from a control perspective, the agent should be able to handle parametric



156

model uncertainties with control-theoretic guarantees such as stability and track-
ing error convergence, which is a common adaptive control problem (Slotine and
W. Li, 1991; Karl J. Åström and Wittenmark, 2013). For classic adaptive con-
trol algorithms, theoretical analysis often involves the use of Lyapunov stability
and asymptotic convergence (Slotine and W. Li, 1991; Karl J. Åström and Witten-
mark, 2013). Moreover, many recent studies aim to integrate ideas from learning,
optimization, and control theory to design and analyze adaptive controllers using
learning-theoretic metrics. Typical results guarantee non-asymptotic convergence
in finite time horizons, such as regret (Boffi et al., 2021; Simchowitz and Foster,
2020; Dean et al., 2020; Kakade et al., 2020) and dynamic regret (Chapter 11 and
Y. Li et al. (2019)). However, these results focus on a single environment or task.
A multi-task extension, especially whether and how prior experience could benefit
the adaptation in new tasks, remains an open problem.

Main contributions. In this chapter, we address both learning and control chal-
lenges in a unified framework and provide end-to-end guarantees. We derive a new
method of Online Meta-Adaptive Control (OMAC) that controls uncertain nonlin-
ear systems under a sequence of new environmental conditions. The underlying
assumption is that the environment-dependent unknown dynamics can well be cap-
tured by a shared representation, which OMAC learns using a meta-adapter. OMAC
then performs environment-specific updates using an inner-adapter.

We provide different instantiations of OMAC under varying assumptions and condi-
tions. In the jointly and element-wise convex cases, we show sublinear cumulative
control error bounds, which to our knowledge is the first non-asymptotic conver-
gence result for multi-task nonlinear control. Compared to standard adaptive control
approaches that do not have a meta-adapter, we show that OMAC possesses both
stronger guarantees and empirical performance. We finally show how to integrate
OMAC with deep representation learning, which further improves empirical perfor-
mance.

9.2 Problem Statement
We consider the setting where a controller encounters a sequence of 𝑁 environments,
with each environment lasting 𝑇 time steps. We use outer iteration to refer to the
iterating over the 𝑁 environments, and inner iteration to refer to the 𝑇 time steps
within an environment. We use superscripts (e.g., (𝑖) in 𝑥 (𝑖)𝑡 ) to denote the index of
the outer iteration where 1 ≤ 𝑖 ≤ 𝑁 , and subscripts (e.g., 𝑡 in 𝑥 (𝑖)𝑡 ) to denote the time
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index of the inner iteration where 1 ≤ 𝑡 ≤ 𝑇 . We use step(𝑖, 𝑡) to refer to the inner
time step 𝑡 at the 𝑖th outer iteration.

We consider a discrete-time nonlinear control-affine system (Murray et al., 2017;
LaValle, 2006) with environment-dependent uncertainty 𝑓 (𝑥, 𝑐). The dynamics
model at the 𝑖th outer iteration is:

𝑥
(𝑖)
𝑡+1 = 𝑓0(𝑥 (𝑖)𝑡 ) + 𝐵(𝑥

(𝑖)
𝑡 )𝑢

(𝑖)
𝑡 − 𝑓 (𝑥

(𝑖)
𝑡 , 𝑐

(𝑖)) + 𝑤 (𝑖)𝑡 , 1 ≤ 𝑡 ≤ 𝑇, (9.1)

where the state 𝑥 (𝑖)𝑡 ∈ R𝑛, the control 𝑢(𝑖)𝑡 ∈ R𝑚, 𝑓0 : R𝑛 → R𝑛 is a known nominal
dynamics model, 𝐵 : R𝑛 → R𝑛×𝑚 is a known state-dependent actuation matrix,
𝑐(𝑖) ⊂ Rℎ is the unknown parameter that indicates an environmental condition,
𝑓 : R𝑛 × Rℎ → R𝑛 is the unknown 𝑐(𝑖)-dependent dynamics model, and 𝑤 (𝑖)𝑡 is
disturbance, potentially adversarial. For simplicity we define 𝐵(𝑖)𝑡 = 𝐵(𝑥 (𝑖)𝑡 ) and
𝑓
(𝑖)
𝑡 = 𝑓 (𝑥 (𝑖)𝑡 , 𝑐(𝑖)).

Interaction protocol. We study the following adaptive nonlinear control problem
under 𝑁 unknown environments. At the beginning of outer iteration 𝑖, the envi-
ronment first selects 𝑐(𝑖) (adaptively and adversarially), which is unknown to the
controller, and then the controller makes decision 𝑢(𝑖)1:𝑇 under unknown dynamics
𝑓 (𝑥 (𝑖)𝑡 , 𝑐(𝑖)) and potentially adversarial disturbances 𝑤 (𝑖)𝑡 . To summarize:

1. Outer iteration 𝑖. A policy encounters environment 𝑖 (𝑖 ∈ {1, . . . , 𝑁}),
associated with unobserved variable 𝑐(𝑖) (e.g., the wind condition for a flying
drone). Run inner loop (Step 2).

2. Inner loop. Policy interacts with environment 𝑖 for 𝑇 time steps, observing
𝑥
(𝑖)
𝑡 and taking action 𝑢(𝑖)𝑡 , with state/action dynamics following (9.1).

3. Policy optionally observes 𝑐(𝑖) at the end of the inner loop (used for some
variants of the analysis).

4. Increment 𝑖 = 𝑖 + 1 and repeat from Step 1.

We use average control error (ACE) as our performance metric:

Definition 9.1 (Average control error). The average control error (ACE) of 𝑁 outer
iterations (i.e., 𝑁 environments) with each lasting 𝑇 time steps, is defined as ACE =

1
𝑇𝑁

∑𝑁
𝑖=1

∑𝑇
𝑡=1 ∥𝑥

(𝑖)
𝑡 ∥.
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ACE can be viewed as a non-asymptotic generalization of steady-state error in control
(Karl Johan Åström and Murray, 2021). We make the following assumptions on the
actuation matrix 𝐵, the nominal dynamics 𝑓0, and disturbance 𝑤 (𝑖)𝑡 :

Assumption 9.1 (Full actuation, bounded disturbance, and e-ISS assumptions). We
consider fully-actuated systems, i.e., for all 𝑥, rank(𝐵(𝑥)) = 𝑛. ∥𝑤 (𝑖)𝑡 ∥ ≤ 𝑊,∀𝑡, 𝑖.
Moreover, the nominal dynamics 𝑓0 is exponentially input-to-state stable (e-ISS):
let constants 𝛽, 𝛾 ≥ 0 and 0 ≤ 𝜌 < 1. For a sequence 𝑣1:𝑡−1 ∈ R𝑛, consider the
dynamics 𝑥𝑘+1 = 𝑓0(𝑥𝑘 ) + 𝑣𝑘 , 1 ≤ 𝑘 ≤ 𝑡 − 1. 𝑥𝑡 satisfies:

∥𝑥𝑡 ∥ ≤ 𝛽𝜌𝑡−1∥𝑥1∥ + 𝛾
𝑡−1∑︁
𝑘=1

𝜌𝑡−1−𝑘 ∥𝑣𝑘 ∥. (9.2)

With the e-ISS property in Assumption 9.1, we have the following bound that
connects ACE with the average squared loss between 𝐵(𝑖)𝑡 𝑢

(𝑖)
𝑡 + 𝑤

(𝑖)
𝑡 and 𝑓

(𝑖)
𝑡 .

Lemma 9.1 (Connecting learning error with control error). Assume 𝑥 (𝑖)1 = 0,∀𝑖.
The average control error (ACE) is bounded as:∑𝑁

𝑖=1
∑𝑇
𝑡=1 ∥𝑥

(𝑖)
𝑡 ∥

𝑇𝑁
≤ 𝛾

1 − 𝜌

√︄∑𝑁
𝑖=1

∑𝑇
𝑡=1 ∥𝐵

(𝑖)
𝑡 𝑢
(𝑖)
𝑡 − 𝑓

(𝑖)
𝑡 + 𝑤

(𝑖)
𝑡 ∥2

𝑇𝑁
. (9.3)

Proof. Using the e-ISS property in Assumption 9.1, we have:

1
𝑇𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
∥𝑥 (𝑖)𝑡 ∥ ≤

1
𝑇𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

(
𝛾

𝑡−1∑︁
𝑘=1

𝜌𝑡−1−𝑘 ∥𝐵(𝑖)
𝑘
𝑢
(𝑖)
𝑘
− 𝑓 (𝑖)

𝑘
+ 𝑤 (𝑖)

𝑘
∥
)

(𝑎)
≤ 𝛾

1 − 𝜌
1
𝑇𝑁

𝑁∑︁
𝑖=1

𝑇−1∑︁
𝑡=1
∥𝐵(𝑖)𝑡 𝑢

(𝑖)
𝑡 − 𝑓

(𝑖)
𝑡 + 𝑤

(𝑖)
𝑡 ∥

(𝑏)
≤ 𝛾

1 − 𝜌

√︂
1
𝑇𝑁

√√√
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1
∥𝐵(𝑖)𝑡 𝑢

(𝑖)
𝑡 − 𝑓

(𝑖)
𝑡 + 𝑤

(𝑖)
𝑡 ∥2,

(9.4)

where (𝑎) and (𝑏) are from geometric series and Cauchy-Schwarz inequality, re-
spectively. □

In Lemma 9.1, we assume 𝑥 (𝑖)1 = 0 for simplicity: the influence of non-zero and
bounded 𝑥 (𝑖)1 is a constant term in each outer iteration, from the e-ISS property (9.2).

Remark on the e-ISS assumption and the ACE metric. Note that an exponentially
stable linear system 𝑓0(𝑥𝑡) = 𝐴𝑥𝑡 (i.e., the spectral radius of 𝐴 is < 1) satisfies
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the exponential ISS (e-ISS) assumption. However, in nonlinear systems e-ISS is
a stronger assumption than exponential stability. For both linear and nonlinear
systems, the e-ISS property of 𝑓0 is usually achieved by applying some stable
feedback controller to the system2, i.e., 𝑓0 is the closed-loop dynamics (Slotine
and W. Li, 1991; Cohen et al., 2018). e-ISS assumption is standard in both online
adaptive linear control (Cohen et al., 2018; Simchowitz and Foster, 2020) and
nonlinear control (Boffi et al., 2021), and practical in robotic control such as drones
(see Chapter 2). In ACE, we consider a regulation task, but it can also capture
trajectory tracking task with time-variant nominal dynamics 𝑓0 under incremental
stability assumptions (Boffi et al., 2021). We only consider the regulation task in
this chapter for simplicity.

Generality. We would like to emphasize the generality of our dynamics model (9.1).
The nominal control-affine part can model general fully-actuated robotic systems via
Euler-Langrange equations (Murray et al., 2017; LaValle, 2006), and the unknown
part 𝑓 (𝑥, 𝑐) is nonlinear in 𝑥 and 𝑐. We only need to assume the disturbance 𝑤 (𝑖)𝑡 is
bounded, which is more general than stochastic settings in linear (Simchowitz and
Foster, 2020; Dean et al., 2020) and nonlinear (Boffi et al., 2021) cases. For example,
𝑤
(𝑖)
𝑡 can model extra (𝑥, 𝑢, 𝑐)-dependent uncertainties or adversarial disturbances.

Moreover, the environment sequence 𝑐(1:𝑁) could also be adversarial. In term of
the extension to under-actuated systems, all the results in this chapter hold for
the matched uncertainty setting, i.e., in the form 𝑥

(𝑖)
𝑡+1 = 𝑓0(𝑥 (𝑖)𝑡 ) + 𝐵(𝑥

(𝑖)
𝑡 ) (𝑢

(𝑖)
𝑡 −

𝑓 (𝑥 (𝑖)𝑡 , 𝑐(𝑖))) +𝑤
(𝑖)
𝑡 where 𝐵(𝑥 (𝑖)𝑡 ) is not necessarily full rank (e.g., drone and inverted

pendulum experiments in Section 9.5). Generalizing to other under-actuated systems
is interesting future work.

9.3 Online Meta-Adaptive Control (OMAC) Algorithm
The design of our online meta-adaptive control (OMAC) approach comprises four
pieces: the policy class, the function class, the inner loop (within environment)
adaptation algorithmA2, and the outer loop (between environment) online learning
algorithm A1.

Policy class. We focus on the class of certainty-equivalence controllers (Boffi et al.,
2021; Mania et al., 2019; Simchowitz and Foster, 2020), which is a general class
of model-based controllers that also includes linear feedback controllers commonly
studied in online control (Mania et al., 2019; Simchowitz and Foster, 2020). After

2For example, consider 𝑥𝑡+1 = 3
2𝑥𝑡 +2 sin 𝑥𝑡 +𝑢̄𝑡 . With a feedback controller 𝑢̄𝑡 = 𝑢𝑡−𝑥𝑡−2 sin 𝑥𝑡 ,

the closed-loop dynamics is 𝑥𝑡+1 = 1
2𝑥𝑡 + 𝑢𝑡 , where 𝑓0 (𝑥) = 1

2𝑥 is e-ISS.
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a model is learned from past data, a controller is designed by treating the learned
model as the truth (Karl J. Åström and Wittenmark, 2013). Formally, at step(𝑖, 𝑡),
the controller first estimates 𝑓

(𝑖)
𝑡 (an estimation of 𝑓 (𝑖)𝑡 ) based on past data, and

then executes 𝑢(𝑖)𝑡 = 𝐵
(𝑖)†
𝑡 𝑓

(𝑖)
𝑡 , where (·)† is the pseudo inverse. Note that from

Lemma 9.1, the average control error of the omniscient controller using 𝑓
(𝑖)
𝑡 = 𝑓

(𝑖)
𝑡

(i.e., the controller perfectly knows 𝑓 (𝑥, 𝑐)) is upper bounded as3:

ACE(omniscient) ≤ 𝛾𝑊/(1 − 𝜌).

ACE(omniscient) can be viewed as a fundamental limit of the certainty-equivalence
policy class.

Function class 𝐹 for representation learning. In OMAC, we need to define a
function class 𝐹 (𝜙(𝑥; Θ̂), 𝑐) to compute 𝑓

(𝑖)
𝑡 (i.e., 𝑓 (𝑖)𝑡 = 𝐹 (𝜙(𝑥 (𝑖)𝑡 ; Θ̂), 𝑐)), where

𝜙 (parameterized by Θ̂) is a representation shared by all environments, and 𝑐 is
an environment-specific latent state. From a theoretical perspective, the main con-
sideration of the choice of 𝐹 (𝜙(𝑥), 𝑐) is on how it effects the resulting learning
objective. For instance, 𝜙 represented by a Deep Neural Network (DNN) would
lead to a highly non-convex learning objective. In this chapter, we focus on the
setting Θ̂ ∈ R𝑝, 𝑐 ∈ Rℎ, and 𝑝 ≫ ℎ, i.e., it is much more expensive to learn the
shared representation 𝜙 (e.g., a DNN) than “fine-tuning” via 𝑐 in a specific envi-
ronment, which is consistent with meta-learning (Finn, Abbeel, et al., 2017) and
representation learning (Du et al., 2020; Bengio et al., 2013) practices.

Inner loop adaptive control. We take a modular approach in our algorithm design,
in order to cleanly leverage state-of-the-art methods from online learning, represen-
tation learning, and adaptive control. When interacting with a single environment
(for 𝑇 time steps), we keep the learned representation 𝜙 fixed, and use that represen-
tation for adaptive control by treating 𝑐 as an unknown low-dimensional parameter.
We can utilize any adaptive control method such as online gradient descent, velocity
gradient, or composite adaptation (Hazan, 2019; Boffi et al., 2021; Slotine and W.
Li, 1991).

Outer loop online learning. We treat the outer loop (which iterates between en-
vironments) as an online learning problem, where the goal is to learn the shared
representation 𝜙 that optimizes the inner loop adaptation performance. Theoreti-

3This upper bound is tight. Consider a scalar system 𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑢𝑡 − 𝑓 (𝑥𝑡 ) + 𝑤 with |𝑎 | < 1
and 𝑤 a constant. In this case 𝜌 = |𝑎 |, 𝛾 = 1, and the omniscient controller 𝑢𝑡 = 𝑓 (𝑥𝑡 ) yields
ACE = 𝛾 |𝑤 |/(1 − 𝜌).
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cally, we can reason about the analysis by setting up a hierarchical or nested online
learning procedure (adaptive control nested within online learning).

Design goal. Our goal is to design a meta-adaptive controller that has low ACE,
ideally converging to ACE(omniscient) as 𝑇, 𝑁 → ∞. In other words, OMAC
should converge to performing as good as the omniscient controller with perfect
knowledge of 𝑓 (𝑥, 𝑐).

Algorithm 9.1: Online Meta-Adaptive Control (OMAC) algorithm
Input: Meta-adapter A1; inner-adapter A2; model 𝐹 (𝜙(𝑥; Θ̂), 𝑐); Boolean

ObserveEnv
1 for 𝑖 = 1, · · · , 𝑁 do
2 The environment selects 𝑐(𝑖)
3 for 𝑡 = 1, · · · , 𝑇 do
4 Compute 𝑓 (𝑖)𝑡 = 𝐹 (𝜙(𝑥 (𝑖)𝑡 ; Θ̂(𝑖)), 𝑐(𝑖)𝑡 )
5 Execute 𝑢(𝑖)𝑡 = 𝐵

(𝑖)†
𝑡 𝑓

(𝑖)
𝑡 //certainty-equivalence policy

6 Observe 𝑥 (𝑖)
𝑡+1, 𝑦 (𝑖)𝑡 = 𝑓 (𝑥 (𝑖)𝑡 , 𝑐(𝑖)) − 𝑤

(𝑖)
𝑡 , and

ℓ
(𝑖)
𝑡 (Θ̂, 𝑐) = ∥𝐹 (𝜙(𝑥

(𝑖)
𝑡 ; Θ̂), 𝑐) − 𝑦 (𝑖)𝑡 ∥2 //𝑦 (𝑖)𝑡 is a noisy

measurement of 𝑓 and ℓ(𝑖)𝑡 is the observed loss
7 Construct an inner cost function 𝑔(𝑖)𝑡 (𝑐) byA2 //𝑔(𝑖)𝑡 is a function of 𝑐
8 Inner-adaptation: 𝑐(𝑖)

𝑡+1 ← A2(𝑐(𝑖)𝑡 , 𝑔
(𝑖)
1:𝑡)

9 if ObserveEnv then Observe 𝑐(𝑖) //only used in some instantiations
10 Construct an outer cost function 𝐺 (𝑖) (Θ̂) by A1 //𝐺 (𝑖) is a function of Θ̂
11 Meta-adaptation: Θ̂(𝑖+1) ← A1(Θ̂(𝑖) , 𝐺 (1:𝑖))

Algorithm 9.1 describes the OMAC algorithm. Since 𝜙 is environment-invariant
and 𝑝 ≫ ℎ, we only adapt Θ̂ at the end of each outer iteration. On the other hand,
because 𝑐(𝑖) varies in different environments, we adapt 𝑐 at each inner step. As
shown in Algorithm 9.1, at step(𝑖, 𝑡), after applying 𝑢(𝑖)𝑡 , the controller observes
the next state 𝑥 (𝑖)

𝑡+1 and computes: 𝑦
(𝑖)
𝑡 ≜ 𝑓0(𝑥 (𝑖)𝑡 ) + 𝐵

(𝑖)
𝑡 𝑢
(𝑖)
𝑡 − 𝑥

(𝑖)
𝑡+1 = 𝑓

(𝑖)
𝑡 − 𝑤

(𝑖)
𝑡 ,

which is a disturbed measurement of the ground truth 𝑓
(𝑖)
𝑡 . We then define

ℓ
(𝑖)
𝑡 (Θ̂, 𝑐) ≜ ∥𝐹 (𝜙(𝑥

(𝑖)
𝑡 ; Θ̂), 𝑐) − 𝑦 (𝑖)𝑡 ∥2 as the observed loss at step(𝑖, 𝑡), which is a

squared loss between the disturbed measurement of 𝑓 (𝑖)𝑡 and the model prediction
𝐹 (𝜙(𝑥 (𝑖)𝑡 ; Θ̂), 𝑐).

Instantiations. Depending on {𝐹 (𝜙(𝑥; Θ̂), 𝑐),A1,A2, ObserveEnv}, we consider
three settings:

• Convex case: The observed loss ℓ(𝑖)𝑡 is convex with respect to Θ̂ and 𝑐.
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• Element-wise convex case: Fixing Θ̂ or 𝑐, ℓ(𝑖)𝑡 is convex with respect to the
other.

• Deep learning case: We use a DNN with weight Θ̂ to represent 𝜙.

9.4 Different Instantiations of OMAC and Theoretical Analysis
Convex Case
In this subsection, we focus on a setting where the observed loss ℓ(𝑖)𝑡 (Θ̂, 𝑐) =

∥𝐹 (𝜙(𝑥; Θ̂), 𝑐) − 𝑦 (𝑖)𝑡 ∥2 is convex with respect to Θ̂ and 𝑐. We provide the following
example to illustrate this case and highlight its difference between conventional
adaptive control (e.g., Boffi et al. (2021) and Karl J. Åström and Wittenmark (2013)).

Example 9.1. We consider a model 𝐹 (𝜙(𝑥; Θ̂), 𝑐) = 𝑌1(𝑥)Θ̂+𝑌2(𝑥)𝑐 to estimate 𝑓 :

𝑓
(𝑖)
𝑡 = 𝑌1(𝑥 (𝑖)𝑡 )Θ̂(𝑖) + 𝑌2(𝑥 (𝑖)𝑡 )𝑐

(𝑖)
𝑡 , (9.5)

where 𝑌1 : R𝑛 → R𝑛×𝑝, 𝑌2 : R𝑛 → R𝑛×ℎ are two known bases. Note that conven-
tional adaptive control approaches typically concatenate Θ̂ and 𝑐 and adapt on both
at each time step, regardless of the environment changes (e.g., Boffi et al. (2021)).
Since 𝑝 ≫ ℎ, such concatenation is computationally much more expensive than
OMAC, which only adapts Θ̂ in outer iterations.

Because ℓ(𝑖)𝑡 (Θ̂, 𝑐) is jointly convex with respect to Θ̂ and 𝑐, the OMAC algorithm
in this case falls into the category of Nested Online Convex Optimization (Nested
OCO) (Agarwal et al., 2021). The choice of 𝑔(𝑖)𝑡 , 𝐺 (𝑖) ,A1,A2 and ObserveEnv are
depicted in Table 9.1. Note that in the convex case OMAC does not need to know
𝑐(𝑖) in the whole process (ObserveEnv = False).

𝐹 (𝜙(𝑥; Θ̂), 𝑐) Any 𝐹 model such that ℓ (𝑖)𝑡 (Θ̂, 𝑐) is convex (e.g., Example 9.1)
𝑔
(𝑖)
𝑡 (𝑐) ∇𝑐̂ℓ (𝑖)𝑡 (Θ̂(𝑖) , 𝑐

(𝑖)
𝑡 ) · 𝑐

𝐺 (𝑖) (Θ̂) ∑𝑇
𝑡=1 ∇Θ̂ℓ

(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐

(𝑖)
𝑡 ) · Θ̂

A1 With a convex set K1, A1 initializes Θ̂(1) ∈ K1 and returns Θ̂(𝑖+1) ∈
K1,∀𝑖. A1 has sublinear regret, i.e., the total regret of A1 is 𝑇 · 𝑜(𝑁)
(e.g., online gradient descent)

A2 With a convex set K2, ∀𝑖, A2 initializes 𝑐 (𝑖)1 ∈ K2 and returns 𝑐 (𝑖)
𝑡+1 ∈

K2,∀𝑡. A2 has sublinear regret, i.e., the total regret of A2 is 𝑁 · 𝑜(𝑇)
(e.g., online gradient descent)

ObserveEnv False

Table 9.1: OMAC with convex loss.
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As shown in Table 9.1, at the end of step(𝑖, 𝑡) we fix Θ̂ = Θ̂(𝑖) and update 𝑐(𝑖)
𝑡+1 ∈ K2

using A2(𝑐(𝑖)𝑡 , 𝑔
(𝑖)
1:𝑡), which is an OCO problem with linear costs 𝑔(𝑖)1:𝑡 . On the other

hand, at the end of outer iteration 𝑖, we update Θ̂(𝑖+1) ∈ K1 using A1(Θ̂(𝑖) , 𝐺 (1:𝑖)),
which is another OCO problem with linear costs𝐺 (1:𝑖) . From Agarwal et al. (2021),
we have the following regret relationship:

Lemma 9.2 (Nested OCO regret bound, Agarwal et al. (2021)). OMAC (Algo-
rithm 9.1) specified by Table 9.1 has regret:

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

ℓ
(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐

(𝑖)
𝑡 ) − min

Θ∈K1

𝑁∑︁
𝑖=1

min
𝑐 (𝑖)∈K2

𝑇∑︁
𝑡=1

ℓ
(𝑖)
𝑡 (Θ, 𝑐(𝑖))

≤
𝑁∑︁
𝑖=1

𝐺 (𝑖) (Θ̂(𝑖)) − min
Θ∈K1

𝑁∑︁
𝑖=1

𝐺 (𝑖) (Θ)︸                                      ︷︷                                      ︸
the total regret of A1,𝑇 ·𝑜(𝑁)

+
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑔
(𝑖)
𝑡 (𝑐

(𝑖)
𝑡 ) −

𝑁∑︁
𝑖=1

min
𝑐 (𝑖)∈K2

𝑇∑︁
𝑡=1

𝑔
(𝑖)
𝑡 (𝑐(𝑖))︸                                                 ︷︷                                                 ︸

the total regret of A2,𝑁 ·𝑜(𝑇)

.

(9.6)

Note that the total regret ofA1 is 𝑇 · 𝑜(𝑁) because𝐺 (𝑖) is scaled up by a factor of 𝑇 .
With Lemmas 9.1 and 9.2, we have the following guarantee for the average control
error.

Theorem 9.1 (OMAC ACE bound with convex loss). Assume the unknown dynamics
model is 𝑓 (𝑥, 𝑐) = 𝐹 (𝜙(𝑥;Θ), 𝑐). Assume the true parameters Θ ∈ K1 and 𝑐(𝑖) ∈
K2,∀𝑖. Then OMAC (Algorithm 9.1) specified by Table 9.1 ensures the following
ACE guarantee:

ACE ≤ 𝛾

1 − 𝜌

√︂
𝑊2 + 𝑜(𝑇)

𝑇
+ 𝑜(𝑁)

𝑁
.

Proof. Since Θ ∈ K1 and 𝑐(1:𝑁) ∈ K2, applying Lemma 9.2 we have

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

ℓ
(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐

(𝑖)
𝑡 ) −

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

ℓ
(𝑖)
𝑡 (Θ, 𝑐(𝑖)) ≤ 𝑇 · 𝑜(𝑁) + 𝑁 · 𝑜(𝑇). (9.7)

Recall that the definition of ℓ(𝑖)𝑡 is ℓ(𝑖)𝑡 (Θ̂, 𝑐) = ∥𝐹 (𝜙(𝑥
(𝑖)
𝑡 ; Θ̂), 𝑐) − 𝑦 (𝑖)𝑡 ∥2, and 𝑦 (𝑖)𝑡 =

𝑓
(𝑖)
𝑡 − 𝑤

(𝑖)
𝑡 . Therefore we have

ℓ
(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐

(𝑖)
𝑡 ) = ∥ 𝑓

(𝑖)
𝑡 − 𝑓

(𝑖)
𝑡 + 𝑤

(𝑖)
𝑡 ∥2 = ∥𝐵(𝑖)𝑡 𝑢

(𝑖)
𝑡 − 𝑓

(𝑖)
𝑡 + 𝑤

(𝑖)
𝑡 ∥2

ℓ
(𝑖)
𝑡 (Θ, 𝑐(𝑖)) = ∥𝑤

(𝑖)
𝑡 ∥2 ≤ 𝑊2.

(9.8)
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Then applying Lemma 9.1, we have

ACE ≤ 𝛾

1 − 𝜌

√︄∑𝑁
𝑖=1

∑𝑇
𝑡=1 ∥𝐵

(𝑖)
𝑡 𝑢
(𝑖)
𝑡 − 𝑓

(𝑖)
𝑡 + 𝑤

(𝑖)
𝑡 ∥2

𝑇𝑁

=
𝛾

1 − 𝜌

√︄∑𝑁
𝑖=1

∑𝑇
𝑡=1 ℓ

(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐

(𝑖)
𝑡 )

𝑇𝑁

(𝑎)
≤ 𝛾

1 − 𝜌

√︄
𝑇 · 𝑜(𝑁) + 𝑁 · 𝑜(𝑇) +∑𝑁

𝑖=1
∑𝑇
𝑡=1 ℓ

(𝑖)
𝑡 (Θ, 𝑐(𝑖))

𝑇𝑁

≤ 𝛾

1 − 𝜌

√︂
𝑊2 + 𝑜(𝑇)

𝑇
+ 𝑜(𝑁)

𝑁
,

(9.9)

where (𝑎) uses (9.7). □

To further understand Theorem 9.1 and compare OMAC with conventional adaptive
control approaches, we provide the following corollary using the model in Example
9.1.

Corollary 9.1. Suppose the unknown dynamics model is 𝑓 (𝑥, 𝑐) = 𝑌1(𝑥)Θ+𝑌2(𝑥)𝑐,
where 𝑌1 : R𝑛 → R𝑛×𝑝, 𝑌2 : R𝑛 → R𝑛×ℎ are known bases. We assume ∥Θ∥ ≤ 𝐾Θ

and ∥𝑐(𝑖) ∥ ≤ 𝐾𝑐,∀𝑖. Moreover, we assume ∥𝑌1(𝑥)∥ ≤ 𝐾1 and ∥𝑌2(𝑥)∥ ≤ 𝐾2,∀𝑥.
In Table 9.1 we use 𝑓 (𝑖)𝑡 = 𝑌1(𝑥 (𝑖)𝑡 )Θ̂(𝑖) + 𝑌2(𝑥 (𝑖)𝑡 )𝑐

(𝑖)
𝑡 , and Online Gradient Descent

(OGD) (Hazan, 2019) for both A1 and A2, with learning rates 𝜂(𝑖) and 𝜂
(𝑖)
𝑡 ,

respectively. We set K1 = {Θ̂ : ∥Θ̂∥ ≤ 𝐾Θ} and K2 = {𝑐 : ∥𝑐∥ ≤ 𝐾𝑐}. If we
schedule the learning rates as:

𝜂(𝑖) =
2𝐾Θ

(4𝐾2
1𝐾Θ + 4𝐾1𝐾2𝐾𝑐 + 2𝐾1𝑊︸                               ︷︷                               ︸

𝐶1

)𝑇
√
𝑖
, 𝜂
(𝑖)
𝑡 =

2𝐾𝑐
(4𝐾2

2𝐾𝑐 + 4𝐾1𝐾2𝐾Θ + 2𝐾2𝑊︸                               ︷︷                               ︸
𝐶2

)
√
𝑡
,

then the average control performance is bounded as:

ACE(OMAC) ≤ 𝛾

1 − 𝜌

√︄
𝑊2 + 3

(
𝐾Θ𝐶1

1
√
𝑁
+ 𝐾𝑐𝐶2

1
√
𝑇

)
.

Moreover, the baseline adaptive control which uses OGD to adapt Θ̂ and 𝑐 at each
time step satisfies:

ACE(baseline adaptive control) ≤ 𝛾

1 − 𝜌

√︄
𝑊2 + 3

√︃
𝐾2
Θ
+ 𝐾2

𝑐

√︃
𝐶2

1 + 𝐶
2
2

1
√
𝑇
.
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Proof. Define R(A1) as the total regret of the outer-adapter A1, and R(A2) as
the total regret of the inner-adapter A2. Recall that in Theorem 9.1 we show that
ACE(OMAC) ≤ 𝛾

1−𝜌

√︃
𝑊2 + R(A1)+R(A2)

𝑇𝑁
. Now we will prove Corollary 9.1 by

analyzing R(A1) and R(A2), respectively.

Since the true dynamics 𝑓 (𝑥, 𝑐(𝑖)) = 𝑌1(𝑥)Θ + 𝑌2(𝑥)𝑐(𝑖) , we have

ℓ
(𝑖)
𝑡 (Θ̂, 𝑐) = ∥𝑌1(𝑥 (𝑖)𝑡 )Θ̂ + 𝑌2(𝑥 (𝑖)𝑡 )𝑐 − 𝑌1(𝑥 (𝑖)𝑡 )Θ − 𝑌2(𝑥 (𝑖)𝑡 )𝑐(𝑖) + 𝑤

(𝑖)
𝑡 ∥2. (9.10)

Recall that 𝑔(𝑖)𝑡 (𝑐) = ∇𝑐ℓ
(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐

(𝑖)
𝑡 ) · 𝑐, which is convex (linear) w.r.t. 𝑐. The

gradient of 𝑔(𝑖)𝑡 is upper bounded as

∥∇𝑐𝑔(𝑖)𝑡 ∥ =



2𝑌2(𝑥 (𝑖)𝑡 )⊤

(
𝑌1(𝑥 (𝑖)𝑡 )Θ̂(𝑖) + 𝑌2(𝑥 (𝑖)𝑡 )𝑐

(𝑖)
𝑡 − 𝑌1(𝑥 (𝑖)𝑡 )Θ − 𝑌2(𝑥 (𝑖)𝑡 )𝑐(𝑖) + 𝑤

(𝑖)
𝑡

)



≤ 2𝐾2𝐾1𝐾Θ + 2𝐾2

2𝐾𝑐 + 2𝐾2𝐾1𝐾Θ + 2𝐾2
2𝐾𝑐 + 2𝐾2𝑊

= 4𝐾1𝐾2𝐾Θ + 4𝐾2
2𝐾𝑐 + 2𝐾2𝑊︸                               ︷︷                               ︸

𝐶2

.

(9.11)
From Lemma 8.1, using learning rates 𝜂(𝑖)𝑡 =

2𝐾𝑐
𝐶2
√
𝑡

for all 𝑖, the regret of A2 at
each outer iteration is upper bounded by 3𝐾𝑐𝐶2

√
𝑇 . Then the total regret of A2 is

bounded as
R(A2) ≤ 3𝐾𝑐𝐶2𝑁

√
𝑇. (9.12)

Now let us study A1. Similarly, recall that 𝐺 (𝑖) (Θ̂) = ∑𝑇
𝑡=1 ∇Θ̂ℓ

(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐

(𝑖)
𝑡 ) · Θ̂,

which is convex (linear) w.r.t. Θ̂. The gradient of 𝐺 (𝑖) is upper bounded as

∥∇Θ̂𝐺
(𝑖) ∥ =






 𝑇∑︁
𝑡=1

2𝑌1(𝑥 (𝑖)𝑡 )⊤
(
𝑌1(𝑥 (𝑖)𝑡 )Θ̂(𝑖) + 𝑌2(𝑥 (𝑖)𝑡 )𝑐

(𝑖)
𝑡 − 𝑌1(𝑥 (𝑖)𝑡 )Θ − 𝑌2(𝑥 (𝑖)𝑡 )𝑐(𝑖) + 𝑤

(𝑖)
𝑡

)





≤ 𝑇

(
2𝐾2

1𝐾Θ + 2𝐾1𝐾2𝐾𝑐 + 2𝐾2
1𝐾Θ + 2𝐾1𝐾2𝐾𝑐 + 2𝐾1𝑊

)
= 𝑇

(
4𝐾2

1𝐾Θ + 4𝐾1𝐾2𝐾𝑐 + 2𝐾1𝑊︸                               ︷︷                               ︸
𝐶1

)
.

(9.13)
From Lemma 8.1, using learning rates 𝜂(𝑖) = 2𝐾Θ

𝑇𝐶1
√
𝑖
, the total regret of A1 is upper

bounded as
R(A1) ≤ 3𝐾Θ𝑇𝐶1

√
𝑁. (9.14)

Finally using Theorem 9.1 we have

ACE(OMAC) ≤ 𝛾

1 − 𝜌

√︂
𝑊2 + R(A1) + R(A2)

𝑇𝑁

≤ 𝛾

1 − 𝜌

√︄
𝑊2 + 3(𝐾Θ𝐶1

1
√
𝑁
+ 𝐾𝑐𝐶2

1
√
𝑇
).

(9.15)
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Now let us analyze ACE(baseline adaptive control). To simplify notations, we
define𝑌 (𝑥) = [𝑌1(𝑥) 𝑌2(𝑥)] : R𝑛 → R𝑛×(𝑝+ℎ) and 𝛼̂ = [Θ̂; 𝑐] ∈ R𝑝+ℎ. The baseline
adaptive controller updates the whole vector 𝛼̂ at every time step. We denote the
ground truth parameter by 𝛼(𝑖) = [Θ; 𝑐(𝑖)], and the estimation by 𝛼̂(𝑖)𝑡 = [Θ̂(𝑖)𝑡 ; 𝑐(𝑖)𝑡 ].
We have ∥𝛼(𝑖) ∥ ≤

√︃
𝐾2
Θ
+ 𝐾2

𝑐 . Define K̄ = {𝛼̂ = [Θ̂; 𝑐] : ∥Θ̂∥ ≤ KΘ, ∥𝑐∥ ≤ K𝑐},
which is a convex set in R𝑝+ℎ.

Note that the loss function for the baseline adaptive control is ℓ̄(𝑖)𝑡 (𝛼̂) = ∥𝑌 (𝑥
(𝑖)
𝑡 )𝛼̂ −

𝑌1(𝑥 (𝑖)𝑡 )Θ − 𝑌2(𝑥 (𝑖)𝑡 )𝑐(𝑖) + 𝑤
(𝑖)
𝑡 ∥2. The gradient of ℓ̄(𝑖)𝑡 is

∇𝛼̂ℓ̄(𝑖)𝑡 (𝛼̂) = 2

[
𝑌1(𝑥 (𝑖)𝑡 )⊤

𝑌2(𝑥 (𝑖)𝑡 )⊤

]
(𝑌1(𝑥 (𝑖)𝑡 )Θ̂ + 𝑌2(𝑥 (𝑖)𝑡 )𝑐 − 𝑌1(𝑥 (𝑖)𝑡 )Θ − 𝑌2(𝑥 (𝑖)𝑡 )𝑐(𝑖) + 𝑤

(𝑖)
𝑡 ),

(9.16)
whose norm on K̄ is bounded by√︃

4(𝐾2
1 + 𝐾

2
2 ) (2𝐾1𝐾Θ + 2𝐾2𝐾𝑐 +𝑊)2 =

√︃
𝐶2

1 + 𝐶
2
2 . (9.17)

Therefore, from Lemma 8.1, running OGD on K̄ with learning rates
2
√︃
𝐾2
Θ
+𝐾2

𝑐√
𝐶2

1+𝐶
2
2
√
𝑡
gives

the following guarantee at each outer iteration:

𝑇∑︁
𝑡=1

ℓ̄
(𝑖)
𝑡 (𝛼̂

(𝑖)
𝑡 ) − ℓ̄

(𝑖)
𝑡 (𝛼(𝑖)) ≤ 3

√︃
𝐾2
Θ
+ 𝐾2

𝑐

√︃
𝐶2

1 + 𝐶
2
2

√
𝑇. (9.18)

Finally, similar as (9.9) we have

ACE(baseline adaptive control) ≤ 𝛾

1 − 𝜌

√︄∑𝑁
𝑖=1

∑𝑇
𝑡=1 ℓ̄

(𝑖)
𝑡 (𝛼̂

(𝑖)
𝑡 )

𝑇𝑁

≤ 𝛾

1 − 𝜌

√√√∑𝑁
𝑖=1 3

√︃
𝐾2
Θ
+ 𝐾2

𝑐

√︃
𝐶2

1 + 𝐶
2
2
√
𝑇 +∑𝑁

𝑖=1
∑𝑇
𝑡=1 ℓ̄

(𝑖)
𝑡 (𝛼(𝑖))

𝑇𝑁

≤ 𝛾

1 − 𝜌

√︄
𝑊2 + 3

√︃
𝐾2
Θ
+ 𝐾2

𝑐

√︃
𝐶2

1 + 𝐶
2
2

1
√
𝑇
.

(9.19)

□

Note that ACE(baseline adaptive control) does not improve as 𝑁 increases (i.e.,
encountering more environments has no benefit). If 𝑝 ≫ ℎ, we potentially have
𝐾1 ≫ 𝐾2 and 𝐾Θ ≫ 𝐾𝑐, so 𝐶1 ≫ 𝐶2. Therefore, the ACE upper bound of OMAC
is better than the baseline adaptation if 𝑁 > 𝑇 , which is consistent with recent rep-
resentation learning results (Du et al., 2020; Tripuraneni, Jin, et al., 2020). It is also
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worth noting that the baseline adaptation is much more computationally expensive,
because it needs to adapt both Θ̂ and 𝑐 at each time step. Intuitively, OMAC improves
convergence because the meta-adapter A1 approximates the environment-invariant
part 𝑌1(𝑥)Θ, which makes the inner-adapter A2 much more efficient.

Element-wise Convex Case
In this subsection, we consider the setting where the loss function ℓ

(𝑖)
𝑡 (Θ̂, 𝑐) is

element-wise convex with respect to Θ̂ and 𝑐, i.e., when one of Θ̂ or 𝑐 is fixed,
ℓ
(𝑖)
𝑡 is convex with respect to the other one. For instance, 𝐹 could be function as

depicted in Example 9.2. Outside the context of control, such bilinear models are
also studied in representation learning (Du et al., 2020; Tripuraneni, Jin, et al., 2020)
and factorization bandits (Wang et al., 2017; Kawale et al., 2015).

Example 9.2. We consider a model 𝐹 (𝜙(𝑥; Θ̂), 𝑐) = 𝑌 (𝑥)Θ̂𝑐 to estimate 𝑓 :

𝑓
(𝑖)
𝑡 = 𝑌 (𝑥 (𝑖)𝑡 )Θ̂(𝑖)𝑐

(𝑖)
𝑡 , (9.20)

where 𝑌 : R𝑛 → R𝑛×𝑝 is a known basis, Θ̂(𝑖) ∈ R𝑝×ℎ, and 𝑐(𝑖)𝑡 ∈ Rℎ. Note that the
dimensionality of Θ̂ is 𝑝 = 𝑝ℎ. Conventional adaptive control typically views Θ̂𝑐 as
a vector in R𝑝 and adapts it at each time step regardless of the environment changes
(Boffi et al., 2021).

Compared to the Convex Case, the element-wise convex case poses new challenges:
i) the coupling between Θ̂ and 𝑐 brings inherent non-identifiability issues; and ii)
statistical learning guarantees typical need i.i.d. assumptions on 𝑐(𝑖) and 𝑥 (𝑖)𝑡 (Du
et al., 2020; Tripuraneni, Jin, et al., 2020). These challenges are further amplified
by the underlying unknown nonlinear system (9.1). Therefore in this section we
set ObserveEnv = True, i.e., the controller has access to the true environmental
condition 𝑐(𝑖) at the end of the 𝑖th outer iteration, which is practical in many systems
when 𝑐(𝑖) has a concrete physical meaning, e.g., drones with wind disturbances
(Chapter 5).

The inputs to OMAC for the element-wise convex case are specified in Table 9.2.
Compared to the convex case in Table 9.1, difference includes i) the cost functions
𝑔
(𝑖)
𝑡 and 𝐺 (𝑖) are convex, not necessarily linear; and ii) since ObserveEnv = True,

in 𝐺 (𝑖) we use the true environmental condition 𝑐(𝑖) . With inputs specified in Table
9.2, Algorithm 9.1 has ACE guarantees in the following theorem.

Theorem 9.2 (OMAC ACE bound with element-wise convex loss). Assume the
unknown dynamics model is 𝑓 (𝑥, 𝑐) = 𝐹 (𝜙(𝑥;Θ), 𝑐). Assume the true parameter
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𝐹 (𝜙(𝑥; Θ̂), 𝑐) Any 𝐹 model such that ℓ (𝑖)𝑡 (Θ̂, 𝑐) is element-wise convex (e.g., Example
9.2)

𝑔
(𝑖)
𝑡 (𝑐) ℓ

(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐)

𝐺 (𝑖) (Θ̂) ∑𝑇
𝑡=1 ℓ

(𝑖)
𝑡 (Θ̂, 𝑐 (𝑖) )

A1 & A2 Same as Table 9.1
ObserveEnv True

Table 9.2: OMAC with element-wise convex loss.

Θ ∈ K1 and 𝑐(𝑖) ∈ K2,∀𝑖. Then OMAC (Algorithm 9.1) specified by Table 9.2
ensures the following ACE guarantee:

ACE ≤ 𝛾

1 − 𝜌

√︂
𝑊2 + 𝑜(𝑇)

𝑇
+ 𝑜(𝑁)

𝑁
.

Proof. For any Θ ∈ K1 and 𝑐(1:𝑁) ∈ K2, we have

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

ℓ
(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐

(𝑖)
𝑡 ) −

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

ℓ
(𝑖)
𝑡 (Θ, 𝑐(𝑖))

=

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

[
ℓ
(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐

(𝑖)
𝑡 ) − ℓ

(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐(𝑖))

]
+

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

[
ℓ
(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐(𝑖)) − ℓ

(𝑖)
𝑡 (Θ, 𝑐(𝑖))

]
=

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

[
𝑔
(𝑖)
𝑡 (𝑐

(𝑖)
𝑡 ) − 𝑔

(𝑖)
𝑡 (𝑐(𝑖))

]
︸                            ︷︷                            ︸

≤𝑜(𝑇)

+
𝑁∑︁
𝑖=1

[
𝐺 (𝑖) (Θ̂(𝑖)) − 𝐺 (𝑖) (Θ)

]
︸                             ︷︷                             ︸

≤𝑇 ·𝑜(𝑁)

.

(9.21)
Then combining with Lemma 9.1 results in the ACE bound. □

Faster convergence with sub-Gaussian and environment diversity assumptions.
Since the cost functions 𝑔(𝑖)𝑡 and𝐺 (𝑖) in Table 9.2 are not necessarily strongly convex,

the ACE upper bound in Theorem 9.2 is typically 𝛾

1−𝜌

√︃
𝑊2 +𝑂 (1/

√
𝑇) +𝑂 (1/

√
𝑁)

(e.g., using OGD for both A1 and A2). However, for the bilinear model in Ex-
ample 9.2, it is possible to achieve faster convergence with extra sub-Gaussian and
environment diversity assumptions.

With a bilinear model, the inputs to the OMAC algorithm are shown in Table 9.3.
With extra assumptions on 𝑤 (𝑖)𝑡 and the environment, we have the following ACE
guarantees.

Theorem 9.3 (OMAC ACE bound with bilinear model). Consider an unknown
dynamics model 𝑓 (𝑥, 𝑐) = 𝑌 (𝑥)Θ𝑐 where 𝑌 : R𝑛 → R𝑛×𝑝 is a known basis and
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𝐹 (𝜙(𝑥; Θ̂), 𝑐) The bilinear model in Example 9.2
𝑔
(𝑖)
𝑡 (𝑐) ℓ

(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐)

𝐺 (𝑖) (Θ̂) 𝜆∥Θ̂∥2
𝐹
+∑𝑖

𝑗=1
∑𝑇
𝑡=1 ℓ

( 𝑗)
𝑡 (Θ̂, 𝑐 ( 𝑗) ) with some 𝜆 > 0

A1 Θ̂(𝑖+1) = arg minΘ̂𝐺
(𝑖) (Θ̂) (i.e., Ridge regression)

A2 Same as Table 9.1
ObserveEnv True

Table 9.3: OMAC with bilinear model.

Θ ∈ R𝑝×ℎ. Assume each component of the disturbance 𝑤 (𝑖)𝑡 is 𝑅-sub-Gaussian,
the true parameters ∥Θ∥𝐹 ≤ 𝐾Θ, ∥𝑐(𝑖) ∥ ≤ 𝐾𝑐,∀𝑖, and ∥𝑌 (𝑥)∥𝐹 ≤ 𝐾𝑌 ,∀𝑥. Define
𝑍
( 𝑗)
𝑡 = 𝑐( 𝑗)⊤ ⊗ 𝑌 (𝑥 ( 𝑗)𝑡 ) ∈ R𝑛×𝑝ℎ and assume environment diversity:

𝜆min(
𝑖∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑍
( 𝑗)⊤
𝑡 𝑍

( 𝑗)
𝑡 ) = Ω(𝑖).

Then OMAC (Algorithm 9.1) specified by Table 9.3 has the following ACE guarantee
(with probability at least 1 − 𝛿):

ACE ≤ 𝛾

1 − 𝜌

√︄
𝑊2 + 𝑜(𝑇)

𝑇
+𝑂

(
log(𝑁𝑇/𝛿) log(𝑁)

𝑁

)
. (9.22)

If we relax the environment diversity condition to Ω(
√
𝑖), the last term becomes

𝑂 ( log(𝑁𝑇/𝛿)√
𝑁
).

Proof. Note that in this case the available measurement of 𝑓 at the end of the outer
iteration 𝑖 is:

𝑦
( 𝑗)
𝑡 = 𝑌 (𝑥 ( 𝑗)𝑡 )Θ𝑐( 𝑗) − 𝑤

( 𝑗)
𝑡 , 1 ≤ 𝑗 ≤ 𝑖, 1 ≤ 𝑡 ≤ 𝑇. (9.23)

Recall that the Ridge-regression estimation of Θ̂ is given by

Θ̂(𝑖+1) = arg min
Θ̂

𝜆∥Θ̂∥2𝐹 +
𝑖∑︁
𝑗=1

𝑇∑︁
𝑡=1
∥𝑌 (𝑥 ( 𝑗)𝑡 )Θ̂𝑐( 𝑗) − 𝑦

( 𝑗)
𝑡 ∥2

= arg min
Θ̂

𝜆∥Θ̂∥2𝐹 +
𝑖∑︁
𝑗=1

𝑇∑︁
𝑡=1
∥𝑍 ( 𝑗)𝑡 vec(Θ̂) − 𝑦 ( 𝑗)𝑡 ∥2.

(9.24)

Note that 𝑦 ( 𝑗)𝑡 = (𝑐( 𝑗)⊤ ⊗ 𝑌 (𝑥 ( 𝑗)𝑡 )) · vec(Θ) − 𝑤 ( 𝑗)𝑡 = 𝑍
( 𝑗)
𝑡 vec(Θ) − 𝑤 ( 𝑗)𝑡 . Define

𝑉𝑖 = 𝜆𝐼 +
∑𝑖
𝑗=1

∑𝑇
𝑡=1 𝑍

( 𝑗)⊤
𝑡 𝑍

( 𝑗)
𝑡 . Then from the Theorem 2 of Abbasi-Yadkori, Pál,

et al. (2011) we have

∥vec(Θ̂(𝑖+1) − Θ)∥𝑉𝑖 ≤ 𝑅

√︄
𝑝ℎ log(

1 + 𝑖𝑇 · 𝑛𝐾2
𝑌
𝐾2
𝑐/𝜆

𝛿
) +
√
𝜆𝐾Θ (9.25)
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for all 𝑖 with probability at least 1− 𝛿. Note that the environment diversity condition
implies: 𝑉𝑖 ≻ Ω(𝑖)𝐼. Finally we have

∥Θ̂(𝑖+1) − Θ∥2𝐹 = ∥vec(Θ̂(𝑖+1) − Θ)∥2 ≤ 𝑂 (1
𝑖
)𝑂 (log(𝑖𝑇/𝛿)) = 𝑂 ( log(𝑖𝑇/𝛿)

𝑖
).

(9.26)

Then with a fixed Θ̂(𝑖+1) , in outer iteration 𝑖 + 1 we have

𝑔
(𝑖+1)
𝑡 (𝑐) = ∥𝑌 (𝑥 (𝑖+1)𝑡 )Θ̂(𝑖+1)𝑐 − 𝑌 (𝑥 (𝑖+1)𝑡 )Θ𝑐(𝑖+1) + 𝑤 (𝑖+1)𝑡 ∥2. (9.27)

Since A2 gives sublinear regret, we have

𝑇∑︁
𝑡=1
∥𝑌 (𝑥 (𝑖+1)𝑡 )Θ̂(𝑖+1)𝑐(𝑖+1)𝑡 − 𝑌 (𝑥 (𝑖+1)𝑡 )Θ𝑐(𝑖+1) + 𝑤 (𝑖+1)𝑡 ∥2

− min
𝑐∈K2

𝑇∑︁
𝑡=1
∥𝑌 (𝑥 (𝑖+1)𝑡 )Θ̂(𝑖+1)𝑐 − 𝑌 (𝑥 (𝑖+1)𝑡 )Θ𝑐(𝑖+1) + 𝑤 (𝑖+1)𝑡 ∥2 = 𝑜(𝑇).

(9.28)

Note that

min
𝑐∈K2

𝑇∑︁
𝑡=1
∥𝑌 (𝑥 (𝑖+1)𝑡 )Θ̂(𝑖+1)𝑐 − 𝑌 (𝑥 (𝑖+1)𝑡 )Θ𝑐(𝑖+1) + 𝑤 (𝑖+1)𝑡 ∥2

≤
𝑇∑︁
𝑡=1
∥𝑌 (𝑥 (𝑖+1)𝑡 )Θ̂(𝑖+1)𝑐(𝑖+1) − 𝑌 (𝑥 (𝑖+1)𝑡 )Θ𝑐(𝑖+1) + 𝑤 (𝑖+1)𝑡 ∥2

(𝑎)
≤𝑇𝑊2 + 𝑇 · 𝐾2

𝑌 · 𝑂 (
log(𝑖𝑇/𝛿)

𝑖
) · 𝐾2

𝑐 ,

(9.29)

where (𝑎) uses (9.26). Finally we have

𝑇∑︁
𝑡=1
∥ 𝑓 (𝑖+1)𝑡 − 𝑓 (𝑖+1)𝑡 + 𝑤 (𝑖+1)𝑡 ∥2

=

𝑇∑︁
𝑡=1
∥𝑌 (𝑥 (𝑖+1)𝑡 )Θ̂(𝑖+1)𝑐(𝑖+1)𝑡 − 𝑌 (𝑥 (𝑖+1)𝑡 )Θ𝑐(𝑖+1) + 𝑤 (𝑖+1)𝑡 ∥2

(𝑏)
≤ 𝑜(𝑇) + 𝑇𝑊2 +𝑂 (𝑇 log(𝑖𝑇/𝛿)

𝑖
)

(9.30)

for all 𝑖 with probability at least 1 − 𝛿. (𝑏) is from (9.28) and (9.29). Then with
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Lemma 9.1 we have (with probability at least 1 − 𝛿)

ACE ≤ 𝛾

1 − 𝜌

√︄∑𝑁
𝑖=1 𝑜(𝑇) + 𝑇𝑊2 +𝑂 (𝑇 log(𝑖𝑇/𝛿)

𝑖
)

𝑇𝑁

≤ 𝛾

1 − 𝜌

√√√
𝑊2 + 𝑜(𝑇)

𝑇
+ 𝑂 (log(𝑁𝑇/𝛿))

𝑁

𝑁∑︁
𝑖=1

1
𝑖

≤ 𝛾

1 − 𝜌

√︂
𝑊2 + 𝑜(𝑇)

𝑇
+𝑂 ( log(𝑁𝑇/𝛿) log(𝑁)

𝑁
).

(9.31)

If we relax the environment diversity condition to Ω(
√
𝑖), in (9.26) we will have

𝑂 ( log(𝑖𝑇/𝛿)√
𝑖
). Therefore in (9.31) the last term becomes 𝑂 (log(𝑁𝑇/𝛿))

𝑁

∑𝑁
𝑖=1

1√
𝑖
≤

𝑂 (log(𝑁𝑇/𝛿))√
𝑁

. □

The sub-Gaussian assumption is widely used in statistical learning theory to obtain
concentration bounds (Abbasi-Yadkori, Pál, et al., 2011; Du et al., 2020). The
environment diversity assumption states that 𝑐(𝑖) provides “new information” in
every outer iteration such that the minimum eigenvalue of

∑𝑖
𝑗=1

∑𝑇
𝑡=1 𝑍

( 𝑗)⊤
𝑡 𝑍

( 𝑗)
𝑡

grows linearly as 𝑖 increases. Note that we do not need 𝜆min(
∑𝑖
𝑗=1

∑𝑇
𝑡=1 𝑍

( 𝑗)⊤
𝑡 𝑍

( 𝑗)
𝑡 )

to increase as 𝑇 goes up. Moreover, if we relax the condition to Ω(
√
𝑖), the ACE

bound becomes worse than the general element-wise convex case (the last term is
𝑂 (1/

√
𝑁)), which implies the importance of “linear” environment diversity Ω(𝑖).

Task diversity has been shown to be important for representation learning (Du et al.,
2020; Tripuraneni, Jordan, et al., 2020).

Deep OMAC
We now introduce deep OMAC, a deep representation learning based OMAC al-
gorithm. Table 9.4 shows the instantiation. As shown in Table 9.4, Deep OMAC
employs a DNN to represent 𝜙, and uses gradient descent for optimization. With
the model4, 𝜙(𝑥; Θ̂) · 𝑐, the meta-adapter A1 updates the representation 𝜙 via deep
learning, and the inner-adapter A2 updates a linear layer 𝑐.

9.5 Simulations
To demonstrate the performance of OMAC, we consider two sets of experiments:

• Inverted pendulum with external wind, gravity mismatch, and unknown
damping. The continuous-time model is 𝑚𝑙2 ¥𝜃 − 𝑚𝑙𝑔̂ sin 𝜃 = 𝑢 + 𝑓 (𝜃, ¤𝜃, 𝑐),

4This structure generalizes the meta-learning and adaptive control method covered in Chapter 5
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𝐹 (𝜙(𝑥; Θ̂), 𝑐) 𝜙(𝑥; Θ̂) · 𝑐, where 𝜙(𝑥; Θ̂) : R𝑛 → R𝑛×ℎ is a neural network with weight
Θ̂

𝑔
(𝑖)
𝑡 (𝑐) ℓ

(𝑖)
𝑡 (Θ̂(𝑖) , 𝑐)

A1 Gradient descent: Θ̂(𝑖+1) ← Θ̂(𝑖) − 𝜂∇Θ̂
∑𝑇
𝑡=1 ℓ

(𝑖)
𝑡 (Θ̂, 𝑐

(𝑖)
𝑡 )

A2 Same as Table 9.1
ObserveEnv False

Table 9.4: OMAC with deep learning.

where 𝜃 is the pendulum angle, ¤𝜃/ ¥𝜃 is the angular velocity/acceleration, 𝑚 is
the pendulum mass and 𝑙 is the length, 𝑔̂ is the gravity estimation, 𝑐 is the
unknown parameter that indicates the external wind condition, and 𝑓 (𝜃, ¤𝜃, 𝑐)
is the unknown dynamics which depends on 𝑐, but also includes 𝑐-invariant
terms such as damping and gravity mismatch. This model generalizes Liu
et al. (2020) by considering damping and gravity mismatch.

• 6-DoF quadrotor with 3-D wind disturbances. We consider a 6-DoF
quadrotor model with unknown wind-dependent aerodynamic force 𝑓 (𝑥, 𝑐) ∈
R3, where 𝑥 ∈ R13 is the drone state (including position, velocity, attitude, and
angular velocity) and 𝑐 is the unknown parameter indicating the wind con-
dition. We incorporate a realistic high-fidelity aerodynamic model from Shi
et al. (2020).

We consider 6 different controllers in the experiment:

• No-adapt is simply using 𝑓
(𝑖)
𝑡 = 0, and omniscient is using 𝑓

(𝑖)
𝑡 = 𝑓

(𝑖)
𝑡 .

• OMAC (convex) is based on Example 9.1, where 𝑓
(𝑖)
𝑡 = 𝑌1(𝑥 (𝑖)𝑡 )Θ̂(𝑖) +

𝑌2(𝑥 (𝑖)𝑡 )𝑐
(𝑖)
𝑡 . We use random Fourier features (Rahimi and Recht, 2007; Boffi

et al., 2021) to generate both 𝑌1 and 𝑌2. We use OGD for both A1 and A2 in
Table 9.1.

• OMAC (bi-convex) is based on Example 9.2, where 𝑓
(𝑖)
𝑡 = 𝑌 (𝑥 (𝑖)𝑡 )Θ̂(𝑖)𝑐

(𝑖)
𝑡 .

Similarly, we use random Fourier features to generate 𝑌 . Although the theo-
retical result in the Element-wise Convex Case requires ObserveEnv = True,
we relax this in our experiments and use 𝐺 (𝑖) (Θ̂) = ∑𝑇

𝑡=1 ℓ
(𝑖)
𝑡 (Θ̂, 𝑐

(𝑖)
𝑡 ) in Ta-

ble 9.2, instead of
∑𝑇
𝑡=1 ℓ

(𝑖)
𝑡 (Θ̂, 𝑐(𝑖)). We also deploy OGD for A1 and A2.

Baseline has the same procedure except with Θ̂(𝑖) ≡ Θ̂(1) , i.e., it calls the
inner-adapter A2 at every step and does not update Θ̂, which is standard in
adaptive control (Boffi et al., 2021; Karl J. Åström and Wittenmark, 2013).
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• OMAC (deep learning) is based on Table 9.4. We use a DNN with spectral
normalization (see details in Chapter 2) to represent 𝜙, and use the Adam
optimizer (Kingma and Ba, 2014) forA1. Same as other methods,A2 is also
an OGD algorithm.
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(a) xz-position trajectories (top) and force predictions (bottom) in the quadrotor experiment
from one random seed. The wind condition is switched randomly every 2 s (indicated by
the dotted vertical lines).
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(b) The evolution of control error (left) and prediction error (right) in each wind condition.
The solid lines average 10 random seeds and the shade areas show standard deviations. The
performance OMAC improves as the number of wind conditions increases (especially the
bi-convex and deep variants) while the baseline not.

Figure 9.2: Drone experiment results.

For all methods, we randomly switch the environment (wind) 𝑐 every 2 s. To make a
fair comparison, except no-adapt or omniscient, all methods have the same learning
rate for the inner-adapter A2 and the dimensions of 𝑐 are also same (dim(𝑐) = 20
for the pendulum and dim(𝑐) = 30 for the drone). ACE results from 10 random
seeds are depicted in Table 9.5. Figure 9.2 visualizes the drone experiment results.
We observe that i) OMAC significantly outperforms the baseline; ii) OMAC adapts
faster and faster as it encounters more environments but baseline cannot benefit
from prior experience, especially for the bi-convex and deep versions (see Figure



174

unknown 
external wind

no-adapt baseline OMAC (convex)
0.663 ± 0.142 0.311 ± 0.112 0.147 ± 0.047

OMAC (bi-convex) OMAC (deep) omniscient
0.129 ± 0.044 0.093 ± 0.027 0.034 ± 0.017

no-adapt baseline OMAC (convex)
0.374 ± 0.044 0.283 ± 0.043 0.251 ± 0.043

OMAC (bi-convex) OMAC (deep) omniscient
0.150 ± 0.019 0.141 ± 0.024 0.100 ± 0.018

Table 9.5: ACE results in pendulum (top) and drone (bottom) experiments from 10
random seeds.

9.2), and iii) Deep OMAC achieves the best ACE due to the representation power of
DNN.

We note that in the drone experiments the performance of OMAC (convex) is only
marginally better than the baseline. This is because the aerodynamic disturbance
force in the quadrotor simulation is a multiplicative combination of the relative wind
speed, the drone attitude, and the motor speeds; thus, the superposition structure
𝑓
(𝑖)
𝑡 = 𝑌1(𝑥 (𝑖)𝑡 )Θ̂(𝑖) + 𝑌2(𝑥 (𝑖)𝑡 )𝑐

(𝑖)
𝑡 cannot easily model the unknown force, while the

bi-convex and deep learning variants both learn good controllers. In particular,
OMAC (bi-convex) achieves similar performance as the deep learning case with
much fewer parameters. On the other hand, in the pendulum experiments, OMAC
(convex) is relatively better because a large component of the 𝑐-invariant part in the
unknown dynamics is in superposition with the 𝑐-dependent part.

9.6 Related Work
Meta-learning and representation learning. Empirically, representation learning
and meta-learning have shown great success in various domains (Bengio et al.,
2013). In terms of control, meta-reinforcement learning is able to solve challenging
mult-task RL problems (Gupta et al., 2018; Finn, Abbeel, et al., 2017; Nagabandi
et al., 2018). We remark that learning representation for control also refers to learn
state representation from rich observations (Lesort et al., 2018; Gelada et al., 2019;
Zhang et al., 2019), but we consider dynamics representation in this chapter. On
the theoretic side, Du et al. (2020), Tripuraneni, Jin, et al. (2020), and Tripuraneni,
Jordan, et al. (2020) have shown representation learning reduces sample complexity
on new tasks, and “task diversity” is critical. Consistently, we show OMAC enjoys
better convergence theoretically (Corollary 9.1) and empirically, and Theorem 9.3
also implies the importance of environment diversity. Another relevant line of
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theoretical work (Finn, Rajeswaran, et al., 2019; Denevi et al., 2019; Khodak et al.,
2019) uses tools from online convex optimization to show guarantees for gradient-
based meta-learning, by assuming closeness of all tasks to a single fixed point in
parameter space. We eliminate this assumption by considering a hierarchical or
nested online optimization procedure.

Adaptive control and online control. There is a rich body of literature studying
Lyapunov stability and asymptotic convergence in adaptive control theory (Slotine
and W. Li, 1991; Karl J. Åström and Wittenmark, 2013). Recently, there has been
increased interest in studying online adaptive control with non-asymptotic metrics
(e.g., regret) from learning theory, largely for settings with linear systems such as
online LQR or LQG with unknown dynamics (Simchowitz and Foster, 2020; Dean
et al., 2020; Cohen et al., 2018; Abbasi-Yadkori and Szepesvári, 2011). The most
relevant work (Boffi et al., 2021) gives the first regret bound of adaptive nonlinear
control with unknown nonlinear dynamics and stochastic noise. Another relevant
work studies online robust control of nonlinear systems with a mistake guarantee
on the number of robustness failures (Ho et al., 2021). However, all these results
focus on the single-task case. To our knowledge, we show the first non-asymptotic
convergence result for multi-task adaptive control. On the empirical side, Chapter 5
and Richards et al. (2021) combine adaptive nonlinear control with meta-learning,
yielding encouraging experimental results.

Online matrix factorization. Our work bears affinity to online matrix factorization,
particularly the bandit collaborative filtering setting (Kawale et al., 2015; Bresler
et al., 2016; Wang et al., 2017). In this setting, one typically posits a linear low-
rank projection as the target representation (e.g., a low-rank factorization of the
user-item matrix), which is similar to our bilinear case. Setting aside the significant
complexity introduced by nonlinear control, a key similarity comes from viewing
different users as “tasks” and recommended items as “actions.” Prior work in this
area has by and large not been able to establish strong regret bounds, in part due
to the non-identifiability issue inherent in matrix factorization. In contrast, in our
setting, one set of latent variables (e.g., the wind condition) has a concrete physical
meaning that we are allowed to measure (ObserveEnv in Algorithm 9.1), thus
side-stepping this non-identifiability issue.
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C h a p t e r 10

COMPETITIVE ONLINE OPTIMIZATION AND CONTROL

The recent progress in learning-theoretic analyses for online control begs the ques-
tion: What learning-theoretic guarantees do we need for real-world systems? Ex-
isting results focus on linear systems with classic no-regret guarantees. However,
no-regret policies compare with the optimal static controller in a specific class
(typically linear policy class), which could be arbitrarily suboptimal in real-world
nonlinear or time-varying systems. Therefore, this chapter builds interfaces be-
tween competitive online optimization and control, which uses stronger metrics
beyond regret, i.e., competitive ratio and dynamic regret (competitive difference).
Those metrics directly compare with the global optimum, thus naturally suitable for
real-world systems. This chapter is mainly based on the following papers:

Pan, Weici, Guanya Shi, Yiheng Lin, and Adam Wierman (2022). Online optimiza-
tion with feedback delay and nonlinear switching cost. In: Proceedings of the
ACM on Measurement and Analysis of Computing Systems 6.1, pp. 1–34. doi:
10.1145/3508037.

Shi, Guanya, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman (2020).
Online optimization with memory and competitive control. In: Advances in Neural
Information Processing Systems (NeurIPS). Vol. 33. Curran Associates, Inc. url:
https://arxiv.org/abs/2002.05318.

10.1 Introduction
This chapter studies the problem of Online Convex Optimization (OCO) with mem-
ory, a variant of classic OCO (Hazan, 2019) where an online learner iteratively picks
an action 𝑦𝑡 and then suffers a convex loss 𝑔𝑡 (𝑦𝑡−𝑝, · · · , 𝑦𝑡), depending on current
and previous actions. Incorporating memory into OCO has seen increased attention
recently, due to both its theoretical implications, such as to convex body chasing
problems (Bubeck, Lee, et al., 2019; Argue et al., 2020; Sellke, 2020; Bubeck,
Klartag, et al., 2020), and its wide applicability to settings such as data centers (M.
Lin, Liu, et al., 2012), power systems (Li, Qu, et al., 2018b; Badiei et al., 2015; Kim
and Giannakis, 2016), and electric vehicle charging (Kim and Giannakis, 2016; S.

https://doi.org/10.1145/3508037
https://arxiv.org/abs/2002.05318
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Chen and Tong, 2012). Of particular relevance to this chapter is the considerable
recent effort studying connections between OCO with memory with online control
in dynamical systems, leading to online algorithms that enjoy sublinear static regret
(N. Agarwal, Bullins, et al., 2019; N. Agarwal, Hazan, et al., 2019), low dynamic
regret (Li, Qu, et al., 2018a; Li, X. Chen, et al., 2019), constant competitive ratio
(Goel and Wierman, 2019), and the ability to boost weak controllers (N. Agarwal,
Brukhim, et al., 2019).

Prior work on OCO with memory is typically limited in one of two ways. First,
algorithms with the strongest guarantees, a constant competitive ratio, are restricted
to a special case known as Smoothed Online Convex Optimization (SOCO), or OCO
with switching costs (N. Chen, Goel, et al., 2018; M. Lin, Liu, et al., 2012; Goel,
Y. Lin, et al., 2019), which considers only one step of memory and assumes cost
functions can be observed before actions are chosen. Second, algorithms proposed
for the general case typically only enjoy sublinear static regret (Anava et al., 2015),
which is a much weaker guarantee, because static regret compares to the offline
optimal static solution while competitive ratio directly compares to the true offline
optimal. It is known that algorithms that achieve sublinear static regret can be
arbitrarily worse than the true offline optimal (Goel and Hassibi, 2020), and also
may have unbounded competitive ratios (Andrew et al., 2013). The pursuit of
general-purpose constant-competitive algorithms for OCO with memory remains
open.

This chapter is also motivated by establishing theoretical connections between online
optimization and control (see more discussions in Chapter 8). Recently a line of
work has shown the applicability of tools from online optimization for control,
albeit in limited settings (N. Agarwal, Bullins, et al., 2019; N. Agarwal, Hazan, et
al., 2019; Lale et al., 2020; Goel and Wierman, 2019). Deepening these connections
can potentially be impactful since most prior work studies how to achieve sublinear
regret compared to the best static linear controller (Dean et al., 2020; N. Agarwal,
Hazan, et al., 2019; N. Agarwal, Bullins, et al., 2019; Cohen et al., 2018). However,
the best static linear controller is a weak benchmark compared to the true optimal
controller (Goel and Hassibi, 2020), which may be neither linear nor static. To
achieve stronger guarantees, one must seek to bound either the competitive ratio
(Goel and Wierman, 2019) or dynamic regret (Li, Qu, et al., 2018a; Li, X. Chen,
et al., 2019), and connections to online optimization can provide such results.
However, prior attempts either have significant caveats (e.g., bounds depend on the
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path length of the instance (Li, Qu, et al., 2018a; Li, X. Chen, et al., 2019)) or only
apply to very restricted control systems (e.g., invertible control actuation matrices
and perfect knowledge of disturbances (Goel and Wierman, 2019)). As such, the
potential to obtain constant-competitive policies for general control systems via
online optimization remains unrealized.

10.2 Problem Statement: OCO with Structured Memory
In this section, we first survey prior work on Online Convex Optimization (OCO)
with memory and then introduce our new model of OCO with structured memory.

OCO with Memory
OCO with memory is a variant of classic OCO that was first introduced by Anava
et al. (2015). In contrast to classic OCO, in OCO with memory, the loss function
depends on previous actions in addition to the current action. At time step 𝑡, the
online agent picks 𝑦𝑡 ∈ K ⊂ R𝑑 and then a loss function 𝑔𝑡 : K 𝑝+1 → R is revealed.
The agent incurs a loss of 𝑔𝑡 (𝑦𝑡−𝑝:𝑡). Thus, 𝑝 quantifies the length of the memory
in the loss function. Within this general model of OCO with memory, Anava et al.
(2015) focus on developing policies with small policy regret, which is defined as:

policy regret =
𝑇∑︁
𝑡=𝑝

𝑔𝑡 (𝑦𝑡−𝑝:𝑡) −min
𝑦∈K

𝑇∑︁
𝑡=0

𝑔𝑡 (𝑦, · · · , 𝑦).

The main result presents a memory-based online gradient descent algorithm that
achieves𝑂 (

√
𝑇) regret under some moderate assumptions on the diameter ofK and

the gradient of the loss functions.

OCO with Switching Costs (SOCO)
While the general form of OCO with memory was introduced only recently, specific
forms of OCO problems involving memory have been studied for decades. The most
prominent example is OCO with switching costs, often termed Smoothed Online
Convex Optimization (SOCO) (M. Lin, Liu, et al., 2012; N. Chen, A. Agarwal,
et al., 2015; N. Chen, Goel, et al., 2018; Goel and Wierman, 2019; Li, Qu, et al.,
2018b; Goel, Y. Lin, et al., 2019). In SOCO, the loss function is separated into two
pieces:

1. A hitting cost 𝑓𝑡 , which depends on only the current action 𝑦𝑡 .

2. A switching cost 𝑐(𝑦𝑡 , 𝑦𝑡−1), which penalizes big changes in the action between
rounds.
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Often the hitting cost is assumed to be of the form ∥𝑦𝑡 − 𝑣𝑡 ∥ for some (squared)
norm, motivated by tracking some unknown trajectory 𝑣𝑡 , and the switching cost 𝑐
is a (squared) norm motivated by penalizing switching in proportion to the (squared)
distance between the actions, e.g., a common choice 𝑐(𝑦𝑡 , 𝑦𝑡−1) = 1

2 ∥𝑦𝑡 − 𝑦𝑡−1∥22.
The goal of the online learner is to minimize its total cost over 𝑇 rounds:

cost(𝐴𝐿𝐺) =
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑦𝑡) + 𝑐(𝑦𝑡 , 𝑦𝑡−1).

Under SOCO, results characterizing the policy regret are straightforward, and the
goal is instead to obtain stronger results that characterize the competitive ratio. The
competitive ratio is the worst-case ratio of total cost incurred by the online learner
and the offline optimal. The cost of the offline optimal is defined as the minimal
cost of an algorithm if it has full knowledge of the sequence { 𝑓𝑡}, i.e.:

cost(𝑂𝑃𝑇) = min
𝑦1...𝑦𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑦𝑡) + 𝑐(𝑦𝑡 , 𝑦𝑡−1).

Using this, the competitive ratio is defined as:

competitive ratio(𝐴𝐿𝐺) = sup
𝑓1:𝑇

cost(𝐴𝐿𝐺)
cost(𝑂𝑃𝑇) .

Bounds for competitive ratio are stronger than for policy regret, since the dynamic
offline optimal can change its decisions on different time steps.

In the context of SOCO, the first results bounding the competitive ratio focused on
one-dimensional action sets (M. Lin, Wierman, et al., 2013; Bansal et al., 2015),
but after a long series of papers there now exist algorithms that provide constant
competitive ratios in high dimensional settings (N. Chen, Goel, et al., 2018; Goel and
Wierman, 2019; Goel, Y. Lin, et al., 2019). Among different choices of switching
cost 𝑐, we are particularly interested in 𝑐(𝑦𝑡 , 𝑦𝑡−1) = 1

2 ∥𝑦𝑡 − 𝑦𝑡−1∥22 due to the
connection to quadratic costs in control problems. The state-of-the-art algorithm for
this switching cost is Regularized Online Balanced Descent (ROBD), introduced by
Goel, Y. Lin, et al. (2019), which achieves the lowest possible competitive ratio of any
online algorithm. Other recent results study the case where 𝑐(𝑦𝑡 , 𝑦𝑡−1) = ∥𝑦𝑡 − 𝑦𝑡−1∥
(Bubeck, Lee, et al., 2019; Argue et al., 2020; Sellke, 2020; Bubeck, Klartag, et al.,
2020). Variants of the problem with predictions (N. Chen, A. Agarwal, et al., 2015;
N. Chen, Comden, et al., 2016; Li, Qu, et al., 2018b), non-convex cost functions
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(Y. Lin et al., 2020), and constraints (Q. Lin et al., 2019; Yang et al., 2020) have
been studied as well.

OCO with Structured Memory
Though competitive algorithms have been proposed for many SOCO instances, the
SOCO setting has two limitations. First, the hitting cost 𝑓𝑡 is revealed before making
action 𝑦𝑡 , i.e., SOCO requires one step exact prediction of 𝑓𝑡 . Second, the switching
cost in SOCO only depends on one previous action in the form 𝑐(𝑦𝑡 , 𝑦𝑡−1), so only
one step of memory is considered. In this chapter, our goal is to derive competitive
algorithms (as exist for SOCO) in more general settings where more than one step
of memory is considered. Working with the general model of OCO with memory is
too ambitious for this goal. Instead, we introduce a model of OCO with structured
memory that generalizes SOCO, and is motivated by a nontrivial connection with
online control (see Example 10.1).

Specifically, we consider a loss function 𝑔𝑡 at time step 𝑡 that can be decomposed as
the sum of a hitting cost function 𝑓𝑡 : R𝑑 → R+ ∪ {0} and a switching cost function
𝑐 : R𝑑×(𝑝+1) → R+ ∪ {0}. Additionally, we assume that the switching cost has the
form:

𝑐(𝑦𝑡:𝑡−𝑝) =
1
2




𝑦𝑡 − 𝑝∑︁
𝑖=1

𝐶𝑖𝑦𝑡−𝑖




2

2
,

with known 𝐶𝑖 ∈ R𝑑×𝑑 , 𝑖 = 1, · · · , 𝑝. Note that SOCO is a special case 𝑝 = 1 and
𝐶1 = 𝐼.

Example 10.1 (Relations between the structured memory and control). Intuitively,
the hitting cost penalizes the agent for deviating from an optimal point sequence,
while the switching cost captures the cost of implementing a control action. Specifi-
cally, suppose 𝑦𝑡 is a robot’s position at 𝑡, and then the classic SOCO switching cost
∥𝑦𝑡 − 𝑦𝑡−1∥2 is approximately its “velocity.” Under our new switching cost, we can
represent acceleration by ∥𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2∥2, and many other higher-order dynam-
ics. In other word, the classic SOCO models the single integrator dynamics where
the control input can directly decide the robot’s velocity, but the 1

2 ∥𝑦𝑡−
∑𝑝

𝑖=1𝐶𝑖𝑦𝑡−𝑖∥
2
2

structure can model higher-order systems, such as the double integrator dynamics
where the control input can only directly decide the robot’s acceleration. We present
a formal statement of this connection in Section 10.4.

To summarize, we consider an online agent and an offline adversary interacting as
follows in each time step 𝑡, and we assume 𝑦𝑖 is already fixed for 𝑖 = −𝑝,−(𝑝 −
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1), · · · , 0.

1. The adversary reveals a function ℎ𝑡 and a convex estimation set Ω𝑡 ⊆ R𝑑 .
We assume ℎ𝑡 is both 𝑚-strongly convex and 𝑙-strongly smooth, and that
arg min𝑦 ℎ𝑡 (𝑦) = 0.

2. The agent picks 𝑦𝑡 ∈ R𝑑 .

3. The adversary picks 𝑣𝑡 ∈ Ω𝑡 .

4. The agent incurs hitting cost 𝑓𝑡 (𝑦𝑡) = ℎ𝑡 (𝑦𝑡 − 𝑣𝑡) and switching cost 𝑐(𝑦𝑡:𝑡−𝑝).

Notice that the hitting cost 𝑓𝑡 is revealed to the online agent in two separate steps.
The geometry of 𝑓𝑡 (given by ℎ𝑡 whose minimizer is at 0) is revealed before the
agent picks 𝑦𝑡 . After 𝑦𝑡 is picked, the minimizer 𝑣𝑡 of 𝑓𝑡 is revealed.

Unlike SOCO, due to the uncertainty about 𝑣𝑡 , the agent cannot determine the exact
value of the hitting cost it incurs at time step 𝑡 when determining its action 𝑦𝑡 .
To keep the problem tractable, we assume an estimation set Ω𝑡 , which contains
all possible 𝑣𝑡’s, is revealed to bound the uncertainty. The agent can leverage this
information when picking 𝑦𝑡 . SOCO is a special case where Ω𝑡 contains only one
point, i.e., Ω𝑡 = {𝑣𝑡}, and then the agent has a precise estimate of the minimizer
𝑣𝑡 when choosing its action (Goel and Wierman, 2019; Goel, Y. Lin, et al., 2019).
Like SOCO, the offline optimal cost in the structured memory model is defined as
cost(𝑂𝑃𝑇) = min𝑦1...𝑦𝑇

∑𝑇
𝑡=1 𝑓𝑡 (𝑦𝑡) + 𝑐(𝑦𝑡:𝑡−𝑝) given the full sequence { 𝑓𝑡}𝑇𝑡=1.

10.3 Algorithms and Theoretical Analysis
In OCO with structured memory, there is a key differentiation depending on whether
the agent has knowledge of the hitting cost function (both ℎ𝑡 and 𝑣𝑡) when choosing
its action or not, i.e., whether the estimation set Ω𝑡 is a single point, 𝑣𝑡 , or not. We
deal with each case in turn in the following.

Case 1: Exact Prediction of 𝑣𝑡 (Ω𝑡 = {𝑣𝑡})
We first study the simplest case where Ω𝑡 = {𝑣𝑡}. Recall that Ω𝑡 is the convex set
which contains all possible 𝑣𝑡 and so, in this case, the agent has exact knowledge of
the hitting cost when picking action. This assumption, while strict, is standard in the
SOCO literature, e.g., Goel and Wierman (2019) and Goel, Y. Lin, et al. (2019). It is
appropriate for situations where the cost function can be observed before choosing
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Algorithm 10.1: Regularized OBD (ROBD), Goel, Y. Lin, et al. (2019)
Parameter: 𝜆1 ≥ 0, 𝜆2 ≥ 0

1 for 𝑡 = 1 to 𝑇 do
Input: Hitting cost function 𝑓𝑡 , previous decision points 𝑦𝑡−𝑝, · · · , 𝑦𝑡−1

2 𝑣𝑡 ← arg min𝑦 𝑓𝑡 (𝑦)
3 𝑦𝑡 ← arg min𝑦 𝑓𝑡 (𝑦) + 𝜆1𝑐(𝑦, 𝑦𝑡−1:𝑡−𝑝) + 𝜆2

2 ∥𝑦 − 𝑣𝑡 ∥
2
2

Output: 𝑦𝑡

an action, e.g., Li, Qu, et al. (2018b), Kim and Giannakis (2016), and Goel and
Wierman (2019).

Our main result in this setting is the following theorem, which shows that the ROBD
algorithm (Algorithm 10.1), which is the state-of-the-art algorithm for SOCO, per-
forms well in the more general case of structured memory. Note that, in this setting,
the smoothness parameter 𝑙 of hitting cost functions is not involved in the competitive
ratio bound.

Theorem 10.1. Suppose the hitting cost functions are 𝑚−strongly convex and the
switching cost is given by 𝑐(𝑦𝑡:𝑡−𝑝) = 1

2


𝑦𝑡 −∑𝑝

𝑖=1𝐶𝑖𝑦𝑡−𝑖


2

2, where 𝐶𝑖 ∈ R𝑑×𝑑 and∑𝑝

𝑖=1 ∥𝐶𝑖∥2 = 𝛼. The competitive ratio of ROBD with parameters 𝜆1 and 𝜆2 is upper
bounded by:

max
{𝑚 + 𝜆2
𝑚𝜆1

,
𝜆1 + 𝜆2 + 𝑚

(1 − 𝛼2)𝜆1 + 𝜆2 + 𝑚

}
,

if𝜆1 > 0 and (1−𝛼2)𝜆1+𝜆2+𝑚 > 0. If𝜆1 and𝜆2 satisfy𝑚+𝜆2 =
𝑚+𝛼2−1+

√
(𝑚+𝛼2−1)2+4𝑚
2 ·

𝜆1, then the competitive ratio is:

1
2

(
1 + 𝛼

2 − 1
𝑚
+

√︂(
1 + 𝛼

2 − 1
𝑚

)2
+ 4
𝑚

)
.

The proof of Theorem 10.1 is given in the appendix (Section 10.7). To get insight
into Theorem 10.1, first consider the case when 𝛼 is a constant. In this case, the
competitive ratio is of order 𝑂 (1/𝑚), which highlights that the challenging setting
is when 𝑚 is small. It is easy to see that this upper bound is in fact tight. To
see this, note that the case of SOCO with ℓ2 squared switching cost considered in
Goel and Wierman (2019) and Goel, Y. Lin, et al. (2019) is a special case where
𝑝 = 1, 𝐶1 = 𝐼, 𝛼 = 1. Substituting these parameters into Theorem 10.1 gives exactly
the same upper bound (including constants) as Goel, Y. Lin, et al. (2019), which has
been shown to match a lower bound on the achievable cost of any online algorithm,
including constant factors. On the other hand, if we instead assume that 𝑚 is a fixed
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positive constant. The competitive ratio can be expressed as 1 +𝑂
(
𝛼2) . Therefore,

the competitive ratio gets worse quickly as 𝛼 increases. This is also the best possible
scaling, achievable via any online algorithm, as we show in the original paper (see
Shi et al., 2020, Appendix D).

Perhaps surprisingly, the memory length 𝑝 does not appear in the competitive
ratio bound, which contradicts the intuition that the online optimization problem
should get harder as the memory length increases. However, it is worth noting
that 𝛼 becomes larger as 𝑝 increases, so the memory length implicitly impacts the
competitive ratio. For example, an interesting form of switching cost is

𝑐(𝑦𝑡:𝑡−𝑝) =
1
2




 𝑝∑︁
𝑖=0
(−1)𝑖

(
𝑝

𝑖

)
𝑦𝑡−𝑖




2

2
,

which corresponds to the 𝑝th derivative of 𝑦 and generalizes SOCO (𝑝 = 1). In this
case, we have 𝛼 = 2𝑝 − 1. Hence 𝛼 grows exponentially in 𝑝.

Case 2: Inexact Prediction of 𝑣𝑡 (𝑣𝑡 ∈ Ω𝑡)
For general Ω𝑡 , ROBD is no longer enough. It needs to be adapted to handle the
uncertainty that results from the estimation set Ω𝑡 . Note that this uncertainty set is
crucial for many applications, such as online control with adversarial disturbances
in Section 10.4.

Algorithm 10.2: Optimistic ROBD
Parameter: 𝜆 ≥ 0

1 for 𝑡 = 1 to 𝑇 do
Input: 𝑣𝑡−1, ℎ𝑡 ,Ω𝑡

2 Initialize a ROBD instance with 𝜆1 = 𝜆, 𝜆2 = 0
3 Recover 𝑓𝑡−1(𝑦) = ℎ𝑡−1(𝑦 − 𝑣𝑡−1)
4 𝑦̂𝑡−1 ← ROBD( 𝑓𝑡−1, 𝑦̂𝑡−𝑝−1:𝑡−2)
5 𝑣̃𝑡 ← arg min𝑣∈Ω𝑡 min𝑦 ℎ𝑡 (𝑦 − 𝑣) + 𝜆𝑐(𝑦, 𝑦̂𝑡−1:𝑡−𝑝)
6 Estimate 𝑓𝑡 (𝑦) = ℎ𝑡 (𝑦 − 𝑣̃𝑡)
7 𝑦𝑡 ← ROBD( 𝑓𝑡 , 𝑦̂𝑡−𝑝:𝑡−1)

Output: 𝑦𝑡 (the decision at time step 𝑡)

To handle this additional complexity, we propose Optimistic ROBD (Algorithm
10.2). Optimistic ROBD is based on two key ideas. The first is to ensure that the
algorithm tracks the sequence of actions it would have made if given observations
of the true cost functions before choosing an action. To formalize this, we define the
accurate sequence {𝑦̂1, · · · , 𝑦̂𝑇 } to be the choices of ROBD (Algorithm 10.1) with
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𝜆1 = 𝜆, 𝜆2 = 0 when each hitting cost 𝑓𝑡 is revealed before picking 𝑦̂𝑡 . The goal
of Optimistic ROBD (Algorithm 10.2) is to approximate the accurate sequence.
In order to track the accurate sequence, the first step is to recover it up to time
step 𝑡 − 1 at time step 𝑡. To do this, after we observe the previous minimizer
𝑣𝑡−1, we can compute the accurate choice of ROBD as if both ℎ𝑡−1 and 𝑣𝑡−1 are
observed before picking 𝑦𝑡−1. Therefore, Algorithm 10.2 can compute the accurate
subsequence {𝑦̂1, · · · , 𝑦̂𝑡−1} at time step 𝑡. Picking 𝑦𝑡 based on the accurate sequence
{𝑦̂1, · · · , 𝑦̂𝑡−1} instead of the noisy sequence {𝑦1, · · · , 𝑦𝑡−1} ensures that the actions
do not drift too far from the accurate sequence.

The second key idea is to be optimistic by assuming the adversary will give it
𝑣 ∈ Ω𝑡 that minimizes the cost it will experience. Specifically, before 𝑣𝑡 is revealed,
the algorithm assumes it is the point in Ω𝑡 which minimizes the weighted sum
ℎ𝑡 (𝑦−𝑣) +𝜆𝑐(𝑦, 𝑦̂𝑡−1:𝑡−𝑝) if ROBD is implemented with parameter 𝜆 to pick 𝑦. This
ensures that additional cost is never taken unnecessarily, which could be exploited
by the adversary. Note that min𝑦 ℎ𝑡 (𝑦 − 𝑣) + 𝜆𝑐(𝑦) is strongly convex with respect
to 𝑣 (see Shi et al., 2020, Appendix E), so it is tractable even if Ω𝑡 is unbounded.

The following theorem bounds the competitive ratio of Optimistic ROBD.

Theorem 10.2 (The upper bound of the competitive ratio of Optimistic ROBD).
Suppose the hitting cost functions are both𝑚−strongly convex and 𝑙−strongly smooth
and the switching cost is given by 𝑐(𝑦𝑡:𝑡−𝑝) = 1

2


𝑦𝑡 −∑𝑝

𝑖=1𝐶𝑖𝑦𝑡−𝑖


2

2, where𝐶𝑖 ∈ R𝑑×𝑑

and
∑𝑝

𝑖=1 ∥𝐶𝑖∥2 = 𝛼. For arbitrary 𝜂 > 0, the cost of Optimistic ROBD with
parameter 𝜆 > 0, is upper bounded by 𝐾1cost(𝑂𝑃𝑇) + 𝐾2, where:

𝐾1 = (1 + 𝜂)max
{1
𝜆
,

𝜆 + 𝑚
(1 − 𝛼2)𝜆 + 𝑚

}
,

𝐾2 = 𝜆

( 𝑙

1 + 𝜂 − 𝜆 +
4𝛼2

𝜂
− 𝑚

𝜆 + 𝑚

) 𝑇∑︁
𝑡=1

∥𝑣𝑡 − 𝑣̃𝑡 ∥2

2
.

The proof of Theorem 10.2 is given in (Shi et al., 2020, Appendix E). This proof
relies on the two key ideas we mentioned before. Note that we can choose 𝜂 to
balance 𝐾1 and 𝐾2 and obtain a competitive ratio, in particular the smallest 𝜂 such
that:

𝜆

( 𝑙

1 + 𝜂 − 𝜆 +
4𝛼2

𝜂
− 𝑚

𝜆 + 𝑚

)
≤ 0.

Therefore, we have 𝜂 = 𝑂 (𝑙 + 𝛼2) and 𝐾2 ≤ 0. So the competitive ratio is upper
bounded by:

𝑂

(
(𝑙 + 𝛼2)max

{1
𝜆
,

𝜆 + 𝑚
(1 − 𝛼2)𝜆 + 𝑚

})
.
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However, the reason we present Theorem 10.2 in terms of 𝐾1 and 𝐾2 is that, when
the diameter of Ω𝑡 is small, we can pick a small 𝜂 so that the ratio coefficient 𝐾1

will be close to the competitive ratio of ROBD when 𝑣𝑡 is known before picking 𝑦𝑡 .
This “beyond-the-worst-case” analysis is useful in many applications.

10.4 Connections to Competitive Control
Goel and Wierman (2019) show a connection between SOCO and online control
in the setting where disturbance is perfectly known at time step 𝑡 and the control
actuation matrix 𝐵 is invertible, which leads to the only constant-competitive control
policy as far as we know. Since the new proposed OCO with structured memory
generalizes SOCO, one may expect its connects to more general dynamical systems.
In this section, we present a nontrivial reduction from Input-Disturbed Squared
Regulators (IDSRs) to OCO with structured memory, leading to the first constant-
competitive policy in online control with adversarial disturbance.

Control Problem Setting

Figure 10.1: Controllable canonical form.

Input-disturbed systems. We focus on systems in controllable canonical form
defined by:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵(𝑢𝑡 + 𝑤𝑡), (10.1)

where 𝑥𝑡 ∈ R𝑛 is the state, 𝑢𝑡 ∈ R𝑑 is the control, and 𝑤𝑡 ∈ R𝑑 is a potentially
adversarial disturbance to the system. We further assume that (𝐴, 𝐵) is in control-
lable canonical form (see Fig. 10.1), where each ∗ represents a (possibly) non-zero
entry, and the rows of 𝐵 with 1 are the same rows of 𝐴 with ∗ (Luenberger, 1967).
It is well-known that any controllable system can be linearly transformed to the
canonical form. This system is more restrictive than the general form in linear
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systems. We call these Input-Disturbed systems, since the disturbance 𝑤𝑡 is in the
control input/action space. There are many corresponding real-world applications
that are well-described by Input-Disturbed systems, e.g., external/disturbance force
in robotics (see Part I).

Squared regulator costs. We consider the following cost model for the controller:

𝑐𝑡 (𝑥𝑡 , 𝑢𝑡) =
𝑞𝑡

2
∥𝑥𝑡 ∥22 +

1
2
∥𝑢𝑡 ∥22 , (10.2)

where 𝑞𝑡 is a positive scalar. The sequence 𝑞0:𝑇 is picked by the adversary and
revealed online. The objective of the controller is to minimize the total control
cost

∑𝑇
𝑡=0 𝑐𝑡 (𝑥𝑡 , 𝑢𝑡). We call this cost model the Squared Regulator model, which

is a restriction of the classical quadratic cost model. This class of costs is general
enough to address a fundamental trade-off in optimal control: the trade-off between
the state cost and the control effort (Kirk, 2004).

Disturbances. In the online control literature, a variety of assumptions have been
made about the noise 𝑤𝑡 . In most works, the assumption is that the exact noise
𝑤𝑡 is not known before 𝑢𝑡 is taken. Many assume 𝑤𝑡 is drawn from a certain
known distribution, e.g., N. Agarwal, Hazan, et al. (2019). Others assume 𝑤𝑡 is
chosen adversarially subject to ∥𝑤𝑡 ∥2 being upper bounded by a constant𝑊 , e.g., N.
Agarwal, Bullins, et al. (2019). In a closely related paper, Goel and Wierman (2019)
connect SOCO with online control under the assumption that 𝑤𝑡 can be observed
before picking the control action 𝑢𝑡 . In contrast, in this chapter we assume that the
exact 𝑤𝑡 is not observable before the agent picks 𝑢𝑡 . Instead, we assume a convex
estimation set𝑊𝑡 (not necessarily bounded) that contains all possible 𝑤𝑡 is revealed
to the online agent to help the agent decide 𝑢𝑡 . Our assumption is a generalization
of Goel and Wierman (2019), where𝑊𝑡 is a one-point set, and N. Agarwal, Bullins,
et al. (2019), where 𝑊𝑡 is a ball of radius 𝑊 centered at 0. Our setting can also
naturally model time-Lipschitz noise, where 𝑤𝑡 is chosen adversarially subject to
∥𝑤𝑡 − 𝑤𝑡−1∥2 ≤ 𝜖 , by picking𝑊𝑡 as a sphere of radius 𝜖 centered at 𝑤𝑡−1, which has
many real-applications such as smooth disturbances in robotics. Moreover, note that
our setting is naturally adaptive because of the estimation set𝑊𝑡 (e.g., controller may
choose more aggressive action if 𝑊𝑡 is small), which is different from the classic
H∞ control setting (Zhou and Doyle, 1998).

Competitive ratio. Our goal is to develop policies with constant (small) competitive
ratios. This is a departure from the bulk of the literature (N. Agarwal, Hazan, et
al., 2019; N. Agarwal, Bullins, et al., 2019; Dean et al., 2020; Cohen et al.,
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2018), which focuses on designing policies that have low regret compared to the
optimal linear controller. We show the optimal linear controller can have cost
arbitrarily larger than the offline optimal, via an analytic example (see Shi et al.,
2020, Appendix B). We again denote the offline optimal cost, with full knowledge of
the sequence 𝑤0:𝑇 , as cost(𝑂𝑃𝑇) = min𝑢0:𝑇

∑𝑇
𝑡=0 𝑐𝑡 (𝑥𝑡 , 𝑢𝑡). For an online algorithm

𝐴𝐿𝐺, let cost(𝐴𝐿𝐺) be its cost on the same disturbance sequence 𝑤0:𝑇 . The
competitive ratio is then the worst-case ratio of cost(𝐴𝐿𝐺) and cost(𝑂𝑃𝑇) over
any disturbance sequence, i.e., sup𝑤0:𝑇

cost(𝐴𝐿𝐺)/cost(𝑂𝑃𝑇). To the best of
our knowledge, the only prior work that studies competitive algorithms for online
control is Goel and Wierman (2019), which considers a very restricted system with
invertible 𝐵 and known 𝑤𝑡 at step 𝑡. A related line of online optimization research
studies dynamic regret, or competitive difference, defined as the difference between
online algorithm cost and the offline optimal (Li, X. Chen, et al., 2019; Li, Qu,
et al., 2018a). For example, Li, X. Chen, et al. (2019) bound the dynamic regret of
online control with time-varying convex costs with no noise. However, results for
the dynamic regret depend on the path-length or variation budget, not just system
properties. Bounding the competitive ratio is typically more challenging.

A Reduction to OCO with Structured Memory

Algorithm 10.3: Reduction from Online Control to OCO with Structured Mem-
ory
Input: Transition matrix 𝐴 and control matrix 𝐵
Solver: OCO with structured memory algorithm ALG

1 for 𝑡 = 0 to 𝑇 − 1 do
Observe: 𝑥𝑡 ,𝑊𝑡 , and 𝑞𝑡:𝑡+𝑝−1

2 if 𝑡 > 0 then
3 𝑤𝑡−1 ← 𝜓 (𝑥𝑡 − 𝐴𝑥𝑡−1 − 𝐵𝑢𝑡−1)
4 𝜁𝑡−1 ← 𝑤𝑡−1 +

∑𝑝

𝑖=1𝐶𝑖𝜁𝑡−1−𝑖
5 𝑣𝑡−1 ← −𝜁𝑡−1

6 Define ℎ𝑡 (𝑦) = 1
2
∑𝑑
𝑖=1

(∑𝑝𝑖
𝑗=1 𝑞𝑡+ 𝑗

) (
𝑦 (𝑖)

)2

7 Define Ω𝑡 = {−𝑤 −
∑𝑝

𝑖=1𝐶𝑖𝜁𝑡−𝑖 | 𝑤 ∈ 𝑊𝑡}
8 Feed 𝑣𝑡−1, ℎ𝑡 ,Ω𝑡 into ALG
9 Obtain ALG’s output 𝑦𝑡

10 𝑢𝑡 ← 𝑦𝑡 −
∑𝑝

𝑖=1𝐶𝑖𝑦𝑡−𝑖
Output: 𝑢𝑡

Output: 𝑢𝑇 = 0

We now present a reduction from IDSR to OCO with structured memory. This
reduction allows us to inherit the competitive ratio bounds on Optimistic ROBD
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for this class of online control problems. Before presenting the reduction, we first
introduce some important notations. The indices of non-zero rows in matrix 𝐵 in
(10.1) are denoted as {𝑘1, · · · , 𝑘𝑑} := I. We define operator 𝜓 : R𝑛 → R𝑑 as:

𝜓(𝑥) =
(
𝑥 (𝑘1) , · · · , 𝑥 (𝑘𝑑)

)⊺
,

which extracts the dimensions in I. Moreover, let 𝑝𝑖 = 𝑘𝑖 − 𝑘𝑖−1 for 1 ≤ 𝑖 ≤ 𝑛,
where 𝑘0 = 0. The controllability index of the canonical-form (𝐴, 𝐵) is defined
as 𝑝 = max{𝑝1, · · · , 𝑝𝑑}. We assume that the initial state is zero, i.e., 𝑥0 = 0. In
the reduction, we also need to use matrices 𝐶𝑖 ∈ R𝑑×𝑑 , 𝑖 = 1, · · · , 𝑝, which regroup
the columns of 𝐴(I, :). We define 𝐶𝑖 for 𝑖 = 1, · · · , 𝑝 formally by constructing
each of its columns. For 𝑗 = 1, · · · , 𝑑, if 𝑖 ≤ 𝑝 𝑗 , the 𝑗 th column of 𝐶𝑖 is the
(𝑘 𝑗 + 1 − 𝑖) th column of 𝐴(I, :); otherwise, the 𝑗 th column of 𝐶𝑖 is 0. Formally,
for 𝑖 ∈ {1, · · · , 𝑝}, 𝑗 ∈ {1, · · · , 𝑑}, we have:

𝐶𝑖 (:, 𝑗) =

𝐴(I, 𝑘 𝑗 + 1 − 𝑖) if 𝑖 ≤ 𝑝 𝑗
0 otherwise.

Based on coefficients 𝑞0:𝑇 , we define:

𝑞min = min
0≤𝑡≤𝑇−1,1≤𝑖≤𝑑

𝑝𝑖∑︁
𝑗=1
𝑞𝑡+ 𝑗 , 𝑞max = max

0≤𝑡≤𝑇−1,1≤𝑖≤𝑑

𝑝𝑖∑︁
𝑗=1
𝑞𝑡+ 𝑗 ,

where we assume 𝑞𝑡 = 0 for all 𝑡 > 𝑇 .

Theorem 10.3. Consider IDSR where the cost function and dynamics are specified
by (10.2) and (10.1). We assume the coefficients 𝑞𝑡:𝑡+𝑝−1 are observable at step 𝑡.
Any instance of IDSR in controllable canonical form can be reduced to an instance
of OCO with structured memory by Algorithm 10.3.

A proof of Theorem 10.3 are given in (Shi et al., 2020, Appendix G) and an
example are given in Example 10.2. Notably, 𝑐𝑜𝑠𝑡 (𝑂𝑃𝑇) and 𝑐𝑜𝑠𝑡 (𝐴𝐿𝐺) remain
unchanged in the reduction described by Algorithm 10.3. In fact, Algorithm 10.3,
when instantiated with Optimistic ROBD, provides an efficient algorithm for online
control. It only requires 𝑂 (𝑝) memory to compute the recursive sequences.
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Example 10.2 (Reduction for a control system with dim(𝑥) = 5, dim(𝑢) = 2). To
illustrate the reduction, consider the following example:

𝑥
(1)
𝑡+1
𝑥
(2)
𝑡+1
𝑥
(3)
𝑡+1
𝑥
(4)
𝑡+1
𝑥
(5)
𝑡+1


=



0 1 0 0 0
𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

0 0 0 1 0
0 0 0 0 1
𝑏1 𝑏2 𝑏3 𝑏4 𝑏5





𝑥
(1)
𝑡

𝑥
(2)
𝑡

𝑥
(3)
𝑡

𝑥
(4)
𝑡

𝑥
(5)
𝑡


+



0 0
1 0
0 0
0 0
0 1


([
𝑢
(1)
𝑡

𝑢
(2)
𝑡

]
+

[
𝑤
(1)
𝑡

𝑤
(2)
𝑡

])
. (10.3)

Notice that since 𝑥 (1)
𝑡+1 = 𝑥

(2)
𝑡 , 𝑥

(3)
𝑡+1 = 𝑥

(4)
𝑡 , we can rewrite (10.3) in a more compact

form:[
𝑥
(2)
𝑡+1
𝑥
(5)
𝑡+1

]
︸︷︷︸
𝑧𝑡+1

=

[
𝑎2 𝑎5

𝑏2 𝑏5

]
︸     ︷︷     ︸

𝐶1

[
𝑥
(2)
𝑡

𝑥
(5)
𝑡

]
+

[
𝑎1 𝑎4

𝑏1 𝑏4

]
︸     ︷︷     ︸

𝐶2

[
𝑥
(2)
𝑡−1
𝑥
(5)
𝑡−1

]
+

[
0 𝑎3

0 𝑏3

]
︸   ︷︷   ︸

𝐶3

[
𝑥
(2)
𝑡−2
𝑥
(5)
𝑡−2

]
+

[
𝑢
(1)
𝑡

𝑢
(2)
𝑡

]
+

[
𝑤
(1)
𝑡

𝑤
(2)
𝑡

]
.

(10.4)
In this example 𝑝1 = 2, 𝑝2 = 3,I = {𝑘1, 𝑘2} = {2, 5} and thus 𝑝 = 3 and 𝑛 = 2.
From (10.4) we have

𝑧𝑡+1 = 𝐶1𝑧𝑡 + 𝐶2𝑧𝑡−1 + 𝐶3𝑧𝑡−2 + 𝑢𝑡 + 𝑤𝑡 . (10.5)

Recall the definition of 𝑦𝑡 and 𝜁𝑡:

𝑦𝑡 = 𝑢𝑡 +
3∑︁
𝑖=1

𝐶𝑖𝑦𝑡−𝑖,∀𝑡 ≥ 0, 𝜁𝑡 = 𝑤𝑡 +
3∑︁
𝑖=1

𝐶𝑖𝜁𝑡−𝑖,∀𝑡 ≥ 0. (10.6)

Then the original system could be translated to the compact form:

𝑧𝑡+1 = 𝑦𝑡 + 𝜁𝑡 . (10.7)

If the objective is given as 1
2
∑𝑇
𝑡=0

(
𝑞𝑡 ∥𝑥𝑡 ∥2 + ∥𝑢𝑡 ∥2

)
, we have that

ℎ𝑡 (𝑧) =
1
2
(𝑞𝑡+1 + 𝑞𝑡+2)

(
𝑧(1)

)2
+ 1

2
(𝑞𝑡+1 + 𝑞𝑡+2 + 𝑞𝑡+3)

(
𝑧(2)

)2
.

Competitive Policy
The reduction in Algorithm 10.3 immediately translates the competitive ratio guar-
antees in Section 10.3 into competitive policies. As Theorem 10.2 suggests, we
can tune 𝜂 in Optimistic ROBD based on the quality of prediction. As a result,
we present two forms of upper bounds for Algorithm 10.3 in Corollaries 10.1 and
10.2. Notably, Corollary 10.1 gives a tighter bound where good estimations are



194

available, while Corollary 10.2 gives a bound that does not depend on the quality of
the estimations.

In the first case, we assume that a good estimation of 𝑤𝑡 is available before picking
𝑢𝑡 . Specifically, we assume the diameter of set 𝑊𝑡 is upper bounded by 𝜖𝑡 at time
step 𝑡, where 𝜖𝑡 is a small positive constant. We derive Corollary 10.1 by setting
𝜂 = 1 + 𝜆 in Theorem 10.2.

Corollary 10.1. In IDSR, assume that coefficients 𝑞𝑡:𝑡+𝑝−1 are observable at time
step 𝑡. Let 𝛼 =

∑𝑞

𝑖=1 ∥𝐶𝑖∥2. When the diameter of 𝑊𝑡 is upper bounded by 𝜖𝑡 at
time step 𝑡, the total cost incurred by Algorithm 10.3 (using Optimistic ROBD with
parameter 𝜆) in the online control problem is upper bounded by𝐾1cost(𝑂𝑃𝑇)+𝐾2,

where:

𝐾1 = (2 + 𝜆) ·max
{1
𝜆
,

𝜆 + 𝑞min

(1 − 𝛼2)𝜆 + 𝑞min

}
,

𝐾2 = 𝜆

(𝑞max
2
+ 4𝛼2

1 + 𝜆 −
𝑞min

𝜆 + 𝑞min

)
·
𝑇−1∑︁
𝑡=0

1
2
𝜖2
𝑡 .

The residue term 𝐾2 in Corollary 10.1 becomes negligible when the total estimation
error

∑𝑇−1
𝑡=0 𝜖

2
𝑡 is small, leading to a pure competitive ratio guarantee. Further, if we

ignore 𝐾2, the coefficient 𝐾1 is only constant factor worse than the ratio we obtain
when exact prediction of 𝑤𝑡 is available.

However, the bound in Corollary 10.1 can be significantly worse than the case where
exact prediction is available when the diameter of𝑊𝑡 is large or unbounded. Hence
we introduce a second corollary that does not use any information about 𝑤𝑡 when
picking 𝑢𝑡 . Specifically, we assume the diameter of set 𝑊𝑡 cannot be bounded, so
the upper bound given in Corollary 10.1 is meaningless. By picking the parameter
𝜂 such that 𝜆

(
𝑙

1+𝜂−𝜆 +
4𝛼2

𝜂
− 𝑚

𝜆+𝑚

)
≤ 0 in Theorem 10.2, we obtain the following

result.

Corollary 10.2. In IDSR, assume that coefficients 𝑞𝑡:𝑡+𝑝−1 are observable at time
step 𝑡. Let𝛼 =

∑𝑞

𝑖=1 ∥𝐶𝑖∥2. The competitive ratio of Algorithm 10.3, using Optimistic
ROBD with 𝜆, is upper bounded by:

𝑂

(
(𝑞max + 4𝛼2)max

{1
𝜆
,

𝜆 + 𝑞min

(1 − 𝛼2)𝜆 + 𝑞min

})
.

Compared with Corollary 10.1, Corollary 10.2 gives an upper bound that is inde-
pendent of the size of 𝑊𝑡 . It is also a pure constant competitive ratio, without any
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additive term. However, the ratio is worse than the case where exact prediction of
𝑤𝑡 is available, especially when 𝑞max or 𝛼 is large.

Contrasting no-regret and constant-competitive guarantees. The predominant
benchmark used in previous work on online control via learning is static regret
relative to the best linear controller in hindsight, i.e., 𝑢𝑡 = −𝐾∗𝑥𝑡 (Cohen et al.,
2018; Abeille and Lazaric, 2018; N. Agarwal, Bullins, et al., 2019; N. Agarwal,
Hazan, et al., 2019; Dean et al., 2020; Abbasi-Yadkori et al., 2018). For example, N.
Agarwal, Hazan, et al. (2019) achieve logarithmic regret under stochastic noise and
strongly convex loss, and N. Agarwal, Bullins, et al. (2019) achieve 𝑂 (

√
𝑇) regret

under adversarial noise and convex loss. However, the cost of the optimal linear
controller may be far from the true offline optimal cost. Goel and Hassibi (2020)
recently show that there is a linear regret between the optimal offline linear policy
and the true offline optimal policy in online LQR control. Thus, achieving small
regret may still mean having a significantly larger cost than optimal. We illustrate
this difference and our algorithm’s performance by a 1-d analytic example (see Shi
et al., 2020, Appendix B), and also numerical experiments in higher dimensions
(Section 10.5). In particular, we see that the optimal linear controller can be
significantly more costly than the offline optimal controller and that Optimistic
ROBD can significantly outperform the optimal linear controller.

10.5 Simulations
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(c) 2-d system, wt U( 1, 1)
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Figure 10.2: Numerical results of Optimistic ROBD in 1-d and 2-d systems, with
different 𝜆. LC means the best linear controller in hindsight and OPT means the
global optimal controller in hindsight. LC is numerically searched in stable linear
controller space. We consider two different types of 𝑤𝑡 : 𝑤𝑡 is i.i.d. random/random
walk, and also two different settings: 𝑤𝑡 is known/unknown at step 𝑡.

In this section, we use simple numerical examples to illustrate the contrast between
the best linear controller in hindsight and the optimal offline controller. We also
test our algorithm, Optimistic ROBO, and then numerically illustrate that Opti-
mistic ROBD can obtain near-optimal cost and outperform the offline optimal linear
controller.
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In the first example we consider a simple 1-d system, where the object function is∑200
𝑡=0 8|𝑥𝑡 |2+ |𝑢𝑡 |2 and the dynamics is 𝑥𝑡+1 = 2𝑥𝑡 +𝑢𝑡 +𝑤𝑡 . For the sequence {𝑤𝑡}𝑇𝑡=0,

we consider two cases, in the first case {𝑤𝑡}𝑇𝑡=0 is generated by 𝑤𝑡 ∼ U(−1, 1)
i.i.d., and in the second case the sequence is generated by 𝑤𝑡+1 = 𝑤𝑡 + 𝜓𝑡 where
𝜓𝑡 ∼ U(−0.2, 0.2) i.i.d.. The first case corresponds to unpredictable disturbances,
where the estimation set𝑊𝑡 = (−1, 1), and the second to smooth disturbances (i.e.,
a random walk), where𝑊𝑡 = 𝑤𝑡−1 + (−0.2, 0.2). For both types of {𝑤𝑡}𝑇𝑡=0, we test
Optimistic ROBD algorithms in two settings: 𝑤𝑡 is known/unknown at step 𝑡. In
the first setting, 𝑤𝑡 is directly given to the algorithm, and in the latter setting, only
𝑊𝑡 is given at time step 𝑡.

The results are shown in Fig. 10.2 (a-b). We see that if 𝑤𝑡 is known at step
𝑡, Optimistic ROBD is much better than the best linear controller in hindsight,
and almost matches the true optimal when 𝑤𝑡 is smooth. In fact, when 𝑤𝑡 is
smooth, Optimistic ROBD is much better than the best linear controller even if
it does not know 𝑤𝑡 at step 𝑡. Even in the case when 𝑤𝑡 ∼ U(−1, 1), and so
is extremely unpredictable, Optimistic ROBD’s performance still matches the best
linear controller, which uses perfect hindsight.

Our second example considers a 2-d system with the following objective and dy-
namics:

min
𝑢𝑡

200∑︁
𝑡=0

8∥𝑥𝑡 ∥22 + ∥𝑢𝑡 ∥
2
2, s.t. 𝑥𝑡+1 =

[
0 1
−1 2

]
𝑥𝑡 +

[
0
1

]
𝑢𝑡 +

[
0
1

]
𝑤𝑡 ,

where (𝐴, 𝐵) is the canonical form of double integrator dynamics. For this 2-d
system, similarly, we test the performance of Optimistic ROBD with two types of
𝑤𝑡 .

The results are shown in Fig. 10.2 (c-d) and reinforce the same observations we
observed in the 1-d system. In particular, we see that the optimal linear controller can
be significantly more costly than the offline optimal controller and that Optimistic
ROBD can outperform the optimal linear controller, sometimes by a significant
margin.

10.6 Extension: Nonlinear Switching Cost and Feedback Delay
Even though the proposed OCO with structured memory setting significantly gen-
eralizes the classic SOCO setting, and enables new competitive policies in online
control with adversarial disturbance, there are two limitations.
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First, the online learner observes the hitting cost function 𝑓𝑡 either before (classic
SOCO setting) or one step after (OCO with structured memory) picking the action
𝑦𝑡 . However, in many applications, such as trajectory tracking problems in robotics,
𝑓𝑡 is revealed after a multi-round delay due to communication and process delays,
i.e., multiple rounds of actions must be taken without feedback on their hitting costs.
Delay is known to be very challenging in practice and even one-step delay requires
non-trivial algorithmic modifications (i.e., from ROBO to Optimistic ROBD). The
impact of multi-round delay has been recognized as a challenging open question for
the design of online algorithms (Joulani et al., 2013; Shamir and Szlak, 2017) and
broadly in applications. For example, Chapter 4 highlights that a three-step delay
(around 30 milliseconds) can already cause catastrophic crashes in drone tracking
control using a standard controller without algorithmic adjustments for delay.

Second, either SOCO or OCO with structured memory allows only linear forms
of switching cost functions, where the switching cost 𝑐 is some (squared) norm of
a linear combination of current and previous actions. However, in many practical
scenarios the costs to move from 𝑦𝑡−1 to 𝑦𝑡 are non-trivial nonlinear functions. For
example, consider 𝑦𝑡 ∈ R as the vertical velocity of a drone in a velocity control
task. Hovering the drone (i.e., holding the position such that 𝑦𝑡 = 0,∀𝑡) is not free,
due to gravity. In this case, the cost to move from 𝑦𝑡−1 to 𝑦𝑡 is (𝑦𝑡 − 𝑦𝑡−1 + 𝑔(𝑦𝑡−1))2

where the nonlinear term 𝑔(𝑦𝑡−1) accounts for the gravity and aerodynamic drag.
Such non-linearities create significant algorithmic challenges because (i) in contrast
to the linear setting, small movement between decisions does not necessarily imply
small switching cost (e.g., the aforementioned drone control example), and (ii) a
small error in a decision can lead to large non-linear penalties in the switching cost
in future steps, which is further amplified by the multi-round delay. Addressing
such challenges is well-known to be a challenging open question for the design of
online algorithms.

Therefore, in this section we extend the proposed OCO with structured memory
setting with a 𝑘-round multi-round feedback delay and nonlinear switching costs.
In this extended setting, we introduce a new algorithm, Iterative Regularized Online
Balanced Descent (iROBD) and prove that it maintains a dimension-free constant
competitive ratio that is 𝑂 (𝐿2𝑘 ), where 𝐿 is the Lipschitz constant of the non-linear
switching cost and 𝑘 is the delay. This is the first constant competitive algorithm
in the case of either feedback delay or nonlinear switching cost and we show, via
lower bounds, that the dependencies on both 𝐿 and 𝑘 are tight. These lower bounds
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further serve to emphasize how the algorithmic difficulties increase as the length of
delay becomes longer. Moreover, we show that online optimization with feedback
delay and nonlinear switching costs can be connected with linear control problems
more general than IDSR and a class of nonlinear control problems. Thus iROBD
immediately provides novel competitive policies in those cases. This section is
mainly based on (Pan et al., 2022).

An Online Optimization Model Considering Nonlinearity and Delay
To incorporate feedback delay, we consider a situation where the online learner only
knows the geometry of the hitting cost function at each round, i.e., ℎ𝑡 , but that the
minimizer of 𝑓𝑡 is revealed only after a delay of 𝑘 steps, i.e., at time 𝑡 + 𝑘 . This
captures practical scenarios where the form of the loss function or tracking function
is known by the online learner, but the target moves over time and measurement lag
means that the position of the target is not known until some time after an action
must be taken. To incorporate nonlinear (and potentially nonconvex) switching
costs, we consider a known nonlinear function 𝛿 from R𝑑×𝑝 to R𝑑 in the switching
cost. Specifically, we have

𝑐(𝑦𝑡:𝑡−𝑝) =
1
2
∥𝑦𝑡 − 𝛿(𝑦𝑡−1:𝑡−𝑝)∥2. (10.8)

In summary, we consider an online agent that interacts with the environment as
follows:

1. The adversary reveals a function ℎ𝑡 , which is the geometry of the 𝑡th hit-
ting cost, and a point 𝑣𝑡−𝑘 , which is the minimizer of the (𝑡 − 𝑘)th hitting
cost. Assume that ℎ𝑡 is 𝑚-strongly convex and 𝑙-strongly smooth, and that
arg min𝑦 ℎ𝑡 (𝑦) = 0.

2. The online learner picks 𝑦𝑡 as its decision point at time step 𝑡 after observing
ℎ𝑡 , 𝑣𝑡−𝑘 .

3. The adversary picks the minimizer of the hitting cost at time step 𝑡: 𝑣𝑡 .

4. The learner pays hitting cost 𝑓𝑡 (𝑦𝑡) = ℎ𝑡 (𝑦𝑡 − 𝑣𝑡) and switching cost 𝑐(𝑦𝑡:𝑡−𝑝)
of the form (10.8).

Iterative ROBD Algorithm
Iterative ROBD (iROBD, Algorithm 10.4) is the first competitive algorithm for on-
line optimization with multi-step delay and nonlinear switching costs. Generally
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Algorithm 10.4: Iterative ROBD (iROBD)
1: Parameter: 𝜆 ≥ 0
2: Initialize a ROBD instance with 𝜆1 = 𝜆, 𝜆2 = 0
3: for 𝑡 = 1 to 𝑇 do
4: Input: ℎ𝑡 , 𝑣𝑡−𝑘
5: Observe 𝑓𝑡−𝑘 (𝑦) = ℎ𝑡−𝑘 (𝑦 − 𝑣𝑡−𝑘 )
6: 𝑦̂𝑡−𝑘 = ROBD( 𝑓𝑡−𝑘 , 𝑦̂𝑡−𝑘−𝑝:𝑡−𝑘−1)
7: Initialize a temporary sequence 𝑠1:𝑡
8: 𝑠1:𝑡−𝑘 ← 𝑦̂1:𝑡−𝑘
9: for 𝑖 = 𝑡 − 𝑘 + 1 to 𝑡 do

10: 𝑣̃𝑖 = arg min𝑣 min𝑦 ℎ𝑖 (𝑦 − 𝑣) + 𝜆𝑐(𝑦, 𝑠𝑖−1:𝑖−𝑝)
11: Set 𝑓𝑖 (𝑦) = ℎ𝑖 (𝑦 − 𝑣̃𝑖)
12: 𝑠𝑖 ← ROBD( 𝑓𝑖, 𝑠𝑖−𝑝:𝑖−1)
13: end for
14: 𝑦𝑡 = 𝑠𝑡
15: Output: 𝑦𝑡 (the action at time step 𝑡)
16: end for

speaking, the design of iROBD deals with the 𝑘-round delay via a novel iterative
process of estimating the unknown cost function optimistically, i.e., iteratively as-
suming that the unknown cost functions will lead to minimal cost for the algorithm.
This approach is different than a one-shot optimistic approach focused on the whole
trajectory of unknown cost functions, and the iterative nature is crucial for bounding
the competitive ratio. More interpretations can be found in Pan et al. (2022). iROBD
enjoys the following competitive ratio bound:

Theorem 10.4. Suppose the hitting costs are 𝑚-strongly convex and 𝑙-strongly
smooth, and the switching cost is given by 𝑐(𝑦𝑡:𝑡−𝑝) = 1

2 ∥𝑦𝑡 − 𝛿(𝑦𝑡−1:𝑡−𝑝)∥2, where
𝛿 : R𝑑×𝑝 → R𝑑 . If there is a 𝑘-round-delayed feedback on the minimizers,
and for any 1 ≤ 𝑖 ≤ 𝑝 there exists a constant 𝐿𝑖 > 0, such that for any given
𝑦𝑡−1, · · · , 𝑦𝑡−𝑖−1, 𝑦𝑡−𝑖+1, · · · , 𝑦𝑡−𝑝 ∈ R𝑑 , we have:

∥𝜃 (𝑎) − 𝜃 (𝑏)∥ ≤ 𝐿𝑖∥𝑎 − 𝑏∥,∀𝑎, 𝑏 ∈ R𝑑 ,

where 𝜃 (𝑥) = 𝛿(𝑦𝑡−1, · · · , 𝑦𝑡−𝑖−1, 𝑥, 𝑦𝑡−𝑖+1, · · · , 𝑦𝑡−𝑝), then the competitive ratio of
iROBD(𝜆) is bounded by

𝑂

(
(𝑙 + 2𝑝2𝐿2)𝑘 max

{
1
𝜆
,

𝑚 + 𝜆
𝑚 + (1 − 𝑝2𝐿2)𝜆

})
,

where 𝐿 = max𝑖{𝐿𝑖}, 𝜆 > 0 and 𝑚 + (1 − 𝑝2𝐿2)𝜆 > 0.
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The detailed analysis and a proof can be found in Pan et al. (2022). The key idea to
our competitive ratio proof is to bound the error that accumulates in the iterations by
leveraging a Lipschitz property on the nonlinear component of the switching cost.
This analytic approach is novel and a contribution in its own right.

Note that the competitive ratio of iROBD in Theorem 10.4 is 𝑂 (𝐿2𝑘 ). In other
words, feedback delay (𝑘) leads to an exponential degradation of the competitive
ratio while memory (𝑝) and the Lipschitz constant of the nonlinear switching cost (𝐿)
impact the competitive ratio only in a polynomial manner. Thus, one may wonder
if this dependence is a function of the iROBD algorithm or if it is fundamental. In
Pan et al. (2022), we provide a Ω(𝐿2𝑘 ) to show that it is a fundamental limit.

Connections to Competitive Control
As expected, online optimization with feedback delay and nonlinear switching costs
can be connected with much more general control problems than classic SOCO or
OCO with structured memory settings. In particular, we show two examples here.
For both examples, we can show exact reductions from them to online optimization
with delay and nonlinearity, and iROBD immediately provides competitive policies.
For detailed reductions and analysis, we refer to Pan et al. (2022).

Linear systems with matched and unmatched disturbance. We consider

min
𝑢𝑡

𝑇∑︁
𝑡=1

𝑞𝑡

2
∥𝑥𝑡 ∥2 +

𝑇−1∑︁
𝑡=0

1
2
∥𝑢𝑡 ∥2

s.t. 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 ,

where (𝐴, 𝐵) are in controllable canonical form and 𝑤𝑡 is a potentially adversarial
disturbance. Note that it considers both matched and unmatched disturbance while
Section 10.4 only considers the matched disturbance setting 𝐵(𝑢𝑡 + 𝑤𝑡).

Nonlinear systems with delay and time-variant costs. Consider the following
class of online nonlinear control problems:

min
𝑢𝑡

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡) +
𝑇−1∑︁
𝑡=0

1
2
∥𝑢𝑡 ∥2

s.t. 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝑢𝑡 + 𝑔(𝑥𝑡)

where { 𝑓𝑡}𝑇𝑡=1 are time-variant well-conditioned costs (e.g., trajectory tracking costs),
and 𝑔(𝑥𝑡) is the nonlinear dynamics term. At time step 𝑡, only 𝑓1:𝑡−𝑘 is known due to
communication delays. Many robotic systems can be viewed as special cases of this
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form, such as pendulum dynamics and quadrotor position dynamics (see Chapter 2).
It is immediate to see that, by defining 𝑦𝑡 = 𝑥𝑡 , this online control problem can be
converted into an online optimization problem with hitting cost 𝑓𝑡 and nonlinear
switching cost 𝑐(𝑦𝑡 , 𝑦𝑡−1) = 1

2 ∥𝑦𝑡 − 𝐴𝑦𝑡−1 − 𝑔(𝑦𝑡−1)∥2.

10.7 Appendix
Proof of Theorem 10.1
Our approach is to make use of strong convexity and properties of the hitting cost,
the switching cost, and the regularization term to derive an inequality in the form of
𝐻𝑡 +𝑀𝑡 +Δ𝜙𝑡 ≤ 𝐶 (𝐻∗𝑡 +𝑀∗𝑡 ) for some positive constant 𝐶, where Δ𝜙𝑡 is the change
in potential, which satisfies

∑𝑇
𝑡=1 Δ𝜙𝑡 ≥ 0. We will give the formal definition of Δ𝜙𝑡

later. The constant 𝐶 is then an upper bound for the competitive ratio.

By assumption, we have 𝑦𝑖 = 𝑦∗𝑖 for 𝑖 = 0,−1, · · · ,−(𝑝 − 1).

For convenience, we define

𝜙𝑡 =
𝜆1 + 𝜆2 + 𝑚

2


𝑦𝑡 − 𝑦∗𝑡 

2

.

Recall that we define 𝑣𝑡 = arg min𝑦 𝑓𝑡 (𝑦). Since the function

𝑔𝑡 (𝑦) = 𝑓𝑡 (𝑦) +
𝜆1
2






𝑦 − 𝑝∑︁
𝑖=1

𝐶𝑖𝑦𝑡−𝑖






2

+ 𝜆2
2
∥𝑦 − 𝑣𝑡 ∥2

is (𝑚 +𝜆1 +𝜆2)−strongly convex and ROBD selects 𝑦𝑡 = arg min𝑦 𝑔𝑡 (𝑦), we see that

𝑔𝑡 (𝑦𝑡) +
𝑚 + 𝜆1 + 𝜆2

2


𝑦𝑡 − 𝑦∗𝑡 

2 ≤ 𝑔𝑡 (𝑦∗𝑡 ),

which implies

𝐻𝑡 + 𝜆1𝑀𝑡 +
(
𝜙𝑡 −

𝑝∑︁
𝑖=1

∥𝐶𝑖∥
𝛼

𝜙𝑡−𝑖

)
≤

(
𝐻∗𝑡 +

𝜆2
2



𝑦∗𝑡 − 𝑣𝑡

2
)
+ ©­«𝜆1

2






𝑦∗𝑡 − 𝑝∑︁
𝑖=1

𝐶𝑖𝑦𝑡−𝑖






2

−
𝑝∑︁
𝑖=1

∥𝐶𝑖∥
𝛼

𝜙𝑡−𝑖
ª®¬ .

(10.9)

In the following steps, we bound the second term in the right-hand side of (10.9) by
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the switching cost of the offline optimal.

𝑝∑︁
𝑖=1

∥𝐶𝑖∥
𝛼

𝜙𝑡−𝑖

=
𝜆1 + 𝜆2 + 𝑚

2𝛼

𝑝∑︁
𝑖=1
∥𝐶𝑖∥ ·



𝑦𝑡−𝑖 − 𝑦∗𝑡−𝑖

2

≥ 𝜆1 + 𝜆2 + 𝑚
2𝛼2

(
𝑝∑︁
𝑖=1
∥𝐶𝑖∥ ·



𝑦𝑡−𝑖 − 𝑦∗𝑡−𝑖

)2

(10.10a)

≥ 𝜆1 + 𝜆2 + 𝑚
2𝛼2

(
𝑝∑︁
𝑖=1



𝐶𝑖𝑦𝑡−𝑖 − 𝐶𝑖𝑦∗𝑡−𝑖

)2

(10.10b)

≥ 𝜆1 + 𝜆2 + 𝑚
2𝛼2






 𝑝∑︁
𝑖=1

𝐶𝑖𝑦𝑡−𝑖 −
𝑝∑︁
𝑖=1

𝐶𝑖𝑦
∗
𝑡−𝑖






2

, (10.10c)

where we use Jensen’s Inequality in (10.10a); the definition of the matrix norm in
(10.10b); the triangle inequality in (10.10c).

For notation convenience, we define

𝛿𝑡 =

𝑝∑︁
𝑖=1

𝐶𝑖𝑦𝑡−𝑖 −
𝑝∑︁
𝑖=1

𝐶𝑖𝑦
∗
𝑡−𝑖 .
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Therefore, we obtain that

𝜆1
2






𝑦∗𝑡 − 𝑝∑︁
𝑖=1

𝐶𝑖𝑦𝑡−𝑖






2

−
𝑝∑︁
𝑖=1

∥𝐶𝑖∥
𝛼

𝜙𝑡−𝑖

≤ 𝜆1
2






𝑦∗𝑡 − 𝑝∑︁
𝑖=1

𝐶𝑖𝑦𝑡−𝑖






2

− 𝜆1 + 𝜆2 + 𝑚
2𝛼2 · ∥𝛿𝑡 ∥2 (10.11a)

=
𝜆1
2







(
𝑦∗𝑡 −

𝑝∑︁
𝑖=1

𝐶𝑖𝑦
∗
𝑡−𝑖

)
− 𝛿𝑡






2

− 𝜆1 + 𝜆2 + 𝑚
2𝛼2 · ∥𝛿𝑡 ∥2

≤ 𝜆1
2






𝑦∗𝑡 − 𝑝∑︁
𝑖=1

𝐶𝑖𝑦
∗
𝑡−𝑖






2

+ 𝜆1






𝑦∗𝑡 − 𝑝∑︁
𝑖=1

𝐶𝑖𝑦
∗
𝑡−𝑖






 · ∥𝛿𝑡 ∥
+ 𝜆1

2
∥𝛿𝑡 ∥2 −

𝜆1 + 𝜆2 + 𝑚
2𝛼2 ∥𝛿𝑡 ∥2 (10.11b)

=
𝜆1
2






𝑦∗𝑡 − 𝑝∑︁
𝑖=1

𝐶𝑖𝑦
∗
𝑡−𝑖






2

+ 𝜆1






𝑦∗𝑡 − 𝑝∑︁
𝑖=1

𝐶𝑖𝑦
∗
𝑡−𝑖






 · ∥𝛿𝑡 ∥
− (1 − 𝛼

2)𝜆1 + 𝜆2 + 𝑚
2𝛼2 ∥𝛿𝑡 ∥2

≤ 𝜆1
2






𝑦∗𝑡 − 𝑝∑︁
𝑖=1

𝐶𝑖𝑦
∗
𝑡−𝑖






2

+
𝛼2𝜆2

1
2
(
(1 − 𝛼2)𝜆1 + 𝜆2 + 𝑚

) 




𝑦∗𝑡 − 𝑝∑︁
𝑖=1

𝐶𝑖𝑦
∗
𝑡−𝑖






2

+ (1 − 𝛼
2)𝜆1 + 𝜆2 + 𝑚

2𝛼2 ∥𝛿𝑡 ∥2 −
(1 − 𝛼2)𝜆1 + 𝜆2 + 𝑚

2𝛼2 ∥𝛿𝑡 ∥2 (10.11c)

=
𝜆1(𝜆1 + 𝜆2 + 𝑚)
(1 − 𝛼2)𝜆1 + 𝜆2 + 𝑚

𝑀∗𝑡 ,

where we use (10.10) in (10.11a); the triangle inequality in (10.11b); the AM-GM
inequality in (10.11c).

We also notice that since 𝑓𝑡 is 𝑚-strongly convex, the first term in the right-hand
side of (10.9) can be bounded by

𝐻∗𝑡 +
𝜆2
2



𝑦∗𝑡 − 𝑣𝑡

2 ≤ 𝑚 + 𝜆2
𝑚

𝐻∗𝑡 . (10.12)

Substituting (10.11) and (10.12) into (10.9), we obtain that

𝐻𝑡 + 𝜆1𝑀𝑡 + 𝜙𝑡 −
𝑞∑︁
𝑡=1

∥𝐶𝑖∥
𝛼

𝜙𝑡−𝑖

≤ 𝑚 + 𝜆2
𝑚

𝐻∗𝑡 +
𝜆1(𝜆1 + 𝜆2 + 𝑚)
(1 − 𝛼2)𝜆1 + 𝜆2 + 𝑚

𝑀∗𝑡 .

(10.13)
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Define Δ𝜙𝑡 = 𝜙𝑡 −
∑𝑞

𝑡=1
∥𝐶𝑖 ∥
𝛼
𝜙𝑡−𝑖. We see that

𝑇∑︁
𝑡=1

Δ𝜙𝑡 =
1
𝛼

𝑞−1∑︁
𝑖=0

©­«
𝑞∑︁

𝑗=𝑖+1



𝐶 𝑗

ª®¬ 𝜙𝑇−𝑖 − 1
𝛼

𝑞−1∑︁
𝑖=0

©­«
𝑞∑︁

𝑗=𝑖+1



𝐶 𝑗

ª®¬ 𝜙−𝑖 .
Since 𝜙𝑡 ≥ 0,∀𝑡 and 𝜙0 = 𝜙−1 = · · · = 𝜙−𝑞+1 = 0, we have

𝑇∑︁
𝑡=1

Δ𝜙𝑡 ≥ 0. (10.14)

Summing (10.13) over timesteps 𝑡 = 1, 2, · · · , 𝑇 , we see that

𝑇∑︁
𝑡=1
(𝐻𝑡 + 𝜆1𝑀𝑡) +

𝑇∑︁
𝑡=1

Δ𝜙𝑡 ≤
𝑇∑︁
𝑡=1

(
𝑚 + 𝜆2
𝑚

𝐻∗𝑡 +
𝜆1(𝜆1 + 𝜆2 + 𝑚)
(1 − 𝛼2)𝜆1 + 𝜆2 + 𝑚

𝑀∗𝑡

)
.

Using (10.14), we obtain that

𝑇∑︁
𝑡=1
(𝐻𝑡 + 𝜆1𝑀𝑡) ≤

𝑇∑︁
𝑡=1

(
𝑚 + 𝜆2
𝑚

𝐻∗𝑡 +
𝜆1(𝜆1 + 𝜆2 + 𝑚)
(1 − 𝛼2)𝜆1 + 𝜆2 + 𝑚

𝑀∗𝑡

)
, (10.15)

which implies

𝑇∑︁
𝑡=1
(𝐻𝑡 + 𝑀𝑡) ≤

𝑇∑︁
𝑡=1

(
𝑚 + 𝜆2
𝑚𝜆1

𝐻∗𝑡 +
𝜆1 + 𝜆2 + 𝑚

(1 − 𝛼2)𝜆1 + 𝜆2 + 𝑚
𝑀∗𝑡

)
.
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C h a p t e r 11

ONLINE LEARNING PERSPECTIVES ON MODEL
PREDICTIVE CONTROL

Another critical question is begged in online learning and control: Do established
control methods have strong learning guarantees? In particular, Model Predictive
Control (MPC) has been one of the most successful methods in industrial control
since the 1980s. However, many learning theorists are studying RL algorithms,
but few are analyzing MPC and why it is so powerful. To close this gap, this
chapter studies MPC from learning-theoretic perspectives, and proves the first non-
asymptotic guarantee for MPC, showing that MPC is near-optimal in the sense of
dynamic regret in online LQR control with predictable disturbance. This chapter
also extends to settings with inexact predictions and linear time-variant (LTV)
systems. These results found common ground for learning and control theory and
imply fundamental algorithmic principles. This chapter is mainly based on the
following papers1:
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11.1 Introduction
This chapter studies the effect of using predictions for online control in a linear
dynamical system governed by 𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 , where 𝑥𝑡 , 𝑢𝑡 , and 𝑤𝑡 are
the state, control, and disturbance (or exogenous input), respectively. At each time
step 𝑡, the controller incurs a cost 𝑐𝑡 (𝑥𝑡 , 𝑢𝑡). Recently, considerable effort has been
made to leverage and integrate ideas from learning, optimization and control theory
to study the design of optimal controllers under various performance criteria, such
as static regret (Dean et al., 2020; Agarwal, Bullins, et al., 2019; Agarwal, Hazan,
et al., 2019; Cohen et al., 2019; Hazan et al., 2020; D. J. Foster and Simchowitz,
2020; Simchowitz and D. Foster, 2020), dynamic regret (Y. Li et al., 2019; Goel and
Hassibi, 2020) and competitive ratio (Chapter 10 and Goel and Wierman (2019)).
However, the study of online convergence when incorporating predictions has been
largely absent.

Indeed, a key aspect of online control is considering the amount of available in-
formation when making decisions. Most recent studies focus on the basic setting
where only past information, 𝑥0, 𝑤0, · · · , 𝑤𝑡−1, is available for 𝑢𝑡 at every time step
(Dean et al., 2020; Agarwal, Bullins, et al., 2019; D. J. Foster and Simchowitz,
2020). However, this basic setting does not effectively characterize situations where
we have accurate predictions, e.g., when 𝑥0, 𝑤0, · · · , 𝑤𝑡−1+𝑘 are available at step
𝑡. These types of accurate predictions are often available in many applications,
including robotics (Baca et al., 2018), energy systems (Vazquez et al., 2016), and
data center management (Lazic et al., 2018). Moreover, there are many practical
algorithms that leverage predictions, such as the popular Model Predictive Control
(MPC) (Baca et al., 2018; Camacho and Alba, 2013; Angeli, Casavola, et al., 2016;
Angeli, Amrit, et al., 2011; Grüne and Pirkelmann, 2018; Grüne and Stieler, 2014).

While there has been increased interest in studying online guarantees for control with
predictions, to our knowledge, there has been no such study for the case of a finite-
time horizon with disturbances. Several previous works studied the economic MPC
problem by analyzing the asymptotic performance without disturbances (Angeli,
Casavola, et al., 2016; Angeli, Amrit, et al., 2011; Grüne and Pirkelmann, 2018;
Grüne and Stieler, 2014). Rosolia and Borrelli (2019) and Rosolia and Borrelli
(2017) studied learning for MPC but focused on the episodic setting with asymptotic
convergence guarantees. Y. Li et al. (2019) considered a linear system where finite
predictions of costs are available, and analyzed the dynamic regret of their new
algorithm; however, they neither consider disturbances nor study the more practically
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relevant MPC approach. Goel and Hassibi (2020) characterized the offline optimal
policy (i.e., with infinite predictions) and cost in LQR control with i.i.d. zero-mean
stochastic disturbances, but those results do not apply to limited predictions or non-
i.i.d. disturbances. Other prior works analyze the power of predictions in online
optimization (Lin, Goel, et al., 2020; Chen et al., 2015), but the connection to online
control in dynamical systems is unclear.

From this literature, fundamental questions about online control with predictions
have emerged:

1. What are the cost-optimal and regret-minimizing policies when given 𝑘 pre-
dictions? What are the corresponding cost and regret of these policies?

2. What is the marginal benefit from each additional prediction used by the
policy, and how many predictions are needed to achieve (near-)optimal per-
formance?

3. How well does MPC with 𝑘 predictions perform compared to cost-optimal
and regret-minimizing policies?

Contributions and Organizations
In Sections 11.2 to 11.4, we systematically address each of the questions above in
the context of LQR systems with general stochastic and adversarial disturbances
in the dynamics. In the stochastic case, we explicitly derive the cost-optimal and
dynamic regret minimizing policies with 𝑘 predictions. In both the stochastic and
adversarial cases, we derive (mostly tight) upper bounds for the optimal cost and
minimum dynamic regret given access to 𝑘 predictions. We also show that the
marginal benefit of an extra prediction exponentially decays as 𝑘 increases. We
further show that MPC is near-optimal in terms of dynamic regret, and needs only
𝑂 (log𝑇) predictions to achieve 𝑂 (1) dynamic regret (the same order as is needed
by the dynamic regret minimizing policy) in both settings.

Then in Section 11.5, we generalize the analysis framework and results from per-
fect predictions to settings with inexact predictions and delays. Section 11.5 also
analyzes MPC’s competitive ratios.

Finally in Section 11.6, we generalize the setting from standard LQR to Linear
Time-Variant (LTV) systems with general well-conditioned costs.
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Perhaps surprisingly, for all these settings (LQR, inexact predictions, or LTV), we
have shown that classic MPC, which is a simple greedy policy (up to the prediction
horizon), is near-optimal even with adversarial disturbances in the dynamics. Our
results thus highlight the power of predictions to reduce the need for algorithmic
sophistication. In that sense, our results somewhat mirror recent developments in
the study of exploration strategies in online LQR control with unknown dynamics
{𝐴, 𝐵}: after a decade’s research beginning with the work of Abbasi-Yadkori and
Szepesvári (2011), Simchowitz and D. Foster (2020) recently show that naive ex-
ploration is optimal. Taken together with the result from Simchowitz and D. Foster
(2020), we provide additional evidence for the idea that the structure of LQR al-
lows simple algorithmic ideas to be effective, which sheds light on key algorithmic
principles and fundamental limits in continuous control.

11.2 Problem Statement
Throughout Sections 11.2 to 11.4, we consider the Linear Quadratic Regulator
(LQR) optimal control problem with disturbances in the dynamics (introduced in
Chapter 8). In particular, we consider a linear system initialized with 𝑥0 ∈ R𝑛 and
controlled by 𝑢𝑡 ∈ R𝑑 , with dynamics

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 and cost 𝐽 =

𝑇−1∑︁
𝑡=0
(𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡) + 𝑥⊤𝑇 Qf 𝑥𝑇 ,

where 𝑇 ≥ 1 is the total length of the control period. The goal of the controller
is to minimize the cost given 𝐴, 𝐵, 𝑄, 𝑅,Qf , 𝑥0, and the characterization of the
disturbance 𝑤𝑡 . We make the following assumption about the system.

Assumption 11.1. We assume 𝑄,Qf ⪰ 0, 𝑅 ≻ 0 and the pair (𝐴, 𝐵) is stabilizable,
i.e., there exists a matrix 𝐾0 ∈ R𝑑×𝑛 such that 𝜌(𝐴− 𝐵𝐾0) < 1. Further, we assume
the pair (𝐴,𝑄) is detectable, i.e., (𝐴⊤, 𝑄) is stabilizable, to guarantee stability of
the closed-loop. Note that detectability of (𝐴,𝑄) is more general than 𝑄 ≻ 0, i.e.,
𝑄 ≻ 0 implies (𝐴,𝑄) is detectable. For 𝑤𝑡 , in the stochastic case, we assume
{𝑤𝑡}𝑡=0,1,··· are sampled from a joint distribution with bounded cross-correlation,
i.e., E

[
𝑤⊤𝑡 𝑤𝑡 ′

]
≤ 𝑚 for any 𝑡, 𝑡′; in the adversarial case, we assume 𝑤𝑡 is picked

from a bounded set Ω and ∥𝑤𝑡 ∥ ≤ 𝑟.

Generality. These are standard assumptions in the literature, e.g., Dean et al.
(2020), D. J. Foster and Simchowitz (2020), and Simchowitz and D. Foster (2020)
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and it is worth noting that our notion of stochasticity is much more general than
typically considered (Dean et al., 2020; Cohen et al., 2019; Cassel et al., 2020).
We also note that many important problems can be straightforwardly converted to
our model. For example, input-disturbed systems and the Linear Quadratic (LQ)
tracking problem (B. D. O. Anderson and Moore, 2007).

Example 11.1 (Linear quadratic tracking). The standard quadratic tracking problem
is defined with dynamics 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤̃𝑡 and cost function 𝐽 =

∑𝑇−1
𝑡=0 (𝑥𝑡+1 −

𝑑𝑡+1)⊤𝑄(𝑥𝑡+1 − 𝑑𝑡+1) + 𝑢⊤𝑡 𝑅𝑢𝑡 , where {𝑑𝑡}𝑇𝑡=1 is the desired trajectory to track. To
map this to our model, let 𝑥𝑡 = 𝑥𝑡 − 𝑑𝑡 . Then, we get 𝐽 =

∑𝑇−1
𝑡=0 𝑥

⊤
𝑡+1𝑄𝑥𝑡+1 + 𝑢

⊤
𝑡 𝑅𝑢𝑡

and 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 , which is an LQR control problem with disturbance
𝑤𝑡 = 𝑤̃𝑡 + 𝐴𝑑𝑡 − 𝑑𝑡+1 in the dynamics.

Predictions
In the classic model, at each step 𝑡, the controller decides 𝑢𝑡 after observing 𝑤𝑡−1 and
𝑥𝑡 . In other words, 𝑢𝑡 is a function of all the previous information: 𝑥0, 𝑥1, . . . , 𝑥𝑡−1

and 𝑤0, 𝑤1, . . . , 𝑤𝑡−1, or equivalently, of 𝑥0, 𝑤0, 𝑤1, · · · , 𝑤𝑡−1. We describe this
scenario via the following event sequence:

𝑥0 𝑢0 𝑤0 𝑢1 𝑤1 · · · 𝑢𝑇−1 𝑤𝑇−1,

where each 𝑢𝑡 denotes the decision of a control policy, each𝑤𝑡 denote the observation
of a disturbance, and each decision may depend on previous events.

However, in many real-world applications the controller may have some knowledge
about future. In particular, at time step 𝑡, the controller may have predictions of
immediate 𝑘 future disturbances and make decision 𝑢𝑡 based on 𝑥0, 𝑤0, . . . , 𝑤𝑡+𝑘−1.
In this case, the event sequence is given by:

𝑥0 𝑤0 · · · 𝑤𝑘−1 𝑢0 𝑤𝑘 𝑢1 𝑤𝑘+1 · · · 𝑢𝑇−𝑘−1 𝑤𝑇−1 𝑢𝑇−𝑘 · · · 𝑢𝑇−1.

The existence of predictions is common in many applications such as disturbance
estimation in robotics and model predictive control (MPC) (Camacho and Alba,
2013), which is a common approach for the LQ tracking problem. When given 𝑘
predictions of 𝑑𝑡 , the LQ tracking problem can be formulated as a LQR problem
with 𝑘 − 1 predictions of future disturbances. Throughout Sections 11.2 to 11.4 we
assume all the predictions are exact, and discuss inexact predictions in Section 11.5.
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Disturbances
The characteristics of the disturbances have a fundamental impact on the optimal
control policy and cost. We consider two types of disturbance: stochastic dis-
turbances, which are drawn from a joint distribution (not necessarily i.i.d.), and
adversarial disturbances, which are chosen by an adversary to maximize the overall
control cost of the policy.

In the stochastic setting, we model the disturbance sequence {𝑤𝑡}𝑇−1
𝑡=0 as a discrete-

time stochastic process with joint distributionW which is known to the controller.
Let𝑊𝑡 = 𝑊𝑡 (𝑤0, . . . , 𝑤𝑡−1) be the conditional distribution of 𝑤𝑡 given 𝑤0, . . . , 𝑤𝑡−1.
Then the cost of the optimal online policy with 𝑘 predictions is given by:

STO𝑇
𝑘 = E

𝑤0∼𝑊0,...,𝑤𝑘−1∼𝑊𝑘−1

(
min
𝑢0

(
E

𝑤𝑘∼𝑊𝑘

(
· · · min

𝑢𝑇−𝑘−1

(
E

𝑤𝑇−1∼𝑊𝑇−1

(
min

𝑢𝑇−𝑘 ,...,𝑢𝑇−1
𝐽

)))))
.

Note that the cost 𝐽 = 𝐽 (𝑥0, 𝑢0, · · · , 𝑢𝑇−1, 𝑤0, · · · , 𝑤𝑇−1). Two extreme cases are
noteworthy: 𝑘 = 0 reduces to the classic case without prediction (in Chapter 8) and
𝑘 = 𝑇 reduces to the offline optimal.

In the adversarial setting, each disturbance 𝑤𝑡 is selected by an adversary from a
bounded setΩ ⊆ R𝑛 in order to maximize the cost. The controller has no information
about the disturbance except that it is in Ω. Similar to the stochastic setting, we
define:

ADV𝑇𝑘 = sup
𝑤0,...,𝑤𝑘−1∈Ω

(
min
𝑢0

(
sup
𝑤𝑘∈Ω

(
· · · min

𝑢𝑇−𝑘−1

(
sup

𝑤𝑇−1∈Ω

(
min

𝑢𝑇−𝑘 ,...,𝑢𝑇−1
𝐽

)))))
.

This can be viewed as onlineH∞ control (Zhou and Doyle, 1998) with predictions.

The average cost in an infinite horizon is particularly important in both control and
learning communities to understand asymptotic behaviors. We use separate notation
for it:

STO𝑘 = lim
𝑇→∞

1
𝑇

STO𝑇
𝑘 , ADV𝑘 = lim

𝑇→∞

1
𝑇

ADV𝑇𝑘 .

We emphasize that we do not have any constraints (like linearity) on the policy
space, and both STO𝑇

𝑘
and ADV𝑇

𝑘
are globally optimal with the corresponding type

of disturbance. This point is important in light of recent results that show that linear
policies cannot make use of predictions at all (see Chapter 10 and Goel and Hassibi
(2020)), i.e., the cost of the best linear policy with infinite predictions (𝑘 = ∞) is
asymptotically equal to that with no predictions (𝑘 = 0) in the setting with i.i.d.
zero-mean stochastic disturbances. In this chapter, we explicitly derive the optimal
policy for every 𝑘 > 0, which is nonlinear in general.
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Model Predictive Control
Algorithm 11.1: Model predictive control with 𝑘 predictions
Parameter: {𝐴, 𝐵, 𝑄, 𝑅} and Q̃f ∈ R𝑛×𝑛
Input: 𝑥0, 𝑤0, . . . , 𝑤𝑘−1

1 for 𝑡 = 0 to 𝑇 − 1 do
Input: 𝑥𝑡 , 𝑤𝑡+𝑘−1 // The controller now knows 𝑥0, . . . , 𝑥𝑡 , 𝑤0, . . . , 𝑤𝑡+𝑘−1

2 (𝑢𝑡 , . . . , 𝑢𝑡+𝑘−1) = arg min𝑢
∑𝑡+𝑘−1
𝑖=𝑡 (𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖) + 𝑥⊤𝑡+𝑘Q̃f 𝑥𝑡+𝑘 subject to

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 + 𝑤𝑖 for 𝑖 = 𝑡, . . . , 𝑡 + 𝑘 − 1
Output: 𝑢𝑡

As introduced in Chapter 8, Model predictive control (MPC) is perhaps the most
common control policy for situations where predictions are available. MPC is a
greedy algorithm with a receding horizon based on all available current predictions.
Algorithm 11.1 provides a formal definition, and we additionally refer the reader
to the book by Camacho and Alba (2013) for a literature review on MPC. We
adopt a conventional definition of MPC as an online optimal control problem with a
finite-time horizon with dynamics constraints. Note that other prior work on MPC
sometimes considers other input and state constraints (Camacho and Alba, 2013).

MPC is a practical algorithm in many scenarios like robotics (Baca et al., 2018),
energy system (Vazquez et al., 2016) and data center cooling (Lazic et al., 2018). The
existing theoretical studies of MPC focus on asymptotic stability and performance
(Angeli, Casavola, et al., 2016; Angeli, Amrit, et al., 2011; Grüne and Pirkelmann,
2018; Grüne and Stieler, 2014; Rosolia and Borrelli, 2017). To our knowledge, we
provide the first general, dynamic regret guarantee for MPC in this thesis.

In Section 11.3, we study the performance of MPC in three different cases, where
disturbances are i.i.d. zero-mean stochastic, generally stochastic, and adversarial.
We define the performance of MPC in the stochastic and adversarial settings as
follows:

MPCS𝑇𝑘 = E
𝑤0,...,𝑤𝑇−1

𝐽MPC𝑘 , MPCS𝑘 = lim
𝑇→∞

1
𝑇

MPCS𝑇𝑘 ,

MPCA𝑇𝑘 = sup
𝑤0,...,𝑤𝑇−1

𝐽MPC𝑘 , MPCA𝑘 = lim
𝑇→∞

1
𝑇

MPCA𝑇𝑘 ,

where 𝐽MPC𝑘 is the cost of MPC given a specific disturbance sequence, i.e., 𝐽MPC𝑘 (𝑤) =
𝐽 (𝑢, 𝑤) where for each 𝑡, 𝑢𝑡 = 𝜙(𝑥𝑡 , 𝑤𝑡 , . . . , 𝑤𝑡+𝑘−1) and 𝜙(·) is the function that
maps 𝑥𝑡 , 𝑤𝑡 , . . . , 𝑤𝑡+𝑘−1 to the policy 𝑢𝑡 , as defined in Algorithm 11.1. By defini-
tion, MPCS𝑘 ≥ STO𝑘 and MPCA𝑘 ≥ ADV𝑘 for every 𝑘 ≥ 1 since they use the same
information but the latter ones are defined to be optimal.
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Dynamic Regret
Throughout Sections 11.2 to 11.4, we use dynamic regret as the performance metric.
In Section 11.5, we will also discuss another metric, competitive ratio.

Regret is a standard metric in online learning and provides a bound on the cost
difference between an online algorithm and the optimal static policy in a specific
policy class given complete information. The predominant policy class is the linear
policy class (𝑢 = 𝐾𝑥). We focus on the dynamic regret, which compares to the
globally optimal offline policy without any constraint, rather than the optimal static
offline policy in a specific class. Note that the globally optimal offline policy may
be nonlinear or non-stationary. See more discussions about regret versus dynamic
regret in Chapters 8 and 10.

More specifically, we compare the cost of an online algorithm with 𝑘 predictions
to that of the offline optimal (nonlinear) algorithm, i.e., one that has predictions of
all disturbances. For MPC with 𝑘 predictions, we define its dynamic regret in the
stochastic and adversarial settings, respectively, as:

𝑅𝑒𝑔𝑆 (MPC𝑘 ) = E
(𝑤0,··· ,𝑤𝑇−1)∼W

(
𝐽MPC𝑘 (𝑤) − min

𝑢′0,...,𝑢
′
𝑇−1

𝐽 (𝑢′, 𝑤)
)
,

𝑅𝑒𝑔𝐴 (MPC𝑘 ) = sup
𝑤0,··· ,𝑤𝑇−1∈Ω

(
𝐽MPC𝑘 (𝑤) − min

𝑢′0,...,𝑢
′
𝑇−1

𝐽 (𝑢′, 𝑤)
)
.

Again, as compared to (static) regret, dynamic regret does not have any restriction
on the policies 𝑢′0, . . . , 𝑢

′
𝑇−1 used for comparison and thus differs from other notions

of regret where 𝑢′0, . . . , 𝑢
′
𝑇−1 are limited in special cases. For example, in the classic

form of regret, 𝑢′0 = · · · = 𝑢′
𝑇−1; and in the regret compared to the best offline linear

controller (Agarwal, Bullins, et al., 2019; Cohen et al., 2019), 𝑢′𝑡 = −𝐾∗𝑥𝑡 .

In Section 11.3, we obtain both upper bounds and lower bounds on dynamic regret.
For lower bounds, we define the minimum possible regret that an algorithm with 𝑘
predictions can achieve (i.e., the regret of the algorithm that minimizes the regret):

𝑅𝑒𝑔𝑆𝑘
∗
= E
𝑤0,··· ,𝑤𝑘−1

min
𝑢0
E
𝑤𝑘
· · · min

𝑢𝑇−𝑘−1
E
𝑤𝑇−1

min
𝑢𝑇−𝑘 ,··· ,𝑢𝑇−1

(
𝐽 (𝑢, 𝑤) − min

𝑢′0,...,𝑢
′
𝑇−1

𝐽 (𝑢′, 𝑤)
)
,

𝑅𝑒𝑔𝐴𝑘
∗
= sup
𝑤0,··· ,𝑤𝑘−1

min
𝑢0

sup
𝑤𝑘

· · · min
𝑢𝑇−𝑘−1

sup
𝑤𝑇−1

min
𝑢𝑇−𝑘 ,··· ,𝑢𝑇−1

(
𝐽 (𝑢, 𝑤) − min

𝑢′0,...,𝑢
′
𝑇−1

𝐽 (𝑢′, 𝑤)
)
.

Finally, we end our discussion of dynamic regret with a note highlighting an impor-
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tant contrast between stochastic and adversarial settings. In the stochastic setting,

𝑅𝑒𝑔𝑆𝑘
∗
= E
𝑤0,··· ,𝑤𝑘−1

min
𝑢0
E
𝑤𝑘
· · · min

𝑢𝑇−𝑘−1
E
𝑤𝑇−1

(
min

𝑢𝑇−𝑘 ,··· ,𝑢𝑇−1
𝐽 (𝑢, 𝑤) − min

𝑢′0,...,𝑢
′
𝑇−1

𝐽 (𝑢′, 𝑤)
)

= E
𝑤0,··· ,𝑤𝑘−1

min
𝑢0
E
𝑤𝑘
· · · min

𝑢𝑇−𝑘−1
E
𝑤𝑇−1

min
𝑢𝑇−𝑘 ,··· ,𝑢𝑇−1

𝐽 (𝑢, 𝑤) − E
𝑤0,...,𝑤𝑇−1

min
𝑢′0,...,𝑢

′
𝑇−1

𝐽 (𝑢′, 𝑤)

= STO𝑇
𝑘 − STO𝑇

𝑇 .

This equality still holds if we take arg min instead of min and thus the regret-optimal
policy is the same as the cost-optimal policy. However, in the adversarial case, a
similar reasoning gives an inequality: 𝑅𝑒𝑔𝐴

𝑘

∗ ≥ ADV𝑇
𝑘
−ADV𝑇𝑇 , and correspondingly,

the regret-optimal and cost-optimal policies can be different. Similarly, for MPC,
we have 𝑅𝑒𝑔𝑆 (MPC𝑘 ) = MPCS𝑇

𝑘
− STO𝑇

𝑇 while 𝑅𝑒𝑔𝐴 (MPC𝑘 ) ≥ MPCA𝑇
𝑘
− ADV𝑇𝑇 .

11.3 Dynamic Regret of MPC in LQ Systems
Zero-Mean I.I.D. Disturbances
We begin our analysis with the simplest of the three settings we consider: the
disturbances 𝑤𝑡 are independent and identically distributed with zero mean. Though
i.i.d. zero-mean is a limited setting, it is still complex enough to study predictions
and the first results characterizing the optimal policy with predictions appeared only
recently (Goel and Hassibi, 2020; D. J. Foster and Simchowitz, 2020), focusing only
on the optimal policy when 𝑘 →∞.

Before delving into our results, we first recap the classic Infinite Horizon Linear
Quadratic Stochastic Regulator (see B. D. Anderson and Moore (2012) and Chap-
ter 8), i.e., the case when 𝑘 = 0:

Lemma 11.1 (B. D. Anderson and Moore (2012)). Let 𝑤𝑡 be i.i.d. with zero mean
and covariance matrix𝑊 . Then, the optimal control policy corresponding to STO0

is given by:
𝑢𝑡 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴𝑥𝑡 C −𝐾𝑥𝑡 ,

where 𝑃 is the solution of discrete-time algebraic Riccati equation (DARE)

𝑃 = 𝑄 + 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴. (11.1)

The corresponding closed-loop dynamics 𝐴−𝐵𝐾 is exponentially stable, i.e., 𝜌(𝐴−
𝐵𝐾) < 1. Further, the optimal cost is given by STO0 = Tr{𝑃𝑊}.

This result has been extensively studied in optimal control theory (Kirk, 2004;
B. D. O. Anderson and Moore, 2007) as well as in reinforcement learning (Fazel
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et al., 2018; Dean et al., 2020; Simchowitz and D. Foster, 2020). We want to
emphasize two important properties of the optimal policy 𝑢𝑡 = −𝐾𝑥𝑡 . First, the
policy is linear in the state 𝑥𝑡 . In contrast, we show later that the optimal policy
when 𝑘 ≠ 0 is, in general, nonlinear. Second, under the assumptions of our model,
this policy is exponentially stable, i.e., 𝜌(𝐴 − 𝐵𝐾) < 1. We leverage this to show
the power of predictions later.

Optimal policy with 𝑘 predictions. For notational simplicity, we define 𝐹 = 𝐴−𝐵𝐾
and 𝜆 =

1+𝜌(𝐹)
2 < 1. From Gelfand’s formula, there exists a constant 𝑐(𝑛) such that

∥𝐹𝑘 ∥ ≤ 𝑐(𝑛)𝜆𝑘 for all 𝑘 ≥ 1. We explicitly characterize the optimal policy with 𝑘
predictions in the following theorem.

Theorem 11.1. Let 𝑤𝑡 be i.i.d. with zero mean and covariance matrix𝑊 . Suppose
the controller has 𝑘 ≥ 1 predictions. Then, the optimal control policy at each step
𝑡 is given by:

𝑢𝑡 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
©­­«𝑃𝐴𝑥𝑡 +

𝑘−1∑︁
𝑖=0
(𝐴⊤ − 𝐴⊤𝑃𝐻︸         ︷︷         ︸

=𝐹⊤

)𝑖𝑃𝑤𝑡+𝑖
ª®®¬, (11.2)

where 𝑃 is the solution of DARE in Eq. (11.1). The cost under this policy is:

STO𝑘 = Tr

{(
𝑃 −

𝑘−1∑︁
𝑖=0

𝑃(𝐴 − 𝐻𝑃𝐴)𝑖𝐻 (𝐴⊤ − 𝐴⊤𝑃𝐻)𝑖𝑃
)
𝑊

}
, (11.3)

where 𝐻 = 𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤.

Proof. Our proof technique closely follows that in Section 4.1 of Goel and Hassibi
(2020). To begin, note that the definition of STO𝑇

𝑘
has a structure of repeating min’s

andE’s. Similarly to the analysis of Eq. (8.5) in Chapter 8, we use dynamic program-
ming to compute the value iteratively. In particular, we apply backward induction
to solve the optimal cost-to-go functions, from time step 𝑇 to the initial state. Given
state 𝑥𝑡 and predictions 𝑤𝑡 , . . . , 𝑤𝑡+𝑘−1, we define the cost-to-go function:

𝑉𝑡 (𝑥𝑡 ;𝑤𝑡:𝑡+𝑘−1) B min
𝑢𝑡
E
𝑤𝑡+𝑘

min
𝑢𝑡+1
· · · E

𝑤𝑇−1
min

𝑢𝑇−𝑘 ,··· ,𝑢𝑇−1

𝑇−1∑︁
𝑖=𝑡

(𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖) + 𝑥⊤𝑇 Qf 𝑥𝑇

(11.4)

= 𝑥⊤𝑡 𝑄𝑥𝑡 +min
𝑢𝑡

(
𝑢⊤𝑡 𝑅𝑢𝑡 + E

𝑤𝑡+𝑘
[𝑉𝑡+1(𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 ;𝑤𝑡+1:𝑡+𝑘 )]

)
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with 𝑉𝑇 (𝑥𝑇 ; . . . ) = 𝑥⊤
𝑇

Qf 𝑥𝑇 . Note that E𝑤𝑡+𝑘 has no effect for 𝑡 ≥ 𝑇 − 𝑘 . This
function measures the expected overall control cost from a given state to the end,
assuming the controller makes the optimal decision at each time.

We will show by backward induction that for every 𝑡 = 0, . . . , 𝑇 , 𝑉𝑡 (𝑥𝑡 ;𝑤𝑡:𝑡+𝑘−1) =
𝑥⊤𝑡 𝑃𝑡𝑥𝑡 + 𝑣⊤𝑡 𝑥𝑡 + 𝑞𝑡 , where 𝑃𝑡 , 𝑣𝑡 , 𝑞𝑡 are coefficients that may depend on 𝑤𝑡:𝑡+𝑘−1.
This is clearly true for 𝑡 = 𝑇 . Suppose this is true at 𝑡 + 1. Then,

𝑉𝑡 (𝑥;𝑤𝑡:𝑡+𝑘−1)

= 𝑥⊤𝑄𝑥 +min
𝑢

(
𝑢⊤𝑅𝑢 + (𝐴𝑥 + 𝐵𝑢 + 𝑤𝑡)⊤𝑃𝑡+1(𝐴𝑥 + 𝐵𝑢 + 𝑤𝑡)

+ E
𝑤𝑡+𝑘
[𝑣𝑡+1]⊤(𝐴𝑥 + 𝐵𝑢 + 𝑤𝑡) + E

𝑤𝑡+𝑘
[𝑞𝑡+1]

)
= 𝑥⊤𝑄𝑥 + (𝐴𝑥 + 𝑤𝑡)⊤𝑃𝑡+1(𝐴𝑥 + 𝑤𝑡) + E

𝑤𝑡+𝑘
[𝑣𝑡+1]⊤(𝐴𝑥 + 𝑤𝑡) + E

𝑤𝑡+𝑘
[𝑞𝑡+1]

+min
𝑢

(
𝑢⊤(𝑅 + 𝐵⊤𝑃𝑡+1𝐵)𝑢 + 𝑢⊤𝐵⊤

(
2𝑃𝑡+1𝐴𝑥 + 2𝑃𝑡+1𝑤𝑡 + E

𝑤𝑡+𝑘
[𝑣𝑡+1]

))
.

The optimal 𝑢 is obtained by setting the derivative to be zero:

𝑢∗ = −(𝑅 + 𝐵⊤𝑃𝑡+1𝐵)−1𝐵⊤
(
𝑃𝑡+1𝐴𝑥 + 𝑃𝑡+1𝑤𝑡 +

1
2
E
𝑤𝑡+𝑘
[𝑣𝑡+1]

)
. (11.5)

Let 𝐻𝑡 = 𝐵(𝑅 + 𝐵⊤𝑃𝑡+1𝐵)−1𝐵⊤. Plugging 𝑢∗ back into 𝑉𝑡 , we have

𝑉𝑡 (𝑥;𝑤𝑡:𝑡+𝑘−1)
= 𝑥⊤𝑄𝑥 + (𝐴𝑥 + 𝑤𝑡)⊤𝑃𝑡+1(𝐴𝑥 + 𝑤𝑡) + E

𝑤𝑡+𝑘
[𝑣𝑡+1]⊤(𝐴𝑥 + 𝑤𝑡) + E

𝑤𝑡+𝑘
[𝑞𝑡+1]

−
(
𝑃𝑡+1𝐴𝑥 + 𝑃𝑡+1𝑤𝑡 +

1
2
E
𝑤𝑡+𝑘
[𝑣𝑡+1]

)⊤
𝐻𝑡

(
𝑃𝑡+1𝐴𝑥 + 𝑃𝑡+1𝑤𝑡 +

1
2
E
𝑤𝑡+𝑘
[𝑣𝑡+1]

)
= 𝑥⊤

(
𝑄 + 𝐴⊤𝑃𝑡+1𝐴 − 𝐴⊤𝑃𝑡+1𝐻𝑡𝑃𝑡+1𝐴

)
𝑥

+ 𝑥⊤
(
(𝐴⊤ − 𝐴⊤𝑃𝑡+1𝐻𝑡) E

𝑤𝑡+𝑘
[𝑣𝑡+1] + 2(𝐴⊤ − 𝐴⊤𝑃𝑡+1𝐻𝑡)𝑃𝑡+1𝑤𝑡

)
+ 𝑤⊤𝑡 (𝑃𝑡+1 − 𝑃𝑡+1𝐻𝑡𝑃𝑡+1)𝑤𝑡 + 𝑤⊤𝑡 (𝐼 − 𝑃𝑡+1𝐻𝑡) E

𝑤𝑡+𝑘
[𝑣𝑡+1]

− 1
4
E
𝑤𝑡+𝑘
[𝑣𝑡+1]⊤𝐻𝑡 E

𝑤𝑡+𝑘
[𝑣𝑡+1] + E

𝑤𝑡+𝑘
[𝑞𝑡+1] .

Thus, the recursive formulae are given by:

𝑃𝑡 = 𝑄 + 𝐴⊤𝑃𝑡+1𝐴 − 𝐴⊤𝑃𝑡+1𝐻𝑡𝑃𝑡+1𝐴, (11.6a)

𝑣𝑡 = (𝐴⊤ − 𝐴⊤𝑃𝑡+1𝐻𝑡) E
𝑤𝑡+𝑘
[𝑣𝑡+1] + 2(𝐴⊤ − 𝐴⊤𝑃𝑡+1𝐻𝑡)𝑃𝑡+1𝑤𝑡 , (11.6b)

𝑞𝑡 = 𝑤
⊤
𝑡 (𝑃𝑡+1 − 𝑃𝑡+1𝐻𝑡𝑃𝑡+1)𝑤𝑡 + 𝑤⊤𝑡 (𝐼 − 𝑃𝑡+1𝐻𝑡) E

𝑤𝑡+𝑘
[𝑣𝑡+1]

− 1
4
E
𝑤𝑡+𝑘
[𝑣𝑡+1]⊤𝐻𝑡 E

𝑤𝑡+𝑘
[𝑣𝑡+1] + E

𝑤𝑡+𝑘
[𝑞𝑡+1] .

(11.6c)
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As 𝑇 − 𝑡 →∞, 𝑃𝑡 and 𝐻𝑡 converge to 𝑃 and 𝐻, respectively, where 𝑃 is the solution
of discrete-time algebraic Riccati equation (DARE) 𝑃 = 𝑄 + 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐻𝑃𝐴,
and 𝐻 = 𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤. Note that 𝑣𝑇 = 0 and 𝑞𝑇 = 0. Then,

𝑣𝑡 = 2
𝑘−1∑︁
𝑖=0
(𝐴⊤ − 𝐴⊤𝑃𝐻)𝑖+1𝑃𝑤𝑡+𝑖, (11.7)

𝑞𝑡 = 𝑤
⊤
𝑡 (𝑃 − 𝑃𝐻𝑃)𝑤𝑡 + 𝑤⊤𝑡 (𝐼 − 𝑃𝐻) E

𝑤𝑡+𝑘
[𝑣𝑡+1] −

1
4
E
𝑤𝑡+𝑘
[𝑣𝑡+1]⊤𝐻 E

𝑤𝑡+𝑘
[𝑣𝑡+1] + E

𝑤𝑡+𝑘
[𝑞𝑡+1],

(11.8)

E
𝑤𝑡+𝑘
[𝑣𝑡+1] = 2

𝑘−1∑︁
𝑖=1
(𝐴⊤ − 𝐴⊤𝑃𝐻)𝑖𝑃𝑤𝑡+𝑖 . (11.9)

Taking the expectation of 𝑞𝑡 over all randomness, namely 𝑤0, 𝑤1, 𝑤2, . . . , we have

E[𝑞𝑡] = Tr{(𝑃 − 𝑃𝐻𝑃)𝑊} −
𝑘−1∑︁
𝑖=1

Tr
{
𝑃(𝐴 − 𝐻𝑃𝐴)𝑖𝐻 (𝐴⊤ − 𝐴⊤𝑃𝐻)𝑖𝑃𝑊

}
+ E[𝑞𝑡+1]

= Tr

{(
𝑃 −

𝑘−1∑︁
𝑖=0

𝑃(𝐴 − 𝐻𝑃𝐴)𝑖𝐻 (𝐴⊤ − 𝐴⊤𝑃𝐻)𝑖𝑃
)
𝑊

}
+ E[𝑞𝑡+1], (11.10)

where in the first equality we use E[𝑤𝑡] = 0 and the independence of the distur-
bances. Thus, as 𝑇 → ∞, in each time step, a constant cost is incurred and the
average cost STO𝑘 is exactly this value.

STO𝑘 = lim
𝑇→∞

1
𝑇

STO𝑇
𝑘 = lim

𝑇→∞

1
𝑇
E[𝑉0(𝑥0;𝑤0:𝑘−1)] = lim

𝑇→∞

1
𝑇
E[𝑞0]

= lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0
E[𝑞𝑡] − E[𝑞𝑡+1] = Tr

{(
𝑃 −

𝑘−1∑︁
𝑖=0

𝑃(𝐴 − 𝐻𝑃𝐴)𝑖𝐻 (𝐴⊤ − 𝐴⊤𝑃𝐻)𝑖𝑃
)
𝑊

}
.

The explicit form of the optimal control policy is obtained by combining Eqs. (11.5)
and (11.9). □

Roughly speaking, the proof is based on an analysis of quadratic cost-to-go functions
in the form𝑉𝑡 (𝑥𝑡) = 𝑥⊤𝑡 𝑃𝑡𝑥𝑡 + 𝑣⊤𝑡 𝑥𝑡 +𝑞𝑡 (Chapter 8’s analysis does not have the linear
term 𝑣⊤𝑡 𝑥𝑡). Note that 𝐴−𝐻𝑃𝐴 = 𝐴−𝐵(𝑅+𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴 = 𝐴−𝐵𝐾 = 𝐹. Thus,
the online optimal cost STO𝑘 with 𝑘 predictions approaches the offline optimal cost
STO∞ by an exponential rate. In other words, STO𝑘/STO∞ = 1 + 𝑂 (∥𝐹𝑘 ∥2) =
1+𝑂 (𝜆2𝑘 ). Two extreme cases of our result are noteworthy. When 𝑘 = 0, it reduces
to the classic Lemma 11.1. When 𝑘 → ∞, it reduces to the offline optimal case
derived by Goel and Hassibi (2020).



220

MPC’s performance. As might be expected, since the disturbances are i.i.d., future
disturbances have no dependence on the current. As a result, MPC in Algorithm 11.1
with Qf = 𝑃 gives the optimal policy, as shown below.

Theorem 11.2. In Algorithm 11.1, let Q̃f = 𝑃. Then, the MPC policy with 𝑘

predictions is always given by Eq. (11.2) (no matter 𝑤𝑡 is i.i.d. stochastic, generally
stochastic, or adversarial). Moreover, assuming i.i.d. disturbance with zero mean,
the MPC policy is optimal (both cost-optimal and dynamic-regret-optimal).

Proof. Due to the greedy nature, MPC policy is given by the solution of a length-𝑘
optimal control problem, given deterministic and known 𝑤𝑡 , · · · , 𝑤𝑡+𝑘−1. In other
words, we want to derive the optimal policy (𝑢𝑡 , . . . , 𝑢𝑡+𝑘−1) that minimizes

𝑡+𝑘−1∑︁
𝑖=𝑡

(𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖) + 𝑥⊤𝑡+𝑘𝑃𝑥𝑡+𝑘 ,

where 𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖 +𝑤𝑖, given 𝑥𝑡 , 𝑤𝑡 , . . . , 𝑤𝑡+𝑘−1. Define the cost-to-go function
at time 𝑖 given 𝑥𝑖, 𝑤𝑖, . . . , 𝑤𝑡+𝑘−1:

𝑉𝑖 (𝑥𝑖;𝑤𝑖:𝑡+𝑘−1) = min
𝑢𝑖:𝑡+𝑘−1

𝑡+𝑘−1∑︁
𝑗=𝑖

(𝑥⊤𝑗 𝑄𝑥 𝑗 + 𝑢⊤𝑗 𝑅𝑢 𝑗 ) + 𝑥⊤𝑡+𝑘𝑃𝑥𝑡+𝑘

= 𝑥⊤𝑖 𝑄𝑥𝑖 +min
𝑢𝑖
(𝑢⊤𝑖 𝑅𝑢𝑖 +𝑉𝑖+1(𝐴𝑥𝑖 + 𝐵𝑢𝑖 + 𝑤𝑖;𝑤𝑖+1:𝑡+𝑘−1)).

Note that 𝑉𝑡+𝑘 (𝑥𝑡+𝑘 ) = 𝑥⊤
𝑡+𝑘𝑃𝑥𝑡+𝑘 . Similar to the proof of Theorem 11.1, we can

inductively show that 𝑉𝑖 (𝑥𝑖;𝑤𝑖:𝑡+𝑘−1) = 𝑥⊤𝑖 𝑃𝑥𝑖 + 𝑣⊤𝑖 𝑥𝑖 + 𝑞𝑖 for some 𝑣𝑖 and 𝑞𝑖. Note
that the second-degree coefficient no longer depends on the index 𝑖 as in the previous
proof because we start from 𝑃, the solution of DARE. We then have the followings
equations that parallel with Equations (11.5) and (11.7):

𝑣𝑖 = 2
𝑡+𝑘−𝑖−1∑︁
𝑗=0

𝐹⊤
𝑗+1
𝑃𝑤𝑖+ 𝑗 ,

𝑢∗𝑖 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
(
𝑃𝐴𝑥𝑖 + 𝑃𝑤𝑖 +

1
2
𝑣𝑖+1

)
= −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤

©­«𝑃𝐴𝑥𝑖 +
𝑡+𝑘−𝑖−1∑︁
𝑗=0

𝐹⊤
𝑗
𝑃𝑤𝑖+ 𝑗

ª®¬.
The case 𝑖 = 𝑡 gives:

𝑢∗𝑡 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
©­«𝑃𝐴𝑥𝑡 +

𝑘−1∑︁
𝑗=0

𝐹⊤
𝑗
𝑃𝑤𝑡+ 𝑗

ª®¬,
which is the MPC policy at time step 𝑡, and is same as Equation (11.2). □
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General Stochastic Disturbance
In this section, we consider a general form of stochastic disturbance, more general
than typically considered in this context (Dean et al., 2020; Cohen et al., 2019; Cassel
et al., 2020). Suppose the disturbance sequence {𝑤𝑡}𝑡=0,1,2,... is sampled from a joint
distributionW such that the trace of the cross-correlation of each pair is uniformly
bounded, i.e., there exist 𝑚 > 0 such that for all 𝑡, 𝑡′ ≥ 1, E

[
𝑤⊤𝑡 𝑤𝑡 ′

]
≤ 𝑚.

Optimal policy with 𝑘 predictions. In the case of general stochastic disturbances,
we cannot obtain as clean a form for STO𝑘 as in the i.i.d. case in Theorem 11.1.
However, the marginal benefit of having an extra prediction decays with the same
(exponential) rate and the optimal policy is similar to that in Theorem 11.1, but with
some additional terms that characterize the expected future disturbances given the
current information, as shown in the following theorem.

Theorem 11.3. The optimal control policy with general stochastic disturbance is
given by:

𝑢𝑡 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
(
𝑃𝐴𝑥𝑡 +

𝑘−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖 +

∞∑︁
𝑖=𝑘

𝐹⊤
𝑖
𝑃𝜇𝑡+𝑖 |𝑡+𝑘−1

)
, (11.11)

where 𝜇𝑡 ′ |𝑡 = E[𝑤𝑡 ′ | 𝑤0, . . . , 𝑤𝑡]. Under this policy, the marginal benefit of ob-
taining an extra prediction decays exponentially fast in the existing number 𝑘 of
predictions. Formally, for 𝑘 ≥ 1,

STO𝑘 − STO𝑘+1 = 𝑂 (∥𝐹𝑘 ∥2) = 𝑂 (𝜆2𝑘 ).2

Proof. Similar to the proof of Theorem 11.1, we assume

𝑉𝑡 (𝑥𝑡 ;𝑤0:𝑡+𝑘−1) = 𝑥⊤𝑡 𝑃𝑡𝑥𝑡 + 𝑥⊤𝑡 𝑣𝑡 + 𝑞𝑡 ,

where 𝑉𝑡 has a similar definition as in Eq. (11.4) but may further depend on
𝑤0, . . . , 𝑤𝑡−1 because the disturbance sequence is no longer Markovian. In this
case, 𝑃𝑡 , 𝑣𝑡 and 𝑞𝑡 still satisfy the recursive forms in Eq. (11.6). However, the
expected values of 𝑤𝑡 and 𝑣𝑡 are different since we have a more general distribution
now. Let 𝑇 − 𝑡 →∞, 𝜇𝑡 ′ |𝑡 = E[𝑤𝑡 ′ | 𝑤0, . . . , 𝑤𝑡] and 𝐹 = 𝐴 − 𝐻𝑃𝐴. Then,

𝑣𝑘𝑡 = 2
𝑘−1∑︁
𝑖=0

𝐹⊤
𝑖+1
𝑃𝑤𝑡+𝑖 + 2

∞∑︁
𝑖=𝑘

𝐹⊤
𝑖+1
𝑃𝜇𝑡+𝑖 |𝑡+𝑘−1, (11.12)

𝑞𝑘𝑡 = 𝑤
⊤
𝑡 (𝑃 − 𝑃𝐻𝑃)𝑤𝑡 + 𝑤⊤𝑡 (𝐼 − 𝑃𝐻) E

𝑤𝑡+𝑘

[
𝑣𝑘𝑡+1

]
− 1

4
E
𝑤𝑡+𝑘

[
𝑣𝑘𝑡+1

]⊤
𝐻 E
𝑤𝑡+𝑘

[
𝑣𝑘𝑡+1

]
+ E
𝑤𝑡+𝑘

[
𝑞𝑘𝑡+1

]
,

2We say that 𝑓 (𝑘) = 𝑂 (𝑔(𝑘)) if ∃𝐶 > 0, ∀𝑘 ≥ 1, | 𝑓 (𝑘) | ≤ 𝐶 𝑔(𝑘); Ω() is similar except that the
last “≤” is replaced by “≥”; Θ()means both𝑂 () andΩ(). This is stronger than the standard definition
where 𝑓 (𝑘) = 𝑂 (𝑔(𝑘)) if ∃𝐶 > 0, 𝑘∗ > 0, ∀𝑘 ≥ 𝑘∗, | 𝑓 (𝑘) | ≤ 𝐶 𝑔(𝑘).

https://en.wikipedia.org/wiki/Big_O_notation
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where the superscript 𝑘 denotes the number of predictions.

The optimal policy in this case has the same form as Eq. (11.5). Plugging Eq. (11.12)
into it, we obtain the optimal policy in the theorem.

Further,

E
[
𝑞𝑘𝑡 − 𝑞𝑘+1𝑡

]
= E

[
𝑤⊤𝑡 (𝐼 − 𝑃𝐻)

(
E
𝑤𝑡+𝑘

[
𝑣𝑘𝑡+1

]
− E
𝑤𝑡+𝑘+1

[
𝑣𝑘+1𝑡+1

] )]
(11.13a)

+ 1
4
E

[
E

𝑤𝑡+𝑘+1

[
𝑣𝑘+1𝑡+1

]⊤
𝐻 E
𝑤𝑡+𝑘+1

[
𝑣𝑘+1𝑡+1

]
− E
𝑤𝑡+𝑘

[
𝑣𝑘𝑡+1

]⊤
𝐻 E
𝑤𝑡+𝑘

[
𝑣𝑘𝑡+1

] ]
(11.13b)

+ E
[
𝑞𝑘𝑡+1 − 𝑞

𝑘+1
𝑡+1

]
, (11.13c)

where the expectation E is taken over all randomness. Part (11.13a) is zero because

E
𝑤𝑡+𝑘

[
𝑣𝑘𝑡+1

]
= E
𝑤𝑡+𝑘 ,𝑤𝑡+𝑘+1

[
𝑣𝑘+1𝑡+1

]
.

Part (11.13b) =
1
4
E
𝑤𝑡+𝑘

[(
E

𝑤𝑡+𝑘+1

[
𝑣𝑘+1𝑡+1

]
− E
𝑤𝑡+𝑘

[
𝑣𝑘𝑡+1

] )⊤
𝐻

(
E

𝑤𝑡+𝑘+1

[
𝑣𝑘+1𝑡+1

]
− E
𝑤𝑡+𝑘

[
𝑣𝑘𝑡+1

] )]
= E
𝑤𝑡+𝑘

[
𝑧⊤𝑘,𝑡𝐻𝑧𝑘,𝑡

]
,

where

𝑧𝑘,𝑡 = 𝐹
⊤𝑘𝑃(𝑤𝑡+𝑘 − 𝜇𝑡+𝑘 |𝑡+𝑘−1) +

∞∑︁
𝑖=𝑘+1

𝐹⊤
𝑖
𝑃(𝜇𝑡+𝑖 |𝑡+𝑘 − 𝜇𝑡+𝑖 |𝑡+𝑘−1).

Note that 𝑧𝑘,𝑡 = 𝐹⊤𝑧𝑘−1,𝑡+1 = 𝐹⊤𝑘 𝑧0,𝑡+𝑘 . Thus,

STO𝑘 − STO𝑘+1 = lim
𝑇→∞

1
𝑇
E
[
𝑞𝑘0 − 𝑞

𝑘+1
0

]
= lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0
E
[
𝑧⊤𝑘,𝑡𝐻𝑧𝑘,𝑡

]
= lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0
E
[
𝑧⊤0,𝑡+𝑘𝐹

𝑘𝐻𝐹⊤
𝑘
𝑧0,𝑡+𝑘

]
= lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0

Tr
{
𝐹𝑘𝐻𝐹⊤

𝑘
E
[
𝑧0,𝑡+𝑘 𝑧

⊤
0,𝑡+𝑘

]}
≤



𝐹𝑘

2∥𝐻∥ lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0

Tr
{
E
[
𝑧0,𝑡+𝑘 𝑧

⊤
0,𝑡+𝑘

]}
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where in the last line we use the fact that if 𝐴 is symmetric, then Tr{𝐴𝐵} ≤
𝜆max(𝐴)Tr{𝐵}. Finally we just need to show the last item Tr

{
E
[
𝑧0,𝑡+𝑘 𝑧⊤0,𝑡+𝑘

]}
is

uniformly bounded for all 𝑡. This is straightforward because the cross-correlation
of each disturbance pair is uniformly bounded, i.e., there exists 𝑚 > 0 such that for
all 𝑡, 𝑡′ ≥ 1, E

[
𝑤⊤𝑡 𝑤𝑡 ′

]
≤ 𝑚.

Tr
{
E
[
𝑧0,𝑡𝑧

⊤
0,𝑡

]}
=

∞∑︁
𝑖, 𝑗=0

Tr
{
E
[
𝑃𝐹𝑖𝐹⊤

𝑗
𝑃(𝜇𝑡+ 𝑗 |𝑡 − 𝜇𝑡+ 𝑗 |𝑡−1) (𝜇𝑡+𝑖 |𝑡 − 𝜇𝑡+𝑖 |𝑡−1)⊤

]}
=

∞∑︁
𝑖, 𝑗=0

Tr
{
𝑃𝐹𝑖𝐹⊤

𝑗
𝑃 E

[
𝜇𝑡+ 𝑗 |𝑡𝜇

⊤
𝑡+𝑖 |𝑡 − 𝜇𝑡+ 𝑗 |𝑡−1𝜇

⊤
𝑡+𝑖 |𝑡−1

]}
≤
∞∑︁

𝑖, 𝑗=0



𝐹𝑖



𝐹 𝑗

∥𝑃∥2 E[𝑤⊤𝑡+ 𝑗𝑤𝑡+𝑖 − 𝑤⊤𝑡+ 𝑗𝑤𝑡+𝑖]
≤
∞∑︁

𝑖, 𝑗=0
𝑐𝜆𝑖𝑐𝜆 𝑗 ∥𝑃∥22𝑚 = 2

𝑐2

(1 − 𝜆)2
∥𝑃∥2𝑚

for some constant 𝑐 from Gelfand’s formula. Thus Tr
{
E
[
𝑧0,𝑡𝑧

⊤
0,𝑡

]}
is bounded by a

constant independent of 𝑡. Thus,

STO𝑘 − STO𝑘+1 = 𝑂 (∥𝐹𝑘 ∥2).

□

Roughly speaking, this proof leverages a novel difference analysis of cost-to-go
functions. Note that for some distributions, STO𝑘 may approach STO∞ much faster
than exponential rate. It is even possible that STO𝑘 = STO∞ for finite 𝑘 , as we
show in Example 11.2 below. On the other hand, there are scenarios where STO𝑘

approaches STO∞ in an exactly exponential manner, as we show in Example 11.3
below.

Example 11.2. Define the joint distribution W such that with probability 1
2 , all

𝑤𝑡 = 𝑤, and otherwise all 𝑤𝑡 = −𝑤. In this case, one prediction is equivalent to
infinite predictions since it is enough to distinguish these two scenarios with only
𝑤0. As a result, STO1 = STO∞.

Example 11.3. Suppose the system is 1-d (𝑛 = 𝑑 = 1) and the disturbance is i.i.d.
with zero mean, i.e., the setting of Theorem 11.1. Then, according to Eq. (11.3), as
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long as 𝐹, 𝑃, 𝐻,𝑊 are non-zero,

STO𝑘 − STO∞ =

∞∑︁
𝑖=𝑘

𝐹2𝑖𝑃2𝐻𝑊 = Θ(𝐹2𝑘 ).

MPC’s performance. The comparison between the MPC policy in Eq. (11.2) and
the optimal policy in Eq. (11.11) reveals that MPC is a truncation of the optimal
policy and is no longer optimal because MPC is a greedy policy without considering
future dependence on current information. Nevertheless, it is still a near-optimal
policy, as characterized by the following results.

Theorem 11.4. MPCS𝑘 −MPCS𝑘+1 = 𝑂 (∥𝐹𝑘 ∥2) = 𝑂 (𝜆2𝑘 ). Moreover, in Example
11.3, MPCS𝑘 −MPCS𝑘+1 = Θ(∥𝐹𝑘 ∥2).

Proof. To recursively calculate the value of 𝐽MPC𝑘 , we define:

𝑉
MPC𝑘
𝑡 (𝑥𝑡 ;𝑤0:𝑡+𝑘−1) =

𝑇−1∑︁
𝑖=𝑡

(𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖) + 𝑥⊤𝑇 Qf 𝑥𝑇

= 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 +𝑉𝑡+1(𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 ;𝑤0:𝑡+𝑘 )

as the cost-to-go function with MPC as the policy, i.e., 𝑢𝑡 is the control at time
step 𝑡 from the MPC policy with 𝑘 predictions. Similar to the previous proofs, we
assume 𝑉MPC𝑘

𝑡 (𝑥) = 𝑥⊤𝑃𝑡𝑥 + 𝑥⊤𝑣𝑡 + 𝑞𝑡 (which turns out to be correct by induction)
and 𝑇 − 𝑡 →∞ so that 𝑃𝑡 = 𝑃. Then,

𝑉
MPC𝑘
𝑡 (𝑥𝑡 ;𝑤0:𝑡+𝑘−1) = 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 + (𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡)⊤𝑃(𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡)

+ (𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡)⊤𝑣𝑡+1 + 𝑞𝑡+1
= 𝑢⊤𝑡 (𝑅 + 𝐵⊤𝑃𝐵)𝑢𝑡 + 2𝑢⊤𝑡 𝐵⊤(𝑃𝐴𝑥𝑡 + 𝑃𝑤𝑡 + 𝑣𝑡+1/2)
+ 𝑥⊤𝑡 𝑄𝑥𝑡 + (𝐴𝑥𝑡 + 𝑤𝑡)⊤𝑃(𝐴𝑥𝑡 + 𝑤𝑡) + (𝐴𝑥𝑡 + 𝑤𝑡)⊤𝑣𝑡+1 + 𝑞𝑡+1.

(11.14)
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Let 𝐹 = 𝐴 − 𝐻𝑃𝐴. Plugging in the formula of 𝑢𝑡 in Theorem 11.2, we have

𝑉
MPC𝑘
𝑡 (𝑥𝑡 ;𝑤0:𝑡+𝑘−1) =

(
1
2
𝑣𝑡+1 −

𝑘−1∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

(
1
2
𝑣𝑡+1 −

𝑘−1∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
−

(
𝑃𝐴𝑥𝑡 + 𝑃𝑤𝑡 +

1
2
𝑣𝑡+1

)⊤
𝐻

(
𝑃𝐴𝑥𝑡 + 𝑃𝑤𝑡 +

1
2
𝑣𝑡+1

)
+ 𝑥⊤𝑡 𝑄𝑥𝑡 + (𝐴𝑥𝑡 + 𝑤𝑡)⊤𝑃(𝐴𝑥𝑡 + 𝑤𝑡) + (𝐴𝑥𝑡 + 𝑤𝑡)⊤𝑣𝑡+1 + 𝑞𝑡+1

= 𝑥⊤𝑡 (𝑄 + 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐻𝑃𝐴)𝑥𝑡 + 𝑥⊤𝑡 (𝐹⊤𝑣𝑡+1 + 2𝐹⊤𝑃𝑤𝑡)

+
(

1
2
𝑣𝑡+1 −

𝑘−1∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

(
1
2
𝑣𝑡+1 −

𝑘−1∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
−

(
𝑃𝑤𝑡 +

1
2
𝑣𝑡+1

)⊤
𝐻

(
𝑃𝑤𝑡 +

1
2
𝑣𝑡+1

)
+ 𝑤⊤𝑡 𝑃𝑤𝑡 + 𝑤⊤𝑡 𝑣𝑡+1 + 𝑞𝑡+1

= 𝑥⊤𝑡 𝑃𝑥𝑡 + 𝑥⊤𝑡 𝑣𝑡 + 𝑞𝑡 .

Thus,

𝑣𝑡 = 𝐹
⊤𝑣𝑡+1 + 2𝐹⊤𝑃𝑤𝑡 = 2

∞∑︁
𝑖=0

𝐹⊤
𝑖+1
𝑃𝑤𝑡+𝑖 .

Then, we can plug 𝑣𝑡+1 into 𝑞𝑡 :

𝑞𝑡 = 𝑞𝑡+1 +
( ∞∑︁
𝑖=𝑘

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

( ∞∑︁
𝑖=𝑘

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
−

( ∞∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

( ∞∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
+ 𝑤⊤𝑡 𝑃𝑤𝑡 + 2𝑤⊤𝑡

( ∞∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
.

(11.15)

Note that Eq. (11.15) is for MPC with 𝑘 predictions. With the disturbance sequence
{𝑤𝑡} fixed, we can compare the per-step cost of MPC with 𝑘 predictions and that
with 𝑘 + 1 predictions:

𝑞𝑘𝑡 − 𝑞𝑘+1𝑡 = 𝑞𝑘𝑡+1 − 𝑞
𝑘+1
𝑡+1 +

( ∞∑︁
𝑖=𝑘

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

( ∞∑︁
𝑖=𝑘

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
−

( ∞∑︁
𝑖=𝑘+1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

( ∞∑︁
𝑖=𝑘+1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
= 𝑞𝑘𝑡+1 − 𝑞

𝑘+1
𝑡+1 + 𝑤

⊤
𝑡+𝑘𝑃𝐹

𝑘𝐻𝐹⊤
𝑘

(
𝑃𝑤𝑡+𝑘 + 2

∞∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖+𝑘

)
. (11.16)
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Thus,

E
[
𝑞𝑘𝑡 − 𝑞𝑘+1𝑡 − (𝑞𝑘𝑡+1 − 𝑞

𝑘+1
𝑡+1 )

]
= E

[
𝑤⊤𝑡+𝑘𝑃𝐹

𝑘𝐻𝐹⊤
𝑘

(
𝑃𝑤𝑡+𝑘 + 2

∞∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖+𝑘

)]
= Tr

{
𝑃𝐹𝑘𝐻𝐹⊤

𝑘

(
𝑃 E

[
𝑤𝑡+𝑘𝑤

⊤
𝑡+𝑘

]
+ 2

∞∑︁
𝑖=1

𝐹⊤
𝑖
𝑃 E

[
𝑤𝑡+𝑖+𝑘𝑤

⊤
𝑡+𝑘

] )}
= Tr

{
𝑃𝐹𝑘𝐻𝐹⊤

𝑘
𝑍𝑘,𝑡

}
,

where 𝑍𝑘,𝑡 = 𝑃 E
[
𝑤𝑡+𝑘𝑤⊤𝑡+𝑘

]
+2

∑∞
𝑖=1 𝐹

⊤𝑖𝑃 E
[
𝑤𝑡+𝑖+𝑘𝑤⊤𝑡+𝑘

]
. Note that 𝑍𝑘,𝑡 = 𝑍𝑘−1,𝑡+1.

MPCS𝑘 −MPCS𝑘+1 = lim
𝑇→∞

1
𝑇
E
[
𝑞𝑘0 − 𝑞

𝑘+1
0

]
= lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0

Tr
{
𝑃𝐹𝑘𝐻𝐹⊤

𝑘
𝑍𝑘,𝑡

}
≤ lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0
∥𝑃∥∥𝐻∥



𝐹𝑘

2Tr
{
𝑍𝑘,𝑡

}
,

where in the last line we use the fact that if 𝐴 is symmetric, then Tr{𝐴𝐵} ≤
∥𝐴∥Tr{𝐵}. Similarly to the last part in the proof of Theorem 11.3, now we just need
to show the last term Tr

{
𝑍𝑘,𝑡

}
is uniformly bounded for all 𝑡. Again, this is because

the cross-correlation of each disturbance pair is uniformly bounded.

Tr
{
𝑍𝑘,𝑡

}
≤ ∥𝑃∥Tr

{
E
[
𝑤𝑡+𝑘𝑤

⊤
𝑡+𝑘

]}
+ 2

∞∑︁
𝑖=1
∥𝑃∥



𝐹𝑖

E[∑︁
𝑗

𝜎𝑗 (𝑤𝑡+𝑖+𝑘𝑤⊤𝑡+𝑘 )
]

≤ ∥𝑃∥𝑚 + 2
∞∑︁
𝑖=1

𝑐𝜆𝑖∥𝑃∥𝑚 = ∥𝑃∥𝑚 + 2𝑐
𝜆

1 − 𝜆 ∥𝑃∥𝑚

where 𝑐 is some constant, and in the first line, we use the fact that Tr{𝐴𝐵} ≤
∥𝐴∥∑ 𝑗 𝜎𝑗 (𝐵) with 𝜎𝑗 (·) denoting the 𝑗-th singular value. Thus, Tr

{
𝑍𝑘,𝑡

}
is uni-

formly bounded. Therefore, MPCS𝑘 −MPCS𝑘+1 = 𝑂 (∥𝐹𝑘 ∥2). □

In other words, the marginal benefit for the MPC algorithm of an extra prediction
decays exponentially fast, paralleling the result for optimal policy in Eq. (11.11).

Besides, the dynamic regret of MPC (nearly) matches the order of the optimal
dynamic regret, as shown in Theorem 11.5 and Theorem 11.6.

Theorem 11.5 (Main result). 𝑅𝑒𝑔𝑆 (MPC𝑘 ) = MPCS𝑇
𝑘
− STO𝑇

𝑇 = 𝑂 (∥𝐹𝑘 ∥2𝑇 + 1) =
𝑂 (𝜆2𝑘𝑇 +1), where the second term results from the difference between finite/infinite
horizons.
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Proof. To calculate the dynamic regret, we cannot simply let 𝑇 − 𝑡 → ∞ as we
did before Eq. (11.14) in the proof of Theorem 11.4 and instead need to handle the
expressions in a more delicate manner. In particular, we need to rigorously analyze
the impact of finite horizon. Let Δ𝑡 = 𝑃𝑡 − 𝑃.

𝑉
MPC𝑘
𝑡 (𝑥𝑡 ;𝑤0:𝑡+𝑘−1)
= 𝑢⊤𝑡 (𝑅 + 𝐵⊤𝑃𝑡+1𝐵)𝑢𝑡 + 2𝑢⊤𝑡 𝐵⊤(𝑃𝑡+1𝐴𝑥𝑡 + 𝑃𝑡+1𝑤𝑡 + 𝑣𝑡+1/2)
+ 𝑥⊤𝑡 𝑄𝑥𝑡 + (𝐴𝑥𝑡 + 𝑤𝑡)⊤𝑃𝑡+1(𝐴𝑥𝑡 + 𝑤𝑡) + (𝐴𝑥𝑡 + 𝑤𝑡)⊤𝑣𝑡+1 + 𝑞𝑡+1

= 𝑢⊤𝑡 (𝑅 + 𝐵⊤𝑃𝐵)𝑢𝑡 + 2𝑢⊤𝑡 𝐵⊤(𝑃𝐴𝑥𝑡 + 𝑃𝑤𝑡 + 𝑣𝑡+1/2)
+ 𝑥⊤𝑡 𝑄𝑥𝑡 + (𝐴𝑥𝑡 + 𝑤𝑡)⊤𝑃(𝐴𝑥𝑡 + 𝑤𝑡) + (𝐴𝑥𝑡 + 𝑤𝑡)⊤𝑣𝑡+1 + 𝑞𝑡+1
+ 𝑢⊤𝑡 𝐵⊤Δ𝑡+1𝐵𝑢𝑡 + 2𝑢⊤𝑡 𝐵⊤Δ𝑡+1(𝐴𝑥𝑡 + 𝑤𝑡) + (𝐴𝑥𝑡 + 𝑤𝑡)⊤Δ𝑡+1(𝐴𝑥𝑡 + 𝑤𝑡).

Plugging in the MPC policy as in Theorem 11.2, we have:

𝑉
MPC𝑘
𝑡 (𝑥𝑡 ;𝑤0:𝑡+𝑘−1)
= 𝑥⊤𝑡 (𝑄 + 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐻𝑃𝐴)𝑥𝑡 + 𝑥⊤𝑡 (𝐹⊤𝑣𝑡+1 + 2𝐹⊤𝑃𝑤𝑡)

+
(

1
2
𝑣𝑡+1 −

𝑘−1∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

(
1
2
𝑣𝑡+1 −

𝑘−1∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
−

(
𝑃𝑤𝑡 +

1
2
𝑣𝑡+1

)⊤
𝐻

(
𝑃𝑤𝑡 +

1
2
𝑣𝑡+1

)
+ 𝑤⊤𝑡 𝑃𝑤𝑡 + 𝑤⊤𝑡 𝑣𝑡+1 + 𝑞𝑡+1

+
(
𝐹𝑥𝑡 + 𝑤𝑡 −

𝑘−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
Δ𝑡+1

(
𝐹𝑥𝑡 + 𝑤𝑡 −

𝑘−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
= 𝑥⊤𝑡 (𝑄 + 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐻𝑃𝐴 + 𝐹⊤Δ𝑡+1𝐹)𝑥𝑡

+ 𝑥⊤𝑡

(
𝐹⊤𝑣𝑡+1 + 2𝐹⊤𝑃𝑤𝑡 + 2𝐹⊤Δ𝑡+1

(
𝑤𝑡 −

𝑘−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

))
+

(
1
2
𝑣𝑡+1 −

𝑘−1∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

(
1
2
𝑣𝑡+1 −

𝑘−1∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
−

(
𝑃𝑤𝑡 +

1
2
𝑣𝑡+1

)⊤
𝐻

(
𝑃𝑤𝑡 +

1
2
𝑣𝑡+1

)
+ 𝑤⊤𝑡 𝑃𝑤𝑡 + 𝑤⊤𝑡 𝑣𝑡+1 + 𝑞𝑡+1

+
(
𝑤𝑡 −

𝑘−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
Δ𝑡+1

(
𝑤𝑡 −

𝑘−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
.

Comparing this with the induction hypothesis𝑉MPC𝑘
𝑡 = 𝑥⊤𝑡 (𝑃 +Δ𝑡)𝑥𝑡 + 𝑥⊤𝑡 𝑣𝑡 + 𝑞𝑡 , we

obtain the recursive formulae for Δ𝑡 , 𝑣𝑡 , 𝑞𝑡 .

Δ𝑡 = 𝐹
⊤Δ𝑡+1𝐹 = 𝐹⊤

𝑇−𝑡
Δ𝑇𝐹

𝑇−𝑡 = 𝐹⊤
𝑇−𝑡 (Qf − 𝑃)𝐹𝑇−𝑡 .
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This implies that 𝑃𝑡 converges to 𝑃 exponentially fast, i.e., ∥Δ𝑡 ∥ = 𝑂 (∥𝐹𝑇−𝑡 ∥2) =
𝑂 (𝜆2(𝑇−𝑡)).

𝑣𝑡 = 𝐹
⊤𝑣𝑡+1 + 2𝐹⊤𝑃𝑤𝑡 + 2𝐹⊤Δ𝑡+1

(
𝑤𝑡 −

𝑘−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
= 2

𝑇−𝑡−1∑︁
𝑗=0

(
𝐹⊤

𝑗+1
𝑃𝑤𝑡+ 𝑗 + 𝐹⊤ 𝑗+1Δ𝑡+ 𝑗+1

(
𝑤𝑡+ 𝑗 −

𝑘−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+ 𝑗+𝑖

))
= 2

𝑇−𝑡−1∑︁
𝑖=0

𝐹⊤
𝑖+1
𝑃𝑤𝑡+𝑖 + 2

𝑇−𝑡−1∑︁
𝑗=0

𝐹⊤
𝑗+1

Δ𝑡+ 𝑗+1

(
𝑤𝑡+ 𝑗 −

𝑘−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+ 𝑗+𝑖

)
.

Denote the second term by 2𝑑𝑡 . We have

𝑑𝑡 =

𝑇−𝑡−1∑︁
𝑗=0

𝐹⊤
𝑗+1

Δ𝑡+ 𝑗+1

(
𝑤𝑡+ 𝑗 −

𝑘−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+ 𝑗+𝑖

)
=

𝑇−𝑡−1∑︁
𝑗=0

𝑂 (𝜆 𝑗𝜆2(𝑇−𝑡− 𝑗)) = 𝑂 (𝜆𝑇−𝑡).

𝑑𝑘𝑡 − 𝑑𝑘+1𝑡 =

𝑇−𝑡−𝑘−1∑︁
𝑗=0

𝐹⊤
𝑗+1

Δ𝑡+ 𝑗+1𝐹
⊤𝑘𝑃𝑤𝑡+ 𝑗+𝑘 (11.17)

=

𝑇−𝑡−𝑘−1∑︁
𝑗=0

𝑂 (𝜆 𝑗𝜆2(𝑇−𝑡− 𝑗) ∥𝐹𝑘 ∥) = 𝑂 (𝜆𝑇−𝑡+𝑘 ∥𝐹𝑘 ∥).

Finally, we have a formula for 𝑞𝑡 that parallels Eq. (11.15):

𝑞𝑡 = 𝑞𝑡+1 +
(
𝑑𝑡+1 +

𝑇−𝑡−1∑︁
𝑖=𝑘

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

(
𝑑𝑡+1 +

𝑇−𝑡−1∑︁
𝑖=𝑘

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
−

(
𝑑𝑡+1 +

𝑇−𝑡−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

(
𝑑𝑡+1 +

𝑇−𝑡−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
+ 𝑤⊤𝑡 𝑃𝑤𝑡 + 2𝑤⊤𝑡

(
𝑑𝑡+1 +

𝑇−𝑡−1∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖

)
.
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Taking the difference between 𝑘 and 𝑘 + 1 predictions, we have

𝑞𝑘𝑡 − 𝑞𝑘+1𝑡 − (𝑞𝑘𝑡+1 − 𝑞
𝑘+1
𝑡+1 )

= (𝑤⊤𝑡+𝑘𝑃𝐹
𝑘 + (𝑑𝑘𝑡+1 − 𝑑

𝑘+1
𝑡+1 )

⊤)𝐻
(
𝑑𝑘𝑡+1 + 𝑑

𝑘+1
𝑡+1 + 𝐹

⊤𝑘𝑃𝑤𝑡+𝑘 + 2
𝑇−𝑡−𝑘−1∑︁
𝑖=1

𝐹⊤
𝑖+𝑘
𝑃𝑤𝑡+𝑖+𝑘

)
(11.18)

= (𝑤⊤𝑡+𝑘𝑃𝐹
𝑘 +𝑂 (𝜆𝑇−𝑡 ∥𝐹𝑘 ∥))𝐻

(
𝑂 (𝜆𝑇−𝑡) + 𝐹⊤𝑘𝑃𝑤𝑡+𝑘 + 2

𝑇−𝑡−𝑘−1∑︁
𝑖=1

𝐹⊤
𝑖+𝑘
𝑃𝑤𝑡+𝑖+𝑘

)
,

and thus

E
[
𝑞𝑘𝑡 − 𝑞𝑘+1𝑡 − (𝑞𝑘𝑡+1 − 𝑞

𝑘+1
𝑡+1 )

]
= 𝑂 (∥𝐹𝑘 ∥(𝜆𝑇−𝑡 + ∥𝐹𝑘 ∥)).

E
[
𝑞𝑘0 − 𝑞

𝑇
0
]
=

𝑇−1∑︁
𝑡=0
E
[
𝑞𝑘𝑡 − 𝑞𝑘+1𝑡 − (𝑞𝑘𝑡+1 − 𝑞

𝑘+1
𝑡+1 )

]
=

𝑇−1∑︁
𝑡=0

𝑂 (∥𝐹𝑘 ∥(𝜆𝑇−𝑡 + ∥𝐹𝑘 ∥))

= 𝑂 (∥𝐹𝑘 ∥2𝑇 + ∥𝐹𝑘 ∥).

E
[
𝑣𝑘0 − 𝑣

𝑇
0
]
= 2(𝑑𝑘0 − 𝑑

𝑇
0 ) = 𝑂 (𝜆

𝑇+𝑘 ∥𝐹𝑘 ∥).

E 𝐽MPC𝑘 − E 𝐽MPC𝑇 = E
[
𝑉 𝑘0 (𝑥0) −𝑉𝑇0 (𝑥0)

]
= E

[
𝑥⊤0 (𝑣

𝑘
0 − 𝑣

𝑇
0 ) + (𝑞

𝑘
0 + 𝑞

𝑇
0 )

]
= 𝑂 (∥𝐹𝑘 ∥2𝑇 + ∥𝐹𝑘 ∥). (11.19)

By definition, 𝐽MPC𝑇 is the cost of MPC policy given all future disturbances before
making any decisions. It almost equals to min𝑢 𝐽, the optimal policy given all future
disturbances, except that during optimization, MPC assumes the final-step cost to
be 𝑥⊤

𝑇
𝑃𝑥𝑇 instead of 𝑥⊤

𝑇
Qf 𝑥𝑇 . This will incur at most constant extra cost, i.e.,

𝐽MPC𝑇 −min
𝑢
𝐽 = 𝑂 (𝑃 − Qf ) = 𝑂 (1). (11.20)

By Eqs. (11.19) and (11.20),

𝑅𝑒𝑔𝑆 (MPC𝑘 ) = E 𝐽MPC𝑘 − Emin
𝑢
𝐽 = 𝑂 (∥𝐹𝑘 ∥2𝑇 + ∥𝐹𝑘 ∥ + 1) = 𝑂 (∥𝐹𝑘 ∥2𝑇 + 1).

□
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Theorem 11.6. The optimal dynamic regret 𝑅𝑒𝑔𝑆
𝑘

∗
= STO𝑇

𝑘
− STO𝑇

𝑇 = 𝑂 (∥𝐹𝑘 ∥2𝑇 +
1) = 𝑂 (𝜆2𝑘𝑇 + 1) and there exist 𝐴, 𝐵, 𝑄, 𝑅, Qf , 𝑥0, andW such that 𝑅𝑒𝑔𝑆

𝑘

∗
=

Θ(∥𝐹𝑘 ∥2(𝑇 − 𝑘)).

Proof. The first part follows from Theorem 11.5 and that fact that 𝑅𝑒𝑔𝑆
𝑘

∗ ≤
𝑅𝑒𝑔𝑆 (MPC𝑘 ). The second part is shown by Example 11.3, i.e., suppose 𝑛 = 𝑑 = 1
and the disturbance are i.i.d. and zero-mean. Additionally, let Qf = 𝑃 and 𝑥0 = 0.
In this case, MPC has not only the same policy but also the same cost as the optimal
control policy. Also, 𝑃𝑡 = 𝑃 for all 𝑡. To calculate the total cost, we follow the
approach used in the proof of Theorem 11.1. Since 𝑇 is finite now, we have a similar
(to Eq. (11.7)) but different form of 𝑣𝑡 :

𝑣𝑡 = 2
min{𝑘−1,𝑇−𝑡−1}∑︁

𝑖=0
𝐹⊤

𝑖+1
𝑃𝑤𝑡+𝑖 .

Thus,

E[𝑞𝑡] = Tr

{(
𝑃 −

min{𝑘−1,𝑇−𝑡−1}∑︁
𝑖=0

𝑃𝐹𝑖𝐻𝐹⊤
𝑖
𝑃

)
𝑊

}
+ E[𝑞𝑡+1] .

E[𝑞0] = Tr

{
𝑇−1∑︁
𝑡=0

(
𝑃 −

min{𝑘−1,𝑇−𝑡−1}∑︁
𝑖=0

𝑃𝐹𝑖𝐻𝐹⊤
𝑖
𝑃

)
𝑊

}
.

Let 𝑞𝑘𝑡 denote 𝑞𝑡 in the scenario of 𝑘 predictions.

𝑅𝑒𝑔𝑆
∗
= E

[
𝑞𝑘0 − 𝑞

𝑇
0
]
= Tr

{
𝑇−𝑘−1∑︁
𝑡=0

𝑇−𝑡−1∑︁
𝑖=𝑘

𝑃𝐹𝑖𝐻𝐹⊤
𝑖
𝑃𝑊

}
≥ (𝑇 − 𝑘)Tr

{
𝑃𝐹𝑘𝐻𝐹⊤

𝑘
𝑃𝑊

}
= Ω(∥𝐹𝑘 ∥2(𝑇 − 𝑘)).

On the other hand,

𝑅𝑒𝑔𝑆
∗
= E

[
𝑞𝑘0 − 𝑞

𝑇
0
]
≤ (𝑇 − 𝑘)Tr

{ ∞∑︁
𝑖=𝑘

𝑃𝐹𝑖𝐻𝐹⊤
𝑖
𝑃𝑊

}
= 𝑂 (∥𝐹𝑘 ∥2(𝑇 − 𝑘)).

Therefore, 𝑅𝑒𝑔𝑆∗ = Θ(∥𝐹𝑘 ∥2(𝑇 − 𝑘)). □

Note that, in the stochastic case, the regret-optimal policy is the same as the cost-
optimal policy, i.e., the policy for STO𝑇

𝑘
is the same as 𝑅𝑒𝑔𝑆

𝑘

∗.
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Adversarial Disturbance
We now move from stochastic to adversarial disturbances. In this case, the distur-
bances are chosen from a bounded set Ω ⊆ R𝑛 by an adversary in order to maximize
the controller’s cost. Maintaining small regret is more challenging in adversar-
ial models than in stochastic ones, so one may expect weaker bounds. Perhaps
surprisingly, we obtain bounds with the same order.

Optimal policy with 𝑘 predictions. In the adversarial setting, the cost of the
optimal policy, defined with a sequence of min’s and sup’s, is the equilibrium value
of a two-player zero-sum game. In general, it is impossible to give an analytical
expression of either ADV𝑘 or the corresponding optimal policy. However, we prove
the following result that is structurally similar to the results from the stochastic
setting, highlighting the exponential improvement from predictions.

Theorem 11.7. For 𝑘 ≥ 1, ADV𝑘 − ADV𝑘+1 = 𝑂 (∥𝐹𝑘 ∥2) = 𝑂 (𝜆2𝑘 ).

Proof. This proof is based on Theorem 11.8. It turns out that the behavior of the
MPC policy and its cost is easier to analyze than the optimal one, especially in the
adversarial setting.

ADV𝑘 − ADV𝑘+1 ≤ ADV𝑘 − ADV∞ ≤ MPCA𝑘 − ADV∞ =

∞∑︁
𝑖=𝑘

MPCA𝑖 −MPCA𝑖+1.

By Theorem 11.8,

MPCA𝑖 −MPCA𝑖+1 ≤ 𝑂
(

𝐹𝑖

2

)
≤ 𝑂

(

𝐹𝑘

2

𝐹𝑖−𝑘

2) ≤ 𝑂 (

𝐹𝑘

2
𝜆2(𝑖−𝑘)

)
.

Thus,

ADV𝑘 − ADV𝑘+1 ≤ 𝑂
(

𝐹𝑘

2

∞∑︁
𝑖=𝑘

𝜆2(𝑖−𝑘)
)
= 𝑂 (∥𝐹𝑘 ∥2).

□

Similarly to Example 11.2 for the stochastic case, in the adversarial setting, the
optimal cost with 𝑘 predictions may approach the offline optimal cost (under infinite
predictions) much faster than exponential rate, and it is possible that ADV𝑘 = ADV∞
for finite 𝑘 , as shown in Example 11.4.

Example 11.4. Let 𝐴 = 𝐵 = 𝑄 = 𝑅 = 1 and Ω = [−1, 1]. In this case, one
prediction is enough to leverage the full power of prediction. Formally, we have
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ADV1 = ADV∞ = 1. In other words, for all 𝑘 ≥ 1, ADV𝑘 = 1. The optimal control
policy (as 𝑇 →∞) is a piecewise function:

𝑢∗(𝑥, 𝑤) =


−(𝑥 + 𝑤) ,−1 ≤ 𝑥 + 𝑤 ≤ 1

−(𝑥 + 𝑤) + 3−
√

5
2 (𝑥 + 𝑤 − 1) , 𝑥 + 𝑤 > 1

−(𝑥 + 𝑤) + 3−
√

5
2 (𝑥 + 𝑤 + 1) , 𝑥 + 𝑤 < −1

.

The proof leverages two different cost-to-go functions for the min player and the sup
player (see Yu et al., 2020, Appendix C.2).

Note that with adversarial disturbances, the optimal policy could be much more
complex than stochastic cases. Unlike Example 11.4, where the optimal policy is
piecewise linear with only 3 pieces, for other values of 𝐴, 𝐵, 𝑄, 𝑅, this function may
have many more pieces.

MPC’s performance. Under adversarial disturbances, MPC is suboptimal, e.g., in
Example 11.4. However, its dynamic regret bound turn out to be the same as those
in the stochastic setting, as shown in following theorems.

Theorem 11.8. MPCA𝑘 −MPCA𝑘+1 = 𝑂 (∥𝐹𝑘 ∥2) = 𝑂 (𝜆2𝑘 ).

Proof. Note that Eq. (11.16) in the proof of Theorem 11.4 does not rely on the
type of disturbance, i.e., Eq. (11.16) holds for adversarial disturbance as well. Let
𝑟 = sup𝑤∈Ω∥𝑤∥2.

𝑞𝑘𝑡 − 𝑞𝑘+1𝑡 − (𝑞𝑘𝑡+1 − 𝑞
𝑘+1
𝑡+1 ) = 𝑤

⊤
𝑡+𝑘𝑃𝐹

𝑘𝐻𝐹⊤
𝑘

(
𝑃𝑤𝑡+𝑘 + 2

∞∑︁
𝑖=1

𝐹⊤
𝑖
𝑃𝑤𝑡+𝑖+𝑘

)
≤ ∥𝑤𝑡+𝑘 ∥∥𝑃∥∥𝐻∥



𝐹𝑘

2
(
∥𝑃∥∥𝑤𝑡+𝑘 ∥ + 2

∞∑︁
𝑖=1



𝐹𝑖

∥𝑃∥∥𝑤𝑡+𝑖+𝑘 ∥)
≤



𝐹𝑘

2
(
1 + 2

∞∑︁
𝑖=1



𝐹𝑖

) ∥𝐻∥∥𝑃∥2𝑟2

≤


𝐹𝑘

2

(
1 + 2

𝑐𝜆

1 − 𝜆

)
∥𝐻∥∥𝑃∥2𝑟2
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for some constant 𝑐.

MPCA𝑘 −MPCA𝑘+1 = lim
𝑇→∞

1
𝑇
(max
𝑤
𝑞𝑘0 −max

𝑤
𝑞𝑘+10 )

≤ lim
𝑇→∞

1
𝑇

max
𝑤
(𝑞𝑘0 − 𝑞

𝑘+1
0 )

≤ lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0

max
𝑤
(𝑞𝑘𝑡 − 𝑞𝑘+1𝑡 − (𝑞𝑘𝑡+1 − 𝑞

𝑘+1
𝑡+1 ))

≤


𝐹𝑘

2

(
1 + 2

𝑐𝜆

1 − 𝜆

)
∥𝐻∥∥𝑃∥2𝑟2 = 𝑂 (∥𝐹𝑘 ∥2).

□

Theorem 11.9 (Main result). 𝑅𝑒𝑔𝐴 (MPC𝑘 ) = 𝑂 (∥𝐹𝑘 ∥2𝑇 + 1) = 𝑂 (𝜆2𝑘𝑇 + 1).

Proof. We follow the notations in the proof of Theorem 11.5. Eq. (11.18) does not
rely on the type of disturbance, so it holds for adversarial disturbance as well. By
Eq. (11.18) and the fact that 𝑤𝑡 is bounded, we have

𝑞𝑘𝑡 − 𝑞𝑘+1𝑡 − (𝑞𝑘𝑡+1 − 𝑞
𝑘+1
𝑡+1 ) = 𝑂 (∥𝐹

𝑘 ∥(𝜆𝑇−𝑡 + ∥𝐹𝑘 ∥)),

where the constant in the Big-Oh notation does not depend on the disturbance
sequence 𝑤. Thus,

max
𝑤
(𝑞𝑘0 − 𝑞

𝑇
0 ) ≤

𝑇−1∑︁
𝑡=0

max
𝑤
(𝑞𝑘𝑡 − 𝑞𝑘+1𝑡 − (𝑞𝑘𝑡+1 − 𝑞

𝑘+1
𝑡+1 )) = 𝑂 (∥𝐹

𝑘 ∥2𝑇 + ∥𝐹𝑘 ∥).

By Eq. (11.17) and the boundedness of 𝑤𝑡 ,

max
𝑤
(𝑣𝑘0 − 𝑣

𝑇
0 ) = 2 max

𝑤
(𝑑𝑘0 − 𝑑

𝑇
0 ) = 𝑂 (𝜆

𝑇+𝑘 ∥𝐹𝑘 ∥).

max
𝑤
(𝐽MPC𝑘 − 𝐽MPC𝑇 ) = max

𝑤
(𝑉 𝑘0 (𝑥0) −𝑉𝑇0 (𝑥0)) ≤ max

𝑤
(𝑥⊤0 (𝑣

𝑘
0 − 𝑣

𝑇
0 )) +max

𝑤
(𝑞𝑘0 − 𝑞

𝑇
0 )

= 𝑂 (∥𝐹𝑘 ∥2𝑇 + ∥𝐹𝑘 ∥).

As Eq. (11.20), 𝐽MPC𝑇 −min𝑢 𝐽 = 𝑂 (1). Thus,

𝑅𝑒𝑔𝐴 (MPC𝑘 ) = max
𝑤
(𝐽MPC𝑘 −min

𝑢
𝐽) ≤ max

𝑤
(𝐽MPC𝑘 − 𝐽𝑀𝑃𝐶𝑇 ) +max

𝑤
(𝐽MPC𝑇 −min

𝑢
𝐽)

= 𝑂 (∥𝐹𝑘 ∥2𝑇 + ∥𝐹𝑘 ∥ + 1) = 𝑂 (∥𝐹𝑘 ∥2𝑇 + 1).

□
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This dynamic regret is linear in the horizon 𝑇 if we fix the number of predictions.
However, if 𝑘 is a super-constant function of 𝑇 , i.e., an increasing function of 𝑇 that
is not upper-bounded by a constant, then the regret is sub-linear. Furthermore, if we
let 𝑘 =

log𝑇
2 log(1/𝜆) , then 𝑅𝑒𝑔𝐴 (MPC𝑘 ) = 𝑂 (1). In other words, we can get constant

regret with 𝑂 (log𝑇) predictions, even with adversarial disturbances. Finally, as
implied by the following result, the 𝑂 (log𝑇) horizon cannot be improved since
even the regret minimizing algorithm needs the same order of predictions to reach
constant regret, depicted by the following theorem.

Theorem 11.10. 𝑅𝑒𝑔𝐴
𝑘

∗
= 𝑂 (∥𝐹𝑘 ∥2𝑇 + 1) = 𝑂 (𝜆2𝑘𝑇 + 1). Moreover, there exist 𝐴,

𝐵, 𝑄, 𝑅, Qf , 𝑥0, and Ω such that 𝑅𝑒𝑔𝐴
𝑘

∗
= Ω(∥𝐹𝑘 ∥2(𝑇 − 𝑘)).

Proof. The first part of the theorem follows from Theorem 11.9 and the fact that
𝑅𝑒𝑔𝐴

𝑘

∗ ≤ 𝑅𝑒𝑔𝐴 (MPC𝑘 ). We reduce the second part of this theorem to the second
part of Theorem 11.6. Since the proof of Theorem 11.6 works for any fixed distri-
bution of 𝑤𝑡 (with finite second moment), we can restrict that distribution to have
bounded support. Denote this bounded support by Ω. Then, we have

𝑅𝑒𝑔𝐴𝑘
∗
= sup
𝑤0,··· ,𝑤𝑘−1

min
𝑢0

sup
𝑤𝑘

· · · min
𝑢𝑇−𝑘−1

sup
𝑤𝑇−1

min
𝑢𝑇−𝑘 ,··· ,𝑢𝑇−1

(
𝐽 (𝑢, 𝑤) − min

𝑢′0,...,𝑢
′
𝑇−1

𝐽 (𝑢′, 𝑤)
)

≥ E
𝑤0,··· ,𝑤𝑘−1

min
𝑢0
E
𝑤𝑘
· · · min

𝑢𝑇−𝑘−1
E
𝑤𝑇−1

min
𝑢𝑇−𝑘 ,··· ,𝑢𝑇−1

(
𝐽 (𝑢, 𝑤) − min

𝑢′0,...,𝑢
′
𝑇−1

𝐽 (𝑢′, 𝑤)
)

= 𝑅𝑒𝑔𝑆𝑘
∗
= Θ(∥𝐹𝑘 ∥2(𝑇 − 𝑘)).

□

11.4 Simulations
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Figure 11.1: The power of predictions in online tracking. The left five figures show
the desired trajectory (blue) and the actual trajectories (orange). The rightmost
figure shows the cost difference (regret) between MPC using 𝑘 predictions and the
offline optimal policy. Note that the y-axis of the rightmost figure is in log-scale.

To illustrate our theoretical results, we test MPC with different numbers of predic-
tions in a Linear Quadratic (LQ) tracking problem, where the desired trajectory is
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given by:

𝑑𝑡 =

[
8 sin(𝑡/3) cos(𝑡/3)

8 sin(𝑡/3)

]
.

We consider following double integrator dynamics:

𝑝𝑡+1 = 𝑝𝑡 + 𝑣𝑡 + ℎ𝑡 , 𝑣𝑡+1 = 𝑣𝑡 + 𝑢𝑡 + 𝜂𝑡 ,

where 𝑝𝑡 ∈ R2 is the position, 𝑣𝑡 is the velocity, 𝑢𝑡 is the control, and ℎ𝑡 , 𝜂𝑡 ∼
U[−1, 1]2 are i.i.d. noises. The objective is to minimize

𝑇−1∑︁
𝑡=0
∥𝑝𝑡 − 𝑑𝑡 ∥2 + ∥𝑢𝑡 ∥2,

where we let 𝑇 = 200. This problem can be converted to the standard LQR with
disturbance 𝑤𝑡 by letting 𝑥𝑡 =

[
𝑝𝑡
𝑣𝑡

]
and 𝑤̃𝑡 =

[
ℎ𝑡
𝜂𝑡

]
and then using the reduction

in the LQ tracking example (Example 11.1). Note that after the reduction, the
disturbances are the combination of a deterministic trajectory and i.i.d. noises,
which corresponds to the general stochastic case discussed in Section 11.3.

Figure 11.1 shows the tracking results with MPC using different numbers of predic-
tions. We see that the regret exponentially decreases as the number of predictions
increases, which is consistent with our theoretical results.

11.5 Extension I: Delayed Inexact Predictions
Throughout Sections 11.2 to 11.4, we focus on LQR systems with exact predictions
of disturbance 𝑤𝑡 . In this section, we will discuss the influence from delayed inexact
predictions.

Problem Statement
In this section, we use the following model to study the setting with delayed and
inexact predictions. Formally, at each step 𝑡, the revealed information is:

𝑥0, 𝑢0, . . . , 𝑢𝑡−1, 𝑤0, . . . , 𝑤𝑡−𝑑−1, 𝑤̂𝑡−𝑑 |𝑡 , . . . , 𝑤̂𝑇−1|𝑡 ,

or equivalently,

𝑥0, 𝑢0, . . . , 𝑢𝑡−1, 𝑥1, . . . , 𝑥𝑡−𝑑 , 𝑤̂𝑡−𝑑 |𝑡 , . . . , 𝑤̂𝑇−1|𝑡 ,

where 𝑑 ≥ 0 is the length of feedback delay, and 𝑤̂𝑠 |𝑡 is the prediction of 𝑤𝑠 at time
𝑡. Namely, at time step 𝑡, the controller must make the decision 𝑢𝑡 without knowing
𝑥𝑡−𝑑+1, · · · , 𝑥𝑡 , but with noisy predictions 𝑤̂𝑡−𝑑 |𝑡 , · · · , 𝑤̂𝑇−1|𝑡 .
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We define 𝑒𝑠 |𝑡 = 𝑤𝑠 − 𝑤̂𝑠 |𝑡 as the estimation error, and we assume that the predictor
satisfies



𝑒𝑡−𝑑+𝑖 |𝑡

 ≤ 𝜖𝑖∥𝑤𝑡−𝑑+𝑖∥ for all 𝑖 ≥ 0 and 𝑡 ≥ 0, where 𝜖𝑖 is a given parameter
that measures the prediction quality at 𝑖 steps into the unknown. In this section, we
focus on the most challenging adversarial case where both𝑤𝑡 and 𝑒𝑠 |𝑡 are adversarial.

Although predictions are available for every time step, those for far future may have
bad quality, i.e., 𝜖𝑖 is typically large for large 𝑖. Therefore, a good control policy
may not use all predictions in the same way: using only the predictions with smaller
estimation error may yield better performance. For example, if 𝜖𝑖 > 1, we can
simply let 𝑤̂𝑡−𝑑+𝑖 |𝑡 = 0, which is a better prediction with 𝜖𝑖 = 1.

Competitive ratio. In this section, we measure the performance using a even
stronger metric competitive ratio, which bounds the worst-case ratio of the cost of
an online policy (Alg, i.e., the MPC policy) to the cost of the optimal offline policy
(Opt) with perfect knowledge of {𝑤𝑡}𝑇−1

𝑡=0 . Formally, we study the so-called weak
competitive ratio, which allows for an additive horizon-independent constant factor.
We say that a policy is (weakly) 𝑐-competitive if, given 𝐴, 𝐵, 𝑄, 𝑅, Qf and 𝑟, for
any adversarially and adaptively chosen disturbances 𝑤𝑡 and predictions errors 𝑒𝑠 |𝑡 ,
we have Alg ≤ 𝑐Opt + 𝜅, where 𝜅 is a constant, independent of 𝑇 . We say that the
algorithm is constant competitive when 𝑐 is a constant independent of 𝑇 . We use
competitive ratio in this section to avoid a path-length term in the bound (a dynamic
regret bound typically includes a path-length term, as discussed in Chapter 8).

Under the competitive ratio metric, in general, the error bound assumption (


𝑒𝑡−𝑑+𝑖 |𝑡

 ≤

𝜖𝑖∥𝑤𝑡−𝑑+𝑖∥) has to be multiplicative rather than additive. Consider the case where all
disturbances𝑤𝑡 are zero, but there are nonzero prediction errors. The optimal offline
policy incurs zero cost, while any online policy that uses the (wrong) predictions
incurs nonzero cost, hence leading to an infinite ratio.

A myopic variant of MPC. In this section we consider a straightforward myopic
extension of the classic MPC algorithm to deal with delayed inexact predictions. In
the case without delay (𝑑 = 0), suppose the controller uses 𝑘 predictions. At each
time 𝑡, the controller optimizes based on 𝑥𝑡 , 𝑤̂𝑡 |𝑡 , . . . , 𝑤̂𝑡+𝑘−1|𝑡 :

(𝑢𝑡 , . . . , 𝑢𝑡+𝑘−1) = arg min
𝑢

( 𝑡+𝑘−1∑︁
𝑖=𝑡

(𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖) + 𝑥⊤𝑡+𝑘Q̃f 𝑥𝑡+𝑘

)
,

s.t. 𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 + 𝑤̂𝑖 |𝑡 , ∀𝑖 = 𝑡, . . . , 𝑡 + 𝑘 − 1.

This optimization is myopic in the sense that it assumes that the length of the problem
is 𝑘 instead of𝑇 and treats predicted future disturbances as true disturbances. Again,
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the terminal cost matrix Q̃f may or may not be the same as the terminal cost matrix
Qf of the original problem, and can be viewed as a hyperparameter. Similarly, 𝑘 is
also a hyperparameter. Larger 𝑘 is not necessarily better because the predictions in
the far future may have very large errors. In this section, similar to Algorithm 11.1,
we let Q̃f = 𝑃, where 𝑃 is the solution of the discrete algebraic Riccati equation
(DARE).

Now let us discuss the extension of this myopic MPC policy to the case with delay
(𝑑 > 0). When 𝑘 ≥ 𝑑, the extension is perhaps straightforward. Here, although the
controller does not know the current state 𝑥𝑡 , it knows 𝑥𝑡−𝑑 and 𝑤̂𝑡−𝑑 |𝑡 , . . . , 𝑤̂𝑡−1|𝑡 .
Thus, it can estimate the current state. This means that it is possible to simply
use this estimation, 𝑥𝑡 |𝑡 , as a replacement for 𝑥𝑡 in the algorithm, which yields the
following:

𝑢𝑡 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
(
𝑃𝐴𝑥𝑡 |𝑡 +

𝑘−𝑑−1∑︁
𝑖=0

𝐹⊤
𝑖
𝑃𝑤̂𝑡+𝑖 |𝑡

)
. (11.21)

When 𝑘 < 𝑑, the extension is not as obvious. In this setting, the quality of the
predictions is poor enough that it is better not to use the predictions to estimate the
current state. Thus, one cannot simply estimate the current state and run classic
MPC. In this case, the key is to view (classic) MPC from a different perspective:
MPC locally solves an optimal control problem by treating known disturbances
(predictions) as exact, and treating unknown disturbances as zero. Following this
philosophy, in the case when predictions are not enough to be used to estimate the
current state, we can instead assume that unknown disturbances are exactly zero. The
following theorem derives the optimal policy under this “optimistic” assumption.

Theorem 11.11. Suppose there are 𝑑 delays and 𝑘 exact predictions with 𝑘 < 𝑑. The
myopic MPC policy assumes all used predictions are exact and other disturbances
(with unused predictions) are zero. Its policy at time 𝑡 is:

𝑢𝑡 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴

(
𝐴𝑑−𝑘𝑥𝑡−𝑑+𝑘 |𝑡 +

𝑑−𝑘−1∑︁
𝑖=0

𝐴𝑖𝐵𝑢𝑡−1−𝑖

)
. (11.22)

Proof. See Yu et al. (2022). □

In other words, the policy in (11.22) first obtains the greedy estimation 𝑥𝑡−𝑑+𝑘 |𝑡
using predictions 𝑤̂𝑡−𝑑 |𝑡 , . . . , 𝑤̂𝑡−𝑑+𝑘−1|𝑡 , and then estimates the current state by
treating 𝑤𝑡−𝑑+𝑘 = · · · = 𝑤𝑡−1 = 0. In fact, instead of treating them as zero, we can
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impose other values or distributions on those disturbances. This would generalize
Theorem 11.11 to a broader class of policies.

To summarize the two cases above (𝑘 ≥ 𝑑 and 𝑘 < 𝑑), the myopic generalization
of MPC we study in this section is described as follows. Suppose we want to use
𝑘 predictions. If 𝑘 ≥ 𝑑, then we estimate the current state 𝑥𝑡 and apply (11.21). If
𝑘 < 𝑑, then we estimate the state at time 𝑡 − 𝑑 + 𝑘 and apply (11.22). In fact, the
two cases coincide when 𝑘 = 𝑑.

Main Results
Our main result provides bounds on the competitive ratio for the myopic MPC-like
policy in the case of inexact delayed predictions. We present our general result
below and then discuss the special cases of (i) exact predictions and no delay, (ii)
inexact predictions and no delay, and (iii) delay but no access to predictions. The
special cases illustrate the contrast between inexact and exact predictions as well as
the impact of delay. All proofs and more detailed discussions can be found in Yu
et al. (2022).

Theorem 11.12 (General result). Suppose there are 𝑑 steps of delays and the con-
troller uses 𝑘 predictions. Define 𝑐 = ∥𝑃∥∥𝑃−1∥(1 + ∥𝐹∥). When 𝑘 ≥ 𝑑,

Alg ≤
[ (𝑐 𝑑−1∑

𝑖=0
𝜖𝑖∥𝐴𝑑−𝑖∥ + 𝑐

𝑘−1∑
𝑖=𝑑

𝜖𝑖∥𝐹𝑖−𝑑 ∥ + ∥𝐹𝑘−𝑑 ∥
)2

∥𝐻∥−1𝜆min(𝑃−1 − 𝐹𝑃−1𝐹⊤ − 𝐻)
+ 1

]
Opt +𝑂 (1).

When 𝑘 ≤ 𝑑,

Alg ≤
[ (𝑐 𝑘−1∑

𝑖=0
𝜖𝑖∥𝐴𝑑−𝑖∥ + 𝑐

𝑑−1∑
𝑖=𝑘

∥𝐴𝑑−𝑖∥ + 1
)2

∥𝐻∥−1𝜆min(𝑃−1 − 𝐹𝑃−1𝐹⊤ − 𝐻)
+ 1

]
Opt +𝑂 (1).

The 𝑂 (1) is with respect to 𝑇 . It may depend on the system parameters 𝐴, 𝐵, 𝑄, 𝑅,
Qf and the range of disturbances 𝑟, but not on 𝑇 . When Qf = 𝑃 the 𝑂 (1) is zero.

The two cases in Theorem 11.12 correspond to the two cases in the algorithm: when
predictions are of high enough quality to allow estimation of the current state and
when they are not. In the first case, we see that the quality of predictions in the near
future has more impact, especially when 𝜌(𝐴) > 1. In the second case, we see that
the amount of delay 𝑑 exponentially increases the bound if 𝜖𝑖 > 0 and 𝜌(𝐴) > 1.
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Theorem 11.13 (Exact predictions without delay). Suppose there are 𝑘 exact pre-
dictions and no feedback delay. Then:

Alg ≤
[
1 + ∥𝐹𝑘 ∥2∥𝐻∥

𝜆min(𝑃−1 − 𝐹𝑃−1𝐹⊤ − 𝐻)

]
Opt +𝑂 (1).

In other words, Theorem 11.13 gives a competitive ratio result for the standard
setting discussed in Sections 11.2 and 11.3. In particular, the competitive ratio
exponentially decreases to 1 as 𝑘 goes up.

Theorem 11.14 (Inexact predictions without delay). Suppose there are 𝑘 inexact
predictions and no feedback delay. Then,

Alg ≤
[ ∥𝐻∥ (𝑐∑𝑘−1

𝑖=0 𝜖𝑖∥𝐹𝑖∥ + ∥𝐹𝑘 ∥
)2

𝜆min(𝑃−1 − 𝐹𝑃−1𝐹⊤ − 𝐻)
+ 1

]
Opt +𝑂 (1).

Theorem 11.14 differs from the previous one in that the controller can minimize the
bound with respect to 𝑘 according to the prediction quality. We characterize this
optimization in the following result in 1-d systems.

Corollary 11.1. Suppose there are 𝑘 inexact predictions and no feedback delay.
Assume 𝑛 = 𝑚 = 1. Given non-decreasing {𝜖𝑖}, to minimize the competitive ratio
bound in Theorem 11.14, the optimal number 𝑘 of predictions to use is such that:

𝜖𝑘−1 <
1 − |𝐹 |
1 + |𝐹 | < 𝜖𝑘 .

Finally, we discuss the case 𝑑 > 0 and 𝑘 = 0 (i.e., delay without predictions).

Theorem 11.15 (Delay without predictions). Suppose there are 𝑑 delays and no
predictions are available. Then the competitive ratio is bounded by

Alg ≤
[ ∥𝐻∥ (𝑐∑𝑑

𝑖=1 ∥𝐴𝑖∥ + 1
)2

𝜆min(𝑃−1 − 𝐹𝑃−1𝐹⊤ − 𝐻)
+ 1

]
Opt +𝑂 (1).

Beyond Myopic MPC: A Robustness-Consistency Perspective
So far, in this section we have been focusing on a myopic MPC policy. Namely, the
policy will assume that all predictions 𝑤̂𝑡+𝑖 |𝑡 are true disturbances.

Intuitively, when designing an online control or learning algorithm with predictions,
we want to balance “consistency,” which measures the competitive ratio when
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predictions are accurate, and “robustness,” which bounds the competitive ratio
when predictions are inaccurate. In online learning and algorithm community, such
a balance is called the robustness-consistency trade-off (commonly discussed in
online caching, ski-rental, online set cover and online matching problems).

Obviously, the classic (myopic) MPC approach is a consistent algorithm, i.e., its
competitive ratio is small when predictions are accurate. However, it might not
be a robust algorithm, if the predictions are inaccurate. Therefore, we propose a
𝛽-confident algorithm (see more details in T. Li et al. (2022)) such that we can
optimally balance between robustness and consistency:

𝑢𝑡 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
(
𝑃𝐴𝑥𝑡 + 𝛽

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤̂𝜏

)
(11.23)

where the main difference from the classic myopic MPC is that there is a tunable
parameter 𝛽 ∈ [0, 1]. In T. Li et al. (2022), we proposed a self-tuning algorithm to
optimally tune this 𝛽 parameter in an online manner, based on the prediction quality
of all previous predictions.

11.6 Extension II: Time-Variant Systems and General Costs
In all previous sections, we analyzed the non-asymptotic performance (using dy-
namic regret or competitive ratio as the metric) of Model Predictive Control (MPC)
in time-invariant LQ systems. Namely, the dynamics is 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 and
the cost is 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 , where 𝐴, 𝐵, 𝑄, 𝑅 are time-invariant matrices.

Naturally, the reader might wonder how much our strong guarantees for MPC rely on
the structure of the simple LQ system. In particular, does the exponential decaying
property (i.e., the dynamic regret or competitive ratio bound exponentially improves
as the number of predictions increases) still hold in more complicated systems?

In this section, we give an affirmative answer to the question above, by briefly
introducing the results in Lin, Hu, et al. (2021) for linear time-variant (LTV) systems
with general time-variant well-conditioned costs.
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Problem Statement and Assumptions
We consider a finite-horizon discrete-time online control problem with LTV dy-
namics, time-varying costs, and disturbances, namely

min
𝑥0:𝑇 ,𝑢0:𝑇−1

𝑇∑︁
𝑡=1
( 𝑓𝑡 (𝑥𝑡) + 𝑐𝑡 (𝑢𝑡−1))

s.t. 𝑥𝑡 = 𝐴𝑡−1𝑥𝑡−1 + 𝐵𝑡−1𝑢𝑡−1 + 𝑤𝑡−1, 𝑡 = 1, . . . , 𝑇, (11.24)

𝑥0 = 𝑥(0),

where 𝑥𝑡 ∈ R𝑛, 𝑢𝑡 ∈ R𝑚, and 𝑤𝑡 ∈ R𝑛 denote the state, the control action, and
the disturbance of the system at time steps 𝑡 = 1, . . . , 𝑇 , and 𝑥(0) ∈ R𝑛 is a given
initial state. By convention, the hitting cost function 𝑓𝑡 : R𝑛 → R+ and control
cost function 𝑐𝑡 : R𝑚 → R+ are assumed to be time-varying and well-conditioned.
Define the tuple 𝜗𝑡 := (𝐴𝑡 , 𝐵𝑡 , 𝑤𝑡 , 𝑓𝑡+1, 𝑐𝑡+1).

We assume that the algorithm has access to the exact predictions of disturbances,
cost functions and dynamical matrices in the future 𝑘 time steps (which are time-
varying), i.e., the event sequence is

𝑥0, 𝜗0, 𝜗1, . . . , 𝜗𝑘−1, 𝑢0, 𝜗𝑘 , 𝑢1, 𝜗𝑘+1, . . . , 𝑢𝑇−𝑘−1, 𝜗𝑇−1, 𝑢𝑇−𝑘 , 𝑢𝑇−𝑘+1, . . . , 𝑢𝑇−1.

Here we assume all predictions are exact.

Assumption 11.2. We assume all cost functions 𝑓𝑡 (·), 𝑐𝑡 (·) are twice continuously
differentiable and well-conditioned (i.e., both strongly convex and strongly smooth,
see definitions in Chapter 8). Moreover, we assume they are non-negative and
𝑓𝑡 (0) = 0, 𝑐𝑡 (0) = 0.

We assume 𝐴𝑡 , 𝐵𝑡 and 𝐵†𝑡 are uniformly bounded, and the LTV system {𝐴𝑡 , 𝐵𝑡} are
uniformly (𝑑, 𝛿)-controllable (the controllability index is 𝑑 and the controllability
matrix’s minimum singular value is uniformly lower bounded by 𝛿).

Main Results
Suppose all above assumptions hold, we have the following informal theorem for
the performance of MPC:

Theorem 11.16 (Informal, see the formal version in Lin, Hu, et al. (2021)). Suppose
the terminal cost 𝑉 (·) in MPC is either the indicator function of the origin, or a
non-negative convex function that is twice continuously differentiable and satisfies
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𝑉 (0) = 0. If the prediction window 𝑘 ≥ 𝑑 is sufficiently large (larger than a constant
depending on the system parameter, but not on 𝑇), we have:

Alg − Opt = 𝑂 (𝜆̄𝑘𝑇 + 1)

where 0 ≤ 𝜆̄ < 1. Moreover, if the terminal cost is the indicator function of the
origin, and the prediction window is sufficiently large, we have:

Alg ≤
(
1 +𝑂 (𝜆̄𝑘 )

)
· Opt.

Generally speaking, Theorem 11.16 shows that the exponentially decaying property
still holds even in highly time-variant systems, as long as the prediction window is
large enough.

Proof sketch. In all previous sections, we analyzed the dynamic regret or compet-
itive ratio of MPC via direct methods. Namely, we directly characterize the MPC
policy’s structure and the offline optimal policy’s structure, and then compare their
difference. However, it is very hard (if not impossible) to apply the direct method
in time-variant systems because such characterizations are in general intractable.
Therefore, to prove Theorem 11.16, Lin, Hu, et al. (2021) uses a novel proof frame-
work based on a perturbation bound that characterizes how a small change to the
system parameters impacts the optimal trajectory. However, even under the per-
turbation analysis framework, analyzing LTV systems directly is still hard, so we
instead develop a novel reduction from LTV systems to fully-actuated systems, i.e.,
systems where the controller can steer the system to any state in the whole space
R𝑛 freely at every time step. This special case is a form of online optimization
called smoothed online convex optimization (SOCO). Such a reduction is inspired
by Chapter 10.
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C h a p t e r 12

DISCUSSION AND FUTURE WORK

In Part II, through Chapters 9 to 11, we have introduced three unifying interfaces
between learning and control theory. See Fig. 8.1 in Chapter 8 for a summary. In
this chapter, we will conclude Part II by discussing several important future research
directions.

Provably Safe Lifelong Learning in Real-World Autonomous Systems
As one of the most challenging open problems in AI, lifelong learning considers
systems that can continually learn many tasks over a lifetime. Lifelong learning
already poses several fundamental problems (e.g., catastrophic forgetting), let alone
considering the safety-critical real-world setting (e.g., aircraft control with self-
improvement over a lifetime).

Note that Chapters 5 and 9 can be viewed as a “one-shot” and supervised approxi-
mation of lifelong learning, where a representation shared by several tasks is learned
first (with supervision) and then adapted by adaptive control. Towards unsupervised
and continual lifelong learning with safety guarantees, the goal is to systematically
address the following questions: How to distill knowledge from previous tasks with-
out supervision? How to design an “event-triggered” mechanism to selectively and
safely transfer the distilled knowledge to new tasks?

Encoding Control-Theoretic Knowledge to Reinforcement Learning
Most popular RL algorithms (e.g., TRPO, SAC) are universal for all tasks. In con-
trast, drastically different control methods are developed for different systems/tasks,
and their successes highly rely on structures inside these systems/tasks. For exam-
ple, Chapter 11 shows that the strong non-asymptotic guarantees of MPC are not
only from the receding horizon nature, but also from the structure of the underlying
dynamical systems and the exponential closed-loop stability property.

One interesting and important research direction is to encode these structures and
algorithmic principles into black-box RL algorithms, which will potentially make
RL algorithms much more data-efficient, robust, interpretable, and safe.
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Sample Complexity Analysis for Nonlinear Systems
Existing sample complexity results for dynamical systems focus on linear dynamics,
but most real-world systems are highly nonlinear. Significantly more challenges
appear from nonlinearity. For example, it is often intractable to characterize the
closed-loop behavior of the optimal policy. Chapter 10 serves as an initial step by
considering LTV systems and some particular classes of nonlinear systems. One
important yet challenging future research topic is to have end-to-end guarantees for
uncertain nonlinear systems.

Hierarchical and Layered Learning and Control
Having different levels of abstractions is crucial for autonomous systems, but how
to design each level in a data-driven manner is unclear. As an initial step, Chapters 5
and 9 build on a 2-layer structure. Namely, an outer loop optimizes a shared repre-
sentation and an inner loop fine-tunes the representation in a low dimensional space.
The future direction is to study general algorithmic principles and convergence
properties in general multi-layer learning and control settings.
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