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ABSTRACT 

Multicellular circuits control the development of multicellular organisms, through 

programming processes such as cell proliferation, cell differentiation, cell movement, and 

cell signaling. A fundamental goal of biology is to understand the design principles of these 

multicellular circuits, and use these principles to design synthetic multicellular systems for 

therapeutic purposes. Top-down approaches, for example analyzing embryos bearing genetic 

mutations, have identified key genes in many multicellular circuits, but are challenging to 

study these circuits in an isolated context and in a quantitative and systematic manner. An 

alternative, complementary approach is to engineer or reconstitute multicellular circuits from 

bottom-up, which allows us to overcome the limitations of top-down approach and gain 

quantitative insights into multicellular circuit design. In this thesis, we use this bottom-up 

approach to explore the design principles of two multicellular circuits. In the first project, we 

took inspiration from two prevalent features from natural multistable circuits, namely 

competitive protein-protein interactions and positive autoregulation, to design a synthetic 

multistable circuit architecture called MultiFate. Both in the model and in the experiment, 

MultiFate circuits generate multiple cellular states, each stable for weeks, allow control over 

state-switching and state stability, and can be easily expanded to generate more states. In the 

second project, we use a gradient reconstitution system to systematically analyze a gradient 

modulation circuit consisting of BMP4 and its modulators, Chordin, Twsg and BMP-1. We 

found that the circuit can give rise to diverse gradient modulation capabilities. In particular, 

the full circuit is sufficient for active ligand shuttling and generation of non-monotonic 

displaced gradient. These multicellular circuits could provide a foundation for engineering 

synthetic multicellular systems in mammalian cells. 
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Chapter 1. Introduction

1.1 Multicellular circuits control the development of a single fertilized egg into a

multicellular organism.

One of the most fascinating phenomena in biology is the embryonic development of

multicellular organisms. It is a highly complex, yet very reproducible process that

involves many multicellular programs, such as cell proliferation, cell differentiation, cell

movement, and cell signaling (1). These multicellular programs need to be accurately

controlled to ensure a normal embryonic development. For example, to control for a

proper organ size, the cell growth, division, and apoptosis are linked to each other and

tightly regulated (2). To generate a mosaic tissue pattern, the cell fate decisions of

neighboring cells are closely coordinated to give rise to mutually exclusive fates (3). To

robustly segregate and sort cells of different lineages into distinct regions in mammalian

embryos, the molecular and mechanical properties of cell surfaces need to be precisely

programmed (4).

The precise control of these multicellular programs is realized by multicellular circuits. In

these multicellular circuits, molecules encoded by a variety of different genes, interact

within cells and among cells to control the tissue morphogenetic process in a spatially

and temporally precise manner. For example, a multicellular circuit with Bicoid and its

downstream gap genes plays a key role in the first hours of drosophila embryo

development. In this circuit, Bicoid proteins translated from maternally deposited

mRNAs form a concentration gradient on the anterior-posterior axis of embryo. This

gradient initiates the expression pattern of its downstream gap genes. A complex
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interaction network among gap genes then further develops and refines the pattern,

robustly and accurately segmenting the early drosophila embryos (5–9). A fundamental

goal of biology is to understand how these multicellular circuits are designed, and use

this understanding to build synthetic multicellular systems for therapeutic purposes.

1.2 Engineering and reconstituting multicellular circuits enable one to understand

the design principles of these circuits from bottom up.

Much of our knowledge of these multicellular circuits comes from analyzing cells or

embryos bearing genetic mutations or chemically perturbed. Through these top-down

approaches, many key genes have been identified for multicellular programs that control

cell proliferation (10–12), cell death (13–16), cell differentiation (17–21), cell movement

and adhesion (22, 23), and cell signaling (24–27). In a more ambitious effort, how these

key developmental genes interact with each other are comprehensively mapped in model

organisms like sea urchin (28). Recent technological advancement further reveals more

relevant genes through profiling developmental systems at single cell resolution in larger

scales (single-cell omics) (29), with preserved spatial information (30) and at various

developmental stages (31).

Despite continued methodological and technological advancements, we are still far away

from fully understanding the design principles of these multicellular circuits, and using

this understanding to engineer synthetic multicellular systems for therapeutic purposes.

Descriptive measurements such as omics experiments are usually not enough for a

mechanistic understanding of multicellular circuits (32), and top-down approaches, such
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as using genetic perturbations to dissect multicellular circuits, face several challenges.

These challenges are:

1. Natural circuits are interconnected, and therefore one cannot isolate one

individual circuit to study from the rest of the gene network. Perturbing one gene

in a circuit usually has propagating effects on multiple connecting circuits, and

distinguishing primary effects from secondary ones can be nontrivial. Frequent

compensatory effects from paralog genes further complicate the analysis (33).

Multicellular circuits are also highly interconnected, and this interconnectedness

often spans multiple cells, allowing for the coordination of cellular programs

across these cells. For example, during drosophila wing disc development, Dpp

morphogen signaling both induce cell differentiation and pattern the tissue, and

control cell proliferation. Thus tissue patterning is coupled with cell proliferation,

which has been suggested to enable the scaling of Dpp morphogen concentrations

with growing tissue size (34, 35). This kind of interconnectedness makes it hard

to study individual multicellular circuits and gain insights into their design

principles.

2. It remains hard to gain a quantitative understanding of natural circuits using a

top-down approach. Quantitative understanding requires one to perform

controlled perturbation and quantitative measurements. Measurement results can

then be used to construct a mathematical model. Our understanding of a circuit

increases as its mathematical model becomes increasingly predictive. For

example, to understand how mouse embryonic stem cells achieve a robust

response to differentiation signals, Sokolik et al., engineered mouse embryonic
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stem cells to allow for quantitative and temporal control of Brn2 expression using

optogenetics (36). Using this system, the authors quantitatively measured the

differentiation outcomes with different durations of Brn2 induction, and used

these measurements to construct a mathematical model incorporating the

interactions of Brn2 with pluripotent factors. The model predicted that the

pluripotent gene regulatory network can filter out the transient fluctuations of

Brn2 expression, and this filtering capability is controlled by the intrinsic half-life

of Nanog, which was later confirmed by additional experiments. However, this

kind of quantitative study is generally hard to perform. One challenge comes from

the interconnectedness of natural circuits. Because of interconnectedness of

circuits, a mathematical model may need to encompass other related circuits and

can thus become overwhelmingly complicated and intractable. Furthermore,

controlled and quantitative perturbations are easier when only one cell type is

involved (36–39), but become much more challenging with multicellular circuits.

Since multicellular circuits often involve multiple distinct cell types, the same

component may operate in a different regime in each cell type. Thus cell-type

specific perturbation may be required, but tools to target specific cell types (e.g.

cell-type specific promoters) are not always available.

3. With top-down approaches, observable behaviors of a circuit are limited to those

possible in specific contexts, but one circuit design may perform differently in

different developmental stages, in different tissues, in different model organisms,

or in different environments. One may not be able to find a general design

principle of a circuit if only studying it in one context using top-down approaches.



5

For example, a circuit with BMP, Chordin, Twsg, and BMP-1 has been suggested

to enable ligand shuttling and reshape BMP gradients in the embryos of

Drosophila (40) and Xenopus (41). However, two recent papers showed that

ligand shuttling is not playing a role in zebrafish early embryonic development,

despite the presence of all circuit components (42, 43). Nevertheless, these studies

do not rule out the possibility that it is the same circuit performing in very

different parameter regimes in different model organisms.

4. Top-down approaches do not allow one to compare alternative circuit designs.

Testing whether alternative circuit designs are permitted, and the tradeoffs among

designs can provide valuable insights into the evolutionary origins of biological

circuits (44). To test an alternative circuit design using a top-down approach, one

needs to massively rewire the natural circuit, for example by introducing

mutations to change regulatory interactions among genes (45). This is a daunting

task even with CRISPR-Cas9 and other new genome engineering methods

(46–48), since mutations sufficient to change regulatory interactions are not

always available or known. Rewiring multicellular circuits can be even more

challenging since one may need to rewire circuit components across multiple cell

types.

Alternatively, one could engineer or reconstitute multicellular circuits by putting together

components one by one and gradually increasing the complexity of the system. This

bottom-up approach offers a complementary way to understand circuit design and can

tackle the above challenges,
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1. Bottom-up approaches allow one to study a particular multicellular circuit in a

relatively isolated context. To achieve this, one can either reconstitute or build the

circuit in selected cell types that express relevant circuit components and

minimally express components from other interconnected circuits. For example,

Li et al. reconstitute a Shh gradient formation circuit in NIH3T3 cells, which do

not naturally express Shh ligands and can transduce Shh signals without

differentiating. Using this system, the authors found that a double-negative

regulatory logic and negative feedback confer speed and robustness to the

gradient formation process (49). Alternatively, circuit components can be

modified to break their interactions with other circuits, while still preserving the

overall circuit architecture. For example, to uncover the minimal requirements for

morphogen (long-range signaling molecules) gradient formation in drosophila

wings, Stapornwongkul et al. replaced the morphogen Dpp, which has extensive

interactions with many extracellular modulators, with an inert green fluorescent

protein (GFP). The authors then neatly convert GFP into a morphogen by

substituting the extracellular domains of Dpp receptors with anti-GFP nanobodies,

thus allowing cell signaling through specific interactions between GFP and

anti-GFP nanobodies. Using this system, they found that GFP can replace Dpp in

patterning the tissue, and this patterning can be further improved with

glycosylphosphatidylinositol-anchored nonsignaling receptor expression. (50)

2. Bottom-up approaches are suitable for performing quantitative analysis of a

circuit. During bottom-up reconstitution of a circuit, it is very easy to add control

handles through synthetic tools such as inducible promoters reviewed in (51) or
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tunable degron (52). When reconstituting a multicellular circuit, one can first

engineer multiple cell populations to express different circuit components or

express the same components in different ways, and then mix these populations to

reconstruct the circuit. For example, in the Shh gradient reconstitution system

mentioned above, the authors were able to control ligand production rate through

sender cell fractions, and control the strength of receptor negative feedback

through a chemical inducer (49). To quantitatively analyze a

macrophage-fibroblast two-cell circuit, Zhou et al. mixed two cell types at

different ratios and quantified their numbers at different time points. This allowed

them to map the phase diagram of this two-cell system and find that this system

can evolve into two multiple states (53). Similar bottom-up approaches have been

successful in gaining quantitative insights into other multicellular circuits (54,

55).

3. Bottom-up approaches enable a more comprehensive exploration of the behaviors

of a multicellular circuit, since the parameter regimes of a circuit are not

constrained by certain natural contexts. For example, to understand how the BMP

signaling pathway processes multi-ligand input, Antebi et al. added large

combinations of recombinant BMP ligands on cells with BMP signaling

fluorescent reporters. Through measurements of fluorescence level in response to

different BMP ligand combinations, Antebi et al. found that a promiscuous

ligand-receptor interaction architecture enables diverse signal-processing

capabilities (56). This comprehensive picture of signal-processing capabilities by

BMP signaling pathway can be hard to reveal using a top-down approach, since
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usually only a few ligand and receptor combinations are present in a certain

developmental context.

4. Additionally, we can compare a multicellular circuit design with alternative ones

using bottom-up approaches. The engineering flexibility provided by the

bottom-up reconstitution process allows one to easily construct alternatively

wired multicellular circuits, and make side-by-side comparison of circuit

behaviors. For example, Ma et al. used a synthetic cell-cell communication

system to construct a paradoxical population control circuit, and compared this

circuit with a simple negative feedback one (57). The simple negative feedback

circuit is more susceptible to mutational escape, thus confirming the role of

paradoxical circuit architecture in maintaining population homeostasis (58). This

and other similar studies (49, 59, 60) help us understand the features and tradeoffs

among different circuit designs, and allow us to identify the minimal sufficient

circuit required for certain multicellular behaviors. These minimal circuits then

can be used for building synthetic multicellular systems for therapeutic purposes.

This thesis shows how we use bottom-up approaches to explore the design principles of

two multicellular circuits. The first circuit, called MultiFate, is a naturally-inspired

synthetic multistable circuit that supports long-term, controllable, and expandable

multistability in mammalian cells. In the second circuit, we utilize ligands and

modulators found in the natural BMP signaling pathway to reconstitute gradient

formation in vitro. This reconstitution system allows us to quantitatively study how BMP

gradients are modulated, and shows the minimal circuit sufficient for a certain

modulation such as gradient displacement.
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1.3 Multistable circuits allow genetically identical cells to exist in multiple

molecularly and functionally distinct cellular states.

In multicellular organisms, cells sharing the same genome can exhibit morphologically

and functionally distinct phenotypes. This is realized by gene expression differences (1).

For example, muscle cells around the body express myosins to enable muscle contraction

(61), while beta cells in pancreatic islets express insulin to control the level of blood

glucose (62). A central topic in biology is to understand how these gene expression

differences are established and maintained during development.

Advances in technologies such as microarray (63) and RNA sequencing (64) allow us to

measure gene expression differences among cell types at transcriptomic scales, and these

measurements, especially those perform at single cells level (65), have led to three

interesting observations of a cell’s gene expression state: First, although genes in a

multicellular organism (e.g. ~20000 genes for human cells) can give rise to a huge

number of possible gene expression states, we only observe a limited number of stable

gene expression states in a multicellular organism, corresponding to different cell types

(66, 67). Secondly, these cell type specific gene expression states are well-separated from

each other, and any intermediate states, such as those observed during cell state

transitions, are usually very transitory and unstable (68, 69). Finally, these cell type

specific gene expression states seem to be attractors, as people observe differentiating

cells taking different routes on the gene expression space converge to a similar place (70).

Biologists have identified many key genes that control gene expression differences in

different cell types (20, 21, 71, 72). These genes, such as transcription factors, usually
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regulate the expression of many downstream genes to activate or repress cell type

specific programs. They are also highly interconnected, regulating the expression of each

other to form gene regulatory networks (28). How can these gene regulatory networks

explain the above observations? In dynamical systems theory, a gene regulatory network

can behave as a multistable system (73), and properties of a multistable system match

with the above observations: while the gene expression space can be high-dimensional

and huge, a multistable system can define a limited number of stable steady states on this

space, which could explain the limited number of cell types observed in our body. If a

system is not at one of its stable steady states, it will approach one of the stable steady

states until reaching that state. This could explain the attractiveness of cell type specific

gene expression states and transitory nature of any intermediate states during

development. This idea is most famously conceptualized by C. H. Waddington in 1957

(74). He proposed that gene regulatory networks shape an ‘epigenetic landscape’ with

stable gene expression states represented as valleys on the landscape. Developmental

processes are depicted as cells rolling down the hill to reach the bottom of valleys.

Several experimental evidence supports the theory that a gene regulatory network can

behave as a multistable system. One of the earliest work is in the regulatory system of

phage lambda, which shows that a mutual repression circuit between lambda repressor

and Cro enables lambda to toggle between lytic and lysogenic states (75). Later, in

multicellular organisms, work in Xenopus oocytes showed that a positive feedback circuit

allows irreversible maturation in response to transient inductive stimulus, suggesting that

this circuit can exist in two different states (basal and maturation) (37). These two
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systems and others (38, 76–78) showed that a genetic circuit can establish multiple gene

expression states.

What are the design principles for these gene regulatory networks to exhibit

multistability? To answer this question, synthetic biologists build synthetic multistable

circuits, and use this bottom-up approach to explore different circuit architectures. The

first synthetic bistable circuit was developed by Gardner et al. in bacteria, where two

repressors mutually repress each other’s expression, similar to the bistable switch circuit

in phage lambda (79). Later, multistable circuits have been built in other organisms

(80–83), using other molecular implementations (82, 84) or using alternative circuit

architectures (81–83, 85). Most of these efforts have been limited to two-state systems.

One exception is a four-state system in bacteria by Wu et al. in 2017, realized by a circuit

with a combination of positive autoregulation and mutual inhibition (85). However, the

use of transcriptional mutual repression still limits the circuit’s expandability, since with

N repressors, each repressor needs to be repressed by N-1 other respressors, which

becomes impractical given limited programmable promoter space. For many of these

circuits, especially those built in mammalian cells, certain gene expression states can

gradually lose their stability, presumably due to limited robustness against biological

noise. Thus, we have lacked an expandable circuit architecture for realizing robust

multistability in mammalian cells.

Natural mammalian multistable circuits provide inspiration for such a synthetic

architecture. In many natural fate control systems, transcription factors positively

autoregulate their own expression, and competitively interact with one another to form a

variety of homodimers, heterodimers, and higher order multimeric forms (18–24). For
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example, during myogenesis, muscle regulatory factors (MRF) such as MyoD

heterodimerize with E proteins to activate their own expression and the broader

myogenesis program, while Id family proteins disrupt this process through competitive

dimerization (23, 24). Similarly, during embryogenesis, Sox2 and Sox17 competitively

interact with Oct4 to control fate decisions between pluripotency and endodermal

differentiation (21, 22). Related combinations of positive autoregulation and

cross-inhibition could extend multistability behaviors beyond bistability and generate

bifurcation dynamics that explain the partial irreversibility of cell differentiation (9, 12).

Nevertheless, it remains unclear whether these natural architectures could be adapted to

enable synthetic multistability. In Chapter 2 of this thesis, we show how a synthetic

multistable system based on principles derived from natural cell fate control systems can

generate robust, controllable, expandable multistability in mammalian cells.

1.4 BMPs form concentration gradients to pattern the developing tissues, and their

gradients are extensively modulated by extracellular factors.

To develop into reproducible forms, embryos not only need multistable circuits to

establish multiple cell fates, but also circuits for cell-cell communications to instruct cell

fate decisions in the developing tissues. One class of signaling molecules is called

morphogens, an idea first coined by Alan Turning (86) and its molecular basis first

discovered in drosophila embryos (5, 24, 25). They are secreted by source cells in a

tissue, and can form a concentration gradient and act in long range (87).

Bone morphogenetic proteins (BMPs) belong to one family of morphogens. They are first

discovered in bone morphogenesis (thus the name) (88), but later have been shown to
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play important roles in early embryonic development as well as the development of

multiple organs such as eyes and kidney (89). Similar to other morphogens, BMPs form

concentration gradients to pattern the developing tissue (90).

One interesting feature of BMPs is their extensive interactions with diverse extracellular

modulators (91–93). These modulators, like BMPs, are also secreted by the cells, and can

interact with BMP ligands in a variety of different ways. These interactions can change

the shape of BMP concentration gradients, thus controlling tissue patterning (92).

One interaction that is particularly interesting is interactions among BMP, Chordin,

Twisted gastrulation (Twsg), and BMP-1. Chordin can bind to BMP and prevent it from

binding to receptors for signaling (94), and Twsg can form ternary complexes with

BMP-Chordin to further strengthen this interaction (95–98). Thus, Chordin is mostly

known as a BMP antagonist. However, this inhibition may serve another purpose: it

prevents BMP from receptor mediated internalization and degradation (99). Thus it is

postulated that Chordin can “shuttle” BMP ligands on the cell surface and increase their

diffusibility. Furthermore, BMP-1 (homolog of Tolloid in Drosophila) protease can

cleave Chordin, which releases BMP from the ternary complex for signaling (100).

Ligand shuttling enabled by a circuit with BMP, Chordin, Tsg, and BMP-1 has been

suggested to produce non-intuitive gradient shapes during the embryonic development of

Drosophila (40, 101), Xenopus (41), and mouse (102). However, two papers refute the

role of BMP ligand shuttling by Chordin in zebrafish embryos, despite the presence of all

circuit components (42, 43).
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This controversy may come from the limitation of top-down approaches: with the same

circuit, ligand shuttling and certain gradient shapes may happen in one parameter regime,

but not the other. One developmental context may only allow us to explore a limited set

of parameter regimes, within which some circuit behaviors may not appear. Furthermore,

top-down approaches can only reveal necessary components and interactions for ligand

shuttling and certain gradient shapes, but cannot identify the minimal sufficient circuit. In

Chapter 3 of this thesis, we are trying to use a bottom-up reconstitution method to

quantitatively understand how mammalian BMP gradients can be shaped by various

extracellular modulators, and identify the minimal circuit for certain gradient modulation

such as gradient displacement.
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Chapter 2. Synthetic multistability in mammalian cells

Abstract

In multicellular organisms, gene regulatory circuits generate thousands of molecularly

distinct, mitotically heritable states, through the property of multistability. Designing

synthetic multistable circuits would provide insight into natural cell fate control circuit

architectures and allow engineering of multicellular programs that require interactions

among cells in distinct states. Here we introduce MultiFate, a naturally-inspired, synthetic

circuit that supports long-term, controllable, and expandable multistability in mammalian

cells. MultiFate uses engineered zinc finger transcription factors that transcriptionally

self-activate as homodimers and mutually inhibit one another through heterodimerization.

Using a model-based design, we engineered MultiFate circuits that generate up to seven

states, each stable for at least 18 days. MultiFate permits controlled state-switching and

modulation of state stability through external inputs, and can be easily expanded with

additional transcription factors. Together, these results provide a foundation for

engineering multicellular behaviors in mammalian cells.

2.1 Introduction

Multistability allows genetically identical cells to exist in thousands of molecularly

distinct and mitotically stable cell types or states (1, 2). Understanding natural multistable

circuits and engineering synthetic ones have been long-standing challenges in

developmental and synthetic biology (3–14). Building synthetic multistable circuits could

provide insight into the minimal circuitry sufficient for multistability, and establish a
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foundation for exploiting multicellularity in engineered cell therapies. However, efforts in

mammalian cells have been limited to two-state systems and used architectures that

cannot be easily expanded to larger numbers of states (5–7). An ideal synthetic

multistable system would allow cells to remain in any of a set of distinct expression states

over many cell cycles, despite biological noise. In addition, it would provide three key

capabilities exhibited by its natural counterparts (Fig. 2.1A): First, it would permit

transient external inputs to switch cells between states, similar to the way signaling

pathways direct fate decisions (15, 16). Second, it would support control over the stability

of different states, and enable irreversible transitions, similar to those that occur during

natural differentiation (13, 14). Third, it would be expandable by introducing additional

components without re-engineering an existing functional circuit, analogous to expansion

of cell types during evolution (17).

Natural mammalian multistable circuits provide inspiration for such a synthetic

architecture. In many natural fate control systems, transcription factors positively

autoregulate their own expression, and competitively interact with one another to form a

variety of homodimers, heterodimers, and higher order multimeric forms (Fig. 2.1B)

(18–24). For example, during myogenesis, muscle regulatory factors (MRF) such as

MyoD heterodimerize with E proteins to activate their own expression and the broader

myogenesis program, while Id family proteins disrupt this process through competitive

dimerization (23, 24). Similarly, during embryogenesis, Sox2 and Sox17 competitively

interact with Oct4 to control fate decisions between pluripotency and endodermal

differentiation (21, 22). Related combinations of positive autoregulation and

cross-inhibition could extend multistability behaviors beyond bistability and generate
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bifurcation dynamics that explain the partial irreversibility of cell differentiation (9, 12).

Nevertheless, it remains unclear whether these natural architectures could be adapted to

enable synthetic multistability. Here, we show how a synthetic multistable system based

on principles derived from natural cell fate control systems can generate robust,

controllable, expandable multistability in mammalian cells.
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Fig. 2.1

Fig. 2.1 The naturally-inspired MultiFate architecture generates diverse types of
multistability in the model.
(A) A hypothetical synthetic multistable circuit is represented by colored cell cartoons
(upper level) and attractors in a transcription factor phase space (lower level schematic,
TF A-C on coordinate axes represent transcription factor concentrations). An ideal
synthetic multistable circuit should generate multiple stable states, support control of
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state-switching (left) and state stability (middle), and allow easy expansion of states by
addition of more transcription factors (right). (B) Competitive protein-protein interactions
and autoregulatory feedback are prevalent in natural multistable circuits that control
myogenesis (left) and endodermal differentiation (right) as shown by these simplified and
abridged diagrams. Blue arrows indicate competitive protein-protein interactions, which
can involve higher order multimerization. Orange dashed arrows indicate direct or
indirect positive transcriptional feedback. (C, D) Models of the MultiFate-2 circuit and
MultiFate-3 circuit (Box 2.1) (25) generate diverse types of multistability in different
parameter regimes (indicated above plots). In the model of the MultiFate-3 circuit, low
protein stability generates 4 stable states (type I quadrastability), but the state in which all
transcription factors are lowly expressed is unstable in the presence of biological noise
(Fig. S2.23), consistent with experimental results in Fig. 2.5B, Low TMP columns.
Complete lists of multistability regimes are shown in Fig. S2.1 and S2.2. All models used
here are symmetric and non-dimensionalized, with rescaled dimerization dissociation
constant and Hill coefficient (Box 2.1). For both panels, each axis𝐾

𝑑
= 1 𝑛 = 1. 5

represents the dimensionless total concentration of each transcription factor. Note that in
the non-dimensionalized model, changing protein stability is equivalent to multiplying α
and with the same factor (Box 2.1).β

2.2 MultiFate generates diverse types of multistability through a set of

promiscuously dimerizing, autoregulatory transcription factors

Inspired by natural fate control circuits, we designed a new synthetic multistable system

called MultiFate (Fig. 2.1C). In MultiFate system, transcription factors share a common

dimerization domain, allowing them to competitively form both homodimers and

heterodimers. The promoter of each transcription factor gene contains binding sites that

can be strongly bound only by its own homodimers, allowing homodimer-dependent

self-activation. By contrast, heterodimers do not efficiently bind to any promoter in this

design. Heterodimerization thus acts to mutually inhibit the activity of both constituent

transcription factors.

Mathematical modeling shows how the MultiFate architecture provides each of the

desired capabilities described above (Fig. 2.1A) in physiologically reasonable parameter

regimes (Box 2.1 and Table S2.1) (25). A MultiFate circuit with just two transcription
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factors, designated MultiFate-2, can produce diverse types of multistability containing 2,

3, or 4 stable fixed points depending on protein stability and other parameter values (Figs.

2.1C and S2.1A). In particular, a regime designated type II tristability is analogous to

multilineage priming in uncommitted progenitor cells, with the double positive state

playing the role of a multipotent progenitor (26–28). Transient expression of one

transcription factor can switch cells between states (Fig. S2.3). Reducing the protein

stability of transcription factors can cause bifurcations that selectively destabilize certain

states (Fig. 2.1C and S2.1A). Finally, the model is expandable: addition of a new

transcription factor to the MultiFate-2 model generates a MultiFate-3 circuit that supports

additional stable states with the same parameter values (Figs. 2.1D and S2.2A). Together,

these modeling results suggest that the MultiFate architecture can support a rich array of

multistable behaviors.
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Fig. 2.2

Fig. 2.2 Engineered transcription factors enable homodimer-dependent
autoregulation and heterodimerization-based inhibition.
(A) ZF transcription factors enable homodimer-dependent activation. (Left) Design of
test constructs, in which ErbB2ZF (29) (red circle) fused to VP48 (AD) and in some
cases GCN4 (blue squiggle) domains bind to target sites (red pads) to activate Citrine
expression. Activators were expressed from a constitutive CAG promoter (30). (Right)
R-to-A mutations in ZF modulated reporter activation by ZF-GCN4-AD and ZF-AD. The
R2AR39A variant was selected due to high ZF-GCN4-AD activation and minimal
ZF-AD activation. Fold activation is defined in Fig. S2.4A. WT = wild-type variant. (B)
FKBP12F36V (FKBP) (light cyan partial box) allows dose-dependent control of
activation by AP1903 (cyan circle). Red circle = BCRZFR39A. (C) Transcription factor
self-activation can be controlled by TMP and AP1903. (Left) Design of the controllable
self-activation circuit. IRES = internal ribosome entry site; PEST = constitutive



29

degradation tag (31); (Middle) Stable polyclonal cells showed bimodal mCitrine
distribution upon circuit activation. An empirical threshold at mCitrine = 104 separates
the distribution into two fractions, and the normalized mCitrine+ fraction was used to
quantify the self-activation strength (25). (Right) Colored arrows indicate data from the
middle panel. In AP1903+ samples, AP1903 concentration was 100 nM. (D)
Self-activation was inhibited by proteins with a different ZF and matching dimerization
domains. Two monoclonal stable lines could spontaneously self-activate in media
containing AP1903 and TMP (Fig. S2.5B). Each perturbation construct is introduced by
stable integration (25). The integrated plasmid in the “None” group did not express any
perturbation protein. Red circle = 42ZFR2AR39AR67A; Green circle = BCRZFR39A. In
all panels, each dot represents one biological replicate, and each red line or bar indicates
the mean of replicates. Lists of constructs and cell lines are in Table S2.2 and S2.3.

2.3 Engineered zinc fingers enable homodimer-dependent self-activation and

heterodimer-dependent inhibition

Synthetic zinc finger (ZF) transcription factors provide an ideal platform to implement

the MultiFate circuit. They can recognize and activate a promoter containing target DNA

binding sites with high specificity (32, 33). Further, engineered ZF DNA-binding

domains containing three fingers bind weakly as monomers to 9bp target sites, but can

bind much more strongly as homodimers to 18bp tandem binding site pairs (29, 34). This

property allows homodimer-dependent transcriptional activity and potentially allows

inhibition through heterodimerization.

To engineer ZF transcription factors, we fused the ErbB2 ZF DNA-binding domain to a

GCN4 homodimerization domain and a VP48 transcriptional activation domain to create

the synthetic transcription factor, termed ZF-GCN4-AD (Fig. 2.2A) (29). A transcription

factor (ZF-AD) lacking GCN4 was used as a monomeric control. To assay their

transcriptional activity, we constructed a reporter containing 18bp homodimer binding

sites driving the expression of Citrine (29). We then co-transfected each transcription

factor together with the reporter and an mTagBFP2 (35) co-transfection marker into
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Chinese hamster ovary K1 (CHO-K1) cells, and analyzed Citrine expression by flow

cytometry 36 hours later (Figs. 2.2A and S2.4A) (25). The wild-type (WT)

ZF-GCN4-AD factors strongly activated the reporter, as desired, whereas ZF-AD

exhibited weaker, but still undesirable, basal activity (Figs. 2.2A and S2.4B). Following

previous work (32, 36, 37), we incorporated arginine-to-alanine mutations at key

positions in the ZF known to weaken DNA binding, which decreased monomeric activity

without reducing homodimer activity (bars within red square in Fig. 2.2A). Replacing

GCN4 with the FKBP12F36V (FKBP) homodimerization domain (38) allowed us to

achieve dose-dependent control of dimerization with the small molecule AP1903 (Fig.

2.2B). Finally, we repeated this general design to engineer a set of additional

homodimer-dependent ZF transcription factors with orthogonal DNA-binding

specificities (Fig. S2.4B and S2.4C).

The MultiFate circuit design requires that each transcription factor positively

autoregulates its own expression in a homodimer-dependent manner. To validate this

capability, we designed a self-activation construct (Fig. 2.2C, left), in which a

transcription factor with FKBP dimerization domain is expressed from a promoter

containing its own 18bp homodimer binding sites (Table S2.2). This construct allowed

independent Dox-inducible activation through upstream Tet3G (Takara Bio) binding

sites. It also incorporated a dihydrofolate reductase (DHFR) degron (39), which can be

inhibited by trimethoprim (TMP), permitting control of protein stability. Finally, we

incorporated a destabilized mCitrine for dynamic readout of construct expression. We

integrated this construct into Tet3G-expressing CHO-K1 cells, generating a stable

polyclonal population for further analysis (Table S2.3) (25).
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To test for self-activation, we transiently induced transcription factor expression for 24

hours with Dox, and then withdrew Dox and checked whether cells could sustain circuit

activation when dimerization strength and protein stability were varied by AP1903 and

TMP, respectively. In the presence, but not the absence, of AP1903, cells exhibited a

bimodal distribution of mCitrine fluorescence, with well-separated peaks (Fig. 2.2C,

middle), consistent with homodimer-dependent self-activation in a subset of cells. TMP,

by stabilizing transcription factors, also promoted self-activation in a dose-dependent

manner (Figs. 2.2C and S2.5A). Thus a single dimer-dependent transcription factor can

self-activate and sustain its own expression in a controllable manner.

MultiFate’s final requirement is the ability of one transcription factor to effectively

inhibit another through heterodimerization. To test this, we selected monoclonal cell lines

with the self-activating circuits, and then stably integrated constructs expressing proteins

with a different ZF DNA-binding domain and a matching or mismatching dimerization

domain to generate a polyclonal cell population for each perturbation construct (Table

S2.2 and Table S2.3) (25). Consistent with inhibition through heterodimerization, the

proteins with matching dimerization domains strongly inhibited the self-activating

transcription factor, while similar proteins with non-matching dimerization domains

exhibited much weaker inhibition, possibly through non-specific mechanisms (Figs. 2.2D

and S2.5B). Taken together, these results provided a set of engineered ZF transcription

factors that exhibit controllable homodimer-dependent activation and heterodimer-

dependent inhibition.
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Fig. 2.3

Fig. 2.3 MultiFate-2 generates multiple stable states.
(A) The experimental MultiFate-2 design uses two self-activation cassettes differing only
in their ZF DNA-binding domains and binding sites, and fluorescent proteins. Each
cassette expresses FKBP-ZF-VP16-DHFR-IRES-FP-PEST, where ZF represents either
BCRZFR39A or 37ZFR2AR11AR39AR67A and FP represents either mCherry or
mCitrine, for A and B, respectively. Detailed construct maps and differences among
MultiFate-2 lines are shown in Table S2.2 and Table S2.3. (B) MultiFate-2.1 cells
spontaneously activate A, B or both cassettes upon addition of 100 nM AP1903 and 10
µM TMP. Cell percentages in OFF, A-only, B-only and A+B states were quantified and
plotted as a square with four colored circles (25). (C) Three MultiFate-2 lines all
exhibited type II tristability in the High TMP condition, and bistability in the Low TMP
condition. In all conditions, we added 100 nM AP1903. Exact concentrations of TMP are
shown in Fig. S2.9-2.11. Unstable states, defined by states having more than 10% cells
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escaping their initial states after 18 days, were marked in pink rectangles. Each square
represents the mean fractions of three biological replicates. Initial A-only, B-only and
A+B cells were sorted from a population of cells in different states, while initial OFF
cells came from cells in regular CHO media without any inducers. (D) A-only, B-only
and A+B states were each stable during growth from single MultiFate-2.3 cells into
colonies over 5 days under a time-lapse microscope. (Left) We first sorted a mixed
MultiFate-2.3 cell population to separate cells in 3 different states. Then we seeded cells
in these three states at equal ratio in the same well and performed time-lapse imaging
(25). (Right) Scale bar: 500 µm for the wide field image, 100 µm for zoomed in images.
“High TMP” = 100 nM AP1903 + 10 µM TMP.

2.4 The MultiFate-2 circuit generates tristability

To construct a complete MultiFate circuit, we selected two dimer-dependent transcription

factors, henceforth designated A and B, with distinct DNA binding specificities but the

same FKBP homodimerization domain. Their expressions are driven by promoters

containing multiple repeats of their corresponding 18bp homodimeric binding sites (Fig.

2.3A and Table S2.2). The promoters also incorporated Tet3G or ERT2-Gal4 response

elements (40) to allow independent external activation of transcription. A and B were

transcriptionally co-expressed with destabilized mCherry or mCitrine fluorescent

proteins, respectively, each placed after an internal ribosome entry site (IRES), allowing

fluorescent readout of transcription rates in individual cells (Fig. S2.6). We stably

integrated both genes simultaneously in CHO-K1 cells expressing Tet3G and ERT2-Gal4

proteins, selected and further characterized three stable monoclonal cell lines, designated

MultiFate-2.1, MultiFate-2.2 and MultiFate-2.3 with different promoter configurations

(Fig. S2.7A and Table S2.3) (25).

To test whether MultiFate circuits support multistability, we activated the circuit by

transferring MultiFate-2.1 cells to media containing AP1903 and TMP to allow

dimerization and stabilizing the transcription factors. As expected in the regime of type II
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tristability (Fig. 2.1C), cells went from low expression of both transcription factors (OFF

state) to one of three distinct states, with either A, B, or both transcription factors highly

expressed (Fig. 2.3B). We designate these states A-only, B-only and A+B, respectively.

The three states were well-separated by ~25-to-50-fold differences in either mCherry or

mCitrine expression, and cells grew at similar rates among states (Fig. S2.8). To assess

their stability, we sorted cells from each of these states and cultured them continuously

for 18 days (25). Strikingly, nearly all cells remained in the sorted state for this extended

period (Fig. 2.3C, MultiFate-2.1 High TMP columns, and Fig. S2.9), despite gene

expression noise (observable from the spread of cellular fluorescence on flow cytometry

plots). This showed that cells were attracted to these states. Stability required the positive

autoregulation, as withdrawal of AP1903 and TMP collapsed expression of both factors

within 2 days (Fig. S2.9). Similar overall behavior was also observed in MultiFate-2.2

and MultiFate-2.3 (Figs. 2.3C, S2.10 and S2.11). All three MultiFate-2 cell lines thus

exhibited dynamics consistent with type II tristability (Fig. 2.1C).

Time-lapse imaging provided a more direct view of multistability. We cultured an equal

ratio of single cells sorted from three different initial states in the same well and imaged

them as they developed into colonies (Fig. 2.3D) (25). In almost all colonies (132 of

134), all cells maintained their initial states for the full duration of the movie, at least 5

days or 7 to 8 cell cycles (Figs. 2.3D, S2.12A, S2.13A). Together with the flow cytometry

analysis, these results demonstrate that all three MultiFate-2 lines can sustain long-term

tristability.
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Fig. 2.4

Fig. 2.4 MultiFate-2 supports modulation of state stability and allows state-
switching.
(A) Escape from the destabilized A+B state was irreversible, as shown by both modeling,
and experiment using MultiFate-2.1 cells. (Top) The model used here is symmetric and
non-dimensionalized, with rescaled dimerization dissociation constant and Hill𝐾

𝑑
= 1

coefficient (Box 2.1). The x and y axes are total dimensionless concentrations𝑛 = 1. 5
of TF A and TF B, respectively. Simulated cells on phase portraits were calculated using
the Gillespie algorithm (41). Note that in the non-dimensionalized model, changing
protein stability is equivalent to multiplying and with the same factor (Box 2.1).α β
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(Bottom) Throughout the experiment, we added 100 nM AP1903. Exact concentrations
of TMP are shown in Fig. S2.9. (B) MultiFate-2.3 cells can be switched between states
by transient 4-OHT or Dox treatment. In all conditions, we added 100 nM AP1903. Exact
concentrations of TMP are shown in Fig. S2.16. 4-OHT = 25 nM, Dox = 500 ng/ml. In
all panels, initial A-only, B-only and A+B cells were sorted from a population of cells in
different states. Each square represents the mean fractions of three biological replicates.

2.5 MultiFate-2 supports modulation of state stability and allows controlled

state-switching

The ability of a transient stimulus to destabilize multipotent states and trigger an

irreversible fate change is a hallmark of many cell fate control systems (12–14). In the

model, reducing protein stability can eliminate the A+B state but preserve A-only and

B-only states (Fig. 2.1C). As a result, cells initially occupying the A+B state transit to

A-only or B-only states (Fig. 2.4A, top). When protein stability is restored to its initial

value, the A+B attractor reappears. However, for the parameter sets analyzed here, cells

remain within the attractor basins of A-only and B-only states, and therefore do not return

to the A+B state (Fig. 2.4A, top). Stochastic simulations of single cell dynamics

confirmed this irreversible (hysteretic) behavior (Fig. 2.4A, top).

To test whether similar bifurcation and hysteretic dynamics occur in the experimental

system, we transferred A-only, B-only and A+B cells from media containing high TMP

concentrations (“High TMP”) to similar media with reduced TMP concentrations (“Low

TMP”), which decreased protein stability by permitting degron function. As predicted,

reducing protein stability selectively destabilized the A+B state, but not the A-only and

B-only states, shifting cells from A+B state to the A-only or B-only states (Fig. 2.3C,

Low TMP columns, Fig. 4A, bottom). Different MultiFate-2 cell lines exhibited different

transition biases, reflecting clone-specific asymmetries in the experimental MultiFate-2



37

systems (Figs. 2.3C, S2.9 to S2.11), in a manner consistent with an asymmetric MultiFate

model (Figs. S2.14 and S2.15) (25). Escape from the destabilized A+B state was

irreversible, as cells remained in the A-only or B-only state even after they were

transferred back to the High TMP media (Fig. 2.4A, bottom, and Fig. S2.9). Thus,

MultiFate’s ability to support irreversible transitions allows it to produce behaviors

resembling stem cell differentiation.

Finally, we asked to what extent we could deliberately switch cells from one state to

another through transient perturbations. We used MultiFate-2.3, in which the A and B

genes can be independently activated by 4-hydroxy-tamoxifen (4-OHT) and Dox,

respectively, to address this question. In this line, the response elements for the inducers

are adjacent to the homodimer binding sites. Therefore, the addition of inducers increases

A or B expression up to, but not substantially beyond, the level produced by

self-activation (Figs. 2.2C and S2.16). In the bistable regime, transient induction of either

transcription factor switched cells into the corresponding state, where they remained in

the absence of further induction (Fig. S2.3A, Fig. 2.4B, left, and Fig. S2.16A). In the

tristable regime, the model predicted, and experiments confirmed, that transient induction

of B by Dox could switch A-only cells to the A+B state, but not beyond it to the B-only

state (Fig. S2.3B first row, Fig. 2.4B, top right, and Fig S2.16B). Combining transient

Dox addition to induce B expression with TMP reduction to destabilize the A+B state

successfully transitioned cells from A+B to the B-only state (Fig. S2.3B, second row, and

Fig. 2.4B, right second row). The reciprocal experiments, in which we induced A

expression with 4-OHT with or without reduced TMP, produced equivalent results (Fig.

2.4B, right column, lower two rows). Taken together, these results demonstrate that
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MultiFate-2 circuits allow modulation of state stability, irreversible cell state transitions,

and direct control of state-switching with transient external inducers.
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Fig. 2.5

Fig. 2.5. MultiFate architecture is expandable to include three and potentially even
more transcription factors.
(A) The experimental MultiFate-3 design uses three self-activation cassettes differing
only in their ZF DNA-binding domains and binding sites, and fluorescent proteins. Each
cassette expresses FKBP-ZF-VP16-DHFR-IRES-FP-PEST, where ZF represents either
BCRZFR39A, 37ZFR2AR11AR39AR67A or ErbB2ZFR2AR39A, and FP represents
either mCherry, mCitrine or mTurquoise2, for A, B and C, respectively. Detailed
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construct maps are available in Table S2. (B) The MultiFate-3 line exhibited type II
septastability, hexastability and tristability in three different TMP conditions. (Top) State
percentages in each octant were quantified and plotted as eight colored circles (25).
(Bottom) High TMP condition = 100 nM AP1903 + 100 nM TMP; Intermediate TMP
condition = 100 nM AP1903 + 40 nM TMP; Low TMP condition = 100 nM AP1903 +
10 nM TMP. Except for OFF state cells, cells in different initial states were sorted from a
mixed population of cells in the High TMP condition. Initial OFF cells came from cells in
regular CHO media without any inducers. Each plot represents the mean percentages of
three biological replicates. (C) Cells in each of the seven states were stable during growth
from single cells into colonies over 6 days under a time-lapse microscope. We sorted cells
and seeded an equal ratio of cells in 7 states using the same method for Fig. 3D. Scale
bar: 500 µm for the wide field image (left), 100 µm for zoomed in images (right). (D)
MultiFate is expandable (model). The number of robust stable fixed points grows
monotonically with the number of transcription factors species (N) in the model. A robust
stable fixed point is defined as a stable fixed point that has fewer than 10% cells escaping
at the end of stochastic simulations (25). The parameter set provided above the plot (with

and Hill coefficient ) is the same non-dimensionalized parameter set𝐾
𝑑

= 1 𝑛 = 1. 5
used in MultiFate-2 and MultiFate-3 models under high protein stability.

2.6 MultiFate is expandable

Because the MultiFate system implements mutual inhibition among transcription factors

through heterodimerization, it can be expanded by adding additional transcription factors,

without re-engineering existing components. In the model, adding a third transcription

factor to a MultiFate-2 circuit produces a range of new stability regimes containing 3, 4,

6, 7, or 8 stable fixed points, depending on parameter values (Figs. 2.1D, S2.2) (25). To

test whether experimental MultiFate-2 circuits be similarly expanded, we stably

integrated a third ZF transcription factor, denoted C, containing the same FKBP

dimerization domain as A and B, co-expressed with a third fluorescent protein,

mTurqoise2, into the MultiFate-2.2 cell line to obtain the MultiFate-3 cell line (Figs.

2.5A, S2.7B and Table S2.3) (25).

After the addition of AP1903 and TMP, MultiFate-3 cells went from low expression of all

genes (OFF state) to one of seven distinct expression states, termed A-only, B-only,
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C-only, A+B, A+C, B+C, and A+B+C states (Fig. 2.5B), consistent with a type II

septastability regime (Figs 2.1D and S2.2A). Most cells occupied the B-only state

(79.5%±0.3%), reflecting asymmetries within the circuit (Figs. S2.14 and S2.15). To

assess the stability of these states, we sorted cells from each of the seven states, and

continuously cultured them in media containing AP1903 and TMP, analyzing the culture

every 3 days by flow cytometry (25). Remarkably, each of the seven states was stable for

the full 18-day duration of the experiment (Fig. 2.5B, High TMP columns, and Fig.

S2.17). Long-term stability required AP1903 and TMP, as expected (Fig. S2.18). Finally,

cells from each state could be reset by withdrawal of AP1903 and TMP and then

re-differentiated into all 7 states when AP1903 and TMP were added back (Fig. S2.18).

This indicates that the observed stability is not the result of a mixture of clones

permanently locked into distinct expression states.

To directly visualize the septastable dynamics of MultiFate-3, we co-cultured single cells

sorted from each of the seven states and performed live imaging as they grew into

colonies (25). Consistent with the flow cytometry results, cells retained their initial states

for the full 6-day duration of the experiment in almost every colony (153 of 157) (Figs.

2.5C, S2.12B, S2.13B).

Like MultiFate-2, the number and stability of different states in MultiFate-3 can be

modulated. In the model, reducing protein stability repeatedly bifurcates the system from

type II septastability (7 stable states) through hexastability (6 stable states) to tristability

(3 stable states) (Fig. 2.1D). This process resembles the progressive loss of cell fate

potential during stem cell differentiation (42). To experimentally test this prediction, we

transferred cells in each of the 7 states cultured under the High (100 nM) TMP condition
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(high protein stability) to similar media with Intermediate (40 nM) or Low (10 nM) TMP

conditions. As predicted by the model, the Intermediate TMP condition destabilized only

the A+B+C state, but not the other 6 states (Fig. 2.5B, Intermediate TMP columns, and

Fig. S2.19), whereas the Low TMP condition destabilized all multi-protein states,

preserving only A-only, B-only and C-only states (Fig. 2.5B, Low TMP, and Fig. S2.20).

Consistent with the model, these transitions were also irreversible: restoring High TMP

concentrations did not cause cells to repopulate previously destabilized states (Fig.

S2.21). Taken together, these results demonstrate that the MultiFate-3 circuit supports

septastability, and allows controlled bifurcations to produce irreversible cell state

transitions.

Can the MultiFate architecture be expanded beyond three transcription factors? To

understand higher order systems, we modeled MultiFate circuits containing up to N=11

transcription factors (25). Using the same parameter values established for MultiFate-2

and MultiFate-3, the number of attractors reached a maximum of 256 at N=9. Analysis of

attractor escape rates in stochastic simulations revealed that most of these attractors were

robust to gene expression noise (Figs. 2.5D and S2.22) (25, 43). The number of attractors

grew more slowly than the theoretical limit of ~2N because stable attractors could only

sustain high levels of up to four transcription factors at a time (Fig. S2.23, middle row).

This limitation reflects the diminishing share of the active homodimers relative to all

dimers. Similarly, the combined basal expression of all transcription factors suppressed

homodimer formation, resulting in a decline in the number of attractors for systems

containing more than 9 transcription factors (Fig. 2.5D and Fig. S2.23, middle row).

Finally, we note that the precise values of the maximum number of stable attractors can
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be modulated up or down by parameters that impact overall gene expression (Fig. S2.23).

Together, these results indicate that the MultiFate architecture can be expanded to

generate large numbers of robust stable states.

2.7 Discussion

The astonishing diversity of cell types in our own bodies underscores the critical

importance of multistable circuits and provokes the fundamental question of how to

engineer a robust, controllable, and expandable synthetic multistable system. We took

inspiration from two ubiquitous features of natural multistable systems, namely

competitive protein-protein interactions and transcriptional autoregulation, to design a

synthetic multistable architecture that operates in mammalian cells. The MultiFate

circuits exhibit many of the hallmarks of natural cell fate control systems. They generate

as many as seven molecularly distinct, mitotically heritable cell states (Figs. 2.3 and 2.5).

They allow controlled switching of cells between states with transient transcription factor

expression (Fig. 2.4B), similar to fate reprogramming (16). They support modulation of

state stability (Figs. 2.3 and 2.5) and permit irreversible cellular transitions through

externally controllable parameters such as protein stability (Figs. 2.4A and S2.21),

similar to the irreversible loss of cell fate potential during stem cell differentiation (12).

Finally, implementing cross-inhibition at the protein level makes MultiFate expandable

by ‘plugging in’ additional transcription factors, without re-engineering the existing

circuit, a useful feature for synthetic biology. The same design principle may play a

related role in natural systems, allowing the emergence of new cell states through

transcription factor duplication and subfunctionalization in a manner analogous to the

stepwise expansion of MultiFate circuits demonstrated here (21, 22, 44, 45).
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A remarkable feature of this circuit is its close agreement with predictions from a

dynamical systems model (Box 2.1). Despite a lack of precise quantitative parameter

values for many molecular interactions, the qualitative behaviors possible with this circuit

design can be enumerated and explained from simple properties of the components and

their interactions. More precise measurements of effective biochemical parameters and

stochastic fluctuations could help to explain, eliminate, or exploit asymmetries and

provide a better understanding of the timescales of state transitions.

MultiFate has a relatively simple structure, requiring a small number of genes, all of the

same type, yet exhibits robust memory behaviors, scalability, and predictive design.

Future work should extend MultiFate into a full-fledged synthetic cell fate control

system. Coupling MultiFate to synthetic cell-cell communication systems such as

synNotch (46, 47), MESA (48), synthekines (49), engineered GFP (50) and auxin (51)

should enable navigation of cells through a series of fate choices, recapitulating cell

behaviors associated with normal development. MultiFate could also allow engineering

of multicellular cell therapeutic programs. For example, one could engineer a stem-like

state that can either self-renew or “differentiate” into other states that recognize and

remember different input signals and communicate with one another to coordinate

complex response programs. Such strategies will benefit from the ability of MultiFate to

allow probabilistic differentiation into multiple different states in the same condition (Fig.

S2.14). In this way, we anticipate that the MultiFate architecture will provide a scalable

foundation for exploring the circuit-level principles of cell fate control and enable new

multicellular applications in synthetic biology.
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Box 2.1 Design of the MultiFate circuit

Here we introduce the mathematical model of the MultiFate circuit and show how it can

be used to design the experimental system and predict its behavior. For simplicity, we

focus on a symmetric MultiFate-2 circuit whose two transcription factors share identical

biochemical parameters and differ only in their DNA binding site specificity. A similar

analysis of systems with more transcription factors and asymmetric parameters is

presented in (25).

We represent the dynamics of protein production and degradation using ordinary

differential equations (ODEs) for the total concentrations of the transcription factors A

and B, denoted and , respectively. We assume that the rate of production of[𝐴
𝑡𝑜𝑡

] [𝐵
𝑡𝑜𝑡

]

each protein follows a Hill function of the corresponding homodimer concentration, [𝐴
2
]

or , with maximal rate , Hill coefficient , and half-maximal activation at a[𝐵
2
] β 𝑛

homodimer concentration of . A low basal protein production rate, denoted , is𝐾
𝑀

α

included to allow self-activation from low initial expression states. Finally, each protein

can degrade and be diluted (due to cell division) at a total rate , regardless of itsδ

dimerization state. To simplify analysis, we non-dimensionalize the model by rescaling

time in units of , concentrations in units of (25), and obtain:δ−1 𝐾
𝑀

𝑑[𝐴
𝑡𝑜𝑡

]

𝑑𝑡 = α +
β[𝐴

2
]𝑛

1 + [𝐴
2
]𝑛 − [𝐴

𝑡𝑜𝑡
]

𝑑[𝐵
𝑡𝑜𝑡

]

𝑑𝑡 = α +
β[𝐵

2
]𝑛

1 + [𝐵
2
]𝑛 − [𝐵

𝑡𝑜𝑡
]
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Here, the Hill coefficient n only represents ultrasensitivity introduced by transcriptional

activation. We include a more detailed discussion on additional ultrasensitivity provided

by homodimerization and molecular titration in (25).

Since dimerization dynamics occur on a faster timescale than protein production and

degradation (52), we assume that the distribution of monomer and dimer states remains

close to their equilibrium values. This generates the following relationships between the

concentrations of monomers, and , and dimers, , , and :[𝐴] [𝐵] [𝐴
2
] [𝐵

2
] [𝐴𝐵]

[𝐴]2 = 𝐾
𝑑
[𝐴

2
]

[𝐵]2 = 𝐾
𝑑
[𝐵

2
]

2[𝐴][𝐵] = 𝐾
𝑑
[𝐴𝐵]

Since the two transcription factors share the same dimerization domain, homo- and

hetero-dimerization are assumed to occur with equal dissociation constants, .𝐾
𝑑

Additionally, conservation of mass implies that , with a[𝐴
𝑡𝑜𝑡

] = [𝐴] + [𝐴𝐵] + 2[𝐴
2
]

similar relationship for B. Introducing the equilibrium equations given above into this

conservation law produces expressions for the concentrations of the activating

homodimers in terms of the total concentrations of A and B:

[𝐴
2
] =

2[𝐴
𝑡𝑜𝑡

]2

𝐾
𝑑
 + 4 ([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) + 𝐾

𝑑
2 + 8([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) 𝐾

𝑑
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[𝐵
2
] =

2[𝐵
𝑡𝑜𝑡

]2

𝐾
𝑑
 + 4 ([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) + 𝐾

𝑑
2 + 8([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) 𝐾

𝑑

Inserting these expressions into the differential equations for and above, we[𝐴
𝑡𝑜𝑡

] [𝐵
𝑡𝑜𝑡

]

obtain a pair of coupled ordinary differential equations with only and as[𝐴
𝑡𝑜𝑡

] [𝐵
𝑡𝑜𝑡

]

variables.

To understand the behavior of this system in physiologically reasonable parameter

regimes (Table S2.1) (25), we used standard approaches from dynamical systems analysis

(53). Based on ODEs, we first generated a phase portrait of variables and[𝐴
𝑡𝑜𝑡

] [𝐵
𝑡𝑜𝑡

]

(labeled ‘TF A’ and ‘TF B’, which are dimensionless total TF A or B concentrations),

where the linewidth of a vector (Fig. 2.1C, gray arrows) at any point is proportional to the

speed of that point. On the phase portrait, we plotted the nullclines (Fig. 2.1C, solid

lines), defined by setting each of the ODEs above to zero. We then identified fixed points

at nullcline intersections, and determined their linear stability (Fig. 2.1C, black and white

dots) (53). Finally, we delineated the basins of attraction for each stable fixed point (Fig.

2.1C, shaded regions).

Using this analysis, we identified parameter values that support type II tristability, a

regime that minimally embodies the developmental concept of multilineage priming

(26–28) (Figs. 2.1C and S2.1B). Stronger self-activation (higher values of ) was moreβ

likely to produce type II tristability (Fig. S1B, row and column). Too much leakyβ

production (high ) allowed both transcription factors to self-activate, reducing theα

degree of multistability, whereas too little (low ) stabilized the undesired OFF state (Fig.α
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S2.1B, column). Strong dimerization (low ) was essential for type II tristability (Fig.α 𝐾
𝑑

S2.1B, row and column). Finally, a broad range of Hill coefficients were𝐾
𝑑

𝑛≥1

compatible with type II tristability. Although higher values of led to a reduced𝑛

sensitivity to other parameters and allowed the system to tolerate higher values of , theyα

also stabilized the OFF state (Fig. S2.1B, row and column). Together, these results𝑛

suggested that an ideal design would maximize , minimize , and use intermediateβ 𝐾
𝑑

values of and .α 𝑛

Based on these conclusions, we incorporated multiple repeats of the homodimeric

binding sites to maximize , used strongly associating FKBP12F36V homodimerizationβ

domains (38) to minimize , and modified the promoter sequences to allow some leaky𝐾
𝑑

expression to optimize (Fig. S2.24) (25). Finally, although we did not directly controlα

the Hill coefficient , we expected that the repeated homodimeric binding sites should𝑛

lead to some ultrasensitivity (54). These design choices produced the selected type II

tristability in the experimental system (Fig. 2.3C).

A key feature of the MultiFate design is its ability to qualitatively change its

multistability properties through bifurcations in response to parameter changes. In

particular, the mathematical model predicts that protein stability can control the number

of stable fixed points in phase space. In the non-dimensionalized model, the protein

degradation rate, , does not appear explicitly but enters through the rescaling of andδ α β

by (25). Thus, tuning protein stability is equivalent to multiplying both and(δ𝐾
𝑀

)−1 α β

by a common factor, which we term the “protein stability factor”. Reducing protein
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stability shifts the nullclines closer to the origin, causing the two unstable fixed points to

collide with the stable A+B fixed point in a subcritical pitchfork bifurcation (Fig. 2.1C)

(53). The result is a bistable system with A-only and B-only stable fixed points at

somewhat lower concentrations (Fig. 2.1C). To experimentally realize this bifurcation,

we designed the circuit to allow external control of transcription factor protein stability

using the drug-inducible DHFR degron (Fig. 2.2C) (39). As predicted, reducing protein

stability destabilized the A+B state, but preserved the A-only and B-only stable states

(Fig. 2.3C). In this way, model-based design enabled us to rationally engineer tristability

as well as externally controllable transitions to bistability in the experimental system.
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2.8 Supplementary Figures

Fig. S2.1

Fig. S2.1 MultiFate-2 model generates diverse types of multistability.
(A) In different symmetric parameter regimes (in which parameters for the two
transcription factors are identical), MultiFate-2 can generate two types of monostability,
bistability, two types of tristability, and quadrastability. For each regime, non-
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dimensionalized parameters and are provided above the plot, and andα β 𝐾
𝑑

= 1
. The x and y axes are dimensionless TF A and TF B, respectively. (B)𝑛 = 1. 5

Parameter screen reveals how each of the non-dimensionalized parameters individually
affects the global structure of the system. Each row and column in this grid of plots
represents a titration of one parameter value, indicated at left and bottom. Within each
plot, different colors represent different stability regimes, as in (A), determined by
numerically solving for steady state values and their linear stability at each point in each
parameter space (25). In the non-dimensionalized model, changing protein stability is
equivalent to multiplying and with the same factor (Box 2.1), and is shown in theα β
fourth column (“protein stability factor - X”), with higher values representing greater
protein stability. Higher leaky transcription (high ) allows transcription factors toα
self-activate, destabilizing the OFF state ( column). Very high values push the systemα α
towards monostability where only the state in which both transcription factors are highly
expressed is stable. Stronger self-activation (higher values of ) is more likely to produceβ
type II tristability and quadrastability ( column). Strong dimerization (low ) isβ 𝐾

𝑑
essential for type II tristability ( row). A broad range of Hill coefficients are𝐾

𝑑
𝑛≥1

compatible with different types of multistability ( row). While higher values of reduce𝑛 𝑛
sensitivity to other parameters and allow the system generate type II tristability even with
higher values of , they also stabilize the OFF state to favor quadrastability.α
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Fig. S2.2

Fig. S2.2 MultiFate-3 model generates more diverse types of multistability.
(A) In different parameter regimes, symmetric MultiFate-3 can generate a diverse
repertoire of different types of stability. The x, y and z axes are total dimensionless
concentrations TF A, B and C, respectively. For each regime, non-dimensionalized
parameters and are provided above the plot (Box 2.1), and and . (B)α β 𝐾

𝑑
= 1 𝑛 = 1. 5

Parameter screen reveals how each of the non-dimensionalized parameters individually
affects the global structure of the system. As in Fig. S2.1, changing protein stability in the
non-dimensionalized model is equivalent to multiplying and with protein stabilityα β
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factor (X). Each plot in the grid shows a titration of two parameter values (left and
bottom). Higher leaky transcription (high ) allows transcription factors to self-activate,α
destabilizing the OFF state. Very high pushes the system towards monostability whereα
only the state which all transcription factors are highly expressed is stable ( column).α
Stronger self-activation (higher values of ) generally favors higher levels ofβ
multistability, such as septastability and octostability ( column). Strong dimerizationβ
(low ) is essential for type II septastability ( column). A broad range of Hill𝐾

𝑑
𝐾

𝑑
coefficients are compatible with different types of multistability. Higher values of𝑛≥1 𝑛
reduce sensitivity to other parameters, and allow the system to generate type II
septastability even at higher values of . However, they also stabilize the OFF state toα
favor octostability ( column). Note that the MultiFate-3 parameter screen graph𝑛
structure resembles that of MultiFate-2 (Fig. S2.1B), in which monostability, octostability
and type II septastability of MultiFate-3 appear at similar positions as monostability,
quadrastability and type II tristability of MultiFate-2. As in Fig. S2.1B, each plot is
calculated by numerical solution of the MultiFate-3 model for steady state values and
their linear stability (25).
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Fig. S2.3

Fig. S2.3 Modeling state-switching dynamics.
We used Gillespie simulations to simulate the effects of transient perturbations on
switching of cells among different states in both bistable regime (A) and type II tristable
regime (B). We used a modified MultiFate-2 model incorporating external inducers
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shown in (25). In this model, the strength of inducers is represented by the parameter
or . Initially (left plot), cells (red dots) are in A-only, B-only or A+B state.𝑖𝑛𝑑

𝐴
𝑖𝑛𝑑

𝐵
Increasing or destabilizes the initial state (central two plots), allowing cells to𝑖𝑛𝑑

𝐴
𝑖𝑛𝑑

𝐵
transition to the target state. Terminating inducer treatment restores .𝑖𝑛𝑑

𝐴
= 𝑖𝑛𝑑

𝐵
= 0

However, at this point, cells are already stabilized in the target state. The α,  β,  𝐾
𝑑
,  𝑛

used for bistable regime and type II tristable regime are the same as Fig. 2.1C.
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Fig. S2.4

Fig. S2.4 Engineering dimer-dependent transcriptional regulation.
(A) To characterize the activation strength of different zinc finger transcription factor
variants, we co-transfected each of them with a reporter construct (Citrine) and a
co-transfection marker (mTagBFP2). Highly transfected cells were gated with
co-transfected BFP > 3x105 (dashed box) to extract their individual histograms (middle).
From each histogram, median Citrine fluorescence intensities of gated cells were used to
calculate fold activation (right) (25). Black arrow indicates the original zinc finger
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sequence from the middle panel (WT). The R2AR39A variant (red box) was selected for
its high ZF-GCN4-AD activation and minimal ZF-AD activation (AD denotes the VP48
activation domain). (B) Zinc finger mutation variants with minimal activation by ZF-AD
and strong activation by ZF-GCN4-AD (red boxes) were selected for use in MultiFate
circuits. Each dot represents one biological replicate, and each bar indicates the mean of
all replicates. 37ZF, 42ZF, 43ZF, 92ZF, 97ZF were taken from (32). These zinc fingers
were previously (32) denoted, respectively, as 37-12 array, 42-10 array, 43-8 array, 92-1
array, and 97-4 array. BCRZF, HIV1ZF, HIV2ZF, and ErbB2ZF are from (29), and BCR
denotes the BCR_ABL domain. (C) Four selected zinc finger transcription factors used
later in the paper exhibit orthogonal trans-activation. Each row represents a transcription
factor with abbreviated labels for figure layout. Full transcription factor descriptions are,
from top to bottom, 37ZFR2AR11AR39AR67A-GCN4-VP48; 42ZFR2AR39AR67A-
GCN4-VP48; BCRZFR39A-GCN4-VP48; and ErbB2ZFR2AR39A-GCN4-VP48. Each
target (column) is the same Citrine fluorescent reporter used in panel (A), with 2 repeats
of 18bp tandem binding site pairs, denoted “ZFbs_ZFbs” for each type, at the promoter.
Each square in the matrix is the mean of two biological replicates.
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Fig. S2.5

Fig. S2.5 Engineered dimer-dependent transcription factors enable transcriptional
positive autoregulation and mutual inhibition through competitive dimerization.
(A) Positive autoregulation can be controlled by TMP and AP1903. Here, normalized
mCitrine+ fractions are used to quantify self-activation strength, as in Fig. 2.2C (see (25)
for quantification methods) for 6 additional ZFs. (B) Positive autoregulation was
inhibited by competing proteins with matching dimerization domains. Two monoclonal
stable lines (plot subtitles) could spontaneously self-activate in media containing 100 nM
AP1903 and 10 µM TMP (histograms). Potentially competing proteins were expressed
from plasmids and stably integrated into each monoclonal line (25). Note that in
42ZFR2AR39AR67A-GCN4-VP48-DFHR self-activation cells (left), the GCN4 domain
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by itself did not have inhibitory effects, but could efficiently inhibit self-activation when
fused with BCRZFR39A. In FKBP-42ZFR2AR39AR67A-VP48-DHFR self-activation
cells (right), the FKBP domain by itself can partially inhibit self-activation. The mCitrine
threshold is 2x104 for 42ZFR2AR39AR67A-GCN4-VP48-DHFR self-activating cells,
and 5x104 for FKBP-42ZFR2AR39AR67A-VP48-DHFR cells. The integrated plasmid in
the “None” group did not express any transcription factor variants. In all panels, each dot
represents one biological replicate, and each red line or bar indicates the mean of
replicates.
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Fig. S2.6

Fig. S2.6 Modeling the relationship between TF concentrations and fluorescence
readout.
(A) Self-activation module creates a threshold-like behavior: when transcription factor
concentration is higher than the threshold, the module would be highly active and express
a high level of fluorescent proteins, resulting in a ‘high’ state; transcription factor
concentration is lower than the threshold, the module is inactive and express a minimal
level of fluorescent proteins, resulting in a ‘low’ state. (Left) The threshold is the TF
concentration that produces a homodimer concentration of 1. (Middle) In the ‘high’ state,
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transcription factor concentrations are sensitive to protein half-life, while fluorescence
readouts (right) are not sensitive and almost overlap with each other. (B) Modeling shows
that MultiFate-2 fluorescence readouts are well separated into distinct clusters, and each
cluster can be unambiguously assigned to its corresponding state defined by transcription
factor concentrations. (Top) Transcription factor concentrations of simulated cells cluster
around stable fixed points. For A-only state or B-only state, transcription factor
concentrations differ by more than 2 folds between type II tristable regime and bistable
regime, as shown on the ‘Overlap’ plot. (Bottom) By contrast, fluorescence readouts for
A-only state or B-only state almost overlap with each other between type II tristable
regime and bistable regime, consistent with experimental observation in Fig. S2.9-2.11.
In this panel, the MultiFate-2 parameters related to transcription factor dynamics (

) are the same as those used in Fig. 2.1C. Parameters related to fluorescentα,  β,  𝐾
𝑑
,  𝑛

protein dynamics are in Table S2.1. (C) Fluorescence readouts have a time delay
compared with transcription factor concentrations during cell state transition. We used the
same modified MultiFate-2 model incorporating external input as that used in Fig. S3 to
simulate transcription factor dynamics, with .α = 0. 4,  β = 10,  𝐾

𝑑
= 1,  𝑛 = 1. 5

(Left) Simulated single cell dynamics of transcription factor concentrations (top) and
fluorescence readouts (bottom) during cell state transition from A-only state to B-only
state. Selected timepoints are: t1 is when the cell is in A-only state at the start of
simulation; t2 is when transcription factor concentrations cross the state boundary (i.e.
[TF A] = [TF B]); t3 is when fluorescence readouts cross the state boundary (i.e. [Mature
FP A] = [Mature FP B]); t4 is when the cell is in B-only state at the end of simulation. For
this simulation, maturation time of both fluorescence proteins is 8 hours, and fluorescent
protein half-life is 10.125 hours. (Right) Both longer maturation time and longer
fluorescent protein half-life increase the time delay of fluorescence readouts. The color of
each block represents the mean delay time of 200 cells.
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Fig. S2.7

Fig. S2.7 Schematics of MultiFate-2 and MultiFate-3 clone selection processes.
(A) MultiFate-2 monoclones were selected from a population of cells that can maintain a
stable double-positive state for at least 72 hours. (B) MultiFate-3 monoclones were
selected from a population of cells that can maintain a stable triple-positive state for at
least 72 hours. Also see (25) for a description of clone selection processes.
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Fig. S2.8

Fig. S2.8 Doubling time of MultiFate cells.
For each MultiFate line, most differences in doubling time among cells in different states
are not significant. We used Welch’s t-test (threshold p = 0.05) since it is suitable for
pairwise comparison without assuming equal variance. Only significant difference is that
MultiFate-3 cells in A+B state grow slower than cells in C-only state. The differences in
doubling time among different MultiFate lines are significant, probably due to clonal
differences. Each dot represents one biological replicate, and each red line indicates the
mean of all replicates. Doubling time of the same cell line from different states (from first
four plots) are combined to generate the last plot. *: 1e-2 < p ≤ 5e-2; **: 1e-3 < p ≤ 1e-2;
***: 1e-4 < p ≤ 1e-3; ****: p ≤ 1e-4.
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Fig. S2.9

Fig. S2.9 Raw flow cytometry analysis of the MultiFate-2.1 line.
Each plot represents one of three biological replicates at the indicated time point (cf. Fig.
2.3C, MultiFate-2.1 columns, and Fig. 2.4A). Initial A-only, B-only and A+B cells (rows)
were sorted under the media conditions indicated on the top, and initial OFF cells came
directly from cells in regular CHO media without any inducers. Each 2-dimensional flow
cytometry plot was divided at mCherry = 104 and mCitrine = 2x104 into four quadrants,
representing four states. For each plot, the percentage of cells in each of the four states is
labeled on the corresponding corner. Timelines above each set of plots represent the
indicated inducer conditions.
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Fig. S2.10

Fig. S2.10 Raw flow cytometry analysis of the MultiFate-2.2 line.
Each plot represents one of three biological replicates at the indicated time point (cf. Fig.
2.3C, MultiFate-2.2 columns). Initial A-only, B-only and A+B cells (rows) were sorted
under the media conditions indicated on the top, and initial OFF cells came directly from
cells in regular CHO media without any inducers. Each 2-dimensional flow cytometry
plot was divided at mCherry = 2x104 and mCitrine = 3x104 into four quadrants,
representing four states. For each plot, the percentage of cells in each of the four states is
labeled on the corresponding corner. Timelines above each set of plots represent the
indicated inducer conditions.
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Fig. S2.11

Fig. S2.11 Raw flow cytometry analysis of the MultiFate-2.3 line.
Each plot represents one of three biological replicates at the indicated time point (cf. Fig.
2.3C, MultiFate-2.3 columns). Initial A-only, B-only and A+B cells (rows) were sorted
under the media conditions indicated on the top, and initial OFF cells came directly from
cells in regular CHO media without any inducers. Each 2-dimensional flow cytometry
plot was divided at mCherry = 104 and mCitrine = 104 into four quadrants, representing
four states. For each plot, the percentage of cells in each of the four states is labeled on
the corresponding corner. Timelines above each set of plots represent the indicated
inducer conditions.
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Fig. S2.12

Fig. S2.12 Raw time-lapse images separated by channels.
Representative time-lapse images separated by channels. The brightness and contrast for
images in the same movie were adjusted to be the same. (A) For MultiFate-2.3 time-lapse
images, the intensity range of mCherry channel and mCitrine channel are [550, 800] and
[300, 800], respectively. (B) For MultiFate-3 time-lapse images, the intensity range of
mCherry channel, mCitrine channel and mTurquoise2 channel are [600, 1400], [350, 800]
and [1000, 1500], respectively. Raw image files are available at
data.caltech.edu/records/1882.
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Fig. S2.13

Fig. S2.13 Time-lapse movies allow direct visualization of rare spontaneous
state-switching events.
(A) Two colonies (white boxes) in a MultiFate-2.3 time-lapse movie exhibited
spontaneous state-switching events. Each example is shown as a filmstrip to the right.
Arrowheads indicate the cell that switched states. In example 1 (top), a pair of A+B cells
(yellow) appear from a colony started in the A-only (red) state (arrowheads). A similar
transition was also identified in example 2 (bottom, white arrowhead). (B) We identified
four state-switching events (highlighted in white rectangles) in a MultiFate-3 time-lapse
movie. Filmstrips (right) show the events. White arrowheads indicate cells that have
switched states. Example 1 (top row) shows a transition from A+B+C (white) to A+B
(yellow) and another transition to A-only state (red). Examples 2 and 3 (second row)
show a transition from C-only (blue) to B+C (cyan). Example 4 shows a transition from
A-only (red) to A+B (yellow). Time points of spontaneous state-switching are labeled in
red type. Scale bar is 500 µm for the wide field image (left), and 100 µm for zoomed in
images (right).
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Fig. S2.14

Fig. S2.14 MultiFate state transition matrix shows low transition rates out of stable
states, and distinct transition preferences out of unstable states for different cell
lines.
These transition matrices show that each predicted stable state (black bold text) has a
very low level of cell transition out of the state (<1% every 3 days) as shown by weak
off-diagonal blocks. The preferences of cells in each predicted unstable state (red bold
text) to transition to different stable states are shown by the intensity of off diagonal
blocks, and are consistent with results in Figs. 2.3C and 2.5B. We calculated the
transition matrix among MultiFate states for different MultiFate lines from multi-day
flow cytometry data (cf. Figs. S2.9 to S2.11 and other two biological replicates) using a
method developed in (55).
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Fig. S2.15

Fig. S2.15 Simulated cell fractions from best-fitted asymmetry parameter sets
recapitulate experimental cell fractions of different MultiFate-2 lines in various
conditions.
Using stochastic asymmetry MultiFate models, we obtained the best-fitted parameter set
to recapitulate the experimental data of each MultiFate cell line (25). For both panels,
each pair of start-end plots in ‘Model fitting’ columns were generated by stochastic
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simulations of 400 cells starting from each initial state in each condition. The asymmetry
parameters for each MultiFate line were shown on the left, and the symmetry parameters
were shown on the phase diagrams. and . Note that the 3D phase𝐾

𝑑
= 1 𝑛 = 1. 5

diagrams in panel B were tilted slightly differently compared with those in Figs. 2.1D and
S2.2A, for better visualization of asymmetry.
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Fig. S2.16

Fig. S2.16. Raw flow cytometry analysis of MultiFate-2.3 state-switching.
Each plot represents one of three biological replicates at the indicated time point (cf. Fig.
2.4B). Initial A-only, B-only and A+B cells (rows) were sorted under the media
conditions indicated on the top. Each 2-dimensional flow cytometry plot was divided at
mCherry = 104 and mCitrine = 104 into four quadrants, representing four states. For each
plot, the percentage of cells in each of the four states is labeled on the corresponding
corner. Timelines above each set of plots represent the time and indicated inducer
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conditions. Note that since the response elements for 4-OHT or Dox are adjacent to the
transcription factor homodimer binding sites (Table S2.2), the addition of 4-OHT or Dox
increases A or B expression up to, but not substantially beyond, the level produced by
transcription factor self-activation. For example, in panel B third row, transcription factor
A self-activation resulted in a 125-fold increase in expression (fold increase is calculated
by dividing mCherry median in Day 18 by mCherry median in Day 0, mean of three
replicates). Compared with transcription factor self-activation (Day 18), additional
4-OHT activation resulted in only another 2.8-fold increase in A expression (Day 6
versus Day 18). Similarly, in panel B first row, transcription factor B self-activation
resulted in a 48-fold increase in expression (Day 18 versus Day 0). Additional Dox
activation further increased the B expression only by another 1.4 fold (Day 6 versus Day
18).
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Fig. S2.17

Fig. S2.17 Raw flow cytometry data of MultiFate-3 line under the High TMP
condition.
Each plot represents one of three biological replicates at the indicated time point (cf. Fig.
2.5B, High TMP). Initial A-only, B-only and A+B cells (rows) were sorted under the
media conditions indicated on the top, and initial OFF cells came directly from cells in
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regular CHO media without any inducers. Each 3-dimensional flow cytometry plot was
divided at mCherry = 2x104, mCitrine = 4x104 and mTurquoise2 = 9x103 into eight
octants, representing eight states. For each plot, the percentage of cells in each of the 7
states (excluding the OFF state) is labeled on the corresponding octant, as shown in
legend at top-right. The timeline (top) represents the indicated inducer conditions. OFF
state percentages are usually very low (<1%) across all conditions, and are separately
labeled if the percentage is greater than 1%. One of three replicates of cells from each of
the 7 initial states (excluding the OFF state) were continuously cultured beyond 18 days.
In all 7 states, >90% of cells remained in their original state at day 37 (see indicated
percentages).
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Fig. S2.18

Fig. S2.18 Inducer withdrawal and reintroduction experiments showed MultiFate
dependency on positive autoregulation and ruled out the possibility of mixed clones.
Sorted cells in seven different states were transferred from AP1903+TMP media into
regular media without any inducers. Most cells returned to the OFF state within 3 days
(second column). After 6 days, AP1903+TMP was added back to the media, and cells
were measured by flow cytometry after another 3 days. The resulting state distributions
(fourth column) were similar to each other, suggesting that sorted cells in seven different
states come from the same monoclonal MultiFate-3 line. Each plot represents the mean
fractions of three biological replicates.
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Fig. S2.19

Fig. S2.19 Raw flow cytometry data of MultiFate-3 line under the Intermediate
TMP condition.
Each plot represents one of three biological replicates at the indicated time point (cf. Fig.
2.5B, Intermediate TMP). Initial A-only, B-only and A+B cells (rows) were sorted under
the media conditions indicated on the top, and initial OFF cells came directly from cells
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in regular CHO media without any inducers. For each plot, the percentage of cells in each
of the 7 states (excluding the OFF state) is labeled on the corresponding octant. The
timeline (top) represents the indicated inducer conditions. OFF state percentages are
usually very low (<1%) across all conditions, and are separately labeled if the percentage
is greater than 1%. Cells from A+B+C initial state were continuously cultured beyond 18
days and measured at day 31. This extended analysis revealed that cells continuously
escaped from A+B+C state, as predicted, under the Intermediate TMP condition.
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Fig. S2.20

Fig. S2.20 Raw flow cytometry data of MultiFate-3 line under the Low TMP
condition.
Each plot represents one of three biological replicates at the indicated time point (cf. Fig.
2.5B, Low TMP). Initial A-only, B-only and A+B cells (rows) were sorted under the
media conditions indicated on the top, and initial OFF cells came directly from cells in
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regular CHO media without any inducers. For each plot, the percentage of cells in each of
the 7 states (excluding the OFF state) is labeled on the corresponding octant. The timeline
(top) represents the indicated inducer conditions. OFF state percentages are usually very
low (<1%) across all conditions, and are separately labeled if the percentage is greater
than 1%. Cells from A+B+C, A+B, A+C and B+C initial states were continuously
cultured beyond 18 days. This extended analysis revealed that cells continuously escaped
from these unstable states, as predicted, under the Low TMP condition.
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Fig. S2.21

Fig. S2.21 MultiFate-3 exhibits predicted hysteresis.
When transferred from High to Intermediate or Low TMP conditions, cells transition out
of destabilized states, as expected. These transitions were irreversible, as shown by both
modeling (left) and experiments (right). (Left) The model used here is symmetric and
non-dimensionalized, with and . The x, y and z axes are total𝐾

𝑑
= 1 𝑛 = 1. 5

dimensionless concentrations of TF A, B and C, respectively. Simulated cells on phase
diagrams were calculated using the Gillespie algorithm. The left column shows initial
conditions in simulations, with all cells in a single state at High TMP. The middle column
shows steady-state density of cells in different states under Low or Intermediate TMP
conditions. The right column shows that cells remain in states in the middle column after
switching back to the High TMP condition. (Right) Experiments showed similar
hysteretic behaviors, largely consistent with modeling. In each row, initial cells for
indicated states were sorted from the High TMP condition, where they were cultured for
at least 3 days, and immediately transferred to Intermediate or Low TMP on day 0. They
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were then maintained in that condition for 18 or 31 days, as indicated, and then
transferred back to the High TMP condition. The color indicates density of cells in each
of the indicated states, as in Fig. 2.5. Note that a difference between the simulations and
experimental results is that actual cells escaping from destabilized states preferentially
occupied the A-only state or states containing high A expression, instead of evenly
distributing themselves across all states. This reflects some asymmetry of the
experimental MultiFate-3 circuit. High TMP condition = 100 nM AP1903 + 100 nM
TMP; Intermediate TMP condition = 100 nM AP1903 + 40 nM TMP; Low TMP
condition = 100 nM AP1903 + 10 nM TMP. Each plot represents the mean fractions of
three biological  replicates.
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Fig. S2.22

Fig. S2.22 Modeling the robustness of MultiFate against intrinsic biological noise.
(A) OFF state is less robust against intrinsic noise compared with B-only state. (Left) The
model used here is symmetric and non-dimensionalized, with and . The𝐾

𝑑
= 1 𝑛 = 1. 5

x, y and z axes are total dimensionless concentrations of TF A, B and C, respectively.
(Middle) Cells starting from OFF state spontaneously switch out of OFF state, while cells
from B-only state stay in their original state at the end of simulation. The traces are
generated by Gillespie algorithm. The concentration is dimensionless. (Right) For
MultiFate-3 type I quadrastable regime, larger relative basin size corresponds to higher
robustness. Robustness score is defined as the fraction of cells not changing state at the
end of simulation. The filled dots are the mean robustness scores of 50 simulated cells,
and the error bar is the 95% confidence interval generated by bootstrapping. (B) For both
MultiFate-2 and MultiFate-3, robustness score is positively correlated with attractor basin
size, as shown by the positive Spearman’s values. We used Spearman’s since it couldρ ρ
assess non-linear monotonicity We each simulated 100 sets of parameters with different
combinations of and for MultiFate-2 and MultiFate-3. For each parameter set, theα β
basin size of each stable fixed point is calculated, and the robustness of each stable fixed
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point is quantified by simulating 50 cells starting from that fixed point. For each fixed
point, the relative basin size (top) is calculated by dividing its basin size by the average
basin size of all fixed points from one parameter set. The characteristic length (bottom) is
the Nth root (N is the dimension, either 2 or 3) of basin size, which makes comparison of
basin sizes between MultiFate-2 and MultiFate-3 possible.
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Fig. S2.23

Fig. S2.23 The number of robust stable fixed points increased as MultiFate was
expanded to include more transcription factors.
(Left) The number of stable fixed points (blue dots) mostly increased monotonically with
the number of transcription factors (except for MultiFate-10 and 11 in the middle row), at
a rate slower than the theoretical limit of 2N (N is the total number of transcription
factors). This increase rate (the slope of blue dots) can be modulated up or down by andα

values. Since the model is non-dimensionalized, and can be tuned byβ α β
transcriptional activation strength, protein stability and zinc finger DNA-binding affinity.
The theoretical limit is 2N because each transcription factor can be in either highly
expressed or basally expressed state for any fixed points, which resulted in 2N points
considering all combinations of binary states from N transcription factors. Among all
stable fixed points, most (orange square) were robust to intrinsic biological noise (43),
thus the number of robust stable fixed points followed the monotonic increasing trend of
total stable fixed points. The robustness of a fixed point was quantified by a robustness
score, which was the fraction of simulated cells not escaping from that fixed point at the
end of stochastic simulation (25). (Right) The number of fixed points grew more slowly
than the theoretical limit because each parameter set only supports fixed points with up to
a certain number of transcription factors simultaneously expressed at high level (denoted
as number of TF ON). For each parameter set, all stable fixed points were plotted in the
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same plot, with number of TF ON on x axis and robustness score on y axis. Fixed points
from different MultiFate systems were labeled with different colors. Since symmetric
models were used, stable fixed points that have the same number of TF ON should have
the same robustness score, thus each dot is an overlap of many fixed points. Small
deviations resulted from stochasticity in the simulations. Low and values (first row)α β
only supported fixed points up to one transcription factor highly expressed. High andα β
values (second row) supported fixed points with up to four transcription factors highly
expressed. Among them, fixed points with up to three transcription factors
simultaneously ON were robust. A parameter set with even higher and values (thirdα β
row) supported fixed points with more transcription factors simultaneously ON. In these
regimes, OFF fixed points sometimes were not stable or not robust. Here we used
symmetric, non-dimensionalized and expanded MultiFate models with and𝐾

𝑑
= 1

.𝑛 = 1. 5
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Fig. S2.24

Fig. S2.24 Basal promoter expression can be modulated by modifying promoter
sequences.
Basal promoter expression and spontaneous self-activation in CHO cells can be increased
by inserting GACGCTGCT repeats in the promoter. Note that GACGCTGCT is also the
sequence motif bound by 42ZF, but its effect in increasing basal promoter expression
does not require 42ZF. (Top) Schematics of three self-activation constructs different only
in the number of GACGCTGCT repeats in the promoter. ZF = BCRZFR39A. Detailed
construct maps are in Table S2. (Bottom) Increasing the number of GACGCTGCT
repeats in the promoter increased the basal promoter expression, which can be observed
by increased right shifts of mCherry- cell populations in regular media (red > green >
black). Higher basal promoter expression resulted in an increase in the fractions of cells
(mCherry+ cells) that can spontaneously self-activate upon the addition of 100 nM
AP1903 and 10 µM TMP (pink > blue > magenta). Each of the three polyclonal cell
populations was generated by stably integrating each construct in the CHO-K1 cells
(Table S2.3) (25). Different from Fig. 2.2C, polyclonal cell population was transferred
directly from regular media to media containing AP1903 and TMP (instead of adding
transient Dox treatment in between) to test spontaneous self-activation. Cells were
harvested and measured by flow cytometry after 48 hours in regular media or
AP1903+TMP media.
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2.9 Supplementary Materials

Plasmid construction

Constructs used in this study are listed in Table S2.2. Some constructs were generated

using standard cloning procedures. The inserts were generated using PCR or gBlock

synthesis (IDT) and were annealed by Gibson assembly with backbones that are

linearized using restriction digestion. The rest of the constructs were designed by the

authors and synthesized by GenScript. All the construct maps are available at

data.caltech.edu/records/1882, and selected constructs used to build MultiFate lines are

deposited onto Addgene.

Tissue culture

Chinese hamster ovary K1 cells (CHO-K1, ATCC) were cultured at 37oC in a

humidity-controlled chamber with 5% CO2. The growth media consisted of Alpha MEM

Earle’s Salts (FujiFilm Irvine Scientific) supplemented with 10% FBS, 1 U/ml penicillin,

1 µg/ml streptomycin and 1 mM L-glutamine. For experiments requiring a change of

inducer conditions, cells were first washed 3 times using media with the new inducer

condition. After the wash, cells were rinsed once with Dulbecco's Phosphate-Buffered

Saline (DPBS, Life Technologies) and trypsinized with 0.25% Trypsin (Life

Technologies) for 3 min at 37oC. Trypsinized cells were then transferred into a new well

with media added with the new inducer condition.
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Transient transfection

24 hours before transfection, 0.05x106 CHO-K1 cells were seeded per well of a 24-well

plate using standard culture media. The next day, cells were transfected with plasmids

using Lipofectamine LTX and PLUS Reagents (Thermo fisher) according to

manufacturer’s protocol.

Cell line construction

Stable cell lines used in this study are listed in Table S2.2. Stable cell lines were

generated using the PiggyBac Transposon system (System Biosciences). CHO-K1 cells in

a 24-well plate were co-transfected with transgene constructs in a PiggyBac expression

backbone, an EF1α-PuroR plasmid and a Super PiggyBac Transposase plasmid. Cells

were transferred into a 6-well plate and selected with 10 µg/ml puromycin for 3 days to

obtain a stable polyclonal population.

To identify potential MultiFate-2 clones that could operate in several multistability

regimes, we turned to our MultiFate mathematical model for intuition. Through

parameter screening we found that when one progressively reduces protein stability

starting from a value at which the state with all transcription factors expressed

simultaneously (all-ON) was stable could generate a progressive reduction of

multistability (Fig. S1B).

To achieve similar behavior experimentally, we sought to select MultiFate-2 monoclones

that exhibit stable A+B state (Fig. S2.7A). We transiently induce the expression of all

transcription factors in polyclonal MultiFate-2 cells by Dox (Sigma-Aldrich) (and 4-OHT

(Sigma-Aldrich) if the second cassette has UAS) for 36 hours, then washed and replaced
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with media containing 100 nM AP1903 (MedChemExpress) and 10 µM TMP

(Sigma-Aldrich) (each at the saturating concentration). After another 3 days, polyclonal

cells with both A and B still activated were sorted by FACS as single cells into 384-well

plates. The plates were checked under microscope after 4-5 days to eliminate wells

without cells or with more than one colony. For wells that only have a single colony

growing, cells were expanded, and subsequent screening was performed to obtain

MultiFate-2 monoclones. Using a similar method, a monoclonal that could maintain the

stability of the A+B+C state was selected as the MultiFate-3 line (Fig. S2.7B). All the

MultiFate lines used in the current study are available from the corresponding author.

Flow cytometry

All samples were harvested from 24-well plates. Cells were first rinsed with 500 µl

DPBS, and then trypsinized with 75 µl 0.25% trypsin for 3 min at 37oC. Trypsin was

neutralized by resuspending cells in 300 µl flow cytometry buffer containing Hank's

Balanced Salt Solution (Life Technology) and 2.5 mg/ml Bovine Serum Albumin. Cell

samples were then filtered by 40 µm cell strainers and analyzed by a flow cytometer

(CytoFLEX, Beckman Coulter). We used a Matlab-based software package developed by

Yaron Antebi to process flow cytometry data (https://antebilab.github.io/easyflow/).

Characterization of ZF transcription factors

To characterize transcriptional activation of different ZF transcription factor variants (Fig.

2A, Fig. 2B and S4), we transfected CHO-K1 cells in 24-well plates with 50ng ZF

transcription factor plasmid (Table S2.2, construct MF08–MF62), 50ng reporter plasmid

(Table S2, construct MF01–MF07) and 25ng EF1α-mTagBFP2. In the “ReporterOnly”
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group, ZF transcription factor plasmid was replaced by an empty plasmid with only a

constitutive promoter but no ZF transcription factor. In the “NoReporter” well, both ZF

transcription factor plasmid and reporter plasmid were replaced by an empty plasmid. For

ZF transcription factors with FKBP homodimerization domain (Fig. 2.2B), AP1903 was

added to the transfection media. 36 hours after transfection, cells were harvested and

analyzed by flow cytometry. To maximize the reporter dynamic range, we selected and

compared highly transfected cells by gating cells with high levels of a BFP

co-transfection marker. Median citrine fluorescence intensity of gated cells was used to

calculate fold activation. To calculate fold activation, median fluorescence values of

NoReporter samples, representing the cellular autofluorescence background, were first

subtracted from ReporterOnly and Reporter+ZF samples. The ratio between

background-subtracted Reporter+ZF value and background-subtracted ReporterOnly

value is then the fold activation of that ZF transcription factor on that reporter.

Characterization of ZF transcription factor self-activation

Each self-activation construct (Table S2.2, construct MF63–MF69) was stably integrated

into Tet3G-expressing CHO-K1 cells. After puromycin selection, polyclonal cells were

transferred into media containing 500 ng/ml Dox to transiently express ZF transcription

factors. After 24 hours of Dox treatment, cells were washed 3 times with regular media

and transferred into media containing different concentrations of AP1903 and/or TMP to

test how dimerization and/or protein stability affect self-activation. One sample of cells

(Dox+ sample) continued to be cultured in 500 ng/ml Dox as the positive control. After

another 72 hours, cells were harvested and analyzed by flow cytometry. Stable polyclonal

cells showed a strong bimodal mCitrine distribution upon circuit activation (Fig. 2.2C,
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middle). We used an empirical threshold at mCitrine = 104 fluorescence units to separate

the population into mCitrine- (cells with no circuit integrated or integrated circuit cannot

self-activate) and mCitrine+ (cells with integrated circuit activated) subpopulations. To

only consider cells with at least one stably integrated activatable circuit, we normalized

the mCitrine+ fraction of each sample to the mCitrine fraction of Dox+ sample, in which

high concentrations of Dox should turn on all stably integrated activatable cassettes. This

normalized mCitrine+ fraction was used to compare self-activation strength across

different AP1903 and TMP combinations.

Assay showing inhibition of self-activation by competitive dimerization

Two monoclonal self-activation stable lines (with 42ZFR2AR39AR67A DNA-binding

domain and either GCN4 or FKBP as the homodimerization domains, see Table S2.3)

were selected since they showed spontaneous and homogeneous self-activation upon the

addition of 100 nM AP1903 and 10 µM TMP (Fig. S2.5B). To whether competitive

dimerization inhibits self-activation (Figs. 2.2D and S2.5B), we stably integrated

plasmids (Table S2.2, construct MF72–MF80) expressing different transcription factor

variants and a co-translational mCherry in these two monoclonal lines. After puromycin

selection, cells were transferred into media containing 100 nM AP1903 + 10 µM TMP to

permit self-activation, and measured by flow cytometry after another 72 hours. The

mCherry+ cell population was gated for analysis. We introduced protein variants through

stable integration, instead of transient transfection, to avoid nonspecific transcriptional

interference by transient high expression of proteins during transfection, and to test

inhibition of self-activation in a cellular environment better mimicking the MultiFate-2

and MultiFate-3 stable cell lines.
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Fluorescence Activated Cell Sorting (FACS)

To separate MultiFate cells in distinct states for subsequent experiments (Figs. 2.3 to 2.5),

cells were harvested and resuspended in sorting buffer (BD FACS Pre-Sort Buffer)

supplemented with 1 U/ml DNAse I, AP1903 and TMP. Cells were then sorted into

media containing different concentrations AP1903 and TMP, according to the

experiments. Cell sorting was performed by Caltech Flow Cytometry Facility.

Flow cytometry measurement of long-term state stability of MultiFate cells

To characterize long-term state stability of MultiFate cells in different media conditions

(Figs. 2.3 to 2.5), we trypsinized and transferred 4% of cells into fresh media with the

same condition every three days. The remaining cells were resuspended in flow

cytometry buffer and analyzed by a flow cytometer. The resulting two-dimensional (or

three-dimensional for MultiFate-3) fluorescence intensity plots were then divided into

four quadrants (or eight octants) by an empirical threshold in each of the two (or three)

fluorescence channels. The exact values of empirical thresholds for different MultiFate

cell lines are slightly different due to expression differences and are shown in the figure

legends of Fig. S2.9 to S2.11 and S2.17. The percentage of cells in quadrants (or octants)

were then calculated for each sample. The mean percentage of cells across three samples

was plotted as a square (or a hexagon) with colored circles representing the percentages.

Time-lapse imaging

To visualize state stability of MultiFate cells (Figs. 2.3D and 2.5C), MultiFate cells from

different states were mixed at equal ratio, and sparsely seeded in an imaging 24-well plate

(µ-Plate 24 Well Black, ibidi) with media containing AP1903 and TMP. After 6 or 12
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hours, we aspirate media to remove unattached cells and add fresh media containing

AP1903 and TMP. Time-lapse images were acquired on an inverted Olympus IX81

fluorescence microscope with Zero Drift Control (ZDC), an ASI 2000XY automated

stage, a Photometrics 95B camera (Teledyne Photometrics) and a 20x UPlanS/Apo

objective (0.75 NA, Olympus). Fluorescent proteins were excited with an X-Cite XLED1

light source (Lumen Dynamics). Images were automatically acquired every one hour,

controlled by MetaMorph software (Molecular Devices). Cells were kept in a

custom-made environmental chamber enclosing the microscope, controlling a humidified,

37oC and 5% CO2 atmosphere. Media was changed every three days.

Measuring doubling time of MultiFate cells in different states

To measure the doubling time of different MultiFate lines in different states (Fig. S2.8),

we first separated cells from different states using cell sorting. We then cultured cells

from OFF state in regular media and cells from all other states in media containing

AP1903 and TMP, so that cells do not change state during measurement. For each

measurement, we plated the same number of cells in two wells in a 48-well plate. We

counted one well after 24 (or 48) hours, and counted the other well after 72 hours. Note

that the wells were still sub-confluent at 72 hours. The doubling time is then

, where is the time difference between the two timepoints, is theτ
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Robustness analysis of MultiFate circuit

All the stable fixed points attract surrounding cells in the deterministic model. However,

random transcription factor concentration fluctuations arose from stochasticity of

chemical reactions (intrinsic noise) (43) such as transcription and translation may switch

cells from one stable fixed point to another. The robustness of a stable fixed point is

measured by how infrequent cells from that stable fixed point spontaneously switch to

other fixed points due to intrinsic noise. We used Gillespie simulations (41) to analyze the

robustness of MultiFate circuit (Figs. 2.5D, S2.22 and S2.23). Molecular reactions and

their propensities for Gillespie simulation are listed in Table S2.4. To quantify the

robustness of a stable fixed point, we first simulate trajectories of cells starting from that

stable fixed point. Then the robustness of that fixed point is quantified by a robustness

score, defined by the fraction of cells not switching out of that stable fixed point at the

end of simulation (1000 hours). The higher the robustness score, the more robust a stable

fixed point is against intrinsic noise. In Fig. 2.5D, robust stable fixed points have

robustness scores greater than 0.9, which means less than 10% of cells spontaneously

escape at the end of stochastic simulations.

Attractor basin analysis of MultiFate circuit with N transcription factors

In theory, the attractor basin volume of a stable fixed point goes to infinity (except for the

fixed point with all transcription factors OFF) if the concentration of each transcription

factor has no limit. However, transcription factor concentrations are bounded by their

maximum expression levels. Consequently, attractor basin volumes are finite and

volumes of different basins can be compared. In the non-dimensionalized model,
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transcription factor concentrations are confined to the interval , which[α,  α + β]

corresponds to the equilibrium concentrations when a transcription factor is not

self-activating and when it is fully self-activating, respectively. To calculate the

approximate volumes of attractor basins (Fig. S2.22), we initialized an -dimensional𝑁

concentration grid with points in each dimension, spaced at equal linear intervals, for a𝑘

total of points. Using these grid points as initial conditions, we numerically solved the𝑘𝑁

differential equations to compute forward trajectories to their final stable fixed point,

using the expanded MultiFate-N model (see below). We labeled each grid point based on

which stable fixed point its trajectory ends at. The attractor basin volume of a stable fixed

point was then approximated as , where𝑉
𝑖

= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑒𝑛𝑑 𝑎𝑡 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑖
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠  * β𝑁

represents the total phase space volume.β𝑁

Parameter screening of MultiFate-2 and MultiFate-3 circuits

Each parameter dependency plot in Figs. S2.1B and S2.2B represents a field of 100⨉100

points. The color of each point denotes the multistability type generated through

MultiFate-2 (Fig. S2.1B) or MultiFate-3 (Fig. S2.2B) with the indicated parameter

combination. To identify the multistability type of each parameter set, we initialized a 2-

or 3-dimensional grid in the 2- or 3-dimensional space of transcription factor

concentrations, for MultiFate-2 and MultiFate-3, respectively, with eight values for each

transcription factor concentration. Using these grid points as starting points, we computed

trajectories using the MultiFate differential equations. We then grouped the end points of

these trajectories into clusters and used the centers (center of mass) of these clusters as

estimated locations of stable fixed points. We double-checked the stability of the
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estimated fixed points using standard linear stability analysis (53) type by the locations of

these stable fixed points.

Asymmetry parameter fitting of MultiFate-2 and MultiFate-3 lines

While symmetric MultiFate-2 and MultiFate-3 models (Box 2.1) accurately predict the

number of stable states for the experimental MultiFate-2 and MultiFate-3 circuits in

different protein stability regimes, they cannot explain the bias of cells towards certain

stable states when they transition away from an unstable state (for example,

MultiFate-2.3 cells almost exclusively transition from the unstable OFF state to the

B-only state in High TMP condition). This is because the dynamics of different

transcription factors in the experimental MultiFate lines are asymmetric due to

differences in the zinc fingers used, copy numbers of integrated cassettes and other

factors. To explain the dynamics of different MultiFate lines, we added asymmetry

parameters into the symmetric MultiFate models to construct asymmetric MultiFate

models (see “Asymmetric MultiFate model” section in the Supplementary Information).

To find the best fitted asymmetry parameter set for MultiFate-2 lines, we uniformly

sampled 16 points for each of the four asymmetry parameters ( , each ranging𝑟,  𝑚,  κ,  γ

from 0.5 to 2) and constructed a four-dimensional parameter space consisting of 164 =

65536 parameter sets. We first filtered out parameter sets that do not generate the

expected numbers of stable states in High TMP (3 states) and Low TMP (2 states)

conditions. For the remaining parameter sets, we used the Gillespie algorithm to simulate

the exit of 200 cells from the OFF state in both High TMP and Low TMP conditions, and

from the A+B state in the Low TMP condition (3 simulations total for each parameter

set). We then compared cell fractions at the end of simulations with cell fractions at the
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end of continuous culture (cf. Figs. S2.9 to S2.11, S2.17, S2.19, S2.20 and other two

replicates) by calculating the mean squared error (MSE). The best fitted parameter set for

each MultiFate-2 line is the one that has the lowest MSE. Finally, we validated the

parameter fitting results by simulating 400 cells starting from OFF, A-only, B-only and

A+B state in both High TMP and Low TMP conditions (8 simulations) and plotted the

simulated cell fractions side-by-side with experimental cell fractions in Fig. S2.15A.

For the MultiFate-3 line, since it is constructed from MultiFate-2.2 line, we first chose

around the best fitted parameter set for MultiFate-2.2 for each of the first four asymmetry

parameters ( , each sampled 3 points including the best fitted parameter for𝑟,  𝑚,  κ,  γ

MultiFate-2.2 and +/- 0.1). For the four new asymmetry parameters ( for𝑟
2
,  𝑚

2
,  κ

2
,  γ

2

the new TF C), we again uniformly sampled 16 points for each of the four new

asymmetry parameters ranging from 0.5 to 2. This results in an 8-dimensional parameter

space consisting of 34 x 164 = 5308416 parameter sets. Using the same method for

MultiFate-2 fitting, we found the best fitted parameter set for the MultiFate-3 line,

validated the parameter fitting results by simulating 400 cells starting from 8 states in

High TMP, Intermediate TMP and Low TMP conditions (24 simulations) and plotted the

simulated cell fractions side-by-side with experimental cell fractions in Fig. S2.15B.

Data and code availability

All data generated and all the computational and data analysis and modeling code used in

the current study are available at data.caltech.edu/records/1882.
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2.10 Supplementary Information

Non-dimensionalization of MultiFate model

As shown in Box 2.1, each ordinary differential equation (ODE) for and [𝐴
𝑡𝑜𝑡

]  [𝐵
𝑡𝑜𝑡

]

consists of three terms: (i) a basal protein production rate , (ii) a Hill function describingα

self-activation dynamics with maximal rate , Hill coefficient , and half-maximalβ 𝑛

activation at a homodimer concentration of , and (iii) a protein degrade rate . We can𝐾
𝑀

δ

then write:

𝑑[𝐴
𝑡𝑜𝑡

]

𝑑𝑡 = α +
β[𝐴

2
]𝑛

𝐾
𝑀

𝑛 + [𝐴
2
]𝑛 − δ[𝐴

𝑡𝑜𝑡
]

𝑑[𝐵
𝑡𝑜𝑡

]

𝑑𝑡 =  α +
β[𝐵

2
]𝑛

𝐾
𝑀

𝑛 + [𝐵
2
]𝑛 − δ[𝐵

𝑡𝑜𝑡
]

Dimerization dynamics occur on a faster timescale than protein production and

degradation (52). This separation of timescales permits us to assume that the distribution

of monomer and dimer states remains close to equilibrium, generating the following

relationships between the concentrations of monomers ( and ), and dimers ( ,[𝐴] [𝐵] [𝐴
2
]

, and ) based on the law of mass action:[𝐵
2
] [𝐴𝐵]

[𝐴]2 = 𝐾
𝑑
[𝐴

2
]

[𝐵]2 = 𝐾
𝑑
[𝐵

2
]

2[𝐴][𝐵] = 𝐾
𝑑
[𝐴𝐵]
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Here, because the two transcription factors share the same dimerization domain, homo-

and hetero-dimerization are assumed to occur with equal dissociation constants, .𝐾
𝑑

When deriving these three equations from the law of mass action, each monomer is

counted twice in homodimerization reactions, and is counted once in the

heterodimerization reaction, thus a factor of two is introduced in the third equation to

account for this statistical difference. Additionally, conservation of mass implies that

, with a similar relationship for B.[𝐴
𝑡𝑜𝑡

] = [𝐴] + [𝐴𝐵] + 2[𝐴
2
]

Solving these equations produces expressions for the concentrations of the activating

homodimers in terms of the total concentrations of A and B:

[𝐴
2
] =

2[𝐴
𝑡𝑜𝑡

]2

𝐾
𝑑
 + 4 ([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) + 𝐾

𝑑
2 + 8([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) 𝐾

𝑑

[𝐵
2
] =

2[𝐵
𝑡𝑜𝑡

]2

𝐾
𝑑
 + 4 ([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) + 𝐾

𝑑
2 + 8([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) 𝐾

𝑑

To non-dimensionalize the model, we rescale time in units of , and concentrations inδ−1

units of . Then we have:𝐾
𝑀

𝑡 ← 𝑡δ [𝐴
𝑡𝑜𝑡

] ← [𝐴
𝑡𝑜𝑡

] / 𝐾
𝑀

[𝐵
𝑡𝑜𝑡

] ← [𝐵
𝑡𝑜𝑡

] / 𝐾
𝑀

[𝐴
2
] ← [𝐴

2
] / 𝐾

𝑀

[𝐵
2
] ← [𝐵

2
] / 𝐾

𝑀
α ← α/(𝐾

𝑀
δ) β ← β/(𝐾

𝑀
δ) 𝐾

𝑑
← 𝐾

𝑑
/𝐾

𝑀
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Here, the quantity to the left of the arrow is the parameter in the non-dimensionalized

system. Thus, in the first assignment, the non-dimensionalized time, , is equal to𝑡

dimensionalized time multiplied by .δ

We can then write the system using the non-dimensionalized quantities:

δ𝑑𝐾
𝑀

[𝐴
𝑡𝑜𝑡

]

𝑑𝑡 = 𝐾
𝑀

δα +
𝐾

𝑀
δβ(𝐾

𝑀
[𝐴

2
])𝑛

𝐾
𝑀

𝑛 + (𝐾
𝑀

[𝐴
2
])𝑛 − δ𝐾

𝑀
[𝐴

𝑡𝑜𝑡
]

δ𝑑𝐾
𝑀

[𝐵
𝑡𝑜𝑡

]

𝑑𝑡 = 𝐾
𝑀

δα +
𝐾

𝑀
δβ(𝐾

𝑀
[𝐵

2
])𝑛

𝐾
𝑀

𝑛 + (𝐾
𝑀

[𝐵
2
])𝑛 − δ𝐾

𝑀
[𝐵

𝑡𝑜𝑡
]

and

𝐾
𝑀

[𝐴
2
] =

2𝐾
𝑀

2[𝐴
𝑡𝑜𝑡

]2

𝐾
𝑀

𝐾
𝑑

 + 4 𝐾
𝑀

([𝐴
𝑡𝑜𝑡

] + [𝐵
𝑡𝑜𝑡

]) + 𝐾
𝑀

2𝐾
𝑑

2 + 8𝐾
𝑀

2([𝐴
𝑡𝑜𝑡

] + [𝐵
𝑡𝑜𝑡

]) 𝐾
𝑑
 

𝐾
𝑀

[𝐵
2
] =

2𝐾
𝑀

2[𝐵
𝑡𝑜𝑡

]2

𝐾
𝑀

𝐾
𝑑
 + 4 𝐾

𝑀
([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) + 𝐾

𝑀
2𝐾

𝑑
2 + 8𝐾

𝑀
2([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
])𝐾

𝑑
 

After canceling and from both side of equations, we obtain the non-dimensionalizedδ 𝐾
𝑀

MultiFate model:

𝑑[𝐴
𝑡𝑜𝑡

]

𝑑𝑡 = α +
β[𝐴

2
]𝑛

1 + [𝐴
2
]𝑛 − [𝐴

𝑡𝑜𝑡
]

𝑑[𝐵
𝑡𝑜𝑡

]

𝑑𝑡 = α +
β[𝐵

2
]𝑛

1 + [𝐵
2
]𝑛 − [𝐵

𝑡𝑜𝑡
]

[𝐴
2
] =

2[𝐴
𝑡𝑜𝑡

]2

𝐾
𝑑
 + 4 ([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) + 𝐾

𝑑
2 + 8([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) 𝐾

𝑑
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[𝐵
2
] =

2[𝐵
𝑡𝑜𝑡

]2

𝐾
𝑑
 + 4 ([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) + 𝐾

𝑑
2 + 8([𝐴

𝑡𝑜𝑡
] + [𝐵

𝑡𝑜𝑡
]) 𝐾

𝑑

This non-dimensionalization leaves us with four parameters: rescaled basal protein

production rate, , rescaled maximal protein production rate in the Hill function, ,α β

rescaled dimerization dissociation constant, , and Hill coefficient .𝐾
𝑑

𝑛

Aparts from these four parameters, we used the mathematical model to predict how

protein stability controls the number of stable fixed points in many parts of this study. In

the non-dimensionalized model, the protein degradation rate, , does not appear explicitlyδ

but enters through the rescaling of and by as shown above. Thus, tuningα β (δ𝐾
𝑀

)−1

protein stability is equivalent to multiplying both and by a common factor, which weα β

term the “protein stability factor” in this study.

MultiFate-2 model incorporating external inputs

To allow external control of MultiFate circuit by inducers, we designed binding sites for

ERT2-Gal4 (induced by 4-OHT) and Tet3G (induced by Dox) at the promoters of TF A

self-activation construct (Table S2.2, MF84) and TF B self-activation construct (Table

S2.2, MF64), respectively. These two constructs were used to make the switchable

MultiFate-2.3 cells (Table S2.3), in which we can independently control the expression of

TF A and TF B by 4-OHT and Dox, respectively. Since promoters of these self-activation

cassettes contain binding sites for both inducer-responsive activators (ERT2-Gal4 or

Tet3G) and zinc finger transcription factor homodimers, transcriptional activation of

these cassettes follows an OR logic, i.e. promoter is activated when inducer-responsive
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activators or zinc finger transcription factor homodimers are bound. To model OR

activation logic, we modified the Hill functions in the non-dimensionalized MultiFate

model by adding an (or ) term, which represents the activation strength of the𝑖𝑛𝑑
1

𝑖𝑛𝑑
2

ERT2-Gal4 (or Tet3G) system, to both numerator and denominator:

𝑑[𝐴
𝑡𝑜𝑡

]

𝑑𝑡 = α +
β([𝐴

2
]𝑛+𝑖𝑛𝑑

1
)

1 + ([𝐴
2
]𝑛+𝑖𝑛𝑑

1
)

− [𝐴
𝑡𝑜𝑡

]

𝑑[𝐵
𝑡𝑜𝑡

]

𝑑𝑡 = α +
β([𝐵

2
]𝑛+𝑖𝑛𝑑

2
)

1 + ([𝐵
2
]𝑛+𝑖𝑛𝑑

2
)

− [𝐵
𝑡𝑜𝑡

]

In the experiments (Fig. 2.4B and S2.16), we only used saturating concentrations of

4-OHT or Dox to achieve a full activation of cassettes. To model this, we choose an

arbitrary (or ) when inducer is added, so that the Hill function𝑖𝑛𝑑
1

𝑖𝑛𝑑
2

=  100

(or ) is close to its maximum 1, representing full promoter
[𝐴

2
]𝑛+𝑖𝑛𝑑

1

1 + ([𝐴
2
]𝑛+𝑖𝑛𝑑

1
)

[𝐵
2
]𝑛+𝑖𝑛𝑑

2

1 + ([𝐵
2
]𝑛+𝑖𝑛𝑑

2
)

activation when a saturating concentration of inducer is added. When there is no inducer,

(or ) . Using this modified model, we simulated the state-switching𝑖𝑛𝑑
1

𝑖𝑛𝑑
2

= 0

dynamics shown in Fig. S2.3.

MultiFate model expanded to N transcription factors

The minimal MultiFate-2 model can be expanded in a straightforward way to include

more transcription factors. To start, we consider the distribution of transcription factors

X1, X2, X3, … XN among different dimerization states. For each transcription factor, the

total concentration can be expressed as,
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[𝑋
𝑡𝑜𝑡, 𝑖

] = [𝑋
𝑖
] +

𝑗≠𝑖
∑ [𝑋

𝑖
𝑋

𝑗
] + 2[𝑋

2, 𝑖
]

𝑓𝑜𝑟 𝑖 = 1,  2,  3,  ...  𝑁

Here denotes the concentration of transcription factor Xi monomers, denote the[𝑋
𝑖
] [𝑋

2, 𝑖
]

concentration of homodimers, and denote the concentration of heterodimers[𝑋
𝑖
𝑋

𝑗
]

formed by Xi and Xj (i ≠ j). As mentioned above, we assume that homo- and

hetero-dimerization occur with equal dissociation constants, , reflecting the use of the𝐾
𝑑

same dimerization domain for both proteins. Because dimerization dynamics occur on a

faster timescale than protein production and degradation, the protein dimerization states

approximately follow their equilibrium values:

[𝑋
𝑖
]2 = 𝐾

𝑑
[𝑋

2, 𝑖
]

2[𝑋
𝑖
][𝑋

𝑗
] = 𝐾

𝑑
[𝑋

𝑖
𝑋

𝑗
]

Solving these equations produces a simple expression for the concentrations of the

activating homodimers in terms of the total concentrations of all transcription factor

species:

[𝑋
2, 𝑖

] =
2[𝑋

𝑡𝑜𝑡, 𝑖
]2

𝐾
𝑑
 + 4∑[𝑋

𝑡𝑜𝑡, 𝑖
] + 𝐾

𝑑
2 + 8𝐾

𝑑
∑[𝑋

𝑡𝑜𝑡, 𝑖
]

𝑓𝑜𝑟 𝑖 = 1,  2,  3,  ...  𝑁
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With these expressions, we can describe protein production and degradation dynamics

using ODEs for in a similar way as shown in Box 2.1. After non- [𝑋
𝑡𝑜𝑡, 𝑖

]

dimensionalization and adding asymmetric parameters, we obtain ODEs for protein

production and degradation in the expanded MultiFate model:

𝑑[𝑋
𝑡𝑜𝑡, 𝑖

]

𝑑𝑡 = 𝑟
𝑖
α +

𝑚
𝑖
β[𝑋

2, 𝑖
]𝑛

κ
𝑖
𝑛 + [𝑋

2, 𝑖
]𝑛 − γ

𝑖
[𝑋

𝑡𝑜𝑡, 𝑖
]

𝑓𝑜𝑟 𝑖 = 1,  2,  3,  ...  𝑁

where represents the basal protein production, represents the maximal proteinα β

production rate in the Hill function, represents Hill coefficient and , , , and𝑛 𝑟
𝑖

𝑚
𝑖

κ
𝑖

γ
𝑖

represents the asymmetric parameters for transcription factor Xi.

Asymmetric MultiFate model

While the symmetric MultiFate model precisely predicts many experimental results, we

observed some asymmetric behaviors in MultiFate-2 and MultiFate-3 lines. For example,

MultiFate-2.2 cells in A+B state preferentially migrated towards A-only state when

transferred from the High TMP condition to the Low TMP condition (Fig. 2.3C). This

kind of asymmetric behavior could result from several potential differences among

integrated gene cassettes:

(i) A, B and C used three different ZF DNA-binding domains. As shown by the different

fold changes in Fig. S4A, they could have different binding affinity to ZF binding sites,

resulting in different values, and different activated transcriptional rates, resulting in𝐾
𝑀

different values.β
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(ii) The integration number of different genes and the genomic environment of different

integrated cassettes could be different, which may affect basal and activated promoter

expression, resulting in different values of and .α β

(iii) Due to sequence differences in ZF DNA-binding domains, the protein stability could

be different for different genes, resulting in different values of .δ

To analyze such asymmetries, we now allow for distinct values of these parameters,

indicated by subscripted A, B or C. While we allow asymmetry in these parameters, we

still assume symmetry in others. Specifically, we maintain the same Hill coefficient, ,𝑛

and dissociation constant for dimerization, , for all factors, because they share the𝐾
𝑑

same transcriptional activation domain and the same homodimerization domain. With

these assumptions, we can then write down an asymmetric dimensionalized model:

𝑑[𝐴
𝑡𝑜𝑡

]

𝑑𝑡 = α
𝐴

+
β

𝐴
[𝐴

2
]𝑛

𝐾
𝑀𝐴

𝑛 + [𝐴
2
]𝑛 − δ

𝐴
[𝐴

𝑡𝑜𝑡
]

𝑑[𝐵
𝑡𝑜𝑡

]

𝑑𝑡 = α
𝐵

+
β

𝐵
[𝐵

2
]𝑛

𝐾
𝑀𝐵

𝑛 + [𝐵
2
]𝑛 − δ

𝐵
[𝐵

𝑡𝑜𝑡
]

𝑑[𝐶
𝑡𝑜𝑡

]

𝑑𝑡 = α
𝐶

+
β

𝐶
[𝐶

2
]𝑛

𝐾
𝑀𝐶

𝑛 + [𝐶
2
]𝑛 − δ

𝐶
[𝐶

𝑡𝑜𝑡
]

As above, we then non-dimensionalize the model by rescaling time in units of , andδ
𝐴

−1

concentrations in units of . Then we have (after canceling and from both𝐾
𝑀𝐴

𝐾
𝑀𝐴

δ
𝐴

−1

sides of the equations):
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𝑑[𝐴
𝑡𝑜𝑡

]

𝑑𝑡 = α
𝐴

+
β

𝐴
[𝐴

2
]𝑛

1 + [𝐴
2
]𝑛 − [𝐴

𝑡𝑜𝑡
]

𝑑[𝐵
𝑡𝑜𝑡

]

𝑑𝑡 = (α
𝐵

/α
𝐴

) * α
𝐴

+
(β

𝐵
/β

𝐴
) * β

𝐴
[𝐵

2
]𝑛

(𝐾
𝑀𝐵

/𝐾
𝑀𝐴

)𝑛 + [𝐵
2
]𝑛 − δ

𝐵
/δ

𝐴
[𝐵

𝑡𝑜𝑡
]

𝑑[𝐶
𝑡𝑜𝑡

]

𝑑𝑡 = (α
𝐶
/α

𝐴
) * α

𝐴
+

(β
𝐶
/β

𝐴
) * β

𝐴
[𝐶

2
]𝑛

(𝐾
𝑀𝐶

/𝐾
𝑀𝐴

)𝑛 + [𝐶
2
]𝑛 − δ

𝐶
/δ

𝐴
[𝐶

𝑡𝑜𝑡
]

To further simplify these expressions we define additional parameter ratios, ,𝑟 = α
𝐵

/α
𝐴

, , , , , and𝑟
2

= α
𝐶
/α

𝐴
𝑚 = β

𝐵
/β

𝐴
𝑚

2
= β

𝐶
/β

𝐴
κ = 𝐾

𝑀𝐵
/𝐾

𝑀𝐴
κ

2
= 𝐾

𝑀𝐶
/𝐾

𝑀𝐴

, . We also let , and for notational simplicity. Withγ = δ
𝐵

/δ
𝐴

γ
2

= δ
𝐶
/δ

𝐴
α = α

𝐴
β = β

𝐴

these definitions, we obtain the ODEs for protein production and degradation in the

asymmetric MultiFate model:

𝑑[𝐴
𝑡𝑜𝑡

]

𝑑𝑡 = α +
β[𝐴

2
]𝑛

1 + [𝐴
2
]𝑛 − [𝐴

𝑡𝑜𝑡
]

𝑑[𝐵
𝑡𝑜𝑡

]

𝑑𝑡 =  𝑟α +
𝑚β[𝐵

2
]𝑛

κ𝑛 + [𝐵
2
]𝑛 − γ[𝐵

𝑡𝑜𝑡
]

𝑑[𝐶
𝑡𝑜𝑡

]

𝑑𝑡 = 𝑟
2
α +

𝑚
2
β[𝐶

2
]𝑛

κ
2

𝑛 + [𝐶
2
]𝑛 − γ

2
[𝐶

𝑡𝑜𝑡
]

with the same expressions of the , and in terms of , and[𝐴
2
] [𝐵

2
] [𝐶

2
] [𝐴

𝑡𝑜𝑡
] [𝐵

𝑡𝑜𝑡
] [𝐶

𝑡𝑜𝑡
]

shown in the previous section.

We now have additional parameters that represent different types of asymmetries: (and𝑟

) represents the ratio of basal protein production rates, (and ) represents the ratio𝑟
2

𝑚 𝑚
2
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of maximal protein production rates by self-activation, (and ) represents the ratio ofκ κ
2

homodimer concentrations for half-maximal activation, and (and ) represents theγ γ
2

ratio of protein half-lifes. The symmetric MultiFate model is then a special case where all

asymmetry parameters equal to 1.

MultiFate model with mRNA and protein dimerization dynamics

The treatment above lumps the processes of mRNA transcription and protein translation

together into a single gene expression step and uses a steady-state approximation for

dimerization dynamics. This model works accurately to predict the number and locations

of stable fixed points. However, to capture the dynamics of cells during bifurcation and

state-switching events, an expanded model that includes both mRNA and protein

dimerization dynamics is required.

To incorporate mRNA dynamics into the model, we assume TF A, TF B and TF C

mRNAs, denoted , and , are produced at a total rate equal to their basal[𝑎] [𝑏] [𝑐]

transcription rate plus a homodimer-dependent transcriptional activation rate, which𝑘
1

follows a Hill function of corresponding homodimer concentration, , and ,[𝐴
2
] [𝐵

2
] [𝐶

2
]

with maximal rate , Hill coefficient , and half-maximal activation at a homodimer𝑘
2

𝑛

concentration of . Each mRNA species is removed at a total rate . For𝐾
𝑀

δ
𝑚𝑅𝑁𝐴

generality, we also allow asymmetry parameters, with (or ) representing the ratio𝑟 𝑟
2

between TF A and TF B (or TF C) basal transcription rates ( or𝑟 = 𝑘
1,𝐵

/𝑘
1,𝐴

), representing the ratio between TF A and TF B (or TF C) maximal𝑟
2

= 𝑘
1,𝐶

/𝑘
1,𝐴

𝑚
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rates ( or ) , and (or ) representing the ratio between TF𝑚 = 𝑘
2,𝐵

/𝑘
2,𝐴

𝑚 = 𝑘
2,𝐶

/𝑘
2,𝐴

κ κ
2

A and TF B (or TF C) half-maximal homodimer concentrations ( orκ = 𝐾
𝑀𝐵

/𝐾
𝑀𝐴

). We can then write:𝐾
𝑀𝐶

/𝐾
𝑀𝐴

𝑑[𝑎]
𝑑𝑡 = 𝑘

1
+

𝑘
2
[𝐴

2
]𝑛

𝐾
𝑀

𝑛 + [𝐴
2
]𝑛 − δ

𝑚𝑅𝑁𝐴
[𝑎]

𝑑[𝑏]
𝑑𝑡 = 𝑟𝑘

1
+

𝑚𝑘
2
[𝐵

2
]𝑛

(κ𝐾
𝑀

)𝑛 + [𝐵
2
]𝑛 − δ

𝑚𝑅𝑁𝐴
[𝑏]

𝑑[𝑐]
𝑑𝑡 = 𝑟

2
𝑘

1
+

𝑚
2
𝑘

2
[𝐶

2
]𝑛

(κ
2
𝐾

𝑀
)𝑛 + [𝐶

2
]𝑛 − δ

𝑚𝑅𝑁𝐴
[𝑐]

where we let , and for notational simplicity. 𝑘
1

= 𝑘
1, 𝐴

 𝑘
2

= 𝑘
2, 𝐴

𝐾
𝑀

= 𝐾
𝑀𝐴

Next, we describe the dynamics of TF A, TF B and TF C proteins in different

dimerization forms with ODEs. For monomers of TF A, TF B and TF C, denoted ,[𝐴] [𝐵]

and , each equation consists of terms describing translation, protein removal,[𝐶]

monomer association, dimer dissociation or conversion due to degradation of one of the

constituent monomers. Here is the translation rate, is the protein removal rate, is𝑘
𝑝

δ 𝑘
𝑜𝑛

the monomer association rate and is the dimer dissociation rate. , and𝑘
𝑜𝑓𝑓

[𝐴𝐵] [𝐴𝐶] [𝐵𝐶]

denotes the concentration of AB, AC and BC heterodimers.

The asymmetry parameter (or ) represents the ratio of TF A and TF B (or TF C)γ γ
2

removal rates ( or ), and we let for notational simplicity:γ = δ
𝐵

/δ
𝐴

γ
2

= δ
𝐶
/δ

𝐴
δ = δ

𝐴

𝑑[𝐴]
𝑑𝑡 = 𝑘

𝑝
[𝑎] − δ[𝐴] − 2𝑘

𝑜𝑛
([𝐴]2 + [𝐴][𝐵] + [𝐴][𝐶])
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+ 𝑘
𝑜𝑓𝑓

(2[𝐴
2
] + [𝐴𝐵] + [𝐴𝐶]) + γδ[𝐴𝐵] + γ

2
δ[𝐴𝐶]

𝑑[𝐵]
𝑑𝑡 = 𝑘

𝑝
[𝑏] − γδ[𝐵] − 2𝑘

𝑜𝑛
([𝐵]2 + [𝐵][𝐴] + [𝐵][𝐶])

+ 𝑘
𝑜𝑓𝑓

(2[𝐵
2
] + [𝐴𝐵] + [𝐵𝐶]) + δ[𝐴𝐵] + γ

2
δ[𝐵𝐶]

𝑑[𝐶]
𝑑𝑡 = 𝑘

𝑝
[𝑐] − γ

2
δ[𝐶] − 2𝑘

𝑜𝑛
([𝐶]2 + [𝐶][𝐴] + [𝐶][𝐵])

+ 𝑘
𝑜𝑓𝑓

(2[𝐶
2
] + [𝐴𝐶] + [𝐵𝐶]) + δ[𝐴𝐶] + γδ[𝐵𝐶]

For dimers, each equation consists of terms for association, dissociation, and removal:

𝑑[𝐴
2
]

𝑑𝑡 = 𝑘
𝑜𝑛

[𝐴]2 − 𝑘
𝑜𝑓𝑓

[𝐴
2
] − δ[𝐴

2
]

𝑑[𝐵
2
]

𝑑𝑡 = 𝑘
𝑜𝑛

[𝐵]2 − 𝑘
𝑜𝑓𝑓

[𝐵
2
] − γδ[𝐵

2
] 

𝑑[𝐶
2
]

𝑑𝑡 = 𝑘
𝑜𝑛

[𝐶]2 − 𝑘
𝑜𝑓𝑓

[𝐶
2
] − γ

2
δ[𝐶

2
] 

𝑑[𝐴𝐵]
𝑑𝑡 = 2𝑘

𝑜𝑛
[𝐴][𝐵] − 𝑘

𝑜𝑓𝑓
[𝐴𝐵] − δ[𝐴𝐵] − γδ[𝐴𝐵]

𝑑[𝐴𝐶]
𝑑𝑡 = 2𝑘

𝑜𝑛
[𝐴][𝐶] − 𝑘

𝑜𝑓𝑓
[𝐴𝐶] − δ[𝐴𝐶] − γ

2
δ[𝐴𝐶]

𝑑[𝐵𝐶]
𝑑𝑡 = 2𝑘

𝑜𝑛
[𝐵][𝐶] − 𝑘

𝑜𝑓𝑓
[𝐵𝐶] − γδ[𝐵𝐶] − γ

2
δ[𝐵𝐶]

Stochastic modeling of MultiFate circuits

To simulate the dynamics of the MultiFate-2 system during state-switching (Fig. S2.3)

and bifurcation (Fig. 2.4A) events, to obtain best fitted asymmetry parameters for
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different MultiFate lines (Fig. S2.15) and to test the robustness of MultiFate against

intrinsic biological noise (Figs. 2.5D, S2.22 and S2.23), we constructed a stochastic

model based on the same reactions represented by the ODEs in the above MultiFate-2

model with mRNA and protein dimerization dynamics. Molecular reactions and their

propensities for Gillespie simulation (41) are listed in Table S2.3. All terms have a

concentration unit of molecule number per cell (either mRNA or protein), and a time unit

of hour. We performed Gillespie simulations using the biocircuits Python package

(https://pypi.org/project/biocircuits/) with physiologically reasonable parameters (see

below).

Physiologically reasonable parameter regimes

From existing literature and experimental measurements performed in this study, we

estimated the physiologically reasonable regime for each dimensionalized parameter ( ,𝐾
𝑀

, , , , , , , , , , ). Estimated values for these parameters areδ α β 𝐾
𝑑

𝑛 𝑘
1

𝑘
2

δ
𝑚𝑅𝑁𝐴

𝑘
𝑝

𝑘
𝑜𝑛

𝑘
𝑜𝑓𝑓

summarized in Table S2.4.

Since some measurement data are in the unit of concentration, while others are in the unit

of molecules per cell, we first estimated the number of molecules equivalent to 1 nM in a

CHO-K1 cell. The diameter of a CHO cell is ~14 µm (56), from which we can calculate

the cell volume to be around 1.4x10-12 L (assuming it to be a sphere). With this rough

approximation, 1 nM = 1 nM ⨉ 1.4x10-12 L ⨉ 6x1023 molecules/mol ≈ 800 molecules

per CHO cell. Below, we used this value to convert between molecules per cell and

molarity.
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The concentration for half-maximal activation, , of our ZF activator homodimer, is𝐾
𝑀

used to rescale all concentrations in the non-dimensionalized MultiFate model (see

above). We could not find a direct in vivo measurement of this value in the literature.

However, the of a monomeric ZF activator with a 3-finger Zif268 ZF domain was𝐾
𝑀

estimated to be ~600 nM (assuming the volume of yeast cells to be 40 µm3) (4). Another

in vitro study showed that by linking two Zif268 ZF domain with a linker, the resulting

6-finger ZF domain could bind to a 18bp DNA target site almost 70-fold stronger than a

single Zif268 domain binding to a 9bp target site (57). Although in vivo and the in vitro

can differ by several orders of magnitudes due to the interactions of proteins with𝐾
𝑀

genomic background, the fold changes in are in reasonable agreement between the in𝐾
𝑀

vivo and the in vitro results (58). Therefore, we estimated that an activator with a 6-finger

ZF domain has a of 600 nM / 70 ≈ 8 nM. Our ZF transcription factor homodimer𝐾
𝑀

should bind to 18bp target DNA site in a similar fashion with how 6-finger ZF domain

does, thus we estimated our to be comparable to, or (due to a more complicated𝐾
𝑀

genomic background in mammalian cells), slightly larger than the range of 8 – 20 nM.

Based on this reasoning, we used a = 10 nM = 8000 molecules/cell in the model.𝐾
𝑀

Next, we estimated parameters related to protein production and removal dynamics. We

used a protein removal rate = 0.1 hr-1 for stable proteins in our system, based on an inδ

vivo measurement of proteome half-life dynamics in living human cells (59). Our

engineered ZF transcription factors have DHFR domains at their C-terminus, whose

protein removal rate is controlled by TMP concentration. The dynamic range of this

regulation is at least 20 fold (39). Therefore, we estimated the range of to be betweenδ
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0.1 hr-1 and 2 hr-1, under saturating TMP condition and no TMP condition, respectively.

In the model, we used = 0.1 hr-1 for the “High TMP” condition, and = 0.2 hr-1 forδ δ

the “Low TMP” condition.

We next estimated , and , which together are critical for establishing the levels𝑘
2

δ
𝑚𝑅𝑁𝐴

𝑘
𝑝

and dynamics of mRNA and protein. In mammalian cells, average transcription rates

were estimated to be ~2 mRNA/(gene•hr) (60). Based on previous stable cell line

construction using PiggyBac in our lab (61), we estimated that a total of 50–100 gene

cassettes were integrated during the construction of MultiFate-2, with 25–50 copies

integrated each, for TF A and TF B. Maximal transcription rate was then estimated to𝑘
2

be 50–100 mRNA/(cell•hr), and we used an intermediate value = 80𝑘
2

mRNA/(cell•hr). For typical mRNA half-life, different studies have provided diverse

values, ranging from 50 minutes to 9 hours (60, 62). This corresponds to a mRNA

removal rate ranging from ln(2) / (9 hr) – ln(2) / (50 min) ≈ 0.077 – 0.83 hr-1.δ
𝑚𝑅𝑁𝐴

Since these studies did not take mRNA dilution from cell division into consideration, we

used a value of = 0.7 hr-1, closer to the upper bound of the estimated range, in ourδ
𝑚𝑅𝑁𝐴

stochastic model. For protein translation rate, we used a value of = 140𝑘
𝑝

proteins/(mRNA•hr) based on one of the above studies (60).

The value of can be estimated from the above parameters. Since the mRNA removalβ

rate is much higher than the protein removal rate, we assumed that mRNA dynamics is

approximately at steady state on the timescale of . This assumption enabled us toδ−1

estimate the maximal protein production rate in the Hill function as
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= 16000 proteins/(cell•hr) = 20 nM/hr. In the experiment, weβ =  𝑘
2

× 𝑘
𝑝
/δ

𝑚𝑅𝑁𝐴

observed that there was a fluorescence expression difference of around 25-50 fold

between ON and OFF states (Fig. 2.3B). (The estimate of the OFF level is not limited by

autofluorescence). Since expression in the OFF state comes from basal transcription, we

estimated the basal transcription rate to be 25–50 fold smaller than , giving a range𝑘
1

𝑘
2

of 1.152–4.608 mRNA/hr. From this, we used an intermediate value of = 3.2𝑘
1

mRNA/(cell•hr). Similarly, we can estimate the basal protein production rate

= 640 proteins/(cell•hr) = 0.8 nM/hr.α =  𝑘
1

× 𝑘
𝑝
/δ

𝑚𝑅𝑁𝐴

The final parameter related to protein production dynamics is the Hill coefficient .𝑛

Different studies obtained very different measurements of transcriptional Hill coefficients

(4, 34, 63), ranging from 1–3.6. Here we used a modest Hill coefficient of = 1.5.𝑛

Finally, we estimated parameters related to protein dimerization. The apparent

dissociation constant of FKBP homodimerization domain should depend on AP1903𝐾
𝑑

concentrations. However, we could not find a direct measurement of this dependency.

Therefore, we compared FKBP with another homodimerization domain GCN4 that we

used in this study (Fig. 2.2A), which was shown to have a of 10–20 nM (64). ZF𝐾
𝑑

transcription factors with FKBP (Fig. 2.2B) more strongly activated the reporter in 100

nM AP1903 media than ZF transcription factor with GCN4 did (Fig. S2.4B, BCRZF).

Based on this observation, we reasoned that in media containing 100 nM AP1903, the

apparent dissociation constant 10 nM. We therefore used an estimate of 10𝐾
𝑑
 ≤ 𝐾

𝑑
=

nM = 8000 molecules/cell in the model. For monomer association rate , we used𝑘
𝑜𝑛
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an intermediate value in the range of diffusion-limited association rates of =𝑘
𝑜𝑛

4x105/(M•s) = 1.8x10-3/(protein•hr) (65). These two values together produce a dimer

dissociation rate =  14.4 hr-1.𝑘
𝑜𝑓𝑓

= 𝐾
𝑑

× 𝑘
𝑜𝑛

Relationship between transcription factor concentrations and their co-expressed

fluorescence proteins

The MultiFate models use the total concentrations of transcription factors as variables,

whereas experimental MultiFate systems have the co-expressed fluorescent proteins as

readouts. To understand the relationship between transcription factor concentrations

([Atot] and [Btot]), and their co-expressed fluorescent proteins, denoted FPA and FPB, we

incorporated equations describing the dynamics of immature fluorescent proteins

([FPAim] and [FPBim]) and mature fluorescent proteins ([FPAm] and [FPBm]) into the

MultiFate-2 model. Since fluorescent proteins are co-expressed with transcription factors,

the production term of fluorescent protein have a similar form , scaled byα +
β[𝐴

2
]𝑛

1 + [𝐴
2
]𝑛

translational efficiency of IRES, denoted Ieff. Once produced, each immature fluorescent

protein matures at a rate . Finally, either immature or mature fluorescent protein𝑘
𝑚𝑎𝑡

degrades and is diluted at a total rate . We can then add a set of ODEs to theδ
𝐹𝑃

MultiFate-2 model:

𝑑[𝐹𝑃𝐴
𝑖𝑚

]

𝑑𝑡 = 𝐼
𝑒𝑓𝑓

(α +
β[𝐴

2
]𝑛

1 + [𝐴
2
]𝑛 ) − 𝑘

𝑚𝑎𝑡𝐴
[𝐹𝑃𝐴

𝑖𝑚
] − δ

𝐹𝑃𝐴
[𝐹𝑃𝐴

𝑖𝑚
]

𝑑[𝐹𝑃𝐴
𝑚

]

𝑑𝑡 = 𝑘
𝑚𝑎𝑡𝐴

[𝐹𝑃𝐴
𝑖𝑚

] − δ
𝐹𝑃𝐴

[𝐹𝑃𝐴
𝑚

]
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with a similar set of equations for and .[𝐹𝑃𝐵
𝑖𝑚

] [𝐹𝑃𝐵
𝑚

]

We used an Ieff = 0.5 in the model based on (66). Maturation rate for mCherry ( ) and𝑘
𝑚𝑎𝑡𝐴

mCitrine ( ) were calculated to be 1.12 hr-1 and 4.62 hr-1, respectively, based on their𝑘
𝑚𝑎𝑡𝐵

estimated maturation time (67). In experimental MultiFate systems, all fluorescence

proteins are fused with a PEST degron, which has a half-life of 2-6.5 hours (31, 68), and

we used a 0.35 hr-1 based on a 2-hour half-life. All rates are then rescaled by theδ
𝐹𝑃

=

degradation rate of transcription factors ( ) to obtain a non-dimensionalized model. Weδ

also incorporated fluorescent protein translation, maturation and degradation into the

MultiFate stochastic model and listed their propensities for Gillespie algorithm in Table

S4. These models were used to simulate the dynamics of transcription factor

concentrations and fluorescence readouts in the same cells.

We first used the stochastic model to simulate the relationship between transcription

factors concentration and their mature fluorescent proteins for a single self-activation

module (Fig. S2.6A). We chose 5 different transcription factor half-lives to obtain

different distributions of transcription factor concentrations at steady states. While

transcription factor concentrations vary in a wide range among these 5 conditions,

fluorescent readouts show a strong bimodal distribution. This shows that positive

autoregulation causes each transcription factor to express in a roughly binary (high or

low) fashion: when transcription factor concentration is higher than the ‘self-activation

threshold’ (defined by TF concentration where [Homodimers] = 1), activating

transcription factor homodimers drive gene expression to ‘high’ state. Fluorescent

proteins quickly saturate in the ‘high’ state, as shown by overlapping fluorescent protein
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distributions in the ‘high’ expression state (Fig. S2.6A, middle right), whereas

transcription factor concentrations are additionally affected by the protein half-life (Fig.

S2.6A, middle left). This relationship between transcription factor concentrations and

fluorescent readouts is further shown in the 2D scatter plot (Fig. S2.6A, right).

Since each transcription factor in a MultiFate circuit positively autoregulates itself, each

transcription factor would express in a roughly binary fashion. Any stable state is thus a

combination of these binary expression states, allowing us to distinguish them through

fluorescence readouts.

To test this, we simulated the single-cell dynamics of the MultiFate-2 circuit in either

type II tristable regime or bistable regime (Fig. S2.6B). In both regimes, fluorescence

readouts are well separated into distinct clusters. Critically, each cluster can be

unambiguously assigned to its underlying state. Consistent with results from a single

self-activation module (Fig. S2.6A), although the TF A concentrations in A-only state (or

TF B concentrations in B-only state) differ by more than 2 folds between the tristable

regime and bistable regime, the mature mCherry (or mCitrine) only differ by about 10%

and are almost indistinguishable on log scale. This matches with our experimental

observations (Figs. S2.9 to S2.11). Together, these simulation results show that

fluorescent reporters are sufficient to unambiguously identify the underlying states.

Finally, we asked how well the fluorescence readouts track the dynamics of cell state

transition. To test this, we simulated MultiFate-2 cells switching from A-only state to

B-only state in the bistable regime (similar to Fig. S2.3) with fluorescent proteins of

different maturation times and half-lives. In particular, we measured the delay in time
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between when transcription factor concentrations cross the state boundary (from >[𝐴
𝑡𝑜𝑡

]

to < ) and when mature fluorescent proteins cross the state boundary[𝐵
𝑡𝑜𝑡

] [𝐴
𝑡𝑜𝑡

] [𝐵
𝑡𝑜𝑡

]

(from > to < ) (Fig. S2.6C, left). Longer maturation time[𝐹𝑃𝐴
𝑚

] [𝐹𝑃𝐵
𝑚

] [𝐹𝑃𝐴
𝑚

] [𝐹𝑃𝐵
𝑚

]

and longer fluorescent protein half-life both increase the time delay (Fig. S2.6C, right).

Based on this, we chose three fluorescent proteins that have short maturation times

(mCherry 37 minutes, mCitrine 9 minutes, mTurquoise2 34 minutes) (67), and fused a

PEST degron to their C-terminus to shorten their half-life to 2-6.5 hours (31, 68). With

these modifications, we estimated the time delay between fluorescent readouts and

transcription factor dynamics to be less than 6 hours. This time delay is small when

compared to total switching time in the experiments (Fig. 2.4B), which spans several

days.

Robustness of MultiFate circuit against intrinsic noise

In both flow cytometry plots (Figs. S2.9 to S2.11) and time-lapse images (Fig. S2.13), we

found a small number of cells spontaneously escaped from their original states due to

biological noise. While these cells were rare, they led us to ask about the robustness of

MultiFate against biological noise, especially intrinsic noise resulting from stochasticity

of chemical reactions such as transcription, translation and degradation (43).

We used the Gillespie algorithm (41) to simulate MultiFate circuits with intrinsic noise.

We hypothesized that different stable steady states may have different robustness against

these intrinsic noises. Cells in states with smaller attractor basins may be more likely to

spontaneously switch to other states due to random concentration fluctuations introduced

by intrinsic noise. To test this, we chose a MultiFate-3 type I quadrastable regime, in
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which the OFF state has a much smaller attractor basin compared with other states (Fig.

S2.22A, left). As expected, many cells from the OFF state spontaneously turn on one of

the transcription factors to switch to one of the other three states (Fig. S2.22A, center),

while all cells from the B-only state (and similarly for the A-only and the C-only state)

remain in their original state (Fig. S2.22A, center). We quantify the robustness by the

fraction of cells not changing states at the end of simulations, denoted as “robustness

score”. For this MultiFate-3 type I quadrastable regime, the OFF state has a smaller

attractor basin and a lower robustness score than the other 3 states.

We next systematically test the relationship between attractor basin size and robustness

score for a set of MultiFate-2 and MultiFate-3 regimes (Fig. S2.22B). We found that

robustness score indeed is positively correlated with attractor basin size. However, there

is no clear cutoff on the size of the attractor basin to separate robust stable states

(robustness score = 1) and non-robust stable states, suggesting that robustness against

intrinsic noise may be affected by other factors, such as promoter leakiness and

ultrasensitivity. Therefore, we directly used the robustness score to determine whether a

fixed point is robust against biological noise in Figs. 2.5D and S2.23.

Source of ultrasensitivity in MultiFate circuit

To generate multistability, a circuit should have both positive feedback and some levels

of ultrasensitivity (i.e. effective Hill exponent greater than 1) (69, 70). Although

transcriptional activation can exhibit some ultrasensitivity in mammalian cells

(represented by the Hill coefficient of above) (71, 72), parameter screening𝑛 = 1. 5

revealed that MultiFate generates multistability even when (no ultrasensitivity𝑛 = 1
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from transcriptional activation). This provokes the question of where the additional

ultrasensitivity comes from in the MultiFate circuit. Two features of the MultiFate circuit

could provide this additional ultrasensitivity. First, transcription factors homodimerize to

self-activate, and such cooperativity has been shown to introduce ultrasensitivity (73, 74).

Indeed, homodimerization results in a (or ) term in the numerator of the[𝐴
𝑡𝑜𝑡

]2 [𝐵
𝑡𝑜𝑡

]2

expression for (or ) in Box 2.1, which we write again here for convenience:[𝐴
2
] [𝐵

2
]

[𝐴
2
] =

2[𝐴
𝑡𝑜𝑡
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Its contribution to ultrasensitivity depends on the dimerization dissociation constant .𝐾
𝑑

When homodimerization is strong (small ), the term dominates in the𝐾
𝑑

[𝐴
𝑡𝑜𝑡

] + [𝐵
𝑡𝑜𝑡

]

denominator, which cancels with the quadratic term or in the numerator.[𝐴
𝑡𝑜𝑡

]2 [𝐵
𝑡𝑜𝑡

]2

This makes the expression more linear, thus reducing the ultrasensitivity by

homodimerization. Conversely, when dimerization is weak (large ), the term𝐾
𝑑

𝐾
𝑑

2

dominates in the denominator, which makes the expression more quadratic and increases

the ultrasensitivity by homodimerization.

A second source of ultrasensitivity comes from mutual inhibition through

heterodimerization, a prevalent feature in biology also known as molecular titration,

which has been shown to introduce ultrasensitivity (69, 73). Here, opposite to the case
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with homodimerization, strong heterodimerization (small ) increases the𝐾
𝑑

ultrasensitivity introduced through molecular titration (73). Together, additional

ultrasensitivity comes mainly from cooperativity through homodimerization when is𝐾
𝑑

large, and mainly from molecular titration through heterodimerization when is small𝐾
𝑑

(note that values for homodimerization and heterodimerization are the same, since we𝐾
𝑑

are using the same dimerization domain for all transcription factors). This explains why

the MultiFate circuit generates multistability in a wide range (Figs. S2.1 and S2.2).𝐾
𝑑

Modulating basal expression by modifying synthetic promoter sequences

To obtain the desired type II tristability in MultiFate-2 circuit, parameter screening (Fig.

S2.1B) revealed that we should both avoid regimes with too high basal expression, where

only A+B state is stable, and regimes with too low basal expression, where OFF state is

stable. When building MultiFate self-activation modules, we found that original promoter

basal expression is too low (Fig. S2.24, construct 1), as shown by low level of

spontaneous self-activation upon the addition of AP1903+TMP. Therefore, we sought to

increase the basal promoter expression by modifying promoter sequences. When

characterizing different ZF transcription factors, we had an incidental finding that

promoters containing the 9bp binding site GACGCTGCT for 42ZF (32) have higher

basal expression. Basal promoter expression thus can be modulated by introducing

different numbers of GACGCTGCT motifs at promoter regions (Fig. S2.24), and we

introduced multiple repeats of this motif into final MultiFate constructs (Table S2.2).
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Translating MultiFate circuits into other cell types

Many components used in MultiFate circuits generally work across different cell types,

including transcriptional activation domains and protein dimerization domains. For

example, the transcriptional activation domain VP16 has been shown to work in multiple

cell lines (33). Some components in MultiFate may require modification when moving

into a new context: First, some zinc finger DNA-binding domains were first developed in

yeast (32). While the original zinc finger domains still work in this study, more recently

optimized synthetic zinc finger domains (75) might be more desirable for translating

MultiFate into human cells. Second, basal promoter expression (transcriptional leakiness)

might differ among cell lines and genomic contexts. Improvements in the ability to

modulate basal expression would help engineer MultiFate circuits in additional cell

contexts.

The general strategy to engineer MultiFate in CHO cells should be applicable to other

cell types. The basic module of MultiFate is the dimer-dependent self-activation circuit

(Fig. 2.2C). In our experience, its performance directly affects the behaviors of the final

MultiFate circuit. One should first test whether the self-activation circuit can robustly

sustain its own expression, and whether the self-activation is dimer-dependent, when

translating MultiFate in a new cell type. If self-activation cannot robustly sustain its own

expression, it is possible that protein production rate ( in the model) is not high enoughβ

in the new cell type. In that case, one should consider using stronger transcriptional

activation domains such as VP64 and p65 to boost the mRNA transcription.

Alternatively, since in the non-dimensionalized model is rescaled by (homodimerβ 𝐾
𝑀
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concentration for half-maximal activation), a smaller results in larger rescaled . To𝐾
𝑀

β

achieve a smaller , one could use better zinc finger domains such as the new𝐾
𝑀

optimized / humanized zinc finger transcription factors mentioned above (75), which

should increase binding affinity of the homodimers to the DNA and thus decrease the .𝐾
𝑀

If self-activation is not dimer-dependent, one should consider modifying zinc fingers

using the same mutation strategy of Figs. 2.2A and S2.4B.

Once the self-activation module works, one could follow the workflow in Fig. S2.7 to

generate MultiFate cells. To make MultiFate-2 cells, one can first stably integrate two

different self-activation modules into the desired cell types, then select for cells that can

maintain a stable double-positive state using FACS or other cell sorting methods. This

usually results in desired MultiFate-2 cells, since the MultiFate-2 model (Fig. S2.1B)

shows that cells with a stable double-positive state can generate diverse multistability

regimes. Similarly, to make MultiFate-3 cells, one can stably integrate a third

self-activation module into the existing MultiFate-2 cells, then select for cells that can

maintain a stable triple-positive state.
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2.11 Supplementary Tables

Table S2.1 List of physiologically reasonable parameter regimes.

Parameters Model Estimated values References

𝐾
𝑀

Deterministic
and stochastic

10 nM or
8000 molecules/cell

(4, 57, 58)

δ Deterministic
and stochastic

0.1 hr-1 for “High TMP” condition;
0.2 hr-1 for “Low TMP” condition

(39, 59)

𝑛 Deterministic
and stochastic

1.5 (4, 34, 63)

α Deterministic 0.8 nM/hr Derived

β Deterministic 20 nM/hr Derived

𝐾
𝑑

Deterministic 10 nM (64) and current
study

𝑘
1

Stochastic 3.2 mRNA/hr Current study

𝑘
2

Stochastic 80 mRNA/hr (60) and current
study

δ
𝑚𝑅𝑁𝐴

Stochastic 0.7 hr-1 (60, 62)

𝑘
𝑝

Stochastic 140 proteins/(mRNA*hr) (60)

𝑘
𝑜𝑛

Stochastic 1.8x10-3/(protein*hr) (65)

𝑘
𝑜𝑓𝑓

Stochastic 14.4 hr-1 Derived

𝐼
𝑒𝑓𝑓

Deterministic
and stochastic

0.5 (66)

𝑘
𝑚𝑎𝑡 

Deterministic
and stochastic

1.12 hr-1 for mCherry;
4.62 hr-1 for mCitrine

(67)

δ
𝐹𝑃

Deterministic
and stochastic

0.35 hr-1 (68)

Note: 1 nM in a CHO cell is equivalent to 800 molecules.
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Table S2.2 List of plasmids used in this study and their use in the figures.

Index Construct name
Usage in this
study

Figures or
MultiFate
lines

MF01
PB-2x(ErbB2bs_ErbB2bs)-TATA-3xNLS-Citrine-BGHp
A Reporter 2A, S4A,B,C

MF02 PB-2x(37bs_37bs)-TATA-3xNLS-Citrine-BGHpA Reporter 2A, S4A,B,C

MF03 PB-2x(42bs_42bs)-TATA-3xNLS-Citrine-BGHpA Reporter 2A, S4A,B,C

MF04 PB-2x(92bs_92bs)-TATA-3xNLS-Citrine-BGHpA Reporter 2A, S4A,B

MF05 PB-2x(97bs_97bs)-TATA-3xNLS-Citrine-BGHpA Reporter 2A, S4A,B

MF06 PB-2x(BCRbs_BCRbs)-TATA-3xNLS-Citrine-BGHpA Reporter 2A, S4A,B,C

MF07 PB-2x(HIVbs_HIVbs)-TATA-3xNLS-Citrine-BGHpA Reporter 2A, S4A,B

MF08 PB-CAG-ErbB2ZFWT-VP48-mCherry-BGHpA
Trancription
factors 2A, S4A

MF09 PB-CAG-ErbB2ZFWT-GCN4-VP48-mCherry-BGHpA
Trancription
factors 2A, S4A

MF10 PB-CAG-ErbB2ZFR39A-VP48-mCherry-BGHpA
Trancription
factors 2A, S4A

MF11
PB-CAG-ErbB2ZFR39A-GCN4-VP48-mCherry-BGHp
A

Trancription
factors 2A, S4A

MF12 PB-CAG-ErbB2ZFR2AR39A-VP48-mCherry-BGHpA
Trancription
factors 2A, S4A

MF13
PB-CAG-ErbB2ZFR2AR39A-GCN4-VP48-mCherry-B
GHpA

Trancription
factors 2A, S4A, C

MF14
PB-CAG-ErbB2ZFR2AR39AR67A-VP48-mCherry-BG
HpA

Trancription
factors 2A, S4A

MF15
PB-CAG-ErbB2ZFR2AR39AR67A-GCN4-VP48-mCher
ry-BGHpA

Trancription
factors 2A, S4A

MF16
PB-CAG-FKBP12F36V-BCRZFR39A-VP48-mCherry-B
GHpA

Trancription
factors 2B

MF17 PB-CAG-37ZFWT-VP48-mCherry-BGHpA
Trancription
factors S4B

MF18 PB-CAG-37ZFWT-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B

MF19 PB-CAG-37ZFR39A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF20 PB-CAG-37ZFR39A-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B

MF21 PB-CAG-37ZFR2AR39A-VP48-mCherry-BGHpA
Trancription
factors S4B
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MF22
PB-CAG-37ZFR2AR39A-GCN4-VP48-mCherry-BGHp
A

Trancription
factors S4B

MF23 PB-CAG-37ZFR2AR39AR67A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF24
PB-CAG-37ZFR2AR39AR67A-GCN4-VP48-mCherry-
BGHpA

Trancription
factors S4B

MF25
PB-CAG-37ZFR2AR11AR39AR67A-VP48-mCherry-B
GHpA

Trancription
factors S4B

MF26
PB-CAG-37ZFR2AR11AR39AR67A-GCN4-VP48-mCh
erry-BGHpA

Trancription
factors S4B, C

MF27 PB-CAG-42ZFR2AR39AR67A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF28
PB-CAG-42ZFR2AR39AR67A-GCN4-VP48-mCherry-
BGHpA

Trancription
factors S4B, C

MF29 PB-CAG-92ZFWT-VP48-mCherry-BGHpA
Trancription
factors S4B

MF30 PB-CAG-92ZFWT-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B

MF31 PB-CAG-92ZFR39A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF32 PB-CAG-92ZFR39A-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B

MF33 PB-CAG-92ZFR2AR39A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF34
PB-CAG-92ZFR2AR39A-GCN4-VP48-mCherry-BGHp
A

Trancription
factors S4B

MF35 PB-CAG-92ZFR2AR39AR67A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF36
PB-CAG-92ZFR2AR39AR67A-GCN4-VP48-mCherry-
BGHpA

Trancription
factors S4B

MF37 PB-CAG-97ZFWT-VP48-mCherry-BGHpA
Trancription
factors S4B

MF38 PB-CAG-97ZFWT-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B

MF39 PB-CAG-97ZFR39A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF40 PB-CAG-97ZFR39A-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B

MF41 PB-CAG-97ZFR2AR39A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF42
PB-CAG-97ZFR2AR39A-GCN4-VP48-mCherry-BGHp
A

Trancription
factors S4B
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MF43 PB-CAG-BCRZF-VP48-mCherry-BGHpA
Trancription
factors S4B

MF44 PB-CAG-BCRZF-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B

MF45 PB-CAG-BCRZFR39A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF46 PB-CAG-BCRZFR39A-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B, C

MF47 PB-CAG-HIV1ZFWT-VP48-mCherry-BGHpA
Trancription
factors S4B

MF48 PB-CAG-HIV1ZFWT-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B

MF49 PB-CAG-HIV1ZFR39A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF50 PB-CAG-HIV1ZFR39A-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B

MF51 PB-CAG-HIV1ZFR2AR39A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF52
PB-CAG-HIV1ZFR2AR39A-GCN4-VP48-mCherry-BG
HpA

Trancription
factors S4B

MF53
PB-CAG-HIV1ZFR2AR39AR67A-VP48-mCherry-BGH
pA

Trancription
factors S4B

MF54
PB-CAG-HIV1ZFR2AR39AR67A-GCN4-VP48-mCherr
y-BGHpA

Trancription
factors S4B

MF55 PB-CAG-HIV2ZFWT-VP48-mCherry-BGHpA
Trancription
factors S4B

MF56 PB-CAG-HIV2ZFWT-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B

MF57 PB-CAG-HIV2ZFR39A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF58 PB-CAG-HIV2ZFR39A-GCN4-VP48-mCherry-BGHpA
Trancription
factors S4B

MF59 PB-CAG-HIV2ZFR2AR39A-VP48-mCherry-BGHpA
Trancription
factors S4B

MF60
PB-CAG-HIV2ZFR2AR39A-GCN4-VP48-mCherry-BG
HpA

Trancription
factors S4B

MF61
PB-CAG-HIV2ZFR2AR39AR67A-VP48-mCherry-BGH
pA

Trancription
factors S4B

MF62
PB-CAG-HIV2ZFR2AR39AR67A-GCN4-VP48-mCherr
y-BGHpA

Trancription
factors S4B

MF63
PB-TRE3G-6x42bs-6x(BCRbs_BCRbs)-miniCMV-NLS-
FKBP12F36V-BCRZFR39A-VP16-NLS-DHFR-IRES-m

Self-activation
construct 2C
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Citrine-PEST-BGHpA

MF64

PB-TRE3G-6x42bs-6x(37bs_37bs)-miniCMV-NLS-FKB
P12F36V-37ZFR2AR11AR39AR67A-VP16-NLS-DHFR
-IRES-mCitrine-PEST-BGHpA

Self-activation
construct

S5A,
MultiFate-2.1
,
MultiFate-2.3

MF65

PB-TRE3G-6x42bs-6x(92bs_92bs)-miniCMV-NLS-FKB
P12F36V-92ZFR2AR39AR67A-VP16-NLS-DHFR-IRE
S-mCitrine-PEST-BGHpA

Self-activation
construct S5A

MF66

PB-TRE3G-6x42bs-6x(97bs_97bs)-miniCMV-NLS-FKB
P12F36V-97ZFR39A-VP16-NLS-DHFR-IRES-mCitrine-
PEST-BGHpA

Self-activation
construct S5A

MF67

PB-TRE3G-6x42bs-6x(ErbB2bs_ErbB2bs)-miniCMV-N
LS-FKBP12F36V-ErbB2ZFR2AR39A-VP16-NLS-DHF
R-IRES-mCitrine-PEST-BGHpA

Self-activation
construct S5A

MF68

PB-TRE3G-6x42bs-6x(HIVbs_HIVbs)-miniCMV-NLS-F
KBP12F36V-HIV1ZFR2AR39A-VP16-NLS-DHFR-IRE
S-mCitrine-PEST-BGHpA

Self-activation
construct S5A

MF69

PB-TRE3G-6x42bs-6x(HIVbs_HIVbs)-miniCMV-NLS-F
KBP12F36V-HIV2ZFR2AR39AR67A-VP16-NLS-DHF
R-IRES-mCitrine-PEST-BGHpA

Self-activation
construct S5A

MF70

PB-TRE3G-6x(42bs_42bs)-miniPromo-42ZFR2AR39A
R67A-GCN4-VP48-DHFR-IRES-mCitrine-PEST-BGHp
A

Self-activation
construct 2D, S5B

MF71

PB-TRE3G-6x(42bs_42bs)-miniPromo-FKBP12F36V-42
ZFR2AR39AR67A-VP48-DHFR-IRES-mCitrine-PEST-
BGHpA

Self-activation
construct 2D, S5B

MF72 PB-CAG-IRES-mCherry-PEST-BGHpA (Control)
Protein
perturbations 2D, S5B

MF73
PB-CAG-BCRZFR39A-GCN4-VP48-IRES-mCherry-PE
ST-BGHpA

Protein
perturbations 2D, S5B

MF74
PB-CAG-FKBP12F36V-BCRZFR39A-VP48-IRES-mCh
erry-PEST-BGHpA

Protein
perturbations 2D, S5B

MF75
PB-CAG-BCRZFR39A-GCN4-IRES-mCherry-PEST-BG
HpA

Protein
perturbations S5B

MF76 PB-CAG-FKBP12F36V-IRES-mCherry-PEST-BGHpA
Protein
perturbations S5B

MF77
PB-CAG-BCRZFR39A-VP48-IRES-mCherry-PEST-BG
HpA

Protein
perturbations 2D, S5B

MF78 PB-CAG-BCRZFR39A-IRES-mCherry-PEST-BGHpA
Protein
perturbations S5B

MF79 PB-CAG-GCN4-IRES-mCherry-PEST-BGHpA
Protein
perturbations S5B

MF80 PB-CAG-VP48-IRES-mCherry-PEST-BGHpA Protein S5B
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perturbations

MF81

PB-TRE3G-12x42bs-6x(BCRbs_BCRbs)-miniCMV-NL
S-FKBP12F36V-BCRZFR39A-VP16-NLS-DHFR-IRES-
mCherry-PEST-BGHpA

Self-activation
construct MultiFate-2.1

MF82

PB-TRE3G-12x42bs-10x(BCRbs_BCRbs)-miniCMV-NL
S-FKBP12F36V-BCRZFR39A-VP16-NLS-DHFR-IRES-
mCherry-PEST-BGHpA

Self-activation
construct

MultiFate-2.2
, MultiFate-3

MF83

PB-TRE3G-6x42bs-10x(37bs_37bs)-miniCMV-NLS-FK
BP12F36V-37ZFR2AR11AR39AR67A-VP16-NLS-DHF
R-IRES-mCitrine-PEST-BGHpA

Self-activation
construct

MultiFate-2.2
, MultiFate-3

MF84

PB-14xUAS-6x42bs-6x(BCRbs_BCRbs)-miniCMV-NLS
-FKBP12F36V-BCRZFR39A-VP16-NLS-DHFR-IRES-
mCherry-PEST-BGHpA

Self-activation
construct MultiFate-2.3

MF85

PB-14xUAS-12x42bs-10x(ErbB2bs_ErbB2bs)-miniCM
V-NLS-FKBP12F36V-ErbB2ZFR2AR39A-VP16-NLS-D
HFR-IRES-mTurquoise2-PEST-BGHpA

Self-activation
construct MultiFate-3

MF86 PB-EF1α-Tet3G-BGHpA
Inducible
system 2C, S5A

MF87 PB-EF1α-Tet3G-P2A-ERT2-Gal4-BGHpA
Inducible
system

All MultiFate
cells

MF88

PB-TRE3G-6x(BCRbs_BCRbs)-miniCMV-NLS-FKBP1
2F36V-BCRZFR39A-VP16-NLS-FLAG-DHFR-IRES-m
Cherry-PEST-BGHpA

Self-activation
construct S24

MF89

PB-TRE3G-4x42bs-6x(BCRbs_BCRbs)-miniCMV-NLS-
FKBP12F36V-BCRZFR39A-VP16-NLS-FLAG-DHFR-I
RES-mCherry-PEST-BGHpA

Self-activation
construct S24

MF90

PB-TRE3G-6x42bs-6x(BCRbs_BCRbs)-miniCMV-NLS-
FKBP12F36V-BCRZFR39A-VP16-NLS-FLAG-DHFR-I
RES-mCherry-PEST-BGHpA

Self-activation
construct S24

Note:
PB = PiggyBac backbone; TRE3G = Tet3G binding site; UAS = ERT2-Gal4 binding site;
TATA, miniCMV, miniPromo are three different minimal promoters;
VP48, VP16 are two different transcriptional activation domains;
CAG = the constitutive CAG promoter (30);
EF1α = the constitutive EF1α promoter;
NLS = nuclear localization sequence;
IRES = internal ribosome entry site;
BGHpA = bovine growth hormone polyadenylation signal;
PEST = constitutive signal peptide for protein degradation (31);
42bs = both the 42ZF binding site and 9bp motif that increase promoter leakiness;
ZFbs_ZFbs = 18bp tandem ZF binding site pairs;
Construct maps in GenBank format are available at data.caltech.edu/records/1882.
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Table S2.3 List of stable cell lines constructed for this study and their use in the
figures.

Cell lines
Parental
cells

Polyclonal
or
monoclonal

Integrated
constructs Figures

Additional procedures to
screen monoclones

Tet3G-expressing
CHO-K1 CHO-K1 Polyclonal MF86

2C, 2D,
S5 N/A

ERT2-Gal4-T2A-
Tet3G expressing
CHO-K1 CHO-K1 Polyclonal MF87

3-5,
S6-17 N/A

FKBP-BCRZFR
39A-VP48-DHF
R self-activation

Tet3G-
expressing
CHO-K1 Polyclonal MF63 2C N/A

FKBP-37ZFR2A
R11AR39AR67A
-VP48-DHFR
self-activation

Tet3G-
expressing
CHO-K1 Polyclonal MF64 S5A N/A

FKBP-92ZFR2A
R39AR67A-VP4
8-DHFR
self-activation

Tet3G-
expressing
CHO-K1 Polyclonal MF65 S5A N/A

FKBP-97ZFR39
A-VP48-DHFR
self-activation

Tet3G-
expressing
CHO-K1 Polyclonal MF66 S5A N/A

FKBP-ErbB2ZF
R2AR39A-VP48
-DHFR
self-activation

Tet3G-
expressing
CHO-K1 Polyclonal MF67 S5A N/A

FKBP-HIV1ZFR
2AR39A-VP48-
DHFR
self-activation

Tet3G-
expressing
CHO-K1 Polyclonal MF68 S5A N/A

FKBP-HIV2ZFR
2AR39AR67A-V
P48-DHFR
self-activation

Tet3G-
expressing
CHO-K1 Polyclonal MF69 S5A N/A

FKBP-BCRZFR
39A-VP16-DHF
R self-activation
(with no 42bs in
promoter) CHO-K1 Polyclonal MF88 S24 N/A
FKBP-BCRZFR
39A-VP16-DHF
R self-activation
(with 4x 42bs in CHO-K1 Polyclonal MF89 S24 N/A



131

promoter)
FKBP-BCRZFR
39A-VP16-DHF
R self-activation
(with 6x 42bs in
promoter) CHO-K1 Polyclonal MF90 S24 N/A

42ZFR2AR39AR
67A-GCN4-VP4
8-DHFR
self-activation

Tet3G-
expressing
CHO-K1 Monoclonal MF70 2D, S5B

Obtained monoclone
candidates by limiting
dilution, induced candidates
with 10 µM TMP and
selected the monoclone that
spontaneously and
homogenously self-activate

FKBP-42ZFR2A
R39AR67A-VP4
8-DHFR
self-activation

Tet3G-
expressing
CHO-K1 Monoclonal MF71 2D, S5B

Obtained monoclone
candidates by limiting
dilution, induced candidates
with 100 nM AP1903 + 10
µM TMP and selected the
monoclone that
spontaneously and
homogenously self-activate

MultiFate-2.1

ERT2-Gal4
-T2A-
Tet3G
expressing
CHO-K1 Monoclonal

MF64,
MF81

3C, 4B,
S6

Induced the polyclonal
population with 500 ng/ml
Dox for 12 hours, then
washed out Dox and changed
to 100 nM AP1903 + 10 µM
TMP for 3 days, FACS sorted
monoclones that were
mCherry+ and mCitrine+

MultiFate-2.2

ERT2-Gal4
-T2A-
Tet3G
expressing
CHO-K1 Monoclonal

MF82,
MF83 3C, S7

Induced the polyclonal
population with 500 ng/ml
Dox for 12 hours, then
washed out Dox and changed
to 100 nM AP1903 + 10 µM
TMP for 3 days, FACS sorted
monoclones that were
mCherry+ and mCitrine+

MultiFate-2.3

ERT2-Gal4
-T2A-
Tet3G
expressing
CHO-K1 Monoclonal

MF64,
MF84

3C, 3D,
4A, S8,
S9

Induced the polyclonal
population with 500 ng/ml
Dox and 75 nM 4-OHT for
12 hours, then washed out
Dox and 4-OHT and changed
to 100 nM AP1903 + 10 µM
TMP for 3 days, FACS sorted
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monoclones that were
mCherry+ and mCitrine+

MultiFate-3
MultiFate-
2.2 Monoclonal MF85

5B, 5C,
S10-S14

Induced the polyclonal
population with 500 ng/ml
Dox and 75 nM 4-OHT for
12 hours, then washed out
Dox and 4-OHT and changed
to 100 nM AP1903 + 10 µM
TMP for 3 days, FACS sorted
monoclones that were
mCherry+, mCitrine+ and
mTurquoise2+

Promoter structures of different MultiFate lines:
MultiFate-2.1
TF A promoter has Tet3G binding sites, 6x(BCRbs_BCRbs);
TF B promoter has Tet3G binding sites, 6x(37bs_37bs);
MultiFate-2.2
TF A promoter has Tet3G binding sites, 10x(BCRbs_BCRbs);
TF B promoter has Tet3G binding sites, 10x(37bs_37bs);
MultiFate-2.3
TF A promoter has ERT2-Gal4 binding sites, 6x(BCRbs_BCRbs);
TF B promoter has Tet3G binding sites, 6x(37bs_37bs);
MultiFate-3
TF A promoter has Tet3G binding sites, 10x(BCRbs_BCRbs);
TF B promoter has Tet3G binding sites, 10x(37bs_37bs);
TF C promoter has ERT2-Gal4 binding sites , 10x(ErbB2bs_ErbB2bs);
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Table S2.4 List of molecular reactions and their propensities for Gillespie
simulation.

Reactions Molecule update Propensity

TF A mRNA
transcription

a –> a + 1 𝑘
1
 +  𝑘

2
[𝐴

2
]𝑛/(𝐾

𝑀
𝑛 + [𝐴

2
]𝑛 )

TF A mRNA removal a –> a - 1 δ
𝑚𝑅𝑁𝐴

[𝑎]

TF B mRNA
transcription

b –> b + 1 𝑟𝑘
1
 +  𝑚𝑘

2
[𝐵

2
]𝑛/((κ𝐾

𝑀
)𝑛 +  [𝐵

2
]𝑛)

TF B mRNA removal b –> b - 1 δ
𝑚𝑅𝑁𝐴

[𝑏]

TF C mRNA
transcription

c –> c + 1 𝑟
2
𝑘

1
+ 𝑚

2
𝑘

2
 [𝐶

2
]𝑛/((κ𝐾

𝑀
)𝑛 +  [𝐶

2
]𝑛)

TF C mRNA removal c –> c - 1 δ
𝑚𝑅𝑁𝐴

[𝑐]

TF A protein translation A –> A + 1 𝑘
𝑝
[𝑎]

TF A protein removal A –> A - 1 δ[𝐴]

TF B protein translation B –> B + 1 𝑘
𝑝
[𝑏]

TF B protein removal B –> B - 1 γδ[𝐵]

TF C protein translation C –> C + 1 𝑘
𝑝
[𝑐]

TF C protein removal C –> C - 1 γ
2
δ[𝐶]

TF A homodimerization A –> A - 2, A 2 –> A2 +
1

𝑘
𝑜𝑛

[𝐴]2 ×  ([𝐴] ≥  2)

AA homodimer
dissociation

A2 –> A2 - 1, A –> A +
2

𝑘
𝑜𝑓𝑓

[𝐴
2
]

TF B homodimerization B –> B - 2, B2 –> B2 +
1

𝑘
𝑜𝑛

[𝐵]2 ×  ([𝐵] ≥  2)

BB homodimer
dissociation

B2 –> B2 - 1, B –> B +
2

𝑘
𝑜𝑓𝑓

[𝐵
2
]

TF C homodimerization C –> C - 2, C2 –> C2 +
1

𝑘
𝑜𝑛

[𝐶]2 ×  ([𝐶] ≥  2)

CC homodimer
dissociation

C2 –> C2 - 1, C –> C +
2

𝑘
𝑜𝑓𝑓

[𝐶
2
]
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AB heterodimerization A –> A - 1, B –> B - 1,
AB –> AB + 1

2𝑘
𝑜𝑛

[𝐴][𝐵]

AB heterodimer
dissociation

AB –> AB - 1,
A –> A + 1, B –> B +
1,

𝑘
𝑜𝑓𝑓

[𝐴𝐵]

AC heterodimerization A –> A - 1, C –> C - 1,
AC –> AC + 1

2𝑘
𝑜𝑛

[𝐴][𝐶]

AC heterodimer
dissociation

AC –> AC - 1,
A –> A + 1, C –> C +
1,

𝑘
𝑜𝑓𝑓

[𝐴𝐶]

BC heterodimerization B –> B - 1, C –> C - 1,
BC –> BC + 1

2𝑘
𝑜𝑛

[𝐵][𝐶]

BC heterodimer
dissociation

BC –> BC - 1,
B –> B + 1, C –> C + 1,

𝑘
𝑜𝑓𝑓

[𝐵𝐶]

AA homodimer removal A2 –> A2 - 1 δ[𝐴
2
]

BB homodimer removal B2 –> B2 - 1 γδ[𝐵
2
]

CC homodimer removal C2 –> C2 - 1 γ
2
δ[𝐵

2
]

A removal in AB
heterodimer

AB –> AB - 1,
B –> B + 1

δ[𝐴𝐵]

B removal in AB
heterodimer

AB –> AB - 1,
A –> A + 1

γδ[𝐴𝐵]

A removal in AC
heterodimer

AC –> AC - 1,
C –> C + 1

δ[𝐴𝐶]

C removal in AC
heterodimer

AC –> AC - 1,
A –> A + 1

γ
2
δ[𝐴𝐶]

B removal in BC
heterodimer

BC –> BC - 1,
C –> C + 1

γδ[𝐵𝐶]

C removal in BC
heterodimer

BC –> BC - 1,
B –> B + 1

γ
2
δ[𝐵𝐶]

FPAim protein translation FPAim –> FPAim + 1 𝐼
𝑒𝑓𝑓

𝑘
𝑝
[𝑎]

FPBim protein translation FPBim –> FPBim + 1 𝐼
𝑒𝑓𝑓

𝑘
𝑝
[𝑏]

FPAim protein
maturation

FPAim –> FPAim - 1,
FPAm –> FPAm + 1,

𝑘
𝑚𝑎𝑡𝐴

[𝐹𝑃𝐴
𝑖𝑚

]
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FPBim protein
maturation

FPBim –> FPBim - 1,
FPBm –> FPBm + 1,

𝑘
𝑚𝑎𝑡𝐵

[𝐹𝑃𝐵
𝑖𝑚

]

FPAim protein removal FPAim –> FPAim - 1 δ
𝐹𝑃𝐴

[𝐹𝑃𝐴
𝑖𝑚

]

FPBim protein removal FPBim –> FPBim - 1 δ
𝐹𝑃𝐵

[𝐹𝑃𝐵
𝑖𝑚

]

FPAm protein removal FPAm –> FPAm - 1 δ
𝐹𝑃𝐴

[𝐹𝑃𝐴
𝑚

]

FPBm protein removal FPBm –> FPBm - 1 δ
𝐹𝑃𝐵

[𝐹𝑃𝐵
𝑚

]

Note:
A, B, C, A2, B2, C2, AB, AC, BC represent proteins of monomer A, monomer B, monomer C,
homodimer AA, homodimer BB, homodimer CC, heterodimer AB, heterodimer AC,
heterodimer BC, respectively.
a, b, c represents mRNAs of A, B and C, respectively.
FPAim, FPBim, FPAm, FPBm represents immature proteins of fluorescent protein A, immature
proteins of fluorescent protein B, mature proteins of fluorescent protein A, mature proteins of
fluorescent protein B, respectively.
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Chapter 3. Reconstitution of BMP gradient reveals the sufficient

circuit for ligand shuttling

Abstract

Morphogens pattern developing tissues by forming concentration gradients.

Understanding how the shapes of these gradients are modulated can provide key insights

into how natural tissues are patterned, and allow engineering of synthetic patterns. Many

extracellular modulators have been identified to regulate BMP gradient formations during

development, but how they work together to shape BMP gradients remains unclear. Here,

combining in vitro bottom-up gradient reconstitution and mathematical modeling, we

systematically analyzed a gradient modulation circuit consisting of mouse BMP4 and its

modulators, Chordin, Twsg, and BMP-1. We found that this circuit can give rise to

diverse gradient modulation capabilities such as gradient lengthening and gradient

suppression. The full circuit is sufficient for the active process of ligand shuttling and can

generate a non-monotonic displaced gradient. Bottom-up gradient reconstitution thus

provides a scalable platform for understanding how morphogen gradients are shaped by

extracellular modulators, and using these modulators to engineer novel synthetic

multicellular patterns.

3.1 Introduction

In multicellular organisms, a class of long-range signaling molecules called morphogens

pattern developmenting tissues (1–4). A major challenge in developmental biology is to

understand how morphogens are used to pattern diverse tissue types. In the simplest
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models of morphogenetic patterning, morphogen synthesis, degradation and diffusion

establish spatial concentration gradients, which allow signal receiving cells to infer their

spatial positions and control fate decisions (5). However, natural morphogen pathways

use additional extracellular modulators that interact with one another and with

morphogens to actively shape gradients in more complex ways (6–8). The roles of many

of these components have been elucidated in specific developmental contexts, but the

design principles that govern the regulatory architecture of patterning systems remain

unclear. Being able to understand these principles would enable us to control tissue

patterning more precisely and even rationally engineer more complex, synthetic tissue

patterns.

Most approaches have relied on analysis of pattern formation in the context of wild-type

and mutant embryos and tissues. These ‘top-down’ approaches have provided

fundamental insights into the identities of morphogens and their regulators, their

connectivity, and their general role in the control of gradient shape and scale (9).

However, natural developmental patterning systems use multiple interacting components

concurrently, re-use them pleiotropically across distinct embryo contexts, and often offer

limited experimental accessibility. These features make it difficult to isolate a specific set

of components, test their sufficiency for pattern formation, and more generally

understand the full repertoire of potential pattern formation behaviors they can generate.

In contrast, recent work (10, 11) showed that reconstituting pattern formation circuits

from the bottom up could address these issues and provide a powerful and

complementary method into natural patterning systems. This bottom-up approach enables

one to study these pattern formation circuits in an isolated, quantitative manner.
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The Bone Morphogenetic Protein (BMP) pathway is one of the most important and

best-studied metazoan morphogen pathways. BMP ligands form gradients that control

dorsal-ventral patterning of early embryos (12, 13), the neural tube (14), and limb bud

formation (15), among many other processes. BMP is particularly notable for its

extensive use of extracellular modulators. One interaction that is particularly interesting

is interactions among BMP, Chordin, Twisted gastrulation (Twsg), and BMP-1 (Fig.

3.1A). Chordin can bind to BMP and prevent it from binding to receptors for signaling

(16), and Twsg can form ternary complexes with BMP-Chordin to further strengthen this

interaction (17–20). Thus, Chordin is mostly known as a BMP antagonist. However, this

interaction may serve another purpose: it prevents BMP from receptor mediated

internalization and degradation (21). Thus it is postulated that Chordin can “shuttle”

BMP ligands on the cell surface and increase their diffusibility. Furthermore, BMP-1 (a

homolog of Tolloid in Drosophila) protease can cleave Chordin, which releases BMP

from the ternary complex for signaling (22). Ligand shuttling enabled by a circuit with

BMP, Chordin, Tsg, and BMP-1 has been suggested to produce non-intuitive gradient

shapes during the embryonic development of Drosophila (23, 24), Xenopus (25), and

mouse (26). However, two papers refute the role of BMP ligand shuttling by Chordin in

zebrafish embryos, despite the presence of all circuit components (27, 28). This

controversy may come from the limitation of top-down approaches: with the same circuit,

ligand shuttling and certain gradient shapes may happen in one parameter regime, but not

the other. One developmental context may only allow us to explore a limited set of

parameter regimes, within which some circuit behaviors may not appear.
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Here, we use a bottom-up gradient reconstitution system to isolate the BMP gradient

formation process, analyze it in space and time, and perturb it through systematic,

quantitative control of key modulators, including Chordin, Twsg, and BMP-1. We show

that gradient reconstitution can provide a quantitative understanding of how BMP and a

handful of modulators interact with one another in space and time to enable active

patterning behaviors such as shuttling, along with other modulatory capabilities (Fig.

3.1B). These results provide a foundation for a systematic bottom-up reconstitution of

diverse patterns and pattern-forming mechanisms.
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Fig. 3.1

Fig. 3.1 BMP4 gradient modulation by Chordin, Twsg, and BMP-1 can be
understood through gradient reconstitution.
(A) Chordin can bind to BMP ligands, and Twsg strengthens this interaction. BMP-1 can
cleave Chordin in its free form or complex forms and release BMP for binding to
receptor and signaling. (B) To reconstitute BMP gradients, we choose blank-slate cells
that (1) express minimal levels of morphogen pathway components except for receptors,
and (2) have minimal cellular state changes in response to morphogen signaling.
Synthetic genetic components are engineered into blank-slate cells to make morphogen
(or modulator) senders and morphogen receivers (left). Engineered senders and receivers
are co-cultured in different configurations (middle and right) to reconstitute BMP
gradients.
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3.2 BMP gradients can be reconstituted in confluent NMuMG monolayers

Reconstitution of BMP gradients requires sender cells that produce BMP morphogen and

receiver cells that can respond to it. To focus on gradient dynamics, and decouple them

from proliferation, these cells should ideally form a contact-inhibited confluent

monolayer. They should also transmit BMP signals with minimal biological responses

such as differentiation. Based on these requirements, we used the NAMRU mouse

mammary gland (NMuMG) epithelial cell line, which was previously shown to form

confluent monolayers and to provide a high dynamic range of BMP signaling (29, 30).

We engineered NMuMG sender cells that express BMP4 ligands together with a

co-expressed mCherry reporter under the control of the inducer 4-hydroxytamoxiofen

(4-OHT) (Fig. 3.2A). For receiver cells, we utilized a previously described NMuMG cell

line incorporating a H2B-Citrine reporter under the control of a BMP-responsive

regulatory element, based on BMP response elements in the natural BMP target gene Id1

(30). In this cell line, H2B-Citrine fluorescence is regulated by BMP in a dose-dependent

fashion that correlates with the levels of phosphorylated Smad1/5 and with expression of

endogenous BMP target genes (30). We verified that sender cells were able to activate the

receiver cells in a dose-dependent fashion across their full dynamic response range (Fig.

3.2B).

To reconstitute gradient formation, we used a similar sequential plating protocol

previously developed in our lab (10). Briefly, we first plated senders in a confined region

using a PDMS insert (Ibidi). After senders were plated, we removed the insert and plated

receivers in an unconfined region. We then induced the secretion of BMP4 from the

sender region with 4-OHT, and imaged the BMP4 signaling gradient using fluorescent
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microscopes (Fig. 3.2C). With this system, a quasi-1D gradient formed along the

direction perpendicular to the interface between the senders and receivers (Fig. 3.2D),

similar to the geometry of various developmental tissues like a Drosophila wing disc

(31). Time-lapse movies showed that, at saturating 4-OHT induction, BMP4 signaling

gradients grew over time in amplitude and lengthscale, and eventually reached a steady

state in around 48 hours (Fig. 3.2D). This behavior is consistent with a simple model of

BMP4 gradient formation based on ligand production, diffusion and removal. Together,

these results show that BMP gradients can be reconstituted on a monolayer of engineered

sender and receiver NMuMG cells.
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Fig. 3.2

Fig. 3.2 BMP gradients can be reconstituted in vitro.
(A) An 4-OHT inducible BMP4 sending module is integrated into NMuMG cells to
construct sender cells. Receiver cells are from (30), in which a H2B-Citrine reporter
under the control of a BMP-responsive regulatory element (BRE) is integrated into the
cells. UAS denotes upstream activating sequence that can be bound by Gal4; PGK
denotes a mammalian constitutive promoter from the gene 3-phosphoglycerate kinase;
BMPR denotes BMP receptors, which are endogenously expressed by NMuMG cells. (B)
Senders activate Citrine responses in receiver cells in a 4-OHT dose-dependent manner.
Sender cells and receiver cells were mixed and plated together in a 96-well plate. After
24hrs, different concentrations of 4-OHT were added to the culture media and cell
fluorescence was measured by flow cytometry. Sender cells were separated from
receiver cells in the flow data by their elevated mCherry expression, then receiver Citrine
responses were plotted. (C) The sequential plating protocol is adopted from (30). One
modification in this study is that during the induction step, instead of adding liquid
media, we added 50% Matrigel and allowed it to solidify to prevent protein loss into
liquid media during gradient formation. (D) Time-lapse imaging reveals gradient
formation dynamics. In the sender region (bottom), 5,000 BMP4 sender cells are mixed
with 35,000 filler cells that constitutively express Citrine.
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3.3 Interactions among BMP4 and its modulators are recapitulated in the

reconstitution system

During development, a set of extracellular modulators including Chordin, Twsg, and

BMP-1 interact with each other and with BMP4 ligands to regulate and spatially

redistribute BMP activity (Fig. 3.1A) (6, 7). We next sought to determine whether these

components could function in the reconstituted system. To determine how these factors

together control the level of BMP signaling, we constructed a dual sender cell line that

expresses BMP4 and Chordin (Sender-BC) under the control of 4-OHT and doxycycline

(Dox), respectively (Fig. 3.3A). We also constructed a modified receiver cell line,

Receiver-B1, containing the same reporter system but with an abscisic acid (ABA)

inducible expression of BMP-1 protease. In some experiments we also incorporated

different concentrations of recombinant mouse Twsg protein (R&D Systems).

We first focused on Chordin, an inhibitor that binds to BMP4 and prevents it from

signaling. We used 4-OHT to induce BMP4 expression in the co-culture of Sender-BC

and Receiver-B1 cells, and analyzed activation of Receiver-B1 cells using flow

cytometry (Fig. 3.3B, left) and fluorescence imaging (Fig. 3.3B, right). Sender-BC cells

efficiently activated Receiver-B1 cells (Fig. 3.3B, lane 1). As expected, this activation

was reduced by co-induction of Chordin expression by doxycycline (Fig. 3.3B, lane 5).

Addition of recombinant Twsg (rTwsg), which facilitates Chordin-BMP4 interactions

(17), strengthened inhibition by Chordin, allowing it to fully suppress BMP4 signaling

(Fig. 3.3B, lane 6), while rTwsg addition by itself had minimal effects (Fig. 3.3B, lane 2).

By contrast, expression of the BMP-1 protease, which cleaves Chordin to release BMP4

ligands, partially relieved BMP4 suppression by Chordin (Fig. 3.3B, lane 7 and 8).
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Together, these results show that interactions among BMP4, Chordin, Twsg, and BMP-1

can be recapitulated in our cell culture system.
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Fig. 3.3

Fig. 3.3 Engineered cells recapitulate known interactions among BMP4, Chordin,
Twsg, and BMP-1.
(A) On top of sender cells in Fig. 3.2A, we added a Dox-inducible Chordin expression
module to make a dual BMP and Chordin inducible sender line (Sender-BC). This allows
independent control of BMP4 and Chordin expression. For Receiver-B1, we integrated an
ABA-inducible BMP-1 expression module in the receiver cells in Fig. 3.2A. EF1α
denotes a mammalian constitutive promoter from the gene human elongation factor-1α;
TRE denotes Tet3G response elements; (B) In the co-culture experiment, 5,000
Sender-BC were mixed with 45,000 Receiver-B1 and plated into a 96-well plate. After
24hrs, inducers were added to the media and cell fluorescence was measured by flow
cytometry after another 36hrs. Images of cells (right) were taken right before flow
cytometry measurements. On the left plot, each dot represents one biological replicate,
and each red line indicates the mean of two replicates.
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3.4 Mathematical modeling predicts gradient features

To understand what types of patterns could be generated by these interactions, we

developed a simple mathematical model of BMP and its modulators based on previous

models (23–25, 32) but specifically incorporating the components analyzed here (Fig.

3.4A, Supplementary Information). In the model, BMP4 is secreted from sender cells,

can be internalized through binding to receptors, undergoes diffusion, and forms

complexes with Chordin. We further assume that BMP4 and Chordin form a more stable

complex in the presence of Twsg, and BMP-1 cleaves Chordin with a rate dependent on

BMP-1 expression. We used existing biochemical measurements (Supplementary

Information) to estimate key parameters, including the diffusion coefficient, D, and the

binding and unbinding rates between BMP4 and receptors or Chordin, and the rate of

receptor-mediated internalization of BMP4 ligands. We also assume that the fluorescent

reporter for pathway activity is synthesized at a rate that is a Hill function of the

concentration of ligand-receptor signaling complexes. We simulated the model in one

spatial dimension, parallel to the gradient, corresponding to the quasi-1D gradients in the

experiment.

Using this model, we asked how each modulator should affect the signaling gradient.. We

first analyzed the simplest case, in which BMP4 and Chordin are produced from the

sender cell region. Simulations showed that Chordin both lengthened the gradient and

reduced its amplitude, consistent with the dual role of BMP4-Chordin interactions (21)

(Fig. 3.4B). In this case, BMP4 ligands can be released from the BMP4-Chordin complex

due to a weak affinity between the two. In the presence of Twsg globally, Chordin was

predicted to strongly bind to BMP4, and thus could completely abrogate the signaling
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gradient (Fig. 3.4C). Strikingly, further introducing BMP-1 expression in receiver cells

generated a non-monotonic displaced gradient, because BMP-1 can cleave Chordin and

release BMP4 for signaling again. The gradient peak amplitude and peak displacement

(peak distance to sender-receiver interface) were concomitantly controlled by the level of

BMP-1, with higher BMP-1 expression both elevating the peak amplitude and reducing

the peak displacement (Fig. 3.4D). Together, mathematical modeling demonstrated that

interactions among BMP4, Chordin, Twsg, and BMP-1 enable diverse gradient

modulation capabilities.



155

Fig. 3.4

Fig. 3.4 Mathematical modeling shows diverse gradient modulation capabilities by
Chordin, Twsg, and BMP-1.
(A) Mathematical model of BMP4, Chordin, Twsg and BMP-1 circuit. Model parameters
were estimated based on existing literature (Supplementary Information). (B-D) Tuning
different circuit components enables diverse gradient modulation capabilities, including
(B) gradient lengthening by tuning Chordin, (C) gradient suppression by tuning Twsg,
and (D) gradient displacement by tuning BMP-1.
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3.5 Ligand shuttling can be reconstituted by a minimal circuit consisting of BMP4,

Chordin, Twsg, and BMP-1

To test these predictions, we followed the same sequential plating protocol mentioned

above to set up experimental gradients using engineered sender cells and receiver cells. In

the sender region, we separated BMP4 and Chordin sending capabilities into two

different sender lines (Sender-B and Sender-C, respectively) (Fig. 3.5A), because through

both changing cell numbers and inducer concentrations, a two-sender system gave us

more flexibility than using the dual sender line. We used the inducible BMP-1 receivers

mentioned above (Receiver-B1) in the receiver region.

Similar to the simple sender-receiver gradient (Fig. 3.2D), BMP4 production from the

sender region generated an exponentially decaying gradient at 48hrs. Induction of

Chordin production from the sender region lengthened the gradient while reduced its

amplitude (Fig. 3.5B). As predicted by the model (Fig. 3.4B), this lengthening effect was

dose-dependent, with increased Chordin production resulting in longer gradient

lengthscales and lower amplitudes (Fig. 3.5B). Consistent with co-culture experiments

(Fig. 3.3B) and model predictions (Fig. 3.4C), global rTwsg addition greatly enhanced

the inhibitory effects of Chordin, leading to a complete suppression of BMP4 signaling

gradients (Fig. 3.5C). Finally, we tested the full circuit with BMP4, Chordin, Twsg and

BMP-1 expressed from cells or added as recombinant proteins. Strikingly, when all

components were present, the BMP4 signaling gradient was displaced from the sender

region (Fig. 3.5D). Crucially, the displaced gradient extended to a distance beyond that

reached when only BMP4 was expressed (Fig. 3.5D), suggesting substantial ligand

shuttling. The model predicts that the peak displacement and amplitude can be controlled
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by the level of BMP-1 (Fig. 3.4D). To test this prediction, we held the level of BMP4,

Chordin, and rTwsg constant, and tuned the level of BMP-1 by ABA. Increasing

expression of BMP-1, as shown by increasing the level of mCherry fluorescence in the

receiver region, decreased the peak displacement and increased the peak amplitude (Fig.

3.5D), consistent with model predictions (Fig. 3.4D). Together, these experimental results

confirmed model predictions that a minimal circuit with BMP4, Chordin, Twsg, and

BMP-1 enables ligand shuttling and allows for diverse gradient modulation.
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Fig. 3.5

Fig. 3.5 The BMP4-Chordin-Twsg-BMP-1 circuit is sufficient for ligand shuttling.
(A) (Left) BMP4 and Chordin were secreted by two different senders (Sender-B and
Sender-C, respectively), and Receiver-B1 (also used in Fig. 3.3) was used in the receiver
region. (Right) To set up gradient reconstitution experiments, 5,000 Sender-B and 35,000
Sender-C were mixed and first plated in a confined sender region (bottom side). Then
Receiver-B1 cells were plated at 100% confluency throughout the well. Gradient was
quantified along an axis perpendicular to the sender-receiver interface. (B-D) Consistent
with modeling, tuning different circuit components enables diverse gradient modulation
capabilities, including (B) gradient lengthening, (C) gradient suppression, and (D)
gradient displacement. 2500 nM 4-OHT was added to all samples. Control sample only
had 4-OHT added. In (C), the concentration of Dox is 25 ng/ml. In (D), the concentration
of Dox is 25 ng/ml, and the concentration of rTwsg is 10 nM.
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3.6 Discussion

A fundamental question in development is how a handful of mobile extracellular

regulators work together to generate complex, and even counter-intuitive, developmental

patterns. The BMP system provides a classic, well-studied example in which the BMP

family of morphogens and their modulators work together to generate diverse patterns

across different developmental contexts. Although specific examples have been studied in

details, it has remained unclear what kinds of spatial patterns BMP and its modulators

can produce, what roles different components play in pattern formation, and whether

these components are sufficient to synthetically generate pattern formation de novo. In

particular, a circuit with BMP, Chordin, Twsg, and BMP-1 has been suggested to enable

ligand shuttling and generation of certain gradient shape such as a displaced gradient

(25), but two studies in zebrafish embryos showed that BMP ligands were not shuttled

despite the presence of all circuit components (27, 28). This controversy may result from

a limitation of top-down approaches such as genetic perturbation experiments in

embryos, since the same circuit may behave very differently in distinct developmental

contexts. We sought to comprehensively explore the behaviors of this circuit using a

bottom-up reconstitution approach. Through adding one component at a time and

gradually increasing the circuit complexity, we found that this circuit had diverse gradient

modulation capabilities, both in the mathematical model and in experiments. Chordin by

itself suppresses the gradient amplitude and increases the gradient length in a

dose-dependent manner (Fig. 3.4B and Fig. 3.5B). In the presence of Twsg, Chordin can

completely suppress the gradient formation (Fig. 3.4C and Fig. 3.5C). Finally, in the

presence of Chordin, Twsg, and BMP-1, the full circuit is sufficient to displace BMP4
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signaling gradients away from BMP sending source, to a place that cannot be reached by

BMP4 diffusion itself. This demonstrates that a circuit with BMP, Chordin, Twsg, and

BMP-1 is sufficient for ligand shuttling and gradient displacement. Tuning BMP-1 level

further changed the peak positions and amplitudes of the displace gradients, revealing

additional gradient modulation capabilities.

Biochemical and genetics studies showed that interactions among BMP, Chordin, Twsg,

and BMP-1 are largely conserved across vertebrates (17, 20, 33–35), and the

mathematical models from this and other studies showed that a circuit with these

interactions is sufficient to enable ligand shuttling. Bottom-up gradient reconstitution

experiments from this study confirmed these model predictions, suggesting that this

circuit behavior is largely conserved across evolution. What are the functional

implications of shuttling? Ligand shuttling by Chordin, Twsg, and BMP-1, combined

with BMP signaling dependent feedback, has been suggested to confer robustness to

gradient formation (23, 24) and allow for gradient scaling (25). However, alternative

mechanisms are also proposed for these behaviors (36), provoking the question of

whether ligand shuttling combined with feedback is sufficient for robust gradient

formation and gradient scaling. This kind of question can be answered by the bottom-up

reconstitution approach used in this study. It would be interesting to reconstitute more

complex gradient modulation and find minimal circuits sufficient for certain modulation

using this approach.

Apart from Chordin, Twsg, and BMP-1, BMP gradients are modulated by many other

extracellular modulators (6, 7). Our system provides a scalable platform to test these

modulators individually and in combinations. For example, the extracellular modulator
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CV2 has been shown to assist ligand shuttling in mouse vertebral field (37). Though it is

not expressed in our reconstituted system thus not required for ligand shuttling, it would

be interesting to see how the addition of CV2 changes gradient modulation capabilities

by Chordin, Twsg, and BMP-1, and what other modulation modes it enables.

Using synthetic and natural cell signaling components, biologists have begun to design

more and more pattern formation programs in multicellular systems (11, 38–41). The

ability to reconstitute ligand shuttling behaviors using a small set of natural proteins

provide additional programmable components to design complex multicellular patterns.

Combined with synthetic cell fate control systems such as MultiFate (42), one can design

a larger feedback circuit, where the morphogen gradient instructs synthetic cell fate

decisions, and cells in different states express distinct combinations of ligands and

modulators. This kind of circuit could provide a foundation for engineering complex

synthetic tissue patterning systems.

3.7 Supplementary Information

The mathematical model of BMP4-Chordin-Twsg-BMP-1 circuit

Here we introduce the mathematical model of BMP4-Chordin-Twsg-BMP-1 circuit,

which is based on previous models (23–25, 32) but specifically incorporating the

components analyzed here (Fig. 3.4A), including mobile extracellular components BMP4

( ), Chordin ( ), Twsg ( ), BMP4-Chordin complex ([𝐵𝑀𝑃4] [𝐶ℎ𝑜𝑟𝑑𝑖𝑛] [𝑇𝑤𝑠𝑔]

), and BMP4-Chordin-Twsg ( ) complex, as[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛] [𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛–𝑇𝑤𝑠𝑔]

well as immobile components receptors ( ), BMP4-receptor complex ( ), and[𝑅] [𝐵𝑅]

fluorescent reporters ( ). Since BMP-1 is uniformly expressed by receiver cells, we[𝐶𝑖𝑡]
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used the parameter to represent its Chordin cleavage efficiency, which depends on theβ

expression level of BMP-1.

We used a set of reaction-diffusion partial differential equations for mobile components.

Thus, their equations have two parts. The first part is a diffusion term , where can𝐷∇2𝑐 𝑐

be , , , , , and[𝐵𝑀𝑃4] [𝐶ℎ𝑜𝑟𝑑𝑖𝑛] [𝑇𝑤𝑠𝑔] [𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛] [𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛–𝑇𝑤𝑠𝑔] 𝐷

can be , , , , and , correspondingly. We used the effective diffusion𝐷
𝑏

𝐷
𝑐
𝐷
𝑡
𝐷
𝑏𝑐

𝐷
𝑏𝑐𝑡

coefficients for each mobile component, taking into account the effects of their

interactions with extracellular matrix components such as heparan sulfate polyglycans,

but not BMP4-receptor interactions, which will be considered separately. The estimated

diffusion coefficients for these mobile components vary among studies (28, 43), and we

chose the same intermediate value of 20 µm2/s among these estimates.

The second part contains reaction terms. First, BMP4 can bind to Chordin weakly, with

estimated association rate nM-1s-1 and dissociation rate𝑘
𝐵𝐶

= 2. 8 × 10−4

s-1 from (44). Then BMP4-Chordin complex can further interact with𝑟
𝐵𝐶

= 3. 4 × 10−3

Twsg to form BMP4-Chordin-Twsg complex, with association rate and dissociation𝑘
𝐵𝐶𝑇

rate . There is no measurement for and . We used a similar𝑟
𝐵𝐶𝑇

𝑘
𝐵𝐶𝑇

𝑟
𝐵𝐶𝑇

nM-1s-1 with , and a s-1 such that the dissociation𝑘
𝐵𝐶𝑇

= 3 × 10−4 𝑘
𝐵𝐶

𝑟
𝐵𝐶𝑇

= 3 × 10−5

constant is 0.1 nM. We assumed this low dissociation constant because the

BMP4-Chordin-Twsg complex has been suggested to be very stable once formed

(17–20). Furthermore, BMP4 can bind to receptors with estimated association rate

nM-1s-1 and dissociation rate s-1 from (45). Finally,𝑘
𝑅
= 6 × 10−4 𝑟

𝑅
= 4 × 10−4
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Chordin in its free form or in complex forms can be cleaved by BMP-1 with a rate β

dependent on BMP-1 expression level, and BMP4 and Twsg can be released from

BMP4-Chordin and BMP4-Chordin-Twsg complex once Chordin is cleaved. Thus we

can write,

∂[𝐵𝑀𝑃4]/∂𝑡 = 𝐷
𝑏
∇2[𝐵𝑀𝑃4] − 𝑘

𝐵𝐶
[𝐵𝑀𝑃4][𝐶ℎ𝑜𝑟𝑑𝑖𝑛] + 𝑟

𝐵𝐶
[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛]

− 𝑘
𝑅
[𝐵𝑀𝑃4][𝑅] + 𝑟

𝑅
[𝐵𝑅] + β[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛]

+ β[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛–𝑇𝑤𝑠𝑔]

∂[𝐶ℎ𝑜𝑟𝑑𝑖𝑛]/∂𝑡 = 𝐷
𝑐
∇2[𝐶ℎ𝑜𝑟𝑑𝑖𝑛] − 𝑘

𝐵𝐶
[𝐵𝑀𝑃4][𝐶ℎ𝑜𝑟𝑑𝑖𝑛]

+ 𝑟
𝐵𝐶
[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛] − β[𝐶ℎ𝑜𝑟𝑑𝑖𝑛]

∂[𝑇𝑤𝑠𝑔]/∂𝑡 = 𝐷
𝑡
∇2[𝑇𝑤𝑠𝑔] − 𝑘

𝐵𝐶𝑇
[𝑇𝑤𝑠𝑔][𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛]

+ 𝑟
𝐵𝐶𝑇

[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛–𝑇𝑤𝑠𝑔] + β[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛–𝑇𝑤𝑠𝑔]

∂[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛]/∂𝑡 = 𝐷
𝑏𝑐
∇2[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛] + 𝑘

𝐵𝐶
[𝐵𝑀𝑃4][𝐶ℎ𝑜𝑟𝑑𝑖𝑛]

− 𝑟
𝐵𝐶
[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛] − 𝑘

𝐵𝐶𝑇
[𝑇𝑤𝑠𝑔][𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛]

+ 𝑟
𝐵𝐶𝑇

[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛–𝑇𝑤𝑠𝑔] − β[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛]

∂[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛–𝑇𝑤𝑠𝑔]/∂𝑡 = 𝐷
𝑏𝑐𝑡
∇2[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛–𝑇𝑤𝑠𝑔]

+ 𝑘
𝐵𝐶𝑇

[𝑇𝑤𝑠𝑔][𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛]
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− 𝑟
𝐵𝐶𝑇

[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛–𝑇𝑤𝑠𝑔]

− β[𝐵𝑀𝑃4–𝐶ℎ𝑜𝑟𝑑𝑖𝑛–𝑇𝑤𝑠𝑔]

Note that Twsg can also interact with BMP4 and Chordin individually (46), so there exist

multiple interaction routes of forming the final BMP4-Chordin-Twsg complex. However,

since interactions between Twsg and BMP4 or Chordin are much weaker than

interactions between BMP4 and Chordin, we only consider one interaction route (BMP4

first interacts with Chordin, then BMP4-Chordin interacts with Twsg) in our model.

For the immobile BMP4 receptors ( ), other than reversible interactions with BMP4[𝑅]

ligands, we also considered receptor-mediated internalization and degradation of BMP4

ligands [ref]. Once the BMP4-receptor complex ( ) is internalized, we assumed that[𝐵𝑅]

the BMP4 ligand is degraded and the receptor is recycled with a rate s-1γ = 2 × 10−4

estimated from (47). Thus we can write,

∂[𝑅]/∂𝑡 = − 𝑘
𝑅
[𝐵𝑀𝑃4][𝑅] + 𝑟

𝑅
[𝐵𝑅] + γ[𝐵𝑅]

∂[𝐵𝑅]/𝑑𝑡 = 𝑘
𝑅
[𝐵𝑀𝑃4][𝑅] − 𝑟

𝑅
[𝐵𝑅] − γ[𝐵𝑅]

From these equations we can see that the total receptor concentration ( ) is[𝑅] + [𝐵𝑅]

held constant. There is no direct estimate of typical BMP receptor density on the cell

surface, and the estimate for the densities of other receptors vary from 102 to 103

molecules/µm2 (48–50). We used a relatively low density of 150 molecules/µm2, which

corresponds to 0.3 nM, given a 800 µm thick Matrigel layer on top of the cell.



165

Finally, we assume fluorescent reporter production rate follows a Hill function with

BMP4-receptor complex concentrations as variable. Thus we can write,

∂[𝐶𝑖𝑡]/∂𝑡 = 𝑏[𝐵𝑅]𝑛/(𝐾𝑛 + [𝐵𝑅]𝑛) − δ[𝐶𝑖𝑡]

We used a degradation rate s-1, corresponding to a ~20hr Citrineδ = 1 × 10−5

fluorescent protein half-life. Parameters in Hill function , , and were acquired by𝑏 𝑛 𝐾

data fitting.
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Chapter 4. Concluding remarks

4.1 Bottom-up engineering and reconstitution reveal design principles of

multicellular circuits in mammalian cells

Multicellular circuits control the development of multicellular organisms, programming a

variety of multicellular processes such as cell proliferation, cell differentiation, cell

movement, and cell signaling (1). Top-down approaches have identified key components

for many multicellular circuits, but the design principles of these circuits remained

generally unclear, due to the limitations from top-down approaches to study these circuits

in an isolated context and in a quantitative and systematic manner. In this thesis, we have

taken an alternative, complementary approach: engineering and reconstituting

multicellular circuits from bottom up to gain quantitative understanding of their design

principles.

In the first project, we summarized two prevalent features of natural cell fate control

circuits: positive autoregulation and promiscuous protein dimerization, and engineered a

synthetic multistable circuit architecture named MultiFate based on these two features.

MultiFate circuits recapitulate many properties of the natural cell fate control system.

They robustly generate multiple cellular states, each mitotically heritable for weeks.

Similar to the idea of cell fate reprogramming (2), they allow controlled switching of

cells among these states through transient transcription factor overexpression. Through

externally controlling key circuit parameters such as protein stability, we were able to

modulate the state stability and recapitulate irreversible cell state transitions observed

during stem cell differentiation (3). Finally, because cross-inhibition among transcription
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factors is implemented through promiscuous protein-protein dimerization, MultiFate

architecture is easily expandable by ‘plugging in’ additional transcription factors, without

re-engineering the existing circuit. Since promiscuous protein-protein dimerization

among fate regulators is very prevalent in natural multistable circuits (4–10), the same

design principle may have a related role, allowing the evolution of new cell states

through transcription factor duplication and subfunctionalization (7, 8, 11, 12).

In the second project, we used a gradient reconstitution system to dissect a gradient

modulation circuit consisting of a morphogen BMP4, and its modulators, Chordin, Twsg,

and BMP-1. The reconstitution system allows us to add circuit components one at a time

to slowly increase the complexity, and individually tune the expression level of each

circuit component. Through this systematic exploration, we revealed a diverse gradient

modulation capabilities by this circuit, including gradient lengthening, gradient

suppression, and gradient displacement. In particular, our reconstitution system confirms

the sufficiency of this circuit for active ligand shuttling, a phenomenon observed in some

model organisms (13–16) but not others (17, 18).

One common theme of these two projects is the close agreement of mathematical

modeling and experimental results. Both mathematical models do not have precise

quantitative parameter values for many molecular interactions, but the qualitative

behaviors possible with these two circuits can be enumerated, explained and predicted

from simple properties of the components and their interactions. These mathematical

models are best synergistic with our bottom-up approaches, where we could

comprehensively explore these qualitative behaviors to validate model predictions

because a multicellular circuit can be studied in a relatively isolated context, and circuit
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complexity and the abundance and activities of circuit components can be

well-controlled.

4.2 Future perspectives

The tools and systems developed here can be applied to understand the design of other

multicellular circuits. In the first project, we could couple MultiFate to synthetic cell-cell

communication systems such as synNotch (19, 20), MESA (21), synthekines (22),

engineered GFP (23), and auxin (24), and navigate cells through a series of fate choices,

recapitulating cell behaviors associated with normal development. In the second project,

the reconstitution system can be repurposed to study how other BMP extracellular

modulators, individually or in combination, change the shape of BMP gradients. It can

also be used to reconstitute more complex circuits (13–15) through adding feedback to

the BMP4-Chordin-Twsg-BMP-1 circuit. These circuits have been suggested to confer

robustness to gradient formation (25, 26) and allow for gradient scaling (15), but the

minimal circuits sufficient for these more complex behaviors have not been shown

experimentally.

Finally, the MultiFate circuit and BMP4-Chordin-Twsg-BMP-1 circuit could be

combined to create novel synthetic tissue patterns. On one hand, MultiFate

state-switching can be controlled by BMP4 signaling, such that cells switch to different

cellular states based on the strength of BMP4 signaling. On the other hand, cells in

different MultiFate states can express distinct combinations of BMP4 ligands and

modulators that reshape the BMP4 signaling gradients. Similar reaction-diffusion systems

have been shown to create diverse synthetic patterns in vitro (27, 28). An advantage of
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combining MultiFate and BMP4-Chordin-Twsg-BMP-1 circuits is the availability of

tractable mathematical models for both circuits. Combining two mathematical models

should allow us to first computationally explore the possible synthetic patterns enabled

by the combined circuit, and then use the model to guide the circuit design for certain

desired patterns. This kind of circuit could provide a foundation for engineering complex

synthetic tissue patterning systems in the future.
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