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ABSTRACT

Slender structures are mechanical components which have at least one spatial di-
mension much smaller than another. Some canonical examples are beams, rods,
ribbons, plates, and shells. Although these systems have been studied for many
centuries, the focus of development has generally been limited to small strains and
the onset of buckling modes. Outside of this regime, both geometric and material
non-linearities contribute significant complexity to the analytical and computational
techniques which can be applied to these problems. Despite this, large deformations
demonstrate tremendous potential in engineering applications, particularly with soft
materials. This thesis examines various methods of modeling slender structures. We
focus on large strain behaviors, often accentuated by spontaneous strains generated
with active materials. These systems demonstrate a wide range of interesting and
useful behaviors, such as bifurcations, snap-through, and cyclic deformations.

A particular focus of this thesis is slender structures made of liquid crystal elas-
tomers. These are elastomers embedded with nematic mesogens that undergo
temperature-induced phase transitions accompanied by large spontaneous strain.
By embedding photo-reactive molecules, like azobenzene, in these materials, it is
possible to make these materials deform by light.

Rolling and flapping behaviors of beams of photo-reactive liquid crystal elastomers
have been demonstrated through experimental works. We derive an equation for the
evolution of spontaneous curvature in the presence of illumination, then use that
to investigate various configurations of photo-mechanical beams. We demonstrate
rolling, flapping, and a triggered snap-through computationally and demonstrate
consistency with experimental work.

We then study large deformations of beams and ribbons. In order to do so, we develop
a novel computational method which builds on the discrete elastic formulation. We
define discrete deformation measures which directly calculate the strain gradient.
This formulation has the benefit of having explicit first and second derivatives,
allowing for efficient calculation of the gradient and hessian. We use this to study
a variety of different physical systems, from a twisting pseudo-ribbon, the folding
of an overcurved ring, and the shape of a Möbius strip. Each of these systems is
formulated using the methods described in the manuscript and compared to external
data.
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Plates of liquid crystal elastomers also demonstrate strange phenomena. In partic-
ular, we discover a configuration of laminated sheets which, when placed on a hot
plate, jumps many times the thickness of the sheet. We identify the mechanism of
the jump to be the transience of heat absorption through the thickness and interaction
with the varying spontaneous stretches. In order to model this system, we develop
numerical methods which naturally allows for inclusion of energies with second
derivatives. Experimental work is used to corroborate the computational findings
and explore the design space.
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C h a p t e r 1

INTRODUCTION

"For almost two centuries, the primary motivation underlying developments
in rods, plates and shells derived from the need to have quantitative methods
to analyse man-made structures—buildings, bridges, dams, aircraft, etc. As
a consequence, there was relatively little motivation to understand problems
involving dramatic geometry changes such as a rod curling about itself or
a hemispherical shell turned inside out. Such behavior falls well outside
the envelope of permissible deformations for conventional structures. Thus,
while non-linear geometry does play an important role in the buckling of
conventional structures, the research focus was almost always directed to
questions such as the maximum load-carrying capacity of a structure and
not, for example, its collapsed shape. And, usually, the shape at maximum
load differs only slightly from the initial shape. In recent decades, new
motivations began surfacing in fields such as bio-physics and bio-mechanics
where extreme deformation shapes and patterns constitute normal behavior.
Nature is replete with examples, at the molecular scale and above." John
Hutchinson in the Forward to [1]

This quote perfectly describes the goal of this work. Slender structures demonstrate
tremendous potential in the areas of medicine, soft robotics, and mechanics due
to their ability to undergo large, reversible deformations well outside of the linear
regime; however, this brings complexity. Some of complexity is the inherent geo-
metric non-linearity of such systems, the dependence of the energy on curvatures,
and non-convex energy landscapes that present multiple solutions. The goal of this
manuscript is to develop methods to study the complex behaviors of slender en-
gineering structures, particularly systems that evolve with spontaneous strains and
curvatures. We explore various types of slender structures and discuss their behav-
iors, such as bifurcations and snap-through instabilities. This work utilizes a variety
of methods when discussing and analyzing slender structures as the the methods
developed are theoretical, computational, and (through collaboration) experimental.
The models and methods developed and utilized in this work greatly expands our
ability to study slender structures and deploy them in practical engineering systems.



2

1.1 Slender structures
Slender structures, such as those described in the previous statement, can generally
be described as systems where at least one spatial dimension is much smaller than
the others. In two dimensions, this describes beams, where the length of the beam is
vastly greater than the width of the beam. One way to write this is 𝐿1 ≪ 𝐿2, where
𝐿1 and 𝐿2 represent the length scales along different dimensions of the system. This
states that the body of the system will have one dimension that is small compared
to another.

In three dimensions, there are more ways this dimensional discrepancy can be
realized. If two of the dimensions are small compared to the third, i.e. 𝐿1 ≈ 𝐿2 ≪
𝐿3, we arrive at descriptions of rods. These follow the theory of elastica, and there is
a rich history in the study of such systems dating back to the 13th century [2] and has
been worked on by many, including Galileo, the Bernoullis, and Euler. The study
of elastica was fundamental in the development of mathematics and mechanics.

If one of the dimensions is small compared to the other two, 𝐿1 ≪ 𝐿2 ≈ 𝐿3, we
describe this as a membrane, plate, or shell. A membrane is generally when the
thin dimension is so small that we can generally neglect energetic contributions of
bending. Systems where the bending energy/forcing plays a role are referred to as a
plate or a shell. A plate is generally when the stress-free or reference configuration
is a flat plane and a shell is when it is curved. All three of these exhibit a large range
of interesting behaviors.

An additional type of structure is when 𝐿1 ≪ 𝐿2 ≪ 𝐿3. In this case, we have three
different orders of magnitude for length scale. The three different length scales
allow for something that behaves somewhere in-between a rod and a sheet. One
particular structure that satisfies this dimensional mismatch is a ribbon. Sadowsky
[3] derived a 1D model of thin ribbons and Wunderlich [4] extended it to finite width.
Both of these models pose the ribbon as a generalized elastica with a developability
constraint. Dias et. al. [5] derived a model of ribbons from plate theories which
permit for non-straight ribbons and incorporated effects such as striction, which is a
common behavior in ribbons. The Möbius band, which is a ribbon that is inverted
and closes in on itself, is a system that has long been studied as a quintessential
example for ribbon theories.

Structural systems with dimensional mismatches demonstrate a particularly useful
property that small strains can translate to extremely large deformations. This large
deformation can then change the nature of the actuation conditions. This coupling
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between deformation and its environment produces a non-linear effect which can be
utilized to produce a variety of interesting behaviors.

The most promising way to generation deformation and movement in slender struc-
tures is to make them out of an active material itself. In contrast to traditional
mechanical systems, where actuators and motors generate work and stiff structures
provide rigidity, we can create more complex motions and tools by using the work-
producing components as the structure itself. The most popular of these active
materials are liquid crystal elastomers (LCE) which are easy to produce, demon-
strate large, reversible deformations even at the local level, and can be tailored to
specific applications.

1.2 Liquid crystal elastomers
Liquid crystals are generally long rodlike molecules, often refered to as mesogens,
which demonstrate a steric interaction depending on its own properties and interac-
tion with the environment. The classical way to control this material is by changing
the temperature. At low temperatures, the mesogens tend to align, creating nematic
order with a director described by a unit vector in R3. At high temperatures, thermal
fluctuations drive a nematic-to-isotropic transition where the nematic order is lost
and the mesogens become randomly oriented. There are also smectic, having a lay-
ered molecular structure, and cholesteric, having a twisted and chiral arrangement
in some materials. Each of these forms has different properties.

An elastomer is a rubbery material composed of long chainlike molecures that are
capable of recovering their original shape after being stretched to great extents. By
embedding mesogens within the elastomer network (either along the main chain
or attached as a side chain), we can combine the properties of liquid crystals with
elastomers, creating a new class of material. Liquid crystal elastomers were origi-
nally envisioned in by P-G. de Gennes as he asked whether topological properties
of liquid crystals can be added into a conventional crosslinked polymer [6].

Nematic liquid crystal elastomers are generally studied due to their nematic-to-
isotropic transition. As stated before, the liquid crystals can spontaneously reorient
themselves due to a change in local environment. When embedded in the elastomer
network, this reorientation can cause spontaneous strains aligned with the nematic
director direction, as shown in Figure 1.1. Although this transition has traditionally
been controlled by changing the temperature, other triggers can be used.

This nematic-to-isotropic transition can occur due to changes in temperature [7] and
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NematicIsotropic

Polymer Backbone

Mesogen

Figure 1.1: Illustration of a liquid crystal elastomer. The polymer backbone pro-
vides the elasticity while the mesogens maintain their liquid crystal behavior. The
combination of these effects allows for behaviors such as a shape memory effect and
very large deformations. The nematic state has a directional order in direction n.

N N

N N
Trans-azobenzene Cis-azobenzene

Figure 1.2: Molecular structure of Azobenzene in the trans and cis phases.

even stress [8, 9]. Additionally, we can embed other molecules within the system to
induce the phase transition. One particular method of interest, as demonstrated in
[10, 11, 12], is to include azobenzenes in the mix. Azobenzene is a molecule which
has two main conformations, a trans (long and rodlike) and a cis phase (kinked).
The molecular structure of azobenzene in both phases is given in Figure 1.2. In
the low energy state, the molecule is in the trans state, and, when given a sufficient
energetic impulse, such as a photon, the molecule kinks and transforms into a cis
state. By embedding these molecules in tandem with the liquid crystal elastomer
network, the transition from trans to cis converts the azobenzene molecule from a
mesogen to a dopant. When in the trans phase, the azobenzene acts as a mesogen.
Therefore, by shining light onto the LCE, the azobenzene transforms into the cis form
(acting as a dopant) and disrupts the nematic order of the elastomer, thus inducing the
nematic-to-isotropic transition, and changing the shape of the underlying material as
a result. Light as an actuation mechanism presents significant benefits: objects can
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be actuated from a distance, distinct frequencies can be used to actuate and control
distinct modes with minimal interference, and significant power can be transmitted
over long distances through corrosion-free, lightweight fiber optic cables.

1.3 Bifurcations and snap-through instability
Bifurcations are a long studied phenomenon that was first studied when looking at
the nature of solutions of differential equations. A bifurcation occurs when a small
smooth change to a system parameter causes a sudden "qualitative" or topological
change in its behavior [13]. This sudden change in behavior can be studied and
utilized in complex engineering systems.

We may have a situation where the equilibrium equation

𝛿𝑈 ( �̄�, _) = 0

has multiple solutions �̄� depending on the parameter _, where 𝑈 is the potential
energy functional for the system. Bifurcations describe the situation where a solution
branch �̄�(_) either (a) loses stability or (b) bifurcates into multiple branches at a
particular value of _.

Slender structures often bifurcate. The traditional studies focussed on the critical
values of _ where the bifurcation occurs by examining the positive-definiteness of
the Hessian 𝛿2𝑈 ( �̄�(_), _) along a solution branch; however, current interest is in
understanding all the solution branches.

Generally, solutions track a particular solution branch, as a result, and can be
caught in local minima. This means that, despite lower energy solutions existing,
the demonstrated solution may track a minimizer which does not have the lowest
possible energy. Because of this, we generally want to find the minimizer of𝑈 which
is "close" to some initial guess. For systems which evolve in time, this is generally
the previous time step’s solution. Therefore, given an initial solution, we can use a
descent algorithm in order to converge to the closest local minimizer. In principle,
the algorithm should not matter, however, methods such as random sampling or
large initial step sizes may lead to jumps outside of the local energy well and into a
different solution branch.

Snap-through instability
Due to non-linearities in a mechanical system, multiple energy minimizers may
exist, as discussed above. This multi-stability can arise from many different effects
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Deformation Path

Figure 1.3: Pressure versus radius for a balloon made of hyperelastic material. The
red dashed line shows the deformation pathway with the arrow showing the loading
direction.

such as geometric or material properties. In many cases, the different solutions may
be symmetry related, however this is not a requirement.

Snap-through events occur when the solution to a dynamical system rapidly passes
from one solution variant to another. In a quasi-static system, this change occurs
instantaneously. This can occur either due to some external forcing or changing
parameter set which causes one configuration to become unstable. An example of
such a system is with a rubber balloon.

Consider a rubber balloon comprised of a hyperelastic material loaded by increasing
the pressure inside the balloon. By solving for the relation between radius and
pressure, we can characterize the response of the system. Initially, pressure increases
as a function of radius. Eventually, there is an inflection and the pressure for
a particular radius begins to decrease (see Figure 1.3). At significantly higher
stretches, the pressure rapidly increases due to strain-stiffening. What we see from
this is that at any set pressure, there are three potential radii where the radius is at a
stationary point. In practice, we start from the low pressure and increase it slowly.
Once the radius and pressure hit the critical point (𝑃𝑐), the radius of the system will
very rapidly jump to the highest radius of the three solutions (assuming that we can
supply air infinitely fast to maintain the pressure).

The rapid deformation due to instability leads to large energy releases in a short
amount of time and allow for generation of work and movement. One example is
the work in [14] on creating a liquid crystal elastomer pump utilizing this instability.

Another way to visualize the onset of a snap-through instability is to consider



7

Figure 1.4: Diagram of a snap-through instability where a local minimizer can lose
stability and snap through to another configuration. The purple arrow shows the
motion of the solution into the new minimizer.

energies as shown in Figure 1.4. Initially, both minimizers are equally favorable,
so let’s consider being in the right energy well. By changing the parameter _, we
slowly skew the energy such that the well it is currently in becomes less favorable.
Despite this, the configuration is locked into that energy well. When the parameter
_ becomes large enough, the system becomes unstable and it will snap to the
other energy minimizer. This demonstrates how a snap-through can be tied to the
parameter _.

We can also see from Figure 1.4 that the energy difference from before and after
the snap can be quite substantial. This rapid transition in energy can be extremely
useful because we can slowly accumulate energy over time and release it rapidly.

Pitchfork Bifurcation
One particular bifurcation of interest is the pitchfork bifurcation. This can be
identified by a transition from a single stable state, to multiple stable states. The
normal form of this type of bifurcation is the differential equation

𝑑𝑥

𝑑𝑡
= `𝑥 − 𝑥3 .

By expanding this equation, we can see that we have three fixed points (𝑑𝑥/𝑑𝑡 = 0) at
𝑥 = 0,±√`. From this we can see that there is a transition from a singular solution
of 𝑥 = 0 when ` < 0 (as we are not considering imaginary solutions) to three
solutions when ` > 0. By conducting a linear stability analysis we can evaluate the
stability at all the fixed points. By setting 𝑓 (𝑥) = `𝑥 − 𝑥3, and looking at the value
of the derivative (𝑑𝑓 /𝑑𝑥 = ` − 3𝑥2) at the fixed points in Table 1.1
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Fixed Point df/dx
𝑥 = −√` −2`
𝑥 = 0 `

𝑥 =
√
` −2`

Table 1.1: Stability of the fixed points of the pitchfork bifurcation in its normal
form.

For this notion of linear stability, we require that 𝑑𝑓 /𝑑𝑥 < 0. Here we see that for
` < 0, we have one fixed solution 𝑥 = 0. For ` > 0, the solution at 𝑥 = 0 becomes
unstable and the two new solutions, 𝑥 = ±√` become stable. This simple model
demonstrates a bifurcation where the set of solutions transforms from a single, stable
solution to multiple, stable solutions.

This type of bifurcation is prevalent in the study of sheets with spontaneous in-
plane strains and curvatures. Initially, only a flat configuration is stable. Then,
with spontaneous stretching and curvature, multiple stable states can be realized.
Addtionally, even though the stable states might not have the same potential energy
(i.e. there exists one prefered state), the system can be pushed between the states
and lock in higher energy modes.

1.4 Organization of Thesis
Chapter 2.2 provides a brief introduction on modeling reduced dimensional struc-
tures. This background is helpful to introduce some basic concepts in the fields of
rods and plates in order to contextualize the discussions later in the manuscript.

In Chapter 3 we study various configurations of a photomechanical beam being
activated by light in various configurations. We develop a local model for the
interaction between light and curvature evolution. Using this, we study a circular ring
and a doubly clamped beam made of photo-mechanical material. These particular
systems demonstrate strange and interesting behaviors. We study these systems for
various lighting conditions in order to characterize their response and compare to
the experimental literature.

Chapter 4 reformulates the theory of discrete elastic rods by defining a set of discrete
deformation measures which are directly related to the continuous deformation
measures, compact, and generic to any set of rods. We describe the new strain
measures and develop a computational system revolving around these structures. We
then use this method to study a variety of rod problems. These range from confirming
buckling loads, overcurved rings, stretching ribbons, and the configuration of a
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Möbius strip.

In Chapter 5, we study a particular example of LCE sheets where, by designing
the through-thickness anisotropy, the sheet will deform in such a way that the sheet
will self-induce a snap-through instability and leap off the surface. This is done by
layering LCE sheets of varying moduli. The time dependent heat transfer of through
the thicness of the sheet creates a deformation pathway which induces an instability,
releasing large amounts of energy in short time frames. We model this system by
developing an effective model for the spontaneous in-plane strain and curvature due
to anisotropic stretch through the thickness, taking into account the potential for
dramatically different material properties. Then, using a Föppl-von Karman plate
model, we solve for equilibrium behaviors in order to characterize their response.

We summarize the results and findings of this thesis in Chapter 6, followed by a
discussion of various possibilities for future avenues of research.
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C h a p t e r 2

OVERVIEW OF ROD AND SHEET MODELS

In order to aid in the discussion of the following chapters, it is beneficial to discuss
the some classical descriptions of slender structures. In this section we focus
on developing a rod model. We then discuss a variational approach to introduce
variations, allowing us to find the Euler-Lagrange equations. We follow this with a
discussion of the Föppl-von Kármán plate model.

2.1 Beams/Rod theories
A beam or a rod is a body where one space dimension is much greater in length in
the two other perpendicular directions. We say ’beam’ when the body is confined to
a plane and say ’rod’ when it is not; so a beam is a special case of a rod. The theory
of finite displacements of thin rods has been developed by Kirchhoff and Clebsch;
for a detailed historical discussion of this derivation, see the paper by Dill [15].
The theory of rods has seen widespread adoption into engineering applications and
a vast variety of fields, from engineering structures, to sub-oceanic cables [16], to
DNA [17], to climbing plants [18].

Modern approaches utilize both the center line (x(𝑆)) information together with a set
of material frames (d𝑖 (𝑆)), often called Cosserat curves, to describe the deformation
and orientation of a curve. For the following discussion, we will generally assume
inextensible and unshearable rod. We choose the orientation of the frames in a
way that d1 and d2 describe the cross-section of the rod, and d3 is tangent to the

Figure 2.1: Diagram of rod in 3D space. The centerline is given by x and the
directors are d𝑖 (in blue). The tangent of the centerline is aligned with d3.
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centerline curve as shown in Figure 2.1.

These frames are often constructed such that they remain orthonormal at each 𝑆
and thus, form a basis at each point. This is known as the Euler-Bernoulli, or
Navier-Bernoulii kinematic hypothesis. This condition of orthonormality gives the
following relations:

d′𝑖 (𝑆) · d𝑖 (𝑆) = 0

d′𝑖 (𝑆) · d 𝑗 (𝑆) = −d′𝑗 (𝑆) · d𝑖 (𝑆) ,

where (·)′ = 𝑑 (·)
𝑑𝑆

. The combination of these two conditions allows us to define an
axial vector, also known as the Darboux vector, 𝜿(𝑆) such that

d′𝑖 (𝑆) = 𝜿(𝑆) × d𝑖 (𝑆) .

Projecting 𝜿 onto the d𝑖 basis, we have 𝜿(𝑆) = ^1(𝑆)d1(𝑆)+^2(𝑆)d2(𝑆)+^3(𝑆)d3(𝑆).
Intuitively, ^1 and ^2 a are measures of how much the cross section rotates about
d1 and d2, respectively. These are commonly referred to as bending terms. ^3 is a
measure of the twist (or rather twisting rate) of the rod.

Tracking the orientation of the cross section is extremely important because the
rotation of the frame is integral in defining deformation measures which contribute
to the energy of the rod. As the components ^𝑖 measure the change in orientation of
the rod, they can be seen as the strain/deformation measures for the system.

Given the strain measures, we can begin to define energetic quantities associated
with the rod. In the case of the classic Kirchhoff rod, the energy takes the form

EK =
1
2

∫ 𝐿

0

(
𝐸𝐼1^1(𝑆)2 + 𝐸𝐼2^2(𝑆)2 + `𝐽^3(𝑆)2

)
𝑑𝑆 ,

where 𝐸 is the Young’s modulus of the material, 𝐼𝑖 are the area moments of inertia,
` is the shear modulus, and 𝐽 is the polar moment of inertia. This form is a
consequence of using a Hookean material model.

For the general case, we can extend the study to systems which are not simply
Kirchhoff rods. In order to do so, we introduce a local strain energy function 𝑤 such
that

E =

∫ 𝐿

0
𝑤(^𝑖 (𝑆))𝑑𝑆 .

The function 𝑤 calculates the stored energy per unit length. By changing the form
of 𝑤, we can change the physics of the problem we are trying to solve. We will
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see examples of this later in the manuscript where we study behaviors of rods
with various constitutive models for rods. For static equilibrium problems, we find
solutions by minimizing the potential energy of the rod where

𝑈 = E −𝑊 ,

where𝑊 is the work due to external forces.

Variations
We take a variational approach to calculate minimizers of the elastic energy. We
consider arbitrary perturbations denoted by the symbol 𝛿. The variation of the
potential energy is then given by

𝛿𝑈 = 𝛿E − 𝛿𝑊 .

We can find the variation of the elastic energy as

𝛿E =

∫ 𝐿

0

𝜕𝑤

𝜕^𝑖
(^𝑖 (𝑆))𝛿^𝑖𝑑𝑆 ,

where there is implicit summation over the 𝑖 index. One convenient way to write

this is by defining the internal moment as M(𝑠) = 𝜕𝑤

𝜕^𝑖
(^𝑖 (𝑆))d𝑖 (𝑆) and substituting

to get

𝛿E =

∫ 𝐿

0
M(𝑆) · (𝛿^𝑖d𝑖) 𝑑𝑆 . (2.1)

Now, consider a variations with respect to the director field. We have

𝛿d𝑖 = 𝛿𝝓 × d𝑖 ,

where 𝛿𝜙 = 𝛿𝜙𝑖d𝑖. In order to arrive at this form, we use the same argument as for
defining the derivative of the director field. Now, we must relate perturbations to the
material frame to the perturbations in the curvature components we found earlier.
We do this by noticing that derivatives of the perturbation are equal to perturbations
of the derivative:

𝛿(d′𝑖) = (𝛿d𝑖)′

𝛿(𝜿 × d𝑖) = (𝛿𝝓 × d𝑖)′

𝛿𝜿 × d𝑖 + 𝜿 × (𝛿𝝓 × d𝑖) = 𝛿𝝓′ × d𝑖 + 𝛿𝝓 × (𝜿 × d𝑖) .

Using the Jacobi identity and noting this is true for all 𝑖, we arrive at

𝛿𝜿 − 𝛿𝝓 × 𝜿 = 𝛿𝝓′ .
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This equation provides a compatibility condition between perturbations to the ma-
terial frame and perturbations to the curvatures. Expanding the left hand side of this
equation, we have

𝛿^𝑖d𝑖 + 𝛿𝝓 × 𝜿 − 𝛿𝝓 × 𝜿 = 𝛿^𝑖d𝑖 .

Using this result in the variation of strain energy in Equation 2.1, we have

𝛿E =

∫ 𝐿

0
M(𝑆) · 𝑑𝝓

𝑑𝑆
(𝑆)𝑑𝑆 .

Using integration by parts, we can move the derivative to the moment as

𝛿E = [M(𝑆) · 𝛿𝝓(𝑆)]𝐿0 −
∫ 𝐿

0
M(𝑆)′ · 𝛿𝝓(𝑆)𝑑𝑆 ,

where the bracket notation indicates evaluation of these functions at the boundaries.

Variations in the work done by external forces takes the form

𝛿𝑊 =P(0) · 𝛿x(0) +Q(0) · 𝛿𝝓(0) + P(𝐿) · 𝛿x(𝐿) +Q(𝐿) · 𝛿𝝓(𝐿)

+
∫ 𝐿

0
(p(𝑆) · 𝛿x(𝑆) + q(𝑆) · 𝛿𝝓(𝑆)) 𝑑𝑆 ,

where P and p are the end and distributed forces, respectively, and Q and q are the
end and distributed moments, respectively.

A complication is that we must satisfy that the tangent to the center line is aligned
with d3. As before, this is written as x′(𝑆) = d3(𝑆). Integrating this gives

x(𝑆) = x(0) +
∫ 𝑆

0
d3(𝑆′)𝑑𝑆′ .

Taking the variation, we have

𝛿x(𝑆) = 𝛿x(0) +
∫ 𝑆

0
𝛿d3(𝑆′)𝑑𝑆′ = 𝛿x(0) +

∫ 𝑆

0
𝛿𝝓(𝑆′) × d3(𝑆′)𝑑𝑆′ .

By using this expression with the variation in work, we obtain

𝛿𝑊 =(P(0) + F(0)) · 𝛿x(0) +Q(0) · 𝛿𝝓(0) +Q(𝐿) · 𝛿𝝓(𝐿)

+
∫ 𝐿

0
(q(𝑠) + d3 × F(𝑆)) · 𝛿𝝓(𝑆)𝑑𝑆 ,

where
F(𝑆) =

∫ 𝐿

𝑠

p(𝑆′)𝑑𝑆′ + P(𝐿) .
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A more common way to write this expression is by taking the derivative as

F′(𝑆) + p(𝑆) = 0 .

This expression is commonly known as the balance of forces.

Combining this expression with the variation in strain energy, we can get an expres-
sion for the variation of potential energy, which we set equal to zero as

0 = −
∫ 𝐿

0
M(𝑆)′ · 𝛿𝝓(𝑆)𝑑𝑆 − (P(0) + F(0)) · 𝛿x(0) − (Q(0) +M(0)) · 𝛿𝝓(0) − (Q(𝐿)

−M(𝐿)) · 𝛿𝝓(𝐿) −
∫ 𝐿

0
(q(𝑠) + d3 × F(𝑆)) · 𝛿𝝓(𝑆)𝑑𝑆 .

(2.2)

Using the Fundamental Theorem of the Calculus of Variations (i.e. the perturbations
𝛿𝝓 are arbitrary and thus the integrand must equal zero), we arrive at the strong
form of our equilibrium equations

𝑑M
𝑑𝑆
(𝑆) + d3(𝑆) × F(𝑆) + q(𝑆) = 0 , (2.3)

known as the balance of moments equation.

The boundary conditions for this system of equations can be found by inspection of
Equation 2.2. Consider the case where the boundary is free to move at 𝑆 = 0, then
the space of perturbations includes perturbations at the boundary. Therefore, 𝛿x(0)
is arbitrary, giving the condition that

P(0) + F(0) = 0 .

If the boundary is free to rotate, then we have that 𝛿𝝓(0) is arbitrary and thus

Q(0) +M(0) = 0 .

By making similar arguments at both boundaries, the proper boundary conditions
can be found.

Summary
The above discussion demonstrates how to derive and interpret the equations of
equilibrium for a generalized rod. To summarize, we have

F′(𝑆) + p(𝑆) = 0 ,

M′(𝑆) + d3(𝑆) × F(𝑆) + q(𝑠) = 0 .
(2.4)
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In addition to the equations of equilibrium, we must recall the kinematic relations
where

d′𝑖 (𝑆) = 𝜿(𝑆) × d𝑖 (𝑆) ,
d3(𝑆) = x′(𝑆) ,

M(𝑆) = 𝜕𝑤

𝜕^𝑖
(^ 𝑗 (𝑆))d𝑖 (𝑆) .

Beam theory
As mentioned previously, beam theories are a special case of rod theories where
the deformation is assumed to exist only in the plane. In this case, the formulation
simplies quite drastically. Recall the definition of the Darboux vector as d′

𝑖
(𝑆) =

𝜿(𝑆) ×d𝑖 (𝑆). If we consider planar deformations, then deformations will be limited
to the e1, e3 plane (where e𝑖 = d𝑖 (0)). Note that this gives

0 = d2(𝑆)·d′1(𝑆) = d2(𝑆)·(𝜿(𝑆)×d1(𝑆)) = 𝜿(𝑆)·(d1(𝑆)×d2(𝑆)) = 𝜿(𝑆)·d3(𝑆) = ^3(𝑆)

0 = d2(𝑆)·d′3(𝑆) = d2(𝑆)·(𝜿(𝑆)×d3(𝑆)) = 𝜿(𝑆)·(d3(𝑆)×d2(𝑆)) = −𝜿(𝑆)·d1(𝑆) = −^1(𝑆) .

This condenses the curvature vector down to a single component 𝜿(𝑆) = ^2(𝑆)d2(𝑆).
Noting that d′2(𝑆) = 𝜿(𝑆) × d2 = ^2(𝑆)d2(𝑆) × d2(𝑆) = 0, we can even further
simplify the curvature vector as

𝜿(𝑆) = ^2(𝑆)e2 = ^(𝑆)e2 ,

where the basis is now the fixed out-of-plane component. When considering the
local strain energy function, we then have

𝑤(^) = 𝑤(0, ^, 0) ,

because now, only one curvature matters.

We can also consider the forces. Since p lies only in the d1, d3 plane, we have that
F also lies only in that plane. Plugging these into the moment balance equation and
considering only the out-of-plane component, we have

𝑀2(𝑆)′ + 𝐹1(𝑆) + 𝑞2(𝑆) = 0 ,

where 𝑀2 = M · e2, 𝐹1 = F · d1, and 𝑞2 = q · e2. Now, rather than having a system
of equations, we have a single scalar-valued problem.
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Figure 2.2: Diagram of the deflection of a plate for the Föppl-von Kármán plate
model. The deflection of the mid-plane follows the decomposition v(𝑥𝛼) = ṽ(𝑥𝛼) +
𝑤(𝑥𝛼)e3. The blue dot is the original location of a material point and the red dot is
the location after the deformation.

2.2 Plate/Shell theories
For the sake of this manuscript, we will focus on the development and discussion of
one particular plate model: the Föppl-von Kármán plate model. This veriation has a
few particular advantages as it is valid for plates with substantial loading parallel to
the plate as well as substantial out-of-plane displacements. The systems we study,
capturing both these effects is essential to see the rich behavior of sheets.

Consider a plate like body whose thickness dimension ℎ is much smaller than the
other two. The mid-plane of the undeformed configuration is denoted by Ω. We
will assume ∥Ω∥ ≫ ℎ, there is a constant thickenss ℎ, no in-plane loading, and
out-of-plane loading is parallel to 𝑥3(𝑧).

We define 𝑤(𝑥𝛼) to be the vertical deflection and v to be the total deflection of the
mid-plane of the plate. This decomposition can be found in Figure 2.2.

We make the kinematic assumption that u(𝑥𝑖) = v(𝑥𝛼) − 𝑥3∇𝑤(𝑥𝛼) where v =

𝑣𝛼 (𝑥𝛽)e𝛼 +𝑤(𝑥𝛼)e3 = ṽ(𝑥𝛼) +𝑤(𝑥𝛼)e3 and ∇ indicates the gradient with respect to
the in plane variables 𝑥𝛼. Latin indices indicate 1, 2, 3 and Greek indices indicate
1, 2. Calculating the deformation gradient associated with this ansatz, we have

F = I + ∇ṽ(𝑥𝛼) + e3 ⊗ ∇𝑤(𝑥𝛼) − 𝑥3∇2𝑤(𝑥𝛼) − ∇𝑤 ⊗ e3 .

For small strains but moderate rotations, we neglect terms higher order than
∥∇𝑤(𝑥𝛼)∥2. We also make the additional assumption that the thickness of the
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plate does not change. Using this, we can calculate the Lagrangian strain tensor
(E = 1

2 (F
𝑇F − I)). We separate this into the in-plane components and the out-of-

plane components as

𝐸𝛼𝛽 =
1
2
(�̃�𝛼,𝛽 + �̃�𝛽,𝛼) +

1
2
𝑤,𝛼𝑤,𝛽 − 𝑥3𝑤,𝛼𝛽 .

𝐸𝑖3 = 0

For simplicity, we define 𝜖𝛼𝛽 = 1
2 (�̃�𝛼,𝛽 + �̃�𝛽,𝛼) +

1
2𝑤,𝛼𝑤,𝛽 so E = 𝝐 − 𝑥3∇2𝑤.

Recall the strain energy of a 3D elastic body has the form

E =
1
2

∫
Ω

∫ ℎ/2

−ℎ/2
𝐸𝑖 𝑗C𝑖 𝑗 𝑘𝑙𝐸𝑘𝑙𝑑𝑥3𝑑𝐴 ,

where C is the 4th order stiffness tensor. For our problem, we will assume that this
tensor conforms to the plain-stress assumption. Recalling that all the out-of-plane
components of our strain are equal to zero, we have

E =
1
2

∫
Ω

∫ ℎ/2

−ℎ/2
𝐸𝛼𝛽C𝛼𝛽𝛾𝛿𝐸𝛾𝛿𝑑𝑥3𝑑𝐴 .

Plugging in our form of Lagrangian strain gives

E =
1
2

∫
Ω

∫ ℎ/2

−ℎ/2

(
𝜖𝛼𝛽 − 𝑥3𝑤,𝛼𝛽

)
C𝛼𝛽𝛾𝛿

(
𝜖𝛾𝛿 − 𝑥3𝑤,𝛾𝛿

)
𝑑𝑥3𝑑𝐴 .

Note that we can not integrate with respect to 𝑥3 to arrive at

E =
1
2

∫
Ω

(
ℎ𝜖𝛼𝛽C𝛼𝛽𝛾𝛿𝜖𝛾𝛿 +

ℎ3

12
𝑤,𝛼𝛽C𝛼𝛽𝛾𝛿𝑤,𝛾𝛿

)
𝑑Ω .

If we define 𝑊 (b) = 1
2b𝛼𝛽C𝛼𝛽𝛾𝛿b𝛾𝛿, then note that we can write this energy in

compact form as

E =

∫
Ω

(
ℎ𝑊 (𝝐) + ℎ

3

12
𝑊 (∇2𝑤)

)
𝑑𝐴 ,

where 𝝐 = 1
2
(
∇ṽ + ∇ṽ𝑇

)
+ 1

2∇𝑤 ⊗∇𝑤. This strain captures the effective strain of the
mid-surface with contributions from the out-of-plane deformation. These compo-
nents become very important when considering large rotations of the midplane. The
second term involving second derivatives of 𝑤 capture the energetic contribution of
curvature as flexural or bending strains.
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C h a p t e r 3

LIGHT GENERATED DEFORMATIONS OF
PHOTOMECHANICAL BEAMS

The work presented in this chapter has been adapted from the following publication:

Kevin Korner et al. “A nonlinear beam model of photomotile structures”. In:
Proceedings of the National Academy of Sciences (Apr. 2020). issn: 0027-
8424. doi: 10.1073/PNAS.1915374117. url: https://www.pnas.org/
content/early/2020/04/15/1915374117.

3.1 Introduction
A major challenge in soft robotics is the integration of sensing, actuation, control,
and propulsion. In most soft robotic systems, propulsion and controls are enabled
through a physical tether or complex on-board electronics and batteries. A tether
simplifies the design but limits the range of motion of the robot, while on-board
controls and power supplies can be heavy and can complicate the design [20].
Actuation by light through photomechanical processes directly converts photons
to deformation and offers an attractive alternative. It can deliver energy remotely.
Further, multiple frequencies can be used to actuate and sense different modes.
Finally, if a tether is an option, then a significant energy can be delivered through
corrosion-free and lightweight fiber-optic cables.

A further challenge arises in propulsion where one needs to generate cyclic motion.
Since most actuation systems actuate one way, there is a need to reset the system [20].
To simplify the control process, it is desirable to do so by inherent response rather
than by pulsing of the external source. Actuation by light is again attractive because
one can use the directionality of the propagation of light. As the structure absorbs
light and deforms, the conditions of illumination change, and this in turn changes
the nature of further deformation. This coupling can be exploited in either closed
structures or with structural instabilities to generate cyclic motion.

These advantages have motivated a recent body of work on developing photome-
chanical materials (see [21] for an extensive review). Much of this work has focussed
on incorporating azobenzene photochromes that absorb light and transform between
cis and trans configurations into liquid crystal elastomers whose orientational order
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is coupled to deformation, following the pioneering work of Yu et al. [10]. These
materials are typically synthesized as thin strips which bend when illuminated with
light of appropriate frequency. Further, they can be combined with structural poly-
mers to provide robustness [22].

Various works have demonstrated the ability to generate cyclic motion under steady
illumination. Yamada et al. [23] demonstrated that a ring of liquid crystal elastomer
(LCE) film containing azobenzene derivatives can roll in the presence of illumina-
tion. When wrapped around a series of pulleys, the film can be used as a light-driven
plastic motor system. White et al. [24] developed a high frequency oscillator from
a strip which bends under illumination sufficiently to block the light source and
reset. Wei et al. [25] produced rolling motion in monolithic polymer films where
ultraviolet-visible light transforms the film from flat sheets to spiral ribbons, which
then rolls under continuous illumination. Finally, Gelebart et al. [22] created an
oscillatory behavior of a doubly clamped LCE film.

Modeling light-mediated actuation is a complex multiphysics process involving three
key elements: propagation and absorption of light, chemical transformation and
temporal evolution of chromophores between states, and the nonlinear mechanics
of structures undergoing large deformations. Corbett and Warner analyzed light
absorption and actuation in azobenzene containing liquid crystal elastomers [26] and
proposed a geometrical theory of illuminated thin strips [27]; this theory assumes
that the stress in the strip remains zero, and is only applicable to the special case
when the strips are unconstrained. While this model reveals various aspects of photo-
actuation, it is unable to explain the cyclic behavior in the experiments above, where
the constraints applied on the ends of strips, either through boundary conditions [22]
or as a closed loop [23], give rise to internal stress.

In this chapter, we build on the work of Corbett and Warner [27] by coupling it
to the mechanics of beams, and derive a fully coupled photo-activated mechanical
model for thin illuminated strips which can handle arbitrary boundary conditions.
Remarkably, a number of material, physical parameters—time-constants of photo-
activation and relaxation, penetration depth, the elastic modulus and thickness of the
strip and illumination intensity—collapse into a single non-dimensional parameter
that governs the behavior. This highlights the flexibility that is available in the
choice of material and structure in the development of light-activated structures. Our
resulting model is simple and can be solved numerically in real time on any personal
computer, while capturing a rich range of behaviors. We use it to address cyclic or
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Figure 3.1: Elastica under illumination.

periodic motion under steady illumination and reveal the underlying mechanisms.
The ability of this simple model to capture complex dynamics of light illuminated
deformation make it a useful tool for the design and control of this novel type of
structures.

3.2 Photo-deformable elastica
Consider an inextensible beam or a strip (planar elastica) subjected to illumination
as shown in Figure 3.1. Let x(𝑠, 𝑡) denote the position of centerline point 𝑠 at time 𝑡
and \ (𝑠, 𝑡) denote the angle that the tangent to the beam makes with the horizontal
axis e1. We assume that the deformation caused by illumination takes place over a
significantly slower time scale than the natural periods of vibration of the beam so
that we may assume that the beam is at equilibrium at all times. Therefore, at each
𝑡,

𝜕f
𝜕𝑠
(𝑠, 𝑡) = 0, (3.1)

𝜕𝑚

𝜕𝑠
(𝑠, 𝑡) + (̂t(𝑠, 𝑡) × f (𝑠, 𝑡)) · e3 = 0 , (3.2)

where t̂(\ (𝑠, 𝑡)) = 𝜕x/𝜕𝑠(𝑠, 𝑡) = cos \ (𝑠, 𝑡)e1 + sin \ (𝑠, 𝑡)e2 is the unit tangent,
f (𝑠, 𝑡) is the internal force transmitted across a cross-section, and 𝑚(𝑠, 𝑡) is the
internal moment about e3.

Since we assume that the beam is inextensible and unshearable, the internal force f
is constitutively indeterminate and we only need to specify a constitutive law for the
moment 𝑚. Following Corbett and Warner [27], we assume that the beam is made
of an elastic material whose spontaneous or stress-free strain, Y0, changes with time
depending on the local population of cis molecules. The longitudinal stress at a
point at a position 𝑠 along the length of the beam, 𝑧 along the depth of the beam
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and at time 𝑡 is given by Hooke’s law, 𝜎(𝑠, 𝑧, 𝑡) = 𝐸 (Y(𝑠, 𝑧, 𝑡) − Y0(𝑠, 𝑧, 𝑡)), where
Y is the strain and Y0 is the spontaneous strain. The moment is found by integration
through the thickness as

𝑚(𝑠, 𝑡) =
∫ ℎ/2

−ℎ/2
𝐸 (Y(𝑠, 𝑧, 𝑡) − Y0(𝑠, 𝑧, 𝑡))𝑧d𝑧 , (3.3)

where ℎ is the thickness of the beam and 𝑧 = 0 is taken to be the center of the beam.
The strain is related to curvature as in classical elastica theory1, and the spontaneous
strain depends on the built-in curvature ^𝑟 of the beam (the curvature with no applied
load and no illumination) and the concentration 𝑛𝑐 of the cis molecules:

Y(𝑠, 𝑧, 𝑡) = ^(𝑠, 𝑡)𝑧, (3.4)

Y0(𝑠, 𝑧, 𝑡) = ^𝑟 (𝑠)𝑧 − _𝑛𝑐 (𝑠, 𝑧, 𝑡) , (3.5)

where _ is a constant of proportionality linking the longitudinal strain and concentra-
tion of cis molecules. _ > 0 is when the cis molecules corresponds to an expansion,
while _ < 0 corresponds to an induced contraction. This depends on the orientation
of the director of the LCE. If the strip is made with directors parallel to the the
length of the strip (as in the ‘planar’ face of Gelebart et al.), illumination produces
a contraction along the length and therefore _ < 0. If, on the other hand, the strip is
made with the director along the normal to the strip (as in the ‘homoetropic’ face of
Gelebart et al.), illumination causes an elongation along the length of the strip and
therefore _ > 0.

Substituting (3.4) and (3.5) into (3.3), we find the constitutive law in the form

𝑚(𝑠, 𝑡) = 𝐸ℎ3

12
(^(𝑠, 𝑡) − ^0(𝑠, 𝑡)) , (3.6)

where

^0(𝑠, 𝑡) = ^𝑟 (𝑠) −
12_
ℎ3

∫ ℎ/2

−ℎ/2
𝑛𝑐 (𝑠, 𝑧, 𝑡)𝑧d𝑧 . (3.7)

It remains to specify the evolution of the spontaneous curvature in the presence of
illumination. The concentration of cis molecules is increased by photon absorption,
and decreased by thermal decay [27]:

𝜕𝑛𝑐

𝜕𝑡
(𝑠, 𝑧, 𝑡) = −^1𝑛𝑐 (𝑠, 𝑧, 𝑡) + (1 − 𝑛𝑐 (𝑠, 𝑧, 𝑡))^2�̃�1I(𝑠, 𝑧, 𝑡),

1We assume that the neutral axis is unaffected by illumination since the penetration depth is
small, as argued later.



22

where 𝑛𝑐 is the fraction of activated chromophores, �̃�1 is a material constant which
measures the efficiency of the production of cis isomers by incident light, and
I(𝑠, 𝑧, 𝑡) denotes the illumination, i.e., the quantity of photons per unit time arriving
at the depth 𝑧 at time 𝑡. ^1 and ^2 are the thermal decay and the forward isomerization
reaction rates, respectively. In typical materials, 𝑛𝑐 ≪ 1 is small [21] so we can
simplify the differential equation to

𝜏
𝜕𝑛𝑐

𝜕𝑡
(𝑠, 𝑧, 𝑡) = 𝑛𝑐 (𝑠, 𝑧, 𝑡) + 𝛼1I(𝑠, 𝑧, 𝑡) , (3.8)

where 𝜏 = 1/^1 and 𝛼1 = ^2�̃�1/^1. Further, at any location 𝑠 along the length of the
strip, the intensity diminishes with depth with the number of photons absorbed [27]

𝜕I
𝜕𝑧

= −1 − 𝑛𝑐
𝑑
I(𝑠, 𝑧, 𝑡) ,

where 𝑑 is the penetration depth. So, when 𝑛𝑐 ≪ 1, the intensity follows Beer’s law

I(𝑠, 𝑧, 𝑡) = I0 (𝑠, 𝑡) exp
(
−ℎ/2 − 𝑧

𝑑

)
, (3.9)

where 𝑧 = ℎ/2 is the free surface that is illuminated and I0 is the intensity of light
on the illuminated surface2. Combining (3.7), (3.8), and (3.9),

𝜏
𝜕^0
𝜕𝑡
(𝑠, 𝑡) = −12_

ℎ3

∫ ℎ/2

−ℎ/2
𝜏
𝜕𝑛𝑐

𝜕𝑡
(𝑠, 𝑧, 𝑡)𝑧d𝑧 = −(^0(𝑠, 𝑡) − ^𝑟 (𝑠)) + 𝛼I0 (𝑠, 𝑡) ,

where 𝛼 = −12_𝛼1
ℎ3

∫ ℎ/2
−ℎ/2 exp

(
− ℎ/2−𝑧

𝑑

)
𝑧d𝑧 is an effective (macroscopic) coupling

constant. Finally, the absorption of light on the surface depends on light intensity 𝐼0
and on the relative orientation of the light and the strip, I0 (𝑠, 𝑡) = 𝐼0 𝑓 (\ (𝑠, 𝑡) − \ 𝐼),
where \ 𝐼 is the angle of illumination. Therefore,

𝜏
𝜕^0
𝜕𝑡
(𝑠, 𝑡) + (^0(𝑠, 𝑡) − ^𝑟 (𝑠)) = 𝛼𝐼0 𝑓 (\ (𝑠, 𝑡) − \ 𝐼) . (3.10)

The projection function 𝑓 is chosen as

𝑓 (𝜙) =
{

cos 𝜙 if 𝜙 ∈ (−𝜋/2, 𝜋/2),
0 else.

(3.11)

This 𝑓 accounts for self-shadowing in an approximate but effective way: in our
examples, the parts of the rods that are exposed to the light source are such that

2Note that the result (3.10) does not require the exponential profile of Beer’s law, but simply a
steady profile, I(𝑠, 𝑧, 𝑡) = I0 (𝑠, 𝑡) 𝑓 (𝑧). Also note that the failure of the condition 𝑛𝑐 ≪ 1 leads to
bleaching and other effects discussed in [27] and [28].
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𝜙 ∈ (−𝜋/2, 𝜋/2) and in that case the coefficient cos 𝜙 accounts for the reduction
in light flux per unit area due to the non-normal incidence. Regions such that
𝜙 ∉ (−𝜋/2, 𝜋/2) are considered to be shadowed by other parts of the rod.

Finally, we combine (3.1), (3.2), (3.4), and (3.6), and non-dimensionalize the result-
ing equation along with (3.10), introducing the scaled arclength 𝑆 = 𝑠/𝑙 (where 𝑙 is
the length of the beam), the scaled time 𝑇 = 𝑡/𝜏 and the scaled curvature 𝐾 = 𝑙^,

𝜕

𝜕𝑆

(
𝜕\

𝜕𝑆
(𝑆, 𝑇) − 𝐾0(𝑆, 𝑇)

)
− 𝐹𝑥 cos \ (𝑆, 𝑇) + 𝐹𝑦 sin \ (𝑆, 𝑇) = 0, (3.12)

𝜕𝐾0
𝜕𝑇
(𝑆, 𝑇) + (𝐾0(𝑆, 𝑇) − 𝐾𝑟 (𝑆)) = Λ 𝑓 (\ (𝑆, 𝑇) − \ 𝐼) . (3.13)

The constants 𝐹𝑥 and 𝐹𝑦 are Lagrange multipliers that enforce the inextensibil-
ity. Remarkably, these equations depend on two parameters only: the angle of
illumination \ 𝐼 and the dimensionless constant

Λ = 𝛼𝑙𝐼0 = −12^2�̃�1I0
^1ℎ3

∫ ℎ/2

−ℎ/2
exp

(
−ℎ/2 − 𝑧

𝑑

)
𝑧d𝑧 , (3.14)

that encompasses various material and physical parameters—time constants of
photo-activation and relaxation, penetration depth, the elastic modulus and thick-
ness of the strip, and illumination intensity. The fact that so many material and
physical parameters collapse into a single non-dimensional parameter highlights the
flexibility that is available in the choice of material and structure in the development
of light-activated structures. Since the dimensionless equations are governed by
a single dimensionless parameter Λ, we are able to characterize all the possible
behaviors in a given geometry simply by sweeping over Λ. Based on the values in
Table 3.1 estimated from literature reports on a glassy azobenzene-functionalized
polyimide, we obtain a value of |Λ| ≈ 2.9; these values are typical of the materials
used in many other experimental works, although not all of them document the
material properties in detail.

To predict how the shape of the beam evolves with time, we solve these equa-
tions (3.12) and (3.13) for \ (𝑆, 𝑇) using a numerical method described in the Supple-
mentary Materials A with specific initial, boundary and illumination conditions. We
remark that in deriving the equations, we assumed that the material response—the
relation between curvature and moment (3.6), and the relation between illumination
and spontaneous curvature (3.7)—is linear. Yet, the final equations are nonlinear as
evidenced by the presence of the trigonometric terms in (3.12) and 𝑓 in (3.13) due



24

Parameter Typical Value
_𝛼1 −5.4 ∗ 10−5 m2W−1 [29]
𝐼0 100 W/m2 [29]
𝐸 0.6 − 4 GPa [29]
ℎ 15 `m [29]
𝑑 0.56 `m [30]
𝑤 1 mm [29]
𝑙 15 mm [29]

Table 3.1: Estimates of the experimental parameters based on the literature.

to the nonlinearity of the kinematics of large deformation and the presence of finite
rotations.

For future reference, we note that the equilibrium equation (3.12) can be derived by
the Euler-Lagrange method as the stationarity condition of the energy functional

E[\] =
∫ 1

0

1
2

����𝜕\𝜕𝑆 − 𝐾0

����2 d𝑆 . (3.15)

3.3 Rolling ring
Our first example is motivated by the work of Yamada et al. [23] on a rolling ring
and motor, as well as that of Wei et al. [25] on a rolling spiral. We consider a
closed, initially circular ring on a rigid horizontal surface, which is illuminated with
a steady source at angle \ 𝐼 . The fact that the ring is closed implies that∫ 1

0
sin \ (𝑆, 𝑇)d𝑆 =

∫ 1

0
cos \ (𝑆, 𝑇)d𝑆 = 0 , (3.16)

as well as \ (0, 𝑇) = \ (1, 𝑇). We assume that the ring makes a tangential rolling
contact with the horizontal surface so that 𝑋 (𝑆𝑐 (𝑇), 𝑇) = 𝑆𝑐 (𝑇), 𝑌 (𝑆𝑐 (𝑇), 𝑇) = 0
and

\ (𝑆𝑐 (𝑇), 𝑇) = 0 , (3.17)

where 𝑆𝑐 (𝑇) is the point of contact. We determine this point of contact by assuming
overall mechanical equilibrium of the ring under gravity so that the center of mass
of the ring is always vertically above the point of contact,

𝑆𝑐 (𝑇) = 𝑋 (𝑆𝑐 (𝑇), 𝑇) =
∫ 1

0
𝑋 (𝑆, 𝑇)d𝑆 =

∫ 1

0

(∫ 𝑆

0
cos \ (𝑆, 𝑇)d𝑆

)
d𝑆

=

∫ 1

0
(1 − 𝑆) cos \ (𝑆, 𝑇)d𝑆 = −

∫ 1

0
𝑆 cos \ (𝑆, 𝑇)d𝑆 .

(3.18)
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Figure 3.2: Rolling ring. (a) Snapshots of an initially circular ring with radius
𝑅 = 1/(2𝜋) subjected to illumination at angle \ 𝐼 and of intensity Λ at times
𝑇 = {0, 11.83, 23.68, 35.48}. The point that is initially in contact with the ground is
marked with a black dot while the center of mass is the blue dot. The incident arrows
indicate the direction of incoming light. Self-shadowing is taken into account thanks
to the choice of 𝑓 in equation (3.11); this is depicted by the absence of arrows in the
lower part of the ring. (b) Distance traveled by the rolling ring vs. time for various
intensities Λ = {0.01, 0.1, 1, 10}. Note that the a steady velocity is reached in all
cases, after an initial transient. (c) Steady state velocity as a function of illumination
angle and intensity. The velocity increases when the illumination angle moves
away from the vertical, but is relatively insensitive to the intensity of illumination.
(d) Scaled change of spontaneous curvature induced by illumination along the beam
for \ 𝐼 = 0.2 (indicated by dot in (c)), for various illumination intensities. This
quantity appears to be largely insensitive to the intensity of illumination where Λ

are as in (b). Simulation data is shown as solid black lines while the analytical
solution given by solving Equation (3.29) is shown as a red dashed line.
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We set 𝐾𝑟 = 2𝜋 and \ (𝑆, 0) = 2𝜋𝑆 corresponding to an initially circular ring and
solve the equations (3.12), (3.13) subject to the conditions above. Figure 3.2(a)
shows snapshots of the ring for various angles and intensity of illumination. In
each case, the ring deforms as it is illuminated, in a way which is non-symmetric
with respect to the vertical axis and depends on the angle of illumination. This
asymmetry causes the center of mass of the ring to move, which in turn causes the
ring to roll. Figure 3.2(b) shows the distance travelled by the point of contact as a
function of time under various angles and intensity of illumination. After an initial
transient, the ring rolls with a steady velocity and has an invariant shape. The steady
velocity is plotted as a function of the illumination angle for various illumination
intensities in Figure 3.2(c): it is zero when the illumination is vertical (\ 𝐼 = 0),
which is a consequence of the symmetry, and increases with increasing angle of
illumination \ 𝐼 . Remarkably, the rolling velocity is practically independent of the
intensity of illumination in the range of values of Λ relevant to the experiments
and investigated here. To investigate this further, we plot the scaled deviation in
spontaneous curvature (𝐾0 −𝐾𝑟)/Λ as a function of arclength in Figure 3.2(d): this
quantity appears to be practically independent of the intensity of illumination as
well. This shows that amount of deformation scales linearly with the light intensity,
while the profile of deformation (and, hence, the asymmetry and the rolling velocity)
is largely independent of the intensity.

To understand these features, we analyze steadily rolling solutions, i.e., we seek
solutions of the form \ (𝑆, 𝑇) = Θ(𝑆 − 𝑉𝑇) and aim at identifying the rolling
velocity 𝑉 . We set 𝜔 = 2𝜋(𝑆 − 𝑉𝑇) choosing 𝑇 = 0 to be a time when the point in
contact with the ground is 𝑆 = 𝑆𝑐 (0) = 0. This implies

Θ(0) = 0. (3.19)

The rolling condition (3.18) becomes

0 =

∫ 2𝜋

0
𝜔 cosΘ(𝜔)d𝜔 , (3.20)

and the evolution equation (3.13)

−2𝜋𝑉
d𝐾0
d𝜔
+ (𝐾0 − 2𝜋) = Λ 𝑓 (Θ − \ 𝐼) . (3.21)

We now assume that the shape of the ring is almost circular so that

Θ(𝜔) = 𝜔 + Θ1(𝜔), 𝐾0(𝜔) = 2𝜋 + 𝐾1(𝜔) , (3.22)
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where |Θ1 | ≪ 1 and |𝐾1 | ≪ 1 are treated as perturbations. Keeping only terms
linear inΘ1, 𝐾1, the equilibrium equation (3.12) and closure condition (3.16) become

4𝜋2Θ′′1 (𝜔) − 2𝜋𝐾′1(𝜔) + 𝐹𝑦 cos𝜔 − 𝐹𝑥 sin𝜔 = 0 ,∫ 2𝜋
0 cos(𝜔)Θ1(𝜔)d𝜔 =

∫ 2𝜋
0 sin(𝜔)Θ1(𝜔)d𝜔 = 0 .

(3.23)

Introducing the Fourier transform 𝑓 (𝑘) =
∫ 2𝜋

0 𝑓 (𝜔) exp(−𝑖𝑘𝜔)d𝜔 where 𝑘 is an
integer, we can solve (3.21) as

�̂�1(𝑘) =
Λ 𝑓𝐼 (𝑘)

1 − 2𝑖𝜋𝑘𝑉
, (3.24)

where
𝑓𝐼 (𝜔) = 𝑓 (𝜔 − \ 𝐼) . (3.25)

Similarly, we can solve equation (3.23) in Fourier form as

Θ̂1(±1) = 0 for |𝑘 | = 1,
Θ̂1(𝑘) = −𝑖 �̂�1 (𝑘)

2𝜋𝑘 for |𝑘 | ⩾ 2 .
(3.26)

Note that the first equation in (3.23) yields 𝐹𝑥 and 𝐹𝑦 in terms of Θ̂1(±1) and �̂�1(±1)
as well, but these expressions are not needed.

The horizontal tangency condition (3.19) reads 0 = Θ(0) = Θ1(0) = 1
2𝜋

∑
𝑘 Θ̂1(𝑘)

where the sum runs over all signed integers 𝑘 . Rearranging the terms in the sum
and solving for Θ̂1(0), we find

Θ̂1(0) = −2
∑︁
𝑘⩾1

Re Θ̂1(𝑘) , (3.27)

where we have used Θ̂1(−𝑘) + Θ̂1(𝑘) = Θ̂1(𝑘) + Θ̂1(𝑘) = 2 Re Θ̂1(𝑘) since Θ1(𝜔)
is a real function. Here, 𝑧 denoting the conjugate of the complex number 𝑧.

Equations (3.24–3.27) yield the shape in terms of the known illumination parameter
Λ and of the unknown scaled rolling velocity𝑉 . The latter can be found by linearizing
the rolling condition (3.20) as

∫ 2𝜋
0 𝑔(𝜔)Θ1(𝜔)𝑑𝜔 = 0 where 𝑔(𝜔) = 𝜔 sin𝜔. Using

Parseval’s identity, this can be rewritten as

1
2𝜋

∑︁
𝑘

�̂�(𝑘)Θ̂1(−𝑘) = 0, where �̂�(𝑘) =
{
− 𝜋2 (2𝜋𝑖𝑘 + 1) if |𝑘 | = 1 ,

2𝜋
𝑘2−1 if |𝑘 | ≠ 1 .

(3.28)
Inserting (3.26–3.27) into this equation, we obtain 2

∑
𝑘⩾2

𝑘2

𝑘2−1 Re Θ̂1(𝑘) = 0 which,
in view of (3.24–3.26), yields an implicit equation for the rolling velocity𝑉 in terms
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of the angle of illumination \ 𝐼 ,

Λ · 𝐻 (\ 𝐼 , 𝑉) = 0 where 𝐻 (\ 𝐼 , 𝑉) =
∑︁
𝑘⩾2

𝑘

𝑘2 − 1
Im

(
𝑓𝐼 (𝑘)

1 − 2𝑖𝜋𝑘𝑉

)
. (3.29)

Note that 𝑓𝐼 and hence 𝐻 depends on \ 𝐼 , see equation (3.25).

When \ 𝐼 = 0, 𝑓𝐼 (𝜔) = 𝑓 (𝜔) is an even function of 𝜔, so that 𝑓0(𝑘) is real,
hence 𝐻 (0, 0) = 0. It is also clear from the form of 𝐻 (\ 𝐼 , 𝑉) that

𝜕𝐻

𝜕\ 𝐼
and

𝜕𝐻

𝜕𝑉
are generally non-zero. By the implicit function theorem, we can solve (3.29) for
𝑉 = 𝑉 (\ 𝐼), at least for \ 𝐼 small enough. We do so numerically; the result is shown in
Figure 3.2(c) as the dashed line, and agrees well with the non-linear simulations. In
Figure 3.2(d), the distribution of natural curvatures predicted by the linear theory is
compared to the non-linear numerical simulations, and a good agreement is obtained
as well; the agreement with the linear theory is better and better for lower and lower
illuminations, as could be anticipated.

Remarkably, the intensity of illumination Λ factors out in equation (3.29) selecting
the rolling velocity, so that 𝑉 depends on \ 𝐼 but not on Λ in this linear theory:
this explains why the rolling velocity is largely independent of Λ in the non-linear
simulations.

3.4 Waves in doubly clamped beams
The second example we study is motivated by the experiments of Gelebart et al. [22].
These experiments were done on a nematic strip possessing a splay director field:
the nematic directors are aligned along the length of strip on one surface (called
the planar face) and normal to the surface on the opposite face (homeotropic face).
The goal is to induce contraction on one face and expansion on the other in order
to maximize the magnitude of the photo-bending coupling |_ |. Exposing the planar
face to light makes _ < 0 while exposing the homeotropic face to light makes
_ > 0. In view of the analysis done in Section 3.2, Λ ∝ 𝛼 ∝ −_, so illuminating the
planar (respectively, homeotropic) face corresponds to Λ > 0 (resp. Λ < 0) in our
model. Illumination, either due to the direct effect or due to temperature rise or both,
reduces the nematic order causing a contraction by (𝑟/𝑟0)2/3 when illuminated on the
planar face and an extension by (𝑟0/𝑟)1/3 when illuminated on the homeotropic face
where 𝑟 (respectively 𝑟0) is the anisotropy parameter in the illuminated (respectively
ambient) state. Since 𝑟 < 𝑟0, for fixed unscaled illumination intensity 𝐼0, we expect
the resulting photo-strain and spontaneous curvature coefficients 0 ≤ Λ𝑝 ≈ −2Λℎ,
where Λ𝑝 is the coefficient when illuminated on the planar side and Λℎ when
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Figure 3.3: Waves in a strip forΛ > 0. (a) Snapshots of an initially flat strip clamped
in a buckled state (𝑙 𝑓 = 0.95) and subjected to illumination with Λ = 10, \ 𝐼 = 𝜋/4.
The arrows indicate the direction of incoming light. After an initial transient, it goes
into a periodic motion. (b) Evolution of the light-induced spontaneous curvature
𝐾0 of the strip. The peaks are marked with a black curve and the troughs are
marked with a red curve. Note that the evolution becomes periodic but is quite
complex with an alternation of slow (quasi-static) and fast (dynamic) motions.
(c) Shape vs. spontaneous curvature descriptors as defined in Equation (3.31).
(d) Incremental stiffness (lowest eigenvalue of the stiffness matrix) vs. spontaneous
curvature descriptor. (e) Phase plot revealing the oscillation cycles after an initial
transient. (f) Frequency of flapping as a function of illumination angle for various
illumination angles. The angle for maximum flapping frequency (\∗

𝐼
) is shown with

the vertical dashed line.

illuminated on the homeotropic side. This distinction between Λ𝑝 and Λℎ is caused
by the small penetration depth only activating the trans to cis isomerization on the
illuminated side; therefore, it is only the nematic orientation on the illuminated
surface that matters. We study the results of our model first, and compare to the
experimental observations next.

We first consider the case Λ > 0. We take a strip that is flat in the absence of any
light or stress, so that 𝐾𝑟 = 0. We use the same scaled quantities as earlier, and the
scaled length of the strip is 1. We clamp the two ends at a distance 𝑙 𝑓 < 1 from each
other, corresponding to boundary conditions

\ (0, 𝑇) = \ (1, 𝑇) = 0,
∫ 1

0
sin \ (𝑆, 𝑇)d𝑆 = 0 ,

∫ 1

0
cos \ (𝑆, 𝑇)d𝑆 = 𝑙 𝑓 .

(3.30)

Since 𝑙 𝑓 < 1, the beam buckles and there are two equivalent fundamental buckled
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modes, buckled up and down. We choose one of the two states, say the buckled
up state for definiteness, although the results are independent of this choice. We
illuminate the strip with a light source that is spatially uniform and at an angle
(\ 𝐼 ≠ 0) as shown in Figure 3.3(a). We solve the equations (3.12–3.13) subject to
the boundary conditions (3.30).

Figure 3.3(a-e) show a typical simulation result. After an initial transient, we find
that the beam goes into a periodic motion alternating between the up and down
buckled shapes, see Figure 3.3(a). At the start of the cycle, we have an up-bump at
the left side of the strip (state A). Illumination moves it to the right initially rapidly
but slowing down and becoming very slow as it reaches the right end (B). It then
pops into a down bump located on the left (C). Subsequently, the down-bump moves
to the right initially rapidly but slowing down and becoming very slow as it reaches
the right end (D). It then pops again into up-bump located on the left of the sample,
and the cycle repeats.

The evolution of the light-induced spontaneous curvature as a function of time
and position is shown in Figure 3.3(b). After an initial transient, we see that
the spontaneous curvature reaches a steady periodic cycle. This is emphasized in
Figure 3.3(c), which plots one particular Fourier component 𝛾(𝑇) of the deflection,
against one particular Fourier component 𝛽(𝑇) of the natural curvature,

𝛾(𝑇) =
∫ 1

0
sin(2𝜋𝑆)𝑌 (𝑆, 𝑇)d𝑆 , 𝛽(𝑇) =

∫ 1

0
sin(2𝜋𝑆)𝐾0(𝑆, 𝑇)d𝑆 . (3.31)

We call these quantities the descriptors of the deformation and curvature, respec-
tively. In the figure, the deformation descriptor appears to vary abruptly during
the sudden changes from state B to C, and from D to A, although the the curva-
ture descriptor remains unchanged. This suggest that the jumps are snap-through
bifurcations, from one equilibrium solution of the elastica to another one. For
some fixed time 𝑇 and spontaneous curvature distribution 𝐾0(𝑆, 𝑇), the equilibrium
equation (3.12) may have multiple solutions (equivalently, E has multiple stationary
points). Stable solutions are those for which the second variation is positive definite
(Supplementary Material B). With the aim to confirm the snap-through scenario, we
study the lowest eigenvalue associated with the second variation 𝛿2E of the energy.
It is plotted from the numerical solution, as a function of 𝛽 in Figure 3.3(d). We
see that this eigenvalue is positive at the start of the cycle at A (the solution with
the up-bump) but decreases as we go from A to B. The jump at B occurs when the
eigenvalue is becoming negative and the solution loses stability. It arrives on another
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solution C having a down-bump, which appears to be elastically stable, i.e., has a
positive lowest eigenvalue. Again, the lowest eigenvalue begins to decrease as we
go from C to D and passes through zero at D.

This reveals the mechanism of the cyclic motion. At any time, there are two possible
solutions, one with an up-bump and one with a down-bump. If the solution with
the up-bump has the bump on right, the solution with the down-bump has the bump
on the left and vice-versa. The evolution of light-induced spontaneous curvature
always forces the bump to move to the right, i.e., away from the light source. At
some point it loses stability and has to snap to the other solution. The periodic
cycles are represented in the phase space (𝛽, ¤𝛽) in Figure 3.3(e). Immediately after
a snap-through, the evolution speed | ¤𝛽 | is high. As the instability is approached, the
magnitude of | ¤𝛽 | decreases until nearly zero. This coincides with the snap through
and once the system snaps to the new configuration, | ¤𝛽 | jumps to a large value again,
and the other half of the cycle proceeds similarly.

We repeat this calculation for various illumination angles and illumination intensi-
ties, and the results are summarized in Figure 3.3(f). At any given intensity, there is
a window of illumination angles at which periodic flapping solutions are observed.
Outside this window, a stationary solution is reached, which can be the up-bump or
the down-bump depending on the initial conditions. Physically, if the illumination
is oriented in a direction too shallow to the beam, then the bump moves to the far
end and is stable. This explains the lower limit. Similarly, if the illumination is close
to being normal to the beam, then the beam finds it difficult to break the symmetry
required to induce the periodic motion. This explains the upper limit. The window
of periodic behavior becomes wider when the light intensity is increased. Further,
at any given orientation, the frequency of the limit cycle increases with intensity;
this can be seen from equation (3.10), where an increase of the light intensity in the
right-hand side is seen to induce a quicker rate of change 𝜕^0/𝜕𝑡 of the curvature.

In figure 3.3(f), the angle of incidence \ 𝐼 maximizing the flapping frequency is
65.1◦ for 𝑙 𝑓 = 0.95, and this angle appears to be virtually independent of the light
intensity as long as flapping takes place: it is just a function of 𝑙 𝑓 in our model. To
compare with the observations of [22], we ran additional simulations using the same
value 𝑙 𝑓 = 0.957 as in the experiments, and found that the maximum frequency is
obtained for an angle of incidence \ 𝐼 = 65.7◦; this value is similar to the peak at 70◦

in the experiment.

We now turn to the case when Λ < 0. As can be seen in Figure 3.4(a), the system
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Figure 3.4: Waves in a strip for Λ < 0. Same as in Figure 3.3 except with Λ = −10.

again alternates between up and down buckled states. In this case, however, the
bulge propagates from right to left, i.e., towards the light source, and opposite from
the case where Λ > 0. It can be seen in (c)–(e) that the descriptors give different
paths through the phase space than when Λ > 0. This shows that flipping the
sign of Λ does not simply amount to reverse the arrow of time. Interestingly, even
though the deformation mode differs, the flapping frequency (f) does not change
significantly between the positive and negative cases.

We now compare the experimental observations of Gelebart et al. [22]. After an
initial transient, the strip begins a periodic motion with the wave moving from
right to left as predicted in Figure 3.4, when illuminated on the homeotropic phase
(Λ = Λℎ < 0). The wave moves from left to right as predicted in Figure 3.3 when
illuminated on the planar face (Λ = Λ𝑝 > 0). They also observed that the frequency
of oscillation when illuminating the homeotropic face is lower as compared to the
planar face, holding all other parameters fixed. Again, this is consistent with the
predictions in Figures 3.4(f) and 3.3(f) since |Λ𝑝 | > |Λℎ | for fixed 𝐼0. Further, this
wave-like motion is observed only in a finite range of illumination angles and, for
fixed illumination intensity, the range when illuminating the planar side is larger
than that of the homeotropic side as predicted because |Λ𝑝 | > |Λℎ |. All these results
are in good agreement with the experimental observations.

3.5 Snap-through instability of doubly clamped beams
The critical event in the emergence of wave-like cyclic behavior is the snap-through
instability. We study this instability more closely in our final example, by analyzing
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the experiments first conducted by Shankar and collaborators [30, 31].

As in the previous example, an initially flat (𝐾𝑟 = 0) strip of (normalized) length 1
is clamped at both ends so that the end to end distance is 𝑙 𝑓 < 1; the beam is subject
to the same boundary conditions (3.30). There are two equilibrium conditions, one
buckled up, and one buckled down. As before, we start with the buckled up state
and shine light on it. There are two differences compared to the geometry of the
previous section: we limit attention to normal illumination (\ 𝐼 = 0), and use a wide
light beam described by a Gaussian distribution of intensity:

Λ(𝑆, 𝑇) = Λmax 𝑔(𝑋 (𝑆, 𝑇), `,𝑊) , (3.32)

where 𝑔(𝑋, `,𝑊) = exp
(
− (𝑋−`)

2

2𝑊2

)
is a normal distribution centered at `, with width

𝑊 and scaled so that the peak value is 1.

We also conduct experiments using 1mm × 15mm × 50 `m beams made of planar
nematic LCN films (see Materials and Methods and Supplementary Materials C for
details) illuminated using a 365 nm LED.

Figure 3.5 summarizes our results. First consider the case when the illumination
is centered on the bump (` = 𝑙 𝑓 /2) in Figure 3.5(a). When the light is turned
on, the bumps flattens out slowly due to photo-induced curvature; after a period
of slow deformation, it snaps suddenly at a critical time 𝑇∗ to the down-buckled
state. We have verified through eigenvalue analysis as before that the snap-through
occurs when the up-bump solution becomes unstable. Continued illumination be-
yond the time of snap-through does not result in any significant further deformation.
Figure 3.5(b) shows the results of the case where the illumination is slightly off
the center of the bump (` = 0.45). The overall phenomenon is similar, but the
initial slow deformation pushes the bump to the side away from the illumination
instead of flattening it. These figures Figure 3.5(a,b) superpose the results of theo-
retical computation (cyan dashed line) with images retrieved from the experimental
observation, showing excellent agreement.

As the illumination becomes too low, or the off-set from center |𝑙 𝑓 /2−` | is too large,
the beam does not snap-through. The phase portrait is shown in Figure 3.5(c) along
with the experimental observations, again showing good agreement between theory
and experiments. At higher illuminations, we see some evidence of photo-bleaching
in the experiments and we believe that this accounts for the slight discrepancy. The
phase portrait also shows that the smallest illumination required for snap-through
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Figure 3.5: Snap-through of a strip subject to normal illumination. (a,b) Snapshots
of an initially flat strip clamped in a buckled state and subjected to illumination with
Λmax = 10 and 𝑙 𝑓 = 0.99 for two different offsets, (a) ` = 𝑙 𝑓 /2 and (b) ` = 0.45.
The red arrows indicate the location of the center of the laser beam. Predictions of
the model (cyan) are superimposed onto the experimental observations without any
adjustable parameter. Note the two distinct snap-through modes: symmetric with
the creation of a flat-top when the light beam is centered and displacing the peak
position when the light beam is not centered. (c) Phase portrait in the illumination
vs. offset plane, showing the absence or presence of snap-through, for 𝑙 𝑓 = 0.95.
The background colors and the crosses are the theoretical and experimental results,
respectively. (d) Time for snap-through as a function of illumination for 𝑙 𝑓 = 0.95
and ` = 𝑙 𝑓 /2, as predicted by the model.

decreases as the light is moved away from the center (i.e., when ` decreases from
𝑙 𝑓 /2). In other words, it is easier to snap when the illumination is slightly off center.

Finally, the time it takes for the snap-through to occur as a function of illumination
in the centered case is plotted in Figure 3.5(d). We observe that for moderate to large
illumination (i.e., away from the snap/no-snap boundary), this takes on a power law
with an exponent −1. Shankar et al. [30] had studied this over a very large range of
illuminations, and they reported a slope of −1, in agreement with our simulations.
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3.6 Materials and Methods
Planar nematic liquid crystal network films were prepared following the procedure
of Gelebart et al. [22] with modification. To synthesize films with a a penetration
depth of 1.5 `m at an illumination wavelength of 365 nm, a formulation of 9.2 :
90.8 by weight of 4,4’-Bis(6-acryloyloxyhexyloxy)azobenzene (Azo-6) : 1,4-Bis[4-
(6-acryloyloxyhexyloxy)benzoyloxy]-2-methylbenzene (RM82) was used, with 2.5
wt% of photoinitiator with respect to the total monomer weight. In a typical
sample preparation, 4.6 mg Azo-6, 45.4 mg RM82, and 1.25 mg Iphenylbis(2,4,6-
trimethylbenzoyl)phosphine oxide) (Irgacure 819) were melted together in a vial
and vortexed repeatedly to ensure mixing. The molten monomer mixture was then
infiltrated via capillary action into alignment cells on a hot plate at 100◦C. The
alignment cells were prepared by spin-coating Elvamide onto clean glass slides,
rubbing the slides with a velvet cloth, and gluing the two Elvamide sides facing each
other with epoxy mixed with 15 `m glass beads. The filled cells were subsequently
cooled to 80◦C, held isothermal for 5 minutes to induce alignment of the liquid
crystalline mesogens, and photopolymerized for 30 minutes with 405 nm light.
Following photopolymerization, samples were post-cured at 120◦C for 10 minutes
and the 15m thick LCNs were harvested by cracking open the alignment cells with
a razor blade. Finally, beams of 1 mm in width were cut from the film with the
nematic director along the long axis of the strip.

3.7 Conclusion
We explored various behaviors of nematic liquid crystal networks embeded with
azobenzenes to incorporate a photo-mechanical effect. In this work, we specifically
focus on 2D deformations of thin films which allowed us to use a standard beam
model coupled with the interaction with light and curvature to model complex
behaviors. We demonstrate cyclic motions to induce movement. The first involves a
continuous rolling behavior where the interaction between the light and deformation
leads to a wave solution that travels down the beam at a constant speed, despite the
level of intensity of the light. The second case demonstrated how illumination
can create conditions for a repeated snap-through instability. In this case, the
motion is periodic and has sudden releases of energy to produce motion. This has
the advantage of storing energy in strain, then suddenly releasing it in an instant.
This scheme presents a significant advantage as many systems require high power
rather than total energy; therefore, there are many ways to implement this strategy
into engineering structures. The final configuration was similar to the previous;
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however, we demonstrate a controlled snap-through by using a controlled light
beam of different widths, locations, and intensities. This configuration is more
similar to that of a switch and can be utilized to sense whether an illumination
environment has been experienced.

The systems studied in this section are all 2D systems and only consider the de-
formations of a beam in the plane. While there are many systems that satisfy this
condition, it does not paint the full picture. In many cases, the deformation of
a thin structure can veer out of plane, involving multiple bending components as
well as twist. Both of these introduce significant complication into modeling these
structures. In order to address this difficulty, we develop a novel method of defining
strains in the discrete elastic rod framework.



37

C h a p t e r 4

NOVEL DEFORMATION MEASURES FOR RODS AND
RIBBONS

The work presented in this chapter has been adapted from the following publication:

Kevin Korner, Basile Audoly, and Kaushik Bhattacharya. “Simple defor-
mation measures for discrete elastic rods and ribbons”. In: Proceedings
of the Royal Society A 27 (Dec. 2021), pp. 1–63. issn: 1364-5021. doi:
10.1098/RSPA.2021.0561. url: https://royalsocietypublishing.
org/doi/abs/10.1098/rspa.2021.0561.

4.1 Introduction
In modeling non-linear deformations of rods, such as those in the presence of
spontaneous curvatures and external forcing, we required some development of the
discrete elastic rod model in order to accurately describe the strains. Particularly, the
relationship between the discrete and continuous strain measures was not entirely
clear. This distinction becomes important when trying to study a variety of highly
nonlinear rod models.

The geometric non-linearity of thin elastic rods gives rise to a rich range of phe-
nomena even when the strains are small, see e.g. [33, 34] for recent examples. So,
the non-linear theory of rods has traditionally combined geometrically non-linearity
with linear constitutive laws [35, 1]. However, recent interest has expanded beyond
the linearly elastic regime, including viscous threads [36, 37], plastic and visco-
plastic bars [38, 39, 40], visco-elastic rods [41], and capillary elastic beams made
of very soft materials [42]. Thin elastic ribbons may also be viewed in this class
with a non-linear constitutive law that captures the complex deformation of the
cross-sections [3, 4, 43, 44, 5, 45].

The study of instabilities, especially in the presence of complex constitutive relations,
requires an accurate but efficient numerical method. Here, we build on the work
of Bergou et al. [46] to propose a numerical method applicable to slender elastic
structures in general. To keep the presentation focused, we limit our presentation to
elastic rods: both linearly elastic and non-linear elastic constitutive laws are covered.
Our main contribution consists in providing a discrete geometric description of
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slender rods. This kinematic building block is independent of the elastic constitutive
law in our formulation, making the extension to inelastic constitutive laws relatively
straightforward, as discussed in Section 4.4.

We follow the classical kinematic approach, and use the arc-length 𝑠 in the unde-
formed configuration as a Lagrangian coordinate. We denote the center-line of the
rod in the current configuration as 𝒙(𝑠) (boldface symbols denote vectors). We in-
troduce an orthonormal set of vectors (𝒅𝐼 (𝑠))1⩽𝐼⩽3, called the directors, to describe
the orientation of the cross-section. We impose the adaptation condition that the
director 𝒅3 matches the unit tangent 𝒕 to the center-line:

𝒅3(𝑠) = 𝒕(𝑠), where 𝒕(𝑠) = 𝒙′(𝑠)
|𝒙′(𝑠) | . (4.1)

Here 𝒙′(𝑠) = 𝜕𝒙/𝜕𝑠 denotes the derivative of 𝒙 with respect to the arc-length 𝑠.
Note that the adaptation condition does not impose any restriction on the actual
deformation of the rod at the microscopic scale; specifically, it does not require the
deformed cross-section to be spanned by 𝒅1 and 𝒅2. Instead, it expresses the fact
that the only role of the directors is to track the twisting motion of the cross-sections
about the tangent. Equation (4.1) does not impose inextensibility either.

The rotation gradient 𝜿(𝑠), also known as the Darboux vector, is defined by

𝒅′𝐼 (𝑠) = 𝜿(𝑠) × 𝒅𝐼 (𝑠), 𝐼 = 1, 2, 3 . (4.2)

It exists and is unique since the directors are orthonormal. The deformation measures
are

^(𝐼) (𝑠) = 𝜿(𝑠) · 𝒅𝐼 (𝑠) . (4.3)

A fourth deformation measure is introduced to characterize how the center-line
stretches, such as Y(𝑠) = 1

2

(
𝒙′2(𝑠) − 1

)
(Green-Lagrange strain).

This kinematic description is common to all variants of the rod model. It is com-
plemented by constitutive equations specifying either the stored energy density (in
the case of a hyperelastic theory) or the reaction forces and moments as functions
of the four deformation measures or their histories. The formulation is completed
by imposing either equilibrium or balance of momenta. The resulting equations for
linear elastic constitutive relations are known as the Kirchhoff equations for rods,
and they can be derived variationally, see [47, 1]; we will not discuss them further.

Various strategies have been proposed to simulate the equations for thin rods nu-
merically. In approaches based on the finite-element methods, it is challenging to
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Figure 4.1: (a) A continuous elastic rod and (b) a discrete elastic rod. The adaptation
condition from equations (4.1) and (4.9) is satisfied in both cases.

represent the kinematic constraint of adaptation (4.1) between the unknown center-
line 𝒙(𝑠) and the unknown rotation representing the orthonormal directors 𝒅𝐼 (𝑠).
Another approach is based on super-helices or super-clothoids: in these high-order
approaches, the bending and twisting strain measures ^(𝐼) (𝑠) are discretized into
constant or piecewise linear functions. The result is a highly accurate method which
has been successfully applied to several challenging problems [48, 49, 50]. The
price to pay is that the reconstruction of the center-line in terms of the degrees
of freedom is non-trivial and non-local. Additionally, some common boundary
conditions, such as clamped-clamped conditions, must be treated using non-linear
constraints.

A new approach called the Discrete elastic rods method was introduced by Bergou
it et al. [46]; see [51] for a recent primer. The Discrete elastic rod method is a
low-order method, which starts out by discretizing the center-line into a polygonal
chain with nodes (𝒙0, . . . , 𝒙𝑁 ). The tangents and material frames 𝒅𝑖𝐼 are defined on
the segments, see Figure 4.1. The adaptation condition (4.1) is used to parameterize
the material frames (𝒅𝑖𝐼)1⩽𝑖⩽3 in terms of the positions (𝒙𝑖−1, 𝒙𝑖) of the adjacent
nodes and of a single twisting angle 𝜑𝑖, as described in Section 4.2. A discrete
rotation gradient is obtained by comparing the orthonormal directors from adjacent
segments: this yields a differential rotation at a vertex between the segments. This
must now be projected onto a material frame to yield the bending and twisting
strain measures according to equation (4.3). The material frame, however, lives
on segments. The original Discrete elastic rod formulation worked around this
difficulty by introducing an additional director frame living on the nodes, obtained
by averaging the director frames from the adjacent segments [46, 51]. In the present
work, a different definition of the discrete bending and twisting strain measures is
used, see Equations (4.14) and (4.16). This small change simplifies the formulation
of model considerably. We note that a similar measure was introduced independently
in a recent work on shearable rod models [52].
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Overall, the proposed formulation offers the following advantages:

• As in the original Discrete rod model, the proposed formulation eliminates
two out of the three degrees of freedom associated with the directors at each
node using of the adaptation condition (4.1); this leads to a constraint-free
formulation that uses degrees of freedom sparingly.

• The formulation of the model is concise: in particular the gradient and Hessian
of the discrete elastic energy are given by the simple, closed form formulas
listed in Section 4.3.

• The proposed deformation measures have a clear geometric interpretation:
in the context of inextensible ribbons, for example, a discrete developability
condition can easily be formulated in terms of the new set of discrete strains,
see Section 4.4.

• The kinematic description can easily be combined with various constitutive
models to produce discrete models for elastic rods, inextensible ribbons,
viscous or visco-elastic rods, etc., as discussed in Section 4.4.

4.2 Discrete bending and twisting deformation measures
A compendium on quaternions
Rod models make use of rotations in the three-dimensional space. These rotations
are conveniently represented using quaternions. Here, we provide a brief summary
of quaternions and their main properties. A complete and elementary introduction
to quaternions can be found in [53].

A quaternion 𝑞 ∈ Q can be seen as a pair made up of a scalar 𝑠 ∈ R and a vector
𝒗 ∈ R3, 𝑞 = (𝑠, 𝒗). Identifying the scalar 𝑠 and the vector 𝒗 with the quaternions
(𝑠, 0) and (0, 𝒗) respectively, one has the quaternion decomposition

𝑞 = 𝑠 + 𝒗.

The product of two quaternions 𝑞1 = (𝑠1, 𝒗1) and 𝑞2 = (𝑠2, 𝒗2) is defined as

𝑞1 𝑞2 = (𝑠1 𝑠2 − 𝒗1 · 𝒗2) + (𝑠1𝒗2 + 𝑠2𝒗1 + 𝒗1 × 𝒗2) . (4.4)

The product is non-commutative.

A unit quaternion 𝑟 = 𝑠 + 𝒗 is a quaternion such that 𝑠2 + |𝒗 |2 = 1. Unit quaternions
represent rotations in the three-dimensional Euclidean space, in the following sense.
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Define 𝑟 = 𝑠 − 𝒗 as the quaternion conjugate to 𝑟. Define the action of the unit
quaternion 𝑟 on an arbitrary vector 𝒘 as

𝑟 ∗ 𝒘 = 𝑟 𝒘 𝑟,

where the left-hand side defines a linear map on the set of vectors 𝒘, and the right-
hand side is a double product of quaternions. It can be shown that (i) the quaternion
𝑟 ∗ 𝒘 is a pure vector, (ii) the mapping 𝒘 → 𝑟 ∗ 𝒘 is a rotation in Euclidean space,
(iii) the quaternion 𝑟 can be written as 𝑟 = ±𝑟𝒏 (\) where

𝑟𝒏 (\) = cos
\

2
+ 𝒏 sin

\

2
= exp

𝒏 \

2
, (4.5)

\ is the angle of the rotation, and 𝒏 is a unit vector subtending the axis of the rotation.
Note that both unit quaternions +𝑟𝒏 (\) and −𝑟𝒏 (\) represent the same rotation.

Given two unit quaternions 𝑟1 and 𝑟2, consider the product 𝑟2 𝑟1: for any vector 𝒘,
the equality (𝑟2 𝑟1) ∗ 𝒘 = 𝑟2 𝑟1 𝒘 𝑟2 𝑟1 = 𝑟2 𝑟1 𝒘 𝑟1 𝑟2 = 𝑟2 ∗ (𝑟1 ∗ 𝒘) shows that the
unit quaternion 𝑟2 𝑟1 represents the composition of the rotations associated with 𝑟1

applied first, and 𝑟2 applied last. The multiplication of unit quaternions is therefore
equivalent to the composition of rotations. In view of this, we will identify rotations
with unit quaternions. The inverse of the rotation 𝑟 will accordingly be identified
with the conjugate 𝑟.

Parallel transport
Parallel transport plays a key role in the Discrete elastic rods model, by allowing
one to define twistless configurations of the material frame in an intrinsic way. For
two unit vectors 𝒂 and 𝒃 such that 𝒃 ≠ −𝒂, the parallel transport from 𝒂 to 𝒃 is the
rotation mapping 𝒂 to 𝒃, whose axis is along the binormal 𝒂 × 𝒃. Parallel transport
can be interpreted geometrically as the rotation mapping 𝒂 to 𝒃 and tracing out the
shortest path on the unit sphere [46].

An explicit expression of the parallel transport from 𝒂 to 𝒃 in terms of unit quater-
nions is [54]

𝑝𝒃𝒂 =

√︂
1 + 𝒂 · 𝒃

2
+ 1

2
𝒂 × 𝒃√︃

1+𝒂·𝒃
2

. (4.6)

The proof is as follows. First it can be verified that 𝑝𝒃𝒂 is a unit quaternion, as can
be shown by using the identity |𝒂×𝒃 |

2

1+𝒂·𝒃 =
1−(𝒂·𝒃)2

1+𝒂·𝒃 = 1− 𝒂 · 𝒃. Second, the rotation 𝑝𝒃𝒂
indeed maps 𝒂 to

𝑝𝒃𝒂 ∗ 𝒂 = 𝑝𝒃𝒂 𝒂 𝑝
𝒃
𝒂 = 𝒃 , (4.7)
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Figure 4.2: A node 𝒙𝑖, its adjacent segments, and the adjacent nodes 𝒙𝑖±1 in reference
(gray background) and current (white background) configurations. Director frames,
shown in purple, are represented by a unit quaternion, whose action on the Cartesian
frame 𝒆𝐼 yields the director frame.

as can be checked by explicit calculation. Finally, the axis of 𝑝𝒃𝒂 is indeed about the
binormal 𝒂 × 𝒃: equation (4.5) shows that the vector part of the unit quaternion is
aligned with the rotation axis and equation (4.6) shows that the vector part of 𝑝𝒃𝒂 is
aligned with 𝒂 × 𝒃.

For two units vectors 𝒂 and 𝒃 such that 𝒂 = −𝒃, the parallel transport 𝑝𝒃𝒂 is ill-defined.

Reference and current configurations
A configuration of the discrete rod is defined by a set of nodes 𝒙𝑖 indexed by an
integer 𝑖, 0 ⩽ 𝑖 ⩽ 𝑁 . We consider an open rod having unconstrained endpoints 𝒙0

and 𝒙𝑁 for the moment; alternate boundary conditions such as periodic or clamped
boundary conditions are discussed later. For simplicity, we limit attention to the
case where the nodes are equally spaced in the undeformed configuration, i.e., the
undeformed length ℓ 𝑗 is independent of the segment index 𝑗 : it is denoted as

ℓ 𝑗 = ℓ.

In addition to the undeformed configuration, the simulation deals with two config-
urations shown in Figure 4.2:

• Reference configuration (shown with a gray background in the figure). The
only role of the reference configuration is to allow a parameterization of the
current configuration. It does not bear any physical meaning and its choice
does not affect the results of the simulations. It is chosen for convenience.

In the reference configuration, the position of node 𝑖 is denoted by 𝒙★
𝑖
. The

orthonormal frame of directors on segment 𝑖 connecting nodes 𝒙★
𝑖

and 𝒙★
𝑖+1

is denoted as (𝒅𝑖★𝐼 )𝐼∈{1,2,3}. The adaptation condition from equation (4.1)
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requires that the third director 𝒅 𝑗★3 coincides with the unit tangent 𝑻 𝑗 to the
segment in reference configuration,

𝒅 𝑗★3 = 𝑻 𝑗 , where 𝑻 𝑗 =
𝒙★
𝑗+1 − 𝒙

★
𝑗

|𝒙★
𝑗+1 − 𝒙

★
𝑗
| . (4.8)

• Current configuration (shown with a white background). The current con-
figuration is the physical configuration of the rod and is the unknown in a
simulation. It is parameterized by the degrees of freedoms (see Section 4.2).

In the current configuration, the center-line of the rod is defined by the node
positions 𝒙𝑖. On segment 𝑖 connecting the nodes 𝒙𝑖 and 𝒙𝑖+1, the directors
are denoted as (𝒅𝑖𝐼)𝐼∈{1,2,3}. The adaptation condition from equation (4.1)
requires

𝒅 𝑗3 = 𝒕 𝑗 , where 𝒕 𝑗 =
𝒙 𝑗+1 − 𝒙 𝑗
|𝒙 𝑗+1 − 𝒙 𝑗 |

. (4.9)

As shown in the figure, the orthonormal director frames (𝒅 𝑗★
𝐼
)1⩽𝐼⩽3 and (𝒅 𝑗

𝐼
)1⩽𝐼⩽3

are represented by unit quaternions 𝐷 𝑗 and 𝑑 𝑗 , respectively, that yield the directors
when applied to the Cartesian basis 𝒆𝐼 :

𝐷 𝑗 ∗ 𝒆𝐼 = 𝒅 𝑗★
𝐼

𝑑 𝑗 ∗ 𝒆𝐼 = 𝒅 𝑗
𝐼

for 𝐼 = 1, 2, 3. (4.10)

The quaternions 𝑑 𝑗★ and 𝑑 𝑗 therefore represent the rotations
∑3
𝐼=1 𝒅

𝑗★

𝐼
⊗ 𝒆𝐼 and∑3

𝐼=1 𝒅
𝑗

𝐼
⊗ 𝒆𝐼 , respectively. They fully describe their respective frames.

The reference and current configurations are not assumed to be close to one another.
However, our parameterization introduces a weak restriction: the reference config-
uration must be chosen such that the angle of the rotation

(
𝑑 𝑗 𝐷

𝑗
)

mapping 𝒅 𝑗★
𝐼

to

𝒅 𝑗
𝐼

does not come close to 𝜋, in any of the segments 𝑗 . This condition is fulfilled by
resetting periodically the reference configuration to the current configuration:

• in dynamic simulations, this reset is typically done at the end of any time step;

• in equilibrium problems, it is typically done whenever an equilibrium has
been found and the load is incremented.

In principle, it is even possible to reset the reference configuration in the middle of
the Newton-Raphson iteration used to update a time step (in the dynamic case) or
the non-linear equilibrium (in the static case), but special care is required as this
amounts to changing the parameterization of the unknown during iteration.
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All the applications shown at the end of this paper deal with the static case, i.e., they
involve the calculation of equilibria for a series of load values: our simulations are
initialized with the reference configuration 𝒙★

𝑖
, 𝒅 𝑗★

𝐼
representing a simple starting

point which is typically a straight or circular equilibrium configuration without any
load (see the example description for further details). The reference configuration
is reset each time an equilibrium is found.

Centerline-twist representation
In this section, we introduce a parameterization that provides a concise represen-
tation of the current configuration that is at the heart of the Discrete elastic rod
method. All quantities from the reference configuration, such as the node positions
𝒙★
𝑖
, unit tangents 𝑻 𝑗 , material frames 𝒅 𝑗★3 and associated rotations 𝐷 𝑗 , are known.

We proceed to analyze the current configuration. A key observation is that equa-
tion (4.9) yields the tangent director 𝒅 𝑗3 as a function of the node positions 𝒙𝑖: if
the nodes are prescribed, the full frame of directors 𝒅 𝑗

𝐼
can only twist about this

tangent. The three directors (𝒅 𝑗
𝐼
)1⩽𝐼⩽3 on segment 𝑗 , as well as the associated unit

quaternion 𝑑 𝑗 by equation (4.10), can therefore be parameterized in terms of

• the adjacent nodes positions 𝒙 𝑗 and 𝒙 𝑗+1,

• a scalar twist angle 𝜑 𝑗 .

The parameterization used by the Discrete elastic rod method may be written as [46,
55, 56]

𝑑 𝑗 (𝒙 𝑗 , 𝜑 𝑗 , 𝒙 𝑗+1) = 𝑝 𝑗 (𝒙 𝑗 , 𝒙 𝑗+1) 𝑟𝑻 𝑗 (𝜑 𝑗 ) 𝐷 𝑗 , (4.11)

where 𝒙 𝑗 and 𝒙 𝑗+1 are the positions of the adjacent nodes, 𝜑 𝑗 is the twisting angle,

𝑝 𝑗 (𝒙 𝑗 , 𝒙 𝑗+1) = 𝑝
𝒕𝑖 (𝒙 𝑗 ,𝒙 𝑗+1)
𝑻𝑖

(4.12)

is the parallel transport from the reference unit tangent 𝑻𝑖 to the current unit tangent
𝒕𝑖 (𝒙 𝑗 , 𝒙 𝑗+1) given as a function of the node positions by equation (4.9), 𝑟𝑻 𝑗 (𝜑 𝑗 ) =
cos 𝜑 𝑗

2 + 𝑻
𝑗 sin 𝜑 𝑗

2 is the rotation about 𝑻 𝑗 with angle 𝜑 𝑗 (see equation (4.5)), and
𝐷 𝑗 is the unit quaternion associated with the reference configuration of the directors
(see equation (4.10)).

Using equations (4.10), (4.8) and (4.7), we have 𝒅 𝑗3 = 𝑑 𝑗 (𝒙 𝑗 , 𝜑 𝑗 , 𝒙 𝑗+1) ∗ 𝒆3 =

𝑝 𝑗 (𝒙 𝑗 , 𝒙 𝑗+1) ∗ (𝑟𝑻 (𝜑 𝑗 ,𝑻 𝑗 ) ∗ (𝐷 𝑗 ∗ 𝒆3)) = 𝑝 𝒕
𝑖

𝑻𝑖
∗ (𝑟𝑻 𝑗 (𝜑 𝑗 ) ∗ 𝑻 𝑗 ) = 𝑝 𝒕𝑖

𝑻𝑖
∗ 𝑻 𝑗 = 𝒕 𝑗 : the

parameterization (4.11) of the directors satisfies the adaptation constraint in (4.9)
automatically.
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This yields a parameterization of the rod in terms of the degrees of freedom vector

𝑿 = (𝒙0, 𝜑
0, 𝒙1, 𝜑

1, 𝒙2, · · · , 𝒙𝑛−1, 𝜑
𝑛−1, 𝒙𝑛), (4.13)

where the nodes positions 𝒙𝑖 are read off directly from 𝑿 and the directors are
reconstructed using equations (4.10) and (4.11). It is called the centerline-twist
representation.

As observed in Section 4.2, the parallel transport in equation (4.12) is singular if
𝒕𝑖 (𝒙 𝑗 , 𝒙 𝑗+1) = −𝑻𝑖, i.e., if any one of the tangents flips by an angle 𝜋 between the
reference and current configuration. The periodic reset of the reference configuration
described earlier in Section 4.2 prevents this from happening.

Note that in the original paper of [46], parallel transport was used to move the
directors from one segment to an adjacent segment (spatial parallel transport).
This makes the directors dependent on the degrees of freedom associated with
all the nodes and segments located on one side of the directors. Here, like in
subsequent work by the same authors [55, 56], we use parallel transport ‘in time’:
in equation (4.11), 𝑝 𝑗 (𝒙 𝑗 , 𝒙 𝑗+1) serves to parameterize the directors in current
configuration in terms of the same set of directors in reference configuration. With
this approach, the directors are a function of the local degrees of freedom, as implied
by the notation 𝑑 𝑗 (𝒙 𝑗 , 𝜑 𝑗 , 𝒙 𝑗+1) in equation (4.11).

Lagrangian rotation gradient
The rotation mapping one director frame (𝒅𝑖−1

𝐼 )𝐼=1,2,3 to the adjacent director frame
(𝒅𝑖𝐼)𝐼=1,2,3 is shown by the dashed arrow on top of Figure 4.2. It captures the
variation of the frame along the rod, and it is the discrete counterpart of the rotation
gradient 𝜿(𝑠) introduced in equation (4.2). Using equation (4.10), it can be written
as the composition of the rotations 𝑑𝑖−1 and 𝑑𝑖:

𝑑𝑖 𝑑𝑖−1 : 𝒅𝑖−1
𝐼 ↦→ 𝒅𝑖𝐼 .

This rotation is an Eulerian quantity: like its continuous counterpart 𝜿(𝑆), it is not
invariant when the rod rotates rigidly. The following, however, is a Lagrangian
version 𝑞𝑖 of the rotation gradient that is invariant by rigid-body rotations,

𝑞𝑖 (𝒙𝑖−1, 𝜑
𝑖−1, 𝒙𝑖, 𝜑

𝑖, 𝒙𝑖+1) := 𝑑𝑖−1(𝒙𝑖−1, 𝜑
𝑖−1, 𝒙𝑖) 𝑑𝑖 (𝒙𝑖, 𝜑𝑖, 𝒙𝑖+1) . (4.14)

Here, we depart from earlier work on Discrete elastic rods [46] who used 𝑞𝑖 :=
𝑞

avg
𝑖

= 𝑑
†
𝑖
(𝑑𝑖 𝑑𝑖−1) 𝑑†

𝑖
instead, where 𝑑†

𝑖
is some average of the adjacent frames
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𝑑𝑖−1 and 𝑑𝑖. A definition of the rotation gradient similar to (4.14) has been used
in the context of shearable rods [52] and in a purely geometric analysis of discrete
rods [54].

We now explain why this definition represents a Lagrangian rotation gradient. One
way to define a Lagrangian rotation gradient, is to pull back the Eulerian rotation
gradient 𝑑𝑖 𝑑𝑖−1 to the reference configuration. However, the discreteness of our
representation raises a difficulty: the frames are defined on the segment while the
Eulerian rotation gradient 𝑑𝑖 𝑑𝑖−1 is defined on the nodes. So, we could use the frame
associated with the segment on the left of the node for the pull back by defining
𝑞left
𝑖

= 𝑑𝑖−1 (𝑑𝑖 𝑑𝑖−1) 𝑑𝑖−1, but this biases the choice on the left. Or, we could use
the right counter-part, 𝑞right

𝑖
= 𝑑𝑖 (𝑑𝑖 𝑑𝑖−1) 𝑑𝑖, but this biases the choice to the right.

However, these biases are apparent only: elementary calculations shows that these
are in fact identical:

𝑞left
𝑖 = 𝑑𝑖−1 𝑑𝑖

(
𝑑𝑖−1 𝑑𝑖−1

)
= 𝑑𝑖−1 𝑑𝑖 = 𝑞𝑖, 𝑞

right
𝑖

=

(
𝑑𝑖 𝑑𝑖

)
𝑑𝑖−1 𝑑𝑖 = 𝑑𝑖−1 𝑑𝑖 = 𝑞𝑖,

(4.15)
thereby justifying our definition.

The unit quaternion 𝑞𝑖 introduced in equation (4.14) is the discrete analogue of the
pull-back (𝒆𝐼 ⊗ 𝒅𝐼 (𝑠)) · 𝜿(𝑠) of the rotation gradient 𝜿(𝑠) used in the continuous rod
theory, whose components ^𝐽 (𝑠) = 𝒆𝐽 · [(𝒆𝐼 ⊗ 𝒅𝐼 (𝑠)) · 𝜿(𝑠)] = 𝒅𝐽 (𝑠) · 𝜿(𝑠) define
the bending and twisting measures. In the following section, bending and twisting
are similarly extracted from the unit quaternion 𝑞𝑖.

Bending and twisting deformation measures
The discrete bending and twisting deformation measures are defined as the compo-
nents of the pure vector,

𝜿𝑖 (𝒙𝑖−1, 𝜑
𝑖−1, 𝒙𝑖, 𝜑

𝑖, 𝒙𝑖+1) = 𝑞𝑖 − 𝑞𝑖 . (4.16)

This 𝜿𝑖 is twice the vector part I(𝑞𝑖) = 𝑞𝑖−𝑞𝑖
2 of the quaternion 𝑞𝑖, which shows

that it is indeed a vector. Let ^𝑖,𝐼 denote its components in the Cartesian basis,
such that 𝜿𝑖 =

∑3
𝐼=1 ^𝑖,𝐼 𝒆𝐼 . The first two components ^𝑖,1 and ^𝑖,2 can be interpreted

as measures of bending about the transverse directors 𝒅 𝑗1 and 𝒅 𝑗2, while the third
component ^𝑖,3 is a discrete measure of twisting. Like 𝑞𝑖, these are integrated
versions of their smooth counterparts, that are proportional to the discretization
length ℓ; this will be taken into account when setting up a discrete strain energy.
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Summary
The current configuration is reconstructed in terms of the degrees of freedom 𝑿

from equation (4.13) as follows:

• the node positions 𝒙𝑖 are directly extracted from 𝑿, see equation (4.13),

• the unit tangents 𝒕 𝑗 (𝒙 𝑗 , 𝒙 𝑗+1) are obtained from equation (4.9),

• parallel transport 𝑝 𝑗 (𝒙 𝑗 , 𝒙 𝑗+1) is obtained by combining equations (4.12)
and (4.6),

• the director frames 𝑑 𝑗 (𝒙 𝑗 , 𝜑 𝑗 , 𝒙 𝑗+1) are obtained from equation (4.11),

• the rotation gradient 𝑞𝑖 (𝒙𝑖−1, 𝜑
𝑖−1, 𝒙𝑖, 𝜑

𝑖, 𝒙𝑖+1) is available from equation (4.14),

• the bending and twisting deformation vector 𝜿𝑖 (𝒙𝑖−1, 𝜑
𝑖−1, 𝒙𝑖, 𝜑

𝑖, 𝒙𝑖+1) is cal-
culated from equation (4.16).

Finally, a possible definition of the discrete stretching measure on segment 𝑗 joining
nodes 𝒙 𝑗 and 𝒙 𝑗+1 is

Y 𝑗 (𝒙 𝑗 , 𝒙 𝑗+1) =
1
2

(
(𝒙 𝑗+1 − 𝒙 𝑗 )2

ℓ
− ℓ

)
, (4.17)

see for instance [42]. Here, ℓ denotes the undeformed length of the segments, which
is different from the length |𝒙★

𝑗+1 − 𝒙★
𝑗
| in reference configuration. This discrete

stretching measure is an integrated version of the continuous strain Y(𝑆), like the
discrete bending and twisting deformation measures ^𝑖,𝐼 . The particular definition
of the stretching measure Y 𝑗 in equation (4.17) requires the evaluation of the squared
norm and not of the norm itself, which simplifies the calculation of the gradient
significantly.

Interpretation of the discrete deformation measures
We now show that the discrete deformation measures (up to a minor rescaling) may
be interpreted as the rotation that transports the director frame from one segment to
the next.

Consider the function 𝜓

𝜓(𝑡) = arcsin(𝑡/2)
𝑡/2 for 0 ⩽ 𝑡 ⩽ 2, (4.18)
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and note that 𝜓(𝑡) ≈ 1 for 𝑡 ≪ 1 (See supplementary information for a plot of this
function). Define the adjusted deformation measure to be

𝜔𝑖,𝐽 = 𝜓( |𝜿𝑖 |) 𝜿𝑖 · 𝒆𝐽 . (4.19)

This is well defined for all values of ^ since |𝜿𝑖 | = |𝑞𝑖 − 𝑞𝑖 | ⩽ 2 |𝑞𝑖 | = 2. This
rescaling is insignificant in the continuum limit where 𝑑𝑖−1 ≈ 𝑑𝑖, 𝑞𝑖 ≈ 1 and
|𝜿𝑖 | ≪ 1, implying 𝜓( |𝜿𝑖 |) ≈ 1. Even for moderate values of |𝜿𝑖 |, the original
and adjusted deformations measures are not very different, 𝜔𝑖,𝐽 ≈ 𝜿𝑖 · 𝒆𝐽 , as the
variations of the function 𝜓 are bounded by 1 ⩽ 𝜓(𝑡) ⩽ 𝜋/2.

The adjusted deformation measure has a simple geometric interpretation. We start
from the decomposition (4.5) of the rotation gradient 𝑞𝑖 = 𝑟𝒏𝑖 (\𝑖) = cos \𝑖2 +
𝒏𝑖 sin \𝑖

2 = exp 𝒏𝑖 \𝑖
2 , where 𝒏𝑖 is a unit vector aligned with the axis of the ro-

tation 𝑞𝑖, and \𝑖 is the angle of this rotation, 0 ⩽ \ ⩽ 𝜋. In view of equa-
tion (4.16), 𝜿𝑖 = 𝑞𝑖 − 𝑞𝑖 = 2 sin \𝑖

2 𝒏𝑖. In particular, |𝜿𝑖 | = 2 sin \𝑖
2 and so

𝜓( |𝜿𝑖 |) =
\𝑖/2

sin(\𝑖/2) from equation (4.18). The adjusted strain is then 𝜔𝑖,𝐽 𝒆𝐽 =

𝜓( |𝜿𝑖 |) 𝜿𝑖 = \𝑖/2
sin(\𝑖/2) 2 sin \𝑖

2 𝒏𝑖 = \𝑖 𝒏𝑖: in effect, the adjustment factor 𝜓( |𝜿𝑖 |) trans-
forms 𝜿𝑖 = 2I(𝑞𝑖) (twice the vector part of 𝑞𝑖) into 𝜔𝑖,𝐽 𝒆𝐽 = \𝑖 𝒏𝑖 = 2 log 𝑞𝑖 (twice
its logarithm).

Now, rewriting 𝑞𝑖 = 𝑑𝑖−1 𝑑𝑖 = 𝑑𝑖−1
(
𝑑𝑖 𝑑𝑖−1

)
𝑑𝑖−1 = 𝑞

right
𝑖

, one sees that 𝑞𝑖 is

conjugate to 𝑑𝑖 𝑑𝑖−1. Combining with 𝑞𝑖 = cos \𝑖2 + 𝒏𝑖 sin \𝑖
2 , we have 𝑑𝑖 𝑑𝑖−1 =

𝑑𝑖−1 𝑞𝑖 𝑑𝑖−1 = cos \𝑖2 + (𝑑
𝑖−1 ∗ 𝒏𝑖) sin \𝑖

2 = exp (𝑑
𝑖−1∗𝒏𝑖) \𝑖

2 : as is well known, the
conjugate rotation 𝑑𝑖 𝑑𝑖−1 has the same angle \𝑖 as the original rotation 𝑞𝑖 and its
axis is obtained by applying the rotation 𝑑𝑖−1 to the original axis. This can be
rewritten as

𝑑𝑖 = exp
(
𝛀𝑖

2

)
𝑑𝑖−1 (4.20)

where𝛀𝑖 = 𝑑
𝑖−1∗𝒏𝑖 \𝑖 = 𝑑𝑖−1∗𝜔𝑖,𝐽 𝒆𝐽 = 𝜔𝑖,𝐽 𝒅𝑖−1

𝐽 is a (finite) rotation vector. Similar
relations have been derived in the work of [54]. Repeating the same argument with
𝑞𝑖 = 𝑑

𝑖−1 𝑑𝑖 = 𝑑𝑖 (𝑑𝑖 𝑑𝑖−1) 𝑑𝑖 = 𝑞left
𝑖

, one can show that the vector 𝛀 has the same
decomposition in the other directors frame, 𝛀𝑖 = 𝜔𝑖,𝐽 𝒅

𝑖
𝐽 :

𝛀𝑖 = 𝜔𝑖,𝐽 𝒅
𝑖−1
𝐽 = 𝜔𝑖,𝐽 𝒅

𝑖
𝐽 . (4.21)

Equations (4.20–4.21) show that the adjusted deformation measures 𝜔𝑖,𝐽 are the
components of the rotation vector𝛀𝑖 that maps one set of directors frame (𝒅𝑖−1

𝐼 )𝐼=1,2,3

to the other one (𝒅𝑖𝐼)𝐼=1,2,3 across the vertex 𝒙𝑖. Remarkably, these components can
be calculated in any one of the adjacent directors frame as they are identical.
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One could build a Discrete elastic rod model based on the adjusted deformation
measure 𝜔𝑖,𝐽 𝒆𝐽 = 2 𝑑𝑖−1 ∗ log

(
𝑑𝑖 𝑑𝑖−1

)
= 2 𝑑𝑖 ∗ log

(
𝑑𝑖 𝑑𝑖−1

)
instead of the defor-

mation measure 𝜿𝑖 proposed in Section 4.2. The benefit is that 𝜔𝑖,𝐽 have an even
simpler interpretation, see equations (4.20–4.21). The drawback is that the function
𝜓 gets involved in the calculation of the strain, resulting in cumbersome formulas
for the strain gradients (Section 4.3). Therefore, we continue to use the original
deformation measures.

4.3 Variations of the discrete deformation measures
In this section, we present explicit formulae for the first and second derivatives of
the deformation measures 𝜿𝑖 (summarized in Section 4.2) with respect to 𝑿. The
first gradient is required for determination of the internal forces, which are the first
gradient of the strain energy. The availability of the second gradient in analytical
form makes it possible to use implicit time-stepping methods (in dynamic problems)
or to evaluate the Hessian for second order methods (in static problems).

Our notation for variations is first introduced based on a simple example. For a
function 𝒚 = 𝒇 (𝒙) taking a vector argument 𝒙 and returning a vector 𝒚, the first
variation is the linear mapping 𝛿𝒙 ↦→ 𝛿𝒚 = 𝒇 ′(𝒙) · 𝛿𝒙, where 𝛿𝒙 is a perturbation
to 𝒙 and 𝒇 ′(𝒙) is the gradient matrix. To compute the second variation, we start
from 𝛿𝒚 = 𝒇 ′(𝒙) · 𝛿𝒙, perturb the argument 𝒙 of 𝒇 ′ as 𝒙 + 𝛿𝒙 and linearize the result
as 𝒇 ′(𝒙 + 𝛿𝒙) · 𝛿𝒙 ≈ 𝒇 ′(𝒙) · 𝛿𝒙 + 𝒇 ′′(𝒙) : (𝛿𝒙 ⊗ 𝛿𝒙). Here, the second variation
is defined as the second order term 𝛿2𝒚 := 𝒇 ′′(𝒙) : (𝛿𝒙 ⊗ 𝛿𝒙), where 𝒇 ′′(𝒙) is the
Hessian. By construction, 𝛿2𝒚 is a quadratic form of 𝛿𝒙.

In this section, the reference configuration is fixed and the degrees of freedom are
perturbed by 𝛿𝑿 = (· · · , 𝛿𝒙𝑖, 𝛿𝜑𝑖, · · · ). We simply present the final results; the
detailed calculations are cumbersome but straightforward, and provided as supple-
mentary material.

• unit tangents 𝒕𝑖 = (𝒙𝑖+1 − 𝒙𝑖)/|𝒙𝑖+1 − 𝒙𝑖 | from equation (4.9),

𝛿𝒕𝑖 = 𝑰−𝒕𝑖⊗𝒕𝑖
|𝒙𝑖+1−𝒙𝑖 | · (𝛿𝒙𝑖+1 − 𝛿𝒙𝑖)

𝛿2 𝒕𝑖 = −𝝉𝑖+(𝝉𝑖)𝑇 (132)+(𝝉𝑖)𝑇 (231)

|𝒙𝑖+1−𝒙𝑖 |2
: ((𝛿𝒙𝑖+1 − 𝛿𝒙𝑖) ⊗ (𝛿𝒙𝑖+1 − 𝛿𝒙𝑖)),

(4.22)

where 𝑰 is the identity matrix, 𝝉𝑖 is the third-order tensor 𝝉𝑖 = (𝑰− 𝒕𝑖 ⊗ 𝒕𝑖) ⊗ 𝒕𝑖,
the colon denotes the double contraction of the last two indices of the rank-
three tensor on the left-hand side. For any permutation (𝑛1, 𝑛2, 𝑛3) of (1, 2, 3),
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𝑇 (𝑛1, 𝑛2, 𝑛3) denotes the generalized transpose of a rank-three tensor 𝝁 such
that `𝑇 (𝑛1𝑛2𝑛3)

𝑖1𝑖2𝑖3
= `𝑖𝑛1 𝑖𝑛2 𝑖𝑛3

;

• parallel transport 𝑝𝑖 = 𝑝 𝒕
𝑖

𝑻𝑖
from equations (4.12) and (4.6),

𝛿 �̂�𝑖 =

(
( 𝒕𝑖)× − 𝒕𝑖⊗𝒌𝑖

2

)
· 𝛿𝒕𝑖,

𝛿2 �̂�𝑖 =

(
( 𝒕𝑖)× − 𝒕𝑖⊗𝒌𝑖

2

)
· 𝛿2 𝒕𝑖 +

(
𝛿𝒕𝑖 · 𝒌𝑖⊗𝑻𝑖+𝑻𝑖⊗𝒌𝑖4 (1+𝑻𝑖 ·𝒕𝑖) · 𝛿𝒕

𝑖
)
𝒕𝑖 − (𝛿𝒕𝑖 ⊗ 𝛿𝒕𝑖) · 𝒌𝑖2

(4.23)
where for any vector 𝒂, 𝒂× is the linear operator

𝒂× : 𝒖 ↦→ 𝒂 × 𝒖 (4.24)

and 𝒌𝑖 is the binormal defined by

𝒌𝑖 =
2𝑻𝑖 × 𝒕𝑖

1 + 𝑻𝑖 · 𝒕𝑖
; (4.25)

• directors rotation 𝑑𝑖 from equation (4.11),

𝛿 �̂�
𝑖

= 𝛿𝜑𝑖 𝒕𝑖 + 𝛿 �̂�𝑖,
𝛿2 �̂�

𝑖
= 𝛿𝜑𝑖 𝛿𝒕𝑖 + 𝛿2 �̂�𝑖;

(4.26)

• rotation gradient 𝑞𝑖 from equation (4.14),

𝛿�̂�𝑖 = 𝑑𝑖−1 ∗ (𝛿 �̂�𝑖 − 𝛿 �̂�𝑖−1),
𝛿2 �̂�𝑖 = 𝑑𝑖−1 ∗ (𝛿2 �̂�

𝑖 − 𝛿2 �̂�
𝑖−1) + 𝛿�̂�𝑖 × (𝑑𝑖−1 ∗ 𝛿 �̂�𝑖−1);

(4.27)

• discrete bending and twisting strain measure vector 𝜿𝑖 from equation (4.16),

𝛿𝜿𝑖 = I
(
𝛿�̂�𝑖 𝑞𝑖

)
,

𝛿2𝜿𝑖 = I
((
𝛿2 �̂�𝑖 −

𝛿�̂�𝑖 ·𝛿�̂�𝑖
2

)
𝑞𝑖

)
,

(4.28)

where I(𝑞) = 𝑞−𝑞
2 denotes the vector part of a quaternion 𝑞.

• stretching measure Y𝑖 from equation (4.17),

𝛿Y𝑖 =
𝒙𝑖+1−𝒙𝑖

ℓ
· (𝛿𝒙𝑖+1 − 𝛿𝒙𝑖),

𝛿2Y𝑖 = 1
ℓ
(𝛿𝒙𝑖+1 − 𝛿𝒙𝑖) · (𝛿𝒙𝑖+1 − 𝛿𝒙𝑖).

(4.29)

In these formula, the first and second variations of the rotations 𝑝𝑖, 𝑑𝑖 and 𝑞𝑖 are not
captured by quaternions but by regular vectors, bearing a hat, such as 𝛿 �̂�𝑖, 𝛿2 �̂�𝑖, 𝛿 �̂�𝑖,
etc. Equations (4.22–4.29) involve standard calculations from Euclidean geometry:
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the more advanced quaternion calculus is only required in the proof given in the
supplementary materials.

Equations (4.22–4.29) suffice to calculate the strain gradients. They can be imple-
mented easily and efficiently using standard libraries for vector and matrix algebra.
These formulas for the first and second gradient of strain are considerably simpler
than those applicable to the discrete strain measures used in earlier work on Discrete
elastic rods [46, 56, 34, 42].

In equations (4.22–4.29), the perturbations to the degrees of freedom such as 𝛿𝒙𝑖
and 𝛿𝜑𝑖 are dummy variables. The first-order variations such as 𝛿𝒕𝑖, 𝛿 �̂�𝑖, must
be represented numerically as linear forms, by storing their coefficients as vectors.
Similarly, the second-order variations such as 𝛿2 𝒕𝑖, 𝛿2 �̂�𝑖, etc. are represented as
quadratic forms, whose coefficients are stored as sparse symmetric matrices; the
reader is referred to [42] for further details on this aspect of implementation. All
these coefficients depend on the current configuration and must be updated whenever
the degrees of freedom 𝑿 or the reference configuration change.

These vectors and symmetric matrices should be stored at an appropriate place in
the data structure representing the Discrete elastic rod. The tensors representing 𝛿𝒕𝑖,
𝛿 �̂�𝑖, 𝛿2 �̂�𝑖 and 𝛿2 �̂�

𝑖 depend on the perturbations 𝛿𝒙𝑖 and 𝛿𝒙𝑖+1 to the nodes adjacent
to a given segment, and therefore best stored in the data structure representing
segments, which have access naturally to the degrees of freedom of the adjacent
nodes. The quantities 𝛿 �̂�𝑖 and 𝛿2 �̂�

𝑖 make use of the twisting angle 𝛿𝜑𝑖 in addition
to the adjacent nodes 𝛿𝒙𝑖 and 𝛿𝒙𝑖+1, and should be stored in the data structure
representing the material frame attached to particular segment. The quantities 𝛿�̂�𝑖,
𝛿𝜿𝑖, 𝛿2 �̂�𝑖 and 𝛿2𝜿𝑖 are best stored in a data structure representing an elastic hinge at
a node, which depends on the material frames at the adjacent segments.

4.4 Constitutive models
The discrete kinematics from Sections 4.2 and 4.3 can be combined with a variety
of constitutive laws to produce discrete numerical models for rods that are elastic,
viscous, visco-elastic, etc.: the procedure has been documented in previous work,
and it is similar to the general approach used in finite-element analysis. Elastic
problems are treated by introducing a strain energy function𝑈 (𝑿), whose gradient
with respect to 𝑿 yields the negative of the discrete elastic forces [46, 42]; while
viscous problems are treated by introducing a discrete Rayleigh potential𝑈 (𝑿, ¤𝑿),
whose gradient with respect to velocities ¤𝑿 yields discrete viscous forces [55, 36,
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56]. More advanced constitutive models such as visco-elastic laws can be treated
by variational constitutive updates of a discrete potential that makes use of the same
discrete deformation measures [42]. In [42], it is emphasized that these different
constitutive models can be implemented independently of the geometric definition of
discrete deformation measure. Using this decoupled approach, it is straightforward
to combine the kinematic element proposed in the present work with constitutive
element from previous work. We illustrate this with the classical, linearly elastic
rod in Section 4.4 (Kirchhoff rod model), and a discrete inextensible ribbon model
in Section 4.4 (Wunderlich model). The latter is a novel application of the Discrete
elastic rod method.

Elastic rods (Kirchhoff model)
The classical, continuous theory of elastic rods uses a strain energy functional
𝑈 [𝜿] =

∫ 𝐿

0 𝐸 (^(1) (𝑠), ^(2) (𝑠), ^(3) (𝑠)) d𝑠, where ^(𝐼) (𝑠) = 𝜿(𝑠) · 𝒅𝐼 (𝑠) are the
components of the rotation gradient in the frame of directors, see equation (4.3).
For an inextensible, linearly elastic rod made of a Hookean material with natural
curvature ^(0) , for instance, the strain energy density is

𝐸 (^(1) (𝑠), ^(2) (𝑠), ^(3) (𝑠)) =
1
2
𝑌 𝐼1 ^

2
(1) +

1
2
𝑌 𝐼2 (^(2) − ^(0))2 +

1
2
` 𝐽 ^2

(3) , (4.30)

where𝑌 and ` are the Young modulus and the shear modulus of the material, 𝐼1 and
𝐼2 are the geometric moments of inertia of the cross-section, and 𝐽 is the torsional
constant.

In the discrete setting, we introduce a strain energy
∑
𝑖𝐸𝑖 (𝜿𝑖) where the sum runs

over all interior nodes 𝑖. The strain energy assigned to an interior node 𝑖 is defined
in terms of the strain energy density as

𝐸𝑖 (𝜿𝑖) = ℓ 𝐸
( 𝜿𝑖
ℓ

)
, (4.31)

(no implicit sum over 𝑖), where ℓ is the undeformed length of the segments for
a uniform mesh. The factor ℓ in the argument of 𝐸 takes care of the fact that
𝜿𝑖 is an integrated quantity, i.e., it is 𝜿𝑖

ℓ
· 𝒆𝐽 and not just 𝜿𝑖 · 𝒆𝐽 that converges

to the continuous strain ^(𝐽) (𝑠); for a non-uniform grid, this ℓ would need to be
replaced with the Voronoi length associated with the interior vertex 𝑖 in undeformed
configuration. The factor ℓ in factor of 𝐸 in equation (4.31) ensures that the discrete
sum

∑
𝑖𝐸𝑖 =

∑
𝑖ℓ 𝐸 converges to the integral

∫ 𝐿

0 𝐸 d𝑠 = 𝑈 [46].

Consider for instance an equilibrium problem with dead forces 𝑭𝑖 on the nodes: it is
governed by the total potential energyΦ(𝑿) defined in terms of 𝑿 = (𝒙0, 𝜑0, . . . , 𝜑𝑁−1, 𝒙𝑁 )
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as

Φ(𝑿) =
𝑁−1∑︁
𝑖=1

𝐸𝑖 (𝜿𝑖 (𝒙𝑖−1, 𝜑
𝑖−1, 𝒙𝑖, 𝜑

𝑖, 𝒙𝑖+1)) −
𝑁∑︁
𝑖=0

𝑭𝑖 · 𝒙𝑖 . (4.32)

This energy is minimized subject to the inextensibility constraints

∀𝑖 ∈ (0, 𝑁 − 1) Y 𝑗 (𝒙 𝑗 , 𝒙 𝑗+1) = 0. (4.33)

In equations (4.32–4.33), the elastic deformation measures 𝜿𝑖 and Y 𝑗 is reconstructed
in terms of the unknown 𝑿 by the method described in Section 4.2, as expressed by
the notation 𝜿𝑖 (𝒙𝑖−1, 𝜑

𝑖−1, 𝒙𝑖, 𝜑
𝑖, 𝒙𝑖+1) and Y 𝑗 (𝒙 𝑗 , 𝒙 𝑗+1).

In the case of dead forces, the first and second variations of the total potential energy
is derived as

𝛿Φ =
∑𝑁−2
𝑖=1

𝜕𝐸𝑖

𝜕𝜿𝑖
· 𝛿𝜿𝑖 −

∑𝑁−1
𝑖=0 𝑭𝑖 · 𝛿𝒙𝑖

𝛿2Φ =
∑𝑁−2
𝑖=1

(
𝛿𝜿𝑖 ·

𝜕2𝐸𝑖

𝜕𝜿2
𝑖

· 𝛿𝜿𝑖 +
𝜕𝐸𝑖

𝜕𝜿𝑖
: 𝛿2𝜿𝑖

)
,

(4.34)

see for instance [42]. Here, 𝜕𝐸𝑖
𝜕𝜿𝑖

and 𝜕2𝐸𝑖
𝜕𝜿2
𝑖

are the internal stress and tangent elastic
stiffness produced by the elastic constitutive model 𝐸𝑖 (𝜿𝑖). The two terms appearing
in the parentheses in the right-hand side of 𝛿2Φ are known as the elastic and
geometric stiffness, respectively. The first and second variations of the strain, 𝛿𝜿𝑖
and 𝛿2𝜿𝑖, are available from Section 4.3: the equilibrium can be solved using
numerical methods that require evaluations of the Hessian of the energy. Note that
the Hessian can be represented as a sparse matrix thanks to the local nature of the
energy contributions 𝐸𝑖 (𝜿𝑖 (𝒙𝑖−1, 𝜑

𝑖−1, 𝒙𝑖, 𝜑
𝑖, 𝒙𝑖+1)) in equation (4.32).

In the applications presented in the forthcoming sections, we find equilibrium con-
figurations by minimizing Φ(𝑿) in equation (4.32) using the sequential quadratic
programming method (SQP) described by [57]; it is an extension of the Newton
method for non-linear optimization problems which can handle the non-linear con-
straints in equation (4.33). It requires the evaluation of the first and second gradient
of the energy Φ, see equation (4.34), and of the first gradient of the constraints that
are available from equation (4.29). We used an in-house implementation of the SQP
method in the C++ language, with matrix inversion done using the SimplicialLDLT
method available from the Eigen library [58].

Inextensible elastic ribbons (Wunderlich model)
Ribbons made up of material that are sensitive to light [10, 22] or temperature
change [59] have been used to design lightweight structures that can be actuated.
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They are easy to fabricate, typically by cutting out a thin sheet of material, and their
thin geometry can turn the small strains produced by actuation into large-amplitude
motion. For this reason, there has been a surge of interest towards mechanical
models for elastic ribbons recently. When the width-to-thickness ratio of a rib-
bon cross-section is sufficiently large, its mid-surface is effectively inextensible.
Sadowsky has proposed a one-dimensional mechanical model for inextensible rib-
bons [3]. Sadowsky model is one-dimensional but differs from classical rod models
in two aspects: one of the two bending modes is inhibited due to the large width-
to-thickness aspect-ratio, and the two remaining twisting and bending modes are
governed by an non-quadratic strain energy potential that effectively captures the
inextensible deformations of the ribbon mid-surface. Sadowsky’s strain energy is
non-convex which can lead to the formation of non-smooth solution representing a
micro-structure [60, 61]; to avoid these difficulties, we use the higher-order model
of Wunderlich that accounts for the dependence of the energy on the longitudinal
gradient of bending and twisting strain [4].

The Wunderlich model has been solved numerically by a continuation method, see
for instance the work of [44]. The continuation method is an extension of the shooting
method that can efficiently track solutions depending on a parameter [62]. It requires
the full boundary-value problem of equilibrium to be specified spelled out, which
is quite impractical in the case of Wunderlich ribbons. A recent and promising
alternative is the high-order method of [50] that starts from linear and quadratic
interpolations of the bending and twisting strains, and treats the center-line position
and the directors as secondary (reconstructed) quantities. In the present work, we
explore an alternative approach, and show that simulations of the Wunderlich model
are possible with limited additional work on top of the generic Discrete elastic rod
framework.

We build on the work of [5] who have shown that the Wunderlich model can be
viewed as a special type of a non-linear elastic rod, see also [63]. Accordingly,
simulations of the Wunderlich model can be achieved using a simple extension
of the Discrete elastic rod model, which we describe now. We first introduce a
geometric model for a discrete inextensible ribbon, in which the inextensibility of
the mid-surface is fully taken into account. We start from a rectangular strip lying in
the plane spanned by (𝒆1, 𝒆3), as shown in Figure 4.3a. Through every node (shown
as black dots in the figure), we pick a folding direction within the plane of the strip
(brown dotted line in the figure); we denote by 𝜋/2 − 𝛾𝑖 the angle of the fold line
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Figure 4.3: A discrete inextensible ribbon: (a) flat configuration and (b) current
(folded) configuration obtained by folding along the generatrices (brown dashed
lines) by an angle \𝑖. By the inextensibility condition, the fold line through vertex
𝒙𝑖 in current configuration lies at the intersection of the adjacent faces, i.e., of the
planes spanned by 𝒅𝑖−1

1 and 𝒅𝑖−1
3 on the one hand and by 𝒅𝑖1 and 𝒅𝑖3 on the other

hand.

relative to the centerline. Next, we fold along each one of these lines by an angle
\𝑖, as shown in Figure 4.3b. We call the resulting surface a discrete inextensible
ribbon. By construction, it is isometric to the original strip.

Let us now introduce the director frames 𝒅𝑖𝐼 following rigidly each one of the faces:
the planar faces are spanned by the directors 𝒅𝑖1 and 𝒅𝑖3. By construction the vector
𝛀𝑖 for the rotation that maps one frame, 𝒅𝑖−1

𝐼 , to the next, 𝒅𝑖𝐼 , see equation (4.20), is
aligned with the fold line. We observe that the unit tangent along the fold direction
is 𝒆3 sin 𝛾𝑖 + 𝒆1 cos 𝛾𝑖 in the flat configuration of the strip; it is therefore mapped to
𝒅𝑖−1

3 sin 𝛾𝑖 + 𝒅𝑖−1
1 cos 𝛾𝑖 = 𝒅𝑖3 sin 𝛾𝑖 + 𝒅𝑖1 cos 𝛾𝑖 in the current configuration. In view

of this, we conclude

𝛀𝑖 =

(
𝒅𝑖−1

3 sin 𝛾𝑖 + 𝒅𝑖−1
1 cos 𝛾𝑖

)
\𝑖 =

(
𝒅𝑖3 sin 𝛾𝑖 + 𝒅𝑖1 cos 𝛾𝑖

)
\𝑖 .

Comparing with equation (4.21), we obtain the discrete deformation measure in
the developable ribbon as 𝜔𝑖,1 = \𝑖 cos 𝛾𝑖 (bending mode), 𝜔𝑖,2 = 0 (inhibited
bending mode) and 𝜔3,𝑖 = 0 (twisting mode). Eliminating \𝑖, we find 𝜔𝑖,2 =

0 and 𝜔𝑖,3
𝜔𝑖,1

= tan 𝛾𝑖, which can be rewritten in terms of the original discrete strain
𝜿𝑖 = (^𝑖,1, ^𝑖,2, ^𝑖,3) with the help of equation (4.18) as

^𝑖,2 = 0
^𝑖,3 = [𝑖 ^𝑖,1 ,

(4.35)

where
[𝑖 = tan 𝛾𝑖 .

The continuous version of the developability conditions is ^2(𝑠) = 0 and ^3(𝑠) =
[(𝑠) ^1(𝑠), where [(𝑠) = tan 𝛾(𝑠) and 𝜋/2−𝛾(𝑠) is the angle between the generatrix
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and the tangent, see for instance [5]. It is remarkable that the discrete developabil-
ity conditions (4.35) are identically satisfied. This is a consequence of the simple
geometric interpretation for the discrete deformation measures introduced in Sec-
tion 4.2.

To simulate inextensible ribbons, we introduce the unknown [𝑖 as an additional
degree of freedom at each one of the interior nodes, and we use in equation (4.32)
a strain energy density directly inspired from that of Wunderlich [5, 44]

𝐸𝑖 (𝜿𝑖, [𝑖−1, [𝑖, [𝑖+1) =
𝐷 𝑤

2 ℓ
^2
𝑖,1 (1 + [

2
𝑖 )2

1
𝑤 [′

𝑖

ln

(
1 + 1

2 [
′
𝑖
𝑤

1 − 1
2 [
′
𝑖
𝑤

)
. (4.36)

In equation (4.36), 𝐷 = 𝑌 ℎ3

12 (1−a2) is the bending modulus from plate theory, ℎ is
the thickness, 𝑤 is the width, and ℓ is the discretization length. The quantity [′

𝑖
is

calculated by a central-difference approximation of the gradient of [,

[′𝑖 =
[𝑖+1 − [𝑖−1

2 ℓ
,

where ℓ is the mesh size. The constraint (4.35)2 is imposed at each node using
the SQP method. Introducing the nodal degrees of freedom [𝑖 together with the
constraint (4.35)2 allows us to work around calculating [𝑖 = ^𝑖,3/^𝑖,1, which is a
division with a potentially small denominator; in addition, this approach warrants
that ^𝑖,3 = 0 whenever ^𝑖,1 = 0, which is necessary for the Wunderlich energy to
remain finite.

It is a feature of the Wunderlich model that [ can take on arbitrary values in intervals
where ^1 vanishes identically. To work around this, we have introduced an artificial
drag on the [𝑖’s between iterations of the solve. When convergence is reached, the
drag force is identically zero.

The discrete potential energy Φ(𝑿) is minimized by the same numerical method as
described in Section 4.4, taking into account the kinematic constraints (4.35) and
the centerline inextensibility (4.33).

4.5 Illustrations
In this section, the Discrete elastic rod model is used to simulate

• a linearly elastic model for an isotropic beam, Section 4.5,

• a linearly elastic model for an anisotropic beam with natural curvature, Sec-
tion 4.5,
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• Sano and Wada’s extensible ribbon model, Section 4.5,

• Wunderlich’s inextensible ribbon model, Section 4.5.

These examples serve to illustrate the capabilities of the model. In addition, com-
parison with reference solutions available from the literature provide a verification
of its predictions.

Euler buckling
We consider Euler buckling for a planar, inextensible elastic rod that is clamped
at one endpoint. We consider two types of loading: either a point-like force 𝑓p at
the endpoint opposite to the clamp, or a force 𝑓d distributed along the length of the
rod. In both cases, the force is applied along the initial axis of the rod, is invariable
(dead loading), and is counted positive when compressive. A sketch is provided in
Figure 4.4.

Mathematically, the equilibria of the rod having bending modulus 𝐵 are the sta-
tionary points of the functional Φ =

∫ 𝐿

0
𝐵
2 \
′2(𝑠) d𝑠 + 𝑓p 𝑥(𝐿) (point load) or

Φ =
∫ 𝐿

0

(
𝐵
2 \
′2(𝑠) + 𝑓d 𝑥(𝑠)

)
d𝑠 (distributed load), subject to the clamping condition

\ (0) = 0. The coordinates of a point on the centerline (𝑥(𝑠), 𝑦(𝑠)) are reconstructed
using the inextensibility condition as 𝑥(𝑠) 𝒆1 + 𝑦(𝑠) 𝒆2 =

∫ 𝑠

0 (cos \ 𝒆1 + sin \ 𝒆2) d𝑠.

The boundary-value equilibrium problem for the Elastica is obtained by the Euler-
Lagrange method as

0 = 𝐵 \′′(𝑠)+sin \ (𝑠)×
{
𝑓p (point-like load)
𝑓d (𝐿 − 𝑠) (distributed load)

\ (0) = 0 \′(𝐿) = 0.

(4.37)
By writing this problem in dimensionless form, one can effectively set the bending
modulus, the length and the load to 𝐵 = 1, 𝐿 = 1, and 𝑓p = 𝑓 p (point-like load) or
𝑓d = 𝑓 d (distributed load), where the dimensionless load is

𝑓 p =
𝑓p

𝐵/𝐿2 𝑓 d =
𝐿 𝑓d

𝐵/𝐿2 . (4.38)

The critical buckling loads are found by solving the linearized version of the buckling
problem (4.37) (linear bifurcation analysis),(

𝑓 p

)
crit

= 𝜋2

4 (point-like load)(
𝑓 d

)
crit

= 7.837 (distributed load)
(4.39)
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Figure 4.4: Buckling of a planar Elastica subject to (a) a point-like force applied
at the endpoint and (b) a distributed force. Comparison of the solutions of the
boundary-value problem (4.37) by a numerical shooting method (dashed curves)
and of the Discrete elastic rod method (solid curves): the scaled coordinates of the
endpoint 𝑠 = 𝐿 are plotted as a function of the dimensionless load. The dotted
vertical line is the first critical load predicted by a linear bifurcation analysis from
equation (4.39).

Numerical simulations of this Euler buckling problem are conducted using the
Discrete elastic rod method, as explained in Section 4.32. Simulations are set up
with 𝐵 = 1, 𝐿 = 1, number of nodes 𝑁 = 100. In view of this we expect to the
buckling loads to be 𝑓d = 𝑓 d 𝑓p = 𝑓 p. The inextensibility constraint is enforced
exactly using SQP. The clamped boundary is enforced by fixing the first and second
nodes as well as the first frame.

The typical simulation time is about 1/10s for each equilibrium on a personal
computer, and the results are shown in Figure 4.4, and compared to that obtained
by solving (4.37) using the bvp4c solver from Matlab. A good agreement on the
position of the endpoint of the rod is found in the entire post-bifurcation regime. In
addition, the onset of bifurcation agrees accurately with the prediction (4.39) from
the linear stability analysis.

Folding of an over-curved ring
A circular elastic ring with length 𝐿 can buckle out of plane if its natural natural
curvature ^(0) does not match the curvature 2𝜋/𝐿 of the circle with length 𝐿. In the
case of an over-curved ring, such that ^(0) > 2 𝜋/𝐿, a buckled shape featuring two
symmetric lobes has been reported [64, 59, 65]. Here, we simulate the buckling of
over-curved rings using the Discrete elastic rod model and compare the results to
the experimental shapes reported by [64].

In the experiments of [64], a commercial slinky spring with a width 𝑤 = 5 mm,
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thickness 𝑡 = 2 mm and length 𝐿 = 314 mm is used; Poisson’s ratio has been
measured as a = 0.41. Note that the aspect-ratio 𝑡/𝑤 = 0.4 is not small. In our
simulations, we use a discrete version of the quadratic strain energy for a linearly
elastic rod having an anisotropic cross-section (𝐼1 ≠ 𝐼2), see equations (4.30–4.32).
We use the elastic moduli reported in the supplement of [64]:

𝑌 𝐼1 = 𝑌
𝑤 𝑡3

12
𝑌 𝐼2 = 𝑌

𝑤3 𝑡

12
` 𝐽 = 𝑌

0.256𝑤 𝑡3

2 (1 + a) . (4.40)

The value 0.256 in the numerator was obtained by [64] from the book of [66], and
applies to the particular commercial Slinky used in their experiments. In the absence
of applied loading, the value of the Young modulus is irrelevant and we set 𝑌 = 1 in
the simulations.

The equilibria of the Discrete elastic rod are calculated numerically for different
values of the dimensionless loading parameter 𝑂 = 2 𝜋 ^(0)/𝐿, with 𝑂 > 1 corre-
sponding to the over-curved case. We use 𝑁 = 400 nodes. We start from a circular
configuration having curvature ^(0) = 2 𝜋/𝐿. The Discrete elastic rod model is
closed into a ring as follows: the first two nodes and the last two nodes are pre-
scribed to 𝒙0 = 𝒙𝑁−1 = 0 and 𝒙1 = 𝒙𝑁 = ℓ 𝒆𝑥 , respectively; the first and last frames
are also fixed, such that 𝒅0

1 = 𝒅𝑁−1
1 = 𝒆𝑦. Next, the over-curvature ^(0) is varied

incrementally. For each value of ^(0) , an equilibrium configuration is sought, and
we extract the minimal distance 𝐷 between pairs of opposite points on the ring. In
Figure 4.5, the scaled distance 𝐷 is plotted as a function of 𝑂. A good agreement
is found with the experiments over the entire range of values of the over-curvature
parameter 𝑂 > 1. The simulations correctly predict a planar, triply covered circular
solution for 𝑂 > 𝑂d ≈ 2.85, as seen in the experiments.

Buckling of a bent and twisted ribbon
We now turn to an effective rod model applicable to thin ribbons. Sano and Wada
[67] have proposed an effective beam model that accounts for the stretchability of
the ribbon having moderate width, thereby improving on Sadowsky’s inextensibility
assumption. A discrete version of their continuous model is of the form (4.32) with
a strain energy per elastic hinge

𝐸𝑖 (^1, ^2, ^3) =
1

2 ℓ

(
𝐴1 ^

2
1 + 𝐴2

(
^2

2 +
^4

3

ℓ2/b2 + ^2
2

)
+ 𝐴3 ^

2
3

)
. (4.41)

Here, ℓ is the uniform segment length in undeformed configuration, 𝐴1 = 𝑌 ℎ 𝑤3/12
and 𝐴2 = 𝑌 ℎ3 𝑤/12 are the initial bending moduli, 𝐴3 = 𝑌 ℎ3 𝑤/[6 (1 + a)] is the
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Figure 4.5: Equilibrium of an over-curved elastic ring. Material and geometric
parameters correspond to the slinky used by [64] (see main text for values). a) Equi-
librium configurations for different values of the over-curvature ratio𝑂. b) Minimal
distance of approach 𝐷 as a function of 𝑂: comparison of Discrete elastic rod sim-
ulations and experiments [64]. The simulations reproduces both the initial buckling
at 𝑂b, and the ‘de-buckling’ into a flat, triply covered ring at 𝑂d.

initial twisting modulus and b2 = (1 − a2) 𝑤4/60 ℎ2. The parameter b is the typical
length-scale where the stretchability of the mid-surface starts to play a role. The
potential 𝐸𝑖 from equation (4.41) is non-quadratic, meaning that the equivalent rod
has non-linear elastic constitutive laws.

The elastic model (4.41) of Sano and Wada is applicable to thin ribbons, for 𝑤 ≫ ℎ.
It is based on kinematic approximations. A refined version of their model has been
obtained very recently by [45], by asymptotic expansion starting from shell theory;
in the latter work, a detailed discussion of the validity of the various models for
thin ribbons can also be found. We do not expect any difficulty in applying the
present numerical model to the ribbon model in [45]. Both the models of Sano and
Wada, and of Audoly and Neukirch improve on Wunderlich model by addressing
the stretchability of the ribbon; unlike the Wunderlich model, however, they ignore
the dependence of the energy on [′, and therefore account less accurately for the
‘conical’ singularities often observed in ribbons [68] as [ varies quickly there.

Following [67], we consider the buckling of a ribbon with length 𝐿 = 𝜋 𝑅 bent
into half a circle, whose ends are twisted in an opposite senses by an angle 𝜙,
see Figure 4.6. Specifically, they identified a snapping instability which occurs
for moderately wide ribbons, when the width 𝑤 < 𝑤∗ is below a threshold 𝑤∗ ≈
1.24
√
𝐿 ℎ, but not for wider ribbons, when𝑤 > 𝑤∗; they showed that their equivalent

rod model can reproduce this instability, as well as its disappearance for larger widths.
In Figure 4.6, we compare the predictions of a Discrete elastic rod model using (4.41)
with the original experiments and simulations from [67]. Our simulations use
𝑁 = 350 vertices each. Our simulation results are in close agreement with both
their experimental and numerical results. In particular, we recover the instability
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Figure 4.6: Equilibria of an extensible ribbon, as captured by Sano and Wada’s
equivalent rod model, see equation (4.41). Top row: equilibrium diagram show-
ing the scaled value of the deflection 𝑦0 at the center of the ribbon as a function
of the twisting angle 𝜙 at the endpoints. Comparison of the experiments (tri-
angles) and simulations (squares) from [67] with simulations using the Discrete
elastic rod model (solid curves and circles). Left column: moderately wide ribbon
(ℎ, 𝑤, 𝑅) = (0.2, 8, 108)mm showing a snapping instability; Right column: wider
ribbon (ℎ, 𝑤, 𝑅) = (0.2, 15, 108)mm, in which the instability is suppressed. Bot-
tom row: smallest eigenvalues of the tangent stiffness matrix, on the same solution
branch shown as shown in the plot immediately above: the presence of an instability
for𝑤 < 𝑤∗ (left column) is confirmed by the fact that the smallest eigenvalue reaches
zero when the instability sets in.

when 𝑤 < 𝑤∗ only.

The elastic Möbius band
An extension of the Discrete elastic rod model that simulates the inextensible ribbon
model of Wunderlich has been described in Section 4.4, see equation (4.36). With
the aim to illustrate and verify this discrete model, we simulate the equilibrium of
a Möbius ribbon, and compare the results to those reported in the seminal paper of
Starostin and van der Heĳden [43]. In our simulations, the inextensible strip is first
bent into a circle, and the endpoints are turned progressively twisted by an angle of
180◦ to provide the correct topology. The final equilibrium shapes are then recorded
for all possible values of the aspect-ratio 𝑤/𝐿. For these final equilibrium shapes,
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Figure 4.7: Simulation of an inextensible Möbius strip with 𝐿 = 1. (a) Equilibrium
width 𝑤 = 1/(2 𝜋), as simulated by the Discrete elastic rod model from Section 4.4
with 𝑁 = 150 nodes. (b) Distribution of bending and twisting: Discrete elastic rod
simulations with 𝑁 = 250 vertices (dashed curves) versus solution of [43] obtained
by numerical shooting (solid curves); the latter have been properly rescaled to reflect
our conventions.

the conditions 𝒙0 = 𝒙𝑁−1 = 0 and 𝒙1 = 𝒙𝑁 = ℓ 𝒆𝑥 hold as earlier, and the orientation
of the terminal material frames are such that 𝒅0

1 = +𝒆𝑦 and 𝒅𝑁−1
1 = −𝒆𝑦.

The equilibrium shape for a particular aspect-ratio 𝑤/𝐿 = 1/(2 𝜋) is shown in
Figure 4.7a, with arc-length 𝐿 = 1, width 𝑤 = 1/(2 𝜋) and 𝑁 = 150 simulation
nodes. A detailed comparison with the results of [43] is provided in Figure 4.7b,
where the scaled bending and twisting strains ^𝑖,1/ℓ and ^𝑖,3/ℓ from the discrete
model with 𝑁 = 250 vertices are compared to the strains ^1(𝑠) and ^3(𝑠) obtained
by [43] using numerical shooting, for different values of the width 𝑤.

4.6 Conclusion
We have presented a new formulation of the Discrete elastic rod model. The
formulation is concise and uses only the minimally necessary degrees of freedom:
the position of the nodes and the angle of twist of the segments between the nodes. It
naturally incorporates the adaptation condition without the need for any constraint,
penalty or Lagrange multiplier. We use bending and twisting deformation measures
that are different from those used in earlier work on Discrete elastic rods, are
equally consistent with their continuum counterparts, and have a simple physical
interpretation in the discrete setting. Consequently, the formulation is versatile in
the sense that it can be combined with a variety of linear and nonlinear as well as
elastic and inelastic constitutive relations. In fact, ribbons can be incorporated as
generalized rods with a nonlinear constitutive model. Similarly, the formulation can
be used both for static and dynamic simulations.

We have presented explicit formulae for the first and second derivatives of the
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deformation measures that eases implementation. We have demonstrated our method
with four examples, and verified our results against prior experimental and theoretical
findings in the literature.

The source code used for the numerical simulation is available through CaltechDATA
at https://data.caltech.edu/records/2147.
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C h a p t e r 5

LEAPING LIQUID CRYSTAL ELASTOMER PLATES

5.1 Introduction
In this chapter, we study the snap-through buckling of plates of liquid crystal elas-
tomers and the applications of this snap-through buckling to leaping-enabled loco-
motion. Soft robotics, where soft and stimuli-responsive materials are incorporated
into robotic devices [69], are of promise for bio-medical and other applications
involving the interactions of robotic devices with humans. A particular challenge
in this direction is locomotion. Crawling and walking has been demonstrated in
soft materials, especially pneumatics [70, 71, 72, 73, 74]. However, there are few
demonstrations of leaping. Despite this, nature is replete with a number of exam-
ples such as grasshoppers [75], frogs [76, 77], and kangaroo rats [78], which utilize
snap-through to enhance jumping behaviors.

Snap-through transitions in soft materials have been explored using gradients in
crosslink density [79], light exposure [80, 19], swelling [81], and pressure [82]. One
particular class of materials capable of generating snap-through is liquid crystalline
elastomers. As discussed in Section 1.2, the thermomechanical response of LCEs
to heat is associated with thermotropic disruption of order, in which the material
undergoes a nematic-to-isotropic transition. Alignment and retention of mesogen
orientation upon polymerization has been utilized to prepare LCEs with distinctive
deformations ranging from uniaxial contraction [7], bending [83], or shape morphing
[84, 85]. While useful in instances such as weight-lifting [86] and gripping or
moving objects [87], thermomechanical deformation of LCE are inherently slow
[88]. Here, we explore a route to bridging the gap between snap-through instabilities
and programmability of LCEs to achieve rapid actuations.

We study LCE laminates with spatial variation in the director [89, 90, 91] and
through-thickness variation in modulus. These materials undergo thermally-induced
mechanical instabilities that lead to leaping of the material to heights of over 200x
the material thickness as a result of a rapid snap-through transition. To elucidate
the mechanics of the stimuli-response, we develop a model based on theory of
inhomogenous plates. The model is then used as a design tool to inform experimental
investigation of variables relating to the material design and geometrical constrains.
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The culmination of this effort is the realization of directional leaping, analogous to
the motility of grasshoppers, facilitated by including “legs” of different lengths.

5.2 Layered liquid crystal elastomer sheets
Plates and sheets demonstrate a variety of strange behaviors, particularly when
under the influence of spontaneous strains and curvatures. Various researchers
[89, 90, 91] demonstrate how a +1 topological defect in LCE patterning can be
actuated to create a conical shape, lifting many times the weight of the sheet. These
systems, however, suffer from a problem of multi-stability with equivalent up and
down snapped configurations. Therefore, when actuating, both modes are equally
favorable. Additionally, once locked into either the up or down configuration, the
energy barrier between each mode is very high. By carefully designing such systems,
we can utilize this energy barrier for locomotion.

One mechanism to utilize this energy is to use laminated sheets of LCEs with
differing material properties to induce a snap-through behavior. Lightly crosslinked
LCEs have a lower Young’s modulus compared to highly crosslinked LCEs, however
they also demonstrate a much higher spontaneous strain relative to that of the highly
crosslinked LCE at a fixed temperature. By layering lightly and highly crosslinked
materials, we can generate and design complex deformation pathways.

We consider the configuration shown in in Figure 5.1D by layering the LCEs in a
low, low, high modulus configuration and placing the high modulus side in contact
with a hot plate. Initially, the side in contact with the hot plate (high modulus)
will contract. Due to the +1 topological defect patterning, the system will contract
radially, preferring a conical shape. Because, initially, only the high modulus side
is a significantly higher temperature than the low modulus side, a spontaneous
curvature will develop simultaneously, biasing the conical shape to one side. As
heat saturates the sheet, the spontaneous strains on the lightly crosslinked side will
"pull" harder than the highly crosslinked side, biasing curvature in the opposite
direction. Given a sufficiently high inverting curvature, the sheet will experience a
rapid inversion through snap-through.

This system is explored theoretically and computationally in the following sec-
tions with experimental collaboration and validation by Hebner et al. Their work,
particularly the material characterization, is given in more detail in Appendix A.3.
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(a) (b)

(f)

(e)

(d)

(c)

Figure 5.1: Leaping LCEs. (A) The birefringence associated with spatial variation
of the nematic director described as a +1 topological defect is viewed in an LCE
placed between crossed polarizers. (B) The nematic director in the LCE films rotates
concentrically around a central point. (C) The LCE were prepared by free radical
chain transfer polymerization between the liquid crystalline monomer (C6M) and
dithiol (benzenedimethanethiol, BDMT). (D) The LCE elements were prepared by
stacking patterned LCEs to create laminates with variation of modulus through the
thickness. The total thickness of the LCE laminate was 90 mm. (E) Upon heating,
the laminated LCEs leap from the hot surface.

5.3 Model development and validation
We develop a model based upon the Föppl-von Kármán plate theory coupled to heat
transfer. Briefly, we compute the temperature distribution through the thickness
at each time by solving the heat equation, and the mechanical equilibrium using
the Föppl-von Kármán plate theory with thermally induced spontaneous in-plane
strain 𝝐𝑚 and spontaneous curvature 𝜿𝑚. These, as well ast he effective in-plane
and bending modulus of the sheet, are computed from 3D elasticity with thermal
strain 𝜖𝛼𝛽 by enforcing equilibrium through the thickness of the film and shown in
Table 5.1. The total strain energy of the system is written in Equation 5.1 where
x = {𝑥1, 𝑥2}, is an element of the flat reference configuration, u = {𝑢1, 𝑢2} is the
in-plane displacement, 𝑤 is the out-of-plane displacement, 𝝐𝑚 is the spontaneous
in-plane strain, and 𝜿𝑚 is the spontaneous bending:

E =

∫
Ω

(
𝐶𝑊

(
1
2

(
∇u(x) + ∇u(x)𝑇

)
+ 1

2
∇𝑤(x) ⊗ ∇𝑤(x) − 𝝐𝑚 (x)

)
+ 𝐵𝑊 (∇2𝑤(x) − 𝜿𝑚 (𝑥))

)
𝑑𝑎 ,

(5.1)
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where 𝐶 and 𝐵, are the stretching and bending moduli, respectively and

𝑊 (𝝃) = 1
2(1 − a2)

(
atr(𝝃)2 + (1 − a)tr

(
𝝃𝑇𝝃

))
. (5.2)

Note that the Föppl-von Kármán plate theory couples the out-of-plane displacement
with the in-plane strain to account for higher order effects of plate deformations, and
this coupling is critical to the model. We compute the equilibrium configuration at
each time and infer the snap-through as a loss of stability of the equilibrium. Typical
results are shown in Figure 5.2E which plots the curvature at the center of the sheet
as a function of time, and the insets show the shape.

In-Plane Bending
Constitutive
Relation

𝑁𝛼𝛽 = 𝐶 (𝜖𝛼𝛽 − 𝜖𝑚𝛼𝛽) 𝑀𝛼𝛽 = 𝐵(^𝛼𝛽 − ^𝑚𝛼𝛽)

Modulus 𝐶 =M0(𝐸) 𝐵 =M2(𝐸) − M
1 (𝐸)2
M0 (𝐸)

Spontaneous
Strain and
Curvature

𝜖𝑚
𝛼𝛽

=
M0 (𝐸𝜖𝛼𝛽)
M0 (𝐸) ^𝑚

𝛼𝛽
= 1

𝐵

(
M1(𝐸𝜖𝛼𝛽) −

M1 (𝐸)M0 (𝐸𝜖𝛼𝛽)
M0 (𝐸)

)
Table 5.1: Equations used to describe evolution of in-plane and bending strain as a
function of modulus. Note,M 𝑝 ( 𝑓 ) =

∫ ℎ/2
−ℎ/2 𝑧

𝑝 𝑓 (𝑧)𝑑𝑧 is the p-th moment through
the thickness.

The model predicts that as the LCE laminate is heated from the bottom with the
high-modulus side in contact with the surface, positive curvature initially develops.
Simultaneously, the system will contract due to the evolution of 𝜖𝛼𝛽, forming an
energy barrier between the up and down solution variants and resulting in a bifurca-
tion. After initial development of positive curvature, the evolution of strain within
the material causes a rapid change to net negative curvature. However, as shown
in the series of simulations in Figure 5.2E, the configuration of the LCE remains
locked into a physical deformation with positive curvature. When a sufficiently high
magnitude of negative spontaneous curvature is achieved, the positive curvature
solution in the model becomes unstable and the LCE inverts via snap-through to a
negative curvature solution, at which point the simulation shows the physical defor-
mation of the LCE into negative curvature. This rapid inversion in curvature is the
origin of the leaping motion. Explicit analysis of the energy conversion confirms
there is sufficient energy to result in leaping. This scenario presents an interesting
method of both inducing snap-through of a free-standing structure as well as having
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a thermally driven shape bifurcation with directional dependence. The experimental
observations parallel the computational results (Figure 5.2C) thereby validating the
model.

Next, the simulation of the natural in-plane strain and curvature is done for the
configuration in which the high modulus side is facing upward. Like the previous
scenario, the system contracts monotonically as heat saturates through the thickness
of the plate. As the system reaches a constant temperature, the value of in-plane strain
reaches a constant value. However, in this case, the coupling of the strain generation
through the thickness with evolution of temperature does not result in a bifurcation,
so no curvature inversion occurs and there is no instability. This again parallels
the experiments in (Figure 5.2D), further validating the model. Ultimately, when
the evolution of curvature is mapped with the simulated deformation of the LCE
laminates as in Figure 5.2E, it becomes plainly evident that snap-through behavior
is dependent on the initial placement of the LCE laminates. For all subsequent
investigation, only the configuration with the high-modulus side in contact with the
hot surface is considered.

5.4 Modeling of active, laminated structures
We model the transient behavior of the sheet up until the point of snap-through.
During this period, the sheet deforms slowly in response to changes in temperature
distribution and therefore inertial effects are negligible. Further, heat transfer is
slow compared to mechanical time scales, and therefore we assume that the body is
in mechanical equilibrium at each instant of time. We obtain the temperature profile
by solving the heat equation assuming a set temperature on the bottom side and an
insulated boundary on the top. The temperature distribution through the thickness
gives rise to a spontaneous strain and curvature in the sheet. We obtain these by
imposing equilibrium (balance of force and moment) across the cross-section. Given
the spontaneous strain and curvature, we use a Föppl-von Kármán plate model to
calculate the equilibrium shape, and then study the stability of the equilibrium shape
to determine the instant of snap-through.

Evolution of strain
We develop a model for plates with anisotropic cross-sections in the presence of
spontaneous strains. The book by Reddy [92] presents an excellent introduction to
modeling anisotropic plates, particularly those comprised of laminate composites.
We assume a plane state of stress in the sheet, and therefore the Hooke’s law may
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be written as

𝜎𝑠𝛼𝛽 (𝑧) =
𝐸 (𝑧)

1 − a2

(
a𝜖 𝑠𝛾𝛾 (𝑧)𝛿𝛼𝛽 + (1 − a)𝜖 𝑠𝛼𝛽 (𝑧)

)
= 𝐸 (𝑧) 𝑓𝛼𝛽𝛾𝛿𝜖 𝑠𝛾𝛿 (𝑧) , (5.3)

where 𝑧 is the variable through the thickness, the Young’s modulus 𝐸 (𝑧) varies
throug hthe thickness while the Poisson’s relation a is uniform. This allows us to
write the Hooke’s law in the compact form of the second equality. We make the
usual ansatz that the through-thickness strain takes the form

𝜖 𝑠𝛼𝛽 (𝑧) = ^𝛼𝛽 (𝑧 − 𝑧0) + 𝜖𝛼𝛽 − 𝜖𝛼𝛽 (𝑧) , (5.4)

where ^𝛼𝛽 is the apparent curvature, 𝑧0 is the location of the neural axis, 𝜖𝛼𝛽 is the
in-plane strain, and 𝜖𝛼𝛽 (𝑧) is the spontaneous strain due to the local temperature
profile. The traction can be written as

𝑁𝛼𝛽 =

∫ ℎ/2

−ℎ/2
𝜎𝑠𝛼𝛽 (𝑧)𝑑𝑧 =

∫ ℎ/2

−ℎ/2
𝐸 (𝑧) 𝑓𝛼𝛽𝛾𝛿

(
^𝛾𝛿 + 𝜖𝛾𝛿 − 𝜖𝛾𝛿 (𝑧)

)
𝑑𝑧

= 𝑓𝛼𝛽𝛾𝛿

(
^𝛾𝛿

(
M1(𝐸) − 𝑧0M0(𝐸)

)
+ 𝜖𝛾𝛿M0(𝐸) −M0(𝐸𝜖𝛾𝛿)

)
.

Setting 𝑧0 =
M1 (𝐸)
M0 (𝐸) , we get

𝑁𝛼𝛽 = 𝐶 𝑓𝛼𝛽𝛾𝛿 (𝜖𝛾𝛿 − 𝜖𝑚𝛾𝛿) , (5.5)

where the effective in-plane modulus is given by 𝐶 =M0(𝐸) and the spontaneous
effective in-plane strain is given by 𝜖𝑚

𝛼𝛽
=M0(𝐸𝜖𝛼𝛽).

The moment is given by

𝑀𝛼𝛽 =

∫ ℎ/2

−ℎ/2
𝑧𝜎𝑠𝛼𝛽 (𝑧)𝑑𝑧 =

∫ ℎ/2

−ℎ/2
𝑧𝐸 (𝑧) 𝑓𝛼𝛽𝛾𝛿

(
^𝛾𝛿 (𝑧 − 𝑧0) + 𝜖𝛾𝛿 − 𝜖𝛾𝛿 (𝑧)

)
𝑑𝑧

= 𝑓𝛼𝛽𝛾𝛿

(
^𝛾𝛿

(
M2(𝐸) − 𝑧0M1(𝐸)

)
+ 𝜖𝛾𝛿M1(𝐸) −M1(𝐸𝜖𝛾𝛿)

)
= 𝑓𝛼𝛽𝛾𝛿

(
^𝛾𝛿

(
M2(𝐸) − M

1(𝐸)2
M0(𝐸)

)
+ 𝜖𝛾𝛿M1(𝐸) −M1(𝐸𝜖𝛾𝛿)

)
.

Making the assumption that 𝜖𝛾𝛿 ≈ 𝜖𝑚𝛾𝛿, we have

𝑀𝛼𝛽 = 𝑓𝛼𝛽𝛾𝛿

(
^𝛾𝛿

(
M2(𝐸) − M

1(𝐸)2
M0(𝐸)

)
+
M0(𝐸𝜖𝛾𝛿)M1(𝐸)

M1(𝐸)
−M1(𝐸𝜖𝛾𝛿)

)
.

Defining 𝐵 =M2(𝐸)−M
1 (𝐸)2
M0 (𝐸) and ^𝑚

𝛾𝛿
= 1

𝐵

(
M1(𝐸𝜖𝛾𝛿) −

M0 (𝐸𝜖𝛾𝛿)M1 (𝐸)
M1 (𝐸)

)
, we have

𝑀𝛼𝛽 = 𝐵 𝑓𝛼𝛽𝛾𝛿 (^𝛾𝛿 − ^𝑚𝛾𝛿) . (5.6)



70

These results allow for calculation of the evolution of spontaneous in-plane and
bending strain relative to the modulus as described in Table 5.1. Given the relations
betwee strains, stresses, and curvatures, we can then construct a Föppl-von Kármán
energy of the form

E =

∫
Ω

(𝐶𝑊 (𝝐 − 𝝐𝑚) + 𝐵𝑊 (𝜿 − 𝜿𝑚)) 𝑑𝐴 ,

where 𝝐 = 1
2
(
∇u(x) + ∇u(x)𝑇

)
+ 1

2∇𝑤(x) ⊗ ∇𝑤(x), 𝜿 = ∇2𝑤(x), and 𝐶, 𝐵, 𝝐𝑚, 𝜿𝑚
are as defined in the previous work. In this formulation, u(𝑥) ∈ R2 is the in-plane
deformation of the neutral plane and 𝑤(𝑥) ∈ R is the out of plane deformation. 𝑊 is
the normalized strain energy funciton consistent with the plane stress approximation.
We take

𝑊 (𝝐) = 1
2(1 − a2)

(
a𝜖𝛼𝛼𝜖𝛽𝛽 + (1 − a)𝜖𝛼𝛽𝜖𝛼𝛽

)
.

Uniform case
As a demonstration of the consistency of the model, consider the case where we
have zero thermal stresses (𝜖𝛼𝛽 = 0) and the Young’s Modulus is constant 𝐸 (𝑧) = 𝐸 .
We then have that 𝐶 = ℎ𝐸 , 𝐵 = ℎ3

12𝐸 , 𝝐𝑚 = 0, and 𝜿𝑚 = 0. We then see that the
previous equation condenses to the standard Föppl-von Kármán plate energy of

E𝐹𝑣𝐾 =

∫
Ω

(
ℎ𝐸𝑊

(
1
2

(
∇u(x) + ∇u(x)𝑇

)
+ 1

2
∇𝑤(x) ⊗ ∇𝑤(x)

)
+ ℎ

3𝐸

12
𝑊 (∇2𝑤(x))

)
𝑑𝐴 .

(5.7)

Non-dimensionalization
We non-dimensionalize the problem. Let 𝐿 be a characteristic macroscopic length
scale (i.e. the side length of the sample). We then have

ℎ̄ =
ℎ

𝐿
, x̄ =

x
𝐿
, ū =

u
𝐿
, �̄� =

𝑤

𝐿
, Ω̄ =

Ω

𝐿2 . (5.8)

Using the chain rule on the gradients, we have

∇u = ∇(𝐿ū) = ∇̄ū

∇𝑤 = ∇(𝐿�̄�) = ∇̄�̄�

∇2𝑤 = ∇(∇̄�̄�) = 1
𝐿
∇̄2�̄� ,

where ∇̄ is the gradient with respect to the non-dimensionalized coordinates x̄.
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Plugging this in, we have

E =

∫
Ω

(𝐶𝑊 (𝝐 − 𝝐𝑚) + 𝐵𝑊 (𝜿 − 𝜿𝑚)) 𝑑𝐴

=

∫
Ω̄

(
𝐶𝑊 (𝝐 − 𝝐𝑚) + 𝐵𝑊

(
1
𝐿
�̄� − 𝜿𝑚

))
𝐿2𝑑 �̄� ,

where 𝝐 = 1
2
(
∇̄ū + ∇̄ū𝑇

)
+ 1

2 ∇̄�̄� ⊗ ∇̄�̄� and �̄� = ∇̄2�̄�. Because 𝑊 is a quadratic
form,𝑊 (𝛼F) = 𝛼2𝑊 (F) for all 𝛼 ∈ R. Defining �̄� = 𝐿𝜿𝑚, we have

E =

∫
Ω̄

(
𝐶𝑊 (𝝐 − 𝝐𝑚) +

𝐵

𝐿2𝑊 ( �̄� − �̄�𝑚)
)
𝐿2𝑑 �̄�

= 𝐿2𝐶

∫
Ω̄

(
𝑊 (𝝐 − 𝝐𝑚) +

𝐵

𝐶𝐿2𝑊 ( �̄� − �̄�𝑚)
)
𝑑 �̄� .

This allows us to rescale our problem to a unit scale for numerical stability. Addi-
tionally, we obtain a non-dimensionalized form of the energy as

Ē =
E
𝐿2𝐶

=

∫
Ω̄

(
𝑊 (𝝐 − 𝝐𝑚) + �̄�𝑊 ( �̄� − �̄�𝑚)

)
𝑑 �̄� , (5.9)

where �̄� = 𝐵

𝐶𝐿2 is the normalized bending modulus. Minimizing this elastic energy
yields equilibrium solutions; but first, we have to obtain the temperature distribution
through the thickness.

Heat equation and boundary conditions
We obtain the temperature distribution through the thickness, and its evolution by
solving the following heat equation and boundary conditions.

𝜕𝑇

𝜕𝑡
(𝑧, 𝑡) = 𝐷𝜕

2𝑇

𝜕𝑧2 (𝑧, 𝑡) ,

𝑇

(
−ℎ

2
, 𝑡

)
= 𝑇𝑙 ,

𝜕𝑇

𝜕𝑧

(
ℎ

2
, 𝑡

)
= 0 ,

𝑇 (𝑧, 0) = 𝑇0 .

We solve the above system using the pdepe routine in Matlab to obtain 𝑇 (𝑧, 𝑡). This
result can be used in combination with the strain as a function of temperature for
different combinations of limated films. For example, with two laminated films
(both of height ℎ/2), we have
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𝜖𝛼𝛽 (Δ𝑇, 𝑧) =

𝜖1
𝛼𝛽
(Δ𝑇), 𝑧 ∈ (0, ℎ/2)

𝜖2
𝛼𝛽
(Δ𝑇), 𝑧 ∈ (−ℎ/2, 0) ,

where 𝜖1
𝛼𝛽
(Δ𝑇) and 𝜖2

𝛼𝛽
(Δ𝑇) are the (experimentally measured) strain functions for

each of the individual laminates. For any given time, we can find the spontaneous
strain through the thickness as

𝜖𝛼𝛽 (𝑧) = 𝜖𝛼𝛽 (𝑇 (𝑧, 𝑡) − 𝑇0, 𝑧) , (5.10)

where we suppress the explicit dependence on 𝑡. Note that this term also encapsulates
the radial nature of the patterning on the LCE sheet.

Augmented lagrangian
Having obtained the temperature distribution and the resulting spontaneous stretch
and curvature, we seek to study the equilibria associated with the energy (5.9) to
obtain the shape of the sheet. This is non-trivial due to the presence of the second
derivative ∇∇𝑤; so we use an augmented Lagrangian method. We write the strain
energy (5.9) compactly as

𝑈 [u, 𝑤] =
∫
Ω

𝑢(u,∇u, 𝑤,∇𝑤,∇2𝑤)𝑑𝐴 .

In general, second derivatives are challenging in a finite element formulation due
to discontinuities in the derivatives at the boundaries of each element, requiring C1

shape functions. This makes it so that the space of finite element shape functions
is ill suited to solving these problems. There are other approaches, such as using
Hermitian elements [93] or specialized shape functions that are tailored to the
physics of the problem. A description of such elements can be found in [94].

By utilizing augmented Lagrangians, we can utilize traditional finite element for-
mulations and packages without significant modification to solve problems with
constraints or, in our case, incorporate higher order derivatives into the energy. The
idea behind this method is to relax the space of functions where we look for solu-
tions to be outside of the constrained set then, by iterating, we satisfy the constraint
more and more until a satisfactory point. This is similar to the approach of "mixed
elements" in the Mindlin-Reissner plate theory, as described in [94], with an added
quadratic relaxation term in the energy.
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In this work, we will use the augmented Lagrangian formulation applied to the Föppl-
von Kármán plate model find energy minimizers. We introduce a new function 𝝃

which we constrain as 𝝃 = ∇𝑤.

We enforce this constraint with an augmented Lagrangian written as

L[u, 𝑤, 𝝃, 𝝀] =
∫
Ω

𝑢(u,∇u, 𝑤,∇𝑤,∇𝝃)𝑑𝐴−
∫
Ω

𝝀 · (𝝃−∇𝑤)𝑑𝐴+ `
2

∫
Ω

|𝝃−∇𝑤 |2𝑑𝐴 ,

where we must also solve for the contribution of the Lagrange multiplier 𝝀. The weak
form of this Lagrangian is found by taking variations and solving for 𝛿L[u, 𝑤, 𝝃, 𝝀] =
0. Taking this variation, we have

𝛿L[u, 𝑤, 𝝃, 𝝀] =
∫
Ω

(
𝜕𝑢

𝜕u · 𝛿u +
𝜕𝑢

𝜕∇u · ∇𝛿u +
𝜕𝑢

𝜕𝑤
· 𝛿𝑤 + 𝜕𝑢

𝜕∇𝑤 · ∇𝛿𝑤 +
𝜕𝑢

𝜕∇∇𝑤 · ∇𝛿𝝃
)
𝑑𝐴

−
∫
Ω

𝛿𝝀 · (𝝃 − ∇𝑤)𝑑𝐴 −
∫
Ω

𝝀 · (𝛿b − ∇𝛿𝑤)𝑑𝐴

+ `
∫
Ω

(𝝃 − ∇𝑤) · (𝛿𝝃 − ∇𝛿𝑤)𝑑𝐴 ,

where 𝛿u, 𝛿𝑤, 𝛿𝝃, 𝛿𝝀 are variations with respect to their respective variables. Noting
that each of these variations are independent from each other, we note that this can
be separated into a set of equations as ∫

Ω

(
𝜕𝑢

𝜕u · 𝛿u +
𝜕𝑢

𝜕∇u · ∇𝛿u
)
𝑑𝐴 = 0∫

Ω

(
𝜕𝑢

𝜕𝑤
· 𝛿𝑤 + 𝜕𝑢

𝜕∇𝑤 · ∇𝛿𝑤 + 𝝀 · ∇𝛿𝑤 − `(𝝃 − ∇𝑤) · ∇𝛿𝑤
)
𝑑𝐴 = 0∫

Ω

(
𝜕𝑢

𝜕∇∇𝑤 · ∇𝛿𝝃 − 𝝀 · 𝛿𝝃 + `(𝝃 − ∇𝑤) · 𝛿𝝃
)
𝑑𝐴 = 0

−
∫
Ω

𝛿𝝀 · (𝝃 − ∇𝑤) 𝑑𝐴 = 0 ,

It can be seen that the first three equations are the equilibrium formulation and
the final is the constraint satisfaction. In the augmented Lagrangian formulation,
finding solutions to these equations is equivalent to finding extrema to the original
optimization problem. One aspect to be aware of is that the conversion of a con-
strained optimization problem to an augmented Lagrangian problem comes with
the caveat that minimizers of the original problem can be converted to saddle point
problems in this scheme.

Following the standard finite element formulation, we expand both the function and
its corresponding variations with Galerkin projections as
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u𝑝 (x) =
∑︁
𝑖

u𝑖𝑁𝑢𝑖 (x) , 𝑤𝑝 (x) =
∑︁
𝑖

𝑤𝑖𝑁𝑤𝑖 (x) ,

𝝀𝑝 (x) =
∑︁
𝑖

𝝀𝑖𝑁_𝑖 (x) , 𝝃 𝑝 (x) =
∑︁
𝑖

𝝃𝑖𝑁b
𝑖
(x) ,

where 𝑁 (·)
𝑖

are the shape functions with compact support. We use 2nd order shape
functions in u and first order for all the rest. The finite element scheme is imple-
mented in Deal.II, a finite element library for C++ [95]. The zero is found using
Newton-Raphson iterations where the Hessian is calculated explicitly using second
variations of the augmented Lagrangian.

Calculating critical curvatures
We start at the flat shape when the temperature distribution is uniform. At each
subsequent time step, we compute the temperature distribution and use it obtain
the spontaneous strain and curvature distribution. We use these to compute the
new equilibrium shape using the previous shape as an initial guess. This leads to
a smooth evolution until system loses stability. This is seen when the Newton-
Raphson iteration fails to converge or when the solution jumps significantly. We
can then calculate the shape of the snapped configuration. This method provides
the verification and demonstration of snap-through as seen in Figure 2E. In order to
calculate the relationship between a particular fixed value of in-plane strain and the
spontaneous curvature necessary to cause inversion, we calculate the configuration
for that fixed value of in-plane strain in the absence of any spontaneous curvature.
The inverting curvature is then slowly increased, again leading to smooth deforma-
tions, until the Newton-Raphson iteration fails to converge or the solution jumps
significantly. At this point, we calculate shape of the snapped configuration and
tabulate the critical curvature necessary for inversion as well as the difference in
stored strain energies before and after the snap-through. By repeating this process
for various values of in-plane strain, we can characterize the relationship between
inplane strain and the critical curvature necessary for inversion. This method is used
for calculating the results in Figures 3B,C and 4A,B.

Jump height
To estimate the height that the sheet will jomp off the table, we assume that all
of the energy released in the snap-through is converted to gravitational potential
energy. Calculated in the non-dimensional scheme, the snap-through releases some
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ΔĒ. This can be converted to a dimensional energy as ΔE = 𝐿2𝐶ΔĒ, where the
non-dimensionalization is done as above. We then equate the released energy to the
gravitational potential energy as

ΔE = 𝑚𝑔𝑧 ,

where 𝑧 is the estimated jump height. Rearranging, we have

𝑧 =
𝐿2𝐶

𝐿2ℎ𝜌𝑔
ΔĒ =

𝐶

𝜌𝑔ℎ
ΔĒ ,

where we take 𝑚 = 𝜌𝐿2ℎ.

Parameter Value
𝐶 1.053 ∗ 103 mPa
ℎ 90 `𝑚
𝜌 1.2 𝑔/𝑐𝑚3

𝑔 9.8𝑚/𝑠2

ΔĒ 2.0 ∗ 10−4

Table 5.2: Parameters used for calculating the jump heigh of the LCE sheet.

Substituting values from the simulations, we get 𝑧 ≈ 20 𝑐𝑚. Interestingly, it seems
that regardless of the macroscopic dimension of the system, the jump height is the
same. This qualitatively matches the behavior of the experimental system. Note that
in reality, there are dissipative processes that reduce the jump height. Some of these
include dissipation within the material, non-ideal heat transfer, liftoff, and kinetic
energy from non-rigid body effects; therefore, this solution should be considered an
upper bound on the jump height.

Computational results
The results of combining the discussions in the above sections can be found in
Figure 5.2. Results are shown for when both the high modulus side is in contact
with the hot plate (blue, Top Up) and when the low modulus side is in contact
(orange, Top Down). Using the solution to the heat equation and the spontaneous
strains from Figure 5.2B, we can calculate the effective spontaneous strains and
curvatures as shown in Figures 5.2E,F, respectively. The spontaneous strains follow
a similar deformation pathway; however, the spontaneous curvatures demonstrate
a different behavior. When the high modulus side is placed on the hot plate, the
curvature initially develops in one direction, then inverts as heat saturates the sheet.
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Figure 5.2: Material properties and thermomechanical response. (A) Stress-strain
curves for uniaxially aligned LCEs measured parallel (solid lines) and perpendicular
(dashed lines) to nematic director for high modulus (black) and low modulus (red)
LCEs. Strain was applied at 5%/min. (B) Thermomechanical response of uniaxially
aligned high (black) and low (red) modulus LCEs as LCE elements were held at
a constant force of 0.0005 N and temperature was increased at 5°C/min. Overlaid
sequence of images from high-speed recording of the response of the LCE laminates
when the (C) high-modulus side or (D) low-modulus side was in contact with the
hot surface. (E) Evolution of curvature in the simulated LCEs for the material
parameters used in experiments in the cases the high modulus material is placed
downward on the hot surface (blue) and when high modulus side is up (orange).

This behavior is not seen when the high modulus side is placed down, indicating
that no snap-through will be seen. This behavior is confirmed in the experimental
findings as the sheet only jumps when the high modulus side is placed down. We
also calculate the quasi-static equilibrium configurations, as shown in the inset
figures of Figure 5.2F, which demonstrate the initial transient behavior as well as
the snap-through deformation.

5.5 Theory-led experimental examination of material and geometric variables
Equipped with a validated model, we consider other geometric variations of the
system. One interesting adjustment is the association of the location of the point
defect in the film geometry (Figure 5.3A). The model predicts that as the defect center
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Figure 5.3: Spatial variation in patterning. (A) The central point of the topological
defect was offset from the center of the square films. (B,C) Model predictions
indicate that the critical curvature and energy released will decrease by offsetting
the center point of the director profile relative to the geometric center of the film.
The equivalent laminates were prepared experimentally, shown in (D,E,F) as viewed
between crossed polarizers for 0.1 offset, 0.2 offset, and 0.3 offset, respectively.
Materials were subjected to heat and high-speed images (G,H,I) were captured of
the stimuli-response of the LCE patterns in (D-F), respectively.

is shifted away from the center of the laminate, the films will still undergo snap-
through. However, as the defect is shifted further from the center of the laminate, the
model predicted that the critical curvature required for snap-through would decrease
(Figure 5.3B), resulting in less energy being dissipated in the snap-through event
(Figure 5.3C). To test these results experimentally, we prepared LCE laminates as
described in Figure 5.1D but in films where the point defect was offset from the center
of the film (POM images in Figure 5.3D-F). The manufacturing and characterization
procedure can be found in more detail in Appendix A.3. Upon actuating these
materials, we find that the offset results in the snap-through deformation occurring
at an angle, rather than the direct downward motion seen in the initial experiments.
Therefore, the defect is shifted further from the center of the film, the amount of
energy is not only decreased as predicted by the model, but also dissipated in ways
that are not constructive to leaping. We see this manifest experimentally as leaping
height decreases from 2 cm (0 offset, Figure 5.1), to 4 mm (0.1 offset, Figure 5.3G),
to 1.5 mm (0.2 offset, Figure 5.3H), to no leaping (0.3 offset, Figure 5.3I), confirming
that the optimal location of the defect center for maximum leaping height is, in fact,
in the center of the material.
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A second consideration is the preparation of LCE laminates with variation in the
thickness. Evaluating this with our computational model, we find that increasing the
thickness of the plate decreases the critical curvature for snap-through (Figure 5.4A),
elucidating the trend that a thicker sheet penalizes the bending energy more than
thin sheets. As a result, the sheet minimization of the bending energy causes the
snap-through at smaller natural curvatures. The energy released in snap-through
is not as straight-forward (Figure 5.4B). At small in-plane strains, a thinner sheet
releases more energy than a thick sheet at snap-through. This is, in part, because
the snap-through for thicker sheets happens at a reduced natural curvature. At
some point, the energy of the thicker plates becomes higher. Consequently, one can
control the energy release at snap-through by tailoring the in-plane strain and the
thickness of the sheet. However, control of the physical response resulting from
the snap-through is not trivial, as there will also be considerations such as energy
dissipation in the various cases. Exploring the complication of effects relating to
thickness and modulus grading experimentally, we fabricate LCEs with variation
in the layering of the two material compositions. We see that by introducing more
high modulus material to an LCE with equivalent overall thickness to the original
laminates, leaping still occurs, but with significantly reduced height (Figure 5.4C).
When total thickness is reduced and there is equivalent depth of high and low
modulus material incorporated through the cross-section, we observe a slightly
slower snap-through with no leaping (Figure 5.4D). When thickness is increased
by adding an additional low modulus layer, we see rapid snap through followed by
slow deformation to the final stable state (Figure 5.3E). These results confirm the
complexity of the snap-through phenomenon in the LCEs relative to the material
thickness and grading of modulus.

5.6 Directional LCE leaping
With fundamental understanding of the snap-through mechanism produced in these
materials, we sought to introduce directional leaping to mimic the locomotion of
organisms that utilize stored elastic energy. Taking a bio-inspired approach, we
fabricated materials with “legs” that are longer on one edge of the material than
the other (Figure 5.5A,B), giving the material a biased launching platform. The
longer back legs offer a higher point of contact than the shorter back legs, causing
the snap-through force to lift the material at an angle as depicted in Figure 5.5D.
The angled snap-through resulted in leaping to the left as shown in Figure 5.5C,
and gives the LCE the ability to jump a lateral distance of 10 mm as compared to
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Figure 5.4: Through-thickness variation. (A) The critical curvature and (B) energy
released in the snap-through event is predicted for LCE laminates with varying
thickness-to-width as a function of in-plane strain. A schematic of each of three
laminate variations and corresponding high-speed imagery of response is shown for
variations of thickness and modulus gradient by combining (C) two high and one
low modulus film, (D) one low modulus film and one high modulus film, and (E)
three low modulus films and one high modulus film.

the original material that is confined to approximately 2 mm. We further explored
the dependence of angle and leg length in relation to jumping ability and, much
like defect offsets and layer variation, found that energy dissipation and curvature
biases are extremely sensitive. If the legs are too long, the material favors initial
deformation to the downward stable state, likely due to lack of surface contact on the
edges to allow for upward curvature first (Figure 5.5F). If the angle is too steep, but
surface contact is allowed, snap-through occurs but only leaves the surface on the
side in contact (Figure 5.5G). Figure 5.5H shows a combination of moderate angle
with long legs on one side, resulting in snap-through but immediate conversion
to the second stable state with no leaping. Thus, we confirm that through careful
balance of biased launch platform and the previously discussed material properties,
bio-inspired directional leaping is feasible and effective.



80

Upward
Edge
Motion

Downward
Force

Time

(A) (B)

(D)
(C)

(E)

(F)

(G)

(H)

Figure 5.5: Leaping forward. (A) To facilitate directionality, the LCE laminate
was prepared with legs. (B) When the legs are offset in length, the model predicts
that the LCE laminate will directionally leap. (C) The LCE laminate was prepared
with adhered legs. (D) The trajectory of the leaping of the LCE laminate with
direct contact (red squares) is contrasted to that trajectory of the LCE laminate with
legs (black circles). (E) Overlaid time-lapse images of the LCE with offset leaping
direction upon exposure to heat. The lateral change was nearly 1 cm. (F,G,H) The
leaping motion of the LCE laminates is dependent on the difference in leg height.
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5.7 Conclusion
We have demonstrated the ability to generate leaping as a result of thermally-induced
snap through in LCEs that is dependent upon a modulus discrepancy through the
thickness of the material. We have shown simulation of the snap-through using
theoretical considerations to elucidate strain and energy profiles associated with this
behavior. Due to a delicate dissipation of energy upon snap through, the leaping
phenomenon has been shown to be relatively restricted by the physical material
parameters such as defect position and layer variations. If tuned properly, this
behavior can be harnessed to achieve directional leaping and holds promise in
bio-inspired applications, such as pumps, motors, and many other devices.

Additionally, the ability to design the cross sectional material properties to induce
a two phase behavior is novel. This technique can be utilized as a method of
breaking symmetry with dynamic materials in order to bias the deformation where
bifurcations exist. This has tremendous application for thin sheets. One example
is in origami, where fold patterns naturally induce two deformation modes. By
patterning the material, particularly at the hinge location, we can bias each hinge
individually to ensure the deformation follows the proper pathway to achieve the
folded shape.

We discuss a methodology for modeling the deformations of Föppl-von Kármán
plates using the augmented Lagrangian method. This allows us to naturally in-
corporate effects of higher order derivatives, allowing for solutions of non-linear
curvature based systems. The methods developed are not specific to Föppl-von
Kármán plates and can be generalized to solve for a large variety of systems that
include second (or higher) derivatives in the energy.
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C h a p t e r 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Summary of findings
In this thesis, we present solutions to problems involving reduced dimensional
structures. We particularly study beams, rods, ribbons, and sheets reacting to
various forms of external stimuli. For many of these problems, we developed novel
computational methods to find deformations and deformation pathways to lead to
interesting behaviors with many potential applications in locomotion.

Photo-mechanical beams
In Chapter 3, we derive an equation that couples the illumination conditions of
photo-mechanical thin films with the spontaneous curvature. We then study how
the deformation of a beam develops over time considering large deformations and
reorientation of the surface normal relative to the illumination. We demonstrated
how illumination of a ring of photo-mechanical material can induce a continuous
rolling behavior. We illustrate this through direct computation of the solution as well
as a linear perturbation analysis with excellent agreement in the proper regimes. We
additionally validate the flapping behavior of a double clamped beam as explored
experimentally by [22]. Motivated by the snap-through of this doubly clamped
configuration, we explore using directed beams of light to induce snap-through. We
explore the configuration space of the system to determine under what conditions
inversion occurs. Because of the energy barrior between the snapped configurations,
the snapped configuration gets locked in. This system has potential to be used as a
sensor due to the "memory" involved in the deformation.

Novel deformation measures for discrete elastic rods
In Chapter 4, we develop a novel method of discretizing rods with a direct relation to
the continuous strain energy. Specifically, we define a set of deformation measures
which directly correlate to the continuous rotation gradient. We then calculate the
variations of the curvature measures as a series of sequential mappings. Due to
the decoupling of the constitutive equations from the deformation measures, we
can quickly and easily implement a large variety of different physical systems. We
demonstrate consistency of the model with traditional buckling solutions, calculating
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both the critical buckling loads and the post-buckled deformations. We then study
more complicated 3D deformations including overcurved rings, pseudo-ribbons,
and geometrically isometric Möbius strip. In each of these cases, we discuss the
model and implementation, and compare to known solutions. The novelty of this
work is in the development of the computational method which allows us to directly
define discrete curvatures and calculate first and second variations for efficient
computation.

Leaping liquid crystal elastomer films
In Chapter 5 we study the case of a laminate of liquid crystal elastomer sheets
with drastically different material properties. When placed on a hot plate, the sheet
would contract, form a conical shape, then rapidly invert, causing the sheet to jump
off the plate. We identify the root cause of this behavior as the transient heat
absorption through the thickness. The developing temperature profile interacts with
the variation in spontaneous stretches through the thickness inducing a change in
in-plane strain as well as curvature. As heat saturates the sheet, the curvature inverts
and causes a snap-through behavior. In addition to the experiments, we study this
system computationally by developing a method of calculating in-plane strain and
curvature for highly anisotropic cross sections experiencing spontaneous stretches.
We then calculate equilibrium configurations by utilizing an augmented Lagrangian
approach to utilize traditional finite element formulations for use in mechanical
systems involving second derivatives in the energy.

There are a few aspects of this work that introduce novel methods. First, we
demonstrate a method of biasing the deformation of a sheet, which traditionally
has multiple bifurcation modes, into a particular energy well by patterning the
cross-sectional material properties. In particular, this deformation pathway does
not need to be monotonic, as demonstrated by the sheet snapping through. This
has many potential applications, particularly in the realm of actuating foldable
structures. In addition, we utilize the augmented Lagrangian optimization structure
in the context of sheet problems in order to study the effects of curvatures. We
use this methodology to solve the Föppl-von Kármán plate equations; however, the
formulation is generalizable to any problems involving second dervatives in the
energy.
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6.2 Future directions
This thesis presents various problems with reduced dimensional structures. As a
result, this work invites many potential avenues for development.

The configurations studied in Chapter 3 are only a small subset of the potential
configurations which are possible; therefore, there are many other configurations
of beams which could allow for cyclic or continuous behaviors. In addition, the
coupling of illumination with the evolution of spontaneous curvature is only valid
in the small penetration regime. Many experimental systems demonstrate effects
which are not captured by the model such as deep penetration or bleaching and need
to be considered when developing an entire theory of photo-mechanical actuation.

With regards to the rod model developed in Chapter 4, a rigorous proof of con-
vergence is necessary to mathematically prove the consistency with the continuous
system, although there some work in that direction (for example see [96]). In ad-
dition, we mention that the model can be extended to extensible rods and ribbons.
A careful treatment of this case must be considered, especially when studying vis-
coelastic rods with significant extension. Another avenue of exploration is in the
behavior of rods under various forms of spontaneous curvatures. In particular, we
could study the behavior shown in [25] where a flat ribbon deforms into a cylin-
drical shape and rolls under illumination. Because we developed the formulation
for modeling such systems, there are many ways this can be applied to study and
develop engineering systems.

Chapter 5 studies a configuration of LCE laminates that induces a snap-through
instability. We only studied a few different types of laminates and configurations
for material. Because of this, there are a large variety of different shapes and
configurations that can be studied when implementing this effect. Additionally, we
can study the effects that cuts in the domain can have in the snap-through.

We can open ourselves up to even more development if we look beyond the regime
of flat sheets. In particular, one system of interest is in non-flat sheets, formally
known as shells. Due to the development of techniques in 3D printing, we not
only design the shape of a structure, but the liquid crystal alignment and material
properties. A demonstration of this idea is shown in [97]. In this work, they 3D
printed shells of liquid crystal elastomers that can be actuated upon heating. In most
cases, the systems were cylindrically symmetric about a vertical axis. The direction
of printing controls the direction of activation of the sponanous in-plane stretch and
curvature. The shells are then placed into an oil bath. Heating the oil induces the
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the nematic/isotropic transition, causing a change in spontaneous in-plane strain and
curvature, causing a change in shape as a result.

Their experiments also demonstrate a snap-through deformation in a curled structure.
As the curled structure deforms, its preferential state is a conical shape; however,
the deformation pathway locks in a highly curled state. With sufficient spontaneous
activation due to the the heating through oil, the highly curled configuration loses
stability and snaps to the more conical configuration. Additionally, the snap-through
itself presents some interesting properties. Both the configurations before and after
the snap-through are symmetric; however, the system presents an asymmetric form
between these two. This implies that, even though the initial and final configurations
are symmetric, the bifurcation from one state to the next might not be. This invites
the study of asymmetric bifurcation modes of symmetric bodies. This has important
implications for actuation of symmetric bodies because it can significantly reduce
the spontaneous strains at which bifurcations and snap-through occurs.

Ultimately, the models we have developed in this thesis improve our ability to
model and study various configurations of dimensionally reduced systems such as
beams, rods, ribbons, and sheets. By developing computationally efficient methods,
we can rapidly study the design space, vastly reducing experimental costs and
production times. This work opens up many avenues for studying these systems
under complex loading conditions and spontaneous strains. By utilizing the non-
linear characteristics of these systems, such as those demonstrated in this manuscript,
many modes of motion and energy release can be realized for use in biological
modeling, robotics, and actuation.
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A p p e n d i x A

SUPPLEMENTARY MATERIAL

A.1 Supplement for Chapter 3
Computational Model
The numerical method is motivated by the discrete elastic rod model1. We partition
the beam into 𝑁 −1 segmentsS𝑖 = (𝑆𝑖, 𝑆𝑖+1), 𝑖 = 1, . . . , 𝑁 −1 which are all equal in
arc-length by introducing 𝑁 nodes: the 𝑖th node is at arc-length 𝑆𝑖 = (𝑖−1)𝐿/(𝑁−1).
We introduce the angle \𝑖, 𝑖 = 1, . . . , 𝑁−1 to be the angle that the segmentS𝑖 makes
to the horizontal as our main kinematic variable. We can then obtain the current
position of the 𝑛th node by exploiting the inextensibility condition as follows:

x𝑛 = x1 +
𝑛∑︁
𝑖=2
(𝑆𝑖 − 𝑆𝑖−1)

(
cos \𝑖−1e1 + sin \𝑖−1e2

)
.

The curvature is carried at the nodes and defined as ^𝑖 = \𝑖 − \𝑖−1 so that the total
bending energy of the beam (discrete equivalent to (3.15)) is given by

𝐸𝐵 [\] =
𝑁−1∑︁
𝑖=2

1
2
𝐽𝑖 (\𝑖 − \𝑖−1 − ^0

𝑖 )2 , (A.1)

where 𝐽𝑖 is a bending modulus and ^0
𝑖

is the discrete natural curvature at the 𝑖th
node.

We obtain the equilibrium equation (discrete equivalent to (3.12)) by taking the
variation of 𝐸𝐵 with respect to \ 𝑗 :

𝜕𝐸𝐵

𝜕\ 𝑗
= 𝐽 𝑗 (\ 𝑗 − \ 𝑗−1 − ^0

𝑗 ) − 𝐽 𝑗+1(\ 𝑗+1 − \ 𝑗 − ^0
𝑗+1) = 0. (A.2)

Given the spontaneous curvatures {^0
𝑗
}, we solve these equations for {\ 𝑗 } subject to

appropriate boundary conditions. In order to improve the stability and convergence,
it is convenient to have the Hessian,

𝜕2𝐸𝐵

𝜕\ 𝑗𝜕\𝑘
= −𝐽 𝑗𝛿 𝑗𝑘 + (𝐽 𝑗 + 𝐽 𝑗+1)𝛿

𝑗

𝑘
− 𝐽 𝑗+1𝛿 𝑗+1𝑘

.

1Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. Dis-
crete elastic rods. ACM Transactions on Graphics, 27(3):63:1 – 63:12, August 2008.
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It remains to specify the spontaneous curvature. This evolves according to (3.13)
whose discrete version is given by the set of ordinary differential equations:

d^0
𝑖

d𝑡
+ ^0

𝑖 = Λ 𝑓 (\𝑖 − \ 𝐼), (A.3)

where 𝑓 (\𝑖 − \ 𝐼) is as defined in Equation 3.13 and \𝑖 = (𝑎𝑣𝑒) (\𝑖, \𝑖−1) is defined
as the angle of the tangent of the 𝑖th node.

Equation (A.3) is discretized in time using an explicit Newton time stepping algo-
rithm. Time dependent solutions are obtained by alternating the elastic relaxation in
equation (A.2) and evolving of natural curvatures ^0

𝑖
based on equation (A.3) over a

time step.

Elastic Ring

In Section 3.3, we analyzed rolling rings. They can be simulated by adapting the
general numerical procedure outlined above as follows. The closure of the ring is
imposed by the following constraints:

\1 = 0 x1 = x𝑁−1 x2 = x𝑁 ,

The first of these can be implemented explicitly by freezing that degree of freedom
and represents that the point of contact is tangent to the surface.

The last two enforce the closure constraint. The system is initialized by assuming
a constant curvature which makes the last two nodes coincident with the first two.
Then the system is relaxed by minimizing the energy while imposing the constraints.
In order to stabilize the point of contact when the system is circular, a small amount
of gravity is initially added and removed once the natural curvature deviates from
its initial state.

The algorithm for calculating the translation and rotation of the system is as follows.
Initially, the point of contact is defined to be the first and second nodes (second to
last and last due to constraints). Then, given a natural curvature, ^0

𝑗
, the energy

is minimized to find the new configuration. The natural curvature is then updated
using the explicit forward Euler scheme according to (A.3). Then, using a small
window near the first and second nodes (which wraps around to nodes on the far
end of the beam), the closest node to the calculated center of mass is found. Then,
the nodes on either side of that node are tested to find the closest to the center of
mass. This then forms an ordered pair of nodes (x𝑖, x𝑖+1) which defines the segment
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closest to the center of mass. Then, by shifting the minimized curvature \𝑖 → \1,
\𝑖+1 → \2, etc in a cyclic manner (so the quantities at end points get wrapped around
the beam). Similar transformations are done to the natural curvature (^0

𝑖
→ ^0

𝑁−1,
^0
𝑖+1 → ^0

2). Note that these transformations are done in such a way that the ordering
of the nodes is preserved and wrapped. At this point, the updated points of contact
are now the 1st and 2nd nodes and the algorithm can be repeated to integrate the
system in time. This solves for the rotation of the system while the translation can
be found by using the rolling contact condition. Using the convention before, we
had set x1 = 0. We can set this to be the relative position where the true position of
node 𝑖 is defined as x̃𝑖 = x𝑆𝑐 +x𝑖 where x𝑆𝑐 is the position of the point of contact. x𝑆𝑐
is found using the rolling condition. Let x𝑘

𝑆𝑐
be the position of the point of contact

at time step 𝑘 and 𝑖 be the shift necessary to establish that the point of contact is
vertically aligned with the center of mass. Then,

x𝑘+1𝑆𝑐
=


x𝑘
𝑆𝑐
+ (𝑆𝑖 − 𝑆1)E1 if 𝑖 ∈ [1, 𝑁𝑠]

x𝑘
𝑆𝑐
+ (𝑆𝑖 − 𝑆𝑁−1)E1 if 𝑖 ∈ [𝑁 − 𝑁𝑠, 𝑁 − 1] ,

where 𝑁𝑠 is a small window (usually set to 𝑁/20). If 𝑖 is not in the range of values
defined above, then the time discretization is made finer in order to ensure that the
rotations induced in each time step correlate with a small translation. The results
for various angles of incidence of light and intensities are given in Movie S1 in the
supplementary material. The "velocity" of the system is then found by finding the
distance the point of contact travels over a small time window. Steady state velocities
are found by iterating the time stepping procedure until the velocity reaches a steady
value.

Doubly Clamped Beam

The doubly clamped system can be solved by setting up the following constraints:

\1 = 0 \𝑁−1 = 0 x𝑁 = 𝑙 𝑓 e1 ,

where 𝑙 𝑓 < 𝐿 is the distance between the two endpoints. As before, the first of
these two constraints can be implemented explicitly by freezing those degrees of
freedom and requires no special treatment, while the latter two constraints need
to be implemented in the optimization engine. The initial solution is obtained
numerically by decreasing 𝑙 𝑓 from 1 to its actual value in small steps. The system
is integrated in time by alternating between relaxing the elastic energy and updating
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the natural curvature using an explicit Newton time stepping method. The results
for various angles of incidence of light and intensities are given in Movie S2 in the
supplementary material.

Equilibrium and Stability Analysis
Investigation of the snapping instabilities from Section 3.4 requires obtaining the
second variation of the energy E(\) in the presence of 𝑚 constraints 𝑐𝑖 (\) = 0,
𝑖 = 1, 2, ..., 𝑚, where \ ∈ R𝑛 is the set of degrees of freedom. Denote the feasible
set C = {\ ∈ R𝑛 s.t. 𝑐𝑖 (\) = 0}. We are interested in solutions \̄ ∈ C ⊂ R𝑛 such
that

E
(
\̄ + Y𝑢 + 1

2
Y2𝑤

)
≥ E(\̄) , ∀𝑢, 𝑤 ∈ R𝑛 ,

satisfying \̄ + Y𝑢 + 1
2Y

2𝑤 ∈ C, with Y → 0. Expanding each of these out to first
order and simplifying gives,

∇E(\̄) · 𝑢 = 0 ,

∇𝑐𝑖 (\̄) · 𝑢 = 0 ,

where ∇ denotes the gradient operator relative to the degrees of freedom of the
function ((∇𝐸)𝑖 = 𝜕𝐸

𝜕\𝑖
). This gives the equilibrium condition,

∇E(\̄) +
𝑚∑︁
𝑖=1

_𝑖∇𝑐𝑖 (\̄) = 0,

where the parameters _𝑖 are Lagrange multipliers.

For stability, we require that any perturbation which satisfies the constraints will
increase the energy. To do this, we expand our system to second order in Y and
simplify:

𝑢 · ∇2E(\̄)𝑢 + ∇E(\̄) · 𝑤 ≥ 0 ,

𝑢 · ∇2𝑐𝑖 (\̄)𝑢 + ∇𝑐𝑖 (\̄) · 𝑤 = 0 ,

where ∇2 is the Hessian operator which returns the symmetric matrix of second
derivatives. Using the equilibrium condition, we have

∇E(\̄) · 𝑤 = −
𝑚∑︁
𝑖=1

_𝑖∇𝑐𝑖 (\̄) · 𝑤 = 𝑢 ·
𝑚∑︁
𝑖=1

_𝑖∇2𝑐𝑖 (\̄)𝑢 .

Plugging this into the above inequality, we have the stability condition that

𝑢 ·
(
∇2E(\̄) +

𝑚∑︁
𝑖=1

_𝑖∇2𝑐𝑖 (\̄)
)
𝑢 ≥ 0 ,
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for all 𝑢 such that
∇𝑐𝑖 (\̄) · 𝑢 = 0 .

To determine whether a configuration satisfies this condition, we want to project R𝑛

onto the space tangent to the constraints. This is done by a Gram-Schmidt process
where

𝑣1 =
∇𝑐1(\̄)
∥∇𝑐1(\̄)∥

,

𝑣𝑘 =
∇𝑐𝑘 (\̄) −

∑𝑘−1
𝑖=1 (∇𝑐𝑘 (\̄) · 𝑣𝑖)𝑣𝑖

∥∇𝑐𝑘 (\̄) −
∑𝑘−1
𝑖=1 (∇𝑐𝑘 (\̄) · 𝑣𝑖)𝑣𝑖∥

,

𝑃 = 𝐼 −
𝑚∑︁
𝑖=1

𝑣𝑖 ⊗ 𝑣𝑖 .

The stability analysis then boils down to calculating the eigenvalues of

𝑃

(
∇2E(\̄) +

𝑚∑︁
𝑖=1

_𝑖∇2𝑐𝑖 (\̄)
)
𝑃 .

Due to the projection, there will be 𝑚 zero eigenvalues and stability is implied
when all other eigenvalues are greater than zero. This analysis determines if there
exists feasible paths which locally lowers the energy; therefore, the existence of a
non-positive eigenvalue implies a loss of stability of the configuration.

Experimental Methods
Materials The monomers 1,4-Bis[4-(6-acryloyloxyhexyloxy)benzoyloxy]-2-
methylbenzene (RM82) and 4,4’-Bis(6-acryloyloxyhexyloxy)azobenzene (Azo-6)
were purchased from Synthon Chemicals and the photoinitiator phenylbis(2,4,6-
trimethylbenzoyl)phosphine oxide) (Irgacure 819) was purchased from Sigma
Aldrich. All chemicals were used as received. The polyimide alignment layer
Elvamide was donated by Dupont.

Synthesis of LCN Beams Planar nematic LCN films were prepared following the
procedure of Gelebart et al. (1) with modification. To synthesize films with the a
penetration depth at 365 nm of 1.5 m, a formulation of 9.2 : 90.8 by weight of Azo-6
: RM82 was used, with 2.5 wt% of photoinitiator with respect to the total monomer
weight. In a typical sample preparation, 4.6 mg Azo-6, 45.4 mg RM82, and 1.25 mg
Irgacure 819 were melted together in a vial and vortexed repeatedly to ensure mixing.
The molten monomer mixture was then infiltrated via capillary action into alignment
cells on a hot plate at 100◦C. The alignment cells were prepared by spin-coating
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Figure A.1: (Top) The sample is fixed at the ends in a home-made compression
device. (Bottom) Experimental set-up is composed of a beam illuminated overhead
by a UV LED and imaged from the side by a camera.

Elvamide onto clean glass slides, rubbing the slides with a velvet cloth, and gluing
the two Elvamide sides facing each other with epoxy mixed with 15 m glass beads.
The filled cells were subsequently cooled to 80◦C, held isothermal for 5 minutes
to induce alignment of the liquid crystalline mesogens, and photopolymerized for
30 minutes with 405 nm light. Following photopolymerization, samples were post-
cured at 120◦C for 10 minutes and the 15m thick LCNs were harvested by cracking
open the alignment cells with a razor blade. Finally, beams of 1 mm in width were
cut from the film with the nematic director along the long axis of the strip.

Photoactuation Experiments Buckled beams with dimensions 1 mm x 15 mm x
50 m were prepared by clamping the ends of the film in a home-made film clamp
device and compressed to an end-to-end distance of Lfinal/Linitial = 0.95. The
buckled film was subsequently illuminated from above with a 365 nm LED (Thor-
Labs) equipped with a Guassian profile focused onto the sample via an adjustable
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focusing lens. Each experiment is recorded using a camera (Nikon 5500) fitted with
a macrolens operating at a recording speed of 60 frames per second.

A.2 Supplement for Chapter 4
Plot of function 𝜓
The function 𝜓(𝑡) from equation (4.18) is plotted in figure A.2.

Detailed derivation of the strain gradients
In this appendix, we provide a detailed derivation of the first and second gradients
of the strain appearing in section 4.3.

To derive the first gradient, we continue to use the conventions of section 4.3: we
use a perturbation 𝛿𝑿 of the degrees of freedom, and we denote by 𝛿𝒚 = 𝒇 ′(𝒙) · 𝛿𝒙
the first variation of a generic quantity 𝒚 = 𝒇 (𝒙) entering in the reconstruction of
the discrete strain, where 𝒙 depends indirectly on the degrees of freedom 𝑿.

For the second variation, however, we work here in a slightly more general setting
than in the main text, as we consider two independent perturbations 𝛿1𝑿 and 𝛿2𝑿 of
the degrees of freedom. We denote by 𝛿1𝒙 and 𝛿2𝒙 the corresponding perturbations
to the variable 𝒙, and by 𝛿1𝒚 and 𝛿2𝒚 the first-order variations of the functions:
𝛿1𝒚 = 𝒇 ′(𝒙) · 𝛿1𝒙 and 𝛿2𝒚 = 𝒇 ′(𝒙) · 𝛿2𝒙 are simply obtained by replacing the
generic increment 𝛿𝒙 appearing in the first order variation 𝛿𝒚 with 𝛿1𝒙 and 𝛿2𝒙,
respectively. To obtain the second variation, we perturb the argument 𝒙 appearing in
𝛿1𝒚 = 𝒇 ′(𝒙) ·𝛿1𝒙 as 𝒙+𝛿2𝒙, leaving 𝛿1𝒙 untouched, and we expand the result to first
order in 𝛿2𝒙. This yields a quantity denoted as 𝛿12𝒚, which we can write formally
as 𝛿12𝒚 = 𝒇 ′′(𝒙) : (𝛿1𝒙 ⊗ 𝛿2𝒙), where 𝒇 ′′(𝒙) is the Hessian. By a classical result in
the calculus of variations, the quantity 𝛿12𝒚 is bilinear and symmetric with respect
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Figure A.2: Function 𝜓(𝑡) from equation (4.18) used to adjust the norm of the strain
𝜿𝑖 with 𝑡 = |𝜿𝑖 |, see equation (4.19).
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to 𝛿1𝒙 and 𝛿2𝒙. The second variation 𝛿2𝒚 given in the main text is the quadratic
form obtained by ultimately condensing the variations 𝛿1𝒙 and 𝛿2𝒙 appearing in
𝛿12𝒚 into a single perturbation 𝛿𝒙 = 𝛿1𝒙 = 𝛿2𝒙.

Infinitesimal rotation vectors

As an important preliminary result, we show that the first variation of a rotation
represented by a unit quaternion 𝑠 can be characterized by means of first-order vector-
valued increment 𝛿 �̂� ∈ R3, and that the second variation of 𝑠 can be represented by
means of a second-order vector-valued increment 𝛿12 �̂� ∈ R3. These vectors will be
referred as the infinitesimal rotation vectors. They are connected to the variations
𝛿𝑠 and 𝛿12𝑠 of the quaternion by

𝛿𝑠 = 1
2 𝛿 �̂� 𝑠

𝛿12𝑠 =

(
1
2 𝛿12 �̂� − 1

4 𝛿1 �̂� · 𝛿2 �̂�
)
𝑠.

(A.4)

The increment 𝛿 �̂� is linear with respect to the variation 𝛿𝑿 of the degrees of freedom,
and the increment 𝛿12 �̂� is bilinear with respect to the independent variations 𝛿1𝑿

and 𝛿2𝑿 of the degrees of freedom. As usual in our notation, 𝛿1 �̂� and 𝛿2 �̂� denote
the first-order variation 𝛿 �̂�, evaluated on the increment 𝛿1𝑿 and 𝛿2𝑿, respectively.
This representation of the first and second variations of a parameterized quaternion
is equivalent to that proposed by [98].

The proof is as follows. By taking the first variation of the condition 2 (𝑠 𝑠 − 1) = 0
that 𝑠 is a unit quaternion, we have 0 = 2 𝛿𝑠 𝑠+2 𝑠 𝛿𝑠 = 2 𝛿𝑠 𝑠+2 𝛿𝑠 𝑠. This shows that
the quaternion 2 𝛿𝑠 𝑠 is a pure vector: this the vector 𝛿 �̂� introduced in equation (A.4)
above. Now, by inserting the increment 𝛿1𝑿 in the relation just derived, we have
2 𝛿1𝑠 𝑠 ∈ R3; perturbing this expression as 𝑠← 𝑠+𝛿2𝑠, one shows that the following
quaternion is a pure vector: 2 𝛿12𝑠 𝑠 + 2 𝛿1𝑠 𝛿2𝑠 = 2 𝛿12𝑠 𝑠 + 1

2 (𝛿1 �̂� 𝑠) (𝛿2 �̂� 𝑠) =
2 𝛿12𝑠 𝑠 − 1

2 𝛿1 �̂� 𝛿2 �̂� = 2 𝛿12𝑠 𝑠 + 1
2 𝛿1 �̂� · 𝛿2 �̂� − 1

2 𝛿1 �̂� × 𝛿2 �̂�; here, the quaternion
product 𝛿1 �̂� 𝛿2 �̂� has been evaluated using the definition (4.4). Adding the vector
quantity 1

2 𝛿1 �̂� × 𝛿2 �̂�, the quantity 2 𝛿12𝑠 𝑠 + 1
2 𝛿1 �̂� · 𝛿2 �̂� appears to be another pure

vector: this is the vector 𝛿12 �̂� introduced in equation (A.4).

The second-order infinitesimal rotation vector 𝛿12 �̂� can be calculated directly from
the first-order one 𝛿 �̂� as

𝛿12 �̂� =
𝛿1(𝛿2 �̂�) + 𝛿2(𝛿1 �̂�)

2
. (A.5)

Here, 𝛿1(𝛿2 �̂�) denotes the first-order variation of 𝛿2 �̂� when 𝑠 is perturbed into
𝑠 + 𝛿1𝑠; this quantity is not symmetric with respect to the perturbations 𝛿1𝑠 and 𝛿2𝑠.
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Similarly, 𝛿2(𝛿1 �̂�) denotes the first-order variation of 𝛿1 �̂� when 𝑠 is perturbed into
𝑠 + 𝛿2𝑠.

The proof of equation (A.5) is as follows. Take the second variation of 𝛿1𝑠 =
1
2 𝛿1 �̂� 𝑠

from equation (A.4) as

𝛿12𝑠 =
1
2
𝛿2(𝛿1 �̂�) 𝑠 +

1
4
𝛿1 �̂� 𝛿2 �̂� 𝑠 =

(
1
2
𝛿2(𝛿1 �̂�) −

1
4
𝛿1 �̂� · 𝛿2 �̂� +

1
4
𝛿1 �̂� × 𝛿2 �̂�

)
𝑠 .

The left-hand side is symmetric with respect to the perturbations 𝛿1𝑠 and 𝛿2𝑠, by
definition of the second variation. Symmetrizing the right-hand side, we obtain
𝛿12𝑠 =

(
𝛿1 (𝛿2 �̂�)+𝛿2 (𝛿1 �̂�)

4 − 𝛿1 �̂�·𝛿2 �̂�
4

)
𝑠. The infinitesimal rotation vector 𝛿12 �̂� can then

be identified from equation (A.4), which yields the result stated in equation (A.5).

In the following sections, the first and second variations of the rotations that enter
into the Discrete elastic rod model, such as the parallel transport 𝑝𝑖 and the director
rotation 𝑑𝑖, will be systematically represented using the corresponding infinitesimal
rotation vectors, such as 𝛿 �̂�𝑖, 𝛿12 �̂�

𝑖, 𝛿 �̂�𝑖, and 𝛿12 �̂�
𝑖.

Variation of parallel transport

We start by deriving the variations of the parallel transport 𝑝𝒃𝒂 from the unit vector
𝒂 to the unit vector 𝒃 defined in equation (4.6), assuming 𝒃 ≠ −𝒂. As 𝒂 represents
the fixed unit tangent 𝑻𝑖 in reference configuration, it remains unperturbed,

𝛿𝒂 = 0 𝛿12𝒂 = 0.

Since 𝒃 remains a unit vector during the perturbation, we have 1
2 ( |𝒃 |

2 − 1) = 0.
Taking the first and second variation of this constraint, we have

𝒃 · 𝛿𝒃 = 0 𝒃 · 𝛿12𝒃 + 𝛿1𝒃 · 𝛿2𝒃 = 0.

First variation of parallel transport

As a preliminary step, we consider the case of parallel transport from 𝒃 to its
perturbation 𝒃 + 𝛿𝒃. Using 𝒃 · 𝛿𝒃 = 0, we find from equation (4.6),

𝑝𝒃+𝛿𝒃𝒃 = 1 + 𝒃 × 𝛿𝒃
2
+ O(|𝛿𝒃 |2).

We now return to the calculation of 𝑝𝒃+𝛿𝒃𝒂 . Following the work of [46], as well as
equations [3.7] and [A.2] from [42], one can use a holonomy reasoning to shows
that, to first order in 𝛿𝒃,

𝑝𝒃+𝛿𝒃𝒂 = 𝑝𝒃+𝛿𝒃𝒃 𝑝𝒃𝒂 𝑟𝒂

(
− 𝒂 × 𝒃

1 + 𝒂 · 𝒃 · 𝛿𝒃
)
+ O(|𝛿𝒃 |2).
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We rewrite this as
𝑝𝒃+𝛿𝒃𝒂 = 𝑝𝒃+𝛿𝒃𝒃 𝑝𝒃𝒂 𝑟𝒂 (𝛿\) + O(|𝛿𝒃 |2), (A.6)

where 𝛿\ = − 𝒌
2 · 𝛿𝒃 and 𝒌 is the scaled binormal that characterizes the holonomy

(see [46]),
𝒌 =

2 𝒂 × 𝒃

1 + 𝒂 · 𝒃 . (A.7)

The infinitesimal rotation 𝑟𝒂 (𝛿\) from equation (A.6) can be found from equa-
tion (4.5) as

𝑟𝒂 (𝛿\) = 1 + 𝒂 𝛿\
2 + O(𝛿\

2)
= 1 − 𝒌·𝛿𝒃

4 𝒂 + O(𝛿\2)
= 1 − 𝒂⊗𝒌

4 · 𝛿𝒃 + O(𝛿\
2).

(A.8)

Equation (A.6) is then rewritten with the help of the operator 𝒃× from equation (4.24)
as

𝑝𝒃+𝛿𝒃𝒂 =

(
1 + 𝒃×

2 · 𝛿𝒃
)
𝑝𝒃𝒂

(
1 − 𝒂⊗𝒌

4 · 𝛿𝒃
)
+ O(|𝛿𝒃 |2)

=

(
1 + 𝒃×

2 · 𝛿𝒃 −
(𝑝𝒃𝒂∗𝒂)⊗𝒌

4 · 𝛿𝒃
)
𝑝𝒃𝒂 + O(|𝛿𝒃 |2)

=

(
1 + 2 𝒃×−𝒃⊗𝒌

4 · 𝛿𝒃
)
𝑝𝒃𝒂 + O(|𝛿𝒃 |2).

In view of this, the first order variation of parallel transport writes as

𝛿𝑝𝒃𝒂 =
1
2

((
𝒃× −

𝒃 ⊗ 𝒌

2

)
· 𝛿𝒃

)
𝑝𝒃𝒂 .

Identifying with equation (A.4), we find that it is captured by the infinitesimal
rotation vector

𝛿 �̂�𝒃𝒂 =

(
𝒃× −

𝒃 ⊗ 𝒌

2

)
· 𝛿𝒃. (A.9)

Second variation of parallel transport

From equation (A.9), we have

𝛿2(𝛿1 �̂�
𝒃
𝒂) =

(
(𝛿2𝒃)× − 𝛿2𝒃⊗𝒌+𝒃⊗𝛿2𝒌

2

)
· 𝛿1𝒃 +

(
𝒃× − 𝒃⊗𝒌

2

)
· 𝛿12𝒃

= 𝛿2𝒃 × 𝛿1𝒃 − 1
2𝛿2𝒃 (𝒌 · 𝛿1𝒃) − 𝒃

2 𝛿2𝒌 · 𝛿1𝒃 +
(
𝒃× − 𝒃⊗𝒌

2

)
· 𝛿12𝒃 .

(A.10)
Using equation (A.7), the variation of the binormal is found as

𝛿2𝒌 =
2 𝒂×𝛿2𝒃
1+𝒂·𝒃 −

2 𝒂×𝒃
(1+𝒂·𝒃)2 𝒂 · 𝛿2𝒃

= 2
1+𝒂·𝒃

(
𝒂 × 𝛿2𝒃 − 𝒌

2 (𝒂 · 𝛿2𝒃)
)

= 2
1+𝒂·𝒃

(
𝒂× − 𝒌⊗𝒂

2

)
· 𝛿2𝒃 .
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Inserting into equation (A.10) and reordering the terms, we find

𝛿2(𝛿1 �̂�
𝒃
𝒂) =𝛿2𝒃 × 𝛿1𝒃 +

(
𝒃× −

𝒃 ⊗ 𝒌

2

)
· 𝛿12𝒃

− 𝒃

(1 + 𝒂 · 𝒃)

(
𝛿1𝒃 ·

(
𝒂× −

𝒌 ⊗ 𝒂

2

)
· 𝛿2𝒃

)
− 𝛿2𝒃 ⊗ 𝛿1𝒃

2
· 𝒌 .

In view of equation (A.5), we can obtain the second-order infinitesimal rotation
vector by symmetrizing this with respect to the increments 𝛿1𝒃 and 𝛿2𝒃:

𝛿12 �̂�
𝒃
𝒂 =

𝛿2 (𝛿1 �̂�
𝒃
𝒂)+𝛿1 (𝛿2 �̂�

𝒃
𝒂)

2

=

(
𝒃× − 𝒃⊗𝒌

2

)
· 𝛿12𝒃 +

(
𝛿1𝒃 · 𝒌⊗𝒂+𝒂⊗𝒌4 (1+𝒂·𝒃) · 𝛿2𝒃

)
𝒃 − (𝛿1𝒃⊗𝛿2𝒃+𝛿2𝒃⊗𝛿1𝒃)

2 · 𝒌2 .
(A.11)

Application to a Discrete elastic rod

In a Discrete elastic rod, the transport is from the undeformed tangent 𝒂 = 𝑻𝑖 to
the deformed tangent 𝒃 = 𝒕𝑖, see equation (4.12). Equation (A.7) then yields the
definition of the binormal 𝒌𝑖 announced in equation (4.25), and equation (A.9) yields
the expression for 𝛿 �̂�𝑖 announced in equation (4.23). In equation (A.11), condensing
the independent variations as 𝛿1𝒃 = 𝛿2𝒃 = 𝛿𝒕𝑖 and identifying 𝛿12 �̂�

𝒃
𝒂 = 𝛿2 �̂�𝑖 and

𝛿12𝒃 = 𝛿2 𝒕𝑖 yields the expression of 𝛿2 �̂�𝑖 announced in equation (4.23).

Variation of unit tangents

With 𝑬𝑖 = 𝒙𝑖+1 − 𝒙𝑖 as the segment vector, the variation of the unit tangent 𝒕𝑖 =
𝑬𝑖/|𝑬𝑖 | from equation (4.9) writes

𝛿𝒕𝑖 = 𝛿𝑬𝑖

|𝑬𝑖 | − 𝑬𝑖 𝛿( |𝑬
𝑖 |)

|𝑬𝑖 |2

= 𝛿𝑬𝑖

|𝑬𝑖 | − 𝑬𝑖 (𝑬
𝑖 ·𝛿𝑬𝑖)
|𝑬𝑖 |3

= 𝑰−𝒕𝑖⊗𝒕𝑖
|𝑬𝑖 | · 𝛿1𝑬

𝑖, .

With 𝛿𝑬𝑖 = 𝛿𝒙𝑖+1 − 𝛿𝒙𝑖, this is the expression of the first variation announced in
equation (4.22).

Next, the second variation is calculated as

𝛿12 𝒕
𝑖 =

(
−𝛿2 𝒕

𝑖 ⊗ 𝒕𝑖 + 𝒕𝑖 ⊗ 𝛿2 𝒕
𝑖

|𝑬𝑖 |
− (𝑰 − 𝒕𝑖 ⊗ 𝒕𝑖)

|𝑬𝑖 |2
𝑬𝑖 · 𝛿2𝑬

𝑖

|𝑬𝑖 |

)
· 𝛿1𝑬

𝑖 .

Here, we have used 𝛿12𝑬
𝑖 = 0 since 𝑬𝑖 = 𝒙𝑖+1 − 𝒙𝑖 depends linearly on the degrees

of freedom. Inserting the expression of the first variations from equation (4.22), the
second variation 𝛿12 𝒕

𝑖 can be rewritten as
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𝛿12 𝒕
𝑖 =

(
− ((𝑰−𝒕

𝑖⊗𝒕𝑖)·𝛿2𝑬
𝑖)⊗𝒕𝑖+𝒕𝑖⊗((𝑰−𝒕𝑖⊗𝒕𝑖)·𝛿2𝑬

𝑖)
|𝑬𝑖 |2 − (𝑰−𝒕

𝑖⊗𝒕𝑖)
|𝑬𝑖 |2 𝒕𝑖 · 𝛿2𝑬

𝑖
)
· 𝛿1𝑬

𝑖

= − 𝜏
𝑖
𝐼𝐾𝐽
+𝜏𝑖
𝐽𝐾𝐼
+𝜏𝑖
𝐼 𝐽𝐾

|𝑬𝑖 |2 (𝛿1𝐸
𝑖)𝐽 (𝛿2𝐸

𝑖)𝐾 𝒆𝐼

= − ((𝝉
𝑖)𝑇 (132)+(𝝉𝑖)𝑇 (231)+𝝉𝑖)𝐼 𝐽𝐾

|𝑬𝑖 |2 (𝛿1𝐸
𝑖)𝐽 (𝛿2𝐸

𝑖)𝐾 𝒆𝐼

= −𝝉𝑖+(𝝉𝑖)𝑇 (132)+(𝝉𝑖)𝑇 (231)

|𝑬𝑖 |2 : ((𝛿1𝒙𝑖+1 − 𝛿1𝒙𝑖) ⊗ (𝛿2𝒙𝑖+1 − 𝛿2𝒙𝑖)),

where the third-order tensor 𝝉𝑖 = (𝑰 − 𝒕𝑖 ⊗ 𝒕𝑖) ⊗ 𝒕𝑖 and its generalized transpose are
defined below equation (4.22). The expression of 𝛿2 𝒕𝑖 announced in equation (4.22)
is obtained by condensing 𝛿1𝒙𝑖 = 𝛿2𝒙𝑖 = 𝛿𝒙𝑖 and identifying 𝛿2 𝒕𝑖 = 𝛿12 𝒕

𝑖.

Variation of directors rotation

In view of equation (A.4), the infinitesimal rotation vector 𝛿 �̂�𝑖 associated with the
directors rotation 𝑑𝑖 is

𝛿 �̂�
𝑖
= 2 𝛿𝑑𝑖 𝑑

𝑖
.

Differentiating the expression of 𝑑𝑖 from equation (4.11), we have 𝛿𝑑𝑖 = 𝛿
(
𝑝𝑖 𝑟𝑻𝑖 (𝜑𝑖) 𝐷𝑖

)
=

𝛿𝑝𝑖 𝑟𝑻𝑖 (𝜑𝑖) 𝐷𝑖 + 𝑝𝑖 𝛿(𝑟𝑻𝑖 (𝜑𝑖)) 𝐷𝑖. Equation (4.5) shows that, with a fixed unit vec-
tor 𝑻𝑖, 𝛿(𝑟𝑻𝑖 (𝜑𝑖)) = 1

2
[
𝛿𝜑𝑖 𝑻𝑖

]
𝑟𝑻𝑖 (𝜑𝑖)—here, the vector in square bracket is an

infinitesimal rotation vector, see equation (A.4). This yields 𝛿𝑑𝑖 = 𝛿𝑝𝑖 𝑟𝑻𝑖 (𝜑𝑖) 𝐷𝑖 +
1
2 𝑝

𝑖 𝛿𝜑𝑖 𝑻𝑖 𝑟𝑻𝑖 (𝜑𝑖) 𝐷𝑖. Inserting into the equation above, and using 𝑑
𝑖
= 𝐷

𝑖
𝑟𝑻𝑖 (−𝜑𝑖) 𝑝𝑖

from equation (4.11), we find

𝛿 �̂�
𝑖

= 𝛿𝜑𝑖 𝑝𝑖 𝑻𝑖 𝑟𝑻𝑖 (𝜑𝑖) 𝐷𝑖 𝑑
𝑖 + 2 𝛿𝑝𝑖 𝑟𝑻𝑖 (𝜑𝑖) 𝐷𝑖 𝑑

𝑖

= 𝛿𝜑𝑖 𝑝𝑖 𝑻𝑖 𝑝𝑖 + 2 𝛿𝑝𝑖 𝑝𝑖

= 𝛿𝜑𝑖 𝑝𝑖 ∗ 𝑻𝑖 + 𝛿 �̂�𝑖

= 𝛿𝜑𝑖 𝒕𝑖 + 𝛿 �̂�𝑖,

as announced in equation (4.26).

The second-order infinitesimal rotation vector is then obtained from equation (A.5)
as

𝛿12 �̂�
𝑖

= 1
2

(
𝛿2

(
𝛿1𝜑

𝑖 𝒕𝑖 + 𝛿1 �̂�
𝑖
)
+ 𝛿1

(
𝛿2𝜑

𝑖 𝒕𝑖 + 𝛿2 �̂�
𝑖
) )

=
𝛿1𝜑

𝑖 𝛿2 𝒕
𝑖+𝛿2𝜑

𝑖 𝛿1 𝒕
𝑖

2 + 𝛿12 �̂�
𝑖 .

Here, we have used 𝛿12𝜑
𝑖 = 0 as 𝜑𝑖 is a degree of freedom and the variations 𝛿1𝜑

𝑖

and 𝛿2𝜑
𝑖 are independent.

Upon condensation of the two variations, the equation leads to the expression of
𝛿2 �̂�

𝑖 announced in equation (4.26).



109

Rotation gradient

In view of equation (A.4), the infinitesimal rotation vector 𝛿�̂�𝑖 associated with the
rotation gradient 𝑞𝑖 = 𝑑𝑖−1𝑑𝑖 from equation (4.14) writes

𝛿�̂�𝑖 = 2 𝛿𝑞𝑖 𝑞𝑖(
2 𝛿𝑑𝑖−1 𝑑𝑖 + 𝑑𝑖−1 2 𝛿𝑑𝑖

)
𝑞𝑖

= 𝑑𝑖−1 (−𝛿 �̂�𝑖−1 + 𝛿 �̂�𝑖) 𝑑𝑖−1

as announced in equation (4.27).

The following identity yields the variation of the vector 𝑠 ∗ 𝒖 obtained by applying
the inverse 𝑠 of a rotation 𝑠 to a vector 𝒖,

𝛿(𝑠 ∗ 𝒖) = 𝛿 (𝑠 𝒖 𝑠)
= 𝛿𝑠 𝒖 𝑠 + 𝑠 𝒖 𝛿𝑠 + 𝑠 𝛿𝒖 𝑠
= −𝑠 𝛿 �̂� 𝒖 𝑠+𝑠 𝒖 𝛿 �̂� 𝑠

2 + 𝑠 ∗ 𝛿𝒖
=

−(𝑠∗𝛿 �̂�) (𝑠∗𝒖)+(𝑠∗𝒖) (𝑠∗𝛿 �̂�)
2 + 𝑠 ∗ 𝛿𝒖

= −(𝑠 ∗ 𝛿 �̂�) × (𝑠 ∗ 𝒖) + 𝑠 ∗ 𝛿𝒖.

With 𝛿 = 𝛿1, 𝑠 = 𝑑𝑖−1 and 𝒖 = 𝛿2 �̂�
𝑖−𝛿2 �̂�

𝑖−1, we have 𝑠∗𝒖 = 𝑑𝑖−1∗ (𝛿2 �̂�
𝑖−𝛿2 �̂�

𝑖−1) =
𝛿2 �̂�𝑖, see equation (4.27), and the identity above yields

𝛿1(𝛿2 �̂�𝑖) = −(𝑑𝑖−1 ∗ 𝛿1 �̂�
𝑖−1) × 𝛿2 �̂�𝑖 + 𝑑𝑖−1 ∗ (𝛿1(𝛿2 �̂�

𝑖) − 𝛿1(𝛿2 �̂�
𝑖−1))

= 𝑑𝑖−1 ∗ (𝛿1(𝛿2 �̂�
𝑖) − 𝛿1(𝛿2 �̂�

𝑖−1)) + 𝛿2 �̂�𝑖 × (𝑑𝑖−1 ∗ 𝛿1 �̂�
𝑖−1)

.

Symmetrizing with respect to the independent variations 𝛿1 and 𝛿2 and using equa-
tion (A.5), we obtain the second infinitesimal vector as

𝛿12 �̂�𝑖 = 𝑑
𝑖−1 ∗

(
𝛿12 �̂�

𝑖−𝛿12 �̂�
𝑖−1) + 𝛿1 �̂�𝑖 × (𝑑𝑖−1 ∗ 𝛿2 �̂�

𝑖−1) + 𝛿2 �̂�𝑖 × (𝑑𝑖−1 ∗ 𝛿1 �̂�
𝑖−1)

2
.

Upon condensation of the two variations, the equation leads to the expression of
𝛿2 �̂�𝑖 announced in equation (4.27).

Strain vector

Equation (4.16) can be rewritten as 𝜿𝑖 = 2I(𝑞𝑖), where I(𝑞) = 𝑞−𝑞
2 denotes the

vector part of a quaternion. The operator I being linear, we have

𝛿𝜿𝑖 = 2I(𝛿𝑞𝑖)
= I

(
𝛿�̂�𝑖 𝑞𝑖

)
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as well as
𝛿12𝜿𝑖 = 2I(𝛿12𝑞𝑖)

= I
((
𝛿12 �̂�𝑖 −

𝛿1 �̂�𝑖 ·𝛿2 �̂�𝑖
2

)
𝑞𝑖

)
,

as announced in equation (4.28). In the equation above, the second variation of the
unit quaternion 𝛿12𝑞𝑖 has been expressed using equation (A.4).

Numerical verification

We verify the gradient and Hessian of the elastic energy, by considering a Kirchhoff
rod having 80 nodes. Starting from a straight rod, we increment the magnitude of
the natural curvature, magnitude of gravity, and a point load applied at the ends over
100 iterations. At each iteration we compute the equilibrium, disabling the update
of the reference configuration discussed in Section 4.2. This allows us to verify
the gradient in the generic setting where the reference and current configurations
differ significantly from each other. The computed equilibrium solution is denoted
by the vector X. We introduce a second configuration vector X̃ by adding a random
perturbation to X where each perturbation is chosen randomly between (−0.1, 0.1).
This magnitude of perturbation ensures that the configuration X̃ is sufficienlty far
from an equilibrium. By starting with the different equilibrium solutions X, we
ensure that the variations are taken at different locations in the configuration space.

The gradient of the discrete strain energy E =
∑𝑁−1
𝑖=1 𝐸𝑖 is evaluated at the point X̃

either as ∇E𝑎 computed based on the analytical formula given in the main text, or
as ∇E 𝑓 𝑑 using finite differences as (∇E 𝑓 𝑑)𝑖 = (E(X̃ + ℎe𝑖) − E(X̃ + ℎe𝑖))/2ℎ where
ℎ = 10−7 and e𝑖 is a unit vector where the 𝑖th component is 1.

We then calculate the relative gradient error as:

∥∇Eerr∥ =
∥∇E𝑎 − ∇E 𝑓 𝑑 ∥∞
∥∇E𝑎∥∞

.

Similarly for the Hessian, we calculate the hessian ∇2E of the strain energy gra-
dient at the point X̃, either analytically (∇2E𝑎) using the methods described in the
manuscript or using finite differences (∇2E 𝑓 𝑑). We calculate ∇2E 𝑓 𝑑 using finite
differences on the analytical form of the gradient. The relative hessian error is
calculated as:

∥∇2Eerr∥ =
∥∇2E𝑎 − ∇2E 𝑓 𝑑 ∥∞
∥∇2E𝑎∥∞

.

At every iteration, we calculate a different random perturbation and calculate the
errors ∥∇Eerr∥ and ∥∇2Eerr∥ at that point. The results are shown in Figure (A.3).
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Figure A.3: Errors between the analytical and numerical calculations for gradients
and hessians.

A.3 Supplement for Chapter 5
Materials and Methods
Mechanical instability in liquid crystalline elastomers

Liquid crystalline elastomers (LCEs) were prepared with spatial variation of the
nematic director, described as a +1 topological defect. The brush-like pattern evident
in Figure 5.1A is associated with the concentric rotation of the liquid crystalline
molecules around a central point (Figure 5.1B). To introduce through-thickness
variation in the timing and magnitude of stimuli-response, we laminated LCE films
prepared with +1 director profiles. The laminates were prepared from 30 `m
thick LCE films of two different compositions (Figure 5.1C). Stiffer LCEs were
prepared by radical-mediated chain-transfer polymerization of C6M with BDMT
(Figure 5.1C) in ratios of 1:0.5 acrylate:thiol. Softer LCE were prepared from a
formulation mixed at 1:0.75 acrylate:thiol. The laminated elements were prepared
(Figure 5.1D) by pressing LCE films together ensuring defect centers and edges
of the squares were aligned. To improve adhesion between the stiff and soft LCE
compositions, a thin layer of C6M and photoinitiator was applied and cured upon
stacking [99]. The resulting mechanical elements prepared from the LCE layers had
a stepwise variation in modulus through the thickness. In nearly all examinations
detailed here, we use a three-layer laminate prepared from two of the softer 30 `m
LCEs and one stiffer 30 `m LCE (Figure 5.1D ).

When LCE laminates were placed with the high-modulus side down on a hot surface
(160◦C), the film first deformed upward into an out-of-plane dome. (Figure 5.1E,F)
Subsequently, the curvature of the LCE inverts via mechanical instability resulting
in a snap through deformation in the center of the element, forming an inverted
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cone. The force and acceleration of this transition results in the LCE leaping from
the surface in less than 6 ms, reaching a height of over 200 times the material
thickness. The snap-through transition and the resulting “leap” is visualized in time
sequenced images in Figure 5.1E.

To assess the distinctive stimulus response of these LCEs, we first characterized
material properties in uniaxially aligned LCEs. Notably, the moduli of the LCEs
parallel to the alignment was similar for the stiff (1:0.5) and soft (1:0.75) materials
while the moduli in the perpendicular direction differed by a factor of 5 (Table A.1,
Figure 5.2A). The variation in perpendicular modulus is particularly important,
as the stimulus response of the LCE with a +1 topological defect will undergo
out of plane deformation by stretching the concentrically packed mesogens along
the perpendicular direction. The differences in modulus values correlate with a
difference in Tg for the two compositions and both are attributable to a reduction
in molecular weight between crosslinks (𝑀𝑐) (Table A.1). Further, the actuation of
the LCEs was characterized. Both LCEs exhibited a nematic-isotropic transition
temperature (Tni, Table A.1). However, the𝑇𝑛𝑖 for the higher modulus LCE was over
50°C higher than the lower modulus LCE. Therefore, when subjected to thermal
stimulus, the low modulus materials generate strain at a much faster rate than the
high modulus materials for a given temperature (Figure 5.2B).

Composition
(Acrylate:Thiol)

Modulus
∥ (a)
(MPa)

Modulus
⊥ (a)
(MPa)

𝑀𝑐 (b)
(g/mol)

𝑇𝑛𝑖 (◦𝐶)
(c)

𝑇𝑔 (◦𝐶)
(d)

Strain
Rate at
160◦𝐶 ∥
(e)

1 : 0.5 21 ± 0.6 17 ± 1 1000 > 225 22 0.05
1 : 0.75 18 ± 3 3.2± 0.3 4650 170 16 0.54

Table A.1: Material proerties for linearly aligned model LCE.

a Measured in linear strain 2 − 4% of tensile curve

b Calculated using 𝑀𝑐 = 3𝑅𝑇/𝐸′ with 𝐸′ measured at 100◦𝐶

c Calculated as inflection point of thermomechanical strain curve

d Calculated as peak of tan 𝛿 curve

e Calculated as slope of thermomechanical strain curve from 155 − 165◦𝐶
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Fabrication of Alignment Cells

Photopatterned cells with +1 topological defects were fabricated using glass slides
coated with brilliant yellow (Sigma Aldrich). Two slides were adhered together
with 30 `m glass spacers (SPI Supplies) and NOA-68 (Norland Optical Adhesives).
Assembled cells were photopatterned using a 445 nm vertically polarized laser
with a 𝑞 = 1/2 waveplate (BEAM Co.) and a 7 mm square mask. Each defect
was exposed for 3 minutes with laser intensity 5 mW/cm2. Linearly aligned cells
were fabricated using Elvamide-coated glass slides that were rubbed with velvet and
adhered in anti-parallel alignment with NOA-68 and 30 `m glass spacers.

Synthesis of Liquid Crystalline Elastomers

Liquid crystalline polymers were synthesized using 1,4-Bis-[4-(6-
acryloyloxyhexyloxy)benzoyloxy]-2-methylbenzene (C6M) (Wilshire Tech-
nologies) and benzenedimethanethiol (BDMT) (Tokyo Chemical Industry). C6M
and BDMT were mixed in molar ratios (acrylate:thiol) of 1:0.5 and 1:0.75.Omnirad
819 was included (0.5 wt%) for initiation of photopolymerization. Mixtures were
melted at 150◦𝐶 and vortexed before capillary filling into 30 `m photopatterned
+1 defect or linear alignment cells at 100◦𝐶. Once filled, cells were cooled to
30◦𝐶 and held for 20 minutes to allow for alignment of liquid crystals. Materials
were then photopolymerized with 365 nm light at 50 mW/cm2 for 5 minutes and
subsequently removed from cells.

Lamination

Films of equivalent modulus were laminated by stacking with defect centers aligned
and pressing films together with gentle heating at 90◦𝐶. Each 7 mm defect square
of contrasting modulus was placed on a glass slide and a spin coater was used to
deposit C6M monomer and Omnirad 819 on the surface (60 s, 2000 rpm). C6M
and Omnirad 819 were suspended in a solution of methanol and dichloromethane
(5:1 MeOH:DCM, 10 mg/mL C6M, 0.25 mg/mL Omnirad 819). Coated sides of
films were pressed together with defect centers aligned and the stacked films were
heated at 90◦𝐶 for 30 s before polymerization with 365 nm light at 50 mW/cm2 for
1 minute. For laminated films with “legs”, small pieces of paper were cut to the
appropriate size and attached to the bottom surface with Gorilla Super Glue.
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Actuation

Films were placed with high modulus side in contact with a hot plate that had
been preheated to 160◦𝐶. Films were left free-standing on the hot plate until
snap-through occurred. Snap-through deformations were recorded using a Photron
FASTCAM SA3. Linearly aligned films were held at a constant force (0.0005 N)
while temperature was ramped from 25◦𝐶 to 225◦𝐶 (DMA 850, TA Instruments).
Strain generation was measured as a function of temperature.

Crosslink Density Measurments

Dynamic mechanical analysis was conducted on diacrylate films using an RSA-
G2 DMA (TA Instruments). The temperature was ramped from -50°C to 150°C
using 0.5% strain at 1 Hz frequency. 𝑇𝑔 values were taken from the temperature
corresponding to the maximum of tan 𝛿 for the material. The molecular weight
between crosslinks (𝑀𝑐) was calculated using the storage modulus value of the
rubbery plateau at 150°C and the equation 𝑀𝑐 = 3𝑅𝑇𝑑/𝐸′, where R is 8.314
cm3𝑀𝑃𝑎mol−1𝐾−1, T is the temperature, d is the density of the polymer network
[1.2 g/cm3 for all materials], and 𝐸′ is the storage modulus at the corresponding
temperature.

Tensile Measurements

Tensile tests were conducted on linearly aligned films in both parallel and perpen-
dicular orientation relative to the alignment. Strips were cut from the material and
strained at a rate of 5%/min (RSA-G2 DMA, TA Instruments). Elastic modulus was
calculated from the linear region of the stress-strain curve (2-4%).


