
Learning-Augmented Control and Decision-Making:
Theory and Applications in Smart Grids

Thesis by
Tongxin Li

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2023
Defended June, 22nd, 2022

ii

© 2023

Tongxin Li
ORCID: 0000-0002-9806-8964

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

I am extremely fortunate to have spent five years at Caltech, under the supervision of
my two advisors Steven Low and Adam Wierman, whose support, guidance, and
encouragement during my PhD are invaluable. Their advice does not only pave the
way for the results presented in this dissertation, but also deeply influenced my life
in various aspects. As an advisor, Steven has done the best to help and mentor his
students with his patience, expertise, passion, and enthusiasm in research that truly
impacts real-world systems. He is also a genuine and perspicacious scholar who
can always recognize and identify the key mathematical insights in complicated and
challenging problems. What I learned from Steven throughout my PhD has motivated
and will continue motivating me to pursue perfection in my academic career. Adam
has set up a role model for me to be open-minded and conduct interdisciplinary
research. He introduced me to a variety of areas in learning and control and his
unique way of thinking has always inspired me in our every single meeting. I can
never thank them enough for the time and efforts they spent on making me a mature
researcher and I cannot imagine having had better PhD advisors.

I also would like to express my sincere gratitude to Yisong Yue and Eric Mazumdar
for being my PhD candidacy and thesis committee chair and member, respectively.
Their valuable feedback and insightful comments have greatly improved this work.
Outside the thesis committee, I am also grateful to other Caltech faculty members,
especially John Doyle, who dedicated his time on my candidacy exam and Anima
Anandkumar, discussions with whom benefited me a lot.

This dissertation is a result of collaborations with many excellent people. I would
like to sincerely acknowledge my collaborators and friends over the years, Yue
Chen, Zachary Lee, Yiheng Lin, Guannan Qu, Bo Sun, Chenxi Sun, Lucien Werner,
Ruixiao Yang, and Zixin Ye. I am grateful to have been working with and learning
from them.

Furthermore, my PhD journey could have never been this enjoyable without my
other colleagues and friends in Netlab and RSRG at Caltech. My great thanks to all
current and past group members for creating and building an exceptional environment
together. Especially, my thanks are due to Linqi Guo, for having been a good friend
and life coach since my undergraduate years. He helped me settle in when I first
came to Caltech and continue to motivate, inspire and support me in many ways.

iv

The CMS administrative staff, especially Christine Ortega, has also been extremely
helpful and supportive in various matters.

Finally, I would like to express my deepest gratitude to my family. This dissertation
is dedicated to my parents and Stephanie for their unfaltering love and support.

v

ABSTRACT

Achieving carbon neutrality by 2050 does not only lead to the increasing penetration
of renewable energy, but also an explosive growth of smart meter data. Recently,
augmenting classical methods in real-world cyber-physical systems such as smart
grids with data-driven black-box AI tools, forecasts, and ML algorithms has attracted
a lot of growing interest. Integrating AI techniques into smart grids, on the one
hand, provides a new approach to handle the uncertainties caused by renewable
resources and human behaviors, but on the other hand, creates practical issues such
as reliability, stability, privacy, and scalability, etc. to the AI-integrated algorithms.

This dissertation focuses on studying learning-augmented control and decision-
making problems and their applications in smart grids.

The results presented in this dissertation are three-fold. The first part of this
dissertation focuses on learning-augmented control problems. We study a problem
in linear quadratic control, where imperfect/untrusted AI predictions of system
perturbations are available. We show that it is possible to design a learning-
augmented algorithm with performance guarantees that is aggressive if the predictions
are accurate and conservative if they are imperfect. Machine-learned black-box
policies are ubiquitous for non-linear control problems. Meanwhile, crude model
information is often available for these problems from, e.g., linear approximations of
non-linear dynamics. We next study the problem of equipping a black-box control
policy with model-based advice for non-linear control on a single trajectory. We first
show a general negative result that a naive convex combination of a black-box policy
and a linear model-based policy can lead to instability, even if the two policies are
both stabilizing. We then propose an adaptive 𝜆-confident policy, with a coefficient 𝜆
indicating the confidence in a black-box policy, and prove its stability. With bounded
non-linearity, in addition, we show that the adaptive 𝜆-confident policy achieves
a bounded competitive ratio when a black-box policy is near-optimal. Finally, we
propose an online learning approach to implement the adaptive 𝜆-confident policy
and verify its efficacy in case studies about the Cart-Pole problem and a real-world
electric vehicle (EV) charging problem with data bias due to COVID-19.

Aggregators have emerged as crucial tools for the coordination of distributed,
controllable loads. To be used effectively, an aggregator must be able to communicate
the available flexibility of the loads they control, known as the aggregate flexibility

vi

to a system operator. However, most existing aggregate flexibility measures often
are slow-timescale estimations and much less attention has been paid to real-time
coordination between an aggregator and an operator. In the second part of this
dissertation, we consider solving an online decision-making problem in a closed-loop
system and present a design of real-time aggregate flexibility feedback, termed the
maximum entropy feedback (MEF). In addition to deriving analytic properties of
the MEF, combining learning and control, we show that it can be approximated
using reinforcement learning and used as a penalty term in a novel control algorithm–
the penalized predictive control (PPC) that enables efficient communication, fast
computation, and lower costs. We illustrate the efficacy of the PPC using a dataset
from an adaptive electric vehicle charging network and show that PPC outperforms
classical model predictive control (MPC). In a theoretical perspective, a two-controller
problem is formulated. A central controller chooses an action from a feasible set that
is determined by time-varying and coupling constraints, which depend on all past
actions and states. The central controller’s goal is to minimize the cumulative cost;
however, the controller has access to neither the feasible set nor the dynamics directly,
which are determined by a remote local controller. Instead, the central controller
receives only an aggregate summary of the feasibility information from the local
controller, which does not know the system costs. We show that it is possible for an
online algorithm using feasibility information to nearly match the dynamic regret
of an online algorithm using perfect information whenever the feasible sets satisfy
some criterion, which is satisfied by inventory and tracking constraints.

The third part of this dissertation consists of examples of learning, inference, and data
analysis methods for power system identification and electric charging. We present a
power system identification problem with noisy nodal measurements and efficient
algorithms, based on fundamental trade-offs between the number of measurements,
the complexity of the graph class, and the probability of error. Next, we specifically
consider prediction and unsupervised learning tasks in EV charging. We provide
basic data analysis results of a public dataset released by Caltech and develop a novel
iterative clustering method for classifying time series of EV charging rates.

vii

PUBLISHED CONTENT AND CONTRIBUTIONS

Tongxin Li contributed to the establishment of the foundational theory for the series
of work below, proposing the methods, developing the applications, and designing,
preparing, and running the simulations.

[1] Tongxin Li, Lucien Werner, and Steven H. Low. Learning graph parameters from
linear measurements: Fundamental trade-offs and application to electric grids. In
2019 IEEE 58th Conference on Decision and Control (CDC), pages 6554–6559,
2019. URL https://doi.org/10.1109/CDC40024.2019.9029949.

[2] Tongxin Li, Lucien Werner, and Steven H. Low. Learning graphs from linear
measurements: Fundamental trade-offs and applications. IEEE Transactions
on Signal and Information Processing over Networks, 6:163–178, 2020. URL
https://doi.org/10.1109/TSIPN.2020.2975368.

[3] Tongxin Li, Steven H. Low, and Adam Wierman. Real-time flexibility feedback
for closed-loop aggregator and system operator coordination. New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450380096. URL
https://doi.org/10.1145/3396851.3397725.

[4] Tongxin Li, Yue Chen, Bo Sun, Adam Wierman, and Steven H. Low. Information
aggregation for constrained online control. 5(2), 2021. URL https://doi.
org/10.1145/3460085.

[5] Tongxin Li, Bo Sun, Yue Chen, Zixin Ye, Steven H. Low, and Adam Wierman.
Learning-based predictive control via real-time aggregate flexibility. IEEE
Transactions on Smart Grid, 12(6):4897–4913, 2021. URL https://doi.org/
10.1109/TSG.2021.3094719.

[6] Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam
Wierman, and Steven Low. Robustness and consistency in linear quadratic
control with untrusted predictions. 6(1), 2022. URL https://doi.org/10.
1145/3508038.

[7] Tongxin Li, Ruixiao Yang, Guannan Qu, Yiheng Lin, Steven Low, and Adam
Wierman. Equipping black-box policies with model-based advice for stable
nonlinear control. Under review.

Tongxin Li contributed to proposing the models and analyzing its performance, and
designing, preparing, and running the simulations for the work below.

[1] Classification of electric vehicle charging time series with selective clustering.
Electric Power Systems Research, 189:106695, 2020. ISSN 0378-7796. URL
https://doi.org/10.1016/j.epsr.2020.106695.

viii

[2] Zachary J. Lee, Tongxin Li, and Steven H. Low. Acn-data: Analysis and
applications of an open ev charging dataset. New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450366717. URL https:
//doi.org/10.1145/3307772.3328313.

ix

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Published Content and Contributions . vii
Table of Contents . viii
List of Illustrations . xii
List of Tables . xviii
Chapter I: Introduction . 1

1.1 Key Problems and Challenges . 1
1.2 Related Work on Learning-Augmented Online Algorithms 4
1.3 Learning-Augmented Control . 5
1.4 Large-Scale Learning-Augmented Decision-Making 7
1.5 Learning, Inference, and Data Analysis in Smart Grids 7
1.6 Dissertation Outline . 8

I Learning-Augmented Control 10
Chapter II: Linear Quadratic Control with Untrusted AI Predictions 11

2.1 Introduction . 11
2.2 Model . 15
2.3 Consistent and Robust Control . 19
2.4 Self-Tuning 𝜆-Confident Control . 22
2.5 Applications . 27
2.A Useful Lemmas . 36
2.B Competitive Analysis . 38
2.C Regret Analysis of Self-Tuning Control 41
2.D Proof of Theorem 2.3.1 . 48
2.E Experimental Setup . 51

Chapter III: Non-linear Control with Black-box AI Policies 53
3.1 Introduction . 54
3.2 Background and Model . 59
3.3 Warmup: A Naive Convex Combination 61
3.4 Adaptive 𝜆-Confident Control . 63
3.5 Practical Implementation and Applications 65
3.A Experimental Setup and Supplementary Results 69
3.B Notation and Supplementary Definitions 74
3.C Useful Lemmas . 76
3.D Proof of Theorem 3.3.1 . 79
3.E Stability Analysis . 81
3.F Competitive Ratio Analysis . 91

x

II Learning-Augmented Decision-Making 96
Chapter IV: Learning-based Predictive Control: Formulation 97

4.1 Introduction . 98
4.2 Related Literature. 100
4.3 Problem Formulation . 103
4.4 Definitions of Real-Time Aggregate Flexibility: Maximum Entropy

Feedback . 109
4.5 Approximating Maximum Entropy Feedback via Reinforcement

Learning . 114
4.6 Penalized Predictive Control . 117
4.7 Application . 120
4.A Proof of Lemma 16 . 128
4.B Proof of Lemma 17 . 128
4.C Proof of Corollary 4.4.1 . 128
4.D Proof of Corollary 4.6.1 . 129
4.E Proof of Theorem 18 . 129
4.F Proof of Theorem 4.6.1 . 130

Chapter V: Learning-based Predictive Control: Regret Analysis 132
5.1 Introduction . 132
5.2 Model . 137
5.3 Information Aggregation . 139
5.4 Penalized Predictive Control via Predicted MEF 143
5.5 Results . 147
5.A Explanation of Definition 5.5.1 and Two Examples 152
5.B Proofs . 154

III Learning, Inference, and Data Analysis in Smart Grids 161
Chapter VI: Learning Power System Parameters from Linear Measurements . 162

6.1 Introduction . 162
6.2 Model and Definitions . 168
6.3 Fundamental Trade-offs . 173
6.4 Gaussian IID Measurements . 180
6.5 Heuristic Algorithm . 184
6.6 Applications in Electric Grids . 186
6.A Proof of Theorem 6.3.1 . 192
6.B Proof of Theorem 6.3.2 . 193
6.C Proof of Corollary 6.3.1 . 194
6.D Proof of Lemma 22 . 194
6.E Proof of Lemma 23 . 196
6.F Proof of Lemma 24 . 196
6.G Proof of Theorem 6.4.1 . 197
6.H Proof of Theorem 6.4.2 . 198

Chapter VII: Electric Vehicle Charging Data Analysis 200
7.1 The ACN-DATA Dataset . 200

xi

7.2 Learning User Behavior . 202
7.3 Predicting User Behavior . 205
7.4 ACN-Data Charging Curves Analysis 209
7.5 Classification Method . 214
7.6 Clustering, Applications, and Discussions 219

IVImpact and Future Directions 226
Chapter VIII: Conclusions . 227

8.1 Summary of Learning-Augmented Control Models 227
8.2 Summary of Chapters . 227
8.3 Impact on Smart Grid Applications 230
8.4 Future Directions . 230

Bibliography . 232

xii

LIST OF ILLUSTRATIONS

Number Page
1.1 Outline of this dissertation. Part I considers learning-augmented

control problems for both linear and non-linear models. Part II of
this dissertation focuses on large-scale learning-augmented decision
making problems. The details of data, environments, predictions, and
forecasts used in the applications presented in the first two parts are
described in Part III. 9

2.1 System model of linear quadratic control with untrusted predictions. . 17
2.2 Tracking trajectories and trust parameters (𝜆0, . . . , 𝜆𝑇−1) of the self-

tuning control scheme. The x-axis and y-axis in the top 6 figures are
locations of the robot. The y-axis in the bottom 3 figures denotes the
value of the trust parameter. 30

2.3 Impact of trust parameters and performance of self-tuning control for
robot tracking. 31

2.4 Adaptive battery-buffered EV charging modelled as a linear quadratic
control problem. 31

2.5 An example of the daily charging demands in ACN-Data [1] on Nov
1st, 2018. 31

2.6 Impact of trust parameters and performance of self-tuning control for
adaptive battery-buffered EV charging with synthetic EV charging
data (top) and realistic daily EV charging data [1] (bottom). 33

2.7 The Cart-Pole model in Application 3. 33
2.8 Impact of trust parameters and performance of self-tuning control for

the Cart-Pole problem. 35
3.1.1 Costs of pre-trained TRPO and ARS agents and an LQR when the

initial pole angle 𝜃 (unit: radians) varies. 54
3.5.1 Competitiveness and stability of the adaptive policy. Top (Competi-

tiveness): costs of pre-trained RL agents, an LQR and the adaptive
policy when the initial pole angle 𝜃 (unit: radians) varies. Bottom
(Stability): convergence of ∥𝑥𝑡 ∥ in 𝑡 with 𝜃 = 0.4 for pre-trained RL
agents, a naive combination (Section 3.3) using a fixed 𝜆 = 0.8 and
the adaptive policy. 67

xiii

3.5.2 Simulation results for real-world adaptive EV charging. Left: total
rewards of the adaptive policy and SAC for pre-COVID-19 days and
post-COVID-19 days. Right: shift of data distributions due to the
work-from-home policy. 67

3.A.1 Illustration of the impact of COVID-19 on charging behaviors in terms
of the total number of charging sessions and energy delivered (left)
and distribution shifts (right). 72

3.A.2 Bar-plots of rewards/number of sessions corresponding to testing the
SAC policy and the adaptive policy on the EV charging environment
based on sessions collected from three time periods. 73

3.A.3 Supplementary results of Figure 3.5.2 with additional testing rewards
for an in-COVID-19 period. 73

3.E.1 Outline of proofs of Theorem 3.4.1 and 3.4.2 with a stability analysis
presented in Appendix 3.E and a competitive ratio analysis presented
in Appendix 3.F. Arrows denote implications. 81

3.E.2 Telescoping sum of 𝑥𝑡 − 𝑥∗𝑡 . 89
4.3.1 System model: A feedback control approach for solving an online

version of (4.2). The operator implements a control algorithm and the
aggregator uses reinforcement learning to generate real-time aggregate
flexibility feedback. 104

4.4.1 Feasible trajectories of power signals and the computed maximum
entropy feedback in Example 3. 112

4.5.1 Learning and testing architecture for learning aggregator functions. . 115
4.5.2 Average rewards (defined in (4.11)) in the training stage with a tuning

parameter 𝛽 = 6 × 103. Shadow region measures the variance. 117
4.7.1 Trade-offs of cost and charging performance. The dashed curve in

the left figure corresponds to offline optimal cost. The tested days are
selected (with no less than 30 charging sessions, i.e., 𝑁 ≥ 30) from
Dec. 2, 2019 to Jan. 1, 2020. 124

4.7.2 Charging results of EVs controlled by PPC with tuning parameters
𝛽 = 2 × 103 (top), 4 × 103 (mid) and 6 × 103 (bot) for selected days
(with no less than 30 charging sessions, i.e., 𝑁 ≥ 30) from Dec. 2,
2019 to Jan. 1, 2020. Each bar represents a charging session. 124

4.7.3 Substation charging rates generated by the PPC (orange) in the closed-
loop control shown in Algorithm 5, together with the MPC generated
(blue) and global optimal (dashed black) charging rates. 125

xiv

4.7.4 Cost-energy curves for the offline optimization in (4.2a)-(4.2d) (for
the example in Section 4.3), MPC (defined in (4.17a)-(4.17f)) and
PPC (introduced in Section 4.6). 126

5.2.1 Closed-loop interaction between a central controller and a local
controller. 138

5.A.1 Graphical illustration of (5.10) in Definition 5.5.1. 152
6.3.1 The recovery of a graph matrix Y using the three-stage scheme in

Algorithm 10. The 𝑛 − 𝐾 columns of Y colored by gray are first
recovered via the ℓ1-minimization (6.11a)-(6.11c) in step (a), after
they are accepted by passing the consistency check in step (b). Then,
symmetry is used for recovering the entries in the matrix marked by
green. Leveraging the linear measurements again, in step (c), the
remaining 𝐾2 entries in the white symmetric sub-matrix are solved
using Equation (6.12). 177

6.5.1 Iterative dimension reduction of the heuristic algorithm. At step 𝑟,
the 𝑠 columns with the smallest scores defined in (6.20) are assumed
to be “correct” and eliminated from the linear system. The dimension
of variables is reduced by 𝑠 and this procedure is repeated until the
⌈𝑛/𝑠⌉ iterations are complete. 184

6.6.1 The number of samples required to accurately recover the nodal
admittance matrix is shown on the vertical axis. Results are averaged
over 20 independent simulations. Star and chain graphs are scaled in
size between 5 and 300 nodes. IEEE test cases ranged from 5 to 200
buses. In the latter case, there are no assumptions on the random IID
selection of the entries of Y (in contrast to the star/chain networks).
Linear and logarithmic (in 𝑛) reference curves are plotted as dashed
lines. 187

xv

6.6.2 Probability of error for parameter reconstruction 𝜀P for the IEEE
30-bus test case is displayed on the vertical axis. Probability is taken
over 50 independent trials. The horizontal axis shows the number
of samples used to compute the estimate X. The probability of
error for independent recovery of all 𝑋 𝑗 via ℓ1-norm minimization
(double dashed line) and full rank non-sparse recovery (dot dashed
line) are shown for reference. Adding the symmetry score function
(second-to-left) improves over the naive column-wise scheme. Adding
entry-wise positivity/negativity constraints on the entries of X (left-
most curve) reduces sample complexity even further (≈ 1/3 samples
needed compared to full rank recovery). 189

6.6.3 Sample complexity for accurate recovery is shown for a selection of
IEEE power system test cases ranging from 5 to 57 buses. The number
of samples for accurate recovery is obtained by satisfying the criterion
| |X − Y| |F/𝑛2 < 10−4. The noise Z is an IID Gaussian matrix with
zero mean and standard deviation 0.01. The parameter 𝛾 in (6.19) is
set to be 10−4. As a benchmark, the number of measurements required
for separately reconstructing every column of Y (standard compressed
sensing) is also given. 189

6.6.4 A comparison between our iterative heuristic and basis pursuit. The
Frobenius norm error plotted is averaged over 250 independent trials.
The underlying graph is a star graph with 𝑛 = 24. The solid and dotted
gray curves are results for basis pursuit with and without a constraint
emphasizing symmetry, respectively. 190

6.6.5 The impact of measurement noise on sample complexity for recovery
of the IEEE 24-bus RTS test case is demonstrated. Trajectories corre-
spond to increasing noise levels from dark (least) to light (most). From
left to right, we observe—as expected—that for each variance value,
the normalized Frobenius error of the recovered matrix decreases as
the number of samples used for recovery increases. From bottom
to top, we observe that the error increases (for every value of 𝑚) as
variance of the additive noise Z increases. 191

7.1.1 Comparison of model distributions with actual data for Caltech during
training period. 203

xvi

7.1.2 Prediction errors for Caltech (left two columns) and JPL (right two
columns) for training dataset sizes ranging from 30 days to 90 days
in the past. As a benchmark, we consider simply taking the mean of
each user’s prior behavior. For comparison, we also include the errors
of user inputs. The results are measured by the mean absolute error
(MAE) defined in (7.3). 203

7.3.1 Correlation between SMAPE(𝑑) and SMAPE(𝑒) and their marginal
distributions for the JPL dataset. Kernel density estimation is used
to approximate the joint distribution of the SMAPEs for predicted
duration and energy which is shown as grey shading. The blue crosses
represent the corresponding user input SMAPEs (for I-GMM) with
respect to each charging session in the testing data set XTest. 208

7.4.1 An example of a charging curve (in blue) and the corresponding pilot
curve (in orange) for a charging session with userID 409 on Oct. 13,
2018. 210

7.4.2 Examples of charging curves where charging currents drop due to
(1) scheduling, (2) battery charging state, and (3) noise, as indicated
by the shaded regions. Each plot only shows a selected portion of a
session. The time series are for sessions with userID 576 (top), 409
(mid) and 526 (bot), obtained on Nov. 07, 2018, Oct. 09, 2018 and
Oct. 22, 2018, respectively. 212

7.4.3 The classification method introduced in this chapter. 215
7.5.1 An example of extraction by matching. The red subsequence x1 is a

template with userID 409, which is extracted from the first session
s1 of this user. The figure below visualizes the change of Euclidean
distance of the second session s2 with respect to x1. The black vertical
line indicates the best matching location in s2 for x1 and the tail x2

can be found correspondingly despite the slight difference of both tails.217
7.6.1 The performance for different number of clusters using three different

distance functions – Euclidean distance (ED), Modified Euclidean
distance (MED), Dynamic Time warping distance (DTW). 219

7.6.2 Visualization of 𝐾 = 6 clusters for MED, ED and DTW. Tails are
within the same cluster if they have the same color and the tail
representatives (medoids) are emphasized. 219

xvii

7.6.3 Two-dimensional visualization of our clustering results with 𝐾 = 6
clusters. Tails for different users are colored differently. The clusters’
colors are consistent with those used in Fig. 7.6.2. The marginal
probabilities 𝑝1, . . . , 𝑝6 represent the portions of charging sessions
falling into the six clusters. 220

7.6.4 Examples of the training and testing data (tails) for four users. Sub-
figures (a) and (b) are the tails of the two users with poor prediction
performance (highlighted in blue in Table 7.6.1). The poor prediction
performance is due to the fact that the tails in the training data are
very different from those in the testing data. Sub-figures (c) and
(d) are examples where the tail representatives achieve high-quality
prediction performance. Tails in the training data and those in the
testing data are similar. 221

7.6.5 Trade-offs between the number of samples 𝑚 and the accuracy,
sensitivity and precision. 225

xviii

LIST OF TABLES

Number Page
1.1 List of learning-augmented algorithms. 4
1.2 Learning-augmented control and decision-making problems consid-

ered in this dissertation. 4
2.E.1 Hyper-parameters used in robot tracking and EV charging. 52
2.E.2 Hyper-parameters used in the Cart-Pole problem. 52
3.A.1 Hyper-parameters used in the Cart-Pole problem. 69
3.A.2 Hyper-parameters used in the real-world EV charging problem. . . . 71
3.A.3 Average total rewards for the SAC policy and the adaptive 𝜆-confident

policy (Algorithm 4). 74
3.B.1 Symbols used in this work. 75
4.7.1 Hyper-parameters in the experiments. 122
7.1.1 Selected data fields in ACN-Data. 201
7.3.1 SMAPEs for Caltech and JPL datasets. 207
7.4.1 List of key notation used in this section. 209
7.6.1 Prediction results with user tail representative. 223
7.6.2 Prediction RMSE with cluster representative. 223
8.1.1 System models for the learning-augmented algorithms with different

types of imperfect/untrusted predictions or black-box AI/ML advice.
The detailed definitions of notation can be found in the corresponding
chapters. 227

1

C h a p t e r 1

INTRODUCTION

During the last decade, we have witnessed the development and evolution of AI
decision-making techniques. With an increasing amount of data generated by real-
world cyber-physical systems and major advances in AI and data science techniques,
we are on the cusp of transforming black-box AI predictions and decision-making
tools to more trustworthy and practical schemes for more sustainable, robust and
intelligent cyber-physical systems. Towards this goal, augmenting classical methods
in complex cyber-physical systems such as smart grids, internet of things (IoT),
and transportation networks with black-box AI tools, forecasts and ML algorithms
recently attracts growing interests. On the one hand, integrating AI techniques
provides a new view and methodology to improve system performance and handle
uncertainties; but on the other hand, it also creates practical issues such as robustness,
stability, reliability, privacy, and scalability, etc. to the AI-integrated algorithms.
Despite posing significant challenges, those issues have created great necessities and
opportunities for developing new learning-augmented frameworks and algorithms.

The goal of this dissertation is to provide fundamental models and methods to
broadly address some of the main issues in handling practical learning-augmented
decision-making and control problems, with special focuses of applications in power
systems. In the sequel, we introduce several remarkable problems and challenges in
this area and summarize the remaining parts and chapters in this dissertation.

1.1 Key Problems and Challenges
The urgent need of applying AI techniques to real-world cyber-physical system leads
to the bloom of interdisciplinary research in various areas such as learning, control
and networks. Despite some remarkable milestones achieved in the recent years,
we are still at the beginning of realizing trustworthy and practical AI for future
cyber-physical systems, especially facing the following major challenges.

1. Worst-case guarantees with imperfect predictions.

With the advances of data collection, handling, and management techniques,
AI tools such as deep neural network models (DNNs) can be trained to generate
predictions. However, those predictions are imperfect due to model error,

2

algorithm variance, or data bias. Answering the following question becomes
critical:

How imperfect predictions generated by AI techniques can be used to retain
worst-case guarantees of classic algorithms yet achieve optimal performance
when the predictions are accurate?

Recently, developing learning-augmented algorithms with imperfect predic-
tions has become an emerging research field at the intersection of theoretical
computer science and AI, such as smoothed online convex optimization [2],
online caching [3], ski-rental [4–7], online set cover [7], secretary and online
matching [8], and metric task systems [9]. Extending the ideas used in existing
theoretical algorithms to practical online decision-making/control models is
the key to make use of AI predictions in real-world applications.

2. Decision-making and control with untrusted AI policies

Going beyond AI predictions corresponding to specific parameters that are
not model-agnostic, many AI decision-making policies/agents are model-free
black-boxes, i.e., the policy parameters are modeled by DNNs that are neither
interpretable nor adaptable. For instance, pre-trained reinforcement learning
(RL) or imitation learing (IL) agents are available in certain applications,
wherein interacting with the realistic environments and updating the NN
parameters of those policies dynamically may be impractical. Those agents
are not guaranteed to work well, as on the one hand they can sometimes be
optimal or near-optimal, but on the other hand can be arbitrarily poor due to,
e.g., sample inefficiency [10], reward sparsity [11], mode collapse [12], high
variability of policy gradient [13, 14], or biased training data [15]. Generalizing
ideas in learning-augmented algorithms with imperfect predictions to untrusted
black-box policies is a prominent step to bridge the theory-practice gap between
learning-augmented algorithms for theoretical computer science problems to
real-world applications.

3. Large-scale and hierarchical online control tasks

Practical control and online decision-making problems often involve large-
scale controllable units, which are aggregated and controlled in a hierarchical
scheme. For example, in a distribution electricity power network, to manage
and schedule a large number of distributed energy resources (DERs), an
aggregator is needed to coordinate with a system operator and the DERs.

3

The challenge is to design such a hierarchical system satisfying the following
properties:

a) Real-time coordination is desirable to be consistent with real-time energy
markets and handle uncertainties.

b) Low communication and computational complexity is preferable so that
the state information of the large-scale controllable units needs to be
aggregated.

c) Privacy of the controllable units needs to be preserved by aggregating
their states.

The scale of the system and the privacy concerns of the individual units makes it
impossible to directly control the controllable units and carry out computations
via a central controller. Devising real-time learning-based control algorithms
that can run in this novel two-controller setting is of vital importance for such
applications.

4. Learning and inference in smart grid research. Achieving sustainability
development is one of the most important and challenging goals in this century.
To reduce carbon emissions, it is necessary to switch the paradigm and
generate electricity using renewable and clean resources, which on the one
hand, improves energy efficiency but on the other hand, brings uncertainty
and creates difficulties for the traditional grids. With data generated in the
next-generation electricity network, artificial intelligence (AI) can accelerate
global efforts to protect the environment and conserve resources by monitoring
renewable energy grids, detecting failures, identifying system information and
predicting future grid conditions with a more efficient learning-based control
strategy.

To tackle the challenges raised above, this dissertation focuses on designing and de-
veloping learning-augmented control and decision-making algorithms that guarantee
worst-case performance with untrusted predictions [6], improve stability of black-box
policies [16], facilitate coordination of controllers with large-scale controllable
units [3–5] and artificial intelligence and data analysis techniques [1, 1, 2, 2] that
improve the sustainability and resilience of the next-generation power grids. Below
we provide overviews of the main chapters presented in this dissertation.

4

1.2 Related Work on Learning-Augmented Online Algorithms
The idea of augmenting robust/competitive online algorithms with machine-learned
advice has attracted attention in online problems in various settings. In Table 1.1,
we provide a subset of the existing results on learning-augmented online algorithms.
The details of the related work will be discussed in Chapter 2 and 3.

Theoretical CS Problems Imperfect Predictions Related Work
Ski-rental Number of skiing days [5, 6]
Online secretary Maximum price

[8]
Online bipartite matching Adjacent edge-weights
Online facility location Predicted facility [17, 18]
Online conversion Threshold function [19]

AI/ML Advice
Convex body chasing Suggested actions [2, 9]
Online subset sum Decision [20]
Online set cover Predicted covering [7]
Online caching Machine-learned oracle [3, 9]
𝑘-server Machine-learned predictor [9]
Bin packing Critical ratio approximation [21]
Q-learning Machine-learned Q-value functions [22]

Table 1.1: List of learning-augmented algorithms.

The major focus of this dissertation is to address the aforementioned challenges by
studying the learning-augmented control and decision-making problems listed in
Table 1.2.

Control/Decision-Making Imperfect Predictions This Dissertation
Linear quadratic control Perturbations Chapter 2 ([23])

AI/ML Advice
Non-linear control Black-box policy Chapter 3 ([16])
Two-controller system Feasibility information Chapter 4 and 5 ([24–26])

Table 1.2: Learning-augmented control and decision-making problems considered
in this dissertation.

5

Note that the generality of the models increases from the top to the bottom, as we
will illustrate in Table 8.1.1 in Chapter 8. In the results listed in Table 1.1, additional
trust parameters are introduced in classical theoretical online algorithms, but most of
them do not have an approach to estimate the prediction error or if the AI/ML advice
can be trusted in order to choose the best algorithm parameters. Moreover, while the
previous results summarized in Table 1.1 on learning-augmented online algorithms
provide significant contributions to the fundamental theory, the following question
still remains:

Is it possible to improve the practicality of learning-augmented algorithms by
considering control and decision-making models for real-world applications?

In this dissertation, we reply the question above in the affirmative. Unlike most of
the existing results on theoretical computer science problems, we focus on more
practical control models and decision-making settings and consider online learning
approaches to tune the trust parameters. In the sequel, we introduce the problems
considered in this dissertation.

1.3 Learning-Augmented Control
Classical control methods such as robust control and robust MPC are conservative,
as they need to guarantee stability in the worst case. This usually yields poor
performance in practice compared with an optimal policy. In contrast, predictions
can significantly improve algorithm performance. For instance, in an electricity
grid, AI-generated forecasts of electricity prices, voltage/current perturbations and
battery states can help achieve near-optimal results. Deep learning methods make
use of data and generate useful predictions as black-box tools that may inevitably
contain errors, make mistakes and have no theoretical guarantees. Therefore, it is
vital to find an adaptive approach to balance robustness/worst-case performance that
is guaranteed by classical control methods and near-optimality that can be achieved
with AI predictions.

In Chapter 2, we consider a linear quadratic control problem and proposes an online
policy that (1) provides robustness guarantee when the predictions are inaccurate
and (2) takes advantage of black box AI predictions when they are close to the
ground truth. The goal is to design a controller that balances consistency, which
measures the competitive ratio when predictions are accurate, and robustness, which
bounds the competitive ratio when predictions are inaccurate. We propose a novel
𝜆-confident policy and provide a competitive ratio upper bound that depends on a

6

trust parameter 𝜆 ∈ [0, 1] set based on the confidence in the predictions and some
prediction error 𝜀. Motivated by online learning methods, we design a self-tuning
policy that adaptively learns the trust parameter 𝜆 with a competitive ratio that does
not scale up with the prediction error.

In many applications, instead of getting specific predictions that depend on concrete
models, model-free black-box policies as functions that map the system state to a
suggested action are more common. Developing safe RL with stability guarantees
has attracted lots of interests recently. In [13, 27], Lyapunov analysis is applied
to guarantee the stability of a model-based RL policy. Robust model predictive
control (MPC) is combined with deep RL to ensure safety and stability [28]. Using
regulated policy gradient, input-output stability is guaranteed for a continuous
non-linear control model. Stability guarantees for (constrained) MDPs have been
studied [28–30]. However, in many cases, the parameters of NNs for those black-box
policies are often

1. Unadaptable. The policy is a black-box and it is impossible or costly to access
the NN parameters and make updates.

2. Unwarranted. The policy could make big mistakes and it is not reasonable to
assume the policy behaves similarly to a stabilizing controller as in [13].

In the previous results such as [13, 27, 28], deep RL policies are evaluated and
updated during the episodic training steps. In those state-of-the-art results, the
stability guarantees are proven, either considering an aforementioned episodic setting
when the black-box policy can be improved or customized [27, 31], or assuming
a small and bounded output distance between a black-box policy and a stabilizing
policy for any input states to construct a Lyapunov equation [13], making their
approaches less realistic. An distinctive feature of the result presented in Chapter 3 is
that we consider stability and sub-optimality guarantee for black-box deep policies in
a single trajectory such that we can neither learn from the environments nor evaluate
or update the deep RL policy through extensive training steps.

To address this challenge, in Chapter 3, we consider a non-linear model and study
the problem of equipping a black-box control policy with model-based advice for
non-linear control on a single trajectory. We first show a general negative result that
a naive convex combination of a black-box policy and a linear model-based policy
can lead to instability, even if the two policies are both stabilizing. We then propose

7

an adaptive 𝜆-confident policy, with a coefficient 𝜆 indicating the confidence in a
black-box policy, and prove its stability. With bounded non-linearity, in addition, we
show that the adaptive 𝜆-confident policy achieves a bounded competitive ratio when
a black-box policy is near-optimal. Finally, we propose an online learning approach
to implement the adaptive 𝜆-confident policy and verify its efficacy in case studies
about the Cart-Pole problem and a real-world electric vehicle (EV) charging problem
with data bias due to COVID-19.

1.4 Large-Scale Learning-Augmented Decision-Making
Aggregate information of DERs is not a brand new topic. In previous studies,
convex approximations such as virtual battery models, Minkowski sum of individual
polytopes or hyper-rectangles [32–36] are the most common strategies to be used for
simplifying the constraint sets of large-scale DERs that may be non-convex. However,
this offline design makes the control time-scales of operator-to-aggregator and
aggregator-to-DERs inconsistent, prohibiting the adoption of a real-time electricity
market and the ability of handling unexpected uncertainties.

Tackling problems raised by the first question, in Chapter 4 and 5, we consider
large-scale control problems in power systems. In Chapter 4, a novel feedback
mechanism that combines model predictive control (MPC) and deep reinforcement
learning (RL) algorithms is formulated. It allows closed-loop coordination between a
system operator and an aggregator of a large number of distributed energy resources,
without risking to share their private information. As a new real-time aggregate
flexibility design, it outperforms traditional MPC with lower electricity costs and
computational/communication complexity.

Furthermore, in Chapter 5, treating the information theoretic-based feedback as
a penalty term in the objective function of MPC that summarizes and simplifies
constraints, the learning-based approach is showed to have a sub-linear regret under
certain conditions. This set of results reveals insights that with the penetration of
renewable energy resources, learning-based control has the potential to facilitate
operator-aggregator coordination, and improves traditional control policies in power
systems.

1.5 Learning, Inference, and Data Analysis in Smart Grids
Identifying and inferring system information of a power network such as its suscep-
tence matrix or nodal admittance matrix from voltage/current measurements is a
critical problem. We first consider a power system identification problem. Lower and

8

upper bounds on sample complexity are provided, together with an iterative algorithm
that takes advantage of useful properties of the admittance matrix and sparsity of
the graph. It outperforms classical basis pursuit in terms of sample complexity for
matrix recovery. There is little exploration on the fundamental performance limits
(estimation error and sample complexity) in the literature on topology and parameter
reconstruction of power networks. In an attempt to shed some light on this problem,
in Chapter 6, we consider a specific graph learning task: reconstructing a symmetric
matrix that represents an underlying graph using linear measurements. We present
a sparsity characterization for distributions of random graphs (that are allowed to
contain high-degree nodes), based on which we study fundamental trade-offs between
the number of measurements, the complexity of the graph class, and the probability
of error. We first derive a necessary condition on the number of measurements.
Then, by considering a three-stage recovery scheme, we give a sufficient condition
for recovery. Furthermore, assuming the measurements are Gaussian IID, we prove
upper and lower bounds on the (worst-case) sample complexity for both noisy and
noiseless recovery. In the special cases of the uniform distribution on trees with
𝑛 nodes and the Erdős-Rényi (𝑛, 𝑝) class, the fundamental trade-offs are tight up
to multiplicative factors with noiseless measurements. In addition, for practical
applications, we design and implement a polynomial-time (in 𝑛) algorithm based on
the three-stage recovery scheme.

The results presented in Chapter 6 close the theory-practice gap of power system
identification by providing theoretical analysis on the recovery of graph Laplacian
that may contain high-degree nodes.

Finally, in Chapter 7, we introduce ACN-Data that has been used frequently in EV
charging research including the learning-augmented problems considered in previous
chapters, together with a method that first extracts tails from a diversity of charging
time series that have different lengths, contain missing data, and are distorted by
scheduling algorithms and measurement noise. The charging tails are then clustered
into a small number of types whose representatives are then used to improve tail
extraction. This process iterates until it converges.

1.6 Dissertation Outline
The outline of the remainder of this dissertation is given in Figure 1.1.

9

Figure 1.1: Outline of this dissertation. Part I considers learning-augmented control
problems for both linear and non-linear models. Part II of this dissertation focuses
on large-scale learning-augmented decision making problems. The details of data,
environments, predictions, and forecasts used in the applications presented in the
first two parts are described in Part III.

Part I

Learning-Augmented Control

10

11

C h a p t e r 2

LINEAR QUADRATIC CONTROL WITH UNTRUSTED AI
PREDICTIONS

[1] Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam
Wierman, and Steven Low. Robustness and consistency in linear quadratic
control with untrusted predictions. 6(1), 2022. URL https://doi.org/10.
1145/3508038.

In this chapter, we study a classical online linear quadratic control problem where the
controller has access to untrusted predictions/advice during each round, potentially
from a black-box AI tool.

2.1 Introduction
One consequence of the success of machine learning is that accurate predictions
are available for many online decision and control problems. For example, the
development of deep learning has enabled generic prediction models in various
domains, e.g. weather, demand forecast, and user behaviors. Such predictions are
powerful because future information plays a significant role in optimizing the current
control decision. The availability of accurate future predictions can potentially lead
to order-of-magnitude performance improvement in decision and control problems,
where one can simply plug-in the predictions and achieve near optimal performance
when compared to the best control actions in hindsight, a.k.a., consistency. However,
an important caveat is that the predictions are helpful only when they are accurate,
which is not guaranteed in many scenarios. Since many predictions are obtained from
black box AI models like neural networks, there is no uncertainty quantification and
it is unclear whether the predictions are accurate. In the case when the predictions are
not accurate, the consequences can be catastrophic, leading to unbounded worst-case
performance, e.g., an unbounded competitive ratio. The possibility of such worst-case
unbounded competitive ratio prevents the use of ML predictions in safety-critical
applications that are adverse to potential risks.

The use of predictions described above is a sharp contrast to the approaches developed
by the online algorithm community, where the algorithms have access to no future
prediction, yet can be robust to all future variations and achieve a finite competitive

12

ratio. While such algorithms miss out on the improvements possible when accurate
predictions are available, their robustness properties are necessary in safety-critical
settings. Therefore, a natural question arises:

Can such adversarial guarantees be provided for control policies that use black-box
AI predictions?

To provide adversarial guarantees necessarily means not precisely following the
black-box AI predictions. Thus, there must be a trade-off between the performance in
the typical case (consistency) and the quality of the adversarial guarantee (robustness).
Trade-offs between consistency and robustness have received considerable attention
in recent years in the online algorithms community, starting with the work of [3], but
our work represents the first work in the context of control.

Contributions. In this chapter, we answer the question above in the affirmative, in
the context of linear quadratic control, providing an novel algorithm that trades off
consistency and robustness to provide adversarial gaurantees on the use of untrusted
predictions.

Our first result provides a novel online control algorithm, termed 𝜆-confident control,
that provides a competitive ratio of 1 + min{𝑂 (𝜆2𝜀) + 𝑂 (1 − 𝜆)2, 𝑂 (1) + 𝑂 (𝜆2)},
where 𝜆 ∈ [0, 1] is a trust parameter set based on the confidence in the predictions,
and 𝜀 is the prediction error (Theorem 5.5.3). When the predictions are accurate
(𝜀 ≈ 0), setting 𝜆 close to 1 will obtain a competitive ratio close to 1, and hence the
power of the predictions is fully utilized; on the other hand, when the predictions are
inaccurate (𝜀 very large), setting 𝜆 ≈ 0 will still guarantee a constant competitive
ratio, meaning the algorithm will still have good robustness guarantees when the
predictions turn out to be bad. Therefore, our approach can get the best of both
worlds, effectively using black-box predictions but still guaranteeing robustness.

The above discussion highlights that the optimal choice of 𝜆 depends on the
prediction error, which may not be known a priori. Therefore, we further provide an
adaptive, self-tuning learning policy (Algorithm 3) that selects 𝜆 so as to learn the
optimal parameter for the actual prediction error; thus selecting the optimal balance
between robustness and consistency. Our main result proves that the self-tuning
policy maintains a competitive ratio bound that is always bounded regardless of the
prediction error 𝜀 (Theorem 2.4.1). This result is informally presented below.

13

Theorem (Informal). Under our model assumptions, there is a self-tuning online
control algorithm that selects some 𝜆𝑡 ∈ [0, 1] for all 𝑡 = 0, . . . , 𝑇 − 1 and achieves
a competitive ratio

CR(𝜀) ≤ 1 + 𝑂 (𝜀)
Θ(1) + Θ(𝜀) +𝑂 (𝜇Var)

as a function of the prediction error 𝜀 where 𝜇Var measures the variation of
perturbations and predictions.

This result provides a worst-case performance bound for the use of untrusted
predictions, e.g., the predictions from a black-box AI tool, regardless of the accuracy
of the predictions. The second term in the competitive ratio upper bound indicates a
nontrivial non-linear dependency of CR(𝜀) and the prediction error 𝜀, matching our
experimental results shown in Section 2.5. The third term measures the variation of
perturbations and predictions. Such a term is common in regret analysis based on
the “Follow The Leader” (FTL) approach [37, 38]. For example, the regret analysis
of the Follow the Optimal Steady State (FOSS) method in [39] contains a similar
“path length” term that captures the variation of the state trajectory.

Proving our main result is complex due to the fact that, different from classical online
learning models, the cost function in our problem depends on previous actions via a
linear dynamical system (see (3.9)). The time coupling can even be exponentially
large if the dynamical system is unstable. To tackle this time-coupling structure, we
develop a new proof technique that relates the regret and competitive ratio with the
convergence rate of the trust parameter.

Finally, in Section 2.5 we demonstrate the effectiveness of our self-tuning approach
using three examples: a robotic tracking problem, an adaptive battery-buffered EV
charging problem and the Cart-Pole problem. For the robotic tracking and adaptive
battery-buffered EV charging cases, we illustrate that the competitive ratio of the
self-tuning policy performs nearly as well as the lower envelope formed by picking
multiple trust parameters optimally offline. We also validate the practicality of our
self-tuning policy by showing that it not only works well for linear quadratic control
problems; it also performs well in the non-linear Cart-Pole problem.

Related Work. Our work contributes to the growing literature on learning-augmented
online algorithm design. There has been significant interest in the goal of trading-off
consistency and robustness in order to ensure worst-case performance bounds for
black-box AI tools in online problems. As discussed earlier, prediction based

14

algorithms can achieve consistency, while online algorithms can have robustness.
These two classes of algorithms can be viewed as two extremes, and a number of
works attempt to develop algorithms that balance between consistency and robustness
in settings like online caching [3], ski-rental [4–7], online set cover [7], secretary
and online matching [8], and metric task systems [9]. For example, in the ski
rental problem, [5] proposes an algorithm that achieves 1 + 𝜆 consistency and 1 + 1

𝜆

robustness for a tuning parameter 𝜆 ∈ (0, 1). Compared to these works, our setting is
fundamentally more challenging because of the existence of dynamics in the control
problem couples all decision points, and a mistake at one time can be magnified and
propagated to all future time steps.

Our work is also closely related to a broad literature on regret and competitive
ratio analysis for Linear Quadratic Control (LQC) and Linear Quadratic Regulator
(LQR) systems with predictions. In [40], LQR regret analysis for Model Predictive
Control (MPC) is given, assuming accurate predictions of perturbations. Inaccurate
predictions are considered in [41], with competitive results provided. It is proven
in [40, 41] that the action generated by MPC can be explicitly written as the action
of optimal linear control plus a linear combination of inaccurate predictions. The
competitive analysis of the consistent and robust control scheme in this work makes
use of this fact in the analysis of the more challenging case of untrusted predictions.
Other related regret and competitive ratio results for MPC include [25, 42, 43].

While our work is the first to study learning-augmented control via the lens of
robustness and consistency, there are two classical communities in control that are
related to the goals of our work: robust control and adaptive control.

Robust control is a large area that concerns the design of controllers with performance
guarantees that are robust against model uncertainty or adversarial disturbances
[44]. Tools of robust control include 𝐻∞ synthesis [45, 46] and robust MPC [47].
Like the robust control literature, our work also considers robustness, but our main
focus is on balancing between robustness and consistency in a predictive control
setting. Consistency is not a focus of the robust control literature. Further, we focus
on the metrics of competitive ratio and regret, which is different from the typical
performance measures in the robust control literature, which focus on measures such
as system norms [46].

The design of our self-tuning control in Section 2.4 falls into the category of adaptive
control. There is a rich body of literature studying Lyapunov stability and asymptotic
convergence in adaptive control theory [48]. Recently, there has been increasing

15

interest in studying adaptive control with non-asymptotic metrics from learning
theory. Typical results guarantee convergence in finite time horizons using measures
such as regret [49–52], dynamic regret [39, 40, 43], and competitive ratio [41, 42].
Different from these works, this chapter deploys an adaptive policy with the goal
of balancing robustness and consistency. Additionally, such results do not focus on
incorporation of untrusted predictions.

2.2 Model
We consider a Linear Quadratic Control (LQC) model. Throughout the chapter, ∥ · ∥
denotes the ℓ2-norm for vectors and the matrix norm induced by the ℓ2-norm. Denote
by 𝑥𝑡 ∈ R𝑛 and 𝑢𝑡 ∈ R𝑚 the system state and action at each time 𝑡. We consider a
linear dynamic system with adversarial perturbations,

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 , for 𝑡 = 0, . . . , 𝑇 − 1, (2.1)

where 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚, and 𝑤𝑡 ∈ R𝑛 denotes some unknown perturbation
chosen adversarially. We make the standard assumption that the pair (𝐴, 𝐵) is
stabilizable. Without loss of generality, we also assume the system is initialized with
some fixed 𝑥0 ∈ R𝑛. The goal of control is to minimize the following quadratic costs
given matrices 𝐴, 𝐵, 𝑄, 𝑅 :

𝐽 B
𝑇−1∑︁
𝑡=0
(𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡) + 𝑥𝑇𝑃𝑥𝑇 ,

where 𝑄, 𝑅 ≻ 0 are positive definite matrices, and 𝑃 is the solution of the following
discrete algebraic Riccati equation (DARE), which must exist because (𝐴, 𝐵) is
stabilizable and 𝑄, 𝑅 ≻ 0 [44].

𝑃 = 𝑄 + 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴.

Given 𝑃, we can define 𝐾 B (𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴 as the optimal LQC controller in
the case of no disturbance (𝑤𝑡 = 0). Further, let 𝐹 B 𝐴 − 𝐵𝐾 be the closed-loop
system matrix when using 𝑢𝑡 = −𝐾𝑥𝑡 as the controller. By [44], 𝐹 must have a
spectral radius 𝜌(𝐹) less than 1. Therefore, Gelfand’s formula implies that there
must exist a constant 𝐶 > 0, 𝜌 ∈ (0, 1) s.t.

𝐹 𝑡 ≤ 𝐶𝜌𝑡 ,∀𝑡 ≥ 0.

Our model is a classical control model [46] and has broad applicability across
various engineering fields. In the following, we introduce ML/AI predictions into
the classical model and study the trade-off between consistency and robustness in
this classical model for the first time.

16

Untrusted Predictions
Our focus is on predictive control and we assume that, at the beginning of the control
process, a sequence of predictions of the disturbances (𝑤0, . . . , 𝑤𝑇−1) is given to the
decision maker. At time 𝑡, the decision maker observes 𝑥𝑡 , 𝑤𝑡−1 and picks a decision
𝑢𝑡 . Then, the environment picks 𝑤𝑡 , and the system transitions to the next step
according to (2.1). We emphasize that, at time 𝑡, the decision maker has no access to
(𝑤𝑡 , . . . , 𝑤𝑇) and their values may be different from the predictions (𝑤𝑡 , . . . , 𝑤𝑇).
Also, note that 𝑤𝑡 can be adversarially chosen at each time 𝑡, adaptively.

The assumption that a sequence of predictions available is (𝑤𝑡 , . . . , 𝑤𝑇) is not as
strong as it may first appear, nor as strong as other similar assumptions made in
literature, e.g., [39, 40], because we allow for prediction error. If there are no
predictions or only a subset of predictions are available, we can simply set the
unknown predictions to be zero and this does not affect our theoretical results and
algorithms.

In our model, there are two types of uncertainty. The first is caused by the
perturbations because the future perturbations (𝑤𝑡 , . . . , 𝑤𝑇−1) are unknown to the
controller at time 𝑡. The second is the prediction error due to the mismatch
𝑒𝑡 B 𝑤𝑡 − 𝑤𝑡 between the perturbation 𝑤𝑡 and the prediction 𝑤𝑡 at each time.
Formally, we define the prediction error as

𝜀 (𝐹, 𝑃, 𝑒0, . . . , 𝑒𝑇−1) B
𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑒𝑡

2

. (2.2)

Notice that the prediction error is not defined as a form of classical mean squared error
for our problem. The reason is because the mismatch 𝑒𝑡 at each time has different
impact on the system. Writing the prediction error as in (2.2) simplifies our analysis.
In fact, if we define 𝑢𝑡 and �̂�𝑡 as two actions given by an optimal linear controller
(formally defined in Section 2.2) as if the true perturbations are 𝑤0, . . . , 𝑤𝑇−1 and
𝑤0, . . . , 𝑤𝑇−1, respectively, then it can be verified that 𝜀 =

∑𝑇−1
𝑡=0 ∥𝑢𝑡 − �̂�𝑡 ∥, which

is the accumulated action mismatch for an optimal linear controllers provided with
different estimates of perturbations. In Section 2.5, using experiments, we show that
the competitive ratios (with a fixed “trust parameter” defined in 2.3) grow linearly
in the prediction error 𝜀 defined in (2.2). Finally, we assume that the perturbations
(𝑤0, . . . , 𝑤𝑇−1) and predictions (𝑤0, . . . , 𝑤𝑇−1) are uniformly bounded, i.e., there
exist 𝑤 > 0 and 𝑤 > 0 such that ∥𝑤𝑡 ∥ ≤ 𝑤 and ∥𝑤𝑡 ∥ ≤ 𝑤 for all 0 ≤ 𝑡 ≤ 𝑇 − 1. In
summary, Figure 2.1 demonstrates the system model considered in this chapter.

17

Figure 2.1: System model of linear quadratic control with untrusted predictions.

Defining Consistency and Robustness
As discussed in the in introduction, while predictions can be helpful, inaccurate
predictions can lead to unbounded competitive ratio. Our goal is to utilize predictions
to achieve good performance (consistency) while still providing adversarial worst-
case guarantees (robustness). In this subsection, we formally define the notions
of consistency and robustness we study. These notions have received increasing
attention recently in the area of online algorithms with untrusted advice, e.g., [4–9].

We use the competitive ratio to measure the performance of an online control policy
and quantify its robustness and consistency. Specifically, let OPT be the offline
optimal cost when all the disturbances (𝑤𝑡)𝑇𝑡=0 are known, and ALG be the cost
achieved by an online algorithm. Throughout this chapter, we assume that OPT > 0.
We define the competitive ratio for a given bound on the prediction error 𝜀, as follows.

Definition 2.2.1. The competitive ratio for a given prediction error 𝜀, CR(𝜀), is
defined as the smallest constant 𝐶 ≥ 1 such that ALG ≤ 𝐶 · OPT for fixed 𝐴, 𝐵, 𝑄, 𝑅
and any adversarially and adaptively chosen perturbations (𝑤0, . . . , 𝑤𝑇−1) and
predictions (𝑤0, . . . , 𝑤𝑇−1).

Building on the definition of competitive ratio, we define robustness and consistency
as follows.

Definition 2.2.2. An online algorithm is said to be 𝛾-robust if, for any prediction
error 𝜀 > 0, the competitive ratio satisfies CR(𝜀) ≤ 𝛾, and an algorithm is said to
be 𝛽-consistent if the competitive ratio satisfies CR(0) ≤ 𝛽.

Background: Existing Algorithms
Before proceeding to our algorithm and its analysis, we first introduce two extreme
algorithm choices that have been studied previously: a myopic policy that we refer
to as 1-confident control, which places full trust in the predictions, and a pure
online strategy that we refer to as 0-confident control, which places no trust in the

18

predictions. These represent algorithms that can achieve consistency and robustness
individually, but cannot achieve consistency and robustness simultaneously. The key
challenge of this work is to understand how to integrate ideas such as what follows
into an algorithm that achieves consistency and robustness simultaneously.

A Consistent Algorithm: 1-Confident Control

A simple way to achieve consistency is to put full faith in the untrusted predictions.
In particular, if the algorithm trusts the untrusted predictions and follows them, the
performance will always be optimal if the predictions are accurate. We refer to this
as the 1-confident policy, which is defined by a finite-time optimal control problem
that trusts that (𝑤0, . . . , 𝑤𝑇−1) are the true disturbances. Formally, at time step 𝑡, the
actions (𝑢𝑡 , . . . , 𝑢𝑇) are computed via

arg min
(𝑢𝑡 ,...,𝑢𝑇−1)

(
𝑇−1∑︁
𝜏=𝑡

(𝑥⊤𝜏𝑄𝑥𝜏 + 𝑢⊤𝜏 𝑅𝑢𝜏) + 𝑥𝑇𝑃𝑥𝑇

)
s.t. (2.1) for all 𝜏 = 𝑡, . . . , 𝑇 − 1.

(2.3)

With the obtained solution (𝑢𝑡 , . . . , 𝑢𝑇−1), the control action 𝑢𝑡 at time 𝑡 is fixed to
be 𝑢𝑡 and the other actions (𝑢𝑡+1, . . . , 𝑢𝑇−1) are discarded.

We highlight the following result (Theorem 3.2 in [40]) that provides an explicit
expression of the algorithm in (2.3), which can be viewed as a form of Model
Predictive Control (MPC).

Theorem 2.2.1 (Theorem 3.2 in [40]). With predictions (𝑤0, . . . , 𝑤𝑇−1) fixed, the
solution 𝑢𝑡 of the algorithm in (2.3) can be expressed as

𝑢𝑡 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
(
𝑃𝐴𝑥𝑡 +

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

)
(2.4)

where 𝐹 B 𝐴 − 𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴 = 𝐴 − 𝐵𝐾 .

It is clear that this controller (2.3) (or equivalently (2.4)) achieves 1-consistency
because, when the prediction errors are 0, the control action from (2.3) (and the state
trajectory) will be exactly the same as the offline optimal. However, this approach is
not robust, and one can show that prediction errors can lead to unbounded competitive
ratios. In the next subsection, we introduce a robust (but non consistent) controller.

19

A Robust Algorithm: 0-Confident Control

On the other extreme, a natural way to be robust is to ignore the untrusted predictions
entirely, i.e., place no confidence in the predictions. The 0-confident policy does
exactly this. It places no trust in the predictions and synthesizes the controller by
assuming 𝑤𝑡 = 0. Formally, the policy is given by

𝑢𝑡 = −𝐾𝑥𝑡 . (2.5)

This recovers the optimal pure online policy in classical linear control theory [53].
As shown by [40], this controller has a constant competitive ratio and therefore
is 𝑂 (1)-robust. However, this approach is not consistent as it does not utilize the
predictions at all. In the next section, we discuss our proposed approach, which
achieves both consistency and robustness.

2.3 Consistent and Robust Control
The goal in this chapter is to develop a controller that performs near-optimally when
predictions are accurate (consistency) and meanwhile is robust when the prediction
error is large. As discussed in the previous section, a myopic, 1-confident controller
that puts full trust into the predictions is consistent, but not robust. On the other
hand, any purely online 0-confident policy that ignores predictions is robust but not
consistent.

The algorithms we present establish a trade-off between these extremes by including
a “confidence/trust level” for the predictions. The algorithm design challenge is to
determine the right way to balance these extremes. In the first (warmup) algorithm,
the policy starts out confident in the predictions, but when a threshold of error is
observed, the policy loses confidence and begins to ignore predictions. This simple
threshold-based policy highlights that it is possible for a policy to be both robust and
consistent. However, the result also highlights the weakness of the standard notions
of robustness and consistency since the policy cannot make use of intermediate
quality predictions and only performs well in the extreme cases when predictions are
either perfect or poor.

Thus, we move to considering a different approach, which we term 𝜆-confident
control. This algorithm selects a confidence level 𝜆 that serves as a weight for a
linear combination between purely myopic 1-confident control and purely online 0-
confident control. Our main result shows that this policy provides a smooth trade-off
between robustness and consistency and, further, in Section 2.4, we show that the

20

Algorithm 1: Threshold-Based Control
Initialize 𝛿 = 0
for 𝑡 = 0, . . . , 𝑇 − 1 do

if 𝛿 < 𝜎 then
𝑢𝑡 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤

(
𝑃𝐴𝑥𝑡 +

∑𝑇−1
𝜏=𝑡 (𝐹⊤)

𝜏−𝑡
𝑃𝑤𝜏

)
else

Compute 𝑢𝑡 with the best myopic online algorithm AOnline without
predictions

end
Update 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 and 𝛿← 𝛿 + ∥𝑤𝑡 − 𝑤𝑡 ∥

end

confidence level 𝜆 can be learned online adaptively so as to achieve consistency and
robustness without exogenously specifying a trust level.

Warmup: Threshold-Based Control
We begin by presenting a simple threshold-based algorithm that can be both robust
and consistent, though it does not perform well for predictions of intermediate quality.
This distinction highlights that looking beyond the classical narrow definitions of
robustness and consistency is important when evaluating algorithms.

The threshold-based algorithm is described in Algorithm 1. It works by trusting
predictions (using 1-confident control update (2.4)) until a certain error threshold
𝜎 > 0 is crossed and then ignoring predictions (using an online algorithm AOnline

that attains a (minimal) competitive ratio 𝐶min1 for all online algorithms that do not
use predictions). The following result shows that, with a small enough threshold, this
algorithm is both robust and consistent because, if predictions are perfect, it trusts
them entirely, but if there is an error, it immediately begins to ignore predictions and
matches the 0-confident controller performance, which is optimal. A proof can be
found in Appendix 2.D.

Theorem 2.3.1. There exists a threshold parameter 𝜎 > 0 such that Algorithm 1 is
1-consistent and (𝐶min + 𝑜(1))-robust, where 𝐶min is the minimal competitive ratio
of any pure online algorithm.

1Note that 𝐶min is guaranteed to exist, as setting 𝜆 = 0 in Theorem 5.5.3 gives a constant
1 + ∥𝐻∥/𝜆min (𝐺) competitive ratio bound for the 0-confident control update (2.5), therefore 1 ≤
𝐶min ≤ 1 + ∥𝐻∥/𝜆min (𝐺).

21

Algorithm 2: 𝜆-Confident Control
for 𝑡 = 0, . . . , 𝑇 − 1 do

Take 𝑢𝑡 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
(
𝑃𝐴𝑥𝑡 + 𝜆

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

)
Update 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

end

The term 𝑜(1) in Theorem 2.3.1 converges to 0 as 𝑇 → ∞. While Algorithm 1 is
optimally robust and consistent, it is unsatisfying because it does not improve over the
online algorithm unless predictions are perfect since in the proof, we set the threshold
parameter 𝜎 > 0 arbitrarily small to make the algorithm robust and 1-consistent
and the definition of consistency and robustness only captures the behavior of the
competitive ratio CR(𝜀) for either 𝜀 = 0 or 𝜀 is large. As a result, in the remainder
of this chapter we look beyond the extreme cases and prove results that apply for
arbitrary prediction error quality. In particular, we prove competitive ratio bounds
that hold for arbitrary 𝜀, of which consistency and robustness are then special cases.

𝜆-Confident Control
We now present our main results, which focus on a policy that, like Algorithm 1,
looks to find a balance between the two extreme cases of 1-confident and 0-confident
control. However, instead of using a threshold to decide when to swap between them,
the 𝜆-confident controller considers a linear combination of the two.

Specifically, the policy presented in Algorithm 2 works as follows. Given a trust
parameter 0 ≤ 𝜆 ≤ 1, it implements a linear combination of (2.4) and (2.5).
Intuitively, the selection of 𝜆 allows a trade-off between consistency and robustness
based on the extent to which the predictions are trusted. Our main result shows a
competitive ratio bound that is consistent with this intuition. A proof is given in
Appendix 2.B.

Theorem 2.3.2. Under our model assumptions, with a fixed trust parameter 𝜆 > 0,
the 𝜆-confident control in Algorithm 2 has a worst-case competitive ratio of at most

CR(𝜀) ≤ 1 + 2∥𝐻∥min
{(

𝜆2

OPT
𝜀 + (1 − 𝜆)

2

𝐶

)
,

(
1
𝐶
+ 𝜆2

OPT
𝑊

)}
(2.6)

22

where 𝐻 B 𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤, OPT denotes the optimal cost, 𝐶 > 0 is a constant
that depends on 𝐴, 𝐵, 𝑄, 𝑅 and

𝜀 (𝐹, 𝑃, 𝑒0, . . . , 𝑒𝑇−1) B
𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 (𝑤𝜏 − 𝑤𝜏)

2

, (2.7)

𝑊 (𝐹, 𝑃, 𝑤0, . . . , 𝑤𝑇−1) B
𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

2

.

From this result, we see that 𝜆-confident control is guaranteed to be
(
1 + ∥𝐻∥ (1−𝜆)

2

𝐶

)
-

consistent and
(
1 + ∥𝐻∥

(1
𝐶
+ 𝜆2

OPT𝑊
))

-robust. This highlights a trade-off between
consistency and robustness such that if a large 𝜆 is used (i.e., predictions are trusted),
then consistency decreases to 1, while the robustness increases unboundedly. In
contrast, when a small 𝜆 is used (i.e., predictions are distrusted), the robustness of
the policy converges to the optimal value, but the consistency does not improve on
the robustness value. Due to the time-coupling structure in the control system, the
mismatches 𝑒𝑡 = 𝑤𝑡 − 𝑤𝑡 at different times contribute unequally to the system. As a
result, the prediction error 𝜀 in (2.2) and (2.7) is defined as a weighed quadratic sum
of (𝑒0, . . . , 𝑒𝑇−1). Moreover, the term OPT in (2.6) is common in the robustness and
consistency analysis of online algorithms, such as [3, 5, 7, 9].

2.4 Self-Tuning 𝜆-Confident Control
While the 𝜆-confident control finds a balance between consistency and robustness,
selecting the optimal 𝜆 parameter requires exogenous knowledge of the quality of the
predictions 𝜀, which is often not possible. For example, black-box AI tools typically
do not allow uncertainty quantification. In this section, we develop a self-tuning
𝜆-confident control approach that learns to tune 𝜆 in an online manner. We provide
an upper bound on the regret of the self-tuning 𝜆-confident control, compared with
using the best possible 𝜆 in hindsight, and a competitive ratio for the complete
self-tuning algorithm. These results provide the first worst-case guarantees for the
integration of black-box AI tools into linear quadratic control.

Our policy is described in Algorithm 3 and is a “follow the leader” approach [38]. At
each time 𝑡 = 0, . . . , 𝑇 − 1, it selects a 𝜆𝑡 in order to minimize the gap between ALG
and OPT in the previous 𝑡 rounds and chooses an action using the trust parameter
𝜆𝑡 . Then the state 𝑥𝑡 is updated to 𝑥𝑡+1 using the linear system dynamic in (2.1)
and this process repeats. Note that the denominator of 𝜆𝑡 is zero if and only if
𝜂 (𝑤; 𝑠, 𝑡 − 1) = 0 for all 𝑠. To make 𝜆𝑡 well-defined, we set 𝜆 = 1 for this case.

23

Algorithm 3: Self-Tuning 𝜆-Confident Control
for 𝑡 = 0, . . . , 𝑇 − 1 do

if 𝑡 = 0 or 𝑡 = 1 then
Initialize and choose 𝜆0

end
else

Compute a trust parameter 𝜆𝑡

𝜆𝑡 =

∑𝑡−1
𝑠=0 (𝜂(𝑤; 𝑠, 𝑡 − 1))⊤ 𝐻 (𝜂(𝑤; 𝑠, 𝑡 − 1))∑𝑡−1
𝑠=0 (𝜂(𝑤; 𝑠, 𝑡 − 1))⊤ 𝐻 (𝜂(𝑤; 𝑠, 𝑡 − 1))

where 𝜂(𝑤; 𝑠, 𝑡) B
𝑡∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃𝑤𝜏

end
Generate an action 𝑢𝑡 using 𝜆𝑡-confident control (Algorithm 2)
Update 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

end

The key to the algorithm is the update rule for 𝜆𝑡 . Given previously observed pertur-
bations and predictions, the goal of the algorithm is to find a greedy 𝜆𝑡 that minimizes
the gap between the algorithmic and optimal costs so that 𝜆𝑡 B min𝜆

∑𝑡−1
𝑠=0 𝜓

⊤
𝑠 𝐻𝜓𝑠

where 𝜓𝑠 B
∑𝑡−1
𝜏=𝑠 (𝐹⊤)

𝜏−𝑠
𝑃 (𝑤𝜏 − 𝜆𝑤𝜏) . This can be equivalently written as

𝜆𝑡 = arg min
𝜆

𝑡−1∑︁
𝑠=0

(
𝑡−1∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃(𝑤𝜏 − 𝜆𝑤𝜏)

)⊤
𝐻

(
𝑡−1∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃(𝑤𝜏 − 𝜆𝑤𝜏)

) ,
(2.8)

which is a quadratic function of 𝜆. Rearranging the terms in (2.8) yields the choice
of 𝜆𝑡 in the self-tuning control scheme.

Algorithm 3 is efficient since, in each time step, updating the 𝜂 values only requires
adding one more term. This means that the total computational complexity of 𝜆𝑡 is
𝑂 (𝑇2𝑛𝛼), where 𝛼 < 2.373, which is polynomial in both the time horizon length 𝑇
and state dimension 𝑛. According to the expression of 𝜆𝑡 in Algorithm 3, at each time
𝑡, the terms 𝜂(𝑤; 𝑠, 𝑡−2) and 𝜂(𝑤; 𝑠, 𝑡−2) can be pre-computed for all 𝑠 = 0, . . . , 𝑡−1.
Therefore, the recursive formula 𝜂(𝑤; 𝑠, 𝑡) B ∑𝑡

𝜏=𝑠 (𝐹⊤)
𝜏−𝑠

𝑃𝑤𝜏 = 𝜂(𝑤; 𝑠, 𝑡 − 1) +
(𝐹⊤)𝑡−𝑠 𝑃𝑤𝑡 implies the update rule of the terms {𝜂(𝑤; 𝑠, 𝑡 − 1) : 𝑠 = 0, . . . , 𝑡 − 1}
in the expression of 𝜆𝑡 . This gives that, at each time 𝑡, it takes no more than 𝑂 (𝑇𝑛𝛼)
steps to compute 𝜆𝑡 where 𝛼 < 2.373 and 𝑂 (𝑛𝛼) is the computational complexity of
matrix multiplication.

24

Convergence
We now move to the analysis of Algorithm 3. First, we study the convergence of
𝜆𝑡 , which depends on the variation of the predictions ŵ B (𝑤0, . . . , 𝑤𝑇−1) and the
true perturbations w B (𝑤0, . . . , 𝑤𝑇−1), where we use a boldface letter to represent
a sequence of vectors. Specifically, our results are in terms of the variation of
the predictions and perturbations, which we define as follows. The self-variation
𝜇VAR(y) of a sequence y B (𝑦0, . . . , 𝑦𝑇−1) is defined as

𝜇VAR(y) B
𝑇−1∑︁
𝑠=1

max
𝜏=0,...,𝑠−1

∥𝑦𝜏 − 𝑦𝜏+𝑇−𝑠∥ .

The goal of the self-tuning algorithm is to converge to the optimal trust parameter
𝜆∗ for the problem instance. To specify this formally, let ALG(𝜆0, . . . , 𝜆𝑇−1) be
the algorithmic cost with adaptively chosen trust parameters 𝜆0, . . . , 𝜆𝑇−1 and
denote by ALG(𝜆) the cost with a fixed trust parameter 𝜆. Then, 𝜆∗ is defined as
𝜆∗ B min𝜆∈R ALG(𝜆). Further, let𝑊 (𝑡) B ∑𝑡

𝑠=0 𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡).

We can now state a bound on the convergence rate of 𝜆𝑡 to 𝜆∗ under Algorithm 3.
The bound highlights that if the variation of the system perturbations and predictions
is small, then the trust parameter 𝜆𝑡 converges quickly to 𝜆∗. A proof can be found in
Appendix 2.C.

Lemma 1. Assume 𝑊 (𝑇) = Ω(𝑇) and 𝜆𝑡 ∈ [0, 1] for all 𝑡 = 0, . . . , 𝑇 − 1. Under
our model assumptions, the adaptively chosen trust parameters (𝜆0, . . . , 𝜆𝑇) by
self-tuning control satisfy that for any 1 < 𝑡 ≤ 𝑇 ,

|𝜆𝑡 − 𝜆∗ | = 𝑂
((
𝜇VAR(w) + 𝜇VAR(ŵ)

)
/𝑡

)
.

Regret and Competitiveness
Building on the convergence analysis, we now prove bounds on the regret and
competitive ratio of Algorithm 3. These are the main results presented in this
chapter about the performance of an algorithm that adaptively determines the optimal
trade-off between robustness and consistency.

Regret. We first study the regret as compared with the best, fixed trust parameter
in hindsight, i.e., 𝜆∗, whose corresponding worst-case competitive ratio satisfies the
upper bound given in Theorem 2.3.2.

Denote by Regret B ALG(𝜆0, . . . , 𝜆𝑇−1) − ALG(𝜆∗) the regret we consider where
(𝜆0, . . . , 𝜆𝑇−1) are the trust parameters selected by the self-tuning control scheme.

25

Our main result is the following variation-based regret bound, which is proven
in Appendix 2.C. Define the denominator of 𝜆𝑡 in Algorithm 2 by 𝑊 (𝑡) B∑𝑡
𝑠=0 𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡).

Lemma 2. Assume𝑊 (𝑡) = Ω(𝑇) and 𝜆𝑡 ∈ [0, 1] for all 𝑡 = 0, . . . , 𝑇 − 1. Under our
model assumptions, for any w and ŵ, the regret of Algorithm 3 is bounded by

Regret = 𝑂
((
𝜇VAR(w) + 𝜇VAR(ŵ)

)2
)
.

Note that the baseline we evaluate against in Regret = ALG(𝜆0, . . . , 𝜆𝑇−1) −ALG(𝜆∗)
is stronger than baselines in previous static regret analysis for LQR, such as [52, 54]
where online controllers are compared with a linear control policy 𝑢𝑡 = −𝐾𝑥𝑡 with
a strongly stable 𝐾. The baseline policy considered in our regret analysis is the
𝜆-confident scheme (Algorithm 2) with

𝑢𝑡 = − (𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
(
𝑃𝐴𝑥𝑡 + 𝜆

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

)
= − 𝐾𝑥𝑡 − 𝜆(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏,

which contains the class of strongly stable linear controllers as a special case. More-
over, the regret bound in Lemma 2 holds for any predictions 𝑤0, . . . , 𝑤𝑇−1. Taking
𝑤𝑡 = 𝑤𝑡 for all 𝑡 = 0, . . . , 𝑇 − 1, our regret directly compares ALG(𝜆0, . . . , 𝜆𝑇−1)
with the optimal cost OPT, and therefore, our regret also involves the dynamic regret
considered in [39, 40, 43] for LQR as a special case. The regret bound in Lemma 2
depends on the variation of perturbations and predictions. Note that such a term
commonly exists in regret analysis based on the “follow the leader” approach [37, 38].
For example, the regret analysis of the follow the optimal steady state (FOSS) method
in [39] contains a similar “path length” term that captures the state variation. There
is a variation budget of the predictions or prediction errors in theorem 1 of [43]. In
many robotics applications (e.g., the trajectory tracking and EV charging experiments
in this chapter shown in Section 2.5), each 𝑤𝑡 is from some desired smooth trajectory
to track.

To interpret this lemma, suppose the sequences of perturbations and predictions
satisfy:

∥𝑤𝜏 − 𝑤𝜏+𝑇−𝑠∥ ≤ 𝜌(𝑠),
∥𝑤𝜏 − 𝑤𝜏+𝑇−𝑠∥ ≤ 𝜌(𝑠), for any 𝑠 ≥ 0, 0 ≤ 𝜏 ≤ 𝑠.

26

These bounds correspond to an assumption of smooth variation in the disturbances
and the predictions. Note that it is natural for the disturbances to vary smoothly
in applications such as tracking problems where the disturbances correspond to
the trajectory and in such situations one would expect the predictions to also vary
smoothly. For example, machine learning algorithms are often regularized to provide
smooth predictions.

Given these smoothness bounds, we have that

𝜇VAR(w) + 𝜇VAR(ŵ) ≤
𝑇−1∑︁
𝑠=0

2𝜌(𝑠).

Note that, as long as
(∑𝑇−1

𝑠=0 𝜌(𝑠)
)2

= 𝑜(𝑇), the regret bound is sub-linear in 𝑇 . To
understand how this bound may look in particular applications, suppose we have
𝜌(𝑠) = 𝑂 (1/𝑠). In this case, regret is poly-logarithmic, i.e., Regret = 𝑂 ((log𝑇)2).
If 𝜌(𝑠) is exponential the regret is even smaller, i.e., if 𝜌(𝑠) = 𝑂 (𝑟 𝑠) for some
0 < 𝑟 < 1, then Regret = 𝑂 (1).

Competitive Ratio. We are now ready to present our main result, which provides
an upper bound on the competitive ratio of self-tuning control (Algorithm 3). Recall
that, in Lemma 2, we bound the regret Regret B ALG(𝜆0, . . . , 𝜆𝑇−1) − ALG(𝜆∗)
and, in Theorem 2.3.2, a competitive ratio bound is provided for the 𝜆-confident
control scheme, including ALG(𝜆∗)/OPT. Therefore, combining Lemma 2 and
Theorem 2.3.2 leads to a novel competitive ratio bound for the self-tuning scheme
(Algorithm 3). Note that compared with Theorem 2.3.2, which also provides a
competitive ratio bound for 𝜆-confident control, Theorem 2.4.1 below considers a
competitive ratio bound for the self-tuning scheme in Algorithm 3 where, at each time
𝑡, a trust parameter 𝜆𝑡 is determined by online learning and may be time-varying.

Theorem 2.4.1. Assume 𝑊 (𝑇) = Ω(𝑇) and 𝜆𝑡 ∈ [0, 1] for all 𝑡 = 0, . . . , 𝑇 − 1.
Under our model assumptions, the competitive ratio of Algorithm 3 is bounded by

CR(𝜀) ≤ 1 + 2∥𝐻∥ 𝜀

OPT + 𝐶𝜀 +𝑂
((
𝜇VAR(w) + 𝜇VAR(ŵ)

)2

OPT

)
where 𝐻, 𝐶 OPT and 𝜀 are defined in Theorem 2.3.2.

In contrast to the regret bound, Theorem 2.4.1 states an upper bound on the
competitive ratio CR(𝜀) defined in Section 2.2, which indicates that CR(𝜀) scales as

27

1+𝑂 (𝜀)/(Θ(1) + Θ(𝜀)) as a function of 𝜀. As a comparison, the 𝜆-confident control
in Algorithm 2 has a competitive ratio upper bound that is linear in the prediction
error 𝜀 (Theorem 2.3.2). This improved dependency highlights the importance of
learning the trust parameter adaptively.

Our experimental results in the next section verify the implications of Theorem 2.3.2
and Theorem 2.4.1. Specifically, the simulated competitive ratio of the self-tuning
control (Algorithm 3) is a non-linear envelope of the simulated competitive ratios for
𝜆-confident control with fixed trust parameters and as a function of prediction error
𝜀, it matches the implied competitive ratio upper bound 1 +𝑂 (𝜀)/(Θ(1) + Θ(𝜀)).

Theorem 2.4.1 is proven by combining Lemma 2 with Theorem 2.3.2, which bounds
the competitive ratios for fixed trust parameters.

Proof of Theorem 2.4.1. Denote by ALG(𝜆0, . . . , 𝜆𝑇−1) the algorithmic cost of the
self-tuning control scheme. We have

ALG(𝜆0, . . . , 𝜆𝑇−1)
OPT

≤ |ALG(𝜆0, . . . , 𝜆𝑇−1) − ALG(𝜆∗) |
OPT

+ ALG(𝜆∗)
OPT

. (2.9)

Using Theorem 2.3.2,

ALG(𝜆∗)
OPT

≤1 + 2∥𝐻∥min
{
min
𝜆

(
𝜆2

OPT
𝜀 + (1 − 𝜆)

2

𝐶

)
,min

𝜆

(
1
𝐶
+ 𝜆2

OPT
𝑊

)}
=1 + 2∥𝐻∥min

{
𝜀

OPT + 𝜀𝐶 ,
1
𝐶

}
= 1 + 2∥𝐻∥ 𝜀

OPT + 𝜀𝐶 . (2.10)

Moreover, the regret bound in Lemma 2 implies

|ALG(𝜆0, . . . , 𝜆𝑇−1) − ALG(𝜆∗) |
OPT

= 𝑂

((
𝜇VAR(w) + 𝜇VAR(ŵ)

)2

OPT

)
,

combing which with (2.10), (2.9) gives the results. □

2.5 Applications
We now illustrate our main results using numerical examples and case studies to
highlight the impact of the trust parameter 𝜆 in 𝜆-confident control and demonstrate
the ability of the self-tuning control algorithm to learn the appropriate trust parameter
𝜆. We consider three applications. The first is a robot tracking example where a
robot is asked to follow locations of an unknown trajectory and the desired location
is only revealed the time immediately before the robot makes a decision to modify
its velocity. Predictions about the trajectory are available. However, the predictions

28

can be untrustworthy so that they may contain large errors. The second is an
adaptive battery-buffered electric vehicle (EV) charging problem where a battery-
buffered charging station adaptively supplies energy demands of arriving EVs while
maintaining the state of charge of the batteries as close to a nominal level as possible.
Our third application considers a non-linear control problem–the Cart-Pole problem.
Our 𝜆-confident and self-tuning control schemes use a linearized model while the
algorithms are tested with the non-linear environment. We use the third application
to demonstrate the practicality of our algorithms by showing that they do not only
work for LQC problems, but also non-linear systems.

To illustrate the impact of randomness in prediction errors in our case studies, the
three applications all use different forms of random error models. For each selected
distribution of ŵ − w, we repeat the experiments multiple times and report the worst
case with the highest algorithmic cost; see Appendix 2.E for details.

Application 1: Robot Tracking
Problem description. The first example we consider is a two-dimensional robot
tracking application [39, 41]. There is a robot controller following a fixed but
unknown cloud-shaped trajectory (see Figures 2.2a and 2.2b), which is

𝑦𝑡 B

[
2 cos(𝜋𝑡/30) + cos(𝜋𝑡/5)
2 sin(𝜋𝑡/30) + sin(𝜋𝑡/5)

]
, 𝑡 = 0, . . . , 𝑇 − 1.

The robot controller’s location at time 𝑡 + 1, denoted by 𝑝𝑡+1 ∈ R2, depends on its
previous location and its velocity 𝑣𝑡 ∈ R2 such that 𝑝𝑡+1 = 𝑝𝑡 + 0.2𝑣𝑡 and at each
time 𝑡 + 1, the controller is able to apply an adjustment 𝑢𝑡 to modify its velocity such
that 𝑣𝑡+1 = 𝑣𝑡 + 0.2𝑢𝑡 . Together, letting 𝑥𝑡 B 𝑝𝑡 − 𝑦𝑡 , this system can be recast in the
canonical form in (2.1) as[

𝑥𝑡+1

𝑣𝑡+1

]
= 𝐴

[
𝑥𝑡

𝑣𝑡

]
+ 𝐵𝑢𝑡 + 𝑤𝑡 , with

𝐴 B

1 0 0.2 0
0 1 0 0.2
0 0 1 0
0 0 0 1

, 𝐵 B

0 0
0 0

0.2 0
0 0.2

, and 𝑤𝑡 B 𝐴𝑦𝑡 − 𝑦𝑡+1.

29

To track the trajectory, the controller sets

𝑄 B

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

and 𝑅 B

[
10−2 0

0 10−2

]
.

Experimental results. In our first experiment, we demonstrate the convergence of
the self-tuning scheme in Algorithm 3. To mimic the worst-case error, a random
prediction error 𝑒𝑡 = 𝑤𝑡 − 𝑤𝑡 at each time 𝑡 is used. We then sample prediction error
and implement our algorithm with several error instances and choose the one the
worst competitive ratio. The details of settings can be found in Appendix 2.E. To
better simulate the task of tracking a trajectory and make it easier to observe the
tracking accuracy, we ignore the cost of increasing velocity by setting 𝑅 as a zero
matrix for Figure 2.2a and Figure 2.2b.

In Figure 2.2a, we observe that the tracking trajectory generated by the self-tuning
scheme converges to the unknown trajectory (𝑦1, . . . , 𝑦𝑇), regardless of the level of
prediction error. We plot the tracking trajectories every 60 time steps with a scaling
parameter (defined in Appendix 2.E) 𝑐 = 10−2 (left), 𝑐 = 10−1 (mid) and 𝑐 = 1
(right), respectively. In all cases, we observe convergence of the trust parameters.
Moreover, for a wide range of prediction error levels, without knowing the prediction
error level in advance, the scheme is able to automatically switch its mode and
become both consistent and robust by choosing an appropriate trust parameter 𝜆𝑡 to
accurately track the unknown trajectory. In Figure 2.2b, we observe similar behavior
when the prediction error is generated from Gaussian distributions.

Next, we demonstrate the performance of self-tuning control and the impact of trust
parameters. In Figure 2.3, we depict the competitive ratios of the 𝜆-confident control
algorithm described in Section 2.3 with varying trust parameters, together with the
competitive ratios of the self-tuning control scheme described in Algorithm 3. The
label of the 𝑥-axis is the prediction error 𝜀 (normalized by 103), defined in (2.7).
We divide our results into two parts. The left sub-figure in Figure 2.3 considers a
low-error regime where we observe that the competitive ratio of the self-tuning policy
performs closely as the lower envelope formed by picking multiple trust parameters
optimally offline. The right sub-figure in Figure 2.3 shows the performance of
self-tuning for the case when the prediction error is high. For the high-error regime,

30

(a) Left: low binomial prediction error with 𝑐 = 10−2; middle: medium prediction error with
𝑐 = 10−1; right: high prediction error with 𝑐 = 1 where 𝑐 is a tuning parameter defined in
Appendix 2.E.

(b) Left: low Gaussian prediction error with variance 𝜎2 = 10−2; middle: medium Gaussian
prediction error with variance 𝜎2 = 10−1; right: high Gaussian prediction error with variance
𝜎2 = 1.

Figure 2.2: Tracking trajectories and trust parameters (𝜆0, . . . , 𝜆𝑇−1) of the self-
tuning control scheme. The x-axis and y-axis in the top 6 figures are locations of
the robot. The y-axis in the bottom 3 figures denotes the value of the trust parameter.

the competitive ratio of the self-tuning control policy is close to those with the best
fixed trust parameter.

31

Figure 2.3: Impact of trust parameters and performance of self-tuning control for
robot tracking.

Figure 2.4: Adaptive battery-buffered EV charging modelled as a linear quadratic
control problem.

Figure 2.5: An example of the daily charging demands in ACN-Data [1] on Nov 1st,
2018.

Application 2: Adaptive Battery-Buffered EV Charging
Problem description. We consider an adaptive battery-buffered Electric Vehicle
(EV) charging problem. There is a charging station with 𝑁 chargers, with each
charger connected to a battery energy storage system. Let 𝑥𝑡 be a vector in R𝑁+ , whose
entries represent the State of Charge (SoC) of the batteries at time 𝑡. The charging
controller decides a charging schedule 𝑢𝑡 in R𝑁+ where each entry in 𝑢𝑡 is the energy
to be charged to the 𝑖-th battery from external power supply at time 𝑡. The canonical
form of the system can be represented by

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 − 𝑤𝑡 ,

32

where 𝐴 is an 𝑁 × 𝑁 matrix denotes the degradation of battery charging levels and 𝐵
is an 𝑁 ×𝑁 diagonal matrix whose diagonal entry 0 ≤ 𝐵𝑖 ≤ 1 represents the charging
efficiency coefficient. In our experiments, without loss of generality, we assume 𝐴
and 𝐵 are identity matrices. The perturbation 𝑤𝑡 is defined as a length-𝑁 vector,
whose entry 𝑤𝑡 (𝑖) = 𝐸 when at time 𝑡 an EV arrives at charger 𝑖 and demands energy
𝐸 > 0; otherwise 𝑤𝑡 (𝑖) = 0. Therefore the perturbations (𝑤0, . . . , 𝑤𝑇−1) depend
on the arrival of EVs and their energy demands. The charging controller can only
make a charging decision 𝑢𝑡 at time 𝑡 before knowing 𝑤𝑡 (as well as 𝑤𝑡+1, . . . , 𝑤𝑇−1)
and the EVs that arrive at time 𝑡 (as well as future EV arrivals). The goal of the
adaptive battery-buffered EV charging problem is to maintain the battery SoC as
close to a nominal value 𝑥 as possible. Therefore, the charging controller would like
to minimize

∑𝑇−1
𝑡=0 (𝑥𝑡 − 𝑥)

⊤𝑄 (𝑥𝑡 − 𝑥) + 𝑢⊤𝑡 𝑅𝑢𝑡 , equivalently,
∑𝑇−1
𝑡=0 𝑥

⊤
𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡

where 𝑄 can be some positive-definite matrix and 𝑅 encodes the costs of external
power supply. In our experiments, we set 𝑄 as an identity matrix and 𝑅 = 0.1 ×𝑄.

Experimental results. We show the performance of self-tuning control and the
impact of trust parameters for adaptive EV charging in Figure 2.6a and 2.6b. In
Figure 2.6a we consider a synthetic case when EVs with 5 kWh battery capacity
arrive at a constant rate 0.2, e.g., 1 EV arrives every 5 time slots. The results are
divided into two parts. In Figure 2.6b, we use daily data (ACN-Data) that contain
EVs’ energy demands, arrival times and departure times collected from a real-world
adaptive EV charging network [1]. We select a daily charging record on on Nov 1st,
2018, depicted in Figure 2.5. The left sub-figure considers a magnified low-error
regime and the right sub-figure shows the performance of self-tuning for the case
when the prediction error is high. For both regimes, the competitive ratios of the
self-tuning control policy perform nearly as well as the lower envelope formed
by picking multiple trust parameters optimally offline. We see in both Figure 2.3
and Figure 2.6a that with fixed trust parameters the competitive ratio is linear in 𝜀,
matching what Theorem 2.3.2 indicates (in the sense of order in 𝜀). Moreover, for
the self-tuning scheme, in both Figure 2.3 and Figure 2.6a, we observe a competitive
ratio 1 +𝑂 (𝜀)/(Θ(1) + Θ(𝜀)), which matches the competitive ratio bound given in
Theorem 2.4.1 in order sense (in 𝜀).

33

(a) Experiments with Synthetic EV charging.

(b) Experiments with daily EV charging data [1].

Figure 2.6: Impact of trust parameters and performance of self-tuning control for
adaptive battery-buffered EV charging with synthetic EV charging data (top) and
realistic daily EV charging data [1] (bottom).

Application 3: Cart-Pole

Figure 2.7: The Cart-Pole model in Application 3.

Problem description. The third set of experiments we consider is the classic
Cart-Pole problem illustrated in Figure 2.7. The goal of a controller is to stabilize the
pole in the upright position. This is a widely studied non-linear system. Neglecting

34

friction, the dynamical equations of the Cart-Pole problem are

¥𝜃 =
𝑔 sin 𝜃 + cos 𝜃

(
−𝑢−𝑚𝑙 ¤𝜃2 sin 𝜃

𝑚+𝑀

)
𝑙

(
4
3 −

𝑚 cos2 𝜃
𝑚+𝑀

) , (2.11)

¥𝑦 =
𝑢 + 𝑚𝑙

(¤𝜃2 sin 𝜃 − ¥𝜃 cos 𝜃
)

𝑚 + 𝑀 (2.12)

where 𝑢 is the input force; 𝜃 is the angle between the pole and the vertical line; 𝑦 is
the location of the pole; 𝑔 is the gravitational acceleration; 𝑙 is the pole length; 𝑚 is
the pole mass; and 𝑀 is the cart mass. Taking sin 𝜃 ≈ 𝜃 and cos 𝜃 ≈ 1 and ignoring
higher order terms, the dynamics of the Cart-Pole problem can be linearized as

𝑑

𝑑𝑡

¤𝑦
¥𝑦
¤𝜃
¥𝜃

=

0 1 0 0
0 0 − 𝑚𝑙𝑔

𝜂(𝑚+𝑀) 0
0 0 0 1
0 0 𝑔

𝜂
0

𝑑

𝑑𝑡

𝑦

¤𝑦
𝜃

¤𝜃

+

0

(𝑚+𝑀)𝜂+𝑚𝑙
(𝑚+𝑀)2𝜂

0
− 1
(𝑚+𝑀)𝜂

𝑢𝑡 + 𝑤𝑡 ,

where in the above 𝜂 B 𝑙

(
4
3 −

𝑚
𝑚+𝑀

)
and, in our experiments, we set the cart

mass 𝑀 = 10.0𝑘𝑔, pole mass 𝑚 = 1.0𝑘𝑔, pole length 𝑙 = 10.0𝑚 and gravitational
acceleration 𝑔 = 9.8𝑚/𝑠2. We set𝑄 = 𝐼 and 𝑅 = 10−3 and each 𝑤𝑡 is a fixed external
force defined as

60 ×
[
0,
(𝑚 + 𝑀)𝜂 + 𝑚𝑙
(𝑚 + 𝑀)2𝜂

, 0,− 1
(𝑚 + 𝑀)𝜂

]⊤
.

Experimental results. We show the performance of the self-tuning control (Algo-
rithm 3) and the impact of trust parameters for the Cart-Pole problem in Figure 2.8,
together with the 𝜆-confident control scheme in Algorithm 2 for several fixed trust
parameters 𝜆. The algorithms are tested using the true non-linear dynamical equations
in (2.11)-(2.12).

In Figure 2.8, we change the variance 𝜎2 of the prediction noise 𝑒𝑡 = 𝑤𝑡 − 𝑤𝑡 at each
time 𝑡 and plot the average episodic rewards in the OpenAI Gym environment [55].
Different from the worst-case settings in the previous two applications, we run
episodes multiples times and show plot the mean rewards. The height of the shadow
area in Figure 2.8 represents the standard deviation of the rewards. The detailed
hyper-parameters are given in Section 2.E. Our results show that, despite the fact
that the problem is non-linear, the self-tuning control algorithm using a linearized
model is still able to automatically adjust the trust parameter 𝜆𝑡 and achieves both

35

Figure 2.8: Impact of trust parameters and performance of self-tuning control for the
Cart-Pole problem.

consistency and robustness, regardless of the prediction error. In particular, it is
close to the best algorithms for small prediction error while also staying among the
best when prediction error is large.

36

APPENDIX

2.A Useful Lemmas
Before proceeding to the proofs of our main results, we present some useful lemmas.
We first present a lemma below from [41] that characterizes the difference between
the optimal and the algorithmic costs.

Lemma 3 (Lemma 10 in [41]). For any 𝜓𝑡 ∈ R𝑛, if at each time 𝑡 = 0, . . . , 𝑇 − 1,

𝑢𝑡 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
(
𝑃𝐴𝑥𝑡 +

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏 − 𝜓𝑡

)
,

then the gap between the optimal cost OPT and the algorithm cost ALG induced by
selecting control actions (𝑢1, . . . , 𝑢𝑇) equals to

ALG − OPT =

𝑇−1∑︁
𝑡=0

𝜓⊤𝑡 𝐻𝜓𝑡

where 𝐻 B 𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤ and 𝐹 B 𝐴 − 𝐻𝑃𝐴.

The next lemma describes the form of the optimal trust parameter.

Lemma 4. The optimal trust parameter 𝜆∗ that minimizes ALG(𝜆) −OPT is 𝜆∗ = 𝜆𝑇 .

Proof of Lemma 4. The optimal trust parameter 𝜆∗ is

𝜆∗ :=min
𝜆

𝑇−1∑︁
𝑠=0

(
𝑡−1∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃(𝑤𝜏 − 𝜆𝑤𝜏)

)⊤
𝐻

(
𝑇−1∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃(𝑤𝜏 − 𝜆𝑤𝜏)

) ,
(2.13)

implying that 𝜆∗ = 𝜆𝑇 . □

Next, we note that the static regret depends on the convergence of 𝜆𝑡 .

Lemma 5. The static regret satisfies

Regret ≤ ∥𝐻∥
𝑇−1∑︁
𝑡=0

|𝜆𝑡 − 𝜆𝑇 | 𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

2

.

37

Proof of Lemma 5. Let ALG((𝜆0, . . . , 𝜆𝑇−1)) and ALG(𝜆𝑇) denote the corresponding
algorithm costs for using trust parameters (𝜆0, . . . , 𝜆𝑇−1) and a fixed optimal trust
parameter 𝜆𝑇 in hindsight correspondingly. It follows that

ALG((𝜆0, . . . , 𝜆𝑇−1)) − ALG(𝜆𝑇) ≤ ∥𝐻∥
𝑇−1∑︁
𝑡=0

|𝜆𝑡 − 𝜆𝑇 | 𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

2

.

(2.14)

□

Lemma 6. Suppose two real sequences (𝑉1, . . . , 𝑉𝑇) and (𝑊1, . . . ,𝑊𝑇) with𝑊𝑡 > 0
for all 1 ≤ 𝑡 ≤ 𝑇 , converge to 𝑉𝑇 and 𝑊𝑇 > 0 such that for any integer 1 ≤ 𝑡 ≤ 𝑇 ,
|𝑉𝑡 − 𝑉𝑇 | ≤ 𝐶1/𝑡 and |𝑊𝑡 −𝑊𝑇 | ≤ 𝐶2/𝑡 for some constants 𝐶1, 𝐶2 > 0. Then the
sequence

(
𝑉1
𝑊1
, . . . ,

𝑉𝑇
𝑊𝑇

)
converges to 𝑉𝑇

𝑊𝑇
such that for any 1 ≤ 𝑡 ≤ 𝑇 ,���� 𝑉𝑡𝑊𝑡

− 𝑉𝑇
𝑊𝑇

���� ≤ 1
𝑡

(
𝐶1𝛼𝑡 + 𝐶2
|𝑊𝑇 |

)
where 𝛼𝑡 B max{𝑉𝑡/𝑊𝑡}.

Proof of Lemma 6. Based on the assumption, for any 1 ≤ 𝑡 ≤ 𝑇 , we have that���� 𝑉𝑡𝑊𝑡

− 𝑉𝑇
𝑊𝑇

���� = ����𝑉𝑡𝑊𝑇 −𝑉𝑇𝑊𝑡

𝑊𝑡𝑊𝑇

���� = ����𝑉𝑡𝑊𝑇 −𝑉𝑡𝑊𝑡 +𝑉𝑡𝑊𝑡 −𝑉𝑇𝑊𝑡

𝑊𝑡𝑊𝑇

����
≤

����𝑉𝑡 (𝑊𝑇 −𝑊𝑡)
𝑊𝑡𝑊𝑇

���� + ����𝑊𝑡 (𝑉𝑇 −𝑉𝑡)
𝑊𝑡𝑊𝑇

����
≤ 1
𝑡

(
𝐶1 |𝑉𝑡 |
|𝑊𝑡𝑊𝑇 |

+ 𝐶2
|𝑊𝑇 |

)
.

Since𝑊𝑡 ≠ 0 for all 1 ≤ 𝑡 ≤ 𝑇 and𝑊𝑇 ≠ 0, the lemma follows. □

Lemma 7. Suppose a sequence (𝐴0, . . . , 𝐴𝑇−1) satisfies that for any integer 0 ≤ 𝑠 ≤
𝑇−1, |𝐴𝑠−𝐴𝑇 | ≤ 𝜌(𝑠). Then, for any 0 ≤ 𝑠 ≤ 𝑇 ,

��1
𝑡

(∑𝑡
𝑠=0 𝐴𝑠

)
− 𝐴𝑇

�� ≤ 1
𝑡

∑𝑇−1
𝑠=0 𝜌(𝑠).

Proof of Lemma 7. Based on the assumption,�����1𝑡 𝑡∑︁
𝑠=0

𝐴𝑠 − 𝐴𝑇

����� = 1
𝑡

����� 𝑡∑︁
𝑠=0
(𝐴𝑠 − 𝐴𝑇)

����� ≤ 1
𝑡

𝑡∑︁
𝑠=0
|𝐴𝑠 − 𝐴𝑡 | ≤

1
𝑡

𝑇−1∑︁
𝑠=0

𝜌(𝑠).

□

38

2.B Competitive Analysis
Throughout, for notational convenience, we write

𝑊 (𝑡) B
𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡), and 𝑉 (𝑡) B
𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡)

where

𝜂(𝑤; 𝑠, 𝑡) B
𝑡∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃𝑤𝜏, and 𝜂(𝑤; 𝑠, 𝑡) B

𝑡∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃𝑤𝜏 .

We first prove the following theorem.

Theorem 2.B.1. With a fixed trust parameter 𝜆 > 0, the 𝜆-confident control in
Algorithm 2 has a worst-case competitive ratio of at most

CR(𝜀) ≤ 1 + 2∥𝐻∥min
{(

𝜆2

OPT
𝜀 + (1 − 𝜆)

2

𝐶

)
,

(
1
𝐶
+ 𝜆2

OPT
𝑊

)}
where 𝐻 B 𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤, OPT denotes the optimal cost, 𝐶 > 0 is a constant
that depends on 𝐴, 𝐵, 𝑄, 𝑅 and

𝜀 (𝐹, 𝑃, 𝑒0, . . . , 𝑒𝑇−1) B
𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 (𝑤𝜏 − 𝑤𝜏)

2

,

𝑊 (𝐹, 𝑃, 𝑤0, . . . , 𝑤𝑇−1) B
𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

2

.

Proof of Theorem 2.3.2
Denote by ALG the cost induced by taking actions (𝑢0, . . . , 𝑢𝑇−1) in Algorithm 2 and
OPT the optimal total cost. Note that we assume OPT > 0. Lemma 3 implies that

ALG − OPT =

𝑇−1∑︁
𝑡=0

(
𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 (𝑤𝑡 − 𝜆𝑤𝜏)

)⊤
𝐻

(
𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 (𝑤𝑡 − 𝜆𝑤𝜏)

)
.

(2.15)

39

Therefore, with a sequence of actions (𝑢1, . . . , 𝑢𝑇) generated by the 𝜆-confident
control scheme, (2.15) leads to

ALG − OPT ≤∥𝐻∥
𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏 − 𝜆

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

2

=∥𝐻∥
𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏 − 𝜆

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 (𝑤𝜏 + 𝑒𝜏)

2

=∥𝐻∥
𝑇−1∑︁
𝑡=0

(1 − 𝜆) 𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏 − 𝜆

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑒𝜏

2

≤2∥𝐻∥
(
(1 − 𝜆)2

𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

2

+ 𝜆2
𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑒𝜏

2)
where 𝑒𝑡 B 𝑤𝑡 − 𝑤𝑇 for all 𝑡 = 0, . . . , 𝑇 − 1. Moreover, denoting by 𝑥∗𝑡 and 𝑢∗𝑡 the
offline optimal state and action at time 𝑡, the optimal cost satisfies

OPT =

𝑇−1∑︁
𝑡=0
(𝑥∗𝑡)⊤𝑄𝑥∗𝑡 + (𝑢∗𝑡)⊤𝑅𝑢∗𝑡 + (𝑥∗𝑇)⊤𝑃𝑥∗𝑇

≥
𝑇−1∑︁
𝑡=0

𝜆min(𝑄)
𝑥∗𝑡 2 + 𝜆min(𝑅)∥𝑢∗𝑡 ∥2 + 𝜆min(𝑃)∥𝑥∗𝑇 ∥2 (2.16)

≥2𝐷0

𝑇−1∑︁
𝑡=0

(
∥𝐴𝑥∗𝑡 ∥2 + ∥𝐵𝑢∗𝑡 ∥2

)
+ 1

2

𝑇−1∑︁
𝑡=0

𝜆min(𝑄)∥𝑥∗𝑡 ∥2 + 𝜆min(𝑃)∥𝑥∗𝑇 ∥2

≥𝐷0

𝑇−1∑︁
𝑡=0

𝐴𝑥∗𝑡 + 𝐵𝑢∗𝑡 2 + 1
2

𝑇−1∑︁
𝑡=0

𝜆min(𝑄)∥𝑥∗𝑡 ∥2 + 𝜆min(𝑃)∥𝑥∗𝑇 ∥2

=𝐷0

𝑇−1∑︁
𝑡=0

𝑥∗𝑡+1 − 𝑤𝑡2 + 1
2

𝑇−1∑︁
𝑡=0

𝜆min(𝑄)∥𝑥∗𝑡 ∥2 + 𝜆min(𝑃)∥𝑥∗𝑇 ∥2

≥𝐷0
2

𝑇−1∑︁
𝑡=0
∥𝑤𝑡 ∥2 +

(
𝜆min(𝑄)

2
− 𝐷0

) 𝑇−1∑︁
𝑡=0
∥𝑥∗𝑡 ∥2 + (𝜆min(𝑃) − 𝐶) ∥𝑥∗𝑇 ∥2 (2.17)

for some constant 0 < 𝐷0 < min{𝜆min(𝑃), 𝜆min(𝑄)/2} that depends on 𝑄, 𝑅 and
𝐾 where in (2.16), 𝜆min(𝑄), 𝜆min(𝑅) and 𝜆min(𝑃) are the smallest eigenvalues of
positive definite matrices 𝑄, 𝑅 and 𝑃, respectively. Let 𝜓𝑡 B

∑𝑇−𝑡−1
𝜏=0 (𝐹⊤)𝜏 𝑃𝑤𝑡+𝜏.

Note that 𝐹 = 𝐴 − 𝐵𝐾 and we define 𝜌 B 1+𝜌(𝐹)
2 < 1 where 𝜌(𝐹) denotes the

spectral radius of 𝐹. From Gelfand’s formula, there exists a constant 𝐷1 ≥ 0 such

40

that ∥𝐹 𝑡 ∥ ≤ 𝐷1𝜌
𝑡 for all 𝑡 ≥ 0. Therefore,

𝑇−1∑︁
𝑡=0
∥𝜓𝑡 ∥2 =

𝑇−1∑︁
𝑡=0

𝑇−𝑡−1∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃𝑤𝑡+𝜏

2

≤𝐷2
1∥𝑃∥

2
𝑇−1∑︁
𝑡=0

(
𝑇−𝑡−1∑︁
𝜏=0

𝜌𝜏∥𝑤𝑡+𝜏∥
)2

=𝐷2
1∥𝑃∥

2
𝑇−1∑︁
𝑡=0

𝑇−𝑡−1∑︁
𝜏=0

𝑇−𝑡−1∑︁
ℓ=0

𝜌𝜏𝜌ℓ∥𝑤𝑡+𝜏∥∥𝑤𝑡+ℓ∥

≤
𝐷2

1
2
∥𝑃∥2

𝑇−1∑︁
𝑡=0

𝑇−𝑡−1∑︁
𝜏=0

𝑇−𝑡−1∑︁
ℓ=0

𝜌𝜏𝜌ℓ
(
∥𝑤𝑡+𝜏∥2 + ∥𝑤𝑡+ℓ∥2

)
. (2.18)

Continuing from (2.18),
𝑇−1∑︁
𝑡=0
∥𝜓𝑡 ∥2 ≤

𝐷2
1

2
∥𝑃∥2

(
𝑇−𝑡−1∑︁
ℓ=0

𝜌ℓ

)
𝑇−1∑︁
𝑡=0

𝑇−𝑡−1∑︁
𝜏=0

𝜌𝜏∥𝑤𝑡+𝜏∥2

+
𝐷2

1
2
∥𝑃∥2

(
𝑇−𝑡−1∑︁
𝜏=0

𝜌𝜏

)
𝑇−1∑︁
𝑡=0

𝑇−𝑡−1∑︁
ℓ=0

𝜌ℓ∥𝑤𝑡+ℓ∥2 (2.19)

≤
𝐷2

1
1 − 𝜌 ∥𝑃∥

2
𝑇−1∑︁
𝑡=0

𝑇−𝑡−1∑︁
𝜏=0

𝜌𝜏∥𝑤𝑡+𝜏∥2

≤
𝐷2

1
1 − 𝜌 ∥𝑃∥

2
𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=0

𝜌𝜏∥𝑤 (𝑡+𝜏) mod 𝑇 ∥2

=
𝐷2

1
1 − 𝜌 ∥𝑃∥

2

(
𝑇−1∑︁
𝜏=0

𝜌𝜏

) (
𝑇−1∑︁
𝑡=0
∥𝑤𝑡 ∥2

)
≤

𝐷2
1

(1 − 𝜌)2
∥𝑃∥2

𝑇−1∑︁
𝑡=0
∥𝑤𝑡 ∥2. (2.20)

Putting (2.20) into (2.17), we obtain

OPT ≥𝐷0(1 − 𝜌)2

𝐷2
1∥𝑃∥2

𝑇−1∑︁
𝑡=0
∥𝜓𝑡 ∥2,

which implies that

ALG − OPT
OPT

≤ 2∥𝐻∥
(
𝜆2

OPT
𝜀 + (1 − 𝜆)

2

𝐶

)
where 𝐶 B 𝐷0 (1−𝜌)2

𝐷2
1∥𝑃∥2

and

𝜀 B
𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 (𝑤𝜏 − 𝑤𝜏)

2

.

41

To obtain the second bound, noting that

ALG − OPT ≤∥𝐻∥
𝑇−1∑︁
𝑡=0

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏 − 𝜆

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

2

≤2∥𝐻∥
𝑇−1∑︁
𝑡=0

(𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

2

+ 𝜆2

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

2)
.

Noting that𝑊 B
∑𝑇−1
𝑡=0

∑𝑇−1
𝜏=𝑡 (𝐹⊤)

𝜏−𝑡
𝑃𝑤𝜏

2, therefore,

ALG − OPT
OPT

≤ 2∥𝐻∥
(

1
𝐶
+ 𝜆2

OPT
𝑊

)
for some constant 𝐶 > 0 that depends on 𝐴, 𝐵, 𝑄 and 𝑅.

2.C Regret Analysis of Self-Tuning Control
Throughout, for notational convenience, we write

𝑊 (𝑡) B
𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡), and 𝑉 (𝑡) B
𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡)

where

𝜂(𝑤; 𝑠, 𝑡) B
𝑡∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃𝑤𝜏, and 𝜂(𝑤; 𝑠, 𝑡) B

𝑡∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃𝑤𝜏 .

Proof of Lemma 1
In this section, we show the proof of Lemma 2 and Lemma 1. We begin with
rewriting 𝜆𝑡 − 𝜆𝑇 as below.

𝜆𝑡 − 𝜆𝑇 =
𝑉 (𝑡 − 1)
𝑊 (𝑡 − 1) −

𝑉 (𝑇 − 1)
𝑊 (𝑇 − 1) =

𝑉 (𝑡−1)
𝑡−1

𝑊 (𝑡−1)
(𝑡−1)

−
𝑉 (𝑇−1)
𝑇−1

𝑊 (𝑇−1)
𝑇−1

. (2.21)

Applying Lemma 6, it suffices to prove that for any 1 ≤ 𝑡 ≤ 𝑇 ,
�� 1
𝑇
𝑉 (𝑇) − 1

𝑡
𝑉 (𝑡)

�� ≤ 𝐶1
𝑡

and
�� 1
𝑇
𝑊 (𝑇) − 1

𝑡
𝑊 (𝑡)

�� ≤ 𝐶2
𝑡

for some constants 𝐶1 > 0 and 𝐶2 > 0. In the sequel,
we show the bound on

�� 1
𝑇
𝑉 (𝑇) − 1

𝑡
𝑉 (𝑡)

�� and the bound on
�� 1
𝑇
𝑊 (𝑇) − 1

𝑡
𝑊 (𝑡)

�� follows

42

using the same argument. Continuing from (2.21),���� 1𝑇𝑉 (𝑇) − 1
𝑡
𝑉 (𝑡)

���� ≤ ����� 1𝑇 𝑇∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇) − 1
𝑡

𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)
�����︸ ︷︷ ︸

=:(𝑎)

+
�����1𝑡 𝑡∑︁

𝑠=0
𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡) − 1

𝑡

𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)
�����︸ ︷︷ ︸

=:(𝑏)

.

(2.22)

In the following, we deal with the terms (a) and (b) separately.

Upper bound on (a). To bound the term (a) in (2.22), we notice that (a) can be
regarded as a difference between two algebraic means. Rewriting the first mean in
(a), we get

𝑇∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇) =
𝑇∑︁
𝑠=0

(
𝑇∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃𝑤𝜏

)⊤
𝐻

(
𝑇∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃𝑤𝜏

)
=

𝑇∑︁
𝑠=0

(
𝑇−𝑠∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃𝑤𝜏+𝑠

)⊤
𝐻

(
𝑇−𝑠∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃𝑤𝜏+𝑠

)
=

𝑇∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)

where for notational convenience, for 𝑠 ≤ 𝑇 we have defined two series

𝜂(𝑤; 𝑠, 𝑇) B
𝑠∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃𝑤𝜏+𝑇−𝑠, and 𝜂(𝑤; 𝑠, 𝑇) B

𝑠∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃𝑤𝜏+𝑇−𝑠 .

We state a lemma below, which states that the sequence (𝜂(𝑤; 0, 𝑇), . . . , 𝜂(𝑤;𝑇,𝑇))
satisfies the assumption in Lemma 7.

Lemma 8. Given an integer 𝑠 with 0 ≤ 𝑠 ≤ 𝑇 , we have��𝜂(𝑤;𝑇,𝑇)⊤𝐻𝜂(𝑤;𝑇,𝑇) − 𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)
��

≤2∥𝐻∥
(
𝐶∥𝑃∥
1 − 𝜌

)2 (
2𝜌𝑠+1𝑤𝑤 +max

𝜏
∥𝑤𝜏 − 𝑤𝜏+𝑇−𝑠∥ +max

𝜏
∥𝑤𝜏 − 𝑤𝜏+𝑇−𝑠∥

)
.

43

Proof of Lemma 8. With 𝑠 ≤ 𝑇 , according to the definitions of 𝜂(𝑤; 𝑠, 𝑇), 𝜂(𝑤;𝑇,𝑇),
𝜂(𝑤; 𝑠, 𝑇) and 𝜂(𝑤;𝑇,𝑇), we obtain

𝜂(𝑤;𝑇,𝑇) = 𝜂(𝑤; 𝑠, 𝑇) +
𝑇∑︁

𝜏=𝑠+1

(
𝐹⊤

)𝜏
𝑃𝑤𝜏 +

𝑠∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃 (𝑤𝜏 − 𝑤𝜏+𝑇−𝑠) ,

𝜂(𝑤;𝑇,𝑇) = 𝜂(𝑤; 𝑠, 𝑇) +
𝑇∑︁

𝜏=𝑠+1

(
𝐹⊤

)𝜏
𝑃𝑤𝜏 +

𝑠∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃 (𝑤𝜏 − 𝑤𝜏+𝑇−𝑠) ,

implying that

𝜂(𝑤;𝑇,𝑇)⊤𝐻𝜂(𝑤;𝑇,𝑇) − 𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)
=𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜉2 + 𝜉⊤1 𝐻𝜂(𝑤; 𝑠, 𝑇) + 𝜉⊤1 𝐻𝜉2 (2.23)

where

𝜉1 B
𝑇∑︁

𝜏=𝑠+1

(
𝐹⊤

)𝜏
𝑃𝑤𝜏 +

𝑠∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃 (𝑤𝜏 − 𝑤𝜏+𝑇−𝑠) ,

𝜉2 B
𝑇∑︁

𝜏=𝑠+1

(
𝐹⊤

)𝜏
𝑃𝑤𝜏 +

𝑠∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃 (𝑤𝜏 − 𝑤𝜏+𝑇−𝑠) .

By our model assumption, ∥𝑤𝑡 ∥ ≤ 𝜔 and ∥𝑤𝑡 ∥ ≤ 𝑤 for all 𝑡 = 0, . . . , 𝑇 − 1. Then,
there exists some 𝑒 > 0 such that the prediction error 𝑒𝑡 = 𝑤𝑡 − 𝑤𝑡 satisfies 𝑒𝑡 ≤ 𝑒
for all 𝑡 = 0, . . . , 𝑇 − 1. Note that 𝐹 = 𝐴 − 𝐵𝐾 and we define 𝜌 B 1+𝜌(𝐹)

2 < 1
where 𝜌(𝐹) denotes the spectral radius of 𝐹. From Gelfand’s formula, there exists
a constant 𝐶 ≥ 0 such that ∥𝐹 𝑡 ∥ ≤ 𝐶𝜌𝑡 for all 𝑡 ≥ 0. The following holds for
𝜂(𝑤; 𝑠, 𝑇) and 𝜂(𝑤; 𝑠, 𝑇):

∥𝜂(𝑤; 𝑠, 𝑇)∥ ≤
𝑠∑︁
𝜏=0
∥𝐹𝜏∥ ∥𝑃∥𝑤 ≤ 𝐶 1 − 𝜌𝑠+1

1 − 𝜌 ∥𝑃∥𝑤 ≤
𝐶

1 − 𝜌 ∥𝑃∥𝑤, (2.24)

∥𝜂(𝑤; 𝑠, 𝑇)∥ ≤
𝑠∑︁
𝜏=0
∥𝐹𝜏∥ ∥𝑃∥𝑤 = 𝐶

1 − 𝜌𝑠+1
1 − 𝜌 ∥𝑃∥𝑤 ≤

𝐶

1 − 𝜌 ∥𝑃∥𝑤. (2.25)

Moreover,

∥𝜉1∥ ≤
𝑇∑︁

𝜏=𝑠+1
∥𝐹𝜏∥ ∥𝑃∥𝑤 +

𝑠∑︁
𝜏=0
∥𝐹𝜏∥ ∥𝑃∥ ∥𝑤𝜏 − 𝑤𝜏+𝑇−𝑠∥ (2.26)

≤𝐶∥𝑃∥
1 − 𝜌

(
𝑤𝜌𝑠+1 +max

𝜏
∥𝑤𝜏 − 𝑤𝜏+𝑇−𝑠∥

)
(2.27)

∥𝜉2∥ ≤
𝑇∑︁

𝜏=𝑠+1
∥𝐹𝜏∥ ∥𝑃∥𝑤 +

𝑠∑︁
𝜏=0
∥𝐹𝜏∥ ∥𝑃∥ ∥𝑤𝜏 − 𝑤𝜏+𝑇−𝑠∥ (2.28)

≤𝐶∥𝑃∥
1 − 𝜌

(
𝑤𝜌𝑠+1 +max

𝜏
∥𝑤𝜏 − 𝑤𝜏+𝑇−𝑠∥

)
. (2.29)

44

Combining (2.24)-(2.29) with (2.23),��𝜂(𝑤;𝑇,𝑇)⊤𝐻𝜂(𝑤;𝑇,𝑇) − 𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)
��

≤2∥𝐻∥
(
𝐶∥𝑃∥
1 − 𝜌

)2 (
2𝜌𝑠+1𝑤𝑤 +max

𝜏
∥𝑤𝜏 − 𝑤𝜏+𝑇−𝑠∥ +max

𝜏
∥𝑤𝜏 − 𝑤𝜏+𝑇−𝑠∥

)
.

□

Therefore, applying Lemma 7, we conclude that

(𝑎) B
����� 1𝑇 𝑇∑︁

𝑠=0
𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇) − 1

𝑡

𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)
�����

≤4
𝑡
∥𝐻∥𝜌

(
𝐶∥𝑃∥
(1 − 𝜌)3/2

)2
𝑤𝑤 + 2

𝑡
∥𝐻∥

(
𝐶∥𝑃∥
1 − 𝜌

)2 (
𝜇VAR(ŵ) + 𝜇VAR(w)

)
(2.30)

where 𝜇VAR(x) B
∑𝑇
𝑠=0 max𝜏 ∥𝑥𝜏 − 𝑥𝜏+𝑇−𝑠∥ denotes the self-variation of a sequence

x.

Upper bound on (b). Next, we provide a bound on (b) in (2.22). For (b), we have

(𝑏) B1
𝑡

����� 𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡) −
𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)
�����

≤1
𝑡

����� 𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑡) −
𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)
�����

+1
𝑡

����� 𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑡) −
𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡)
����� . (2.31)

Noting that 𝜂(𝑤; 𝑠, 𝑇) − 𝜂(𝑤; 𝑠, 𝑡) = ∑𝑇
𝜏=𝑡+1 (𝐹⊤)

𝜏−𝑠
𝑃𝑤𝜏, we obtain����� 𝑡∑︁

𝑠=0
𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑡) −

𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)
�����

=

����� 𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻 (𝜂(𝑤; 𝑠, 𝑡) − 𝜂(𝑤; 𝑠, 𝑇))
�����

=

����� 𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻
(

𝑇∑︁
𝜏=𝑡+1

(
𝐹⊤

)𝜏−𝑠
𝑃𝑤𝜏

)����� (2.32)

45

and similarly, ����� 𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑡) −
𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡)
�����

=

����� 𝑡∑︁
𝑠=0
(𝜂(𝑤; 𝑠, 𝑇) − 𝜂(𝑤; 𝑠, 𝑡))⊤ 𝐻𝜂(𝑤; 𝑠, 𝑡)

�����
=

����� 𝑡∑︁
𝑠=0

(
𝑇∑︁

𝜏=𝑡+1

(
𝐹⊤

)𝜏−𝑠
𝑃𝑤𝜏

)⊤
𝐻𝜂(𝑤; 𝑠, 𝑡)

����� . (2.33)

By our assumption, ∥𝑤𝑡 ∥ ≤ 𝑤 and ∥𝑤𝑡 ∥ ≤ 𝑤 for all 𝑡 = 0, . . . , 𝑇 − 1. Therefore, for
any 𝑠 ≤ 𝑡: 𝑇∑︁

𝜏=𝑡+1

(
𝐹⊤

)𝜏−𝑠
𝑃𝑤𝜏

 ≤𝐶𝜌𝑡−𝑠+1∥𝑃∥𝑤1 − 𝜌 (2.34)

and

∥𝜂(𝑤; 𝑠, 𝑇)∥ =
 𝑇∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃𝑤𝜏

 ≤ 𝐶∥𝑃∥𝑤1 − 𝜌 . (2.35)

Plugging (2.34) and (2.35) into (2.32),����� 𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑡) −
𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)
�����

≤2𝐶∥𝐻∥
(
∥𝑃∥

1 − 𝜌

)2
𝑤𝑤

𝑡∑︁
𝑠=0

𝐹 𝑡−𝑠+1
≤2∥𝐻∥

(
𝐶∥𝑃∥
1 − 𝜌

)2 𝜌
(
1 − 𝜌𝑡

)
1 − 𝜌 𝑤𝑤

≤2∥𝐻∥
(
𝐶∥𝑃∥
(1 − 𝜌)3/2

)2
𝜌𝑤𝑤. (2.36)

Using the same argument, the following bound holds for (2.33):����� 𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑡) −
𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡)
����� (2.37)

≤2∥𝐻∥
(
𝐶∥𝑃∥
(1 − 𝜌)3/2

)2
𝜌𝑤𝑤. (2.38)

Combining (2.36) and (2.37) and using (2.31),

(𝑏) B1
𝑡

����� 𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡) −
𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑇)⊤𝐻𝜂(𝑤; 𝑠, 𝑇)
�����

≤4
𝑡
∥𝐻∥

(
𝐶∥𝑃∥
(1 − 𝜌)3/2

)2
𝜌𝑤𝑤. (2.39)

46

Finally, together, (2.30) and (2.39) imply the following:���� 1𝑇𝑉 (𝑇) − 1
𝑡
𝑉 (𝑡)

���� ≤ 8
𝑡
∥𝐻∥

(
𝐶∥𝑃∥
(1 − 𝜌)3/2

)2
𝜌𝑤𝑤

+2
𝑡
∥𝐻∥

(
𝐶∥𝑃∥
1 − 𝜌

)2 (
𝜇VAR(w) + 𝜇VAR(ŵ)

)
. (2.40)

The same argument also guarantees that���� 1𝑇𝑊 (𝑇) − 1
𝑡
𝑊 (𝑡)

���� ≤ 8
𝑡
∥𝐻∥

(
𝐶∥𝑃∥
(1 − 𝜌)3/2

)2
𝜌𝑤2

+4
𝑡
∥𝐻∥

(
𝐶∥𝑃∥
1 − 𝜌

)2
𝜇VAR(ŵ). (2.41)

The following lemma together with (2.40) and (2.41) justify the conditions needed
to apply Lemma 6.

Lemma 9. For any integer 1 ≤ 𝑡 ≤ 𝑇 ,

𝑉 (𝑡)
𝑡
≤2∥𝐻∥

(
𝐶∥𝑃∥
(1 − 𝜌)3/2

)2
𝑤𝑤

where 𝐶 > 0 is some constant satisfying ∥𝐹 𝑡 ∥ ≤ 𝐶𝜌𝑡 for all 𝑡 ≥ 0.

Proof of Lemma 9. We have

𝑉 (𝑡)
𝑡

=
1
𝑡

𝑡∑︁
𝑠=0

𝜂(𝑤; 𝑠, 𝑡)⊤𝐻𝜂(𝑤; 𝑠, 𝑡)

≤ ∥𝐻∥
𝑡

𝑡∑︁
𝑠=0

𝑡−1−𝑠∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃𝑤𝜏+𝑠

𝑡−1−𝑠∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃𝑤𝜏+𝑠

≤ ∥𝐻∥

𝑡

(
𝐶∥𝑃∥
1 − 𝜌

)2 𝑡∑︁
𝑠=0

(
1 − 𝜌𝑡−𝑠

)
𝑤𝑤

=
∥𝐻∥
𝑡

(
𝐶∥𝑃∥
1 − 𝜌

)2 (
𝑡 + 1 − 𝜌𝑡+1

1 − 𝜌

)
𝑤𝑤

≤2∥𝐻∥
(
𝐶∥𝑃∥
(1 − 𝜌)3/2

)2
𝑤𝑤.

□

First, based on our assumption, 𝜆𝑡 = 𝑉 (𝑡)/𝑊 (𝑡) = 𝑉𝑡/𝑊𝑡 ≤ 1. Moreover,𝑊 (𝑇)/𝑇 =

Ω(1). Therefore, using (2.40), (2.41), Lemma 6 and Lemma 9, (2.21) implies that

47

for any 1 < 𝑡 ≤ 𝑇 ,

|𝜆𝑡 − 𝜆𝑇 | ≤
1

𝑡 − 1

∥𝐻∥
(
𝐶∥𝑃∥
1−𝜌

)2

𝑊 (𝑇)/𝑇 ·
(

8𝜌𝑤𝑤
1 − 𝜌 + 2

(
𝜇VAR(w) + 𝜇VAR(ŵ)

)
+

2∥𝐻∥
(
𝐶∥𝑃∥
(1−𝜌)3/2

)2
𝑤𝑤

𝑊 (𝑇)/𝑇

(
8𝜌𝑤2

1 − 𝜌 + 4𝜇VAR(ŵ)
))

= 𝑂

(
𝜇VAR(w) + 𝜇VAR(ŵ)

𝑡

)
.

Proof of Lemma 2
Using Lemma 8,

|𝜆𝑡 − 𝜆𝑇 | ≤
𝐶

𝑡

(
𝜇VAR(w) + 𝜇VAR(ŵ)

)
, where 𝐶1 > 0 is some constant.

Applying Lemma 5, and noting that𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

 ≤ 𝐶 1 − 𝜌𝑇−𝑡
1 − 𝜌 ∥𝑃∥𝑤,

(2.14) implies

Regret ≤𝐶2
1 ∥𝐻∥

𝑇−1∑︁
𝑡=1

𝜇VAR(w) + 𝜇VAR(ŵ)
𝑡

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

2

+ 𝐶0

=𝐶2
1 ∥𝐻∥

(
𝜇VAR(w) + 𝜇VAR(ŵ)

)2
𝑇−1∑︁
𝑡=1

1
𝑡2

𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

2

+ 𝐶0

≤𝐶2
1 ∥𝐻∥

(
𝜇VAR(w) + 𝜇VAR(ŵ)

)2
(
𝐶∥𝑃∥
1 − 𝜌 𝑤

)2 𝑇−1∑︁
𝑡=2

1
𝑡2
+ 𝐶0

≤
𝐶2

1𝜋
2

6
∥𝐻∥

(
𝜇VAR(w) + 𝜇VAR(ŵ)

)2
(
𝐶∥𝑃∥
1 − 𝜌 𝑤

)2
+ 𝐶0 (2.42)

where

𝐶0 B∥𝐻∥ |𝜆𝑇 − 𝜆0 |
𝑇−1∑︁
𝜏=0

(
𝐹⊤

)𝜏
𝑃𝑤𝜏

2

≤ ∥𝐻∥ |𝜆𝑇 − 𝜆0 |
(
𝐶∥𝑃∥
1 − 𝜌 𝑤

)2
.

Moreover, for any 𝑡 = 1, . . . , 𝑇 , |𝜆𝑡 | ≤ 1, whence,

𝐶0 ≤ 2∥𝐻∥
(
𝐶∥𝑃∥
1 − 𝜌 𝑤

)2
.

48

Therefore, continuing from (2.42),

Regret ≤∥𝐻∥
(
𝐶∥𝑃∥
1 − 𝜌 𝑤

)2 (
𝐶1𝜋

2

6
(
𝜇VAR(w) + 𝜇VAR(ŵ)

)2 + 2
)

=𝑂

((
𝜇VAR(w) + 𝜇VAR(ŵ)

)2
)
.

2.D Proof of Theorem 2.3.1
First, note that the total cost is given by 𝐽 =

∑𝑇−1
𝑡=0 𝑥

⊤
𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 + 𝑥⊤𝑇 𝑃𝑥𝑇 . Since

we can choose a threshold 𝜎 > 0 arbitrarily small, the error must exceed a threshold
𝜎. Without loss of generality, we suppose that the accumulated error 𝛿 exceeds the
threshold 𝜎 at time 𝑠 ≥ 0 and assume the predictions 𝑤𝑡 , 0 < 𝑡 < 𝑠 − 1 are accurate.

Throughout, we define 𝐽1 B
∑𝑠−1
𝑡=1 𝑥

⊤
𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 and 𝐽2 B

∑𝑇−1
𝑡=𝑠 𝑥

⊤
𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡

and use diacritical letters 𝐽, �̂�, and �̂� to denote the corresponding cost, action and
state of the threshold algorithm (Algorithm 1). We consider the best online algorithm
(with no predictions available) that minimizes its corresponding competitive ratio
and use diacritical letters 𝐽, �̃�, and �̃� to denote the corresponding cost, action, and
state. The competitive ratio of the best online algorithm is denoted by 𝐶min.

Upper Bound on 𝐽1

We first provide an upper bound on 𝐽1, the first portion of the total cost. For 1 ≤ 𝑡 < 𝑠,
the threshold-based algorithm gives

�̂�𝑡 = −𝐾�̂�𝑡 − (𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤
(
𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏

)
= −𝐾�̂�𝑡 − (𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤

(
𝑇−1∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃𝑤𝜏 − 𝜂𝑡

)
.

Lemma 10 in [41] implies

𝐽1 = ALG(0 : 𝑇) − ALG(𝑠 : 𝑇)

where

ALG(0 : 𝑇) =
𝑇−1∑︁
𝑡=0

(
𝑤⊤𝑡 𝑃𝑤𝑡 + 2𝑤⊤𝑡

𝑇−𝑡−1∑︁
𝑖=1

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑖

)
−
𝑇−1∑︁
𝑡=0

(
𝑇−𝑡−1∑︁
𝑖=0

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

(
𝑇−𝑡−1∑︁
𝑖=0

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑖

)
+
𝑇−1∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 + 𝑥⊤0 𝑃𝑥0 + 2𝑥⊤0
𝑇−1∑︁
𝑖=0

(
𝐹⊤

) 𝑖+1
𝑃𝑤𝑖, (2.43)

49

and

ALG(𝑠 : 𝑇) B
𝑇−𝑠−1∑︁
𝑡=0

(
𝑤⊤𝑡+𝑠𝑃𝑤𝑡+𝑠 + 2𝑤⊤𝑡+𝑠

𝑇−𝑠−𝑡−1∑︁
𝑖=1

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑠+𝑖

)
−
𝑇−𝑠−1∑︁
𝑡=0

(
𝑇−𝑠−𝑡−1∑︁
𝑖=0

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑠+𝑖

)⊤
𝐻

(
𝑇−𝑠−𝑡−1∑︁
𝑖=0

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑠+𝑖

)
+
𝑇−𝑠−1∑︁
𝑡=0

𝜂⊤𝑡+𝑠𝐻𝜂𝑡+𝑠 + 𝑥⊤𝑠 𝑃𝑥𝑠 + 2𝑥⊤𝑠
𝑇−𝑠−1∑︁
𝑖=0

(
𝐹⊤

) 𝑖+1
𝑃𝑤𝑖+𝑠 . (2.44)

Rewriting (2.44),

ALG(𝑠 : 𝑇) B
𝑇−1∑︁
𝑡=𝑠

(
𝑤⊤𝑡 𝑃𝑤𝑡 + 2𝑤⊤𝑡

𝑇−𝑡−1∑︁
𝑖=1

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑖

)
−
𝑇−1∑︁
𝑡=𝑠

(
𝑇−𝑡−1∑︁
𝑖=0

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

(
𝑇−𝑡−1∑︁
𝑖=0

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑖

)
+
𝑇−1∑︁
𝑡=𝑠

𝜂⊤𝑡 𝐻𝜂𝑡 + 𝑥⊤𝑠 𝑃𝑥𝑠 + 2𝑥⊤𝑠
𝑇−1∑︁
𝑖=𝑠

(
𝐹⊤

) 𝑖+1−𝑠
𝑃𝑤𝑖 . (2.45)

Therefore, combining (2.43) and (2.45),

𝐽1 =

𝑠−1∑︁
𝑡=0

(
𝑤⊤𝑡 𝑃𝑤𝑡 + 2𝑤⊤𝑡

𝑇−𝑡−1∑︁
𝑖=1

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑖

)
−
𝑠−1∑︁
𝑡=0

(
𝑇−𝑡−1∑︁
𝑖=0

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑖

)⊤
𝐻

(
𝑇−𝑡−1∑︁
𝑖=0

(
𝐹⊤

) 𝑖
𝑃𝑤𝑡+𝑖

)
+
𝑠−1∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 + 𝑥⊤0 𝑃𝑥0 + 2𝑥⊤0
𝑇−1∑︁
𝑖=0

(
𝐹⊤

) 𝑖+1
𝑃𝑤𝑖 − 𝑥⊤𝑠 𝑃𝑥𝑠 − 2𝑥⊤𝑠

𝑇−1∑︁
𝑖=𝑠

(
𝐹⊤

) 𝑖+1−𝑠
𝑃𝑤𝑖 .

Denote by Δ𝐽1 B
���𝐽1 − 𝐽1

���. We obtain

Δ𝐽1 =

𝑠−1∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 + 𝑥⊤𝑠 𝑃𝑥𝑠 − �̂�⊤𝑠 𝑃�̂�𝑠 + 2(𝑥𝑠 − �̂�𝑠)⊤
𝑇−1∑︁
𝑖=𝑠

(
𝐹⊤

) 𝑖+1−𝑠
𝑃𝑤𝑖

=

𝑠−1∑︁
𝑡=0

𝜂⊤𝑠 𝐹
𝑠−𝑡𝐻

(
(𝐹⊤)𝑠−𝑡𝜂𝑠

)
+ 𝑥⊤𝑠 𝑃𝑥𝑠 − �̂�⊤𝑠 𝑃�̂�𝑠 + 2(𝑥𝑠 − �̂�𝑠)⊤

𝑇−1∑︁
𝑖=𝑠

(
𝐹⊤

) 𝑖+1−𝑠
𝑃𝑤𝑖

≤ 𝑐∥𝐻∥
1 − 𝜌2

𝑐2∥𝑃∥2𝑅2

(1 − 𝜌)2
+ 2∥𝑃∥∥𝑥𝑠∥∥𝑥𝑠 − �̂�𝑠∥ + ∥𝑥𝑠 − �̂�𝑠∥2 + 2∥𝑥𝑠 − �̂�𝑠∥

𝑐∥𝑃∥𝜌
1 − 𝜌 .

50

Since the following is true:

𝑥𝑠 − �̂�𝑠 =𝐴(𝑥𝑠−1 − �̂�𝑠−1) + 𝐵(𝑢𝑠−1 − �̂�𝑠−1)
=(𝐴 − 𝐵𝐾) (𝑥𝑠−1 − �̂�𝑠−1) + 𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝜂𝑠−1

=

𝑠−1∑︁
𝑡=0
(𝐹⊤)𝑠−𝑡−1𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝜂𝑡 ,

we have

∥𝑥𝑠 − �̂�𝑠∥ ≤
𝑐2∥𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤∥𝑅

(1 − 𝜌)2
.

If ∥𝑥𝑠∥ = 𝑂 (1), then Δ𝐽1 = 𝑂 (1), else
Δ𝐽1
𝐽1
≤ 𝑂 (1) · ∥𝑥𝑠∥ +𝑂 (1)

𝑥⊤𝑠 𝑄𝑥𝑠
→ 0.

Therefore, as a conclusion, 𝐽1 can be bounded from above by

𝐽1 ≤ 𝐽1 +𝑂 (1). (2.46)

Upper Bound on 𝐽2

For section 2.D, we know that ∥𝑥𝑠 − �̂�𝑠∥ = 𝑂 (1). Let 𝐽2 denote the cost by running
1-confident algorithm from �̂�𝑠 with correct prediction, and �̃�𝑡 denote the state we get
in the procedure. Then

∥𝑥𝑡 − �̃�𝑡 ∥ = ∥(𝐴 − 𝐵𝐾) (𝑥𝑡−1 − �̃�𝑡−1)∥ = ∥𝐹 𝑡−𝑠 (𝑥𝑠 − �̃�𝑠)∥ = ∥𝐹 𝑡−𝑠 (𝑥𝑠 − �̂�𝑠)∥.

Therefore,

|𝐽2 − 𝐽2 | ≤
�����𝑇−1∑︁
𝑡=𝑠

(�̃�𝑡 − 𝑥𝑡)⊤𝑄𝑥𝑡 + 𝑥⊤𝑡 𝑄 (�̃�𝑡 − 𝑥𝑡) + (�̃�𝑡 − 𝑥𝑡)⊤𝑄 (�̃�𝑡 − 𝑥𝑡)
�����

+ |
𝑇−1∑︁
𝑡=𝑠

(�̃�𝑡 − 𝑢𝑡)⊤ 𝑅𝑢𝑡 + 𝑢⊤𝑡 𝑅 (�̃�𝑡 − 𝑢𝑡) + (�̃�𝑡 − 𝑢𝑡)⊤ 𝑅 (�̃�𝑡 − 𝑢𝑡) |

+
��(�̃�𝑇 − 𝑥𝑇)⊤ 𝑃𝑥𝑇 + 𝑥⊤𝑇 𝑃 (�̃�𝑇 − 𝑥𝑇) + (�̃�𝑇 − 𝑥𝑇)⊤ 𝑃 (�̃�𝑇 − 𝑥𝑇)��

≤
𝑇−1∑︁
𝑡=𝑠

(
∥𝑄∥ + ∥𝐾⊤𝑅𝐾 ∥

) 𝐹2𝑡−2𝑠 ∥𝑥𝑠 − �̂�𝑠∥2
+
𝑇−1∑︁
𝑡=𝑠

2
𝐹 𝑡−𝑠 ∥𝑥𝑠 − �̂�𝑠∥ (∥𝑄∥∥𝑥𝑡 ∥ + ∥𝑅𝐾 ∥∥𝑢𝑡 ∥)

+ 2
𝐹𝑇−𝑠 ∥𝑃∥∥∥𝑥𝑠 − �̂�𝑠∥∥𝑥𝑇 ∥ + 𝐹2𝑇−2𝑠 ∥𝑃∥∥𝑥𝑠 − �̂�𝑠∥2

=

𝑇−1∑︁
𝑡=𝑠

2
𝐹 𝑡−𝑠 ∥𝑥𝑠 − �̂�𝑠∥ (∥𝑄∥∥𝑥𝑡 ∥ + ∥𝑅𝐾 ∥∥𝑢𝑡 ∥)

𝑏 + 2
𝐹𝑇−𝑠 ∥𝑃∥∥ ∥𝑥𝑠 − �̂�𝑠∥ ∥𝑥𝑇 ∥ +𝑂 (1).

51

If ∥𝑥𝑡 ∥ = 𝑂 (1) and ∥𝑢𝑡 ∥ = 𝑂 (1) for all 𝑡, then
���𝐽2 − 𝐽2

��� = 𝑂 (1). Otherwise, suppose
𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘 and 𝑢 𝑗1 , 𝑢 𝑗2 , . . . , 𝑢 𝑗𝑙 are some functions of 𝑇 , then for any 1 ≤ 𝑚 ≤ 𝑘
and 1 ≤ 𝑛 ≤ 𝑙, ∥𝑥𝑖𝑚 ∥/𝑥⊤𝑖𝑚𝑄𝑥𝑖𝑚 → 0 and ∥𝑢 𝑗𝑛 ∥/𝑢⊤𝑗𝑛𝑅𝑢 𝑗𝑛 → 0. Therefore,���𝐽2 − 𝐽2

���
𝐽2

≤2∥𝑥𝑠 − �̂�𝑠∥
∑𝑘
𝑚=1

𝐹𝑖𝑚−𝑠 ∥𝑄∥∥𝑥𝑖𝑚 ∥ +∑𝑙
𝑛=1

𝐹 𝑗𝑛−𝑠 ∥𝑅𝐾 ∥∥𝑢 𝑗𝑛 ∥
𝐽2

+ 𝑂 (1)
𝐽2
→ 0.

Combining the two cases, we can conclude that���𝐽2 − 𝐽2

��� ≤ 𝐽2 +𝑂 (1). (2.47)

Therefore, from (2.46) and (2.47), we conclude that

𝐽 = 𝐽1 + 𝐽2 ≤ 𝐽1 +𝑂 (1) + 𝐶min𝐽2

≤ 𝐽1 +𝑂 (1) + 𝐶min(𝐽2 +𝑂 (1))
= 𝐶min𝐽 +𝑂 (1).

The proof completes by noticing that when the prediction error is zero and 𝑤𝑡 = 𝑤𝑡
for all 𝑡 = 0, . . . , 𝑇 − 1, the accumulated error 𝛿 will always be 0 and since the
threshold 𝜎 is positive, the algorithm is always optimal and 1-consistent. As a result,
Algorithm 1 is 1-consistent and (𝐶min + 𝑜(1))-robust.

2.E Experimental Setup
In our three case studies, we consider i.i.d. prediction errors, i.e., 𝑒𝑡 = 𝑤𝑡 − 𝑤𝑡
is an i.i.d. additive prediction noise. To illustrate the effects of randomness for
simulating the worst-case performance, we consider varying types of noise in the
case studies. For the robot tracking case, we set 𝑒𝑡 = 𝑐𝑋 where 𝑋 ∼ 𝐵(10, 0.5) is a
binomial random variable with 10 trials and a success probability 0.5 and 𝑐 > 0 is a
scaling parameter. For the battery-buffered EV charging case, we set 𝑒𝑡 = 𝑌 where
𝑋 ∼ 𝑁 (0, 𝜎2) is a normal random variable with zero mean and 𝜎2 is a variance that
can be varied to generate varying prediction error. For the Cart-Pole problem, we set
𝑒𝑡 = 𝑍𝑤𝑡 where 𝑤𝑡 = 60 × 𝐵 with 𝜂 B 𝑙

(
4
3 −

𝑚
𝑚+𝑀

)
,

𝐵 B

0

(𝑚+𝑀)𝜂+𝑚𝑙
(𝑚+𝑀)2𝜂

0
− 1
(𝑚+𝑀)𝜂 ,

52

and 𝑍 ∼ 𝑁 (0, 𝜎2) is a normal random variable with zero mean and 𝜎2 is a variance
ranging between 0 to 8 × 102. To simulate the worst-case performance of algorithms,
in our experiments we run the algorithms 5 times, with a new sequence of prediction
noise generated at each time and choose the one with the largest overall cost.

Finally, Table 2.E.1 and Table 2.E.2 list the detailed settings and the hyper-parameters
used in the robot tracking, battery-buffered EV charging and Cart-Pole case studies.

Table 2.E.1: Hyper-parameters used in robot tracking and EV charging.

Robot Tracking Value EV Charging Value
Number of Monte Carlo Tests 5 Number of Monte Carlo Tests 5
Prediction Error Type Binomial Prediction Error Type Gaussian
State Dimension 𝑛 4 State Dimension 𝑛 10 (Synthetic); 52 (Realistic)
Action Dimension 𝑚 2 Action Dimension 𝑚 10 (Synthetic); 52 (Realistic)
Time Horizon Length 𝑇 Fig 2.2a: 𝑇 = 240 Time Horizon Length 𝑇 240

Fig 2.2b: 𝑇 = 240
Fig 2.3: 𝑇 = 200

Initialized 𝜆0 0.3 Charging Efficiency 1
Scaling parameter 𝑐 Fig 2.3: 𝑐 ∈ [0, 1] Variance 𝜎2 𝜎2 ∈ [0, 10]
CPU Intel® i7-8850H CPU Intel® i7-8850H

Energy Demand 𝐸 (Synthetic) 5 (kWh)
Arrival Rate (Realistic) 0.2

Table 2.E.2: Hyper-parameters used in the Cart-Pole problem.

Robot Tracking Value
Number of Monte Carlo Tests 2000
Prediction Error Type Gaussian
Action Dimension 𝑚 1
State Dimension 𝑚 4
Time Horizon Length 𝑇 200
Variance 𝜎2 𝜎2 ∈ [0, 800]
Cart Mass 𝑀 𝑀 = 10.0𝑘𝑔
Pole Mass 𝑚 𝑚 = 1.0𝑘𝑔
Pole Length 𝑙 𝑙 = 10.0𝑚
CPU Intel® i7-8850H

53

C h a p t e r 3

NON-LINEAR CONTROL WITH BLACK-BOX AI POLICIES

[1] Tongxin Li, Ruixiao Yang, Guannan Qu, Yiheng Lin, Steven Low, and Adam
Wierman. Equipping black-box policies with model-based advice for stable
nonlinear control. Under review.

In Chapter 2, we have considered a learning-augmented control problem for a linear
control system (2.1) (Section 2.2). However, there are plenty of applications that have
non-linear dynamics, wherein deep neural network (DNN)-based control/decision-
making methods such as deep reinforcement learning/imitation learning have attracted
great interests due to the success on a wide range of control tasks such as humanoid
locomotion [56], playing Atari [57] and 3D racing games [58]. These methods
are typically model-free and are capable of learning policies and value functions
for complex and non-linear control tasks directly from raw data. In real-world
applications such as autonomous driving, it is impractical to dynamically update
the already-deployed policy. In those cases, pre-trained black-box policies are
applied. Those partially-optimized solutions on the one hand can sometimes be
optimal or near-optimal, but on the other hand can be arbitrarily poor in cases where
there is unexpected environmental behavior due to, e.g., sample inefficiency [10],
reward sparsity [11], mode collapse [12], high variability of policy gradient [13, 14],
or biased training data [15]. This uncertainty raises significant concerns about
applications of these tools in safety-critical settings. Meanwhile, for many real-
world control problems, crude information about system models exists, e.g, linear
approximations of their state transition dynamics [31, 59]. Such information can be
useful in providing model-based advice to the machine-learned policies. Therefore,
finding a trade-off between black-box AI/ML polices and model-based policies given
crude model information is a crucial problem. In a nutshell, our goals are to

1. be aggressive and trust the pre-trained black-box polices if they are optimal or
near-optimal, and 2. be conservative and only use the crude model information if the
black-box polices are unstable.

In this chapter, we generalize the learning-augmented control problem considered in
Chapter 2 to a non-linear control system and achieve the goals above.

54

3.1 Introduction
To represent complex and non-linear control tasks, in this chapter we consider the
following infinite-horizon dynamical system consisting of a known affine part, used
for model-based advice, and an unknown non-linear residual function, which is
(implicitly) used in developing machine-learned (DNN-based) policies:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡︸ ︷︷ ︸
Known affine part

+ 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡),︸ ︷︷ ︸
Unknown non-linear residual

for 𝑡 = 0, . . . ,∞, (3.1)

where 𝑥𝑡 ∈ R𝑛 and 𝑢𝑡 ∈ R𝑚 are the system state and the action selected by a controller
at time 𝑡; 𝐴 and 𝐵 are coefficient matrices in the affine part of the system dynamics.
Besides the linear components, the system also has a state and action-dependent non-
linear residual 𝑓𝑡 : R𝑛×R𝑚 → R𝑛 at each time 𝑡 ≥ 0, representing the modelling error.
The matrices 𝐴 and 𝐵 are fixed and known coefficients in the linear approximation
of the true dynamics (3.1).

Figure 3.1.1: Costs of pre-trained TRPO
and ARS agents and an LQR when the
initial pole angle 𝜃 (unit: radians) varies.

Given the affine part of the dynam-
ics (3.1), it is possible to construct a
model-based feedback controller 𝜋, e.g.,
a linear quadratic regulator or an H∞
controller. Compared with a DNN-based
policy �̂�(𝑥𝑡), the induced linear con-
troller often has a worse performance
on average due to the model bias, but
becomes more stable in an adversarial
setting. In other words, a DNN-based
policy can be as good as an optimal pol-
icy in domains where accurate training
data has been collected, but can perform
sub-optimally in other situations; while
a policy based on a linearized system is stabilizing, so that it has a guaranteed
worst-case performance with bounded system perturbations, but can lose out on
performance to DNN-based policies in non-adversarial situations. We illustrate this
trade-off for the Cart-Pole problem (see Example 1 in Appendix 1) in Figure 3.1.1.
The figure shows a pre-trained TRPO [60, 61] agent and an ARS [62] agent achieve
lower costs when the initial angle of the pole is small; but become less stable when
the initial angle increases. Using the affine part of the non-linear dynamics, a linear

55

quadratic regulator achieves better performance when the initial angle becomes large.
Motivated by this trade-off, we ask the following question in this chapter:

Can we equip a sub-optimal machine-learned policy �̂� with stability guarantees for
the non-linear system (3.1) by utilizing model-based advice from the known, affine
part?

Traditionally, switching between different control policies has been investigated for
linear systems [63, 64]. All candidate polices need to be linear and therefore can
be represented by their Youla–Kucera parametrizations (or Q-parameterizations).
When a policy is a black-box machine-learned policy modeled by a DNN that may
be non-linear, how to combine or switch between the policies remains an open
problem that is made challenging by the fact that the model-free policy typically
has no theoretical guarantees associated with its performance. On the one hand, a
model-free policy works well on average but, on the other hand, model-based advice
stabilizes the system in extreme cases.

Contributions. In this work, we propose a novel, adaptive policy that combines
model-based advice with a black-box machine-learned controller to guarantee stability
while retaining the performance of the machine-learned controller when it performs
well. In particular, we consider a non-linear control problem whose dynamics is
given in (3.1), where we emphasize that the unknown non-linear residual function
𝑓𝑡 (𝑥𝑡 , 𝑢𝑡) is time-varying and depends not only on the state 𝑥𝑡 but also the action
𝑢𝑡 at each time 𝑡. Our first result is a negative result (Theorem 3.3.1) showing that
a naive convex combination of a black-box model-free policy with model-based
advice can lead to instability, even if both policies are stabilizing individually. This
negative result highlights the challenges associated with combining model-based and
model-free approaches.

Next, we present a general policy that adaptively combines a model-free black-box
policy with model-based advice (Algorithm 4). We assume that the model-free
policy has some consistency error 𝜀, compared with the optimal policy and that the
residual functions (𝑓𝑡 : 𝑡 ≥ 0) are Lipschitz continuous with a Lipschitz constant
𝐶ℓ > 0. Instead of employing a hard-switching between policies, we introduce a
time-varying confidence coefficient 𝜆𝑡 that only decays and switches a black-box
model-free policy into a stabilizing model-based policy in a smooth way during
operation as needed to ensure stabilization. The sequence of confidence coefficients
converges to 𝜆 ∈ [0, 1]. Our main result is the following theorem, which establishes

56

a trade-off between competitiveness (Theorem 3.4.2) and stability (Theorem 3.4.1)
of this adaptive algorithm.

Theorem (Informal). With system assumptions (Assumption 1, 2 and an upper bound
on𝐶ℓ), the adaptive 𝜆-confident policy (Algorithm 4) has the following properties: (a)
the policy is exponentially stabilizing whose decay rate increases when 𝜆 decreases;
and (b) when the consistency error 𝜀 is small, the competitive ratio of the policy
satisfies

CR(𝜀) = (1 − 𝜆) × 𝑂 (CRmodel)︸ ︷︷ ︸
Model-based bound

+𝑂 (1/(1 −𝑂 (𝜀)))︸ ︷︷ ︸
Model-free error

+ 𝑂 (𝐶ℓ∥𝑥0∥2)︸ ︷︷ ︸
Non-linear dynamics error

.

(3.2)

The theorem shows that the adaptive 𝜆-confident policy is guaranteed to be stable.
Furthermore, if the black-box policy is close to an optimal control policy (in the
sense that the consistency error 𝜀 is small), then the adaptive 𝜆-confident policy has a
bounded competitive ratio that consists of three components. The first one is a bound
inherited from a model-based policy; the second term depends on the sub-optimality
gap between a black-box policy and an optimal policy; and the last term encapsulates
the loss induced by switching from a policy to another and it scales with the ℓ2 norm
of an initial state 𝑥0 and the non-linear residuals (depending on the Lipschitz constant
𝐶ℓ).

Our results imply an interesting trade-off between stability and sub-optimality, in
the sense that if 𝜆 is smaller, it is guaranteed to stabilize with a higher rate and if 𝜆
becomes larger, it is able to have a smaller competitive ratio bound when provided
with a high-quality black-box policy. Different from the linear case, where a cost
characterization lemma can be directly applied to bound the difference between the
policy costs and optimal costs in terms of the difference between their actions [23],
for the case of non-linear dynamics (3.1), we introduce an auxiliary linear problem to
derive an upper bound on the dynamic regret, whose value can be decomposed into a
quadratic term and a term induced by the non-linearity. The first term can be bounded
via a generalized characterization lemma and becomes the model-based bound and
model-free error in (3.2). The second term becomes a non-linear dynamics error
via a novel sensitivity analysis of an optimal non-linear policy based on its Bellman
equation. Finally, we use the Cart-Pole problem to demonstrate the efficacy of the
adaptive 𝜆-confident policy.

57

Related work. Our work is related to a variety of classical and learning-based
policies for control and reinforcement learning (RL) problems that focus on combining
model-based and model-free approaches.

Combination of model-based information with model-free methods. This work adds
to the recent literature seeking to combine model-free and model-based policies for
online control. Some prominent recent papers with this goal include the following.
First, MPC methods with penalty terms learned by model-free algorithms are
considered in [65]. Second, deep neural network dynamics models are used to
initialize a model-free learner to improve the sample efficiency while maintaining
the high task-specific performance [66]. Third, using this idea, the authors of [59]
consider a more concrete dynamical system 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑓 (𝑥𝑡) (similar to the
dynamics in (3.1) considered in this work) where 𝑓 is a state-dependent function and
they show that a model-based initialization of a model-free policy is guaranteed to
converge to a near-optimal linear controller. Another approach uses anH∞ controller
integrated into model-free RL algorithms for variance reduction [13]. Finally, the
model-based value expansion is proposed in [67] as a method to incorporate learned
dynamics models in model-free RL algorithms. Broadly, despite many heuristic
combinations of model-free and model-based policies demonstrating empirical
improvements, there are few theoretical results explaining and verifying the success
of the combination of model-free and model-based methods for control tasks. Our
work contributes to this goal.

Combining stabilizing linear controllers. The proposed algorithm in this work
combines existing controllers and so is related to the literature of combining
stabilizing linear controllers. A prominent work in this area is [63], which shows
that with proper controller realizations, switching between a family of stabilizing
controllers uniformly exponentially stabilizes a linear time-invariant (LTI) system.
Similar results are given in [64]. The techniques applied in [63, 64] use the fact
that all the stabilizing controllers can be expressed using the Youla parameterization.
Different from the classical results of switching between or combining stabilizing
controllers, in this work, we generalize the idea to the combination of a linear
model-based policy and a model-free policy, that can be either linear or non-linear.

Learning-augmented online problems. Recently, the idea of augmenting ro-
bust/competitive online algorithms with machine-learned advice has attracted atten-
tion in online problems in settings like online caching [3], ski-rental [5, 6], smoothed
online convex optimization [2] and linear quadratic control [23]. In many of these

58

learning-augmented online algorithms, a convex combination of machine-learned
(untrusted) predictions and robust decisions is involved. For instance, in [23], compet-
itive ratio upper bounds of a 𝜆-confident policy are given for a linear quadratic control
problem. The policy 𝜆𝜋MPC + (1 − 𝜆)𝜋LQR combines linearly a linear quadratic
regulator 𝜋LQR and an MPC policy 𝜋MPC with machine-learned predictions where
𝜆 ∈ [0, 1] measures the confidence of the machine-learned predictions. To this point,
no results on learning-augmented controllers for non-linear control exist. In this
work, we focus on the case of non-linear dynamics and show a general negativity
result (Theorem 3.3.1) such that a simple convex combination between two policies
can lead to unstable outputs and then proceed to provide a new approach that yields
positive results.

Setting Known Unknown (Partial) Assumption(s) Objective
[27] Episodic ℎ 𝑓 ℎ, 𝑓 ∈ C0,1 Safe exploration

[13] Episodic 𝑓 𝑘𝑛𝑜𝑤𝑛 𝑓 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 ∥�̂� − 𝜋∥2 ≤ 𝐶𝜋

Stabilizable 𝑓 𝑘𝑛𝑜𝑤𝑛
Lyapunov stability

[31] Episodic 𝐴, 𝐵 𝑔𝑡 (𝑥) Hurwitz 𝐴 Input-ouput stability
[59] Episodic 𝐴, 𝐵 𝑓 (𝑥) 𝑓 ∈ C0,1, Stabilizable 𝐴, 𝐵 Lyapunov stability
[28–30] Episodic (C)MDP Feasible baseline [29] Safety and stability
This work 1-trajectory 𝐴, 𝐵 𝑓𝑡 (𝑥, 𝑢) 𝑓𝑡 ∈ C0,1, Stabilizable 𝐴, 𝐵 Stability, CR bound

Stability-certified RL. Another highly related line of work is the recent research
on developing safe RL with stability guarantees. In [27], Lyapunov analysis is
applied to guarantee the stability of a model-based RL policy. If anH∞ controller
�̂�H∞ is close enough to a model-free deep RL policy 𝜋RL, by combining the two
policies linearly 𝜆�̂�H∞ + (1−𝜆)𝜋RL at each time in each training episode, asymptotic
stability and forward invariance can be guaranteed using Lyapunov analysis but the
convergence rate is not provided [13]. In practice, [13] uses an empirical approach
to choose a time-varying factor 𝜆 according to the temporal difference error. Robust
model predictive control (MPC) is combined with deep RL to ensure safety and
stability [28]. Using regulated policy gradient, input-output stability is guaranteed
for a continuous non-linear control model 𝑓𝑡 (𝑥(𝑡)) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑔𝑡 (𝑥(𝑡)) [31].
In those works, a common assumption needs to be made is the ability to access
and update the deep RL policy during the episodic training steps. Moreover, in
the state-of-the-art results, the stability guarantees are proven, either considering
an aforementioned episodic setting when the black-box policy can be improved or
customized [27, 31], or assuming a small and bounded output distance between a
black-box policy and a stabilizing policy for any input states to construct a Lyapunov
equation [13], which is less realistic. Stability guarantees under different model

59

assumptions such as (constrained) MDPs have been studied [28–30]. Different from
the existing literature, the result presented in this work is unique and novel in the
sense that we consider stability and sub-optimality guarantee for black-box deep
policies in a single trajectory such that we can neither learn from the environments
nor update the deep RL policy through extensive training steps. Denote by C0,1 the
class of Lipschiz continuous functions (with domains, ranges and norms specified
according to the contexts), the related results are summarized in the table above.

3.2 Background and Model
We consider the following infinite-horizon quadratic control problem with non-linear
dynamics:

min
(𝑢𝑡 :𝑡≥0)

∞∑︁
𝑡=0
𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 , subject to (3.1) (3.3)

where in the problem 𝑄, 𝑅 ≻ 0 are 𝑛 × 𝑛 and 𝑚 × 𝑚 positive definite matrices and
each 𝑓𝑡 : R𝑛 × R𝑚 → R𝑛 in (3.1) is an unknown non-linear function representing
state and action-dependent perturbations. An initial state 𝑥0 is fixed. We use the
following assumptions throughout this chapter. Our first assumption is the Lipschitz
continuity assumption on the residual functions and it is standard [59]. Note that
∥ · ∥ denotes the Euclidean norm throughout the chapter.

Assumption 1 (Lipschitz continuity). The function 𝑓𝑡 : R𝑛 × R𝑚 → R𝑛 is Lipschitz
continuous for any 𝑡 ≥ 0, i.e., there is a constant 𝐶ℓ ≥ 0 such that ∥ 𝑓𝑡 (𝑥) − 𝑓𝑡 (𝑦)∥ ≤
𝐶ℓ∥𝑥 − 𝑦∥ for any 𝑥, 𝑦 ∈ R𝑛 and 𝑡 ≥ 0. Moreover, 𝑓 (0) = 0.

Next, we make a standard assumption on the system stability and cost function [68, 69].

Assumption 2 (System stabilizability and costs). The pair of matrices (𝐴, 𝐵) is
stabilizable, i.e., there exists a real matrix𝐾 such that the spectral radius 𝜌(𝐴−𝐵𝐾) <
1. We assume 𝑄, 𝑅 ⪰ 𝜎𝐼. Furthermore, denote 𝜅 B max{2, ∥𝐴∥, ∥𝐵∥}.

In summary, our control agent is provided with a black-box policy �̂� and system
parameters 𝐴, 𝐵, 𝑄, 𝑅. The goal is to utilize �̂� and system information to minimize
the quadratic costs in (3.3), without knowing non-linear residuals (𝑓𝑡 : 𝑡 ≥ 0). Next,
we present our policy assumptions.

Model-based advice. In many real-world applications, linear approximations of
the true non-linear system dynamics are known, i.e., the known affine part of (3.1)

60

is available to construct a stabilizing policy 𝜋. To construct 𝜋, the assumption that
(𝐴, 𝐵) is stabilizable implies that the following discrete algebraic Riccati equation
(DARE) has a unique semi-positive definite solution 𝑃 that stabilizes the closed-loop
system [70]:

𝑃 = 𝑄 + 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴. (3.4)

Given 𝑃, define 𝐾 B (𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴. The closed-loop system matrix
𝐹 B 𝐴 − 𝐵𝐾 must have a spectral radius 𝜌(𝐹) less than 1. Therefore, the Gelfand’s
formula implies that there must exist a constant 𝐶𝐹 > 0, 𝜌 ∈ (0, 1) such that
∥𝐹 𝑡 ∥ ≤ 𝐶𝐹𝜌𝑡 , for any 𝑡 ≥ 0. The model-based advice considered in this work is then
defined as a sequence of actions (𝑢𝑡 : 𝑡 ≥ 0) provided by a linear quadratic regulator
(LQR) such that 𝑢𝑡 = 𝜋(𝑥𝑡) = −𝐾𝑥𝑡 .

Black-box model-free policy. To solve the non-linear control problem in (3.3),
we take advantage of both model-free and model-based approaches. We assume a
pre-trained model-free policy, whose policy is denoted by �̂� : R𝑛 → R𝑚, is provided
beforehand. The model-free policy is regarded as a “black box,” whose detail is
not the major focus in this work. The only way we interact with it is to obtain a
suggested action �̂�𝑡 = �̂�(𝑥𝑡) when feeding into it the current system state 𝑥𝑡 . The
performance of the model-free policy is not guaranteed and it can make some error,
characterized by the following definition, which compares �̂� against a clairvoyant
optimal controller 𝜋∗𝑡 knowing the non-linear residual perturbations in hindsight:

Definition 3.2.1 (𝜀-consistency). A policy 𝜋 : R𝑛 → R𝑚 is called 𝜀-consistent if
there exists 𝜀 > 0 such that for any 𝑥 ∈ R𝑛 and 𝑡 ≥ 0,

𝜋(𝑥) − 𝜋∗𝑡 (𝑥) ≤ 𝜀∥𝑥∥
where 𝜋∗𝑡 denotes an optimal policy at time 𝑡 knowing all the non-linear residual
perturbations (𝑓𝑡 : 𝑡 ≥ 0) in hindsight and 𝜀 is called a consistency error.

The parameter 𝜀 measures the difference between the action given by the oracle
policy �̂� and the optimal action given the state 𝑥. There is no guarantee that 𝜀 is
small. With prior knowledge of the non-linearity of system gained from data, the
sub-optimal model-free policy �̂� suffers a consistency error 𝜀 > 0, which can be
either small if the black-box policy is trained by unbiased data; or high because
of the high variability issue for policy gradient deep RL algorithms [13, 14] and
distribution shifts of the environments. In these cases, the error 𝜀 > 0 can be large.
In this work, we augment a black-box model-free policy with stability guarantees
using the idea of adaptively switching it to a model-based stabilizing policy 𝜋, which

61

often exists provided with exact or estimates of system parameters 𝐴, 𝐵, 𝑄 and 𝑅.
The linear stabilizing policy is conservative and highly sub-optimal as it is neither
designed based on the exact non-linear model nor interacts with the environment
like the training of �̂� potentially does.

Performance metrics. Our goal is to ensure stabilization of states while also
providing good performance, as measured by the competitive ratio. Formally, a
policy 𝜋 is (asymptotically) stabilizing if it induces a sequence of states (𝑥𝑡 : 𝑡 ≥ 0)
such that ∥𝑥𝑡 ∥ → 0 as 𝑡 → ∞. If there exist 𝐶 > 0 and 0 ≤ 𝛾 < 1 such that
∥𝑥𝑡 ∥ ≤ 𝐶𝛾𝑡 ∥𝑥0∥ for any 𝑡 ≥ 0, the corresponding policy is said to be exponentially
stabilizing. To define the competitive ratio, let OPT be the offline optimal cost
of (3.3) induced by optimal control policies (𝜋∗𝑡 : 𝑡 ≥ 0) when the non-linear residual
functions (𝑓𝑡 : 𝑡 ≥ 0) are known in hindsight, and ALG be the cost achieved by an
online policy. Throughout this chapter we assume OPT > 0. We formally define the
competitive ratio as follows.

Definition 3.2.2. Given a policy, the corresponding competitive ratio, denoted by
CR, is defined as the smallest constant 𝐶 ≥ 1 such that ALG ≤ 𝐶 · OPT for fixed
𝐴, 𝐵, 𝑄, 𝑅 satisfying Assumption 2 and any adversarially chosen residual functions
(𝑓𝑡 : 𝑡 ≥ 0) satisfying Assumption 1.

3.3 Warmup: A Naive Convex Combination
The main results in this work focus on augmenting a black-box policy �̂� with stability
guarantees while minimizing the quadratic costs in (3.3), provided with linear system
parameters 𝐴, 𝐵, 𝑄, 𝑅 of a non-linear system. Before proceeding to our policy, to
highlight the challenge of combining model-based advice with model-free policies
in this setting we first consider a simple strategy for combining the two via a convex
combination. This is an approach that has been proposed and studied previously,
e.g., [13, 23]. However, we show that it can be problematic in that it can yield an
unstable policy even when the two policies are stabilizing individually. Then, in
Section 3.4, we propose an approach that overcomes this challenge.

A natural approach for incorporating model-based advice is a convex combination of
a model-based control policy 𝜋 and a black-box model-free policy �̂�. The combined
policy generates an action 𝑢𝑡 = 𝜆�̂�(𝑥𝑡) + (1 − 𝜆)𝜋(𝑥𝑡) given a state 𝑥𝑡 at each time,
where 𝜆 ∈ [0, 1]. The coefficient 𝜆 determines a confidence level such that if 𝜆 is
larger, we trust the black-box policy more and vice versa. In the following, however,

62

we highlight that, in general, the convex combination of two polices can yield an
unstable policy, even if the two policies are stabilizing, with a proof in Appendix 3.D.

Theorem 3.3.1. Assume 𝐵 is an 𝑛×𝑛 full-rank matrix with 𝑛 > 1. For any 𝜆 ∈ (0, 1)
and any linear controller 𝐾1 satisfying 𝐴 − 𝐵𝐾1 ≠ 0, there exists a linear controller
𝐾2 that stabilizes the system such that their convex combination 𝜆𝐾2 + (1 − 𝜆)𝐾1 is
unstable, i.e., the spectral radius 𝜌(𝐴 − 𝐵(𝜆𝐾2 + (1 − 𝜆)𝐾1)) > 1.

Theorem 3.3.1 brings up an issue with the strategy of combining a stabilizing
policy with a model-free policy. Even if both the model-based and model-free
policies are stabilizing, the combined controller can lead to unstable state outputs.
In general, the space of stabilizing linear controllers {𝐾 ∈ R𝑛×𝑚 : 𝐾 is stabilizing}
is nonconvex [71]. The result in Theorem 3.3.1 is a stronger statement. It implies
that for any arbitrarily chosen linear policy 𝐾1 and a coefficient 𝜆 ∈ (0, 1), we can
always adversarially select a second policy 𝐾2 such that their convex combination
leads to an unstable system. It is worth emphasizing that the second policy does not
necessarily have to be a complicated non-linear policy. Indeed, in our proof, we
construct a linear policy 𝐾2 to derive the conclusion. In our problem, the second
policy 𝐾2 is assumed to be a black-box policy �̂� potentially parameterized by a deep
neural network, yielding much more uncertainty on a similar convex combination.
As a result, we must be careful when combining policies together.

Note that the idea of applying a convex combination of an RL policy and a control-
theoretic policy linearly is not a new approach and similar policy combinations
have been proposed in previous studies [13, 23]. However, in those results, either
the model-free policy is required to satisfy specific structures [23] or to be close
enough to the stabilizing policy [13] to be combined. In [23], a learning-augmented
policy is combined with a linear quadratic regulator, but the learning-augmented
policy has a specific form and it is not a black-box policy. In [13], a deep RL
policy �̂� is combined with anH∞ controller 𝜋 and they need to satisfy that for any
state 𝑥 ∈ R𝑛, ∥�̂�(𝑥) − 𝜋(𝑥)∥ ≤ 𝐶𝜋 for some 𝐶𝜋 > 0. However, it is possible that
when the state norm ∥𝑥∥ becomes large, the two policies in practice behave entirely
differently. Moreover, it is hard to justify the benefit of combining two policies,
conditioned on the fact that they are already similar. Given that those assumptions
are often not satisfied or hard to be verified in practice, we need another approach to
guarantee worst-case stability when the black-box policy is biased and in addition
ensure sub-optimality if the black-box policy works well.

63

3.4 Adaptive 𝜆-Confident Control
Motivated by the challenge highlighted in the previous section, we now propose a
general framework that adaptively selects a sequence of monotonically decreasing
confidence coefficients (𝜆𝑡 : 𝑡 ≥ 0) in order to switch between black-box and
stabilizing model-based policies. We show that it is possible to guarantee a bounded
competitive ratio when the black-box policy works well, i.e., it has a small consistency
error 𝜀, and guarantee stability in cases when the black-box policy performs poorly.

Algorithm 4: Adaptive 𝜆-Confident
Data: System parameters 𝐴, 𝐵, 𝑄, 𝑅, 𝛼

for 𝑡 ≥ 0 do
if 𝑡 = 0 then Initialize 𝜆0 ←− 1

if ∥𝑥𝑡 ∥ = 0 then 𝜆𝑡 ←− 𝜆𝑡

else
Obtain a coefficient 𝜆′ based on previous actions {𝑢𝜏 : 𝜏 ≤ 𝑡 − 1}, states
{𝑥𝜏 : 𝜏 ≤ 𝑡} and known system parameters ⊲ Online learning (Eq. (3.6))

if 𝜆′ > 0 and 𝜆𝑡−1 > 𝛼 then 𝜆𝑡 ←− min{𝜆′, 𝜆𝑡−1 − 𝛼}

else 𝜆𝑡 ←− 0

end

Generate an action 𝑢𝑡 = 𝜆𝑡 �̂�(𝑥𝑡) + (1 − 𝜆𝑡)𝜋(𝑥𝑡)

Update state according to (3.1)

end

The adaptive 𝜆-confident policy introduced in Algorithm 4 involves an input coeffi-
cient 𝜆′ at each time. The value of 𝜆𝑡 can either be 𝜆𝑡−1 decreased by a fixed step
size 𝛼, or a variable learned from known system parameters in (3.3) combined with
observations of previous states and actions. In Section 3.5, we consider an online
learning approach to generate a value of 𝜆′ at each time 𝑡, but it is worth emphasizing
that the adaptive policy in Algorithm 4 and its theoretical guarantees in Section 3.4
do not require specifying a detailed construction of 𝜆′.

The adaptive policy differs from the naive convex combination that has been discussed
in Section 3.3 in that it adopts a sequence of time-varying and monotonically
decreasing coefficients (𝜆𝑡 : 𝑡 ≥ 0) to combine a black-box policy and a model-based
stabilizing policy, where the former policy is adaptively switched to the later one.

64

The coefficient 𝜆𝑡 converges to lim𝑡→∞ 𝜆𝑡 = 𝜆, where the limit 𝜆 can be a positive
value, if the state converges to a target equilibrium (0 under our model assumptions)
before 𝜆𝑡 decreases to zero. This helps stabilize the system under assumptions on the
Lipschitz constant 𝐶ℓ of unknown non-linear residual functions and if the black-box
policy is near-optimal, a bounded competitive ratio is guaranteed, as we show in the
next section.

Theoretical guarantees
The theoretical guarantees we obtain are two-fold. First, we show that the adaptive
𝜆-confident policy in Algorithm 4 is stabilizing, as stated in Theorem 3.4.1. Second,
in addition to stability, we show that the policy has a bounded competitive ratio, if
the black-box policy used has a small consistency error (Theorem 3.4.2). Note that if
a black-box policy has a large consistency error 𝜀, without using model-based advice,
it can lead to instability and therefore possibly an unbounded competitive ratio.

Stability. Before presenting our results, we introduce some new notation for
convenience. Denote by 𝑡0 the smallest time index when 𝜆𝑡 = 0 or 𝑥𝑡 = 0 and note
that 0 is an equilibrium state. Denote by 𝜆 = lim𝑡→∞ 𝜆𝑡 . Since (𝜆𝑡 : 𝑡 ≥ 0) is a
monotonically decreasing sequence and 𝜆𝑡 has a lower bound, 𝑡0 and 𝜆 exist and are
unique. Let 𝐻 B 𝑅 + 𝐵⊤𝑃𝐵. Define the parameters 𝛾 B 𝜌 + 𝐶𝐹𝐶ℓ (1 + ∥𝐾 ∥) and
𝜇 B 𝐶𝐹

(
𝜀 (𝐶ℓ + ∥𝐵∥) + 𝐶sys

𝑎 𝐶ℓ
)

where 𝐴, 𝐵, 𝑄, 𝑅 are the known system parameters
in (3.3), 𝑃 has been defined in the Riccati equation (3.4); 𝐶𝐹 > 0 and 𝜌 ∈ (0, 1) are
constants such that ∥𝐹 𝑡 ∥ ≤ 𝐶𝐹𝜌𝑡 , for any 𝑡 ≥ 0 as defined in Section 3.2; 𝐶ℓ is the
Lipschitz constant in Assumption 1; 𝜀 > 0 is the consistency error in Definition 3.2.1;
Finally, 𝐶sys

𝑎 , 𝐶
sys
𝑏
, 𝐶

sys
𝑐 > 0 are constants that only depend on the known system

parameters in (3.3) and they are listed in Appendix 3.B.

Given the above notation, the theorem below guarantees stability of the adaptive
𝜆-confident policy.

Theorem 3.4.1. Suppose the Lipschitz constant 𝐶ℓ satisfies 𝐶ℓ < 1−𝜌
𝐶𝐹 (1+∥𝐾 ∥) . The

adaptive 𝜆-confident policy (Algorithm 4) is an exponentially stabilizing policy such
that ∥𝑥𝑡 ∥ = 𝑂

(
(𝜇/𝛾)𝑡0𝛾𝑡

)
∥𝑥0∥.

For Theorem 3.4.1 to hold such that 𝛾 < 1, the Lipschitz constant 𝐶ℓ needs to have
an upper bound 1−𝜌

𝐶𝐹 (1+∥𝐾 ∥) where 𝐶𝐹 > 0 and 𝜌 ∈ (0, 1) are constants such that
∥𝐹 𝑡 ∥ ≤ 𝐶𝐹𝜌𝑡 , for any 𝑡 ≥ 0. Since 𝐴 and 𝐵 are stabilizable, such 𝐶𝐹 and 𝜌 exist.
The upper bound only depends on the known system parameters 𝐴, 𝐵, 𝑄 and 𝑅. A

65

small enough Lipschitz constant is required to guarantee stability. For instance,
in [59], convergence exponentially to the equilibrium state is guaranteed when the
Lipschitz constant satisfies 𝐶ℓ = 𝑂

(
𝜎2 (1−𝜌)8
𝜅9𝐶𝐹

15

)
.

Competitiveness. Define a constant CRmodel B 2𝜅(𝐶𝐹 ∥𝑃∥
1−𝜌)

2/𝜎. The theorem below
implies that when the model-free policy error 𝜀 and the Lipschitz constant 𝐶ℓ of the
residual functions are small enough, Algorithm 4 is competitive.

Theorem 3.4.2. Suppose the Lipschitz constant satisfies 𝐶ℓ < min
{
1, 𝐶sys

𝑎 , 𝐶
sys
𝑐

}
.

When the consistency error satisfies 𝜀 < min
{

𝜎
2∥𝐻∥ ,

1/𝐶𝐹−𝐶sys
𝑎 𝐶ℓ

𝐶ℓ+∥𝐵∥

}
, the competitive

ratio of the adaptive 𝜆-confident policy (Algorithm 4) is bounded by

CR(𝜀) = (1 − 𝜆)CRmodel +𝑂
(
1/

(
1 − 2∥𝐻∥

𝜎
𝜀

))
+𝑂 (𝐶ℓ∥𝑥0∥).

Combining Theorem 3.4.1 and 3.4.2, our main results are proved when the Lipschitz
constant satisfies 𝐶ℓ < min

{
1, 𝐶sys

𝑎 , 𝐶
sys
𝑐 ,

(1−𝜌)
𝐶𝐹 (1+∥𝐾 ∥)

}
. Theorem 3.4.1 and 3.4.2

have some interesting implications. First, if the selected time-varying confidence
coefficients converge to a 𝜆 that is large, then we trust the black-box policy and use a
higher weight in the per-step combination. This requires a slower decaying rate of 𝜆𝑡
to zero so as a trade-off, 𝑡0 can be higher and this leads to a weaker stability result
and vice versa. In contrast, when the non-linear dynamics in (3.1) becomes linear
with unknown constant perturbations, [23] shows a trade-off between robustness and
consistency, i.e., a universal competitive ratio bound holds, regardless the error of
machine-learned predictions. Different from the linear case where a competitive
ratio bound always exists and can be decomposed into terms parameterized by
some confidence coefficient 𝜆, for the non-linear system dynamics (3.1), there are
additional terms due to the non-linearity of the system that can only be bounded if
the consistency error 𝜀 is small. This highlights a fundamental difference between
linear and non-linear systems, where the latter is known to be more challenging.
Proofs of Theorem 3.4.1 and 3.4.2 are provided in Appendix 3.E and 3.F.

3.5 Practical Implementation and Applications
Learning confidence coefficients online
Our main results in the previous section are stated without specifying a sequence
of confidence coefficients (𝜆𝑡 : 𝑡 ≥ 0) for the policy; however in the following we
introduce an online learning approach to generate confidence coefficients based on
observations of actions, states and known system parameters. The negative result in
Theorem 3.3.1 highlights that the adaptive nature of the confidence coefficients in

66

Algorithm 4 are crucial to ensuring stability. Naturally, learning the values of the
confidence coefficients (𝜆𝑡 : 𝑡 ≥ 0) online can further improve performance.

In this section, we propose an online learning approach based on a linear parameter-
ization of a black-box model-free policy �̂�𝑡 (𝑥) = −𝐾𝑥 − 𝐻−1𝐵⊤

∑∞
𝜏=𝑡 (𝐹⊤)

𝑡−𝜏
𝑃 �̂�𝜏

where (�̂�𝑡 : 𝑡 ≥ 0) are parameters representing estimates of the residual functions
for a black-box policy. Note that when �̂�𝑡 = 𝑓 ∗𝑡 B 𝑓𝑡 (𝑥∗𝑡 , 𝑢∗𝑡) where 𝑥∗𝑡 and 𝑢∗𝑡 are
optimal state and action at time 𝑡 for an optimal policy, then the model-free policy
is optimal. In general, a black-box model-free policy �̂� can be non-linear, the
linear parameterization provides an example of how the time-varying confidence
coefficients (𝜆𝑡 : 𝑡 ≥ 0) are selected and the idea can be extended to non-linear
parameterizations such as kernel methods.

Under the linear parameterization assumption, for linear dynamics, [23] shows that
the optimal choice of 𝜆𝑡+1 that minimizes the gap between the policy cost and optimal
cost for the 𝑡 time steps is

𝜆𝑡+1 =

(𝑡∑︁
𝑠=0
(𝜂(𝑓 ∗; 𝑠, 𝑡))⊤ 𝐻

(
𝜂(�̂� ; 𝑠, 𝑡)

))/ (𝑡∑︁
𝑠=0

(
𝜂(�̂� ; 𝑠, 𝑡)

)⊤
𝐻

(
𝜂(�̂� ; 𝑠, 𝑡)

))
,

(3.5)

where 𝜂(𝑓 ; 𝑠, 𝑡) B ∑𝑡
𝜏=𝑠 (𝐹⊤)

𝜏−𝑠
𝑃 𝑓𝜏. Compared with a linear quadratic control

problem, computing 𝜆𝑡 in (3.5) raises two problems. The first is different from a linear
dynamical system where true perturbations can be observed, the optimal actions and
states are unknown, making the computation of the term 𝜂(𝑓 ∗; 𝑠, 𝑡 − 1) impossible.
The second issue is similar. Since the model-free policy is a black-box, we do not
know the parameters (�̂�𝑡 : 𝑡 ≥ 0) exactly. Therefore, we use approximations to
compute the terms 𝜂 (𝑓 ∗; 𝑠, 𝑡) and 𝜂(�̂� ; 𝑠, 𝑡) in (3.5) and the linear parameterization
and linear dynamics assumptions are used to derive the approximations, respectively,
with details provided in Appendix 3.B. Let

(
𝐵𝐻−1)† denote the Moore–Penrose

inverse of 𝐵𝐻−1. Combining (3.8) and (3.9) with (3.5) yields the following online-
learning choice of a confidence coefficient 𝜆𝑡 = min {𝜆′, 𝜆𝑡−1 − 𝛼} where 𝛼 > 0 is a
fixed step size and

𝜆′ B

∑𝑡−1
𝑠=1

(∑𝑡−1
𝜏=𝑠 (𝐹⊤)

𝜏−𝑠
𝑃 (𝐴𝑥𝜏 + 𝐵𝑢𝜏 − 𝑥𝜏+1)

)⊤
𝐵 (�̂�𝑠 + 𝐾𝑥𝑠)∑𝑡−1

𝑠=0 (�̂�𝑠 + 𝐾𝑥𝑠)
⊤ (
𝐵𝐻−1)† 𝐵 (�̂�𝑠 + 𝐾𝑥𝑠) (3.6)

67

Figure 3.5.1: Competitiveness and stability of the adaptive policy. Top (Competi-
tiveness): costs of pre-trained RL agents, an LQR and the adaptive policy when the
initial pole angle 𝜃 (unit: radians) varies. Bottom (Stability): convergence of ∥𝑥𝑡 ∥ in
𝑡 with 𝜃 = 0.4 for pre-trained RL agents, a naive combination (Section 3.3) using a
fixed 𝜆 = 0.8 and the adaptive policy.

Figure 3.5.2: Simulation results for real-world adaptive EV charging. Left: total
rewards of the adaptive policy and SAC for pre-COVID-19 days and post-COVID-19
days. Right: shift of data distributions due to the work-from-home policy.

based on the crude model information 𝐴, 𝐵, 𝑄, 𝑅 and previously observed states,
model-free actions and policy actions. This online learning process provides a choice
of the confidence coefficient in Algorithm 4. It is worth noting that other approaches
for generating 𝜆𝑡 exist, and our theoretical guarantees apply to any approach.

Applications
To demonstrate the efficacy of the adaptive 𝜆-confident policy (Algorithm 4), we
first apply it to the Cart-Pole OpenAI gym environment (Cart-Pole-v1, Example 1 in

68

Appendix 3.A) [55].1 Next, we apply it to an adaptive electric vehicle (EV) charging
environment modeled by a real-world dataset [1].

The Cart-Pole problem. We use the Stable-Baselines3 pre-trained agents [61] of
A2C [72], ARS [62], PPO [56] and TRPO [60] as four candidate black-box policies.
In Figure 3.5.1, the adaptive policy finds a trade-off between the pre-trained black-box
polices and an LQR with crude model information (i.e., about 50% estimation error
in the mass and length values). In particular, when 𝜃 increases, it stabilizes the state
while the A2C and PPO policies become unstable when the initial angle 𝜃 is large.

Real-world adaptive EV charging. In the EV charging application, a SAC [73]
agent is trained with data collected from a pre-COVID-19 period and tested on days
before and after COVID-19. Due to a policy change (the work-from-home policy),
the SAC agent becomes biased in the post-COVID-19 period (see the right sub-figure
in Figure 3.5.2). With crude model information, the adaptive policy has rewards
matching the SAC agent in the pre-COVID-19 period and significantly outperforms
the SAC agent in the post-COVID-19 period with an average total award 1951.2
versus 1540.3 for SAC. Further details on the hyper-parameters and reward function
are included in Appendix 3.A.

1The Cart-Pole environment is modified so that quadratic costs are considered rather than discrete
rewards.

69

APPENDIX

3.A Experimental Setup and Supplementary Results
We describe the experimental settings and choices of hyper-parameters and re-
ward/cost functions in the two applications.

Table 3.A.1: Hyper-parameters used in the Cart-Pole problem.

Parameter Value
Number of Monte Carlo Tests 10
Initial angle variation (in rad) 𝜃 ± 0.05
Cost matrix 𝑄 𝐼

Cost matrix 𝑅
[
10−4]

Acceleration of gravity 𝑔 (in m/s2) 9.8
Pole mass 𝑚 (in kg) 0.2 for LQR; 0.1 for real environment
Cart mass 𝑀 (in kg) 2.0 for LQR; 1.0 for real environment
Pole length 𝑙 (in m) 2
Duration 𝜏 (in second) 0.02
Force magnitude 𝐹 10
CPU Intel® i7-8850H

The Cart-Pole Problem
Problem setting. The Cart-Pole problem considered in the experiments is described
by the following example.

Example 1 (The Cart-Pole Problem). In the Cart-Pole problem, the goal of a
controller is to stabilize the pole in the upright position. Neglecting friction, the
dynamical equations of the Cart-Pole problem are

¥𝜃 =
𝑔 sin 𝜃 + cos 𝜃

(
−𝑢−𝑚𝑙 ¤𝜃2 sin 𝜃

𝑚+𝑀

)
𝑙

(
4
3 −

𝑚 cos2 𝜃
𝑚+𝑀

) , ¥𝑦 =
𝑢 + 𝑚𝑙

(¤𝜃2 sin 𝜃 − ¥𝜃 cos 𝜃
)

𝑚 + 𝑀

where 𝑢 is the input force; 𝜃 is the angle between the pole and the vertical line; 𝑦 is
the location of the pole; 𝑔 is the gravitational acceleration; 𝑙 is the pole length; 𝑚 is
the pole mass; and 𝑀 is the cart mass. Taking sin 𝜃 ≈ 𝜃 and cos 𝜃 ≈ 1 and ignoring
higher order terms provides a linearized system and the discretized dynamics of the

70

Cart-Pole problem can be represented as for any 𝑡,
𝑦𝑡+1

¤𝑦𝑡+1
𝜃𝑡+1
¤𝜃𝑡+1

︸︷︷︸
𝑥𝑡+1

=

1 𝜏 0 0
0 1 − 𝑚𝑙𝑔𝜏

𝜂(𝑚+𝑀) 0
0 0 1 𝜏

0 0 𝑔𝜏

𝜂
1

︸ ︷︷ ︸
𝐴

𝑦𝑡

¤𝑦𝑡
𝜃𝑡

¤𝜃𝑡

︸︷︷︸
𝑥𝑡

+

0

(𝑚+𝑀)𝜂+𝑚𝑙
(𝑚+𝑀)2𝜂 𝜏

0
− 𝜏
(𝑚+𝑀)𝜂

︸ ︷︷ ︸
𝐵

𝑢𝑡 + 𝑓𝑡
(
𝑦𝑡 , ¤𝑦𝑡 , 𝜃𝑡 , ¤𝜃𝑡 , 𝑢𝑡

)

where (𝑦𝑡 , ¤𝑦𝑡 , 𝜃𝑡 , ¤𝜃𝑡)⊤ denotes the system state at time 𝑡; 𝜏 denotes the time interval
between state updates; 𝜂 B (4/3)𝑙 − 𝑚𝑙/(𝑚 + 𝑀) and the function 𝑓𝑡 measures the
difference between the linearized system and the true system dynamics. Note that
𝑓𝑡 (0) = 0 for all time steps 𝑡 ≥ 0.

Policy setting. The pre-trained agents Stable-Baselines3 [61] of A2C [72], ARS [62],
PPO [56] and TRPO [60] are selected as four candidate black-box policies. The
Cart-Pole environment is modified so that quadratic costs are considered rather than
discrete rewards to match our control problem (3.3). The choices of 𝑄 and 𝑅 in the
costs and other parameters are provided in Table 3.A.1. Note that we vary the values
of 𝑚 and 𝑀 in the LQR implementation to model the case of only having crude
estimates of linear dynamics. The LQR outputs an action 0 if −𝐾𝑥𝑡 + 𝐹′ < 0 and 1
otherwise. A shifted force 𝐹′ = 15 is used to model inaccurate linear approximations
and noise. The pre-trained RL policies output a binary decision {0, 1} representing
force directions. To use our adaptive policy in this setting, given a system state 𝑥𝑡 at
each time 𝑡, we implement the following:

𝑢𝑡 = 𝜆𝑡 (2𝜋RL(𝑥𝑡)𝐹 − 𝐹) + (1 − 𝜆𝑡)
(
2𝜋LQR(𝑥𝑡)𝐹 − 𝐹

)
where 𝐹 is a fixed force magnitude defined in Table 3.A.1; 𝜋RL denotes an RL policy;
𝜋LQR denotes an LQR policy and 𝜆𝑡 is a confidence coefficient generated based
on (3.6). Instead of fixing a step size 𝛼, we set an upper bound 𝛿 = 0.2 on the learned
step size 𝜆′ to avoid converging too fast to a pure model-based policy.

Real-World Adaptive EV Charging in Tackling COVID-19
Problem setting. The second application considered is an EV charging problem
modeled by real-world large-scale charging data [1]. The problem is formally
described below.

Example 2 (Adaptive EV charging). Consider the problem of managing a fleet
of electric vehicle supply equipment (EVSE). Let 𝑛 be the number of EV charging

71

Table 3.A.2: Hyper-parameters used in the real-world EV charging problem.

Parameter Value
Problem setting

Number of chargers 𝑛 5
Line limit 𝛾 (in kW) 6.6
Duration 𝜏 (in minute) 5
Reward coefficient 𝜙1 50
Reward coefficient 𝜙2 0.01
Reward coefficient 𝜙3 10

Policy setting

Discount 𝛾SAC 0.9
Target smoothing coefficient 𝜏SAC 0.005
Temperature parameter 𝛼SAC 0.2
Learning rate 3 · 10−4

Maximum number of steps 10 · 106

Reply buffer size 10 · 106

Number of hidden layers (all networks) 2
Number of hidden units per layer 256
Number of samples per minibatch 256
Non-linearity ReLU

Training and testing data

Pre-COVID-19 (Training) May, 2019 - Aug, 2019
Pre-COVID-19 (Testing) Sep, 2019 - Dec, 2019
In-COVID-19 Feb, 2020 - May, 2020
Post-COVID-19 May, 2021 - Aug, 2021
CPU Intel® i7-8850H

stations. Denote by 𝑥𝑡 ∈ R𝑛+ the charging states of the 𝑛 stations, i.e., 𝑥 (𝑖)𝑡 > 0 if an EV
is charging at station-𝑖 and 𝑥 (𝑖)𝑡 (kWh) energy needs to be delivered; otherwise 𝑥 (𝑖)𝑡 = 0.
Let 𝑢𝑡 ∈ R𝑛+ be the allocation of energy to the 𝑛 stations. There is a line limit 𝛾 > 0
so that

∑𝑛
𝑖=1 𝑢

(𝑖)
𝑡 ≤ 𝛾 for any 𝑖 and 𝑡. At each time 𝑡, new EVs may arrive and EVs

being charged may depart from previously occupied stations. Each new EV 𝑗 induces
a charging session, which can be represented by 𝑠 𝑗 B (𝑎 𝑗 , 𝑑 𝑗 , 𝑒 𝑗 , 𝑖) where at time
𝑎 𝑗 , EV 𝑗 arrives at station 𝑖, with a battery capacity 𝑒 𝑗 > 0, and depart at time 𝑑 𝑗 .
Assuming lossless charging, the system dynamics is 𝑥𝑡+1 = 𝑥𝑡 + 𝑢𝑡 + 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡), 𝑡 ≥ 0
where the non-linear residual functions (𝑓𝑡 : 𝑡 ≥ 0) represent uncertainty and

72

Figure 3.A.1: Illustration of the impact of COVID-19 on charging behaviors in terms
of the total number of charging sessions and energy delivered (left) and distribution
shifts (right).

constraint violations. Let 𝜏 be the time interval between state updates. Given fixed
session information (𝑠 𝑗 : 𝑗 > 0), denote by the following sets containing the sessions
that are assigned to a charger 𝑖 and activated (deactivated) at time 𝑡:

A𝑖 B
{
(𝑗 , 𝑡) : 𝑎 𝑗 ≤ 𝑡 ≤ 𝑎 𝑗 + 𝜏, 𝑠(4)𝑗 = 𝑖

}
,

D𝑖 B
{
(𝑗 , 𝑡) : 𝑑 𝑗 ≤ 𝑡 ≤ 𝑑 𝑗 + 𝜏, 𝑠(4)𝑗 = 𝑖

}
.

The charging uncertainty is summarized as for any 𝑖 = 1, . . . , 𝑛,

𝑓
(𝑖)
𝑡 (𝑥𝑡 , 𝑢𝑡) B

𝑠
(3)
𝑗

if (𝑗 , 𝑡) ∈ A𝑖 (New sessions are active)

−𝑥 (𝑖)𝑡 − 𝑢
(𝑖)
𝑡 if (𝑗 , 𝑡) ∈ D𝑖 or 𝑥 (𝑖)𝑡 + 𝑢

(𝑖)
𝑡 < 0 (Sessions end)

(or battery is full)
𝛾

∥𝑢𝑡 ∥1𝑢
(𝑖)
𝑡 if

∑𝑛
𝑖=1 𝑢

(𝑖)
𝑡 > 𝛾 (Line limit is exceeded)

0 otherwise

.

Note that the non-linear residual functions (𝑓𝑡 : 𝑡 ≥ 0) in Example 2 may not satisfy
𝑓𝑡 (0) = 0 for all 𝑡 ≥ 0 in Assumption 1. Our experiments further validate that the
adaptive policy works well in practice even if some of the model assumptions are
violated. The goal of an EV charging controller is to maximize a system-level reward
function including maximizing energy delivery, avoiding a penalty due to uncharged

73

Figure 3.A.2: Bar-plots of rewards/number of sessions corresponding to testing
the SAC policy and the adaptive policy on the EV charging environment based on
sessions collected from three time periods.

Figure 3.A.3: Supplementary results of Figure 3.5.2 with additional testing rewards
for an in-COVID-19 period.

capacities and minimizing electricity costs. The reward function is

𝑟 (𝑢𝑡 , 𝑥𝑡) B

𝜙1 × 𝜏∥𝑢𝑡 ∥2︸ ︷︷ ︸
Charging rewards

− 𝜙2 × ∥𝑥𝑡 ∥2︸ ︷︷ ︸
Unfinished charging

− 𝜙3 × 𝑝𝑡 ∥𝑢𝑡 ∥1︸ ︷︷ ︸
Electricity cost

− 𝜙4 ×
𝑛∑︁
𝑖=1

1((𝑗 , 𝑡) ∈ D𝑖)
𝑥
(𝑖)
𝑡

𝑒 𝑗︸ ︷︷ ︸
Penalty

with coefficients 𝜙1, 𝜙2, 𝜙3 and 𝜙4 shown in Table 3.A.2. The environment is wrapped
as an OpenAI gym environment [55]. In our implementation, for convenience, the
state 𝑥𝑡 is in R2𝑛

+ with additional 𝑛 coordinates representing remaining charging
duration. The electricity prices (𝑝𝑡 : 𝑡 ≥ 0) are average locational marginal prices
(LMPs) on the CAISO (California Independent System Operator) day-ahead market
in 2016.

Policy setting. We train an SAC [73] policy 𝜋SAC for EV charging with 4-month data
collected from a real-world charging garage [1] before the outbreak of COVID-19.
The public charging infrastructure has 54 chargers and we use the charging history to
set up our charging environment with 5 chargers. Knowledge of the linear parts in the
non-linear dynamics 𝑥𝑡+1 = 𝑥𝑡 + 𝑢𝑡 + 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡), 𝑡 ≥ 0 is assumed to be known, based

74

Table 3.A.3: Average total rewards for the SAC policy and the adaptive 𝜆-confident
policy (Algorithm 4).

Policy Pre-COVID-19 In-COVID-19 Post-COVID-19
SAC [73] 1601.914 765.664 1540.315
Adaptive 1489.338 839.651 1951.192

on which an LQR controller 𝜋LQR is constructed. Our adaptive policy presented in
Algorithm 4 learns a confidence coefficient 𝜆𝑡 at each time step 𝑡 to combine the two
policies 𝜋SAC and 𝜋LQR.

Impact of COVID-19. We test the policies on different periods from 2019 to 2021.
The impact of COVID-19 on the charging behavior is intuitive. As COVID-19
became an outbreak in early Feb, 2020 and later a pandemic in May, 2020, limited
Stay at Home Order and curfew were issued, which significantly reduce the number
of active users per day. Figure 3.A.1 illustrates the dramatic fall of the total number
of monthly charging sessions and total monthly energy delivered between Feb, 2020
and Sep, 2020. Moreover, despite the recovery of the two factors since Jan, 2021,
COVID-19 has a long-term impact on lifestyle behaviors. For example, the right
sub-figure in Figure 3.A.1 shows that the arrival times of EVs (start times of sessions)
are flattened in the post-COVID-19 period, compared to a more concentrated arrival
peak before COVID-19. The significant shift of distributions highly deteriorates the
performance of DNN-based model-free policies, e.g., SAC that are trained on normal
charging data collected before COVID-19. In this work, we demonstrate that taking
advantage of model-based information, the adaptive 𝜆-confident policy (Algorithm 4)
is able to correct the mistakes made by DNN-based model-free policies trained on
biased data and achieve more robust charging performance.

Additional experimental results. We provide supplementary experimental results.
Besides comparing the periods of pre-COVID-19 and post-COVID-19, we include
the testing rewards for an in-COVID-19 period in Figure 3.A.3, together with the
corresponding bar-plots in Figure 3.A.2. In addition, the average total rewards for
the SAC policy and the adaptive policy are summarized in Table 3.A.3.

3.B Notation and Supplementary Definitions
Summary of Notation
A summary of notation is provided in Table 3.B.1.

75

Symbol Definition
System Model

𝐴, 𝐵, 𝑄, 𝑅 Linear system parameters
𝑃 Solution of the DARE (3.4)
𝐻 𝑅 + 𝐵⊤𝑃𝐵
𝐾 𝐻−1𝐵⊤𝑃𝐴

𝐹 𝐴 − 𝐵𝐾
𝜎 𝑄, 𝑅 ⪰ 𝜎𝐼
𝜅 max{2, ∥𝐴∥, ∥𝐵∥}

𝐶𝐹 and 𝜌 ∥𝐹𝑡 ∥ ≤ 𝐶𝐹𝜌
𝑡

𝑓𝑡 : R𝑛 × R𝑚 → R𝑛 Non-linear residual functions
𝐶ℓ Lipschitz constant of 𝑓𝑡
�̂� Black-box (model-free) policy
𝜋 Model-based policy (LQR)
𝜀 Consistency error of a black-box policy

Main Results
𝐶

sys
𝑎 , 𝐶

sys
𝑏
, 𝐶

sys
𝑐 Constants defined in Section 3.B

𝛾 𝜌 + 𝐶𝐹𝐶ℓ (1 + ∥𝐾 ∥)
𝜇 𝐶𝐹

(
𝜀 (𝐶ℓ + ∥𝐵∥) + 𝐶sys

𝑎 𝐶ℓ

)
ALG Algorithm cost
OPT Optimal cost

CR(𝜀) 2𝜅(𝐶𝐹 ∥𝑃 ∥
1−𝜌)

2/𝜎
𝜆 lim𝑡→∞ 𝜆𝑡

𝑡0 The smallest time index when 𝜆𝑡 = 0 or 𝑥𝑡 = 0

Table 3.B.1: Symbols used in this work.

Constants in Theorem 3.4.1 and 3.4.2
Let 𝐻 B 𝑅 + 𝐵⊤𝑃𝐵. With 𝜎 > 0 defined in Assumption 2, the parameters
𝐶

sys
𝑎 , 𝐶

sys
𝑏
, 𝐶

sys
𝑐 > 0 in the statements of Theorem 3.4.1 and 3.4.2 (Section 3.4) are

the following constants that only depend on the known system parameters in (3.3):

𝐶
sys
𝑎 B1/

(
2𝐶𝐹 ∥𝑅 + 𝐵⊤𝑃𝐵∥−1

(
∥𝑃𝐹∥ + (1 + ∥𝐾 ∥) (∥𝑃𝐵∥ + ∥𝑃∥)

+
𝐶

sys
𝑏

2
∥𝐵 + 𝐼 ∥(1 + ∥𝐹∥ + ∥𝐾 ∥)

))
, (3.7)

𝐶
sys
𝑏
B

2𝐶𝐹2∥𝑃∥(𝜌 + 𝐶) (𝜌 + (1 + ∥𝐾 ∥))
1 − (𝜌 + 𝐶)2

√︂
∥𝑄 + 𝐾⊤𝑅𝐾 ∥

𝜎
,

𝐶
sys
𝑐 B∥𝐻∥/(4 ∥𝑃𝐵∥ + 2∥𝑃∥ + 𝐶∇(∥𝐵∥ + 1)∥𝐵∥).

76

Approximations of Online Learning Steps in Section 3.5
The following approximations of 𝜂(�̂� ; 𝑠, 𝑡) and 𝜂(𝑓 ∗; 𝑠, 𝑡) in (3.5) are used to derive
the expression of 𝜆′ in (3.6) for learning the confidence coefficients online:

𝜂(�̂� ; 𝑠, 𝑡) ≈
∞∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃 �̂�𝜏 = −

(
𝐻−1𝐵⊤

)†
(�̂�𝑠 + 𝐾𝑥𝑠) , (3.8)

𝜂(𝑓 ∗; 𝑠, 𝑡) =
𝑡∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃 𝑓 ∗𝜏 ≈

𝑡∑︁
𝜏=𝑠

(
𝐹⊤

)𝜏−𝑠
𝑃(𝑥𝜏+1 − 𝐴𝑥𝜏 − 𝐵𝑢𝜏). (3.9)

3.C Useful Lemmas
The following lemma generalizes the results in [41].

Lemma 10 (Generalized cost characterization lemma). Consider a linear quadratic
control problem below where𝑄, 𝑅 ≻ 0 and the pair of matrices (𝐴, 𝐵) is stabilizable:

min
(𝑢𝑡 :𝑡≥0)

∞∑︁
𝑡=0
(𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡), subject to 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑣𝑡 for any 𝑡 ≥ 0.

If at each time 𝑡 ≥ 0, 𝑢𝑡 = −𝐾𝑥𝑡 − 𝐻−1𝐵⊤𝑊𝑡 + 𝜂𝑡 where 𝜂𝑡 ∈ R𝑚, then the induced
cost is

𝑥⊤0 𝑃𝑥0 + 2𝑥⊤0 𝐹
⊤𝑉0 +

∞∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 +
∞∑︁
𝑡=0

(
𝑣⊤𝑡 𝑃𝑣𝑡 + 2𝑣⊤𝑡 𝐹⊤𝑉𝑡+1

)
+
∞∑︁
𝑡=0

(
𝑊⊤𝑡 𝐵𝐻

−1𝐵⊤(𝑊𝑡 − 2𝑉𝑡) + 2𝜂⊤𝑡 𝐵⊤(𝑉𝑡 −𝑊𝑡)
)
+𝑂 (1)

where 𝑃 is the unique solution of the DARE in (3.4), 𝐻 B 𝑅+𝐵⊤𝑃𝐵, 𝐹 B 𝐴−𝐵(𝑅+
𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴 = 𝐴 − 𝐵𝐾 ,𝑊𝑡 B

∑∞
𝜏=𝑡 (𝐹⊤)

𝜏
𝑃𝑤𝑡+𝜏 and 𝑉𝑡 B

∑∞
𝜏=𝑡 (𝐹⊤)

𝜏
𝑃𝑣𝑡+𝜏.

Proof. Denote by COST𝑡 (𝑥𝑡; 𝜂, 𝑤) the terminal cost at time 𝑡 given a state 𝑥𝑡 with
fixed action perturbations 𝜂 B (𝜂𝑡 : 𝑡 ≥ 0) and state perturbations 𝑤 B (𝑤𝑡 : 𝑡 ≥ 0).
We assume COST𝑡 (𝑥𝑡; 𝜂, 𝑤) B 𝑥⊤𝑡 𝑃𝑥𝑡 + 𝑝⊤𝑡 𝑥𝑡 + 𝑞𝑡 . Similar to the proof of Lemma
13 in [41], using the backward induction, the cost can be rewritten as

COST𝑡 (𝑥𝑡 ; 𝜂, 𝑤) =COST𝑡+1(𝑥𝑡+1; 𝜂, 𝑤) + 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡
=𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 + (𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑣𝑡)⊤𝑃(𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑣𝑡)
+ 𝑝⊤𝑡+1(𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑣𝑡) + 𝑞𝑡+1

=𝑥⊤𝑡 𝑄𝑥𝑡 + (𝐴𝑥𝑡 + 𝑣𝑡)⊤𝑃(𝐴𝑥𝑡 + 𝑣𝑡) + (𝐴𝑥𝑡 + 𝑣𝑡)⊤𝑝𝑡+1 + 𝑞𝑡+1
+ 𝑢⊤𝑡 (𝑅 + 𝐵⊤𝑃𝐵)𝑢𝑡︸ ︷︷ ︸

(𝑎)

+ 2𝑢⊤𝑡 𝐵⊤(𝑃𝐴𝑥𝑡 + 𝑃𝑣𝑡 + 𝑝𝑡+1/2)︸ ︷︷ ︸
(𝑏)

.

77

Denote by 𝐻 B 𝑅 + 𝐵⊤𝑃𝐵. Noting that 𝑢𝑡 = −𝐾𝑥𝑡 + 𝐺 𝑡 + 𝜂𝑡 where we denote

𝐺 𝑡 B 𝐻−1𝐵⊤𝑊𝑡 , 𝑊𝑡 B
∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃𝑤𝑡+𝜏 and 𝑉𝑡 B

∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃𝑣𝑡+𝜏,

it follows that

(𝑎) = (𝐾𝑥𝑡 + 𝐺 𝑡 − 𝜂𝑡)⊤ 𝐻 (𝐾𝑥𝑡 + 𝐺 𝑡 − 𝜂𝑡) − 2(𝐾𝑥𝑡) + 2(𝐾𝑥𝑡)⊤𝐻 (𝐺 𝑡 − 𝜂𝑡)
+ (𝐺 𝑡 − 𝜂𝑡)⊤(𝑅 + 𝐵⊤𝑃𝐵) (𝐺 𝑡 − 𝜂𝑡)

(𝑏) = − 2(𝐾𝑥𝑡)⊤𝐻 (𝐾𝑥𝑡) − 2𝑥⊤𝑡 𝐾⊤𝐵⊤𝑃𝑣𝑡 − 𝑥⊤𝑡 𝐾⊤𝐵⊤𝑝𝑡+1 − 2(𝐾𝑥𝑡)⊤𝐻 (𝐺 𝑡 − 𝜂𝑡)
− 2(𝐺 𝑡 − 𝜂𝑡)⊤𝐵⊤(𝑃𝑣𝑡 + 𝑝𝑡+1/2),

implying

COST𝑡 (𝑥𝑡 ; 𝜂, 𝑤) =𝑥⊤𝑡 (𝑄 + 𝐴⊤𝑃𝐴 − 𝐾⊤𝐻𝐾)𝑥𝑡 + 𝑥⊤𝑡 𝐹⊤(2𝑃𝑣𝑡 + 𝑝𝑡+1)
+ (𝐺 𝑡 − 𝜂𝑡)⊤𝐻 (𝐺 𝑡 − 𝜂𝑡) − 2(𝐺 𝑡 − 𝜂𝑡)⊤𝐵⊤(𝑃𝑣𝑡 + 𝑝𝑡+1/2)
+ 𝑣⊤𝑡 𝑃𝑣𝑡 + 𝑣⊤𝑡 𝑝𝑡+1 + 𝑞𝑡+1.

According to the DARE in (3.4), since 𝐾⊤𝐻𝐾 = 𝐴⊤𝑃𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴, we get

COST𝑡 (𝑥𝑡 ; 𝜂, 𝑤) = 𝑥⊤𝑡 𝑃𝑥𝑡 + 𝑥⊤𝑡 𝐹⊤(2𝑃𝑣𝑡 + 𝑝𝑡+1) + (𝐺 𝑡 − 𝜂𝑡)⊤𝐻 (𝐺 𝑡 − 𝜂𝑡)
− 2(𝐺 𝑡 − 𝜂𝑡)⊤𝐵⊤(𝑃𝑣𝑡 + 𝑝𝑡+1/2) + 𝑣⊤𝑡 𝑃𝑣𝑡 + 𝑣⊤𝑡 𝑝𝑡+1 + 𝑞𝑡+1,

which implies

𝑝𝑡 =2𝐹⊤ (𝑃𝑣𝑡 + 𝑝𝑡+1) = 2
∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏+1
𝑃𝑣𝑡+𝜏 = 2𝐹⊤𝑉𝑡 , (3.10)

𝑞𝑡 =𝑞𝑡+1 + 𝑣⊤𝑡 𝑃𝑣𝑡 + 2𝑣⊤𝑡 𝐹⊤𝑉𝑡+1 + (𝐺 𝑡 − 𝜂𝑡)⊤𝐻 (𝐺 𝑡 − 𝜂𝑡)
− 2(𝐺 𝑡 − 𝜂𝑡)⊤𝐵⊤(𝑃𝑣𝑡 + 𝑝𝑡+1/2)

=𝑞𝑡+1 + 𝑣⊤𝑡 𝑃𝑣𝑡 + 2𝑣⊤𝑡 𝐹⊤𝑉𝑡+1 + (𝐺 𝑡 − 𝜂𝑡)⊤𝐻 (𝐺 𝑡 − 𝜂𝑡)
− 2𝐺⊤𝑡 𝐵⊤𝑉𝑡 + 2𝜂⊤𝑡 𝐵⊤𝑉𝑡

=𝑞𝑡+1 + 𝑣⊤𝑡 𝑃𝑣𝑡 + 2𝑣⊤𝑡 𝐹⊤𝑉𝑡+1 + 𝐺⊤𝑡 𝐵⊤(𝑊𝑡 − 2𝑉𝑡) + 2𝜂⊤𝑡 𝐵⊤(𝑉𝑡 −𝑊𝑡) + 𝜂⊤𝑡 𝐻𝜂𝑡 .
(3.11)

Therefore, (3.10) and (3.11) together imply the following general cost characteriza-
tion:

COST𝑡 (𝑥𝑡 ; 𝜂, 𝑤) =𝑥⊤0 𝑃𝑥0 + 𝑥⊤0 𝑝0 + 𝑞0

=𝑥⊤0 𝑃𝑥0 + 2𝑥⊤0 𝐹
⊤𝑉0 +

∞∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 +
∞∑︁
𝑡=0

(
𝑣⊤𝑡 𝑃𝑣𝑡 + 2𝑣⊤𝑡 𝐹⊤𝑉𝑡+1

)
+
∞∑︁
𝑡=0

(
𝐺⊤𝑡 𝐵

⊤(𝑊𝑡 − 2𝑉𝑡) + 2𝜂⊤𝑡 𝐵⊤(𝑉𝑡 −𝑊𝑡)
)
.

78

Rearranging the terms above completes the proof. □

To deal with the non-linear dynamics in (3.1), we consider an auxiliary linear system,
with a fixed perturbation 𝑤𝑡 = 𝑓𝑡 (𝑥∗𝑡 , 𝑢∗𝑡) for all 𝑡 ≥ 0 where each 𝑥∗𝑡 denotes an
optimal state and 𝑢∗𝑡 an optimal action, generated by an optimal policy 𝜋∗. We define
a sequence of linear policies

(
𝜋′𝑡 : 𝑡 ≥ 0

)
where 𝜋′𝑡 : R𝑛 → R𝑚 generates an action

𝑢′𝑡 = 𝜋
′
𝑡 (𝑥𝑡) B −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤

(
𝑃𝐴𝑥𝑡 +

∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 𝑓𝜏 (𝑥∗𝜏, 𝑢∗𝜏)

)
, (3.12)

which is an optimal policy for the auxiliary linear system. Utilizing Lemma 10,
the gap between the optimal cost and algorithm cost for the system in (3.3) can be
characterized below.

Lemma 11. For any 𝜂𝑡 ∈ R𝑚, if at each time 𝑡 ≥ 0, a policy 𝜋 : R𝑛 → R𝑚 takes
an action 𝑢𝑡 = 𝜋(𝑥𝑡) = 𝜋′𝑡 (𝑥𝑡) + 𝜂𝑡 , then the gap between the optimal cost OPT of
the non-linear system (3.3) and the algorithm cost ALG induced by selecting control
actions (𝑢𝑡 : 𝑡 ≥ 0) equals to

ALG − OPT ≤
∞∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 +𝑂 (1)

+ 2
∞∑︁
𝑡=0

𝜂⊤𝑡 𝐵
⊤

(∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃(𝑓𝑡+𝜏 − 𝑓 ∗𝑡+𝜏)

)
+
∞∑︁
𝑡=0

(
𝑓 ⊤𝑡 𝑃 𝑓𝑡 −

(
𝑓 ∗𝑡

)⊤
𝑃 𝑓 ∗𝑡

)
+ 2𝑥⊤0

(∞∑︁
𝑡=0

(
𝐹⊤

) 𝑡+1
𝑃

(
𝑓𝑡 − 𝑓 ∗𝑡

))
+ 2

∞∑︁
𝑡=0

(
𝑓 ⊤𝑡

∞∑︁
𝜏=0

(
𝐹⊤

)𝜏+1
𝑃 𝑓𝑡+𝜏+1 −

(
𝑓 ∗𝑡

)⊤ ∞∑︁
𝜏=0

(
𝐹⊤

)𝜏+1
𝑃

(
𝑓 ∗𝑡+𝜏+1

))
+ 2

∞∑︁
𝑡=0

(∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃 𝑓 ∗𝑡+𝜏

)
𝐵𝐻−1𝐵⊤

(∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃(𝑓 ∗𝑡+𝜏 − 𝑓𝑡+𝜏)

)
(3.13)

where 𝐻 B 𝑅 + 𝐵⊤𝑃𝐵 and 𝐹 B 𝐴 − 𝐵𝐾. For any 𝑡 ≥ 0, we write 𝑓𝑡 B 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡)
and 𝑓 ∗𝑡 B 𝑓𝑡 (𝑥∗𝑡 , 𝑢∗𝑡) where (𝑥𝑡 : 𝑡 ≥ 0) denotes a trajectory of states generated by
the policy 𝜋 with actions (𝑢∗𝑡 : 𝑡 ≥ 0) and (𝑥∗𝑡 : 𝑡 ≥ 0) denotes an optimal trajectory
of states generated by optimal actions (𝑢∗𝑡 : 𝑡 ≥ 0).

Proof. Note that with optimal trajectories of states and actions fixed, the optimal
controller 𝜋∗ induces the same cost OPT for both the non-linear system in (3.3)

79

and the auxiliary linear system. Moreover, the linear controller defined in (3.12)
induces a cost OPT′ that is smaller than OPT when running both in the auxiliary
linear system since the constructed linear policy is optimal. Therefore, according to
Lemma 10, ALG − OPT ≤ ALG − OPT′ and applying Lemma 10 with 𝑣𝑡 = 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡)
and 𝑤𝑡 = 𝑓𝑡 (𝑥∗𝑡 , 𝑢∗𝑡) for all 𝑡 ≥ 0, (3.13) is obtained.

□

3.D Proof of Theorem 3.3.1
Proof. Fix an arbitrary controller 𝐾1 with a closed-loop system matrix 𝐹1 B

𝐴 − 𝐵𝐾1 ≠ 0. We first consider the case when 𝐹1 is not a diagonal matrix, i.e.,
𝐴 − 𝐵𝐾1 has at least one non-zero off-diagonal entry. Consider the following
closed-loop system matrix for the second controller 𝐾2:

𝐹2 B

©«

𝛽 · · ·
𝛽 0

. . .

−1−𝜆
𝜆
𝐿 𝛽

𝛽

ª®®®®®®®®¬
+ 𝑆 (𝐹1) (3.14)

where 0 < 𝛽 < 1 is a value of the diagonal entry; 𝐿 is the lower triangular part
of the closed-loop system matrix 𝐹1. The matrix 𝑆(𝐹1) is a singleton matrix that
depends on 𝐹1, whose only non-zero entry 𝑆𝑖+𝑘,𝑖 corresponding to the first non-zero
off-diagonal entry (𝑖, 𝑖 + 𝑘) in the upper triangular part of 𝐹1 searched according
to the order 𝑖 = 1, . . . , 𝑛 and 𝑘 = 1, . . . , 𝑛 with 𝑖 increases first and then 𝑘 . Such a
non-zero entry always exists because in this case 𝐹1 is not a diagonal matrix. If the
non-zero off-diagonal entry appears to be in the lower triangular part, we can simply
transpose 𝐹2 so without loss of generality we assume it is in the upper triangular
part of 𝐹1. Since 𝐹1 is a lower triangular matrix, all of its eigenvalues equal to
0 < 𝛽 < 1, implying that the linear controller 𝐾2 is stabilizing. Then, based on the
construction of 𝐹1 in (3.14), the linearly combined controller 𝐾 B 𝜆𝐾2 + (1 − 𝜆)𝐾1

has a closed-loop system matrix 𝐹 which is upper-triangular, whose determinant
satisfies

det(𝐹) = det (𝜆𝐹2 + (1 − 𝜆)𝐹1)
=(−1)2𝑖+𝑘 det(𝐹′) (3.15)

=(−1)2𝑖+𝑘 × (−1)𝑘+1(1 − 𝜆)𝜆𝑛−1𝑆𝑖+𝑘,𝑖 (𝐹1)𝑖,𝑖+𝑘 𝛽𝑛−2 (3.16)

= − 𝑆𝑖+𝑘,𝑖 (1 − 𝜆)𝜆𝑛−1𝛽𝑛−2 (3.17)

80

where the term (−1)2𝑖+𝑘 in (3.15) comes from the computation of the determinant of
𝐹 and 𝐹′ is a sub-matrix of 𝐹 by eliminating the 𝑖 + 𝑘-th row and 𝑖-th column. The
term (−1)𝑘+1 in (3.16) appears because 𝐹′ is a permutation of an upper triangular
matrix with 𝑛 − 2 diagonal entries being 𝛽’s and one remaining entry being (𝐹1)𝑖,𝑖+𝑘
since the entries 𝑆 𝑗 , 𝑗+𝑘 are zeros all 𝑗 < 𝑖; otherwise another non-zero entry 𝑆𝑖+𝑘,𝑖
would be chosen according to our search order.

Continuing from (3.17), since 𝑆𝑖+𝑘,𝑖 can be selected arbitrarily, setting 𝑆𝑖+𝑘,𝑖 =
−2𝑛𝛽(𝜆𝛽)−𝑛+1

1−𝜆 gives

2𝑛 ≤ det(𝐹) ≤ |𝜌(𝐹) |𝑛,

implying that the spectral radius 𝜌(𝐹) ≥ 2. Therefore 𝐾 = 𝜆𝐾2 + (1 − 𝜆)𝐾1 is an
unstable controller. It remains to prove the theorem in the case when 𝐹1 is a diagonal
matrix. In the following lemma, we consider the case when 𝑛 = 2, and extend it to
the general case.

Lemma 12. For any 𝜆 ∈ (0, 1) and any diagonal matrix 𝐹1 ∈ R2×2 with a spectral
radius 𝜌(𝐹1) < 1 𝐹1 ≠ 𝛾𝐼 for any 𝛾 ∈ R, there exists a matrix 𝐹2 ∈ R2×2 such that
𝜌(𝐹2) < 1 and 𝜌(𝜆𝐹1 + (1 − 𝜆)𝐹2) > 1.

Proof of Lemma 12. Suppose 𝑛 = 2 and

𝐹1 =

[
𝑎 0
0 𝑏

]
is a diagonal matrix and without loss of generality assume that 𝑎 > 0 and 𝑎 > 𝑏. Let

𝐹2 =
4

𝜆(1 − 𝜆) (𝑎 − 𝑏)

[
1 1
−1 −1

]
. (3.18)

Notice that 𝜌(𝐹2) = 0 < 1 satisfies the constraint. Then

𝜌 (𝜆𝐹1 + (1 − 𝜆)𝐹2) =𝜌(𝜆𝑏𝐼 + 𝜆Diag(𝑎 − 𝑏, 0) + (1 − 𝜆)𝐹2)
=𝜆𝑏 + 𝜌(𝜆Diag(𝑎 − 𝑏, 0) + (1 − 𝜆)𝐹2) (3.19)

where we have used the assumption that 𝑎 > 0 and 𝑎 > 𝑏 to derive the equality
in (3.19) and the notion Diag(𝑎 − 𝑏, 0) denotes a diagonal matrix whose diagonal
entries are 𝑎 − 𝑏 and 0, respectively. The eigenvalues of 𝜆Diag(𝑎 − 𝑏, 0) + (1− 𝜆)𝐹2

are

𝜆(𝑎 − 𝑏) ±
√︃
(𝜆(𝑎 − 𝑏) + 8

𝜆(𝑎−𝑏))2 − 4(4
𝜆(𝑎−𝑏))2

2
=
𝜆(𝑎 − 𝑏) ±

√︁
(𝜆(𝑎 − 𝑏))2 + 16
2

.

81

Since 𝑎 − 𝑏 > 0, the spectral radius of 𝜆𝐹1 + (1 − 𝜆)𝐹2 satisfies

𝜌 (𝜆𝐹1 + (1 − 𝜆)𝐹2) = 𝜆𝑏 +
𝜆(𝑎 − 𝑏) +

√︁
(𝜆(𝑎 − 𝑏))2 + 16
2

> −1 +
√

16
2

= 1.

□

Applying Lemma 12, when 𝐹1 is an 𝑛 × 𝑛 matrix with 𝑛 > 2, we can always create
an 𝑛 × 𝑛 matrix 𝐹2 whose first two columns and rows form a sub-matrix that is the
same as (3.18) and the remaining entries are zeros. Therefore the spectral radius of
the convex combination 𝜆𝐹1 + (1 − 𝜆)𝐹2 is greater than one. This completes the
proof. □

3.E Stability Analysis
Proof Outline

Figure 3.E.1: Outline of proofs of Theorem 3.4.1 and 3.4.2 with a stability analysis
presented in Appendix 3.E and a competitive ratio analysis presented in Appendix 3.F.
Arrows denote implications.

In the sequel, we present the proofs of Theorem 3.4.1 and 3.4.2. An outline of the
proof structure is provided in Figure 3.E.1. The proof of our main results contains
two parts–the stability analysis and competitive ratio analysis. First, we prove that
Algorithm 4 guarantees a stabilizing policy, regardless of the prediction error 𝜀
(Theorem 3.4.1). Second, in our competitive ratio analysis, we provide a competitive
ratio bound in terms of 𝜀 and 𝜆. We show in Lemma 14 that the competitive
ratio bound is bounded if the adaptive policy is exponentially stabilizing and has

82

a decay ratio that scales up with 𝐶ℓ, which holds assuming the prediction error
𝜀 for a black-box model-free policy is small enough, as shown in Theorem 3.E.2.
Theorem 3.E.2 is proven based on a sensitivity analysis of an optimal policy 𝜋∗ in
Theorem 13.

We first analyze the model-based policy �̂�(𝑥) = −𝐾𝑥where𝐾 B (𝑅+𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴

and 𝑃 is a unique solution of the Riccati equation in (3.4).

Lemma 13. Suppose the Lipschitz constant 𝐶ℓ, 𝐾 and the closed-loop matrix
𝐹 B 𝐴 − 𝐵𝐾 satisfy 𝜌 + 𝐶𝐹𝐶ℓ (1 + ∥𝐾 ∥) < 1 where

𝐹 𝑡 ≤ 𝐶𝐹𝜌𝑡 for any 𝑡 ≥ 0.
Then the model-based policy �̂�(𝑥) = −𝐾𝑥 exponentially stabilizes the system such
that ∥𝑥𝑡 ∥ ≤ 𝐶𝐹

(
𝜌 + 𝐶𝐹𝐶

) 𝑡
∥𝑥0∥ for any 𝑡 ≥ 0.

Proof. Let 𝑢𝑡 = �̂�(𝑥𝑡) = −𝐾𝑥𝑡 for all 𝑡 ≥ 0 and let 𝐹 B 𝐴 − 𝐵𝐾 . It follows that

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡) = (𝐴 − 𝐵𝐾)𝑥𝑡 + 𝑓𝑡 (𝑥𝑡 ,−𝐾𝑥𝑡) = 𝐹𝑥𝑡 + 𝑓𝑡 (𝑥𝑡 ,−𝐾𝑥𝑡).
(3.20)

Rewriting (3.20) recursively, for any 𝑡 ≥ 0,

𝑥𝑡 = 𝐹
𝑡𝑥0 +

𝑡−1∑︁
𝜏=0

𝐹 𝑡−1−𝜏 𝑓𝜏 (𝑥𝜏,−𝐾𝑥𝜏). (3.21)

Since (𝑓𝑡 : 𝑡 ≥ 0) are Lipschitz continuous with a constant 𝐶ℓ (Assumption 1), we
have

∥𝑥𝑡 ∥ ≤
𝐹 𝑡𝑥0

 + 𝑡−1∑︁
𝜏=0

𝐹 𝑡−1−𝜏 𝑓𝜏 (𝑥𝜏,−𝐾𝑥𝜏)

≤
𝐹 𝑡𝑥0

 + 𝑡−1∑︁
𝜏=0

𝐹 𝑡−1−𝜏 𝑓𝜏 (𝑥𝜏,−𝐾𝑥𝜏)

≤ 𝐶𝐹𝜌𝑡
(
∥𝑥0∥ + 𝐶ℓ (1 + ∥𝐾 ∥)

𝑡−1∑︁
𝜏=0

𝜌−1−𝜏∥𝑥𝜏∥
)

︸ ︷︷ ︸
:=𝑆𝑡

(3.22)

where 𝐶𝐹 > 1 is a constant such that
𝐹 𝑡 ≤ 𝐶𝐹𝜌

𝑡 for any 𝑡 ≥ 0. Denote by
𝐶 B 𝐶ℓ (1 + ∥𝐾 ∥). Then, using (3.22),

𝑆𝑡 = 𝑆𝑡−1 + 𝐶𝜌−𝑡 ∥𝑥𝑡−1∥ ≤ 𝑆𝑡−1 +
𝐶𝐹𝐶

𝜌
𝑆𝑡−1 =

(
1 + 𝐶𝐹𝐶

𝜌

)
𝑆𝑡−1.

83

Therefore, noting that 𝑆1 =

(
1 + 𝐶/𝜌

)
∥𝑥0∥, recursively we obtain

𝑆𝑡 ≤
(
1 + 𝐶𝐹𝐶

𝜌

) 𝑡−1 (
1 + 𝐶

𝜌

)
∥𝑥0∥,

which implies

∥𝑥𝑡 ∥ ≤ 𝐶𝐹𝜌𝑡𝑆𝑡 ≤𝐶𝐹𝜌𝑡
(
1 + 𝐶𝐹𝐶

𝜌

) 𝑡−1 (
1 + 𝐶

𝜌

)
∥𝑥0∥

=𝐶𝐹

(
𝜌 + 𝐶𝐹𝐶

) 𝑡−1 (
𝜌 + 𝐶

)
∥𝑥0∥

≤𝐶𝐹
(
𝜌 + 𝐶𝐹𝐶

) 𝑡
∥𝑥0∥.

□

Next, based on Lemma 13, we consider the stability of the convex-combined policy
𝜋 = 𝜆�̂� + (1 − 𝜆)𝜋 where 𝜋 is a model-free policy satisfying the 𝜀-consistency in
Definition 3.2.1 and 𝜋 is a model-based policy.

Theorem 3.E.1. Let 𝜋∗ be an optimal policy and 𝜋(𝑥) = −𝐾𝑥 be a linear model-
based policy. It follows that for any 𝑡 ≥ 0, ∥𝜋∗𝑡 (𝑥) − 𝜋(𝑥)∥ ≤ 𝐶

sys
𝑎 𝐶ℓ∥𝑥∥ for some

constant 𝐶sys
𝑎 > 0 where 𝐶ℓ is the Lipschitz constant defined in Assumption 1 and

𝐶
sys
𝑎 B2∥𝑅 + 𝐵⊤𝑃𝐵∥−1

(
∥𝑃𝐹∥ + (1 + ∥𝐾 ∥) (∥𝑃𝐵∥ + ∥𝑃∥)

+
𝐶

sys
𝑏

2
∥𝐵 + 𝐼 ∥(1 + ∥𝐹∥ + ∥𝐾 ∥)

)
,

𝐶
sys
𝑏
B

2𝐶𝐹2∥𝑃∥(𝜌 + 𝐶) (𝜌 + (1 + ∥𝐾 ∥))
1 − (𝜌 + 𝐶)2

√︂
∥𝑄 + 𝐾⊤𝑅𝐾 ∥

𝜎
.

Proof. We use 𝜋∗𝑡 (𝑥) = −𝐾𝑥 + ℎ𝑡 (𝑥) to characterize an optimal policy at each time
𝑡 ≥ 0. Consider the following Bellman optimality equation:

𝑉𝑡 (𝑥) = min
𝑢
{𝑥⊤𝑄𝑥 + 𝑢⊤𝑡 𝑅𝑢𝑡 +𝑉𝑡+1(𝐴𝑥 + 𝐵𝑢 + 𝑓𝑡 (𝑥, 𝑢))} (3.23)

where 𝑉𝑡 : R𝑛 → R+ denotes the optimal value function. Using lemma 13,

𝑉𝑡 (𝑥) ≤𝑥⊤(𝑄 + 𝐾⊤𝑅𝐾)𝑥 +𝑉𝑡+1(𝐹⊤𝑥 + 𝑓𝑡 (𝑥, 𝑢))

≤𝑉∞(0) + ∥𝑄 + 𝐾⊤𝑅𝐾 ∥
∞∑︁
𝑡=0

𝐶𝐹
2(𝜌 + 𝐶𝐹𝐶)2𝑡 ∥𝑥∥2

=𝑉∞(0) +
𝐶𝐹

2∥𝑄 + 𝐾⊤𝑅𝐾 ∥
1 − (𝜌 + 𝐶𝐹𝐶)2

∥𝑥∥2. (3.24)

84

Let 𝑥 (𝜏)𝑡 be the (𝑡 + 𝜏)-th state when applying optimal control with 𝑥𝑡 = 𝑥 and write
𝑢
(𝜏)
𝑡 = 𝜋∗𝑡+𝜏 (𝑥

(𝜏)
𝑡) for all 𝑡 ≥ 0. Rearranging the terms in (3.24), it follows that

𝐶𝐹
2∥𝑄 + 𝐾⊤𝑅𝐾 ∥

1 − (𝜌 + 𝐶𝐹𝐶)2
∥𝑥∥2 ≥𝑉𝑡 (𝑥) −𝑉(∞) (0)

=

∞∑︁
𝜏=𝑡

(
𝑥
(𝜏−𝑡)
𝑡

)⊤
𝑄𝑥
(𝜏−𝑡)
𝑡 +

(
𝑢
(𝜏−𝑡)
𝑡

)⊤
𝑅𝑢
(𝜏−𝑡)
𝑡

≥𝜆min(𝑄)
∞∑︁
𝜏=0
∥𝑥 (𝜏)𝑡 ∥2 + 𝜆min(𝑅)

∞∑︁
𝜏=0
∥𝑢(𝜏)𝑡 ∥2.

Write 𝑉𝑡 (𝑥) = 𝑥⊤𝑃𝑥 + 𝑔𝑡 (𝑥) with 𝑃 denoting the solution of the Riccatti equation
in (3.4). Then

𝑥⊤𝑃𝑥 + 𝑔𝑡 (𝑥)

= min
𝑢

[
𝑥⊤𝑄𝑥 + 𝑢⊤𝑅𝑢 + (𝐴𝑥 + 𝐵𝑢)⊤𝑃(𝐴𝑥 + 𝐵𝑢)

+ 2(𝐴𝑥 + 𝐵𝑢)⊤𝑃 𝑓𝑡 (𝑥, 𝑢) + 𝑓𝑡 (𝑥, 𝑢)⊤𝑃 𝑓𝑡 (𝑥, 𝑢) + 𝑔𝑡+1(𝐴𝑥 + 𝐵𝑢 + 𝑓𝑡 (𝑥, 𝑢))
]

= min
𝑢

[
𝑥⊤(𝑄 + 𝐴⊤𝑃𝐴)𝑥 + 𝑢⊤(𝑅 + 𝐵⊤𝑃𝐵)𝑢 + 2𝑢⊤𝐵⊤𝑃𝐴𝑥 + 2(𝐴𝑥 + 𝐵𝑢)⊤𝑃 𝑓𝑡 (𝑥, 𝑢)

+ 𝑓𝑡 (𝑥, 𝑢)⊤𝑃 𝑓𝑡2(𝑥, 𝑢) + 𝑔𝑡+1(𝐴𝑥 + 𝐵𝑢 + 𝑓𝑡 (𝑥, 𝑢))
]

= min
𝑢

[
𝑥⊤(𝑄 + 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐵(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴)𝑥

+ (𝑢 + (𝑅 + 𝐵⊤𝑃𝐵))−1𝐵⊤𝑃𝐴𝑥)⊤(𝑅 + 𝐵⊤𝑃𝐵) (𝑢 + (𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴𝑥)

+ 2(𝐴𝑥 + 𝐵𝑢)⊤𝑃 𝑓𝑡 (𝑥, 𝑢) + 𝑓𝑡 (𝑥, 𝑢)⊤𝑃 𝑓𝑡 (𝑥, 𝑢) + 𝑔𝑡+1(𝐴𝑥 + 𝐵𝑢 + 𝑓𝑡 (𝑥, 𝑢))
]
.

Since 𝑃 is the solution of the DARE in (3.4), letting 𝑢 = −𝐾𝑥 + 𝑣 and 𝐹 B 𝐴 − 𝐵𝐾 ,

𝑔𝑡 (𝑥) = min
𝑣

[
𝑣⊤(𝑅 + 𝐵⊤𝑃𝐵)𝑣 + 2𝑥⊤𝐹⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣) + 2𝑣⊤𝐵⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣)

+ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣)⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣) + 𝑔𝑡+1(𝐹𝑥 + 𝐵𝑣 + 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣))
]
.

Denoting by 𝑣∗𝑡 an optimal solution,

𝑔𝑡 (𝑥) = (𝑣∗𝑡)⊤(𝑅 + 𝐵⊤𝑃𝐵)𝑣∗𝑡 + 2𝑥⊤𝐹⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)
+ 2(𝑣∗𝑡)⊤𝐵⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)
+ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) + 𝑔𝑡+1

(
𝐹𝑥 + 𝐵𝑣∗𝑡 + 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)

)
.

85

Denote by ∇𝑔𝑡 the Jacobian of 𝑔𝑡 . We obtain

∇𝑔𝑡 (𝑥) = 2(𝑅 + 𝐵⊤𝑃𝐵)𝑣∗𝑡∇𝑣∗𝑡
+ 2𝐹⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)
+ 2𝑥⊤𝐹⊤𝑃∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [𝐼,−𝐾 + ∇𝑣∗𝑡]
+ 2∇(𝑣∗𝑡)⊤𝐵⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)
+ 2(𝑣∗𝑡)⊤𝐵⊤𝑃∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [𝐼,−𝐾 + ∇𝑣∗𝑡]
+ 2𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [𝐼,−𝐾 + ∇𝑣∗𝑡]
+ ∇𝑔𝑡+1(𝐹𝑥 + 𝐵𝑣∗𝑡 + 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡))(
𝐹 + 𝐵∇𝑣∗𝑡 + ∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [𝐼,−𝐾 + ∇𝑣∗𝑡]

)
Noting that 𝑣∗𝑡 is a minimizer, the Jacobian of 𝑔𝑡 with respect to 𝑣 takes zero at 𝑣 = 𝑣∗𝑡 :

2(𝑅 + 𝐵⊤𝑃𝐵)𝑣 + 2𝑥⊤𝐹⊤𝑃∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣) [0, 𝐼] + 2𝐵⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣)
+ 2𝑣⊤𝐵⊤𝑃∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣) [0, 𝐼] + 2𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣)∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣) [0, 𝐼]
+ (𝐵 + ∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣) [0, 𝐼])⊤∇𝑔𝑡+1(𝐹𝑥 + 𝐵𝑣 + 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣)) |𝑣=𝑣∗𝑡 = 0

(3.25)

Substituting above into the Jacobian of 𝑔𝑡 , we get

∇𝑔𝑡 (𝑥) = 2𝐹⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)
+ 2𝑥⊤𝐹⊤𝑃∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [𝐼,−𝐾]
+ 2(𝑣∗𝑡)⊤𝐵⊤𝑃∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [𝐼,−𝐾]
+ 2𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [𝐼,−𝐾]
+ ∇𝑔𝑡+1(𝐹𝑥 + 𝐵𝑣∗𝑡 + 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)) (𝐹 + ∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [𝐼,−𝐾])

= 2𝐹⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) + 2(∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [𝐼, 𝐾])⊤𝑃𝑥
+ (𝐹 + ∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [𝐼,−𝐾])⊤∇𝑔𝑡+1(𝑥

(1)
𝑡),

which implies that

∇𝑔𝑡 (𝑥) =
∞∏
𝜏=𝑡

(𝐹 + ∇ 𝑓𝜏 (𝑥 (𝜏−𝑡)𝑡 , 𝑢
(𝜏−𝑡)
𝑡) [𝐼,−𝐾])⊤𝑔∞(0)

+
∞∑︁
𝜏=𝑡

𝜏∏
𝑘=𝑡

(𝐹 + ∇ 𝑓𝑘 (𝑥 (𝑘−𝑡)𝑡 , 𝑢
(𝑘−𝑡)
𝑡) [𝐼,−𝐾])⊤2𝐹

⊤
𝑃 𝑓𝜏 (𝑥 (𝜏−𝑡)𝑡 , 𝑢

(𝜏−𝑡)
𝑡)

+
∞∑︁
𝜏=𝑡

𝜏∏
𝑘=𝑡

(𝐹 + ∇ 𝑓𝑘 (𝑥 (𝑘−𝑡)𝑡 , 𝑢
(𝑘−𝑡)
𝑡) [𝐼,−𝐾])⊤

2(∇ 𝑓𝜏 (𝑥 (𝜏−𝑡)𝜏 , 𝑢
(𝜏−𝑡)
𝜏) [𝐼,−𝐾])⊤𝑃∗𝜏+1. (3.26)

86

Note that for any sequence of pairs
(
(𝑥 (𝜏)𝑡 , 𝑢

(𝜏)
𝑡) : 𝜏 ≥ 0

)
, 𝜏∏

𝑘=𝑡

𝐹 + ∇ 𝑓𝑘 (𝑥 (𝑘−𝑡)𝑡 , 𝑢
(𝑘−𝑡)
𝑡 [𝐼,−𝐾]

≤
𝜏+1∑︁
𝑘=𝑡

𝐹𝜏+1−𝑘 ∑︁
S⊆{𝑡,...,𝜏},|S|=𝑘−𝑡

∏
𝑠∈S
∇ 𝑓𝑠 (𝑥 (𝑠−𝑡)𝑡 , 𝑢

(𝑠−𝑡)
𝑡) [𝐼,−𝐾]

≤
𝜏+1∑︁
𝑘=𝑡

𝐶𝐹𝜌
𝜏+1−𝑘

∑︁
S⊆{𝑡,...,𝜏},|S|=𝑘−𝑡

∏
𝑠∈S

∇ 𝑓𝑠 (𝑥 (𝑠−𝑡)𝑡 , 𝑢
(𝑠−𝑡)
𝑡) [𝐼,−𝐾]

 .
Since the residual functions are Lipschitz continuous as in Assumption 1, their
Jacobians satisfy ∥∇ 𝑓𝑠 (𝑥 (𝑠−𝑡)𝑡 , 𝑢

(𝑠−𝑡)
𝑡)∥ ≤ 𝐶ℓ for any 𝑥

(𝑠−𝑡)
𝑡 and 𝑢

(𝑠−𝑡)
𝑡 . Letting

𝐶 B 𝐶ℓ (1 + ∥𝐾 ∥), we get 𝜏∏
𝑘=𝑡

𝐹 + ∇ 𝑓𝑘 (𝑥 (𝑘−𝑡)𝑡 , 𝑢
(𝑘−𝑡)
𝑡) [𝐼,−𝐾]

≤
𝜏+1∑︁
𝑘=𝑡

𝐶𝐹𝜌
𝜏+1−𝑘

∑︁
S⊆{𝑡,...,𝜏},|S|=𝑘−𝑡

∏
𝑠∈S

𝐶 = 𝐶𝐹 (𝜌 + 𝐶)𝜏+1−𝑡 . (3.27)

Therefore, using (3.27),∇ 𝑓𝜏 (𝑥 (𝜏+1𝑡−)𝑡 , 𝑢
(𝜏+1−𝑡)
𝑡) [𝐼,−𝐾]

𝜏∏
𝑘=𝑡

𝐹 + ∇ 𝑓𝑘 (𝑥 (𝑘−𝑡)𝑡 , 𝑢
(𝑘−𝑡)
𝑡) [𝐼,−𝐾]

≤

∇ 𝑓𝜏 (𝑥 (𝜏+1𝑡−)𝑡 , 𝑢
(𝜏+1−𝑡)
𝑡) [𝐼,−𝐾]

 𝜏∏
𝑘=𝑡

𝐹 + ∇ 𝑓𝑘 (𝑥 (𝑘−𝑡)𝑡 , 𝑢
(𝑘−𝑡)
𝑡) [𝐼,−𝐾]

≤𝐶𝐹𝐶 (𝜌 + 𝐶)𝜏+1−𝑡 . (3.28)

Combing (3.27) and (3.28) with (3.26),

∥∇𝑔𝑡 (𝑥)∥ ≤
 ∞∏
𝜏=𝑡

(𝐹 + ∇ 𝑓𝜏 (𝑥 (𝜏−𝑡)𝑡 , 𝑢
(𝜏−𝑡)
𝑡) [𝐼,−𝐾])⊤𝑔∞(0)

+

 ∞∑︁
𝜏=𝑡

𝜏∏
𝑘=𝑡

(𝐹 + ∇ 𝑓𝑘 (𝑥 (𝑘−𝑡)𝑡 , 𝑢
(𝑘−𝑡)
𝑡) [𝐼,−𝐾])⊤2𝐹⊤𝑃 𝑓𝜏 (𝑥 (𝜏−𝑡)𝑡 , 𝑢

(𝜏−𝑡)
𝑡)

︸ ︷︷ ︸
(𝑎)

+
 ∞∑︁
𝜏=𝑡

𝜏∏
𝑘=𝑡

(𝐹 + ∇ 𝑓𝑘 (𝑥 (𝑘−𝑡)𝑡 , 𝑢
(𝑘−𝑡)
𝑡) [𝐼,−𝐾])⊤2(∇ 𝑓𝜏 (𝑥 (𝜏−𝑡)𝑡 , 𝑢

(𝜏−𝑡)
𝑡) [𝐼,−𝐾])⊤𝑃𝑥 (𝜏+1−𝑡)𝑡

︸ ︷︷ ︸
(𝑏)

.

87

Since 𝑔∞(0) = 0, the first term in the inequality above is 0. The second term satisfies

(𝑎) ≤2𝐶𝐹𝐶ℓ∥𝑃∥𝜌
∞∑︁
𝜏=𝑡

(𝜌 + 𝐶)𝜏+1−𝑡 ∥(𝑥 (𝜏−𝑡)𝑡 , 𝑢
(𝜏−𝑡)
𝑡)∥

=2𝐶𝐹𝐶ℓ∥𝑃∥𝜌
∞∑︁
𝜏=0
(𝜌 + 𝐶)𝜏+1∥𝑥 (𝜏)𝑡 , 𝑢

(𝜏)
𝑡 ∥

≤2𝐶𝐹𝐶ℓ∥𝑃∥𝜌

√√ ∞∑︁
𝜏=1
(𝜌 + 𝐶)2𝜏

√√ ∞∑︁
𝜏=0

𝑥 (𝜏)𝑡 2
+

𝑢(𝜏)𝑡 2
(3.29)

≤2𝐶𝐹𝐶ℓ∥𝑃∥𝜌

√︄
(𝜌 + 𝐶)2

1 − (𝜌 + 𝐶)2

√︄
𝐶𝐹

2∥𝑄 + 𝐾⊤𝑅𝐾 ∥
min {𝜆min(𝑄), 𝜆min(𝑅)} (1 − (𝜌 + 𝐶)2)

∥𝑥∥2

=
2𝐶𝐹2∥𝑃∥𝜌𝐶ℓ (𝜌 + 𝐶)

1 − (𝜌 + 𝐶)2

√︂
∥𝑄 + 𝐾⊤𝑅𝐾 ∥

𝜎
∥𝑥∥ (3.30)

where we have used the Cauchy to derive (3.29); 𝜆min(𝑄) and 𝜆min(𝑅) are small-
est eigenvalues of the matrices 𝑄 and 𝑅, respectively, and (3.30) follows from
Assumption 2. Similarly, the third term satisfies

(𝑏) ≤2𝐶𝐹𝐶∥𝑃∥
∞∑︁
𝜏=𝑡

(𝜌 + 𝐶)𝜏+1−𝑡
𝑥 (𝜏+1−𝑡)𝑡

≤2𝐶𝐹𝐶∥𝑃∥

√√ ∞∑︁
𝜏=1
(𝜌 + 𝐶)2𝜏

√√ ∞∑︁
𝜏=1

𝑥 (𝜏)𝑡 2

≤2𝐶𝐹𝐶∥𝑃∥

√︄
(𝜌 + 𝐶)2

1 − (𝜌 + 𝐶)2

√︄
𝐶𝐹

2∥𝑄 + 𝐾⊤𝑅𝐾 ∥
𝜆min(𝑄) (1 − (𝜌 + 𝐶)2

∥𝑥∥2

≤2𝐶𝐹2∥𝑃∥𝐶 (𝜌 + 𝐶)
1 − (𝜌 + 𝐶)2

√︂
∥𝑄 + 𝐾⊤𝑅𝐾 ∥

𝜎
∥𝑥∥. (3.31)

Putting (3.30) and (3.31) together, we conclude that

∥∇𝑔𝑡 (𝑥)∥ ≤
2𝐶𝐹2∥𝑃∥(𝜌 + 𝐶)

(
𝜌𝐶ℓ + 𝐶

)
1 − (𝜌 + 𝐶)2

√︂
∥𝑄 + 𝐾⊤𝑅𝐾 ∥

𝜎
∥𝑥∥ =: 𝐶∇𝐶ℓ∥𝑥∥.

(3.32)

Rewriting (3.25) as

−𝑣∗𝑡 = (𝑅 + 𝐵⊤𝑃𝐵)−1𝑥⊤𝐹⊤𝑃∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [0, 𝐼]
+ (𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)
+ (𝑅 + 𝐵⊤𝑃𝐵)−1(𝑣∗𝑡)⊤𝐵⊤𝑃∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [0, 𝐼]
+ (𝑅 + 𝐵⊤𝑃𝐵)−1𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [0, 𝐼]

+ 1
2
(𝑅 + 𝐵⊤𝑃𝐵)−1(𝐵 + ∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [0, 𝐼])⊤∇𝑔𝑡 (𝐹𝑥 + 𝐵𝑣 + 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡))

88

and taking the Euclidean norm on both sides, we obtain

∥𝑣∗𝑡 ∥ ≤
(𝑅 + 𝐵⊤𝑃𝐵)−1𝑥⊤𝐹⊤𝑃∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [0, 𝐼]

+

(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)

+
(𝑅 + 𝐵⊤𝑃𝐵)−1(𝑣∗𝑡)⊤𝐵⊤𝑃∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [0, 𝐼]

+

(𝑅 + 𝐵⊤𝑃𝐵)−1𝑃 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [0, 𝐼]

+
1

2
(𝑅 + 𝐵⊤𝑃𝐵)−1(𝐵 + ∇ 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡) [0, 𝐼])⊤

∇𝑔𝑡
(
𝐹𝑥 + 𝐵𝑣 + 𝑓𝑡 (𝑥,−𝐾𝑥 + 𝑣∗𝑡)

)
≤

𝑅 + 𝐵⊤𝑃𝐵−1
(
𝐶ℓ∥𝑃𝐹∥∥𝑥∥ + 𝐶

𝐵⊤𝑃 ∥𝑥∥
+ 2𝐶ℓ

𝐵⊤𝑃 ∥𝑣∗𝑡 ∥ + 𝐶∥𝑃∥∥𝑥∥ + 𝐶ℓ∥𝑃∥∥𝑣∗𝑡 ∥
+ 1

2
𝐶∇𝐶ℓ∥𝐵 + 𝐶ℓ 𝐼 ∥(∥𝐹∥∥𝑥∥ + ∥𝐵∥∥𝑣∗𝑡 ∥ + 𝐶∥𝑥∥ + 𝐶ℓ∥𝑥∥)

)
. (3.33)

Finally, assuming 𝐶ℓ ≤ min
{
1, ∥𝑅+𝐵⊤𝑃𝐵∥

4∥𝐵⊤𝑃∥+2∥𝑃∥+𝐶∇ (∥𝐵∥+1)∥𝐵∥

}
, (3.33) yields𝜋∗𝑡 (𝑥) − 𝜋(𝑥) ≤ 𝐶ℓ∥𝑥∥×(

2∥𝑅 + 𝐵⊤𝑃𝐵∥−1
(
(∥𝑃𝐹∥ + (1 + ∥𝐾 ∥) (∥𝑃𝐵∥ + ∥𝑃∥) + 𝐶∇

2
∥𝐵 + 𝐼 ∥(2 + ∥𝐹∥ + ∥𝐾 ∥)

))
︸ ︷︷ ︸

=:𝐶sys
𝑎

where the constant 𝐶∇ is defined as

𝐶∇ B
2𝐶𝐹2∥𝑃∥(𝜌 + 𝐶) (𝜌 + (1 + ∥𝐾 ∥))

1 − (𝜌 + 𝐶)2

√︂
∥𝑄 + 𝐾⊤𝑅𝐾 ∥

𝜎
.

□

Theorem 3.E.2. Let 𝛾 B (𝜌 + 𝐶𝐹𝐶ℓ (1 + ∥𝐾 ∥)). Suppose the black-box policy �̂� is 𝜀-
consistent with the consistency constant 𝜀 satisfying 𝜀 < 1/𝐶𝐹−𝐶sys

𝑎 𝐶ℓ

𝐶ℓ+∥𝐵∥ . Suppose the Lip-
schitz constant𝐶ℓ satisfies𝐶ℓ < min

{
1, 1/(𝐶𝐹𝐶sys

𝑎), 𝐶sys
𝑐 , (1 − 𝜌)/(𝐶𝐹 (1 + ∥𝐾 ∥))

}
.

Let (𝑥𝑡 : 𝑡 ≥ 0) denote a trajectory of states generated by the adaptive 𝜆-confident
policy 𝜋𝑡 = 𝜆𝑡 �̂� + (1 − 𝜆𝑡)𝜋 (Algorithm 4). Then it follows that 𝜋𝑡 is an exponentially
stabilizing policy such that ∥𝑥𝑡 ∥ ≤ 𝛾𝑡−𝜇𝑡

1−𝜇𝛾−1

(
𝐶𝐹 + 𝜇𝛾−1) ∥𝑥0∥ for any 𝑡 ≥ 0 where

𝜇 B 𝐶𝐹
(
𝜀 (𝐶ℓ + ∥𝐵∥) + 𝐶sys

𝑎 𝐶ℓ
)
.

Proof. We first introduce a new symbol 𝑥 (𝜏)𝑡 , which is the 𝑡-th state of a trajectory
generated by the combined policy 𝜋𝑡 (𝑥) = 𝜆𝑡 �̂�(𝑥) + (1 − 𝜆𝑡)𝜋(𝑥) for the first 𝜏 steps
and then switch to the model-based policy 𝜋 for the remaining steps. Let (𝑥𝑡 : 𝑡 ≥ 0)

89

Figure 3.E.2: Telescoping sum of 𝑥𝑡 − 𝑥∗𝑡 .

be a trajectory of states generated by a model-based policy 𝜋. As illustrated in
Figure 3.1.1, for any 𝑡 ≥ 0,

𝑥𝑡 − 𝑥𝑡 =
𝑡−1∑︁
𝜏=0

𝑥
(𝜏+1)
𝑡 − 𝑥 (𝜏)𝑡 . (3.34)

Let (𝑥𝑡 : 𝑡 ≥ 0) and (𝑥′𝑡 : 𝑡 ≥ 0) denote the trajectories of states at time 𝑡 generated by
the model-based policy �̂�(𝑥) = −𝐾𝑥 when the initial states are 𝑥0 and 𝑥′0, respectively.
Then (3.21) leads to

𝑥𝑡 − 𝑥′𝑡 = 𝐹 𝑡 (𝑥0 − 𝑥′0) +
𝑡−1∑︁
𝜏=0

𝐹 𝑡−1−𝜏 (
𝑓𝜏 (𝑥𝜏,−𝐾𝑥𝜏) − 𝑓𝜏 (𝑥′𝜏,−𝐾𝑥′𝜏)

)
,

yielding

∥𝑥𝑡 − 𝑥′𝑡 ∥ ≤ 𝐶𝐹𝜌𝑡
(𝑥0 − 𝑥′0

 + 𝐶ℓ (1 + ∥𝐾 ∥) 𝑡−1∑︁
𝜏=0

𝜌−1−𝜏 𝑥𝜏 − 𝑥′𝜏)
where we have used the Lipschitz continuity of (𝑓𝑡 : 𝑡 ≥ 0) and Assumption 2 so
that

𝐹 𝑡 ≤ 𝐶𝐹𝜌𝑡 for any 𝑡 ≥ 0. The same argument as in Lemma 13 gives that for
any 𝑡 ≥ 0,

∥𝑥𝑡 − 𝑥′𝑡 ∥ ≤ 𝐶𝐹
(
𝜌 + 𝐶𝐹𝐶

) 𝑡
∥𝑥0 − 𝑥′0∥

where 𝐶 B 𝐶ℓ (1 + ∥𝐾 ∥). Continuing from (3.34), 𝑥𝑡 − 𝑥∗𝑡 can be represented by a
telescoping sum (illustrated in Figure 3.E.2):

∥𝑥𝑡 − 𝑥𝑡 ∥ =
 𝑡−1∑︁
𝜏=0

𝑥
(𝜏+1)
𝑡 − 𝑥 (𝜏)𝑡

 ≤ 𝑡−1∑︁
𝜏=0

𝑥 (𝜏+1)𝑡 − 𝑥 (𝜏)𝑡
 ≤ 𝑡−1∑︁

𝜏=0
𝐶𝐹𝛾

𝑡−𝜏−1
𝑥 (𝜏+1)
𝜏+1 − 𝑥

(𝜏)
𝜏+1

 .

90

For any 𝑡 ≥ 0,

𝑥
(𝑡)
𝑡 − 𝑥

(𝑡−1)
𝑡 = 𝑥𝑡 − 𝑥 (𝑡−1)

𝑡

=(𝑥𝑡 − 𝜆𝑡𝑥′𝑡) +
(
𝜆𝑡𝑥
′
𝑡 − 𝑥

(𝑡−1)
𝑡

)
=𝜆𝑡

(
�̂�𝑡 − 𝑥′𝑡

)
+ (1 − 𝜆𝑡)

(
𝑥𝑡 − 𝑥 (𝑡−1)

𝑡

)
+ 𝜆𝑡

(
𝑥′𝑡 − 𝑥

(𝑡−1)
𝑡

)
=𝜆𝑡

(
�̂�𝑡 − 𝑥′𝑡

)
+ 𝜆𝑡

(
𝑥′𝑡 − 𝑥

(𝑡−1)
𝑡

)
where 𝑥′𝑡 , �̂�𝑡 and 𝑥𝑡 are the states generated by running an optimal policy 𝜋∗, a
model-free policy �̂� and a model-based policy 𝜋, respectively, for one step with the
same initial state 𝑥𝑡−1. Note that 𝑥𝑡 = 𝜆𝑡 �̂�𝑡 + (1 − 𝜆𝑡)𝑥𝑡 and 𝑥𝑡 = 𝑥 (𝑡−1)

𝑡 . Therefore,

𝜆𝑡
(
�̂�𝑡 − 𝑥′𝑡

)
=𝜆𝑡

(
𝐵(�̂�(𝑥𝑡−1) − 𝜋∗(𝑥𝑡−1))︸ ︷︷ ︸

:=(𝑎)

+ 𝑓𝑡−1(𝑥𝑡−1, �̂�(𝑥𝑡−1)) − 𝑓𝑡−1(𝑥𝑡−1, 𝜋
∗(𝑥𝑡−1))︸ ︷︷ ︸

:=(𝑏)

)
.

For (a), we obtain the following bound:

∥(𝑎)∥ ≤ ∥𝐵∥∥�̂�(𝑥𝑡−1) − 𝜋∗(𝑥𝑡−1)∥ ≤𝜀∥𝐵∥∥𝑥𝑡−1∥ (3.35)

and (3.35) holds since the model-free policy �̂� is 𝜀-consistent (Definition 3.2.1).
Similarly, for (b), since the functions (𝑓𝑡 : 𝑡 ≥ 0) are Lipschitz continuous (Assump-
tion 1),

∥(𝑏)∥ ≤ 𝜀𝐶ℓ∥𝑥𝑡−1∥. (3.36)

Applying Theorem 3.E.1,
𝑥′𝑡 − 𝑥 (𝑡−1)

𝑡

 ≤ 𝐶sys
𝑎 𝐶ℓ∥𝑥𝑡−1∥.Combining (3.35) and (3.36)

and applying Lemma 13, ∥𝑥𝑡 − 𝑥𝑡 ∥ ≤ 𝜇
∑𝑡−1
𝜏=0 𝛾

𝑡−𝜏−1∥𝑥𝜏∥ where

𝜇 B 𝐶𝐹
(
𝜀 (𝐶ℓ + ∥𝐵∥) + 𝐶sys

𝑎 𝐶ℓ
)
,

therefore,

∥𝑥𝑡 ∥
𝛾𝑡
≤ 1 − (𝜇𝛾−1)𝑡

1 − 𝜇𝛾−1

(
𝐶𝐹 + 𝜇𝛾−1

)
∥𝑥0∥.

Hence, if 𝜇 < 1, ∥𝑥𝑡 ∥ ≤ 𝛾𝑡−𝜇𝑡
1−𝜇𝛾−1

(
𝐶𝐹 + 𝜇𝛾−1) ∥𝑥0∥, the linearly combined policy 𝜋𝑡 is

an exponentially stabilizing policy. □

Proof of Theorem 3.4.1
To show the stability results, noting that the policy is switched to the model-based
policy after 𝑡 ≥ 𝑡0. Since the Lipschitz constant 𝐶ℓ satisfies 𝐶ℓ < 1−𝜌

𝐶𝐹 (1+∥𝐾 ∥)

91

where
𝐹 𝑡 ≤ 𝐶𝐹𝜌𝑡 for any 𝑡 ≥ 0, then the model-based policy 𝜋 is exponentially

stable as shown in Lemma 13. Let 𝜇 B 𝐶𝐹
(
𝜀 (𝐶ℓ + ∥𝐵∥) + 𝐶sys

𝑎 𝐶ℓ
)

and 𝛾 B
𝜌 + 𝐶𝐹𝐶ℓ (1 + ∥𝐾 ∥) < 1. Applying Theorem 3.E.2 and Lemma 13, for any 𝑡 ≥ 0,

∥𝑥𝑡 ∥ ≤
𝜇𝑡0

𝜇𝛾−1 − 1

(
𝐶𝐹 + 𝜇𝛾−1

)
(𝜌 + 𝐶𝐹𝐶ℓ (1 + ∥𝐾 ∥))𝑡−𝑡0 ∥𝑥0∥.

Since 𝜆𝑡+1 < 𝜆𝑡 − 𝛼 for all 𝑡 ≥ 0 with some 𝛼 > 0, 𝑡0 is finite and the adaptive
𝜆-confident policy is an exponentially stabilizing policy.

3.F Competitive Ratio Analysis
Proof of Theorem 3.4.2
Before proceeding to the proof of Theorem 3.4.2, we prove the following lemma that
will be useful.

Lemma 14. Suppose 𝜀 ≤ 𝜆min(𝑄)/(2∥𝐻∥). If the adaptive 𝜆-confident policy
𝜋𝑡 = 𝜆𝑡 �̂� + (1 − 𝜆𝑡)𝜋 (Algorithm 4) is an exponentially stabilizing policy, then the
competitive ratio of the linearly combined policy is CR(𝜀) = 𝑂 ((1 − 𝜆)CRmodel) +
𝑂

(
1/

(
1 − 2∥𝐻∥

𝜎
𝜀

))
+𝑂 (𝐶ℓ∥𝑥0∥).

Proof of Lemma 14. Let 𝐻 B 𝑅 + 𝐵⊤𝑃𝐵. Fix any sequence of residual functions
(𝑓𝑡 : 𝑡 ≥ 0). Denote by 𝑓𝑡 B 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡), 𝑓 ∗𝑡 B 𝑓𝑡 (𝑥∗𝑡 , 𝑢∗𝑡) and 𝑥∗𝑡 and 𝑢∗𝑡 the offline
optimal state and action at time 𝑡. With 𝑢𝑡 = 𝜆𝑡 �̂�𝑡+(1−𝜆𝑡)𝑢𝑡 at each time 𝑡, Lemma 11
implies that the dynamic regret can be bounded by

DynamicRegret B ALG − OPT ≤
∞∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 +𝑂 (1)

+ 2
∞∑︁
𝑡=0

𝜂⊤𝑡 𝐵
⊤

(∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃(𝑓𝑡+𝜏 − 𝑓 ∗𝑡+𝜏)

)
+
∞∑︁
𝑡=0

(
𝑓 ⊤𝑡 𝑃 𝑓𝑡 −

(
𝑓 ∗𝑡

)⊤
𝑃 𝑓 ∗𝑡

)
+ 2𝑥⊤0

(∞∑︁
𝑡=0

(
𝐹⊤

) 𝑡+1
𝑃

(
𝑓𝑡 − 𝑓 ∗𝑡

))
+ 2

∞∑︁
𝑡=0

(
𝑓 ⊤𝑡

∞∑︁
𝜏=0

(
𝐹⊤

)𝜏+1
𝑃 𝑓𝑡+𝜏+1 −

(
𝑓 ∗𝑡

)⊤ ∞∑︁
𝜏=0

(
𝐹⊤

)𝜏+1
𝑃

(
𝑓 ∗𝑡+𝜏+1

))
+ 2

∞∑︁
𝑡=0

(∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃 𝑓 ∗𝑡+𝜏

)
𝐵𝐻−1𝐵⊤

(∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃(𝑓 ∗𝑡+𝜏 − 𝑓𝑡+𝜏)

)
.

(3.37)
Consider the auxiliary linear policy defined in (3.12). Provided with any state 𝑥 ∈ R𝑛,
the linearly combined policy 𝜋𝑡 is given by

𝜋𝑡 (𝑥) = 𝜆𝑡 �̂�(𝑥) + (1 − 𝜆𝑡)𝜋(𝑥) = 𝜋′(𝑥) + 𝜆𝑡 (�̂�(𝑥) − 𝜋′(𝑥)) + (1 − 𝜆𝑡) (𝜋(𝑥) − 𝜋′(𝑥)) ,

92

implying 𝜂𝑡 = 𝜆𝑡 (�̂�(𝑥𝑡) − 𝜋′(𝑥𝑡)) + (1 − 𝜆𝑡) (𝜋(𝑥𝑡) − 𝜋′(𝑥𝑡)) in (3.37). Moreover,∑∞
𝑡=0 𝜂

⊤
𝑡 𝐻𝜂𝑡 ≤

∑∞
𝑡=0 ∥𝐻∥∥𝜂𝑡 ∥2, therefore, denoting by 𝜆 B lim𝑡→∞ 𝜆𝑡 ,

∞∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 ≤2∥𝐻∥
(∞∑︁
𝑡=0
∥�̂�(𝑥𝑡) − 𝜋′(𝑥𝑡)∥2 + (1 − 𝜆)

∞∑︁
𝑡=0
∥𝜋(𝑥𝑡) − 𝜋′(𝑥𝑡)∥2

)
,

(3.38)

where in (3.38) we have used the the Cauchy–Schwarz inequality. Since the model-
free policy �̂� is 𝜀-consistent, it follows that

∥�̂�(𝑥𝑡) − 𝜋′(𝑥𝑡)∥2 ≤2
𝜋∗𝑡 (𝑥𝑡) − 𝜋′(𝑥𝑡)2 + 2

�̂�(𝑥𝑡) − 𝜋∗𝑡 (𝑥𝑡)2

≤2
𝜋∗𝑡 (𝑥𝑡) − 𝜋′(𝑥𝑡)2 + 2𝜀∥𝑥𝑡 ∥2.

Furthermore, since the cost OPT′ induced by the auxiliary linear policy (3.12) is
smaller than OPT,

∞∑︁
𝑡=0

𝜋∗𝑡 (𝑥𝑡) − 𝜋′(𝑥𝑡)2 ≤ OPT + OPT′

𝜆min(𝑅)
≤ 2OPT
𝜆min(𝑅)

(3.39)

where 𝜆min(𝑅) > 0 denotes the smallest eigenvalue of 𝑅 ≻ 0.

The linear quadratic regulator is 𝜋(𝑥) = −𝐾𝑥 = −(𝑅 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝐴𝑥 for a given
state 𝑥 ∈ R𝑛, we have for all 𝑡 ≥ 0,

∥𝜋(𝑥𝑡) − 𝜋′(𝑥𝑡)∥2 =

 ∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 𝑓 ∗𝜏

2

. (3.40)

Plugging (3.39) and (3.40) into (3.38),

∞∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 ≤2∥𝐻∥
((

2OPT
𝜆min(𝑅)

+ 𝜀
∞∑︁
𝑡=0
∥𝑥𝑡 ∥2

)
+
∞∑︁
𝑡=0

 ∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 𝑓 ∗𝜏

2)
. (3.41)

The algorithm cost ALG can be bounded by ALG ≥ ∑∞
𝑡=0 𝑥

⊤
𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 ≥∑∞

𝑡=0 𝜆min(𝑄)∥𝑥𝑡 ∥2, therefore, (3.41) leads to

∞∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 ≤ 2∥𝐻∥
((

2OPT
𝜆min(𝑅)

+ 𝜀 ALG
𝜆min(𝑄)

)
+
∞∑︁
𝑡=0

 ∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 𝑓 ∗𝜏

2)
. (3.42)

Moreover, we have the following lemma holds.

Lemma 15. The optimal cost OPT can be bounded from below by

OPT ≥ 𝐷0(1 − 𝜌)2

𝐶𝐹
2∥𝑃∥2

∞∑︁
𝑡=0

 ∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏−𝑡
𝑃 𝑓 ∗𝜏

2

.

93

Proof of Lemma 15. the optimal cost can be bounded from below by

OPT =

∞∑︁
𝑡=0
(𝑥∗𝑡)⊤𝑄𝑥∗𝑡 + (𝑢∗𝑡)⊤𝑅𝑢∗𝑡

≥
∞∑︁
𝑡=0

𝜆min(𝑄)
𝑥∗𝑡 2 + 𝜆min(𝑅)∥𝑢∗𝑡 ∥2 (3.43)

≥2𝐷0

∞∑︁
𝑡=0

(
∥𝐴𝑥∗𝑡 ∥2 + ∥𝐵𝑢∗𝑡 ∥2

)
+ 1

2

∞∑︁
𝑡=0

𝜆min(𝑄)∥𝑥∗𝑡 ∥2

≥𝐷0

∞∑︁
𝑡=0

𝐴𝑥∗𝑡 + 𝐵𝑢∗𝑡 2 + 1
2

∞∑︁
𝑡=0

𝜆min(𝑄)∥𝑥∗𝑡 ∥2.

Since 𝑥∗
𝑡+1 = 𝐴𝑥∗𝑡 + 𝐵𝑢∗𝑡 + 𝑓 ∗𝑡 for all 𝑡 ≥ 0,

OPT ≥𝐷0

∞∑︁
𝑡=0

𝑥∗𝑡+1 − 𝑓 ∗𝑡 2 + 1
2

∞∑︁
𝑡=0

𝜆min(𝑄)
𝑥∗𝑡 2

≥𝐷0
2

∞∑︁
𝑡=0

 𝑓 ∗𝑡 2 +
(
𝜆min(𝑄)

2
− 𝐷0

) ∞∑︁
𝑡=0

𝑥∗𝑡 2 (3.44)

for some constant 𝐷0 B min{𝜆min (𝑅)
∥𝐵∥ ,

𝜆min (𝑄)
2∥𝐴∥ ,

𝜆min (𝑄)
2 } ≥ 𝜎

max{2,∥𝐴∥,∥𝐵∥} (Assump-
tion 2) that depends on known system parameters 𝐴, 𝐵, 𝑄 and 𝑅 where in (3.43),
𝜆min(𝑄), 𝜆min(𝑅) are the smallest eigenvalues of positive definite matrices 𝑄, 𝑅,
respectively. Let 𝜓𝑡 B

∑∞
𝜏=𝑡 (𝐹⊤)

𝜏
𝑃 𝑓 ∗𝑡+𝜏 for all 𝑡 ≥ 0. Note that 𝐹 = 𝐴− 𝐵𝐾 and we

define 𝜌 B (1 + 𝜌(𝐹))/2 < 1 where 𝜌(𝐹) denotes the spectral radius of 𝐹. From
the Gelfand’s formula, there exists a constant 𝐶𝐹 ≥ 0 such that ∥𝐹 𝑡 ∥ ≤ 𝐶𝐹𝜌𝑡 for all
𝑡 ≥ 0. Therefore,

∞∑︁
𝑡=0
∥𝜓𝑡 ∥2 B

∞∑︁
𝑡=0

 ∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃 𝑓 ∗𝑡+𝜏

2

≤ 𝐶𝐹2∥𝑃∥2
∞∑︁
𝑡=0

(∞∑︁
𝜏=𝑡

𝜌𝜏
 𝑓 ∗𝑡+𝜏)2

=𝐶𝐹
2∥𝑃∥2

∞∑︁
𝑡=0

∞∑︁
𝜏=𝑡

∞∑︁
ℓ=0

𝜌𝜏𝜌ℓ
 𝑓 ∗𝑡+𝜏 𝑓 ∗𝑡+ℓ

≤𝐶𝐹
2

2
∥𝑃∥2

∞∑︁
𝑡=0

∞∑︁
𝜏=𝑡

∞∑︁
ℓ=0

𝜌𝜏𝜌ℓ
(𝑓 ∗𝑡+𝜏2 +

 𝑓 ∗𝑡+ℓ2
)
. (3.45)

94

Continuing from (3.45),

∞∑︁
𝑡=0
∥𝜓𝑡 ∥2 ≤

𝐶𝐹
2

2
∥𝑃∥2

(∞∑︁
ℓ=0

𝜌ℓ

) ∞∑︁
𝑡=0

∞∑︁
𝜏=𝑡

𝜌𝜏
 𝑓 ∗𝑡+𝜏2

+ 𝐶𝐹
2

2
∥𝑃∥2

(∞∑︁
𝜏=𝑡

𝜌𝜏

) ∞∑︁
𝑡=0

∞∑︁
ℓ=0

𝜌ℓ
 𝑓 ∗𝑡+ℓ2

≤ 𝐶𝐹
2

1 − 𝜌 ∥𝑃∥
2
∞∑︁
𝑡=0

∞∑︁
𝜏=𝑡

𝜌𝜏
 𝑓 ∗𝑡+𝜏2 ≤ 𝐶𝐹

2

1 − 𝜌 ∥𝑃∥
2
∞∑︁
𝑡=0

∞∑︁
𝜏=0

𝜌𝜏
 𝑓 ∗𝑡+𝜏2

=
𝐶𝐹

2

1 − 𝜌 ∥𝑃∥
2

(∞∑︁
𝜏=0

𝜌𝜏

) (∞∑︁
𝑡=0

 𝑓 ∗𝑡 2
)

≤ 𝐶𝐹
2

(1 − 𝜌)2
∥𝑃∥2

∞∑︁
𝑡=0

 𝑓 ∗𝑡 2
. (3.46)

Putting (3.46) into (3.44), we obtain OPT ≥ 𝐷0 (1−𝜌)2
𝐶𝐹

2∥𝑃∥2
∑∞
𝑡=0 ∥𝜓𝑡 ∥2. □

Combining Lemma 15 with (3.42),

∞∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 ≤ 2∥𝐻∥
(

2OPT
𝜆min(𝑅)

+ 𝜀 ALG
𝜆min(𝑄)

+ (1 − 𝜆)𝐶𝐹
2∥𝑃∥2OPT

𝐷0(1 − 𝜌)2

)
. (3.47)

Furthermore, since 𝑃 is symmetric, 𝑓 ⊤𝑡 𝑃 𝑓𝑡 − (𝑓 ∗𝑡)⊤𝑃 𝑓 ∗𝑡 =
(
𝑓𝑡 + 𝑓 ∗𝑡

)⊤
𝑃

(
𝑓𝑡 − 𝑓 ∗𝑡

)
,

the RHS of the inequality (3.37) can be bounded by

∞∑︁
𝑡=0

𝜂⊤𝑡 𝐻𝜂𝑡 + 2
∞∑︁
𝑡=0

(
∥𝐵𝜂∥

 ∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃(𝑓𝑡+𝜏 − 𝑓 ∗𝑡+𝜏)

 + ∥𝑃 (
𝑓𝑡 + 𝑓 ∗𝑡

)
∥
 𝑓𝑡 − 𝑓 ∗𝑡

+ ∥𝑥0∥
 ∞∑︁
𝑡=0

(
𝐹⊤

) 𝑡+1
𝑃(𝑓𝑡 − 𝑓 ∗𝑡)

 + ∥ 𝑓𝑡 ∥
 ∞∑︁
𝜏=0

(
𝐹⊤

)𝜏+1
𝑃(𝑓𝑡+𝜏+1 − 𝑓 ∗𝑡+𝜏+1)

+

 ∞∑︁
𝜏=0

(
𝐹⊤

)𝜏+1
𝑃 𝑓 ∗𝑡+𝜏+1

 𝑓 ∗𝑡 − 𝑓𝑡
+

𝐵𝐻−1𝐵⊤
 ∞∑︁

𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃 𝑓 ∗𝑡+𝜏

 ∞∑︁
𝜏=𝑡

(
𝐹⊤

)𝜏
𝑃(𝑓 ∗𝑡+𝜏 − 𝑓𝑡+𝜏)

)
.

Furthermore, by our assumption, the linearly combined policy 𝜋 is an exponentially
stabilizing policy and since 𝑓𝑡 is Lipschitz continuous with a Lipschitz constant 𝐶ℓ,

95

using (3.47) and noting that OPT > 0,

ALG − OPT

≤2∥𝐻∥
(

1
𝜎
(2OPT + 𝜀ALG) + (1 − 𝜆)𝐶𝐹

2∥𝑃∥2max{2, ∥𝐴∥, ∥𝐵∥}OPT
𝜎(1 − 𝜌)2

)
+𝑂 (𝐶ℓ∥𝑥0∥).

Rearranging the terms gives the competitive ratio bound in Lemma 14. □

Now, applying Lemma 14, we complete our competitive analysis by proving Theo-
rem 3.4.2.

Proof of Theorem 3.4.2. Continuing from Theorem 3.E.2, it shows that if the Lip-
schitz constant 𝐶ℓ satisfies 𝐶ℓ < 1−𝜌

𝐶𝐹 (1+∥𝐾 ∥) where
𝐹 𝑡 ≤ 𝐶𝐹𝜌𝑡 for any 𝑡 ≥ 0 and

the consistency error 𝜀 satisfies 𝜀 < min
{

𝜎
2∥𝐻∥ ,

1/𝐶𝐹−𝐶sys
𝑎 𝐶ℓ

𝐶ℓ+∥𝐵∥

}
where 𝐶sys

𝑎 is defined
in (3.7), then

∥𝑥𝑡 ∥ ≤
𝛾𝑡 − 𝜇𝑡

1 − 𝜇𝛾−1

(
𝐶𝐹 + 𝜇𝛾−1

)
∥𝑥0∥,

for all 𝑡 ≥ 0 with some 𝜇 < 1. Therefore, Lemma 14 implies Theorem 3.4.2. □

Part II

Learning-Augmented
Decision-Making

96

97

C h a p t e r 4

LEARNING-BASED PREDICTIVE CONTROL: FORMULATION

[1] Tongxin Li, Steven H. Low, and Adam Wierman. Real-time flexibility feedback
for closed-loop aggregator and system operator coordination. New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450380096. URL
https://doi.org/10.1145/3396851.3397725.

[2] Tongxin Li, Bo Sun, Yue Chen, Zixin Ye, Steven H. Low, and Adam Wierman.
Learning-based predictive control via real-time aggregate flexibility. IEEE
Transactions on Smart Grid, 12(6):4897–4913, 2021. URL https://doi.org/
10.1109/TSG.2021.3094719.

The uncertainty and volatility of renewable sources such as wind and solar power has
created a need to exploit the flexibility of distributed energy resources (DERs) and
aggregators have emerged as dominate players for coordinating these loads [74, 75].
An aggregator can coordinate a large pool of DERs and be a single point of contact for
independent system operators (ISOs) to call on for flexibility. This enables ISOs to
minimize cost, respond to unexpected fluctuations of renewables, and even mitigate
failures quickly and reliably. Typically, an ISO communicates a time-varying signal
to an aggregator, e.g., a desired power profile, that optimizes ISO objectives and the
aggregator coordinates with the DERs to collectively respond to the time-varying
signal as faithfully as possible, e.g., by shaping their aggregate power consumption to
follow ISO’s power profile, while satisfying DER constraints. These constraints are
often private to the loads, e.g., satisfying energy demands of electric vehicles before
their deadlines. They limit the flexibility available to the aggregator so the aggregator
must also communicate with the ISO by providing a feedback signal that quantifies
its available flexibility. This feedback provides ISO with crucial information for
determining the signal it sends to the aggregator. Thus the aggregator and the ISO
form a closed-loop control system to manage the aggregate flexibility of DERs. This
chapter focuses on the design of this closed-loop system and, in particular, the design
of real-time feedback signals from the aggregator to the ISO quantifying the available
flexibility and learning-augmented decision-making algorithms for the ISO.

98

4.1 Introduction
The design of the aggregate flexibility feedback signal is complex and has been
the subject of significant research over the last decade, e.g., [32–36, 76–79]. Any
feedback design must balance a variety of conflicting goals. Given the scale,
complexity and privacy of the load constraints, it may neither be possible nor
desirable to communicate precise information about every load. Instead, aggregate
flexibility feedback must be a concise summary of a system’s constraints and it must
limit the leakage about specific load constraints. On the other hand, the feedback
sent by an aggregator needs to be informative enough that it allows the ISO to
achieve operational objectives, e.g., minimize cost, and, most importantly, containing
feasibility information of the whole system with respect to the private load constraints.
Moreover, a design for a flexibility feedback signal must be general enough to be
applicable for a wide variety of controllable loads, e.g., electric vehicles (EVs),
heating, ventilation, and air conditioning (HVAC) systems, energy storage units,
thermostatically controlled loads, residential loads, and pool pumps. It is impractical
to design different feedback signals for each load, so the same design must work for
all DERs.

The challenge and importance of the design of flexibility feedback signals has led
to the emergence of a rich literature. In many cases, the literature focuses on
specific classes of controllable loads, such as EVs [80], heating, ventilation, and air
conditioning (HVAC) systems [81, 82], energy storage units [79], thermostatically
controlled loads [33] or residential loads and pool pumps [76, 83]. In the context
of these applications, a variety of approaches have been suggested, e.g., convex
geometric approximations via virtual battery models [33, 35], hyper-rectangles [36]
and graphical interpretations [79]; scheduling based aggregation [84, 85]; linear
combination of demand bit curves [82]; and probability-based characterization [76,
83]. These approaches have all yielded some success, especially in terms of
quantifying available aggregate flexibility (see Section 4.2 for more detail on
related work). However, nearly all prior work only focused on slower-timescale
estimations and does not meet the goal of providing real-time aggregate flexibility
feedback. The fast-changing environment and the uncertainties of the DERs,
however, demand real-time flexibility feedback. For example, in an EV charging
facility, it is notoriously challenging to predict future EV arrivals and their battery
capacities. With on-site solar generation, the aggregator’s dynamical system can
be time-varying and non-stationary, so it is crucial that real-time feedback be
defined and approximated for it to be used in online feedback-based applications.

99

Furthermore, most of the existing frameworks are designated for specific tasks,
such as managing HVAC systems [81, 82], and therefore may not be applicable
to other applications. Reinforcement learning (RL), especially, deep RL, has
been used widely as approximation tools in smart grid applications. Joint pricing
and EV charging scheduling for a single EV charger is considered in [86] using
state–action–reward–state–action (SARSA). But it is unclear how the proposed
method in [86] can be extended to allow multiple chargers. Q-learning is used to
estimate the residual energy in an energy storage system at the end of each day
in [87] and determine the aggregate action for thermostatically controlled loads
(TCLs) [88]. The authors in [89] combine evolution strategies and model predictive
control (MPC) to coordinate heterogeneous TCLs. Most existing studies, including
the aforementioned works typically use RL for a “central controller” (which is an
operator in our context). Instead we use it for the aggregator to learn flexibility
representations.

To the best of our knowledge, no existing study has focused on the design of real-time
coordination between an aggregator and a system operator that achieves the goals
laid out above, except for some preliminary results in [24, 25]. Those results rely
on a novel design of a real-time feedback signal that can be used to quantify the
aggregate flexibility and coordinate real-time control. In this chapter, we extend the
design of the feedback signal to a more general dynamic system with time-varying
and non-stationary constraints, and we mainly focus on how to apply the real-time
feedback to practical applications (e.g., EV charging) in power systems. Towards
this goal, we propose a reinforcement learning based approach to approximate this
feedback and further incorporate the feedback into a penalized predictive control
(PPC) scheme. On the theory side, we prove the optimality of the proposed PPC
scheme, and through extensive numerical tests, we validate the superior empirical
performance of PPC over classic benchmarks, such as MPC.

Contributions. In summary, to complement previous research, in this chapter we
consider a closed-loop control model formed by a system operator (central controller)
and an aggregator (local controller) and propose a novel design of real-time aggregate
flexibility feedback, called the maximum entropy feedback (MEF) that quantifies the
flexibility available to an aggregator. Based on the definition of MEF, we design
a reward function, which allows MEF to be efficiently learned by model-free RL
algorithms. Our main contributions are:

100

1. We introduce a model of the real-time closed-loop control system formed by a
system operator and an aggregator. This work is the first to close the loop and
both define a concise measure of aggregate flexibility and show how it can be
used by the system operator in an online manner to optimize system objectives
while respecting the constraints of the aggregator’s loads.

2. Within this model we define the “optimal” real-time flexibility feedback as
the solution to an optimization problem that maximizes the entropy of the
feedback vector. The use of entropy in this context is novel and to the best
of our knowledge, this article is among the first to rigorously define a notion
for real-time aggregate flexibility with provable properties. In particular we
show that the exact MEF allows the system operator to maintain feasibility and
enhance flexibility.

3. Furthermore, we propose a novel combination of control and learning by
integrating model predictive control (MPC) and the defined MEF. Using
the MEF as a penalty term, we introduce an algorithm called the penalized
predictive control (PPC), which only requires the system operator to receive the
MEF at each time, without knowing the states and dynamics of the aggregator.
We also prove that, under certain regularity conditions, the actions given by
PPC are optimal.

4. Finally, we demonstrate the efficacy of the proposed scheme using real EV
charging data from Caltech’s ACN-Data [1]. Our experiments show that by
sending simple action signals generated by the PPC, a system operator is able
to coordinate with an EV charging aggregator to satisfy almost all EV charging
demands, while only knowing the MEF learned by a model-free off-policy RL
algorithm. The PPC is also showed to achieve lower cost than MPC, which in
addition needs to have access to the complete state of the loads.

4.2 Related Literature.
The growing importance of aggregators for the integration of controllable loads and
the challenge of defining and quantifying the flexibility provided by aggregators has
led to the emergence of a rich literature. Broadly, this work can be separated into
three approaches.

Convex geometric approximation. The idea of representing the set of aggregate loads
as a virtual battery model dates back to [32, 33]. In [35], flexibility of an aggregation

101

of thermostatically controlled loads (TCLs) was defined as the Minkowski sum of
individual polytopes, which is approximated by the homothets of a virtual battery
model using linear programming. The recent paper [36] takes a different approach
and defines the aggregate flexibility as upper and lower bounds so that each trajectory
to be tracked between the bounds is disaggregatable and thus feasible. However,
convex geometric approaches cannot be extended to generate real-time flexibility
signals because the approximated sets cannot be decomposed along the time axis.
In [34], a belief function of setpoints is introduced for real-time control. However,
feasibility can only be guaranteed when each setpoint is in the belief set and this may
not be the case for systems with memory.

Scheduling algorithm-driven analysis. Scheduling algorithms that enable the ag-
gregation of loads have been studied in depth over the past decade. The authors
of [90, 91] introduced a decentralized algorithm with a real-time implementation
for EV charging to track a given load profile. The authors of [84] considered the
feasibility of matching a given power trajectory and show that causal optimal policies
do not exist. In this work, aggregate flexibility was implicitly considered as the
set of all feasible power trajectories. Three heuristic causal scheduling policies
were compared and the results were extended to aggregation of deferrable loads and
storage in [84]. Furthermore, decentralized participation of flexible demand from
heat pumps and EVs was addressed in [85]. Notably, the flexibility signals that have
emerged from this literature generally are applicable only to specific policies and
DERs.

Probability-based characterization. There is much less work on probabilistic methods.
The aggregate flexibility of residential loads was defined based on positive and
negative pattern variations by analyzing collective behaviour of aggregate users [76].
A randomized and decentralized control architecture for systems of deferrable loads
was proposed in [83], with a linear time-invariant system approximation of the derived
aggregate non-linear model. Flexibility in this work was defined as an estimate of
the proportion of loads that are operating. Our work falls into this category, but
differs from previous papers in that entropy maximization for a closed-loop control
system yields an interpretable signal that can be informative for operator objectives
in real-time, as well as guarantee feasibility of the private constraints of loads (if the
signal is accurate). In our previous work [25], we study the problem of real-time
coordination of an aggregator and a system operator under the paradigm of a control
framework and provide regret analysis assuming feasibility predictions are available.

102

Other approaches. Beyond the works described above, there are many other
suggestions for metrics of aggregate flexibility, e.g., graphical-based measures [92]
and data-driven approaches [92]. Most of these, and the approaches described above,
are evaluated on the aggregator side only, and much less attention has been paid
to the question of real-time coordination between an ISO and an aggregator that
controls decentralized loads.

The assessment and enhancement of aggregate flexibility are often considered
independent of the operational objectives. For instance, in a reserve market, an
aggregator will report to the ISO a day in advance an offline notion of aggregated
flexibility based on forecast for the ISO to compute a energy and reserve schedule
for the following day, e.g., [32, 36, 77, 93], with notable exceptions, such as [80],
which considered charging and discharging of EV fleets batteries for tracking a
sequence of automatic generation control (AGC) signals. However, this approach
has several limitations. First, in large-scale systems, knowing the exact states of
each load is not realistic. Second, classical flexibility representations often rely on a
precise state-transition model on the aggregator’s side. Third, traditional ISO market
designs, such as a day-ahead energy market, often make use of ex ante estimates of
future system states. The forecasts of the future states can sometime be far from
reality, because of either an inaccurate model is used, or an uncertain event occurs.
In contrast, a real-time energy market [94, 95] provides more robust system control
when facing uncertainty in the environment, e.g., from fast-changing renewable
resources or human behavioral parameters. This further highlights the need for
real-time flexibility feedback, and serves to differentiate the approach in our chapter.
Below we present the notation frequently used in the remainder of this chapter.

Notation and Conventions. We use P (·) and E (·) to denote the probability
distribution and expectation of random variables. The (differential) entropy function
is denoted by H(·). To distinguish random variables and their realizations, we follow
the convention to denote the former by capital letters (e.g., 𝑈) and the latter by
lower case letters (e.g., 𝑢). Furthermore, we denote the length-𝑡 prefix of a vector
𝑢 by 𝑢≤𝑡 := (𝑢1, . . . , 𝑢𝑡). Similarly, 𝑢<𝑡 := (𝑢1, . . . , 𝑢𝑡−1) and 𝑢𝑎→𝑏 := (𝑢𝑎, . . . , 𝑢𝑏).
The concatenation of two vectors 𝑢 and 𝑣 is denoted by (𝑢, 𝑣). Given two vectors
𝑢, 𝑣 ∈ R𝑛, we write 𝑢 ⪯ 𝑣 if 𝑢𝑖 ≤ 𝑣𝑖 for all 𝑖 = 1, . . . , 𝑛. For 𝑥 ∈ R, denote
[𝑥]+ := max{0, 𝑥}. The set of non-negative real numbers is denoted by R+.

The rest of the chapter is organized as follows. We present our closed-loop control
model in Section 4.3. We define real-time aggregate flexibility, called the MEF, and

103

prove its properties in Section 4.4. An RL-based approach for estimating the MEF is
provided in Section 4.5. Combining MEF and model MPC, we propose an algorithm,
termed the PPC in Section 4.6. Numerical results are given in Section 4.7.

4.3 Problem Formulation
In this chapter, we consider a real-time control problem involving two parties – a load
aggregator and an independent system operator (ISO), or simply called an operator
that interact over a discrete time horizon [𝑇] := {1, . . . , 𝑇}.

Load Aggregator
A load aggregator is a device, often considered as a local controller that controls a
fleet of controllable loads. In this part, we formally state the model of an aggregator
and its objective. Let 𝑥𝑡 denote the aggregator state at time 𝑡 that takes value in a
certain set X ⊆ R𝑚. To this end, the aggregator receives an action 𝑢𝑡 ∈ U where
U ⊆ R denotes a closed and bounded set of actions at each time 𝑡 from a system
operator, which will be formally defined in Section 4.3. The action space U and
state space X are prefixed and known as common knowledge to both the aggregator
and the system operator. The goal of the aggregator is to accomplish a certain
task over the horizon [𝑇], e.g., delivering energy to a set of EVs by their deadlines
while minimizing the costs, subject to system constraints. Mathematically, the
constraints are represented by two collections of time-varying and time-coupling
sets {X𝑡 (𝑥<𝑡 , 𝑢<𝑡) ⊆ X : 𝑡 ∈ [𝑇]} and {U𝑡 (𝑥<𝑡 , 𝑢<𝑡)𝑡 ⊆ U : 𝑡 ∈ [𝑇]}. For notational
simplicity, we denote X𝑡 (𝑥<𝑡 , 𝑢<𝑡) by X𝑡 and U𝑡 (𝑥<𝑡 , 𝑢<𝑡) by U𝑡 in the remaining
contexts. The states and actions must satisfy 𝑥𝑡 ∈ X𝑡 and 𝑢𝑡 ∈ U𝑡 for all 𝑡 ∈ [𝑇]. The
decision changes the aggregator state 𝑥𝑡 according to a state transition function 𝑓𝑡 :

𝑥𝑡+1 = 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡), 𝑥𝑡 ∈ X𝑡 , 𝑢𝑡 ∈ U𝑡 , (4.1)

where 𝑓𝑡 represents the transition of the state 𝑥𝑡 . The initial state 𝑥1 is assumed to be
the origin without loss of generality. The aggregator state 𝑥𝑡 and decision 𝑢𝑡 need to
be chosen from two time-varying sets X𝑡 and U𝑡 . We make the following model
assumptions:

Assumption 3. The dynamic 𝑓𝑡 (·, ·) : X𝑡 × U𝑡 → X𝑡+1 is a Borel measurable
function for 𝑡 ∈ [𝑇]. The time-varying and time-coupling sets {U𝑡 : 𝑡 ∈ [𝑇]} and
{X𝑡 : 𝑡 ∈ [𝑇]} are Borel sets in R and R𝑚.

The aggregator has flexibility in its actions 𝑢𝑡 for accomplishing its task and, we
assume for this chapter, is indifferent to these decisions as long as the task is

104

accomplished by time 𝑇 . At each time 𝑡, based on its current state 𝑥𝑡 , the aggregator
needs to send flexibility feedback, 𝑝𝑡 , a probability density function, from a collection
of feedback signals P, to the system operator, which describes the flexibility of
the aggregator for accepting different actions 𝑢𝑡 . We formally define 𝑝𝑡 and P in
Section 4.4. Designing 𝑝𝑡 is one of the central problems considered in this chapter
(see Section 4.4 for more details). Below we state the aggregator’s goal in the
real-time control system.

Aggregator’s Objective. The goal of the aggregator is two-fold: (1). Maintain the
feasibility of the system and guarantee that 𝑥𝑡 ∈ X𝑡 and 𝑢𝑡 ∈ U𝑡 for all 𝑡 ∈ [𝑇]. (2).
Generate flexibility feedback 𝑝𝑡 and send it to the operator at time 𝑡 ∈ [𝑇].

Remark 1. We assume that the action space U is a continuous set in R only for
simplicity of presentation. The results and definitions in the chapter can be extended
to discrete setting by changing the integrals to summations, and replacing the
differential entropy functions by discrete entropy functions, e.g., see the definition of
maximum entropy feedback (Definition 4.4.1) and Lemma 17. In practical systems
e.g., an electric system consisting of an EV aggregator and an operator, U often
represents the set of power levels and when the gap between power levels is small, U
can be modeled as a continuous set.

Figure 4.3.1: System model: A feedback control approach for solving an online
version of (4.2). The operator implements a control algorithm and the aggregator
uses reinforcement learning to generate real-time aggregate flexibility feedback.

System Operator
A system operator is a central controller that operates the power grid. Knowing the
flexibility feedback 𝑝𝑡 from the aggregator, the operator sends an action 𝑢𝑡 , chosen
from U to the aggregator at each time 𝑡 ∈ [𝑇]. Each action is associated with a cost
function 𝑐𝑡 (·) : U→ R+, e.g., the aggregate EV charging rate increases load on the
electricity grid. The system’s objective is stated as follows.

105

Operator’s Objective. The goal of the system operator is to provide an action 𝑢𝑡 ∈ U
at time 𝑡 ∈ [𝑇] to the aggregator so as to minimize the cumulative system costs given
by 𝐶𝑇 (𝑢1, . . . , 𝑢𝑇) :=

∑𝑇
𝑡=1 𝑐𝑡 (𝑢𝑡).

Real-Time Operator-Aggregator Coordination
Overall, considering the aggregator and operator’s objectives, the goal of the closed-
loop system is to solve the following problem in real-time, by coordinating the
operator and aggregator via {𝑝𝑡 : 𝑡 ∈ [𝑇]} and {𝑢𝑡 : 𝑡 ∈ [𝑇]}:

min
𝑢1,...,𝑢𝑇

𝐶𝑇 (𝑢1, . . . , 𝑢𝑇) (4.2a)

subject to ∀𝑡 = 1, . . . , 𝑇 :

𝑥𝑡+1 = 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡) (4.2b)

𝑥𝑡 ∈ X𝑡 , (4.2c)

𝑢𝑡 ∈ U𝑡 (4.2d)

i.e., the operator aims to minimize its cost 𝐶𝑇 in (4.2a) while the load aggregator
needs to fulfill its obligations in the form of constraints (4.2b)-(4.2d). This is an
offline problem that involves global information at all times 𝑡 ∈ [𝑇].

Remark 2. For simplicity, we describe our model in an offline setting where the cost
and the constraints in the optimization problem (4.2) are expressed in terms of the
entire trajectories of states and actions. The goal of the closed-loop control system
is, however, to solve an online optimization via operator-aggregator coordination.

The challenges are: (i) the aggregator and operator need to solve the online version
of (4.2) jointly, and (ii) the cost function 𝐶𝑇 is private to the operator and the
constraints (4.2b)-(4.2d) are private to the operator. It is impractical for the aggregator
to communicate the constraints to the operator because of privacy concerns or
computational effort. Moreover, in an online setting, even the aggregator will not
know the constraints that involve future information, e.g., future EV arrivals in an
EV charging station. Formally, at each time 𝑡 ∈ [𝑇], we assume that the operator
and aggregator have access to the following information, respectively:

1. An operator knows the costs (𝑐1, . . . , 𝑐𝑡) and feedback (𝑝1, . . . , 𝑝𝑡), but not
the future costs (𝑐𝑡+1, . . . , 𝑐𝑇) and feedback (𝑝𝑡+1, . . . , 𝑝𝑇).

2. An aggregator knows the state transition functions (𝑓1, . . . , 𝑓𝑇), the initial
state 𝑥1 and actions (𝑢1, . . . , 𝑢𝑡).

106

System’s Goal. Overall, the goal of a aggregator-operator system is to jointly
solve the online version of (4.2a)-(4.2d) whose partial information is known to an
aggregator and an operator, respectively.

Necessities of Combining Learning and Control
With the assumptions above, on the one hand the aggregator cannot solve the problem
independently because it does not have cost information (since the costs are often
sensitive and only of the operator’s interests) from the operator and even if the
aggregator could, it may not have enough power to solve an optimization to obtain an
action. On the other hand, the operator has to receive flexibility information from the
aggregator in order to act. Well-known methods in pure learning or control cannot
be used for this problem directly. From a learning perspective, the aggregator cannot
simply use reinforcement learning and transmit parameters of a learned Q-function or
an actor-critic model to the operator because the aggregator does not know the costs.
From a control perspective, although model predictive control (MPC) is widely used
for EV charging scheduling in practical charging systems [1, 96], it requires precise
state information of electric vehicle supply equipment (EVSE). Thus, to solve the
induced MPC problem, the system operator or aggregator needs to solve an online
optimization at each time step that involves hundreds or even thousands of variables.
This not just a complex problem, but the state information of the controllable units is
potentially sensitive. This combination makes controlling sub-systems using precise
information impractical for a future smart grid [24, 25] In this work, we explore a
solution where the system operator and the aggregator jointly solve an online version
of (4.2) in a closed loop, as illustrated in Figure 4.3.1.

The real-time operator-aggregator coordination illustrated in Figure 4.3.1 combines
learning and control approaches. It does not require the aggregator to know the
system operator’s objective in (4.2a), but only the action 𝑢𝑡 at each time 𝑡 ∈ [𝑇]
from the operator. In addition, it does not require the system operator to know the
aggregator constraints in (4.2b), but only a feedback signal 𝑝𝑡 (to be designed) from
the aggregator. After receiving flexibility feedback 𝑝𝑡 , which could be generated
by machine learning algorithms, the system operator outputs an action 𝑢𝑡 using
a causal operator function 𝜙𝑡 (·) : P → U. Knowing the state 𝑥𝑡 , the aggregator
generates its feedback 𝑝𝑡 using a causal aggregator function 𝜓𝑡 (·) : X→ P where P
denotes the domain of flexibility feedback that will be formally defined in Section 4.4.
By an “online feedback” solution, we mean that these functions (𝜙𝑡 , 𝜓𝑡) use only
information available locally at time 𝑡 ∈ [𝑇].

107

Algorithm 5: Closed-Loop Feedback Control Framework (for a system operator
(central controller) and an aggregator (local controller)).

for 𝑡 ∈ [𝑇] do
Operator (Central Controller)

Generate actions using the PPC:

𝑢𝑡 = 𝜙𝑡 (𝑝𝑡)
𝐶𝑡 = 𝐶𝑡−1 + 𝑐𝑡 (𝑢𝑡)

Aggregator (Local Controller)
Update system state:

𝑥𝑡+1 = 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡)

Compute estimated MEF:

𝑝𝑡+1 = 𝜓𝑡 (𝑥𝑡+1)

end
Return total cost 𝐶𝑇 ;

In summary, the closed-loop control system in our model proceeds as follows. At
each time 𝑡, the aggregator learns or computes a length-|U| vector 𝑝𝑡 based on
previously received action trajectory 𝑢<𝑡 = (𝑢1, . . . , 𝑢𝑡−1), and sends it to the system
operator.1 The system operator thencomputes a (possibly random) action 𝑢𝑡 = 𝜙𝑡 (𝑝𝑡)
based on the flexibility feedback 𝑝𝑡 and sends it to the aggregator. The operator
chooses its signal 𝑢𝑡 in order to solve the time-𝑡 problem in an online version of
(4.2), so the function 𝜙𝑡 denotes the mapping from the flexibility feedback 𝑝𝑡 to an
optimal solution of the time-𝑡 problem. See 4.6 for examples. The aggregator then
computes the next feedback 𝑝𝑡+1 and the cycle repeats; see Algorithm 5. The goal of
this chapter is to provide concrete constructions of an aggregator function 𝜓 (as an
MEF generator; see Section 4.4) and an operator function 𝜙 (via the PPC scheme;
see Section 4.6).

In the sequel, we demonstrate our system model using an EV charging application,
as an example of the problem stated in (4.2).

1We will omit 𝑢<𝑡 in the notation when it is not essential to our discussion and simplify the
probability vector as 𝑝𝑡 . Note that in (4.7c) we slightly abuse the notation and use 𝑝𝑡 to denote a
conditional distribution. This is only for computational purposes and the information sent from an
aggregator to an operator at time 𝑡 ∈ [𝑇] is still a length-|U| probability vector, conditioned on a fixed
𝑢<𝑡 .

108

An EV Charging Example
Consider an aggregator that is an EV charging facility with 𝑛 accepted users. Each
user 𝑗 has a private vector (𝑎(𝑗), 𝑑 (𝑗), 𝑒(𝑗), 𝑟 (𝑗)) ∈ R4 where 𝑎(𝑗) denotes its
arrival (connecting) time; 𝑑 (𝑗) denotes its departure (disconnecting) time, normalized
according to the time indices in [𝑇]; 𝑒(𝑗) denotes the total energy to be delivered,
and 𝑟 (𝑗) is its peak charging rate. Fix a set of 𝑛 users with their private vectors
(𝑎(𝑗), 𝑑 (𝑗), 𝑒(𝑗), 𝑟 (𝑗)), the aggregator state 𝑥𝑡 at time 𝑡 ∈ [𝑇] is a collection of
length-2 vectors (𝑑𝑡 (𝑗), 𝑒𝑡 (𝑗) : 𝑎(𝑗) ≤ 𝑡 ≤ 𝑑 (𝑗)) for each EV that has arrived and
has not departed by time 𝑡. Here 𝑒𝑡 (𝑗) is the remaining energy demand of user 𝑗 at
time 𝑡 and 𝑑𝑡 (𝑗) is the remaining charging time. The decision 𝑠𝑡 (𝑗) is the energy
delivered to each user 𝑗 at time 𝑡, determined by a scheduling policy 𝜋𝑡 such as the
well-known earliest-deadline-first, least-laxity-first, etc. Let 𝑠𝑡 := (𝑠𝑡 (1), . . . , 𝑠𝑡 (𝑛))
and we have 𝑠𝑡 = 𝜋𝑡 (𝑢𝑡) where 𝑢𝑡 in this example is the aggregate substation power
level, chosen from a small discrete set U. The aggregator decision 𝑠𝑡 (𝑗) ∈ R+ at each
time 𝑡 updates the state, in particular 𝑒𝑡 (𝑗) such that

𝑒𝑡 (𝑗) = 𝑒𝑡−1(𝑗) − 𝑠𝑡 (𝑗) (4.3a)

𝑑𝑡 (𝑗) = 𝑑𝑡−1(𝑗) − Δ (4.3b)

where Δ denotes the time unit and we assume that there is no energy loss. The
laws (4.3a)-(4.3b) are examples of the generic transition functions 𝑓1, . . . , 𝑓𝑇 in (4.1).

Suppose, in the context of demand response, the system operator (a local utility
company, or a building management) sends a signal 𝑢𝑡 that is the aggregate energy
that can be allocated to EV charging. The aggregator makes charging decisions
𝑠𝑡 (𝑗) to track the signal 𝑢𝑡 received from the system operator as long as they will
meet the energy demands of all users before their deadlines. Then the constraints
in (4.2b)-(4.2d) are the following constraints on the charging decisions 𝑠𝑡 , as a
function of 𝑢𝑡 :

𝑠𝑡 (𝑗) = 0 , 𝑡 < 𝑎(𝑗), 𝑗 = 1, . . . , 𝑛, (4.4a)

𝑠𝑡 (𝑗) = 0 , 𝑡 > 𝑑 (𝑗), 𝑗 = 1, . . . , 𝑛, (4.4b)
𝑛∑︁
𝑗=1

𝑠𝑡 (𝑗) = 𝑢𝑡 , 𝑡 = 1, . . . , 𝑇, (4.4c)

𝑇∑︁
𝑡=1

𝑠𝑡 (𝑗) = 𝑒(𝑗), 𝑗 = 1, . . . , 𝑛, (4.4d)

0 ≤ 𝑠𝑡 (𝑗) ≤ 𝑟 (𝑗), 𝑡 = 1, . . . , 𝑇 . (4.4e)

109

In above, constraint (4.4c) ensures that the aggregator decision 𝑠𝑡 tracks the signal 𝑢𝑡
at each time 𝑡 ∈ [𝑇], the constraint (4.4d) guarantees that EV 𝑗’s energy demand is
satisfied, and the other constraints say that the aggregator cannot charge an EV before
its arrival, after its departure, or at a rate that exceeds its limit. Inequalities (4.4a)-
(4.4e) above are examples of the constraints in (4.1). Together, for this EV charging
application, (4.3a)-(4.3b) and (4.4a)-(4.4e) exemplify the dynamic system in (3.3).

The system operator’s objective to minimize the cumulative costs 𝐶𝑇 (𝑢) :=
∑𝑇
𝑡=1 𝑐𝑡𝑢𝑡

where 𝑢 = (𝑢1, . . . , 𝑢𝑇) are substation power levels, as outlined in Section 4.3. The
cost 𝑐𝑡 depends on multiple factors such as the electricity prices and injections from
an installed rooftop solar panel. Overall, the EV charging problem is formulated
below, as a specific example of the generic optimization (4.2a)-(4.2d):

min
𝑢1,...,𝑢𝑇

𝑇∑︁
𝑡=1

𝑐𝑡𝑢𝑡 (4.5a)

(4.3a) − (4.3b) and (4.4a) − (4.4e). (4.5b)

4.4 Definitions of Real-Time Aggregate Flexibility: Maximum Entropy Feed-
back

In this section, we propose a specific function 𝜓𝑡 in the class defined by (4.6) for
computing flexibility feedback to quantify its future flexibility. We will justify our
proposal by showing that the proposed 𝜓𝑡 has several desirable properties for solving
an online version of (4.2) using the real-time feedback-based approach described in
Section 4.3.

Definition of Flexibility Feedback 𝑝𝑡
A major challenge in our problem is that the operator has access to neither the feasible
set nor the dynamics directly. Therefore, a notion termed aggregate flexibility has to
be designed. It is often a “simplified” summary of the constraints in (4.2b)-(4.2d),
as we reviewed in Section 4.2. Notably, existing aggregate flexibility definitions
(for instance, in [32, 33, 35, 36, 76–79]) all focus on the offline version of (4.2). It
remains unclear that first, what is the right notion of real-time aggregate flexibility?
i.e., what is the right form of the flexibility feedback 𝑝𝑡? Second, how can this 𝑝𝑡 be
used by an operator?

110

In the following, we present a design of the flexibility feedback 𝑝𝑡 , which is first
proposed in our previous work [24] for discrete U and [25] for continuous U. It
quantifies future flexibility that will be enabled by an operator action 𝑢𝑡 . The feedback
𝑝𝑡 therefore is a surrogate for the aggregator constraints (4.2b) to guide the operator’s
decision. Let 𝑢 := (𝑢1, . . . , 𝑢𝑇). Specifically, define the set of all feasible action
trajectories for the aggregator as:

S :=
{
𝑢 ∈ U𝑇 : 𝑢 satisfies (4.2b) − (4.2d)

}
.

The following property of the set S is useful, whose proof can be found in Ap-
pendix 4.A.

Lemma 16. The set of feasible action trajectories S is Borel measurable.

Existing aggregate flexibility definitions focus on approximating S such as finding its
convex approximation (see Section 4.2 for more details). Our problem formulation
needs a real-time approximation of this set S, i.e., decompose S along the time axis
𝑡 = 1, . . . , 𝑇 . Throughout, we assume that S is non-empty. Next, we define the
space of flexibility feedback 𝑝𝑡 . Formally, we let P denote a set of density functions
𝑝𝑡 (·) : U→ [0, 1] that maps an action to a value in [0, 1] and satisfies∫

𝑢∈U
𝑝(𝑢)d𝑢 = 1.

Fix 𝑥𝑡 at time 𝑡 ∈ [𝑇]. The aggregator function 𝜓𝑡 (·) : X→ P at each time 𝑡 outputs:

𝜓𝑡 (𝑥𝑡) = 𝑝𝑡 (·|𝑢<𝑡) (4.6)

such that 𝑝𝑡 (·|𝑢<𝑡) : U → [0, 1] is a conditional density function in P. We refer
to 𝑝𝑡 as flexibility feedback sent at time 𝑡 ∈ [𝑇] from the aggregator to the system
operator. In this sense, (4.6) does not specify a specific aggregator function 𝜓𝑡 , but a
class of possible functions 𝜓𝑡 . Every function in this collection is causal in that it
depends only on information available to the aggregator at time 𝑡. In contrast to most
aggregate flexibility notions in the literature [32, 33, 35, 36, 76–79], the flexibility
feedback here is specifically designed for an online feedback control setting.

Maximum Entropy Feedback
The intuition behind our proposal is using the conditional probability 𝑝𝑡 (𝑢𝑡 |𝑢<𝑡)
to measure the resulting future flexibility of the aggregator if the system operator

111

chooses 𝑢𝑡 as the signal at time 𝑡, given the action trajectory up to time 𝑡 − 1. The
sum of the conditional entropy of 𝑝𝑡 thus is a measure of how informative the overall
feedback is. This suggests choosing a conditional distribution 𝑝𝑡 that maximizes its
conditional entropy. Consider the optimization problem:

𭟋 := max
𝑝1,...,𝑝𝑇

𝑇∑︁
𝑡=1
H (𝑈𝑡 |𝑈<𝑡) subject to𝑈 ∈ S (4.7a)

where the variables are conditional density functions:

𝑝𝑡 := 𝑝𝑡 (·|·) := P𝑈𝑡 |𝑈<𝑡
(·|·), 𝑡 ∈ [𝑇], (4.7b)

𝑈 ∈ U is a random variable distributed according to the joint distribution
∏𝑇
𝑡=1 𝑝𝑡

and H (𝑈𝑡 |𝑈<𝑡) is the differential conditional entropy of 𝑝𝑡 defined as:

H (𝑈𝑡 |𝑈<𝑡) :=
∫
𝑢≤𝑡∈U𝑡

(
−

𝑡∏
ℓ=1
𝑝ℓ (𝑢ℓ |𝑢<ℓ)

)
log 𝑝𝑡 (𝑢𝑡 |𝑢<𝑡)d𝑢≤𝑡 . (4.7c)

By definition, a quantity conditioned on “𝑢<1” means an unconditional quantity, so
in the above, H (𝑈1 |𝑈<1) := H (𝑈1) := H (𝑝1).

The chain rule shows that
∑𝑇
𝑡=1H (𝑈𝑡 |𝑈<𝑡) = H (𝑈). Hence (4.7) can be interpreted

as maximizing the entropy H (𝑈) of a random trajectory 𝑈 sampled according
to the joint distribution

∏𝑇
𝑡=1 𝑝𝑡 , conditioned on 𝑈 satisfying 𝑈 ∈ S, where the

maximization is over the collection of conditional distributions (𝑝1, . . . , 𝑝𝑇).

Definition 4.4.1 (Maximum entropy feedback). The flexibility feedback 𝑝∗𝑡 = 𝜓∗𝑡 (𝑢<𝑡)
for 𝑡 ∈ [𝑇] is called the maximum entropy feedback (MEF) if (𝑝∗1, . . . , 𝑝

∗
𝑇
) is the

unique optimal solution of (4.7).

Remark 3. Even though the optimization problem (4.7) involves variables 𝑝𝑡 for
the entire time horizon [𝑇], the individual variables 𝑝𝑡 in (4.7c) are conditional
probabilities that depend only on information available to the aggregator at times 𝑡.
Therefore the maximum entropy feedback 𝑝∗𝑡 in Definition 4.4.1 is indeed causal and
in the class of 𝑝∗𝑡 defined in (4.6). The existence of 𝑝∗𝑡 is guaranteed by Lemma 17
below, which also implies that 𝑝∗𝑡 is unique.

We demonstrate Definition 4.4.1 using a toy example.

112

Example 3 (Maximum entropy feedback 𝑝∗). Consider the following instance of the
EV charging example in Section 4.3. Suppose the number of charging time slots is
𝑇 = 3 and there is one customer, whose private vector is (1, 3, 1, 1) and possible
energy levels are 0 (kWh) and 1 (kWh), i.e., U ≡ {0, 1}. Since there is only one
EV, the scheduling algorithm 𝑢 (disaggregation policy) assigns all power to this
single EV. For this particular choices of 𝑥 and 𝑢, the set of feasible trajectories
is S = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}, shown in Figure 4.4.1 with the corresponding
optimal conditional distributions given by (4.7).

Figure 4.4.1: Feasible trajectories of power signals and the computed maximum
entropy feedback in Example 3.

Properties of 𝑝∗𝑡
We now show that the proposed maximum entropy feedback 𝑝∗𝑡 has several desirable
properties. We start by computing 𝑝∗𝑡 explicitly. Given any action trajectory 𝑢≤𝑡 ,
define the set of subsequent feasible trajectories as:

S(𝑢≤𝑡) :=
{
𝑣>𝑡 ∈ U𝑇−𝑡 : 𝑣 satisfies (4.2b) − (4.2d), 𝑣≤𝑡 = 𝑢≤𝑡

}
.

As a corollary, the size |S(𝑢≤𝑡) | of the set of subsequent feasible trajectories is a
measure of future flexibility, conditioned on 𝑢≤𝑡 . Our first result justifies our calling
𝑝∗𝑡 the optimal flexibility feedback: 𝑝∗𝑡 is a measure of the future flexibility that will
be enabled by the operator’s action 𝑢𝑡 and it attains a measure of system capacity for
flexibility. By definition, 𝑝∗1(𝑢1 |𝑢<1) := 𝑝∗1(𝑢1).

Lemma 17. Let 𝜇(·) denote the Lebesgue measure. The MEF as optimal solutions
of the maximization in (4.7a)-(4.7c) are given by

𝑝∗𝑡 (𝑢 |𝑢<𝑡) ≡
𝜇 (S((𝑢<𝑡 , 𝑢)))
𝜇 (S(𝑢<𝑡))

, ∀(𝑢<𝑡 , 𝑢𝑡) ∈ U𝑡 . (4.8)

Moreover, the optimal value of (4.7a)-(4.7c) is equal to log 𝜇(S).

113

Remark 4. When the denominator 𝜇 (S(𝑢<𝑡)) is zero, the numerator 𝜇 (S((𝑢<𝑡 , 𝑢)))
has also to be zero. For this case, we set 𝑝∗𝑡 (𝑢 |𝑢<𝑡) = 0 and this does not affect the
optimality of (4.7a)-(4.7b).

The proof can be found in Appendix 4.B. The volume 𝜇 (S) is a measure of
flexibility inherent in the aggregator. We will hence call log 𝜇 (S) the system
capacity. Lemma 17 then says that the optimal value of (4.7) is the system capacity,
𭟋 = log 𝜇 (S). Moreover the maximum entropy feedback (𝑝∗1, . . . , 𝑝

∗
𝑇
) is the unique

collection of conditional distributions that attains the system capacity in (4.7). This is
intuitive since the entropy of a random trajectory 𝑥 in S is maximized by the uniform
distribution 𝑞∗ in (4.12) induced by the conditional distributions (𝑝∗1, . . . , 𝑝

∗
𝑇
).

Lemma 17 implies the following important properties of the maximum entropy
feedback.

Corollary 4.4.1 (Feasibility and flexibility). Let 𝑝∗𝑡 = 𝑝∗𝑡 (·|𝑢<𝑡) be the maximum
entropy feedback at each time 𝑡 ∈ [𝑇].

1. For any action trajectory 𝑢 = (𝑢1, . . . , 𝑢𝑇), if

𝑝∗𝑡 (𝑢𝑡 |𝑢<𝑡) > 0 for all 𝑡 ∈ [𝑇],

then 𝑢 ∈ S.

2. For all 𝑢𝑡 , 𝑢′𝑡 ∈ U at each time 𝑡 ∈ [𝑇], if

𝑝∗𝑡 (𝑢𝑡 |𝑢<𝑡) ≥ 𝑝∗𝑡 (𝑢′𝑡 |𝑢<𝑡),

then 𝜇 (|S((𝑢<𝑡 , 𝑢𝑡))) ≥ 𝜇
(
S((𝑢<𝑡 , 𝑢′𝑡))

)
.

The proof is provided in Appendix 4.C. We elaborate the implication of Corollary
4.4.1 for our online feedback-based solution approach.

Remark 5 (Feasibility and flexibility). Corollary 4.4.1 says that the proposed optimal
flexibility feedback 𝑝∗𝑡 provides the right information for the system operator to choose
its action 𝑢𝑡 at time 𝑡.

1. (Feasibility) Specifically, the first statement of the corollary says that if the
operator always chooses an action 𝑢𝑡 with positive conditional probability
𝑝∗𝑡 (𝑢𝑡) > 0 for each time 𝑡, then the resulting action trajectory is guaranteed
to be feasible, 𝑢 ∈ S, i.e., the system will remain feasible at every time 𝑡 ∈ [𝑇]
along the way.

114

2. (Flexibility) Moreover, according to the second statement of the corollary, if
the system operator chooses an action 𝑢𝑡 with a larger 𝑝∗𝑡 (𝑢𝑡) value at time
𝑡, then the system will be more flexible going forward than if it had chosen
another signal 𝑢′𝑡 with a smaller 𝑝∗𝑡 (𝑢′𝑡) value, in the sense that there are more
feasible trajectories in S((𝑢<𝑡 , 𝑢𝑡)) going forward.

As noted in Remark 2, despite characterizations that involve the whole action
trajectory 𝑢, such as 𝑢 ∈ S, these are online properties. This guarantees the feasibility
of the online closed-loop control system depicted in Figure 4.3.1, and confirms the
suitability of 𝑝∗𝑡 for online applications.

4.5 Approximating Maximum Entropy Feedback via Reinforcement Learning
For real-world applications, computing the maximum entropy feedback (MEF) could
be computationally intensive. Thus, instead of computing it precisely, it is desirable
to approximate it. In this section, we discuss the use of model-free reinforcement
learning (RL) to generate an aggregator function 𝜓. For practical implementation,
we switch to the case when U is a discrete set and reuse the notation P to denote a
probability simplex that contains all possible discrete MEF:

P :=

{
𝑝 ∈ R|U| : 𝑝(𝑢) ≥ 0, 𝑢 ∈ U;

∑︁
𝑢∈U

𝑝(𝑢) = 1

}
. (4.9)

We demonstrate that RL can be used to train a generator that outputs approximate
MEF, given the state of the system. To be more precise, the learned aggregator
function 𝜓 : X→ P outputs an estimate of the MEF given the state 𝑥𝑡 at each time
𝑡 ∈ [𝑇], where X is the state space and P is the set of all possible MEF. Note that
the aggregator does not know the cost functions, so it cannot directly use an RL
algorithm and transmit the learned Q-function or actor-critic model to the operator.
Moreover, even if the aggregator knows the cost functions, generating actions using
RL needs to solve two contradicting tasks of both optimizing rewards and penalizing
feasibility violations, which makes the design of reward function and reward clipping
a challenging goal. In our approach, we separate the tasks of enforcing feasibility and
minimizing costs. We generate MEF as feasibility signals via reinforcement learning
methods, and optimize the operator’s objective via a MPC-based method (introduced
in Section 4.6). It is also worth noting that a number of effective heuristics may be
available such as a greedy approximation in [24] and other gradient-based or density
estimation [97] methods. We leave to future work the question of finding an optimal
approximation algorithm.

115

Figure 4.5.1: Learning and testing architecture for learning aggregator functions.

Offline Learning of Aggregator Functions
To learn an aggregator function 𝜓 for estimating MEF, we use an actor-critic
architecture [98] with separate policy and value function networks to enable the
learning of policies on continuous action and state spaces. The actor-critic architecture
is presented in Figure 4.5.1, which shows the information update between actor and
critic networks. Note that in practical actor-critic algorithms, typically the policy,
Q-function(s) and value function(s) are modeled using deep neural networks and the
parameters are updated using policy iteration via stochastic gradient descent. We
omit those details in Figure 4.5.1.

Training Process
During the training process, the data used for defining training dynamics are the
episodes (U𝑡 ,X𝑡 , 𝑓𝑡)𝑇𝑡=1. For example, for the EV charging application in Sec-
tion 4.3, the training data of each episode (day) consist of historical private vectors
(𝑎(𝑗), 𝑑 (𝑗), 𝑒(𝑗), 𝑟 (𝑗)) specified by the users visited the charging station on the
corresponding day. Among actor-critic-based RL algorithms, off-policy actor-critic
methods, such as deep deterministic policy gradient (DDPG) [99] and soft actor-critic
(SAC) [73] are known to attain better data efficiency in many applications. Below
we take SAC, a maximum entropy deep RL algorithm, as an example to demonstrate
the offline learning of an aggregator function 𝜓. In particular, for learning 𝜓, the
objective of SAC is to maximize both the expected return and the expected entropy
of the policy:

𝐽 (𝜓) =
𝑇∑︁
𝑡=1
E(𝑥𝑡 ,𝑝𝑡)∼𝜌𝜓 [𝑟 (𝑥𝑡 , 𝑝𝑡) + 𝛼H(𝜓(·|𝑥𝑡))] (4.10)

116

where 𝑥𝑡 := (𝑥𝑡 , 𝑢𝑡); 𝜌𝜓 denotes the state-action marginals of the trajectory distribution
induced by a policy 𝜓 and 𝑟 (𝑥𝑡 , 𝑝𝑡) is a customized reward function. To estimate
MEF, we need to determine a reward function 𝑟 (𝑥𝑡 , 𝑝𝑡) in (4.10). We adopt the
following reward function that incorporates the constraints and the definition of
MEF:

𝑟 (𝑥𝑡 , 𝑝𝑡) =H(𝑝𝑡) + 𝜎𝑔(𝑥𝑡 ; X𝑡 ,U𝑡) (4.11)

where the first term is critical and it maximizes the entropy of the probability
distribution 𝑝𝑡 , based the definition of the MEF in Definition 4.4.1; 𝑔(𝑥𝑡) = 𝑔(𝑥𝑡 , 𝑢𝑡)
is a function that rewards the state and action if they satisfy the constraints 𝑥𝑡 ∈ X𝑡 and
𝑢𝑡 ∈ U𝑡 . The reward function is independent of the cost functions, which are synthetic
costs in the training stage. A concrete example of 𝑔(𝑥𝑡) is given in Section 4.7. We
clip the output MEF given by the policy to make sure it is a probability vector in the
probability defined in simplex (4.9). In Figure 4.5.2, a training curve is given and it
displays the changes of rewards regarding to the number of training episodes.

Testing Process
With a trained aggregator function 𝜓 that tries to optimize 𝐽 (𝜓) in (4.10), we test the
closed-loop system on new episodes defined by testing data, as shown in Figure 4.5.1.
The trained aggregator function (parameterized by a deep neural network) is used as
a “black box” function that maps each state 𝑥𝑡 to feedback 𝑝𝑡 .2 Note that the real
costs used in the testing process may not be same as the synthetic costs used in the
training process, because the aggregator has no access to the costs as assumed in
Section 4.3.

In the sequel, with the learned MEF, we introduce a closed-loop framework that
combines model predictive control (MPC) and RL to coordinate a system operator
and an aggregator in real-time. It is worth noting that the learned MEF may be
different from the exact MEF provided in Definition 4.4.1. However, later we show
in Section 4.7 that with the learned MEF, the constraints on the aggregator’s side
can almost be satisfied with a reasonable tuning parameter. In the EV charging
example described in Section 4.3, this means the EV’s batteries are fully charged;
see Figure 4.7.2 for details.

2In our model, in general the aggregator functions 𝜓1, . . . , 𝜓𝑇 can be time-dependent. In the
offline learning process presented in this section, we use a single function to generate feedback.

117

Figure 4.5.2: Average rewards (defined in (4.11)) in the training stage with a tuning
parameter 𝛽 = 6 × 103. Shadow region measures the variance.

4.6 Penalized Predictive Control
Consider the system model in Section 4.3. In this setting, the operator seeks to
minimize the cost in an online manner, i.e., at time 𝑡 ∈ [𝑇] the operator only knows
the objective functions 𝑐1, . . . , 𝑐𝑡 and the flexibility feedback 𝑝1, . . . , 𝑝𝑡 . The task
of the operator is to, given the maximum entropy feedback, design a sequence of
operator functions 𝜙1, . . . , 𝜙𝑇 to generate actions 𝑢1, . . . , 𝑢𝑇 that are always feasible
with respect to the constraints and that minimize the cumulative cost.

Key Idea: Maximum Entropy Feedback as a Penalty Term
There is in general a trade-off between ensuring future flexibility and minimizing the
current system cost in predictive control. The action 𝑢𝑡 guaranteeing the maximal
future flexibility, i.e., having the largest 𝑝∗𝑡 (𝑢𝑡 |𝑢<𝑡) may not be the one that minimizes
the current cost function 𝑐𝑡 and vice versa. Therefore, the online algorithm for
the central controller must balance future flexibility and current cost. The key
idea is to use MEF as a penalty term in the offline optimization problem. Note
that Corollary 4.4.1 guarantees that the online agent can always find a feasible
action 𝑢 ∈ S. Indeed, knowing the MEF 𝑝∗𝑡 for every 𝑡 ∈ [𝑇] is equivalent to
knowing the set of all admissible sequences of actions S. To see this, consider the
unique maximum entropy feedback (𝑝∗1, . . . , 𝑝

∗
𝑇
) guaranteed by Lemma 17 and let

𝑞(𝑢) = ∏𝑇
𝑡=1 𝑝

∗
𝑡 (𝑢𝑡 |𝑢<𝑡) denote the joint distribution of the action trajectory 𝑢. Then

(4.8) implies that the joint distribution 𝑞 is the uniform distribution over the set S of

118

all feasible trajectories:

𝑞(𝑢) :=

1/𝜇 (S) if 𝑢 ∈ S

0 otherwise
. (4.12)

Using this observation, the constraints (4.2b)-(4.2d) in the offline optimization can
be rewritten as a penalty in the objective of (4.2a). We present a useful lemma that
both motivates our online control algorithm and builds up the optimality analysis in
Section 4.6.

Lemma 18. The offline optimization (4.2a)-(4.2d) is equivalent to the following
unconstrained minimization for any 𝛽 > 0:

inf
𝑢∈U𝑇

𝑇∑︁
𝑡=1

(
𝑐𝑡 (𝑢𝑡) − 𝛽 log 𝑝∗𝑡 (𝑢𝑡 |𝑢<𝑡)

)
.

The proof of Lemma 18 can be found in Appendix 4.E. It draws a clear connection
between MEF and the offline optimal, which we exploit in the design of an online
system operator in the next section.

Algorithm: Penalized Predictive Control via MEF
Our proposed design, termed penalized predictive control (PPC), is a combination of
model predictive control (MPC) (c.f. [100]), which is a competitive policy for online
optimization with predictions, and the idea of using MEF as a penalty term. This
design makes a connection between the MEF and the well-known MPC scheme. The
MEF as a feedback function, only contains limited information about the dynamical
system in the local controller’s side. (It contains only the feasibility information of
the current and future time slots, as explained in Section 4.4). The PPC scheme
therefore is itself a novel contribution since it shows that, even if only feasibility
information is available, it is still possible to incorporate the limited information to
MPC as a penalty term.

We present PPC in Algorithm 6, where we use the following notation. Let 𝛽𝑡 > 0
be a tuning parameter in predictive control to trade-off the flexibility in the future
and minimization of the current system cost at each time 𝑡 ∈ [𝑇]. The next corollary
follows whose proof is in Appendix 4.C.

Corollary 4.6.1 (Feasibility of PPC). When 𝑝𝑡 = 𝑝∗𝑡 for all 𝑡 ∈ [𝑇], the MEF defined
in Definition 4.4.1, the sequence of actions 𝑢 = (𝑢1, . . . , 𝑢𝑇) generated by the PPC
in (4.13) always satisfies 𝑢 ∈ S for any sequence of tuning parameters (𝛽1, . . . , 𝛽𝑇).

119

Algorithm 6: Penalized Predictive Control (PPC).

Data: Sequentially arrived cost functions and MEF
Result: Actions 𝑢 = (𝑢1, . . . , 𝑢𝑇)
for 𝑡 = 1, . . . , 𝑇 do

Choose an action 𝑢𝑡 by minimizing:

𝑢𝑡 = 𝜙𝑡 (𝑝𝑡) := arg inf
𝑢𝑡∈U

(𝑐𝑡 (𝑢𝑡) − 𝛽𝑡 log 𝑝𝑡 (𝑢𝑡 |𝑢<𝑡)) (4.13)

end
Return 𝑢;

Framework: Closed-Loop Control between Local and Central Controllers
Given the PPC scheme described above, we can now formally present our online
control framework for the distant central controller and local controller (defined in
Section 4.3). Recall that an overview of the closed-loop control framework has been
given in Algorithm 5, where 𝜙 denotes an operator function and 𝜓 is an aggregator
function. To the best of our knowledge, this chapter is the first to consider such a
closed-loop control framework with limited information communicated in real-time
between two geographically separate controllers seeking to solve an online control
problem. We present the framework below.

At each time 𝑡 ∈ [𝑇], the local controller first efficiently generates estimated MEF
𝑝𝑡 ∈ P using an aggregator function 𝜓𝑡 trained by a reinforcement learning algorithm.
After receiving the current MEF 𝑝𝑡 and cost function 𝑐𝑡 (future 𝑤 MEF and costs if
predictions are available), the central controller uses the PPC scheme in Algorithm 6
to generate an action 𝑢𝑡 ∈ U and sends it back to the local controller. The local
controller then updates its state 𝑥𝑡 ∈ X to a new state 𝑥𝑡+1 based on the system
dynamic in (3.3) and repeats this procedure again. In the next Section, we use an EV
charging example to verify the efficacy of the proposed method.

Optimality Analysis
To end our discussion of PPC we focus on optimality. For the ease of analysis, we
assume that the action space U is the set of real numbers R; however, as noted in
Remark 1, our system and the definition of MEF can also be made consistent with a
discrete action space.

To understand the optimality of PPC we focus on standard regularity assumptions
for the cost functions and the time-varying constraints. We assume cost functions

120

are strictly convex and differentiable, which is common in practice. Further, let
𝜇(·) denote the Lebesgue measure. Note that the set of subsequent feasible action
trajectories S(𝑢≤𝑡) is Borel-measurable for all 𝑡 ∈ [𝑇], implied by the proof of
Corollary 16. We also assume that the measure of the set of feasible actions
𝜇(S(𝑢≤𝑡)) is differentiable and strictly logarithmically-concave with respect to the
subsequence of actions 𝑢𝑡 = (𝑢1, . . . , 𝑢𝑡) for all 𝑡 ∈ [𝑇], which is also common in
practice, e.g., it holds in the case of inventory constraints

∑𝑇
𝑡=1 ∥𝑢𝑡 ∥2 ≤ 𝐵 with a

budget 𝐵 > 0. Finally, recall the definition of the set of subsequent feasible action
trajectories:

S(𝑢≤𝑡) :=
{
𝑣>𝑡 ∈ U𝑇−𝑡 : 𝑣 satisfies (4.2b) − (4.2d), 𝑣≤𝑡 = 𝑢≤𝑡

}
.

Putting the above together, we can state our assumption formally as follows.

Assumption 4. The cost functions 𝑐𝑡 (𝑢) : R → R+ are differentiable and strictly
convex. The mappings 𝜇(S(𝑢≤𝑡)) : R𝑡 → R+ are differentiable and strictly
logarithmically-concave.

Given regularity of the cost functions and time-varying constraints, we can prove
optimality of PPC.

Theorem 4.6.1 (Existence of optimal actions). Let U = R. Under Assumption 3 and
4, there exists a sequence 𝑏1, . . . , 𝑏𝑇 such that implementing (4.13) with 𝛽𝑡 = 𝑏𝑡 and
𝑝𝑡 = 𝑝∗𝑡 at each time 𝑡 ∈ [𝑇] ensures 𝑢 = (𝑢∗1, . . . , 𝑢

∗
𝑇
), i.e., the generated actions

are optimal.

Crucially, Theorem 4.6.1 shows that there exists a sequence of “good” tuning
parameters so that the PPC scheme is able to generate optimal actions under
reasonable assumptions. However, note that the assumption of U = R is fundamental.
When the action space U is discrete or U is a high-dimensional space, it is impossible
to generate the optimal actions because, in general, fixing 𝑡, the differential equations
in the proof of Theorem 4.6.1 (see Appendix 4.F) do not have the same solution for
all 𝛽𝑡 > 0. Therefore a detailed regret analysis is necessary in such cases, which is a
challenging task for future work.

4.7 Application
In this section, we present experimental results for the case of online EV charging,
introduced in Section 4.3 as an example of our system model (see Section 4.3). The
notation used in this section, if not defined, can be found in Section 4.3.

121

Experimental Setups
In the following, we present settings of parameters and useful metrics in our
experiments.

Dataset and hardware. We use real EV charging data from ACN-Data [1], which is
a dataset collected from adaptive EV charging networks (ACNs) at Caltech and JPL.
The detailed hardware setup for that EV charging network structure can be found
in [101].

Error metrics. Recall the EV charging example in optimization (4.5a)-(4.5b). We
first introduce two error metrics to measure the EV charging constraint violations.
Note that the constraints (4.4a), (4.4b) and (4.4e) are hard constraints depending
only on the scheduling policy, but not the actions and energy demands. Therefore
they can be automatically satisfied in our experiments by fixing a scheduling policy
satisfying them such as least laxity first. Violations may happen on constraint (4.4c)
and (4.4d). To measure the violation of (4.4c), we use the (normalized) mean squared
error (MSE) as the tracking error:

MSE :=
𝐿∑︁
𝑘=1

𝑇∑︁
𝑡=1

��� 𝑁∑︁
𝑗=1

𝑠
(𝑘)
𝑡 (𝑗) − 𝑢

(𝑘)
𝑡

���2/(𝐿 × 𝑇 × 𝜉) , (4.14)

where 𝑢(𝑘)𝑡 is the 𝑡-th power signal for the 𝑘-th test and 𝑠(𝑘)𝑡 (𝑗) is the energy scheduled
to the 𝑗-th charging session at time 𝑡 for the 𝑘-th test. To better approximate real-world
cases, we consider an additional operational constraints for the operator (central
controller) and require that 𝑢𝑡 ≤ 𝜉 (kWh) for every 𝑡 ∈ [𝑇]. The total number of tests
is 𝐿 and the total number of charging sessions is 𝑛. Additionally, define the mean
percentage error with respect to the undelivered energy corresponding to (4.4d) as

MPE := 1 −
𝐿∑︁
𝑘=1

𝑇∑︁
𝑡=1

𝑛∑︁
𝑗=1

𝑠
(𝑘)
𝑡 (𝑗)

/(
(𝐿 × 𝑇) ·

𝑛∑︁
𝑗=1
𝑒 𝑗

)
, (4.15)

where 𝑒 𝑗 is the energy request for each charging session 𝑗 ∈ [𝑛]; 𝑠(𝑘)𝑡 (𝑗) is the energy
scheduled to the 𝑗-th charging session at time 𝑡 for the 𝑘-th test.

Hyper-parameters.

The detailed parameters used in our experiments are shown in Table 4.7.1.

Control spaces. For the experimental results presented in this section, the control state
space is X = R2×𝑊

+ where𝑊 is the total number of charging stations and a state vector
for each charging station is (𝑒𝑡 , [𝑑 (𝑗) − 𝑡]+), i.e., the remaining energy to be charged

122

Table 4.7.1: Hyper-parameters in the experiments.

Parameter Value
System Operator

Number of power levels |U| 10
Cost functions 𝑐1, . . . , 𝑐𝑇 Average LMPs
Operator function 𝜙 Penalized Predictive Control
Tuning parameter 𝛽 1 × 103 - 1 × 106

EV Charging Aggregator
Number of Chargers𝑊 54
State space X R108

+
Action space [0, 1]10

Time interval Δ 12 minutes
Private vector (𝑎(𝑗), 𝑑 (𝑗), 𝑒(𝑗), 𝑟 (𝑗)) ACN-Data [1]
Power rating 150 kW
Scheduling algorithm 𝜋 Least Laxity First (LLF)
Laxity 𝑑𝑡 (𝑗) − 𝑒𝑡 (𝑗)/𝑟 (𝑗)
RL algorithm Soft Actor-Critic (SAC) [73]
Optimizer Adam [102]
Learning rate 3 · 10−4

Discount factor 0.5
Relay buffer size 106

Number of hidden layers 2
Number of hidden units per layer 256
Number of samples per minibatch 256
Non-linearity ReLU
Reward function 𝜎1 = 0.1, 𝜎2 = 0.2, 𝜎3 = 2
Temperature parameter 0.5

and the remaining charging time if it is being used (see Section 4.3); otherwise the
vector is an all-zero vector. The control action space is U = {0, 15, 30, . . . , 150}
(unit: kW) with |U| = 10, unless explicitly stated. The scheduling policy 𝜋 is fixed
to be least-laxity-first (LLF).

RL spaces. The RL action space3 of the Markov decision process used in the
RL algorithm is [0, 1]10. The outputs of the neural networks are clipped into the
probability simplex (space of MEF) P afterwards.

3Note that the RL action space (consisting of 𝑝𝑡 ’s) and state space (consisting of 𝑥𝑡 ’s) referred
here are the standard definitions in the context of RL and they are different from the “control action
space” U and “control state space” X defined in Section 4.3.

123

RL rewards. We use the following specific reward function for our EV charging
scenario, as a concrete example of (4.11):

𝑟EV(𝑥𝑡 , 𝑝𝑡) =H(𝑝𝑡)

+𝜎1

𝑛′∑︁
𝑖=1
∥𝑢𝑡 (𝑖)∥2

−𝜎2

𝑛′∑︁
𝑖=1

(
I(𝑎(𝑗𝑖) ≤ 𝑡 ≤ 𝑎(𝑗𝑖) + Δ)

[
𝑒(𝑖) −

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑖)
]
+

)
−𝜎3

�����𝜙𝑡 (𝑝𝑡) − 𝑛′∑︁
𝑖=1

𝑢𝑡 (𝑗)
����� (4.16)

where 𝜎1, 𝜎2 and 𝜎3 are positive constants; 𝑛′ is the number of EVs being charged;
𝜙𝑡 is the operator function, which is specified by (4.13); I(·) denotes an indicator
function and 𝑎(𝑗𝑖) is the arrival time of the 𝑖 − 𝑡ℎ EV in the charging station with 𝑗𝑖
being the index of this EV in the total accepted charging sessions [𝑛]. The entropy
function H(𝑝𝑡) in the first term is a greedy approximation of the definition of MEF
(see Definition 4.4.1). The second term is to further enhance charging performance
and the last two terms are realizations of the last term in (4.11) for constraints (4.4c)
and (4.4d). Note that The other constraints in the example shown in Section 4.3
can automatically be satisfied by enforcing the constraints in the fixed scheduling
algorithm 𝜋. With the settings described above, in Figure 4.5.2 we show a typical
training curve of the reward function in (4.16). We observe policy convergence with
respect to a wide range of choices of the hyper-parameters 𝜎1, 𝜎2 and 𝜎3. In our
experiments, we do not optimize them but fix the constants in (4.16) as 𝜎1 = 0.1,
𝜎2 = 0.2 and 𝜎3 = 2.

Cost functions. We consider the specific form of costs in (4.5a). In the RL training
process, we train an aggregator function 𝜓 using linear price functions 𝑐𝑡 = 1 − 𝑡/24
where 𝑡 ∈ [0, 24] (unit: Hrs) is the time index and we test the trained system with
real price functions 𝑐1, . . . , 𝑐𝑇 being the average locational marginal prices (LMPs)
on the CAISO (California Independent System Operator) day-ahead market in 2016
(depicted at the bottom of Figure 4.7.3).

Tuning parameters. In PPC defined in Algorithm 6, there is a sequence of tuning
parameters (𝛽1, . . . , 𝛽𝑇). In our experiments, we fix 𝛽𝑡 = 𝛽 for all 𝑡 ∈ [𝑇] where
𝛽 > 0 is a universal tuning parameter that can be varied in our experiments.

124

Figure 4.7.1: Trade-offs of cost and charging performance. The dashed curve in the
left figure corresponds to offline optimal cost. The tested days are selected (with no
less than 30 charging sessions, i.e., 𝑁 ≥ 30) from Dec. 2, 2019 to Jan. 1, 2020.

Figure 4.7.2: Charging results of EVs controlled by PPC with tuning parameters
𝛽 = 2 × 103 (top), 4 × 103 (mid) and 6 × 103 (bot) for selected days (with no less
than 30 charging sessions, i.e., 𝑁 ≥ 30) from Dec. 2, 2019 to Jan. 1, 2020. Each bar
represents a charging session.

Experimental Results.
Sensitivity of 𝛽. We first show how the changes of the tuning parameter 𝛽 affect the
total cost and feasibility. Figure 4.7.1 compares the results by varying 𝛽. The agents
are trained on data collected from Nov. 1, 2018 to Dec. 1, 2019 and the tests are
performed on data from Dec. 2, 2019 to Jan. 1, 2020 . Weekends and days with
less than 30 charging sessions are removed from both training and testing data. For

125

0

20

40

60

80

100

120

P
ow

er
(k

W
)

Offline

MPC

PPC

0 3 6 9 12 15 18 21

Hrs

25

50

P
ri

ce
($

)

Figure 4.7.3: Substation charging rates generated by the PPC (orange) in the
closed-loop control shown in Algorithm 5, together with the MPC generated (blue)
and global optimal (dashed black) charging rates.

charging performance, we show in Figure 4.7.2 the battery states of each session
after the charging cycle ends, tested with tuning parameters 𝛽 = 2 × 103, 4 × 103

and 6 × 103, respectively. The results indicate that with a sufficiently large tuning
parameter, the charging actions given by the PPC is able to satisfy EVs’ charging
demands and in practice, there is a trade-off between costs and feasibility depending
on the choice of tuning parameters.

Charging curves. In Figure 4.7.3, substation charging rates (in kW) are shown. The
charging rates generated by the PPC correspond to a trajectory(∑︁

𝑗

𝑠1(𝑗)/Δ, . . . ,
∑︁
𝑗

𝑠𝑇 (𝑗))Δ
)
,

which is the aggregate charging power given by the PPC for all EVs at each time
𝑡 = 1, . . . , 𝑇 . The agent is trained on data collected at Caltech from Nov. 1, 2018 to
Dec. 1, 2019 and tested on Dec. 16, 2019 at Caltech using real LMPs on the CAISO
day-ahead market in 2016. We use a tuning parameter 𝛽 = 4 × 103 for both training
and testing. The figure highlights that, with a suitable choice of tuning parameter,
the operator is able to schedule charging at time slots where prices are lower and
avoid charging at the peak of prices, as desired. In particular, it achieves a lower
cost compared with the commonly used MPC scheme described in (2.3)-(4.17f).The
offline optimal charging rates are also provided.

126

0.0 0.2 0.4 0.6 0.8 1.0
MPE

0

10

20

30

C
os

ts
(k

)

Offline

MPC

PPC

Figure 4.7.4: Cost-energy curves for the offline optimization in (4.2a)-(4.2d) (for the
example in Section 4.3), MPC (defined in (4.17a)-(4.17f)) and PPC (introduced in
Section 4.6).

Comparison of PPC and MPC. In Figure 4.7.4, we show the changes of the
cumulative costs by varying the mean percentage error (MPE) with respect to the
undelivered energy defined in (4.15). There are in total 𝐾 = 14 episodes tested for
days selected from Dec. 2, 2019 to Jan. 1, 2020 (days with less than 30 charging
sessions are removed, i.e. we require, 𝑁 ≥ 30). Note that 0 ≤ MPE ≤ 1 and the larger
MPE is, the higher level of constraint violations we observe. We allow constraint
violations and modify parameters in the MPC and PPC to obtain varying MPE values.
For the PPC, we vary the tuning parameter 𝛽 to obtain the corresponding costs and
MPE. For the MPC in our tests, we solve the following optimization at each time for
obtaining the charging decisions 𝑠𝑡 = (𝑠𝑡 (1), . . . , 𝑠𝑡 (𝑛′)):

𝑠𝑡 = arg min
𝑠𝑡

𝑡 ′∑︁
𝜏=𝑡

𝑐𝜏

(𝑛′∑︁
𝑖=1

𝑠𝜏 (𝑖)
)

subject to : (4.17a)

𝑠𝜏 (𝑖) = 0 , 𝜏 < 𝑎(𝑖), 𝑖 = 1, . . . , 𝑛′, (4.17b)

𝑠𝜏 (𝑖) = 0 , 𝜏 > 𝑑 (𝑖), 𝑖 = 1, . . . , 𝑛′, (4.17c)
𝑛′∑︁
𝑖=1

𝑠𝜏 (𝑖) = 𝑢𝑡 , 𝜏 = 𝑡, . . . , 𝑡′, (4.17d)

𝑇∑︁
𝜏=1

𝑠𝜏 (𝑖) = 𝛾 · 𝑒(𝑖), 𝑖 = 1, . . . , 𝑛′, (4.17e)

0 ≤ 𝑠𝜏 (𝑖) ≤ 𝑟 (𝑖), 𝜏 = 𝑡, . . . , 𝑡′ (4.17f)

127

where at time 𝑡, the integer 𝑛′ denotes the number of EVs being charged at the
charging station and the time horizon of the online optimization is from 𝜏 = 𝑡 to 𝑡′,
which is the latest departure time of the present charging sessions; 𝑎(𝑖) and 𝑑 (𝑖)
are the arrival time and departure time of the 𝑖-th session; 𝛾 > 0 relaxes the energy
demand constraints and therefore changes the MPE region for MPC. The offline
cost-energy curve is obtained by varying the energy demand constraints in (4.4d) in
a similar way. We assume there is no admission control and an arriving EV will take
a charger whenever it is idle for both MPC and PPC. Note that this MPC framework
is widely studied [103] and used in EV charging applications [96]. It requires the
precise knowledge of a 108-dimensional state vector of 54 chargers at each time
step. We observe that with only feasibility information, PPC outperforms MPC for
all 0 ≤ MPE ≤ 1. The main reason that PPC outperforms vanilla MPC is that PPC
utilizes MEF as its input, which is generated by a pre-trained aggregator function.
Therefore the MEF may contain useful future feasibility information that vanilla
MPC does not know, despite that it is trained and tested on separate datasets.

128

APPENDIX

4.A Proof of Lemma 16
Proof. We first define a set 𝑓 −1 (X𝑡) denoting the inverse image of the set X𝑡 for
actions: 𝑓 −1 (X𝑡) (𝑢<𝑡) := {𝑢 ∈ U : 𝑓 (𝑥𝑡−1, 𝑢) ∈ X𝑡} . The inverse image 𝑓 −1 (X𝑡)
depends only on the past actions 𝑢<𝑡 since the states 𝑥<𝑡 are determined by 𝑢<𝑡 and
a pre-fixed initial state 𝑥1 via the dynamics in (3.3). Note that X𝑡 and the dynamic
𝑓 are Borel measurable. Therefore the inverse image 𝑓 −1 (X𝑡) is also a Borel set,
implying that the intersection U𝑡

⋂
𝑓 −1 (X𝑡) is also Borel measurable. The set of

feasible action trajectories S can be reprised as

S :=
{
𝑢 ∈ U𝑇 : 𝑢𝑡 ∈ U𝑡

⋂
𝑓 −1 (X𝑡) (𝑢<𝑡),∀𝑡 ∈ [𝑇]

}
,

which is a Borel measurable set of all feasible sequences of actions. □

4.B Proof of Lemma 17
Proof of Lemma 17. We prove the statement by induction. It is straightforward to
verify the results hold when 𝑇 = 1. We suppose the lemma is true when 𝑇 = 𝑚.
Suppose 𝑇 = 𝑚 + 1. Let

𭟋(𝑢) := max
𝑝2,...,𝑝𝑇

𝑇∑︁
𝑡=2
H (𝑈𝑡 |U2:𝑡−1;𝑈1 = 𝑢)

denote the optimal value corresponding to the time horizon 𝑡 ∈ [𝑇], given the first
action𝑈1 = 𝑢. By the definition of conditional entropy, we have

𭟋 = max
𝑝1

∫
𝑢∈U

𝑝1(𝑢)𭟋(𝑢)d𝑢 + H(𝑝1).

By the induction hypothesis, 𭟋(𝑢) = 𝜇 (S(𝑢)). Therefore,

𭟋 =max
𝑝1

∫
𝑢∈U

𝑝1(𝑢) log 𝜇 (S(𝑢)) d𝑢 + H(𝑝1)

=max
𝑝1

∫
𝑢∈U

𝑝1(𝑢) log
(
𝜇 (S(𝑢))
𝑝1(𝑢)

)
d𝑢

whose optimizer 𝑝∗1 satisfies (4.8) and we get 𭟋 = 𝜇 (S). The lemma follows by
finding the optimal conditional distributions 𝑝∗1, . . . , 𝑝

∗
𝑇

inductively. □

4.C Proof of Corollary 4.4.1
Proof of Corollary 4.4.1. Lemma 17 shows that the value of the density function
corresponding to choosing 𝑢𝑡 = 𝑢 in the MEF is proportional to the measure of

129

S((𝑢<𝑡 , 𝑢)), completing the proof of interpretability. According to the explicit expres-
sion in (4.8) of the MEF, the selected action 𝑢 always ensures that 𝜇((S((𝑢<𝑡 , 𝑢))) > 0
and therefore the set S((𝑢<𝑡 , 𝑢) is non-empty. This guarantees that the generated
sequence 𝑢 is always in S. □

4.D Proof of Corollary 4.6.1

Proof of Corollary 4.6.1. The explicit expression in Lemma 17 ensures that when-
ever 𝑝∗𝑡 (𝑢𝑡 |𝑢<𝑡) > 0, then there is always a feasible sequence of actions in S (𝑢<𝑡).
Now, if the tuning parameter 𝛽𝑡 > 0, then the optimization (4.13) guarantees that
𝑝∗𝑡 (𝑢𝑡 |𝑢<𝑡) > 0 for all 𝑡 ∈ [𝑇]; otherwise, the objective value in (4.13) is unbounded.
Corollary 4.4.1 guarantees that for any sequence of actions 𝑢 = (𝑢1, . . . , 𝑢𝑇), if
𝑝∗𝑡 (𝑢𝑡 |𝑢<𝑡) > 0 for all 𝑡 ∈ [𝑇], then 𝑢 ∈ S. Therefore, the sequence of actions 𝑢
given by the PPC is always feasible. □

4.E Proof of Theorem 18
Proof of Lemma 18. We note that the offline optimization (4.2a)–(4.2d) is equivalent
to

inf
𝑢∈U𝑇

𝑇∑︁
𝑡=1
𝑐𝑡 (𝑢𝑡) − 𝛽 log 𝑞(𝑢) (4.18)

for any 𝛽 > 0 and 𝑞(𝑢) is a uniform distribution on S:

𝑞(𝑢) :=

1/𝜇 (S) if 𝑢 ∈ S

0 otherwise

where 𝜇(·) is the Lebesgue measure. Further, decomposing the joint distribution
𝑞(𝑢) = ∏𝑇

𝑡=1 𝑝
∗
𝑡 (𝑢𝑡 |𝑢<𝑡) into the conditional distributions given by (4.7a)-(4.7c), the

objective function (4.18) becomes

𝑇∑︁
𝑡=1

𝑐𝑡 (𝑢𝑡) − 𝛽 log

(
𝑇∏
𝑡=1

𝑝∗𝑡 (𝑢𝑡 |𝑢<𝑡)
)

=

𝑇∑︁
𝑡=1

(
𝑐𝑡 (𝑢𝑡) − 𝛽 log 𝑝∗𝑡 (𝑢𝑡 |𝑢<𝑡)

)
,

which implies the lemma. □

130

4.F Proof of Theorem 4.6.1
Proof. Define the following optimal cost-to-go function, which computes the minimal
cost given a subsequence of actions:

𝑉OPT
𝑡 (𝑢<𝑡) := min

𝑢𝑡:𝑇∈U𝑇−𝑡+1

(
𝑇∑︁
𝜏=𝑡

𝑐(𝑢𝜏) − 𝛽 log 𝑝∗𝑡 (𝑢𝑡:𝑇 |𝑢∗𝑡−𝑘:𝑡−1)
)

=min
𝑢𝑡∈U

(
𝑐(𝑢𝑡) − log 𝑝∗𝑡 (𝑢𝑡 |𝑢∗𝑡−𝑘:𝑡−1)+

min
𝑢𝑡+1:𝑇∈U𝑇−𝑡

(𝑇∑︁
𝜏=𝑡+1

𝑐(𝑢𝜏) − log 𝑝∗𝑡+1(𝑢𝑡+1:𝑇 |𝑢∗𝑡−𝑘:𝑡)
))

=min
𝑢𝑡∈U

(
𝑐(𝑢𝑡) − log 𝑝∗𝑡 (𝑢𝑡 |𝑢∗𝑡−𝑘:𝑡−1) +𝑉

OPT
𝑡+1 (𝑢≤𝑡)

)
.

Let 𝜇(·) denote the Lebesgue measure. Based on the definition of the optimal
cost-to-go functions defined above and applying Lemma 18, we obtain the following
expression of the optimal action 𝑢∗𝑡 at each time 𝑡 ∈ [𝑇]:

𝑢∗𝑡 = arg min
𝑢𝑡∈U

(
𝑐𝑡 (𝑢𝑡) − 𝛽 log 𝑝∗𝑡 (𝑢𝑡 |𝑢∗𝑡−𝑘:𝑡−1) +𝑉

OPT
𝑡+1 (𝑢𝑡−𝑘+1:𝑡)

)
= arg min

𝑢𝑡∈U

(
𝑐𝑡 (𝑢𝑡) − 𝛽 log

𝜇
(
S(𝑢∗

𝑡−𝑘:𝑡−1, 𝑢𝑡)
)

𝜇

(
S(𝑢∗

𝑡−𝑘:𝑡−1)
)

+ min
𝑢𝑡+1:𝑇

(𝑇∑︁
𝜏=𝑡+1

(
𝑐(𝑢𝜏) − 𝛽 log

𝜇
(
S(𝑢∗

𝑡−𝑘:𝑡−1, 𝑢𝑡:𝜏)
)

𝜇

(
S(𝑢∗

𝑡−𝑘:𝑡−1, 𝑢𝑡:𝜏−1)
))))

= arg min
𝑢𝑡∈U

(
𝑐𝑡 (𝑢𝑡) − 𝛽 log

𝜇
(
S(𝑢∗

𝑡−𝑘:𝑡−1, 𝑢𝑡)
)

𝜇

(
S(𝑢∗

𝑡−𝑘:𝑡−1)
)

+ min
𝑢𝑡+1:𝑇

(𝑇∑︁
𝜏=𝑡+1

𝑐(𝑢𝜏) + 𝛽 log
𝜇

(
S(𝑢∗

𝑡−𝑘:𝑡−1, 𝑢𝑡)
)

𝜇

(
S(𝑢∗

𝑡−𝑘:𝑡−1, 𝑢𝑡:𝑇)
))) ,

which implies (4.19) below

𝑢∗𝑡 = arg min
𝑢𝑡∈U

(
𝑐𝑡 (𝑢𝑡) + min

𝑢𝑡+1:𝑇

(
𝑇∑︁

𝜏=𝑡+1
𝑐(𝑢𝜏) − log 𝜇

(
S(𝑢∗𝑡−𝑘:𝑡−1, 𝑢𝑡:𝑇)

))
︸ ︷︷ ︸

𝑓 (𝑢𝑡)

)
(4.19)

131

and when 𝑢<𝑡 = 𝑢∗<𝑡 , the solution of the PPC in Algorithm 6 satisfies

𝑢𝑡 = arg min
𝑢𝑡∈U

(
𝑐𝑡 (𝑢𝑡) − 𝛽 log 𝑝𝑡 (𝑢𝑡 |𝑢∗𝑡−𝑘:𝑡−1)

)
= arg min

𝑢𝑡∈U

©«𝑐𝑡 (𝑢𝑡) − 𝛽 log
𝜇

(
S(𝑢∗

𝑡−𝑘:𝑡−1, 𝑢𝑡)
)

𝜇

(
S(𝑢∗

𝑡−𝑘:𝑡−1)
) ª®®¬

= arg min
𝑢𝑡∈U

(
𝑐𝑡 (𝑢𝑡) + 𝛽 log

(
1/𝜇

(
S(𝑢∗𝑡−𝑘:𝑡−1, 𝑢𝑡)

))︸ ︷︷ ︸
𝑔(𝑢𝑡)

)
. (4.20)

Since the cost functions 𝑐𝑡 (𝑢) and the measure log(1/𝜇(S(𝑢))) are strictly convex,
the inner minimization in (4.19) is a convex minimization and hence 𝑓 (𝑢𝑡) is convex.
Therefore, 𝑢∗𝑡 in (4.19) is unique. Denoting by 𝑐′ and 𝑓 ′ the corresponding derivatives
of a given cost function 𝑐 and the function 𝑓 defined in (4.19), we have

𝑐′𝑡 (𝑢∗𝑡) + 𝑓 ′(𝑢∗𝑡) = 0.

Furthermore, the unique solution of the PPC scheme satisfies

𝑐′𝑡 (𝑢𝑡) + 𝛽𝑔′(𝑢𝑡) = 0

where 𝑔′ is the derivative of the function 𝑔 defined in (4.20). Choosing 𝛽 = 𝑏𝑡 =

𝑓 ′(𝑢∗𝑡)/𝑔′(𝑢∗𝑡) implies that 𝑢𝑡 = 𝑢∗𝑡 for all 𝑡 ∈ [𝑇]. □

132

C h a p t e r 5

LEARNING-BASED PREDICTIVE CONTROL: REGRET
ANALYSIS

[1] Tongxin Li, Yue Chen, Bo Sun, Adam Wierman, and Steven H. Low. Information
aggregation for constrained online control. 5(2), 2021. URL https://doi.
org/10.1145/3460085.

Continuing from the formulation provided in Chapter 4, in this chapter, we consider
the case when predictive MEF (see Definition 4.4.1) is available and present the
corresponding regret analysis of the penalized predictive control as a learning-
augmented decision-making algorithm.

5.1 Introduction
The use of online learning methods for controlling dynamical systems has captured
increasing attention from both the learning and control communities. Significant
effort has been made to design online optimal controllers using tools from machine
learning in a variety of contexts in recent years [104–110]. One general dynamic
model of particular interest for many applications is the following, which has
time-varying and time-coupling constraints:

𝑥𝑡+1 = 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡), 𝑥𝑡 ∈ X𝑡 (x<𝑡 , u<𝑡) , 𝑢𝑡 ∈ U𝑡 (x<𝑡 , u<𝑡) , (5.1)

where the deterministic function 𝑓𝑡 represents the transition of the state 𝑥𝑡 , and
𝑢𝑡 is the control or action determined by the controller. Crucially, the constraints
X𝑡 (x<𝑡 , u<𝑡) and U𝑡 (x<𝑡 , u<𝑡) may change over time and they depend on the past
history of states x<𝑡 = (𝑥1, . . . , 𝑥𝑡−1) and actions u<𝑡 = (𝑢1, . . . , 𝑢𝑡−1). At each time
𝑡, the action 𝑢𝑡 chosen by the online controller incurs a cost 𝑐𝑡 (𝑢𝑡) and the goal is to
minimize the cumulative costs without violating the dynamical constraints.

Designing controllers for the general constrained dynamics in (5.1) is challenging
and, as a result, traditional online optimization models often adopt simplified versions
of (5.1), such as unconstrained optimization [111–113] or time-invariant constraints
[114, 115] that are known a priori. More specifically, previous studies in online
control and online optimization mostly focus on specific forms of constraints or costs

133

depending on different applications, such as switching costs [116–119], ramping con-
straints [117, 120], polytopic constraints [121], time-varying memoryless cumulative
constraints [104, 107, 109, 122, 123], convex loss functions with memory [52, 124–
126] or inventory constraints [118, 127]. Within this literature, the goal is to derive
policies with either small regret [104, 107, 116, 118, 128, 129] or competitive
ratio [117, 119, 120, 126, 130]. However, there has been little progress deriving
policies with small regret/competitive ratio under general forms of constraints, like
in (5.1).

In particular, our work is motivated by settings where transmitting the constraints
precisely is hard, either due to complexity or privacy concerns. These issues
often arise in a two-controller system where a local controller governs large-scale
infrastructure consisting of many controllable devices and a central controller
operates remotely. Therefore, the control system often contains two controllers:
a central controller that wishes to optimize costs but is far away from a large
fleet of controllable devices and a local controller that has direct access to the
controllable devices, whose dynamics can be modeled by (5.1). In many situations,
full information about the local controllers’ dynamics and constraints is not available
to the central controller and the local controller cannot access the system’s costs.
In such settings, the central and local controllers each have part of the information
needed to control the whole dynamical system online. The task of designing
controllers is therefore made even more challenging than the single controller case.

A motivating example for our work is the coordination between a system operator
(central controller) and an aggregator (local controller) in large-scale electric vehicle
(EV) charging systems, as discussed in [1, 24, 131, 132]. In a smart grid, it is desirable
to increase the ability of the system to provide flexibility via distributed energy
resources (such as electric vehicles). Aggregators have emerged as dominate players
for coordinating these resources and they are able to provide coordination among
large pools of DERs and then give a single point of contact for independent system
operators (ISOs) to call on for obtaining the aggregate flexibility of DERs [24]. This
enables ISOs to minimize cost and respond to unexpected fluctuations of renewables.
An example of a system operator is the California ISO, that takes charge of managing
and balancing various controllable loads and providing auxiliary services, e.g.,
demand response, energy storage and flexibility reserves to enhance the system
stability and quality. In the case of managing an EV charging garage, on the one hand
the aggregator cannot solve the problem independently because it does not have cost

134

information (since the costs are often sensitive and only of the operator’s interests)
from the operator and even if the aggregator could, it may not have enough power to
solve an optimization to obtain an action, such as deciding the substation power level
of the EV charging garage. On the other hand, the operator has to receive flexibility
information from the aggregator in order to act. Well-known methods in learning
or control cannot be used for this problem directly. From a learning perspective,
the aggregator cannot simply use reinforcement learning and transmit a learned
Q-function or an actor-critic model to the operator because the aggregator does
not know the costs. From a control perspective, although model predictive control
(MPC) is widely used for EV charging scheduling in practical charging systems
[1, 96], it requires precise state information of electric vehicle supply equipment
(EVSE). Thus, to solve the induced MPC problem, the system operator or aggregator
needs to solve an online optimization at each time step that involves hundreds or even
thousands of variables. This not just a complex problem, but the state information of
the EVSE is potentially sensitive. This combination makes controlling subsystems
using precise information impractical for a future smart grid [24]. Note that there are
a wide variety of other situations that face similar challenges, including data center
scheduling [107] and fog computing [105].

The complexities illustrated by the examples above highlight the necessity for
system operators to use aggregate information about the constraints of the agents
being controlled. However, controlling a dynamical system such as (5.1) using
only aggregate information adds to the difficult of the design of the controller.
Specifically, the two-controller system is now faced with two design tasks: (i)
summarize–design a form of the aggregate signal summarizing the constraints and
dynamics of the controllable devices for a local controller, and (ii) optimize–design
an central controller that uses the aggregate signal to minimize the cumulative cost
while satisfying the constraints of the local controller.

Contributions. In this work, we consider a system formed by a central controller
and a local controller and propose a design of aggregate feedback that integrates into
a novel predictive control policy for online control of a system with time-varying
and time-coupling constraints. Importantly, the aggregate feedback can be efficiently
approximated via a data-driven approach. Our main results bound the dynamic regret
of our policy and show that it achieves near-optimal performance. In more detail,
our main contributions are four-fold.

135

First, we design an approach for information aggregation, termed maximum entropy
feedback (MEF). MEF, introduced in Section 5.3, is defined as a density function on
the action space. We introduce a control policy, penalized predictive control (PPC)
(see Section 4.6), that incorporates MEF as a penalty term into an MPC-like policy.
This technique for incorporating aggregate feedback is a novel design approach that
we expect to have applicability beyond the context of this work. We also introduce a
method to approximate the MEF using model-free reinforcement learning.

Second, denoting by 𝑑 the diameter of the action space U, 𝑇 the number of total time
steps and 𝑤 the number of predictions available, we show that the dynamic regret of
any deterministic policy must satisfy a lower bound on Regret(u) = Ω (𝑑 (𝑇 − 𝑤))
for any feasible sequence of actions u generated by the deterministic policy, even
if it has full information of the constraints. Note that it is well-known that, in the
worst case, a sub-linear dynamic regret without the use of predictions is impossible
(cf. [133]). Therefore, conditions on the constraints and predictions are necessary to
obtain a sub-linear dynamic regret.

Third, we introduce a new assumption, termed causally invariance (see Defini-
tion 5.5.1) on the set of feasible actions. The condition holds quite generally,
including in applications with inventory constraints (Example 4) and tracking prob-
lems (Example 5). We show that when the constraints are causally invariant (see
Definition 5.5.1), the dynamic regret of PPC is bounded from above by

Regret(u) = 𝑂
(
𝑑𝑇

(
𝛿 log𝜆
√
𝑤
+
√
𝛿

𝑤1/4

))
where u is the sequence of actions generated by PPC, 𝜆, 𝛿 > 0 are parameters of the
causal invariance assumption, 𝑤 is the prediction window size, and 𝑑 is the diameter
of the action space. In particular, when 𝑤 = 𝜔(1), even with aggregate feedback
information, PPC establishes a sub-linear (in 𝑇) bound on the dynamic regret. To
the best of our knowledge, this is the first bound on dynamic regret for a policy
that uses only aggregate feedback information in the context of time-varying and
time-coupling constraints.

Related work. This model falls into the growing literature seeking to understand the
role of information and feedback in online decision-making. In this line of work, the
online controller does not know (at least) one of the objective function, dynamics
or constraints in advance, and therefore, feedback containing information about the
objective function, dynamics and constraints becomes necessary.

136

When the cost functions are unknown, using a semi-definite relaxation for an online
controller, [54] shows a 𝑂 (

√
𝑇) regret where 𝑇 is the length of the time horizon for

quadratic costs and stochastic noise. It is well known that without the curvature
assumptions, 𝑂 (

√
𝑇) regret is tight [134]. Similarly, in [52], 𝑂 (

√
𝑇) regret is

proved for convex costs with adversarial noise. Recently, with the help of online
learning, [125] considers a linear dynamical system under adversarially changing
strongly convex cost functions, which includes the Kalman filter and the linear
quadratic regulator. Assuming the transition dynamics are known, the authors
in [125] obtain a logarithmic upper bound 𝑂 (poly(log𝑇)) on the regret. When
the dynamics are not known, non-linear control with safety constraints have been
considered in [27], wherein an algorithm is introduced to safely learn about the
dynamics modeled by a Gaussian process.

When the constraints and costs are not known a priori, results are less general and
often hold for specific forms of constraints. To help the online controller be aware
of the constraint information, feedback is necessary. Two widely adopted feedback
signals are bandit feedback [104, 105], which reveals the values of the objective and
constraint functions with certain chosen actions, and gradient feedback [106–109],
which further offers the gradient of the unknown functions. To briefly mention some
of the results, in [105], with bandit feedback, the dynamic regret is bounded by
𝑜(𝑇). In [104], the dynamic regret is bounded by 𝑂 (

√︁
𝑇Δ(𝑇)) and the constraint

violations are bounded by 𝑂 (𝑇3/4Δ(𝑇)1/4) where Δ(𝑇) is the “drift” of the sequence
of optimal actions. In [110], 𝑂 (

√
𝑇) regret is proven, and the results are extended

to incorporate future information (predictions). In the case of stochastic long-term
constraints, the authors in [107] achieve𝑂 (

√
𝑇 log𝑇) regret and constraint violations

with high probability. However, both bandit and gradient feedback are not designed
to deal with time-coupling constraints and there are no results providing guaranteed
performance for the general setting in (5.1). Indeed, for the case when the offline
constraints on the actions u = (𝑢1, . . . , 𝑢𝑇) are of the form

∑𝑇
𝑡=1 𝑔𝑡 (𝑢𝑡) ≤ 0, [135]

shows that if the feedback at time 𝑡 contains only information on the function 𝑔𝑡 and
a convex cost 𝑐𝑡 , it is impossible to achieve both sub-linear regret and constraint
violations even if the functions 𝑔𝑡 and 𝑐𝑡 are linear.

Finally, note that the literature described above typically compares algorithms with
the best fixed decision in hindsight, with notable exceptions such as [105, 109], which
shows sub-linear dynamic regret and constraint violations. This is in contrast to the
considered work which compares to dynamic optimal decisions in hindsight.

137

Notation and Conventions. The (differential) entropy function is denoted by H(·).
Sequences of vectors are written as boldface letters, such as u = (𝑢1, . . . , 𝑢𝑇) and
𝑢𝑡 is a vector in an Euclidean space. To distinguish random variables and their
realizations, we follow the convention to denote the former by capital letters (e.g.,
𝑈 and U) and the latter by lower case letters (e.g., 𝑢 and u). We fix the base of the
logarithms to be the natural number 𝑒, unless otherwise stated. The concatenation
of two sequences x and y is denoted by (x, y). The ℓ2 norm of a vector 𝑥 is written
as | |𝑥 | |2. Let 𝜇(S) be the Lebesgue measure of a measurable set S. The Hausdorff
distance between two sets S1 and S2 in an Euclidean space with respect to the ℓ2

norm is denoted as

𝑑H(S1,S2) := max

{
sup
𝑥∈S1

inf
𝑦∈S2

| |𝑥 − 𝑦 | |2, sup
𝑦∈S2

inf
𝑥∈S1

| |𝑥 − 𝑦 | |2

}
.

5.2 Model
We consider the deterministic dynamical system in (5.1) over a discrete time horizon
[𝑇] := {1, . . . , 𝑇} with time-varying and time-coupling constraints.

The dynamical system is governed by a local controller 𝜓, which manages a large
fleet of controllable units. The collection of the states of the units is represented by
𝑥𝑡 in a state space X ⊆ R𝑛.

There is a distant central controller 𝜋 that communicates with the local controller.
The central controller selects an action 𝑢𝑡 at each time 𝑡 ∈ [𝑇]. The actions must be
selected from a closed and bounded domain U ⊆ R𝑚. The initial point 𝑢0 is assumed
to be the origin without loss of generality.

Both the state and action at each time are confined by safety constraints that maybe
time-varying and time-coupling, i.e., 𝑥𝑡 ∈ X𝑡 (x<𝑡 , u<𝑡) and 𝑢𝑡 ∈ U𝑡 (x<𝑡 , u<𝑡) for
𝑡 ∈ [𝑇]. For simplicity, we denote the safety sets U𝑡 (x<𝑡 , u<𝑡) and X𝑡 (x<𝑡 , u<𝑡)
byU𝑡 and X𝑡 in future contexts. The central controller receives time-varying cost
functions online from an external environment and each 𝑐𝑡 (·) : U→ R+ only depends
on the action 𝑢𝑡 chosen by the central controller. We assume that the local controller
does not know the costs and has to choose the action given by the central controller
and the central controller cannot access the constraints directly, but some information
about the constraints, summarized as some feedback 𝑝𝑡 , can be transmitted during the
control (more details of 𝑝𝑡 will be given in Section 5.3). In settings with constraints,
predictions are crucial to maintaining feasibility and reducing costs. Thus, in this
work, we suppose the online controller has (perfect) predictions of the cost functions

138

Figure 5.2.1: Closed-loop interaction between a central controller and a local
controller.

and feedback functions of the current and the next 𝑤 time slots. We formally define
the predictions available in Section 5.3. The goal of an online control policy in this
setting is to make the local and central controllers jointly minimize a cumulative
cost 𝐶𝑇 (u) :=

∑𝑇
𝑡=1 𝑐𝑡 (𝑢𝑡) while satisfying (5.1). Our system model is shown in

Figure 5.2.1.

Throughout this chapter, we make the following assumptions on the model.

Assumption 5. The dynamic 𝑓𝑡 (·, ·) : X𝑡 ×U𝑡 → X𝑡+1 is a Borel measurable function
for 𝑡 ∈ [𝑇].

Assumption 6. The action space U ⊆ R𝑚 is closed and bounded.

Assumption 7. The safety sets {U𝑡 : 𝑡 ∈ [𝑇]} and {X𝑡 : 𝑡 ∈ [𝑇]} are Borel sets in
R𝑚 and R𝑛. Furthermore, the safety sets are atoms, i.e., 𝜇 (X𝑡) > 0 and 𝜇 (U𝑡) > 0
for all 𝑡 ∈ [𝑇] if X𝑡 ,U𝑡 ≠ ∅.

Additionally, we adopt the following smoothness condition for cost functions.

Assumption 8. For each 𝑡 ∈ [𝑇], the cost function 𝑐𝑡 (·) : U → R+ is Lipschitz
continuous. We assume that there exists a Lipschitz constant 𝐿c > 0 such that

|𝑐𝑡 (𝑢) − 𝑐𝑡 (𝑣) | ≤ 𝐿c | |𝑢 − 𝑣 | |2 for all 𝑢, 𝑣 ∈ U and 𝑡 ∈ [𝑇] .

Dynamic Regret
The focus of this work is the analysis of worst-case bounds on the dynamic regret [136,
137], which is the difference between the cost of the algorithm and that of the offline
optimal decision. Formally, the offline optimal cost with full information of the

139

functions and the safety sets is defined as:

𝐶∗𝑇 := inf
u
𝐶𝑇 (u) (5.2a)

subject to (5.1),∀𝑡 ∈ [𝑇], (5.2b)

and the dynamic regret, Regret(u), is:

Regret(u) := sup
c∈C

sup
f∈F

sup
(U,X)∈I

𝐶𝑇 (u) − 𝐶∗𝑇 (5.3)

where u is the sequence of actions generated by the online policy 𝜋, f := (𝑓1, . . . , 𝑓𝑇)
denotes a sequence of dynamics chosen from a set of Borel measurable functions
F satisfying Assumption 5, c := (𝑐1, . . . , 𝑐𝑇) denotes a sequence of cost functions
chosen from the set of all Lipschitz continuous functions C; U := (U1, . . . ,U𝑇)
and X := (X1, . . . ,X𝑇) are the collections of safety constraints. It is important to
note that without any restrictions on U and X, Regret(u) can be no better than Ω(𝑇)
for any deterministic online policy 𝜋, even with predictions (see Theorem 5.5.1
for more details). Therefore, the focus of this work is to find conditions on (U,X)
so that given enough predictions, the regret can be bounded by a sub-linear (in 𝑇)
function. We denote by I the domain of safety constraints (U,X) satisfying certain
conditions depending on the contexts and will formally state the conditions (such as
the causal invariance criterion used in Theorem 5.5.3) in the theorem statements.
In the remainder of the chapter, we sometimes write Regret(𝜋), in replacement
of Regret(u) defined in (5.3), with 𝑢𝑡 = 𝜋(c𝑡:𝑡+𝑤−1, 𝑝𝑡:𝑡+𝑤−1(·|u<𝑡)). It is worth
mentioning that, to the best of our knowledge, there is no existing bound on the
dynamic regret defined in (5.3) in the current setting, nor are there existing results
for a similar worst-case metric called competitive ratio [113, 117, 118, 130, 138].

5.3 Information Aggregation
We first present the design of feedback in the two-controller system.

Limited Feedback Information
A distinctive feature of the work presented in this chapter is the question of how to
design online controllers when limited information is available. Limitations on the
information available may occur because (1). the central controller is distant from the
local controller and sending the full information about the dynamical system renders
communication issues, (2). the central controller may have other tasks running in
parallel and its computational power is limited and (3). the size 𝑛 of the state space is
much larger than the size 𝑚 of the action space, preventing the central controller from

140

accessing the full state {𝑥𝑡 ∈ R𝑛 : 𝑡 ∈ [𝑇]} and the safety sets {U𝑡 : 𝑡 ∈ [𝑇]} and
{X𝑡 : 𝑡 ∈ [𝑇]} from the local controller. For example, consider an electric vehicle
charging station described earlier in Section 4.3, there may be hundreds or even
thousands of electric vehicle chargers. Each of the chargers has a state and the overall
state vector has a high dimension. However, there are often only a few choices of the
sub-station power levels to be chosen by a remote system operator (see Section 4.7
for more details about a realistic EV charging setting). (4). Alternatively, limitations
may result because of privacy concerns, e.g., EV owners do not want to directly
share their charging session information with a third-party, making transmission of
the exact constraints to the central controller undesirable.

To capture such limitations, we consider a setting where the central controller receives
a simplified feedback signal summarizing the state and safety sets. These signals
have domains over the action space U. The regime of interest is when the action
space is much smaller than the state space, so sending the density functions requires
much less communication resources than sending the states and constraints. While
this definition is abstract, recall that we give a concrete example in the case of
power systems (see Section 4.3). In the following, we formally state the form of the
feedback and make the following model assumption on the feedback sent from the
local controller to the central controller.

Assumption 9. At each time 𝑡 ∈ [𝑇], the local controller is allowed to send
a feedback (density) function whose domain is the action space U, denoted by
𝑝𝑡 (·) : U→ [0, 1] to the central controller.

Remark 6. At first glance transmitting a density function from a local controller
to a central controller seems challenging. In practice, given the regime that we are
interested in when the action space dimension |U| is much smaller than the state space
dimension X, sending a quantized density function simplifies the communication
compared to sending the whole state. Further, in certain applications the action
space is discrete, e.g., the EV charging application described in Section 4.3, so 𝑝𝑡
becomes a probability vector whose length is much smaller than the state vector.
More discussion about learning the feedback function can be found in Section 4.5.
Note that the online control cannot be directly implemented in a local controller,
because the central controller may not want the local controller to know the exact
process of how the actions are generated. When generalizing to a multi-controller
system, the central controller needs to take into account of information from other

141

aggregators as well. The discussion of this setup is beyond the scope of this article
and would be an interesting extension.

Since the dynamic system in (5.1) has memory, the feedback function also depends
on previous actions. To be more precise, at each time 𝑡 ∈ [𝑇], a (conditional) density
function denoted by 𝑝𝑡 (·|u<𝑡) : U → [0, 1], given past actions u<𝑡 is sent from
the local controller to the central controller. The density function contains only
information about the constraints. A natural question is how to design such feedback,
and we discuss this question in Section 5.3.

Predictions
For general dynamics such as (5.1), it is well-known that, in the worst case, a
sub-linear dynamic regret without the use of predictions is impossible (cf. [133]).
In many applications, while the cost functions are not known a priori, predictions
of future cost functions are available. The question of how to make use of such
predictions for online control and optimization has received considerable attention
in recent years, e.g., [113, 116, 130, 138]. Formally, at time 𝑡 ∈ [𝑇], the cost
functions 𝑐𝑡 , . . . , 𝑐𝑡+𝑤−1 are given to the central controller from an oracle and the
joint feedback function 𝑝𝑡:𝑡+𝑤−1(·|u<𝑡) : U𝑤 → [0, 1], as a density function on the
subsequence of actions u𝑡:𝑡+𝑤−1, are sent to the central controller from the local
controller where 𝑤 > 0 is an integer denoting the prediction window size. Let
C<𝑡+𝑤 and P<𝑡+𝑤 be the sets of cost functions and feedback functions received by
the central controller at time 𝑡 ∈ [𝑇]. The goal of the central controller is to design
an online policy 𝜋 : C<𝑡+𝑤 × P<𝑡+𝑤 → U that generates actions. This model for
predictions that we consider is standard, and has been adopted in [113, 116, 138].
While the assumption that predictions are perfect is overly optimistic, the insights
derived typically extend to settings with inexact predictions, albeit with considerable
technical effort, e.g., [139–141]. We denote by 𝜓 : X → P𝑡:𝑡+𝑤−1 an information
aggregation function that outputs a sequence of feedback predictions and P𝑡:𝑡+𝑤−1 is
the set of feedback functions 𝑝𝑡 , . . . , 𝑝𝑡+𝑤−1.

Aggregation Feedback: Maximum Entropy Feedback (MEF)
A key feature of our model is the aggregate feedback signal 𝑝𝑡 provided to the
controller, motivated by the problem formulated in Chapter 4. Such an aggregate
signal 𝑝𝑡 is needed in many situations for a variety of reasons. One prominent
motivation is that it can be hard to transmit complicated constraints precisely from
large-scale controllable units to the agent as a result of communication limitations.

142

Another common motivation is that the information structure among the agent and
units is asymmetric, and the dynamical operating parameters of each controllable
unit are private. As a result, it is undesirable and impractical to ask for exact
constraints and system states. To ensure the feasibility of the chosen action profile
while avoiding the leakage of private parameters, one compromise is to aggregate
the necessary information via a feedback signal 𝑝𝑡 , defined earlier in Assumption 9.
In the following we consider a special design of 𝑝𝑡 .

Note that the design of an aggregate feedback signal must balance possibly competing
goals. First, it must contain the information about what actions are feasible. Second,
it must contain information about the future impact of the actions to be selected on
the system’s feasibility. Finally, it must be compact, leaking as little individually
identifiable information as possible.

Before we proceed to the details of our proposed design, we first introduce some
useful notation.

Set of all feasible actions S. To unify notation, we begin with defining a set
𝑓 −1 (X𝑡) denoting the inverse image of the safety setX𝑡 for actions: 𝑓 −1 (X𝑡) (u<𝑡) :=
{𝑢 ∈ R𝑚 : 𝑓 (𝑥𝑡−1, 𝑢) ∈ X𝑡} . The inverse image 𝑓 −1 (X𝑡) depends only on the past
actions u<𝑡 since the states x<𝑡 are determined by u<𝑡 via the dynamics in (5.1).
Note that X𝑡 and the dynamic 𝑓 are Borel measurable by Assumption 5 and 7.
Therefore the inverse image 𝑓 −1 (X𝑡) is also a Borel set, implying that the intersection
U𝑡

⋂
𝑓 −1 (X𝑡) is also Borel measurable. Denote by

S :=
{
u ∈ U𝑇 : 𝑢𝑡 ∈ U𝑡

⋂
𝑓 −1 (X𝑡) ,∀𝑡 ∈ [𝑇]

}
the non-empty Borel measurable set of all feasible sequences of actions satisfying
the constraints in (4.7b). Since the actions space U is bounded, the set S ⊆ U𝑇 is
also bounded.

Set of all subsequent feasible actions S𝑘 . We denote the set of subsequent feasible
trajectories by:

S𝑘 (u≤𝑡) :=
{
v𝑡+1:𝑡+𝑘 ∈ U𝑘 : v≤𝑡 ≡ u≤𝑡 ; v ∈ S

}
, (5.4)

which consists of all feasible 𝑘 actions at time 𝑡 + 1, . . . ,min{𝑡 + 𝑘, 𝑇} ∈ [𝑇], given
the past actions u≤𝑡 . For the case when all future actions are considered, we simplify
S𝑘 (u≤𝑡) as S(u≤𝑡).

The core of our design is the maximum entropy feedback (MEF) presented in
Chapter 4 (Definition 4.4.1), which provides a way for summarizing the time-varying

143

and coupling safety sets {U𝑡
⋂
𝑓 −1 (X𝑡) ⊆ R𝑚 : 𝑡 ∈ [𝑇]}. The intuition behind

our definition is that the conditional density function 𝑝𝑡 (𝑥𝑡 |x<𝑡) encapsulates the
resulting future flexibility of the constraints if the agent chooses 𝑥𝑡 as the action
at time 𝑡, given the previous actions up to time 𝑡 − 1. The sum of the conditional
entropy of 𝑝𝑡 is thus a measure of the information in 𝑝𝑡 . This suggests choosing a
conditional density function 𝑝𝑡 that maximizes its conditional entropy. The MEF
possesses some nice properties as shown in Corollary 4.4.1.

It is remarkable that the MEF only depends on the constraints, but not the costs.
Further, the theoretical definition we present in (4.7a)-(4.7b) involves the offline
information of S, the set of all feasible sequences of actions. This leads to
computational difficulties; however learning techniques can be used to generate the
MEF, as we have described in Section 4.5 in Chapter 4.

5.4 Penalized Predictive Control via Predicted MEF
In this section, with the two-controller system described in Section 5.2 and the
feedback and predictions defined in Section 5.3, we revisit the penalized predictive
control (PPC) scheme in Section 4.6 and formally present it in a closed-loop control
framework with predicted maximum entropy feedback.

Key Idea: Maximum Entropy Feedback is a Penalty Term for the Offline
Optimal
When first seeing the definition of MEF it is not immediately clear why it is useful
in the context of predictive control. To make that clear, in this section we highlight
the key idea in the design of our controller–MEF can act as an effective penalty
term in the offline optimization problem. More specifically, there is in general a
trade-off between ensuring future flexibility and minimizing the current system cost
in predictive control. The action 𝑢𝑡 guaranteeing the maximal future flexibility, i.e.,
having the largest 𝑝∗𝑡 (𝑢𝑡 |u<𝑡) may not be the one that minimizes the current cost
function 𝑐𝑡 and vice versa. Therefore, we need to design an online algorithm for the
central controller that balances the MEF and the cost functions.

To further illustrate this point, note that Corollary 4.4.1 guarantees that the online
agent can always find a feasible action u ∈ S. Indeed, knowing the MEF 𝑝∗𝑡 for
every 𝑡 ∈ [𝑇] is equivalent to knowing the set of all admissible sequences of actions
S. Using this observation, the constraints (5.2b) in the offline optimization can be
rewritten as a penalty in the objective of (5.2a). Formally, the offline optimization
can be recast as the following.

144

Lemma 19. The offline optimization (5.2a)-(5.2b) is equivalent to the following
unconstrained minimization for any 𝛽 > 0:

inf
u∈U𝑇

𝑇∑︁
𝑡=1

(
𝑐𝑡 (𝑢𝑡) − 𝛽 log 𝑝∗𝑡 (𝑢𝑡 |u<𝑡)

)
. (5.5)

This draws a clear connection between MEF and the offline optimal, which we exploit
in the design of an online controller in the next section.

Proof. Recall that as shown in Lemma 18, the offline optimization (5.2a)–(5.2b) is
equivalent to

inf
u∈U𝑇

𝑇∑︁
𝑡=1
𝑐𝑡 (𝑢𝑡) − 𝛽 log 𝑞(u) (5.6)

for any 𝛽 > 0 and 𝑞(u) is a uniform distribution on S:

𝑞(u) :=

1/𝜇 (S) if u ∈ S

0 otherwise
.

Further, decomposing the joint distribution 𝑞(u) = ∏𝑇
𝑡=1 𝑝

∗
𝑡 (𝑢𝑡 |u<𝑡) into the condi-

tional distributions given by (4.7a)-(4.7b), the objective function (5.6) becomes

𝑇∑︁
𝑡=1

𝑐𝑡 (𝑢𝑡) − 𝛽 log

(
𝑇∏
𝑡=1

𝑝∗𝑡 (𝑢𝑡 |u<𝑡)
)
=

𝑇∑︁
𝑡=1

(
𝑐𝑡 (𝑢𝑡) − 𝛽 log 𝑝∗𝑡 (𝑢𝑡 |u<𝑡)

)
. (5.7)

□

Algorithm: Penalized Predictive Control via Maximum Entropy Feedback
Our proposed design, termed Penalized Predictive Control (PPC), is a combination
of Model Predictive Control (MPC), which is a competitive policy for online
optimization with predictions, and the idea of using MEF as a penalty term. This
design makes a connection between the MEF and the well-known MPC scheme. The
MEF as a feedback function, only contains limited information about the dynamical
system in the local controller’s side. (It contains only the feasibility information of
the current and future time slots, as explained in Section 5.3). The PPC scheme
therefore is itself a novel contribution since it shows that, even if only feasibility
information is available, it is still possible to incorporate the limited information
to MPC as a penalty term. Moreover, this innovation allows PPC to achieve nearly
optimal dynamic regret despite having only aggregate feasibility information about

145

constraints and dynamics, a setting where no prior algorithms have any provable
guarantees.

Algorithm 7: Penalized Predictive Control (PPC)
Input :Sequential cost functions and MEF with a prediction window size 𝑤

Output
:

Actions u = (𝑢1, . . . , 𝑢𝑇)

for 𝑡 = 1, . . . , 𝑇 do
if 𝑡 ∈ I then

Choose an action 𝑢𝑡 by minimizing over the next 𝑤 time slots
using (5.8)-(5.9)

end

end

Return u;

We present PPC in Algorithm 7, where we use the following notation. Let 𝑡′ :=
min{𝑡 + 𝑤 − 1, 𝑇}. Define a set of time indices I := {𝑡 ∈ [𝑇] : 𝑡 ≡ 1 mod 𝑤}.
Consider for any 𝑡 ∈ I:

u𝑡:𝑡 ′ = arg inf
u𝑡:𝑡 ′

𝑡 ′∑︁
𝜏=𝑡

(
𝑐𝜏 (𝑢𝜏) − 𝛽 log 𝑝∗𝜏 (𝑢𝜏 |u<𝜏)

)
(5.8)

subject to u𝑡:𝑡 ′ ∈ U𝑡
′−𝑡+1 (5.9)

where in above 𝛽 > 0 is a tuning parameter in predictive control to trade-off the
flexibility in the future and minimization of the current system cost. In the remainder
of the chapter, we denote by 𝜋PPC the online policy that uses the PPC scheme. Note
that the algorithm presented in Algorithm 7 is a generalized version of the PPC
scheme in Algorithm 6 (Chapter 4). It is reformulated using the two-controller model
described in Section 5.2 and generalized to take feasibility predictions

(
𝑝∗𝑡 , . . . , 𝑝

∗
𝑡 ′
)
.

Framework: Closed-Loop Control between Local and Central Controllers
Given the PPC scheme described in Section 5.4, we can now formally present our
online control framework for the distant central controller and local controller (defined
in Section 5.2). An overview is given in Algorithm 8, where 𝜋PPC denotes a PPC
online policy and 𝜓IA a specific information aggregation function (see Section 4.5 for
an example of learning-based 𝜓IA). To the best of our knowledge, the work presented
in this chapter is the first to consider such a closed-loop control framework with

146

limited information communicated in real-time between two geographically separate
controllers seeking to solve an online control problem. We present the framework
below.

At each time 𝑡 ∈ [𝑇], the local controller first efficiently generates an estimated
MEF sequence p𝑡:𝑡+𝑤−1 := (𝑝𝑡 , . . . , 𝑝𝑡+𝑤−1) ∈ P using an information aggregation
function (for example, in Section 4.7 we use a reinforcement learning algorithm to
train an information aggregation function). After receiving the MEF p𝑡:𝑡+𝑤−1 and
cost functions with predictions c𝑡:𝑡+𝑤−1 = (𝑐𝑡 , . . . , 𝑐𝑡+𝑤−1), the central controller uses
the PPC scheme in Algorithm 7 to generate an action 𝑢𝑡 ∈ U and sends it back to
the local controller. The local controller then updates its state 𝑥𝑡 ∈ U to a new state
𝑥𝑡+1 based on the system dynamic in (5.1) and repeats this procedure again. Later
in Section 5.5, we show that if the generated MEF is exact, i.e., 𝑝𝑡 = 𝑝∗𝑡 , for every
𝑡 ∈ [𝑇], then feasibility can be ensured, i.e., 𝑥𝑡 ∈ X𝑡 and 𝑢𝑡 ∈ U𝑡 for every 𝑡 ∈ [𝑇]
and with assumptions, a sub-linear (in 𝑇) bound on the dynamic regret is possible
with 𝑤 = 𝜔(1) using our online control scheme presented above.

Algorithm 8: Closed-loop online control framework

for 𝑡 = 1, . . . , 𝑇 do

Central Controller
Generate actions using the PPC:

𝑢𝑡 = 𝜋PPC (c𝑡:𝑡+𝑤−1, p𝑡:𝑡+𝑤−1)
𝐶𝑡 = 𝐶𝑡−1 + 𝑐𝑡 (𝑢𝑡)

Local Controller
Update system state:

𝑥𝑡+1 = 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡)

Compute estimated MEF:

p𝑡+1:𝑡+𝑤 = 𝜓IA (𝑥𝑡+1)

end

Return Total cost 𝐶𝑇 ;

147

5.5 Results
In this section, we state our main results, which guarantee feasibility and bound the
dynamic regret of the PPC controller. Additionally, we present a lower bound for any
online deterministic policy that have full information about safety constraints. This
lower bound highlights the near optimality of PPC.

Feasibility
To begin, we highlight that PPC always yields a feasible trajectory of actions. To see
this, recall that Corollary 4.4.1 shows that the MEF can guarantee feasibility if it
is used appropriately. It implies that the feedback measures the volume of the set
consisting of all sequences of actions that are feasible, conditional on the past actions
taken by the agent. Therefore, as long as it is non-zero, the feasible set remains
non-empty and there is always a feasible sequence of actions the agent can choose.
The feedback is used as a penalty term in (5.8), therefore for any tuning parameter
𝛽 > 0, the action 𝑢𝑡 ∈ R𝑚 selected by PPC always satisfies that 𝑝∗𝑡 (𝑢𝑡 |u<𝑡) > 0 and
hence feasibility is guaranteed. Otherwise, suppose 𝑝∗𝑡 (𝑢𝑡 |u<𝑡) = 0 for the chosen
action 𝑢𝑡 , then the objective in (5.8) would blow up. Similar to what have been
shown in Corollary 4.6.1, this is summarized in the following corollary, which shows
that the actions determined by PPC are feasible, subject to the constraints in (5.1).

Corollary 5.5.1. For any predication window size 𝑤 ≥ 1, the sequence of actions
u = (𝑢1, . . . , 𝑢𝑇) generated by the PPC in (5.8) always satisfies u ∈ S.

A Fundamental Limit
Before proceeding to the analysis of the dynamic regret of the PPC, we first consider a
lower bound on Regret(u), for any sequence of actions u generated by a deterministic
online policy.

Theorem 5.5.1 (Fundamental limit). For any sequence of actions u ∈ S generated
by a deterministic online policy that can access the safety sets {U𝑡 : 𝑡 ∈ [𝑇]} and
{X𝑡 : 𝑡 ∈ [𝑇]} satisfying Assumption 6, for any 𝑤 ≥ 1, Regret(u) = Ω (𝑑 (𝑇 − 𝑤))
where 𝑑 := diam(U) := sup{| |𝑢 − 𝑣 | |2 : 𝑢, 𝑣 ∈ U} is the diameter of the action space
U, 𝑤 is the prediction window size and 𝑇 is the total number of time slots.

The proof can be found in Appendix This result highlights that additional assumptions
are needed if one hopes to obtain a positive result. The next section considers such
an assumption. Note that the proof shows that it suffices to have a memory size of
one, i.e., the safety setsU𝑡 and X𝑡 only depend on the action 𝑢𝑡−1 and state 𝑥𝑡−1.

148

Causally Invariant Safety Constraints
Motivated by the lower bound in the previous section, we now introduce a particular
class of safety constraints where it is possible to have better performance. The class
is defined by a form of causal invariance that is intuitive and general. Specifically, we
state a condition under which the sets of subsequent feasible actions do not change
too much if the measures of the sets are close.

We define the following specific sequences of actions. Let u≤𝑡 = (𝑢1, . . . , 𝑢𝑡)
be a subsequence of optimal actions that maximizes the volume of the set of
feasible actions, defined as u≤𝑡 := arg supu∈U𝑡 𝜇 (S(u)). With a slight abuse of
notation, given u≤𝑡 , define the length-𝑘 maximizing subsequence of actions as
u𝑡+1:𝑡+𝑘 := arg supu∈U𝑘 𝜇 (S𝑘 (u≤𝑡 , u)).

Definition 5.5.1 ((𝑘, 𝛿, 𝜆)-causal invariance). The safety sets are (𝑘, 𝛿, 𝜆)-causally
invariant if there exist constants 𝛿, 𝜆 > 0 such that the following holds:

1. For all 𝑡 ∈ [𝑇] and sequences of actions u≤𝑡 and v≤𝑡 ,

𝑑H (S𝑘 (u≤𝑡),S𝑘 (v≤𝑡)) ≤ 𝛿
(
|𝜇(S(u≤𝑡)) − 𝜇(S(v≤𝑡)) |

𝜇 (B)

)1/((𝑇−𝑡)𝑚)
(5.10)

where B denotes the unit ball in R𝑚×(𝑇−𝑡) .

2. For all 𝑡 ∈ [𝑇] and sequences of actions u≤𝑡 ,

𝜇 (S (u≤𝑡))
𝜇 (S (u≤𝑡))

≤ 𝜆
(
𝜇 (S ((u≤𝑡 , u𝑡+1:𝑡+𝑘)))

𝜇 (S (u≤𝑡+𝑘))

) 𝑇−𝑡
𝑇−𝑡−𝑘

. (5.11)

Note that the definition of causal invariance is independent of the costs. Condition
(1) is an inverse of the isodiametric inequality. It says that if the two subsequences
of actions u≤𝑡 and v≤𝑡 do not affect the measure of the space of feasible sequences
of actions too much, then the Hausdorff distance between the two sets S𝑘 (u≤𝑡) and
S𝑘 (v≤𝑡) is also small. Condition (2) states that the ratio of the measure of a space
of feasible sequences of actions, given any previous actions u≤𝑡 , does not differ too
much from the ratio of the measure of another space by fixing the next 𝑘 actions to
be those preserving the most future flexibility.

Definition 5.5.1 is general and practically applicable, as the following examples
show.

149

Example 4 (Inventory constraints). Consider the following set of inventory constraints,
which is a common form of constraints in energy storage and demand response
problems [118, 127, 142]. The summation of the squares of the ℓ2 norms of the actions
is bounded from above by 𝛾 > 0, representing the limited resources of the system:∑𝑇
𝑡=1 | |𝑢𝑡 | |22 ≤ 𝛾 where 𝑢𝑡 ∈ R𝑚. These inventory constraints are (𝑘, 1, 1)-causally

invariant for all 1 ≤ 𝑘 ≤ 𝑇 .

Example 5 (Tracking constraints). The following form of tracking constraints are
common in situations where the system has a target "optimal” resource configuration
that varies depending on the environment [116, 137, 143]. The agent seeks to
track a fixed sequence of nominal actions y := (𝑦1, . . . , 𝑦𝑇). The constraints are∑𝑇
𝑡=1 |𝑢𝑡 − 𝑦𝑡 |𝑝 ≤ 𝜎 with 𝑝 ≥ 2 where 𝑢𝑡 , 𝑦𝑡 ∈ R and 𝜎 > 0 represents the system’s

adjusting ability. These tracking constraints are (𝑘, 2√
𝜋
, 1)-causally invariant for all

1 ≤ 𝑘 ≤ 𝑇 .

Additionally, to highlight the structures that are not causally invariant, we return to
the construction of constraints used in the proof of the lower bound in Theorem 5.5.1.

Example 6 (Constraints in the lower bound (Theorem 5.5.1)). Consider the following
set of constraints defined in the proof of Theorem 5.5.1 for obtaining a lower bound
Ω(𝑑 (𝑇 − 𝑤)) on the dynamic regret: S := {u ∈ U𝑇 : 𝑢𝑡 ∈ U𝑡 ,∀𝑡 ∈ [𝑇]} where

U𝑡 :=

B(𝑎/2), if | |𝑢𝑡−1 − 𝑣𝑡−1 | |2 ≤ 𝑎

U\B(𝑎), if | |𝑢𝑡−1 − 𝑣𝑡−1 | |2 > 𝑎
(5.12)

for some 𝑎 > 0. Suppose the action space U ⊆ R𝑚 is closed and bounded. These
constraints are not causally invariant for all 𝑘 = Ω(𝑇). The reason why the causal
invariance criterion is violated for the safety constraints in (5.12) is that, in order to
satisfy Condition (1) in (5.10), it is necessary to have 𝛿 = Ω(𝑘) = Ω(𝑇), which is
not a constant.

Motivated by the example above, and mimicking the adversarial construction in
Theorem 5.5.1, we can derive the following theorem and corollary, whose proofs are
in Appendix 5.B.

Theorem 5.5.2 (Lower bound on Regret). If there exist a sequence of actions
v≤𝑠 ∈ U𝑠, 1 ≤ 𝑠 ≤ 𝑇 − 𝑘 , 𝑘 ≥ 𝑤 with 𝑘 = Ω(𝑇) and some constant 𝛼 > 0 such that
𝑑H (S𝑘 (u≤𝑠),S𝑘 (v≤𝑠)) ≥ 𝛼𝑑𝑘 for any u≤𝑠 ∈ U𝑠, then for any sequence of actions
u ∈ S generated by a deterministic online policy that can access the safety sets

150

{U𝑡 : 𝑡 ∈ [𝑇]} and {X𝑡 : 𝑡 ∈ [𝑇]}, Regret(u) = Ω (𝑑 (𝑇 − 𝑤)) where 𝜆(𝑇) is a
parameter that may depend on 𝑇; 𝑑 is the diameter of the action space U; 𝑤 is the
prediction window size and 𝑇 is the total number of time slots.

The theorem above states that, for any online policy knowing the safety sets
{U𝑡 : 𝑡 ∈ [𝑇]} and {X𝑡 : 𝑡 ∈ [𝑇]} in advance, if there are two sets of length-𝑘
subsequences of actions S𝑘 (u≤𝑡) and S𝑘 (v≤𝑡) that are far from each other in terms
of the Hausdorff distance, then a sub-linear regret is impossible. This highlights
the necessity of the causal invariance condition. We make this explicit by further
restricting the power of the online policy and assuming that it can only access the
MEF 𝑝𝑡 , . . . , 𝑝𝑡+𝑘−1 at time 𝑡, which yields the following impossibility result as a
corollary of Theorem 5.5.2.

Corollary 5.5.2 (Lower bound on Regret). If there exist a sequence of actions
v≤𝑡 ∈ U𝑡 , 1 ≤ 𝑠 ≤ 𝑇 − 𝑘 , 𝑘 ≥ 𝑤 with 𝑘 = Ω(𝑇), a constant 𝜉 > 0 and 𝛼 = Ω(𝑇)
such that

𝜇(S(u≤𝑠)) >𝜉𝜇(S(u≤𝑠)),

𝑑H (S𝑘 (u≤𝑠),S𝑘 (v≤𝑠)) ≥𝛼
(
|𝜇(S(u≤𝑠)) − 𝜉𝜇(S(v≤𝑠)) |

𝜇 (B)

)1/((𝑇−𝑠)𝑚)

for any u≤𝑠 ∈ U𝑠, then for any sequence of actions u ∈ S generated by a determin-
istic online policy that can access the MEF 𝑝𝑡 , . . . , 𝑝𝑡+𝑤−1 at each time 𝑡 ∈ [𝑇],
Regret(u) = Ω (𝑑 (𝑇 − 𝑤)) where 𝜆(𝑇) is a parameter that may depend on 𝑇; 𝑑 is
the diameter of the action space U; 𝑤 is the prediction window size and 𝑇 is the total
number of time slots.

The corollary above indicates that it is necessary to have an upper bound on the
Hausdorff distance between S𝑘 (u≤𝑡) and S𝑘 (v≤𝑡) (such as Condition (1) and (2) in
the causal invariance criterion) in order to make the dynamic regret sub-linear. In
the next section, we show that, however, if the causal invariance criterion holds such
that both 𝛿 and 𝜆 are constants, then the dynamic regret can be made sub-linear with
sufficiently many predictions, even for arbitrary Lipschitz continuous cost functions.

Bounding the Dynamic Regret of PPC
We are now ready to present our main result, which bounds the dynamic regret by
a decreasing function of the prediction window size under the assumption that the
safety sets are causally invariant.

151

Theorem 5.5.3 (Upper bound on Regret). Suppose the safety sets are (𝑤, 𝛿, 𝜆)-
causally invariant. The dynamic regret for the sequence of actions u given by PPC is
bounded from above by

Regret(u) = 𝑂
(
𝑑𝑇

(
𝛿 log𝜆
√
𝑤
+
√
𝛿

𝑤1/4

))
where 𝑑 denotes the diameter of the action space U, 𝑤 is the prediction window size
and 𝑇 is the total number of time slots.

This theorem implies that, with additional assumptions on the safety constraints, a
sub-linear (in 𝑇) dynamic regret is achievable, given a sufficiently large prediction
window size 𝑤 = 𝜔(1) (in 𝑇). Notably, Theorem 5.5.1 implies that for the worst-case
costs and constraints, a deterministic online controller that has full information of
the constraints suffers from a linear regret. As a comparison, Theorem 5.5.3 shows
that, under additional assumptions, even if only aggregated information is available,
PPC achieves a sub-linear regret. This does not contradict to the lower bound on the
dynamic regret in Theorem 5.5.1, since if there is no regulation assumptions on the
safety sets, in the worst-case, the Hausdorff distance 𝑑H (S𝑤 (u≤𝑡),S𝑤 (v≤𝑡)) = 𝑂 (𝑑𝑤).
This implies that a trivial upper bound of 𝑂 (𝑑𝑇) holds. Additionally, note that there
is a trade-off between flexibility and optimality when selecting the tuning parameter
𝛽 > 0. On the one hand, if the tuning parameter is too small, the algorithm is greedy
and may suffer losses in the future; on the other hand, if the tuning parameter is
too large, the algorithm is penalized by the feedback and therefore is far from being
optimal.

A proof is presented in Appendix 5.B. Briefly, Theorem 5.5.1 is proven by optimizing
𝛽 in an upper bound Regret(u) = 𝑂

(
𝑇𝑑

(
𝛿 log𝜆/𝑤 + 𝑑𝛿

√
𝑤/𝛽 + 𝛽/𝑑𝑤

))
, which

holds for any sequence of actions u given by the PCC with any tuning parameter
𝛽 > 0.

152

APPENDIX

5.A Explanation of Definition 5.5.1 and Two Examples

Figure 5.A.1: Graphical illustration of (5.10) in Definition 5.5.1.

Example 1: Inventory constraints.

Recall that the feasible set of actions for the inventory constraints is

S =

{
u ∈ R𝑇×𝑚 :

𝑇∑︁
𝑡=1
| |𝑢𝑡 | |22 ≤ 𝛾

}
.

The sequence of actions u≤𝑡 maximizing the size of the set of admissible actions is
the all-zero vector. Hence,(

𝜇 (S (u≤𝑡))
𝜇 (S (u≤𝑡))

) 1
𝑇−𝑡

=

(
1 −

∑𝑡
𝜏=1 | |𝑢𝜏 | |22
𝛾

) 𝑚
2

=

(
𝜇 (S ((u≤𝑡 , u𝑡+1:𝑡+𝑘)))

𝜇 (S (u<𝑡+𝑘))

) 1
𝑇−𝑡−𝑘

.

Therefore setting 𝜆 = 1, (5.11) is satisfied.

It remains to check the bound on the Hausdorff distance. Figure 5.A.1 shows the
idea behind the definition. If the two sets S(v≤𝑡) and S(u≤𝑡) are close to each other,
the Hausdorff distance of the projected sub-spaces S𝑘 (u≤𝑡) and S𝑘 (v≤𝑡) can also
be bounded. For inventory constraints, this is indeed the case. For all 1 ≤ 𝑘 ≤ 𝑇 ,
sequences of actions u≤𝑡 and v≤𝑡 ,

𝑑H (S𝑘 (u≤𝑡),S𝑘 (v≤𝑡)) =
(����� 𝑡∑︁
𝜏=1
| |𝑢𝜏 | |22 −

𝑡∑︁
𝜏=1
| |𝑣𝜏 | |22

�����
)1/2

(5.13)

153

and

𝜇(B)
2

(𝑇−𝑡)𝑚

����� 𝑡∑︁
𝜏=1
| |𝑢𝜏 | |22 −

𝑡∑︁
𝜏=1
| |𝑣𝜏 | |22

����� = ���𝜇(S(v≤𝑡)) 2
(𝑇−𝑡)𝑚 − 𝜇(S(u≤𝑡))

2
(𝑇−𝑡)𝑚

���
≤ |𝜇(S(v≤𝑡)) − 𝜇(S(u≤𝑡)) |

2
(𝑇−𝑡)𝑚 . (5.14)

Therefore setting 𝛿 = 1, (5.13) and (5.14) imply (5.10). We validate that the inventory
constraints in Example 4 are (𝑘, 1, 1)-causally invariant for all 1 ≤ 𝑘 ≤ 𝑇 .

Example 2: Tracking constraints.

Recall that the feasible set of actions for the tracking constraints is (with 𝑝 ≥ 2):

S =
{
u ∈ R𝑇 : | |u − y| |𝑝𝑝 ≤ 𝜎

}
.

The sequence of actions maximizing the size of the set of admissible actions is
u≤𝑡 = y≤𝑡 . Similar to Example 4, according to the formula of the volume of an
ℓ𝑝-ball [144], we have(

𝜇 (S (u≤𝑡))
𝜇 (S (u≤𝑡))

) 1
𝑇−𝑡

=

(
1 −
||u≤𝑡 − y≤𝑡 | |𝑝𝑝

𝜎

)1/𝑝

=

(
𝜇 (S ((u≤𝑡 , u𝑡+1:𝑡+𝑘)))

𝜇 (S (u<𝑡+𝑘))

) 1
𝑇−𝑡−𝑘

.

Therefore setting 𝜆 = 1, (5.11) is satisfied. Next,we give a bound on the Hausdorff
distance. For all 1 ≤ 𝑘 ≤ 𝑇 , sequences of actions u≤𝑡 and v≤𝑡 ,(

(2Γ (1 + 1/𝑝))𝑇−𝑡

Γ ((𝑇 − 𝑡)/𝑝 + 1)

) 1
𝑇−𝑡

𝑑H (S𝑘 (u≤𝑡),S𝑘 (v≤𝑡))

≤2Γ(1 + 1/𝑝)
√
𝜋

(
𝜋(𝑇−𝑡)/2

Γ ((𝑇 − 𝑡)/2 + 1)

) 1
𝑇−𝑡

����� 𝑡∑︁
𝜏=1
| |𝑢𝜏 − 𝑦𝜏 | |𝑝 −

𝑡∑︁
𝜏=1
| |𝑣𝜏 − 𝑦𝜏 | |𝑝

�����
=

2Γ(1 + 1/𝑝)
√
𝜋

𝜇(B) 1
𝑇−𝑡

����� 𝑡∑︁
𝜏=1
| |𝑢𝜏 − 𝑦𝜏 | |𝑝 −

𝑡∑︁
𝜏=1
| |𝑣𝜏 − 𝑦𝜏 | |𝑝

�����
≤2Γ(1 + 1/𝑝)

√
𝜋

|𝜇(S(v≤𝑡)) − 𝜇(S(u≤𝑡)) |
1

𝑇−𝑡

where Γ(·) is Euler’s gamma function. Therefore setting 𝛿 = 2Γ(1+1/𝑝)√
𝜋
≤ 2√

𝜋
for all

𝑝 ≥ 2, (5.10) holds. The tracking constraints in Example 5 are (𝑘, 2/
√
𝜋, 1)-causally

invariant for all 1 ≤ 𝑘 ≤ 𝑇 .

Example 3: Constraints in the Proof of Theorem 5.5.1.

Denote by A1 := B(𝑎/2) and A2 := U\B(𝑎/2). The feasible length-𝑘 sub-
sequences of actions are either in the Cartesian product of sets A𝑘1 := A1 × · · · × A1

154

or A𝑘2 := A2 × · · · × A2. If the two sequences u<𝑡 and v<𝑡 are in the same set, then
𝛿 = 𝜆 = 1; otherwise, the RHS of (5.11) becomes a constant term. Assuming
𝑡 + 𝑘 ≤ 𝑇 , the Hausdorff distance between S𝑘 (u<𝑡) = A𝑘1 and S𝑘 (v<𝑡) = A𝑘2 is Ω(𝑘).
Therefore, a non-scalar parameter 𝛿 = Ω(𝑘) is necessary for (5.11) to hold.

5.B Proofs
Proofs of Corollary 5.5.1
Proof of Corollary 5.5.1. The explicit expression in Lemma 17 ensures that when-
ever 𝑝∗𝑡 (𝑢𝑡 |u<𝑡) > 0, then there is always a feasible sequence of actions in S (u<𝑡).
Now, if the tuning parameter 𝛽 > 0, then the optimization (5.8)-(5.9) guaran-
tees that 𝑝∗𝑡 (𝑢𝑡 |u<𝑡) > 0 for all 𝑡 ∈ [𝑇]; otherwise, the objective value in (5.8)-
(5.9) is unbounded. Corollary 4.4.1 guarantees that for any sequence of actions
u = (𝑢1, . . . , 𝑢𝑇), if 𝑝∗𝑡 (𝑢𝑡 |u<𝑡) > 0 for all 𝑡 ∈ [𝑇], then u ∈ S. Therefore, the
sequence of actions u given by the PPC is always feasible. □

Proof of Theorem 5.5.1
The actions space U is closed and bounded by Assumption 5. Therefore, there
exists a closed ball B(𝑎) of radius 𝑎 > 0 centered at v = (𝑣1, . . . , 𝑣𝑇) ∈ U such
that B(𝑎) ⊆ U. Consider the following safety constraints for all 𝑡 ∈ [𝑇]\{1} with
memory size one:

U𝑡 :=

B(𝑎/2), if | |𝑢𝑡−1 − 𝑣𝑡−1 | |2 ≤ 𝑎

U\B(𝑎), if | |𝑢𝑡−1 − 𝑣𝑡−1 | |2 > 𝑎
(5.15)

where B(𝑎/2) is a closed balls around the same center as B(𝑎) with radius 𝑎/2. Let
the state safety set X𝑡 = R𝑛 for all 𝑡 ∈ [𝑇] (i.e., no constraints on states). Whenever
the first action 𝑢1 at time 𝑡 = 1 is taken, the future actions have to stay in the ball
B(𝑎/2), or stay outside B(𝑎). Any deterministic policy at time 𝑡 ∈ [𝑇]\{1} has to
take either | |𝑢𝑡 − 𝑣𝑡 | |2 ≤ 𝑎/2 or | |𝑢𝑡 − 𝑣𝑡 | |2 > 𝑎.

Consider the following Lipschitz continuous cost functions that can be chosen
adversarially:

𝑐𝑡 (𝑢𝑡) =

0, if 𝑡 ≤ 𝑤

| |𝑢𝑡 − 𝑣𝑡 | |2, if | |𝑢𝑡−1 − 𝑣𝑡−1 | |2 > 𝑎, 𝑡 > 𝑤

(𝑀 − ||𝑢𝑡 − 𝑣𝑡 | |2) , if | |𝑢𝑡−1 − 𝑣𝑡−1 | |2 ≤ 𝑎/2, 𝑡 > 𝑤

where 𝑀 := sup𝑢∈U | |𝑢 | |2. The construction of c = (𝑐1, . . . , 𝑐𝑇) guarantees that the
dynamic regret for any sequence of actions u given by a deterministic online policy

155

is bounded from below by

Regret(u) ≥(𝑇 − 𝑤)min
{
𝑎,

(
𝑀 − 𝑎

2

)}
.

Take 𝑎 = 𝑀/2 and note that 𝑀 = Ω(𝑑) where 𝑑 := diam(U) := sup{| |𝑢 − 𝑣 | |2 :
𝑢, 𝑣 ∈ U} is the diameter of the action space U. Therefore the dynamic regret is
bounded from below as

Regret(u) = Ω (𝑑 (𝑇 − 𝑤))

for any sequence of actions u given by a deterministic online policy.

Proofs of Theorem 5.5.2 and Corollary 5.5.2
Proof of Theorem 5.5.2. Suppose there exists a sequence of actions v≤𝑠 ∈ U𝑠, 1 ≤
𝑠 ≤ 𝑇 − 𝑘 , 𝑘 ≥ 𝑤 with 𝑘 = Ω(𝑇) and some constant 𝛼 > 0 such that

𝑑H (S𝑘 (u≤𝑠),S𝑘 (v≤𝑠)) ≥ 𝛼𝑑𝑘 (5.16)

for any u≤𝑠 ∈ U𝑠. For any safety sets satisfying (5.16), whenever the first 𝑠 actions
u≤𝑠 are taken, the future actions have to stay in S𝑘 (u≤𝑠). The same argument also
holds for choosing v≤𝑠. This means that there exist two subsequences u𝑠+1:𝑠+𝑘 and
v𝑠+1:𝑠+𝑘 such that

| |u𝑠+𝑤:𝑠+𝑘 − v𝑠+𝑤:𝑠+𝑘 | |2 ≥ ||u𝑠+1:𝑠+𝑘 − v𝑠+1:𝑠+𝑘 | |2 − ||u𝑠+1:𝑠+𝑤−1 − v𝑠+1:𝑠+𝑘 | |2

≥ ||u𝑠+1:𝑠+𝑘 | |2 −
𝑠+𝑤−1∑︁
𝑡=𝑠+1

| |𝑢𝑡 − 𝑣𝑡 | |2

≥ 𝛼𝑑𝑘 − 𝑑 (𝑤 − 1)
= 𝑑 (𝛼𝑘 − 𝑤 + 1).

Then the adversary can construct Lipschitz continuous cost functions similar to the
one we used in the proof of Theorem 5.5.1 so that the costs 𝑐𝑠+𝑤, . . . , 𝑐𝑠+𝑘 satisfy∑𝑠+𝑘
𝑡=𝑠+𝑤 𝑐(𝑎𝑡) = Ω((𝑘 −𝑤 + 1)𝑑) = Ω(𝑑 (𝑇 −𝑤)) (since 𝑘 = Ω(𝑇)) for the case when

𝑎𝑡 = 𝑣𝑡 for 𝑠 < 𝑡 ≤ 𝑠 + 𝑘 and 𝑎𝑡 = 𝑣𝑡 for 𝑡 ≤ 𝑠; but 𝑐𝑠+𝑤 = · · · = 𝑐𝑠+𝑘 = 0 for the case
when 𝑎𝑡 = 𝑢𝑡 for 𝑠 < 𝑡 ≤ 𝑠 + 𝑘 and 𝑎𝑡 = 𝑣𝑡 for 𝑡 ≤ 𝑠 and vice versa. This “switching
pattern” attack is possible, because the online agent knows nothing about the costs
𝑐𝑠+𝑤, . . . , 𝑐𝑠+𝑘 at time 𝑠 and the adversary can design costs freely as long as they
satisfy Assumption 5. The bound on the dynamic regret follows since for the optimal
actions u∗ = (𝑢1, . . . , 𝑢𝑇),

∑𝑠+𝑘
𝑡=𝑠+𝑤 𝑐(𝑢∗𝑡) = 0 but

∑𝑠+𝑘
𝑡=𝑠+𝑤 𝑐(𝑎𝑡) = Ω(𝑑 (𝑇 − 𝑤)) for

any actions a generated by a deterministic online policy. □

156

Proof of Corollary 5.5.2. Applying Theorem 5.5.2 and noting that 𝛼 = Ω(𝑇) and
at each time 𝑡 the received MEF functions 𝑝∗𝑡 , . . . , 𝑝∗𝑡+𝑤−1 equivalently form a joint
density function on u𝑡+1:𝑡+𝑤, which has less information than an online policy that
knows the offline safety sets. Since u maximizes 𝜇(S(·)),

𝜇(S(u≤𝑠))
𝜇(S(v≤𝑠))

≥ 𝜇(S(u≤𝑠))
𝜇(S(u≤𝑠))

> 𝜉,

it follows that (
|𝜇(S(u≤𝑠)) − 𝜉𝜇(S(v≤𝑠)) |

𝜇 (B)

)1/((𝑇−𝑠)𝑚)
= Ω(1).

Hence, the same argument in the proof of Theorem 5.5.2 follows and we obtain the
desired regret lower bound.

□

Proof of Theorem 5.5.3
In this appendix, we prove Theorem 5.5.3 in four steps. First, in Lemma 20, we bound
the deviation of the density function (feedback) evaluated at the actions selected by
the PPC from the largest density function value, given the previous actions selected
by the PPC. The deviation decreases with the tuning parameter 𝛽 > 0. Next, using
the bound obtained from the first step, in Lemma 21 we show that the ratio of the
volume of the set of feasible actions, given the previous actions selected by the PPC
and the volume of the largest feasible set is bounded from above by an exponential
function, that is decreasing with 𝛽 as well. Next, we bound the partial cost difference,
of the cost induced by a subsequence of feasible actions and the offline optimal cost.
Finally, combing the partial costs, we bound the total cost and this leads to an upper
bound on the dynamic regret.

Step 1. Bound the feedback deviation

Recall that 𝑡′ := min{𝑡 + 𝑤 − 1, 𝑇}. For every 𝑡 ∈ I, let u𝑡:𝑡 ′ = 𝑢𝑡 , . . . , 𝑢𝑡 ′ be a
subsequence of optimal actions that maximizes the penalty term:

u𝑡:𝑡 ′ := arg sup
u∈U𝑡 ′−𝑡+1

𝑝∗𝑡:𝑡 ′ (u|u<𝑡) = arg sup
u∈U𝑡 ′−𝑡+1

𝜇 (S ((u<𝑡 , u))) .

Before proceeding to the proof of Theorem 5.5.3, we first show the following lemma,
which gives a lower bound on the feedback given the sequence of actions selected by
the PPC. Note that when 𝑡 − 1 < 0, the density functions become unconditional.

157

Lemma 20. For any 𝑡 ∈ I, the sequence of actions u = (u≤𝑡 ′) selected by the PPC
satisfies

𝑝∗
𝑡:𝑡 ′ (u𝑡:𝑡 ′ |u<𝑡)
𝑝∗
𝑡:𝑡 ′ (u𝑡:𝑡 ′ |u<𝑡)

≥ exp (−𝐿c𝑤𝑑/𝛽)

where 𝐿c is the Lipschitz constant, 𝑑 := diam(U) = sup{| |𝑢 − 𝑣 | |2 : 𝑢, 𝑣 ∈ U} is the
diameter of the action space U.

Proof of Lemma 20. First, we note that the actions u𝑡:𝑡 ′ chosen by the PPC must
satisfy

𝑡 ′∑︁
𝜏=𝑡

𝛽
(
log 𝑝∗𝜏 (𝑢𝜏 |u<𝜏) − log 𝑝∗𝜏 (𝑢𝜏 |u<𝜏)

)
≤

����� 𝑡 ′∑︁
𝜏=𝑡

(𝑐𝜏 (𝑢𝜏) − 𝑐𝜏 (𝑢𝜏))
����� . (5.17)

To see this, suppose (5.17) does not hold. Then choosing u𝑡:𝑡 ′ gives a smaller
objective value in (5.8)-(5.9), which violates the definition of PPC-generated actions
u𝑡:𝑡 ′. Using the chain rule, (5.17) becomes

log 𝑝∗𝑡:𝑡 ′ (u𝑡:𝑡 ′ |u<𝑡) ≤ log 𝑝∗𝑡:𝑡 ′ (u𝑡:𝑡 ′ |u<𝑡) +
1
𝛽

����� 𝑡 ′∑︁
𝜏=𝑡

(𝑐𝜏 (𝑢𝜏) − 𝑐𝜏 (𝑢𝜏))
����� .

Therefore, since the cost functions are Lipschitz continuous,

𝑝∗𝑡:𝑡 ′ (u𝑡:𝑡 ′ |u<𝑡) ≤ exp

(
1
𝛽

����� 𝑡 ′∑︁
𝜏=𝑡

(𝑐𝜏 (𝑢𝜏) − 𝑐𝜏 (𝑢𝜏))
�����
)
𝑝∗𝑡:𝑡 ′ (u𝑡:𝑡 ′ |u<𝑡)

≤ exp
(
𝐿c
𝑤𝑑

𝛽

)
𝑝∗𝑡:𝑡 ′ (u𝑡:𝑡 ′ |u<𝑡).

□

Step 2. Bound the Lebesgue measure deviation

Based on Lemma 20, the following lemma holds. For every 𝑡 ∈ I, let u<𝑡 ′ =
𝑢1, . . . , 𝑢𝑡 ′ be a subsequence of optimal actions maximizing the volume of the set of
feasible actions:

u<𝑡 ′ := arg sup
u∈U𝑡 ′−1

𝜇 (S(u)) .

Lemma 21. Suppose the safety sets are (𝑤, 𝛿, 𝜆)-causally invariant. For any 𝑡 ∈ I,
the actions selected by the PPC satisfy that

𝜇 (S (u≤𝑡 ′))
𝜇 (S (u<𝑡 ′))

≥ exp (−𝐿c𝑡𝑑/𝛽) 𝜆−⌈𝑡/𝑤⌉

where 𝐿𝑐 > 0 is the Lipschitz constant, 𝑑 := sup{| |𝑢− 𝑣 | |2 : 𝑢, 𝑣 ∈ U} is the diameter
of the action space U.

158

Proof. For any 𝑡 ∈ I, since the safety sets are (𝑤, 𝛿, 𝜆)-causally invariant and
𝜇 (S (u<𝑡 ′)) = 𝜇 (S (u≤𝑡 ′)),

𝜇 (S (u≤𝑡 ′))
𝜇 (S (u<𝑡 ′))

≥ 1
𝜆

(
𝜇 (S (u<𝑡))
𝜇 (S (u<𝑡))

) 𝑇−𝑡 ′+1
𝑇−𝑡+1
· 𝜇 (S (u≤𝑡 ′))
𝜇 (S ((u<𝑡 , u𝑡:𝑡 ′)))

. (5.18)

Applying the explicit expression in Lemma 17, Lemma 20 implies that

𝜇 (S (u≤𝑡 ′))
𝜇 (S ((u<𝑡 , u𝑡:𝑡 ′)))

=
𝑝∗
𝑡:𝑡 ′ (u𝑡:𝑡 ′ |u<𝑡)
𝑝∗
𝑡:𝑡 ′ (u𝑡:𝑡 ′ |u<𝑡)

≥ exp (−𝑤𝐿c𝑑/𝛽) .

Therefore, applying (5.18) recursively leads to that for any 𝑡 ∈ I,

𝜇 (S (u≤𝑡 ′))
𝜇 (S (u<𝑡 ′))

≥ exp (−𝐿c𝑡𝑑/𝛽) 𝜆−⌈𝑡/𝑤⌉ .

□

Step 3. Bound the partial cost deviation

Lemma 21 implies that for the offline optimal solution u∗
𝑡 ′:𝑡 ′+𝑤 := (𝑢∗

𝑡 ′, . . . , 𝑢
∗
𝑡 ′+𝑤),

𝜇 (S (u≤𝑡 ′)) ≥ exp (−𝐿c𝑡𝑑/𝛽) 𝜆−2𝑡/𝑤𝜇 (S (u<𝑡 ′))
≥ exp (−𝐿c𝑡𝑑/𝛽) 𝜆−2𝑡/𝑤𝜇

(
S

(
u∗<𝑡 ′

))
,

which leads to

𝜇
(
S

(
u∗<𝑡 ′

))
− 𝜇 (S (u≤𝑡 ′)) ≤

(
1 + exp

(
2𝑡
𝑤

log𝜆 − 𝐿c
𝑡𝑑

𝛽

))
𝜇

(
S

(
u∗<𝑡 ′

))
≤

(
𝐿c
𝑡𝑑

𝛽
+ 2𝑡
𝑤

log𝜆
)
𝜇 (S (u∗<𝑡 ′))

≤
(
𝐿c
𝑡𝑑

𝛽
+ 2𝑡
𝑤

log𝜆
)
𝜇 (B)

(
𝑑

2

) (𝑇−𝑡 ′+1)𝑚
where we have used the inequality 𝑒𝑥 ≥ 1 + 𝑥 for all 𝑥 ∈ R. The last inequality
follows from the isodiametric inequality, with B denoting the unit ball in R(𝑇−𝑡 ′+1)𝑚.

Since the safety sets are (𝑤, 𝛿, 𝜆)-causally invariant, it follows that for any 𝑡 ∈ I,

| |u∗𝑡:𝑡 ′ − û𝑡:𝑡 ′ | |2 ≤ 𝑑H
(
S𝑤

(
u∗<𝑡

)
,S𝑤 (u<𝑡)

)
≤𝛿𝑑

(
𝐿c
𝑡𝑑

𝛽
+ 2𝑡
𝑤

log𝜆
) 1
(𝑇−𝑡+1)𝑚

for some û𝑡:𝑡 ′ ∈ S𝑤 (u<𝑡) satisfying 𝑝∗
𝑡:𝑡 ′ (û𝑡:𝑡 ′ |u<𝑡) > 0.

159

Next, we consider the objective for the PPC. For any 𝑡 ∈ I, denote by 𝐶 (u𝑡:𝑡 ′) :=∑𝑡 ′
𝜏=𝑡 𝑐𝜏 (𝑢𝜏) the cost for the times slots between 𝑡 and 𝑡′ := min{𝑡 + 𝑤,𝑇}. Since the

costs are Lipschitz continuous,��𝐶 (û𝑡:𝑡 ′) − 𝐶 (u∗𝑡:𝑡 ′)�� ≤ 𝑡 ′∑︁
𝜏=𝑡

��𝑐𝜏 (𝑢𝜏) − 𝑐𝜏 (𝑢∗𝜏)��
≤

𝑡 ′∑︁
𝜏=𝑡

𝐿c | |𝑢∗𝜏 − �̂�𝜏 | |2

≤
√
𝑤𝐿c | |u∗𝑡:𝑡 ′ − û𝑡:𝑡 ′ | |2

≤𝑑𝛿𝐿c

(
𝐿c
𝑡𝑑
√
𝑤

𝛽
+ 2𝑡
√
𝑤

log𝜆
) 1
(𝑇−𝑡+1)𝑚

. (5.19)

Since u𝑡:𝑡 ′ is a minimizer of (5.8)-(5.9), we obtain

𝐶 (u𝑡:𝑡 ′) −
𝑡 ′∑︁
𝜏=𝑡

𝛽 log 𝑝𝜏 (𝑢𝜏 |u<𝜏) ≤ 𝐶 (û𝑡:𝑡 ′) −
𝑡 ′∑︁
𝜏=𝑡

𝛽 log 𝑝𝜏 (�̂�𝜏 |u<𝜏),

which implies

𝐶 (u𝑡:𝑡 ′) ≤ 𝐶 (û𝑡:𝑡 ′) + 𝛽 log
𝑝∗
𝑡:𝑡 ′ (u𝑡:𝑡 ′ |u<𝑡)
𝑝∗
𝑡:𝑡 ′ (û𝑡:𝑡 ′ |u<𝑡)

. (5.20)

Step 4. Bound the dynamic regret Regret(u)

Proof of Theorem 5.5.3. For the total cost, it follows that

𝐶𝑇 (u) =
∑︁
𝑡∈I

𝑐𝑡 (u𝑡:𝑡 ′) ≤
∑︁
𝑡∈I

[
𝐶 (û𝑡:𝑡 ′) + 𝛽 log

𝑝∗
𝑡:𝑡 ′ (u𝑡:𝑡 ′ |u<𝑡)
𝑝∗
𝑡:𝑡 ′ (û𝑡:𝑡 ′ |u<𝑡)

]
≤

∑︁
𝑡∈I

𝐶 (û𝑡:𝑡 ′)︸ ︷︷ ︸
:=(𝑎)

+ 𝛽
∑︁
𝑡∈I

log
𝜇 (S(u<𝑡 , u𝑡:𝑡 ′))
𝜇

(
S(u<𝑡 , û𝑡:𝑡 ′)

)︸ ︷︷ ︸
:=(𝑏)

.

For (a), plugging in (5.19), the total cost for the sequence û is bounded from above
by ∑︁

𝑡∈I
𝐶 (û𝑡:𝑡 ′) ≤𝐶∗𝑇 +

∑︁
𝑡∈I

��𝐶 (û𝑡:𝑡 ′) − 𝐶 (u∗𝑡:𝑡 ′)��
≤𝐶∗𝑇 +

2𝑇/𝑤∑︁
𝑘=1

𝑑𝛿𝐿c

(
𝐿c
𝑘𝑑
√
𝑤

𝛽
+ 𝑘
√
𝑤

log𝜆
) 1
(𝑇−𝑘𝑤+1)𝑚

=𝐶∗𝑇 +𝑂
(
𝑇
√
𝑤
𝑑𝛿 log𝜆 + 𝑑

2𝛿

𝛽
𝑇
√
𝑤

)

160

where 𝐶∗
𝑇

:=
∑𝑇
𝑡=1 𝑐

∗
𝑡 (𝑢∗𝑡) is the optimal total cost. Finally, (b) becomes 𝑂 (𝑇𝛽/𝑤)

since the safety sets are atomic and U is bounded by Assumption 6 and 7. Rearranging
the terms,

Regret(u) =𝑂
(
𝑇𝑑

(
𝛿 log𝜆
√
𝑤
+ 𝑑𝛿
√
𝑤

𝛽
+ 𝛽

𝑑𝑤

))
.

Setting 𝛽 = 𝑑
√
𝛿𝑤3/4 immediately implies

Regret(u) = 𝑂
(
𝑇𝑑

(
(𝛿 log𝜆)/

√
𝑤 +
√
𝛿/𝑤1/4

))
.

□

Part III

Learning, Inference, and Data
Analysis in Smart Grids

161

162

C h a p t e r 6

LEARNING POWER SYSTEM PARAMETERS FROM LINEAR
MEASUREMENTS

[1] Tongxin Li, Lucien Werner, and Steven H. Low. Learning graph parameters from
linear measurements: Fundamental trade-offs and application to electric grids. In
2019 IEEE 58th Conference on Decision and Control (CDC), pages 6554–6559,
2019. URL https://doi.org/10.1109/CDC40024.2019.9029949.

[2] Tongxin Li, Lucien Werner, and Steven H. Low. Learning graphs from linear
measurements: Fundamental trade-offs and applications. IEEE Transactions
on Signal and Information Processing over Networks, 6:163–178, 2020. URL
https://doi.org/10.1109/TSIPN.2020.2975368.

In the results on learning-augmented control and decision-making presented in
Chapter 2 and 3, system matrices 𝐴 and 𝐵 or their crude estimates are assumed
to be available. In this chapter, we consider system identification and inference
problems of those system matrices for power systems. We provide a characterization
of fundamental trade-offs for system identification between the number of samples,
the complexity of the graph class, and the probability of error.

6.1 Introduction
Symmetric matrices are ubiquitous in graphical models with examples such as the
(0, 1) adjacency matrix and the (generalized) Laplacian of an undirected graph. A
major challenge in graph learning is inferring graph parameters embedded in those
graph-based matrices from historical data or real-time measurements. In contrast
to traditional statistical inference methods [145–147], model-based graph learning,
such as physically-motivated models and graph signal processing (GSP) [148], takes
advantage of additional data structures offered freely by nature. Among different
measurement models for graph learning, linear models have been used and analyzed
widely for different tasks, e.g., linear structural equation models (SEMs) [149, 150],
linear graph measurements [151], generalized linear cascade models [152], etc.

Despite extra efforts required on data collection, processing and storage, model-
based graph learning often guarantees provable sample complexity, which is often
significantly lower than the empirical number of measurements needed with traditional

163

inference methods. In many problem settings, having computationally efficient
algorithms with low sample complexity is important. One reason for this is that the
graph parameters may change in a short time-scale, making sample complexity a vital
metric to guarantee that the learning can be accomplished with limited measurements.
Indeed many applications, such as real-time optimal power flow [153–155], real-time
contingency analysis [156] and frequency control [157] in power systems etc., require
data about the network that are time-varying. For example, the generations or net
loads may change rapidly due to the proliferation of distributed energy resources. The
topology and line parameters of the grid may be reconfigured to mitigate cascading
failure [158]. Line switching has changed the traditional idea of a power network
with a fixed topology, enabling power flow control by switching lines [159], etc.
Hence analyzing fundamental limits of parameter reconstruction and designing
graph algorithms that are efficient in both computational and sample complexity are
important.

The number of measurements needed for reconstructing a graph Laplacian can be
affected by various system parameters, such as data quality (distribution), physical
laws, and graph structures. In particular, existing recovery algorithms often assume
the graph to be recovered is in a specific class, e.g., trees [145], sparse graphs [160],
graphs with no high-degree nodes [161], with notable exceptions such as [162], which
considers an empirical algorithm for topology identification. However, there is still a
lack of understanding of sample complexity for learning general undirected graphs
that may contain high-degree nodes, especially with measurements constrained
naturally by a linear system.

In this work, we consider a general graph learning problem where the measurements
and underlying matrix to be recovered can be represented as or approximated by a
linear system. A graph matrix Y(𝐺) with respect to an underlying graph 𝐺, which
may have high-degree nodes (see Definition 6.2.1) is defined as an 𝑛 × 𝑛 symmetric
matrix with each nonzero (𝑖, 𝑗)-th entry corresponding to an edge connecting node 𝑖
and node 𝑗 where 𝑛 ∈ N+ is the number of nodes of the underlying undirected graph.
The diagonal entries can be arbitrary. The measurements are summarized as two
𝑚 × 𝑛 (1 ≤ 𝑚 ≤ 𝑛) real or complex matrices A and B satisfying

A = BY(𝐺) + Z (6.1)

where Z denotes additive noise.

We focus on the following problems:

164

• Fundamental Trade-offs. What is the minimum number 𝑚 of linear measure-
ments required for reconstructing the symmetric matrix Y(𝐺)? Is there an
algorithm asymptotically achieving recovery with the minimum number of
measurements? As a special case, can we characterize the sample complexity
when the measurements are Gaussian IID1?

• Applications to Electrical Grids. Do the theoretical guarantees on sample
complexity result in a practical algorithm (in terms of both sample and compu-
tational complexity) for recovering electric grid topology and parameters?

Some comments about the above model and the results in this work are as follows.

Remark 7. It has been noted that vectorization and standard compressed sensing
techniques do not lead to straightforward results (see [161] for detailed arguments
about a similar linear system). This issue is discussed extensively in Section 6.1.

Remark 8. The results in this work do not assume low-degree nodes as most of
existing results do, with notable exceptions such as [162] which gives empirical and
data-based subroutines for topology identification.

Related Work
Graph Learning. Algorithms for learning sparse graphical model structures have a
rich tradition in the literature. For general Markov random fields (MRFs), learning
the underlying graph structures is known to be NP-hard [163]. However, in the
case when the underlying graph is a tree, the classical Chow-Liu algorithm [145]
offers an efficient approach to structure estimation. Recent results contribute to an
extensive understanding of the Chow-Liu algorithm. The authors in [147] analyzed
the error exponent and showed experimental results for chain graphs and star
graphs. For pairwise binary MRFs with bounded maximum degree, [164] provides
sufficient conditions for correct graph selection. Model-based graph learning has
been emerging recently and assuming the measurements form linear SEMs, the
authors in [149, 150] showed theoretical guarantees of the sample complexity for
learning a directed acyclic graph (DAG) structure, under mild conditions on the class
of graphs.

For converse, information-theoretic tools have been widely applied to derive funda-
mental limits for learning graph structures. For a Markov random field with bounded

1This means the entries of the matrix B are IID normally distributed.

165

maximum degree, necessary conditions on the number of samples for estimating
the underlying graph structure were derived in [164] using Fano’s inequality (see
[165]). For Ising models, [166] combines Fano’s inequality with the idea of typicality
to derive weak and strong converse. Similar techniques have also been applied to
Bayesian networks [167]. Fundamental limits for noisy compressed sensing have
been extensively studied in [168] under an information-theoretic framework.

System Identification in Power Systems. Graph learning has been widely used
in electric grids applications, such as state estimation [169, 170] and topology
identification [171, 172]. Most of the literature focuses on topology identification or
change detection, but there is less work on joint topology and parameter reconstruction,
with notable exceptions of [173–176]. However, the linear system proposed in [174]
does not leverage the sparsity of the graph2. Thus, in the worst case, the matrix B
needs to have full column rank, implying that 𝑚 = Ω(𝑛) measurements are necessary
for recovery.

Moreover, there is little exploration on the fundamental performance limits (estimation
error and sample complexity) on topology and parameter reconstruction of power
networks, with the exception of [177] where a sparsity condition was given for exact
recovery of outage lines. Based on single-type measurements (either current or
voltage), correlation analysis has been applied for topology identification [178–180].
Approximating the measurements as normal distributed random variables, the authors
of [171] proposed an approach for topology identification with limited measurements.
A graphical learning-based approach can be found in [181]. Recently, data-driven
methods were studied for parameter estimation [175]. In [174], a similar linear
system as (6.6) was used combined with regression to recover the symmetric graph
parameters (which is the admittance matrix in the power network).

Compressed Sensing and Sketching. It is well known that compressed sensing ([182,
183]) techniques allow for recovery of a sparse matrix with a limited number of
measurements in various applications such as medical imaging [184], wireless
communication [185], channel estimation [186] and circuit design [187], etc. For
electricity grids, in [188], based on these techniques, experimental results have
been given for topology recovery. However, nodal admittance matrices (generalized
Laplacians) for power systems have two properties for which there are gaps in

2With respect to sparsity, we consider not only graphs with bounded degrees, but a broader
class of graphs which may contain high-degree nodes. Definition 6.3.1 gives a comprehensive
characterization of sparsity.

166

the sparse recovery literature: 1) the presence of high-degree nodes in a graph
(corresponding to dense columns in its Laplacian) and 2) symmetry.

Consider a vectorization of system (6.1) using tensor product notation, with a :=
vec(A) and y(𝐺) := vec(Y(𝐺)). Then linear system (6.1) is equivalent to a =

(I ⊗ B)y(𝐺) where vec(·) produces a column vector by stacking the columns of the
input matrix and I ⊗ B is the Kronecker product of an identity matrix I ∈ R𝑛×𝑛 and
B. With the sensing matrix being a Kronecker product of two matrices, traditional
compressed sensing analysis works for the case when y contains only 𝜇 = Θ(1)
non-zeros [189]. For instance, the authors of [190] showed that the restricted
isometry constant (see Section 6.3 for the definition), 𝛿𝜇 (I ⊗ B) is bounded from
above by 𝛿𝜇 (B), the restricted isometry constant of B. However, if a column (or row)
of Y(G) is dense, classical restricted isometry-based approach cannot be applied
straightforwardly.

Another way of viewing it is that vectorizing A and Y(𝐺) and constructing a sensing
matrix I ⊗ B is equivalent to recovering each of the column (or row) of Y(𝐺)
separately from 𝐴 𝑗 = B𝑌 𝑗 (𝐺) for 𝑗 = 1, . . . , 𝑛 where 𝐴 𝑗 ’s and 𝑌 𝑗 (𝐺)’s are columns
of A and Y(𝐺). For a general “sparse” graph 𝐺, such as a star graph, some of the
columns (or rows) of the graph matrix Y(𝐺) may be dense vectors consisting of
many non-zeros. The results in [189, 190] give no guarantee for the recovery of the
dense columns of Y(𝐺) (correspondingly, the high-degree nodes in𝐺), and thus they
cannot be applied directly to the analysis of sample complexity. This statement is
further validated in our experimental results shown in Figure 6.6.2 and Figure 6.6.3.

The authors of [161] considered the recovery of an unknown sparse matrix M ∈ R𝑛×𝑛

(not necessarily symmetric) from an 𝑚 × 𝑚 matrix A = BMC
𝑇

where B ∈ R𝑚×𝑛

and C ∈ R𝑚×𝑛 with 𝑚 ≪ 𝑛. By adding a symmetry constraint to their recovery
formulation, we obtain the following modified basis pursuit as a convex optimization:

minimize | |Y(𝐺) | |1 (6.2)

subject to BY(𝐺) = A, (6.3)

Y(𝐺) ∈ S𝑛×𝑛 (6.4)

where | |Y(𝐺) | |1 = | |vec(Y(𝐺)) | |1 is the entry-wise ℓ1-norm of Y(𝐺) and S𝑛×𝑛

denotes the set of all symmetric matrices in R𝑛×𝑛. However, the approach in [161]
does not carry through to our setting for two reasons. First, the analysis of such
an optimization often requires stronger assumptions, e.g., the non-zeros are not
concentrated in any single column (or row) of Y(𝐺), as in [161]. Second, having

167

the symmetry property of Y as a constraint does not explicitly make use of the fact
that many columns in Y are indeed sparse and can be recovered correctly. As a
consequence, basis pursuit may produce poor results in certain scenarios where our
approach performs well, as demonstration in our experimental results on star graphs
in Section 6.6.

Although the columns of Y(𝐺) are correlated because of the symmetry, in general
there are no constraints on the support sets of the columns. Thus distributed
compressed sensing schemes (for instance, [191] requires the columns to share the
same support set) are not directly applicable in this situation.

The previous studies and aforementioned issues together motivate us to propose a
novel three-stage recovery scheme for the derivation of a sufficient recovery condition,
which leads to a practical algorithm that is sample and computationally efficient as
well as robust to noise.

Our Contributions
We demonstrate that the linear system in (6.1) can be used to learn the topology
and parameters of a graph. Our framework can be applied to perform system
identification in electrical grids by leveraging synchronous nodal current and voltage
measurements obtained from phasor measurement units (PMUs).

Compared to existing methods and analysis, the main results of this work are
three-fold:

1. Fundamental Trade-offs: In Theorem 6.3.1, we derive a general lower bound
on the probability of error for topology identification (defined in (6.7)). In
Section 6.3, we describe a simple three-stage recovery scheme combining
ℓ1-norm minimization with an additional step called consistency-checking,
rendering which allows us to bound the number of measurements for exact
recovery from above as in Theorem 6.3.2.

2. (Worst-case) Sample Complexity: We provide sample complexity results for
recovering a random graph that may contain high-degree nodes. The unknown
distribution that the graph is sampled from is characterized based on the
definition of “(𝜇, 𝐾, 𝜌)-sparsity” (see Definition 6.3.1). Under the assumption
that the matrix B has Gaussian IID entries, in Section 6.4, we provide upper
and lower bounds on the worst-case sample complexity in Theorem 6.4.1. We

168

show two applications of Theorem 6.4.1 for the uniform sampling of trees and
the Erdős-Rényi (𝑛, 𝑝) model in Corollary 6.4.1 and 6.4.2, respectively.

3. (Heuristic) Algorithm: Motivated by the three-stage recovery scheme, a heuris-
tic algorithm with polynomial (in 𝑛) running-time is reported in Section 6.5,
together with simulation results for power system test cases validating its
performance in Section 6.6.

Some comments about the above results are as follows:

Outline of This Chapter
The remaining content is organized as follows. In Section 6.2, we specify our models.
In Section 6.3, we present the converse result as fundamental limits for recovery. The
achievability is provided in 6.3. We present our main result as the worst-case sample
complexity for Gaussian IID measurements in Section 6.4. A heuristic algorithm
together with simulation results are reported in Sections 6.5 and 6.6.

6.2 Model and Definitions
Notation. Let F denote a field that can either be the set of real numbers R, or the
set of complex numbers C. The set of all symmetric 𝑛 × 𝑛 matrices whose entries
are in F is denoted by S𝑛×𝑛. The imaginary unit is denoted by j. Throughout the
work, let log (·) denote the binary logarithm with base 2 and let ln (·) denote the
natural logarithm with base 𝑒. We use E [·] to denote the expectation of random
variables. The mutual information is denoted by I(·). The entropy function (either
differential or discrete) is denoted by H(·) and in particular, we reserve ℎ(·) for the
binary entropy function. To distinguish random variables and their realizations, we
follow the convention and denote the former by capital letters (e.g., 𝐴) and the latter
by lower case letters (e.g., 𝑎). The symbol 𝐶 is used to designate a constant.

Matrices are denoted in boldface (e.g., A, B and Y). The 𝑖-th row, the 𝑗-th column
and the (𝑖, 𝑗)-th entry of a matrix A are denoted by 𝐴(𝑖) , 𝐴 𝑗 and 𝐴𝑖, 𝑗 , respectively.
For notational convenience, let S be a subset of V. Denote by S := V\S the
complement of S and by AS a sub-matrix consisting of |S| columns of the matrix A
whose indices are chosen from S. The notation ⊤ denotes the transpose of a matrix,
det (·) calculates its determinant. For the sake of notational simplicity, we use big O
notation (𝑜,𝜔,𝑂,Ω,Θ) to quantify asymptotic behavior.

169

Graphical Model
Denote by V = {1, . . . , 𝑛} a set of 𝑛 nodes and consider an undirected graph
𝐺 = (V, E) (with no self-loops) whose edge set E ⊆ V ×V contains the desired
topology information. The degree of each node 𝑗 is denoted by 𝑑 𝑗 . The connectivity
between the nodes is unknown and our goal is to determine it by learning the
associated graph matrix using linear measurements.

Definition 6.2.1 (Graph matrix). Provided with an underlying graph 𝐺 = (V, E), a
symmetric matrix Y(𝐺) ∈ S𝑛×𝑛 is called a graph matrix if the following conditions
hold:

𝑌𝑖, 𝑗 (𝐺) =

≠ 0 if 𝑖 ≠ 𝑗 and (𝑖, 𝑗) ∈ E

0 if 𝑖 ≠ 𝑗 and (𝑖, 𝑗) ∉ E

arbitrary otherwise

.

Remark 9. Our theorems can be generalized to recover a broader class of symmetric
matrices, as long as the matrix to be recovered satisfies (1) Knowing Y(𝐺) ∈ F𝑛×𝑛

gives the full knowledge of the topology of 𝐺; (2) The number of non-zero entries
in a column of Y(𝐺) has the same order as the degree of the corresponding node,
i.e., |supp(𝑌 𝑗) | = 𝑂 (𝑑 𝑗). for all 𝑗 ∈ V. To have a clear presentation, we consider
specifically the case |supp(𝑌 𝑗) | = 𝑑 𝑗 .

In this work, we employ a probabilistic model and assume that the graph 𝐺 is chosen
randomly from a candidacy set C(𝑛) (with 𝑛 nodes), according to some distribution
G𝑛. Both the candidacy set C(𝑛) and distribution G𝑛 are not known to the estimator.
For simplicity, we often omit the subscripts of C(𝑛) and G𝑛.

Example 7. We exemplify some possible choices of the candidacy set and distribution:

(a) (Mesh Network) When 𝐺 represents a transmission (mesh) power network
and no prior information is available, the corresponding candidacy set G(𝑛)
consisting of all graphs with 𝑛 nodes and 𝐺 is selected uniformly at random
from G(𝑛). Moreover, |G(𝑛) | = 2(𝑛2) in this case.

(b) (Radial Network) When𝐺 represents a distribution (radial) power network and
no other prior information is available, then the corresponding candidacy set
T(𝑛) is a set containing all spanning trees of the complete graph with 𝑛 buses
(nodes) and 𝐺 is selected uniformly at random from T(𝑛); the cardinality is
|T(𝑛) | = 𝑛𝑛−2 by Cayley’s formula.

170

(c) (Radial Network with Prior Information) When 𝐺 = (V, E) represents a
distribution (radial) power network, and we further know that some of the
buses cannot be connected (which may be inferred from locational/geographical
information), then the corresponding candidacy set T𝐻 (𝑛) is a set of spanning
trees of a sub-graph 𝐻 = (V, E𝐻) with 𝑛 buses. An edge 𝑒 ∉ E𝐻 if and only if
we know 𝑒 ∉ E. The size of T𝐻 (𝑛) is given by Kirchhoff’s matrix tree theorem
(c.f. [192]).

(d) (Erdős-Rényi (𝑛, 𝑝) model) In a more general setting, 𝐺 can be a random
graph chosen from an ensemble of graphs according to a certain distribution.
When a graph 𝐺 is sampled according to the Erdős-Rényi (𝑛, 𝑝) model, each
edge of 𝐺 is connected IID with probability 𝑝. We denote the corresponding
graph distribution for this case by GER(𝑛, 𝑝).

The next section is devoted to describing available measurements.

Linear System of Measurements
Suppose the measurements are sampled discretely and indexed by the elements of
the set {1, . . . , 𝑚}. As a general framework, the measurements are collected in two
matrices A and B and defined as follows.

Definition 6.2.2 (Generator and measurement matrices). Let 𝑚 be an integer with
1 ≤ 𝑚 ≤ 𝑛. The generator matrix B is an 𝑚 × 𝑛 random matrix and the measurement
matrix A is an 𝑚 × 𝑛 matrix with entries selected from F that satisfy the linear system
(6.1):

A = BY(𝐺) + Z

where Y(𝐺) ∈ S𝑛×𝑛 is a graph matrix to be recovered, with an underlying graph 𝐺
and Z ∈ F𝑚×𝑛 denotes the random additive noise. We call the recovery noiseless if
Z = 0. Our goal is to resolve the matrix Y(𝐺) based on given matrices A and B.

In the remaining contexts, we sometime simplify the matrix Y(𝐺) as Y if there is no
confusion.

Applications to Electrical Grids
Various applications fall into the framework in (6.1). Here we present two examples of
the graph identification problem in power systems. The measurements are modeled
as time series data obtained via nodal sensors at each node, e.g., PMUs, smart
switches, or smart meters.

171

Example 1: Nodal Current and Voltage Measurements

We assume data is obtained from a short time interval over which the unknown
parameters in the network are time-invariant. Y ∈ C𝑛×𝑛 denotes the nodal admittance
matrix of the network and is defined

𝑌𝑖, 𝑗 :=

−𝑦𝑖, 𝑗 if 𝑖 ≠ 𝑗

𝑦𝑖 +
∑
𝑘≠𝑖 𝑦𝑖,𝑘 if 𝑖 = 𝑗

(6.5)

where 𝑦𝑖, 𝑗 ∈ C is the admittance of line (𝑖, 𝑗) ∈ E and 𝑦𝑖 is the self-admittance of
bus 𝑖. Note that if two buses are not connected then 𝑌𝑖, 𝑗 = 0.

The corresponding generator and measurement matrices are formed by simultaneously
measuring both current (or equivalently, power injection) and voltage at each node and
at each time step. For each 𝑡 = 1, . . . , 𝑚, the nodal current injection is collected in an
𝑛-dimensional random vector 𝐼𝑡 = (𝐼𝑡,1, . . . , 𝐼𝑡,𝑛). Concatenating the 𝐼𝑡 into a matrix
we get I := [𝐼1, 𝐼2, . . . , 𝐼𝑚]⊤ ∈ C𝑚×𝑛. The generator matrix V := [𝑉1, 𝑉2, . . . , 𝑉𝑚]⊤ ∈
C𝑚×𝑛 is constructed analogously. Each pair of measurement vectors (𝐼𝑡 , 𝑉𝑡) from I
and V must satisfy Kirchhoff’s and Ohm’s laws,

𝐼𝑡 = Y𝑉𝑡 , 𝑡 = 1, . . . , 𝑚. (6.6)

In matrix notation, (6.6) is equivalent to I = VY, which is a noiseless version of the
linear system defined in (6.1).

Compared with only obtaining one of the current, power injection or voltage
measurements (for example, as in [147, 178, 179]), collecting simultaneous current-
voltage pairs doubles the amount of data to be acquired and stored. There are
benefits however. First, exploiting the physical law relating voltage and current
not only enables us to identify the topology of a power network but also recover
the parameters of the admittance matrix. Furthermore, dual-type measurements
significantly reduce the sample complexity for learning the graph, compared with
the results for single-type measurements.

Example 2: Nodal Power Injection and Phase Angles

Similar to the previous example, at each time 𝑡 = 1, . . . , 𝑚, denote by 𝑃𝑡, 𝑗 and 𝜃𝑡, 𝑗
the active nodal power injection and the phase of voltage at node 𝑗 , respectively. The
matrices P ∈ R𝑚×𝑛 and 𝜃𝜃𝜃 ∈ R𝑚×𝑛 are constructed in a similar way by concatenating
the vectors 𝑃𝑡 = (𝑃𝑡,1, . . . , 𝑃𝑡,𝑛) and 𝜃𝑡 = (𝜃𝑡,1, . . . , 𝜃𝑡,𝑛). The matrix representation

172

of the DC power flow model can be expressed as a linear system P = 𝜃𝜃𝜃CSC⊤,
which belongs to the general class represented in (6.1). Here, the diagonal matrix
S ∈ R|E |×|E| is the susceptence matrix whose 𝑒-th diagonal entry represents the
susceptence on the 𝑒-th edge inE and C ∈ {−1, 0, 1}𝑛×|E| is the node-to-link incidence
matrix of the graph. The vertex-edge incidence matrix3 C ∈ {−1, 0, 1}𝑛×|E| is defined
as

𝐶 𝑗 ,𝑒 :=

1, if bus 𝑗 is the source of 𝑒

−1, if bus 𝑗 is the target of 𝑒

0, otherwise

.

Note that CSC⊤ specifies both the network topology and the susceptences of power
lines.

Probability of Error as the Recovery Metric
We define the error criteria considered in this chapter. We refer to finding the edge set
E of 𝐺 via matrices A and B as the topology identification problem and recovering
the graph matrix Y via matrices A and B as the parameter reconstruction problem.

Definition 6.2.3. Let 𝑓 be a function or algorithm that returns an estimated graph
matrix X = 𝑓 (A,B) given inputs A and B. The probability of error for topology
identification 𝜀T is defined to be the probability that the estimated edge set is not
equal to the correct edge set:

𝜀T := P
(
∃ 𝑖 ≠ 𝑗

�� sign(𝑋𝑖, 𝑗) ≠ sign
(
𝑌𝑖, 𝑗 (𝐺)

))
(6.7)

where the probability is taken over the randomness in 𝐺,B and Z. The probability
of error for parameter reconstruction 𝜀P(𝜂) is defined to be the probability that the
Frobenius norm of the difference between the estimate X and the original graph
matrix Y(𝐺) is larger than 𝜂 > 0:

𝜀P(𝜂) := sup
Y∈Y(𝐺)

P (| |X − Y(𝐺) | |F > 𝜂) (6.8)

where | | · | |F denotes the Frobenius norm, 𝜂 > 0 and Y(𝐺) is the set of all graph
matrices 𝑌 (𝐺) that satisfy Definition 6.2.1 for the underlying graph 𝐺, and the
probability is taken over the randomness in 𝐺, B and Z. Note that for noiseless
parameter reconstruction, i.e., Z = 0, we always consider exact recovery and set
𝜂 = 0 and abbreviate the probability of error as 𝜀P.

3Although the underlying network is a directed graph, when considering the fundamental limit
for topology identification, we still refer to the recovery of an undirected graph 𝐺.

173

6.3 Fundamental Trade-offs
We discuss fundamental trade-offs of the parameter reconstruction problem defined
in Section 6.2 and 6.2. The converse result is summarized in Theorem 6.3.1 as an
inequality involving the probability of error, the distributions of the underlying graph,
generator matrix and noise. Next, in Section 6.3, we focus on a particular three-stage
scheme, and show in Theorem 6.3.2 that under certain conditions, the probability of
error is asymptotically zero (in 𝑛).

Necessary Conditions
The following theorem states the fundamental limit.

Theorem 6.3.1 (Converse). The probability of error for topology identification 𝜀T is
bounded from below as

𝜀T ≥ 1 − H (A) − H (Z) + ln 2
H (G𝑛)

(6.9)

where H (A), H (Z) are differential entropy (in base 𝑒) functions of the random
variables A, Z, respectively, and H (G𝑛) is the entropy (in base 𝑒) of the probability
distribution G𝑛.

Remark 10. It can be inferred from the theorem that 𝜀T = 1−𝑂 (𝑚𝑛/H (G𝑛)), given
that the generator matrix B has Gaussian IID entries and the noise Z is additive white
Gaussian (see Lemma 24). Therefore, the structure of the graphs reflected in the
corresponding entropy of the graph distribution determines the number of samples
needed. Consider the four cases listed in Example 7. The number of samples must
be at least linear in 𝑛 (size of the graph) to ensure a small probability of error, given
that the graph, as a mesh network, is chosen uniformly at random from C(𝑛) (see
Example 7 (a)) since H(UG(𝑛)) =

(𝑛
2
)
. On the other hand, as corollaries, under the

assumptions of Gaussian IID measurements, 𝑚 = Ω(log 𝑛) is necessary for making
the probability of error less or equal to 1/2, if the graph is chosen uniformly at
random from T(𝑛); 𝑚 = Ω(𝑛ℎ(𝑝)) is necessary if the graph is sampled according to
GER(𝑛, 𝑝), as in Examples 7 (b) and (c), respectively. The theorem can be generalized
to complex measurements by adding additional multiplicative constants.

Note that 𝜀P ≥ 𝜀T for any fixed noiseless parameter reconstruction algorithm, the
necessary conditions work for both topology and (noiseless) parameter reconstruction.
The proof is postponed to Appendix 6.A and the key steps are first applying
the generalized Fano’s inequality (see [165, 168]) and then bounding the mutual

174

information I (𝐺; A|B) from above by H(A) − H(Z). The general converse stated
in Theorem 6.3.1 is used in asserting the results on worst-case sample complexity
in Theorem 6.4.1. Next, we analyze the sufficient condition for recovering a graph
matrix Y(𝐺). Before proceeding to the results, we introduce a novel characterization
of the distribution G𝑛, from which a graph 𝐺 is sampled. In particular, the graph 𝐺
is allowed to have high-degree nodes.

Characterization of Graph Distributions
Let 𝑑 𝑗 (𝐺) denote the degree of node 𝑗 ∈ V in 𝐺. Denote by VLarge (𝜇) := { 𝑗 ∈
V

�� 𝑑 𝑗 (𝐺) > 𝜇} the set of nodes having degrees greater than the threshold parameter
0 ≤ 𝜇 ≤ 𝑛 − 2 and VSmall (𝜇) := V\VLarge (𝜇) the set of nodes for all 𝜇-sparse
column vectors of Y. With a counting parameter 0 ≤ 𝐾 ≤ 𝑛, we define a set of
graphs wherein each graph consists of no more than 𝐾 nodes with degree larger than
𝜇, denoted by C(𝑛, 𝜇, 𝐾) := {𝐺 ∈ C(𝑛) |

��VLarge (𝜇)
�� ≤ 𝐾}. The following definition

characterizes graph distributions.

Definition 6.3.1 ((𝜇, 𝐾, 𝜌)-sparse distribution). A graph distribution G𝑛 is said
to be (𝜇, 𝐾, 𝜌)-sparse if assuming that 𝐺 is distributed according to G𝑛, then the
probability that 𝐺 belongs to C(𝑛, 𝜇, 𝐾) is larger than 1 − 𝜌, i.e.,

PG𝑛 (𝐺 ∉ C(𝑛, 𝜇, 𝐾)) ≤ 𝜌. (6.10)

1) Uniform Sampling of Trees:

Based on the definition above, for particular graph distributions, we can find
the associated parameters. We exemplify by considering two graph distributions
introduced in Example 7. Denote byUT(𝑛) the uniform distribution on the set T(𝑛)
of all trees with 𝑛 nodes.

Lemma 22. For any 𝜇 ≥ 1 and 𝐾 > 0, the distributionUT(𝑛) is (𝜇, 𝐾, 1/𝐾)-sparse.

2) Erdős-Rényi (𝑛, 𝑝) model:

Denote by GER(𝑛, 𝑝) the graph distribution for the Erdős-Rényi (𝑛, 𝑝) model.
Similarly, the lemma below classifies GER(𝑛, 𝑝) into a (𝜇, 𝐾, 𝜌)-sparse distribution
with appropriate parameters.

Lemma 23. For any 𝜇(𝑛, 𝑝) that satisfies 𝜇(𝑛, 𝑝) ≥ 2𝑛ℎ(𝑝)/(ln 1/𝑝) and 𝐾 > 0,
the distribution GER(𝑛, 𝑝) is (𝜇, 𝐾, 𝑛 exp(−𝑛ℎ(𝑝))/𝐾)-sparse.

175

The proofs of Lemmas 22 and 23 are in Appendix 6.D.

Remark 11. It is worth noting that the (𝜇, 𝐾, 𝜌)-sparsity is capable of characterizing
any arbitrarily chosen distribution. The interesting part is that for some of the
well-known distributions, such as GER(𝑛, 𝑝), this sparsity characterization offers
a method that can be used in the analysis and moreover, it leads to an exact
characterization of sample complexity for the noiseless case. Therefore, for the
particular examples presented in Lemma 22 and Lemma 23, the selected threshold and
counting parameters for both of them are “tight” (up to multiplicative factors), in the
sense that the corresponding sample complexity matches (up to multiplicative factors)
the lower bounds derived from Theorem 6.3.1. This can be seen in Corollary 6.4.1
and 6.4.2.

176

Algorithm 9: A Three-stage Recovery Scheme. The first stage focuses on
solving each column of the matrix Y independently using ℓ1-minimization. In
the second stage, the recovery correctness of the first stage is further verified via
consistency-checking, which utilizes the fact that the matrix to be recovered Y is
symmetric. The parameter 𝛾 is set to zero for the analysis of noiseless parameter
reconstruction.
Data: Matrices of measurements A and B

Result: Estimated graph matrix X

Step (a): Recovering columns independently:

for 𝑗 ∈ V do
Solve the following ℓ1-minimization and obtain an optimal X:

minimize
����𝑋 𝑗 ����1

subject to | |B𝑋 𝑗 − 𝐴 𝑗 | |2 ≤ 𝛾,
𝑋 𝑗 ∈ F𝑛.

end

Step (b): Consistency-checking:

for S ⊆ V with |S| = 𝑛 − 𝐾 do
if |𝑋𝑖, 𝑗 − 𝑋 𝑗 ,𝑖 | > 2𝛾 for some 𝑖, 𝑗 ∈ S then

continue;

end

else
for 𝑗 ∈ S do

Step (c): Resolving unknown entries:

Update 𝑋S
𝑗

by solving the linear system:

BS𝑋
S
𝑗 = 𝐴 𝑗 − BS𝑋S𝑗 .

end

end

break;

end

return X = (𝑋1, . . . , 𝑋𝑛);

177

Sufficient Conditions
In this subsection, we consider the sufficient conditions (achievability) for parameter
reconstruction. The proofs rely on constructing a three-stage recovery scheme
(Algorithm 9), which contains three steps – column-retrieving, consistency-checking
and solving unknown entries. The worst-case running time of this scheme depends
on the underlying distribution G𝑛4. The scheme is presented as follows.

Figure 6.3.1: The recovery of a graph matrix Y using the three-stage scheme in
Algorithm 10. The 𝑛 − 𝐾 columns of Y colored by gray are first recovered via the
ℓ1-minimization (6.11a)-(6.11c) in step (a), after they are accepted by passing the
consistency check in step (b). Then, symmetry is used for recovering the entries
in the matrix marked by green. Leveraging the linear measurements again, in step
(c), the remaining 𝐾2 entries in the white symmetric sub-matrix are solved using
Equation (6.12).

1) Three-stage Recovery Scheme:

Step (a): Retrieving columns. In the first stage, using ℓ1-norm minimization, we
recover each column of Y based on (6.1):

minimize
����𝑋 𝑗 ����1 (6.11a)

subject to | |B𝑋 𝑗 − 𝐴 𝑗 | |2 ≤ 𝛾, (6.11b)

𝑋 𝑗 ∈ F𝑛. (6.11c)

Let 𝑋S
𝑗

:= (𝑋𝑖, 𝑗)𝑖∈S be a length-|S| column vector consisting of |S| coordinates in
𝑋 𝑗 , the 𝑗-th retrieved column. We do not restrict the methods for solving the ℓ1-norm

4Although for certain distributions, the computational complexity is not polynomial in 𝑛, the
scheme still provides insights on the fundamental trade-offs between the number of samples and
the probability of error for recovering graph matrices. Furthermore, motivated by the scheme, a
polynomial-time heuristic algorithm is provided in Section 6.5 and experimental results are reported
in Section 6.6.

178

minimization in (6.11a)-(6.11c), as long as there is a unique solution for sparse
columns with fewer than 𝜇 non-zeros (provided enough number of measurements
and the parameter 𝜇 > 0 is defined in Definition 6.3.1).

Step (b): Checking consistency.

In the second stage, we check for error in the decoded columns 𝑋1, . . . , 𝑋𝑛 using the
symmetry property (perturbed by noise) of the graph matrix Y. Specifically, we fix a
subset S ⊆ V with a given size |S| = 𝑛 − 𝐾 for some integer5 0 ≤ 𝐾 ≤ 𝑛. Then we
check if |𝑋𝑖, 𝑗 − 𝑋 𝑗 ,𝑖 | ≤ 2𝛾 for all 𝑖, 𝑗 ∈ S. If not, we choose a different set S of the
same size. This procedure stops until either we find such a subset S of columns, or
we go through all possible subsets without finding one. In the latter case, an error is
declared and the recovery is unsuccessful. It remains to recover the vectors 𝑋 𝑗 for
𝑗 ∈ S.

Step (c): Resolving unknown entries. In the former case, for each vector 𝑋 𝑗 , 𝑗 ∈ S,
we accept its entries 𝑋𝑖, 𝑗 , 𝑖 ∈ S, as correct and therefore, according to the symmetry
assumption, we know the entries 𝑋𝑖, 𝑗 , 𝑖 ∈ S, 𝑗 ∈ S (equivalently {𝑋S

𝑗
: 𝑗 ∈ S}),

which are used together with the sub-matrices BS and BS to compute the other
entries 𝑋𝑖, 𝑗 , 𝑖 ∈ S, of 𝑋 𝑗 using (6.11b):

BS𝑋
S
𝑗 = 𝐴 𝑗 − BS𝑋S𝑗 , 𝑗 ∈ S. (6.12)

Note that to avoid being over-determined, in practice, we solve

BK
S
𝑋S𝑗 = 𝐴K𝑗 − BKS 𝑋

S
𝑗 , 𝑗 ∈ S

where BK
S

is a 𝐾 × 𝐾 matrix whose rows are selected from BS corresponding to
K ⊆ V with |K | = 𝐾 and BKS selects the rows of BS in the same way. We combine
𝑋S
𝑗

and 𝑋S
𝑗

to obtain a new estimate 𝑋 𝑗 for each 𝑗 ∈ S. Together with the columns
𝑋 𝑗 , 𝑗 ∈ S, that we have accepted, they form the estimated graph matrix X. We
illustrate the three-stage scheme in Figure 6.3.1. In the sequel, we analyze the sample
complexity of the three-stage scheme based on the (𝜇, 𝐾, 𝜌)-sparse distributions
defined in Definition 6.3.1.

2) Analysis of the Scheme:
5The choice of 𝐾 depends on the structure of the graph to be recovered and more specifically, 𝐾

is the counting parameter in Definition 6.3.1. In Theorem 6.3.2 and Corollary 6.3.1, we analyze the
sample complexity of this three-stage recovery scheme by characterizing an arbitrary graph into the
classes specified by Definition 6.3.1 with a fixed 𝐾 .

179

Let F ≡ R for the simplicity of representation and analysis. We now present another
of our main theorems. Consider the models defined in Section 6.2 and 6.2. The
Γ-probability of error is defined to be the maximal probability that the ℓ2-norm of
the difference between the estimated vector 𝑋 ∈ R𝑛 and the original vector 𝑌 ∈ R𝑛

(satisfying 𝐴 = B𝑌 + 𝑍 and both 𝐴 and B are known to the estimator) is larger than
Γ > 0:

𝜀P(Γ) := sup
𝑌∈Y(𝜇)

P (| |𝑋 − 𝑌 | |2 > Γ)

where Y(𝜇) is the set of all 𝜇-sparse vectors in R𝑛 and the probability is taken
over the randomness in the generator matrix B and the additive noise 𝑍 . Given a
generator matrix B, the corresponding restricted isometry constant denoted by 𝛿𝜇 is
the smallest positive number with(

1 − 𝛿𝜇
)
| |x| |22 ≤ ||BSx| |22 ≤

(
1 + 𝛿𝜇

)
| |x| |22 (6.13)

for all subsets S ⊆ V of size |S| ≤ 𝜇 and all x ∈ R|S|. Below we state a sufficient
condition6 derived form the three-stage scheme for parameter reconstruction.

Theorem 6.3.2 (Achievability). Suppose the generator matrix satisfies that BK
S
∈

R𝐾×𝐾 is invertible for all S ⊆ V and K ⊆ V with |S| = |K | = 𝐾. Let the
distribution G𝑛 be (𝜇, 𝐾, 𝜌)-sparse. If the three-stage scheme in Algorithm 10 is
used for recovering a graph matrix Y(𝐺𝑛) of 𝐺𝑛 that is sampled according to G𝑛,
then the probability of error satisfies 𝜀P(𝜂) ≤ 𝜌 + (𝑛 − 𝐾)𝜀P(Γ) with 𝜂 greater or
equal to

2
(
𝑛Γ + Γ| |B| |2 + 𝛾

1 − 𝛿2𝐾

) (
2(𝑛 − 𝐾) + 𝐾𝜉 (B)

)
where 𝛿2𝐾 is the corresponding restricted isometry constant of B with 𝜇 = 2𝐾 defined
in (6.13) and

𝜉 (B) := max
S,K⊆V,|S|=|K |=𝐾

����BS ����2���� (BKS)−1 ����
2.

The proof is in Appendix 6.B. The theory of classical compressed sensing (see [182,
183, 193]) implies that for noiseless parameter reconstruction, if the generator matrix
B has restricted isometry constants 𝛿2𝜇 and 𝛿3𝜇 satisfying 𝛿2𝜇 + 𝛿3𝜇 < 1, then

6Note that 𝛾 cannot be chosen arbitrarily and Γ depends on 𝛾; otherwise the probability of
error 𝜀P (Γ) will blow up. Theorem 6.4.2 indicates that for Gaussian ensembles setting Γ = 𝑂 (𝛾) =
𝑂 (
√
𝑛𝜎N) is a valid choice where 𝜎N is the standard deviation of each independent 𝑍𝑖, 𝑗 in Z.

180

all columns 𝑌 𝑗 with 𝑗 ∈ VSmall are correctly recovered using the minimization in
(6.11a)-(6.11c). Denote by spark(B) the smallest number of columns in the matrix
B that are linearly dependent (see [194] for the requirements on the spark of the
generator matrix to guarantee desired recovery criteria). The following corollary is
an improvement of Theorem 6.3.2 for the noiseless case. The proof is postponed to
Appendix 6.C.

Corollary 6.3.1. Let Z = 0 and suppose the generator matrix B has restricted isometry
constants 𝛿2𝜇 and 𝛿3𝜇 satisfying 𝛿2𝜇 + 𝛿3𝜇 < 1 and furthermore, spark(B) > 2𝐾 . If
the distribution G𝑛 is (𝜇, 𝐾, 𝜌)-sparse, then the probability of error for the three-stage
scheme to recover the parameters of a graph matrix Y(𝐺𝑛) of 𝐺𝑛 that is sampled
according to G𝑛 satisfies 𝜀P ≤ 𝜌.

6.4 Gaussian IID Measurements
In this section, we consider a special regime when the measurements in the matrix B
are Gaussian IID random variables. Utilizing the converse in Theorem 6.3.1 and the
achievability in Theorem 6.3.2, the Gaussian IID assumption allows the derivation of
explicit expressions of sample complexity as upper and lower bounds on the number
of measurements 𝑚. Combining with the results in Lemma 22 and 23, we are able to
show that for the corresponding lower and upper bounds match each other for graphs
distributionsUT(𝑛) and GER(𝑛, 𝑝) (with certain conditions on 𝑝 and 𝑛).

For the convenience of presentation, in the remainder of the chapter, we restrict that
the measurements are chosen from R, although the theorems can be generalized to
the complex measurements. In realistic scenarios, for instance, a power network,
besides the measurements collected from the nodes, nominal state values, e.g.,
operating current and voltage measurements are known to the system designer a
priori. Representing the nominal values at the nodes by 𝐴 ∈ R𝑛 and 𝐵 ∈ R𝑛,
respectively, the measurements in A and B are centered around 𝑚 × 𝑛 matrices A
and B defined as

A :=

· · · 𝐴 · · ·
· · · 𝐴 · · ·

...

· · · 𝐴 · · ·

, B :=

· · · 𝐵 · · ·
· · · 𝐵 · · ·

...

· · · 𝐵 · · ·

.

The rows in A and B are the same, because the graph parameters are time-invariant,
so are the nominal values. Without system fluctuations and noise, the nominal values

181

satisfy the linear system in (6.1), i.e.,

A = BY. (6.14)

Knowing 𝐴 and 𝐵 is not sufficient to infer the network parameters (the entries in
the graph matrix Y), since the rank of the matrix 𝐵 is one. However, measurement
fluctuations can be used to facilitate the recovery of Y. The deviations from the
nominal values are denoted by additive perturbation matrices Ã and B̃ such that
A = A + Ã. Similarly, B = B + B̃ where B̃ is an 𝑚 × 𝑛 matrix consisting of additive
perturbations. Therefore, considering the original linear system in (6.1), the equations
above imply that A + Ã = BY + Z = BY + B̃Y + Z leading to Ã = B̃Y + Z where
we have made use of (6.14) and extracted the perturbation matrices Ã and B̃. We
specifically consider the case when the additive perturbations B̃ is a matrix with
Gaussian IID entries. Without loss of generality, we suppose the mean of the
Gaussian random variable is zero and the standard deviation is 𝜎S. We consider
additive white Gaussian noise (AWGN) with mean zero and standard deviation 𝜎N.
For simplicity, in the remainder of this chapter, we slightly abuse the notation and
replace the perturbation matrices Ã and B̃ by A and B (we assume that B is Gaussian
IID), if the context is clear. Under the assumptions above, the following lemma can
be inferred from Theorem 6.3.1 and the proof is in Appendix 6.F.

Lemma 24. Consider the linear model A = BY + Z. Suppose 𝐵𝑖, 𝑗 ∼ N(0, 𝜎2
S)

and 𝑍𝑖, 𝑗 ∼ N(0, 𝜎2
N) are mutually independent Gaussian random variables for all

𝑖, 𝑗 ∈ V. The probability of error for topology identification 𝜀T is bounded from
below as

𝜀T ≥1 −
𝑛𝑚 ln

(
1 + 𝜎2

S
𝜎2

N
𝑌

)
2H (G𝑛)

(6.15)

where 𝑌 := max𝑖, 𝑗
��𝑌𝑖, 𝑗 �� denotes the maximal absolute value of the entries in the

graph matrix Y. In particular, if Z = 0, then for parameter reconstruction,

𝜀P ≥1 −
𝑛𝑚 ln

(
2𝜋𝑒𝑌𝜎2

S

)
2H (G𝑛)

. (6.16)

Sample Complexity for Sparse Distributions
We consider the worst-case sample complexity for recovering graphs generated
according to a sequence of sparse distributions, defined similarly as Definition 6.3.1
to characterize asymptotic behavior of graph distributions.

182

Definition 6.4.1 (Sequence of sparse distributions). A sequence {G𝑛} of graph
distributions is said to be (𝜇, 𝐾)-sparse if assuming a sequence of graphs {𝐺𝑛} is
generated according to {G𝑛}, the sequences {𝜇(𝑛)} and {𝐾 (𝑛)} guarantee that

lim
𝑛→∞
PG𝑛 (𝐺𝑛 ∉ C(𝑛) (𝜇(𝑛), 𝐾 (𝑛))) = 0. (6.17)

In the remaining contexts, we write 𝜇(𝑛) and 𝐾 (𝑛) as 𝜇 and 𝐾 for simplicity if there
is no confusion. Based on the sequence of sparse distributions we defined above,
we show the following theorem, which provides upper and lower bounds on the
worst-case sample complexity, with Gaussian IID measurements.

Theorem 6.4.1 (Noiseless worst-case sample complexity). Let Z = 0. Suppose that
the generator matrix B has Gaussian IID entries with mean zero and variance one
and assume 𝜇 < 𝑛−3/𝜇 (𝑛 − 𝐾) and 𝐾 = 𝑜(𝑛). For any sequence of distributions
that is (𝜇, 𝐾)-sparse, the three-stage scheme guarantees that lim𝑛→∞ 𝜀P = 0 using
𝑚 = 𝑂 (𝜇 log(𝑛/𝜇) + 𝐾) measurements. Conversely, there exists a (𝜇, 𝐾)-sparse
sequence of distributions such that the number of measurements must satisfy 𝑚 =

Ω

(
𝜇 log(𝑛/𝜇) + 𝐾/𝑛3/𝜇

)
to make the probability of error 𝜀P less than 1/2 for all 𝑛.

The proof is postponed to Appendix 6.G.

Remark 12. The upper bound on 𝑚 that we are able to show differs from the lower
bound by a sub-linear term 𝑛3/𝜇. In particular, when the term 𝜇 log(𝑛/𝜇) dominates
𝐾 , the lower and upper bounds become tight up to a multiplicative factor.

Applications of Theorem 6.4.1
1) Uniform Sampling of Trees:

As one of the applications of Theorem 6.4.1, we characterize the sample complexity
of the uniform sampling of trees.

Corollary 6.4.1. Let Z = 0. Suppose that the generator matrix B has Gaussian IID
entries with mean zero and variance one and assume 𝐺𝑛 is distributed according to
UT(𝑛) . There exists an algorithm that guarantees lim𝑛→∞ 𝜀P = 0 using𝑚 = 𝑂 (log 𝑛)
measurements. Conversely, the number of measurements must satisfy 𝑚 = Ω (log 𝑛)
to make the probability of error 𝜀P less than 1/2.

Proof. The achievability follows from combining Theorem 6.4.1 and Lemma 22,
by setting 𝐾 (𝑛) = log 𝑛. Substituting H(UT(𝑛)) = Ω (𝑛 log 𝑛) into (6.16) yields the
desired result for converse. □

183

2) Erdős-Rényi (𝑛, 𝑝) model:

Similarly, recalling Lemma 23, the sample complexity for recovering a random graph
generated according to the Erdős-Rényi (𝑛, 𝑝) model is obtained.

Corollary 6.4.2. Let Z = 0. Assume 𝐺𝑛 is a random graph sampled according to
GER(𝑛, 𝑝) with 1/𝑛 ≤ 𝑝 ≤ 1 − 1/𝑛. Under the same conditions in Corollary 6.4.1,
there exists an algorithm that guarantees lim𝑛→∞ 𝜀P = 0 using 𝑚 = 𝑂 (𝑛ℎ(𝑝))
measurements. Conversely, the number of measurements must satisfy𝑚 = Ω (𝑛ℎ(𝑝))
to make the probability of error 𝜀P less than 1/2.

Proof. Taking 𝐾 = 𝑛ℎ(𝑝)/log 𝑛 and 𝜇 = 2𝑛ℎ(𝑝)/(ln 1/𝑝), we check that 𝜇 <

𝑛−3/𝜇 (𝑛−𝐾) and𝐾 = 𝑜(𝑛). The assumptions on ℎ(𝑝) guarantee that ℎ(𝑝) ≥ log 𝑛/𝑛,
whence 𝑛ℎ(𝑝) = 𝜔 (log(𝑛/𝐾)). The choices of {𝜇(𝑛)} and {𝐾 (𝑛)} make sure that
the sequence of distributions is (𝜇(𝑛), 𝐾 (𝑛))-sparse. Theorem 6.4.1 implies that
𝑚 = 𝑂 (𝑛ℎ(𝑝)) is sufficient for achieving a vanishing probability of error. For the
second part of the corollary, substituting H(GER(𝑛, 𝑝)) = ℎ(𝑝)

(𝑛
2
)
= Ω

(
𝑛2ℎ(𝑝)

)
into (6.16) yields the desired result. □

Measurements Corrupted by Additive White Gaussian Noise (AWGN)
The results on sample complexity can be extended to the case with noisy measurements.
The following theorem is proved by combining Theorem 6.3.2 and Lemma 24. The
details can be found in Appendix 6.H.

Theorem 6.4.2 (Noisy worst-case sample complexity). Suppose that B and Z are
defined as in Lemma 24. Let 𝜇 < 𝑛−3/𝜇 (𝑛−𝐾) and𝐾 = 𝑜(𝑛). Conversely, there exists
a (𝜇, 𝐾)-sparse sequence of distributions such that the number of measurements
must satisfy

𝑚 = Ω

(
𝜇 log(𝑛/𝜇) + 𝐾/𝑛3/𝜇

log(1 + 𝜎2
S/𝜎

2
N)

)
to make the probability of error 𝜀T less than 1/2 for all 𝑛. Moreover, if𝜎N = 𝑜(1/𝑛5/2),
𝜎S = 1/

√
𝑚 and 𝐾 ≤ 𝜇, then for any sequence of distributions that is (𝜇, 𝐾)-sparse,

the three-stage scheme guarantees that lim𝑛→∞ 𝜀T = 0 using 𝑚 = 𝑂 (𝜇 log(𝑛/𝜇))
measurements. Moreover, lim𝑛→∞ 𝜀P(𝜂) = 0 with 𝜂 = 𝑜(1).

Remark 13. The proof of Theorem 6.4.2 implies that 𝜂 = 𝑂 (𝑛5/2𝜎N). Therefore,
if we consider the normalized Frobenius norm of (1/𝑛2) | |Y − X| |F where X and
Y are the recovered and original graph matrices, respectively, then 𝜎N = 𝑜(1/

√
𝑛)

184

guarantees that the normalized Frobenius norm vanishes. For topology identification,
we need to consider the Frobenius norm bound, 𝜂, to rule out the worst-case situation
and the sufficient condition becomes 𝜎N = 𝑜(1/𝑛5/2). Another implication is that
the choice of 𝛾 in (6.11b) satisfying 𝛾 = 𝑂 (

√
𝑛𝜎N) (used in the proof) guarantees

the reconstruction criteria and its effectiveness is also validated in our experiments
in Section 6.6.

6.5 Heuristic Algorithm
We present in this section an algorithm motivated by the consistency-checking step
in the proof of achievability (see Section 6.3). Instead of checking the consistency
of each subset ofV consisting of 𝑛 − 𝐾 nodes, as the three-stage scheme does and
which requires 𝑂 (𝑛𝐾) operations, we compute an estimate 𝑋 𝑗 for each column of
the graph matrix independently and then assign a score to each column based on its
symemtric consistency with respect to the other columns in the matrix. The lower
the score, the closer the estimate of the matrix column 𝑋 𝑗 is to the ground truth 𝑌 𝑗 .
Using a scoring function we rank the columns, select a subset of them to be “correct”,
and then eliminate this subset from the system. The size of the subset determines
the number of iterations. Heuristically, this procedure results in a polynomial-time
algorithm to compute an estimate X of the graph matrix Y.

The algorithm proceeds in four steps.

Figure 6.5.1: Iterative dimension reduction of the heuristic algorithm. At step 𝑟 , the
𝑠 columns with the smallest scores defined in (6.20) are assumed to be “correct” and
eliminated from the linear system. The dimension of variables is reduced by 𝑠 and
this procedure is repeated until the ⌈𝑛/𝑠⌉ iterations are complete.

185

Step 1. Initialization

Let matrices A ∈ R𝑚×𝑛 and B ∈ R𝑚×𝑛 be given and set the number of columns fixed
in each iteration to be an integer 𝑠 such that 1 ≤ 𝑠 ≤ 𝑛. For the first iteration, set
S(0) ← V, A(0) ← A, and B(0) ← B.

For each iteration 𝑟 = 0, . . . , ⌈𝑛/𝑠⌉ − 1, we perform the remaining three stages. The
system dimension is reduced by 𝑠 after each iteration.

Step 2. Independent ℓ1-minimization

For all 𝑗 ∈ S(𝑟), we solve the following ℓ1-minimization:

𝑋 𝑗 (𝑟) = arg min
𝑥∈F𝑛−𝑠𝑟

����𝑥����1 (6.18)

subject to | |B(𝑟)𝑥 − 𝐴 𝑗 (𝑟) | |2 ≤ 𝛾, (6.19)

𝑥 ∈ X𝑗 (𝑟).

Constraint (6.18) is optional; the set X𝑗 (𝑟) may encode additional constraints on the
form of 𝑥 such as entry-wise positivity or negativity (e.g., Section 6.6). The forms of
reduced matrix B(𝑟) and reduced vector 𝐴 𝑗 (𝑟) are specified in Step 4.

Step 3. Column scoring

We rank the symmetric consistency of the independently solved columns. For all
𝑗 ∈ S(𝑟), let

score 𝑗 (𝑟) :=
𝑛−𝑠𝑟∑︁
𝑖=1

��𝑋𝑖, 𝑗 (𝑟) − 𝑋 𝑗 ,𝑖 (𝑟)�� . (6.20)

Note that if score 𝑗 (𝑟) = 0 then 𝑋 𝑗 (𝑟) and its partner symmetric row in X(𝑟) are
identical. Otherwise there will be some discrepancies between the entries and the
sum will be positive. The subset of the 𝑋 𝑗 (𝑟) corresponding to the 𝑠 smallest values
of score 𝑗 (𝑟) is deemed “correct.” Call this subset of correct indices S′(𝑟).

Step 4. System dimension reduction

Based on the assumption that 𝑠 of the previously computed columns 𝑋 𝑗 (𝑟) are correct,
the dimension of the linear system is reduced by 𝑠. We set S(𝑟 + 1) ← S(𝑟)\S′(𝑟).
For all 𝑖, 𝑗 ∈ S′(𝑟), we fix

𝑋𝑖, 𝑗 = 𝑋𝑖, 𝑗 (𝑟), 𝑋 𝑗 ,𝑖 = 𝑋𝑖, 𝑗 (𝑟). (6.21)

186

The measurement matrices are reduced to

B(𝑟 + 1) ← BS(𝑟+1) ,

𝐴 𝑗 (𝑟 + 1) ← 𝐴 𝑗 (𝑟) −
∑︁

𝑖∈S′(𝑟)
𝐵𝑖𝑋𝑖, 𝑗 .

When 𝑟 ≤ 𝑛 − 𝑚, BS(𝑟+1) = BS(𝑟+1) , 𝐴 𝑗 (𝑟) = 𝐴 𝑗 (𝑟) and 𝐵𝑖 = 𝐵𝑖. When 𝑟 > 𝑛 − 𝑚,
to avoid making the reduced matrix B(𝑟 + 1) over-determined, we set B(𝑟 + 1) to
be an (𝑛 − 𝑟) × (𝑛 − 𝑟) sub-matrix of BS(𝑟+1) by selecting 𝑛 − 𝑟 rows of BS(𝑟+1)
uniformly at random. A new length-(𝑛 − 𝑟) vector 𝐴 𝑗 (𝑟) is formed by selecting the
corresponding entries from 𝐴 𝑗 (𝑟). Once the ⌈𝑛/𝑠⌉ iterations complete, an estimate
X is returned using (6.21). The algorithm requires at most ⌈𝑛/𝑠⌉ iterations and in
each iteration, the algorithm solves an ℓ1-minimization and updates a linear system.
Solving an ℓ1-minimization can be done in polynomial time (c.f. [195]). Thus, the
heuristic algorithm is a polynomial-time algorithm.

6.6 Applications in Electric Grids
Experimental results for the heuristic algorithm are given here for both synthetic
data and IEEE standard power system test cases. The algorithm was implemented
in Matlab; simulated power flow data was generated using Matpower 7.0 [196] and
CVX 2.1 [197] with the Gurobi solver [198] was used to solve the sparse optimization
subroutine.

Scalable Topologies and Error Criteria
We first demonstrate our results using synthetic data and two typical graph ensembles
– stars and chains. For both topologies, we increment the graph size from 𝑛 = 5
to 𝑛 = 300 and record the number of samples required for accurate recovery of
parameters and topology. For each simulation, we generate a complex-valued random
admittance matrix Y as the ground truth. Both the real and imaginary parts of the
line impedances of the network are selected uniformly and IID from [−100, 100]. A
valid electrical admittance matrix is then constructed using these impedances. The
real components of the entries of B are distributed IID according to V (1, 1) and
the imaginary components according toV (0, 1). A = YB gives the corresponding
complex-valued measurement matrix. The parameter 𝛾 in (6.19) is 0 since we
consider noiseless reconstruction here.

Given data matrices A,B the algorithm returns an estimate X of the ground truth
Y. We set 𝑠 = ⌈𝑛/2⌉ for each graph. If an entry of X has magnitude |𝑋𝑖, 𝑗 | < 10−5,

187

then we fix it to be 0. Following this, if supp (X) = supp (Y) then the topology
identification is deemed exact. The criterion for accurate parameter reconstruction
is | |Y − X| |F/𝑛2 < 10−6. The number of samples 𝑚 (averaged over repeated trials)
required to meet both of these criteria is designated as the sample complexity for
accurate recovery. The sample complexity trade-off displayed in Figure 6.6.1 shows
approximately logarithmic dependence on graph size 𝑛 for both ensembles.

IEEE Test Cases

1 50 100 150 200 250 300

0

5

10

15

20

25

Figure 6.6.1: The number of samples required to accurately recover the nodal
admittance matrix is shown on the vertical axis. Results are averaged over 20
independent simulations. Star and chain graphs are scaled in size between 5 and
300 nodes. IEEE test cases ranged from 5 to 200 buses. In the latter case, there are
no assumptions on the random IID selection of the entries of Y (in contrast to the
star/chain networks). Linear and logarithmic (in 𝑛) reference curves are plotted as
dashed lines.

We also validate the heuristic algorithm on 17 IEEE standard power system test cases
ranging from 5 to 200 buses. The procedure for determining sample complexity for
accurate recovery is the same as above, but the data generation is more involved.

Power flow data generation

A sequence of time-varying loads is created by scaling the nominal load values in
the test cases by a times series of Bonneville Power Administration’s aggregate load
on 02/08/2016, 6am to 12pm [199]. For each test case network, we perform the
following steps to generate a set of measurements:

188

a) Interpolate the aggregate load profile to 6-second intervals, extract a length-𝑚
random consecutive subsequence, and then scale the real parts of bus power
injections by the load factors in the subsequence.

b) Compute optimal power flow in Matpower for the network at each time step to
determine bus voltage phasors.

c) Add a small amount of Gaussian random noise (𝜎2 = 0.001) to the voltage
measurements and generate corresponding current phasor measurements using
the known admittance matrix.

Sample complexity for recovery of IEEE test cases

Figure 6.6.1 shows the sample complexity for accurate recovery of the IEEE test
cases. The procedure and criteria for determining the necessary number of samples
for accurate recovery of the admittance matrix are the same as for the synthetic
data case. Unlike the previous setting, here we have no prior assumptions about
the structure of the IEEE networks: networks have both mesh and radial topologies.
However, because power system topologies are typically highly sparse, the heuristic
algorithm was able to achieve accurate recovery with a comparable (logarithmic)
dependence on graph size.

Influence of structure constraints on recovery

There are structural properties of the nodal admittance matrix for power systems—
symmetry, sparsity, and entry-wise positivity/negativity—that we exploit in the
heuristic algorithm to improve sample complexity for accurate recovery. The score
function score 𝑗 (𝑟) rewards symmetric consistency between columns in X; the use
of ℓ1-minimization promotes sparsity in the recovered columns; and the constraint
set X𝑗 in (6.18) forces Re(𝑋𝑖, 𝑗) ≤ 0, Im(𝑋𝑖, 𝑗) ≥ 0 for 𝑖 ≠ 𝑗 and Re(𝑋𝑖, 𝑗) ≥ 0 for
𝑖 = 𝑗 . These entry-wise properties are commonly found in power system admittance
matrices. In Figure 6.6.2 we show the results of an experiment on the IEEE 30-bus
test case that quantify the effects of the structure constraints on the probability of
error. In Figure 6.6.3 we show that the score function and the constraints are effective
across a range of IEEE test cases, compared with the standard compressed sensing
recovery discussed in Section 6.1. Furthermore, this demonstrates the heuristic
algorithm is robust to noise for a broad range of real-world graph structures with
respect to Frobenius norm error.

189

Figure 6.6.2: Probability of error for parameter reconstruction 𝜀P for the IEEE
30-bus test case is displayed on the vertical axis. Probability is taken over 50
independent trials. The horizontal axis shows the number of samples used to
compute the estimate X. The probability of error for independent recovery of all 𝑋 𝑗
via ℓ1-norm minimization (double dashed line) and full rank non-sparse recovery
(dot dashed line) are shown for reference. Adding the symmetry score function
(second-to-left) improves over the naive column-wise scheme. Adding entry-wise
positivity/negativity constraints on the entries of X (left-most curve) reduces sample
complexity even further (≈ 1/3 samples needed compared to full rank recovery).

Figure 6.6.3: Sample complexity for accurate recovery is shown for a selection of
IEEE power system test cases ranging from 5 to 57 buses. The number of samples for
accurate recovery is obtained by satisfying the criterion | |X − Y| |F/𝑛2 < 10−4. The
noise Z is an IID Gaussian matrix with zero mean and standard deviation 0.01. The
parameter 𝛾 in (6.19) is set to be 10−4. As a benchmark, the number of measurements
required for separately reconstructing every column of Y (standard compressed
sensing) is also given.

190

Comparison with basis pursuit on star graphs

Figure 6.6.4: A comparison between our iterative heuristic and basis pursuit. The
Frobenius norm error plotted is averaged over 250 independent trials. The underlying
graph is a star graph with 𝑛 = 24. The solid and dotted gray curves are results for
basis pursuit with and without a constraint emphasizing symmetry, respectively.

In Figure 6.6.4, we consider star graphs and compare our heuristic algorithm with
the modified basis pursuit subroutine in (6.2)-(6.4) with noiseless measurements.
For a star graph with 𝑛 = 24 nodes, the iterative recovery scheme with 𝑠 = 12
outperforms the basis pursuit, with or without a symmetry constraint. The solid
and dotted gray curves show the normalized Frobenius error for cases where Y(𝐺)
is constrained to be symmetric and where it is not, respectively. Our experiments
show that convex optimization-based approach breaks down if there are highly dense
columns in Y. The star graph contains a high-degree node (degree 𝑛 − 1), hindering
the standard compressed sensing (basis pursuit without the symmetry constraint)
from recovering the whole matrix until the number of measurements reaches 𝑛.
Surprisingly, adding the symmetry constraint suggests basis pursuit performs less
well than basis pursuit without the symmetry condition. This is evidence to support
the assumption made in [161]. There, the non-zeros in the matrix to be recovered
should not be concentrated in any single column (or row) of Y(𝐺).

Effects of noise and selection of 𝛾

In this section, we consider noisy measurements and fix the additive noise Z be IID
Gaussian with mean zero and variance 𝜎2

N ∈ [10−9, 10−2]. We set 𝛾 =
√
𝑛𝜎N in

191

(6.19), as indicated in Remark 13. Due to the presence of noise, there is error in the
recovered matrix X. However, the mean absolute percentage error is small.

Figure 6.6.5: The impact of measurement noise on sample complexity for recovery
of the IEEE 24-bus RTS test case is demonstrated. Trajectories correspond to
increasing noise levels from dark (least) to light (most). From left to right, we
observe—as expected—that for each variance value, the normalized Frobenius error
of the recovered matrix decreases as the number of samples used for recovery
increases. From bottom to top, we observe that the error increases (for every value
of 𝑚) as variance of the additive noise Z increases.

192

APPENDIX

6.A Proof of Theorem 6.3.1
Proof. The graph𝐺 is chosen from a discrete set C(𝑛) according to some probability
distribution G𝑛. Fano’s inequality [165] plays an important role in deriving funda-
mental limits. We especially focus on its extended version. Similar generalizations
appear in many places, e.g., [164, 168] and [167]. We repeat the lemma here for the
sake of completion:

Lemma 25 (Generalized Fano’s inequality). Let 𝐺 be a random graph and let A
and B be matrices defined in Section 6.2 and 6.2. Suppose the original graph 𝐺 is
selected from a nonempty candidacy set C(𝑛) according to a probability distribution
G𝑛. Let �̂� denote the estimated graph. Then the conditional probability of error for
estimating 𝐺 from A given B is always bounded from below as

P
(
�̂� ≠ 𝐺

��B)
≥ 1 −

I
(
𝐺; A

��B)
+ ln 2

H (G𝑛)
(6.22)

where the randomness is over the selections of the original graph𝐺 and the estimated
graph �̂�.

In (6.22), the term I
(
𝐺; B

��A)
denotes the conditional mutual information (base 𝑒)

between𝐺 and B conditioned on A. Furthermore, the conditional mutual information
I (𝐺; A|B) is bounded from above by the differential entropies of A and B. It follows
that

I (𝐺; A|B) = H (A|B) − H (A|𝐺,B) (6.23)

≤ H (A|B) − H (A|Y,B) (6.24)

= H (A|B) − H (Z) (6.25)

≤ H (A) − H (Z) . (6.26)

Here, Eq. (6.23) follows from the definitions of mutual information and differential
entropy. Moreover, knowing Y, the graph 𝐺 can be inferred. Thus, H (A|𝐺,B) ≥
H (A|Y,B) yields (6.24). Recalling the linear system in (6.1), we obtain (6.25).
Furthermore, (6.26) holds since H (A) ≥ H (A|B).

Plugging (6.26) into (6.22),

𝜀T =EB

[
P

(
�̂� ≠ 𝐺

��B)]
≥1 − H (A) − H (Z) + ln 2

H (G𝑛)
,

193

which yields the desired (6.9). □

6.B Proof of Theorem 6.3.2
Conditioning on that no less than 𝑛 − 𝐾 many columns are recovered with respect to
the Γ-probability of error, i,e., for each entry, the absolute value of the difference
between the recovered one and the original one is bounded from above by 𝛾, the
union bound ensures the desired bound on the probability of error for noisy parameter
reconstruction. It remains to show that the consistency-check in our scheme gives
the expression for 𝜂. First, if no less than 𝑛 − 𝐾 many columns are recovered, there
must be a subset S ⊆ V passing through the consistency-check. Let us consider the
vectors that are not 𝜇-sparse. For any such vector 𝑌 ∗ ∈ R𝑛, denote by 𝑒 = 𝑌 ∗ −𝑌 ′ the
difference of 𝑌 ∗ and the original vector 𝑌 ′. It follows that 𝑒 can be decomposed as a
summation of a 2𝐾-sparse vector 𝑒 ∈ R𝑛 and a vector 𝑓 ∈ R𝑛 that satisfies | 𝑓𝑖 | ≤ 2Γ
for all 𝑖 ∈ V. Therefore, the definition of restricted isometry constants ensures the
following:

| |𝑒 | |2 ≤||𝑒 | |2 + || 𝑓 | |2

≤ 1
1 − 𝛿2𝐾

| |B𝑒 | |2 + 2𝑛Γ

≤ 1
1 − 𝛿2𝐾

| |B𝑒 | |2 +
(
2𝑛 + 2| |B| |2

1 − 𝛿2𝐾

)
Γ

which can be further bounded by noting that

| |B𝑒 | |2 =| | (B𝑌 ∗ − 𝐴) − (B𝑌 ′ − 𝐴) | |2 ≤ 2𝛾

since both 𝑌 ′ and 𝑌 ∗ satisfy (6.11b) where 𝐴 is a column of A. Thus, the consistency-
check guarantees that for each 𝑗 in the set S ⊆ V that passes the check,

| |𝑋 𝑗 − 𝑌 𝑗 | |2 ≤ 2
(
𝑛 + ||B| |2

1 − 𝛿2𝐾

)
Γ + 2𝛾

1 − 𝛿2𝐾
.

Consider the reduced linear system in (6.12). For each 𝑗 in the set S ⊆ V,

| |𝑋S𝑗 − 𝑌
S
𝑗 | |2 ≤

��������(BKS)−1
��������

2

������BS (𝑋S𝑗 − 𝑌S𝑗)������2
≤

��������(BKS)−1
��������

2
| |BS | |2

������𝑋S𝑗 − 𝑌S𝑗 ������
2
.

Summing up the bounds on the ℓ2 norms for each column and considering the worst
case of the invertible matrix BK

S
, the bound 𝜂 on the Frobenius norm follows by

arranging the terms.

194

6.C Proof of Corollary 6.3.1
Proof. Conditioned on 𝐺 ∈ C(𝑛) (𝜇, 𝐾) and the assumption 𝛿3𝜇 + 3𝛿4𝜇 < 2, there
are no less than 𝑛 − 𝐾 many columns correctly recovered. Therefore, any such set S
with |S| = 𝑛 − 𝐾 must contain at least 𝑛 − 2𝐾 many corresponding indexes of the
correctly recovered columns. The consistency-checking verifies that if the collection
of an arbitrary set of nodes S of cardinality 𝑛 − 𝐾 satisfies the symmetry property as
the true graph Y must obey. If the consistency-checking fails, it is necessary that
there exist two distinct length-𝑛 vectors 𝑌 ′ and 𝑌 ∗ in F𝑛 such that 𝑌 ∗ is the minimizer
of the ℓ1-minimization (6.11a)-(6.11c) that differs from the correct answer 𝑌 ′, i.e.,
𝑌 ′ ≠ 𝑌 ∗ where 𝐴 = B𝑌 ′ and

𝑌 ∗ = arg min
𝑌

| |𝑌 | |1

subject to 𝐴 = B𝑌

𝑌 ∈ F𝑛

for some 𝐴 ∈ F𝑚 and furthermore, the vectors 𝑌 ′ and 𝑌 ∗ can have at most 2𝐾 distinct
coordinates,

|supp (𝑌 ′ − 𝑌 ∗) | ≤ 2𝐾.

However, the constraints B𝑌 ′ = 𝐴 and B𝑌 ∗ = 𝐴 imply that B (𝑌 ′ − 𝑌 ∗) = 0,
contradicting to spark(B) > 2𝐾 . Therefore, 𝑛−𝐾 many columns can be successfully
recovered if the decoded solution passes the consistency-checking. Moreover, since
spark(B) > 2𝐾 and number of unknown coordinates in each length-𝐾 vector 𝑋S

𝑗
(for

𝑗 = 1, . . . , |S|) to be recovered is 𝐾 , the solution of the system (6.12) is guaranteed
to be unique. Thus, Algorithm 10 always recovers the correct columns 𝑌1, . . . , 𝑌𝑁

conditioned on spark(B) > 2𝐾. It follows that 𝜀P ≤ 1 − PG (𝐺 ∈ C(𝑛, 𝜇, 𝐾))
provided spark(B) > 2𝐾 . In agreement with the assumption that the distribution G
is (𝜇, 𝐾, 𝜌)-sparse, (6.10) must be satisfied. Therefore, the probability of error must
be less than 𝜌. □

6.D Proof of Lemma 22
Proof. Consider the following function

𝐹 (E) =
𝑛∑︁
𝑗=1

𝑓 (𝑑 𝑗 (𝐺))

195

where 𝑑 𝑗 (𝐺) denotes the degree of the 𝑗-th node and consider the following indicator
function:

𝑓 (𝑑 𝑗 (𝐺)) :=

1 if 𝑑 𝑗 (𝐺) > 𝜇

0 otherwise
.

Applying the Markov’s inequality,

P (𝐺 ∉ T(𝑛) (𝜇, 𝐾)) = PUT(𝑛) (𝐹 (E) ≥ 𝐾)

≤
EUT(𝑛) [𝐹 (E)]

𝐾
. (6.27)

Continuing from (6.27), the expectation EUT(𝑛) [𝐹 (E)] can be further expressed and
bounded as

EUT(𝑛) [𝐹 (E)] =
𝑛∑︁
𝑗=1
EUT(𝑛)

[
𝑓 (𝑑 𝑗 (𝐺))

]
=

𝑛∑︁
𝑗=1
PUT(𝑛)

(
𝑑 𝑗 (𝐺) > 𝜇

)
. (6.28)

Since 𝐺 is chosen uniformly at random from T(𝑛), it is equivalent to selecting
its corresponding Prüfer sequence (by choosing 𝑛 − 2 integers independently and
uniformly from the setV, c.f. [200]) and the number of appearances of each 𝑗 ∈ V
equals to 𝑑 𝑗 (𝐺) − 1. Therefore, for any fixed node 𝑗 ∈ V, the Chernoff bound
implies that

PUT(𝑛)

(
𝑑 𝑗 (𝐺) > 𝜇

)
≤ exp

(
−(𝑛 − 2)DKL

(
𝜇

𝑛 − 2
����1
𝑛

))
(6.29)

where DKL(·| |·) is the Kullback-Leibler divergence and

DKL

(
𝜇

𝑛 − 2
����1
𝑛

)
≥ 𝜇

𝑛 − 2
ln 𝑛. (6.30)

Therefore, substituting (6.30) back into (6.29) and combining (6.27) and (6.28),
setting 𝜇 ≥ 1 leads to

P (𝐺 ∉ T(𝑛) (𝜇, 𝐾)) ≤ 𝑛 exp(−𝜇 ln 𝑛)
𝐾

≤ 1
𝐾
.

□

196

6.E Proof of Lemma 23
Proof. For any fixed node 𝑗 ∈ V, applying the Chernoff bound,

PGER (𝑛,𝑝)
(
𝑑 𝑗 (𝐺) > 𝜇

)
≤ exp

(
−𝑛DKL

(𝜇
𝑛

����𝑝)) .
Continuing from (6.27), the expectation EGER (𝑛,𝑝 [𝐹 (E)] can be further expressed
and bounded as

EGER (𝑛,𝑝) [𝐹 (E)] ≤ 𝑛 · exp
(
−𝑛DKL

(𝜇
𝑛

����𝑝)) (6.31)

where the probability 𝑝 satisfies 0 < 𝑝 ≤ 𝜇/𝑛 < 1. Note that

DKL

(𝜇
𝑛

����𝑝) = 𝜇

𝑛
ln

1
𝑝
+

(
1 − 𝜇

𝑛

)
ln

1
1 − 𝑝 − ℎ(𝑝) (6.32)

where the binary entropy ℎ(𝑝) is in base 𝑒. Taking 𝜇 ≥ 2𝑛ℎ(𝑝)/(ln 1/𝑝) ≥ 2𝑛𝑝,
substituting (6.32) into (6.31) leads to

EGER (𝑛,𝑝) [𝐹 (E)] ≤ 𝑛 exp (−𝑛ℎ(𝑝)) .

Therefore, (6.27) gives

P (𝐺 ∉ C(𝑛) (𝜇, 𝐾)) ≤ 𝑛 exp (−𝑛ℎ(𝑝))
𝐾

.

□

6.F Proof of Lemma 24
Proof. Continuing from Theorem 6.3.1,

H(A) − H(Z)

=

𝑚∑︁
𝑖=1

[
H

(
𝐴(𝑖)

)
− H

(
𝑍 (𝑖)

)]
(a)
≤

𝑚∑︁
𝑖=1

𝑛

2

[
ln

(
2𝜋𝑒

Tr
(
ΣA(i)

)
𝑛

)
− ln(2𝜋𝑒𝜎2

N)
]

(6.33)

where Tr
(
ΣA(i)

)
is the trace of the covariance matrix of A(i) and we have used the

fact that normal distributions maximize entropy and the inequality det(ΣA(i)) ≤
(Tr

(
ΣA(i)

)
/𝑛)𝑛 to obtain (a). Note that because of the assumption of independence,

the trace is bounded from above by 𝑛𝜎2
S𝑌 +𝑛𝜎

2
N where𝑌 := max𝑖, 𝑗 |𝑌𝑖, 𝑗 |. Substituting

this into (6.33) completes the proof. The special case when Z = 0 follows similarly.
□

197

6.G Proof of Theorem 6.4.1
Proof. The first part is based on Corollary 6.3.1. Under the assumption of the genera-
tor matrix B, using Gordon’s escape-through-the-mesh theorem, Theorem 4.3 in [183]
implies that for any columns𝑌 𝑗 with 𝑗 ∈ VSmall are correctly recovered using the min-
imization in (6.11a)-(6.11c) with probability at least 1−2.5 exp (−(4/9)𝜇 log(𝑛/𝜇)),
as long as the number of measurements satisfies 𝑚 ≥ 48𝜇 (3 + 2 log(𝑛/𝜇)), and
𝑛/𝜇 > 2, 𝜇 ≥ 4 (if 𝜇 ≤ 3, the multiplicative constant increases but our theorem still
holds). Similar results were first proved by Candes, et al. in [182] (see their Theorem
1.3). Therefore, applying the union bound, the probability that all the 𝜇-sparse
columns can be recovered simultaneously is at least 1−2.5𝑛 exp (−(4/9)𝜇 log(𝑛/𝜇)).
On the other hand, conditioned on that all the 𝜇-sparse columns are recovered, Corol-
lary 6.3.1 indicates that spark(B) > 2𝐾 is sufficient for the three-stage scheme to
succeed. Since each entry in B is an IID Gaussian random variable with zero mean
and variance one, if 𝑚 ≥ 48𝜇 (3 + 2 log(𝑛/𝜇)) + 2𝐾, with probability one that the
spark of B is greater than 2𝐾 , verifying the statement.

The converse follows by applying Lemma 24 with Z = 0. Consider the uniform
distributionUC(𝑛) (𝜇,𝐾) on C(𝑛) (𝜇, 𝐾). Then H

(
UC(𝑛) (𝜇,𝐾)

)
= ln |C(𝑛) (𝜇, 𝐾) |. Let

0 ≤ 𝛼, 𝛽 ≤ 1 be parameters such that 𝜇 < 𝛽(𝑛 − 𝛼𝐾). To bound the size of
C(𝑛) (𝜇, 𝐾), we partition V into V1 and V2 with |V1 | = 𝑛 − 𝛼𝐾 and |V2 | = 𝛼𝐾.
First, we assume that the nodes in V1 form a 𝜇/2-regular graph. For each node
in V2, construct 𝛽(𝑛 − 𝛼𝐾) ∈ N+ edges and connect them to the other nodes in
V with uniform probability. A graph constructed in this way always belongs to
C(𝑛) (𝜇, 𝐾), unless the added edges create more than 𝐾 nodes with degrees larger
than 𝜇. Therefore, as 𝑛→∞,

|C(𝑛) (𝜇, 𝐾) | ≥𝜌 ·
𝑒1/4

(
𝑁 − 1
𝜙

)𝑁 ((𝑁
2
)

𝜙𝑁/2

)
(
𝑁 (𝑁 − 1)
𝜙𝑁

) ·
(
𝑛 − 1
𝑀

)𝛼𝐾
(6.34)

where 𝑁 := 𝑛 − 𝛼𝐾, 𝑀 := 𝛽(𝑛 − 𝛼𝐾) and 𝜙 := 𝜇/2. The first term 𝜌 denotes the
fraction of the constructed graphs that are in C(𝑛) (𝜇, 𝐾). The second term in (6.34)
counts the total number of 𝜙-regular graphs, and the last term is the total number of
graphs created by adding new edges for the nodes inV2. If 𝐾 = 𝑂 (𝜇), there exists a
constant 𝛼 > 0 small enough such that 𝜌 = 1. If 𝜇 = 𝑜(𝐾), for any fixed node inV1,

198

the probability that its degree is larger than 𝜇 is

𝛼𝐾∑︁
𝑖=𝜙+1

(
𝛼𝐾

𝑖

)
𝛽𝑖 (1 − 𝛽)𝛼𝐾−𝑖

≤
𝛼𝐾∑︁
𝑖=𝜙+1

𝛼𝐾ℎ

(
𝑖

𝛼𝐾

)
𝛽𝑖 ≤ (𝛼𝐾)2𝛽𝜙+1

where ℎ(𝑖/𝛼𝐾) is in base 𝑒. Take 𝛽 = 𝑛−3/𝜇 and 𝛼 = 1/2. The condition
𝜇 < 𝑛−3/𝜇 (𝑛 − 𝐾) guarantees that 𝜇 < 𝛽(𝑛 − 𝛼𝐾). Letting 𭟋(𝑛) := 1/𝑛 be the
assignment function for each node inV1, we check that

(𝛼𝐾)2𝛽𝜙+1 ≤ 1
4𝑛
≤ 𭟋(𝑛) ·

(
1 − 1
𭟋(𝑛)

)𝑁
≤ 1
𝑒𝑛
.

Therefore, applying the Lovász local lemma, the probability that all the nodes inV1

have degree less than or equal to 𝜇 can be bounded from below by (1 − 𭟋(𝑛))𝑁 ≥ 1/4
if 𝑛 ≥ 2, which furthermore is a lower bound on 𝜌. Therefore, taking the logarithm,

H
(
UC(𝑛) (𝜇,𝐾)

)
≥ (𝑁 − 1)2

2
ℎ(𝜀) −𝑂 (𝑁 ln 𝜇)

+𝐾
2

(
(𝑛 − 1)ℎ

(
𝑀

𝑛 − 1

)
−𝑂 (ln 𝑛)

)
−𝑂 (1) (6.35)

=Ω

(
𝑛2ℎ(𝜀) + 𝑛1−3/𝜇𝐾

)
(6.36)

where 𝜀 := 𝜙/(𝑁 − 1) ≤ 1/2. In (6.35), we have used Stirling’s approximation and
the assumption that 𝐾 = 𝑜(𝑛). Continuing from (6.36), since 2𝑛ℎ(𝜀) ≥ 𝜇 ln(𝑛/𝜇),
for sufficiently large 𝑛,

H
(
UC(𝑛) (𝜇,𝐾)

)
= Ω

(
𝑛𝜇 log

𝑛

𝜇
+ 𝑛1−3/𝜇𝐾

)
. (6.37)

Substituting (6.37) into (6.16), when 𝑛→∞, it must hold that

𝑚 = Ω

(
𝜇 log(𝑛/𝜇) + 𝐾/𝑛3/𝜇

)
to ensure that 𝜀P is smaller than 1/2. □

6.H Proof of Theorem 6.4.2
The structure of the proof is the same as Theorem 6.4.1. The converse follows directly
by putting the bounds in (6.37) and (6.15) together. For proving the achievability,
it is sufficient to show that with high probability (in 𝑛), |𝑌𝑖, 𝑗 − 𝑋𝑖, 𝑗 | = 𝑜(1) for all
𝑖, 𝑗 ∈ V where 𝑋𝑖, 𝑗 and 𝑌𝑖, 𝑗 are the recovered and original (𝑖, 𝑗)-th entry of the

199

graph matrix. For the Gaussian IID ensemble considered, the ℓ2-norm of the inverse
matrix (BK

S
)−1, equivalently, the minimal singular value of BK

S
is strictly positive

with probability 𝑜(1) (see the proof of Lemma III-9 in [168]). Using the Chernoff
bound, with high probability,

| |B| |22 ≤||B| |
2
F ≤ 𝐶1𝑛𝑚𝜎

2
S , (6.38)

| |𝑍 𝑗 | |22 ≤𝐶2𝑛𝜎
2
N, for all 𝑗 ∈ V (6.39)

for some positive constants 𝐶1 and 𝐶2. Noting that if 𝐾 ≤ 𝜇, then 𝛿2𝐾 < 1 with
high probability, the bound in (6.38) and the bound on the ℓ2-norm of the inverse
matrix (BK

S
)−1 imply 𝜂 = 𝑂 (𝑛2𝛾), by applying our Theorem 6.3.2. Moreover, with

Gaussian measurements, for each 𝜇-sparse vector 𝑌 𝑗 in R𝑛, | |𝑋 𝑗 − 𝑌 𝑗 | |2 ≤ 𝐶3 | |𝑍 𝑗 | |2
for some constant 𝐶3 > 0 (cf. Theorem 1 in [201]) where 𝑌 𝑗 satisfies B𝑌 𝑗 + 𝑍 𝑗 = 𝐴 𝑗
and 𝑋 𝑗 is the optimal solution of (6.11a)-(6.11c) (with F ≡ R). Therefore, Γ = 𝑂 (𝛾)
and 𝛾 = 𝑂 (

√
𝑛𝜎N) using (6.39). Since 𝜂 = 𝑂 (𝑛2𝛾), the condition 𝜎N = 𝑜(1/𝑛5/2)

guarantees that 𝜂 = 𝑜(1), whence |𝑌𝑖, 𝑗 − 𝑋𝑖, 𝑗 | = 𝑜(1) for all 𝑖, 𝑗 ∈ V and the proof is
complete.

200

C h a p t e r 7

ELECTRIC VEHICLE CHARGING DATA ANALYSIS

[1] Zachary J. Lee, Tongxin Li, and Steven H. Low. Acn-data: Analysis and
applications of an open ev charging dataset. New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450366717. URL https:
//doi.org/10.1145/3307772.3328313.

[2] Classification of electric vehicle charging time series with selective clustering.
Electric Power Systems Research, 189:106695, 2020. ISSN 0378-7796. URL
https://doi.org/10.1016/j.epsr.2020.106695.

Electric vehicles (EVs) have the potential to drastically reduce the carbon-footprint of
the transportation sector. According to the International Energy Agency (IEA)[202],
the global electric vehicle (EV) stock will exceed 130 million vehicles by 2030.
This trend has motivated a large body of EV research in the last decade, from pilot
studies to testbeds and data analytics, from charging algorithms to user behavior
to optimal investments, from impact on electric grid [203–207] to energy services
such as reducing demand variability [208, 209], minimizing costs when subject to
time-varying prices [208–210], taking advantage of intermittent renewable resources
[211–214], or meeting charging demands using limited infrastructure capacity
[101, 215]. While some of these studies, for example [101, 204, 206, 209, 215, 216],
have had access to real EV data to analyze their proposed algorithms, many others
have had to rely on distributions derived from data collected from internal combustion
engine (ICE) vehicles [207, 208, 210–212] or assumed behaviors [203, 205, 213]. In
addition, since all of these studies utilize different data sources, it can be difficult to
compare one algorithm or approach against another. In this chapter we first introduce
basic attributes of a public EV charging dataset, then present basic EV charging
data analysis methods to predict user behavior and learn battery behavior based on
fine-grained charging data from the field. The dataset is used to test and validate
various algorithms, methods, and practical implementations, including the results
described in the first two parts of this dissertation.

7.1 The ACN-DATA Dataset
In this section, we describe the dataset. More details on the charging facility and
adaptive algorithm can be found in [101].

201

Table 7.1.1: Selected data fields in ACN-Data.

Field Description
connectionTime Time when the user plugs in.
doneChargingTime Time of the last non-zero charging rate.
disconnectTime Time when the user unplugs.
kWhDelivered Measured Energy Delivered
siteID Identifier of the site where the session took place.
stationID Unique identifier of the EVSE.
sessionID Unique identifier for the session.
timezone Timezone for the site.
pilotSignal Time series of pilot signals during the session.
chargingCurrent Time series of actual charging current of the EV.
userID* Unique identifier of the user.
requestedDeparture* Estimated time of departure.
kWhRequested* Estimated energy demand.
*Field not available for every session.

Adaptive Charging Network (ACN)
ACN-Data was collected from two Adaptive Charging Networks located in California.
The ACN on the Caltech campus is in a parking garage and has 54 EVSEs (Electric
Vehicle Supply Equipment or charging stations) along with a 50 kW dc fast charger.
The Caltech ACN is open to the public and is often used by non-Caltech drivers.
Since the parking garage is near the campus gym, many drivers charge their EVs
while working out in the morning or evening. JPL’s ACN includes 52 EVSEs in a
parking garage. In contrast with Caltech, access to the JPL campus is restricted and
only employees are able to use the charging system. The JPL site is representative
of workplace charging while Caltech is a hybrid between workplace and public use
charging. EV penetration is also quite high at JPL. This leads to high utilization of
the EVSEs as well as an ad-hoc program where drivers move their EVs after they
have finished charging to free up plugs for other drivers. In both cases, to reduce
capital costs, infrastructure elements such as transformers have been oversubscribed.
The current architecture of the ACN for Caltech is described in [101] though both
systems have a similar structure.

The ACN framework allows us to collect detailed data about each charging session
which occurs in the system. Table 7.1.1 describes some of the relevant data fields we
collect. To obtain data directly from users, we use a mobile application. The driver
first scans a QR code on the EVSE which allows us to associate the driver with a
particular charging session. The driver is then able to input their estimated departure
time and requested energy. We refer to this as user input data. When a user does

202

not use the mobile application, default values for energy requested and duration are
assumed and no user identifier is attached to the session. We refer to sessions with
an associated user input as claimed and those without as unclaimed.

An ACN typically consists of tens of level-2 chargers controlled by a local controller
that communicates wirelessly with these chargers and servers in the cloud. An
ACN is capable of real-time measurement, communication, computing and control.
It adapts EV charging currents to driver needs as well as capacity limits of the
electric system. A typical charging session starts when a driver plugs in her EV
and informs ACN through a mobile app the amount of energy required (in terms of
miles) and her estimated departure time. The EV will be charged until either the
requested energy is delivered, or the battery is fully charged, or the EV is unplugged,
whichever occurs first. The charging currents of all EVs that have not finished
charging are jointly optimized and updated every minute. Every 5 to 10 seconds,
a control (pilot) signal is sent to the EV and the actual charging current drawn by
the vehicle is measured. ACN-Data contains both session data (user’s ID, arrival
time, departure time, requested energy, and actual energy delivered) and fine-grained
charging data at seconds resolution (time series of control signals and charging
currents). Unfortunately, the current EV charging standard does not collect batteries’
states of charge nor EV specifications. Table 7.4.1 summarizes some of the available
features of ACN-Data used in this work. Note that not all sessions contain user
inputs (i.e., the last three fields of Table 7.1.1.) In this chapter, we shall focus on the
claimed sessions that are associated with user inputs.

7.2 Learning User Behavior
In this section, we illustrate how to learn the underlying joint distribution of arrival
time, session duration, and energy delivered using Gaussian mixture models (GMMs)
(e.g., [217, 218]). We then use these GMMs to predict user behavior in Section 7.3.

Problem Formulation
We utilize the GMM as a second-order approximation to the underlying distribution.
Our dataset can be modeled as follows to fit a GMM. Consider a dataset X consisting
of 𝑁 charging sessions. The data for each session 𝑖 = 1, . . . , 𝑁 , is represented by a
triple 𝑥𝑖 = (𝑎𝑖, 𝑑𝑖, 𝑒𝑖) in R3 where 𝑎𝑖 denotes the arrival time, 𝑑𝑖 denotes the duration
and 𝑒𝑖 is the total energy (in kWh) delivered. The data point 𝑋𝑖 (we use capital
letters for random variables) are independently and identically distributed (i.i.d.)
according to some unknown distribution. In practice, each driver in a workplace

203

0:00 4:00 8:00 12:00 16:00 20:00 24:00

Time

�10

0

10

20

P
er

ce
n
ta

g
e

Modeled Arrivals

Modeled Departures

Actual Arrivals

Actual Departures

0 5 10 15 20 25

Energy (kWh)

0

10

P
er

ce
n
ta

g
e

Modeled Energy

Actual Energy

Figure 7.1.1: Comparison of model distributions with actual data for Caltech during
training period.

Figure 7.1.2: Prediction errors for Caltech (left two columns) and JPL (right two
columns) for training dataset sizes ranging from 30 days to 90 days in the past. As a
benchmark, we consider simply taking the mean of each user’s prior behavior. For
comparison, we also include the errors of user inputs. The results are measured by
the mean absolute error (MAE) defined in (7.3).

environment exhibits only a few regular patterns. For example, on weekdays, a
driver may typically arrive at 8 am and leave around 6 pm, though her actual arrival
and departure times may be randomly perturbed around their typical values. On
weekends, driver behavior may change such that the same driver may come around
noon. We hence assume that drivers have finitely many behavior profiles. Therefore,
let 𝐾 be the number of typical profiles denoted by 𝜇1, . . . , 𝜇𝐾 .1 Each data point 𝑋𝑖

1We assume the number 𝐾 of components is known. In our experiments in Section 7.2, grid
search [219] and cross-validation is used to find the best number of components.

204

can be regarded a corrupted version of a typical profile with a certain probability.
Define a latent variable 𝑌𝑖 ≡ 𝑘 if and only if 𝑋𝑖 is corrupted from 𝜇𝑘 . Moreover,
by the i.i.d. assumption, each incoming EV has an identical probability 𝜋𝑘 taking
𝜇𝑘 , i.e., 𝜋𝑘 := P (𝑌𝑖 = 𝑘) for 𝑖 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾. Conditioned on 𝑌𝑖 = 𝑘 ,
the difference 𝑋𝑖 − 𝜇𝑘 that the profile 𝑋𝑖 deviates from the typical profile 𝜇𝑘 can be
regarded as Gaussian noise. In this manner, assuming𝑌𝑖 = 𝑘 , we let 𝑋𝑖 ∼ N (𝜇𝑘 , Σ𝑘)
be a Gaussian random variable with mean 𝜇𝑘 and covariance matrix Σ𝑘 . To estimate
the underlying distribution and approximate it as a mixture of Gaussians, it suffices
to estimate the parameters 𝜃 = (𝜋𝑘 , 𝜇𝑘 , Σ𝑘)𝐾𝑘=1. The probability density of observing
a data point 𝑥 can then be approximated using the learned GMM as

𝑝 (𝑥 |𝜃) =
𝐾∑︁
𝑘=1

𝜋𝑘

exp
(
− ||𝑥 − 𝜇𝑘 | |2Σ−1

𝑘

/2
)

√︁
(2𝜋)3det (Σ𝑘)

.

Population and Individual-level GMMs
We train GMMs based on a training dataset XTrain and predict the charging duration
and energy delivered for drivers in a setU. The results are tested on a corresponding
testing dataset XTest. The training data collected at both Caltech and JPL can be
divided into two parts: user-claimed data XC and unclaimed data XU.

This motivates us to study two different approaches. The first approach generates a
population-level GMM (P-GMM) based on the overall training data XTrain = XC

⋃
XU.

However, users can have distinctive charging behaviors. To achieve better prediction
accuracy, we take advantage of the user-claimed data and predict the charging
duration and energy delivered for each individual user. In the second approach, the
claimed data can be partitioned into a collection of smaller datasets consisting of the
charging information of each user inU. We write XC =

⋃
𝑗∈U X 𝑗 . We can then train

individual-level GMMs (I-GMM) for each user 𝑗 ∈ U by fine tuning the weights of
the components of the P-GMM with data from each of the users to arrive at a final
model for each of them.

Distribution Learned by P-GMM
To evaluate how well our learned population-level GMM fits the underlying distri-
bution, we gather 100, 000 samples from a P-GMM trained on data from Caltech
collected prior to Sep. 1, 2018. We then plot in Figure 7.1.1 the distribution of these
samples along with the empirical distribution from our training set. We choose to
plot departure time instead of duration directly as this demonstrates that our model
has learned not only the distribution of session duration but also the correlation

205

between arrival time and duration. We see that in all cases, our learned distribution
matches the empirical distribution well. We next present the applications of the
ACN-Data dataset and the learned distribution in Sections 7.3.

7.3 Predicting User Behavior
In this section, we use the GMM that we have learned from the ACN-Data dataset to
predict a user’s departure time and the associated energy consumption based on their
known arrival time. Despite recent advances in arrival time based prediction via
kernel density estimation [216, 220, 221], simple empirical predictions are commonly
used in practical EV charging systems. For example, the ACNs from which this data
was collected use user inputs directly in the scheduling problem [101], while other
charging systems simply take the average of the past behavior as a prediction. Our
data, however, shows that user input can be quite unreliable, partially because of a
lack of incentives for users to provide accurate predictions. We demonstrate that the
predictions can be more precise using simple probabilistic models.

Calculating Arrival Time-Based Predictions
LetU denote the set of users. Suppose a convergent solution 𝜃 (𝑗) = (𝜋(𝑗)

𝑘
, 𝜇
(𝑗)
𝑘
, Σ
(𝑗)
𝑘
)𝐾
𝑘=1

is obtained for user 𝑗 ∈ U where 𝜇(𝑗)
𝑘

:= (𝑎 (𝑗)
𝑘
, 𝑑
(𝑗)
𝑘
, 𝑒
(𝑗)
𝑘
) and the user’s arrival time

is known a priori as 𝛼(𝑗) . For the sake of completeness, we present the following
formulas used for predicting the duration 𝛿(𝑗) and energy to be delivered 𝜀(𝑗) as
conditional Gaussians of the user 𝑗 ∈ U:

𝛿(𝑗) =
𝐾∑︁
𝑘=1

𝜋
(𝑗)
𝑘

(
𝑑
(𝑗)
𝑘
+ (𝛼(𝑗) − 𝑎 (𝑗)

𝑘
)
Σ
(𝑗)
𝑘
(1, 2)

Σ
(𝑗)
𝑘
(1, 1)

)
, (7.1)

𝜀(𝑗) =
𝐾∑︁
𝑘=1

𝜋
(𝑗)
𝑘

(
𝑒
(𝑗)
𝑘
+ (𝛼(𝑗) − 𝑎 (𝑗)

𝑘
)
Σ
(𝑗)
𝑘
(1, 3)

Σ
(𝑗)
𝑘
(1, 1)

)
, (7.2)

where Σ
(𝑗)
𝑘
(1, 1), Σ(𝑗)

𝑘
(1, 2) and Σ

(𝑗)
𝑘
(1, 3) are the first, second and third entries in

the first column (or row) of the covariance matrix Σ
(𝑗)
𝑘

, respectively. Denoting by
𝑝(·|𝜇, 𝜎2) the probability density for a normal distribution with mean 𝜇 and variance
𝜎2, the modified weights conditioned on arrival time in (7.1) and (7.2) above are

𝜋𝑘 :=
𝑝

(
𝛼(𝑗) |𝑎 (𝑗)

𝑘
, Σ
(𝑗)
𝑘
(1, 1)

)
∑𝐾
𝑘=1 𝑝

(
𝛼(𝑗) |𝑎 (𝑗)

𝑘
, Σ
(𝑗)
𝑘
(1, 1)

) .

206

Error Metrics
We consider both absolute error and percentage error when evaluating duration and
energy predictions.

Mean absolute error

Recall thatU is the set of all users in a testing dataset XTest. Let A 𝑗 denote the set
of charging sessions for user 𝑗 ∈ U. The Mean Absolute Error (MAE) is defined
in (7.3) to assess the overall deviation of the duration and energy consumption.
For a testing dataset XTest = {(𝑎𝑖, 𝑗 , 𝑑𝑖, 𝑗 , 𝑒𝑖, 𝑗)} 𝑗∈U,𝑖∈A 𝑗

, the corresponding MAEs for
duration and energy are represented by MAE(𝑑) and MAE(𝑒) with

MAE(𝑥) :=
∑︁
𝑗∈U

1
|U|

∑︁
𝑖∈A 𝑗

1
|A| 𝑗

��𝑥𝑖, 𝑗 − �̂�𝑖, 𝑗 �� (7.3)

where �̂�𝑖, 𝑗 is the estimate of 𝑥𝑖, 𝑗 and 𝑥 = 𝑑 or 𝑒.

Symmetric mean absolute percentage error

The Symmetric Mean Absolute Percentage Error (SMAPE) in (7.4) is commonly
used (for example, see [220]) to avoid skewing the overall error by the data points
wherein the duration and energy consumption take small values. The corresponding
SMAPEs for duration and energy are represented by SMAPE(𝑑) and SMAPE(𝑒)
with

SMAPE(𝑥) :=
∑︁
𝑗∈U

1
|U|

∑︁
𝑖∈A 𝑗

1
|A| 𝑗

����𝑥𝑖, 𝑗 − �̂�𝑖, 𝑗𝑥𝑖, 𝑗 + �̂�𝑖, 𝑗

���� × 100%. (7.4)

Results and Discussion
Experimental setup

In Figure 7.1.2, we report MAE(𝑑) and MAE(𝑒) for I-GMM and P-GMM on Caltech
dataset as a function of the look back period which defines the length of the training
set. Users with larger than 20 sessions during Nov. 1, 2018 and Jan. 1, 2019
are included in U and tested. Note that the size of the training data may not be
proportional to the length of periods since in general there is less claimed session data
early in the dataset. The 30-day testing data is collected from Dec. 1, 2018 to Jan. 1,
2019. We study the behavior of prediction accuracy with different training data sizes
by training the GMMs with data collected from five time intervals ending on Nov.
30, 2018 and starting on Sep. 1, 2018, Sep. 15, 2018, Oct. 1, 2018, Oct. 15, 2018

207

Caltech I-GMM P-GMM Mean User Input
SMAPE(𝑑)% 15.8543 16.6313 20.4432 25.8093
SMAPE(𝑒)% 14.4273 17.2927 15.9275 27.5523

JPL I-GMM P-GMM Mean User Input
SMAPE(𝑑)% 12.2500 12.5079 15.8985 18.5994
SMAPE(𝑒)% 12.7318 13.6863 13.3014 26.8769

Table 7.3.1: SMAPEs for Caltech and JPL datasets.

and Nov. 1, 2018, respectively. The GMM components are initialized using k-means
clustering as implemented by the Scikit Learn GMM package [219]. Since it is not
deterministic, we repeat this initialization 25 times and keep the model with the
highest log-likelihood on the training dataset. Grid search and cross validation [219]
are used to find the best number of components for each GMM.

Observations

As observed from Figure 7.1.2, for the JPL dataset with testing data obtained from
Dec. 1, 2018 to Jan. 1, 2019, the 60-day training data gives the best overall
performance. This coincides with our intuition that user behavior changes over time
and there is a trade-off between data quality and size. The Caltech dataset also
displays this trade-off; however, the best performance was found for only a 30-day
training set. This is likely because there was a transition from free to paid charging
on Nov. 1, which meant that data prior to that date had very different properties.

Hence, for the JPL dataset, we fix the training data as the one collected from Oct. 1,
2018 to Dec. 1, 2018 and show the scatterings of SMAPEs for each session in the
testing data (from Dec. 1, 2018 to Jan. 1, 2019) in Figure 7.3.1. The SMAPEs are
concentrated on small values with a few outliers and high-quality duration prediction
has a positive correlation with high-quality energy prediction. As a comparison, user
input SMAPEs, shown as Xs, are much worse.

Table 7.3.1 shows the average SMAPEs for the various methods tested. For Caltech
and JPL, we display the results using the 30 and 60-day training data, respectively.
For reference we also calculate the error of two additional ways to predict user
parameters: 1) we use the mean of the training data X 𝑗 as our prediction for each
user, 2) we treat the user input data directly as the prediction. Note that to account for
stochasticity in the GMM training process, the results in Figure 7.1.2 and Table 7.3.1
are obtained via 50 Monte Carlo simulations.

208

Figure 7.3.1: Correlation between SMAPE(𝑑) and SMAPE(𝑒) and their marginal
distributions for the JPL dataset. Kernel density estimation is used to approximate
the joint distribution of the SMAPEs for predicted duration and energy which is
shown as grey shading. The blue crosses represent the corresponding user input
SMAPEs (for I-GMM) with respect to each charging session in the testing data set
XTest.

Implications

EV users need incentives to provide more accurate predictions. As shown in
Figures 7.1.2, Figure 7.3.1 and Table 7.3.1, user input data conspicuously gives the
worst overall prediction. However, in some commercial EV charging companies,
e.g., PowerFlex, user input data is used as the direct input for the scheduling and
pricing algorithms. Therefore, significant improvements can be made in the future by
leveraging tools from statistics and machine learning to better predict user behaviors,
e.g., using GMMs. In addition, we find that when predicting user behavior there is

209

Table 7.4.1: List of key notation used in this section.

Clustering Parameters
N Set of 𝑛 charging sessions
T Set of 𝑇 charging time slots
S Set of 𝑛 charging curves
C𝑘 Cluster indexed by 𝑘 (𝑘 = 1, . . . , 𝐾)

Sequences
p𝑖 Pilot curve for session 𝑖 ∈ N
s𝑖 Charging curve for session 𝑖 ∈ N
x𝑖 Charging tail for session 𝑖 ∈ N
c𝑘 Tail representative for cluster C𝑘

a trade-off between between training data quantity and quality caused by changing
user behavior over time which must be considered.

7.4 ACN-Data Charging Curves Analysis
Charging curves
With the terminology introduced in Table 7.4.1, denote by N := {1, . . . , 𝑛} the set
of charging sessions. Each charging session refers to the charging duration from
connectionTime to disconnectTime (see Table 7.4.1). Without loss of generality,
we assume the times series of charging currents have the same length 𝑇 and time
granularity (If not, we preprocess the time series as explained in Section 6.2 and
pad the shorter ones with zeros). Let T := {1, . . . , 𝑇} be the set of time slots from
connectionTime to disconnectTime. In the remaining contexts, we refer to “time
series” as the raw data and “charging curves” the sequences with equally sampled
points after preprocessing (introduced in Section 6.2), unless otherwise stated. We
first define a charging curve and its associated pilot curve. For any session 𝑖 ∈ N , a
charging curve s𝑖 ∈ R𝑇 is the sequence of actual charging currents during the session
𝑖, i.e., s𝑖 := (𝑠𝑖 (1), . . . , 𝑠𝑖 (𝑇)). For any session 𝑖 ∈ N , a pilot curve p𝑖 ∈ R𝑇 is the
sequence of control signals during the session 𝑖, i.e., p𝑖 := (𝑝𝑖 (1), . . . , 𝑝𝑖 (𝑇)). At
each time 𝑡 ∈ T , a charger sends a pilot signal 𝑝𝑖 (𝑡) to the vehicle which then draws
a current 𝑠𝑖 (𝑡) that is no higher than 𝑝𝑖 (𝑡) (both 𝑠𝑖 (𝑡) and 𝑝𝑖 (𝑡) are in units of Amp).
Given a set of 𝑛 charging curves S := {s𝑖 ∈ R𝑇 : 𝑖 ∈ N} and the associated pilot
curves P := {p𝑖 ∈ R𝑇 : 𝑖 ∈ N}, the key issue considered in this chapter is: how to
classify the elements of S into different groups and implement the classification
efficiently?

210

Figure 7.4.1: An example of a charging curve (in blue) and the corresponding pilot
curve (in orange) for a charging session with userID 409 on Oct. 13, 2018.

Typically, a charging curve from a charging session consists of two stages – the bulk
charging stage and the absorption stage. In the bulk stage which usually occurs
before the state of charge (SoC) reaches 80% full, the charging current is usually
equal approximately to the pilot signal and the charging voltage steadily increases.
In the absorption stage, the voltage stays approximately at its peak level and the
charging currents decreases as the battery reaches full charge. In cases when the
available time for charging is sufficiently long, a charging session may contain an
additional stage, namely the idle stage where the charging current is closed to zero
(neglecting noise). An example of a charging curve and its associated pilot curve is
shown in Fig. 7.4.1. It can be observed that the measured charging current does not
follow the pilot signal exactly. The gap between the pilot signal and charging current
fluctuates due to the following reasons: (1) the maximum charging current that the
vehicle can draw being smaller than the control signal; (2) random noise; (3) entry
into the absorption or idle stage.

Charging tails
The charging current in the bulk charging stage is controlled by the scheduling
algorithm and therefore it exhibits little information of the battery. For classification
purposes, we are mainly interested in the second stage, during which the charging
current might exhibit distinct patterns because of different types of batteries. Let 𝑡𝑖𝑠
and 𝑡𝑖𝑒 denote the start time and end time of the absorption stage for session 𝑖 ∈ N .

211

We refer to the subsequence of the charging curve in this stage as charging tail,
defined as follows.

Definition 7.4.1 (Charging Tail). For session 𝑖 ∈ N , a charging tail x𝑖 :=
(
𝑠𝑖 (𝑡), 𝑡 =

𝑡𝑖s, . . . , 𝑡
𝑖
e
)

is the subsequence of the charging curve s𝑖 in the absorption stage{
𝑡𝑖s, . . . , 𝑡

𝑖
e
}
.

Since charging tails display distinctive characteristics of their corresponding charging
curves, we will classify charging curves based on their tails. A common battery
model assumes that a charging curve starts and stays at some maximum charging
current 𝐶𝑖max until the battery enters the absorption stage when the charging current
steadily decreases to zero. In this model, the start time 𝑡𝑖𝑠 of the charging tail is easily
identifiable to be the last time the charging current stays at the maximum rate 𝐶𝑖max

and the end time 𝑡𝑖𝑒 is the first time the charging current drops to zero, i.e., an (ideal)
charging tail x𝑖 is a decreasing sequence defined by: 𝐶𝑖max = 𝑠(𝑡𝑖𝑠) > 𝑠(𝑡𝑖𝑠 + 1) ≥
· · · ≥ 𝑠(𝑡𝑖𝑒 − 1) > 𝑠(𝑡𝑖𝑒) = 0. In practice, however, extracting the charging tail x𝑖
from a real charging curve s𝑖, i.e., identifying the start time 𝑡𝑖𝑠 and end time 𝑡𝑖𝑒 of the
absorption stage, can be difficult. A charging curve s𝑖 is rarely a decreasing sequence
as the simple model above assumes. The charging current fluctuates for multiple
reasons, not only the internal charging state of a battery, but also external factors
such as pilot signal control (scheduling) or noise. In Fig. 7.4.2, we display examples
of charging curves where the rates drop due to these reasons.

The confusion caused by scheduling can be cleared up using the first tail extraction
method in Section 7.5. The confusion caused by noise is trickier to deal with since,
in particular, the noise can be large and fluctuate frequently as shown in Fig. 7.4.1
and Fig. 7.4.2. Thus, it is nontrivial to differentiate the changes due to noise from
the other scenarios. In addition, it is possible that more than one scenarios occur
simultaneously, e.g.,, scheduling within the tail stage. In this case, the charging tails
may not be decreasing sequences. Therefore, determining the exact starting point
(and ending point) of the absorption stage is difficult. Moreover, for a given length-𝑇
charging curve s𝑖 ∈ R𝑇 , different tail extraction methods (as introduced in Section 7.5)
may give distinct tails. Therefore, we consider the set of all candidates of charging
tails for session 𝑖 ∈ N , denoted by X𝑖. As subsequences of s𝑖, the tails in X𝑖 may not
have the same dimension. This motivates a novel selective clustering problem with
a new objective: How to cluster 𝑛 candidates (of charging tails) {x𝑖 ∈ X𝑖 : 𝑖 ∈ N}
with the ability of choosing a candidate x𝑖 ∈ X𝑖 for each charging curve s𝑖? In the
sequel, we formalize our clustering problem.

212

Figure 7.4.2: Examples of charging curves where charging currents drop due to
(1) scheduling, (2) battery charging state, and (3) noise, as indicated by the shaded
regions. Each plot only shows a selected portion of a session. The time series are for
sessions with userID 576 (top), 409 (mid) and 526 (bot), obtained on Nov. 07, 2018,
Oct. 09, 2018 and Oct. 22, 2018, respectively.

213

Selective clustering
With the above definitions, the charging tail classification problem can be defined as
the following optimization:

min
X

min
C

𝐾∑︁
𝑘=1

∑︁
𝑖∈C𝑘

𝑑 (c𝑘 , x𝑖) (7.5)

where X := {x𝑖 ∈ X𝑖 : 𝑖 ∈ N} is a set of 𝑛 candidates, constructed by selecting
exactly one tail from X1, . . . ,X𝑛. We assume the number of clusters 𝐾 is known and
searching the best 𝐾 is beyond the scope of this chapter. Let K := {1, . . . , 𝐾}. The
set C := {C𝑘 : 𝑘 ∈ K} specifies a partitionN =

⋃𝐾
𝑘=1 C𝑘 of the charging sessionsN

with each C𝑘 representing a distinctive cluster. Moreover, c𝑘 is a tail representative
for the 𝑘-th cluster, defined as its medoid. The distance function(s) is denoted by
𝑑 (·, ·), which will be specified in Section 7.5.

To solve the minimization in (7.5), we use the idea of alternating minimization (AM)
and refine the representative of each cluster by iteratively implementing the following
until convergence. With suitable initialization, the iterations (the (ℓ + 1)-step) consist
of two main steps.

• Tail Extraction (TE): Given 𝑛 fixed tail representatives, we find new candidates
that minimize the following:

x(ℓ+1)
𝑖

:= arg min
x∈X𝑖

min
𝑘∈K

𝑑

(
c(ℓ)
𝑘
, x

)
, 𝑖 ∈ N . (7.6)

• Tail Clustering (TC): We cluster the new tails obtained via TE and find new
representatives c(ℓ+1)1 , . . . , c(ℓ+1)

𝐾
by solving the following minimization:

min
C

∑︁
𝑘∈K

∑︁
𝑖∈C𝑘

𝑑

(
c(ℓ+1)
𝑘

, x(ℓ+1)
𝑖

)
. (7.7)

In Algorithm 10, we summarize the iterative process. The details of the initialization
step is described in Section 7.5. Note that conducting TC and TE repeatedly
cannot increase the objective function in (7.5). Therefore, the AM we established is
guaranteed to have local convergence.

Theorem 7.4.1. With arbitrary initialization x(1)1 , . . . , x(1)𝑛 , by iteratively performing
(7.6) and (7.7), Algorithm 10 converges to a local optimum consisting of representative
tails ĉ1, . . . , ĉ𝐾 .

214

Algorithm 10: AM for Selective Clustering
Input: Charging curves S and pilot curves P;
Output: Clustering C and representatives ĉ1, . . . , ĉ𝐾 ;
ℓ ←− 1;
Initialization −→ x(ℓ)1 , . . . , x(ℓ)𝑛 ;

while not converge do
Tail clustering (TC) −→ c(ℓ)1 , . . . , c(ℓ)𝑛 ;
Tail extraction (TE) −→ x(ℓ+1)1 , . . . , x(ℓ+1)𝑛 ;
ℓ ←− ℓ + 1

end

Proof. First, TE cannot decrease the objective function in (7.5). For any session
𝑖 ∈ N and pair of x(ℓ)

𝑖
∈ C𝑘 (𝑖) and the corresponding tail representative c(ℓ)

𝑘 (𝑖) , the
minimization in (7.6) guarantees that there exists a tail representative c𝑘 ′ such that

𝑑

(
c𝑘 ′, x(ℓ+1)𝑖

)
≤ 𝑑

(
c(ℓ)
𝑘 (𝑖) , x

(ℓ)
𝑖

)
.

Therefore, this specifies a clustering with the objective function less than or equal
to the previous clustering. Similarly, TC cannot decrease the objective function,
since we just show that there exists a better clustering for the new tails, and the
minimization in (7.7) can only result in an objective value that is equal to or smaller
than the original one. □

The computational complexity for solving (7.6) in TE is 𝑂 (𝑛𝐾𝛾(𝑑)) where 𝛾(𝑑)
is the complexity for computing the distance function with fixed input sequences.
Our experiments use an approximation in (7.8) for a more efficient implementation.
In practice, for efficiently implementing TC, heuristics are used for finding a local
optimum of (7.7). Moreover, as the AM procedure also leads to a local minimum,
an initialization that is close to a global minimum is important. In the next section,
we introduce tail extraction methods for initialization and heuristic algorithms for
clustering.

7.5 Classification Method
In this section, we present our framework for charging curve clustering. It consists
of three main stages depicted in Fig. 7.4.3.

Preprocessing
In general, the charging curve s𝑖 and the pilot curve p𝑖 for session 𝑖 ∈ N are neither
sampled at a fixed rate nor perfectly aligned. Most analysis techniques, however,

215

Figure 7.4.3: The classification method introduced in this chapter.

require that the time series be unevenly spaced. We therefore re-sample the time
series as the mean over a fixed interval 𝛿 (if there is at least one sample) and fill
in the missing points by linear interpolation. This preprocessing step ensures the
alignment of signals in the time domain T = {1, . . . , 𝑇} so that the distance metric
𝑑 (c, x) is well defined.

Tail extraction
Not all charging curves contain tails, for two reasons. First, certain batteries do not
exhibit a smooth absorption stage and the current just drops from 𝐶 to 0 directly.
Second, EVs may be unplugged before they are fully charged. This can happen when
the EV leaves earlier than the input departure time, or when the requested energy is
lower than the battery’s remaining capacity. We consider three rules of thumb for
tail extraction.

Extraction by pilot signals

As mentioned in Section 7.4, a tail is typically a decreasing sequence. Therefore, we
declare that a battery has entered the absorption stage if the charging current 𝑠(𝑡)
falls below a certain value 𝐶 > 0. The end of the stage is the time when the charging
current first reaches approximately zero. This simple rule of thumb is straightforward
to implement. A drawback however is that it is hard to determine a suitable threshold
𝐶 > 0. Scheduling, system congestion, or noise may cause the charging current to
drop below the threshold 𝐶 even before entering the absorption stage. To mitigate
the confusion due to scheduling, we utilize the pilot curves and call a subsequence s′

of a charging curve s piloted at time 𝑡 if 𝑝(𝑡) − 𝑝(𝑡 − 1) ≥ 𝑠(𝑡) − 𝑠(𝑡 − 1). We accept

216

a tail if it is not piloted everywhere and 𝑠(𝑡) ≤ 𝐶 for a given threshold parameter
𝐶 > 0.

Extraction by duration

The end of the absorption stage can be found by locating the first (approximately)
zero value of the charging currents. If we have an estimate of the duration of the
adsorption stage, we will be able to extract the tail. This approach requires the
knowledge of the tail duration. Moreover, even for the same battery, the duration
of the adsorption stage varies across different sessions because of noise and our
re-sampling.

The first two extraction methods can be combined to extract tails. In our experiments
reported in Section 7.6, for each distinct user, we regard the first two methods as a
two-layer filter and extract a tail representative for each session if the tail passes the
filtering criteria. In particular, for session 𝑖, we employ grid search for the selection
of threshold parameter 𝐶 > 0 by decreasing it from the maximal charging current
𝐶𝑖max.

Extraction by matching

Our third method assumes that all charging tails from the same EV have similar
properties such as duration and shape. Before the iterative steps, suppose that for
a fixed user, we are able to obtain an initial charging tail x(1) , e.g., using the two
methods above. This x(1) is used as a “template” to extract the tails of all other
charging curves of the same user. Then, we go through the subsequences of the
charging curve that have the same length as the template, and find a charging tail
with improved noise robustness. Suppose we obtain a tail representative x for a fixed
user. For the remaining sessions 𝑖 of the same user, we minimize the Euclidean
distance 𝑑ED

(
x, x(1)

𝑖

)
over all consecutive subsequences x(1)

𝑖
of the charging curve s𝑖

that have the same length as x. In this way, we use the three extraction rules jointly
to compute the initial tails x(1)1 , . . . , x(1)𝑛 in Algorithm 10. Fig. 7.5.1 illustrates the
idea and effectiveness of this approach.

Besides speeding up the initialization, the third approach is also used as the TE step
as an approximation of the optimization in (7.6). At the ℓ-th iteration, by setting
the medoid (tail representative) c(ℓ)

𝑘
of the 𝑘-th cluster that the charging curve x𝑖

217

0

5

10

15

C
u

rr
en

t
(A

)

0 500 1000 1500 2000 2500 3000 3500 4000

Sample (period = 4s)

10

20

E
u

cl
id

ea
n

D
is

ta
n

ce

Figure 7.5.1: An example of extraction by matching. The red subsequence x1 is a
template with userID 409, which is extracted from the first session s1 of this user.
The figure below visualizes the change of Euclidean distance of the second session
s2 with respect to x1. The black vertical line indicates the best matching location in
s2 for x1 and the tail x2 can be found correspondingly despite the slight difference of
both tails.

is classified into as the template2 and using the Euclidean distance as the distance
function, we approximate the optimization in (7.6) for the ℓ-th iteration:

x̂(ℓ+1)
𝑖

= arg min
x

𝑑ED

(
c(ℓ)
𝑘
, x

)
(7.8)

where the minimization is over all x ∈ X𝑖
(
cℓ
𝑘

)
and X𝑖

(
cℓ
𝑘

)
is the set containing all

consecutive subsequences of the charging curve s𝑖 that have the same length as c(ℓ)
𝑘

.

Tail clustering
Time series clustering is a well-studied problem; see [222] for a review and [223]
for a detailed experimental comparison. One of the main problems considered in
the literature is determining the distance/similarity between time series. Based on

2In our experiments (elaborated in Section 7.6), for improving efficiency, we implement a
simplified TE, wherein we focus on the medoid of the cluster that the charging curve s𝑖 for session 𝑖
belongs to and remove the minimization over 𝑘 in (7.6). This modification does not affect the local
convergence property stated in Theorem 7.4.1.

218

their own applications, a variety of similarity distance metrics have been proposed,
including the Euclidean distance[224] for stock price movements clustering, the
edit distance [225] for trajectory clustering and the cross correlation [226] for
electrocardiogram time series clustering, etc. However, most of the existing metrics
require that the two sequences have the same length. As an exception, dynamic time
warping (DTW)[227] is able to calculate the distance between two sequences with
different lengths. However, it is computationally expensive. For clustering tails, we
introduce a penalty term to the Euclidean distance and our experiments show that
the new distance function (defined as the MED in (7.9)) surpasses the others for
charging time series clustering. We use similarity based clustering techniques for
solving the minimization in (7.7). Tails of varying lengths are clustered in two steps:
(a) similarity matrix construction (b) similarity based clustering.

Similarity matrix construction

The lengths of tails extracted from the charging curves of different EVs are generally
different. This creates difficulty in comparing two tails as the standard Euclidean
distance is defined for two vectors of the same length. We compare three different
distance definitions for tails of different lengths and more results can be found in
Section 7.6. The first method simply pads the shorter tail with zeros to make two
tails the same length so their distance is the standard Euclidean distance (ED). The
second method uses a distance function defined as follows. Suppose x ∈ R𝑠 and
y ∈ R𝑙 with 𝑠 ≤ 𝑙. Their corresponding modified Euclidean distance (MED) is

𝑑MED (x, y) :=min
{
𝑑ED (x, y(≤ 𝑠)) , 𝑑ED (x, y(≥ 𝑙 − 𝑠 + 1))

}
+ 𝜆 |𝑙 − 𝑠 | (7.9)

where 𝑑ED(·, ·) is the Euclidean distance and y(≤ 𝑠) and y(≥ 𝑙 − 𝑠 + 1) represent the
first 𝑠 and last 𝑠 coordinates of y, respectively. The penalty parameter 𝜆 > 0 can be
tuned. By default we set it to 1. Note that the distance function MED in (7.9) may
not satisfy the triangle inequality. The third method uses the dynamic time warping
(DTW) defined in [227, 228]. The clustering results obtained via the ED with zero
padding technique, the MED defined above and the DTW are compared in Fig. 7.6.1,
with more details in Section 7.6.

Similarity based clustering

For similarity based clustering, we apply the spectral clustering [229–231] as the
heuristic for approximating the minimization in (7.7).

219

7.6 Clustering, Applications, and Discussions

0.80

0.85

0.90

0.95

1.00

%
of

co
rr

ec
tl

y
gr

ou
p

ed

2 4 6 8 10 12 14
Number of clusters k

0.00

0.20

0.40

0.60

0.80

1.00

S
il

h
ou

et
te

co
effi

ci
en

t MED

ED

DTW

Figure 7.6.1: The performance for different number of clusters using three different
distance functions – Euclidean distance (ED), Modified Euclidean distance (MED),
Dynamic Time warping distance (DTW).

Clustering evaluation
In this section, we evaluate the proposed method (shown in Fig. 7.4.3) on ACN-
Data [1]. We use the dataset from JPL from Sep. 2018 to Dec. 2018 as the training

Figure 7.6.2: Visualization of 𝐾 = 6 clusters for MED, ED and DTW. Tails are within
the same cluster if they have the same color and the tail representatives (medoids)
are emphasized.

220

Figure 7.6.3: Two-dimensional visualization of our clustering results with 𝐾 = 6
clusters. Tails for different users are colored differently. The clusters’ colors are
consistent with those used in Fig. 7.6.2. The marginal probabilities 𝑝1, . . . , 𝑝6
represent the portions of charging sessions falling into the six clusters.

data, which contains 2933 claimed sessions from 195 users.3 In preprocessing (see
Section 7.5), we resample the data at a time resolution of 𝛿 = 4 seconds.

We use two evaluation metrics to find the number of clusters 𝐾. The first is the
silhouette coefficient [232], which takes a value in [−1, 1]. A higher silhouette
coefficient indicates better clustering performance. The second is the correctly
classified percentage. Recall that each tail is associated with a userID (see Table 7.4.1).
We evaluate the clustering quality by checking if the tails with the same userID are
consistently grouped into the same cluster.4 A tail is considered correctly classified
if it is clustered into a group wherein the majority of the tails have the same userID
as the considered tail.

The evaluation results for three different distance functions – the modified Euclidean
distance (MED), Euclidean distance (ED), and dynamic time wrapping (DTW) are
shown in Fig. 7.6.1. We use 𝜆 = 1 for MED. For distance to similarity conversion,

3More than a half of the users have less than 12 charging sessions during the period. In the
clustering experiment, we only consider the 35 users with more than 30 sessions. Out of the 35 users,
16 of them have sufficient number of charging curves with tail-like features. Our experiments used
the 304 charging curves from these 16 users.

4It is possible that the same userID exhibits different charging patterns. This may occur if the
user changes her EV or owns more than one EV. But as shown in Table 7.6.2, such scenario is rare.

221

Figure 7.6.4: Examples of the training and testing data (tails) for four users. Sub-
figures (a) and (b) are the tails of the two users with poor prediction performance
(highlighted in blue in Table 7.6.1). The poor prediction performance is due to the
fact that the tails in the training data are very different from those in the testing
data. Sub-figures (c) and (d) are examples where the tail representatives achieve
high-quality prediction performance. Tails in the training data and those in the testing
data are similar.

we use the Gaussian kernel 𝜅(𝑑) = exp
(
−𝑑2/𝜃

)
∈ (0, 1] where 𝑑 is the pairwise

distance between two sequences and 𝜃 > 0 is a tuning parameter. In particular, we
choose 𝜃 = 20 for MED and ED and 𝜃 = 110 for DTW. It can be seen that 𝐾 = 6
is a good choice of number of clusters for this dataset, as it is the largest value at
which all the tails are correctly classified for both ED and MED. In addition, the
silhouette coefficient is relatively high for 𝐾 = 6. Fixing 𝐾 = 6, the clustering
results for different distance functions are visualized in Fig. 7.6.2. It can be seen
that using MED, the six clusters are well-separated and the corresponding medoids
provide informative patterns for charging tails. In Fig. 7.6.3, we project the tails
to a two-dimensional space using the t-distributed stochastic neighbor embedding
(t-SNE) and MED. It demonstrates the hierarchical relationship between the groups
of users and the clusters for our training data.

222

Charging behavior prediction
The ability to classify charging behavior can enable both offline and online applications
in the future (see Section 8.2). One of the building blocks for these applications will
be the use of cluster representatives for prediction. In this subsection, we illustrate
its accuracy.

The training data is the same as in Section 7.6 and the testing data contains 731
tails for 1441 sessions collected from Jan. 2019 to Aug. 2019. We use the tail
representatives of the training data obtained using our framework in Fig. 7.4.3
to predict the behavior of the charging tails of the testing data. Denote by s a
real charging curve in the testing data and x̂ the estimated tail. We consider two
situations–with and without the knowledge of userID, and the results are shown in
Table 7.6.1 and Table 7.6.2, respectively. We evaluate the prediction quality using
the following three metrics. The first metric is the coefficient of determination (𝑅2)
(generalized in our case for comparing two sequences of different lengths) defined as:

𝑅2
Predict(s, x̂) := min

x

{
1 −

∑𝑚
𝑡=1(𝑥𝑡 − �̂�𝑡)2∑𝑚
𝑡=1(𝑥𝑡 − 𝑥)2

}
(7.10)

where the minimization is over all consecutive subsequences x of the charging curve
s that have the same length as x̂ and 𝑥 =

∑𝑚
𝑡=1 𝑥𝑡/𝑛 and 𝑚 is the length of x and x̂.

It ranges from (−∞, 1] and the larger the better. A negative value indicates that
performance is worse than the arithmetic mean mean. Our second metric is the root
mean square error (RMSE) that is useful for measuring scale-dependent prediction
error. The last metric is the mean absolute error (MAE). Similar to (7.10), the last
two metrics are also generalized with an additional minimization over consecutive
subsequences of charging curves in the testing data.

Table 7.6.1 shows the userID-based prediction results. Each tail representative
(medoid) corresponds to each group of users. As can be observed from the results,
except for user 404 and user 651, the tail representatives of the other 14 users can well
predict the charging tail behavior in incoming sessions for the same user. Fig. 7.6.4
visualizes the training tails, testing tails and tail representatives of 4 users, including
the two users with high prediction error. Note that the charging tails of user 404
exhibit two distinct groups, one is from Sep. 2018 to Dec. 2018 (tails colored in
light blue) and the other is from Jan. 2019 onward (tails colored in light orange);
similarly for user 476. Unlike for the other users, the tails in the training data are
very different from those in the testing data for user 404 and 651. Ignoring the user
labels, Table 7.6.2 compares the prediction RMSE using the most similar cluster

223

Table 7.6.1: Prediction results with user tail representative.

userID 𝑅2 RMSE MAE
322 0.6464± 1.2509 0.9306 ± 1.1596 0.7947 ± 1.1773
334 0.8783± 0.4765 1.3840 ± 1.3656 0.9954 ± 1.2012
368 0.6812 ± 0.6259 2.4878 ± 1.9991 2.0742 ± 1.7777
371 0.8615 ± 0.2040 0.8735 ± 0.6297 0.6946 ± 0.5655
374 0.9329 ± 0.0571 1.3872 ± 0.5800 0.9128 ± 0.4418
404 -11.906 ± 4.9304 10.522 ± 2.1957 10.230 ± 2.1357
405 0.8335 ± 0.1253 1.2936 ± 0.4793 0.9011 ± 0.3733
406 0.8917 ± 0.1315 0.5243 ± 0.2889 0.4082 ± 0.2305
409 0.9078 ± 0.0464 0.9412 ± 0.2310 0.6423 ± 0.1853
476 0.9509 ± 0.0757 0.5369 ± 0.3062 0.4077 ± 0.2536
551 0.9199 ± 0.1256 1.4938 ± 1.0355 1.1755 ± 0.7750
576 0.9209 ± 0.0249 0.6258 ± 0.1136 0.4802 ± 0.1178
577 0.9150 ± 0.0749 1.0301 ± 0.4422 0.6683 ± 0.2736
592 0.8699 ± 0.2607 0.7686 ± 0.6002 0.5394 ± 0.4607
607 0.9506 ± 0.0936 1.0141 ± 0.7940 0.8195 ± 0.6497
651 -3.5447 ± 1.9932 6.7702 ± 1.5415 5.4010 ± 1.0258

Table 7.6.2: Prediction RMSE with cluster representative.

UserID MED ED DTW
322 2.7170 ± 0.8737 0.9306 ± 1.1596 2.7363 ± 0.9032
334 1.1880 ±1.4109 4.3331 ± 1.0066 2.8291 ± 1.7102
368 2.6745 ± 2.0675 2.7885 ± 1.2932 2.8450 ± 1.5884
371 0.8266 ± 0.5495 3.1160 ± 0.7986 0.8266 ± 0.5495
374 1.3872 ± 0.5800 1.3872 ± 0.5800 3.8939 ± 2.4183
404 9.4865 ± 2.0709 13.4698 ± 2.1212 9.4865 ± 2.0709
405 1.2805 ± 0.5074 1.4343 ± 0.5525 1.3289 ± 0.4918
406 1.4506 ± 0.4911 3.0573 ± 0.1223 1.4506 ± 0.4911
409 1.0244 ± 0.1878 1.6821 ± 0.5381 0.9960 ± 0.1940
476 1.5438 ± 0.3304 4.2103 ± 0.3307 1.5438 ± 0.3304
551 1.5861 ± 1.0745 1.5861 ± 1.0745 4.8002 ± 3.3426
576 2.5593 ± 0.0552 0.7033 ± 0.1582 2.6073 ± 0.0357
577 0.8972 ± 0.2218 1.4100 ± 0.5203 0.8832 ± 0.2140
592 0.7682 ± 0.5871 0.7686 ± 0.6002 0.8690 ± 0.5895
607 1.0393 ± 0.6984 4.2828 ± 0.9654 2.7691 ± 1.4346
651 4.7786 ± 0.5789 5.4719 ± 1.8010 4.7786 ± 0.5789

224

representative from the 6 clusters obtained for three different distance functions –
MED, ED and DTW. In this case, the estimate is the tail representative of the cluster
to which the charging curve in the testing data belongs. The best distance function
for each user is highlighted in bold. MED is the best for most of the cases. In
addition, Tables 7.6.1 and 7.6.2 show that the cluster representatives with MED
achieves comparable and even better prediction than user representatives, indicating
the existence of charging tail patterns.

Charging stage decision
In the remainder of our experimental results, we consider a real-time binary decision
problem on whether an EV is in the absorption stage (AS) (see Section 7.4 for more
details of the AS) or not. Our training data remains the same. In particular, for the
testing data, we choose the user with ID 476 as an example, and manually label the
start time 𝑡s and end time 𝑡e of the AS for each of the charging sessions since Jan.
2019. There are 𝑛 = 38 out of 46 sessions in total that contain tails. The MAE is
used for deciding the charging stage. Let 𝜀MAE be the error threshold. At time 𝑡 ∈ T ,
denote by 𝑚 the number of samples that can be used in our decision. Equivalently,
𝑚 is the time delay that are allowed for deciding if at time 𝑡 the EV enters the AS.
The decision rule in our experiments is that if 𝑑ED (s (𝑡 : 𝑡 + 𝑚) , c (≤ 𝑚)) ≤ 𝜀MAE,
then we claim that the EV is in the AS; otherwise the EV is not in the AS where
s (𝑡 : 𝑡 + 𝑚) := 𝑠(𝑡), . . . , 𝑠(𝑡+𝑚) and c (≤ 𝑚) := 𝑐(1), . . . , 𝑐(𝑚). We set 𝜀MAE = 0.7
in the tests.

Fig. 7.6.5 shows the trade-offs between the decision accuracy and the number of
samples. In particular, in Fig. 7.6.5, the average accuracy is defined as

𝑛∑︁
𝑖=1

TP𝑚 (s𝑖) + TN𝑚 (s𝑖)
TP𝑚 (s𝑖) + TN𝑚 (s𝑖) + FN𝑚 (s𝑖) + FP𝑚 (s𝑖)

where TP𝑚 (s𝑖), FP𝑚 (s𝑖), TN𝑚 (s𝑖) and FN𝑚 (s𝑖) are the numbers of true positive, false
positive, true negative and false negative decisions for the charging stage decision of
a charging curve s𝑖 with 𝑚 samples. The average sensitivity and average precision
are defined similarly as

𝑛∑︁
𝑖=1

TP𝑚 (s𝑖)
TP𝑚 (s𝑖) + FN𝑚 (s𝑖)

and
𝑛∑︁
𝑖=1

TP𝑚 (s𝑖)
TP𝑚 (s𝑖) + FP𝑚 (s𝑖)

,

respectively. Both the average precision and the average sensitivity grow with the
number of samples 𝑚.

225

20 40 60 80 100 120

Number of samples m (frequency=4s)

0.2

0.4

0.6

0.8

1.0

V
al

u
e

Precision

Sensitivity

Accuracy

20 40 60 80 100 120

Number of samples m (period=4s)

0.2

0.4

0.6

0.8

1.0

V
al

u
e

Precision

Sensitivity

Accuracy

Figure 7.6.5: Trade-offs between the number of samples 𝑚 and the accuracy,
sensitivity and precision.

Part IV

Impact and Future Directions

226

227

C h a p t e r 8

CONCLUSIONS

Achieving the net zero carbon goal requires a combination of advanced AI/ML
techniques with classical methods in power grids. Utilizing the data generated in
smart grids in a robust and resilient way is still a challenging task. In the previous
chapters, we have presented several control and decision-making models that help
unify the use of data subject to untrusted forecasts and predictions, black-box AI
tools and distribution shifts.

The goal of this dissertation has been to study learning-augmented control and
decision-making problems and their applications in smart grids.

8.1 Summary of Learning-Augmented Control Models
As a summary, the models for the learning-augmented online algorithms presented
in Chapter 2, 3, 4 and 5 are shown below. The generality of the control models
increases from the top row (Chapter 2) to the bottom (Chapter 4 and 5).

Dynamics Cost Functions Imperfect Predictions/Advice

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

∑𝑇−1
𝑡=0 𝑥

⊤
𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 𝑤0, . . . , 𝑤𝑇−1

+𝑥⊤
𝑇
𝑄 𝑓 𝑥𝑇 Chapter 2 ([23])

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡)
∑∞

𝑡=0 𝑥
⊤
𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡

�̂� : R𝑛 → R𝑚

Chapter 3 ([16])
𝑥𝑡+1 = 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡) ∑𝑇

𝑡=1 𝑐𝑡 (𝑢𝑡)
𝑝∗𝑡 : U→ X

𝑥𝑡 ∈ X𝑡 (x<𝑡 , u<𝑡) ⊆ X
𝑢𝑡 ∈ U𝑡 (x<𝑡 , u<𝑡) ⊆ U Chapter 4 and 5 ([24–26])

Table 8.1.1: System models for the learning-augmented algorithms with different
types of imperfect/untrusted predictions or black-box AI/ML advice. The detailed
definitions of notation can be found in the corresponding chapters.

Next, we conclude the previous chapters.

8.2 Summary of Chapters
In Chapter 2, we have detailed an approach that allows the use of black-box AI
tools in a way that ensures worst-case performance bounds for linear quadratic

228

control. Further, we demonstrate the effectiveness of our approach in multiple
applications. The results highlight a trade-off between robustness and consistency in
linear quadratic control problems wherein the system perturbations are adversarial
and the predictions of perturbations are untrusted.

Chapter 3 considers a novel combination of pre-trained black-box policies with
model-based advice from crude model information. A general adaptive policy is
proposed, with theoretical guarantees on both stability and sub-optimality. The
effectiveness of the adaptive policy is validated empirically. The results presented
lead to an important first step towards improving the practicality of existing DNN-
based algorithms when using them as black-boxes in non-linear real-world control
problems.

Chapter 4 formalizes and studies the closed-loop control framework created by the
interaction between a system operator and an aggregator in a smart grid. Our focus
is on the feedback signal provided by the aggregator to the operator that summarizes
the real-time availability of flexibility among the loads controlled by the aggregator.
We present the design of an maximum entropy feedback (MEF) signal based on
entropic maximization. We prove a close connection between the MEF signal and
the system capacity, and show that when the signal is used the system operator can
perform online cost minimization while provably respecting the private constraints
of the loads controlled by the aggregator and satisfying optimality under certain
regularity assumptions. Further, we illustrate the effectiveness of these designs using
simulation experiments of an EV charging facility.

In Chapter 5, we have studied and analyzed a closed-loop control framework created
by the interaction between a central controller and a local controller. Our analysis
shows that it is possible to combine model predictive control with limited aggregate
feedback about feasibility to, under certain model assumptions, achieve a sub-linear
dynamic regret. Focusing on the analytic side, this work presents the first analysis of
a two-controller system where a local controller governs a complicated time-varying
and coupling dynamical system and a central controller minimizes costs. To achieve
our analytic guarantees, we make several modeling assumptions and the relaxation
of these assumptions is an important task for future work. First, our penalized
predictive control scheme is designed for 1-1 coordination between two controllers.
It would be interesting to extend the control scheme to allow for the interaction
between a central controller and multiple local participants. Second, our analysis
assumes perfect maximum entropy feedback (MEF) but we see empirically that

229

approximations of the MEF can still guarantee feasibility. Generalizing our current
results to approximations of MEF is an challenging and important direction. Third,
we have used reinforcement learning to approximate the MEF in this work, but the
approach is general and it is important to explore additional deep learning techniques
for the estimation of the MEF.

In Chapter 6, a power system identification problem is considered. A sparsity
characterization for distributions of random graphs (that are allowed to contain high-
degree nodes) is provided, based on which we study fundamental trade-offs between
the number of measurements, the complexity of the graph class, and the probability
of error. Necessary and sufficient conditions on the number of measurements are
given for both noisy and noiseless cases. For practical applications in power systems,
a polynomial-time (in 𝑛) algorithm is designed and implemented.

Finally, Chapter 7 presents a publicly accessible EV charging dataset–ACN-Data,
and the first analysis of the fine-grained charging data in ACN-Data, which develops
a systematic method to learn battery behavior from the data. The results are used
in the first two parts of this dissertation to build an EV charging environment that
helps validate the proposed algorithms and schemes. The analysis shows that, even
though the number of charging curves is large, they can be accurately classified
into a small number of types. Moreover, the cluster representatives can be used for
effective prediction. The analysis opens up potentials for future applications. For
instance, a natural statistical EV model consists of (c𝑘 , 𝑝𝑘 , 𝑘 = 1, . . . , 𝐾) where
c𝑘 is the tail representative and 𝑝𝑘 is the marginal probability that an EV arrival
is of type 𝑘 = 1, . . . , 𝐾 as exemplified in Fig. 7.6.3. This model can be useful for
planning purposes and for simulations, e.g., to determine the capacity of electric
infrastructure supplying a large-scale EV charging facility. For another instance,
online optimization of EV charging can be implemented as a model predictive control
(MPC) where a forward optimization problem is solved in each control interval (c.f.,
[96, 101]). The representative for each individual user can be used as prediction
to improve the performance of MPC. Moreover, the ability to decide the charging
stage in real time as illustrated in Section 7.6 can be helpful to online scheduling.
Yet another application is to use the representative tail c𝑘 to detect abnormal battery
behavior in real-time and alert the drivers, or charging facilities, or EV manufacturers.

230

8.3 Impact on Smart Grid Applications
Making use of predictions, forecasts, and simulation environments built upon
ACN-Data presented in Chapter 7, we have demonstrated the efficacy of the learning-
augmented control and decision-making policies developed in Chapter 2, 3, 4 ,and 5.
By illustrating various smart grid applications using these results, we reply to the
question raised at the beginning of this dissertation (Section 1.2) in the affirmative.
In fact, besides the applications of large-scale adaptive EV charging and system
operator-aggregator coordination presented in the previous chapters, there are many
similar applications in smart grids that can be enabled and improved using novel
learning-augmented approaches. The transition from a traditional power grid where
coal power plants dominate to a smart grid where distributed energy resources are
major components induces a transition from classical control and decision-making
methods to data-driven robust learning-augmented policies. One of the key steps in
the future is to explore novel learning-augmented algorithms that can impact more
of these applications, as we will discuss in more detail in the next section.

8.4 Future Directions
Learning-Augmented Control
There are many potential future directions that build on the results in Chapter 2
and 3. First, in Chapter 2, we have considered a linear quadratic control problem,
and an important extension will be to analyze the robustness and consistency of non-
linear control systems. Second, our regret bound (Lemma 2) and competitive results
(Theorem 2.4.1) are not tight when the variation of perturbations or predictions is high,
therefore it is interesting to explore the idea of “follow-the-regularized-leader” [233]
and understand if adding an extra regularizer in the update rule of 𝜆 for self-tuning
control can improve the convergence and/or the regret. Third, characterizing a
tight trade-off between robustness and consistency for linear quadratic control is of
particular interest. For example, the results in [5, 6] together imply a tight robustness
and consistency trade-off for the ski-rental problem. It would be interesting to explore
if it is possible to do the same for linear quadratic control. Exploring other forms of
model-based advice theoretically, and verifying practically other implementations
to learn the confidence coefficients online are interesting future directions. Finally,
the learning-augmented online policies considered in Chapter 2 and 3 involve
linear combinations between classical policies and black-box policies equipped with
predictions. Going beyond this aspect and developing non-linear approaches that
make AI/ML policies more robust is another important future direction.

231

Learning-Augmented Decision-Making
There is much left to explore about the MEF signal presented in Chapter 4 and 5.
In particular, computing it is computationally intensive and we use reinforcement
learning for approximating the MEF. Improving the learning design and developing
other approximations are of particular interest. Further, exploring the use of flexibility
feedback for operational objectives beyond cost minimization and capacity estimation
is an important goal. Finally, exploring the application of the defined real-time
aggregate flexibility in other settings, such as multi-aggregator systems, frequency
regulation, and real-time pricing, is exciting. We have illustrated the application
of the proposed scheme to an EV charging application. Though we focus on the
application of EV charging, the results in this work are applicable well beyond EV
charging. For example, a similar scheme may be used in cloud computing and data
center scheduling [105, 107] to make the network more sustainable. Further, the
same design applies to the networks formed by other distributed energy resources
(DERs) such as HVAC (heating, ventilation, and air conditioning) systems, rooftop
solar PV units, energy storage systems and inverters. It will be interesting for future
work to explore these applications.

EV Charging Data Analysis
We have presented some fundamental EV charging data analysis in Chapter 7. The
charging tail analysis has several limitations that motivate extensions. First, our
current method works well only with charging curves that exhibit relatively clean tail
behavior. Additional techniques are needed to extract useful information from other
charging curves. Second, our current method is offline. It would be useful to extend
it to an online setting, for continuous improvement of classification performance
and adaptation to changing EV behavior. Such an online method will be useful as
the building block for many online applications. Here theories and algorithms in
statistical detection and signal processing will prove to be helpful. Third, we model
battery behavior by the representative tail c𝑘 as functions of time. More detailed
battery models can be developed using c𝑘 and other information such as the energy
capacities of the batteries and the voltage time series, e.g., their current and voltage
behavior in the absorption stage as functions of their states of charge. Finally, it
would be interesting to develop a tractable mathematical model of the classification
framework shown in Figure 7.4.3 and formally prove its convergence and optimality
properties.

232

Bibliography

[1] Zachary J. Lee, Tongxin Li, and Steven H. Low. Acn-data: Analysis and
applications of an open ev charging dataset. In Proceedings of the Tenth ACM
International Conference on Future Energy Systems, pages 139–149, 2019.

[2] Nicolas Christianson, Tinashe Handina, and Adam Wierman. Chasing convex
bodies and functions with black-box advice. In Conference on Learning
Theory, pages 867–908. PMLR, 2022.

[3] Thodoris Lykouris and Sergei Vassilvtiskii. Competitive caching with machine
learned advice. In International Conference on Machine Learning, pages
3296–3305. PMLR, 2018.

[4] Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and
Marc Renault. Online computation with untrusted advice. arXiv preprint
arXiv:1905.05655, 2019.

[5] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms
via ml predictions. In Advances in Neural Information Processing Systems,
pages 9661–9670, 2018.

[6] Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs
for learning-augmented online algorithms. Advances in Neural Information
Processing Systems, 33:8042–8053, 2020.

[7] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual
method for learning augmented algorithms. Advances in Neural Information
Processing Systems, 33:20083–20094, 2020.

[8] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Sec-
retary and online matching problems with machine learned advice. Advances
in Neural Information Processing Systems, 33:7933–7944, 2020.

[9] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and
Bertrand Simon. Online metric algorithms with untrusted predictions. In
International Conference on Machine Learning, pages 345–355. PMLR, 2020.

[10] Matthew Botvinick, Sam Ritter, Jane X Wang, Zeb Kurth-Nelson, Charles
Blundell, and Demis Hassabis. Reinforcement learning, fast and slow. Trends
in cognitive sciences, 23(5):408–422, 2019.

[11] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas
Degrave, Tom Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg.
Learning by playing solving sparse reward tasks from scratch. In International
Conference on Machine Learning, pages 4344–4353. PMLR, 2018.

233

[12] Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and
Chelsea Finn. Unsupervised curricula for visual meta-reinforcement learning.
Advances in Neural Information Processing Systems, 32, 2019.

[13] Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue,
and Joel Burdick. Control regularization for reduced variance reinforcement
learning. In International Conference on Machine Learning, pages 1141–1150.
PMLR, 2019.

[14] Benjamin Recht. A tour of reinforcement learning: The view from continuous
control. Annual Review of Control, Robotics, and Autonomous Systems,
2:253–279, 2019.

[15] Xueying Bai, Jian Guan, and Hongning Wang. A model-based reinforcement
learning with adversarial training for online recommendation. Advances in
Neural Information Processing Systems, 32, 2019.

[16] Tongxin Li, Ruixiao Yang, Guannan Qu, Yiheng Lin, Steven Low, and Adam
Wierman. Equipping black-box policies with model-based advice for stable
nonlinear control. Under review.

[17] Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. Online
algorithms with multiple predictions. arXiv preprint arXiv:2205.03921, 2022.

[18] Shaofeng H-C Jiang, Erzhi Liu, You Lyu, Zhihao Gavin Tang, and Yubo
Zhang. Online facility location with predictions. In International Conference
on Learning Representations, 2021.

[19] Bo Sun, Russell Lee, Mohammad Hajiesmaili, Adam Wierman, and Danny
Tsang. Pareto-optimal learning-augmented algorithms for online conversion
problems. Advances in Neural Information Processing Systems, 34:10339–
10350, 2021.

[20] Chenyang Xu and Guochuan Zhang. Learning-augmented algorithms for
online subset sum. Journal of Global Optimization, pages 1–20, 2022.

[21] Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc
Renault. Online computation with untrusted advice. In 11th Innovations in
Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

[22] Noah Golowich and Ankur Moitra. Can q-learning be improved with advice?
In Conference on Learning Theory, pages 4548–4619. PMLR, 2022.

[23] Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam
Wierman, and Steven Low. Robustness and consistency in linear quadratic
control with untrusted predictions. Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 6(1):1–35, 2022.

234

[24] Tongxin Li, Steven H. Low, and Adam Wierman. Real-time flexibility feedback
for closed-loop aggregator and system operator coordination. In Proceedings
of the Eleventh ACM International Conference on Future Energy Systems,
pages 279–292, 2020.

[25] Tongxin Li, Yue Chen, Bo Sun, Adam Wierman, and Steven H Low. Informa-
tion aggregation for constrained online control. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 5(2):1–35, 2021.

[26] Tongxin Li, Bo Sun, Yue Chen, Zixin Ye, Steven H Low, and Adam Wierman.
Learning-based predictive control via real-time aggregate flexibility. IEEE
Transactions on Smart Grid, 12(6):4897–4913, 2021.

[27] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause.
Safe model-based reinforcement learning with stability guarantees. Advances
in Neural Information Processing Systems, 30, 2017.

[28] Mario Zanon and Sébastien Gros. Safe reinforcement learning using robust
mpc. IEEE Transactions on Automatic Control, 66(8):3638–3652, 2020.

[29] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. A lyapunov-based approach to safe reinforcement learning.
Advances in Neural Information Processing Systems, 31, 2018.

[30] Theodore J Perkins and Andrew G Barto. Lyapunov design for safe rein-
forcement learning. Journal of Machine Learning Research, 3(Dec):803–832,
2002.

[31] Ming Jin and Javad Lavaei. Stability-certified reinforcement learning: A
control-theoretic perspective. IEEE Access, 8:229086–229100, 2020.

[32] He Hao and Wei Chen. Characterizing flexibility of an aggregation of
deferrable loads. In 53rd IEEE Conference on Decision and Control, pages
4059–4064. IEEE, 2014.

[33] He Hao, Borhan M Sanandaji, Kameshwar Poolla, and Tyrone L Vincent.
Aggregate flexibility of thermostatically controlled loads. IEEE Transactions
on Power Systems, 30(1):189–198, 2014.

[34] Andrey Bernstein, Jean-Yves Le Boudec, Mario Paolone, Lorenzo Reyes-
Chamorro, and Wajeb Saab. Aggregation of power capabilities of heteroge-
neous resources for real-time control of power grids. In 2016 Power Systems
Computation Conference (PSCC), pages 1–7. IEEE, 2016.

[35] Lin Zhao, Wei Zhang, He Hao, and Karanjit Kalsi. A geometric approach
to aggregate flexibility modeling of thermostatically controlled loads. IEEE
Transactions on Power Systems, 32(6):4721–4731, 2017.

235

[36] Tianyi Chen, Na Li, and Georgios B Giannakis. Aggregating flexibility of
heterogeneous energy resources in distribution networks. In 2018 Annual
American Control Conference (ACC), pages 4604–4609. IEEE, 2018.

[37] James Hannan. Approximation to bayes risk in repeated play. Contributions
to the Theory of Games, 3(2):97–139, 1957.

[38] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision
problems. Journal of Computer and System Sciences, 71(3):291–307, 2005.

[39] Yingying Li, Xin Chen, and Na Li. Online optimal control with linear
dynamics and predictions: Algorithms and regret analysis. Advances in
Neural Information Processing Systems, 32, 2019.

[40] Chenkai Yu, Guanya Shi, Soon-Jo Chung, Yisong Yue, and Adam Wierman.
The power of predictions in online control. arXiv preprint arXiv:2006.07569,
2020.

[41] Chenkai Yu, Guanya Shi, Soon-Jo Chung, Yisong Yue, and Adam Wierman.
Competitive control with delayed imperfect information. arXiv preprint
arXiv:2010.11637, 2020.

[42] Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman.
Online optimization with memory and competitive control. In Advances
in Neural Information Processing Systems, volume 33, pages 20636–20647.
Curran Associates, Inc., 2020.

[43] Runyu Zhang, Yingying Li, and Na Li. On the regret analysis of online lqr
control with predictions. arXiv preprint arXiv:2102.01309, 2021.

[44] Geir E Dullerud and Fernando Paganini. A course in robust control theory: A
convex approach, volume 36. Springer Science & Business Media, 2013.

[45] John Doyle, Keith Glover, Pramod Khargonekar, and Bruce Francis. State-
space solutions to standard ℎ2 and ℎ∞ control problems. In 1988 American
Control Conference, pages 1691–1696. IEEE, 1988.

[46] Kemin Zhou and John Comstock Doyle. Essentials of robust control, volume
104. Prentice Hall Upper Saddle River, NJ, 1998.

[47] Alberto Bemporad and Manfred Morari. Robust model predictive control: A
survey. In Robustness in Identification and Control, pages 207–226. Springer,
1999.

[48] Jean-Jacques E Slotine and Weiping Li. Applied nonlinear control, volume
199. Prentice Hall Englewood Cliffs, NJ, 1991.

236

[49] Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive
control of linear quadratic systems. In Proceedings of the 24th Annual
Conference on Learning Theory, pages 1–26. JMLR Workshop and Conference
Proceedings, 2011.

[50] Max Simchowitz and Dylan Foster. Naive exploration is optimal for online lqr.
In International Conference on Machine Learning, pages 8937–8948. PMLR,
2020.

[51] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu.
On the sample complexity of the linear quadratic regulator. Foundations of
Computational Mathematics, pages 1–47, 2019.

[52] Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh.
Online control with adversarial disturbances. In International Conference on
Machine Learning, pages 111–119. PMLR, 2019.

[53] Brian D. O. Anderson and John B. Moore. Optimal filtering. Courier
Corporation, 2012.

[54] Alon Cohen, Avinatan Hasidim, Tomer Koren, Nevena Lazic, Yishay Mansour,
and Kunal Talwar. Online linear quadratic control. In International Conference
on Machine Learning, pages 1029–1038. PMLR, 2018.

[55] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[56] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[57] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[58] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings
of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pages 627–635. JMLR Workshop and Conference Proceedings,
2011.

[59] Guannan Qu, Chenkai Yu, Steven Low, and Adam Wierman. Exploiting
linear models for model-free nonlinear control: A provably convergent policy
gradient approach. In 2021 60th IEEE Conference on Decision and Control
(CDC), pages 6539–6546. IEEE, 2021.

237

[60] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International Conference on
Machine Learning, pages 1889–1897. PMLR, 2015.

[61] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian
Ernestus, and Noah Dormann. Stable-baselines3: Reliable reinforcement
learning implementations. Journal of Machine Learning Research, 22(268):1–
8, 2021.

[62] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of
static linear policies is competitive for reinforcement learning. Advances in
Neural Information Processing Systems, 31, 2018.

[63] Joao P. Hespanha and A. Stephen Morse. Switching between stabilizing
controllers. Automatica, 38(11):1905–1917, 2002.

[64] Henrik Niemann, Jakob Stoustrup, and Rune B. Abrahamsen. Switching
between multivariable controllers. Optimal Control Applications and Methods,
25(2):51–66, 2004.

[65] Ugo Rosolia and Francesco Borrelli. Learning model predictive control for
iterative tasks: A data-driven control framework. IEEE Transactions on
Automatic Control, 63(7):1883–1896, 2017.

[66] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine.
Neural network dynamics for model-based deep reinforcement learning with
model-free fine-tuning. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 7559–7566. IEEE, 2018.

[67] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E
Gonzalez, and Sergey Levine. Model-based value expansion for efficient
model-free reinforcement learning. In Proceedings of the 35th International
Conference on Machine Learning (ICML 2018), 2018.

[68] Horia Mania, Stephen Tu, and Benjamin Recht. Certainty equivalence
is efficient for linear quadratic control. Advances in Neural Information
Processing Systems, 32, 2019.

[69] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu.
On the sample complexity of the linear quadratic regulator. Foundations of
Computational Mathematics, 20(4):633–679, 2020.

[70] William M Wonham. On a matrix riccati equation of stochastic control. SIAM
Journal on Control, 6(4):681–697, 1968.

[71] Yang Zheng, Luca Furieri, Antonis Papachristodoulou, Na Li, and Maryam
Kamgarpour. On the equivalence of youla, system-level, and input–output
parameterizations. IEEE Transactions on Automatic Control, 66(1):413–420,
2020.

238

[72] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International Confer-
ence on Machine Learning, pages 1928–1937. PMLR, 2016.

[73] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In International conference on machine learning, pages
1861–1870. PMLR, 2018.

[74] Duncan S. Callaway and Ian A. Hiskens. Achieving controllability of electric
loads. Proceedings of the IEEE, 99(1):184–199, 2010.

[75] Scott Burger, Jose Pablo Chaves-Ávila, Carlos Batlle, and Ignacio J. Pérez-
Arriaga. A review of the value of aggregators in electricity systems. Renewable
and Sustainable Energy Reviews, 77:395–405, 2017.

[76] Intisar Ali Sajjad, Gianfranco Chicco, and Roberto Napoli. Definitions of
demand flexibility for aggregate residential loads. IEEE Transactions on
Smart Grid, 7(6):2633–2643, 2016.

[77] Daria Madjidian, Mardavij Roozbehani, and Munther A Dahleh. Energy
storage from aggregate deferrable demand: Fundamental trade-offs and
scheduling policies. IEEE Transactions on Power Systems, 33(4):3573–3586,
2018.

[78] Nasrin Sadeghianpourhamami, Nazir Refa, Matthias Strobbe, and Chris
Develder. Quantitive analysis of electric vehicle flexibility: A data-driven
approach. International Journal of Electrical Power & Energy Systems,
95:451–462, 2018.

[79] Michael P. Evans, Simon H. Tindemans, and David Angeli. A graphical
measure of aggregate flexibility for energy-constrained distributed resources.
IEEE Transactions on Smart Grid, 2019.

[80] George Wenzel, Matias Negrete-Pincetic, Daniel E Olivares, Jason MacDonald,
and Duncan S Callaway. Real-time charging strategies for an electric vehicle
aggregator to provide ancillary services. IEEE Transactions on Smart Grid,
9(5):5141–5151, 2017.

[81] He Hao, Yashen Lin, Anupama S. Kowli, Prabir Barooah, and Sean Meyn.
Ancillary service to the grid through control of fans in commercial building
hvac systems. IEEE Transactions on Smart Grid, 5(4):2066–2074, 2014.

[82] Tianshu Wei, Qi Zhu, and Nanpeng Yu. Proactive demand participation of
smart buildings in smart grid. IEEE Transactions on Computers, 65(5):1392–
1406, 2015.

239

[83] Sean P Meyn, Prabir Barooah, Ana Bušić, Yue Chen, and Jordan Ehren. Ancil-
lary service to the grid using intelligent deferrable loads. IEEE Transactions
on Automatic Control, 60(11):2847–2862, 2015.

[84] Anand Subramanian, Manuel J Garcia, Duncan S Callaway, Kameshwar
Poolla, and Pravin Varaiya. Real-time scheduling of distributed resources.
IEEE Transactions on Smart Grid, 4(4):2122–2130, 2013.

[85] Dimitrios Papadaskalopoulos, Goran Strbac, Pierluigi Mancarella, Marko
Aunedi, and Vladimir Stanojevic. Decentralized participation of flexible
demand in electricity markets–Part II: Application with electric vehicles and
heat pump systems. IEEE Transactions on Power Systems, 28(4):3667–3674,
2013.

[86] Shuoyao Wang, Suzhi Bi, and Ying Jun Angela Zhang. Reinforcement learning
for real-time pricing and scheduling control in ev charging stations. IEEE
Transactions on Industrial Informatics, 2019.

[87] Yanzhi Wang, Xue Lin, and Massoud Pedram. A near-optimal model-based
control algorithm for households equipped with residential photovoltaic power
generation and energy storage systems. IEEE Transactions on Sustainable
Energy, 7(1):77–86, 2015.

[88] Bert J. Claessens, Dirk Vanhoudt, Johan Desmedt, and Frederik Ruelens.
Model-free control of thermostatically controlled loads connected to a district
heating network. Energy and Buildings, 159:1–10, 2018.

[89] Bingqing Chen, Weiran Yao, Jonathan Francis, and Mario Bergés. Learning a
distributed control scheme for demand flexibility in thermostatically controlled
loads. In 2020 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm), pages 1–7.
IEEE, 2020.

[90] Zhongjing Ma, Duncan S. Callaway, and Ian A. Hiskens. Decentralized
charging control of large populations of plug-in electric vehicles. IEEE
Transactions on Control Systems Technology, 21(1):67–78, 2011.

[91] Lingwen Gan, Ufuk Topcu, and Steven H. Low. Optimal decentralized
protocol for electric vehicle charging. IEEE Transactions on Power Systems,
28(2):940–951, 2012.

[92] Emre C. Kara, Jason S. Macdonald, Douglas Black, Mario Bérges, Gabriela
Hug, and Sila Kiliccote. Estimating the benefits of electric vehicle smart
charging at non-residential locations: A data-driven approach. Applied Energy,
155:515–525, 2015.

[93] Xin Chen, Emiliano Dall’Anese, Changhong Zhao, and Na Li. Aggregate
power flexibility in unbalanced distribution systems. IEEE Transactions on
Smart Grid, 11(1):258–269, 2019.

240

[94] Mousa Marzband, Andreas Sumper, José Luis Domínguez-García, and Ramon
Gumara-Ferret. Experimental validation of a real time energy management
system for microgrids in islanded mode using a local day-ahead electricity
market and minlp. Energy Conversion and Management, 76:314–322, 2013.

[95] Pierluigi Siano and Debora Sarno. Assessing the benefits of residential
demand response in a real time distribution energy market. Applied Energy,
161:533–551, 2016.

[96] Zachary J. Lee, Daniel Chang, Cheng Jin, George S. Lee, Rand Lee, Ted Lee,
and Steven H. Low. Large-scale adaptive electric vehicle charging. In 2018
IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), pages 1–7. IEEE, 2018.

[97] Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, and
Barnabás Póczos. Nonparametric density estimation under adversarial losses.
In Advances in Neural Information Processing Systems, pages 10225–10236,
2018.

[98] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike
adaptive elements that can solve difficult learning control problems. IEEE
transactions on Systems, Man, and Cybernetics, (5):834–846, 1983.

[99] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[100] Eduardo F. Camacho and Carlos Bordons Alba. Model predictive control.
Springer Science & Business Media, 2013.

[101] Zachary J Lee, George Lee, Ted Lee, Cheng Jin, Rand Lee, Zhi Low, Daniel
Chang, Christine Ortega, and Steven H Low. Adaptive charging networks: A
framework for smart electric vehicle charging. IEEE Transactions on Smart
Grid, 12(5):4339–4350, 2021.

[102] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[103] Ugo Rosolia, Xiaojing Zhang, and Francesco Borrelli. Data-driven predictive
control for autonomous systems. Annual Review of Control, Robotics, and
Autonomous Systems, 1:259–286, 2018.

[104] Xuanyu Cao and K. J. Ray Liu. Online convex optimization with time-varying
constraints and bandit feedback. IEEE Transactions on Automatic Control,
64(7):2665–2680, 2018.

[105] Tianyi Chen and Georgios B. Giannakis. Bandit convex optimization for
scalable and dynamic iot management. IEEE Internet of Things Journal,
6(1):1276–1286, 2018.

241

[106] Tianyi Chen, Qing Ling, and Georgios B Giannakis. An online convex opti-
mization approach to proactive network resource allocation. IEEE Transactions
on Signal Processing, 65(24):6350–6364, 2017.

[107] Hao Yu, Michael Neely, and Xiaohan Wei. Online convex optimization with
stochastic constraints. In Advances in Neural Information Processing Systems,
pages 1428–1438, 2017.

[108] Andrey Bernstein, Emiliano Dall’Anese, and Andrea Simonetto. Online
primal-dual methods with measurement feedback for time-varying convex
optimization. IEEE Transactions on Signal Processing, 67(8):1978–1991,
2019.

[109] Xinlei Yi, Xiuxian Li, Lihua Xie, and Karl H. Johansson. Distributed online
convex optimization with time-varying coupled inequality constraints. IEEE
Transactions on Signal Processing, 68:731–746, 2020.

[110] Antoine Lesage-Landry, Iman Shames, and Joshua A Taylor. Predictive online
convex optimization. Automatica, 113:108771, 2020.

[111] Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro.
Online optimization in dynamic environments: Improved regret rates for
strongly convex problems. In 2016 IEEE 55th Conference on Decision and
Control (CDC), pages 7195–7201. IEEE, 2016.

[112] Eric C. Hall and Rebecca M. Willett. Online convex optimization in dynamic
environments. IEEE Journal of Selected Topics in Signal Processing, 9(4):647–
662, 2015.

[113] Niangjun Chen, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam
Wierman. Using predictions in online optimization: Looking forward with
an eye on the past. ACM SIGMETRICS Performance Evaluation Review,
44(1):193–206, 2016.

[114] Alec Koppel, Felicia Y. Jakubiec, and Alejandro Ribeiro. A saddle point
algorithm for networked online convex optimization. IEEE Transactions on
Signal Processing, 63(19):5149–5164, 2015.

[115] Alec Koppel, Brian M. Sadler, and Alejandro Ribeiro. Proximity without
consensus in online multiagent optimization. IEEE Transactions on Signal
Processing, 65(12):3062–3077, 2017.

[116] Yingying Li, Guannan Qu, and Na Li. Using predictions in online optimization
with switching costs: A fast algorithm and a fundamental limit. In 2018
Annual American Control Conference (ACC), pages 3008–3013. IEEE, 2018.

[117] Ming Shi, Xiaojun Lin, Sonia Fahmy, and Dong-Hoon Shin. Competitive
online convex optimization with switching costs and ramp constraints. In IEEE

242

INFOCOM 2018-IEEE Conference on Computer Communications, pages
1835–1843. IEEE, 2018.

[118] Qiulin Lin, Hanling Yi, John Pang, Minghua Chen, Adam Wierman, Michael
Honig, and Yuanzhang Xiao. Competitive online optimization under inventory
constraints. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 3(1):1–28, 2019.

[119] Gautam Goel and Adam Wierman. An online algorithm for smoothed
regression and lqr control. Proceedings of Machine Learning Research,
89:2504–2513, 2019.

[120] Masoud Badiei, Na Li, and Adam Wierman. Online convex optimization with
ramp constraints. In 2015 54th IEEE Conference on Decision and Control
(CDC), pages 6730–6736. IEEE, 2015.

[121] Sarah Dean, Stephen Tu, Nikolai Matni, and Benjamin Recht. Safely learning
to control the constrained linear quadratic regulator. In 2019 American Control
Conference (ACC), pages 5582–5588. IEEE, 2019.

[122] Wen Sun, Debadeepta Dey, and Ashish Kapoor. Safety-aware algorithms
for adversarial contextual bandit. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3280–3288. JMLR. org,
2017.

[123] Jianjun Yuan and Andrew Lamperski. Online convex optimization for cumu-
lative constraints. In Advances in Neural Information Processing Systems,
pages 6137–6146, 2018.

[124] Oren Anava, Elad Hazan, and Shie Mannor. Online learning for adversaries
with memory: Price of past mistakes. In Advances in Neural Information
Processing Systems, pages 784–792, 2015.

[125] Naman Agarwal, Elad Hazan, and Karan Singh. Logarithmic regret for
online control. In Advances in Neural Information Processing Systems, pages
10175–10184, 2019.

[126] Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman.
Beyond no-regret: Competitive control via online optimization with memory.
arXiv preprint arXiv:2002.05318, 2020.

[127] Yanzhe Murray Lei, Stefanus Jasin, and Amitabh Sinha. Near-optimal bisection
search for nonparametric dynamic pricing with inventory constraint. Ross
School of Business Paper, (1252), 2014.

[128] Lijun Zhang, Tianbao Yang, Zhi-Hua Zhou, et al. Dynamic regret of strongly
adaptive methods. In International Conference on Machine Learning, pages
5882–5891, 2018.

243

[129] Alon Cohen, Tomer Koren, and Yishay Mansour. Learning linear-quadratic
regulators efficiently with only

√
𝑇 regret. In International Conference on

Machine Learning, pages 1300–1309, 2019.

[130] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan LH Andrew.
Online algorithms for geographical load balancing. In 2012 International
Green Computing Conference (IGCC), pages 1–10. IEEE, 2012.

[131] Miguel A. Ortega-Vazquez, François Bouffard, and Vera Silva. Electric vehicle
aggregator/system operator coordination for charging scheduling and services
procurement. IEEE Transactions on Power Systems, 28(2):1806–1815, 2012.

[132] Linqi Guo, Karl F. Erliksson, and Steven H. Low. Optimal online adaptive
electric vehicle charging. In 2017 IEEE Power & Energy Society General
Meeting, pages 1–5. IEEE, 2017.

[133] Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridha-
ran. Online optimization: Competing with dynamic comparators. In Artificial
Intelligence and Statistics, pages 398–406, 2015.

[134] Elad Hazan. Introduction to online convex optimization. arXiv preprint
arXiv:1909.05207, 2019.

[135] Shie Mannor, John N Tsitsiklis, and Jia Yuan Yu. Online learning with sample
path constraints. Journal of Machine Learning Research, 10(Mar):569–590,
2009.

[136] Martin Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pages 928–936, 2003.

[137] Eric Hall and Rebecca Willett. Dynamical models and tracking regret in online
convex programming. In International Conference on Machine Learning,
pages 579–587, 2013.

[138] Yiheng Lin, Gautam Goel, and Adam Wierman. Online optimization with
predictions and non-convex losses. arXiv preprint arXiv:1911.03827, 2019.

[139] Niangjun Chen, Anish Agarwal, Adam Wierman, Siddharth Barman, and
Lachlan L. H. Andrew. Online convex optimization using predictions. In
Proceedings of the 2015 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 191–204, 2015.

[140] Lars Grüne and Simon Pirkelmann. Economic model predictive control for
time-varying system: Performance and stability results. Optimal Control
Applications and Methods, 41(1):42–64, 2020.

[141] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online
learning with imperfect hints. arXiv preprint arXiv:2002.04726, 2020.

244

[142] Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajiesmaili, Adam Wierman,
and Danny H. K. Tsang. Competitive algorithms for the online multiple
knapsack problem with application to electric vehicle charging. arXiv preprint
arXiv:2010.00412, 2020.

[143] Romer Rosales and Stan Sclaroff. Improved tracking of multiple humans
with trajectory prediction and occlusion modeling. Technical report, Boston
University Computer Science Department, 1998.

[144] Xianfu Wang. Volumes of generalized unit balls. Mathematics Magazine,
78(5):390–395, 2005.

[145] C. K. Chow and Cong Liu. Approximating discrete probability distributions
with dependence trees. IEEE transactions on Information Theory, 14(3):462–
467, 1968.

[146] C. K. Chow and T. Wagner. Consistency of an estimate of tree-dependent
probability distributions (corresp.). IEEE Transactions on Information Theory,
19(3):369–371, 1973.

[147] Vincent Y. F. Tan, Animashree Anandkumar, and Alan S. Willsky. Learning
gaussian tree models: Analysis of error exponents and extremal structures.
IEEE Transactions on Signal Processing, 58(5):2701–2714, 2010.

[148] Xiaowen Dong, Dorina Thanou, Michael Rabbat, and Pascal Frossard. Learn-
ing graphs from data: A signal representation perspective. IEEE Signal
Processing Magazine, 36(3):44–63, 2019.

[149] Asish Ghoshal and Jean Honorio. Learning linear structural equation models
in polynomial time and sample complexity. In International Conference on
Artificial Intelligence and Statistics, pages 1466–1475, 2018.

[150] Asish Ghoshal and Jean Honorio. Learning identifiable gaussian bayesian
networks in polynomial time and sample complexity. In Advances in Neural
Information Processing Systems, pages 6457–6466, 2017.

[151] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph
structure via linear measurements. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 459–467. SIAM, 2012.

[152] Jean Pouget-Abadie and Thibaut Horel. Inferring graphs from cascades: A
sparse recovery framework. In International Conference on Machine Learning,
pages 977–986. PMLR, 2015.

[153] James A. Momoh, Rambabu Adapa, and M. E. El-Hawary. A review of
selected optimal power flow literature to 1993. I. nonlinear and quadratic
programming approaches. IEEE transactions on Power Systems, 14(1):96–104,
1999.

245

[154] Steven H. Low. Convex relaxation of optimal power flow—Part I: formulations
and equivalence. IEEE Transactions on Control of Network Systems, 1(1):15–
27, 2014.

[155] Yujie Tang, Krishnamurthy Dvijotham, and Steven Low. Real-time optimal
power flow. IEEE Transactions on Smart Grid, 8(6):2963–2973, 2017.

[156] Anshul Mittal, Jagabondhu Hazra, Nikhil Jain, Vivek Goyal, Deva P.
Seetharam, and Yogish Sabharwal. Real-time contingency analysis for power
grids. In European Conference on Parallel Processing, pages 303–315.
Springer, 2011.

[157] Ricardo Horta, Jairo Espinosa, and Julián Patiño. Frequency and voltage
control of a power system with information about grid topology. In Automatic
Control (CCAC), 2015 IEEE 2nd Colombian Conference on, pages 1–6. IEEE,
2015.

[158] Linqi Guo, Chen Liang, Alessandro Zocca, Steven H. Low, and Adam
Wierman. Failure localization in power systems via tree partitions. In 2018
IEEE Conference on Decision and Control (CDC), pages 6832–6839. IEEE,
2018.

[159] Long Zhao and Bo Zeng. Vulnerability analysis of power grids with line
switching. IEEE Transactions on Power Systems, 28(3):2727–2736, 2013.

[160] Sundeep Prabhakar Chepuri, Sijia Liu, Geert Leus, and Alfred O Hero.
Learning sparse graphs under smoothness prior. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
6508–6512. IEEE, 2017.

[161] Gautam Dasarathy, Parikshit Shah, Badri Narayan Bhaskar, and Robert D
Nowak. Sketching sparse matrices, covariances, and graphs via tensor products.
IEEE Transactions on Information Theory, 61(3):1373–1388, 2015.

[162] Eugene Belilovsky, Kyle Kastner, Gaël Varoquaux, and Matthew B Blaschko.
Learning to discover sparse graphical models. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 440–448.
JMLR. org, 2017.

[163] Andrej Bogdanov, Elchanan Mossel, and Salil Vadhan. The complexity of
distinguishing markov random fields. In Approximation, Randomization and
Combinatorial Optimization. Algorithms and Techniques, pages 331–342.
Springer, 2008.

[164] Narayana P. Santhanam and Martin J. Wainwright. Information-theoretic limits
of selecting binary graphical models in high dimensions. IEEE Transactions
on Information Theory, 58(7):4117–4134, 2012.

246

[165] Robert M. Fano and David Hawkins. Transmission of information: A statistical
theory of communications. American Journal of Physics, 29:793–794, 1961.

[166] Animashree Anandkumar, Vincent Y. F. Tan, Furong Huang, and Alan S.
Willsky. High-dimensional structure estimation in ising models: Local
separation criterion. The Annals of Statistics, 40(3):1346–1375, 2012.

[167] Asish Ghoshal and Jean Honorio. Information-theoretic limits of Bayesian
network structure learning. In Artificial Intelligence and Statistics, pages
767–775. PMLR, 2017.

[168] Shuchin Aeron, Venkatesh Saligrama, and Manqi Zhao. Information theoretic
bounds for compressed sensing. IEEE Transactions on Information Theory,
56(10):5111–5130, 2010.

[169] Guido Cavraro, Vassilis Kekatos, and Sriharsha Veeramachaneni. Voltage ana-
lytics for power distribution network topology verification. IEEE Transactions
on Smart Grid, 10(1):1058–1067, 2017.

[170] Yu Christine Chen, Taposh Banerjee, Alejandro D. Dominguez-Garcia, and
Venugopal V. Veeravalli. Quickest line outage detection and identification.
IEEE Transactions on Power Systems, 31(1):749–758, 2015.

[171] Yoav Sharon, Anuradha M. Annaswamy, Alexis L. Motto, and Amit
Chakraborty. Topology identification in distribution network with limited
measurements. In 2012 IEEE PES Innovative Smart Grid Technologies (ISGT),
pages 1–6. IEEE, 2012.

[172] Deepjyoti Deka, Scott Backhaus, and Michael Chertkov. Structure learning
in power distribution networks. IEEE Transactions on Control of Network
Systems, 5(3):1061–1074, 2017.

[173] Xiao Li, H. Vincent Poor, and Anna Scaglione. Blind topology identification
for power systems. In 2013 IEEE International Conference on Smart Grid
Communications (SmartGridComm), pages 91–96. IEEE, 2013.

[174] Ye Yuan, Omid Ardakanian, Steven Low, and Claire Tomlin. On the inverse
power flow problem. arXiv preprint arXiv:1610.06631, 2016.

[175] Jiafan Yu, Yang Weng, and Ram Rajagopal. Patopa: A data-driven param-
eter and topology joint estimation framework in distribution grids. IEEE
Transactions on Power Systems, 33(4):4335–4347, 2017.

[176] Seiun Park, Deepjyoti Deka, and Michael Chcrtkov. Exact topology and
parameter estimation in distribution grids with minimal observability. In 2018
Power Systems Computation Conference (PSCC), pages 1–6. IEEE, 2018.

[177] Hao Zhu and Georgios B. Giannakis. Sparse overcomplete representations for
efficient identification of power line outages. IEEE Transactions on Power
Systems, 27(4):2215–2224, 2012.

247

[178] Vincent Y. F. Tan and Alan S. Willsky. Sample complexity for topology
estimation in networks of lti systems. IFAC Proceedings Volumes, 44(1):9079–
9084, 2011.

[179] Yizheng Liao, Yang Weng, Meng Wu, and Ram Rajagopal. Distribution
grid topology reconstruction: An information theoretic approach. In North
American Power Symposium (NAPS), 2015, pages 1–6. IEEE, 2015.

[180] Saverio Bolognani, Nicoletta Bof, Davide Michelotti, Riccardo Muraro, and
Luca Schenato. Identification of power distribution network topology via
voltage correlation analysis. In 52nd IEEE Conference on Decision and
Control, pages 1659–1664. IEEE, 2013.

[181] Deepjyoti Deka, Scott Backhaus, and Michael Chertkov. Estimating distribu-
tion grid topologies: A graphical learning based approach. In Power Systems
Computation Conference (PSCC), 2016, pages 1–7. IEEE, 2016.

[182] Emmanuel Candes, Mark Rudelson, Terence Tao, and Roman Vershynin.
Error correction via linear programming. In Foundations of Computer Science,
2005. FOCS 2005. 46th Annual IEEE Symposium on, pages 668–681. IEEE,
2005.

[183] Mark Rudelson and Roman Vershynin. On sparse reconstruction from
fourier and gaussian measurements. Communications on Pure and Applied
Mathematics, 61(8):1025–1045, 2008.

[184] Michael Lustig, David L. Donoho, Juan M. Santos, and John M. Pauly.
Compressed sensing MRI. IEEE Signal Processing Magazine, 25(2):72, 2008.

[185] Shancang Li, Li Da Xu, and Xinheng Wang. Compressed sensing signal and
data acquisition in wireless sensor networks and internet of things. IEEE
Transactions on Industrial Informatics, 9(4):2177–2186, 2012.

[186] Christian R. Berger, Zhaohui Wang, Jianzhong Huang, and Shengli Zhou.
Application of compressive sensing to sparse channel estimation. IEEE
Communications Magazine, 48(11):164–174, 2010.

[187] Tongxin Li, Mayank Bakshi, and Pulkit Grover. Fundamental limits and
achievable strategies for low energy compressed sensing with applications
in wireless communication. In 2016 IEEE 17th International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), pages
1–6. IEEE, 2016.

[188] Mohammad Babakmehr, Marcelo G. Simões, Michael B. Wakin, and Farnaz
Harirchi. Compressive sensing-based topology identification for smart grids.
IEEE Transactions on Industrial Informatics, 12(2):532–543, 2016.

[189] Marco F. Duarte and Richard G. Baraniuk. Kronecker compressive sensing.
IEEE Transactions on Image Processing, 21(2):494–504, 2011.

248

[190] Sadegh Jokar and Volker Mehrmann. Sparse solutions to underdetermined
kronecker product systems. Linear Algebra and its Applications, 431(12):2437–
2447, 2009.

[191] Shriram Sarvotham, Dror Baron, Michael Wakin, Marco F. Duarte, and
Richard G. Baraniuk. Distributed compressed sensing of jointly sparse
signals. In Asilomar Conference on Signals, Systems, and Computers, pages
1537–1541, 2005.

[192] Douglas Brent West. Introduction to graph theory, volume 2. Prentice Hall
Upper Saddle River, 2001.

[193] Emmanuel J. Candes and Terence Tao. Near-optimal signal recovery from
random projections: Universal encoding strategies? IEEE Transactions on
Information Theory, 52(12):5406–5425, 2006.

[194] David L Donoho and Michael Elad. Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization. Proceedings of the National
Academy of Sciences, 100(5):2197–2202, 2003.

[195] Dongdong Ge, Xiaoye Jiang, and Yinyu Ye. A note on the complexity of lp
minimization. Mathematical Programming, 129(2):285–299, 2011.

[196] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John
Thomas. Matpower: Steady-state operations, planning, and analysis tools for
power systems research and education. IEEE Transactions on Power Systems,
26(1):12–19, 2011.

[197] CVX Research, Inc. CVX: Matlab software for disciplined convex program-
ming, version 2.0, August 2012.

[198] Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2018.

[199] Bonneville Power Administration. Accessed on Oct. 2016.

[200] Hiroshi Kajimoto. An extension of the prüfer code and assembly of connected
graphs from their blocks. Graphs and Combinatorics, 19(2):231–239, 2003.

[201] Emmanuel J. Candes, Justin K. Romberg, and Terence Tao. Stable signal
recovery from incomplete and inaccurate measurements. Communications on
Pure and Applied Mathematics: A Journal Issued by the Courant Institute of
Mathematical Sciences, 59(8):1207–1223, 2006.

[202] IEA 2019. Global EV outlook 2019. Available at www.iea.org/
publications/reports/globalevoutlook2019/.

[203] G. A. Putrus, Pasist Suwanapingkarl, David Johnston, E. C. Bentley, and
Mahinsasa Narayana. Impact of electric vehicles on power distribution
networks. In 2009 IEEE Vehicle Power and Propulsion Conference, pages
827–831. IEEE, 2009.

249

[204] J. D. Cross and R. Hartshorn. My electric avenue: Integrating electric vehicles
into the electrical networks. 2016.

[205] Kristien Clement, Edwin Haesen, and Johan Driesen. The impact of charging
plug-in hybrid electric vehicles on a residential distribution grid. IEEE
Transactions on Power Systems, 25(1):371–380, 2009.

[206] Qiuming Gong, Shawn Midlam-Mohler, Vincenzo Marano, and Giorgio
Rizzoni. Study of PEV Charging on Residential Distribution Transformer
Life. IEEE Transactions on Smart Grid, 3(1):404–412, March 2012.

[207] Jonathan Coignard, Samveg Saxena, Jeffery Greenblatt, and Dai Wang. Clean
vehicles as an enabler for a clean electricity grid. Environmental Research
Letters, 13(5):054031, 2018.

[208] Jose Rivera, Christoph Goebel, and Hans-Arno Jacobsen. Distributed convex
optimization for electric vehicle aggregators. IEEE Transactions on Smart
Grid, 8(4):1852–1863, July 2017.

[209] Behnam Khaki, Chicheng Chu, and Rajit Gadh. A hierarchical ADMM-based
framework for EV charging scheduling. In 2018 IEEE/PES Transmission and
Distribution Conference and Exposition (T&D), pages 1–9, Denver, CO, USA,
April 2018. IEEE.

[210] Julian de Hoog, Tansu Alpcan, Marcus Brazil, Doreen Anne Thomas, and Iven
Mareels. Optimal charging of electric vehicles taking distribution network
constraints into account. IEEE Transactions on Power Systems, 30(1):365–375,
January 2015.

[211] Alexander Schuller, Christoph M. Flath, and Sebastian Gottwalt. Quantifying
load flexibility of electric vehicles for renewable energy integration. Applied
Energy, 151:335–344, August 2015.

[212] Paul Denholm, Michael Kuss, and Robert M. Margolis. Co-benefits of large
scale plug-in hybrid electric vehicle and solar PV deployment. Journal of
Power Sources, 236:350–356, August 2013.

[213] Di Wu, Haibo Zeng, Chao Lu, and Benoit Boulet. Two-stage energy manage-
ment for office buildings with workplace EV charging and renewable energy.
IEEE Transactions on Transportation Electrification, 3(1):225–237, March
2017.

[214] Stephen Lee, Srinivasan Iyengar, David Irwin, and Prashant Shenoy. Shared
solar-powered EV charging stations: Feasibility and benefits. In 2016 Seventh
International Green and Sustainable Computing Conference (IGSC), pages
1–8, Hangzhou, China, 2016. IEEE.

[215] Yorie Nakahira, Niangjun Chen, Lijun Chen, and Steven H. Low. Smoothed
least-laxity-first algorithm for EV charging. pages 242–251. ACM Press, 2017.

250

[216] Bin Wang, Yubo Wang, Hamidreza Nazaripouya, Charlie Qiu, Chi-cheng
Chu, and Rajit Gadh. Predictive scheduling framework for electric vehicles
considering uncertainties of user behaviors. IEEE Internet of Things Journal,
pages 1–1, 2016.

[217] Bruce G. Lindsay. Mixture models: Theory, geometry and applications.
NSF-CBMS Regional Conference Series in Probability and Statistics, 5:i–163,
1995.

[218] Emil Eirola and Amaury Lendasse. Gaussian mixture models for time series
modelling, forecasting, and interpolation. In International Symposium on
Intelligent Data Analysis, pages 162–173. Springer, 2013.

[219] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. The
Journal of Machine Learning Research, 12:2825–2830, 2011.

[220] Yu-Wei Chung, Behnam Khaki, Chicheng Chu, and Rajit Gadh. Electric
vehicle user behavior prediction using hybrid kernel density estimator. In
2018 IEEE International Conference on Probabilistic Methods Applied to
Power Systems (PMAPS), pages 1–6. IEEE, 2018.

[221] Zhong Chen, Ziqi Zhang, Jiaqing Zhao, Bowen Wu, and Xueliang Huang. An
Analysis of the charging characteristics of electric vehicles based on measured
data and its application. IEEE Access, 6:24475–24487, 2018.

[222] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-series
clustering–a decade review. Information Systems, 53:16–38, 2015.

[223] Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuer-
mann, and Eamonn Keogh. Experimental comparison of representation
methods and distance measures for time series data. Data Mining and
Knowledge Discovery, 26(2):275–309, 2013.

[224] Christos Faloutsos, Mudumbai Ranganathan, and Yannis Manolopoulos.
Fast subsequence matching in time-series databases. ACM Sigmod Record,
23(2):419–429, 1994.

[225] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: A
partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, pages 593–604. ACM,
2007.

[226] John Paparrizos and Luis Gravano. k-shape: Efficient and accurate clustering
of time series. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1855–1870. ACM, 2015.

251

[227] Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of dynamic
time warping. Knowledge and Information Systems, 7(3):358–386, 2005.

[228] Donald J Berndt and James Clifford. Using dynamic time warping to find
patterns in time series. In KDD workshop, volume 10, pages 359–370. Seattle,
WA, 1994.

[229] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. In Advances in Neural Information Processing
Systems, pages 849–856, 2002.

[230] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
Departmental Papers (CIS), page 107, 2000.

[231] Chenxi Sun, Tongxin Li, and Victor OK Li. Robust and consistent clustering
recovery via sdp approaches. In 2018 IEEE Data Science Workshop (DSW),
pages 46–50. IEEE, 2018.

[232] Peter J Rousseeuw. Silhouettes: A graphical aid to the interpretation and vali-
dation of cluster analysis. Journal of Computational and Applied Mathematics,
20:53–65, 1987.

[233] Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equiv-
alence theorems and l1 regularization. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, pages 525–
533. JMLR Workshop and Conference Proceedings, 2011.

