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ABSTRACT

This thesis presents a novel Interpolated Factored Green Function (IFGF) method
for the accelerated evaluation of the integral operators in scattering theory and other
areas. Like existing acceleration methods in these fields, the IFGF algorithm eval-
uates the action of Green function-based integral operators at a cost of O(# log #)
operations for an #-point surface mesh. The IFGF strategy capitalizes on slow vari-
ations inherent in a certain Green function analytic factor, which is analytic up to
and including infinity, and which therefore allows for accelerated evaluation of fields
produced by groups of sources on the basis of a recursive application of classical
interpolation methods. Unlike other approaches, the IFGF method does not utilize
the Fast Fourier Transform (FFT), and it is thus better suited than other methods for
efficient parallelization in distributed-memory computer systems. In fact, a (hybrid
MPI-OpenMP) parallel implementation of the IFGF algorithm is proposed in this
thesis which results in highly efficient data communication, and which exhibits in
practice excellent parallel scaling up to large numbers of cores—without any hard
limitations on the number of cores concurrently employed with high efficiency.
Moreover, on any given number of cores, the proposed parallel approach preserves
the linearithmic (O(# log #)) computing cost inherent in the sequential version
of the IFGF algorithm. This thesis additionally introduces a complete acoustic
scattering solver that incorporates the IFGF method in conjunction with a suitable
singular integration scheme. A variety of numerical results presented in this thesis
illustrate the character of the proposed parallel IFGF-accelerated acoustic solver.
These results include applications to several highly relevant engineering problems,
e.g., problems concerning acoustic scattering by structures such as a submarine and
an aircraft-nacelle geometry, thus establishing the suitability of the IFGF method
in the context of real-world engineering problems. The theoretical properties of
the IFGF method, finally, are demonstrated by means of a variety of numerical
experiments which display the method’s serial and parallel linearithmic scaling as
well as its excellent weak and strong parallel scaling—for problems of up to 4, 096
wavelengths in acoustic size, and scaling tests spanning from 1 compute core to all
1, 680 cores available in the High Performance Computing cluster used.
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C h a p t e r 1

INTRODUCTION

This thesis presents a novel InterpolatedFactoredGreenFunction (IFGF)method for
the accelerated evaluation of discrete integral operators that arise as discrete versions
ofGreen function-based boundary integral formulations of boundary value problems
(BVP) for certain types of partial differential equations (PDEs). More precisely, in
what follows, we focus on the particularly challenging high-frequency boundary
integral equations (BIE) associated with scattering of acoustic or electromagnetic
waves by three-dimensional obstacles. These problems are highly relevant in areas
such as communications, stealth, remote sensing, radar, sonar, imaging, photonics,
electronics, noise management and many other important areas of civilian and
military interest in electrical engineering, applied physics, and, indeed, science
and engineering in general [1–10]. A brief overview of the mathematical and
computational methods associated with the field of integral equations is provided in
Section 1.1; a more thorough description can be found in [11–20].

For the types of PDE problems considered in this thesis, namely linear PDE prob-
lems for which an explicit Green function [21] exists, integral equation-based solvers
provide a number of advantages over direct PDE discretization methods such as the
Finite Difference Method (FDM) [22] and the Finite Element Method (FEM) [23].
On one hand, integral methods only require discretization of the scattering surface,
i.e., the boundary of the obstacle, instead of the propagation volume—which is
particularly beneficial for large volume-to-surface ratios. Secondly, they inherently
satisfy radiation conditions at infinity, and are thus especially well-suited for exte-
rior problems over unbounded propagation domains, whereas the aforementioned
PDE discretization methods typically require use of specialized domain truncation
methodologies [24]. And, finally, boundary integral equation methods do not suffer
from dispersion and pollution effects inherent in the FDM and FEM [24–26] which,
resulting from accumulation of truncation errors over propagation domains, require
use of fine discretizations for accuracy and thus give rise to high computational costs
in terms of both memory and computing time.

Boundary integral equation methods do give rise to a certain significant challenge,
however, which is tackled by the IFGF method presented in this thesis—namely the
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prohibitive computational cost that results from straightforward BIE computational
implementation. In detail, since the discretization of BIEs typically results in a
densely populated linear system of equations (in contrast to the sparse systems that
are obtained in the FDM and FEM contexts), a direct solution algorithm (e.g., Gauss
elimination, LU factorization, etc., see [27, Sec. 4], [28, Sec. 1], [29, Sec. 1], or [30,
Sec. 2]) requires in general O(#3) operations, where # denotes the number of
surface discretization points. Clearly, this cubic complexity leads to unacceptable
computing costs for most of the large problems arising in applications. A first
remedy toward alleviating this difficulty can be found in the use of iterative solvers,
like GMRES (as described in Section 2.1), which solves the resulting discrete dense
system iteratively and thus reduces the cost of inverting a dense matrix to that of
repeated evaluation of the discrete integral operator, which requires the significantly
smaller O(#2) cost per evaluation. Still, the O(#2) computational expense proves
prohibitive in most high-frequency applications, which has lead to the search for
suitable algorithmic acceleration methods such as the IFGF approach introduced in
this thesis. Like previous acceleration methods, such as the Fast Multipole Method
(FMM) [14, 31–35] and other approaches [16, 20, 36–42], the IFGFmethod reduces
the O(#2) cost of the discrete operator evaluation, both in terms of computing time
and memory requirements, to O(# log #). Applying an iterative solver to high-
frequency scattering problems considered in this thesis is not straightforward, and,
theoretically, the number of iterations required to approximate the solution to any
given accuracy Y requires a number of iterations proportional to the number # of
surface discretization points. To reduce the number of iterations in such an approach,
a suitable pre-conditioning is required. Since the pre-conditioning of the resulting
discrete integral equation is not closely related to the novelties presented in this
thesis, it is not further pursued. A possible approach can be found in, e.g., [43].

As indicated above, the IFGF method is certainly not the first method to tackle the
fast evaluation of discrete integral operators occurring in high-frequency scattering
problems. On the contrary: Significant literature has been devoted to the develop-
ment of fast, stable and simple methods to reduce the algorithmic complexity of this
problem and to enable the solution of increasingly large problems [34, 44–51]. Ad-
ditionally, the emergence of parallel computers and heterogeneous cluster systems
in the past decade necessitated the development of numerical methods, which in-
corporate and utilize the available hardware in a manner that optimizes the “parallel
scaling” properties. An overview of previous work in this field and the relevance of
the IFGF method is therefore given in Section 1.2.
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1.1 Integral equations

As indicated above, the IFGFmethod tackles the particularly challenging problem of
accelerating the evaluation of discrete integral operators of high-frequency scatter-
ing problems. For definiteness, in what follows, we focus on the problems associated
with the Helmholtz equation. Clearly, due to their close relation, similar consider-
ations as presented in this thesis for the Helmholtz equation are applicable—with
minimal adjustments—to Maxwell and Laplace equations (see [11–16]). For a con-
cise and self-contained presentation, we introduce the Helmholtz equation in what
follows

ΔD(G) + ^2D(G) = 0 for G ∈ Ω or G ∈ R3 \ Ω̄, (1.1)

where Ω ⊂ R3 denotes a bounded domain. The cases G ∈ Ω and G ∈ R3 \ Ω̄ are
called the interior and exterior problem, respectively.

Definition 1 (Wavenumber). The constant ^ in (1.1) is called the wavenumber and
it relates to the wavelength _ as ^ = 2c/_. Further, it relates to the frequency
5 as 2c 5 = 2^, where 2 denotes the speed of sound/light of the medium under
consideration, and the angular frequency l as l = 2c 5 .

The following introduction of integral equations follows the presentation in [13],
which focuses on theDirichlet andNeumann problems shown in Definitions 2 and 3,
respectively, and which bases its analysis of the corresponding integral equations on
Riesz’ theory for compact operators.

Definition 2 (Dirichlet problem). LetΩ ⊂ R3 denote a bounded domain with a twice
differentiable boundary Γ = mΩ. Further, let 5 ∈ � (Γ,C) be a complex-valued and
continuous function defined on Γ and let ^ denote the wavenumber. The Dirichlet
problem for the Helmholtz equation is given as

ΔD(G) + ^2D(G) = 0 for G ∈ Ω or G ∈ R3 \ Ω̄ (1.2)

D(G) = 5 (G) for G ∈ Γ. (1.3)
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Definition 3 (Neumann problem). Let Ω ⊂ R3 denote a bounded domain with
a twice differentiable boundary Γ = mΩ and outwards pointing normal vector
a = a(G), G ∈ Γ. Further, let 6 ∈ � (Γ,C) be a complex-valued and continuous
function defined on Γ and let ^ denote the wavenumber. The Neumann problem for
the Helmholtz equation is given as

ΔD(G) + ^2D(G) = 0 for G ∈ Ω or G ∈ R3 \ Ω̄ (1.4)
mD

ma
(G) = 6(G) for G ∈ Γ, (1.5)

where the derivative in the boundary condition (1.5) denotes the normal derivative.
In the case of scattering problems, the Dirichlet problem is used to model so-called
sound-soft obstacles. In contrast, the Neumann problem models so-called sound-
hard obstacles.

As shown in [13], the solutions of the interior and exterior Dirichlet and Neumann
problems defined above can be represented in terms of the following single-layer
potential S^ and double-layer potential D^,

S^ [i] (G) B
∫
Γ

� (G, H)i(H) 3((H), (1.6)

D^ [i] (G) B
∫
Γ

m� (G, H)
ma(H) i(H) 3((H), (1.7)

where
� (G, H) = 4]^ |G−H |

4c |G − H | (1.8)

denotes the Green function associated with the Helmholtz equation 1.1 (] denotes
the imaginary unit and ^ the wavenumber), and i ∈ � (Γ,C) a given surface density.

Remark 1. The notation used throughout this thesis does not explicitly indicate the
dependence of theGreen function� on the wavenumber ^, for the sake of readability.

For either the single-layer (1.6) or the double-layer (1.7) to be a solution to the
interior/exterior Dirichlet or Neumann problem, the surface density i is required
to satisfy certain associated integral equations, which guarantee that (1.6) or (1.7)
satisfy the boundary conditions (1.3) or (1.5), respectively; see, e.g., [13, Thm.
6.22-6.28]. Two particular cases are presented in what follows for the sake of
concreteness.
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Theorem 1. The double-layer potential (1.7) (G ∈ Ω) with continuous surface
density i is a solution to the interior Dirichlet problem, as per Definition 2, provided
that i satisfies the following integral equation

i(G) − 2
∫
Γ

i(H) m� (G, H)
ma(H) 3((H) = −2 5 (G) G ∈ Γ. (1.9)

Theorem 2. The single-layer potential (1.6) (G ∈ R3 \ Ω̄) with continuous surface
density i is a solution to the exterior Neumann problem, as perDefinition 3, provided
that i satisfies the following integral equation

i(G) − 2
∫
Γ

i(H) m� (G, H)
ma(G) 3((H) = −26(G) G ∈ Γ. (1.10)

Remark 2. Reference [13] bases its analysis on Riesz’ theory and thus—as indicated
by the above Theorems 1 and 2—focuses on Fredholm integral equations of the
second kind

(� +  )i = 5 ,

where 5 is some function, � the identity operator,  a compact integral operator
(between suitable normed space) and i the unknown surface density. Fredholm
integral equations of the first kind

 i = 5

are not covered by Riesz’ theory and are therefore not presented in [13]. Neverthe-
less, approaches based on Fredholm integral equations of the first kind are viable
strategies in practice and may be used to solve the Dirichlet and Neumann problems.
Even combined-layer formulations, i.e., linear combinations of the single-layer (1.6)
and the double-layer (1.7), may be used, as shown in Section 5.5.

To solve the arising boundary integral equations, as introduced in Theorems 1 and 2
(or similar BIEs associated with different problems), the occurring integral requires
a suitable numerical evaluation strategy for every G ∈ Γ. This is a challenging
problem due to the singularity in the Green function (1.8), although there are viable
solutions in literature (e.g., [14, 16, 52]) and therefore not covered in this thesis.
Further, provided a suitable discretization of the integral and the BIE is given, the
resulting dense linear system of the form �#i# = 5# needs to be solved accurately
and quickly. A straightforward inversion of the dense # × # matrix �# would
require O(#3) operations, where # denotes the number of surface discretization
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points, which is clearly unfeasible for practical purposes. To reduce this cost, there
are two acceleration approaches. First, the accelerated inversion of the matrix
�# , as performed by so-called direct solvers (see [27, Sec. 4], [28, Sec. 1], [29,
Sec. 1], or [30, Sec. 2]). Secondly, the iterative solution of the linear system
�#i# = 5# with the generalized minimal residual method (GMRES)—or similar
iterative solvers (cf. [27, Sec. 8]). As discussed in more detail in Section 2.1, the
GMRES algorithm solves the linear system by iteratively building aKrylov subspace
through evaluation of a matrix vector product of the form �#A: for some vector A:
in each iteration : of the algorithm. The cost associated with the evaluation of such
a dense matrix-vector product �#A: , if performed naively, reduces the cubic cost of
a direct inversion method to a quadratic algorithmic complexity, namely O(#2), of
each iteration in the GMRES algorithm.

Remark 3. In the present context, with reference to Remark 2, the matrix-vector
product occurring in the GMRES algorithm requires the evaluation of the identity
matrix, which can be performed in O(#) operations and, thus, does not pose a
challenge that requires further consideration, and the evaluation of discrete integral
operators of the form

#∑
<=1
<≠ℓ

0< (Gℓ, G<), ℓ = 1, . . . , #,

where the discrete surface density i# and the discretization scheme for the boundary
integral yield the coefficients 0<, < = 1, . . . , # , and the kernel  denotes either the
Green function � or its derivatives.

The IFGF method accelerates the evaluation of the matrix-vector product through
an accumulation and approximate evaluation by interpolation of the field emitted by
increasingly large groups of discretization points in a hierarchical fashion, resulting
in an O(# log #) time and memory accelerated algorithm for the application of the
discrete operator.

The Helmholtz equation (1.1) poses a particularly challenging problem in the high-
frequency regime, i.e., for large values of the wavenumber ^ (which corresponds to
small values for the wavelength _) relative to the size of the domain Ω, since i) The
number of wavelengths within the domainΩ is large and therefore requires a suitable
large number of surface discretization points for an accurate discrete representation
and ii) The low-rank approximability of the involved discrete solution operators [16,
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Sec. 3.1] [20, Sec. 4], which is the underlying property typically utilized in
acceleration methods for these problems in the low-frequency regime (^ small) and
Laplace case (^ = 0), does not hold for high-frequency problems.

1.2 Previous work and contribution

The development of the IFGF method was motivated by certain shortcomings inher-
ent in integral-equation acceleration methods [37, 38, 53], all of which, including
the method [37] previously developed by our research group, rely on the use of the
Fast Fourier Transform (FFT). In particular, one of the goals of the development
of the IFGF method was to resolve the limitations on parallel scaling capabilities
of the previous methods (which result directly from corresponding difficulties as-
sociated with parallelization of the FFT [54]), while achieving optimal algorithmic
complexity (O(# log #)). Additional aspirations driving the development of the
IFGF method included a goal to bypass the complexities of existing mathematical
acceleration algorithms and associated intricate computational implementations.
The IFGF method presented in this thesis achieves these purposes: It does not uti-
lize previously-employed acceleration elements such as the Fast Fourier Transform
(FFT), special-function expansions, high-dimensional linear-algebra factorizations,
translation operators, equivalent sources, or parabolic scaling [31–33, 36–38, 40–
42, 53, 55, 56]. Instead, the IFGF method relies on straightforward interpolation of
the operator kernels—or, more precisely, of certain factored forms of the kernels—
which, when collectively applied to larger and larger groups of Green function
sources, in a recursive fashion, gives rise to the desired O(# log #) accelerated
evaluation. In what follows, we compare the serial and parallel IFGF method to
existing methods, and emphasize the differences.

As alluded to above, the IFGF strategy is based on the interpolation properties of a
certain factored form of the scattering Green function into a singular and rapidly-
oscillatory centered factor and a slowly-oscillatory analytic factor. Importantly, the
analytic factor is analytic up to and including infinity (which enables interpolation
over certain unbounded conical domains on the basis of a finite number of radial
interpolations nodes), and, when utilized for interpolation of fields with sources
contained within a cubic box � of side �, it enables uniform approximability over
semi-infinite cones, with apertures proportional to 1/�. In particular, unlike the
FMM based approaches (e.g., [31, 32]), the algorithm does not require separate
treatment of the low- and high-frequency regimes. On the basis of these prop-
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erties, the IFGF method orchestrates the accelerated operator evaluation utilizing
two separate tree-like hierarchies which are combined in a single boxes-and-cones
hierarchical data structure. Thus, starting from an initial cubic box of side �1 which
contains all surface discretization points considered, the algorithm utilizes, like
other approaches, the octree B of boxes that is obtained by partitioning the initial
box into eight identical child boxes of side �2 = �1/2 and iteratively repeating the
process with each resulting child box until the resulting boxes are sufficiently small.

Along with the octree of boxes, the IFGF algorithm incorporates a hierarchy C
of spherical cone segments, which are used to enact the required interpolation
procedures. Each box in the tree B is thus endowed with a set of box-centered
spherical cone segments at a corresponding level of the cone hierarchy C. In detail,
a set of box-centered cone segments of extent ΔB,3 in the analytic radial variable B,
and angular apertures Δ\,3 and Δi,3 in each of the two spherical angular coordinates
\ and i, are used for each 3-level box � ∈ B. (Roughly speaking, ΔB,3 , Δ\,3
and Δi,3 vary in an inversely proportional manner with the box size �3 for large
enough boxes, but they remain constant for small boxes; full details are presented in
Chapter 3.) The set of cone segments centered at a box � ∈ B is used by the IFGF
algorithm to set up an interpolation scheme over all of space around �, except for
the region occupied by the union of � itself and all of its nearest neighboring boxes
at the same level. Thus, the leaves (level �) in the box tree, that is, the cubes of the
smallest size used, are endowed with cone segments of largest angular and radial
spans ΔB,� , Δ\,� and Δi,� considered. Each ascent 3 → (3 − 1) by one level in the
box tree B (leading to an increase by a factor of two in the cube side �3−1 = 2�3) is
accompanied by a corresponding descent by one level (also 3 → (3−1)) in the cone
hierarchy C (leading, e.g., for large boxes, to a decrease by a factor of one-half in the
radial and angular cone spans: ΔB,3−1 =

1
2ΔB,3 , Δ\,3−1 =

1
2Δ\,3 and Δi,3−1 =

1
2Δi,3;

see Section 3.3). In view of the interpolation properties of the analytic factor, the
interpolation error and cost per point resulting from this conical interpolation setup
remains unchanged from one level to the next as the box tree is traversed towards its
root level 3 = 1. The situation is even more favorable in the small-box case. And,
owing to analyticity at infinity, interpolation for arbitrarily far regions within each
cone segment can be achieved on the basis of a finite amount of interpolation data. In
all, this strategy reduces the computational cost, by commingling the effect of large
numbers of sources into a small number of interpolation parameters. A recursive
strategy, in which cone segment interpolation data at level 3 is also exploited to
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obtain the corresponding cone-segment interpolation data at level (3 − 1), finally,
yields the optimal O(# log #) approach.

The properties of the factored Green function, which underlie the proposed IFGF
algorithm, additionally provide certain perspectives concerning various algorithmic
components of other acceleration approaches. In particular, the analyticity prop-
erties of the analytic factor, which are established in Theorem 4, in conjunction
with the classical polynomial interpolation bound presented in Theorem 3, and
the IFGF spherical-coordinate interpolation strategy, clearly imply the property of
low-rank approximability which underlies some of the ideas associated with the but-
terfly methods [39–41] and directional FMM [32]. The directional FMM approach,
further, relies on a “directional factorization” which, in the context of the present
interpolation-based viewpoint, can be interpreted as facilitating interpolation. For
the directional factorization to produce beneficial effects it is necessary for the dif-
ferences of source and observation points to lie on a line asymptotically parallel to
the vector between the centers of the source and target boxes. This requirement is
satisfied in the directional FMM approach through its “parabolic scaling”, according
to which the distance to the observation set is required to be the square of the size of
the source box. The IFGF factorization is not directional, however, and it does not
require use of the parabolic scaling: the IFGF approach interpolates analytic-factor
contributions at linearly-growing distances from the source box.

In a related context we mention the recently introduced approach [42], which in-
corporates in an H2-matrix setting some of the main ideas associated with the
directional FMM algorithm [32]. Like the IFGF method, the approach relies on
interpolation of a factored form of the Green function—but using the directional
factorization instead of the IFGF factorization. The method yields a full LU decom-
position of the discrete integral operator, but it does so under significant computing
costs and memory requirements, both for precomputation, and per individual solu-
tion.

It is also useful to compare the IFGF approach to other acceleration methods from
a purely algorithmic point of view. The FMM-based approaches [31, 32, 35, 55]
entail two passes over the three-dimensional acceleration tree, one in the upward
direction, the other one downward. In the upward pass of the original FMMmethods,
for example, the algorithm commingles contributions from larger and larger numbers
of sources via correspondingly growing spherical-harmonics expansions, which are
sequentially translated to certain spherical coordinate systems and then recombined,
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as the algorithm progresses up the tree via application of a sequence of so-called
M2M translation operators (see, e.g., [32]). In the downward FMM pass, the
algorithm then re-translates and localizes the spherical-harmonics expansions to
smaller and smaller boxes via relatedM2L and L2L translation operators (e.g., [32]).
The algorithm is finally completed by evaluation of surface point values at the end
of the downward pass. The IFGF algorithm, in contrast, progresses simultaneously
along two tree-like structures, the box tree and the cone interpolation hierarchy,
and it produces evaluations at the required observation points, via interpolation, at
all stages of the acceleration process (but only in a neighborhood of each source
box at each stage). In particular, the IFGF method does not utilize high-order
expansions of the kinds used in other acceleration methods—and, thus, it avoids use
of Fast Fourier Transforms (FFTs) which are almost invariably utilized in the FMM
to manipulate the necessary spherical harmonics expansions. (Reference [14, Sec.
7] mentions two alternatives which, however, it discards as less efficient than an
FFT-based procedure.)

As indicated above, the IFGF algorithm, which relies on interpolation by means of
Chebyshev expansions of relatively low degree, does not require the use of FFTs—
a fact that provides significant benefits in the distributed memory context. As a
counterpoint, however, the low degree Chebyshev approximations used by the IFGF
method do not yield the spectral accuracy resulting from the high-order expan-
sions used by other methods. A version of the IFGF method which enjoys spectral
accuracy could be obtained simply by replacing its use of low-order Chebyshev
interpolation by Chebyshev interpolation of higher and higher orders on cone seg-
ments of fixed size as the hierarchies are traversed toward the root 3 = 1. Such
a direct approach, however, entails a computing cost which increases quadratically
as the Chebyshev expansion order grows—thus degrading the performance of the
IFGF method. But the needed evaluation of high-order Chebyshev expansions on
arbitrary three-dimensional grids can be performed by means of FFT-based interpo-
lation methods similar to those utilized in [37, Sec. 3.1] and [57, Remark 7]. This
approach, which is not pursued in this thesis, would lead to a spectrally convergent
version of the method, which still runs on essentially linear computing time and
memory. And, despite reverting to the use of FFTs, the strategy may perform well
in a parallel setting, since the number of the involved FFTs and their sizes would be
essentially constant from one level in the octree structure to the next.
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It is also relevant to contrast the algorithmic aspects in the IFGF approach to those
used in the butterfly approaches [39–41]. Unlike the interpolation-based IFGF
method, which does not rely on the use of linear-algebra factorizations, the butterfly
approaches are based on low-rank factorizations of various high-dimensional sub-
matrices of the overall system matrix. Certain recent versions of the butterfly
methods reduce linear-algebra computational cost by means of an interpolation
process in high-dimensional space in a process which can easily be justified on
the basis of the analytic properties of the factored Green function described in
Section 3.1. As in the IFGF approach, further, the data structure inherent in the
butterfly approach [40, 41] is organized on the basis of two separate tree structures
that are traversed in opposite directions, one ascending and the other descending, as
the algorithm progresses. In the method [41] the source and observation cubes are
paired in such a way that the product their sizes remains constant—which evokes the
IFGF’s cone-and-box sizing condition, according to which the angles scale inversely
with the cone span angles. These two selection criteria are indeed related, as the
interpolability by polynomials used in the IFGF approach has direct implications
on the rank of the interpolated values. But, in a significant distinction, the IFGF
method can be applied to a wide range of scattering kernels, including the Maxwell,
Helmholtz, Laplace and elasticity kernels among others, and including smooth
as well as non-smooth kernels. The butterfly approaches [39, 41], in contrast,
only apply to Fourier integral operators with smooth kernels. The earlier butterfly
contribution [40] does apply to Maxwell problems, but its accuracy, specifically in
the low-frequency near-singular interaction regime, has not been studied in detail.

Since the emergence of parallel computers, the parallelization of accelerated Green
function methods has been the subject of a significant literature, which is mostly
devoted to tackling a particular difficulty, namely, the “parallelization bottleneck”—
which manifests itself under various related guises [34, 44–51], and which almost
invariably concerns uses of the hard-to-parallelize [54] FFT algorithm. In the case
of the multilevel FMM, the parallelization bottleneck arises in the evaluation of
translation operators associated with the upper part of the octree structure, which
leads to low parallel efficiency [32, 44, 49]. In the directional FMM [44] the
low efficiency in the upper octree is alleviated as a result of the parabolic scaling
utilized; however, the parallelization strategy does suffer from hard limitations in
the number of parallel tasks that, in the cases considered in that reference, lead to
a “leveling off” of the parallel scaling at 256 or 512 cores [44, Secs. 3.6, 4.2],
depending on the geometry under consideration. Reference [45] identifies the part
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of the FMM relying on FFTs as a parallelization bottleneck which arises from FFT-
related “lowest arithmetic intensity” and “bandwidth contention.” In [46, 47], in
turn, a hybrid octree storage strategy is used, which stores a complete set of tree
nodes for a certain number of “full” levels in each process, and which reduces the
communication in the upper octree levels. Those articles demonstrate the treatment
of problems containing very large numbers of discretization points on up to 2, 560
processes, but they restrict their illustration of the algorithm’s parallel efficiency to
a limited strong scaling test from 1 process (sequential) to 64 processes. In contrast
to this hybrid octree-storage strategy, reference [48] simultaneously partitions boxes
(clusters) and field values representing the radiating and incoming fields of each
box. This approach leads to increased efficiency compared to a parallelization
purely based on the boxes (clusters), but the communication in the translation step
still poses a bottleneck, resulting in as little as 30% parallel efficiency from one
(sequential) core to 128 cores.

Reference [58], in turn, presents scaling results for the parallel BEMFMM imple-
mentation of the FMM algorithm, for wave scattering problems on up to 196,608
cores on 6,144 compute nodes, and for problems with up to 2.3 billion degrees of
freedom (DOF) and approximately 1,389 wavelengths in size (or, in the nomencla-
ture of Table 2 in [58], a sphere two-meters in diameter illuminated at the frequency
of 5 = 238.086 KHz, under the assumption of a 343m/s speed of sound). Like
the implementations mentioned above, the results in [58] indicate a deterioration
of the strong-scaling for growing numbers of cores, as manifested by a flattening
of the strong-scaling speedup curves presented as the numbers of cores increase.
The weak scaling curve presented in [58] indicate a high weak-scaling efficiency,
however, with up to 95% efficiency for weak scaling between 32 and 131,072 cores.
Comparison with BEMFMM and IFGF weak scaling results presents some chal-
lenges on a number of counts. On one hand the contribution [58] does not mention
a crucial element in judging parallelization quality, namely, memory usage: even
though memory duplication may be relied upon in a parallel algorithm to maximize
parallel efficiency, no indications are provided in that paper about the amount of
memory used in any of the runs presented. Further, under closer examination, the
computing times indicated in these curves appeared to be high, and we thus decided
to perform a direct comparison of the performance of our IFGF implementation
with the BEMFMM implementation on the basis of the freely available BEMFMM
open-source download provided by the authors. By necessity, our tests were lim-
ited to a test example consisting of a sphere containing approximately 360,000 DOF,
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which is the largest test case provided with the BEMFMM test code, and we selected
a sphere of acoustic diameter of 16_ for this experiment. We run both algorithms
in the 30 available nodes in our cluster, Wavefield, each one of which contains 56
computing cores. Our observations are as follows. The BEMFMM run for the test
case considered required 20 secs. in a single node, and 5 secs. in all 30 nodes, with
a speedup factor of 4 going from 1 to thirty nodes. The IFGF run, in turn, required
1.6 secs. in a single node, and 0.122 secs in the thirty node cluster, with a speedup
factor of 13 going from 1 to 30 nodes. Thus, the IFGF runs in one and 30 nodes
were faster than the BEMFMM runs by factors of 12.5 and 40 in the 1-node and
30-node runs, respectively, with an IFGF speedup over three times higher than that
provided by BEMFMM going from 1 to 30 nodes. As an additional point of contact
with reference [58], it is worth mentioning that, in our 1,680 core cluster, and on the
basis of approximately 4 TB of memory, a sphere 1,389 _ in diameter (reported as
5 = 238.086KHz at a speed of sound of 343</B in [58]; cf. Section 5.8 for details)
with 2.12 billion DOF was run in a computing time of 2,380 seconds (Table 5.25
in Section 5.8), which, with a 0.5% near-field error (which may be compared to
the only error indicator reported in [58, Table 2] for this test case, which amounts
to 20%, as well as the 3% near-field solution error reported in the same table of
that paper for significantly smaller problems), is a factor of approximately 46 times
longer than the time reported in [58], for the same number of DOFs and sphere size,
on a computer 78 times larger (containing 131,072 cores) and on the basis of an
unspecified amount of memory. Additional test cases for large sphere problems are
presented in Section 5.8.

Following a different approach, to avoid the communication bottleneck in the up-
per multilevel FMM octree entirely, references [34, 49] utilize a single-level Fast
Multipole strategy. While this method significantly simplifies the algorithm and
minimizes the required communication in a parallel setting, it does give rise to a
sub-optimal asymptotic computational cost (e.g., O(#3/2) in [34] or, exploiting the
FFT, O(#4/3 log2/3 #) in [49]), and, while resulting in good parallel scaling up to
512 processes in the O(#3/2) algorithm [34], as in the case of [44], the parallel ef-
ficiency does level off beyond 512 processes. Direct FFT methods, in turn, present
alternatives to the various FMM strategies, including, for example, the Adaptive
Integral Method [38] (AIM) and the sparse-FFT method [37]. Like the single-level
FMM algorithms, these FFT methods exhibit sub-optimal algorithmic complexity
(of orders O(#3/2) and O(#4/3), respectively, and, owing to their strong reliance
on FFTs, they also suffer from reduced parallel efficiency, as shown and discussed
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for the AIM in, e.g., [50, 51]. (A parallel version of the algorithm [37], which has
been developed by the authors, has not been published, but we report here that, as
may have been expected, the overall parallel efficiency of the method suffers from
the typical FFT-related degradation.)

Finally, we mention parallel methods proposed for non-singular [41] and low-
frequency [59, 60] problems which, albeit important and interesting, do not incur
some of the main challenges associated with the singular and high-frequency kernels
considered in this thesis. Thus, although not applicable to singular Green function
kernels such as the ones considered here, the Butterfly Method [41] does provide an
acceleration technique for Fourier integral operators which, based on linear-algebra
constructs instead of the hierarchical interpolation underlying the IFGF approach,
incorporates a parallelization strategy that is somewhat reminiscent of the proposed
IFGF parallelization approach. The Blue Gene/Q implementation [41] of the But-
terfly parallel algorithm demonstrates excellent results in terms of parallel scaling
to a large number of cores. The parallel FMM method presented in [60], which is
restricted to box geometries and to the Laplace and low-frequency Helmholtz prob-
lems, shows impressive scaling up to 299,008 cores on 18,688 nodes. Similarly, the
parallel Barnes-Hut tree code [59] for the low-frequency singular problem provides
excellent scaling up to 294,912 cores with up to 2,048,000,000 particles.

The parallel IFGF strategy introduced in this thesis is based on adequate partition-
ing of the interpolations performed on each level of the underlying octree structure,
which facilitates the spatial decomposition of the surface discretization points. As
discussed in Section 3.6, the number of interpolations performed on each level is
large and approximately constant (as a function of the octree level). The decom-
position and distribution of the interpolation data is based on a total order in the
set of spherical cone segments representing the interpolation domains, which is an
extension of a domain decomposition based on a Morton curve to the box-cone data
structure inherent in the IFGF approach. The usage of space-filling curves for the
representation of octree structures underlying the various acceleration methods is
not a novel concept [58, 60, 61]. However, the extension of space-filling curves to
the present box-cone structure of the IFGF method to achieve the desired efficiency
has not been reported before. In view of its strong reliance on the IFGF’s box-cone
structure, the proposed parallelization strategy is therefore not applicable to other
acceleration methods such as the FMM. The present parallel IFGF implementation
on a 30-node (1,680-core) HPC cluster with Infiniband interconnect, delivers per-
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fect O(# log #) performance on all 1,680 cores. And, demonstrating high (albeit
imperfect) strong and weak parallel efficiencies, unlike other methods, it does not
suffer from scaling limitations, under either weak scaling or strong scaling tests,
as the number of processing cores grow—conceivably, as argued in Sections 4.2
and 5.6, up to arbitrarily large numbers of cores.

1.3 Content and layout of this thesis

This thesis consists of a total of six chapters. The present Chapter 1 provides
an overview of the integral-equation formulations of scattering theory, it reviews
previously proposed acceleration techniques in the area, and it presents the main
motivations and goals for the development of the proposed IFGF method. Chapter 2
then provides an overview of knownmethods and concepts relevant to the discussion
of the IFGF method and integral equations in general. It includes an overview of
the GMRES algorithm for the iterative solution of systems of linear equations,
a brief summary of Chebyshev interpolation techniques, and an overview of the
nomenclature utilized in the area of high performance computing (HPC). Readers
familiar with boundary integral equationsmay choose to skip these first two chapters.
The actual description of the novel IFGF method starts in Chapter 3, where the
IFGF theoretical basis is introduced and a serial IFGF algorithm is presented.
Chapter 4 introduces a hybrid MPI-OpenMP IFGF parallelization strategy suitable
for implementation on large computer cluster systems. The serial and parallel IFGF
algorithms are numerically validated in Chapter 5 on the basis of several geometries
and test cases. Finally, Chapter 6 presents a number of concluding remarks, and it
provides an outline of possible future research projects and open questions closely
related to the IFGF method.
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C h a p t e r 2

PRELIMINARIES

This chapter briefly reviews background concepts which are highly relevant in the
context of integral equations and the IFGF method proposed in this thesis. In
particular, as discussed above, the IFGF and other acceleration methods are used in
practice in conjunction with iterative approaches for the solution of integral equation
problems. Thus, in Section 2.1 we review the iterative linear-algebra solver that is
preferred in this context, namely, the GMRES algorithm. Section 2.2, in turn,
reviews one- and three-dimensional Chebyshev polynomial approximation, which
form the basis of the IFGF interpolation strategy. Finally, Section 2.3 reviews
concepts and nomenclature in the field of high performance computing which are
used, in particular, for the presentation of the proposed IFGF parallelization strategy
in Chapter 4.
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2.1 GMRES

As indicated above, the present thesis is concerned with the fast evaluation of
matrix-vector products of the form �#E# , where �# ∈ C#×# represents some
discretization of an integral operator (cf. Section 1.1) and E# ∈ C# denotes some
vector, which occurs in the iterative solution of discrete integral equations of the
form �#i# = 5# . To provide context we briefly mention the Generalized Minimal
Residual (GMRES) algorithm [62], which is the algorithm typically utilized for
the iterative solution of discretized integral equations. The use of the GMRES
algorithm and other iterative Krylov subspace linear equation solvers in the context
of the integral equation problems under consideration motivate our treatment of the
fundamental problem considered in this thesis, namely, the accelerated evaluation
of discrete integral operators. The details of the GMRES algorithm, which do
not impact upon the innovations introduced in this thesis, are not discussed here
in any detail. For quick reference we include the pseudocode 1 of the GMRES
algorithm for real matrices � ∈ R#×# (cf. [16, Algorithm C.4]), and we additionally
refer to [62], [27, Sec. 8.7.2] and [16, Sec. C.3.2] in this regard. Lines 1
and 6 in Algorithm 1 display the matrix-vector product which is accelerated by
the IFGF algorithm: a direct evaluation of this product requires O(#2) arithmetic
operations—a requirement which, in the context of the high-frequency scattering
problems relevant in this thesis, is often computationally prohibitive. As discussed
in Chapter 1, the proposed IFGF method enables the evaluation of the matrix-vector
product in a linearithmic (O(# log #)) number of operations, and it provides a
number of important advantages over other available acceleration methodologies.

2.2 Chebyshev interpolation

The IFGF method is based upon a hierarchical interpolation strategy of a cer-
tain factored form of the Green function. More precisely, the interpolation of the
factored Green function is facilitated in piece-wise fashion in certain spherical co-
ordinate systems resulting in the IFGF cone segments, as presented in Section 3.5.
Theoretically, any interpolation method with sufficient accuracy would suffice to
achieve the desired asymptotic acceleration, but, throughout this thesis, we utilize
a three-dimensional Chebyshev interpolation procedure in view of its accuracy and
efficiency. For a self-contained presentation, the present section therefore briefly
reviews Chebyshev polynomials in one and three dimensions and discusses some
possibilities for an efficient practical implementation of Chebyshev-based interpola-
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Algorithm 1 GMRES
Require: � ∈ R#×# , 5 ∈ R# , G0 ∈ R# , n > 0
1: A0 = 5 − �G0

2: d0 =
A0


3: E1 = A0/

A0


4: ?0 = d0

5: for : = 0, . . . , # − 2 do
6: F: = �E:

7: Ê:+1 = F:

8: for ℓ = 0, . . . , : do
9: V:,ℓ = F: · Eℓ
10: Ê:+1 = Ê:+1 − ℎ:,ℓEℓ
11: end for
12: V:+1,: =

Ê:+1
13: if V:+1,: = 0 then Leave “for”-loop
14: end if
15: E:+1 = Ê:+1/V:+1,:
16: for ℓ = 0, . . . , : − 1 do
17: Ṽ:,ℓ = 0ℓV:,ℓ + 1ℓV:,ℓ+1
18: Ṽ:,ℓ+1 = −1;V:,ℓ + 0ℓV:,ℓ+1
19: end for
20: 0: = V:,:/

√
(V:,: )2 + (V:,:+1)2

21: 1: = V:,:+1/
√
(V:,: )2 + (V:,:+1)2

22: Ṽ:,: =
√
(V:,: )2 + (V:,:+1)2

23: ?:+1 = −1: ?: , ?: = 0: ?: , d:+1 = |?:+1 |
24: if d:+1 < nd0 then Leave “for”-loop
25: end if
26: end for
27: Gsolution = G0

28: for ℓ = :, : − 1, . . . , 0 do

29: Uℓ = 1
Vℓ,ℓ

(
?ℓ −

:∑
9=ℓ+1

Vℓ, 9U 9

)
30: Gsolution = Gsolution − UℓEℓ
31: end for
32: return Gsolution
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tion procedures. For a more thorough introduction to Chebyshev interpolation, we
refer to [30, 63].

For a given function D : [−1, 1] → C over the reference interval [−1, 1], the
one-dimensional interpolation polynomial �ref

= D of accuracy order = produced via
Chebyshev interpolation is given by the expression

�ref
= D(G) =

=−1∑
8=0

08)8 (G), G ∈ [−1, 1], (2.1)

where )8 (G) = cos(8 arccos(G)) denotes the 8-th Chebyshev polynomial of the first
kind, and where, letting

G: = cos
(
2: + 1

2=
c

)
, and U8 =

{
2 8 ≠ 0
1 8 = 0,

(2.2)

the coefficients 08 ∈ C are given by

08 =
U8

=

=−1∑
:=0

D(G: ))8 (G: ) (2.3)

(see [30, (5.8.7) and (5.8.8)]). Chebyshev interpolation for functions defined on
arbitrary intervals [0, 1] are obtained via a linear re-scaling to the reference interval
[−1, 1]; for notational simplicity, the corresponding interpolating polynomial in
the interval [0, 1] is denoted by �=D, without explicit reference to the interpolation
interval [0, 1].

As is known ([28, Sec. 7.1], [64]), the one-dimensional Chebyshev interpolation
error |D(G) − �=D(G) | in the interval [0, 1] satisfies the bound

|D(G) − �=D(G) | ≤
(1 − 0)=
22=−1=!

m=DmG= ∞ , (2.4)

where m=DmG= ∞ B sup
2∈(0,1)

����m=DmG= (2)���� (2.5)

denotes the supremum norm of the =-th partial derivative.

In the context of the IFGF method, the generalization

�ref,3= D(G, H, I) =
=G−1∑
8=0

=H−1∑
9=0

=I−1∑
:=0

08, 9 ,:)8 (G))9 (H)): (I), (G, H, I) ∈ [−1, 1]3, (2.6)
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of (2.1) to three dimensions is of interest, where, as in the one-dimensional case (2.3),
using once again (2.2), we obtain

08, 9 ,: =
U8U 9U:

=G=H=I

=G−1∑
<=0

=H−1∑
==0

=I−1∑
>=0

D(G<, G=, G>))8 (G<))9 (G=)): (G>), (2.7)

for 8 = 0, . . . , =G − 1, 9 = 0, . . . , =H − 1, and : = 0, . . . , =I − 1. A general version of
the one-dimensional error estimate (2.4) is deferred to Section 3.3, in view of to its
close relation with the theoretical basis of the IFGF method.

The direct computation of (2.7) and (2.6) is costly due to the evaluation of the triple
sums. The repeated evaluation of polynomials �ref,3= D(G, H, I) in (2.6), in particular,
is the most cost intensive part of the IFGF method, and, thus, algorithms for the
accelerated evaluation of these polynomials can reduce the computational effort of
the overall IFGF method significantly. In the present implementation of the IFGF
method, (2.6) is evaluated naively due to the non-uniformity of the targets and
the small expansion sizes. Accelerated evaluation algorithms based on, e.g., small
non-uniform FFTs (cf. [63, Sec. 10], [37, Sec. 3.1], [57, Remark 7]) are currently
under investigation to further enhance the performance of the IFGF method. On the
other hand, the coefficients (2.7) are currently evaluated with an accelerated “partial
summation” algorithm as shown in [63, Sec. 10.2].

2.3 HPC basics

The proposed IFGF algorithm, the parallel IFGF algorithm presented in Chapter 4
in particular, is designed for implementation in modern HPC cluster systems. The
present section reviews relevant hardware and software concepts and nomenclature
utilized throughout this thesis; more detailed descriptions and alternative hardware
designs can be found, e.g., in [65–67]. A modern computer cluster consists of
multiple compute nodes. Each node contains its own memory space, and thus the
memory in the cluster is distributed between the nodes. In particular, access tomem-
ory in other compute nodes requires explicit data communication, which is typically
performed via themessage passing interface (MPI) [66, Sec. 8]; the performance of
algorithmic implementations for cluster systems can therefore significantly benefit
from careful engineering of MPI-based inter-process data communications.

Each node typically comprises one or a few multi-core processors, each one of
which, as the name suggests, contains multiple computing cores. The compute
nodes typically are so-called shared memory machines (SMMs), where each core
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within the node can access all of the memory in the node. To efficiently make
use of more than a single core, certain specialized programming techniques are
required, e.g., the Intel Threading Building Blocks (TBB) library, the C++ standard
threading model, MPI, or the OpenMP programming interface. Modern compute
nodes usually follow a non-uniform memory access (NUMA) design (in contrast
to uniform memory access (UMA)), where the access times to the shared memory
depend on the locality of the memory with respect to the multi-core processor
accessing it. This design typically results in one or more NUMA nodes per compute
node, where memory access to other NUMA nodes on the same compute node is
usually significantly slower than access to memory local to the processor. All of the
tests presented in this thesis were conducted on a small cluster consisting of thirty
nodes connected via an InfiniBand interconnect, each one of which contains four
fourteen-core NUMA nodes; additional details concerning the hardware used are
provided in Section 5.1.

On the basis of the functions and synchronization capabilities provided by MPI, a
program can be launched as a set of multiple processes (which are identified in what
follows by their corresponding integer-valued rank within the group of all processes
launched by a given program). One of the main roles of the MPI standard is to
allow the programmer to orchestrate the data communications between the ranks.
Note that, at runtime, an MPI rank can be assigned, or pinned, to various kinds of
hardware units, such as, e.g., a single core, a NUMA node, a complete compute
node, or various combinations of cores and/or nodes.
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C h a p t e r 3

THE INTERPOLATED FACTORED GREEN FUNCTION
METHOD

As discussed in Chapter 1, the IFGF method [68] provides an accelerated algo-
rithm, requiring O(# log #) operations, for the approximate numerical evaluation
of discrete integral operators (cf. Section 1.1) of the form

� (Gℓ) B
#∑
<=1
<≠ℓ

0<� (Gℓ, G<), ℓ = 1, . . . , #, (3.1)

for distinct points Gℓ ∈ Γ on a surface Γ ⊂ R3, and for given complex coefficients
0< ∈ C, where the function � : R3 × R3 → C denotes a Green function for some
partial differential equation (or derivatives thereof, as discussed in Section 1.1),
such as the acoustic Green function (1.8) associated with the Helmholtz equation as
well as those associated with the Laplace, Stokes, and elasticity equations, among
others. In other words, the IFGF method generates approximations �acc(Gℓ) ≈
� (Gℓ), ℓ = 1, . . . , # , of the discrete integral operator operator (3.1) in O(# log #)
operations instead of O(#2). For ease of the notation, in what follows, Γ# B
{G1, . . . , G# } ⊂ Γ denotes the set of surface discretization points. To achieve its
O(# log #) computational complexity, the IFGF method is based on the following
main ideas, which are described in detail in the remainder of this chapter. The first
one of these main ideas concerns the use of a factorization of the Green function �
into a so-called centered factor, which is an easily evaluated common factor, and a
so-called analytic factor, which is under certain assumptions slowly oscillatory and
analytic up to and including infinity, and, thus, easily interpolated (see Sections 3.1-
3.3). Secondly, as a result of the aforementioned factorization of the Green function
inherent in the IFGF method, an octree-based hierarchical partitioning, denoted by
B in what follows, of the surface discretization points Γ# into axis-aligned, equi-
sized, and pairwise disjoint boxes, as described in Section 3.4, is used to facilitate
the discrete operator evaluation (3.1) through certain pairwise interactions of these
boxes. Finally, and most importantly, the pairwise interactions of boxes in the
box-octree structure B is facilitated through the evaluation and accumulation of
the fields emitted by the point sources contained in each box in an iterative and
hierarchical fashion utilizing Chebyshev interpolation. More precisely, the IFGF
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interpolation procedure is a piece-wise Chebyshev interpolation procedure in certain
box-centered spherical coordinate systems, where the interpolation domains are
represented (in real space) by a hierarchy C of spherical cone segments. The details
concerning the definition of these cone segments and the Chebyshev interpolation
performed on them, including a suggested refinement strategy to optimize their sizes
in dependence of their position in the underlying box-octree structure, are presented
in Sections 3.3 and 3.5. After the presentation of these fundamental elements of the
IFGF approach, Section 3.6 summarizes the complete IFGF algorithm, before the
algorithmic complexity of the resulting algorithm is analyzed in Section 3.7.
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3.1 Factorization of the Green function

For the presentation of the IFGF factorization, we first introduce the box, source-
point, and target-point notations we use in what follows. To that end, for given
� > 0 and G = ((G)1, (G)2, (G)3)) ∈ R3, we define an axis aligned box—a Cartesian
product of one-dimensional half-open intervals—as follows.

Definition 4 (Box). Let � > 0 and let G = (G1, G2, G3) ∈ R3. A box �(G, �) centered
at G of size (or side) � > 0 is defined as the Cartesian product of one-dimensional,
half-open intervals of the following form.

�(G, �) B
[
G1 −

�

2
, G1 +

�

2

)
×

[
G2 −

�

2
, G2 +

�

2

)
×

[
G3 −

�

2
, G3 +

�

2

)
.

The radius ℎ of a box �(G, �), in turn, is defined as the largest Euclidean distance
of any point in the box to its center.

ℎ B max
G∈�(G=0,�)

|G | =
√

3
2
�. (3.2)

For a given source box �(G(, �) of side � and centered at a given point G( =
((G()1, (G()2, (G()3)) ∈ R3, we use the enumeration G(1 , . . . , G

(
#(
∈ �(G(, �) ∩ Γ#

(#( ≤ # and, possibly, #( = 0) of all source points G<, < = 1, . . . , # , which
are contained in �(G(, �); the corresponding source coefficients 0< are denoted
by 0(

ℓ
∈ {01, . . . , 0# }, ℓ = 1, . . . , #(. A given set of #) surface target points, at

arbitrary positions outside �(G(, �), are denoted by G)1 , . . . , G
)
#)
∈ Γ# \ �(G(, �).

Then, letting �( (G) denote the field generated at a point G by all point sources
contained in �(G(, �), we will consider, in particular, the problem of evaluation of
the local operator

�( (G)ℓ ) B
#(∑
<=1

0(<� (G)ℓ , G
(
<), ℓ = 1, . . . , #) . (3.3)

A sketch of this setup is presented in Figure 3.1.

To achieve the desired acceleration of the discrete operator (3.1), the IFGF approach
utilizes a certain factorization of the Green function � which leads to efficient
evaluation of the field �( in equation (3.3) by means of numerical methods based on
polynomial interpolation.

The IFGF factorization for G′ in the box �(G(, �) (centered at G() takes the form

� (G, G′) = � (G, G()6( (G, G′). (3.4)



25

Throughout this thesis, the functions � (G, G() and 6( are called the centered factor
and the analytic factor, respectively. Clearly, for a fixed given center G(, the centered
factor depends only on G: it is independent of G′. As shown in Section 3.2, in turn,
the analytic factor is analytic up to and including infinity in the G variable for
each fixed value of G′ (which, in particular, makes 6( (G, G′) slowly oscillatory and
asymptotically constant as a function of G as |G | → ∞), with oscillations as a
function of G that, for G′ ∈ �(G(, �), increase linearly with the box size �.

Using the factorization (3.4), the field �( generated by point sources placed within
the source box �(G(, �) at any point G ∈ R3 may be expressed in the form

�( (G) B
#(∑
<=1

0(<� (G, G(<) = � (G, G()�( (G) where

�( (G) B
#(∑
<=1

0(<6( (G, G(<).
(3.5)

The desired IFGF accelerated evaluation of the operator (3.3) is achieved via inter-
polation of the function �( (G), which, as a linear combination of analytic factors, is
itself analytic at infinity. The singular and oscillatory character of the function �(,
which determine the cost required for its accurate interpolation, can be characterized
in terms of the analytic properties, mentioned above, of the factor 6(. A study of
these analytic and interpolation properties is presented in Sections 3.2 and 3.3.

On the basis of the aforementioned analytic properties the algorithm evaluates all the
sums in equation (3.3) by first obtaining values of the function �( at a small number
% ∈ N of points ?8 ∈ R3, 8 = 1, . . . , %, from which the necessary �( values (at all
the target points G)1 , . . . , G

)
#)

) are rapidly and accurately obtained by interpolation.
At a cost of O(%#( + %#) ) operations, the interpolation-based algorithm yields
useful acceleration provided % � min{#(, #) }. Section 3.6 shows that adequate
utilization of these elementary ideas leads to a multi-level algorithm which applies
the forward map (3.1) for general surfaces at a total cost of O(# log #) operations.
The algorithm and a study of its computational cost are presented in Sections 3.6
and 3.7, respectively.
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Figure 3.1: Two-dimensional illustration of a source box �( containing multiple
source points G′ ∈ Γ# (blue circles) and certain illustrative target points (green
stars). The black wavy lines represent the field �( generated by the point sources in
the box �(.

3.2 Analyticity

In order to analyze the above introduced analytic factor, certain notations and
conventions are introduced. On one hand, for notational simplicity, but without
loss of generality, throughout the remainder of this section it is assumed that the
factorization is centered at the origin, i.e., G( = 0; the extension to the general
G( ≠ 0 case is, of course, straightforward due to the translation invariance of the
Green function under consideration. Incorporating the convention G( = 0, then, for
0 < [ < 1, the following sets denoting the analyticity domain of the analytic factor
are considered in the analysis of the factorization.

Definition 5 (Analyticity domain). Let � = �(0, �) denote an origin-centered box
of side � > 0, as per Definition 4. Let [ > 0. Then, the analyticity domain ��[ of
the analytic factor of a field emitted by the box � is defined as the subset of the set

�[ B {(G, G′) ∈ R3 × R3 : |G′| ≤ [ |G |}

given by
��[ B �[ ∩

(
R3 × �

)
. (3.6)

Clearly, ��[ is the subset of pairs in �[ such that G′ is restricted to a particular box
�(0, �). Theorem 4 below implies that, on the basis of an appropriate change of
variables which adequately accounts for the analyticity of the analytic factor 6( up
to and including infinity, this factor can be accurately evaluated for (G, G′) ∈ ��[
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by means of a straightforward interpolation rule based on an interpolation mesh in
spherical coordinates, which is finite and sparse along the radial direction.

As indicated above, the analytic properties of the factor 6( play a pivotal role in the
proposed algorithm. Under the G( = 0 convention established above, the factors in
equation (3.4) become

� (G, 0) = 4y^ |G |

4c |G | and 6( (G, G′) =
|G |
|G − G′| 4

y^( |G−G ′ |−|G |) . (3.7)

In order to analyze the properties of the factor 6(, we introduce the spherical
coordinate parametrization

x̃(A, \, i) B
©«
A sin \ cos i
A sin \ sin i
A cos \

ª®®®¬ , 0 ≤ A < ∞, 0 ≤ \ ≤ c, 0 ≤ i < 2c, (3.8)

and note that (3.7) may be re-expressed in the form

6( (G, G′) =
1

4c
�� G
A
− G ′

A

�� exp
(
y^A

(����GA − G′A ���� − 1
))
. (3.9)

The effectiveness of the proposed factorization is illustrated in Figures 3.2a, 3.2b, and
3.2c, where the oscillatory character of the analytic factor 6( and the Green function
(1.8) without factorization are compared, as a function of A, for several wavenumbers
^. The slowly-oscillatory character of the factor 6(, even for acoustically large source
boxes �(G(, �) as large as twenty wavelengths _ = 2c/^ (� = 20_) and starting
as close as just 3�/2 away from the center of the source box, is clearly visible in
Figure 3.2c; much faster oscillations are observed in Figure 3.2b, even for source
boxes as small as two wavelengths in size (� = 2_). Only the real part is depicted
in Figures 3.2a, 3.2b, and 3.2c, but, clearly, the imaginary part displays the same
behavior.

In addition to the factorization (3.5), the proposed strategy relies on the use of the
singularity resolving change of variables

B B
ℎ

A
, x(B, \, i) B x̃(A, \, i), (3.10)

where, once again, A = |G | denotes the radius in spherical coordinates and where
ℎ denotes the radius of the source box, as in Definition 4. Using these notations,
equation (3.9) may be re-expressed in the form

6( (G, G′) =
1

4c
�� G
A
− G ′

ℎ
B
�� exp

(
y^A

(����GA − G′ℎ B���� − 1
))
. (3.11)
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(a) Test setup. The Surrogate Source position G ′ gives rise to the fastest possible
oscillations along the Measurement line, among all possible source positions within the
Source Box.

(b) Real part of the Green function � in equation (1.8) (without factorization), along
the Measurement line depicted in Figure 3.2a, for boxes of various acoustic sizes �.

(c) Real part of the analytic factor 6( (equation (3.7)) along the Measurement line
depicted in Figure 3.2a, for boxes of various acoustic sizes �.

Figure 3.2: Surrogate Source factorization test, set up as illustrated in Figure 3.2a.
Figure 3.2c shows that the analytic factor 6( oscillates much more slowly, even for
� = 20_, than the unfactored Green function does for the much smaller values of
� considered in Figure 3.2b.
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Remark 4. While the source point G and its norm A depend on B, the quantity G/A
is independent of A and therefore also of B.

The introduction of the variable B gives rise to several algorithmic advantages, all
of which stem from the analyticity properties of the function 6(—as presented in
Lemma 1 below and Theorem 4 in Section 3.3. Briefly, these results establish that,
for any fixed values � > 0 and [ satisfying 0 < [ < 1, the function 6( is analytic for
(G, G′) ∈ ��[ , with G-derivatives that are bounded up to and including |G | = ∞. As
a result (as shown in Section 3.3) the B change of variables translates the problem
of interpolation of 6( over an infinite A interval into a problem of interpolation of
an analytic function of the variable B over a compact interval in the B variable. The
relevant �-dependent analyticity domains for the function 6( for each fixed value
of � are described in the following lemma.

Lemma 1. Let G′ ∈ �(G(, �) and let G0 = x̃(A0, \0, i0) = x(B0, \0, i0) (B0 = ℎ/A0)
be such that (G0, G

′) ∈ ��[ . Then 6( is an analytic function of G around G0 and also
an analytic function of (B, \, i) around (B0, \0, i0). Further, the function 6( is an
analytic function of (B, \, i) (resp. (A, \, i)) for 0 ≤ \ ≤ c, 0 ≤ i < 2c, and for
B in a neighborhood of B0 = 0 (resp. for A in a neighborhood of A0 = ∞, including
A = A0 = ∞).

Proof. The claimed analyticity of the function 6( around G0 = x(B0, \0, i0) (and,
thus, the analyticity of 6( around (B0, \0, i0)) is immediate since, under the assumed
hypothesis, the quantity ����GA − G′ℎ B���� , (3.12)

does not vanish in a neighborhood of G = G0. Analyticity around B0 = 0 (A0 = ∞)
follows similarly since the quantity (3.12) does not vanish around B = B0 = 0. �

Corollary 1. Let � > 0 be given. Then for all G′ ∈ �(G(, �), the function
6( (x(B, \, i), G′) is an analytic function of (B, \, i) for 0 ≤ B < 1, 0 ≤ \ ≤ c and
0 ≤ i < 2c.

Proof. Take [ ∈ (0, 1). Then, for 0 ≤ B ≤ [, we have (x(B, \, i), G′) ∈ ��[ . The
analyticity for 0 ≤ B ≤ [ follows from Lemma 1, and since [ ∈ (0, 1) is arbitrary,
the lemma follows. �
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For a given G′ ∈ R3, Corollary 1 reduces the problem of interpolation of the function
6( (G, G′) in the G variable to a problem of interpolation of a re-parametrized form
of the function 6( over a bounded domain—provided that (G, G′) ∈ ��[ , or, in other
words, provided that G is separated from G′ by a factor of at least [, for some
[ < 1. In the IFGF algorithm presented in Section 3.6, side-� boxes �(G(, �)
containing sources G′ are considered, with target points G at a distance no less than
� away from �(G(, �). Clearly, a point (G, G′) in such a configuration necessarily
belongs to ��[ with [ =

√
3/3. Importantly, as demonstrated in the following

section, the interpolation quality of the algorithm does not degrade as source boxes
of increasingly large side � are used, as is done in the proposed multi-level IFGF
algorithm (with a single box size at each level), leading to a computing cost per level
which is independent of the level box size �.

3.3 Interpolation procedure

On the basis of the discussion presented in the previous Section 3.2, the present
section concerns the problemof interpolation of the analytic factor 6( in the variables
(B, \, i). For efficiency, piece-wise Chebyshev interpolation (see Section 2.2) in
each one of these variables is used, over interpolation intervals of respective lengths
ΔB, Δ\ and Δi, where, for a certain positive integer =� , angular coordinate intervals
of size

Δ\ = Δi =
c

=�
,

are utilized. Defining

\: B :Δ\ , (: = 0, . . . , =� − 1) and iℓ B ℓΔi, (ℓ = 0, . . . , 2=� − 1),

as well as

�
i

9
B [i 9−1, i 9 ) and

�\8, 9 B


[\=�−1, c] for 8 = =� , 9 = 2=�
(0,Δ\) for 8 = 1, 9 > 1

[\8−1, \8) otherwise,

(3.13)

we thus obtain the mutually disjoint interpolation cones

�̃8, 9 B
{
G = x̃(A, \, i) : A ∈ (0,∞), \ ∈ �\8, 9 , i ∈ �

i

9

}
,

(8 = 1, . . . , =� , 9 = 1, . . . , 2=�),
(3.14)

centered at G( = (0, 0, 0)) .
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Remark 5. Definition (3.14) ensures that the cone segments cover all of R3 (except
for the origin) and are pairwise disjoint, i.e.,⋃

1=1,...,=�
9=1,...,2=�

�̃8, 9 = R
3 \ {0} and

�̃8, 9 ∩ �̃:,; = ∅ for (8, 9) ≠ (:, ;).

The proposed interpolation strategy additionally relies on a number =B ∈ N of
disjoint radial interpolation intervals � B

:
, : = 1, . . . , =B, of sizeΔB = [/=B, within the

IFGF B-variable radial interpolation domain [0, [] (with [ =
√

3/3, see Section 3.2).
Thus, in all, the approach utilizes an overall number #� B =B × =� × 2=� of
interpolation domains

�W B � BW1 × �
\
W2 × �

i
W3 , (3.15)

which we call cone domains, with W = (W1, W2, W3) ∈ {1, . . . , =B} × {1, . . . , =�} ×
{1, . . . , 2=�}. Under the parametrization x in equation (3.10), the cone domains
yield the cone segment sets

�W B {G = x(B, \, i) : (B, \, i) ∈ �W}. (3.16)

Remark 6. By definition, the cone segments are mutually disjoint.

A two-dimensional illustration of the cone domains and associated cone segments
is provided in Figure 3.3.

The desired interpolation strategy then relies on the use of a fixed number % = %2
ang%B

of interpolation points for each cone segment �W, where %ang (resp. %B) denotes the
number of Chebyshev interpolation points per interval used for each angular variable
(resp. for the radial variable B). For each cone segment, the proposed interpolation
approach proceeds by breaking up the problem into a sequence of one-dimensional
Chebyshev interpolation problems of accuracy orders %B and %ang, as described in
Section 2.2, along each one of the three coordinate directions B, \ and i. This
spherical Chebyshev interpolation procedure is described in what follows, and an
associated error estimate is presented which is then used to guide the selection of
cone segment sizes.

The desired error estimate for the nested Chebyshev interpolation procedure within a
cone segment (3.16) (or, more precisely, within the cone domains (3.15)) is provided
by the following theorem.
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Figure 3.3: Schematic two-dimensional illustration of a set of cone domains �W,
together with the associated cone segments �W that result under the parametrization
(3.10). For the sake of simplicity, the illustration shows constant cone-segment
radial sizes (in the A variable), but the actual radial sizes are constant in the B variable
(equation (3.10)), instead. Thus, increasingly large real-space cone segments are
used as the distance of the interpolation cone segments to the origin grows.

Theorem 3. Let � B
%B
, �\
%ang

, and �i
%ang

denote the Chebyshev interpolation operators
of accuracy orders %B in the variable B and %ang in the angular variables \ and i,
over intervals � B, �\ , and �i of lengths ΔB, Δ\ , and Δi in the variables B, \, and
i, respectively. Then, for each arbitrary but fixed point G′ ∈ R3, the error arising
from nested interpolation of the function 6( (x(B, \, i), G′) (cf. equation (3.10)) in
the variables (B, \, i) satisfies the estimate

|6( (x(B, \, i), G′) − �i%ang �
\
%ang

� B%B6( (x(B, \, i), G
′) | ≤

�

[
(ΔB)%B

m%B6(mB%B


∞
+ (Δ\)%ang

m%ang6(m\%ang


∞
+ (Δi)%ang

m%ang6(mi%ang


∞

]
, (3.17)

for some constant � depending only on %B and %ang, where the supremum-norm
expressions are shorthands for the supremum norm defined bym=6(mb=


∞
B sup

B̃∈�B
\̃∈� \
ĩ∈� i

����m=6(mb=
(x( B̃, \̃, ĩ), G′)

����
for b = B, \, or i.
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Proof. The proof is only presented for a double-nested interpolation procedure;
the extension to the triple-nested method is entirely analogous. Suppressing, for
readability, the explicit functional dependence on the variables G and G′, use of the
triangle inequality and the error estimate (2.4) yields

|6( − �\%ang �
B
%B
6( | ≤ | 5 − � B%B6( | + |�

\
%ang

� B%B6( − �
B
%B
6( |

≤ �1(ΔB)%B
m%B6(mB%B


∞
+ �2(Δ\)%ang

m%ang � B%B6(m\%ang


∞
,

where �1 and �2 are constants depending on %B and %ang, respectively. In order to
estimate the second term on the right-hand side in terms of derivatives of 6(, we
utilize equation (2.3) in the shifted arguments corresponding to the B-interpolation
interval (0, 1):

� B%B6( =

%B−1∑
8=0

0B8 (\))8
(
2
B − 0
1 − 0 − 1

)
, (1 = 0 + ΔB).

Differentiation with respect to \ and use of the relations (2.1) and (2.3) then yieldm%ang � B%B6(m\%ang


∞
≤ %B max

8=1,...,%B−1

m%ang0B8m\%ang


∞
≤ �3

m%ang6(m\%ang


∞
,

as it may be checked, for a certain constant �3 depending on %B, by employing the
triangle inequality and the !∞ bound ‖)8‖∞ ≤ 1 (8 ∈ N0 = N ∪ {0}). The more
general error estimate (3.17) follows by a direct extension of this argument to the
triple-nested case, and the proof is thus complete. �

The analysis presented in what follows, including Lemmas 2 through 4 and Theo-
rem 4, yields bounds for the partial derivatives in (3.17) in terms of the acoustic size
^� of the source box �(G(, �). Subsequently, these bounds are used, together with
the error estimate (3.17), to determine suitable choices of the cone domain sizes ΔB,
Δ\ , and Δi, ensuring that the errors resulting from the triple-nested interpolation
process lie below a prescribed error tolerance. Leading to Theorem 4, the next three
lemmas provide estimates, in terms of the box size �, of the =-th order derivatives
(= ∈ N) of certain functions related to 6( (x(B, \, i), G′), with respect to each one of
the variables B, \, and i and every G′ ∈ �(G(, �).

Lemma 2. Under the change of variables G = x(B, \, i) in (3.10), for all = ∈ N and
for either b = \ or b = i, we have

m=

mb=
|G − G′| =

∑ 2(<1, . . . , <=)
|G − G′|2:−1

=∏
9=1

〈
m 9G

mb 9
, G′

〉< 9

,
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where the outer sum is taken over all =-tuples (<1, . . . , <=) ∈ N=0 such that

=∑
9=1

9< 9 = =,

where : B
∑=
8=1 <8, where 2(<1, . . . , <=) ∈ R denote constants independent of G,

G′ and b, and where 〈·, ·〉 denotes the Euclidean inner product on R3.

Proof. The proof follows from Faà di Bruno’s formula [69] applied to 5 (6(G)) =
|G − G′|, where 5 (G) =

√
G and 6(G) = 〈G, G〉 − 2〈G, G′〉 + 〈G′, G′〉. Indeed, noting that

3: 5 (G)
3G:

= 21(:)
1

5 (G)2:−1 ,

for some constant 21(:), and that, since 〈 mGmb , G〉 = 0 for b = \ and b = i,

m86(G(b))
3b8

= 22(8)
〈
m8G

mb8
, G′

〉
,

for some constant 22(8), an application of Faà di Bruno’s formula directly yields the
desired result. �

Lemma 3. Let � > 0 and [ ∈ (0, 1) be given. Then, under the change of variables
G = x(B, \, i) in (3.10), the exponent in the right-hand exponential in (3.7) satisfies

m=

mb=
( |G − G′| − |G |) ≤ � ([, =)�,

for all (G, G′) ∈ ��[ , for all = ∈ N0, and for b = B, b = \ and b = i, where � ([, =)
is a certain real constant that depends on [ and =, but which is independent of �.

Proof. Expressing the exponent in (3.7) in terms of B yields

|G − G′| − |G | = ℎ
B

(����GA − G′ℎ B���� − 1
)
=: ℎ6(B), (3.18)

where our standing assumption G( = 0 and notation |G | = A have been used (so
that, in particular, G/A is independent of A and therefore also independent of B),
and where the angular dependence of the function 6 has been suppressed. Clearly,
6(B) is an analytic function of B for B ∈

[
0, ℎ/|G′|

)
and, thus, since [ < 1, for

B in the compact interval
[
0, [ · ℎ/|G′|

]
. It follows that 6 and each one of its

derivatives with respect to B is uniformly bounded for all B ∈
[
0, [ · ℎ/|G′|

]
and

(as shown by a simple re-examination of the discussion above) for all � and for
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all values of G/A and G′/ℎ under consideration. Since at the point (G, G′) we have
B = ℎ/|G | = |G′|/|G | | · ℎ/|G′ ≤ [ · ℎ/|G′|, using (3.2) once again, the desired b = B
estimate

m=

mB=
(ℎ6(B)) ≤ � ([, =)�,

follows, for some constant � ([, =).

Turning to the angular variables, we only consider the case b = \; the case b = i
can be treated similarly. Using Lemma 2 for b = \, the Cauchy-Schwarz inequality
and the assumption (G, G′) ∈ ��[ , we obtain����m= ( |G − G′| − |G |)m\=

���� = ����m= ( |G − G′|)m\=

����
=

������∑ 2(<1, . . . , <=)
|G − G′|2:−1

=∏
9=1

〈
m 9G

mb 9
, G′

〉< 9

������
≤

∑ |2(<1, . . . , <=) |
|G − G′|2:−1

=∏
9=1

����m 9Gmb 9 ����< 9

|G′|< 9

≤
=∑
:=1

�̂ ([, =) 1
A2:−1 A

: |G′|:

≤ �̃ ([, =) |G′|
≤ � ([, =)�,

where the same notation as in Lemma 2 was used. The constant � ([, =) has been
suitably adjusted. The proof is now complete. �

Lemma 4. Let � > 0 and [ ∈ (0, 1) be given. Then, under the change of variables
G = x(B, \, i) in (3.10), for all (G, G′) ∈ ��[ , for all = ∈ N0, and for b = B, b = \ and
b = i, we have ���� m=mb= 4y^( |G−G ′ |−|G |) ���� ≤ "̃ ([, =) (^�)= ,
where "̃ ([, =) is a certain real constant that depends on [ and =, but which is
independent of �.

Proof. Using Faà di Bruno’s formula [69] yields

m=

mb=
4y^( |G−G

′ |−|G |) =
∑

2(<1, . . . , <=)4y^(|G−G
′ |−|G |)

=∏
9=1

(
y^
m 9 ( |G − G′| − |G |)

mb 9

)< 9

,
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where the sum is taken over all =-tuples (<1, . . . , <=) ∈ N=0 such that

=∑
9=1

9< 9 = =,

and where 2(<1, . . . , <=) are certain constants which depend on<1, . . . , <=. Using
the triangle inequality and Lemma 3 then completes the proof. �

The desired bounds on derivatives of the function 6( are presented in the following
theorem.

Theorem 4. Let � > 0 and [ ∈ (0, 1) be given. Then, under the change of variables
G = x(B, \, i) in (3.10), for all (G, G′) ∈ ��[ , for all = ∈ N0, and for b = B, b = \ and
b = i, we have ����m=6(mb=

���� ≤ " ([, =)max {(^�)=, 1},

where " ([, =) is a certain real constant that depends on [ and =, but which is
independent of �.

Proof. The quotient on the right-hand side of (3.7) may be re-expressed in the form

|G |
|G − G′| =

1�� G
A
− G ′

ℎ
B
�� , (3.19)

where G/A is independent of A and therefore also independent of B. An analyticity
argument similar to the one used in the proof of Lemma 3 shows that this quotient,
as well as each one of its derivatives with respect to B, is uniformly bounded for B
throughout the interval

[
0, [ · ℎ/|G′|

]
, for all � > 0, and for all relevant values of

G/A and G′/ℎ.

In order to obtain the desired estimates, we now utilize Leibniz’ differentiation rule,
which yields����m=6( (G, G′)mb=

���� = ����� =∑
8=0

(
=

8

)
m=−8

mb=−8

(
|G |
|G − G′|

)
m8

mb8

(
4y^( |G−G

′ |−|G |)
)�����

≤ � ([, =)
=∑
8=0

m8

mb8
4y^( |G−G

′ |−|G |) ,

for some constant � ([, =) that depends on [ and =, but which is independent of �.
Applying Lemma 4 and suitably adjusting constants, the result follows. �
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In view of the bound (3.17), Theorem 4 shows that the interpolation error remains
uniformly small provided that the interpolation interval sizes ΔB, Δ\ , and Δi are
held constant for ^� < 1 and are taken to decrease like O(1/(^�)) as the box sizes
^� grow when ^� ≥ 1.

This observation motivates the main strategy in the IFGF algorithm. As the algo-
rithm progresses from one level to the next, the box sizes are doubled, from � to
2�, and the cone segment interpolation interval lengths ΔB, Δ\ , and Δi are either
kept constant or decreased by a factor of 1/2 (depending on whether ^� < 1 or
^� ≥ 1, respectively)—while the interpolation error, at a fixed number of degrees of
freedom per cone segment, remains uniformly bounded. The resulting hierarchy of
boxes and cone segments is embodied in two different but inter-related hierarchical
structures: the box octree and a hierarchy of cone segments. In the box octree, each
box contains eight equi-sized child boxes. In the cone segment hierarchy, similarly,
each cone segment (spanning certain angular and radial intervals) spawns up to eight
child segments. The ^� → ∞ limit then is approached as the box tree structure
is traversed from children to parents and the accompanying cone segment struc-
ture is traversed from parents to children. This hierarchical strategy and associated
structures are described in detail in the following Sections 3.4 and 3.5.

The properties of the proposed interpolation strategy, as implied by Theorem 4 (in
presence of Theorem 3), are illustrated by the blue dash-dot error curves presented
on the upper plot in Figure 3.4. For reference, this figure also includes error curves
corresponding to various related interpolation strategies, as described below. In
this demonstration, the field generated by one thousand sources randomly placed
within a source box �(G(, �) of acoustic size ^� is interpolated to one thousand
points randomly placed within a cone segment of interval lengths ΔB, Δ\ , and Δi
proportional to min{1, 1/(^�)}—which, in accordance with Theorems 3 and 4,
ensures essentially constant errors. All curves in Figure 3.4 report errors relative
to the maximum absolute value of the exact one-thousand source field value within
the relevant cone segment. The target cone segment used is symmetrically located
around the G axis, and it lies within the A range 3�/2 ≤ A ≤ 3�/2+ΔA , for the value

ΔA =
9�ΔB

2
√

3(1 −
√

3ΔB)

corresponding to a given value of ΔB. It is useful to note that, depending on the
values of \ and i, the distance from the closest possible singularity position to the left
endpoint of the interpolation interval could vary from a distance of� to a distance of
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√

3(
√

3−1)
2 � ≈ 0.634�; cf. Figure 3.2a. In all cases the interpolations were produced

bymeans of Chebyshev expansions of degree two and four (with numerical accuracy
of orders %B = 3 and %ang = 5) in the radial and angular directions, respectively.
The (^�-dependent) radial interpolation interval sizes ΔB were selected as follows:
starting with the value ΔB =

√
3/3 for ^� = 10−1, ΔB was varied proportionally

to 1/(^�) (resp. min{1, 1/(^�)}) in the top (resp. bottom) plot as ^� increases.
(Note that the value ΔB =

√
3/3, which corresponds to the infinite-length interval

going from A = 3�/2 to A = ∞, is the maximum possible value of ΔB along an
interval on the G axis whose distance to the source box is not smaller than one box-
size�. In particular, the errors presented for ^� = 10−1 correspond to interpolation,
using a finite number of intervals, along the entire rightward G semi-axis starting at
G = 3�/2.) The corresponding angular interpolation lengths Δ\ = Δi were set to
c/4 for the initial ^� = 10−1 value, and they were then varied like the radial interval
proportionally to 1/(^�) (resp. min{1, 1/(^�)}) in the top (resp. bottom) plot.

As indicated above, the figure shows various interpolation results, including results
for interpolation in the variable A without factorization (thus interpolating the Green
function (1.8) directly), with exponential factorization (factoring only exp (]^ |G |)
and interpolating exp (y^( |G − G′| − |G |)/A), with exponential and denominator fac-
torization (called full factorization, factoring the centered factor interpolating the
analytic factor as in (3.7)), and, finally, for the interpolation in the B variable also
under full factorization. It can be seen that the exponential factorization is beneficial
for the interpolation strategy in the high-frequency regime (^� large) while the fac-
torization of the denominator and the use of the B change of variables is beneficial for
the interpolation in the low-frequency regime (^� small). Importantly, the bottom
plot in Figure 3.4 confirms that, as predicted by theory, constant interval sizes in
all three variables (B, \, i) suffice to ensure a constant error in the low-frequency
regime. Thus, the overall strategy leads to constant errors for 0 ≤ ^� < ∞. Fig-
ure 3.4 also emphasizes the significance of the factorization of the denominator, i.e.,
the removal of the singularity, without which interpolation with significant accuracy
would be only achievable using a prohibitively large number of interpolation points.
And, it also shows that the change of variables from the A variable to the B variable
leads to a selection of interpolation points leading to improved accuracies for small
values of ^�.

Theorem 4 also holds for the special ^ = 0 case of the Green function for the
Laplace equation. In view of its independent importance, the result is presented,
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Figure 3.4: Numerical investigation of Theorem 4 showing the overall interpolation
error for various Green function factorizations and two different cone segment
refinement strategies. Top graph: Errors resulting from use of interpolation intervals
of sizes ΔB, Δ\ and Δi proportional to 1/(^�)—which suffices to capture the
oscillatory behavior for large ^�, but which under-resolves the singularity that
arises for small ^� values, for which the Green function singular point G = G′

is approached. Bottom graph: Errors resulting from use of interpolation interval
sizes ΔB, Δ\ and Δi that remain constant for small ^� (< 1), and which decrease
like 1/(^�) for large ^� (> 1), resulting in essentially uniform accuracy for all
box sizes provided the full IFGF factorization is used. Note that the combined use
of full factorization and interpolation in the B variable, yields the best (essentially
uniform) approximations.
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in Corollary 2, explicitly for the Laplace case, without reference to the Helmholtz
kernel.

Corollary 2. Let �Δ(G, G′) = 1/|G − G′| denote the Green function of the three
dimensional Laplace equation and let 6Δ

(
(G, G′) = |G |/|G − G′| denote the analytic

kernel (cf. equations (3.4) and (3.7) with ^ = 0). Additionally, let � > 0 and
[ ∈ (0, 1) be given. Then, under the change of variables G = x(B, \, i) in (3.10), for
all (G, G′) ∈ ��[ , for all = ∈ N0, and for b = B, b = \ and b = i, we have�����m=6Δ(mb=

����� ≤ " ([, =), (3.20)

where " ([, =) is a certain real constant that depends on [ and =, but which is
independent of �.

Corollary 2 shows that an even simpler and more efficient strategy can be used for
the selection of the cone segment sizes in the Laplace case. Indeed, in view of
Theorem 3, the corollary tells us that (as illustrated in Table 5.8) a constant number
of cone segments per box, independent of the box size �, suffices to maintain a fixed
accuracy as the box size � grows (as is also the case for the Helmholtz equation
for small values of ^). As discussed in Section 3.7 and numerically verified in
Section 5.4, this reduction in complexity leads to significant additional efficiency
for the Laplace case.

Noting that Theorem 4 implies, in particular, that the function 6( and all its partial
derivatives with respect to the variable B are bounded as B→ 0, below in this section
we compare the interpolation properties in the B and A variables, but this time in the
case in which the source box is fixed and B→ 0 (A →∞). To do this we rely in part
on an upper bound on the derivatives of 6( with respect to the variable A, which is
presented in Corollary 3.

Corollary 3. Let� > 0 and [ ∈ (0, 1) be given. Then, under the change of variables
G = x(B, \, i) in (3.10) and for all (G, G′) ∈ ��[ , for all = ∈ N0 we have����m=6(mA=

���� ≤ �A (=, ^, �) 1
A=

∑
<∈�

(
ℎ

A

)<
,

where � denotes a subset of {1, . . . , =} including 1.

Proof. Follows directly using Theorem 4 and applying Faà di Bruno’s formula to
the composition 6( (B(A), \, i). �
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Theorem 3, Theorem 4, and Corollary 3 show that, for any fixed value ^� of the
acoustic source box size, the error arising from interpolation using = interpolation
points in the B variable (resp. the A variable) behaves like (ΔB)= (resp. (ΔA)=/A=+1).
Additionally, as is easily checked, the incrementsΔB andΔA are related by the identity

ΔA =
A2

0ΔB

ℎ − A0ΔB
, (3.21)

where ℎ and A0 denote the source box radius (3.2) and the left endpoint of a given
interpolation interval A0 ≤ A ≤ A0 + ΔA , respectively. These results and estimates
lead to several simple but important conclusions. On one hand, for a given box size
^�, a partition of the B-interpolation interval [0, [] on the basis of a finite number
of equi-sized intervals of fixed size ΔB (on each one of which B-interpolation is to be
performed) provide a natural and essentially optimal methodology for interpolation
of the uniformly analytic function 6( up to the order of accuracy desired. Secondly,
such covering of the B interpolation domain [0, [] by a finite number of intervals
of size ΔB is mapped, via equation (3.10), to a covering of a complete semi-axis in
the A variable and, thus, one of the resulting A intervals must be infinitely large—
leading to large interpolation errors in the A variable. Finally, values of ΔA leading
to constant interpolation error in the A variable necessarily requires use of infinitely
many interpolation intervals and is therefore significantly less efficient than the
proposed B interpolation approach.

Figure 3.5 displays interpolation errors for both the B- and A-interpolation strategies,
for increasing values of the left endpoint A0 and a constant source box onewavelength
in side. The interval ΔB is kept constant and ΔA is taken per equation (3.21). The
rightmost points in Figure 3.5 are close to the singular point A0 = ℎ/ΔB of the right-
hand side in (3.21). The advantages of the B-variable interpolation procedure are
clearly demonstrated by this figure.

3.4 Box octree structure

The above presented factorization of the Green function and the resulting analyticity
properties of the analytic factor in its analyticity domain (see Definition 5), together
with the radial interpolation strategy presented in Section 3.3, give rise to the unique
box-octree structure inherent in the IFGFmethod, as described inwhat follows. For a
comprehensive introduction of this box-cone structure, the boxes and cone segments
in the context of the IFGF method are introduced separately in the present section
and the following Section 3.5, respectively. This separation of the presentation is
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Figure 3.5: Comparison of the errors resulting from A- and B-based interpolation
strategies for the problem of interpolation of the analytic factor 6( in the interval
[A0, A0 + ΔA), as a function of A0. Clearly, the equi-spaced B discretization used is
optimally suited for the interpolation problem at hand.

purely for the sake of readability; in practice, the boxes and cone segments form a
cohesive whole data structure. For details regarding octree structures in general, we
refer to, e.g., [20, Sec. 5.3] or [70].

Based on Definition 4, the box-octree structure underlying the IFGF method can be
defined as a hierarchy of disjoint boxes, as shown in the following Definition 6.

Definition 6 (IFGF box-octree). Let Γ# = {G1, . . . , G# } ⊂ R3, # > 1, be a given set
of distinct surface discretization points. A �-leveled (� ∈ N) octree structure B =
B(�, Γ# ) for the partitioning of Γ# is defined iteratively as follows. Let G1

(1,1,1) ∈ R
3

and �1 > 0 be such that the box �1
(1,1,1) B �(G1

(1,1,1) , �1) (cf. Definition 4) satisfies

Γ# ⊂ �1
(1,1,1) ,

where �1 = min{� > 0 : Γ# ⊂ �(G, �), G ∈ R3}, and G1
(1,1,1) the corresponding

point where this minimum is achieved.

For 3 = 2, . . . , �, and k = (:1, :2, :3) ∈ {1, . . . , 23−1}3 C K3
�
the boxes �3k B

�(G3k , �3) are defined in terms of their sides �3 and their centers G3k , which are, in
turn, defined as follows.
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Figure 3.6: A scatterer, in blue, and three levels of a two-dimensional analog of the
associated box tree, with the highest level box �1

(1,1) in green, four 3 = 2 level boxes
in red, and sixteen 3 = 3 level boxes, in black.

K3
� B {1, . . . , 2

3−1}3,

�3 B
�3−1

2
,

G3k = G
3
(:1,:2,:3) ≔ G1

(1,1,1) + (:1�3 − �1, :2�3 − �1, :3�3 − �1).

With the above notations for the index setK3
�
, the box sides �3 , and the box-centers

G3k , the box-octree B can defined as the set of all boxes �3k, as follows

B B {�3k : 3 = 1, . . . , �, and k ∈ K3
�}.

Note that, by definition, on every level 3, 1 ≤ 3 ≤ �, there are #3
�
B 23−1 boxes

in each coordinate direction for a total of (#3
�
)3 boxes on any level 3 in the octree

structure B.

A two-dimensional illustration of a 3-leveled box-octree is depicted in Figure 3.6.
The above Definition 6 of the box-octree, for a given set of points Γ# , utilizes the
unique axis-aligned minimum bounding-box [71] of Γ# as the initial box to uniquely
define G1

(1,1,1) and �1, and, thus, results in a unique �-leveled octree structure B
for Γ# due to the assumptions that Γ# consists of at least two distinct points. In



44

fact, the usage of the minimum bounding box is solely for the sake of concreteness
in what follows. Any different choice of initial bounding box—e.g., to facilitate a
more advantageous partition of Γ#—may be employed for practical purposes.

The IFGF algorithm iterates through the octree levels, starting from level � (the
smallest box-level) and ending at level 3, to accumulate the field contributions of
point sources within each box on each level. These fields are defined analogously
to (3.3), as follows.

Definition 7. Let B denote a �-leveled box-octree for the surface discretization Γ#
and let �3k ∈ B denote a level-3 box. The field emitted by point sources placed at
the surface discretization points G′ ∈ �3k evaluated at a point G ∈ R3 is denoted by
�3k (G) and defined as follows.

�3k (G) B
∑

G ′∈(�3k∩Γ# )\{G}
0(G′)� (G, G′), (3.22)

where 0(G′) denotes the coefficient in sum (3.1) associated with the point G′.

Similarly, the notion of the analytic factor and the centered factor, as in (3.7), is
suitably extended in the context of the octree structure as follows.

Definition 8 (Centered and analytic factor). Let B denote a box-octree and let
�3k ∈ B denote a box in the box-octree. The IFGF factorization of the Green
function � for G′ ∈ �3k takes the form

� (G, G′) = � (G, G3k)6
3
k (G, G

′). (3.23)

The functions � (·, G3k) and 6
3
k (·, G

′) are called the centered factor and the analytic
factor, respectively.

Using the factorization (3.23), the field �3k in (3.22) generated by point sources placed
within the box �3k at any point G ∈ R3 may be expressed, analogously to (3.5), in the
form

�3k (G) =
∑

G ′∈(�3k∩Γ# )\{G}
0(G′)� (G, G′) = � (G, G3k)�

3
k (G), where

�3k (G) B
∑

G ′∈(�3k∩Γ# )\{G}
0(G′)63k (G, G

′).
(3.24)
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An octree-level consists of all boxes of a given size as per Definition 6 and is
indicated by the superscript in the notation of the boxes and box-centers in the same
definition. The relative position in G, H, and I direction of a box �3k on any level 3
in the octree structure is indicated by the subscript multi-index k.

Typically only a small fraction of the boxes on a given level 3 intersect the discrete
surface Γ# ; the set of all such level-3 relevant boxes is denoted by R3

�
and is

rigorously defined in Definition 9.

Definition 9 (Relevant boxes). Let B = B(�, Γ# ) denote a �-level octree structure
for the surface discretization Γ# . The set of level-3 relevant boxes, R3�, 1 ≤ 3 ≤ �,
of B consists of all level-3 boxes �3k ∈ B with non-empty intersection with the
discrete surface Γ# .

R3� B {�
3
k ∈ B : k ∈ K3

�, �
3
k ∩ Γ# ≠ ∅}.

The set of all relevant boxes in the box-octree structure B is defined as the union
over all sets of level-3 relevant boxes and denoted by R�:

R� B
⋃

3=1,...,�
R3�.

Clearly, for each 3 = 1, . . . , �, out of the (#3
�
)3 level-3 boxes in any given octree

structure B, only O
(
(#3

�
)2

)
are relevant boxes as 3 →∞, since Γ# is a set of points

on a two-dimensional surface Γ—a fact that plays an important role in the evaluation
of the computational cost of the IFGF method. The set N�3k ⊂ R

3
�
of neighboring

boxes of a given box �3k is defined as the set of all relevant level-3 boxes �
3
a such that

a differs from k, in absolute value, by an integer not larger than one, in each one of
the three coordinate directions: ‖a − k‖∞ ≤ 1. The neighboring pointsU�3k ⊂ R

3

of �3k, in turn, is defined as the set of points in the boxes neighboring �3k. These
two concepts are formalized in Definition 10.

Definition 10 (Neighbor boxes). LetB denote a�-leveled box-octree for the surface
discretization Γ# and let �3k ∈ B denote a level-3 box (1 ≤ 3 ≤ �). Let ‖·‖∞ :
R3 → R denote the classical maximum norm. The set of neighbor boxes N�3k and
the associated set of neighbor pointsU�3k of the box �3k are defined as follows.

N�3k B
{
�3a ∈ R3� : ‖a − k‖∞ ≤ 1

}
,

U�3k B
⋃

�∈N�3k

� ∩ Γ# . (3.25)



46

Remark 7. As per the above definition, a box �3k is a neighbor to itself.

An important aspect of the proposed hierarchical algorithm concerns the application
of IFGF interpolation methods to obtain field values for groups of sources within
a box �3k at points farther than one box away (and thus outside the neighborhood
of �3k, where either direct summation (3 = �) or interpolation from (3 + 1)-level
boxes ((� − 1) ≥ 3 ≥ 1) is applied), but that are not sufficiently far from the source
box �3k to be handled by the next level, (3 − 1), in the interpolation hierarchy, and
which must therefore be handled as part of the 3-level interpolation process. The
associated cousin box concept is defined in terms of the hierarchical parent-child
relationship in the octree B, wherein the definitions of parent box P�3k ∈ R

3−1
�

and
the set C�3k ⊂ R

3+1
�

of child boxes of the box �3k are stated in Definitions 11 and 12,
respectively.

Definition 11 (Parent box). Let B denote a �-leveled box-octree for the surface
discretization Γ# and let �3k ∈ B, for 2 ≤ 3 ≤ �. The parent box P�3k of the box
�3k is defined as follows.

P�3k B �3−1
a (a ∈ K3−1

� ),
where �3−1

a is the unique level (3 − 1) box satisfying �3k ⊂ �
3−1
a .

Definition 12 (Child boxes). Let B denote a �-leveled box-octree for the surface
discretization Γ# and let �3k ∈ B, for 1 ≤ 3 ≤ � − 1. The children of the box �3k,
C�3k, are defined as follows.

C�3k B
{
�3+1a ∈ R3+1� : P�3+1a = �3k

}
.

These definitions of the parent box and the child boxes lead to the notion of cousin
boxes of a level-(3+1) box �3+1k (1 ≤ 3 ≤ �−1), namely, non-neighboring (3+1)-
level boxes which are nevertheless children of neighboring 3-level boxes. Similarly
to the neighboring boxes and the neighboring points, the cousin boxes M�3k and
associated cousin pointsV�3k are stated in Definition 13.

Definition 13 (Cousin boxes). Let B denote a �-leveled box-octree for the surface
discretization Γ# and let �3k ∈ B denote a level-3 box (1 ≤ 3 ≤ �). The set of
cousin boxesM�3k and the associated set of cousin points V�3k of the box �3k are
defined as follows.

M�3k B
(
R3� \ N�

3
k

)
∩ CNP�3k,

V�3k B
⋃

�∈M�3k

� ∩ Γ# . (3.26)
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Figure 3.7: Two-dimensional illustration of the neighbors of the fourth-level box
�4
(2,1) . The left panel shows all possible neighbors of the box �4

(2,1) in gray. The
right panel shows the actual neighbor boxes, as in Definition 10, resulting from the
intersection with an exemplary scatterer (blue curve) in gray.

Similarly to the above concept of cousin boxes of a box, the set of level-3 cousin
boxes of a point G ∈ Γ# ,M3 (G), is given by

M3 (G) B
{
�3k ∈ R

3
� : G ∈ V�3k

}
. (3.27)

The concept of cousin boxes is illustrated in Figure 3.8 for a two-dimensional
example, wherein the cousins of the level-4 box �4

(2,1) are shown in gray in the right
panel.

Remark 8. By definition, two side-� cousin boxes are at a distance that is no larger
than 3� from each other. It follows that all the cousin boxes of a given level-3
box are contained in the set of 6 × 6 × 6 level-3 boxes contained in the 3 × 3 × 3
level-(3 − 1) neighbors of the parent box.

In view of Remark 8, the number of cousin boxes of a given box is bounded by the
constant 63 − 33 = 189 (namely, the number of children of the parent’s neighbors
which are not neighbors of the given box), which is independent of the level 3
and the number # of surface discretization points—a fact that is exploited in the
complexity analysis of the IFGF method.
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Figure 3.8: Two-dimensional illustration of the cousins of the fourth-level box �4
(2,1) .

The left panel shows all children of the parent’s neighbors of the box �4
(2,1) in gray.

The right panel shows the actual cousin boxes, as in Definition 13, resulting from
the intersection with an exemplary scatterer (blue curve) in gray.

3.5 Cone segments

On the basis of the discussion presented in the previous Section 3.2, which presented
the analyticity properties of the analytic factor (3.5) in the (B, \, i) coordinate sys-
tem, and the cone segment notion introduced in (3.13)-(3.16), the present section
discusses the (B, \, i) coordinate transformation in the context of the full, hierar-
chical IFGF method in more detail, thus, finalizing the description of the unique
box-cone structure inherent in the IFGF method. As indicated above, the IFGF
interpolation procedure consists of piece-wise interpolation in the (B, \, i) system
over interpolation intervals of size ΔB,3 , Δ\,3 , and Δi,3 , respectively, which depend
on the level 3 in the underlying box-octree structure B.

Definition 14 (Angular interpolation intervals). Let =�,3 ∈ N be a given positive
integer. Let

Δ\,3 = Δi,3 B
c

=�,3
,

and

\:,3 B :Δ\,3 , : = 0, . . . , =�,3 − 1,

iℓ,3 B ℓΔi,3 , ℓ = 0, . . . , 2=�,3 − 1.



49

The angular interpolation intervals are then defined as

�
i;3
9
B [i 9−1,3 , i 9 ,3) and

�
\;3
8, 9
B


[\=�,3−1, c] for 8 = =�,3 , 9 = 2=�,3
(0,Δ\,3) for 8 = 1, 9 > 1

[\8−1,3 , \8,3) otherwise,

(3.28)

The proposed interpolation strategy additionally relies on a number =B,3 ∈ N of
disjoint radial interpolation intervals � B;3

:
.

Definition 15 (Radial interpolation intervals). Let =B,3 ∈ N denote a positive integer
and let [ =

√
3/3 be as in Section 3.2. Further, let

ΔB,3 B
[

=B,3
.

The radial interpolation intervals of size ΔB,3 are then defined as

�
B;3
:
= [(: − 1)ΔB,3 , :ΔB,3) ⊂ [0,

√
3/3], : = 1, . . . , =B,3 .

Thus, in all, the IFGF approach utilizes an overall number #�,3 B =B,3×=�,3×2=�,3
of interpolation domains.

Definition 16 (Interpolation domain). Let =B,3 , =�,3 ∈ N denote positive integers.
Let W = (W1, W2, W3) ∈ {1, . . . , =B,3} × {1, . . . , =�,3} × {1, . . . , 2=�,3} C K3

�
, where

K3
�
denotes the index set of the cone segments. The interpolation domains are

defined as the Cartesian product of the interpolation intervals in the (B, \, i) system.

�3W B � B;3W1 × �
\;3
W2 × �

i;3
W3 ⊂ [0,

√
3/3] × [0, c] × [0, 2c), (3.29)

Note that in Definition 16, the dependency of W on the level 3 was dropped in the
notation, but made explicit with the superscript in the notation of the interpolation
domain �3W .

Since the parametrization x in (3.10) depends on the box size � = �3 , and thus, on
the level 3, the following notation for the 3-level parametrization is used

x3 (B, \, i) = x(
√

3�3
2A

, \, i), (3.30)

which coincides with the expression (3.10) with � = �3 .

Under the parametrization x3 in Equation (3.30), the level-3 interpolation domains
yield the origin-centered real-space cone segments �3W , as defined in what follows.
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Definition 17 (Origin-centered cone segments). Let x3 : [0, [] × [0, c] × [0, 2c) →
R3 denote the parametrization introduced in (3.30). The origin-centered cone
segments are defined as the image of the interpolation domains �3W introduced in
Definition 16 under the parametrization x3:

�3W B {G = x3 (B, \, i) : (B, \, i) ∈ �3W }. (3.31)

A two-dimensional illustration of the interpolation domains and associated cone
segments is provided in Figure 3.3.

While the origin-centered cone segments are not utilized in the IFGF algorithm,
they allow an elegant definition of the actually utilized box-centered cone segments
�3k,W, as follows.

Definition 18 (Box-centered cone segments). Let B denote a �-leveled box-octree
and let �3k ∈ B, 1 ≤ 3 ≤ �, k ∈ K3

�
be a box in the octree structure of side �3 and

center G3k . Further, let �
3
W , W ∈ K3

�
, be the origin-centered cone segments according

to Definition 17. The cone segments �3k,W centered at the box �
3
k are then defined as

follows.
�3k,W B �3W + G3k = {G + G

3
k : G ∈ �3W }.

An illustration of a two-dimensional example of the cone segments and their naming
scheme can be found in Figure 3.9. As indicated above, the box-octree B is
accompanied by a cone segment hierarchy C, which consists of all the cone segments
co-centered with boxes contained in the box-octree B.

Definition 19 (Cone segment hierarchy). Let B denote a �-leveled box-octree for
the surface discretization Γ# . Let =�,3 , =B,3 ∈ N be given for 1 ≤ 3 ≤ �, and
let the index set K3

�
and K3

�
be as in Definitions 6 and 16, respectively. The cone

segment hierarchy C is defined as the set of all box-centered cone segments (cf.
Definition 18):

C B {�3k,W : 1 ≤ 3 ≤ �, k ∈ K3
�, W ∈ K

3
�}.

As discussed in Section 3.1, the cone segments �3k;W, which are part of the IFGF
interpolation strategy, are used to effect piece-wise Chebyshev interpolation in the
spherical coordinate system (B, \, i). The interpolation approach, which is based on
the use of discrete Chebyshev expansions, relies on the use of a set X�3k;W for each
relevant cone segment �3k;W containing % = %B × (%ang)2 Chebyshev interpolation
points for all k ∈ K3

�
and W ∈ K3

�
, 3 = 1, . . . , �:
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Figure 3.9: Two-dimensional illustrative sketch of the naming scheme used for
box-centered cone segments �3k;W (based on the level-3 box �

3
(1,1)).

Definition 20 (Interpolation points). Let B = B(�, Γ# ) denote a box-octree with
cone segment hierarchy C. Further, let �3k;W ∈ C and let x3 be the level-3
parametrization introduced in (3.30) and let %B, %ang ∈ N. The number % =

%B × %ang × %ang Chebyshev interpolation points associated with �3k are given as
follows.

X�3k;W = {G ∈ �
3
k;W : G = x3 (B: , \8, i 9 ) + G3k ,

1 ≤ : ≤ %B, 1 ≤ 8 ≤ %ang, 1 ≤ 9 ≤ %ang},
(3.32)

where B: , \8 and i 9 denote Chebyshev nodes in the intervals � B;3W1 , �
\;3
W2,W3 and �

i;3
W3 ,

respectively, and where G3k denotes the center of the box �3k.

A two-dimensional illustration of 3 × 3 Chebyshev interpolation points within a
single cone segment can be found in Figure 3.10.

Clearly, per Definition 18, cone segments are closely related to the box from which
they originate. This relation is emphasized by the following concept of co-centered
boxes and cone segments.

Definition 21 (co-centered boxes and cone segments). A box �3k and a cone segment
�3k,W are said to be co-centered if the cone segment is centered at the box center G

3
k ,

as per Definition 18. Note that co-centered structures share the same superscript 3
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Figure 3.10: Two-dimensional illustration of 3 × 3 Chebyshev interpolation points
associated with the cone segment �3

(1,1);(2,2) in Figure 3.9.

and subscript multi-index k. The unique relevant level-3 box �3k co-centered with
the relevant level-3 cone segment �3k;W is given by

R��3k;W B �3k .

Further, two cone segments�1, �2 ∈ C are called co-centered if they are co-centered
with the same box, i.e., if R��1 = R��2.

Further, analogously to the relevant boxes in the underlying box-octreeB, to achieve
the desired O(# log #) algorithmic complexity, the IFGF method only considers
so-called relevant cone segments R3

�
on each level 3 of the octree structure, i.e.,

cone segments that, in some way, contribute to the computation of the result. These
relevant cone segments are defined as follows.

Definition 22 (Relevant cone segment). Let B = B(�, Γ# ) denote a �-leveled
box-octree for the surface discretization Γ# . The relevant cone segments R��3k
co-centered with a relevant box �3k ∈ R� are given by

R��3k B ∅, 3 = 1, 2,

R��3k B
{
�3k;W : W ∈ K3

� , �
3
k;W ∩V�

3
k ∩ Γ# ≠ ∅ or

�3k;W ∩
⋃

�∈R�P�3k

X� ≠ ∅
}
, 3 ≥ 3.
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Note that the set of relevant cone segments of a non-relevant box is defined as the
empty set. The set of all level-3 relevant cone segments, R3

�
, is further defined as

the union of all relevant level-3 cone segments

R3� B
⋃
�∈R3

�

R��.

Finally, the set of all relevant cone segments, R� , is taken as the union of the level-3
relevant cone segments over all levels in the box-octree structure

R� B
⋃

3=1,...,�
R3� .

Remark 9. It is important to note that, owing to the placement of the discretization
points Γ# on a two-dimensional surface Γ in three-dimensional space, and due
to the cone segment refinement strategy discussed above, the number of relevant
boxes is reduced by a factor of 1/4 as the level is advanced from level (3 + 1) to
level 3 (at least, asymptotically as 3 → ∞). Similarly, under the cone segment
refinement strategy proposed in view of Theorem 4, the overall number of relevant
cone segments per box is increased by a factor of four as the box size is doubled
(in the high-frequency regime), so that the total number of relevant cone segments
remains essentially constant: |R3

�
| ∼ |R3+1

�
| for all 3 = 1, . . . , � − 1, where |R3

�
|

denotes the total number of relevant cone segments on level 3.

Unlike the box partitioning process, which starts from a single box and proceeds
from one level to the next by subdividing each parent box into 2 × 2 × 2 = 8 child
boxes (with refinement factors equal to two in each one of the Cartesian coordinate
directions, resulting in a number 83−1 boxes at level 3), the cone segment partitioning
approach proceeds iteratively upwards the tree, starting from the two 3 = (� + 1)
initial cone domains

��+1(1,1,1) = [0,
√

3/3] × [0, c] × [0, c) and

��+1(1,1,2) = [0,
√

3/3] × [0, c] × [c, 2c).

(The initial cone domains are only introduced as the initiators of the partitioning
process; actual interpolations are only performed from cone domains �3W with � ≥
3 ≥ 1.) Thus, starting at level 3 = � and moving inductively downward to 3 = 1,
the cone domains at level 3 are obtained, from those at level (3 + 1), by refining
each level-(3 + 1) cone domain by level-dependent refinement factors 03 , i.e., the
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number of cone segments in radial and angular directions from one level to the next
is taken as =B,3−1 = =B,3/03 and =�,3−1 = =�,3/03 . As discussed in Section 3.3, the
refinement factors are taken to satisfy 03 = 1 or 03 = 2 for � ≥ 3 ≥ 2, but the
initial refinement value 0�+1 is an arbitrary positive integer value.

Remark 10. As indicated later in this thesis, in Chapter 5, the initial refinement
values are chosen to achieve 1 × 2 × 4 cone segments in the B, \ and i variables,
respectively. These values were empirically determined and, together with a suitable
choice of the number of levels �, yield good performance for the targeted 10−3

accuracy shown in the numerical tests in this thesis.

After the computation of the values =B,3 and =�,3 , for 3 = �, . . . , 3, the algorithm
proceeds by determining the relevant cone segments in a downward pass starting
from level 3 = 3 to level 3 = �, according to Definition 22. As described above,
the resulting hierarchy of boxes and cone segments is embodied in two different
but inter-related hierarchical structures: the box octree B and a hierarchy of cone
segments C. In the box octree each box contains eight equi-sized child boxes. In
the cone segment hierarchy, similarly, each cone segment (spanning certain angular
and radial intervals) spawns up to eight child segments. The ^� → ∞ limit then
is approached as the box tree structure is traversed from children to parents (for a
sufficiently large number � of levels in the box octree) and the accompanying cone
segment structure is traversed from parents to children. This hierarchical strategy
and associated structures are described in more in detail in Sections 3.3 and 3.6.

A two-dimensional multi-level setup of the cone segments with a refinement factor
03 = 2 and the effect of the parametrization is illustrated in Figure 3.11a. Fig-
ure 3.11b, in turn, depicts a two-dimensional sketch of the hierarchical relation of
cone segments centered at a box �3k and its parent box P�3k.

3.6 The IFGF algorithm

The IFGF algorithm consists of two main components, namely, precomputation and
operator evaluation. The precomputation stage, which is typically performed only
once prior to a series of operator evaluations (that may be required, e.g., as part of
an iterative linear-algebra solver for a discrete operator equation), initializes the box
octree B and cone structure C and, in particular, it flags the relevant boxes R� and
cone segments R� . The relevant boxes at each level 3 (1 ≤ 3 ≤ �) are determined,
at a cost of O(#) operations, by evaluation of the integer parts of the quotients of
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(a) Two-dimensional illustration of themulti-level cone domains �3W and origin-centered
cone segments �3W for two subsequent levels, shown in black and red, respectively.

(b) Two-dimensional illustration of box-centered cone segments, namely, a single �3k -
centered cone segment at level 3 (in red) and the four (eight in three dimensions)
corresponding P�3k -centered refined child cone segments at level 3 − 1 depicted (in
black).

Figure 3.11: Two-dimensional illustration of the hierarchical cone domain structure
in (B, \) space, and corresponding origin-centered and box-centered cone segments.
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the coordinates of each point G ∈ Γ# by the level-3 box-size �3—resulting in an
overall cost of O(# log #) operations for the determination of the relevant boxes at
all � = O(log #) levels. Turning to the determination of relevant cone segments,
we first note that, since there are no cousin boxes for any box in either level 3 = 1
(there is only one box in this level) or level 3 = 2 (all boxes are neighbors in this
level), by Definition 22, there are also no relevant cone segments in levels 3 = 1
and 3 = 2. To determine the relevant cone segments at level 3 = 3, in turn, the
algorithm loops over all relevant boxes �3

k ∈ R
3
�
, and then over all cousin target

points G ∈ Γ# ∩ V�3
k of �3

k, and it labels as a relevant cone segment the unique
cone segment which contains G. (Noting that, per Definition 18, the cone segments
associated with a given relevant box are mutually disjoint, and, consequently, the
determination of the cone segmentwhich contains the cousin point G is accomplished
at O(1) cost by means of simple arithmetic operations in spherical coordinates.) For
the consecutive levels 3 = 4, . . . , �, the same procedure as for level 3 = 3 is used
to determine the relevant cone segments arising from cousin points. In contrast to
level 3 = 3, however, for levels 3 = 4, . . . , � the relevant cone segments R�P�3k
associated with the parent box P�3k ∈ R

3−1
�

of a level-3 relevant box �3k ∈ R
3
�

also play a role in the determination of the relevant cone segments of the box �3k.
More precisely, for 3 ≥ 4 the algorithm additionally loops over all relevant cone
segments � ∈ R�P�3k centered at the parent box and all associated interpolation
points G ∈ X� and, as with the cousin points, flags as relevant the unique cone
segment �3k associated with the box �3k that includes the interpolation point G (cf.
Definition 22).

Once the box and cone segment structures B and C have been initialized, and
the corresponding sets of relevant boxes R� and relevant cone segments R� have
been determined, the IFGF algorithm proceeds to the operator evaluation stage. The
algorithm thus starts at the initial level � by evaluating directly the expression (3.24)
with 3 = � for the analytic factor ��k (which contains contributions from all point
sources contained in ��k ) for all level-� relevant boxes ��k ∈ R

�
�
at all the spherical-

coordinate interpolation points G ∈ X��k;W (Definition 20) of all associated relevant
cone segments ��k;W ∈ R��

�
k co-centered with ��k . All the associated level-�

spherical-coordinate interpolation polynomials �%��k;W of degree (% − 1) are then
obtained through a direct computation of the coefficients (2.7). The stage � of
the algorithm continues by using those level-� interpolants to evaluate the analytic
factor ��k (G) for all level-� relevant boxes ��k through evaluation of the interpolants
�%�

�
k;W (G), after which the field values �

�
k (G) are generated via multiplication by the
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centered factor at (i) All cousin target points G ∈ Γ# ∩V��k , and (ii) All parent level
interpolation points G ∈ X��−1

k̃;W̃
for all ��−1

k̃;W̃
∈ R�−1

�
. Finally, the stage � of the

algorithm is completed with the generation of the level-(�−1) interpolants �%��−1
k̃;W̃

from these point values at the level-(� − 1) interpolation points X��−1
k̃;W̃

by dividing
them by the corresponding level-(� − 1) centered factor and utilization of (2.7).

Note that, under the cousin condition G ∈ Γ# ∩ V��k , the variable B takes values
on the compact subset [0, [] ([ =

√
3/3 < 1) of the analyticity domain 0 ≤ B <

1 guaranteed by Corollary 1, and, thus, the error-control estimates provided in
Theorem 4 guarantee that the required accuracy tolerance is met at the cousin-point
interpolation step. Additionally, each cousin target point G ∈ Γ# ∩V��k lies within
exactly one relevant cone segment ��k;W ∈ R��

�
k . It follows that the evaluation of

the analytic factors (3.24) at a point G for all source boxes ��k for which G is a level-�
cousin is an O(1) operation—since each surface discretization point G ∈ Γ# is a
cousin point for no more than 189 = 63 − 33 boxes (according to Definition 13 and
the explanation following it). Therefore, the evaluation of analytic-factor cousin-box
contributions at all # surface discretization points requires O(#) operations. This
completes the level-� portion of the IFGF algorithm.

At the completion of the level-� stage the field ��k (G) generated by each relevant box
��k has been evaluated at all cousin surface discretization points G ∈ Γ# ∩V��k , but
field values at surface points farther away from sources, G ∈ Γ# \

(
U��k ∪V�

�
k
)
,

still need to be obtained; these are produced at stages 3 = � − 1, . . . , 3. (The
evaluation process is indeed completed at level 3 = 3 since by construction, we have
U�3

k ∪ V�
3
k ⊃ Γ# for any k ∈ K3

�
.) In the same manner as the stage �, for each

relevant box �3k ∈ R
3
�
, the level-3 stage of the algorithm ((�−1) ≥ 3 ≥ 3) proceeds

by utilizing the previously (in the level-3 + 1 stage) calculated level-3 spherical-
coordinate interpolants �%�3k;W for each one of the level-3 relevant boxes �3k ∈
C�3−1

k̃
, to evaluate the analytic factor �3−1

k̃
(G) generated by sources containedwithin

�3−1
k̃

at all points G in all the setsX�3−1
k̃;W̃

of spherical-coordinate interpolation points
associated with parent-level relevant cone segments �3−1

k̃;W̃
∈ R��3−1

k̃
emanating

from �3−1
k̃

. These point values are subsequently used to generate the level-(3 − 1)
Chebyshev interpolants through evaluation of the sums (2.7). The level-3 stage is
then completed by using the necessary level-3 interpolants �%�3k;W to evaluate, for
all level-3 relevant boxes �3k, the analytic factor �

3
k (G) and, by multiplication with

the centered factor, the field �3k (G), at all cousin target points G ∈ Γ# ∩ V�3k. As
in the level � case, these level-3 interpolations are performed at a cost of O(#)
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operations for all surface discretization points—since, as in the level-� case, each
surface discretization point (i) Is a cousin target point of O(1) boxes, and (ii) Is
contained within one cone segment per cousin box. Performing these steps for all
stages 3 = �, . . . 3 evaluates all fields ��k , k ∈ K�

�
, at all points G ∈ Γ# \ U��k not

included in the neighbors of ��k . Hence, for a full discrete operator evaluation(3.1),
the evaluation of the fields ��k (G) at level-� neighboring points G ∈ U��k is still
missing at this point. These evaluations are performed directly in the present context
without any special considerations at a cost of O(#) operations. This completes the
algorithm.

Remark 11. For full solver implementations, where the singularity cannot be re-
moved, as in (3.1), specialized algorithms (e.g., [52]) are required to resolve the
singularities.

As indicated in the Introduction, Section 1.2, the IFGF method does not require
a downward pass through the box tree structure—of the kind required by FMM
approaches—to evaluate the field at the surface discretization points. Instead, as
indicated above, in the IFGF algorithm the surface-point evaluation is performed as
part of a single (upward) pass through the tree structure, with increasing box sizes
�3 and decreasing values of 3, as the interpolating polynomials associated with
the various relevant cone segments are evaluated at cousin surface points. Thus,
the IFGF approach aggregates contributions arising from large numbers of point
sources, but, unlike the FMM, it does so using large number of interpolants of a
low (and fixed) degree over decreasing angular and radial spans, instead of using
expansions of increasingly large order over fixed angular and radial spans.

It is important to note that, in order to achieve the desired acceleration, the algo-
rithm evaluates analytic factors �3k (G) arising from a level-3 box �3k, whether at
interpolation points G in the subsequent level, or for cousin surface discretization
points G, by relying on interpolation based on (previously computed) interpolation
polynomials associated with the (3 + 1)-level relevant children boxes of �3k, instead
of directly evaluating �3k (G) using equation (3.24). In particular, all interpolation
points within relevant cone segments on level 3 are also targets of the interpolation
performed on level (3 +1). Evaluation of interpolant at surface discretization points
G ∈ Γ# , on the other hand, are restricted to cousin surface points: evaluation at all
points farther away are deferred to subsequent larger-box stages of the algorithm.
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Of course, the proposed interpolation strategy requires the creation, for each level-3
relevant box �3k, of all level-3 cone segments and interpolants necessary to cover
both the cousin surface discretization points as well as all of the interpolation points
in the relevant cone segments on level (3 − 1). We emphasize that the interpolation
onto interpolation points requires a re-centering procedure consisting of multipli-
cation by the level 3 centered factors, and division by corresponding level-(3 − 1)
centered factors (cf. equation (3.24)). We note that, in particular, this re-centering
procedure (whose need arises as a result of the algorithm’s reliance on the coordi-
nate transformation (3.30) but re-centered at the 3-level cube centers for varying
values of 3) causes the set of the children cone segments not to be geometrically
contained within the corresponding parent cone segment (cf. Figure 3.11b). The
procedure of interpolation onto interpolation points, which is, in fact, an iterated
Chebyshev interpolation method, results only in an error accumulation—due to the
well-conditioned nature of the Chebyshev transform—proportional to the number
� of levels in the octree structure. Thus, based on the relation � = O(log #), the
overall error scales proportional to log # as the problem size # is increased.

Using the notation described throughout this thesis, the IFGF algorithm described
above is summarized in its entirety in what follows.

• Initialization of relevant boxes and relevant cone segments.

– Determine the sets R3
�
and R3

�
for all 3 = 1, . . . , �.

• Level �: Start the operator evaluation stage.

– For every �-level box ��k ∈ R
�
�
evaluate the field ��k (G) generated by

point sources within ��k at all neighboring surface discretization points
G ∈ U��k by direct evaluation of equation (3.24).

– For every �-level box ��k ∈ R
�
�
evaluate the analytic factor ��k (G) at

all interpolation points G ∈ X��k;W for all �
�
k;W ∈ R��

�
k and generate the

interpolants �%�k;W.

• For levels 3 = �, . . . , 3.

– For every every box �3k evaluate the field �
3
k (G) (equation (3.24)) at every

surface discretization point G within the cousin boxes of �3k, G ∈ V�
3
k,

by evaluating the interpolants �%�3k;W and multiplying the result by the
centered factor � (G, G3k).
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– For every every box �3k determine the parent box �3−1
j = P�3k and,

by way of interpolation of the analytic factor �3k through the evalu-
ation of the interpolant �%�3k;W and re-centering by the smooth factor
� (G, G3k)/� (G, G

3−1
j ), obtain the values of the parent-box analytic factors

�3−1
j at all level-(3 − 1) interpolation points corresponding to �3−1

j —
that is to say, at all points G ∈ X�3−1

j;W for all �3−1
j;W ∈ R��

3−1
j (Note: the

contributions of all the children of �3−1
j need to be accumulated at this

step.). Finally, generate the parent level interpolants �%�3−1
j;W from these

point values.

The corresponding pseudocode, which illustrates the discrete operator evaluation
without the precomputation stage and without the singular interactions to level-�
neighbors, is presented in Algorithm 2.

For a concise description of the overall method and the parallelization strategy pre-
sented in the following Chapter 4, the operator evaluation stage of the IFGF method
is split into three parts. First, the level-� evaluation of the field at the interpolation
points and the subsequent generation of the first set of interpolants on level �. This
part of the algorithm is called in what follows the LevelDEvaluations and summa-
rized in Algorithm 3. Secondly, the so-called level-3 dependent Interpolation(3)
which denotes the part of the algorithm responsible for interpolation of the fields �3k
back to the cousin surface discretization points. It is summarized in Algorithm 4.
And, finally, the level-3 dependent Propagation(3), which, as the names suggests,
propagates the interpolants upwards in the box octree structure and generates the
parent level interpolants. The Propagation function is summarized in Algorithm 5.
Utilizing these three functions, Algorithm 2 may be stated in a shortened form as
Algorithm 6. A visual representation of this shortened algorithm is displayed in
Figure 3.12, which, in contrast to the pseudocode, also includes the level-� neighbor
interactions represented by the LevelDSingularInteractions function in that figure.
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Algorithm 2 IFGF Method
1: \\Direct evaluations on the lowest level.
2: for ��k ∈ R� do
3: for ��k;W ∈ R��

�
k do ⊲ Evaluate � at all relevant interpolation points

4: Evaluate and store ��k (X�
�
k;W)

5: Generate interpolant �%��k;W
6: end for
7: end for
8:
9: \\Interpolation onto surface discretization points and parent interpolation points.
10: for 3 = �, . . . , 3 do
11: for �3k ∈ R� do
12: for G ∈ V�3k do ⊲ Interpolate at cousin surface points
13: Determine �3k;U s.t. G ∈ �

3
k;U

14: Evaluate and add to result �%�3k;U (G) × � (G, G
3
k)

15: end for
16: if 3 > 3 then ⊲ Evaluate � on parent interpolation points
17: Determine parent �3−1

j = P�3k
18: for �3−1

j;W ∈ R��
3−1
j do

19: for G ∈ X�3−1
j;W do

20: Determine �3k;U s.t. G ∈ �
3
k;U

21: Evaluate and add �%�3k;U (G) × � (G, G
3
k)/� (G, G

3−1
j )

22: end for
23: end for
24: end if
25: end for ⊲ Generate interpolants on parent level
26: for �3−1

j ∈ R� do
27: for �3−1

j;W ∈ R��
3−1
j do

28: Generate interpolant �%�3−1
j;W

29: end for
30: end for
31: end for
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Algorithm 3 LevelDEvaluations
1: for ��k ∈ R� do
2: for ��k;W ∈ R��

�
k do

3: Evaluate and store ��k (X�
�
k;W)

4: Generate interpolant �%��k;W
5: end for
6: end for

Algorithm 4 Interpolation(3)
1: for �3k ∈ R� do
2: for G ∈ V�3k do
3: Determine �3k;U s.t. G ∈ �

3
k;U

4: Evaluate and add to result �%�3k;U (G) × � (G, G
3
k)

5: end for
6: end for

Algorithm 5 Propagation(3)
1: for �3k ∈ R� do
2: Determine parent �3−1

j = P�3k
3: for �3−1

j;W ∈ R��
3−1
j do

4: for G ∈ X�3−1
j;W do

5: Determine �3k;U s.t. G ∈ �
3
k;U

6: Evaluate and add �%�3k;U (G) × � (G, G
3
k)/� (G, G

3−1
j )

7: end for
8: end for
9: end for
10: for �3−1

j ∈ R� do
11: for �3−1

j;W ∈ R��
3−1
j do

12: Generate interpolant �%�3−1
j;W

13: end for
14: end for

3.7 Complexity analysis

Under the assumption that the wavenumber ^ does not grow faster than O(
√
#),

which is natural in the surface scattering context assumed in this thesis, we show
in what follows that the IFGF Algorithm 2 runs at an asymptotic computational
cost of O(# log #) operations. The complexity estimates presented in this section
incorporate the fundamental assumptions inherent throughout this thesis that fixed
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Algorithm 6 IFGF Method
1: LevelDEvaluations()
2:
3: for 3 = �, . . . , 3 do
4: Interpolation(d)
5: if 3 > 3 then
6: Propagation(d)
7: end if
8: end for

Figure 3.12: Visual representation of the IFGF algorithm, outlined in Algorithm 2,
and also expressed in Algorithm 6 in terms of three fundamental functions called
LevelDEvaluations, Propagation and Interpolation. Starting from the given coef-
ficients 01, . . . , 0# in equation (3.1), the LevelDEvaluations function generates the
first set of interpolants on level �. The Interpolation function interpolates to the
surface discretization points and the Propagation function facilitates the upwards
traversal of the octree structure. Although they are not part of the IFGF algo-
rithm, the interactions between level-� neighbor boxes are represented here by the
LevelDSingularInteractions function. Note that, unlike other acceleration methods
such as the FMM, contributions to the operator output are made at every level, and
without a requirement of a downward pass over the octree.

interpolation orders %B and %ang, and, thus, fixed numbers % of interpolation points
per cone segment, are utilized.

For a given choice of interpolation orders %B and %ang, the algorithm is completely
determined once the number � of levels and the numbers =B,� and =�,� of level-�
radial and angular interpolation intervals are selected. For a particular configuration,
the parameters �, =B,� and =�,� should be chosen in such a way that the overall
computational cost is minimized while meeting a given accuracy requirement. An
increasing number � of levels reduces the cost of the direct neighbor-evaluations
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by performing more of them via interpolation to cousin boxes—which increases
the cost of that particular part of the algorithm. The choice of �, =B,� and =�,�
should therefore be such that the overall cost of these two steps is minimized while
meeting the prescribed accuracy—thus achieving optimal runtime for the overall
IFGF method. Note that these selections imply that, for bounded values of =B,�
and =�,� (e.g., we consistently use =B,� = 1 and =�,� = 2 in all of our numerical
examples) it follows that � = O(log #)—since, as it can be easily checked, e.g.,
increasing # → 4# and � → � + 1 maintains the aforementioned optimality of
the choice of the parameter �. In sum, the IFGF algorithm satisfies the following
asymptotics as ^ → ∞: ^2 = O(#), � = O(log #), |R���k | = O(1) (for every
��k ∈ R

�
�
) and |R�

�
| = O(#).

The complexity of the IFGF algorithm equals the number of arithmetic operations
performed in Algorithm 2. To evaluate this complexity, we first consider the cost
of the level � specific evaluations performed in the “for” loop starting in Line 2.
This loop iterates for a total of O(#) times. The inner loop starting in Line 3, in
turn, performs O(1) iterations. Further, the evaluations of the field in Line 4 and the
subsequent generation of the interpolants in Line 5 require O(1) operations for each
cone segment. In total this yields an algorithmic complexity of O(#) operations
for the LevelDEvaluations stage of the algorithm.

We consider next the section of the algorithm contained in the loop starting in
Line 10, which iterates O(log #) times (since � ∼ log #). The loop in Line 11, in
turn, iteratesO(#/4�−3) times, since the number of relevant boxes is asymptotically
decreased by a factor of 1/4 as the algorithm progresses from a given level 3 to the
subsequent level 3−1. Similarly, the loop in Line 12 performs O(4�−3) iterations—
since, as the algorithm progresses from level 3 to level 3−1, the side � of the cousin
boxes increases by a factor of two, and thus, the number of cousin discrete surface
points for each relevant box increases by a factor of four. The interpolation procedure
in Line 14, finally, is an O(1) operation since each point G lies in exactly one cone
segment associated with a given box �3k (cf. Definition 18 of the cone segments and
the previous discussion in Section 3.6) and the interpolation therefore only requires
the evaluation of a single fixed order Chebyshev interpolant. A similar count as for
the loop in Line 12 holds for the loop in Line 18 which is also run O(4�−3) times
since, going from a level 3 to the parent level 3 − 1, the number of relevant cone
segments per box increases by a factor four. The “for” loop in Line 19 is performed
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O(1) times since the number of interpolation points per cone segment is constant.
Altogether, this yields the desired O(# log #) algorithmic complexity.

In the particular Laplace case ^ = 0, the cost of the algorithm is still O(# log #)
operations, in view of the O(# log #) cost required by the interpolation to surface
points. But owing to the reduced cost of the procedure of interpolation to parent-
level interpolation points, which results as a constant number of cone segments per
box suffices for ^�3 < 1 (cf. Section 3.3), the overall ^ = 0 IFGF algorithm is
significantly faster than it is for cases in which ^�3 > 1 for some levels 3. In fact, it
is expected that an algorithmic complexity of O(#) operations should be achievable
by a suitable modification of algorithm in the Laplace case ^ = 0, but this topic is
not explored in this thesis at any length.

Finally, we consider the algorithmic complexity of the precomputation stage. Ac-
cording to the first paragraph in Section 3.6, the algorithm corresponding to the
determination of relevant cone segments for a single level is executed at a comput-
ing cost of O(#) operations. It follows that the full precomputation stage runs at
O(# log #) operations, since the relevant cone segments have to be determined on
each and level and the number of levels follows � = O(log #).
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C h a p t e r 4

MASSIVELY PARALLEL IFGF METHOD

The IFGF parallelization scheme proposed in this thesis [72] relies on the use of
a hybrid MPI-OpenMP approach. As detailed in Section 4.2, the MPI interface
plays two distinct roles in the proposed scheme: it is used to 1) enable distributed-
memory parallelization across compute nodes, and 2) in the particular case in which
MPI ranks are pinned to NUMA nodes (non-uniform memory access), to distribute
work and handle memory access across NUMA nodes within each compute node.
Additional details concerning the architecture of the computer used, and, in partic-
ular, NUMA nodes, can be found in Sections 5.1 and 2.3. The strategy in point 2)
guarantees that memory held by a certain MPI rank is stored within a single NUMA
node and can therefore be accessed quickly by all cores within the NUMA node.
Moreover, in case 2), access to memory in a different NUMA node within the same
compute node is algorithmically effected throughMPI in the same manner as access
to memory in a different compute node.

The OpenMP parallelization, described in Section 4.1, is used to further distribute
thework assigned to eachMPI rank. Hence, in the specific hardware implementation
demonstrated in this thesis (which is based on the use of compute nodes containing
four fourteen-core NUMA nodes), typically four intra-node MPI ranks are used per
compute node, each pinned to a single NUMA node, each one of which spawns
fourteen OpenMP threads—which, according to our experiments, leads to the best
performance achievable without the adverse impact (on, e.g., code complexity,
memory requirements, or communication) entailed in pure MPI parallelism within
each node. A general discussion on the performance of hybrid MPI-OpenMP
approaches can be found in [73–75].
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4.1 OpenMP parallelization

Before introducing the proposed OpenMP parallelization scheme, we briefly con-
sider a straightforward OpenMP parallelization strategy which we do not recom-
mend, but which we present for reference. This straightforward and easily im-
plemented strategy results by simply implementing the algorithm depicted in Fig-
ure 3.12 by assigning, at each level 3, the work associated with groups of relevant
boxes to various OpenMP threads (e.g., with a “#pragma omp parallel for” state-
ment), in such a way that each group is handled by a single thread. Equi-distribution
of relevant boxes onto the OpenMP threads implies equi-distribution of both the
surface discretization points and the computations performed per thread—but only
provided 1) the surface discretization points are roughly equi-distributed among the
relevant boxes, and, 2) there is a sufficient number of relevant boxes to occupy all
OpenMP threads. The difficulties associated with point 1) could be negotiated, in
view of the law of large numbers [76, Sec. 13], provided sufficiently many boxes
are used, that is to say, provided point 2) is satisfied. In other words, the feasibility
of the approach under consideration hinges on the existence of sufficiently many
relevant boxes on each level, as required by point 2). Unfortunately, however, for
any given discretized surface Γ# , point 2) is not satisfied at certain levels 3 in the
octree structure, unless only a small number of threads is employed. Noting that,
for any surface Γ# , there are only sixty-four boxes overall on level 3 = 3 of the
algorithm (and, in general, even fewer relevant boxes), we see that a definite limit
exists on the parallelism achievable by this approach. The method presented in [44]
uses this strategy in an MPI context, and it is therefore subject to such a hard lim-
itation on achievable parallelism (although in a somewhat mitigated form, owing
to the characteristics of that algorithm, as discussed in Section 1.2). To avoid such
limitations, we consider an alternate OpenMP parallelization strategy specifically
enabled by the characteristics of the IFGF algorithm, as described in what follows.

The proposed strategy proceeds via parallelization of the three independent pro-
gramming functions that comprise the IFGFmethod, namely the LevelDEvaluations
function, the Interpolation function and the Propagation function, as introduced in
Section 3.6 and illustrated in Figure 3.12. Moreover, these three functions are
outlined in Algorithms 3, 4, and 5, respectively. In what follows, we present our
strategies for efficient parallelization of each one of these functions separately.

Our approach for an efficient parallelization of the LevelDEvaluations function is
based on changing the viewpoint from iterating through the level-� relevant boxes
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Algorithm 7 Parallel LevelDEvaluations
1: parallel for ��k;W ∈ R

�
�
do

2: Evaluate and store ��k (X�
�
k;W)

3: Generate interpolant �%��k;W
4: end parallel for

to iterating through the set R�
�
of all relevant cone segments on level �, introduced

in Definition 22. Using this, a parallel version of Algorithm 3 is presented in
Algorithm 7. The aforementioned change in viewpoint corresponds to collapsing
the two outermost nested loops in Algorithm 3, effectively increasing the number
of independent tasks and, consequently, the achievable parallelism. Note that, in
a C++ implementation, the “parallel for” construct in Algorithm 7 corresponds to,
e.g., a “for” loop preceded by the pragma directive “omp parallel for.”

The proposed parallelization of the 3-dependent Propagation function follows a
similar idea as the parallel LevelDEvaluations considered above—relying now on
iteration over the relevant (3 − 1) (parent-level) cone segments, which are targets of
the interpolation, instead of the relevant level-3 boxes emitting the field. This strat-
egy addresses the difficulties arising from the straightforward approach described at
the beginning of Section 4.1, for which the number of available tasks to be distributed
decreases with the level 3 and imposes a hard limit on the achievable parallelism. In-
deed, in the context of the oscillatory Green functions over two-dimensional surfaces
Γ ⊂ R3 considered in this thesis, for example, wherein the number of relevant cone
segments on each level is an approximately constant function of 3 (see Remark 9),
the number of independent tasks available for parallelization remains approximately
constant as a function of 3. Additionally, the proposed parallel Propagation strategy
avoids a significant “thread-safety” [77, 78], predicament, that is ubiquitous in the
straightforward approach, whereby multiple writes to the same target interpolation
point on the parent level take place from different threads. In contrast, the proposed
Propagation strategy, is by design thread-safe without any additional considerations,
since it distributes the targets of the interpolation to the available threads.

Remark 12. In contrast to the serial implementation of the IFGF method presented
in Section 3.6, the practical implementation of this parallel approach requires
the algorithm to first determine the relevant box R��3k;W co-centered with a given
relevant cone segment �3k;W (cf. Definition 21); then to determine the relevant level-
(3 + 1) child boxes CR��3k;W (cf. Definition 12) of the co-centered box R��3k;W on
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Algorithm 8 Parallel Propagation(3)
1: parallel for �3−1

j;W ∈ R
3−1
�

do
2: for �3k ∈ C(R��

3−1
j;W ) do

3: for G ∈ X�3−1
j;W do

4: Determine �3k;U s.t. G ∈ �
3
k;U

5: Evaluate and add �%�3k;U (G) × � (G, G
3
k)/� (G, G

3−1
j )

6: end for
7: end for
8: Generate interpolant �%�3−1

j;W
9: end parallel for

Algorithm 9 Parallel Interpolation(3)
1: parallel for G ∈ Γ# do
2: for �3k ∈ M

3 (G) do
3: Determine �3k;W s.t. G ∈ �

3
k;W

4: Evaluate �%�3k;W (G) × � (G, G
3
k)

5: end for
6: end parallel for

level 3; and, finally, to find all the interpolants �%� on the relevant cone segments
(Definition 18) � ∈ R�CR��3k;W co-centered with the child boxes from which the
propagation needs to be enacted.

Utilizing some of the notations in Remark 12, the resulting Parallel Propagation
algorithm is presented in Algorithm 8.

The proposed parallelization strategy for the third and final IFGF programming
function, namely, the Interpolation function, relies once again on the strategy used
for the LevelDEvaluations and Propagation functions—which, in the present case,
leads to changing the viewpoint from iterating through the relevant boxes to iterating
through the surface discretization points that are the target of the interpolation
procedure. This approach avoids both, the difficulties mentioned at the beginning
of Section 4.1 (concerning the existence of a small number of relevant boxes in
the upper levels of the octree structure), as well as thread-safety difficulties similar
to those discussed above in the context of the Propagation function. Using the
definition (3.27), the Parallel Interpolation function is stated in Algorithm 9.

In summary, the OpenMP parallelization strategies proposed above for the functions
Parallel LevelDEvaluations, Parallel Propagation and Parallel Interpolation are
thread-safe by design, and they provide effective work distribution by relying on
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iteration over items (relevant cone segments or surface discretization points) that
exist in a sufficiently large (and essentially constant) quantities for all levels 3,
3 ≤ 3 ≤ �, in the box-octree structure. As a result, the proposed approach
effectively eliminates the hard limitation present in the straightforward OpenMP
parallelization scheme mentioned at the beginning of this section. Note that the
proposed IFGF box-cone parallelization strategy is in general not applicable to other
hierarchical acceleration methods, such as, e.g., FMM-type algorithms. Indeed, in
contrast to the incremental propagation and surface evaluation approach inherent
in the IFGF method, previous acceleration methods rely on the FFT algorithm—
which, as discussed in Section 1, leads to inefficiencies in the upper portions of the
corresponding octree structures [32, 44].

4.2 MPI parallelization

The proposed MPI parallel IFGF algorithm, which enables both data distribution
onto the MPI ranks and efficient communication of data between MPI ranks, is
described in detail in Sections 4.2.1 through 4.2.3. The approach mirrors the
one proposed in Section 4.1 for the corresponding OpenMP interface. In fact,
the MPI parallel scheme is based on slight modifications of the OpenMP parallel
Algorithms 7, 8, and 9. As indicated by the theoretical discussion in Section 4.3,
the communication overhead is such that the intrinsic IFGF linearithmic complexity
previously demonstrated in 3.7 for a single core implementation is preserved on any
fixed number #2 of cores; an illustration of this theoretical result on #2 = 1, 680
cores is presented in the SupplementaryMaterials Table 5.6. Most importantly, as in
theOpenMP case (cf. the last paragraph of Section 4.1), for arbitrarily large numbers
� of levels, the MPI IFGF algorithm iterates over items (relevant cone segments
or surface discretization points) that exist in a sufficiently large (and essentially
constant) quantities for all levels 3, 3 ≤ 3 ≤ �, in the box-octree structure. As a
result, the strategy results in an overall MPI-OpenMP IFGF parallel scheme without
hard limitations on the achievable parallelism as the number of cores grows.
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4.2.1 Problem decomposition and data distribution

The distribution of the data required by the IFGF algorithm to the MPI ranks can be
summarized as the independent distribution of the set of surface discretization points
Γ# , which are organized on the basis of boxes induced by an octree structure, and
the distribution of the set of relevant cone segments on each level R3

�
. Clearly, for an

efficient parallel implementation, the distribution used should balance the amount
of work performed by each rank while maintaining a minimal memory footprint
per rank and while also minimizing the communication between ranks. A concise
description of the method used for data distribution to the MPI ranks is presented in
what follows, where we let #A ∈ N and d ∈ N (1 ≤ d ≤ #A) denote the number of
MPI ranks and the index of a specific MPI rank, respectively.

The distribution of the surface discretization points is orchestrated on the basis of
an ordering of the set of relevant boxes R3

�
on each level 3, which, in the proposed

algorithm, is obtained from a depth-first traversal of the octree structure. This
ordering is equivalent to a Morton order of the boxes (as described, e.g., in [58, 60,
61, 79] and depicted by the red “Z”-looking curve in the left panel of Figure 4.1)
which, as indicated in [79], can be generated quickly from the positions k ∈ K�

�

of the level-� boxes ��k through a bit-interleaving procedure. Ordering the surface
discretization points according to the Morton order of the containing level-� boxes
also guarantees a Morton order on every other level 3, 1 ≤ 3 ≤ � − 1. More
precisely, at every level 3 the Morton order introduces a total order ≺ on the set of
boxes. The ordering of the surface discretization points Γ# is facilitated by assigning
each point G ∈ Γ# the Morton order of the containing level-� box, which can be
computed through a division operation on the coordinates of the point G to get the
index k ∈ K�

�
of the containing box with a subsequent bit-interleaving procedure,

followed by a simple sorting of the points according to their assigned Morton order.
Noting that the map which assigns to each point on Γ# the Morton order of the
containing level-� box is not injective, in order to obtain a total order on all of Γ#
we additionally order in an arbitrary manner subset of points G ∈ Γ# with the same
assigned Morton order. The resulting overall order has the desirable properties that,
on every level 3, surface discretization points within any given box are contiguous
in memory, and that boxes close in real space are also close in memory.

The sorted surface discretization points are distributed to the MPI ranks based on
their containing level-� boxes, in such a way that the boxes processed by each
each rank are an “interval” set of the form {� ∈ R�

�
: ��k1

≺ � ≺ ��k2
}, for
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Figure 4.1: Left panel: Two-dimensional example of an ordering of the cone
segments based on the Morton order of the boxes on level 3 = 3 with four cone
segments per box. The red line indicates the Morton order of the boxes where
the red numbers denote the actual Morton code of the containing box. The green
numbers denote the ordering of the cone segments in the proposed Morton-based
cone-segment ordering. The blue curve denotes a sketch of a scatterer. Right
panel: Sketch of a possible cone-segment memory layout, demonstrating the equi-
distribution of cone segments among ranks, and emphasizing a central element of
the proposed parallelization strategy, namely, that co-centered cone segments may
be assigned to different MPI ranks. Note that only relevant boxes and cone segments
are stored in memory resulting in some numbers in the ordering being skipped.

suitable choices of k1, k2 ∈ K�
�
designed to guarantee that all the boxes on a given

rank contain a number of surface discretization points as close as possible to the
average value #/#A . Hence, the smallest boxes in the octree structure represent
the smallest “unit” for the distribution of the surface discretization points. The
maximum possible deviation in the number of discretization points assigned to a
certain MPI rank from the average is therefore given by the maximum number of
surface discretization points containedwithin one level-� box in the octree structure.
For reasonable distributions of the discretization points Γ# on the surface Γ, and
for a suitable choice of the number of levels �, this deviation between MPI ranks is
typically less than 100 surface discretization points.

The set of surface discretization points stored in the d-th MPI rank, 1 ≤ d ≤ #A ,
is denoted by Γ#,d. By definition, the subsets Γ#,d of Γ# are pairwise disjoint and
their union over all MPI ranks d = 1, . . . , #A equals Γ# . The distribution of the
surface discretization points is used to evenly divide between all MPI ranks the work
performed in the Interpolation function (OpenMP Algorithm 9). The underlying
level-� based distribution of Γ# is utilized throughout all levels 3 = �, . . . , 3.
Thus, the MPI parallel Interpolation function results from the straightforward and
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level-independent modification of Line 1 in Algorithm 9, to read G ∈ Γ#,d instead
of G ∈ Γ#—as shown in Algorithm 11. Naturally, the values of the discrete operator
� (Gℓ) in (3.1) computed by the d-th MPI rank correspond to points Gℓ ∈ Γ#,d, and
they are therefore also stored in the d-th MPI rank. In other words, the set of
resulting field values � (Gℓ) is partitioned and stored in the MPI ranks according to
the partition utilized for the surface discretization points Γ# .

The data associatedwith the level-3 relevant cone segments is also distributed toMPI
ranks on the basis of a total order—in this case, a total order on the set of level-3 cone
segments that is based on the Morton order imposed on the level-3 boxes, in such a
way that co-centered cone segments are close in memory. It should be noted that,
for every relevant cone segment �3k;W ∈ '

3
�
, 3 ≤ 3 ≤ � (see Definition 22), the set

of % coefficients that characterize the polynomial interpolants �%�3k;W (Section 3.3),
which approximate the field �3k in (3.24) within the cone segment �3k;W, need to be
stored, in appropriately distributed manner, for two consecutive levels. Indeed, for
each 3, these level-3 coefficients are utilized to enable two different interpolation
procedures, namely interpolation from level 3 to interpolation points at the parent-
level (3 − 1) in the Propagation function (Line 4 in Algorithm 8), as well as
interpolation to the level-3 cousin surface discretization points in the Interpolation
function (Line 3 in Algorithm 9).

The set of level-3 relevant cone segments R3
�
is sorted on the basis of the Morton

order induced by the co-centered level-3 boxes followed by a suitable sorting of cone
segments in each spherical coordinate system—resulting in a total order @ in the
set of all level-3 relevant cone segments, as depicted in the left panel of Figure 4.1.
(Each set of co-centered cone segments is ordered using the radial direction first, then
elevation and finally azimuth, although any other ordering could be used.) Finally,
at each level 3 (3 = �, . . . , 3), approximately equi-sized and pair-wise disjoint
intervals of relevant cone segments� of the form

{
� ∈ R3

�
: �3k1;W1

@ � @ �3k2;W2

}
,

for some k1, k2 ∈ K3
�
and W1, W2 ∈ K3

�
(i.e., disjoint intervals of contiguous cone

segments), are distributed to the MPI ranks, as illustrated in the right panel of
Figure 4.1. Note that the specific assignment of cone segments toMPI ranks is solely
determined by the order @ and the number of MPI ranks and cone segments, and it
does not otherwise relate to the underlying box tree. In particular, as suggested in the
right panel of Figure 4.1, co-centered cone segments may be assigned to different
MPI ranks—which induces a flexibility that leads to excellent load-balancing and,
therefore, high parallelization efficiency. As is the case for the relevant boxes,



74

Algorithm 10 MPI Parallel LevelDEvaluations
1: parallel for ��k;W ∈ R

�
�,d

do
2: Evaluate and store ��k (X�

�
k;W)

3: Generate interpolant �%��k;W
4: end parallel for

Algorithm 11 MPI Parallel Interpolation(3)
1: parallel for G ∈ Γ#,d do
2: for �3k ∈ M

3 (G) do
3: Determine �3k;W s.t. G ∈ �

3
k;W

4: Evaluate �%�3k;W (G) × � (G, G
3
k)

5: end for
6: end parallel for

Algorithm 12 MPI Parallel Propagation(3)
1: parallel for �3−1

j;W ∈ R
3−1
�,d

do
2: for �3k ∈ C(R��

3−1
j;W ) do

3: for G ∈ X�3−1
j;W do

4: Determine �3k;U s.t. G ∈ �
3
k;U

5: Evaluate and add �%�3k;U (G) × � (G, G
3
k)/� (G, G

3−1
j )

6: end for
7: end for
8: Generate interpolant �%�3−1

j;W
9: end parallel for

the proposed ordering of the relevant cone segments implies that cone segments
which are close in real space (i.e., co-centered with the same box and pointing in
the same direction or co-centered with boxes which are close in real space) are
also close in memory, and, in particular, are likely to be stored within the same
MPI rank. Analogously to the notation introduced above for the distributed surface
discretization points, the relevant level-3 cone segments assigned to a MPI rank
with index d, 1 ≤ d ≤ #A , are denoted by R3�,d. The MPI-capable algorithm is thus
obtained by adjusting the loops in the first lines in Algorithms 7 and 8 to only iterate
over the level-3 relevant cone segments R3

�,d
stored in the current rank d, as shown

in the MPI parallel Algorithms 10 and 12, instead of iterating over all relevant cone
segments on level 3.
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4.2.2 Practical implementation of the box-cone data structures

A C++ implementation of the parallel IFGF box-cone data structures described
above, which enables a linearithmic memory and time complexity, is described in
detail in what follows.

In the proposed implementation, the geometry Γ# is stored in three separate arrays
-1, -2, and -3 (either C style arrays or std::vector) of size # for the G1, G2, and
G3 components of the surface discretization points (G1, G2, G3) = G ∈ Γ# , resulting
in a structure of arrays (SoA) memory layout [80], which is beneficial as it leads
to increased floating-point performance under automatic vectorization on the basis
of single instruction, multiple data (SIMD) hardware [66, Sec. 2.7] generally
available in modern processors. As mentioned above in Section 4.2.1, each one of
the three arrays is sorted according to the Morton order of the boxes. Similarly,
the real and imaginary parts of the resulting field values � (Gℓ), 1 ≤ ℓ ≤ # , are
stored as two independent arrays, �< and �=, of size # . The order of these field
values coincides with the order imposed on the surface discretization points such
that � (Gℓ) = �< [:] + ]�= [:] at a given point Gℓ is stored at the same position
: in the arrays �< and �= as the corresponding surface discretization point Gℓ =
(-1 [:], -2 [:], -3 [:]) in the arrays -1, -2 and -3.

The algorithm enacts the box-octree inherent in the IFGF solver in the form of a
linear octree structure (cf. [70, 81]). In particular, the proposed linear octree only
includes data associated with relevant boxes, and it does not store any information
about non-relevant boxes, to avoid O(#3/2) memory requirements, as described in
detail in what follows. Relevant boxes in the linear octree are represented, on each
level 3 = 3, . . . , �, by the box index k ∈ K3

�
(as described above in Section 3.4) and

the equivalentMorton order. Each box stores the position in the arrays -1, -2, and -3

of the first surface discretization point contained in the box in addition to the number
of discretization points in the box in a hash map (cf. [70, Section 11]) with average
O(1) time and memory complexity for read access (e.g., a std::unordered_map),
where the Morton order of the box is utilized as the key. Thus, given a Morton
order of a box, the discretization points contained within the box can be determined
in O(1) time and memory complexity. Conversely, given any surface discretization
point G ∈ Γ# , the three-dimensional index k ∈ K3

�
(for every level 3 = 3, . . . , �) of

the box �3k containing the point G and the associatedMorton order can be determined
through simple division and bit-interleaving, as described in Section 4.2.1, in O(1)
time and memory. Overall, this guarantees a true O(# log #) time and memory
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implementation by avoiding the storage of any information regarding non-relevant
boxes. Note that the linear octree structure described above is essentially the same
as the one presented in [79].

Similarly, for each level 3, the relevant cone segments �3k;W, or, more precisely, the
real and imaginary parts of the % coefficients representing the interpolants �%�3k;W
on the relevant cone segments �3k;W, are stored separately in two one-dimensional
arrays per rank (following the above partition of the cone segments to the ranks).
To associate the three-dimensional cone segment index W ∈ K3

�
with the actual

coefficients, a hash map for each relevant box �3k is used, where the value of the
hash map is an index pointing to the first of the coefficients �%�3k;W in the array of
coefficients mentioned above, and where W ∈ K3

�
is the key of the hash map. (Note

that the three-dimensional cone segment index W, which runs over both relevant
and non-relevant cone segments, corresponds to the relative position of the cone
segment in the spherical coordinate system centered at the box center.) The usage
of a hash map circumvents the storage of any non-relevant cone segment data
while maintaining the association with the three-dimensional index W that allows an
easy identification of the cone segment based on its relative position in spherical
coordinates. Thus, for a given Cartesian point G ∈ R3, this data structure can be used
to locate the interpolant �%�3k;W for the relevant cone segment �3k;W ∈ '

3
�
containing

the point G through a transformation of G to spherical coordinates centered at the
origin of the cone segment �3k;W, a division to get the cone segment index W and
a look-up in the hash map to get the coefficients of the interpolating polynomial.
The association of any point with the relevant cone segment containing it can
therefore be achieved on average in O(1) time and memory. This is required in
the Interpolation and Propagation function to facilitate the interpolation to cousin
surface discretization points and parent-level interpolation points, respectively.

Note that, for increased performance, the hash maps described above and stored on a
given rank d are required to contain all associations between boxes, cone segments,
discretization points and interpolation coefficients utilized by the current rank d at
any point in the algorithm. In particular, if certain surface discretization points or
interpolant coefficients are stored on a different rank d̃ ≠ d, but are required in the
current rank d, the above hash maps are utilized to find the data and, consequently,
enable the communication of that data through MPI. While this produces some data
duplication, analogously to “halo regions” [66, Sec. 9.6] employed in grid-based



77

methods, the memory duplicated in the parallel IFGF method is limited to surface
discretization points and interpolant coefficients of neighbors and cousins.

4.2.3 Data communication

Clearly, for an MPI rank to access data stored in a different rank, explicit com-
munication between the ranks must take place. The proposed solution, which we
favor due to the decreased complexity of the implementation it entails, is based
on one-sided or remote memory access (RMA) communication introduced in MPI-
2 [65, Section 5], [66, Section 8]—which utilizes a single MPI_Get or MPI_Put
call on the origin rank instead of a coupled MPI_Recv-MPI_Send call (or similar
functionalities) involving both the origin and the target rank.

The data any MPI rank may require from other MPI ranks is limited to certain
interpolants �%�3k;W. It is therefore sufficient to store the corresponding coefficients
in so-called RMA windows (in MPI given by MPI_Win and allocated with, e.g.,
MPI_Win_allocate), which enable the one-sided communication approach. For
increased efficiency, the computations and communications are organized among
the ranks on the basis of the following two considerations: 1) For each d, 1 ≤ d ≤
#A , the d-th rank asynchronously collects from other ranks all the data (i.e., the
coefficients of the interpolants) it requires to perform Interpolation or Propagation
computations assigned to it; and 2) The communications necessary to collect this
data are interleaved with the computations in such a way that while the computations
by the Interpolation function take place, the communication for the nextPropagation
function is performed and vice versa. This approach, which effectively hides the
communications behind computations (thus increasing the performance and parallel
efficiency), requires every MPI rank to store all data it obtains from other ranks for
one full level-3 (3 ≤ 3 ≤ �) Interpolation or Propagation step while it continues
to store the coefficients it has itself generated—which effectively increases the peak
memory per rank requirements slightly (by, e.g., 10% or less).

The level-3 dependent CommunicateInterpolationData (resp. CommunicatePropa-
gationData) programming function in Algorithm 13 (resp. Algorithm 14) encapsu-
lates the communications performed by each rank to obtain, from other ranks, the
polynomial coefficients it needs to enact the necessary level-3 interpolation com-
putations (resp. interpolation computations onto level-(3 − 1) interpolation points)
required by the Interpolation (resp. Propagation) function. The LevelDEvaluations
function does not need any communications since the surface discretization points
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Algorithm 13 CommunicatePropagationData(3)
1: parallel for �3−1

j;W ∈ R
3−1
�,d

do
2: for �3k ∈ C(R��

3−1
j;W ) do

3: for G ∈ X�3−1
j;W do

4: Find W̃ such that G ∈ �3k;W̃ ∈ R��
3
k

5: Identify the MPI rank d on which �%�3k;W̃ is stored
6: MPI_Get �%�3k;W̃ from rank d
7: end for
8: end for
9: end parallel for

Algorithm 14 CommunicateInterpolationData(3)
1: parallel for G ∈ Γ#,d do
2: for �3k ∈ M

3 (G) do
3: Find W̃ such that G ∈ �3k;W̃ ∈ R��

3
k

4: Identify the MPI rank d on which �%�3k;W̃ is stored
5: MPI_Get �%�3k;W̃ from rank d
6: end for
7: end parallel for

G ∈ Γ# , which are required in the LevelDEvaluations function, but which are not
stored as part of Γ# , d (see previous Section 4.2.1), are duplicated to the d-th MPI
rank. The rank that stores a level-� relevant cone segment, as described at the
beginning of Section 4.2, facilitates the evaluation of the field at the interpolation
points of that cone segment and the generation of the interpolants independently
from every other MPI rank.

Using the functions 10 through 14, the pseudocode for the proposed overall MPI-
OpenMP IFGF algorithm is given in Algorithm 15. Note that access to RMA win-
dows is usually asynchronous and requires some form of synchronization to ensure
the data transfer is finalized before the communicated data is accessed. More-
over, the call to the CommunicatePropagationData in Algorithm 15 requires for the
Propagation function to have completed in all ranks targeted by the communication
function.
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Algorithm 15 IFGF Method
1: LevelDEvaluations()
2: CommunicatePropagationData(�)
3:
4: for 3 = �, . . . , 3 do
5: CommunicateInterpolationData(3)
6: if 3 > 3 then
7: Propagation(3)
8: if 3 > 4 then
9: CommunicatePropagationData(3 − 1)
10: end if
11: end if
12: Interpolation(3)
13: end for

4.3 Parallel linearithmic complexity analysis

Section 3.7 shows that the basic IFGF algorithm runs on a linearithmic (O(# log #))
number of arithmetic operations. The present section, in turn, shows that the
communication cost additionally required by the proposed MPI-OpenMP parallel
IFGF algorithm also grows linearithmically—thus, establishing that, on a fixed
number of cores, the parallel algorithm runs on an linearithmic overall computing
time.

To do this, in view of the data distribution strategy described in Section 4.2.1, it
suffices to ensure that both the Interpolation and Propagation functions require a
linearithmic communication cost. Inspection of the corresponding Algorithms 11
and 12 (specifically, lines 4 and 5, respectively) shows that these functions, and, thus,
the overall parallel IFGF algorithm, only require communication of certain poly-
nomial coefficients—a task that is effected via the communication Algorithms 14
and 13, respectively. Thus, the analysis of the communication cost amounts to count-
ing the number of coefficients that are communicated, including multiple counts for
coefficients that are communicated to multiple ranks, as a result of the application
of these two communication algorithms within the overall IFGF algorithm.

In order to count the number of communications effected by each one of these algo-
rithms, we proceed as follows. Noting that, since, 1) as indicated in Remark 9, there
are O(#) relevant cone segments per level, each one of which contains O(1) data
(namely, the % coefficients of a single polynomial interpolant); 2) each cone-segment
data is stored in exactly one MPI rank (Section 4.2.1); and, as discussed below for
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both communication algorithms, 3) each relevant cone segment is communicated
to a uniformly bounded number of MPI ranks at each level 3 = 3, . . . , �; it follows
that for each level 3 (3 ≤ 3 ≤ �) a total of O(#) coefficients are communicated
by each of the communication algorithms 13 and 14 for each one of the � = log #
levels, at a total communication cost of O(# log #) coefficients by this algorithm,
as desired.

It remains for us to show that point 3) above holds for both communication algo-
rithms. In the case of the propagation communication, we note that each relevant
cone segment on any level 3 = �, . . . , 4 is split into eight smaller cone segments on
the parent level (3 − 1). Thus, for each level-3 relevant cone segment, this results
in at most  parent-level cone segments (usually  = 8, or possibly a slightly
higher number owing to the re-centering procedure associated with the Propagation
function, but most often  = 1) that could be targets for the interpolation proce-
dure in the Propagation function. In view of point 2) above, each level-3 relevant
cone segment must thus communicate coefficients to no more than O(1) ranks, and
point 3) follows in this case.

In the case of the interpolation communication, finally, relevant cone-segment co-
efficients need to be communicated to ranks that store surface discretization points
included in boxes that are cousins of the box co-centered with the relevant cone
segment. First, on the lowest level �, each relevant box has at most  = 189
cousin boxes and since, by design, the surface discretization points contained within
each one of the smallest boxes are stored in a single MPI rank (Section 4.2.1), it
follows that O(1) (at most 189) different MPI ranks require coefficients contained
in each relevant cone segment. Further, since each cone segment is partitioned into
eight in the transition from a given level 3 to a subsequent level (3 − 1) (so that
the number of relevant level-� boxes contained within a level-(3 − 1) cone equals
approximately one-fourth of the corresponding number for level-3 cone segments,
since Γ# is a discretization of a 2D surface), and since, conversely, the number
of MPI ranks storing surface discretization points within a cousin box increases
by approximately a factor four in the same 3-to-(3 − 1) transition, the number of
communications per relevant cone segment remains essentially constant as a result
of the 3-to-(3 − 1) level transition. It follows that each relevant cone segment is
communicated to a O(1) number of MPI ranks for all levels 3, thus establishing the
validity of point 3) for the interpolation communication function, and completing
the proof of linearithmic complexity of the proposed parallel IFGF algorithm.
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C h a p t e r 5

NUMERICAL EXAMPLES

We analyze the performance of the proposed IFGF approach to evaluate the discrete
operator (3.1) for various #-point surface discretizations. In each case, the tests
concern the accelerated evaluation of the full #-point sum (3.1) at each one of the #
discretization points Gℓ ∈ Γ# , ℓ = 1, . . . , #—which, if evaluated by direct addition,
would require a total of O(#2) operations. The capabilities of the IFGF method in
a serial and a parallel setting are demonstrated in various configurations, including
examples for the Helmholtz (^ ≠ 0) and Laplace (^ = 0) Green functions.

In all the tests where the Helmholtz Green function is used, the number of levels � in
the underlying box octree structure is chosen in such a way that the resulting smallest
boxes on level � are approximately a quarter wavelength in size (�� ≈ 0.25_).
Moreover, for the sake of simplicity, the version of the IFGF algorithm described
in Section 3.6 does not incorporate an adaptive box octree (which would stop the
partitioning process once a given box contains a sufficiently small number of points)
but instead always partitions boxes until the prescribed level � is reached. Hence,
a box is a leaf in the tree if and only if it is a level-� box. The cone segments, in
turn, (see Definition 18) are chosen in such a way that there are eight cone segments
(1 × 2 × 4 segments in the B, \ and i variables, respectively) associated with each
of the smallest boxes on level � and they are refined according to Section 3.3
for the levels 3 < �. Unless stated otherwise, each cone segment is assigned
% = %B × %ang × %ang interpolation points with %B = 3 and %ang = 5.

The presentation of the numerical results proceeds as follows: First, Section 5.1
introduces relevant background knowledge, including a rigorous definition of the
test geometries, an overview of the hardware used for the test, a presentation of the
employed error estimation, and several other related concepts. The tests focusing on
the theoretical aspects of the IFGF method, i.e., the O(# log #) scaling in time and
memory and higher order results, are demonstrated in Sections 5.2 and 5.3, respec-
tively, on the basis of three basic geometries Γ, namely, a sphere, an oblate spheroid
and a prolate spheroid, as presented in Section 5.1.1. Section 5.4 then demonstrates
results generated with a serial IFGF implementation for the special case of the
Laplace equation, before a full OpenMP parallel solver is presented and applied to
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engineering motivated problems in Section 5.5. In particular, Section 5.5 gives an
overview of the implementation of such a solver before demonstrating acoustic scat-
tering results for a sphere geometry, a submarine geometry, and an aircraft nacelle
geometry. Finally, Sections 5.6 through 5.8 demonstrate the massively parallelized
MPI-enabled IFGF implementation. More precisely, Sections 5.6 and 5.7 show an
investigation of the strong and weak parallel scaling capabilities of the parallel IFGF
implementation, whereas Section 5.8 demonstrates the largest problems that can be
computed with the parallel IFGF method on our hardware on the basis of very large
sphere test cases.
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5.1 Background for numerical examples

The current section provides details on several aspects of the numerical results
presented below in this chapter. In particular, this section provides details on the
hardware used for our serial and parallel tests in Section 5.1.2, before introducing the
hardware pinning, which is relevant for the parallel test, in Section 5.1.3. Further, the
data points shown throughout all tests are briefly explained in Section 5.1.4. A more
detailed explanation of the error estimation, in turn, is presented in Section 5.1.5,
after which the the strong and weak efficiency and speedup scalability concepts used
to quantify the performance of the parallel IFGFmethod are detailed in Section 5.1.6;
briefly, relative to a base core-number #0

2 , the #2-core run speedup (#0
2 ,#2

and
the weak and strong efficiencies �F

#0
2 ,#2

and � B
#0
2 ,#2

are used to characterize the
effectiveness of the proposed parallelization schemes by relating computing times
and core numbers under weak-scaling tests (in which #2 is increased proportionally
to the size # of the discretization Γ# ) and strong-scaling tests (wherein #2 is
increased as # is held fixed).

5.1.1 Test geometries

As indicated above, our numerical examples used to demonstrate the properties of
the IFGF method focus on three simple geometries: a sphere of radius 0, the oblate
spheroid G2 + H2 + (I/0.1)2 = 02 and the prolate spheroid G2 + H2 + (I/10)2 = 02.
The latter two geometries are depicted in Figure 5.1. In what follows, the diameter
(also referred to as the “size”) of a geometry Γ is denoted by

3 B 3 (Γ) B max
G,H∈Γ
|G − H |, (5.1)

(not to be confused with the level index 3 introduced in Section 3.4); clearly, we have
3 = 20 in the case of the sphere and the oblate spheroid geometries and 3 = 200
for the prolate spheroid geometry. For our examples, we utilize discretizations
Γ# obtained from use of parametrized surface patches covering Γ and equispaced
partitioning of the corresponding parameter spaces, as presented in [52].

These relatively simple geometries present the same kinds of challenges, in the
context of the IFGF method, that arise in a wide range of real-world problems,
including aircraft, lenses and meta-materials (with a point distribution somewhat
similar to that in an oblate spheroid), submarines (prolate spheroid), etc. For
example, even though the problem of finding a scattering solution for a submarine
is much more challenging than the corresponding problem for a spheroid of the
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Figure 5.1: Test geometries. Left: Oblate spheroid G2 + H2 + (I/0.1)2 = 02. Right:
Prolate spheroid G2 + H2 + (I/10)2 = 02.

same size, in view of the need for accurate integration of singular kernels and
adequate representation of the surface Jacobians, the performance of the IFGF
method for the evaluation of the discrete operator (3.1) for a submarine should not
differ significantly from the corresponding performance on a prolate spheroid of a
comparable discretization, point distribution and acoustic size.

5.1.2 Compiler and hardware

All serial tests were performed on a Lenovo X1 Extreme 2018 Laptop with an
Intel i7-8750H Processor and 16 GB RAM running Ubuntu 18.04 as operating
system. The code is a single core implementation in C++ of Algorithm 2 compiled
with the Intel C++ compiler version 19 and without noteworthy effort regarding
vectorization.

The parallel IFGF program proposed in Chapter 4, in turn, was also implemented in
C++, and the resulting code was compiled with the Intel mpiicpc compiler, version
2021.1, and the Intel MPI library. The following performance-relevant compiler
flags were used: “-std=c++20,” “-O3,” “-ffast-math,” “-qopt-zmm-usage=high,” “-
no-prec-sqrt,” “-no-prec-div.” All parallel tests were run on our internal Wavefield
cluster which consists of 30 dual-socket nodes. Each node consists of two Intel
Xeon Platinum 8276 processors with 28 cores per processor, i.e., 56 cores per node,
and 384 GB of GDDR4 RAM per node. (The Xeon processors we use support
hyper-threading, but this capability was not exploited in any of our tests presented
in this thesis.) The nodes are connected with HDR Infiniband.
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5.1.3 Hardware pinning

For the parallel tests, as indicated in Chapter 4 and Section 2.3, since each compute
node in the Wavefield cluster consists of four NUMA nodes, we typically run four
MPI ranks per node, each pinned to one of these four NUMA nodes through setting
the environment variable “I_MPI_PIN_DOMAIN = cache3.” The shared memory
parallelization with OpenMP (see Section 4.1) is then used for the parallelization
within each MPI rank, i.e., within a NUMA node. The parallel scaling within a
NUMA node from 1 to 14 cores is investigated below using the OpenMP specific en-
vironment variables “OMP_NUM_THREADS=[1-14],” “OMP_PLACES=cores,”
and “OMP_PROC_BIND=true.” The continued scaling, which is achieved with the
MPI parallelization, when exceeding 14 cores, is investigated going from one to
four MPI ranks (each rank pinned to one NUMA node in the same compute node),
which corresponds to theMPI scaling on a single, shared-memory node. Finally, the
scaling of the MPI based distributed-memory parallelization is investigated starting
from a single node to 16 nodes, where each node is fully utilized with four MPI
ranks per node and fourteen cores per rank, as described above. A slightly different
hardware pinning is used for the test cases presented in Section 5.8. Instead of pin-
ning one MPI rank to each NUMA node, the test cases in Section 5.8 use a pinning
of one MPI rank per compute node each on spawning 54 OpenMP threads. While
this pinning is sub-optimal in terms of computing times compared to the one-MPI-
rank-per-NUMA-node pinning, it is slightly more beneficial in terms of memory
requirements since the amount of data duplication through MPI is minimized.

5.1.4 Data points

In all tests presented below, and in accordance with the notation introduced in the
previous sections, # denotes the number of surface discretization points, 3 the size
of the geometry (cf. Section 5.1.1), #A the number of MPI ranks, and #2 the overall
number of cores utilized. Moreover, in the serial runs, the memory is given in the
“Memory” column whereas the parallel runs indicate the utilized peak memory per
rank in the “Mem/rank” column. The error, as described in detail in the following
Section 5.1.5, is presented in the columns labeled Y. Some serial test cases also
state the discretization size in “points per wavelengths” which is computed based on
the largest equator of the respective geometries and stated in the “PPW” column.

Remark 13. The PPW have no impact on the accuracy of the IFGF acceleration,
since only the discrete operator (3.1) is evaluated in the present context, instead
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of an accurate approximation of a full continuous operator. The PPW are only
considered here as they provide an indication of the discretization levels that might
be used to achieve continuous operator approximations with errors consistent with
those displayed in the various tables presented in this section.

Finally, throughout all tests, ) denotes the time (in seconds) required for a single
application of the IFGFmethod, i.e., a single evaluation of the discrete operator (3.1),
and excludes the precomputation time )pre (which is presented separately in each
serial case, and which includes the time required for setup of the data structures
and the determination of the relevant boxes and cone segments), but which includes
all the other parts of the algorithm presented in Section 3.6, including the direct
evaluation at the neighboring surface discretization points on level �.

5.1.5 Numerical error estimation

The errors reported in what follows were computed as the relative !2 difference Y"
between the full, non-accelerated evaluation of the field � (G), as stated in (3.1), and
the IFGF-accelerated evaluation �acc(G) of (3.1) computed on a randomly chosen
subset of " ≤ # surface discretization points G ∈ Γ# . This approximate error
evaluation is rigorously introduced in the following definition.

Definition 23 (Approximate !2 error). Let Γ# denote a surface discretization and
let Gℓ ∈ Γ# denote the surface discretization points. Further, let f : {1, . . . , #} →
{1, . . . , #} denote a random permutation and let " ≤ # denote some positive
integer. The "-point approximate !2 error Y" of the approximate solution �acc
computed by the IFGF method is given by

Y" B

√√√√√√√√√√ "∑
8=1
|� (Gf(8)) − �acc(Gf(8)) |2

"∑
8=1
|� (Gf(8)) |2

. (5.2)

In the serial case, " = 1000 is chosen. To ensure that " = 1000 gives a sufficiently
accurate approximation of the error, the exact relative errors Y# accounting for all #
surface discretization points were also obtained for the first three test cases shown
in Table 5.1; the results are Y# = 3.56 · 10−4 (# = 24576), Y# = 5.71 · 10−4

(# = 98304) and Y# = 9.28 · 10−4 (# = 393216).
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Remark 14. Exact relative error evaluation for larger values of # is not practical
on account of the prohibitive computation times required by the non-accelerated
operator evaluation.

Themethod is suitably extended to theMPI parallel implementation by using a set of
test points Gℓ that contains a number " = 1000 of randomly chosen points on each
MPI rank. More precisely, 1000 surface discretization points are randomly chosen
on each MPI rank from the distinct set of surface discretization points Γ#,d each
MPI rank d (1 ≤ d ≤ #A) is responsible for, based on the distribution introduced
in Section 4.2. The final errors are then accumulated resulting in the overall error
estimate

Y B Y" at " = 1000 × #A points. (5.3)

As a result, the errors are dependent on the number #A of MPI ranks, which is
the reason the shown errors vary slightly as the number of MPI ranks varies (cf.
Tables 5.16- 5.18 and 5.19- 5.21).

5.1.6 Weak and strong parallel efficiency concepts

Let ) (#2, #) denote the time required by a run of the parallel IFGF algorithm on an
#-point discretization Γ# , with a given and fixed discretization scheme, of a given
surface Γ using #2 cores. Using this notation, for a given # , the strong parallel
efficiency � B

#0
2 ,#2

that results as the number of cores is increased from #0
2 to #2 is

defined as the quotient of the resulting speedup (#0
2 ,#2

to the corresponding ideal
speedup value (ideal

#0
2 ,#2

:

(ideal
#0
2 ,#2
B
#2

#0
2

, (#0
2 ,#2
B
) (#0

2 , Γ# )
) (#2, Γ# )

, � B
#0
2 ,#2
B
(#0

2 ,#2

(ideal
#0
2 ,#2

.

Note that the implicit dependence on # and Γ# is suppressed in the speedup and
efficiency notations.

The weak parallel efficiency �F
#0
2 ,#2

> 0, in turn, concerns the computing costs
that are observed as the numbers #2 of cores are increased proportionally to the
problem size #—effectively keeping the number of surface discretization points
per core constant—so that as the numbers of cores and discretization points are
simultaneously increased from #0

2 to #2 and from #0 to # , respectively, the relation

#/#0 = #2/#0
2 (5.4)
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is satisfied. Since the weak scaling concerns varying numbers # of surface dis-
cretization points, however, the weak parallel-efficiency concept must correctly
account for the linearithmic theoretical scaling of the IFGF algorithm. To do this,
we consider the computing time ) (#2, #) required for a run of the algorithm on
#2 cores for an #-point discretization of a given, fixed, surface Γ. In view of the
linearithmic complexity of the algorithm, perfect weak parallel efficiency would be
observed if, for a certain constant  , we had

) (#2, #) =
 

#2
# log #.

Thus is to say, under perfect weak parallel scaling, in view of (5.4) we would have

) (#2, #)
) (#0

2 , #
0)
=

#0
2# log #

#2#
0 log #0 =

log #
log #0 .

We therefore define the weak parallel efficiency that results as the number of cores
is increased from #0

2 to #2 by

�F
#0
2 ,#2
B
) (#0

2 , #
0) log #

) (#2, #) log #0 .

Note that �F
#0
2 ,#2

= 1 corresponds to perfect weak parallel efficiency, or a weak
parallel efficiency of 100%.

5.2 The # log # scaling

The numerical results shown in this section demonstrate the linearithmic scaling of
the serial and the parallel IFGF method.

In particular, the first three tests investigate the scaling of the algorithm as the
surface acoustic size is increased and the number of surface discretization points #
is increased proportionally to achieve a constant number of points per wavelength.
The results of these tests are presented in the Tables 5.1, 5.2, and 5.3 for the
aforementioned radius-0 sphere, the oblate spheroid and the prolate spheroid (see
Section 5.1.1), respectively. The acoustic sizes of the test geometries range from 4
wavelengths to 64 wavelengths in diameter for the normal sphere case, up to 128
wavelengths in size for the case of the oblate spheroid, and up to 512 wavelengths
in size for the prolate spheroid.

Several key observations may be drawn from these results. On one hand, we
see that, in all cases, the computing and memory costs of the method scale like
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# 3 PPW Y )pre (s) ) (s) Memory

24, 576 4_

22.4

4 · 10−4 5.25 · 10−1 1.81 · 100 25 MB
98, 304 8_ 6 · 10−4 3.33 · 100 9.30 · 100 80 MB

393, 216 16_ 9 · 10−4 1.86 · 101 4.55 · 101 315 MB
1, 572, 864 32_ 1 · 10−3 9.74 · 101 2.21 · 102 1, 308 MB
6, 291, 456 64_ 2 · 10−3 4.89 · 102 1.05 · 103 5, 396 MB

Table 5.1: Computing times) required by the IFGF accelerator for a radius-0 sphere
of increasing acoustic size 3 = ^0, with (%B, %ang) = (3, 5), and for various numbers
# of surface discretization points—at a fixed number of points-per-wavelength. The
precomputation times )pre, the resulting relative accuracy Y and the peak memory
(“Memory”) used are also displayed.

# 3 PPW Y )pre (s) ) (s) Memory

24, 576 4_

22.4

1 · 10−4 1.30 · 10−1 1.44 · 100 17 MB
98, 304 8_ 2 · 10−4 1.15 · 100 6.52 · 100 42 MB

393, 216 16_ 2 · 10−4 5.03 · 100 2.87 · 101 158 MB
1, 572, 864 32_ 3 · 10−4 2.63 · 101 1.31 · 102 605 MB
6, 291, 456 64_ 3 · 10−4 1.30 · 102 5.72 · 102 2, 273 MB

25, 165, 824 128_ 4 · 10−4 6.27 · 102 2.64 · 103 9, 264 MB

Table 5.2: Same as Table 5.1, but for an oblate spheroid of equation G2 + H2 +
(I/0.1)2 = 02 depicted in Figure 5.1.

# 3 PPW Y )pre (s) ) (s) Memory

393, 216 16_

22.4

2 · 10−3 2.21 · 100 2.19 · 101 98 MB
1, 572, 864 32_ 6 · 10−3 1.16 · 101 9.75 · 101 371 MB
6, 291, 456 64_ 8 · 10−3 5.70 · 101 4.24 · 102 1, 316 MB

25, 165, 824 128_ 1 · 10−2 2.72 · 102 1.85 · 103 5, 317 MB
25, 165, 824 256_ 11.2 1 · 10−2 3.89 · 102 2.05 · 103 5, 470 MB
25, 165, 824 512_ 5.6 2 · 10−2 1.01 · 103 2.57 · 103 10, 685 MB

Table 5.3: Same as Table 5.1, but for a prolate spheroid of equation G2+H2+(I/10)2 =
02 and a target accuracy of Y = 10−2 (cf. Section 5.1.4 with regards to the selection
of PPW in each case).

O(# log #), thus yielding the expected improvement over the O(#2) costs required
by the straightforward non-accelerated algorithm. Note that, as indicated at the
beginning ofChapter 5, the presented implementation does not use an adaptive octree
structure. This can lead to large deviations in the number of surface points within
boxes, in the number of relevant boxes and in the number of relevant cone segments.
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Moreover, the complexity analysis in Section 3.7 assumes certain asymptotics as
# →∞, whichmay not hold for finite# . These two observationsmay result in slight
departures from the predicted O(# log #) costs in terms of memory requirements
and computing time, especially for the smaller test cases.

Additionally, we note that the computational times and memory required for a given
# , which are essentially proportional to the number of relevant cone segments used,
depend on the character of the surface considered (since the number of relevant cone
segments used is heavily dependent on the surface character), and they can therefore
give rise to significantmemory and computing-cost variations in some cases. For the
oblate spheroid case, for example, the number of relevant cone segments in upward-
and downward-facing cone directions is significantly smaller than the number for
the regular sphere case, whereas the prolate spheroid requires even less relevant
cone segments than the oblate spheroid, resulting in a highly efficient method for
elongated geometries. Table 5.3 also shows the incredibly performance of the IFGF
method for low-accuracy computations. This is a direct consequence of the O(%2)
scaling of the computing time, where % denotes the number of interpolation points
per cone segment.

Table 5.4 demonstrates the scaling of the IFGF method for a fixed number #
of surface discretization points and increasing size 3 = ^0 for the sphere geometry
with radius 0. The table demonstrates that the memory requirements and the timings
scale like O(^2 log ^), which is expected, since the interpolation to interpolation
points (the Propagation function shown in Algorithm 5) used in the algorithm
is independent of # and scales like O(^2 log ^). But the time required for the
interpolation back to the surface (the Interpolation function shown in Algorithm 4)
depends only on # and is therefore constant in this particular test—which explains
the slight reductions in overall computing times for a given value of 3 over the ones
displayed in Table 5.1 for the case in which # is scaled proportionally to ^2.

Table 5.5 shows a similar sphere test but for a sphere of constant acoustic size
3 and with various numbers # of surface discretization points. As we found
earlier, the computation times and memory requirements scale like O(# log #) (the
main cost of which stems from the process of interpolation back to the surface
discretization points—the Interpolation function; see Algorithm 4). Since the cost
of the IFGF method (in terms of computation time and memory requirements)
is usually dominated by the cost of the interpolation to interpolation points—the
Propagation function (Algorithm 5)—which is only dependent on the wavenumber
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# 3 PPW Y )pre (s) ) (s) Memory

393, 216
16_ 22.4 9 · 10−4 1.86 · 101 4.55 · 101 315 MB
32_ 11.2 1 · 10−3 8.17 · 101 1.33 · 102 1, 032 MB
64_ 5.6 1 · 10−3 3.73 · 102 5.63 · 102 3, 927 MB

Table 5.4: Same as Table 5.1, but for a fixed number # of surface discretization
points, demonstrating the scaling of the algorithm as the acoustic 3 = ^0 of the
sphere is increased independently of the discretization size while maintaining the
accelerator’s accuracy.

^0, the scaling in # is better than O(# log #) until # is sufficiently large, so that
the process of interpolation back to the surface discretization points requires a large
enough portion of the share of the overall computing time—as observed in the fourth
and fifth rows in Table 5.5.

# 3 PPW Y )pre (s) ) (s) Memory

24, 576

16_

5.6 3 · 10−4 9.30 · 100 1.66 · 101 228 MB
98, 304 11.2 6 · 10−4 1.13 · 101 2.23 · 101 267 MB

393, 216 22.4 9 · 10−4 1.40 · 101 4.14 · 101 320 MB
1, 572, 864 44.8 1 · 10−3 2.34 · 101 1.63 · 102 498 MB

Table 5.5: Same as Table 5.1, but for a fixed acoustic size 3 = ^0 of the sphere,
demonstrating the scaling of the algorithm as # is increased independently of the
acoustic size.

To conclude this section, Figure 5.2 presents results of an investigation regarding
the linearithmic scaling of the parallel IFGF method for the prolate spheroid ge-
ometry on a fixed number of compute nodes, namely, all 30 nodes available in the
computer cluster we use, and for a discretization size # ranging from 6, 291, 456
to 402, 653, 184, for corresponding diameters 3 ranging from 512_ to 4, 096_. The
data in this figure, which is also presented in tabular form in Table 5.6, was gen-
erated by pinning a single MPI rank to each compute node, each of which spawns
56 OpenMP threads, with parameters resulting in an IFGF error Y ≈ 1.5 · 10−2 (cf.
equation (5.3)). The results show that the linearithmic algorithmic complexity and
memory requirements of the basic IFGF algorithm are maintained in the parallel
setting. Indeed, the observed complexity even slightly outperforms the postulated
O(# log #) within this range of values of #; cf. Table 5.6 which suggests con-
vergence to exact linearithmic complexity as # grows. Note, in particular, the last
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6,291,456 25,165,824 100,663,296 402,653,184

4.09

16.4

67.1

290 

Figure 5.2: Illustration of the linearithmic complexity of the parallel IFGF method,
for the prolate spheroid geometry, on 30 compute nodes, with error Y ≈ 1.5 · 10−2.
The acoustic diameter of the ellipsoid is kept proportional to

√
# , and it ranges

from 512_ to 4, 096_. Clearly, the parallel implementation preserves (and, in fact,
slightly improves upon) the ideal linearithmic scaling. For this test one MPI rank
per node and 56 OpenMP threads per MPI rank were used (resulting in 1680 cores).
The peak IFGF memory used per MPI rank (excluding the memory required to store
the initial geometry) as well as other additional data in tabular form are presented
in Table 5.6.

column of Table 5.6 suggests rapid convergence to exact linearithmic complexity
with a well defined proportionality constant, as # grows.

# 3 #2 ) (s) Mem/rank )/(# log #)

6, 291, 456 512_

1, 680

4.09 · 100 0.50 GB 9.56 · 10−8

25, 165, 824 1, 024_ 1.64 · 101 1.89 GB 8.83 · 10−8

100, 663, 296 2, 048_ 6.71 · 101 7.42 GB 8.33 · 10−8

402, 653, 184 4, 096_ 2.90 · 102 29.73 GB 8.37 · 10−8

Table 5.6: Preservation of the linearithmic IFGF scaling in the parallel context. One
MPI rank per node and 56 OpenMP threads per MPI rank on 30 compute nodes,
resulting in #2 = 1, 680 cores, for a prolate spheroid geometry were used for this
test. The peak memory per MPI rank used by the IFGF method (excluding the
memory required to store the initial geometry) is listed in the next-to-last column.
The value in the last column suggests convergence to exact O(# log #) scaling. All
tests were performed with an error of Y = 1 · 10−2
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5.3 Higher order results

As indicated in Section 3.3, the accuracy of the IFGF method is determined by the
Chebyshev interpolation procedure in each of the cone segments. This fact is in
Table 5.7: It demonstrates the scaling of the IFGF method in terms of computing
time, memory requirements and achievable accuracy in the number of interpolation
points % per cone segment, again on the basis of the regular sphere geometry. For
a number % = %B%2

ang of interpolation points per cone segment, the computing time
and memory required by the IFGF method are expected to scale like O(%2) and
O(%), respectively, while the relative accuracy increases exponentially fast. The
predicted scaling can easily be observed by comparing the results from Table 5.7
to the results shown in Table 5.1 for % = 3 × 5 × 5. In particular, as discussed in
the context of the prolate spheroid results shown in Table 5.3, lower accuracy IFGF
computations can be produced at extremely low costs.

# 3 PPW Y (%B, %ang) ) (s) Memory

24, 576 4_

22.4

7 · 10−6

(5, 7)

8.95 · 100 65 MB
98, 304 8_ 1 · 10−5 5.05 · 101 269 MB

393, 216 16_ 2 · 10−5 2.46 · 102 1, 039 MB
1, 572, 864 32_ 2 · 10−5 1.20 · 103 4, 308 MB

24, 576 4_

22.4

4 · 10−7

(7, 9)

3.36 · 101 134 MB
98, 304 8_ 6 · 10−7 1.88 · 102 584 MB

393, 216 16_ 8 · 10−7 9.83 · 102 2, 320 MB
1, 572, 864 32_ 1 · 10−6 4.90 · 103 9, 633 MB

Table 5.7: Same as Table 5.1, but for two different sets of interpolation orders.

5.4 Laplace equation

In our final pure IFGF example, we consider an application of the IFGF method to
a spherical geometry for the Laplace equation. The results are shown in Table 5.8.
A perfect O(# log #) scaling is observed. Note that the Propagation portion of
the algorithm (Algorithm 5), which requires a significant fraction of the computing
time in the Helmholtz case, runs at a negligible cost in the Laplace case—for which
a constant number of cone segments can be used throughout all levels, as discussed
in Section 3.3.



94

# Y )(s) Memory

24, 576 2 · 10−5 7.81 · 10−1 25 MB
98, 304 1 · 10−5 3.62 · 100 69 MB

393, 216 1 · 10−5 1.69 · 101 246 MB
1, 572, 864 1 · 10−5 7.45 · 101 962 MB
6, 291, 456 2 · 10−5 3.29 · 102 3, 676 MB

Table 5.8: Same as Table 5.1, but for the Laplace equation (^ = 0). The precom-
putation times (not shown) are negligible in this case, since the cost of the most
cost-intensive part of the precomputation algorithm, namely, the determination of
the relevant cone segments, is negligible in the present Laplace context. Per the
IFGF Laplace algorithmic prescription, a fixed number of cone segments per box is
used across all levels in the hierarchical data structure.

5.5 Full solver and sample engineering problems

In this section, we present the first complete acoustic scattering solver [82] based
on the above introduced IFGF method for the acceleration of discrete integral
operators of the form (3.1). The proposed accelerated solver utilizes the GMRES
algorithm (see Section 2.1) to solve the linear system of equations where in each
iteration it handles, in addition to the non-neighboring interactions covered by the
IFGF method, the singular local integrations by means of a high-order Chebyshev-
based singularity resolution methodology [52] (see following Section 5.5.4). In
particular, it relies on the IFGF accelerator to evaluate the vast amount of non-
local integration points, i.e., for each box ��k in the octree structure at all non-
neighboring surface discretization points G ∈ Γ# \ N��k . In what follows, an
overall parallel OpenMP implementation of the proposed solver is presented and
numerical experiments confirm the overall O(# log #) computational cost as the
frequency and discretization sizes are increased. A variety of numerical examples
presented in this section demonstrate that the proposed solver enables the efficient
solution of large problems over complex geometries on small parallel hardware
infrastructures. Numerical examples include acoustic scattering by a sphere of up to
128 wavelengths, an 80-wavelength submarine, and a turbofan nacelle that is more
than 80 wavelengths in size, requiring, on a single 28-core processor in the above
described Wavefield cluster (see Section 5.1.2), computing times of the order of a
few minutes per iteration and a few tens of iterations of the GMRES iterative solver
(see Section 2.1).
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5.5.1 Scattering boundary-value problem

We consider wave propagation in a homogeneous isotropic medium with density d,
speed of sound 2, and no damping [12]. Scattering obstacles are represented by a
bounded set Ω ⊂ R3 which is the open complement of an unbounded domain. For
time-harmonic acoustic waves, the wave motion can be obtained from the velocity
potential * (G, C) = <{D(G)4−]lC}, where l > 0 is the angular frequency, and
the spatially-dependent complex-valued part D(G) satisfies the exterior problem for
the Helmholtz equation shown in (1.1) with ^ = l/2; the corresponding acoustic
wavelength is given by _ = 2c/^. Denoting the boundary of Ω by Γ, the sound-soft
obstacle case that we consider requires that D = 0 on Γ. Writing the total field
D(G) = D8 (G) + DB (G), where D8 (G) is a given incident field which also satisfies
Helmholtz equation, leads to an exterior Dirichlet boundary value problem for the
scattered field DB (G)

ΔDB (G) + ^2DB (G) = 0, G ∈ R3 \ Ω̄,

DB (G) = −D8 (G), G ∈ Γ,

|G |
(
G
|G | · ∇D

B (G) − ]^DB (G)
)
= 0, |G | → ∞.

(5.5)

5.5.2 Integral representations and integral equations

The solutions to the acoustic scattering problem can be obtained in terms of an
integral equation posed on the obstacle boundary, as shown in Section 1.1. In what
follows, we cover the specific integral equation relevant to the engineering-motivated
problems presented in this section.

Recall from Section 1.1 that the fundamental solution to the Helmholtz equation
with positive wavenumber ^ is given by (1.8). Utilizing the single and double layer
potentials, S^ and D^, as presented in the same section in equations 1.6 and 1.7,
respectively, the solution to (5.5) can be expressed as a combined-layer potential

DB (G) =
∫
Γ

{
m� (G, H)
ma(H) − ]W� (G, H)

}
i(H) 3((H), G ∈ R3 \ Ω̄, (5.6)

for a real coupling parameter W ≠ 0, where the density i is a solution to the integral
equation

1
2
i(G) + D^ [i] (G) − ]WS^ [i] (G) = 5 (G), G ∈ Γ, (5.7)

with 5 (G) = −D8 (G).
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5.5.3 Surface representation

Following [52], we partition a scattering surface as the disjoint union of a set of
non-overlapping parametrized component patches. We also refer to a surface patch
as a logical quadrilateral (LQ) since it is assumed to be the image of a rectangular
reference domain. Given a scattering surface Γ, we thus utilize a number & of
smooth parametrizations

H@ : ' → R3, (@ = 1, . . . , &),

from a DE-plane reference domain ' B (−1, 1)2 onto an LQ patch Γ@ ⊂ R3 such
that

Γ@ = H@ (') and Γ =

&⋃
@=1
Γ@ . (5.8)

A general integral operator defined over Γ can then be evaluated component-wise
over each patch Γ@.

We discretize the patch Γ@ by means of a surface grid containing #@D × #@E points
given by the image of the tensor-product discretization{

D8 = B8 | 8 = 0, . . . , #@D − 1
}
×

{
E 9 = B 9 | 9 = 0, . . . , #@E − 1

}
,

under the parametrization H@, where the nodes B 9 and associated integration weights
F 9 are given by Fejér’s first quadrature rule:

B 9 = cos
(
c

2 9 + 1
2�

)
, (5.9)

F 9 =
2
�

[
1 − 2

b�/2c∑
ℓ=1

1
4ℓ2 − 1

cos
(
ℓc

2 9 + 1
�

)]
, (5.10)

for 9 = 0, . . . , � − 1 and � is either #@D or #@E . The set of all surface discretization
points will be denoted by

Γ# B

&⋃
@=1
Γ
@

#D ,#E
, (5.11)

where # denotes the total number of grid points over all patches.
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5.5.4 Chebyshev-based rectangular-polar integral equation solver

This section presents a brief description of the high-order integral equation solver
presented in [52]. In that approach, a general integral operator �@ with singular
kernel  @ and density i@ defined over a component patch Γ@ ⊂ Γ of a surface Γ is
expressed in the parametric form

(�@i) (G) =
∫
'

 @ (G, D, E)i@ (D, E)�@ (D, E) 3D3E, (5.12)

for G ∈ Γ, where  @ (G, D, E) B  (G, H@ (D, E)) and i@ (D, E) B i(H@ (D, E)), and
where �@ (D, E)3D3E denotes the element of area.

To compute (5.12) accurately, we use two different high-order methods depending
on whether the target point G is less than or greater than some “proximity distance”
X to the integration patch. In detail, letting

dist (G, Γ@) B inf { |G − H | : H ∈ Γ@} , (5.13)

denote the distance from a point G to a patch Γ@ (where | · |, as before, denotes the
Euclidean distance), the set of target points gives rise to “singular” and “nearly-
singular” over Γ@ is defined by

ΩB,X@ B {G ∈ Γ : dist (G, Γ@) ≤ X} . (5.14)

In contrast, the set of regular (non-singular) target points is defined by

ΩA,X@ B {G ∈ Γ : dist (G, Γ@) > X} . (5.15)

We say that the interaction of an integration patch Γ@ with a target point is singular
or regular/non-singular, according to whether the target point lies in ΩB,X@ or ΩA,X@ ,
respectively.

5.5.5 Integration algorithm for singular interactions

To evaluate (5.12) at a singular or near-singular target point G ∈ ΩB,X? , we proceed as
follows. First, we form the Chebyshev expansion of the density i@ over Γ@:

i@ (D, E) ≈
#
@
E−1∑
<=0

#
@
D−1∑
==0

0
@
=,<)= (D))< (E), (5.16)
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where, in view of the discrete orthogonality property satisfied by Chebyshev poly-
nomials at the Fejér nodes, we have

0
@
=,< =

U=U<

#
@
D#

@
E

#
@
E−1∑
9=0

#
@
D−1∑
8=0

i@ (D8, E 9 ))= (D8))< (E 9 ), U= B


1, = = 0

2, = ≠ 0
. (5.17)

Replacing the density i@ by its Chebyshev expansion (5.16), in the proposed scheme
the integral (5.12) is numerically approximated by

(�@i) (G) ≈
∫
'

 @ (G, D, E) ©«
#
@
E−1∑
<=0

#
@
D−1∑
==0

0
@
=,<)= (D))< (E)

ª®¬ �@ (D, E) 3D3E (5.18a)

=

#
@
E−1∑
<=0

#
@
D−1∑
==0

0
@
=,<

©«
∫
'

 @ (G, D, E))= (D))< (E)�@ (D, E) 3D3E
ª®¬ . (5.18b)

Note that the double integral in (5.18b) does not depend on the density; it depends
only on the kernel, a product of Chebyshev polynomials, and the geometry. Once
this integral has been computed to the desired accuracy, the proposed method stores
its value and uses it as needed.

We write the value of �@ at all target points Gℓ ∈ ΩB,X? succinctly as

(�@i) (Gℓ) =
#
@
E−1∑
<=0

#
@
D−1∑
==0

0
@
=,< V

@,ℓ
=,<, (5.19)

where
V
@,ℓ
=,< B

∫
'

 @ (Gℓ, D, E))= (D))< (E)�@ (D, E) 3D3E. (5.20)

To compute (5.20) at an evaluation point Gℓ, we first identify its corresponding
integration patch node (D̄@

ℓ
, Ē
@

ℓ
). If the target point Gℓ is itself a grid point of Γ@,

then finding its node is straightforward: Gℓ = H@ (D̄@ℓ , Ē
@

ℓ
) for some point (D̄@

ℓ
, Ē
@

ℓ
) in

the DE-plane reference domain for Γ@. On the other hand, if Gℓ ∈ ΩB,X? \ Γ@, then we
search for a Γ@ node such that

(D̄@
ℓ
, Ē
@

ℓ
) = arg min

(D,E)∈[−1,1]2
‖Gℓ − H@ (D, E)‖ . (5.21)

As in [52], for robustness and simplicity, we solve the minimization problem (5.21)
by means of the golden section search algorithm.

Next, we apply a one-dimensional change of variables to each coordinate in the
DE-parameter space to construct a clustered grid around each given target node. To
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this end, we consider the following one-to-one, strictly monotonically increasing,
and infinitely differentiable function F : [0, 2c] → [0, 2c], with parameter 3 ≥ 2
(proposed in [11, Sec. 3.5]),

F(g; 3) B 2c
[a(g)]3

[a(g)]3 + [a(2c − g)]3
, 0 ≤ g ≤ 2c, (5.22)

where
a(g; 3) B

(
1
3
− 1

2

) (c − g
c

)3
+ 1
3

(g − c
c

)
+ 1

2
. (5.23)

It can be shown that F has vanishing derivatives up to order 3 − 1 at the interval
endpoints. Then, the following change of variables

bU (g; 3) B


U +

(
sgn(g)−U

c

)
F(c |g |; 3), for U ≠ ±1,

U −
(

1+U
c

)
F(c

�� g−1
2

�� ; 3), for U = 1,

U +
(

1−U
c

)
F(c

�� g+1
2

�� ; 3), for U = −1,

(5.24)

has the effect of clustering points aroundU. Fejér’s rule applied to the integral (5.20),
transformed using the change of variables (5.24), yields the approximation

V
@,ℓ
=,< ≈

#V−1∑
9=0

#V−1∑
8=0

 @ (Gℓ, D@,ℓ8 , E
@,ℓ

9
))= (D@,ℓ8 ))< (E

@,ℓ

9
)�@ (D@,ℓ

8
, E
@,ℓ

9
) FD,@,ℓ

8
F
E,@,ℓ

9
,

(5.25)
where

D
@,ℓ

8
= bD̄@

ℓ
(B8; 3), F

D,@,ℓ

8
=
3bD̄@

ℓ

3g
(B8; 3) F8, (5.26)

E
@,ℓ

9
= bĒ@

ℓ
(B 9 ; 3), F

E,@,ℓ

9
=
3bĒ@

ℓ

3g
(B 9 ; 3) F 9 , (5.27)

for 8, 9 = 0, . . . , #V − 1. To avoid division by zero, we set the kernel  @ to zero at
integration points where the distance to the target point is less than some prescribed
tolerance, usually on the order of 10−14.

5.5.6 Integration algorithm for non-singular interactions

Together with the singular integration method discussed in the previous subsection,
the (non-accelerated) high-order solver [52] evaluates the integral operator (5.12) at
all regular target points Gℓ ∈ ΩA,X@ simply by means of Fejér’s first quadrature rule:

(�@i) (Gℓ) ≈
#
@
E−1∑
9=0

#
@
D−1∑
8=0

 @ (Gℓ, D8, E 9 )i@ (D8, E 9 )�@ (D8, E 9 ) F8F 9 . (5.28)
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It is not difficult to show that, asymptotically, the regular interactions dominate the
integral operator computation (see [52, Sec. 4.4]). Evaluating all non-singular
interactions using (5.28) leads to an algorithm with complexity $ (#2) operations.
Clearly, for acoustically-large problems this quadratic computational complexity
becomes prohibitively expensive. To deal with this difficulty, we use instead the
above introduced IFGF acceleration method to accelerate the evaluation which is
described in the following section. As indicated in Section 3.7 for simple discrete
operators, and is confirmed for full scattering problems by the following numerical
results, the IFGF method leads to an overall algorithm that runs at computing cost
of $ (# log #) operations.

5.5.7 IFGF method for the combined-layer formulation

The IFGF approach was described in Chapter 3 as an algorithm for accelerated
evaluation of the sum (3.1) for aGreen function such as (1.8). Various considerations
are necessary to apply the IFGF method to discrete forms of the integral operators
S^ andD^ on the left-hand side of (5.7), as discussed in what follows. On one hand,
the singular interactions considered in Section 5.5.5 and certain sets of neighboring
points in the 3 = � IFGF level, which are non-singular for the rectangular-polar
method but which may not be evaluated by means of the IFGF interpolation strategy
are handled independently of the IFGF accelerator (cf. Section 3.6), by means of
the algorithms described in Sections 5.5.5 and 5.5.6, respectively.

The non-neighboring IFGF interactions in the discretizations of these operators—
i.e., the contributions that involve pairs of discretization points G = Gℓ and H = G<
that are sufficiently far from each other, as indicated in equation (5.15) and associated
text—, on the other hand, lead to sums which can be treated by means of the IFGF
accelerator. However, it must be noted that, while the non-neighboring contributions
arising from the operator S^ are precisely of the form (3.1), the corresponding non-
neighboring contributions associated withD^ are somewhat different in character—
as evidenced, in particular, by their asymptotic O(1/|G − H |2) growth as |G− H | → 0.
This difference can be tackled in two different manners. In a first approach, two
separate IFGF accelerators are used, one as described above for the single-layer
potential and a separate one, based on the use of a different centered factor, namely
� (G, G3k)/|G − G

3
k |, for the double layer potential. A second approach, on the other

hand, combines the kernels of the single and double layer potentials and uses the
centered factor � (G, G3k) for the combined kernel. While rigorously accounting
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for the Green function singularity and maintaining accuracy for arbitrarily small
values of the level-� box size �� , the first approach doubles the acceleration
cost. It is therefore valuable to consider the ranges of values of �� for which
the second approach remains unaffected by the somewhat unresolved double-layer
Green function singularity. Our numerical experiments indicate that the double-layer
singularity errors in the second approach are negligible for �� ≥ 0.5_. Thus, for

Figure 5.3: Same as Figure 3.4, but only showing the interpolation strategy in the B
variable, although, for the single layer potential and the double layer potential.

the types of structures considered in this thesis, which do not contain significant sub-
wavelength geometric features, the second approach is advantageous, as it enjoys the
reduced computational cost while preserving accuracy. In a more general context,
an adaptive approach would be used (cf. the second paragraph of Section 5.5.9)
which incorporates the first approach for the portion of the IFGF octree containing
boxes of size �3 < 0.5_ and the second approach for the remainder the octree. Such
an extension is beyond the scope of this thesis, and is left for future work.

After solving (5.7) for the density i, the far-field pattern D∞ can be obtained from

D∞(Ĝ) = 1
4c

∫
Γ

{
m

ma(H) 4
−]^Ĝ·H − ]W4−]^Ĝ·H

}
i(H) 3((H), Ĝ ∈ S2, (5.29)

where S2 denotes the unit sphere and Γ is the scatterer’s boundary. The far-field is
computed over a uniformly-spaced unit spherical grid

S2
# B

{
(q<, \=) ∈ [0, c] × [0, 2c] : 1 ≤ < ≤ #q, 1 ≤ = ≤ #\

}
, (5.30)
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with q< = (< − 1)Δq, \= = (= − 1)Δ\ and where the spacings are defined as
Δq = c/(#q − 1) and Δ\ = 2c/(#\ − 1), respectively; specific values of #q and
#\ are given in each example’s subsection. Given the exact (or reference) far-field
modulus |D∞ | and an approximate far-field modulus |D̃∞ |, the maximum far-field
relative error Y 5 0A over S2

#
given by

Y 5 0A = max
(<,=)∈S2

#

{ | |D∞<,= | − |D̃∞<,= | |
| |D∞<,= | |

}
(5.31)

is reported in each case.

Similarly, using the solution i in the combined-layer representation (5.6), we eval-
uate and display the scattered field DB over near-field planes that are parallel to the
GH-, GI-, or HI-planes. For example, we evaluate fields (incident, scattered, and
total) at every point of a uniformly-spaced two-dimensional GH-planar grid PGH

#
(I0)

at I = I0 defined by

P
GH

#
(I0) B

{
(G<, H<, I) ∈ [G<8=, G<0G] × [H<8=, H<0G] × {I0} :

1 ≤ < ≤ #G , 1 ≤ = ≤ #H
}
,

(5.32)

where the grid points are given by G< = (< − 1)ΔG, H= = (= − 1)ΔH and the grid
spacings are ΔG = (G<0G − G<8=)/(#G − 1) and ΔH = (H<0G − H<8=)/(#H − 1). Near-
field planar grids parallel to the GI- and HI-plane are defined analogously. Denoting
the exact (or reference) and approximate modulus of the total field at each point of
P
GH

#
(I0) by E<,= (= |DB<,= +D8<,= |) and Ẽ<,= (= |D̃B<,= +D8<,= |), respectively, we compute

the near-field (total magnitude) relative error Y=40A over PGH# (I0) as

Y=40A = max
(<,=)∈PGH

#
(I0)

{ |E<,= − Ẽ<,= |
|E<,= |

}
. (5.33)

The numerical results presented in what follows were obtained using a single pro-
cessor on one of theWavefield compute nodes presented in Section 5.1.2, i.e., using
28 cores. Solutions to the complex-coefficient linear systems that arise from dis-
cretizations of the boundary integral equation (5.7) were obtained with a complex-
arithmetic GMRES iterative solver (see Section 2.1). Following [37], we set the
combined-layer equation (5.7) coupling parameter W = max{3, �/_}, where � is
the diameter of the scatterer; computational results indicate that, to reach a given
residual tolerance, this value reduces the number of GMRES iterations by a factor of
5 − 10 compared with W = ^. Plots were generated using the visualization software
VisIt [83].
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5.5.8 Scattering by a sphere

We consider plane wave scattering by a sphere of various acoustical sizes. For a
sound-soft acoustic sphere, the well-known closed-form far-field expression is used
to compute relative errors [84]. Table 5.9 summarizes the accuracy and efficiency
of the IFGF-accelerated solver and non-accelerated solver for a sphere of diameter
ranging from 4 to 128 wavelengths. For each problem, the number of IFGF lev-
els is selected so that the finest-level IFGF box side length is approximately 0.5_.
All computations are performed using a GMRES residual tolerance set to 10−4.
We report the total number of unknowns, the size of the sphere in wavelengths,
the time required to compute one GMRES iteration as well as the total number
of iterations required to achieve the prescribed residual, and the far-field relative
error. far-field relative errors are computed over the spherical grid (5.30) with
(#q, #\) = (200, 200). Table 5.9 shows that the time per iteration required by the

# 3 IFGF levels ) (1 iter.) Tot. iter. Y 5 0A

13,824 4_ 4 0.2 s 12 1 · 10−4

55,296 8_ 5 1.0 s 14 1 · 10−4

221,184 16_ 6 4.6 s 14 6 · 10−5

884,736 32_ 7 19.4 s 16 3 · 10−5

3,538,994 64_ 8 83.1 s 18 6 · 10−5

14,155,776 128_ 9 443.2 s 21 4 · 10−4

Table 5.9: IFGF-accelerated solver for acoustic scattering by a sphere of acoustical
sizes ranging from 4 to 128 wavelengths. The table summarizes the total number of
surface unknowns, sphere size in wavelengths, maximum number of IFGF levels,
time required to compute one GMRES iteration, total number of iterations, and
far-field relative error Y 5 0A . In all cases the GMRES residual tolerance was set to
10−4.

non-accelerated algorithm grows by a factor of around 14.8 − 15.7 as the number
of points per dimension in each surface patch is doubled (so that the overall num-
ber of unknowns is quadrupled), which is consistent with the expected quadratic
complexity of the algorithm. For an #-point surface discretization, the IFGF-based
solver, on the other hand, the computing costs scale like O(# log #), as shown
in Figure 5.4 where we plot the accelerated solver compute time (in s) versus # .
The reduced complexity of the IFGF-based algorithm has a significant impact on
computing times. At 128 wavelengths, the non-accelerated solver takes more than
1000 times longer than the accelerated method for each GMRES iteration; for larger
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Figure 5.4: IFGF-accelerated solver compute time (in seconds) versus total number
of discretization points # , plotted with line-circle markers, for acoustic scattering
by a sphere. For reference, we also plot a graph of �# log # , � = 0.3 · 10−5, using
a dashed line.

problems, the difference in compute times grows as expected from the complexity
estimates for the two methods. Note that the total number of GMRES iterations
necessary to satisfy the residual tolerance is the same for both the non-accelerated
and accelerated solvers. Additionally, the errors for both algorithms are comparable:
the non-accelerated solver yields solutions for the 4, 8 and 16 wavelength problems
with an average relative error of 1.1 ·10−4, while errors obtained with the accelerated
method average 1.3 · 10−4 across the entire 4 to 128 wavelength range.

5.5.9 Scattering by a submarine geometry

In this section, we present acoustic scattering simulations for a realistic submarine
configuration of up to 80 wavelengths in acoustical size. Due to its importance in
detection and tracking applications, methods for efficient and accurate scattering
simulations are the subject of ongoing research [85–91]. The submarine model
used in subsequent simulations, which is comprised of the main hull, sail, diving
planes, rudders, and a five-blade propeller, is depicted in Figure 5.5. The complete
submarine geometry is contained in the bounding region [−3.2, 3.2] × [−1.9, 2.8] ×
[−19.2, 10.9]. Figures 5.5(b) and 5.5(c) show a surface mesh of 4, 560 patches,
each of which is represented by 6 × 6 points.
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Figure 5.5: Submarine model and surface mesh with a total of 164, 160 points. The
submarine hull is aligned with the I-axis and the sail is parallel to the +H-axis; the
front of the vessel points in the +I-direction.

We consider plane wave scattering for two cases: a) head-on incidence and b)
oblique incidence. The incident field is a plane wave D8 that travels along the wave
direction :̂ and is given by

D8 (G) = 4]^:̂ ·G , :̂ =
©«
cos \ sin q
sin \ sin q

cos q

ª®®®¬ , (5.34)

where the position vector G = (G1, G2, G3), ^ > 0 is a given wavenumber, and
(\, q) ∈ [0, 2c) × [0, c]. Since the bow of the submarine points in the +I-direction,
“head-on” incidence corresponds to (\, q) = (0, c) in (5.34). For the oblique
incidence case, we set (\, q) = (0, 5c/4).

To verify the accuracy of the IFGF-accelerated solver in the present case, we con-
ducted convergence studies for the submarine structure at 10_, 20_, and 40_ in
acoustical size (measured from the bow to the propeller cap). In all cases the num-
ber of IFGF levels was chosen so that the side length of the smallest, finest-level,
boxes is around 0.8_. The GMRES residual tolerance was set to 10−3 in all cases.
We start with a 10_ vessel whose geometry is represented by 1, 140 surface patches,
each of which has 6× 6 points. As the size of the problem is doubled, the geometry
is partitioned from the previous size so that every patch is split into four subpatches
while keeping the same number of points per patch. Thus, for example, the 20_
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problem uses four times as many surface points as the 10_ case. This is admittedly
a sub-optimal strategy, in this case, (as the smaller patches on the propeller, rud-
ders and diving planes which already fully discretize the wavelength do not require
additional partitioning), which, however, simplifies the code implementation. Ad-
ditionally, this distribution of surface points makes sub-optimal use of the present
version of the IFGF algorithm. As indicated in Section 3.6, the IFGF method can
be extended to incorporate a box octree algorithm that adaptively partitions a geom-
etry until each box contains a (small) prescribed number of points, thus eliminating
this difficulty. While such an addition is left for future work, as demonstrated in
Table 5.10, even the simple uniform-partition IFGF algorithm we use in this thesis
is sufficient to simulate scattering by a realistic submarine geometry for up to 80
wavelengths in size with several digits of accuracy and using only modest com-
putational resources. For example, the 656, 640 unknowns, 40_ run for head-on
incidence, required a computing time of 313 seconds per iteration and a total of 78
iterations. The fully adaptive version of the IFGF algorithm, which, as mentioned
above, is not pursued in this thesis, should yield for the submarine geometry com-
puting times consistent with those shown in Tables (5.9), (5.11) and (5.12) for the
sphere and nacelle geometries. Near-field relative errors for front (head-on) and

# 3 IFGF levels Front Y=40A Oblique Y=40A

41,040 10_ 5 2 · 10−4 7 · 10−4

164,160 20_ 6 2 · 10−4 6 · 10−4

656,640 40_ 7 2 · 10−4 2 · 10−4

2,626,560 80_ 8 (est.) 2 · 10−4 (est.) 5 · 10−4

Table 5.10: Convergence study of IFGF-accelerated acoustic solver for the subma-
rine geometry, with acoustical sizes ranging from 10 to 40 wavelengths, and the
front and oblique wave incidence. In all cases, the residual tolerance was set to
10−3.

oblique plane wave incidence are shown in Table 5.10. For each problem, we esti-
mate Y=40A over PGH# (I0), where [G<8=, G<0G] × [H<8=, H<0G] = [−12, 12]2, I0 = −25
and #G = #H = 260, using (5.33) with a reference solution obtained with the same
number of surface patches as the target discretization but using 8×8 points per patch
and a residual tolerance of 10−5. (Thus, the reference solution uses nearly twice as
many discretization points and it satisfies a more stringent convergence condition.)
The numerical results indicate that the solution accuracy is consistent for both front
and oblique incidence and for all acoustical sizes considered. For front and oblique
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incidence, the relative errors for the 10_, 20_, and 40_ problems achieve an average
accuracy of 2.1 ·10−4 and 4.8 ·10−4, respectively, and we use these values to estimate
the expected relative errors in the 80-wavelength case.

Figure 5.6: Total field magnitude |D(G) | = |D8 (G) + DB (G) | pseudocolor plots for an
80-wavelength submarine. The field is plotted over a uniform grid of 1040 × 1760
points for (G, I) ∈ [−12, 12] × [−25, 15]. In this case, the incident plane wave
impinges on the vessel head-on, which corresponds to the wave direction :̂ in (5.34)
with (\, q) = (0, c).

In Figure 5.6, we present pseudocolor near-field plots of the total field magnitude
|D(G) | = |D8 (G) +DB (G) | for front plane wave incidence for an 80-wavelength subma-
rine. The field is plotted over a uniform 1040 × 1760 point planar grid PGI

#
(H0) for

(G, I) ∈ [−12, 12] × [−25, 15] and H0 = 0. The incident plane wave impinges on the
vessel head-on and we see in Figures 5.6(a) and 5.6(b) that the strongest interaction
occurs around the bow and diving planes (also known as hydroplanes) of the ship.
Shadow regions are visible immediately behind the hydroplanes as well as along the
hull, particularly in the aft of the ship where the body tapers. Figure 5.6(c) shows
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Figure 5.7: Total field magnitude |D(G) | = |D8 (G) + DB (G) | pseudo-color plots for an
80-wavelength submarine. The field is plotted over a uniform grid of 1040 × 1760
points for (G, I) ∈ [−12, 12] × [−25, 15]. In this case, the incident plane wave
impinges on the vessel at an oblique angle, which corresponds to the wave direction
:̂ in (5.34) with (\, q) = (0, 5c/4).

that the wider sections of the ship obstruct the propeller from most incoming waves
and, as a consequence, there is minimal interaction in this region.

Figure 5.7 shows near-field pseudocolor plots for the same 80-wavelength submarine
but this time for oblique plane wave incidence. The total field magnitude is plotted
over the uniform grid PGI

#
(H0) described in the previous paragraph. In this case,

the wave interaction is markedly different. We see the expected shadow region in
the opposite side of the incoming wave but there is now clear evidence of wave
interaction between the hull and diving planes as well as around the rudders and
propeller. In addition to multiple scattering, the close-up views of Figures 5.7(b)
and 5.7(c) show the formation of bright spots near the junction of the left hydroplane
and hull and in the vicinity of the propeller.
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5.5.10 Scattering by an aircraft nacelle

The simulation of aircraft engine noise has been the subject of intense research for
the past several decades due to its importance in civil aviation applications [92–
96]. In this section, we present simulations of sound propagation in and around
the turbofan engine nacelle model shown in Figure 5.8. According to the nacelle
wall liner case study [97], under typical operating conditions, engine nacelle noise
occurs in the 125 − 5650 Hz frequency range. For a typical airliner engine that is
around 5 m long, these frequencies correspond to acoustical sizes between 2 and
82 wavelengths. The engine nacelle geometry used in the simulations that follow is

Figure 5.8: Left panel: Aircraft engine nacelle model. Center panel: translucent
view of the geometry where the center shaft is visible. Right panel: 8, 576-surface-
patch discretization with 6 × 6 points per patch (for clarity, only every other mesh
point is plotted).

depicted in Figures 5.8(a) and 5.8(b); it is comprised of an outer housing and a center
shaft. The entire two-piece nacelle structure is contained inside the bounding region
[−1.5, 1.5] × [−1.5, 1.5] × [−3.27, 3.27]. The center shaft is aligned with the I-axis,
with the tip of the shaft pointing towards the positive direction. A discretization
with 8, 576 surface patches with 6 × 6 points per patch is shown in Figure 5.8(c);
for future reference, note that the inset image shows that the mesh is not rotationally
symmetric near the tip of the shaft.

Two types of incident fields are used in simulations: a) a plane wave that travels
towards the −I-axis, so that it impinges on the nacelle head-on and b) a set of eight
point sources placed inside the housing around the center shaft. As in the submarine
example, the plane wave incident field is given by (5.34) with (\, q) = (0, c). The
incident field b), on the other hand, serves as a simple model for fan noise generation
inside the nacelle and is given by

D8 (G) =
8∑
9=1

4]^ |G−G
9 |

|G − G 9 | , with point source locations

G 9 = (G 91, G
9

2, G
9

3) = (cosU 9 , sinU 9 , 2),

(5.35)
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where U 9 = ( 9 − 1)ΔU + c/8, for 9 = 1, . . . , 8, and ΔU = c/4.

# 3 IFGF levels ) (1 iter.) Tot. iter. Y=40A

77,184 10.2_ 6 2.0 s 33 2 · 10−3

308,736 20.5_ 7 8.7 s 47 2 · 10−3

1,234,944 40.9_ 8 40.4 s 55 7 · 10−4

4,939,776 81.8_ 9 176.4 s 65 (est.) 2 · 10−3

Table 5.11: Convergence study of IFGF-accelerated acoustic solver for a nacelle
geometry of 10.2, 20.5 and 40.9 wavelengths for plane wave scattering. (The table
also includes data for an 81.8_ nacelle, but in this case, the near-field relative error
is estimated using the average relative errors of the three previous problems.) The
table summarizes the total number of surface unknowns, nacelle size in wavelengths,
maximum number of IFGF levels, time required to compute one GMRES iteration,
total number of iterations, and near-field relative error Y=40A . In all cases, the
GMRES residual tolerance was set to 10−3.

# 3 IFGF levels ) (1 iter.) Tot. iter. Y=40A

77,184 10.2_ 6 2.0 s 39 4 · 10−3

308,736 20.5_ 7 8.7 s 59 4 · 10−3

1,234,944 40.9_ 8 40.4 s 115 2 · 10−3

4,939,776 81.8_ 9 176.4 s 219 (est.) 4 · 10−3

Table 5.12: Same as Table 5.11, but for point source scattering.

Tables 5.11 and 5.12 tabulate the results of a convergence study for both plane
wave and point source incidence for a nacelle of 10.2, 20.5 and 40.9 wavelengths
in size, respectively. We also include results for an 81.8-wavelength nacelle. The
number of IFGF levels is selected so that the finest-level IFGF box side length is
approximately 0.6_ in all cases. All computations were performed with a GMRES
residual tolerance equal to 10−3. The total near-field magnitude relative error
Y=40A was estimated over a near-field planar grid PGH

#
(I0), where [G<8=, G<0G] ×

[H<8=, H<0G] = [−4, 4]2, I0 = −5 and #G = #H = 400, by computing (5.33) with a
reference solution obtained with the same number of surface patches as the target
discretization but using 8 × 8 points per patch and a residual tolerance of 10−5. In
addition to the near-field relative error, Tables 5.11 and 5.12 also include the total
number of unknowns, the size of the nacelle in wavelengths, the time required to
compute one GMRES iteration and the total number of GMRES iterations required
to satisfy the 10−3 residual tolerance. Thus, as the problem size increases from
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10.2_ to 20.5_, 20.5_ to 40.9_, and 40.9_ to 81.8_, and the number of unknowns is
quadrupled in each case, the computing cost per iteration increases by a factor of only
4.4, 4.6 and 4.4, respectively (which is consistent with an O(# log #) complexity),
and not the 16-fold cost increase per wavelength doubling that would result from
a non-accelerated algorithm with quadratic complexity. This scaling of the IFGF-
accelerated combined-layer solver is consistent with the IFGF method computations
presented throughout this Chapter, which did not include singular local interactions,
and suggests that the partitioning and discretization of the geometry makes optimal
use of the IFGF algorithm. The results also indicate that the discretization and
10−3 residual tolerance is sufficient to produce solutions for the 10.2, 20.5 and
40.9 wavelength cases with an average error of 1.5 · 10−3 for plane wave scattering
and 3.5 · 10−3 for point source scattering. The average relative error values are
used to estimate the accuracy of the 81.8_ simulation, which also converged to
the same GMRES tolerance as the smaller problems. Note that, as reported in
Tables 5.11 and 5.12, the number of iterations required for convergence increases
by only 8 − 14 iterations. The total near-field magnitude |D(G) | = |D8 (G) + DB (G) |

Figure 5.9: Total field magnitude |D(G) | = |D8 (G) + DB (G) | pseudo-color plots for an
82-wavelength aircraft nacelle. The field is plotted over a uniformgrid of 2800×4000
points for (G, I) ∈ [−4, 4] × [−5, 6]. The nacelle is aligned with the I-axis and the
front points towards the +I-direction. The incident plane wave impinges on the
geometry head-on and travels towards the negative I-axis.
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for the 81.8-wavelength plane wave scattering case is displayed in Figure 5.9. The
field magnitude is plotted over the GI-planar grid PGI

#
(H0) (recall the planar grid

definition (5.32)), where [G<8=, G<0G] × [I<8=, I<0G] = [−4, 4] × [−5, 6], H0 = 0,
with #G = 2800 and #I = 4000. Along most of the exterior circumference of
the nacelle housing, the total field forms a relatively uniform stratified pattern.
In other regions, intricate multiple-scattering patterns develop, particularly in the
region around the intake and throughout the inside of the nacelle. For a closer
examination, Figures 5.9(b) and 5.9(c) display top views of the field but with the
scattering surfaces removed. It is evident that the strongest reflection occurs directly
in front of the tip of the nacelle shaft. Note the symmetry in the detail of the
near-field shown in Figure 5.9(b), which results in spite of the lack of symmetry in
the geometry discretization illustrated in the inset in Figure 5.8(c).

Figure 5.10: Total field magnitude |D(G) | = |D8 (G) + DB (G) | pseudocolor plots for an
82-wavelength aircraft nacelle. The field is plotted over a uniformgrid of 2800×4000
points for (G, I) ∈ [−4, 4] × [−5, 6]. The nacelle is aligned with the I-axis and the
front points towards the +I-direction. The incident field is given by the sum (5.35)
of eight point sources within the nacelle around the center shaft, four of which are
shown as small red spheres in panel (b).

Near-fields for the eight-point source, 81.8-wavelength, incident field are displayed
in Figure 5.10. The total field magnitude is plotted over the same GI-planar grid
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PGI
#
(H0) used for the plane wave scattering case. In Figure 5.10(a), the point-source

generated fields can be seen to scatter and exit the front inlet and rear exhaust.
The close-up view in Figure 5.10(b) highlights the location of four of the eight
point sources, drawn as red spheres for emphasis; the remaining four sources are
obstructed from view by the near-field plane. In Figures 5.10(c) and 5.10(d), the
geometry is removed so we can examine the field interaction within the scatterer in
greater detail. Both images exhibit complex multiple scattering and a high degree
of symmetry throughout the interior of the structure and in the regions outside that
surround the nacelle assembly. In contrast to the plane wave scattering case, where
the incident wave travels mostly parallel to the housing and shaft, placing sources
between the shaft and nacelle walls guarantees that most waves scatter multiple
times before exiting the geometry.

Figure 5.11: Far-field magnitudes for the nacelle geometry under plane wave and
eight point-source incident fields. Panels (a) and (b) present the far-field for a
40.9_ plane wave and panels (c) and (d) present the far-field for an 81.8-wavelength
plane wave. Panels (e)-(g) display far-fields for the eight-point source incident field
defined in (5.35), for 40.9_ in panels (e) and (f) and for 81.8_ in panel (g).

The far-field magnitudes are shown in Figure 5.11 for both plane wave and point
source incident fields. Figures 5.11(a) and 5.11(b) present the far-field for a 40.9_
plane wave, while Figures 5.11(c) and 5.11(d) present the far-field for an 81.8-
wavelength plane wave. Using (5.29), the far-field D̃∞ is computed over S2

#
(recall
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Figure 5.12: Measured speedup (1,#2 (vertical axis) versus number of cores #2
(horizontal axis) in a strong scaling test transitioning from 1 core to 1,680 cores (=
30 compute nodes) for three geometries: a sphere of size 128 wavelengths (blue),
an oblate spheroid of size 128 wavelengths (red), and prolate spheroid of size 256
wavelengths (yellow). The dash-dotted purple line indicates the theoretical perfect
speedup.

the spherical grid definition (5.30)) with (#q, #\) = (2000, 600) in the 40.9_ case
and (#q, #\) = (3200, 800) for the 81.8 wavelength plane wave. More points
are used at higher frequencies to resolve the far field lobes that are visible in
Figures 5.11(b) and 5.11(d). The far-field plots for both 40.9_ and 81.8_ plane
wave scattering once again show that most of the wave reflection occurs in the
region directly in front of the nacelle intake; note that this reflection intensifies as
the wavelength decreases. The maximum magnitude of the far-field increases by
a factor of approximately 1.5 for the 81.8_ wave compared with the 40.9_ case.
Figures 5.11(e-g) show the far-field magnitude for the eight-point source incident
field defined in (5.35) at 40.9 and 81.8 wavelengths. Figure 5.11(e) displays a
side view of the 40.9_ far-field magnitude |D̃∞ | including the nacelle geometry,
for reference, with the intake pointing left. Figures 5.11(f) and 5.11(g), where the
geometry is not included, present the far-field, with the positive I direction pointing
out of the page, for the 40.9_ and 81.8_ cases, respectively.

5.6 Strong parallel scaling

The observed speedups under strong scaling tests are displayed in Figure 5.12. This
figure presents speedup tests for three test cases: a sphere of diameter 3 = 128_
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(where, as before, _ = 2c
^

denotes the wavelength and 3 is given in (5.1)), and
oblate and prolate spheroids (Figure 5.1) of large diameters 3 = 128_ and 3 = 256_,
respectively. The curves in Figure 5.12 display, in each case, the observed speedup
(1,#2 for 1 ≤ #2 ≤ 1, 680 (see Section 5.1.6). In view of the requirements of the
strong-scaling setup, test problems were selected that can be run in a reasonable
time on a single core and with the memory available in the corresponding compute
node. Clearly, such test problems tend to be too small to admit a perfect distribution
onto large numbers of cores. As illustrated in Figure 5.12, however, in spite of
this constraint, excellent scaling is observed in the complete range going from 1
core to 1, 680 cores (30 nodes). As in the weak-scaling tests, further, there is
no hard limitation on scaling, even for such small problems, (once again, in line
with the discussion presented in Chapter 4), and it is reasonable to expect that,
unlike other approaches (for which either hard limits arise [44] as described in the
first paragraph of Section 4.1, or which rely on memory duplication [46, 47]), the
observed speedup continues to scale with the number of cores, as suggested by
Figure 5.12, up to very large numbers of cores. The computing speedups achieved
by the proposed parallel strategy outperform those achieved by other MPI-parallel
implementations of FMM and other numerical methods [34, 48, 98], and can be best
appreciated by noting that, instead of the, e.g., approximately 40 minutes (2.54 · 103

secs., see first line in Table 5.13) required by a single-core IFGF run, a total of
4.5 secs. (4.5 = 2.54 · 103/(1,1680 secs., where, per Figure 5.12, (1,1680 = 565)
suffices for the corresponding 1, 680-core IFGF run. It is interesting to note that
an approximately 1.51 second 1, 680-core run would have resulted under perfect
scaling.

Tables 5.13- 5.15, 5.16- 5.18, and 5.19- 5.21, in turn, present the strong parallel
efficiencies achieved by the proposed parallel IFGF method under OpenMP, shared-
memory MPI, and distributed-memory MPI parallelization strategies, respectively,
for each of the three test geometries considered in this section. In detail, these tables
display the main two strong parallel performance quantifiers, namely the observed
strong parallel efficiency � B

#0
2 ,#2

and speedup (#0
2 ,#2

, along with the computing
times ) , the obtained accuracy Y, and details concerning the geometry and the dis-
cretizations. The tables clearly show that, in all cases, the IFGF parallel efficiencies
are essentially independent of the geometry type. With reference to Section 5.1.3
above, the ranges of the parameter #2 considered in these tables span all of the
available cores in each one of the relevant hardware units used: 14 cores in a single
NUMA node, 56 cores (4 NUMA nodes) in a single compute node, and 16 nodes in
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the complete cluster (the largest number of nodes which equals a power of 2 in the
cluster used).

The largest efficiency deficit observed as a result of a hardware-doubling transition
is the decrease by a full 23% (from 100% to 77%) shown in Tables 5.16- 5.18, which
results from the transition fromone to twoMPI ranks (that is, fromone to two 14-core
NUMA nodes). We argue that this deficit, which takes place precisely as an MPI
communication between NUMA nodes is first introduced, is not a sole reflection
of the character of the algorithm in presence of the MPI interface, since such large
deficits are not observed in any other MPI related hardware-doubling transitions
reported in the various tables. As potential additional contributing elements to this
deficit we mention notably, MPI overhead (which would only be incurred in the
first doubling transition but not in subsequent doubling transitions, in view of the
decreasing number of pairwise communications incurred by the algorithm under a
doubling transition in a strong scaling test, as indicated by the theoretical discussion
in Section 4.3), and the Intel Turbo Boost Technology inherent in the processors
used—which achieve maximum turbo frequencies when running under lower loads,
and which, when concurrently using larger numbers of cores in a single node, cease
to operate.

A variety of other data is presented in these tables. Tables 5.13- 5.15 and 5.16-
5.18, which demonstrate the strong scaling within a single NUMA node, and among
all four NUMA nodes within a compute node, are included for completeness, but
as discussed below, we attach far greater significance to Tables 5.19- 5.21, which
demonstrate the scaling of the method under the one hardware element that can truly
be increased without bounds, namely, the number of compute nodes. In these tables,
geometries twice as large than those used for the previous tables are considered (to
reasonably increase theminimum computing times), and the hardware is scaled from
one compute node to sixteen compute nodes. Per the description in Section 5.1.3,
each node is assigned four MPI ranks, each one of which is pinned to one of the
four NUMA nodes present in the compute node. Overall, a strong scaling efficiency
of over 60% can be observed in all cases, with the results of the sphere test case
even above 70% owing to the symmetry of the geometry and the resulting increased
load-balance and minimized communication between ranks. The loss of efficiency
can be attributed the load-imbalance induced by our data partitioning strategy, the
communication between ranks, and the parallelization overhead introduced by MPI
and OpenMP.
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Figure 5.13: Visualization of the strong parallel efficiency � B1,#2 of the OpenMP
parallelization, scaling from 1 to 14 cores for all three test geometries shown in
Table 5.13- 5.15.
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Figure 5.14: Visualization of the strong parallel efficiency � B14,#2 of the shared-
memoryMPI parallelization, scaling from 14 to 56 cores for all three test geometries
shown in Table 5.16- 5.18.
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Figure 5.15: Visualization of the strong parallel efficiency � B56,#2 of the distributed-
memory MPI parallelization, scaling from 56 to 1, 680 cores for all three test
geometries shown in Table 5.19- 5.21.
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# 3 #2 Y ) (s) � B1,#2 (1,#2

1, 572, 864 128_

1

2 · 10−3

2.54 · 103 100% 1.00
2 1.29 · 103 98% 1.95
4 6.91 · 102 92% 3.67
8 3.63 · 102 87% 6.98

14 2.31 · 102 78% 10.98

Table 5.13: Strong parallel scaling test of the OpenMP IFGF implementation from
#2 = 1 to #2 = 14 cores in a single node for the sphere geometry.

# 3 #2 Y ) (s) � B1,#2 (1,#2

1, 572, 864 128_

1

5 · 10−4

9.42 · 102 100% 1.00
2 4.86 · 102 97% 1.94
4 2.60 · 102 91% 3.62
8 1.40 · 102 84% 6.69

14 8.76 · 101 77% 10.75

Table 5.14: Same as Table 5.13 for the oblate spheroid geometry.

# 3 #2 Y ) (s) � B1,#2 (1,#2

6, 291, 456 256_

1

6 · 10−4

1.42 · 103 100% 1.00
2 7.29 · 102 97% 1.95
4 4.33 · 102 82% 3.28
8 2.37 · 102 75% 5.99

14 1.49 · 102 68% 9.49

Table 5.15: Same as Table 5.13 for the prolate spheroid geometry.

The most important quality illustrated in these tables is the IFGF’s efficiency perfor-
mance under strong-scaling hardware-doubling transitions demonstrated in the last
column of Tables 5.19- 5.18. This performance, which mirrors the corresponding
weak-scaling performance presented in the last columns of Tables 5.22- 5.24, shows
that, as in the weak scaling case, under the assumption that the displayed trend is
maintained for large numbers of nodes (below the obvious limit imposed by the
fixed problem size), the parallel IFGF method for a fixed problem can be efficiently
run in large numbers of computing cores—with an efficiency factor no worse than a
constant ≈ 80% as the hardware sizes are doubled from a given point of reference.

The character of the IFGF algorithm under weak- and strong-scaling hardware-
doubling tests, as discussed above in this section and in Section 4.3, would ensure
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# 3 #A #2 Y ) (s) � B14,#2 (14,#2

1, 572, 864 128_
1 14 2 · 10−3 2.31 · 102 100% 1.00
2 28 2 · 10−3 1.49 · 102 77% 1.54
4 56 2 · 10−3 7.77 · 101 74% 2.97

Table 5.16: Strong parallel scaling test of the shared-memory MPI implementation
on a single node, transitioning from #2 = 14 cores to #2 = 56 (all cores available in
one compute node) by increasing the number #A of MPI ranks from 1 to 4, for the
sphere geometry.

# 3 #A #2 Y ) (s) � B14,#2 (14,#2

1, 572, 864 128_
1 14 5 · 10−4 8.76 · 101 100% 1.00
2 28 6 · 10−4 5.71 · 101 77% 1.53
4 56 6 · 10−4 2.99 · 101 73% 2.93

Table 5.17: Same as Table 5.16 for the oblate spheroid geometry.

# 3 #A #2 Y ) (s) � B14,#2 (14,#2

6, 291, 456 256_
1 14 6 · 10−4 1.49 · 102 100% 1.00
2 28 6 · 10−4 9.10 · 101 82% 1.65
4 56 5 · 10−4 4.97 · 101 75% 3.01

Table 5.18: Same as Table 5.16 for the prolate spheroid geometry.

that, provided the demonstrated trends are maintained (as is expected in view of
the discussion in the first paragraph of Section 4.2), the method can be executed
successfully in very large hardware infrastructures.

5.7 Weak parallel scaling

Tables 5.22 through 5.24 demonstrate the weak IFGF parallel efficiency, for all three
geometries considered, from a single compute node (#0

2 = 56) to 4 and 16 compute
nodes (#2 = 224 and 896, respectively). We find that the efficiency relative to the
base #0

2 = 56 case steadily decreases, but importantly, the weak relative efficiency
�F#2

4 ,#2
remains essentially constant as #2 increases. Thus, under the assumption

that this trend is maintained for arbitrarily large numbers of nodes (as is expected in
view of the discussion in the first paragraph of Section 4.2 concerning absence of
hard limitations on achievable parallelism), the parallel IFGF method is applicable
to arbitrarily large problems—provided correspondingly large hardware is used—
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# 3 #2 Y ) (s) � B56,#2 (56,#2 � B#2
2 ,#2

6, 291, 456 256_

56 2 · 10−3 3.55 · 102 100% 1.00 -
112 2 · 10−3 1.80 · 102 99% 1.97 99%
224 2 · 10−3 9.78 · 101 91% 3.64 92%
448 2 · 10−3 5.52 · 101 81% 6.44 89%
896 2 · 10−3 3.12 · 101 71% 11.40 89%

Table 5.19: Strong parallel scaling test of the distributed-memory MPI implemen-
tation from #2 = 56 to #2 = 896 cores (1 to 16 compute nodes) with 4 MPI ranks
per node for the sphere geometry.

# 3 #2 Y ) (s) � B56,#2 (56,#2 � B#2
2 ,#2

6, 291, 456 256_

56 6 · 10−4 1.34 · 102 100% 1.00 -
112 6 · 10−4 7.41 · 101 91% 1.81 91%
224 6 · 10−4 4.17 · 101 80% 3.22 89%
448 6 · 10−4 2.38 · 101 70% 5.64 88%
896 6 · 10−4 1.40 · 101 60% 9.56 85%

Table 5.20: Same as Table 5.19 for the oblate spheroid geometry.

# 3 #2 Y ) (s) � B56,#2 (56,#2 � B#2
2 ,#2

25, 165, 824 512_

56 4 · 10−4 2.23 · 102 100% 1.00 -
112 5 · 10−4 1.22 · 102 92% 1.83 92%
224 6 · 10−4 6.83 · 101 82% 3.28 89%
448 6 · 10−4 3.74 · 101 75% 5.97 91%
896 6 · 10−4 2.23 · 101 63% 10.01 84%

Table 5.21: Same as Table 5.19 for the prolate spheroid geometry.

with a constant ≈ 80% efficiency factor as the problem and hardware sizes are both
quadrupled from a given point of reference. Section 5.6 demonstrated a similar
quality of the proposed algorithm under strong-scaling tests.
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# 3 #2 Y ) (s) �F56,#2 �F#2
4 ,#2

1, 572, 864 128_ 56 2 · 10−3 7.77 · 101 100% -
6, 291, 456 256_ 224 2 · 10−3 9.78 · 101 87% 87%

25, 165, 824 512_ 896 2 · 10−3 1.34 · 102 69% 79%

Table 5.22: Weak scaling test transitioning from 1 to 4 nodes, and then from 4 to 16
nodes, for the sphere geometry. The number of nodes, each one containing #2 = 56
cores, is kept proportional to the number of surface discretization points, as required
by the weak-scaling paradigm.

# 3 #2 Y ) (s) �F56,#2 �F#2
4 ,#2

1, 572, 864 128_ 56 7 · 10−4 2.99 · 101 100% -
6, 291, 456 256_ 224 6 · 10−4 4.17 · 101 79% 79%

25, 165, 824 512_ 896 8 · 10−4 5.74 · 101 62% 79%

Table 5.23: Same as Table 5.22 for the oblate spheroid geometry.

# 3 #2 Y ) (s) �F56,#2 �F#2
4 ,#2

6, 291, 456 256_ 56 5 · 10−4 4.97 · 101 100% -
25, 165, 824 512_ 224 6 · 10−4 6.83 · 101 79% 79%

100, 663, 296 1, 024_ 896 7 · 10−4 9.29 · 101 63% 79%

Table 5.24: Same as Table 5.22 for the prolate spheroid geometry.

5.8 Large sphere tests

Table 5.25 illustrates the performance of the IFGF method in terms of computing
time and memory requirements for several large-sphere configurations, all of them
run in our full 30 node, 1,680 core cluster. In particular, Table 5.25 shows that,
as mentioned in Section 1.2, on the basis of less than 1.5 TB of memory, a sphere
1,389 _ with 1.94 billion DOF was run in a computing time of 1,010 seconds—
a computing time that is just a factor of approximately 20 times larger than the
time reported in [58], for a similar number of DOFs and the same sphere size,
on a computer 78 times larger, containing 131,072 cores, and on the basis of an
unspecified amount of memory.

The sphere of acoustic size 1, 389_ in this table coincides with largest sphere test
case considered in [58], cited in Table 2 in that reference as a sphere of two-meters
in diameter illuminated at the frequency of 5 = 238.086 KHz with 343m/s speed of
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# 3 #2 Y ) (s) Mem/rank

1, 610, 612, 736 1, 389_

1, 680

4 · 10−3 3.59 · 103 125.96 GB
1, 610, 612, 736 2, 048_ 7 · 10−2 2.84 · 103 105.91 GB
1, 944, 000, 000 1, 389_ 1 · 10−1 1.01 · 103 42.45 GB
1, 944, 000, 000 1, 389_ 5 · 10−3 2.34 · 103 133.44 GB
2, 120, 640, 000 1, 389_ 5 · 10−3 2.38 · 103 134.63 GB

Table 5.25: Large sphere test cases run on thirty 56-core compute nodes (for a total
of 1, 680 cores), utilizing thirty MPI ranks. The sphere of acoustic size 1, 389_ in
this table coincides with largest sphere test case considered in [58].

sound. The largest discretization presented in the present table for this sphere test-
case (2, 120, 640, 000 discretization points, a limit induced by the largest number
representable by a signed 32-bit integer assumed in our geometry-generation code,
which will be avoided in subsequent code implementations by switching to 64-
bit integers), is slightly smaller than the 2, 300, 067, 840 discretization considered
in [58] under a 131,072 core run.

Other test cases listed in Table 5.25 include an example for a much larger sphere,
2, 048_ in diameter, as well as other 1, 389_ test cases for various accuracies and
discretization sizes—and, in all cases, on the basis ofmemory consumptions ranging
between ≈ 1.2TB and ≈ 4TB.
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C h a p t e r 6

CONCLUDING REMARKS

6.1 Conclusions

This thesis introduced the efficient, novel and extremely simple IFGF approach for
the fast evaluation of discrete integral operators of scattering theory in linearithmic
time. The theoretical background was thoroughly discussed and the correctness of
the approach was demonstrated through mathematical proofs and several numerical
examples. Further, a parallelization strategy for the IFGF acceleration method was
developed that shows excellent parallel scaling to large core numbers while simul-
taneously preserving the linearithmic complexity of the sequential algorithm. The
proposed parallelization approach exploits the box-cone octree structure inherent
in the IFGF method, resulting in a strategy that, per the theoretical discussion in
Section 4.1 and in the first paragraph of Section 4.2, is applicable to arbitrarily
large number of processing cores, and it thereby does not suffer from bottlenecks or
hard limits inherent in approaches that orchestrate the parallelization on the basis
of octree-box partitioning only. Finally, a full IFGF-accelerated acoustic scattering
solver was presented and applied to several engineering motivated problems. In
particular, it was shown in Section 5.5 that the linearithmic scaling and the accu-
racy of the IFGF method can be preserved in the context of the full solver and that
real world engineering problems can be solved with an IFGF-accelerated solver in
minimal computing time on reasonable hardware.

6.2 Future work

As indicated throughout this thesis, a number of important improvements to the IFGF
method have been left for future work. On one hand, the current implementation
of the IFGF method utilizes a Chebyshev interpolation procedure of order %, which
is utilized in the Propagation function—which requires a total of O(%2) operations
as the accuracy order % of the interpolants is increased. The investigation of higher
order methods that reduce this scaling to a linear or linearithmic scaling in % is
highly desirable and necessary to achieve a competitive high-order method.

Another important improvement currently under investigation concerns the adap-
tivity in the box-partitioning method (so as to eliminate large deviations of surface
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discretization points per box which impact negatively on the overall efficiency of
the algorithm) which partitions boxes more closely aligned with the position and
the number of surface discretization points, instead of using a fixed �-leveled box-
octree. Clearly, this is not a novel technique and has been applied in the context
of other acceleration methods, as shown in, e.g., [20]. Such an adaptive octree
structure may result in a lower parallel efficiency and its viability in the context of
the IFGF method is subject to further investigation.

Further, except for Section 5.5, only the single-layer potentials for the Helmholtz
and Laplace Green functions were considered here, but the proposed methodology
is applicable, with minimal modifications (as indicated in Section 5.5), in a wide
range of contexts, possibly including elements such as double-layer potentials, mixed
formulations, electromagnetic and elastic scattering problems, dielectric problems
and Stokes flows, as well as volumetric distribution of sources, etc. studies of the
potential advantages offered by the IFGF strategies in these areas are left for future
work.

Moreover, the feasibility of implementations on heterogeneous architectures such
as, e.g., computer systems that incorporate general purpose graphical processing
units (GPUs), is currently under study. In particular, the use of GPUs to accelerate
the interpolation processes, which represent the most time consuming part of the
IFGF method, appears as highly promising avenue of inquiry.

Finally, minor modifications to the data-decomposition strategy presented in Sec-
tion 4.2.1 could be introduced to not only (approximately) equipartition the surface
discretization points and cone segments among MPI ranks, but to also incorporate
the number of actual computations and the amount of data required from other MPI
ranks in the partitioning scheme. Such an improved data-decomposition design
could indeed be obtained by relying on minor adjustments to the cone and box
intervals introduced in Section 4.2.1 leading to improved load-balancing, and, thus,
improved parallel efficiency.



125

BIBLIOGRAPHY

[1] Constantine Sideris, Emmanuel Garza, and Oscar P. Bruno. Ultrafast sim-
ulation and optimization of nanophotonic devices with integral equation
methods. In: ACS Photonics 6.12 (2019), pp. 3233–3240. doi: 10.1021/
acsphotonics.9b01137.

[2] Constantine Sideris et al. Foundry-fabricated grating coupler demultiplexer
inverse-designed via fast integral methods. In: Communications Physics 5.1
(2022). doi: 10.1038/s42005-022-00839-w.

[3] William Pinello, Andreas C. Cangellaris, and Albert Ruehli. Hybrid elec-
tromagnetic modeling of noise interactions in packaged electronics based
on the partial-element equivalent-circuit formulation. In: IEEE Transactions
on Microwave Theory and Techniques 45.10 (1997), pp. 1889–1896. doi:
10.1109/22.641787.

[4] Merrill I. Skolnik. Introduction to Radar Systems. Electrical engineering
series. McGraw-Hill, 2001. isbn: 9780071181891.

[5] Parham P. Khial, Alexander D.White, andAli Hajimiri. Nanophotonic optical
gyroscope with reciprocal sensitivity enhancement. In: Nature Photonics
12.11 (2018), pp. 671–675. doi: 10.1038/s41566-018-0266-5.

[6] Lionel Kimerling et al. Design guidelines for optical resonator biochemical
sensors. In: J. Opt. Soc. Am. B 26.5 (May 2009). doi: 10.1364/JOSAB.26.
001032.

[7] Christopher V. Poulton et al. Coherent solid-state LIDAR with silicon pho-
tonic optical phased arrays. In: Optics Letters 42.20 (Oct. 2017), pp. 4091–
4094. doi: 10.1364/OL.42.004091.

[8] Firooz Aflatouni et al. Nanophotonic projection system. In: Optics Express
23.16 (Aug. 2015), pp. 21012–21022. doi: 10.1364/OE.23.021012.

[9] Reza Fatemi et al. High sensitivity active flat optics optical phased array
receiver with a two-dimensional aperture. In: Optics Express 26.23 (Nov.
2018), pp. 29983–29999. doi: 10.1364/OE.26.029983.

[10] Hooman Abediasl and Hossein Hashemi. Monolithic optical phased-array
transceiver in a standard SOI CMOS process. In: Optics Express 23.5 (Mar.
2015), pp. 6509–6519. doi: 10.1364/OE.23.006509.

[11] David Colton and Rainer Kress. Inverse Acoustic and Electromagnetic Scat-
tering Theory. 3rd ed. Applied mathematical sciences. Springer, 2013. isbn:
9781461449423.

[12] David Colton and Rainer Kress. Integral equation methods in scattering the-
ory. SIAM, 2013. isbn: 9781611973150.

https://doi.org/10.1021/acsphotonics.9b01137
https://doi.org/10.1021/acsphotonics.9b01137
https://doi.org/10.1038/s42005-022-00839-w
https://doi.org/10.1109/22.641787
https://doi.org/10.1038/s41566-018-0266-5
https://doi.org/10.1364/JOSAB.26.001032
https://doi.org/10.1364/JOSAB.26.001032
https://doi.org/10.1364/OL.42.004091
https://doi.org/10.1364/OE.23.021012
https://doi.org/10.1364/OE.26.029983
https://doi.org/10.1364/OE.23.006509


126

[13] RainerKress. Linear Integral Equations. 3rd ed. Springer, 2014. isbn: 9781461495932.

[14] Nail A. Gumerov and Ramani Duraiswami. Fast Multipole Methods for the
Helmholtz Equation in Three Dimensions. Elsevier Science, 2004. isbn:
9780080443713.

[15] Weng C. Chew.Waves and Fields in InhomogenousMedia. IEEE Press Series
on Electromagnetic Wave Theory. Wiley, 1999. isbn: 9780780347496.

[16] Sergej Rjasanow and Olaf Steinbach. The Fast Solution of Boundary Integral
Equations. 1st ed.Mathematical andAnalytical Techniques with Applications
to Engineering. Springer, 2007. isbn: 9780387340418.

[17] JamesC.Maxwell. A dynamical theory of the electromagnetic field. In:Philo-
sophical Transactions of the Royal Society of London 155 (1865), pp. 459–
512.

[18] Andreas Kirsch and Frank Hettlich. The Mathematical Theory of Time-
HarmonicMaxwell’s Equations: Expansion-, Integral-, andVariationalMeth-
ods.AppliedMathematical Sciences. Springer International Publishing, 2014.
isbn: 9783319110868.

[19] Julius A. Stratton. Electromagnetic Theory. IEEE Press Series on Electro-
magnetic Wave Theory. Wiley, 2007. isbn: 9780470131534.

[20] WolfgangHackbusch.Hierarchicalmatrices:Algorithms and analysis.Vol. 49.
Springer, 2015. isbn: 9783662473245.

[21] George Green. An Essay on the Application of Mathematical Analysis to the
Theories of Electricity and Magnetism. (Göteborg: Wezäta-Melins 1958).
1828. url: https://books.google.at/books?id=GwYXAAAAYAAJ.

[22] John C. Strikwerda. Finite Difference Schemes and Partial Differential Equa-
tions. Other Titles inAppliedMathematics. Society for Industrial andApplied
Mathematics, 2007. isbn: 9780898716399.

[23] Junuthula .N.Reddy.An Introduction to the Finite ElementMethod.McGraw-
Hill series inmechanical engineering.McGraw-Hill, 2006. isbn: 9780071244732.

[24] Allen Taflove and Susan C. Hagness. Computational Electrodynamics: The
Finite-difference Time-domain Method. 3rd ed. Artech House antennas and
propagation library. Artech House, 2005. isbn: 9781580538329.

[25] Ivo M. Babuška and Stefan A. Sauter. Is the pollution effect of the FEM
avoidable for the Helmholtz equation considering high wave numbers? In:
SIAM Journal on Numerical Analysis 34.6 (1997), pp. 2392–2423. doi: 10.
1137/S0036142994269186.

https://books.google.at/books?id=GwYXAAAAYAAJ
https://doi.org/10.1137/S0036142994269186
https://doi.org/10.1137/S0036142994269186


127

[26] Arnaud Deraemaeker, Ivo Babuška, and Philippe Bouillard. Dispersion and
pollution of the FEMsolution for theHelmholtz equation in one, two and three
dimensions. In: International Journal for Numerical Methods in Engineering
46.4 (1999), pp. 471–499. doi: https://doi.org/10.1002/(SICI)
1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6.

[27] Roland Bulirsch, Josef Stoer, and J Stoer. Introduction to numerical analysis.
3rd ed. Springer, 2002. isbn: 9780387954523.

[28] Peter Deuflhard and Andreas Hohmann. Numerische Mathematik 1: Eine
algorithmisch orientierte Einführung.DeGruyter Studium.DeGruyter, 2018.
isbn: 9783110614350.

[29] Peter Deuflhard and Andreas Hohmann. Numerical Analysis in Modern Sci-
entific Computing: An Introduction. 2nd ed. Texts in Applied Mathematics.
Springer New York, 2003. isbn: 9780387215846.

[30] William H. Press et al. Numerical Recipes 3rd Edition: The Art of Sci-
entific Computing. 3rd ed. USA: Cambridge University Press, 2007. isbn:
0521880688.

[31] Hongwei Cheng et al. A wideband fast multipole method for the Helmholtz
equation in three dimensions. In: Journal of Computational Physics 216
(2006), pp. 300–325. doi: https://doi.org/10.1016/j.jcp.2005.12.
001.

[32] Björn Engquist and Lexing Ying. Fast directional multilevel algorithms for
oscillatory kernels. In: SIAM Journal on Scientific Computing 29.4 (2007),
pp. 1710–1737. doi: https://doi.org/10.1137/07068583X.

[33] Lexing Ying et al. A new parallel kernel-independent fast multipole method.
In: Proceedings of the ACM/IEEE SC2003 Conference on Supercomputing
(SC’03) (Nov. 2003). doi: 10.1109/SC.2003.10013.

[34] Luis Landesa et al. Solution of very large integral-equation problems with
single-level FMM. In: Microwave and Optical Technology Letters 51 (Oct.
2009), pp. 2451–2453. doi: 10.1002/mop.24651.

[35] Matthias Messner, Martin Schanz, and Eric Darve. Fast directional multi-
level summation for oscillatory kernels based on Chebyshev interpolation.
In: Journal of Computational Physics 231 (2012), pp. 1175–1196. doi: doi:
10.1016/j.jcp.2011.09.027.

[36] Joel R. Phillips and Jacob K. White. A Precorrected-FFT Method for Elec-
trostatic Analysis of Complicated 3-D Structures. In: IEEE Transactions
on computer-aided design of integrated circuits and systems 16.10 (1997),
pp. 1059–1072. doi: 10.1109/43.662670.

https://doi.org/https://doi.org/10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6
https://doi.org/https://doi.org/10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6
https://doi.org/https://doi.org/10.1016/j.jcp.2005.12.001
https://doi.org/https://doi.org/10.1016/j.jcp.2005.12.001
https://doi.org/https://doi.org/10.1137/07068583X
https://doi.org/10.1109/SC.2003.10013
https://doi.org/10.1002/mop.24651
https://doi.org/doi:10.1016/j.jcp.2011.09.027
https://doi.org/doi:10.1016/j.jcp.2011.09.027
https://doi.org/10.1109/43.662670


128

[37] Oscar P. Bruno and Leonid A. Kunyansky. A fast, high-order algorithm for
the solution of surface scattering problems: Basic implementation, tests, and
applications. In: Journal of Computational Physics 169 (2001), pp. 80–110.
doi: doi:10.1006/jcph.2001.6714.

[38] Elizabeth Bleszynski, Maria Bleszynski, and Thomas Jaroszewicz. AIM:
Adaptive integral method for solving large-scale electromagnetic scattering
and radiation problems. In: Radio Science 31.5 (1996), pp. 1225–1251. doi:
10.1029/96RS02504.

[39] Emmanuel J. Candès, Laurent Demanet, and Lexing Ying. A fast butterfly
algorithm for the computation of fourier integral operators. In: Multiscale
Modeling and Simulation 7 (2009), pp. 1727–1750. doi: https://doi.
org/10.1137/080734339.

[40] Eric Michielssen and Amir Boag. A multilevel matrix decomposition algo-
rithm for analyzing scattering from large structures. In: IEEE Transactions
on Antennas and Propagation 44.8 (1996), pp. 1086–1093. doi: 10.1109/
8.511816.

[41] Jack Poulson et al. A parallel butterfly algorithm. In: SIAM Journal on Sci-
entific Computing 36.1 (2014), pp. C49–C65. doi: https://doi.org/10.
1137/130921544.

[42] Steffen Börm. Directional H2-matrix compression for high-frequency prob-
lems. In: Numerical Linear Algebra with Applications 24 (July 2017). doi:
10.1002/nla.2112.

[43] Oscar Bruno et al. Electromagnetic integral equations requiring small num-
bers of Krylov-subspace iterations. In: Journal of Computational Physics
228.17 (2009), pp. 6169–6183. issn: 0021-9991. doi: https://doi.org/
10.1016/j.jcp.2009.05.020.

[44] Austin R. Benson et al. A parallel directional fast multipole method. In:
SIAM Journal on Scientific Computing 36.4 (2014), pp. C335–C352. doi:
https://doi.org/10.1137/130945569.

[45] Aparna Chandramowlishwaran et al. Optimizing and tuning the fast multipole
method for state-of-the-art multicore architectures. In: 2010 IEEE Interna-
tional Symposium on Parallel Distributed Processing (IPDPS). 2010, pp. 1–
12. doi: 10.1109/IPDPS.2010.5470415.

[46] Rui-Qing Liu et al. Massively parallel discontinuous galerkin surface integral
equation method for solving large-scale electromagnetic scattering problems.
In: IEEE Transactions on Antennas and Propagation 69.9 (2021), pp. 6122–
6127. doi: 10.1109/TAP.2021.3078558.

[47] Ming-Lin Yang, Yu-Lin Du, and Xin-Qing Sheng. Solving electromagnetic
scattering problemswith over 10 billion unknownswith the parallelMLFMA.
In: 2019 Photonics Electromagnetics Research Symposium - Fall (PIERS

https://doi.org/doi:10.1006/jcph.2001.6714
https://doi.org/10.1029/96RS02504
https://doi.org/https://doi.org/10.1137/080734339
https://doi.org/https://doi.org/10.1137/080734339
https://doi.org/10.1109/8.511816
https://doi.org/10.1109/8.511816
https://doi.org/https://doi.org/10.1137/130921544
https://doi.org/https://doi.org/10.1137/130921544
https://doi.org/10.1002/nla.2112
https://doi.org/https://doi.org/10.1016/j.jcp.2009.05.020
https://doi.org/https://doi.org/10.1016/j.jcp.2009.05.020
https://doi.org/https://doi.org/10.1137/130945569
https://doi.org/10.1109/IPDPS.2010.5470415
https://doi.org/10.1109/TAP.2021.3078558


129

- Fall). 2019, pp. 355–360. doi: 10.1109/PIERS- Fall48861.2019.
9021504.

[48] Özgür Ergül and Levent Gurel. A hierarchical partitioning strategy for an
efficient parallelization of the multilevel fast multipole algorithm. In: IEEE
Transactions on Antennas and Propagation 57.6 (2009), pp. 1740–1750. doi:
10.1109/TAP.2009.2019913.

[49] Caleb Waltz et al. Massively parallel fast multipole method solutions of large
electromagnetic scattering problems. In: IEEE Transactions on Antennas
and Propagation 55.6 (2007), pp. 1810–1816. doi: 10.1109/TAP.2007.
898511.

[50] FangzhouWei andAli E. Yilmaz. Amore scalable and efficient parallelization
of the adaptive integral method—Part I: Algorithm. In: IEEE Transactions on
Antennas and Propagation 62.2 (2014), pp. 714–726. doi: 10.1109/TAP.
2013.2291559.

[51] Fangzhou Wei and Ali E. Yilmaz. A more scalable and efficient paralleliza-
tion of the adaptive integral method—Part II: BIOEM application. In: IEEE
Transactions on Antennas and Propagation 62.2 (2014), pp. 727–738. doi:
10.1109/TAP.2013.2291564.

[52] Oscar P. Bruno and Emmanuel Garza. A Chebyshev-based rectangular-polar
integral solver for scattering by geometries described by non-overlapping
patches. In: Journal of Computational Physics 421 (2020), p. 109740. doi:
https://doi.org/10.1016/j.jcp.2020.109740.

[53] Vladimir Rokhlin. Diagonal forms of translation operators for the Helmholtz
equation in three dimensions. In:Applied andComputationalHarmonic Anal-
ysis 1.1 (1993), pp. 82–93. issn: 1063-5203. doi: https://doi.org/10.
1006/acha.1993.1006.

[54] Miloš Nikolić et al. An analysis of FFTW and FFTE performance. In: High-
Performance Computing Infrastructure for South East Europe’s Research
Communities: Results of the HP-SEE User Forum 2012. Springer Interna-
tional Publishing, 2014, pp. 163–170. isbn: 9783319015200. doi: 10.1007/
978-3-319-01520-0_20.

[55] SteffenBörmand JensMelenk.Approximation of the high-frequencyHelmholtz
kernel by nested directional interpolation. In: Numerische Mathematik 137.1
(Oct. 2017), pp. 1–37. doi: 10.1007/s00211-017-0873-y.

[56] Mario Bebendorf and Sergej Rjasanow. Adaptive low-rank approximation
of collocation matrices. In: Computing 70 (Feb. 2003), pp. 1–24. doi: 10.
1007/s00607-002-1469-6.

[57] Oscar P. Bruno and Stéphane K. Lintner. A high-order integral solver for
scalar problems of diffraction by screens and apertures in three-dimensional
space. In: Journal of Computational Physics 252 (2013), pp. 250–274. issn:
0021-9991. doi: https://doi.org/10.1016/j.jcp.2013.06.022.

https://doi.org/10.1109/PIERS-Fall48861.2019.9021504
https://doi.org/10.1109/PIERS-Fall48861.2019.9021504
https://doi.org/10.1109/TAP.2009.2019913
https://doi.org/10.1109/TAP.2007.898511
https://doi.org/10.1109/TAP.2007.898511
https://doi.org/10.1109/TAP.2013.2291559
https://doi.org/10.1109/TAP.2013.2291559
https://doi.org/10.1109/TAP.2013.2291564
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109740
https://doi.org/https://doi.org/10.1006/acha.1993.1006
https://doi.org/https://doi.org/10.1006/acha.1993.1006
https://doi.org/10.1007/978-3-319-01520-0_20
https://doi.org/10.1007/978-3-319-01520-0_20
https://doi.org/10.1007/s00211-017-0873-y
https://doi.org/10.1007/s00607-002-1469-6
https://doi.org/10.1007/s00607-002-1469-6
https://doi.org/https://doi.org/10.1016/j.jcp.2013.06.022


130

[58] Mustafa Abduljabbar et al. Extreme scale FMM-accelerated boundary in-
tegral equation solver for wave scattering. In: SIAM Journal on Scientific
Computing 41.3 (2019), pp. C245–C268. doi: 10.1137/18M1173599.

[59] Mathias Winkel et al. A massively parallel, multi-disciplinary Barnes–Hut
tree code for extreme-scale N-body simulations. In: Computer physics com-
munications 183.4 (2012), pp. 880–889. doi: https://doi.org/10.1016/
j.cpc.2011.12.013.

[60] Dhairya Malhotra and George Biros. Algorithm 967: A distributed-memory
fast multipole method for volume potentials. In: ACM Transactions on Math-
ematical Software (TOMS) 43.2 (2016), pp. 1–27. doi: https://doi.org/
10.1145/2898349.

[61] Michael S. Warren. 2HOT: An improved parallel hashed oct-tree N-Body
algorithm for cosmological simulation. In: SC ’13: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage
and Analysis. 2013, pp. 1–12. doi: 10.1145/2503210.2503220.

[62] Youcef Saad andMartin H Schultz. GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. In: SIAM Journal on
scientific and statistical computing 7.3 (1986), pp. 856–869. doi: https:
//doi.org/10.1137/0907058.

[63] John P Boyd. Chebyshev and Fourier spectral methods. 2nd ed. Courier
Corporation, 2001. isbn: 9780486141923.

[64] Leslie Fox and Ian B. Parker. Chebyshev polynomials in numerical analysis.
Oxford mathematical handbooks. Oxford U.P., 1968. isbn: 9780198596141.

[65] Thomas Rauber and Gudula Rünger. Parallel programming. 2nd ed. Springer,
Berlin, Heidelberg, 2013. isbn: 9783642378010.

[66] Thomas Sterling, Maciej Brodowicz, and Matthew Anderson. High perfor-
mance computing: Modern systems and practices. Elsevier Science, 2017.
isbn: 9780124202153.

[67] Christopher Dahnken et al. Optimizing HPC applications with Intel cluster
tools. Oct. 2014. isbn: 978-1-4302-6496-5. doi: 10.1007/978-1-4302-
6497-2.

[68] Christoph Bauinger and Oscar P. Bruno. “Interpolated Factored Green Func-
tion” method for accelerated solution of scattering problems. In: Journal
of Computational Physics 430 (Jan. 2021). doi: 10.1016/j.jcp.2020.
110095.

[69] Faà di Bruno. Note sur une nouvelle formule de calcul differentiel. In: Quar-
terly Journal of Pure and Applied Mathematics 1 (1857), pp. 359–360.

[70] Thomas H. Cormen et al. Introduction to algorithms. MIT Press, 2009. isbn:
9780262533058.

https://doi.org/10.1137/18M1173599
https://doi.org/https://doi.org/10.1016/j.cpc.2011.12.013
https://doi.org/https://doi.org/10.1016/j.cpc.2011.12.013
https://doi.org/https://doi.org/10.1145/2898349
https://doi.org/https://doi.org/10.1145/2898349
https://doi.org/10.1145/2503210.2503220
https://doi.org/https://doi.org/10.1137/0907058
https://doi.org/https://doi.org/10.1137/0907058
https://doi.org/10.1007/978-1-4302-6497-2
https://doi.org/10.1007/978-1-4302-6497-2
https://doi.org/10.1016/j.jcp.2020.110095
https://doi.org/10.1016/j.jcp.2020.110095


131

[71] JosephO’Rourke. Findingminimal enclosing boxes. In: International Journal
of Computational and Information Sciences 14 (1985), pp. 183–199. doi:
https://doi.org/10.1007/BF00991005.

[72] Christoph Bauinger and Oscar P. Bruno. Massively parallelized Interpolated
Factored Green Function method. In: arXiv:2112.15198 (2021).

[73] Mark Bull et al. Performance evaluation of mixed-mode OpenMP/MPI im-
plementations. In: International Journal of Parallel Programming 38 (Oct.
2010), pp. 396–417. doi: 10.1007/s10766-010-0137-2.

[74] Nikolaos Drosinos and Nectarios Koziris. Performance comparison of pure
MPI vs hybrid MPI-OpenMP parallelization models on SMP clusters. In:
18th International Parallel and Distributed Processing Symposium, 2004.
Proceedings. 2004. doi: 10.1109/IPDPS.2004.1302919.

[75] DanaAkhmetova et al. Performance study ofmultithreadedMPI andOpenMP
tasking in a large scientific code. In: 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). 2017, pp. 756–
765. doi: 10.1109/IPDPSW.2017.128.

[76] Michel F. Dekking et al. A modern introduction to probability and statistics:
Understanding why and how. Springer Texts in Statistics. Springer, 2005.
isbn: 9781852338961.

[77] James Reinders et al. Data parallel C++: Mastering DPC++ for programming
of heterogeneous systems using C++ and SYCL. Springer Nature, 2021. isbn:
9781484255742.

[78] Peter S. Pacheco. An introduction to parallel programming. Morgan Kauf-
mann, 2011. isbn: 9780123742605.

[79] Michael S. Warren and John K. Salmon. A parallel hashed oct-tree N-body
algorithm. In: Supercomputing ’93:Proceedings of the 1993 ACM/IEEE Con-
ference on Supercomputing. 1993, pp. 12–21. doi: https://doi.org/10.
1145/169627.169640.

[80] Amanda K Sharp. Memory layout transformations. https://www.intel.
com/content/www/us/en/developer/articles/technical/memory-
layout-transformations.html. Accessed: 2021-12-20.

[81] Hanan Samet. The design and analysis of spatial data structures. USA:
Addison-Wesley Longman Publishing Co., Inc., 1990. isbn: 0201502550.

[82] Edwin Jimenez, Christoph Bauinger, and Oscar P. Bruno. IFGF-accelerated
integral equation solvers for acoustic scattering. In: arXiv:2112.06316 (2021).

[83] Hank Childs et al. VisIt: An end-user tool for visualizing and analyzing
very large data. In:High Performance Visualization–Enabling Extreme-Scale
Scientific Insight. Oct. 2012, pp. 357–372.

https://doi.org/https://doi.org/10.1007/BF00991005
https://doi.org/10.1007/s10766-010-0137-2
https://doi.org/10.1109/IPDPS.2004.1302919
https://doi.org/10.1109/IPDPSW.2017.128
https://doi.org/https://doi.org/10.1145/169627.169640
https://doi.org/https://doi.org/10.1145/169627.169640
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-layout-transformations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-layout-transformations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-layout-transformations.html


132

[84] John J. Bowman, Thomas B. A. Senior, and Piergiorgio L. E. Uslenghi.
Electromagnetic and acoustic scattering by simple shapes. 1st ed. CRC Press,
1988. isbn: 9780891168850.

[85] Christopher W. Nell and Layton E. Gilroy. An improved BASIS model for
the BeTSSi submarine. In: DRDC Atlantic TR 199 (2003).

[86] Hans G. Schneider et al. Acoustic scattering by a submarine: Results from a
benchmark target strength simulationworkshop. In: ICSV10 (2003), pp. 2475–
2482.

[87] Sascha Merz, Roger Kinns, and Nicole Kessissoglou. Structural and acoustic
responses of a submarine hull due to propeller forces. In: Journal of sound
and vibration 325.1-2 (2009), pp. 266–286. doi: https://doi.org/10.
1016/j.jsv.2009.03.011.

[88] Ilkka Karasalo. Modelling of acoustic scattering from a submarine. In: Pro-
ceedings of Meetings on Acoustics ECUA2012 17.1 (2012). doi: 10.1121/
1.4767963.

[89] Yingsan Wei et al. Scattering effect of submarine hull on propeller non-
cavitation noise. In: Journal of sound and vibration 370 (2016), pp. 319–335.
doi: https://doi.org/10.1016/j.jsv.2016.01.027.

[90] Claudio Testa and Luca Greco. Prediction of submarine scattered noise by the
acoustic analogy. In: Journal of Sound and Vibration 426 (2018), pp. 186–
218. doi: https://doi.org/10.1016/j.jsv.2018.04.011.

[91] Jon Vegard Venås and Trond Kvamsdal. Isogeometric boundary element
method for acoustic scattering by a submarine. In: Computer Methods in
Applied Mechanics and Engineering 359 (2020). doi: https://doi.org/
10.1016/j.cma.2019.112670.

[92] Ali H. Nayfeh, John E. Kaiser, and Demetri P. Telionis. Acoustics of air-
craft engine-duct systems. In: AIAA Journal 13.2 (1975), pp. 130–153. doi:
https://doi.org/10.2514/3.49654.

[93] Walter Eversman. Theoretical models for duct acoustic propagation and radi-
ation. In: NASA. Langley Research Center, Aeroacoustics of Flight Vehicles:
Theory and Practice. Volume 2: Noise Control (1991).

[94] Damiano Casalino et al. Aircraft noise reduction technologies: A biblio-
graphic review. In: Aerospace Science and Technology 12.1 (2008), pp. 1–17.
doi: https://doi.org/10.1016/j.ast.2007.10.004.

[95] Matthew Fergus Kewin. Acoustic liner optimisation and noise propagation
through turbofan engine intake ducts. PhD thesis. University of Southampton,
2013.

[96] K. R. Pyatunin, N. V. Arkharova, and A. E. Remizov. Noise simulation of
aircraft engine fans by the boundary element method. In: Acoustical Physics
62.4 (2016), pp. 495–504. doi: 10.1134/S1063771016040151.

https://doi.org/https://doi.org/10.1016/j.jsv.2009.03.011
https://doi.org/https://doi.org/10.1016/j.jsv.2009.03.011
https://doi.org/10.1121/1.4767963
https://doi.org/10.1121/1.4767963
https://doi.org/https://doi.org/10.1016/j.jsv.2016.01.027
https://doi.org/https://doi.org/10.1016/j.jsv.2018.04.011
https://doi.org/https://doi.org/10.1016/j.cma.2019.112670
https://doi.org/https://doi.org/10.1016/j.cma.2019.112670
https://doi.org/https://doi.org/10.2514/3.49654
https://doi.org/https://doi.org/10.1016/j.ast.2007.10.004
https://doi.org/10.1134/S1063771016040151


133

[97] MSCSoftware. CustomerCase Studies 2021-04-27;Case Study:Airbus: Sim-
ulation Helps Airbus Optimize Acoustic Liners and Reduce Aircraft Noise.
https://files.mscsoftware.com/cdn/farfuture/-WeJrL0uOWa_
LL2SdOen2NMogjF1cpQl5PQF07shqyg/mtime:1401395701/sites/default/
files/cs_airbus_ltr_w_4.pdf, last checked on 2021-10-14. 2021.

[98] Miguel Ruiz-Cabello N. et al. Performance of parallel FDTD method for
shared- and distributed-memory architectures: Application to bioelectromag-
netics. In: PLOS ONE 15.9 (Sept. 2020), pp. 1–16. doi: 10.1371/journal.
pone.0238115.

https://files.mscsoftware.com/cdn/farfuture/-WeJrL0uOWa_LL2SdOen2NMogjF1cpQl5PQF07shqyg/mtime:1401395701/sites/default/files/cs_airbus_ltr_w_4.pdf
https://files.mscsoftware.com/cdn/farfuture/-WeJrL0uOWa_LL2SdOen2NMogjF1cpQl5PQF07shqyg/mtime:1401395701/sites/default/files/cs_airbus_ltr_w_4.pdf
https://files.mscsoftware.com/cdn/farfuture/-WeJrL0uOWa_LL2SdOen2NMogjF1cpQl5PQF07shqyg/mtime:1401395701/sites/default/files/cs_airbus_ltr_w_4.pdf
https://doi.org/10.1371/journal.pone.0238115
https://doi.org/10.1371/journal.pone.0238115


INDEX

Symbols
�[ 26
��[ 26
�(G, �) 24
�3k 42
�W 31
�3W 49
�3k,W 50
� 8, 44, 56
� \
8, 9

30
�
i

9
30

� B
# 0

2 ,#2

83, 87
�F
# 0

2 ,#2

83
�W 31
�3W 49
� B
:

31
�
B;3
:

49
�( 25
��k 56
�3k 44
� 4, 22, 24
� 7, 24
�3 8, 43
�%�

3
k;W 56

�% 56
�( 24
�3k 44
�acc 22
# 2
#3
�

3 45
#� 31
#2 83
#0
2 83

#A 71
#�,3 49
% 25, 31, 50

%ang 50
%B 31, 50
%ang 31
(# 0

2 ,#2
83, 87

(ideal
# 0

2 ,#2

87
) (#2 , #) 87
Δ\ 30
Δi 30
ΔB 30
Δ\,3 48
Δ\,3 8
Δi,3 48
Δi,3 8
ΔB,3 48
ΔB,3 8
Γ 3, 22, 83, 96
Γ# 22
Γ# ,d 73
Ω 3, 95
< 95
[ 26, 31
] 4
^ 3, 27, 62
_ 3, 27
x 27
B 8, 22, 56
C 8, 23, 50, 56
C�3k 46
D^ 4
K3
�

43
K3
�

50
M�3k 46
N�3k 45
P�3k 46
R� 45, 56
R3
�

45

134



135

R� 53, 56
R3
�

52
R3
�,d

74
S^ 4
U�3k 45
V�3k 46
X�3k;W 50
a 4
l 95
d 71
\ 8, 31, 48
\: 30
�̃8, 9 30
Y" 86
i 8, 31, 48
iℓ 30
0< 22
2 3
3 8, 45
5 3
6( 25
63k 44
ℎ 24, 27
=� 30
=B 31
=�,3 49
=B,3 49
?8 25
A 27
B 8, 27, 31, 48
Gℓ 22
G3k 42
x3 49

A
Algorithmic Complexity 62
Analytic Factor 7, 22, 25, 41, 44
Analyticity Domain 26
Angular Frequency 3, 95

B
BEMFMM 12
BIE 1, 2
Boundary 1, 3
Boundary Integral Equation 1
Boundary Value Problem 1, 95

Dirichlet 3, 95
Exterior 1, 3, 95
Interior 3
Neumann 3

Bounding-box 43
Box 7, 22, 24, 41

Bounding- 43
Center 24, 43
Child 8, 46
Co-centered 51
Cousin 46
Neighbor 8, 45
Parent 46
Radius 24
Relevant 45
Side 7, 24, 43
Size 7, 24
Source 9
Target 9

Butterfly Method 9
BVP 1, 95

C
C++ 84
Centered Factor 7, 22, 25, 44
Chebyshev Interpolation 17, 30, 50
Chebyshev Polynomial 17
Child Box 8, 46
Children 46
Cluster 20
Cluster System 20
Co-centered 51

Box 51



136

Cone Segment 51
Combined-layer Potential 5, 95
CommunicateInterpolationData Function

78
CommunicatePropagationData Function

78
Compact Operator 3
Compiler 84
Complexity 62

Linearithmic 70
Complexity Analysis 62
Cone 8, 30
Cone Domain 31

Initial 53
Cone Segment 8, 23, 31, 41, 48–50

Box-centered 50
Co-centered 51
Hierarchy 50
Origin-centered 49
Relevant 52

Cores 12, 20, 84
Cousin 46

Box 46
Point 46

Cousin Box 46
Cousin Point 46

D
Degrees of Freedom 12
Density 95
Derivative 4

Normal 4
Dirichlet Problem 3, 95
Discrete Integral Operator 17
Discretization 1, 5
Dispersion 1
Distributed Memory 66
DOF 12
Domain 1, 3, 96

Double-layer Potential 4, 95

E
Elasticity Equation 22
Equation 1

Elasticity 22
Helmholtz 3, 6, 22, 95
Integral 95
Laplace 3, 22, 65, 93
Maxwell 3
Stokes 22

Equivalent Source 7
Exterior Problem 1, 95

F
Factor 7, 22, 25, 44

Analytic 7, 22, 25, 41, 44
Centered 7, 22, 25, 44
Refinement 53

Factorization 2
Directional 9
IFGF 9, 24
LU 2

Fast Fourier Transform 7
Fast Multipole Method 2, 58
FDM 1
FEM 1
FFT 7
Finite Difference Method 1
Finite Element Method 1
FMM 2, 58

BEMFMM 12
Directional 9, 11
Multilevel 11, 13
Single-level 13

Fredholm Integral Equation 5
First Kind 5
Second Kind 5

Frequency 3



137

Angular 3

G
Gauss Elimination 2
Geometry 83

Size 83
Spheroid 83

GMRES 2, 6, 17
Green Function 1, 4, 7, 41

Factorization 9, 41

H
Hardware Pinning 85
Hash Map 75
Helmholtz Equation 3, 6, 22, 95
High Performance Computing 15
High Performance Computing 20
High-frequency 6, 7, 38
HPC 15, 20

I
IFGF Factorization 24, 41
Imaginary Unit 4
Integral Equation 1, 3, 95
Integral Operator 96

Discrete 1, 2, 22
Patch 97

Integration Patch 97
Non-singular 97
Regular 97
Singular 97

Interpolation 30, 50
Chebyshev 17, 30, 31, 50
Piece-wise 17, 30, 50
Polynomial 17

Interpolation Cone 30
Interpolation Domain 31, 49
Interpolation Function 60, 67

MPI Parallel 74

OpenMP Parallel 69
Interpolation Interval 30, 49

Radial 49
Interpolation Point 50

K
Kernel 7, 97

Density 97
Singular 97

Krylov Subspace 6, 17

L
L2L 10
Laplace Equation 3, 22, 65, 93
Level 8, 45
LevelDEvaluations Function 60, 64, 67

MPI Parallel 74
OpenMP Parallel 68

Linear Equation Solver 17
Linearithmic iv, 17, 70, 79
Logical Quadrilateral 96
Low-frequency 7, 14, 38
Low-rank 9
Low-rank Approximability 9
LQ 96
LU Decomposition 9
LU Factorization 2

M
M2L 10
M2M 10
Maxwell Equation 3
Memory 20, 66

Distributed 20, 66
Shared 21

Message Passing Interface 20
Morton Order 71, 75
MPI 20, 21, 66, 70

Communication 71



138

Rank 21, 71
mpiicpc 84

N
Neighbor 45

Box 45
Points 45

Neighbor Box 45
Neighbor Points 45
Neumann Problem 3
Nodes 12, 20, 66, 84
Non-uniform Memory Access 21
Normal Derivative 4
Normal Vector 4
NUMA 21, 66

O
Obstacle 1

Sound-hard 4
Sound-soft 4, 95

Octree 8
Box 41
Level 45
Linear 75

OpenMP 21, 66, 67
Operator 1

Discrete 17
Evaluation 54
Integral 17

Operator Evaluation 54

P
Parabolic Scaling 7, 9
Parallel Scaling 7
Parallel Efficiency 12, 83
Parallel Scaling 83, 114, 119
Parallelization 66

IFGF 66
MPI 66, 70

OpenMP 66, 67
Parallelization Bottleneck 11
Parametrization 49
Parent Box 46
Partial Differential Equation 1, 22

Linear 1
Partial Summation 20
Patch 96
PDE 1, 22

Linear 1
Piece-wise Interpolation 30
Pinning 85
Pollution 1
Polynomial 17

Chebyshev 17
Interpolation 9

Potential 4, 95
Combined-layer 5, 95
Double-layer 4, 95
Single-layer 4, 95

Precomputation 54
Process 20
Processor 84
Propagation Function 60, 67

MPI Parallel 74
OpenMP Parallel 69

Q
Quadrature 96

Fejér’s 96

R
Radial Interpolation Interval 49
Radiation Condition 1
Refinement Factor 53
Relevant Box 45
Relevant Cone Segment 52
Riesz Theory 3



139

S
Scaling iv, 7, 83, 114, 119

Linearithmic iv, 88
Parallel 7, 83, 114, 119
Strong iv, 12, 83, 114
Weak iv, 12, 83, 119

Shared Memory Machine 20
SIMD 75
Single-layer Potential 4, 95
SMM 20
SoA 75
Solver 2, 6

Direct 6
Iterative 2, 6

Sound-hard 4
Sound-soft 4, 95
Special-function Expansion 7
Speed of Light 3
Speed of Sound 3, 95
Spherical Harmonics 9
std::unordered_map 75
Stokes Equation 22
Strong Scaling iv
Strong Scaling 12, 83, 114
Structure of Arrays 75
Surface 1, 22, 96

Discrete 22
Surface Density 4, 6
Surface Discretization 22
System of Equations 2

Dense 2
Linear 2, 6
Sparse 2

T
TBB 21
Thread 67
Thread Building Blocks 21
Thread-safety 68
Translation Operator 7, 10
Tree 8

Box 41, 58
Leaf 8
Level 45
Linear 75
Octree 8
Root 8

U
UMA 21
Uniform Memory Access 21

W
Wave Propagation 95
Wavelength 3, 12, 27
Wavenumber 3, 4, 27, 62, 95
Weak Scaling iv
Weak Scaling 12, 83, 119

Z
Z-curve 71


	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Integral equations
	Previous work and contribution
	Content and layout of this thesis

	Preliminaries
	GMRES
	Chebyshev interpolation
	HPC basics

	The Interpolated Factored Green Function method
	Factorization of the Green function
	Analyticity
	Interpolation procedure
	Box octree structure
	Cone segments
	The IFGF algorithm
	Complexity analysis

	Massively parallel IFGF method
	OpenMP parallelization
	MPI parallelization
	Parallel linearithmic complexity analysis

	Numerical examples
	Background for numerical examples
	The N logN scaling 
	Higher order results
	Laplace equation
	Full solver and sample engineering problems
	Strong parallel scaling
	Weak parallel scaling
	Large sphere tests

	Concluding remarks
	Conclusions
	Future work

	Bibliography

