
Multicellular Control

Thesis by
Anish Anandsai Sarma

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2023
Defended June 17, 2022



ii

© 2023

Anish Anandsai Sarma
ORCID: 0000-0003-1261-0589

All rights reserved except where otherwise noted



iii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support of many, many people.
I have been lucky to have two remarkable advisors in John Doyle and Lea Goentoro.
John took me on as his advisee and encouraged me to pursue an idea that, at the
time, I could barely articulate. Lea welcomed me into her lab a few years later,
encouraged me to think both creatively and rigorously, and trusted me to learn my
way around as an experimentalist. I have learned so much about math and biology,
especially a kind of optimism in the face of complexity, from John and Lea.

Many accomplished scientists, clinicians, mathematicians, and engineers have taught
me and challenged me in the past six years, including my rotation advisors, com-
mittee members, and expert collaborators: David Brandman, Marie Csete, Michael
Elowitz, Peter Lee, and Nikolai Matni. I owe special thanks to Ellen Rothenberg
and Doris Tsao, who believed in this project early on.

From my time before Caltech, Leigh Hochberg, John Simeral, and Wilson Truccolo
taught me how to build things in the world that help people directly. The participants
in the BrainGate clinical trial, the handful of individuals who dedicated the last years
of their lives to the development of science and technology from which they would
never personally benefit, are never far from my mind.

Among my fellow graduate students and research staff there are too many friends and
intellectual sparring partners to name, and I will likely leave many out. In the Doyle
Group, Lisa Li and Fangzhou Xiao have been my frequent collaborators and have
brought out the best in my work. Carmen Amo Alonso, James Anderson, Natalie
Bernat, Jiexin Chen, Lauren Conger, Dimitar Ho, Mandy Huo, Olle Kjellqvist,
Quanying Liu, Yorie Nakahira, Noah Olsman, Shih-Hao Tseng, and Jing Yu have
been friends, critics, and co-creators of our group’s wonderful, insular vernacular.
In the Goentoro Lab, I owe gratitude to the people who taught me how to handle
a pipette and a jellyfish, especially Michael Abrams, Ty Basinger, and Chris Frick;
brainstorming sessions between experiments with Mengsha Gong, Martin Heithe,
Aki Ohdera, and Fayth Tan, and later with Zevin Condiotte, Yutian Li, and Changhua
Yu, were some of the most energetic, thrilling, and often comic moments of the past
six years. My cohort-mates in the Computation and Neural Systems option, Jon
Kenny, Matt Rosenberg, Tony Zhang, and Jeremy Bernstein, have been there from
the very beginning, and we all pushed each other to pursue work we believed in,



iv

wherever it led. I’m grateful to Gautam Goel, Juba Ziani, and Mason McGill, for
always making time for wide-ranging conversations, informal jam sessions, and
whatever else the moment called for.

My parents, Radha and Nagaraj Sarma, have been my constant supporters. They
have read every scrap of science associated with this thesis and could teach a class
on it. My sister-in-law, Rebecca Jacobs, became an integral part of the family in the
years since I started at Caltech, and I have relied on her insight. My brother, Aartik
Sarma, has been my longtime collaborator, my trusted friend, and my constant
sounding board through every technical and personal challenge. Lastly, I write this
in gratitude to my dear grandparents, whether here with us or with me in other ways.



v

ABSTRACT

Robust control theory was developed in the late twentieth century as a mathematical
framework to enable the principled incorporation of uncertainty into engineering de-
sign in applications like aerospace. However, engineered technologies that interface
with living systems in applications like medicine and ecology must accommodate
uncertainties and unmodeled dynamics far beyond what robust control theory has
historically achieved. This thesis develops a robust control foundation for overcom-
ing large-scale uncertainty and designing interfaces with living systems, through
formal theory and three case studies: neural control of movement, immune control
of viruses, and homeostatic control of neoplasia in the moon jellyfish.

The central argument of this thesis is that these three systems, along with many
others, have two key properties that enable new approaches to the uncertainty in-
trinsic to their study: they are themselves control systems, and they are multicellular
systems. These properties motivate new work in control theory, blending recent re-
sults in localized and distributed control with older results from robust and modern
control. The resulting theory framework answers domain-specific questions, guides
the design of new experiments and technologies, and enables a conceptual synthesis.
By leveraging the fact that these are multicellular control systems, we are able to
make progress in theory, basic science, and engineering.

After an introduction in Chapter 1, I provide a high-level overview of the theory
framework in Chapter 2, which is later elaborated in technical detail in Chapter 5
and Chapter 6. In each of three domain-specific investigations, I consider a gap
between a classical theoretical paradigm and a more complicated recent body of
evidence.

In Chapter 3, I consider the problem of localization of function in the neural control
of movement. If, as is typically believed, different parts of the brain are specialized
for different functions (for instance, vision and movement), why do detailed studies
consistently find internal feedback signals between putatively specialized brain areas
(such as movement-related signals in vision-related areas)? Why is neuronal activity
in some brain areas explained primarily by external stimuli, whereas activity in other
areas is explained primarily by autonomous internal dynamics? I show that internal
feedback and internal dynamics do not contradict the old notion of localization of
function, but in fact are necessary to achieve it.
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In Chapter 4, I consider the evolution of pathogens in the context of viral-immune
interactions. The theory that pathogens face a tradeoff between virulence and trans-
mission been complicated by key examples, including SARS-CoV-2. I show that the
classical virulence-transmission theory can be strengthened by incorporating mod-
els of immune variation between hosts into models of virulence and transmission,
allowing us to identify potential future risks and potential interventions.

Chapter 7 provides an experimental test of the overall approach. I consider the
regeneration-tradeoff model of cancer formation. I combine mathematical model-
ing with wet-lab experiments in the moon jellyfish Aurelia coerulea, an animal in
which neoplasia has never been observed and in which a regenerative state can be
induced or suppressed in the laboratory. I first use a theory-driven experiment to
inhibit cancer resistance mechanisms in the moon jellyfish and thus induce neo-
plasia. I then propose a new model of cancer formation, the flux model, which
makes the surprising prediction that the regenerative state in the jellyfish will be
protective against neoplasia. I verify this prediction experimentally, inducing and
then reversing a neoplasia-susceptible state.
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4.1 A control theory framework to analyze viral virulence and transmis-
sion. Qualitative cartoons show three levels of description explored
quantitatively in this chapter: (A) is a population-level summary
of two key properties of a pathogen, virulence and transmission,
with variations in severity and transmission between individuals and
across time in individual infections summarized into single points in
the two-dimensional space. The diagram shows virulence and trans-
mission combinations for four qualitative virus types (circles) as well
as potential relationships between virulence and transmission (lines).
Green viruses are the best case for the host population: They neither
cause severe symptoms nor spread easily, so few individuals in the
population are affected. Blue viruses spread easily but cause minimal
harm to individuals and therefore minimal burden to the population.
Red viruses cause severe symptoms and harm to individuals, but do
not spread easily, burdening few affected individuals but not the whole
population. Purple viruses with high virulence and high transmis-
sion are the worst case for the host population, causing many severe
infections and a substantial burden to the population. Crucially, a
virus’s position in this space can depend both on its own biology
and on host biological, technological, and behavioral interventions.
(B) Symptom dynamics highlight some, but not all, additional com-
plexity in the relationship between virulence and transmission. Solid
lines represent median cases, while lighter colored clouds represent
the range of severities. (C) We use robust control theory to derive
rigorous lower bounds on the severity of virulence and transmission
given specific virus-host interactions, despite significant epistemic
uncertainties in how host responses are implemented. . . . . . . . . . 30
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host, well-characterized kinetics govern viral replication. Immune
responses are represented with a cloud to indicate that any additional
dynamical elements in the sensing and coordination of viral removal
are analyzed as part of a control system, for which we can compute
best-case bounds with control theory (bottom two reactions). Trans-
mission from a single host can lead to presymptomatic cases that go
on to be severe (red-banded individuals), cases that are fully asymp-
tomatic (blue-banded individuals), or any severity in between. (B)
A low median susceptible cell percentage (SCP) in the host enables
large relative variation in SCP and thus in 𝛼. (C) Open-loop variation
in viral shedding varies dramatically on relevant time-scales, ampli-
fying variations in SCP (note log units for shedding). (D) Ideal and
rapid extracellular immune control can create similar, low-variation
viral load trajectories between the same three hosts: high, medium,
and low 𝛼 (left). These similar simulated trajectories require differ-
ing immune effort (right). The underlying open-loop dynamics thus
directly shape virulence. . . . . . . . . . . . . . . . . . . . . . . . . 35
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ical and behavioral responses are involved in the layered control of
virulence and transmission. The challenge addressed in this cartoon
is a delayed immune response, which both exacerbates virulence and
allows for pre-symptomatic spread. (B) Interferon suppression of
the immune response by the virus allows an extended period of viral
replication and shedding during which avoidance behaviors are not
prompted (without advance warning). Following symptom onset,
shown here after five days, high 𝛼 is associated with a high symptom
burden, making high 𝛼 individuals easiest to avoid (middle panel).
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presymptomatic period as the symptomatic period; however, the cu-
mulative effect of the much higher viral loads in high 𝛼 individuals
in the pre-symptomatic period remains a dominant factor in trans-
mission, while transmission by low 𝛼 individuals remains low (right
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C h a p t e r 1

INTRODUCTION

1.1 Goals of the thesis
This thesis distills a body of work in control theory under several guises: ap-
plied mathematics, electrical engineering, biomedical engineering, neuroscience,
immunology, and developmental biology.1 It includes theory, experiment, and en-
gineering. This breadth of domains and techniques serves two goals, which happily
coincide.

The first goal is the scientist and mathematician’s goal of unification. This thesis
has been animated by the belief that there exists, just out of view, a unified subject
that meaningfully spans (but does not subsume) the above domains and others. Like
any engineering subject, this new subject is at once theoretical, experimental, and
applied; unlike classical engineering subjects, it aims to discover new phenomena in
the natural world. Informally, this subject is the study of how flexible, coordinated
action is achieved by simple, constrained components through a special composition
we call layering, and what happens when components are lost, added, or modified.
These issues often arise in the context of multicellular biological systems: how neu-
rons work together to achieve sophisticated movements, how immune cells identify
dangerous molecular patterns, or how developmental processes form and maintain
patterned tissues like limbs.

Control theory is a natural home for these questions, providing a conceptual frame-
work to study interconnected systems at scale, although we will travel some distance
from what one would find in an undergraduate control textbook.2

The second goal is the engineer’s goal of building a more humane world. This thesis
has been animated by optimism about past and future triumphs over the material
realities of the human condition: electrification, wastewater management, vaccines,

1Developmental biology is a broad umbrella, colloquially understood to cover embryonic and
childhood development but also often used to include stem cell biology, regeneration biology, and
some aspects of cancer biology. These are not identical systems, although there is considerable
overlap in relevant pathways and processes, and I use development for brevity.

2Many people have noticed this subject and its connections to control. This type of observation
was the foundation of the cybernetics movement in the 1940s and 1950s, the complex systems
movement of the 1980s and 1990s, and more recent efforts in networks, active inference, and related
theories.
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antibiotics, agriculture, air filters, parks, libraries. Many contemporary engineering
challenges, from medicine to ecology to infrastructure, are challenges not only of
designing technologies but of interfacing with extant engineered or living systems.
Layering control systems, including the layering of new systems, experiments, or
decision-making processes onto legacy or evolved systems, is a general problem
across many fields, with broad implications for the built and natural world.

In practice, skilled engineers have always built on top of legacy systems, and have
often accounted for living systems (at the very least, human users) in the loop.
Engineering skill often requires the practitioner to leverage the intuition from exact
theory while accommodating real-world unknowns. This is where engineering, as
any skilled practitioner will tell you, is both art and science. Skilled experimental
biologists and clinicians will say similar. Nevertheless, a foundation in formal
engineering theory is essential to high-performance and robust engineering design,
and is increasingly useful to experimental design, even when intuition fills in gaps.
Because my work has included engineering and experiment as well as theory, I am
familiar not only with the limitations of existing theoretical assumptions but also
with the limitations of existing theory-based intuition.3 It was really this intuition
that was most important to fortify with this work, but to do so, it was necessary to
extend the formal theory as well.

The crucial technical engine of this work is convex set descriptions of all possible
control systems that solve particular control problems – the profound fact, well
known in control theory, that all solutions of particular types of problems necessarily
look alike at the appropriate level of abstraction. Convex description allows us
to access computational and theoretical techniques in optimization and machine
learning, and therefore computerized analysis and design of large-scale systems.
This thesis improves the state of the art of convex set descriptions of control systems,
enabling new types of designs and faster algorithms for previous controller designs.

Although the theorems and concepts apply broadly, most of this thesis will consider
the (still broad) class of multicellular biological systems. This level of description
intersects with neuroscience, immunology, and developmental biology, and con-
trasts with a long history in biology and medicine that revolves around identifying
single molecular mechanisms of disease and single drug targets – an approach that
increasingly shows its limitations in responses to infectious disease, neurodegener-

3As I argue in Chapter 3, scientists often reason implicitly from control-like diagrams and
structures that miss key details; updating the diagrammatic style by updating the math the diagrams
represent is a major goal of this work.
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ation, autoimmunity, and cancer. A multicellular control approach builds on work
in systems biology that has moved towards multi-molecule descriptions, as well as
work in systems neuroscience that has moved towards multicellular descriptions.

Three new conceptual and technical challenges are encountered in the leap to mul-
ticellularity: locality, uncertainty, and self-renewal. Each of these control chal-
lenges will be addressed in a case study that considers a particular biological system,
a particular problem within that domain, and a particular control-theoretic technique.
In the interest of maintaining focus, I will limit references to other biological systems
within each case. However, each control challenge and each control technique is
applicable across each of the relevant domains.

• Locality (Chapter 3): when moving signals around a system is slow, in-
accurate, or expensive, it becomes necessary for control actions to be taken
without complete information about the global state of the system. We study
this problem in the neural control of movement by studying implementa-
tions of decentralized controllers.

• Uncertainty (Chapter 4): large-scale systems can have millions or billions
of interacting components with dynamical parameters that can never be fully
observed or predicted, yet we still want to design interpretable models, exper-
iments, and reliable interventions. We study this problem in viral-immune
interactions by studying performance limits of controllers.

• Self-renewal (Chapter 7): cells in biology are continually created from other
cells, unlike physical components in electronic or mechanical control systems,
which creates new constraints on achievable control – but also creates new
opportunities for intervention that conventional engineering might overlook.
We study this problem in a cancer-resistant jellyfish by developing theory-
driven experiments.

Between the discussions of uncertainty and self-renewal, I will develop in greater
detail new theorems in the convex set description of robust and localized control
systems. These theorems are essential to the scholarly and technical contribution of
this thesis and are presented in a denser technical style consistent with conventions
in control theory and maybe necessary to study control systems in greater generality.
By contrast, the mathematical exposition in each of the domain-oriented chapters is
intended to be self-contained.
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The theoretical work in total identifies and addresses a conceptual and technical gap
that recurs across several fields. This is surprising, but perhaps not so strange when
we consider that statistics, differential equation modeling, and machine learning have
become core technologies across science and engineering. Control theory as we
develop it here is likewise broadly applicable – a claim that I will justify by applying
control theory broadly. Rather than hermetically developing a control theory with
claims to generality, we will aim to answer old questions and pose new questions
in other domains. These applications necessitate new theorems, but the theorems
themselves are not the core contribution of this thesis. No single control theorem
accounts for the subtleties of domain details, and every historical application of
control theory, from aerospace to robotics, has included a mix of theoretical rigor
and practitioner intuition. It is this way of thinking about multicellular biology that
I hope this thesis provides: that the control theorist sees a new breadth of theoretical
challenges and applications in multicellular systems, whether the systems we study
here or other systems, and that the biologist sees new ways to use control theory,
whether using the new tools we develop here or classical tools applied in new ways.
There is an old joke from the poet Archilochus, by way of Isaiah Berlin, that applies
here: a fox knows many things, but a hedgehog knows one big thing. This thesis
looks like a fox, but it is a hedgehog.

1.2 The diagrammatic and mathematical language of control theory
Control theorists describe interconnected systems using a diagrammatic language
of blocks and arrows. While control-theoretic block diagrams are rarely ambiguous
within the established conventions of the field, they encompass subtleties that might
differ from cosmetically similar diagrammatic languages used in other fields. There-
fore, I will present here a brief introduction to the diagrammatic language of control
theory as we use it, emphasizing three key ideas: implementation, uncertainty,
and delay.

In general, a block in a control diagram describes a transfer function. The transfer
function 𝐺 between an input 𝑢 and an output 𝑦 is an operation on 𝑢, a vector-valued
signal through time, that produces 𝑦, a vector-valued signal through time.

We can write this mathematically as:

𝑦 = 𝐺 (𝑢) (1.1)

Typically, unless otherwise noted, 𝐺 is causal, meaning that at any given time, the
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Figure 1.1: A transfer function from 𝑢 to 𝑦.

present value of 𝑦 depends only on past values of 𝑢 and 𝑦; the future does not affect
the past.

Because 𝐺 can depend on past values of both 𝑢 and 𝑦, we can describe the internal
states 𝑥 of 𝐺 as a dynamical system with a differential equation with respect to time
𝑡. We are almost always interested in derivatives with respect to time, so we will
typically define ¤𝑥 = 𝑑𝑥

𝑑𝑡
.

¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝑔(𝑥, 𝑡)𝑢
𝑦 = ℎ(𝑥)

(1.2)

We have now assigned to the simple block in Figure 1.2 two meanings, expressed as
Equation 1.1 and Equation 1.2. These meanings are compatible, but not equivalent.
Equation 1.1 expresses the input-output behavior of the system, while Equation
1.2 gives us one realization of the input-output behavior. A given realization cor-
responds to exactly one input-output, but a given input-output can have multiple
realizations (infinitely many, though some are improbable). We make a further dis-
tinction in this work between realization and implementation, which is the distinction
between a differential equation model of a system and a more complete character-
ization of the physical system that the differential equation model describes.4 For
example, the elementary mathematical operation of addition in Equation 1.2 might
be implemented as the flows of water in and out of a tank. It might be suitable for
some problems to treat addition and subtraction of water as positively and negatively
signed values of the same term 𝑢. To build the system, or to diagnose problems in
the system, it might be necessary to treat addition and subtraction separately. This

4These distinctions are reminiscent of the Marr’s levels in neuroscience. Marr separated the
computational, algorithmic, and implementational levels of analysis, which in control-theoretic lan-
guage would be the input-output, realization, and implementation, respectively. To the reader familiar
with Marr’s levels, this work can be understood as creating a foundation by which to constrain the
implementational level with the computational level and vice versa. In control problems, the algo-
rithmic/realization level is sometimes a necessary technical intermediate, but it is not conceptually
distinct from implementation.
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distinction between realization and implementation is nonstandard even in control
theory.

Input-output descriptions are a framework for organizing facts that we already know
and highlighting facts that we do not know; they are not models or hypotheses in the
typical scientific sense, nor designs in the typical engineering sense. However, in
the particular capacity to characterize all possible models, hypotheses, and designs
that result from given assumptions and data, input-output descriptions far exceed
implementational descriptions, and facilitate the (intuitive or systematic) generation
of testable implementational descriptions. Throughout this thesis, we will use input-
output and implementational descriptions in tandem, for instance by characterizing
one part of a larger system in implementational detail while subsuming other parts
of the system into input-output blocks.

Four special types of blocks merit particular attention. One is a controller. Con-
trollers are transfer functions, with at least one corresponding implementation, that
are designed by the scientist or engineer to test a hypothesis or achieve an engi-
neering goal. Controllers are contrasted with plants, blocks that represent extant
transfer functions in the natural or technological world. The distinction between
controller and plant, between what is designed and what is extant, is somewhat
arbitrary, depending on the question being asked. A third special type of block
that can be interconnected with other blocks is a delay block. While these look the
same as any other block, they simply pass a signal forward untransformed after a
time delay. Lastly, a special type of block that can be interconnected with other
blocks is an uncertainty block. Rather than representing specific transfer functions,
uncertainty blocks represent bounded sets of functions; a block diagram with an
uncertainty block in it (often expressed as a Δ) should be understood to represent
several possible functions, rather than just one. This set-based approach is impor-
tant when we want to understand whether a model of a system is any good: if our
decisions or conclusions about the system are narrowly dependent on the particular
parametric assumptions of a single model, we call the model (or system) fragile. If
our decisions or conclusions do not depend on particular parametric assumptions,
we call the model (or system) robust. In general, even systems that are robust to
some assumptions are fragile to others.5

5The reader may wonder here if we have gone beyond technical mathematical claims into a realm
of epistemological claims. I admit that we have, but that this is we are no different than any use
of mathematical tools in statistics, differential equation modeling, or machine learning in science or
engineering. These tools are compatible with everything described here.
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A diagrammatic style that includes uncertainty and delays, spanning input-output
and implementation, is a central concern of this thesis, both technically and concep-
tually. We develop new tools to analyze systems described by such diagrams and
apply this diagrammatic style to multicellular systems. The diagrammatic descrip-
tions of multicellular systems in subsequent chapters are more than cartoons; they
are arguments, associated with particular mathematical structures.

Figure 1.2: Special blocks in a controller-plant interconnection: a controller (K), a
delay block (T) and an uncertainty block (Δ).
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C h a p t e r 2

THE THEORY AT A HIGH LEVEL

Suppose we observe a dynamical system that can be described approximately as:

𝑥(𝑡 + 1) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑤(𝑡) (2.1)

𝑥 will typically be a small but important part of a large system, like the position of a
limb during movement, the viral load in the lung during respiratory infection, or the
number of pre-cancerous cells in the body during oncogenesis. We are interested in
two kinds of problems: discovery problems, where we want to understand how this
variable is controlled by extant biological control systems that generate actions 𝑢
in response to perturbations 𝑤, and design problems, where we want to control the
variable ourselves by providing actions 𝑢 in response to perturbations 𝑤. We may
know 𝐴 and 𝐵 exactly, or we may know that 𝐴 and 𝐵 belong to some uncertainty
class corresponding to a set of nonnegative diagonal matrices D. The core systems-
theoretic result of this thesis, enabling the domain-specific work, is a theorem stating
that the set of systems Φ that can generate either the observed behavior or the
desired behavior can be characterized exactly by the following affine conditions:[

𝑧𝐼 − 𝐴 −𝐵
] [

Φ𝑥

Φ𝑢

]
= 𝐷

Φ𝑥 ,Φ𝑢 ∈
1
𝑧
RH∞ (stable and strictly causal), 𝐷 ∈ D

(2.2)

Moreover, as long as such a Φ exists, at least one controller implementation is
guaranteed to exist and preserve structural constraints on Φ. These conditions are
explained in detail in Chapter 6. Variations are also given for different versions of
this problem, such as the problems where the control system has partial observations
or internally lossy communication. These new theorems belong to a family of good
systems theorems, mathematical results that characterize all solutions to a class of
systems-theoretic problems. Such results are at the heart of control theory [3–6].
The conditions 2.2 generalize the seminal results in [7], and recapitulate them exactly
when 𝐷 = 𝐼. The precise statement of the theorems is somewhat less important
than the way they are used: while this is not the first work to connect design and
discovery in this way, we provide a framework that makes this connection actionable
in facing the major uncertainties that arise in multicellular systems.
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In the following chapter, we consider the first of the three case studies in this thesis:
the neural control of movement. This theoretical work is motivated by a question
in neuroscience. The approach we take in this chapter is to consider the simplest
possible tasks for which complex control systems are required, and the answers turn
out to be broadly applicable in multicellular systems.
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C h a p t e r 3

LAYERED ARCHITECTURES AND INTERNAL FEEDBACK IN
THE NEURAL CONTROL OF MOVEMENT

3.1 Introduction
Feedback control is an essential strategy for both engineered and biological systems
to achieve reliable movement in unpredictable environments [8]. Optimal and robust
control theory, which provide a general mathematical foundation to study feedback
systems, have been used successfully to explain behavior-level observations in the
sensorimotor domain by modeling the sensorimotor system as a single control loop
from sensing to action and then feedback (through the environment) to sensing [9–
11]. In such models, a sensorimotor system senses the environment, communicates
signals from sensors through the body, computes actions, and then acts on the
environment, creating a single unidirectional loop.

The assumptions of single-loop feedback are also implicit in interpretations of
sensory and motor computations in neuronal populations. Consider the familiar
canonical model of localized function in the primate visuomotor cortical pathway:
a visual signal is captured on the retina, then travels to the lateral geniculate nucleus
(LGN), then to the primary visual cortex (V1), progressing through successive
transformations until it reaches the primary motor cortex (M1), the spinal cord, and
ultimately the muscles. While intuitive, this model neglects several well-known
features of sensorimotor processing that have made it increasingly untenable.

Internal feedback, signals that do not flow from sensing towards action, have an
unclear role in visuomotor processing. Note that we can further subdivide internal
feedback into local, counterdirectional, and interareal internal feedback, represent-
ing the anatomy of the feedback signal. For example, internal dynamics within a
particular cortical area would be considered local, while signal flows from action to
sensing would be considered counterdirectional. Interareal is a catch-all for internal
feedback which is not local but not obviously counterdirectional.

Additional supporting concepts are layering, visuomotor processing that involves
multiple complete sensing-to-action control loops; diversity, cellular and molecular
components of the control loop that exhibit heterogeneity in properties like speed,
accuracy, flexibility, and energetic cost; and locality, neuron-to-neuron computation
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and communication that are spatially constrained, such that achieving fast and accu-
rate computation and communication over large distances is difficult or impossible.

Internal feedback, especially counterdirectional internal feedback, is the main sub-
ject of this paper. One reason that the single-loop model has endured is that it offers
a set of tools, including off-the-shelf tools from control theory, by which to reason
about subsystems in isolation. However, these subsystems are not isolated, and
internal feedback is ubiquitous. The eye is itself a site of computation and control:
the eye moves around, sensing different parts of the visual scene, and retinal cells
adapt and identify features of interest [12, 13]. Neurons project from LGN to V1 to
V2 but also in comparable numbers from V2 to V1 and even greater numbers from
V1 to LGN [14, 15], in addition to interneurons from V1 to V1 and projections
from motor areas to visual areas – and these varied pathways include substantial
heterogeneity in morphology, myelination, and synapse kinetics [16–20]. The corti-
cal visual processing stream diverges into a ventral stream typically associated with
object identification and a dorsal stream typically associated with object movement,
with cross-talk between the two. In M1, a single-loop model is complicated still
further; neuronal firing is better-explained by past firing than by present stimulus
or movements, suggesting autonomous dynamics [21], and signals related to move-
ments in the whole body are found in areas typically associated with particular parts
of the body, like the hand [22, 23]. Although not typically studied together, we
argue that all of these can be considered cases of internal feedback.

Internal feedback has been studied in neuroscience under several theoretical frame-
works, notably predictive coding. Here, we build on the foundation of recent work in
control theory [1, 24–29] and show that internal feedback is a natural consequence
of component diversity in the presence of locality constraints. Our contribution is
to present idealized systems for which we can prove mathematically that internal
feedback is not merely plausible, but in fact necessary for function, and to explain
why necessity arises under biological constraints. Along the way, we also synthe-
size several observations that have not previously been treated in a predictive coding
framework. Internal feedback has at least three functions in our analysis: estima-
tion, localization of function, and attention. Together, these functions facilitate
fast control without loss of accuracy or flexibility. Lastly, we observe that this type
of internal feedback is ubiquitous in biological signaling and multicellular coordi-
nation and likely results from similar constraints to those observed in the nervous
system.
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Figure 3.1: A partial schematic of sensorimotor control with layers and internal
feedback. Sensorimotor control involves complex coordinated action across many
parts of the nervous system. In order to study this system, it is often necessary
to isolate single boxes or loops; here, we take steps towards understanding the
function of layered loops and internal feedback. Note that even with all of these
additions, we are simplifying away yet more diversity and complexity, and this
diagram is schematic, intended to highlight particular features of the overall system.
From bottom to top, more layers are added to the control architecture. Internal
feedback pathways are indicated in pink, while a particular fast forward path for
object tracking is indicated in light blue. Gray lines are connections we will discuss
qualitatively, but which we do not address with quantitative theory. Dashed lines
and broken lines indicate connections for which we discuss signal flows, but not
necessarily direct neuronal projections. Abbreviations from bottom: Vis = vision,
Prop = proprioception (muscle spindles), Mscl = muscles, SC = spinal cord, Sup =
superior colliculus, Th = thalamus, BG = basal ganglia, V1 = primary visual cortex,
S1 = somatosensory cortex, M1+ = primary motor cortex and additional motor
areas, V2/3 = secondary and tertiary visual cortex, IT = inferotemporal cortex, MT
= mediotemporal cortex.

The principles we describe are general, but we will ground the theory in familiar parts
of the whole: differences in population responses between M1 and V1, differences
in kinetics between AMPA and NMDA receptors, coordination between vision and
proprioception, roles of giant pyramidal cells in visuomotor control, and localization
of function in cortex.
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3.2 Results
The Task
To develop a theory of layering and internal feedback, we analyze theoretical bounds
on task performance for models of a simple, well-studied, and ethologically relevant
task: reaching for and grasping a moving object (which we will simply call the
tracking task). The complete task requires identification of the object amidst a visual
scene, prediction of the object’s movement, generation of bimanual limb movement,
and execution of limb movement. The tracking task has a firm foundation in existing
data and experimental approaches, making the theoretical arguments in this chapter
directly testable in future experimental work.

Each of the subsequent models of this task will conform to the following simplifying
assumptions, although we will not need every assumption for every model:

• In a visual scene, backgrounds change more slowly than moving objects.

• We treat objects as adding to the background scene rather than occluding it.

• Task success is defined as successful continuous pursuit, not one-time contact
between limb and object.

These assumptions are not essential to our conclusions, but they allow is to study the
essence of layering and internal feedback by showing that these can arise with small
modifications to simple single-loop systems. As an added advantage, these simpli-
fications allow us to use the familiar-in-neuroscience language of linear dynamical
systems, so that our computations of best- and worst-case system performance are
transparent.

Static Control

In the simplest case of the tracking problem, we consider tracking the endpoint of a
limb on a plane, where the variable to be controlled is the distance between the limb
endpoint and the object, or the tracking error, and where the system that controls the
limb can perfectly sense the position of limb and object at every instant. We describe
the time-evolving dynamics of the tracking error 𝑥, the action on the limb 𝑢, and the
action of the object 𝑤 in terms of 𝐴, a matrix which gives the intrinsic dynamics of
𝑥 (e.g. the mechanical coupling between the two dimensions of limb movement).
The actions 𝑢 are feedback control actions on the tracking error, computed by an
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arbitrary function K that has access to all past and present states 𝑥(1 : 𝑡).

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝑢(𝑡) + 𝑤(𝑡)
𝑢(𝑡) = K (𝑥(1 : 𝑡))

(3.1)

The optimal solution to this problem is straightforward, but interesting as a starting
point: the optimal K (𝑥(1 : 𝑡)) is exactly −𝐴𝑥(𝑡). The optimal control action does
not depend on any past states (the controller is static), and access to past states does
not improve performance. There is no need for, and no advantage to, layering or
internal feedback. This remains true for a large but special class of problems, not
just problems where 𝐴 = −𝐾 . This is mathematically remarkable, but it can be
misleading about real-world systems; by relaxing some of the assumptions in this
problem in subsequent sections, we will quickly encounter layering and internal
feedback.

Estimation

Simple modifications to the control problem described above are sufficient to create
a situation for which we can still compute a static 𝐾 , but we can only implement
it with internal feedback. One such modification is a delay in sensing. To rewrite
a delayed-sensing problem as one that we can solve optimally using the standard
control methods for the linear quadratic regulator (LQR), we introduce a virtual
state 𝑥 (2) , the tracking error in the previous timestep, and write the tracking error
itself as 𝑥 (1) . We can now treat this as a multivariate problem:

�̂� =

[
𝐴 0
𝐼 0

]
, 𝐵 =

[
𝐼 0
0 𝐼

]
, 𝐶 =

[
0 𝐼

]
[
𝑥 (1) (𝑡 + 1)
𝑥 (2) (𝑡 + 1)

]
= �̂�

[
𝑥 (1) (𝑡)
𝑥 (2) (𝑡)

]
+ 𝐵𝑢(𝑡) + 𝑤(𝑡)

𝑢(𝑡) = 𝐾𝐶
[
𝑥 (1) (𝑡)
𝑥 (2) (𝑡)

] (3.2)

In this new system, the controller senses 𝑥 partly rather than fully, through the matrix
𝐶, so the controller does not directly sense the true state 𝑥 (1) . However, the controller
can freely take actions that affect both the true state 𝑥 (1) and its internal representation
of the virtual delayed state 𝑥 (2) . This gives us our first opportunity to study internal
feedback. Now the optimal solution can be computed as be a static control matrix 𝐾;
in fact, 𝐾 has the simple analytical form

[
𝐾1; 𝐾2

]
=

[
−𝐴2; −𝐴

]
. We can directly
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Figure 3.2: Delays in simple and otherwise unconstrained sensing and action ne-
cessitate internal feedback for good performance. For simulations, we consider the
scalar problem of tracking a moving target over a line, varying the task difficulty
(dynamics 𝐴 = 𝛼). Smaller costs indicate better tracking. As 𝛼 approaches 2, the
task becomes infeasible without internal feedback (broken line).

compare the performance of this controller (with internal feedback) to the optimal
true static controller (Figure 3.2). In this case, the optimal static controller has the
analytical form

[
𝐾1; 𝐾2

]
=

[
−𝐴2/4; 0

]
. We can also characterize conditions

under which internal feedback is necessary, not just for performance but for any
solution to exist: a feasible static controller only exists when the spectral radius of
𝐴 is less than 2.

Delays in sensing and delays in action are both relevant to sensorimotor control.
Extending our model further, we can account for this in terms of a controller 𝐾
and an estimator 𝐿. (For linear systems with Gaussian noise, the optimal Bayesian
estimator 𝐿 is the Kalman Filter.)

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑤(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡)

(3.3)

The controller for this system inherently contains internal feedback irrespective of
delays being present; these are represented by IFP-Sense-2, IFP-State, and IFP-
Act-2 in Figure 3.3. IFP-State estimates state evolution in the absence of noise
and actuation, IFP-Act-2 accounts for controller action, and IFP-Sense-2 predicts
incoming sensory signals based on the internal estimated state.
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Figure 3.3: Internal feedback in a controller with sensing and actuation delays.
𝐴, 𝐵, and 𝐶 represent the state, actuation, and sensing matrices of the physical
plant; 𝐾1, 𝐾2, 𝐿1, 𝐿3 are submatrices of the optimal controller and observer gains.
Delayed sensing and actuation induce two independent internal feedback pathways:
IFP-Sense-1, and IFP-Act-1, which can be studied separately in the full control
and state feedback subproblems. The remaining three internal feedback pathways
(IFP-Sense-2, IFP-State, IFP-Act-2) are part of the delayed-sensing, delayed-action
controller.

Let the augmented state be 𝑥 =

[
𝑥⊤ 𝑥⊤𝑎 𝑥⊤𝑠

]⊤
, where 𝑥𝑎 represents delayed actu-

ation states and 𝑥𝑠 represents delayed sensing states.

The system matrices for the augmented system are written in block matrix form:

�̂� =


𝐴 𝐵 0
0 0 0
𝐶 0 0

 , �̂� =


0 0
𝐼 0
0 𝐼

 , �̂� =

[
0 0 𝐼

]
(3.4)

We can then obtain the optimal estimator 𝐿 =

[
𝐿⊤1 𝐿⊤2 𝐿⊤3

]⊤
and the optimal

controller gain 𝐾 =

[
𝐾1 𝐾2 𝐾3

]
. Because of the block-matrix structure of

the system matrices, 𝐿2 and 𝐾3 are optimally zero; we then overload notation by
reassigning 𝐿3 to 𝐿2. This allows us to simplify the resulting estimator and controller
into the one shown in Fig. 3.3.
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Figure 3.4: Localization of function within motor-related cortex: although different
parts of the cortex control different parts of the body, these parts of the body are
inherently mechanically coupled. As a result, internal feedback is useful and in
some cases necessary to maintain localization of function. Centralized control
performs best, but with internal feedback, control is still achievable. Without
internal feedback, performance is substantially worse and can be infeasible (broken
line).

𝛿(𝑡 + 1) = 𝐶𝑥(𝑡) − 𝐶𝑥(𝑡) − 𝐿2𝛿(𝑡)
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵2𝑢𝑎 (𝑡) + 𝐿1𝛿(𝑡)

𝑢𝑎 (𝑡) = 𝐾1𝑥(𝑡) + 𝐾2𝑥𝑎 (𝑡)

(3.5)

Here, 𝛿 is the delayed difference between the estimated sensor output and true sensor
output, discounted by the observer term 𝐿2𝛿(𝑡). The resulting controller, shown in
Fig. 3.3, contains two sources of internal feedback due to delay: IFP-Sense-1 and
IFP-Act-1. The remaining internal feedback is inherent to the Kalman Filter.

Locality
We next consider locality constraints, which can include localization of function
between sensory and motor areas and localization of function between one motor
area and another. Here we focus on localization of function between one motor area
and another.

Locality constraints have a physical interpretation, related to how quickly and ac-
curately signals can be conveyed between subsystems. They have a less formal
interpretation in the sense of coordination: who needs to know what, and when, for
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the whole system to perform? Localization would mean that some subset of com-
mands 𝑢1 can be computed by sensing some subset of states 𝑥1 alone, and another
subset of commands 𝑢2 can be computed by sensing another subset of states 𝑥2 alone.
For simplicity, we assume that there are only two subsets of actions and states, and
that all commands and all states belong to one subset or the other. This is, again, a
problem whose performance is substantially improved with internal feedback in the
form of delayed cross-talk between the localized sub-controllers.

We start from a two-dimensional task without sensing or actuation delays:

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐾𝑥(𝑡) (3.6)

The optimal solution (minimizing ∥𝑥∥2) is by inspection 𝐾 = −𝐴, which is static
and has no internal feedback. Motor localization means that we can construct:

𝐾 =

[
𝐾1 0
0 𝐾2

]
(3.7)

If 𝑥1 and 𝑥2 are not coupled (if 𝐴 is block-diagonal), then the optimal 𝐾 is block-
diagonal. However, in reality, all body movements are mechanically coupled, some-
thing which the motor system can conceal through effective localization.

Any controller can be implemented in a variety of ways. In order to study internal
feedback, we assume particular non-unique controller implementations – which,
when optimized, attain the optimal performance over all localized controllers. The
internal feedback implementation we propose here is similar to the internal feedback
we used in the case of sensing delays. We create additional virtual states, 𝑥′1 and
𝑥′2, which can be understood as what about 𝑥1 can be communicated to 𝐾2 without
direct sensing and what about 𝑥2 can be communicated to 𝐾1 without direct sensing,
respectively. The essence of localization is that 𝑢1 never sees 𝑥2 directly, in a timely
manner; however, with internal feedback, 𝑢2 can freely tell 𝑢1 what it knows about
𝑥2 at some delay. For simplicity, we will assume here that this is a unit delay.
𝑥1(𝑡 + 1)
𝑥′2(𝑡 + 1)
𝑥′1(𝑡 + 1)
𝑥2(𝑡 + 1)


=


𝐴11 0 0 𝐴12

0 0 0 0
0 0 0 0
𝐴21 0 0 𝐴22



𝑥1(𝑡)
𝑥′2(𝑡)
𝑥′1(𝑡)
𝑥2(𝑡)


+


∗ ∗ ∗ 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗



𝑥1(𝑡)
𝑥′2(𝑡)
𝑥′1(𝑡)
𝑥2(𝑡)


+


𝑤1(𝑡)

0
0

𝑤2(𝑡)


(3.8)

The original localization structure of the problem is preserved because of the zeros
in the top right and bottom left corners of the 𝐾 matrix. We next determine
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what the internal feedback signals must convey to achieve optimal performance.
We choose this case because the optimal solution is relatively transparent. This
kind of problem can be solved with System Level Synthesis (SLS) methods, which
substantially generalize the LQR methods used in previous sections and can produce
complex optimal controllers, but the technical details are not crucial to this special
case, which produces a simple optimal 𝐾 . We inspect the optimal 𝐾 (which can be
realized in multiple cost-equivalent ways, all with the relevant internal feedback):

𝐾 =


−𝐴11 0 −𝐴12 0

0 0 −𝐴12 𝐴12

𝐴21 −𝐴21 0 0
0 −𝐴21 0 −𝐴22


(3.9)

We can develop intuition for this implementation by following an impulse 𝑤 through
time.

𝑥(1) =


𝑤1

0
0
𝑤2


→ 𝑥(2) =


𝐴12𝑤2

𝐴12𝑤2

𝐴21𝑤1

𝐴21𝑤1


→ 𝑥(3) = 0 (3.10)

Here the internal states carry the predicted values (after control action) of the
unsensed states. Without this internal feedback, task performance can be arbitrarily
bad, or the task may be infeasible (Figure 3.4).

With internal feedback, task performance stays near the centralized optimal. Lo-
calization of motor function (specialization of parts of motor cortex to particular
parts of the body) in fact requires ongoing information-sharing between local sub-
controllers (signals related to the whole body appearing in, but not dominating,
parts of motor cortex specialized to particular parts of the body). For the controller
without internal feedback, we restrict to controllers that are linear; for the controller
with internal feedback, this restriction is not needed, as linear solutions are globally
optimal.

Attention
We have shown that in the presence of internal delays, corrections for self-movement
are necessary for performance. We now want to extend this reasoning to a more
physiologically grounded model, while also considering other predictable aspects
of the visual scene beyond self-movement. Up to this point, we have made the
assumption that the controller can directly sense the position of the object (perhaps
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at some delay). In a real sensorimotor system, this assumption is not sensible; the
position of the object must be computed from the scene, not directly sensed. This
is a more complex information-processing task: it takes more bits to describe the
whole visual scene than to describe the position of an object in the same scene.

However, moving objects, once identified as such, can be discriminated from a visual
scene. A meaningful separation can be made between scene-related tasks (object
identification) and error-related tasks (object movement). This separation mirrors
the separation between bumps and trails in the mountain-biking task studied in [27],
allowing us to build on the theorems in that earlier work. The main difference is
that instead of separating into two control loops, we reuse the same sensor for each
loop, necessitating internal feedback. We consider ∥𝑥∥∞ for this problem rather
than ∥𝑥∥2. The two norms have similar behaviors in this simple case. We also drop
down from a two-dimensional problem (tracking on a plane) to a one-dimensional
problem (tracking on a line).

Formally, assume that the absolute position of the object 𝑦 is in some interval
[−𝐻, 𝐻], while the change in position of the object 𝑤 is in the interval [−𝐿, 𝐿] with
𝐿 << 𝐻.

Consider a controller which has two pathways out of the sensor and a chance to
see and store the whole visual scene prior to the appearance of the object. This
controller can compute the absolute position of the object once, on a delay, and
subsequently consider only the relative position, accurately updating the stored
absolute position. In order for this to work in practice, the stored absolute position
must be available near the sensor. In some architectures, this might be implemented
fully at the sensor, which could reduce delays. In other architectures, more like
the true tracking problem, the stored absolute position depends on some contextual
knowledge (such as knowledge of the boundaries of the object) that makes longer
processing necessary.

To model this with the tools in [27], we assume that the errors in measurement scale
with the size of the interval according to some quantitative relationship. As the
sensed interval [−𝛽, 𝛽] increases in size, the accuracy decreases, but on the other
hand can be improved by time. We assume the quantizer is static and memoryless
with a uniform partition; with no control cost, these assumptions can recover the
optimal cost over all quantizers [30].
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We formalize the speed-accuracy tradeoff:

𝑅 = 𝜆𝑇 (3.11)

And the worst-case errors for any given 𝑅:

𝛽

2𝑅−1 (3.12)

Because the high-layer controller is neither perfect nor instant, we cannot simply
take 𝛽 = 𝐿. A simple modification wherein the background visual scene evolves
slowly, rather than not evolving at all, adds more complexity. Consider the evolution
of the visual background scene 𝑣:

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑤𝑣 (𝑡) (3.13)

where we assume 𝑤𝑣 is restricted to the interval [−𝑞, 𝑞]. So if it takes 𝑇𝐻 steps to
sense 𝑣𝑡 , the estimate provided has errors from the interval 𝑞𝑇𝐻 due to drift, and
errors from the interval 𝐻/(2𝜆𝑇 ).

In this more realistic scenario, we can do no better than 𝛽 = 𝐿 + 𝑞𝑇𝐻 + 𝐻/(2𝜆𝑇𝐻 ),
which in turn creates the overall state cost:

𝐿𝑇𝐿 +
(𝐿 + 𝑞𝑇𝐻 + 𝐻/(2𝜆𝑇𝐻−1))

2𝜆𝑇𝐿−1
(3.14)

Performance generally improves as 𝑇𝐿 becomes small, while performance generally
improves as 𝑇𝐻 increases but can start to degrade if 𝑇𝐻 becomes too large (Figure
3.5). The counterfactual system without internal feedback is one for which costs are
𝑇𝐻 + 𝐻

2𝜆𝑇𝐻 .

The key point is that fast, flexible, and accurate sensing can be achieved in a
visual scene with predictable elements through internal feedback under reasonable
assumptions about the dynamics of the environment.

3.3 Discussion
Interpretation
In the technical results, we considered a collection of simple models to isolate and
illustrate different aspects of layering, diversity, locality, and internal feedback in
sensorimotor control. We have not proposed an end-to-end parametric model of
sensorimotor processing. While such a model may be an eventual goal of the field,
we take a step in that direction by extracting mathematical principles in minimal
models to explain features of sensorimotor control that have up until now been
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Figure 3.5: Feedback within the sensing hierarchy can compensate for speed-
accuracy tradeoffs in estimation for suitable tasks, particularly when there are aspects
of the visual scene (like the visual background or the object identity) that change
slowly. This allows the creation of a fast forward pathway compensated by a slow
internal feedback way. Costs depend on the speed and accuracy of both the slow
and the fast paths. The fast path needs to be as fast as possible, while the slow path
can take more time once the fast path is established. The layering of the fast and the
slow paths (red line) achieves better performance than the unlayered system without
internal feedback and subject to the same speed-accuracy tradeoff (blue line). Ideal
performance, where the fast path can directly sense the moving object, is also shown.
The layered system achieves performance close to the ideal.

cryptic. In this section we will use a narrative, non-technical style to synthesize
evidence for readers from a range of backgrounds. We will use evidence from
primate, mouse, and feline visuomotor systems. Mice, as small prey animals, have
quite different visual systems from primates in several respects, so we incorporate
evidence from mice cautiously and only where necessary in the context of the larger
explanatory framework.

Across all of the models we have considered, diversity and speed-accuracy tradeoffs
are intrinsic to the underlying components in the system as a result of evolutionary
or biophysical tradeoffs [31]. Speed-accuracy tradeoffs can result from several
mechanisms, such as a tradeoff between smoothing and timeliness at the synapse and
a tradeoff between number of neurons and axonal diameter in long-range projections.

Layering and diversity together enable sweet spots, wherein diverse components
are multiplexed in a task-specific way that approximates the performance a single-
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loop system made up of ideal components. In order to achieve fast, accurate, and
flexible control, the fastest components are reused flexibly in a fast forward loop,
while internal feedback compensates for accuracy by filtering out slow-changing,
predictable, or task-irrelevant stimuli, such that the fewest possible bits need to
travel along the fastest possible neurons. From an evolutionary perspective, once a
system can achieve fast responses, it becomes possible to add successive layers of
more accurate and more flexible components. This is an essential aspect of layering:
flexible reuse of existing parts to solve new problems.

Primary visual cortex (V1) and primary motor cortex (M1) have provided many
examples in recent years of internal feedback that challenge the canonical view
of sensorimotor control [17, 21]. In the canonical view (whose shortcomings are
by now well-understood), visuomotor processing consists of a series of successive
transformations from stimulus to response, with each cortical area along the way
tuned to some aspect of stimulus space [32]. However, as these systems have
been characterized in more detail, the empirical evidence has accumulated that
complicates this model. V1 does include static representations of stimuli, but it also
includes counterdirectional motor-based internal feedback and task-or attention-
related modulatory internal feedback [16, 17, 20]. M1, by contrast, is dominated
by its own past activity rather than static representations [21]. In the context of
the estimation problem we considered in Figure 3.3, motor cortex is dominated
neither by motor representations nor by pattern generation, but by predictions of
the consequences of self-action through local internal feedback, which need to be
sent throughout the body. By the same principle, the localization of function within
motor cortex that we considered in Figure 3.4 would explain why the conventional
view of homuncular organization becomes fuzzier, with, for instance, body-related
signals found in putatively hand-related parts of motor cortex, as well as contralateral
hand signals [22, 23, 33]. As with motor signals in visual cortex, these signals do
not overturn the preceding view that function is localized. These additional signals,
in fact, are necessary for localization of function.

Internal feedback is also observed between visual cortical areas. The neurons
between V1 and V2 are a well-characterized case study. Roughly the same number
of neurons, of similar conduction speed, project from V1 to V2 as from V2 to
V1 [14, 15, 19]. However, these neurons are quite different in morphological
and molecular characteristics: V1-V2 neurons primarily use the AMPA receptor,
while while V2-V1 neurons primarily use the NMDA receptor [34]. While AMPA
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and NMDA use the same neurotransmitter, glutamate, AMPA-mediated currents
are cleared from the synapse in under 10ms, while NMDA-mediated currents can
linger in the synapse for 100ms or longer [35]. This distinction is believed to be
relevant for learning, and it is also relevant for top-down signaling to shape and
direct perception during action. If we take the conventional view that V1 detects
edges and V2 detects more involved elements of objects like contours, then V2 can
facilitate edge detection by providing signals that inform V1 about where edges
ought to be. Because the visual space cannot be sampled losslessly, these signals
help target the resolution of V1. Accordingly, experiments that pharmacologically
knock out NMDA show a loss of figure-ground discrimination, that is, a loss in
capacity to contextually interpret the visual scene [34].

We have argued that the essential role of internal feedback and layering is to en-
able the fast, accurate, and flexible accomplishment of simple sensorimotor tasks
in the presence of speed-accuracy tradeoffs. If this is true, we should see that
fast-conducting, large-axon myelinated neurons are engaged in rapid responses to
changes in the visual scene. Indeed in cortex, the largest and most striking neurons
are the large pyramidal cells, also called Meynert Cells in visual cortex and Betz
Cells in motor cortex, which transmit rapid moving-object changes in visual scenes
or rapid responses to perturbations in planned movements, respectively [36–38].
Meynert Cells project from V1 to MT (an object motion area in the dorsal stream)
but no equivalently large cells project from MT to V1, nor from V1 to IT (an object
identity area in the ventral stream). In the context of our theory, it is necessary for
predatory animals, in particular, to track object locations, which can change quickly.
However, object identities are relatively slow-changing, and do not require a fast
pathway. Because reaching and tracking tasks are widely studied in motor neuro-
science, this theory therefore suggests additional experimental directions in reaching
tasks that involve rapidly and unpredictably moving objects against predictable but
not static backgrounds.

Relation to other theories
Optimal and robust control analyses have historically offered only limited insight
into the implementation of control systems, which is a minor issue in most existing
control theory and applications due to fast and accurate digital electronics. Spiking
neurons are fast relative to other biological signaling mechanisms, but slow relative
to electronics. From the perspective of control theory, biology must work with
slow and inaccurate implementations of control, communications, and computing
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components, so the associated internal architectures become critical. A single-loop
model treats the entire nervous system as a single computing and control system,
and supposes that this system can carry out sensing, decision-making, and action
with communication speeds and computational power beyond what is available to
the real nervous system. For any task with suitably defined performance criteria,
a single-loop control system without component tradeoffs will perform at least as
well as a layered control system with component tradeoffs. Thus single-loop models
are entirely appropriate to analyze sensorimotor behavior in well-defined tasks.
However, these models do not generate useful models of the implementations of
sensorimotor control (e.g. the neural circuits and nervous system architecture).

The unclear role of internal feedback has been studied from different theoretical
angles throughout neuroscience: computation through dynamics [39], recurrent
networks [40], Bayesian inference [41, 42], predictive processing [43, 44], and many
others. These frameworks have arisen in parallel with the development of methods
for increasingly high-throughput and high-resolution measurements of biological
systems, which support the idea that internal feedback and internal dynamics are
essential for control – as well as for learning and computation.

As past work has argued, internal feedback can be interpreted as predictive; in recent
neuroscience data, a major source of internal feedback is the known effects of past
and current actions [17, 45]. These internal feedback signals carry signals about how
actions propagate through the body and its environment, as well as about planned
future actions, including how communication delays limit such plans and actions.
These sources of internal feedback encompass more than Bayesian prediction, which
is a special case of a general phenomenon. If the Bayesian framework is to be used,
it must be used in consideration of task performance as well as sensory evidence,
because costs shape optimal estimates [30].

These existing theoretical frameworks capture something useful about biological
control and internal feedback. The missing piece we provide to tie them together
is speed, which grounds these theories in physiological details and evolutionary
tradeoffs.
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In the previous chapter, we considered the nervous system as a multicellular control
system. Because one of the overarching motivations of this thesis is to design
interfaces with natural systems, I note here that a compatible conceptual approach
has been used to improve performance and robustness of brain-computer interfaces
for use by people with tetraplegia, including in clinical trial efforts to which I
contributed [46–48].

In the next chapter, we move from the nervous system to the immune system, where
many similar problems arise: layers, diversity, locality, and internal feedback are
all features of the immune system as well as the nervous system. We have treated
the nervous system as a multicellular decision-making and coordination systems,
and we will treat the immune system as another such system with quite different
components, tasks, and biophysics. Some of the techniques we used to model
speed-accuracy tradeoffs in the nervous system will inform our view of the immune
system.
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C h a p t e r 4

LIMITS ON IMMUNE ROBUSTNESS DRIVE VARIATION IN
PATHOGEN VIRULENCE AND TRANSMISSION

4.1 Introduction
The risk that a pathogen poses to a population is often summarized in terms of two
properties of infection: virulence (the severity of disease caused by the pathogen,
often quantified as the case fatality rate) and transmission (the rate at which the
pathogen spreads from host to host, often quantified as the basic reproductive num-
ber). In general, pathogens that cause both high virulence and high transmission
create the greatest burden at the population level. The evolutionary relationship
between pathogen virulence and transmission has been studied theoretically and
empirically for decades [49–55]. Virulence and transmission depend on interac-
tions between pathogen and host that can be studied using evolutionary game theory
[50], with pathogen and host each facing evolutionary tradeoffs that can be enacted
through specific host-pathogen interactions and host immune responses. At the
extremes, these tradeoffs can be characterized simply if the replication rate of the
pathogen is coupled to disease severity: a pathogen that does not replicate would
not be very virulent, but would not produce enough copies to transmit; a pathogen
that replicates very quickly would be so virulent as to cause severe disease and death
in the host, and would therefore not transmit; because only pathogens that transmit
are evolutionarily successful, the optimal replication rate and the optimal virulence
for the pathogen must be somewhere between these two extremes.

Many studies have added theoretical and empirical nuance to this view of pathogen
virulence and transmission. However, two major sources of additional complexity,
inter-host variation and dynamics in the host immune response, are difficult to study
with conventional mathematical models. Recently, the SARS-CoV-2 pandemic has
shown that it is essential to understand inter-host variation and dynamics in order to
predict pandemic spread [55–57].

What are the relationships between varying virulence and transmission at the in-
dividual host level? A theoretical answer to these questions should meet several
criteria: It should be based on a quantitative understanding of the within-host dynam-
ics of infection, address specific biological aspects of infection for a given virus, and
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address strategies in the general evolutionary game between pathogens and hosts.
The answer, then, depends on a framework to generate models of host-pathogen
interactions, rather than a single highly parameterized model intended to address
every possible interaction. In this chapter, we develop techniques to generate rig-
orous mathematical analyses of infection kinetics, pathogen strategies, and immune
responses, despite the complexity of the immune response and despite the possibil-
ity of unknown dynamics in the immune response and in pathogen strategies. We
introduce and adapt techniques from robust control theory to generate interpretable
models and analyses for problems that cannot be conventionally modeled.

The organizing idea of our analysis is that many biological systems have evolved
to be robust: survival-critical behavior is maintained despite internal and external
perturbations and wide variation in kinetic parameters [58–60]. A healthy antiviral
immune response is usually robust in this sense, repeatedly and reliably clearing a
wide variety of respiratory viruses. Variation in virus virulence and transmission
should be understood in the context of this typical robustness. Robust control theory
is a mathematical framework that has been used to analyze robustness and variation
in complex feedback systems in both engineered and biological settings [8, 59–64].
The robust control approach facilitates rigorous modeling of biology across scales
despite the possibility that there might be important dynamics in either the virus or
the immune response that are not explicitly described in the model equations. In
essence, by analyzing evolved biological robustness to real-world uncertainties, we
can make rigorous model- and theory-based conclusions that are robust to epistemic
uncertainties about the underlying biology. A key insight of robust control theory
in the engineered setting is that certain engineering problems are intrinsically and
quantifiably more difficult than others, similar to the familiar notions of a problem’s
hardness in computational complexity theory. Here, we show that only a small
number of host-viral interactions are needed to make individual- and population-
level control of a theoretical virus intrinsically and quantifiably much harder than
control of a closely related virus. We quantify the difficulty of the problem in terms
of the best possible virulence and transmission achievable by any of a large set of
immune responses and related host behaviors and public health policies.

In the main technical study of this chapter, we restrict our consideration to acute
respiratory viruses. To introduce ideas and highlight the diversity of viral and host
strategies we will here make qualitative comparisons between other well-known
viruses. Low-virulence, high-transmission viruses (blue in Figure 4.1A-B) elicit
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mild immune responses and symptoms, requiring minimal response at the behav-
ioral and policy levels. Examples include rhinoviruses, mild influenza strains, and
some coronaviruses that cause common colds. High-virulence, low-transmission
viruses (red in Figure 4.1A-B) elicit severe immune responses but can be con-
tained through diverse host behaviors and public health policies. Rabies, Ebola,
and severe influenza could all be considered examples in this category, but with
fundamentally different biology and behavioral and policy responses. Rabies is
not transmissible between people except through unusual circumstances like organ
transplantation [65], Ebola is transmitted through contact with body fluids from
symptomatic patients [66], and influenza may transmit through droplets and direct
contact presymptomatically [67, 68]. Therefore, regardless of population responses,
rabies transmission will remain in the high-virulence, low-transmission category.
Ebola and severe influenza may instead appear as high-virulence, high-transmission
viruses (purple in Figure 4.1A-B) if population responses are ineffective.

Complex variation in pathogen virulence and transmission can be interpreted once
the robust control strategies that create predictability in other viruses are established.
Potent viral interferon suppression, layered over a sparsely but variably expressed
host receptor, can drive substantial variation (Figure 4.1C). While these aspects
of viral and host biology are well-known, the role of receptor sparsity as a major
driver of the population-level risk would have been difficult to identify without a
mathematical framework.

4.2 Results
A robust control approach to pathogen-immune dynamics
We assume the fundamental evolutionary pressures on pathogen and host to be famil-
iar: pathogen evolution favors high transmission (and vice-versa), while host evolu-
tion favors low virulence. Cold-like viruses are examples of possible evolutionarily
stable strategies (similar to the blue viruses in Figure 4.1); however, relatively high
virulence and high transmission (purple) are achieved by some pathogens, including
SARS-CoV-2, and these are typically the pathogens of greatest concern. These
pathogens achieve high virulence and high transmission despite counter-efforts by
the immune system and additional interrelated anti-pathogen measures in the host
population.

The next step in our approach is to identify the best possible immune response
strategy to a class of pathogens, corresponding to acute respiratory coronaviruses
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Figure 4.1: A control theory framework to analyze viral virulence and transmission.
Qualitative cartoons show three levels of description explored quantitatively in this
chapter: (A) is a population-level summary of two key properties of a pathogen,
virulence and transmission, with variations in severity and transmission between
individuals and across time in individual infections summarized into single points
in the two-dimensional space. The diagram shows virulence and transmission com-
binations for four qualitative virus types (circles) as well as potential relationships
between virulence and transmission (lines). Green viruses are the best case for the
host population: They neither cause severe symptoms nor spread easily, so few indi-
viduals in the population are affected. Blue viruses spread easily but cause minimal
harm to individuals and therefore minimal burden to the population. Red viruses
cause severe symptoms and harm to individuals, but do not spread easily, burdening
few affected individuals but not the whole population. Purple viruses with high
virulence and high transmission are the worst case for the host population, causing
many severe infections and a substantial burden to the population. Crucially, a
virus’s position in this space can depend both on its own biology and on host biolog-
ical, technological, and behavioral interventions. (B) Symptom dynamics highlight
some, but not all, additional complexity in the relationship between virulence and
transmission. Solid lines represent median cases, while lighter colored clouds rep-
resent the range of severities. (C) We use robust control theory to derive rigorous
lower bounds on the severity of virulence and transmission given specific virus-host
interactions, despite significant epistemic uncertainties in how host responses are
implemented.
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that are identical except in a single lumped parameter that describes the rate of
replication. The virulence and transmission associated with a given theoretical virus
provide a quantification of the difficulty of control of that virus. Once we identify
an immune response which achieves low virulence and low transmission against this
class, we then add a small and well-characterized set of host and viral factors that
constrain the set of possible immune strategies, such that even the best-case immune
response leads to both high virulence and high transmission; that means that the
virus is intrinsically more difficult to control. We will identify sufficient factors that
drive variation in virulence and transmission.

While the eventual outcome of this analysis will use the well-known language of
dynamical systems modeling and simulation, the models we produce are distinct
in two ways. First, the immune models are selected rigorously out of the set
of possible immune models that satisfy the explicit constraining assumptions, so
that no assumption-satisfying immune models exist that achieve lower virulence
and transmission than the models shown in simulation: when the simulated immune
model yields high virulence and transmission, this is a strong result that describes the
intrinsic difficulty of controlling these host-viral interactions. Second, the immune
models have been constructed by a procedure that makes modeling a complex and
intricate system like the immune system tractable despite the many unknowns in
parameters, components, and interactions. We are therefore able to generate a
simple model with a transparent relationship to more complex models.

Robust control theory can be used to reformulate and analyze evolutionary games,
including the interaction between virus and host that we consider here [4, 69]. We
use robust control theory to uncover the host and viral factors that lead to variation in
virulence and transmission. Informally, we compute the best-case immune response,
consolidating unmodeled immune dynamics into a control function 𝐾 . The best-
case𝐾 minimizes virulence and implicitly suppresses transmission. The variation in
virulence and transmission computed for this best-case𝐾 can therefore be interpreted
as follows: given particular viral replication dynamics and constraints on the model,
any alternate immune system model we could have used would lead to greater
variation in virulence and transmission and a greater population burden. Because
this is true for any alternate immune system model, it is reasonable to conclude
that the biological immune system corresponding to a high-variation 𝐾 will also
yield variation in virulence and transmission. The host-viral interactions captured in
the constraints therefore capture the intrinsic difficulty of controlling the pathogen.
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Robust control can be used to extend systems biology differential equation modeling.
In a robust control formulation, we separate the system dynamics into viral loads 𝑣
and immune actions 𝑢, with new virus entering the system as 𝛿.

¤𝑣 = 𝐴Δ𝑣 + 𝐵Δ𝑢 + 𝛿
𝑢 = 𝐾 (𝑣)

(4.1)

𝐴Δ and 𝐵Δ are sets of time-varying matrices describing uncertain linearized dy-
namics. In the case of the antiviral response, the uncertainty represents the wide
range of viral kinetic parameters to which the immune system must be robust. 𝐾
is a function that maps viral loads and kinetics to immune responses. For a linear
𝐴 and 𝐵, the best-case K will also be linear. The linearizing assumptions will
typically allow the immune system more capacity to suppress virulence and trans-
mission than we expect in biological reality (for example, nonlinearities resulting
from limits on the total number of white blood cells the immune system can produce
to fight a virus could increase virulence and transmission). We note an exception
to this rule when we introduce the linearized viral dynamics below. We leverage
theorems guaranteeing that the best-case 𝐾 can always be computed from a closely
related convex set, so that the best-case 𝐾 computed from the set will be the best
out of all realizable functions. We implement kinetic details as constraints on the
set of realizable control functions, and in this way identify specific aspects of host
and viral biology (constraints) for which even a best-case 𝐾 yields virulence and
transmission variation. This best-case 𝐾 bounds any immune system model that we
could have used, allowing us to pose rigorous questions about host-viral interactions
without a detailed model of immune dynamics.

The open-loop problem
We first consider the open-loop dynamics of viral replication, or equivalently 𝐾 = 0.
The open-loop dynamics directly inform both the achievable closed-loop responses
and the consequences of control failures like delayed immune responses (Figure
4.3A).

We model viral infection in the individual host as a three-step process: cell entry,
replication in the cell, and release of virus from the cell after an eclipse period 𝑇𝑒
[70, 71]. We use the bracketed notation {𝑇𝑒} to represent a delayed discrete event,
while unbracketed constants represent the standard continuous rates. This open-
loop model is derived from standard mass-action viral kinetics, and its simplicity is
consistent with the robust control approach, because complex unmodeled dynamics
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can be consolidated into the controller 𝐾 as described above.

𝑉 = extracellular virus

𝐶𝑠 = susceptible cells

𝐶𝐼 = infected cells

Virus enters cells: 𝑉 + 𝐶𝑠
𝑟−→ 𝐶𝐼

Virus exits cells: 𝐶𝐼
{𝑇𝑒}−−−→ 𝛽𝑉

Virus degrades extracellularly: 𝑉 𝑘−→ ⊘

(4.2)

We discretize time with 𝑛−1 time-steps per 𝑇𝑒 to derive an 𝑛-by-𝑛matrix A in terms
of 𝛼, the number of productively infected cells that result from a single infected cell.
For example, with 𝑇𝑒 = 12ℎ and a time-step of 6ℎ, the virus spends 2 time-steps
within an infected cell and is then released into the extracellular space, so the total
states are extracellular virions 𝑉 , intracellular virions that entered within the last
6h 𝐶𝐼1, and intracellular virions that entered between 6ℎ and 12ℎ ago, 𝐶𝐼2. Taken
together, with rates rescaled appropriately, A is a 3×3 matrix. Virion degradation and
cell death due to the immune response are not included in the open-loop parameters.
The dynamics are linearized around the origin. In linearizing, we assume that 𝐶𝑠
remains constant in a given host through time. Because the uptake of host receptor
by infected cells and the clearance of infected cells by the immune system will
reduce 𝐶𝑠, viral replication in the full nonlinear system will slow at sufficiently high
viral loads. This effect is not captured by the linearization. We show the linearized
open-loop dynamics for the 3 × 3 case, but alternate discretizations would lead to
alternate dimensions in A (12ℎ for a 2 × 2 matrix, 3ℎ for a 5 × 5 matrix, and so on).
The matrix entry 𝐴21 is 1, rather than 𝑘 , because of the way the 𝐶𝐼 states are scaled,
as we explain below. 

𝑉

𝐶𝐼1

𝐶𝐼2

 𝑡+1

= 𝐴


𝑉

𝐶𝐼1

𝐶𝐼2

 𝑡
𝐴 =


1 − 𝑘 0 𝑘𝛼

1 0 0
0 1 0


𝛼 =

𝑟𝛽

𝑘
[𝐶𝑠]

(4.3)

Here, 𝛼 scales linearly with [𝐶𝑠]. Each of the parameters k, r, and 𝛽 can vary widely
between viruses [72, 73]. Both r and k can also vary between strains of a virus. A
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fraction 𝜙 of infected cells will constitutively turn over in a single eclipse period,
which may also affect inter-host variation in 𝛼 (higher turnover leading to lower 𝛼).
To highlight inter-host variation, we assume that the virus has identical k, r, and 𝛽
across hosts. We do not explicitly consider variation in 𝜙, but the consequences of
variation in 𝜙 will be inverse to consequences of variation in [𝐶𝑠].

A small susceptible cell percentage (SCP) enables large relative variation in 𝛼. In
the open-loop dynamics, small absolute changes in [𝐶𝑠], consequent to changes in
SCP, lead to large changes in viral load (Figure 4.3B-C).

Derivation of open-loop dynamics
We linearize and discretize the open-loop reaction-and-delay network. To simplify
notation, we consider a discretization of exactly 𝑇𝑒, leading to a 2×2 matrix, but the
steps followed here can be extend to any discretization that divides 𝑇𝑒 evenly. We
obtain a two-state system, with 𝑣 as the extracellular viral load and 𝑦 as the number
of infected cells and. For each infected cell, 𝛽 virions are produced.

𝑣 [𝑡 + 1] = 𝑣 [𝑡] + 𝛽(1 − 𝑘𝑐)𝑦[𝑡] − 𝑟𝑠𝑣 [𝑡] − 𝑘𝑣 [𝑡]
𝑦[𝑡 + 1] = 𝑟𝑠𝑣 [𝑡]

(4.4)

We control the system with two actuators: intracellular interferon-stimulated path-
ways (ISPs) and myeloid cells in the extracellular space. Myeloid cells (𝜅1) remove
virus from the compartment. ISPs (𝜅2) reduce the number of virions produced per
infected cell.

𝑣 [𝑡 + 1] = 𝑣 [𝑡] − 𝜅1

𝑣 [𝑡] + 𝛽(1 − 𝑘𝑐) (1 − 𝜅2)𝑦[𝑡] − 𝑟𝑠𝑣 [𝑡] − 𝑘𝑣 [𝑡]
𝑦[𝑡 + 1] = 𝑟𝑠𝑣 [𝑡]

(4.5)

We rewrite the system equations so that viral replication and ISP control are repre-
sented within the cell rather than at the moment of exit.

𝑣 [𝑡 + 1] = 𝑣 [𝑡] − 𝜅1𝑣 [𝑡] + 𝑦[𝑡] − 𝑟𝑠𝑣 [𝑡] − 𝑘𝑣 [𝑡]
𝑦[𝑡 + 1] = 𝑟𝑠𝛽(1 − 𝑘𝑐) (1 − 𝜅2)𝑣 [𝑡]

(4.6)

We express these dynamics in matrix form:

𝐴 =

[
1 − 𝑟𝑠 − 𝑘 1
𝑟𝑠𝛽(1 − 𝑘𝑐) 0

]
𝐵 =

[
1 0
0 𝑟𝑠𝛽(1 − 𝑘𝑐)

] (4.7)
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Figure 4.2: Host dynamics shape virulence and transmission. (A) Within each
host, well-characterized kinetics govern viral replication. Immune responses are
represented with a cloud to indicate that any additional dynamical elements in
the sensing and coordination of viral removal are analyzed as part of a control
system, for which we can compute best-case bounds with control theory (bottom
two reactions). Transmission from a single host can lead to presymptomatic cases
that go on to be severe (red-banded individuals), cases that are fully asymptomatic
(blue-banded individuals), or any severity in between. (B) A low median susceptible
cell percentage (SCP) in the host enables large relative variation in SCP and thus
in 𝛼. (C) Open-loop variation in viral shedding varies dramatically on relevant
time-scales, amplifying variations in SCP (note log units for shedding). (D) Ideal
and rapid extracellular immune control can create similar, low-variation viral load
trajectories between the same three hosts: high, medium, and low 𝛼 (left). These
similar simulated trajectories require differing immune effort (right). The underlying
open-loop dynamics thus directly shape virulence.
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From these dynamics, we define:

𝛼 =
𝑟𝛽(1 − 𝑘𝑐)
(𝑟 + 𝑘) 𝑠 (4.8)

Because 𝛽 >> 𝛼 for typical values (e.g. 1000 vs 10), we approximate:

𝛼 =
𝑟𝛽(1 − 𝑘𝑐)

𝑘
𝑠 =

𝑟𝛽

𝑘𝜙
𝑠 (4.9)

Then substitute:

𝐴 =

[
1 − 𝑘 ( 𝛼𝜙

𝛽
+ 1) 1

𝑘𝛼 0

]
(4.10)

And approximate:

𝐴 =

[
1 − 𝑘 1
𝑘𝛼 0

]
𝐵 =

[
1 0
0 𝑘𝛼

] (4.11)

At this point, we have matrices that can be used to compute the desired optimal
state-feedback controllers. For a more compact and intuitive representation with
𝐵 = 𝐼, we rescale 𝑦. We introduce a temporary variable 𝑦2:

𝑦2 = 𝑦/𝑘𝛼
𝑦[𝑡 + 1] = 𝑘𝛼𝑣 [𝑡] + 𝑘𝛼𝑢2 [𝑡]
𝑦2 [𝑡 + 1] = 𝑣 [𝑡] + 𝑢2 [𝑡]

𝑣 [𝑡 + 1] = 𝑣 [𝑡] + 𝑘𝛼𝑦2 [𝑡] − 𝑟𝑠𝑣 [𝑡] − 𝑘𝑣 [𝑡] + 𝑢1 [𝑡]

(4.12)

Then, replacing the original second state variable 𝑦 with the new variable 𝑦2, we
obtain the new state-space dynamics:

𝐴 =

[
1 − 𝑘 𝑘𝛼

1 0

]
𝐵 =

[
1 0
0 1

] (4.13)

To confirm that these dynamics retain the essential replication dynamics in 𝛼,
we consider how many productively infected cells result from a single infected cell
according to these dynamics. A single productive infection releases 𝑘𝛼 pre-infective
virions. Cumulative new infected cells 𝑦∗ are produced as follows:

𝑦∗ [1] = 𝑘𝛼
𝑦∗ [2] = 𝑘𝛼 + (1 − 𝑘)𝑘𝛼

𝑦∗ [3] = 𝑘𝛼 + (1 − 𝑘)𝑘𝛼 + (1 − 𝑘)2𝑘𝛼

𝑦∗ [4] = 𝑘𝛼(1 + (1 − 𝑘) + (1 − 𝑘)2. . . )

(4.14)
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The sum on the right-hand side is a convergent geometric series:

𝑘𝛼(1 + (1 − 𝑘) + (1 − 𝑘)2. . . ) = 𝑘𝛼

(1 − (1 − 𝑘)) =
𝑘𝛼

𝑘
= 𝛼 (4.15)

Therefore, 𝑦∗ converges to 𝛼, as expected.

For our numerical computations, values of 𝑘 and 𝛼 are primarily important as
relative quantities, so we select values in ranges reported for other influenza and
coronaviruses: 𝑇𝑒 = 12ℎ, 𝛼 varies 4-fold from 5 to 20, and 𝑘 = 0.16 corresponding
to a half-life of 2𝑑.

The controller is computed in the matrix 1-norm, weighted such that minimizing
extracellular immune activity is the objective, i.e. 𝐽𝑥 = 0, 𝐽𝑢 =

[
1 0; 0 0

]
.

Interferon suppression and incubation period are treated as the same 5𝑑 period,
during which 𝐵[𝑡] = 0. The immune controller, better than reality by design, is
instantaneously resynthesized for any of a set of matrices 𝐴 or 𝐵.

After virulences are computed (as the weighted norm of the closed-loop map re-
turned by controller synthesis), the warning 𝑤 is scaled between 0 and 1, with 𝑝 = 5
giving a suitable dynamic range from mild to severe. Similarly, the transmission
parameter 𝜔 is scaled so that the interferon-suppressing virus achieves 𝑅𝐶𝐿 = 2.
Closed-loop maps are constrained to be elementwise nonnegative to ensure realiz-
ability in a chemical reaction network.

The closed-loop problem
We sequentially introduce immune and viral complexity in the closed-loop problem.
The open-loop problem suggests a natural distinction between intracellular and ex-
tracellular immune effectors. The key distinction is not the location of the effector
but the site of action. Intracellular effectors include interferon-stimulated genes and
immune cells that kill infected cells. Extracellular effectors include neutrophils,
macrophages, and other immune cells that can trap or degrade viral particles found
in the extracellular space. Like other taxonomies of immune responses (such as the
distinction between cellular and humoral responses), this is an imperfect approxi-
mation that nevertheless captures a meaningful dimension of immune responses.

We start with innate extracellular immune effectors, corresponding to myeloid cells
like neutrophils and macrophages. Higher 𝛼 requires greater immune effort to
achieve a comparable effect on viral load (Figure 4.3D). A higher SCP allows virions
to leave the extracellular space more quickly. In order to clear the virus, extracellular
effectors must then remove the virus more quickly, which can be achieved with more
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myeloid cells in the tissue. Though notable, this variation in immune responses
can be considered to fall within the minimal range needed to achieve robustness,
because the virus is quickly contained to a tissue compartment and then removed.
In a given tissue compartment, the minimal myeloid cell count depends on the viral
replication rate rather than the viral load. However, if the virus spreads to other
tissue compartments, more immune cells are required to achieve viral clearance.

To assess virulence from the simulated viral and immune dynamics, we make some
simplifying assumptions. Respiratory viral infections can present with a diverse
array of symptoms [55]. The correspondence of these diverse symptoms to a
one-dimensional summary quantity is not straightforward. Rather than symptom
heterogeneity, however, we are interested simply in variations in severity between
hosts and across time. We therefore focus on infection of the respiratory tract.
Patients with respiratory viral infections present with symtpoms ranging from mild
nasal congestion to acute respiratory distress syndrome [74]. Often in respiratory
viral infections, innate immune activation drives symptom severity [75], so we oper-
ationalize symptom severity as the modeled magnitude of innate immune activation
in the respiratory tract. When considering a single infected host, we take the case
virulence to mean the peak innate immune activation over the entirety of the acute
infection. The analysis produces a range of virulence for different hosts, and we
assume that at the more severe extreme of this range, fatality rates will increase and
the heterogeneous symptoms and organ dysfunction associated with severe infec-
tion. However, we do not propose a direct mapping between our operationalized
virulence and clinical outcomes for a specific virus.

Between the variation in open-loop shedding and the variation in immune responses,
we have the building blocks to understand virulence and transmission variation
more realistically. We define transmission 𝑅𝐶𝐿 , where 𝑤(𝑡) is a warning signal and
(𝑡) = 𝑒𝑥𝑝(−𝑝𝑤(𝑡)). Initially, we take 𝑤(𝑡) to be a scaled norm of the immune
response, so that symptoms promote avoidance and isolation. We use a highly
simplified model of avoidance and isolation, emphasizing the consequences of
biological variation in the case where behavioral responses are ideal; our goal here
is not to understand the epidemiology of transmission, but the effects of immune-
viral interactions on transmission.

𝑅𝐶𝐿 = 𝛼𝑟𝜔

∫ 𝑇

0
𝑣(𝑡) (𝑡)𝑑𝑡 (4.16)

Note that transmission depends both on the infected host and the susceptible host;
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a susceptible host with a higher SCP, expressed here as 𝛼𝑟𝜔, would more likely be
infected.

We extend this simple transmission model to address a virus with a long presymp-
tomatic period followed by uniformly severe infection (Figure 4.3A-B). Small vari-
ation in 𝛼 leads to large variation in simulated viral loads. Despite these varied
viral loads, advance warning and isolation measures can contain viral spread. How-
ever, fully asymptomatic cases (particularly in the absence of widespread and rapid
testing) make advance warning more difficult. To illustrate this, we can consider a
simple case involving individuals A, B, and C. Suppose A infects five people, includ-
ing B, while presymptomatic. A goes on to develop severe symptoms. B infects C
and no one else. If B goes on to develop severe symptoms (B was presymptomatic),
then in an idealized case B can warn C, C can isolate while presymptomatic, and
the chain of transmission can be stopped. By contrast, suppose B infects C and no
one else, but does not develop symptoms (B was fully asymptomatic), and C goes
on to infect five people. The advance warning for C, traced through B, depends on
whether B is eventually symptomatic or whether B can be rapidly tested. Crucially,
fully asymptomatic cases need not be as contagious as presymptomatic severe cases
to prevent advance warning in the absence of testing. At low rates of fully asymp-
tomatic cases, advance warning and isolation without testing can remain effective
(Figure 4.3C).

Many respiratory viruses suppress interferon responses. We consider the case
where interferon suppression delays the immune response for the entire incubation
period; this assumption can be relaxed in more detailed models. Virulence when
immune responses are interferon-mediated (intracellular) vary less with 𝛼 than when
immune responses are mediated by neutrophils and macrophages (extracellular),
because intracellular responses act on rates of viral synthesis rather than on virions.
However, virulence as a result of viral suppression of interferon, inducing delays
and increasing the demand for extracellular responses, varies more than either
intracellular responses or extracellular responses alone (Figure 4.3D-E). Interferon
suppression thus drives atypical variation in virulence when the underlying open-
loop dynamics are already different between hosts. Early intervention, even in the
presymptomatic stage of infection, can potentially reduce the eventual symptom
burden in what would otherwise be severe cases.

Taking these control layers together, we consider virulence and transmission as 𝛼
varies. We consider a fixed five-day incubation and interferon-suppression period;
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Figure 4.3: Layered control of virulence and transmission. (A) Several biologi-
cal and behavioral responses are involved in the layered control of virulence and
transmission. The challenge addressed in this cartoon is a delayed immune re-
sponse, which both exacerbates virulence and allows for pre-symptomatic spread.
(B) Interferon suppression of the immune response by the virus allows an extended
period of viral replication and shedding during which avoidance behaviors are not
prompted (without advance warning). Following symptom onset, shown here af-
ter five days, high 𝛼 is associated with a high symptom burden, making high 𝛼
individuals easiest to avoid (middle panel). Medium 𝛼 individuals cumulatively
transmit about as much over the presymptomatic period as the symptomatic period;
however, the cumulative effect of the much higher viral loads in high 𝛼 individuals
in the pre-symptomatic period remains a dominant factor in transmission, while
transmission by low 𝛼 individuals remains low (right panel). (C) Advance warn-
ing can reduce the effective transmission rate of presymptomatic individuals, but
asymptomatic cases facilitate escape by preventing effective information sharing.
The escape rate describes the fraction of cases for a given level of 𝛼 that cannot
be localized by an advance warning (for instance, the fraction of cases directly or
closely downstream of a fully asymptomatic transmission in the absence of testing).
As the escape rate increases, the effective transmission from presymptomatic high
𝛼 individuals increases sharply. (D) Timing is a crucial determinant of host and
possibly therapeutic interferon efficacy. (E) Virulence mediated by extracellular
immune responses (such as neutrophils and macrophages) varies more with 𝛼 than
intracellular immune responses (such as interferon and apoptosis).
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Figure 4.4: Tradeoffs in viral virulence and transmission depend on host control
strategies. The relationship between virulence and transmission in individual hosts
depends on control strategies such as interferon responses and isolation of con-
tagious individuals. An optimal host immune control response, including timely
interferon signaling, quickly blocks viral replication and neither serious symptoms
nor substantial transmission occur. With interferon suppression, transmission peaks
at low virulence. With interferon suppression and host variation in 𝛼, however,
transmission is higher and peaks at higher virulence. This effect is amplified when
high-𝛼 individuals interact primarily with other high-𝛼 individuals, leading to both
high presymptomatic shedding and high susceptibility. These effects in combination
enable the most contagious individuals in the most susceptible subpopulations to
transmit at much higher rates (facilitating superspreading).

the additional effects of varied incubation period and strength of interferon sup-
pression can be extrapolated. In this comparison, a rapid interferon-based immune
response suppresses both virulence and transmission. A virulence-transmission
tradeoff is maintained by the immune response in the presence of interferon sup-
pression. With interferon suppression and host variation, presymptomatic severe
high-𝛼 cases take a dominant role in spreading the pathogen (Figure 4.4). If the dis-
tribution of SCP through a population is structured – if high-𝛼 individuals interact
more often with high-𝛼 individuals than low-𝛼 individuals and vice versa, which is
likely if 𝛼 depends on characteristics like age and smoking status – then variation in
transmission will be further exaggerated.

4.3 Discussion
We have shown that variation in 𝛼 and interferon suppression can drive variation in
viral virulence and transmission, enabling a severe population burden. Additional
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variations in underlying host health factors, innate immune dynamics, and aerosol
exhalation may also account for inter-host variation in virulence and transmission
[76–79]. We have described cases where interferon responses are identically af-
fected across hosts, emphasizing interactions between virus and host. However,
severe cases of respiratory viral infection are also associated with genetic variation
in interferon-mediated immunity and with antagonism of the interferon response by
the host immune system, suggesting an important role for additional variation in
host immune responses in explaining variation in clinical outcomes [79–81]. Pre-
vious studies that have considered the evolutionary relationship between pathogen
virulence and transmission studies can be revisited in light of our new results. A
canonical example of these earlier studies showed, under assumptions coupling
replication to virulence and virulence to the duration of infection, that a virulence
and transmission tradeoff exists at very high virulence, but some intermediate vir-
ulence can be optimal [50]. We derive a similar tradeoff for a scenario based on
entirely different specifics: interferon production and symptoms that enable advance
warning. Our results are consistent with the spirit of this previous work, in which
the authors argued that “depending on the specifics of this linkage, the coevolution-
ary course can be toward essentially zero virulence, or to very high virulence, or
to some intermediate grade.” Our mathematical approach allows for more detailed
modeling of the within-host dynamics, between-host variation, and the immune
response, generalizing the clever coupling of virulence and infection duration of the
previous work. While evolutionary arguments emphasize the optimal strategy of
pathogens over many generations, a robust control view allows us to consider how
the immune response constrains feasible viral strategies even in a single infection as
well as through an evolutionary trajectory.
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The previous two chapters have been theoretical case studies of multicellular sys-
tems motivated by particular domain questions. In order to maintain focus on the
domain questions, we have used simple models and special cases in a less formal
mathematical style than is typical in control theory, which has limited our discussion
of more general problems. In Chapter 5 and Chapter 6, we move into a more formal
and abstract register in order to prove theorems about control systems in general
that have some of the properties of multicellular control systems. Chapter 5 is more
explicitly oriented towards illustrating some principles in biology – the optimality of
logarithmic sensing and biased sensing schemes – while Chapter 6 steps away from
the biology motivation in order to push the limits of the types of systems that we
can describe with these techniques. After these chapters, we will return to biology
in our final case study in Chapter 7.
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C h a p t e r 5

OPTIMALLY BIASED AND LOG-SCALED SENSING IN
CONTROL LOOPS WITH INFORMATION LOSS

5.1 Introduction
Layered control is a type of composition of control systems, common in engineered
and biological systems, in which the guarantees provided by one subset of controllers
make it possible for another subset of controllers to achieve some other (qualitatively
different) objective [82]. In settings where computation and communication are
slow or costly, the time needed to achieve accurate state estimates become a major
constraint on system performance; as a result, fast, low-bandwidth control loops
must co-exist with slow, high-bandwidth control loops. In one recently proposed
architecture, a fast loop is responsible for coarse disturbance rejection, while a slow
loop is responsible for planning and reference tracking. The two controllers can
operate independently, and control action on the plant is straightforwardly additive
[83, 84]. The information loss in the fast layer is treated as quantization of the
sensed state or the control action.

In real biological control architectures, however, low-layer controllers often receive
control signals from higher layers. Low-layer neural and biomolecular systems
dynamically re-allocate resources on multiple time-scales: rapidly via inhibitory
and excitatory synaptic currents or inactivating and activating biomolecules, or
more slowly via the turnover of synaptic and signal-transduction molecules. In

Figure 5.1: Feedback to sensors is a ubiquitous phenomenon in biology: (A) primate
vision, (B) fly escape behaviors, (C) chemotaxis in a single bacterial cell and (D)
immune responses to viruses.
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Figure 5.2: Hierarchical control schemes: (A) fully decoupled high-layer and low-
layer loops; (B) scheme for incorporating high-layer context information into a
low-layer quantized loop.

some cases, such as reflex suppression by conscious override or immune regulation
by T helper cells, the high-layer controllers are allowed no direct actuation of the
plant, and instead act by modulating parameters of the lower layer of control. In
this chapter, we treat such high-layer signals as contextual re-optimization of the
low-layer quantizer.

What are the theoretical advantages and limitations of a top-down modulation ar-
chitecture, given a quantized low-layer control loop? Adaptive quantizers have been
shown to be useful in exactly stabilizing plants [85, 86], but these adaptive strate-
gies do not incorporate top-down information. We propose that an advantage of
top-down quantizer modulation is that high-layer controllers can instruct low-layer
controllers about context, allowing low-layer controllers to be repurposed flexibly
across cost specifications. Because computation, communication, and data capac-
ity are expensive in biological settings, biological sensing systems are particularly
interesting: a low-layer biological controller’s estimate of the state of the world will
be lossy due to quantization, stochasticity, or both. We show here that given this
constraint, what is sensed is a consequence of what is anticipated.

Low-information, time-sensitive, and context-sensitive control problems are com-
mon in biological systems at all scales. Individual cells under stress decide whether
or not to self-destruct to protect their neighbors; stem cell populations skew towards
different cell fates depending on demands such as wound healing; the nervous sys-
tem decides whether to flee an approaching threat. Each of these control systems can
be modulated by top-down mechanisms, but remain subject to the approximation
losses inherent to the components.

Because the consequences of approximation in biology are asymmetric (prey ani-
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mals are inconvenienced by false-positive detection of predators, but greatly more so
by false negatives), we investigate here how the optimal approximation depends on
context. While contextual flexibility is widely observed in biology and neuroscience,
rigorous theory relating this flexibility to its component-level implementation re-
mains elusive. This in turn leads to confusion about fundamental phenomena like
plasticity and major diseases categories like autoimmunity and neuropsychiatric
disorders. A rich tradition in control theory studies the inevitable tradeoffs resulting
from given system and component constraints [3]. These tradeoffs are likely to
underlie both the remarkable capabilities of biological systems and their evident
limitations.

With simplifying assumptions, but crucially preserving the limitations on accuracy
that are an inescapable feature of biological sensors and actuators, we take steps
towards a rigorous characterization of processes by which high-bandwidth control
can tune low-bandwidth control. We study a scalar quantized control loop which
receives top-down instructions that set its control strategy. In this chapter, we
show that the optimal quantization scheme depends on dynamics and costs, using
an approach that recovers both logarithmic and uniform quantization schemes that
have been reported previously [83, 87]. We interpret these results in relation to
theories of biological learning, plausible mechanisms by which quantized sensors
can be tuned to match context, and inevitable tradeoffs consequent to approximation.

5.2 Results
Consider a scalar discrete-time system with quantization on the sensed state 𝑥𝑡 ∈ R,
control action 𝑢𝑡 ∈ R, and bounded disturbances 𝑤𝑡 ∈ 𝑊 ⊂ R.

𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑢𝑡 + 𝑤𝑡
𝑢𝑡 = 𝑘Q𝑅 (𝑥𝑡)

(5.1)

We seek to design the quantization intervals of the fixed 𝑅-bit quantizer Q𝑅, given a
fixed gain 𝑘 , that minimizes costs. We assume that 𝑘 stabilizes the infinite-accuracy
case. For some 𝐿 ∈ R++, the interval [−𝐿, 𝐿] will be partitioned into 2𝑅−1 + 1
sub-intervals at boundaries indicated by 𝛿 𝑗 with 𝑗 ∈ [1...2𝑅−1].

Formally, we propose that the cost due to quantization can be measured as the
control approximation loss, the excess control cost paid that would have been saved
with perfect accuracy, and the state approximation loss, the excess state cost paid.
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We allow any cost function that takes the form 𝐽 (𝑥, 𝑢) as a convex composition of
𝐽𝑥 (𝑥𝑡) and 𝐽𝑢 (𝑢𝑡) where 𝐽𝑥 and 𝐽𝑢 are nonnegative R→ R convex costs on state and
control, respectively. If we write the quantized system as:

𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑘𝑥𝑡 + 𝑘𝜂(𝑥) + 𝑤𝑡 (5.2)

with 𝜂(𝑥) giving the error due to approximation for a given true value of 𝑥, then the
perfect-accuracy system is simply:

𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑘𝑥𝑡 + 𝑤𝑡 (5.3)

The loss due to quantization can then be given by the cost spent minus the ideal cost
spent:

𝜓𝑥 (𝑡) = 𝐽𝑥 (𝑎𝑥𝑡 + 𝑘𝑥𝑡 + 𝑘𝜂(𝑥) + 𝑤𝑡)
−𝐽𝑥 (𝑎𝑥𝑡 + 𝑘𝑥𝑡 + 𝑤𝑡)

𝜓𝑢 (𝑡) = 𝐽𝑢 (𝑘𝑥𝑡 + 𝑘𝜂(𝑥)) − 𝐽𝑢 (𝑘𝑥𝑡)

(5.4)

Suppose we design the partitions in Q𝑅 to minimize the worst-case loss due to
quantization, ∥𝜓∥∞ = ∥sup{𝜓𝑥 (𝑡), 𝜓𝑢 (𝑡)}∥∞.

Theorem 1. The partition of [−𝐿, 𝐿] minimizing ∥𝜓∥∞ will be a partition for which
the worst-case loss due to quantization over each segment is equal.

Proof. Suppose a partition giving equal worst-case approximation loss over each
segment is known and given by {𝛿 𝑗 }. For the sake of contradiction, suppose the
partition given by {𝛿 𝑗 } has a strictly lower worst-case approximation cost than {𝛿∗

𝑗
}:

sup 𝑗𝜓(𝛿 𝑗 ) < sup 𝑗𝜓(𝛿∗𝑗 ) (5.5)

For this to be true, each interval would need to reduce its approximation costs over
a function 𝐽. The worst-case approximation cost over a given interval is given by:

∥𝜓 𝑗 ∥∞ = sup
𝑤∈𝑊, 𝜂(𝑥)

{𝐽 (𝑎𝑥𝑡 , 𝑘𝑥𝑡 , 𝑘𝜂, 𝑤𝑡)

−𝐽 (𝑎𝑥𝑡 , 𝑘𝑥𝑡 , 0, 𝑤𝑡)}
(5.6)

In order to reduce the worst-case approximation cost ∥𝜓 𝑗 ∥∞ across a given interval,
it is necessary to decrease ∥𝛿 𝑗 − 𝛿 𝑗+1∥. This then necessitates increasing ∥𝛿𝑘 −
𝛿𝑘+1∥ for some other interval that will include at least [𝛿∗

𝑘
, 𝛿∗
𝑘+1), so its worst-case
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approximation cost will at best equal the worst-case approximation cost associated
with {𝛿∗}:

sup 𝑗𝜓(𝛿 𝑗 ) ≥ sup 𝑗𝜓(𝛿∗𝑗 ) (5.7)

which gives the contradiction. We must also show that a partition with all interval
costs equal is achievable; this follows from convexity of 𝐽. Note that a given par-
tition is not unique in the case where 𝐽 is constant. However, if 𝐽 is convex and
anywhere non-constant over [−𝐿, 𝐿], the bound becomes strict and the partition is
guaranteed to be unique.

Special cases
The optimal partition problem inf{𝛿}∥𝜓 𝑗 ∥∞ is not in general convex. However,
closed-form or even numerical statements of the optimal partition are not necessary
to study interesting features of the optimal quantizer across different cost functions.
Though motivated by a two-layer control system, we will treat the high-layer con-
troller as static for each of the three cost functions analyzed, then briefly address
some implications of delay in the high-layer controller.

Quadratic case. We first consider the case of quadratic costs on state 𝑥 with no
cost on control: that is, 𝐽𝑥 = 𝑥2 and 𝐽𝑢 = 0. While this problem formulation
is not identical in some technical details to that posed in [87], we seek to verify
that our formulation recaptures the key claim: namely, that optimal quantization
intervals should expand geometrically with distance from the origin. Let 𝑞 𝑗 be the
approximation loss on an interval with boundaries 𝛿 𝑗 and 𝛿 𝑗+1. The approximation
loss related to this interval for a given 𝑥 is:

𝑞 = (𝑎𝑥 + 𝑘𝑥 + 𝑘𝜂 + 𝑤)2 − (𝑎𝑥 + 𝑘𝑥 + 𝑤)2 (5.8)

Set 𝑤 = 0 to simplify expressions. The case with non-zero 𝑤 follows the same steps
and arrives at a comparable result. We solve the expression for 𝛿 𝑗 by expanding and
applying the quadratic formula.

𝜂 =
−2𝑘 (𝑎 + 𝑘)𝑥 ±

√︁
(2𝑘 (𝑎 + 𝑘)𝑥)2 + 4𝑘2𝑞

2𝑘2 (5.9)

Because the minimax-optimal solution for 𝛿 will require that each worst-case 𝑞 is
equal, we can analyze the solution with 𝑞 fixed. Observe that 𝑘 and 𝑎 are also fixed.
Because 𝑞 is positive, the radical is real for all 𝑥. The key question is therefore how
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∥𝜂∥∞ changes with 𝑥. It is apparent from (5.9) that this rate of change is sublinear
near the origin and O(𝑥) with greater distance. If for a sequence 𝛿 the interval width
expands linearly with 𝛿, then 𝛿 itself grows geometrically. Notably, such geometric
quantization is observed in muscle recruitment [84], reflecting quantizer tuning on
an evolutionary timescale.

A notable exception to this rule is the case where 𝑎 = −𝑘 , in which instabilities are
canceled perfectly and instantaneously. In this case, the expression (5.9) simplifies
considerably to 𝜂 =

√
𝑞

|𝑎 | , and optimal intervals will be uniform and independent of
𝑥, as in [83, 84]. Intuitively, the control action in this case will always result in an
interval-bounded over- or under-shoot of the origin, so the cost of errors will be the
same regardless of the starting point.

Piecewise-quadratic case. The finite-bit, fixed-width formulation enforces con-
trollers that never fully converge to a stable fixed point [88]. However, for many
applications, an invariant set around the set point is adequate. While in the robust
linear case an invariant set guarantee also guarantees stability at the origin, the
nonlinearity resulting from quantization precludes this equivalence. Therefore, a
piecewise cost function, with costs zero and flat over a region around the origin and
increasing after, is of interest. At the other extreme, finite-bit quantization neces-
sitates saturation, so any state outside the bounds of the quantizer [−𝐿, 𝐿] will be
unstabilizable for an unstable plant. Motivated by [87] and problems in nonlinear
control [89], we consider 𝐽𝑢 = 0 and a piecewise state cost function composed of a
no-cost safe region and a quadratic-cost dangerous region.

𝐽𝑥 =


0 ∥𝑥∥ ≤ 𝛼

(∥𝑥∥ − 𝛼)2 𝛼 < ∥𝑥∥ ≤ 𝐿
(5.10)

In this case, the minimax-optimal sensing scheme ignores the safety region up until
the point where the next time-step threatens danger; sensing is most precise at the
transition from safety to danger, losing resolution further from safety.

Asymmetric case. We next consider a case with asymmetric costs over the domain
[−𝐿, 𝐿]:

𝐽𝑥 =
1

(𝐿 + 1) − 𝑥

𝐽𝑢 =
|𝛼 |

(𝐿 + 1) − |𝑘 |𝑥

(5.11)

This cost asymmetry corresponds to an asymmetry in many realistic scenarios. For
instance, as previous studies have suggested [90], it is far more important when
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Figure 5.3: Optimal quantizer design depends on cost functions. Where is accurate
sensing most valuable? From top to bottom, a quadratic case, a piecewise quadratic
case with flat costs near the origin, and an asymmetric case. Quantizer partitions
shown are numerical approximations with parameters 𝑎 = 1.25, 𝐿 = 10, and 𝑘 = −1.

driving near a cliff to stay away from the hazard than to stay centered in the lane.
When detecting dangerous predators or pathogens, false positives can be costly, but
false negatives are potentially fatal.

In this case, minimax-optimal interval spacing will skew the limited number of
sensors towards 𝐿. Moreover, for a given interval, the Q𝑅 (𝑥) that minimizes
approximation cost will always be greater than 𝑥, because there is no state penalty
for overshooting; the penalty instead comes from overpaying control costs. Unlike
in the quadratic case, sensor resolution will increase closer to 𝐿. While a monotonic
cost function does allow the system to blow up in the safe direction, a more realistic
interpretation follows if we take the system to be open-loop stable, or allow the state
to saturate in the state direction. In both the piecewise-quadratic and the asymmetric
case, a desirable nonlinear behavior is achieved by a fixed linear control law via
manipulation of the quantizer.

Interestingly, the quantized representation of the plant state that the controller uses
(i.e. the representation that would be available to another observer in the system,
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or to an experimenter) is systematically biased, given the cost functions (5.11), to-
wards higher costs. As 𝛼 approaches zero, the worst-case approximation cost also
approaches zero, and the intervals collapse onto each other: it becomes optimal to
always assume the hazard is imminent.

5.3 Discussion
Context-switching interpretation. In the above analyses, we assume that contextual
changes occur on time scales irrelevant to control. When this is not true – i.e. when
contextual changes occur faster than the high-layer control can compensate – the
low-layer quanztizer can be severely suboptimal. For instance, if the asymmetric-
cost case discussed here suddenly became the quadratic-cost case, then the low-
layer controller optimized for the asymmetry would continue to tend systematically
away from the origin; this uncorrected quantizer would be costly and potentially
catastrophic.

Component-level interpretation. The control strategy described can be plausibly
implemented on electronic or biological components. The electronic case is sim-
plest and builds intuition: we treat the quantization step as analog sensed informa-
tion passed through comparators before being transmitted to the controller. The
comparators’ reference signals can then be modulated by top-down analog signals
based on goals. A comparator implementation extends naturally to both neural
and biomolecular settings. In the neural case, a sensing neuron’s threshold-to-fire
can be regulated by inhibitory or excitatory synaptic inputs from top-down pro-
jections. In the biomolecular case, sequestration, inactivation, or degradation can
enact comparison-like functionality. A particularly clear molecular implementation
is given by mass-action Hill kinetics: re-allocation of the sensitive, linear range of
the sigmoid is achievable by shifts of the curve, for instance via allosteric interactions
[91].



52

C h a p t e r 6

ROBUST PERFORMANCE WITH STRUCTURED
UNCERTAINTIES IN SYSTEM LEVEL SYNTHESIS

6.1 Introduction
Robust control problems consider the gap between controller performance for ide-
alized models of a system and controller performance in real-world settings. In the
worst case, the gap between model and reality can create catastrophic instabilities in
engineered systems [92, 93]. The robust controller synthesis problem is to synthe-
size a controller that guarantees robust stability in spite of uncertainties in the system
model. The robust performance problem is to synthesize a controller that guarantees
robust stability and to further compute and guarantee the worst-case bound on the
performance cost under bounded disturbances and uncertainties in the dynamics.
While robust control in the centralized linear setting is well-studied [6, 94, 95], the
generalization of older optimal and robust control results to decentralized systems
is a topic of more recent research [96–104].

In this chapter, we leverage the System Level Synthesis (SLS) framework [98,
105]. SLS reformulates robust and optimal control problems as an optimization
over the achievable closed loop behavior, or system responses, of a linear-time-
invariant (LTI) dynamical system, and in particular shows that it is necessary and
sufficient to constrain these system responses to lie in an affine subspace defined
by the dynamics. This parameterization has been successfully exploited in the
context of the distributed optimal control of finite-dimensional LTI systems to scale
controller synthesis and implementation techniques to systems of arbitrary size
under practically realistic assumptions on the underlying system [106–108].

We connect the SLS framework to L1 robust synthesis techniques [6, 94] and
derive necessary and sufficient conditions for robust performance in terms of affine
constraints on the system response variables in the settings of both unstructured
and structured uncertainty. These necessary and sufficient conditions are equally
applicable when additional delay, sparsity, and locality constraints are imposed on
the system responses and controller implementation. To the best of our knowledge,
these are the first such necessary and sufficient conditions for robust performance that
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Figure 6.1: Block diagram of parametric uncertainty in a closed loop state feedback
problem. The plant is shown in dark blue, and the controller in light blue, which
represent the nominal problem. The uncertain loops are shown in pink.

can be verified at scale, and that produce a distributed controller with a corresponding
scalable and distributed realization, making these results and their corresponding
computational tools naturally applicable to large-scale uncertain systems. While the
applications to decentralized control are the most interesting, the synthesis procedure
also applies to the synthesis of centralized robust controllers.

System Level Synthesis

We present brief background on System Level Synthesis and L1 robust control.
More detailed treatments of SLS can be found in [7, 109, 110] and more detailed
treatments of L1 robustness in [6, 111, 112]. An initial result towards SLS robust
performance can be found in [25].

In discrete-time, lightly modifying the tutorial notation in [109], we consider the
following linear block-matrix dynamics:

𝑥 [𝑡 + 1]
�̄�[𝑡]
𝑦[𝑡]

 =


𝐴 𝐵𝑤 𝐵

𝐶1 𝐷11 𝐷12

𝐶2 𝐷21 𝐷22



𝑥 [𝑡]
𝑤 [𝑡]
𝑢[𝑡]

 (6.1)

Here 𝑥 are states, 𝑤 disturbances, and 𝑢 control inputs provided by an external
controller. �̄� and 𝑦 are the measured and regulated output, respectively. Each of
these variables can be a vector with compatible dimensions in the transfer functions
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(𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚, 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚). The partitioned matrix dynamics in
(6.1) can be written more compactly as a partitioned transfer function, taking the
𝑧-domain representation and consequent forward-shift operator 𝑧.

P =

[
P11 P12

P21 P22

]
(6.2)

P𝑖 𝑗 = 𝐶𝑖 (𝑧𝐼 − 𝐴)−1𝐵 𝑗 + 𝐷𝑖 𝑗 (6.3)

For an appropriate norm, an optimization problem can then be posed for the con-
troller K. (In subsequent usage in this chapter, we will always consider the ∥ · ∥ℓ∞→ℓ∞

norm unless otherwise specified.)

minimize
K

∥P11 + P12K(𝐼 − P22)K)−1P21∥ (6.4)

subject to K internally stabilizes P

This problem is non-convex in K. In the Youla parameterization, the optimization
of the controller is restated as optimization of a particular transfer function. The
Youla problem is convex in this transfer function and an optimal K can be computed
in terms of co-prime factors of P22. Both the computational and theoretical power
of this parameterization are foundational.

SLS generalizes the Youla approach, parameterizing the same space of controllers
but more easily accomodating sparsity, locality, and delay constraints [7]. In the
state feedback case, we let 𝐵𝑤 = 𝐼 in the dynamics (6.1), and restate synthesis in
terms of the closed-loop maps Φ𝑥 : 𝑤 → 𝑥 and Φ𝑢 : 𝑤 → 𝑢 and the plant dynamics:

minimize
𝚽

∥
[
𝚽𝑥

𝚽𝑢

]
∥ (6.5)

subject to
[
𝑧𝐼 − 𝐴 −𝐵

] [
𝚽𝑥

𝚽𝑢

]
= 𝐼

𝚽𝑥 ,𝚽𝑢 ∈
1
𝑧
RH∞

Here RH∞ refers to the set of real-rational proper transfer functions, i.e. those are
causal and implementable. 1

𝑧
RH∞ refers to the strictly proper set of the same. While

these closed loop maps are in general infinite-dimensional, we will impose a finite-
impulse response approximation on the optimization problem to ensure stability and
computability. Other approximation bases can also be used. We show that this
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problem can be posed as a linear program by reformulation in the ℓ∞ → ℓ∞ norm,
and can therefore be solved quickly with typical computational methods. For large-
scale problems, (6.5) has a partial separability structure amenable to computational
speedups through iterative methods [113–115]. Because the controller associated
with SLS is composed only of the closed-loop maps, any decentralization constraints
on the closed-loop are also imposed on the controller (Fig. 6.2). This structure-
preserving property will hold for the extensions and reformulations we describe
below.

L1 Robust Control

We use results from L1 robust control as developed in [6, 111, 112] and related
papers. The L1 setting uses the ℓ∞ → ℓ∞ induced norm on multivariate transfer
functions, making it compatible with a finite-impulse approximation in SLS. Once
the transfer function is configured appropriately as a matrix, the ℓ∞ → ℓ∞ norm can
be computed conveniently as the maximum row sum of that matrix.

The key result we will use throughout this chapter concerns linear fractional trans-
formations (LFTs). Specifically, if we want to ascertain that a particular coupling of
a map 𝚽 and uncertainty 𝚫 (which is bounded in the ℓ∞ → ℓ∞ norm and structured
in ways we describe below). Then the following structure which arises from the
feedback interconnection:

𝑀11 + 𝑀12Δ(𝐼 − 𝑀22Δ)−1𝑀12 (6.6)

is stable for all admissibleΔ if and only if the following augmented system is robustly
stable. [

𝑀11 𝑀12

𝑀21 𝑀22

]
(6.7)

Robust stability is certified by the existence of a diagonal matrix with positive entries
𝐷 (with additional constraints that depend on Δ, discussed below) such that:

∥𝐷−1

[
𝑀11 𝑀12

𝑀21 𝑀22

]
𝐷∥ℓ∞→ℓ∞ < 1 (6.8)

This linear fractional transformation, combined with a finite-impulse approximation,
allows feedback-interconnected systems with uncertain Δs to be analyzed through
simple-to-compute matrix operations. The ℓ∞ → ℓ∞ norm is a natural starting-point
for robust performance in SLS because it can be computed row-wise, which gives
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<latexit sha1_base64="+Ti2tgGZBtITkQg/mJuI6e5lWOk=">AAACCnicbVC7TsMwFHXKq5RXgJElUCExVUlBgrGCpWOR6ENqospxnNaq85B9g6iizCz8CgsDCLHyBWz8DU6aAVquZPnonHt9j48bcybBNL+1ysrq2vpGdbO2tb2zu6fvH/RklAhCuyTikRi4WFLOQtoFBpwOYkFx4HLad6c3ud6/p0KyKLyDWUydAI9D5jOCQVEj/dgG+gDFO6nLMZlmqe1G3JOzQF1pO8tGet1smEUZy8AqQR2V1RnpX7YXkSSgIRCOpRxaZgxOigUwwmlWsxNJY7UJj+lQwRAHVDppYSEzThXjGX4k1AnBKNjfEykOZO5NdQYYJnJRy8n/tGEC/pWTsjBOgIZkvshPuAGRkedieExQAnymACaCKa8GmWCBCaj0aioEa/HLy6DXbFjnjebtRb11XcZRRUfoBJ0hC12iFmqjDuoigh7RM3pFb9qT9qK9ax/z1opWzhyiP6V9/gBknJv5</latexit>

u1
<latexit sha1_base64="GpT6C2K1V4Bqr6G/8vkpIqa8Yew=">AAACBnicbVDLSsNAFJ34rPVVdSlCsAiuSlIFXbgouHFZwT6gKWUyuWmHTh7M3IglZOXGX3HjQhG3foM7/8ZJ2oW2Hhg4nHNfc9xYcIWW9W0sLa+srq2XNsqbW9s7u5W9/baKEsmgxSIRya5LFQgeQgs5CujGEmjgCui44+vc79yDVDwK73ASQz+gw5D7nFHU0qBy5CA8YDEnleBlqRNQHLl+mmQDOxtUqlbNKmAuEntGqmSG5qDy5XgRSwIIkQmqVM+2YuynVCJnArKykyiIKRvTIfQ0DWkAqp8W6zPzRCue6UdSvxDNQv3dkdJAqUng6sr8SDXv5eJ/Xi9B/7Kf8jBOEEI2XeQnwsTIzDMxPS6BoZhoQpnk+laTjaikDHVyZR2CPf/lRdKu1+yzWv32vNq4msVRIofkmJwSm1yQBrkhTdIijDySZ/JK3own48V4Nz6mpUvGrOeA/IHx+QPlMZoB</latexit>

u2
<latexit sha1_base64="DeZjBZJMKDDqf1erIQnShkMirlo=">AAACBnicbVDLSsNAFJ34rPUVdSlCsAiuSlIFXbgouHFZwT6gDWEyvWmHTh7M3IglZOXGX3HjQhG3foM7/8Zpm4W2Hhg4nHNfc/xEcIW2/W0sLa+srq2XNsqbW9s7u+befkvFqWTQZLGIZcenCgSPoIkcBXQSCTT0BbT90fXEb9+DVDyO7nCcgBvSQcQDzihqyTOPeggPOJ2TSejnWS+kOPSDLM29Wu6ZFbtqT2EtEqcgFVKg4ZlfvX7M0hAiZIIq1XXsBN2MSuRMQF7upQoSykZ0AF1NIxqCcrPp+tw60UrfCmKpX4TWVP3dkdFQqXHo68rJkWrem4j/ed0Ug0s341GSIkRstihIhYWxNcnE6nMJDMVYE8ok17dabEglZaiTK+sQnPkvL5JWreqcVWu355X6VRFHiRySY3JKHHJB6uSGNEiTMPJInskreTOejBfj3fiYlS4ZRc8B+QPj8wfmtpoC</latexit>

y2
<latexit sha1_base64="gtXjCNziInZja3Ampy5yyAapMG0=">AAACCHicbVDLSsNAFJ34rPUVdenCYBFclaQKunBRcOOygn1AE8JkOmmHTh7M3IghZOnGX3HjQhG3foI7/8ZJmoW2Hhg4nPs6c7yYMwmm+a0tLa+srq3XNuqbW9s7u/refk9GiSC0SyIeiYGHJeUspF1gwOkgFhQHHqd9b3pd1Pv3VEgWhXeQxtQJ8DhkPiMYlOTqRzbQByj3ZB7HZJpndoBh4vlZmrut3NUbZtMsYSwSqyINVKHj6l/2KCJJQEMgHEs5tMwYnAwLYITTvG4nksbqDh7ToaIhDqh0stJAbpwoZWT4kVAvBKNUf09kOJAyDTzVWZiU87VC/K82TMC/dDIWxgnQkMwO+Qk3IDKKVIwRE5QATxXBRDDl1SATLDABlV1dhWDNf3mR9FpN66zZuj1vtK+qOGroEB2jU2ShC9RGN6iDuoigR/SMXtGb9qS9aO/ax6x1SatmDtAfaJ8/dPCa3A==</latexit>

y1
<latexit sha1_base64="5eF8icr5f7V+VgVKyWzUK0nlpm8=">AAACCHicbVDLSsNAFJ34rPUVdenCYBFclaQKunBRcOOygn1AE8JkOmmHTh7M3IghZOnGX3HjQhG3foI7/8ZJmoW2Hhg4nPs6c7yYMwmm+a0tLa+srq3XNuqbW9s7u/refk9GiSC0SyIeiYGHJeUspF1gwOkgFhQHHqd9b3pd1Pv3VEgWhXeQxtQJ8DhkPiMYlOTqRzbQByj3ZB7HZJpndoBh4vlZmrtW7uoNs2mWMBaJVZEGqtBx9S97FJEkoCEQjqUcWmYMToYFMMJpXrcTSWN1B4/pUNEQB1Q6WWkgN06UMjL8SKgXglGqvycyHEiZBp7qLEzK+Voh/lcbJuBfOhkL4wRoSGaH/IQbEBlFKsaICUqAp4pgIpjyapAJFpiAyq6uQrDmv7xIeq2mddZs3Z432ldVHDV0iI7RKbLQBWqjG9RBXUTQI3pGr+hNe9JetHftY9a6pFUzB+gPtM8fc2ua2w==</latexit>

e1
<latexit sha1_base64="EnHlqpSIIkfoFHyaRIjUOgMXiTY=">AAACCHicbVC7SgNBFJ31GeMramnhYBCswm4UtLAI2FhGMA9IQpid3E2GzD6YuSuGZUsbf8XGQhFbP8HOv3F2k0ITDwwczn2dOW4khUbb/raWlldW19YLG8XNre2d3dLeflOHseLQ4KEMVdtlGqQIoIECJbQjBcx3JbTc8XVWb92D0iIM7nASQc9nw0B4gjM0Ur901EV4wHxP4krGx2nS9RmOXC+BtO+k/VLZrtg56CJxZqRMZqj3S1/dQchjHwLkkmndcewIewlTKLiEtNiNNUTmDhtCx9CA+aB7SW4gpSdGGVAvVOYFSHP190TCfK0nvms6M5N6vpaJ/9U6MXqXvUQEUYwQ8OkhL5YUQ5qlQgdCAUc5MYRxJYxXykdMMY4mu6IJwZn/8iJpVivOWaV6e16uXc3iKJBDckxOiUMuSI3ckDppEE4eyTN5JW/Wk/VivVsf09YlazZzQP7A+vwBVMuaxw==</latexit>

e2
<latexit sha1_base64="zA+Ga1ZkbxMbe27BOF6MMG0QrVM=">AAACCHicbVC7SgNBFJ31GeNr1dLCxSBYhd0oaGERsLGMYB6QLMvs5G4yZPbBzF0xLFva+Cs2ForY+gl2/o2TZAtNPDBwOPd15viJ4Apt+9tYWl5ZXVsvbZQ3t7Z3ds29/ZaKU8mgyWIRy45PFQgeQRM5CugkEmjoC2j7o+tJvX0PUvE4usNxAm5IBxEPOKOoJc886iE84HRP5gvKRnnWCykO/SCD3Kvlnlmxq/YU1iJxClIhBRqe+dXrxywNIUImqFJdx07QzahEzgTk5V6qINF36AC6mkY0BOVmUwO5daKVvhXEUr8Iran6eyKjoVLj0NedE5NqvjYR/6t1Uwwu3YxHSYoQsdmhIBUWxtYkFavPJTAUY00ok1x7tdiQSspQZ1fWITjzX14krVrVOavWbs8r9asijhI5JMfklDjkgtTJDWmQJmHkkTyTV/JmPBkvxrvxMWtdMoqZA/IHxucPVlCayA==</latexit>

Figure 6.2: A feedback interconnection between systems G and H.

it favorable properties in large-scale systems [25, 114]. It is also a natural norm
in which to consider challenges like quantization, which are encountered in large-
scale systems. The ℓ∞ → ℓ∞ stability guarantee is exact, meaning it is the least
conservative possible guarantee for systems with nonlinear or time-varying Δs with
arbitrarily many blocks. However, the ℓ∞ → ℓ∞ norm is somewhat conservative
with respect to disturbances when compared to H∞ and especially 𝜇 synthesis
[113, 116].

We note that computing a suitable 𝑀 and 𝐷 pair is typically an iterative process
[111]. Although the two steps can be posed as a linear programming step and a
spectral radius computation, respectively, the two variables cannot be optimized
jointly. The spectral radius computation may make localized design challenging
[113], and the iteration can get caught in local minima, although these local minima
have in practice been handled with randomization.

Notation
One usage of nonstandard notation will facilitate the exposition. [𝑄𝚽]𝑖 𝑗 will refer
to the 𝑖 𝑗-th block in the partition of 𝑄𝚽. [𝑄𝚽]: 𝑗 will refer to the 𝑗-th column
including all rows and [𝑄𝚽]𝑖: will refer to the 𝑖-th row including all columns.

6.2 Results
Robust Operator System Level Synthesis
Theorem 6.11. Let 𝑨 ∈ L𝑛,𝑛

TV and 𝑩 ∈ L𝑛,𝑝

TV , and suppose that
{
�̂�𝑥 , �̂�𝑢

}
satisfy[

𝐼 − S+𝑨 −S+𝑩
] [

�̂�𝑥

�̂�𝑢

]
= S+(𝐼 − 𝚫),

𝚽𝑥 ,𝚽𝑢 strictly causal, linear, and ℓ∞-stable,

(6.9)

for 𝚫 a strictly causal linear operator from ℓ𝑛∞,𝑒 → ℓ𝑛∞,𝑒. Then the controller imple-
mentation defined in terms of the operators

{
�̂�𝑥 , �̂�𝑢

}
is well posed and achieves the

1This theorem and its proof were developed by Nikolai Matni and are reprinted from [25].
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following response [
x
𝒖

]
=

[
�̂�𝑥

�̂�𝑢

]
(𝐼 − 𝚫)−1w. (6.10)

Further, this interconnection is ℓ∞-stable if and only if (𝐼 − 𝚫)−1 is ℓ∞-stable.

Proof. As 𝚫 is strictly causal by assumption, 𝐼𝚫 := (𝐼 − 𝚫)−1 exists as a map from
ℓ𝑛∞,𝑒 → ℓ𝑛∞,𝑒. Going through a similar argument as that in the proof of Proposition
6.1, we observe that


x
𝒖

�̂�


=


𝚽𝑥 𝐼𝚫 𝚽𝑥 𝐼𝚫(−𝑨) 𝚽𝑥 𝐼𝚫𝑩

𝚽𝑢 𝐼𝚫 𝚽𝑢 𝐼𝚫(−𝑨) 𝐼 +𝚽𝑢 𝐼𝚫𝑩

S+𝐼𝚫 𝐼𝚫(𝐼 − S+𝑨) 𝐼𝚫S+𝑩



𝒘

𝜹𝑦

𝜹𝑢


. (6.11)

Thus we see that the desired map (6.10) from w → (x, 𝒖) is achieved. Further,
as 𝚽𝑥 , 𝚽𝑢, 𝑨, 𝑩 are all ℓ∞-stable by assumption, it follows that the ℓ∞-stability of
the map from (𝒘, 𝜹𝑦, 𝜹𝑢) → (x, 𝒖, �̂�) is determined by the ℓ∞-stability of 𝐼𝚫, from
which the result follows.

We now use the tools developed in the previous section to identify necessary and
sufficient conditions for the robust stability and robust performance of a system
subject to bounded perturbations in its 𝑨 and 𝑩 operators. In particular consider
the system

𝒙 = S+(𝑨0 + 𝚫𝑨)x + S+(𝑩0 + 𝚫𝑩)𝒖 + S+w, (6.12)

where 𝑨0 = blkdiag( �̂�, �̂�, . . . ) and 𝑩0 = blkdiag(�̂�, �̂�, . . . ) are memoryless LTI
operators defining a nominal LTI system 𝑥𝑡+1 = �̂�𝑥𝑡 + �̂�𝑢𝑡 + 𝑤𝑡 , and 𝚫𝑨 and 𝚫𝑩 are
ℓ∞-stable and satisfy

∥ [𝚫𝑨, 𝚫𝑩] ∥ℓ∞ → ℓ∞ ≤ 𝜀. (6.13)

We first identify necessary and sufficient conditions for robust stability, and then
build upon those to formulate a robust performance problem. Define �̂�:

�̂� := S+
[
𝚫𝑨 𝚫𝑩

] [
�̂�𝑥

�̂�𝑢

]
, (6.14)

is a strictly causal ℓ∞-stable operator, we conclude that the controller implementation
defined in terms of the LTI operators {�̂�𝑥 , �̂�𝑢} achieves the following closed loop
behavior when applied to the uncertain dynamics (6.12):[

x
𝒖

]
=

[
�̂�𝑥

�̂�𝑢

]
(𝐼 − �̂�)−1. (6.15)
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This control law is internally stabilizing if and only if (𝐼 − �̂�)−1 is ℓ∞-stable.

Defining the controlled output signal as

𝒛 = 𝑪x + 𝑫𝒖, (6.16)

for 𝑪 = blkdiag(𝐶,𝐶, . . . ) and 𝑫 = blkdiag(𝐷, 𝐷, . . . ) user specified cost matri-
ces,2 and consider the goal of minimizing the ℓ∞ → ℓ∞ induced gain from 𝒘 → 𝒛 of
the uncertain system (6.12). We can then pose the robust performance problem for
a specified performance level 𝛾 ≥ 0 as finding LTI operators {�̂�𝑥 , �̂�𝑢} that satisfy[

𝑪 𝑫
] [

�̂�𝑥

�̂�𝑢

] (
𝐼 − S+

[
𝚫𝑨 𝚫𝑩

] [
�̂�𝑥

�̂�𝑢

])−1

≤ 𝛾

[
𝑧𝐼 − �̂� − �̂�

] [
�̂�𝑥

�̂�𝑢

]
= 𝐼, �̂�𝑥 , �̂�𝑢 ∈

1
𝑧
RH∞,(

𝐼 − S+
[
𝚫𝑨 𝚫𝑩

] [
�̂�𝑥

�̂�𝑢

])−1

is ℓ∞-stable

(6.17)

for all (𝚫𝑨,𝚫𝑩) satisfying bound (6.13), where we have combined equations (6.16)
and (6.15) to derive the robust performance bound condition.

To lighten notation going forward, we let

𝑸 :=
[
𝑪 𝑫

]
, �̂� :=

[
�̂�𝑥

�̂�𝑢

]
, 𝚫 :=

1
𝜀
S+

[
𝚫𝑨 𝚫𝑩

]
, 𝑍𝐴𝐵 :=

[
𝑧𝐼 − �̂� −�̂�

]
.

(6.18)

With this notation, the robust performance problem (6.17) is equivalent to finding
an LTI operator �̂� satisfying

1
𝛾
𝑸�̂� + 1

𝛾
𝑸�̂�𝚫(𝐼 − (𝜀�̂�)𝚫)−1(𝜀�̂�) ≤ 1

𝑍𝐴𝐵�̂� = 𝐼, �̂� ∈ 1
𝑧
RH∞, (𝐼 − �̂�𝚫)−1 is ℓ∞-stable

(6.19)

for all 𝚫 satisfying 𝚫 ≤ 1, where we have used that (𝐼 −Δ�̂�)−1 = 𝐼 +Δ(𝐼 − �̂�Δ)−1�̂�

and that (𝐼−𝐺𝐻)−1 is ℓ∞-stable if and only if (𝐼−𝐻𝐺)−1 is ℓ∞-stable (see Proposition
1, [6]) to recast the expression (6.17) in a form that matches the linear-fractional-
transform (LFT) structure studied in [6, 94].

2For simplicity, we assume 𝑪 and 𝑫 to be memoryless and LTI, however our results are equally
applicable when the controlled output is defined in terms of LTI filters 𝑪 (𝑧) and 𝑫 (𝑧).
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State feedback with unstructured uncertainty
The necessary and sufficient conditions for robust stability of the resulting two-
block problem can be derived as a special case of Theorem 6.3 of [6]. The particular
case of an augmented LTI system 𝑴 satisfying 𝑴11 = 𝑴12 and 𝑴21 = 𝑴22,
as is the case for our problem, is addressed in Ch 8.3 of [6], where a similarly
structured augmented system arises in the context of bounding output sensitivity
in the presence of output perturbations. The necessary and sufficient conditions
specified in Theorem 6.3 of [6] reduce to the following convex constraints on the
system response �̂�

𝑍𝐴𝐵�̂� = 𝐼, �̂� ∈ 1
𝑧
RH∞,

𝑸�̂� + 𝛾𝜀�̂� < 𝛾.

(6.20)

Although the constraints (6.20) are in general infinite-dimensional due to the trans-
fer matrix �̂�, principled finite-dimensional approximations, some of which enjoy
provable sub-optimality guarantees, are available [105, 117–119]. Further, for the
L1 problem considered here, the resulting optimization problem can be posed as
a linear program, thus enjoying favorable computational complexity properties. It
then follows that by bisecting on 𝛾, e.g., by using golden search, we can find a
performance level 𝛾, and corresponding system responses and controller, satisfying
𝛾 ≤ 𝛾★ + 𝜖 in 𝑂 log2(1/𝜖) iterations, for 𝛾★ the smallest 𝛾 such that the set defined
by (6.20) is non-empty.

Convex unstructured state feedback
Consider again the partitioned system:[

1
𝛾
𝑄𝚽 1

𝛾
𝑄𝚽

𝜀𝚽 𝜀𝚽

]
(6.21)

Above, following [25], we used the special structure of the system to use simplified
conditions given by [6]. Now we consider the case with more blocks, specifically
blocks that affect different subsystems of the plant (e.g. block diagonal parametric
uncertainty on 𝚫A), to represent phenomena like demand surges in a power grid or
injuries in an organism). For a system 𝚽 with structured perturbations, [6] gives
two equivalent conditions for robust stability.

1. Take a block-partitioned systemGwith subsystemsG𝑖 𝑗 and construct a matrix
𝑀 such that 𝑚𝑖 𝑗 = ∥G𝑖 𝑗 ∥ℓ∞→ℓ∞ . G is robustly stable if and only if 𝜌(𝑀) < 1.
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Figure 6.3: Robust performance on a 6-state ring (𝛼 = 1.5) with structured distur-
bances and state feedback, with every other state actuated, computed with a linear
program. For largeΔ (towards the left), both problems eventually become infeasible,
but the structured problem outperforms the unstructured until then.

2. Define a positive real diagonal matrix 𝐷 that matches the partition structure
of G and 𝚫. G is robustly stable if and only if inf𝐷 ∥𝐷−1G𝐷∥ℓ∞→ℓ∞ < 1.

We apply the second condition to our system (6.21). We seek 𝑑1, 𝑑2 satisfying:

∥
[

1
𝛾
𝑄𝚽 𝑑2

𝑑1
1
𝛾
𝑄𝚽

𝑑1
𝑑2
𝜀𝚽 𝜀𝚽

]
∥ℓ∞→ℓ∞ < 1 (6.22)

The ratio 𝑑2
𝑑1

appears in two places, so we introduce 𝛼 =
𝑑2
𝑑1

.

∥
[

1
𝛾
𝑄𝚽 𝛼 1

𝛾
𝑄𝚽

1
𝛼
𝜀𝚽 𝜀𝚽

]
∥ℓ∞→ℓ∞ < 1 (6.23)

Because the norm is row-wise, we can separate this into two conditions:

∥
[
𝑄𝚽 𝛼𝑄𝚽

]
∥ℓ∞→ℓ∞ < 𝛾

∥
[
𝜀𝚽 𝛼𝜀𝚽

]
∥ℓ∞→ℓ∞ < 𝛼

(6.24)

And because 𝛼 is positive, we can factor:

∥(1 + 𝛼)𝑄𝚽∥ℓ∞→ℓ∞ < 𝛾

∥(1 + 𝛼)𝜀𝚽∥ℓ∞→ℓ∞ < 𝛼
(6.25)
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Because we are optimizing over 𝛾, the first constraint can be ignored; we simply
optimize the left-hand side and then choose 𝛾. To present the results more clearly,
we can further substitute 𝑡 = 1 + 𝛼, then substitute �̄� = 𝚽𝑡.

Theorem 6.2. The following optimization problem is equivalent to (6.20)):

minimize
�̄�,𝑡

∥𝑄�̄�∥ℓ∞→ℓ∞

subject to: ∥𝜀�̄�∥ℓ∞→ℓ∞ < 𝑡 − 1

𝑍𝐴𝐵�̄� = 𝑡 𝐼

�̄� ∈ 1
𝑧
RH∞

(6.26)

Proof. The objective ∥𝑄�̄�∥ℓ∞→ℓ∞ is equal to the optimal 𝛾∗, and we can recover the
optimal map 𝚽 = �̄�/𝑡.

This problem is faster to solve, and can be verified computationally to give the same
results. Instead of a bisection on 𝛾 requiring several consecutive linear programs
with 𝑚 variables, we solve one linear program with 𝑚 variables (adding 𝑡 but
dropping 𝛾). The problem also has some interesting properties: (a) it is convex; (b)
it is structure-preserving for 𝚽; (c) it is almost identical to the nominal problem.

While the later steps of this derivation took advantage of some conveniences in the
unstructured problem, we do not depend on the assumption that 𝚫 is unstructured.
We will now generalize to structure.

State feedback with structured uncertainty
Assume that some 𝑛-block structure exists in 𝚫, with corresponding block partition
in 𝚽. 𝚫P will remain unstructured and indexed as the first block, creating 𝑛 + 1
blocks in the augmented robust stability problem.

We then consider a robust stability test on the following partitioned system. For
clarity of exposition and without loss of generality, we take 𝑛 = 2. In addition, we
observe that 𝜀 here acts as a scalar weighting function on the input of Δ into Φ, and
these weights can be considered more generally with diagonal Σ right-multiplying
Φ. 

1
𝛾
𝑄𝚽 [ 1

𝛾
𝑄𝚽]:1 [ 1

𝛾
𝑄𝚽]:2

[𝚽Σ]1: [𝚽Σ]11 [𝚽Σ]12

[𝚽Σ]2: [𝚽Σ]21 [𝚽Σ]22

 (6.27)
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As in the optimization problem (6.36), we treat the first row (the fictitious pertur-
bation row for robust performance) separately by fixing 𝑑1 = 1 without loss of
generality.

We define �̄�𝐷, overloading 𝐷 as follows. When right-multiplying 𝚽, 𝐷 =

𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝐼, 𝑑2𝐼, 𝑑3𝐼) with each identity matrix sized appropriately. We will use
the same notation with left-multiplication (e.g. by 𝐷−1), but if 𝚽 is not square, the
sizing of the respective identity matrices will be different. This overloading of 𝐷
makes it easier to work with non-square 𝚽 .

Theorem 6.3. We can solve the following convex robust performance problem for
2-block up to 𝑛-block structured uncertainty:

minimize
�̄�,𝐷

∥𝑄�̄�∥ℓ∞→ℓ∞

subject to:∑︁
𝑗

|𝚽𝑖 𝑗 | < 𝑑𝑖 − 1 ∀𝑖 ∈ 2, . . . , 𝑛 + 1

𝑍𝐴𝐵�̄� = 𝐷

�̄� ∈ 1
𝑧
RH∞

(6.28)

Proof. As before, the optimal cost of the above problem is exactly the robust
performance level 𝛾∗ and the optimal 𝚽 can be recovered as �̄�𝐷−1.

Output feedback with unstructured uncertainty
We next consider the robust output feedback case with equations:

𝑧𝑥 = (A0 + 𝚫A)𝑥 + (B0 + 𝚫B)𝑢
𝑦 = (C0 + 𝚫C)𝑥 + (D0 + 𝚫D)𝑢

(6.29)

We define our nominal closed-loop maps as before, now with disturbances 𝑤 and
measurement noise 𝑣. [

𝑥

𝑢

]
=

[
Φ𝑥𝑤 Φ𝑥𝑣

Φ𝑢𝑤 Φ𝑢𝑣

] [
𝑤

𝑣

]
(6.30)

Then in the robust case:
𝑥 = Φ𝑥𝑤 (𝑤 + Δ𝐴𝑥 + Δ𝐵𝑢) +Φ𝑥𝑣 (𝑣 + Δ𝐶𝑥 + Δ𝐷𝑢)
𝑢 = Φ𝑢𝑤 (𝑤 + Δ𝐴𝑥 + Δ𝐵𝑢) +Φ𝑢𝑣 (𝑣 + Δ𝐶𝑥 + Δ𝐷𝑢)

(6.31)

Rearranging terms, we can proceed as we did in state feedback, optimizing 𝛾 such
that: [

1
𝛾
𝑄𝚽 1

𝛾
𝑄𝚽

𝚽Σ 𝚽Σ

]
(6.32)
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Figure 6.4: Robust performance for a simple two-state plant which is intrinsically
fragile in the output feedback case with unstructured uncertainty. As ∥𝚫∥ increases
towards the left, the output feedback problem quickly becomes infeasible.

is robustly stable and satisfies the output feedback constraints:

𝑍𝐴𝐵𝚽 =

[
𝐼 0

]
𝚽𝑍𝐴𝐶 =

[
𝐼

0

] (6.33)

where 𝑍𝐴𝐵 = [𝑧𝐼 − 𝐴, −𝐵] as before and 𝑍𝐴𝐶 = [𝑧𝐼 − 𝐴;−𝐶]. The robust
performance criterion here is similar in structure to the criterion in the state feedback
problem. However, the substitution used in state feedback, �̄� = 𝚽𝐷, is helpful for
the input feasibility constraint. but unhelpful for the output feasibility constraint;
while 𝑍𝐴𝐵𝚽𝐷 = 𝐷, it is not clear what 𝚽𝐷𝑍𝐴𝐶 is.

In the case with unstructured Δ, this issue is resolved easily; we fix the Δ block
corresponding to the performance row to one, then set the 𝐷 corresponding to the
robust stability block to 𝑡 𝐼. The scalar 𝑡 commutes to give us 𝚽𝑡𝑍𝐴𝐶 = 𝚽𝑍𝐴𝐶𝑡 and
we can proceed with the same substitutions that we used in state feedback.

Prototype Problems
The interplay between robust control and the local, sparse, and delayed constraints
in the SLS framework leads to open problems and new application areas. Motivated
by problems in cyberphysical systems, networked systems, and biological systems,
we consider some prototype problems for which the techniques we have developed
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Figure 6.5: Block diagram of parametric uncertainty in a closed loop state feedback
problem. The plant is shown in dark blue, and the controller in light blue, which
represent the nominal problem. The uncertain loops are shown in pink.

in the preceding section can be used. In each case, we sketch out a type of problem
for which a a class of instantiations can directly be solved with the techniques we
have developed.

Uncertainty tolerances and speed-accuracy tradeoffs in communications. In the
nominal (that is, not robust) SLS problem, it is possible to constrain the information
structure of a large-scale controller in terms of sparsity, locality, and delay. For
example, Sub-Controller A might not be able to send information about its state
and disturbances to Sub-Controller B, or might only be able to send information
after some time interval. Yet this existing theory for nominal systems assumes that
communications, when sent, are perfect, when in practice internal communications
in a large-scale system are likely to be imperfect. We are therefore motivated
to solve a design problem where uncertainty enters the controller internally in
communications (see Fig. (6.6). Such a problem depends on the controller structure,
so we assume a controller structure. Let us therefore take the typical SLS state-
feedback controller with predictive internal feedback pathways [1]. That is, instead
of �̂� we have (𝐼 +𝚫)�̂�, modeling a centralized controller with internal uncertainties
in communication in the loop from sensors to actuators.

Using similar tools as we used in the state feedback problem with parametric uncer-
tainty, we now consider a 𝚫 that enters at �̂�. Conveniently, this disturbance enters
the system exactly where 𝑣 enters the system in output feedback, now on a unit delay
and multiplicative amplification. As in the state feedback problem, we define Σ to
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Figure 6.6: Block diagram of uncertainty entering communication lines in a state
feedback SLS problem where communication between actuators and sensors is
restricted (e.g. in [1]).

be the weighting matrix through which uncertainties enter the system.

We can therefore derive the following augmented system, which parallels the state
feedback problem: 

1
𝛾
𝑄𝚽 − 1

𝑧

[
𝐼

0

]
1
𝛾

1
𝑧
𝑄𝚽((𝑧𝐼 − 𝐴)Σ

𝐼 Σ

 (6.34)

When𝚽 is a finite-impulse response convolution, it is straightforward to specifyΣ as
a finite impulse response filter instead of a static weighting matrix. This then allows
us to study a realistic scenario where the immediate responses to a disturbance
are uncertain (for instance based on low-resolution but widely available sensors)
but later in the course of the FIR response to the disturbance, the controller has
access to more certain information about the past disturbance (for instance based on
high-resolution but selectively available sensors).

Trading off performance and certainty. Consider again the unstructured state feed-
back problem:

minimize
�̄�,𝑡

∥𝑄�̄�∥ℓ∞→ℓ∞

subject to: ∥𝜀�̄�∥ℓ∞→ℓ∞ < 𝑡 − 1

𝑍𝐴𝐵�̄� = 𝑡 𝐼

�̄� ∈ 1
𝑧
RH∞

(6.35)
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We can rearrange this problem to indirectly optimize the level of uncertainty tolerated
by the closed loop:

minimize
�̄�,𝑡,𝛾,𝜃

𝛾 + 𝜃

subject to: ∥𝑄�̄�∥ℓ∞→ℓ∞ < 𝛾

|�̄�∥ℓ∞→ℓ∞ < 𝜃

𝑍𝐴𝐵�̄� = 𝑡 𝐼

�̄� ∈ 1
𝑧
RH∞

(6.36)

Here, one way to make 𝜃 small is to allow 𝜀 from the original problem to become
large, which implicitly penalizes 𝛾. This is easier to see using the augmented system
conditions from (6.21): ∑︁

|
[
𝑄𝚽 𝛼𝑄𝚽
1
𝛼
𝚽 𝚽

]
| <

[
𝛾

𝜃

]
(6.37)

We can improve 𝛾 by decreasing 𝛼, but this increases 1
𝛼
, which increases 𝜃, which

decreases 𝜀. While tradeoffs between performance and robustness are an old subject,
this formulation is relatively transparent, and may be useful in certain problem
settings: Rather than designing for a particular 𝜀, we might consider it a favorable
property of the system to allow 𝜀 to be as large as possible. Alternatively, it
might be favorable in an online setting like model-predictive control, or an adaptive
control setting where richer information can be acquired at cost, to spend more on
information in some contexts or to tolerate more risk in other contexts. We can
place 𝑝 in the weighted cost function and minimize it to further explore these kinds
of tradeoffs.

Numerical experiments
In numerical experiments, we set control costs (costs on Φ𝑢𝑤 and Φ𝑢𝑣) to be zero,
𝐷22 = 0 (no feedforward from 𝑢 to 𝑦), and time horizon 𝑇 = 10.

Chain system and ring system
We consider the chain system where 𝐴 is a scaled tridiagonal matrix, and the related
ring system, e.g. for 𝑛 = 4:

𝐴𝑐ℎ𝑎𝑖𝑛 = 𝑎


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1


𝐴𝑟𝑖𝑛𝑔 = 𝑎


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1





67

Figure 6.7: Performance of a robust controller and a nominally optimal controller
for for two decentralized chains, with disturbances 𝚫𝑨 = blkdiag(𝜅𝐼, 𝜅𝐼, . . . ). As
𝜅 increases to 𝜖 = 0.55, performance of the robust controller meets the robust
performance bound 𝛾 (6.20).

Example plant fragile in output feedback
A simple system to consider for unstructured output feedback is the following:

𝐴 =

[
1 1
0 1

]
(6.38)

We allow only the first state to be actuated in both the state feedback and output
feedback case, and only the second state sensed in the output feedback case (Fig.
6.4).

Localization on a chain
We consider a scaled doubly-stochastic chain system described by the following
dynamics:

𝑥1
𝑡+1 = 𝜌

[
(1 − 𝛼)𝑥1

𝑡 + 𝛼𝑥2
𝑡

]
+ 𝑢1

𝑡

𝑥𝑖
𝑡+1 = 𝜌

[
𝛼𝑥𝑖−1

𝑡 + (1 − 2𝛼)𝑥𝑖𝑡 + 𝛼𝑥𝑖+1
𝑡

]
+ 𝑢𝑖𝑡 ,

for 𝑖 = 2, . . . , 𝑁 − 1,
𝑥𝑁
𝑡+1 = 𝜌

[
𝛼𝑥𝑁−1

𝑡 + (1 − 𝛼)𝑥𝑁𝑡
]
+ 𝑢𝑁𝑡

(6.39)

where the 𝑥𝑖𝑡 , 𝑢𝑖𝑡 ∈ R are the scalar state and inputs, respectively, of the subsystems,
and we set the number of scalar subsystems 𝑁 = 50, the scaling factor 𝜌 = 0.5, and
the coupling constant 𝛼 = 0.49.

We solve the robust performance performance problem (6.20) under both centralized
and localized distributed constraints with a norm bound on the uncertainty of 𝜖 =
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0.55, and cost matrices 𝐶⊤ = [𝐼𝑁 , 0⊤]⊤ & 𝐷⊤ = [0⊤, 5𝐼𝑁 ]. For both settings, we
impose an FIR horizon of 𝑇 = 10 when solving the robust performance problem
(6.20). Additionally, we enforce that the corresponding system responses satisfy
𝑑-locality constraints – intuitively, these constraints ensure that in closed loop, the
disturbance striking node 𝑖 only affects nodes 𝑗 satisfying | 𝑗 − 𝑖 | ≤ 𝑑.3

We determine that the optimal robust performance level is 𝛾 = 5.57 for both cen-
tralized and distributed controllers, where for the distributed localized controller
we set the locality diameter to 𝑑 = 2. That there is no gap between centralized
and distributed is not surprising because: (i) we impose no communication delay
constraints, and (ii) L1 optimal control leads to deadbeat optimal closed loop re-
sponses, which will consequently also be (approximately) localized in space as well.
We note that the nominal L1 norms of the closed loop systems for the centralized
and distributed localized controllers are both 2.5. Comparing these to the norms
achieved by the optimal L1 controllers (i.e., those computed by minimizing the per-
formance cost with 𝜖 = 0) of 1.43 and 2.47, respectively, we see that while there is
an appreciable degradation in nominal performance in the centralized setting, there
is nearly no degradation in the localized distributed setting. We conjecture that this
is due to the sparsity of the augmented plant 𝑴 defined by the system response �̂�,
which constrains both robust and nominal systems to behave similarly.

To empirically test this conjecture, we examine the evolution of the closed loop
norm of the nominal and robust controllers to perturbations of the form 𝚫𝑨 =

blkdiag(𝜅𝐼, 𝜅𝐼, . . . ) and 𝚫𝑩 = 0, for 𝜅 ∈ [0, 𝜖], for varying locality parameters
𝑑 ∈ {2, 5, 10}, where 𝑑 = 10 corresponds to the centralized setting. The results
are displayed in Fig 6.7. We show only the results for 𝑑 = 2 and 𝑑 = 5, as
the result for 𝑑 = 5 and 𝑑 = 10 are indistinguishable – as can be observed, in
the tightly localized setting of 𝑑 = 2, the degrees of freedom are limited such
that robust and nominal control behave similarly; in contrast, when 𝑑 = 5, the
robust controller enjoys improved performance for larger values of 𝜅, at the expense
of degraded performance at lower values. Our approach therefore allows for a
principled exploration of tradeoffs between synthesis/implementation complexity
(as measured by 𝑑), nominal performance, and robust performance for large-scale
distributed systems. For state feedback, we consider 𝐶 = 𝐼 and 𝐵 as a diagonal
matrix with ones on every other entry starting with the first (i.e., 𝑏1 = 1, 𝑏3 = 1). For

3In the interest of clarity, we do not enforce communication delay constraints, but note that both
communication delay and locality constraints can be enforced through suitable sparsity constraints
on the system response variables: see [105] for details.
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output feedback, we use the same 𝐵 as in state feedback and define 𝐶 as a diagonal
matrix with ones on every other entry starting with the first (i.e., 𝑐2 = 1, 𝑐4 = 1).

6.3 Discussion
We generalized the SLS parameterization of LTI ℓ∞-stabilizing controllers, as well
as a robust counterpart, to systems described by bounded and causal linear opera-
tors. This extension, along with a simple algebraic transformation, allowed us to
leverage tools from L1 robust control to derive necessary and sufficient conditions
for the robust performance of an uncertain system in terms of convex constraints
on the system response. These conditions remain necessary and sufficient when
additional structure, such as that induced by delay, sparsity, and locality constraints,
are imposed on the system response. Further, for L1 optimal control, the robust
performance criteria satisfy the partial-separability properties needed to apply the
distributed synthesis techniques described in [108], making our results applicable
to large-scale systems.

The convexity of the solution space of robustly performing closed-loop maps is an
interesting object in its own right. It has been previously observed that robustness
is an essential feature not only of engineered systems but of natural systems [120].

In this work, we have in several places exploited special features of L1 robust-
ness and the ℓ∞ → ℓ∞ norm. The substitutions and rearrangements we use are a
consequence of positive, constant 𝐷-scaling matrices. The use of row-sums also
allows partial separability of the synthesis problem. The connections between row
and column separation and their interactions in estimation and control separation,
large-scale synthesis, and iterative algorithms (including ADMM [113–115], and
D-K iteration and similar methods [111, 121]) are an interesting topic of study that
could facilitate more powerful synthesis algorithms or characterize the limitations of
possible algorithms in these problem settings. The extent to which our convex sets
are convenient artifacts of particular problem settings, as opposed to fundamental
characteristics of robust control systems, remains unclear. It might be desirable to
have a row- and column- separable induced norm, a topic discussed in [113, 116].
It is our hope that the theory and computational approaches developed here will
generalize to many norms that may be appealing for large-scale networked systems.



70

In the final technical chapter of this thesis, we move from our most abstract theory
to our most concrete case study. Chapter 7 is a theory-informed experimental study
of resistance to neoplasia and cancer in the moon jellyfish Aurelia coerulea. This
study draws on many of the themes and technical results of the previous chapters,
studying decision-making by cells and cell populations in cancer detection in the
moon jellyfish. While there are broader conceptual connections here, we will present
this material in a way that emphasizes the experimental results.
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C h a p t e r 7

CELL FLUX PROOFREADS NEOPLASIA IN MOON JELLYFISH

7.1 Introduction
Tissue maintenance in multicellular organisms often requires precisely regulated
cell proliferation and cell death. Dysregulation of processes is associated with
hyperplasia, atrophy, and cancer [122]. Organisms in which cancer is rarely observed
in nature or in the laboratory, such as cnidarians [123–125], suggest the intriguing
possibility of novel anti-cancer and tissue-homeostatic mechanisms. In this chapter,
we characterize a novel mechanism of resistance to neoplasia in the cnidarian moon
jellyfish Aurelia coerulea.

The moon jellyfish has a distinct eight-lobed anatomy in its ephyra life stage (the life
stage which occurs after metamorphosis from a polyp but before the development
of the familiar medusa, Figure 7.1A). Recent experiments have shown that ephyrae
do not typically regenerate these lobes after amputation, and instead rearrange the
lobes to quickly re-symmetrize without cell proliferation [2, 126]. However, when
fed with the amino acid L-leucine, ephyrae can be induced to proliferate regenerate
lobes [2]. This inducible regenerative and proliferative state made the moon jel-
lyfish an attractive model in which to study the relationship between proliferation,
regeneration, and cancer. The moon jellyfish also has other features relevant to
our experimental study: it is a basal metazoan, meaning that it may provide clues
about the evolutionary origins of cancer; it has no known dedicated stem cells,
instead retaining plasticity and self-renewal in most or all cells [127]; and it has a
limited cellular immune response, so we can experimentally modulate proliferation
dynamics without modulating immune cell population size [127, 128].

We use mathematical modeling and experiments to study resistance to neoplasia in
the moon jellyfish. We first provide evidence that low rates of cancer in the moon
jellyfish result from active resistance mechanisms, and establish an experimental
model of inducible neoplasia in moon jellyfish ephyrae. We then propose a new
model, the flux model, which makes the surprising prediction that proliferation
in the moon jellyfish is protective against neoplasia, and conversely, suppressing
proliferation in the ephyra should increase neoplastic susceptibility. We verify this
prediction experimentally, first by inducing neoplasia, and then by rescuing the
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Figure 7.1: The moon jellyfish Aurelia coerulea has a three-stage life cycle. In the
ephyra life stage, which we study here, the jellyfish has an eight-lobe morphology.
When these lobes are amputated, the ephyra does not typically regenerate lobes.
However, when treated with L-leucine, or L-leucine and insulin, the ephyra can
regenerate lobes. Figure reprinted, under Creative Commons License, from [2].

Figure 7.2: Representative images of jellyfish responses to carcinogen. (A) A
typical healthy morphology, in this case despite treatment with the carcinogen
3-methylcholanthrene. (B) A representative neoplasia on the muscle band of an
ephyra induced by co-treatment with 3-methylcholanthrene and an mTOR inhibitor
(see text). (C) A zoomed in image ofthe same jellyfish as in (B).

neoplasia-resistant phenotype.

7.2 Results
Lifestyle vs resistance
We start by modeling the problem mathematically using a simple cell-level differ-
ential equation model. We use some concepts and simple techniques from control
theory, but use them in ways that are familiar in systems biology. Because the model
is simple, and because we are interested in modeling changes in qualitative features
of organismal physiology and morphology, we will not need precise estimates of the
model parameters; typically we will be interested in whether parameters are high or
low relative to a physiological baseline.
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Figure 7.3: We consider a control-theoretic model derived from a base model.
The base model considers three types of cells: injured cells (I), healthy (H), and
neoplastic (N), each with a division and death rate. In the control-theoretic flux
model, injury and cancer clearance are both coupled to cell division, so cancer
clearance is facilitated by high cell division; more global cell proliferation predicts
less cancer.

We model the problem as follows:

¤𝑥ℎ = (1 − 𝑚𝑛)𝑏ℎ − 𝑚𝑥𝑥ℎ − 𝑞𝑥ℎ − 𝑑ℎ
¤𝑥𝑚 = 𝑎𝑚𝑥𝑚 + 𝑚𝑛𝑏ℎ + 𝑚𝑥𝑥ℎ − 𝑑𝑚

¤𝑥𝑖 = 𝑞𝑥ℎ − 𝑑𝑖

(7.1)

𝑥ℎ is the number of healthy cells per volume, 𝑥𝑚 is the number of neoplastic cells per
volume and 𝑥𝑖 is the number of injured or damaged cells per volume. 𝑎𝑚 is the rate
of cell division of neoplastic cells,𝑚𝑛 is the rate at which healthy cells endogenously
mutate during division, 𝑚𝑥 is the rate at which healthy cells exogenously mutate,
and 𝑞 is the rate of injury or endogenous wear and tear on healthy cells. Lastly, four
special parameters will be the focus of our analysis. 𝑏ℎ represents births of healthy
cells and 𝑑ℎ, 𝑑𝑚, and 𝑑𝑖 represent death of their respective cell types. These are
the parameters that the organism, through internal processes, can modulate – the
homeostatic parameters that govern cancer control.

We can make some immediate simplifications to the model. Because 𝑑𝑖 is not
coupled to any other parameters in the model, we can assume that organismal
control clears 𝑥𝑖. We can therefore immediately simplify 𝑑𝑖 and 𝑥𝑖 from the model.
Next, we define 𝑥ℎ = 𝑦ℎ + ℎ for some equilibrium healthy cell concentration ℎ. 𝑦ℎ
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will have the same derivative as 𝑥ℎ, but can be interpreted as the deviation from
equilibrium; with this substitution, the equilibrium is zero in both coordinates.

¤𝑦ℎ = (1 − 𝑚𝑛)𝑏ℎ − 𝑚𝑥𝑦ℎ − 𝑚𝑥ℎ − 𝑞𝑦ℎ − 𝑞ℎ − 𝑑ℎ
¤𝑥𝑚 = 𝑎𝑚𝑥𝑚 + 𝑚𝑛𝑏ℎ + 𝑚𝑥 (𝑦ℎ + ℎ) − 𝑑𝑚

(7.2)

To temporarily cancel the ℎ-dependent terms, we introduce 𝑢ℎ and 𝑢𝑚 and set
𝑏ℎ = 𝑢ℎ + (𝑚𝑥 + 𝑞)ℎ/(1−𝑚𝑛), 𝑑𝑚 = 𝑢𝑚 +𝑚𝑥ℎ+𝑚𝑛 (𝑚𝑥 + 𝑞)ℎ/(1−𝑚𝑛), and 𝑑ℎ = 0.
We are left with a linear control system in a standard form:[

¤𝑦ℎ
¤𝑥𝑚

]
=

[
−𝑚𝑥 − 𝑞 0
𝑚𝑥 𝑎𝑚

] [
𝑦ℎ

𝑥𝑚

]
+

[
1 − 𝑚𝑛 0
𝑚𝑛 −1

] [
𝑢ℎ

𝑢𝑚

]
(7.3)

with the further restriction that:

𝑢 = 𝐾

[
𝑦ℎ

𝑥𝑚

]
𝐾 =

[
𝑎ℎ 0
0 𝑘𝑚

] (7.4)

The control system is stable when 𝑎𝑚 < 𝑘𝑚 and 𝑎ℎ < (𝑚𝑥 + 𝑞)/(1 − 𝑚𝑛). Re-
expressing these conditions in terms of the birth and death rates, we can write:

𝑏ℎ <
𝑚𝑥 + 𝑞
1 − 𝑚𝑛

𝑥ℎ

𝑑𝑚 > 𝑎𝑚𝑥𝑚 + 𝑚𝑥 + 𝑚𝑛𝑞
1 − 𝑚𝑛

ℎ
(7.5)

To achieve a reliable no-cancer state, 𝑥𝑚 must stay near zero throughout the time
interval considered. This can happen under one of two conditions:

• Lifestyle: Cancerous mutations are so rare that cancer is never observed. 𝑚𝑥
is small and 𝑚𝑛𝑏ℎ is small.

• Resistance: Cancerous mutations are detected and removed quickly enough
that they are never observed, as described in (7.5).

If low rates of cancer in the moon jellyfish are primarily due to lifestyle, then
increasing the rate of exogenous mutations might lead to neoplasia. A lack of
neoplasia under carcinogen treatment would weigh against the lifestyle model, but
not rule it out, because we would be left to wonder whether the dose and duration
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of carcinogen were sufficient to cause malignant transformations. On the other
hand, the resistance model makes a strong testable prediction. If 𝑑𝑚 is sufficiently
small and 𝑚𝑥 is sufficiently large, then the resistance condition cannot be achieved.
To test these predictions, we therefore designed experiments to modulate 𝑚𝑥 and
𝑑𝑚. Exogenous mutations 𝑚𝑥 could be induced by the chemical carcinogen 3-
methylcholanthrene (MCA) [129]. 𝑑𝑚 could be inhibited by the broad caspase
inhibitor zVAD-FMK.

In experiments, co-treatment with MCA and zVAD-FMK induced neoplasia (Figure
7.4A). Neither MCA nor zVAD-FMK alone induced neoplasia. To our knowledge,
these are the first neoplasia reported in the moon jellyfish or any scyphozoan,
in natural observation or by laboratory induction. Neoplasia were consistently
observed within the first day of treatment.

To further confirm that the neoplasia phenomenon did not depend on unmodeled
effects of MCA or zVAD-FMK, we also tested co-treatment with MCA and a
Bax-inhibiting peptide (MilliporeSigma 80603-646). Bax can initiate apoptosis
downstream of signals from the tumor-suppressor gene p53 [130], making it a suit-
able and more specific alternative target for inhibiting apoptosis. We also tested an
alternate carcinogen, ultraviolet light (Figure 7.4B). Neoplasia were again observed
under these conditions after three days of treatment. MCA alone did not induce
neoplasia after one day, three days, or seven days.

Proliferation vs flux
We next sought to perturb the homeostatic mechanisms in a different way, testing the
relationship between injury and neoplasia. We injured ephyrae with the amputation
protocol used in [2]. When injured ephyrae were co-treated with MCA, they were
susceptible to neoplasia (Figure 7.6). Given that injury and cancer have traditionally
been linked, one possible interpretation of this data might be that injury drives
proliferation and growth, which create suitable conditions for neoplasia. However,
some observations were not entirely consistent with this interpretation: neoplasia
in the injured animals did not consistently appear at the injury site, suggesting that
the neoplasia was something other than a failed attempt to regrow the lost lobes;
(2) the MCA-exposed ephyrae were not smaller in size than the control ephyrae,
suggesting that apoptosis alone did not account for the neoplasia resistance; and
in previous experiments in which ephyrae were injured, cell proliferation did not
increase, suggesting that proliferation did not account for the neoplasia phenotype
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Figure 7.4: In artificial salt water and in exposure to 3-methylcholanthrene (MCA,
300-500 𝜇M), neoplasia in ephyrae is not observed. By using the broad caspase
inhibitor zVAD-FMK (100 𝜇M), we inhibit one mechansism by which pre-neoplastic
cells might be removed. Co-treatment with MCA and zVAD-FMK does cause
neoplasia, while zVAD-FMK alone does not. These results are not specific to this
carcinogen or this inhibitor; ultraviolet light (UV) and zVAD-FMK also causes
neoplasia, as do MCA and a Bax-inhibiting peptide.
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Figure 7.5: Additional examples of neoplasia in ephyrae, induced through a variety
of conditions. Clockwise from top left: MCA and zVAD-FMK, MCA and zVAD-
FMK, MCA and hydroxyurea, MCA and sapanisertib.

[2, 126].

We considered an alternate model of resistance to cancer which we call the flux
model. Before we describe the mathematical argument, we develop the intuition.
A fundamental challenge in active resistance to cancer is detecting neoplastic or
pre-neoplastic cells, which may be difficult to distinguish from typical healthy cells.
As a result, any decision process leading to clearance of a neoplastic cell will have
a false positive rate and a context-dependent sensitivity to clearance. When cells
are rapidly produced, they may also be easily cleared. This would then predict
higher sensitivity to apoptosis in high proliferation conditions, perhaps through
mechanical coupling as in [122, 131], although the model does not require that
particular mechanism.

We can formalize this intuition by substituting 𝑑ℎ = 𝑝𝑑𝑚 for 𝑝 as the normalized false
positive rate of clearance. In the linear control system, 𝑎ℎ < (𝑚𝑥+𝑞+𝑝𝑘𝑚)/(1−𝑚𝑛)
and 𝑎𝑚 < 𝑘𝑚. ℎ is a concentration variable with respect to volume, so we can
simplify further by setting ℎ = 1 and implicitly rescaling the remaining parameters.
With the approximation that near equilibrium 𝑥𝑚 and 𝑦ℎ are small, we can write
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each bound in terms of intrinsic parameters of the system.

𝑑ℎ > 𝑝
𝑚𝑥 + 𝑚𝑛𝑞

1 − 𝑚𝑛
𝑏ℎ >

𝑚𝑥 + 𝑞 + 𝑝𝑎𝑚
1 − 𝑚𝑛

(7.6)

Thus by coupling 𝑑𝑚 and 𝑑ℎ, we have made visible not only an upper bound on 𝑏ℎ,
which we had before, but a lower bound as well. Both 𝑏ℎ and 𝑑ℎ (that is, the flux in
healthy cells), increase with 𝑚𝑥 , 𝑞, 𝑝, and 𝑚𝑛.

The surprising model prediction is that proliferative conditions are cancer-protective
We designed experiments to test this model prediction.

Testing the flux model

The most straightforward prediction of the flux model was that the tolerance of the
moon jellyfish ephyrae to exogenous carcinogens depended on an active increase in
cell flux. We tested this prediction using EdU staining, which allowed us to image
newly synthesized DNA (and therefore newly divided cells) in a two-day period of
incubation with MCA, compared to a two-day period in artificial salt water. As
the model predicted, cell proliferation accelerated under MCA exposure (Figure
7.6A-B).

We reasoned that sensitivity to apoptosis could be modulated indirectly by modu-
lating the rate of proliferation. Less proliferative jellyfish would have lower sen-
sitivity to apoptosis, and therefore, higher susceptibility to neoplasia. We tested
this with the antiproliferative chemotherapeutic hydroxyurea and with the mTOR
inhibitor sapanisertib. Neither treatment caused neoplasia alone, but in each case,
co-treatment with MCA did lead to neoplasia at a low but repeatable rate (Figure
7.6C).

Based on these findings, we revisited the earlier question of susceptibility to neopla-
sia during injury and recovery from injury. In the simplified model, injury increases
flux – when body size and body plan are homeostatically maintained and neoplasia
is resisted. In the ephyra, injury can lead to one of two outcomes: symmetrization,
a body-plan reorganization that can proceed even without cell proliferation, or re-
generation, which requires cell proliferation [2, 126]. Therefore, we reasoned that a
transient decrease in cell flux after injury would explain the evidence.

Regeneration in moon jellyfish ephyra can be induced or suppressed through manip-
ulation of organismal states. In particular, supplementation of L-leucine and insulin,
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or just L-leucine, drives a regenerative state after injury. We used this inducibility
to test three conditions: MCA with leucine, MCA with injury, and MCA with injury
and leucine (recreating known regenerative conditions). As noted above, MCA with
injury did make ephyrae susceptible to neoplasia. In the flux model, we would
expect leucine alone to have no effect, and leucine after injury to rescue ephyrae
from susceptibility to neoplasia.

The experimental findings were consistent with the flux model: leucine alone did
not increase susceptibility to neoplasia, injury increased susceptibility to neoplasia,
and leucine after injury restored resistance to neoplasia (Figure 7.6D). In totality,
several experiments using different measurements and perturbations support the flux
model.

7.3 Discussion
We used mathematical modeling, control theory, and experiments to investigate
a curious phenomenon: the apparent absence of neoplasia in the moon jellyfish
Aurelia coerulea. We introduced a flux model of resistance to cancer and neoplasia,
which predicted that a high-flux state should be protective against neoplasia, while
a low-flux state should be susceptible to neoplasia. We verified these predictions
experimentally.

The flux model draws inspiration from, and may help synthesize, loosely related
observations from several different model systems. Coupling between proliferation
and cell death has been characterized through various mechanisms in other model
organisms. Contact inhibition, a mechanism by which epithelial cells are sensitized
to commit apoptosis when they are crowded (for instance, when they are dividing
too quickly) is hypersensitive in long-lived naked mole rats. [131]. Embryonic
stem cells are more sensitive to apoptosis after p53 signaling than differentiated
cells [132]. Cell proliferation in the fly midgut is regulated by coupling between
apoptotic enterocytes and stem cells, ensuring that new cells are produced when
apoptosis drives demand [122]. Lastly, hypersensitive responses in the plant immune
system can lead to the sacrifice of an entire branch to prevent spread of an infection;
compared to vertebrates, plants lack motile immune cells and vital organs, suggesting
an overall strategy that necessitates more immune false positives [133].

Taken together, these observations suggest interrelationships between cell flux, lo-
calization of immune responses, regeneration, and cancer. In our modeling, we have
formalized some of these relationships in a relatively simple system. In a broader
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Figure 7.6: After initial mathematical modeling and experiments showed that cas-
pase and Bax inhibition could make an ephyra susceptible to neoplasia, we pursued
further modeling and experiments to test the flux models. (A,B) We used EdU
staining to compare the rate of DNA synthesis, as a proxy for cell proliferation,
between artificial salt water (ASW) and carcinogen (methylcholanthrene, MCA) in
the muscle band of two ephyrae. As predicted by the flux model, cell cycle increased
substantially with MCA. (C) A further prediction of the flux model is that decreasing
global cell proliferation will increase neoplastic susceptilibity. We tested this with
two anti-proliferative experiments: directly with the chemotherapeutic hydroxyurea,
and indirectly with the mTOR inhibitor sapanisertib. (D) In previous experiments,
leucine induced in ephyrae a regenerative and proliferative state. Leucine alone
did not increase neoplastic susceptibility. However, injury did – again raising the
question of whether a proliferation-associated process might create susceptibility.
Instead, using leucine to recreate the post-injury regenerative conditions restore re-
sistance to neoplasia.
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evolutionary view, these elements may be considered part of a system of tissue
homeostasis that allows a more unified understanding [134].

Limitations

With our experiments and mathematical model, we hope to identify general princi-
ples about cancer formation. The conclusions of this chapter leave many questions
unanswered for future study. Our model considers cancer resistance, but we have
not characterized in our experiments the distinction between neoplasia and cancer.
It seems likely that an unpatterned neoplasia brought on by carcinogenic treatment
is cancer in some or all cases, but we have not rigorously characterized, for example,
in what percentage of cases the neoplasia is malignant.

The neoplasia phenotype and the experimental design allowed us to avoid modeling
longer time-horizon scenarios in which pre-cancerous cells accumulate. We also
avoided modeling body size and distinctions between stem cells and differentiated
cells. These elements were not necessary for short timescale experiments in ephyrae,
but would be necessary for a richer cross-species comparison.

Interpretation

Cancer has often been viewed as a subversion of self-repair mechanisms in wound
healing and regeneration [135]. Early versions of this idea were proposed by
Virchow in the 1850s [136], and a modern view began with the discovery of stem
cells in the 1960s [137]. Because cancer is fundamentally a disease of cell division,
it may be seen as an inevitable cost to regenerative tissue [138, 139]. In blood, for
example, hematopoietic stem cells are more susceptible to cancer than differentiated
cells [140]. Across tissue types in humans, lifelong cell divisions are associated
with neoplastic susceptibility, with tissues like colon high in both division and
susceptibility and tissues like bone low in both division and susceptibility [141].
Proposed mechanisms for a relationship between regeneration and cancer vary, and
include the accumulated mutational burden from cell divisions [141], unrestrained
stemness [142], and misuse of immune cells and pathways needed for wound healing
[143].

Yet a relationship between regeneration and cancer, regardless of mechanism, is far
from universal in the animal kingdom. Cancer rates and lifespan do not show the
relationship that would be predicted by a simple mutation-accumulation argument,
for example, with short-lived mammals like mice having similar rates of cancer to
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long-lived mammals like humans [144]. Several mammals, such as naked mole rats,
microbats, elephants and gray whales achieve long life without concomitantly high
rates of cancer – either in comparison to similarly sized mammals or in comparison
to a rate of cancer that would theoretically scale with body mass and lifespan
[144, 145]. Intriguingly, highly regenerative non-mammalian organisms such as
hydra, planaria, and axolotls often have low rates of cancer [146]. It remains unclear
how these organisms balance extracellular signaling to regulate pre-neoplastic cells
versus flux-like mechanisms to ultimately clear pre-neoplastic cells.

The flux model gives conditions under which cancer resistance and tissue home-
ostasis are jointly achieved, but it also implies failure modes. A high-flux tissue
will resist exogenous mutations and wear and tear more easily, even with ongoing
endogenous mutations. However, if flux declines, the high-flux system may be more
vulnerable to cancer than the low-flux system – which may be why the neoplasia
that formed in our experiments formed so quickly, typically in one to three days.
Therefore, the overall slowdown of cell division in aging may be an important factor
in oncogenesis.

Jellyfish are basal metazoans. If some evolutionary ancestor of humans had both
a high cancer resistance and a high regenerative capacity, why did vertebrates –
especially mammals and birds – lose those dual capacities? An intriguing possibility
is that cell flux itself is a key variable: with the evolution of adaptive immunity, more
targeted cancer defenses are possible, decreasing 𝑝 in the flux model and decreasing
the baseline necessary flux. This could then enable the development of tissues and
evolved lifestyles that rely on long-lived cells – tissues like bones, hearts, and brains.
Characterizing interrelationships between cell flux and more complex body plans
will be an exciting direction in future work, both to clarify the evolutionary origins
of cancer and to inform treatments that would seek to modulate flux rather than
proliferation or apoptosis separately.
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C h a p t e r 8

CONCLUSION

In Chapter 1, I argued that nervous systems, immune systems, and developmental
systems were connected by a broader theoretical framework based in special prop-
erties of multicellular control. Now that we have considered both theory and case
studies, I will conclude with some informal observations.

• Multicellular control builds on and enhances existing domain-specific
models. Each of the three domain-specific problems we considered has a his-
tory of mathematical modeling associated with it: predictive coding models
in neuroscience [43], viral-immune kinetic models and host-parasite evolu-
tionary models in immunology [50, 70, 71], and detailed statistical models of
cancer risk [138, 144]. Once we recognize that each of the models analyzed
in this preceding work either models a control system or includes a control
system as a major unknown, we can use a multicellular control framework
for both a technical and a conceptual enhancement of these existing mod-
els. Technically, we gain access to new methods for dealing with delays,
uncertainty, and self-renewal in control systems. Conceptually, we gain the
ability to transfer ideas and mechanisms between different systems, including
systems we have not studied in detail. We take substantial inspiration, for ex-
ample, from previous work on errors and fluctuations in molecular synthesis
in single cells, even though our models primarily work on the multicellular
scale [63, 147].

• Even simple evolutionary problems are hard to solve, and solutions are
rare. In all three of the domains we considered in this work, we analyzed a
simple task, in the sense that the task could be described by a dynamical system
in relatively few variables. By using control theory to analyze all possible
solutions to these simple tasks under more realistic constraints than had been
used before, we were able to generate meaningful models of complexity, and
in some cases directly testable predictions about the underlying biology.

• A lot of complexity is coordination. In Chapter 3, we considered a number
of ways in which communication structure was shaped by task specifications
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and locality constraints. When we defined locality as slow, inaccurate, or
expensive communication between subsystems in a larger system, we found
that the communication structure quickly became much more complex than the
task itself. In order to separate a simple problem among different subsystems,
it is necessary for each subsystem to tell at least some of the others what it is
doing – that way, the control action of one subsystem would not be mistaken
for additional disturbances in the regulated variables. This reasoning should
be applicable to other systems as well; at least some of the signal complexity
of cytokines, chemokines, and surface receptors in the immune system might
be explained by the principle that the immune system is sensitive to stress
and change, and immune responses themselves are sources of stress and
change, so localized immune responses require a well-defined and complex
communication structure.

• Complex control systems often evolve on top of simple control systems.
When modeling the human immune system’s response to viruses and cancer
(in Chapter 4 and in additional work that is not part of this thesis), I often
wondered why we need T cells and B cells to do a job that jellyfish accomplish
more successfully with few if any dedicated immune cells. The mathematical
model we use in Chapter 7 offers some clues. The challenge faced by the
jellyfish in that model was how to discriminate between pre-cancerous cells
and healthy cells, and one possible solution to that problem is to aggressively
clear healthy cells along with pre-cancerous cells. But if you can target cells
more carefully, you can build different kinds of bodies. Without spatially
localized immune responses, it seems unlikely to me that humans would ever
have evolved bodies and life histories that depend on protecting some parts
of the body more than others – it seems unlikely that we would evolve, for
example, brains or pregnancy. On the other hand, while our immune system
can do many things the jellyfish’s immune system cannot do, the jellyfish’s
capacity to resist cancer seems to exceed ours. What complex control often
offers in practice is a more flexible set of systems that can be built that can
exploit more detailed assumptions about the world.

• The fact that simple interventions work is surprising, and suggests some-
thing profound. One recurring theme across different fields in biology is that
simple interventions can be surprisingly effective at changing whole-system
behaviors, even when we do not understand many aspects of the underlying
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mechanisms. Examples include implantable brain stimulators for epilepsy,
immunotherapy for cancer, and nutrient supplementation for regeneration. If
you told me, in my capacity as a control theorist, that you would present me
with a system with almost no model, almost no measurements, and only one
point of action, and you wanted me to exert a reliable effect on the system’s
behavior, I would probably tell you that the problem was impossible. The fact
that it is not impossible in biology tells us something important; it tells us
that biological systems belong to some very special class of systems. I have
argued in this thesis that what makes these systems special is that they are
multicellular control systems. I suspect that experiments and interventions
that yield big effects tend to be those that are not fighting the extant control
system – they are either working with it, or breaking it in just the right way.
But what is the right way? The theorems and case studies in this thesis only
scratch the surface of this question.

• Theory informs, but does not replace, design and discovery. We want math
to help us understand biology more rigorously, but we do not always know
what rigor should look like. The right statistical test? A thousand-parameter
differential equation model? An opaque neural network with empirical predic-
tive power? I would like to conclude this thesis with an appeal to mathematical
intuition, not as the opponent of mathematical rigor but as its companion. The
flux model that informed the experimental work in Chapter 7 would not have
looked the way it did if not for the immune model in Chapter 4, the senso-
rimotor model in Chapter 3, and the theoretical foundation in Chapter 5 and
Chapter 6. Yet the flux model itself was ultimately quite simple, and maybe the
same experiments could have been done without any math at all. I have many
stories like this, stories where the magic of math in biology is near-invisible.
There is some knowledge to be won not just in reading the math but doing
the math, not just analyzing the data but collecting the data, that cannot be
conveyed in papers and textbooks. This is not the easy answer, but this is how
control theory has always worked in engineering design: theory guides us to
the boundary of what we can understand with certainty about the real world
with rigorous mathematics, but equally importantly, it gives us intuition for
the uncertain world just beyond that boundary. Most of multicellular biology
remains in that uncertain world, and I hope this thesis helps us see it a little
more clearly.
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