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ABSTRACT

Detecting exoplanets through direct imaging at lower angular separations, where
more planets are expected to be, is limited by the variability of the stellar point
spread function. Integral field spectrographs like OSIRIS at the Keck Observatory
can leverage high spectral resolution to search for new planets at smaller separations
(< 0.3 arcseconds) by detecting their distinct spectral signature compared to the
diffracted starlight. In this thesis, we present the mid-survey results of a search for
planets around 23 targets in the Ophiuchus and Taurus star-forming regions.

We use this pathfinder survey with Keck/OSIRIS to demonstrate our technique and
compare the final sensitivities to other classical imaging techniques, particularly at
separations of 0.05 − 0.3 arcseconds. We detect a M dwarf companion around HD
148352 at a ≈ 34𝜎 significance level. We measure this binary star companion to be
at an angular separation of roughly 0.11 milliarcseconds, with a contrast of 0.38%,
effective temperature 𝑇eff ≈ 3200 K, and radial velocity 𝑅𝑉 ≈ 12 km/s. We also
present other low-significance objects, along with detection maps and sensitivity
limits around these 23 targets.

We use our open-source data analysis pipeline, called the Broad Repository for Ex-
oplanet Analysis, Detection, and Spectroscopy (breads), as the framework for this
planet search. breads operates on high spectral resolution data from existing and
in-development instruments. Our code is based on a forward-modeling framework,
which is statistically more accurate than classical cross-correlation techniques. It
includes a built-in optimization and analytical marginalization of linear parameters
in the forward model, therefore limiting the number of parameters to be explored by
the posterior sampling method. We allow users to select forward models, parameters
to detect and analyze, and fitting methods like Markov Chain Monte Carlo sampling,
grid optimization, and gradient descent. breads provides a flexible framework to
retrieve radial velocity, spin, and atmospheric parameters of high-contrast compan-
ions. We also describe wavelength and resolution calibration, transmission and
spectra calculation, and bad pixel identification techniques.

Our work will be applicable to future integral field spectrographs like NIRSpec
on the James Webb Space Telescope and other first light instruments on the future
Extremely Large Telescopes, which are poised to become the next generation of
exoplanet detection facilities.
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C h a p t e r 1

INTRODUCTION

Exoplanets are any planets outside our solar system, most of them found orbiting
another star. The first exoplanets were discovered in the 1990s (Wolszczan and Frail,
1992; Mayor and Queloz, 1995). Over 5000 confirmed detections of exoplanets have
now been made (NASA Astrophysics Division, 2022) using a variety of detection
methods. About 95% of these have been discovered by one of two classical indirect
methods: the radial velocity method and the transit method.

In Section 1.1, we briefly describe these two indirect methods: radial velocity and
transit. While they are extremely powerful detection techniques, we detail their
underlying mechanism to motivate some limitations in the detection and character-
ization of certain exoplanetary systems. Section 1.2 describes direct imaging and
how it can address the limitations of indirect methods. This thesis focuses on direct
imaging, specifically on how using this technique combined with high-resolution
spectroscopy can improve our detection sensitivity at smaller separations from a
star. Section 1.3 details how improved sensitivity gives us the information needed
to explain the formation and migration mechanisms of directly imaged exoplanets.
This remains a major scientific goal of our ongoing pathfinder survey of young stars,
which is described in this thesis. Section 1.4 introduces the observation technique
and instrument used for this survey, and Section 1.5 details the second main scientific
goal of our survey - quantifying the improvement in sensitivity of direct imaging,
when we complement classical techniques with moderate to high-resolution spec-
troscopy. The section introduces classical techniques and motivates our reasoning
for expecting this better sensitivity closer to a host star.

1.1 Indirect detection methods
In this section, we describe the radial velocity method and the transit method. These
are termed indirect, as they rely on observing light from the host star, instead of
photons emitted by the exoplanet itself. Doppler’s theory posits that stars that have
motion along the line of sight of an observer, or velocities in the radial direction,
would exhibit a change in color. By measuring shifts in the position of a specific
absorption line in the spectrum of the host star, an observer can measure its radial
velocity. Using Keplerian dynamics, Lovis and Fischer (2010) derive the radial
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velocity semi-amplitude

𝐾1 ∝ 𝑚𝑝 × sin 𝑖 × (𝑚𝑠 + 𝑚𝑝)−2/3 × 𝑃−1/3, (1.1)

where 𝑚𝑝 and 𝑚𝑠 are the masses of the planet and the star, 𝑃 is the orbital period,
and 𝑖 is the inclination of the orbit. The method works best for detecting planets
with shorter orbital periods, whose orbits make a small angle with the line of sight
(a “side-view" or edge-on orbit).

The transit method detects exoplanets by measuring dips in the luminosity of the
host star, as the planet moves in front or behind the star’s observed disk, one body
shadowing the other. The probability of observing these transits or occultations is
highest when the orbit is closely aligned with the line of sight (Winn, 2010).

Figure 1.1: Detected exoplanets with measured or estimated mass and orbital period.
(NASA Astrophysics Division, 2022) Color denotes the technique that detected the
exoplanet for the first time.

To make a credible detection, an additional requirement, of measuring several radial
velocity cycles or luminosity dips associated with transits, is expected. This criterion
prefers exoplanets with shorter orbital periods.

To study theories of planet formation, and evolution, it is critical to know how the
exoplanet mass, orbital parameters, or stellar characteristics affect the occurrence
rates of planets. This can be described as attempting to populate Fig. 1.1 accurately.
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As there are planetary systems that are not easily accessible to these indirect detection
methods, techniques involving direct imaging come into play. An instance of this
would be the argument of Boley (2009) that the dominant mechanisms for the
formation of gas giant planets at radii r < 100 AU and r > 100 AU are core accretion
and disk instability respectively. By Kepler’s laws, planets with r > 100 AU have
orbital periods of over 1000 years, which makes them more accessible to methods
like direct imaging.

1.2 Direct imaging
Direct imaging methods attempt to spatially resolve the light of an exoplanet from
that of its host star. Young planets, that recently stopped or are still accreting proto-
planetary material, are hot enough to be significantly self-luminous. These offer the
best contrast in brightness from their young host stars and are excellent candidates
for direct imaging (Bowler, 2016). As they involve directly capturing photons that
the planet emits, these techniques allow for spectroscopic analysis of the planet’s
atmosphere. This can provide information about bulk parameters of exoplanet at-
mospheres, including effective temperature, surface gravity, cloud coverage, and
composition (Ruffio, Macintosh, et al., 2019), and also initial conditions, internal
structure, or other physical properties (Bowler, 2016).

The main challenge to direct imaging is that planets are much fainter than their host
stars, such that the planet image is “lost" in the blur of the much brighter stellar
image. The ratio of planetary to stellar brightness, or contrast, is typically of the
order of millionths to billionths (≈ 10−6−10−9). Classical direct imaging techniques
employ large telescopes with adaptive optics (AO) systems, which deform mirrors
in real-time to correct for atmospheric turbulence, and coronagraphy, where stellar
light is blocked to reduce required contrast from stray light. Extremely sophisticated
high-contrast AO imaging has enabled the detection and study of planets with orbital
separations >≈ 10 AU and masses >≈ 1𝑀Jupiter (Bowler, 2016).

Most direct imaging surveys searching for new companions use photometric or
low spectral resolution data. Higher resolution spectroscopy is a developing field,
where instruments with high spectral resolutions 𝑅 are generally used to characterize
known exoplanets. High values of 𝑅 allow for the resolution of spectral lines, which
enables the study of atmospheres and the measurement of planetary radial velocity,
spins, and surface cloud coverage (Q. M. Konopacky et al., 2013) (Wang et al.,
2018).
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Notably, high-resolution spectrographs are typically used for the characterization
of known companions, but not for the detection of new ones. In this work, a blind
search using an integral field high-resolution spectrograph is described. This is
motivated by the suggestion that higher resolutions of 𝑅 ≈ 4000 might be able to
detect planets at smaller separations from the host star, in regions where they are
expected to be more common. These considerations relate to the survey’s scientific
goals described next.

1.3 Theories of Formation and Migration of Gas-Giant Planets
Core accretion with gas capture and gravitational instability are the two main theories
that each describe a mechanism for exoplanet formation from proto-planetary disks
(Boley, 2009). Gas giants (like those in the outer solar system) are understood to
be formed by a core slowly accreting solid material from the disk until it reaches
a critical mass that triggers a runaway accretion of gas(Lissauer, 1987; Pollack
et al., 1996). This remains the dominant mechanism for separation 𝑟 under 100 AU
(Boley, 2009). A likely alternative that can form planets faster at larger separations
is gravitational instability in the outer disk or solar nebula, which can also form
higher mass brown dwarfs (Boss, 1997). The process involves the rapid cooling of
a massive protoplanetary disk, such that several planet-sized bodies emerge that can
sustain themselves under their own gravity.

Directly imaged exoplanets (generally≈ 10𝑀jupiter, semi-major axis≈ 10−1000 AU)
lie at the transition between these two methods (Bowler, 2016), and offer a unique
problem of explaining how large planets form at wide orbits. For comparison, the
vast majority of exoplanets detected by the radial velocity method are within 3 AU.
Planets that have been directly imaged till now have been more massive than expected
due to core accretion at their high separations, given that the low density of particles
in a protoplanetary disk increases the timescales for accretion (Dodson-Robinson et
al., 2009). On the other side, the occurrence rate of brown dwarfs in direct-imaging
surveys is lower than what could indicate formation through gravitational instability
(Nielsen et al., 2019). Increasing the sample size of directly imaged exoplanets
through further surveys of younger stars can allow us to constrain and know more
about the formation processes of young planets.

Another question that can be studied from more detailed surveys of young stars is
how orbital migration affects the distribution of giant planets. Fewer planets than
what is predicted by both theories of exoplanet formation have been discovered
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around older stars (ages over about 20 Myr) in the dominant regions of formation,
in orbits of about ≈ 10 − 100 𝑎𝑢). A likely explanation is that planets migrate into
smaller orbits after formation over timescales of mega-years. Surveys of younger
stars can test theories of orbital migration by mapping the exoplanet population over
different ages of stars. It is also likely that more planets could be detected around
younger stars, as planets around such a star could be still at larger separations (regions
of formation) before they have migrated inwards. Additionally, direct imaging with
high-resolution spectroscopy can probe abundance ratios such as the carbon-to-
oxygen ratio, which are important tracers of planet formation because they can be
related to the location of formation and the fraction of gas and solids it accreted
from the protoplanetary disk (Ruffio, Quinn M. Konopacky, et al., 2021).

1.4 Integral Field Spectroscopy and the OSIRIS instrument
Integral field spectroscopy (IFS) is like 3D spectroscopy where we obtain spa-
tially resolved spectra from a field of view on the sky. Unlike time-domain 3D
spectroscopic techniques that scan through wavelengths over time, IFS takes in all
spatial and spectroscopic information in one exposure simultaneously. This makes
IFS less susceptible to time-variable systematics like sky or instrument conditions
(Allington-Smith, 2006). 3D techniques like IFS produce a datacube with two
spatial directions and one spectral direction, containing a scalar quantity related
to the flux for each spatial location and each wavelength (Allington-Smith, 2006).
1D high-resolution spectrographs are typically used to characterize directly imaged
exoplanets, by setting the location on the sky using astrometric predictions. For
a survey searching for new planets around host stars, 3D techniques like IFS are
preferable as accurate target acquisition is not necessary.

OSIRIS (OH-Suppressing InfraRed Imaging Spectrograph) is a near-infrared inte-
gral field spectrograph compatible with the Keck Adaptive Optics System, operating
from 1 to 2.4 microns in wavelength at close to the Keck diffraction limit (Larkin
et al., 2006). It can sample spectra from up to ≈ 3000 spatial locations from a
region of the sky, with spatial resolution ranging discretely from 20 to 100 milliarc-
seconds. Each of these one-dimensional spectra at a given spatial location is termed
a “spaxel", that is, each spaxel corresponds to a spatial location on the sky. The
spectral resolution is around ≈ 3400 − 3800, with the spectral range covering the
z, J, H, or K bands. On its detector, OSIRIS measures a two-dimensional image,
with a sequence of pixels in a row on the detector corresponding to a spectrum at
a particular spatial location on the sky. Barring the edges of each spectrum, the
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Figure 1.2: Schematic of data reduction pipeline, drawn for target HD 148352. We
discussed a detected binary companion in Section 3.6. From left to right: (1) The
system with the OSIRIS field of view; the 𝑦 axis points North; companion signal is
hidden in the glare of the target star. (2) Raw two-dimensional data frame obtained
from the OSIRIS detectors after observation; spectra are arranged as rows. (3) Data
transformed by OSIRIS DRP into data cubes. The bright speckle to the left of the
stellar PSF is not the companion signal, but rather a residue from pixel bleeding
issues, described in Section 2.7 (4) Signal-to-noise ratio map, with detection of a
companion, generated as described in Sections 2.8, 3.1, and 3.6.

pixels horizontally adjacent to a specific pixel in the 2D map correspond to dif-
ferent wavelengths in the same spectrum (i.e., for the same spatial location), while
the vertically adjacent pixels correspond to fluxes at different locations on the sky.
The OSIRIS Data Reduction Pipeline (Keck Data Reduction Pipelines, 2022) then
converts this two-dimensional detector map to a 3D data cube (with two spatial and
one spectral dimension), which serves as the input to our data analysis. Figure 1.2
details a schematic of this data collection, reduction, and analysis pipeline.

1.5 Sensitivity of Moderate-resolution integral field spectroscopy
Direct imaging surveys have detected several exoplanets, generally at separations
over 10 AU (Bowler, 2016), using classical techniques such as adaptive optics,
coronagraphy, image processing, or a combination of these. These surveys typ-
ically use imagers (two-dimensional wavelength-collapsed pictures of the sky) or
low-resolution spectrographs (such as the Gemini Planet Imager, Macintosh et al.,
2014). These are combined with speckle (granular interference, diffracted starlight)
subtraction algorithms such as Spectral (Marois, Doyon, et al., 2000, SDI) or Angu-
lar (Marois, Lafreniere, et al., 2006, ADI) or Referential (LafreniÃ¨re et al., 2009,
RDI) Differential Imaging. These algorithms use the difference in characteristics of
companion signal and speckle noise (such as wavelength-dependent magnification
of the point spread function (PSF), time-domain rotation between signal and PSF, or
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using other stars’ PSF). These observing strategies become less effective at smaller
separations, where self-subtraction of the companion signal becomes stronger. So,
they become to become very less sensitive, starting at around 0.2 arcseconds (Hoei-
jmakers et al., 2018). Alternatives like non-redundant aperture masking are likely
to be able to detect at smaller separations but are limited to brighter companions
(Sallum and Skemer, 2019).

As noted before, radial velocity surveys have measured that the population of gas
giants is maximized at separations close to 1-10 AU (Fulton et al., 2021), which
implies the need to improve sensitivity at smaller separations. Having this capability
would allow follow-up detections and confirmations from large-scale surveys using
indirect methods, such as Gaia monitoring.

The development of infrared high-resolution spectroscopic facilities allows for the
techniques we are proposing in this article, which involve moderate resolution
integral field spectroscopy. With 𝑅 > 3000, we can attempt to distinguish between
the light from a companion planet or brown dwarf and the diffracted light from the
star at a spatial location on the sky, by using our knowledge of the expected spectral
features of the planetary atmosphere. Using cross-correlation techniques makes
these high-resolution spectroscopy methods close to independent of the speckle
noise, which was noted earlier to be the limiting factor for classical direct imaging
at smaller separations. We expect our method’s sensitivity to be solely dependent
on the amount of starlight at the location of detection, which makes us closer to
photon-noise limited.

Similar techniques that utilize narrow spectral features have been used to characterize
previously discovered planets, in observations using the Keck/OSIRIS (Q. M.
Konopacky et al., 2013) and VLT/SINFONI (Hoeijmakers et al., 2018) instruments.
OSIRIS is extremely well suited to this approach due to its combination of moderate
spectral resolution, a moderate field of view, and the Keck adaptive optics system. It
can be used to characterize atmospheric abundances, carbon-to-oxygen ratios, and
radial velocity of planets. The techniques we are developing will also apply to new
integral field spectrographs on JWST and the extremely large telescopes, which are
expected to significantly improve capabilities for direct imaging.
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C h a p t e r 2

APPROACH AND METHODS

In this chapter, we will emphasize the two main components of this thesis - an on-
going pathfinder survey of young stars in star-forming regions, and the development
of data analysis modules that uses a forward modeling approach to reduce moderate
to high-resolution integral field spectroscopy images.

Section 2.1 and 2.2 detail our observations of young stars in Taurus and Ophiuchus
using the OSIRIS instrument at the Keck Observatory, and initial reduction using a
provided data reduction pipeline, respectively. Section 2.3 presents an open-source
framework breads. We develop our techniques described in the thesis within this
framework, with the subsidiary goal of allowing other professionals to use them
with their own high-resolution spectrographs and corresponding data sets. Within
breads, additional calibration is performed on outputs from the OSIRIS DRP,
as detailed in Section 2.4. Section 2.5 describes our process of using aperture
photometry to compute sky transmission and stellar spectra. These are used to
construct our model, as enumerated in Section 2.6, which also explains our forward
modeling approach. Section 2.7 describes how we identify and correct bad pixels.

Generation of planet search maps, with noise calibration, is detailed in Sections 2.8
and 2.9. Quantification of sensitivity, after correcting for algorithmic systematics, is
detailed in Sections 2.10 and 2.11. These final sections directly relate to the results
discussed in Chapter 3.

2.1 Observations and Data Collection
For our survey, young stars without significant disks are attractive targets. Pre-main
sequence stars in molecular cloud regions such as Taurus and Ophiuchus have been
a standard for studying star formation (Kenyon and Hartmann, 1995; Cheetham
et al., 2015). While substellar companions around stars in this region have been
identified, these have been found at large separations or embedded in disks. Very
young planets at smaller separations of ≈ 0.1” (corresponding to 10-20 AU) would
allow for characterizing the physical and orbital parameters of planets at young ages.

Table 2.1 lists the 11 Ophiuchus targets and 12 Taurus targets observed using
Keck/OSIRIS in the first and second Keck observing semesters of 2021 respectively;
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Ophiuchus Target List

Star RA Dec Type 𝑀/𝑀⊙ 𝑅𝑚𝑎𝑔 𝐾𝑚𝑎𝑔 Shorthand
HD 148352 16:28:25.16 -24◦45’00.9” F2 1.52 7.3 6.511 HD148352
Em* SR 3 16:26:09.31 -24◦34′12.1′′ B6 5.20 10.6 6.504 SR3

Em* SR 21A 16:27:10.27 -24◦19′12.7′′ G1 3.69 13.25 6.719 SR21A
Em* SR 4 16:25:56.15 -24◦20′48.1′′ K4.5 1.35 12.11 7.518 SR4
ROXs 44 16:31:33.46 -24◦27′37.3′′ K3 2.07 12.35 7.61 ROXs44
ROXs 8 16:26:03.02 -24◦23′36.0′′ K1 2.95 9.34 6.227 ROXs8
ROXs 4 16:25:50.52 -24◦39′14.5′′ K5.5 1.15 13.88 8.33 ROXs4

ROXs 35A 16:29:33.97 -24◦55′30.3′′ K3 2.07 12.41 8.531 ROXs35A
ROXs 43B 16:31:20.19 -24◦30′00.9′′ K5 1.20 12* 7.089 ROXs43B
Em* SR 14 16:29:34.41 -24◦52′29.2′′ G4 3.64 10.04 8.878 SR14
Em* SR 9 16:27:40.28 -24◦22′04.0′′ K5 1.20 11.87 7.207 SR9

Taurus Target List
AB Aurigae 04:55:45.85 +30◦33′04.3′′ A0Ve 4.00 7.05 4.23 AB_Aur
CW Tauri 04:14:17.00 +28◦10′57.8′′ K0Ve 1.40 12.36 7.127 CW_Tau
DS Tauri 04:47:48.60 +29◦25′11.2′′ K4Ve 0.97 12.3 8.036 DS_Tau
LkCa 15 04:39:17.79 +22◦21′03.4′′ K5Ve 0.97 12.03 8.163 LkCa15
LkCa 19 04:55:36.97 +30◦17′55.1′′ K0Ve 2.42 11.12 8.148 LkCa19
HBC 388 04:27:10.57 +17◦50′42.7′′ K1e 2.10 10.22 8.296 HBC388

GM Aurigae 04:55:10.98 +30◦21′59.4′′ K3Ve 1.40 13.1 8.283 GM_Aur
HN Tauri 04:33:39.36 +17◦51′52.3′′ K5e 0.97 13.4 8.384 HN_Tau
HBC 354 03:54:35.56 +25◦37′11.2′′ K3 1.40 13.79 11.095 HBC354
HBC 392 04:31:27.18 +17◦06′24.8′′ K5e 0.97 12.1 9.497 HBC392
HBC 372 04:18:21.48 +16◦58′47.0′′ K5 0.97 13.26 10.464 HBC372
HBC 353 03:54:30.18 +32◦03′04.4′′ G5 3.42 9.862 3.4188 HBC353

Table 2.1: Our 23 targets in Ophiuchus and Taurus star-forming regions. RA and
Dec list right ascension (in hrs:mins:secs) and declination in (degrees, arcmins,
arcsecs) respectively. Type, 𝑀/𝑀⊙, 𝑅𝑚𝑎𝑔, 𝐾𝑚𝑎𝑔 list spectral type, stellar mass in
units of solar mass, R-band magnitude (relevant for NGS), and K-band magnitude
(relevant for observations). Shorthand lists the abbreviation used in this thesis to
denote this specific target. Values are from Cheetham et al. (2015) for Ophiuchus
and from Kenyon and Hartmann (1995) and ESA (1997) for Taurus targets. Note that
HD 148352 is not in the Ophiuchus cluster, but rather is an interloper, as discussed
in Section 3.6.

certain targets are listed in our reference material under other common identifying
systems, which we compare using Simbad 1. Table 2.2 lists information about
science observations of these targets. We aim to observe roughly 20 more stars in
these two regions in 2022.

Our observing strategy is to take 3 to 5 sequences of images per target, with the Keck
adaptive optics system operating and tracking using a natural guiding star (NGS)
system (we use the bright target with high 𝑅𝑚𝑎𝑔 itself as the natural guiding star).
Our exposure time for each frame is dependent on the brightness of the targets in
K-band, denoted by 𝐾𝑚𝑎𝑔. We observed targets in OSIRIS’s KN5 filter, choosing
this narrow band as it is expected to contain a higher density of planetary spectral
lines, and OSIRIS covers a larger field of view with narrowband filters compared to

1http://simbad.u-strasbg.fr/

http://simbad.u-strasbg.fr/
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Ophiuchus Science Observations
Star Date Sequences Frames Exposure Time (s)

HD 148352 2021/26/06 3 21 30
Em* SR 3 2021/26/06 1, 3, 1 11, 21, 6 30

2021/26/07 4, 2 6, 4 20
2021/26/08 3, 4 3, 3 20

Em* SR 21A 2021/26/07 2 11 30
Em* SR 4 2021/26/07 4 5 90
ROXs 44 2021/26/07 4 5 90
ROXs 8 2021/26/07 4 11 20
ROXs 4 2021/26/07 5 4 120

ROXs 35A 2021/26/08 5 4 120
Em* SR 14 2021/26/08 4 4 120
ROXs 43B 2021/26/08 4 5 90
Em* SR 9 2021/26/08 4 4 90

Taurus Science Observations
AB Aurigae 2021/10/18 2, 2, 3, 4 10 10, 10, 4, 4

2021/10/19 3, 3, 3 6 4
2021/10/20 3, 3 6 4

CW Tauri 2021/10/18 3, 3 10 30
DS Tauri 2021/10/18 3, 2 7 90
LkCa 15 2021/10/18 3, 3 5 90
LkCa 19 2021/10/19 3, 3 4 90
HBC 388 2021/10/19 3, 2 4 90

GM Aurigae 2021/10/19 3, 2 4 90
HN Tauri 2021/10/19 3, 1 4, 2 90
HBC 354 2021/10/20 3, 2 2 300
HBC 392 2021/10/20 3, 3 1 300
HBC 372 2021/10/20 3, 3 1 300
HBC 353 2021/10/20 3, 1 1 300

Table 2.2: Science observations of the 23 targets. We include the date, number
of sequences per target, frames per sequence, and exposure time (in seconds) per
frame. Field of view is dithered between each sequence. For Taurus targets, the
sequences that are in bold and italicized were taken after the field of view was
rotated by ninety degrees (to counter pixel bleeding as described in Section 2.7).

broad bands. We use a plate scale of 20 milliarcseconds (mas), which denotes our
spatial resolution and is the finest resolution possible with OSIRIS. This provides
us with a higher density of spatial locations close to the star (< 0.3”), which is the
region of interest for our survey.

We offset our field of view by a few pixels in both axes, or dither, between each
sequence, as a systematic check against instrumental artifacts like a bad spatial



11

Calibration Sky Observations
Date Frames Exposure (s)

2021/26/06 2 600
2021/26/07 1 600
2021/26/08 2 600
2021/10/18 2 600
2021/10/19 2 600
2021/10/20 2 300

Table 2.3: Long exposure sky images taken to perform wavelength and resolution
calibration using OH emission lines, as described in Section 2.4.

Ophiuchus Calibration Observations
Star Date Sequences Frames Exposure (s) Targets

HIP 73049 2021/26/06 6 1 2 SR3
2021/26/07 7 1 1.5 SR4
2021/26/08 7 1 1.5 ROXs35A

Em* SR 3 2021/26/06 1, 3 11, 21 30 HD148352, SR3, SR21A
2021/26/06 1 6 30 -
2021/26/07 4, 2 6, 4 20 ROXs44, ROXs8
2021/26/07 2 4 20 ROXs4
2021/26/08 3, 4 3, 3 20 SR14, ROXs43B
2021/26/08 4 3 20 SR9

Taurus Calibration Observations
AB Aurigae 2021/10/18 2, 2 10 10, 10 AB_Aur, CW_Tau

2021/10/18 3 10 4 DS_Tau
2021/10/18 4 10 4 LkCa15
2021/10/19 3 6 4 LkCa19
2021/10/19 3 6 4 HBC388, GM_Aur
2021/10/19 3 6 4 HN_Tau
2021/10/20 3 6 4 HBC354
2021/10/20 3 6 4 HBC392, HBC372, HBC353

Table 2.4: Observations of A0 standard stars, taken to calculate sky transmission
and perform telluric calibration, as described in Section 2.5. We include date of
observations, number of sequences, frames for each sequence, and exposure time per
frame in seconds. Numbers in bold and italics represent that the sequence was taken
after rotating the field of view by ninety degrees. Several of these observations also
serve as science data for the corresponding target. We also list the targets calibrated
using each set of observations.

location. A real companion candidate will maintain the same position relative to
the target star, while artifacts might not move consistently in our field of view. We
take one sequence of skies per target with the same exposure time per image, after
turning the adaptive optics off and putting the bright star out of our field of view. As
our targets are bright stars, we attempt to acquire consecutive targets in alternating
sections of our field of view (top and bottom halves) to avoid persistence artifacts
between targets.

Analyzing the Ophiuchus data, we discovered a pixel bleeding issue as a consequence
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of using bright targets, which is described in detail in Section 2.7. This problem
results in specific sections of data on either spatially horizontal side of the star being
unusable. To cover a larger region around the target, we amended our observing
strategy for observations of Taurus, such that we rotate the field of view of OSIRIS
by a right angle (90 degrees) for roughly half of our image sequences.

We additionally obtained two sets of calibration data. The details of how each
calibration is performed are included in Sections 2.4 and 2.3. These data sets are
listed in Tables 2.3 and 2.4 respectively. At the start of every observing night, we
took 2-3 images of the sky with the adaptive optics system off, with long exposure
times of 5 or 10 minutes. This data is used to perform wavelength and resolution
calibration in the science data set using OH– emission lines. These were taken
in the OSIRIS’s KN3 filter, as this narrow K-band contains more OH absorption
lines. We additionally take data from standard stars of spectral type A0 to perform
telluric calibration. A0 stars are expected to contain few spectral features, making
them most suitable for telluric calibration. Table 2.4 also lists the targets that are
calibrated using each calibration data set. We also obtained dark frames for the
instrument for each observing run, for the same exposure duration as the wavelength
and resolution calibration.

2.2 Constructing Datacubes through OSIRIS Data Reduction Pipeline
OSIRIS gives us two-dimensional raw data files, where the value at every detector
location is a scalar related to the flux within a spectral bin from a location on the
sky. We use the OSIRIS Data Reduction Pipeline (ODRP or OSIRIS DRP) to obtain
three-dimensional data cubes.

The following settings were used for the wavelength and resolution calibration data:

• Reduction Type: ARP_SPEC

• Reduction Template: basicARP_drftemplate.xml

• Subtract Frame: Combined Dark Frame obtained as below, of the same
exposure time as each calibration image.

• Extract Spectra: s201217_c010___infl_Kn3_020.fits

• all submodules turned on
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Each respective combined dark was obtained by adding all frames of the same expo-
sure time as the calibration sky image, from the set of darks taken for the particular
observation run. These were combined using the OSIRIS DRP with Reduction Type
and Reduction Template set toCRP_SPEC andcombine_skies_darks_drftemplate.xml
respectively.

The following settings were used for all the remaining data, taken with a target star
in the field of view:

• Reduction Type: ARP_SPEC

• Reduction Template: basicARP_drftemplate.xml

• Subtract Frame: Sky Frame, taken specifically for each target

• Extract Spectra: s201217_c010___infl_Kn5_020.fits

• all submodules turned on

As mentioned before, we took one sequence of sky images for each target. For the
𝑛𝑡ℎ image in a sky sequence, we use the 𝑛𝑡ℎ sky image in the sky sequence. This is
done to ensure that any pixel artifacts (that might be misidentified to be a planet)
in a particular target or sky image are not propagated in a large portion of our data.
The rectification matrices used in the Extract Spectra option for these settings are
available on the Keck OSIRIS website 2.

2.3 Developing Open Source Framework breads
breads stands for Broad Repository for Exoplanet Analysis, Detection, and Spec-
troscopy. It is designed to be an open-source flexible framework that can use our
forward modeling techniques on data from high-resolution spectrographs, extending
the accessibility of our methods in the scientific community. Hosted on GitHub 3

and Python Package Installer 4, breads employs object-oriented and inheritance
principles. The philosophy is to let users make three main choices. First, users se-
lect a data class that encodes specific features of their instrument. We have defined
classes for KPIC (Keck Planet Imager and Characterizer) and OSIRIS at Keck, as

2http://tkserver.keck.hawaii.edu/osiris/
3https://github.com/jruffio/breads
4https://pypi.org/project/breads/

http://tkserver.keck.hawaii.edu/osiris/
https://github.com/jruffio/breads
https://pypi.org/project/breads/
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well as JWST, with work on additional data classes planned to facilitate data for-
matting for common instruments. One can also define and use their own class for
specific instrumental applications.

Users then select a forward model function with required linear and non-linear
parameters. This distinction is important, as breads performs analytical marginal-
ization of linear parameters to reduce the total number of parameters and time
taken in a fit, allowing for higher-dimensional models. Finally, users select the
specific solving method to apply; typical examples and use-cases would include
a simple optimizer, a Markov Chain Monte Carlo (MCMC) sampler like emcee
(Foreman-Mackey et al., 2013) for planet characterization, a grid search over spa-
tial directions for planet detection, a grid search in the radial velocity direction
for obtaining a cross-correlation function. Certain forward models and solvers are
predefined by us, publicly available on GitHub, and can be used reliably with the
breads framework. breads also performs bad pixel removal at several steps of
the analysis to enable robust results. Multiprocessing is also implemented through
multiprocessing 5 to enable faster run time.

We are developing documentation for breads on ReadTheDocs 6. Code that uses
breads to generate results and plots in this thesis are maintained publicly on GitHub
7, with the using-breads repository meant to demonstrate how to use our code.
These are projected to be formalized, as we work on developing a manuscript
describing all the features on breads .

2.4 Wavelength and Resolution Calibration
The three-dimensional data cubes outputted by the OSIRIS DRP (ODRP) have two
spatial dimensions, representing the spatial positions of the sources, and one spectral
direction, representing the wavelength space. For the narrow K-band filters we use,
the instrument gives us one spectrum of length 𝑁𝜆 = 𝑛𝑧 = 465 for each of the
𝑛𝑦 × 𝑛𝑥 = 66×51 spatial locations. The OSIRIS DRP calibrates and assigns each of
the pixels on its detector field its spatial location and wavelength. This wavelength
solution in the OSIRIS DRP is only derived roughly once every other year, when the
instrument is serviced. Thus, the wavelength calibration is correct to ≈1/10 of one
pixel (that is, about 0.01 nm order of magnitude). For our science goals, we need to
correct this arbitrary offset to be more precise than this error range. Notably, further

5https://docs.python.org/3/library/multiprocessing.html
6https://breads.readthedocs.io/
7https://github.com/shubhagrawal30/using-breads

https://docs.python.org/3/library/multiprocessing.html
https://breads.readthedocs.io/
https://github.com/shubhagrawal30/using-breads
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calibration needs to be done independently for each spatial location, as there is no
reason for the entire field of view of OSIRIS to have exactly the same offset error in
wavelength calibration.

We also want to calibrate the resolution of the instrument at each spatial location in
the field of view. Resolution is defined as

𝑅 =
𝜆

Δ𝜆
,

where 𝜆 is the central wavelength of a spectral bin, and Δ𝜆 is the width of that
spectral bin. Resolution is not necessarily constant over the wavelength range or at
different spatial locations. The average resolution of OSIRIS is around 3800, with
resolution at a spatial location lying somewhere within about 3400-4000 (Larkin
et al., 2006).

Using long exposure sky images as described in previous sections, we attempt
to establish a relation between the wavelengths and resolution recorded by the
instrument and further corrected values. As we take long exposure skies at the start
of every observing night, we can use this to calibrate science data taken around
target stars each specific night.

We use emission lines of the OH– radical present in the Earth’s upper atmosphere,
as a calibration reference. The Kn3 narrow band is dense in these lines; thus, we can
locate these at a spatial location in our field of view and compare them to the known
accurate theoretical wavelengths. The broadening of these lines from peaked delta
functions also gives us a measure of the resolution of the instrument. Thus, these
sky images can allow us to do field-of-view-dependent wavelength and resolution
calibration.

We use code present in breads.calibration, specifically the SkyCalibration
object, and using-breads.get_sky_calibration. Emission lines of OH– are
taken from Rousselot et al. (2000) 8. We generate our model by selecting lines in
the wavelength range of the filter, adding these lines with their respective relative
intensities, and broadening them to a Gaussian function with FWHM Δ𝜆 = 𝜆/𝑅
(dependent on the resolution). The location of these lines in the model can be
offsetted as 𝜆𝑟 = 𝑎0 + 𝜆0(1 + 𝑎1), allowing for constant and linear offset terms 𝑎0

and 𝑎1. We also add a polynomial term to the model to account for the background
continuum. For each spatial location in the data cube, we fit this model to sky

8https://www.eso.org/sci/facilities/paranal/decommissioned/isaac/tools/oh/list𝑣2.0.𝑑𝑎𝑡

https://www.eso.org/sci/facilities/paranal/decommissioned/isaac/tools/oh/list_v2.0.dat
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Figure 2.1: Nominal examples of wavelength calibration performed at two different
spatial locations. We take spectral data at each location (blue) for the long sky
exposures, and fit a model for emission lines of the OH– radical (orange). Parameters
fitted quantifies the broadening and wavelength-shift of the spectral lines.

Figure 2.2: Nominal two-dimensional heat map encoding values for the constant
offset 𝑎0, computed as part of the wavelength calibration for 2022/06/26. As
expected, the offset is of the order of 0.01 nm or 1/10 of a pixel.
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data to obtain values for 𝑎0, 𝑎1, and 𝑅. The fit performs analytical marginalization
over linear parameters in the model (such as the overall scaling or the coefficient in
background polynomial) to reduce the number of parameters in the curve-fitting and
increase speed. Figure 2.1 shows nominal examples of this wavelength calibration
fit for two spaxels, while Figure 2.2 plots a nominal two-dimensional heat map of
constant offset values 𝑎0 computed from a fit for a particular observation night.

The analysis described in the following sections uses this wavelength offset cali-
brations to improve the accuracy of our images before performing other relevant
operations. We do not perform the resolution calibration for the results presented in
this thesis, as we empirically noted that the calibration yields values consistent with
the nominal 𝑅 = 4000.

2.5 Extraction of Stellar Spectrum and Telluric Calibration
To detect an exoplanetary signal, we attempt to distinguish its expected spectral sig-
nature from the known spectral features of the target star. We can accurately ascertain
these stellar spectral features from our OSIRIS data itself, by performing aperture
photometry on the star. Relevant code can be found in breads.calibration,
specificallyTelluricCalibration, andusing-breads.get_telluric_calibration.
After removing bad pixels from each science image, breads determines a two-
dimensional Gaussian approximation to the wavelength-dependent point spread
function, by curve-fitting each wavelength slice of the cube. The PSF model can
be some other user-defined function. The center and width of this Gaussian fit vary
with wavelength.

We then place an elliptical aperture on each wavelength slice concentric with the
2D Gaussian fit, of size dependent on the fitted width. breads allows users to
set these apertures and their parameters. Using photutils.aperture 9 (Bradley
et al., 2021), we sum the flux inside this aperture for each wavelength slice to get a
spectrum for the star, in units of detector count (electrons/second).

Additionally, several times during each observation night, we take data from standard
A0 stars to perform telluric calibration, that is, to measure sky transmission during
the time of our data collection. Particularly, we want the transmission as a function of
wavelength, A0 stars have well-defined spectra (with very few spectral features due
to their high temperatures) that facilitate accurately quantifying the amount of light
absorbed when light (of a specific wavelength) passed through Earth’s atmosphere

9https://photutils.readthedocs.io/en/stable/

https://photutils.readthedocs.io/en/stable/
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at observation time.

(a) Stellar Spectra (b) Sky Transmission

Figure 2.3: (a) Nominal examples of extracted spectra of HIP 73049 and SR 3, both
of which are A0 standard stars. As these are of the same spectral type, we expect
the spectra to look similar. (b) Nominal examples of computed sky transmission,
obtained by dividing extracted spectrum by a theoretical model of A0 star spectra.
These data sets are from the same observation night, so we expect the transmission
to be similar.

This can be done by extending the spectral extraction process described above for
science stars. We start with a theoretical description of the A0 star spectrum,
broaden the absorption according to instrument resolution and offset wavelengths
as per calibration results from the previous section. After obtaining a spectrum for
an A0 star through aperture photometry, we divide it by this a theoretical model
of the spectrum to get a model for sky transmission. Figure 2.3 shows nominal
examples of extracted stellar spectra for two targets and computer transmission for
2022/06/26.

2.6 Forward Model, Noise Scaling, and Likelihood
Ruffio, Macintosh, et al. (2019) and Ruffio, Quinn M. Konopacky, et al. (2021)
introduce and develop a forward modeling approach to analyzing high-contrast
companions with high spectral resolution data, using it to explore the HR 8799
planetary system. Forward modeling relies on maximum likelihood estimation of
the planet signal and does not need extensive pre-processing as opposed to cross-
correlation methods. Jointly estimating the starlight and the planet signal reduces
the possibility of over-subtraction of the planet signal while removing the starlight.
Values and uncertainties for atmospheric parameters can also be directly estimated
from the joint posterior probability distribution function.
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We describe how our forward model functions for a particular location in the field
of view, with the aid of schematics drawn in Figure 2.4. We repeat the model-
ing process for all locations in the field of view. Relevant code for the forward
model is present in breads.grid_search, breads.fm.hc_mask_splinefm, and
using-breads.get_planet. We first define box_w as 3, which quantifies the
width (in pixels) of the box, centered at the given location, within which data is
considered to get a model fit. Take the data in this box_w × box_w box to be 𝑑.
Shape of 𝑑 is thus (box_w, box_w, 𝑁𝜆), where 𝑁𝜆 is the number of bins in spectral
dimension. We scale this data by noise vector 𝑠 of same dimensions, as 𝑑 → 𝑑/𝑠
element-wise. 𝑠 is set to the higher of a base noise floor (detector noise limited)
or the square root of the continuum (photon noise limited, as per Poisson statis-
tics). The continuum is obtained by taking a moving average in the spatial direction
for every spatial direction. The detector noise floor is obtained independently for
each wavelength slice of each image’s data cube. We mask all locations where the
continuum value is higher than the median of the continuum values for the spectral
slice, and we set the floor to the standard deviation of the deviations of data from
the continuum at the remaining locations in the spectral slice.

Figure 2.4: Schematic of the generation of the forward model for a spatial location.
(Top Left) A model for the observed star spectrum (including a transmission compo-
nent), computed from the data. (Bottom Left) A planet spectrum is computed from
a theoretical model. (Top Right) We multiply the star spectrum with a continuum
model (for our case, computed using a spline interpolation) to get diffracted starlight
model. (Bottom Right) A linear combination (𝑀𝜓𝜙) of the diffracted starlight and
planet models is used to fit the spectral data at the location.

Our forward modeling approach involves modeling each such 𝑑 for every spatial
location as 𝑑 = 𝑀𝜓𝜙 + 𝑛, with 𝑛 being a Gaussian noise vector, thereby yielding
a maximum likelihood fit (Ruffio, Macintosh, et al., 2019). 𝜓 and 𝜙 represent the
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non-linear and linear parameters respectively. Making a distinction between the
two allows us to analytical marginalize over linear parameters in the model (for this
case, examples would include planet or starlight contribution to data), after having
obtained 𝑀𝜓 for a specific set of non-linear parameters 𝜓 (for our case, these include
radial velocity and position on the sky). Marginalizing over linear parameters allows
a faster estimation of best-fit values 𝜙 for a particular 𝑀𝜙, and we then optimize over
non-linear parameters 𝜙. Similar to how the data is scaled by the noise as described
above, the model 𝑚 = 𝑀𝜓𝜙 described as follows is also scaled by the noise 𝑠 as
𝑚 → 𝑚/𝑠, after all the components of 𝑚 have been computed to construct 𝑀𝜓𝜙.
Noise scaling is necessary for a statistically accurate Gaussian likelihood problem
with uncorrelated noise, with the division by 𝑠 equalizing the information contained
in each data point. Data with a higher uncertainty are reduced more, so as to result
in lesser weight in computing the 𝜒2 likelihood fit, than data with lesser uncertainty.

We qualitatively describe the model 𝑀𝜙𝜓 of shape (box_w, box_w, 𝑁𝜆) as follows.
The contribution comes from a planet signal component, a starlight component,
and a transmission component. The planet signal submodel is constructed for a
particular exposure as follows. In the data cube, we take a box_w × box_w stamp
around the star center. For each slice in the spectral direction of this stellar PSF
stamp, we normalize the flux such that the total count for each spectral slice in the
resultant stamp cube is unity. We construct a theoretical spectrum of the planet for
the same wavelength values as in the stamp cube. Then, we element-wise multiply
this spectrum model, stamp cube, and the sky transmission for each wavelength slice
(obtained from telluric calibration described in previous sections) to get a planet
model. The total flux inside this planet model stamp is multiplied by a factor that
makes it equal to the total flux inside the initial stellar PSF stamp; this property
helps later in planet search and sensitivity.

To get a theoretical planetary spectrum, we start with a BT-Settl-CIFIST2011c
10 11 atmospheric model (Allard, Homeier, and Freytag, 2010; Allard, 2014) for a
nominal directly imaged exoplanet (typically taken to be temperature 𝑇 = 1800 K
and specific gravity log 𝑔 = 5). BT-Settl is a set of one-dimensional cloud models
for exoplanets (as well as stars and brown dwarfs), where timescales of condensation,
coalescence, gravitational settling, and mixing are used to determine the abundance
and size of≈ 55 types of atmospheric grains (LafreniÃ¨re et al., 2009), with the final
spectrum determined by the spectral and radiative transfer modeling done by the

10https://phoenix.ens-lyon.fr/Grids/BT-Settl/README
11 https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011c/SPECTRA/

https://phoenix.ens-lyon.fr/Grids/BT-Settl/README
https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011c/SPECTRA/
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PHOENIX code (Husser et al., 2013). CIFIST2011c accounts for calibrations due
to mixing length theory (Freytag et al., 2010) as well as non-equilibrium chemistry
for certain atmospheric components. As it offers a temperature and specific gravity
range of 𝑇eff = 300− 7000 K and log 𝑔 = 2.5− 5.5, this set is sufficient to model the
planetary signal we expect from directly imaged companions in young clusters like
Ophiuchus and Taurus. We select the model with required planet characteristics,
extract data from within the wavelength range of the Kn5 filter data, and broaden
absorption lines consistent with the spectral resolution of OSIRIS. After construction
of the needed planetary spectrum, the wavelengths of this spectrum are adjusted to
account for redshift due to the radial velocity of the planet (which is provided as a
non-linear parameter):

𝜆 𝑓

𝜆0
= 1 − 𝑅𝑉 − 𝑅𝑉0

𝑐
, (2.1)

where 𝜆0 and 𝜆 𝑓 are initial and final wavelengths, 𝑅𝑉 is the provided radial velocity
of the planet, 𝑐 is the speed of light, and 𝑅𝑉0 is the barycentric radial velocity
(conventionally used as a reference, to account for Earth’s variable motion due to
rotation or revolution).

The diffracted starlight model is constructed independently for each of the box_w ×
box_w spatial locations. For each location, we set 10 nodes at roughly equispaced
locations along the spectral direction. The density of nodes is higher by a set factor
in the region where the slope of the continuum is steeper, as this allows for a better
overall fit to data. A spline interpolation model is constructed for the spectrum at
this location. The nodes constrain this model to output a value close to the counts
in the data cube, at the wavelength for each of the 10 nodes; in other words, if
we plot the spectrum data and the spline model, they must approximately intersect
at these 10 nodal locations. Between each pair of nodes, the model interpolates
using a low degree polynomial. We multiply these by factors of the stellar spectrum
(obtained from the same exposure) and sky transmission, as derived from procedures
discussed before. Combining these spline models at each of the locations in the
box_w × box_w region gives us a diffracted starlight model.

The reason a spline interpolation model is an appropriate choice for modeling
diffracted starlight is the wavelength dependence of the point spread function as-
sociated with several instruments, including Keck/OSIRIS. Ignoring factors of sky
transmission and stellar spectrum, the counts at a particular location can still vary
because the point source function at that location for that wavelength has a brighter
region (termed a speckle) than for another wavelength. Thus, due to the wavelength
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dependence of the PSF, if we consider a specific location and vary the wavelength,
the continuum value (ignoring spectral features) varies, that is, the continuum is
not uniform and flat. A low degree polynomial spline interpolation can be used
to model this behavior, with the spline nodes providing an adequate constrain to
prevent over-fitting.

An empirical stellar spectrum is used in generating the diffracted starlight model.
The process for obtaining this stellar spectrum is different from aperture photometry
described in previous sections, and the output depends on the spatial location we
are generating a model for. In order to prevent self-subtraction of planet signal, we
mask a box_w × box_w region centered at the location at which we are modeling the
data and then obtain a spectrum by summing flux inside a rectangular aperture. This
improves our sensitivity, because (assuming that in case there is a planetary signal
at the location under consideration) the planetary signal is not taken as a significant
part of the stellar spectrum and thus almost absent in the starlight model.

The general schematic to construct both the planet and diffracted starlight models
is to start with the product of a PSF model and sky transmission close to time to
observation, and then add in a model for either planet spectrum or stellar spectrum
and continuum respectively. Notably, both models rely on sky transmission extracted
from the telluric calibration process, resulting in some common spectral features
in either component of the model. These common features are mostly not spectral
lines from the stellar or planetary atmospheres, but rather they are absorption lines
due to the upper layers of the Earth’s atmosphere. Empirically, we noted that
this can result in a forward model predicting higher than reasonable contributions
from planetary models, especially given that an extracted stellar spectrum is more
susceptible to noise than a theoretically generated planetary model. We add in a final
third component to the forward model, in the form of a product of the PSF stamp
model and sky transmission. We start with a box_w × box_w stamp, taken from the
center of the stellar PSF, normalize this stamp cube such that every wavelength slice
has unity flux, and then multiply the wavelength slices with the sky transmission.

These components (a planet model, several diffracted starlight splines (for several
locations), and a transmission stamp cube) compose different columns in 𝑀𝜓 , with
the rows denoting wavelengths. 𝜙 denotes contributions from these different com-
ponents, and thus the matrix product 𝑀𝜓𝜙 gives the needed forward model. Code
in breads.fm.hc_mask_splinefm optimizes 𝜙 for every choice of 𝜓 through an-
alytical marginalization of linear parameters, with the non-linear parameter space
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𝜓 (generally radial velocity or spatial location) left to be separately defined and
optimized. As an example, if these non-linear parameters 𝜓 are a particular spatial
location and radial velocity expected for a planet, different elements of 𝜙 give us
the contribution from each of the components to the best fit. This is useful, as the
contribution from the planet model 𝜙𝑝 as well as the uncertainty on that value 𝜎𝜙𝑝

give us a measure of how much planetary signal is needed to explain the spectrum
observed at the location. A high signal 𝜙𝑝 relative to the uncertainty 𝜎𝜙𝑝

indicates
that our forward modeling approach is predicting that the data cannot be explained
in the best manner possible without a planetary component, thereby pointing to a
detection.

For completeness, we note that other forward models were also developed as part of
this thesis. The initial version of the forward model is present inbreads.fm.hc_splinefm,
which was structured similarly to the model used for developing the results. This
older version does not implement pixel bleeding identification (described below),
does not optimize the placing of spline nodes based on continuum slop, and con-
structs the planet component using a simple two-dimensional Gaussian model (in-
stead of a more accurate stellar PSF stamp). we used best-fit values from 2D
Gaussian fits for the stellar PSF (computed as part of the TelluricCalibration
and spectra extraction) to model the planetary signal. We expect the newer forward
model to be a more accurate representation of the planetary PSF, as it uses a more
accurate model for the stellar PSF (by taking an exact stamp, instead of a rough 2D
Gaussian approximation). We discuss in a later section that algorithmic throughput
is a quantifier of the performance of the forward model that maps the sensitivity and
how accurately a model can recover the signal from a planet. The forward model we
use, hc_mask_splinefm, outperforms the older version based on this quantifier.

2.7 Bad Pixel Identification, Pixel Bleeding, and Correction Strategies
We apply bad pixel identification methods at various steps in our data reduction. Data
cubes reduced by the OSIRIS DRP are imported as breads.instruments.OSIRIS
objects. At this stage, a rough fit is performed for spectra at every spatial location,
and outliers, deviated by over 3𝜎 are identified as bad pixels. The rough fit consists
of only the diffracted starlight component from the model 𝑚 described above, and
this component is also simplified to get a faster runtime. We use 20 nodes in the
low degree spline interpolation and, instead of placing more nodes in regions where
the spectrum continuum has a larger slope, we place nodes at equal separations. For
this identification stage, a stellar spectrum is not necessary, breads can construct
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a rough spectrum by taking a median of data around the star (used for science or
transmission data sets) or over the entire field of view (used for sky images). This
allows for bad pixel removal for non-target images, including for the OH line and
telluric calibration data or data which was reduced using pair subtraction. We also
identify the edge of the field of view in the Kn5 filter by determining the pixels where
the count value is NaN (not a number, as set by the OSIRIS DRP beyond OSIRIS’s
field of view), and identify all these spatial locations, as well as immediately adjacent
pixels in all three directions, as bad pixels, thereby taking care of instrumental edge
issues.

Analyzing residuals from fitting spectra at a single spatial location, we observed
that fit deviates from data at certain deeper telluric features. While the fit can model
the location of these absorption lines due to Earth’s upper atmosphere, it is unable
to predict well the depth of these features. It is possible that this is a result of a
detector undersampling and interpolation or uncertainty in wavelength calibration,
and further work can identify the validity of these claims. In the absence of a
component accounting for this behavior, our model would attempt to explain this
deviation by unnecessarily increasing the absolute magnitude of contribution from
the planetary component, significantly skewing our results. We hard-coded a mask to
remove wavelength ranges that contain these telluric features. We similarly remove
edges in the spectral direction, to nullify instrumental edge effects. The regions
removed were between the wavelength indices: 0 → 5 (edge), 312 → 318, 343 →
349, 366 → 370, 373 → 378, 384 → 388, 396 → 402, 418 → 422, 446 → 465
(edge).

As noted in the sections above where observations with Keck/OSIRIS are described,
Ophiuchus data during the first observation run was taken without rotating the field
of view. we introduced rotating by 90 degrees between different sequences as an
observation strategy after identifying a pixel bleeding issue. As described above,
the physical detectors in the instrument measure a two-dimensional image, with
each row capturing a sequence of spectra (for individual spatial locations). So,
while typically the horizontally adjacent pixels on the 2D image are adjacent in the
spectral direction to the pixel we are considering (flux at a different wavelength but
the same spatial location), the vertically adjacent pixels are unrelated in wavelength
or spatial location. Note that the distinction or boundary between different pixels
is not strictly perfectly defined, and, due to instrumental diffraction, light can leak
from or contaminate one pixel to the other (with the amount leaked decreasing with
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distance from the center pixel). This effect is more pronounced for bright spatial
locations, and the targets we observe are significantly bright; our exposure times
push us close to saturation limits. While the OSIRIS DRP considers and corrects
this pixel bleeding phenomenon, we still observe resulting effects in our data that
we account for as part of bad pixel correction.

Consider the two-dimensional spatial field of view of OSIRIS on the sky, obtained
when we collapse the data cube along the wavelength axis. Say the location of
the star is (𝑦𝑠, 𝑥𝑠), which is generally (after removal of bad pixels) the brightest
spatial location. We observed pixel bleeding significantly affecting our results in
two extended spatial regions, that are around the same vertical location as the star.
Along the horizontal direction, the centers of these regions were separated from the
star by roughly 10 pixels, and they are present on either side of the star. Pixel bleeding
at these spatial locations caused our forward model to predict a high negative planet
model contribution or planet flux (relative to the uncertainty in this contribution or
flux), which is expected to be a non-astrophysical systematic we attempt to correct
for. Investigating these regions showed that the continuum of the spectra at these
spatial locations is neither flat nor modulated by passing speckles as typical. In fact,
the continuum is much higher at one edge of the wavelength axis and falls rapidly to
a flatter uniform closer to the center of our wavelength range. This is demonstrated
for one target in Figure ??, where we plot spectra at several spaxels.

We observe that atypical continuum behavior in several images for several targets.
This indicates that the issue does not originate from a specific observational sys-
tematic. Given that the regions are dependent on the location of the star in the field
of view, we claim that the issue is not limited to a specific bad region of the OSIRIS
instrument. We deduce that this behavior is a result of contamination from adjacent
pixels due to bright starlight. While the spatial location of the star and these affected
regions are separated in the data cube, the locations can be close to each other in
the two-dimension raw frame that OSIRIS records from its detectors. Because of
the high brightness of our targets, the OSIRIS DRP is unable to determine between
real data and leaked light.

This bleeding problem cannot be accurately modeled, as the pixels (the light is
bleeding from) correspond to wavelength values that are unrelated to the wavelength
values of the pixels their light bleeds into. In other words, vertically adjacent pixels
on the two-dimensional OSIRIS raw frame are not related in wavelength. Thus,
bleeding light introduces spectral features at inconsistent wavelength locations. We
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Figure 2.5: Nominal example of the pixel bleeding issue. Left panel shows the
collapsed two-dimensional spatial field of view of Keck/OSIRIS, with the center
of the target PSF marked by a light blue cross. Right shows spectra at several
locations (labelled by spatial indices), as detector counts for a given wavelength in
microns. Pixel bleeding is exhibited in the atypical continuum behavior, at locations
roughly 10 pixels to the left/right of the target, and within a few pixels in the vertical
direction. The continuum at these locations is significantly higher at one edge of
the wavelength range.

attempted varying the settings in the OSIRIS DRP (as described above) to get a
more accurate data cube itself, but the result remained sufficiently inaccurate.

It is unfeasible to model this behavior accurately enough for our science purposes,
so we treat it as a bad pixel identification problem. As described before while
discussing the diffracted starlight model, we optimize the placement of spline nodes
to get a higher density of nodes in regions (in wavelength direction) where the
continuum has a high slope, or, is less flat. This was initially added to attempt to
model the behavior but proved to be insufficient due to the spectral line inconsistency
discussed above. Instead, the data object code in breads.instruments.OSIRIS
was modified to consider the slope of the continuum of the spectra at every spatial
location in the field of view. The code detects if the ratio of the counts at either
edge of the spectrum to the median of all the counts at the location is higher than a
certain threshold; if yes, the code masks away the region of the spectrum a factor
above the median to the high edge. This removes data that is artificially higher than
astrophysical reality due to pixel bleeding while attempting to retain as much data
as possible at every location in the field of view.

With the Ophiuchus data set, we noted that this code identified a large spatial
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region as unusable (which is a significant disadvantage to the probability of new
detections), which resulted in a different observation strategy for the Taurus and
remaining Ophiuchus data set. We rotate the field of view by 90 degrees for roughly
half of the data, thereby having different parts of the sky be covered by the unusable
regions in either half. Combining these data frames gives us a much larger field
of view on the sky, which improves our chances of detecting a companion in the
survey.

The forward model code additionally identifies any wavelength indices where the
planet, stellar, or transmission spectra are NaN as bad pixels. The results from these
bad pixel identification methods is stored internally in thebreads.instruments.OSIRIS
data object as the bad_pixels cube, and the forward model code ignores any pixels
recognized to be unreliable.

2.8 Planet Search, Frame Combination, and PCA of Residuals
Take linear parameter 𝜓𝑝 to be the element of the 𝜓 which is multiplied by the
planetary component, that is, 𝜓𝑝 denotes the estimated contribution of planetary
signal to the best fit. While constructing the planetary component of the forward
model 𝑚 = 𝑀𝜙𝜓, we normalized it to get the flux in the planetary stamp cube to be
the same as the flux in the initial stellar PSF stamp cube. Thus, 𝜙𝑝 is in units of total
stellar flux, or, 𝜙𝑝 gives the ratio of estimated planet brightness to stellar brightness,
which is termed contrast. The ratio between 𝜙𝑝 and its uncertainty 𝜎𝜙𝑝

gives us a
signal-to-noise ratio (SNR), which is an extremely useful value to estimate. For a
set of non-linear parameters, if this ratio 𝑆/𝑁 = 𝜙𝑝/𝜎𝜙𝑝

is higher than a threshold
(typically 5), it indicates that the signal is inconsistent with zero with a related high
probability and that the forward model predicts a detection with a related certainty.

Code in using-breads.get_planet and breads.grid_search runs the de-
scribed forward modeling approach for a given single image for all possible spatial
locations. This is done using a grid search, that is, by selecting the set of non-linear
parameters such that every combination of (𝑅𝑉, 𝑦, 𝑥) has the same 𝑅𝑉 = 0, and
𝑦, 𝑥 covering a large enough range to analyze every spatial location in the field
of view. These give us single-frame SNR maps, containing the signal-to-noise
ratio at every location that we can estimate based on just one single image. Code
in using-breads.SNRmaps_contrast or using-breads.combine_frames can
use several single frame SNR maps from all sequences taken for a particular target,
to yield a combined SNR map, which is a final signal-to-noise map for a target from
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our survey.

In the process of generating these single frame SNR maps, we perform principal
component analysis (PCA) of the residuals to better our forward model of diffracted
starlight. An initial faster model is computed for a small region of the field of
view spatially above the star, taking 𝑦 = 1 → 11, 𝑥 = −5 → 6. These best-fit
predictions are subtracted from the data to obtain residuals over this smaller data
cube. Performing PCA, by computing the eigenvectors of the residuals’ covariance
matrix, gives us the orthonormal basis composing the principal components, which
are then used in the forward model for the lower half of the field of view, with
𝑦 = −40 → 0, 𝑥 = −20 → 20. Similarly, the principal components obtained from
PCA on a region from below the star, 𝑦 = −10 → 0, 𝑥 = −5 → 6, are used to get
a better model for the top half of the field of view 𝑦 = 0 → 40, 𝑥 = −20 → 20.
The reason for using a disjoint region of the sky, to get principal components for
analyzing each half, lies in noting that a planetary signal could also appear as a
residual, which would contribute to its own principal component. If we were to use
an overlapping region of the sky to generate principal components, we could model
for the planetary signal (as a principal component of the residuals) and subtract it
away assuming it is residual from diffracted starlight modeling. Having separate
regions for PCA prevents self-subtraction of the planetary signal.

Given that we dither the detector’s field of view by a few pixels between sequences
and, for some targets, rotate it by 90 degrees, the combination algorithm works as
follows. We use the location of the star as the physically constant reference position.
In the single frame reduction code, we set the spatial location with the highest flux
as the center of the stellar PSF, and the forward model interprets the non-linear
parameters for spatial location (𝑦, 𝑥) as deviations (in pixels) from this reference.
So, if the forward model is provided 𝑦 = 𝑥 = 0, it interprets it as the location of the
star and attempts to estimate linear parameters, including 𝜙𝑝 (and thus SNR) at that
location. Similarly, the forward model interprets 𝑦 = 2, 𝑥 = 5 as 2 pixels vertically
up and 5 pixels horizontally right from the center of the stellar PSF. The range of
non-linear parameters provided to the grid search is 𝑦 = −40 → 40, 𝑥 = −20 → 20,
which is sufficient to cover the field of view covered in the full survey, accounting
for dithering between sequences.

Thus, the single-frame SNR maps we get have consistent indices, up to the 90-degree
rotation of the field of view, which we can also align by centering on the star. So,
our code rotates the needed sequences around the star, and then adds the planet flux
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𝜙𝑝 and error 𝜎𝜙𝑝
at every spatial location for all single frame maps, taking care

of possible NaN values at some locations in some maps. If 𝜙𝑝, 𝑗 and 𝜎𝜙𝑝 , 𝑗 are the
(non-NaN) flux and error at a certain location in the 𝑗 th single frame, then we can
get the total 𝜙𝑝 and 𝜎𝜙𝑝

as:

𝜙𝑝 = Σ 𝑗
𝜙𝑝, 𝑗

𝜎2
𝜙𝑝 , 𝑗

/
Σ 𝑗

1
𝜎2
𝜙𝑝 , 𝑗

(2.2)

𝜎𝜙𝑝
=

(
Σ 𝑗

1
𝜎2
𝜙𝑝 , 𝑗

)−1/2

(2.3)

2.9 Noise Normalization for combined map
We use some theoretical assumptions about the noise in planetary signal 𝜎𝜙𝑝

to
perform several stages of normalization on the values of 𝜎𝜙𝑝

obtained above in the
combined SNR map. Code used is using-breads.SNRmaps_contrast. we first
compute the standard deviation of the single-frame SNR values at every location
(taking care of possible NaN values in some maps), and multiply the final noise 𝜎𝜙𝑝

by this standard deviation at every spatial location:

𝜎𝜙𝑝
(𝑦, 𝑥) → 𝜎𝜙𝑝

(𝑦, 𝑥) × std 𝑗
( 𝜙𝑝, 𝑗 (𝑦, 𝑥)
𝜎𝜙𝑝 , 𝑗 (𝑦, 𝑥)

)
, (2.4)

where std 𝑗 is standard deviation taken while varying 𝑗 , with a set (𝑦, 𝑥). The final
noise in the planetary flux is underestimated and must be scaled by the noise in the
SNR values.

We additionally normalize the noise in the radial direction. We make a theoretical
assumption that the standard deviation of SNR values within a thin circular shell
(ring or annuli) should be 1, based on the fact that there is no physical reason (in
the absence of a planet) for the noise and flux is behave differently due to angular
orientation. We consider annuli of radius 𝑟 and thickness 𝑑𝑟 (of the order of a pixel),
take the standard deviation of SNR values within this ring, and then multiply all
noise values in the ring by the standard deviation:

𝜎𝜙𝑝
(𝑟, 𝜃) → 𝜎𝜙𝑝

(𝑟, 𝜃) × std𝜃
( 𝜙𝑝 (𝑟, 𝜃)
𝜎𝜙𝑝

(𝑟, 𝜃)

)
, (2.5)

where𝑚(𝑟, 𝜃) is value of𝑚 at radius 𝑟 (between 𝑟 and 𝑟+𝑑𝑟) and angular orientation
𝜃 and standard deviation is taken while varying over 𝜃.
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As part of further work, we are working on including a normalization in the radial
velocity direction, termed a RV CCF calibration. This normalization has not
been applied to and optimized for the entire data set, so we cannot claim its efficiency
for all targets. As it was developed as an option (to be tested and included in future
reductions) as part of this thesis work, we discuss the targets it is applied to in the
Results Chapter 3. We also include an entire reduction where this normalization is
not performed.

If we vary the third non-linear parameter, radial velocity, in addition to the spatial
non-linear parameters for the forward model, we obtain a map of how the SNR
depends on the radial velocity, which we term a radial velocity cross-correlation
function (RV CCF). Data from a real astrophysical object would correspond to a
radial velocity of a few km/s instead of several hundreds or thousands of km/s. So,
the RV CCF should peak strongly around zero RV, and be of low absolute magnitude
(between -1 and 1, for the signal to remain within 1𝜎) far away from 0 km/s. We
use a grid search at every spatial location for 41 steps of RV from -4000 to 4000
km/s. Removing the central region around 0, we compute the median and the
standard deviation (while varying RV) of the SNR values at a spatial location. We
normalize all SNR values at that location by subtracting the median and dividing
by the standard deviation, as a way to have the SNR be between -1 and 1 in the RV
CCF far away from 0 km/s:

𝜎𝜙𝑝
(𝑦, 𝑥) → 𝜎𝜙𝑝

(𝑦, 𝑥) × std𝑅𝑉
( 𝜙𝑝 (𝑅𝑉, 𝑦, 𝑥)
𝜎𝜙𝑝

(𝑅𝑉, 𝑦, 𝑥)

)
, (2.6)

with a set spatial location (𝑦, 𝑥).

2.10 Throughput Correction
We quantify how effective our algorithm is at recovering the contrast (or brightness,
in units of stellar brightness) of a planet. We term this measure, throughput. It is
important to note that we are not referring to instrumental throughput (which is the
fraction of light an instrument can capture from a source on the sky). Rather, we
consider algorithmic throughput, which measures the ratio of the flux our algorithm
estimates for a companion (recovered flux) to the real astrophysical brightness of the
companion. We expect throughput to mostly depend on the distance from the target
star, with the theoretical value being 1 far away from the star (we are fully sensitive
to planet signal where diffracted starlight is negligible), and 0 immediately adjacent
and on top of the star (in which case, any model will assume that the planet signal
and its spectral features are part of the star signal and spectrum).



31

In order to estimate this algorithmic throughput, we need to perform our forward
modeling approach on data where the presence and brightness of a companion are
already known, which is not possible for a blind search data set (where the goal is to
detect and characterize new companions). We use the code in breads.injection
and using-breads.throughput_maps to perform fake injection and recovery.
We inject, with a set combination of non-linear parameters (specific spatial location
and radial velocity), a simulated planet into each data cube for a specific target. We
can then test our forward model by attempting to recover the simulated companion
with the same non-linear parameter setup.

We need the simulated planets to mimic astrophysical sources as accurately as pos-
sible. For the injection process, we start with a data cube outputted by the OSIRIS
DRP, instead of the raw two-dimensional frames collected from the detectors, be-
cause it is easier to model a companion with the cube, instead of mapping the 3D
cube into the 2D frame. We are provided a set of non-linear parameters, such
as radial velocity and spatial location, describing the planet signal, as well as the
brightness of the fake planet relative to the star, or contrast.

We first extract a stamp cube centered on the center of stellar PSF from the data cube.
This is similar to the construction of the planetary component of the forward model,
except we take a much larger stamp size of stamp_w = 51 spatial locations (instead
of box_w = 3). In the forward model, the only relevant portion of the planetary
signal was within the box_w, as that is also the size of the data stamp 𝑑 we fit to.
However, for the injection of a simulated planet, we need a larger stamp, because
the aperture used for computing the stellar spectrum is large. A real planet signal
would extend to every pixel in the field of view, thus the computed starlight spectrum
would be biased by planet contributions at every pixel. Thus, to best simulate a
planet signal, the injection should also affect every pixel within the aperture used
to estimate the stellar spectrum. Our injection code considers edge cases where a
portion of this (much larger) stamp_w × stamp_w stamp would lie outside the field
of view, by managing padding pixels that are discarded after injection.

Similar to the forward model construction, for every wavelength slice of this
larger stellar PSF stamp, we normalize the flux such that the total count for
each wavelength is unity. Having constructed a theoretical spectrum from a
BT-Settl-CIFIST2011c atmospheric model for a nominal directly imaged planet
with 𝑇eff = 1800 K and log 𝑔 = 5, we modify the wavelengths of this spectrum
to account for redshift due to radial velocity. Then, we perform an element-wise
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multiplication over this spectrum, sky transmission (from telluric calibration), and
the PSF model. The total flux over this planetary stamp is multiplied by a factor to
make it contrast times the total flux with the initial stellar PSF stamp. we add this
to our overall data cube at the specified spatial location, to get a simulated exoplanet
with a given contrast.

For a complete description of the thesis work, an initial version of the injection code
was also developed that used a 2D Gaussian model for the PSF, with wavelength-
dependent position and widths, as obtained from the process of telluric calibration.
This was rejected because a stellar PSF stamp is a more accurate representation of
a real astrophysical source than a functional approximation.

We obtain a throughput map for every image of every target as follows. We select a
range of spatial locations that covers the field of view, 𝑦 = −40 → 40, 𝑥 = −20 →
20. For each spatial location, we inject a planet of contrast = 0.01 with a fixed
spectrum (1800 K, log 𝑔 = 5) and RV = 0. The contrast used to be neither too high
(such that it would interfere with the algorithm by being comparable in brightness to
the star) nor too low (such that we can get a good estimate of throughput and are not
highly limited by the noise floor). We run our forward model at the same location to
estimate the planetary flux 𝜙𝑝. Note that this recovered flux is also in units of stellar
brightness, so it in fact, gives us a value for the estimated contrast. Thus, directly
taking a ratio of the recovered to the injected flux, as 𝑡𝑎 = 𝜙𝑝/contrast, gives us
the algorithmic throughput at that spatial location. Repeating this over the entire
field of view gives us a throughput map.

Throughput maps are essential to understanding systematic errors that our algorithm
introduces in the reduction. Notably, it can be used to quantify the true brightness
of a detected companion based on the estimated brightness from the forward model.
Hence, if our approach predicts a planet signal of contrast 1/10 near the star, it might
be underestimating the signal more significantly than if it predicted the contrast 1/10
at a location spatially far from the star. Throughput correction does not however
affect signal-to-noise (and, hence, are talked about after the section on combined
SNR map generation), as both 𝜙𝑝 and 𝜎𝜙𝑝

are scaled by the same factor 𝑡𝑎 in the
correction, resulting in the same ratio. Contrast curves, that we discuss in the next
section, do need a throughput correction because they proportionally depend on the
estimated uncertainty in planet flux𝜎𝜙𝑝

. Because of how we construct these contrast
curves, we do not need to merge single frame throughput maps into a combined map
for each target, because we can apply the correction to each image using the same
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frame’s throughput map.

Figure 2.6: Algorithmic throughput 𝑡𝑎 (ratio of flux recovered by our approach,
to the flux that was injected as a simulated fake planet signal) as a function of
separation from the star (in units of pixels, each spatial pixel corresponding to 20
milliarcseconds). As described in Section 2.10, we empirically note that throughput
dominantly depends on separation from the star. We can interpolate between the 𝑡𝑎
values computed at every pixel (as presented in this figure) to get 𝑡𝑎 everywhere in
the field of view. Notably, 𝑡𝑎 tends to 80 − 90% (expected 100%) for most targets
far away from the star, and to 10 − 20% (expected 0%) at the location of the star.
Our model is able to distinguish most of the planetary signal from the diffracted
starlight.

Empirically, we noted that our two-dimensional throughput maps (representing 𝑡𝑎
at all spatial locations in the field of view) indicate that throughput depends on
separation from the star (with throughput decreasingly rapidly closer to the star) and
the amount of useful data at a location (edges or pixel bleeding regions have a lower
throughput as some portion of the data was removed in bad pixel identification).
𝑡𝑎 does not significantly depend on the angular orientation of a location from the
star. This provides us with a significant opportunity to cut down on the time it
takes to compute the throughput correction for contrast curves. Instead of using
a two-dimensional map that gives us 𝑡𝑎 values for the entire field of view, we can
instead compute 𝑡𝑎 along a one-dimensional strip on the map. Using a range of
𝑥 = 0, 𝑦 = −40 → 40, we get 𝑡𝑎 at integral separations from the star (in units of
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pixels) along a vertical strip. These are shown for a subset of our targets in Figure 2.6.
We use spline interpolation to get 𝑡𝑎 at separations between these discrete integral
values. We perform throughput correction using this faster spline interpolation for
𝑡𝑎 to obtain our contrast curves.

2.11 Contrast Curves and Sensitivity
Contrast curves encode the sensitivity of our survey for each target. We use a 5𝜎
threshold for a credible detection. To be counted as a candidate, a real astrophysical
companion should be at least five times brighter than the estimated uncertainty at that
location. Contrast curves plot this required planet contrast threshold (brightness,
in units of stellar brightness) as a function of separation from the star. Our survey
will detect, at > 5𝜎 significance, a companion with separation and contrast that lies
above this curve. These also allow comparison to other surveys in the exoplanetary
field, which is extremely useful in discussing one of our main science goals of testing
the sensitivity of our high-resolution spectroscopy methods.

We computed 𝜎𝜙𝑝
at all spatial locations using using-breads.get_planetwhile

generating single frame SNR maps. We scale this by the throughput correction
to get a estimation of the real uncertainty in planet flux 𝜎𝜙𝑝

(𝑟) → 𝜎𝜙𝑝
(𝑟)/𝑡𝑎 (𝑟),

where 𝑡𝑎 is computed using the spline interpolation described above. Combining
these two pre-computed quantities gives us a corrected uncertainty for all spatial
locations. Using the known location of the star in the field of view, we compute the
separations of each spatial location from the star (each spatial location corresponds
to 20 milliarcseconds on the sky). This gives us the planet uncertainty as a function
of radial separation on the sky. Multiplying this by the detection threshold of 5 gives
us the needed contrast curve, denoting the planet flux required for detection.

The code that generates contrast curves is also inusing-breads.SNRmaps_contrast,
which also generates combined SNR maps and performs noise normalization. We
can easily compute two contrast curves, one each for before and one for after noise
normalization that scales the values of 𝜎𝜙𝑝

. Comparing these two curves is inter-
esting because it encodes information about systematics introduced by our forward
model and the under-utilized potential of the technique. All the noise normalization
steps decrease the signal-to-noise ratio by increasing the noise or uncertainty 𝜎𝜙𝑝

.
We need to artificially inflate the noise levels to match the theoretical expectations
we have about the behavior of 𝜎𝜙𝑝

. If our forward model was more capable of ex-
actly modeling spectral data (for each exposure for each combination of non-linear
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parameters), an artificial noise scaling would not be necessary, and we would be
only photon and detector noise limited. Thus, the contrast curve computed without
any noise normalization gives us an estimate of the method’s potential sensitivity
with a better forward model.

2.12 Validation and Analysis of a Detection
In this section, we detail the steps we plan to perform when we observe a possible
detection in any of the combined SNR maps generated as in Section 2.8. Our
forward model, as previously described, would yield an estimate for the planet flux
and its uncertainty, at a specific location. We directly compute the brightness of
the companion relative to the host star, as well as astrometric data, including the
separation from the host star.

The SNR maps encode signal-to-noise ratios at different spatial locations, varying
two non-linear parameters 𝑦, 𝑥 while keeping 𝑅𝑉 at a fixed value. Given the location
of a possible detection, we can instead vary the 𝑅𝑉 while keeping the spatial location
constant. This computes SNR as a function of radial velocity, which is a radial
velocity cross-correlation function. We already compute these values to perform
the RV CCF calibration, as part of the noise normalization described in Section 2.9.
For real astrophysical objects, the RV CCF should peak around 𝑅𝑉 = 0, as radial
velocities of bound companions would not be of the order of hundreds of kilometers
per second.

We have already computed SNR values at different RV settings, as part of the RV
CCF calibration. The plots presented in this thesis were computed using these
values, plotting SNR at 41 equispaced values between -4000 to 4000 km/s. These
values of 𝜙𝑝 and 𝜎𝜙𝑝

are computed independently using the forward model for each
exposure of the target, and then combined using Equations 2.2 and 2.3, as detailed
in Section 2.8. As only the overall structure of the CCF and peak around 𝑅𝑉 = 0 are
used in the validation of detection, we perform only two steps of noise normalization
described in Section 2.9. We normalize while varying over different frames and
varying radial velocity, but do not perform normalization over radial annuli.

Code was also developed, in the form of a new fitterbreads.fm.hc_atmgrid_hpffm
and using-breads.analyze_planet, to ascertain other characteristics of a pos-
sible candidate. These still construct different components of the forward model
𝑀𝜓 similar to hc_mask_splinefm, and optimize over linear parameters 𝜙 using
analytical marginalization. However, instead of optimizing spatial location (𝑦, 𝑥)
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with a fixed planet model and 𝑅𝑉 , it assumes a fixed location and optimizes over
parameters that describe the spectrum of a planet. BT-Settl-CIFIST2011 offers
spectra models for planets of varying effective temperature 𝑇eff and specific gravity
log 𝑔, while we can model for planetary spin and 𝑅𝑉 in terms of broadening and
Doppler shifts of absorption lines, respectively.

Our code uses a grid of theoretical atmospheric spectral models for planets of
varying 𝑇eff, log 𝑔, 𝑅𝑉, and spin. Due to the high complexity of the optimization
problem, we replace the grid-search with a Markov Chain Monte Carlo (MCMC)
solver, which utilizes data from a single image of a target. We use emcee 12 with
512 walkers, 1000 steps for burn-in, and 1000 real samples. We plot the results as
a corner13 plot, encoding the probability distribution for each variable, as well as
the correlation between different parameters in the form of two dimensional PDFs.

12https://emcee.readthedocs.io/en/stable/
13https://corner.readthedocs.io/en/latest/

https://emcee.readthedocs.io/en/stable/
https://corner.readthedocs.io/en/latest/
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C h a p t e r 3

RESULTS AND DISCUSSION

3.1 Companion detection with combined signal-to-noise ratio maps
We present two-dimensional heat maps encoding signal-to-noise ratios at different
spatial locations in our combined field of view, with the forward model using 𝑅𝑉 = 0
and a BT-Settl-CIFIST2011c theoretical spectrum for an 1800 K and log 𝑔 = 5
companion. These are developed as described in Section 2.8, which uses the forward
model described in Sections 2.6 and 2.7. We include SNR maps both before and after
noise normalization as described in Section 2.9 (excluding the RV CCF calibration).
Real astrophysical signal should be present in either map. Due to a large number of
maps (2 for each of our 23 targets), these plots are included in Appendix A. In the
SNR direction, as mapped by the color of different locations in the heat map, the
maps computed before noise normalization range from -25 to 25, while the maps
after range from -5 to 5 (which is our threshold limit). The vertical 𝑦 and horizontal
𝑥 axes of the heat map represent the separations of the spatial location (Δ𝑥 and Δ𝑦

in the 𝑥 and 𝑦 direction) from the center of the stellar PSF, in units of spaxels. Each
spaxel is separated by 20 milliarcseconds on the sky from the immediately adjacent
spaxel. +𝑥 direction represents negative change in Right Ascension (towards West),
while +𝑦 direction represents positive change in Declination (towards North).

On all of these maps, the red cross marks the location of the star, while the blue
dot marks the location of the highest SNR we compute. Not only does a planetary
signal at a spatial location implies a high SNR value at that location, but we would
also expect an extended region that is roughly circular, or blob, of high SNR. This
is because the PSF of a planetary signal is extended, and we use a non-unity stamp
cube (of width bow_w) in our forward model. We note the following features in the
SNR maps:

1. Other than the two targets Em* SR 9 and HD 148352, we do not see any
extended regions or blobs of signal-to-noise ratio of over 5, which is our set
threshold for detection.

2. Generally, we do not see features of high SNR in these maps. This is reassuring
because a correctly computed SNR map does not have several false detections
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or extended features of very high positive or negative SNR. We observed
features like those in earlier versions of the forward model (for example, with
breads.fm.hc_splinefm), especially in the regions with significant pixel
bleeding (as discussed in Section 2.7, pixel bleeding resulted in our forward
model predicting a highly negative planet flux in these regions, which would
result in extended feature with highly negative SNR). We do not see features
with the current version of the forward model, which increases our confidence
in the correctness of this forward model.

3. We extensively discuss the detection in the HD 148352 data in a Section
3.6, which we believe is a binary star companion. We use this detection as
a validation of our sensitivity, as well as a test case to perform follow-up
analysis on. This allows for an opportunity for us to demonstrate the methods
we would use in case of a detection.

4. For target Em* SR 9, we note an extended feature, centered at roughly 30 pixels
to the north of the star. Em* SR 9 is a well-studied wide binary star system,
and Ghez, Neugebauer, and Matthews (1993) lists the binary separation and
position angle as 0.59 ± 0.01 arcseconds and 350◦ ± 1◦. This is also what
we roughly measure, with ≈ 30 pixels corresponding to ≈ 30 × 0.02 = 0.6
arcseconds and position angle roughly towards the north. This is not a new
detection, but still a validation of our forward modeling technique.

5. We lose a significant portion of our field of view, especially close to the star
which is the scientifically interesting region to analyze, for the Ophiuchus data
set without the 90-degree rotation. Our newer observation strategy fixes this
issue.

6. We observe interesting blob-like features in a few SNR maps, such as those
for ROXs 35A or SR 21A. However, none of these cross over our threshold
detection SNR of 5. As discussed in Sections 2.9, 3.4, and 4.1, our sensitivity
can further be improved, which might yield a > 5𝜎 detection from these
currently low-significance blobs.

7. Similarly, we observed some extended features in some SNR maps after
noise calibration is performed, that are not planetary signals but possibly
residual errors from the forward modeling and noise normalization process.
The Further Work Chapter 4 describes additions to the noise normalization
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process, which are also discussed in Section 2.9 and are possible improvements
to our model that we will continue to develop.

3.2 Validation of threshold SNR for detection
We present histograms of the combined signal-to-noise ratio spatial maps, that
encode the probability distribution function (PDF) of the SNR values presented
in Section 3.1. The top panels of Figure 3.1 show these histograms for all data
sets before and after noise normalization. These residual SNR values should be
theoretically distributed according to a Gaussian PDF, which is represented by
the black dotted line. For an efficient model, the curves for each target will be
approximately consistent with this Gaussian ideal. If the data is a wider bell
curve than the theoretical, the probability of obtaining high SNR regions is higher
than it should be ideally, which increases the probability of false detections. A
narrower-than-theoretical curve for a target implies that there is a higher probability
of missed detections (false negatives), and that true candidates (>5 SNR) are being
underestimated as lower SNR (3-4) regions. While we strongly aim for attaining
consistency between the empirical and theoretical bell curves for the PDF, if that is
not possible, we prefer a model that has yields a lower probability of false positives
than of false negatives.

The top panel of Figure 3.1 shows that the PDF for signal-to-noise ratios before noise
normalization is significantly wider than the ideal, with the empirical probability of
an SNR lying between -4 and 4 (very roughly) equal to the ideal probability of the
range from -2 to 2. Without noise normalization, we overestimate our SNR, which is
expected because the normalization generally decreases SNR values by inflating the
uncertainty for a better agreement with its theoretically expected behavior. Appendix
A plots heat maps for combined SNR frames without normalization over a larger
range (−25 → 25) because of this overestimation of SNR. The PDF improves
after we perform noise normalization, as in the bottom panel of Figure 3.1, with
the empirical curves contained within the ideal, reducing the probability of false
detections. For a subset of targets, the noise normalization is too severe such that
empirical bell curves are too narrow, which increases the probability of missing
candidates. Possible improvements to the forward model and noise normalization
are discussed in the Further Work Chapter 4 and Sections 2.9 and 3.4.

Figures 3.2a and 3.2b demonstrate the improvement in residual SNR distribution for
two of our targets, HD 148352 and AB Aurigae. We select these two, because the
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(a) without noise calibration

(b) with noise calibration, excluding RV CCF calibration

Figure 3.1: Probability distribution function of residual signal-to-noise ratio values
in detection maps for all 23 targets, (a) before any noise normalization steps, and
(b) after applying noise normalization, excluding RV CCF calibration. Black dotted
line represents the ideal Gaussian PDF. We note that normalization reduces overes-
timation of the magnitude of SNR.
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former is the target with a binary star detection, while the latter is a nominal example
of a data set with some sequences rotated by ninety degrees. In both these cases,
we note a significant improvement in the consistency between the empirical and
theoretical probability distribution of the residual SNR. The curve for HD 148352
with noise normalization is additionally interesting, as it validates the detection
threshold used for this target.

(a) AB Aurigae (b) HD 148352

Figure 3.2: Probability distribution function of residual signal-to-noise ratio values
in detection maps for two targets, before and after noise normalization steps. Black
dotted line represents the ideal Gaussian PDF. We note that normalization reduces
overestimation of the magnitude of SNR. The distribution for HD 148352 validates
our detection threshold used in the discussion for Section 3.6.

3.3 Current and Potential Sensitivity measured in Contrast Curves
We present 5𝜎 sensitivity curves for each target in the form of two kinds of con-
trast curves as developed in Sections 2.10 and 2.11, one before and one after we
apply noise normalization (excluding RV CCF calibration) as described in Section
2.9. We use the forward model, described in Section 2.6, using 𝑅𝑉 = 0 and a
BT-Settl-CIFIST2011c theoretical spectrum for a 1800 K and log 𝑔 = 5 compan-
ion.

Figures 3.3a and 3.3b overlay these two kinds of contrast curves, as well as a
profile of the stellar point spread function, for two of our targets. The stellar PSF
profile denotes, as a function of separation from the star, the stellar component’s
contribution at different spatial locations, as estimated by the forward model. It is
graphed in the units of peak stellar flux, and demarcates an estimate of the speckle
noise, due to diffracted starlight, at different separations from the star.

As described in Section 2.11, the potential sensitivity of our methods is estimated by
the 5𝜎 contrast curve before normalization. The curves after normalization estimate
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(a) AB Aurigae

(b) HD 148352

Figure 3.3: Contrast curves, as a function of separation from the star, at 5𝜎 signif-
icance for two targets. We include potential sensitivity (contrast before noise nor-
malization) in orange, sensitivity after noise normalization (excluding RV CCF cal-
ibration) in green, and the stellar point spread function profile (quantifying speckle
noise) in blue. Our sensitivity is well-below the speckle noise, with improvement
possible to bring current sensitivity closer to potential values.
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the current sensitivity, which is weaker than the former because noise normalization
inflates our uncertainty levels after our forward model has been independently
applied. We can improve our current sensitivity (to the potential contrast) by
improving the capability of our model to remove diffracted starlight or by performing
more robust noise calibration, like RV CCF calibration that is discussed in Sections
2.9 and 3.4.

Figure 3.4: Contrast curves before noise normalization, mapping potential sensitiv-
ity at a 5𝜎 significance level as a function of separation from star, for all 23 targets.
Variability in sensitivity across targets is expected due to variations in amount of
data, observing conditions, and spectral types or brightness. Scales of 𝑥 and 𝑦 axes
are same as Figure 3.5.

Figures 3.3a and 3.3b present results for AB Aurigae and HD 148352, nominal
examples for data sets with and without the ninety-degree rotation, respectively.
Figures 3.4 and 3.5 plot contrast curves for all of our 23 targets before and other
noise normalization. We note the following features in these contrast curves:

1. For the single target plots, both curves are well below the PSF profile, which
demonstrates that we are able to model for diffracted starlight to get more
sensitive than speckle noise.
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Figure 3.5: Contrast curves after noise normalization (excluding RV CCF cali-
bration), mapping current sensitivity at a 5𝜎 significance level as a function of
separation from star, for all 23 targets. Variability in sensitivity across targets is
expected due to variations in amount of data, observing conditions, and spectral
types or brightness. Scales of 𝑥 and 𝑦 axes are same as Figure 3.4.

2. As discussed in Section 1.5, the separations of <≈ 0.3 arcseconds are impor-
tant for our science goal of demonstrating improved sensitivity closer to the
star. We are well below speckle-noise at those separations.

3. We see features in the noise-calibrated contrast curves over ≈ 0.5 arcseconds,
which represents the edge of the field of view, where less usable data is present.

4. Scatter for a given separation is low, which implies that: as expected, sensitiv-
ity is predominantly a function of separation from star and amount of usable
data and is only weakly dependent on angular orientation.

5. Based on the potential sensitivity estimates, optimizing the model and cali-
bration methods can improve our current sensitivity by roughly 1/2− 1 order
of magnitude. Possible improvements with RV CCF calibration are discussed
in Section 3.4, with further ideas developed in Chapter 4.
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6. Difference in sensitivities for different targets is expected due to variations in
spectral type, observing condition, and amount of exposure time.

3.4 Potential improvement with RV CCF Calibration
We present detection maps, PDF of residual SNRs, and sensitivity curves, similar
to Sections 3.1, 3.2, and 3.3, for 14 out of our 23 targets, after we add in the RV
CCF noise calibration described in Section 2.9. These results are generated with the
forward model, using a BT-Settl-CIFIST2011c theoretical spectrum for a 1700
K and log 𝑔 = 5 companion. We vary 𝑅𝑉 to 41 points between -4000 km/s and 4000
km/s and normalize the signal-to-noise ratio values to have them be more consistent
with theoretical expectations. Logistically, this newer method takes significant time
to reduce each target. We present these results separately from the earlier sections
because we have not reduced the entire data set using RV CCF calibration, and thus,
we have not optimized the technique for all targets. Sections 3.1, 3.2, and 3.3 detail
a full reduction of the entire data set.

As we have already presented SNR maps before noise normalization in Appendix
A, we only include SNR maps after RV CCF calibration in Appendix B. We also
generate Figure 3.6 as a histogram of these combined signal-to-noise ratio spatial
maps, presenting the probability distribution function of these SNR values computed
using the RV CCF calibration. As before, these empirical curves should be ideally
consistent with a Gaussian PDF, denoted by a black dotted line.

We compare these figures with previous results when we did not apply this radial
velocity calibration:

1. By including the RV CCF calibration, we reduce the frequency and intensity
of extended features in the SNR maps.

2. We still observe a detection in the HD 146352 data set; in fact, we compute
a higher SNR with the calibration than without. We still observe interesting
< 5𝜎 blob-like features around ROXs 35A, which are discussed in Sections
3.7 and 4.2. We detected the well-known binary star of the Em* SR 9 system
earlier, but this target has not been reduced using the RV CCF calibration yet.

3. The histogram encoding the PDF of the SNR values is more consistent with
the Gaussian ideal for the reduction that uses the RV CCF calibration. This
represents an improvement in the reduction, particularly enhancing the valida-
tion of the threshold signal-to-noise. This implies that the probability of both
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Figure 3.6: Probability distribution function of residual signal-to-noise ratio values
in detection maps for all 23 targets, after all steps of noise normalization, including
RV CCF calibration. Black dotted line represents the ideal Gaussian PDF. We
note that this additional step of normalization results in a distribution that is more
consistent with the ideal Gaussian.

false and missed detections is low. Particularly, the probability of detection at
a > 5𝜎 significance is is closer to true value, after RV CCF calibration.

With Figures 3.7a and 3.7b, we similarly present 5𝜎 sensitivity curves, one before
and one after noise normalization (including RV CCF calibration), for CW Tauri
and HD 148352 (nominal examples of data sets with and without the 90-degree
rotation). We also include the stellar PSF profile in units of peak stellar flux,
denoting an estimate of speckle noise. Figure 3.8 plots contrast curves for all targets
reduced using the RV CCF calibration. We note the following in these figures:

1. We are still well below the PSF profile, so we are able to model for diffracted
starlight. We see features due to the edge of the field of view, but they are less
prominent.

2. Sensitivity after and before noise normalization is closer when we include
the the RV CCF calibration. This implies that the calibration improves our
method’s sensitivity, and brings it closer to the best possible value.



47

(a) CW Tauri

(b) HD 148352

Figure 3.7: Contrast curves, as a function of separation from the star, at 5𝜎 sig-
nificance for two targets. We include potential sensitivity (contrast before noise
normalization) in orange, final sensitivity after noise normalization (including RV
CCF calibration) in green, and the stellar point spread function profile (quantifying
speckle noise) in blue. Our sensitivity is well-below the speckle noise, with current
sensitivity brought closer to potential values due to RV CCF calibration.
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Figure 3.8: Contrast curves after all steps of noise normalization including RV
CCF calibration, mapping final sensitivity at a 5𝜎 significance level as a function
of separation from star, for all 23 targets. Variability in sensitivity across targets
is expected due to variations in amount of data, observing conditions, and spectral
types or brightness. Note that this latter plot is graphed on a different scale on 𝑥 and
𝑦 axes than the earlier similar figures.

3. Figure 3.8 plots sensitivity in the region of interest, at separations lower
than roughly 300 milli-arcseconds. We will use these values in the following
sections as our final contrast curves, mapping the sensitivity of the survey.

3.5 Factors limiting Sensitivity and Comparison with other methods
Besides being limited by systematics in our forward model for the diffracted starlight
(even after these optimization steps), we are also limited by the instrumental struc-
ture of Keck/OSIRIS. In Sections 1.4 and 2.7, we describe that the detectors of
OSIRIS lie on a two-dimensional optical plane, and the raw two-dimensional image
taken by OSIRIS contains several rows of spectra corresponding to different spatial
locations on the sky. The OSIRIS DRP converts this two-dimensional raw frame
into the data cube that is used in our forward modeling approach. Our sensitivity can
also be limited by the contamination of these microspectra into another, resulting in
systematic correlated noise at different spatial locations. This can be addressed by
more spacing between pixels on the two-dimensional detector field or by more cali-
bration in the reduction pipeline. Spatially non-uniform properties of the instrument
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that the DRP does not account for can also limit our sensitivity.

Figures 3.9a and 3.9b present our current sensitivity (that is, after all the noise
normalization steps, including RV calibration) and potential sensitivity (that is,
contrast curves before noise normalization) as compared to other direct imaging
surveys. We select three representative instruments/surveys to contextualize our
K-band sensitivity.

The Gemini Planet Imager (GPI) (Macintosh et al., 2014) is a high-contrast imager at
the Gemini South telescope, which operates adaptive optics, diffraction control, and
a low resolution integral field spectrograph with 𝑅 ≈ 30− 70. We scale sensitivities
of GPI to exposures of thirty minutes, which is roughly the exposure time (per
target) for our survey. Sallum and Skemer (2019) lists sensitivity for non-redundant
masking, which converts a typical telescope into an interferometric array, using a
pupil-plane mask. The International Deep Planet Survey (Galicher et al., 2016) used
the NIRC2 Imager at the Keck Observatory, and is another example of a classical
direct imaging survey.

Within the separation range of 0.05 to 0.3 arcseconds, we are estimating that our sur-
vey is more sensitive than its counterparts, by about half an order of magnitude. As
discussed in Section 1.5, our scientific goal focuses on demonstrating improved sen-
sitivity at these separations, of under 300 milliarcseconds. The potential sensitivity
contrast curves encode possible improvements to our sensitivity with improvements
to the forward model. Moderate resolution integral field spectroscopy is able to
detect planets closer to the star than classical high-contrast imaging instruments and
deeper than non-redundant masking.

3.6 Detection of a binary companion around HD 148352
In Appendices A and B, we presented signal-to-noise maps for the target HD 148352.
We observe a roughly elliptical region of high SNR, which we believe to be a binary
star companion to HD 148352. This region is highlighted in Figure 3.10. The
detection SNR is about 34, after all the steps of noise calibration. Figure 3.11 plots
this detection with the sensitivity curves, before and after these noise normalization
(including the RV CCF calibration), as well as the PSF profile. We note that the
contrast of the binary is ≈ 0.0038 = 0.38%, while the separation from the host star is
≈ 113 milliarcseconds. We are able to detect a < 1% companion at close separation
to the star (under 0.3 arcseconds), demonstrating the sensitivity of our technique.

We perform some procedures to validate this detection, as described in Section 2.12.
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(a) Current Sensitivity, with all steps of noise normalization

(b) Potential Sensitivity (computed before noise calibration)

Figure 3.9: Sensitivity of our pathfinder survey with Keck/OSIRIS, compared to
other direct imaging surveys. We estimate better sensitivity at separations of 50 to
300 milliarcseconds, with a potential to improve to even better contrasts.
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Figure 3.10: Detection of a binary companion around HD 148352, with SNR ≈ 34
(blue and purple dots) at Δ𝑦 = Δ𝑥 = −4 spaxels from the host star (red cross). This
constrains the astrometry of the companion.

Figure 3.12 plots the signal-to-noise ratios at the location of the detection blob, as
a function of the RV, which is the radial velocity cross-correlation function. These
SNR values do not include the noise normalization over the radial annuli, as an
overall scaling factor is not relevant to the validation. For real astrophysical objects,
the RV CCF should peak around 𝑅𝑉 = 0, which it does, because radial velocities of
bound companions would not be deviated by several kilometers per second.

We incorrectly included HD 148352 as an Ophiuchus star in our survey. While it lies
in the same region of the sky as the Ophiuchus star-forming cluster, it is much closer
to us (< 100 pc) than the cluster (≈ 140 pc). Mamajek (2008) note that the proper
motion of HD 148352 is much larger than expected for members of the Ophiuchus
region, with the values being instead consistent with it being a foreground F dwarf
with high proper motion.

As it is not a member of a star-forming region, but instead just an interloper that
happens to be projected onto the same region of the sky, the probability of HD
148352 having a hot young companion (that can be directly imaged) is lower than
we expected for a typical Ophiuchus target. Simultaneously, the probability of a
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Figure 3.11: Our detection (red) overlaid on contrast curves for HD148352, similar
to Figure 3.7b. Detection at 3.8% is above the sensitivity limits, while being
significantly lower (roughly 1.5 orders of magnitude) than the stellar PSF profile.
Our methods are able to model for diffracted starlight at separations as close as 5-6
spaxels (spatial locations).

binary companion, like an M dwarf, is increased.

In Figure 3.13, we present the results of an MCMC sampler as described in Section
2.12. we use a grid covering 𝑇eff = 2000 → 4000 K, log 𝑔 = 3.5 → 5.5, and spin
from 0 → 50 km/s. We estimate the temperature of the companion to be ≈ 3200 K
with an 𝑅𝑉 of ≈ −12 km/s and spin of ≈ 8 km/s. As these values are based on data
from one exposure, we do not report error bars on these crude estimates. Based on
this 𝑇eff (Morrell and Naylor, 2019; uni.edu, 2022), we believe that the binary star
companion is indeed an M dwarf.

3.7 Possible < 5𝜎 detection in ROXs 35A data set
In SNR maps for ROXs 35A presented in Appendices A and B, we observe a blob-
like positive SNR feature that is below the detection threshold of 5𝜎. This region is
highlighted in Figure 3.14, and could be a potential detection. The detection SNR
is about 4.2, after all steps of noise calibration, with a model using 𝑇eff = 1700 K,



53

Figure 3.12: Radial velocity cross correlation function for detected binary, at
Δ𝑦 = Δ𝑥 = −4 spaxels from the star. We see a peak around 𝑅𝑉 = 0, which is
expected for a real astrophysical signal. SNR is not normalized, up to a constant
scaling factor.

log 𝑔 = 4, and 𝑅𝑉 = 0. We note that these parameters are not optimized, and a
spectrum model that is more consistent with the real astrophysical object (if it exists)
could yield a higher SNR than the current estimate.

Figure 4.2 plots the location of this blob with the sensitivity curves and the PSF
profile. Notably, if detected with a higher significance, the separation of a candidate
at this location would be ≈ 82 milliarcseconds, or close to 4 pixels with the current
plate scale of Keck/OSIRIS. This could be an excellent demonstration of the sen-
sitivity of our methods, and, thus, further work is extensively discussed in Chapter
4. Currently, contrast is estimated to be ≈ 0.00194 = 1.94%, though changes to the
model that yields a 5𝜎 detection would vary this estimate. Figure 3.16 plots the
radial velocity cross-correlation function, as described in Section 2.12. We observe
a peak around 𝑅𝑉 = 0, which is consistent with expectations for a real astrophysical
signal.
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Figure 3.13: Corner plot encoding outputs from an MCMC sampler used to char-
acterize the 𝑇eff, 𝑅𝑉, log 𝑔, and spin of the detected HD 148352 binary companion.
breads can be similarly used to easily characterize companions in data sets.
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Figure 3.14: Low-significance (≈ 4𝜎) blob (blue and purple dots) around ROXS
35A, at Δ𝑦 = 0 or 1 and Δ𝑥 = −4 spaxels from the host star (red cross).
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.8
Figure 3.15: Low significance blob (red) overlaid on contrast curves for ROXS
35A, similar to Figure 3.7b. If confirmed, this detection at just ≈ 4 spaxels from the
star would demonstrate sensitivity capabilities of our technique.

Figure 3.16: Radial velocity cross correlation function for detected binary, at
Δ𝑦 = Δ𝑥 = −4 spaxels from the star. We see a peak around 𝑅𝑉 = 0, which is
expected for a real astrophysical signal. However, other peaks are appreciably high
relative to the highest peak at 𝑅𝑉 = 0 SNR is not normalized, up to a constant
scaling factor.
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C h a p t e r 4

FURTHER WORK

4.1 Further Optimization of Model
While there could be several approaches to improving our model, we will discuss
two potential steps, which are relevant to the discussion in previous Chapters. First,
we will reduce data from all the targets using the RV CCF calibration. In Section
3.4, we present results for 14 targets, out of the total of 23 we observed. As
visible from Figures 3.6 and 3.8, the normalization yields varied results for different
targets. Reducing the remaining targets could reveal that the normalization is not
optimized or does not work well for some particular targets. Optimizing the RV
CCF calibration would include using a different range of radial velocity values or a
finer grid. While our sensitivity is improved after the RV CCF calibration, we can
note from Figures 3.7a and 3.7b that more improvements can be made to push us
closer to the estimated potential sensitivity limits.

The second optimization we discuss in detail is related to the parameters that de-
scribed our forward model. These are hard-coded values that define some form
of threshold limit or model characteristic. Examples of these values include the
threshold deviation for bad pixel identification, the specific BT-Settlmodel to use
in SNR map reductions, thresholds used to define the intensity of masking for pixel
bleeding issues, sizes or shapes of apertures used to compute stellar spectra, or the
factor used to optimize placement of spline nodes.

Using 4.1, we specifically discuss the effects of changing the number of spline
nodes in the forward model, as a nominal example. As described in Section 2.6,
while generating the diffracted starlight model, we use a low-degree polynomial
spline interpolation to model for a non-uniform continuum. The nodes represent the
constraints, as well as the number of different functional pieces, on this piece-wise
fit. The number of nodes determines the complexity of the fit, which affects the
capacity of the model to fit the star-light, while also affecting the probability of
over-fitting the planetary signal.
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(a) Throughput (𝑡𝑎) (b) Noise level (𝜎𝜙𝑝
)

Figure 4.1: An initial example of setting the number of spline nodes to optimize our
forward model. for four targets, we plot (a) throughputs and (b) uncertainty levels,
which is directly proportional to the sensitivity, by a factor of 5 (threshold SNR
level), as a function of splines nodes in our model. These values are computed at
16 different location at a separation of 60 milliarcseconds. We optimize the model
by choosing setting this hard-coded parameter of our model to be one that increases
throughput, while lowering noise levels.

4.2 Future Observations, and Investigation of < 5𝜎 detections
As mentioned in Section 2.1, we have been awarded more time on the OSIRIS
instrument at the Keck Observatory for the two upcoming semester cycles. We
aim to observe roughly 10 more targets each in the Ophiuchus and Taurus regions.
Observing more targets increases the probability of detecting an exoplanet or brown
dwarf companion, as well as demonstrating the sensitivity of our methods over a
wide array of stars of different spectral types and brightness.

In Section 3.7, we described a ≈ 4𝜎 feature that we detect in our combined signal-
to-noise ratio map, generated using data from observations around ROXs 35A. This
is a nominal example of positive SNR blobs, which do not cross the threshold of 5𝜎,
that we observe in maps presented in Appendices A and B. Investigating these 3−5𝜎
features is important, not only because they could encode the discovery of a new
companion, but also because it is directly relevant to our scientific goal of estimating
and demonstrating the sensitivity of high-resolution integral field spectrography.

We compute signal-to-noise ratio with a set of given planet characteristics, using
𝑇eff = 1700 K or 1800 K, log 𝑔 = 4, and 𝑅𝑉 = 0. Varying these values, as well
as further optimizing the model as in Section 4.1, can yield a model that is more
consistent with the astrophysical signal, resulting in a different SNR. This, combined
with validation checks described in Section 2.12, enable us to select targets (where
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we see these < 5𝜎 features) that we might want to observe more as part of the
remaining time we have on Keck/OSIRIS. For example, we will collect more data
around ROXs 35A to investigate the feature we see at Δ𝑥 = −4,Δ𝑦 = 1.

Another target worth revisiting would be AB Aurigae. Currie et al. (2022) proposes
a Jovian protoplanet candidate around the star, embedded in a planet-forming disk,
which can yield significant science relevant to planet formation theories. As this
candidate is at a wide separation (about 30 pixels at our plate scale of Keck/OSIRIS)
and this finding was published after our observation run, the proposed location of
the candidate is not in our field of view for most of our exposures. Thus, we do
not have enough combined sensitivity to perform a follow-up detection. Collecting
more data (keeping the proposed location in the field of view) could allow us to test
the finding of Currie et al. (2022), and, if it exists, confirm the detection of a Jovian
protoplanet.

4.3 Probing Characterization Capabilities
There are several linear (𝜙) and non-linear (𝜓) parameters associated with our
forward model. Our approach should be able to accurately and precisely estimate
the characteristics of a planet signal. These characteristics include the planet’s
astrometry (spatial location), radial velocity, contrast or brightness, 𝑇eff, spin, and
log 𝑔. Testing how well our technique is able to analyze planets is important,
especially in case we detect a new companion. Section 2.10 describes how a
fake planet signal can be simulated in our data cubes, while Section 2.12 details
techniques to characterize detections.

Our throughput calculations in Section 2.10 already identify the amount of flux
our model is able to recover from an injected simulated planet signal. Thus, this
determines how well our algorithm can estimate the brightness or contrast of the
planet (which is a linear parameter in our model). We can similarly employ injection-
and-recovery routines to probe other characterization capabilities of our approach,
particularly the non-linear parameters. Injecting a planet at a given spatial location,
and then estimating its astrometry from a combined SNR map (as in Section 2.8)
can quantify how well we can estimate the location of a companion. Similarly,
injecting a planet signal with a specific Doppler shift corresponding to a specific
radial velocity, and recovering the signal with a grid of models with varying radial
velocities (using a grid search or an MCMC solver such as the one described in
Section 2.12) can quantify our ability to recover the radial velocity of companions.
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Parameters including 𝑇eff, spin, 𝑅𝑉 , and log 𝑔 are used to construct a theoretical
spectrum from a BT-Settl model. We can simulate a fake planet by injecting
a planet with a set combination of these parameters, and then attempt to recover
this signal by varying the theoretical spectra we use to generate the forward model.
Figure ?? demonstrates this for a single parameter, effective temperature 𝑇eff. We
independently inject planets of 5 varying 𝑇eff, represented by different colors, at 16
locations each with separation of 100 milliarcseconds. Then, we attempted to recover
planet flux 𝜙𝑝 at these locations using several forward models (𝑇eff = 1000 − 2000
K, in steps of 100 K) constructed using BT-Settl of different 𝑇eff. For a specific
injected 𝑇eff, we want the SNR obtained using a model with the same 𝑇eff to be
highest among all models.

Figure 4.2: An example of how to quantify the characterization capabilities of our
model. Each color represents the𝑇eff of the simulated planet signal. If an SNR curve
peaks around the same 𝑇eff, we can claim that our method can accurately measure
the effective temperature of a detected companion. In this example, we note that
planets with 𝑇eff = 1100 or 1300 K can be well-characterized (as the SNR curves
peak around the same values), while there seems to be some degeneracy between
planet signals with 𝑇eff = 1500, 1700, and 1900 K, which results in an SNR curve
with two significant peaks.
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4.4 Investigating Capabilities with the James Webb Space Telescope and be-
yond

Near-Infrared Spectrograph, or NIRSpec, is an infrared integral field spectrograph on
board the James Webb Space Telescope, operating over 0.6 to 5 microns, with science
data to be released within the next year. An approved early release discretionary
program involves high contrast imaging data taken using instruments including
NIRSpec 1. The breads has been tested to be compatible with available simulations
of NIRSpec data, using the instrument classbreads.instruments.jwstnirpsec.

Techniques developed in this thesis will be applicable to this new integral field spec-
trograph on the JWST, as well as in-development IFS instruments on the extremely
large telescopes. These telescopes are expected to become the next generation of
planet detection facilities, pushing down sensitivity limits for direct imaging.

1https://www.stsci.edu/jwst/science-execution/approved-ers-programs

https://www.stsci.edu/jwst/science-execution/approved-ers-programs
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A p p e n d i x A

APPENDIX A: COMBINED SIGNAL-TO-NOISE RATIO MAPS
BEFORE RV CCF NORMALIZATION

Included below are two combined SNR maps for each of the 23 targets, one before
and one after noise normalization (excluding RV CCF normalization). These maps
are discussed in detail in Section 3.1.

(a) without noise calibration (b) with noise calibration

Figure A.1: Signal-to-noise ratio maps for AB_Aur

(a) without noise calibration (b) with noise calibration

Figure A.2: Signal-to-noise ratio maps for CW_Tau
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(a) without noise calibration (b) with noise calibration

Figure A.3: Signal-to-noise ratio maps for DS_Tau

(a) without noise calibration (b) with noise calibration

Figure A.4: Signal-to-noise ratio maps for GM_Aur

(a) without noise calibration (b) with noise calibration

Figure A.5: Signal-to-noise ratio maps for HBC353
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(a) without noise calibration (b) with noise calibration

Figure A.6: Signal-to-noise ratio maps for HBC354

(a) without noise calibration (b) with noise calibration

Figure A.7: Signal-to-noise ratio maps for HBC372

(a) without noise calibration (b) with noise calibration

Figure A.8: Signal-to-noise ratio maps for HBC388
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(a) without noise calibration (b) with noise calibration

Figure A.9: Signal-to-noise ratio maps for HBC392

(a) without noise calibration (b) with noise calibration

Figure A.10: Signal-to-noise ratio maps for HD148352

(a) without noise calibration (b) with noise calibration

Figure A.11: Signal-to-noise ratio maps for HN_Tau
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(a) without noise calibration (b) with noise calibration

Figure A.12: Signal-to-noise ratio maps for LkCa15

(a) without noise calibration (b) with noise calibration

Figure A.13: Signal-to-noise ratio maps for LkCa19

(a) without noise calibration (b) with noise calibration

Figure A.14: Signal-to-noise ratio maps for ROXs4
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(a) without noise calibration (b) with noise calibration

Figure A.15: Signal-to-noise ratio maps for ROXs8

(a) without noise calibration (b) with noise calibration

Figure A.16: Signal-to-noise ratio maps for ROXs35A

(a) without noise calibration (b) with noise calibration

Figure A.17: Signal-to-noise ratio maps for ROXs43B
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(a) without noise calibration (b) with noise calibration

Figure A.18: Signal-to-noise ratio maps for ROXs44

(a) without noise calibration (b) with noise calibration

Figure A.19: Signal-to-noise ratio maps for SR3

(a) without noise calibration (b) with noise calibration

Figure A.20: Signal-to-noise ratio maps for SR4
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(a) without noise calibration (b) with noise calibration

Figure A.21: Signal-to-noise ratio maps for SR9

(a) without noise calibration (b) with noise calibration

Figure A.22: Signal-to-noise ratio maps for SR14

(a) without noise calibration (b) with noise calibration

Figure A.23: Signal-to-noise ratio maps for SR21A
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A p p e n d i x B

APPENDIX B: COMBINED SIGNAL-TO-NOISE RATIO MAPS
AFTER RV CCF CALIBRATION

Included below are combined SNR maps, one for each target, computed after all
steps of noise normalization (including RV CCF calibration). These maps are
discussed in detail in Section 3.4.

Figure B.1: Signal-to-noise ratio map, after RV CCF calibration, for CW_Tau

Figure B.2: Signal-to-noise ratio map, after RV CCF calibration, for DS_Tau



76

Figure B.3: Signal-to-noise ratio map, after RV CCF calibration, for GM_Aur

Figure B.4: Signal-to-noise ratio map, after RV CCF calibration, for HBC353

Figure B.5: Signal-to-noise ratio map, after RV CCF calibration, for HBC372



77

Figure B.6: Signal-to-noise ratio map, after RV CCF calibration, for HBC388

Figure B.7: Signal-to-noise ratio map, after RV CCF calibration, for HBC392

Figure B.8: Signal-to-noise ratio map, after RV CCF calibration, for HD148352
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Figure B.9: Signal-to-noise ratio map, after RV CCF calibration, for HN_Tau

Figure B.10: Signal-to-noise ratio map, after RV CCF calibration, for LkCa19

Figure B.11: Signal-to-noise ratio map, after RV CCF calibration, for ROXs4
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Figure B.12: Signal-to-noise ratio map, after RV CCF calibration, for ROXs8

Figure B.13: Signal-to-noise ratio map, after RV CCF calibration, for ROXs35A

Figure B.14: Signal-to-noise ratio map, after RV CCF calibration, for ROXs44
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