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ABSTRACT

A convergent series representation for the internal partition
function of polyelectronic atorns is obtained by assuming a covolume
equation of state for the gas as previously applied by Fermi and Urey
to the hydrogen atom.

The present investigation is limited to those cases wherein
only extranuclear electronic excitation occurs. The contribution of
these electronic states to the thermodynamic functions is obtained
from an acceptable approximation to the sum of the convergent ser-
ies for the partition function.

It is shown that at relatively low temperatures (SOOOOK), the
customary method of evaluating the internal partition function (based
on the assumption of an ideal gas) agrees to within a few percent with
the results obtained from the covolume treatment. However, at high-
er temperatures the increase in size of the excited atoms, along with
the appearance of charged particles produced by ionization, render
the ideal gas treatment inadequate. Since the interaction potentials
of charged particles are not known in general, an approximate pro-
cedure, which neglects these intcractions, is suggested for analyzing
a system wherein ions and free electrons constitute a small fraction
of the total population. This procedure should be useful for treating

gaseous mixtures to temperatures of about 10, 000°K.
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SYMBOLS

first Bohr radius

covolume correction

atomic volume of species 1

effective collision volume of atoms of species { and A
average effective collision volume for mixture
velocity of light

heat capacity

reference to d -state of excited electron
reference to | -state of excited electron
Gibb's free energy

statistical weight

Planck's constant

enthalpy per atom of species |

enthalpy of mixture

Boltzmann's constant

equilibrium constant of chemical reaction
azimuthal quantum number

quantum number measuring the total angular momentum vector
of an atom

mass
principal quantum number

number of particles

number of particles at chemical equilibrium
reference to O -state of excited electron

pressure
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W, /kT
internal partition function divided by € ]/k'

partition function
radius
Rydberg constant

entropy per atom or reference to .4 -state of excited electron

O &= A 5 00

entropy of mixture, Slater's shielding constant or spin quantum
number

T temperature
V  volume
W. term value of quantum state {
X. mole fraction of species 1
X  chemical symbol
7, atomic number
Z, _ effective core charge
o(,(% state parameters
£. internal energy per atom of species {
Ve angular coordinate
Mi chemical potential per atom of species {
§" collision diameter
¢ angular coordinate
Y} wave function
uT.L excitation energy for quantum state {
Subscripts
C reference to atomic core

{,j internal energy states

int reference to internal energy states
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{ reference to azimuthal quantum number
n reference to principal quantum number

trans reference to translational energy

Superscripts

o reference to the pure state of a given species



I. INTRODUCTION AND SUMMARY

If the temperature of an atomic gas is sufficiently high to pro-
duce appreciable equilibrium concentrations of atoms in excited energy
states, then an accurate calculation of the thermodynamic functions of
the system, including contributions from these higher energy states,
becomes difficult because of the apparent divergence of the partition
function. Practical examples of high temperature systems of this type
are encountered in researches on stellar atmospheres and in shock
waves. This problem is also of interest in connection with the appli-
cation of high-performance propellants and nuclear energy sources to
jet propulsion devices.

It has been known for some time that the internal partition
functions of ideal monatomic gases diverge if all of the possible energy
states are included., The terms of the infinite series which define the
partition function consist of the product of the statistical weight and of
an exponential factor involving the negative of the excitation energy of
each quantum state divided by kT . This exponential factor for the
higher states approaches a finite limit, whereas the statistical weight
increases indefinitely. Thus although the first few terms of the par-
tition function may appear to be converging, the higher terms gradually
increase and become arbitrarily large. The series therefore diverges.
However, it is known that at relatively low temperatures, the first few
terms of this series yield a good approximation to the internal parti-
tion function.

The principal results obtained in the present analysis are:

(2) a convergent representation is obtained for the partition function

of polyelectronic atoms; (b) relations for the thermodynamic functions



-1-
of un-ionized gases at very high temperatures are derived from this
expression; and (c) the limit of validity of the customary procedure
is determined by comparing results for the thermodynamic functions
based on that method with the results obtained from the convergent
series. The convergent series representation of the internal parti-
tion function for all atoms is obtained by selecting a covolume equa-
tion of state for the gaseous mixture. This procedure was used prev-
iously by Fermi(l) and Urey(z) in their investigations on the hydrogen
atom. Computations based on the present method show that the co-
volume correction is the major deviation from ideal gas behavior
for gaseous mixtures at relatively low temperatures (3000°K) at mod-~
erate and at elevated pressures. However, it is found that this cor-
rection is small, and that the convergent solution to the partition
function yields results which agree to within a few percent with the
results obtained for an ideal gas. Thus it would appear that the cus-
tomary procedure for computing internal partition functions at low
temperatures is entirely adequate for engineering calculations., At
higher temperatures ions and free electrons appear in appreciable
concentrations, and proper account must be taken of the increase in
the number of particles although the interaction of charged particles
in the mixture can be neglected in first approximation*. By applying
the present method, one can determine the relative importance of the
covolume and ionization corrections. Sample calculations for hydro-
gen, lithium and nitrogen show that at temperatures above about
7000°K ionization can not be neglected even at pressures as high as
20 atmos.

P L L

* This effect may be accounted for by using, for example, the Debye-

Hlckel theory as applied by Williamson in the case of hydrogen.
Cf. Astrophysical J. 103 139 (1946).
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The procedure developed for the calculation of thermodynamic
functions. of neutral atoms remains valid, in principle, even under
conditions in which appreciable ionization occurs. However, before
applications can be made to real systems, it will be necessary to in-
vestigate in some detail (a) small perturbations of the calculations
for neutral atoms and (b) interaction terms corresponding to binary
collisions between neutral atoms and charged particles, But, these
calculations are extremely difficult to carry out, because the inter-
action potentials of charged particles are generally not known,

It is expected that these interaction terms will yield small
corrections on the thermodynamic functions of systems wherein ion-
ization is of the ordex o
Consequently, a first approximation to these functions may be obtained
by treating the system with the methods of classical solution thermo-
dynamics and neglecting the interaction between the neutral atoms
and the charged particles. The present method may be utilized to
compute the thermodynamic functions of the neutral atoms,and the
contributions of the ions and free eclectrons may be calculated by us-
ing, for example, the Debye-Hlickel theory.

The problem of evaluating partition functions may be attacked
by using either the methods of statistical mechanics or the methods of
thermodynamics, The former approach was applied by R. H. Fowler(3)
and by Planck¥* to the investigation of stellar atmospheres. The latter

(1) (2)

approach was applied by Fermi and by Urey The advantages of

the statistical methods can be utilized only if a realistic description
of the interaction potentials for atoms in their ground states and in

- -

*Cf. Reference 3, p. 353.
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excited electronic states can be given. Since these interaction poten-
tials are generally not known, the statistical methods offer no obvious
advantages over the simpler thermodynamic methods, which involve
the implicit assumptions that the atoms are rigid elastic spheres in-
teracting according to a square-well potential profile.

The present study utilizes the methods of statistical thermo-
dynamics for the evaluation of internal partition functions for atomic
gases distributed at equilibrium in the accessible electronic energy
states. It is assumed that the presence of atoms in excited energy
states leads to non-ideal gas behavior only insofar as a covolume cor-
rection is required to the equation of state. As is to be expected from
the use of a covolume correction, the necessary weighting function to
provide convergence of the series defining the internal partition func-
tion is dependent upon the effective atomic volumes of the excited
electronic states. This conclusion was also stated by Urey and by
Fermi. It is shown in the present studies that the exact expression
for the weighting function can be obtained along with the solution for
the total partition function. The reduction of the present solution to
the classical value of the partition function for an ideal gas is readily
demonstrated.

Assuming the validity of a covolume equation of state, it is
clear that the calculation of the thermodynamic properties of gas-~
eous systems depends upon the evaluation of the weighting function.

It is found that the weighting function is determined by the solution
of three simultaneous transcendental equations wherein the unknowns
are dependent upon the quantum energy levels and upon the thermo-

dynamic parameters of state, viz., the pressure and temperature.
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A solution to the set of simultaneous equations is obtained by intro-
ducing a closed form expression for the internal partition function.

The dependence of the weighting function on the atomic vol-
umes has been indicated. Two methods for estimating these volumes
arc investigated. The first, an approximate technique, is the method
of screening constants(:t’ti)e second uses empirical wave functions ob-
tained by the method of Hartree(é) from known energy levels. The
latter, although more reliable, is extremely laborious. It is shown
by means of actual calculations on the potassium atom, that the
screening constant treatment yields atomic volumes which are in
good agreement with those obtained by the Hartree method, especially
for the higher energy states. For these states, the effective core
charge reduces to one so that an atom acquires essentially a hydrogen-
like structure. It is believed that the application of the screening con-
stant method to the lower energy states, and the use of the hydrogen-
like approximation for the higher states, provides a useful technique
for evaluating atomic volumes.

Application of the proposed mecthod to the determination of the
thermodynamic functions of pure atomic gases at high temperature is
illustrated by sample calculations on the un-ionized lithium atom.

The calculations have been performed for pressures from 1 atm. to
100 atm., and for temperatures between 5000°K and 20, 000°K. The
results obtained for 100 atm. pressure are compared with the classical
solution, and it is found that in the temperature range wherein ioniza-
tion is small the ideal gas results differ by a few percent from the re-

sults based on a covolume equation of state.
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II. THERMODYNAMIC DERIVATION OF A GENERAL

EXPRESSION FOR THE PARTITION FUNCTION

A. Covolume Equation of State

At high temperatures appreciable numbers of atoms will
occupy higher energy states for which effective atomic volumes
are no longer negligibly small; hence, the need for a covolume
correction to the equation of state. It is apparent that the atomic
volumes increase with increasing energy levels. Thus, the avail-
able free space in the gas is decreased thereby increasing the
probability for collision. Several investigators have examined
the problem of collisions between rigid elastic spheres, and it is
agreed that on the basis of such a model, the covolume correction
b is proportional to the average effective volume bm of a binary
collision (the gas densities of interest here are too low to yield
appreciable probabilities for collisions involving more than two
atoms). First order calculations for the proportionality factor
indicate N/Z to be the correct value(7). In this case N is the total
number of atoms present in the mixture of total volume V , pres-

sure P and temperalure ] . The corresponding equation of state is

P(V=b) = P(\/—%bm):NkT (1)

(1) (2)

Following Fermi and Urey we consider a system which
consists of only one chemical component and regard the various ex-
cited electronic states of the atom as separate species. The re-

sulting system is composed, therefore, of a mixture of gases of the

same atomic weight. Of the N atoms present in this mixture, NL

will occupy the internal energy state wj;. Evidently



D Ny =N (2)

The average effective collision volume b may be evaluated
in terms of the individual atomic volumes. Consider therefore the
collision of an atom of species i with one of species j. If we denote
by r. and rJ the radii of these atoms, then the effective collision

radius ¢;; for rigid elastic spheres is

UL
= (2)5(b%4 0:%)
Aar y ¢
where bt" bJ = volume of atom of type | ,J . The effective collision
volume bi} is equal to that of a sphere of radius ¢;; . Thus

{ |
- -3 3 3,2
oy AT = (BT R

An average effective collision volume bm for the system may be de-

fined by
_ (total number of collisions)x(corresponding collision volume)
h = P g
m 13 Z (total number of collisions)

y

The total number of collisions between atoms of types | and A is given
by the number of combinations of N; and N(j things taken two at a time
such that one of each is present in every set. Thus the total number

ot collisions is

%j NN
and Z N; Nj (bfL$ + b)%) 3

%}Nl»NJ
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But from Equation (2),ZN‘;——= N; therefore, Z NLNJ—A—NZand
i 1)
_ L 3 5.3
bm"' NaZNLNJ (b(+b33) (3)
Y

Hence the covolume correction b in terms of the atomic volume is

i 4
b= 75 2 NN (b7+7) (4)

(1) but without proof.

This result was indicated by Fermi,
The generalized expression for the covolume correction b
based on a two-body collision mechanism is reexamined in Sec. VI C in

greater detail. A second relation, more suitable for equation of

state calculations, is readily obtained from this form.

B. The Total Partition Function

It is the purpose of the present section to derive an expres-
sion for the total partition function of a gaseous system of chemi-
cally identical atoms occupying various electronic energy states
by using the methods of classical solution thermodynamics (8,9)
(cf. Appendix A). Statistical relations will be used only to assist
in identifying and simplifying the results. The final expression for
the partition function of imperfect gases is shown to be of familiar
form, differing from the classical solutions only through an addi-
tional factor which represents a covolume correction. Furthermore,
this correction factor is, in zeroth approximation, identical with
the result of Fermi, and is also of the same form as the correction

factor obtained by Urey for a mixture of hydrogen atoms obeying the

covolume equation of state.
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An expression for the total partition function can be derived
from the definition of the chemical potential. lL.et us considex the
chemical pt:)‘u;emtialju-L for an atom of species { in a gaseous mix-
ture composed of atoms which are in different energy levels. Then

(Cif. Appendix A},

= 0 kT A N A-3

where /ut is the chemical potential of { in the pure state, k rep-
resents the Boltzmann constant and _E.i is evidently the mole frac-
tionof i . If h: and 'Q?. denote the enthalpy and entropy per atom of

pure component { at P and T in a volume VLO occupied by N; atoms,

then we may write
<o Q o
/.,{L = h; -T2 (5)

Note that the superscript o denotes a pure component.
The total energy per atom &3 may be separated, in good ap-

proximation, into translational and internal components. Thus

g?

3 .
Lz_a.kT+wL (6)

The enthalpy for NL' atoms of species | in the pure state at pressure

P, temperature T, and volume V{ is
< S °
Hence, the enthalpy per atom is

=8 _ ey BV (7)
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where the total internal energy E is

E = );Ef =) Ne (A-21)
(A

and the total volume is given by

=V (A-17)
L

Substitution of Equations (2), (4) and (A-17) into (1) yields

Z{PV'LO* ZN }) RN u} -0

L

This equation must hold for a system containing any arbitrary num-

ber of atoms. The only physically acceptable solution is

p\/ k 8
2N§jN (b2 +b*) 4+ kT (8)

NL !

It is evident from Equatmn (4) that

ZN by +b ) gﬁ (9)

If Equatlons (8) and (9) are used in Equation (7) along with Equation

(6), then

5 db
h-_ k,T+w~+PaNL

Hence, from Equation (5),
) . ob _ T,°
Pl T+ PR T
and from Equation (A-3)

{nNLx,_._. Mo _ W p 2b
R v T aN T

Tl

At equilibrium/,liz/uc: constant. Therefore, solving for N; and

summing over all states, we obtain
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. P b
s MAT 8 N =W AT —17= 55
N = N (e Ty TS e TR TR A
t L

If we define the total partition function Q in the usual way, (10, 11)
AT
Q= Ne (10)
then
-5 v Ak ~ELAT - B
Q=(Ne %)) e e “ a1)

t

_ . -8, .
where the weighting function e * has been introduced, and

G

b
N, (12)

I
|

LD

&y

For ideal gases 91. is evidently equal to zero. Since the factor ?—%
increases rapidly with increasing energy level, e-—[}L will cause a
rapid decrease of the numerical values of the terms of the summa-
tion as w is increased.

The entropy per atom AO-L may be separated, in good approxi-
mation, into a translational and an internal component, Thus

4= )y e + D), (13)

is independent of the internal

(12)

The translational component (Af)
trans
energy states wj. It is given by the Sackur-Tetrode relation.

For an imperfect gas, the appropriate expression for the transla-

tional entropy per atom is

ol

6 —a —kdn| @D e (V-b)

L 3 (14)
trans trans Nh
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where m is the mass per particle and h represents Planck's con-
stant. The contribution to A‘?L from the internal energy states (AZ )_u‘{
may be evaluated by means of the following argument: It is known

from statistical mechanics that (AI) L may be defined by the rela-
in

tion *

() =klw (15)

Ulint

where W denotes the number of quantum states available to the sys-

tem. In the case of a system consisting of the pure component &

which has available to it only one quantum state W, W is evidently

the statistical weight SL {(degeneracy) of that quantum state; hence,
Ac-’ = k{ﬂ . (16)
( L)Ln{ 8(

and it follows from Equations (13) to (16) that

Ai/k: (ZerkT)%e%(v-b)gL 1

e (17)
Nk’
Substitution of Equation (17) into Equation (11) yields
3 —w /KT - 8.
_ @mmkT)?(v-b) w/ L
Q - "3 Zgle (18)
L

where the factor before the summation sign evidently represents the
translational partition function for a gas obeying the covolume equa-
tion of state. Omne can readily identify the complete expression (18)

with the familiar approximation

Q._: Q Q. (19)

trans int

* Cf. Ref. 10, p. 92.
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where
(2 m‘)% V- b
Qs = —21 vV=b) (20)
h3
and
'ﬂ)l/kT-Ql

Qin’c = Zgie (21)
L

The expression for the internal partition function Q’n{- is of the usual
L
~B. '
form except for the factor € ' which appears as a direct consequence
of the covolume corrcction introduced into the equation of state. It is

of interest to note that as b%}% »O, Equation (21) reduces to the total

t
partition function of a perfect gas:

_ (2armkT)3v W /KT
Q- GIme] 2.9

It is well known that this expression diverges if enough terms
are coﬁsidered in the summation. The customary practice has been
to compute QLM; by using only the first few terms of this relation and
to assume that the higher energy states make negligible contributions.
At low temperatures this procedure yields acceptable results. For
these cases the comparison of results obtained from such an
approximation with the correct values obtained from Equation (21)
shows agreement to within one percent. It is of interest to note that
for temperatures in the order of 5000°K, the first term alone from
either of the above expressions for Q’mt yvields results which are
accurate to within a few percent.

The functional form of the covolume correction given in Equation
(12) is identical with the relation obtained previously by Fermi(l) as
the result of a less complete analysis than has been given here. It is

evident from Equation (20) that a covolume correction occurs
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also in the expression for the translational partition function. How-
ever, this term is of no consequence as regards the calculation of
internal partition functions. Kquation (21) will be referred to here-
after as Fermi's equation for the internal partition function of a gas
mixture obeying the covolume equation of state or, more briefly,

as Fermi's equation. It will serve as the basic relation for the de-
termination of thermodynamic functions of atomic gases at elevated

temperatures.
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III. QUANTUM STATES FOR POLYELECTRONIC ATOMS

A. Excited Electronic States

The internal partition function as given by the Fermi Equation
is defined as aninfinite series which extends over all internal states
1, beginning with the ground state {1 = 1. Each of these states L de-
notes a distinct gquantum state of the atom. In the present analysis
we shall confine our attention to a consideration of the states of the
extra-nuclear electrons, and shall neglect the quantum states of the
nucleus. The rotational and vibrational excitation energies of the
nucleus, even for the heaviest elements, (13) are known to be at least
of the order of 104 e.v. These energies are several orders of mag-
nitude larger than the highest degree of extranuclear excitation which
can be expected at the temperatures of interest. At most we shall be
concerned with the first few ioni zation stages of the atom. Consequent-
ly, the index L is used to represcnt the excited electronic states of
the atom and, in fact, may be replaced by an appropriate set of quan-
tum numbers. Thus

i=1(n.,3)
where n is the principal quantum number, |, the quantum number
measuring the total angular momentum vector for the atom, and S,
the spin quantum number for the atom.

The excitation energies w, are given in the usual way, viz.,

'LLTL = \/\71 —~WL
Here Wi. denotes the term value for state 4 and W, refers ta the
ground state. These data are readily available from spectroscopic

measurements (e.g. Landolt - Bornstein "Tabellen'). An accurate
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calculation of Qint requires a complete compilation of these term
values. Although there exist infinitely many term values, the usual
practice in tabulating these data is to list the values Wl up to perhaps
N =10. For temperatures below 3OOOOK, it has been customary to
compute Q'Lnic by utilizing only the first few terms in Equation (21).

At higher temperatures, it is necessary to take more terms.

B. Hydrogen-Like Approximation for Higher Electronic States

It has been noted that the higher electronic term values may not
have been determined experimentally; nevertheless, it is possible to
predict these term values by assuming a hydrogen-like atomic
configuration. This approximation can be justified on the basis of
simple physical arguments. As the excited electron occupies higher
energy states, the net effect of the core structure (the nucleus and
remaining electrons) on this electron is much like the effect of the
hydrogen nucleus on its electron. The inner electrons shield the excited
electron from the full strength of the nuclear field. In fact, as the atom
approaches the ionized state, the effective core charge approaches 1,
and the structure becomes hydrogen-like. In practice this limiting
condition is assumed to exist much earlier. Consequently, one can
estimate approximately the remaining term values hy using the well-
known Bohr hydrogen model.

It appears appropriate, therefore, to separate the internal
partition function into two parts. The first part, a finite sum, accounts
for the contribution of the known, spectroscopi cally determined, term
values. For low temperatures this part makes the major contribution
to Q.m{ . The remaining portion of the internal partition function is
determined by a hydrogen-like approximation, and is represented by

an infinite series; thus.
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Qmi:: N L i

-Wx/U{ S W0 W/KT-D, (22)
3 g +57ge
1=t 1= A+1

The separation is made at some value of {=) such that W.L is de~
pendent, in first approximation, only on the principal quantum num-
ber n, that is to say, it is assumed that for given n, the term values
differ by negligible amounts for the allowed values of L. and S.

This assumption is well substantiated by the spectroscopic data. An
inspection of these data shows that for a particular atom, there

exists some value of n= g , beyond which the L. and S variations in

the term values may be neglected. It follows therefore that for {>A

W~ W,
In accordance with the hydrogen-like approximation, the index { will

be replaced by the pair n and {, the principal and azimuthal quantum

numbers respectively. Thus

{-»—i(n,[)

The infinite series in Equation (22) may now be written as

N—}

Wnl/kT“gnt (23)
9. = n
22, % 2.9

n=a {=o

The summation over { is replaced by the double sum over n and { .
Although the description of the energy states by the quantum numbers
(n,l) is a customary one, the above formulation is primarily a for-
malism. Note that for given n, the summation over the allowed values

of | is required first; the summation over n is carried out last.
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This procedure has no particular physical significance and has been
adopted only because it is convenient. The correct order of the
absolute magnitudes of the energy states is known to be *
IAQZAJ*LSA,SP,4A,3d,4p,54,4d,§p,4faﬁdm
The procedure indicated in Equation (23) may be used, because
the series is absolutely convergent.

If the hydrogen-like approximation is applied Lo the calculation
of Qin and gtn , then one can readily compute appropriate
expressions for each. The statistical weight an for a hydrogen-1like
configuration is given by the product of the stlatistical weight of the
core and the weights for the single excited electron. If we denote
the core degeneracy by J. . and note that the degeneracy of a single
electron for all values of | for given n is 2(24 + 1), then we find

that the statistical weight for a given state W, is

— +1 (24)
9, = 29, (et+ 1)
The term values Wln for a hydrogen-like configuration are given by

MQneg}QoQC (25)
N

where K, is the Rydberg constant (13.53 e. v. ), and C is the
velocity of light. The substitution of Equations (24) and (25) into the

series (23) yields

o0 d/na
Z%ﬁn = chze
n,! n=a {

*Cf. Pauling, L., "The Nature of the Chemical Bond", Cornell
University Press, Ithaca, 2nd Edition 1940.

n-1
In

(2€+1)eg

=0
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The state parameter & is equal to F?th/kT.
The internal partition function may be given now in terms of

n and {:

A
o - ~W1/kT Z:Cﬁt +2g Z €o< /h %;; 2{’+1)e~9m (26)

wnt C Ne=d

where

W fk1-0

— L L
(%L =J.° (27)

C. Ionization and Multiple Excitation of Polyelectronic Atoms

The present study is limited to a consideration of gaseous
systems at temperatures and pressures for which the chemical species
present will occupy, in appreciable numbers, only the electronic states
of the neutral atom. A system of this kind is encountered in several
engineering problems which are of current interest, viz., high-per-
formance rocket devices and very strong shock waves. Important ex-
ceptions occur in problems of stellar atmospheres where extensive
ionization is present. In the outer regions of the stars (chromosphere)
the pressures are of the order of 10«6 atmospheres, and under these
conditions the constituent elements of the atmosphere (e. g. Ca, Ba,
Sr, Si, He....) appear in the first and higher stages of ionization. Al-
though the present analysis is derived for systems which contain only
neutral particles, it is evident that similar treatments can be developed
for mixtures of atoms, ions and free electrons. However, the results
which we obtain are useful for the description of the un-ionized atoms
even in mixtures which contain charged particles. If the ions and elec-

trons constitute a small fraction of the total population, then one can
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obtain an approximate treatment by neglecting their interaction
with the neutral atoms.

The applicability of the present method to a specific problem
depends on the degrec of ionization which occurs in the system, and
the proposed procedure is valid as long as the number of ionized
atoms represent only a few percent of the total population. The de-
gree of ionization for a particular component in a mixture is inde-
pendent of the other elements present. Thus we may confine our
attention to a single reaction, which may be represented by the equa~

tion
X=X"+e (28)

X is the chemiecal symbol of the neutral element and € represents
the electron freed in the ionization process. It was pointed out by

Sahall®)

that this reaction could be treated by standard thermody~
namic methods; therefore, the concept of an equilibrium constant
is applicable. Let

N, = N-N, AN = 1

(29)

Ni = N e T\: N + N1
where AN denotes the net increase in the number of particles produced
by ionization as shown by Equation (28), and I the total number of
particles present at equilibrium. N represents the initial number

of atoms of X , N, the number of neutral atoms at equilibrium, N,

the number of ionized atoms, and Ne the number of electrons. The
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equilibrium constants are related by

AN

—y (P
(o= ()
and K =N Ne/No . Evidently

2
_ PN,
Kp NZ"'Nf

If we denote \)(J'-z- NJ/N , then

2
KAy = <‘------------—-—-——-——KP/p ) Ko — 1= (30)
1+K,/pP

Therefore, the degree of ionization is

(31)

The equilibrium constant K b is obtained readily from the

familiar expression

K,=P exp{—— %[ngkik -%:al. F;:]

which corresponds to the reaction
LA = )b By
4 K

Tib s — Yo R = AF" = AH-TAS'
k « |

and

The quantity F'/:} denotes the Gibbs free energy of the pure component
A" at T and P , and is related to the free energy F;j of Aj in the mix-
ture by an expression analogous to (A~3). Note that this formulation

differs from the customary one in that the standard properties are those
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of the pure component A} at T and P rather than the properties of
Ak in the mixture measured at standard temperature and pressure.
If one expands the expression for AF°, noting that the individual
atoms have both translational and electronic degrees of freedom,

(15)

then one obtains the well-known Saha equation:

K.p = 2 ((th;i <2‘ﬂm€ k-T)% kT e~ I/kT (32)
Q'Lnt h?

Here m, denotes the mass of the electron, W, is the ionization po-

=]

tential for reaction (28), and (Qint)}

for the } -fold ionized atom. The substitution of this expression for

is the internal partition function

KP into Equations (30) and (31) yields the ratio NA . Unsdld* has
constructed a nomogram, which simplifies numeri;al computations
appreciably.

When collecting the spectroscopic data for the evaluation of
the finite sum in Equation (26), it is important to note that the tabu-
lated data will necessarily include only observed transitions. In the
case of an equilibrium process (which is of interest in the present
analysis) all cnergy states are available to the system. Accordingly,
one must calculate term values which are not observed spectroscop-
ically. Furthermore, multiple excitations (the simultaneous excita-
tion of two or more electrons) may occur. An accurate computation
must, of course, make allowance for all of these possibilities. Al-
though the available states can be predicted on the basis of the possible

(16)

electronic configurations by well-known procedures, the corres~

*Cf. Reference 15, pp. 66-74.
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ponding term values are somewhat more difficult to specify. The

(17)

method of isoelectronic sequences may be useful in this connec-
tion. The term values of unobserved states for a given atormn may

be predicted by examining the corresponding states of other atoms
which have the same electronic configuration. Because of similar
electronic configurations, the same states are assumed to be ac-
cessible to each atom. The only difference between these various
atoms will be the magnitudes of the transition energies (term values)
because of the different nuclear charges. In the present analysis it
was found convenient to plot the transition energies of the state in
question as a function of the effective atomic number Zef_{ . Illus-
trative plots for the nitrogen I configuration, states ZSé(ide, 2422p2,3d>
and 2D(1AZ, 24 2p4) , are presented in Figure 1. Evidently one or two
points are adequate for establishing a given curve. This result is

produced by the fact that the transition energy i8 proportional to the

square of the effective field strength.
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Iv. CALCULATION OF THERMODYNAMIC FUNCTIONS

A. Evaluation of Weighting Function

The derivation of the weighting function presented in Section

IT showed the dependence of e«BL on the derivative g-;% . The defin-
ONy

ition of this derivative as given by Equation (9) may be simplified by

introducing the Doltzmann relation,

iy / .
o =Wy KT - 8 +91
= Ngie ! : (33)
Y
In addition let us assume that the atomic volumes bj are given by

the following relation ( 5{) » Q, and 1/1 are defined in V A):

by = <403;T Yo)w);’ (34)

The justification for this assumption will be presented later. The

aubstitution of relations (33) and (34) into (9) vields

SETATY W‘M‘Zs LT
oN; 3 29!\!

But it is known from statistical mechanics* that the internal parti-
tion function may be defined as

~oN
Qo = N, {35)

and from the Fermi equation

—WL/kTZ WAT8 —Wi/kTZCM

j-i

% Cf. Ref, 12, p. 116.
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The equation for %.% may be written
L

o

3 W'/kT-G'
6 (I‘+'l)') - € | !
g= R A -?—;Z Y (36)
=i

YT ON;
where the state parameter }5 is defined by

i KT

b= (S20 k)

Equation (36) may be expanded

D Vq; V. iva.
QLEF)eBi ‘1}13_}. 3%2_3:‘[ JCM +31)i. F—: JC& + = ‘C&

;Zﬂ; %;Cb; ;%g

This relation can be simplified by means of the following definitions:

Thus
0 (Y3 $U 4 T (39)
i::ﬁ (i + MY+ oY+ )

And note that

) 2
Ql = /6@ 1(—V15+/{41}1 + 51}1 + T) (40)
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As a convenience in terminology we shall refer to u , $ and T as
the first, second and third "moments' respectively of the internal
partition function.
The internal partition function given by the Fermi equation

may be written in terms of the moments M, 6 and T .

QR =e

ik

W kT 2 Wi kT~ pe (1/‘ +}A1) +3w) +7:) (41)
) g
J {

Or, in the notation of Equation (26),

- o /n? —Be (W Pk
q - Z% +232 M {-+1>eﬁe p)

tnt fmo
It is assumed here that ‘jn is a function only of n, and it will be shown
later that in fact ‘1),7~--=n2 in the range wherein the hydrogen-like approxi-
mation is valid. The moments/x , 5 and 7 are independent of {L . Thus

the above expression reduces to

- o/ e n*+8n°+T
_ Wt/k Z%,*%Z Jri-pe (n®run®+in“+T)| (42)

n==a

Q

int

n-1
where the well-known relation Z(2E+{)= n° has been applied.
=0
The unknowns u , § and 7 defined by Equations (38) deter-

mine the weighting function e‘8i by means of relation (39). This equa-~-

tion exhibits the direct dependence of 9; on the atomic volume bd'

3

through the term /39 G‘V}l (Ci. Equation (34)). This term is
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essentially the solution obtained by both Fermi and Urey in their
investigations. It is important to note that all four terms in Gf must
be included in the evaluation of the weighting function. In fact, for
those terms %j which make the largest contribution to Q.mjt , the
effect of each of the factors involving thc threec moments arce equally
important and of the same order of magnitude as the atomic volume term,
6 )3 .
/5)8 JY . For the larger values of /3 ({ T<C3000°K,P>!latm.)
the major contribution to the internal partition function is from the
lower energy states, as is well known. The relatively small magnitude
of & 9} causes the rapid convergence of the series (Cf. Equation (22) )
so that the higher energy states make in all negligibly small contri-
butions to &;,4 - The function 9} behaves essentially like j‘é’ , and
its value for the lower energy states is small relative to W} /kT
(Cf Equation (39) ). Because of this fact its exact value is inconse-
quential, and the inclusion of only the volume term /_")6911/; yields a
suitable order of magnitude estimate. Thus the approximation suggested
by Urey of using only this term in 9} serves to demonstrate the
convergence of the partition function, and is not meant to yield an
accurate computation of the function. For the larger values of ﬁ) good
estimates of Qint can be obtained readily from the first few terms of
the infinite series. This is not the case for smaller values of >
( T large, P small). Here the major contribution to Qint stems from
the higher energy states wherein 9} is of the order of the energy
term W) /KT . An accurate estimate of 93 is therefore required, and
one cannot omit the terms involving the moments Mo Jd and T
Obviously the Urey approximation is no longer valid, and a more exact

solution must be sought.
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It is evident from Equations (38) that the evaluation of the
weighting function requires the solution of three simultaneous
transcendental equations for the quantities /«\ , o andT. It is noted
that each of these relations involves the factor ﬁ)eeL through the

terms q}l} . If we define this factor ,%E ﬁe 6‘, then

/3 = /56/%(1/£3+/U1f+ SV + T)

But ﬁ(“)f*'ljaju + U8+ 't) &1 ; therefore,

e
b= B+ v+ 59+ )
When /3< 10—6 the T term in the bracket above is predominant, and
the entire factor is well approximated by /5'5 . Thus
ﬁ t=pT

At lower temperatures (/5> 10"

(43)

6), the terms /U'\)f and §V, may be O(7)

so that they can no longer be neglected; however, in these cases the
entire bracketed term is so small that it may be entirely neglected
as compared to{1 . Thus the expression (43) is applicable to the
larger values of p as well as to the relatively small values for which
it was specifically derived.

The substitution of the approximation (43) into Equations (40)
and (27) yields

N W, T~ _ﬂi_m O )+ $Uj +77)

It is convenient to introduce a quantity CA such that

..Wl /l(.T (44)
Q'mi - %e
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Then

- = W /KT - L v+ v+37)+’t
%ZZCB ZZSJ MY ) (45)

F A
;1&-(‘6& == -—<1"... T)%—j}‘ (46)
(1B
JZ{VI%J“‘ ( 3 >93§
so that
- 3(i~5"c ) o
f /3(}) a?’
b=-—30 é )% (47)
T = L{i- 'li 2 J
Ch( ﬁ )asgi}u
It is more convenient to define
Cb(/J,S,”C = gp+ Q’(L——/G’E g.g})
aé’ = - a" =
Kp-d1) = qé + 5(1-AT)5H (48)
g

P(p,8,1) = §T — <_@‘)

93

A practical method for solving these simultancous equations for the
unknownsy , & andT consists of a simple iteration procedure based
on initial estimates for these quantities. If these values are denoted

by Mo » 50 and T, , then the functions (P s X and 2'1/ may be expanded
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in a Taylor series about the point (}10,80, ”Co) . Thus, for example

Qv

5, T) = 50,7 ?ﬁ?)A (4+(2 A5+@$ AT +... (49)
P(p:8,7) = P4 °)+<3Fo / <as)0 't)o

with similar expressions for the other two functions. If only the
linear terms are retained, then the three expansions reduce to three
linear simultaneous equations in the deviations A}J , Ad and AT .
The application of these first order corrections to the initial esti-

, and 7, vield a second, more accurate solution. The

mates j“o R é
process can be repeated until the desired degree of accuracy is ob-

tained.

B. Internal Partition Function

Evidently a closed form expression for c& would be useful
for the purpose of solving Equations (47). Such an expression for 9
may be obtained by deriving a suitable approximation for the function
Cbn , where

] d/ﬁ_,rf%ﬁ(ngﬁpn4+énz+’t)

%n =2 8cn e !
according to the notation of Equation (42). Clearly, this function
represents the individual terms of ant for the higher energy states.

If one plots the contributions to Q. from each value of n (i.e.

int
the terms Cﬂn ) as a function of n, the area under the function will
represent Q'mt . It should be noted that the lower terms in the finite
sum of Equation (42) must be collected for given n . Now it can be

shown that for relatively large values of the state parameter /§ s

the function Cﬁ has the form indicated by Diagram A, whereas for
n
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relatively small values of [3‘ s Cbn behaves essentially as shown in

Diagram B.

Dmgr“om A Dlogrom B

_ (/3’ large) (/3 SmoH>

The step-like nature of %n for small n represents the terms of the
finite sum in Equation (42). The evaluation of the partition function
for the cases represented by Diagram A is a relatively minor prob-
lem. Indeed, it is of the type which one encounters at the lower
temperatures. For these cases the first few terms qn s q)z s e Cﬂr
yvield a sufficiently accurate estimate of Q'mt , and one can neglect
the corrections due to the moments Moo d , and T . For the more
highly excited systems, however, the influence of)J , & and T on
vat is appreciable; consequently, these terms must be included.
The partition function Qmjc is proportional to c}) (Cf. Equation
(44)); therefore, it is of interest to consider the evaluation of the

(18)

infinite series (45). The Euler-Maclaurin formula may be ap-
plied for this purpose. If (45) is written in the form of Equation (42),
and the infinite series in the expression approximated by the first two
terms of the formula, then

2, 0
c})& Z% +/ct(n)dn + écé(a) (50)

le
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The function %(n) is

/P~ A(ne brénta
gm) = 2gr‘e /=B (netunts sne )Ezganh(n) (51)

The problem is to evaluate the integral of Equation (50). Unfortunately

the integral of (%(n) even in its present form is an unusually complicated

function and is not amenable to any elementary methods of analysis.

Numerical calculations indicate, however, that the function h(n) de-

fined by Equation (51) may be approximated in the neighborhood of some

value n=q, by a linear function (Cf. Figure 2). Therefore, we expand
h(n) in a Taylor series about the point n=qd, and take the first two

terms.

h(y)=h{a)+ hl(a*) (Y=G) + ... (52)

where

<S5 e+ 07+ )
h{a,) = e

hl(d*)z -2[%;2 +ﬁ(3o*5+ ZFC‘[:’_i_ 5(:1*)]}’}(0*)

If these expressions are substituted into the above mentioned integral,

then

o a
t/’3)(3)@5: ZSC/H?[h(G*)+hl(d*)(8~0*)]daj

The upper limit co has been replaced by d_, which denotes the zero
of the approximation (52). The integral is terminated at d_ in order

to avoid the negative values predicted by the approximation.
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o= a, ~ M@ (53)
h'(ay

The substitution of this relation into the integral yields

o

/
gty = egpienet [-4[- (&) T 416}
a
This expression can be simplified by a suitable choice of a, which
denotes some convenient point in the range of h(ﬂ) wherein the approx-
imation {52) is valid. In this region the function QJ- , which may be
represented by ﬁnb , is of order one. Thus we are interested in

~

values of n= O(P

[ bt

). Let us select, therefore, the following value

for Cl*

a, = (15/5)‘é (54)

This assumption will be applied to all calculations so long as P is
sufficiently small to yield values of ara . If the value computed
from Equation (54) is less than d , then the value @ will be assumed
instead.

The particular merit of assumption (54) lies with the fact
that for small /f) , the function (t(n) behaves as indicated in Diagram
B, and (15'6)—é is a good approximation to the maximum point of this
function. If Equation (54) yields a value for a,>d , then Q, is in-

deed a maximum point of the function %(n) , and it follows by differ~

entiation of Equation {51) that

h(a,) = - $*hia

The substitution of this relation into Equation (53) yields
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o)
O, = 2%
and
ﬁ(ﬂ)dg ~ ¢a’h(a,)
a
where

¢=€(0,0,)=gZ {4 ]-3[i- %4}}

The internal partition function may be approximated by means

of the above relations. Thus

W jer

q=1Q,_e Z% +5q@)+€qh@,) (55)

Ln

The second and third terms represent the infinite series as previously
indicated.

Figure 3 exhibits the accuracy with which the function (%(n) can
be approximated for both small and large values of (5 according to
the relations developed above. For small /j , the approximation pro-
vides an adequate match to the true function in the neighborhood of the
maximum contribution of Lt(n‘} to QLn{ . For larger p » the comparison
is not as good. In fact, because of the selection of Q, according to
Equation (54) and the assumption of zero slope for (l(n) at d, the ap-
proximate function has neither the correct slope or curvature. This
problem was investigated in more detail in order to obtain a better
match. An improvement upon the above mentioned method was at-
tempted by inscrting the corrcct value of the slope for c&(n) at N— dg

and by considering various other positions for ¢, . In none of the
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cases investigated, however, did the corrected relations yield as
good an estimate of the integral (Cf. Equation (50)), as the pro-
posed approximations. It appears that this method is the best if
only the linear term is to be retained in the expansion of h(y). The
accuracy can be improved however if the curvature term is included.
For the present analysis the two term expansion will be sufficiently
accurate.

The actual function cs(n) is compared graphically in Figure
3 with the approximate expression involving the two-term expansion
of h(n) as indicated in Equation (52). The actual sum is also com-
pared with the two-term Euler-Maclaurin expansion, and for both
values of temperature, the agreement was found to be good. Com-
putations indicate that for T=240 the error in Q'mt is less than

9 % , whereas for T=3000, the error is less than 1 %

The approximation to Cﬁ given by Equation (55) may be ap-

plied to the solution of the simultaneous Equations (47). The cor-

responding relations are

(56)

= %{%‘u%i})@) + eofh(O*)}
§ = %{{#%4%@) + 60:h(dn}
- e e

where the notation

M)—:—.“: 1) . (57)
4 =2 19
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has been introduced. The solution of Equations (56) by the suggested
iteration procedure is straightforward but lengthy. For this reason
the derivatives indicated in Equation (49) have been compuled and
summarized in Appendix C.

It is a relatively minor problem, however, to investigate the
solulion of these equations for the extreme values of temperature.
At very large temperatures the major contribution to the internal
partition function is from the higher energy states. Therefore, the
€ ufh(u*) term in Equation (55) is predominant, and a good approxi-

mation to CL is,
Lim 9~ Eth(o,)
Tem 00
Therefore, by neglecting the first two terms in each of the Equations
(56), we obtain immediately the following asymptotic values for the
three moments:

J= 3d, §=3q; 7= q (58)

We are concerned here with the case for ﬁ—»o . Thus the function
Ci)(n) is of the type indicated in Diagram B, and O, represents in
fact the maximum point of the function. It is possible to derive the
appropriate value of Q, from the asymptotic expressions developed
above. The condition of zero slope for %(h) at n=aq, , along with

the values given in Equations (58), yield the following equation in Q, :
8 6 2
1300, - «xBa,— A, + « =0 (59)

For the cases in question a representative set of the relative magni-

tudes involved are oc,q*—.zO@O) and /5=O(10~é>. Therefore, one can
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obtain an approximate solution to Equation (59) by neglecting the
C!f and % terms. The corresponding solution is the relation
previously assumed for Q and presented as Equation (54).
The investigé,tion of the solutions for the simﬁltaneous Equa-
tions (47) in the limit for very low temperatures also yields a set
of simple expressions for the moments. For this case the major

contribution to Q. is from the first term (ground state). There-

int

fore, if we neglect all others, then

9= 9
and

(&)

*‘*'_1/1 q\i q(a)“"”' _‘/12%1 q‘)

3
b B } —~>—'1j£ (%i

If these expressions are substituted into Equations (47), one ob-

tains readily the low temperature solutions for the three moments.

. 2 — 3
M= 37, §=3v T =7 (60)

These two sets of solutions, Equations (58) and {(60) can be
used effectively as the initial estimates Mo 50 and 'Z'o which are
required in the iteration procedure outlined above. Figure 4 gives
the exact solution to the simultaneous Equations (56) as a function
of temperature for a given pressure. It is interesting to compare
these solutions with the high temperature approximations (broken
line curves) which have also been included and to note the asymp-

totic behavior of the two sets of curves.
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V. ATOMIC VOLUMES

A. Hydrogen-like Model

In the present section we examine a method for computing the
atomic volumes bJ‘ which determine the weighting function according
to Equation (12). For the purpose of computing thermodynamic func-
tions, it will be desirable to sacrifice accuracy for the sake of sim-
plicity and to consider approximate methods. In order to obtain
some information regarding probable errors incurred by the approxi-

(4, 5)

mations, the familiar method of screening constants was applied
as the approximate technique, and the results in a few particular cases
compared with more accurate solutions obtained by the Hartree meth-
od. (6) The present discussion is confined to a review of the approxi-
mate method.

The application of the method of screening constants to the
calculation of atomic volumes consists of treating a given atom as
an hydrogen-like atomic structure. This approximation would ap-
pear to be reasonable, especially for the higher electronic states,
on the basis of the argument already given in Section IIIl B. For the
lower energy states, the shielding effect of the outer electrons is
not as effective; hence, it is necessary to apply corrections in the
computation of the effective core charge by means of empirical
rules. Slater suggests a set of rules(4) based on data obtained from
ions, x-ray energy levels, etc. The total shielding effect of the

outer electrons on the field of the nucleus is determined by com-

puting the contributions of each electron by means of the rules.
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The method is readily applied to volume calculations, and is there-
fore especially suited to the present problem.
It was previously noted that the term values for the hydrogen

atom can be approximated by the Bohr model.

2

WMI_:{ Z Rohc (25)
n2

where Z, (the atomic number) is of course one. If the many-electron

atom is treated as an hydrogen-like structure, it is necessary to in-

troduce an effective atomic number Zef{ which is defined

Z . =(z-9) (61)

¥

where O is the screening constant computed by the method indicated
above. The analogous energy relation (in Rydberg units) to expres-

sion (25) is, therefore

2
Wnl —_ éne___: (Z ‘.25)&

R hc n,

=)

(62)

It is assumed that this relation will be valid for any arbitrary atom.
Note that spectroscopic data yields & ; which, along with the com-
puted values of 5, define n,

The calculation of atomic volumes is made on the basis of
an assumed spherically symmetric configuration. Thus the determi-

nation of the average value of the atomic radius cubed (r3) is re-

quired. This quantity may be computed readily from the relation

00 Jr 277

I= :/ﬂqq*r3q ridr sintddd@
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where r, 7 and ¢ denote the polar coordinates, and 2} is the
wave function of the system in question.

In the case of the hydrogen atom it is known that the wave

(19)

function is given by

Y= (rn0,9) = R,(1) S, (1,0) (63)

S&m (Y}, CP) is a normallized surface harmonic of order |m| and

degree L , and an('") is defined as

8 3 -nj2 { et+i
Ru) = (2] o LT
na, gn[(m_g)!:{ n+t

T fram

20+1
ot (71) is the associated Laguerre polynomial of degree ({-n)
+

and order 2{ +1, and = 272r/na, with g, = radius of the first

Bohr orbit. It follows, therefore, that

T (n-1-1) - s+eat a£+1 2y o
(O—> (az 2!’7[()’]-}-(_)1]3/ n+£ q q, ( )

The integral may be readily evaluated to yield (Cf. Appendix B)

25 (n+1+4-1)]
[(n+2)!4! : (B -14)
Zo [(4-{)!{[]2(n—£—1—t)l_

It should be noted that this sum terminates at t=n-{-1 if n-{<S
If the summation is expanded out and the resulting expression substi-
tuted into Equation (64), then
(L)5 :_L(ﬂi>3<i+g_¢)m(i m) { 4 18(n-t-1)
QQ 1 16 7 n n+ L+4

36(n-t-1)(n-1-2) +16(n-l—1)-"(n—z~5) (n-1-1)---(n-1-4)
(n+l+4)(n+1+3) (n+t+4)---(n+1+2) +(m~£+4)-~(n+£+1)
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which may be reduced to

®1n

R R RO CE R N

Or, if the quantity in the brackets is denoted by Yln , then

(Zf,)jn}: (”%2)3 an (6e)

An analogous relation may be assumed for the many-electran atom

by replacing the (n?/Z) factor by Equation (62),

3

@ES:(Z*S)B'XI = Y (67)

n £n “tn

The spherical volume bt corresponding to this value of (Fa)t is

bl=(4__13r)_0§)>{£1/.£3 (68)

where the more general notation L for the quantum energy state has
been introduced. It is evident from Equation (26) that in computing
the internal partition function, it is necessary to sum the product of

-0

the degeneracy and the weightling function Slne " over the allowed
values of { . The computation is complicated by the presence of the
function Xﬁn , which is defined by Equation (66). Figure 5 gives
come indication of the nature of thie function. Note that {< Xlné ‘%5
and also that

= 1 2
Yon é<35+ }%)

—_— 3 i1 o)
ban =L 5 F 2 T
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A general approximation can be obtained from Equation (65) for small

{/n

Yln—rEf 95 1} B

~je
Il
i

™
| IR

In spite of these simplifications the summation over { proved to be
a formidable problem and no simple solution was found. In view of
this fact, it seemed advisable to simplify the entire problem by as-
signing to ¥, some average value ¥, . Equation (34) is the cor-

responding simplification of the general expression (68).

The selection of ¥, for a given system can be accomplished
by an iteration process. Starting with an initial estimate, one can
compute q) by first solving for the moments /J » o and T . An
average value of Y{n can then be defined for each valueof n . If
the computed average compares favorably with the assumed value
in the region of n wherein (i(n) makes the largest contribution to
C}) , then the initial estimate was an adequate one. If not, then the
process can be repeated. A suitable average Y for given n can

In

be defined as

z .
Bt 5ntk3) e Bl +pn't; + 51747 )

i
e =1 (2t+1)e
nae

==

where

B

i

5

A sample computation B =2.3x 10_8 was carried out, and the two
solutions for the in average as function of n are presented in

Figure 6. It is of interest to note the negligibly small variation in
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this function as the assumed value is varied from ¥, =2to ¥ = 2.6.
The influence of Y, on 9 is also a relatively small effect. Sample
calculations indicate that for {5: 0(10—7), a 250/0 increase in \Ko

o .
causes about a 5 /o decrease in % .

B. Calculation of Atomic Volumes

Atomic volumes for any quantum energy state { may be com-
puted for a spherical model (based on the assumption of a hydrogen-
like structure) by using Equation (67). The quantity v, is computed
from the known spectroscopic data of the atom (assumed hydrogen-
like for the higher states), and the screening constant S, by the
method previously mentioned. It is of interest to determine the value
of 'V.L-a— -%n for the higher energy states according to the hydrogen-
like approximations. In these cases, (Z-S)—~1{ and Eg= %}-—2 from

Equation (62). It is evident from Equation (67) that

— Y
V=V, =n
and
- — AJTao3 e
b=y, = (222 ) ¥, (69)

The calculation of these volumes may also be carried out by
applying the more accurate method of Hartree, usually referred to
as the method of self-consistent fields. The procedure is essentially
a numerical one and relies primarily on the representation of a com-
plex atomic structure by the superposition of single-electron wave
functions. A numerical representation of the wave function for the
entire system is obtained by trial and error estimates on these

single-electron functions. The applicability of the method to the
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present problem was investigated by actually carrying out volume
computations 451:—)3 for the potassium atom. The semi-empirical
wave functions for this atom were supplied by D. S. Villars of the
U. S. Naval Ordnance Test Station, Inyokern. These data were
tabulated for the radial wave function l?n(r) as a function of the rad-
ial distance from the center of the nucleus. The function En(r‘) is

defined
an(r) =r Rln(f‘)

in accordance with the expression for qf given by Equation (63).
The function (—F—)a" was readily obtained by the evaluation of the fol-
lowing integral (Cf. previous definition of 3 ) using numerical meth-

ods of integration:

o0

F% =/Fii(r) rgdr

o

Sample computations of (')’ for various energy states are presented
in Table I and compared with the results obtained by the method of
screening constants. The correlation is well within the limits of ac-

ceptable engineering accuracy.
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VI, THERMODYNAMIC FUNCTIONS

A. Fundamental Relations

The following well-known relations* define the contribution
to the thermodynamic functions by the internal energy slales. In

the present case Q . is due to electronic excitation.

tn

F__hQ E_H_ 1 i@int) (70)
KT nt kT kT Q, (T dT

where F is the Gibbs free energy
F=H=-TS (71)

The heat capacity C is

R R

int int

The evaluation of these functions requires explicit relations for @ ;
in
and its first two temperature derivatives. These derivatives may be

computed in general form directly from the Fermi Equation.

B. Thermodynamic Functions

Good approximations for the thermodynamic functions can be

obtained by using Equation (55) for QL and performing the neces-

nt

sary differentiations directly on this expression. In carrying out
this scheme, it is convenient to separate Q‘mt into two parts cor-

responding to the notation of Equation (26). Thus define

* Cf. Reference 10, p. 442.
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. (©) ]
Q=X +Q

where according to Equation (55)

@ ) -W, /kT -W, /kT
Q = Q, + Q*’ E-iéct(me / +eofh(a,)e \/

The first derivative of ant with respect to | is

() €3] €]
TIR,, =TI _ 79Q, | TIQ (73)
" Tt

where

A
Sl s

1

and

- Wy a®+ a4+éaa+T
Aw =2y pllapaesa 4 T)
(1-p7)

— R.hc
Wy = Wo— oo

The second derivative of Q‘Lnk is

2 2 {0} 2 B i
Tz.b_.ant = TZQ__Q + Tza Q(o +T23Q“ (74)

oT? JT?2 ﬁz 'a"—'i'—z*
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The substitution of these derivatives into the expressions
for the thermodynamic functions, Equations (70) to (72), is a straight-

forward procedure.

C. Equation of State

An equation of state for a gaseous system of neutral atoms
with excited electronic states can be derived in terms of the results
which have already been obtained in the previous sections. In par-
ticular, it can be shown that the covolume correction b given in
Equation (1) and defined in Equation (4) may be expressed as a func-
tion of the moments of the internal partition function (Cf. Equations
(38)) and the state parameter IG .

Consider, therefore, the general relation (4). This expres-

sion may be simplified considerably by introducing the relations
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(27), (33) to (35) and (44). Thus

DNV

boN % =1 J:i

b, = == (75)

b:iwnf’ 3/ Jg 430D Y v

5N qf;cﬂl ijl%ﬁ ;ﬂﬁ ;:‘%ﬁ;ﬂz
Obviously

b _ 1Y P VAT SR

boN % ;CLL{L +}J + + }
And so

b _ 5

o (T+84) (76)

The corresponding equation of state is readily obtained by
substituting this relation into Equation (1), which, in standard form
is

NKT O TNKT v ()

If the definition of /6 is applied along with Equation (76), the above

equation reduces to

PV 1 iop(ry 78
- +2p(7 + 24) (78)
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It is of interest to examine the behavior of this function in
the limit for large temperature. According to the analysis of Part IV
B above, the high temperature limits to the three moments are
given by Equations (58). These results, along with the approxima-

tion (54), yield

o [B4)=1+ 8

Some sample computations of the "compressibility factor' given in
(78) are presented in Figures 7, 8 and 9.

The equation of state (78) may be corrected to account for
the presence of ions in the gas mixture which appear as products of
the reaction (28). In making the actual calculation, it will be more
convenient to use a slightly different definition than indicated in Equa-

tion (77). Consider therefore the expression

PY_ _, Pb
KT kT

(80)

where T\ denotes the total number of particles at equilibrium accord-
ing to the definition of Part III-C. The substitution of Equations (29)

into (80) yields

_PY 4 Pb
NKT (1+%,) nkT

which is, in the notation of Equation (78)

= [t 2plre )] (14 0) (s1)

Note that the limit of the ionization factor for large 7T is 2.
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D. Discussion

The present analysis has achieved three objectives. First,
a convergent series expression for the internal partition function of
un-ionized atoms has been derived. Second, this result provides a
method for computing the electronic contribution to the thermodynamic
functions. And finally, the range of applicability of both the customary
method and of the covolume treatment has been determined. The re-
sults of the analysis show decisively that although the covolume cor-
rections are the major deviations from ideal gas behavior at the lower
temperatures, these effects may be neglected in making engineering
calculations. Furthermore it is found that at the higher temperatures,

Y ST TR
(RTINS LR R AW

nt, it is necessary
also the effects of ionization. Indeed, actual computations performed
for lithium and nitrogen (Cf. Figures 7, 8 and 9) indicate that the
non-ideal behavior of the gas at the higher temperatures is due large-
ly to this effect, and that the covolume correction to the equation of
state due to the expanding volumes of the excited atoms is in com-
parison a smaller deviation. Therefore, if these results arc at all
representative of the general behavior of all atoms, then it is appar-
ent that a realistic derivation of the thermodynamic functions of gases
at high temperatures must necessarily take into account the presence
of ions and free electrons in the mixture.

The extension of the present treatment to include the effect
of ions and free electrons in the mixture is a formidable problem.
The most serious complication which arises in this calculation is the

specification of the interaction between the various types of particles.

Although the method of excluded volumes has been applied to approx-
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imate the interaction of neutral atoms in excited electronic states,
the application of this method is not generally recommended for sys-
tems which contain charged particles. An honest calculation of the
thermodynamic functions of a mixture of atoms, ions and electrons
must be based on a more realistic description of the interaction po-
tentials; but, these potentials are generally not known,

When ionization is of the order of 10 percent (at temperatures
of about 10, OOOUK) charged particles will be involved in relatively few
encounters, and it is expected that the interaction terms corresponding
to binary collisions between charged particles and neutral atoms will
yield small corrections on the thermodynamic functions. It is suggested
therefore that as a first approximation these interaction effects may be
neglected entirely, and that the mixture may be treated by the familiar
methods of classical soluti on thermodynamics. In these calculations
one may compute separately the contributions to the thermodynamic
functions of the atoms, and of the ions and free electrons and then apply
the necessary mixing terms to determine the properties of the complete
system. The charged particles in the mixture may be treated by the
Debye-Huckel theory(zo) and the methods outlined in the present study
are directly applicable to the neutral atoms. These approximations are
admittedly crude, but an attempt to achieve greater accuracy would
require much more realistic descriptions of the interactions for the
various atomic particles.

The relations derived in the present analysis have been applied

to the computation of the thermodynamic functions of lithium I
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for various temperatures and pressure. In particular, the contri-
butions from the electronic states to the internal energy, the entropy
and the heat capacity have been plotted as functions of temperature
in Figures 10 to 12. It should be noted that these functions represent
the contributions of only the neutral atoms. Broken-line curves
have been drawn for the higher temperature range of the functions
because of the uncertainty in the method of computing atomic vol-
umes for the more highly excited atoms. These volumes are rela-
tively small for the lower energy states, and large errors can be
tolerated in the calculation. But, the influence of the atomic vol-
umes (i.e. interactions) on the thermodynamic functions become
more pronounced at the higher temperatures; thus, more realistic
interaction potentials should be introduced for atoms in the highly

excited electronic states.
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TABLE I, ATOMIC VOLUME CALCULATIONS
FOR POTASSIUM 1.

State 3 3
L Z-S y "in . "
emission g \ £n a, (Slater's ron
electron " method) {Hartree)
3d 541 2.33 1260 1027
54 516 4,50 2320 2366
5d 11,750 3.61 42,400 40, 826
7.4 12,500 4. 44 55,400 55,900
11.4 4179, 000 4,37 2,090,000 2,062,665
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APPENDIX A

Classical Solution Thermodynamics
1. The Chemical Potential
For real gases, the fugacity f{ of component { is proportional

to the activity A .

ﬂ = const. Q‘L (A-1)
The activity 7\{ , however, is related to the chemical potential/uL by
L /KT
p= (A-2)
If we substitute Equation (A-2) in (A-1) and solve for Mo we obtain
/JL <const>

Let the properties of this component in the pure state ( )o be used as

a reference, then

pim kT b (H)

const.

and it follows that

My = }Jz + kT 1!1(10{/?;)

But the mole fraction NL/N is given by

Ni— i
N F
hence:
}Ji_-__).lf_)_ kT An .Ei (A-3)

2. The Entropy

The differential equation defining Gibb's free energy F is

dF = —SdT 4+ vdP 4 ' dN; (A-4)
i
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but

F = Z PN (A-5)
i

so that

dF = D pidNi 4 D TNy
1 i

If we equate this expression to (A-4), we obtain the Gibbs-Duhem

relation

_ SdT4 VdP— ZNidf"{ = O (A-6)
1

For a constant pressure process dP=0 and
]
+SdT+ ) Ndp; = 0 (A-7)
i
The entropy may also be defined by Euler's relation for extensive
properties

s = 2N (5%)

i PN, (A-8)

If Equation (A-8) is substituted in (A-7)

o
DML+ ) =0

But N,; is arbitrary, therefore

-(3), = (%)

, : (A-9)
PN; PTNJ

We can obtain the temperature derivative of M from Equation (A-3)
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]

) - B, oo

But for a pure component Equation (A-7) yields

Si_ __@tg) (A-11)
Ni, 2T PN

And from (A-9), using (A-10) and (A-11)

(?.é); _ St Ln N
BNL/PTNJ NL N

the substitution of this expression in Equation (A-8) gives
S:Z(SL—— LNLLH_N_Q (A-12)
: N

3. The Volume
For a constant temperature process, the Gibbs-Duhem rela-

tion (A-6) yields

V= ; N; @%)T (A-13)

The Euler relation for the volume is

V= E{IN{(%%L-LTNI. (-t

For a pure component, Equation (A-13) reduces to
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(A-15)

Bv using the pressure derivative of M from Equation (A-3) we obtain

-,

where Equation (A-15) has been introduced. The substitution of this

expression into Equation (A-13) yields

V=) vV (A-17)
1
and
(Q_\L > _ Vi

4. The Internal Energy

The Gibbs free energy F may also be defined by
F=H-TS = E+PV—TS (A-19)

If we introduce Equation (A-5) into this expression and solve for E,

the internal energy.
E =TS =PV + D N (A-20)
i

The application of the relations (A-12) and (A-18) yields

E=) . {T(S: — Nt i) = PV +/ALNL}

1
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The expression for }‘i from (A-3) may now be introduced
E=). {TSL - PV + wa}
1

where the quantity in the bracket is evidently the internal energy of

o
the pure component E. hence

L 3

F— Z‘ E’ (A-21)
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APPENDIX B

1. The Associated Laguerre Polynomial

k. k.
L, = g)szn<x> (B-1)
where
- Z 2;,n1

k : k =
_(___B —XZ . z — LA(X)Z, -3
i—zexp{hz} {I—Z} %;‘l Al (B-3)
Define

_ [ X ktp-lik k
Imm"—p/e X l_nu)LhJX)dx (B-4)
Q

where: kK p,n,m are integers

Multiply Equation (B-3) by another Laguerre function evaluated at = — Z,

© A A kK K et
72,2 _ 2 vie " AT, XZa
A%—;—*W Lt %“(X) =i%2) [@ S zi’)] exp[ 1= Z, 1—22]

~X _k+p-1

Multiply each side by e~ X and integrate

o
< A

M k k-1 f k+p-1
Z.Zz — . - Y. /YZ.. /YZ»?
;i A Al I))/u = (2.2,) [(1 Z)(1 Za)] % QXP[)( M(mz_,-_ml~za]dx
A=k

fe)
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For ==2c¢ , this expression readily reduces to

o0

= __?1:,\_2_'_4 IA — (Z‘ZZ)k[(!-—L,)(l-—ZgﬂP“l(k“l'P‘i)t (B-5)
i A (22,5

The denominator of Equation (B-5) may be expanded in a Taylor series

about the point z =z, = O.

k- o A
(-zz) P _ 3 lkeprA-Dl(32) (B-6)
A=o0 (K+p—~l>{ Al
The term [(1—3‘)(;ﬁ22)] p- may also be expanded; thus the expansion

of each factor about the point Z=0 yields

o0

~ P=l < (p-D)I(-z ) (p-Ni(-z)t )
(1-2)(1-2; = 2 (B-7)
L0202 Eo 41 (p-1-4)] 2_3 ti(p-i-t)]

The substitution of Equations (B-6, 7) into Equation (B-5) gives

oo 22 4+t

2zl => ) &2 ) -0 g
pask A R AR (e (i) )]

where V=k+2A

An expression for the function 'Lm,m is obtained by setting
M= A=m and equating the coefficients of the like powers of (2,%,)
from the two sides of the above equation. If it is noted that only like
values of & and t vyield terms in (Z‘Zz)m, then Equation (B-8) re-

duces to



-75-

f\% = i i [(pd)ﬂz(zza)tw(p+1}~1)}

(mt)? 45t=o e [ p-t-DIF =k

m ==

5 lp-niT¥(p+v-1)| { z,2,)"

=/, -+
J= @Rk [(p-DIT°
(2.2, V! (Z:Zz)v+2 o, &z, 1f+p—l}

[p-201%  [(p-3pi21]? [p-11]°
Note that the summation over t terminates when t=p.—1 . By equating
the coefficients of (%,Z,) and using V4+/=m,

p-i

Lyw = [ml(p-0]® 57 (Pt =)l (B-9)

—o [PI(p-1-1)1]*(m—k-1))

The function Im)m for various values of p can be obtained readily.

p=i
e (m-k)|
p=2
i
Im,m — (mr)ZZ (1+m-1})[ _ (m})3(2m~k+i) (B-11)

P =0 [(L—v)lq}[]e(m-v‘-k)! (m—k)I
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p=23

4
]“m,m: (mle,!)Z Z\ (Mm-v+2)|

Yoo [E-1v1]* (m-v-k)! (B-12)
= M omP_ omk 4 K4 6m—3k 42
(m~k)!< T +2)
p=5 , |
Lnm= (m141)? (m-v+4)! 513

veo [(4-m)w]* (m-v~k)!

In the present analysis it will be of interest to define
m=n+{
k =2t+1
where n and { are the principal and azimuthal quantum numbers re-

spectively. Egquation (B-13) yields

4
In+£,n+t = [(n-f-i,)[llf}zz <n+€—?}+4)! (B-14)
V=0 [M—U)HH]ZU%{«&gl)!
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APPENDIX C

The present section summarizes the important relations re-

quired for the solution of the simultaneous equations (48) using the

approximations (49). The derivatives of 9 computed from the rela-

tion (55) are

) () 4 7
5;1* i_% H + 2q0 + €qf h(o*)}
%gl —7%— [C}, + 2 q(d)+ €ay h(O*}

Jq _ £ Yg® a) 4 €a; h
s (’ Ft) H +5 CL( + €0 (QA)}
The corresponding derivatives of qf) , X and ?7L are

q+ —P—— {3%(3)~H%(e)+ g'qayza’p)+ €of WO»(“f—/‘)}
9P T%i{ q7-pg"+ Lq@(zau) + €4°h@)(3a5- /x)}
3= oy LA A" 1% 54 4[4 (a5
+9OEO 20t 4 eoPh@nE@)(307-4) }
T%Tz {3%“” @ a466(0)(364— $) + €4 h(g,) (3a;‘m5)}
= ¢+ W%r‘({ ‘5’ ‘”+ %(a)(’jcz“ 8) + €ag h@y) (305 - 5)}

gy 10+ A0 5470 - S[4 A9 5]

+ (O)ZE((“” (30%-5) + €qy h(a*)E(a*)(sa*‘*_g)}

3?0
oT

l

f\
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U _ A [a®_ 1q®L dhq@u 1) L ealha)(aé- }
op 1_[31{% 1+ 2% ) + €% CUCHY
4)

B ra® | @b 6 Sy G
,a__;//: = Tw - 19 +_<é1.%(u)(u T) + €0y (0 (G ’Z)}
(2)

%%__, 9+ (jj/@%)z{‘ff#/ﬂ[{“ 497840 =197+ B4 ‘Z’Hg"‘)j

+—é—%@l)E(G)(G"~’E) + eqfh(a*)gcg*)(a:__ ) }

where the function £E@) is defined by
Fa)= 1 +p(0*+pat+sa®)

In carrying out the actual computations for the three moments
by means of the above relations and Equations (48) and (49), a slight
simplification can be accomplished by neglecting the weighting func-
tion in the lower energy states. This is to say, one can assume an
approximation for the sums wa (Ci. Equation (57)) which is inde-
pendent of ﬁ . Thus

A A W /kT-§

Q) A <4
4= 2.4 = L ge

Mg/kT
!-e
EERNE

A
v %2;1?¢8

This approximation is especially good for the lower temperature sys-

tems ( (3)10-6).

However, it is also applicable to the smaller values
of p . It is applicable in the first case because the entire weighting
function =~ | . Although this is not the case for 1‘5 < 10—6, it may
still be used because the contribution to CL of the terms J:i to A is
not the major contribution. As previously discussed, the largest con-

tribution stems from the higher energy states. Thus, relatively large

errors can be tolerated for the first A terms of C& .



