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ABSTRACT

This thesis aims to advance the understanding of the neurobiology of navigation
through the investigation of two topics: magnetic sensation and maze navigation.
The central question of this work may be framed as follows: how do animals find their
way to key resources that are necessary for survival? Three projects are presented to
address this.

Chapter II explores a sensory hypothesis that some animals may navigate long
distances by directly sensing the earth’s magnetic field. Awake zebra finches were
stimulated with magnetic fields that varied sinusoidally in time while electrical
recordings were collected via multi-channel electrodes. Preliminary negative results
are presented, along with a detailed statistical treatment indicating no significant
effect of magnetic stimulation on neural activity.

Chapter III presents a novel approach to studying learning and navigation in animal
subjects. Mice are allowed free passage between a normal home cage and a complex
maze environment, coming and going as they please. Sated animals, with free access
to food and water, spend significant portions of a given multi-hour experiment in
the maze and display efficient exploration. Water-restricted animals show three
additional phenomena: immediate knowledge of the route home, rapid learning of
the location of a single water port among 64 similar locations, and a moment of
“sudden insight” in which the rate at which long, direct routes to the water source,
beginning from many locations, increases discontinuously.

Chapter IV offers a simple, biologically feasible circuit model that recapitulates
and explains some of the rapid learning behaviors we observe in mice. This model
suggests a mechanism that might allow mice to flexibly store and recall direct routes
to different resources that are activated by different internal drives.

The final chapter outlines some potential directions for future inquiry, including
potential maze experiments to conduct with wireless electrophysiology and expansion
of the range of species tested for magnetic perception. The Appendix briefly describes
some follow-up experiments and intriguing preliminary results. Similarities in the
navigation deficit displayed by mice that have been experimentally perturbed in
several disparate ways is noted briefly. These perturbations include whisker trimming,
olfactory neuron ablation, genetic ablation of cortex and hippocampus, and opiate
intoxication.
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C h a p t e r 1

INTRODUCTION

1.1 Navigation in the expanse
1.1.1 Sensing magnetic fields
Migratory animals like birds, turtles, and butterflies have been known to travel
enormous distances to reach warmer climates or breeding grounds [75, 131, 197].
In many cases, these journeys contain long segments where the local features of
the environment do not provide obvious or unambiguous information to the animal
about its position relative to its desired destination. In extreme cases like swimming
or flying across large bodies of water or otherwise featureless terrain, the local
environment seems to present no useful guidance information whatsoever. The fact
that animals seem to be able to traverse these regions regardless has prompted the
idea that perhaps migrating animals like these possess an internal compass that
senses the Earth’s magnetic field. I begin with a brief survey of behavioral work
that has endeavored, somewhat unsatisfactorily, to demonstrate magnetic sensing
abilities in experimental subjects, followed by enumeration of the main hypotheses
for how such a compass might work.

Behavioral evidence for an allocentric compass
Broadly speaking, behavioral assays of magnetic sensation have either directly quan-
tified animals navigating or have employed indirect measures, such as spontaneous
orienting movements. One classic experiment involved transporting pigeons more
than 15 kilometers away from a home location, releasing them with blurred goggles
to obscure their vision, and recording their flight paths and ultimate destinations.
Though the pigeons generally flew in the correct direction, the reported results leave
some room for doubt. Frequently sunny conditions and incomplete visual obstruction
by the goggles may have permitted some use of vision for guidance. Furthermore,
angular and radial errors in the final locations of the animals relative to the home
location, combined with the exclusion of subjects that did not fly sufficiently far from
the release point, decrease the certainty of the finding [214].

Indirect measures of magnetic sensation generally attempt to exploit the supposed
tendency of migrating animals to spontaneously orient themselves toward a specific
compass direction, even if the experimental setup does not permit actual migration.
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An example of such a study measured the mean orientation of scratch marks left by
European robins on paper at the bottom of their cages during migratory months. The
orientation of the scratch marks was compared between conditions with and without
the presence of an artificial high frequency magnetic field. The authors show that the
applied magnetic field disoriented the birds [243]. Another study employed a similar
technique to sea turtles swimming tethered in a tank, reporting that turtles maintained
a consistent heading within the tank except when both vision and magnetic fields
were disrupted [12].

Proposed mechanisms of magnetic sensation
A different line of research circumvents the difficulty of measuring magnetic effects
on behavior by instead investigating possible mechanistic origins to such a sense.
These efforts are often focused on the earliest sensory transduction steps including:
radical pair chemistry in the eye[109, 165, 201], magnetic particles in the beak
[76] or inner ear [274], and electromagnetic induction in electro-sensitive fish and
sharks [122, 123]. Others have looked downstream from peripheral sensors and have
reported magnetically induced changes in the brains of animals, including humans
[64, 258, 274].

We investigate the possibility that zebra finch brain activity might be modulated
by magnetic stimulation in Chapter II. Our approach differs from others in that
we deliver a stimulus at a specific frequency and search for an elevated Fourier
component in the power spectra of recorded neurons’ firing rates. We report a
preliminary negative result, i.e. a lack of magnetic effect on neural activity, and
provide a detailed experimental and analytical approach to continue the search in
other species, including both external collaborators in other labs as well as continued
efforts within our lab. The goal of the endeavor is to engage the larger research
community in an effort to more repeatably and systematically search for neural
evidence of magneto sensation. Future work will engage with collaborating labs and
survey a broader range of species.

1.1.2 Maps, memories, and manifolds
This section introduces several interrelated bodies of work that inspire and inform
the work presented in the chapters below. Direct and systematic engagement with
these ideas via experimentation and modeling is left for future work. However, it
would be remiss to neglect a cursory review of these topics here given their immense
influence on my thinking and on the community at large. A somewhat vague yet
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highly influential notion of a “cognitive map” is introduced. This is followed by a
discussion of experimental and theoretical work devoted to an especially prominent
exemplar: path integration.

Cognitive maps
As will be reviewed in greater detail below, prevailing ideas in psychology in
the earlier part of the twentieth century regarded animals’ cognitive capacities as
relatively rigid, almost reflexive responses to preceding stimuli. Ivan Pavlov had
restricted his investigations to learning phenomena in which the stimuli presented
to the animals was not contingent on their taking an action [188]. As psychology
expanded to the consideration of the role of actions in creating positive or negative
outcomes, Edward Thorndike observed that animals that were shown or instructed
how to escape from a “puzzle box” did not escape faster than animals that had had no
instruction and merely attempted random actions until success. From observations
of this kind he proposed the “Law of Effect,” which states that animals essentially
try actions at random. Actions that are quickly followed by reward are “reinforced”
(the role of punishments was eventually determined to be much less effective in
modifying behavior and a “Law of Exercise” was excised from Thorndike’s theory
of “Instrumental conditioning”) [246].

Against a strong trend toward reductionism in his contemporaries, Edward Tolman
invoked the notion of a “cognitive map,” endowing animals with additional mental
components, including “biases” and “hypotheses” [249]. His ideas were inspired
by a few observations. For instance, he coined the term “latent learning” to refer
to a phenomena in which unrewarded pre-exposure to a given maze accelerated
subsequent maze learning when seeking rewards, relative to a control group that was
not pre-exposed. Additional maze experiments sought evidence for the existence of
“insight” or “inference,” based on data in which animals appeared to prefer a novel
shortcut prior to any direct experience of that path. He also helped to bring attention
to a side-to-side head turning behavior, termed vicarious trial and error (VTE), that
is potentially correlated with task engagement or mental deliberation [187, 250].
Tolman’s suggestion that the inner workings of the animal brain might be more akin
to a detailed map than a jumble of wires connecting stimuli and responses, as others
contended, has remained highly influential [156, 208, 265, 268] despite significant
controversy on both experimental and conceptual grounds, as well as inconsistent
replication of the core results [22, 121, 222].
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Path integration
Although Tolman’s definition of the cognitive map was left somewhat ambiguous, the
notion of “path integration” is more clearly defined and often considered a notable
example of such a map. Here, the map is a spatial coordinate system, usually two
dimensional (although see [225, 275]), into which the navigating agent and points
of interest are embedded. Path integration refers to the process by which the agent
sums the individual spatial vectors comprising its outbound path in order to estimate
its current position relative to a reference position, often its starting location. This
capacity is often assessed in situations where the agent takes an indirect route to a
given destination but is subsequently asked to find a direct path between the two
locations. In addition to mentioning informal experiments in blind subjects, Charles
Darwin provided an anecdote of Siberian natives crossing a homogeneous expanse
of hummocky ice, in which they maintained a consistent global direction of travel,
despite their path being comprised of many short segments in which the heading
varied considerably. He further speculated that this ability might likely be enabled by
the “sense of muscular movement” [57]. Nearly a century later, John Barlow further
refined the idea by proposing a mathematical description of the phenomenon and
suggesting that proprioceptive vestibular organs provided the relevant sensory input
to the neural computation [16]. Path integration has been reported in desert ants
[170], hamsters [67, 69, 161], mice [93], and rats [6] (see [68] for further review).

The idea of a cognitive map, particularly the possibility that animals might construct
and utilize some type of structured representation of their environment, motivates
the behavioral experiments in mazes described in Chapter III. Chapter IV provides
a biologically plausible model that builds such a map, specifically the adjacency
graph of the environment. In the work presented below, path integration is relevant
in that it forms an alternative hypothesis for how mice might learn to solve complex
mazes. In other words, the animal might learn the specific structure of the maze
environment or, instead, it might employ path integration alone. The likely answer is
that it employs a mixture of path integration, irrespective of the environment, and
use of a detailed representation of the environment that it gathers through direct
experiences in the specific maze. However, the structure of the maze precludes the
possibility that the animal only uses path integration to plan and execute direct routes
from arbitrary starting locations to the reward location.
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The Engram—a century of uncertainty
Eight years before his death, Karl Lashley published “In Search of the Engram”
which summarized three decades of negative results spanning the majority of his
career. He performed lesion experiments in rats and primates hoping to identify
essential anatomical regions required for abilities like visual perception, skilled
motor action, and memory for mazes. Yet, he ultimately concluded the following
from a lifetime of inquiry:

In experiments extending over the past 30 years I have been trying to trace
conditioned reflex paths through the brain or to find the locus of specific memory
traces. The results for different types of learning have been inconsistent and
often mutually contradictory, in spite of confirmation by repeated tests. I shall
summarize today a number of experimental findings. Perhaps they obscure
rather than illuminate the nature of the engram, but they may serve at least to
illustrate the complexity of the problem and to reveal the superficial nature
of many of the physiological theories of memory that have been proposed.
... The engram of a new association, far from consisting of a single bond or
neuron connection, is probably a reorganization of a vast system of associations
involving the interrelations of hundreds of thousands or millions of neurons.
[137].

He performed lesions in many regions with varying extents of damage, yet failed to
identify a privileged region that abolished performance of the given task. Instead, he
found that the performance of the animal degraded gradually in proportion to the
amount of brain tissue removed and, in many cases, animals sufficiently recovered
from even drastic lesions of entire regions to allow them to perform the task. From
these observations, Lashley proposed two related principles: that the extent of the
lesion he created determined the extent of the behavioral deficit he observed and that
a given function was distributed throughout a given region such that the surviving
portion could compensate for the portion that was lesioned. He named the former
“mass action” and the latter “equipotentiality” [135, 136, 138]. Despite a proliferation
of subsequent studies that have argued for a high degree of specialization in brain
anatomy with respect to function, Lashley’s ideas remain highly relevant and have
been replicated numerous times with modern techniques [6, 108, 126, 186].

These findings anticipate the result presented briefly in the appendix. I observe
that mice that have been bred or lesioned to lack the vast majority of cortex (and
hippocampus in the former case) initially perform very poorly in the maze, yet
ultimately recover to nearly the same level of performance as the intact control
animals. Despite major exceptions to the principle of mass action, our results
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and those of our predecessors advocate extreme caution in complacently accepting
commonly held notions of indispensability and precise localization of behavioral
functions to anatomical regions.

Remarkable exceptions
The results reviewed above and the experiments with acortical mice presented below
might leave the reader with the erroneous impression that the brain is a homogenous
soup of indistinguishable and redundant components. Yet, there is also a long history
of medical observations of humans sustaining lesions of various brain areas. Famous
reports include changes in personality following lesion of the frontal cortex [102]
and language deficits following lesions to Broca’s or Wernicke’s cortical regions
[24, 263].

In one prominent example, the tragic clinical case of patient H.M. provided a hint
that perhaps Lashley’s engram might exist to some extent after all. H.M. suffered
from intractable epilepsy which was treated by bilateral removal of the hippocampi.
This procedure improved H.M.’s seizures but caused a profound memory impairment
that completely prevented the acquisition of new episodic memories [217]. That
said, H.M. could remember his distant past and retained some capacity to learn new
procedural skills, supporting the idea that memory might come in distinct dissociable
types [160].

Medical cases like these, as well as the work of anatomists like Korbinian Brodmann
[39] that delineated cortical regions based on cytoarchitectural analysis of Nissl
stained brain slices, argue for a nuanced view in which brain regions may be
somewhat specialized for certain functions after all. Though investigation of the
neural underpinnings of the maze navigation behaviors reported in Chapter III is
beyond the scope of this dissertation, an overview of the known neurophysiological
substrates is warranted. The majority of the prior work reviewed below was obtained
from experiments in which neural activity was recorded from rodents ambling
around in open arenas, often rectangular boxes. The novel environment I use in the
experiments presented in Chapter III quickly elicits interesting behaviors and provides
a complementary angle from which to further investigate the neural substrates of
navigation. Initial experiments may likely profit from assessing the degree to which
known phenomena observed in open arenas, in which the cognitive task is generally
trivial, generalize to animals executing skilled movements through a complex and
structured environment.
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A menagerie of cell types
Inspired in part from knowledge of patient H.M., neuroscience studies in the past few
decades have repeatedly reported that selective damage to the hippocampus impairs
certain memory tasks [6, 44, 63, 81, 168]. This has prompted greater scrutiny of
the hippocampal circuit and closely interconnected medial entorhinal cortex (MEC).
Electrical recordings from the hippocampus and medial entorhinal cortex have
revealed a plethora of remarkable cell types [156, 210].

So-called “place cells” fire whenever the animal moves through a region within
the cell’s “place field,” a specific region within the environment that elicits firing
[182, 275]. Some place cells have been observed to be selective for specific locations
near an environmental boundary [181] or to represent the location of a conspecific
[56, 185]. Although place cells have been most frequently studied in the hippocampus,
they have also been reported in the thalamus [118], dentate gyrus [255], and entorhinal
cortex [238].

A couple of remarkable observations have been made about hippocampal place cells.
First, these cells appear to be able to localize the animal within their place fields
through a mechanism called “phase precession.” This describes the observation that,
during the burst of spikes that place cells emit as the animal moves through the place
field, each spike occurs at an earlier point in the ongoing 7-12 Hz theta band of the
surrounding local field potential, thereby using this phase difference to encode a
more detailed estimate of its own location relative to the center of the place field
[47, 119, 120, 147, 183]. Second, during periods of sleep and immobility, place
cells reactivate in temporally compressed sequences that “replay” the order in which
these place cells were activated when the animal actually moved through these place
fields. These “replay” events occur during local field potential periods called “sharp
wave ripples” [83, 125, 140, 146]. Remarkably, inhibition of these events impairs
aspects of a spatial working memory task [116] yet replay events do not appear to
represent the animal’s upcoming choice [94]. Instead, it appears that place cells
associated with alternate future actions alternate firing at 8 Hz, potentially involving
theta processes, prior to selecting the action [127].

A host of exotic functional cell types have been reported in the hippocampus and
connected regions. Within the hippocampus, David Tank’s lab has described cells
that fire specifically for a given region in the frequency space of an artificial tone
[9] and cells that encode reward locations [89]. Cells encoding the passage of
time have been found in the hippocampus and MEC [105, 132, 148]. Other cells,
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aptly named “head direction cells,” fire only when an animal faces a certain global
heading and have been found in a number of regions including the retrosplenial
cortex, postsubiculum, MEC, and thalamus [117, 238, 239].

Perhaps most intriguing of all are the “grid cells” found in the MEC. These cells
fire in a periodic fashion along a 2D [100] (and occasionally 3D [276]) triangular
lattice. Importantly, when environment barriers are removed or expanded, these
cells extrapolate the original firing field lattice with a consistent periodicity in a
translationally invariant manner [213]. This finding has prompted the use of a toroidal
manifold [45, 88] as a computational description of the firing activities. Grid cells
appear to be arranged in a modular fashion with a dorsal-ventral axis along which the
spatial frequency of the grid pattern varies [232]. These cells are featured especially
prominently in many theories of path integration [208]. Conversely, machine learning
models trained to navigate or path integrate appear to display grid-like firing patterns
in penultimate output layers [15, 55, 226].

Together, these cells and the circuits among them provide a useful lexicon when
articulating models that attempt some measure of biological plausibility. In particular,
within the Endotaxis circuit described in Chapter IV, the point cells might map to
place cells in that they both fire for specific locations, while the map cells might
correspond to the CA3 subregion of the hippocampus in that they both have recurrent
connections [7, 113, 158].

1.2 Pavlovian, operant, and reinforcement learning
Navigation in expanses such as the sky, sea, desert, or a typical “open-field” experi-
mental enclosure can largely be accomplished by heading in approximately the right
direction alone. Cues that are accessible at all positions in the environment, like the
Earth’s magnetic field [269], celestial lights [197], or the visible walls of a laboratory
in a typical rodent neuroscience experiment, greatly simplify navigation. Likewise,
path integration, though nontrivial given the accumulation of small errors over time
in the absence of landmarks to correct the system [179], is often a viable strategy in
these relatively simple environments.

Finding one’s way in constrained environments like a labyrinth poses additional
challenges. For instance, in the experiments recounted in Chapter III, mice must
navigate without obvious global cues, where local regions of the maze look identical
to one another and even perfectly path-integrated heading vectors between the animal
and destinations will frequently point into dead-ends. Moreover, navigation in mazes
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like these more closely resembles other forms of decision making, in which one’s
current state depends upon a precise sequence of discrete prior actions rather than
the mere average of past actions. For these reasons, I review prior work on learning
in general, before returning to navigation per se as a special case.

1.2.1 Behavioral observations and theories of learning
Careful scientific investigation of learning at the behavioral level began with the work
of Ivan Pavlov. He described a collection of phenomena, known now as classical or
Pavlovian conditioning, in which animals associate neutral stimuli with positive or
negative events, transferring intrinsic responses to these outcomes to the stimuli that
predict them. Pavlovian theories describe observations relating stimuli to behavioral
responses. Specifically, unconditioned stimuli (US), like food or electric shock,
evoke unconditioned responses (UR), such as salivation or freezing respectively.
Through repeated pairings of initially neutral stimuli like lights and tones, animals
learn to associate these conditioned stimuli (CS) with the US, which is revealed by the
extent to which the UR is elicited by these CS. These experiments and ideas continue
to provide a useful lexicon as well as a rich repository of behavioral observations
[188, 199].

Though powerful and immensely influential, this theory largely neglected the role of
(voluntary) actions in creating outcomes. Subsequent generations of psychologists
extended Pavlov’s ideas to include situations in which animals must take specific
actions to obtain positive experiences and avoid negative ones. These ideas that
emphasize the causal role of actions came to comprise a body of work referred to
as “instrumental” or “operant” conditioning. Key figures in this movement include
Edward Thorndike (reviewed above) and Burrhus Frederic Skinner.

Behavioral experiments in the mid-twentieth century became increasingly automated.
The diligent observations and hand-taken notes of experimenters like Thorndike,
Tolman, and Lashley were replaced with machines, often called “Skinner boxes”
or “operant chambers,” that were capable of presenting repeatable configurations
of stimuli and recording the responses of the animal subjects. These experiments
generally present animals with artificial stimuli that are as neutral as possible,
i.e. without any prior positive or negative associations, thus characterizing how
the temporal arrangement and various combinations of stimuli result in varying
degrees of vigor in responding, often measured in the rate at which rodents can
be compelled to press a lever [74]. This line of research continues to be active
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today, where researchers seek to characterize the responses of animals to more
elaborate combinations of stimuli [29–31, 73, 106, 198], including Pavlovian effects
on instrumental learning [37, 101]. Often, these efforts are accompanied by attempts
to assign conceptual elements of the theories to distinct brain regions and genetic
cell types, notwithstanding the caveats to localization of function explained above
[11, 85, 96, 101, 101, 150, 150, 151, 224, 245].

1.2.2 Reinforcement in models and brains
These studies of “operant” conditioning gradually became codified in models that
explained the various changes in conditioned responses that accompany specific
combinations and temporal orders of stimuli, based on the difference between the
animal’s expectation and its actual experience [257, 266]. Andrew Barto and Richard
Sutton synthesized work drawn from animal behavior experiments and dynamic
programming mathematics [20, 21] to form “reinforcement learning.” This subfield
of machine learning concerns itself with specifying computational models of agents
that interact with an environment via actions, which in turn place the agent in new
states, some of which may be associated with reward. Importantly, these rewards
are sparse, appearing only periodically when the agent finds them. Thus, the agent
must learn to act in a regime in which instructive signals potentially come from the
environment sporadically and infrequently [236]. This approach now dominates
both certain applications in machine learning, such as beating top human players at
games [162, 163, 220, 221, 256], as well as models of animal behavior and neural
representation [82, 92, 159, 229, 268].

In the late 1990s, Wolfram Schultz discovered an extraordinary correspondence
between reinforcement learning theory, specifically the “temporal difference” learning
rule [17, 234] and the responses of dopaminergic neurons in the ventral tegmental
area (VTA). Often called the “reward prediction error,” Shultz found that dopamine
neuron firing rates increased proportionally to the difference between the reward
experienced by the animal and the amount it expected. Thus, over time responses
to the predictable rewards decreased and instead cells began to fire in response to
stimuli that reliably predicted the reward [215, 216].

1.2.3 Extensions and complications
Dopamine cells project extensively throughout the brain making them a natural
candidate for a global error signal that is broadcast widely to instruct learning in
local circuits [259]. Mammalian brains contain many other neurotransmitters that
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similarly project widely throughout the brain. The remarkable correspondence of
the VTA dopamine signal with the temporal difference rule has led theorists to
propose that specific neurotransmitters or brain regions may mediate other terms in
the reinforcement learning equations [61, 112].

Yet the data from experimentalists has tended to resist excessively reductive statements.
For instance, serotonin neurons were proposed to work in an “opponent” fashion
relative to the actions of dopamine, in which tonic and phasic firing rates each
carry different signals and the two neurotransmitters have opposite signed responses
to reward and punishment [33, 58, 61]. Yet, instead serotonergic neurons in the
dorsal raphe nucleus (DRN) seem to display a wide range of responses to reward
information, including both those that mimic dopamine neurons as well as others that
differ with respect to time course, valence, and repeated presentations of the stimulus
[52, 143, 153, 193]. More recent data has further complicated simplistic theories
mapping regions and chemicals to terms in equations by demonstrating appreciable
heterogeneity within the VTA and DRN, both with respect to the coding properties
of neurons as well as the neurotransmitters released by these regions [145, 167].
In some cases the same neuron has been shown to co-release both dopamine and
glutamate or GABA, with diverse and sometimes opposite effects in downstream
regions [192, 203, 279]

The dominant anatomical theory of reward learning focuses on the dopaminergic
VTA projection to the nucleus accumbens (NAc) [177, 270]. In particular, most
theories of drug addiction propose that drugs act on presynaptic or postsynaptic sites
in this VTA to NAc pathway [240, 241]. Though this idea remains dominant, it is
challenged by experiments in which lesion to the NAc leads to only modest changes in
the animal’s behavior [49, 78, 212]. Moreover, cases where lesions actually increase
food consumption of rewards, lead to increased rates of responding on levers, or fail
to prevent drug seeking behaviors are especially hard to reconcile with an excessively
simplistic view of VTA to NAc signaling, [13, 77, 200].

While reward signaling is arguably inextricably involved in any experimental task
that evokes learning, the literature reviewed above is especially relevant to the work
presented in Chapter IV and the Appendix. In Chapter IV dopamine signalling is one
candidate anatomical substrate that could carry the “goal neuron” signal that guides
the Hebbian plasticity that enables the endotaxis computation. In the Appendix, I
briefly present data showing severe navigation deficits, resembling those of acortical
animals, following opiate drug administration. One explanation of the failure of
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opiate intoxicated animals to navigate to water is that drug-induced enhancement
of signaling in reward pathways prevents the animal from responding to the thirst
signals that would normally motivate efficient navigation. Another hypothesis is
that altered dopamine activity impairs the learning process more generally. This
might occur either from a reduction in the rewarding properties associated with
novelty, thereby decreasing efficient exploration of the environment, or by somehow
impairing the neural plasticity events that comprise the animal’s cognitive map of
the maze.

1.3 Reductionistic vs naturalistic experiments
During the mid-twentieth century, behavioral studies became increasingly automated.
BF Skinner developed methods to repeatably present stimuli and record elicited
behaviors in what became known as “Skinner boxes” or “operant conditioning
chambers.” The relative ease of inspecting digitized records of behavior collected
during experiments over earlier methods of careful observation, timing, and note-
taking by experimenters accelerated the pace of behavioral experiments at the cost of
drastically increasing reductionist experimental approaches and theories of behavior.

1.3.1 The Unbearable Slowness of Training
The series of decisions inspected by early researchers gradually became replaced by
the predominance of “two alternative forced choice” (2AFC) paradigms in which
animals typically provide a binary response during a response period that follows
presentation of sensory stimuli. Animals are laboriously trained to attend to the
stimuli to yield this 1-bit decision. While earlier researchers tended to plot “learning
curves” showing the acquisition of a given task [74, 246], the growing predominance
of simplified behavioral tasks tended to shift the focus toward steady-state perfor-
mance of a task, i.e. after the learning process is complete, emphasizing percent of
trials answered correctly and concomitant correlations between correct and incorrect
trials with underlying brain states. The goal was to control stimuli as precisely as
possible both between separate trials within a given subject as well as with respect
to the experiences of the subjects as well. In recent decades, new genetic tools in
mice prompted the adoption of behavioral tasks developed in monkey experiments to
rodents in the hope of generating new discoveries [62]. Interesting findings emerged,
but the highly artificial scenarios in which experimental animals were tested led to
the unfortunate side effect that training experimental subjects often took weeks or
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months of experimenter labor [41, 44, 46, 95, 151, 206, 224, 245]. This natu-
rally curtails the throughput of these behavioral assays.

1.3.2 Observing natural behaviors in a laboratory setting
The experiments presented in Chapter III adopt a different approach in which
experiments aim to elicit natural behaviors without employing laborious shaping
procedures to train animals to do unnatural things. Inspired by early “ethologists”
such as Tinbergen who studied predator avoidance and imprinting behaviors in
birds [247], “naturalistic” or “ethologically-relevant” studies employ experimental
paradigms that elicit rich, complex behaviors naturally without extended training.
Such behaviors include courtship and mating [124, 144], aggression [144], prey
capture [110, 157], predator avoidance [70, 254, 277], and navigation among others
[6, 69]. Many of these are arguably innate, i.e. they do not require learning, but
navigation is among a privileged class of behaviors that are simultaneously trivial to
elicit experimentally while permitting an opportunity for experimental subjects to
demonstrate learning of numerous complex multi-action sequences.

The mouse navigation experiments described in Chapter III provide a compromise
between carefully controlled experiments employing arbitrary, artificial stimuli and
observations of animals in nature in which complex behaviors unfold, but myriad
uncontrolled (and often unmeasured) factors preclude clear interpretations of the data.
Learning in maze environments occurs in a tiny fraction of the time it takes to train
animals on “easier” tasks and assesses a capacity that is of undeniable importance to
the animal: locating water.

1.4 Modeling the neural implementation of rapid learning
In an ideal world, scientific progress results from a close interaction of experimental
and theoretical work. Data from experiments constrains the parameters of models,
while models generate predictions that experiments can falsify. This process both
refines theories as well as guides experimentalists in deciding which experiment
should be conducted next.

Yet, within the field of neuroscience, all too often experimental and theoretical efforts
exist in separate spheres. Experiments often fail to be motivated by relevant theory
or present data without clearly stating how these observations should be interpreted
relative to a model of the same phenomena. Likewise, theoretical work often involves
model components that are not directly observable or controllable in experiments. In
some cases, technological development may someday allow inspection of quantities
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that are currently unobservable. In other cases, like assessing the memory capacity of
a neural network [8, 50, 264], analogous experiments appear to be strictly impossible.
For instance, experiments, experimenters, and animal subjects have finite life spans,
thus it appears unlikely that experiments will ever be able to assess the maximum
number (assumed to be massive) of memories that a biological brain can store.

Chapters III and IV attempt a closer relationship between experimental data and
theoretical model. The rapid learning of resource locations, based on a small number
of experiences, is selected as the phenomenon of interest. A simple circuit model is
proposed to explain this learning phenomenon. Unlike many of the current models
of learning and navigation, Chapter IV presents a model that is not expressed in the
language of reinforcement learning and does not require the backpropagation of error
technique.

1.4.1 Constraints imposed on models by experimental data
The navigation data presented in Chapter III demonstrates that mice can learn to
navigate to a reward location after only approximately 10 experiences with the
reward. Though far from fully precluding traditional reinforcement learning models
[194], the speed at which this spatial knowledge is acquired, along with the flexible
manner in which mice navigate directly to reward from many locations in the maze,
suggest that the animals may be constructing a cognitive map in which the structure
of the environment and resource information are more decoupled than in most
reinforcement learning accounts [59, 82, 91, 166, 207, 228, 229]. For this reason,
the model in Chapter IV is expressed without explicit reference to existing treatments
of the problem in reinforcement learning.

1.4.2 Neural plasticity
The model discussed in Chapter IV is constructed from simple, canonical pieces. In
brief, the biologically feasible circuit involves a recurrent network of “map” cells
that stores the structure of the environment via Hebbian plasticity, using Oja’s rule to
avoid weight explosion. Hebbian plasticity refers to an immensely influential scheme,
proposed by Donald Hebb in 1949, by which neurons might change the strength of
connections between one another. Hebb proposed that presynaptic and postsynaptic
neurons that fired in close temporal succession would yield a strengthened connection
between the two [103]. Oja’s rule is simply one popular way to prevent the gradual
explosion in the strength of connections between neurons. It does so by ceasing
to update the connections when these weights and the postsynaptic activity can
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be used to predict the presynaptic activity [180]. Sensory inputs are passed to
the model in a feedforward manner and the output of the map network is in turn
sent to the goal neurons via feedforward synapses. Goal cell plasticity is endowed
with a third factor [114] (beyond the two implied by generic Hebbian learning),
perhaps corresponding to a dopaminergic signal, in order to combine information
about resource availability and the spatial structure of the environment. Although
experimental work on plasticity continues to be conducted, biological substrates for
Hebbian plasticity are already widely acknowledged [26, 32]. Chapter IV elaborates
on the motivation, structure, and performance of the Endotaxis circuit sketched here.
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C h a p t e r 2

GLOBAL SEARCH FOR GLOBAL SENSATION

Quantifying stimulus-induced periodic modulation in non-Poisson spike trains

Daniel A. Wagenaar, Matthew H. Rosenberg, and Markus Meister

Technical Report, May 16, 2022

2.1 Introduction
We are engaged in a large-scale collaboration to find evidence of magnetoreception
in the nervous systems of multiple species. Each lab in the collaboration presents
periodic magnetic stimuli while recording from whichever area of the nervous system
they study in the course of their other projects. The stimulus in all cases consists of a
magnetic field that oscillates, typically at a few Hz, with a strength comparable to or
larger than the earth magnetic field. The lab then processes the raw data by their
own standard methods, and shares the resulting recordings with the collaboration.

Here we focus on the case where the recordings are spike trains. The central question
becomes: Do those spike trains exhibit any modulation induced by the stimulus?
Detecting modulation in continuous time series is a well-explored subject. Detecting
modulation in a point process (such as a spike train) is somewhat less common. Here,
we will describe one method that can detect stimulus-induced modulations, and also
yields an upper bound on the magnitude of modulations that would remain undetected.
When applied to 5 data sets of recordings from zebra finch brain, the method revealed
no significant modulations of firing rate at the magnetic field frequency.

2.2 The data
We analyzed spike trains recorded with silicon probes from a 1.3 year old female
zebra finch. The experimental pipeline comprised three phases: surgical preparation,
acclimation to restraint, and awake electrophysiology. All procedures followed
animal welfare guidelines under a protocol reviewed and approved by the Caltech
IACUC.
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2.2.1 Craniotomies and headpost implantation for neural recordings
The animal was anesthetized with isoflurane, a small head post was cemented to
the skull (C&B metabond), and two small craniotomies were opened—one for
insertion of the electrode anterior to the midsagittal bifurcation and another over the
cerebellum for the ground/reference wire (∼1-2.5 and 1 mm diameter respectively).
The craniotomies and exposed skull were then covered with bio-compatible polymer
(Kwik-sil). All surgical procedures were conducted under sterile conditions and with
standard postoperative pain management.

2.2.2 Acclimation to restraint
The animal was acclimated to restraint and head fixation 5–14 days after the surgical
procedure. The animal experienced three sessions of increasing duration (30 minutes,
1 hour, and 2 hours) spread across three days. On each day, the animal was restrained
in a plastic (Falcon) tube to prevent injury to the animal or probe damage during
the recording session resulting from wing flapping. The head was immobilized by
clamping the headpost to a fixed arm.

2.2.3 Awake electrophysiology
Neural recordings were collected from a Neuropixels probe system (Janelia, version
3B1) with a National Instruments USB-6221 DAQ and SpikeGLX software.

Prior to the recording session, the probe was coated with DiI to facilitate reconstruction
of the probe path in subsequent histology. The animal was restrained in the plastic
tube and head-fixed as during the acclimation phase. The craniotomies were exposed,
the ground/reference wire was implanted in the cerebellum and secured with Kwik-sil,
and the probe was inserted with a micromanipulator. A drop of mineral oil was
placed over the insertion site to keep it moist during the recording. After waiting for
the signals to settle, experimental recordings began. Each recording had a duration
of approximately 5 minutes in which different types of stimuli were presented to the
bird.

A magnetic field was generated using custom solenoids, created by Haixiang Xu,
driven by a function generator with sinusoidal voltage at 3 Hz or 5 Hz frequency.
Two solenoids were placed on either side of the animal under the beak with the axis
oriented toward the head, approximately 45 degrees down from the sagittal plane.
The magnetic field amplitude at the location of the bird head exceeded the strength
of the Earth’s magnetic field.
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Seven recordings were collected under continuous sinusoidal magnetic stimulation.
One of these was excluded due to an artifact in the magnetic stimulus; another was
excluded due to excessive noise across all channels. Two of the five recordings
were conducted with 3 Hz stimulation, the other three with 5 Hz stimulation. Seven
additional recordings were collected but not analyzed here (steady-state, settling, and
metronome stimulus).

2.2.4 Spike sorting
Raw recordings from the Neuropixels probes were referenced to the average across
all electrodes. Spike sorting was performed with Kilosort2. Units with excessive
noise or abnormal spike waveforms were excluded. Ambiguous cases were included
in the analysis to diminish the chances of excluding magneto-sensitive cells during
spike sorting.

2.3 Mathematical basics
2.3.1 Fourier series
Any (reasonable) real- or complex-valued function 𝑔(𝑡) defined on the finite interval
[0, 𝑇] can be written as a linear superposition of complex exponentials:

𝑔(𝑡) =
+∞∑︁

𝑛=−∞
e2π𝑖𝑛𝑡/𝑇𝑐𝑛 .

Here e2π𝑖𝑛𝑡/𝑇 is the complex exponential with frequency 𝑓 = 𝑛/𝑇 , 𝑐𝑛 denotes the
weight of the contribution from that exponential, and the sum combines contributions
from all different frequencies. The numbers 𝑐𝑛 are known as the Fourier coefficients
of 𝑔(𝑡) and are given by:

𝑐𝑛 =
1
𝑇

∫ 𝑇

0
e−2π𝑖𝑛𝑡/𝑇𝑔(𝑡)d𝑡.

2.3.2 Fourier coefficients of a point process
Fourier analysis as described above is usually applied to time series data, i.e., data
that are described by a function of (continuous or discretized) time. However, the
same basic analysis can be applied to point processes, i.e., data that consist of a
sequence of timestamps, such as spike trains. That is because a spike train comprising
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Figure 2.1: Fourier analysis of point processes. (A) Fourier analysis of a periodic
spike train at the frequency of that spike train. Arrows represent the complex
exponential (phasor) connected to each spike time. All the phasors are aligned and
produce a large sum vector. (B) Fourier analysis of a train of irregularly timed spikes.
Here the phasors point in random directions. (C) Fourier analysis of a periodic
spike train at a different frequency. Here the phasors are systematically arranged at
different phases, and thus cancel destructively.

𝑁 spikes at times 𝑡𝑘 (where 𝑘 = 1 . . . 𝑁) can be written as a function:

𝑔(𝑡) =
𝑁∑︁
𝑘=1

𝛿(𝑡 − 𝑡𝑘 ),

where 𝛿(𝑥) is the Dirac delta function (whose value is zero every except at 𝑥 = 0 and
whose integral is one). Thus, the Fourier coefficients of a spike train {𝑡𝑘 } are:

𝑐𝑛 =
1
𝑇

∑︁
𝑘

e−2π𝑖𝑛𝑡𝑘/𝑇 . (2.1)

To gain an intuition of what this means, consider two alternative spike trains
comprising 10 spikes in a 10-s recording period: In the first train spikes happen at
perfectly regular intervals (Fig. 2.1A); in the second they occur at irregular intervals
(Fig. 2.1B). When analyzed at the frequency of the spikes, the former will yield
a large (absolute) value for 𝑐𝑛, because the phasors e−2π𝑖𝑛𝑡𝑘/𝑇 align constructively,
producing a large sum in the complex plane. The latter yields a much smaller value
for 𝑐𝑛, since the phasor e−2π𝑖𝑛𝑡𝑘/𝑇 will be different for each of the spikes, so the vector
sum is smaller. Finally, if a periodic spike train is analyzed at a frequency other
than the firing rate (or its multiples), the phasors sum destructively and the resulting
Fourier coefficient is close to zero (Fig. 2.1C).

2.4 Detecting modulation in spike trains
For simplicity, we choose our recording interval 𝑇 such that it is an exact multiple of
the period of the stimulus, i.e., such that 𝑓s𝑇 is integer, where 𝑓s is the frequency
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of the stimulus. In that scenario, the Fourier coefficient at the frequency of the
stimulus is 𝑐s := 𝑐𝑛= 𝑓s𝑇 . If this coefficient is significantly elevated in the presence of
a stimulus, one may conclude that the spike train is modulated by that stimulus.

The obvious question is: What constitutes significant elevation? It helps to consider
some toy models for the statistics of the spike train and evaluate the predicted Fourier
coefficients.

2.4.1 Warm-up exercise: assuming Poisson statistics
If the spike train is a homogeneous Poisson process, then spikes happen independently
of each other and with constant probability per unit time. This implies that the phasors
e−2π𝑖𝑛𝑡𝑘/𝑇 (Fig. 2.1B) have uniformly distributed random phases in the complex plane.
Thus the Fourier coefficient 𝑐𝑛 of Eqn. 2.1 is 1/𝑇 times the sum of 𝑁 random unit
arrows in the complex plane, whose phase angles are independently and uniformly
distributed. This is true at all frequencies 𝑛, so we will drop the index on 𝑐 for
notational convenience:

𝑐 =
1
𝑇

𝑁∑︁
𝑘=1

𝑠𝑘 , (2.2)

where 𝑠𝑘 is a random phasor
𝑠𝑘 = e−2π𝑖𝜙𝑘 ,

with 𝜙𝑘 uniformly distributed in [0, 2𝜋). One can show that the absolute value |𝑐 | is
distributed as

𝑃( |𝑐 |) = 2|𝑐 |𝑇
𝑅

e−|𝑐 |
2𝑇/𝑅, (2.3)

where 𝑅 = 𝑁/𝑇 is the firing rate of the Poisson process. (See the Appendix for a
derivation of this result.)

Of course one can easily simulate the Poisson process numerically. For Figure 2.2
we simulated 10,000 examples of spike trains, each spanning 100 s at a given firing
rate. We show the distribution of all Fourier amplitudes from these spike trains. As
can be seen, it nicely matches the analytical result. This probability distribution
represents a prediction from the null hypothesis that the spike train is Poisson at
constant rate with no modulation from the magnetic field or anything else. For an
experimental spike train, one can now compare the measured Fourier coefficients to
this probability distribution and derive a likelihood for the null model.
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Figure 2.2: Fourier coefficients from artificial spike trains that obey Poisson
statistics. Constructed from 10,000 instances of 100-s long artificial “recordings.”
Pink: sampled distribution. Blue: prediction from Eqn 2.3.

2.4.2 The Fourier components of actual spike trains
Unfortunately, real spike trains rarely obey Poisson statistics. One well-known
deviation is the refractory period, a brief obligatory silent interval following each
spike. Many spike trains are also “bursty,” in the sense that spikes tend to come
in clusters that are separated by longer intervals. So spikes “repel each other” at
short intervals of 1–2 ms but often attract each other at longer intervals. Both are
obvious discrepancies from the Poisson model of independent spikes. As a result,
a comparison to predictions from Poisson behavior leads to large numbers of false
positive detections of modulation (Fig. 2.3).

Our task here is well-defined: to detect modulation at one specific frequency, namely
that of the oscillating magnetic field. Figure 2.4 suggests a simple approach: Within
some range of the modulation frequency (say 4.0 ± 0.3 Hz) the power spectra look
reasonably flat. It appears that the Fourier coefficients in this range are drawn from
approximately the same distribution. So we can compare the Fourier coefficient at
the stimulus frequency with a probability distribution constructed from all the other
coefficients in that limited range.

Figure 2.5 illustrates the results. For a given spike train, the Fourier coefficients
within the range of interest (4.0 ± 0.3 Hz) scatter with a distribution that appears
independent of frequency (Fig. 2.5A) and that follows a Gaussian shape (Fig. 2.5B).
Comparing across cells, the variance of that distribution increases with the firing rate
(Fig. 2.5C), as expected because more phasors contribute to the coefficient (Fig. 2.1).
However the mean of the distribution, the skewness, and the kurtosis all remain near
zero (Fig. 2.5D–F). All this suggests that the Fourier coefficients follow a Gaussian
distribution to good approximation.

These observations can be used for a revised test of the null hypothesis: If there is no
modulation by the stimulus, then the Fourier coefficient at the stimulus frequency, 𝑐s,
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Figure 2.3: False positive detections resulting from incorrect assumption of
Poisson statistics. (A) Histogram of Fourier coefficients at 𝑓 = 4 Hz for 275 cells
recorded for 400 s in the absence of a stimulus at the analysis frequency (pink) with
theoretical curve assuming Poisson statistics (blue). The 95th and 98th percentiles of
the theoretical distribution are indicated by light blue lines. Many of the measured
coefficients lie beyond the 98th percentile under the Poisson assumption and would be
flagged as positive results. Dots: Data for individual cells. Colored dots correspond
to examples in B. (B) Spike trains from cells with the highest Fourier coefficients: 7
cells with relatively low firing rates (top) and 8 cells with relatively high firing rates
(bottom). Note, the pronounced temporal clusters of spikes.

should be drawn from the same Gaussian distribution as the coefficients at nearby
frequencies 𝑐𝑛≠ 𝑓s𝑇 . For a useful statistic we define the normalized response as the
absolute value of the Fourier coefficient at the stimulus frequency normalized by the
standard deviation of the Fourier coefficients at non-stimulus frequencies:

𝑐 =
|𝑐s |
𝜎𝑐

. (2.4)

where
𝜎𝑐 =

√︃〈
|𝑐𝑛 |2

〉
𝑛≠ 𝑓s𝑇

. (2.5)

Under the null hypothesis, 𝑐s should be distributed just like the other 𝑐𝑛, which
implies that 𝑐 should be distributed as

𝑃(𝑐) = 𝑐 e−
1
2 𝑐

2
(2.6)
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Figure 2.4: Multitaper power spectra of several spike trains.

(see Appendix). The actually observed values of 𝑐 can then be compared against this
null model, and much as in Figure 2.3, we can test whether any neurons produce
unexpectedly large values of 𝑐. Figure 2.6 shows that this is not the case. About
5% of the neurons fall above the 95th percentile of the null distribution, and no
unusually large values occur. In other words, these data appear consistent with the
null hypothesis of “no modulation.”

2.4.3 Confidence limits on modulation
Hypothesis testing for the presence of modulation is not the only use for the null
model described in the previous section. The model can also be used to generate
confidence limits on undetected modulation.

To explore this, we start from actually recorded spike trains {𝑡𝑘 } that have no stimulus-
induced modulation, and introduce artificial modulation at a defined frequency 𝑓s.
This is done by shifting some of the spikes by half a stimulus period. The probability
that a spike at time 𝑡𝑘 will get shifted varies sinusoidally in time

𝑝(𝑡𝑘 ) =
𝐴

2
[1 + cos(2π 𝑓s𝑡𝑘 )] ,

where 𝐴 represents modulation amplitude and 𝑓s is the frequency of the modulation.
The resulting spike train has the same mean firing rate, but its rate is modulated at
the frequency 𝑓s with relative amplitude (peak/mean − 1) given by 𝐴.

We took 275 actual spike trains with firing rates ranging between 0.5 and 91 spikes/s,
each of 400-s duration, and created artificially modulated copies of each, at modulation
amplitudes ranging from 𝐴 = 0.01 (1%) to 0.5 (50%). For each spike train and
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Figure 2.5: Fourier coefficients follow a Gaussian distribution to good approxi-
mation. (A) Real components of the Fourier coefficients as a function of frequency
from three actual spike trains, with firing rates of 0.5 s−1 (red), 10 s−1 (blue), and
55 s−1 (black). Recording time: 400 s. (B) Cumulative distribution of the data
shown in A (dotted lines) compared with best-fit zero-mean Gaussian. (C) Standard
deviation of Fourier components for each of 275 recorded cells plotted against their
firing rates. (D)–(F) Means, skew, and kurtosis of Fourier components, ditto.

modulation amplitude, we calculated 1000 instances of artificially modulated spike
trains. For each cell, we compared the actual 𝑐-value of the original spike train
(Eqn 2.4) with the 1000 artificial 𝑐-values in each group. We found the maximum
level of modulation where the actual 𝑐 would be in the lowest 95% of the distribution,
and plotted the result in Figure 2.7A. These data represent our 95% confidence limits
on the modulation in the actual spike trains.

Unsurprisingly, these confidence limits depend rather steeply on the firing rate of
the cell. However, we noted that these confidence limits also varied substantially
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Figure 2.6: A test for modulation using the improved null model. Histogram
(pink) of the normalized responses 𝑐 from all neurons (dots) along with the predicted
null distribution (blue). Vertical lines indicate 95th and 98th percentiles of the null
distribution.

among cells with very similar firing rates. To test whether this was an artifact of our
sampling procedure, we grouped the 1000 instances of artificially modulated spike
trains into 10 groups of 100 (for each cell and at each modulation level), and repeated
the above calculation within each group. The population standard deviation among
groups is plotted for each cell as error bars in Figure 2.7. The fact that these error
bars are small compared to the overall spread in the data indicates that differences in
detection limits are due to inherent differences in firing statistics between cells rather
than to our sampling procedure.

Another way to think about these results is to ask how small a modulation would
be detectable with our method in spike trains with statistics like our recordings. To
explore this, we again used the artificially modulated spike trains and applied the test
of Figure 2.6 at various confidence levels. We asked what level of modulation would
be detected by that method at least 50% of the time, and called that the “minimum
detectable modulation” (Fig 2.7B). We may conclude that a cell with a firing rate
of 2 spikes/s would need a modulation of 0.25 to be detectable with confidence
𝑝 < 10−4, whereas in a cell firing 50 spikes/s a modulation of only 0.05 would
be detectable at the same confidence level. Unsurprisingly, the more relaxed the
confidence level, the smaller modulations are detectable, but the effect of going from
𝑝 < 10−4 (appropriate when analyzing up to 500 spike trains in parallel) to 𝑝 < 0.01
(appropriate for up to 5 spike trains) is not as large as one might have imagined.

2.4.4 Results from magnetic stimulation
Having shown that our method produces a null model that accurately describes the
observations at frequencies where no stimulus-induced modulation was expected,
we now turn to analyzing the data at the actual stimulus frequency. Using two
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Figure 2.7: Detectability of stimulus-induced modulations. (A) Confidence limits
on the magnitude of periodic modulation. Each dot represents a spike train from
a different neuron. The confidence limit is based on comparison with artificially
modulated versions of the same spike train. (B) Minimum detectable modulation for
spike trains with different firing rates at several levels 𝛼 of false-positive detection.
Lines are interpolations of the data. Triangles mark outliers: spike trains for which
no level of modulation up to 0.5 yielded detectability.

recordings from animals exposed to magnetic fields oscillating at 3 Hz and three
recordings at 5 Hz, we repeated the above procedures, analyzing each recording at
its stimulation frequency (Fig. 2.8). No cells in any of the experiments exhibited
modulation exceeding what would be expected from the null model.
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Figure 2.8: Analysis of recordings during magnetic stimulation. Display as in
Fig 2.6. (A) Two recordings during 3-Hz stimulation. (B) Three recordings during
5-Hz stimulation.
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2.5 Appendix: Derivations of probability distributions
2.5.1 The normal distribution in two dimensions
(This derivation, which can be found in many textbooks, is given here for easy
reference and to introduce notation.)

Let 𝑋 be a random variable, normally distributed with mean ` = 0 and variance 𝜎2.
The probability distribution of 𝑋 is the well-known bell curve:

𝑃(𝑥) = 1
√

2𝜋𝜎2
e−

1
2 𝑥

2/𝜎2
.

Let 𝑌 be a second such random variable, same distribution, independent of 𝑋 . Then
the joint probability distribution of 𝑋 and 𝑌 is

𝑃(𝑥, 𝑦) = 1
2𝜋𝜎2 e−

1
2 (𝑥

2+𝑦2)/𝜎2
. (2.7)

Let us now introduce 𝑅 =
√
𝑋2 + 𝑌2. What is the distribution of 𝑅? We can find out

by transforming to polar coordinates (𝑋 = 𝑅 cosΘ, 𝑌 = 𝑅 sinΘ):

𝑃(𝑟, \) = 𝑃(𝑥, 𝑦)
����𝜕𝑥 𝜕𝑦𝜕𝑟 𝜕\

���� = 𝑟𝑃(𝑥, 𝑦). (2.8)

Since the distribution (Eqn. 2.7) is obviously independent of the angle \, we have

𝑃(\) = 1
2π

and hence
𝑃(𝑟, \) = 𝑃(𝑟) 𝑃(\) = 1

2π
𝑃(𝑟). (2.9)

Combining Eqns. 2.7, 2.8, and 2.9, we conclude:

𝑃(𝑟) = 𝑟

𝜎2 e−
1
2 𝑟

2/𝜎2
. (2.10)

If the variable of interest is normalized to unit standard deviation, such that〈
𝑟2〉 = 𝜎2 = 1, then

𝑃(𝑟) = 𝑟 e−
1
2 𝑟

2
(2.11)

as used in Eqn 2.6.
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2.5.2 Fourier coefficients of Poisson spike trains
As shown in Eqn 2.2, the Fourier coefficients of a Poisson spike train with 𝑁 spikes
all have the same probability distribution: they are essentially the sum of 𝑁 random
unit vectors in the 2-dimensional plane. Say

u =

𝑁∑︁
𝑖=1

s𝑖,

where the s𝑖 are random unit vectors. Then the covariance matrix of u is

C =
〈
u u⊤〉

=
∑︁
𝑖

〈
s𝑖 s𝑖⊤

〉
+

∑︁
𝑖≠ 𝑗

〈
s𝑖 s 𝑗⊤

〉
= 𝑁

〈
s s⊤

〉
+

∑︁
𝑖≠ 𝑗

〈
s𝑖
〉 〈

s 𝑗
〉⊤

=
𝑁

2
1,

where all the sums are from 1 to 𝑁 , and 1 is the identity matrix. To understand the
last step note that for a random unit vector in two dimensions

〈
s s⊤

〉
=

( 〈
𝑥2〉 ⟨𝑥𝑦⟩
⟨𝑦𝑥⟩

〈
𝑦2〉 )

. (2.12)

Because of normalization
〈
𝑥2〉 + 〈

𝑦2〉 = 1, and because of symmetry
〈
𝑥2〉 =

〈
𝑦2〉

and ⟨𝑥𝑦⟩ = 0. Therefore ⟨s s⊤⟩ = 1
21.

If 𝑁 is reasonably large, the Central Limit Theorem applies: Since u is the sum of
many independent random variables, its distribution is a Gaussian with the same
covariance matrix as u:

𝑃(u) = 1
2π

√
det C

e−
1
2 u⊤C−1u

=
1
π𝑁

e−
|u |2
𝑁 .

The Fourier coefficient (Eqn. 2.2) is

c =
1
𝑇

u,
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so its distribution is the 2-D Gaussian

𝑃(c) = 𝑇2

π𝑁
e−

𝑇2 | |c | |2
𝑁 .

Using Eqn 2.10, one concludes that the vector length of c has distribution

𝑃( | |c| |) = 2| |c| |𝑇2

𝑁
e−||c| |

2𝑇2/𝑁 ,

as used in Eqn 2.3. (Note that in the main text, we introduced 𝑐 as a complex number,
whereas here we discussed c as a 2D vector. The difference is immaterial, since
addition and absolute value (|𝑐 |) for complex numbers are defined in terms of real and
imaginary components just as addition and vector length (| |c| |) are for 2D vectors.)
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Mice in a Labyrinth Exhibit
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Matthew Rosenberg*, Tony Zhang*, Pietro Perona, Markus Meister
* authors contributed equally

eLife, July 1, 2021

3.1 Abstract
Animals learn certain complex tasks remarkably fast, sometimes after a single
experience. What behavioral algorithms support this efficiency? Many contemporary
studies based on two-alternative-forced-choice (2AFC) tasks observe only slow or
incomplete learning. As an alternative, we study the unconstrained behavior of mice
in a complex labyrinth and measure the dynamics of learning and the behaviors that
enable it. A mouse in the labyrinth makes ~2000 navigation decisions per hour. The
animal explores the maze, quickly discovers the location of a reward, and executes
correct 10-bit choices after only 10 reward experiences—a learning rate 1000-fold
higher than in 2AFC experiments. Many mice improve discontinuously from one
minute to the next, suggesting moments of sudden insight about the structure of the
labyrinth. The underlying search algorithm does not require a global memory of
places visited and is largely explained by purely local turning rules.

3.2 Introduction
How can animals or machines acquire the ability for complex behaviors from one or
a few experiences? Canonical examples include language learning in children, where
new words are learned after just a few instances of their use, or learning to balance
a bicycle, where humans progress from complete incompetence to near perfection
after crashing once or a few times. Clearly such rapid acquisition of new associations
or of new motor skills can confer enormous survival advantages.

In laboratory studies, one prominent instance of one-shot learning is the Bruce effect
[40]. Here the female mouse forms an olfactory memory of her mating partner that
allows her to terminate the pregnancy if she encounters another male that threatens
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infanticide. Another form of rapid learning accessible to laboratory experiments
is fear conditioning, where a formerly innocuous stimulus gets associated with a
painful experience, leading to subsequent avoidance of the stimulus [34, 71]. These
learning systems appear designed for special purposes, they perform very specific
associations, and govern binary behavioral decisions. They are likely implemented
by specialized brain circuits, and indeed great progress has been made in localizing
these operations to the accessory olfactory bulb [38] and the cortical amygdala [139].

In the attempt to identify more generalizable mechanisms of learning and decision
making, one route has been to train laboratory animals on abstract tasks with tightly
specified sensory inputs that are linked to motor outputs via arbitrary contingency
rules. Canonical examples are a monkey reporting motion in a visual stimulus by
saccading its eyes [178], and a mouse in a box classifying stimuli by moving its
forelimbs or the tongue [46, 98]. The tasks are of low complexity, typically a 1-bit
decision based on 1 or 2 bits of input. Remarkably they are learned exceedingly
slowly: A mouse typically requires many weeks of shaping and thousands of trials to
reach asymptotic performance; a monkey may require many months [48].

What is needed therefore is a rodent behavior that involves complex decision making,
with many input variables and many possible choices. Ideally the animals would
learn to perform this task without excessive intervention by human shaping, so we
may be confident that they employ innate brain mechanisms rather than circuits
created by the training. Obviously the behavior should be easy to measure in the
laboratory. Finally, it would be satisfying if this behavior showed a glimpse of rapid
learning.

Navigation through space is a complex behavior displayed by many animals. It
typically involves integrating multiple cues to decide among many possible actions.
It relies intimately on rapid learning. For example a pigeon or desert ant leaving
its shelter acquires the information needed for the homing path in a single episode.
Major questions remain about how the brain stores this information and converts it
to a policy for decisions during the homing path. One way to formalize the act of
decision-making in the laboratory is to introduce structure in the environment in the
form of a maze that defines straight paths and decision points. A maze of tunnels is
in fact a natural environment for a burrowing rodent. Early studies of rodent behavior
did place the animals into true labyrinths [223], but their use gradually declined in
favor of linear tracks or boxes with a single choice point.
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We report here on the behavior of laboratory mice in a complex labyrinth of tunnels.
A single mouse is placed in a home cage from which it has free access to the maze
for one night. No handling, shaping, or training by the investigators is involved. By
continuous video-recording and automated tracking, we observe the animal’s entire
life experience within the labyrinth. Some of the mice are water-deprived and a
single location deep inside the maze offers water. We find that these animals learn
to navigate to the water port after just a few reward experiences. In many cases,
one can identify unique moments of “insight” when the animal’s behavior changes
discontinuously. This all happens within ~1 hour. Underlying the rapid learning is
an efficient mode of exploration driven by simple navigation rules. Mice that do not
lack water show the same patterns of exploration. This laboratory-based navigation
behavior may form a suitable substrate for studying the neural mechanisms that
implement few-shot learning.

3.3 Results
3.3.1 Adaptation to the maze
At the start of the experiment, a single mouse was placed in a conventional mouse
cage with bedding and food. A short tunnel offered free access to a maze consisting
of a warren of corridors (Figure 3.1A-B). The bottom and walls of the maze were
constructed of black plastic that is transparent in the infrared. A video camera placed
below the maze captured the animal’s actions continuously using infrared illumination
(Figure 3.1B). The recordings were analyzed offline to track the movements of the
mouse, with keypoints on the nose, mid-body, tail base, and the four feet (Figure 3.1D).
All observations were made in darkness during the animal’s subjective night.

The logical structure of the maze is a binary tree, with 6 levels of branches, leading
from the single entrance to 64 endpoints (Figure 3.1C). A total of 63 T-junctions are
connected by straight corridors in a design with maximal symmetry (Figure 3.1A,
Figure 3.3–Figure 3.16, such that all the nodes at a given level of the tree have the
same local geometry. One of the 64 endpoints of the maze is outfitted with a water
port. After activation by a brief nose poke, the port delivers a small drop of water,
followed by a 90-s time-out period.

After an initial period of exploratory experiments we settled on a frozen protocol
that was applied to 20 animals. Ten of these mice had been mildly water-deprived
for up to 24 hours; they received food in the home cage and water only from the port
hidden in the maze. Another ten mice had free access to food and water in the cage,
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Figure 3.1: The maze environment. Top (A) and side (B) views of a home cage,
connected via an entry tunnel to an enclosed labyrinth. The animal’s actions in the
maze are recorded via video from below using infrared illumination. (C) The maze
is structured as a binary tree with 63 branch points (in levels numbered 0,...,5) and
64 end nodes. One end node has a water port that dispenses a drop when it gets
poked. Blue line in A and C: path from maze entry to water port. (D) A mouse
considering the options at the maze’s central intersection. Colored keypoints are
tracked by DeepLabCut: nose, mid body, tail base, 4 feet.
Figure 3.12 Occupancy of the maze.
Figure 3.13 Fraction of time in maze by group.
Figure 3.14 Transitions between cage and maze.

and received no water from the port in the maze. Each animal’s behavior in the maze
was recorded continuously for 7 h during the first night of its experience with the
maze, starting the moment the connection tunnel was opened (sample videos here).
The investigator played no role during this period, and the animal was free to act as
it wished including travel between the cage and the maze.

All of the mice except one passed between the cage and the maze readily and
frequently (Figure 3.1–Figure 3.12). The single outlier animal barely entered the
maze and never progressed past the first junction; we excluded this mouse’s data from
subsequent analysis. On average over the entire period of study the animals spent

https://www.youtube.com/playlist?list=PLm5UsX091_2X0ph_ldO3_lC9KFxqYpqo5
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Figure 3.2: Sample trajectories during adaptation to the maze. Four sample
bouts from one mouse (B3) into the maze at various times during the experiment
(time markings at bottom). The trajectory of the animal’s nose is shown; time is
encoded by the color of the trace. The entrance from the home cage and the water
port are indicated in panel A.
Figure 3.15 Speed of locomotion.

46% of the time in the maze (Figure 3.1–Figure 3.13). This fraction was similar
whether or not the animal was motivated by water rewards (47% for rewarded vs 44%
for unrewarded animals). Over time the animals appeared increasingly comfortable in
the maze, taking breaks for grooming and the occasional nap. When the investigator
lifted the cage lid at the end of the night some animals were seen to escape into the
safety of the maze.

We examined the rate of transitions from the cage to the maze and how it depends
on time spent in the cage (Figure 3.1–Figure 3.14A). Surprisingly the rate of entry
into the maze is highest immediately after the animal returns to the cage. Then it
declines gradually by a factor of 4 over the first minute in the cage and remains
steady thereafter. This is a large effect, observed for every individual animal in
both the rewarded and unrewarded groups. By contrast, the opposite transition,
namely exit from the maze, occurs at an essentially constant rate throughout the visit
(Figure 3.1–Figure 3.14B).
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The nature of the animal’s forays into the maze changed over time. We call each foray
from entrance to exit a “bout.” After a few hesitant entries into the main corridor,
the mouse engaged in one or more long bouts that dove deep into the binary tree
to most or all of the leaf nodes (Figure 3.2A). For a water-deprived animal, this
typically led to discovery of the reward port. After ~10 bouts, the trajectories became
more focused, involving travel to the reward port and some additional exploration
(Figure 3.2B). At a later stage still, the animal often executed perfect exploitation
bouts that led straight to the reward port and back with no wrong turns (Figure 3.2C).
Even at this late stage, however, the animal continued to explore other parts of the
maze (Figure 3.2D). Similarly the unrewarded animals explored the maze throughout
the night (Figure 3.1–Figure 3.13). While the length and structure of the animal’s
trajectories changed over time, the speed remained remarkably constant after ~50 s
of adaptation (Figure 3.2–Figure 3.18).

Whereas Figure 3.2 illustrates the trajectory of a mouse’s nose in full spatio-temporal
detail, a convenient reduced representation is the “node sequence.” This simply
marks the events when the animal enters each of the 127 nodes of the binary tree that
describes the maze (see Methods and Figure 3.3–Figure 3.16). Among these nodes,
63 are T-junctions where the animal has 3 choices for the next node, and 64 are end
nodes where the animal’s only choice is to reverse course. We call the transition
from one node to the next a “step.” The analysis in the rest of the paper was carried
out on the animal’s node sequence.

3.3.2 Few-shot learning of a reward location
We now examine early changes in the animal’s behavior when it rapidly acquires and
remembers information needed for navigation. First, we focus on navigation to the
water port.

The ten water-deprived animals had no indication that water would be found in the
maze. Yet, all 10 discovered the water port in less than 2000 s and fewer than 17
bouts (Figure 3.3A). The port dispensed only a drop of water followed by a 90-s
timeout before rearming. During the timeout the animals generally left the port
location to explore other parts of the maze or return home, even though they were
not obliged to do so. For each of the water-deprived animals, the frequency at which
it consumed rewards in the maze increased rapidly as it learned how to find the water
port, then settled after a few reward experiences (Figure 3.3A).
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Time line of all water rewardsA

B
Runs from entrance to water port

Figure 3.3: Few-shot learning of path to water. (A) Time line of all water rewards
collected by 10 water-deprived mice (red dots, every fifth reward has a blue tick
mark). (B) The length of runs from the entrance to the water port, measured in steps
between nodes, and plotted against the number of rewards experienced. Main panel:
All individual runs (cyan dots) and median over 10 mice (blue circles). Exponential
fit decays by 1/𝑒 over 10.1 rewards. Right panel: Histogram of the run length, note
log axis. Red: perfect runs with the minimum length 6; green: longer runs. Top
panel: The fraction of perfect runs (length 6) plotted against the number of rewards
experienced, along with the median duration of those perfect runs.
Figure 3.16 Definition of node trajectories.

How many reward experiences are sufficient to teach the animal reliable navigation to
the water port? To establish a learning curve one wants to compare performance on
the identical task over successive trials. Recall that this experiment has no imposed
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trial structure. Yet the animals naturally segmented their behavior through discrete
visits to the maze. Thus we focused on all the instances when the animal started at
the maze entrance and walked to the water port (Figure 3.3B).

On the first few occasions, these paths to water can involve hundreds of steps between
nodes and their length scatters over a wide range. However, after a few rewards,
the animals began taking the perfect path without detours (6 steps, Figure 3.3–
Figure 3.16), and soon that became the norm. Note, the path length plotted here
is directly related to the number of “turning errors”: every time the mouse turns
away from the shortest path to the water port that adds two steps to the path length
(Equation 3.7). The rate of these errors declined over time, by a factor of 𝑒 after
~10 rewards consumed (Figure 3.3B). Late in the night ~75% of the paths to water
were perfect. The animals executed them with increasing speed; eventually these fast
“water runs” took as little as 2 s (Figure 3.3B). Many of these visits went unrewarded
owing to the 90-s timeout period on the water port.

In summary, after ~10 reward experiences on average the mice learn to navigate
efficiently to the water port, which requires making 6 correct decisions, each among
3 options. Note that even at late times, long after they have perfected the “water run,”
the animals continue to take some extremely long paths: a subject for a later section
(Figure 3.7).

3.3.3 The role of cues attached to the maze
These observations of rapid learning raise the question “How do the animals navigate?”
In particular, does the mouse build an internal representation that guides its action
at every junction? Or does it place marks in the external environment that signal
the route to the water port? In an extreme version of externalized cognition, the
mouse leaves behind a trail of urine marks or other secretions as it walks away from
the water port, and on a subsequent bout simply sniffs its way up the odor gradient
(Figure 3.4A). This would require no internal representation.

The following experiment offers some partial insights. Owing to the design of the
labyrinth, one can rotate the entire apparatus by 180 degrees, open one wall and close
another, and obtain a maze with the same structure (Figure 3.4A). Alternatively, one
can also rotate only the floor. After such a modification, all the physical cues attached
to the rotated parts now point in the wrong direction, namely to the end node 180
degrees opposite the water port (the “image location"). If the animal navigated to the
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4 mice: visits to various nodes before and after rotation

Figure 3.4: Navigation is robust to rotation of the maze. (A) Logic of the
experiment: The animal may have deposited an odorant in the maze (shading) that
is centered on the water port. After 180 degree rotation of the maze, that gradient
would lead to the image of the water port (blue dot). We also measure how often the
mouse goes to two control nodes (magenta dots) that are related by symmetry. (B)
Trajectory of mouse ‘A1’ in the bouts immediately before and after maze rotation.
Time coded by color from dark to light as in Figure 3.2. (C) Left: Cumulative
number of rewards as well as visits to the water port, the image of the water port, and
the control nodes. All events are plotted vs time before and after the maze rotation.
Average over 4 animals. Middle and right: Same data with the counts centered on
zero and zoomed in for better resolution.
Figure 3.17 Navigation before and after maze rotation for each animal.
Figure 3.18 Speed before and after maze rotation.

goal following cues previously deposited in the maze, it should end up at that image
location.

We performed a maze rotation on four animals after several hours of exposure, when
they had acquired the perfect route to water. Immediately after rotation, 3 of the
4 animals went to the correct water port on their first entry into the maze, and
before ever visiting the image location (e.g. Figure 3.4B). The fourth mouse visited
the image location once and then the correct water port (Figure 3.4–Figure 3.17).
The mice continued to collect water rewards efficiently even immediately after the
rotation.
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Nonetheless, the maze rotation did introduce subtle changes in behavior that lasted
for an hour or more (Figure 3.4C). Visits to the image location were at chance levels
prior to rotation, then increased by a factor of 1.8. Visits to the water port declined
in frequency, although they still exceeded visits to the image location by a factor
of 5. The reward rate declined by a factor of 0.7. These effects could be verified
for each animal (Figure 3.4–Figure 3.17). The speed of the mice was not disturbed
(Figure 3.4–Figure 3.18).

In summary, for navigation to the water port the experienced animals do not strictly
depend on physical cues that are attached to the maze. This includes any material
they might have deposited, but also pre-existing construction details by which they
may have learned to identify locations in the maze. The mice clearly notice a change
in these cues, but continue to navigate effectively to the goal. This conclusion applies
to the time point of the rotation, a few hours into the experiment. Conceivably
the animal’s navigation policy and its use of sensory cues changes in the course of
learning. This and many other questions regarding the mechanisms of cognition will
be taken up in a separate study.

3.3.4 Discontinuous learning
While an average across animals shows evidence of rapid learning (Figure 3.3), one
wonders whether the knowledge is acquired gradually or discontinuously, through
moments of “sudden insight.” To explore this, we scrutinized more closely the
time line of individual water-deprived animals in their experience with the maze.
The discovery of the water port and the subsequent collection of water drops at a
regular rate is one clear change in behavior that relies on new knowledge. Indeed,
the rate of water rewards can increase rather suddenly (Figure 3.3A), suggesting an
instantaneous step in knowledge.

Over time, the animals learned the path to water not only from the entrance of the
maze but from many locations scattered throughout the maze. The largest distance
between the water port and an end node in the opposite half of the maze involves 12
steps through 11 intersections (Figure 3.5A). Thus we included as another behavioral
variable the occurrence of long direct paths to the water port which reflects how
directedly the animals navigate within the maze.

Figure 3.5B shows for one animal the cumulative occurrence of water rewards and
that of long direct paths to water. The animal discovers the water port early on at
75 s, but at 1380 s the rate of water rewards jumps suddenly by a factor of 5. The
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Figure 3.5: Sudden changes in behavior. (A) An example of a long uninterrupted
path through 11 junctions to the water port (drop icon). Blue circles mark control
nodes related by symmetry to the water port to assess the frequency of long paths
occurring by chance. (B) For one animal (named C1) the cumulative number of
rewards (green); of long paths (>6 junctions) to the water port (red); and of similar
paths to the 3 control nodes (blue, divided by 3). All are plotted against the time
spent in the maze. Arrowheads indicate the time of sudden changes, obtained from
fitting a step function to the rates. (C) Same as B for animal B1. (D) Same as B for
animal C9, an example of more continuous learning.
Source data 1. Statistics of sudden changes in behavior.
Figure 3.19 Long direct paths for all animals.

long paths to water follow a rather different time line. At first they occur randomly, at
the same rate as the paths to the unrewarded control nodes. At 2070 s the long paths
suddenly increase in frequency by a factor of 5. Given the sudden change in rates of
both kinds of events there is little ambiguity about when the two steps happen and
they are well separated in time (Figure 3.5B).

The animal behaves as though it gains a new insight at the time of the second step
that allows it to travel to the water port directly from elsewhere in the maze. Note
that the two behavioral variables are independent: The long paths do not change
when the reward rate steps up, and the reward rate does not change when the rate of
long paths steps up. Another animal (Figure 3.5C) similarly showed an early step in
the reward rate (at 860 s) and a dramatic step in the rate of long paths (at 2580 s). In
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Figure 3.6: Homing succeeds on first attempt. (A) Locations in the maze where the
19 animals started their first return to the exit (home run). Some locations were used
by 2 or 3 animals (darker color). (B) Left: The cumulative number of home runs
from different levels in the maze, summed over all animals, and plotted against the
bout number. Level 1 = first T-junction, level 7 = end nodes. Right: Zoom of (Left)
into early bouts. (C) Overlap between the outbound and the home path. Histogram
of the overlap for all bouts of all animals. (D) Same analysis for just the first bout of
each animal. The length of the home run is color-coded as in panel B.

this case the emergence of long paths coincided with a modest increase (factor of 2)
in the reward rate.

Similar discontinuities in behavior were seen in at least 5 of the 10 water-deprived
animals (Figure 3.5B, Figure 3.5–Figure 3.19, Figure 3.5–Figure 3.20), and their
timing could be identified to a precision of ~200 s. More gradual performance change
was observed for the remaining animals (Figure 3.5 D). We varied the criterion
of performance by asking for even longer error-free paths, and the results were
largely unchanged and no additional discontinuity appeared. These observations
suggest that mice can acquire a complex decision-making skill rather suddenly. A
mouse may have multiple moments of sudden insight that affect different aspects
of its behavior. The exact time of the insight cannot be predicted but is easily
identified post-hoc. Future neurophysiological studies of the phenomenon will face
the interesting challenge of capturing these singular events.
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3.3.5 One-shot learning of the home path
For an animal entering an unfamiliar environment, the most important path to keep
in memory may be the escape route. In the present case, that is the route to the
maze entrance, from which the tunnel leads home to the cage. We expected that the
mice would begin by penetrating into the maze gradually and return home repeatedly
so as to confirm the escape route, a pattern previously observed for rodents in an
open arena [80, 242]. This might help build a memory of the home path gradually
level-by-level into the binary tree. Nothing could be further from the truth.

At the end of any given bout into the maze, there is a “home run,” namely the direct
path without reversals that takes the animal to the exit (see Figure 3.3–Figure 3.16).
Figure 3.6 A shows the nodes where each animal started its first home run, following
the first penetration into the maze. With few exceptions, that first home run began
from an end node, as deep into the maze as possible. Recall that this involves making
the correct choice at six successive 3-way intersections, an outcome that is unlikely
to happen by chance.

The above hypothesis regarding gradual practice of home runs would predict that
short home runs should appear before long ones in the course of the experiment. The
opposite is the case (Figure 3.6 B). In fact, the end nodes (level 7 of the maze) are
by far the favorite place from which to return to the exit, and those maximal-length
home runs systematically appear before shorter ones. This conclusion was confirmed
for each individual animal, whether rewarded or unrewarded.

Clearly, the animals do not practice the home path or build it up gradually. Instead
they seem to possess an Ariadne’s thread [191] starting with their first excursion into
the maze, long before they might have acquired any general knowledge of the maze
layout. On the other hand the mouse does not follow the strategy of Theseus, namely
to precisely retrace the path that led it into the labyrinth. In that case, the animal’s
home path should be the reverse of the path into the maze that started the bout.
Instead the entry path and the home path tend to have little overlap (Figure 3.6C).
Note, the minimum overlap is 1, because all paths into and out of the maze have to
pass through the central junction (node 0 in Figure 3.3–Figure 3.16). This is also the
most frequent overlap. The peak at overlaps 6-8 for rewarded animals results from
the frequent paths to the water port and back, a sequence of at least 7 nodes in each
direction. The separation of outbound and return path is seen even on the very first
home run (Figure 3.6D). Many home runs from the deepest level (7 nodes) have only
the central junction in common with the outbound path (overlap = 1).
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Figure 3.7: Exploration is a dominant and persistent mode of behavior. (A)
Ethogram for rewarded animals. Area of the circle reflects the fraction of time
spent in each behavioral mode averaged over animals and duration of the experiment.
Width of the arrow reflects the probability of transitioning to another mode. ‘Drink’
involves travel to the water port and time spent there. Transitions from ‘Leave’
represent what the animal does at the start of the next bout into the maze. (B) The
fraction of time spent in each mode as a function of absolute time throughout the
night. Mean ± SD across the 10 rewarded animals.
Source data 1. Three modes of behavior.

In summary, it appears that the animal acquires a homing strategy over the course of
a single bout, and in a manner that allows a direct return home even from locations
not previously encountered.

3.3.6 Structure of behavior in the maze
Here we focus on rules and patterns that govern the animal’s activity in the maze on
both large and small scales.

Behavioral states

Once the animal has learned to perform long uninterrupted paths to the water port,
one can categorize its behavior within the maze by three states: (1) walking to the
water port; (2) walking to the exit; and (3) exploring the maze. Operationally, we
define exploration as all periods in which the animal is in the maze but not on a direct
path to water or to the exit. For the ten sated animals this includes all times in the
maze except for the walks to the exit.

Figure 3.7 illustrates the occupancies and transition probabilities between these
states. The animals spent most of their time by far in the exploration state: 84%
for rewarded and 95% for unrewarded mice. Across animals there was very little
variation in the balance of the 3 modes (Figure 3.7–Figure 3.21). The rewarded
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Figure 3.8: Exploration covers the maze efficiently. (A) The number of distinct
end nodes encountered as a function of the number of end nodes visited for: mouse
C1 (red); the optimal explorer agent (black); an unbiased random walk (blue).
Arrowhead: the value 𝑁32 = 76 by which mouse C1 discovered half of the end
nodes. (B) An expanded section of the graph in A including curves from 10 rewarded
(red) and 9 unrewarded (green) animals. The efficiency of exploration, defined
as 𝐸 = 32/𝑁32, is 0.385 ± 0.050 (SD) for rewarded and 0.384 ± 0.039 (SD) for
unrewarded mice. (C) The efficiency of exploration for the same animals, comparing
the values in the first and second halves of the time in the maze. The decline is a
factor of 0.74 ± 0.12 (SD) for rewarded and 0.81 ± 0.13 (SD) for unrewarded mice.
Figure 3.22 Efficiency of exploration.

mice began about half their bouts into the maze with a trip to the water port and the
other half by exploring (Figure 3.7A). After a drink, the animals routinely continued
exploring, about 90% of the time.

For water-deprived animals, the dominance of exploration persisted even at a late
stage of the night when they routinely executed perfect exploitation bouts to and
from the water port: Over the duration of the night, the ‘explore’ fraction dropped
slightly from 0.92 to 0.75, with the balance accrued to the ‘drink’ and ‘leave’ modes
as the animals executed many direct runs to the water port and back. The unrewarded
group of animals also explored the maze throughout the night even though it offered
no overt rewards (Figure 3.7–Figure 3.21). One suspects that the animals derive
some intrinsic reward from the act of patrolling the environment itself.

Efficiency of exploration

During the direct paths to water and to the exit, the animal behaves deterministically,
whereas the exploration behavior appears stochastic. Here we delve into the rules
that govern the exploration component of behavior.

One can presume that a goal of the exploratory mode is to rapidly survey all parts of
the environment for the appearance of new resources or threats. We will measure
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the efficiency of exploration by how rapidly the animal visits all end nodes of the
binary maze, starting at any time during the experiment. The optimal agent with
perfect memory and complete knowledge of the maze—including the absence of any
loops—could visit the end nodes systematically one after another without repeats,
thus encountering all of them after just 64 visits. A less perfect agent, on the other
hand, will visit the same node repeatedly before having encountered all of them.
Figure 3.8A plots for one exploring mouse the number of distinct end nodes it
encountered as a function of the number of end nodes visited. The number of new
nodes rises monotonically; 32 of the end nodes have been discovered after the mouse
checked 76 times; then the curve gradually asymptotes to 64. We will characterize
the efficiency of the search by the number of visits 𝑁32 required to survey half the
end nodes, and define

𝐸 =
32
𝑁32

. (3.1)

This mouse explores with efficiency E = 32/76 = 0.42. For comparison, Figure 3.8A
plots the performance of the optimal agent (E = 1.0) and that of a random walker
that makes random decisions at every 3-way junction (E =0.23). Note, the mouse is
about half as efficient as the optimal agent, but twice as efficient as a random walker.

The different mice were remarkably alike in this component of their exploratory
behavior (Figure 3.8B): across animals the efficiency varied by only 11% of the mean
(0.387 ± 0.044 SD). Furthermore there was no detectable difference in efficiency
between the rewarded animals and the sated unrewarded animals. Over the course
of the night the efficiency declined significantly for almost every animal—whether
rewarded or not—by an average of 23% (Figure 3.8C).

Rules of exploration

What allows the mice to search much more efficiently than a random walking agent?
We inspected more closely the decisions that the animals make at each 3-way junction.
It emerged that these decisions are governed by strong biases (Figure 3.9). The
probability of choosing each arm of a T-junction depends crucially on how the animal
entered the junction. The animal can enter a T-junction from 3 places and exit it in 3
directions (Figure 3.9A). By tallying the frequency of all these occurrences across
all T-junctions in the maze one finds clear deviations from an unbiased random walk
(Figure 3.9B, Figure 3.9–Figure 3.23).
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Figure 3.9: Turning biases favor exploration. (A) Definition of four turning biases
at a T-junction based on the ratios of actions taken. Top: An animal arriving from the
stem of the T (shaded) may either reverse or turn left or right. 𝑃SF is the probability
that it will move forward rather than reversing. Given that it moves forward, 𝑃SA
is the probability that it will take an alternating turn from the preceding one (gray),
i.e. left-right or right-left. Bottom: An animal arriving from the bar of the T may
either reverse or go straight, or turn into the stem of the T. 𝑃BF is the probability
that it will move forward through the junction rather than reversing. Given that it
moves forward, 𝑃BS is the probability that it turns into the stem. (B) Scatter graph
of the biases 𝑃SF and 𝑃BF (left) and 𝑃SA and 𝑃BS (right). Every dot represents a
mouse. Cross: values for an unbiased random walk. (C) Exploration curve of new
end nodes discovered vs end nodes visited, displayed as in Figure 3.8A, including
results from a biased random walk with the 4 turning biases derived from the same
mouse, as well as a more elaborate Markov-chain model (see Figure 3.11C). (D)
Efficiency of exploration (Equation 3.1) in 19 mice compared to the efficiency of the
corresponding biased random walk.
Source data 1. Bias statistics.

First, the animals have a strong preference for proceeding through a junction rather
than returning to the preceding node (𝑃SF and 𝑃BF in Figure 3.9B). Second there
is a bias in favor of alternating turns left and right rather than repeating the same
direction turn (𝑃SA). Finally, the mice have a mild preference for taking a branch
off the straight corridor rather than proceeding straight (𝑃BS). A comparison across
animals again revealed a remarkable degree of consistency even in these local rules
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Figure 3.10: Preference for certain end nodes during exploration. (A) The
number of visits to different end nodes encoded by a gray scale. Top: rewarded,
bottom: unrewarded animals. Gray scale spans a factor of 12 (top) or 13 (bottom).
(B) The fraction of visits to each end node, comparing the rewarded vs unrewarded
group of animals. Each data point is for one end node, the error bar is the SEM
across animals in the group. The outlier on the bottom right is the neighbor of the
water port, a frequently visited end node among rewarded animals. The water port is
off scale and not shown. (C) As in panel B but comparing the unrewarded animals to
their simulated 4-bias random walks. These biases explain 51% of the variance in
the observed preference for end nodes.

of behavior: The turning biases varied by only 3% across the population and even
between the rewarded and unrewarded groups (Figure 3.9B, Figure 3.9–Figure 3.23).

Qualitatively, one can see that these turning biases will improve the animal’s search
strategy. The forward biases 𝑃SF and 𝑃BF keep the animal from re-entering territory
it has covered already. The bias 𝑃BS favors taking a branch that leads out of the maze.
This allows the animal to rapidly cross multiple levels during an outward path and
then enter a different territory. By comparison, the unbiased random walk tends to
get stuck in the tips of the tree and revisits the same end nodes many times before
escaping. To test this intuition we simulated a biased random agent whose turning
probabilities at a T-junction followed the same biases as measured from the animal
(Figure 3.9C). These biased agents did in fact search with much higher efficiency
than the unbiased random walk. They did not fully explain the behavior of the mice
(Figure 3.9D), accounting for ~87% of the animal’s efficiency (compared to 60% for
the random walk). A more sophisticated model of the animal’s behavior—involving
many more parameters (Figure 3.11C)—failed to get any closer to the observed
efficiency (Figure 3.9C, Figure 3.8–Figure 3.22C). Clearly some components of
efficient search in these mice remain to be understood.
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Systematic node preferences

A surprising aspect of the animals’ explorations is that they visit certain end nodes
of the binary tree much more frequently than others (Figure 3.10). This effect
is large: more than a factor of 10 difference between the occupancy of the most
popular and least popular end nodes (Figure 3.10A-B). This was surprising given
our efforts to design the maze symmetrically, such that in principle all end nodes
should be equivalent. Furthermore the node preferences were very consistent across
animals and even across the rewarded and unrewarded groups. Note that the standard
error across animals of each node’s occupancy is much smaller than the differences
between the nodes (Figure 3.10B).

The nodes on the periphery of the maze are systematically preferred. Comparing the
outermost ring of 26 end nodes (excluding the water port and its neighbor) to the
innermost 16 end nodes, the outer ones are favored by a large factor of 2.2. This may
relate to earlier reports of a “centrifugal tendency” among rats patrolling a maze
[253].

Interestingly, the biased random walk using four bias numbers (Figure 3.9, Fig-
ure 3.11D) replicates a good amount of the pattern of preferences. For unrewarded
animals, where the maze symmetry is not disturbed by the water port, the biased
random walk predicts 51% of the observed variance across nodes (Figure 3.10C),
and an outer/inner node preference of 1.97, almost matching the observed ratio of
2.20. The more complex Markov-chain model of behavior (Figure 3.11C) performed
slightly better, explaining 66% of the variance in port visits and matching the
outer/inner node preference of 2.20.

3.3.7 Models of maze behavior
Moving beyond the efficiency of exploration one may ask more broadly: How well do
we really understand what the mouse does in the maze? Can we predict its action at
the next junction? Once the predictable component is removed, how much intrinsic
randomness remains in the mouse’s behavior? Here we address these questions using
more sophisticated models that predict the probability of the mouse’s future actions
based on the history of its trajectory.

At a formal level, the mouse’s trajectory through the maze is a string of numbers
standing for the nodes the animal visited (Figure 3.11A and Figure 3.3–Figure 3.16).
We want to predict the next action of the mouse, namely the step that takes it to the
next node. The quality of the model will be assessed by the cross-entropy between
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Figure 3.11: Recent history constrains the mouse’s decisions. (A) The mouse’s
trajectory through the maze produces a sequence of states 𝑠𝑡 = node occupied after
step 𝑡. From each state, up to 3 possible actions lead to the next state (end nodes
allow only one action). We want to predict the animal’s next action, 𝑎𝑡+1, based on
the prior history of states or actions. (B-D) Three possible models to make such a
prediction. (B) A fixed-depth Markov chain where the probability of the next action
depends only on the current state 𝑠𝑡 and the preceding state 𝑠𝑡−1. The branches of the
tree represent all 3 × 127 possible histories (𝑠𝑡−1, 𝑠𝑡). (C) A variable-depth Markov
chain where only certain branches of the tree of histories contribute to the action
probability. Here one history contains only the current state, some others reach back
three steps. (D) A biased random walk model, as defined in Figure 3.9, in which
the probability of the next action depends only on the preceding action, not on the
state. (E) Performance of the models in B, C, and D when predicting the decisions
of the animal at T-junctions. In each case, we show the cross-entropy between the
predicted action probability and the real actions of the animal (lower values indicate
better prediction, perfect prediction would produce zero). Dotted line represents an
unbiased random walk with 1/3 probability of each action.
Figure 3.24. Markov model fits.

the model’s predictions and the mouse’s observed actions, measured in bits per
action. This is the uncertainty that remains about the mouse’s next action given the
prediction from the model. The ultimate lower limit is the true source entropy of
the mouse, namely that component of its decisions that cannot be explained by the
history of its actions.

One family of models we considered are fixed-depth Markov chains (Figure 3.11B).
Here the probability of the next action 𝑎𝑡+1 is specified as a function of the history
stretching over the 𝑘 preceding nodes (𝑠𝑡−𝑘+1, . . . , 𝑠𝑡). In fitting the model to the
mouse’s actual node sequence one tallies how often each history leads to each action,
and uses those counts to estimate the conditional probabilities 𝑝(𝑎𝑡+1 |𝑠𝑡−𝑘+1, . . . , 𝑠𝑡).
Given a new node sequence, the model will then use the history strings (𝑠𝑡−𝑘+1, . . . , 𝑠𝑡)
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to predict the outcome of the next action. In practice we trained the model on 80% of
the animal’s trajectory and tested it by evaluating the cross-entropy on the remaining
20%.

Ideally, the depth 𝑘 of these action trees would be very large, so as to take as much
of the prior history into account as possible. However, one soon runs into a problem
of over-fitting: Because each T-junction in the maze has 3 neighboring junctions, the
number of possible histories grows as 3𝑘 . As 𝑘 increases, this quickly exceeds the
length of the measured node sequence, so that every history appears only zero or
one times in the data. At this point one can no longer estimate any probabilities, and
cross-validation on a different segment of data fails catastrophically. In practice, we
found that this limitation sets in already beyond 𝑘 = 2 (Figure 3.11–Figure 3.24A).
To address this issue of data-limitation we developed a variable-depth Markov
chain (Figure 3.11C). This model retains longer histories, but only if they occur
frequently enough to allow a reliable probability estimate (see Methods, Figure 3.11–
Figure 3.24B-C). In addition, we explored different schemes of pooling the counts
across certain T-junctions that are related by the symmetry of the maze (see Methods).

With these methods, we focused on the portions of trajectory when the mouse was in
‘explore’ mode, because the segments in ‘drink’ and ‘leave’ mode are fully predictable.
Furthermore, we evaluated the models only at nodes corresponding to T-junctions,
because the decision from an end node is again fully predictable. Figure 3.11E
compares the performance of various models of mouse behavior. The variable-depth
Markov chains routinely produced the best fits, although the improvement over
fixed-depth models was modest. Across all 19 animals in this study the remaining
uncertainty about the animal’s action at a T-junction is 1.237 ± 0.035 (SD) bits/action,
compared to the prior uncertainty of log2 3 = 1.585 bits. The rewarded animals have
slightly lower entropy than the unrewarded ones (1.216 vs 1.261 bits/action). The
Markov chain models that produced the best fits to the behavior used history strings
with an average length of ~4.

We also evaluated the predictions obtained from the simple biased random walk
model (Figure 3.11D). Recall that this attempts to capture the history-dependence
with just 4 bias parameters (Figure 3.9A). As expected this produced considerably
higher cross-entropies than the more sophisticated Markov chains (by about 18%,
Figure 3.11E). Finally, we used several professional file compression routines to try
and compress the mouse’s node sequence. In principle, this sets an upper bound
on the true source entropy of the mouse, even if the compression algorithm has no
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understanding of animal behavior. The best such algorithm (bzip2 compression
[218]) far under-performed all the other models of mouse behavior, giving 43%
higher cross-entropy on average, and thus offered no additional useful bounds.

We conclude that during exploration of the maze the mouse’s choice behavior is
strongly influenced by its current location and ~3 locations preceding it. There are
minor contributions from states further back. By knowing the animal’s history one
can narrow down its action plan at a junction from the a priori 1.59 bits (one of
three possible actions) to just ~1.24 bits. This finally is a quantitative answer to the
question, “How well can one predict the animal’s behavior?” Whether the remainder
represents an irreducible uncertainty—akin to “free will” of the mouse—remains to
be seen. Readers are encouraged to improve on this number by applying their own
models of behavior to our published data set.

3.4 Discussion
3.4.1 Summary of contributions
We present a new approach to the study of learning and decision-making in mice.
We give the animal access to a complex labyrinth and leave it undisturbed for a night
while monitoring its movements. The result is a rich data set that reveals new aspects
of learning and the structure of exploratory behavior. With these methods we find
that mice learn a complex task that requires 6 correct 3-way decisions after only ~10
experiences of success (Figure 3.2, Figure 3.3). Along the way the animal gains task
knowledge in discontinuous steps that can be localized to within a few minutes of
resolution (Figure 3.5). Underlying the learning process is an exploratory behavior
that occupies 90% of the animal’s time in the maze and persists long after the task
has been mastered, even in complete absence of an extrinsic reward (Figure 3.7). The
decisions the animal makes at choice points in the labyrinth are constrained in part
by the history of its actions (Figure 3.9, Figure 3.11), in a way that favors efficient
searching of the maze (Figure 3.8). This microstructure of behavior is surprisingly
consistent across mice, with variation in parameters of only a few percent (Figure 3.9).
Our most expressive models to predict the animal’s choices still leave a remaining
uncertainty of ~1.24 bits per decision (Figure 3.11), a quantitative benchmark by
which competing models can be tested. Finally, some of the observations constrain
what algorithms the animals might use for learning and navigation (Figure 3.4).



53

3.4.2 Historical context
Mazes have been a staple of animal psychology for well over 100 years. The early
versions were true labyrinths. For example, Small [223] built a model of the maze
in Hampton Court gardens scaled to rat size. Subsequent researchers felt less
constrained by Victorian landscapes and began to simplify the maze concept. Most
commonly the maze offered one standard path from a starting location to a food
reward box. A few blind alleys would branch from the standard path, and researchers
would tally how many errors the animal committed by briefly turning into a blind
[248]. Later on, the design was further reduced to a single T-junction. After all,
the elementary act of maze navigation is whether to turn left or right at a junction
[249], so why not study that process in isolation? And reducing the concept even
further, one can ask the animal to refrain from walking altogether, and instead poke
its nose into a hole on the left or the right side of a box [252]. This led to the popular
behavior boxes now found in rodent neuroscience laboratories everywhere. Each of
these reductions of the “maze” concept enabled a new type of experiment to study
learning and decision-making, for example limiting the number of choice points
allows one to better sample neural activity at each one. However, the essence of a
“confusing network of paths” has been lost along the way, and with it the behavioral
richness of the animals navigating those decisions.

Owing in part to the dissemination of user-friendly tools for animal tracking, one
sees a renaissance of experiments that embrace complex environments, including
mazes with many choice points [4, 155, 175, 202, 211, 272, 278], 3-dimensional
environments [97], and infinite mazes [219]. The labyrinth in the present study is
considerably more complex than Hampton Court or most of the mazes employed by
Tolman and others [43, 172, 248]. In those mazes the blind alleys are all short and
unbranched; when an animal strays from the target path it receives feedback quickly
and can correct. By contrast, our binary tree maze has 64 equally deep branches,
only one of which contains the reward port. If the animal makes a mistake at any
level of the tree it can find out only after traveling all the way to the last node.

Another crucial aspect of our experimental design is the absence of any human
interference. Most studies of animal navigation and learning involve some kind of
trial structure. For example the experimenter puts the rat in the start box, watches it
make its way through the maze, coaxes it back on the path if necessary, and picks it up
once it reaches the target box. Then another trial starts. In modern experiments with
two-alternative-forced-choice (2AFC) behavior boxes the animal does not have to be
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picked up, but a trial starts with appearance of a cue, and then proceeds through some
strict protocol through delivery of the reward. The argument in favor of imposing
a trial structure is that it creates reproducible conditions, so that one can gather
comparable data and average them suitably over many trials.

Our experiments had no imposed structure whatsoever; in fact it may be inappropriate
to call them experiments. The investigator opened the entry to the maze in the
evening and did not return until the morning. A potential advantage of leaving the
animals to themselves is that they are more likely to engage in mouse-like behavior,
rather than constantly responding to the stress of human interference or the alienation
from being a cog in a behavior machine. The result was a rich data set, with the
typical animal delivering ~15,000 decisions in a single night, even if one only counts
the nodes of the binary tree as decision points. Since the mice made all the choices,
the scientific effort lay primarily in adapting methods of data analysis to the nature
of mouse trajectories. Somewhat surprisingly, the absence of experimental structure
was no obstacle to making precise and reproducible measurements of the animal’s
behavior.

3.4.3 How fast do animals learn?
Among the wide range of phenomena of animal learning, one can distinguish easy
and hard tasks by some measure of task complexity. In a simple picture of a
behavioral task, the animal needs to recognize several different contexts and based
on that express one of several different actions. One can draw up a contingency table
between contexts and actions, and measure the complexity of the task by the mutual
information in that table. This ignores any task difficulties associated with sensing
the context at all or with producing the desired actions. However, in all the examples
discussed here the stimuli are discriminated easily and the actions come naturally,
thus the learning difficulty lies only in forming the associations, not in sharpening
the perceptual mechanisms or practicing complex motor output.

Many well-studied behaviors have a complexity of 1 bit or less, and often animals
can learn these associations after a single experience. For example, in the Bruce
effect [40] the female maps two different contexts (smell of mate vs non-mate) onto
two kinds of pregnancy outcomes (carry to term vs abort). The mutual information
in that contingency table is at most 1 bit, and may be considerably lower, for example
if non-mate males are very rare or very frequent. Mice form the correct association
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after a single instance of mating, although proper memory formation requires several
hours of exposure to the mate odor [205].

Similarly fear learning under the common electroshock paradigm establishes a
mapping between two contexts (paired with shock vs innocuous) and two actions
(freeze vs proceed), again with an upper bound of 1 bit of complexity. Rats and mice
will form the association after a single experience lasting only seconds, and alter
their behavior over several hours [34, 71]. This is an adaptive warning system to deal
with life-threatening events, and rapid learning here has a clear survival value.

Animals are particularly adept at learning a new association between an odor and
food. For example bees will extend their proboscis in response to a new odor after
just one pairing trial where the odor appeared together with sugar [27]. Similarly
rodents will start digging for food in a scented bowl after just a few pairings with that
odor [51]. Again, these are 1-bit tasks learned rapidly after one or a few experiences.

By comparison the tasks that a mouse performs in the labyrinth are more complex.
For example, the path from the maze entrance to the water port involves 6 junctions,
each with 3 options. At a minimum 6 different contexts must be mapped correctly
into one of 3 actions each, which involves 6 · log23 = 9.5 bits of complexity. The
animals begin to execute perfect paths from the entrance to the water port well
within the first hour (Figure 3.2C, Figure 3.3B). At a later stage during the night the
animal learns to walk direct paths to water from many different locations in the maze
(Figure 3.5); by this time it has consumed 10-20 rewards. In the limit, if the animal
could turn correctly towards water from each of 63 junctions in the maze, it would
have learned 63 · log23 = 100 bits. Conservatively, we estimate that the animals have
mastered 10-20 bits of complexity based on 10-20 reward experiences within an hour
of time spent in the maze. Note, this considers only information about the water
port and ignores whatever else the animals are learning about the maze during their
incessant exploratory forays. These numbers align well with classic experiments on
rats in diverse mazes and problem boxes [172]. Although those tasks come in many
varieties, a common theme is that ~10 successful trials are sufficient to learn ~10
decisions [273].

In a different corner of the speed-complexity space are the many 2-alternative-forced-
choice (2AFC) tasks in popular use today. These tend to be 1-bit tasks, for example
the monkey should flick its eyes to the left when visual motion is to the left [178],
or the mouse should turn a steering wheel to the right when a light appears on
the left [46]. Yet, the animals take a long time to learn these simple tasks. For
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example, the mouse with the steering wheel requires about 10,000 experiences before
performance saturates. It never gets particularly good, with a typical hit rate only 2/3
of the way from random to perfect. All this training takes 3-6 weeks; in the case
of monkeys several months. The rate of learning, measured in task complexity per
unit time, is surprisingly low: < 1 bit/month compared to ~10 bits/h observed in the
labyrinth. The difference is a factor of 6,000. Similarly when measured in complexity
learned per reward experience: The 2AFC mouse may need 5,000 rewards to learn
a contingency table with 1 bit complexity, whereas the mouse in the maze needs
~10 rewards to learn 10 bits. Given these enormous differences in learning rate, one
wonders whether the ultra-slow mode of learning has any relevance for an animal’s
natural condition. In the month that the 2AFC mouse requires to finally report the
location of a light, its relative in the wild has developed from a baby to having its
own babies. Along the way, that wild mouse had to make many decisions, often
involving high stakes, without the benefit of 10,000 trials of practice.

3.4.4 Sudden insight
The dynamics of the learning process are often conceived as a continuously growing
association between stimuli and actions, with each reinforcing experience making an
infinitesimal contribution. The reality can be quite different. When a child first learns
to balance on a bicycle, performance goes from abysmal to astounding within a few
seconds. The timing of such a discontinuous step in performance seems impossible
to predict but easy to recognize after the fact.

From the early days of animal learning experiments there have been warnings against
the tendency to average learning curves across subjects [66, 133]. The average of
many discontinuous curves will certainly look continuous and incremental, but that
reassuring shape may miss the essence of the learning process. A recent reanalysis
of many Pavlovian conditioning experiments suggested that discontinuous steps in
performance are the rule rather than the exception [86]. Here we found that the
same applies to navigation in a complex labyrinth. While the average learning
curve presents like a continuous function (Figure 3.3B), the individual records of
water rewards show that each animal improves rather quickly but at different times
(Figure 3.3A).

Owing to the unstructured nature of the experiment, the mouse may adopt different
policies for getting to the water port. In at least half of the animals, we observed a
discontinuous change in that policy, namely when the animal started using efficient
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direct paths within the maze (Figure 3.5, Figure 3.5–Figure 3.20). This second
switch happened considerably after the animal started collecting rewards, and did
not greatly affect the reward rate. Furthermore, the animals never reverted to the less
efficient policy, just as a child rarely unlearns to balance a bicycle.

Presumably this switch in performance reflects some discontinuous change in the
animal’s internal model of the maze, what Tolman called the “cognitive map”
[18, 250]. In the unrewarded animals, we could not detect any discontinuous change
in the use of long paths. However, as Tolman argued, those animals may well
acquire a sophisticated cognitive map that reveals itself only when presented with a
concrete task, like finding water. Future experiments will need to address this. The
discontinuous changes in performance pose a challenge to conventional models of
reinforcement learning, in which reward events are the primary driver of learning
and each event contributes an infinitesimal update to the action policy. It will also be
important to model the acquisition of distinct kinds of knowledge that contribute to
the same behavior, like the location of the target and efficient routes to approach it.

3.4.5 Exploratory behavior
By all accounts, the animals spent a large fraction of the night exploring the maze
(Figure 3.1–Figure 3.13). The water-deprived animals continued their forays into the
depths of the maze long after they had found the water port and learned to exploit it
regularly. After consuming a water reward, they wandered off into the maze 90%
of the time (Figure 3.7B) instead of lazily waiting in front of the port during the
timeout period. The sated animals experienced no overt reward from the maze, yet
they likewise spent nearly half their time exploring that environment. As has been
noted many times, animals—like humans—derive some form of intrinsic reward
from exploration [25]. Some have suggested that there exists a homeostatic drive
akin to hunger and thirst that elicits the information-seeking activity, and that the
drive is in turn sated by the act of exploration [111]. If this were the case, then the
drive to explore should be weakest just after an episode of exploration, much as the
drive for food-seeking is weaker after a big meal.

Our observations are in conflict with this notion. The animal is most likely to enter
the maze within the first minute of its return to the cage (Figure 3.1–Figure 3.14), a
strong trend that runs opposite to the prediction from satiation of curiosity. Several
possible explanations come to mind: (1) On these very brief visits to the cage,
the animal may just want to certify that the exit route to the safe environment still
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exists, before continuing with exploration of the maze. (2) The temporal contrast
between the boredom of the cage and the mystery of the maze is highest right at
the moment of exit from the maze, and that may exert pressure to re-enter the maze.
Understanding this in more detail will require dedicated experiments. For example,
one could deliberately deprive the animals of access to the maze for some hours,
and test whether that results in an increased drive to explore, as observed for other
homeostatic drives around eating, drinking, and sleeping.

When left to their own devices, mice choose to spend much of their time engaged in
exploration. One wonders how that affects their actions when they are strapped into
a rigid behavior machine, like a 2AFC choice box. Presumably the drive to explore
persists, perhaps more so because the forced environment is so unpleasant. And
within the confines of the two alternatives, the only act of exploration the mouse has
left is to give the wrong answer. This would manifest as an unexpectedly high error
rate on unambiguous stimuli, sometimes called the “lapse rate” [48, 189]. The fact
that the lapse rate decreases only gradually over weeks to months of training [46]
suggests that it is difficult to crush the animal’s drive to explore.

The animals in our experiments had never been presented with a maze environment,
yet they quickly settled into a steady mode of exploration. Once a mouse progressed
beyond the first intersection it typically entered deep into the maze to one or more end
nodes (Figure 3.6). Within 50 s of the first entry the animals adopted a steady speed
of locomotion that they would retain throughout the night (Figure 3.2–Figure 3.18).
Within 250 s of first contact with the maze the average animal already spent 50% of
its time there (Figure 3.1–Figure 3.13). Contrast this with a recent study of “free
exploration” in an exposed arena: Those animals required several hours before they
even completed one walk around the perimeter [80]. Here the drive to explore is
clearly pitted against fear of the open space, which may not be conducive to observing
exploration per se.

The persistence of exploration throughout the entire duration of the experiment
suggests that the animals are continuously surveying the environment, perhaps
expecting new features to arise. These surveys are quite efficient: The animals cover
all parts of the maze much faster than expected from a random walk (Figure 3.8).
Effectively they avoid re-entering territory they surveyed just recently. It is often
assumed that this requires some global memory of places visited in the environment
[175, 184]. Such memory would have to persist for a long time: Surveying half of
the available end nodes typically required 450 turning decisions. However, we found
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that a global long-term memory is not needed to explain the efficient search. The
animals seem to be governed by a set of local turning biases that require memory
only of the most recent decision and no knowledge of location (Figure 3.9). These
local biases alone can explain most of the character of exploration without any global
understanding or long-term memory. Incidentally, they also explain other seemingly
global aspects of the behavior, for example the systematic preference that the mice
have for the outer rather than the inner regions of the maze (Figure 3.10). Of course,
this argument does not exclude the presence of a long-term memory, which may
reveal itself in some other feature of the behavior.

Perhaps the most remarkable aspect of these biases is how similar they are across all
19 mice studied here, regardless of whether the animal experienced water rewards or
not (Figure 3.9B, Figure 3.9–Figure 3.23), and independent of the sex of the mouse.
The four decision probabilities were identical across individuals to within a standard
deviation of <0.03. We cannot think of a trivial reason why this should be so. For
example the two biases for forward motion (Figure 3.9B left) are poised halfway
between the value for a random walk (𝑝 = 2/3) and certainty (𝑝 = 1). At either of
those extremes, simple saturation might lead to a reproducible value, but not in the
middle of the range. Why do different animals follow the exact same decision rules
at an intersection between tunnels? Given that tunnel systems are part of the mouse’s
natural ecology, it is possible that those rules are innate and determined genetically.
Indeed the rules by which mice build tunnels have a strong genetic component [261],
so the rules for using tunnels may be written in the genes as well. The high precision
with which one can measure those behaviors even in a single night of activity opens
the way to efficient comparisons across genotypes, and also across animals with
different developmental experience.

Finally, after mice discover the water port and learn to access it from many different
points in the maze (Figure 3.5), they are presumably eager to discover other things.
In ongoing work, we installed three water ports (visible in the videos accompanying
this article) and implemented a rule that activates the three ports in a cyclic sequence.
Mice discovered all three ports rapidly and learned to visit them in the correct order.
Future experiments will have to raise the bar on what the mice are expected to learn
in a night.
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3.4.6 Mechanisms of navigation
How do the animals navigate when they perform direct paths to the water port or to
the exit? The present study cannot resolve that, but one can gain some clues based
on observations so far. Early workers already concluded that rodents in a maze will
use whatever sensory cues and tricks are available to accomplish their tasks [173].
Our maze was designed to restrict those options somewhat.

To limit the opportunity for visual navigation, the floor and walls of the maze are
visually opaque. The ceiling is transparent, but the room is kept dark except for
infrared illuminators. Even if the animal finds enough light, the goals (water port or
exit) are invisible within the maze except from the immediately adjacent corridor.
There are no visible beacons that would identify the goal.

With regard to the sense of touch and kinesthetics, the maze was constructed for
maximal symmetry. At each level of the binary tree all the junctions have locally
identical geometry, with intersecting corridors of the same length. In practice the
animals may well detect some inadvertent cues, like an unusual drop of glue, that
could identify one node from another. The maze rotation experiment suggests that
such cues are not essential for the animal’s sense of location in the maze, at least in
the expert phase.

The role of odors deserves particular attention because the mouse may use them both
passively and actively. Does the animal first find the water port by following the
smell of water? Probably not. For one, the port only emits a single drop of water
when triggered by a nose poke. Second, we observed many instances where the
animal is in the final corridor adjacent to the water port yet fails to discover it. The
initial discovery seems to occur via touch. The reader can verify this in the videos
accompanying this article. Regarding active use of odor markings in the maze, the
maze rotation experiment suggests that such cues are not required for navigation, at
least once the animals have adopted the shortest path to the water port (Figure 3.4).

Another algorithm that is often invoked for animals moving in an open arena is
vector-based navigation [262]. Once the animal discovers a target, it keeps track of
that target’s heading and distance using a path integrator. When it needs to return
to the target it follows the heading vector and updates heading and distance until it
arrives. Such a strategy has limited appeal inside a labyrinth because the vectors are
constantly blocked by walls. Consider, for example, the “home runs” back to the
exit at the end of a bout. Here the target, namely the exit, is known from the start of
the bout, because the animal enters through the same hole. At the end of the bout,
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when the mouse decides to exit from the maze, can it follow the heading vector to
the exit? Figure 3.6A shows the 13 locations from which mice returned in a direct
path to the exit on their very first foray. None of these locations is compatible with
heading-based navigation: In each case an animal following the heading to the exit
would get stuck in a different end node first and would have to reverse from there,
quite unlike what really happened.

Finally, a partial clue comes from errors the animals make. We found that the rotation
image of the water port, an end node diametrically across the entire maze, is one
of the most popular destinations for rewarded animals (Figure 3.10A). These errors
would be highly unexpected if the animals navigated from the entrance to the water
by odor markings, or if they used an absolute representation of heading and distance.
On the other hand, if the animal navigates via a remembered sequence of turns,
then it will end up at that image node if it makes a single mistake at just the first
T-junction.

Future directed experiments will serve to narrow down how mice learn to navigate
this environment, and how their policy might change over time. Since the animals
get to perfection within an hour or so, one can test a new hypothesis quite efficiently.
Understanding what mechanisms they use will then inform thinking about the
algorithm for learning, and about the neuronal mechanisms that implement it.
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3.5 Methods and materials
3.5.1 Experimental design
The goal of the study was to observe mice as they explored a complex environment
for the first time, with little or no human interference and no specific instructions.
In preliminary experiments, we tested several labyrinth designs and water reward
schedules. Eventually we settled on the protocol described here, and tested 20 mice
in rapid succession. Each mouse was observed only over a 7-hour period during the
first night it encountered the labyrinth.

3.5.2 Maze construction
The maze measured ~24 x 24 x 2 inches (we used materials specified in inches, so
dimensions are quoted in those non-SI units where appropriate). The ceiling was
made of 0.5 inch clear acrylic. Slots of 1/8 inch width were cut into this plate on a
1.5 inch grid. Pegged walls made of 1/8 inch infrared-transmitting acrylic (opaque
in the visible spectrum, ePlastics) were inserted into these slots and secured with
a small amount of hot glue. The floor was a sheet of infrared-transmitting acrylic,
supported by a thicker sheet of clear acrylic. The resulting corridors (1-1/8 inches
wide) formed a 6-level binary tree with T-junctions and progressive shortening of
each branch, ranging from ~12 inch to 1.5 inch (Figure 3.1 and Figure 3.2). A single
end node contained a 1.5 cm circular opening with a water delivery port (described
below). The maze included provision for two additional water ports not used in the
present report. Once per week, the maze was submerged in cage cleaning solution.
Between different animals, the floor and walls were cleaned with ethanol.

3.5.3 Reward delivery system
The water reward port was controlled by a Matlab script on the main computer
through an interface (Sanworks Bpod State Machine r1). Rewards were triggered
when the animal’s nose broke the IR beam in the water port (Sanworks Port interface
+ valve). The interface briefly opened the water valve to deliver ~30 µL of water
and flashed an infrared LED mounted outside the maze for 1 s. This served to mark
reward events on the video recording. Following each reward, the system entered a
time-out period for 90 s, during which the port did not provide further reward. In
experiments with sated mice, the water port was turned off.
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3.5.4 Cage and connecting passage
The entrance to the maze was connected to an otherwise normal mouse cage by
red plastic tubing (3 cm dia, 1 m long). The cage contained food, bedding, nesting
material, and in the case of unrewarded experiments also a normal water bottle.

3.5.5 Animals and treatments
All mice were C57BL/6J animals (Jackson Labs) between the ages of 45 and 98
days (mean 62 days). Both sexes were used: 4 males and 6 females in the rewarded
experiments, 5 males and 4 females in the unrewarded experiments. For water
deprivation, the animal was transferred from its home cage (generally group-housed)
to the maze cage ~22 h before the start of the experiment. Non-deprived animals were
transferred minutes before the start. All procedures were performed in accordance
with institutional guidelines and approved by the Caltech IACUC.

3.5.6 Video recording
All data reported here were collected over the course of 7 hours during the dark
portion of the animal’s light cycle. Video recording was initiated a few seconds prior
to connecting the tunnel to the maze. Videos were recorded by an OpenCV python
script controlling a single webcam (Logitech C920) located ~1 m below the floor
of the maze. The maze and access tube were illuminated by multiple infrared LED
arrays (center wavelength 850 nm). Three of these lights illuminated the maze from
below at a 45 degree angle, producing contrast to resolve the animal’s foot pads. The
remaining lights pointed at the ceiling of the room to produce backlight for a sharp
outline of the animal.

3.5.7 Animal tracking
A version of DeepLabCut [176] modified to support gray-scale processing was used
to track the animal’s trajectory, using key points at the nose, feet, tail base and
mid-body. All subsequent analysis was based on the trajectory of the animal’s nose,
consisting of positions 𝑥(𝑡) and 𝑦(𝑡) in every video frame.

3.5.8 Rates of transition between cage and maze
This section relates to Figure 3.1–Figure 3.14. We entertained the hypothesis that the
animals become “thirsty for exploration” as they spend more time in the cage. In that
case one would predict that the probability of entering the maze in the next second
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will increase with time spent in the cage. One can compute this probability from the
distribution of residency times in the cage, as follows:

Say 𝑡 = 0 when the animal enters the cage. The probability density that the animal
will next leave the cage at time 𝑡 is

𝑝 (𝑡) = 𝑒
−

𝑡∫
0
𝑟 (𝑡 ′)𝑑𝑡 ′

𝑟 (𝑡) (3.2)

where 𝑟 (𝑡) is the instantaneous rate for entering the maze. So
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This relates the cumulative of the instantaneous rate function to the cumulative of
the observed transition times. In this way, we computed the rates

𝑟m (𝑡) = rate of entry into the maze as a function of time spent in the cage (3.5)

𝑟c (𝑡) = rate of entry into the cage as a function of time spent in the maze. (3.6)

The rate of entering the maze is highest at short times in the cage (Figure 3.1–
Figure 3.14A). It peaks after ~15 s in the cage and then declines gradually by a factor
of 4 over the first minute. So the mouse is most likely to enter the maze just after it
returns from there. This runs opposite to the expectation from a homeostatic drive
for exploration, which should be sated right after the animal returns. We found no
evidence for an increase in the rate at late times. These effects were very similar in
rewarded and unrewarded groups and in fact the tendency to return early was seen in
every animal.

By contrast, the rate of exiting the maze is almost perfectly constant over time
(Figure 3.1–Figure 3.14B). In other words the exit from the maze appears like
a constant rate Poisson process. There is a slight elevation of the rate at short
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times among rewarded animals (Figure 3.1–Figure 3.14B top). This may come
from the occasional brief water runs they perform. Another strange deviation is an
unusual number of very short bouts (duration 2-12 s) among unrewarded animals
(Figure 3.1–Figure 3.14B bottom). These are brief excursions in which the animal
runs to the central junction, turns around, and runs to the exit. Several animals
exhibited these, often several bouts in a row, and at all times of the night.

3.5.9 Reduced trajectories
From the raw nose trajectory, we computed two reduced versions. First, we divided
the maze into discrete “cells,” namely the squares the width of a corridor that make
up the grid of the maze. At any given time, the nose is in one of these cells and that
time series defines the cell trajectory.

At a coarser level still, one can ask when the animal passes through the nodes of
the binary tree, which are the decision points in the maze. The special cells that
correspond to the nodes of the tree are those at the center of a T-junction and those
at the leaves of the tree. We marked all the times when the trajectory (𝑥(𝑡), 𝑦(𝑡))
entered a new node cell. If the animal leaves a node cell and returns to it before
entering a different node cell, that is not considered a new node. This procedure
defines a discrete node sequence 𝑠𝑖 and corresponding arrival times at those nodes
𝑡𝑖. We call the transition between two nodes a “step.” Much of the analysis in this
paper is derived from the animal’s node sequence. The median mouse performed
16,192 steps in the 7 h period of observation (mean = 15,257; SD = 3,340).

In Figure 3.5 and Figure 3.6, we count the occurrence of direct paths leading to
the water port (a “water run”) or to the exit (a “home run”). A direct path is a node
sequence without any reversals. Figure 3.3–Figure 3.16 illustrates some examples.

If the animal makes one wrong step from the direct path, that step needs to be
backtracked, adding a total of two steps to the length of the path. If further errors
occur during backtracking, they need to be corrected as well. The binary maze
contains no loops, so the number of errors is directly related to the length of the path:

Errors = (Length of path − Length of direct path)/2. (3.7)

3.5.10 Maze rotation
The maze rotation experiment (Figure 3.4) was performed on 4 mice, all water-
deprived. Two of the animals (’D7’ and ‘D9’) had experienced the maze before,
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and are part of the ‘rewarded’ group in other sections of the report. Two additional
animals (’F2’ and ‘A1’) had had no prior contact with the maze.

The maze rotation occurred after at least 6 hours of exposure, by which time the
animals had all perfected the direct path to the water port.

For animals ‘D7’ and ‘D9,’ we rotated only the floor of the maze, leaving the walls
and ceiling in the original configuration. For ‘F2’ and ‘A1,’ we rotated the entire
maze, moving one wall segment at the central junction and the water port to attain the
same shape. Navigation remained intact for all animals. Note that ‘A1’ performed
a perfect path to the water port and back immediately before and after a full maze
rotation (Figure 3.4B).

The visits to the 4 locations in the maze (Figure 3.4C, Figure 3.4–Figure 3.17) were
limited to direct paths of length at least 2 steps. This avoids counting rapid flickers
between two adjacent nodes. In other words, the animal has to move at least 2 steps
away from the target node before another visit qualifies.

3.5.11 Statistics of sudden insight
In Figure 3.5, one can distinguish two events: First, the animal finds the water
port and begins to collect rewards at a steady rate: this is when the green curve
rises up. At a later time, the long direct paths to the water port become much
more frequent than to the comparable control nodes: this is when the red and blue
curves diverge. For almost all animals, these two events are well separated in time
(Figure 3.5–Figure 3.19). In many cases, the rate of long paths seems to change
discontinuously: a sudden change in slope of the curve.

Here we analyze the degree of “sudden change,” namely how rapidly the rate changes
in a time series of events. We modeled the rate as a sigmoid function of time during
the experiment:

𝑟 (𝑡) = 𝑟i +
𝑟f − 𝑟i

2
erf

( 𝑡 − 𝑡s
𝑤

)
(3.8)

where

erf (𝑥) = 2
√
𝜋

𝑥∫
0

𝑒−𝑥
2
d𝑥.



67

The rate begins at a low initial level 𝑟i, reflecting chance occurrence of the event, and
saturates at a high final level 𝑟f, limited for example by the animal’s walking speed.
The other two parameters are the time 𝑡s of half-maximal rate change, and the width
𝑤 over which that rate change takes place. A sudden change in the event rate would
correspond to 𝑤 = 0.

The data are a set of 𝑛 event times 𝑡𝑖 in the observation interval [0, 𝑇]. We model the
event train as an inhomogeneous Poisson point process with instantaneous rate 𝑟 (𝑡).
The likelihood of the data given the rate function 𝑟 (𝑡) is

𝐿 [𝑟 (𝑡)] = 𝑒
−

𝑇∫
0
𝑟 (𝑡)𝑑𝑡 ∏

𝑖

𝑟 (𝑡𝑖) (3.9)

and the log likelihood is

ln 𝐿 =
∑︁
𝑖

ln𝑟 (𝑡𝑖) −
𝑇∫

0

𝑟 (𝑡) 𝑑𝑡. (3.10)

For each of the 10 rewarded mice, we maximized ln 𝐿 over the 4 parameters of the
rate model, both for the reward events and the long paths to water. The resulting fits
are plotted in Figure 3.5–Figure 3.19.

Focusing on the learning of long paths to water, for 6 of the 10 animals the optimal
width parameter 𝑤 was less than 300 s: B1, B2, C1, C3, C6, C7. These are the same
animals one would credit with a sudden kink in the cumulative event count based on
visual inspection (Figure 3.5–Figure 3.19).

To measure the uncertainty in the timing of this step, we refit the data for this
subgroup of mice with a model involving a sudden step in the rate,

𝑟 (𝑡) =
{
𝑟i, 𝑡 < 𝑡s

𝑟 𝑓 , 𝑡 > 𝑡s
(3.11)

and computed the likelihood of the data as a function of the step time 𝑡s. We report
the mean and standard deviation of the step time over its likelihood in Figure 3.5–
Figure 3.20. Animal C6 was dropped from this “sudden step” group, because the
uncertainty in the step time was too large (∼900 s).
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3.5.12 Efficiency of exploration
The goal of this analysis is to measure how effectively the animal surveys all the
end nodes of the maze. The specific question is: In a string of 𝑛 end nodes that the
animal samples, how many of these are distinct? On average how does the number
of distinct nodes 𝑑 increase with 𝑛? This was calculated as follows:

We restricted the animal’s node trajectory (𝑠𝑖) to clips of exploration mode, excluding
the direct paths to the water port or the exit. All subsequent steps were applied to
these clips, then averaged over clips. Within each clip, we marked the sequence of
end nodes (𝑒𝑖). We slid a window of size 𝑛 across this sequence and counted the
number of distinct nodes 𝑑 in each window. Then we averaged 𝑑 over all windows in
all clips. Then we repeated that for a wide range of 𝑛. The resulting 𝑑 (𝑛) is plotted
in the figures reporting new nodes vs nodes visited (Figure 3.8A,B and Figure 3.9C).

For a summary analysis, we fitted the curves of 𝑑 (𝑛) with a 2-parameter function:

𝑑 (𝑛) ≈ 64

(
1 − 1

1 + 𝑧+𝑏𝑧3

1+𝑏

)
(3.12)

where

𝑧 = 𝑛 /𝑎 . (3.13)

The parameter 𝑎 is the number of visits 𝑛 required to survey half of the end nodes,
whereas 𝑏 reflects a relative acceleration in discovering the last few end nodes. This
function was found by trial and error and produces absurdly good fits to the data
(Figure 3.8–Figure 3.22). The values quoted in the text for efficiency of exploration
are 𝐸 = 32 /𝑎 (Equation 3.1).

The value of 𝑏 was generally small (~0.1) with no difference between rewarded and
unrewarded animals. It declined slightly over the night (Figure 3.8–Figure 3.22B),
along with the decline in 𝑎 (Figure 3.8C).

3.5.13 Biased random walk
For the analysis of Figure 3.9, we considered only the parts of the trajectory during
‘exploration’ mode. Then we parsed every step between two nodes in terms of the
type of action it represents. Note that every link between nodes in the maze is either a
‘left branch’ or a ‘right branch,’ depending on its relationship to the parent T-junction.
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Therefore there are 4 kinds of action:

• 𝑎 = 0: ‘in left,’ take a left branch into the maze
• 𝑎 = 1: ‘in right,’ take a right branch into the maze
• 𝑎 = 2: ‘out left,’ take a left branch out of the maze
• 𝑎 = 3: ‘out right,’ take a right branch out of the maze

At any given node, some actions are not available, for example from an end node one
can only take one of the ‘out’ actions.

To compute the turning biases, we considered every T-junction along the trajectory
and correlated the action 𝑎0 that led into that node with the subsequent action 𝑎1. By
tallying the action pairs (𝑎0, 𝑎1), we computed the conditional probabilities 𝑝(𝑎1 |𝑎0).
Then the 4 biases are defined as

𝑃SF =
𝑝 (0 |0 ) + 𝑝 (0 |1 ) + 𝑝 (1 |0 ) + 𝑝 (1 |1 )

𝑝 (0 |0 ) + 𝑝 (0 |1 ) + 𝑝 (1 |0 ) + 𝑝 (1 |1 ) + 𝑝 (2 |0 ) + 𝑝 (3 |1 ) (3.14)

𝑃SA =
𝑝 (0 |1 ) + 𝑝 (1 |0 )

𝑝 (0 |0 ) + 𝑝 (0 |1 ) + 𝑝 (1 |0 ) + 𝑝 (1 |1 ) (3.15)

𝑃BF =
𝑝 (0 |3 ) + 𝑝 (1 |2 ) + 𝑝 (2 |2 ) + 𝑝 (2 |3 ) + 𝑝 (3 |2 ) + 𝑝 (3 |3 )

𝑝 (0 |3 ) + 𝑝 (1 |2 ) + 𝑝 (2 |2 ) + 𝑝 (2 |3 ) + 𝑝 (3 |2 ) + 𝑝 (3 |3 ) + 𝑝 (0 |2 ) + 𝑝 (1 |3 )
(3.16)

𝑃BS =
𝑝 (2 |2 ) + 𝑝 (2 |3 ) + 𝑝 (3 |2 ) + 𝑝 (3 |3 )

𝑝 (0 |3 ) + 𝑝 (1 |2 ) + 𝑝 (2 |2 ) + 𝑝 (2 |3 ) + 𝑝 (3 |2 ) + 𝑝 (3 |3 ) . (3.17)

For the simulations of random agents (Figure 3.8, Figure 3.9), we used trajectories
long enough so the uncertainty in the resulting curves was smaller than the line
width.

3.5.14 Models of decisions during exploration
The general approach is to develop a model that assigns probabilities to the animal’s
next action, namely which node it will move to next, based on its recent history of
actions. All the analysis was restricted to the animal’s ‘exploration’ mode and to the
63 nodes in the maze that are T-junctions. During the ‘drink’ and ‘leave’ modes, the
animal’s next action is predictable. Similarly, when it finds itself at one of the 64 end
nodes, it only has one action available.

For every mouse trajectory, we split the data into 5 segments, trained the model on
80% of the data, and tested it on 20%, averaging the resulting cross-entropy over the 5
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possible splits. Each segment was in turn composed of parts of the trajectory sampled
evenly throughout the 7-h experiment, so as to average over the small changes in
the course of the night. The model was evaluated by the cross-entropy between the
predictions and the animal’s true actions. If one had an optimal model of behavior,
the result would reveal the animal’s true source entropy.

Fixed depth Markov chain

To fit a model with fixed history depth 𝑘 to a measured node sequence (𝑠𝑡), we
evaluated all the substrings in that sequence of length (𝑘 + 1). At any given time 𝑡,
the 𝑘-string h𝑡 = (𝑠𝑡−𝑘+1, . . . , 𝑠𝑡) identifies the history of the animal’s 𝑘 most recent
locations. The current state 𝑠𝑡 is one of 63 T-junctions. Each state is preceded by
one of 3 possible states. So the number of history strings is 63 · 3𝑘−1. The 2-string
(𝑠𝑡 , 𝑠𝑡+1) identifies the next action 𝑎𝑡+1, which can be ‘in left,’ ‘in right,’ or ‘out,’
corresponding to the 3 branches of the T junction. Tallying the history strings with
the resulting actions leads to a contingency table of size 63 · 3𝑘−1 × 3, containing

𝑛(h, 𝑎) = number of times history h leads to action 𝑎. (3.18)

Based on these sample counts, we estimated the probability of each action 𝑎

conditional on the history h as

𝑝 (𝑎 |h ) = 𝑛 (h, 𝑎) + 1∑
𝑎′
𝑛 (h, 𝑎′) + 3

. (3.19)

This amounts to additive smoothing with a pseudocount of 1, also known as “Laplace
smoothing.” These conditional probabilities were then used in the testing phase
to predict the action at time 𝑡 based on the preceding history h𝑡 . The match to the
actually observed actions 𝑎𝑡 was measured by the cross-entropy

𝐻 =
〈
−log2𝑝 (𝑎𝑡 |h𝑡 )

〉
𝑡
. (3.20)

Variable depth Markov chain

As one pushes to longer histories, i.e. larger 𝑘 , the analysis quickly becomes
data-limited, because the number of possible histories grows exponentially with 𝑘 .
Soon one finds that the counts for each history-action combination drop to where one
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can no longer estimate probabilities correctly. In an attempt to offset this problem,
we pruned the history tree such that each surviving branch had more than some
minimal number of counts in the training data. As expected, this model is less
prone to over-fitting and degrades more gently as one extends to longer histories
(Figure 3.11–Figure 3.24A). The lowest cross-entropy was obtained with an average
history length of ~4.0 but including some paths of up to length 6. Of all the algorithms
we tested, this produced the lowest cross-entropies, although the gains relative to the
fixed-depth model were modest (Figure 3.11–Figure 3.24C).

Pooling across symmetric nodes in the maze

Another attempt to increase the counts for each history involved pooling counts over
multiple T-junctions in the maze that are closely related by symmetry. For example,
all the T-junctions at the same level of the binary tree look locally similar, in that
they all have corridors of identical length leading from the junction. If one supposes
that the animal acts the same way at each of those junctions, one would be justified
in pooling across these nodes, leading to a better estimate of the action probabilities,
and perhaps less over-fitting. This particular procedure was unsuccessful, in that it
produced higher cross-entropy than without pooling.

However, one may want to distinguish two types of junctions within a given level:
L-nodes are reached by a left branch from their parent junction one level lower in the
tree, R-nodes by a right branch. For example, in Figure 3.3–Figure 3.16, node 1 is
L-type and node 2 is R-type. When we pooled histories over all the L-nodes at a
given level and separately over all the R-nodes the cross-entropy indeed dropped,
by about 5% on average. This pooling greatly reduced the amount of over-fitting
(Figure 3.11–Figure 3.24B), which allowed the use of longer histories, which in turn
improved the predictions on test data. The benefit of distinguishing L- and R-nodes
probably relates to the animal’s tendency to alternate left and right turns.

All the Markov model results we report are obtained using pooling over L-nodes and
R-nodes at each maze level.

3.5.15 Data and code availability
All data and code needed to reproduce the figures and quoted results are avail-
able in this public repository: https://github.com/markusmeister/Rosenberg-2021-
Repository.

https://github.com/markusmeister/Rosenberg-2021-Repository
https://github.com/markusmeister/Rosenberg-2021-Repository
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3.6 Figure supplements
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Figure 3.12: Occupancy of the maze.
Fraction of time spent in the maze. Mice could move freely between the home cage
and the maze. For each animal (vertical), the fraction of time in the maze (color
scale) is plotted as a function of time since start of the experiment. Time bins are
500 s. Note that mouse D6 hardly entered the maze; it never progressed beyond the
first junction. This animal was excluded from all subsequent analysis steps.

Figure 3.13: Fraction of time in maze by group.
Average fraction of time spent in the maze by group. This shows the average
fraction of time in the maze as Mean ± SD over the population of 10 rewarded and 9
unrewarded animals. Right: expanded axis for early times. The tunnel to the maze
opens at time 0. Rewarded and unrewarded animals used the maze in remarkably
similar ways. Exploration of the maze began around 250 s after tunnel opening.
Within the next 250 s the maze occupancy rose quickly to ~70%, then declined
gradually over 7 h to ~30%.
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Exit from the mazeEntry into the mazeA B

Figure 3.14: Transitions between cage and maze.
Rates of transition between cage and maze. (A) The instantaneous probability per
unit time 𝑟m (𝑡) of entering the maze after having spent time 𝑡 in the cage. Note, this
rate is highest immediately upon entering the cage, then declines by a large factor.
(B) The instantaneous probability per unit time 𝑟c (𝑡) of exiting the maze after having
spent time 𝑡 in the maze.

Figure 3.15: Speed of locomotion.
The speed of locomotion in the maze is approximately constant. Left: Speed plotted
as Mean ± SD over the population of rewarded and unrewarded animals. Right:
expanded axis for early times. To assess the speed of locomotion we divided the
maze into square cells as wide as the corridors and tracked how the nose of the
animal moved through those cells. Then the speed was measured in number of cells
traversed per unit time. Note that the speed is very similar across animals, ~1.56
cells/s = 5.94 cm/s on average. It rises quickly over the first 50 s in the maze, then
varies only little over the 7 h of the experiment.
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Figure 3.16: Definition of node trajectories.
Definition of node trajectories. A numbering scheme for all 127 nodes of the maze.
Green: a direct path from the entrance to the water port (“water run”) with the node
sequence (𝑠𝑖) = (0, 2, 6, 13, 28, 57, 116), involving 6 decisions. Magenta: a direct
path from end node 83 to the exit (“home run”). Orange: a path from end node 67 to
the exit that includes a reversal. Here the home run starts only from node 8, namely
(8, 3, 1, 0).
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Figure 3.17: Navigation before and after maze rotation for each animal.
Navigation before and after maze rotation. Cumulative number of rewards, visits to
the water port, the image of the water port, and the control nodes, plotted vs time
before and after the maze rotation. Display as in Figure 3.4C, but split for each of 4
animals.
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Figure 3.18: Speed before and after maze rotation.
Speed of the mouse vs time in the maze. Average over 4 animals. Time is plotted
relative to the maze rotation.
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Figure 3.19: Long direct paths for all animals.
Sudden changes in behavior for all rewarded animals. For each of the 10 water-
deprived animals this shows the cumulative rate of rewards, of long direct paths
(>6 steps) to the water port, and of similar paths to 3 control nodes. Display as in
Figure 3.5; panels B-D of that figure are included again here. Dots are data, lines are
fits using a 4-parameter sigmoid function for the rate of occurrence of the events.

Animal Time of step (s) Ratio of rates after/before

B1 2580± 110 36.4
B2 2350± 220 30.3
C1 2070± 310 5.49
C3 1280± 80 1640
C7 1680± 280 16.9

1

Figure 3.20: Statistics of sudden changes in behavior.
Statistics of sudden changes in behavior. Summary of the steps in the rate of long
paths to water detected in 5 of the 10 rewarded animals. Mean and standard deviation
of the step time are derived from maximum likelihood fits of a step model to the data.
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Figure 3.21: Three modes of behavior.
Three modes of behavior. (A) The fraction of time mice spent in each of the three
modes while in the maze. Mean ± SD for 10 rewarded and 9 unrewarded animals.
(B) Probability of transitioning from the mode on the left to the mode at the top.
Transitions from ‘leave’ represent what the animal does at the start of the next bout
into the maze.
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Figure 3.22: Efficiency of exploration.
Functional fits to measure exploration efficiency. (A) Fitting Equation 3.12 to the
data from the mouse’s exploration. Animals with best fit (top) and worst fit (bottom).
The relative uncertainty in the two fit parameters 𝑎 and 𝑏 was only 0.0038 ± 0.0020
(mean ± SD across animals). (B) The fit parameter 𝑏 for all animals, comparing the
first to the second half of the night. (C) The efficiency 𝐸 (Equation 3.1) predicted
from two models of the mouse’s trajectory: The 4-bias random walk (Figure 3.11D)
and the optimal Markov chain (Figure 3.11C).
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Figure 3.23: Bias statistics.
Statistics of the four turning biases. Mean and standard deviation of the 4 biases of
Figure 3.9A-B across animals in the rewarded and unrewarded groups.
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C
Markov chain training vs testing Cross-entropy

A Selective pooling of historiesIndividual histories B

Figure 3.24: Markov model fits.
Fitting Markov models of behavior. (A) Results of fitting the node sequence of
a single animal (C3) with Markov models having a fixed depth (‘fix’) or variable
depth (‘var’). The cross-entropy of the model’s prediction is plotted as a function of
the average depth of history. In both cases we compare the results obtained on the
training data (‘train’) vs those on separate testing data (‘test’). Note that at larger
depth the ‘test’ and ‘train’ estimates diverge, a sign of over-fitting the limited data
available. (B) As in A but to combat the data limitation we pooled the counts obtained
at all nodes that were equivalent under the symmetry of the maze (see Methods).
Note, considerably less divergence between ‘train’ and ‘test’ results, and a slightly
lower cross-entropy during ‘test’ than in A. (C) The minimal cross-entropy (circles
in B) produced by variable vs fixed history models for each of the 19 animals. Note,
the variable history model always produces a better fit to the behavior.
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Endotaxis: A Universal Algorithm for Mapping, Goal-Learning, and Navigation
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4.1 Abstract
An animal entering a new environment typically faces three challenges: explore the
space for resources, memorize their locations, and navigate towards those targets
as needed. Experimental work on exploration, mapping, and navigation has mostly
focused on simple environments—such as an open arena, a pond [168], or a desert
[174]—and much has been learned about neural signals in diverse brain areas
under these conditions [53, 227]. However, many natural environments are highly
constrained, such as a system of burrows or of paths through the underbrush. More
generally, many cognitive tasks are equally constrained, allowing only a small set of
actions at any given stage in the process. Here we propose an algorithm that learns
the structure of an arbitrary environment, discovers useful targets during exploration,
and navigates back to those targets by the shortest path. It makes use of a behavioral
module common to all motile animals, namely the ability to follow an odor to its
source [14]. We show how the brain can learn to generate internal “virtual odors”
that guide the animal to any location of interest. This endotaxis algorithm can be
implemented with a simple 3-layer neural circuit using only biologically realistic
structures and learning rules. Several neural components of this scheme are found in
brains from insects to humans. Nature may have evolved a general mechanism for
search and navigation on the ancient backbone of chemotaxis.

4.2 Introduction
Efficient navigation requires knowing the structure of the environment: which
locations are connected to which others [250]. One would like to understand how the
brain acquires that knowledge, what neural representation it adopts for the resulting
map, how it tags significant locations in that map, and how that knowledge gets
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read out for decision-making during navigation. Here we propose a mechanism that
solves all these problems and operates reliably in diverse and complex environments.

One algorithm for finding a valuable resource is common to all animals: chemotaxis.
Every motile species has a way to track odors through the environment, either to
find the source of the odor or to avoid it [14]. This ability is central to finding food,
connecting with a mate, and avoiding predators. It is believed that brains originally
evolved to organize the motor response in pursuit of chemical stimuli. Indeed some
of the oldest regions of the mammalian brain, including the hippocampus, seem
organized around an axis that processes smells [2, 115].

The specifics of chemotaxis, namely the methods for finding an odor and tracking it,
vary by species, but the toolkit always includes a random trial-and-error scheme: Try
various actions that you have available, then settle on the one that makes the odor
stronger [14]. For example, a rodent will weave its head side-to-side, sampling the
local odor gradient, then move in the direction where the smell is stronger. Worms
and maggots follow the same strategy. Dogs track a ground-borne odor trail by
casting across it side-to-side. Flying insects perform similar casting flights. Bacteria
randomly change direction every now and then, and continue straight as long as the
odor improves [23]. We propose that this universal behavioral module for chemotaxis
can be harnessed to solve general problems of search and navigation in a complex
environment.

For concreteness, consider a mouse exploring a labyrinth of tunnels (Fig 4.1A). The
maze may contain a source of food that emits an odor (Fig 4.1A top). That odor
will be strongest at the source and decline with distance along the tunnels of the
maze. The mouse can navigate to the food location by simply following the odor
gradient uphill. Suppose that the mouse discovers some other interesting locations
that do not emit a smell, like a source of water, or the exit from the labyrinth (Fig
4.1A). It would be convenient if the mouse could tag such a location with an odorous
material, so it may be found easily on future occasions. Ideally the mouse would
carry with it multiple such odor tags, so it can mark different targets each with its
specific recognizable odor (Fig 4.1A mid and bottom).

Here we show that such tagging does not need to be physical. Instead we propose a
mechanism by which the mouse’s brain may compute a “virtual odor” signal that
declines with distance from a chosen target. That neural signal can be made available
to the chemotaxis module as though it were a real odor, enabling navigation up the
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gradient towards the target. Because this goal signal is computed in the brain rather
than sensed externally, we call this hypothetical process endotaxis.

4.3 A circuit to implement endotaxis
In Figure 4.1B, we present a neural circuit model that implements three goals:
mapping the connectivity of the environment; tagging of goal locations with a virtual
odor; and navigation towards those goals. The model includes four types of neurons:
feature cells, point cells, map cells, and goal cells.

Feature cells: These cells fire when the animal encounters an interesting feature that
may form a target for future navigation. Each feature cell is selective for a specific
kind of resource, for example water or food, by virtue of sensory pathways that
respond to those stimuli.

Point cells: This layer of cells represents the animal’s location.1 Each neuron in this
population has a small response field within the environment. The neuron fires when
the animal enters that response field. We assume that these point cells exist from the
outset as soon as the animal enters the environment. Each cell’s response field is
defined by some conjunction of external and internal sensory signals at that location.

Map cells: This layer of neurons learns the structure of the environment, namely
how the various locations are connected in space. The map cells get excitatory input
from point cells with low convergence: Each map cell should collect input from
only one or a few point cells. These input synapses are static. The map cells also
excite each other with all-to-all connections. These recurrent synapses are modifiable
according to rules of Hebbian plasticity and, after learning, represent the topology of
the environment.

Goal cells: These neurons mark the locations of special resources in the map of the
environment. A goal cell for a specific feature receives excitatory input from the
corresponding feature cell. It also receives Hebbian excitatory synapses from map
cells. Those synapses are strengthened when the presynaptic map cell is active at the
same time as the feature cell. In addition, this plasticity may be gated by a reward
signal associated with the value of the discovered resource.

Each of the goal cells carries a virtual odor signal for its assigned feature. That signal
increases systematically as the animal moves closer to the target feature. A mode

1We avoid the term ‘place cell’ here because (1) that term has a technical meaning in the rodent
hippocampus, whereas the arguments here extend to species that do not have a hippocampus; (2) all
the cells in this network have a place field, but it is smallest for the point cells.
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switch selects one among many possible virtual odors (or real odors) to be routed to
the chemotaxis module for odor tracking.2 The animal then pursues its chemotaxis
search strategy to maximize that odor, which leads it to the selected tagged feature.

4.3.1 Why does the circuit work?
The key insight is that the output of the goal cell declines systematically with
the distance of the animal from that target. This relationship holds even if the
environment is a complex graph with constrained connectivity. Here we explain how
this comes about, with mathematical details in the supplement.

As the animal explores a new environment, when it moves from one location to an
adjacent one, those two point cells briefly fire together. That leads to a Hebbian
strengthening of the excitatory synapses between the two corresponding map cells
(Fig 4.2A-B). In this way the recurrent network of map cells learns the connectivity
of the graph that describes the environment. To a first approximation, the matrix of
synaptic connections among the map cells will converge to the correlation matrix of
their inputs [60, 87], which in turn reflects the adjacency matrix of the graph (Eqn
4.21). Now the brain can use this adjacency information to find the shortest path to a
target.

After this map learning, the output of the map network is a hump of activity, centered
on the current location 𝑥 of the animal and declining with distance along the various
paths in the graph (Fig 4.2C). If the animal moves to a different location 𝑦, the map
output is another hump of activity, now centered on 𝑦 (Fig 4.2D). The overlap of
the two hump-shaped profiles will be large if nodes 𝑥 and 𝑦 are close on the graph,
and small if they are distant. Fundamentally the endotaxis network computes that
overlap. How is it done?

Suppose the animal visits 𝑦 and finds water there. Then the profile of map activity
𝑣𝑖 (𝑦) gets stored in the synapses 𝐺𝑔𝑖 onto the goal cell 𝑔 that responds to water (Fig
4.2D, Eqn 4.25). When the animal subsequently moves to a different location 𝑥,
the goal cell 𝑔 receives the current map output 𝑣𝑖 (𝑥) filtered through the previously
stored synaptic template 𝑣𝑖 (𝑦) (Fig 4.2E). This is the desired measure of overlap
(Eqn 4.26), and one can show mathematically that it declines exponentially with the
shortest graph-distance between 𝑥 and 𝑦 (Eqn 4.27).

2That mode switch is controlled by the murinculus: a tiny mouse inside the mouse that tells the
mouse what to do. We do not claim to know how that works.
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Figure 4.1: A mechanism for endotaxis.
(A) A constrained environment of nodes linked by straight corridors, with special
locations offering food, water, and the exit. Top: A real odor emitted by the food
source decreases with distance (shading). Middle: A virtual odor tagged to the water
source. Bottom: A virtual odor tagged to the exit. (B) A neural circuit to implement
endotaxis. Open circles: four populations of neurons that represent “feature,” “point,”
“map,” and “goal.” Arrows: signal flow. Solid circles: synapses. Point cells have
small receptive fields localized in the environment and excite map cells. Map cells
excite each other (green synapses) and also excite goal cells (blue synapses). Feature
cells signal the presence of a resource, e.g. cheese, water, or the exit. Map synapses
and goal synapses are modified by Hebbian plasticity. Learning at goal synapses
(blue) is gated by a reward signal (flash symbol). A “mode” switch selects among
various goal signals depending on the animal’s need. They may be virtual odors
(water, exit) or real odors (cheese). The resulting signal gets fed to the chemotaxis
module for gradient ascent. Mathematical symbols used in the text: 𝑢𝑖 is the output
of a point cell at location 𝑖, 𝑣𝑖 is the output of the corresponding map cell, M is the
matrix of synaptic weights among map cells, G are the synaptic weights from the
map cells onto goal cells, and 𝑟𝑔 is the output of goal cell 𝑔.

4.4 Performance of the endotaxis algorithm
Some important features of endotaxis can already be appreciated at this level of
detail. First, the structure of the environment is acquired separately from the location
of resources. The graph that connects different points in the environment is learned
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Figure 4.2: The phases of endotaxis during exploration, goal-tagging, and
navigation.
A portion of the circuit in Figure 4.1 is shown, including a single goal cell that
responds to the water feature. Bottom shows a graph of the environment, with
the agent’s current location shaded in orange. Each node has a point cell that
reports the presence of the agent to a corresponding map cell. Map cells are
recurrently connected (green) and feed convergent signals onto the goal cell. (A)
Initially the recurrent synapses are weak. (B) During exploration the agent moves
between adjacent locations on the graph, and that strengthens the connection between
their corresponding map cells. (C) After exploration the map synapses reflect the
connectivity of the graph. Now the map cells have an extended profile of activity,
centered on the agent’s current location 𝑥 and decreasing from there with distance on
the graph. (D) When the agent reaches the water source 𝑦 the goal cell gets activated
by the sensation of water. A reward signal (pink) potentiates the synapses from map
cells in proportion to their current activity. Thus the state of the map at the water
location gets stored in the goal synapses. This event represents tagging of the water
location. (E) During navigation, as the agent visits different nodes, the map state
gets filtered through the goal synapses to excite the goal cell. This produces a signal
in the goal cell that declines with the agent’s distance from the target.

by the synapses in the map network. By contrast, the location of special goals within
that map is learned by the synapses onto the goal cells. The animal can explore and
learn the environment regardless of the presence of threats or resources. Once a
resource is found, its location can be tagged immediately within the existing map
structure. If the distribution of resources changes, the knowledge of the connectivity
map remains unaffected. Second, the endotaxis algorithm is “always on.” There is
no separation of learning and recall into different phases. Both the map network and
the goal network get updated continuously based on the animal’s trajectory through
the environment, and the goal signals are always available for directed navigation via
gradient ascent.
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Fig. 2: Gridworld Example (V3)
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Figure 4.3: The map and the targets are learned independently.
(A) Left: an agent explores a simple Gridworld with 3 salient goal locations following
the red trajectory. Space is discretized into square tiles, each tile represented by
one point cell. Circles with crosses represent obstacles, namely tiles that are not
reachable. Right: graph of this environment, where each tile becomes a node, and
edges represent traversable connections between tiles. (B) The response fields of
three goal neurons for home (top), water (middle), and bug (bottom) at the 5 instants
during the learning process (i-v). Red edges connect previously visited nodes. The
response (log color scale) is plotted at each location where the agent could be placed.
The agent starts random walking from the entrance (i) and gradually discovers the
other two goal locations (water at time iii, bug at time iv). Upon discovery of a goal
location, the corresponding goal cell’s signal is immediately useful in all previously
visited locations (iii, iv) as well as nodes that are ≤ 2 steps away. Any new locations
visited subsequently and nodes ≤ 2 steps away are also recruited into the goal cell’s
response field (v).

4.4.1 Simultaneous acquisition of map and targets during exploration
To illustrate these functions, and to explore capabilities that are less obvious from
an analytical inspection, we simulated agents navigating by the endotaxis algorithm
(Fig 4.1B) through a range of environments (Figs 4.3-4.4) that contained one or
more desirable targets. In each case, we allowed the agent to explore by executing
a random walk on the graph of the environment. Once the agent had covered the
entire graph and discovered the targets, we tested its navigation ability. We placed
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the agent at an arbitrary node on the graph and let it navigate towards each of the
targets following the corresponding virtual odor signal. Then we counted the number
of steps the agent required, and compared that to the shortest possible path to the
target. During this navigation the agent used a trial-and-error policy: it sampled the
virtual odor at each neighboring node and stepped to the node with the highest value.

In simulating the circuit of Figure 4.1B, we assumed that there exist point cells
that fire when the agent is at a specific location, owing to a match of their sensory
receptive fields with features in the environment. The preferred locations of these
point cells define the nodes of the graph that the agent will learn. Map cells transform
their synaptic inputs with a nonlinear response function. At the outset, the agent has
no knowledge about the topology of the environment or the locations of targets, so
both the map synapses and the goal synapses start out with zero synaptic strengths.
During exploration, the map synapses get updated based on the simultaneous firing
of point cells at neighboring locations. We used a standard formulation of Hebbian
learning, called Oja’s rule. Similarly the synapses onto goal cells get updated
when the agent reaches a target, based on the presynaptic map cell signal and the
postsynaptic input from feature cells. Map cells and goal cells were allowed to learn
at different rates. To account for the finite resolution of biological neurons, the
goal cell output was corrupted by an additive noise signal. For detailed methods of
simulation, see Section 4.7.

A simple Gridworld environment (Fig 4.3) serves to observe the dynamics of learning
in detail. There are three locations of interest: the entrance to the environment,
experienced at the very start of exploration; a water source; and a food item. When
the agent first enters the novel space, a feature neuron that responds to the entrance
excites a goal cell, which leads to the potentiation of synapses onto that neuron.
Effectively that tags the entrance, and from now on that goal cell encodes a virtual
“entrance odor” that declines with distance from the entrance. With every step the
agent takes, the map network gets updated, and the range of the entrance odor spreads
further (Fig 4.3B top). At all times the agent could decide to follow this virtual odor
uphill to the entrance.

The water source starts out invisible from anywhere except its special location (Fig
4.3B mid i-ii). However, as soon as the agent reaches the water, the water goal cell
gets integrated in the circuit through the potentiation of synapses from map cells.
Because the map network is already established along the path that the agent took,
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Figure 1. The maze environment. Top (A) and side (B) views of a home cage, connected via an entry
tunnel to an enclosed labyrinth. The animal’s actions in the maze are recorded via video from below
using infrared illumination. (C) The maze is structured as a binary tree with 63 branch points (in levels
numbered 0,...,5) and 64 end nodes. One end node has a water port that dispenses a drop when it gets
poked. Blue line in A and C: path from maze entry to water port. (D) A mouse considering the options
at the maze’s central intersection. Colored keypoints are tracked by DeepLabCut: nose, mid body, tail
base, 4 feet.

Figure 1–figure supplement 1. Occupancy of the maze.
Figure 1–figure supplement 2. Fraction of time in maze by group.

Figure 1–figure supplement 3. Transitions between cage and maze.
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Figure 4.4: Endotaxis can operate in environments with diverse topologies.
(A) Three tasks and their corresponding graph representations: i) Gridworld of Fig
4.3 with 3 goal nodes (home, water, and food). ii) A binary tree labyrinth similar to
that used in mouse navigation experiments [204], with 2 goals (home and water). iii)
Tower of Hanoi game, with 2 goals (the configurations of disks that solve the game).
(B) The virtual odors after extensive exploration. For each goal neuron the response
at every node is plotted against the shortest graph distance from the node to the goal.
(C) Navigation by endotaxis: For every starting node in the environment this plots
the number of steps to the goal against the shortest distance. (D) Example goal node
from C comparing against the analytically computed average number of steps from
random walker for all starting locations (grey lines).

that immediately creates a virtual “water odor” that spreads through the environment
and declines with distance from the water location (Fig 4.3B mid iii).

As the agent explores the environment further, the virtual odors spread accordingly
to the new locations visited (Fig 4.3B i-iv). After extensive exploration, the map
and goal networks reach a steady state. Now the virtual odors are available at every
point in the environment, and they decline monotonically with the shortest-path
distance to the respective goal location (Fig 4.3B v). As one might expect, an agent
navigating uphill on this virtual odor always reaches the goal location, and does so
by the shortest possible path (Fig 4.4B-C i).

We performed a similar simulation for a labyrinth used in a recent study of mouse
navigation [204]. The topology of the maze was a binary tree with a single entrance,
multiple levels of T-junctions, and many end nodes (Fig 4.4A ii). A single source
of water was located at one of the end nodes. In these experiments, mice learned
the shortest path to the water source after visiting it ∼10 times; they also performed
error-free paths back to entrance on the first attempt [204]. In simulating the endotaxis
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network, we dedicated one goal cell to the entrance, and another to the water. The
agent again explored the labyrinth extensively with a random walk, during which it
also discovered the water location. Then we challenged the agent to navigate to either
of the two targets from an arbitrary location on the graph, by following the respective
virtual odor (Fig 4.4B ii). The agent indeed found the shortest route from every node
(Fig 4.4C ii). Note incidentally that the goal signal is not perfectly monotonic with
distance (Fig 4.4B ii), nonetheless it informs the correct turning decision at every
node.

Endotaxis can learn to solve cognitive tasks beyond spatial navigation. For instance,
the game “Towers of Hanoi” represents a more complex environment (Fig 4.4A
iii). Disks of different sizes are stacked on three pegs, with the constraint that no
disk can rest on top a smaller one. The game is solved by rearranging the pile of
disks from one peg to another. In any state of the game, there are either 2 or 3
possible actions, and they form an interesting graph with many loops (Fig 4.4A
iii). Again the simulated agent explored this graph by random walking. Once it
encountered a solution by chance, that state was tagged with a virtual odor. After
enough exploration the virtual odor signal was available from every possible game
state, and the agent could solve the game rapidly from any arbitrary location. Note
that some of these navigation paths were a few steps longer than absolutely necessary
(Fig 4.4C iii), revealing the limits of resolution of the goal signal at large distances
(Fig 4.4B iii).

4.5 Adaptation to change in the environment
An attractive feature of the endotaxis algorithm is that it separates learning the map
from learning the target locations. In many real-world environments, the topology
of the map (how are locations connected?) is probably more stable than the targets
(which locations are interesting?). Separating the two allows the agent to adjust to
changes on both fronts using different rules and time-scales. We illustrate an example
of each.

4.5.1 Change in connectivity
Suppose that the connectivity of the environment changes. For example, a shortcut
appears between two locations that used to be separated, or a blockage separates
two previously adjacent locations (Fig 4.5A i-ii). This alters the correlation in firing
among the point cells during the agent’s explorations, and over time that will reflect
in the synapses of the map network. How will endotaxis adapt to such changes?
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Fig. 4: Adaptation (Nonlinear)
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Figure 4.5: Endotaxis adapts quickly to changes in the environment or the target
locations.
(A) A ring environment modified by sudden appearance of a blockage (i), a shortcut
(ii), an additional goal target (iii), or two targets with different reward size (iv).
Graphs shown before and after modification. Shaded nodes are target locations.
Labels identify nodes on the graph. (B i-iii) Response profile of the goal neuron
after sufficient exploration, shown just before modification (left, after 200 random
steps) and after adaptation to the change (right, after an additional 200 steps). Color
of nodes indicates the target that the agent will reach by following the virtual odor
starting from that node. Note, the virtual odor peaks at either one or two targets
depending on the environment, with a higher amplitude at the stronger target. (B iv)
Varying 𝛼 in Oja’s Rule for map learning adjusts the tradeoff between distance and
reward. With a large 𝛼 the stronger target is favored from more starting nodes. (C)
Fraction of errors in endotaxis from all possible starting nodes, as a function of time
before and after the modification (dotted line).

To explore these adjustments, we considered navigation on a ring-shaped maze with
a single goal location (Fig 4.5A i). Note that the ring is the simplest graph that
offers two routes to a target, and we will evaluate whether the algorithm finds the
shorter one. A simulated agent explored the ring by stepping among locations in a
random walk, and built the map cell network from that experience. After a period of
∼100 steps, navigation by endotaxis was perfect, in that the agent chose the shorter
route to the goal from every start node (Fig 4.5B-C i). When we broke the ring by
removing one link, endotaxis failed from some start nodes because it steered the
agent towards the blocked path. However, after ∼200 steps of additional exploration
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navigation returned to perfect performance again (Fig 4.5C i). Over this period the
knowledge of the former link was erased from the map network (Fig 4.5B i), because
the corresponding map synapses weakened while the link was not used.

When we introduced a new shortcut between previously separated locations (Fig
4.5A ii), a similar change took place. For a brief period, endotaxis was suboptimal,
because the agent sometimes took the long route even though a shorter one was
available (Fig 4.5C ii). However, that perturbation got incorporated into the map
much more quickly than the broken link, after just a few tens of steps of exploration
(compare Figs 4.5C i-ii). One can understand the asymmetry as follows: As the
agent explores the environment, a newly available link is confirmed with certainty
the first time it gets traveled. By contrast, the loss of a link remains uncertain until
the agent has not taken that route many times.

4.5.2 Appearance of new targets
Suppose the agent has discovered one location with a water resource. Some time
later water also appears at a second location (Fig 4.5A iii). When the agent discovers
that, the same water goal cell will get activated and therefore receive a potentiation
of synapses active at that second location. Now the input network to that goal
cell contains the sum of two templates, corresponding to the map outputs from the
two target locations. As before, the current map output gets filtered through these
synaptic weights to create the virtual odor. One might worry that this goal signal
steers the agent to a location half-way between the two targets. Instead, simulations
on the ring showed that the virtual odor peaks at both targets, and endotaxis takes the
agent reliably to the nearest one (Fig 4.5B iii).

4.5.3 Choice between multiple targets
Suppose one of the targets offering the same resource is more valuable than the other,
for example because it gives a larger reward (Fig 4.5A iv). In the endotaxis model
(Fig 4.1B), the larger reward causes higher activity of the feature cell that responds
to this resource, and thus stronger potentiation of the synapses onto the associated
goal cell (Eqn 4.19). Thus the input template of the goal cell becomes a weighted
sum of the map outputs from the two target locations, with greater weight for the
location with higher reward. In simulations, the virtual odor still showed two peaks,
but the stronger target had a greater region of attraction (Fig 4.5B iv left); for some
starting locations the agent chose the longer route in favor of the larger reward, a
sensible behavior.
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What determines the trade-off between the longer distance and the greater reward?
In the endotaxis model (Fig 4.1B) this is set by 𝛼M, one of the two parameters of
the synaptic learning rule in the map network (Eqns 4.18 ,4.22, 4.27). A small 𝛼M

raises the cost of any additional step traveled and thus diminishes the importance
of reward differences (Fig 4.5B iv right). By contrast, a large 𝛼M favors the larger
reward regardless of distance traveled.

In summary, endotaxis adapts readily to changes in the environment or in the
availability of rewards. Furthermore, it implements a rational choice between
multiple targets of the same kind, using a variable weighting of reward versus
distance. None of these features required any custom tuning: They all follow directly
from the basic formulation in Figure 4.1B.

4.6 Discussion
4.6.1 Summary of claims
We have presented a neural mechanism that can support learning, navigation, and
problem solving in complex and changing environments. It is based on chemotaxis,
namely the ability to follow an odor signal to its source, which is shared universally
by most or all motile animals. The algorithm, called endotaxis, is formulated as a
neural network that creates an internal “virtual odor” which the animal can follow
to reach any chosen target location (Fig 4.1). When the agent begins to explore
the environment, the network learns both the structure of the space, namely how
various points are connected, and the location of valuable resources (Fig 4.3). After
sufficient exploration, the agent can then navigate back to those target locations from
any point in the environment (Fig 4.4). The algorithm is always on and it adapts
flexibly to changes in the structure of the environment or in the locations of targets
(Fig 4.5). Furthermore, even in its simplest form, endotaxis can arbitrate among
multiple locations with the same resource, by trading off the promised reward against
the distance traveled (Fig 4.5). Beyond spatial navigation, endotaxis can also learn
the solution to purely cognitive tasks (Fig 4.4), or any problem defined by search on a
graph. The neural network model that implements endotaxis has a close resemblance
to known brain circuits. We propose that evolution may have built upon the ancient
behavioral module for chemotaxis to enable much more general abilities for search
and navigation, even in the absence of odor gradients. In the following sections, we
consider how these findings relate to some well-established phenomena and results
on animal navigation.
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4.6.2 Animal behavior
The millions of animal species no doubt use a wide range of mechanisms to get around
their environment, and it is worth specifying which of those problems endotaxis might
solve. First, the learning mechanism proposed here applies to complex environments,
namely those in which discrete paths form sparse connections between points. For a
bird, this is less of a concern, because it can get from every point to any other “as
the crow flies.” For a rodent and many other terrestrial animals, on the other hand,
the paths they may follow are constrained by obstacles and by the need to remain
under cover. In those conditions, the brain cannot assume that the distance between
points is given by euclidean geometry, or that beacons for a goal will be visible in
a straight line from far away, or that a target can be reached by following a known
heading. Second, we are focusing on the early experience with a new environment.
Endotaxis can get an animal from zero knowledge to a cognitive map that allows
reliable navigation towards goals encountered on a previous foray. It explains how an
animal can return home from inside a complex environment on the first attempt [204],
or navigate to a special location after encountering it just once (Figs 4.3,4.4). But it
does not implement more advanced routines of spatial learning, such as stringing a
habitual sequence of actions together into one, or internal deliberation to plan entire
routes. Clearly, expert animals will make use of algorithms other than the beginner’s
choice proposed here.

A key characteristic of endotaxis, distinct from other forms of navigation, is the
reliance on trial-and-error. The agent does not deliberate to plan the shortest path
to the goal. Instead, it finds the shortest path by locally sampling the real-world
actions available at its current point, and choosing the one that maximizes the virtual
odor signal. In fact, there is strong evidence that animals navigate by real-world
trial-and-error, at least in the early phase of learning [195]. Rats and mice often stop
at an intersection, bend their body halfway along each direction, then choose one
corridor to proceed. Sometimes they walk a few steps down a corridor, then reverse
and try another one. These actions—called “vicarious trial and error”—look eerily
like sniffing out an odor gradient, but they occur even in absence of any olfactory cues.
Lashley [134], in his first scientific paper on visual discrimination in the rat, reported
that rats at a decision point often hesitate “with a swaying back and forth between
the passages.” Similar behaviors occur in arthropods [237] and humans [209] when
poised at a decision point. We suggest that the animal does indeed sample a gradient,
not of an odor, but of an internally generated virtual odor that reflects the proximity
to the goal. The animal uses the same policy of spatial sampling that it would apply
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to a real odor signal, consistent with the idea that endotaxis is built on the ancient
behavioral module for chemotaxis.

Frequently a rodent stopped at a maze junction merely turns its head side-to-side,
rather than walking down a corridor to sample the gradient. Within the endotaxis
model, this could be explained if some of the point cells in the lowest layer (Fig 4.1B)
are selective for head direction or for the view down a specific corridor. During
navigation, activation of that “direction cell” systematically precedes activation of
point cells further down that corridor. Therefore the direction cell gets integrated
into the map network. From then on, when the animal turns in that direction, this
action takes a step along the graph of the environment without requiring a walk in
ultimately fruitless directions. In this way, the agent can sample the goal gradient
while minimizing energy expenditure.

The vicarious trial and error movements are commonplace early on during navigation
in a new environment. Later on, the animal performs them more rarely and instead
moves smoothly through multiple intersections in a row [195]. This may reflect a
transition between different modes of navigation, from the early endotaxis, where
every action gets evaluated on its real-world merit, to a mode where many actions are
strung together into behavioral motifs. At a late stage of learning, the agent may also
develop an internal forward model for the effects of its own actions, which would
allow for prospective planning of an entire route. An interesting direction for future
research is to seek a neuromorphic circuit model for such action planning; perhaps it
can be built naturally on top of the endotaxis circuit.

While rodents engaged in early navigation act as though they are sniffing out a virtual
odor, we would dearly like to know whether the experience feels like sniffing to
them. The prospects for having that conversation in the near future are dim, but
in the meantime we can talk to humans about the topic. Human language has an
intriguing set of metaphors for decision making under uncertainty: “this doesn’t
smell right,” “sniff out a solution,” “that idea stinks,” “smells fishy to me,” “the
sweet smell of success.” All these sayings apply in situations where we do not yet
understand the rules but are just feeling our way into a problem. Going beyond mere
correlation, there is also a causal link: Fishy smells can change people’s decisions on
matters entirely unrelated to fish [141]. In the endotaxis model, (Fig 4.1B) this might
happen if the mode switch is leaky, allowing real smells to interfere with virtual
odors. Perhaps this partial synesthesia between smells and decisions results from
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the evolutionary repurposing of an ancient behavioral module that was intended for
olfactory search.

4.6.3 Brain circuits
The proposed circuitry (Fig 4.1) relates closely to some real existing neural networks:
the so-called cerebellum-like circuits. They include the insect mushroom body, the
mammalian cerebellum, and a host of related structures in non-mammalian vertebrates
[19, 72]. The distinguishing features are: A large population of neurons with selective
responses (e.g. Kenyon cells, cerebellar granule cells), massive convergence from
that population onto a smaller set of output neurons (e.g. Mushroom body output
neurons, Purkinje cells), and synaptic plasticity at the output neurons gated by signals
from the animal’s experience (e.g. dopaminergic inputs to mushroom body, climbing
fiber input to cerebellum). It is thought that this plasticity creates an adaptive filter
by which the output neurons learn to predict the behavioral consequences of the
animal’s actions [19, 271]. This is what the goal cells do in the endotaxis model.

The analogy to the insect mushroom body invites a broader interpretation of what
purpose that structure serves. In the conventional picture, the mushroom body helps
with odor discrimination and forms memories of discrete odors that are associated
with salient experience [104]. Subsequently the animal can seek or avoid those
odors. But insects can also use odors as landmarks in the environment. In this more
general form of navigation, the odor is not a goal in itself, but serves to mark a route
towards some entirely different goal [130, 231]. In ants and bees, the mushroom
body receives massive visual input, and the insect uses discrete panoramic views of
the landscape as markers for its location [42, 233, 260]. Our analysis shows how the
mushroom body circuitry can tie together these discrete points into a cognitive map
that supports navigation towards arbitrary goal locations.

In this picture, a Kenyon cell that fires only under a specific pattern of receptor
activation becomes selective for a specific location in the environment, and thus
would play the role of a map cell in the endotaxis circuit (Fig 4.1).3 After sufficient
exploration of the reward landscape, the mushroom body output neurons come to
encode the animal’s proximity to a desirable goal, and that signal can guide a trial-and-
error mechanism for steering. In fact, mushroom body output neurons are known to
guide the turning decisions of the insect [10], perhaps through their projections to the
central complex [142], an area critical to the animal’s turning behavior. Conceivably

3Point cells and Map cells are the same in this picture.
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this is where the insect’s basic chemotaxis module is implemented, namely the policy
for ascending on a goal signal.

Beyond the cerebellum-like circuits, the general ingredients of the endotaxis model—
recurrent synapses, Hebbian learning, many-to-one convergence—are found com-
monly in other brain areas, including the mammalian neocortex and hippocampus.
In the rodent hippocampus, an interesting candidate for map cells are the pyramidal
cells in area CA3. Many of these neurons exhibit place fields and they are recurrently
connected by synapses with Hebbian plasticity. It was suggested early on that
random exploration by the agent produces correlations between nearby place cells,
and thus the synaptic weights among those neurons might be inversely related to
the distance between their place fields [171, 196]. However, simulations showed
that the synapses are substantially strengthened only among immediately adjacent
place fields [171, 196] (see also our Eqn 4.20), thus limiting the utility for global
navigation across the environment. Here we show that a useful global distance
function emerges from the output of the recurrent network (Eqns 4.23, 4.26, 4.27)
rather than its synaptic structure. Further, we offer a biologically realistic circuit (Fig
4.1B) that can read out this distance function for subsequent navigation.

4.6.4 Neural signals
The endotaxis circuit proposes three types of neurons—point cells, map cells, and goal
cells—and it is instructive to compare their expected signals to existing recordings
from animal brains during navigation behavior. Much of that prior work has focused
on the rodent hippocampal formation [169], but we do not presume that endotaxis is
localized to that structure. The three cell types in the model all have place fields, in
that they fire preferentially in certain regions within the graph of the environment.
However, they differ in important respects:

Size and location The place field is smallest for a point cell; somewhat larger for a
map cell, owing to recurrent connections in the map network; and larger still for goal
cells, owing to additional pooling in the goal network. Such a wide range of place
field sizes has indeed been observed in surveys of the rodent hippocampus, spanning
at least a factor of 10 in diameter [129, 267]. Some place cells show a graded firing
profile that fills the available environment. Furthermore, one finds more place fields
near the goal location of a navigation task, even when that location has no overt
markers [107]. Both of those characteristics are expected of the goal cells in the
endotaxis model.
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Dynamics The endotaxis model assumes that point cells exist from the very outset
in any environment. Indeed, many place cells in the rodent hippocampus appear
within minutes of the animal’s entry into an arena [84, 267]. Furthermore, any given
environment activates only a small fraction of these neurons. Most of the “potential
place cells” remain silent, presumably because their sensory trigger feature does not
match any of the locations in the current environment [3, 65]. In the endotaxis model,
each of these sets of point cells is tied into a different map network, which would
allow the circuit to maintain multiple cognitive maps in memory [171]. Finally a
small change in the environment, such as appearance of a local barrier (Fig 4.5), can
indeed lead to disappearance and appearance of nearby place cells [5].

Goal cells, on the other hand, are expected to appear suddenly when the animal first
arrives at a memorable location. At that moment, the goal cell’s input synapses from
the map network are activated and the neuron immediately develops a place field.
This prediction is reminiscent of a startling experimental observation in recordings
from hippocampal area CA1: A neuron can suddenly start firing with a fully formed
place field that may be located anywhere in the environment [28]. This event appears
to be triggered by a calcium plateau potential in the dendrites of the place cell, which
potentiates the excitatory synaptic inputs the cell receives. A surprising aspect of
this discovery was the large extent of the resulting place field, which requires the
animal several seconds to cover. Subsequent cellular measurements indeed revealed
a plasticity mechanism that extends over several seconds [149]. The endotaxis
model offers an alternative mechanism underlying the large place field of a goal
cell: Through its input synapses, the goal cell taps into the map network, which
has already developed long-range connections prior to the agent finding the goal
location. In this picture all the synaptic changes may be local in time and space,
without requiring an extended time scale for plasticity.

4.6.5 Learning theories
Endotaxis has similarities with reinforcement learning (RL) [236]. In both cases,
the agent explores a number of locations in the environment. In RL, these are called
states, and every state has an associated value representing how close the agent is to
rewards. In endotaxis, this is the role of the virtual odor, represented by the activity
of a goal neuron. The value function gets modified through the experience of reward
when the agent reaches a valuable resource; in endotaxis, this happens via update of
the synapses in the goal network (G in Fig 4.1B). In both RL and endotaxis, when
the animal wishes to exploit a given resource, it navigates so as to maximize the
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value function. Over time that value function converges to a form that allows the
agent to find the goal directly from every starting state. The exponential decay of the
virtual odor with increasing distance from the target (Eqn 4.27) is reminiscent of the
exponential decay of the value function in RL, controlled by the discount factor, 𝛾
[236].

In endotaxis, much of the learning happens independent of any reinforcement.
During exploration, the circuit learns the topology of the environment, specifically by
updating the synapses in the map network (M in Fig 4.1B). The presence of rewards
is not necessary for map learning: Until a resource is found for the first time, the value
function remains zero because the G synapses have not yet been established (Eqn
4.17). Eventually, when the goal is encountered, G is updated in one shot and the
value function becomes nonzero throughout the known portion of the environment.
Thus the agent learns how to navigate to the goal location from a single reinforcement
(Fig 4.3). This is possible because the ground has been prepared, as it were, by
learning a map. In animal behavior this phenomenon is called latent learning. Early
debates in animal psychology pitched latent learning and reinforcement learning
as alternative explanations [244]. Instead, in the endotaxis algorithm, neither can
function without the other (see Eqn 4.17). In model-based reinforcement learning,
the agent could learn a forward model of the environment and uses it to update a
value function. A key difference is that endotaxis learns the distances between all
pairs of states, and can then establish a value function after a single reinforcement,
whereas RL typically requires an iterative method to establish the value function
[99, 164, 235].

The neural signals in endotaxis bear some similarity to the so-called successor
representation [54, 59, 230]. This is a proposal for how the brain might encode the
current state of the agent, intended to simplify the mathematics of time-difference
reinforcement learning. Each neuron stands for a possible state of the agent. The
activity of neuron 𝑗 is proportional to the time-discounted probability that the agent
will find itself at state 𝑗 in the future. Thus, the output of the endotaxis map network
(Eqns 4.6, 4.23) qualitatively resembles a successor representation. However there
are some important differences: First, the successor representation depends not only
on the structure of the environment, but on the optimal policy of the agent, which
in turn depends on the distribution of rewards. Thus the successor representation
must itself be learned through a reinforcement algorithm. There is agreement in
the literature that the successor representation would be more useful if the model of
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the environment were independent of reward structure [90]; however, it is believed
that “it is more difficult to learn” [59]. By contrast, the map matrix in the endotaxis
mechanism is built from a policy of random exploration independent of the reward
landscape. Second, no plausible biomorphic mechanism for learning the successor
representation has been proposed yet, whereas the endotaxis circuit is made entirely
from biologically realistic components.

4.6.6 Outlook
In summary, we have proposed a simple model for spatial learning and navigation in
an unknown environment. It includes an algorithm, as well as a fully-specified neural
circuit implementation. The model makes quantitative and testable predictions that
match a diverse set of observations in behavior, anatomy, and physiology, from insects
to rodents (Secs 4.6.2-4.6.4). Of course, the same observables may be consistent
with other models, and in fact multiple navigation mechanisms may be at work in
parallel or during successive stages of learning. Perhaps the most distinguishing
features of the endotaxis algorithm are its reliance on trial-and-error sampling and
the close relationship to chemotaxis. To explore these specific ingredients, future
research could work backwards: First find the neural circuit that controls the random
trial-and-error sampling of odors. Then test if that module receives a convergence
of goal signals from other circuits that process non-olfactory information. If so,
that could lead to the mode switch which routes one or another goal signal to the
decision-making module. Finally, upstream of that mode switch lies the soul [190]
of the animal that tells the navigation machinery what goal to pursue. Given recent
technical developments we believe that such a program of module-tracing is within
reach, at least for the insect brain.

4.7 Supplement
The core function of the endotaxis network is to learn the distance between any
two points in the environment starting from purely local connectivity. As the agent
explores the graph of the environment, the point cells for two adjacent locations
briefly fire together. This is the local event that drives synaptic learning in the map
population. Eventually the map network learns the global structure of the graph. In
particular, for any chosen goal node on the graph, the network computes a virtual
odor signal that varies with the agent’s location and declines monotonically with the
distance from the goal. Using that distance function, the agent can navigate to the
goal node by the shortest path. In this section, we explain how this global distance
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measure comes about. We start with an analytical result about computing distances
on a graph, continue with a linear rate model of the endotaxis network, then proceed
to a nonlinear treatment and numerical experiments that supplement results in the
text.

4.7.1 A neuromorphic function to compute the shortest distance on a graph
Finding the shortest path between all pairs of nodes on a graph is a central problem
of graph theory, known as “all pairs shortest path” (APSP) [1]. Generally an APSP
algorithm delivers a matrix containing the distances 𝐷𝑖 𝑗 for all pairs of nodes. That
matrix can then be used to construct the actual sequence corresponding to the shortest
path iteratively. The Floyd-Warshall algorithm [79] is simple and works even for the
more general case of weighted edges between nodes. Unfortunately, we know of
no plausible way to implement Floyd-Warshall’s three nested loops of comparison
statements with neurons.

There is, however, a simple function for APSP that can be solved by a recurrent
neural network. Specifically: If a connected, directed graph has adjacency matrix
𝐴𝑖 𝑗 ,

𝐴𝑖 𝑗 =

{
1, if node 𝑖 can be reached from node 𝑗 in one step
0, otherwise, including the 𝑖 = 𝑗 case

, (4.1)

then with a suitably small positive value of 𝛾 the shortest path distances are given by

𝐷𝑖 𝑗 =

⌈
log

[
(1 − 𝛾 A)−1]

𝑖 𝑗

log 𝛾

⌉
(4.2)

where 1 is the identity matrix, and the half-square brackets mean “round up to the
nearest integer.”

Proof: The powers of the adjacency matrix represent the effects of taking multiple
steps on the graph, namely

[
A𝑘

]
𝑖 𝑗
= 𝑁

(𝑘)
𝑖 𝑗

= number of distinct paths to get from node 𝑗 to node 𝑖 in 𝑘 steps

where a path is an ordered sequence of edges on the graph. This can be seen by
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induction as follows. By definition:

𝑁
(1)
𝑖 𝑗

= 𝐴𝑖 𝑗 .

Suppose we know 𝑁
(𝑘)
𝑖 𝑗

and want to compute 𝑁
(𝑘+1)
𝑖 𝑗

. Every path from 𝑗 to 𝑖 of length
𝑘 + 1 steps has to reach a neighbor of node 𝑖 in 𝑘 steps. Therefore,

𝑁
(𝑘+1)
𝑖 𝑗

=
∑︁
𝑙

𝐴𝑖𝑙𝑁
(𝑘)
𝑙 𝑗

. (4.3)

The RHS corresponds to multiplication by A, so the solution is

𝑁
(𝑘)
𝑖 𝑗

=
[
A𝑘

]
𝑖 𝑗
.

We are particularly interested in the shortest path from node 𝑗 to node 𝑖. If the
shortest distance 𝐷𝑖 𝑗 from 𝑗 to 𝑖 is 𝑘 steps, then there must exist a path of length 𝑘

but not of any length < 𝑘 . Therefore,

𝐷𝑖 𝑗 = min
𝑘

𝑁
(𝑘)
𝑖 𝑗

> 0. (4.4)

Now consider the Taylor series

Y = (1 − 𝛾A)−1 (4.5)

= 1 + 𝛾A + 𝛾2A2 + . . .

Then

𝑌𝑖 𝑗 =

∞∑︁
𝑘=0

𝑁
(𝑘)
𝑖 𝑗

𝛾𝑘 = 𝑁
(𝐷𝑖 𝑗 )
𝑖 𝑗

𝛾𝐷𝑖 𝑗 + 𝑁
(𝐷𝑖 𝑗+1)
𝑖 𝑗

𝛾𝐷𝑖 𝑗+1 + . . . (4.6)

We will show that if 𝛾 is chosen positive but small enough, then the growth of 𝑁 (𝑘)
𝑖 𝑗

with increasing 𝑘 gets eclipsed by the decay of 𝛾𝑘 such that

𝛾𝐷𝑖 𝑗 < 𝑌𝑖 𝑗 < 𝛾𝐷𝑖 𝑗−1. (4.7)
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The left inequality is obvious from Eqn 4.6 because 𝑁
(𝐷𝑖 𝑗 )
𝑖 𝑗

≥ 1 by Eqn 4.4.

To understand the right inequality, note first that 𝑁 (𝑘)
𝑖 𝑗

is bounded by a geometric
series. From Eqn 4.3, it follows that

𝑁
(𝑘)
𝑖 𝑗

< 𝑞𝑘

where 𝑞 is the largest number of neighbors of any node on the graph. So from Eqn
4.6,

𝑌𝑖 𝑗 < (𝑞𝛾)𝐷𝑖 𝑗 + (𝑞𝛾)𝐷𝑖 𝑗+1 + · · · = (𝑞𝛾)𝐷𝑖 𝑗

1 − 𝑞𝛾
. (4.8)

This expression is < 𝛾𝐷𝑖 𝑗−1 (Eqn 4.7) as long as

𝛾 <
1

𝑞 + 𝑞𝐷𝑖 𝑗
. (4.9)

In addition, because

𝐷𝑖 𝑗 < 𝑛 ≡ number of nodes on the graph

this is satisfied if one chooses 𝛾 such that

𝛾 <
1

𝑞 + 𝑞𝑛
. (4.10)

With that condition on 𝛾 the inequality (4.7) holds, and taking the logarithm on both
sides leads to the desired result:

𝐷𝑖 𝑗 =

⌈ log𝑌𝑖 𝑗
log 𝛾

⌉
.

We will see that the endotaxis network, in its linear approximation, computes a goal
signal equal to the scalar products of the column-vectors in Y, namely

𝐸𝑖 𝑗 = “goal signal from node 𝑗 to 𝑖” =
∑︁
𝑘

𝑌𝑘𝑖𝑌𝑘 𝑗 . (4.11)
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To understand how that goal signal 𝐸𝑖 𝑗 varies with distance, one can follow arguments
parallel to those that led to Eqn 4.6. Using the upper bound by the geometric series
(Eqn 4.8) and inserting in Eqn 4.11, one finds again that it is possible to choose a 𝛾

small enough to satisfy

𝛾𝐷𝑖 𝑗 < 𝐸𝑖 𝑗 < 𝛾𝐷𝑖 𝑗−1. (4.12)

Under those conditions, the goal signal 𝐸𝑖 𝑗 decays exponentially with the graph
distance 𝐷𝑖 𝑗 .

4.7.2 Linear approximation of the endotaxis network
Here we formalize the network model of Figure 4.1B, and develop a linear ap-
proximation that allows an analytical treatment and connection with the previous
section.

The environment is parcelled into a set of discrete locations that are sparsely connected
to each other. The locations and connectors form a graph that is fully specified by
the adjacency matrix 𝐴𝑖 𝑗 (Eqn 4.1).

Each node on the graph has a point cell corresponding to that location. The point
cell 𝑖 fires at a rate of 1 when the agent is at location 𝑖, and at a lower level 𝑤, with
0 < 𝑤 < 1, when the agent is at the neighboring nodes. Thus the firing fields of
neighboring point cells overlap somewhat; this produces correlations among point
cells along the agent’s trajectory which will drive synaptic plasticity.

𝑢𝑖 (𝑥) = firing rate of point cell 𝑖 with the agent at node 𝑥 (4.13)

= 𝛿𝑖𝑥 + 𝑤 𝐴𝑖𝑥 (4.14)

where 𝛿𝑖𝑥 is the Kronecker delta.

We begin by treating neural processing (Fig 4.1B) using a textbook linear rate model
[60]. In this version, the output of the map network (Fig 4.1B) is

v = u + Mv = (1 − M)−1u (4.15)

where u is the vector of point cell outputs, v is the vector of map cell outputs, and M
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is the matrix of recurrent synapses among map cells.

A goal cell 𝑔 receives sensory input 𝑠𝑔 from neurons that signal the goal resource
available to the agent at the current node:

𝑠𝑔 (𝑦) = amount of resource 𝑔 present when the agent is at node 𝑦. (4.16)

In addition the goal cell gets input from the map neurons via the network of goal
synapses. Thus the vector of goal cell activities with the agent at node 𝑥 is

r(𝑥) = s(𝑥) + G v(𝑥) = s(𝑥) + G(1 − M)−1u(𝑥). (4.17)

The recurrent synapses among map cells undergo Hebbian plasticity. To keep the
synaptic strengths bounded, we adopted the standard Oja’s Rule [60]:

d𝑀𝑖 𝑗

d𝑡
= 𝛽M(𝛼M𝑣𝑖𝑣 𝑗 − 𝑀𝑖 𝑗𝑣𝑖

2) (4.18)

where 𝛽 sets the speed of synaptic plasticity and 𝛼 its strength. The map network
has no self-synapses: 𝑀𝑖𝑖 = 0.

The synapses from map cells to goal cells also undergo Hebbian plasticity, again via
Oja’s Rule

d𝐺𝑔𝑖

d𝑡
= 𝛽G(𝛼G𝑟𝑔𝑣𝑖 − 𝐺𝑔𝑖𝑟𝑔

2). (4.19)

These updates occur only when the agent is at the target location, gated by a reward
signal associated with the resource located there. Because learning about targets is
conceptually different from learning the map of the environment, we allowed 𝛼G, 𝛽G

to differ from 𝛼M, 𝛽M.

During exploration, the agent performs a random walk throughout the entire graph.
The resulting activity of point cells drives the map network. It is well known that
a Hebbian recurrent network of this type will learn the correlation structure of its
inputs [60, 87]. Evaluating Eqn 4.18 after synapses have equilibrated leads to

𝑀𝑖 𝑗 = 𝛼

〈
𝑣𝑖𝑣 𝑗

〉〈
𝑣 𝑗

2
〉 . (4.20)
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In the limit of small 𝑀𝑖 𝑗 , i.e. if the inputs from point cells dominate, then 𝑣𝑖 ≈ 𝑢𝑖

and one gets to lowest order

𝑀𝑖 𝑗 ≈ 𝛼

〈
𝑢𝑖𝑢 𝑗

〉〈
𝑢𝑖

2
〉 = 𝛼 𝑤 𝐴𝑖 𝑗 ≡ 𝛾 𝐴𝑖 𝑗 (4.21)

where we assumed

𝛾 = 𝛼 𝑤 << 1. (4.22)

In this approximation, the recurrent synapses 𝑀𝑖 𝑗 directly reflect the connections
among point cells and thus the adjacency matrix of the graph.

The output of the map network (Eqn 4.15) is

v = (1 − M)−1u = (1 − 𝛾A)−1u. (4.23)

Comparison to Eqn 4.5 shows that the recurrent network of map cells effectively
computes the all-pairs distance function 𝑌𝑖 𝑗 . If the agent is at node 𝑥, then the map
output v(𝑥) equals the 𝑥-th column vector of the matrix Y (in the limit of small 𝑤
and 𝛾):

𝑣𝑖 (𝑥) = 𝑌𝑖𝑥 (4.24)

which declines exponentially with the graph distance 𝐷𝑖𝑥 (Eqn 4.7). These distance-
dependent humps of activity are schematized in Fig 4.2C-E.

The remaining problem is how to use the map output to encode the distance to a
specific remembered goal location. Suppose goal 𝑔 has a rewarding resource only at
node 𝑦, specifically 𝑠𝑔 (𝑥) = 𝛿𝑥𝑦 (Eqn 4.16). When the agent first arrives at location
𝑦, the synaptic plasticity rule (Eqn 4.19) updates the goal synapses 𝐺𝑔𝑖 from zero to
a profile proportional to the current map output:

𝐺𝑔𝑖 ∼ 𝑣𝑖 (𝑦). (4.25)

Subsequent visits will strengthen that profile. From then on, when the agent is at a
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Figure 4.6: The goal signal and the choice of 𝛾. The goal signal declines
exponentially with graph distance (the tower of Hanoi graph with 4 levels was used
for these simulations). Data points indicate the goal signal between all pairs of nodes,
computed with different values of 𝛾, and plotted against the distance on the graph
between the nodes. Lines are exponential fits to the data.

location 𝑥 ≠ 𝑦, the virtual odor varies according to Eqn 4.17:

𝑟𝑔 (𝑥) = s(𝑥) + G v(𝑥) (4.26)

∼ 0 + v(𝑦) · v(𝑥) ≡ 𝐸𝑥𝑦 .

This corresponds to the goal signal 𝐸 analyzed above (Eqns 4.11, 4.12, Fig 4.6).
Thus the virtual odor computed by the endotaxis network decays exponentially with
the agent’s distance from the goal:

𝐸𝑥𝑦 ∼ 𝛾𝐷𝑥𝑦 . (4.27)

4.7.3 Limitations of the linear model
The analytical treatment above relied on multiple small-signal approximations, and
the results are guaranteed only in the limit of 𝛾 << 1 (Eqn 4.22). To explore the
practical range of 𝛾, we performed numerical experiments on a variety of graphs and
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found that the exponential dependence of the goal signal 𝐸𝑖 𝑗 on distance (Eqn 4.12)
holds over a wide range of 𝛾 (Fig 4.6).

However, there is a critical value of 𝛾 beyond which the goal signal fails catastroph-
ically: Recall that the Taylor expansion (4.5) has a convergence radius of 1. That
means all the eigenvalues of 𝛾A must have absolute value < 1, which requires

𝛾 < 𝛾c ≡
1

largest absolute eigenvalue of A
. (4.28)

Outside of that convergence radius, the expression (1 − 𝛾A)−1 can no longer be
interpreted as counting paths on the graph and therefore loses any connection to
graph distance. The largest eigenvalue of the adjacency matrix is related to the
typical number of edges per node. For the types of environmental graphs considered
here, 𝛾c = 0.3 − 0.4.

This upper bound on 𝛾 means that the goal signal decays rather steeply with distance.
In the most favorable case 𝛾 = 𝛾c, the decay still amounts a factor of ∼ 3 per step
along the graph, spanning many orders of magnitude over the extent of even modest
graphs (Fig 4.6). For an agent to navigate to a target from a distance, it must be
able to resolve changes in the goal signal along the entire way. But realistic neurons
operate only over a limited dynamic range of the inputs, spanning perhaps 2 orders of
magnitude. Thus, for a biologically plausible implementation, one needs to enhance
the model with non-linearities.

4.7.4 Endotaxis with non-linear activation functions and noise
Perhaps the simplest enhancement is an expansive input-output function for the map
neurons. This can amplify the signal locally within the map network, thus converting
the exponential decay with distance to a more linear decay profile. For this purpose
we modeled the response of a map cell to its input as

𝑣𝑖 = 𝜙

(
𝑢𝑖 +

∑︁
𝑗

𝑀𝑖 𝑗𝑣 𝑗

)
(4.29)
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where the activation function 𝜙 is

𝜙(𝑥) = max
(
0, 𝑎 ·

(
1 + log 𝑥𝑖

𝑘

))
(4.30)

and 𝑎 and 𝑘 are positive constants.

The goal cell response was modified to include a noise signal:

𝑟𝑔 = 𝑠𝑔 +
∑︁
𝑗

𝐺𝑔 𝑗𝑣 𝑗 + 𝜖 (4.31)

where the noise 𝜖 is a Gaussian variable with standard deviation of 2% of the range
of the goal cell signal. This sets a limit on the decisions the agent makes during
navigation, because differences in goal signal smaller than 𝜖 cannot be resolved.

The nonlinear activation of map cells allows for a greater signal spread throughout
the map network. At the same time the map synapses should come to reflect the
local adjacencies on the graph (Eqn 4.23). These desirables can be reconciled by
imposing a simple threshold on the Hebbian learning rule for the map synapses:

d𝑀𝑖 𝑗

d𝑡
= 𝜌(𝛽M(𝛼M𝑣𝑖𝑣 𝑗 − 𝑀𝑖 𝑗𝑣𝑖

2)) (4.32)

𝜌(𝑦) =

𝑦, if 𝑦 ≥ 𝜎

0, otherwise
. (4.33)

The Hebbian learning rule for the goal connections 𝐺𝑔 𝑗 is unchanged from the linear
model (Eqn 4.19).

4.7.5 Simulations
Figures 4.3, 4.4, and 4.5 report the results of endotaxis under the nonlinear response
model described above. During exploration we gave the agent a trajectory through
the graph, either chosen by design (Fig 4.3) or as an unbiased random walk (Figs 4.4,
4.5). After every step of the exploratory walk we computed the cell activities in a
forward pass from point cells to goal cells. Then we updated the synaptic weights
in the two networks M and G via the above learning rules. Matrix operations were
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implemented in JAX [36], but for the task complexity explored in this paper there
was no need for GPU acceleration.

For tests of navigation towards a goal, the agent was placed at an arbitrary starting
node on the graph. The agent evaluated the goal signal at each of the neighboring
nodes and stepped to the one with the highest value. This iterated until the agent
reached the target.

The parameters used during these simulations are summarized in Table 4.1.

Table 4.1: Learning parameters used for simulations.

Task 𝛼𝑀 𝛽𝑀 𝛼𝐺 𝛽𝐺 𝑘 𝑎 𝑟𝑔 Steps
Gridworld 2.9 1.2 15𝛼𝑀 0.07 5.5 0.04 0.1 3𝑒3
Binary Tree 3.3 1.2 15𝛼𝑀 0.07 5.5 0.04 0.1 7𝑒3
Hanoi (3 Discs) 2.65 1.2 15𝛼𝑀 0.07 5.5 0.04 0.1 5𝑒3
Hanoi (3 Discs, Lin-
ear) 0.05 0.02 0.5𝛼𝑀 0.3 - - 1 5𝑒3

Hanoi (4 Discs) 2.291 1.2 15𝛼𝑀 0.07 5.5 0.04 0.1 3𝑒4
Blockage 5.7 1.2 15𝛼𝑀 0.07 5.5 0.04 0.1 [2𝑒2, 2𝑒2]
Shortcut 5.8 1.8 15𝛼𝑀 0.07 5.5 0.04 0.1 [2𝑒2, 2𝑒2]
Dual Reward 5.7 1.2 15𝛼𝑀 0.07 5.2 0.04 [0.1, 0.1] 1𝑒3
Dual Reward (Bi-
ased) [4, 1] 1.7 15𝛼𝑀 0.07 5.5 0.04 [0.1, 0.03]2𝑒3
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Dynamics of learning

Figure 4.8 illustrates the state of the synaptic networks over the course of online
learning, as observed during an exploratory random walk on the binary maze graph
(Fig 4.4A-ii). The norm of the map matrix ∥M∥ increases continuously through
steady small updates ∥dM∥. By comparison the goal matrix ∥G∥ increases in
noticeable steps of ∥dG∥ every time the agent visits a goal location. With sufficiently
low 𝛼 and 𝛽, the network learns stably and gradually approaches a steady state.
However, as demonstrated in the text, even the first visit to a goal location already
produces a goal signal that allows a reliable return to that location.

Change in connectivity

We analyzed how the agent’s navigation performance evolved with time following a
change in connectivity (Fig 4.5A.i-ii). After each time step during the exploratory
random walk we asked if the agent could navigate to the goal by the shortest path.
We assumed that the appearance of a block or a shortcut between two adjacent nodes
will alter the sensory cues around both locations (2 and 3 in Fig 4.5A.i-ii). Therefore
the point cells that used to encode those locations drop silent, and the respective
map cells lose their afferent input, while still remaining in the recurrent network.
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At the same time two new point cells appear at those locations, because the new
cues match their selectivity. Their map cells now receive afferent input from the
respective locations, but their recurrent synapses start at zero weight. The agent then
continues a random walk around the ring, subject to the new constraints, and the
learning algorithm proceeds as usual.

Data and code availability
Data and code to reproduce the reported results are available at https://github.
com/tonyzhang25/Zhang-2021-Endotaxis. Following acceptance of the manuscript
they will be archived in a permanent public repository.

https://github.com/tonyzhang25/Zhang-2021-Endotaxis
https://github.com/tonyzhang25/Zhang-2021-Endotaxis
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C h a p t e r 5

FUTURE DIRECTIONS

Having presented the majority of my dissertation work, I briefly discuss some possible
avenues for further investigation. Of course, these suggestions are not exhaustive and
merely serve to provoke thought and dialogue regarding possible avenues to extend
the work that has been completed thus far.

5.1 Sensing magnetism
The work contained here serves merely as an initial foray into what will hopefully
be a long and productive inquiry into the neural mechanisms of the magnetic sense
thought to underlie the astounding ability of animals to migrate long distances. The
work presented above demonstrates a minimal approach to experimentation and
analysis that endeavors to assess whether a given animal is responsive to magnetic
stimulation. The approach assumes that neurons somewhere increase their firing rate
as the magnetic field around the animal changes. Presenting a sinusoidal magnetic
stimulus enables the use of powerful Fourier frequency methods in analysing neural
responses (or lack thereof) in brains.

Importantly, the details of the brain’s representation of the signal are not assumed;
many types of possible encoding strategies should be detectable with our method.
This neutrality or agnosticism to coding details makes the approach especially
amenable to collaborative efforts between labs. By supplying partner labs with
small, readily manipulable solenoids for magnetic stimulation, we hope to minimize
setup time and disruption to our collaborators’ usual experimental activities. This,
combined with our standardized analysis pipeline, facilitates communication and
reproducibility of individual claims of measurable magnetic sensation. Efforts are
currently underway in the lab to expand both the scope of collaborating labs as well
as the range of species tested within our lab to include pigeons, butterflies, and
salamanders.

Improved understanding of magnetic perception in animals holds the promise that it
might one day be reverse-engineered, similar to the development of optogenetics [35],
to enable non-invasive manipulation of neural activity via changes in an ambient
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magnetic field. This would present enormous opportunities for advancement both
within basic neuroscience research as well as potentially in translational medicine.

5.2 Maze navigation
The maze experiments presented in Chapter III reinvigorate a style of research that
was much more prevalent a century ago. Machine vision has advanced considerably
in recent years [152]. This enables robust and detailed tracking of animals, even
in complex environments such as ours. I believe this research is timely, given the
prevailing emphasis on behavioral tasks that take an exorbitant amount of time to
train. Both on the grounds of data throughput, as well as ethological relevance to
the animal, our free-foraging approach to studying navigation presents an exciting
opportunity to generate truly novel observations of experimental subjects. To my
knowledge, no task elicits as much learning, measured in the memory for sequential
decisions, in as little time as the maze navigation paradigm.

Ongoing work, conducted by Jieyu Zheng and Rogério Guimarães, seeks to determine
the upper limits of mouse spatial learning. No limit has been found as of yet despite
expansion of the maze to require more than twenty branch points between the home
cage and water port. Multiple animals, presented with multiple distinct mazes of
this degree of complexity, demonstrated the ability to navigate perfectly to the water
and back without errors. Other preliminary experiments have found that mice can
quickly learn multiple reward locations and adapt to changes—like shortcuts or
blockages—in maze connectivity. Ultimately, we aim to further characterize the
underlying representations or heuristics the mice use to navigate these complex
environments by looking for repeatable correlations between variations in maze
configuration and variability in rates of learning.

Concurrently with these behavioral extensions, I am developing a wireless elec-
trophysiology approach to enable recordings of neural activity during navigation
behaviors. Daniel Pollak and Jiang Wu are simultaneously exploring more traditional
approaches in which data leaves the brain and connects to a computer via a cable.
These latter approaches are more easy to implement and allow recording of more
neurons but come at the cost of impeding free action through a maze with a closed
ceiling.

Myriad fascinating questions might be addressed with a combination of neural
recording and complex maze navigation. For instance, what neural events precede
moments of sudden insight? Is the rate of learning correlated with replay or theta
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events? Is there a neural signature that accompanies rapid changes in behavior, such
as switching from exploration to exploiting known direct routes between resources?
Theoretical work that extends the scope of the Endotaxis model to include other
aspects of navigation may generate predictions and hypotheses that can be tested in
maze experiments in which neural activity is recorded.

Finally, preliminary data presented in the Appendix suggest that mice can recover
from a range of experimental sensory and neural perturbations. How might the brain
maintain an appropriate homeostatic state or recover such a state after perturbation?
Answers to this question may suggest new ways to restore homeostatic brain function
in humans suffering from psychiatric illness.
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APPENDIX

The maze experiments described in Chapter III leave open many questions regarding
the sensory systems employed by the animal during navigation. We showed that a
180 degree rotation of the maze did not markedly impair the ability of the animal to
navigate efficiently from the maze entrance to the water port. However, this tests
the ability of the mouse to navigate to the water after learning the location of the
reward. Perhaps olfaction is necessary for initial learning of the environment despite
not being essential for recall of this information late in the experiment. To test this,
Jiang Wu performed a series of experiments in which olfactory neurons were ablated
with zinc sulfate [154]. Anosmia was confirmed via a digging assay in which hungry
mice searched in cage bedding for a hidden food pellet. Animals showed some mild
impairment early in the maze experiment but eventually were able to acquire water
at a steady rate. Furthermore, mice learned direct routes to the water port from the
entrance and some animals showed sudden insight, assessed via a sharp increase
in the rate of long paths to the water from multiple locations throughout the maze.
These olfactory ablation experiments bolster the idea that the sense of smell is not
critical for the mouse to be able to navigate effectively.

What about the other sensory modalities? Is one especially essential? The experi-
ments described in Chapter III occurred exclusively in the dark thereby demonstrating
the dispensability of vision for maze navigation in mice. Additional experiments
performed by Jiang Wu tested mice navigation after whisker trimming. Mice still
managed to reach the water and develop direct routes. One caveat is that we did not
anesthetize the animal’s face, so the animal was presumably still able to sense the
presence of walls, albeit only upon much closer inspection.

Setting peripheral sensory systems aside, one might reasonably ask which brain
regions mediate the maze navigation behaviors of Chapter III. In collaboration
with Zeynep Turan [251], I collected data from animals lacking hippocampus and
the majority of cortex. These lesions were performed either via genetic [128] or
surgical means. These lesioned animals showed drastic impairments in efficient
exploration early in the session, often repeating movements in small regions of the
maze an enormous number of times. Yet, remarkably, these same animals eventually
succeeded in learning to take short, often direct, paths to the water location.
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Lastly, as part of a collaboration with Anand Muthusamy and Henry Lester, supported
by the Chen Innovator Grant, mice were administered high doses of the opiate
drug Fentanyl before being tested in the same paradigm as the other binary maze
experiments described here. This data is highly preliminary, but there is at least an
intriguing similarity between the early trajectories of acortical animals and those of
animals under opiate intoxication in that these animals excessively repeat actions
and movements, failing to sufficiently cover the environment. Intoxicated animals
may be no longer thirsty, unable to generate sufficient choice variability to explore
the maze, unable to remember prior actions, or may lose interest in spatial novelty,
among myriad possibilities. Further experiments are necessary to support one of
these interpretations over others.
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