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ABSTRACT

In recent years, additive manufacturing (AM), also known as 3D printing, has

emerged as a uniquely powerful tool for rapid prototyping and for creating complex,

high value structures. Vat polymerization (VP) is an AM technique which forms

parts through light-initiated polymerization, capable of achieving both high resolu-

tion and high throughput. While VP has been utilized to fabricate a wide variety of

polymeric materials, fabricating functional materials such as ceramics, metals, and

inorganic composites has remained a challenge. This thesis focuses on developing

fabrication methods for a range of functional materials, from battery active materi-

als to metals and ceramics, via vat polymerization additive manufacturing, taking

advantage of chemical reactions within an AM part after fabrication to form target

materials in situ.

We demonstrate the use of emulsions to introduce aqueous active material precur-

sors into organic photopolymer resins to create architected lithium sul�de/carbon

composites for use as lithium-sulfur battery cathodes. Such architected cathode ma-

terials are promising for mitigating mechanical degradation in high volume-change

battery materials such as the sulfur cathode. We additionally performed nanome-

chanical experiments on lithium sul�de powders to determine how lithium sul�de

yields, deforms, and fails in the context of volume-change-induced stress during

battery cycling. Because lithium sul�de is present as a discharge product in all

lithium sulfur batteries, these nanomechanical particle compressions have bearing

on the entire �eld, beyond the realm of 3D architected cathodes.

We additionally demonstrate the use of organogel templates to streamline the AM

process by enabling the fabrication of many materials starting with a single resin

composition, followed by in�ltration of appropriate metal precursors and post-

processing heat treatment to convert the polymer/precursor matrix to the target

metal via calcination and reduction reactions. We fabricate and characterize copper,

nickel, silver, cobalt, cupronickel alloys, tungsten, and more to highlight the wide-

ranging versatility of achievable materials and microstructures.
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C h a p t e r 1

INTRODUCTION

1.1 Materials and society

Creating physical objects is a fundamental human endeavor. From tools, to toys,

to sculptures, acts of creation allow us to shape our surroundings, to improve our

quality of life, and to �nd meaning. Throughout history, the common materials that

people have used to build have been used as a proxy for technological development;

we have named entire eras after commonly used materials, from the stone age to the

bronze age to the iron age, and beyond.

Today, we �nd ourselves on the dizzying crest of rapid technological development.

While the epochalism that led to the de�nition of the `ages' cannot fully understand

the complexity of human development and history, especially across diverse geo-

graphical regions1, it can give us a sense of the rapidity of progress in materials

development; generally, the stone age lasted for many thousands of years, while the

bronze age lasted only a few thousand, and the iron age a �eeting few hundreds

of years [1]. The distinction of clear ages has begun to break down, with several

world-changing discoveries occurring within the last century: nuclear materials and

the discovery and development of quantum physics [2], the discovery of polymers

[3], and the development of classical computingin silico [4].

What will be the next de�ning material discoveries to shape the world? The nascent

technologies of renewable energy, quantum computing, and atomically precise man-

ufacturing promise to fundamentally change the way we power our lives, solve prob-

lems, and build things. However, we face unprecedented and existential challenges;

globalization forces us to seek ways to co-exist peacefully with each other, to share

and distribute resources, yet inequality looms and grows larger than ever before. An-

thropogenic climate change co-evolved with human technological advances, many

of which have increased our quality of life. Now, we need to learn how to live

in harmony with the earth and take a more holistic and sustainable approach to

industrial processes. With more tools and materials than ever before at our disposal,

we need to not just focus on progress, butsustainableprogress.
1I refer the reader to the front matter of Rolf Hummel'sUnderstanding Materials Science [1]

for a more nuanced timeline of materials development throughout the world.
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1.2 Additive manufacturing

A recent advance in our ability to engineer materials is the process of additive

manufacturing (AM), also known as 3D printing, which allows us to fabricate

intricate computer-designed objects one layer at a time. 3D models, made via

computer aided design or advanced structure algorithms are sliced into layers, which

are then deposited sequentially. This process allows customized parts to be rapidly

fabricated on often inexpensive equipment.

Unlike subtractive methods, which de�ne part shape by removing material from an

initially monolithic form, or formative methods, which de�ne part shape through

injection into a reusable cavity, AM is well-suited to producing materials with

complex geometries or for rapid prototyping. Often, AM enables fabrication of

complex objects more quickly and with less waste, or with fewer parts, without the

need for fasteners [5].

Another advantage of additive manufacturing is the ability to make custom parts on

demand. For example, in 2020 I lost a black pawn from my chess set, and replaced it

with an additively manufactured replica. I created a computer-aided design (CAD)

structure in SolidWorks based on the design of the chess set, and then printed the

piece on our lab's Autodesk Ember printer (thanks, Julia!) using CPS PR57 resin.

The resulting piece (Figure 1.1) is currently in use, and made my chess set whole.

Figure 1.1:Additively manufactured pawn. I designed a pawn (left) to match the style of my chess
set (right), and printed it using PR57 black resin.
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1.2.1 AM techniques overview

An overview of common classes of AM techniques is given here, largely following

the nomenclature outlined by Ligon et al.2[6], with citations to review articles that

discuss each technique in more detail. An in-depth discussion of vat photopolymer-

ization, the focus of this thesis, follows in Section 1.3.

ˆ Material extrusion extrudes material from a nozzle to de�ne part shape (Fig-

ure 1.2a,b). Common techniques include fused deposition modeling (FDM)

[7], which uses heat to soften thermoplastic polymers during extrusion, and

direct ink writing (DIW) [8], which uses shear thinning inks.

ˆ Material jetting (MJ) expels droplets of material from a nozzle to de�ne part

shape (Figure 1.2c) [9].

ˆ Binder jetting (BJ) de�nes part shape by the applying a liquid binder to fuse

a powder precursor of the target material (Figure 1.2c) [10].

ˆ Vat photopolymerization (VP) selectively solidi�es a liquid photoresin via

light-initiated polymerization to de�ne part shape (Figure 1.2d) [11].

ˆ Powder bed fusion (PBF)de�nes part shape by thermally driven melting or

sintering of a powder precursor of the target material (Figure 1.2e). PBF is

an established method to form many types of materials, from polymers [12]

to metals [13].

ˆ Directed energy deposition (DED)produces 3D parts through simultaneous

material deposition through a blown-powder feedstock and localized heating

(Figure 1.2f) [14].

1.3 Vat photopolymerization

1.3.1 History of vat photopolymerization

In 1981, Hideo Kodama reported the development of systems for forming 3D poly-

meric parts using a liquid photocurable resin [15]. Kodama demonstrated that 2D

images of light could be projected to cure an entire layer of photoresin simultane-

ously (Figure 1.3a,b), or alternatively a laser or point light source could be raster

scanned over the photoresin vat to form a layer (Figure 1.3c). These techniques are
2I refer the interested reader to this excellent and thorough review of polymer AM techniques.




	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Materials and society
	Additive manufacturing
	AM techniques overview

	Vat photopolymerization
	History of vat photopolymerization
	Vat photopolymerization methods
	Vat photopolymerization chemistry
	Vat photopolymerization of functional materials

	Additive manufacturing of 3D batteries
	Overview of AM methods for 3D batteries
	3D batteries: Challenges and opportunities
	3D batteries: Applications and outlook

	Thesis summary

	Understanding and mitigating mechanical degradation in lithium-sulfur batteries
	Introduction: Lithium-sulfur batteries
	Battery background
	Li-S overview
	Li-S challenges and state of the art

	Emulsion stereolithography for fabrication of 3D Li2S-C cathodes
	Emulsion stereolithography process
	Li2S-C electrode morphology
	Chemical characterization of Li2S-C composites
	Na2S-C composites

	Electrochemical performance of 3D Li2S-C cathodes
	Experimental details
	Electrochemical performance of 3D architected Li2S-C cathodes
	3D Li2S-C electrode discussion

	Nanomechanical particle compression of Li2S powders
	Particle compression methodology
	Particle compression results
	Li2S particle compression discussion

	Li-S battery summary and outlook

	Hydrogel infusion additive manufacturing
	Introduction: Metal AM
	State of the art metal AM
	Alternative AM approaches

	Hydrogel infusion additive manufacturing overview
	Resin design
	DLP 3D printing of blank organogels
	Hydrogel infusion
	Thermal treatment
	Chapter summary

	Process optimization
	Early resins: Norrish type I initiation
	Norrish type II initiation resins
	3D printing and post-processing

	Characterization of HIAM-derived copper
	Structural characterization
	Grain size analysis
	Chemical characterization
	Microstructural and mechanical characterization

	Hydrogel infusion additive manufacturing summary and outlook

	Versatile AM: additional materials
	Introduction: Hydrogel infusion, beyond copper
	More materials: Cu, Ni, Ag, and binary alloys
	Structural characterization of Cu/Ni/Ag metals
	Chemical characterization of Cu/Ni/Ag metals
	Mechanical characterization of Cu and CuNi

	High entropy alloys
	Motivation for fabricating CuNiCoFe
	Tuning the swelling solution to account for preferential incorporation
	CuNiCoFe fabrication
	Phase separation in CuNiCoFe alloy
	Structural characterization of CuNiCoFe

	Tungsten-containing materials
	Fabrication of W-Ni

	Parallelization of HIAM
	Multi-materials
	Multimaterial AM methods
	Multimaterials fabricated via HIAM

	Hydrogel infusion additive manufacturing outlook
	Material selection after part shaping
	Beyond DLP printing
	HIAM materials horizons and applications


	Thesis summary and outlook
	Thesis summary
	Thesis outlook
	3D batteries outlook
	Hydrogel infusion additive manufacturing outlook

	Thank you

	Appendix
	Chapter 2 Appendix
	Lithium sulfide precursor resins

	Chapter 3 Appendix
	Twin boundary-induced hardening

	Chapter 4 Appendix
	Correlation of dW/dT with defect morphology
	Comparison of EDS analysis in Cu50Ni50 at high and low accelerating voltage
	EDS analysis of phase separation in CuNiCoFe



