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ABSTRACT

DNA-based storage has potentially unprecedented advantages of high information
density and long duration, and is one of the promising techniques to meet the ever-
growing demands to keep data in the future. As noise and errors are present in
almost every procedure during reading, writing, and storing of information in DNA
storage systems, error correction is inevitable to guarantee reliable data storage in
DNA. Moreover, it is often required that error correction is done in an efficient
manner to reduce the cost and time needed for reading and writing data. Due to
the technology constraints and physical limitations, error correction in DNA-based
storage poses the following challenges that differ from those in traditional digital
data transmission and storage systems.

1. A combination of deletion, insertion, and substitution errors present. The
goal is to construct efficient codes correcting these errors. While substitution
errors are special cases of deletion and insertion errors, and are well studied
under the current theory and practice frameworks, deletion and insertion errors
are much more difficult to deal with, and less understanding was gained for
deletion and insertion errors.

2. Error correction is over an unordered set of strings, rather than over a single
string, which can be regarded as a set of ordered strings. The latter, which
includes the above deletion/insertion coding problem, is commonly studied for
current digital communication and storage systems. Our goal is to extend the
deletion/insertion correction capability for a single string to a set of unordered
strings.

3. The decoder observes multiple noisy copies of every coded string. The
problem is to deduce a set of strings (or a single string) from a collection
of their noisy samples, also studied as the population recovery (or trace
reconstruction for a single string) problem. The problem is well answered
with substitution errors only and becomes elusive with the introduction of
deletion and insertion errors.

This thesis tries to address the above challenges. For the first challenge, we proposed
binary codes correct any constant number of deletions and/or insertions with order-
wise optimal redundancy, which made a step toward a solution to a longstanding
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open problem introduced by Levenshtein in 1960s. We also extended it to different
settings, in particular, non-binary deletin/insertion correcting codes suitable for
DNA storage applications.

For the second challenge, we established lower and upper bounds on the optimal
redundancy of codes correcting any number of substitution, deletion, and insertion
errors and found that the redundancy needed for coding over an unordered set of
strings is order-wise the same as that needed for coding over a ordered set of strings.
Using our results for the first challenge, we proposed codes correcting any constant
number of deletion/insertion errors with order-wise optimal redundancy under some
parametter settings.

For the third challenge, we studied the problem of trace reconstruction, which asks
the number of noisy samples needed to reconstruct a single string. While there is a
exponential gap between upper and lower bounds on sample complexities in general,
we showed that a polynomial number of samples suffice, given a reference string
that is within constant edit distance from the target string.

Apart from dealing with the above challenges, we investigated error correction for
multi-head racetrack memory applications. The problem can be considered as cor-
recting any constant number of deletions/insertions in a single string with multiple
noisy copies, with the help of coding. Different from the settings we considered
above in the trace reconstruction problem, where noisy copies are independent
given the target string, in racetrack memory, the noisy copies are correlated, and
the number of errors is small compared to the trace reconstruction problem. We
derived a lower bound on redundancy and proposed a code correcting any number
of deletions/insertions with order-wise optimal redundancy.
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C h a p t e r 1

INTRODUCTION

We are in an era of data explosion. It was estimated that the total amount of data
generated and replicated in 2020 was 64.2 Zettabytes (1 Zettabyte = 1021 Byte),
and this amount was projected to be 175 Zettabytes by 2025. Storing data size of
this magnitude requires enormous space and high maintenance cost under current
memory technologies such as flash, hard disk drives. In fact, only 6.8 Zettabytes of
storage were deployed worldwide in 2020, according to [1]. As a result, most of the
data were not saved.

One of the reasons for high maintenance cost of storage is that the lifespan of devices
is at most ten years for flash memories and hard drives and up to thirty years for
tape memories. Hence, the storage devices have to be replaced every three to twenty
years, depending on the storage media and operation. In order to scale up the storage
capacity at a rate comparable to the data growing rate, it is desirable to find a storage
technology that is convenient and cheap to keep information.

Inspired by nature, people have been looking for storage solutions from DNA-based
techniques, realizing that our chromosomes are actually a robust and energy efficient
storage that records our biological information. In chromosomes, our biological
information is encoded into sequences of nucleotides, each composed of one of the
four bases A, C, G, and T, in a similar manner as we encode data into bits. DNA-
based storage potentially has an unprecedented advantage in information density
and duration. Ideally, the world’s data could be stored in a coffee mug. As Richard
P. Feynman put it, "There’s plenty of the room at the bottom" [31]. In addition,
information can be kept in DNA molecules for an incredibly long time, which is at
least a hundred years, with low energy consumption.

There have been many successful attempts storing information in DNA molecules.
The early ones date back to 1988, when thirty-five bits represented by a 5 × 7
binary matrix were encoded into a DNA molecule and inserted into E. coli, by
Havard researchers [30]. Yet DNA-based storage of "considerable" size was not
achieved until 2012–2013, where [24] and [36] stored 643KB and 739KB of data,
respectively. These experiments have ignited the imagination of practitioners and
theoreticians alike, and many works followed suit with various implementations [29,
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99]. Up till now, the best size achieved was 200MB [73].

While DNA-based storage looks promising, several problems need to be addressed
before its practical use. These problems include: (1) High cost and long time for
synthesis and sequencing, which corresponds to data reading and writing, respec-
tively, in DNA-based storage; (2) Random access that retrieves any specific part
from a large pool of data; (3) Errors that are present in reading, writing, and stor-
ing processes in DNA-based storage. The first two affect the scalability of DNA
storage. As technologies develop, it is reasonable to believe that the cost and time
for synthesizing and sequencing will decrease by orders of magnitudes and more
techniques will come out achieving efficient random access.

This thesis deals with the third problem, correcting errors, which plays a crucial role
in delivering reliable DNA-storage systems. In addition, efficient error correcting
methods help reduce the length and number of DNA molecules needed to store
information, and thus reduce the time and cost for synthesising and sequencing. In
the following, we present a model describing the current DNA-based storage and
list some of the main challenges for error correction. Then, we give an overview of
the contributions of this thesis.

1.1 DNA-Based Storage: Models
In DNA-based storage, data are encoded by a sequence of four bases of nucleotides,
A, C, G, and T, and stored in synthesized DNA molecules. Fig. 1.1 shows the
workflow of the whole reading/writing process, the details of which can be found
in [73]. In the writing process, after encoding the data as a set of strings over
a four-symbol alphabet (A, C, G, and T), the corresponding DNA molecules are
synthesized (possibly with errors) and dissolved inside a solution. Due to the
synthesizing and sequencing technology constraints, the length of each string, i.e.,
the number of bases in a string, is not large. The typical value of the string length
is within the order of magnitude of 102.

When trying to retrieve the data, a chemical process called Polymerase Chain Reac-
tion (PCR) is applied, which serves as the random access and drastically amplifies
the number of copies of the DNA molecules that contain the desired data. In
the reading process, the pool of DNA molecules is sampled and sequenced. The
sequencing process reads the 4-ary DNA string contained in each sampled DNA
molecule. Since the desired DNA molecules are amplified in the PCR process, it
is highly possible that each ampliefied DNA molecule is sampled many times and
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DATA
⇓ (encoding)

{x𝑖}𝑀𝑖=1 ∈
({𝐴,𝐶,𝑇,𝐺 }𝐿

𝑀

) (synthesis)
⇒

(PCR)
⇒

(sequencing)
(clustering)

⇒
(reconstruction)

⇒

Figure 1.1: An illustration of a typical operation of a DNA storage system.

as a result, we obtain multiple (possibly erroneous) reads of the amplified strings.
These reads are clustered according to their respective similarity. Then, sequence
reconstruction algorithms are used within each cluster, in order to come up with
the most likely origin of the reads in that cluster), which we consider as the string
contained in an amplified DNA molecule. Finally, all reconstructed origins are
collected and decoded back to data. The following gives an example of how strings
are processed when going through the system described in Fig. 1.1.

Example 1.1.1. Let 𝐿 = 3 and 𝑀 = 3. The data is first mapped into a set of strings,
say, {𝐴𝐶𝑇, 𝐴𝐺𝐺,𝑇𝐶𝐺}. The synthesizing process produces three DNA molecules
containing 𝐴𝐶𝑇 , 𝐴𝐺𝐺, and 𝑇𝐶𝐶, respectively, where the string 𝑇𝐶𝐶 is an er-
roneous version of 𝑇𝐶𝐺 because of synthesis errors. The PCR process generates
multiple copies of 𝐴𝐶𝑇 , 𝐴𝐺𝐺, and𝑇𝐶𝐶. After sampling those copies and sequenc-
ing them, one might get a set of strings {𝐴𝐶𝑇, 𝐴𝐶𝑇, 𝐴𝐶𝑇, 𝐴𝐺𝐺, 𝐴𝐺𝐺, 𝐴𝐺𝐶,𝑇𝐶𝐶,

𝑇𝐶𝐺,𝑇𝐶𝐶,𝑇𝐶𝐶} and cluster them as {𝐴𝐶𝑇, 𝐴𝐶𝑇, 𝐴𝐶𝑇}, {𝐴𝐺𝐺, 𝐴𝐺𝐺, 𝐴𝐺𝐶},
and {𝑇𝐶𝐶,𝑇𝐶𝐺,𝑇𝐶𝐶,𝑇𝐶𝐶}. Then, the cluster origins are reconstructed as
{𝐴𝐶𝑇, 𝐴𝐺𝐺,𝑇𝐶𝐶}, and decoded to data.

1.2 Error Correction in DNA Storage: Challenges
If no noises or errors are introduced in the above procedures, it would not be hard
to encode and decode the data, and the information can be stored reliably. However,
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errors are present by nature. In fact, errors occur in each of the above physical
procedures. In synthesizing and sequencing processes, errors might come from
limitations in technologies. In PCR, errors may come from unexpected chemical
reactions. Even when storing those DNA molecules in the pool, mutations can
happen. To successfully write and read the data, error correction schemes are
needed.

Error correction techniques are common in current digital communication and stor-
age systems. Among them, one of the major approaches is to construct error
correcting codes, which map the data represented by sequences of bits to code-
words, usually sequences with fixed alphabet size. It is required that a codeword
can be recovered when some parts of it are affected by errors. Error correction
codes have been deeply studied since the 1940s and many classical results such as
Hamming code, Golay code, Bose–Chaudhuri–Hocquenghem (BCH) code, Reed-
Muller (RM) code, Reed-Solomon (RS) code, Low-density parity check (LDPC)
code, turbo code, and polar code, contribute to reliable digital communication and
storage systems in the past and today [39].

In DNA-based storage, the special physical and technological constraints pose some
new challenges to error correction, which are different from those in traditional
digital systems. These challenges motivate us to study problem settings that are
less studied in traditional information and coding theoretical works, and we believe
these challenges are fundamental and might arise in current or future applications.

Deletion/Insertion Errors
In DNA-based storage, the basic types of errors are deletion, insertion, and substitu-
tion. When deletion errors occur, some bases are deleted, the locations of which are
unknown. As a result, the DNA string becomes its subsequence. Similarly, under
insertion errors, extra bases are inserted into the DNA string at unknown locations
and the DNA string becomes its supersequence. Substitution errors replace some
of the bases, the locations of which are unknown, in the string with other bases.

Example 1.2.1. Let 𝐴𝐶𝐶𝑇𝐺𝐴𝑇 be a string of bases. If the third base 𝐶 is deleted,
the resulting string becomes 𝐴𝐶𝑇𝐺𝐴𝑇 . If a base 𝐴 is inserted after the second
base, the string becomes 𝐴𝐶𝐴𝐶𝑇𝐺𝐴𝑇 . If the first base is replaced with 𝑇 , the
string becomes 𝑇𝐶𝐶𝑇𝐺𝐴𝑇 . A combination of the three errors renders 𝑇𝐶𝐴𝑇𝐺𝐴𝑇 .

The substitution errors are well studied, since the errors are "independent" and
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"memoryless," in the sense that substitutions at specific locations do not affect
the bases at other locations. All of the above mentioned error correcting codes
(Hamming code, Golay code, BCH code, etc.) were proposed for and are highly
efficient in correcting substitution errors. On the other hand, deletion or insertion
errors, also referred to as synchronization errors in some data transmission contexts,
are less understood. One of the difficulties of addressing deletion and insertion errors
is that they are "dependent" and not "memoryless." A deletion or insertion occurring
at the beginning of a string affects the following part of the string. Moreover, a
substitution error can be considered as a deletion error followed by a insertion error.
Hence, substitution errors can be regarded as a special case of deletion and insertion
errors.

Repeating the bases is one way of protecting strings from deletion and insertion er-
rors, and is what nature does to protect our biological information in DNA molecules.
However, this method is not efficient for information storage as it introduces many
redundant bases. The search for efficient deletion/insertion correcting codes has
been going on since 1960s. Yet, for more than fifty years, the only known efficient
deletion/inserticorrecting code is capable of correcting a single deletion, though,
there is recently much exciting progress going on towards a general solution.

Coding over Unordered Sets
As mentioned in Sec. 1.1, the data in a DNA storage system is stored as a pool of
short strings that are dissolved inside a solution, and consequently, these strings are
obtained at the decoder in an unordered fashion. Furthermore, the sampling method
does not allow the decoder to count the exact number of appearances of each string in
the solution, but merely to estimate relative concentrations. These restrictions have
ignited the interest in coding over sets [62, 61, 83, 85, 89], a model that also finds
applications in transmission over asynchronous networks, where different packets
are routed along different paths of varying lengths, and are obtained in an unordered
and possibly erroneous form at the decoder.

Different from traditional communication and storage channel models, where error
correction coding encodes data into a single string, coding over sets is a channel
model where data is encoded into a set of strings, usually of equal length and with
no repeats. Most of current schemes, such as TCP/IP, use indexing prefix for each
string (packet). While indexing schemes achieve Channel capacity [85] under some
settings, these schemes require high indexing cost, when the number of strings
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is large and the string length is small (say, several hundreds), as in DNA storage
applications. To the best of our knowledge,

Recover Strings from Noisy Copies
The aforementioned challenges (deletion/insertion errors and coding over unordered
sets) pose problems to the encoder design, which is about writing data. When
reading data, the sampling and sequencing procedures described in Sec. 1.1 produce
multiple copies of each string. Because of the presence of errors, these copies are
noisy. The goal of the decoder is to recover the set of strings, from a collection of
noisy copies of the strings, and then decode the strings back to data. Note that for
each noisy copy, it is not known which string generates this copy. This problem
was also studied, with the name population recovery, which tries to identify the
support of a distribution (the strings that are sampled with positive probability),
from multiple noisy samples. The population recovery problem asks the number of
samples needed to recover the support. With substitution errors as noises only, the
population recovery problem was well studied, and a polynomial (with respect to the
string length) number of samples are needed to recover the strings. However, when
deletion and insertion errors present as noises, the problem becomes very difficult.
In fact, it is even difficult when there is only a single support in the distribution, a
problem called trace reconstruction.

Therefore, the current solutions take a step back, and decompose the population
recovery problem into two independent tasks. The first is clustering, based on sample
similarities, that aims to group the noisy samples such that the noisy samples within
the same group come from the same string. The second is trace reconstruction,
that aims to recover the string that generates the noisy samples within each group.
The number of noisy samples needed to solve the trace reconstruction task is still
an open problem with the presence of deletion/insertion errors. The state-of-the-art
algorithms require exponential (with respect to the string length) number of samples,
while we only know that at least a polynomial number of samples are needed.

We remark that a perfect population recovery algorithm at the decoder does not
correct all errors and solve the problems at the encoder. The population recovery at
the decoder can at best recover the strings after the PCR process. Since errors occur
during the synthesizing, PCR processes, and even during storing information, error
correcting codes are needed.
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Figure 1.2: Contribution and organization of this thesis

1.3 Contributions
Fig. 1.2 illustrates our contributions and the organization of this thesis, in the context
of the workflow of DNA-based storage systems, described in Sec. 1.1. We address
the aforementioned three challenges for error correction in DNA-based storage,
which are described in Sec. 1.2 and arise in encoding/decoding procedures and the
reconstruction procedure in DNA storage systems. The optimal error correcting
solution for DNA storage is a joint encoder and decoder design, which takes into
account all three challenges. However, as each challenge itself is a hard task, we
address them separately, hoping that our techniques provide building blocks for
joint encoder decoder design. Interestingly, our results for the first and second
challenges together provide an efficient solution for correcting deletion/insertion
errors under some settings. Furthermore, our result for the first challenge was used
for dealing with the third challenge, which looks different and independent from the
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first challenge. We also investigate how error correction codes can be used for the
third challenge, though for different applications. In the following we summarize
our contributions and give an outline of this thesis.

Ch. 2, Ch. 3, and Ch. 4 address the first challenge, constructing codes cor-
recting deletion and insertion errors. The problem of constructing efficient codes
correcting a constant number of deletions/insertions has long been unsettled even
for two deletions. In Ch. 2, we start from an efficient binary 2-deletion correcting
code construction, which generalizes a classic code construction correcting a single
deletion error. Then, in Ch. 3 we extend it to correct any constant number of
deletion/insertions. Our construction achieves redundancy at most eight times the
optimal. In Ch. 4, we further develop the techniques in Ch. 3, and proposed a
systematic binary deletion/insertion correcting codes with redundancy at most four
times the optimal. Asymptotically, our code construction is the current best known.
We then extend our results and proposed deletion/insertion error correcting codes
under various settings, including non-binary deletion/insertion correcting codes,
systematic binary codes correcting a burst of variable length deletions, codes cor-
recting a constant number of burst deletions, each occur within a window of limited
length. All of our constructions achieve order-wise optimal redundancy.

In Ch. 5 and Ch. 6, we deal with the second challenge and propose codes over
an unordered set of strings that correct deletion/insertion and substitution errors.
In Ch. 5, we consider substitution errors only and derive upper and lower bounds
on the redundancy of error correcting codes over sets. We find a surprising result
that the redundancy needed for correcting a set of unordered strings is equal to that
needed for correcting a set of strings given their order. We also provide an efficient
code construction, that outperforms the state-of-the-art under some settings. In Ch.
6, we further improve our construction in Ch. 5, and present a code correcting
deletion/insertion and substitution errors with order-wise optimal redundancy. This
generalizes our results in Ch. 3 and Ch. 4, where the set has a single string.
One of our techniques, which we refer to as robust indexing, uses data to index
themselves. The robust indexing idea provides an alternative approach to currently
used index-based schemes.

Ch. 7 is about the third challenge. We aim to show that a string can be reconstructed
given a polynomial number of its noisy copies. As the problem is difficult and
open in general, we take a less ambitious goal and show that a polynomial number
of noisy copies suffices to reconstruct the string, given a reference string that is
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within constant edit distance from the target string. The edit distance measures the
similarity between two strings. Our result might have applications in the Human
Genome Project, where a human reference genome is provided to study the difference
between individual genomes.

Finally, Ch. 8 studies how error correction codes help reconstruct a string from
its multiple noisy copies. Instead of looking for applications in DNA storage, we
investigate multi-head racetrack memory applications, which have a different model
on noisy copies from the one in Ch. 7. Racetrack memory is an emerging storage
technique that has the potential of high storage density (not as high as DNA storage
theoretically can be) and low latency. In multi-head racetrack memory, each head
produces a noisy copy of the string. Different from Ch. 7, where noisy copies
are independently and randomly generated, in this chapter, the noisy copies are
correlated. We provide codes that correct a combination of any constant number of
deletions and insertions, with order-wise optimal efficiency. The techniques we use
in this chapter might in turn inspire new ideas to deal with the trace reconstruction
problem in Ch. 7, which we leave for future explorations.
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C h a p t e r 2

BINARY 2-DELETION/INSERTION CORRECTING CODES

To study correction of deletion/insertion errors from its most basic form, we begin
with binary cases where the codewords are sequences of bits. In this chapter, we
present codes correcting two deletions and/or insertions. While deletion correcting
codes for more general cases will be given in the next chapters, the construction
in this chapter contains some of the original ideas that we develop for general
settings, including a generalization of the VT codes and computing parity checks of
a sequence from symbols in its indicator vectors.

2.1 Introduction
A deletion in a binary sequence c = (𝑐1, . . . , 𝑐𝑛) ∈ {0, 1}𝑛 is the case where a
symbol is removed from c, which results in a subsequence length 𝑛 − 1. Similarly,
the result of a 𝑘-deletion is a subsequence of c of length 𝑛− 𝑘 . A 𝑘-deletion code C
is a set of 𝑛-bit sequences, no two of which share a common subsequence of length
𝑛 − 𝑘; and clearly, such a code can correct any 𝑘-deletion.

The problem of constructing a 𝑘-deletion correcting code was introduced by Lev-
enshtein [64], who showed the equivalence between correcting 𝑘 deletions and
correcting 𝑟 deletions and 𝑠 insertions whenever 𝑟 + 𝑠 ≤ 𝑘 , for a single sequence.
Therefore, to correct deletion and insertion errors in a single sequence, we only
need to consider deletion correcting codes. Levenshtein proved that the optimal
redundancy (defined as 𝑛− log |C|) is 𝑂 (𝑘 log 𝑛) for constant 𝑘 . Specifically, it is in
the range 𝑘 log 𝑛 + 𝑜(log 𝑛) to 2𝑘 log 𝑛 + 𝑜(log 𝑛) when 𝑘 is a constant. In general,
the redundancy 𝑂 (𝑘 log 𝑛) is order-wise optimal when 𝑘 ≤ 𝑂 (𝑛𝜖 ) for some 𝜖 < 1.
The optimal redundancy becomes 𝑂 (𝑘 log(𝑛/𝑘)) when 𝑘 = 𝑂 (𝑛) and 𝑘 is small,
e.g., 𝑘 = 𝑛/4 [22]. When 𝑘 ≥ 𝑛/2, a 𝑘-deletion correcting code has cardinality
at most two. In addition, Levenshtein proposed the following optimal construction
(the well-known Varshamov-Tenengolts (VT) code [95]):{

(𝑐1, . . . , 𝑐𝑁 ) :
𝑁∑︁
𝑖=1

𝑖𝑐𝑖 ≡ 0 mod (𝑛 + 1)
}
, (2.1)

that is capable of correcting a single deletion with redundancy not more than log(𝑛+
1) [64]. The encoding/decoding complexity of VT codes is linear in 𝑛. Generalizing
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the VT construction to correct more than a single deletion was elusive for more than
50 years. In particular, the past approaches [47], [3], [74] resulted in asymptotic
code rates that were bounded away from 1.

A breakthrough paper [12] proposed a 𝑘-deletion correcting code construction
with 𝑂 (𝑘2 log 𝑘 log 𝑛) redundancy and 𝑂𝑘 (𝑛 log4 𝑛)1 encoding/decoding complex-
ity, where 𝑘 is a constant. This code is based on a 𝑘-deletion code of length log 𝑛,
which is constructed using a computer search. Nevertheless, the constants that are
involved in the work of [12] are orders of magnitude away from the lower bound in
log 𝑛 + 𝑜(log 𝑛) even for 𝑘 = 2, and the code is not systematic.

For 𝑘 = 2, [34] improved the redundancy up to 8 log 𝑛 + 𝑜(log 𝑛) using techniques
similar to [12], which are fundamentally different from ours, and incur higher re-
dundancy and complexity. Moreover, finding a 𝑘-deletion correcting code with
an asymptotic rate 1 as an extension of the VT construction remained widely
open. More recently, a 2-deletion correcting code construction with redundancy
4 log 𝑛 + 𝑜(log 𝑛) was proposed in [38], which improved our 7 log 𝑛 + 𝑜(log 𝑛) bits
of redundancy. The code construction in [38] is not systematic and used a different
approach from ours, which is hard to generalize to correct more deletions.

In this chapter, we provide a systematic two-deletion correcting code with redun-
dancy 7 log 𝑛 + 𝑜(log 𝑛) and linear encoding/decoding complexity. The main result
is as follows.

Theorem 2.1.1. For any integer 𝑛 ≥ 3 and 𝑁 = 𝑛+7 log 𝑛+𝑜(log 𝑛), there exists an
encoding function E : {0, 1}𝑛 → {0, 1}𝑁 and a decoding function D : {0, 1}𝑁−2 →
{0, 1}𝑛 such that for any c ∈ {0, 1}𝑛 and subsequence c′ ∈ {0, 1}𝑁−2 of E(c), we
have that D(c′) = c. In addition, functions E and D can be computed in 𝑂 (𝑛) time.

The encoding and decoding functions E and D will be explicitly constructed,
based on a VT-like extension that will be presented next. One might conjecture
that a potential extension of the VT code can be obtained by using higher order
parity checks

∑𝑛
𝑖=1 𝑖

𝑗𝑐𝑖 mod (𝑛 𝑗 + 1) for 𝑗 = 0, 1, . . . , 𝑡, but counterexamples are
constructible even for 𝑘 = 2 and 𝑡 ≤ 4 [12]. The following is a counterexample
for 𝑘 = 2 and 𝑡 = 3. Let

c = (1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1) and
1The notion 𝑂𝑘 denotes parameterized complexity, i.e., 𝑂𝑘 (𝑛 log4 𝑛) = 𝑓 (𝑘)𝑂 (𝑛 log4 𝑛) for

some function 𝑓 .
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c′ = (0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0)

be two sequences of length 12. The sequences c and c′ share a common subse-
quence (1, 0, 0, 0, 1, 0, 1, 1, 1, 0) of length 10. It can be verified that

∑𝑛
𝑖=1 𝑖

𝑗𝑐𝑖 =∑𝑛
𝑖=1 𝑖

𝑗𝑐′
𝑖

for 𝑗 ∈ {0, 1, 2, 3}. It is not known whether there is a constant bound 𝑡

such that the higher order parity check works for two deletions.

In this section, we find that similar higher order parity checks work when 𝑡 = 3,
given that we restrict our attention to sequences with no adjacent ones. In particular,
for sequences with no adjacent ones, the “syndrome,” i.e., the difference between the
parity checks of a codeword and an erroneous sequence, can be expressed as a linear
function. The matrix of the linear function is similar to the Vandermonde matrix
in the sense that its columns are the sums of Vandermonde matrix columns. It can
be shown that such a matrix has a positive determinant and hence the “syndrome”
cannot be zero. Note that in the above counterexample both c and c′ contain
adjacent ones. Consequently, applying these parity checks on certain indicator
vectors yields the desired result. For 𝑎 and 𝑏 in {0, 1} and a binary sequence c,
the 𝑎𝑏-indicator 1𝑎𝑏 (c) ∈ {0, 1}𝑛−1 of c is

1𝑎𝑏 (𝑐)𝑖 =


1 if 𝑐𝑖 = 𝑎 and 𝑐𝑖+1 = 𝑏

0 else.
.

For example,

c = (1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0)
110(c) = (1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0)
101(c) = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0).

Since any two 10 or 01 patterns are at least two positions apart, the 10- and 01-
indicators of any 𝑛-bit sequence do not contain consecutive ones, and hence higher
order parity checks can be applied. The parity checks in the proposed code rely on
the following integer vectors.

m(0) ≜ (1, 2, . . . , 𝑛 − 1)

m(1) ≜

(
1, 1 + 2, 1 + 2 + 3, . . . ,

𝑛(𝑛 − 1)
2

)
m(2) ≜

(
12, 12 + 22, 12 + 22 + 32, . . . ,

𝑛(𝑛 − 1) (2𝑛 − 1)
6

)
,
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and further, for c ∈ {0, 1}𝑛 let

𝑓 (c) ≜ (110(c) · m(0) mod 2𝑛,

110(c) · m(1) mod 𝑛2,

110(c) · m(2) mod 𝑛3), and

ℎ(c) ≜ (101(c) · 1 mod 3, 101(c) · m(1) mod 2𝑛), (2.2)

where · denotes inner product over the integers, and 1 denotes the all 1’s vector.
The term 101(c) · 1 in (2.2) counts the number of 1-runs that are preceded by a 0 in
the vector 101(c). The functions 𝑓 (c) and ℎ(c) are used to obtain parity symbols in
our construction. To show this, we prove the following theorem, which requires the
notion of a k-deletion ball. For any integer 𝑘 let 𝐵𝑘 (c) be the k-deletion ball of c,
i.e., the set of 𝑛-bit sequences that share a common length 𝑛− 𝑘 subsequence with c.

Theorem 2.1.2. For c, c′ ∈ {0, 1}𝑛, if c ∈ 𝐵2(c′), 𝑓 (c) = 𝑓 (c′), and ℎ(c) = ℎ(c′),
then c = c′.

Theorem 2.1.2 indicates the possibility of constructing a 2-deletion code, with func-
tions ℎ(c) and 𝑓 (c) serving as the redundancy bits. The induced redundancy is at
most 7 log(𝑛)+𝑜(log 𝑛) (the 𝑜(log 𝑛) term stems from both the redundancy ℎ(c) and
𝑓 (c) and the extra redundancy to protect ℎ(c) and 𝑓 (c)). Furthermore, the encod-
ing algorithm is straightforward — we begin by appending the redundancies 𝑓 (c)
and ℎ(c) to the sequence c, in their binary representation. Then, to protect the
redundancies 𝑓 (c) and ℎ(c), we apply functions 𝑓 (·) and ℎ(·) once again and ap-
pend 𝑓 ( 𝑓 (c), ℎ(c)) and ℎ( 𝑓 (c), ℎ(c)) to the sequences2. Finally, in order to protect
the latter, we use a simple 3-fold repetition code. The encoding function is given in
the following construction.

Construction 2.1.1. For a sequence c ∈ {0, 1}𝑛, the encoding function is

E(c) = (c, 𝑓 (c), ℎ(c), 𝑟3( 𝑓 ( 𝑓 (c), ℎ(c))), 𝑟3(ℎ( 𝑓 (c), ℎ(c)))), (2.3)

where 𝑟3 is a 3-fold repetition encoding function. The length of the codeword E(c)
is

𝑁 ≜𝑛 + 7 log 𝑛 + 8 + 21 log(7 log 𝑛 + 8) + 24

=𝑛 + 7 log 𝑛 + 𝑜(log 𝑛).
2Note that the functions 𝑓 (·) and ℎ(·) are applied here on the sequences c, and later on the

sequence ( 𝑓 (c), ℎ(c)), that is shorter than c. However, it readily follows from (2.2) that functions 𝑓 (·)
and ℎ(·) can be defined over sequences of any length.
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Clearly, the computation of the function E(c) can be done in linear time. The linear
time decoding of Construction 2.1.1 is achieved by a reduction to the problem of
finding an element in a sorted matrix of integers; a problem which is solvable in
linear time. In addition, we show that this matrix does not have to be calculated
in full, since each entry can be computed from its neighbors in constant time. The
decoding algorithm will be given in detail in Sec. 2.5. Construction 2.1.1 and the
linear decoding algorithm together prove Theorem 2.1.1.

One of the most substantial aspects of our contribution lies in viewing it as a
generalization of the VT construction. In particular, the proof of Theorem 2.1.2 can
be seen as a higher dimensional variant of the proof for the VT construction. In
the remainder of this section, a generalized proof of correctness for the VT codes
is presented. Then, it is shown how this particular proof can be extended to prove
Theorem 2.1.2. To the best of the authors’ knowledge, this constitutes the first
extension of the VT code which attains rate 1.

Generalizing VT for a single deletion
Clearly, a VT code of length 𝑛 − 1 can be seen as a set of sequences c for which
the values of ℓ(c) ≜ c · m(0) mod 𝑛 coincide. Adopting this point of view, the
correctness of the VT construction is an immediate corollary of the following more
general claim, in which ℓv(c) ≜ c · v mod (𝑣𝑛−1 + 1). The claim also appeared
in [43]. Here we prove it in a different approach that will be used throughout the
chapter.

Proposition 2.1.1. For c, c′ ∈ {0, 1}𝑛−1, and v ∈ Z𝑛−1
+ , if c ∈ 𝐵1(c′), ℓv(c) =

ℓv(c′), and 𝑣1 < 𝑣2 < . . . < 𝑣𝑛−1 then c = c′.

In turn, the proof of this proposition can be completed by defining the following
function. For a vector v ∈ Z𝑛−1

+ , an integer 𝑟 ∈ {1, . . . , 𝑛 − 1}, and a binary
vector x = (𝑥1, . . . , 𝑥𝑠) with 𝑟 + 𝑠 − 2 ≤ 𝑛 − 1, let

𝑔v(𝑟, x) ≜ x · ((v(𝑟,𝑟+𝑠−2) , 0) − (0, v(𝑟,𝑟+𝑠−2)))

= 𝑥1𝑣𝑟 − 𝑥𝑠𝑣𝑟+𝑠−2 +
𝑠−1∑︁
𝑡=2

𝑥𝑡 (𝑣𝑡+𝑟−1 − 𝑣𝑡+𝑟−2), (2.4)

where v(𝑟,𝑟+𝑠−2) ≜ (𝑣𝑟 , 𝑣𝑟+1, . . . , 𝑣𝑟+𝑠−2). As shown in the proof of Proposition
2.1.1, the difference ℓv(c) − ℓv(c′) for c ∈ 𝐵1(c′), which plays a key role in proving
Proposition 2.1.1, can be expressed in the form 𝑔v(𝑟, x) for some 𝑥. Furthermore,
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the difference of parity checks 𝑓 (c) − 𝑓 (c′) for c ∈ 𝐵2(c′) can be expressed as the
sum or difference of two functions 𝑔v(𝑟1, x1) and 𝑔v(𝑟2, x2). The following claim
regarding the function 𝑔v(𝑟, x) will be used to prove Proposition 2.1.1.

Proposition 2.1.2. For positive integers 𝑟 and 𝑠 such that 𝑟 + 𝑠 − 2 ≤ 𝑛 − 1, a vector
v ∈ Z𝑛−1

+ with 𝑣1 < . . . < 𝑣𝑛−1, and an 𝑠-bit binary vector x, if 𝑔v(𝑟, x) = 0, then x
is a constant vector.

Proof. We distinguish between two cases according to the value of 𝑥𝑠. On the one
hand, if 𝑥𝑠 = 0, then it is readily verified according to (2.4) that 𝑔v(𝑟, x) is the sum
of nonnegative terms. In which case, the equation 𝑔v(𝑟, x) = 0 holds if and only
if x = 0. On the other hand, if 𝑥𝑠 = 1, then

𝑔v(𝑟, x) = 𝑣𝑟𝑥1 +
𝑠−1∑︁
𝑡=2

(𝑣𝑡+𝑟−1 − 𝑣𝑡+𝑟−2)𝑥𝑡 − 𝑣𝑟+𝑠−2

≤ 𝑣𝑟 +
𝑠−1∑︁
𝑡=2

(𝑣𝑡+𝑟−1 − 𝑣𝑡+𝑟−2) − 𝑣𝑟+𝑠−2 = 0. (2.5)

The equality holds if and only if x = 1. □

Proof. (of Proposition 2.1.1) Let 𝑘1 and 𝑘2 (𝑘1 ≤ 𝑘2) be the indices of the deletions
in c and c′, respectively, after which they are identical. Then, we have

c𝑡 = c′𝑡 if 𝑡 < 𝑘1

or 𝑡 > 𝑘2, and

c𝑡+1 = c′𝑡 if 𝑘1 ≤ 𝑡 ≤ 𝑘2 − 1, (2.6)

and one can find that

c · v − c′ · v =

𝑘1−1∑︁
𝑡=1

𝑐𝑡𝑣𝑡 + 𝑐𝑘1𝑣𝑘1 +
𝑘2∑︁

𝑡=𝑘1+1
𝑐𝑡𝑣𝑡+

𝑛∑︁
𝑡=𝑘2+1

𝑐𝑡𝑣𝑡 − (
𝑘1−1∑︁
𝑡=1

𝑐𝑡𝑣𝑡 +
𝑘2−1∑︁
𝑡=𝑘1

𝑐𝑡+1𝑣𝑡+

𝑐′𝑘2
𝑣𝑘2 +

𝑛∑︁
𝑡=𝑘2+1

𝑐𝑡𝑣𝑡)

= 𝑐𝑘1𝑣𝑘1 +
𝑘2∑︁

𝑡=𝑘1+1
𝑐𝑡 (𝑣𝑡 − 𝑣𝑡−1) − 𝑐𝑘2𝑣𝑘−2

= 𝑔v(𝑘1, (c(𝑘1,𝑘2) , 𝑐′𝑘2
)). (2.7)
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Hence, if ℓ𝑣 (c) = ℓ𝑣 (c′), then we have that 𝑔v(𝑘1, (c(𝑘1,𝑘2) , 𝑐′
𝑘2
)) ≡ 0 mod (𝑣𝑛−1 + 1).

Furthermore, since

−𝑣𝑛−1 ≤ −𝑣𝑟+𝑠−2

≤ 𝑥1𝑣𝑟 − 𝑥𝑠𝑣𝑟+𝑠−2 +
𝑠−1∑︁
𝑡=2

𝑥𝑡 (𝑣𝑡+𝑟−1 − 𝑣𝑡+𝑟−2)

≤ 𝑣𝑟 +
𝑠−1∑︁
𝑡=2

(𝑣𝑡+𝑟−1 − 𝑣𝑡+𝑟−2) = 𝑣𝑟+𝑠−2 ≤ 𝑣𝑛−1, (2.8)

it follows that ℓv(c) = ℓv(c′) if and only if 𝑔v(𝑘1, (c(𝑘1,𝑘2) , 𝑐′
𝑘2
)) = 0. The proof is

now concluded by using Proposition 2.1.2 and Eq. (2.6) as follows. From Propo-
sition 2.1.2 we get 𝑐𝑘1 = . . . = 𝑐𝑘2 = 𝑐′

𝑘2
. Together with Eq. (2.6), we have

that 𝑐′𝑡 = 𝑐𝑡+1 = 𝑐𝑡 for 𝑘1 ≤ 𝑡 ≤ 𝑘2 − 1 and 𝑐′𝑡 = 𝑐𝑡 for 𝑡 < 𝑘1 or 𝑡 ≥ 𝑘2, and
hence c = c′. □

The proof of correctness for a VT code of length 𝑛 − 1 immediately follows from
Proposition 2.1.1 by choosing v = (1, . . . , 𝑛 − 1). Now, the crux of proving The-
orem 2.1.2 boils down to the following higher dimensional variant of Proposi-
tion 2.1.2, and hence the tight connection between the VT construction and the one
which is presented in this chapter.

Proposition 2.1.3. For positive integers 𝑟1, 𝑟2, 𝑠1, and 𝑠2 such that 𝑟2 > 𝑟1 + 𝑠1 − 2
and 𝑟2 + 𝑠2 − 2 ≤ 𝑛 − 1, and binary sequences x and y of lengths 𝑠1 and 𝑠2,
respectively, if

𝑔m(0) (𝑟1, x) + 𝜆𝑔m(0) (𝑟2, y) = 0, and

𝑔m(1) (𝑟1, x) + 𝜆𝑔m(1) (𝑟2, y) = 0, (2.9)

where 𝜆 = ±1, then x and y are constant vectors.

Additional technical claims, which involve the remaining ingredients of the redun-
dancy bits, are given in the sequel.

2.2 Outline
The intuition behind applying the redundancy functions over the indicator vectors,
rather than over the message itself, is the following simple lemma.

Lemma 2.2.1. For c and c′ in {0, 1}𝑛 such that c ∈ 𝐵2(c′), if 110(c) = 110(c′)
and 101(c) = 101(c′) then c = c′.
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Proof. The conditions 110(c) = 110(c′) and 101(c) = 101(c′) imply that the as-
cending (i.e., 0 to 1) and descending (i.e., 1 to 0) transition positions of c coincide
with those of c′ respectively. Hence if transitions exist in c or c′, then c = c′. If no
transitions happen in c or c′ and c ≠ c′, then one of c and c′ is all 0’s vector and the
other is all 1’s vector. Since all 0’s vector does not share a common subsequence of
length 𝑛 − 2 with all 1’s vector, the claim follows. □

Based on this lemma, the proof of Theorem 2.1.2 is separated to the following
two lemmas. Generally speaking, it is shown that for two confusable sequences,
i.e., that share a common 𝑛 − 2 subsequence, if the 𝑓 redundancies coincide (2.2),
then so are the 10-indicators. Then, it is shown that confusable sequences with
identical 10-indicators and identical ℎ redundancy, have identical 01-indicators.

Lemma 2.2.2. For c and c′ in {0, 1}𝑛, if c ∈ 𝐵2(c′) and 𝑓 (c) = 𝑓 (c′), then 110(c) =
110(c′).

Lemma 2.2.3. For c and c′ in {0, 1}𝑛 such that c ∈ 𝐵2(c′), if 110(c) = 110(c′) and
ℎ(c) = ℎ(c′), then 101(c) = 101(c′).

From these lemmas it is clear that two 𝑛-bit sequences that share a common 𝑛 − 2
subsequence and agree on the redundancies 𝑓 and ℎ have identical 10- and 01-
indicators, and hence, the proof of Theorem 2.1.2 is concluded. The proofs of
Lemma 2.2.2 and Lemma 2.2.3 make extensive use of the following two technical
claims, that are easy to prove.

Proposition 2.2.1. For c and c′ in {0, 1}𝑛, if c ∈ 𝐵2(c′) then 110(c) ∈ 𝐵2(110(c′))
and 101(c) ∈ 𝐵2(101(c′)).

Proof. We first show that if c ∈ 𝐵1(c′) then 110(c) ∈ 𝐵1(110(c′)) and 101(c) ∈
𝐵1(101(c′)). To this end, it suffices to show that if d ∈ {0, 1}𝑛−1 is obtained from c

by one deletion, then 110(d) (resp. 101(d)) is obtained from 110(c) (resp. 101(c))
by one deletion (see Table 2.1). Further, it is easy to see that a deletion of 𝑐1

corresponds to a deletion of 110(c)1 (resp. 101(c)1) and a deletion of 𝑐𝑛 corresponds
to a deletion of 110(c)𝑛−1 (resp. 101(c)𝑛−1). Hence, it follows that if

c 1 del’−→ d 1 del’−→ e

c′ 1 del’−→ d′ 1 del’−→ e
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Table 2.1: All possible cases of deletions of 𝑐𝑖 for 2 ≤ 𝑖 ≤ 𝑛 − 1 correspond to
deletions in 110(c) (resp. 101(c′)).

𝑐𝑖−1𝑐𝑖𝑐𝑖+1 000 001 010 011 100 101 110 111
110(𝑐)𝑖−1110(𝑐)𝑖 00 00 01 00 10 10 01 00
101(𝑐)𝑖−1101(𝑐)𝑖 00 01 10 10 00 01 00 00

then

110(c)
1 del’−→ 110(d)

1 del’−→ 110(e)

110(c′)
1 del’−→ 110(d′) 1 del’−→ 110(e)

101(c)
1 del’−→ 101(d)

1 del’−→ 101(e)

101(c′)
1 del’−→ 101(d′) 1 del’−→ 101(e),

which concludes the claim. □

Proposition 2.2.2. For c, c′ ∈ {0, 1}𝑛, if c ∈ 𝐵2(c′) and 101(c)·1 = 101(c′)·1 mod 3,
then 101(c) · 1 = 101(c′) · 1.

Proof. Sincec ∈ 𝐵2(c′), it follows from Proposition 2.2.1 that 110(c) ∈ 𝐵2(110(c′)),
and thus 110(c) and 110(c′) have a mutual (𝑛 − 3)-bit substring s. Since s ·1, 110(c) ·
1, and 110(c′) · 1 are the number of 1 entries in s, 110(c), and 110(c′) respectively,
we have that

s · 1 ≤ 110(c) · 1 ≤ s · 1 + 2, and

s · 1 ≤ 110(c′) · 1 ≤ s · 1 + 2,

and thus |110(c) ·1−110(c′) ·1| ≤ 2. However, since 3 divides |110(c) ·1−110(c′) ·1|,
we must have that 110(c) · 1 = 110(c′) · 1. □

In addition, one of the cases of the proof of Lemma 2.2.2 requires a specialized
variant of Proposition 2.1.3, as follows.

Proposition 2.2.3. Let 𝑟1, 𝑟2, 𝑠1, 𝑠2 and 𝑠3 be positive integers that satisfy 𝑟2 = 𝑟1+𝑠1

and 𝑟2 + 𝑠2 + 𝑠3 − 1 ≤ 𝑛 − 1, and let x ∈ {0, 1}𝑠1+𝑠2+1 and y ∈ {0, 1}1+𝑠2+𝑠3 be such
that

(𝑥𝑠1+1, 𝑥𝑠1+2, . . . , 𝑥𝑠1+𝑠2) = (𝑦2, 𝑦3, . . . , 𝑦𝑠2+1),
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and (𝑥𝑠1+1, 𝑥𝑠1+2, . . . , 𝑥𝑠1+𝑠2) has no adjacent 1’s. If

𝑔m(0) (𝑟1, x) + 𝑔m(0) (𝑟2, y) = 0,

𝑔m(1) (𝑟1, x) + 𝑔m(1) (𝑟2, y) = 0, and

𝑔m(2) (𝑟1, x) + 𝑔m(2) (𝑟2, y) = 0, (2.10)

then either 𝑥1 = . . . = 𝑥𝑠1+𝑠2+1 = 𝑦1 = . . . = 𝑦𝑠2+𝑠3+1 or

𝑥1 = 𝑥2 = . . . = 𝑥𝑠1+1 = 1 − 𝑦1,

𝑥𝑡 + 𝑥𝑡+1 = 1, for 𝑡 ∈ {𝑠1 + 1, . . . , 𝑠1 + 𝑠2 − 1},
𝑥𝑠1+𝑠2+1 + 𝑦𝑠2+1 = 1, and

𝑦𝑠2+1 = . . . = 𝑦𝑠2+𝑠3+1. (2.11)

Proposition 2.1.3 and Proposition 2.2.3 are key to the proof of Lemma 2.2.2. More-
over, the proof of Proposition 2.2.3 contains one of the main ideas in this chapter
that proves the correctness of correcting two deletions using higher order parity
checks. Proposition 2.1.3 and Proposition 2.2.3 are proved in Sec. 2.3. Finally, the
following lemma shows a property of 𝑔v(𝑟, x), which will be useful in the proof of
Proposition 2.1.3 and Proposition 2.2.3.

Proposition 2.2.4. For positive integers 𝑟 and 𝑠 such that 𝑟 + 𝑠 − 2 ≤ 𝑛 − 1, a vector
v, and an 𝑠-bit binary vector x, we have that

𝑔v(𝑟, x) + 𝑔v(𝑟, x) = 0, (2.12)

where x ≜ 1 − x.

Proof. We have that

𝑔v(𝑟, x) =𝑣𝑟𝑥1 +
𝑠−1∑︁
𝑡=2

(𝑣𝑡+𝑟−1 − 𝑣𝑡+𝑟−2)𝑥𝑡 − 𝑣𝑟+𝑠−2𝑥𝑠

=𝑣𝑟𝑥1 +
𝑠−1∑︁
𝑡=2

(𝑣𝑡+𝑟−1 − 𝑣𝑡+𝑟−2)𝑥𝑡 − 𝑣𝑟+𝑠−2𝑥𝑠−

𝑣𝑟 −
𝑠−1∑︁
𝑡=2

(𝑣𝑡+𝑟−1 − 𝑣𝑡+𝑟−2) + 𝑣𝑟+𝑠−2

=𝑣𝑟 (𝑥1 − 1) +
𝑠−1∑︁
𝑡=2

(𝑣𝑡+𝑟−1 − 𝑣𝑡+𝑟−2) (𝑥𝑡 − 1)−

𝑣𝑟+𝑠−2(𝑥𝑠 − 1) = −𝑔v(𝑟, x),

which proves Eq. (2.12). □
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Prop. 2.2.4

Prop. 2.1.3 Prop. 2.2.1 Prop. 2.2.2 Prop. 2.2.3

Lemma 2.2.1 Lemma 2.2.2 Lemma 2.2.3

Thm. 2.1.2

Thm. 2.1.1

Figure 2.1: Dependencies of the claims in Ch. 2.

Lemma 2.2.2 is more involved compared to Lemma 2.2.3 and is proved in Sec. 2.3,
with the proofs of Proposition 2.1.3 and Proposition 2.2.3 given at the end of
Sec. 2.3. Lemma 2.2.3 is proved in Sec. 2.4. Finally, the decoding algorithm of
Construction 2.1.1 is presented in Sec. 2.5. For the convenience of the reader, a
graph of dependencies is given in Figure 3.2.

2.3 Protecting 110 Indicator Vectors
In this section, we prove Lemma 2.2.2. The proof is based on Proposition 2.1.3 and
Proposition 2.2.3, which are proved at the end of this section. Since c ∈ 𝐵2(c′) it
follows that there exist integers 𝑖1, 𝑖2, 𝑗1, and 𝑗2 such that

c del’ 𝑖1−→ d
del’ 𝑗1−→ e

c′ del’ 𝑖2−→ d′ del’ 𝑗2−→ e,

and by Proposition 2.2.1 it follows that there exist integers ℓ1, ℓ2, 𝑘1, and 𝑘2 such
that

110(c)
del’ ℓ1−→ 110(d)

del’ 𝑘1−→ 110(e)

110(c′)
del’ ℓ2−→ 110(d′) del’ 𝑘2−→ 110(e).
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Due to symmetry between c and c′, we distinguish between the following three cases.
In each case, the difference between the 𝑓 values of c and c′ are given in terms of the
function 𝑔 (2.4). Further, the computation of these three differences, a somewhat
tedious but straightforward task, is deferred to the appendix of this chapter.

Case (a). If ℓ1 ≤ ℓ2 < 𝑘2 ≤ 𝑘1 (Fig. 2.2), then

110(c)𝑡 = 110(c′)𝑡 if 𝑡 < ℓ1

or ℓ2 < 𝑡 < 𝑘2

or 𝑡 > 𝑘1,

110(c)𝑡+1 = 110(c′)𝑡 if ℓ1 ≤ 𝑡 ≤ ℓ2 − 1,

110(c)𝑡 = 110(c′)𝑡+1 if 𝑘2 ≤ 𝑡 ≤ 𝑘1 − 1.

Thus, for 𝑒 ∈ {0, 1, 2},

(110(c) − 110(c′)) · m(𝑒)

= 𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,ℓ2) , 110(c′)ℓ2))−
𝑔m(𝑒) (𝑘2, (110(c′) (𝑘2,𝑘1) , 110(c)𝑘1)). (2.13)

Case (b). If ℓ1 ≤ ℓ2 < 𝑘1 ≤ 𝑘2 (Fig. 2.3), then

110(c)𝑡 = 110(c′)𝑡 if 𝑡 < 𝑙1

or 𝑙2 < 𝑡 < 𝑘1.

or 𝑡 > 𝑘2.

110(c)𝑡+1 = 110(c′)𝑡 if ℓ1 ≤ 𝑡 ≤ ℓ2 − 1

or 𝑘1 ≤ 𝑡 ≤ 𝑘2 − 1.

Thus, for 𝑒 ∈ {0, 1, 2},

(110(c) − 110(c′)) · m(𝑒)

= 𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,ℓ2) , 110(c′)ℓ2))+
𝑔m(𝑒) (𝑘1, (110(c) (𝑘1,𝑘2) , 110(c′)𝑘2)). (2.14)

Case (c). If ℓ1 < 𝑘1 ≤ ℓ2 < 𝑘2 (Fig. 2.4), then

110(c)𝑡 = 110(c′)𝑡 if 𝑡 < 𝑙1

or 𝑡 > 𝑘2,
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110(c)
110(c′) ★

★ ★

★= = =

= = =

ℓ1 ℓ2 𝑘1𝑘2

Figure 2.2: Case (a), where ℓ1 ≤ ℓ2 < 𝑘2 ≤ 𝑘1. The diagonal lines indicate equality
between the respective entries of 110(c) and 110(c′).

110(c)
110(c′) ★

★

★

★

= = =

= = =

ℓ1 ℓ2 𝑘2𝑘1

Figure 2.3: Case (b), where ℓ1 ≤ ℓ2 < 𝑘1 ≤ 𝑘2. The diagonal lines indicate equality
between the respective entries of 110(c) and 110(c′).

110(c)𝑡+1 = 110(c′)𝑡 if ℓ1 ≤ 𝑡 ≤ 𝑘1 − 2

or ℓ2 + 1 ≤ 𝑡 ≤ 𝑘2 − 1,

110(c)𝑡+2 = 110(c′)𝑡 if 𝑘1 − 1 ≤ 𝑡 ≤ ℓ2 − 1.

Thus, for 𝑒 ∈ {0, 1, 2},

(110(c) − 110(c′)) · m(𝑒)

= 𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,𝑘1−1) , 110(c) (𝑘1+1,ℓ2+1) , 110(c′)ℓ2))+
𝑔m(𝑒) (𝑘1, (110(c) (𝑘1,𝑘2) , 110(c′)𝑘2)). (2.15)

110(c)
110(c′)

★★

★★= =

= =

ℓ1 𝑘1 𝑘2ℓ2

Figure 2.4: Case (c), where ℓ1 < 𝑘1 ≤ ℓ2 < 𝑘2. The diagonal lines indicate equality
between the respective entries of 110(c) and 110(c′).

Note that if 𝑓 (c) = 𝑓 (c′), then 110(c) · m(𝑒) ≡ 110(c′) · m(𝑒) mod 𝑛𝑒, where 𝑛0 =

2𝑛, 𝑛1 = 𝑛2, and 𝑛2 = 𝑛3. Hence, from (2.13)–(2.15) we have that

𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,ℓ2) , 110(c′)ℓ2))
−𝑔m(𝑒) (𝑘2, (110(c′) (𝑘2,𝑘1) , 110(c)𝑘1)) ≡ 0 mod 𝑛𝑒,
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𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,ℓ2) , 110(c′)ℓ2))
+𝑔m(𝑒) (𝑘1, (110(c) (𝑘1,𝑘2) , 110(c′)𝑘2)) ≡ 0 mod 𝑛𝑒, and

𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,𝑘1−1) , 110(c) (𝑘1+1,ℓ2+1) , 110(c′)ℓ2))
+𝑔m(𝑒) (𝑘1, (110(c) (𝑘1,𝑘2) , 110(c′)𝑘2)) ≡ 0 mod 𝑛𝑒, (2.16)

for Case (a), Case (b), and Case (c), respectively.

In what follows, we show that these equalities also hold in their non modular version.
Specifically, we prove the following,

𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,ℓ2) , 110(c′)ℓ2))
−𝑔m(𝑒) (𝑘2, (110(c′) (𝑘2,𝑘1) , 110(c)𝑘1)) = 0, (2.17)

𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,ℓ2) , 110(c′)ℓ2))
+𝑔m(𝑒) (𝑘1, (110(c) (𝑘1,𝑘2) , 110(c′)𝑘2)) = 0, and (2.18)

𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,𝑘1−1) , 110(c) (𝑘1+1,ℓ2+1) , 110(c′)ℓ2))
+𝑔m(𝑒) (𝑘1, (110(c) (𝑘1,𝑘2) , 110(c′)𝑘2)) = 0. (2.19)

From (2.8), we have that

−m(𝑒)
𝑟+𝑠−2 ≤ 𝑔m(𝑒) (𝑟, x) ≤ m(𝑒)

𝑟+𝑠−2

for any x ∈ {0, 1}𝑠 and any integer 𝑟 that satisfies 𝑟 + 𝑠 − 2 ≤ 𝑛 − 1. Therefore,

−m(𝑒)
ℓ2

− m(𝑒)
𝑘1

≤𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,ℓ2) , 110(c′)ℓ2))−

𝑔m(𝑒) (𝑘2, (110(c′) (𝑘2,𝑘1) , 110(c)𝑘1))
≤m(𝑒)

ℓ2
+ m(𝑒)

𝑘1
,

−m(𝑒)
ℓ2

− m(𝑒)
𝑘2

≤𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,ℓ2) , 110(c′)ℓ2))+

𝑔m(𝑒) (𝑘1, (110(c) (𝑘1,𝑘2) , 110(c′)𝑘2))
≤m(𝑒)

ℓ2
+ m(𝑒)

𝑘2
, and

−m(𝑒)
ℓ2

− m(𝑒)
𝑘2

≤𝑔m(𝑒) (ℓ1, (110(c) (ℓ1,𝑘1−1) ,

110(c) (𝑘1+1,ℓ2+1) , 110(c′)ℓ2))
+ 𝑔m(𝑒) (𝑘1, (110(c) (𝑘1,𝑘2) , 110(c′)𝑘2))

≤m(𝑒)
ℓ2

+ m(𝑒)
𝑘2
, (2.20)

for Case (a)–(c) respectively. Further, note that

m(𝑒)
ℓ2

+ m(𝑒)
𝑘1

< 𝑛𝑒 and m(𝑒)
ℓ2

+ m(𝑒)
𝑘2

< 𝑛𝑒 . (2.21)
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Combining (2.16), (2.20), and (2.21), we conclude that if 𝑓 (c) = 𝑓 (c′), then
Eq. (2.17), (2.18), and (2.19) hold for Case (a), Case (b), and Case (c) respectively.

For Case (a), Equation (2.17) and Proposition 2.1.3 imply that

110(c)ℓ1 = . . . = 110(c)ℓ2 = 110(c′)ℓ2

110(c′)𝑘2 = . . . = 110(c′)𝑘1 = 110(c)𝑘1 ,

which readily implies that

110(c′)𝑡 = 110(c)𝑡+1 = 110(c)𝑡

for ℓ1 ≤ 𝑡 < ℓ2 and

110(c)𝑡 = 110(c′)𝑡+1 = 110(c′)𝑡

for 𝑘2 ≤ 𝑡 < 𝑘1. Together with 110(c)ℓ2 = 110(c′)ℓ2 and 110(c′)𝑘1 = 110(c)𝑘1 , we
have that 110(c) = 110(c′).

For Case (b), Equation (2.18) and Proposition 2.1.3 implies that

110(c)ℓ1 = . . . = 110(c)ℓ2 = 110(c′)ℓ2

110(c′)𝑘1 = . . . = 110(c′)𝑘2 = 110(c)𝑘2

and hence

110(c′)𝑡 = 110(c)𝑡+1 = 110(c)𝑡

for ℓ1 ≤ 𝑡 < ℓ2 and 𝑘1 ≤ 𝑡 < 𝑘2, and thus 110(c) = 110(c′).

Note that in Case (a) and (b) we used Proposition 2.1.3, which implies that only two
parity checks with weights m(0) and m(1) are needed. Case (c) is the most involved
case and the only case when the parity check with weight m(2) is needed. Hence,
Proposition 2.2.3 is required. According to Equation (2.19) and Proposition 2.2.3,
we have either

110(c)ℓ1 = . . . = 110(c)𝑘2 = 110(c′)ℓ2 = 110(c′)𝑘2 (2.22)

or

110(c)ℓ1 = . . . = 110(c)𝑘1−1 = 110(c)𝑘1+1,

110(c)𝑖 + 110(c)𝑖+1 = 1 for 𝑖 ∈ {𝑘1, . . . , ℓ2},
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110(c′)ℓ2 + 110(c′)𝑘2 = 1, and

110(c)ℓ2+1 = . . . = 110(c)𝑘2 = 110(c′)𝑘2 . (2.23)

If (2.22) is true, we can obtain c = c′ by following steps similar to those of Case (a)
and Case (b). If (2.23) is true, we have

110(c′)𝑡 = 110(c)𝑡+1 = 110(c)𝑡

for ℓ1 ≤ 𝑡 ≤ 𝑘1 − 2 and ℓ2 + 1 ≤ 𝑡 ≤ 𝑘2 − 1. Furthermore, we have that

110(c′)𝑡 = 110(c)𝑡+2 = 1 − 110(c)𝑡+1 = 110(c)𝑡

for 𝑘1 ≤ 𝑡 ≤ ℓ2−1. In addition, we have 110(c′)𝑘1−1 = 110(c)𝑘1+1 = 110(c)𝑘1−1, 110(c′)ℓ2 =

1 − 110(c′)𝑘2 = 1 − 110(c)ℓ2+1 = 110(c)ℓ2 and 110(c′)𝑘2 = 110(c)𝑘2 . Hence, we have
that 110(c) = 110(c′). This concludes the proof of Cases (a), (b), and (c), and thus
the proof of Lemma 2.2.2 is completed.

We now prove Proposition 2.1.3 and Proposition 2.2.3.

Proof. (of Proposition 2.1.3) According to Eq. (2.12), if 𝜆 = 1, then Eq. (2.9) can
be written as

𝑔m(0) (𝑟1, x) − 𝑔m(0) (𝑟2, y) = 0, and

𝑔m(1) (𝑟1, x) − 𝑔m(1) (𝑟2, y) = 0.

Therefore, it suffices to prove the claim for 𝜆 = −1. We distinguish between four
cases according to the value of (𝑦1, 𝑦𝑠2).

Case (a). (𝑦1, 𝑦𝑠2) = (0, 1). We have that

𝑔m(𝑒) (𝑟1, x) − 𝑔m(𝑒) (𝑟2, y)

= m(𝑒)
𝑟1 𝑥1 +

𝑠1−1∑︁
𝑡=2

(m(𝑒)
𝑡+𝑟1−1 − m(𝑒)

𝑡+𝑟1−2)𝑥𝑡 − m(𝑒)
𝑟1+𝑠1−2𝑥𝑠1−

m(𝑒)
𝑟2 𝑦1 −

𝑠2−1∑︁
𝑡=2

(m(𝑒)
𝑡+𝑟2−1 − m(𝑒)

𝑡+𝑟2−2)𝑦𝑡 + m(𝑒)
𝑟2+𝑠2−2𝑦𝑠2

≥ − m(𝑒)
𝑟1+𝑠1−2 −

𝑠2−1∑︁
𝑡=2

(m(𝑒)
𝑡+𝑟2−1 − m(𝑒)

𝑡+𝑟2−2) + m(𝑒)
𝑟2+𝑠2−2

= m(𝑒)
𝑟2 − m(𝑒)

𝑟1+𝑠1−2 > 0,

a contradiction.
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Case (b). (𝑦1, 𝑦𝑠2) = (1, 0). From Proposition 2.2.4 and (2.9) we have 𝑔m(𝑒) (𝑟1, x)−
𝑔m(𝑒) (𝑟2, y) = 0 for 𝑒 ∈ {0, 1}, where x ≜ 1 − x and y ≜ 1 − y. Since (𝑦1, 𝑦𝑠2) =
(0, 1), from the previous case this leads to a contradiction.

Case (c). (𝑦1, 𝑦𝑠2) = (1, 1). Let

𝑆1 ≜ { 𝑗 : 𝑦 𝑗−𝑟2+1 = 1, 𝑟2 + 1 ≤ 𝑗 ≤ 𝑟2 + 𝑠2 − 2}, and

𝑆𝑐1 ≜ { 𝑗 : 𝑦 𝑗−𝑟2+1 = 0, 𝑟2 + 1 ≤ 𝑗 ≤ 𝑟2 + 𝑠2 − 2},

and notice that

𝑔m(0) (𝑟2, y)

= m(0)
𝑟2 − m(0)

𝑟2+𝑠2−2 +
𝑠2−1∑︁
𝑗=2

(m(0)
𝑗+𝑟2−1 − m(0)

𝑗+𝑟2−2)𝑦 𝑗

= −
𝑟2+𝑠2−2∑︁
𝑗=𝑟2+1

(m(0)
𝑗

− m(0)
𝑗−1) +

𝑠2−1∑︁
𝑗=2

(m(0)
𝑗+𝑟2−1 − m(0)

𝑗+𝑟2−2)𝑦 𝑗

= −
𝑟2+𝑠2−2∑︁
𝑗=𝑟2+1

(m(0)
𝑗

− m(0)
𝑗−1) (1 − 𝑦 𝑗 )

= −
∑︁
𝑗∈𝑆𝑐1

(m(0)
𝑗

− m(0)
𝑗−1) = −

∑︁
𝑗∈𝑆𝑐1

1, and similarly,

𝑔m(1) (𝑟2, y)
= −

∑︁
𝑗∈𝑆𝑐1

(m(1)
𝑗

− m(1)
𝑗−1) = −

∑︁
𝑗∈𝑆𝑐1

𝑗 . (2.24)

Now, on the one hand, if 𝑥𝑠1 = 0 we have

𝑔m(0) (𝑟1, x) =m(0)
𝑟1 𝑥1 +

𝑠1−1∑︁
𝑡=2

(m(0)
𝑡+𝑟1−1 − m(0)

𝑡+𝑟1−2)𝑥𝑡

≥0, (2.25)

and hence, (2.24) and (2.25) imply that 𝑔m(0) (𝑟1, x) − 𝑔m(0) (𝑟2, y) ≥ 0, and equality
holds only when 𝑔m(0) (𝑟1, x) and 𝑔m(0) (𝑟2, y) are both 0, which by Proposition 2.1.2
implies that x and y are constant vectors. On the other hand, if 𝑥𝑠1 = 1 let 𝑆2 = {𝑡 :
𝑥max{𝑡−𝑟1+1,1} = 0, 1 ≤ 𝑡 ≤ 𝑟1 + 𝑠1 − 2}, and notice that

𝑔m(0) (𝑟1, x)

= m(0)
𝑟1 𝑥1 +

𝑠1−1∑︁
𝑡=2

(m(0)
𝑡+𝑟1−1 − m(0)

𝑡+𝑟1−2)𝑥𝑡 − m(0)
𝑟1+𝑠1−2
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= m(0)
𝑟1 (𝑥1 − 1) +

𝑠1−1∑︁
𝑡=2

(m(0)
𝑡+𝑟1−1 − m(0)

𝑡+𝑟1−2) (𝑥𝑡 − 1)

= −
∑︁
𝑡∈𝑆2

1, and similarly,

𝑔m(1) (𝑟1, x) = −
∑︁
𝑡∈𝑆2

𝑡. (2.26)

Inserting (2.24) and (2.26) into (2.9), we have

−
∑︁
𝑡∈𝑆2

1 +
∑︁
𝑗∈𝑆𝑐1

1 = 0,

−
∑︁
𝑡∈𝑆2

𝑡 +
∑︁
𝑗∈𝑆𝑐1

𝑗 = 0.

This implies that the sets 𝑆𝑐1 and 𝑆2 have the same cardinality and the same sum
of elements. However, the maximum element in 𝑆2 is smaller than the minimum
element in 𝑆𝑐1. Therefore, 𝑆𝑐1 and 𝑆2 are empty, which implies that x is the 0 vector
and y is the all 1’s vector.

Case (d). (𝑦1, 𝑦𝑠2) = (0, 0). From Proposition 2.2.4 and Eq. (2.9) we have
𝑔m(𝑒) (𝑟1, x) − 𝑔m(𝑒) (𝑟2, y) = 0 for 𝑒 ∈ {0, 1}, where x ≜ 1 − x and y ≜ 1 − y.
Since (𝑦1, 𝑦𝑠2) = (1, 1), from the previous case x and y are constant vectors, and
thus so are x and y. □

Proof. (of Proposition 2.2.3) We distinguish between four cases according to the
value of (𝑥𝑠1+𝑠2+1, 𝑦𝑠2+𝑠3+1).

Case (a). (𝑥𝑠1+𝑠2+1, 𝑦𝑠2+𝑠3+1) = (0, 0). Similar to (2.25), we have that 𝑔m(0) (𝑟1, x) +
𝑔m(0) (𝑟2, y) ≥ 0, where equality holds only if x and y are constant 0 vectors.

Case (b). (𝑥𝑠1+𝑠2+1, 𝑦𝑠2+𝑠3+1) = (1, 1). From Proposition 2.2.4 and Eq. (2.10) we
have that 𝑔m(0) (𝑟1, x)+𝑔m(0) (𝑟2, y) = 0. On the other hand, since (𝑥𝑠1+𝑠2+1, 𝑦𝑠2+𝑠3+1) =
(0, 0) , it follows that 𝑔m(0) (𝑟1, x) + 𝑔m(0) (𝑟2, y) ≥ 0 where equality holds when x
and y are constant 1 vectors.

Case (c). (𝑥𝑠1+𝑠2+1, 𝑦𝑠2+𝑠3+1) = (0, 1). On the one hand, for 𝑦1 = 0 we have

𝑔m(0) (𝑟1, x) + 𝑔m(0) (𝑟2, y)

= m(0)
𝑟1 𝑥1 +

𝑠1+1∑︁
𝑡=2

(m(0)
𝑡+𝑟1−1 − m(0)

𝑡+𝑟1−2)𝑥𝑡+
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𝑠1+𝑠2−1∑︁
𝑡=𝑠1+1

(m(0)
𝑡+𝑟1

− m(0)
𝑡+𝑟1−1)𝑥𝑡+1

+
𝑠2∑︁
𝑡=2

(m(0)
𝑡+𝑟2−1 − m(0)

𝑡+𝑟2−2)𝑦𝑡+

𝑠2+𝑠3∑︁
𝑡=𝑠2+1

(m(0)
𝑡+𝑟2−1 − m(0)

𝑡+𝑟2−2)𝑦𝑡 − m(0)
𝑟2+𝑠2+𝑠3−1

= m(0)
𝑟1 𝑥1 +

𝑠1+1∑︁
𝑡=2

(m(0)
𝑡+𝑟1−1 − m(0)

𝑡+𝑟1−2)𝑥𝑡+

𝑠1+𝑠2−1∑︁
𝑡=𝑠1+1

(m(0)
𝑡+𝑟1

− m(0)
𝑡+𝑟1−1) (𝑥𝑡 + 𝑥𝑡+1)

+
𝑠2+𝑠3∑︁
𝑡=𝑠2+1

(m(0)
𝑡+𝑟2−1 − m(0)

𝑡+𝑟2−2)𝑦𝑡 − m(0)
𝑟2+𝑠2+𝑠3−1

≤ m(0)
𝑟1 +

𝑠1+1∑︁
𝑡=2

(m(0)
𝑡+𝑟1−1 − m(0)

𝑡+𝑟1−2)+

𝑠1+𝑠2−1∑︁
𝑡=𝑠1+1

(m(0)
𝑡+𝑟1

− m(0)
𝑡+𝑟1−1)

+
𝑠2+𝑠3∑︁
𝑡=𝑠2+1

(m(0)
𝑡+𝑟2−1 − m(0)

𝑡+𝑟2−2) − m(0)
𝑟2+𝑠2+𝑠3−1 = 0,

where equality equality holds when

𝑥𝑡 = 1 for 𝑡 ∈ {1, . . . , 𝑠1 + 1},
𝑥𝑡 + 𝑥𝑡+1 = 1 for 𝑡 ∈ {𝑠1 + 1, . . . , 𝑠1 + 𝑠2 − 1}, and

𝑦𝑡 = 1 for 𝑡 ∈ {𝑠2 + 1, . . . , 𝑠2 + 𝑠3},

and hence (2.11) holds. On the other hand, when 𝑦1 = 1, let

𝑆1 = {𝑡 : 𝑥max{𝑡−𝑟1+1,1} = 1, 1 ≤ 𝑡 ≤ 𝑠1 + 𝑟1},
𝑆2 = {𝑡 : 𝑥𝑡−𝑟1 + 𝑥𝑡−𝑟1+1 = 0, 𝑟2 + 1 ≤ 𝑡 ≤ 𝑟2 + 𝑠2 − 1},
𝑆3 = {𝑡 : 𝑦𝑡−𝑟2+1 = 0, 𝑟2 + 𝑠2 ≤ 𝑡 ≤ 𝑟2 + 𝑠2 + 𝑠3 − 1},

and notice that

𝑔m(0) (𝑟1, x) + 𝑔m(0) (𝑟2, y)

= m(0)
𝑟1 𝑥1 +

𝑠1+1∑︁
𝑡=2

(m(0)
𝑡+𝑟1−1 − m(0)

𝑡+𝑟1−2)𝑥𝑡+
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m(0)
𝑠1+𝑟1 +

𝑠1+𝑠2−1∑︁
𝑡=𝑠1+1

(m(0)
𝑡+𝑟1

− m(0)
𝑡+𝑟1−1) (𝑥𝑡 + 𝑥𝑡+1)+

𝑠2+𝑠3∑︁
𝑡=𝑠2+1

(m(0)
𝑡+𝑟2−1 − m(0)

𝑡+𝑟1−2)𝑦𝑡 − m(0)
𝑟2+𝑠2+𝑠3−1

=
∑︁
𝑡∈𝑆1

(m(0)
𝑡 − m(0)

𝑡−1) −
∑︁
𝑡∈𝑆2

(m(0)
𝑡 − m(0)

𝑡−1)−∑︁
𝑡∈𝑆3

(m(0)
𝑡 − m(0)

𝑡−1)

=
∑︁
𝑡∈𝑆1

1 −
∑︁
𝑡∈𝑆2

1 −
∑︁
𝑡∈𝑆3

1. (2.27)

Similarly, we have that

𝑔m(1) (𝑟1, x) + 𝑔m(1) (𝑟2, y) =
∑︁
𝑡∈𝑆1

𝑡 −
∑︁
𝑡∈𝑆2

𝑡 −
∑︁
𝑡∈𝑆3

𝑡. (2.28)

Equations (2.10), (2.27), and (2.28) imply that the cardinality of 𝑆1 equals the sum of
cardinalities of 𝑆2 and 𝑆3, and in addition, the sum of elements of 𝑆1 equals the sum
of elements of 𝑆2 and 𝑆3. Note that the minimum element of 𝑆2∪𝑆3 is larger than the
maximum element of 𝑆1. This is impossible, unless 𝑆1, 𝑆2, and 𝑆3 are empty, which
implies that 𝑥𝑡 = 0 for 𝑡 ∈ {1, . . . , 𝑠1+1}, 𝑥𝑡+𝑥𝑡+1 = 1 for 𝑡 ∈ {𝑠1+1, . . . , 𝑠1+𝑠2−1},
and 𝑦𝑡 = 1 for 𝑡 ∈ {𝑠2 + 1, . . . , 𝑠2 + 𝑠3}, and hence (2.11) holds.

Case (d). (𝑥𝑠1+𝑠2+1, 𝑦𝑠2+𝑠3+1) = (1, 0). On the one hand, for 𝑦1 = 0, let

𝑆1 = {𝑡 : 𝑥max{𝑡−𝑟1+1,1} = 0, 1 ≤ 𝑡 ≤ 𝑠1 + 𝑟1},
𝑆2 = {𝑡 : 𝑥𝑡−𝑟1 + 𝑥𝑡−𝑟1+1 = 0, 𝑟2 + 1 ≤ 𝑡 ≤ 𝑟2 + 𝑠2 − 1},
𝑆3 = {𝑡 : 𝑦𝑡−𝑟2+1 = 1, 𝑟2 + 𝑠2 ≤ 𝑡 ≤ 𝑟2 + 𝑠2 + 𝑠3 − 1}.

We have

𝑔m(0) (𝑟1, x) + 𝑔m(0) (𝑟2, y)

= m(0)
𝑟1 𝑥1 +

𝑠1+1∑︁
𝑡=2

(m(0)
𝑡+𝑟1−1 − m(0)

𝑡+𝑟1−2)𝑥𝑡+

𝑠1+𝑠2−1∑︁
𝑡=𝑠1+1

(m(0)
𝑡+𝑟1

− m(0)
𝑡+𝑟1−1) (𝑥𝑡 + 𝑥𝑡+1)−

m(0)
𝑟1+𝑠1+𝑠2−1 +

𝑠2+𝑠3∑︁
𝑡=𝑠2+1

(m(0)
𝑡+𝑟2−1 − m(0)

𝑡+𝑟1−2)𝑦𝑡
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= − m(0)
𝑟1 (1 − 𝑥1) −

𝑠1+1∑︁
𝑡=2

(m(0)
𝑡+𝑟1−1 − m(0)

𝑡+𝑟1−2) (1 − 𝑥𝑡)−

𝑠1+𝑠2−1∑︁
𝑡=𝑠1+1

(m(0)
𝑡+𝑟1

− m(0)
𝑡+𝑟1−1) (1 − 𝑥𝑡 − 𝑥𝑡+1)+

𝑠2+𝑠3∑︁
𝑡=𝑠2+1

(m(0)
𝑡+𝑟2−1 − m(0)

𝑡+𝑟1−2)𝑦𝑡

= −
∑︁
𝑡∈𝑆1

(m(0)
𝑡 − m(0)

𝑡−1) −
∑︁
𝑡∈𝑆2

(m(0)
𝑡 − m(0)

𝑡−1)+∑︁
𝑡∈𝑆3

(m(0)
𝑡 − m(0)

𝑡−1)

= −
∑︁
𝑡∈𝑆1

1 −
∑︁
𝑡∈𝑆2

1 +
∑︁
𝑡∈𝑆3

1 = 0.

Then similar to the previous case, we obtain sets with identical cardinalities and sum
of elements, and yet the smallest element in one is greater than the largest element
in the others. Therefore, it follows that 𝑆1, 𝑆2, and 𝑆3 are empty. Then we have
𝑥𝑡 = 1 for 𝑡 ∈ {1, . . . , 𝑠1 + 1}, 𝑥𝑡 + 𝑥𝑡+1 = 1 for 𝑡 ∈ {𝑠1 + 1, . . . , 𝑠1 + 𝑠2 − 1}, and
𝑦𝑡 = 0 for 𝑡 ∈ {𝑠2 + 1, . . . , 𝑠2 + 𝑠3}, and hence (2.11) holds.

On the other hand, for 𝑦1 = 1, let

𝑆1 = {𝑡 : 𝑥max{𝑡−𝑟1+1,1} = 1, 1 ≤ 𝑡 ≤ 𝑠1 + 𝑟1},
𝑆2 = {𝑡 : 𝑥𝑡−𝑟1 + 𝑥𝑡−𝑟1+1 = 0, 𝑟2 + 1 ≤ 𝑡 ≤ 𝑟2 + 𝑠2 − 1},
𝑆3 = {𝑡 : 𝑦𝑡−𝑠2+1 = 1, 𝑟2 + 𝑠2 ≤ 𝑡 ≤ 𝑟2 + 𝑠2 + 𝑠3 − 1}.

We have

𝑔m(0) (𝑟1, x) + 𝑔m(0) (𝑟2, y)

= m(0)
𝑟1 𝑥1 +

𝑠1+1∑︁
𝑡=2

(m(0)
𝑡+𝑟1−1 − m(0)

𝑡+𝑟1−2)𝑥𝑡 + m(0)
𝑠1+𝑟1+

𝑠1+𝑠2−1∑︁
𝑡=𝑠1+1

(m(0)
𝑡+𝑟1

− m(0)
𝑡+𝑟1−1) (𝑥𝑡 + 𝑥𝑡+1)−

m(0)
𝑟1+𝑠1+𝑠2−1 +

𝑠2+𝑠3∑︁
𝑡=𝑠2+1

(m(0)
𝑡+𝑟2−1 − m(0)

𝑡+𝑟1−2)𝑦𝑡

= m(0)
𝑟1 𝑥1 +

𝑠1+1∑︁
𝑡=2

(m(0)
𝑡+𝑟1−1 − m(0)

𝑡+𝑟1−2)𝑥𝑡−
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𝑠1+𝑠2−1∑︁
𝑡=𝑠1+1

(m(0)
𝑡+𝑟1

− m(0)
𝑡+𝑟1−1) (1 − 𝑥𝑡 − 𝑥𝑡+1)+

𝑠2+𝑠3∑︁
𝑡=𝑠2+1

(m(0)
𝑡+𝑟2−1 − m(0)

𝑡+𝑟1−2)𝑦𝑡

=
∑︁
𝑡∈𝑆1

(m(0)
𝑡 − m(0)

𝑡−1) −
∑︁
𝑡∈𝑆2

(m(0)
𝑡 − m(0)

𝑡−1)+∑︁
𝑡∈𝑆3

(m(0)
𝑡 − m(0)

𝑡−1)

=
∑︁
𝑡∈𝑆1

1 −
∑︁
𝑡∈𝑆2

1 +
∑︁
𝑡∈𝑆3

1 = 0. (2.29)

Similarly, we have

𝑔m(1) (𝑟1, x) + 𝑔m(1) (𝑟2, y) =
∑︁
𝑡∈𝑆1

𝑡 −
∑︁
𝑡∈𝑆2

𝑡 +
∑︁
𝑡∈𝑆3

𝑡

𝑔m(2) (𝑟1, x) + 𝑔m(2) (𝑟2, y) =
∑︁
𝑡∈𝑆1

𝑡2 −
∑︁
𝑡∈𝑆2

𝑡2 +
∑︁
𝑡∈𝑆3

𝑡2. (2.30)

According to (2.29) and (2.30), the following linear equation

𝐴x = 0, (2.31)

where

𝐴 =


∑

𝑡∈𝑆1 1
∑

𝑡∈𝑆2 1
∑

𝑡∈𝑆3 1∑
𝑡∈𝑆1 𝑡

∑
𝑡∈𝑆2 𝑡

∑
𝑡∈𝑆3 𝑡∑

𝑡∈𝑆1 𝑡
2 ∑

𝑡∈𝑆2 𝑡
2 ∑

𝑡∈𝑆3 𝑡
2

 , x =


𝑥1

𝑥2

𝑥3

 ,
has a nonzero solution (𝑥1, 𝑥2, 𝑥3) = (1,−1, 1)⊤. We show that this is impossible
unless 𝐴 = 0. Suppose on the other hand, 𝐴 ≠ 0. If all columns of 𝐴 are not zero
columns, then according to the multi-linearity of the determinant,

det(𝐴) =
∑︁

𝑖∈𝑆1, 𝑗∈𝑆2,𝑘∈𝑆3

det
©«

1 1 1
𝑖 𝑗 𝑘

𝑖2 𝑗2 𝑘2

ª®®¬
=

∑︁
𝑖∈𝑆1, 𝑗∈𝑆2,𝑘∈𝑆3

( 𝑗 − 𝑖) (𝑘 − 𝑖) (𝑘 − 𝑗) (2.32)

is strictly positive since max𝑖∈𝑆1 𝑖 < min 𝑗∈𝑆2 𝑗 < min𝑘∈𝑆3 𝑘 . Hence the equation
cannot have nonzero solutions. It is also obvious that the equation (2.31) cannot
have solution (𝑥1, 𝑥2, 𝑥3) = (1,−1, 1)⊤ when only one column 𝐴 is non-zero. For the
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case when 𝐴 contains two non-zero columns, e.g., the first column and the second
column, then we have that

𝐴′x =

[∑
𝑡∈𝑆1 1

∑
𝑡∈𝑆2 1∑

𝑡∈𝑆1 𝑡
∑

𝑡∈𝑆2 𝑡

] [
𝑥1

𝑥2

]
= 0. (2.33)

Again, similar to Eq. (2.32), we have

det(𝐴′) =
∑︁

𝑖∈𝑆1, 𝑗∈𝑆2,𝑘∈𝑆3

det

(
1 1
𝑖 𝑗

)
=

∑︁
𝑖∈𝑆1, 𝑗∈𝑆2

( 𝑗 − 𝑖) > 0, (2.34)

which implies that the equation Eq. (2.33) cannot have nonzero solutions. Thus,
Eq. (2.31) cannot have solution (𝑥1, 𝑥2, 𝑥3) = (1,−1, 1)⊤ unless 𝐴 = 0, which
implies that 𝑆1, 𝑆2, and 𝑆3 are empty. Therefore, 𝑥𝑡 = 0 for 𝑡 ∈ {1, . . . , 𝑠1 + 1},
𝑥𝑡 + 𝑥𝑡+1 = 1 for 𝑡 ∈ {𝑠1 + 1, . . . , 𝑠1 + 𝑠2 − 1}, and 𝑦𝑡 = 0 for 𝑡 ∈ {𝑠2 + 1, . . . , 𝑠2 + 𝑠3},
which implies (2.11). □

2.4 Protecting 101 Indicator Vectors
We now show that for any c and c′ in {0, 1}𝑛 that satisfy c ∈ 𝐵2(c′), if 110(c) =

110(c′) and ℎ(c) = ℎ(c′), then 101(c) = 101(c′). Since c and c′ have identical 10-
indicators, they can be written as

c = 0𝜋01𝜋10𝜋21𝜋3 · · · 0𝜋2ℓ1𝜋2ℓ+1 , and

c′ = 0𝜏01𝜏10𝜏21𝜏3 · · · 0𝜏2ℓ1𝜏2ℓ+1 , (2.35)

for some integer ℓ, where 0𝑖 (resp. 1𝑖) denotes a run of 𝑖 consecutive 0’s (resp. 1’s), and
where {𝜋𝑖}2ℓ+1

𝑖=0 and {𝜏𝑖}2ℓ+1
𝑖=0 are nonnegative integers such that 𝜋𝑖 and 𝜏𝑖 are strictly

positive for every 𝑖 ∉ {0, 2ℓ + 1}, and such that 𝜋2𝑖 + 𝜋2𝑖+1 = 𝜏2𝑖 + 𝜏2𝑖+1 for all 𝑖 ∈
{0, 1, . . . , ℓ}. In addition, since ℎ(c)1 = ℎ(c′)1 it follows from Proposition 2.2.2
that 101(c) · 1 = 101(c′) · 1, i.e., the numbers of 0 runs that is followed by a 1 run
in c and c′ are equal. Note that the numbers of such 0 runs can either be ℓ − 1, ℓ,
and ℓ + 1, depending on the lengths of the initial and final runs in c or c′. Hence, we
have

101(c) · 1 = 101(c′) · 1 = ℓ + 1 if 𝜋0 > 0 and 𝜋2ℓ+1 > 0,

101(c) · 1 = 101(c′) · 1 = ℓ if 𝜋0 > 0 and 𝜋2ℓ+1 = 0

or 𝜋0 = 0 and 𝜋2ℓ+1 > 0,
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101(c) · 1 = 101(c′) · 1 = ℓ − 1 if 𝜋0 = 0 and 𝜋2ℓ+1 = 0. (2.36)

Let d = 0𝛾01𝛾10𝛾21𝛾3 · · · 0𝛾2ℓ1𝛾2ℓ+1 ∈ {0, 1}𝑛−2 be a common subsequence of c and
c′ which is obtained by deleting two bits from either c or c′, where 𝛾𝑖 ≥ 0 for all 𝑖.
Then, it is readily verified that

2ℓ+1∑︁
𝑖=0

(𝜋𝑖 − 𝛾𝑖) = 2,
2ℓ+1∑︁
𝑖=0

(𝜏𝑖 − 𝛾𝑖) = 2, and hence

2ℓ+1∑︁
𝑖=1

|𝜋𝑖 − 𝜏𝑖 | ≤
2ℓ+1∑︁
𝑖=1

|𝜋𝑖 − 𝛾𝑖 | +
2ℓ+1∑︁
𝑖=1

|𝜏𝑖 − 𝛾𝑖 | = 4.

Moreover, since 𝜋2𝑖 + 𝜋2𝑖+1 = 𝜏2𝑖 + 𝜏2𝑖+1 for all 𝑖 ∈ {0, 1, . . . , ℓ}, it follows that
|𝜋2𝑖 − 𝜏2𝑖 | = |𝜋2𝑖+1 − 𝜏2𝑖+1 |. Since the sum of the (integer) expressions |𝜋𝑖 − 𝜏𝑖 | is
at most 4, and since the values of the individual expressions are equal for adjacent
values of 𝑖 (i.e., for 𝑖 = 2𝑟 and 𝑖 = 2𝑟 + 1 for some integer 𝑟), an inequality between
the 01-indicators of c and c′ can only mean one of the following two cases.

Case (a). There exists an integer 𝑗 ∈ [ℓ] such that |𝜋2 𝑗 − 𝜏2 𝑗 | = |𝜋2 𝑗+1 − 𝜏2 𝑗+1 | = 1
or |𝜋2 𝑗 − 𝜏2 𝑗 | = |𝜋2 𝑗+1 − 𝜏2 𝑗+1 | = 2, and |𝜋2𝑖 − 𝜏2𝑖 | = 0 for 𝑖 ≠ 𝑗 .

Case (b). There exist two integers 𝑚 and 𝑟 (where 𝑚 < 𝑟) such that |𝜋2𝑚 − 𝜏2𝑚 | =
|𝜋2𝑚+1 − 𝜏2𝑚+1 | = 1 and |𝜋2𝑟 − 𝜏2𝑟 | = |𝜋2𝑟+1 − 𝜏2𝑟+1 | = 1, and |𝜋2𝑖 − 𝜏2𝑖 | = 0
for 𝑖 ∉ {𝑚, 𝑟}.

In Case (a), since 𝜋2𝑖 + 𝜋2𝑖+1 = 𝜏2𝑖 + 𝜏2𝑖+1 for every 𝑖 and 𝜋2𝑖 = 𝜏2𝑖 for every 𝑖 ≠ 𝑗 ,
it follows that 101(c) and 101(c′) differ in precisely two positions 𝑠 and 𝑡 such
that 1 ≤ 𝑠 − 𝑡 ≤ 2. Hence, since the number of 1’s in the 01-indicators is equal,
it follows that 101(c)𝑠 = 101(c′)𝑡 , 101(c)𝑡 = 101(c′)𝑠, and 101(c)𝑠 ≠ 101(c)𝑡 , and
therefore

ℎ(c)2 − ℎ(c′)2 = (101(c)𝑠 − 101(c′)𝑠)
(
𝑠 + 1

2

)
+

(101(c)𝑡 − 101(c′)𝑡)
(
𝑡 + 1

2

)
= ±

((
𝑠 + 1

2

)
−

(
𝑡 + 1

2

))
. (2.37)

Since 1 ≤ 𝑠 − 𝑡 ≤ 2, it follows that (2.37) equals either ±(𝑡 + 1) or ±(2𝑡 + 3), and a
contradiction follows since neither of which is 0 modulo 2𝑛, .
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Similarly, in Case (b), if none of 𝜋2𝑚, 𝜏2𝑚, 𝜋2𝑚+1, 𝜏2𝑚+1, 𝜋2𝑟 , 𝜏2𝑟 , 𝜋2𝑟+1, 𝜏2𝑟+1 is zero,
then 101(c) and 101(c′) differ in four positions 𝑠, 𝑠 + 1, 𝑡, and 𝑡 + 1, and hence

ℎ(c)2 − ℎ(c′)2 = (101(c)𝑠 − 101(c′)𝑠)
(
𝑠 + 1

2

)
+

(101(c)𝑠+1 − 101(c′)𝑠+1)
(
𝑠 + 2

2

)
+

(101(c)𝑡 − 101(c′)𝑡)
(
𝑡 + 1

2

)
+

(101(c)𝑡+1 − 101(c′)𝑡+1)
(
𝑡 + 2

2

)
. (2.38)

Once again, since 101(c) and 101(c′) have an identical number of 1’s, we have that

101(c)𝑠 = 101(c′)𝑠+1 101(c)𝑠+1 = 101(c′)𝑠
101(c)𝑡 = 101(c′)𝑡+1 101(c)𝑡+1 = 101(c′)𝑡
101(c)𝑠 ≠ 101(c′)𝑠 101(c)𝑡 ≠ 101(c′)𝑡 .

This readily implies that (2.38) equals either±(𝑠−𝑡) or±(𝑠+𝑡+2), and since none of
which is 0 modulo 2𝑛, another contradiction is obtained. If 𝜋2𝑚 = 0 (resp. 𝜏2𝑚 = 0),
then 𝜏2𝑚 = 1 (resp. 𝜋2𝑚 = 1). By (2.36) and the discussion after (2.35) it follows
that 𝑚 = 0, 𝑟 = ℓ, 𝜏2𝑟+1 = 0 (resp. 𝜋2𝑟+1 = 0), and hence 101(c) and 101(c′) differ in
the first and last positions. Hence, (2.38) becomes ±(1 − 𝑛(𝑛−1)

2 ), which is nonzero
modulo 2𝑛, and the claim follows.

2.5 Decoding of Two-Deletion Correcting Codes
In this section it is shown how to decode Construction 2.1.1. Recall the encoding
function

E(c) = (c, 𝑓 (c), ℎ(c), 𝑟3( 𝑓 ( 𝑓 (c), ℎ(c))), 𝑟3(ℎ( 𝑓 (c), ℎ(c)))), (2.39)

with redundancy 𝑓 (c), ℎ(c) of length 𝑁1 ≜ 7 log 𝑛 + 8 and 3-fold repetition redun-
dancy 𝑟3( 𝑓 ( 𝑓 (c), ℎ(c))), 𝑟3(ℎ( 𝑓 (c), ℎ(c))) of length 𝑁2 ≜ 21 log(7 log 𝑛 + 8) + 8.

To conveniently describe the decoding algorithm, two building blocks are needed.
The first is a 3-fold repetition decoding function

D1 : {0, 1}𝑁2−2 → {0, 1}𝑁2/3

that takes a subsequence d1 ∈ {0, 1}𝑁2−2 of a 3-fold repetition codeword 𝑟3(s1) ∈
{0, 1}𝑁2 for some s1 ∈ {0, 1}𝑁2/3 as input, and outputs an estimate s̃1 of the se-
quence s1. The second is a decoding function which is defined for every positive
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integer 𝑞 as follows

D2 : {0, 1}𝑞−2 × {0, 1}7 log 𝑞+2 → {0, 1}𝑞 .

The function D2 takes a subsequence d2 ∈ {0, 1}𝑞−2 of some s2 ∈ {0, 1}𝑞, re-
dundancy 𝑓 (s2), and redundancy ℎ(s2) as input, and outputs an estimate s̃2 of the
sequence s2. In Algorithm 1, the function D2 is used twice with two different
values of 𝑞. As will be shown, the two calls of the function D2 aim to recover the
redundancy 𝑓 (c) and ℎ(c) and the sequence c respectively.

The 3-fold repetition decoding D1 can be implemented by adding two bits to d1

such that the length of each run is a multiple of 3, which can obviously be done in
linear time. According to Theorem 2.1.2, there exists a decoding function D2 that
recovers the original sequence s2 correctly given its 𝑓 (s2) and ℎ(s2) redundancy.
The linear complexity of D2 will be shown later in this section.

The functions D1 and D2 are used as subroutines to describe the decoding pro-
cedure that is given in Algorithm 1. First, we use the function D1 to recover the
redundancy 𝑓 ( 𝑓 (c), ℎ(c)) and ℎ( 𝑓 (c), ℎ(c)) from the 3-fold repetition code. Then,
by applying D2 and using the redundancy 𝑓 ( 𝑓 (c), ℎ(c)) and ℎ( 𝑓 (c), ℎ(c)), the 𝑓 (c)
and ℎ(c) can be recovered. Finally and similarly, redundancy 𝑓 (c) and ℎ(c) can be
used to recover the original sequence c, again with the help of D2.

Algorithm 1: Decoding
Input: A subsequence d ∈ {0, 1}𝑁−2 of E(c) for some c in the code.
Output: The sequence c.
layer2_redundancy = D1(d(𝑁−𝑁2+1,𝑁−2));
if two deletions are detected by D1 then

return d(1,𝑛);
else

𝐿 ≜ The length of the longest suffix of d that is a subsequence
of 𝑟3(layer2_redundancy);

layer1_redundancy = D2(d(𝑁−𝑁1+1−𝐿,𝑁−2−𝐿) , layer2_redundancy);
c = D2(d(1,𝑛−2) , layer1_redundancy);
return c.

Theorem 2.5.1. If the functions D1 and D2 provide the correct estimates in 𝑂 (𝑛)
time, then given an 𝑁 − 2 subsequence of E(c), Algorithm 1 returns the original
sequence c in 𝑂 (𝑛) time.

Proof. To prove the correctness of Algorithm 1, it suffices to show the following
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(1). d(𝑁−𝑁2+1,𝑁−2) is a length 𝑁2 − 2 subsequence of the repetition code
𝑟3( 𝑓 ( 𝑓 (c), ℎ(c))), 𝑟3(ℎ( 𝑓 (c), ℎ(c)))).

(2). d(𝑁−𝑁1+1−𝐿,𝑁−2−𝐿) is a length𝑁1−2 subsequence of the 𝑓 (c), ℎ(c) redundancy.

(3). d(1,𝑛−2) is a length 𝑛 − 2 subsequence of the sequence c.

Since d is a length 𝑁 − 2 subsequence of E(c), 𝑑𝑛−2 must be either the (𝑛 − 2)-th,
the (𝑛 − 1)-th or the 𝑛-th bits of E(c), and hence (3) must hold. Similarly, (1)
holds by considering d and E(c) in reversed order. By the definition of 𝐿, 𝑑𝑁−2−𝐿

is the 𝑖1-th bit of E(c) for some 𝑖1 ≤ 𝑛 + 𝑁1. Since (1) holds, we have that 𝐿

is either 𝑁2, 𝑁2 − 1, or 𝑁2 − 2. Therefore, 𝑑𝑁−𝑁1+1−𝐿 is the 𝑖2-th bit of E(c) for
some 𝑖2 ≥ 𝑁 − 𝑁1 + 1 − 𝐿 > 𝑛. Since ( 𝑓 (c), ℎ(c)) = E(c) (𝑛+1,𝑛+𝑁1) , (2) must hold.

Since finding 𝐿 has 𝑂 (𝑁2) complexity, the complexity of Algorithm 1 is 𝑂 (𝑁) =
𝑂 (𝑛), given that the complexities of the functions D1 and D2 are linear. □

It can be verified that Algorithm 1 outputs the original sequence c in the case of
a single deletion. One can also use a VT decoder (see [64]), which has a simpler
implementation and 𝑂 (𝑛) time complexity. We are left to implement D2 with
linear complexity. In particular, we need to recover the sequence c ∈ {0, 1}𝑛

from its length 𝑛 − 2 subsequence d in time 𝑂 (𝑛), given the redundancies 𝑓 (c)
and ℎ(c). Note that there are 𝑂 (𝑛2) supersequences of d of length 𝑛, and 𝑓 and ℎ

can be computed on each of them in 𝑂 (𝑛). Hence, the brute force approach would
require 𝑂 (𝑛3).

To achieve linear time complexity, we first recover 110(c) from an (𝑛−3)-subsequence
110(d) of 110(c) ∈ {0, 1}𝑛−1, and then use it to recover c. In particular, we first
find the positions and values of the deleted bits in 110(c) by an iterative updating
algorithm, rather than by exhaustive search, and hence linear complexity is ob-
tained. Furthermore, the uniqueness of the resulting sequence is guaranteed by
Lemma 2.2.2. After recovering 110(c), We can find all length 𝑛 supersequences c′

of d such that 110(c′) = 110(c). It is shown that there are at most 4 such possible
supersequences, and since Theorem 2.1.2 guarantees uniqueness, the right c is found
by computing and comparing ℎ(c). Therefore, the decoding can be done in linear
time in total.
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Recovering 110(c).
For 1 ≤ 𝑖 ≤ 2𝑛 − 2, let

𝑝𝑖 ≜


𝑛 − 𝑖 if 1 ≤ 𝑖 ≤ 𝑛 − 1

𝑖 − 𝑛 + 1 if 𝑛 ≤ 𝑖 ≤ 2𝑛 − 2
, and (2.40)

𝑏𝑖 ≜


0 if 1 ≤ 𝑖 ≤ 𝑛 − 1

1 if 𝑛 ≤ 𝑖 ≤ 2𝑛 − 2
. (2.41)

For example, when 𝑛 = 5, we have

(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8) = (4, 3, 2, 1, 1, 2, 3, 4) and

(𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8) = (0, 0, 0, 0, 1, 1, 1, 1).

Given a subsequence d ∈ {0, 1}𝑛−2 of c, let 110(d) = (𝑟1, . . . , 𝑟𝑛−3), and let 𝑤 :
{0, 1}𝑛−2 × [2𝑛 − 2] × [2𝑛 − 2] → {0, 1}𝑛−1 ∪ {★} be defined as

𝑤(d, 𝑖, 𝑗) =

(𝑟1, 𝑟2, . . . , 𝑟𝑝𝑖−1, 𝑏𝑖, 𝑟𝑝𝑖 , . . . , 𝑟𝑝 𝑗−2, 𝑏 𝑗 , 𝑟𝑝 𝑗−1, . . . , 𝑟𝑛−3)

if 𝑝𝑖 < 𝑝 𝑗 ,

(𝑟1, 𝑟2, . . . , 𝑟𝑝 𝑗−1, 𝑏 𝑗 , 𝑟𝑝 𝑗
, . . . , 𝑟𝑝𝑖−2, 𝑏𝑖, 𝑟𝑝𝑖−1, . . . , 𝑟𝑛−3)

if 𝑝𝑖 > 𝑝 𝑗 ,

★

if 𝑝𝑖 = 𝑝 𝑗 ,

that is, 𝑤(d, 𝑖, 𝑗) results from 110(d) inserting 𝑏𝑖 at position 𝑝𝑖 and 𝑏 𝑗 in posi-
tion 𝑝 𝑗 of 110(d), if 𝑝𝑖 ≠ 𝑝 𝑗 . Notice that 𝑤(d, 𝑖, 𝑗) is one possible candidate
for 110(c). To illustrate 𝑤(d, 𝑖, 𝑗), let us consider again the example where 𝑛 = 5.
Let d ∈ {0, 1}𝑛−2 = (1, 0, 1), which implies that 110(d) = (1, 0). Then, we
have that 𝑤(d, 2, 7) = ★ since 𝑝2 = 𝑝7 = 3, and that 𝑤(d, 2, 6) = (1, 1, 0, 0)
since 𝑝2 = 3, 𝑏2 = 0, 𝑝6 = 2, 𝑏6 = 1.

For 𝑒 ∈ {0, 1, 2} define (2𝑛 − 2) × (2𝑛 − 2) integer matrices {𝐴(𝑒)}2
𝑒=0 as follows.

𝐴
(𝑒)
𝑖, 𝑗

=
𝑤(d, 𝑖, 𝑗) · m(𝑒) − ∑𝑛−3

𝑘=1 m(𝑒)
𝑘

110(d)𝑘 if 𝑤(d, 𝑖, 𝑗) ≠ ★.

★ if 𝑤(d, 𝑖, 𝑗) = ★.
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Notice that 𝐴(𝑒)
𝑖, 𝑗

is the difference in the weighted sums of 𝑤(d, 𝑖, 𝑗) and 110(d), with
weights m(𝑒) . We now show that the entry of 𝐴(𝑒) that we are looking for is equal
modulo 𝑛𝑒 to the difference in entry 𝑒 of the 𝑓 redundancies of c and of d. That is,
𝐴
(𝑒)
𝑖, 𝑗

≡ ( 𝑓 (c)𝑒 − 𝑓 (d)𝑒) mod 𝑛𝑒. On the one hand, since 110(c) is obtained after two
insertions in 110(d), it follows that there exists (𝑖, 𝑗) such that 𝑤(d, 𝑖, 𝑗) = 110(c)
and that 𝐴

(𝑒)
𝑖, 𝑗

≡ ( 𝑓 (c)𝑒 − 𝑓 (d)𝑒) mod 𝑛𝑒 for every 𝑒 ∈ {0, 1, 2}. On the other
hand, by Lemma 2.2.2, it follows that this (𝑖, 𝑗) pair is unique, given that the
sequence 𝑤(d, 𝑖, 𝑗) does not contain consecutive 1’s. Hence, since 𝑤(d, 𝑖, 𝑗) which
contain consecutive 1’s are skipped in our algorithm (see Algorithm 2 in the sequel),
it follows that 𝑤(d, 𝑖, , 𝑗) = 110(c).

We prove the following properties of 𝐴(𝑒) . In the first property, we give an explicit
expression for an entry 𝐴

(𝑒)
𝑖, 𝑗

in terms of 110(d), 𝑝𝑖, 𝑝 𝑗 , 𝑏𝑖, and 𝑏 𝑗 . This expression
will be used for calculating 𝐴

(𝑒)
𝑖, 𝑗

in constant time from its neighboring entries
during D2. In the following we use 𝛿(𝑥) to denote the Boolean indicator of an
event 𝑥, where 𝛿(𝑥) = 1 if and only if 𝑥 is true.

Proposition 2.5.1. If 𝐴(𝑒)
𝑖, 𝑗

≠ ★ then

𝐴
(𝑒)
𝑖, 𝑗

=𝑏𝑖m(𝑒)
𝑝𝑖 + 𝑏 𝑗m(𝑒)

𝑝 𝑗
+

𝑛−3∑︁
𝑘=1

110(d)𝑘 [(𝑘 + 1)𝑒𝛿(min{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 1)+

(𝑘 + 2)𝑒𝛿(max{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 2)] . (2.42)

Proof. The difference between
∑𝑛−3

𝑘=1 m(𝑒)
𝑘

110(d)𝑘 and 𝑤(d, 𝑖, 𝑗) · m(𝑒) consists of
two parts. The first part follows from the two inserted bits, and can be written as

𝑏𝑖m(𝑒)
𝑝𝑖 + 𝑏 𝑗m(𝑒)

𝑝 𝑗
. (2.43)

The second part follows from the shift of bits in 110(d)𝑘 that is caused by the
insertions of two bits 𝑏𝑖 and 𝑏 𝑗 . Each bit 110(d)𝑘 shifts from position 𝑘 to position 𝑘+
1 if one insertion occurs before 110(d)𝑘 , i.e., min{𝑝𝑖, 𝑝 𝑗 } < 𝑘+1 and max{𝑝𝑖, 𝑝 𝑗 } ≥
𝑘 + 2. The resulting difference is given by

𝑛−3∑︁
𝑘=1

110(d)𝑘𝛿(min{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 1)·

𝛿(max{𝑝𝑖, 𝑝 𝑗 } ≥ 𝑘 + 2) (m(𝑒)
𝑘+1 − m(𝑒)

𝑘
)

=

𝑛−3∑︁
𝑘=1

110(d)𝑘𝛿(min{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 1)·
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𝛿(max{𝑝𝑖, 𝑝 𝑗 } ≥ 𝑘 + 2) (𝑘 + 1)𝑒 . (2.44)

The bit 110(d)𝑘 shifts from position 𝑘 to 𝑘 +2 if two insertions occur before 110(d)𝑘 ,
i.e., max{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 2. The corresponding difference is given by

𝑛−3∑︁
𝑘=1

110(d)𝑘𝛿(min{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 1)·

𝛿(max{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 2)110(d)𝑘 (m(𝑒)
𝑘+2 − m(𝑒)

𝑘
)

=

𝑛−3∑︁
𝑘=1

110(d)𝑘𝛿(max{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 2) [(𝑘 + 1)𝑒 + (𝑘 + 2)𝑒] . (2.45)

Combining (2.44) and (2.45), we have that the difference that results from the second
part is given by

𝑛−3∑︁
𝑘=1

110(d)𝑘 [(𝑘 + 1)𝑒𝛿(min{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 1)+

(𝑘 + 2)𝑒𝛿(max{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 2)],

that together with (2.43), implies (2.42). □

The following shows that the entries of each 𝐴(𝑒) are non-decreasing in rows and
columns, and that the respective sequences 𝑤(d, 𝑖, 𝑗) that lie in the same column or
the same row, are unique given each entry value. This property guarantees a simple
algorithm for finding a sequence 𝑤(d, 𝑖, 𝑗) with a given value 𝐴

(𝑒)
𝑖, 𝑗

by decreasing 𝑖

or increasing 𝑗 by 1 in each step.

Proposition 2.5.2. For every 𝑖, 𝑗 and 𝑖1 < 𝑖2, 𝑗1 < 𝑗2, if neither of d(𝑖1, 𝑗), d(𝑖2, 𝑗),
d(𝑖, 𝑗1), and d(𝑖, 𝑗2) equals ★, then 𝐴

(𝑒)
𝑖1, 𝑗

≤ 𝐴
(𝑒)
𝑖2, 𝑗

and 𝐴
(𝑒)
𝑖, 𝑗1

≤ 𝐴
(𝑒)
𝑖, 𝑗2

. Moreover,
if 𝐴(𝑒)

𝑖1, 𝑗
= 𝐴

(𝑒)
𝑖2, 𝑗

(resp. 𝐴(𝑒)
𝑖, 𝑗1

= 𝐴
(𝑒)
𝑖, 𝑗2

), then d(𝑖1, 𝑗) = d(𝑖2, 𝑗) (resp. d(𝑖, 𝑗1) = d(𝑖, 𝑗2)).

Proof. By symmetry we only need to prove that the matrix 𝐴(𝑒) is non-decreasing
in each column, for which it suffices to prove that:

(1). 𝐴
(𝑒)
𝑖1, 𝑗

≤ 𝐴
(𝑒)
𝑖2, 𝑗

for 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛 − 1.

(2). 𝐴
(𝑒)
𝑛−1, 𝑗 ≤ 𝐴

(𝑒)
𝑛, 𝑗

.

(3). 𝐴
(𝑒)
𝑖1, 𝑗

≤ 𝐴
(𝑒)
𝑖2, 𝑗

for 𝑛 ≤ 𝑖1 < 𝑖2 ≤ 2𝑛 − 2.



40

For (2), the only difference between d(𝑛−1, 𝑗) and d(𝑛, 𝑗) is that their first bits are 0
and 1 respectively, and hence 𝐴

(𝑒)
𝑛−1, 𝑗 + 1 = 𝐴

(𝑒)
𝑛, 𝑗

. We are left to show (1) and (3).

(1): For 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛 − 1, we have 𝑏𝑖1 = 𝑏𝑖2 = 0 and 𝑝𝑖1 > 𝑝𝑖2 . Let d′(𝑖1, 𝑗) ∈
{0, 1}𝑛−2 and d′(𝑖2, 𝑗) ∈ {0, 1}𝑛−2 be two subsequences of d(𝑖1, 𝑗) and d(𝑖2, 𝑗), re-
spectively, after deleting the 𝑝 𝑗 -th bit from both d(𝑖1, 𝑗) and d(𝑖2, 𝑗), and similarly,
let m(𝑒),𝑝 𝑗 = (m(𝑒)

1 ,m(𝑒)
2 , . . . ,m(𝑒)

𝑝 𝑗−1,m
(𝑒)
𝑝 𝑗+1, . . . ,m

(𝑒)
𝑛−1) be a subsequence of m(𝑒)

after deleting the 𝑝 𝑗 -th entry. Since d′(𝑖1, 𝑗) ∈ 𝐵1(d′(𝑖2, 𝑗)), the remaining argu-
ments follow those in the proof of Proposition 2.1.1. According to (2.6) and (2.7),
we have that

𝐴
(𝑒)
𝑖2, 𝑗

− 𝐴
(𝑒)
𝑖1, 𝑗

= d(𝑖2, 𝑗) · m(𝑒) − d(𝑖1, 𝑗) · m(𝑒)

= d′(𝑖2, 𝑗) · m(𝑒),𝑝 𝑗 − d′(𝑖1, 𝑗) · m(𝑒),𝑝 𝑗

= 𝑔(𝑘1, d′(𝑖2, 𝑗) (𝑘1,𝑘2) , d′(𝑖1, 𝑗)𝑘2)
≥ 0, (2.46)

where 𝑘1 = 𝑝𝑖2 −𝛿(𝑝𝑖2 > 𝑝 𝑗 ) and 𝑘2 = 𝑝𝑖1 −𝛿(𝑝𝑖1 > 𝑝 𝑗 ) are the indices whose dele-
tion from d′(𝑖2, 𝑗) and d′(𝑖1, 𝑗), respectively, results in 110(d). Similarly, as in the
proof in Proposition 2.1.2, the last inequality follows from the fact that d′(𝑖1, 𝑗)𝑘2 =

𝑏𝑖1 = 0. Furthermore, equality holds when d′(𝑖2, 𝑗) (𝑘1,𝑘2) = 0 and d′(𝑖1, 𝑗)𝑘2 = 0,
which implies that d′(𝑖1, 𝑗) = d′(𝑖2, 𝑗), and hence d(𝑖1, 𝑗) = d(𝑖2, 𝑗).

(3): For 𝑛 ≤ 𝑖1 < 𝑖2 ≤ 2𝑛 − 2, we have 𝑏𝑖1 = 𝑏𝑖2 = 1 and 𝑝𝑖1 < 𝑝𝑖2 . Similar
to (2.46), we have that

𝐴
(𝑒)
𝑖1, 𝑗

− 𝐴
(𝑒)
𝑖2, 𝑗

= 𝑔(𝑘1, d′(𝑖1, 𝑗) (𝑘1,𝑘2) , d′(𝑖2, 𝑗)𝑘2) ≤ 0,

where 𝑘1 = 𝑝𝑖1 − 𝛿(𝑝𝑖1 > 𝑝 𝑗 ) and 𝑘2 = 𝑝𝑖2 − 𝛿(𝑝𝑖2 > 𝑝 𝑗 ) are the indices whose
deletion from d′(𝑖1, 𝑗) and d′(𝑖2, 𝑗), respectively, results in 110(d). The last in-
equality follows from the fact that d′(𝑖2, 𝑗)𝑘2 = 𝑏𝑖2 = 1, and equality holds
when d(𝑖1, 𝑗) = d(𝑖2, 𝑗). □

Remark 2.5.1. From Proposition 2.5.2, we have that

0 = 𝐴
(𝑒)
1,2 ≤ 𝐴

(𝑒)
𝑖, 𝑗

≤ 𝐴
(𝑒)
2𝑛−2,2𝑛−3 ≤ m(𝑒)

𝑛−1 + m(𝑒)
𝑛−2 ≤ 𝑛𝑒

for 1 ≤ 𝑖, 𝑗 ≤ 2𝑛 − 2, 𝐴
(𝑒)
𝑖, 𝑗

≠ ★, where 𝑛0 = 2𝑛, 𝑛1 = 𝑛2, 𝑛2 = 𝑛3.

Recall that our goal is to find a sequence 𝑤(d, 𝑖, 𝑗) ≠ ★ for which

𝐴
(𝑒)
𝑖, 𝑗

≡ 𝑓 (c)𝑒 −
𝑛−3∑︁
𝑖=𝑘

m(𝑒)
𝑘

110(d)𝑘 mod 𝑛𝑒 (2.47)
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Figure 2.5: The path of Algorithm 2 on the matrix 𝐴(0) .

for every 𝑒 ∈ {0, 1, 2}. In addition, the sequence 𝑤(d, 𝑖, 𝑗) cannot contain adja-
cent 1’s, i.e.,

𝑤(d, 𝑖, 𝑗)𝑝𝑖−1 · 𝑤(d, 𝑖, 𝑗)𝑝𝑖 = 𝑤(d, 𝑖, 𝑗)𝑝𝑖 · 𝑤(d, 𝑖, 𝑗)𝑝𝑖+1 = 0

𝑤(d, 𝑖, 𝑗)𝑝 𝑗−1 · 𝑤(d, 𝑖, 𝑗)𝑝 𝑗
= 𝑤(d, 𝑖, 𝑗)𝑝 𝑗

· 𝑤(d, 𝑖, 𝑗)𝑝 𝑗+1 = 0, (2.48)

and from Lemma 2.2.2, such 𝑤(d, 𝑖, 𝑗) equals 110(c). Moreover, since Remark 2.5.1
implies that 0 ≤ 𝐴

(𝑒)
𝑖, 𝑗

≤ 𝑛𝑒, it follows that the modular equality in (2.47) is unnec-
essary, i.e., it suffices to find a sequence 𝑤(d, 𝑖, 𝑗) ≠ ★ that satisfies (2.48) and

𝐴
(𝑒)
𝑖, 𝑗

= 𝑎𝑒 ≜ 𝑓𝑒 (c) −
𝑛−3∑︁
𝑘=1

m(𝑒)
𝑘

110(d)𝑘 mod 𝑛𝑒, (2.49)

where 𝑎𝑒 is the target value to be found in matrix 𝐴(𝑒) . Eq. (2.49) implies
that 𝑤(d, 𝑖, 𝑗) satisfies the 𝑓 redundancy.

The procedure to find such 𝑤(d, 𝑖, 𝑗) is given in Algorithm 2. We search for all
sequences 𝑤(d, 𝑖, 𝑗) ≠ ★ with no adjacent 1’s (2.48) such that 𝐴

(0)
𝑖, 𝑗

= 𝑎0. This
clearly amounts to a binary search in a sorted matrix3. We start from the bottom left

3The two ★ entries in each row or column can simply be skipped.
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corner of the matrix, proceed to the right in each step until reaching the rightmost
entry such that 𝐴(0)

𝑖, 𝑗
≤ 𝑎0, and then go one step up. Figure 2.5 illustrates an example

of how Algorithm 2 runs on matrix 𝐴(0) .

To avoid the computation of the entire matrix, that would require 𝑂 (𝑛2) time, each
entry is computed from previously seen ones only upon its discovery. To this end
we prove the following lemma, that alongside Proposition 2.5.1, provides a way of
computing a newly discovered entry.

Proposition 2.5.3. Whenever the (𝑖, 𝑗)-th and (𝑖 + 1, 𝑗)-th (resp. (𝑖, 𝑗 + 1)) entries
of 𝐴(𝑒) are not ★, we have that

𝐴
(𝑒)
𝑖, 𝑗

− 𝐴
(𝑒)
𝑖+1, 𝑗

= 𝑏𝑖m(𝑒)
𝑝𝑖 − 𝑏𝑖+1m(𝑒)

𝑝𝑖+1+
min{𝑝1,𝑝𝑖+1}∑︁

𝑘=min{𝑝𝑖 ,𝑝𝑖+1}−1
110(d)𝑘 [(𝑘 + 1)𝑒 (𝛿(min{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 1)

− 𝛿(min{𝑝𝑖+1, 𝑝 𝑗 } < 𝑘 + 1))+
(𝑘 + 2)𝑒 (𝛿(max{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 2)−
𝛿(max{𝑝𝑖+1, 𝑝 𝑗 } < 𝑘 + 2))], and (2.50)

𝐴
(𝑒)
𝑖, 𝑗

− 𝐴
(𝑒)
𝑖, 𝑗+1

= 𝑏 𝑗m(𝑒)
𝑝 𝑗

− 𝑏 𝑗+1m(𝑒)
𝑝 𝑗+1+

min{𝑝 𝑗 ,𝑝 𝑗+1}∑︁
𝑘=min{𝑝 𝑗 ,𝑝 𝑗+1}−1

110(d)𝑘 [(𝑘 + 1)𝑒 (𝛿(min{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 1)

− 𝛿(min{𝑝𝑖, 𝑝 𝑗+1} < 𝑘 + 1))+
(𝑘 + 2)𝑒 (𝛿(max{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 2)−
𝛿(max{𝑝𝑖, 𝑝 𝑗+1} < 𝑘 + 2))] . (2.51)

Proof. Note that if 𝑖 increases by 1 or if 𝑗 decreases by 1, then 𝑝𝑖 or 𝑝 𝑗 changes by
at most 1 (See (2.40)). Hence,

𝛿(min{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 1) = 𝛿(min{𝑝𝑖+1, 𝑝 𝑗 } < 𝑘 + 1),
𝛿(max{𝑝𝑖, 𝑝 𝑗 } < 𝑘 + 2) = 𝛿(max{𝑝𝑖+1, 𝑝 𝑗 } < 𝑘 + 2)

for 𝑘 ≤ min{𝑝 𝑗 , 𝑝𝑖+1} − 2 and 𝑘 ≥ min{𝑝𝑖, 𝑝𝑖+1} + 1. According to (2.42), we have
that (2.50) holds, and similarly, (2.51) holds as well. □



43

Algorithm 2: Finding 110(c).
Input: Subsequence d ∈ {0, 1}𝑛−2 of c, and 𝑓 (c)
Output: 𝑖 and 𝑗 such that 𝑤(d, 𝑖, 𝑗) = 110(c)
Initialization: 𝑖 = 2𝑛 − 2, 𝑗 = 1;
𝑥𝑒 = 𝐴

(𝑒)
1,2𝑛−2 for 𝑒 ∈ {0, 1, 2};

𝑎𝑒 = 𝑓𝑒 (c) −
∑𝑛−3

𝑘=1 m(𝑒)
𝑘

110(d)𝑘 mod 𝑛𝑒 for 𝑒 ∈ {0, 1, 2};
while 𝑖 ≥ 0 do

if 𝑥𝑒 = 𝑎𝑒 for every 𝑒 ∈ {0, 1, 2} and 𝑤(d, 𝑖, 𝑗) ≠ ★ and 𝑤(d, 𝑖, 𝑗) has no
adjacent 1’s (𝑤(d, 𝑖, 𝑗) satisfies (2.48)) then

return 𝑖, 𝑗 ;
else

Find the maximum 𝑗 for which 𝐴
(0)
𝑖, 𝑗

≤ 𝑎0.
if 𝑝𝑖 = 𝑝 𝑗 or (𝑥0 > 𝑎0) then

𝑡𝑒𝑚𝑝_𝑥𝑒 = 𝑥𝑒 + 𝐴
(𝑒)
𝑖, 𝑗−1 − 𝐴

(𝑒)
𝑖, 𝑗

(using (2.51)), for 𝑒 ∈ {0, 1, 2};
𝑡𝑒𝑚𝑝_ 𝑗 = 𝑗 − 1;
while 𝑝𝑡𝑒𝑚𝑝_ 𝑗 = 𝑝𝑖 do

𝑡𝑒𝑚𝑝_𝑥𝑒 = 𝑥𝑒 + 𝐴
(𝑒)
𝑖,𝑡𝑒𝑚𝑝_ 𝑗−1 − 𝐴

(𝑒)
𝑖,𝑡𝑒𝑚𝑝_ 𝑗 (using (2.51))

for 𝑒 ∈ {0, 1, 2};
𝑡𝑒𝑚𝑝_ 𝑗 = 𝑡𝑒𝑚𝑝_ 𝑗 − 1;

if 𝑡𝑒𝑚𝑝_ 𝑗 ≥ 1 then
𝑗 = 𝑡𝑒𝑚𝑝_ 𝑗 ;
𝑥𝑒 = 𝑡𝑒𝑚𝑝_𝑥𝑒 for 𝑒 ∈ {0, 1, 2, };

else
𝑡𝑒𝑚𝑝_𝑥𝑒 = 𝑥𝑒 + 𝐴

(𝑒)
𝑖, 𝑗+1 − 𝐴

(𝑒)
𝑖, 𝑗

(using (2.51)), for 𝑒 ∈ {0, 1, 2};
𝑡𝑒𝑚𝑝_ 𝑗 = 𝑗 + 1;
while 𝑝𝑡𝑒𝑚𝑝_ 𝑗 = 𝑝𝑖 do

𝑡𝑒𝑚𝑝_𝑥𝑒 = 𝑥𝑒 + 𝐴
(𝑒)
𝑖,𝑡𝑒𝑚𝑝_ 𝑗+1 − 𝐴

(𝑒)
𝑖,𝑡𝑒𝑚𝑝_ 𝑗 (using (2.51))

for 𝑒 ∈ {0, 1, 2};
𝑡𝑒𝑚𝑝_ 𝑗 = 𝑡𝑒𝑚𝑝_ 𝑗 + 1;

if 𝑡𝑒𝑚𝑝_𝑥0 ≤ 𝑎0 then
𝑗 = 𝑡𝑒𝑚𝑝_ 𝑗 ;
𝑥𝑒 = 𝑡𝑒𝑚𝑝_𝑥𝑒 for 𝑒 ∈ {0, 1, 2, };

else
𝑥𝑒 = 𝑥𝑒 + 𝐴

(𝑒)
𝑖−1, 𝑗 − 𝐴

(𝑒)
𝑖, 𝑗

(using (2.50));
𝑖 = 𝑖 − 1;

return (0, 0);
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We first show that Algorithm 2 outputs the (𝑖, 𝑗) pair such that 𝑤(d, 𝑖, 𝑗) = 110(c).
Note that by Lemma 2.2.2 there exists a unique sequence 𝑤(d, 𝑖, 𝑗) = 110(c) for
which 𝑤(d, 𝑖, 𝑗) satisfies Eq. (2.48) and for which (𝑖, 𝑗) satisfies Eq. (2.49). Since
the algorithm terminates either when such a sequence 𝑤(d, 𝑖, 𝑗) = 110(c) is found
or no such sequence is found and 𝑖 reaches 0, it suffices to show that the latter case
does not occur. We prove this by contradiction. Assuming that the latter case occurs,
we show that 𝑤(d, 𝑖, 𝑗) ≠ 110(c) for all (𝑖, 𝑗) pairs, which is a contradiction. For
each 𝑖 ∈ {1, 2, . . . , 2𝑛 − 2}, let 𝑗𝑖 be the maximum 𝑗 = 𝑗𝑖 for which 𝐴

(0)
𝑖, 𝑗𝑖

≤ 𝑎0.
If 𝐴(0)

𝑖, 𝑗
> 𝑎0 for some 𝑖 and for all 𝑗 , then 𝑗𝑖 = 1. Note that each pair (𝑖, 𝑗𝑖) is visited

in Algorithm 2 and by assumption we have that d(𝑖, 𝑗𝑖) ≠ 110(c). We consider the
following two cases

(1). 𝑗 > 𝑗𝑖,

(2). 𝑗 < 𝑗𝑖

and conclude that no (𝑖, 𝑗) pair in these cases result in 𝑤(d, 𝑖, 𝑗) = 110(c). For
𝑗 > 𝑗𝑖, by Proposition 2.5.2 we have that 𝐴

(0)
𝑖, 𝑗

≥ 𝐴
(0)
𝑖, 𝑗𝑖

or that 𝑤(d, 𝑖, 𝑗) = ★.
Hence by definition of 𝑗𝑖 we have that 𝐴

(0)
𝑖, 𝑗

> 𝑎0 or that 𝑤(d, 𝑖, 𝑗) = ★, and
hence 𝑤(d, 𝑖, 𝑗) ≠ 110(c). For 𝑗 < 𝑗𝑖, by Proposition 2.5.2 we have that 𝐴(0)

𝑖, 𝑗
≤ 𝐴

(0)
𝑖, 𝑗𝑖

or that 𝑤(d, 𝑖, 𝑗) = ★. If 𝐴(0)
𝑖, 𝑗

< 𝐴
(0)
𝑖, 𝑗𝑖

, then 𝐴
(0)
𝑖, 𝑗

≠ 𝑎0. If 𝐴(0)
𝑖, 𝑗

= 𝐴
(0)
𝑖, 𝑗𝑖

, then according
to Proposition 2.5.2, we have that 𝑤(d, 𝑖, 𝑗) = d(𝑖, 𝑗𝑖) ≠ 110(c).

We now show that Algorithm 2 terminates in 𝑂 (𝑛) time. From (2.50) and (2.51)
the (𝑖, 𝑗)-th entry of 𝐴(𝑒) , 𝑒 ∈ {0, 1, 2}, can be computed by using the update rule
𝑥𝑒 + 𝐴

(𝑒)
𝑖−1, 𝑗 − 𝐴

(𝑒)
𝑖, 𝑗

and 𝑥𝑒 + 𝐴
(𝑒)
𝑖, 𝑗±1 − 𝐴

(𝑒)
𝑖, 𝑗

(see Algorithm 2), that can be computed in
constant time. In addition, one can verify in constant time that (2.48) holds.

Note that in each round, either 𝑖 decreases by 1 or 𝑗 increases by 1, with the
exception that 𝑗 decreases by 1 every time when 𝐴

(0)
𝑖, 𝑗

= ★ or 𝐴(0)
𝑖, 𝑗

> 𝑎0. We prove
by contradiction that the latter case, in which 𝐴

(0)
𝑖, 𝑗

> 𝑎0 and 𝑗 > 1 is impossible.
Notice that for each current pair (𝑖, 𝑗), the value of next pair (𝑖∗, 𝑗∗) falls into either
one of the following three case:

(1). (𝑖∗, 𝑗∗) = (𝑖, 𝑗 ′) for some 𝑗 ′ > 𝑗 with 𝐴
(0)
𝑖∗, 𝑗∗ ≤ 𝑎0,

(2). (𝑖∗, 𝑗∗) = (𝑖 − 1, 𝑗),

(3). (𝑖∗, 𝑗∗) = (𝑖 − 1, 𝑗 ′) for some 𝑗 ′ < 𝑗 when 𝐴
(0)
𝑖−1, 𝑗 = ★.
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Assume by contradiction that 𝐴(0)
𝑖∗, 𝑗∗ > 𝑎0 and 𝑗∗ > 1, and (𝑖∗, 𝑗∗) is the first visited

pair for which this statement is true. In Case (1), we have that 𝐴
(0)
𝑖∗, 𝑗∗ ≤ 𝑎0, in

contradiction to 𝐴
(0)
𝑖∗, 𝑗∗ > 𝑎0. In Case (2) or Case (3), Proposition 2.5.2 implies

that 𝑎0 < 𝐴
(0)
𝑖∗, 𝑗∗ ≤ 𝐴

(0)
𝑖, 𝑗

, contradicting the assumption that (𝑖∗, 𝑗∗) is the first visited
pair which satisfies 𝐴

(0)
𝑖∗, 𝑗∗ > 𝑎0.

Having proved that 𝐴(0)
𝑖, 𝑗

≤ 𝑎0 whenever 𝑗 > 1, we have the Algorithm 2 proceeds
to the left only when it encounters a ★-entry. We now show that the algorithm
terminates in 𝑂 (𝑛) time. Notice that unless Algorithm 2 encounters a ★-entry, it
proceeds either up or to the right, for which case, it is clear that only𝑂 (𝑛) many steps
occur. In cases where Algorithm 2 encounters a ★-entry, it proceeds to the left until
a non ★-entry is found. Then, this ★-entry will not be visited again, because in the
next step, it either goes up from the non ★-entry or goes to the right of the ★-entry.
Since the number of ★-entries is 4𝑛 − 4, the number of left strides of the algorithm
is at most this quantity, and therefore the algorithm terminates in at most 𝑂 (𝑛) time.
In the following, we provide a running example of Algorithm 2.

Example 2.5.1. Consider a sequence c = (1, 1, 0, 0, 1, 0, 1, 0), where the first and
the 6-th bits are deleted, resulting in d = (1, 0, 0, 1, 1, 0). Then 𝑛 = 8, 110(c) =

(0, 1, 0, 0, 1, 0, 1), 𝑓 (c) = (14, 46, 200), and 110(d) = (1, 0, 0, 0, 1). Hence 𝑎0 =

8, 𝑎1 = 30, 𝑎2 = 144.

Then, Algorithm 2 proceeds in the following manner. The underlined bits denote the
inserted bits to 110(d).

𝑖 = 1, 𝑗 = 14, 𝑝𝑖 = 𝑝 𝑗 , 𝑥0 = 7, 𝑥1 = 28, 𝑥2 = 140

→𝑖 = 2, 𝑗 = 14, 𝑤(d, 𝑖, 𝑗) = (1, 0, 0, 0, 1, 0, 1),
𝑥0 = 7, 𝑥1 = 28, 𝑥2 = 140

→𝑖 = 3, 𝑗 = 14, 𝑤(d, 𝑖, 𝑗) = (1, 0, 0, 0, 0, 1, 1),
𝑥0 = 8, 𝑥1 = 34, 𝑥2 = 176,

→𝑖 = 4, 𝑗 = 14, 𝑤(d, 𝑖, 𝑗) = (1, 0, 0, 0, 0, 1, 1),
𝑥0 = 8, 𝑥1 = 34, 𝑥2 = 176,

→𝑖 = 5, 𝑗 = 14, 𝑤(d, 𝑖, 𝑗) = (1, 0, 0, 0, 0, 1, 1),
𝑥0 = 8, 𝑥1 = 34, 𝑥2 = 176,

→𝑖 = 6, 𝑗 = 14, 𝑤(d, 𝑖, 𝑗) = (1, 0, 0, 0, 0, 1, 1),
𝑥0 = 8, 𝑥1 = 34, 𝑥2 = 176,
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→𝑖 = 7, 𝑗 = 14, 𝑤(d, 𝑖, 𝑗) = (0, 1, 0, 0, 0, 1, 1),
𝑥0 = 9, 𝑥1 = 36, 𝑥2 = 180

→𝑖 = 7, 𝑗 = 13, 𝑤(d, 𝑖, 𝑗) = (0, 1, 0, 0, 0, 1, 1),
𝑥0 = 9, 𝑥1 = 36, 𝑥2 = 180

→𝑖 = 7, 𝑗 = 12, 𝑤(d, 𝑖, 𝑗) = (0, 1, 0, 0, 1, 0, 1),
𝑥0 = 8, 𝑥1 = 30, 𝑥2 = 144

Recover the original sequence c
Let (𝑖, 𝑗) be the output of Algorithm 2, for which we have that 𝑤(d, 𝑖, 𝑗) = 110(c).
Let c′ be a length 𝑛 supersequence after two insertions to d such that 110(c′) = 110(c).
If 𝑏𝑖 = 1, then inserting 𝑏𝑖 to 110(d) corresponds to either inserting a 0 to d as
the 𝑝𝑖+1-th bit in c′ or inserting a 1 to d as the 𝑝𝑖-th bit in c′ (see Table 2.1). If 𝑏𝑖 = 0,
then inserting 𝑏𝑖 to 110(d) corresponds to inserting a 0 or 1 in the first 0 run or 1
run respectively after the 𝑘′-th bit in c′, where 𝑘′ = max𝑘 {𝑤(d, 𝑖, 𝑗)𝑘 = 1, 𝑘 < 𝑝𝑖}
is the index of the last 10-pattern that occurs before the 𝑝𝑖-th bit in c′. The same
arguments hold for the insertion of 𝑏 𝑗 .

Therefore, given the (𝑖, 𝑗) pair that Algorithm 2 returns, there are at most four
possible c′ supersequences of d such that 110(c′) = 110(c). One can check if
the c′ sequences satisfy ℎ(c). According to Theorem 2.1.2, there is a unique such
sequence, the original sequence c that satisfies both 𝑓 (c) and ℎ(c) simultaneously.

2.6 Appendix
Proof of (2.13) (Case (a))

(110(c) − 110(c′)) · m(𝑒)

=

ℓ2∑︁
𝑡=ℓ1

(110(c)𝑡 − 110(c′)𝑡) · (m(𝑒))𝑡+

𝑘1∑︁
𝑡=𝑘2

(110(c)𝑡 − 110(c′)𝑡) · (m(𝑒))𝑡

= (110(c)ℓ2 − 110(c′)ℓ2) · (m(𝑒))ℓ2+
(110(c)𝑘1 − 110(c′)𝑘1) · (m(𝑒))𝑘1+
ℓ2−1∑︁
𝑡=ℓ1

(110(c)𝑡 − 110(c)𝑡+1) · (m(𝑒))𝑡+
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𝑘1−1∑︁
𝑡=𝑘2

(110(c′)𝑡+1 − 110(c′)𝑡) · (m(𝑒))𝑡

= (110(c)ℓ2 − 110(c′)ℓ2) · (m(𝑒))ℓ2+
(110(c)𝑘1 − 110(c′)𝑘1) · (m(𝑒))𝑘1+
ℓ2−1∑︁
𝑡=ℓ1

110(c)𝑡 · (m(𝑒))𝑡 −
ℓ2∑︁

ℓ1+1
110(c)𝑡 · (m(𝑒))𝑡−1

+
𝑘1∑︁

𝑡=𝑘2+1
110(c′)𝑡 · (m(𝑒))𝑡−1 −

𝑘1−1∑︁
𝑡=𝑘2

110(c′)𝑡 · (m(𝑒))𝑡

= (110(c)ℓ2 − 110(c′)ℓ2) · (m(𝑒))ℓ2+
(110(c)𝑘1 − 110(c′)𝑘1) · (m(𝑒))𝑘1+
110(c)ℓ1 · (m(𝑒))ℓ1 − 110(c)ℓ2 · (m(𝑒))ℓ2−1+
ℓ2−1∑︁
𝑡=ℓ1+1

110(c)𝑡 · 𝑡𝑒 + 110(c′)𝑘1 · (m(𝑒))𝑘1−1

− 110(c′)𝑘2 · (m(𝑒))𝑘2 −
𝑘1−1∑︁
𝑡=𝑘2+1

110(c′)𝑡 · 𝑡𝑒

= (−110(c′)ℓ2) · (m(𝑒))ℓ2 + (110(c)𝑘1) · (m(𝑒))𝑘1+

110(c)ℓ1 · (m(𝑒))ℓ1 +
ℓ2∑︁

𝑡=ℓ1+1
110(c)𝑡 · 𝑡𝑒−

110(c′)𝑘2 · (m(𝑒))𝑘2 −
𝑘1∑︁

𝑡=𝑘2+1
110(c′)𝑡 · 𝑡𝑒

= 110(c)ℓ1 · (m(𝑒))ℓ1 + 110(c)𝑘1 · (m(𝑒))𝑘1+
ℓ2∑︁

𝑡=ℓ1+1
110(c)𝑡 · 𝑡𝑒 −

𝑘1∑︁
𝑡=𝑘2+1

110(c′)𝑡 · 𝑡𝑒−(
110(c′)ℓ2 · (m(𝑒))ℓ2 + 110(c′)𝑘2 · (m(𝑒))𝑘2

)
= 𝑔m(𝑒) ,ℓ1 (110(c)ℓ1 , . . . , 110(c)ℓ2 , 110(c′)ℓ2)−
𝑔m(𝑒) ,𝑘2 (110(c′)𝑘2 , . . . , 110(c′)𝑘1 , 110(c)𝑘1)

Proof of (2.14) (Case (b))

(110(c) − 110(c′)) · m(𝑒)
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=

ℓ2∑︁
𝑡=ℓ1

(110(c)𝑡 − 110(c′)𝑡) · (m(𝑒))𝑡+

𝑘2∑︁
𝑡=𝑘1

(110(c)𝑡 − 110(c′)𝑡) · (m(𝑒))𝑡

= (110(c)ℓ2 − 110(c′)ℓ2) · (m(𝑒))ℓ2+
(110(c)𝑘2 − 110(c′)𝑘2) · (m(𝑒))𝑘2+
ℓ2−1∑︁
𝑡=ℓ1

(110(c)𝑡 − 110(c)𝑡+1) · (m(𝑒))𝑡+

𝑘2−1∑︁
𝑡=𝑘1

(110(c)𝑡 − 110(c)𝑡+1) · (m(𝑒))𝑡

= (110(c)ℓ2 − 110(c′)ℓ2) · (m(𝑒))ℓ2+
(110(c)𝑘2 − 110(c′)𝑘2) · (m(𝑒))𝑘2+
ℓ2−1∑︁
𝑡=ℓ1

110(c)𝑡 · (m(𝑒))𝑡 −
ℓ2∑︁

ℓ1+1
110(c)𝑡 · (m(𝑒))𝑡−1+

𝑘2−1∑︁
𝑡=𝑘1

110(c)𝑡 · (m(𝑒))𝑡 −
𝑘2∑︁

𝑡=𝑘1+1
110(c)𝑡 · (m(𝑒))𝑡−1

= (110(c)ℓ2 − 110(c′)ℓ2) · (m(𝑒))ℓ2+
(110(c)𝑘2 − 110(c′)𝑘2) · (m(𝑒))𝑘2+
110(c)ℓ1 · (m(𝑒))ℓ1 − 110(c)ℓ2 · (m(𝑒))ℓ2−1+
ℓ2−1∑︁
𝑡=ℓ1+1

110(c)𝑡 · 𝑡𝑒 + 110(c)𝑘1 · (m(𝑒))𝑘1

− 110(c)𝑘2 · (m(𝑒))𝑘2−1 +
𝑘2−1∑︁
𝑡=𝑘1+1

110(c)𝑡 · 𝑡𝑒

= (−110(c′)ℓ2) · (m(𝑒))ℓ2 + (−110(c′)𝑘2) · (m(𝑒))𝑘2+

110(c)ℓ1 · (m(𝑒))ℓ1 +
ℓ2∑︁

𝑡=ℓ1+1
110(c)𝑡 · 𝑡𝑒+

110(c)𝑘1 · (m(𝑒))𝑘1 +
𝑘2∑︁

𝑡=𝑘1+1
110(c)𝑡 · 𝑡𝑒

= 110(c)ℓ1 · (m(𝑒))ℓ1 + 110(c)𝑘1 · (m(𝑒))𝑘1−(
110(c′)ℓ2 · (m(𝑒))ℓ2 + 110(c′)𝑘2 · (m(𝑒))𝑘2

)
+



49
ℓ2∑︁

𝑡=ℓ1+1
110(c)𝑡 · 𝑡𝑒 +

𝑘2∑︁
𝑡=𝑘1+1

110(c)𝑡 · 𝑡𝑒

= 𝑔m(𝑒) ,ℓ1 (110(c)ℓ1 , . . . , 110(c)ℓ2 , 110(c′)ℓ2)+
𝑔m(𝑒) ,𝑘1 (110(c)𝑘1 , . . . , 110(c)𝑘2 , 110(c′)𝑘2)

Proof of (2.15) (Case (c))

(110(c) − 110(c′)) · m(𝑒)

=

𝑘1−2∑︁
𝑡=ℓ1

(110(c)𝑡 − 110(c′)𝑡) · (m(𝑒))𝑡+

ℓ2−1∑︁
𝑡=𝑘1−1

(110(c)𝑡 − 110(c′)𝑡) · (m(𝑒))𝑡+

𝑘2∑︁
𝑡=ℓ2

(110(c)𝑡 − 110(c′)𝑡) · (m(𝑒))𝑡

=

𝑘1−2∑︁
𝑡=ℓ1

(110(c)𝑡 − 110(c)𝑡+1) · (m(𝑒))𝑡+

ℓ2−1∑︁
𝑡=𝑘1−1

(110(c)𝑡 − 110(c)𝑡+2) · (m(𝑒))𝑡+

(110(c)ℓ2 − 110(c′)ℓ2) · (m(𝑒))ℓ2+
(110(c)𝑘2 − 110(c′)𝑘2) · (m(𝑒))𝑘2+
𝑘2−1∑︁
𝑡=ℓ2+1

(110(c)𝑡 − 110(c)𝑡+1) · (m(𝑒))𝑡

=

𝑘1−2∑︁
𝑡=ℓ1

110(c)𝑡 · (m(𝑒))𝑡 −
𝑘1−1∑︁
𝑡=ℓ1+1

110(c)𝑡 · (m(𝑒))𝑡−1+

ℓ2∑︁
𝑡=𝑘1−1

110(c)𝑡 · (m(𝑒))𝑡 −
ℓ2+1∑︁

𝑡=𝑘1+1
110(c)𝑡 · (m(𝑒))𝑡−2+

(−110(c′)ℓ2) · (m(𝑒))ℓ2 + (−110(c′)𝑘2) · (m(𝑒))𝑘2+
𝑘2∑︁

𝑡=ℓ2+1
110(c)𝑡 · (m(𝑒))𝑡 −

𝑘2∑︁
𝑡=ℓ2+2

110(c)𝑡 · (m(𝑒))𝑡−1

= 110(c)ℓ1 (m(𝑒))ℓ1 − 110(c)𝑘1−1(m(𝑒))𝑘1−2+
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𝑘1−2∑︁
𝑡=ℓ1+1

110(c)𝑡 · 𝑡𝑒 + 110(c)𝑘1−1(m(𝑒))𝑘1−1+

110(c)𝑘1 (m(𝑒))𝑘1 − 110(c)ℓ2+1(m(𝑒))ℓ2−1+
ℓ2∑︁

𝑡=𝑘1+1
110(c)𝑡 (𝑡𝑒 + (𝑡 − 1)𝑒) + (−110(c′)ℓ2) · (m(𝑒))ℓ2+

(−110(c′)𝑘2) · (m(𝑒))𝑘2 + 110(c)ℓ2+1(m(𝑒))ℓ2+1+
𝑘2∑︁

𝑡=ℓ2+2
110(c)𝑡𝑡𝑒

= 110(c)ℓ1 (m(𝑒))ℓ1 + 110(c)𝑘1 (m(𝑒))𝑘1−
(110(c′)ℓ2 · (m(𝑒))ℓ2 + 110(c′)𝑘2 · (m(𝑒))𝑘2)+
𝑘1−1∑︁
𝑡=ℓ1+1

110(c)𝑡 · 𝑡𝑒 +
ℓ2+1∑︁

𝑡=𝑘1+1
110(c)𝑡 (𝑡𝑒 + (𝑡 − 1)𝑒)+

𝑘2∑︁
𝑡=ℓ2+2

110(c)𝑡𝑡𝑒

= 110(c)ℓ1 (m(𝑒))ℓ1 + 110(c)𝑘1 (m(𝑒))𝑘1−
(110(c′)ℓ2 · (m(𝑒))ℓ2 + 110(c′)𝑘2 · (m(𝑒))𝑘2)+
𝑘1−1∑︁
𝑡=ℓ1+1

110(c)𝑡 · 𝑡𝑒 +
ℓ2∑︁

𝑡=𝑘1

110(c)𝑡+1𝑡
𝑒 +

𝑘2∑︁
𝑡=𝑘1+1

110(c)𝑡𝑡𝑒

= 𝑔m(𝑒) ,ℓ1 (110(c)ℓ1 , . . . , 110(c)𝑘1−1, 110(c)𝑘1+1, . . . ,

110(c)ℓ2+1, 110(c′)ℓ2)+
𝑔m(𝑒) ,𝑘1 (110(c)𝑘1 , . . . , 110(c)𝑘2 , 110(c′)𝑘2)
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C h a p t e r 3

BINARY CODES CORRECTING 𝑘 DELETIONS/INSERTIONS

Following the construction in Ch. 2, this chapter presents binary codes correcting
any constant number of deletion/inssertion errors.

3.1 Introduction
The problem of constructing efficient 𝑘-deletion codes (defined in Ch. 2) has
long been unsettled. Before [12], which proposed a 𝑘-deletion correcting code
construction with 𝑂 (𝑘2 log 𝑘 log 𝑛) redundancy, no deletion codes correcting more
than a single error with rate approaching 1 was known.

After [12], the work in [44] considered correction with high probability and proposed
a 𝑘-deletion correcting code construction with redundancy (𝑘 + 1) (2𝑘 + 1) log 𝑛 +
𝑜(log 𝑛) and encoding/decoding complexity 𝑂 (𝑛𝑘+1/log𝑘−1 𝑛). The result for this
randomized coding setting was improved in [41], where redundancy 𝑂 (𝑘 log(𝑛/𝑘))
and complexity 𝑝𝑜𝑙𝑦(𝑛, 𝑘) were achieved. However, finding a deterministic 𝑘-
deletion correcting code construction that achieves the optimal order redundancy
𝑂 (𝑘 log 𝑛) remained elusive. Note that the optimality of the code is redundancy-
wise rather than cardinality-wise, namely, the focus is on the asymptotic rather than
exact size of the code.

In this chapter, we provide a solution to this longstanding open problem for constant
𝑘: We present a code construction that achieves 𝑂 (8𝑘 log 𝑛 + 𝑜(log 𝑛)) redundancy
when 𝑘 = 𝑜(

√︁
log log 𝑛) and 𝑂 (𝑛2𝑘+1) encoding/decoding computational complex-

ity. Note that the complexity is polynomial in 𝑛 when 𝑘 is a constant. The following
theorem summarizes our main result.

Theorem 3.1.1. Let 𝑘 and 𝑛 be two integers satisfying 𝑘 = 𝑜(
√︁

log log 𝑛). For
integer 𝑁 = 𝑛 + 8𝑘 log 𝑛 + 𝑜(log 𝑛), there exists an encoding function E : {0, 1}𝑛 →
{0, 1}𝑁 , computed in 𝑂 (𝑛2𝑘+1) time, and a decoding function D : {0, 1}𝑁−𝑘 →
{0, 1}𝑛, computed in 𝑂 (𝑛𝑘+1) = 𝑂 (𝑁 𝑘+1) time, such that for any c ∈ {0, 1}𝑛 and
subsequence d ∈ {0, 1}𝑁−𝑘 of E(c), we have that D(d) = c.

An independent work [22] proposed a 𝑘-deletion correcting code with 𝑂 (𝑘 log 𝑛)
redundancy and better complexity of 𝑝𝑜𝑙𝑦(𝑛, 𝑘). In contrast to redundancy 8𝑘 log 𝑛
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in our construction, the redundancy in [22] is not specified, and it is estimated to
be at least 200𝑘 log 𝑛. Moreover, the techniques in [22] and in our constructions
are different. Our techniques can be applied to obtain a systematic 𝑘-deletion code
construction with 4𝑘 log 𝑛 + 𝑜(log 𝑛) bits of redundancy, as well as deletion codes
for other settings, which will be given in the next chapter.

Here are the key building blocks in our code construction: (i) generalizing the VT
construction to 𝑘 deletions by considering constrained sequences, (ii) separating the
encoded vector to blocks and using concatenated codes and (iii) a novel strategy
to separate the vector to blocks by a single pattern. The following gives a more
specific description of these ideas.

In the previous chapter, we generalized the VT construction. In particular, we proved
that while the higher order parity checks

∑𝑁
𝑖=1 𝑖

𝑗𝑐𝑖 mod (𝑁 𝑗 + 1), 𝑗 = 0, 1, . . . , 𝑡 do
not work in general, those parity checks work in the two-deletion case, when the
sequences are constrained to have no consecutive 1’s. In this chapter we generalize
this idea, specifically, the higher order parity checks can be used to correct 𝑘 = 𝑡/2
deletions in sequences that satisfy the following constraint: The index distance
between any two 1’s is at least 𝑘 , i.e., there is a 0 run of length at least 𝑘 −1 between
any two 1’s.

The fact that we can correct 𝑘 deletions using the generalization of the VT construc-
tion on constrained sequences, enables a concatenated code construction, which is
the underlying structure of our 𝑘-deletion correcting codes. In concatenated codes,
each codeword c is split into blocks of small length, by certain markers at the bound-
aries between adjacent blocks. Each block is protected by an inner deletion code
that can be efficiently computed when the block length is small. The block boundary
markers are chosen such that 𝑘 deletions in a codeword result in at most 𝑂 (𝑘) block
errors. Then, it suffices to use an outer code, such as a Reed-Solomon code, to
correct the block errors.

Concatenated codes were used in a number of 𝑘-deletion correcting code construc-
tions, [12, 40, 81]. One of the main differences among these constructions is the
choice of the block boundary markers that separate the codewords. The construc-
tions in [81, 40] insert extra bits as markers between blocks, which introduces 𝑂 (𝑁)
bits of redundancy. In [12], occurrences of short subsequences in the codeword,
called patterns, were used as markers. The construction in [12] requires 𝑂 (𝑘 log 𝑘)
different patterns where each pattern introduces 𝑂 (𝑘 log 𝑁) bits of redundancy.
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We improve the redundancy in [12] by using a single type of pattern for block
boundary markers. Specifically, we choose a pattern such that its indicator vector,
a binary vector in which the 1 entries indicate the occurrences of the pattern in c,
is a constrained sequence that is immune to deletions. Then, the generalized VT
construction can be used to protect the indicator vector and thus the locations of the
block boundary markers. Knowing the boundary between blocks, we can recover the
blocks with at most 2𝑘 block errors, which then can be corrected using a combination
of short deletion correcting codes and Reed-Solomon codes.

The concatenated code construction consists of short blocks, hence, the pattern
has to occur frequently in the codeword such that all consecutive bits of certain
length contains at least one occurrence of the pattern. Namely, the first step of the
encoding is a mapping of an arbitrary binary sequence to a sequence with frequent
synchronization patterns. The constructions in [12, 22] compute such mappings
using randomized algorithms. In this chapter, we provide a deterministic algorithm
to generate sequences with frequent synchronization patterns.

We now formally define the synchronization pattern and its indicator vector.

Definition 3.1.1. A synchronization pattern, is a length 3𝑘+⌈log 𝑘⌉+4 sequence a =

(𝑎1, . . . , 𝑎3𝑘+⌈log 𝑘⌉+4) satisfying

• 𝑎3𝑘+𝑖 = 1 for 𝑖 ∈ [0, ⌈log 𝑘⌉ +4], where [0, ⌈log 𝑘⌉ +4] = {0, . . . , ⌈log 𝑘⌉ +4}.

• There does not exist a 𝑗 ∈ [1, 3𝑘−1], such that 𝑎 𝑗+𝑖 = 1 for 𝑖 ∈ [0, ⌈log 𝑘⌉+4].

Namely, a synchronization pattern is a length 3𝑘 + ⌈log 𝑘⌉ + 4 sequence that ends
with ⌈log 𝑘⌉ + 5 consecutive 1’s and no other 1-run with length ⌈log 𝑘⌉ + 5 exists.

For a sequence c = (𝑐1, . . . , 𝑐𝑛), the indicator vector of the synchronization pattern,
referred to as synchronization vector 1𝑠𝑦𝑛𝑐 (c) ∈ {0, 1}𝑛, is defined by

1𝑠𝑦𝑛𝑐 (c)𝑖 =


1, if (𝑐𝑖−3𝑘+1, 𝑐𝑖−3𝑘+2, . . . , 𝑐𝑖+⌈log 𝑘⌉+4)

is a synchronization pattern,

0, else.

(3.1)

Note that 1𝑠𝑦𝑛𝑐 (c)𝑖 = 0 for 𝑖 ∈ [1, 3𝑘 − 1] and for 𝑖 ∈ [𝑛 − ⌈log 𝑘⌉ − 3, 𝑛]. The
entry 1𝑠𝑦𝑛𝑐 (c) = 1 if and only if 𝑐𝑖 is the first bit of the final 1 run in a synchronization
pattern. It can be seen from the definition that any two 1 entries in 1𝑠𝑦𝑛𝑐 (c) have
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index distance at least 3𝑘 , i.e., any two 1 entries are separated by a 0-run of length
at least 3𝑘 − 1. Hence, 1𝑠𝑦𝑛𝑐 (c) is a constrained sequence described above.

Example 3.1.1. Let integers 𝑘 = 2 and 𝑛 = 35. Then the sequence (1, 0, 0, 1, 0, 1,
1, 1, 1, 1, 1) is a synchronization pattern. Let the length 𝑛 sequence

c = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1).

Then the synchronization vector 1𝑠𝑦𝑛𝑐 (c) is given by

1𝑠𝑦𝑛𝑐 (c) = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0).

Next, we present the definition of the generalized VT code. Define the integer
vectors

m(𝑒) ≜ (1𝑒, 1𝑒 + 2𝑒, . . . ,
𝑛∑︁
𝑗=1

𝑗 𝑒) (3.2)

for 𝑒 ∈ [0, 6𝑘], where the 𝑖-th entry m(𝑒)
𝑖

of m(𝑒) is the sum of the 𝑒-th powers of the
first 𝑖 positive integers. Given a sequence c ∈ {0, 1}𝑛, we compute the generalized
VT redundancy 𝑓 (c) of dimension 6𝑘 + 1 as follows:

𝑓 (c)𝑒 ≜ c · m(𝑒) mod 3𝑘𝑛𝑒+1

=

𝑛∑︁
𝑖=1

𝑐𝑖m(𝑒)
𝑖

mod 3𝑘𝑛𝑒+1, (3.3)

for 𝑒 ∈ [0, 6𝑘], where 𝑓 (c)𝑒 is the 𝑒-th component of 𝑓 (c) and · denotes inner
product over integers. Our generalization of the VT code construction shows that
the vector 𝑓 (1𝑠𝑦𝑛𝑐 (c)) helps protect the synchronization vector 1𝑠𝑦𝑛𝑐 (c) from 𝑘

deletions in c.

The rest of the chapter is organized as follows. Sec. 3.2 provides an outline of our
construction and some of the basic lemmas. Based on results of the basic lemmas,
Sec. 3.3 presents the encoding and decoding procedures of our code. Sec. 3.4
presents our VT generalization for recovering the synchronization vector. Sec. 3.5
explains how to correct 𝑘 deletions based on the synchronization vector, when
the synchronization patterns appear frequently. Sec. 3.6 describes an algorithm to
transform a sequence into one with frequently occurred synchronization patterns.
Sec. 3.7 concludes this chapter.
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3.2 Outline and Preliminaries
In this section, we outline the ingredients that constitute our code construction and
present notations that will be used throughout this chapter. A summary of these no-
tations is provided in Table 3.1. We begin with an overview of the code construction,
which has a concatenated code structure as described in Sec. 3.1. In our construc-
tion, each codeword c is split into blocks, with the boundaries between adjacent
blocks given by synchronization patterns. Specifically, let 𝑡1, . . . , 𝑡𝐽 be the indices
of the synchronization patterns in c, i.e., the indices of the 1 entries in 1𝑠𝑦𝑛𝑐 (c). Then
the blocks are given by (𝑐𝑡 𝑗−1+1, . . . , 𝑐𝑡 𝑗−1) for 𝑗 ∈ [0, 𝐽 + 1], where 𝑡 𝑗 = 0 if 𝑗 = 0
and 𝑡 𝑗 = 𝑛+1 if 𝑗 = 𝐽 +1. The key idea of our construction is to use the VT general-
ization 𝑓 (see Eq. (3.3) for definition) as parity checks to protect the synchronization
vector 1c, and thus identify the indices of block boundaries. The proof details will
be given in Lemma 3.2.1. Note that the parity 𝑓 (c) in (3.3) has size 𝑂 (𝑘2 log 𝑛).
To compress the size of 𝑓 (c) to the targeted 𝑂 (𝑘 log 𝑛), in Lemma 3.2.2 we apply
a modulo operation on the function 𝑓 . Given the block boundaries, Lemma 3.2.3
provides an algorithm to protect the codewords. Specifically, we show that given
the synchronization vector 1𝑠𝑦𝑛𝑐 (c), it is possible to recover most of the blocks in c,
with up to 2𝑘 block errors. These block errors can be corrected with the help of
their deletion correcting hashes, which can be exhaustively computed and will be
presented in Lemma 8.2.3. Hence, to correct the block errors, it suffices to protect
the sequence of deletion correcting hashes using, for example, Reed-Solomon codes.

Lemma 3.2.2 and Lemma 3.2.3 together define a hash function that protects c
from 𝑘 deletions. However, in order to exhaustively compute the block hash given
in Lemma 8.2.3 and obtain the desired size of the redundancy, the block length has
to be of order 𝑂 (𝑝𝑜𝑙𝑦(𝑘) log 𝑛). Hence the synchronization pattern must appear
frequently enough in c. Such sequence c will be defined in the following as a 𝑘-dense
sequence. To encode for any given sequence c ∈ {0, 1}𝑛, in Lemma 3.2.4 we present
an invertible mapping that takes any sequence c ∈ {0, 1}𝑛 as input and outputs a 𝑘-
dense sequence. Then, any binary sequence can be encoded into a 𝑘-dense sequence
and protected.

Finally, the hash function defined by Lemma 3.2.2 and Lemma 3.2.3 is subject
to deletion errors and has to be protected. To this end, we use an additional
hash that encodes the deletion correcting hash of the hash function defined in
Lemma 3.2.2 and Lemma 3.2.3. The additional hash is protected by a (𝑘 + 1)-
fold repetition code. Similar additional hash technique was also given in [12].
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Table 3.1: Summary of Notations in Ch. 3

B𝑘 (c) ≜ The set of sequences that share a
length 𝑛 − 𝑘

subsequence with c ∈ {0, 1}𝑛.
R𝑚 ≜ The set of sequences where any

two 1 entries are
separated by at least 𝑚 − 1 zeros.

1𝑠𝑦𝑛𝑐 (c) ≜ Synchronization vector defined in
(3.1).

m(𝑒) ≜ Weights of order 𝑒 in the VT gener-
alization, defined
in (3.2).

𝑓 (c) ≜ Generalized VT redundancy defined
in (3.3).

𝐿 ≜ Maximal length of zero runs in the
synchronization
vector of a 𝑘-dense sequence, de-
fined in (3.4).

𝑝(c) ≜ The function used to compute the
redundancy
protecting the synchronization vec-
tor 1𝑠𝑦𝑛𝑐 (c),
defined in Lemma 3.2.2.

𝐻𝑎𝑠ℎ𝑘 (c) ≜ The deletion correcting hash func-
tion for 𝑘-dense
sequences, defined in Lemma 3.2.3.

𝑇 (c) ≜ The function that generates 𝑘-dense
sequences,
defined in Lemma 3.2.4.

𝐻 (c) ≜ Deletion correcting hash function
for any sequence,
defined in Lemma 8.2.3.
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sequence c

Map c to 𝑇 (c) (see Lemma 3.2.4 for definition of 𝑇)

𝑘-dense
sequence 𝑇 (c)

pattern
synchronization

00 . . . 011111

block 1

Append Redundancy 1 = ( 𝑓 (1𝑠𝑦𝑛𝑐 (𝑇 (c))) mod 𝑝(c), 𝑝(c))
(See Lemma 3.2.2 for definitions of 𝑓 and 𝑝)

pattern
synchronization

01 . . . 011111

. . . block 𝐽

protecting 1𝑠𝑦𝑛𝑐 (c) 01 . . . 01111100 . . . 011111 Redundancy 1

Append Redundancy 2 = 𝐻𝑎𝑠ℎ𝑘 (c)
(See Lemma 3.2.3 for definition of 𝐻𝑎𝑠ℎ𝑘)

protecting
blocks 1, . . . , 𝐽 01 . . . 01111100 . . . 011111 Redundancy 1 Redundancy 2

Append Redundancy 3 = (𝑘 + 1)-fold repetition
of 𝐻 (Redundancy1,Redundancy2) (See Lemma 8.2.3 for definition of 𝐻)

protecting
Redundancy 1

and Redundancy 2
01 . . . 01111100 . . . 011111 Redundancy 1 Redundancy 2 Redundancy 3

Figure 3.1: Illustrating the encoding procedure of our 𝑘-deletion correcting code
construction.

The final encoding/decoding algorithm of our code, which combines the results
in Lemma 3.2.2, Lemma 3.2.3, and Lemma 3.2.4, is provided in Sec. 3.3. The
encoding is illustrated in Fig. 3.1.

Before presenting the lemmas, we give necessary definitions and notations. For a
sequence c ∈ {0, 1}𝑛, define its deletion ball B𝑘 (c) as the collection of sequences
that share a length 𝑛 − 𝑘 subsequence with c.

Definition 3.2.1. A sequence c ∈ {0, 1}𝑛 is said to be 𝑘-dense if the lengths of the 0
runs in 1𝑠𝑦𝑛𝑐 (c) is at most

𝐿 ≜(⌈log 𝑘⌉ + 5)2⌈log 𝑘⌉+9⌈log 𝑛⌉
+ (3𝑘 + ⌈log 𝑘⌉ + 4) (⌈log 𝑛⌉ + 9 + ⌈log 𝑘⌉). (3.4)

For 𝑘-dense c, the index distance between any two 1 entries in 1𝑠𝑦𝑛𝑐 (c) is at most 𝐿+1,
i.e., the 0-runs between two 1 entries have length at most 𝐿 + 1.

Note that 𝑓 (c) is an integer vector that can be presented by log(3𝑘)6𝑘+1𝑛(3𝑘+1) (6𝑘+1)

bits or by an integer in the range [0, (3𝑘)6𝑘+1𝑛(3𝑘+1) (6𝑘+1) − 1]. In this chapter,
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we interchangeably use 𝑓 (c) to denote its binary presentation or integer presenta-
tion. The following lemma shows that the synchronization vector 1𝑠𝑦𝑛𝑐 (c) can be
recovered from 𝑘 deletions with the help of 𝑓 (1𝑠𝑦𝑛𝑐 (c)). Its proof will be given in
Sec. 3.4.

Lemma 3.2.1. For integers 𝑛 and 𝑘 and sequences c, c′, if c′ ∈ B𝑘 (c) and 𝑓 (1𝑠𝑦𝑛𝑐 (c)) =
𝑓 (1𝑠𝑦𝑛𝑐 (c′)), then 1𝑠𝑦𝑛𝑐 (c) = 1𝑠𝑦𝑛𝑐 (c′).

By virtue of Lemma 3.2.1, the synchronization vector 1𝑠𝑦𝑛𝑐 (c) can be recovered
from 𝑘 deletions in c, with the help of a hash 𝑓 (1𝑠𝑦𝑛𝑐 (c)) of size 𝑂 (𝑘2 log 𝑛) bits.
To further reduce the size of the hash to𝑂 (𝑘 log 𝑛) bits, we apply modulo operations
on 𝑓 (1𝑠𝑦𝑛𝑐 (c)) in the following lemma, the proof of which will be proved in Sec. 3.4.

Lemma 3.2.2. For integers 𝑛 and 𝑘 = 𝑜(
√︁

log log 𝑛), there exists a function 𝑝 :
{0, 1}𝑛 → [1, 22𝑘 log 𝑛+𝑜(log 𝑛)], such that if 𝑓 (1𝑠𝑦𝑛𝑐 (c)) ≡ 𝑓 (1𝑠𝑦𝑛𝑐 (c′)) mod 𝑝(c)
for two sequences c ∈ {0, 1}𝑛 and c′ ∈ B𝑘 (c), then 1𝑠𝑦𝑛𝑐 (c) = 1𝑠𝑦𝑛𝑐 (c′). Hence if

( 𝑓 (1𝑠𝑦𝑛𝑐 (c)) mod 𝑝(c), 𝑝(c))
=( 𝑓 (1𝑠𝑦𝑛𝑐 (c′)) mod 𝑝(c′), 𝑝(c′))

and c′ ∈ B𝑘 (c), we have that 1𝑠𝑦𝑛𝑐 (c) = 1𝑠𝑦𝑛𝑐 (c′).

Lemma 3.2.2 presents a hash of size 4𝑘 log 𝑛 + 𝑜(log 𝑛) bits for correcting 1𝑠𝑦𝑛𝑐 (c).
With the knowledge of the synchronization vector 1𝑠𝑦𝑛𝑐 (c), the next lemma shows
that the sequence c can be further recovered using another 4𝑘 log+𝑜(log 𝑛) bit hash,
when c is 𝑘-dense, i.e., when the synchronization patter occurs frequently enough
in c. The proof of Lemma 3.2.3 will be given in Sec. 3.5.

Lemma 3.2.3. For integers 𝑛 and 𝑘 = 𝑜(
√︁

log log 𝑛), there exists a function 𝐻𝑎𝑠ℎ𝑘 :
{0, 1}𝑛 → {0, 1}4𝑘 log 𝑛+𝑜(log 𝑛) , such that every 𝑘-dense sequence c ∈ {0, 1}𝑛 can be
recovered, given its synchronization vector 1𝑠𝑦𝑛𝑐 (c), its length 𝑛− 𝑘 subsequence d,
and 𝐻𝑎𝑠ℎ𝑘 (c).

Combining Lemma 3.2.2 and Lemma 3.2.3, we obtain size𝑂 (𝑘 log 𝑛) hash function
to correct deletions for a 𝑘-dense sequence. To encode for arbitrary sequence c ∈
{0, 1}𝑛, a mapping that transforms any sequence to a 𝑘-dense sequence is given in
the following lemma. The details will be given in Sec. 3.6.
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Lemma 3.2.4. For integers 𝑘 and 𝑛 > 𝑘 , there exists a map 𝑇 : {0, 1}𝑛 →
{0, 1}𝑛+3𝑘+3⌈log 𝑘⌉+15, computable in 𝑝𝑜𝑙𝑦(𝑛, 𝑘) time, such that 𝑇 (c) is a 𝑘-dense
sequence for c ∈ {0, 1}𝑛. Moreover, the sequence c can be recovered from 𝑇 (c).

The next three lemmas (Lemma 8.2.3, Lemma 3.2.6, and Lemma 3.2.7) present
existence results that are necessary to prove Lemma 3.2.2 and Lemma 3.2.3.
Lemma 8.2.3 gives a 𝑘-deletion correcting hash function for short sequences, which
is the block hash described above in proving Lemma 3.2.3. It is an extension of the
result in [12]. Lemma 3.2.6 is a slight variation of the result in [64]. It shows the
equivalence between correcting deletions and correcting deletions and insertions.
Lemma 3.2.6 will be used in the proof of Lemma 3.2.1, where we need an upper
bound on the number of deletions/insertions in 1𝑠𝑦𝑛𝑐 (c) caused by a deletion in c.
Lemma 3.2.7 (see [71]) gives an upper bound on the number of divisors of a positive
integer 𝑛. With Lemma 3.2.7, we show that the VT generalization in Lemma 3.2.1
can be compressed by taking modulo operations. The details will be given in the
proof of Lemma 3.2.2.

Lemma 3.2.5. For any integers 𝑤, 𝑛, and 𝑘 , there exists a hash function 𝐻 :
{0, 1}𝑤 →
{0, 1}⌈(𝑤/⌈log 𝑛⌉)⌉ (2𝑘 log log 𝑛+𝑂 (1)) , computable in 𝑂𝑘 ((𝑤/log 𝑛)𝑛 log2𝑘 𝑛) time, such
that any sequence c ∈ {0, 1}𝑤 can be recovered from its length 𝑤 − 𝑘 subsequence d
and the hash 𝐻 (c).

Proof. We first show by counting arguments the existence of a hash function 𝐻′ :
{0, 1}⌈log 𝑛⌉ → {0, 1}2𝑘 log log 𝑛+𝑂 (1) , exhaustively computable in 𝑂𝑘 (𝑛 log2𝑘 𝑛) time,
such that 𝐻′(s) ≠ 𝐻′(s′) for all s ∈ {0, 1}⌈log 𝑛⌉ and s′ ∈ B𝑘 (s)\{s}. The hash 𝐻′(c′)
protects the sequence s ∈ {0, 1}⌈log 𝑛⌉ from 𝑘 deletions. Note that |B𝑘 (c′) | ≤(⌈log 𝑛⌉

𝑘

)2
2𝑘 ≤ 2⌈log 𝑛⌉2𝑘 . Hence it suffices to use brute force and greedily assign a

hash value for each sequence s ∈ {0, 1}⌈log 𝑛⌉ such that 𝐻′(𝑠) ≠ 𝐻′(s′) for all s′ ∈
B𝑘 (s)\{s}. Since the size of B𝑘 (s) is upper bounded by 2⌈log 𝑛⌉2𝑘 , there always
exists such a hash 𝐻′(s) ∈ {0, 1}log(2⌈log 𝑛⌉2𝑘+1) , that has no conflict with the hash
values of sequences in B𝑘 (s). The total complexity is 𝑂𝑘 (𝑛 log2𝑘 𝑛) and the size of
the hash value 𝐻′(s) is 2𝑘 log log 𝑛 +𝑂 (1).

Now split c into ⌈(𝑤/⌈log 𝑛⌉)⌉ blocks 𝑐(𝑖−1) ⌈log 𝑛⌉+1, . . . , 𝑐𝑖⌈log 𝑛⌉ ,
𝑖 ∈ [1, ⌈(𝑤/⌈log 𝑛⌉)⌉] of length ⌈log 𝑛⌉. If the length of the last block is less
than ⌈log 𝑛⌉, add zeros to the end of the last block such that its length is ⌈log 𝑛⌉.
Assign a hash value h𝑖 = 𝐻′((𝑐(𝑖−1) ⌈log 𝑛⌉+1, . . . , 𝑐𝑖⌈log 𝑛⌉)), 𝑖 ∈ [1, ⌈(𝑤/⌈log 𝑛⌉)⌉]
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for each block. Let 𝐻 (c) = (h1, . . . , h⌈(𝑤/⌈log 𝑛⌉)⌉) be the concatenation of h𝑖

for 𝑖 ∈ [1, ⌈(𝑤/⌈log 𝑛⌉)⌉].

We show that 𝐻 (c) protects c from 𝑘 deletions. Let d be a length 𝑛 − 𝑘 subse-
quence of c. Note that 𝑑(𝑖−1) ⌈log 𝑛⌉+1 and 𝑑𝑖⌈log 𝑛⌉−𝑘 come from bits 𝑐(𝑖−1) ⌈log 𝑛⌉+1+𝑥

and 𝑐𝑖⌈log 𝑛⌉−𝑘+𝑦 respectively after deletions in c, where the integers 𝑥, 𝑦 ∈ [0, 𝑘].
Therefore, (𝑑(𝑖−1) ⌈log 𝑛⌉+1, . . . , 𝑑𝑖⌈log 𝑛⌉−𝑘 ) is a length ⌈log 𝑛⌉ − 𝑘 subsequence of
(𝑐(𝑖−1) ⌈log 𝑛⌉+1+𝑥 , . . . , 𝑐𝑖⌈log 𝑛⌉−𝑘+𝑦), and thus a subsequence of the block (𝑐(𝑖−1) ⌈log 𝑛⌉+1,

. . . , 𝑐𝑖⌈log 𝑛⌉). Hence the 𝑖-th block (𝑐(𝑖−1) ⌈log 𝑛⌉+1, . . . , 𝑐𝑖⌈log 𝑛⌉) can be recovered
from h𝑖 = 𝐻′(𝑐(𝑖−1) ⌈log 𝑛⌉+1, . . . , 𝑐𝑖⌈log 𝑛⌉) and (𝑑(𝑖−1) ⌈log 𝑛⌉+1, . . . , 𝑑𝑖⌈log 𝑛⌉−𝑘 ). There-
fore, c can be recovered given d and 𝐻 (c). The length of 𝐻 (c) is ⌈(𝑤/⌈log 𝑛⌉)⌉·
(2𝑘 log log 𝑛 +𝑂 (1)) and the complexity of 𝐻 (c) is 𝑂𝑘 ((𝑤/log 𝑛)𝑛 log2𝑘 𝑛). □

Lemma 3.2.6. Let 𝑟, 𝑠, and 𝑘 be integers satisfying 𝑟 + 𝑠 ≤ 𝑘 . For sequences c, c′ ∈
{0, 1}𝑛, if c′ and c share a common resulting sequence after 𝑟 deletions and 𝑠

insertions in both, then c′ ∈ B𝑘 (c).

Lemma 3.2.7. For a positive integer 𝑛 ≥ 3, the number of divisors of 𝑛 is upper
bounded by 21.6 ln 𝑛/(ln ln 𝑛) .

The proofs of Lemma 3.2.1, Lemma 3.2.2, Lemma 3.2.3, and Lemma 3.2.4 rely
on several propositions, the details of which will be presented in the next sections.
For convenience, a dependency graph for the theorem, lemmas, and propositions is
given in Fig. 3.2.

3.3 Proof of Theorem 3.1.1
Based on the lemmas stated in Sec. 3.2, in this section we present the encoding
function E and the decoding function D of our 𝑘-deletion correcting code, and prove
Theorem 3.1.1. Given any sequence c ∈ {0, 1}𝑛, let the function E : {0, 1}𝑛 →
{0, 1}𝑛+8𝑘 log 𝑛+𝑜(log 𝑛) be given by

E(c) = (𝑇 (c), 𝑅′(c), 𝑅′′(c)),

where

𝑅′(c) =( 𝑓 (1𝑠𝑦𝑛𝑐 (𝑇 (c))) mod 𝑝(𝑇 (c)), 𝑝(𝑇 (c)), 𝐻𝑎𝑠ℎ𝑘 (𝑇 (c))), and

𝑅′′(c) =𝑅𝑒𝑝𝑘+1(𝐻 (𝑅′(c))).

Function 𝑅𝑒𝑝𝑘+1(𝐻 (𝑅′(c))) is the (𝑘 + 1)-fold repetition of the bits in 𝐻 (𝑅′(c)),
where function 𝐻 (𝑅′(c)) is defined Lemma 8.2.3 and protects 𝑅′(c) from 𝑘 dele-



61

Lemma 3.2.6

Prop. 3.4.1 Prop. 3.4.2

Lemma 3.2.1 Lemma 3.2.7 Lemma 8.2.3 Prop. 3.6.1 Prop. 3.6.3 Prop. 3.6.4

Lemma 3.2.2 Lemma 3.2.3 Lemma 3.2.4

Thm. 3.1.1

Figure 3.2: Dependencies of the claims in Ch. 3.

tions. Function 𝑇 (c) is defined in Lemma 3.2.4 and transforms c into a 𝑘-
dense sequence (see Definition 3.2.1 for definition of a 𝑘-dense sequence). Func-
tion 𝑓 (1𝑠𝑦𝑛𝑐 (𝑇 (c))) in 𝑅′(c) is represented by an integer and protects the syn-
chronization vector 1𝑠𝑦𝑛𝑐 (c) by Lemma 3.2.1. Function 𝑝(𝑇 (c)) is defined in
Lemma 3.2.2, which compresses the hash 𝑓 (1𝑠𝑦𝑛𝑐 (𝑇 (c))). Function 𝐻𝑎𝑠ℎ𝑘 (𝑇 (c))
is defined in Lemma 3.2.3 and protects a 𝑘-dense sequence from 𝑘 deletions.

Note that 𝑘 = 𝑜(
√︁

log log 𝑛). Hence, according to Lemma 3.2.2, Lemma 3.2.3,
and Lemma 3.2.4, the length of 𝑅′(c) is 𝑁1 = 8𝑘 log(𝑛 + 3𝑘 + 3⌈log 𝑘⌉ + 15) +
𝑜(log(𝑛 + 3𝑘 + 3⌈log 𝑘⌉ + 15)) = 8𝑘 log 𝑛 + 𝑜(log 𝑛). The length of 𝑅′′(c) is 𝑁2 =

2𝑘 (𝑘 + 1) (𝑁1/⌈log 𝑛⌉) log log 𝑛 = 𝑜(log 𝑛). The length of 𝑇 (c) is 𝑛 + 𝑁0 = 𝑛 + 3𝑘 +
3⌈log 𝑘⌉+15. Therefore, the length ofE(c) is 𝑛+𝑁0+𝑁1+𝑁2 = 𝑛+8𝑘 log 𝑛+𝑜(log 𝑛).
The redundancy of the code is 8𝑘 log 𝑛 + 𝑜(log 𝑛).

To show how the sequence c can be recovered from a length 𝑁 − 𝑘 subsequence d
of E(c) and implement the computation of the decoding function D(d), we prove
that

1. Statement 1: The redundancy 𝑅′(c) can be recovered given (𝑑𝑛+𝑁0+𝑁1+1, . . . ,

𝑑𝑛+𝑁0+𝑁1+𝑁2−𝑘 ).

2. Statement 2: The sequence c can be recovered given (𝑑1, . . . , 𝑑𝑛+𝑁0−𝑘 )
and 𝑅′(c).
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We first prove Statement 1. Note that 𝑑𝑛++𝑁0+𝑁1+1 and 𝑑𝑛+𝑁0+𝑁1+𝑁2−𝑘 come from
bits E(c)𝑛+𝑁0+𝑁1+1+𝑥 and E(c)𝑛+𝑁0+𝑁1+𝑁2−𝑘+𝑦 respectively after deletions in E(c),
where 𝑥, 𝑦 ∈ [0, 𝑘]. Hence (𝑑𝑛+𝑁0+𝑁1+1, . . . , 𝑑𝑛+𝑁0+𝑁1+𝑁2−𝑘 ) is a length 𝑁2 − 𝑘 sub-
sequence of (E(c)𝑛+𝑁0+𝑁1+1+𝑥 , . . . , E(c)𝑛+𝑁0+𝑁1+𝑁2−𝑘+𝑦), and thus a subsequence
of (E(c)𝑛+𝑁0+𝑁1+1, . . . , E(c)𝑛+𝑁0+𝑁1+𝑁2) = 𝑅′′(c). Since 𝑅′′(c) is 𝑘 + 1-fold repe-
tition code and thus a 𝑘-deletion correcting code that protects 𝐻 (𝑅′(c)), the hash
function 𝐻 (𝑅′(c)) can be recovered from (𝑑𝑛+𝑁0+𝑁1+1, . . . , 𝑑𝑛+𝑁0+𝑁1+𝑁2−𝑘 ).

Similarly, (𝑑𝑛+𝑁0+1, . . . , 𝑑𝑛+𝑁0+𝑁1−𝑘 ) is a length 𝑁1 − 𝑘 subsequence of (E(c)𝑛+𝑁0+1,

. . . , E(c)𝑛+𝑁0+𝑁1) = 𝑅′(c). From Lemma 8.2.3, the function 𝑅′(c) can be recovered
from 𝐻 (𝑅′(c)) and (𝑑𝑛+𝑁0+1, . . . , 𝑑𝑛+𝑁0+𝑁1−𝑘 ). Hence Statement 1 holds.

We now prove Statement 2. Note that 𝑅′(c) contains hashes ( 𝑓 (1𝑠𝑦𝑛𝑐 (𝑇 (c))) mod
𝑝(𝑇 (c)), 𝑝(𝑇 (c))) and 𝐻𝑎𝑠ℎ𝑘 (𝑇 (c)). Moreover, (𝑑1, . . . , 𝑑𝑛+𝑁0−𝑘 ) is a length 𝑛 +
𝑁0 − 𝑘 subsequence of (E(c)1, . . . , E(c)𝑛+𝑁0) = 𝑇 (c). According to Lemma 3.2.2,
the synchronization vector 1𝑠𝑦𝑛𝑐 (𝑇 (c)) can be recovered from hash
( 𝑓 (1𝑠𝑦𝑛𝑐 (𝑇 (c))) mod 𝑝(𝑇 (c)), 𝑝(𝑇 (c))) and (𝑑1, . . . , 𝑑𝑛+𝑁0−𝑘 ), by exhaustively
searching over all length 𝑛 + 𝑁0 supersequence c′ of (𝑑1, . . . , 𝑑𝑛+𝑁0−𝑘 ) such that
𝑓 (1𝑠𝑦𝑛𝑐 (c′)) = 𝑓 (1𝑠𝑦𝑛𝑐 (𝑇 (c))). Then we have that 1𝑠𝑦𝑛𝑐 (𝑇 (c)) = 1 + 𝑠𝑦𝑛𝑐(c′).
Since by Lemma 3.2.4, 𝑇 (c) is a 𝑘-dense sequence, by Lemma 3.2.3, it can
be recovered from 1𝑠𝑦𝑛𝑐 (𝑇 (c)), 𝐻𝑎𝑠ℎ𝑘 (𝑇 (c)), and the length 𝑛 + 𝑁0 − 𝑘 sub-
sequence (𝑑1, . . . , 𝑑𝑛+𝑁0−𝑘 ) of 𝑇 (c). Finally, the sequence c can be recovered
from 𝑇 (c) by Lemma 3.2.4. Hence Statement 2 holds and c can be recovered.

The encoding complexity of E(c) is 𝑂 (𝑛2𝑘+1), which comes from brute force search
for integer 𝑝(𝑇 (c)). The decoding complexity is 𝑂 (𝑛𝑘 + 1), which comes from
brute force search for the correct 1𝑠𝑦𝑛𝑐 (𝑇 (c)), given 𝑓 (1𝑠𝑦𝑛𝑐 (𝑇 (c))) mod 𝑝(𝑇 (c))
and 𝑝(𝑇 (c)).

3.4 Protecting the Synchronization Vectors
In this section we present a hash function with size 4𝑘 log 𝑛 + 𝑜(log 𝑛) to protect
the synchronization vector 1𝑠𝑦𝑛𝑐 (c) from 𝑘 deletions in c and prove Lemma 3.2.2.
We first prove Lemma 3.2.1, which is decomposed to Proposition 3.4.1 and Propo-
sition 3.4.2. In Proposition 3.4.1 we present an upper bound on the radius of the
deletion ball for the synchronization vector. In Proposition 3.4.2, we prove that the
higher order parity check helps correct multiple deletions for sequences in which the
there is a 0-run of length at least 3𝑘 − 1 between any two 1’s. Since 1𝑠𝑦𝑛𝑐 (c) is such
a sequence, we conclude that the higher order parity check helps recover 1𝑠𝑦𝑛𝑐 (c).
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After obtaining a bound on the difference between the higher order parity checks of
two ambiguous sequence, we then apply Proposition 3.4.2 on the synchronization
vector 1𝑠𝑦𝑛𝑐 (c) to prove Lemma 3.2.1, which replaces the higher order parity checks
in Proposition 3.4.2 by the higher parity checks modulo a numbers. After proving
Lemma 3.2.1, we use Lemma 3.2.7 to further compress the size of the higher order
parity check that protects 1𝑠𝑦𝑛𝑐 (c) and then prove Lemma 3.2.2.

Proposition 3.4.1. For c, c′ ∈ {0, 1}𝑛, if c′ ∈ B𝑘 (c), then 1𝑠𝑦𝑛𝑐 (c′) ∈ B3𝑘 (1𝑠𝑦𝑛𝑐 (c)).

Proof. Since c′ ∈ B𝑘 (c), the sequences c′ and c share a common subsequence
after 𝑘 deletions in both. We now show that a single deletion in c causes at most
two deletions and one insertion in its synchronization vector 1𝑠𝑦𝑛𝑐 (c). We first
show that a deletion in c can destroy and generate at most 1 synchronization pattern.
This is because for any synchronization pattern that is destroyed or generated,
there must be a deletion that occurs within the synchronization pattern. Hence
any two destroyed or generated synchronization patterns cannot be caused by the
same deletion. Therefore, we need to consider four cases in total. Let d′ be the
subsequence of c after a single deletion.

1. The deletion destroys a synchronization pattern (𝑐𝑖+1, . . . , 𝑐𝑖+3𝑘+⌈log 𝑘⌉+4) for
some 𝑖 and no synchronization pattern is generated. Then the sequence 1𝑠𝑦𝑛𝑐 (d′)
can be obtained by deleting the 1 entry 1𝑠𝑦𝑛𝑐 (c)𝑖+3𝑘 in 1𝑠𝑦𝑛𝑐 (c).

2. The deletion generates a new synchronization pattern (𝑐′
𝑖′+1, . . . , 𝑐

′
𝑖′+3𝑘+⌈log 𝑘⌉+4)

for some 𝑖′ and destroys a synchronization pattern (𝑐𝑖+1, . . . , 𝑐𝑖+3𝑘+⌈log 𝑘⌉+4).
The sequence 1𝑠𝑦𝑛𝑐 (d′) can be obtained by deleting the 1 entry 1𝑠𝑦𝑛𝑐 (c)𝑖+3𝑘 and
the 0 entry 1𝑠𝑦𝑛𝑐 (c)𝑖+3𝑘−1 in 1𝑠𝑦𝑛𝑐 (c) and inserting a 1 entry at 1𝑠𝑦𝑛𝑐 (c)𝑖′+3𝑘 .

3. The deletion generates a new synchronization pattern (𝑐′
𝑖′+1, . . . , 𝑐

′
𝑖′+3𝑘+⌈log 𝑘⌉+4)

for some 𝑖′ and no synchronization pattern is destroyed. Then the 1𝑠𝑦𝑛𝑐 (d′)
can be obtained by deleting two 0 entries 1𝑠𝑦𝑛𝑐 (c)𝑖′+3𝑘 and 1𝑠𝑦𝑛𝑐 (c)𝑖′+3𝑘+1

in 1𝑠𝑦𝑛𝑐 (c) and inserting a 1 entry at 1𝑠𝑦𝑛𝑐 (c)𝑖′+3𝑘 .

4. No synchronization pattern is generated or destroyed. Then 1𝑠𝑦𝑛𝑐 (d′) can be
obtained by deleting a 0 entry 1𝑠𝑦𝑛𝑐 (c) 𝑗 , where 𝑗 is the location of the deletion.

In summary, in each of the above cases, a single deletion in c causes at most two
deletions and one insertion in 1𝑠𝑦𝑛𝑐 (c). Hence 𝑘 deletions in c and c′ cause at
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most 2𝑘 deletions and 𝑘 insertions in 1𝑠𝑦𝑛𝑐 (c) and 1𝑠𝑦𝑛𝑐 (c′) respectively. According
to Lemma 3.2.6, we have that 1𝑠𝑦𝑛𝑐 (c′) ∈ B3𝑘 (1𝑠𝑦𝑛𝑐 (c)) when c′ ∈ B𝑘 (c). Hence,
Proposition 3.4.1 is proved. □

Let R𝑚 be the set of length 𝑛 sequences in which there is a 0 run of length at
least 𝑚 − 1 between any two 1’s. Any two 1’s in a sequence c ∈ R𝑚 have index
distance at least 𝑚. The following lemma shows that the sequences in R3𝑘 can be
protected using higher order parity checks. Note that compared to the higher order
parity checks 𝑓 (c), the higher order parity checks in the following proposition do
not have modulo operations.

Proposition 3.4.2. For sequences c, c′ ∈ R3𝑘 , if c′ ∈ B3𝑘 (c) and c · m(𝑒) = c′ · m(𝑒)

for 𝑒 ∈ [0, 6𝑘], then c = c′.

Proof. We first compute the difference c · m(𝑒) − c′ · m(𝑒) , 𝑒 ∈ [0, 6𝑘]. Since c′ ∈
B3𝑘 (c), there exist two subsets δ = {𝛿1, . . . , 𝛿3𝑘 } ⊂ [1, 𝑛] and δ′ = {𝛿′1, . . . , 𝛿

′
3𝑘 } ⊂

[1, 𝑛] such that deleting bits with indices δ and δ′ respectively from c and c′

results in the same length 𝑛 − 3𝑘 subsequence, i.e., (𝑐𝑖 : 𝑖 ∉ δ) = (𝑐′
𝑖

: 𝑖 ∉ δ′).
Let 𝚫 = {𝑖 : 𝑐𝑖 = 1} and 𝚫′ = {𝑖 : 𝑐′

𝑖
= 1} be the indices of 1 entries in c

and c′ respectively. Let 𝑆1 = 𝚫 ∩ δ be the indices of 1 entries that are deleted
in c. Then 𝑆𝑐1 = 𝚫 ∩ ([1, 𝑛]\δ) denotes the indices of 1 entries that are not deleted.
Similarly, let 𝑆2 = 𝚫′ ∩ δ′ and 𝑆𝑐2 = 𝚫′ ∩ ([1, 𝑛]\δ′) be the indices of 1 entries
that are deleted and not in c′ respectively. Let the elements in δ ∪ δ′ be ordered
by 1 ≤ 𝑝1 ≤ 𝑝2 ≤ . . . ≤ 𝑝6𝑘 ≤ 𝑛. Denote 𝑝0 = 0 and 𝑝6𝑘+1 = 𝑛. Then we have that

c · m(𝑒) − c′ · m(𝑒)

=
∑︁
ℓ∈𝚫

m(𝑒)
ℓ

−
∑︁
ℓ∈𝚫′

m(𝑒)
ℓ

=
∑︁
ℓ∈𝚫

(
ℓ∑︁
𝑖=1

𝑖𝑒) −
∑︁
ℓ∈𝚫′

(
ℓ∑︁
𝑖=1

𝑖𝑒)

=

𝑛∑︁
𝑖=1

(
∑︁

ℓ∈𝚫∩[𝑖,𝑛]
𝑖𝑒) −

𝑛∑︁
𝑖=1

(
∑︁

ℓ∈𝚫′∩[𝑖,𝑛]
𝑖𝑒)

=

𝑛∑︁
𝑖=1

( |𝚫 ∩ [𝑖, 𝑛] | − |𝚫′ ∩ [𝑖, 𝑛] |)𝑖𝑒

=

𝑛∑︁
𝑖=1

( |𝑆1 ∩ [𝑖, 𝑛] | + |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆2 ∩ [𝑖, 𝑛] |

− |𝑆𝑐2 ∩ [𝑖, 𝑛] |)𝑖𝑒
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=

6𝑘∑︁
𝑗=0

𝑝 𝑗+1∑︁
𝑖=𝑝 𝑗+1

( |𝑆1 ∩ [𝑖, 𝑛] | − |𝑆2 ∩ [𝑖, 𝑛] | + |𝑆𝑐1 ∩ [𝑖, 𝑛] |

− |𝑆𝑐2 ∩ [𝑖, 𝑛] |)𝑖𝑒

(𝑎)
=

6𝑘∑︁
𝑗=0

𝑝 𝑗+1∑︁
𝑖=𝑝 𝑗+1

( |𝑆1 ∩ [𝑝 𝑗+1, 𝑛] |

− |𝑆2 ∩ [𝑝 𝑗+1, 𝑛] | + |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] |)𝑖𝑒, (3.5)

where (𝑎) holds since by definition of 𝑝 𝑗 , there is no deleted 1 entry in inter-
val (𝑝 𝑗 , 𝑝 𝑗+1) = {𝑝 𝑗 + 1, . . . , 𝑝 𝑗+1 − 1}, 𝑗 ∈ [0, 6𝑘]. In the following we show

Statement 1: −1 ≤ |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] | ≤ 1 for 𝑖 ∈ [1, 𝑛].

Statement 2: For each interval (𝑝 𝑗 , 𝑝 𝑗+1] = {𝑝 𝑗+1, . . . , 𝑝 𝑗+1}, 𝑗 = 0, . . . , 6𝑘 ,
we have either |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] | ≤ 0 for all 𝑖 ∈ (𝑝 𝑗 , 𝑝 𝑗+1] or
|𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] | ≥ 0 for all 𝑖 ∈ (𝑝 𝑗 , 𝑝 𝑗+1].

We first prove Statement 1. Note that deleting bits with indices δ in c and deleting
bits with indices δ′ in c′ result in the same subsequence. Hence, for every 𝑖 ∈ 𝑆𝑐1,
there is a unique corresponding index 𝑖′ ∈ 𝑆𝑐2 such that the two 1 entries 𝑐𝑖 and 𝑐′

𝑖′

end in the same location after deletions, i.e., 𝑖− |δ∩ [1, 𝑖−1] | = 𝑖′− |δ′∩ [1, 𝑖′−1] |.
This implies that |𝑖′− 𝑖 | ≤ 3𝑘 . Fix integers 𝑖 and 𝑖′. Then by definition of 𝑖 and 𝑖′, for
every 𝑥 ∈ 𝑆𝑐1∩ [𝑖+1, 𝑛], there is a unique corresponding 𝑦 ∈ 𝑆𝑐2∩ [𝑖′+1, 𝑛] such that
the two 1 entries 𝑐𝑥 and 𝑐′𝑦 end in the same location after deletions. Therefore, we
have that |𝑆𝑐1 ∩ [𝑖 +1, 𝑛] | = |𝑆𝑐2 ∩ [𝑖′+1, 𝑛] |, and thus that |𝑆𝑐1 ∩ [𝑖, 𝑛] | = |𝑆𝑐2 ∩ [𝑖′, 𝑛] |.
If 𝑖′ ≥ 𝑖, then

|𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] |
=|𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖′, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑖′ − 1] |
= − |𝑆𝑐2 ∩ [𝑖, 𝑖′ − 1] |
(𝑎)
≥ − |𝑆𝑐2 ∩ [𝑖, 𝑖 + 3𝑘 − 1] |
(𝑏)
≥ − 1,

where (𝑎) follows from the fact that 𝑖′ ≤ 𝑖 + 3𝑘 and (𝑏) follows from the fact
that c, c′ ∈ R3𝑘 . Also we have that |𝑆𝑐1∩ [𝑖, 𝑛] | − |𝑆𝑐2∩ [𝑖, 𝑛] | = −|𝑆𝑐2∩ [𝑖, 𝑖′−1] | ≤ 0.
Hence when 𝑖′ ≤ 𝑖, we have that −1 ≤ |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] | ≤ 0. Similarly,
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when 𝑖′ < 𝑖, we have that

|𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] |
=|𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖′, 𝑛] | + |𝑆𝑐2 ∩ [𝑖′, 𝑖 − 1] |
=|𝑆𝑐2 ∩ [𝑖′, 𝑖 − 1] |
≤|𝑆𝑐2 ∩ [𝑖′, 𝑖′ + 3𝑘 − 1] |
≤1,

and that |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] | = |𝑆𝑐2 ∩ [𝑖′, 𝑖 − 1] | ≥ 0. Therefore, we have
that 0 ≤ |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] | ≤ 1 when 𝑖′ < 𝑖. Thus Statement 1 is proved.

We now prove Statement 2 by contradiction. Suppose on the contrary, there
exist 𝑖1, 𝑖2 ∈ (𝑝 𝑗 , 𝑝 𝑗+1] such that 𝑖1 < 𝑖2 and

( |𝑆𝑐1 ∩ [𝑖1, 𝑛] | − |𝑆𝑐2 ∩ [𝑖1, 𝑛] |) ( |𝑆𝑐1 ∩ [𝑖2, 𝑛] | − |𝑆𝑐2 ∩ [𝑖2, 𝑛] |)
< 0

From Statement 1 we have that |𝑆𝑐1 ∩ [𝑖1, 𝑛] | − |𝑆𝑐2 ∩ [𝑖1, 𝑛] | ∈ [−1, 1] and that |𝑆𝑐1 ∩
[𝑖2, 𝑛] | − |𝑆𝑐2 ∩ [𝑖2, 𝑛] | ∈ [−1, 1]. Hence by symmetry it can be assumed that |𝑆𝑐1 ∩
[𝑖1, 𝑛] |− |𝑆𝑐2∩[𝑖1, 𝑛] | = −1 and |𝑆𝑐1∩[𝑖2, 𝑛] |− |𝑆𝑐2∩[𝑖2, 𝑛] | = 1. As shown in proof of
Statement 1, for every element 𝑖 ∈ 𝑆𝑐1, there is a corresponding element 𝑖′ ∈ 𝑆𝑐2 such
that the two 1 entries 𝑐𝑖 and 𝑐′

𝑖′ end in the same location after deletions. Hence, for
𝑦 = min𝑖∈𝑆𝑐2∩[𝑖1,𝑛] 𝑖, there exists an integer 𝑥 ∈ 𝑆𝑐1 such that the two 1 entries 𝑐𝑥 and 𝑐′𝑦
are in the same location after deletions, i.e., 𝑥− |δ∩ [1, 𝑥−1] | = 𝑦− |δ′∩ [1, 𝑦−1] |.
Since |𝑆𝑐1∩ [𝑖1, 𝑛] | − |𝑆𝑐2∩ [𝑖1, 𝑛] | = −1, we have that 𝑥 ∈ 𝑆𝑐1∩ [1, 𝑖1−1]. Otherwise,
we have that 𝑥 ∈ 𝑆𝑐1 ∩ [𝑖1, 𝑛] and for every integer 𝑖′ ∈ 𝑆𝑐2 ∩ (𝑦, 𝑛], there exists
an integer 𝑖 ∈ 𝑆𝑐1 ∩ (𝑥, 𝑛] such that 𝑐𝑖 and 𝑐𝑖′ end up in the same location after
deletions. This implies that |𝑆𝑐1 ∩ [𝑖1, 𝑛] | − |𝑆𝑐2 ∩ [𝑖1, 𝑛] | ≥ 0, contradicting the fact
that |𝑆𝑐1 ∩ [𝑖1, 𝑛] | − |𝑆𝑐2 ∩ [𝑖1, 𝑛] | = −1. Therefore,

𝑖1 − |δ ∩ [1, 𝑖1 − 1] | >𝑖1 − 1 − |δ ∩ [1, 𝑖1 − 1] |
≥𝑥 − |δ ∩ [1, 𝑥 − 1] |
=𝑦 − |δ′ ∩ [1, 𝑦 − 1] |
≥𝑖1 − |δ′ ∩ [1, 𝑖1 − 1] |,

which implies that

|δ ∩ [1, 𝑖1 − 1] | < |δ′ ∩ [1, 𝑖1 − 1] |. (3.6)
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Similarly, from |𝑆𝑐1 ∩ [𝑖2, 𝑛] | − |𝑆𝑐2 ∩ [𝑖2, 𝑛] | = 1 we have that

|δ ∩ [1, 𝑖2 − 1] | > |δ′ ∩ [1, 𝑖2 − 1] |. (3.7)

Eq. (3.6) and Eq. (3.7) implies that

|δ ∩ [1, 𝑖2 − 1] | − |δ ∩ [1, 𝑖1 − 1] |
≥|δ′ ∩ [1, 𝑖2 − 1] | + 1 − |δ′ ∩ [1, 𝑖1 − 1] | + 1

≥2. (3.8)

However, since 𝑖1, 𝑖2 ∈ (𝑝 𝑗 , 𝑝 𝑗+1] and no deletion occurs in the interval (𝑝 𝑗 , 𝑝 𝑗+1],
we have that |δ ∩ [1, 𝑖1] | = |δ ∩ [1, 𝑖2 − 1] | and |δ′ ∩ [1, 𝑖1] | = |δ′ ∩ [1, 𝑖2 − 1] |,
which implies that

|δ ∩ [1, 𝑖2 − 1] | − |δ ∩ [1, 𝑖1 − 1] |
≤|δ ∩ [1, 𝑖2 − 1] | − |δ ∩ [1, 𝑖1] | + 1

=1,

contradicting Eq. (3.8). Hence there do not exist different integers 𝑖1, 𝑖2 ∈ (𝑝 𝑗 , 𝑝 𝑗+1]
such that

( |𝑆𝑐1 ∩ [𝑖1, 𝑛] | − |𝑆𝑐2 ∩ [𝑖1, 𝑛] |) ( |𝑆𝑐1 ∩ [𝑖2, 𝑛] | − |𝑆𝑐2 ∩ [𝑖2, 𝑛] |)
< 0.

Hence Statement 2 is proved.

Now we continue to prove Proposition 3.4.2. Denote

𝑠𝑖 ≜ |𝑆1 ∩ [𝑖, 𝑛] | − |𝑆2 ∩ [𝑖, 𝑛] | + |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] |. (3.9)

Note that no deletion occurs in the interval (𝑝 𝑗 , 𝑝 𝑗+1], it follows that

|𝑆1 ∩ [𝑖, 𝑛] | − |𝑆2 ∩ [𝑖, 𝑛] |
=|𝑆1 ∩ [𝑝 𝑗+1, 𝑛] | − |𝑆2 ∩ [𝑝 𝑗+1, 𝑛] | (3.10)

for 𝑖 ∈ (𝑝 𝑗 , 𝑝 𝑗+1]. Combining (3.10) with Statement 1 and Statement 2, we
conclude that for each interval (𝑝 𝑗 , 𝑝 𝑗+1], 𝑗 ∈ {0, . . . , 6𝑘}, either 𝑠𝑖 ≥ 0 for all 𝑖 ∈
(𝑝 𝑗 , 𝑝 𝑗+1] or 𝑠𝑖 ≤ 0 for all 𝑖 ∈ (𝑝 𝑗 , 𝑝 𝑗+1]. Let x = (𝑥0, . . . , 𝑥6𝑘 ) ∈ {−1, 1}6𝑘+1 be a
vector defined by

𝑥𝑖 =


−1, if 𝑠 𝑗 < 0 for some 𝑗 ∈ (𝑝𝑖, 𝑝𝑖+1]

1, else.
.
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Then from Eq. (3.5) and Eq. (3.9), the difference c · m(𝑒) − c′ · m(𝑒) is given by

c · m(𝑒) − c′ · m(𝑒) =
6𝑘∑︁
𝑗=0

(
𝑝 𝑗+1∑︁

𝑖=𝑝 𝑗+1
|𝑠𝑖 |𝑖𝑒)𝑥 𝑗 . (3.11)

Let 𝐴 be a 6𝑘 + 1 × 6𝑘 + 1 matrix with entries defined by 𝐴𝑒, 𝑗 =
∑𝑝 𝑗

𝑖=𝑝 𝑗−1+1 |𝑠𝑖 |𝑖
𝑒−1

for 𝑒, 𝑗 ∈ [1, 6𝑘 + 1]. If c · m(𝑒) = c′ · m(𝑒) for 𝑒 ∈ [0, 6𝑘], we have the following
linear equation

𝐴x =


∑𝑝1

𝑖=𝑝0+1 |𝑠𝑖 |𝑖
0 . . .

∑𝑝6𝑘+1
𝑖=𝑝6𝑘+1 |𝑠𝑖 |𝑖

0

...
. . .

...∑𝑝1
𝑖=𝑝0+1 |𝑠𝑖 |𝑖

6𝑘 . . .
∑𝑝6𝑘+1

𝑖=𝑝6𝑘+1 |𝑠𝑖 |𝑖
6𝑘



𝑥0
...

𝑥6𝑘


=0, (3.12)

with a solution 𝑥𝑖 ∈ {−1, 1} for 𝑖 ∈ [0, 6𝑘]. We show that this is impossible unless 𝐴
is a zero matrix. Suppose on the contrary that 𝐴 is nonzero, let 𝑗1 < . . . < 𝑗𝑄 be
the indices of all nonzero columns of 𝐴. Let 𝐴∗ be a submatrix of 𝐴, obtained by
choosing the intersection of the first 𝑄 rows and columns with indices 𝑗1, . . . , 𝑗𝑄 .
Then taking the first 𝑄 linear equations from the equation set (3.13) and noting that
the nonzero columns in 𝐴 are the 𝑗1, . . . , 𝑗𝑄-th columns, we have that

𝐴∗x′

=


∑𝑝 𝑗1

𝑖=𝑝 𝑗1−1+1 |𝑠𝑖 |𝑖
0 . . .

∑𝑝 𝑗𝑄

𝑖=𝑝 𝑗𝑄−1+1 |𝑠𝑖 |𝑖
0

...
. . .

...∑𝑝 𝑗1
𝑖=𝑝 𝑗1−1+1 |𝑠𝑖 |𝑖

𝑄−1 . . .
∑𝑝 𝑗𝑄

𝑖=𝑝 𝑗𝑄−1+1 |𝑠𝑖 |𝑖
𝑄−1



𝑥 𝑗1
...

𝑥 𝑗𝑄


=0. (3.13)

The determinant of 𝐴∗ is given by

det(𝐴∗)

= det
©«

∑𝑝 𝑗1
𝑖=𝑝 𝑗1−1+1 |𝑠𝑖 |𝑖

0 . . .
∑𝑝 𝑗𝑄

𝑖=𝑝 𝑗𝑄−1+1 |𝑠𝑖 |𝑖
0

...
. . .

...∑𝑝 𝑗1
𝑖=𝑝 𝑗1−1+1 |𝑠𝑖 |𝑖

𝑄−1 . . .
∑𝑝 𝑗𝑄

𝑖=𝑝 𝑗𝑄−1+1 |𝑠𝑖 |𝑖
𝑄−1

ª®®®®¬
(𝑎)
=

∑︁
𝑖1∈(𝑝 𝑗1−1,𝑝 𝑗1 ],...,
𝑖𝑄∈(𝑝 𝑗𝑄−1,𝑝 𝑗𝑄

]

det
©«

|𝑠𝑖1 |𝑖01 . . . |𝑠𝑖𝑄 |𝑖0𝑄
...

. . .
...

|𝑠𝑖1 |𝑖
𝑄−1
1 . . . |𝑠𝑖𝑄 |𝑖

𝑄−1
𝑄

ª®®®¬
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(𝑏)
=

∑︁
𝑖1∈(𝑝 𝑗1−1,𝑝 𝑗1 ],...,
𝑖𝑄∈(𝑝 𝑗𝑄−1 ,𝑝 𝑗𝑄

]

[
𝑄∏
𝑞=1

|𝑠𝑖𝑞 | det
©«
𝑖01 . . . 𝑖0

𝑄
...

. . .
...

𝑖
𝑄−1
1 . . . 𝑖

𝑄−1
𝑄

ª®®®¬
]

(𝑐)
=

∑︁
𝑖1∈(𝑝 𝑗1−1,𝑝 𝑗1 ],...,
𝑖𝑄∈(𝑝 𝑗𝑄−1 ,𝑝 𝑗𝑄

]

[
𝑄∏
𝑞=1

|𝑠𝑖𝑞 |
∏

1≤𝑚<ℓ≤𝑄
(𝑖ℓ − 𝑖𝑚)], (3.14)

where equality (𝑎) follows from the multi-linearity of the determinant

det( [v1 . . . 𝑎v𝑖 + 𝑏v . . . v𝑞])
=𝑎 det( [v1 . . . v𝑖 . . . v𝑞])
+ 𝑏 det( [v1 . . . v𝑖−1 v v𝑖+1 . . . v𝑞])

for any integers 𝑞 and 𝑖 and 𝑞-dimensional vectors v1, . . . , v𝑞, v. Equality (𝑏)
follows from the linearity of the determinant

det( [v1 . . . 𝑎v𝑖 . . . v𝑞]) = 𝑎 det( [v1 . . . v𝑖 . . . v𝑞])

for any integers 𝑞 and 𝑖 and 𝑞-dimensional vectors v1, . . . , v𝑞. Equality (𝑐) follows
from the determinant of Vandermonde matrix

det
©«
𝑖01 . . . 𝑖0𝑞
...

. . .
...

𝑖
𝑞−1
1 . . . 𝑖

𝑞−1
𝑞

ª®®®¬ =
∏

1≤𝑚<ℓ≤𝑞
(𝑖ℓ − 𝑖𝑚)

for any integers 𝑞, 𝑖1, . . . , 𝑖𝑞. . The determinant 𝑑𝑒𝑡 (𝐴∗) is positive since 𝑖ℓ > 𝑖𝑚

for ℓ > 𝑚. and for 𝑖1 ∈ (𝑝 𝑗1−1, 𝑝 𝑗1], . . . , 𝑖𝑄 ∈ (𝑝 𝑗𝑄−1, 𝑝 𝑗𝑄 ]. Note that all the
columns of 𝐴∗ are nonzero. Therefore, the linear equation 𝐴∗x′ = 0 does not
have nonzero solutions, contradicting the fact that x′ = (𝑥 𝑗1 , . . . , 𝑥 𝑗𝑄 ) ∈ {−1, 1}𝑄 .
Hence 𝐴 is a zero matrix, meaning that

|𝑆1 ∩ [𝑖, 𝑛] | − |𝑆2 ∩ [𝑖, 𝑛] | + |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] |
=|𝚫 ∩ [𝑖, 𝑛] | − |𝚫′ ∩ [𝑖, 𝑛] | = 0

for 𝑖 ∈ {1, . . . , 𝑛}. This implies 𝚫 = 𝚫′ and thus c = c′. Hence Proposition 3.4.2 is
proved. □

Proof of Lemma 3.2.1
We are now ready to prove Lemma 3.2.1, which states that 1𝑠𝑦𝑛𝑐 (c) = 1𝑠𝑦𝑛𝑐 (c′)
for sequences c and c′ ∈ B𝑘 (c) satisfying 𝑓 (1𝑠𝑦𝑛𝑐 (c)) = 𝑓 (1𝑠𝑦𝑛𝑐 (c)). From
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Proposition 3.4.1 we have that 1𝑠𝑦𝑛𝑐 (c′) ∈ B3𝑘 (1𝑠𝑦𝑛𝑐 (c)). Then, it is not hard
to see that (1𝑠𝑦𝑛𝑐 (c′)𝑖, . . . , 1𝑠𝑦𝑛𝑐 (c′)𝑛) ∈ B3𝑘 ((1𝑠𝑦𝑛𝑐 (c)𝑖, . . . , 1𝑠𝑦𝑛𝑐 (c)𝑛)). This im-
plies that | |𝚫 ∩ [𝑖, 𝑛] | − |𝚫′ ∩ [𝑖, 𝑛] | | ≤ 3𝑘 , where 𝚫 = {𝑖 : 1𝑠𝑦𝑛𝑐 (c)𝑖 = 1}
and 𝚫′ = {𝑖 : 1𝑠𝑦𝑛𝑐 (c′)𝑖 = 1}. According to the forth line in Eq. (3.5), we have that

|1𝑠𝑦𝑛𝑐 (c) · m(𝑒) − 1𝑠𝑦𝑛𝑐 (c′) · m(𝑒) |

=|
𝑛∑︁
𝑖=1

( |𝚫 ∩ [𝑖, 𝑛] | − |𝚫′ ∩ [𝑖, 𝑛] |)𝑖𝑒 |,

≤
𝑛∑︁
𝑖=1

3𝑘𝑖𝑒

<3𝑘𝑛𝑒+1. (3.15)

If 𝑓 (1𝑠𝑦𝑛𝑐 (c)) = 𝑓 (1𝑠𝑦𝑛𝑐 (c′)), then

1𝑠𝑦𝑛𝑐 (c) · m(𝑒) ≡ 1𝑠𝑦𝑛𝑐 (c′) · m(𝑒) mod 3𝑘𝑛𝑒+1 (3.16)

for 𝑒 ∈ [0, 6𝑘]. Equations (3.16) and (3.15) imply that 1𝑠𝑦𝑛𝑐 (c) · m(𝑒) = 1𝑠𝑦𝑛𝑐 (c′) ·
m(𝑒) for 𝑒 ∈ [0, 6𝑘]. Since 1𝑠𝑦𝑛𝑐 (c′) ∈ B3𝑘 (1𝑠𝑦𝑛𝑐 (c)) and 1𝑠𝑦𝑛𝑐 (c), 1𝑠𝑦𝑛𝑐 (c′) ∈ R3𝑘 ,
from Proposition 3.4.2 we conclude that 1𝑠𝑦𝑛𝑐 (c) = 1𝑠𝑦𝑛𝑐 (c′). Hence Lemma 3.2.1
is proved.

Proof of Lemma 3.2.2
Based on Lemma 3.2.1, we now show Lemma 3.2.2. Specifically, we show that
there exists a function 𝑝 : {0, 1}𝑛 → [1, 22𝑘 log 𝑛+𝑜(log 𝑛)] such that 1𝑠𝑦𝑛𝑐 (c) =

1𝑠𝑦𝑛𝑐 (c′) for sequences c and c′ ∈ B𝑘 (c) satisfying ( 𝑓 (1𝑠𝑦𝑛𝑐 (c)) mod 𝑝(c), 𝑝(c)) =
( 𝑓 (1𝑠𝑦𝑛𝑐 (c′)) mod 𝑝(c′), 𝑝(c′)).

Lemma 3.2.1 implies that 𝑓 (1𝑠𝑦𝑛𝑐 (c)) ≠ 𝑓 (1𝑠𝑦𝑛𝑐 (c′)) for c′ ∈ B𝑘 (c)\{c}, if
1𝑠𝑦𝑛𝑐 (c) ≠ 1𝑠𝑦𝑛𝑐 (c′). Hence | 𝑓 (1𝑠𝑦𝑛𝑐 (c)) − 𝑓 (1𝑠𝑦𝑛𝑐 (c′)) | ≠ 0 for c′ ∈ B𝑘 (c)\{c},
where 𝑓 (1𝑠𝑦𝑛𝑐 (c)) and 𝑓 (1𝑠𝑦𝑛𝑐(c′)) denote the integer presentation of their vec-
tor form. The integers are in the range [0, (3𝑘)6𝑘+1𝑛(3𝑘+1) (6𝑘+1) − 1]. According
to Lemma 3.2.7, the number of divisors of | 𝑓 (1𝑠𝑦𝑛𝑐 (c)) − 𝑓 (1𝑠𝑦𝑛𝑐 (c′)) | is upper
bounded by

22[(3𝑘+1) (6𝑘+1) ln 𝑛+(6𝑘+1) ln 3𝑘]/ln((3𝑘+1) (6𝑘+1) ln 𝑛+(6𝑘+1) ln 3𝑘)

= 2𝑜(log 𝑛) ,

where the equality holds since 𝑘 = 𝑜(
√︁

log log 𝑛). For any sequence c ∈ {0, 1}𝑛, let
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P(c) = {𝑝 : 𝑝 divides | 𝑓 (1𝑠𝑦𝑛𝑐 (c′)) − 𝑓 (1𝑠𝑦𝑛𝑐 (c)) |
for some c′ ∈ B𝑘 (c)\{c} such that 1𝑠𝑦𝑛𝑐 (c) ≠ 1𝑠𝑦𝑛𝑐 (c′)}

be the set of all divisors of the numbers {| 𝑓 (1𝑠𝑦𝑛𝑐 (c′)) − 𝑓 (1𝑠𝑦𝑛𝑐 (c)) | : c′ ∈
B𝑘 (c)\{c} and 1𝑠𝑦𝑛𝑐 (c) ≠ 1𝑠𝑦𝑛𝑐 (c′)}. Since |B𝑘 (c) | ≤

(𝑛
𝑘

)22𝑘 ≤ 2𝑛2𝑘 , we have
that

|P(c) | ≤2𝑛2𝑘2𝑜(log 𝑛)

=22𝑘 log 𝑛+𝑜(log 𝑛) .

Therefore, there exists a number 𝑝(c) ∈ [1, 22𝑘 log 𝑛+𝑜(log 𝑛)] such that 𝑝(c) does
not divide | 𝑓 (1𝑠𝑦𝑛𝑐 (c′)) − 𝑓 (1𝑠𝑦𝑛𝑐 (c)) | for all c′ ∈ B𝑘 (c)\{c} satisfying 1𝑠𝑦𝑛𝑐 (c) ≠
1𝑠𝑦𝑛𝑐 (c′). Hence, if 𝑓 (1𝑠𝑦𝑛𝑐 (c′)) ≡ 𝑓 (1𝑠𝑦𝑛𝑐 (c)) mod 𝑝(c) and c′ ∈ B𝑘 (c), we have
that 𝑝(c) divides | 𝑓 (1𝑠𝑦𝑛𝑐 (c′)) − 𝑓 (1𝑠𝑦𝑛𝑐 (c)) |, and thus that 1𝑠𝑦𝑛𝑐 (c′) = 1𝑠𝑦𝑛𝑐 (c).
This completes the proof of Lemma 3.2.2.

3.5 Hash for 𝑘-Dense Sequences
In this section, we present a hash function of size 4𝑘 log 𝑛+𝑜(log 𝑛) bits for correct-
ing 𝑘 deletions in a 𝑘-dense sequence c, when the synchronization vector 1𝑠𝑦𝑛𝑐 (c) is
known. This proves Lemma 3.2.3. Recall that a sequence c is 𝑘-dense if there is a 0
run of length at most 𝐿 between any two 1’s in the synchronization vector 1𝑠𝑦𝑛𝑐 (c),
where 𝐿 is given in (3.4).

Let the indices of the 1 entries in 1𝑠𝑦𝑛𝑐 (c) be 𝑡1 < 𝑡2 < . . . < 𝑡𝐽 , where 𝐽 =∑𝑛
𝑖=1 1𝑠𝑦𝑛𝑐 (c)𝑖 is the number of 1 entries in 1𝑠𝑦𝑛𝑐 (c). For notation convenience,

let 𝑡0 = 0 and 𝑡𝐽+1 = 𝑛 + 1. Split c into blocks a0, . . . , a𝐽 , where

a 𝑗 = (𝑐𝑡 𝑗+1, 𝑐𝑡 𝑗+2, . . . , 𝑐𝑡 𝑗+1−1) (3.17)

for 𝑗 ∈ [0, 𝐽]. The blocks are separated by the synchronization patterns. Since c is 𝑘-
dense, the length |a 𝑗 | of a 𝑗 is at most L. The goal is to protect all blocks a 𝑗 , 𝑗 ∈ [0, 𝐽]
and then c.

We will show that given 1𝑠𝑦𝑛𝑐 (c) and a length 𝑛 − 𝑘 subsequence d of c, most of
the blocks a 𝑗 can be recovered with up to 2𝑘 block errors. This is done by noticing
that no deletion occurs in most of the blocks and their boundary, which are marked
by the synchronization patterns in c. These blocks with no deletions inside are not
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destructed and appear in d with bits indices decreased by an integer at most 𝑘 . They
can be identified by looking at the synchronization patterns in d.

For blocks that are not recovered, we show that they can be recovered with up to 𝑘

deletion errors. Then we use the 𝑘-deletion correcting hash function 𝐻 (a 𝑗 ), 𝑗 ∈
[0, 𝐽] defined in Lemma 8.2.3 to correct the block errors. The size of the hash 𝐻 (a 𝑗 )
is at most 𝐿/⌈log 𝑛⌉ (2𝑘 log log 𝑛 + 𝑂 (1)) bits, since the length of a 𝑗 is at most 𝐿.
Note that the recovered blocks a 𝑗 result in the right hash 𝐻 (a 𝑗 ). It suffices to
protect the hashes 𝐻 (a 𝑗 ), 𝑗 ∈ [0, 𝐽] using a Reed-Solomon code. Define the hash
function 𝐻𝑎𝑠ℎ𝑘 as follows.

𝐻𝑎𝑠ℎ𝑘 (c) = 𝑅𝑆2𝑘 ((𝐻 (a0), . . . , 𝐻 (a𝐽))), (3.18)

where 𝑅𝑆2𝑘 (c) is the redundancy of a systematic Reed-Solomon code (see e.g., [79]
for an introduction to the Reed-Solomon code) protecting the length 𝐽 + 1 se-
quence (𝐻 (a0), . . . , 𝐻 (a𝐽)) from 2𝑘 symbol substitution errors. Note that the redun-
dancy of a 𝑘-error correcting Reed-Solomon code of length 𝑛 and alphabet size 𝑞 ≥
𝑛− 1 is 2𝑘 log 𝑞 bits [79]. The symbols 𝐻 (a 𝑗 ), 𝑗 ∈ [0, 𝐽] have alphabet size at most
2⌈(𝐿/⌈log 𝑛⌉)⌉ (2𝑘 log log 𝑛+𝑂 (1)) and can be represented using ⌈(𝐿/⌈log 𝑛⌉)⌉ (2𝑘 log log 𝑛+
𝑂 (1)) bits. The length of 𝐻𝑎𝑠ℎ𝑘 (c) is

max{4𝑘 log(𝐽 + 1), 4𝑘 ⌈(𝐿/⌈log 𝑛⌉)⌉ (2𝑘 log log 𝑛 +𝑂 (1))},

which equals 4𝑘 log 𝑛 + 𝑜(log 𝑛) when 𝑘 = 𝑜(
√︁

log log 𝑛).

We now present the following procedure that recovers c from its length 𝑛− 𝑘 subse-
quence d, given the hash function𝐻𝑎𝑠ℎ𝑘 (c) and the synchronization vector 1𝑠𝑦𝑛𝑐 (c).

1. Step 1: Let 1𝑠𝑦𝑛𝑐 (d) ∈ {0, 1}𝑛−𝑘 be the synchronization vector of d. The
indices of 1 entries in 1𝑠𝑦𝑛𝑐 (c) are known and given by 1 ≤ 𝑡1 < . . . < 𝑡𝐽 ≤ 𝑛.
Let 𝑡0 = 0 and 𝑡𝐽+1 = 𝑛 + 1.

2. Step 2: Let 1𝑠𝑦𝑛𝑐 (d)0 = 1𝑠𝑦𝑛𝑐 (d)𝑛+1−𝑘 = 1. For each 𝑗 ∈ [0, 𝐽], if there exist
two numbers 𝑡′

𝑗
∈ [𝑡 𝑗 − 𝑘, 𝑡 𝑗 ] and 𝑡′

𝑗+1 ∈ [𝑡 𝑗+1 − 𝑘, 𝑡 𝑗+1] such that 1𝑠𝑦𝑛𝑐 (d)𝑡 ′
𝑗
=

1𝑠𝑦𝑛𝑐 (d)𝑡 ′
𝑗+1

= 1 and 𝑡′
𝑗+1 − 𝑡′

𝑗
= 𝑡 𝑗+1 − 𝑡 𝑗 , let a′

𝑗
= (𝑑𝑡 ′

𝑗
+1, 𝑑𝑡 ′

𝑗
+2, . . . , 𝑑𝑡 ′

𝑗+1−1).
Else let a′

𝑗
= 0.

3. Step 3: Apply the Reed-Solomon decoder to recover 𝐻 (a 𝑗 ) from (𝐻 (a′0),
. . . , 𝐻 (a′

𝐽
), 𝐻𝑎𝑠ℎ𝑘 (c)), where a 𝑗 is defined in (3.19), 𝑗 ∈ [0, 𝐽].
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4. Step 4: Let b 𝑗 = (𝑑𝑡 𝑗+1, 𝑑𝑡 𝑗+2, . . . , 𝑑𝑡 𝑗+1−𝑘−1) and recover a 𝑗 by using b 𝑗

and 𝐻 (a 𝑗 ). Then

c = (a1, 1, a2, 1, . . . , a𝐽−1, 1, a𝐽).

The following example illustrates how to recover the blocks with at most 2𝑘 block
errors.

Example 3.5.1. Let 𝑘 = 2, 𝑛 = 6, and sequence c the same as in Example 3.1.1, i.e.,

c = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1).

The indices of the 1 entries in 1𝑠𝑦𝑛𝑐 (c) are {6, 14, 23, 30}. Then the tuple (𝑡0, 𝑡1, 𝑡2, 𝑡3,
𝑡4, 𝑡5) = (0, 6, 14, 23, 30, 36) is known at the decoder. Suppose the 2 deletions occurs
at the first and the last bits, resulting in a subsequence

d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1).

Then the synchronization vector of d is given by

1𝑠𝑦𝑛𝑐 (d) = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

with indices of the 1 entries given by {0, 6, 13, 22, 34}, where it is assumed in the
decoding procedure that 1𝑠𝑦𝑛𝑐 (d)0 = 1𝑠𝑦𝑛𝑐 (d)34 = 1. Then we have that 𝑡′0 = 0, 𝑡′1 =

6, 𝑡′2 = 13, and 𝑡′3 = 22, which implies that the intervals [𝑡0, 𝑡1] and [𝑡2, 𝑡3] are good.
Hence, we can recover 2 blocks a′0 = (1, 1, 1, 1, 1) and a′2 = (1, 1, 1, 1, 1, 0, 1, 0).
The number of block errors is 3 ≤ 2𝑘 .

We now prove that the decoding procedure obtains the correct c. Since c𝑡 𝑗 =

1𝑠𝑦𝑛𝑐 (c)𝑡 𝑗 = 1 for 𝑗 ∈ [1, 𝐽], it suffices to show that a 𝑗 , 𝑗 ∈ [0, 𝐽] can be
recovered correctly. Note that (𝑑𝑡 𝑗+1, . . . , 𝑑𝑡 𝑗+1−𝑘−1) is a length |a 𝑗 | − 𝑘 subse-
quence of (𝑐𝑡 𝑗+1, . . . , 𝑐𝑡 𝑗+1−1) = a 𝑗 . Hence a 𝑗 can be correctly decoded given b 𝑗

and 𝐻 (a 𝑗 ), 𝑗 ∈ [0.𝐽]. It is then left to recover 𝐻 (a 𝑗 ) for 𝑗 ∈ [0, 𝐽]. To this end,
we show that there are at most 2𝑘 indices 𝑗 , such that a′

𝑗
≠ a 𝑗 . Since 𝐻 (a 𝑗 ) can

be computed for correct blocks a 𝑗 , there are at most 2𝑘 symbol errors in the se-
quence (𝐻 (a0), . . . , 𝐻 (a𝐽)), which can be corrected given the Reed-Solomon code
redundancy 𝐻𝑎𝑠ℎ𝑘 (c).
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Let 𝑡′′
𝑗
, 𝑗 ∈ [1, 𝐽] be the index of c𝑡 𝑗 in d after deletions in c, where 𝑡′′

𝑗
= −1 if c𝑡 𝑗

is deleted. Let 𝑡′′0 = 0 and 𝑡′′
𝐽+1 = 𝑛 + 1 − 𝑘 . The interval [𝑡 𝑗 , 𝑡 𝑗+1], 𝑗 ∈ [0.𝐽] is

called good if 1𝑠𝑦𝑛𝑐 (d)𝑡 ′′
𝑗
= 1𝑠𝑦𝑛𝑐 (d)𝑡 ′′

𝑗+1
= 1 and 𝑡′′

𝑗+1 − 𝑡′′
𝑗
= 𝑡 𝑗+1 − 𝑡 𝑗 . We now show

that a′
𝑗
= a 𝑗 if the interval [𝑡 𝑗 , 𝑡 𝑗+1] is good. Note that the bits 𝑑𝑡 ′′

𝑗
and 𝑑𝑡 ′′

𝑗+1
come

from 𝑐𝑡 𝑗 and 𝑐𝑡 𝑗+1 respectively after deletions in c. Hence if [𝑡 𝑗 , 𝑡 𝑗+1] is good, we
have that 𝑡′′

𝑗+1 − 𝑡′′
𝑗
= 𝑡 𝑗+1 − 𝑡 𝑗 , and thus that

(𝑑𝑡 ′′
𝑗
+1, . . . , 𝑑𝑡 ′′

𝑗+1−1) = (𝑐𝑡 𝑗+1, . . . , 𝑐𝑡 𝑗+1−1) = a 𝑗 . (3.19)

Moreover, we have that 1𝑠𝑦𝑛𝑐(d)𝑡 ′′
𝑗

= 1𝑠𝑦𝑛𝑐 (d)𝑡 ′′
𝑗+1

= 1. Since 𝑡 𝑗 − 𝑡′′
𝑗
≤ 𝑘 and 𝑡 𝑗+1 −

𝑡′′
𝑗+1 ≤ 𝑘 by definition of 𝑡′′

𝑗
and 𝑡′′

𝑗+1, it follows from Step 2 in the decoding
procedure that 𝑡′

𝑗
= 𝑡′′

𝑗
, 𝑡′

𝑗+1 = 𝑡′′
𝑗+1, and a′

𝑗
= (𝑑𝑡 ′′

𝑗
+1, . . . , 𝑑𝑡 ′′

𝑗+1−1). Hence from (3.19),
we conclude that a′

𝑗
= a 𝑗 when the interval [𝑡 𝑗 , 𝑡 𝑗+1] is good.

Next, we show that a deletion can destroy at most 2 good intervals. Notice that if no
deletion occurs in c, then all intervals [𝑡 𝑗 , 𝑡 𝑗+1], 𝑗 ∈ [0, 𝐽] are good. If no deletions
occur in the interval [𝑡 𝑗−1, 𝑡 𝑗+2], then 1𝑠𝑦𝑛𝑐 (d)𝑡 ′′

𝑗
= 1𝑠𝑦𝑛𝑐 (d)𝑡 ′′

𝑗+1
= 1 and 𝑡′′

𝑗+1 − 𝑡′′
𝑗
=

𝑡 𝑗+1− 𝑡 𝑗 , where 𝑡′′
𝑗

is the index of 𝑐𝑡 𝑗 in d after deletions. Hence the interval [𝑡 𝑗 , 𝑡 𝑗+1]
is good when no deletion occurs in [𝑡 𝑗−1, 𝑡 𝑗+2]. It follows that a deletion that oc-
curs in interval [𝑡 𝑗 , 𝑡 𝑗+1] can destroy at most 3 good intervals [𝑡 𝑗−1, 𝑡 𝑗 ], [𝑡 𝑗 , 𝑡 𝑗+1],
and [𝑡 𝑗+1, 𝑡 𝑗+2]. We prove that the deletion in [𝑡 𝑗 , 𝑡 𝑗+1] can destroy at most two
of them. If the deletion in [𝑡 𝑗 , 𝑡 𝑗+1] does not destroy the synchronization pat-
tern (𝑐𝑡 𝑗−3𝑘+1, . . . , 𝑐𝑡 𝑗+⌈log 𝑘⌉+4), then it destroys at most two good intervals [𝑡 𝑗 , 𝑡 𝑗+1]
and [𝑡 𝑗+1, 𝑡 𝑗+2]. If the deletion in [𝑡 𝑗 , 𝑡 𝑗+1] destroys the synchronization pat-
tern (𝑐𝑡 𝑗−3𝑘+1, . . . , 𝑐𝑡 𝑗+⌈log 𝑘⌉+4), then it destroys the pattern (𝑐𝑡 𝑗 , . . . , 𝑐𝑡 𝑗+⌈log 𝑘⌉+4) =
1⌈log 𝑘⌉+5 and the synchronization pattern (𝑐𝑡 𝑗+1−3𝑘+1, . . . , 𝑐𝑡 𝑗+1+⌈log 𝑘⌉+4) is not af-
fected. As a result, the good interval [𝑡 𝑗+1, 𝑡 𝑗+2] is not destroyed by the deletion
in [𝑡 𝑗 , 𝑡 𝑗+1]. At most two good intervals [𝑡 𝑗−1, 𝑡 𝑗 ] and [𝑡 𝑗 , 𝑡 𝑗+1] are destroyed. There-
fore, a deletion affects at most two good intervals. This implies that 𝑘 deletions
result in at most 2𝑘 block errors a′

𝑗
≠ a 𝑗 . Therefore, the sequence c can be recovered.

3.6 Generating 𝑘-Dense Sequences
In this section we present an algorithm to compute the map 𝑇 (c), which transforms
any sequence c ∈ {0, 1}𝑛 into a 𝑘-dense sequence, and thus proves Lemma 3.2.4.
Let 1𝑥 and 0𝑦 denote sequences of consecutive 𝑥 1’s and consecutive 𝑦 0’s, re-
spectively. We first show in Proposition 3.6.1 that any sequence c satisfying the
following two properties is a 𝑘-dense sequence. Then, the algorithm for computing
computing 𝑇 (c) can be decomposed into two parts. In the first part, we generate
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a sequence 𝑇1(c) that satisfies Property 1. In the second part, we use 𝑇1(c) to
compute 𝑇 (c) that satisfies both properties.

Property 1. Every length 𝐵 ≜ (⌈log 𝑘⌉ + 5)2⌈log 𝑘⌉+9⌈log 𝑛⌉ interval of c
contains the pattern 1⌈log 𝑘⌉+5, i.e., for any integer 𝑖 ∈ [1, 𝑛 − 𝐵 + 1], there
exists an integer 𝑗 ∈ [𝑖, 𝑖+𝐵−⌈log 𝑘⌉−5] such that (𝑐 𝑗 , 𝑐 𝑗+1, . . . , 𝑐 𝑗+⌈log 𝑘⌉+4) =
1⌈log 𝑘⌉+5.

Property2. Every length 𝑅 ≜ (3𝑘 + ⌈log 𝑘⌉ +4) (⌈log 𝑛⌉ +9+ ⌈log 𝑘⌉) interval
of c contains a length 3𝑘 + ⌈log 𝑘⌉ + 4 subinterval that does not contain
the pattern 1⌈log 𝑘⌉+5, i.e., for any integer 𝑖 ∈ [1, 𝑛 − 𝑅 + 1], there exists an
integer 𝑗 ∈ [𝑖, 𝑖+𝑅−3𝑘− ⌈log 𝑘⌉ −4], such that (𝑐𝑚, 𝑐𝑚+1, . . . , 𝑐𝑚+⌈log 𝑘⌉+4) ≠
1⌈log 𝑘⌉+5 for every 𝑚 ∈ [ 𝑗 , 𝑗 + 3𝑘 − 1].

Proposition 3.6.1. If a sequence c satisfies Property 1 and Property 2, then it is
a 𝑘-dense sequence.

Proof. Let the locations of the 1 entries in 1𝑠𝑦𝑛𝑐 (c) be 𝑡1 < . . . < 𝑡𝐽 . Let 𝑡0 = 0
and 𝑡𝐽+1 = 𝑛+1. From Definition 3.2.1, it suffices to show that 𝑡𝑖+1− 𝑡𝑖 ≤ 𝐵+𝑅+1 =

𝐿 + 1 for any 𝑖 ∈ [0, 𝐽].

According to Property 2, there exists an index 𝑗∗ ∈ [𝑡𝑖, 𝑡𝑖 + 𝑅 − 3𝑘 − ⌈log 𝑘⌉ −
4], such that (𝑐𝑚, 𝑐𝑚+1, . . . , 𝑐𝑚+⌈log 𝑘⌉+4) ≠ 1⌈log 𝑘⌉+5 for every 𝑚 ∈ [ 𝑗∗, 𝑗∗ +
3𝑘 − 1]. According to Property 1, there exists an integer 𝑥 ∈ [ 𝑗∗ + 1, 𝑗∗ +
𝐵] such that (𝑐𝑥 , 𝑐𝑥+1, . . . , 𝑐𝑥+⌈log 𝑘⌉+4) = 1⌈log 𝑘⌉+5. Let ℓ = min{𝑥 ≥ 𝑗∗ :
(𝑐𝑥 , 𝑐𝑥+1, . . . , 𝑐𝑥+⌈log 𝑘⌉+4) = 1⌈log 𝑘⌉+5}. Then we have that ℓ ≠ 𝑗∗, ℓ ≤ 𝑥 ≤ 𝑗∗ + 𝐵,
and thus that ℓ ∈ [ 𝑗∗+1, 𝑗∗+𝐵]. In addition, (𝑐𝑚, 𝑐𝑚+1, . . . , 𝑐𝑚+⌈log 𝑘⌉+4) ≠ 1⌈log 𝑘⌉+5

for every𝑚 ∈ [ 𝑗∗, ℓ) = { 𝑗∗, . . . , ℓ−1}. By definition of 𝑗∗, we have that ℓ− 𝑗∗ ≥ 3𝑘 .
Since (𝑐ℓ, 𝑐ℓ+1, . . . , 𝑐ℓ+⌈log 𝑘⌉+4) = 1⌈log 𝑘⌉+5, we have that 1𝑠𝑦𝑛𝑐 (c)ℓ = 1. Therefore,
we conclude that

𝑡𝑖+1 − 𝑡𝑖 ≤ ℓ − 𝑡𝑖

≤ 𝑗∗ + 𝐵 − 𝑡𝑖

≤ 𝑅 + 𝐵 + 1

= 𝐿 + 1.
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□

Generating Sequences Satisfying Property 1
Given a sequence c ∈ {0, 1}𝑛, we now generate 𝑇1(c) ∈ {0, 1}𝑛+2⌈log 𝑘⌉+10 that
satisfies Property 1. The idea is to repeatedly delete the length 𝐵 subsequences
of c that do not contain the pattern 1⌈log 𝑘⌉+5, and append length 𝐵 subsequences
containing 1⌈log 𝑘⌉+5 to the end, without losing the information of the deleted sub-
sequences. The deleting and appending procedure repeats until no length 𝐵 sub-
sequence with no 1⌈log 𝑘⌉+5 pattern is found. Notice that any binary sequence con-
taining no pattern 1⌈log 𝑘⌉+5 can be regarded as a sequence of symbols with alphabet
size 2⌈log 𝑘⌉+5 − 1. Hence, such binary sequence can be compressed to a shorter
binary sequence. In this way, we can add the index of the deleted subsequence and
the pattern 1⌈log 𝑘⌉+5 to the compressed sequence. The sequence keeps the same size
after the deleting and appending procedure.

Note that the above procedure keeps appending length 𝐵 subsequences to the end.
Hence the suffix of 𝑇1(c) are appended bits. To guarantee that these appended bits
are not deleted in the procedure, we keep track of the end index of the non-appended
bits 𝑛′ and always delete the bits with indices at most 𝑛′. To deal with cases when a
length 𝐵 subsequence to be deleted overlaps with the appended bits, we delete only
non-appended bits from it. Then, we append shorter subsequences such that the total
length does not change. The decoder detects the shorter appended subsequences by
looking at the length of the 1 run in it.

Before presenting the details of encoding and decoding, we need the following
proposition, which states that the length 𝐵 binary sequences containing no 1⌈log 𝑘⌉+5

pattern can be compressed to shorter binary sequences.

Proposition 3.6.2. Let S be the set of sequences b ∈ {0, 1}𝐵 such that (𝑏𝑖, . . . ,
𝑏𝑖+⌈log 𝑘⌉+4) ≠ 1⌈log 𝑘⌉+5 for every 𝑖 ∈ [1, 𝐵 − ⌈log 𝑘⌉ − 4]. There exists an invertible
map 𝜙 : S → {0, 1}𝐵−⌈log 𝑛⌉−2⌈log 𝑘⌉−12, such that both 𝜙 and its inverse 𝜙−1 can be
computed in 𝑂 (𝐵) time.

Proof. For any b ∈ S, the procedure for computing 𝜙(b) is as follows. Split b
into 2⌈log 𝑘⌉+9⌈log 𝑛⌉ blocks of length (⌈log 𝑘⌉ +5). Since each block is not 1⌈log 𝑘⌉+5,
it can be represented by a symbol of alphabet size 2⌈log 𝑘⌉+5 − 1. Therefore, the
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Input sequence 11 . . . 011111110 001010 . . . 011 01001010111111101

Initialization 11 . . . 011111110

y1

1111111001010 . . . 011

y2

01001010111111101

x0𝑛′

Round 1 11 . . . 011111110

x1

1111111001010 . . . 011

y2

01001010111111101

x0𝑛′

Round 2 11 . . . 011111110

x1

00 . . . 0111110

x2

01001010111111101 1111111

x0𝑛′

Figure 3.3: An example of how the encoding in Proposition 3.6.3 proceeds.

sequence b can be uniquely represented by a sequence v of 2⌈log 𝑘⌉+9⌈log 𝑛⌉ symbols,
each having alphabet size 2⌈log 𝑘⌉+5−1. Convert v into a binary sequence 𝜙(b). Then
𝜙(b) can be represented by a binary sequence with length

⌈log2 [(2⌈log 𝑘⌉+5 − 1)2 ⌈log 𝑘 ⌉+9 ⌈log 𝑛]⌉⌉

=⌈log2 [(1 − 1/2⌈log 𝑘⌉+5)2 ⌈log 𝑘 ⌉+9 ⌈log 𝑛⌉]⌉
+ (⌈log 𝑘⌉ + 5)2⌈log 𝑘⌉+9⌈log 𝑛⌉

≤16⌈log 𝑛⌉ log2 [(1 − 1/2⌈log 𝑘⌉+5)2 ⌈log 𝑘 ⌉+5] + 𝐵 + 1
(𝑎)
≤ − 16⌈log 𝑛⌉ log2 𝑒 + 𝐵 + 1

≤𝐵 − 16⌈log 𝑛⌉ + 1

≤𝐵 − ⌈log 𝑛⌉ − 2⌈log 𝑘⌉ − 12,

where (𝑎) follows from the fact that the function (1−1/𝑥)𝑥 is increasing in 𝑥 for 𝑥 > 1
and that lim𝑥→∞(1−1/𝑥)𝑥 = 1/𝑒. Therefore, 𝜙(b) can be represented by 𝐵−⌈log 𝑛⌉−
2⌈log 𝑘⌉−12 bits. The inverse map 𝜙−1 can be computed by converting 𝜙(b) back to
a length 2⌈log 𝑘⌉+9⌈log 𝑛⌉ sequence v of alphabet size 2⌈log 𝑘⌉+5−1. Then, concatenate
the binary representation of symbols in v, we obtain b.

The complexity for computing 𝜙 or 𝜙−1 is that of converting binary sequences to
sequences of alphabet size 2⌈log 𝑘⌉+5 − 1 or vice versa, which is 𝑂 (𝐵). □

With the function 𝜙 defined in Proposition 3.6.2, the following proposition provides
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details of the encoding/decoding for computing 𝑇1(c). An example illustrating the
encoding in Proposition 3.6.3 is presented in Fig. 3.3.

Proposition 3.6.3. For integers 𝑘 and 𝑛 > 𝑘 , there exists an invertible map 𝑇1 :
{0, 1}𝑛 → {0, 1}𝑛+2⌈log 𝑘⌉+10, computable in𝑂 (𝑛2𝑘 log 𝑛 log2 𝑘) time, such that𝑇1(c)
satisfies Property 1. Moreover, either

(𝑇1(c)𝑛+⌈log 𝑘⌉+6, . . . , 𝑇1(c)𝑛+2⌈log 𝑘⌉+10) = 1⌈log 𝑘⌉+5

or
(𝑇1(c)𝑛+⌈log 𝑘⌉+5, . . . , 𝑇1(c)𝑛+2⌈log 𝑘⌉+9) = 1⌈log 𝑘⌉+5.

Proof. For a sequence c ∈ {0, 1}𝑛, the encoding procedure for computing 𝑇1(c) is
as follows.

1. Initialization: Let 𝑇1(c) = c. Append 12⌈log 𝑘⌉+10 to the end of the se-
quence 𝑇1(c). Let 𝑛′ = 𝑛. Go to Step 1.

2. Step 1: If there exists an integer 𝑖 ∈ [1, 𝑛′] such that

(𝑇1(c) 𝑗 , 𝑇1(c) 𝑗+1, . . . , 𝑇1(c) 𝑗+⌈log 𝑘⌉+4) ≠ 1⌈log 𝑘⌉+5

for every 𝑗 ∈ [𝑖, 𝑖 + 𝐵 − ⌈log 𝑘⌉ − 5], go to Step 2. Else go to Step 4.

3. Step 2: If 𝑖 > 𝑛′ − 𝐵 + 1, go to Step 3. Else, delete (𝑇1(c)𝑖, . . . , 𝑇1(c)𝑖+𝐵−1)
from 𝑇1(c) and append

(𝑖, 𝜙(𝑇1(c)𝑖, . . . , 𝑇1(c)𝑖+𝐵−1), 0, 12⌈log 𝑘⌉+10, 0)

to the end of 𝑇1(c), where the appended 𝑖 is encoded by ⌈log 𝑛⌉ binary bits.
Let 𝑛′ = 𝑛′ − 𝐵. Go to Step 1.

4. Step 3: Delete (𝑇1(c)𝑖, . . . , 𝑇1(c)𝑛′) from 𝑇1(c) and append

(𝑖, 𝜙(𝑇1(c)𝑖, . . . , 𝑇1(c)𝑛′, 0𝑖+𝐵−𝑛
′−1), 0, 12⌈log 𝑘⌉+10−(𝑖+𝐵−𝑛′−1) , 0)

to the end of 𝑇1(c). Let 𝑛′ = 𝑖− 1, where the appended 𝑖 is encoded by ⌈log 𝑛⌉
binary bits. Go to Step 1.

5. Step 4: Output 𝑇1(c).
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In the encoding procedure, Step 2 and Step 3 are the deleting and appending operation
described above, while Step 3 deals with the case when the deleted subsequence
overlaps with the appended bits. Note that the index of the deleted subsequence is
provided in the appended subsequence, so that the decoder can recover the deleted
subsequence, given the appended subsequence. According to Proposition 3.6.2 and
the fact that the index 𝑖 has size ⌈log 𝑛⌉ bits, the lengths of the deleted and appended
subsequences in Step 2 or Step 3 are equal. Hence, the sequence𝑇1(c) keeps constant
and is 𝑛 + 2⌈log 𝑘⌉ + 10.

We first show that the integer 𝑛′ is the split index of appended bits and non-
appended bits. Specifically, (𝑇1(c)𝑛′+1, . . . , 𝑇1(c)𝑛+2⌈log 𝑘⌉+10) are the appended bits
and (𝑇1(c)1, . . . , 𝑇1(c)𝑛′) are non-appended bits that remain after deleting operations
in Step 2 and Step 3. In addition, (𝑇1(c)𝑛′+1, . . . , 𝑇1(c)𝑛′+2⌈log 𝑘⌉+10) = 12⌈log 𝑘⌉+10

are the bits appended in the Initialization step. The claim holds in the Initialization
step. Note that in each round of Step 2 or Step 3, the deleted bits have indices at
most 𝑛′ and the integer 𝑛′ decreases by the length of deleted subsequence. Hence,
the claim always holds.

We now show that the output sequence 𝑇1(c) satisfies Property 1.

We have shown that (𝑇1(c)𝑛′+1, . . . , 𝑇1(c)𝑛′+⌈log 𝑘⌉+5) = 1⌈log 𝑘⌉+5. Then accord-
ing to the if conditions in Step 1 and Step 2 that lead to Step 3, the integer 𝑖

in Step 3 satisfies 1 ≤ 𝑖 + 𝐵 − 𝑛′ − 1 ≤ ⌈log 𝑘⌉ + 4. Otherwise the subse-
quence (𝑇1(c)𝑖, . . . , 𝑇1(c)𝑖+𝐵−1) contains (𝑇1(c)𝑛′+1, . . . , 𝑇1(c)𝑛′+⌈log 𝑘⌉+5) = 1⌈log 𝑘⌉+5,
which does not satisfy the if condition in Step 1. Therefore, the 1 run12⌈log 𝑘⌉+10−(𝑖+𝐵−𝑛′−1)

in the appended subsequence in Step 3 has length at least ⌈log 𝑘⌉ + 6. Thus,
the 1⌈log 𝑘⌉+5 pattern appears in the subsequence appended in each round of Step 2
or Step 3. Moreover, the index distance between the two 1⌈log 𝑘⌉+5 patterns in two
consecutively appended subsequences is at most 𝐵 − ⌈log 𝑘⌉ − 5. We conclude
that for 𝑖′ > 𝑛′, any length 𝐵 subsequence (𝑇1(c)𝑖, . . . , 𝑇1(c)𝑖+𝐵−1) contains the
1⌈log 𝑘⌉+5 pattern. Furthermore, note that for any 𝑖 ∈ [1, 𝑛′], there exists some 𝑗 ∈
[𝑖, 𝑖 + 𝐵 − ⌈log 𝑘⌉ − 5] such that 𝑇1(c) 𝑗 = 𝑇1(c) 𝑗+1 = . . . = 𝑇1(c) 𝑗+⌈log 𝑘⌉+4 = 1.
Otherwise 𝑇1(c)𝑖 is deleted in Step 2 or Step 3. Hence, the sequence 𝑇1(c) satisfies
Property 1.

Note that the integer 𝑛′ decreases in each round. Hence, the algorithm terminates
within 𝑂 (𝑛) rounds of Step 1, Step 2, and Step 3. Therefore, the search for the 𝑖

satisfying the if condition in Step 1 takes𝑂 (𝑛𝐵 log 𝑘) time. In addition, the deleting
and appending operation in Step 2 or Step 3 takes at most 𝑂 (𝑛 + 𝐵) time. Hence,
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the total complexity is 𝑂 (𝑛2𝑘 log 𝑛 log2 𝑘).

Next, we show that either (𝑇1(c)𝑛+⌈log 𝑘⌉+6, . . . , 𝑇1(c)𝑛+2⌈log 𝑘⌉+10) = 1⌈log 𝑘⌉+5 or
(𝑇1(c)𝑛+⌈log 𝑘⌉+5, . . . , 𝑇1(c)𝑛+2⌈log 𝑘⌉+9) = 1⌈log 𝑘⌉+5. The former holds when the
appending operation only occurs in the Initialization step. Note that all subsequence
appended in Step 2 or Step 3 ends with a 1 run with length at least ⌈log 𝑘⌉ + 6
followed by a 0 bit. Hence the latter holds when the appending operation in Step 2
or Step 3 occurs.

The decoding follows a reverse procedure of the encoding, by repeatedly removing
the appended subsequences and use them to recover the deleted subsequences.
Since the appended subsequences contain the 𝜙 function and position of the deleted
subsequences, the deleted subsequences can be recovered. The decoding stops when
the end of the appended sequence becomes a 1 bit. The decoder determines the
length of the appended subsequence by looking at the 1 run before the ending 0 bit.
The decoding procedure that recovers c from 𝑇1(c) is given as follows.

1. Initialization: Let c = 𝑇1(c) and go to Step 1.

2. Step 1: If 𝑐𝑛+2⌈log 𝑘⌉+10 = 0, find the length ℓ of the 1 run that ends
with 𝑐𝑛+2⌈log 𝑘⌉+9. Let 𝑖 be the integer representation of (𝑐𝑛+4⌈log 𝑘⌉+21−𝐵−ℓ,

𝑐𝑛+4⌈log 𝑘⌉+22−𝐵−ℓ, . . . , 𝑐𝑛+4⌈log 𝑘⌉+20−𝐵−ℓ+⌈log 𝑛⌉). Let b be the sequence ob-
tained by computing 𝜙−1(𝑐𝑛+4⌈log 𝑘⌉+21−𝐵−ℓ+⌈log 𝑛⌉ ,

𝑐𝑛+4⌈log 𝑘⌉+22−𝐵−ℓ+⌈log 𝑛⌉ , . . . , 𝑐𝑛+2⌈log 𝑘⌉+8−ℓ), where the function 𝜙 is defined in
Proposition 3.6.2, Delete (𝑐𝑛+4⌈log 𝑘⌉+21−𝐵−ℓ, 𝑐𝑛+4⌈log 𝑘⌉+22−𝐵−ℓ, . . . , 𝑐𝑛+2⌈log 𝑘⌉+10)
from c and insert (b1, . . . , b𝐵−2⌈log 𝑘⌉−10+ℓ) at location 𝑖 of c. Repeat. Else
delete 𝑐𝑛+1, . . . , 𝑐𝑛+2⌈log 𝑘⌉+10 and go to Step 2.

3. Step 2: Output c.

In each round of Step 1, the decoder processes an appended subsequence of length 𝐵

or less. It can be seen that the appended subsequences in the encoding procedure
end with a 0 bit except for the one appended in the Initialization step. Hence if the
end of an appended sequence is a 1 bit, the subsequence is the 12⌈log 𝑘⌉+10 appended
in the Initialization step of the encoding procedure. Moreover, since 12⌈log 𝑘⌉+10

is the appended subsequence, the decoding procedure ends up in 12⌈log 𝑘⌉+10 after
processing all other appended subsequences.

Note that the encoding procedure consists of a series of deleting and appending
operations. The decoding procedure exactly reverses the series of operations in the
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encoding procedure. Let 𝑇1,𝑖 (c), 𝑖 ∈ [0, 𝐼] be the sequence 𝑇1(c) obtained after
the 𝑖-th deleting and appending operation in the encoding procedure, where 𝐼 is the
number of deleting and appending operations in total in the encoding procedure.
We have that 𝑇1,0(c) = c and that 𝑇1,𝐼 (c) is the final output 𝑇1(c). Then the decoding
procedure obtains 𝑇1,𝐼−𝑖 (c), 𝑖 ∈ [0, 𝐼] after the 𝑖-th deleting and inserting operation.
Hence we get the output 𝑇1,𝐼−𝐼 (c) = c in the decoding procedure. □

Proof of Lemma 3.2.4
After having the sequence 𝑇1(c) ∈ {0, 1}𝑛+2⌈log 𝑘⌉+10 satisfying Property 1, we now
use 𝑇1(c) to generate a sequence 𝑇 (c) ∈ {0, 1}𝑛+3𝑘+3⌈log 𝑘⌉+15 that satisfies both
Property 1 and Property 2. According to Proposition 3.6.1, 𝑇 (c) is a 𝑘-dense
sequence and Lemma 3.2.4 is proved. The encoding of 𝑇 (c) follows a similar
repetitive deleting and appending procedure to the encoding in Proposition 3.6.3. To
satisfy Property 2, we repeatedly look for length 𝑅 subsequences, every length 3𝑘 +
⌈log 𝑘⌉ + 4 subsequence of which contains 1⌈log 𝑘⌉+5 patterns, delete most part of it,
and then append a subsequence that contains a length 3𝑘 + ⌈log 𝑘⌉ + 4 subsequence
containing no 1⌈log 𝑘⌉+5 pattern. The appended subsequence has all information
about the deleted sequence, including the index and the bits, and has the same
length as that of the deleted subsequence. To this end, we need to construct a map
that compresses a length 3𝑘 + ⌈log 𝑘⌉ + 4 sequence containing 1⌈log 𝑘⌉+5 patterns to
a shorter sequence. Moreover, the compressed sequence does not contain 1⌈log 𝑘⌉+5

patterns. Then we can compress the deleted subsequence and add indices and
markers as we did in Proposition 3.6.3. The end of an appended subsequence
is marked by a 0 bit. We also keep track of the integer 𝑛′, which is the end of
non-appended bits, to guarantee that the appended bits are not deleted.

Note that we do not delete the whole length 𝑅 subsequences, every length 3𝑘 +
⌈log 𝑘⌉ + 4 subsequence of which contains 1⌈log 𝑘⌉+5 patterns. Instead, we split the
length 𝑅 subsequence into blocks of length 3𝑘+⌈log 𝑘⌉+4, each containing 1⌈log 𝑘⌉+5

patterns. Then the first and the last blocks remain and the blocks in the middle are
deleted. This is to keep the sequence 𝑇 (c) satisfying Property 1 and protect the
appended bits from being deleted.

The following proposition presents the compression map described above, which
encodes a sequence containing 1⌈log 𝑘⌉+5 patterns into a shorter sequence without the
1⌈log 𝑘⌉+5 pattern. Similar to the encoding procedures that compute 𝑇 (c) and 𝑇1(c),
the algorithm for computing the compression map follows a delete and append
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process, which repeatedly deletes 1⌈log 𝑘⌉+5 patterns and appends their indices and 0
runs to the end.

Proposition 3.6.4. For an integer 𝑘 , let c ∈ {0, 1}3𝑘+⌈log 𝑘⌉+4 be a sequence such
that 𝑐𝑖 = 𝑐𝑖+1 = . . . = 𝑐𝑖+⌈log 𝑘⌉+4 = 1 for some 𝑖 ∈ [1, 3𝑘]. There exists an invert-
ible mapping 𝑇2 : {0, 1}3𝑘+⌈log 𝑘⌉+4 → {0, 1}3𝑘+⌈log 𝑘⌉+3, such that 𝑇2(c) contains
no ⌈log 𝑘⌉ + 5 consecutive 1 bits. Both 𝑇2 and its inverse 𝑇−1

2 are computable
in 𝑂 (𝑘2 log 𝑘) time.

Proof. Given c ∈ {0, 1}3𝑘+⌈log 𝑘⌉+4, the encoding procedure for computing 𝑇2(c) is
as follows.

1. Initialization: Let𝑇2(c) = c. Append 0 to the end of the sequence𝑇2(c). Find
the smallest 𝑖 ∈ [1, 3𝑘] such that𝑇2(c)𝑖 = 𝑇2(c)𝑖+1 = . . . = 𝑇2(c)𝑖+⌈log 𝑘⌉+4 = 1.
Delete (𝑇2(c)𝑖, . . . , 𝑇2(c)𝑖+⌈log 𝑘⌉+4) from𝑇2(c) and append (𝑖, 0⌈log 𝑘⌉+3−⌈log(3𝑘)⌉)
to the end of 𝑇2(c), where the appended 𝑖 is encoded by ⌈log 3𝑘⌉ binary bits.
Let 𝑛′ = 3𝑘 − 1 and 𝑖 = 1. Go to Step 1.

2. Step 1: If there exists an integer 𝑖 ≤ 𝑛′ such that 𝑇2(c)𝑖 = 𝑇2(c)𝑖+1 =

. . . = 𝑇2(c)𝑖+⌈log 𝑘⌉+4 = 1, delete (𝑇2(c)𝑖, . . . , 𝑇2(c)𝑖+⌈log 𝑘⌉+4) from 𝑇2(c) and
append (𝑖, 0⌈log 𝑘⌉+4−⌈log(3𝑘)⌉ , 1) to the end of 𝑇2(c). Let 𝑛′ = 𝑛′ − ⌈log 𝑘⌉ − 5
and 𝑖 = 1. Repeat. Else go to Step 2.

3. Step 2: Output 𝑇2(c).

There are deleting and appending operations in both the Initialization step and
Step 1. In the Initialization step, the length of the deleted subsequence is larger than
the length of the appended subsequence by 2. Hence after appending the 0 bit in
the beginning, the length of 𝑇2(c) decreases by 1 after the Initialization step. The
lengths of the deleted and appended subsequence in Step 1 are equal. Hence, the
length of the sequence 𝑇2(c) keeps constant after the Initialization step and is

3𝑘 + ⌈log 𝑘⌉ + 4 + 1 − ⌈log 𝑘⌉ − 5 + ⌈log 𝑘⌉ + 3

=3𝑘 + ⌈log 𝑘⌉ + 3.

We show that (𝑇2(c)𝑛′+1, . . . , 𝑇2(c)3𝑘+⌈log 𝑘⌉+3) are appended bits and (𝑇2(c)1, . . . ,
𝑇2(c)𝑛′) are non-appended bits remain in 𝑇2(c) after deletions. In particular,
𝑇2(c)𝑛′+1 = 0 is the bit appended in the beginning of the Initialization step. The
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claims hold after the Initialization step. Note that when 𝑇2(c)𝑛′ = 0, the inte-
ger 𝑖 satisfying the if condition in Step 𝑖 is at most 𝑛′ − ⌈log 𝑘⌉ − 4. Other-
wise (𝑇2(c)𝑖, . . . , 𝑇2(c)𝑖+⌈log 𝑘⌉+4) ≠ 1. Therefore, the deleted bits in Step 1 have
indices at most 𝑛′. Moreover, the integer 𝑛’ decreases by the length of the deleted bits.
Therefore, we conclude that (𝑇2(c)𝑛′+1, . . . , 𝑇2(c)3𝑘+⌈log 𝑘⌉+3) consists of appended
bits and that 𝑇2(c)𝑛′+1 = 0 is the bit appended at the beginning of the Initializa-
tion step. The appended bits (𝑇2(c)𝑛′+1, . . . , 𝑇2(c)3𝑘+⌈log 𝑘⌉+3) are not deleted in the
procedure.

We now show that 𝑇2(c) contains no 1⌈log 𝑘⌉+5 patterns. Note that the 1⌈log 𝑘⌉+5 pat-
terns with indices at most 𝑛′ are deleted in the encoding procedure. Since𝑇2(c)𝑛′+1 =

0, there is no 1⌈log 𝑘⌉+5 pattern containing the bit 𝑇2(c)𝑛′+1. Hence a 1⌈log 𝑘⌉+5 pattern
has indices at least 𝑛′ + 1. Moreover, since the ⌈log 𝑘⌉ + 4-th bit in each appended
subsequence is a 0 bit, there is no 1⌈log 𝑘⌉+5 pattern in the appended bits. Hence,
no 1⌈log 𝑘⌉+5 with indices at least 𝑛′ + 1 exists. This implies that 𝑇2(c) does not
contain 1⌈log 𝑘⌉+5 patterns.

Since 𝑛′ decreases in each step, the algorithm terminates within 𝑂 (𝑘) iterations
of Step 1. Since it takes 𝑂 (𝑘 log 𝑘) to look for the integer 𝑖, the total complexity
is 𝑂 (𝑘2 log 𝑘).

The decoding 𝑇−1
2 (c), which recovers c from 𝑇2(c), follows a reverse procedure of

the encoding and is presented in the following.

1. Initialization: Let c = 𝑇2(c) and go to Step 1.

2. Step 1: If 𝑐3𝑘+⌈log 𝑘⌉+3 = 1, let 𝑖 be the integer representation of (𝑐3𝑘−1, 𝑐3𝑘 ,

. . . , 𝑐3𝑘+⌈log 3𝑘⌉−2). Delete (𝑐3𝑘−1, 𝑐3𝑘 , . . . , 𝑐3𝑘+⌈log 𝑘⌉+3) from c and insert
1⌈log 𝑘⌉+5 at location 𝑖 of c. Repeat. Else go to Step 2.

3. Step 2: Let 𝑖 be the decimal representation of (𝑐3𝑘+1, 𝑐3𝑘+2, . . . , 𝑐3𝑘+⌈log(3𝑘)⌉).
Delete (𝑐3𝑘 , 𝑐3𝑘+2, . . . , 𝑐3𝑘+⌈log 𝑘⌉+3) from c and insert 1⌈log 𝑘⌉+5 at location 𝑖

of c. Output c.

Note that in the encoding procedure, the appended subsequence in the Initialization
Step ends with a 0. The appended subsequence in Step 1 ends with a 1. Hence the
algorithm stops when c3𝑘+⌈log 𝑘⌉+3 = 0 and all subsequences appended in Step 1 of
the encoding have be processed.
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Similar to the proof of correctness of decoding in Proposition 3.6.3, the decoding
procedure exactly reverses the series of operations in the encoding procedure. Note
that the appended subsequences contain the index of the deleted 1⌈log 𝑘⌉+5 patterns.
Let 𝑇2,𝑖 (c), 𝑖 ∈ [0, 𝐼] be the sequence obtained after the 𝑖-th deleting and appending
operation in the encoding procedure, where 𝐼 is the number of deleting and ap-
pending operations in total in the encoding procedure. Then 𝑇2,𝑖 (c) is the sequence
obtained after the 𝐼−𝑖-th deleting and inserting operation in the decoding procedure.
Therefore, the decoding procedure recovers the sequence c after the 𝐼-th operation.

The complexity of the decoding has the same order 𝑂 (𝑘2 log 𝑘) as that of the
encoding. □

We are now ready to present the encoding and decoding procedures for comput-
ing 𝑇 (c), which generates 𝑘-dense sequences that satisfy Property 1 and Property 2.
The encoding procedure is as follows.

1. Initialization: Let 𝑇 (c) = 𝑇1(c). Append (03𝑘 , 1⌈log 𝑘⌉+5) to the end of the
sequence 𝑇 (c). Let 𝑛′ = 𝑛 + 2⌈log 𝑘⌉ + 10 (the length of 𝑇1(c)). Go to Step 1.

2. Step 1: If there exists an integer 𝑖 ≤ min{𝑛′, 𝑛+3𝑘+3⌈log 𝑘⌉+16−𝑅}, such that
for every 𝑗 ∈ [𝑖, 𝑖 + 𝑅 − 3𝑘 − ⌈log 𝑘⌉ − 4], there exists an integer 𝑚 ∈ [ 𝑗 , 𝑗 +
3𝑘 − 1] satisfying (𝑇 (c)𝑚, 𝑇 (c)𝑚+1, . . . , 𝑇 (c)𝑚+⌈log 𝑘⌉+4) = 1⌈log 𝑘⌉+5, split
(𝑇 (c)𝑖, 𝑇 (c)𝑖+1, . . . , 𝑇 (c)𝑖+𝑅−1) into (⌈log 𝑛⌉ + 9 + ⌈log 𝑘⌉) blocks b1, b2, . . . ,

b⌈log 𝑛⌉+9+⌈log 𝑘⌉ of length 3𝑘 + ⌈log 𝑘⌉ + 4. Delete (b2, . . . , b⌈log 𝑛⌉+8+⌈log 𝑘⌉)
from 𝑇 (c) and append (0, 𝑇2(b2), 𝑇2(b3), . . . , 𝑇2(b⌈log 𝑛⌉+8+⌈log 𝑘⌉), 𝑖 + 3𝑘 +
⌈log 𝑘⌉ + 4, 1⌈log 𝑘⌉+5, 0) to the end of 𝑇 (c), where the appended 𝑖 + 3𝑘 +
⌈log 𝑘⌉ +4 encoded by ⌈log 𝑛⌉ binary bits. Let 𝑛′ = 𝑛′− 𝑅 +6𝑘 +2⌈log 𝑘⌉ +8.
Repeat. Else go to Step 2.

3. Step 2: Output 𝑇 (c).

Note that the index 𝑖+3𝑘+⌈log 𝑘⌉+4 has size log 𝑛 bits. Then from Proposition 3.6.4,
it can be verified that the lengths of the deleted and appended subsequences in Step 1
are equal. Hence 𝑇 (c) keeps constant and is 𝑛 + 3𝑘 + 3⌈log 𝑘⌉ + 15.

Similar to the encoding in Proposition 3.6.3 and Proposition 3.6.4, we show that
the integer 𝑛′ marks the end of the non-appended bits, i.e., the subsequence
(𝑇 (c)𝑛′+1, . . . , (c)𝑛+3𝑘+3⌈log 𝑘⌉+15) consists of appended bits and (𝑇 (c)1, . . . , 𝑇 (c)𝑛′)
are non-appended bits that remain after deletions. In addition, we show that
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𝑇 (c)𝑛′+1, . . . , 𝑇 (c)𝑛′+3𝑘 = 03𝑘 and that the appended bits are not deleted. The
claims hold in the Initialization step. Suppose the claims hold in the 𝑟-th round
of Step 1. Then in the 𝑟 + 1-th round of Step 1, the integer 𝑖 satisfying the if
condition in Step 1 must be in the range [1, 𝑛′ − 𝑅 + 3𝑘 + ⌈log 𝑘⌉ + 4]. Otherwise,
since 𝑇 (c)𝑛′+1, . . . , 𝑇 (c)𝑛′+3𝑘 = 03𝑘 in the 𝑟-th round, we have an integer 𝑛′ ∈ [𝑖, 𝑖 +
𝑅−3𝑘 − ⌈log 𝑘⌉ −4] such that (𝑇 (c)𝑚, 𝑇 (c)𝑚+1, . . . , 𝑇 (c)𝑚+⌈log 𝑘⌉+4) ≠ 1⌈log 𝑘⌉+5 for
every 𝑚 ∈ [𝑛′, 𝑛′+3𝑘−1]. This contradicts to the fact that 𝑖 satisfies the if condition.
Moreover, note that the block b⌈log 𝑛⌉+9+⌈log 𝑘⌉ in (𝑇 (c)𝑖, . . . , 𝑇 (c)𝑖+𝑅−1) is not deleted
in Step 1, which implies that the bits with indices at least 𝑖+𝑅−3𝑘− ⌈log 𝑘⌉ −4 ≤ 𝑛′

are not deleted. Note that 𝑛′ decreases by the length of the deleted sequence in
Step 1. We conclude that (𝑇 (c)𝑛′+1, . . . , (c)𝑛+3𝑘+3⌈log 𝑘⌉+15) consists of appended
bits and these bits are not deleted. Specifically, 𝑇 (c)𝑛′+1, . . . , 𝑇 (c)𝑛′+3𝑘 are the bits
appended in the Initialization step. By induction, the claims hold.

We now show by induction on the number of rounds 𝑟 that 𝑇 (c) satisfies Property 1.
From Proposition 3.6.3, the initial sequence 𝑇 (c) = (𝑇1(c), 03𝑘 , 1⌈log 𝑘⌉+5) satisfies
Property 1. Hence the claim holds for 𝑟 = 0. Suppose after 𝑟-th round of Step 1,𝑇 (c)
satisfies Property 1. In the 𝑟 + 1-th round, the deleting operation leaves blocks b1

and b⌈log 𝑛⌉+9+⌈log 𝑘⌉ , which both contain 1⌈log 𝑘⌉+5 as a subsequence. Hence 𝑇 (c)
satisfies Property 1 after the deletion. In addition, all appended subsequences
end with a 1⌈log 𝑘⌉+5 pattern or a 1⌈log 𝑘⌉+5 pattern followed by a 0 bit. Note that
these appended subsequences are not deleted. Hence the index distance between
two 1⌈log 𝑘⌉+5 patterns in the appended bits (𝑇 (c)𝑛′+1, . . . , 𝑇 (c)𝑛+3𝑘+3⌈log 𝑘⌉+15 is at
most 𝑅−6𝑘−2⌈log 𝑘⌉ −8 ≤ 𝐵− ⌈log 𝑘⌉ −5. Therefore, The sequence𝑇 (c) satisfies
Property 1 after the appending operation.

Next, we prove that 𝑇 (c) satisfies Property 2. According to the encoding procedure,
for any 𝑖 ∈ [1,min{𝑛′, 𝑛 + 3𝑘 + 3⌈log 𝑘⌉ + 16 − 𝑅}], there exists some 𝑗 ∈ [𝑖, 𝑖 +
𝑅 − 3𝑘 − ⌈log 𝑘⌉ − 4], such that (𝑇 (c)𝑚, 𝑇 (c)𝑚+1, . . . , 𝑇 (c)𝑚+⌈log 𝑘⌉+4) ≠ 1⌈log 𝑘⌉+5

for every 𝑚 ∈ [ 𝑗 , 𝑗 + 3𝑘 − 1]. Otherwise, the encoding does not stop. Note that
the appended bits (𝑇 (c)𝑛′+1, . . . , 𝑇 (c)𝑛+3𝑘+3⌈log 𝑘⌉+15) are not deleted. Hence for 𝑖 ∈
[𝑛′+1, 𝑛+3𝑘+3⌈log 𝑘⌉+16−𝑅], the interval [𝑖, 𝑖+𝑅−1] contains the first 3𝑘+⌈log 𝑘⌉+
4 bits (0, 𝑇2(b2)) of some appended subsequence, where b2 ∈ {0, 1}3𝑘+⌈log 𝑘⌉+4

contains the 1⌈log 𝑘⌉+5 pattern. Let [ 𝑗 , 𝑗 + 3𝑘 + ⌈log 𝑘⌉ + 3] be the indices of
the 3𝑘 + ⌈log 𝑘⌉ + 4 bits (0, 𝑇2(b2)) in 𝑇 (c). According to Proposition 3.6.4, the
function 𝑇2(b2) does not contain the 1⌈log 𝑘⌉+5 pattern. Hence (𝑇 (c)𝑚, 𝑇 (c)𝑚+1, . . . ,

𝑇 (c)𝑚+⌈log 𝑘⌉+4) ≠ 1⌈log 𝑘⌉+5 for every 𝑚 ∈ [ 𝑗 , 𝑗 + 3𝑘 − 1]. Therefore, any interval of
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length 𝑅 contains a length 3𝑘 + ⌈log 𝑘⌉ + 4 subsequence with no 1⌈log 𝑘⌉+5 pattern.
Hence, the sequence 𝑇 (c) satisfies Property 2. According to Proposition 3.6.1, we
conclude that 𝑇 (c) satisfies Property 1 and Property 2 and is 𝑘-dense.

Since 𝑛′ decreases in the encoding procedure, the procedure terminates within 𝑂 (𝑛)
iterations. Each iteration takes 𝑂 (𝑛𝑘 log 𝑘𝑅) time to search for the integer 𝑖 sat-
isfying the if condition and 𝑂 (log 𝑛𝑘2 log 𝑘) to compute the 𝑇2 functions of the
blocks. Hence the complexity is at most 𝑂 (𝑛2𝑘2 log 𝑘 (log 𝑛)). Therefore, the total
complexity is 𝑝𝑜𝑙𝑦(𝑛, 𝑘).

Finally we present the following decoding procedure that recovers c from 𝑇 (c),
which follows a reverse procedure of the encoding.

1. Initialization: Let c = 𝑇 (c) and go to Step 1.

2. Step 1: If 𝑐𝑛+3𝑘+3⌈log 𝑘⌉+15 = 0, let 𝑖 be the integer representation of
(𝑐𝑛+3𝑘+2⌈log 𝑘⌉+10−⌈log 𝑛⌉ , 𝑐𝑛+3𝑘+2⌈log 𝑘⌉+11−⌈log 𝑛⌉ , . . . , 𝑐𝑛+3𝑘+2⌈log 𝑘⌉+9). Split
(𝑐𝑛+9𝑘+5⌈log 𝑘⌉+25−𝑅, . . . , 𝑐𝑛+3𝑘+2⌈log 𝑘⌉+9−⌈log 𝑛⌉) into ⌈log 𝑛⌉+7+⌈log 𝑘⌉ blocks
(b′

1, . . . , b′
⌈log 𝑛⌉+7+⌈log 𝑘⌉) of length 3𝑘 + ⌈log 𝑘⌉ + 3. Compute b 𝑗 = 𝑇−1

2 (b′
𝑗
)

for 𝑗 ∈ [1, ⌈log 𝑛⌉ + 7 + ⌈log 𝑘⌉], where 𝑇−1
2 (b′

𝑗
) is defined in Proposi-

tion 3.6.4. Delete (𝑐𝑛+9𝑘+5⌈log 𝑘⌉+24−𝑅, . . . , 𝑐𝑛+3𝑘+3⌈log 𝑘⌉+15) from c and insert
b1, . . . , b⌈log 𝑛⌉+7+⌈log 𝑘⌉ at location 𝑖 of c. Repeat. Else delete (𝑐𝑛+2⌈log 𝑘⌉+11, . . . ,

𝑐𝑛+3𝑘+3⌈log 𝑘⌉+15) and go to Step 2.

3. Step 2: Output 𝑇−1
1 (c).

According to the encoding procedure, the inserted bits end with a 1 entry in the
Initialization Step and with a 0 entry in Step 1. Note that the inserted bits are not
deleted in the encoding procedure. Hence the decoding algorithm stops when an
ending 1 entry is detected.

Similar to the proof of correctness of decoding in Proposition 3.6.3 and Proposi-
tion 3.6.4, the decoding procedure exactly reverses the series of operations in the
encoding procedure. Therefore, the decoding procedure decodes the sequence c
correctly.

3.7 Conclusion and Future Work
We construct a 𝑘-deletion correcting code with optimal order redundancy. In-
teresting open problems include finding complexity 𝑂 (𝑛𝑂 (1)) encoding/decoding
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algorithms for our code, as well as constructing a systematic 𝑘-deletion correcting
code with optimal redundancy.
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C h a p t e r 4

CORRECTING
DELETIONS/INSERTIONS-GENERALIZATIONS

In this chapter, we develop a technique, called syndrom compression, based on an
idea in our construction in Ch. 3. Using this technique, we construct a systematic
binary 𝑘-deletion code with redundancy 4𝑘 log 𝑛 + 𝑜(log 𝑛), which is asymptoti-
cally, the current best. Then, we extend our binary deletion correcting codes to
more general settings, including non-binary cases. Note that DNA-based storage
applications correspond to 4-ary cases.

4.1 Introduction
In the early 1960s, the problem of constructing codes for the deletion channel was
introduced through the seminal works of Sellers and Levenshtein [82, 64]. Despite
the inherent difficulty of coding for this channel, the initial results were promising.
It was shown in [64] that the Varshmov-Tenengolts code can correct either a single
deletion or a single insertion over a binary alphabet. Furthermore, [64] showed
that log 𝑛 +𝑂 (1) bits of redundancy are necessary for a single deletion code which
implies that the Varshamov-Tenengolts code is nearly optimal. For the case where
the channel deletes a burst of symbols has length 1 or 2, a nearly optimal (and
very elegant) construction was provided in [63] by Levenshtein. In the early 1980s
Tenengolts constructed a nearly optimal code for a single deletion over a non-binary
alphabet based upon a clever mapping between a binary and a non-binary sequence
[93].

Unfortunately, up until recently, progress was slow and results on the subject were
limited. Some notable exceptions include the work of Schulman and Zuckerman
[81] which showed the existence of efficient codes that are capable of correcting
a constant fraction of deletions and the work of Helberg and Ferreira [47] which
attempted to extend the Varshamov-Tenengolts code to handle more than a single
deletion. Despite these efforts, up until a recent work by Brakensiek, Guruswami,
and Zbarsky [12], no efficiently constructable codes were known that could correct
even two deletions that required less than

√
𝑛 bits of redundancy.

In [12], Brakensiek et al. constructed 𝑘 deletion correcting codes that require
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𝑂 (𝑘2 log 𝑘 log 𝑛) bits of redundancy. Several works quickly followed [12] that
dramatically improved upon this result. Haeupler [41] gives an explicit systematic
𝑞-ary code construction which requires Θ(𝑘 log2 𝑛

𝑘

log 𝑞 + 𝑘) bits of redundancy. In [22],
another construction was derived by Cheng et al., which is not systematic, but is
order optimal in the sense that it requires 𝑂 (𝑘 log 𝑛) bits of redundancy.

Independent of [22], in Ch. 3, we presented explicit constructions for 𝑘 deletion
correcting codes that have redundancy 8𝑘 log 𝑛 + 𝑜(log 𝑛), which for the first time
achieves asymptotically four times the Gilbert-Varshamov lower bound in the Lev-
enshtein metric. In this chapter, we generalize one of the underlying techniques
in Ch. 3, which we refer to as syndrome compression. We show that using the
syndrome compression technique, it is possible to construct codes for channels that
are within a factor of two from the Gilbert-Varshamov lower bound in the Leven-
shtein metric. Note that the above multi-deletion correcting codes are not systematic
except for the ones in [41] and [22], which have redundancy Θ(𝑘 log2 𝑛

𝑘
+ 𝑘). We

furthermore present a systematic deletion correcting code and show that it achieves
asymptotically twice the Gilbert-Varshamov lower bound, which is asymptotically
the same amount of redundancy as our non-systematic construction, by using the
syndrome compression technique. We then apply this technique to three different
types of combinatorial deletion channels: (a) the binary adversarial deletion chan-
nel that can delete at most 𝑘 symbols, (b) the binary adversarial deletion channel
which can cause at most 𝑘 bursts of deletions (each of length at most 𝑡𝐿), and (c)
the non-binary adversarial deletion channel which can delete at most 𝑘 symbols.
We note that although our focus is on deletion channels, we believe the syndrome
compression technique can yield meaningful results when applied to other types of
channels (particular those that are traditionally considered difficult to code for, such
as the deletion channel). In addition, we introduce new ideas for the systematic
deletion code and the non-binary deletion correcting codes, as will be presented
later, which might be of independent interest.

In the following, we highlight our contributions in variations of deletion channels.

Codes (non-systematic and systematic) correcting 𝑘 deletions
We begin with a non-systematic 𝑘 deletion correcting code construction that achieves
asymptotically 4𝑘 log 𝑛 + 𝑂 (log 𝑛) + 𝑜(log 𝑛) bits of redundancy, as a result of the
syndrome compression technique.

Theorem 4.1.1. Let 𝑘 be a constant with respect to 𝑛. Then, there exists a
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non-systematic, efficiently encodable/decodable binary 𝑘-deletion correcting code
of length 𝑛 that requires at most 4𝑘 (1 + 𝜖) log 𝑛 bits of redundancy where 𝜖 =

𝑂 (1/𝑘) + 𝑂 (𝑘2 log 𝑘/log log 𝑛) is a small number that depends on 𝑘 and 𝑛. The
encoding/decoding complexity is 𝑂 (𝑛2𝑘+1).

In addition to the non-systematic deletion correcting codes, we are interested in
systematic construction of deletion codes, motivated by the document exchange
application [25], where Alice wishes to send a sequence 𝑋 to Bob, who has the
knowledge of a sequence𝑌 that is within limited edit distance of 𝑋 . The edit distance
between 𝑋 and 𝑌 is measured by the minimum number of deletions, insertions, or
substitutions needed to change 𝑋 into 𝑌 . It turns out that Alice can send the
sequence 𝑋 to Bob by transmitting a hash of 𝑋 since Bob knows 𝑌 . Such a hash
implies a systematic deletion correcting code and vice versa. Note that systematic
deletion codes also has applications in storage systems with deletion errors, where
concatenated code constructions are used.

The document exchange or systematic deletion code construction problem has been
studied in both random and adversarial settings. For random settings, where a
sequence can be recovered with high probability, document exchange algorithms
with hash sizes 𝑂 (𝑘 log2 𝑛) and 𝑂 (𝑘 log2 𝑛 log∗ 𝑛)1 were presented in [50] and [51],
respectively. The results for randomized settings were improved to 𝑂 (𝑘2 log 𝑛)
in [13] and to 𝑂 (𝑘 log 𝑛) in [7]. In [44], a randomized systematic 𝑘-deletion
correcting code with 𝑂 (𝑘2 log 𝑛) bits of redundancy was presented. For adversarial
settings, where every sequence needs to be recovered in the worst case, the state of
the art document exchange schemes [6, 22, 41] have hash size 𝑂 (𝑘 log2 𝑛), which
is bounded away from the lower bound 𝑘 log 𝑛 + 𝑜(log 𝑛). Our next result gives a
systematic deletion correcting codes with 4𝑘 log 𝑛+𝑜(log 𝑛) bits of redundancy and
thus a document exchange scheme with hash size 4𝑘 log 𝑛 + 𝑜(log 𝑛). Note that this
improves the redundancy of Theorem 4.1.1 by 𝑂 (log 𝑛).

Theorem 4.1.2. For any sequence c ∈ {0, 1}𝑛, there exists a hash function 𝐻𝑎𝑠ℎ𝑘 :
{0, 1}𝑛 → {0, 1}4𝑘 log 𝑛+𝑜(log 𝑛) , computable in 𝑂 (𝑛2𝑘+1) time, such that

{(c, 𝐻𝑎𝑠ℎ𝑘 (c)) : c ∈ {0, 1}𝑛}

forms a 𝑘-deletion correcting code. The encoding/decoding complexity of the code
is 𝑂 (𝑛𝑘+1).

1log∗ 𝑛 is the minimum number of times the logarithm needs to be iteratively applied before
getting 𝑛 to a result at most 1.
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To the best of our knowledge, our results achieve asymptotically the best redundancy.
The work in [90] proposed a non-systematic construction with (4𝑘 − 1) log 𝑛 +
𝑜(log 𝑛) bits of redundancy, combining the syndrome compression technique and
the VT code construction. The result is log 𝑛 smaller than the result in this chapter.
Yet, both results achieve the same order of redundancy asymptotically.

Codes correcting bursts of deletions
The results in this subsection pertain to the case where one wants to design codes
capable of correcting bursts of deletions. The following presents a systematic code
correcting a burst of at most 𝑘 deletions.

Theorem 4.1.3. Suppose 𝑘 is a constant with respect to 𝑛. Then, there exists a
systematic code of length 𝑛 capable of correcting a burst of consecutive deletions of
length at most 𝑘 that requires at most 4 log 𝑛 + 𝑜(log 𝑛) bits of redundancy.

Prior to this, codes capable of correcting a burst of consecutive deletions were
provided in [35], where a construction is given that requires log 𝑘 log 𝑛+
𝑂 (𝑘2 log 𝑘 log log 𝑛) bits of redundancy so that our work represents a significant
improvement. Furthermore, our construction is systematic whereas the one from
[35] is not. Recently, the work of [60] presented a non-systematic code correcting
a burst of 𝑘 deletions with redundancy log 𝑛 + 𝑘 (𝑘 + 1)/2 log log 𝑛 + 𝐶. We also
consider the case where the deletions do not occur consecutively as well as the
case where more than one burst occurs, and we provide constructions that improve
upon prior art [80] in these cases as well. The following result shows that we
can correct 𝑘 bursts each of at most length 𝑡𝐿 deletions, with redundancy at most
4𝑘 log 𝑛 + 𝑜(log 𝑛).

Theorem 4.1.4. Let 𝑘 and 𝑡𝐿 be two constant integers with respect to 𝑛. Then, there
exists a systematic code of length 𝑛 capable of correcting 𝑘 bursts of consecutive
deletions each of length at most 𝑡𝐿 that requires at most 4 log 𝑛 + 𝑜(log 𝑛) bits of
redundancy.

Non-binary deletion correcting codes
Our next two results pertain to correcting deletions over non-binary alphabets, which
has applications in DNA storage with alphabet size 4 and network transmission with
packet loss. Despite the recent progress in binary deletion codes, the problem of
constructing codes for the 𝑞-ary deletion channel has received significantly less
attention. Tenengolts constructed a nearly optimal code for the case of a single
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deletion [93]. The main idea in [93] is to use a parity code to identify the symbol
which was deleted and an associated Levenshtein code to determine the location
of the deletion. For the case of multiple deletions, the Helberg codes [47], which
were originally proposed for the binary deletion channel, were adapted and shown
to produce non-binary deletion correcting codes [59]. The primary drawback to
this class of codes is their low rate [59]. Even for the case of two deletions,
the codes have rates that do not approach 1 as 𝑛 becomes large. It was shown
in [65] that the optimal redundancy of a 𝑞-ary 𝑘 deletion code asymptotically falls
between 𝑘 log 𝑛 + 𝑘 log 𝑞 + 𝑜(log 𝑞𝑛) and 2𝑘 log 𝑛 + 𝑘 log 𝑞 + 𝑜(log 𝑞𝑛).

We attempt to bring the existing results for non-binary codes closer to the results
obtained in the binary domain.

Theorem 4.1.5. Let 𝑘 be a constant with respect to 𝑛 and suppose that 𝑞 ≤ log 𝑛.
Then, there exists a systematic 𝑘-deletion code of message length 𝑛 over an alphabet
of size 𝑞 that requires at most 4𝑘 log 𝑛 + 𝑜(log 𝑛) bits of redundancy. When log 𝑛 <

𝑞 < 𝑛, there exists a non-systematic 𝑘-deletion code of message length 𝑛 over an
alphabet of size 𝑞 that requires 2𝑘 (1+𝜖) (2 log 𝑛+log 𝑞)+𝑜(log 𝑛) bits of redundancy.

For the case where 𝑞 > 𝑛, we use a different technique than syndrome compression
that extends to the case where 𝑘 is a constant fraction of 𝑛.

Theorem 4.1.6. Let 𝑘 be a constant with respect to 𝑛 and suppose that 𝑞 ≥ 𝑛. Then,
there exists a non-systematic, efficiently encodable/decodable 𝑘-deletion code of
message length 𝑛 over an alphabet of size 𝑞 that requires at most (30𝑘 + 1) log 𝑞
bits of redundancy.

As will be explained in more detail in Sec. 4.7, the result stated in Theorem 4.1.6
also extends to the case where 𝑘 is a constant fraction of code length 𝑛, when 𝑞 is
large enough. A similar case when 𝑘 is a fraction of 𝑛 and 𝑞 is a polynomial of 𝑛
was solved in [42].

We make use of two different approaches to obtain the results. For Theorem 4.1.5,
we rely on the syndrome compression technique and some ideas that generalize
the construction of [93]. For Theorem 4.1.6, we make use of results from repeat-
free sequences from [28]. To the best of the authors’ knowledge, the best known
constructions of non-binary codes for the deletion channel can be found in [59] and
so our results represent a significant improvement over existing work.
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Organization
This chapter is organized as follows. In Sec. 4.2, we introduce the syndrome
compression technique and prove its correctness. Sec. 4.3 describes our results for
binary codes capable of correcting 𝑘 deletions stated in Theorem 4.1.1 and Theorem
4.1.2. Sec. 4.5 provides constructions for the burst deletion channel. Sec.s 4.6 and
4.7 construct codes for the non-binary deletion channel. Finally Sec. 4.8 concludes
this chapter.

4.2 Syndrome Compression
Although our attention is focused on deletion channels, syndrome compression is
applicable to a wide variety of channels, and we begin our discussion by introducing
the idea in its most general form. As will be described later, this general technique
will result in explicit constructions for codes for various channels whose redundancy
is roughly equal to twice the Gilbert-Varshamov bound (ignoring lower order terms).

For simplicity, in this section we limit our attention to the binary alphabet. Suppose
the goal is to design a code C ⊆ {0, 1}𝑛 such that for any vector x ∈ C and y ∈ B(x),
y ∉ C. We assume throughout this work, that x ∉ B(x). In other words, the set
B(x) denotes the set of vectors distinct from x which are “confusable” with x. It is
assumed that for any y ∈ B(x), both x and y have the same length. As an example, if
we wish to design a code capable of correcting 𝑘 deletions then B(x) would denote
the set of vectors obtainable after deleting 𝑘 symbols from x and then inserting 𝑘

symbols into the resulting vector. Since log |B(x) | ≤ 2𝑘 log 𝑛 (See e.g., [12]) for
the deletion channel, this implies that syndrome compression, when applied to the
deletion channel, results in a code with roughly 4𝑘 log 𝑛 bits of redundancy.

In order to apply the general technique, we require a mapping:

𝑓 : {0, 1}𝑚 → [[2𝑅(𝑚)]] = {0, 1, . . . , 2𝑅(𝑚) − 1},

which takes as input any binary length 𝑚 vector and it outputs an integer which
is contained in the set {0, 1, . . . , 2𝑅(𝑚) − 1}. We assume the mapping 𝑓 has the
following two properties that are enumerated below:

1. Confusability property: For any x ∈ {0, 1}𝑚 and any y ∈ B(x):

𝑓 (y) ≠ 𝑓 (x).

2. Redundancy property: 𝑅(𝑚) ≤ 𝑜((log log𝑚) · log𝑚).
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We will often refer to the mapping 𝑓 as a labeling. When the meaning is clear, we
will sometimes omit the argument 𝑚 from 𝑅(𝑚) and just write 𝑅.

The main idea behind the construction is to start with the labeling 𝑓 . If we define our
code (using the usual techniques) to be comprised of the set of vectors that satisfy:

𝑓 (x) ≡ 𝑎 mod 2𝑅, (4.1)

then using an averaging argument it follows that there exists a code that has re-
dundancy roughly 𝑅 bits. Syndrome compression is applicable to the case where
it is known that log |B(x) | << 𝑅 ≤ 𝑜((log log𝑚) · log𝑚), so that the 𝑅 bits of
redundancy are high relative to the minimum size of what the resulting code should
be (since the resulting code should have at most log |B(x) | bits of redundancy).
In order to overcome this issue, we will reduce the modulus of (4.1), and thereby
reducing the redundancy of the resulting code. In particular, for a fixed x we will
find an integer 𝑎 < 2𝑅 which for any y ∈ B(x), it follows that

𝑓 (x) . 𝑓 (y) mod 𝑎. (4.2)

Using a simple counting argument, we show in Lemma 4.2.2 that log |𝑎 | ⪅ log |B(x) |.
As will be described in more details below, our approach will be to encode the infor-
mation 𝑎 along with the information 𝑓 (x) mod 𝑎. It is shown in Theorem 4.2.1 that
the resulting construction results in a code C with the property that if x ∈ C, then
y ∉ C for any y ∈ B(x). Furthermore, since we need to encode the information 𝑎

along with 𝑓 (x) mod 𝑎, it follows that the construction requires roughly 2 log |B(x) |
bits of redundancy.

Now we turn to a more formal treatment describing the construction along with the
proofs of correctness. First, we cite a known result which bounds the number of
divisors of a given number. This will be used to prove Lemma 4.2.2.

Lemma 4.2.1. (c.f., [71]) For a positive integer 𝑁 ≥ 3, the number of divisors of 𝑁
is upper bounded by

21.6· ln 𝑁
ln ln 𝑁 .

Now we prove the key lemma which will be used to prove the main result in
Theorem 4.2.1. For shorthand, for a vector x ∈ {0, 1}𝑚, let

D(x) =
{
𝑗 : 𝑗 > 0, 𝑗

�� ( 𝑓 (x) − 𝑓 (y)
)
, y ∈ B(x)

}
.

Note that in order for Lemma 4.2.2 (stated below) to hold, we require both the
confusability property and the redundancy property of 𝑓 .
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Lemma 4.2.2. For any x ∈ {0, 1}𝑚,

|D(x) | ≤ 2log |B(x) |+𝑜(log𝑚) .

Proof. We consider the set D(x). Note that for any element 𝑗 ∈ D(x), there are
two possibilities. Either

1. 𝑗 = | 𝑓 (x) − 𝑓 (y) |, or

2. 𝑗 is a divisor of | 𝑓 (x) − 𝑓 (y) |.

The number of possible choices for 𝑗 such that 1) holds is equal to |B(x) |, which
follows from the confusability property of 𝑓 . Furthermore, from Lemma 4.2.1, we
know that for every number equal to | 𝑓 (x) − 𝑓 (y) | (for some y ∈ B(x)), there are
at most 21.6(ln 2𝑅)/(ln ln 2𝑅) divisors so that

|D(x) | < |B(x) | · 2
1.6

log 𝑒 ·
𝑅

ln 𝑅
log 𝑒 ,

which implies the result in the lemma statement since 𝑅 ≤ 𝑜((log log𝑚) · log𝑚)
from the redundancy property of 𝑓 . □

Using the previous lemma, we can prove the following.

Theorem 4.2.1. For any fixed x ∈ {0, 1}𝑚, there exists an integer 𝑎 ≤ 2log |B(x) |+𝑜(log𝑚)

such that for any y ∈ B(x),

𝑓 (x) . 𝑓 (y) mod 𝑎.

Proof. Assume that the parameter 𝑎 is determined through a brute force search.
In particular, we first attempt to set 𝑎 = 2. If there exists a y ∈ B(x) such that
2| ( 𝑓 (x) − 𝑓 (y)), then we set 𝑎 = 3. It is straightforward to see that since the set
D(x) =

{
𝑗 : 𝑗 > 0, 𝑗

�� ( 𝑓 (x) − 𝑓 (y)
)}

has cardinality at most 2log |B(x) |+𝑜(log𝑚) there
exists an 𝑎 that satisfies the theorem statement. □

In light of Theorem 4.2.1, we now describe at a high level the encoding process
for syndrome compression. Let u ∈ {0, 1}𝑛 be a binary sequence of length 𝑛 and
suppose 𝑎 is such that 𝑓 (u) . 𝑓 (y) mod 𝑎 for any y ∈ B(u) from Theorem 4.2.1.
Next, we append a vector r ∈ {0, 1}𝑟 to u. The vector r will contain the information

1. 𝑎,
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2. 𝑓 (u) mod 𝑎.

The codewords will be of the form

x = (u, r) ∈ {0, 1}𝑛+𝑟 . (4.3)

For cases where u can be ANY vector of length 𝑛, the resulting construction is
systematic. Note that according to Theorem 4.2.1, our approach requires a brute
force search for the parameter 𝑎 which has time-complexity at most 𝑂 (𝑛2𝑘 ). For the
case where 𝑘 = O(1), the technique admits a polynomial-time encoding/decoding
algorithm (since the decoding may also be performed using standard brute force
methods). However, if 𝑘 grows as a function of 𝑛, brute-force encoding algorithms
do not result in polynomial-time complexity, and so our focus for the remainder of
this work will be on the setup where 𝑘 is constant with respect to 𝑛. We will discuss
this issue again in Sec. 4.8. The next section applies this technique to the case where
one wants to design codes that correct multiple deletions.

4.3 Non-Systematic Deletion Correcting Codes
In this section, we give a non-systematic construction which requires 4𝑘 (1+ 𝜖) log 𝑛
bits of redundancy for a code capable of correcting 𝑘 deletions where 𝜖 << 1 given
that 𝑘, 𝑛 are large enough and 𝑘 ≤ O((log log 𝑛) 1

2−𝛿). The basic idea will be to
combine the syndrome compression technique described in Sec. 4.2 with the labeling
from [12]. We note that although the resulting construction is not systematic, the
codewords can be partitioned into two parts similar to what we generically described
in the previous section. In particular, for the case where no errors occur, the original
information sequence can be re-constructed by taking the xor of the first 𝑛 bits of
a codeword with a string which is described by the last 𝑟 bits of the codeword,
the form of which is given by (4.3). Furthermore we will show that if we wish to
correct 𝑘 deletions with high probability and the messages are iid uniform, a problem
which was considered in [44], our construction yields a systematic encoding while
requiring less redundancy than the codes from [44]. While both the systematic codes
in [44] and this chapter requires 𝑛𝑂 (𝑘) encoding/decoding complexity, our systematic
codes have 4𝑘 log 𝑛 + 𝑜(log 𝑛)-bit redundancy, compared to the 𝑘 (𝑘 + 1) log 𝑛-bit
redundancy in [44]. Similar probabilistic decoding settings were also considered in
construction of polar codes [92] for deletion correction, where 𝑘 is a fraction of 𝑛 and
the parameter of interest is code rate instead of code redundancy. In the next section,
we will further construct a systematic 𝑘-deletion correcting code under adversarial
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settings, which has asymptotically the same redundancy 4𝑘 log 𝑛 + 𝑜(log 𝑛) as the
code under probabilistic settings.

We begin with some results and definitions from [12]. The next lemma describes
the labeling, which will be used throughout this section. In the following, we refer
to M(𝑚, 𝑘) ⊆ {0, 1}𝑚 as the set of 𝑘-mixed strings of length 𝑚. More precisely,

M(𝑚, 𝑘) = {x ∈ {0, 1}𝑚 : For integers ℓ = ⌈log 𝑘 + log log(𝑘 + 1) + 5⌉
and 𝑑 = 𝑂 (𝑘 (log 𝑘)2 log𝑚) and for any string p ∈ {0, 1}ℓ, every substring of

consecutive 𝑑 bits in x contains p as a substring.}

For a vector x, the set B𝑘 (x) is the set of vectors obtainable after deleting any 𝑘

symbols from x and then inserting 𝑘 symbols into the resulting vector. Recall from
the previous section that |B𝑘 (x) | ≤ 𝑚2𝑘 .

Lemma 4.3.1. Fix an integer 𝑘 ≥ 2. Then for all large 𝑚, there exists 𝑅(𝑚) =

O(𝑘2 log 𝑘 log𝑚) and a hash function 𝑓𝑘 : M(𝑚, 𝑘) → {0, 1}𝑅(𝑚) so that for any
distinct x, y ∈ M(𝑚, 𝑘),

𝑓𝑘 (x) ≠ 𝑓𝑘 (y),

if y ∈ B𝑘 (x).

Note from the previous lemma that if we want to use the mapping 𝑓𝑘 , we need to
restrict our sequences to be from the set of 𝑘-mixed strings. In order to transform
arbitrary information sequences into 𝑘-mixed strings from the set M(𝑚, 𝑘),we
will require the following result, which is proven in Appendix 4.9 using similar
techniques from [22].

Lemma 4.3.2. There exists a 𝑝𝑜𝑙𝑦(𝑚) time algorithm for a seed 𝑠with length𝑂 (log𝑚)
such that for any u ∈ F𝑚2 , u + 𝑔(𝑠) ∈ M(𝑚, 𝑘).

We’ll also make use of the following code from [22].

Lemma 4.3.3. For any 𝑚, 𝑘 , there exists an encoder E𝑘 for a code with 𝑚 bits of
information and O(𝑘 log𝑚) bits of redundancy capable of correcting 𝑘 deletions.

In light of the previous two lemmas we can now present a construction for a 𝑘-
deletion correcting code, which we now describe by means of our encoding pro-
cedure. The input to our encoder is an information sequence u ∈ {0, 1}𝑛 and the
output is a codeword x ∈ {0, 1}𝑛+4𝑘 log 𝑛+O(log 𝑛) . In the following, let 0𝑚 denote the
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all-zeros vector of length 𝑚 and similarly let 1𝑚 denote the all-ones vector of length
𝑚.

1. Let u ∈ {0, 1}𝑛 and suppose 𝑠 is such that u𝑇 = u + 𝑔(𝑠) ∈ M(𝑛, 𝑘).

2. Suppose 𝑎 ∈ [[𝑛2𝑘 ]] is such that 𝑓𝑘 (u𝑇 ) . 𝑓𝑘 (y) mod 𝑎 for any y ∈ B𝑘 (u𝑇 ).

3. Then,

x =

(
u𝑇 , 0𝑘+1, 1𝑘+1, E𝑘

(
𝑠, 𝑎, 𝑓𝑘 (u𝑇 ) mod 𝑎

) )
∈ {0, 1}𝑛.

We have the following theorem, which proves Theorem 4.1.1.

Theorem 4.3.1. Suppose z is the result of at most 𝑘 deletions occurring to x. Then,
it is possible to uniquely recover x provided z.

Proof. To prove the result, we show that it is possible to recover u from z. First,
notice that if x is transmitted and z is received, then 𝑧𝑛+1 = 0. This is because there
are at most 𝑘 deletions which can occur to x (resulting in z) and so the run of zeros
which immediately follows u𝑇 in x must also appear in z and, by similar logic, the
first 1 which follows 𝑧𝑛+1 corresponds to the first run of ones in x after u𝑇 . Suppose
the first 1 that occurs after 𝑧𝑛+1 appears in position 𝑝 where 𝑘′ = 𝑛 + (𝑘 + 2) − 𝑝.
Then, 𝑘′ symbols have been deleted from the first 𝑛+ (𝑘 + 1) positions in x resulting
in z. This implies that 𝑘′′ = |x| − |z| − 𝑘′ deletions have occurred in the final
(𝑘 + 1) + |E𝑘

(
𝑠, 𝑎, 𝑓𝑘 (u𝑇 ) mod 𝑎

)
| bits of x. Therefore, the following holds:

1. The last |E𝑘

(
𝑠, 𝑎, 𝑓𝑘 (u𝑇 ) mod 𝑎

)
| − 𝑘′′ bits of z can be obtained by deleting

𝑘′′ bits from E𝑘

(
𝑠, 𝑎, 𝑓𝑘 (u𝑇 ) mod 𝑎

)
.

2. The first 𝑛 − 𝑘′ bits of z can be obtained by deleting 𝑘′ bits from u𝑇 .

Thus, we can recover
(
𝑠, 𝑎, 𝑓𝑘 (u𝑇 ) mod 𝑎

)
from the last |E𝑘

(
𝑠, 𝑎, 𝑓𝑘 (u𝑇 ) mod 𝑎

)
| −

𝑘′′ bits of z and the vector u𝑇 can be obtained from the first 𝑛 − 𝑘′ bits of z given
𝑎, 𝑓𝑘 (u𝑇 ) mod 𝑎. From 𝑠, we can generate 𝑔(𝑠) and finally we can recover u. □

Next, we adapt our encoding to handle the setup where u ∈ {0, 1}𝑛 is a uniform
iid message, which is the setup considered in [44]. The input to our encoder
is an information sequence u ∈ {0, 1}𝑛 and the output is a systematic codeword
x ∈ {0, 1}𝑛+4𝑘 log 𝑛+𝑜(log 𝑛)+O(𝑘 log(4𝑘 log 𝑛))
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1. Let u ∈ {0, 1}𝑛.

2. Suppose 𝑎 ∈ [[𝑛2𝑘 ]] is such that 𝑓𝑘 (u) . 𝑓𝑘 (y) mod 𝑎 for any y ∈ B𝑘 (u).

3. Then,

x =

(
u, 0𝑘+1, 1𝑘+1, E𝑘

(
𝑎, 𝑓𝑘 (u) mod 𝑎

) )
∈ {0, 1}𝑛.

The next corollary follows immediately Appendix 4.9 and the proofs of Claim 4.9.1,
Lemma 4.3.2, and Theorem 4.3.1. A proof is included at the end of Appendix 4.9.

Corollary 4.3.1. For a uniform iid message u ∈ {0, 1}𝑛, the code

C =

{
x =

(
u, 0𝑘+1, 1𝑘+1, E𝑘

(
𝑎, 𝑓𝑑 (u) mod 𝑎

) )
∈ {0, 1}𝑛

}
can correct 𝑘 deletions with probability at least 1− 1/𝑝𝑜𝑙𝑦(𝑛) for sufficiently large
𝑛.

4.4 Systematic Deletion Correcting Codes
In this section, we provide systematic 𝑘 deletion correcting codes that achieve
4𝑘 log 𝑛 + 𝑜(log 𝑛) bits of redundancy, improving that of the non-systematic con-
struction by 𝑂 (log 𝑛). Similar to the non-systematic code construction, we use the
syndrome compression technique. However, to apply the technique, we need a dele-
tion correcting hash for every length 𝑛 binary sequence with size 𝑜((log log 𝑛) ·log 𝑛)
to start with. Note that none of the existing codes or document exchange schemes
achieve this size.

The key ideas for obtaining a deletion correcting hash generalize the techniques in
our previous work [86]. They are sketched as follows: (i) generalizing the VT-
construction to correct deletions and substitutions for constrained sequences, (ii)
decomposing a sequence into multiple versions of it with different resolution levels
such that the version with the lowest resolution is a constrained sequence.

In [86] we generalized the VT construction and proved that the higher order pari-
ties

∑𝑛
𝑖=1 𝑐𝑖𝑖

𝑒 mod 𝑘𝑛𝑒, 𝑒 ∈ [0, 2𝑘] = {0, 1, . . . , 2𝑘} are a 𝑘-deletion correcting hash
for sequences c, in which any two 1 entries are separated by at least 𝑘 − 1 0 entries.
Motivated by this observation, we define the u-indicator vector 1u(c) ∈ {0, 1}𝑛 of c
element-wise for binary sequences c and u. Let 𝑛 and ℓ ≤ 𝑛 be the length of c and u
respectively, define 1u(c) by

1u(c)𝑖 =


1, if 𝑖 ≤ 𝑛 − ℓ + 1 and (𝑐𝑖, . . . , 𝑐𝑖+ℓ−1) = u,

0, else.
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The special cases of 1u(c) when u = (0, 1) or u = (1, 0) were considered in [88],
where a sequence c is decomposed into a (1, 0)-indicator vector and a (0, 1)-indicator
vector for 𝑘 = 2. In this chapter we generalize this decomposition for 𝑘 > 2. We
iteratively generate 𝑘 versions of c with different levels of resolution. Let 𝐼1(c) = c
and

𝐼𝑤+1(c) = 1(1,0𝑤) (𝐼𝑤 (c)),

for 𝑤 ∈ [𝑘 − 1] ≜ {1, . . . , 𝑘 − 1}, where (1, 0𝑤) is a sequence of a 1 entry followed
by 𝑤 0 entries. The 1 entries of 𝐼𝑤+1(c) are also 1 entries of 𝐼𝑤 (c), 𝑤 ∈ [𝑘 − 1].

Example 4.4.1. For 𝑘 = 3 and c = 10010110100, we have that 𝐼1(c) = 11(c) =

10010110100, 𝐼2(c) = 1(1,0) (𝐼1(c)) = 10010010100, and that 𝐼3(c) = 1(1,0,0) (𝐼2(c))
= 10010000100.

The nice properties of 𝐼𝑤 (c) are as follows. (1) Any two 1 entries in 𝐼𝑘 (c) are
separated by at least 𝑘 − 1 0 entries. (2) The vector 𝐼𝑤 (c) is highly constrained
when 𝐼𝑤+1(c) is known, as will be discussed in the proof of Lemma 4.4.3. The first
property guarantees that 𝐼𝑘 (c) can be protected using higher order parities. The
second property enables a successive decoding algorithm.

We first investigate the effect on 𝐼𝑤 (c) caused by 𝑘 deletions in c. For a non-negative
integer 𝑖, let B𝑘,𝑖 (c) be the set of sequences that can be obtained after deleting 𝑘

bits and substituting 𝑖 bits in c. The following lemma gives an upper bound on the
number of deletions and substitutions in 𝐼𝑤 (c), caused by 𝑘 deletions in c.

Lemma 4.4.1. For sequences c, c′ ∈ {0, 1}𝑛, if there exists a subsequence d ∈
B𝑘 (c) ∩ B𝑘 (c′), then 𝐼𝑤 (d) ∈ B𝑘,𝑘 (𝑤−1) (𝐼𝑤 (c)) ∩ B𝑘,𝑘 (𝑤−1) (𝐼𝑤 (c′)) for 𝑤 ∈ [𝑘].

Proof. We show that a deletion in c causes at most a deletion and 𝑤−1 substitutions
in 𝐼𝑤 (c). To this end, we prove in the following that the deletion of 𝑐𝑖 causes a deletion
in 𝐼𝑤 (c) and multiple substitutions that occur within interval [𝑖 −𝑤(𝑤 − 1)/2, 𝑖 − 1]
in 𝐼𝑤 (c). Since for any sequence c ∈ {0, 1}𝑚, we have 𝐼𝑤 (c) ∈ R𝑤,𝑚 and 𝐼𝑤 (c) ∈
R𝑤,𝑚−1 before and after deleting 𝑐𝑖 in c, respectively, it follows that there are at
most (𝑤 − 1)/2 substitution errors that change 1 entries to 0 entries and 0 entries
to 1 entries respectively. Hence, a deletion in c causes a deletion and at most 𝑤 − 1
substitutions in 𝐼𝑤 (c). Since d ∈ B𝑘 (c), it follows that 𝐼𝑤 (d) ∈ B𝑘,𝑘 (𝑤−1) (c).
Similarly, we have that 𝐼𝑤 (d) ∈ B𝑘,𝑘 (𝑤−1) (c′).
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We show how a deletion or substitution that occurs at 𝐼 𝑗 (c)𝑖 𝑗 , 𝑖 𝑗 ∈ [𝑛], af-
fects 𝐼 𝑗+1(c), 𝑗 ∈ [1, 𝑤−1]. Let 𝑖∗

𝑗
= maxℓ<𝑖 𝑗 ,𝐼 𝑗 (c)ℓ=1 ℓ be the index of the last 1 entry

in 𝐼 𝑗 (c) before 𝐼 𝑗 (c)𝑖 𝑗 , and 𝑖∗∗
𝑗

= minℓ>𝑖 𝑗 ,𝐼 𝑗 (c)ℓ=1 ℓ be the index of the first 1 entry
in 𝐼 𝑗 (c) after 𝐼 𝑗 (c)𝑖 𝑗 , where it is assumed that 𝐼 𝑗 (c)ℓ = 1 when ℓ = 0 or ℓ = 𝑛 + 1.

1. If 𝑖∗
𝑗
≤ 𝑖 𝑗 − 𝑗 − 1, then the deletion or substitution of 𝐼 𝑗 (c)𝑖 𝑗 in 𝐼 𝑗 (c) causes

the deletion or substitution of 𝐼 𝑗+1(c)𝑖 𝑗 in 𝐼 𝑗+1(c) respectively.

2. If 𝑖∗
𝑗
≥ 𝑖 𝑗− 𝑗 and 𝐼 𝑗 (c)𝑖 𝑗 = 1, then the deletion or substitution of 𝐼 𝑗 (c)𝑖 𝑗 in 𝐼 𝑗 (c)

causes a deletion or at most a substitution of 𝐼 𝑗+1(c)𝑖 𝑗 in 𝐼 𝑗+1(c), respectively.

3. If 𝑖∗
𝑗
≥ 𝑖 𝑗 − 𝑗 and 𝐼 𝑗 (c)𝑖 𝑗 = 0, then the substitution of 𝐼 𝑗 (c)𝑖 𝑗 in 𝐼 𝑗 (c) causes

at most two substitutions of 𝐼 𝑗+1(c)𝑖∗
𝑗

and 𝐼 𝑗+1(c)𝑖 𝑗 in 𝐼 𝑗+1(c). The dele-
tion of 𝐼 𝑗 (c)𝑖 𝑗 in 𝐼 𝑗 (c) causes the deletion of 𝐼 𝑗+1(c)𝑖 𝑗 and the substitution
of 𝐼 𝑗+1(c)𝑖∗

𝑗
in 𝐼 𝑗+1(c), when 𝑖∗∗

𝑗
− 𝑖∗

𝑗
≤ 𝑗 + 1, and causes only the deletion

of 𝐼 𝑗+1(c)𝑖 𝑗 in 𝐼 𝑗+1(c) when 𝑖∗∗
𝑗
− 𝑖∗

𝑗
≥ 𝑗 + 2.

In all cases above, a deletion of 𝐼 𝑗 (c)𝑖 𝑗 in 𝐼 𝑗 (c) causes a deletion and at most
one substitution that occurs in the range [𝑖 𝑗 − 𝑗 , 𝑖 𝑗 ] = {𝑖 𝑗 − 𝑗 , 𝑖 𝑗 − 𝑗 + 1, . . . , 𝑖 𝑗 },
and a substitution of 𝐼 𝑗 (c)𝑖 𝑗 in 𝐼 𝑗 (c) causes at most two substitutions that occur in
the range [𝑖 𝑗 − 𝑗 , 𝑖 𝑗 ], for 𝑗 ∈ [𝑤 − 1]. Using induction on 𝑗 we can prove that
the deletion of 𝑐𝑖 = 𝐼1(c)𝑖 causes one deletion and substitutions that occur in the
range [𝑖 − (1 + . . . + 𝑤 − 1), 𝑖 − 1] = [𝑖 − 𝑤(𝑤 − 1)/2, 𝑖 − 1]. □

For any integer 𝑚, let R𝑘,𝑚 be the set of length 𝑚 sequences where any two 1
entries are separated by at least 𝑘 − 1 0 entries. Given the upper bounds of deletions
and substitutions in Lemma 4.4.1, we next show that the generalization of VT con-
straints 𝑓 (x) can be used to correct these deletions and substitutions for constrained
sequences x ∈ R𝑘,𝑛. We define the generalized VT constraint as follows. Define the
integer vectors

m(𝑒) ≜ (1𝑒, 1𝑒 + 2𝑒, . . . ,
𝑛∑︁
𝑗=1

𝑗 𝑒),

for 𝑒 ∈ [0, 2𝑘2]. For any sequence c ∈ {0, 1}𝑛, let 𝑓 (c) be a 2𝑘2 + 1-dimensional
vector given by

𝑓 (c)𝑒 = c · m(𝑒) mod 𝑘2𝑛𝑒+1,

for 𝑒 ∈ [0, 2𝑘2].
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Lemma 4.4.2. For any two sequences x, x′ ∈ {0, 1}𝑛, if there exists a sequence z ∈
R𝑘,𝑛−𝑘 satisfying z ∈ B𝑘,𝑘 (𝑘−1) (x) ∩ B𝑘,𝑘 (𝑘−1) (x′), we have that 𝑓 (x) ≠ 𝑓 (x′).

Proof. Note that by Lemma 4.4.1 we have that 𝐼𝑘 (z) ∈ R𝑘,𝑛−𝑘 and that 𝐼𝑘 (z) ∈
B𝑘,𝑘 (𝑘−1) (𝐼𝑘 (x)) ∩ B𝑘,𝑘 (𝑘−1) (𝐼𝑘 (x′)). By virtue of this lemma, the redundancy
𝑓 (𝐼𝑘 (c)) can be used to correct 𝐼𝑘 (c). The proof of Lemma 4.4.2 follows similar
arguments to those in [86], which show that any sequence in R𝑘,𝑛 can be protected
from 𝑘 deletions by using higher oder parities. Here slight changes are made in
order to deal with additional substitutions.

Let δ = {𝛿1, . . . , 𝛿𝑘 } ⊂ [𝑛] be a set of deletion indices andσ = {𝜎1, . . . , 𝜎𝑘 (𝑘−1)} ⊂
[𝑛] be a set of substitution indices, such that deleting bits (𝑥𝑖 : 𝑖 ∈ δ) and substituting
bits (𝑥𝑖 : 𝑖 ∈ σ) in x result in z. Similarly, let δ′ = {𝛿′1, . . . , 𝛿

′
𝑘
} ⊂ [𝑛] and σ =

{𝜎1, . . . , 𝜎𝑘 (𝑘−1)} ⊂ [𝑛] be two sets such that deleting bits (𝑥′
𝑖

: 𝑖 ∈ δ′) and
substituting bits (𝑥′

𝑖
: 𝑖 ∈ σ′) in x′ result in z. Let y and y′ be the sequences

obtained by substituting bits (𝑥𝑖 : 𝑖 ∈ σ) in x and substituting bits (𝑥′
𝑖

: 𝑖 ∈ σ′) in x′,
respectively. Then we have that z ∈ B𝑘 (y) ∩ B𝑘 (y′). Moreover, the sequence z can
be obtained by deleting (𝑦𝑖 : 𝑖 ∈ δ) from y or deleting (𝑦′

𝑖
: 𝑖 ∈ δ′) from y′.

We now compute the difference x · m(𝑒) − x′ · m(𝑒) and show that it cannot be 0 for
all 𝑒 ∈ [0, 2𝑘2] unless x = x′. Following the same steps as in [86], let𝚫 = {𝑖 : 𝑦𝑖 = 1}
and 𝚫′ = {𝑖 : 𝑦′

𝑖
= 1} be indices of 1 entries in y and y′ respectively. Let 𝑆1 = 𝚫 ∩ δ

and 𝑆2 = 𝚫′ ∩ δ′be indices of the 1 entries, after deleting which in y and y′,
respectively, we have z. Then, the sets 𝑆𝑐1 = [𝑛]\𝑆1 and 𝑆𝑐2 = [𝑛]\𝑆2 are indices of
the 1 entries that are not deleted in y and y′ respectively. We have that

y · m(𝑒) − y′ · m(𝑒) =
∑︁
ℓ∈𝚫

(
ℓ∑︁
𝑖=1

𝑖𝑒) −
∑︁
ℓ∈𝚫′

(
ℓ∑︁
𝑖=1

𝑖𝑒)

=

𝑛∑︁
𝑖=1

( |𝑆1 ∩ [𝑖, 𝑛] | + |𝑆𝑐1 ∩ [𝑖, 𝑛] |

− |𝑆2 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] |)𝑖𝑒 . (4.4)

Sort all elements in sets δ, δ′,σ, and σ′ by 𝑝1 ≤ 𝑝2 ≤ . . . ≤ 𝑝2𝑘2 . Let 𝑝0 = 0
and 𝑝2𝑘2+1 = 𝑛. The sets 𝑆1 and 𝑆2 satisfy the following properties, the proof of
which follows the same steps as in [86].

1. −1 ≤ |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] | ≤ 1 for 𝑖 ∈ [𝑛].
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2. For each interval (𝑝 𝑗 , 𝑝 𝑗+1] ≜ {𝑝 𝑗 + 1, . . . , 𝑝 𝑗+1}, 𝑗 ∈ [0, 2𝑘2], we have
either |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] | ≤ 0 for all 𝑖 ∈ (𝑝 𝑗 , 𝑝 𝑗+1] or |𝑆𝑐1 ∩ [𝑖, 𝑛] | −
|𝑆𝑐2 ∩ [𝑖, 𝑛] | ≥ 0 for all 𝑖 ∈ (𝑝 𝑗 , 𝑝 𝑗+1].

Let the sets 𝑆3 = Δ ∩ σ = {𝑖 : 𝑦𝑖 = 1, 𝑖 ∈ σ} and 𝑆4 = Δ′ ∩ σ′ = {𝑖 : 𝑦′
𝑖
= 1, 𝑖 ∈ σ′}

be the indices of substitutions that flip 0 bits in x and x′, in order to get y and y′

respectively. Let 𝑆5 = σ\𝑆3 = {𝑖 : 𝑦𝑖 = 0, 𝑖 ∈ σ}, and 𝑆6 = σ\𝑆4 = {𝑖 : 𝑦𝑖 =

0, 𝑖 ∈ σ′} be the indices of substitutions that flip 1 bits in x and x′, to get y and y′,
respectively. Then,

x · m(𝑒) − x′ · m(𝑒)

= y · m(𝑒) − y′ · m(𝑒) +
∑︁
ℓ∈𝑆5

m(𝑒)
ℓ

−
∑︁
ℓ∈𝑆6

m(𝑒)
ℓ

− (
∑︁
ℓ∈𝑆3

m(𝑒)
ℓ

−
∑︁
ℓ∈𝑆4

m(𝑒)
ℓ
)

=

2𝑘2∑︁
𝑗=0

𝑝 𝑗+1∑︁
𝑖=𝑝 𝑗+1

( |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] | + 𝑘𝑖)𝑖𝑒, (4.5)

where 𝑘𝑖 = |𝑆1∩[𝑖, 𝑛] |−|𝑆2∩[𝑖, 𝑛] |+|𝑆5∩[𝑖, 𝑛] |−|𝑆3∩[𝑖, 𝑛] |+|𝑆4∩[𝑖, 𝑛] |−|𝑆6∩[𝑖, 𝑛] |
for 𝑖 ∈ [𝑛]. Note that for any interval (𝑝 𝑗 , 𝑝 𝑗+1], 𝑗 ∈ [0, 2𝑘2], the number 𝑘𝑖 is
constant for all 𝑖 ∈ (𝑝 𝑗 , 𝑝 𝑗+1]. Let 𝑠𝑖 = |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] | + 𝑘𝑖, then it
follows from Property (1) and Property (2) that 𝑠𝑖 is either negative or non-negative
for all 𝑖 ∈ (𝑝 𝑗 , 𝑝 𝑗+1] for each 𝑗 ∈ [0, 2𝑘2].

Next, we show that x ·m(𝑒)−x′ ·m(𝑒) cannot be zero for all 𝑒 ∈ [0, 2𝑘2] when x ≠ x′.
Otherwise, define a vector v = (𝑣0, . . . , 𝑣2𝑘2) ∈ {−1, 1}2𝑘2+1 by

𝑣 𝑗 =


−1, if 𝑠𝑖 < 0 for some 𝑖 ∈ (𝑝 𝑗 , 𝑝 𝑗+1]

1, else.
,

and a (2𝑘2+1)× (2𝑘2+1) matrix 𝐴 by 𝐴𝑒, 𝑗 =
∑𝑝 𝑗

𝑖=𝑝 𝑗+1 |𝑠𝑖 |𝑖
𝑒 for 𝑒, 𝑗 ∈ [0, 2𝑘2]. Then

according to Eq. (4.5), we have that
∑2𝑘2

𝑗=0 𝐴𝑒, 𝑗𝑣 𝑗 = 0, 𝑒 ∈ [0, 2𝑘2], if x · m(𝑒) − x′ ·
m(𝑒) = 0 for all 𝑒 ∈ [0, 2𝑘2]. This implies the linear equation 𝐴v = 0 has a solution v
with no 0 entry. The remaining steps are the same as in [86]. Let 𝑗1, . . . , 𝑗𝑄 be
the indices of non-zero columns of 𝐴, and 𝐵 be the submatrix of 𝐴 by selecting
the intersection of the first 𝑄 rows and the non-zero columns of 𝐴. Then the linear
equation 𝐵(𝑣 𝑗1 , . . . , 𝑣 𝑗𝑄 ) = 0 has a non-zero solution, which is impossible since
by multi-linearity of the determinant, we can prove that the determinant |𝐵 | > 0.
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Therefore, x · m(𝑒) − x′ · m(𝑒) = 0 for 𝑒 ∈ [0, 2𝑘2] only when 𝐴 is a zero matrix,
which implies that

𝑠𝑖 = |𝑆𝑐1 ∩ [𝑖, 𝑛] | − |𝑆𝑐2 ∩ [𝑖, 𝑛] | + 𝑘𝑖

= |{𝑖 : 𝑥𝑖 = 1} ∩ [𝑖, 𝑛] | − |{𝑖 : 𝑥′𝑖 = 1} ∩ [𝑖, 𝑛] | = 0,

for 𝑖 ∈ [𝑛]. Then, {𝑖 : 𝑥𝑖 = 1} = {𝑖 : 𝑥′
𝑖
= 1} and thus x = x′.

Finally, we show that if 𝑓 (c) = 𝑓 (c′), then x · m(𝑒) − x′ · m(𝑒) = 0 for 𝑒 ∈
[0, 2𝑘2]. Since z ∈ B𝑘,𝑘 (𝑘−1) (x) ∩ B𝑘,𝑘 (𝑘−1) (x′), it follows that (𝑧𝑖, . . . , 𝑧𝑛−𝑘 ) ∈
B𝑘,𝑘 (𝑘−1) ((𝑥𝑖, . . . , 𝑥𝑛)) ∩ B𝑘,𝑘 (𝑘−1) ((𝑥′𝑖 , . . . , 𝑥′𝑛)) for 𝑖 ∈ [𝑛 − 𝑘]. Hence, we have
that −𝑘2 ≤ |{𝑖 : 𝑥𝑖 = 1} ∩ [𝑖, 𝑛] | − |{𝑖 : 𝑥′

𝑖
= 1} ∩ [𝑖, 𝑛] | ≤ 𝑘2, and that

|x · m(𝑒) − x′ · m(𝑒) | < 𝑘2𝑛𝑒+1.

Therefore, if 𝑓 (c) = 𝑓 (c′), we have that x · m(𝑒) − x′ · m(𝑒) ≡ 0 mod 𝑘2𝑛𝑛+1, which
implies that x · m(𝑒) − x′ · m(𝑒) = 0, for 𝑒 ∈ [0, 2𝑘2]. □

After protecting 𝐼𝑘 (c) in Lemma 4.4.2, the following lemma provides a hash function
that recovers 𝐼𝑤 (c), 𝑤 ∈ [𝑘 − 1], from deletions and substitutions, the numbers of
which are upper bounded in Lemma 4.4.1, when 𝐼𝑤+1(c) is known.

Lemma 4.4.3. For any two sequences c, c′ ∈ {0, 1}𝑛, if there exists a sequence d
satisfying d ∈ B𝑘 (x) ∩ B𝑘 (c′), then there exists a hash function 𝐻𝑤 : {0, 1}𝑛 →
{0, 1}2𝑘𝑤 log 𝑛, such that given d, 𝐼𝑤+1(c), and 𝐻𝑤 (c), we can recover that 𝐼𝑤 (c),
for 𝑤 ∈ [𝑘 − 1].

Proof. The idea is to notice that given 𝐼𝑤+1(c), the sequence 𝐼𝑤 (c) can be determined
by the first 1 entry in 𝐼𝑤 (c) after each 1 entry in 𝐼𝑤+1(c), 𝑤 ∈ [𝑘 − 1]. Specifically,
let

(𝜋𝑤+1
1 , 𝜋𝑤+1

2 , . . . , 𝜋𝑤+1
𝑛′ )

be the indices of the 1 entries in 𝐼𝑤+1(c) such that 𝜋𝑤+1
1 < 𝜋𝑤+1

2 < . . . < 𝜋𝑤+1
𝑛′ . Let

𝜏𝑤𝑖 = min{ 𝑗 : 𝑗 > 𝜋𝑤+1
𝑖 , 𝐼𝑤 (c) 𝑗 = 1 or 𝑗 = 𝑛 + 1}

for 𝑖 ∈ [0, 𝑛′], where 𝜋𝑤+1
𝑖

= 0 when 𝑖 = 0. We have the following proposition.

Proposition 4.4.1. The sequence 𝐼𝑤 (c) can be determined by (𝜋𝑤+1
1 , 𝜋𝑤+1

2 , . . . , 𝜋𝑤+1
𝑛′ )

and (𝜏𝑤0 , 𝜏
𝑤
1 , . . . , 𝜏

𝑤
𝑛′), for 𝑤 ∈ [𝑘 − 1].
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Proof. Note that the 1 entries of 𝐼𝑤 (c) in the interval (𝜋𝑤+1
𝑖

, 𝜋𝑤+1
𝑖+1 ] are spaced evenly

with distance𝑤 in the interval [𝜏𝑤
𝑖
, 𝜋𝑤+1

𝑖+1 ], for 𝑖 ∈ [0, 𝑛′], where 𝜋𝑤+1
𝑖+1 = 𝑛+1 if 𝑖 = 𝑛′.

Otherwise there is an additional one entry in 𝐼𝑤+1(c) in the interval (𝜋𝑤+1
𝑖

, 𝜋𝑤+1
𝑖+1 ) ≜

{𝜋𝑤+1
𝑖

+1, . . . , 𝜋𝑤+1
𝑖+1 −1}, which contradicts to the definition of (𝜋𝑤+1

1 , . . . , 𝜋𝑤+1
𝑛′ ). □

From Proposition 4.4.1, it suffices to protect the indices (𝜏𝑤0 , . . . , 𝜏
𝑤
𝑛′), in order to

recover 𝐼𝑤 (c). For 𝑤 ∈ [𝑘 − 1], let

𝐻𝑤 (c) = 𝑅𝑆2𝑘𝑤 ((𝜏𝑤0 − 𝜋𝑤+1
0 , . . . , 𝜏𝑤𝑛′ − 𝜋𝑤+1

𝑛′ )),

where 𝑅𝑆2𝑘𝑤 ((𝜏𝑤0 − 𝜋𝑤+1
0 , . . . , 𝜏𝑤

𝑛′ − 𝜋𝑤+1
𝑛′ )) is the redundancy of the Reed-Solomon

code that corrects 2𝑘𝑤 substitution errors in the sequence (𝜏𝑤0 −𝜋𝑤+1
0 , . . . , 𝜏𝑤

𝑛′−𝜋𝑤+1
𝑛′ ),

with entries 𝜏𝑤
𝑖
− 𝜋𝑤+1

𝑖
, 𝑖 ∈ [0, 𝑛′]. The size of 𝐻𝑤 (c) is at most 4𝑘𝑤 log 𝑛 bits.

In the following we present the decoding procedure that recovers 𝐼𝑤 (c), given d ∈
B𝑘 (c), 𝐼𝑤+1(c), and 𝐻𝑤 (c), for any 𝑤 ∈ [𝑘 − 1].

1. Initialization: Let a ∈ [𝑛]𝑛′+1 be a vector, where 𝑛′ is known given 𝐼𝑤+1(c).

2. Step 1: For each 𝑖 ∈ [0, 𝑛′ − 1], if there exist two numbers 𝑝𝑤+1
𝑖

∈ [𝜋𝑤+1
𝑖

−
𝑘, 𝜋𝑤+1

𝑖
] and 𝑝𝑤+1

𝑖+1 ∈ [𝜋𝑤+1
𝑖+1 −𝑘, 𝜋𝑤+1

𝑖+1 ] such that 𝐼𝑤+1(d)𝑝𝑤+1
𝑖

= 𝐼𝑤+1(d)𝑝𝑤+1
𝑖+1

= 1
and 𝑝𝑤+1

𝑖+1 − 𝑝𝑤+1
𝑖

= 𝜋𝑤+1
𝑖+1 − 𝜋𝑤+1

𝑖
, let 𝑗𝑤

𝑖
= min 𝑗>𝑝𝑤+1

𝑖
,𝐼𝑤 (d) 𝑗=1 𝑗 be the first 1

entry in 𝐼𝑤 (d) after 𝐼𝑤 (d)𝑝𝑤+1
𝑖

, where 1𝑤 (d) 𝑗 = 1 when 𝑗 = 𝑛 − 𝑘 + 1.
Let 𝑎𝑖 = 𝑗𝑤

𝑖
− 𝑝𝑤

𝑖
. Else let 𝑎𝑖 = 0.

3. Step 2: Apply the Reed-Solomon decoder on a to recover (𝜏𝑤0 −𝜋𝑤+1
0 , . . . , 𝜏𝑤

𝑛′−
𝜋𝑤+1
𝑛′ ). Recover (𝜏𝑤0 , . . . , 𝜏

𝑤
𝑛′), and 𝐼𝑤 (c) according to Proposition 4.4.1.

4. Step 3: Output 𝐼𝑤 (c).

We now show that the above procedure decodes 𝐼𝑤 (c) correctly, 𝑤 ∈ [𝑘 − 1].
According to Lemma 4.4.1, The sequence 𝐼𝑤 (d) can be obtained from 𝐼𝑤 (c) after 𝑘
deletions and at most 𝑘 (𝑤 − 1) substitutions. Note that for each 𝑖 ∈ [0, 𝑛′], we have
that 𝑎𝑖 = 𝜏𝑤

𝑖
− 𝜋𝑤+1

𝑖
, if no deletion or substitution occurs in the interval [𝜋𝑤+1

𝑖
, 𝜋𝑤+1

𝑖+1 ]
in 𝐼𝑤 (c), where 𝜋𝑤+1

𝑖+1 = 𝑛 if 𝑖 = 𝑛′. Since a deletion or a substitution occurs in at
most two adjacent intervals [𝜋𝑤+1

𝑖
, 𝜋𝑤+1

𝑖+1 ] and [𝜋𝑤+1
𝑖+1 , 𝜋𝑤+1

𝑖+2 ], 𝑘 deletions and 𝑘 (𝑤−1)
substitutions cause at most 2𝑘𝑤 symbol errors 𝑎𝑖 ≠ 𝜏𝑤

𝑖
− 𝜋𝑤+1

𝑖
in a. Hence the

sequence (𝜏𝑤0 − 𝜋𝑤+1
0 , . . . , 𝜏𝑤

𝑛′ − 𝜋𝑤+1
𝑛′ ), and thus (𝜏𝑤0 , . . . , 𝜏

𝑤
𝑛′) can be recovered

given 𝐻𝑤 (c). Finally, according to Proposition 4.4.1, the sequence 𝐼𝑤 (c) can be
recovered, 𝑤 ∈ [𝑘 − 1].
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The complexities for computing 𝐻𝑤 (c) and decoding 𝐼𝑤 (c) are dominated by en-
coding and decoding the Reed-Solomon code and are polynomial. □

Combining Lemma 4.4.2, Lemma 4.4.3, and Theorem 4.2.1, we now present the
encoding and decoding as follows, which proves Theorem 4.1.2.

For any c ∈ {0, 1}𝑛, define the function

𝑓
𝑠𝑦𝑠

𝑘
(c) = ( 𝑓 (𝐼𝑘 (c)), 𝐻1(c), 𝐻2(c), . . . , 𝐻𝑘−1(c)). (4.6)

We first show that 𝑓
𝑠𝑦𝑠

𝑘
(c) is a 𝑘-deletion correcting labeling for c.

Lemma 4.4.4. For any c ∈ {0, 1}𝑛, (c, 𝑓 𝑠𝑦𝑠
𝑘

(c)) can be recovered from 𝑘 deletions.

Proof. For any length 𝑛 − 𝑘 subsequence d of c, according to Lemma 4.4.1,
we have that 𝐼𝑤 (d) ∈ B𝑘,𝑘 (𝑤−1) (𝐼𝑤 (c)) for 𝑤 ∈ [𝑘]. In particular, we have
that 𝐼𝑘 (d) ∈ B𝑘,𝑘 (𝑘−1) (𝐼𝑘 (c)). Since 𝐼𝑘 (d) ∈ R𝑘,𝑛−𝑘 , it follows from Lemma 4.4.2
that 𝑓 (𝐼𝑘 (c) ≠ 𝑓 (𝐼𝑘 (c′)) for any c′ satisfying 𝐼𝑘 (d) ∈ B𝑘,𝑘 (𝑘−1) (𝐼𝑤 (c′)). Hence, the
sequence 𝐼𝑘 (c) can be recovered, given 𝑓 (𝐼𝑘 (c)) and d. According to Lemma 4.4.3,
every sequence 𝐼𝑤 (c) can be recovered using 𝐻𝑤 (c), 𝐼𝑤+1(c), and d. Hence, after
knowing 𝐼𝑘 (c), the sequence c = 𝐼1(c) can be recovered by successively decod-
ing 𝐼𝑤 (c), from 𝑤 = 𝑘 − 1 to 𝑤 = 1. □

The size of 𝑓
𝑠𝑦𝑠

𝑘
(c) is 𝑅 = [(𝑘2 + 1) (2𝑘2 + 1) + 2𝑘2(𝑘 − 1)] log 𝑛 + 𝑜(log 𝑛),

which is greater than 𝑂 (𝑘 log 𝑛). By applying Theorem 4.2.1, there exists an
integer𝛼 ∈ [2log |B𝑘 (c) |+𝑜(log 𝑛)] = [22𝑘 log 𝑛+𝑜(log 𝑛)] such that 𝑓 𝑠𝑦𝑠

𝑘
(c) . 𝑓

𝑠𝑦𝑠

𝑘
(c′) mod

𝛼 for any c′ ∈ B𝑘 (c). Let

𝑔𝑐 (c) = ( 𝑓 𝑠𝑦𝑠
𝑘

(c), 𝛼).

Then 𝑔𝑐 (c) is a 𝑘-deletion correcting hash for c of size 𝑁1 = 4𝑘 log 𝑛 + 𝑜(log 𝑛).
Let

𝐻𝑎𝑠ℎ𝑘 (c) = (𝑔𝑐 (c), 𝑅𝑒𝑝𝑘+1(𝑔𝑐 (𝑔𝑐 (c)))),

where 𝑅𝑒𝑝𝑘+1(𝑔𝑐 (𝑔𝑐 (c))) is the 𝑘 + 1 fold repetition of 𝑔𝑐 (𝑔𝑐 (c)), of length 𝑁2 =

4𝑘 log 𝑁1 + 𝑜(log 𝑁1) = 4𝑘 (𝑘 + 1) log log 𝑛 + 𝑜(log 𝑛). The size of 𝐻𝑎𝑠ℎ𝑘 (c)
is 𝑁1 + 𝑁2 = 4𝑘 log 𝑛 + 𝑜(log 𝑛). We now show that 𝐻𝑎𝑠ℎ𝑘 (c) is a 𝑘 deletion
correcting hash and thereby prove Theorem 4.1.2 For any length 𝑛 + 𝑁1 + 𝑁2 −
𝑘 subsequence z of (c, 𝐻𝑎𝑠ℎ𝑘 (c)), we have that (𝑧𝑛+𝑁1+1, . . . , 𝑧𝑛+𝑁1+𝑁2−𝑘 ) is a
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length 𝑁2 − 𝑘 subsequence of 𝑅𝑒𝑝𝑘+1(𝑔𝑐 (𝑔𝑐 (c)))), which is a 𝑘-deletion correcting
code. Therefore 𝑔𝑐 (𝑔𝑐 (c)) can be recovered. In addition, (𝑧𝑛+1, . . . , 𝑧𝑛+𝑁1−𝑘 ) is a
length 𝑁1 − 𝑘 subsequence of 𝑔𝑐 (c). Since 𝑔𝑐 (𝑔𝑐 (c)) is a 𝑘-deletion correcting
hash of 𝑔𝑐 (c), the hash 𝑔𝑐 (c) can be recovered. Finally, note that (𝑧1, . . . , 𝑧𝑛−𝑘 ) is
a length 𝑛 − 𝑘 subsequence of 𝑛, we can use 𝑔𝑐 (c) to recover c. The decoding of c
from 𝑔𝑐 (c) is done using brute force, over all sequences c′ that satisfy d ∈ B𝑘 (c′).
The computing of 𝑔𝑐 (c) is done by brute force, over sequences c′ ∈ B𝑘 (c). Hence
the encoding and decoding complexities are 𝑂 (𝑛2𝑘+1) and 𝑂 (𝑛𝑘+1) respectively.

4.5 Codes Capable of Correcting Bursts of Deletions
In this section, we consider the problem of constructing codes that can correct bursts
of deletions. We consider two variants of this problem: (a) a single burst of at most
𝑘 consecutive deletions occurs, and (b) at most 𝑘 bursts of deletions each of length
at most 𝑡𝐿 occur. For (b), the deletions may or may not be consecutive. Similar to
before, we will be interested in the setup where 𝑘 and 𝑡𝐿 are constants with respect
to 𝑛. For (a), we show that our construction has 4 log 𝑛+𝑜(log 𝑛) bits of redundancy
and for variant (b), our construction has 4𝑘 log 𝑛 + 𝑜(log 𝑛) bits of redundancy. For
(a) where the deletions occur consecutively, the construction is systematic.

Systematic codes capable of correcting a single burst of consecutive deletions
We begin by first introducing some notation. For a vector x ∈ {0, 1}𝑚, let B𝑏𝑐

𝑘
(x)

denote the set of vectors that can result from deleting a burst of at most 𝑘 consecutive
symbols and then inserting symbols in a consecutive set of positions back into x
to obtain a length 𝑚 sequence. As an example if x = (0, 1, 1, 0, 1, 0, 1), then
y = (1, 0, 1, 1, 1, 0, 1) ∈ B𝑏𝑐

3 (x), since y can be obtained from x by first deleting
the first two symbols from x and then inserting the vector (1, 1) in position 3 of the
resulting vector. It is straightforward so see that if x belongs to a code capable of
correcting a burst of at most 𝑘 consecutive symbols, then for any y ∈ B𝑏𝑐

𝑘
(x), the

vector y cannot be in the same code.

The next claim follows from elementary counting techniques.

Claim 4.5.1. For any 𝑘 and u ∈ {0, 1}𝑚,

|B𝑏𝑐
𝑘
(u) | ≤ 𝑚2 · 𝑘22𝑘 .

In light of our syndrome compression technique, we need to describe the labeling
function 𝑓

𝑏𝑐
𝑘

. We define 𝑓
𝑏𝑐
𝑘

so that it is simply the result of computing the syndrome
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of a Varshamov-Tenengolts code 𝑘 (𝑘+1)
2 times. For notation convenience, suppose

𝑖 |𝑛 for 𝑖 ∈ [𝑘], where [𝑘] = {1, . . . , 𝑘}2. Then for a vector u ∈ {0, 1}𝑛, define
𝑓
𝑏𝑐
𝑘

: {0, 1}𝑛 → [[ 𝑛
𝑘
+ 1]]𝑘 × [[ 𝑛

𝑘−1 + 1]]𝑘−1 × · · · × [[𝑛 + 1]] as

𝑓
𝑏𝑐
𝑘
(u) =

( 𝑛
𝑘
−1∑︁
𝑗=0

𝑢𝑘 · 𝑗+1 mod
𝑛

𝑘
+ 1,

𝑛
𝑘
−1∑︁
𝑗=0

𝑢𝑘 · 𝑗+2 mod
𝑛

𝑘
+ 1, . . . ,

𝑛
𝑘
−1∑︁
𝑗=0

𝑢𝑘 · 𝑗+𝑘 mod
𝑛

𝑘
+ 1

𝑛
𝑘−1−1∑︁
𝑗=0

𝑢(𝑘−1)· 𝑗+1 mod
𝑛

𝑘 − 1
+ 1,

𝑛
𝑘−1−1∑︁
𝑗=0

𝑢(𝑘−1)· 𝑗+2 mod
𝑛

𝑘 − 1
+ 1, . . . ,

𝑛
𝑘−1−1∑︁
𝑗=0

𝑢(𝑘−1)· 𝑗+𝑘−1 mod
𝑛

𝑘 − 1
+ 1

𝑛
𝑘−2−1∑︁
𝑗=0

𝑢(𝑘−2)· 𝑗+1 mod
𝑛

𝑘 − 2
+ 1,

𝑛
𝑘−2−1∑︁
𝑗=0

𝑢(𝑘−2)· 𝑗+2 mod
𝑛

𝑘 − 2
+ 1, . . . ,

𝑛
𝑘−2−1∑︁
𝑗=0

𝑢(𝑘−2)· 𝑗+𝑘−2 mod
𝑛

𝑘 − 2
+ 1

...

𝑛∑︁
𝑗=1

𝑢 𝑗 mod 𝑛 + 1
)
∈ [[ 𝑛

𝑘
+ 1]]𝑘 × [[ 𝑛

𝑘 − 1
+ 1]]𝑘−1 × · · · × [[𝑛 + 1]] .

For convenience we will sometimes assume that the image of 𝑓
𝑏𝑐
𝑘
(u) is an integer

from
[ [∏𝑘

𝑠=1( 𝑛𝑠 +1)𝑠
] ]

≤ O( (𝑛+𝑘)
𝑘2

𝑘! ). It is straightforward to show that 𝑓 𝑏𝑐
𝑘

satisfies
the confusability property, but we include the following lemma for completeness.

Lemma 4.5.1. Suppose u ∈ {0, 1}𝑛. Then for any y ∈ B𝑏𝑐
𝑘
(u),

𝑓
𝑏𝑐
𝑘
(u) ≠ 𝑓

𝑏𝑐
𝑘
(y).

Proof. To prove the result, assume that z is the result of a burst of deletions of length
at most 𝑘 occurring to u and we are given 𝑓

𝑏𝑐
𝑘
(u). We will show that it is possible

to uniquely recover u from z given 𝑓
𝑏𝑐
𝑘
(u), which is equivalent to showing that for

any y ∈ B𝑏𝑐
𝑘
(u), 𝑓 𝑏𝑐

𝑘
(u) ≠ 𝑓

𝑏𝑐
𝑘
(y).

Suppose 𝑓
𝑏𝑐
𝑘
(u) = (𝑎𝑘,1, . . . , 𝑎𝑘,𝑘 , 𝑎1,𝑘−1, . . . , 𝑎𝑘−1,𝑘−1, . . . , 𝑎1) and that |z | = 𝑛 − 𝑠

so that z is the result of a burst of 𝑠 ≤ 𝑘 consecutive deletions occurring to u.
Consider the sequences:

z(1) = (𝑧1, 𝑧1+𝑠, 𝑧1+2𝑠, . . . , 𝑧𝑛−𝑠+1),
2We can replace 𝑛

𝑖
with ⌈ 𝑛

𝑖
⌉ if 𝑖 ∤ 𝑛.
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z(2) = (𝑧2, 𝑧2+𝑠, 𝑧2+2𝑠, . . . , 𝑧𝑛−𝑠+2),
...

z(𝑠) = (𝑧𝑠, 𝑧2𝑠, 𝑧3𝑠, . . . , 𝑧𝑛).

Also, let

u(1) = (𝑢1, 𝑢1+𝑠, 𝑢1+2𝑠, . . . , 𝑢𝑛−𝑠+1),
u(2) = (𝑢2, 𝑢2+𝑠, 𝑢2+2𝑠, . . . , 𝑢𝑛−𝑠+2),

...

u(𝑠) = (𝑢𝑠, 𝑢2𝑠, 𝑢3𝑠, . . . , 𝑢𝑛).

Since for 𝑖 ∈ [𝑠], z(𝑖) is the result of a single deletion occurring to u(𝑖) , it is possible
to recover u(𝑖) given z(𝑖) and 𝑎𝑠,1, 𝑎𝑠,2, . . . , 𝑎𝑠,𝑠 since

{
u(𝑖) = (𝑢(𝑖)1 , . . . , 𝑢

(𝑖)
𝑛
𝑠

) ∈ {0, 1} 𝑛
𝑠 :

𝑛
𝑠∑︁
𝑗=1

𝑢
(𝑖)
𝑗

≡ 𝑎𝑠,𝑖 mod
𝑛

𝑠
+ 1

}
is a code capable of correcting a single deletion. □

From Lemma 4.5.1 the mapping 𝑓
𝑏𝑐
𝑘

satisfies the confusability property. Further-

more, 𝑓 𝑏𝑐
𝑘

satisfies the redundancy property since log

(∏𝑘
𝑠=1( 𝑛𝑠+1)𝑠

)
≤ O

(
𝑘2 log(𝑛+

𝑘)
)
, and 𝑘 is assumed to be a constant. Therefore, from Theorem 4.2.1, for any

u ∈ {0, 1}𝑛 there exists an integer 𝑎 such that 𝑎 ≤ 2log |B𝑏𝑐
𝑘

(u) |+𝑜(log 𝑛) , and for any
y ∈ B𝑏𝑐

𝑘
(u), 𝑓 𝑏𝑐

𝑘
(u) . 𝑓

𝑏𝑐
𝑘
(y) mod 𝑎.

We define our code C𝑏𝑐 (𝑁, 𝑘) with 𝑁 = 𝑛 + 2 log |B𝑏𝑐
𝑘
(x) | + 𝑜(log 𝑛) as follows:

C𝑏𝑐 (𝑁, 𝑘) =
{

x =

(
u, 1, 0𝑘 , 1𝑘 , 0, 𝑎, 𝑓

𝑏𝑐
𝑘
(u) mod 𝑎

)
: u ∈ {0, 1}𝑛

}
. (4.7)

We now prove the following theorem and thus prove Theorem 4.1.3. In the statement
below, u is the information portion of the sequence (the non-redundancy part) from
(4.7).
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Theorem 4.5.1. Let z be the result of a consecutive burst of length at most 𝑘

occurring to x ∈ C𝑏𝑐 (𝑁, 𝑘). Then, we can uniquely determine x from z.

Proof. To prove the result, we show how to recover u from z. In order to recover
u from z, we show that it is possible to separate z into two parts: z1 and z2 where
either a) z1 is the result of a burst of deletions of length at most 𝑘 occurring to
u or b) z2 is the result of a burst of deletions of length at most 𝑘 occurring to
r = (1, 0𝑘 , 1𝑘 , 0, 𝑎, 𝑓

𝑏𝑐
𝑘
(u) mod 𝑎). Note that if z1 ≠ u, then (due to the length

of the burst) z2 = r and the fact that we can recover u from z1 provided r follows
immediately from Theorem 4.2.1. If b) holds and z2 ≠ r, then by similar logic,
u = z1. Note that the fact that z1 ≠ u can be determined immediately by the length
of z1 (due to the deletions) and similarly we can easily detect when z2 ≠ r by
considering the length of z2. Therefore, in the remainder of the proof we show how
to recover z1, z2 from z assuming a burst of 𝑠 ≤ 𝑘 deletions have occurred to x
resulting in z.

In order to separate z into z1 and z2, we make use of the marker sequence 1, 0𝑘 , 1𝑘 , 0,
which is embedded into every codeword in our code according to (4.7). Let |z| =
𝑛 − 𝑠. If

(𝑧𝑛+1, 𝑧𝑛+2, . . . , 𝑧𝑛+2𝑘−𝑠+1) = (0𝑘−𝑠+1, 1𝑘 ), (4.8)

then, it is straightforward to observe that z2 = r where z2 is equal to the last 𝑁 − 𝑛

bits of z. We set z1 to be equal to the first 𝑛 − 𝑠 bits of z so that by the previous
discussion we can recover u from z.

Next, suppose that

(𝑧𝑛+1, 𝑧𝑛+2, . . . , 𝑧𝑛+𝑘+1) = (1, 0𝑘 ). (4.9)

In this case the burst of length 𝑘 could not have started in any of the positions from
the set [𝑛] = {1, 2, . . . , 𝑛}, which implies u is equal to the first 𝑛 bits of z.

The only case left to consider is where the deletion begins in marker sequence
1, 0𝑘 , 1𝑘 , 0. First note that if the deletion occurs in the marker sequence then
(4.8) can hold only if the deletion begins in position 𝑛 + 1 in x. In this case, it is
straightforward to verify that the decoding described for this will still generate u
since r is still equal to the last 𝑁 − 𝑛 bits of z. If the deletion begins in one of the
positions {𝑛 + 2, 𝑛 + 3, . . . , 𝑛 + 𝑘 + 1}, then

(𝑧𝑛+1, 𝑧𝑛+2, . . . , 𝑧𝑛+1+𝑘 ) = (1, 0 𝑗 , 1𝑘− 𝑗 ),
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so that neither (4.8) or (4.9) can hold. If the deletion begins in the marker sequence
after position 𝑛 + 𝑘 + 1 in x, then (4.9) holds and the decoding is correct in this case
as well. □

Codes correcting bursts of deletions
Next, we consider a more generalized type of burst error pattern. In this section, we
want to correct 𝑘 bursts each occurring within a window of length at most 𝑡𝐿 where
the deletions in each burst need not occur consecutively. For shorthand, we refer
to these codes as (𝑘, 𝑡𝐿)-burst codes. The main result here will be to show that for
the case where 𝑘, 𝑡𝐿 are constants, there exists (𝑘, 𝑡𝐿)-burst codes with redundancy
4𝑘 (1 + 𝜖) log 𝑛 for 𝑘, 𝑛 large enough.

We begin by first introducing some notation, and then we proceed to our code
construction. We say that z ∈ {0, 1}𝑛−|𝐽 | is the result of 𝑘 bursts each occurring
within a window of length at most 𝑡𝐿 occurring to x ∈ {0, 1}𝑛 if there exists sets
𝐽, 𝐽𝑏 ⊆ [𝑛], with |𝐽 | ≤ 𝑘 · 𝑡𝐿 , |𝐽𝑏 | = 𝑘 such that the following holds:

1. z can be obtained by deleting symbols from x in positions 𝐽.

2. For any 𝑗 ∈ 𝐽, there exists an 𝑖 ∈ 𝐽𝑏 where | 𝑗 − 𝑖 | < 𝑡𝐿 .

We illustrate these notations in the following example.

Example 4.5.1. Suppose x = (0, 1, 1, ��1, 0, ��1, 0, 0, 0, 1, 1, ��0, 0) ∈ {0, 1}13 is in a
(2, 3)-burst code. Let

z = (0, 1, 1, 0, 0, 0, 0, 1, 1, 0)10.

Then, we can claim that z is the result of 2 bursts of deletions of length at most 3
since we can write 𝐽 = {4, 6, 12} and 𝐽𝑏 = {4, 12} with 𝑡𝐿 = 3. It follows that given
z, it is possible to uniquely recover x provided x is in a (2, 3)-burst code.

For a vector x ∈ {0, 1}𝑚, let 𝐵𝑘,𝑡𝐿 (x) be the set of vectors possible given that 𝑘
bursts each occurring within a window of length at most 𝑡𝐿 occur to x. Then, define
B𝑏

𝑘,𝑡𝐿
(x) ⊆ {0, 1}𝑚 so that

B𝑏
𝑘,𝑡𝐿

(x) = {y ∈ {0, 1}𝑚 : 𝐵𝑘,𝑡𝐿 (x) ∩ 𝐵𝑘,𝑡𝐿 (y) ≠ ∅, y ≠ x}.

Clearly, if x is in a (𝑘, 𝑡𝐿)-burst code, then y cannot be in the same code for any
y ∈ B𝑏

𝑘,𝑡𝐿
(x). The following claim follows from straightforward counting arguments.
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Claim 4.5.2. For integers 𝑘, 𝑡𝐿 , 𝑚, and any u ∈ {0, 1}𝑚,

|B𝑏
𝑘,𝑡𝐿

(u) | ≤ 𝑚2𝑘 ·
(
(𝑡𝐿 + 1)𝑘2𝑘 ·𝑡𝐿

)2
.

In order to apply the syndrome compression technique, we need to specify the
labeling and also to show that the redundancy and confusability properties hold.
For this setup, we will use the same systematic labeling used to correct multiple
deletions that was introduced in Sec. 4.4. More specifically, we will use the labeling
𝑔 defined in (4.6). It follows immediately from our definitions and Lemma 4.4.4
that if u, y ∈ {0, 1}𝑛 and y ∈ B𝑏

𝑘,𝑡𝐿
(u)\{u}, then

𝑓
𝑠𝑦𝑠

𝑘
(u) ≠ 𝑓

𝑠𝑦𝑠

𝑘
(y),

so that the confusability property holds. The redundancy property also follows
immediately from the definition of 𝑔 since 𝑘, 𝑡𝐿 are constants. Thus, to construct
(𝑘, 𝑡𝐿)-burst codes, we can apply the same syndrome compression procedure as
described in Sec. 4.3 and Sec. 4.4, except that we will search for an 𝑎 ∈ [[𝑛2𝑘 ·(
(𝑡𝐿 + 1)𝑘2𝑘 ·𝑡𝐿 )2]] such that 𝑓

𝑠𝑦𝑠

𝑘
(u) . 𝑓

𝑠𝑦𝑠

𝑘
(y) mod 𝑎 for any y ∈ B𝑏

𝑘,𝑡𝐿
(u). Since

log 𝑎 ≤ 2𝑘 log 𝑛+𝑜(log 𝑛) for 𝑛 large enough, the resulting construction is systematic
and has redundancy 4𝑘 log 𝑛 + 𝑜(log 𝑛) for 𝑘, 𝑛 large enough. Hence, we have
Theorem 4.1.4.

4.6 𝑞-ary Codes Correcting 𝑘 Deletions for Small 𝑞
In this section we present 𝑘 deletion correcting codes for 𝑞-ary alphabets where
𝑞 is less than the information length 𝑛. In particular, we consider the following
two cases: (1) 𝑞 ≤ log 𝑛. (2) log 𝑛 < 𝑞 ≤ 𝑛. The redundancy of the resulting
𝑞-ary 𝑘 deletion codes for case (1) and (2) are 4𝑘 log 𝑛 + 𝑜(log 𝑛) and 2𝑘 (1 +
𝜖) (2 log 𝑛 + log 𝑞) + 𝑜(log 𝑛) bits, respectively, where 𝑛 is the information length.
Before describing the code constructions, let us introduce a few notations for this
section. For a sequence u ∈ [[𝑞]]𝑛 of length 𝑛 over the alphabet {0, 1, . . . , 𝑞 − 1},
let B𝑞

𝑘
(u) be its deletion ball with radius 𝑘 , consisting of all length 𝑚 sequences

obtained by deleting 𝑘 𝑞-ary symbols and inserting 𝑘 𝑞-ary symbols in u. The
following result comes from a simple counting argument.

Claim 4.6.1. For any 𝑘 and u ∈ [[𝑞]]𝑛,

|B𝑞

𝑘
(u) | ≤ 𝑛2𝑘𝑞𝑘 .
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Define a binary matrix representation 𝑈 for u ∈ [[𝑞]]𝑛 as

𝑈 =


𝑢1,1 𝑢1,2 . . . 𝑢1,𝑚
...

. . .
...

𝑢⌈log 𝑞⌉,1 𝑢⌈log 𝑞⌉,2 . . . 𝑢⌈log 𝑞⌉,𝑚

 ∈ {0, 1}⌈log 𝑞⌉×𝑚, (4.10)

where the 𝑖-th symbol of u is given by the 𝑖-th column of 𝑈 for 𝑖 ∈ [𝑛]. Let 𝑈𝑟
𝑖
, 𝑖 ∈

[⌈log 𝑞⌉] and 𝑈𝑐
𝑗
, 𝑗 ∈ [𝑛] be the 𝑖-th row and 𝑗-th column of 𝑈 respectively. Then

the deletion of the 𝑗-th symbol of u corresponds to the deletion of the column𝑈𝑐
𝑗

in
the matrix 𝑈.

Case (1) : 𝑞 ≤ log 𝑛
In the following, we adapt the syndrome compression technique to correct deletions
for the case where 𝑞 ≤ log 𝑛. The basic idea, which will be described in more details
that follow, is to interpret our non-binary sequences as a set of log 𝑞 sequences over
the binary alphabet as illustrated in (4.10). We will then use a compound labeling
which is defined using the systematic labeling from Sec. 4.4 on each of these binary
sequences to form a code that can correct 𝑘 deletions.

We begin by describing the labeling. According to Lemma 4.4.4, there exists a
systematic labeling function

𝑓
𝑠𝑦𝑠

𝑘
(u) : {0, 1}𝑚 → {0, 1}𝑅=[(𝑘2+1) (2𝑘2+1)+2𝑘2 (𝑘−1)] log 𝑛+𝑜(log 𝑛)

such that 𝑓
𝑠𝑦𝑠

𝑘
(u) ≠ 𝑓

𝑠𝑦𝑠

𝑘
(y) for any u, y ∈ {0, 1}𝑛 and y ∈ B𝑘 (u)\{u}. Define the

labeling function

𝑓
𝑞

𝑘
(u) =

(
𝑓
𝑠𝑦𝑠

𝑘
(𝑈𝑟

1), . . . , 𝑓
𝑠𝑦𝑠

𝑘
(𝑈𝑟

log 𝑞)
)
∈ {0, 1}⌈log 𝑞⌉𝑅 .

Then, from Lemma 4.4.4, we have that

𝑓
𝑞

𝑘
(u) ≠ 𝑓

𝑞

𝑘
(y)

for u, y ∈ [[𝑞]]𝑛 and y ∈ B𝑞

𝑘
(u)\{u}. Hence the labeling function 𝑓

𝑞

𝑘
(u) satisfies

the confusability. The size of 𝑓
𝑞

𝑘
(u) is 𝑅𝑞 = 𝑂 ( [(𝑘2 + 1) (2𝑘2 + 1) + 2𝑘2(𝑘 −

1)] log 𝑞 log 𝑛) bits, which implies that the labeling 𝑓
𝑞

𝑘
(u) does not have the redun-

dancy property, so that we cannot immediately apply our syndrome compression
technique like was done in Sec. 4.3. To resolve this issue, in the next lemma the idea
is to basically use the syndrome compression technique twice on 𝑓

𝑞

𝑘
(u) in order to

generate a new labeling 𝑓
𝑞1
𝑘

.
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Lemma 4.6.1. There exists a labeling 𝑓
𝑞1
𝑘

that satisfies the redundancy property
and 𝑓

𝑞1
𝑘

is such that for any u, y ∈ [[𝑞]]𝑛 and y ∈ B𝑞

𝑘
(u)\{y}, we have

𝑓
𝑞1
𝑘
(u) ≠ 𝑓

𝑞1
𝑘
(y).

Proof. Define the set

D(u) =
{
𝑗 : 𝑗 > 0, 𝑗 | ( 𝑓 𝑞

𝑘
(u) − 𝑓

𝑞

𝑘
(y)) for some y ∈ [[𝑞]] ∩ B𝑞

𝑘
(u)

}
for u ∈ [[𝑞]]𝑛. According to Lemma 4.2.1, we have that

|D(u) | ≤ 2
log |B𝑞

𝑘
(u) |+ 1.6

log 𝑒 ·
𝑅𝑞

ln
𝑅𝑞

log 𝑒 ≤ 2
2𝑘 log 𝑛+𝑘 log 𝑞+ 1.6

log 𝑒 ·
𝑅𝑞

ln
𝑅𝑞

log 𝑒 = 2𝑂 (𝑝𝑜𝑙𝑦(𝑘) log 𝑛) .

Therefore, there exists an integer 𝛼u ≤ 2𝑂 (𝑝𝑜𝑙𝑦(𝑘) log 𝑛) such that 𝑓 𝑞
𝑘
(u) . 𝑓

𝑞

𝑘
(y) mod

𝛼u and thus (𝛼u, 𝑓
𝑞

𝑘
(u) mod 𝛼u) ≠ (𝛼y, 𝑓

𝑞

𝑘
(y) mod 𝛼y) for u, y ∈ [[𝑞]]𝑛 and y ∈

B𝑞

𝑘
(u)\{u}. Let

𝑓
𝑞1
𝑘
(u) ≜ (𝛼u, 𝑓

𝑞

𝑘
(u) mod 𝛼u). (4.11)

The fact that 𝑓
𝑞1
𝑘
(u) ≠ 𝑓

𝑞1
𝑘
(y) follows from the previous discussion. From (4.11),

the length of 𝑓
𝑞1
𝑘
(u) is 𝑂 (𝑝𝑜𝑙𝑦(𝑘) log𝑚). Hence 𝑓

𝑞1
𝑘

satisfies the redundancy
property, and this completes the proof. □

We are now ready to present our code construction in terms of the encoding process.
Let 𝐻𝑎𝑠ℎ𝑘 be the encoder from Theorem 4.1.2 which takes as input any binary
information sequence and outputs a deletion correcting hash.

1. Let u ∈ [[𝑞]]𝑛.

2. Suppose 𝑎 ∈ [[2𝑅]] is such that 𝑓
𝑞1
𝑘
(u) . 𝑓

𝑞1
𝑘
(y) mod 𝑎 for any y ∈

B𝑞

𝑘
(u)\{y} where 𝑅 = 2𝑘 log 𝑛 + 𝑜(log 𝑛).

3. Then,

x =

(
u, 𝑎, 𝑓 𝑞1

𝑘
(u) mod 𝑎, 𝐻𝑎𝑠ℎ

𝑞

𝑘

(
𝑎, 𝑓

𝑞1
𝑘
(u) mod 𝑎

) )
∈ [[𝑞]]𝑛.

In the resulting codeword x above, we assume that 𝑎 and 𝑓
𝑞1
𝑘
(u) mod 𝑎 are repre-

sented using 𝑞-ary symbols and the vector 𝐻𝑎𝑠ℎ
𝑞

𝑘

(
𝑎, 𝑓

𝑞1
𝑘
(u) mod 𝑎

)
takes the hash

𝐻𝑎𝑠ℎ𝑘 for each row in the matrix representation of 𝑎, 𝑓 𝑞1
𝑘
(u) mod 𝑎.
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Since 𝑓
𝑞1
𝑘

satisfies the redundancy property, it follows from Sec. 4.2 that (𝑎,
𝑓
𝑞1
𝑘
(u) mod 𝑎) can be described using at most 4𝑘 log 𝑛 + 𝑜(log 𝑛) bits. This im-

plies that 𝐻𝑎𝑠ℎ
𝑞

𝑘

(
𝑎, 𝑓

𝑞1
𝑘
(u) mod 𝑎

)
can be represented with at most 4𝑘 log log 𝑛 +

𝑜(log log 𝑛) bits and so the redundancy of the encoding is at most 4𝑘 log 𝑛+𝑜(log 𝑛)
bits of redundancy. Together with the following theorem, we prove Theorem 4.1.5
for cases when 𝑞 ≤ log 𝑛.

Theorem 4.6.1. Let z be the result of at most 𝑘 deletions occurring to x. Then, we
can uniquely recover x from z.

Proof. Let z be a length 𝑁 − 𝑘 subsequence of x, where 𝑁 is the length of
x. Then (𝑧𝑛+1, . . . , 𝑧𝑁−𝑘 ) is a length 𝑁 − 𝑘 − 𝑛 subsequence of (𝑥𝑛+1, . . . , 𝑥𝑁 ).
Since (𝑥𝑘+1, . . . , 𝑥𝑛) = 𝑎, 𝑓

𝑞1
𝑘
(u) mod 𝑎, 𝐻𝑎𝑠ℎ

𝑞

𝑘

(
𝑎, 𝑓

𝑞1
𝑘
(u) mod 𝑎

)
is a codeword

from a 𝑘-deletion correcting code, we can recover 𝑎, 𝑓 𝑞1
𝑘
(u) mod 𝑎 from (𝑧𝑛+1, . . . ,

𝑧𝑁−𝑘 ). We have that 𝑓 𝑞1
𝑘
(y) . 𝑓

𝑞1
𝑘
(𝑇𝑞

1 (u, 𝑠)) mod 𝑎 for y ∈ B𝑞

𝑘
(u)\{u}. Therefore,

the sequence u can be recovered. □

Case (2) : log 𝑛 < 𝑞 ≤ 𝑛

We now present a 𝑘 deletion code for the case log 𝑛 < 𝑞 < 𝑛. Two key ideas are
involved. The first is to narrow down the ranges of deletion locations to intervals
of length 𝑂 (𝑝𝑜𝑙𝑦(𝑘) log 𝑛), thus recovering most of the symbols in the sequence.
To further recover the rest of the symbols, the second idea decomposes a 𝑞-ary
representation of a sequence down to its symbol histogram information, which
counts the frequency of the symbols, and its permutation information, which records
the index of each symbol. The second idea can be regarded as a generalization of
the construction of 𝑞-ary single deletion correcting codes in [93], where the symbol
histogram and ascending/descending order are considered separately.

To achieve the first part, we generate binary sequences that satisfy a period constraint,
which was also defined in [18]. A sequence u ∈ {0, 1}𝑛 has period 𝑝 if u𝑖 = u𝑖+𝑝

for 𝑖 ∈ [[𝑛−𝑝]]. Let 𝐿 (u, 𝑝) be the length of the longest subsequence of consecutive
bits in u that has period 𝑝. Denote

L(𝑛, 𝑘) =
{
u : 𝐿 (u, 𝑝) ≤ 2 log 𝑛 + 𝑘 + 1,∀𝑝 ∈ [[𝑘]]

}
to be the set of sequences whose subsequences of any period 𝑝 ∈ [[𝑘]] has length
not greater than 2 log 𝑛 + 𝑘 + 1.

Lemma 4.6.2. Let𝑈ℓ be a random string uniformly distributed over {0, 1}ℓ where ℓ =
2 log 𝑛 + 𝑘 + 1. Let 𝑔1(𝑈ℓ) ∈ {0, 1}𝑛 be the sequence obtained by repeating 𝑈ℓ
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and then taking the first 𝑛 bits. Then for any sequence u ∈ {0, 1}𝑛, the bitwise
XOR 𝑔1(𝑈ℓ) + u ∈ L(𝑛, 𝑘) with probability at least 1 − 1/𝑛.

Proof. Let y = 𝑔1(𝑈ℓ) + c be the bitwise XOR sequence. The probability of the
event 𝐿 ((y𝑖, y𝑖+1, . . . , y𝑖+2 log 𝑛+𝑘 ), 𝑝) = 2 log 𝑛 + 𝑘 + 1 is given by 2𝑝/22 log 𝑛+𝑘+1 =

2𝑝/(2𝑘+1𝑛2) for any 𝑖 ∈ [[𝑛 − 2 log 𝑛 − 𝑘]] and 𝑝 ∈ [[𝑘]]. By the union bound, the
probability that 𝐿 ((y𝑖, y𝑖+1, . . . , y𝑖+2 log 𝑛+𝑘 ), 𝑝) = 2 log 𝑛 + 𝑘 + 1 for some index 𝑖 ∈
[[𝑛 − 2 log 𝑛 − 𝑘]] and period 𝑝 ∈ [[𝑘]] is upper bounded by∑︁

𝑖∈[[𝑛−2 log 𝑛−𝑘]],𝑝∈[[𝑘]]
2𝑝/(2𝑘+1𝑛2) ≤ 1/𝑛.

Therefore, the probability that y does not contain length 2 log 𝑛 + 𝑘 + 1 subsequence
of period 𝑝 ∈ [[𝑘]] is at least 1 − 1/𝑛 and the proof is done. □

For a sequence u ∈ {0, 1}𝑛 and integers {𝛿1, . . . , 𝛿𝑘 }, where 1 ≤ 𝛿1 < 𝛿2 < . . . <

𝛿𝑘 ≤ 𝑛, let u(𝛿1, . . . , 𝛿𝑘 ) denote the length 𝑛 − 𝑘 subsequence obtained by deleting
bits u𝛿𝑖 , 𝑖 ∈ [[𝑘]]. The next lemma shows that given u ∈ L(𝑛, 𝑘) and u(𝛿1, . . . , 𝛿𝑘 ),
it is possible to narrow down the range of 𝛿𝑖, 𝑖 ∈ [[𝑘]].

Lemma 4.6.3. If a sequence u ∈ L(𝑛, 𝑘), then given u and u(𝛿1, . . . , 𝛿𝑘 ), we
can find at most 𝑘 + 2 disjoint intervals [𝑎𝑖, 𝑏𝑖] ⊂ [[𝑛]] for 𝑖 ∈ [[𝑘 + 2]], with
length 𝑂 (𝑝𝑜𝑙𝑦(𝑘) log 𝑛) each, such that {𝛿1, . . . , 𝛿𝑘 } ⊂ ∪𝑖∈[1,𝑘+2] [𝑎𝑖, 𝑏𝑖]. In
addition, for any 𝑗 ∈ [[𝑛]]\(∪𝑖∈[[𝑘+2]] [𝑎𝑖, 𝑏𝑖]), the number of deletions 𝑁 𝑗 =

| [ [ 𝑗 − 1]] ∩ {𝛿1, . . . , 𝛿𝑘 }| that occur in interval [[ 𝑗 − 1]] can be determined.

Proof. Let z = u(𝛿1, . . . , 𝛿𝑘 ). The algorithm for finding [𝑎𝑖, 𝑏𝑖], 𝑖 ∈ [[𝑘 + 2]] is as
follows.

1. Initialization: Set all indices [[𝑛]] unmarked. Let 𝑗 = 1. Go to Step 1.

2. Step 1: Find the the largest positive integer 𝐿 such that

(z 𝑗 , z 𝑗+1, . . . , z 𝑗+𝐿−1−𝑝) = (z 𝑗+𝑝, z 𝑗+𝑝+1, . . . , z 𝑗+𝐿−1) (4.12)

for some 𝑝 ∈ [[𝑘]], so that a common length 𝐿 − 𝑝 substring exists in both z
and u. If 𝐿 ≥ (2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) + 𝑘 , mark the numbers 𝑤 in interval
[ 𝑗 + 𝑘 (2 log 𝑛 + 𝑘 + 2) + 𝑘, 𝑗 + 𝐿 − 𝑘 (2 log 𝑛 + 𝑘 + 2) − 1] and let 𝑁𝑤 = 𝑝

for𝑤 ∈ [ 𝑗+𝑘 (2 log 𝑛+𝑘+2)+𝑘, 𝑗+𝐿−𝑘 (2 log 𝑛+𝑘+2)−1]. Let 𝑗 = 𝑗+𝐿−𝑝

and repeat. Else go to Step 2.
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3. Step 2: If an unmarked interval has length greater than (2𝑘+1) (2 log 𝑛+𝑘+2)+
𝑘 , then split the interval into intervals of length (2𝑘+1) (2 log 𝑛+𝑘+2)+𝑘 except
that the last interval has length not greater than (2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) + 𝑘 .
Output all unmarked intervals and 𝑁𝑤 for 𝑤 in marked intervals.

We first show by contradiction that if 𝐿 ≥ (2𝑘+1) (2 log 𝑛+𝑘+2)+𝑘 , then no deletions
happen in the marked interval [ 𝑗+𝑘 (2 log 𝑛+𝑘+2)+𝑘, 𝑗+𝐿−𝑘 (2 log 𝑛+𝑘+2)−1] in
Step 1, i.e., {𝛿1, . . . , 𝛿𝑘 }∩ [ 𝑗 +𝑘 (2 log 𝑛+𝑘+2)+𝑘, 𝑗 +𝐿−𝑘 (2 log 𝑛+𝑘+2)−1] = ∅.
Suppose on the contrary, there exists some ℓ ∈ [[𝑘]] such that 𝛿ℓ ∈ [ 𝑗 + 𝑘 (2 log 𝑛 +
𝑘 + 2) + 𝑘, 𝑗 + 𝐿 − 𝑘 (2 log 𝑛 + 𝑘 + 2) − 1]. Then, using a Pigeonhole argument,
since 𝛿ℓ − 𝑗 − 𝑘 ≥ 𝑘 (2 log 𝑛 + 𝑘 + 2), there exist 𝛿ℓ1 for some ℓ1 ∈ [0, ℓ − 1], such
that 𝛿ℓ1+1 − max{𝛿ℓ1 , 𝑗 + 𝑘} ≥ 2 log 𝑛 + 𝑘 + 2. With a slight abuse of notation,
when ℓ1 = 0, we assume 𝛿ℓ1 = 0 for convenience.

By definition of 𝛿ℓ1 and 𝛿ℓ1+1, we have that

(zmax{𝛿ℓ1 , 𝑗+𝑘}+1−ℓ1 , . . . , z𝛿ℓ1+1−1−ℓ1) = (zmax{𝛿ℓ1 , 𝑗+𝑘}+1, . . . , z𝛿ℓ1+1−1). (4.13)

We now show that the 𝑝 in Eq. (8.8) equals ℓ1. If 𝑝 > ℓ1, then according to Eq. (4.13)
and Eq. (8.8), we have

(umax{𝛿ℓ1 , 𝑗+𝑘}+1+𝑝−ℓ1 , . . . , u𝛿ℓ1+1−1−ℓ1+𝑝) =(zmax{𝛿ℓ1 , 𝑗+𝑘}+1−ℓ1 , . . . , z𝛿ℓ1+1−1−ℓ1)

=(umax{𝛿ℓ1 , 𝑗+𝑘}+1, . . . , u𝛿ℓ1+1−1).

This implies that

𝐿 ((umax{𝛿ℓ1 , 𝑗+𝑘}+1, . . . , u𝛿ℓ1+1−1−ℓ1+𝑝), 𝑝 − ℓ1) =𝛿ℓ1+1 − max{𝛿ℓ1 , 𝑗 + 𝑘} + 𝑝 − ℓ1 − 1

≥2 log 𝑛 + 𝑘 + 2,

which is a contradiction to the fact that u ∈ L(𝑛, 𝑘). Similarly, if 𝑝 < ℓ1, we have
that

(umax{𝛿ℓ1 , 𝑗+𝑘}−𝑝+ℓ1+1, . . . , u𝛿ℓ1+1−1) =(zmax{𝛿ℓ1 , 𝑗+𝑘}−𝑝+1, . . . , z𝛿ℓ1+1−1−ℓ1)

=(umax{𝛿ℓ1 , 𝑗+𝑘}+1, . . . , u𝛿ℓ1+1−1−ℓ1+𝑝),

and thus that

𝐿 ((umax{𝛿ℓ1 , 𝑗+𝑘}+1, . . . , u𝛿ℓ1+1−1−𝑝+ℓ1), ℓ1 − 𝑝) =𝛿ℓ1+1 − max{𝛿ℓ1 , 𝑗 + 𝑘} + ℓ1 − 𝑝 − 1

≥2 log 𝑛 + 𝑘 + 2,
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which contradicts to the fact that u ∈ L(𝑛, 𝑘). Therefore, we have that 𝑝 = ℓ1.

On the other hand, since 𝑗 + 𝐿 − 1 − 𝛿ℓ ≥ 𝑘 (2 log 𝑛 + 𝑘 + 2), there exist 𝛿ℓ2 for
some ℓ2 ∈ [ℓ, 𝑘], such that min{𝛿ℓ2+1, 𝑗 + 𝐿 − 1} − 𝛿ℓ2 ≥ 2 log 𝑛 + 𝑘 + 2, where
for notation convenience, it is assumed that 𝛿ℓ2+1 = 𝑛 + 1 when ℓ2 = 𝑘 . The same
argument above can be used to show that 𝑝 = ℓ2, which leads to a contradiction
since 𝑝 = ℓ1 and ℓ1 < ℓ2. Therefore, we conclude that the marked intervals do not
contain deletions.

Next we show that 𝑁𝑤 = 𝑝 = | [1, 𝑗 + 𝑘 (2 log 𝑛+ 𝑘 +2) + 𝑘−1] ∩{𝛿1, . . . , 𝛿𝑘 }| for the
marked interval 𝑤 ∈ [ 𝑗 + 𝑘 (2 log 𝑛+ 𝑘 +2) + 𝑘, 𝑗 +𝐿− 𝑘 (2 log 𝑛+ 𝑘 +2) −1]. Let 𝑘′ =
| [1, 𝑗+𝑘 (2 log 𝑛+𝑘+2)+𝑘−1]∩{𝛿1, . . . , 𝛿𝑘 }|. Since 𝐿 ≥ (2𝑘+1) (2 log 𝑛+𝑘+2) and
no deletions occur in the interval [ 𝑗+𝑘 (2 log 𝑛+𝑘+2)+𝑘, 𝑗+𝐿−𝑘 (2 log 𝑛+𝑘+2)−1],
we have that min{𝛿𝑘 ′+1, 𝑗 +𝐿−1}−max{𝛿𝑘 ′, 𝑗 +𝑘} ≥ 2 log 𝑛+𝑘+2, where 𝛿𝑘 ′+1 = 𝑛

if 𝑘′ = 𝑘 and 𝛿𝑘 ′ = 0 if 𝑘′ = 0. By the same arguments proving 𝑝 = 𝑘1, we have
that 𝑝 = 𝑘′ = 𝑁𝑤 for 𝑤 ∈ [ 𝑗 + 𝑘 (2 log 𝑛 + 𝑘 + 2) + 𝑘, 𝑗 + 𝐿 − 𝑘 (2 log 𝑛 + 𝑘 + 2) − 1].

Finally, we show that there are at most 𝑘 + 2 unmarked intervals, each with length
at most (2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) + 𝑘 . Note that any unmarked index 𝑤′ satisfies one
of the following:

1. 𝑤′ ∈ [[(2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) + 𝑘]],

2. {𝛿1, . . . , 𝛿𝑘 }∩ [𝑤′−⌊[(2𝑘+1) (2 log 𝑛+𝑘+2)+𝑘]/2⌋, 𝑤′+⌊[(2𝑘+1) (2 log 𝑛+
𝑘 + 2) + 𝑘]/2⌋] ≠ ∅,

3. 𝑤′ ∈ [𝑛 − (2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) − 𝑘 + 1, 𝑛].

Otherwise if there exists some 𝑤′ such that 𝑤′ ∉ [[(2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) + 𝑘]] ∪
[𝑛−(2𝑘+1) (2 log 𝑛+𝑘+2)−𝑘+1, 𝑛] and {𝛿1, . . . , 𝛿𝑘 }∩[𝑤′−⌊[(2𝑘+1) (2 log 𝑛+𝑘+
2)+𝑘]/2⌋, 𝑤′+⌊[(2𝑘+1) (2 log 𝑛+𝑘+2)+𝑘]/2⌋] = ∅, then we have that u𝑤 = z𝑤−𝑝,
where 𝑝 = |{𝛿1, . . . , 𝛿𝑘 } ∩ [[𝑤′ − 𝑤′ − ⌊[(2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) + 𝑘]/2⌋ − 1]] |,
for every 𝑤 ∈ [𝑤′ − ⌊[(2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) + 𝑘]/2⌋, 𝑤′ + ⌊[(2𝑘 + 1) (2 log 𝑛 +
𝑘 + 2) + 𝑘]/2⌋]. Then the interval [𝑤′ − log 𝑛 − 1, 𝑤′ + log 𝑛 + 𝑘 + 1] is marked,
which contradicts to the fact that 𝑤′ is unmarked. Therefore, the unmarked intervals
are contained in the union of (𝑘 + 2) intervals [[(2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) + 𝑘]] ∪
[𝑛 − (2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) − 𝑘 + 1, 𝑛] ∪ (∪𝑘

𝑖=1 [𝛿𝑖 − ⌊[(2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) +
𝑘]/2⌋, 𝛿𝑖 + ⌊[(2𝑘 + 1) (2 log 𝑛 + 𝑘 + 2) + 𝑘]/2⌋]).
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Furthermore, note that there exists at least one deletion location 𝛿𝑖 between two
different marked intervals. Otherwise the unmarked interval in between is marked.
Therefore, there are at most 𝑘 + 2 unmarked intervals. Hence, we conclude that the
output consists of at most 𝑘 + 2 unmarked intervals, each with length at most (2𝑘 +
1) (2 log 𝑛 + 𝑘 + 2) + 𝑘 , that contain all deletion locations. The proof is done. □

Recall the matrix representation𝑈 of the 𝑞-ary codeword u. In light of Lemma 8.3.1,
we protect the first row𝑈𝑟

1 from 𝑘 deletions and use it to determine the ranges where
the deletions occur. Since the deletion ranges have short length, most of the symbols
in sequence u ∈ [[𝑞]]𝑛 can be recovered. To this end, the first row 𝑈𝑟

1 is generated
such that 𝑈𝑟

1 ∈ L(𝑛, 𝑘). Define the set

L𝑞 (𝑛, 𝑘) = {u : u ∈ [[𝑞]]𝑛,𝑈𝑟
1 ∈ L(𝑛, 𝑘)}.

The following Lemma shows how to generate sequences in L𝑞 (𝑛, 𝑘).

Lemma 4.6.4. For any u ∈ [[𝑞]]𝑛, there exists a seed 𝑠 of O(log 𝑛) bits and a
function 𝑇𝑞

1 (u, 𝑠) : [[𝑞]]𝑛×{0, 1}𝑂 (log 𝑛) → [[𝑞]]𝑛, computable in 𝑝𝑜𝑙𝑦(𝑛, 𝑘) time,
such that 𝑇𝑞

1 (u, 𝑠) ∈ L𝑞 (𝑛, 𝑘).

Proof. According to Lemma 7.2.4, there exists a seed 𝑠 of O(log 𝑛) bits, computable
in 𝑝𝑜𝑙𝑦(𝑛, 𝑘) time, such that 𝑔1(𝑠) +𝑈𝑟

1 ∈ L(𝑛, 𝑘). Define 𝑇𝑞

1 (u, 𝑠) by

𝑇
𝑞

1 (u, 𝑠) =


𝑔1(𝑠) +𝑈𝑟

1
𝑈𝑟

2
. . .

𝑈𝑟
⌈log 𝑞⌉


.

Then we have that 𝑇𝑞

1 (u, 𝑠) ∈ L𝑞 (𝑛, 𝑘). □

Let u ∈ L𝑞 (𝑛, 𝑘) be a sequence and z = u(𝛿1, . . . , 𝛿𝑘 ) be the length 𝑛 − 𝑘 subse-
quence of u after deleting the 𝛿𝑖-th symbol, 𝑖 ∈ [𝑘]. We can protect 𝑈𝑟

1 against 𝑘
deletions and recover it by using the code in Theorem 4.1.2. Then given 𝑈𝑟

1
and its 𝑛 − 𝑘 subsequence 𝑍𝑟

1, it is possible from Lemma 8.3.1 to find 𝑘 + 2 inter-
vals [𝑎𝑖, 𝑏𝑖], 𝑖 ∈ [[𝑘+2]] each having length𝑇 ≜ (2𝑘+1) (2 log 𝑛+𝑘+2)+𝑘 , that con-
tain all deletion locations. Split u into blocks u𝑖 = (𝑢(𝑖−1)𝑇+1, . . . , 𝑢𝑖𝑇 ), 𝑖 ∈ [⌈𝑚/𝑇⌉],
of length 𝑇 . Then the interval [𝑎𝑖, 𝑏𝑖], 𝑖 ∈ [[𝑘 + 2]], covers at most two blocks in u.
Note that the symbol u 𝑗 for 𝑗 ∈ [[𝑛]]\(∪𝑘+2

𝑖=1 [𝑎𝑖, 𝑏𝑖]) can be determined by

u 𝑗 = z 𝑗−𝑁 𝑗
, (4.14)
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where 𝑁 𝑗 is obtained from Lemma 8.3.1. Hence there are at most 2𝑘 + 4 block
errors in u after recovering 𝑈𝑟

1.

Next, we show how to correct the block errors. The idea is to represent each
block using its symbol frequency and the symbol location. Specifically, for a 𝑞-ary
sequence u ∈ [[𝑞]]𝑛, define its histogram vector 𝐻 (u) : [[𝑞]]𝑛 → [[𝑛 + 1]]𝑞 by

𝐻 (u)𝑖 = |{ 𝑗 : u 𝑗 = 𝑖, 𝑗 ∈ [[𝑛]]}|, 𝑖 ∈ [[𝑞]], (4.15)

where the 𝑖-th entry of 𝐻 (u) is the number of occurrence of 𝑖 ∈ [[𝑞]] in u. Its
location vector 𝑉 (u) : [[𝑞]]𝑛 → [𝑛]𝑛 is defined by

𝑉 (u)𝑖 = the index of the 𝑖-th largest symbol in u, (4.16)

where a symbol 𝑢𝑖 is larger than 𝑢 𝑗 , if 𝑢𝑖 is lexicographically larger than 𝑢 𝑗 or if 𝑢𝑖 =
𝑢 𝑗 and 𝑖 > 𝑗 . Note that by definition, we have that 𝑢𝑉 (u)1 > 𝑢𝑉 (u)2 > . . . > 𝑢𝑉 (u)𝑛 .
The following lemma shows that a sequence u ∈ [[𝑞]]𝑛 is uniquely determined by
its histogram and the location vectors.

Lemma 4.6.5. Let u, y ∈ [[𝑞]]𝑛 be two sequences. If 𝐻 (u) = 𝐻 (y) and 𝑉 (u) =

𝑉 (y), then u = y.

Proof. The lemma follows from the definition Eq. (4.15) and Eq. (4.16). Note that
the vector u can be obtained by sequentially putting the 𝑖-th largest symbol in 𝐻 (u)
in location𝑉 (u)𝑖. Hence the same histogram and location vectors result in the same
sequence. □

Next we show how to protect the histogram and location vectors of u from block

errors. Let the block histogram vector 𝐵𝐻 (u) : [[𝑞]]𝑛 →
(
[[𝑇 + 1]]𝑞

) ⌈𝑛/𝑇⌉
of the

sequence u ∈ [[𝑞]]𝑛 be given by

𝐵𝐻 (u)𝑖 = 𝐻 (u𝑖), 𝑖 ∈ [⌈𝑛/𝑇⌉], (4.17)

where the 𝑖-th entry of 𝐵𝐻 (u) is the histogram vector of the 𝑖-th block in u, 𝑖 ∈
[[⌈𝑛/𝑇⌉]]. Similarly, define the block location vector 𝐵𝑉 (u) : [[𝑞]]𝑛 →

(
[𝑇]𝑇

) ⌈𝑛/𝑇⌉
by

𝐵𝑉 (u)𝑖 = 𝑉 (u𝑖), 𝑖 ∈ [⌈𝑛/𝑇⌉], (4.18)

where the 𝑖-th entry 𝐵𝑉 (u)𝑖 is the location vector of the 𝑖-th block in u. According
to Lemma 4.6.5, the sequence u can be uniquely determined by 𝐵𝐻 (u) and 𝐵𝑉 (u).
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Define the function 𝑓 𝐵𝐻 (u) = (𝑅𝑆2𝑘+4(𝑅𝑆2𝑘 (𝐵𝐻 (u)1), . . . , 𝑅𝑆2𝑘 (𝐵𝐻 (u)⌈ 𝑛
𝑇
⌉)),

which is the redundancy of a systematic Reed-Solomon code correcting 2𝑘 + 4 era-
sure errors that has length ⌈ 𝑛

𝑇
⌉ sequence with entries 𝑅𝑆2𝑘 (𝐵𝐻 (u)𝑖), 𝑖 ∈ [⌈𝑛/𝑇⌉].

Each entry 𝑅𝑆2𝑘 (𝐵𝐻 (u)𝑖) represents the redundancy of a systematic Reed Solomon
code correcting 𝑘 substitution errors in the length 𝑞 sequence 𝐻 (u𝑖) for 𝑖 ∈ [⌈𝑚/𝑇⌉].
The next lemma shows that 𝑓 𝐵𝐻 (u) can be used to protect 𝐵𝐻 (u). In the following,
the function 𝑓𝑘 = 𝑓

𝑠𝑦𝑠

𝑘
is from Lemma 4.4.4.

Lemma 4.6.6. Let u, y ∈ L𝑞 (𝑚, 𝑘) be two sequences such that y ∈ B𝑞

𝑘
(u).

If 𝑓𝑘 (𝑈𝑟
1) = 𝑓𝑘 (𝑌 𝑟

1 ) and 𝑓 𝐵𝐻 (u) = 𝑓 𝐵𝐻 (y), then 𝐵𝐻 (u) = 𝐵𝐻 (y).

Proof. Since 𝑓𝑘 (𝑈𝑟
1) = 𝑓𝑘 (𝑌 𝑟

1 ), and 𝑈𝑟
1 ∈ B𝑘 (𝑌 𝑟

1 ), we have that 𝑈𝑟
1 = 𝑌 𝑟

1 . Let z =

u(𝛿1, . . . , 𝛿𝑘 ). Then according to Lemma 8.3.1, we can obtain from 𝑈𝑟
1 and 𝑍𝑟

1 at
most 𝑘+2 intervals [𝑎𝑖, 𝑏𝑖], 𝑖 ∈ [[𝑘+2]], of length at most𝑇 , such that {𝛿1, . . . , 𝛿𝑘 } ⊂
∪𝑘+2
𝑖=1 [𝑎𝑖, 𝑏𝑖]. The intervals {[𝑎𝑖, 𝑏𝑖]}𝑘+2

𝑖=1 cover at most 2𝑘 + 4 blocks in u. More-
over, for any 𝑗 ∈ [[𝑛]]\ ∪𝑘+2

𝑖=1 [𝑎𝑖, 𝑏𝑖], the number 𝑁 𝑗 = [[ 𝑗 − 1]] ∩ {𝛿1, . . . , 𝛿𝑘 }
can be determined. Then from Eq. (4.14), there are at most 2𝑘 + 4 block errors
left, the indices of which are known. Hence given 𝑓 𝐵𝐻 (u), we can recover the
sequence (𝑅𝑆2𝑘 (𝐵𝐻 (u)1), . . . , 𝑅𝑆2𝑘 (𝐵𝐻 (u)⌈𝑚/𝑇⌉)).

Next, we show that the histogram vector 𝐵𝐻 (u)𝑖 = 𝐻 (u𝑖) can be recovered
given 𝑅𝑆2𝑘 (𝐵𝐻 (u)𝑖) and z. Note that (𝑧(𝑖−1)𝑇+1, . . . , 𝑧𝑖𝑇−𝑘 ) is a 𝑇 − 𝑘 subsequence
of the 𝑖-th block u𝑖, hence the histogram vector 𝐻 ((𝑧(𝑖−1)𝑇+1, . . . , 𝑧𝑖𝑇−𝑘 )) differs in at
most 𝑘 locations from𝐻 (u𝑖). Hence given 𝑅𝑆2𝑘 (𝐵𝐻 (u)𝑖) and (𝑧(𝑖−1)𝑇+1, . . . , 𝑧𝑖𝑇−𝑘 ),
we can recover 𝐻 (u𝑖) = 𝐵𝐻 (u)𝑖 for 𝑖 ∈ [[⌈𝑛/𝑇⌉]]. This implies that if u can be
uniquely recovered given z, 𝑈𝑟

1, and 𝑓 𝐵𝐻 (u). Hence the proof is done. □

We now show how to protect the block location vector 𝐵𝑉 (u). Let

𝑓 𝐵𝑉 (u) = 𝑅𝑆2𝑘+4(𝐵𝑉 (u)) (4.19)

be the redundancy of a systematic Reed-Solomon code correcting 2𝑘 + 4 erasure
errors in the length ⌈𝑛/𝑇⌉ sequence 𝐵𝑉 (u) with entries 𝐵𝑉 (u)𝑖 = 𝑉 (u𝑖) for 𝑖 ∈
[[⌈𝑛/𝑇⌉]] (see Eq. (4.18)). The next lemma shows that 𝑓 𝐵𝑉 (u) can be used to
recover 𝐵𝑉 (u).

Lemma 4.6.7. For sequences u, y ∈ L𝑞 (𝑛, 𝑘) such that y ∈ B𝑞

𝑘
(u), if 𝑓𝑘 (𝑈𝑟

1) =

𝑓𝑘 (𝑌 𝑟
1 ) and 𝑓 𝐵𝑉 (u) = 𝑓 𝐵𝑉 (y), then 𝐵𝑉 (u) = 𝐵𝑉 (y).
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Proof. By similar arguments to that in the proof of Lemma 4.6.6, it can be shown
that all but at most 2𝑘 + 4 blocks in u can be recovered, given 𝑓𝑘 (𝑈𝑟

1) and z =

u(𝛿1, . . . , 𝛿𝑘 ). Hence the sequence 𝐵𝑉 (u) can be recovered with at most 2𝑘 + 4
block errors, the indices of which are known. Then 𝐵𝑉 (u) can be corrected using
the Reed-Solomon code redundancy 𝑓 𝐵𝑉 (u). □

Now we are ready to define the labeling function 𝑓
𝑞2
𝑘
(u) for u ∈ L𝑞 (𝑛, 𝑘). Let

𝑓
𝑞2
𝑘
(u) = ( 𝑓𝑘 (𝑈𝑟

1), 𝑓
𝐵𝐻 (u), 𝑓 𝐵𝑉 (u)).

Then from Lemma 4.4.4, Lemma 8.3.1, Lemma 4.6.5, Lemma 4.6.6, and Lemma 4.6.7,
we have the following lemma.

Lemma 4.6.8. For two sequences u, y ∈ M𝑞 (𝑛, 𝑘), if y ∈ B𝑞

𝑘
(u), then 𝑓

𝑞2
𝑘
(u) ≠

𝑓
𝑞2
𝑘
(y).

The image of the labeling function 𝑓
𝑞2
𝑘
(u) consists of 𝑅𝑞 bits where

𝑅𝑞 =𝑂 (𝑘2 log 𝑘 log 𝑛) + (2𝑘 + 4)𝑇 ⌈log𝑇⌉ + (2𝑘 + 4) (2𝑘 max{log𝑇, log𝑂 (𝑞)})
=𝑂 ((2𝑘 + 4) log log 𝑛 · log 𝑛),

where the term (2𝑘 + 4)𝑇 ⌈log𝑇⌉ comes from 𝑓 𝐵𝑉 (u). The term
(2𝑘 + 4) (2𝑘 max{log𝑇, log𝑂 (𝑞)}) comes from 𝑓 𝐵𝐻 (u), where 2𝑘 max{log𝑇,
log𝑂 (𝑞)} is the size of 𝑅2𝑘 (𝐵𝐻 (u)𝑖), 𝑖 ∈ [[⌈𝑛/𝑇⌉]]. Since 𝑓

𝑞2
𝑘
(u) does not have

the redundancy property, we apply the syndrome compression technique twice, as
we did in Case (1).

Define that set

D(u) =
{
𝑗 : 𝑗 > 0, 𝑗 | ( 𝑓 𝑞2

𝑘
(u) − 𝑓

𝑞2
𝑘
(y)) for some y ∈ L𝑞 (𝑛, 𝑘) ∩ B𝑞

𝑘
(u)

}
for u ∈ L𝑞 (𝑛, 𝑘). Then from Lemma 4.2.1, we have that

|D(u) | ≤ 2
log |B𝑞

𝑘
(u) |+ 1.6

log 𝑒 ·
𝑅𝑞

ln 𝑅𝑞

log 𝑒 ≤ 2
2𝑘 log 𝑛+𝑘 log 𝑞+ 1.6

log 𝑒 ·
𝑅𝑞

ln 𝑅𝑞

log 𝑒 = 2𝑂 (𝑝𝑜𝑙𝑦(𝑘) log 𝑛) .

Hence there exists an integer 𝛼u ≤ 2𝑂 (𝑝𝑜𝑙𝑦(𝑘) log 𝑛) such that 𝑓
𝑞2
𝑘
(u) . 𝑓

𝑞2
𝑘
(y) mod

𝛼u for u, y ∈ L𝑞 (𝑛, 𝑘) and y ∈ B𝑞

𝑘
(u). Define the labeling function

𝑓
𝑞3
𝑘
(u) = ( 𝑓 𝑞2

𝑘
(u) mod 𝛼u, 𝛼u)

for u ∈ L𝑞 (𝑛, 𝑘). Then we have that 𝑓
𝑞3
𝑘
(u) ≠ 𝑓

𝑞3
𝑘
(y) for u, y ∈ M𝑞 (𝑚, 𝑘)

and y ∈ B𝑘,𝑞 (u). Since 𝑓
𝑞3
𝑘
(u) satisfies the redundancy property, we can use the
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syndrome compression technique again and find an integer 𝛼 ≤ 2|B𝑞

𝑘
(u) |+𝑜(log 𝑛) =

22 log 𝑛+log 𝑞+𝑜(log 𝑛) such that 𝑓
𝑞3
𝑘
(u) . 𝑓

𝑞3
𝑘
(y) mod 𝛼 for u, y ∈ L𝑞 (𝑛, 𝑘) and y ∈

B𝑞

𝑘
(u).

Define the code C(𝑛, 𝑘, 𝑞) as follows:

C(𝑛, 𝑘, 𝑞) =
{
x =

(
𝑇
𝑞

1 (u, 𝑠), 𝑓
𝑞3
𝑘
(𝑇𝑞

1 (u, 𝑠)) mod 𝛼, 𝛼, 𝑠,

𝐻𝑎𝑠ℎ𝑘
(
𝑓
𝑞3
𝑘
(𝑇𝑞

1 (u, 𝑠)) mod 𝛼, 𝛼, 𝑠
))

∈ {0, 1}𝑛 : u ∈ {0, 1}𝑘
}
.

Since 𝑓
𝑞3
𝑘
(𝑇𝑞

1 (u, 𝑠)) satisfies the redundancy property, it follows from syndrome
compression that the redundancy ( 𝑓 𝑞3

𝑘
(𝑇𝑞

2 (u, 𝑠)) mod 𝛼, 𝛼) can be described by
2 logB𝑞

𝑘
(u) + 𝑜(log 𝑛) = 4𝑘 log 𝑛 + 2𝑘 log 𝑞 + 𝑜(log 𝑛) bits. The seed 𝑠 has

length 𝑂 (log 𝑘). Therefore, the total redundancy is 4𝑘 log 𝑛 +𝑂 (log 𝑛) + 2𝑘 log 𝑞 +
𝑜(log 𝑛) bits. The correctness of the code can be proved by the same argument as
in the proof of Theorem 4.6.1.

Theorem 4.6.2. The code C(𝑛, 𝑘, 𝑞) is a 𝑘 deletion code.

4.7 𝑞-ary Codes Correcting 𝑘 Deletions for Large 𝑞

In this section, we consider the problem of coding for deletions over large non-
binary alphabets. We will show that in this regime we can construct efficiently
encodable/decodable codes capable of correcting 𝑘 deletions that require roughly
30𝑘 log 𝑛 bits of redundancy. The approach taken in this section is fundamentally
different than the syndrome compression technique that has been used up to this
point. Note that, compared to the syndrome compression technique, the redundancy
of our code is high. However, the advantage of the approach discussed here is
that our methods are more applicable to a wider range of 𝑘 . In particular, the
technique described here, which is similar in spirit to the approach taken in [98]
to correct errors in permutations, has decoding/encoding complexity which scales
polynomially for any 𝑘 and, in addition, leads to efficiently encodable/decodable
codes for the regime where 𝑘 is a small constant fraction of 𝑛.

We will construct codes by making use of the 𝐿-spectrum, which represents the set
of all length 𝐿 subsequences of consecutive symbols that appear in a vector. For a
vector u ∈ [[𝑞]]𝑛 (where 𝑞 > 𝑛), we denote the 𝐿-spectrum for u, denoted 𝑆𝐿 (u)
as follows:

𝑆𝐿 (u) =
{
(𝑢𝑖, 𝑢𝑖+1, . . . , 𝑢𝑖+𝐿−1) ∈ [[𝑞]]𝐿 : 𝑖 ∈ [𝑛 − 𝐿 + 1]

}
.
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Furthermore, we say that a sequence u ∈ [[𝑞]]𝑚 is 𝐿-substring unique if

|𝑆𝐿 (u) | = 𝑛 − 𝐿 + 1.

The approach taken to correcting deletions is motivated by the following two lemmas,
the first of which also appears in [33].

Lemma 4.7.1. (c.f., [33]) Suppose u ∈ [[𝑞]]𝑛 is (𝐿 − 1)-substring unique. Then, u
can be uniquely recovered from 𝑆𝐿 (u).

For shorthand, for two sets 𝐴, 𝐵 let 𝐴△𝐵 = (𝐴\𝐵) ∪ (𝐵\𝐴) denote their symmetric
difference.

Lemma 4.7.2. Suppose u ∈ [[𝑞]]𝑛 is (𝐿 − 1)-substring unique and z ∈ [[𝑞]]𝑛−𝑘 is
the result of 𝑘 deletions occurring to u. Then,

|𝑆𝐿 (u) △ 𝑆𝐿 (z) | ≤ (2𝐿 − 1)𝑘.

Proof. Notice that for each deletion in u, |𝑆𝐿 (u) \𝑆𝐿 (z) | ≤ 𝐿 and |𝑆𝐿 (z) \𝑆𝐿 (u) | ≤
𝐿 − 1. Since there are 𝑘 deletions the result follows. □

In light of the previous two lemmas, our approach will consist of two basic steps:

1. Transform step: In this step, we convert our information vectors into vectors
which are 𝐿-substring unique.

2. Coding step: We add additional redundancy symbols to our codewords to
ensure that we can recover their 𝐿-spectrum provided deletion errors are
allowed to occur.

We begin by describing some results that are related to the transform step. De-
fine U𝑞

𝐿
(𝑛) so that

U𝑞

𝐿
(𝑛) =

{
u ∈ [[𝑞]]𝑛 : u is 𝐿-substring unique

}
.

The following result provides an algorithm to generate binary sequences in U𝑞

𝐿
(𝑛)

for 𝐿 = 2 log 𝑛 + 2. This algorithm will be used in Lemma 4.7.4 to generate
non-binary sequences that are 𝐿-substring unique.



125

Lemma 4.7.3. [28], There exists an invertible function ℎ𝐿 : {0, 1}𝑛−1 → {0, 1}𝑛,
computable in 𝑝𝑜𝑙𝑦(𝑛) time, that takes any binary sequence u ∈ {0, 1}𝑛−1 as input
and outputs a sequence ℎ𝐿 (u) ∈ U2

𝐿
(𝑛) for 𝐿 = 2 log 𝑛 + 2.

Lemma 4.7.3 can be used to generate sequences in U𝑞

3 (𝑛).

Lemma 4.7.4. There exists an invertible function ℎ𝐿 : [[𝑞]]𝑛 → [[𝑞]]𝑛+1, com-
putable in 𝑝𝑜𝑙𝑦(𝑛) time, such that ℎ𝐿 (u) ∈ U𝑞

𝐿
(𝑛) for any u ∈ [[𝑞]]𝑛 where

𝐿 = 3.

Proof. Let w ∈ {0, 1}𝑛 log 𝑞 be the binary representation of u, i.e., (𝑤 (𝑖−1) log 𝑞+1, . . . ,

𝑤𝑖 log 𝑞) ∈ {0, 1}log 𝑞 is the binary representation for 𝑢𝑖 ∈ [[𝑞]] for 𝑖 ∈ [𝑛]. Then
from Lemma 4.7.3 we have that ℎ𝐿 ((w, 0log 𝑞−1)) ∈ U2

𝐿
((𝑛 + 1) log 𝑞)) for 𝐿 =

2 log(𝑛 + 1) + 2 log log 𝑞 + 2, where (w, 0log 𝑞−1) is obtained by adding log 𝑞 − 1 0’s
to the end of w. Split ℎ𝐿 ((w, 0log 𝑞−1)) into 𝑛 + 1 blocks h𝑖 = (ℎ𝐿 (w)(𝑖−1) log 𝑞+1,

ℎ𝐿 (w)(𝑖−1) log 𝑞+2, . . . , ℎ𝐿 (w)𝑖 log 𝑞), 𝑖 ∈ [𝑛 + 1], of length log 𝑞. Let ℎ𝐿 (u)𝑖 be
the 𝑞-ary representation of h𝑖, 𝑖 ∈ [𝑛 + 1].

We now prove by contradiction that ℎ𝐿 (u) ∈ U𝑞

3 (𝑛 + 1) for 𝑛 sufficiently large
enough. Suppose on the contrary, we have that (ℎ𝐿 (u)𝑖, ℎ𝐿 (u)𝑖+1, ℎ𝐿 (u)𝑖+2) =

(ℎ𝐿 (u) 𝑗 , ℎ𝐿 (u) 𝑗+1, ℎ𝐿 (u) 𝑗+2) for some 𝑖 ≠ 𝑗 . Then we have that

(ℎ𝐿 ((w, 0log 𝑞−1))(𝑖−1) log 𝑞+1, ℎ𝐿 ((w, 0log 𝑞−1))(𝑖−1) log 𝑞+2, (4.20)

. . . , ℎ𝐿 ((w, 0log 𝑞−1))(𝑖+2) log 𝑞)
=(ℎ𝐿 ((w, 0log 𝑞−1))( 𝑗−1) log 𝑞+1, ℎ𝐿 ((w, 0log 𝑞−1))( 𝑗−1) log 𝑞+2, (4.21)

. . . , ℎ𝐿 ((w, 0log 𝑞−1))( 𝑗+2) log 𝑞). (4.22)

Since 𝑞 > 𝑛, we have that

3 log 𝑞 > 2 log 𝑞 + 2 log log 𝑞 + 2 ≥ 2 log(𝑛 + 1) + 2 log log 𝑞 + 2

for 𝑛 sufficiently large. Hence from Eq. (4.20), we have that

(ℎ𝐿 ((w, 0log 𝑞−1))(𝑖−1) log 𝑞+1, ℎ𝐿 ((w, 0log 𝑞−1))(𝑖−1) log 𝑞+2, . . . ,

ℎ𝐿 ((w, 0log 𝑞−1))(𝑖−1) log 𝑞+2 log(𝑛+1)+2 log log 𝑞+2)
=(ℎ𝐿 ((w, 0log 𝑞−1))( 𝑗−1) log 𝑞+1, ℎ𝐿 ((w, 0log 𝑞−1))( 𝑗−1) log 𝑞+2, . . . ,

ℎ𝐿 ((w, 0log 𝑞−1))( 𝑗−1) log 𝑞+2 log(𝑛+1)+2 log log 𝑞+2),

which is a contradiction to the fact that ℎ𝐿 ((w, 0log 𝑞−1)) ∈ U2
𝐿
((𝑛 + 1) log 𝑞) for

𝐿 = 2 log(𝑛+1)+2 log log 𝑞+2. Hence, we have that (ℎ𝐿 (u)𝑖, ℎ𝐿 (u)𝑖+1, ℎ𝐿 (u)𝑖+2) ≠
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(ℎ𝐿 (u) 𝑗 , ℎ𝐿 (u) 𝑗+1, ℎ𝐿 (u) 𝑗+2) for 𝑖 ≠ 𝑗 . Moreover, since ℎ𝐿 ((w, 0log 𝑞−1)) is invert-
ible, we can recover w and thus u from ℎ𝐿 (u). Therefore, the proof is done. □

Now, we turn to describing the coding step (step 2)) of our construction. We will
interpret the 4-spectrum of our codewords using indicator vectors. In particular,
define the 4-profile indicator vector 1𝑞

4 (u) ∈ {0, 1}𝑞4 , which is indexed by the
non-zero elements in [[𝑞]]4, by

1𝑞

4 (u)z =


1 if z ∈ 𝑆4(u),

0 else

for z ∈ [𝑞4]. Note that the indices of the 1 entries in 1𝑞

4 (u) correspond to the 4-
spectrum of u.

An immediate consequence of Lemma 4.7.2 is the following.

Corollary 4.7.1. Suppose u ∈ [[𝑞]]𝑛 is 4-substring unique and z ∈ [[𝑞]]𝑛−𝑘 is the
result of 𝑘 deletions occurring to u. Then,

𝑑𝐻 (1𝑞

4 (u), 1
𝑞

4 (z)) ≤ 7𝑘,

where 𝑑𝐻 denotes the Hamming distance.

For a vector v ∈ {0, 1}𝑞4 , let BCH7𝑘 (v) denote the 28𝑘 log 𝑞 redundant bits from a
systematic BCH code of dimension 𝑞4 that is capable of correcting 7𝑘 substitution
errors. The idea now is to encode these 28𝑘 log 𝑞 bits of information (which will
be used to protect the indicator vectors for our codewords), into the final 29𝑘 + 1
symbols of our codewords, while reserving a portion of each symbol to store location
information.

Let r𝐼 = (𝑟1, 𝑟2, . . . , 𝑟29𝑘 ) ∈ [[ 𝑞

30𝑘 ]]
29𝑘 be the output of BCH7𝑘 (1𝑞

4 (u)) represented
as 𝑞

30𝑘 -ary symbols. Clearly, we can represent 29𝑘 log 𝑞

30𝑘 bits of information with
r𝐼 . Note that this encoding is possible since

29𝑘 log
𝑞

30𝑘
≥ 28𝑘 log 𝑞

which holds when log 𝑞 ≥ 29 log(30𝑘).

Let 𝑅𝑆⌊ 𝑘+1
2 ⌋ be a Reed-Solomon code over [[ 𝑞

30𝑘 ]] that can correct either ⌊ 𝑘+1
2 ⌋

substitution errors or 𝑘 erasures and the code has minimum distance at least 𝑘 + 1.
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We assume 𝑅𝑆⌊ 𝑘+1
2 ⌋ has dimension 29𝑘 and that for a vector v ∈ [[ 𝑞

30𝑘 ]] 𝑅𝑆⌊ 𝑘+1
2 ⌋ (v)

outputs 𝑘 redundant symbols. Let

r =

(
r𝐼 , 𝑅𝑆⌊ 𝑘+1

2 ⌋ (r𝐼)
)
∈ [[ 𝑞

30𝑘
]]30𝑘 .

We are now ready to present the 𝑘 deletion code in terms of the encoding process.
Suppose u ∈ [[𝑞]]𝑛 is an information vector of dimension 𝑛. The output of the
encoding process will be a vector x ∈ [[𝑞]]𝑁 , where 𝑁 = 𝑛 + 1 + 30𝑘 .

1. Suppose u𝑇 = ℎ3(u) ∈ [[𝑞]]𝑛+1 where ℎ3 is defined in Lemma 4.7.4.

2. Let r𝐼 = (𝑟1, 𝑟2, . . . , 𝑟29𝑡) ∈ [[ 𝑞

30𝑘 ]]
29𝑘 denote the 𝑞

30𝑘 -ary representation of
BCH7𝑘 (1𝑞

4 (u𝑇 )) ∈ {0, 1}28𝑘 log 𝑞.

3. Let r =

(
r𝐼 , 𝑅𝑆⌊ 𝑘+1

2 ⌋ (r𝐼)
)
= (𝑅1, 𝑅2, . . . , 𝑅30𝑘 ) ∈ [[ 𝑞

30𝑘 ]]
30𝑘 .

4. Define x = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) so that

𝑥𝑖 =


(u𝑇 )𝑖 if 𝑖 ∈ [𝑛 + 1],(
𝑖 − (𝑛 + 1) + 1, (r)𝑖−(𝑛+1)+1

)
else.

Theorem 4.7.1. Suppose x ∈ [[𝑞]]𝑁 is transmitted and z ∈ [[𝑞]]𝑁−𝑘 is received
where z is the result of 𝑘 deletions occurring to x. Then given z it is possible to
uniquely determine x.

Proof. We prove the result by describing the decoding procedure. Similar to the
proof of Theorem 4.6.1, we first recover the final 29𝑘 symbols in x which can be
obtained after deleting at most 𝑘 symbols from the sequence(

(1, 𝑅1), (2, 𝑅2), . . . , (30𝑘, 𝑅30𝑘 )
)
.

Since every symbol of this sequence has its position encoded into it, it follows that
we can determine the locations of the deletions from any length 29𝑘-subsequence
of

(
(1, 𝑅1), (2, 𝑅2), . . . , (30𝑘, 𝑅30𝑘 )

)
. Then, given this position information along

with the fact that r belongs to a code which can correct 𝑘 erasures, we can recover
r. From r we can recover BCH7𝑘 (1𝑞

4 (u𝑇 )). From (4.7.1) we can determine 1𝑞

4 (u𝑇 ).
Finally, from Lemma 4.7.3, we recover u𝑇 and from u𝑇 we can recover u according
to Lemma 4.7.1. □
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4.8 Conclusion
In this chapter, we proposed a syndrome compression technique for achieving re-
dundancy twice the Gilbert-Varshamov lower bound. We applied the technique to
several variations of deletion channels and proposed constructions of non-systematic
and systematic binary deletion correcting codes, codes correcting bursts of deletions,
and non-binary deletion correcting codes. Most of the codes improve the best ex-
isting redundancy result. It will be of great interest to investigate whether it is
possible to reduce the encoding/decoding complexity of the syndrome compression
technique, which is currently 𝑛𝑂 (1) .

4.9 Appendix: Generation of Random Seed z with Size 𝑂 (log𝑚)
In the following, we prove that we can generate strings in the 𝑘-mixed string
set M(𝑚, 𝑘) using 𝑂 (log𝑚) bits. The proof follows similar steps to those in
[22]. We first recall the definition of the 𝑘-mixed string set

M(𝑚, 𝑘) = {x ∈ {0, 1}𝑚 : For integers ℓ = ⌈log 𝑘 + log log(𝑘 + 1) + 5⌉ and

𝑑 = 𝑂 (𝑘 (log 𝑘)2 log𝑚) and for any string p ∈ {0, 1}ℓ, every substring of

consecutive 𝑑 bits in x contains p as a substring.}

We now proceed to proving the following lemma, which appears in Sec. 4.3 as
Lemma 4.3.2.

Lemma 4.9.1. There exists a 𝑝𝑜𝑙𝑦(𝑚) time algorithm for a seedswith length𝑂 (log𝑚)
such that for any u ∈ F𝑚2 , u + 𝑔(s) ∈ M(𝑚, 𝑘).

Split the string u into 𝑛 = 𝑚/𝑑 blocks u𝑖, 𝑖 ∈ [𝑛] of length 𝑑. Split each block u𝑖

into 𝑛0 = 𝑂 (log𝑚) subblocks u𝑖, 𝑗 , 𝑗 ∈ [𝑛0] of length 𝑑0 = 𝑑/𝑛0 = 𝑂 (𝑘 (log 𝑘)2).
Using the random seed s, we generate the same mask for each block u𝑖. Hence
in the following, we focus on generating a random mask for block u1. The idea
is to generate the random seed s = (s1, . . . , s𝑛0) and the corresponding mask e =

(e1, . . . , e𝑛0) subblock by subblock for each u1, 𝑗 , 𝑗 ∈ [𝑛0]. The goal is that u1, 𝑗 +e 𝑗

contains p with at least constant probability 𝑐 for 𝑗 ∈ [𝑛0]. Then the probability
that all subblocks u1, 𝑗 do not contain p is upper bounded by (1− 𝑐)𝑛0 = 1/𝑝𝑜𝑙𝑦(𝑚).
We begin with the following claim.

Claim 4.9.1. For any string p ∈ {0, 1}ℓ, a uniformly distributed random string 𝑈𝑑0

of length 𝑑0 contains p with probability at least 2/3.
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Proof. Note that a uniformly random string of length ℓ equals p with proba-
bility 1/2ℓ, by properly choosing 𝑑0. Split 𝑈𝑑0 into blocks of length ℓ. Then
the probability that all these blocks do not equal p is given by (1 − 1/2ℓ)𝑑0/ℓ =

(1 − 1/2ℓ)𝑂 (2ℓ ) ≤ 1/𝑒𝑂 (1) . By properly choosing 𝑑0 we can make this probability
less than 1/3. Then, the probability that 𝑈𝑑0 contains p is at least 2/3. □

By virtue of Claim 4.9.1, if we generate s 𝑗 = 𝑈𝑑0 independently and let the mask e 𝑗 =

s 𝑗 for 𝑗 ∈ [𝑛0]. Then u1, 𝑗 + e 𝑗 contains p with probability at least 𝑐 = 2/3. The
probability that u1 does not contain p is upper bounded by (1/3)𝑛0 = 1/𝑝𝑜𝑙𝑦(𝑚).
However, this requires the seed length to be 𝑛0𝑑0 = 𝑘 log2 𝑘 log𝑚, which is larger
than𝑂 (log𝑚). To reduce the size of the seed, we generate the seed s 𝑗 and the mask e 𝑗

by random walk on expander graphs. For reference we restate the definitions and
the results below. Lemma 4.9.2 and Lemma 4.9.3 are also cited in [22].

Definition 4.9.1. If 𝐺 is a 𝑞-regular graph with 𝑛 vertices and 𝜆(𝐺) ≤ 𝜆 for
integers 𝑛 and 𝑞 and real number 𝜆 < 1, we say that 𝐺 is an (𝑛, 𝑞, 𝜆)-expander
graph. Here 𝜆(𝐺) is the second largest eigenvalue of the normalized adjacency
matrix of 𝐺.

For some constant integer 𝑞 and some number 𝜆 < 1, a family of graphs {𝐺𝑛}∞𝑛=1
is a (𝑞, 𝜆)-expander graph family if for every 𝑛 ∈ N, 𝐺𝑛 is an (𝑛, 𝑞, 𝜆)-expander
graph.

Lemma 4.9.2. Let 𝐴0, . . . , 𝐴𝑠 be vertex sets with densities 𝛼0 = |𝐴0 |/𝑛, . . . , 𝛼𝑠 =

|𝐴𝑠 |/𝑛 in an (𝑛, 𝑞, 𝜆)-expander graph 𝐺. Let 𝑋0, . . . , 𝑋𝑠 be a random walk on 𝐺.
Then we have that

𝑃𝑟 [∀𝑖 ∈ {0, . . . , 𝑠}, 𝑋𝑖 ∈ 𝐴𝑖] ≤
𝑠−1∏
𝑖=0

(√𝛼𝑖𝛼𝑖+1 + 𝜆).

Lemma 4.9.3. For every constant 𝜆 < 1, and some constant integer 𝑞 depending
on 𝜆, there exists a strongly explicit (𝑞, 𝜆)-expander graph family (can be provided
in 𝑝𝑜𝑙𝑦(log 𝑛) time).

According to Lemma 4.9.3, we can generate a (2𝑑0 , 𝑞, 𝜆 = 1/6)-expander graph 𝐺,
where 𝑞 is a constant integer depending on 𝜆. Instead of generating the seed s 𝑗

independently for each 𝑗 ∈ [𝑛0], we do a 𝑛0-step random walk on the graph 𝐺.
We show that the 𝑛0 step random walk on 𝐺 can be generated using 𝑂 (log𝑚) bits.
Let s0 = 𝑈𝑑0 be a uniformly and randomly chosen vertex on the graph 𝐺. The
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vertex s0 is the starting point of the random walk. Since each vertex is connected
to a constant 𝑞 number of vertices, the 𝑗-th step can be generated using a log 𝑞 bit
random seed s 𝑗 , 𝑗 ∈ [𝑛0], indicating which vertex to go in the 𝑗-th step. Hence the
total number of bits needed is 𝑑0 + log 𝑞𝑛0 = 𝑂 (log𝑚). Let 𝐸0, . . . , 𝐸𝑛0 be the trace
of the random walk, where 𝐸 𝑗 ∈ {0, 1}𝑑0 is a vertex of the graph 𝐺. We use e 𝑗 = 𝐸 𝑗

as the mask for subblock u1, 𝑗 .

We are now able to prove our main result in this section.
Proof of Lemma 4.3.2: Let 𝐸0, 𝐸1, . . . , 𝐸𝑛0 be a random walk on the (2𝑑0 , 𝑞, 𝜆 =

1/6)-expander graph 𝐺. Recall, that 𝑛0 represents the number of subblocks in each
block of x. For a string p ∈ {0, 1}ℓ and a fixed 𝑗 ∈ [𝑛0], define the set 𝐴p

𝑗
, 𝑗 ∈ [𝑛0]

to be the set of vertices in𝐺 such that for any vertex s′ in this set, the sequence u1, 𝑗+s′

does not contain p. Then according to Claim 4.9.1, we have that 𝛼𝑖 = |𝐴p
𝑗
|/𝑛 ≤ 1/3.

From Lemma 4.9.2, the probability that 𝐸 𝑗 ∈ 𝐴
p
𝑗
, i.e., 𝐸 𝑗 + u1, 𝑗 does not contain p,

for all 𝑗 ∈ [𝑛0] is at most

(1/3 + 1/6)𝑛0 = (1/2)𝑂 (log 𝑛) = 1/𝑝𝑜𝑙𝑦(𝑚).

Let 𝑔′(s) = (𝐸1, . . . , 𝐸𝑛0). Recall that s is the length 𝑂 (log𝑚) random seed that
generates the random walk 𝐸0, 𝐸1, . . . , 𝐸𝑛0 . Then the probability that u1 + 𝑔′(s)
does not contain p is at most 1/𝑝𝑜𝑙𝑦(𝑚). Similarly, u𝑖 + 𝑔′(s), 𝑖 ∈ [𝑛] does not
contain p with probability at most 1/𝑝𝑜𝑙𝑦(𝑚). Hence from the union bound, the
probability that there exists a block u𝑖 such that u𝑖 + 𝑔′(s) does not contain p for
some 𝑖 ∈ [𝑛] and some p ∈ {0, 1}ℓ is upper bounded by

2ℓ𝑛/𝑝𝑜𝑙𝑦(𝑚) = 1/𝑝𝑜𝑙𝑦(𝑚)

by choosing 𝑛0 to be sufficiently large enough.

Let 𝑔(s) be the 𝑛 = 𝑚/𝑑-fold repetition of 𝑔′(s). Then we conclude that u ⊕ 𝑔(s)
belongs to M(𝑚, 𝑘) with probability 1 − 1/𝑝𝑜𝑙𝑦(𝑚). Thus, it suffices to search
in 2𝑂 (log𝑚) = 𝑝𝑜𝑙𝑦(𝑚) time for a seed s with length 𝑂 (log𝑚) such that u + 𝑔(s) ∈
M(𝑚, 𝑘). This completes the proof. ■

We now proceed to the proof of Corollary 4.3.1.

Proof. (of Corollary 4.3.1) The proof is similar to that of Lemma 4.3.2. By The-
orem 4.3.1, it suffices to show that u ∈ M(𝑛, 𝑘) with high probability. For any
sequence p ∈ {0, 1}ℓ and integers 𝑖 and 𝑗 such that 𝑖 + 𝑗 − 1 ≤ 𝑛, let 𝐴(p, 𝑖, 𝑗) be the
event that u𝑖, . . . , u𝑖+ 𝑗−1 does not contain p, where ℓ = ⌈log 𝑘 + log log(𝑘 + 1) + 5⌉
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is given in the definition of M(𝑛, 𝑘). According to Claim 4.9.1, the probability
of 𝐴(p, 𝑖, 𝑑0) is at most 1/3 for sufficiently large 𝑑0 = 𝑂 (𝑘 log2 𝑘) and for any p
and 𝑖 ∈ [𝑛 − 𝑑 + 1]. Hence the probability of 𝐴(p, 𝑖, 𝑑0𝑛0), where 𝑛0 = 𝑂 (log 𝑛), is
at most (1/3)𝑛0 = 1/𝑝𝑜𝑙𝑦(𝑛) for any p and 𝑖 ∈ [𝑛 − 𝑑0𝑛0 + 1].

Then by the union bound, the probability of ∪p∈{0,1}ℓ ,𝑖∈[𝑛−𝑑0𝑛0+1] is upper bounded
by 2ℓ𝑛/𝑝𝑜𝑙𝑦(𝑛), which is 1/𝑝𝑜𝑙𝑦(𝑛) for sufficiently large 𝑛0. Therefore, the prob-
ability that u ∉ M(𝑛, 𝑘) is at most 1/𝑝𝑜𝑙𝑦(𝑛), which goes to zero as 𝑛 grows to
infinity. Thus the corollary is proved. □
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C h a p t e r 5

CODING OVER SETS FOR DNA STORAGE: SUBSTITUTION
ERRORS

In this chapter, we study codes over unordered sets of sequences, that correct
substitution errors.

5.1 Introduction
In the model of coding over sets, the data to be stored is encoded as a set of 𝑀 strings
of length 𝐿 over a certain alphabet, for some integers 𝑀 and 𝐿 such that 𝑀 < 2𝐿;
typical values for 𝑀 and 𝐿 are currently within the order of magnitude of 107 and 102,
respectively [73]. Each individual string is subject to various types of errors, such
as deletions (i.e., omissions of symbols, which result in a shorter string), insertions
(which result in a longer string), and substitutions (i.e., replacements of one symbol
by another).

One of the reasons for error correction is that errors in synthesis might cause
the PCR process to amplify a string that was written erroneously, and hence the
reconstructed origins might include this erroneous string. In some cases, error
correction after synthesis is possible, and yet our model in this chapter is most
suitable for substitution errors that were amplified by the PCR process. Deletions
and insertions will be discussed in the next chapter. The work in [62] provided a
scheme that efficiently corrects a single deletion, which is easier to handle since a
single deletion only results a change in the sequence length. Substitution errors,
however, are more challenging to combat, and are discussed next.

A substitution error that occurs prior to amplification by PCR can induce either one
of two possible error patterns. In one, the newly created string already exists in the
set of strings, and hence, the reconstructed origins will constitute a set of 𝑀 − 1
strings. In the other, which is undetectable by counting the size of the set of
reconstructed origins, the substitution generates a string which is not equal to any
other string in the set. In this case the output set has the same size as the error free
one. These error patterns, which are referred to simply as substitutions, are the main
focus of this chapter.

Following a formal definition of the channel model in Sec. 5.2, previous work is
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discussed in Sec. 5.3. Upper and lower bounds on the amount of redundant bits that
are required to combat substitutions are given in Sec. 5.4. In Sec. 5.5 we provide a
construction of a code that can correct a single substitution. The redundancy of this
construction is shown to be optimal up to some constant, which is later improved in
Appendix 5.8. In Sec. 5.6 the construction for a single substitution is generalized to
multiple substitutions, and is shown to be order-wise optimal whenever the number
of substitutions is a constant. Finally, open problems for future research are discussed
in Sec. 5.7.

Remark 5.1.1. The channel which is discussed in this chapter can essentially be
seen as taking a string of a certain length 𝑁 as input. Then, during transmission,
the string is sliced into substrings of equal length, and each substring is subject to
substitution errors in the usual sense. Moreover, the order between the slices is lost
during transmission, and they arrive as an unordered set.

It follows from the sphere-packing bound [79, Sec. 4.2] that without the slicing op-
eration, one must introduce at least 𝑘 log(𝑁) redundant bits at the encoder in order
to combat 𝑘 substitutions. The surprising result of this chapter is that the slicing
operation does not incur a substantial increase in the amount of redundant bits that
are required to correct these 𝑘 substitutions. In the case of a single substitution,
our codes attain an amount of redundancy that is asymptotically equivalent to the
ordinary (i.e., unsliced) channel, whereas for a larger number of substitutions we
come close to that, but prove that a comparable amount of redundancy is achievable.

5.2 Preliminaries
To discuss the problem in its most general form and illustrate the ideas, we restrict our
attention to binary strings. Most of the techniques in this chapter can be extended to
non-binary cases. Generally, we denote scalars by lower-case letters 𝑥, 𝑦, . . ., vectors
by bold symbols x, y, . . ., integers by capital letters 𝑘, 𝐿, . . ., and [𝑘] ≜ {1, 2, . . . , 𝑘}.
For integers 𝑀 and 𝐿 such that1 𝑀 ≤ 2𝐿 we denote by

({0,1}𝐿
𝑀

)
the family of all

subsets of size 𝑀 of {0, 1}𝐿 , and by
({0,1}𝐿

≤𝑀
)

the family of subsets of size at most 𝑀
of {0, 1}𝐿 . In our channel model, a word is an element 𝑊 ∈

({0,1}𝐿
𝑀

)
, and a

code C ⊆
({0,1}𝐿

𝑀

)
is a set of words (for clarity, we refer to words in a given code

as codewords). To prevent ambiguity with classical coding theoretic terms, the
elements in a word 𝑊 = {x1, . . . , x𝑀} are referred to as strings. We emphasize

1We occasionally also assume that 𝑀 ≤ 2𝑐𝐿 for some 0 < 𝑐 < 1. This is in accordance with
typical values of 𝑀 and 𝐿 in contemporary DNA storage prototypes (see Sec. 5.1).
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that the indexing in 𝑊 is merely a notational convenience, e.g., by the lexicographic
order of the strings, and this information is not available at the decoder.

For 𝑘 ≤ 𝑀𝐿, a 𝑘-substitution error (𝑘-substitution, in short), is an operation that
changes the values of at most 𝑘 different positions in a word. Notice that the result
of a 𝑘-substitution is not necessarily an element of

({0,1}𝐿
𝑀

)
, and might be an element

of
({0,1}𝐿

𝑇

)
for some 𝑀 − 𝑘 ≤ 𝑇 ≤ 𝑀 . This gives rise to the following definition.

Definition 5.2.1. For a word𝑊 ∈
({0,1}𝐿

𝑀

)
, a ballB𝑘 (𝑊) ⊆ ⋃𝑀

𝑗=𝑀−𝑘
({0,1}𝐿

𝑗

)
centered

at𝑊 is the collection of all subsets of {0, 1}𝐿 that can be obtained by a 𝑘-substitution
in 𝑊 .

Example 5.2.1. For 𝑀 = 2, 𝐿 = 3, 𝑘 = 1, and 𝑊 = {001, 011}, we have that

B𝑘 (𝑊) = {{001, 011}, {101, 011}, {011}, {000, 011},
{001, 111}, {001}, {001, 010}}.

In this chapter, we discuss bounds and constructions of codes in
({0,1}𝐿

𝑀

)
that can

correct 𝑘 substitutions (𝑘-substitution codes, for short), for various values of 𝑘 . The
size of a code, which is denoted by |C|, is the number of codewords (that is, sets) in
it. The redundancy of the code, a quantity that measures the amount of redundant
information that is to be added to the data to guarantee successful decoding, is
defined as 𝑟 (C) ≜ log

(2𝐿

𝑀

)
− log( |C|), where the logarithms are in base 2.

A codeC is used in our channel as follows. First, the data to be stored (or transmitted)
is mapped by a bijective encoding function to a codeword 𝐶 ∈ C. This codeword
passes through a channel that might introduce up to 𝑘 substitutions, and as a result
a word 𝑊 ∈ B𝑘 (𝐶) is obtained at the decoder. In turn, the decoder applies some
decoding function to extract the original data. The code C is called a 𝑘-substitution
code if the decoding process always recovers the original data successfully. Having
settled the channel model, we are now in a position to formally state our contribution.

Theorem 5.2.1. (Main) For any integers 𝑀 , 𝐿, and 𝑘 such that 𝑀 ≤ 2𝐿/(4𝑘+2) , there
exists an explicit code construction with redundancy 𝑂 (𝑘2 log(𝑀𝐿))2 (Sec. 5.6).
For 𝑘 = 1, the redundancy of this construction is asymptotically at most six times
larger than the optimal one (Sec. 5.5), when 𝐿 goes to infinity and 𝑀 ≥ 4. Further-
more, an improved construction for 𝑘 = 1 achieves redundancy which is asymptot-

2Throughout this chapter, we write 𝑔(𝑛) = 𝑂 ( 𝑓 (𝑛)) for any functions 𝑓 , 𝑔 : N → R and
integer 𝑛, if lim sup𝑛→∞

𝑔 (𝑛)
𝑓 (𝑛) < ∞.



135

ically at most three times the optimal one (Appendix 5.8), when 𝐿 goes to infinity
and 4 ≤ 𝑀 ≤ 2𝐿/4.

Remark 5.2.1. We note that under the current technology restriction, our code
constructions apply to a limited parameter range. For example, when 𝑘 = 1 and
𝐿 = 100, our code requires that 𝑀 ≤ 105. The upper bound constraint on 𝑀 is
more strict as 𝑘 increases. Yet, our constructions provide the following insights.

First, as the technology advances, it is reasonable to hope that the error rate will
decrease and the synthesis length 𝐿 will increase, in which case we have smaller 𝑘
and larger 𝐿. As 𝑘 gets smaller, the range of 𝑀 increases exponentially with 𝐿.

Second, while 𝐿 is limited under current technology, the number of strings 𝑀 can
be more freely chosen. One can get smaller 𝑀 by storing information in more 𝐷𝑁𝐴

pools.

Third, the application of this work is not limited to DNA storage. Our techniques
apply to other cases such as network packet transmission.

A few auxiliary notions are used throughout this chapter, and are introduced herein.
For two strings s, t ∈ {0, 1}𝐿 , the Hamming distance 𝑑𝐻 (s, t) is the number of entries
in which they differ. To prevent confusion with common terms, a subset of {0, 1}𝐿

is called a vector-code, and the set B𝐻
𝐷
(s) of all strings within Hamming distance 𝐷

or less of a given string s is called the Hamming ball of radius 𝐷 centered at s. A
linear vector code is called an [𝑛, 𝑘]𝑞 code if the strings in it form a subspace of
dimension 𝑘 in F𝑛𝑞, where F𝑞 is the finite field with 𝑞 elements.

Several well-known vector-codes are used in the sequel, such as Reed-Solomon codes
or Hamming codes. For an integer 𝑡, the Hamming code is an [2𝑡 − 1, 2𝑡 − 𝑡 − 1]2

code (i.e., there are 𝑡 redundant bits in every codeword), and its minimum Hamming
distance is 3. Reed-Solomon (RS) codes over F𝑞 exist for every length 𝑛 and
dimension 𝑘 , as long as 𝑞 ≥ 𝑛− 1 [79, Sec. 5], and require 𝑛− 𝑘 redundant symbols
in F𝑞. Whenever 𝑞 is a power of two, RS codes can be made binary by representing
each element of F𝑞 as a binary string of length log2(𝑞). In the sequel we use this
form of RS code, which requires log(𝑛) (𝑛 − 𝑘) redundant bits.

Finally, our encoding algorithms make use of combinatorial numbering maps [53],
that are functions that map a number to an element in some structured set. Specif-
ically, 𝐹𝑐𝑜𝑚 : [

(𝑁
𝑀

)
] → {𝑆 : 𝑆 ⊂ [𝑁], |𝑆 | = 𝑀} maps a number to a set of distinct

elements, and 𝐹𝑝𝑒𝑟𝑚 : [𝑁!] → 𝑆𝑁 maps a number to a permutation in the symmetric
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group 𝑆𝑁 . The function 𝐹𝑐𝑜𝑚 can be computed using a greedy algorithm with com-
plexity 𝑂 (𝑀𝑁 log 𝑁), and the function 𝐹𝑝𝑒𝑟𝑚 can be computed in a straightforward
manner with complexity 𝑂 (𝑁 log 𝑁). Using 𝐹𝑐𝑜𝑚 and 𝐹𝑝𝑒𝑟𝑚 together, we define a
map 𝐹 : [

(𝑁
𝑀

)
𝑀!] → {𝑆 : 𝑆 ⊂ [𝑁], |𝑆 | = 𝑀} × 𝑆𝑀 that maps a number into an

unordered set of size 𝑀 together with a permutation.

5.3 Previous Work
The idea of manipulating atomic particles for engineering applications dates back
to the 1950s, with R. Feynman’s famous citation, “There’s plenty of room at the
bottom” [31]. The specific idea of manipulating DNA molecules for data storage
as been circulating the scientific community for a few decades, and yet it was not
until 2012–2013 where two prototypes have been implemented [24, 36]. These
prototypes have ignited the imagination of practitioners and theoreticians alike, and
many works followed suit with various implementations and channel models [14,
32, 46, 52, 77, 99].

By and large, all practical implementations to this day follow the aforementioned
channel model, in which multiple short strings are stored inside a solution. Normally,
deletions and insertions are also taken into account, but substitutions were found
to be the most common form of errors [73, Fig. 3.b], and strings that were subject
to insertions and deletions are scarcer, and some of them can be corrected using
clustering and sequence reconstruction algorithms.

The channel model in this work has been studied by several authors in the past.
The work of [46] addressed this channel model under the restriction that individual
strings are read in an error-free manner, and some strings might get lost as a result
of random sampling of the DNA pool. In their techniques, the strings in a codeword
are appended with an indexing prefix, a solution already incurs Θ(𝑀) redundant
bits, or log(𝑒)𝑀 − 𝑜(1) redundancy [62, Remark 1], and will be shown to be strictly
sub-optimal in our case. Such index based construction was also considered in [61]
and [83], which attempted to correct errors in the index.

In a different setting, where substitution errors occur probabilistically and the de-
coding error fades with 𝑀 and 𝐿, using indexing prefix was proved asymptotically
optimal in terms of coding rate [85]. The indexing prefix technique was also studied
in an adversarial setting under substitution errors [61, 83], where codes correcting
errors in the indexing prefix were proposed.

The recent work of [62] addressed this model under a bounded number of substitu-



137

tions, deletions, and insertions per string. When discussing substitutions only, [62]
suggested a code construction for 𝑘 = 1 with 2𝐿 + 1 bits of redundancy. Further-
more, by using a reduction to constant Hamming weight vector-codes, it is shown
that there exists a code that can correct 𝑒 errors in each one of the 𝑀 sequences with
redundancy 𝑀𝑒 log(𝐿 + 1).

The work of [89] studied a more generalized model, where in addition to substitution
errors, insertions/deletions of strings were considered. A distance called sequence-
subset distance was defined, and upper bounds and constructions were presented
based on the sequence-subset distance. When considering only substitution errors,
the upper bounds deal with cases where the number of errors is at least a fraction
of 𝐿.

The work of [54] addressed a similar model, where multisets are received at the
decoder, rather than sets. In addition, errors in the stored strings are not seen in a
fine-grained manner. That is, any set of errors in an individual string is counted
as a single error, regardless of how many substitutions, insertions, or deletions it
contains. As a result, the specific structure of {0, 1}𝐿 is immaterial, and the problem
reduces to decoding histograms over an alphabet of a certain size.

The specialized reader might suggest the use of fountain codes, such as the LT [68]
codes or Raptor [84] codes. However, we stress that these solutions rely on random-
ness at much higher redundancy rates, whereas this work aims for a deterministic
and rigorous solution at redundancy which is close to optimal.

Finally, we also mention the permutation channel [55, 58, 96], which is similar to
our setting, and yet it is farther away in spirit than the aforementioned works. In
that channel, a vector over a certain alphabet is transmitted, and its symbols are
received at the decoder under a certain permutation. If no restriction is applied over
the possible permutations, than this channel reduces to multiset decoding, as in [54].
This channel is applicable in networks in which different packets are routed along
different paths of varying lengths, and are obtained in an unordered and possibly
erroneous form at the decoder. Yet, this line of works is less relevant to ours,
and to DNA storage in general, since the specific error pattern in each “symbol”
(which corresponds to a string in {0, 1}𝐿 in our case) is not addressed, and perfect
knowledge of the number of appearances of each “symbol” is assumed.
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5.4 Bounds
In this section we use sphere packing arguments in order to establish an existence
result of codes with low redundancy, and a lower bound on the redundancy of any 𝑘-
substitution code. The latter bound demonstrates the asymptotic optimality of the
construction in Sec. 5.5 for 𝑘 = 1, up to constants. Our techniques rely on upper and
lower bounds on the size of the ball B𝑘 (Definition 5.2.1), which are given below.
However, since our measure for distance is not a metric, extra care is needed when
applying sphere-packing arguments. We begin with the existential upper bound in
Subsection 5.4, continue to provide a lower bound for 𝑘 = 1 in Subsection 5.4, and
extend this bound to larger values of 𝑘 in Subsection 5.4.

Existential upper bound
In this subsection, let 𝑘 , 𝑀 , and 𝐿 be positive integers such that 𝑘 ≤ 𝑀𝐿 and 𝑀 ≤ 2𝐿 .
The subsequent series of lemmas will eventually lead to the following upper bound.

Theorem 5.4.1. There exists a 𝑘-substitution code C ⊆
({0,1}𝐿

𝑀

)
such that 𝑟 (C) ≤

2𝑘 log(𝑀𝐿) + 2.

We begin with a simple upper bound on the size of the ball B𝑘 .

Lemma 5.4.1. For every word𝑊 = {x𝑖}𝑀𝑖=1 ∈
({0,1}𝐿

𝑀

)
and every positive integer 𝑘 ≤

𝑀𝐿, we have that |B𝑘 (𝑊) | ≤ ∑𝑘
ℓ=0

(𝑀𝐿
ℓ

)
.

Proof. Every word in B𝑘 (𝑊) is obtained by flipping the bits in x𝑖 that are indexed
by some 𝐽𝑖 ⊆ [𝐿], for every 𝑖 ∈ [𝑀], where

∑𝑀
𝑖=1 |𝐽𝑖 | ≤ 𝑘 . Clearly, there are at

most
∑𝑘

ℓ=0
(𝑀𝐿

ℓ

)
ways to choose the index sets {𝐽𝑖}𝑀𝑖=1. □

For 𝑊 ∈
({0,1}𝐿

≤𝑀
)

let R𝑘 (𝑊) be the set of all words 𝑈 ∈
({0,1}𝐿

𝑀

)
such that 𝑊 ∈

B𝑘 (𝑈). That is, for a channel output 𝑊 , the set R𝑘 (𝑊) contains all potential
codewords 𝑈 whose transmission through the channel can result in 𝑊 , given that at
most 𝑘 substitutions occur. Further, for 𝑊 ∈

({0,1}𝐿
𝑀

)
define the confusable set of 𝑊

as G𝑘 (𝑊) ≜ ∪𝑊 ′∈B𝑘 (𝑊)R𝑘 (𝑊′). It is readily seen that the words in the confusable
set G𝑘 (𝑊) of a word 𝑊 cannot reside in the same 𝑘-substitution code as 𝑊 , and
therefore we have the following lemma.

Lemma 5.4.2. For every 𝑘 , 𝑀 , and 𝐿 such that 𝑘 ≤ 𝑀𝐿 and 𝑀 ≤ 2𝐿 there exists
a 𝑘-substitution code C such that

|C| ≥
⌊ (2𝐿

𝑀

)
𝐷

⌋
, where
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𝐷 ≜ max
𝑊∈( {0,1}𝐿𝑀 )

|G𝑘 (𝑊) |.

Proof. Initialize a list P =
({0,1}𝐿

𝑀

)
, and repeat the following process.

1. Choose 𝑊 ∈ P.

2. Remove G𝑘 (𝑊) from P.

Clearly, the resulting code C is of the aforementioned size. It remains to show that C
corrects 𝑘 substitutions, i.e., that B𝑘 (𝐶) ∩ B𝑘 (𝐶′) = ∅ for every distinct 𝐶,𝐶′ ∈ C.
Recall Definition 5.2.1 that B𝑘 (𝐶) can be obtained by substitution any 𝑘 symbols
in strings of word 𝐶.

Assume for contradiction that there exist distinct 𝐶,𝐶′ ∈ C and 𝑉 ∈
({0,1}𝐿

≤𝑀
)

such
that 𝑉 ∈ B𝑘 (𝐶) ∩ B𝑘 (𝐶′), and w.l.o.g assume that 𝐶 was chosen earlier than 𝐶′ in
the above process. Since 𝑉 ∈ B𝑘 (𝐶), it follows that R𝑘 (𝑉) ⊆ G𝑘 (𝐶). In addition,
since𝑉 ∈ B𝑘 (𝐶′), it follows that𝐶′ ∈ R𝑘 (𝑉). Therefore, a contradiction is obtained,
since 𝐶′ is in G𝑘 (𝐶), that was removed from the list P when 𝐶 was chosen. □

Lemma 5.4.3. For an nonnegative integer 𝑇 ≤ 𝑘 and 𝑊 ∈
({0,1}𝐿
𝑀−𝑇

)
we have

that |R𝑘 (𝑊) | ≤ 2(2𝑀𝐿)𝑘 .

Proof. Denote 𝑊 = {y1, . . . , y𝑀−𝑇 } and let 𝑈 ∈ R𝑘 (𝑊). Notice that by the
definition of R𝑘 (𝑊), there exists a 𝑘-substitution operation which turns 𝑈 to 𝑊 .
Therefore, every y𝑖 in 𝑊 is a result of a certain nonnegative number of substitutions
in one or more strings in 𝑈. Hence, we denote by z1

1, . . . , z
1
𝑖1

the strings in 𝑈

that resulted in y1 after the 𝑘-substitution operation, we denote by z2
1, . . . , z

2
𝑖2

the
strings which resulted in y2, and so on, up to z𝑀−𝑇

1 , . . . , z𝑀−𝑇
𝑖𝑀−𝑇

, which resulted
in y𝑀−𝑇 . Therefore, since 𝑈 = ∪𝑀−𝑇

𝑗=1 {z 𝑗

1, . . . , z
𝑗

𝑖 𝑗
}, it follows that there exists a
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set L ⊆ [𝑀] × [𝐿], of size at most 𝑘 , such that

©«

z1
1
...

z1
𝑖1

z2
1
...

z𝑀−𝑇−1
𝑖𝑀−𝑇−1

z𝑀−𝑇
1
...

z𝑀−𝑇
𝑖𝑀−𝑇

ª®®®®®®®®®®®®®®®®®®®¬

=

©«

y1
...

y1

y2
...

y𝑀−𝑇−1

y𝑀−𝑇
...

y𝑀−𝑇

ª®®®®®®®®®®®®®®®®®®®¬

(L)

, (5.1)

where (·) (L) is a matrix operator, which corresponds to flipping the bits that are
indexed by L in the matrix on which it operates. In what follows, we bound the
number of ways to choose L, which will consequently provide a bound on |R𝑘 (𝑊) |.
Note that the number of ways to choose L is summed over all possible tuples
(𝑖1, . . . , 𝑖𝑀−𝑇 ).

First, define P = {𝑝 : 𝑖𝑝 > 1}, and denote 𝑃 ≜ |P |. Therefore, since
∑𝑀−𝑇

𝑗=1 𝑖 𝑗 = 𝑀 ,
it follows that ∑︁

𝑝∈P
𝑖𝑝 =

𝑀−𝑇∑︁
𝑗=1

𝑖 𝑗 −
∑︁
𝑗∉P

𝑖 𝑗

=𝑀 − (𝑀 − 𝑇 − 𝑃)
=𝑇 + 𝑃. (5.2)

Second, notice that for every 𝑝 ∈ P, the set {z𝑝1 , . . . , z
𝑝

𝑖𝑝
} contains 𝑖𝑝 different

strings. Hence, since after the 𝑘-substitution operation they are all equal to y𝑝, it
follows that at least 𝑖𝑝 − 1 of them must undergo at least one substitution. Clearly,
there are

( 𝑖𝑝
𝑖𝑝−1

)
= 𝑖𝑝 different ways to choose who will these 𝑖𝑝 − 1 strings be, and

additional 𝐿𝑖𝑝−1 different ways to determine the locations of the substitutions, and
therefore 𝑖𝑝 · 𝐿𝑖𝑝−1 ways to choose these 𝑖𝑝 − 1 substitutions.

Third, notice that

𝑘 −
∑︁
𝑝∈P

(𝑖𝑝 − 1) =𝑘 −
∑︁
𝑝∈P

𝑖𝑝 + 𝑃

(5.2)
= 𝑘 − 𝑇, (5.3)
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and hence, there are at most 𝑘 − 𝑇 remaining positions to be chosen to L, after
choosing the 𝑖𝑝 − 1 positions for every 𝑝 ∈ P as described above.

Now, let I be the set of all tuples (𝑖1, . . . , 𝑖𝑀−𝑇 ) of positive integers that sum to 𝑀

(whose size is
( 𝑀−1
𝑀−𝑇−1

)
by the famous stars and bars theorem). Let 𝑁 : I → N be

a function which maps (𝑖1, . . . , 𝑖𝑀−𝑇 ) ∈ I to the number of different 𝑈 ∈ R𝑘 (𝑊)
for which there exist L ⊆ [𝑀] × [𝐿] of size at most 𝑘 such that (5.1) is satisfied.
Since this quantity is at most the number of ways to choose a suitable L, the above
arguments demonstrate that

𝑁 (𝑖1, . . . , 𝑖𝑀−𝑇 ) ≤
(
𝑀𝐿

𝑘 − 𝑇

) ∏
𝑝∈P

𝑖𝑝𝐿
𝑖𝑝−1.

Then, we have

|R𝑘 (𝑊) | ≤
∑︁
I

𝑁 (𝑖1, . . . , 𝑖𝑀−𝑇 )

≤
∑︁
I

(
𝑀𝐿

𝑘 − 𝑇

) ∏
𝑝∈P

𝑖𝑝𝐿
𝑖𝑝−1

≤
∑︁
I
(𝑀𝐿)𝑘−𝑇𝐿

∑
𝑝 (𝑖𝑝−1)

∏
𝑝∈P

𝑖𝑝

(5.3)
≤

∑︁
I
(𝑀𝐿)𝑘−𝑇𝐿𝑇

∏
𝑝∈P

𝑖𝑝 . (5.4)

Since the geometric mean of positive numbers is always less than the arithmetic

one, we have
(∏

𝑝∈P 𝑖𝑝

)1/𝑃
≤ 1

𝑃

∑
𝑝∈P 𝑖𝑝, and hence,

(5.4) ≤
∑︁
I
(𝑀𝐿)𝑘−𝑇𝐿𝑇

(∑
𝑝 𝑖𝑝

𝑃

)𝑃
(5.2)
≤

∑︁
I
(𝑀𝐿)𝑘−𝑇𝐿𝑇 ((𝑇 + 𝑃)/𝑃)𝑃

≤
(

𝑀 − 1
𝑀 − 𝑇 − 1

)
(𝑀𝐿)𝑘−𝑇𝐿𝑇 ((𝑇 + 𝑃)/𝑃)𝑃

≤
(
𝑀

𝑇

)
(𝑀𝐿)𝑘−𝑇𝐿𝑇 ((𝑇 + 𝑃)/𝑃)𝑃

≤ (𝑀𝐿)𝑘−𝑇 (𝑀𝐿)𝑇 ((𝑇 + 𝑃)/𝑃)𝑃

≤ (𝑀𝐿)𝑘 ((𝑇 + 𝑃)/𝑃)𝑃

(𝑎)
≤ (𝑀𝐿)𝑘2𝑇

≤ (2𝑀𝐿)𝑘 , (5.5)

where (𝑎) will be proved in Appendix 5.9. □
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Proof. (of Theorem 5.4.1) It follows from Lemma 5.4.1, Lemma 5.4.3, and from
the definition of 𝐷 that

𝐷 ≤ max
𝑊∈( {0,1}𝐿𝑀 )

|B𝑘 (𝑊) | · max
𝑊∈( {0,1}𝐿𝑀 )

|R𝑘 (𝑊) |

≤
(

𝑘∑︁
ℓ=0

(
𝑀𝐿

ℓ

))
(2𝑀𝐿)𝑘 .

Therefore, the code C that is constructed in Lemma 5.4.2 satisfies

𝑟 (C) ≤ log
(
2𝐿

𝑀

)
− log |C|

≤ log

((
𝑘∑︁

ℓ=0

(
𝑀𝐿

ℓ

))
(2𝑀𝐿)𝑘

)
= log

(
𝑘∑︁

ℓ=0

(
𝑀𝐿

ℓ

))
+ 𝑘 (log(𝑀𝐿) + 1)

≤ log
(
𝑘

(
𝑀𝐿

𝑘

))
+ 𝑘 (log(𝑀𝐿) + 1)

≤
(
log(𝑘) − log(𝑘!) + log(𝑀𝐿𝑘 )

)
+ 𝑘 (log(𝑀𝐿) + 1)
≤ 2𝑘 log(𝑀𝐿) + 2. □

Lower bound for a single substitution code
Notice that the bound in Lemma 5.4.1 is tight, e.g., in cases where 𝑑𝐻 (x𝑖, x 𝑗 ) ≥ 2𝑘+1
for all distinct 𝑖, 𝑗 ∈ [𝑀]. This might occur only if 𝑀 is less than the maximum
size of a 𝑘-substitution correcting vector-code, i.e., when 𝑀 ≤ 2𝐿/(∑𝑘

𝑖=0
(𝐿
𝑖

)
) [79,

Sec. 4.2]. When the minimum Hamming distance between the strings in a codeword
is not large enough, different substitution errors might result in identical words, and
the size of the ball is smaller than the given upper bound. This is illustrated in the
following example.

Example 5.4.1. For 𝐿 = 3 and 𝑀 = 2, consider the word 𝑊 = {010, 011}. By
flipping either the two underlined symbols, or the two bold symbols, the word 𝑊′ =

{010, 110} is obtained. Hence, different substitution operations might result in
identical words. As a result, the size of the ball

B2(𝑊) = {{010, 011}, {110, 011}, {000, 011}, {011},
{010, 111}, {010, 001}, {010}, {100, 011},
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{111, 011}, {110, 111}, {110, 001}, {110, 010},
{001, 011}, {000, 111}, {000, 001}, {000, 010},
{010, 101}}

is 17, which is smaller than the upper bound of the B2(𝑊) ball size
(𝑀𝐿

0
)
+

(𝑀𝐿
1

)
+(𝑀𝐿

2
)
= 22.

However, in some cases it is possible to bound the size of B𝑘 from below by using
tools from Fourier analysis of Boolean functions. In the following it is assumed that
that 𝑘 = 1. A word 𝑊 ∈

({0,1}𝐿
𝑀

)
corresponds to a Boolean function 𝑓𝑊 : {±1}𝐿 →

{±1} as follows. For x ∈ {0, 1}𝐿 let x ∈ {±1}𝐿 be the vector which is obtained
from x be replacing every 0 by 1 and every 1 by −1. Then, we define 𝑓𝑊 (x) = −1
if x ∈ 𝑊 , and 1 otherwise. Considering the set {±1}𝐿 as the hypercube graph3,
the boundary 𝜕 𝑓𝑊 of 𝑓𝑊 is the set of all edges {x1, x2} ∈

({±1}𝐿
2

)
in this graph such

that 𝑓𝑊 (x1) ≠ 𝑓𝑊 (x2).

Lemma 5.4.4. For every word 𝑊 ∈
({0,1}𝐿

𝑀

)
we have that |B1(𝑊) | ≥ |𝜕 𝑓𝑊 | + 1.

Proof. Let 𝑊 = {x1, . . . , x𝑀} be a word. Every edge 𝑒 = {x𝑖, x′} on the boundary
of 𝑓𝑊 corresponds to a substitution operation in x𝑖 from𝑊 that results in a word𝑊𝑒 =

{x1, . . . , x𝑖−1, x′, x𝑖+1, . . . , x𝑀} ∈ (B1(𝑊)\{𝑊}) ∩
({0,1}𝐿

𝑀

)
. To show that every

edge 𝑒 on the boundary corresponds to a unique word 𝑊𝑒 in B1(𝑊), assume for
contradiction that 𝑊𝑒 = 𝑊𝑒′ for two distinct edges 𝑒 = {x1, x2} and 𝑒′ = {y1, y2},
where x1, y1 ∈ 𝑊 and x2, y2 ∉ 𝑊 . Since both 𝑊𝑒 and 𝑊𝑒′ contain precisely one
element which is not in 𝑊 , and are missing one element which is in 𝑊 , it follows
that x1 = y1 and x2 = y2, a contradiction. Therefore, there exists an injective
mapping between the boundary of 𝑓𝑊 and B1(𝑊)\{𝑊}, and the claim follows. □

Notice that the bound in Lemma 5.4.4 is tight, e.g., in cases where the minimum
Hamming distance between the strings of 𝑊 is at least 2. This implies the tightness
of the bound which is given below in these cases. Having established the connection
betweenB1(𝑊) and the boundary of 𝑓𝑊 , the following Fourier analytic claim will aid
in proving a lower bound. Let the total influence of 𝑓𝑊 be 𝐼 ( 𝑓𝑊 ) ≜ ∑𝐿

𝑖=1 Prx( 𝑓𝑊 (x) ≠
𝑓𝑊 (x⊕𝑖)), where x⊕𝑖 is obtained from x by changing the sign of the 𝑖-th entry, and x
is chosen uniformly at random.

3The nodes of the hypercube graph of dimension 𝐿 are identified by {±1}𝐿 , and every two nodes
are connected if and only if the Hamming distance between them is 1.
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Lemma 5.4.5. [72, Theorem 2.39] For every function 𝑓 : {±1}𝐿 → R, we have
that 𝐼 ( 𝑓 ) ≥ 2𝛼 log(1/𝛼), where 𝛼 = 𝛼( 𝑓 ) ≜ min{Prx( 𝑓 (x) = 1), Prx( 𝑓 (x) = −1)},
and x ∈ {±1}𝐿 is chosen uniformly at random.

Lemma 5.4.6. Let 𝐿 and 𝑀 be integers such that 𝑀 ≤ 2(1−𝜖)𝐿 and 𝐿 > 1
𝜖

for
some 0 < 𝜖 < 1. For every word 𝑊 ∈

({0,1}𝐿
𝑀

)
we have that |𝜕 𝑓𝑊 | ≥ 𝜖𝑀𝐿.

Proof. Since 𝑀 ≤ 2(1−𝜖)𝐿 and 𝛼 = 𝛼( 𝑓𝑊 ) = min{(2𝐿 − 𝑀)/2𝐿 , 𝑀/2𝐿}, it follows
that 𝛼 = 𝑀/2𝐿 whenever 𝐿 > 1

𝜖
, which holds for every non-constant 𝐿. In addition,

since Prx( 𝑓𝑊 (x) ≠ 𝑓𝑊 (x⊕𝑖)) equals the fraction of dimension 𝑖 edges that lie on the
boundary of 𝑓𝑊 ([O’Donnell]), Lemma 5.4.4 implies that

𝐼 ( 𝑓𝑊 ) = |𝜕 𝑓𝑊 |
2𝐿−1 .

Therefore, since 𝑀 ≤ 2(1−𝜖)𝐿 and from Lemma 5.4.5 we have that |𝜕 𝑓𝑊 | =

2𝐿−1𝐼 ( 𝑓𝑊 ) ≥ 2𝐿𝛼 log(1/𝛼) = 𝑀 log(2𝐿/𝑀) ≥ 𝜖𝑀𝐿. □

Corollary 5.4.1. For integers 𝐿 and 𝑀 and a constant 0 < 𝜖 < 1 such that 𝑀 ≤
2(1−𝜖)𝐿 and 𝐿 > 1

𝜖
, any 1-substitution code C ⊆

({0,1}𝐿
𝑀

)
satisfies that 𝑟 (C) ≥

log(𝑀𝐿) − log 1/𝜖 .

Proof. According to Lemma 5.4.4 and Lemma 5.4.6, every codeword of every C
excludes at least 𝜖𝑀𝐿 other words from belonging to C. Hence, we have that
|C| ≤

(2𝐿

𝑀

)
/𝜖𝑀𝐿, and by the definition of redundancy, it follows that

𝑟 (C) = log
(
2𝐿

𝑀

)
− log( |C|)

≥ log(𝜖𝑀𝐿)
= log(𝑀𝐿) − log 1/𝜖 . □

Remark 5.4.1. A similar lower bound was presented in [62], where it was shown
that for a code correcting 𝑠 loss of strings, 𝑞 substitution errors in each of 𝑡 strings,
the redundancy is lower bounded by

𝑠𝐿 + 𝑡 log 𝑀 + 𝑡𝑞 log 𝐿 − log(𝑠!𝑡!𝑞!𝑡) + 𝑜(1),

when 𝑀 = 2𝛽𝐿 for some 0 < 𝛽 < 1. Taking 𝑠 = 0 and 𝑞 = 𝑡 = 1 results in the lower
bound log(𝑀𝐿) + 𝑜(1), which is order-wise the same as, and stronger by a constant
log 1/𝜖 than the lower bound log(𝑀𝐿) − log 1/𝜖 in Corollary 5.4.1. Compared to
the bound in [62], the bound in Corollary 5.4.1 does not require 𝑀 to be exponential
in 𝐿, and thus applies to broader parameter range for 𝑀 and 𝐿.
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Lower bound for more than one substitution
Similar techniques to the ones in Subsection 5.4 can be used to obtain a lower bound
for larger values of 𝑘 . Specifically, we have the following theorem.

Theorem 5.4.2. For integers 𝐿, 𝑀 , 𝑘 , and positive constants 𝜖, 𝑐 < 1 such that 𝑀 ≤
2(1−𝜖)𝐿 , 𝐿 > 1

𝜖
, and 𝑘 ≤ 𝑐𝜖

√
𝑀 , a 𝑘-substitution code C ⊆

({0,1}𝐿
𝑀

)
satisfies

that 𝑟 (C) ≥ 𝑘 (log(𝑀𝐿) − 2 log(𝑘)) −𝑂 (1).

To prove this theorem, it is shown that certain special 𝑘-subsets of 𝜕 𝑓𝑊 correspond to
words in B𝑘 (𝑊), and by bounding the number of these special subsets from below,
the lower bound is attained. A subset of 𝑘 boundary edges is called special, if it
does not contain two edges that intersect on a node (i.e., a string) in 𝑊 . Formally,
a subset S ⊆ 𝜕 𝑓𝑊 is special if |S| = 𝑘 , and for every {x1, y1}, {x2, y2} ∈ S with
𝑓𝑊 (x1) = 𝑓𝑊 (x2) = −1 and 𝑓𝑊 (y1) = 𝑓𝑊 (y2) = 1 we have that x1 ≠ x2. We begin
by showing how special sets are relevant to proving Theorem 5.4.2.

Lemma 5.4.7. For every word 𝑊 ∈
({0,1}𝐿

𝑀

)
we have that

|B𝑘 (𝑊) | ≥ |{S ⊆ 𝜕 𝑓𝑊 |S is special}|
𝑘 𝑘

.

Proof. It is shown that every special set corresponds to a word in B𝑘 (𝑊), and
at most 𝑘 𝑘 different special sets can correspond to the same word (namely, there
exists a mapping from the family of special sets to B𝑘 (𝑊), which is at most 𝑘 𝑘

to 1). Let S = {{x𝑖, y𝑖}}𝑘𝑖=1 be special, where 𝑓𝑊 (x𝑖) = −1 and 𝑓𝑊 (y𝑖) = 1 for
every 𝑖 ∈ [𝑘]. Let 𝑊S ∈

({0,1}𝐿
≤𝑀

)
be obtained from 𝑊 by removing the x𝑖’s and

adding the y𝑖’s, i.e., 𝑊S ≜ (𝑊 \ {x𝑖}𝑘𝑖=1) ∪ {y𝑖}𝑇𝑖=1 for some 𝑇 ≤ 𝑘; notice that
there are exactly 𝑘 distinct x𝑖’s but at most 𝑘 distinct y𝑖’s, since S is special, and
therefore we assume w.l.o.g that y1, . . . , y𝑇 are the distinct y𝑖’s. It is readily verified
that 𝑊S ∈ B𝑘 (𝑊), since 𝑊S can be obtained from 𝑊 by performing 𝑘 substitution
operations in 𝑊 , each of which corresponds to an edge in S. Moreover, every S
corresponds to a unique surjective function 𝑓S : [𝑘] → [𝑇] such that 𝑓S (𝑖) = 𝑗

if there exists 𝑗 ≤ 𝑇 such that {x𝑖, y 𝑗 } ∈ S, and hence at most 𝑘𝑇 ≤ 𝑘 𝑘 different
special sets S can correspond to the same word in B𝑘 (𝑊). □

We now turn to prove a lower bound on the number of special sets.

Lemma 5.4.8. Let 𝐿 and 𝑀 be integers such that 𝑀 ≤ 2(1−𝜖)𝐿 and 𝐿 > 1
𝜖

for
some 0 < 𝜖 < 1. If there exists a positive constant 𝑐 < 1 such that 𝑘 ≤ 𝑐 · 𝜖

√
𝑀 ,

then there are at least (1 − 𝑐2)
( |𝜕 𝑓𝑊 |

𝑘

)
special sets S ⊆ 𝜕 𝑓𝑊 .
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Proof. Clearly, the number of ways to choose a 𝑘-subset of 𝜕 𝑓𝑊 which is not special,
i.e., contains 𝑘 distinct edges of 𝜕 𝑓𝑊 but at least two of those are adjacent to the
same x ∈ 𝑊 , is at most

𝑀 ·
(
𝐿

2

)
·
(
|𝜕 𝑓𝑊 |
𝑘 − 2

)
=𝑀 ·

(
𝐿

2

)
· 𝑘 (𝑘 − 1)
( |𝜕 𝑓𝑊 | − 𝑘 + 2) ( |𝜕 𝑓𝑊 | − 𝑘 + 1) ·

(
|𝜕 𝑓𝑊 |
𝑘

)
.

Observe that the multiplier of
( |𝜕 𝑓𝑊 |

𝑘

)
in the above expression can be bounded as

follows.

𝑀 ·
(
𝐿

2

)
· 𝑘 (𝑘 − 1)
( |𝜕 𝑓𝑊 | − 𝑘 + 2) ( |𝜕 𝑓𝑊 | − 𝑘 + 1)

≤𝑀 ·
(
𝐿

2

)
· 𝑘 (𝑘 − 1)
(𝜖𝑀𝐿 − 𝑘 + 2) (𝜖𝑀𝐿 − 𝑘 + 1)

≤𝑀 · 𝐿2 · 𝑘2

𝜖2𝑀2𝐿2 ,

where the former inequality follows since |𝜕 𝑓𝑊 | ≥ 𝜖𝑀𝐿 by Lemma 5.4.6; the latter
inequality follows since 𝑘 ≤ 𝑐𝜖

√
𝑀 implies that 𝜖𝑀𝐿 − 𝑘 + 2 ≥ 𝜖𝑀𝐿 − 𝑘 + 1 ≥

1√
2
· 𝜖𝑀𝐿 whenever 𝑐

√
2√

2−1
≤ 𝐿

√
𝑀 , which holds for every non-constant 𝑀 and 𝐿.

Therefore, since

𝑀 · 𝐿2 · 𝑘2

𝜖2𝑀2𝐿2 =
𝑘2

𝜖2𝑀
≤ 𝑐2,

it follows that these are at least (1 − 𝑐2) ·
( |𝜕 𝑓𝑊 |

𝑘

)
special subsets in 𝜕 𝑓𝑊 . □

Lemma 5.4.7 and Lemma 5.4.8 readily imply that |B𝑘 (𝑊) | ≥ (1−𝑐2)
𝑘 𝑘

(𝜖𝑀𝐿
𝑘

)
for

every 𝑊 ∈
({0,1}𝐿

𝑀

)
, from which we can prove Theorem 5.4.2.

Proof. (of Theorem 5.4.2) Clearly, no two 𝑘-balls around codewords in C can
intersect, and therefore we must have |C| ≤

(2𝐿

𝑀

)
/min𝑊∈C |B𝑘 (𝑊) |. Therefore,

𝑟 (C) = log
(
2𝐿

𝑀

)
− log |C|

≥ log
(
(1 − 𝑐2)

𝑘 𝑘

(
𝜖𝑀𝐿

𝑘

))
= log

(
𝜖𝑀𝐿

𝑘

)
− 𝑘 log(𝑘) −𝑂 (1)

≥ log
(
(𝜖𝑀𝐿 − 𝑘 + 1)𝑘

𝑘 𝑘

)
− 𝑘 log(𝑘) −𝑂 (1)
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≥ log
©«
(

1√
2
𝜖𝑀𝐿

) 𝑘
𝑘 𝑘

ª®®¬ − 𝑘 log(𝑘) −𝑂 (1)

= 𝑘

(
log( 𝜖√

2
) + log(𝑀𝐿))

)
− 2𝑘 log(𝑘) −𝑂 (1)

≥ 𝑘 log(𝑀𝐿) − 2𝑘 log(𝑘) −𝑂 (𝑘). □

5.5 Codes for a Single Substitution
In this section we present a 1-substitution code construction that applies when-
ever 𝑀 ≤ 2𝐿/6, whose redundancy is 3 log 𝑀𝐿 + 3 log 𝑀 + 𝑂 (1). For simplicity
of illustration, we restrict our attention to values of 𝑀 and 𝐿 such that ⌈log 𝑀𝐿⌉ +
⌈log 𝑀⌉ ≤ 𝑀 . In the remaining values, a similar construction of comparable
redundancy exists.

Theorem 5.5.1. For 𝐷 = [
(2𝐿/3−1

𝑀

)3
· (𝑀!)2 · 23𝑀−3 log 𝑀𝐿−3 log 𝑀−6], there exist an

encoding function 𝐸 : 𝐷 →
({0,1}𝐿

𝑀

)
whose image is a single substitution correcting

code.

The idea behind Theorem 5.5.1 is to concatenate the strings in a codeword 𝐶 =

{x𝑖}𝑀𝑖=1 in a certain order, so that classic 1-substitution error correction techniques
can be applied over the concatenated string. Since a substitution error may affect any
particular order of the x𝑖’s, we consider the lexicographic orders of several different
parts of the x𝑖’s, instead of the lexicographic order of the whole strings. Specifically,
we partition the x𝑖’s to three parts, and place distinct strings in each of them. Since
a substitution operation can scramble the order in at most one part, the correct order
will be inferred by a majority vote, so that classic substitution error correction can
be applied.

Consider a message 𝑑 ∈ 𝐷 as a tuple 𝑑 = (𝑑1, . . . , 𝑑6), where

𝑑1 ∈ [
(
2𝐿/3−1

𝑀

)
],

𝑑3, 𝑑5 ∈ [
(
2𝐿/3−1

𝑀

)
𝑀!],

and
𝑑2, 𝑑4, 𝑑6 ∈ [2𝑀−log 𝑀𝐿−log 𝑀−2] .

Apply the functions 𝐹𝑐𝑜𝑚, 𝐹𝑝𝑒𝑟𝑚, and 𝐹 (see Sec. 7.1.1) to obtain

𝐹𝑐𝑜𝑚 (𝑑1) = {a1, . . . , a𝑀},
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Figure 5.1: Illustration of single-substitution correcting codes over unordered sets.

𝐹 (𝑑3) = ({b1, . . . , b𝑀}, 𝜎),
𝐹 (𝑑5) = ({c1, . . . , c𝑀}, 𝜋), (5.6)

where a𝑖, b𝑖, c𝑖 ∈ {0, 1}𝐿/3−1 for every 𝑖 ∈ [𝑀], the permutations 𝜎 and 𝜋 are in 𝑆𝑀 ,
and the indexing of {a𝑖}𝑀𝑖=1, {b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1 is lexicographic. Further, let d2, d4,
and d6 be the binary strings that correspond to 𝑑2, 𝑑4, and 𝑑6, respectively, and let

s1 = (a1, . . . ,a𝑀 , b𝜎(1) , . . . ,b𝜎(𝑀) ,

c𝜋(1) , . . . ,c𝜋(𝑀)),
s2 = (a𝜎−1 (1) , . . . ,a𝜎−1 (𝑀) , b1, . . . ,b𝑀 ,

c𝜎−1𝜋(1) , . . . ,c𝜎−1𝜋(𝑀)), and

s3 = (a𝜋−1 (1) , . . . ,a𝜋−1 (𝑀) , b𝜋−1𝜎(1) , . . . ,b𝜋−1𝜎(𝑀) ,

c1, . . . ,c𝑀). (5.7)
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Without loss of generality4 assume that there exists an integer 𝑡 for which the
length |s𝑖 | = (𝐿 − 3)𝑀 = 2𝑡 − 𝑡 − 1 for all 𝑖 ∈ [3]. Then, each s𝑖 can be encoded by
using a systematic [2𝑡 − 1, 2𝑡 − 𝑡 − 1]2 Hamming code, by introducing 𝑡 redundant
bits. That is, the encoding function is of the form s𝑖 ↦→ (s𝑖, 𝐸𝐻 (s𝑖)), where 𝐸𝐻 (s𝑖)
are the 𝑡 redundant bits, and 𝑡 ≤ ⌈log(𝑀𝐿)⌉. Similarly, we assume that there exists
an integer ℎ for which the length |d𝑖 | = 2ℎ − ℎ − 1 for 𝑖 ∈ {2, 4, 6}, and let 𝐸𝐻 (d𝑖)
be the corresponding ℎ bits of redundancy, that result from encoding d𝑖 by using
a [2ℎ − 1, 2ℎ − ℎ − 1] Hamming code. By the properties of a Hamming code, and
by the definition of ℎ, we have that ℎ ≤ ⌈log(𝑀)⌉.

The data 𝑑 ∈ 𝐷 is mapped to a codeword 𝐶 = {x1, . . . , x𝑀} as follows, and the
reader is encouraged to refer to Figure 5.1 for clarifications. First, we place {a𝑖}𝑀𝑖=1,
{b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1 in the different thirds of the x𝑖’s, sorted by 𝜎 and 𝜋. That is,
denoting x𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝐿), we define

(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿/3−1) = a𝑖,

(𝑥𝑖,𝐿/3+1, . . . , 𝑥𝑖,2𝐿/3−1) = b𝜎(𝑖) , and

(𝑥𝑖,2𝐿/3+1, . . . , 𝑥𝑖,𝐿−1) = c𝜋(𝑖) . (5.8)

The remaining bits {𝑥𝑖,𝐿/3}𝑀𝑖=1, {𝑥𝑖,2𝐿/3}𝑀𝑖=1, and {𝑥𝑖,𝐿}𝑀𝑖=1 are used to accommo-
date the information bits of d2, d4, d6, and the redundancy bits {𝐸𝐻 (s𝑖)}3

𝑖=1 and
{𝐸𝐻 (d𝑖)}𝑖∈{2,4,6}, in the following manner.

𝑥𝑖,𝐿/3 =



𝑑2,𝑖,

if 𝑖 ∈ [𝑀 − ⌈log 𝑀𝐿⌉ − ⌈log 𝑀⌉],

𝐸𝐻 (d2)𝑖−(𝑀−⌈log 𝑀𝐿⌉−⌈log 𝑀⌉) ,

if 𝑖 ∈ [𝑀 − ⌈log 𝑀𝐿⌉ − ⌈log 𝑀⌉ + 1,

𝑀 − ⌈log 𝑀𝐿⌉], ℎ

𝐸𝐻 (s1)𝑖−(𝑀−⌈log 𝑀𝐿⌉) ,

if 𝑖 ∈ [𝑀 − ⌈log 𝑀𝐿⌉ + 1, 𝑀],
4Every string can be padded with zeros to extend its length to 2𝑡 − 𝑡 − 1 for some 𝑡. It is readily

verified that this operation extends the string by at most a factor of two, and by the properties of the
Hamming code, this will increase the number of redundant bits by at most 1.
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𝑥𝑖,2𝐿/3 =



𝑑4,𝜎−1 (𝑖) ,

if 𝜎−1(𝑖) ∈ [𝑀 − ⌈log 𝑀𝐿⌉ − ⌈log 𝑀⌉],

𝐸𝐻 (d4)𝜎−1 (𝑖)−(𝑀−⌈log 𝑀𝐿⌉−⌈log 𝑀⌉) ,

if 𝜎−1(𝑖) ∈ [𝑀 − ⌈log 𝑀𝐿⌉ − ⌈log 𝑀⌉

+ 1, 𝑀 − ⌈log 𝑀𝐿⌉],

𝐸𝐻 (s2)𝜎−1 (𝑖)−(𝑀−⌈log 𝑀𝐿⌉) ,

if 𝜎−1(𝑖) ∈ [𝑀 − ⌈log 𝑀𝐿⌉ + 1, 𝑀],

𝑥𝑖,𝐿 =



𝑑6,𝜋−1 (𝑖) ,

if 𝜋−1(𝑖) ∈ [𝑀 − ⌈log 𝑀𝐿⌉ − ⌈log 𝑀⌉],

𝐸𝐻 (d6)𝜋−1 (𝑖)−(𝑀−⌈log 𝑀𝐿⌉−⌈log 𝑀⌉) ,

if 𝜋−1(𝑖) ∈ [𝑀 − ⌈log 𝑀𝐿⌉ − ⌈log 𝑀⌉

+ 1, 𝑀 − ⌈log 𝑀𝐿⌉],

𝐸𝐻 (s3)𝜋−1 (𝑖)−(𝑀−⌈log 𝑀𝐿⌉) ,

if 𝜋−1(𝑖) ∈ [𝑀 − ⌈log 𝑀𝐿⌉ + 1, 𝑀].

(5.9)

That is, if the strings {x𝑖}𝑀𝑖=1 are sorted according to the content of the bits (𝑥𝑖,1, . . . ,
𝑥𝑖,𝐿/3−1) = a𝑖, then the top 𝑀−⌈log 𝑀𝐿⌉−⌈log 𝑀⌉ bits of the (𝐿/3)-th column5 con-
tain d2, the middle ⌈log 𝑀⌉ bits contain 𝐸𝐻 (d2), and the bottom ⌈log 𝑀𝐿⌉ bits con-
tain𝐸𝐻 (s1). Similarly, if the strings are sorted according to (𝑥𝑖,𝐿/3+1, . . . , 𝑥𝑖,2𝐿/3−1) =
b𝑖, then the top 𝑀−⌈log 𝑀𝐿⌉− ⌈log 𝑀⌉ bits of the (2𝐿/3)-th column contain d4, the
middle ⌈log 𝑀⌉ bits contain 𝐸𝐻 (d4), and the bottom ⌈log 𝑀𝐿⌉ bits contain 𝐸𝐻 (s2),
and so on. Equations (5.8) and (5.9) conclude the encoding function 𝐸 of Theo-
rem 5.5.1. It can be readily verified that 𝐸 is injective since different messages result
in either different ({a𝑖}𝑀𝑖=1,{b𝑖}𝑀𝑖=1,{c𝑖}𝑀𝑖=1) or the same ({a𝑖}𝑀𝑖=1,{b𝑖}𝑀𝑖=1,{c𝑖}𝑀𝑖=1) with
different (d2, d4, d6). In either case, the resulting codewords {x𝑖}𝑀𝑖=1 of the two
messages are different.

To verify that the image of 𝐸 is a 1-substitution code, observe first that since {a𝑖}𝑀𝑖=1,
{b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1 are sets, it follows that any two strings in the same set are
distinct. Hence, according to (5.8), it follows that 𝑑𝐻 (x𝑖, x 𝑗 ) ≥ 3 for every distinct 𝑖
and 𝑗 in [𝑀]. Therefore, no 1-substitution error can cause one x𝑖 to be equal to
another, and consequently, the result of a 1-substitution error is always in

({0,1}𝐿
𝑀

)
.

5Sorting the strings {x𝑖}𝑀𝑖=1 by any ordering method provides a matrix in a natural way, and can
consider columns in this matrix.
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In what follows a decoding algorithm is presented, whose input is a codeword that
was distorted by at most a single substitution, and its output is 𝑑. The algorithm is
summarized in Algorithm 3.

Algorithm 3: Decoding
Input: A word 𝐶′ ∈ B1(𝐶) for some codeword 𝐶.
Output: The message 𝑑 encoded as 𝐶.
Sort and index the strings in 𝐶′ = {x′1, . . . , x

′
𝑀
} lexicographically;

Compute the strings â𝑖, b̂𝑖, and ĉ𝑖 for 𝑖 ∈ [𝑀], according to (5.10);
Compute the strings s′1, s′2, and s′3 according to (5.12);
Compute the strings 𝐸𝐻 (s1)′, 𝐸𝐻 (s2)′, and 𝐸𝐻 (s3)′ according to (5.11);
Use Hamming decoder to decode (s′

𝑖
, 𝐸𝐻 (s𝑖)) and obtain s𝑖 for 𝑖 ∈ [3];

According to Lemma 5.5.1, we can apply majority vote on the recovered {s𝑖}3
𝑖=1

to obtain the correct strings {a𝑖}𝑀𝑖=1, {b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1, and the
permutations 𝜎 and 𝜋. Then determine 𝑑1, 𝑑3, 𝑑5 using combinatorial
map (5.6);

Compute (d′
𝑖
, 𝐸𝐻 (d𝑖)′) 𝑖 ∈ {2, 4, 6} according to (5.11) and use Hamming

decoder to decode (d′
𝑖
, 𝐸𝐻 (d𝑖)′) and obtain d𝑖 for 𝑖 ∈ {2, 4, 6};

Output 𝑑 = (𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6).

Upon receiving a word 𝐶′ = {x′1, . . . , x
′
𝑀
} ∈ B1(𝐶) for some codeword 𝐶 (once

again, the indexing of the elements of 𝐶′ is lexicographic), we define

â𝑖 = (𝑥′𝑖,1, . . . , 𝑥
′
𝑖,𝐿/3−1)

b̂𝑖 = (𝑥′
𝜏−1 (𝑖),𝐿/3+1, . . . , 𝑥

′
𝜏−1 (𝑖),2𝐿/3−1) (5.10)

ĉ𝑖 = (𝑥′
𝜌−1 (𝑖),2𝐿/3+1, . . . , 𝑥

′
𝜌−1 (𝑖),𝐿−1),

where 𝜏 is the permutation by which {x′
𝑖
}𝑀
𝑖=1 are sorted according to their 𝐿/3 +

1, . . . , 2𝐿/3−1 entries, and 𝜌 is the permutation by which they are sorted according
to their 2𝐿/3 + 1, . . . , 𝐿 − 1 entries (we emphasize that 𝜏 and 𝜌 are unrelated to the
original 𝜋 and 𝜎, and those will be decoded later). Further, when ordering {x′

𝑖
}𝑀
𝑖=1

by either the lexicographic ordering, by 𝜏, or by 𝜌, we obtain candidates for each
one of d2, d4, d6, 𝐸𝐻 (d2), 𝐸𝐻 (d4), 𝐸𝐻 (d6), 𝐸𝐻 (s1), 𝐸𝐻 (s2), and 𝐸𝐻 (s3), that we
similarly denote with an additional apostrophe6, as follows for 𝑖 ∈ [𝑀].

𝑑′2,𝑖 =𝑥′
𝑖,𝐿/3,

for 𝑖 ∈ [𝑀 − ⌈log 𝑀𝐿⌉ − ⌈log 𝑀⌉],
𝐸𝐻 (d2)′𝑖 =𝑥′𝑖+(𝑀−⌈log 𝑀𝐿⌉−⌈log 𝑀⌉),𝐿/3,

6That is, each one of d′
2, d′

4, etc., is obtained from d2, d4, etc., by at most a single substitution.
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for 𝑖 ∈ [⌈log 𝑀⌉],
𝐸𝐻 (s1)′𝑖 =𝑥′

𝑖+(𝑀−⌈log 𝑀𝐿⌉),𝐿/3,

for 𝑖 ∈ [⌈log 𝑀𝐿⌉],
𝑑′4,𝑖 =𝑥′

𝜏(𝑖),2𝐿/3,

for 𝑖 ∈ [𝑀 − ⌈log 𝑀𝐿⌉ − ⌈log 𝑀⌉],
𝐸𝐻 (d4)′𝑖 =𝑥′𝜏(𝑖+(𝑀−⌈log 𝑀𝐿⌉−⌈log 𝑀⌉)),2𝐿/3,

for 𝑖 ∈ [⌈log 𝑀⌉],
𝐸𝐻 (s2)′𝑖 =𝑥′

𝜏(𝑖+(𝑀−⌈log 𝑀𝐿⌉)),2𝐿/3,

for 𝑖 ∈ [⌈log 𝑀𝐿⌉],
𝑑′6,𝑖 =𝑥′

𝜌(𝑖),𝐿 ,

for 𝑖 ∈ [𝑀 − ⌈log 𝑀𝐿⌉ − ⌈log 𝑀⌉],
𝐸𝐻 (d6)′𝑖 =𝑥′𝜌(𝑖+(𝑀−⌈log 𝑀𝐿⌉−⌈log 𝑀⌉)),𝐿 ,

for 𝑖 ∈ [⌈log 𝑀⌉],
𝐸𝐻 (s3)′𝑖 =𝑥′

𝜌(𝑖+(𝑀−⌈log 𝑀𝐿⌉)),𝐿 ,

for 𝑖 ∈ [⌈log 𝑀𝐿⌉] . (5.11)

For example, if we order {x′
𝑖
}𝑀
𝑖=1 according to 𝜏, then the bottom ⌈log(𝑀𝐿)⌉ bits

of the (2𝐿/3)-th column are 𝐸𝐻 (s2)′, the middle ⌈log 𝑀⌉ bits are 𝐸𝐻 (d4)′, and the
top 𝑀 − ⌈log 𝑀𝐿⌉ − ⌈log 𝑀⌉ bits are d′

4 (see Eq. (5.9)). Now, let

s′1 = (â1, . . . ,â𝑀 , b̂𝜏(1) , . . . ,b̂𝜏(𝑀) ,

ĉ𝜌(1) , . . . ,ĉ𝜌(𝑀)),
s′2 = (â𝜏−1 (1) , . . . ,â𝜏−1 (𝑀) , b̂1, . . . ,b̂𝑀 ,

ĉ𝜏−1𝜌(1) , . . . ,ĉ𝜏−1𝜌(𝑀)), and (5.12)

s′3 = (â𝜌−1 (1) , . . . ,â𝜌−1 (𝑀) , b̂𝜌−1𝜏(1) , . . . ,b̂𝜌−1𝜏(𝑀) ,

ĉ1, . . . ,ĉ𝑀).

The following lemma shows that at least two of the above s′
𝑖
are close in Hamming

distance to their encoded counterpart (s𝑖, 𝐸𝐻 (s𝑖)).

Lemma 5.5.1. There exist distinct integers 𝑘, ℓ ∈ [3] such that

𝑑𝐻 ((s′𝑘 , 𝐸𝐻 (s𝑘 )′), (s𝑘 , 𝐸𝐻 (s𝑘 )) ≤ 1, and

𝑑𝐻 ((s′ℓ, 𝐸𝐻 (sℓ)′), (sℓ, 𝐸𝐻 (sℓ))) ≤ 1.
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Proof. If the substitution did not occur at either of index sets {1, . . . , 𝐿/3 − 1},
{𝐿/3+ 1, . . . , 2𝐿/3− 1}, or {2𝐿/3 + 1, . . . , 𝐿 − 1} (which correspond to the values
of the strings {a𝑖}𝑀𝑖=1, {b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1, respectively), then the orders among the
strings {a𝑖}𝑀𝑖=1, {b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1 are maintained, respectively. That is, we have
that 𝜏 = 𝜎 and 𝜌 = 𝜋. This implies that

s′1 = (a1, . . . ,a𝑀 , b𝜎(1) , . . . ,b𝜎(𝑀) ,

c𝜋(1) , . . . ,c𝜋(𝑀)),
s′2 = (a𝜎−1 (1) , . . . ,a𝜎−1 (𝑀) , b1, . . . ,b𝑀 ,

c𝜎−1𝜋(1) , . . . ,c𝜎−1𝜋(𝑀)),
s′3 = (a𝜋−1 (1) , . . . ,a𝜋−1 (𝑀) , b𝜋−1𝜎(1) , . . . ,b𝜋−1𝜎(𝑀) ,

c1, . . . ,c𝑀),

and that 𝑑𝐻 (𝐸𝐻 (s𝑖), 𝐸𝐻 (s′𝑖)) ≤ 1, 𝑖 ∈ [3], according to (5.9) and (5.11). In this
case, the claim is clear. It remains to show the other cases, and due to symmetry,
assume without loss of generality that the substitution occurred in one of the a𝑖’s,
i.e., in an entry which is indexed by an integer in [𝐿/3 − 1].

Let 𝐴 ∈ {0, 1}𝑀×𝐿 be a matrix whose rows are the x𝑖’s, in any order. Let 𝐴left

be the result of ordering the rows of 𝐴 according to the lexicographic order of
their 1, . . . , 𝐿/3 − 1 entries. Similarly, let 𝐴mid and 𝐴right be the results of ordering
the rows of 𝐴 by their 𝐿/3 + 1, . . . , 2𝐿/3 − 1 and 2𝐿/3 + 1, . . . , 𝐿 − 1 entries,
respectively, and let 𝐴′

left, 𝐴
′
mid, and 𝐴′

right be defined analogously with {x′
𝑖
}𝑀
𝑖=1

instead of {x𝑖}𝑀𝑖=1.

It is readily verified that there exist permutation matrices 𝑃1 and 𝑃2 such that 𝐴mid =

𝑃1𝐴left and 𝐴right = 𝑃2𝐴left. Moreover, since {b𝑖}𝑀𝑖=1 = {b̂𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1 =

{ĉ𝑖}𝑀𝑖=1, it follows that 𝐴′
mid = 𝑃1(𝐴left + 𝑅) and 𝐴′

right = 𝑃2(𝐴left + 𝑅), where 𝑅 ∈
{0, 1}𝑀×𝐿 is a matrix of Hamming weight 1; this clearly implies that 𝐴′

mid =

𝐴mid+𝑃1𝑅 and that 𝐴′
right = 𝐴right+𝑃2𝑅. Now, notice that s2 results from vectorizing

some submatrix 𝑀2 of 𝐴mid, and s′2 results from vectorizing some submatrix 𝑀′
2

of 𝐴′
mid. Moreover, the matrices 𝑀2 and 𝑀′

2 are taken from their mother matrix
by omitting the same rows and columns, and both vectorizing operations consider
the entries of 𝑀2 and 𝑀′

2 in the same order. In addition, no substitution occurs in
the 𝐿/3, . . . , 𝐿 entries in the x𝑖’s, which implies that 𝑥′

𝜏𝑖,2𝐿/3 = 𝑥𝜋(𝑖),2𝐿/3. Then, the
redundancies𝐸𝐻 (s2)′ = 𝐸𝐻 (s2) and𝐸𝐻 (s3)′ = 𝐸𝐻 (s3) can be identified from (5.11).
Therefore, it follows from 𝐴′

mid = 𝐴mid +𝑃1𝑅 that 𝑑𝐻 ((s′2, 𝐸𝐻 (s′2)), (s2, 𝐸𝐻 (s2))) ≤
1. The claim for s3 is similar. □
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By applying a Hamming decoder on either one of the s𝑖’s, the decoder obtains
possible candidates for {a𝑖}𝑀𝑖=1, {b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1, and by Lemma 5.5.1, it follows
that these sets of candidates will coincide in at least two cases. Therefore, the
decoder can apply a majority vote of the candidates from the decoding of each s′

𝑖
,

and the winning values are {a𝑖}𝑀𝑖=1, {b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1. Having these correct values,
the decoder can sort {x′

𝑖
}𝑀
𝑖=1 according to their a𝑖 columns, and deduce the values of𝜎

and 𝜋 by observing the resulting permutation in the b𝑖 and c𝑖 columns, with respect
to their lexicographic ordering. This concludes the decoding of the values 𝑑1, 𝑑3,

and 𝑑5 of the data 𝑑.

We are left to extract 𝑑2, 𝑑4, and 𝑑6. To this end, observe that since the correct values
of {a𝑖}𝑀𝑖=1, {b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1 are known at this point, the decoder can extract the
true positions of d2, d4, and d6, as well as their respective redundancy bits 𝐸𝐻 (d2),
𝐸𝐻 (d4), 𝐸𝐻 (d6). Hence, we have that

𝑑𝐻 ((d′
𝑖, 𝐸𝐻 (d𝑖)′), (d𝑖, 𝐸𝐻 (d𝑖))) ≤ 1

for 𝑖 ∈ {2, 4, 6}, and thus that the decoding algorithm is complete by applying a
Hamming decoder.

We now turn to compute the redundancy of the above code C. Note that there are two
sources of redundancy—the Hamming code redundancy, which is at most 3(log 𝑀𝐿+
log 𝑀 + 2) and the fact that the sets {a𝑖}𝑀𝑖=1, {b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1 contain distinct
strings. By a straightforward computation, for 4 ≤ 𝑀 ≤ 2𝐿/6 we have

𝑟 (C) = log
(
2𝐿

𝑀

)
− log

((
2𝐿/3−1

𝑀

)3

· (𝑀!)2 · 23(𝑀−log 𝑀𝐿−log 𝑀−2)
)

= log
𝑀−1∏
𝑖=0

(2𝐿 − 𝑖) − log
𝑀−1∏
𝑖=0

(2𝐿/3−1 − 𝑖)3

− 3𝑀 + 3 log 𝑀𝐿 + 3 log 𝑀 + 6

= log
𝑀−1∏
𝑖=0

(2𝐿 − 𝑖)
(2𝐿/3 − 2𝑖)3 + 3 log 𝑀𝐿 + 3 log 𝑀 + 6

≤3𝑀 log
2𝐿/3

2𝐿/3 − 2𝑀
+ 3 log 𝑀𝐿 + 3 log+6.

(𝑎)
≤ 12 log 𝑒 + 3 log 𝑀𝐿 + 3 log 𝑀 + 6, (5.13)
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where inequality (𝑎) is derived in Appendix 5.8.

For the case when 𝑀 < log 𝑀𝐿+log 𝑀 , we generate {a𝑖}𝑀𝑖=1, {b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1 with
length 𝐿/3−⌈ log 𝑀𝐿+log 𝑀

𝑀
⌉. As a result, we have ⌈ log 𝑀𝐿+log 𝑀

𝑀
⌉ bits 𝑥𝑖, 𝑗 , 𝑖 ∈ [𝑀], 𝑗 ∈

{𝐿/3− ⌈ log 𝑀𝐿+log 𝑀

𝑀
⌉ + 1, . . . , 𝐿/3} ∪ {2𝐿/3− ⌈ log 𝑀𝐿+log 𝑀

𝑀
⌉ + 1, . . . , 2𝐿/3} ∪ {𝐿 −

⌈ log 𝑀𝐿+log 𝑀

𝑀
⌉ + 1, . . . , 𝐿} to accommodate the information bits d2, d4, d6 and the

redundancy bits {𝐸𝐻 (s𝑖)}3
𝑖=1 and {𝐸𝐻 (d𝑖)}𝑖∈{2,4,6} in each part.

Remark 5.5.1. The above construction is valid whenever 𝑀 ≤ 2𝐿/3−1. However,
asymptotically optimal amount of redundancy is achieved for 𝑀 ≤ 2𝐿/6.

Remark 5.5.2. In this construction, the separate storage of the Hamming code re-
dundancies 𝐸𝐻 (d2), 𝐸𝐻 (d4), and 𝐸𝐻 (d6) is not necessary. Instead, storing 𝐸𝐻 (d2,

d4, d6) is sufficient, since the true position of those can be inferred after {a𝑖}𝑀𝑖=1,
{b𝑖}𝑀𝑖=1, and {c𝑖}𝑀𝑖=1 were successfully decoded. This approach results in redundancy
of 3 log 𝑀𝐿 + log 3𝑀 + 𝑂 (1), and a similar approach can be utilized in the next
section as well.

5.6 Codes for Multiple Substitutions
In this section we extend the 1-substitution correcting code from Sec. 5.5 to multiple
substitutions whenever the number of substitutions 𝑘 is at most 𝐿/(4 log 𝑀) − 1/2.
In particular, we obtain the following result.

Theorem 5.6.1. For integers 𝑀, 𝐿, and 𝑘 such that 𝑀 ≤ 2
𝐿

2(2𝑘+1) there exists a
𝑘-substitution code with redundancy

2𝑘 (2𝑘 + 1) log 𝑀𝐿 + 2𝑘 (2𝑘 + 1) log 𝑀 +𝑂 (𝑘).

We restrict our attention to values of 𝑀, 𝐿, and 𝑘 for which 2𝑘 ⌈log 𝑀𝐿⌉+2𝑘 ⌈log 𝑀⌉ ≤
𝑀 . For the remaining values, i.e., when 2𝑘 ⌈log 𝑀𝐿⌉ + 2𝑘 ⌈log 𝑀⌉ > 𝑀 , a similar
code can be constructed. The construction of a 𝑘-substitution correcting code is
similar in spirit to the single substitution case, except that we partition the strings
to 2𝑘 + 1 parts instead of 3. In addition, we use a Reed-Solomon code in its binary
representation (see Sec. 7.1.1) to combat 𝑘-substitutions in the classic sense. The
motivation behind considering 2𝑘 +1 parts is that 𝑘 substitutions can affect at most 𝑘
of them. As a result, at least 𝑘 + 1 parts retain their original order; and that enables
a classic RS decoding algorithm to succeed. In turn, the true values of the parts are
decided by a majority vote, which is applied over a set of 2𝑘 + 1 values, 𝑘 + 1 of
whom are guaranteed to be correct.
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For parameters 𝑀, 𝐿, and 𝑘 as above, let

𝐷 = [
(
2𝐿/(2𝑘+1)−1

𝑀

)2𝑘+1

· (𝑀!)2𝑘

· 2(2𝑘+1) (𝑀−2𝑘𝑙𝑜𝑔𝑀𝐿−2𝑘 log 𝑀)]

be the information set. We split a message 𝑑 ∈ 𝐷 into 𝑑 = (𝑑1, . . . , 𝑑4𝑘+2),
where 𝑑1 ∈ [

(2𝐿/(2𝑘+1)−1

𝑀

)
], 𝑑 𝑗 ∈ [

(2𝐿/(2𝑘+1)−1

𝑀

)
𝑀!] for 𝑗 ∈ {2, . . . , 2𝑘 + 1}, and 𝑑 𝑗 ∈

[2(2𝑘+1) (𝑀−2𝑘 log 𝑀𝐿−2𝑘 log 𝑀)] for 𝑗 ∈ {2𝑘+2, . . . , 4𝑘+2}. As in (5.6), we apply 𝐹𝑐𝑜𝑚

and 𝐹 to obtain

𝐹𝑐𝑜𝑚 (𝑑1) = {a1,1, . . . , a𝑀,1},
where a𝑖,1 ∈ {0, 1}𝐿/(2𝑘+1)−1 for all 𝑖, and

𝐹 (𝑑 𝑗 ) = ({a1, 𝑗 , . . . , a𝑀, 𝑗 }, 𝜋 𝑗 ) for all 𝑗 ∈ {2, . . . , 2𝑘 + 1},
where a𝑖, 𝑗 ∈ {0, 1}𝐿/(2𝑘+1)−1 and 𝜋 𝑗 ∈ 𝑆𝑀 .

As usual, the sets {a𝑖, 𝑗 }𝑀𝑖=1 are indexed lexicographically according to 𝑖, i.e., a1, 𝑗 <

. . . < a𝑀, 𝑗 for all 𝑗 . Similar to (5.8), let

(𝑥𝑖,( 𝑗−1)𝐿/(2𝑘+1)+1, . . . , 𝑥𝑖, 𝑗 𝐿/(2𝑘+1)−1)
=a𝜋 𝑗 (𝑖), 𝑗 , 𝑖 ∈ [𝑀], 𝑗 ∈ [2𝑘 + 1],

where 𝜋1(𝑖) = 𝑖 is the identity permutation. In addition, define the equivalents
of (5.7) as

s1 = (a1,1, . . . , a𝑀,1,

a𝜋2 (1),2, . . . , a𝜋2 (𝑀),2, . . .

a𝜋2𝑘+1 (1),2𝑘+1, . . . , a𝜋2𝑘+1 (𝑀),2𝑘+1),
s2 = (a𝜋−1

2 (1),1, . . . , a𝜋−1
2 (𝑀),1,

a1,2, . . . , a𝑀,2, . . .

a𝜋−1
2 𝜋2𝑘+1 (1),2𝑘+1, . . . , a𝜋−1

2 𝜋2𝑘+1 (𝑀),2𝑘+1),
...

s2𝑘+1 = (a𝜋−1
2𝑘+1 (1),1

, . . . , a𝜋−1
2𝑘+1 (𝑀),1,

a𝜋−1
2𝑘+1𝜋2 (1),2, . . . , a𝜋−1

2𝑘+1𝜋2 (𝑀),2, . . .

a1,2𝑘+1, . . . , a𝑀,2𝑘+1).

Namely, for every 𝑖 ∈ [2𝑘 + 1], the elements {a𝑖, 𝑗 }𝑀𝑗=1 appear in s𝑖 by their lexico-
graphic order, and the remaining ones are sorted accordingly.
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To state the equivalent of (5.9), for a binary string t let 𝑅𝑆𝑘 (t) be the redundancy
bits that result from k-substitution correcting RS encoding of t, in its binary rep-
resentation7. In particular, we employ an RS code which corrects 𝑘 substitutions,
and incurs 2𝑘 log( |t|) bits of redundancy. Then, the remaining bits {𝑥𝑖, 𝐿

2𝑘+1
}𝑀
𝑖=1,

{𝑥𝑖, 2𝐿
2𝑘+1

}𝑀
𝑖=1, . . . , {𝑥𝑖,𝐿}𝑀𝑖=1 are defined as follows for 𝑖 ∈ [𝑀] and 𝑗 ∈ [1, 2𝑘 + 1].

𝑥
𝑖,

𝑗𝐿

2𝑘+1

=



𝑑 𝑗+2𝑘+1,𝜋−1
𝑗
(𝑖)

if 𝜋−1
𝑗
(𝑖) ∈ [𝑀 − 2𝑘 ⌈log 𝑀⌉ − 2𝑘 ⌈log 𝑀𝐿⌉]

𝑅𝑆𝑘 (d 𝑗+2𝑘+1)𝜋−1
𝑗
(𝑖)−𝑀−2𝑘 ⌈log 𝑀⌉−2𝑘 ⌈log 𝑀𝐿⌉ ,

if 𝜋−1
𝑗
(𝑖) ∈ [𝑀 − 2𝑘 ⌈log 𝑀⌉ − 2𝑘 ⌈log 𝑀𝐿⌉ + 1,

𝑀 − 2𝑘 ⌈log 𝑀𝐿⌉]

𝑅𝑆𝑘 (s 𝑗 )𝜋−1
𝑗
(𝑖)−𝑀−2𝑘 ⌈log 𝑀𝐿⌉ ,

if 𝜋−1
𝑗
(𝑖) ∈ [𝑀 − 2𝑘 ⌈log 𝑀𝐿⌉ + 1, 𝑀]

. (5.14)

In this expression, notice that |s𝑖 | = 𝑀 (𝐿 − 2𝑘 − 1) for every 𝑖 and |d 𝑗 | ≤ 𝑀

for every 𝑗 . As a result, it follows that |𝑅𝑆𝑘 (d 𝑗 ) | ≤ 2𝑘 ⌈log 𝑀⌉ for every 𝑗 ∈
{2𝑘 + 2, . . . , 4𝑘 + 2}, and |𝑅𝑆𝑘 (s𝑖) | ≤ 2𝑘 ⌈log 𝑀𝐿⌉ for every 𝑖 ∈ [2𝑘 + 1].

To verify that the above construction provides a 𝑘-substitution code, observe first
that {a𝑖, 𝑗 }𝑀𝑗=1 is a set of distinct integers for all 𝑖 ∈ [2𝑘 + 1], and hence 𝑑𝐻 (x𝑖, x 𝑗 ) ≥
2𝑘 + 1 for all distinct 𝑖 and 𝑗 in [𝑀]. Thus, a 𝑘-substitution error cannot turn one x𝑖
into another, and the result is always in

({0,1}𝐿
𝑀

)
.

The decoding procedure also resembles the one in Sec. 5.5. Upon receiving a
word 𝐶′ = {x′1, . . . , x

′
𝑀
} ∈ B𝑘 (𝐶) for some codeword 𝐶, where the indexing of the

elements of 𝐶′ is lexicographic, we define

â𝑖, 𝑗 =(𝑥′
𝜏−1
𝑗
(𝑖), ( 𝑗−1)𝐿

2𝑘+1 +1
, . . . , 𝑥′

𝜏−1
𝑗
(𝑖), 𝑗𝐿

2𝑘+1−1
),

for 𝑗 ∈ [2𝑘 + 1], and 𝑖 ∈ [𝑀]

where 𝜏𝑗 is the permutation by which {x′
𝑖
}𝑀
𝑖=1 are sorted according to their ( 𝑗−1)𝐿

2𝑘+1 +
1, . . . , 𝑗 𝐿

2𝑘+1 − 1 entries (𝜏1 is the identity permutation, compared with (5.10)). In
7To avoid uninteresting technical details, it is assumed henceforth that RS encoding in its binary

form is possible, i.e., that log( |t|) is an integer that divides t; this can always be attained by padding
with zeros. Furthermore, the existence of an RS code is guaranteed, since 𝑞 = 2log( |t |) is larger than
the length of the code, which is |t|/log( |t|).
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addition, sorting {x′
𝑖
}𝑀
𝑖=1 by either one of 𝜏𝑗 yields candidates for {𝑅𝑆𝑘 (s𝑖)}2𝑘+1

𝑖=1 , for
{d 𝑗 }4𝑘+2

𝑗=2𝑘+2, and for {𝑅𝑆𝑘 (d 𝑗 )}4𝑘+2
𝑗=2𝑘+2, as follows.

𝑑′𝑗+2𝑘+1,𝑖 = 𝑥′
𝜋 𝑗 (𝑖), 𝑗𝐿

2𝑘+1
,

for 𝑖 ∈ [𝑀 − 2𝑘 ⌈log 𝑀𝐿⌉ − 2𝑘 ⌈log 𝑀⌉]
𝑅𝑆𝑘 (d 𝑗+2𝑘+1)′𝑖 = 𝑥′

𝜋 𝑗 (𝑖+(𝑀−2𝑘 ⌈log 𝑀𝐿⌉−2𝑘 ⌈log 𝑀⌉)), 𝑗𝐿

2𝑘+1
,

for 𝑖 ∈ [2𝑘 ⌈log 𝑀⌉]
𝑅𝑆𝑘 (s 𝑗 )′𝑖 = 𝑥′

𝜋 𝑗 (𝑖+(𝑀−2𝑘 ⌈log 𝑀𝐿⌉)), 𝑗𝐿

2𝑘+1
,

for 𝑖 ∈ [2𝑘 ⌈log 𝑀𝐿⌉] (5.15)

The respective {s′
𝑖
}2𝑘+1
𝑖=1 are defined as

s′1 = (â1,1, . . . , â𝑀,1,

â𝜏2 (1),2, . . . , â𝜏2 (𝑀),2, . . .

â2𝑘+1,𝜏2𝑘+1 (1) , . . . , â2𝑘+1,𝜏2𝑘+1 (𝑀) ,

𝑅𝑆𝑘 (s1)′,
â𝜏2𝑘+1 (1),2𝑘+1, . . . , â𝜏2𝑘+1 (𝑀),2𝑘+1),

s′2 = (â𝜏−1
2 (1),1, . . . , â𝜏−1

2 (𝑀),1,

â1,2, . . . , â𝑀,2, . . .

â2𝑘+1,𝜏−1
2 𝜏2𝑘+1 (1) , . . . , â2𝑘+1,𝜏−1

2 𝜏2𝑘+1 (𝑀) ,

𝑅𝑆𝑘 (s2)′,
â𝜏−1

2 𝜏2𝑘+1 (1),2𝑘+1, . . . , â𝜏−1
2 𝜏2𝑘+1 (𝑀),2𝑘+1),

...

s′2𝑘+1 = (â𝜏−1
2𝑘+1 (1),1

, . . . , â𝜏−1
2𝑘+1 (𝑀),1,

â𝜏−1
2𝑘+1𝜏2 (1),2, . . . , â𝜏−1

2𝑘+1𝜏2 (𝑀),2, . . .

â2𝑘+1,1, . . . , â2𝑘+1,𝑀 ,

𝑅𝑆𝑘 (s2𝑘+1)′,
â1,2𝑘+1, . . . , â𝑀,2𝑘+1).

Lemma 5.6.1. There exist 𝑘 + 1 distinct integers ℓ1, . . . , ℓ𝑘+1 such that

𝑑𝐻 ((s′ℓ 𝑗 , 𝑅𝑆𝑘 (sℓ 𝑗 )
′), (sℓ 𝑗 , 𝑅𝑆𝑘 (sℓ 𝑗 ))) ≤ 𝑘

for every 𝑗 ∈ [𝑘 + 1].
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Proof. Analogous to the proof of Lemma 5.5.1. See Appendix 5.8 for additional
details. □

By applying an RS decoding algorithm on each of {s′
𝑖
}2𝑘+1
𝑖=1 we obtain candidates

for the true values of {a𝑖, 𝑗 }𝑀𝑗=1 for every 𝑖 ∈ [2𝑘 + 1]. According to Lemma 5.6.1,
at least 𝑘 + 1 of these candidate coincide, and hence the true value of {a𝑖, 𝑗 }𝑀𝑗=1 can
be deduced by a majority vote. Once these true values are known, the decoder
can sort {x′

𝑖
}𝑀
𝑖=1 by its a1, 𝑗 entries (i.e., the entries indexed by 1, . . . , 𝐿

2𝑘+1 − 1),
and deduce the values of each 𝜋𝑡 , 𝑡 ∈ {2, . . . , 2𝑘 + 1} according to the resulting
permutation of {a𝑡,ℓ}𝑀ℓ=1 in comparison to their lexicographic one. Having all the
permutations {𝜋 𝑗 }2𝑘+1

𝑗=2 , the decoder can extract the true positions of {d 𝑗 }4𝑘+2
𝑗=2𝑘+2 and

{𝑅𝑆𝑘 (d 𝑗 )}4𝑘+2
𝑗=2𝑘+2, and apply an RS decoder to correct any substitutions that might

have occurred.

Remark 5.6.1. Notice that the above RS code in its binary representation consists
of binary substrings that represent elements in a larger field. As a result, this code
is capable of correcting any set of substitutions that are confined to at most 𝑘 of
these substrings. Therefore, our code can correct more than 𝑘 substitutions in many
cases.

For 4 ≤ 𝑀 ≤ 2𝐿/2(2𝑘+1) , the total redundancy of the above construction C is given
by

𝑟 (C) = log
(
2𝐿

𝑀

)
− log

(
2𝐿/(2𝑘+1)−1

𝑀

)2𝑘+1

− log(𝑀!2𝑘2(2𝑘+1) (𝑀−2𝑘 log 𝑀𝐿−2𝑘 log 𝑀))
(𝑏)
≤ (2𝑘 + 1) log 𝑒 + 2𝑘 (2𝑘 + 1) log 𝑀𝐿

+ 2𝑘 (2𝑘 + 1) log 𝑀, (5.16)

where the proof of inequality (𝑏) is given in Appendix 5.8.

Remark 5.6.2. As mentioned in Remark 5.5.2, storing 𝑅𝑆𝑘 (d 𝑗 ) separately in each
part 𝑗 ∈ {2𝑘+2, . . . , 4𝑘+2} is not necessary. Instead, we store 𝑅𝑆𝑘 (d2𝑘+2, . . . , d4𝑘+2)
in a single part 𝑗 = 2𝑘 + 1, since the position of the binary strings d 𝑗 for 𝑗 ∈
{2𝑘 + 2, . . . , 4𝑘 + 2} and the redundancy 𝑅𝑆𝑘 (d2𝑘+2, . . . , d4𝑘+2) can be identi-
fied once {a𝑖, 𝑗 }𝑖≤𝑀, 𝑗≤2𝑘+1 are determined. The redundancy of the resulting code
is 2𝑘 (2𝑘 + 1) log 𝑀𝐿 + 2𝑘 log(2𝑘 + 1)𝑀 .
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For the case when 𝑀 < 2𝑘 log 𝑀𝐿 + 2𝑘 log 𝑀 , we generate sequences a𝑖, 𝑗 , 𝑖 ∈
[𝑀], 𝑗 ∈ [2𝑘 + 1] with length 𝐿/(2𝑘 + 1) − ⌈2𝑘 log 𝑀𝐿+2𝑘 log 𝑀

𝑀
⌉. Then, the

length ⌈2𝑘 log 𝑀𝐿+2𝑘 log 𝑀

𝑀
⌉ sequences 𝑥𝑖, 𝑗 , 𝑖 ∈ [𝑀], 𝑗 ∈ ∪2𝑘+1

𝑙=1 {(𝑙 − 1)𝐿/(2𝑘 + 1) −
⌈2𝑘 log 𝑀𝐿+2𝑘 log 𝑀

𝑀
⌉ + 1, . . . , 𝑙𝐿/(2𝑘 + 1)} are used to accommodate the information

bits {d 𝑗 }4𝑘+2
𝑗=2𝑘+2 and the redundancy bits {𝑅𝑆𝑘 (s𝑖)}2𝑘+1

𝑖=1 and {𝑅𝑆𝑘 (d 𝑗 )}4𝑘+2
𝑗=2𝑘+2 in each

part.

5.7 Conclusions and Future Work
Motivated by novel applications in coding for DNA storage, this chapter presented
a channel model in which the data is sent as a set of unordered strings that are
distorted by substitutions. Respective sphere packing arguments were applied in
order to establish an existence result of codes with low redundancy for this channel,
and a corresponding lower bound on the redundancy for 𝑘 = 1 was given by using
Fourier analysis. For 𝑘 = 1, a code construction was given which asymptotically
achieves the lower bound. For larger values of 𝑘 , a code construction whose
redundancy is asymptotically 𝑘 times the aforementioned upper bound was given;
closing this gap is an interesting open problem. Furthermore, it is intriguing to find
a lower bound on the redundancy for larger values of 𝑘 as well.

5.8 Appendix
Proof of Lemma 5.6.1

Proof. (of Lemma 5.6.1) Similarly to the proof of Lemma 5.5.1, we consider a
matrix 𝐴 ∈ {0, 1}𝑀×𝐿 whose rows are the x𝑖’s, in any order. Let 𝐴 𝑗 be the result of
ordering the rows of 𝐴 according to the lexicographic order of their ( 𝑗 − 1)𝐿/(2𝑘 +
1) + 1, . . . , 𝑗 𝐿/(2𝑘 + 1) − 1 bits for 𝑗 ∈ [2𝑘 + 1]. The matrices 𝐴′

𝑗
for 𝑗 ∈ [2𝑘 + 1]

can be defined analogously with {x′
𝑖
}𝑀
𝑖=1 instead of {x𝑖}𝑀𝑖=1.

It is readily verified that there exist 2𝑘 + 1 permutation matrices 𝑃 𝑗 such that 𝐴 𝑗 =

𝑃 𝑗 𝐴 (Here 𝑃1 is the identity matrix). Moreover, since 𝑘 substitution spoils at most 𝑘
parts, there exist at least 𝑗𝑙 ∈ [2𝑘 + 1], 𝑙 ∈ [𝑘 + 1] such that {a𝑖, 𝑗𝑙 }𝑀𝑖=1 = { ˆa𝑖, 𝑗𝑙 }𝑀𝑖=1,
for 𝑙 ∈ [𝑘 + 1], it follows that 𝐴′

𝑗𝑙
= 𝑃 𝑗𝑙 (𝐴 + 𝑅) for 𝑙 ∈ [𝑘 + 1], where 𝑅 ∈

{0, 1}𝑀×𝐿 is a matrix of Hamming weight at most 𝑘; this clearly implies that 𝐴′
𝑗𝑙
=

𝐴 𝑗𝑙 + 𝑃 𝑗𝑙𝑅 for 𝑙 ∈ [𝑘 + 1]. Since s 𝑗𝑙 results from vectorizing some submatrix 𝑀𝑙

of 𝐴 𝑗𝑙 , and s′
𝑗𝑙

results from vectorizing some submatrix 𝑀′
𝑙

of 𝐴′
𝑗𝑙
. Moreover, the

matrices 𝑀𝑙 and 𝑀′
𝑙

are taken from their mother matrix by omitting the same rows
and columns, and both vectorizing operations consider the entries of 𝑀𝑙 and 𝑀′

𝑙

in the same order. In addition, the redundancies 𝐸𝐻 (s 𝑗𝑙 ) for 𝑙 ∈ [𝑘 + 1] can be
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identified similarly, and have at most 𝑘 substitution with respect to the corresponding
entries in the noiseless codeword. Therefore, it follows from 𝐴 𝑗𝑙 = 𝐴 𝑗𝑙 + 𝑃1𝑅

that 𝑑𝐻 ((s′𝑗𝑙 , 𝐸𝐻 (s 𝑗𝑙 )′), (s 𝑗𝑙 , 𝐸𝐻 (s 𝑗𝑙 ))) ≤ 𝑘 .

□

Proof of Redundancy Bounds
Proof of (𝑎) in (5.13):

𝑟 (C) ≤ 3 log(1 + 2𝑀
2𝐿/3 − 2𝑀

)𝑀 + 3 log 𝑀𝐿 + 3 log 𝑀 + 6

≤ 3 log(1 + 4
𝑀

)𝑀 + 3 log 𝑀𝐿 + 3 log 𝑀 + 6

= 12 log((1 + 4
𝑀

)𝑀/4) + 3 log 𝑀𝐿 + 3 log 𝑀 + 6

≤ 12 log 𝑒 + 3 log 𝑀𝐿 + 3 log 𝑀 + 6.

Proof of (𝑏) in (5.16):

𝑟 (C) = log
𝑀−1∏
𝑖=0

(2𝐿 − 𝑖) − log
𝑀−1∏
𝑖=0

(2𝐿/(2𝑘+1)−1 − 𝑖)2𝑘+1

− log 2(2𝑘+1)𝑀 + 2𝑘 (2𝑘 + 1) log 𝑀𝐿

+ 2𝑘 (2𝑘 + 1) log 𝑀

= log
𝑀−1∏
𝑖=0

(2𝐿 − 𝑖)
(2𝐿/(2𝑘+1) − 2𝑖)2𝑘+1

+ 2𝑘 (2𝑘 + 1) log 𝑀𝐿 + 2𝑘 (2𝑘 + 1) log 𝑀

≤(2𝑘 + 1)𝑀 log
2𝐿/(2𝑘+1)

2𝐿/(2𝑘+1) − 2𝑀
+ 2𝑘 (2𝑘 + 1) log 𝑀𝐿 + 2𝑘 (2𝑘 + 1) log 𝑀

≤(2𝑘 + 1) log(1 + 2𝑀
2𝐿/(2𝑘+1) − 2𝑀

)𝑀

+ 2𝑘 (2𝑘 + 1) log 𝑀𝐿 + 2𝑘 (2𝑘 + 1) log 𝑀

≤(2𝑘 + 1) log(1 + 4
𝑀

)𝑀 + 2𝑘 (2𝑘 + 1) log 𝑀𝐿

+ 2𝑘 (2𝑘 + 1) log 𝑀

=(2𝑘 + 1) log((1 + 4
𝑀

)𝑀/4) + 2𝑘 (2𝑘 + 1) log 𝑀𝐿

+ 2𝑘 (2𝑘 + 1) log 𝑀

≤(2𝑘 + 1) log 𝑒 + 2𝑘 (2𝑘 + 1) log 𝑀𝐿
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+ 2𝑘 (2𝑘 + 1) log 𝑀.

Improved Codes for a Single Substitution
We briefly present an improved construction of a single substitution code, which
achives 2 log 𝑀𝐿 + log 2𝑀 +𝑂 (1) redundancy.

Theorem 5.8.1. Let 𝑀 and 𝐿 be numbers that satisfy 𝑀 ≤ 2𝐿/4. Then there exists
a single substitution correcting code with redundancy 2 log 𝑀𝐿 + log 2𝑀 +𝑂 (1).

The construction is based on the single substitution code as shown in Sec. 5.5. The
difference is that instead of using three parts and the majority rule, it suffices to use
two parts (two halfs) and an extra bit to indicate which part has the correct order.
To compute this bit, let

x⊕ =

𝑀⊕
𝑖=1

x𝑖

be the bitwise XOR of all strings x𝑖 and e ∈ {0, 1}𝐿 be a vector of 𝐿/2 zeros followed
by 𝐿/2 ones. We use the bit 𝑏𝑒 = e · x⊕ mod 2 to indicate in which part the sub-
stitution error occurs. If a substitution error happens at the first half (𝑥1

𝑖
, . . . , 𝑥

𝐿/2
𝑖

),
the bit 𝑏𝑒 does not change. Otherwise the bit 𝑏𝑒 is flipped. Moreover, as men-
tioned in Remark 5.5.2, we store the redundancy of all the binary strings in a single
part, instead of storing the redundancy separately for each binary string in each
part. The data to encode is regarded as 𝑑 = (𝑑1, 𝑑2, 𝑑3, 𝑑4), where 𝑑1 ∈ [

(2𝐿/2−1

𝑀

)
],

𝑑2 ∈ [
(2𝐿/2−1

𝑀

)
· 𝑀!], 𝑑3 ∈ [2𝑀−log 𝑀𝐿−1] and 𝑑4 ∈ [2𝑀−log 𝑀𝐿−log 2𝑀−2]. That

is, 𝑑1 represents a set of 𝑀 strings of length 𝐿/2 − 1, 𝑑2 represents a set of 𝑀

strings of length 𝐿/2 − 1 and a permutation 𝜋. Let d3 ∈ {0, 1}𝑀−log 𝑀𝐿−1, d4 ∈
{0, 1}𝑀−log 𝑀𝐿−log 2𝑀−2 be the binary strings corresponding to 𝑑3 and 𝑑4 respec-
tively.

We now address the problem of inserting the bit 𝑏𝑒 into the codeword. We consider
the four bits 𝑥𝑖1,𝐿/2, 𝑥𝑖2,𝐿/2, 𝑥𝑖3,𝐿 , and 𝑥𝑖4,𝐿 , where 𝑖1 and 𝑖2 are the indices of the two
largest strings among {a𝑖}𝑀𝑖=1 in lexicographic order, and 𝑖3 and 𝑖4 are the indices of
the two largest strings among {b𝑖}𝑀𝑖=1 in lexicographic order. Then, we compute 𝑏𝑒

and set

𝑥𝑖1,𝐿/2 = 𝑥𝑖2,𝐿/2 = 𝑥𝑖3,𝐿 = 𝑥𝑖4,𝐿 = 𝑏𝑒 .

Note that after a single substitution, at most one of 𝑖1, 𝑖2, 𝑖3, and 𝑖4 will not be
among the indices of the largest two strings in their corresponding part. Hence,
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upon receiving a word 𝐶′ = {x′1, . . . , x
′
𝑀
} ∈ B1(𝐶) for some codeword 𝐶, we find

the two largest strings among {a𝑖}𝑀𝑖=1 and the two largest strings among {b𝑖}𝑀𝑖=1,
and use majority to determine the bit 𝑏𝑒. The rest of the encoding and decoding
procedures are similar to the corresponding ones in Sec. 5.5. We define s1 and s2 to
the two possible concatenations of {a𝑖}𝑀𝑖=1 and {b𝑖}𝑀𝑖=1,

s1 = (a1, . . . ,a𝑀 , b𝜋(1) , . . . ,b𝜋(𝑀))
s2 = (a𝜋−1 (1) , . . . ,a𝜋−1 (𝑀) ,b1, . . . ,b𝑀).

We compute their Hamming redundancies and place them in columns 𝐿/2 and 𝐿,
alongside the strings 𝑑3, 𝑑4 and their Hamming redundancy 𝐸𝐻 (d3, d4) in column 𝐿,
similar to (5.9).

In order to decode, we compute the value of 𝑏𝑒 by a majority vote, which locates
the substitution, and consequently, we find 𝜋 by ordering {x′

𝑖
}𝑀
𝑖=1 according to the

error-free part. Knowing 𝜋, we extract the 𝑑𝑖’s and their redundancy 𝐸𝐻 (d3, d4), and
complete the decoding procedure by applying a Hamming decoder. The resulting
redundancy is 2 log 𝑀𝐿 + log 2𝑀 + 3.

5.9 Proof of (𝑎) in Eq. (5.5)
Note that 𝑃 ≤ 𝑇 , it suffices to show that the function 𝑔(𝑃) ≜ ((𝑇 + 𝑃)/𝑃)𝑃 = (1 +
𝑇/𝑃)𝑃 is increasing in 𝑃 for 𝑃 > 0. We now show that the derivative 𝜕𝑔(𝑃)/𝜕𝑃 =

(1 + 𝑇/𝑃)𝑃 (ln(1 + 𝑇/𝑃) − 𝑇/(𝑇 + 𝑃)) is greater than 0 for 𝑃 > 0. It is left to show
that

ln(1 + 𝑇/𝑃) > 𝑇/(𝑇 + 𝑃). (5.17)

Let 𝑣 = 𝑇/(𝑇 + 𝑃), then Eq. (5.17) is equivalent to

1/(1 − 𝑣) > 𝑒𝑣 (5.18)

for some 0 < 𝑣 < 1. The inequality (5.18) holds since 1/(1 − 𝑣) = 1 + ∑∞
𝑖=1 𝑣

𝑖

and 𝑒𝑣 = 1 + ∑∞
𝑖=1 𝑣

𝑖/𝑖! for 0 < 𝑣 < 1.
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C h a p t e r 6

ROBUST INDEXING: OPTIMAL CODES CORRECTING
DELETION/INSERTION AND SUBSTITION ERRORS

In this chapter, we consider a more general setting of correcting deletions/insertions
over unordered sets. Our construction in this chapter improved the one in Ch. 5 and
is order-wise optimal.

6.1 Introduction
This chapter is a follow-up work of Ch. 6. Consider encoding data into 𝑀 strings of
length 𝐿. The decoder wishes to recover the data from erroneous versions of the 𝑀

strings, which contain substitution, deletion, and insertion errors. This model has
been extensively investigated. In Ch. 5, we showed that for a constant number 𝑘
of substitution errors, the optimal redundancy has the order 𝑂 (𝑘 log 𝑀𝐿) and an
explicit code with 𝑂 (𝑘2 log 𝑀𝐿) bits of redundancy was given. The problem of
designing codes correcting a constant number of substitutions was also studied
in [89], from a generalized Hamming distance perspective. Yet no order optimal
code construction for substitution errors was given.

In this chapter, we propose order-wise optimal code constructions that achieves
𝑂 (𝑘 log 𝑀𝐿) redundancy for 𝑘 substitution errors, based on a technique called
robust indexing. Our first main result is as follows.

Theorem 6.1.1. For integers 𝑀, 𝐿, and 𝑘 , let 𝐿′ ≜ 3 log 𝑀 + 4𝑘2 + 1. If 𝐿′ + 4𝑘𝐿′ +
2𝑘 log(4𝑘𝐿′) ≤ 𝐿, then there exists an explicit 𝑘-substitution code, computable
in 𝑝𝑜𝑙𝑦(𝑀, 𝐿, 𝑘) time, that has redundancy 2𝑘 log 𝑀𝐿 + (12𝑘 +2) log 𝑀 +𝑂 (𝑘3) +
𝑂 (𝑘 log log 𝑀𝐿).

Instead of assigning index directly as in index based coding, we embed information
into the index. Note that to combat errors, the index bits themselves form a sub-
stitution code and information is carried through choices of the code. Our robust
indexing algorithm generates indexing bits in a greedy manner and has polynomial
complexity.

Our algorithm also applies to a combination of deletion and insertion errors with
slight modification. Note that correcting a combination of deletion/insertion errors
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is harder than correcting substitution errors only, since a substitution error is a
deletion error followed by an insertion error. Very few works studied the problem
of correcting a combination of deletion/insertion errors, the most related one being
[62], which considered correcting a single deletion. With our deletion/insertion
correcting codes in Ch. 4, we are able to present a code that corrects a combination
of 𝑘 deletions and insertions with 𝑂 (𝑘 log 𝑀𝐿) redundancy, which is our second
main result.

Theorem 6.1.2. For integers 𝑀, 𝐿, 𝑘 , and 𝐿′ ≜ 3 log 𝑀 + 4𝑘2 + 1. If 𝐿′ + 4𝑘𝐿′ +
2𝑘 log(4𝑘𝐿′) ≤ 𝐿, then there exists a code, computable in 𝑝𝑜𝑙𝑦(𝑀, 𝐿) time, that
corrects a combination of at most 𝑘 deletions and insertions in total, with redundancy
4𝑘 log 𝑀𝐿 + (12𝑘 + 2) log 𝑀 +𝑂 (𝑘3) + 𝑜(log 𝑀𝐿).

The rest of this chapter is organized as follows. Sec. 6.2 presents the notations
and channel model. In Sec. 6.3 we provide an order optimal code construction
for substitution errors, and the robust indexing algorithm is given in Sec. 6.4. In
Sec. 6.5 we apply robust indexing to deletion errors and propose a deletion/insertion
correcting code construction.

6.2 Preliminaries
We focus on the binary alphabet {0, 1}. With a slight abuse of notation, for a set 𝑆
and an integer 𝑚, denote by

( 𝑆
𝑚

)
the family of all sets of 𝑚 different elements in 𝑆,

and by
( 𝑆
≤𝑚

)
=

⋃𝑀
𝑖=1

( 𝑆
𝑚

)
the family of all subsets of 𝑆 with no more than 𝑚 elements.

For an integer ℓ, let {0, 1}≤ℓ be the set of all binary strings with length at most ℓ.
In our channel model, it is assumed that the data is given as a binary string and
encoded in an unordered set of 𝑀 different strings {x𝑖}𝑀𝑖=1 of length 𝐿. Hence in
this chapter, a codeword refers to a set {x𝑖}𝑀𝑖=1 ∈

({0,1}𝐿
𝑀

)
, rather than a vector as in

classic coding theoretic settings. Each element x𝑖 in a codeword is referred to as
a string. The assumption that the strings x𝑖, 𝑖 ∈ [𝑀], in a codeword are different
stems from the fact that sequencing procedures cannot detect repeated strings in the
codeword {x𝑖}𝑀𝑖=1 by counting the frequency of each string in the sample. Moreover,
as we can see from the definition of code redundancy that will be presented later,
the asymptotic redundancy of a code is not affected by allowing repeated string in
the codeword, when 𝑀 = 𝑜(2𝐿).

The codeword {x𝑖}𝑀𝑖=1 is subject to substitution, deletion, and insertion errors.
In this chapter, we propose codes for correcting substitution errors and deletion
errors separately. The presented deletion codes are capable of correcting dele-
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tion/insertion errors as well. A 𝑘-substitution error is an operation that flips at
most 𝑘 bits in the codeword. Each bit flip can occur in any of the strings x𝑖, 𝑖 ∈ [𝑀],
where [𝑀] ≜ {1, . . . , 𝑀}. For any string set {x𝑖}𝑀𝑖=1 ∈

({0,1}𝐿
𝑀

)
, define its Hamming

ballB𝐻
𝑘
({x𝑖}𝑀𝑖=1) ∈

({0,1}𝐿
𝑀

)
as the set of all possible outcomes after a 𝑘 substitution er-

ror in {x𝑖}𝑀𝑖=1. A 𝑘 substitution codeC𝐻 is an ensemble of codewords {x𝑖}𝑀𝑖=1 ∈
({0,1}

𝑀

)
such that for any 𝑆1, 𝑆2 ∈ C𝐻 , we have that B𝐻

𝑘
(𝑆1) ∩ B𝐻

𝑘
(𝑆2) = ∅. Similarly, a 𝑘

deletion/insertion error is an operation that removes and/or inserts at most 𝑘 bits in
the codeword. For a set {x𝑖}𝑀𝑖=1 ∈

({0,1}𝐿
𝑀

)
, its deletion ball B𝐷

𝑘
({x𝑖}𝑀𝑖=1) ⊆

({0,1}≤𝐿
≤𝑀

)
is the collection of outputs resulted from a 𝑘 deletion/insertion error in {x𝑖}𝑀𝑖=1. A 𝑘

deletion/insertion code C𝐷 consists of sets {x𝑖}𝑀𝑖=1 ∈
({0,1}𝐿

𝑀

)
such that the dele-

tion/insertion balls of any 𝑆1, 𝑆2 ∈ C𝐷 do not intersect. The redundancy of a 𝑘

substitution or deletion/insertion code C is defined as 𝑟 (C) =
(2𝐿

𝑀

)
− log |C|.

Our code constructions make use of the well-known Reed-Solomon code, which
is capable of correcting 𝑘 substitutions in a length 𝑛 codeword over an alphabet
of size 𝑞, with 2𝑘 log 𝑞 bits redundancy, as long as 𝑞 ≥ 𝑛 − 1 [79]. Moreover,
combinatorial numbering maps [53] are used in the robust indexing algorithm.
Specifically, for integers𝑚 and 𝑛, there exist a map 𝐹𝑐𝑜𝑚 : [

( 𝑛
𝑚

)
] →

([𝑛]
𝑚

)
that maps an

integer 𝑑 ∈ [
( 𝑛
𝑚

)
] to a set of𝑚 different elements in [𝑛], and a map 𝐹𝑝𝑒𝑟𝑚 : [𝑛!] → 𝑆𝑛

that maps an integer 𝑑 ∈ [𝑛!] into a permutation on 𝑛 elements.

6.3 Robust Indexing for Codes over Sets: Substitution Errors
In this section we describe our code constructions, which use the idea of robust
indexing. These codes deal with substitution errors in the 𝑀 strings. Our codes
have redundancy 𝑂 (𝑘 log 𝑀𝐿), which is order-wise optimal whenever 𝑘 is at most
𝑂 (min{𝐿1/3, 𝐿/log 𝑀}).

Theorem 6.3.1. For integers 𝑀, 𝐿, and 𝑘 , let 𝐿′ ≜ 3 log 𝑀 + 4𝑘2 + 1. If 𝐿′ + 4𝑘𝐿′ +
2𝑘 log(4𝑘𝐿′) ≤ 𝐿, then there exists an explicit 𝑘-substitution code, computable
in 𝑝𝑜𝑙𝑦(𝑀, 𝐿, 𝑘) time, that has redundancy 2𝑘 log 𝑀𝐿 + (12𝑘 +2) log 𝑀 +𝑂 (𝑘3) +
𝑂 (𝑘 log log 𝑀𝐿).

Since the codewords consist of unordered strings, we assign indexing bits to each
string such that the strings are ordered. However, instead of directly assigning the
indices 1, . . . , 𝑀 to each string, we embed information into the indexing bits. In
other words, we use the information bits themselves for the purpose of indexing.
This provides more efficiency in sending information.



167

Specifically, for a codeword 𝑊 = {x𝑖}𝑀𝑖=1, we choose the first 𝐿′ bits (𝑥𝑖,1, 𝑥𝑖,2, . . . ,
𝑥𝑖,𝐿 ′), 𝑖 ∈ [𝑀] in each string x𝑖 as the indexing bits, and encode information in
them. Then, the strings {x𝑖}𝑀𝑖=1 are sorted according to the lexicographic order 𝜋 of
the indexing bits (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿 ′), 𝑖 ∈ [𝑀], where (𝑥𝜋(𝑖),1, 𝑥𝜋(𝑖),2, . . . , 𝑥𝜋(𝑖),𝐿 ′) <
(𝑥𝜋( 𝑗),1, 𝑥𝜋( 𝑗),2, . . . , 𝑥𝜋( 𝑗),𝐿 ′) for 𝑖 < 𝑗 . Once {x𝑖}𝑀𝑖=1 are ordered, it suffices to use a
Reed-Solomon code to protect the concatenated string (x𝜋(1) , . . . , x𝜋(𝑀)), and thus
the codeword {x𝑖}𝑀𝑖=1, from 𝑘 substitution errors.

One of the key issues with this approach is that the indexing bits and their lex-
icographic order can be disrupted by substitution errors. To deal with this, we
present a technique referred to as robust indexing, which protects the indexing
bits from substitution errors. The basic ideas of robust indexing are as follows:
(1) Constructing the indexing bits {(𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1 such that the Hamming
distance between any two distinct (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿 ′) and (𝑥 𝑗 ,1, 𝑥 𝑗 ,2, . . . , 𝑥 𝑗 ,𝐿 ′) is
at least 2𝑘 + 1, i.e., the strings {(𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1 form a error correcting
code under classic coding theoretic definition. Then, we can identify which string
among {(𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1 results in the erroneous version (𝑥′
𝑖,1, 𝑥

′
𝑖,2, . . . , 𝑥

′
𝑖,𝐿 ′),

by using a minimum Hamming distance criterion; (2) Using additional redundancy
to protect the set of indexing bits {(𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1 from substitution errors.
Note that we encode data in the code {(𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1 through different
choices of the code. After substitution errors, two choices of the code, which
represent different messages, might result in the same read {(𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1.

Example 6.3.1. For 𝑘 = 𝑀 = 2 and 𝐿 = 8, consider two codes {11111111,
00000000} and {11111111, 00010010}. Both have minimum Hamming distance
greater than 2𝑘 + 1 = 5 and can result in the same set {11111111, 00000011}
after 𝑘 = 2 substitutions.

Hence, to recover the indexing bits (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿 ′), 𝑖 ∈ [𝑀], we need to know
the code {(𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1 to which the erroneous string (𝑥′
𝑖,1, 𝑥

′
𝑖,2, . . . , 𝑥

′
𝑖,𝐿 ′)

is corrected, 𝑖 ∈ [𝑀].

For an integer ℓ, let 1ℓ be the all 1’s vector of length ℓ. Define S𝐻 as the set of all
length 𝐿′ codes with cardinality 𝑀 and minimum Hamming distance at least 2𝑘 +1,
which contain 1𝐿 ′, that is,

S𝐻 ≜
{
{a1, . . . , a𝑀} ∈

(
{0, 1}𝐿 ′

𝑀

)���a1 = 1𝐿 ′ and 𝑑𝐻 (a𝑖, a 𝑗 ) ≥ 2𝑘 + 1

for every distinct 𝑖, 𝑗 ∈ [𝑀]
}
.
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The following lemma gives a lower bound on the size of S𝐻 and is obtained using
counting argument.

Lemma 6.3.1. Let𝑄 =
∑2𝑘

𝑖=0
(𝐿 ′

𝑖

)
be the size of a Hamming ball of radius 2𝑘 centered

at a vector in {0, 1}𝐿 ′. We have that

|S𝐻 | ≥ (2𝐿 ′ − 𝑀𝑄)𝑀−1

(𝑀 − 1)! . (6.1)

Proof. Define the set of ordered tuples

S𝐻
𝑇 =

{
(a1, . . . , a𝑀) : a1 = 1𝐿 ′ and 𝑑𝐻 (a𝑖, a 𝑗 ) ≥ 2𝑘 + 1 for distinct 𝑖, 𝑗 ∈ [𝑀]

}
such that for each tuple (a1, . . . , a𝑀) ∈ S𝐻

𝑇
, we have that {a1, . . . , a𝑀} ∈ S𝐻 . We

show that |S𝐻
𝑇
| ≥ ∏𝑀

𝑖=2 [2𝐿 ′ − (𝑖 − 1)𝑄], by finding
∏𝑀

𝑖=2 [2𝐿 ′ − (𝑖 − 1)𝑄] tuples
in S𝐻

𝑇
. Let a1 = 1𝐿 ′. We select a2, . . . , a𝑀 sequentially such that each selected

string a𝑖, 𝑖 ∈ [2, 𝑀] ≜ {2, . . . , 𝑀}, is of Hamming distance at least 2𝑘 + 1 from
each one of a1, . . . , a𝑖−1. The tuple (a1, . . . , a𝑀) selected in this way has pairwise
Hamming distance at least 2𝑘 + 1 and thus belongs to S𝐻

𝑇
.

Since the number of strings having Hamming distance at most 2𝑘 from at least one
of a1, . . . , a𝑖−1 is at most (𝑖−1)𝑄, there are at least 2𝐿 ′−(𝑖−1)𝑄 possible choices of a𝑖
that have Hamming distance at least 2𝑘 +1 from each one of a1, . . . , a𝑖−1. Therefore,
the total number of ways selecting tuples (a1, . . . , a𝑀) is at least

∏𝑀
𝑖=2 [2𝐿 ′−(𝑖−1)𝑄].

Since in the above selection of tuples (a1 = 1𝐿 ′, . . . , a𝑀) ∈ S𝐻
𝑇

, there are (𝑀 − 1)!
tuples that correspond to the same set {a1 = 1𝐿 ′, a2, . . . , a𝑀} in S𝐻 , we have that

|S𝐻 | = |S𝐻
𝑇 |/(𝑀 − 1)! ≥

𝑀∏
𝑖=2

[2𝐿 ′ − (𝑖 − 1)𝑄]/(𝑀 − 1)! ≥ (2𝐿 ′ − 𝑀𝑄)𝑀−1

(𝑀 − 1)! .

□

According to (6.1), there exists an invertible mapping 𝐹𝐻
𝑆

: [⌈ (2
𝐿′−𝑀𝑄)𝑀−1

(𝑀−1)! ⌉] →({0,1}𝐿′
𝑀

)
, computed in 𝑂 (2𝑀𝐿 ′) time using brute force, that maps an integer 𝑑 ∈[

⌈ (2
𝐿′−𝑀𝑄)𝑀−1

(𝑀−1)! ⌉
]

to a code 𝐹𝐻
𝑆
(𝑑) ∈ S𝐻 . In the next session, we will present a poly-

nomial time algorithm that computes a map 𝐹𝐻
𝑆
(𝑑) for any 𝑑 ∈

[
⌈ (2

𝐿′−𝑀𝑄)𝑀−1

(𝑀−1)! ⌉
]

such

that 𝐹𝐻
𝑆
(𝑑) ∈ S𝐻 and 𝐹𝐻

𝑆
(𝑑1) ≠ 𝐹𝐻

𝑆
(𝑑2) for 𝑑1 ≠ 𝑑2 and 𝑑1, 𝑑2 ∈

[
⌈ (2

𝐿′−𝑀𝑄)𝑀−1

(𝑀−1)! ⌉
]
.

Let us assume for now that the mapping 𝐹𝐻
𝑆

is given.
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For a set 𝑆 ∈
({0,1}𝐿′

≤𝑀
)
, define the characteristic vector 1(𝑆) ∈ {0, 1}2𝐿′ of 𝑆 by

1(𝑆)𝑖 =


1 if the binary presentation of 𝑖 is in 𝑆

0 else
.

Notice that the Hamming weight of 1(𝑆) is 𝑀 for every 𝑆 ∈
({0,1}𝐿′

𝑀

)
. The following

lemma states that 𝑘 substitution errors in a set of strings 𝑆 result in at most 2𝑘 bit
flips in 1(𝑆).

Lemma 6.3.2. For 𝑆1, 𝑆2 ∈
({0,1}𝐿′

≤𝑀
)
, if 𝑆1 ∈ B𝐻

𝑘
(𝑆2), then 𝑑𝐻 (1(𝑆1), 1(𝑆2)) ≤ 2𝑘 ,

where 𝑑𝐻 (1(𝑆1), 1(𝑆2)) is the Hamming distance between 1(𝑆1) and 1(𝑆2).

Proof. Note that |𝑆1\𝑆2 | ≤ 𝑘 and |𝑆2\𝑆1 | ≤ 𝑘 . Hence 𝑑𝐻 (1(𝑆1), 1(𝑆2)) = |𝑆1\𝑆2∪
𝑆2\𝑆1 | ≤ 2𝑘 . □

We are ready to present the code construction. We use a set 𝑆 ∈ S𝐻 as indexing bits
and protect the vector 1𝑆 from substitution errors. Note that any two strings in the
set 𝑆 have Hamming distance at least 2𝑘+1. Hence, knowing the set 𝑆, each string of
indexing bits can be extracted from its erroneous version using a minimum distance
decoder, which finds the unique string in 𝑆 that is within Hamming distance 𝑘 from
it. The details are given as follows.

Consider the data d ∈ 𝐷 to be encoded as a tuple d = (𝑑1, d2), where 𝑑1 ∈
[⌈ (2

𝐿′−𝑀𝑄)𝑀−1

(𝑀−1)! ⌉] and

d2 ∈ {0, 1}𝑀 (𝐿−𝐿 ′)−4𝑘𝐿 ′−2𝑘 ⌈log 𝑀𝐿⌉ .

Given (𝑑1, d2), the codeword {x𝑖}𝑀𝑖=1 is generated by the following procedure.

Encoding:

(1) Let 𝐹𝐻
𝑆
(𝑑1) = {a1, . . . , a𝑀} ∈ S𝐻 such that a1 = 1𝐿 ′ and the a𝑖’s are sorted

in a descending lexicographic order. Let (𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′) = a𝑖, for 𝑖 ∈ [𝑀].

(2) Let (𝑥1,𝐿 ′+1, . . . , 𝑥1,𝐿 ′+4𝑘𝐿 ′) = 𝑅𝑆2𝑘 (1({a1, . . . , a𝑀})), where 𝑅𝑆2𝑘 (1({a1, . . . ,

a𝑀})) is the redundancy of a systematic Reed-Solomon code that corrects 2𝑘
substitutions in 1({a1, . . . , a𝑀}).

(3) Place the information bits of d2 in bits

(𝑥1,𝐿 ′+4𝑘𝐿 ′+1, . . . , 𝑥1,𝐿),
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(𝑥𝑀,𝐿 ′+1, . . . , 𝑥𝑀,𝐿−2𝑘 ⌈log 𝑀𝐿⌉); and

(𝑥𝑖,𝐿 ′+1, . . . , 𝑥𝑖,𝐿) for 𝑖 ∈ [2, 𝑀 − 1] .

(4) Define

m = (x1, . . . , x𝑀−1, (𝑥𝑀,1, . . . , 𝑥𝑀,𝐿−2𝑘 ⌈log 𝑀𝐿⌉))

and let (𝑥𝑀,𝐿−2𝑘 ⌈log 𝑀𝐿⌉+1, . . . , 𝑥𝑀,𝐿) = 𝑅𝑆𝑘 (m), where 𝑅𝑆𝑘 (m) is the Reed-
Solomon redundancy that corrects 𝑘 substitution errors in m. Note that (x1, . . . ,

x𝑀) = (m, 𝑅𝑆𝑘 (m)) is a 𝑘-substitution correcting Reed-Solomon code.

Upon receiving the erroneous version1 {x′1, . . . , x
′
𝑀
}, the decoding procedure is as

follows.

Decoding:

(1) Note that during the encoding process, the redundancy bits that correct
the vector 1({a𝑖}𝑀𝑖=1), i.e., the characteristic vector of the set of indexing
bits {(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1, are stored in x1. Hence we must first identify the er-
roneous copy of x1. To this end, find the unique string x′

𝑖0
such that (𝑥′

𝑖0,1, . . . ,

𝑥′
𝑖0,𝐿 ′) has at least 𝐿′ − 𝑘 many 1-entries. Since the strings {x𝑖}𝑀𝑖=1 have

Hamming distance at least 2𝑘 + 1, there is a unique such string, which is the
erroneous copy of {(𝑥1,1, . . . , 𝑥1,𝐿 ′)}𝑀

𝑖=1. Hence x′
𝑖0

is an erroneous copy of x1

and the string
(𝑥′𝑖0,𝐿 ′+1, . . . , 𝑥

′
𝑖0,𝐿 ′+4𝑘𝐿)

is an erroneous copy of (𝑥1,𝐿 ′+1, . . . , 𝑥1,𝐿 ′+4𝑘𝐿 ′) = 𝑅𝑆2𝑘 (1({a𝑖}𝑀𝑖=1)).

(2) Let 𝑘 be the number of substitution errors that occur to the indexing bits {𝑥𝑖,1,
. . . , 𝑥𝑖,𝐿 ′}𝑀

𝑖=1. According to Lemma 6.3.2, the vector 1({(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀
𝑖=1) is

within Hamming distance 2𝑘 from the vector 1({(𝑥′
𝑖,1, . . . , 𝑥

′
𝑖,𝐿 ′)}𝑀𝑖=1). Hence

the Hamming distance between

s1 = (1({(𝑥′𝑖,1, . . . , 𝑥
′
𝑖,𝐿 ′)}𝑀𝑖=1), (𝑥

′
𝑖0,𝐿 ′+1, . . . , 𝑥

′
𝑖0,𝐿 ′+4𝑘𝐿)) and

s2 = (1({a𝑖}𝑀𝑖=1), 𝑅𝑆2𝑘 (1({a𝑖}𝑀𝑖=1)))

is at most 2𝑘 . Since s2 is a 2𝑘 error correcting Reed Solomon code, it
can be recovered from s1 using the Reed-Solomon decoder. Recover 𝑑1 =

(𝐹𝐻
𝑆
)−1({a𝑖}𝑀𝑖=1).

1Since the strings {x𝑖}𝑀𝑖=1 have distance at least 2𝑘 + 1 with each other, the strings {x′
𝑖
}𝑀
𝑖=1 are

different.
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(3) Since s2 is recovered, the strings {(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀
𝑖=1 = {a𝑖}𝑀𝑖=1 are known.

Sort {(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀
𝑖=1 lexicographically in descending order. For each 𝑖 ∈

[𝑀], find the unique 𝜋(𝑖) ∈ [𝑀] such that 𝑑𝐻 ((𝑥′𝜋(𝑖),1, . . . , 𝑥
′
𝜋(𝑖),𝐿 ′),

(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)) ≤ 𝑘 (note that 𝑖0 = 𝜋(1)). Similar to Step (1), we conclude
that the string x′

𝜋(𝑖) is an erroneous copy of x𝑖, 𝑖 ∈ [𝑀], since the Hamming
distance between x 𝑗 and x𝑖 is at least 2𝑘 + 1 for 𝑗 ≠ 𝑖. Hence, the identify of
{(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1 are determined from {(𝑥′
𝑖,1, . . . , 𝑥

′
𝑖,𝐿 ′)}𝑀𝑖=1.

(4) Since x′
𝜋(𝑖) is an erroneous copy of x𝑖, 𝑖 ∈ [𝑀], it follows that the con-

catenation s′ = (x′
𝜋(1) , . . . , x

′
𝜋(𝑀)) is an erroneous copy of (x1, . . . , x𝑀) =

(m, 𝑅𝑆𝑘 (m)), where m is defined in Step (4) in the encoding procedure.
Therefore, (x1, . . . , x𝑀) and thus d2 can be recovered from (x′

𝜋(1) , . . . , x
′
𝜋(𝑀))

by using the Reed-Solomon decoder.

(5) Output (𝑑1, d2).

Therefore, the codeword {x𝑖}𝑀𝑖=1 can be recovered. The redundancy of the code is

𝑟 (C) = log
(
2𝐿

𝑀

)
− log⌈ (2

𝐿 ′ − 𝑀𝑄)𝑀−1

(𝑀 − 1)! ⌉ − [𝑀 (𝐿 − 𝐿′) − 4𝑘𝐿′ − 2𝑘 ⌈log 𝑀𝐿⌉]

(6.2)
(𝑎)
≤ 2𝑘 log 𝑀𝐿 + (12𝑘 + 2) log 𝑀 +𝑂 (𝑘3) +𝑂 (𝑘 log log 𝑀𝐿), (6.3)

where (𝑎) will be proved in Appendix 6.7. The complexity of the encoding/decoding
is that of computing the function 𝐹𝐻

𝑆
, which as will be discussed in Sec. 6.4,

is 𝑝𝑜𝑙𝑦(𝑀, 𝐿, 𝑘).

6.4 Computing 𝐹𝐻
𝑆

in Polynomial Time
In this section we present a polynomial time algorithm to compute the function 𝐹𝐻

𝑆

and thus complete the code construction in Sec. 6.3. The result is as follows.

Theorem 6.4.1. For integers 𝑀, 𝐿, 𝑘 , 𝐿′ ≜ 3 log 𝑀 + 4𝑘2 + 1, and 𝑄 =
∑2𝑘

𝑖=0
(𝐿 ′

𝑖

)
,

there exists an invertible mapping 𝐹𝐻
𝑆

:
[ (2𝐿′−(𝑀−1)𝑄+𝑀−1

𝑀−1
) ]

→
({0,1}𝐿′

𝑀

)
, computable

in 𝑝𝑜𝑙𝑦(𝑀, 𝐿) time, such that for any 𝑑 ∈ [⌈ (2
𝐿′−𝑀𝑄)𝑀−1

(𝑀−1)! ⌉], we have that 𝐹𝐻
𝑆
(𝑑) ∈

S𝐻 .

The algorithm has a greedy flavor in the sense that the strings a1, . . . , a𝑀 are gener-
ated sequentially and each string a𝑖, 𝑖 ∈ [2, 𝑀] is generated bit by bit. The algorithm
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consists of two steps. In the first step we map the integer 𝑑 ∈ [⌈ (2
𝐿′−𝑀𝑄)𝑀−1

(𝑀−1)! ⌉]
into 𝑀 − 1 integers 𝑞1, . . . , 𝑞𝑀 ∈ [2𝐿 ′] such that 𝑞1 = 2𝐿 ′ and 𝑞𝑖+1 ≤ 𝑞𝑖 − 𝑄

for 𝑖 ∈ [𝑀 − 1]. In the second step, we use 𝑞𝑖 to generate a𝑖 sequentially
for 𝑖 ∈ [2, 𝑀]. The first step is given in the following lemma.

Lemma 6.4.1. There exists an invertible map 𝐹𝐻
𝑄

: [⌈ (2
𝐿′−𝑀𝑄)𝑀−1

(𝑀−1)! ⌉] →
([2𝐿′]

𝑀

)
,

computable in 𝑝𝑜𝑙𝑦(𝐿′, 𝑀) time, that maps and integer 𝑑 ∈ [⌈ (2
𝐿′−𝑀𝑄)𝑀−1

(𝑀−1)! ⌉] to an
integer tuple (𝑞1, . . . , 𝑞𝑀) such that 𝑞1 = 2𝐿 ′ and 𝑞𝑖 ≥ 𝑞𝑖+1 +𝑄 for 𝑖 ∈ [𝑀 − 1].

Proof. Recall the combinatorial numbering map 𝐹𝑐𝑜𝑚 that maps an integer in the
range [

( 𝑛
𝑚

)
] to a set of 𝑚 different and unordered integers in the range [𝑛] for

integers 𝑛 and 𝑚 ≤ 𝑛. Since (2𝐿′−𝑀𝑄)𝑀−1

(𝑀−1)! ≤
(2𝐿′−𝑀𝑄+𝑀−1

𝑀−1
)
, we can map 𝑑 ∈

[⌈ (2
𝐿′−𝑀𝑄)𝑀−1

(𝑀−1)! ⌉] to 𝑀 − 1 integers 𝐹𝑐𝑜𝑚 (𝑑) = {𝑞′2, . . . , 𝑞
′
𝑀
} such that 2𝐿 ′ − 𝑀𝑄 +

𝑀 − 1 ≥ 𝑞′2 > 𝑞′3 > . . . > 𝑞′
𝑀

. Let 𝑞1 = 2𝐿 ′, 𝑞𝑖 = 𝑞′
𝑖
+ (𝑀 − 𝑖 + 1) (𝑄 − 1)

for 𝑖 ∈ [2, 𝑀], and 𝐹𝐻
𝑄
(𝑑) = {𝑞1, . . . , 𝑞𝑀}. Then we have that 𝑞2 ≤ 2𝐿 ′ − 𝑄 and

that 𝑞𝑖 ≥ 𝑞𝑖+1 +𝑄 for 𝑖 ∈ [2, 𝑀 −1]. Since the map 𝐹𝑐𝑜𝑚 is invertible and computed
in 𝑝𝑜𝑙𝑦(𝐿′, 𝑀) time, so is the map 𝐹𝐻

𝑄
. □

We now turn to the second step. Given the integers 𝐹𝐻
𝑄
(𝑑) = (𝑞1, . . . , 𝑞𝑀), we

generate the indexing bits {a𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀
𝑖=1 ∈ S𝐻 . First, we have that a1 =

1𝐿 ′. The algorithm generates the indexing string a𝑖 sequentially for 𝑖 ∈ [2, 𝑀].
Each indexing string a𝑖 is generated bit by bit in a recursive manner. We first give
the following definition, on which the algorithm is based.

For a set of strings 𝐴 ⊂ {0, 1}𝐿 ′ and a string a ∈ {0, 1}ℓ of length ℓ ∈ [𝐿′]. Denote

𝑁𝐻 (a, 𝐴) =
∑︁

c:c∈𝐴
|{c′ : (𝑐′1, . . . , 𝑐

′
ℓ) = a and 𝑑𝐻 (c′, c) ≤ 2𝑘}|

as the sum of the number of sequences that have prefix a and have Hamming distance
at most 2𝑘 from c over c ∈ 𝐴. The number 𝑁𝐻 (a, 𝐴) has the following properties
that will be useful in our proof. The first property implies that

2𝐿 ′−ℓ − 𝑁𝐻 (a, 𝐴) = (2𝐿 ′−ℓ−1 − 𝑁𝐻 ((a, 0), 𝐴)) + (2𝐿 ′−ℓ−1 − 𝑁𝐻 ((a, 1), 𝐴)), (6.4)

which enables a recursion to generate each sequence a𝑖. The second property
provides a way to compute 𝑁𝐻 (a, 𝐴).

Lemma 6.4.2. 1. For any sequence a ∈ {0, 1}ℓ of length ℓ ∈ [𝐿′ − 1] and
set 𝐴 ⊂ {0, 1}𝐿 ′, we have

𝑁𝐻 (a, 𝐴) = 𝑁𝐻 ((a, 0), 𝐴) + 𝑁𝐻 ((a, 1), 𝐴), (6.5)
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where (a, 0) or (a, 1) is the concatenation of a and a 0 or 1 bit respectively.

2. For any a ∈ {0, 1}ℓ and 𝐴 ⊂ {0, 1}𝐿 ′, we have

𝑁𝐻 (a, 𝐴) =
∑︁

c:c∈𝐴

2𝑘−𝑑𝐻 (a,(𝑐1,...,𝑐ℓ ))∑︁
𝑖=0

(
𝐿′ − ℓ

𝑖

)
. (6.6)

Proof. Note that for any sequence c, the ℓ + 1-th bit of any sequence c′ satisfy-
ing (𝑐′1, . . . , 𝑐

′
ℓ
) = a is either 0 or 1. Hence

|{c′ : (𝑐′1, . . . , 𝑐
′
ℓ) = a and 𝑑𝐻 (c′, c) ≤ 2𝑘}|

=|{c′ : (𝑐′1, . . . , 𝑐
′
ℓ+1) = (a, 0) and 𝑑𝐻 (c′, c) ≤ 2𝑘}|

+ |{c′ : (𝑐′1, . . . , 𝑐
′
ℓ+1) = (a, 1) and 𝑑𝐻 (c′, c) ≤ 2𝑘}|,

which implies Eq. (6.5). Moreover, for any sequence c ∈ {0, 1}𝐿 ′, we have that

|{c′ : (𝑐′1, . . . , 𝑐
′
ℓ) = a and 𝑑𝐻 (c′, c) ≤ 2𝑘}| =

2𝑘−𝑑𝐻 (a,(𝑐1,...,𝑐ℓ ))∑︁
𝑖=0

(
𝐿′ − ℓ

𝑖

)
.

Hence the number 𝑁𝐻 (a, 𝐴) can be computed by Eq. (6.6). □

Next, we present the algorithm that takes 𝐹𝐻
𝑄
(𝑑) = (𝑞1, . . . , 𝑞𝑀) as input and out-

puts a𝑖 such that {a1, . . . , a𝑀} ∈ S𝐻 and that the decimal presentation decimal(a𝑖)
of a𝑖, 𝑖 ∈ [𝑀] satisfies

decimal(a𝑖) = 𝑞𝑖 − 1 +
∑︁

ℓ:𝑎𝑖,ℓ=1 and ℓ∈[𝐿 ′]

𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1
𝑗=1). (6.7)

We then show that the sequences a𝑖, 𝑖 ∈ [𝑀] satisfying (6.7) are decodable, i.e., we
can recover the tuple (𝑞1, . . . , 𝑞𝑀) from {a1, . . . , a𝑀}.

Encoding:

for 𝑖 ∈ [𝑀], do

𝑞 = 𝑞𝑖.

for ℓ ∈ [𝐿′], do

if 2𝐿 ′−ℓ − 𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1
𝑗=1) ≥ 𝑞,

then 𝑎𝑖,ℓ = 0.
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else

𝑞 = 𝑞 − (2𝐿 ′−ℓ − 𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1
𝑗=1)),

𝑎𝑖,ℓ = 1.

end if

end for

end for

return {a1, . . . , a𝑀}.

The generation of a𝑖, 𝑖 ∈ [𝑀] in the encoding procedure can be intuitively char-
acterized as walking on a complete binary tree of 𝐿′ + 1 layers. The walk starts
at layer 1, i.e., the root of the binary tree, and ends at layer 𝐿′ + 1 at one of the
leaf nodes. At each step, it goes to one of its two child nodes, which represent
the bits 0 and 1 respectively. Each string a𝑖, 𝑖 ∈ [𝑀] is represented by the path
of a walk. For each path a𝑖 = (𝑎𝑖,1, . . . , 𝑎𝑖,𝐿 ′) and each layer ℓ ∈ [𝐿′], assign the
weight 𝑤(𝑎𝑖,ℓ) = 2𝐿 ′−ℓ − 𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ), {a 𝑗 }𝑖−1

𝑗=1) to node 𝑎𝑖,ℓ in the ℓ-th layer,
and the weight 𝑤(�̄�𝑖,ℓ) = 2𝐿 ′−ℓ−𝑁𝐻 ((𝑎𝑖,1, . . . , 1−𝑎𝑖,ℓ), {a 𝑗 }𝑖−1

𝑗=1) to the brother node
of node 𝑎𝑖,ℓ, i.e., the node that shares the same parent node with 𝑎𝑖,ℓ. From Eq. (6.5)
we have that 𝑤(𝑎𝑖,ℓ) = 𝑤(𝑎𝑖,ℓ+1) + 𝑤(�̄�𝑖,ℓ+1) for ℓ ∈ [𝐿′ − 1]. Moreover, we have
that 0 < 𝑞 ≤ 𝑤(𝑎𝑖,ℓ) after the ℓ-th inner for loop in the 𝑖-th outer for loop. This is
formalized in the following lemma, which can be used to prove that Eq. (6.7) holds
and that {a1, . . . , a𝑀} ∈ S𝐻 .

Lemma 6.4.3. After the ℓ-th, ℓ ∈ [𝐿′], inner for loop in the 𝑖-th, 𝑖 ∈ [𝑀], outer for
loop in the encoding procedure, we have that

0 < 𝑞 ≤ 2𝐿 ′−ℓ − 𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ), {a 𝑗 }𝑖−1
𝑗=1). (6.8)

At the end of the 𝑖-th outer for loop, we have that 𝑞 = 1.

Proof. We prove Eq. (6.8) by induction on ℓ. For ℓ = 1, according to Lemma 6.4.1,
we have 0 < 𝑞 = 𝑞𝑖 ≤ 2𝐿 ′ − (𝑖 − 1)𝑄 at the beginning of the 𝑖-th outer for loop.
If 𝑎𝑖,1 = 0, then according to the if condition in the encoding procedure, we have
that 0 < 𝑞 ≤ 2𝐿 ′−ℓ − 𝑁𝐻 (0, {a 𝑗 }𝑖−1

𝑗=1) for ℓ = 1, which proves (6.8). Otherwise
if 𝑎𝑖,1 = 1, we have

0 < 𝑞 = 𝑞𝑖 − (2𝐿 ′−ℓ − 𝑁𝐻 (0, {a 𝑗 }𝑖−1
𝑗=1))



175

≤ 2𝐿 ′ − (𝑖 − 1)𝑄 − (2𝐿 ′−ℓ − 𝑁𝐻 (0, {a 𝑗 }𝑖−1
𝑗=1))

(𝑎)
= (2𝐿 ′−1 − 𝑁𝐻 (1, {a 𝑗 }𝑖−1

𝑗=1)),

where (𝑎) holds since by definition of 𝑁𝐻 (a, 𝐴), we have that

𝑁𝐻 (0, {a 𝑗 }𝑖−1
𝑗=1) + 𝑁𝐻 (1, {a 𝑗 }𝑖−1

𝑗=1) =
𝑖−1∑︁
𝑗=1

|{c : 𝑑𝐻 (c, a 𝑗 ) ≤ 2𝑘}|

=

𝑖−1∑︁
𝑗=1

𝑄

= (𝑖 − 1)𝑄.

Hence the claim holds for ℓ = 1. Suppose Eq. (6.8) holds for ℓ = 𝑚. For ℓ = 𝑚 + 1,
if 𝑎𝑖,𝑚+1 = 0, then from Step (3), we have 0 < 𝑞 ≤ 2𝐿 ′−𝑚−1 − 𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,𝑚, 0),
{a 𝑗 }𝑖−1

𝑗=1). Otherwise if 𝑎𝑖,𝑚+1 = 1, we have that

0 < 𝑞 = 𝑞𝑖 − (2𝐿 ′−𝑚−1 − 𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ, 0), {a 𝑗 }𝑖−1
𝑗=1))

≤ 2𝐿 ′−𝑚 − 𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,𝑚), {a 𝑗 }𝑖−1
𝑗=1)

− (2𝐿 ′−𝑚−1 − 𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,𝑚, 0), {a 𝑗 }𝑖−1
𝑗=1))

(𝑏)
= (2𝐿 ′−𝑚−1 − 𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,𝑚, 1), {a 𝑗 }𝑖−1

𝑗=1)),

where (𝑏) follows from Eq. (6.5). Therefore, Eq. (6.8) holds for ℓ = 𝑚 + 1 and thus
holds for ℓ ∈ [𝐿′]. Hence at the end of Step (2) we have that

0 < 𝑞 ≤ 2𝐿 ′−𝐿 ′ − 𝑁𝐻 (a𝑖, {a 𝑗 }𝑖−1
𝑗=1) ≤ 1. (6.9)

Hence 𝑞 equals 1 at the end of Step (2). □

We now show that the strings {a1, . . . , a𝑀} generated in the encoding procedure
belong to S𝐻 . By Lemma 6.4.3, we have

𝑞 = 2𝐿 ′−𝐿 ′ − 𝑁𝐻 (a𝑖, {a 𝑗 }𝑖−1
𝑗=1) = 1,

at the end of each round of Step (2) in the encoding procedure. This implies
that 𝑁𝐻 (a𝑖, {a 𝑗 }𝑖−1

𝑗=1) = 0 and thus 𝑑𝐻 (a𝑖, a 𝑗 ) ≥ 2𝑘 +1 for 𝑖 ∈ [2, 𝑀] and 𝑗 ∈ [𝑖−1].
Moreover, since 𝑞1 = 2𝐿 ′, we have that a1 = 1𝐿 ′. Therefore, {a𝑖}𝑀𝑖=1 ∈ S𝐻 .

Next, we use Lemma 6.4.3 to show that the strings {a𝑖}𝑀𝑖=1 satisfy Eq. (6.7).

Lemma 6.4.4. The output {a𝑖}𝑀𝑖=1 of the encoding algorithm satisfies Eq. (6.7).
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Proof. Note that in each inner for loop, the number 𝑞 is subtracted by 2𝐿 ′−ℓ −
𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1

𝑗=1) only when 𝑎𝑖,ℓ = 1 and ℓ ∈ [𝐿′]. Since the
number 𝑞 equals 𝑞𝑖 at the beginning of each outer for loop, and from Lemma 6.4.3
equals 1 at the end of each outer for loop, hence we have that

𝑞𝑖 −
∑︁

ℓ:𝑎𝑖,ℓ=1 and ℓ∈[𝐿 ′]

(2𝐿 ′−ℓ − 𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1
𝑗=1)) = 1,

which implies (6.7). □

Remark 6.4.1. By definition of 𝑁𝐻 (a, 𝐴), we have the following alternative char-
acterization of decimal(a𝑖), 𝑖 ∈ [𝑀].

decimal(a𝑖) = 𝑞𝑖 − 1 +
𝑖−1∑︁
𝑗=1

|{c : 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 (c) < 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 (a𝑖) and 𝑑𝐻 (c, a 𝑗 ) ≤ 2𝑘}|,

(6.10)

which is 𝑞𝑖 − 1 plus the sum of number of strings that are lexicographically less
than a𝑖 and have Hamming distance at most 2𝑘 from a 𝑗 over 𝑗 < 𝑖.

Lemma 6.4.4 immediately implies a decoding algorithm that transforms {a𝑖}𝑀𝑖=1 back
to (𝑞1, . . . , 𝑞𝑀).

Decoding:

(1) Order the strings {a𝑖}𝑀𝑖=1 such that a1 > a2 > . . . > a𝑀 .

(2) For 𝑖 ∈ [𝑀],

𝑞𝑖 = decimal(a𝑖) + 1 +
∑︁

ℓ:𝑎𝑖,ℓ=1 and ℓ∈[𝐿 ′]

𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1
𝑗=1).

(6.11)

To show that the decoding is correct, we prove that the string a𝑖, 𝑖 ∈ [𝑀] generated
in the encoding procedure satisfies

a1 > a2 > . . . > a𝑀 . (6.12)

Then we conclude that the string a𝑖 obtained by ordering {a𝑖}𝑀𝑖=1 in Step (1) in the
decoding procedure satisfies Eq. (6.7). Hence we have Eq. (6.23) and thus 𝑞𝑖, 𝑖 ∈
[𝑀] can be recovered. Suppose on the contrary, there exist a𝑖1 > a𝑖2 for some 𝑖1 > 𝑖2.
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Let ℓ∗ be the most significant bit where a𝑖1 and a𝑖2 differ, i.e., (𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ∗−1) =
(𝑎𝑖2,1, . . . , 𝑎𝑖2,ℓ∗−1) and 𝑎𝑖1,ℓ∗ = 1 and 𝑎𝑖2,ℓ∗ = 0. Then according to the if statement
in the encoding procedure, we have that

𝑞𝑖1 −
∑︁

ℓ:𝑎𝑖1 ,ℓ=1 and ℓ∈[ℓ∗]

(2𝐿 ′−ℓ − 𝑁𝐻 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖1−1
𝑗=1 )) > 0 and

𝑞𝑖2 −
∑︁

ℓ:𝑎𝑖1 ,ℓ=1 and ℓ∈[ℓ∗]

(2𝐿 ′−ℓ − 𝑁𝐻 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖2−1
𝑗=1 )) ≤ 0,

which implies that

𝑞𝑖2 − 𝑞𝑖1 <
∑︁

ℓ:𝑎𝑖1 ,ℓ=1 and ℓ∈[ℓ∗]

(2𝐿 ′−ℓ − 𝑁𝐻 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖2−1
𝑗=1 ))

−
∑︁

ℓ:𝑎𝑖1 ,ℓ=1 and ℓ∈[ℓ∗]

(2𝐿 ′−ℓ − 𝑁𝐻 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖1−1
𝑗=1 ))

=
∑︁

ℓ:𝑎𝑖1 ,ℓ=1 and ℓ∈[ℓ∗]

(𝑁𝐻 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖1−1
𝑗=1 )

− 𝑁𝐻 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖2−1
𝑗=1 ))

=
∑︁

ℓ:𝑎𝑖1 ,ℓ=1 and ℓ∈[ℓ∗]

𝑁𝐻 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖1−1
𝑗=𝑖2

)

(𝑎)
≤

𝑖1−1∑︁
𝑗=𝑖2

|c : 𝑑𝐻 (c, a 𝑗 ) ≤ 2𝑘 |

=(𝑖1 − 𝑖2)𝑄, (6.13)

where (𝑎) follows from the definition of 𝑁𝐻 (a, 𝐴) and the fact that the strings
which have (𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ1−1, 0) and (𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ2−1, 0) as prefixes, respectively,
where 𝑎𝑖1,ℓ1=1, 𝑎𝑖1,ℓ2=1 and ℓ1 ≠ ℓ2, are different. Eq. (6.13) contradicts to the fact
that the integers (𝑞1, . . . , 𝑞𝑀) = 𝐹𝐻

𝑄
(𝑑) satisfy 𝑞𝑖 − 𝑞𝑖+1 > 𝑄 for 𝑖 ∈ [𝑀 −1], which

implies 𝑞𝑖1 − 𝑞𝑖2 ≥ (𝑖1 − 𝑖2)𝑄.

Since the calculation of 𝑁𝐻 (a, 𝐴) has polynomial complexity, the complexity of the
encoding/decoding procedure is polynomial in 𝑀 and 𝐿′.

6.5 Robust Indexing for Deletion/Insertion Errors
In this section we show how the idea of robust indexing can be used for correcting
deletion/insertion errors over sliced channels. The redundancy of the construction
is 𝑂 (𝑘 log 𝑀𝐿) for constant 𝑘 .
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Theorem 6.5.1. For integers 𝑀, 𝐿, 𝑘 , and 𝐿′ ≜ 3 log 𝑀 + 4𝑘2 + 1. If 𝐿′ + 4𝑘𝐿′ +
2𝑘 log(4𝑘𝐿′) ≤ 𝐿, there exists a 𝑘-deletion code, computable in 𝑝𝑜𝑙𝑦(𝑀, 𝐿) time,
that has redundancy 8𝑘 log 𝑀𝐿 + (12𝑘 + 2) log 𝑀 +𝑂 (𝑘3) + 𝑜(log 𝑀𝐿).

Similar to the construction in Sec. 6.3, we use the first 𝐿′ bits (𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′), 𝑖 ∈
[𝑀] in each string x𝑖 as indexing bits and sort the strings {x𝑖} according to the
lexicographic order of {(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1. To protect the ordering, we use Reed-
Solomon code to protect the characteristic vector 1({(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1). The
difference is that in this section, we construct the indexing bits {(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1
such that the mutual deletion distance among {(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1, rather than the
mutual Hamming distance considered in Sec. 6.3, is at least 2𝑘 + 1, i.e., the deletion
balls D𝑘 ((𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)) and D𝑘 ((𝑥 𝑗 ,1, . . . , 𝑥 𝑗 ,𝐿 ′)) do not intersect for 𝑖 ≠ 𝑗 , where
the deletion ball D𝑘 (u) of a string u{0, 1}𝑛 is the set of all length 𝑛− 𝑘 subsequence
of u. Define

S𝐷 =
{
{a1, . . . , a𝑀} : D𝑘 (a𝑖) ∩ D𝑘 (a 𝑗 ) = ∅ for 𝑖 ≠ 𝑗

}
.

The construction is based on the following two lemmas, where the first one is robust
indexing for deletion/insertion errors, which will be proved in Sec. 6.5 and the
second one is a deletion code construction, which we presented in Ch. 4.

Lemma 6.5.1. For 𝑃 = 2𝑘
(𝐿 ′

𝑘

)2
, there exists an invertible mapping

𝐹𝐷
𝑆 :

[(
2𝐿 ′ − (𝑀 − 1)𝑃 + 𝑀 − 1

𝑀 − 1

)]
→

(
{0, 1}𝐿 ′

𝑀

)
,

computable in 𝑝𝑜𝑙𝑦(𝑀, 𝐿) time, such that for any 𝑑 ∈ [⌈ (2
𝐿′−𝑀𝑃)𝑀−1

(𝑀−1)! ⌉], we have
that 𝐹𝐷

𝑆
(𝑑) ∈ S𝐷 .

Lemma 6.5.2. (Corollary of Theorem 4.1.2) For any integer 𝑛 and 𝑁 = 𝑛+4𝑘 log 𝑛+
𝑜(log 𝑛), there exists a systematic encoding function 𝐸𝑛𝑐 : {0, 1}𝑛 → {0, 1}𝑁 ,
computed in 𝑂 (𝑛2𝑘+1) time, and a decoding function 𝐷𝑒𝑐 : {0, 1}𝑁−𝑘 → {0, 1}𝑛,
computed in𝑂 (𝑛𝑘+1) time, such that for any c ∈ {0, 1}𝑛 and substring d ∈ {0, 1}𝑁−𝑘

of 𝐸𝑛𝑐(c), we have that 𝐷𝑒𝑐(d) = c.

Code Constructions
The code construction is the same as that in Sec. 6.3 except that here, the indexing
bits {(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1 are generated using the map 𝐹𝐷
𝑆

. In addition, a deletion
code in Lemma 6.5.2 is used to protect the concatenated string.
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Let the data d ∈ 𝐷 to be encoded be a tuple d = (𝑑1, d2), where 𝑑1 ∈ [⌈ (2
𝐿′−𝑀𝑃)𝑀−1

(𝑀−1)! ⌉]
and

d2 ∈ {0, 1}𝑛

such that 𝑛+4𝑘 log 𝑛+𝑜(log 𝑛) = 𝑀 (𝐿− 𝐿′) −4𝑘𝐿′, which implies that 𝑛 = 𝑀 (𝐿−
𝐿′) − 4𝑘𝐿′ − 4𝑘 ⌈log 𝑀𝐿⌉ − 𝑜(log 𝑀𝐿). We briefly present the encoding/decoding
procedure as follows.

Encoding:

(1) Let 𝐹𝐷
𝑆
(𝑑1) = {a1, . . . , a𝑀} ∈ S𝐻 such that a1 = 1𝐿 ′ and a1 > a2 > . . . > a𝑀 .

Let (𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′) = a𝑖, for 𝑖 ∈ [𝑀].

(2) Let

(𝑥1,𝐿 ′+1, . . . , 𝑥1,𝐿 ′+4𝑘𝐿 ′+4𝑘 log(4𝑘𝐿 ′)+𝑜(log(4𝑘𝐿 ′)))
=𝐸𝑛𝑐(𝑅𝑆2𝑘 (1({a1, . . . , a𝑀})))

(3) Place the deletion code 𝐸𝑛𝑐(d2) in bits

(𝑥1,𝐿 ′+4𝑘𝐿 ′+4𝑘 log(4𝑘𝐿 ′)+𝑜(log(4𝑘𝐿 ′))+1, . . . , 𝑥1,𝐿), and

(𝑥𝑖,𝐿 ′+1, . . . , 𝑥𝑖,𝐿) for 𝑖 ∈ [2, 𝑀] .

Upon receiving {x′
𝑖
}𝑀
𝑖=1, the decoding procedure is as follows.

Decoding:

(1) Find the unique string x′
𝑖0

such that (𝑥′
𝑖0,1, . . . , 𝑥

′
𝑖0,𝐿 ′−𝑘 ) = 1𝐿 ′−𝑘 . Then x′

𝑖0
is

an erroneous copy of x1 and the string

(𝑥′𝑖0,𝐿 ′+1, . . . , 𝑥
′
𝑖0,𝐿 ′+4𝑘𝐿+4𝑘 log(4𝑘𝐿 ′)+𝑜(log(4𝑘𝐿 ′))−𝑘 )

is an erroneous copy of

(𝑥1,𝐿 ′+1, . . . , 𝑥1,𝐿 ′+4𝑘𝐿 ′+4𝑘 log(4𝑘𝐿 ′)+𝑜(log(4𝑘𝐿 ′))) = 𝐸𝑛𝑐(𝑅𝑆2𝑘 (1({a𝑖}𝑀𝑖=1))).

Correct the vector 𝑅𝑆2𝑘 (1({a𝑖}𝑀𝑖=1)) and use it to recover 1({a𝑖}𝑀𝑖=1), and thus
the indexing bits {(𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′)}𝑀

𝑖=1. Recover 𝑑1 = (𝐹𝐻
𝑆
)−1({a𝑖}𝑀𝑖=1).

(2) For each 𝑖 ∈ [𝑀], find the unique 𝜋(𝑖) ∈ [𝑀] such that (𝑥′
𝜋(𝑖),1, . . . , 𝑥

′
𝜋(𝑖),𝐿 ′−𝑘 )

is a length 𝐿′ − 𝑘 substring of (𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′) (note that 𝜋(1) = 𝑖0). Checking
if a string is a substring of another can be done in linear time using a greedy
algorithm.
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(4) Since x′
𝜋(𝑖) is an erroneous copy of x𝑖, 𝑖 ∈ [𝑀], the concatenation m′ =

((𝑥′
𝜋(1),𝐿 ′+4𝑘𝐿 ′+4𝑘 log(4𝑘𝐿 ′)+𝑜(log(4𝑘𝐿 ′))+1, . . . , 𝑥

′
𝜋(1),𝐿1

), x′
𝜋(2) , . . . , x

′
𝜋(𝑀)), where

𝐿1 is the length of x′
𝜋(1) , is an erroneous copy of 𝐸𝑛𝑐(d2). Use the de-

coder 𝐷𝑒𝑐(m′) = d2.

(5) Output (𝑑1, d2).

The proof of correctness is similar to that in Sec. 6.3. The redundancy of the code
is

𝑟 (C) = log
(
2𝐿

𝑀

)
− log⌈

∏𝑀−1
𝑖=1 (2𝐿 ′ − 𝑖𝑃)
(𝑀 − 1)! ⌉

− [𝑀 (𝐿 − 𝐿′) − 4𝑘𝐿′ − 8𝑘 log(4𝑘𝐿′) − 𝑜(log(4𝑘𝐿′))
− 4𝑘 ⌈log 𝑀𝐿⌉ − 𝑜(log 𝑀𝐿)]

≤8𝑘 log 𝑀𝐿 + (12𝑘 + 2) log 𝑀 +𝑂 (𝑘3) + 𝑜(𝑘 log 𝑀𝐿).

Computing 𝐹𝐷
𝑆

We now prove Lemma 6.5.1. The robust indexing algorithm for generating the
indexing strings {𝑥𝑖,1, . . . , 𝑥𝑖,𝐿 ′} is the same as in Sec. 6.4 except that we replace
the notations 𝑁𝐻 (a, 𝐴) and 𝑄, which are based on Hamming distance, with their
deletion distance counterparts. For a string c ∈ {0, 1}ℓ and a set of indices Δ =

{𝛿1, . . . , 𝛿𝑟} ⊂ [ℓ], let c(Δ) be the length ℓ−𝑟 subsequence of c obtained by deleting
bits (𝑐𝛿1 , 𝑐𝛿2 , . . . , 𝑐𝛿𝑟 ) in c.

For sequences c1 ∈ {0, 1}ℓ1 and c2 ∈ {0, 1}ℓ2 and nonnegative integers 𝑟1, 𝑟2, define
the set

I(c1, c2, 𝑟1, 𝑟2) = {(Δ1,Δ2) :Δ1 ⊆ [ℓ1], |Δ1 | ≤ 𝑟1,Δ2 ⊆ [ℓ2], |Δ2 | ≤ 𝑟2,

c1(Δ1) = c2(Δ2)}

and the number

𝑁 (c1, c2, 𝑟1, 𝑟2) = |I(c1, c2, 𝑟1, 𝑟2) |, (6.14)

which is the number of ways to delete no more than 𝑟1 and 𝑟2 bits in c1 and c2,
respectively, such that the resulting subsequences are the same. For a sequence a ∈
{0, 1}ℓ of length ℓ ∈ [0, 𝐿′] and a set of sequences 𝐴 ⊂ {0, 1}𝐿 ′, define

𝑁𝐷 (a, 𝐴) =
∑︁
c∈𝐴

∑︁
c′:c′∈{0,1}𝐿′ and (𝑐′1,...,𝑐ℓ )=a

𝑁 (c′, c, 𝑘, 𝑘).
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For an empty sequence a and a sequence c, we have that

𝑁𝐷 (a, c) = 𝑃 ≜
𝑘∑︁

𝑟=0

(
𝐿′

𝑟

)2
2𝑟 , (6.15)

since 𝑁𝐷 (a, c) is the number of tuples (c′,Δ1,Δ2) of sequences c′ ∈ {0, 1}𝐿 ′ and
index sets Δ1,Δ2 ⊂ [𝐿′] such that after no more than 𝑘 deletions in indices Δ1 and
Δ2 in c and c′, respectively, we obtain the same subsequence c(Δ1) = c′(Δ2).

The algorithm for computing 𝐹𝐷
𝑆

is the same as that for computing 𝐹𝐻
𝑆

, by replacing
the numbers 𝑁𝐻 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1

𝑗=1) and 𝑄 with numbers 𝑁𝐷 ((𝑎𝑖,1, . . . ,
𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1

𝑗=1) and 𝑃. To prove the correctness of the algorithm, we need to
show that 𝑁𝐷 (a, 𝐴) satisfies the two properties similar to the ones in Eq. (6.5)
and Eq. (6.6). The first is that

𝑁𝐷 (a, 𝐴) = 𝑁𝐷 ((a, 0), 𝐴) + 𝑁𝐷 ((a, 1), 𝐴) (6.16)

for a sequence a ∈ {0, 1}ℓ of length ℓ ∈ [𝐿′ − 1] and a set 𝐴 ⊂ {0, 1}𝐿 ′, which is a
deletion counterpart of Eq. (6.5). This can be proved by noticing that

𝑁𝐷 (a, 𝐴) =
∑︁

c′:c′∈{0,1}𝐿′ and (𝑐′1,...,𝑐
′
ℓ
)=a

∑︁
c∈𝐴

𝑁 (c′, c, 𝑘, 𝑘)

and that for every sequence c′ ∈ {0, 1}𝐿 ′ that satisfies (𝑐′1, . . . , 𝑐
′
ℓ
) = a, we have

either 𝑐′
ℓ+1 = 1 or 𝑐′

ℓ+1 = 0.

The second property is that the number 𝑁𝐷 (a, 𝐴) is computable in polynomial time.
Since obtaining an explicit expression as in Eq. (6.6) is challenging, we compute
the number 𝑁𝐷 (a, c) using dynamic programming for two sequences a ∈ {0, 1}ℓ

and c ∈ {0, 1}𝐿 ′ such that ℓ ∈ [0, 𝐿′]. Given a and c, we compute

𝑛(𝑘1, 𝑘2, 𝑟1, 𝑟2)
=

∑︁
c′:c′∈{0,1}𝐿′−ℓ+𝑘1 and (𝑐′1,...,𝑐

′
𝑘1
)=(𝑎ℓ−𝑘1+1,...,𝑎ℓ )

𝑁 (c′, (𝑐𝐿 ′−𝑘2+1, . . . , 𝑐𝐿 ′), 𝑟1, 𝑟2).

Note that 𝑁𝐷 (a, c) = 𝑛(ℓ, 𝐿′, 𝑘, 𝑘). In addition, by definition of 𝑁𝐷 (a, 𝐴), we have
that 𝑁𝐷 (a, 𝐴) =

∑
c∈𝐴 𝑁𝐷 (a, c). Hence, 𝑁𝐷 (a, 𝐴) can be computed efficiently when

𝑁𝐷 (a, c) is computed.

For 𝑘1 = 0, we have that

𝑛(0, 𝑘2, 𝑟1, 𝑟2) =
∑︁

c′:c′∈{0,1}𝐿′−ℓ
𝑁 (c′, (𝑐𝐿 ′−𝑘2+1, . . . , 𝑐𝐿 ′), 𝑟1, 𝑟2), (6.17)
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which by Eq. (6.14) equals 0 when 𝐿′ − ℓ − 𝑟1 > 𝑘2 or 𝑘2 − 𝑟2 > 𝐿′ − ℓ. When 𝐿′ −
ℓ − 𝑟1 ≤ 𝑘2 and 𝑘2 − 𝑟2 ≤ 𝐿′ − ℓ, we show that

𝑛(0, 𝑘2, 𝑟1, 𝑟2) =
𝑟2∑︁

𝑖=𝑘2−(𝐿 ′−ℓ)

(
𝑘2
𝑖

) (
𝐿′ − ℓ

𝐿′ − ℓ − (𝑘2 − 𝑖)

)
2𝐿 ′−ℓ−(𝑘2−𝑖) , (6.18)

for 𝑘2 ≥ 𝐿′ − ℓ and that

𝑛(0, 𝑘2, 𝑟1, 𝑟2) =
𝑟1∑︁

𝑖=𝐿 ′−ℓ−𝑘2

(
𝑘2

𝑘2 − (𝐿′ − ℓ − 𝑖)

) (
𝐿′ − ℓ

𝑖

)
2𝑖, (6.19)

for 𝑘2 < 𝐿′−ℓ. For 𝑘2 ≥ 𝐿′−ℓ and sets (Δ1,Δ2) ∈ I(c′, c = (𝑐𝐿 ′−𝑘2+1, . . . , 𝑐𝐿 ′), 𝑟1,

𝑟2), the cardinality |Δ2 | satisfies 𝑘2 − (𝐿′ − ℓ) ≤ |Δ2 | ≤ 𝑟2 because

c′(Δ1) = (𝑐𝐿 ′−𝑘2+1, . . . , 𝑐𝐿 ′) (Δ2).

For given |Δ2 |, there are
( 𝑘2
|Δ2 |

)
ways to select Δ2 and

( 𝐿 ′−ℓ
𝐿 ′−ℓ−(𝑘2−Δ2)

)
choices of Δ1.

Moreover, given c,Δ1, and Δ2, there are 2𝐿 ′−ℓ−(𝑘2−Δ2) choices of c′ such that c(Δ2) =
c′(Δ1). Hence we have Eq. (6.18). Similarly, we have Eq. (6.19). Therefore, the
number 𝑛(𝑘1, 𝑘2, 𝑟1, 𝑟2) can be computed when 𝑘1 = 0.

For 𝑘1 > 0, we compute 𝑛𝑘1,𝑘2,𝑟1,𝑟2 iteratively from 𝑘1 = 0 to 𝑘1 = ℓ using the
following recursion.

𝑛(𝑘1, 𝑘2, 𝑟1, 𝑟2) =
∑︁

𝑘:𝑘∈[𝐿 ′−𝑘2+1,𝐿 ′],𝑐𝑘=𝑎ℓ−𝑘1+1

𝑛(𝑘1 − 1, 𝐿′ − 𝑘, 𝑟1, 𝑟2 − 𝑘 + 𝐿′ − 𝑘2 + 1)

+ 2𝑛(𝑘1 − 1, 𝑘2, 𝑟1 − 1, 𝑟2), (6.20)

where 𝑛(𝑘′, 𝑘′′, 𝑟′, 𝑟′′) = 0 if 𝑟′ < 0 or 𝑟′′ < 0. Note that for any (Δ1,Δ2) ∈
I(c′, c = (𝑐𝐿 ′−𝑘2+1, . . . , 𝑐𝐿 ′), 𝑟1, 𝑟2), we have either 1 ∈ Δ1 or 1 ∉ Δ1. When 1 ∈ Δ1,
then c′′(Δ1\{1} − 1) = (𝑐𝐿 ′−𝑘2+1, . . . , 𝑐𝐿 ′) (Δ2), where c′′ = (𝑐′2, . . . , 𝑐

′
𝐿 ′−ℓ+𝑘1

) and
Δ−𝑖 = { 𝑗−𝑖 : 𝑗 ∈ Δ} for any setΔ and integer 𝑖. Note that there are 𝑛(𝑘1−1, 𝑘2, 𝑟1−
1, 𝑟2) choices of (c′′,Δ1\{1} − 1,Δ2) such that (𝑐′′1 , . . . , 𝑐

′′
𝑘1−1) = (𝑎ℓ−𝑘1+2,...,𝑎ℓ ) and

c′′(Δ1\{1}−1) = (𝑐𝐿 ′−𝑘2+1, . . . , 𝑐𝐿 ′) (Δ2). Since 𝑐′1 can be either 0 or 1 when 1 ∈ Δ1.
We have 2𝑛(𝑘1 − 1, 𝑘2, 𝑟1 − 1, 𝑟2) choices of (c′,Δ1,Δ2) such that (𝑐′2, . . . , 𝑐

′
𝑘1
) =

(𝑐′′1 , . . . , 𝑐
′′
𝑘1−1) = (𝑎𝑙−𝑘1+2,...,𝑎ℓ ) and c′(Δ1) = (𝑐𝐿 ′−𝑘2+1, . . . , 𝑐𝐿 ′) (Δ2), when 1 ∈ Δ1.

When 1 ∉ Δ1, Let 𝑘 be the minimum index such that 𝑘 ∈ [𝐿′ − 𝑘2 + 1, 𝐿′] and
(𝑘 − 𝐿′ + 𝑘2) ∉ Δ2. Then, we have that 𝑐𝑘 = 𝑐′1 = 𝑎𝑙−𝑘1+1, [1, 𝑘 − 𝐿′ + 𝑘2 − 1] ∈ Δ2,
and c′′(Δ1 − 1) = (𝑐𝑘+1, . . . , 𝑐𝐿 ′) (Δ2\[1, 𝑘 − 𝐿′ + 𝑘2 − 1] − 𝑘 + 𝐿′ − 𝑘2), where
c′′ = (𝑐′2, . . . , 𝑐

′
𝐿 ′−ℓ+𝑘1

). There are 𝑛(𝑘1 − 1, 𝐿′ − 𝑘, 𝑟1, 𝑟2 − 𝑘 + 𝐿′ − 𝑘2 + 1) choices
of (c′′,Δ1 − 1,Δ2\[1, 𝑘 − 𝐿′ + 𝑘2 − 1] − 𝑘 + 𝐿′ − 𝑘2) such that c′′(Δ1 − 1) =
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(𝑐𝑘+1, . . . , 𝑐𝐿 ′) (Δ2\[1, 𝑘 − 𝐿′ + 𝑘2 − 1] − 𝑘 + 𝐿′ − 𝑘2) and that (𝑐′′1 , . . . , 𝑐
′′
𝑘1−1) =

(𝑎ℓ−𝑘1+2,...,𝑎ℓ ). Therefore, there are 𝑛(𝑘1 − 1, 𝐿′ − 𝑘, 𝑟1, 𝑟2 − 𝑘 + 𝐿′ − 𝑘2 + 1)
choices of (c′,Δ1,Δ2) such that (𝑐′1, . . . , 𝑐

′
𝑘1
) = (𝑎ℓ−𝑘1+1, . . . , 𝑎ℓ) and c′(Δ1) =

(𝑐𝐿 ′−𝑘2+1, . . . , 𝑐𝐿 ′) (Δ2). Note that for each 𝑘 satisfying 𝑘 ∈ [𝐿′ − 𝑘2 + 1, 𝐿′] and
𝑐𝑘 = 𝑐′1 = 𝑎ℓ−𝑘1+1, there are 𝑛(𝑘1 − 1, 𝐿′− 𝑘, 𝑟1, 𝑟2 − 𝑘 + 𝐿′− 𝑘2 + 1) choices of such
(c′,Δ1,Δ2). In addition, different 𝑘 corresponds to different choices since 𝑘 is the
minimum index such that (𝑘 − 𝐿′ + 𝑘2) ∉ Δ2. Hence, we have (6.4).

By Eq. (6.17), (6.18), (6.19), and (6.4), the number 𝑁 (a, c) = 𝑛(ℓ, 𝐿′, 𝑘, 𝑘) can
be recursively computed for any a ∈ {0, 1}ℓ and c ∈ {0, 1}𝐿 ′. Therefore, the
encoding/decoding can be computed in 𝑝𝑜𝑙𝑦(𝑀, 𝐿′) time.

We are now ready to present the algorithm that computes 𝐹𝐷
𝑆
(𝑑) for an integer

𝑑 ∈
[ (2𝐿′−(𝑀−1)𝑃+𝑀−1

𝑀−1
) ]

. The algorithm is the same as the encoding procedure
in Sec. 6.4, by replacing 𝑁𝐻 (a, 𝐴) with 𝑁𝐷 (a, 𝐴) for any sequence a and set of
sequences 𝐴. In addition, the integers 𝑞𝑖 are generated such that 𝑞1 = 2𝐿 ′ and
𝑞𝑖+1 − 𝑞𝑖 > 𝑃 for 𝑖 ∈ [𝑀 − 1]. Such 𝑞𝑖, 𝑖 ∈ [𝑀] can be generated following the
same argument in Lemma 6.4.1, since 𝑑 ∈

[ (2𝐿′−(𝑀−1)𝑃+𝑀−1
𝑀−1

) ]
. Given integers 𝑞𝑖,

𝑖 ∈ [𝑀], satisfying 𝑞1 = 2𝐿 ′ and 𝑞𝑖+1 − 𝑞𝑖 > 𝑃 for 𝑖 ∈ [𝑀 − 1], the encoding
procedure for generating {a1, . . . , a𝑀} is given as follows.

Encoding:

for 𝑖 ∈ [𝑀], do

𝑞 = 𝑞𝑖.

for ℓ ∈ [𝐿′], do

if 2𝐿 ′−ℓ − 𝑁𝐷 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1
𝑗=1) ≥ 𝑞,

then 𝑎𝑖,ℓ = 0.

else

𝑞 = 𝑞 − (2𝐿 ′−ℓ − 𝑁𝐷 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1
𝑗=1)),

𝑎𝑖,ℓ = 1.

end if

end for
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end for

return {a1, . . . , a𝑀}.

The correctness of the encoding procedure follows similar argument to the one in
Sec. 6.4. We prove that the input (𝑞1, . . . , 𝑞𝑀) and output {a1, . . . , a𝑀} satisfy

decimal(a𝑖) = 𝑞𝑖 − 1 +
∑︁

ℓ:𝑎𝑖,ℓ=1 and ℓ∈[𝐿 ′]

𝑁𝐷 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1
𝑗=1) (6.21)

and {a1, . . . , a𝑀} ∈ S𝐷 . The following is a deletion metric version of 6.4.3, by
replacing 𝑁𝐻 (a, 𝐴) with 𝑁𝐷 (a, 𝐴) for any sequence a ∈ {0, 1}ℓ and set 𝐴 ∈ {0, 1}𝐿 ′.

Lemma 6.5.3. After the ℓ-th, ℓ ∈ [𝐿′], inner for loop in the 𝑖-th, 𝑖 ∈ [𝑀], outer for
loop in the encoding procedure, we have that

0 < 𝑞 ≤ 2𝐿 ′−ℓ − 𝑁𝐷 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ), {a 𝑗 }𝑖−1
𝑗=1). (6.22)

At the end of the 𝑖-th outer for loop, we have that 𝑞 = 1.

Proof. The proof is the same as that of Lemma 6.4.3, by noticing that

𝑁𝐷 (0, {a 𝑗 }𝑖−1
𝑗=1) + 𝑁𝐷 (1, {a 𝑗 }𝑖−1

𝑗=1) =
𝑖−1∑︁
𝑗=1

𝑁𝐷 (, a 𝑗 )

(𝑎)
= (𝑖 − 1)𝑃,

where is the empty sequence and (𝑎) follows from (6.15) and the fact that𝑁𝐷 (a, 𝐴) =∑
c∈𝐴 𝑁𝐷 (a, c). In addition, we have (6.16), which is the deletion metric version of

(6.5). The rest of the proof follows the same as in 6.4.3. □

From Lemma 6.5.3, we have

𝑞 = 2𝐿 ′−𝐿 ′ − 𝑁𝐷 (a𝑖, {a 𝑗 }𝑖−1
𝑗=1) = 1,

at the end of the 𝑖-th outer for-loop, 𝑖 ∈ [𝑀]. Hence, 𝑁𝐷 (a𝑖, {a 𝑗 }𝑖−1
𝑗=1) = 0 for

𝑖 ∈ [𝑀] and D𝑘 (a𝑖) ∩ D𝑘 (a 𝑗 ) = ∅ for any 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ∈ [𝑀]. Then, we have
that {a𝑖}𝑀𝑖=1 ∈ S𝐷 . In addition, similar to Lemma 6.4.4, we can use Lemma 6.5.3 to
show that the output {a𝑖}𝑀𝑖=1 satisfies Eq. (6.21).

Therefore, we have the following decoding algorithm, similar to the one in Sec. 6.4.

Decoding:
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(1) Order the strings {a𝑖}𝑀𝑖=1 such that a1 > a2 > . . . > a𝑀 .

(2) For 𝑖 ∈ [𝑀],

𝑞𝑖 = decimal(a𝑖) + 1 +
∑︁

ℓ:𝑎𝑖,ℓ=1 and ℓ∈[𝐿 ′]

𝑁𝐷 ((𝑎𝑖,1, . . . , 𝑎𝑖,ℓ−1, 0), {a 𝑗 }𝑖−1
𝑗=1).

(6.23)

Finally, the correctness of decoding is guaranteed by (6.21) and the fact that a1 >

a2 > . . . > a𝑀 , where a𝑖 is the output generated in the 𝑖-th outer-loop. The latter
follows similar proof to the one in Sec. 6.4. Suppose there exists 𝑖1 > 𝑖2 such that
a𝑖1 > a𝑖2 alphabetically. Then we have that

𝑞𝑖2 − 𝑞𝑖1 <
∑︁

ℓ:𝑎𝑖1 ,ℓ=1 and ℓ∈[ℓ∗]

(2𝐿 ′−ℓ

− 𝑁𝐷 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖2−1
𝑗=1 ))

−
∑︁

ℓ:𝑎𝑖1 ,ℓ=1 and ℓ∈[ℓ∗]

(2𝐿 ′−ℓ − 𝑁𝐷 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖1−1
𝑗=1 ))

=
∑︁

ℓ:𝑎𝑖1 ,ℓ=1 and ℓ∈[ℓ∗]

(𝑁𝐷 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖1−1
𝑗=1 )

− 𝑁𝐷 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖2−1
𝑗=1 ))

=
∑︁

ℓ:𝑎𝑖1 ,ℓ=1 and ℓ∈[ℓ∗]

𝑁𝐷 ((𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ−1, 0), {a 𝑗 }𝑖1−1
𝑗=𝑖2

)

(𝑎)
≤ 𝑁𝐷 (∅, {a 𝑗 }𝑖1−1

𝑗=𝑖2
)

(𝑏)
≤ (𝑖1 − 𝑖2)𝑃, (6.24)

where ∅ is the empty sequence and (𝑎) follows from the definition of 𝑁𝐷 (a, 𝐴) and
the fact that the strings which have (𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ1−1, 0) and (𝑎𝑖1,1, . . . , 𝑎𝑖1,ℓ2−1, 0)
as prefixes, respectively, are different. Inequality (𝑏) follows from (6.15) and the
fact that 𝑁𝐷 (a, 𝐴) =

∑
c∈𝐴 𝑁𝐷 (a, c).

6.6 Conclusion
In this chapter, we provided order-wise optimal codes correcting 𝑘 substitutions, and
a combination of at most 𝑘 deletion or insertions, respectively, over an unordered
set of 𝑀 sequences, each of length 𝐿. There are limitations on the parameters
(𝑘, 𝑀, 𝐿), where our results apply. It is interesting and desirable to see if such
optimality holds for broader set of parameters (𝑘, 𝑀, 𝐿).
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6.7 Appendix
Proof of Eq. (6.2)

𝑟 (C) = log
(
2𝐿

𝑀

)
− log⌈

∏𝑀−1
𝑖=1 (2𝐿 ′ − 𝑖𝑄)
(𝑀 − 1)! ⌉

− [𝑀 (𝐿 − 𝐿′) − 4𝑘𝐿′ − 2𝑘 ⌈log 𝑀𝐿⌉]

≤ log
2𝐿𝑀

𝑀!
− log

(2𝐿 ′ − 𝑀𝑄)𝑀−1

(𝑀 − 1)!
− [𝑀 (𝐿 − 𝐿′) − 4𝑘𝐿′ − 2𝑘 (log 𝑀𝐿 + 1)]

=𝑀𝐿′ − log(2𝐿 ′ − 𝑀𝑄)𝑀−1 + 4𝑘𝐿′

+ 2𝑘 log 𝑀𝐿 + 2𝑘 − log 𝑀

= log
2𝐿 ′(𝑀−1)

(2𝐿 ′ − 𝑀𝑄)𝑀−1 + 𝐿′ + 4𝑘𝐿′

+ 2𝑘 log 𝑀𝐿 + 2𝑘 − log 𝑀

=
(𝑀 − 1)𝑀𝑄

2𝐿 ′ − 𝑀𝑄
log(1 + 𝑀𝑄

2𝐿 ′ − 𝑀𝑄
)

2𝐿
′
−𝑀𝑄

𝑀𝑄 + 𝐿′ + 4𝑘𝐿′

+ 2𝑘 log 𝑀𝐿 + 2𝑘 − log 𝑀

(𝑎)
≤ (𝑀 − 1)

𝑀
log(1 + 1

𝑀
)𝑀 + 𝐿′ + 4𝑘𝐿′

+ 2𝑘 log 𝑀𝐿 + 2𝑘 − log 𝑀

≤ log 𝑒 + 𝐿′ + 4𝑘𝐿′ + 2𝑘 log 𝑀𝐿 + 1 + 2𝑘 − log 𝑀

=2𝑘 log 𝑀𝐿 + (12𝑘 + 2) log 𝑀 +𝑂 (𝑘3) +𝑂 (𝑘 log log 𝑀𝐿),

where (𝑎) follows from the following inequality

𝑀2(3 log 𝑀 + 4𝑘2 + 1)2𝑘 ≤ 23 log 𝑀+4𝑘2+1 (6.25)

and the fact that the function 𝑓 (𝑥) = (1+𝑥)1/𝑥 is decreasing in 𝑥 for 0 < 𝑥. Eq. (6.25)
is proved as follows.

Rewrite Eq. (6.25) as

(3 log 𝑀 + 4𝑘2 + 1)2𝑘 ≤ 2log 𝑀+4𝑘2+1. (6.26)

Define functions 𝑔(𝑦, 𝑘) = ln(3𝑦 + 4𝑘2 + 1)2𝑘 and ℎ(𝑦, 𝑘) = ln 2𝑦+4𝑘2+1. Then we
have that

𝜕ℎ(𝑦, 𝑘)/𝜕𝑦 − 𝜕𝑔(𝑦, 𝑘)/𝜕𝑦 = ln 2 − 6𝑘/(3𝑦 + 4𝑘2 + 1),
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which is positive for 𝑦 ≥ 1 and 𝑘 ≥ 2. Therefore, for 𝑘 ≥ 2 and 𝑦 ≥ 1, we have that

ℎ(𝑦, 𝑘) − 𝑔(𝑦, 𝑘) ≥ ℎ(1, 𝑘) − 𝑔(1, 𝑘).

Furthermore,

𝜕ℎ(1, 𝑘)/𝜕𝑘 − 𝜕𝑔(1, 𝑘)/𝜕𝑘 =(8 ln 2)𝑘 − 2 ln(4𝑘2 + 4) − 16𝑘2/(4𝑘2 + 4)
>(8 ln 2)𝑘 − 2 ln(5𝑘2) − 4

=4(𝑘 − 1 − ln 𝑘) + (8 ln 2 − 4)𝑘 − 2 ln 5
(𝑎)
≥ (8 ln 2 − 4)𝑘 − 2 ln 5,

where (𝑎) follows since 𝑘 = 𝑒ln 𝑘 ≥ 1 + ln 𝑘 . Since (8 ln 2 − 4)𝑘 − 2 ln 5 is positive
for 𝑘 ≥ 3, we have that ℎ(1, 𝑘)/𝜕𝑘 > 𝜕𝑔(1, 𝑘)/𝜕𝑘 for 𝑘 ≥ 3. It then follows
that ℎ(1, 𝑘) − 𝑔(1, 𝑘) ≥ min{ℎ(1, 2) − 𝑔(1, 2), ℎ(1, 3) − 𝑔(1, 3)} > 0 for 𝑘 ≥ 2.
Hence ℎ(𝑦, 𝑘) > 𝑔(𝑦, 𝑘) for 𝑦 ≥ 1 and 𝑘 ≥ 2, which implies that Eq. (6.26) holds
when 𝑀 ≥ 2 and 𝑘 ≥ 2.

Next we show that Eq. (6.26) holds when 𝑀 = 1 or 𝑘 = 1. When 𝑀 = 1, we have
that log 𝑀 = 0 and that

𝜕ℎ(0, 𝑘)/𝜕𝑘 − 𝜕𝑔(0, 𝑘)/𝜕𝑘 =(8 ln 2)𝑘 − 2 ln(4𝑘2 + 1) − 16𝑘2/(4𝑘2 + 1)
>(8 ln 2)𝑘 − 2 ln(5𝑘2) − 4

=4(𝑘 − 1 − ln 𝑘) + (8 ln 2 − 4)𝑘 − 2 ln 5

≥(8 ln 2 − 4)𝑘 − 2 ln 5,

which is positive when 𝑘 ≥ 3. Therefore, we have that ℎ(0, 𝑘) − 𝑔(0, 𝑘) ≥
min{ℎ(0, 1) − 𝑔(0, 1), ℎ(0, 2) − 𝑔(0, 2), ℎ(0, 3) − 𝑔(0, 3)} > 0. Hence Eq.(6.26)
holds when 𝑀 = 1.

When 𝑘 = 1 we have that

2log 𝑀+4𝑘2+1 =32(1 + +
∞∑︁
𝑖=1

log𝑖 𝑀/𝑖!)

≥32(1 + log 𝑀 + log2 𝑀/2)
≥(3 log 𝑀 + 5)2

=(3 log 𝑀 + 4𝑘2 + 1)2𝑘 .

Hence, Eq. (6.26) and Eq. (6.25) holds. We now finish the proof of Eq. (6.2).
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C h a p t e r 7

TRACE RECONSTRUCTION

7.1 Introduction
The trace reconstruction problem seeks to recover an unknown string x ∈ {0, 1}𝑛,
given multiple independent noisy samples or traces of x. In this chapter, a noisy
sample is obtained by passing x through a deletion channel, which randomly and
independently deletes each bit of x with probability 𝑞. We are interested in how
many samples are needed to recover x with high probability.

The trace reconstruction problem was introduced in [5] and proposed earlier in
[66] under an adversarial setting. It has been receiving increased attention recently
due to its application in DNA sequencing [8] and DNA storage under nanopore
sequencing [73, 99]. Also, there are many significant results on trace reconstruction
and its variants and generalizations, such as coding for trace reconstruction [23]
and population recovery [4]. For average case trace reconstruction, where the
reconstruction error probability is averaged over all choices of x ∈ {0, 1}𝑛, the state
of the art upper and lower bounds on the number of samples are exp(𝑂 (log

1
3 (𝑛)))

[48] and Ω( log
5
2 (𝑛)

(log log 𝑛)7 ) [16] respectively.

Despite the progress for average cases, the trace reconstruction problem proved to
be highly nontrivial in worst cases, where the reconstruction error probability goes
to zero for arbitrary choice of x. For small deletion probabilities, the work in [20]
showed that polynomial number of samples suffice when 𝑞 ≤ 𝑛−(

1
3+𝜖) for some 𝜖 > 0,

improving the result in [5] for 𝑞 ≤ 𝑛−(
1
2+𝜖) and some 𝜖 > 0. When the deletion

probability becomes constant, there is still an exponential gap between the upper
and lower bounds on the number of samples needed. The first achievable sample
size for constant deletion probability 𝑞 is exp(�̃� (𝑛 1

2 )) [69], which was improved
to exp(Θ(𝑛 1

3 )) in independent and simultaneous works [27] and [70]. Both [27]
and [70] studied mean-based algorithms, which use single-bit statistics in traces, for
reconstruction. They showed that exp(𝑂 (𝑛 1

3 )) is the best sample size achieved by
mean-based algorithms. A novel approach in [27] and [70] is to relate single-bit
statistics to complex polynomial analysis, and borrow results from [10] on complex
analysis. This approach was further developed in [15], where multi-bit statistics
were considered. The current best upper bound on the sample size is exp(�̃� (𝑛 1

5 ))
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[15], while the best lower bound Ω( 𝑛
3
2

log7 𝑛
) [16] is orders of magnitude away from

the upper bound.

While the general trace reconstruction problem is hard to solve, in this chapter,
we focus on a variant of the trace reconstruction problem with an edit distance
constraint. Specifically, the goal is to recover the string x by using its noisy samples
and additional information of a given string y, which is known to be within a bounded
distance from x. The edit distance between two strings is commonly defined as the
minimum number of deletions, insertions, or substitutions that transform one string
into another. In this chapter, we consider only deletion/insertion for convenience, as
a substitution is an insertion followed by a deletion. We say that a string x is within
edit distance 𝑘 to a string y, denoted as x ∈ B𝑘 (y), if x can be obtained from y
after at most 𝑘 deletions and 𝑘 insertions. Note that the general trace reconstruction
problem considers cases where 𝑘 = 𝑛.

The setting considered in this chapter arises in many practical scenarios in genome
sequencing, where one needs to recover an individual genome sequence of a species,
given a reference genome sequence that represents the species [2]. Normally, the
genome sequences of a species share some similarity and most of them can be
considered to be within a bounded edit distance from the reference genome. One
example is the Human Genome Project, where a human reference genome is provided
to study the difference between individual genomes. Complementary to the problem
we consider, the work in [26] studied approximate trace reconstruction, which aims
to find an estimate within a given edit distance to the true string. Note that such an
estimate, together with an algorithm to distinguish two strings within edit distance
𝑘 , establishes a solution to the general trace reconstruction problem.

As indicated in [27, 37, 49, 57, 70], the problem of worst-case trace reconstruction
is essentially equivalent to a hypothesis testing problem of distinguishing any two
strings using noisy samples. More specifically, the sample complexity needed for
trace reconstruction is at most 𝑝𝑜𝑙𝑦(𝑛) times the sample complexity needed to
distinguish arbitrary two strings. The same equivalence holds in our setting as well,
where a reference string y is known and close to x in edit distance. Hence, for
convenience, we consider the problem in the form of distinguishing any two strings
x ∈ {0, 1}𝑛 and y ∈ {0, 1}𝑛 when x is within edit distance 𝑘 to y. One special
case of the problem is to distinguish two strings within Hamming distance 𝑘 , which
was addressed in [57] and 𝑛𝑂 (𝑘) sample complexity was achieved. Recently, an
independent work [37] studied the limitations of mean-based algorithms (see [27]
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and [70]) in distinguishing two strings with bounded edit distance. It was shown
that mean-based algorithms need at least 𝑛𝑂 (log 𝑛) traces to distinguish two strings
with edit distance of even 4. The paper [37] also showed that 𝑛𝑂 (𝑘2) suffices to
distinguish two strings x ∈ {0, 1}𝑛 and y ∈ {0, 1}𝑛 with special block structures, if
x ∈ B𝑘 (y). Yet, as pointed out in [26], it is an open problem whether 𝑛𝑂 (𝑘) samples
suffice to recover a string that is within edit distance 𝑘 to a known string.

The main contribution of this chapter is an affirmative answer to this question. We
show that distinguishing two sequences within edit distance 𝑘 needs at most 𝑛𝑂 (𝑘)

samples. The result is stated by the following theorem.

Theorem 7.1.1. Let x ∈ {0, 1}𝑛 and y ∈ {0, 1}𝑛 be two strings satisfying x ∈
B𝑘 (y). Then strings x and y can be distinguished with high probability, given 𝑛𝑂 (𝑘)

independent noisy samples, each obtained by passing x through a deletion channel
with deletion probability 𝑞 < 1.

Remark 7.1.1. Theorem 7.1.1 holds for any string y that can be obtained from x
after at most 𝑘 deletions or insertions. The length of y is not necessarily 𝑛. Yet by
definition of the trace reconstruction problem, we focus on length 𝑛 strings x and y.

The approach we take follows a similar method to that in [15, 27, 37, 70], in the sense
that we derive bounds on multi-bit statistics through complex analysis of a special
class of polynomials. Yet, the complex analysis in this chapter differs from those in
[15, 27, 37, 70] in the following two ways. Firstly, we make use of the fact that the
polynomial is related to a number theoretic problem called the Prouhet-Tarry-Escott
problem [9], which is also noted in [37]. This allows us to link the problem to
our previous result on deletion codes [86], where we showed that two constrained
strings can be distinguished using weighted sums of powers, which is similar in
form to the Prouhet-Tarry-Escott problem. Secondly, to find the maximum value of
the polynomial, we let the complex variable take values on a small circle around the
point 1, while the work in [15, 27, 37, 70] analyzes the complex polynomial on a
unit circle. By doing this, we are able to improve the 𝑛𝑂 (𝑘2) bound in [37] to 𝑛𝑂 (𝑘) .

The rest of the chapter is organized as follows. In Sec. 7.2 we provide an introduction
to the techniques and the lemmas needed to prove Theorem 7.1.1. In Sec. 7.3, the
proof of Theorem 7.1.1 is given. Sec. 7.4 presents the proof of a critical lemma on
complex analysis. Sec. 7.5 concludes the chapter.
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7.2 Proof Techniques and Lemmas
In this section we present a brief introduction to the techniques and key lemmas
needed in proving Theorem 1. For strings x ∈ {0, 1}𝑛 and y ∈ {0, 1}𝑛, let �̃� =

( �̃�1, . . . , �̃�𝑛) and 𝑌 = (𝑌1, . . . , 𝑌𝑛) denote the sample obtained by passing x and y
through the deletion channel respectively. We have �̃�𝑖 = ∅ or 𝑌 𝑗 = ∅ if 𝑖 or 𝑗 is
larger than the length of �̃� or 𝑌 , respectively. Note that �̃� and 𝑌 are sequences of
random variables that describe the probability distributions of the samples.

The techniques we use were originated in [27, 70], which presented the following
identity

E�̃�

[ 𝑛∑︁
𝑖=1

�̃�𝑖 (
𝑧 − 𝑞

1 − 𝑞
)𝑖
]
= (1 − 𝑞)

𝑛∑︁
𝑖=1

𝑥𝑖𝑧
𝑖

≜ 𝑓 𝑠x (𝑧), (7.1)

for a sequence x and a complex number 𝑧. The identity (7.1) links the analysis of
single bit statistics {𝐸 �̃� [�̃�𝑖]}𝑛𝑖=1 to that of complex polynomials. As a result, a lower
bound on the maximal difference between single bit statistics max1≤𝑖≤𝑛 |𝐸 �̃� [�̃�𝑖] −
𝐸𝑌 [𝑌𝑖] | can be obtained through analyzing the maximal value of the polynomial
𝑓 𝑠x (𝑧) − 𝑓 𝑠y (𝑧) on a unit disk, a problem referred to as Littlewood type problems and
studied in [10, 11]. Generalizing the approach in [27, 70], the papers [15] and [21]
presented multi-bit statistics counterparts of (7.1). In this chapter, we consider the
version from [15], stated in the following lemma.

Lemma 7.2.1. [15] For integer ℓ ≥ 1, complex numbers 𝑧1, . . . , 𝑧ℓ, and sequences
x ∈ {0, 1}𝑛 and w ∈ {0, 1}ℓ, we have

E�̃�

[
(1 − 𝑞)−ℓ

∑︁
1≤𝑖1<...<𝑖ℓ≤𝑛

1�̃�𝑖 𝑗
=𝑤 𝑗 ,∀ 𝑗∈[ℓ]

· ( 𝑧1 − 𝑞

1 − 𝑞
)𝑖1

ℓ∏
𝑗=2

(
𝑧 𝑗 − 𝑞

1 − 𝑞
)𝑖 𝑗−𝑖 𝑗−1−1

]
=

∑︁
1≤ 𝑗1<...< 𝑗ℓ≤𝑛

1𝑥 𝑗ℎ=𝑤ℎ,∀ℎ∈[ℓ]𝑧
𝑗1
1

ℓ∏
ℎ=1

𝑧
𝑗ℎ− 𝑗ℎ−1−1
𝑗

≜ 𝑓x,w(𝑧1, . . . , 𝑧ℓ), (7.2)

where [ℓ] = {1, . . . , ℓ} and 𝑖 : 𝑖 + ℓ − 1 = {𝑖, . . . , 𝑖 + ℓ − 1}. For any statement 𝐸 ,
the variable 1𝐸 = 1 iff 𝐸 holds true.
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By taking 𝑧2 = . . . = 𝑧ℓ = 0 in (7.2), we obtain

𝑓x,w(𝑧, 0, . . . , 0) =
𝑛−ℓ+1∑︁
𝑖=1

1x𝑖:𝑖+ℓ−1=w𝑧
𝑖 . (7.3)

Similar to the arguments in [15], we prove Theorem 7.1.1 by analyzing the poly-
nomial 𝑓x,w(𝑧, 0, . . . , 0) − 𝑓y,w(𝑧, 0, . . . , 0) associated with the multi-bit statistics in
(7.3). Note that the polynomial 𝑓x,w(𝑧, 0, . . . , 0) − 𝑓y,w(𝑧, 0, . . . , 0) is single variate.
The way in which the polynomial is analyzed in this chapter deviates from that in
[15]. While the paper [15] taylored the complex analysis arguments in [11] to obtain
improved bounds, in this chapter, we exploit number theoretic properties of two
strings x and y within edit distance 𝑘 .

In Ch. 3, we showed implicitly that the weighted sums of powers
∑𝑛

𝑖=1 𝑖
𝑗𝑥𝑖, 𝑗 ∈

{0, . . . , 𝑂 (𝑘)} can be used to distinguish two constrained strings x and y within edit
distance 𝑘 . The following lemma makes this statement explicit. Let R𝑛,𝑘 denote the
set of length 𝑛 strings such that any two 1 entries in each string are separated by a 0
run of length at least 𝑘 − 1.

Lemma 7.2.2. For distinct strings x, y ∈ R𝑛,6𝑘 , if x ∈ B6𝑘 (y), then there exists an
integer 𝑚 ∈ [12𝑘 + 1] such that

∑𝑛
𝑖=1 𝑖

𝑚𝑥𝑖 ≠
∑𝑛

𝑖=1 𝑖
𝑚𝑦𝑖.

Proof. Suppose on the contrary, we have that
∑𝑛

𝑖=1 𝑖
𝑚𝑥𝑖 =

∑𝑛
𝑖=1 𝑖

𝑚𝑦𝑖 for all 𝑚 ∈
[12𝑘 + 1]. Then, we have that

𝑛∑︁
𝑖=1

( 𝑖∑︁
𝑗=1

𝑗𝑚
′
)
𝑥𝑖 =

𝑛∑︁
𝑖=1

( 𝑖∑︁
𝑗=1

𝑗𝑚
′
)
𝑦𝑖 (7.4)

for all𝑚′ ∈ {0, . . . , 12𝑘}. This is because
∑𝑖

𝑗=1 𝑗𝑚
′ is a weighted sum of 𝑖1, . . . , 𝑖𝑚′+1

for any 𝑚′ ∈ {0, . . . , 12𝑘 + 1} (Faulhaber’s formula). Next, we borrow a result from
[86].

Proposition 7.2.1. [86] For sequences x, y ∈ R𝑛,3𝑘 , if y ∈ B3𝑘 (x) and
∑𝑛

𝑖=1(
∑𝑖

𝑗=1 𝑗𝑚)𝑥𝑖 =∑𝑛
𝑖=1(

∑𝑖
𝑗=1 𝑗𝑚)𝑦𝑖 for 𝑚 ∈ {0, . . . , 6𝑘}, then x = y.

Note that B5𝑘 (x) ⊆ B6𝑘 (x). Since (7.4) holds, we apply Proposition 7.2.1 with
𝑘 = 2𝑘 and conclude that x = y, which contradicts the fact that x and y are
distinct. □

Interestingly, the following result from [9] connects the sums of powers of two sets
of integers that appear in Lemma 7.2.2 to the number of roots of a polynomial at 1.
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It allows us to combine the number theoretic result with further complex analysis,
which will be given in Lemma 7.2.6. The lemma can be proved by checking the
𝑖-th, 𝑖 ∈ [𝑚], derivative of the polynomial

∑𝑠
𝑖=1 𝑧

𝛼𝑖 − ∑𝑡
𝑖=1 𝑧

𝛽𝑖 at point 𝑧 = 1.

Lemma 7.2.3. [9] Let {𝛼1, . . . , 𝛼𝑠} and {𝛽1, . . . , 𝛽𝑠} be two sets of integers. The
following are equivalent:

(a)
∑𝑠

𝑖=1 𝛼
𝑗

𝑖
=

∑𝑠
𝑖=1 𝛽

𝑗

𝑖
for 𝑗 ∈ [𝑚 − 1].

(b) (𝑧 − 1)𝑚 divides
∑𝑠

𝑖=1 𝑧
𝛼𝑖 − ∑𝑠

𝑖=1 𝑧
𝛽𝑖 .

Remark 7.2.1. The problem of finding two sets of integers {𝛼1, . . . , 𝛼𝑠} and {𝛽1, . . . ,

𝛽𝑠} satisfying the statement (a) is called the Prouhet-Tarry-Escott problem [9].
This connection between the Prouhet-Tarry-Escott problem and the analysis of
polynomials was also used in [37] and implicitly in [56].

Lemma 7.2.2 requires that the strings x and y are within R(𝑛, 6𝑘), which does not
hold in general. Following the same trick as in [15] and [86], we define an indicator
vector as follows. For any sequences x ∈ {0, 1}𝑛 and w ∈ {0, 1}ℓ, define the length
𝑛 vector

1w(x)𝑖 ≜


1, if x𝑖:𝑖+ℓ−1 = w,

0, else,

for 𝑖 ∈ [𝑛]. Note that 1w(x)𝑖 = 0 for 𝑖 ∈ {𝑛 − ℓ + 2, . . . , 𝑛}. It can be seen that the
polynomial 𝑓x,w(𝑧, 0, . . . , 0) related to multi-bit statistics is exactly the polynomial
𝑓 𝑠1w (x) (𝑧) related to single-bit statistics. To apply Lemma 7.2.2, we need to find a w
such that 1w(x) ∈ R(𝑛, 6𝑘). The same as what the paper [15] did, we find such a w
by using the following lemma from [78]. A string w ∈ {0, 1}ℓ is said to have period
𝑎, if and only if 𝑤𝑖 = 𝑤𝑖+𝑎 for 𝑖 ∈ [ℓ − 𝑎]. Moreover, a string w ∈ {0, 1}ℓ is said to
be non-periodic, iff w does not have period 𝑎 for 𝑎 ∈ [⌈ ℓ2⌉ − 1].

Lemma 7.2.4. For any sequences w ∈ {0, 1}2𝑝−1, either (w, 0) or (w, 1) is non-
periodic, where (w, 0) and (w, 1) is the string obtained by appending 0 and 1 to w,
respectively.

Lemma 7.2.4 can be proved by definition of period. The claim that 1w(x) ∈ R(𝑛, 𝑝)
follows from Lemma 7.2.4 and will be proved in Lemma 7.2.5. In addition, the edit
distance between 1w(x) and 1w(y) needs to be bounded to apply Lemma 7.2.2. This
is proved in the following lemma.
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Lemma 7.2.5. Let w ∈ {0, 1}2𝑝 be a non-periodic string. For two strings x
and y ∈ B𝑘 (x), we have that

(a) 1w(x) ∈ R𝑛,𝑝.

(b) 1w(y) ∈ R𝑛,𝑝.

(c) 1w(x) ∈ B5𝑘 (1w(y)).

Proof. The statements (a) and (b) follow from the definition of vectors 1w(x) and
1w(y) and the fact that w is non-periodic. Suppose there are two 1 entries 1w(x)𝑖
and 1w(x)𝑖+𝑎 in 1w(x) that are separated by less than 𝑝 − 1 0’s, i.e., 𝑎 ≤ 𝑝 − 1. Then
by definition of 1w(x), we have that x𝑖:𝑖+2𝑝−1 = w and that x𝑖+𝑎:𝑖+𝑎+2𝑝−1 = w. This
implies that 𝑤 𝑗 = 𝑥𝑖+𝑎+ 𝑗−1 = 𝑤 𝑗+𝑎 for 𝑗 ∈ [2𝑝 − 𝑎]. Hence, the string w has period
𝑎 ≤ 𝑝 − 1, contradicting to the fact that w is non-periodic. Hence, we have that
1w(x) ∈ R𝑛,𝑝, and similarly that 1w(y) ∈ R𝑛,𝑝.

We now prove statement (c). To this end, we first show that a deletion in x results
in at most three deletions and two insertions in 1w(x). Since w has length 2𝑝 and
1w(x) ∈ R𝑛,𝑝 as shown in (a), a deletion in x results in at most two deletions and
two insertions of 1 entries in 1w(x), respectively. Otherwise, suppose that a deletion
in x deletes three 1 entries 1w(x)𝑖1 , 1w(x)𝑖2 , and 1w(x)𝑖3 in 1w(x), then we have
that 𝑖3 − 𝑖1 ≥ 2𝑝 because (a) holds. This is impossible since w ∈ {0, 1}2𝑝 and the
deletion in x can not affect the two occurrences x𝑖1:𝑖1+2𝑝−1 and x𝑖3:𝑖3+2𝑝−1 of w in x
simultaneously. Hence a deletion causes at most two deletions of 1 entries in 1w(x)
and similarly, the same holds for insertions.

Moreover, at most one 0 entry is deleted in 1w(x) because of the deletion in x.
Hence, a deletion in x causes at most three deletions and two insertions in total
in 1w(x), and 𝑘 deletions in x results in at most 3𝑘 deletions and 2𝑘 insertions in
1w(x). The same holds for y and 1w(y).

Since x ∈ B𝑘 (y), we conclude that 1w(y) can be obtained from 1w(x) by at most
5𝑘 deletions and 5𝑘 insertions, and hence, 1w(x) ∈ B5𝑘 (1w(y)). □

With Lemma 7.2.2 and Lemma 7.2.5 established, we present a lower bound on the
maximal value of polynomial 𝑓x,w(𝑧, 0, . . . , 0) − 𝑓y,w(𝑧, 0, . . . , 0) for 𝑧 close to 1.
Note that it is important that 𝑧 is located near the point 1 on the complex plane
because of the scaling factor ( 𝑧−𝑞1−𝑞 )

𝑖 in the multi-bit statistics in Eq. (7.3). To meet
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this requirement on 𝑧, existing works [15, 27, 37, 70] restrict 𝑧 to lie on short subarcs
of a unit circle around 1, a case also considered in [10] in the context of complex
analysis. In this chapter, we choose 𝑧 from a small circle around 1. It turns out that
this choice of 𝑧 achieves a lower bound 1

𝑛𝑂 (𝑘) on 𝑓x,w(𝑧, 0, . . . , 0) − 𝑓y,w(𝑧, 0, . . . , 0),
which improves the bound 1

𝑛𝑂 (𝑘2) established in [37]. The details will be given in the
following lemma, which is a critical result in this chapter. Its proof will be given in
Sec. 7.4.

Lemma 7.2.6. For integer ℓ ≥ 1 and strings x, y ∈ {0, 1}𝑛 and w ∈ {0, 1}ℓ, if∑𝑛
𝑖=1 1w(x)𝑖𝑖𝑚 ≠

∑𝑛
𝑖=1 1w(y)𝑖𝑖𝑚 for some non-negative integer 𝑚, then there exists a

complex number 𝑧, such that | 𝑧−𝑞1−𝑞 |
𝑛 ≤ 2 and

𝑛∑︁
𝑖=1

1w(x)𝑖𝑧𝑖 −
𝑛∑︁
𝑖=1

1w(y)𝑖𝑧𝑖 ≥
1

𝑛2𝑚 (2𝑚 + 2)
(7.5)

for sufficiently large 𝑛.

Finally, we use the lower bound in Lemma 7.2.6 for single variate polynomial
𝑓x,w(𝑧, 0, . . . , 0) − 𝑓y,w(𝑧, 0, . . . , 0) to obtain a lower bound for the multi-variate
polynomial 𝑓x,w(𝑧1, . . . , 𝑧ℓ) − 𝑓y,w(𝑧1, . . . , 𝑧ℓ), where 𝑧1, . . . , 𝑧ℓ are close to 1. This
lower bound guarantees a gap between the multi-bit statistics of �̃� and 𝑌 , which
makes x and y distinguishable by Hoeffding’s inequality (See Sec. 7.3). The proof
follows similar steps to the ones in [15].

Lemma 7.2.7. For integer ℓ ≥ 1 and strings x, y ∈ {0, 1}𝑛 and w ∈ {0, 1}ℓ, if∑𝑛
𝑖=1 1w(x)𝑖𝑖𝑚 ≠

∑𝑛
𝑖=1 1w(y)𝑖𝑖𝑚 for some non-negative integer 𝑚, then there exist

complex numbers 𝑧1, . . . , 𝑧ℓ, such that | 𝑧𝑖−𝑞1−𝑞 |
𝑛 ≤ 2 for 𝑗 ∈ [ℓ] and

𝑓x,w(𝑧1, . . . , 𝑧ℓ) − 𝑓y,w(𝑧1, . . . , 𝑧ℓ) ≥
1

𝑛𝑂 (𝑚) (7.6)

for sufficiently large 𝑛.

Proof. According to Lemma 7.2.6, there exists a complex number 𝑧∗ satisfying
| 𝑧

∗−𝑞
1−𝑞 |

𝑛 ≤ 2 and (7.5). Let 𝑧1 = 𝑧∗ and 𝑧2 = . . . = 𝑧ℓ = 𝑧. Then the polynomial
𝑓 (𝑧∗, 𝑧) ≜ 𝑓x,w(𝑧∗, 𝑧, . . . , 𝑧) − 𝑓y,w(𝑧∗, 𝑧, . . . , 𝑧) is a function of 𝑧. By (7.3) and (7.5)
we have that 𝑓 (𝑧∗, 0) ≥ 1

𝑛2𝑚 (2𝑚+2) . The following result from [11] relates 𝑓 (𝑧∗, 0)
to the maximal value of 𝑓 (𝑧∗, 𝑧) for 𝑧 close to 1.
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Proposition 7.2.2. [11] Let 𝑓 (𝑧) be an analytic function satisfying 𝑓 (𝑧) ≤ 1
1−|𝑧 | for

|𝑧 | < 1. There are positive real constants 𝑐1 and 𝑐2 such that

| 𝑓 (0) |
𝑐1
𝑎 ≤ exp( 𝑐2

𝑎
) max
𝑧∈[1−𝑎,1]

| 𝑓 (𝑧) |

for real number 𝑎 ∈ (0, 1].

According to Proposition 7.2.2, we have that

max
𝑧∈[max{2𝑞−1,0},1]

| 𝑓 (𝑧∗, 𝑧) |

≥ exp(− 𝑐2
1 − max{2𝑞 − 1, 0} ) | 𝑓 (𝑧

∗, 0) |
𝑐1

1−max{2𝑞−1,0}

≥𝑂 ( 1
𝑛𝑂 (𝑚) ). (7.7)

Let 𝑧1 = 𝑧∗ and 𝑧2 = . . . = 𝑧ℓ be the number 𝑧 maximizing the term | 𝑓 (𝑧∗, 𝑧) | in
(7.7). Then by Lemma 7.2.6 we have that | 𝑧1−𝑞

1−𝑞 |
𝑛 ≤ 2 for sufficiently large 𝑛 and

| 𝑧𝑖−𝑞1−𝑞 |
𝑛 ≤ 1 for 𝑖 ∈ {2, . . . , ℓ}. Hence, the proof is done. □

7.3 Proof of Theorem 1
In this section we prove Theorem 1 based on the results from Lemma 7.2.1 to Lemma
7.2.5 and Lemma 7.2.7. Let 𝑡0 be the smallest index such that 𝑥𝑖 ≠ 𝑦𝑖. If 𝑡0 < 12𝑘 ,
we have the following result from [76], which was also used in [15].

Proposition 7.3.1. For sequences x, y ∈ {0, 1}𝑛, let 𝑡0 be the smallest index such
that 𝑥𝑡0 ≠ 𝑦𝑡0 , i.e., 𝑥𝑖 = 𝑦𝑖 for 𝑖 ∈ [𝑡0 − 1]. Then, with high probability x and y can
be distinguished using exp(𝑂 (𝑡

1
3
0 )) samples.

According to Proposition 7.3.1, sequences x and y can be distinguished with high
probability using exp(𝑂 (𝑡

1
3
0 )) < 𝑛𝑂 (𝑘) samples. Hence, it suffices to consider cases

when 𝑡0 ≥ 12𝑘 .

Let w′ = x𝑡0−12𝑘+1:𝑡0−1. By Lemma 7.2.4, either (w′, 0) or (w′, 1) is non-periodic.
Without loss of generality, assume that w = (w′, 0) ∈ {0, 1}12𝑘 is non-periodic.
Then, similar to the arguments in [15, 27, 37, 57, 70], the core part of the
proof is to show that the difference of multi-bit statistics E�̃� [1�̃�𝑖 𝑗

=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]] and
E𝑌 [1𝑌𝑖 𝑗=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]], is at least 1

𝑛𝑂 (𝑘) for some integers 1 ≤ 𝑖1 < . . . < 𝑖12𝑘 ≤ 𝑛, i.e.,

max
1≤𝑖1<...<𝑖12𝑘≤𝑛

���E�̃� [
1�̃�𝑖 𝑗

=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]]
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−E𝑌 [1𝑌𝑖 𝑗=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]
] ��� ≥ 1

𝑛𝑂 (𝑘) . (7.8)

Let

(𝑖∗1, . . . , 𝑖
∗
12𝑘 ) = argmax1≤𝑖1<...<𝑖12𝑘≤𝑛 |E�̃� [1�̃�𝑖 𝑗

=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]]

−E𝑌 [1𝑌𝑖 𝑗=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]] |,

which can be determined once x and y are given. Suppose that x is passed through
the deletion channel 𝑁 times, generating 𝑁 independent samples {𝑇 𝑡}𝑁

𝑡=1. Then, by
using similar Hoeffding’s inequality (or the Chernoff bound) arguments as in [70],

we can show that with high probability, the empirical distribution

∑𝑁
𝑡=1 1

�̃�𝑡
𝑖∗
𝑗

=𝑤𝑗 ,∀ 𝑗∈[12𝑘 ]

𝑁

is closer to 𝐸
[
1�̃�𝑖∗

𝑗
=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]

]
than to 𝐸

[
1𝑌𝑖∗

𝑗
=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]

]
, if

𝑁 ≥ 𝑂
©« 1
|E�̃� [1�̃�𝑖∗

𝑗
=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]] − E𝑌 [1𝑌𝑖∗

𝑗
=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]] |2

ª®¬
= 𝑛𝑂 (𝑘) .

Hence x and y can be distinguished using 𝑛𝑂 (𝑘) samples. Therefore, it suffices to
show (7.8) in the rest of the proof.

Since w is non-periodic and x ∈ B𝑘 (y), Lemma 7.2.5 implies that 1w(x), 1w(y) ∈
R(𝑛, 6𝑘) and that 1w(x) ∈ B5𝑘 (1w(y)). In addition, either x𝑡0−12𝑘+1:𝑡0 = w
or y𝑡0−12𝑘+1:𝑡0 = w holds by definition of w and 𝑡0. Therefore, we have that
1w(x)𝑡0−12𝑘+1 ≠ 1w(y)𝑡0−12𝑘+1, and thus that 1w(x) ≠ 1w(y). Hence, we apply
Lemma 7.2.2 and obtain an integer 𝑚 ∈ [12𝑘 + 1] such that

∑𝑛
𝑖=1 1w(x)𝑖𝑖𝑚 ≠∑𝑛

𝑖=1 1w(x)𝑖𝑖𝑚 . Then, according to Lemma 7.2.7, there exist complex numbers
𝑧1, . . . , 𝑧12𝑘 , such that | 𝑧 𝑗−𝑞1−𝑞 |

𝑛 ≤ 2 for 𝑗 ∈ [12𝑘] and (7.6) holds for sufficiently
large 𝑛. Lemma 7.2.1 and Eq. (7.6) imply that∑︁

1≤𝑖1<...<𝑖12𝑘≤𝑛

���E�̃� [
1�̃�𝑖 𝑗

=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]
]
− E𝑌

[
1𝑌𝑖 𝑗=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]

] ���
(1 − 𝑞)−12𝑘 ( 𝑧1 − 𝑞

1 − 𝑞
)𝑖1

12𝑘∏
𝑗=2

(
𝑧 𝑗 − 𝑞

1 − 𝑞
)𝑖 𝑗−𝑖 𝑗−1−1

≥ 1
𝑛𝑂 (𝑘) ,

and thus that

max
1≤𝑖1<...<𝑖12𝑘≤𝑛

���E�̃� [
1�̃�𝑖 𝑗

=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]
]
− E𝑌

[
1𝑌𝑖 𝑗=𝑤 𝑗 ,∀ 𝑗∈[12𝑘]

] ���
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≥ 1
𝑛𝑂 (𝑘) · (1 − 𝑞)12𝑘 · 1( 𝑛

12𝑘
) · 12𝑘∏

𝑗=1
min

{
1, | 1 − 𝑞

𝑧 𝑗 − 𝑞
|𝑛
}

=
1

𝑛𝑂 (𝑘) .

Therefore, (7.8) holds and the proof is done.

7.4 Proof of Lemma 7.2.6
Without loss of generality, assume that 𝑚 is the smallest non-negative integer satis-
fying

∑𝑛
𝑖=1 1w(x)𝑖𝑖𝑚 ≠

∑𝑛
𝑖=1 1w(x)𝑖𝑖𝑚. Let

𝑓 (𝑧) =
𝑛∑︁
𝑖=1

1w(x)𝑖𝑧𝑖 −
𝑛∑︁
𝑖=1

1w(x)𝑖𝑧𝑖 (7.9)

be a complex polynomial. The coefficients of 𝑓 (𝑧) are within the set {−1, 0, 1}.

According to Lemma 7.2.3, we have that 𝑓 (𝑧) = (𝑧−1)𝑚𝑞(𝑥), where 𝑞(𝑧) = ∑𝑛1
𝑖=0 𝑐𝑖𝑧

𝑖

is a complex polynomial with integer coefficients and (𝑧 − 1) does not divide 𝑞(𝑧),
i.e., 𝑞(1) ≠ 0. The following result was presented in [11]. It gives an upper bound
on the norm of coefficients of 𝑞(𝑧).

Proposition 7.4.1. [11] If a complex degree 𝑛 polynomial 𝑓 (𝑧) has all coefficients
with norm not greater than 1, and can be factorized by

𝑓 (𝑧) = (𝑧 − 1)𝑚𝑞(𝑧) = (𝑧 − 1)𝑚 (𝑐𝑛1𝑧
𝑛1 + . . . + 𝑐0),

then, we have that
∑𝑛1

𝑖=1 |𝑐𝑖 | ≤ (𝑛 + 1) ( 𝑒𝑛
𝑚
)𝑚.

We are now ready to prove Lemma 7.2.6. Let 𝐷 ≜ 2𝑚 + 2 and 𝑧 𝑗 = exp( 2 𝑗𝜋𝑖
𝐷

),
𝑗 ∈ [𝐷] be a sequence of 𝐷 complex numbers equally distributed on a unit circle.
We first show that there exists a number 𝑗 ∈ [𝐷] satisfying

𝑞(1 +
𝑧 𝑗

𝑛2 ) ≥
1

𝑛𝑂 (𝑚) .

Note that ��� 𝐷∑︁
𝑗=1

𝑞(1 +
𝑧 𝑗

𝑛2 )
��� =��� 𝑛1∑︁

𝑟=0
𝑐𝑟

[ 𝐷∑︁
𝑗=1

(1 +
exp( 2 𝑗𝜋𝑖

𝐷
)

𝑛2 )𝑟
] ���

=

��� 𝑛1∑︁
𝑟=0

𝑐𝑟

𝑟∑︁
𝑠=0

(
𝑟

𝑠

) 𝐷∑︁
𝑗=1

exp( 2 𝑗 𝑠𝜋𝑖
𝐷

)
𝑛2𝑠

���
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(𝑎)
=

��� 𝑛1∑︁
𝑟=0

𝑐𝑟

𝑟∑︁
𝑠=0

(
𝑟

𝑠

)
𝐷1𝐷 divides 𝑠

𝑛2𝑠

���
=

��� 𝑛1∑︁
𝑟=0

𝑐𝑟 (𝐷 +
𝑟∑︁
𝑠=1

(
𝑟

𝑠

)
𝐷1𝐷 divides 𝑠

𝑛2𝑠 )
���

=

���𝐷𝑞(1) +
𝑛1∑︁
𝑟=0

𝑟∑︁
𝑠=1

𝑐𝑟

(
𝑟

𝑠

)
𝐷1𝐷 divides 𝑠

𝑛2𝑠

���
≥𝐷 |𝑞(1) | −

𝑛1∑︁
𝑠=1

(
𝑛1∑︁
𝑟=𝑠

|𝑐𝑟 |)
(
𝑛

𝑠

)
𝐷1𝐷 divides 𝑠

𝑛2𝑠

(𝑏)
≥ 𝐷 − (𝑛 + 1) ( 𝑒𝑛

𝑚
)𝑚

𝑛1∑︁
𝑠=1

𝐷1𝐷 divides 𝑠
𝑛𝑠

≥𝐷 − 𝐷 (𝑛 + 1) ( 𝑒𝑛
𝑚
)𝑚 1

𝑛𝐷

∞∑︁
𝑡=0

1
𝑛𝐷𝑡

≥𝐷 − 𝐷 (𝑛 + 1) ( 𝑒𝑛
𝑚
)𝑚 2

𝑛𝐷

𝐷≜2𝑚+2
= 𝐷 − 𝐷 (𝑛 + 1) ( 𝑒

𝑚𝑛
)𝑚 2

𝑛2

=𝐷 − 𝑜(1
𝑛
)

≥1

for sufficiently large 𝑛, where (a) follows from the identity

𝐷∑︁
𝑗=1

exp(2 𝑗 𝑠𝜋𝑖
𝐷

) =
exp( 2𝑠𝐷𝜋𝑖

𝐷
) − 1

exp( 2𝑠𝜋𝑖
𝐷

) − 1
= 𝐷1𝐷 divides 𝑠

and (b) follows from Proposition 7.4.1 and the facts that 𝑞(1) is a nonzero integer
and that

(𝑛
𝑠

)
≤ 𝑛𝑠. Therefore, there exists an integer 𝑗 such that

|𝑞(1 +
𝑧 𝑗

𝑛2 ) | ≥
1
𝐷
,

and thus that

| 𝑓 (1 +
𝑧 𝑗

𝑛2 ) | =
|𝑞(1 + 𝑧 𝑗

𝑛2 ) |
𝑛2𝑚

≥ 1
𝑛2𝑚 (2𝑚 + 2)

.

Moreover, we have that

|
1 + 𝑧 𝑗

𝑛2 − 𝑞

1 − 𝑞
|𝑛 =

(
1 + 1

𝑛4(1 − 𝑞)2 + 2
𝑐𝑜𝑠( 2 𝑗𝜋

𝐷
)

𝑛2(1 − 𝑞)

) 𝑛
2
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≤2

for sufficiently large 𝑛. Hence, 𝑧 = 1 + 𝑧 𝑗

𝑛2 satisfies the conditions in Lemma 7.2.6.

7.5 Conclusion
In this chapter we studied the trace reconstruction problem when the string to be
recovered is within bounded edit distance to a known string. Our result implies that
when the edit distance is constant, the number of traces needed is polynomial. The
problem of whether a polynomial number of samples suffices for the general trace
reconstruction is open. However, it will be interesting to see if the methods in this
chapter can be extended to obtain more general results.
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C h a p t e r 8

CODES FOR MULTI-HEAD RACETRACK MEMORIES

In this chapter, we consider error correction for racetrack memory applications.
Though different from DNA-based storage. There are some similarities between
models for racetrack memory and DNA storage, in the sense that both applications
require correcting deletion/insertion errors, given multiple noisy copies of strings.
The difference is that in DNA storage, the noisy copies are independent, given
the string, while in racetrack memories, the noise in copies are correlated. The
techniques in this chapter might in turn help in finding error correction schemes in
DNA-storage, that jointly construct the encoders and decoders.

8.1 Introduction
Racetrack memory is a promising non-volatile memory that possesses the advantages
of ultra-high storage density and low latency (comparable to SRAM latency) [75,
91]. It has a tape-like structure where the data is stored sequentially as a track of
single-bit memory cells. The cells are accessed through read/write ports, called
heads. When reading/writing the data, the heads stay fixed and the track is shifting.

One of the main challenges in developing racetrack memory systems is the limited
precision in controlling the track shifts, that in turn affects the reliability of reading
and writing the data [45, 100]. Specifically, the track may either not shift or shift
more steps than expected. When the track does not shift, the same cell is read twice,
causing a sticky insertion. When the track shifts more than a single step, cells are
skipped, causing deletions in the reads [18].

It is natural to use deletion and sticky insertion correcting codes to deal with shift
errors. Also, it is known that a code correcting 𝑘 deletions is capable of correcting 𝑠

deletions and 𝑟 insertions when 𝑠 + 𝑟 ≤ 𝑘 [64]. However, designing redundancy and
complexity efficient deletion correcting codes has been an open problem for decades,
though there is a significant advance toward the solution recently. In fact, no deletion
correcting codes with rate approaching 1 were known until [12] proposed a code
with redundancy 128𝑘2 log 𝑘 log 𝑛 + 𝑜(log 𝑛). After [12], the work of [22] and
[86] independently proposed 𝑘 deletion codes with 𝑂 (𝑘 log 𝑛) bits of redundancy,
which are order-wise optimal. Following [86], [87] proposed a systematic deletion
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code with 4𝑘 log 𝑛 + 𝑜(log 𝑛) bits of redundancy and is computationally efficient for
constant 𝑘 . The redundancy was later improved in [90] to (4𝑘 − 1) log 𝑛 + 𝑜(log 𝑛).
Evidently, for 𝑘 , a constant number of deletions, the redundancy of this code is
orders of magnitude away from optimal, known to be in the range 𝑘 log 𝑛 + 𝑜(log 𝑛)
to 2𝑘 log 𝑛 + 𝑜(log 𝑛) [64]. Hence, it is natural to explore constructions of deletion
and insertion correcting codes that are specialized for racetrack memories and
might provide more efficient redundancy and lower complexity encoding/decoding
algorithms.

There are two approaches for construction of codes for racetrack memories. The
first is to leverage the fact that there are multiple parallel tracks with a single head
per-track, and the second, is to add redundant heads per-track. For the multiple
parallel head structure, the proposed codes in [94] can correct up to two deletions
per head and the proposed codes in [17] can correct 𝑙 bursts of deletions, each of
length at most 𝑏. The codes in [17] are asymptotically (in the number of heads)
rate-optimal. The second approach for combating deletions in racetrack memories
is to use redundant heads per-track [100, 18, 19]. As shown in Fig. 8.1, a track
is read by multiple heads, resulting in multiple copies (potentially erroneous) of
the same sequence. This can be regarded as a sequence reconstruction problem,
where a sequence c needs to be recovered from multiple copies, each obtained
after 𝑘 deletions in c. We emphasize that the general sequence reconstruction
problem [67] is different from the current settings, as here the heads are at fixed
and known positions, hence, the set of deletion locations in one head is a shift of
that in another head [18]. This is because the heads stay fixed and thus the deletion
locations in their reads have fixed relative distances. Demonstrating the advantage
of multiple heads, the paper [19] proposed an efficient 𝑘-deletion code of length 𝑛

with redundancy log log 𝑛+4 and an efficiently (𝑘 −1)-deletion code with 𝑂 (1) bits
of redundancy, using 𝑘 heads. In contrast, for general 𝑘-deletion codes, the lower
bound on the redundancy is 𝑘 log 𝑛. However, the code in [19] is required to use
𝑑 heads and is limiting 𝑘 to be smaller or equal to 𝑑. It is known that the number
of heads affects the area overhead of the racetrack memory device [18], hence, it
motivates the following natural question: What is the best redundancy that can be
achieved for a 𝑘-deletion code (𝑘 is a constant) if the number of heads is fixed at 𝑑
(due to area limitations)?

One of our key results is an answer to this question, namely, we construct codes
that can correct 𝑘 deletions, for any 𝑘 beyond the known limit of 𝑑. Our code
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𝑐1. . .𝑐6𝑐7𝑐8𝑐9. . .

Figure 8.1: Racetrack memory with multiple heads.

has 𝑂 (𝑘4𝑑 log log 𝑛) redundancy for the case when 𝑘 ≤ 2𝑑 − 1. In addition,
when 𝑘 ≥ 2𝑑, the code has 2⌊𝑘/𝑑⌋ log 𝑛 + 𝑜(log 𝑛) redundancy. Our key result is
summarized formally by the following theorem. Notice that the theorem implies
that the redundancy of our codes is asymptotically larger than optimal by a scale
factor of at most four.

Theorem 8.1.1. For a constant integer 𝑘 , let the distance 𝑡𝑖 between the 𝑖-th and
(𝑖 +1)-th heads be 𝑡𝑖 ≥ max{(3𝑘 + ⌈log 𝑛⌉ +2) [𝑘 (𝑘 −1)/2+1] + (7𝑘 − 𝑘3)/6, (4𝑘 +
1) (5𝑘 + ⌈log 𝑛⌉ + 3)} for 𝑖 ∈ {1, . . . , 𝑑 − 1}. Then for 𝑑 ≤ 𝑘 ≤ 2𝑑 − 1, there
exists a length 𝑁 = 𝑛 + 4𝑘 log log 𝑛 + 𝑜(log log 𝑛) 𝑑 head 𝑘-deletion correcting
code with redundancy 4𝑘 log log 𝑛 + 𝑜(log log 𝑛). For 𝑘 ≥ 2𝑑, there exists a
length 𝑁 = 𝑛 + 2⌊𝑘/𝑑⌋ log 𝑛 + 𝑜(log 𝑛) 𝑑 head 𝑘-deletion correcting code with re-
dundancy 2⌊𝑘/𝑑⌋ log 𝑛+𝑜(log 𝑛). The encoding and decoding functions can be com-
puted in 𝑛2𝑘+1 time. Moreover, for 𝑘 ≥ 2𝑑 and 𝑡𝑖 = 𝑛𝑜(1) , the amount of redundancy
of a 𝑑 head 𝑘-deletion correcting code is lower bounded by ⌊𝑘/2𝑑⌋ log 𝑛+ 𝑜(log 𝑛).

Since in addition to deletion errors, sticky insertion errors and substitution errors oc-
cur in racetrack memories, we are interested in codes that correct not only deletions,
but a combination of deletion, sticky insertion, and substitution errors in multi-head
racetrack memories. However, contrast to the single-head cases where a deletion
code is also a deletion/insertion code, there is no such equivalence in multi-head
racetrack memories. Correcting a combination of at most 𝑘 deletions and sticky
insertions in total turns out to be more difficult than correcting 𝑘 deletion errors.
It is not known whether the 𝑘-deletion code with log log 𝑛 + 𝑂 (1) redundancy and
the (𝑘 − 1)-deletion code with 𝑂 (1) redundancy in [18] extend to a combination of
deletion and sticky insertion errors in a 𝑘 head racetrack memory.

Our second result, which is the main result in this chapter, provides an answer for
such scenarios. Moreover, we consider a more general problem of correcting a
combination of deletions and insertions in a 𝑑-head racetrack memory, rather than
deletions and sticky insertions, and show that the redundancy result for deletion
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cases extends to cases with a combination of deletions and insertions. Note that this
covers the cases with deletion, insertion, and substitution errors, since a substitution
is a deletion followed by an insertion.

Theorem 8.1.2. For a constant integer 𝑘 , let the distance 𝑡𝑖 between the 𝑖-th and
(𝑖+1)-th heads be equal and 𝑡𝑖 = 𝑡 > ( 𝑘2

4 +3𝑘 +2) (6𝑘 + ⌈log 𝑛⌉ +3) +8𝑘 + ⌈log 𝑛⌉ +3
for 𝑖 ∈ {1, . . . , 𝑑−1}. Then for 𝑘 < 𝑑, there exists a length 𝑁 = 𝑛+ 𝑘 +1+𝑂 (1) code
correcting a combination of at most 𝑘 insertions and deletions in a 𝑑 head racetrack
memory with redundancy 𝑘 + 1 + 𝑂 (1). The encoding and decoding complexity is
𝑝𝑜𝑙𝑦(𝑛). For 𝑑 ≤ 𝑘 ≤ 2𝑑−1, there exists a length 𝑁 = 𝑛+4𝑘 log log 𝑛+𝑜(log log 𝑛)
code correcting a combination of at most 𝑘 insertions and deletions in a 𝑑 head
racetrack memory with redundancy 4𝑘 log log 𝑛 + 𝑜(log log 𝑛). Finally, when 𝑑 ≥
2𝑑, there exists a length 𝑁 = 𝑛 + 2⌊𝑘/𝑑⌋ log 𝑛 + 𝑜(log 𝑛) code that corrects a
combination of at most 𝑘 insertions and deletions in a 𝑑 head racetrack memory
with redundancy 2⌊𝑘/𝑑⌋ log 𝑛+𝑜(log 𝑛). The encoding and decoding functions can
be computed in 𝑛2𝑘+1 time.

Remark 8.1.1. Theorem 8.1.2 improves the head distance in Theorem 8.1.1 when
𝑘 is sufficiently large.

Organization: In Sec. 8.2, we present the problem settings and some basic lemmas
needed in our proof. Sec. 8.3 presents the proof of the main result for the case 𝑘 ≤
2𝑑 − 1. Sec. 8.4 describes in detail how to synchronize the reads. The case 𝑘 ≥ 2𝑑
is addressed in Sec. 8.5. Sec. 8.7 concludes the chapter.

8.2 Preliminaries
Problem Settings
We now describe the problem settings and the notations needed. For any two
integers 𝑖 ≤ 𝑗 , let [𝑖, 𝑗] = {𝑖, 𝑖 + 1, . . . , 𝑗 − 1, 𝑗} be an integer interval that contains
all integers between 𝑖 and 𝑗 . Let [𝑖, 𝑗] = ∅ for 𝑖 > 𝑗 . For a length 𝑛 sequence c =

(𝑐1, . . . , 𝑐𝑛), an index set I ⊆ [1, 𝑛], let

cI = (𝑐𝑖 : 𝑖 ∈ I)

be a subsequence of c, obtained by choosing bits with locations in the location set I.
Denote by I𝑐 = [1, 𝑛]\δ the complement of I.

In the channel model of a 𝑑 head racetrack memory, the input is a binary sequence
c ∈ {0, 1}𝑛. The channel output consists of 𝑑 subsequences of c of length 𝑛 − 𝑘 ,
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obtained by the 𝑑 heads after 𝑘 deletions in the channel input c, respectively. Each
subsequence is called a read. Let δ𝑖 = {𝛿𝑖,1, . . . , 𝛿𝑖,𝑘 } ⊆ [1, 𝑛] be the deletion
locations of the 𝑖-th head such that 𝛿𝑖,1 < . . . < 𝛿𝑖,𝑘 . Then, the read from the 𝑖-th
head is given by cδ𝑐

𝑖
, 𝑖 ∈ [1, 𝑑], i.e., bits 𝑐ℓ, 𝑖 ∈ δℓ are deleted.

Note that in a 𝑑-head racetrack memory, the heads are placed in fixed positions,
and the deletions are caused by "over-shifts" of the track. Hence when a deletion
occurs at the 𝑗-th bit in the read of the 𝑖1-th head, a deletion also occurs at the
( 𝑗 + 𝑡′)-th bit in the read of the 𝑖2-th head, where 𝑡′ is the distance between the 𝑖1-th
head and the 𝑖2-th head. Let 𝑡𝑖 be the distance between the 𝑖-th head and the 𝑖 + 1-th
head, 𝑖 ∈ [1, 𝑑 − 1]. Then, the deletion location sets {δ𝑖}𝑑𝑖=1 satisfy

δ𝑖+1 = δ𝑖 + 𝑡𝑖,

for some positive integer 𝑡𝑖, 𝑖 ∈ [1, 𝑑 − 1], where for an integer set S and an
integer 𝑡, S + 𝑡 = {𝑥 + 𝑡 : 𝑥 ∈ S}.

To formally define a code for 𝑑-head racetrack memories, we represent the 𝑑 reads
from the 𝑑 heads by a 𝑑×(𝑛−𝑘) binary matrix, called the read matrix. The 𝑖-th row of
the read matrix is the read from the 𝑖-th head. Let D(c, δ1, . . . , δ𝑑) ∈ {0, 1}𝑑×(𝑛−𝑘)

be the read matrix of a 𝑑 head racetrack memory, where the input is c ∈ {0, 1}𝑛 and
the deletion locations in the 𝑖-th head are given by δ𝑖, 𝑖 ∈ [1, 𝑑]. By this definition,
the 𝑖-th row of D(c, δ1, . . . , δ𝑑) is cδ𝑐

𝑖
.

Example 8.2.1. Consider a 3-head racetrack memory with head distance 𝑡1 = 1
and 𝑡2 = 2. Let the deletion location set δ1 = {2, 5, 7}. Then, we have that δ2 =

{3, 6, 8} and δ3 = {5, 8, 10}. Let c = (1, 1, 0, 1, 0, 0, 0, 1, 0, 1) be a sequence of
length 10. Then, the read matrix is given by

D(c, δ1, δ2, δ3) =

1 0 1 0 1 0 1
1 1 1 0 0 0 1
1 1 0 1 0 0 0

 .
The deletion ball D𝑘 (c, 𝑡1, . . . , 𝑡𝑑−1) of a sequence c ∈ {0, 1}𝑛 is the set of all
possible read matrices in an 𝑑 head racetrack memory with input c and head distance
𝑡𝑖, 𝑖 ∈ [1, 𝑑 − 1], i.e.,

D𝑘 (c, 𝑡1, . . . , 𝑡𝑑−1) = {D(c, δ1, . . . , δ𝑑) :δ𝑖+1 = δ𝑖 + 𝑡𝑖, δ𝑖 ⊆ [1, 𝑛], |δ𝑖 | = 𝑘,

𝑖 ∈ [1, 𝑑 − 1]}.
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A 𝑑-head 𝑘-deletion code C is the set of all sequences such that the deletion
balls of any two do not intersect, i.e., for any c, c′ ∈ C, D𝑘 (c, 𝑡1, . . . , 𝑡𝑑−1) ∩
D𝑘 (c′, 𝑡1, . . . , 𝑡𝑑−1) = ∅.

The following notations will be used throughout this chapter. For a matrix A and
two index sets I1 ⊆ [1, 𝑑] and I2 ⊆ [1, 𝑛 − 𝑘], let AI1,I2 denote the submatrix of A
obtained by selecting the rows 𝑖 ∈ I1 and the columns 𝑗 ∈ I2. For any two integer
sets S1 and S2, the set S1\S2 = {𝑥 : 𝑥 ∈ S1, 𝑥 ∉ S2} denotes the difference of
sets S1 and S2.

A sequence c ∈ {0, 1}𝑛 is said to have period ℓ if 𝑐𝑖 = 𝑐𝑖+ℓ for 𝑖 ∈ [1, 𝑛 − ℓ]. We
use 𝐿 (c, 𝑖) to denote the length of the longest subsequence of consecutive bits in c
that has period 𝑖. Furthermore, define

𝐿 (c, ≤ 𝑘) ≜ max
𝑖≤𝑘

𝐿 (c, 𝑖).

Example 8.2.2. Let the sequence c be c = (1, 1, 0, 1, 1, 0, 1, 0, 0). Then we have
that 𝐿 (c, 1) = 2, 𝐿 (c, 2) = 4, and that 𝐿 (c, 3) = 7. Thus, we have 𝐿 (c, ≤ 3) = 7.

Racetrack Memory with Insertion and Deletion Errors
We now describe the notations and problem settings for 𝑑-head racetrack memories
with a combination of insertion and deletion errors, which is similar to 𝑑-head
racetrack memories with deletion errors only. In addition to the deletion errors
described by deletion location sets {δ𝑖}𝑑𝑖=1, we consider insertion errors described
by insertion location sets {γ𝑖}𝑑𝑖=1 satisfying

δ𝑖+1 = δ𝑖 + 𝑡𝑖,

where γ𝑖 = {𝛾𝑖,1, . . . , 𝛾𝑖,𝑠} for 𝑖 ∈ [1, 𝑑], and the inserted bits b𝑖 = 𝑏𝑖,1, 𝑏𝑖,2, . . . , 𝑏𝑖,𝑠.
It is assumed that 𝛾𝑖, 𝑗 ∈ [0, 𝑛] for 𝑖 ∈ [1, 𝑑] and 𝑗 ∈ [1, 𝑛]. As a result of the insertion
errors, bit 𝑏𝑖, 𝑗 is inserted right after the 𝛾𝑖, 𝑗 -th bit of c in the 𝑖-th head, for 𝑖 ∈ [1, 𝑑]
and 𝑗 ∈ [1, 𝑛]. when 𝛾𝑖, 𝑗 = 0, the insertion occurs before 𝑐1. We note that b𝑖 can
be different for different 𝑖’s.

We call a deletion error or an insertion error an edit error, or error, in Sec. 8.6.
For edit errors, define the read matrix E (c, δ1, . . . , δ𝑑 , γ1, . . . , γ𝑑 , b1, . . . , b𝑑) ∈
{0, 1}𝑑×(𝑛+𝑠−𝑟) , where |δ𝑖 | = 𝑠 for 𝑖 ∈ [1, 𝑑], as follows. The 𝑖-th row of

E (c, δ1, . . . , δ𝑑 , γ1, . . . , γ𝑑 , b1, . . . , b𝑑) ∈ {0, 1}𝑑×(𝑛+𝑠−𝑟)

is obtained by deleting the bits 𝑐ℓ:ℓ∈δ𝑖 and inserting 𝑏𝑖, 𝑗 after the 𝑐𝛾𝑖, 𝑗 , for 𝑖 ∈ [1, 𝑑]
and 𝑗 ∈ [1, 𝑠]. In this chapter, we consider 𝑘 edit errors. Hence, 𝑟 + 𝑠 ≤ 𝑘 .
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Example 8.2.3. Continue Example 8.2.1. Consider a 3-head racetrack memory
with head distance 𝑡1 = 1 and 𝑡2 = 2. Let the deletion location set δ1 = {2, 5, 7}.
Then, we have that δ2 = {3, 6, 8} and δ3 = {5, 8, 10}. In addition, the insertion
location set is given by γ1 = {0, 2}. Then, we have γ2 = {1, 3}, and γ3 = {3, 5}. Let
b1 = (1, 1), b2 = (1, 0), b3 = (0, 1) Let c = (1, 1, 0, 1, 0, 0, 0, 1, 0, 1) be a sequence
of length 10. Then, the read matrix is given by

E (c, δ1, δ2, δ3, γ1, γ2, γ3, b1, b2, b3) =

1 1 1 0 1 0 1 0 1
1 1 1 0 1 0 0 0 1
1 1 0 0 1 1 0 0 0

 .
Define an edit ball E𝑘 (c, 𝑡1, . . . , 𝑡𝑑−1) of a sequence c ∈ {0, 1}𝑛 as the set of all
possible read matrices in an 𝑑 head racetrack memory with input c and head distance
𝑡𝑖, 𝑖 ∈ [1, 𝑑 − 1], i.e.,

E𝑘 (c, 𝑡1, . . . , 𝑡𝑑−1) = {E (c, c, δ1, . . . , δ𝑑 , γ1, . . . , γ𝑑 , b1, . . . , b𝑑) : δ𝑖+1 = δ𝑖 + 𝑡𝑖,

γ𝑖+1 = γ𝑖 + 𝑡𝑖, for 𝑖 ∈ [1, 𝑑], andδ𝑖 ⊆ [1, 𝑛], |δ𝑖 | = 𝑟, γ𝑖 ⊆ [0, 𝑛], |γ𝑖 | = 𝑠,

b𝑖 ∈ {0, 1}𝑠 for 𝑖 ∈ [1, 𝑑], 𝑟 + 𝑠 ≤ 𝑘, }.

A 𝑑-head 𝑘-edit correction code C is the set of all sequences such that the edit
balls of any two do not intersect, i.e., for any c, c′ ∈ C, E𝑘 (c, 𝑡1, . . . , 𝑡𝑑−1) ∩
E𝑘 (c′, 𝑡1, . . . , 𝑡𝑑−1) = ∅.

Lemmas
In this section we present lemmas that will be used throughout this chapter. Some
of them are existing results. The following lemma describes a systematic Reed-
Solomon code that can correct a constant number of erasures and can be efficiently
computed (See for example [97]).

Lemma 8.2.1. Let 𝑘 , 𝑞, and 𝑛 be integers that satisfy 𝑛+ 𝑘 ≤ 𝑞. Then, there exists a
map 𝑅𝑆𝑘 : F𝑛𝑞 → F𝑘𝑞 , computable in 𝑝𝑜𝑙𝑦(𝑛) time, such that {(c, 𝑅𝑆𝑘 (c)) : c ∈ F𝑛𝑞}
is a 𝑘-erasure correcting code.

The Reed-Solomon code requires 𝑂 (log 𝑛) redundancy for correcting 𝑘 erasures.
Correcting a burst of two erasures requires less redundancy when the alphabet size
of the code has order 𝑜(log 𝑛). The following code for correcting consecutive two
erasures will be used for the case when the number of deletions 𝑘 is less than two
times the number of heads 𝑚.
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Lemma 8.2.2. For any integers 𝑛 and 𝑞, there exists a map 𝐸𝑅 : F𝑛𝑞 → F2
𝑞,

computable in 𝑂 (𝑛) time, such that the code {(c, 𝐸𝑅(c) : c ∈ F𝑛𝑞} is capable of
correcting two consecutive erasures.

Proof. For a sequence c = (𝑐1, . . . , 𝑐𝑛) Let the code 𝐸𝑅 be given by

𝐸𝑅(c) = (
⌊(𝑛−1)/2⌋∑︁

𝑖=0
𝑐2𝑖+1,

⌊𝑛/2⌋∑︁
𝑖=0

𝑐2𝑖),

which are the sums of symbols with odd and even indices respectively over field F𝑞.
Note that a consecutive of two erasures is reduces to single erasures in the even sym-
bols and odd symbols respectively, which can be recovered with the help of 𝐸𝑅(c).
Hence, (c, 𝐸𝑅(c)) can be recovered from two consecutive erasures. □

Our construction is based on a systematic deletion code for a single read 𝑑 = 1,
which was presented in Ch. 4.

Lemma 8.2.3. Let 𝑘 be a fixed integer. For integers 𝐵 and 𝑛. There exists a hash
function

𝐻𝑎𝑠ℎ : {0, 1}𝐵 → {0, 1}⌈4𝑘 log 𝐵+𝑜(log 𝐵)

computable in 𝑂 (𝐵2𝑘+1) time, such that any sequence c ∈ {0, 1}𝐵 can be recovered
from its length 𝐵 − 𝑘 subsequence with the help of of 𝐻𝑎𝑠ℎ(c).

We also use the following fact, proved in [64], which implies that a deletion correct-
ing code can be used to correct a combination of deletions and insertions.

Lemma 8.2.4. A 𝑘-deletion correcting code is capable of correcting a combination
of 𝑟 deletions and 𝑠 insertions, where 𝑟 + 𝑠 ≤ 𝑘 .

Remark 8.2.1. Note that the lemma does not hold in a multi-head racetrack memory
considered in this chapter.

In addition, in order to synchronize the sequence c in the presence of deletions,
we need to transform c to a sequence that has a limited length constraint on its
periodic subsequences. Such constraint was used in [18], where it was proved that
the redundancy of the code {c : 𝐿 (c, ≤ 𝑘) ≤ ⌈log 𝑛⌉ + 𝑘 + 1} is at most 1 bit. In
the following lemma we present a method to transform any sequence to one that
satisfies this constraint. The redundancy of our construction is 𝑘 + 1 bits. However,
it is small compared to the redundancy of the 𝑑 head 𝑘-deletion code.
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Lemma 8.2.5. For any integers 𝑘 and 𝑛, there exists an injective function 𝐹 :
{0, 1}𝑛 → {0, 1}𝑛+𝑘+1, computable in 𝑂𝑘 (𝑛3 log 𝑛) time, such that for any se-
quence {0, 1}𝑛, we have that 𝐿 (𝐹 (c), ≤ 𝑘) ≤ 3𝑘 + 2 + ⌈log 𝑛⌉.

Proof. Let 1𝑥 and 0𝑦 denote consecutive 𝑥 1’s and consecutive 𝑦 0’s respectively.
The encoding procedure for computing 𝐹 (c) is as follows.

1. Initialization: Let 𝐹 (c) = c. Append (1𝑘 , 0) to the end of the sequence 𝐹 (c).
Let 𝑖 = 1 and 𝑛′ = 𝑛. Go to Step 1.

2. Step 1: If 𝑖 ≤ 𝑛′ − 2𝑘 − ⌈log 𝑛⌉ − 1 and 𝐹 (c)[𝑖,𝑖+2𝑘+⌈log 𝑛⌉+1] has period 𝑝 ≤ 𝑘 ,
let 𝑝𝑚𝑖𝑛 be the smallest period of𝐹 (c)[𝑖,𝑖+2𝑘+⌈log 𝑛⌉+1] . Delete𝐹 (c)[𝑖,𝑖+2𝑘+⌈log 𝑛⌉+1]

from 𝐹 (c) and append (1𝑘−𝑝𝑚𝑖𝑛 , 0, 𝐹 (c)[𝑖,𝑖+𝑝𝑚𝑖𝑛−1] , 𝑖, 0
𝑘+1) to the end of 𝐹 (c),

i.e., set𝐹 (c)[𝑖,𝑛−𝑘−⌈log 𝑛⌉−1] = 𝐹 (c)[𝑖+2𝑘+⌈log 𝑛⌉+2,𝑛+𝑘+1] and𝐹 (c)[𝑛−𝑘−⌈log 𝑛⌉,𝑛+𝑘+1] =

(1𝑘−𝑝𝑚𝑖𝑛 , 0, 𝐹 (c)[𝑖,𝑖+𝑝𝑚𝑖𝑛−1] , 𝑖, 0
𝑘+1). Let 𝑛′ = 𝑛′ − 2𝑘 − ⌈log 𝑛⌉ − 2 and 𝑖 = 1.

Repeat. Else go to Step 2.

3. Step 2: If 𝑖 ≤ 𝑛′ − 2𝑘 − ⌈log 𝑛⌉ − 1, let 𝑖 = 𝑖 + 1 and go to Step 1. Else
output 𝐹 (c).

It can be verified that the length of the sequence 𝐹 (c) remains to be 𝑛 + 𝑘 + 1
during the procedure. The number 𝑛′ in the procedure denotes the number such
that 𝐹 (c)[𝑛′+1,𝑛+𝑘+1] are appended bits and 𝐹 (c)[1,𝑛′] are the remaining bits in c after
deletions. Since either 𝑖 increases to 𝑛′ or 𝑛′ decreases in Step 1. The algorithm
terminates within 𝑂 (𝑛2) times of Step 1 and Step 2. Since it takes 𝑂 (𝑘 (3𝑘 + 2 +
log 𝑛)𝑛) to check the periodicity in Step 1. The total complexity is 𝑂𝑘 (𝑛3 log 𝑛).

We now prove that 𝐿 (𝐹 (c), ≤ 𝑘) ≤ 3𝑘 + 2 + ⌈log 𝑛⌉. Let 𝑛′ be the number
computed in the encoding procedure. According to the encoding procedure, we have
that 𝐿 (𝐹 (c)[ 𝑗 , 𝑗+2𝑘+1+⌈log 𝑛⌉] , ≤ 𝑘) ≤ 2𝑘 + 1 + ⌈log 𝑛⌉ for 𝑗 ≤ 𝑛′ − 2𝑘 − ⌈log 𝑛⌉ − 1,
since any subsequence 𝐹 (c)[ 𝑗 , 𝑗+2𝑘+1+⌈log 𝑛⌉] with period not greater than 𝑘 is deleted.
Therefore 𝐿 (𝐹 (c)[ 𝑗 , 𝑗+3𝑘+1+⌈log 𝑛⌉] , ≤ 𝑘) ≤ 3𝑘 + 2 + ⌈log 𝑛⌉ for 𝑗 ≤ 𝑛′ − 2𝑘 −
⌈log 𝑛⌉ − 1. For 𝑛′ − 2𝑘 − ⌈log 𝑛⌉ ≤ 𝑗 ≤ 𝑛′, the sequence 𝐹 (c)[ 𝑗 , 𝑗+2𝑘+1+⌈log 𝑛⌉]

contains 𝐹 (c)[𝑛′+1,𝑛′+𝑘+1] = (1𝑘 , 0), which does not have period not greater than 𝑘 .
Hence we have that 𝐿 (𝐹 (c)[ 𝑗 , 𝑗+3𝑘+1+⌈log 𝑛⌉] , ≤ 𝑘) ≤ 3𝑘 + 2 + ⌈log 𝑛⌉. For 𝑗 > 𝑛′,
the sequence 𝐹 (c)[ 𝑗 , 𝑗+3𝑘+1+⌈log 𝑛⌉] contains 0𝑘+1 as 𝑘 + 1 consecutive bits. Hence,
if 𝐹 (c)[ 𝑗 , 𝑗+3𝑘+1+⌈log 𝑛⌉] = 3𝑘 + 2 + ⌈log 𝑛⌉, we have that 𝐹 (c)[ 𝑗 , 𝑗+3𝑘+1+⌈log 𝑛⌉] =

03𝑘+2+⌈log 𝑛⌉ . However, this is impossible since 𝐹 (c)[ 𝑗 , 𝑗+3𝑘+1+⌈log 𝑛⌉] contains either
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the location index 𝑖 to the left of 0𝑘+1 or the bits (1𝑘−𝑝𝑚𝑖𝑛 , 0, 𝐹 (c)[𝑖,𝑖+𝑝𝑚𝑖𝑛−1]) to the
right of 0𝑘+1, both of which can not be all zero. Therefore, we conclude that 𝐿 (c, ≤
𝑘) ≤ 3𝑘 + 2 + ⌈log 𝑛⌉. Given 𝐹 (c), the decoding procedure for computing c is as
follows.

1. Initialization: Let c = 𝐹 (c) and go to Step 1.

2. Step 1: If c[𝑛+1,𝑛+𝑘+1] ≠ (1𝑘 , 0), let 𝑗 be the length of the first 1 run
in c[𝑛−𝑘−⌈log 𝑛⌉,𝑛+𝑘+1] and let 𝑝 be the decimal representation of c𝑛−⌈log 𝑛⌉+1,𝑛.
Let a be a sequence of length 2𝑘 + ⌈log 𝑛⌉ + 2 and period 𝑘 − 𝑗 . The first 𝑘 − 𝑗

bits of a is given by c[𝑛−𝑘−⌈log 𝑛⌉+ 𝑗+1,𝑛−⌈log 𝑛⌉] . Delete c[𝑛−𝑘−⌈log 𝑛⌉,𝑛+𝑘+1] from c
and insert a at location 𝑝 of c, i.e., let c[𝑝+2𝑘+⌈log 𝑛⌉+2,𝑛+𝑘+1] = c[𝑝,𝑛−𝑘−⌈log 𝑛⌉−1]

and c[𝑝,𝑝+2𝑘+⌈log 𝑛⌉+1] = a. Repeat. Else output c.

Note that the encoding procedure consists of a series of deleting and appending
operations. The decoding procedure consists of a series of deletion and inserting
operations. Let 𝐹𝑖 (c), 𝑖 ∈ [0, 𝑅] be the sequence 𝐹 (c) obtained after the 𝑖-th
deleting and appending operation in the encoding procedure, where 𝑅 is the number
of deleting and appending operations in total in the encoding procedure. We have
that 𝐹0(c) = c and 𝐹𝑅 (c) is the final output 𝐹 (c). It can be seen that the decoding
procedure obtains 𝐹𝑅−𝑖 (c), 𝑖 ∈ [0, 𝑅] after the 𝑖-th deleting and inserting operation.
Hence the function 𝐹 (c) is injective. □

Finally, we restate one of the main results in [18] that will be used in our construction.
The result guarantees a procedure to correct 𝑑 − 1 deletions in a 𝑑 head racetrack
memory, given that the distance between consecutive heads are large enough.

Lemma 8.2.6. Let 𝑑 ≤ 𝑘 be two integers and C be a 𝑘 − 𝑑 + 1 deletion code,
then C ∩ {c : 𝐿 (c, ≤ 𝑘) ≤ 𝑇} is an 𝑑 head 𝑘 deletion correcting code, given
that the distance between consecutive heads 𝑡 ≥ 𝑇 [𝑘 (𝑘 − 1)/2 + 1] + (7𝑘 − 𝑘3)/6
for 𝑖 ∈ [1, 𝑑 − 1].

8.3 Correcting up to 2𝑑 − 1 Deletions with 𝑑 Heads
In this section we construct a 𝑘 deletion 𝑑 head code for cases when 𝑘 ≤ 2𝑑 − 1.
To this end, we first present a lemma that is crucial in our code construction. The
lemma states that the range of deletion locations can be narrowed down to a list
of short intervals. Moreover, the number of deletions within each interval can be
determined. The proof of the lemma will be given in Sec. 8.4. Before presenting the
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I1 I𝐽
𝐷1, [1,𝑛+𝑅−𝑘 ]

𝐷2, [1,𝑛+𝑅−𝑘 ]

𝐷3, [1,𝑛+𝑅−𝑘 ]

=

=

=

=

=

=

. . .

. . .

. . .

. . .

=

=

=

=

=

=

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

Figure 8.2: An illustration of Lemma 8.3.1. The ∗ entries denote deletion in the
heads. The read 𝐷𝑖,[1,𝑛+𝑅] in each head is obtained after deleting the ∗ entries from c.

lemma, we give the following definition, which describes a property of the intervals
we look for.

Definition 8.3.1. Let δ𝑖 = {𝛿𝑖,1, . . . , 𝛿𝑖,𝑘 } be the set of deletion locations in the 𝑖-th
head of a 𝑑 head racetrack memory, i.e., δ𝑖+1 = δ𝑖 + 𝑡𝑖, for 𝑖 ∈ [1, 𝑑 − 1]. An
interval I is deletion isolated if

δ𝑖+1 ∩ I = 𝑡𝑖 + δ𝑖 ∩ I,

for 𝑖 ∈ [1, 𝑑 − 1].

Example 8.3.1. Consider a 3-head racetrack memory with head distances 𝑡1 = 1
and 𝑡2 = 2. Let the length of the sequence c be 𝑛 = 22 and the deletion positions in
three heads be given by

δ1 = {1, 2, 4, 8, 14, 17},
δ2 = {2, 3, 5, 9, 15, 18}, and

δ3 = {4, 5, 7, 11, 17, 20}.

Then the intervals [1, 7], [8, 12], and [14, 22] are all deletion isolated.

Intuitively, an interval I is deletion isolated when the subsequences cI∩δ𝑐
𝑖

for 𝑖 ∈
[1, 𝑑] can be regarded as the 𝑑 reads of the sequence cI in a 𝑑-head racetrack
memory after |δ1 ∩ I| deletions in each head.

Lemma 8.3.1. For any positive integers 𝑛 and 𝑅 ≥ 𝑘 + 1, let c ∈ {0, 1}𝑛+𝑅 be a
sequence such that 𝐿 (c[1,𝑛+𝑘+1] , ≤ 𝑘) ≤ 3𝑘 + ⌈log 𝑛⌉ + 2 ≜ 𝑇 . Let the distance 𝑡𝑖
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between head 𝑖 and head 𝑖+1 satisfy 𝑡𝑖 ≥ (4𝑘 +1) (𝑇 +2𝑘 +1) ≜ 𝑇𝑚𝑖𝑛, 𝑖 ∈ [1, 𝑑−1],k
and 𝑡𝑚𝑎𝑥 = max𝑖∈{1,...,𝑑−1} 𝑡𝑖 be the largest distance between two consecutive heads.
Then given D ∈ D𝑘 (c, 𝑡1, . . . , 𝑡𝑑−1), it is possible to find a set of 𝐽 ≤ 𝑘 disjoint
and deletion isolated intervals I𝑗 ⊆ [1, 𝑛 + 𝑅], 𝑗 ∈ [𝑖, 𝐽] such that δ𝑤 ⊂ ∪𝐽

𝑗=1I𝑗
for 𝑤 ∈ [1, 𝑑] and

|I𝑗 ∩ [1, 𝑛 + 𝑘 + 1] | ≤ (2⌊(2𝑡𝑚𝑎𝑥 + 𝑇 + 1)/2⌋ + 1)𝑘𝑑 + ⌊(2𝑡𝑚𝑎𝑥 + 𝑇 + 1)/2⌋ + 𝑘 ≜ 𝐵,

for 𝑗 ∈ [1, 𝐽]. Moreover, |δ1 ∩ I𝑗 | can be determined for 𝑗 ∈ [1, 𝐽].

An illustration of Lemma 8.3.1 is shown in Fig. 8.2. Since the interval I𝑗 is deletion
isolated for 𝑗 ∈ [1, 𝐽], all rows ofD are aligned in locations [1, 𝑛]\(∪𝐽

𝑗=1I𝑗 ), i.e., the
entries in the 𝑖-th column of 𝐴 correspond to the same bit in c for 𝑖 ∈ [1, 𝑛]\(∪𝐽

𝑗=1I𝑗 ).
Let c be a sequence satisfying 𝐿 (c[1,𝑛+𝑘+1] , ≤ 𝑘) ≤ 𝑇 . By virtue of Lemma 8.3.1,
the bit 𝑐𝑖 can be determined by

𝑐𝑖 = D1,𝑖−∑
𝑗:I𝑗 ⊆[1,𝑖−1] |δ1∩I𝑗 | (8.1)

for 𝑖 ∈ [1, 𝑛 + 𝑘 + 1]\(∪𝐽
𝑗=1I𝑗 ). In addition, let I𝑗 = [𝑏𝑚𝑖𝑛

𝑗
, 𝑏𝑚𝑎𝑥

𝑗
] for 𝑗 ∈ [1, 𝐽] such

that 𝑏𝑚𝑎𝑥
𝑗

< 𝑏𝑚𝑖𝑛
𝑗−1 for 𝑗 ∈ [2, 𝐽]. Again, since I𝑗 is deletion isolated for 𝑗 ∈ [1, 𝐽],

the submatrix

D[1,𝑑],[𝑏𝑚𝑖𝑛
𝑗

−∑𝐽
𝑖= 𝑗+1 |δ1∩I𝑖 |,𝑏𝑚𝑎𝑥

𝑗
−∑𝐽

𝑖= 𝑗 |δ1∩I𝑖 |]
∈ D|δ1∩[𝑏𝑚𝑖𝑛

𝑗
,𝑏𝑚𝑎𝑥

𝑗
] | (cI𝑗 , 𝑡1, . . . , 𝑡𝑑−1)

can be regarded as the 𝑑 reads of the subsequence cI𝑗 in a 𝑑 head racetrack memory.
According to Lemma 8.2.6, the bits cI𝑗 with |δ1 ∩ I𝑗 | < 𝑑 can be recovered from

D[1,𝑑],[𝑏𝑚𝑖𝑛
𝑗

−∑𝐽
𝑖= 𝑗+1 |δ1∩I𝑖 |,𝑏𝑚𝑎𝑥

𝑗
−∑𝐽

𝑖= 𝑗 |δ1∩I𝑖 |]

since the head distance satisfies 𝑡𝑖 ≥ 𝑇 [𝑘 (𝑘 − 1)/2 + 1] + (7𝑘 − 𝑘3)/6 for 𝑖 ∈
{1, . . . , 𝑑−1}. Note that there is at most a single intervalI𝑗1 satisfying |δ1∩I𝑗1 | ≥ 𝑑

when 𝑘 ≤ 2𝑑 − 1. Hence, we are left to recover interval I𝑗1 .

Split c[1,𝑛+𝑘+1] into blocks

a𝑖 = c[(𝑖−1)𝐵+1,min{𝑖𝐵,𝑛+𝑘+1}] , 𝑖 ∈ [1, ⌈(𝑛 + 𝑘 + 1)/𝐵⌉] (8.2)

of length 𝐵 except that a⌈(𝑛+𝑘+1)/𝐵⌉ may have length shorter than 𝐵. Since |I𝑗1 ∩
[1, 𝑛 + 𝑘 + 1] | ≤ 𝐵, the interval I𝑗1 spans over at most two blocks a 𝑗 ′1

and a 𝑗 ′1+1. It
then follows that there are at most two consecutive blocks, where I𝑗1 lies in, that
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remain to be recovered. Moreover, at most 𝑘 deletions occur in interval I𝑗1 , and
hence in blocks a 𝑗 ′1

and a 𝑗 ′+1+1.

For an integer 𝑛 and a sequence c ∈ {0, 1}𝑛+𝑘+1 of length 𝑛+ 𝑘 +1, let the function 𝑆 :
{0, 1}𝑛+𝑘+1 → F⌈(𝑛+𝑘+1)/𝐵⌉

4𝑘 log 𝐵+𝑜(log 𝐵) be defined by

𝑆(c) = (𝐻𝑎𝑠ℎ(a1), 𝐻𝑎𝑠ℎ(a2), . . . , 𝐻𝑎𝑠ℎ(a⌈(𝑛+𝑘+1)/𝐵⌉)), (8.3)

where a𝑖, 𝑖 ∈ [1, ⌈(𝑛 + 𝑘 + 1)/𝐵⌉] are the blocks of c defined in Eq. (8.2). The
function 𝐻𝑎𝑠ℎ(a⌈(𝑛+𝑘+1)/𝐵⌉), defined in Lemma 8.2.3, takes a⌈(𝑛+𝑘+1)/𝐵⌉ as input
of length at most 𝐵. The sequence 𝑆(c) is a concatenation of the hashes 𝐻𝑎𝑠ℎ of
blocks of c.

Lemma 8.3.2. If 𝐵 > 𝑘 , there exists a function

𝐷𝑒𝑐𝑆 : {0, 1}𝑛+1 × {0, 1}⌈(𝑛+𝑘+1)/𝐵⌉ (4 log 𝐵+𝑜(log 𝐵)) → {0, 1}𝑛+𝑘+1,

such that for any sequence c ∈ {0, 1}𝑛+𝑘+1 and its length 𝑛 + 1 subsequence d ∈
{0, 1}𝑛+1, we have that 𝐷𝑒𝑐𝑆(d, 𝑆(c)) = c, i.e., the sequence c can be recovered
from 𝑘 deletions with the help of 𝑆(c).

Proof. Note that d[(𝑖−1)𝐵+1,min{𝑖𝐵,𝑛+𝑘+1}−𝑘] is a length 𝐵 − 𝑘 subsequence of the
block a𝑖 for 𝑖 ∈ {1, . . . , ⌈(𝑛 + 𝑘 + 1)/𝐵⌉}. According to Lemma 8.2.3, the block a𝑖
can be recovered from d(𝑖−1)𝐵+1,max{𝑖𝐵,𝑛+𝑘+1}−𝑘 with the help of 𝐻𝑎𝑠ℎ(a𝑖). Thus the
sequence c can be recovered. □

We are now ready to present the code construction. For any sequence c ∈ {0, 1}𝑛,
define the following encoding function:

𝐸𝑛𝑐1(c) = (𝐹 (c), 𝑅′

1(c), 𝑅
′′

1 (c)) (8.4)

where

𝑅
′

1(c) = 𝐸𝑅(𝑆(𝐹 (c))),
𝑅

′′

1 (c) = 𝑅𝑒𝑝𝑘+1(𝐻𝑎𝑠ℎ(𝑅′
1(c))), (8.5)

and the function 𝑅𝑒𝑝𝑘+1 is a 𝑘 + 1-fold repetition function that repeats each bit 𝑘 + 1
times. Note that we use 𝐹 (c) ∈ {0, 1}𝑛+𝑘+1 to obtain a sequence satisfying 𝐿 (𝐹 (c), ≤
𝑘) ≤ 𝑇 so that Lemma 8.3.1 can be applied. The redundancy consists of two layers.
The function 𝑅

′

1(c) can be regarded as the first layer redundancy, with the help of
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which 𝐹 (c) can be recovered from 𝑘 deletions. It computes the redundancy of a code
that corrects two consecutive symbol erasures in 𝑆𝑘−𝑚+1(𝐹 (c)). The function 𝑅

′′

1 (c)
can be seen as the second layer redundancy that helps recover itself and 𝑅

′

1(c) from 𝑘

deletions.

When the head distance 𝑡𝑖 satisfies 𝑡𝑖 = max{(3𝑘 + ⌈log 𝑛⌉ + 2) [𝑘 (𝑘 − 1)/2 + 1] +
(7𝑘 − 𝑘3)/6, (4𝑘 + 1) (5𝑘 + ⌈log 𝑛⌉ + 3)} for 𝑖 ∈ [1, 𝑑 − 1], the length of 𝑅′

1(c) is
given by 𝑁1 = 4 log 𝐵 + 𝑜(log 𝐵) = 4𝑘 log log 𝑛 + 𝑜(log log 𝑛). The length of 𝑅′′

1 (c)
is 𝑁2 = 8𝑘2(𝑘+1) log 𝑁1+𝑂 (1) = 𝑜(log log 𝑛). The length of the codeword 𝐸𝑛𝑐1(c)
is given by 𝑁 = 𝑛 + 𝑘 + 1 + 𝑁1 + 𝑁2. The next theorem proves Theorem 8.1.1 for
cases when 𝑑 ≤ 𝑘 ≤ 2𝑑 − 1.

Theorem 8.3.1. The set C1 = {𝐸𝑛𝑐1(c) : c ∈ {0, 1}𝑛} is a 𝑑-head 𝑘-deletion cor-
recting code for 𝑑 ≤ 𝑘 ≤ 2𝑑 − 1, if the distance between any two consecutive heads
satisfies 𝑡𝑖 = max{(3𝑘 + ⌈log 𝑛⌉ + 2) [𝑘 (𝑘 − 1)/2 + 1] + (7𝑘 − 𝑘3)/6, (4𝑘 + 1) (5𝑘 +
⌈log 𝑛⌉ +3)}, 𝑖 ∈ [1, 𝑑 −1]. The code C1 can be constructed, encoded, and decoded
in 𝑂𝑘 (𝑝𝑜𝑙𝑦(𝑛)) time. The redundancy of C1 is 𝑁 − 𝑛 = 4𝑘 log log 𝑛 + 𝑜(log log 𝑛).

Proof. For any 𝐷 ∈ 𝐷𝑘 (c), let d = 𝐷1,[1,𝑁−𝑘] be the first row of 𝐷, i.e., the first
read. The sequence d is a length 𝑁 − 𝑘 subsequence of 𝐸𝑛𝑐1(c). We first show how
to recover 𝑅′

1(c) from d. Note that d[𝑁−𝑁2+1,𝑁−𝑘] is a length 𝑁2 − 𝑘 subsequence
of 𝑅′′

1 (c), the 𝑘 + 1-fold repetition of 𝐻 (𝑅′

1(c)). Since a 𝑘 + 1-fold repetition code is
a 𝑘 deletion code, the hash function 𝐻𝑎𝑠ℎ(𝑅′

1(c)) can be recovered. Furthermore,
we have that d[𝑛+𝑘+2,𝑛+𝑘+1+𝑁1−𝑘] is a length 𝑁1 − 𝑘 subsequence of 𝑅′

1(c). Hence
according to Lemma 8.2.3, we can obtain 𝑅

′

1(c) from d[𝑛+𝑘+2,𝑛+𝑘+1+𝑁1−𝑘] , with the
help of 𝐻𝑎𝑠ℎ(𝑅′

1(c)).

Next, we show how to use 𝑅
′

1(c) to recover 𝐹 (c). Note the fact that 𝐿 (𝐹 (c), ≤ 𝑘) ≤
𝑇 . From Lemma 8.3.1 and the discussion that follows, we can separate 𝐹 (c) into
blocks a𝑖, 𝑖 ∈ [1, ⌈(𝑛+𝑘+1)/𝐵⌉], of length 𝐵, and recover all but at most two consecu-
tive blocks a 𝑗1 and a 𝑗1+1. This implies that 𝑆(𝐹 (c)) can be retrieved with consecutive
at most two symbol errors, the position of which can be identified. Hence we can
use 𝑅′

1(c) to recover 𝑆(𝐹 (c)) and find the hashes 𝐻𝑎𝑠ℎ(a 𝑗1) and 𝐻𝑎𝑠ℎ(a 𝑗1+1). Note
that 𝐷1,[1,𝑛+1] is a length 𝑛 + 1 subsequences of 𝐹 (c). Hence from Lemma 8.3.2
the sequence 𝐹 (c) and thus c can be recovered given 𝑆(𝐹 (c)). The computation
of 𝑆(𝐹 (c)), which computes 𝑂 (𝑛) times the hashes 𝐻𝑎𝑠ℎ(a𝑖), [1, ⌈(𝑛+ 𝑘 +1)/𝐵⌉],
constitutes the main part of the computation complexity of 𝐸𝑛𝑐1(c). Since the
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computation of 𝐻𝑎𝑠ℎ(a𝑖) takes 𝑂𝑘 (⌈𝐵/log 𝑛⌉𝑛 log2𝑘 𝑛) = 𝑂𝑘 (𝑛 log2𝑘 𝑛) time. It
takes 𝑂𝑘 (𝑝𝑜𝑙𝑦(𝑛)) time to compute 𝐸𝑛𝑐1(c). □

8.4 Proof of Lemma 8.3.1
Let D ∈ D𝑘 (c, 𝑡1, . . . , 𝑡𝑑−1) be the 𝑑 reads from all heads, where c satisfies

𝐿 (c[1,𝑛+𝑘+1] , ≤ 𝑘) ≤ 𝑇.

Then D is a 𝑑 by 𝑛 + 𝑅− 𝑘 matrix. The proof of Lemma 8.3.1 consists of two steps.
The first step is to identify a set of disjoint intervals I∗

𝑗
, 𝑗 ∈ [1, 𝐽] that satisfy:

(P1) There exists a set of disjoint and deletion isolated intervals I𝑗 , 𝑗 ∈ [1, 𝐽], such
that D𝑤,I∗

𝑗
= cI𝑗∩δ𝑐

𝑤
for 𝑤 ∈ [1, 𝑑] and 𝑗 ∈ [1, 𝐽], i.e., the subsequence D𝑖,I∗

𝑗

comes from cI𝑗 in the 𝑖-th read after deleting cI𝑗∩δ𝑖 ,

(P2) 𝐽 ≤ 𝑘 and δ𝑤 ⊆ ∪𝐽
𝑗=1I𝑗 for 𝑤 ∈ [1, 𝑑],

(P3) |I∗
𝑗
∩ [1, 𝑛 + 1] | ≤ 𝐵 − 𝑘 .

The second step is to determine the number of deletions |δ𝑖 ∩ I𝑗 | for 𝑖 ∈ [1, 𝑑]
and 𝑗 ∈ [1, 𝐽], that happen in each interval in each head, based on D[1,𝑑],I∗

𝑗
. Then

we have that

I𝑗 = [𝑖2 𝑗−1 +
𝑗−1∑︁
ℓ=1

|δ1 ∩ Iℓ |, 𝑖2 𝑗 +
𝑗∑︁

ℓ=1
|δ1 ∩ Iℓ |],

where 𝑖2 𝑗−1 and 𝑖2 𝑗 are the starting and ending points of the interval I∗
𝑗
. It is

assumed that 𝑖 𝑗 > 𝑖𝑙 for 𝑗 > 𝑙. The disjointness of I𝑗 , 𝑗 ∈ [1, 𝐽] follows from
the fact that I∗

𝑗
, 𝑗 ∈ [1, 𝐽] are disjoint. The two steps will be made explicit in the

following two subsections respectively.

Identifying Intervals I∗
𝑗

The procedure for identifying intervals I∗
𝑗
, 𝑗 ∈ [1, 𝐽], is as follows.

1. Initialization: Set all integers 𝑚 ∈ [1, 𝑛 + 𝑅 − 𝑘] unmarked. Let 𝑖 = 1.
Find the largest positive integer 𝐿 such that the sequences D𝑤,[𝑖,𝑖+𝐿−1] are
equal for all 𝑤 ∈ [1, 𝑑]. If such 𝐿 exists and satisfies 𝐿 > 𝑡𝑚𝑎𝑥 , mark the
integers 𝑚 ∈ [1, 𝐿 − 𝑡𝑚𝑎𝑥] and go to Step 1. Otherwise, go to Step 1.
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2. Step 1: Find the largest positive integer 𝐿 such that the sequences D𝑤,[𝑖,𝑖+𝐿−1]

are equal for all 𝑤 ∈ [1, 𝑑]. Go to Step 2. If no such 𝐿 is found, set 𝐿 = 0
and go to Step 2.

3. Step 2: If 𝐿 ≥ 2𝑡𝑚𝑎𝑥 + 𝑇 + 1, mark the integers 𝑚 ∈ [𝑖 + 𝑡𝑚𝑎𝑥 ,min{𝑖 + 𝐿 −
1, 𝑛 + 1} − 𝑡𝑚𝑎𝑥]. Set 𝑖 = 𝑖 + 𝐿 + 1 and go to Step 3. Else 𝑖 = 𝑖 + 1 and go to
Step 3.

4. Step 3: If 𝑖 ≤ 𝑛 + 1, go to Step 1. Else go to Step 4.

5. Step 4: If the number of unmarked intervals1 within [1, 𝑛 + 1] is not greater
than 𝑘 , output all unmarked intervals. Else output the first 𝑘 intervals, i.e., the
intervals with the minimum 𝑘 starting indices.

We prove that the output intervals satisfy the above constraints. The following
lemma will be used.

Lemma 8.4.1. Let D ∈ D𝑘 (c) for some sequence c satisfying 𝐿 (c[1,𝑛+𝑘+1] , ≤ 𝑘) ≤
𝑇 . Let 𝑡𝑚𝑎𝑥 = max𝑖∈[1,𝑑−1] 𝑡𝑖 such that 𝑡𝑤 ≥ 𝑘 (𝑇 + 1) + 1 for 𝑤 ∈ [1, 𝑑 − 1]. If
the sequences D𝑤,[𝑖1,𝑖2] are equal for all 𝑤 ∈ [1, 𝑑] in some interval [𝑖1, 𝑖2] ⊆
[1, 𝑛 + 1] with length 𝑖2 − 𝑖1 + 1 ≥ 2𝑡𝑚𝑎𝑥 + 𝑇 + 1, then no deletions occur within
bits D𝑤,[𝑖1+𝑡𝑚𝑎𝑥 ,𝑖2−𝑡𝑚𝑎𝑥] for all 𝑤, i.e., there exists integers 𝑖′1 = 𝑖1 + 𝑡𝑚𝑎𝑥 + |δ 𝑗 ∩
[1, 𝑖′1−1] | and 𝑖′2 = 𝑖2− 𝑡𝑚𝑎𝑥 + |δ 𝑗 ∩ [1, 𝑖′2−1] |, such that c[𝑖′1,𝑖′2] = D𝑤,[𝑖1+𝑡𝑚𝑎𝑥 ,𝑖2−𝑡𝑚𝑎𝑥]

and [𝑖′1, 𝑖
′
2] ∩ δ𝑤 = ∅ for 𝑤 ∈ [1, 𝑑]. In addition, both intervals [1, 𝑖′1 − 1] and [𝑖′2 +

1, 𝑛 + 𝑅] are deletion isolated.

Proof. Let 𝑐𝑖′0 , 𝑐𝑖′1 , 𝑐𝑖′2 , and 𝑐𝑖′3 be the bits that become D1,𝑖1 , D1,𝑖1+𝑡𝑚𝑎𝑥
, D1,𝑖2−𝑡𝑚𝑎𝑥

,
and D1,𝑖2 respectively after deletions, i.e., 𝑖′0− |δ1∩ [1, 𝑖′0−1] | = 𝑖1, 𝑖′1− |δ1∩ [1, 𝑖′1−
1] | = 𝑖1+𝑡𝑚𝑎𝑥 , 𝑖′2−|δ1∩[1, 𝑖′2−1] | = 𝑖2−𝑡𝑚𝑎𝑥 , and 𝑖′3−|δ1∩[1, 𝑖′3−1] | = 𝑖2. We show
that no deletions occur withinD𝑤,[𝑖1,𝑖2−𝑡𝑚𝑎𝑥] for𝑤 ∈ [1, 𝑑−1] or withinD𝑤,[𝑖1+𝑡𝑚𝑎𝑥 ,𝑖2]

for 𝑤 ∈ [2, 𝑑], i.e., δ𝑤 ∩ [𝑖′0, 𝑖
′
2] = ∅ for 𝑤 ∈ [1, 𝑑 − 1], and δ𝑤 ∩ [𝑖′1, 𝑖

′
3] = ∅

for 𝑤 ∈ [2, 𝑑].

Suppose on the contrary, there are deletions within D𝑤,[𝑖1,𝑖2−𝑡𝑚𝑎𝑥] for 𝑤 ∈ [1, 𝑑 −
1]. Then there exist some 𝑤1 ∈ [1, 𝑑 − 1] and 𝑘1 ∈ [1, 𝑘], such that 𝛿𝑤1,𝑘1 ∈
[𝑖′0, 𝑖

′
2] (recall that 𝛿𝑤1,𝑘1 is the location of the 𝑘1-th deletion in the 𝑤1-th read).

Then we have that 𝛿𝑤1+1,𝑘1 = 𝛿𝑤1,𝑘1 + 𝑡𝑤1 ∈ [𝑖′0, 𝑖
′
3]. Note that there are 𝑘 − 𝑘1

1An unmarked interval [𝑖, 𝑗] means that 𝑚 ∈ [𝑖, 𝑗] are not marked and 𝑖−1 and 𝑗 +1 are marked.
It is assumed that 0 and 𝑛 + 𝑅 − 𝑘 + 1 are marked.
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deletions {𝛿𝑤1,𝑘1+1, . . . , 𝛿𝑤1,𝑘 } to the right of 𝛿𝑤1,𝑘1 and 𝑘1−1 deletions {𝛿𝑤1+1,1, . . . ,

𝛿𝑤1+1,𝑘1−1} to the left of 𝛿𝑤1+1,𝑘1 . Hence we have that

| (δ𝑤1 ∪ δ𝑤1+1) ∩ [𝛿𝑤1,𝑘1 + 1, 𝛿𝑤1,𝑘1 + 𝑡𝑤1 − 1] |
≤|(δ𝑤1 ∪ δ𝑤1+1) ∩ [𝛿𝑤1,𝑘1 + 1, 𝛿𝑤1+1,𝑘1 − 1] |
≤𝑘 − 𝑘1 + 𝑘1 − 1

=𝑘 − 1,

meaning that there are at most 𝑘 − 1 deletions in the 𝑤1-th or (𝑤1 + 1)-th heads that
lie in interval [𝛿𝑤1,𝑘1 + 1, 𝛿𝑤1,𝑘1 + 𝑡𝑤1 − 1]. Since 𝑡𝑤1 ≥ 𝑘 (𝑇 + 1) + 1, there are at
least 𝑘 disjoint intervals of length𝑇 +1 that lie in interval [𝛿𝑤1,𝑘1 +1, 𝛿𝑤1,𝑘1 + 𝑡𝑤1 −1].
It then follows that there exists an interval [𝑖′, 𝑖′ + 𝑇] ⊂ [𝛿𝑤1,𝑘1 + 1, 𝛿𝑤1,𝑘1 + 𝑡𝑤1 − 1]
such that [𝑖′, 𝑖′ + 𝑇] ∩ (δ𝑤1 ∪ δ𝑤1+1) = ∅. Let 𝑙′1 = |δ𝑤1 ∩ [1, 𝑖′ − 1] | and 𝑙′2 =

|δ𝑤1+1 ∩ [1, 𝑖′ − 1] | be the number of deletions in heads 𝑤1 and 𝑤1 + 1 respectively
that is to the left of 𝑖′. We have that 𝑙′1 > 𝑙′2 since 𝛿𝑤1,𝑘1 < 𝑖′ and 𝛿𝑤1+1,𝑘1 > 𝑖′ + 𝑇 .
Since [𝑖′, 𝑖′ + 𝑇] ∩ (δ𝑤1 ∪ δ𝑤1+1) = ∅ and 𝑙′1 − 𝑙′2 ≤ 𝑘 < 𝑇 , we have that

𝑙′1 =|δ𝑤1 ∩ [1, 𝑖′ − 1] |
=|δ𝑤1 ∩ [1, 𝑖′ + 𝑙′1 − 𝑙′2 − 1] |
=|δ𝑤1 ∩ [1, 𝑖′ + 𝑇 − 1] |, and

𝑙′2 =|δ𝑤1+1 ∩ [1, 𝑖′ − 1] |
=|δ𝑤1+1 ∩ [1, 𝑖′ + 𝑇 + 𝑙′2 − 𝑙′1 − 1] |.

Therefore,

c[𝑖′+𝑙 ′1−𝑙 ′2,𝑖′+𝑇]
=D𝑤1,[𝑖′+𝑙 ′1−𝑙

′
2−|δ𝑤1∩[1,𝑖′+𝑙

′
1−𝑙

′
2−1] |,𝑖′+𝑇−|δ𝑤1∩[1,𝑖′+𝑇−1] |]

=D𝑤1,[𝑖′−𝑙 ′2,𝑖′+𝑇−𝑙
′
1]

=D𝑤1+1,[𝑖′−𝑙 ′2,𝑖′+𝑇−𝑙
′
1]

=D𝑤1+1,[𝑖′−|δ𝑤1+1∩[1,𝑖′−1] |,𝑖′+𝑇+𝑙 ′2−𝑙
′
1−|δ𝑤1+1∩[1,𝑖′+𝑇+𝑙 ′2−𝑙

′
1−1] |]

=c[𝑖′,𝑖′+𝑇+𝑙 ′2−𝑙 ′1] ,

which implies that 𝐿 (c[𝑖′,𝑖′+𝑇] , 𝑙′1 − 𝑙′2) = 𝑇 + 1 > 𝑇 . Since [𝑖′, 𝑖′ + 𝑇] ⊂ [𝑖′0, 𝑖
′
3] ⊂

[1, 𝑛 + 𝑘 + 1], this is a contradiction to the assumption that 𝐿 (c[1,𝑛+𝑘+1] , 𝑙
′
1 − 𝑙′2) ≤

𝑇 . Therefore, there are no deletions within D𝑤,[𝑖1,𝑖2−𝑡𝑚𝑎𝑥] for 𝑤 ∈ [1, 𝑑 − 1],
i.e., δ𝑤 ∩ [𝑖′0, 𝑖

′
2] = ∅ for 𝑤 ∈ [1, 𝑑 − 1]. Similarly, we have that δ𝑤 ∩ [𝑖′1, 𝑖

′
3] = ∅
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for 𝑤 ∈ [2, 𝑑]. Since [𝑖′1, 𝑖
′
2] ⊂ [𝑖′0, 𝑖

′
2] and [𝑖′1, 𝑖

′
2] ⊂ [𝑖′1, 𝑖

′
3], it follows that

[𝑖′1, 𝑖
′
2] ∩ δ𝑤 = ∅, (8.6)

and hence c[𝑖′1,𝑖′2] = D𝑤,[𝑖1+𝑡𝑚𝑎𝑥 ,𝑖2−𝑡𝑚𝑎𝑥] for 𝑤 ∈ [1, 𝑑].

Next we show that the intervals [1, 𝑖′1 − 1] and [𝑖′2 + 1, 𝑛 + 𝑅] are deletion isolated.
Suppose on the contrary, there exists some 𝑤2 ∈ [1, 𝑑] for which (δ𝑤2 ∩ [1, 𝑖′1−1]) +
𝑡𝑤2 ≠ (δ𝑤2+1∩[1, 𝑖′1−1]). Then we have that |δ𝑤2 ∩[1, 𝑖′1−1] | > |δ𝑤2+1∩[1, 𝑖′1−1] |.
Let 𝑥 = |δ𝑤2 ∩ [1, 𝑖′1 − 1] | − |δ𝑤2+1 ∩ [1, 𝑖′1 − 1] |, then,

c[𝑖′1,𝑖′2−𝑥]
(𝑎)
=D𝑤2,[𝑖1+𝑡𝑚𝑎𝑥+|δ𝑤2∩[1,𝑖

′
1−1] |,𝑖2−𝑡𝑚𝑎𝑥−𝑥+|δ𝑤2∩[1,𝑖

′
2−𝑥−1] |]

=D𝑤2+1,[𝑖1+𝑡𝑚𝑎𝑥+|δ𝑤2∩[1,𝑖
′
1−1] |,𝑖2−𝑡𝑚𝑎𝑥−𝑥+|δ𝑤2∩[1,𝑖

′
2−𝑥−1] |]

=D𝑤2+1,[𝑖1+𝑡𝑚𝑎𝑥+𝑥+|δ𝑤2+1∩[1,𝑖′1−1] |,𝑖2−𝑡𝑚𝑎𝑥+|δ𝑤2+1∩[1,𝑖′2−1] |]
(𝑏)
= c[𝑖′1+𝑥,𝑖′2] , (8.7)

where (𝑎) and (𝑏) hold since we have E.q. (8.6). This implies that

𝐿 (c𝑖′1,𝑖′2 , 𝑥) =𝑖
′
2 − 𝑖′1 + 1

≥𝑇 + 1,

which contradicts the fact that 𝐿 (c[1,𝑛+𝑘−1],≤𝑘 ) ≤ 𝑇 . Therefore, the intervals [1, 𝑖′1 −
1] and [𝑖′2 + 1, 𝑛 + 𝑅] are deletion isolated. □

In the following, we show that the output intervals satisfy (P1), (P2), and (P3),
respectively. Let [𝑝2 𝑗−1, 𝑝2 𝑗 ], 𝑗 ∈ [1, 𝐽′] be the marked intervals in the algorithm,
where 𝑝1 < . . . < 𝑝2𝐽 ′. Let 𝑝0 = 0 and 𝑝2𝐽 ′+1 = 𝑛 + 𝑅 + 1, then the output
intervals are the leftmost up to 𝑘 nonempty intervals among {[𝑝2 𝑗 + 1, 𝑝2 𝑗+1 −
1]}𝐽 ′

𝑗=0. Note that from the marking operation in the Initialization step and Step
2, the interval [𝑛 + 1 − 𝑡𝑚𝑎𝑥 , 𝑛 + 𝑅 − 𝑘] is not marked. In addition, for any 𝑗 ∈
[1, 𝐽′], sequences D𝑤,[𝑝2 𝑗−1,𝑝2 𝑗 ] are equal for all 𝑤 ∈ [1, 𝑑]. Hence, according to
Lemma 8.4.1, there exist intervals [𝑝′2 𝑗−1, 𝑝

′
2 𝑗 ], 𝑗 ∈ [1, 𝐽′], where

𝑝′𝑗 = 𝑝 𝑗 + |δ𝑤 ∩ [1, 𝑝′𝑗 − 1] |, and

[𝑝′2ℓ−1, 𝑝
′
2ℓ] ∩ δ𝑤 = ∅, (8.8)
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for all 𝑗 ∈ [1, 2𝐽′], ℓ ∈ [1, 𝐽′], and 𝑤 ∈ [1, 𝑑]. In addition, intervals [1, 𝑝′2 𝑗−1 − 1]
and [𝑝′2 𝑗+1, 𝑛+𝑅] are deletion isolated2 for 𝑗 ∈ [1, 𝐽′]. It follows that [𝑝′2 𝑗−1, 𝑝

′
2 𝑗+1−

1] is deletion isolated for 𝑗 ∈ [1, 𝐽′]. Since [𝑝′2 𝑗−1, 𝑝
′
2 𝑗 ] ∩ δ𝑤 = ∅ for 𝑗 ∈ [1, 𝐽′]

and 𝑤 ∈ [1, 𝑑], then we have that the intervals [𝑝′2 𝑗 + 1, 𝑝′2 𝑗+1 − 1], 𝑗 ∈ [0, 𝐽′],
where 𝑝′0 = 0 and 𝑝′2𝐽+1 = 𝑛 + 𝑅 + 1, are deletion isolated. From (8.8) we
have that D𝑤,[𝑝2 𝑗+1,𝑝2 𝑗+1−1] = c[𝑝′2 𝑗+1,𝑝′2 𝑗+1−1]∩δ𝑐

𝑤
. In addition, the intervals {[𝑝′2 𝑗 +

1, 𝑝′2 𝑗+1 − 1]}𝐽 ′
𝑗=0 are disjoint since

(𝑝′2( 𝑗+1) + 1) − (𝑝′2 𝑗+1 − 1)

=𝑝2( 𝑗+1) + |δ𝑤 ∩ [1, 𝑝′2( 𝑗+1) − 1] | + 2 − 𝑝2 𝑗+1 − |δ𝑤 ∩ [1, 𝑝′2 𝑗+1 − 1] |

≥𝑇 + |δ𝑤 ∩ [1, 𝑝′2( 𝑗+1) − 1] | − |δ𝑤 ∩ [1, 𝑝′2 𝑗+1 − 1] |

≥𝑇 − 𝑘 > 0,

for 𝑗 ∈ [0, 𝐽′ − 1]. Therefore, the output intervals {[𝑝2 𝑗 + 1, 𝑝2 𝑗+1 − 1]}𝐽 ′
𝑗=0 satisfy

(P1).

Next, we show that the output intervals satisfy (P2). For any output interval [𝑝2 𝑗 +
1, 𝑝2 𝑗+1 − 1] with [𝑝2 𝑗 + 1, 𝑝2 𝑗+1 − 1] ⊆ [1, 𝑛 + 1 − 𝑡𝑚𝑎𝑥], the corresponding
interval [𝑝′2 𝑗 +1, 𝑝′2 𝑗+1−1] contains at least one deletion in δ𝑤, i.e., [𝑝′2 𝑗 +1, 𝑝′2 𝑗+1−
1]∩δ𝑤 ≠ ∅, for some𝑤 ∈ [1, 𝑑]. Otherwise, we have that [𝑝′2 𝑗+1, 𝑝′2 𝑗+1−1]∩δ𝑤 = ∅
for 𝑤 ∈ [1, 𝑑]. Combining with (8.8) and the fact that intervals [1, 𝑝′2 𝑗−1 − 1] are
deletion isolated for 𝑗 ∈ [1, 𝐽′], it follows that the sequences D𝑤,[𝑝2 𝑗+1,𝑝2 𝑗+1−1] are
equal for 𝑤 ∈ [1, 𝑑]. This implies that the interval [𝑝2 𝑗 + 1, 𝑝2 𝑗+1 − 1] is marked
during the procedure, which is a contradiction to the fact that [𝑝2 𝑗 + 1, 𝑝2 𝑗+1 − 1]
is not marked. Therefore, there are at most 𝑘 unmarked intervals that lie within the
interval [1, 𝑛 + 1]. Note that there is one unmarked interval [𝑛 + 1− 𝑡𝑚𝑎𝑥 , 𝑛 + 𝑅 − 𝑘]
the does not lie in [1, 𝑛+1]. It follows that there are at most 𝑘 +1 unmarked intervals
in total. When there are 𝑘 + 1 unmarked intervals, the deletions δ𝑤 are contained in
the 𝑘 output intervals since each output interval within [1, 𝑛 + 1] contains at least
one deletion. When there are no more than 𝑘 intervals, the deletions are contained
in the unmarked output intervals since the marked intervals do not contain deletions.
Therefore we have that δ𝑤 ⊆ {[𝑝2 𝑗+1, 𝑝2 𝑗+1−1]}𝐽

𝑗=1, where {[𝑝2 𝑗+1, 𝑝2 𝑗+1−1]}𝐽
𝑗=1

are the output intervals and 𝐽 ≤ 𝑘 .
2The interval [𝑝1, 𝑝2] may be marked in the Initialization step and have length less

than 𝑇 + 2𝑡𝑚𝑎𝑥 + 1. In that case, apply Lemma 8.4.1 by considering an interval [−𝑡𝑚𝑎𝑥 + 𝑇 + 1, 0]
where D𝑤, [−𝑡𝑚𝑎𝑥+𝑇+1,0] are equal for 𝑤 ∈ [1, 𝑑].
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Finally, we show that |I∗
𝑗
∩ [1, 𝑛 + 1] | ≤ 𝐵 − 𝑘 for 𝑗 ∈ [1, 𝐽]. We first prove that for

any unmarked index 𝑖 ∈ [1, 𝑛 + 1 − ⌊𝑡𝑚𝑎𝑥 + (𝑇 + 1)/2⌋], there exist some 𝑤 ∈ [1, 𝑑]
and 𝑘1 ∈ [1, 𝑘], such that a deletion at 𝛿𝑤,𝑘1 occurs within distance ⌊𝑡𝑚𝑎𝑥+(𝑇 +1)/2⌋
to the bit c𝑖′=𝑖+|δ𝑤∩[1,𝑖′−1] | that becomes D𝑤,𝑖, i.e., 𝛿𝑤,𝑘1 ∈ [𝑖′− ⌊𝑡𝑚𝑎𝑥 + (𝑇 +1)/2⌋, 𝑖′+
⌊𝑡𝑚𝑎𝑥 + (𝑇 +1)/2⌋]3. Otherwise, we have that [𝑖′− ⌊𝑡𝑚𝑎𝑥 + (𝑇 +1)/2⌋, 𝑖′+ ⌊𝑡𝑚𝑎𝑥 + (𝑇 +
1)/2⌋] ∩𝛿𝑤 = ∅ for 𝑤 ∈ [1, 𝑑]. Since [𝑖′− ⌊𝑡𝑚𝑎𝑥 + (𝑇 +1)/2⌋, 𝑖′+ ⌊𝑡𝑚𝑎𝑥 + (𝑇 +1)/2⌋]
has length more than 𝑡𝑤 for 𝑤 ∈ [1, 𝑑], we have that 𝛿𝑤+1, 𝑗 = 𝛿𝑤, 𝑗 + 𝑡𝑤 ∈ [1, 𝑖′ −
⌊𝑡𝑚𝑎𝑥 + (𝑇 + 1)/2⌋ − 1] for every 𝛿𝑤, 𝑗 + 𝑡𝑤 ∈ [1, 𝑖′ − ⌊𝑡𝑚𝑎𝑥 + (𝑇 + 1)/2⌋ − 1]. It
follows that [1, 𝑖′ − ⌊𝑡𝑚𝑎𝑥 + (𝑇 + 1)/2⌋ − 1] is deletion isolated. Therefore, we have
that

D𝑤,[𝑖−⌊𝑡𝑚𝑎𝑥+(𝑇+1)/2⌋,𝑖+⌊𝑡𝑚𝑎𝑥+(𝑇+1)/2⌋]

=c[𝑖−⌊𝑡𝑚𝑎𝑥+(𝑇+1)/2⌋+|δ𝑤∩[𝑖′−1] |,𝑖+⌊𝑡𝑚𝑎𝑥+(𝑇+1)/2⌋+|δ𝑤∩[𝑖′−1] |]

=c[𝑖′−⌊𝑡𝑚𝑎𝑥+(𝑇+1)/2⌋,𝑖′+⌊𝑡𝑚𝑎𝑥+(𝑇+1)/2⌋]

are equal for all 𝑤 ∈ [1, 𝑑], which means that the interval [𝑖− ⌊𝑡𝑚𝑎𝑥 + (𝑇 +1)/2⌋, 𝑖 +
⌊𝑡𝑚𝑎𝑥+(𝑇+1)/2⌋] and thus the index 𝑖 should be marked. Therefore, every unmarked
index 𝑖 ∈ [1, 𝑛+1−⌊𝑡𝑚𝑎𝑥+(𝑇+1)/2⌋] is associated with a deletion index 𝛿𝑤,𝑘1 that is
within distance ⌊𝑡𝑚𝑎𝑥 + (𝑇 +1)/2⌋ to 𝑖′ = 𝑖+ |δ𝑤 ∩ [1, 𝑖′−1] |. On the other hand, any
deletion 𝛿𝑤,𝑘1 is associated with at most 2⌊(2𝑡𝑚𝑎𝑥 +𝑇 + 1)/2⌋ + 1 unmarked indices.
Therefore, the number of unmarked bits within [1, 𝑛 + 1 − ⌊𝑡𝑚𝑎𝑥 + (𝑇 + 1)/2⌋] is at
most (2⌊(2𝑡𝑚𝑎𝑥 +𝑇 + 1)/2⌋ + 1)𝑘𝑑. The number of unmarked bits within [1, 𝑛 + 1]
is at most (2⌊(2𝑡𝑚𝑎𝑥 + 𝑇 + 1)/2⌋ + 1)𝑘𝑑 + ⌊(2𝑡𝑚𝑎𝑥 + 𝑇 + 1)/2⌋ = 𝐵 − 𝑘 .

Determining the Number of Deletions
In this subsection we present the algorithm for determining the number of dele-
tions |δ𝑤 ∩I𝑗 |, 𝑤 ∈ [1, 𝑑], for any deletion isolated interval I𝑗 ⊆ [1, 𝑛+ 𝑘 +1]. The
input for this algorithm is the reads D[1,𝑑],I∗

𝑗
obtained by deleting cδ𝑤∩I𝑗 , 𝑤 ∈ [1, 𝑑]

from cI𝑗 . The interval I∗
𝑗

is the output interval obtained from the procedure in Sub-
section 8.4. Note that the intervalI𝑗 is not known at this point. In the algorithm only
the first two reads D[1,2],I∗

𝑗
are used. Let I𝑗 = [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥] for some integers 𝑏𝑚𝑖𝑛

3When 𝑖′ − ⌊𝑡𝑚𝑎𝑥 + (𝑇 + 1)/2⌋ < 0, consider bits D𝑤, [𝑖′−⌊𝑡𝑚𝑎𝑥+(𝑇+1)/2⌋,0] that are equal for 𝑤 ∈
[1, 𝑑].
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and 𝑏𝑚𝑎𝑥 . Consider the following intervals,

B𝑖,𝑚 =



[𝑏𝑚𝑖𝑛 + (𝑖 − 1)𝑡1 + (𝑚 − 1) (𝑇 + 2𝑘 + 1),min{𝑏𝑚𝑖𝑛
+(𝑖 − 1)𝑡1 + 𝑚(𝑇 + 2𝑘 + 1) − 1, 𝑏𝑚𝑎𝑥}],

for 𝑖 ∈ [1, ⌈(𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛 + 1)/𝑡1⌉] and 𝑚 ∈ [1,min{4𝑘 + 1,

⌈((𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛 + 1) mod 𝑡1)/(𝑇 + 2𝑘 + 1)⌉}]

.

Recall that here 𝑡1 is the distance between head 1 and head 2. The intervals B𝑖,𝑚

are disjoint and have length 𝑇 + 2𝑘 + 1 except when 𝑖 = ⌈(𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛 + 1)/𝑡1⌉
and 𝑚 = min⌈((𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛 + 1) mod 𝑡1)/(𝑇 + 2𝑘 + 1)⌉ the length might be less.
Let U𝑚 = ∪𝑖B𝑖,𝑚 be the union of intervals B𝑖,𝑚 with the same 𝑚 for 𝑚 ∈ [1, 4𝑘 +1].
Then the unions 𝑈𝑚 are disjoint since 𝑡1 ≥ (4𝑘 + 1) (𝑇 + 2𝑘 + 1). Since the
deletions occur in at most 2𝑘 positions in the first two heads, at least 2𝑘 + 1
unions {U𝑚1 , . . . ,U𝑚2𝑘+1} satisfy U𝑚𝑙

∩ (δ1 ∪ δ2) = ∅ for 𝑙 ∈ [1, 2𝑘 + 1].

Similarly, letI𝑗 = [𝑏′
𝑚𝑖𝑛

, 𝑏′𝑚𝑎𝑥] for some integers 𝑏′
𝑚𝑖𝑛

and 𝑏′𝑚𝑎𝑥 . Define the intervals

B′
𝑖,𝑚 =



[𝑏′
𝑚𝑖𝑛

+ (𝑖 − 1)𝑡1 + (𝑚 − 1) (𝑇 + 2𝑘 + 1),min{𝑏′
𝑚𝑖𝑛

+ (𝑖 − 1)𝑡1
+𝑚(𝑇 + 2𝑘 + 1) − 𝑘 − 1, 𝑏′𝑚𝑎𝑥}],

for 𝑖 ∈ [1, ⌈(𝑏′𝑚𝑎𝑥 − 𝑏′
𝑚𝑖𝑛

+ 1)/𝑡1⌉] and 𝑚 ∈ [1,min{4𝑘 + 1,

⌈((𝑏′𝑚𝑎𝑥 − 𝑏′
𝑚𝑖𝑛

+ 1) mod 𝑡1)/(𝑇 + 2𝑘 + 1)⌉}]

.

ThenB𝑖,𝑚 are disjoint length𝑇+𝑘+1 intervals except when 𝑖 = ⌈(𝑏′𝑚𝑎𝑥−𝑏′𝑚𝑖𝑛+1)/𝑡1⌉
and 𝑚 = min{4𝑘 + 1, ⌈((𝑏′𝑚𝑎𝑥 − 𝑏′

𝑚𝑖𝑛
+ 1) mod 𝑡1)/(𝑇 + 2𝑘 + 1)⌉} the length might

be less. Let

IM′ ={(𝑖, 𝑚) : |B′
𝑖,𝑚 | = 𝑇 + 𝑘 + 1}

be the set of (𝑖, 𝑚) pairs for whichB′
𝑖,𝑚

has length𝑇+𝑘+1. Since |I∗
𝑗
| = |I𝑗 |−|I𝑗∩δ𝑤 |

for 𝑤 ∈ [1, 𝑑], we have that

𝑏′𝑚𝑎𝑥 − 𝑏′𝑚𝑖𝑛 + 1 = |I∗
𝑗 |

≤|I𝑗 | = 𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛 + 1.

It follows that B𝑖,𝑚 ≠ ∅ when (𝑖, 𝑚) ∈ IM′. For (𝑖, 𝑚) ∈ IM′, let 𝑝𝑖,𝑚 and 𝑞𝑖,𝑚

be the beginning and end points of interval B𝑖,𝑚, i.e., B𝑖,𝑚 = [𝑝𝑖,𝑚, 𝑞𝑖,𝑚]. Similarly,
let B′

𝑖,𝑚
= [𝑝′

𝑖,𝑚
, 𝑞′

𝑖,𝑚
].
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Since D𝑤,I∗
𝑗

can be obtained by deleting bits cδ𝑤∩I𝑗 from cI𝑗 , we have that

D𝑤,𝑏′𝑚𝑎𝑥
= c𝑏′𝑚𝑎𝑥+𝑥

D𝑤,𝑏′
𝑚𝑖𝑛

+(𝑖−1)𝑡1+(𝑚−1) (𝑇+2𝑘+1) = c𝑏𝑚𝑖𝑛+(𝑚−1)𝑡1+(𝑚−1) (𝑇+2𝑘+1)+𝑦, and

D𝑤,𝑏′
𝑚𝑖𝑛

+(𝑖−1)𝑡1+𝑚(𝑇+2𝑘+1)−𝑘−1 = c𝑏𝑚𝑖𝑛+(𝑖−1)𝑡1+𝑚(𝑇+2𝑘+1)−𝑘−1+𝑧

for 𝑤 ∈ {1, 2}, (𝑖, 𝑚) ∈ IM′, and integers 𝑥, 𝑦, 𝑧 that satisfy 𝑏𝑚𝑖𝑛 − 𝑏′
𝑚𝑖𝑛

≤ 𝑥, 𝑦, 𝑧 ≤
𝑘 . Therefore, the sequence D𝑤,B ′

𝑖,𝑚
is a length 𝑇 + 𝑘 + 1 subsequence of cB𝑖,𝑚

for 𝑤 ∈ {1, 2} and for all 𝑖, 𝑚 ∈ IM′.

The algorithm is given as follows.

1. Step 1: For all (𝑖, 𝑚) ∈ IM′, find a unique integer 0 ≤ 𝑥𝑖,𝑚 ≤ 𝑘 such
thatD1,[𝑝′

𝑖,𝑚
,𝑞′

𝑖,𝑚
−𝑥𝑖,𝑚] = D2,[𝑝′

𝑖,𝑚
+𝑥𝑖,𝑚,𝑞′𝑖,𝑚] . If no or more than one such integers

exist, let 𝑥𝑖,𝑚 = 0. Go to Step 2.

2. Step 2: For all 𝑚 ∈ [1, 4𝑘 + 1], compute the sum 𝑠𝑚 =
∑

𝑖:(𝑖,𝑚)∈IJ ′ 𝑥𝑖,𝑚. Go
to step 3.

3. Step 3: Output the majority among {𝑠𝑚}4𝑘+1
𝑚=1 .

Note that the set IM′ and the intervals B′
𝑖,𝑚

= [𝑝′
𝑖,𝑚

, 𝑞′
𝑖,𝑚

] can be determined from
Subsection 8.4. We now show that the algorithm outputs |I𝑗∩δ1 |. It suffices to show
that 𝑠𝑚𝑙

= |I𝑗 ∩ δ1 | for 𝑙 ∈ [1, 2𝑘 + 1]. First, we show that the unique integer 𝑥𝑖,𝑚𝑙

satisfying D1,[𝑝′
𝑖,𝑚𝑙

,𝑞′
𝑖,𝑚𝑙

−𝑥𝑖,𝑚𝑙
] = D2,[𝑝′

𝑖,𝑚𝑙
+𝑥𝑖,𝑚𝑙

,𝑞′
𝑖,𝑚𝑙

] exists for 𝑙 ∈ [1, 2𝑘 + 1] and 𝑖

such that (𝑖, 𝑚𝑙) ∈ IM′. Moreover, the integer 𝑥𝑖,𝑚𝑙
equals |δ1 ∩ [𝑝1,1, 𝑝𝑖,𝑚𝑙

− 1] | −
|δ2∩ [𝑝1,1, 𝑝𝑖,𝑚𝑙

−1] |, the difference between the number of deletions in the first two
heads that happen before the interval B𝑖,𝑚𝑙

. Recall that 𝑚𝑙 satisfies U𝑚𝑙
∩ δ𝑤 = ∅

for 𝑤 ∈ {1, 2} and that D𝑤,[𝑝′
𝑖,𝑚𝑙

,𝑞′
𝑖,𝑚𝑙

] is a subsequence of c[𝑝𝑖,𝑚𝑙
,𝑞𝑖,𝑚𝑙

] . Hence, let
𝑥 = |δ1 ∩ [𝑝1,1, 𝑝𝑖,𝑚𝑙

− 1] | − |δ2 ∩ [𝑝1,1, 𝑝𝑖,𝑚𝑙
− 1] |, we have that

D1,[𝑝′
𝑖,𝑚𝑙

,𝑞′
𝑖,𝑚𝑙

−𝑥]

=c[𝑝′
𝑖,𝑚𝑙

+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙
−1] |,𝑞′

𝑖,𝑚𝑙
+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙

−1] |−𝑥]

=D2,[𝑝′
𝑖,𝑚𝑙

+𝑥,𝑞′
𝑖,𝑚𝑙

] . (8.9)

Therefore, the integer 𝑥𝑖,𝑚𝑙
= 𝑥 satisfies D1,[𝑝′

𝑖,𝑚𝑙
,𝑞′

𝑖,𝑚𝑙
−𝑥𝑖,𝑚𝑙

] = D2,[𝑝′
𝑖,𝑚𝑙

+𝑥𝑖,𝑚,𝑞′𝑖,𝑚𝑙
] .

We show this 𝑥𝑖,𝑚𝑙
is unique. Suppose there exists another integer 𝑦 > 𝑥 for

which D1,[𝑝′
𝑖,𝑚𝑙

,𝑞′
𝑖,𝑚𝑙

−𝑦] = D2,[𝑝′
𝑖,𝑚𝑙

+𝑦,𝑞′
𝑖,𝑚𝑙

] . Then we have that

D1,[𝑝′
𝑖,𝑚𝑙

,𝑞′
𝑖,𝑚𝑙

−𝑦]
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=D2,[𝑝′
𝑖,𝑚𝑙

+𝑦,𝑞′
𝑖,𝑚𝑙

]

(𝑎)
=D1,[𝑝′

𝑖,𝑚𝑙
+𝑦−𝑥,𝑞′

𝑖,𝑚𝑙
−𝑥]

=c[𝑝′
𝑖,𝑚𝑙

+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙
−1] |+𝑦−𝑥,𝑞′

𝑖,𝑚𝑙
+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙

−1] |−𝑥] ,

where (𝑎) follows from Eq. (8.9). Since,

D1,[𝑝′
𝑖,𝑚𝑙

,𝑞′
𝑖,𝑚𝑙

−𝑦] = c[𝑝′
𝑖,𝑚𝑙

+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙
−1] |,𝑞′

𝑖,𝑚𝑙
+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙

−1] |−𝑦] ,

it follows that

c[𝑝′
𝑖,𝑚𝑙

+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙
−1] |,𝑞′

𝑖,𝑚𝑙
+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙

−1] |−𝑦]

=c[𝑝′
𝑖,𝑚𝑙

+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙
−1] |+𝑦−𝑥,𝑞′

𝑖,𝑚𝑙
+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙

−1] |−𝑥] .

It then follows that

𝐿 (c[𝑝′
𝑖,𝑚𝑙

+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙
−1] |,𝑞′

𝑖,𝑚𝑙
+|δ1∩[𝑝1,1,𝑝𝑖,𝑚𝑙

−1] |−𝑥] , 𝑦 − 𝑥)

=𝑞′𝑖,𝑚𝑙
− 𝑥 − 𝑝′𝑖,𝑚𝑙

+ 1

≥𝑇 + 𝑘 + 1 − 𝑘 + 1

≥𝑇 + 1,

which is a contradiction to the fact that 𝐿 (c, ≤ 𝑘) ≤ 𝑇 . Similarly, such contradiction
occurs when 𝑦 < 𝑥. Hence such 𝑥𝑖,𝑚𝑙

is unique.

Next, we show that 𝑠𝑚𝑙
= |δ1 ∩ I𝑗 | for 𝑙 ∈ [1, 2𝑘 + 1]. Since 𝑝𝑖,𝑚𝑙

− 𝑝𝑖−1,𝑚𝑙
= 𝑡1

for 𝑖 ∈ [2,max(𝑖,𝑚)∈IM ′ 𝑖], we have that

|δ1 ∩ [𝑝1,1, 𝑝𝑖,𝑚𝑙
− 1] |

=|δ1 ∩ [𝑝1,1, 𝑝1,𝑚𝑙
− 1] | +

𝑖−1∑︁
𝑤=1

|δ1 ∩ [𝑝𝑤,𝑚𝑙
, 𝑝𝑤+1,𝑚𝑙

− 1] |

(𝑎)
= |δ2 ∩ [𝑝2,1, 𝑝2,𝑚𝑙

− 1] | +
𝑖−2∑︁
𝑤=1

|δ2 ∩ [𝑝𝑤+1,𝑚𝑙
, 𝑝𝑤+2,𝑚𝑙

− 1] |

+ |δ1 ∩ [𝑝𝑖−1,𝑚𝑙
, 𝑝𝑖,𝑚𝑙

− 1] |
=|δ2 ∩ [𝑝1,1, 𝑝𝑖,𝑚𝑙

− 1] | + |δ1 ∩ [𝑝𝑖−1,𝑚𝑙
, 𝑝𝑖,𝑚𝑙

− 1] |,

where (𝑎) hold since |δ1 ∩ [𝑝𝑤−1,𝑚𝑙
, 𝑝𝑤,𝑚𝑙

− 1] | = |δ2 ∩ [𝑝𝑤,𝑚𝑙
, 𝑝𝑤+1,𝑚𝑙

− 1] |
for 𝑤 ∈ [2, 𝑖 − 1]. It then follows that 𝑥𝑖,𝑚𝑙

= |δ1 ∩ [𝑝𝑖−1,𝑚𝑙
, 𝑝𝑖,𝑚𝑙

− 1] | (𝑝0,𝑚𝑙
= 𝑝1,1)

and that

𝑠𝑚𝑙
= |δ1 ∩ [𝑝1,1, 𝑝max(𝑖,𝑚) ∈IM′ 𝑖,𝑚𝑙

− 1] |.

Note that δ1 ∩ [𝑝max(𝑖,𝑚) ∈IM′ 𝑖,𝑚𝑙
, 𝑏𝑚𝑎𝑥] ⊆ δ1 ∩ [𝑏𝑚𝑎𝑥 − 𝑡1 + 1, 𝑏𝑚𝑎𝑥]. Since δ1 ∩

[𝑏𝑚𝑎𝑥− 𝑡1+1, 𝑏𝑚𝑎𝑥] = ∅, we have that 𝑠𝑚𝑙
= |δ1∩I𝑗 |. Then the majority rule works.
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8.5 Correcting 𝑘 ≥ 2𝑑 Deletions
In this section we present the code for correcting 𝑘 ≥ 2𝑑 deletions as well as a lower
bound on the redundancy when 𝑡𝑖 = 𝑜(𝑛). The code construction is similar to the
one presented in Sec. 8.3. We use Lemma 8.3.1 to identify the location of deletions
within a set of disjoint intervals I𝑗 , each with length no more than 𝐵. Note that in
order to apply Lemma 8.3.1, the sequence c ∈ {0, 1}𝑛 has to be transformed into a
sequence 𝐹 (c) ∈ {0, 1}𝑛+𝑘+1 (recall Lemma 8.2.5) that satisfies 𝐿 (𝐹 (c), ≤ 𝑘) ≤ 𝑇 .
Then we use a concatenated code construction. Specifically, to protect a sequence c ∈
{0, 1}𝑛+𝑘+1 from 𝑘 deletions, we split c into blocks a𝑖, 𝑖 ∈ [1, ⌈(𝑛 + 𝑘 + 1)/𝐵⌉]
of length 𝐵 as in Eq. (8.2). Then the function 𝑆 defined in Eq. (8.3), which is a
concatenation of hashes 𝐻𝑎𝑠ℎ (see Lemma 8.2.3) of a𝑖, 𝑖 ∈ [1, ⌈(𝑛 + 𝑘 + 1)/𝐵⌉],
can be used to corret 𝑘 deletions in c (see Lemma 8.3.2). Finally, a Reed-Solomon
code is used to protect the 𝑆 hashes. The encoding function is as follows

𝐸𝑛𝑐2(c) = (𝐹 (c), 𝑅′

2(c), 𝑅
′′

2 (c)) (8.10)

where

𝑅
′

2(c) = 𝑅𝑆2⌊𝑘/𝑑⌋ (𝑆(𝐹 (c))),
𝑅

′′

2 (c) = 𝑅𝑒𝑝𝑘+1(𝐻𝑎𝑠ℎ(𝑅′

2(c))), (8.11)

and function 𝑆(·) is defined in (8.3). The length of 𝑅′

2(c) is𝑁1 = 2⌊𝑘/𝑑⌋ max{log(𝑛+
𝑘 + 1), (4𝑘 log 𝐵 + 𝑜(log 𝐵))} = 2⌊𝑘/𝑑⌋ log 𝑛 + 𝑜(log 𝑛). The length of 𝑅

′′

2 (c)
is 𝑁2 = 8𝑘2(𝑘 + 1) log 𝑁1 + 𝑂 (1) = 𝑜(log 𝑛). The length of 𝐸𝑛𝑐2(c) is 𝑁 =

𝑛 + 𝑘 + 1 + 𝑁1 + 𝑁2 = 𝑛 + 2⌊𝑘/𝑑⌋ log 𝑛 + 𝑜(log 𝑛).

Theorem 8.5.1. The set C2 = {𝐸𝑛𝑐2(c) : c ∈ {0, 1}𝑛} is a 𝑑-head 𝑘-deletion cor-
recting code for 2𝑑 ≤ 𝑘 , if the distance between any two consecutive heads satis-
fies 𝑡𝑖 = 𝑇𝑚𝑖𝑛, 𝑖 ∈ [1, . . . , 𝑑 − 1]. The code C2 can be constructed, encoded, and
decoded in 𝑛2𝑘+1 time. The redundancy of C2 is 𝑁 − 𝑛 = +2⌊𝑘/𝑑⌋ log 𝑛 + 𝑜(log 𝑛).

Proof. The proof is essentially the same to the proof of Theorem 8.3.1. For any 𝐷 ∈
D𝑘 (c), let d = D1,[1,𝑁−𝑘] be the first row of 𝐷. The sequence d is a length 𝑁 − 𝑘

subsequence of 𝐸𝑛𝑐2(c). Then it is possible to recover 𝐻𝑎𝑠ℎ(𝑅′

2(c)) from 𝑅
′′

2 (c)
and further recover 𝑅′

2(c).

It suffices to show how to use 𝑅′(c) to recover 𝐹 (c). According to Lemma 8.3.1,
we can identify a set of 𝐽 ≤ 𝑘 intervals {I𝑗 }𝐽𝑗=1, each with length not greater
than 𝐵, such that δ1 ⊆ (∪𝐽

𝑗=1I𝑗 ). Note that according to Lemma 8.2.6, the bits cI𝑗
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with|δ𝑤 | ∩ I𝑗 | ≤ 𝑑 − 1 errors can be recovered, when 𝑡𝑖 ≥ max{(3𝑘 + ⌈log 𝑛⌉ +
2) [𝑘 (𝑘 − 1)/2 + 1] + (7𝑘 − 𝑘3)/6, (4𝑘 + 1) (5𝑘 + ⌈log 𝑛⌉ + 3)}. Note that each
interval I𝑗 with |δ𝑤 | ∩ I𝑗 | ≥ 𝑑 spans over at most two blocks a𝑖. Therefore,
at most 2⌊𝑘/𝑑⌋ blocks, the indices of which can be identified, contain at least
𝑑 deletions. Hence the sequence 𝑆(𝐹 (c)) can be recovered with at most 2⌊𝑘/𝑑⌋
symbol errors, with known error locations. With the help of the Reed-Solomon code
redundancy 𝑅𝑆2⌊𝑘/𝑑⌋ (𝑆(𝐹 (c))), the sequence 𝑆(𝐹 (c)) can be recovered. Then from
Lemma 8.3.2 and Lemma 8.2.5 the sequence 𝐹 (c) and thus c can be recovered. The
computation complexity of 𝐸𝑛𝑐2(c) has the same order as that of 𝐸𝑛𝑐1(c). It
takes 𝑂𝑘 (𝑝𝑜𝑙𝑦(𝑛)) time to construct , encode, and decode 𝐸𝑛𝑐2(c). □

Now we present a lower bound on the redundancy for small head distances 𝑡𝑖 =

𝑜(𝑛), 𝑖 ∈ [1, 𝑑 − 1], which proves the last part of Theorem 8.1.1.

Theorem 8.5.2. Let C be a 𝑑-head 𝑘-deletion code with length 𝑛. If the distance 𝑡𝑖
satisfies 𝑡𝑖 = 𝑛𝑜(1) for 𝑖 ∈ [1, 𝑑 − 1], then we have that |C| ≤ 21/2⌊𝑘/𝑑⌋ log 𝑛+𝑜(log 𝑛) .

Proof. Let 𝑇𝑠𝑢𝑚 =
∑𝑑−1

𝑖=1 𝑡𝑖. Sample the sequence c with period 𝑇𝑠𝑢𝑚,

c′ = (𝑐1+𝑇𝑠𝑢𝑚 , 𝑐1+3𝑇𝑠𝑢𝑚 , . . . , 𝑐1+(2 𝑗+1)𝑇𝑠𝑢𝑚 , . . . , 𝑐1+(2⌊(𝑛−1−𝑇𝑠𝑢𝑚)/2𝑇𝑠𝑢𝑚⌋−1)𝑇𝑠𝑢𝑚).

We show that correcting 𝑘 deletions in c is at least as hard as correcting ⌊𝑘/𝑑⌋
erasures in c′. It suffices to show that 𝑑 deletions in heads 𝑖 ∈ [1, 𝑑] can erase the
information of any bit in c′. For 𝑗 ∈ [1, ⌊(𝑛 − 1−𝑇𝑠𝑢𝑚)/2𝑇𝑠𝑢𝑚⌋], let the 𝑑 deletions
occur at positions

{1 + (2 𝑗 − 1)𝑇𝑠𝑢𝑚 −
𝑤∑︁
𝑖=1

𝑡𝑖 : 𝑤 ∈ [0, 𝑑 − 1]}

at head 1. Then the corresponding 𝑑 deletion in head 𝑚 occur at positions

{1 + (2 𝑗 − 1)𝑇𝑠𝑢𝑚 −
𝑤∑︁
𝑖=1

𝑡𝑖 +
𝑚∑︁
𝑖=1

𝑡𝑖 : 𝑤 ∈ [0, 𝑑 − 1]}.

It follows that the bit 𝑐1+(2 𝑗−1)𝑇𝑠𝑢𝑚 is deleted in all heads. Suppose a genie tells the
locations and values of all the 𝑑 deleted bits in each head except the value of the
bit 𝑐1+(2 𝑗−1)𝑇𝑠𝑢𝑚 . Then this reduces to a erasure of the bit 𝑐1+(2 𝑗−1)𝑇𝑠𝑢𝑚 in c′. Note
that in this way, 𝑘 deletions in c can cause ⌊𝑘/𝑑⌋ erasures in c′. From the Hamming
bound, the size |C| is upper bounded by

|C| ≤2𝑛/(
⌊𝑘/2𝑑⌋∑︁
𝑖=1

(
⌊(𝑛 − 1 − 𝑇𝑠𝑢𝑚)/2𝑇𝑠𝑢𝑚⌋

𝑖

)
)
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=2𝑛−⌊𝑘/2𝑑⌋ (log 𝑛−log(2𝑇𝑠𝑢𝑚))+𝑜(log 𝑛)

=2𝑛−⌊𝑘/2𝑑⌋ log 𝑛+𝑜(log 𝑛) .

According to Theorem 8.5.2, the redundancy of a 𝑑 head 𝑘 deletion code is lower
bounded by ⌊𝑘/2𝑑⌋ log 𝑛 + 𝑜(log 𝑛). □

8.6 Correcting 𝑘 Deletions and Insertions
In this section we show how to correct a combination of up to 𝑘 deletions and
insertions in the 𝑑-head racetrack memory. In this scenario, more challenges arise
since there may not be "shifts" between different reads, as we observed in Lemma
8.4.1, after a combination of deletions and insertions. This makes detection of errors
harder. Moreover, Lemma 8.2.6 does not apply.

The encoding and decoding algorithms for this task can be regarded as a generaliza-
tion of the algorithms for correcting 𝑘 deletions. Similar to the idea in Sec. 8.3 and
Sec. 8.5, we notice that the location of errors (δ𝑖, γ𝑖), 𝑖 ∈ [1, 𝑑] are contained in a
set of disjoint edit isolated intervals, each with length at most 𝐵𝐸 − 𝑘 . Yet, different
from the cases in Sec. 8.3 and Sec. 8.5, some of the edit isolated intervals cannot
be detected and identified from the reads. Fortunately, the intervals that cannot be
detected contain at least 2𝑑 errors in each read. In addition, the "shift" in bits outside
the edit isolated intervals, caused by the errors in those edit isolated intervals, can
be determined in a similar manner to the one in Sec. 8.4. Therefore, the bits outside
the edit isolated intervals can be recovered similarly as in Sec. 8.3 and Sec. 8.5. In
addition, we will prove a similar result to Lemma 8.2.6, for correcting both deletions
and insertions, similar to what we did for correcting deletion errors. Specifically,
we will show that the intervals with less than 𝑑 errors can be recovered using the
reads. Then, by using Reed-Solomon code to protect the deletion correcting hashes
as we did in Sec. 8.3 and Sec. 8.5, the 2⌊𝑘/𝑑⌋ log 𝑛 + 𝑜(log 𝑛) redundancy can be
achieved. We note that in this section, we let the head distances 𝑡𝑖 = 𝑡 to be equal
for 𝑖 ∈ [1, 𝑑 − 1].

We begin with the the algorithm for identifying a set of intervals [𝑏1 𝑗 , 𝑏2 𝑗 ], 𝑗 ∈
[1, 𝐽], such that for each 𝑗 ∈ [1, 𝐽], there is an interval [𝑝1 𝑗 , 𝑝2 𝑗 ] satisfying:

((A) [𝑝1 𝑗 , 𝑝2 𝑗 ] ⊆ [𝑏1 𝑗 , 𝑏2 𝑗 ],

(B) E𝑤,𝑖 = E𝑤′,𝑖 for any 𝑤, 𝑤′ ∈ [1, 𝑑] and 𝑖 ∈ ([𝑏1 𝑗 , 𝑝1 𝑗 − 1] ∪ [𝑝2 𝑗 + 1, 𝑏2 𝑗 ]),

(C) E[1,𝑑],[𝑝1 𝑗 ,𝑝2 𝑗 ] ∈ E𝑘 ′ (cI𝑗 ) for some edit isolated interval I𝑗 and 𝑘′ ≥ 1,
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(D) | [𝑏1 𝑗 , 𝑏2 𝑗 ] | ≤ (2𝑘𝑑𝑡 + 2𝑡 + 1) (𝑘 + 1) + 𝑘𝑑𝑡 + 2𝑘 for 𝑗 ∈ [1, 𝐽].

The algorithm is similar to the one in Sec. 8.4. However, different from the intervals
I∗
𝑗
, 𝑗 ∈ [1, 𝐽] generated in Sec. 8.4, which satisfy properties (P1) and (P2) in Sec.

8.4, here we do not necessarily have E[1,𝑑],[𝑏1 𝑗 ,𝑏2 𝑗 ] ∈ E𝑘 ′ (cI ′
𝑗
) for some edit isolated

interval I′
𝑗
, 𝑗 ∈ [1, 𝐽]. Also, the error locations (γ𝑤 ∪ δ𝑤), 𝑤 ∈ [1, 𝑑] may not

be contained in the collection of intervals ∪𝐽
𝑗=1I𝑗 . Given a read matrix E ∈ E𝑘 (c),

where c ∈ {0, 1}𝑛+𝑘+1 is a binary input. The algorithm is given as follows.

1. Initialization: Set all integers 𝑚 ∈ [1, 𝑛′] unmarked, where 𝑛′ is the number
of columns in E. Let 𝑖 = 1. Find the largest positive integer 𝐿 such that the
sequences E𝑤,[𝑖,𝑖+𝐿−1] = E𝑤′,[𝑖,𝑖+𝐿−1] for any 𝑤, 𝑤′ ∈ [1, 𝑑]. If such 𝐿 exists
and satisfies 𝐿 > 𝑘𝑑𝑡 + 𝑡, mark the integers 𝑚 ∈ [1, 𝐿 − (𝑘𝑑𝑡 + 𝑡)] and go to
Step 1. Otherwise, go to Step 1.

2. Step 1: Find the largest positive integer 𝐿 such that the sequencesE𝑤,[𝑖,𝑖+𝐿−1] =

E𝑤′,[𝑖,𝑖+𝐿−1] for any 𝑤, 𝑤′ ∈ [1, 𝑑]. Go to Step 2. If no such 𝐿 is found,
set 𝐿 = 0 and go to Step 2.

3. Step 2: If 𝐿 ≥ 2(𝑘𝑑𝑡 + 𝑡) + 1, mark the integers 𝑚 ∈ [𝑖 + 𝑘𝑑𝑡 + 𝑡,min{𝑖 + 𝐿 −
1, 𝑛′} − (𝑘𝑑𝑡 + 𝑡)]. Set 𝑖 = 𝑖 + 𝐿 + 1 and go to Step 3. Else 𝑖 = 𝑖 + 1 and go to
Step 3.

4. Step 3: If 𝑖 ≤ 𝑛′, go to Step 1. Else go to Step 4.

5. Step 4: Output all unmarked intervals.

We now show that the output intervals satisfy the properties (A), (B), (C), and (D)
above.

Lemma 8.6.1. For a read matrix E ∈ E𝑘 (c) ∈ {0, 1}𝑑×𝑛′, Let [𝑏1 𝑗 , 𝑏2 𝑗 ], 𝑗 ∈ [1, 𝐽]
be the output intervals in the above procedure such that 𝑏11 < 𝑏12 < . . . < 𝑏1𝐽 .
There exists a set of intervals [𝑝1 𝑗 , 𝑝2 𝑗 ], 𝑗 ∈ [1, 𝐽], satisfying (A), (B), (C), and (D)
above.

Proof. Note that for each interval [𝑏1 𝑗 , 𝑏2 𝑗 ], we have E𝑤,[𝑏1 𝑗 ,𝑏1 𝑗+𝑘𝑑𝑡+𝑡−1] =

E𝑤′,[𝑏1 𝑗 ,𝑏1 𝑗+𝑘𝑑𝑡+𝑡−1] and E𝑤,[𝑏2 𝑗−𝑘𝑑𝑡−𝑡+1,𝑏2 𝑗 ] = E𝑤′,[𝑏2 𝑗−𝑘𝑑𝑡−𝑡+1,𝑏2 𝑗 ] for any 𝑤, 𝑤′ ∈
[1, 𝑑], except for 𝑗 = 1, it is possible that 𝑏1 𝑗 can be less than 1, in which case,
we can assume E𝑤,𝑖 = E𝑤′,𝑖 for any 𝑖 ≤ 0 and 𝑤, 𝑤′ ∈ [1, 𝑑]. Consider the set
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of intervals [𝑏1 𝑗 + (𝑖 − 1)𝑡, 𝑏1 𝑗 + 𝑖𝑡 − 1] for 𝑖 ∈ [1, 𝑘𝑑 + 1]. Note that an error
occurs in at most 𝑑 intervals in one of the 𝑑 heads. Therefore, at most 𝑘𝑑 intervals
contain errors. Then, there exists an interval [𝑏1 𝑗 + (𝑖1 − 1)𝑡, 𝑏1 𝑗 + 𝑖1𝑡 − 1] for
some 𝑖1 ∈ [1, 𝑘𝑑 + 1] such that [𝑏1 𝑗 + (𝑖1 − 1)𝑡, 𝑏1 𝑗 + 𝑖1𝑡 − 1] ∩ (γ𝑤 ∪ δ𝑤) = ∅
for 𝑤 ∈ [1, 𝑑]. Similarly, there exists an interval [𝑏2 𝑗 − 𝑖2𝑡 + 1, 𝑏2 𝑗 − (𝑖2 − 1)𝑡] for
some 𝑖2 ∈ [1, 𝑘𝑑 + 1], such that [𝑏2 𝑗 − 𝑖2𝑡 + 1, 𝑏2 𝑗 − (𝑖2 − 1)𝑡] ∩ (γ𝑤 ∪ δ𝑤) = ∅
for 𝑤 ∈ [1, 𝑑]. This implies that [𝑏1 𝑗 + 𝑖1𝑡 − 1 − 𝑘, 𝑏2 𝑗 − 𝑖2𝑡 + 1 + 𝑘] is an
edit isolated interval. Let E[1,𝑑],[𝑝1 𝑗 ,𝑝2 𝑗 ] ∈ E𝑘 ′

𝑗
(c[𝑏1 𝑗+𝑖1𝑡−1−𝑘,𝑏2 𝑗−𝑖2𝑡+1+𝑘]), where

𝑘′
𝑗
= | [𝑏1 𝑗 +𝑖1𝑡−1−𝑘, 𝑏2 𝑗 −𝑖2𝑡+1+𝑘]∩δ1 | + | [𝑏1 𝑗 +𝑖1𝑡−1−𝑘, 𝑏2 𝑗 −𝑖2𝑡+1+𝑘]∩γ1 |,

be the read matrix obtained from c[𝑏1 𝑗+𝑖1𝑡−1−𝑘,𝑏2 𝑗−𝑖2𝑡+1+𝑘] after deletion errors at
locations δ𝑤 ∩ [𝑏1 𝑗 + 𝑖1𝑡 − 1 − 𝑘, 𝑏2 𝑗 − 𝑖2𝑡 + 1 + 𝑘] and insertion errors at locations
γ𝑤 ∩ [𝑏1 𝑗 + 𝑖1𝑡 − 1 − 𝑘, 𝑏2 𝑗 − 𝑖2𝑡 + 1 + 𝑘], 𝑤 ∈ [1, 𝑑]. Then we have that 𝑝1 𝑗 ∈
[𝑏1 𝑗 + 𝑡 − 1 − 2𝑘, 𝑏1 𝑗 + 𝑘𝑑𝑡 + 𝑡 − 1] and 𝑝2 𝑗 ∈ [𝑏2 𝑗 − 𝑘𝑑𝑡 − 𝑡 + 1, 𝑏2 𝑗 − 𝑡 + 1 +
2𝑘]. Therefore, the intervals [𝑝1 𝑗 , 𝑝2 𝑗 ], 𝑗 ∈ [1, 𝐽] satisfy (A), (B). To show that
[𝑝1 𝑗 , 𝑝2 𝑗 ], 𝑗 ∈ [1, 𝐽] satisfy (C), we need to show 𝑘′

𝑗
≥ 1 for each 𝑗 . Suppose on

the contrary, 𝑘′
𝑗
= 0. Then we since E[1,𝑑],[𝑝1 𝑗 ,𝑝2 𝑗 ] ∈ E𝑘 ′

𝑗
(c[𝑏1 𝑗+𝑖1𝑡−1−𝑘,𝑏2 𝑗−𝑖2𝑡+1+𝑘]),

we have that E𝑤,[𝑝1 𝑗 ,𝑝2 𝑗 ] = E𝑤′,[𝑝1 𝑗 ,𝑝2 𝑗 ] for any 𝑤, 𝑤′ ∈ [1, 𝑑]. Then we have
E𝑤,[𝑏1 𝑗 ,𝑏2 𝑗 ] = E𝑤′,[𝑏1 𝑗 ,𝑏2 𝑗 ] for any 𝑤, 𝑤′ ∈ [1, 𝑑], and 𝑏1 𝑗 + 𝑘𝑑𝑡 + 𝑡 should have been
marked, a contradiction.

Finally, we show that | [𝑏1 𝑗 , 𝑏2 𝑗 ] | < (2𝑘𝑑𝑡 + 2𝑡 + 1) (𝑘 + 1) + 𝑘𝑑𝑡 + 2𝑘 . Note that
an error that occurs at location 𝑖 in the first head occurs at 𝑖 + (𝑤 − 1)𝑡 in the 𝑤-th
head. These locations are contained in an interval [𝑖, 𝑖 + (𝑑 − 1)𝑡] of length less
than 𝑑𝑡. The locations of 𝑘 errors in 𝑑 heads are contained in 𝑘 intervals, each of
length at most 𝑑𝑡. If | [𝑏1 𝑗 , 𝑏2 𝑗 ] | ≥ (2𝑘𝑑𝑡 + 2𝑡 + 1) (𝑘 + 1) + 𝑘𝑑𝑡 + 2𝑘 , there exists
a sub-interval [𝑏′1 𝑗 , 𝑏

′
2 𝑗 ] ⊆ [𝑏1 𝑗 + 𝑘, 𝑏2 𝑗 − 𝑘] with length at least 2𝑘𝑑𝑡 + 2𝑡 + 1,

that is disjoint with the 𝑘 intervals that contain locations of all errors in all heads.
Since the interval [𝑏′1 𝑗 , 𝑏

′
2 𝑗 ] has length more than 𝑡, the intervals [1, 𝑏′1 𝑗 − 1] and

[𝑏′2 𝑗 + 1, 𝑛 + 𝑘 + 1] are edit disjoint, where 𝑛 + 𝑘 + 1 is the length of c. Moreover,
E𝑤,𝑖 = E𝑤′,𝑖 for any 𝑤, 𝑤′ ∈ [1, 𝑑] and 𝑖 ∈ [𝑏′1 𝑗 − |δ1 ∩ [1, 𝑏′1 𝑗 − 1] | + |γ1 ∩
[1, 𝑏′1 𝑗 − 1] |, 𝑏′2 𝑗 − −|δ1 ∩ [1, 𝑏′1 𝑗 − 1] | + |γ1 ∩ [1, 𝑏′1 𝑗 − 1] |]. This implies that
𝑖 = 𝑏′1 𝑗 − |δ1 ∩ [1, 𝑏′1 𝑗 − 1] | + |γ1 ∩ [1, 𝑏′1 𝑗 − 1] + 𝑘𝑑𝑡 + 𝑡 should be marked,
contradicting to the fact that [𝑏′1 𝑗 , 𝑏

′
2 𝑗 ] is unmarked, 𝑗 ∈ [1, 𝐽]. Therefore, we

proved (D). □

In the remainder of this section, we first show how to correct 𝑘 < 𝑑 deletions and
insertions in total. Then, we show how to determine the shifts caused by errors in the



229

isolated intervals, and show that for those isolated intervals that can not be detected,
there are at least 2𝑑 errors, and no shifts caused by these isolated intervals. Finally,
we present our encoding and decoding algorithms for the general cases when 𝑘 ≥ 𝑑.
The code is the same as the construction in Sec. 8.5, but with a different decoding
algorithm. Before dealing with the 𝑘 < 𝑑 case, we present a proposition that is
repeatedly used in this section.

Proposition 8.6.1. Let E ∈ E𝑘 (c) be a read matrix for some sequence c satisfying
𝐿 (c, ≤ 𝑘) ≤ 𝑇 . For any integers 𝑖 ∈ [1, 𝑛] and 𝑤, 𝑤′ ∈ [1, 𝑑] such that no error
occurs in interval [𝑖 − 𝑇 − 2𝑘, 𝑖] in the 𝑤-th and 𝑤′-th head, i.e.,

(δ𝑤 ∪ γ𝑤) ∩ [𝑖 − 𝑇 − 2𝑘, 𝑖] = ∅, and

(δ𝑤′ ∪ γ𝑤′) ∩ [𝑖 − 𝑇 − 2𝑘, 𝑖] = ∅, (8.12)

If

E𝑤,[𝑖−𝑇−2𝑘,𝑖−𝑥] = E𝑤′,[𝑖−𝑇−2𝑘+𝑥,𝑖] (8.13)

for some integer 𝑥 ∈ [0, 𝑘], then

|γ𝑤 ∩ [1, 𝑖 − 𝑇 − 2𝑘 − 1] | − |δ𝑤 ∩ [1, 𝑖 − 𝑇 − 2𝑘 − 1] | + 𝑥

=|γ𝑤′ ∩ [1, 𝑖 − 𝑇 − 2𝑘 − 1] | − |δ𝑤′ ∩ [1, 𝑖 − 𝑇 − 2𝑘 − 1] |. (8.14)

Proof. Suppose on the contrary,

|γ𝑤 ∩ [1, 𝑖 − 𝑇 − 2𝑘 − 1] | − |δ𝑤 ∩ [1, 𝑖 − 𝑇 − 2𝑘 − 1] | + 𝑥′

=|γ𝑤′ ∩ [1, 𝑖 − 𝑇 − 2𝑘 − 1] | − |δ𝑤′ ∩ [1, 𝑖 − 𝑇 − 2𝑘 − 1] | (8.15)

for some 𝑥′ ≠ 𝑥. If 𝑥′ > 𝑥, then we have that

𝑐 [𝑖−𝑇−𝑘+𝑥 ′−𝑥,𝑖−𝑘]
(𝑎)
=E𝑤,[𝑖−𝑇−𝑘+𝑥 ′−𝑥+|γ𝑤∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤∩[1,𝑖−𝑇−2𝑘−1] |,𝑖−𝑘+|γ𝑤∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤∩[1,𝑖−𝑇−2𝑘−1] |]
(𝑏)
=E𝑤′,[𝑖−𝑇−𝑘+𝑥 ′+|γ𝑤∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤∩[1,𝑖−𝑇−2𝑘−1] |,𝑖−𝑘+|γ𝑤∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤∩[1,𝑖−𝑇−2𝑘−1] |+𝑥]
(𝑐)
=E𝑤′,[𝑖−𝑇−𝑘+|γ𝑤′∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤′∩[1,𝑖−𝑇−2𝑘−1] |,𝑖−𝑘+|γ𝑤′∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤′∩[1,𝑖−𝑇−2𝑘−1] |+𝑥−𝑥 ′]
(𝑑)
= 𝑐 [𝑖−𝑇−𝑘,𝑖−𝑘+𝑥−𝑥 ′] ,

where (𝑎) and (𝑑) follows from (8.12) and the fact that |𝛾𝑤 |+ |𝛿𝑤 | ≤ 𝑘 for𝑤 ∈ [1, 𝑑],
(𝑏) follows from (8.13), and (𝑐) follows from (8.15).



230

If 𝑥′ < 𝑥, we have that

𝑐 [𝑖−𝑇−𝑘,𝑖−𝑘−𝑥+𝑥 ′]
(𝑎)
=E𝑤,[𝑖−𝑇−𝑘+|γ𝑤∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤∩[1,𝑖−𝑇−2𝑘−1] |,𝑖−𝑘−𝑥+𝑥 ′+|γ𝑤∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤∩[1,𝑖−𝑇−2𝑘−1] |]

=E𝑤′,[𝑖−𝑇−𝑘+|γ𝑤∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤∩[1,𝑖−𝑇−2𝑘−1] |+𝑥,𝑖−𝑘+𝑥 ′+|γ𝑤∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤∩[1,𝑖−𝑇−2𝑘−1] |]

=E𝑤′,[𝑖−𝑇−𝑘+|γ𝑤′∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤′∩[1,𝑖−𝑇−2𝑘−1] |+𝑥−𝑥 ′,𝑖−𝑘+|γ𝑤′∩[1,𝑖−𝑇−2𝑘−1] |−|δ𝑤′∩[1,𝑖−𝑇−2𝑘−1] |]
(𝑏)
= 𝑐 [𝑖−𝑇−𝑘+𝑥−𝑥 ′,𝑖−𝑘] .

In both cases, we have that 𝐿 (c, |𝑥 − 𝑥′|) ≥ 𝑇 + 1, contradicting to the fact that
𝐿 (c, ≤ 𝑘) ≤ 𝑇 . Hence, 𝑥′ = 𝑥 and the proof is done. □

Correcting 𝑘 < 𝑑 Deletions and Insertions
The cases when 𝑘 < 𝑑 are addressed in the following lemma, which proves the first
part of Theorem 8.1.2, where 𝑘 < 𝑑.

Lemma 8.6.2. Let E ∈ E𝑘 (c) be a read matrix for some sequence c satisfying
𝐿 (c, ≤ 𝑘) ≤ 𝑇 . Let the distance 𝑡 satisfy 𝑡 > ( 𝑘2

4 + 3𝑘 + 2) (𝑇 + 3𝑘 + 1) +𝑇 + 5𝑘 + 1.
If there is an interval [𝑏1, 𝑏2], an interval [𝑝1, 𝑝2] ⊆ [𝑏1, 𝑏2], and an edit isolated
interval I satisfying E[1,𝑑],[𝑝1,𝑝2] ∈ E𝑘 ′ (cI) for some 𝑘′ ≤ 𝑑 − 1, and E𝑤, 𝑗 = E𝑤′, 𝑗

for any 𝑤, 𝑤′ ∈ [1, 𝑑] and 𝑗 ∈ ([𝑏1, 𝑝1−1]∪ [𝑝2+1, 𝑏2]), then we can obtain a read
matrix E′ such that E′

[1,𝑑],[𝑝1,𝑝2] ∈ E0(cI), and E𝑤, 𝑗 = E𝑤′, 𝑗 for any 𝑤, 𝑤′ ∈ [1, 𝑑]
and 𝑗 ∈ ([𝑏1, 𝑝1 − 1] ∪ [𝑝2 + 1, 𝑏2]).

Remark 8.6.1. Lemma 8.6.2 is a generalization of and an improvement over Lemma
8.2.6 when 𝑘 ≤ 𝑑 and 𝑘 is sufficiently large.

Proof. Let 𝑖∗ be the minimum index such that 𝑖∗ > 𝑝1 and there exist different
𝑤, 𝑤′ ∈ [1, 𝑑] satisfying E𝑤,𝑖∗ ≠ E𝑤′,𝑖∗ . Let E𝑤1,𝑖∗ be the minority bit among
{E𝑤,𝑖∗}𝑑𝑤=1, i.e., there are at most ⌊ 𝑑2 ⌋ bits among {E𝑤,𝑖∗}𝑑𝑤=1 being equal to E𝑤,𝑖∗ ≠

E𝑤′,𝑖∗ . We will first show that there are edit errors occur near index 𝑖∗ in the 𝑤1-th
head, unless when the numbers of 1-bits and 0-bits among {E𝑤,𝑖∗}𝑑𝑤=1 are equal, edit
errors occur near index 𝑖∗ in the first head. To this end, we begin with the following
proposition.

Proposition 8.6.2. Let E ∈ E𝑘 (c) be a read matrix for some sequence c satis-
fying 𝐿 (c, ≤ 𝑘) ≤ 𝑇 . Let 𝑖∗ > 0 be an integer such that E𝑤,[𝑖∗−𝑇−2𝑘−1,𝑖∗−1] =

E𝑤′,[𝑖∗−𝑇−2𝑘−1,𝑖∗−1] for any 𝑤′, 𝑤 ∈ [1, 𝑑]. For any 𝑤, 𝑤′ ∈ [1, 𝑑] such that no error
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occurs in interval [𝑖∗ − 𝑇 − 2𝑘, 𝑖∗ + 𝑘 − 1] in the 𝑤-th and 𝑤′-th head, i.e.,

(δ𝑤 ∪ γ𝑤) ∩ [𝑖∗ − 𝑇 − 2𝑘 − 1, 𝑖∗ + 𝑘 − 1] = ∅, and

(δ𝑤′ ∪ γ𝑤′) ∩ [𝑖∗ − 𝑇 − 2𝑘 − 1, 𝑖∗ + 𝑘 − 1] = ∅, (8.16)

the bits E𝑤,𝑖∗ and E𝑤′,𝑖∗ are equal.

Proof. According to Proposition 8.6.1, we have that

|γ𝑤 ∩ [1, 𝑖∗ − 𝑇 − 2𝑘 − 2] | − |δ𝑤 ∩ [1, 𝑖∗ − 𝑇 − 2𝑘 − 2] |
=|γ𝑤′ ∩ [1, 𝑖∗ − 𝑇 − 2𝑘 − 2] | − |δ𝑤′ ∩ [1, 𝑖∗ − 𝑇 − 2𝑘 − 2] | (8.17)

for any 𝑤, 𝑤′ ∈ [1, 𝑑]. Then,

E𝑤,𝑖∗
(𝑎)
= c𝑖∗−|γ𝑤∩[1,𝑖∗−𝑇−2𝑘−2] |+|δ𝑤∩[1,𝑖∗−𝑇−2𝑘−2] |
(𝑏)
= c𝑖∗−|γ𝑤′∩[1,𝑖∗−𝑇−2𝑘−2] |+|δ𝒘′∩[1,𝑖∗−𝑇−2𝑘−2] |
(𝑐)
=E𝑤,𝑖∗ ,

where (𝑎) and (𝑐) follow from (8.16) and the fact that |γ𝑤 ∩ [1, 𝑖∗ − 𝑇 − 2𝑘 − 2] | −
|δ𝑤 ∩ [1, 𝑖∗ − 𝑇 − 2𝑘 − 2] | ≤ 𝑘 . Equality (𝑏) follows from (8.17). □

From Proposition 8.6.2, we can easily conclude that there is at least one error in
interval [𝑖∗ − 𝑇 − 2𝑘 − 1, 𝑖∗ + 𝑘 − 1] in one of the heads, i.e., (δ𝑤 ∪ γ𝑤) ∩ [𝑖∗ − 𝑇 −
2𝑘 − 1, 𝑖∗ + 𝑘 − 1] ≠ ∅ for some 𝑤 ∈ [1, 𝑑]. Otherwise the bits E𝑤,𝑖∗ are equal for
all 𝑤 ∈ [1, 𝑑], contradicting to the definition of 𝑖∗.

Next, we need the following proposition.

Proposition 8.6.3. Let E ∈ E𝑘 (c) be a read matrix for some sequence c satisfying
𝐿 (c, ≤ 𝑘) ≤ 𝑇 . Let 𝑖∗ > 0 be an integer such that E𝑤,[1,𝑖∗−1] = E𝑤′,[1,𝑖∗−1] for any
𝑤′, 𝑤 ∈ [1, 𝑑].If 𝑇∗ ≥ 𝑇 +2𝑘 +1 and 𝑡 > (𝑘 +1)𝑇∗, then the number of heads where
at least one error occurs in interval [𝑖∗ − 𝑇∗, 𝑖∗ + 𝑘 − 1] is at most ⌊ 𝑘+1

2 ⌋, i.e.,

|{𝑤 : (δ𝑤 ∪ γ𝑤) ∩ [𝑖∗ − 𝑇∗, 𝑖∗ + 𝑘 − 1] ≠ ∅}| ≤ ⌊ 𝑘 + 1
2

⌋ .

Moreover, when |{𝑤 : (δ𝑤 ∪ γ𝑤) ∩ [𝑖∗ − 𝑇∗, 𝑖∗ + 𝑘 − 1] ≠ ∅}| = 𝑘+1
2 , at least one

error occurs in [𝑖∗ − 𝑇∗, 𝑖∗] in the first head, i.e., (δ1 ∪ γ1) ∩ [𝑖∗ − 𝑇∗, 𝑖∗] ≠ ∅.

Proof. Let {𝑤 : 𝑤 ∈ [2, 𝑑], (δ𝑤∪γ𝑤)∩[𝑖∗−𝑇∗, 𝑖∗+𝑘−1] ≠ ∅} = {𝑤1, 𝑤2, . . . , 𝑤𝑀}
be the set of heads (not including the first head) that contains at least one error in
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interval [𝑖∗ − 𝑇∗, 𝑖∗ + 𝑘 − 1]. Let 𝑤1 > 𝑤2 > . . . > 𝑤𝑀 . We will show that there
exist a set of integers 𝑖1, 𝑖2, . . . , 𝑖𝑀 ∈ [0, 𝑘] such that 𝑖1 ≥ 𝑖2 ≥ . . . ≥ 𝑖𝑀 and

| (δ1 ∩ [𝑖∗ − 𝑇∗ − (𝑤ℓ − 1)𝑡 − (𝑇∗ + 𝑘)𝑖ℓ, 𝑖∗ − 𝑇∗ − (𝑤ℓ − 2)𝑡 − (𝑇∗ + 𝑘)𝑖ℓ − 1] |
+ |γ1 ∩ [𝑖∗ − 𝑇∗ − (𝑤ℓ − 1)𝑡 − (𝑇∗ + 𝑘)𝑖ℓ, 𝑖∗ − 𝑇∗ − (𝑤ℓ − 2)𝑡 − (𝑇∗ + 𝑘)𝑖ℓ − 1] |

≥2 (8.18)

for ℓ ∈ [1, 𝑀]. Note that the intervals [𝑖∗−𝑇∗− (𝑤ℓ−1)𝑡− (𝑇∗+ 𝑘)𝑖ℓ, 𝑖∗−𝑇∗− (𝑤ℓ−
2)𝑡 − (𝑇∗ + 𝑘)𝑖ℓ − 1] are disjoint for different ℓ ∈ [1, 𝑀] and are within the interval
[−𝑇∗ − (𝑇∗ + 𝑘) (𝑘 + 1), 𝑖∗ − 𝑇∗ − 1], since 𝑡 𝑗 > (𝑘 + 1) (𝑇∗ + 1) for 𝑗 ∈ [1, 𝑑] and
𝑖ℓ ≤ 𝑘 for ℓ ∈ [1, 𝑀]. Then, the number of errors in the first head is at least 2|{𝑤 :
(δ𝑤∪γ𝑤)∩[𝑖∗−𝑇∗, 𝑖∗+𝑘−1] ≠ ∅, 𝑤 ∈ [2, 𝑑]}|+1((δ1∪γ1)∩[𝑖∗−𝑇∗, 𝑖∗+𝑘−1] ≠ ∅),
where 1(𝐴) is the indicator that equals 1 when 𝐴 is true and equals 0 otherwise.
Hence, we have that

2|{𝑤 : (δ𝑤 ∪ γ𝑤) ∩ [𝑖∗ − 𝑇∗, 𝑖∗ + 𝑘 − 1] ≠ ∅, 𝑤 ∈ [2, 𝑑]}|
+ 1((δ1 ∪ γ1) ∩ [𝑖∗ − 𝑇∗, 𝑖∗ + 𝑘 − 1] ≠ ∅) ≤ 𝑘.

Then, it can be easily verified that the proposition follows.

Now we find the set of integers 𝑖1 ≥ 𝑖2 ≥ . . . ≥ 𝑖𝑀 satisfying (8.18). Let 𝑖0 = 𝑘 .
Starting from ℓ = 1 to ℓ = 𝑀 , find the largest integer 𝑖ℓ such that 𝑖ℓ ≤ 𝑖ℓ−1 and no
errors occur in interval [𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1), 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘)𝑖ℓ − 1] in the
𝑤ℓ-th or the (𝑤ℓ − 1)-th heads, i.e.,

(γ𝑤ℓ
∪ δ𝑤ℓ

∪ γ𝑤ℓ−1 ∪ δ𝑤ℓ−1) ∩ [𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1),
𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘)𝑖ℓ − 1] = ∅. (8.19)

We show that such an ℓ ∈ [1, 𝑀] can be found as long as 𝑡 > (𝑇∗ + 𝑘) (𝑘 + 2). Note
that in the above procedure, for each integer 𝑖 ∈ [𝑖ℓ + 1, 𝑘], there is at least an edit
error occurring in interval [𝑖∗ −𝑇∗ − (𝑇∗ + 𝑘) (𝑖 + 1), 𝑖∗ −𝑇∗ − (𝑇∗ + 𝑘)𝑖 − 1] in one
of the heads 𝑤, which corresponds to an error that occurs in interval [𝑖∗−𝑇∗− (𝑇∗ +
𝑘) (𝑖 + 1) − (𝑤 − 1)𝑡, 𝑖∗ −𝑇∗ − (𝑇∗ + 𝑘)𝑖 − 1− (𝑤 − 1)𝑡] in the first head. In addition,
the intervals [𝑖∗ −𝑇∗ − (𝑇∗ + 𝑘) (𝑖 + 1) − (𝑤 − 1)𝑡, 𝑖∗ −𝑇∗ − (𝑇∗ + 𝑘)𝑖 − 1− (𝑤 − 1)𝑡]
are disjoint for different pairs (𝑖, 𝑤), as long as 𝑡 ≥ (𝑇∗ + 𝑘) (𝑘 + 2). Since there
are at most 𝑘 errors in the first head and there are 𝑘 + 1 choices of 𝑖ℓ, such an 𝑖ℓ

satisfying (8.19) can be found.

Since E𝑤ℓ ,𝑖 = E𝑤ℓ−1,𝑖 for 𝑖 ∈ [𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1), 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘)𝑖ℓ − 1],
by Proposition 8.6.1 we have that

|γ𝑤ℓ−1 ∩ [1, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1] |
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− |δ𝑤ℓ−1 ∩ [1, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1] |
=|γ𝑤ℓ

∩ [1, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1] |
− |δ𝑤ℓ

∩ [1, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1] |. (8.20)

On the other hand, we have that

|γ𝑤ℓ−1 ∩ [1, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1 − 𝑡] |
− |δ𝑤ℓ−1 ∩ [1, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1 − 𝑡] |

=|γ𝑤ℓ
∩ [1, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1] |

− |δ𝑤ℓ
∩ [1, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1] |. (8.21)

Eq. (8.20) and Eq. (8.21) imply that

|γ𝑤ℓ−1 ∩ [𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 𝑡, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1] |
=|δ𝑤ℓ−1 ∩ [𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 𝑡, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1] |. (8.22)

Since (γ𝑤ℓ
∪ δ𝑤ℓ

) ∩ [𝑖∗ − 𝑇∗, 𝑖∗ + 𝑘 − 1] ≠ ∅ by definition of 𝑤ℓ, we have that

(γ𝑤ℓ−1 ∪ δ𝑤ℓ−1) ∩ [𝑖∗ − 𝑇∗ − 𝑡, 𝑖∗ + 𝑘 − 1 − 𝑡]
⊆(γ𝑤ℓ−1 ∪ δ𝑤ℓ−1) ∩ [𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 𝑡, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1]
≠∅.

Together with (8.22), we have that

|γ𝑤ℓ−1 ∩ [𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 𝑡, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1] |
+|δ𝑤ℓ−1 ∩ [𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 𝑡, 𝑖∗ − 𝑇∗ − (𝑇∗ + 𝑘) (𝑖ℓ + 1) − 1] |
≥2,

which implies (8.18) because γ𝑤ℓ−1 = γ1 + (𝑤ℓ − 2)𝑡 and δ𝑤ℓ−1 = δ1 + (𝑤ℓ − 2)𝑡.
Hence, the proof is done. □

Let 𝑤∗ ∈ [1, 𝑑] be an index of the head such that E𝑤∗,𝑖∗ is a minority bit among
{E𝑤,𝑖∗}𝑑𝑤=1, i.e., there are at most 𝑑

2 bits among {E𝑤,𝑖∗}𝑑𝑤=1 that is equal to E𝑤∗,𝑖∗ .
By Proposition 8.6.2 and Proposition 8.6.3, we conclude that when 𝑘 < 𝑑, we have
that (δ𝑤∗ ∪ γ𝑤∗) ∩ [𝑖∗ − 𝑇 − 2𝑘 − 1, 𝑖∗ + 𝑘 − 1] ≠ ∅, if the number of bits among
{E𝑤,𝑖∗}𝑑𝑤=1 being equal to E𝑤∗,𝑖∗ is is less than 𝑑/2. If 𝑘 < 𝑑 and the number
of bits among {E𝑤,𝑖∗}𝑑𝑤=1 being equal to E𝑤∗,𝑖∗ is is exactly 𝑑/2, we have that
(δ1 ∪ γ1) ∩ [𝑖∗ − 𝑇 − 2𝑘 − 1, 𝑖∗ + 𝑘 − 1] ≠ ∅.
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Now we find a 𝑤∗ with (δ𝑤∗ ∪ γ𝑤∗) ∩ [𝑖∗ − 𝑇 − 2𝑘 − 1, 𝑖∗ + 𝑘 − 1] ≠ ∅. In the
remaining part of the proof, we show how to use knowledge of 𝑤∗ to correct at least
one error for each head, and reduce the 𝑑-head case to a (𝑑 − 1)-head case. Then,
the lemma follows by induction. Assume that 𝑤∗ ≤ 𝑑 − 1. The procedure when
𝑤∗ = 𝑑 will be similar.

Note that (δ𝑤 ∪ γ𝑤) ∩ [𝑖∗ − 𝑇 − 2𝑘 − 1 + (𝑤 − 𝑤∗)𝑡, 𝑖∗ + 𝑘 − 1 + (𝑤 − 𝑤∗)𝑡] ≠ ∅.
Consider the set of intervals

[𝑖∗ + 2𝑘 + (ℓ − 1) (𝑇 + 3𝑘 + 1) + (𝑤 − 𝑤∗)𝑡,
𝑖∗ + 2𝑘 − 1 + ℓ(𝑇 + 3𝑘 + 1) + (𝑤 − 𝑤∗)𝑡]

for ℓ ∈ [1, 𝑘2

4 + 3𝑘 + 2] and 𝑤 ∈ [1, 𝑑]. For notation convenience, denote

𝑣𝑤,ℓ ≜ 𝑖∗ + 2𝑘 + (ℓ − 1) (𝑇 + 3𝑘 + 1) + (𝑤 − 𝑤∗)𝑡 (8.23)

for ℓ ∈ [1, 𝑘2

4 + 3𝑘 + 2] and 𝑤 ∈ [1, 𝑑]. For each pair ℓ ∈ [1, 𝑘2

4 + 3𝑘 + 2] and
𝑤 ∈ [1, 𝑑 − 1], find a unique index 𝑥𝑤,ℓ ∈ [0, 𝑘], such that

E𝑤,[𝑣𝑤,ℓ ,𝑣𝑤,ℓ+1−1−𝑥𝑤,ℓ ] = E𝑤+1,[𝑣𝑤,ℓ+𝑥𝑤,ℓ ,𝑣𝑤,ℓ+1−1] (8.24)

or 𝑥𝑤,ℓ ∈ [−𝑘,−1] such that

E𝑤,[𝑣𝑤,ℓ−𝑥𝑤,ℓ ,𝑣𝑤,ℓ+𝑇+3𝑘] = E𝑤+1,[𝑣𝑤,ℓ ,𝑣𝑤,ℓ+𝑥𝑤,ℓ++𝑇+3𝑘] . (8.25)

If no such index or more than one exist, let 𝑥𝑤,ℓ = 𝑘 + 1.

Given 𝑥𝑤,ℓ, ℓ ∈ [1, 𝑘2

4 + 3𝑘 + 2] and 𝑤 ∈ [1, 𝑑], define a binary vector z ∈
{0, 1} 𝑘2

4 +3𝑘+2 as follows:

𝑧ℓ =



1, if there exists a 𝑤 ∈ [1, 𝑑 − 1] such that 𝑥𝑤,ℓ = 𝑘 + 1

1, if there exists a 𝑤 ∈ [1, 𝑑 − 1] such that 𝑥𝑤,ℓ ≠ 𝑥𝑤,ℓ−1

and 𝑥𝑤,ℓ, 𝑥𝑤,ℓ−1 ∈ [−𝑘, 𝑘]

0, else

(8.26)

for ℓ ∈ 𝑘2

4 + 3𝑘 + 2. In (8.26), it is assumed that 𝑥𝑤,0 = 𝑥𝑤,1 for 𝑤 ∈ [1, 𝑑 − 1].

Let 𝑦 be the number of 1 runs in z. Let 𝑦∗ = | (γ𝑤∗ ∪ δ𝒘∗ ∪ γ𝑤∗+1 ∪ δ𝒘∗+1) ∩
[𝑖∗ + 𝑘, 𝑖∗ + 3𝑘 − 1 + ( 𝑘2

4 + 3𝑘 + 2) (𝑇 + 3𝑘 + 1)] | be the number of errors that
occur in interval [𝑖∗ + 𝑘, 𝑖∗ + 𝑘 − 1 + ( 𝑘2

4 + 3𝑘 + 2) (𝑇 + 3𝑘 + 1)] in the 𝑤∗-th or
(𝑤∗ + 1)-th head. Note that 𝑦∗ = | (γ𝑤 ∪ δ𝒘 ∪ γ𝑤+1 ∪ δ𝒘+1) ∩ [𝑖∗ + 𝑘 + (𝑤 −
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𝑤∗)𝑡, 𝑖∗ + 3𝑘 − 1+ ( 𝑘2

4 + 3𝑘 + 2) (𝑇 + 3𝑘 + 1) + (𝑤 −𝑤∗)𝑡] | for 𝑤 ∈ [1, 𝑑]. Moreover,
E

𝑤,[𝑖∗+2𝑘+(𝑤−𝑤∗)𝑡,𝑖∗+2𝑘−1+( 𝑘2
4 +3𝑘+2) (𝑇+3𝑘+1)+(𝑤−𝑤∗)𝑡] can be obtained by a subsequence

of c[𝑖∗+𝑘,𝑖∗+3𝑘−1+( 𝑘2
4 +3𝑘+2) (𝑇+3𝑘+1)] after at most 𝑦∗ deletions and insertions in interval

[𝑖∗ + 𝑘, 𝑖∗ + 3𝑘 − 1 + ( 𝑘2

4 + 3𝑘 + 2) (𝑇 + 3𝑘 + 1)] in the 𝑤-th head, 𝑤 ∈ [1, 𝑑].

We first show that 𝑦∗ ≤ 𝑘 − 1. Note that the | (γ𝑤 ∪ δw) ∩ [𝑖∗ + 𝑘, 𝑛 + 𝑘] | errors
that occur after index 𝑖∗ + 𝑘 in the 𝑤∗-th head, occur after index 𝑖∗ + 𝑘 + 𝑡 >

𝑖∗ + 3𝑘 + ( 𝑘2

4 + 3𝑘 + 2) (𝑇 + 3𝑘 + 1) in the (𝑤∗ + 1)-th head. Moreover, the errors
that occur in interval [𝑖∗ − 𝑇 − 2𝑘 − 1, 𝑖∗ + 𝑘 − 1] in the 𝑤∗-th head occur after
𝑖∗ − 𝑇 − 2𝑘 − 1 + 𝑡 > 𝑖∗ + 3𝑘 + ( 𝑘2

4 + 3𝑘 + 2) (𝑇 + 3𝑘 + 1) in the (𝑤∗ + 1)-th
head, since 𝑡 > ( 𝑘2

4 + 3𝑘 + 2) (𝑇 + 3𝑘 + 1) + 𝑇 + 5𝑘 + 1. Hence there are at most
𝑘 − |(γ𝑤∗ ∪ δ𝒘∗) ∩ [𝑖∗ + 𝑘, 𝑛 + 𝑘] | − 1 + |(γ𝑤∗ ∪ δ𝒘∗) ∩ [𝑖∗ + 𝑘, 𝑛 + 𝑘] | = 𝑘 − 1 errors
that occur in interval [𝑖∗ + 𝑘, 𝑖∗ + 3𝑘 − 1 + ( 𝑘2

4 + 3𝑘 + 2) (𝑇 + 3𝑘 + 1)] in the 𝑤∗-th or
(𝑤∗ + 1)-th head.

Next, we show that there are at most (2𝑘 − 2) 1 entries in z. Note that a single error
in interval [𝑖∗+ 𝑘, 𝑖∗+3𝑘−1+ ( 𝑘2

4 +3𝑘 +2) (𝑇 +3𝑘 +1)] in the 𝑤-th or (𝑤+1)-th head
affects the value of at most a single entry 𝑥𝑤,ℓ and the entries (𝑥𝑤,ℓ+1, . . . , 𝑥𝑤, 𝑘2

4 +3𝑘+2
increase or decrease by 1. This generates at most two 1 entries in z. Hence there
are at most 2𝑦∗ ≤ 2𝑘 − 2 1 entries in z.

Then, we show that there exists a 0-run (𝑧𝑖+1, . . . , 𝑧𝑖+𝑘−𝑦+2) of length 𝑘 − 𝑦 + 2, for
some 𝑖 ∈ [0, 𝑘2

4 + 2𝑘 + 𝑦], which indicates that

E𝑤,[𝑣𝑤,𝑖+1,𝑣𝑤,𝑖+𝑘−𝑦+3−𝑥𝑤,𝑖+1−1] = E𝑤+1,[𝑣𝑤,𝑖+1+𝑥𝑤,𝑖+1,𝑣𝑤,𝑖+𝑘−𝑦+3−1] , (8.27)

if 𝑥𝑤,𝑖+1 ∈ [0, 𝑘] or

E𝑤,[𝑣𝑤,𝑖+1−𝑥𝑤,𝑖+1,𝑣𝑤,𝑖+𝑘−𝑦+3−1] = E𝑤+1,[𝑣𝑤,𝑖+1,𝑣𝑤,𝑖+𝑘−𝑦+3+𝑥𝑤,𝑖+1−1] , (8.28)

if 𝑥𝑤,𝑖+1 ∈ [−𝑘,−1], for every 𝑤 ∈ [1, 𝑑 − 1].

Suppose on the contrary, each 0 run has length no more than 𝑘 − 𝑦 + 1. Note that
there are at most 𝑦 + 1 0 runs with 𝑦 1 runs. Therefore, the length of z is upper
bounded by

𝑘2

4
+ 3𝑘 + 2 ≤(𝑦 + 1) (𝑘 − 𝑦 + 1) + 2𝑘

= − 𝑦2 + 𝑘𝑦 + 3𝑘 + 1

≤ 𝑘2

4
+ 3𝑘 + 1
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a contradiction.

We have proved the existence of a 0 run (𝑧𝑖 + 1, . . . , 𝑧𝑖+𝑘−𝑦+2), which implies (8.27)
and (8.28). We now show that there are at most 𝑘 − 𝑦 + 1 errors occur in interval
[𝑣𝑤,𝑖+1, 𝑣𝑤,𝑖+𝑘−𝑦+3 − 1] in the 𝑤 and/or (𝑤 + 1)-th head, for 𝑤 ∈ [1, 𝑑 − 1]. As
mentioned above, a single error in interval [𝑖∗+𝑘, 𝑖∗+3𝑘−1+( 𝑘2

4 +3𝑘+2) (𝑇+3𝑘+1)]
in the 𝑤-th or (𝑤 + 1)-th head affects the value of at most a single entry 𝑥𝑤,ℓ and the
entries (𝑥𝑤,ℓ+1, . . . , 𝑥𝑤, 𝑘2

4 +3𝑘+2) increase or decrease by 1. This generates at most
a single 1 run in z. In addition, errors in interval [𝑣𝑤,𝑖+1, 𝑣𝑤,𝑖+𝑘−𝑦+3 − 1] in the 𝑤

and/or (𝑤 + 1)-th head generate at most two 1 runs that include 𝑧𝑖 and 𝑧𝑖+𝑘−𝑦+2.
Therefore, there are at least 𝑦−2 1 runs in z that are generated by at least 𝑦−2 errors
in [𝑖∗ + 𝑘, 𝑖∗ + 3𝑘 − 1 + ( 𝑘2

4 + 3𝑘 + 2) (𝑇 + 3𝑘 + 1)]\[𝑣𝑤,𝑖+1, 𝑣𝑤,𝑖+𝑘−𝑦+3 − 1]. Hence,
the number of errors in interval [𝑣𝑤,𝑖+1, 𝑣𝑤,𝑖+𝑘−𝑦+3 − 1] in the 𝑤 and/or (𝑤 + 1)-th
head is at most 𝑦∗ − 𝑦 + 2 ≤ 𝑘 − 𝑦 + 1.

Therefore, there exists an integer ℓ ∈ [𝑖 + 1, 𝑖 + 𝑘 − 𝑦 + 2] such that no errors occur
in interval [𝑣𝑤,ℓ, 𝑣𝑤,ℓ+1 − 1] in the 𝑤 and/or (𝑤 + 1)-th head, which implies that
E𝑤+1,[𝑝1,𝑣𝑤,ℓ−|δ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+|γ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+𝑘] is obtained from cI∩[1,𝑣𝑤,ℓ+𝑘] ,
after deletion errors at locations δ𝑤+1 ∩ I ∩ [1, 𝑣𝑤,ℓ − 1] and insertion errors at
locations γ𝑤+1 ∩ I ∩ [1, 𝑣𝑤,ℓ − 1]. Moreover,

E𝑤,[𝑣𝑤,ℓ+𝑘+1−|δ𝑤∩I∩[1,𝑣𝑤,ℓ−1] |+|γ𝑤∩I∩[1,𝑣𝑤,ℓ−1] |,𝑝2]

=E𝑤,[𝑣𝑤,ℓ+𝑘+1−|δ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+|γ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+𝑘−𝑥𝑤,ℓ ,𝑝2]

=E𝑤,[𝑣𝑤,ℓ+𝑘+1−|δ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+|γ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+𝑘−𝑥𝑤,𝑖+1,𝑝2]

can be obtained from cI∩[𝑣𝑤,ℓ+𝑘+1,𝑛+𝑘] , after deletion errors at locations δ𝑤 ∩ I ∩
[𝑣𝑤,ℓ, 𝑛 + 𝑘] and insertion errors at locations γ𝑤 ∩ I ∩ [𝑣𝑤,ℓ, 𝑛 + 𝑘]. Therefore,
concatenating E𝑤+1,[𝑝1,𝑣𝑤,ℓ−|δ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+|γ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+𝑘] and
E𝑤,[𝑣𝑤,ℓ+𝑘+1−|δ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+|γ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+𝑘−𝑥𝑤,𝑖+1,𝑝2] , we have a sequence,
obtained from cI by deletion errors with locations (δ𝑤+1 ∩ [1, 𝑣𝑤,ℓ − 1]) ∪ (δ𝑤 ∩
[𝑣𝑤,ℓ, 𝑛 + 𝑘]) and insertion errors at locations (γ𝑤+1 ∩ [1, 𝑣𝑤,ℓ − 1]) ∪ (γ𝑤 ∩
[𝑣𝑤,ℓ, 𝑛 + 𝑘]), 𝑤 ∈ [1, 𝑑 − 1] in cI . Note that there are at most |δ𝑤 ∩ I| +
|γ𝑤 ∩ I| − 1 errors in total in the concatenation, since the errors occur in [(δ𝑤 ∪
|γ𝑤) ∩ [𝑖∗ − 𝑇 − 2𝑘 − 1 + (𝑤 − 𝑤∗)𝑡, 𝑖∗ + 𝑘 − 1 + (𝑤 − 𝑤∗)𝑡] |] are not included
in the concatenation. Finally, since (𝑧𝑖+1, . . . , 𝑧𝑖+𝑘−𝑦+2) is a 0 run, we have that
𝑥𝑤,𝑖+1 = 𝑥𝑤,𝑖+2 = . . . = 𝑥𝑤,𝑖+𝑘−𝑦+2 for 𝑤 ∈ [1, 𝑑 − 1]. Hence, concatenating
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E𝑤+1,[𝑏1,𝑣𝑤,𝑖+1+𝑘] and E𝑤,[𝑣𝑤,𝑖+1+𝑘+1−𝑥𝑤,𝑖+1,𝑏2] results in the same sequence as con-
catenating E𝑤+1,[𝑏1,𝑣𝑤,ℓ−|δ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+|γ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+𝑘] and

E𝑤,[𝑣𝑤,ℓ+𝑘+1−|δ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+|γ𝑤+1∩I∩[1,𝑣𝑤,ℓ−1] |+𝑘−𝑥𝑤,𝑖+1,𝑏2] , 𝑤 ∈ [1, 𝑑 − 1] .

Let the 𝑑−1 concatenated sequences be represented by a read matrixE′. Then there
exists some interval [𝑝′1, 𝑝

′
2] such that E′

[1,𝑑−1],[𝑝′1,𝑝
′
2]
∈ E𝑘 ′−1(cI). In addition, we

have that E′
𝑤, 𝑗

= E′
𝑤′, 𝑗 for any 𝑤, 𝑤′ ∈ [1, 𝑑−1] and 𝑗 ∈ ([1, 𝑝′1−1] ∪ [𝑝′2+1, 𝑏′]),

where 𝑏′ is the number of columns in E′. Then, we obtain a read matrix with 𝑑 − 1
head and less errors. The lemma follows by induction.

For cases when 𝑤∗ = 𝑑, the proof is similar, where instead of looking at intervals
[𝑖∗ + 2𝑘 + (ℓ− 1) (𝑇 + 3𝑘 + 1) + (𝑤 −𝑤∗)𝑡, 𝑖∗ + 2𝑘 − 1+ ℓ(𝑇 + 3𝑘 + 1) + (𝑤 −𝑤∗)𝑡] for
ℓ ∈ [1, 𝑘2

4 +3𝑘 +2] and 𝑤 ∈ [1, 𝑑], we look at intervals [𝑖∗−𝑇 −3𝑘 − ℓ(𝑇 +3𝑘 +1) +
(𝑤 −𝑤∗)𝑡, 𝑖∗ −𝑇 − 3𝑘 − 1− (ℓ − 1) (𝑇 + 3𝑘 + 1) + (𝑤 −𝑤∗)𝑡] for ℓ ∈ [1, 𝑘2

4 + 3𝑘 + 2]
and 𝑤 ∈ [1, 𝑑].

□

Determine Bits Outside Edit Isolated Intervals

Lemma 8.6.3. For any edit isolated interval I and an interval [𝑝1, 𝑝2] such that
E[1,𝑑],[𝑝1,𝑝2] ∈ E𝑘 ′ (cI) for some sequence c satisfying 𝐿 (c, ≤ 𝑘) ≤ 𝑇 , if E𝑤, 𝑗 =

E𝑤′, 𝑗 for any 𝑤, 𝑤′ ∈ [1, 𝑑] and 𝑗 ∈ ([𝑝1, 𝑝2]), then |δ𝑤 ∩ I| + |γ𝑤 ∩ I| ≥ 2𝑑.

Proof. Let I = [𝑞1, 𝑞2]. Let 𝑖∗ be the minimum index such that 𝑖∗ ≥ 𝑞1 and E𝑤,𝑖∗ ≠

c𝑞1+𝑖∗−𝑝1 , i.e., E𝑤,[𝑝1,𝑖∗−1] = c[𝑞1,𝑞1+𝑖∗−𝑝1−1] and E𝑤,𝑖∗ ≠ c𝑞1+𝑖∗−𝑝1 for 𝑤 ∈ [1, 𝑑]. We
show that (δ𝑤 ∪ γ𝑤) ∩ [𝑖∗ − 𝑇 − 2𝑘 − 1, 𝑖∗ + 𝑘 − 1] ≠ ∅ for 𝑤 ∈ [1, 𝑑]. Otherwise,
there exists a 𝑤∗ ∈ [1, 𝑑], such that (δ𝑤∗ ∪ γ𝑤∗) ∩ [𝑖∗ − 𝑇 − 2𝑘 − 1, 𝑖∗ + 𝑘 − 1] = ∅.
Assume now that there is a virtual readE𝑤′,[1,𝑟] , where 𝑟 is the length of each read in
the first 𝑑 heads. Assume that the distance between the 𝑑-th head and the 𝑤′-th head
is far enough so that the first error occurs after index 𝑞1 + 𝑖∗ − 𝑝1 in the 𝑤′-th head.
Therefore, E𝑤′,[𝑝1,𝑖∗−1] = c[𝑞1,𝑞1+𝑖∗−𝑝1−1] = E𝑤,[𝑝1,𝑖∗−1] for 𝑤 ∈ [1, 𝑑] and E𝑤′,𝑖∗ =

c𝑞1+𝑖∗−𝑝1 . By Proposition 8.6.2, we have that E𝑤∗,𝑖∗ = c𝑞1+𝑖∗−𝑝1 , contradicting to the
definition of 𝑖∗. Hence, we have that (δ𝑤 ∪ γ𝑤) ∩ [𝑖∗ − 𝑇 − 2𝑘 − 1, 𝑖∗ + 𝑘 − 1] ≠ ∅
for 𝑤 ∈ [1, 𝑑].

According to Proposition 8.6.3, we have that 𝑘 ≥ 2𝑑 − 1. Furthermore, by Lemma
8.6.4, we have that 𝑘 is an odd number and thus 𝑘 ≥ 2𝑑. □
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Lemma 8.6.4. Let E ∈ E𝑘 (c) be a read matrix for some sequence c satisfying
𝐿 (c, ≤ 𝑘) ≤ 𝑇 . Let the head distance 𝑡 satisfy 𝑡 > (4𝑘 + 1) (𝑇 + 4𝑘 + 1). If there is
an interval [𝑏1, 𝑏2], an interval [𝑝1, 𝑝2] ⊆ [𝑏1, 𝑏2], and an edit isolated interval
I satisfying E[1,𝑑],[𝑝1,𝑝2] ∈ E𝑘 ′ (cI) for some 𝑘′ ≤ 𝑑 − 1, and E𝑤, 𝑗 = E𝑤′, 𝑗 for any
𝑤, 𝑤′ ∈ [1, 𝑑] and 𝑗 ∈ ([𝑏1, 𝑝1 − 1] ∪ [𝑝2 +1, 𝑏2]), then the the number of bit shifts
caused by errors in interval I, |γ𝑤∩I|− |δ𝑤∩I| can be decided from E[1,𝑑],[𝑏1,𝑏2] ,
for 𝑤 ∈ [1, 𝑑]. Moreover, if E𝑤,[𝑏1,𝑏2] = E𝑤′,[𝑏1,𝑏2] for any 𝑤, 𝑤′ ∈ [1, 𝑑], then
|γ𝑤 ∩ I| = |δ𝑤 ∩ I| for any 𝑤 ∈ [1, 𝑑].

Proof. Similar to what we did in Sec. 8.4. consider a set of intervals

B𝑖,𝑚 =


[𝑏1 + (𝑖 − 1)𝑡 + (𝑚 − 1) (𝑇 + 4𝑘 + 1), 𝑏1 + (𝑖 − 1)𝑡 + 𝑚(𝑇 + 4𝑘 + 1) − 1],

for 𝑚 ∈ [1, 4𝑘 + 1] and 𝑖 ∈ [0, 𝑏2−𝑏1+1
𝑡

+ 1] satisfying

𝑏1 + (𝑖 − 1)𝑡 + 𝑚(𝑇 + 4𝑘 + 1) − 1 ≤ 𝑏2.

.

Note that the intervals B𝑖,𝑚 are disjoint when 𝑡 > (4𝑘 + 1) (𝑇 + 4𝑘 + 1) For notation
convenience, let

𝑞𝑖,𝑚 ≜ 𝑏1 + (𝑖 − 1)𝑡 + (𝑚 − 1) (𝑇 + 4𝑘 + 1)

for𝑚 ∈ [1, 4𝑘+1] and 𝑖 ∈ [0, 𝑏2−𝑏1+1
𝑡

+1] satisfying 𝑏1+(𝑖−1)𝑡+𝑚(𝑇 +4𝑘+1)−1 ≤
𝑏2. Let U𝑚 = ∪

𝑖:𝑞𝑖,𝑚−1≤𝑏2,𝑖∈[1,
𝑏2−𝑏1+1

𝑡
+1]B𝑖,𝑚, for 𝑚 ∈ [1, 4𝑘 + 1]. Since there are

at most 2𝑘 errors in the first two heads, there are at least (2𝑘 + 1) choices of
𝑚 ∈ [1, 4𝑘 + 1], 𝑚1, . . . , 𝑚2𝑘+1, such that U𝑚ℓ

∩ (δ1 ∪ γ1 ∪ δ2 ∪ δ2) ∩ I = ∅ for
ℓ ∈ [1, 2𝑘 + 1]. For each 𝑚 ∈ [1, 4𝑘 + 1] and integer 𝑖 ≥ 1 such that 𝑞𝑖,𝑚 − 1 ≤ 𝑏2,
find the unique integer 𝑥𝑚,𝑖 ∈ [0, 𝑘] such that

E1,[𝑞𝑖,𝑚+1+𝑘,𝑞𝑖,𝑚+2−𝑘−1−𝑥𝑚,𝑖] = E2,[𝑞𝑖,𝑚+1+𝑘+𝑥𝑚,𝑖 ,𝑞𝑖,𝑚+2−𝑘−1] (8.29)

or 𝑥𝑚,𝑖 ∈ [−𝑘,−1] such that

E1,[𝑞𝑖,𝑚+1+𝑘−𝑥𝑚,𝑖 ,𝑞𝑖,𝑚+2−𝑘−1] = E2,[𝑞𝑖,𝑚+1+𝑘,𝑞𝑖,𝑚+2−𝑘−1+𝑥ℓ,𝑖] . (8.30)

If no such index or more than one exist, let 𝑥𝑚,𝑖 = 𝑘 + 1. Since [𝑞𝑖,𝑚ℓ
, 𝑞𝑖,𝑚ℓ+1 − 1] ∩

(δ1 ∪ γ1 ∪ δ2 ∪ δ2) ∩ I = ∅, we have that

E1,[𝑞𝑖,𝑚ℓ
+|γ1∩[𝑏1,𝑞𝑖,𝑚ℓ

−1] |−|δ1∩[𝑏1,𝑞𝑖,𝑚ℓ
−1] |,𝑞𝑖,𝑚ℓ+1−1+|γ1∩[𝑏1,𝑞𝑖,𝑚ℓ

−1] |−|δ1∩[𝑏1,𝑞𝑖,𝑚ℓ
−1] |]

=c𝑞𝑖,𝑚ℓ
,𝑞𝑖,𝑚ℓ+1−1

=E2,[𝑞𝑖,𝑚ℓ
+|γ2∩[𝑏1,𝑞𝑖,𝑚ℓ

−1] |−|δ2∩[𝑏1,𝑞𝑖,𝑚ℓ
−1] |,𝑞𝑖,𝑚ℓ+1−1+|γ2∩[𝑏1,𝑞𝑖,𝑚ℓ

−1] |−|δ2∩[𝑏1,𝑞𝑖,𝑚ℓ
−1] |]
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which implies that the integer 𝑥𝑚ℓ ,𝑖 ∈ [−𝑘, 𝑘] satisfying (8.29) and (8.30) can be
found for ℓ ∈ [1, 2𝑘 + 1]. According to Proposition 8.6.1, such 𝑥𝑚ℓ ,𝑖 is unique. In
the following, we show that

|γ𝑤 ∩ I| − |δ𝑤 ∩ I| =
∑︁

𝑖:𝑞𝑖,𝑚−1≤𝑏2,𝑖∈[1,
𝑏2−𝑏1+1

𝑡
+1]

𝑥𝑚ℓ ,𝑖 (8.31)

for ℓ ∈ [1, 2𝑘 + 1].

For any fixed ℓ ∈ [1, 2𝑘 + 1], let 𝑖∗ be the largest integer such that (γ1 ∪ δ1) ∩
I ∩ [1, 𝑞𝑖,𝑚+1 − 1] = ∅. Note that 𝑥𝑚ℓ ,𝑖 = 0 for 𝑖 ∈ [1, 𝑖∗]. In addition, we have
|γ𝑤 ∩I ∩ [1, 𝑞𝑖,𝑚+1 − 1] | − |δ𝑤 ∩I ∩ [1, 𝑞𝑖,𝑚+1 − 1| = 0 =

∑𝑖∗

𝑖=1 𝑥𝑚ℓ ,𝑖 for 𝑤 ∈ {1, 2}.
According to Proposition 8.6.1 and definition of 𝑥𝑚,𝑖, we have that

𝑥𝑚ℓ ,𝑖 =|γ2 ∩ [1, 𝑞𝑖,𝑚+1 + 𝑘 − 1] | − |δ2 ∩ [1, 𝑞𝑖,𝑚+1 + 𝑘 − 1] |
− |γ1 ∩ [1, 𝑞𝑖,𝑚+1 + 𝑘 − 1] | + |δ∩ [1, 𝑞𝑖,𝑚+1 + 𝑘 − 1] |

(𝑎)
= |δ1 ∩ [𝑞𝑖−1,𝑚+1 + 𝑘, 𝑞𝑖,𝑚+1 + 𝑘 − 1] |

− |γ1 ∩ [𝑞𝑖−1,𝑚+1 + 𝑘, 𝑞𝑖,𝑚+1 + 𝑘 − 1] |

for 𝑖 ≥ 𝑖∗ +1, where (𝑎) follows since |γ2 ∩ [1, 𝑞𝑖,𝑚+1 + 𝑘 −1] | = |γ1 ∩ [1, 𝑞𝑖−1,𝑚+1 +
𝑘 −1] | and |δ2∩ [1, 𝑞𝑖,𝑚+1+ 𝑘 −1] | = |δ1∩ [1, 𝑞𝑖−1,𝑚+1+ 𝑘 −1] |. Moreover 𝑥𝑚ℓ ,𝑖 = 0
for 𝑞𝑖,𝑚ℓ

≥ 𝑝2 + 1. Therefore,∑︁
𝑖:𝑞𝑖,𝑚ℓ

−1≤𝑏2,𝑖∈[1,
𝑏2−𝑏1+1

𝑡
+1]

𝑥𝑚ℓ ,𝑖

=|δ1 ∩ I ∩ [1, 𝑞𝑖,𝑚ℓ+1 − 1] | − |γ1 ∩ I ∩ [1, 𝑞𝑖,𝑚ℓ+1 − 1|
+

∑︁
𝑖:𝑞𝑖,𝑚ℓ+1−1≤𝑝2,𝑖≥𝑖∗+1

( |δ1 ∩ [𝑞𝑖−1,𝑚ℓ+1, 𝑞𝑖,𝑚ℓ+1 − 1] |

− |γ1 ∩ [𝑞𝑖−1,𝑚ℓ+1 + 𝑘, 𝑞𝑖,𝑚ℓ+1 + 𝑘 − 1] |)
=|δ1 ∩ I| − |γ1 ∩ I|,

where the last equality holds since interval I is edit isolated. Therefore, we have
(8.31) for ℓ ∈ [1, 2𝑘 + 1]. Find the majority of

∑
𝑖:𝑞𝑖,𝑚−1≤𝑏2,𝑖∈[1,

𝑏2−𝑏1+1
𝑡

+1] 𝑥𝑚,𝑖 for
𝑚 ∈ [1, 4𝑘 + 1], we obtain the value |δ𝑤 ∩ I| − |γ𝑤 ∩ I| for 𝑤 ∈ [1, 𝑑].

Finally, since 𝑥𝑚,𝑖 = 0 for each pair of (𝑚, 𝑖) when E𝑤,[𝑏1,𝑏2] = E𝑤′,[𝑏1,𝑏2] for any
𝑤, 𝑤′ ∈ [1, 𝑑], we have |γ𝑤 ∩ I| = |δ𝑤 ∩ I| for any 𝑤 ∈ [1, 𝑑]. □
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The next lemma shows that we can recover most of the bits in c. Before stating the
lemma, we define the notion of a minimum edit isolated interval. An interval I is
called a minimum edit isolated interval if:

1. I cannot be partitioned into two edit isolated intervals, i.e., there do not exists
two disjoint edit isolated intervals I𝑎 and I𝑏 such that I = I𝑎 ∪ I𝑏.

2. There is no strict sub-interval I′ ⊊ I of I that is edit isolated.

We note that the error locations in all heads are caontained in a disjoint set of
minimum isolated intervals.

Lemma 8.6.5. Let E ∈ E𝑘 (c) be a read matrix for some sequence c satisfying
𝐿 (c, ≤ 𝑘) ≤ 𝑇 . For an index 𝑖 not in any minimum edit isolated interval that is
disjoint with I𝑗 , 𝑗 ∈ [1, 𝐽], if the column index of the bit E1,𝑖−|[1:𝑖−1]∩δ1 |+| [1:𝑖−1]∩γ1 |

coming from 𝑐𝑖 in the first read is not contained in one of the output intervals
[𝑏1 𝑗 , 𝑏2 𝑗 ], the bit 𝑐𝑖 can be correctly recovered given E.

Proof. Assume that 𝑏11 < 𝑏12 < . . . < 𝑏1𝐽 . For each output interval [𝑏1 𝑗 , 𝑏2 𝑗 ],
𝑗 ∈ [1, 𝐽], let 𝑞 𝑗 be the largest integer 𝑞 𝑗 ∈ [𝑏1 𝑗 , 𝑏2 𝑗 ], such that there exist
𝑤, 𝑤′ ∈ [1, 𝑑] satisfyingE𝑤,𝑞 𝑗

≠ E𝑤′,𝑞 𝑗
. We show that 𝑞 𝑗 ∈ [𝑏1 𝑗 +𝑘+1, 𝑏2 𝑗−𝑘−1]

for 𝑗 ∈ [1, 𝐽], unless when 𝑏11 = 1 or 𝑏2𝐽 = 𝑛′ ∈ [𝑛 + 1, 𝑛 + 2𝑘 + 1], we can assume
that 𝑏11 = −𝑘 − 1 and 𝑏2𝐽 = 𝑛 + 2𝑘 + 2, which does not affect the result. Note
that for any index 𝑖 such that there exist 𝑤, 𝑤′ ∈ [1, 𝑑] satisfying E𝑤,𝑖 = E𝑤′,𝑖, the
indices [𝑖 + 1, 𝑖 + 𝑘𝑑𝑡 + 𝑡] are not marked and contained in some output interval.
We have that 𝑞 𝑗 ≤ 𝑏2 𝑗 − 𝑘 − 1. Similarly, 𝑞 𝑗 ≥ 𝑏1 𝑗 + 𝑘 + 1 because the intervals
[𝑞 𝑗 − 𝑘𝑑𝑡 − 𝑡, 𝑞 𝑗 ], 𝑗 ∈ [1, 𝐽] is not marked.

According to Lemma 8.6.1, each output interval [𝑏1 𝑗 , 𝑏2 𝑗 ] is associated with an edit
isolated interval I𝑗 , 𝑗 ∈ [1, 𝐽]. Moreover, for any index 𝑖 ∈ [𝑛 + 𝑘 + 1]\ ∪𝐽

𝑗=1 I𝑗 , we
have that E𝑤,𝑖−|[1:𝑖−1]∩δ1 |+| [1:𝑖−1]∩γ1 | = E𝑤′,𝑖−|[1:𝑖−1]∩δ1 |+| [1:𝑖−1]∩γ1 | for any 𝑤, 𝑤′ ∈
[1, 𝑑]. These imply that for any minimum edit isolated interval [𝑖1, 𝑖2] that is disjoint
with I𝑗 for 𝑗 ∈ [1, 𝐽], we have that

E𝑤,𝑖1−|[1:𝑖1−1]∩δ1 |+| [1:𝑖1−1]∩γ1 |,𝑖2−|[1:𝑖1−1]∩δ1 |+| [1:𝑖1−1]∩γ1 |

=E𝑤′,𝑖1−|[1:𝑖1−1]∩δ1 |+| [1:𝑖1−1]∩γ1 |,𝑖2−|[1:𝑖1−1]∩δ1 |+| [1:𝑖1−1]∩γ1 | . (8.32)

By Lemma 8.6.4, we have that | [𝑖1, 𝑖2] ∩ δ1 | = | [𝑖1, 𝑖2] ∩ γ1 |, i.e., there is no bit
shift caused by errors in interval [𝑖1, 𝑖2]. In addition, the shift caused by errors in
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interval I𝑗 , 𝑗 ∈ [1, 𝐽], which is |I𝑗 ∩ γ1 | − |I𝑗 ∩ δ1 | = 𝑠 𝑗 , can be determined. This
implies that

| [1 : 𝑖′ − 1] ∩ γ1 | − | [1 : 𝑖′ − 1] ∩ δ1 |
=

∑︁
𝑗 :𝑞 𝑗<𝑖

′
𝑠 𝑗

(𝑎)
=

∑︁
𝑗 :𝑞 𝑗<𝑖

′+|[1:𝑖′−1]∩γ1 |+| [1:𝑖′−1]∩δ1 |
𝑠 𝑗 (8.33)

for any 𝑖′ satisfying: (1) 𝑖′ − |[1 : 𝑖′ − 1] ∩ δ1 | + | [1 : 𝑖′ − 1] ∩ γ1 | not in any output
interval [𝑏1 𝑗 , 𝑏2 𝑗 ], 𝑗 ∈ [1, 𝐽]. (2) 𝑖′ is not in any minimum edit isolated interval
that is disjoint with I𝑗 , 𝑗 ∈ [1, 𝐽] . The equality (𝑎) holds because 𝑞 𝑗 ∈ [𝑏1 𝑗 + 𝑘 +
1, 𝑏2 𝑗 − 𝑘 −1], and 𝑖′ > 𝑞 𝑗 only when 𝑏2 𝑗 < 𝑖′+ |[1 : 𝑖′−1] ∩γ1 | + | [1 : 𝑖′−1] ∩δ1 | .
For the same reason, 𝑖′ < 𝑞 𝑗 only when 𝑏1 𝑗 > 𝑖′+ |[1 : 𝑖′−1]∩γ1 | + | [1 : 𝑖′−1]∩δ1 |.

For any E1,𝑖 such that 𝑖 is not included in any output interval [𝑏1 𝑗 , 𝑏2 𝑗 ], 𝑗 ∈ [1, 𝐽],
let

𝑐′
𝑖−∑

𝑗:𝑞𝑗<𝑖 𝑠 𝑗
= E1,𝑖 . (8.34)

be an estimate of the bit 𝑐𝑖−∑
𝑗:𝑞𝑗<𝑖 𝑠 𝑗

. Then, for any index 𝑖′ such that 𝑖′ − |[1 :
𝑖′ − 1] ∩ δ1 | + | [1 : 𝑖′ − 1] ∩ γ1 | is not included in any output interval and 𝑖′ is not in
any minimum edit isolated interval that is disjoint with I𝑗 , 𝑗 ∈ [1, 𝐽], we have that

𝑐𝑖′

=E1,𝑖′−|[1:𝑖′−1]∩δ1 |+| [1:𝑖′−1]∩γ1 |

=𝑐′
𝑖′−|[1:𝑖′−1]∩δ1−|+|[1:𝑖′−1]∩γ1 |−

∑
𝑗:𝑞𝑗<𝑖′−| [1:𝑖′−1]∩δ1−|+| [1:𝑖′−1]∩γ1 | 𝑠 𝑗

=𝑐′𝑖′,

where the last equality follows from (8.33). Therefore, the proof is done. □

Encoding/Decoding Algorithms
We are now ready to present the encoding and decoding algorithms. We first deal
with cases when 𝑑 ≥ 2𝑑. The code construction is the similar to the one in Sec.
8.5, stated in Sec. (8.10) and (8.11), which we restate as follows

𝐸𝑛𝑐2(c) = (𝐹 (c), 𝑅′

2(c), 𝑅
′′

2 (c)) (8.35)

where

𝑅
′

2(c) = 𝑅𝑆2⌊𝑘/𝑑⌋ (𝑆(𝐹 (c))),
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𝑅
′′

2 (c) = 𝑅𝑒𝑝𝑘+1(𝐻𝑎𝑠ℎ(𝑅′

2(c))). (8.36)

The difference here is in the definition of the function 𝑆(𝐹 (c)), instead of splitting
𝐹 (c) into blocks of length 𝐵, as in (8.3), we split 𝐹 (c) into blocks of length
𝐵′ = (2𝑘𝑑𝑡 +2𝑡 +1) (𝑘 +1) + 𝑘𝑑𝑡 +3𝑘 , which is 𝑘 plus the upper bound on the length
of the output intervals [𝑏1 𝑗 , 𝑏2 𝑗 ], 𝑗 ∈ [1, 𝐽], i.e.,

𝐹 (c) =(a′1, . . . , a
′
⌈ 𝑛+𝑘+1

𝐵′ ⌉), and

𝑆(𝐹 (c)) =(𝐻𝑎𝑠ℎ(a′1), . . . , 𝐻𝑎𝑠ℎ(a′⌈ 𝑛+𝑘+1
𝐵′ ⌉)). (8.37)

It can be verified that the code has the same redundancy 2⌊𝑘/𝑑⌋ log 𝑛 + 𝑜(log 𝑛). In
the following, we show that the codeword 𝐸𝑛𝑐2(c) can be correctly decoded.

Similar to what we did in the proof of Theorem 8.3.1 and Theorem 8.5.1, we use the
first row in E to decode. From Lemma 8.2.4, we conclude that we can first recover
𝐻𝑎𝑠ℎ(𝑅′

2(c)) and then 𝑅′
2(c) using the deletion correcting hash in Lemma 8.2.3.

Apply Lemma 8.6.2 to every output interval [𝑏1 𝑗 , 𝑏2 𝑗 ] and E[1,𝑑],[𝑏1 𝑗 ,𝑏2 𝑗 ] and obtain
a matrix E′

𝑗
. If the matrix E′

𝑗
cannot be uniquely recovered, let E′

𝑗
= E[𝑏1 𝑗 ,𝑏2 𝑗 ] . By

Lemma 8.6.2, the bits cI𝑗 , where I𝑗 , 𝑗 ∈ [1, 𝐽] is the corresponding edit isolated
interval described in Lemma 8.6.1 for an output interval [𝑏1 𝑗 , 𝑏2 𝑗 ], can be recovered
when |I𝑗 ∩ γ1 | + |I𝑗 ∩ δ1 | ≤ 𝑑 − 1. Furthermore, from Lemma 8.6.4 and Lemma
8.6.5, using (8.34) we can recover the bits c𝑖 such that 𝑖 is not in any minimum edit
isolated interval and the index 𝑖+ |[1, 𝑖−1] ∩γ1 | − | [1, 𝑖−1] ∩δ1 |, where c𝑖 locates in
the first row in the read matrix E, is not in the output intervals [𝑏1 𝑗 , 𝑏2 𝑗 ]. Therefore,
we are left to recover the bits c𝑖 that results in an output interval [𝑏1 𝑗 , 𝑏2 𝑗 ] with at
least 𝑑 errors in the edit isolated interval I𝑗 , and the undetectable minimum edit
isolated intervals [𝑖1, 𝑖2] that are disjoint from I𝑗 , 𝑗 ∈ [1, 𝐽], which satisfy (8.32).
By Lemma 8.6.3, there are at least 2𝑑 errors in undetectable minimum edit isolated
interval [𝑖1, 𝑖2]. Let 𝑒 be the number of intervals I𝑗 with at least 𝑑 errors, and 𝑓

be the number of undetectable minimum edit isolated intervals. Then we have that
𝑑𝑒 + 2 𝑓 𝑑 ≤ 𝑘 and 𝑒 + 2 𝑓 ≤ ⌈ 𝑘

𝑑
⌉. Note that a minimum length edit isolated interval

has length at most 𝑘𝑑. Hence, it covers at most 2 blocks a′
𝑖

and a′
𝑖+1 defined in

(8.37). In addition, the bits c𝑖 that results in an output interval [𝑏1 𝑗 , 𝑏2 𝑗 ] with at
least 𝑑 errors in the edit isolated interval I𝑗 covers at most 2 blocks a′

𝑖′ and a′
𝑖′+1.

These correspond to at most 2𝑒 erasure errors and 2 𝑓 substitution errors in 𝑆(𝐹 (c)),
since the intervals [𝑏1 𝑗 , 𝑏2 𝑗 ] are known. These errors can be corrected with Reed-
Solomon codes correcting 2𝑒 + 4 𝑓 ≤ 2⌈ 𝑘

𝑑
⌉ erasure errors. Hence, 𝑆(𝐹 (c)) can be
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recovered and then 𝐹 (c) and c can be recovered following similar procedures as in
Sec. 8.5.

For cases when 𝑑 ≤ 𝑘 ≤ 2𝑑 − 1. The codes are similar to those in Sec. 8.3, which
is given by

𝐸𝑛𝑐1(c) = (𝐹 (c), 𝑅′

1(c), 𝑅
′′

1 (c)) (8.38)

where

𝑅
′

1(c) = 𝐸𝑅(𝑆(𝐹 (c))),
𝑅

′′

1 (c) = 𝑅𝑒𝑝𝑘+1(𝐻𝑎𝑠ℎ(𝑅′
1(c))). (8.39)

Similar to cases when 𝑘 ≥ 2𝑑, here we split 𝐹 (c) into blocks of length 𝐵′, the same
as in (8.37). Similar to the redundancy of the code in (8.4). The redundancy is
4𝑘 log log 𝑛 + 𝑜(log log 𝑛). The correctness of the code is similar to cases when
𝑘 ≥ 2𝑑. Note that when 𝑑 ≤ 𝑘 ≤ 2𝑑 − 1, we have that 𝑓 = 0 and 𝑒 = 1, which
reduces the decoding to correct 2 consecutive erasures 𝑆(𝐹 (c)). This can be done
using 𝑅′

1(c), following similar arguments as in Sec. 8.3. Hence, Theorem 8.1.2 is
proved.

8.7 Conclusions
We construct 𝑑-head 𝑘-deletion racetrack memory codes for any 𝑘 ≥ 𝑑+1, extending
previous works which deals with cases when 𝑘 ≤ 𝑑. It is proved that for small head
distance 𝑡𝑖 = 𝑛𝑜(1) and for 𝑘 ≥ 2𝑑, the redundancy of our codes is asymptotically
at most four times the optimal redundancy. We also show the same redundancy
results hold for 𝑑-head codes correcting a combination of at most 𝑘 deletions and
insertions. Finding a lower bound of the redundancy for 𝑑 ≤ 𝑘 ≤ 2𝑑 − 1 would be
interesting, for both deletion correcting codes or codes correcting a combination of
deletions and insertions. It is also desirable to tighten the gap between the upper
and lower bounds of the redundancy for cases when 𝑘 ≥ 2𝑑.
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