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ABSTRACT

Optimal controllers are usually designed to minimize cost under the assumption that
the disturbance they encounter is drawn from some specific class. For example, in
𝐻2 control the disturbance is assumed to be generated by a stochastic process and
the controller is designed to minimize its expected cost, while in 𝐻∞ control the
disturbance is assumed to be generated adversarially and the controller is designed
to minimize its worst-case cost. This approach suffers from an obvious drawback:
a controller which encounters a disturbance which falls outside of the class it was
designed to handle may perform poorly. This observation naturally motivates the
design of adaptive controllers which dynamically adjust their control strategy as they
causally observe the disturbance instead of blindly following a prescribed strategy.

Inspired by online learning, we propose data-dependent regret as a criterion for
controller design. In the regret-optimal control paradigm, causal controllers are
designed to minimize regret against a hypothetical optimal noncausal controller,
which selects the cost-minimizing sequence of control actions given noncausal
access to the disturbance sequence. Controllers with low regret retain a performance
guarantee irrespective of how the disturbance is generated; it is this universality
which makes our approach an attractive alternative to traditional 𝐻2 and 𝐻∞ control.
The regret of the causal controller is bounded by some measure of the complexity
of the disturbance sequence; we consider several different complexity measures,
including the energy of the disturbance sequence, which measures the size of the
disturbance, and the pathlength of the disturbance, which measures its variation over
time. We also consider the alternative metric of competitive ratio, which is the worst-
case ratio between the cost incurred by the causal controller and the cost incurred by
the optimal noncausal controller. This metric can also be viewed as a special case of
data-dependent regret, where the complexity measure is simply the offline optimal
cost. For each of these complexity measures, we derive a corresponding control
algorithm with optimal data-dependent regret. The key technique we introduce is
an operator-theoretic reduction from regret-optimal control to 𝐻∞ control; each of
the regret-optimal controllers we obtain can be interpreted as an 𝐻∞ controller in a
synthetic system of larger dimension. We also extend regret-optimal control to the
more challenging measurement-feedback setting, where the online controller must
choose control actions without directly observing the disturbance sequence, using
only noisy linear measurements of the state.
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We show that the competitive controller can be arbitrarily well-approximated by
the class of disturbance-action-controller (DAC) policies. The convexity of this
class of policies makes it amenable to online optimization via a reduction to online
convex optimization with memory, and this class has hence attracted much recent
attention in online learning. Using our approximation result, we show how to obtain
algorithms which achieve the “best-of-both-worlds”: sublinear policy regret against
DAC policies and approximate competitive ratio. These performance guarantees
can even be extended to the “adaptive control” setting, where the controller does
not know the system dynamics ahead of time and must perform online system
identification.

We present numerical experiments in a linear dynamical system which demonstrate
how the performance of regret-optimal controllers varies as a function of the com-
plexity of the disturbance. We extend regret-optimal control to nonlinear dynamical
systems using model-predictive control (MPC) and present experiments which sug-
gest that regret-optimal control is a promising approach to adapting to model error
in nonlinear control.
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C h a p t e r 1

INTRODUCTION

Optimal control models the regulation of a dynamical system as an optimization
problem, where the goal of the controller is to steer the evolution of the system
to minimize cost. Suppose the dynamical system has state 𝑥 which evolves in
discrete-time according to the evolution equation

𝑥𝑡+1 = G(𝑥𝑡 , 𝑢𝑡 , 𝑤𝑡),

where the time index 𝑡 ranges over a (possibly infinite) time horizon and 𝑢𝑡 and
𝑤𝑡 are a control input and an exogenous disturbance, respectively. The function G
determines how a new state 𝑥𝑡+1 is produced from the previous state 𝑥𝑡 and the inputs
𝑢𝑡 and 𝑤𝑡 ; it is generally assumed that G is continuous and differentiable. In each
timestep, the controller incurs a loss which varies according to the desirability of the
current state and control action. The goal of the controller is to minimize its cumu-
lative loss over the entire time horizon by dynamically selecting the control inputs
in response to the disturbances so as to steer the system onto a loss-minimizing tra-
jectory. The controller is constrained to be causal, i.e., it must select control actions
sequentially using only its observations of previous disturbances and without know-
ing which disturbances it will encounter in the future. The problem of designing the
controller to minimize cost is ill-posed without imposing some assumption about
how the disturbance sequence is generated; it is precisely this generative assumption
which differentiates different branches of optimal control.

The 𝐻2 control paradigm, first proposed by Kalman in [Kal+60], poses control
as a stochastic optimization problem. The controller posits that the disturbances
are stochastic and drawn i.i.d. from a fixed distribution. In each timestep, the
controller picks the control action which minimizes the expected future losses under
this assumption.

The 𝐻∞ control paradigm, first proposed by George Zames in [Zam81], poses
control as a minimax game played between the controller and an adversary which
selects the disturbance sequence. The controller posits that the goal of the adversary
is to maximize the ratio between the cumulative loss incurred by the controller
across all timesteps and the energy of the disturbance sequence. In each timestep,
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the controller picks the control action which minimizes the future cumulative loss
under this assumption. This formulation of control has the natural interpretation of
ensuring robustness of the resulting control policy; intuitively, this policy ensures
that only large disturbances can force the controller to incur large losses. The
𝐻∞ approach to control has rich connections to risk-sensitive control [Whi81] and
dynamic games [BB08].

Both 𝐻2 and 𝐻∞ control suffer from an obvious drawback: both paradigms presup-
pose a specific model of how the disturbance is generated. If an 𝐻2 or 𝐻∞ controller
encounters a disturbance which is different from the type of of disturbance it was
designed to handle, then neither paradigm can ensure the optimality of the resulting
trajectory. In fact, the performance of the closed-loop system can be extremely poor,
as was shown by Doyle in [Doy78].

Motivated by this observation, this thesis proposes a radically different approach to
control, which we call ‘regret-optimal control.’ The regret-optimal control paradigm
is inspired by online learning, which models sequential decision-making through
the lens of regret minimization. In this framework, an online decision-maker seeks
to make decisions which are almost as good as the optimal decisions chosen with
the benefit of hindsight. The difference between the losses incurred by the online
decision-maker and the optimal losses in hindsight is called the regret; by minimizing
regret, the online decision-maker hopes to achieve near-optimal cost no matter which
sequence of losses it encounters.

In the regret-optimal control framework, we design causal controllers so as to
approximate a hypothetical “optimal noncausal” controller which selects the globally
cost-minimizing sequence of control actions in hindsight, given perfect knowledge
of the disturbances. We thus shift our focus from minimizing the costs incurred
by the causal controller to instead minimizing the gap in performance between the
causal controller and this hypothetical offline controller. Since the cost incurred
by the offline controller is a lower bound on the cost achievable by any controller,
causal or noncausal, any controller with low regret is thus guaranteed to perform
almost as well as any other controller, including an 𝐻2 or 𝐻∞ controller. It is
this universality which makes our regret-optimal control paradigm an attractive
alternative to standard approaches to optimal control.

The regret-optimal control problem we study is harder than those usually studied
in online learning in two ways. First, we seek controllers which minimize regret
in the infinite-dimensional, non-parametric space of all possible causal controllers.
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This space includes controllers which select control actions as a nonlinear function
of the disturbance sequence; we are not content to merely optimize regret over
parametric families of linear controllers, such as linear state-feedback policies. This
is in stark contrast to most work in online learning, where both the online policy
and the comparator policy usually belong to a finite-dimensional, parametric class.
Second, the system dynamics serve to couple the losses incurred by the controller
across rounds; in each round, the action selected by the controller affects the state
of the system and hence affects all future losses experienced by the controller. The
controller must thus anticipate how its decisions will affect the future evolution of
the system. The controller must also take into account how the disturbances selected
by the adversary will propagate through the dynamics in future rounds. This is very
different from classical online learning problems like multi-armed bandits (MAB)
and online convex optimization (OCO), where a suboptimal decision in a single
round might result in a low reward in that round but does not affect the ability of
the online algorithm to collect future rewards. We refer to [Haz19] and [LS20] for
more background on online learning and bandits.

1.1 Optimal data-dependent regret through 𝐻∞ control
The online learning community has traditionally focused on obtaining online al-
gorithms whose regret is bounded uniformly over bounded loss sequences and has
sublinear dependence on the time horizon 𝑇 . For example, the well-known Exp3
algorithm for MAB attains𝑂 (

√
𝐾𝑇 ln𝐾) regret for any bounded sequence of losses

over 𝐾 arms [Aue+02; Haz19], while the Online Gradient Descent Algorithm
(OGD) for OCO attains 𝑂 (

√
𝑇) regret for general convex costs [Zin03] and 𝑂 (ln𝑇)

regret when the costs are strongly convex [HAK07]. Such uniform bounds imply
that the time-averaged losses of the online algorithm converge asymptotically to
the time-averaged losses of the comparator, irrespective of how the loss sequence
is generated. Online algorithms which such sublinear uniform regret bounds are
sometimes call “no-regret” algorithms, because their time-averaged regret is guar-
anteed to converge to zero as 𝑇 tends to infinity. Recent work [Aga+19; Sim20;
FS20; CH21; AGL22] has described online control algorithms with this no-regret
property; however, in all of these works the comparator policy is chosen to be a
member of some finite-dimensional, parametric class, which is a much weaker com-
parator than the optimal noncausal controller we consider. We show in Chapter 2
that no online control algorithm can guarantee sublinear regret against this policy
for all bounded disturbance sequences.
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We thus seek online control algorithms with optimal data-dependent regret against
the optimal noncausal controller. A data-dependent regret bound is a regret bound
which depends on actual instance encountered by the algorithm, and is usually stated
in terms of some measure of the “complexity” of the instance. One example of such
a complexity measure is pathlength, which measures how much the losses vary over
time. Intuitively, learning should be easier when the losses vary only slowly over
time, because the losses observed by the learner in the past are predictive of the
losses the learner can expect to encounter in the future.

The key insight of this thesis is that controllers with optimal data-dependent regret
can be derived using a reduction to 𝐻∞ control. It somewhat surprising that we
are able to establish a connection between regret minimization and 𝐻∞ control;
these two optimization frameworks have been developed independently over several
decades by two different communities with two very different sets of goals. We
briefly sketch the main idea of this connection here, and present our reductions in
detail in Chapters 3 and 4.

Suppose we would like to obtain a causal policy 𝜋 whose regret against the optimal
noncausal policy 𝜋0 is bounded by some complexity measure C of the disturbance.
In other words, we would like the inequality

𝐽 (𝜋, 𝑤) − 𝐽 (𝜋0, 𝑤) ≤ 𝛾2 · C(𝑤) (1.1)

to hold for all disturbances 𝑤 ∈ ℓ2, where 𝛾 is a scaling parameter which we would
like to be as small as possible. Rearranging, we see that this condition is equivalent
to

𝐽 (𝜋, 𝑤)
𝛾2 · C(𝑤) + 𝐽 (𝜋0, 𝑤)

≤ 1.

Since this inequality is supposed to hold for all 𝑤 ∈ ℓ2, it suffices to establish the
inequality for worst-case disturbances:

sup
𝑤∈ℓ2

𝐽 (𝜋, 𝑤)
𝛾2 · C(𝑤) + 𝐽 (𝜋0, 𝑤)

≤ 1.

Suppose we could construct a synthetic disturbance �̂� and a synthetic dynamical
system driven by �̂� with the following two properties. First, suppose the cost
incurred by 𝜋 in the original system in response to 𝑤 is equal to the cost incurred
by 𝜋 in the synthetic system in response to �̂�, so that 𝐽 (𝜋, 𝑤) = 𝐽 (𝜋, �̂�). Second,
suppose that

∥�̂�∥2 = 𝛾2 · C(𝑤) + 𝐽 (𝜋0, 𝑤).
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The inequality (1.1) becomes

sup
�̂�∈ℓ2

𝐽 (𝜋, �̂�)
∥�̂�∥2 ≤ 1.

This is an 𝐻∞ condition; its has the interpretation of ensuring that the cost incurred
by the controller 𝜋 in the synthetic system is smaller than the energy of the synthetic
disturbance �̂�. A central contribution of this thesis is to demonstrate how to construct
the synthetic disturbance and the synthetic system, for several different complexity
measures C. One particularly interesting choice of complexity measure we consider
is 𝐶 (𝑤) = 𝐽 (𝜋0, 𝑤); in this case the bound (1.1) can be rearranged to give a bound
on the competitive ratio, which is the worst-case ratio of the cost incurred by the
causal policy 𝜋 to the cost incurred by the optimal noncausal policy 𝜋0:

sup
𝑤∈ℓ2

𝐽 (𝜋, 𝑤)
𝐽 (𝜋0, 𝑤)

.

1.2 Preliminaries
Linear-Quadratic Control
We restrict our attention to discrete-time linear-quadratic (LQ) control over a doubly-
infinite horizon. In this setting, the dynamics are given by the linear evolution
equation

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑢𝑡 + 𝐵𝑤𝑤𝑡 . (1.2)

Here 𝑥𝑡 ∈ R𝑛 is a state variable we seek to regulate, 𝑢𝑡 ∈ R𝑚 is a control variable
which we can dynamically adjust to influence the evolution of the system, and
𝑤𝑡 ∈ R𝑝 is an exogenous driving disturbance. We formulate control as an online
optimization problem, where the goal of the controller is to select the control actions
so as to minimize the quadratic cost

∞∑︁
𝑡=−∞

(
𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡

)
, (1.3)

where 𝑄 ⪰ 0, 𝑅 ≻ 0. We assume that the dynamics 𝐴 ∈ R𝑛×𝑛, 𝐵𝑢 ∈ R𝑛×𝑚, 𝐵𝑤 ∈
R𝑛×𝑝 and costs 𝑄 ∈ R𝑛×𝑛, 𝑅 ∈ R𝑚×𝑚 are known to the controller, so the only
uncertainty in the evolution of the system comes from the external disturbance 𝑤.
For notational convenience, we assume throughout this thesis that the system is
parameterized such that 𝑅 = 𝐼𝑚; we emphasize that this imposes no real restriction,
since we can always rescale the control input 𝑢 to ensure that 𝑅 = 𝐼𝑚.
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Observation models: Full-Information and Measurement-Feedback
Control can be studied in several distinct settings, each of which posits a different
model for the process by which the controller makes observations and decisions. In
full-information control, the controller is able to directly observe the state 𝑥𝑡 in each
timestep. In addition, we say that a controller is causal if in each timestep it is able to
observe all previous disturbances up to and including the disturbance at the current
timestep, e.g., 𝑢 = 𝜋(. . . , 𝑤𝑡−1, 𝑤𝑡) for some function 𝜋. Similarly, a controller is
strictly causal if in each timestep it is able to observe all previous disturbances up
to but not including the current timestep, e.g., 𝑢 = 𝜋(. . . , 𝑤𝑡−1). A controller which
is not causal is called noncausal; in particular, the control action it selects at time
𝑡 might depend on some 𝑤𝑠 where 𝑠 > 𝑡. In computer science, it is common to
refer to algorithms which make decisions sequentially as new data arrives as online
algorithms; we use the words ‘causal’ and ‘online’ interchangeably.

Given a control policy 𝜋 and a disturbance 𝑤, we define 𝐽 (𝜋, 𝑤) to be the cost that
𝜋 incurs on the instance 𝑤. More formally, 𝐽 (𝜋, 𝑤) is given by

𝐽 (𝜋, 𝑤) =
∞∑︁

𝑡=−∞

(
𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑢𝑡

)
where 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 ,

𝑢 = 𝜋(𝑤).

While most of our results are for infinite-horizon control, we also present a few
results which describe control over a finite-horizon {0, . . . , 𝑇}. In this setting a
causal control policy is a causal function 𝜋 which maps the disturbance sequence
𝑤 = (𝑤0, . . . , 𝑤𝑇 ) to a control signal 𝑢 = (𝑢0, . . . , 𝑤𝑇 ); a strictly causal control
policy is defined analogously. In our finite-horizon results we always assume the
initialization 𝑥0 = 0 for simplicity. We define the cost incurred by the policy 𝜋 to be

𝐽𝑇 (𝜋, 𝑤) =
𝑇∑︁
𝑡=0

(
𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑢𝑡

)
where 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 ,

𝑥0 = 0,

𝑢 = 𝜋(𝑤).

Notice that this definition only includes the costs incurred by 𝜋 up to time 𝑇 . In
some situations it is useful to measure the additional costs that 𝜋 would incur were
it to keep driving the state to zero after time 𝑇 , when the disturbances have ceased
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to perturb the system. Through a slight abuse of notation, we define the infinite-
horizon cost incurred by a policy 𝜋0 in response to a finite disturbance 𝑤 to be
𝐽 (𝜋, 𝑤), where 𝑤 is understood to have been padded with leading and trailing zeros
to obtain a doubly-infinite disturbance sequence.

In measurement-feedback control, the controller is able to directly observe neither
the state nor the disturbance. Instead, in each timestep the controller has access to
the noisy observation

𝑦𝑡 = 𝐶𝑥𝑡 + 𝑣𝑡 ,

where 𝐶 ∈ R𝑟×𝑛 and 𝑣𝑡 ∈ R𝑟 is a measurement disturbance. We emphasize
that measurement-feedback control is generally much more challenging than full-
information control; for example, the observation 𝑦𝑡 will not contain much informa-
tion about the state 𝑥𝑡 if 𝑟 ≪ 𝑛.

A causal measurement-feedback control policy 𝜋 is a causal function which maps the
observations 𝑦 = (. . . , 𝑦−1, 𝑦0, 𝑦1, . . .) to a control signal 𝑢 = (. . . , 𝑢−1, 𝑢0, 𝑢1, . . .).
We emphasize that the observations depend on 𝜋, because they are a function of
the state, which itself is generated by the disturbance 𝑤 and the control 𝑢. Given
a measurement-feedback policy 𝜋, a driving disturbance 𝑤, and a measurement
disturbance 𝑣, we define 𝐽 (𝜋, 𝑤, 𝑣) to be the cost that 𝜋 incurs on the instance
(𝑤, 𝑣). More formally, 𝐽 (𝜋, 𝑤, 𝑣) is given by

𝐽 (𝜋, 𝑤, 𝑣) =
∞∑︁

𝑡=−∞

(
𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑢𝑡

)
where 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 ,

𝑦𝑡 = 𝐶𝑥𝑡 + 𝑣𝑡 ,
𝑢 = 𝜋(𝑦).

Policy classes
A central goal of this thesis is to find controllers which minimize regret in the
infinite-dimensional class of all possible causal controllers, including controllers
which select control actions as a nonlinear function of the disturbance sequence. This
is very different from the approach which is usually taken in online learning, where
the goal is to minimize regret with respect to some parametric class of policies Π;
this narrower notion of regret is usually called policy regret. In Chapter 5 we derive
“best-of-both-worlds” controllers which are simultaneously near-optimal relative to
the infinite-dimensional class of all causal controllers, and are near-optimal (in a
sharper sense) to specific classes of parametric control policies. We consider two
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parametric classes, both of which have attracted much recent attention in the online
learning community:

1. The first class we consider is the class of stabilizing linear state-feedback
policies, which we denote by K; both the strictly causal 𝐻2 controller and
the strictly causal 𝐻∞ controller belong to this class. Each policy in this
class is parameterized by a matrix 𝐾 ∈ R𝑚×𝑛. In each timestep, 𝜋 selects the
control action 𝑢𝑡 = 𝐾𝑥𝑡 ; we say that 𝐾 is stabilizing if 𝜌(𝐴 + 𝐵𝐾) < 1. This
condition implies that a unit impulse disturbance applied to the closed-loop
system at time 𝑡 = 0 will dissipate as 𝑡 → ∞. A non-asymptotic form of
stability called strong stability was introduced in [Coh+18] and is defined as
follows. Suppose 𝐾 is stabilizing; then there exist matrices 𝑆, 𝐿 such that
𝐴 + 𝐵𝐾 = 𝑆𝐿𝑆−1 and ∥𝐿∥ < 1. We say that 𝐾 is (𝜅, 𝛿)-strongly stable if

∥𝑆∥∥𝑆−1∥ ≤ 𝜅

and
∥𝐿∥ ≤ 1 − 𝛿.

Notice that with this definition, powers of 𝐴 + 𝐵𝐾 obey a simple bound:

∥(𝐴 + 𝐵𝐾)𝑖∥ ≤ 𝜅(1 − 𝛿)𝑖 .

2. The second class we consider is the class of disturbance-action controller
(DAC) policies, which we denote by M. Each policy 𝜋 in this class is
parameterized by a stabilizing controller 𝐾 , a horizon 𝐻 and weights 𝑀 =(
𝑀 [0] , . . . 𝑀 [𝐻−1]

)
. In each timestep, 𝜋 chooses the control action

𝑢𝑡 = 𝐾𝑥𝑡 +
𝐻∑︁
𝑡=1

𝑀 [𝑖−1]𝑤𝑡−𝑖 .

It is immediately clear that every linear state-feedback policy is a DAC policy
with all 𝐻 weights set to zero. We define a (𝐻, 𝜃, 𝛿)-DAC policy class to be
the set of all 𝐻-horizon DAC policies where the weights satisfy the geometric
decay condition ∥𝑀 [𝑖] ∥ ≤ 𝜃 (1−𝛿)𝑖. Intuitively, this condition implies that the
control action in each timestep is not greatly affected by the disturbances which
were observed by the controller many timesteps in the past. We additionally
require that 𝐾 is (𝜅, 𝛿)-stabilizing, for some 𝜅 > 0.
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Input-output approach to control
As is standard in the input-output approach to control, we encode controllers as
linear transfer operators mapping the disturbances to the quadratic cost we wish to
minimize. Recall that an operator 𝐹 is bounded if it maps ℓ2-bounded sequences
to ℓ2-bounded sequences. Let 𝑥 be some signal and let 𝑦 = 𝐹𝑥. We say that 𝐹 is
causal if 𝑦𝑡 depends only on (. . . , 𝑥𝑡−1, 𝑥𝑡) and strictly causal if 𝑦𝑡 depends only on
(. . . , 𝑥𝑡−1). It is easy to check that the product of two causal operators is causal, and
the product of a causal and a strictly causal operator is strictly causal.

Let 𝐿 = 𝑄1/2 and let 𝑠𝑡 = 𝐿𝑥𝑡 . With this notation, the quadratic costs (1.3) can be
written in a very simple form:

∥𝑠∥2
2 + ∥𝑢∥2

2.

The dynamics (1.2) can be written as

𝑠 = 𝐹𝑢 + 𝐺𝑤,

where 𝐹 and 𝐺 are strictly causal operators depending on 𝐴, 𝐵𝑢, 𝐵𝑤, 𝐿. Over a
finite-horizon 𝑡 = 0, . . . , 𝑇 , the operators 𝐹 and 𝐺 can be explicitly written as block
Toeplitz matrices:

𝐹 =



0 0 0 0 · · ·
𝐿𝐵𝑢 0 0 0
𝐿𝐴𝐵𝑢 𝐿𝐵𝑢 0 0
𝐿𝐴2𝐵𝑢 𝐿𝐴𝐵𝑢 𝐿𝐵𝑢 0
...

. . .


,

𝐺 =



0 0 0 0 · · ·
𝐿𝐵𝑤 0 0 0
𝐿𝐴𝐵𝑤 𝐿𝐵𝑤 0 0
𝐿𝐴2𝐵𝑤 𝐿𝐴𝐵𝑤 𝐿𝐵𝑤 0
...

. . .


.

In the infinite-horizon setting, we can think of 𝐹 and 𝐺 as doubly-infinite block
Toeplitz matrices which map the infinite sequences 𝑢 and 𝑤 to 𝑠. In the 𝑧-domain,
𝐹 and 𝐺 can be compactly expressed as

𝐹 (𝑧) = 𝐿 (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐺 (𝑧) = 𝐿 (𝑧𝐼 − 𝐴)−1𝐵𝑤 .
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Full-information controllers which are linear in the disturbance (e.g., 𝑢 = 𝐾𝑤 for
some causal operator 𝐾) are associated with a linear transfer operator 𝑇𝐾 which
maps the driving disturbance 𝑤 to 𝑠 and 𝑢:

𝑇𝐾 =

[
𝐹𝐾 + 𝐺
𝐾

]
.

The cost incurred by the controller 𝐾 is simply

𝑤∗𝑇∗
𝐾𝑇𝐾𝑤.

In the measurement-feedback setting, the controller does not directly observe 𝑥𝑡
and 𝑤𝑡 , but instead only observes 𝑦𝑡 = 𝐶𝑥𝑡 + 𝑣𝑡 . This observation model can be
captured by the relation 𝑦 = 𝐻𝑢+ 𝐽𝑤+𝑣, where 𝐻 and 𝐽 are strictly causal operators
depending on 𝐴, 𝐵𝑢, 𝐵𝑤, 𝐶. Over a finite-horizon 𝑡 = 0, . . . , 𝑇 , the operators 𝐻 and
𝐽 can be explicitly written as block Toeplitz matrices:

𝐻 =



0 0 0 0 · · ·
𝐶𝐵𝑢 0 0 0
𝐶𝐴𝐵𝑢 𝐶𝐵𝑢 0 0
𝐶𝐴2𝐵𝑢 𝐶𝐴𝐵𝑢 𝐶𝐵𝑢 0

...
. . .


,

𝐽 =



0 0 0 0 · · ·
𝐶𝐵𝑤 0 0 0
𝐶𝐴𝐵𝑤 𝐶𝐵𝑤 0 0
𝐶𝐴2𝐵𝑤 𝐶𝐴𝐵𝑤 𝐶𝐵𝑤 0

...
. . .


.

In the infinite-horizon setting, we can think of 𝐻 and 𝐽 as doubly-infinite block
Toeplitz matrices which map the infinite sequences 𝑢 and 𝑤 to 𝑦. In the 𝑧-domain,
𝐻 and 𝐽 can be compactly expressed as

𝐻 (𝑧) = 𝐶 (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐽 (𝑧) = 𝐶 (𝑧𝐼 − 𝐴)−1𝐵𝑤 .

Measurement-feedback controllers which are linear in the observations (e.g., 𝑢 = 𝐾𝑦

for some causal operator 𝐾) are associated with a linear transfer operator 𝑇𝐾 which
maps the driving disturbance 𝑤 and the measurement disturbance 𝑣 to 𝑠 and 𝑢:

𝑇𝐾 =

[
𝐹𝑄𝐽 + 𝐺 𝐹𝑄

𝑄𝐽 𝑄

]
,
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where we define the Youla parameter 𝑄 = 𝐾 (𝐼 − 𝐻𝐾)−1. Note that we can easily
recover 𝐾 from 𝑄 by setting 𝐾 = (𝐼 +𝑄𝐻)−1𝑄. The cost incurred by the controller
𝐾 is [

𝑤

𝑣

]∗
𝑇∗
𝐾𝑇𝐾

[
𝑤

𝑣

]
.

We refer the reader to [HSK99] for more background on the input-output approach
to control.

Performance metrics
The goal of this thesis is to derive causal controllers which approximate the per-
formance of an optimal noncausal controller. The optimal noncausal controller
(sometimes called the offline optimal controller) selects the control actions in each
timestep with access to the full disturbance sequence 𝑤 so as to minimize the cost
(1.3). The cost incurred by the optimal noncausal controller is called the offline
optimal cost; it is a lower bound on the cost achievable by any controller, causal or
noncausal. We describe the optimal noncausal controller in great detail in Chapter
2. Throughout this thesis, we denote the optimal noncausal controller by 𝜋0.

There are two standard performance metrics which compare the performance of an
online algorithm relative to the performance of an offline optimal algorithm: regret
and competitive ratio. The regret of a policy 𝜋 on the disturbance 𝑤 is simply the
difference in the cost incurred by online policy 𝜋 and the cost which could have been
achieved by an optimal noncausal policy 𝜋0:

Regret(𝑤) = 𝐽 (𝜋, 𝑤) − 𝐽 (𝜋0, 𝑤).

This notion of regret is sometimes called dynamic regret to emphasize that the
comparator policy 𝜋0 is unconstrained and may vary over time; it is also sometimes
called the competitive difference. The competitive ratio is the worst-case ratio in
costs:

Competitive Ratio = sup
𝑤∈ℓ2

𝐽 (𝜋, 𝑤)
𝐽 (𝜋0, 𝑤)

.

We emphasize that regret is a function of the input 𝑤, whereas the competitive
ratio bounds the ratio in costs over all inputs 𝑤. Our goal when studying regret is
usually to bound the regret of a policy 𝜋 in terms of some data-dependent quantity
associated with the disturbance 𝑤. Some natural choices are the energy of 𝑤, which
is a measure of how “large” 𝑤 is, and the pathlength of 𝑤, which measures how
much 𝑤 varies over time.
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A somewhat weaker notion of regret is policy regret, which is the difference in the
cost incurred by online policy 𝜋 and the cost which could have been counterfactually
achieved by the best policy selected in hindsight from some class of polices Π:

Policy Regret(𝑤) = 𝐽 (𝜋, 𝑤) − min
𝜋∈Π

𝐽 (𝜋, 𝑤).

The key distinction between dynamic regret and policy regret is that policy regret
restricts the comparator policy to lie in some specific class Π, whereas in dynamic
regret the comparator is the optimal noncausal policy. Since the cost incurred by
the optimal noncausal policy is a lower bound on the cost incurred by any policy,
including all of the policies contained in Π, the following inequality holds for all
disturbances 𝑤:

Policy Regret(𝑤) ≤ Regret(𝑤).

The definitions of regret and competitive ratio can be easily extended to the
measurement-feedback setting by including the measurement disturbance 𝑣:

Regret(𝑤, 𝑣) = 𝐽 (𝜋, 𝑤, 𝑣) − 𝐽 (𝜋0, 𝑤)

and
Competitive Ratio = sup

𝑤,𝑣∈ℓ2

𝐽 (𝜋, 𝑤, 𝑣)
𝐽 (𝜋0, 𝑤)

.

We refer to [BE05] for background on competitive analysis.

Notation and Terminology
We define the energy of a 𝑝-dimensional signal 𝑤 to be squared ℓ2 norm of 𝑤:

∥𝑤∥2
2 =

∞∑︁
𝑡=−∞

∥𝑤𝑡 ∥2
2.

We define the pathlength of 𝑤 to be

∞∑︁
𝑡=−∞

∥𝑤𝑡 − 𝑤𝑡−1∥2
2.

We define the derivative operator𝐷 𝑝 to be the linear operator which maps a sequence
𝑤 = (. . . , 𝑤−1, 𝑤0, 𝑤1, . . .) to its discrete derivative (. . . , 𝑤−1−𝑤−2, 𝑤0−𝑤−1, 𝑤1−
𝑤0, . . .). The pathlength of 𝑤 can hence be compactly represented as ∥𝐷 𝑝𝑤∥2

2. We
note that 𝐷 𝑝 has the 𝑧-domain representation

𝐷 𝑝 = (1 − 𝑧−1)𝐼𝑝 .
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We use 𝐼𝑛 to denote the 𝑛×𝑛 identity matrix. We let �̄�(𝑀) denote the largest singular
value of a matrix 𝑀 and let �̄�(𝐴) denote the largest eigenvalue of a square matrix 𝐴.
We denote the spectral radius of a square matrix 𝐴 by 𝜌(𝐴); we say that 𝐴 is stable
if 𝜌(𝐴) < 1; otherwise 𝐴 is unstable. We define ∥𝑣∥ to be the standard ℓ2 norm of a
finite-dimensional vector 𝑣; similarly, we define ∥𝑀 ∥ to be the ℓ2-induced operator
norm (the spectral norm) of a finite-dimensional matrix 𝑀 . Given a disturbance
sequence 𝑤, either finite or infinite, we let ∥𝑤∥∞ = sup𝑡 ∥𝑤𝑡 ∥. We let ∥𝐹∥ denote
the 𝐻∞ norm of a transfer operator 𝐹; the 𝐻∞ norm can be viewed as an analog of
the ℓ2-induced operator norm for infinite-dimensional operators.

Suppose 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚. The pair (𝐴, 𝐵) is controllable if

rank
( [
𝜆𝐼 − 𝐴 𝐵

] )
= 𝑛

for every eigenvalue 𝜆 of 𝐴. The pair (𝐴, 𝐵) is stabilizable if

rank
( [
𝜆𝐼 − 𝐴 𝐵

] )
= 𝑛

for every unstable eigenvalue 𝜆 of 𝐴. The pair (𝐴, 𝐵) is unit-circle controllable if

rank
( [
𝜆𝐼 − 𝐴 𝐵

] )
= 𝑛

for every unit-circle eigenvalue 𝜆 of 𝐴. Let𝐶 ∈ R𝑟×𝑛. The pair (𝐴,𝐶) is observable
if and only if (𝐴∗, 𝐶∗) is controllable. The pair (𝐴,𝐶) is detectable if and only
if (𝐴∗, 𝐶∗) is stabilizable. The pair (𝐴,𝐶) is unit-circle observable if and only if
(𝐴∗, 𝐶∗) is unit-circle controllable.
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C h a p t e r 2

THE OPTIMAL NONCAUSAL CONTROLLER

The goal of this thesis is to derive online controllers which approximate the per-
formance of the optimal noncausal controller as closely as possible. We give two
equivalent descriptions of the optimal noncausal controller, one in terms of transfer
operators and one in state-space form. We also show that no causal controller can
attain sublinear regret relative to the optimal noncausal controller.

2.1 An operator-theoretic model of the optimal noncausal controller
Recall that 𝐹 (𝑧) and 𝐺 (𝑧) are the transfer operators mapping 𝑢(𝑧) and 𝑤(𝑧) to 𝑠(𝑧),
respectively:

𝐹 (𝑧) = 𝐿 (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐺 (𝑧) = 𝐿 (𝑧𝐼 − 𝐴)−1𝐵𝑤 .

Both the optimal noncausal controller and the offline optimal cost have well-known
expressions in terms of 𝐹 and 𝐺:

Theorem 1 (Theorem 11.2.1 in [HSK99]). The optimal noncausal controller is

𝜋0(𝑤) = −(𝐼 + 𝐹∗𝐹)−1𝐹∗𝐺𝑤

and the offline optimal cost is

𝐽 (𝜋0, 𝑤) = 𝑤∗𝐺∗(𝐼 + 𝐹𝐹∗)−1𝐺𝑤.

Proof. Recall that the cost incurred by a controller which selects the control sequence
𝑢 in response to the disturbance sequence 𝑤 is

∥𝐹𝑢 + 𝐺𝑤∥2 + ∥𝑢∥2.

Completing the square, this cost can be rewritten as

𝑤∗𝐺∗(𝐼 +𝐹𝐹∗)−1𝐺𝑤 + (𝑢 + (𝐼 +𝐹∗𝐹)−1𝐹∗𝐺𝑤)∗(𝐼 +𝐹∗𝐹) (𝑢 + (𝐼 +𝐹∗𝐹)−1𝐹∗𝐺𝑤).

Notice that both of these terms are non-negative. The first term clearly does not
depend on 𝑢, whereas the second term can be set to zero by setting

𝑢 = −(𝐼 + 𝐹∗𝐹)−1𝐹∗𝐺𝑤.
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It is hence clear that this is the cost-minimizing choice of 𝑢, and

𝑤∗𝐺∗(𝐼 + 𝐹𝐹∗)−1𝐺𝑤

is the minimal achievable cost. □

2.2 A factorization of the offline optimal cost
Recall that the offline optimal cost is

𝐽 (𝜋0, 𝑤) = 𝑤∗𝐺∗(𝐼 + 𝐹𝐹∗)−1𝐺𝑤.

Let Δ(𝑧) be the unique causal and causally invertible operator such that

𝐼 + 𝐹𝐹∗ = ΔΔ∗.

We note that the existence and uniqueness ofΔ follows from the positive-definiteness
of 𝐼 + 𝐹𝐹∗. The offline cost can be rewritten in terms of Δ as

𝐽 (𝜋0, 𝑤) = ∥Δ−1𝐺𝑤∥2.

This description of the offline optimal cost plays a central role in our derivation of
regret-optimal controllers. We can easily derive Δ(𝑧) in closed form:

Theorem 2. The following canonical factorization holds:

𝐼 + 𝐹 (𝑧)𝐹 (𝑧−∗)∗ = Δ(𝑧)Δ∗(𝑧−∗),

where we define
Δ(𝑧) = (𝐼 + 𝐿 (𝑧𝐼 − 𝐴)−1𝐾)Σ1/2, (2.1)

𝐾 = 𝐴𝑃𝐿Σ−1, Σ = 𝐼 + 𝐿𝑃𝐿∗,

and 𝑃 is the unique Hermitian solution to the Riccati equation

𝑃 = 𝐵𝑢𝐵
∗
𝑢 + 𝐴𝑃𝐴∗ − 𝐴𝑃𝐿 (𝐼 + 𝐿𝑃𝐿∗)−1𝐿𝑃𝐴∗.

Proof. We expand 𝐼 + 𝐹 (𝑧)𝐹 (𝑧−∗)∗ as[
𝐿 (𝑧𝐼 − 𝐴)−1 𝐼

] [
𝐵𝑢𝐵

∗
𝑢 0

0 𝐼

] [
(𝑧−∗𝐼 − 𝐴)−∗𝐿∗

𝐼

]
.

Applying Lemma 2, we see that this equals[
𝐿 (𝑧𝐼 − 𝐴)−1 𝐼

]
Λ(𝑃)

[
(𝑧−∗𝐼 − 𝐴)−∗𝐿∗

𝐼

]
,
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where 𝑃 is an arbitrary Hermitian matrix and we define

Λ(𝑃) =
[
𝐵𝑢𝐵

∗
𝑢 − 𝑃 + 𝐴𝑃𝐴∗ 𝐴𝑃𝐿∗

𝐿𝑃𝐴∗ 𝐼 + 𝐿𝑃𝐿∗

]
.

Notice that the Λ(𝑃) can be factored as[
𝐼 𝐾 (𝑃)
0 𝐼

] [
Γ(𝑃) 0

0 Σ(𝑃)

] [
𝐼 0

𝐾∗(𝑃) 𝐼

]
,

where we define

Γ(𝑃) = 𝐵𝑢𝐵∗
𝑢 − 𝑃 + 𝐴𝑃𝐴∗ − 𝐾 (𝑃)Σ(𝑃)𝐾∗(𝑃),

𝐾 (𝑃) = 𝐴𝑃𝐿Σ(𝑃)−1,

Σ(𝑃) = 𝐼 + 𝐿𝑃𝐿∗.

By assumption, (𝐴, 𝐵𝑢) is stabilizable and (𝐴, 𝐿) is detectable, therefore the Riccati
equation Γ(𝑃) = 0 has a unique stabilizing solution (Theorem E.6.2 in [KSH00]).
Suppose 𝑃 is chosen to be this solution, and define 𝐾 = 𝐾 (𝑃), Σ = Σ(𝑃). We
immediately obtain the canonical factorization

𝐼 + 𝐹 (𝑧)𝐹 (𝑧−∗)∗ = Δ(𝑧)Δ∗(𝑧−∗),

where we define
Δ(𝑧) = (𝐼 + 𝐿 (𝑧𝐼 − 𝐴)−1𝐾)Σ1/2. (2.2)

□

2.3 A state-space model of the optimal noncausal controller
In this section we derive a state-space model of the optimal noncausal controller
over a finite horizon 1, . . . , 𝑇 ; this gives a computationally efficient way to compute
the offline optimal control actions, which we use extensively in the numerical
experiments presented in Chapter 6. The technical machinery we develop here
also plays a crucial role in our proof that no online algorithm can achieve sublinear
regret against the optimal noncausal controller (Theorem 4).

Given a noise sequence 𝑤 = (𝑤0, . . . 𝑤𝑇 ), the optimal noncausal controller selects
the control actions which minimizes the cumulative cost from 𝑡 = 0, . . . 𝑇 :

min
𝑢0,...,𝑢𝑇

𝑇∑︁
𝑡=0

𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑢𝑡 (2.3)

where 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑢𝑡 + 𝐵𝑤𝑤𝑡 .
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We emphasize that the optimal offline control actions are defined with respect to
the actual realizations 𝑤0, . . . 𝑤𝑇 ; the optimal offline control actions are the optimal
actions in hindsight, with full knowledge of the realization 𝑤.

We use dynamic programming to recursively compute the optimal control actions,
starting from the last time step and moving backwards in time; this approach mir-
rors the well-known derivation of the Linear Quadratic Regulator. For any fixed
disturbance 𝑤 = (𝑤0, . . . 𝑤𝑇 ), define the “offline cost-to-go” function

𝐽𝑤𝑡 (𝑥) = min
𝑢

[𝑥⊤𝑄𝑥 + 𝑢⊤𝑢 + 𝐽𝑤𝑡+1(𝑥) (𝐴𝑥 + 𝐵𝑢𝑢 + 𝐵𝑤𝑤𝑡)]

for 𝑡 = 1.. . . . 𝑇 , where we set 𝐽𝑇+1(𝑥) = 0. This function measures the aggregate
cost over the future time horizon starting at the state 𝑥 at time 𝑡, under the assumption
that in each time step, the offline controller picks the control action which minimizes
the future cost given the current state and the realizations 𝑤𝑡 . . . 𝑤𝑇 .

We will show that 𝐽𝑤𝑡 (𝑥) can be written as 𝑥⊤𝑃𝑡𝑥 + 𝑣⊤𝑡 𝑥𝑡 + 𝑞𝑡 for all 𝑡 ∈ {1 . . . 𝑇 + 1},
where 𝑃𝑡 is the solution to the Riccati recurrence which appears in the derivation
of the 𝐻2-optimal policy. The claim is clearly true for 𝑡 = 𝑇 + 1, since we can take
(𝑃𝑇+1, 𝑣𝑇+1, 𝑞𝑇+1) = (0, 0, 0). Proceeding by backwards induction, suppose

𝐽𝑤𝑡+1(𝑥) = 𝑥
⊤𝑃𝑡+1𝑥 + 𝑣⊤𝑡+1𝑥 + 𝑞𝑡+1

for some 𝑣𝑡+1, 𝑞𝑡+1. Then 𝐽𝑤𝑡 (𝑥) is

𝐽𝑤𝑡 (𝑥) = min
𝑢

[
𝑥⊤𝑄𝑥 + 𝑢⊤𝑢 + 𝐽𝑤𝑡+1(𝐴𝑥𝑡 + 𝐵𝑢𝑢𝑡 + 𝐵𝑤𝑤𝑡)

]
= min

𝑢

[
𝑥⊤𝑄𝑥 + 𝑢⊤𝑢 + (𝐴𝑥 + 𝐵𝑢𝑢 + 𝐵𝑤𝑤𝑡)⊤𝑃𝑡+1(𝐴𝑥 + 𝐵𝑢𝑢 + 𝐵𝑤𝑤𝑡)

+ 𝑣⊤𝑡+1(𝐴𝑥 + 𝐵𝑢𝑢 + 𝐵𝑤𝑤𝑡) + 𝑞𝑡+1
]
.

Solving for the minimizing 𝑢, we see that the offline optimal control action is

𝑢𝑡 = −(𝐼 + 𝐵⊤
𝑢 𝑃𝐵𝑢)−1𝐵⊤

𝑢

(
𝑃𝑡+1𝐴𝑥𝑡 + 𝑃𝑡+1𝐵𝑤𝑤𝑡 +

1
2
𝑣𝑡+1

)
.

We note that
−(𝐼 + 𝐵⊤𝑃𝐵)−1𝐵⊤𝑃𝑡+1(𝐴𝑥𝑡 + 𝐵𝑤𝑤𝑡)

is precisely the 𝐻2-optimal control action. In other words, the optimal offline
control action in timestep 𝑡 is the sum of the 𝐻2-optimal online control action and a
correction term which depends only on the future disturbances 𝑤𝑡 . . . 𝑤𝑇 ; it is this
correction term which gives the offline controller its advantage relative over every
causal controller.
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Plugging this choice of 𝑢𝑡 into our expression for 𝐽𝑤𝑡 (𝑥) and collecting terms, we see
that 𝐽𝑤𝑡 (𝑥) = 𝑥⊤𝑃𝑡𝑥+𝑣⊤𝑡 𝑥+𝑞𝑡 where 𝑃𝑡 , 𝑣𝑡 , and 𝑞𝑡 satisfy the backwards recurrences

𝑃𝑡 = 𝑄 + 𝐴⊤𝑃𝑡+1𝐴 − 𝐴⊤𝑃𝑡+1𝐵(𝐼 + 𝐵⊤
𝑢 𝑃𝑡+1𝐵𝑢)−1𝐵⊤

𝑢 𝑃𝐴 (2.4)

𝑣𝑡 = 2𝐴⊤𝑆𝑡𝐵𝑤𝑤𝑡 + 𝐴⊤𝑆𝑡𝑃−1
𝑡+1𝑣𝑡+1, (2.5)

𝑞𝑡 = 𝑤⊤
𝑡 𝐵

⊤
𝑤𝑆𝑡+1𝐵𝑤𝑤𝑡 + 𝑣⊤𝑡+1𝑃

−1
𝑡+1𝑆𝑡𝐵𝑤𝑤𝑡 + 𝑞𝑡+1 −

1
4
𝑣⊤𝑡+1𝐵𝑢𝐻

−1
𝑡 𝐵⊤

𝑢 𝑣𝑡+1, (2.6)

where we define

𝑆𝑡 = 𝑃𝑡+1 − 𝑃𝑡+1𝐵𝑢𝐻
−1
𝑡 𝐵⊤

𝑢 𝑃𝑡+1, (2.7)

𝐻𝑡 = 𝐼 + 𝐵⊤
𝑢 𝑃𝑡+1𝐵𝑢 . (2.8)

We have proven:

Theorem 3. The control actions selected by the optimal noncausal optimal con-
troller are given by

𝑢𝑡 = −(𝐼 + 𝐵⊤
𝑢 𝑃𝑡+1𝐵𝑢)−1𝐵⊤

𝑢

(
𝑃𝑡+1𝐴𝑥𝑡 + 𝑃𝑡+1𝐵𝑤𝑤𝑡 +

1
2
𝑣𝑡+1

)
,

where 𝑃𝑡 satisfies the backwards recurrence (2.4) and 𝑣𝑡 satisfies the backwards
recurrence (2.5), and we initialize 𝑃𝑇+1 = 0, 𝑣𝑇+1 = 0.

We note that this theorem parallels various results from the filtering literature, which
express the solutions to smoothing problems in terms of the corresponding filtering
problems and future observations, e.g., [RTS65].

2.4 An Ω(𝑇) lower bound on dynamic regret
We now show that no online control algorithm can achieve sublinear regret against
the optimal noncausal controller. We prove:

Theorem 4. Suppose (𝐴, 𝐵) is stabilizable and (𝐴,𝑄1/2) is observable on the unit
circle, and suppose the disturbances are generated i.i.d from a distribution D with
mean zero and bounded covarianceΣ ≻ 0. There exists a constant 𝑐0 > 0 depending
on (𝐴, 𝐵, 𝑄, Σ) such that the regret of any causal controller 𝜋 satisfies

lim
𝑡→𝑇

E
𝑤∼D

[
𝐽𝑇 (𝜋, 𝑤) − 𝐽𝑇 (𝜋0, 𝑤)

𝑇

]
≥ 𝑐0. (2.9)

Informally, this theorem says that the dynamic regret of any causal controller must
grow at rate ≈ 𝑐0𝑇 , up to lower-order terms.
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Proof. The key idea is to focus on the setting where the disturbances are picked
i.i.d. from a fixed distribution D in each round; in this setting the regret-minimizing
policy is simply the 𝐻2-optimal policy. To see this, fix any causal controller 𝜋 and
time horizon 𝑇 . The regret of 𝜋 is simply

E
𝑤∼D

[𝐽𝑇 (𝜋, 𝑤) − 𝐽𝑇 (𝜋0, 𝑤)] .

By linearity of expectation, this is

E
𝑤∼D

[𝐽𝑇 (𝜋, 𝑤)] − E
𝑤∼D

[𝐽𝑇 (𝜋0, 𝑤)] .

It is now clear that the online algorithm which minimizes regret is exactly the one
which minimizes the expected cost

E
𝑤∼D

[𝐽𝑇 (𝜋, 𝑤)] .

The 𝐻2-optimal controller is the unique causal controller which minimizes this
expected cost. It follows that if we can show that the 𝐻2-optimal controller satisfies
the lower bound in (2.9) then this will establish the lower bound for all online
controllers. It is well-known that the expected time-averaged cost of the 𝐻2-optimal
controller converges to Tr(𝐵𝑤Σ𝐵⊤

𝑤𝑃) as 𝑇 → ∞, where 𝑃 is the solution of the
Riccati equation

𝑃 = 𝑄 + 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐵𝑢 (𝐼 + 𝐵⊤
𝑢 𝑃𝐵𝑢)−1𝐵⊤

𝑢 𝑃𝐴. (2.10)

In Theorem 5 we show that the expected time-averaged cost of the optimal noncausal
controller converges to

Tr(𝐵𝑤Σ𝐵⊤
𝑤𝑆) −

1
4

Tr(𝐵𝑢𝐻−1𝐵⊤
𝑢𝑉),

as 𝑇 → ∞, where we define

𝑆 = 𝑃 − 𝑃𝐵𝑢𝐻−1𝐵⊤
𝑢 𝑃,

𝐻 = 𝐼 + 𝐵⊤
𝑢 𝑃𝐵𝑢,

and 𝑉 is the unique solution to the Lyapunov equation

𝑉 = 4𝐴⊤𝑆𝐵𝑤Σ𝐵⊤
𝑤𝑆𝐴 + 𝐴⊤𝑆𝑃−1𝑉𝑃−1𝑆𝐴.

It is now clear that the expected time-averaged regret of the 𝐻2-optimal controller
converges to

Tr(𝐵𝑤Σ𝐵⊤
𝑤𝑃𝐵𝑢𝐻

−1𝐵⊤
𝑢 𝑃) +

1
4

Tr(𝐵𝑢𝐻−1𝐵⊤
𝑢𝑉).

This quantity is positive since 𝐻, Σ, and 𝑉 are positive-semidefinite. □
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The expected cost of the optimal noncausal controller
We now turn to the problem of computing the expected infinite-horizon cost of
the optimal noncausal controller under the assumption that the disturbances are
generated i.i.d from D. We prove:

Theorem 5. Suppose (𝐴, 𝐵) is stabilizable and (𝐴,𝑄1/2) is observable on the unit
circle, and suppose the disturbances are generated i.i.d from a distribution D with
mean zero and bounded covariance Σ ≻ 0. The expected time-averaged cost of the
optimal noncausal controller converges to

Tr(𝐵𝑤Σ𝐵⊤
𝑤𝑆) −

1
4

Tr(𝐵𝑢𝐻−1𝐵⊤
𝑢𝑉) (2.11)

as 𝑇 → ∞, where 𝑃 is the solution to the algebraic Riccati Equation (2.10),

𝑆 = 𝑃 − 𝑃𝐵𝑢𝐻−1𝐵⊤
𝑢 𝑃,

𝐻 = 𝐼 + 𝐵⊤
𝑢 𝑃𝐵𝑢,

and 𝑉 is the unique solution to the Lyapunov equation

𝑉 = 4𝐴⊤𝑆𝐵𝑤Σ𝐵⊤
𝑤𝑆𝐴 + 𝐴⊤𝑆𝑃−1𝑉𝑃−1𝑆𝐴.

Proof. Using the notation we introduced in the proof of Theorem 3, the infinite-
horizon cost of the optimal offline policy is

lim
𝑇→∞

E
𝑤∼D

[
1
𝑇
𝐽𝑤0 (𝑥0)

]
= lim
𝑇→∞

1
𝑇
E

𝑤∼D

[
𝑥⊤0 𝑃0𝑥0 + 𝑣⊤0 𝑥0 + 𝑞0

]
.

Recall that we assumed 𝑥0 = 0. Using the recursion for 𝑣𝑡 given by (2.5) and the
fact that 𝑣𝑇+1 = 0 and E[𝑤𝑡] = 0 for all 𝑡 ∈ {0 . . . 𝑇}, we easily see that E[𝑣𝑡] = 0
for all 𝑡 ∈ {0 . . . 𝑇}. In particular, E𝑤 [𝑣0] = 0, so all that remains is to calculate
E[𝑞0]. Using the recurrence (2.6) we derived for 𝑞𝑡 , we see that

E[𝑞𝑡] = Tr(𝐵⊤
𝑤Σ𝑆𝑡𝐵𝑤) −

1
4

Tr(𝐵𝑢𝐻−1
𝑡 𝐵⊤

𝑢𝑉𝑡+1) + E
𝑤
[𝑞𝑡+1],

where we defined 𝑉𝑡 = E[𝑣𝑡𝑣⊤𝑡 ]. Here we used the fact that E[𝑣⊤
𝑡+1(𝑃

−1
𝑡+1𝑆𝑡)𝑤𝑡] = 0,

since 𝑣𝑡+1 and 𝑤𝑡 are independent and E[𝑤𝑡] = 0. We see that 𝑉𝑡 is given by

𝑉𝑡 = E[𝑣𝑡𝑣⊤𝑡 ]
= 4𝐴⊤𝑆𝑡𝐵𝑤Σ𝐵⊤

𝑤𝑆𝑡𝐴 + 𝐴⊤𝑆𝑡𝑃−1
𝑡+1𝑉𝑡+1𝑃

−1
𝑡+1𝑆𝑡𝐴,
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where we applied the recurrence (2.5) and observed that the cross-terms vanish by
independence of 𝑣𝑡+1 and 𝑤𝑡 and the fact that E[𝑤𝑡] = 0.

Let us now consider the limiting behavior of 𝑉𝑡 as 𝑡 → ∞. The assumption that
(𝐴, 𝐵) is stabilizable and (𝐴,𝑄1/2) is observable on the unit circle together imply
that 𝑃𝑡 converges to 𝑃, the solution of the algebraic Riccati equation (2.10), as
𝑡 → ∞ (Theorem 14.5.1 in [HSK99]). Applying the definition of 𝑆𝑡 given in (2.7),
we see that 𝑆𝑡 converges to

𝑆 = 𝑃 − 𝑃𝐵𝑢 (𝐼 + 𝐵⊤
𝑢 𝑃𝐵𝑢)−1𝐵⊤

𝑢 𝑃.

To determine the convergence of𝑉𝑡 , it suffices to show that 𝜌(𝐴⊤𝑆𝑃−1) < 1 (Lemma
D.1.2 in [KSH00]), in which case 𝑉𝑡 will converge to the solution of the equation

𝑉 = 4𝐴⊤𝑆𝐵𝑤Σ𝐵⊤
𝑤𝑆𝐴 + 𝐴⊤𝑆𝑃−1𝑉𝑃−1𝑆𝐴. (2.12)

Notice that

𝐴⊤𝑆𝑃−1 = 𝐴⊤ − 𝐴⊤𝑃𝐵𝑢 (𝐼 + 𝐵⊤
𝑢 𝑃𝐵𝑢)−1𝐵⊤

𝑢

= (𝐴 + 𝐵𝑢𝐾)⊤,

where 𝐾 is the strictly causal 𝐻2-optimal controller. The Kalman gain 𝐴 + 𝐵𝑢𝐾
always has spectral radius strictly less than one, establishing the convergence of 𝑉𝑡
to the solution of equation (2.12). We see that the infinite-horizon optimal offline
cost is

lim
𝑇→∞

1
𝑇
E

𝑤∼D
[𝐽𝑤0 (𝑥0)]

= lim
𝑇→∞

1
𝑇
E

𝑤∼D
[𝑞0]

= lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0

(
Tr(𝐵𝑤Σ𝐵⊤

𝑤𝑆𝑡) −
1
4

Tr(𝐵𝑢𝐻−1
𝑡 𝐵⊤

𝑢𝑉𝑡+1)
)

= Tr(𝐵𝑤Σ𝐵⊤
𝑤𝑆) −

1
4

Tr(𝐵𝑢𝐻−1𝐵⊤
𝑢𝑉).

□
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C h a p t e r 3

REGRET-OPTIMAL FULL-INFORMATION CONTROL

The goal of this thesis is to derive causal controllers which approximate the per-
formance of the optimal noncausal controller as closely as possible. There are,
however, several different notions of approximation. In competitive control, our
goal is to approximate the optimal noncausal controller in a multiplicative sense,
i.e., to find a causal controller whose cost is always at most a constant more than
the cost incurred by the optimal noncausal controller. We can instead choose to
approximate the optimal noncausal controller in an additive sense, by bounding the
difference between the costs incurred by the causal and noncausal controllers (i.e.
the regret). The regret is a function of the disturbance 𝑤, so it is natural that our
bound on the regret be some function of 𝑤 as well; we call such a regret bound a
“data-dependent” regret bound. In energy-optimal control we bound the regret of
the online controller by the energy of 𝑤, and in pathlength-optimal control we bound
the regret of the online controller by the pathlength of 𝑤. In this chapter, we derive
state-space models of the competitive, energy-optimal, and pathlength-optimal con-
trollers in the full-information setting, where the online controller is able to directly
observe the state and disturbance sequence when selecting control actions.

3.1 Competitive Control
The competitive control problem is to find an online controller with optimal com-
petitive ratio:

Problem 1 (Competitive control). Find a causal controller which minimizes the
competitive ratio

sup
𝑤

𝐽 (𝜋, 𝑤)
𝐽 (𝜋0, 𝑤)

.

We call the controller with the smallest possible competitive ratio the competitive
controller. The competitive approach to control was first proposed in [GW19], who
described a competitive algorithm in a narrow class of linear systems using the
Online Balanced Descent (OBD) algorithm introduced in [CGW18]; this approach
was further explored in [Goe+19; Shi+20]. In this section, we derive the controller
with optimal competitive ratio in both LTI systems over an infinite horizon and
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in time-varying systems over a finite horizon, without making any non-standard
structural assumptions about the system dynamics.

Instead of minimizing the competitive ratio directly, we instead solve the following
relaxation:

Problem 2 (Suboptimal competitive control). Given 𝛾 > 0, find a causal controller
such that

sup
𝑤

𝐽 (𝜋, 𝑤)
𝐽 (𝜋0, 𝑤)

< 𝛾2

for all disturbances 𝑤, or determine whether no such controller exists.

We call such a controller the competitive controller at level 𝛾. It is clear that if
we can solve this suboptimal problem then we can easily recover the competitive
controller via bisection on 𝛾.

We derive necessary and sufficient conditions for the existence of a competitive
controller at level 𝛾, along with a state-space model of the controller:

Theorem 6. Suppose (𝐴, 𝐵𝑢) is stabilizable and (𝐴, 𝐿) is detectable. Fix 𝛾 > 0
and define 𝐴, 𝐵𝑢, 𝐵𝑤, �̂� as in (3.5). A causal controller 𝜋 such that

sup
𝑤∈ℓ2

𝐽 (𝜋, 𝑤)
𝐽 (𝜋0, 𝑤)

< 𝛾2 (3.1)

exists if and only if the DARE

𝑃 = �̂�∗ �̂� + 𝐴∗𝑃𝐴 − 𝐴∗𝑃𝐵𝐻−1𝐵∗𝑃𝐴,

where we define 

𝐵 =

[
𝐵𝑢 𝐵𝑤

]
,

𝑅 =


𝐼𝑚 0

0 −𝛾2𝐼𝑛

 ,
𝐻 = 𝑅 + 𝐵∗𝑃𝐵,

has a solution 𝑃 such that

1. 𝐴 − 𝐵𝐻−1𝐵∗𝑃𝐴 is stable;



24

2. 𝑅 and 𝐻 have the same inertia;

3. 𝑃 ⪰ 0.

In this case, one possible causal controller satisfying (3.1) is

𝑢𝑡 = −(𝐼2𝑛 + 𝐵∗
𝑢𝑃𝐵𝑢)−1𝐵∗

𝑢𝑃(𝐴𝜉𝑡 + 𝐵𝑤𝑤𝑡+1),

where the synthetic state 𝜉 ∈ R2𝑛 evolves according to the linear dynamics equation

𝜉𝑡+1 = 𝐴𝜉𝑡 + 𝐵𝑢𝑢𝑡 + 𝐵𝑤𝑤𝑡+1

and the synthetic disturbance 𝑤 is given in (3.9). A strictly causal controller
satisfying (3.1) exists if and only if conditions (1) and (3) hold, and additionally

𝐵∗
𝑢𝑃𝐵𝑢 ≺ 𝛾2𝐼𝑚

and
𝐼2𝑛 + 𝐵∗

𝑢𝑃(𝐼2𝑛 − 𝛾−2𝐵𝑤𝐵
∗
𝑤𝑃)−1𝐵𝑢 ≻ 0.

In this case, one possible strictly causal controller satisfying (3.1) is

𝑢𝑡 = −(𝐼𝑚 + 𝐵∗
𝑢𝑃𝐵𝑢)−1𝐵∗

𝑢𝑃𝐴𝜉𝑡 ,

where we define
𝑃 = 𝑃 − 𝑃𝐵𝑤 (−𝛾2𝐼𝑝 + 𝐵∗

𝑤𝑃𝐵𝑤)−1𝐵∗
𝑤𝑃.

Proof. Recall that the offline optimal cost is

𝐽 (𝜋0, 𝑤) = 𝑤∗𝐺∗(𝐼 + 𝐹𝐹∗)−1𝐺𝑤.

We see that condition (3.1) is equivalent to

𝐽 (𝜋, 𝑤) < 𝛾2𝑤∗𝐺∗ (𝐼 + 𝐹𝐹∗)−1
𝐺𝑤.

Let Δ(𝑧) be the unique causal and causally invertible operator such that

𝐼 + 𝐹𝐹∗ = ΔΔ∗.

With this factorization, condition 3.1 becomes the 𝐻∞ condition

𝐽 (𝜋, 𝑤) < 𝛾2∥𝑤∥2,
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where the synthetic disturbance 𝑤 is given by

𝑤(𝑧) = Δ−1
2 (𝑧)𝐺 (𝑧)𝑤(𝑧)

and the system dynamics in the frequency domain are

𝑠(𝑧) = 𝐹 (𝑧)𝑢(𝑧) + Δ2(𝑧)𝑤(𝑧). (3.2)

In Theorem 2 we found Δ(𝑧) is given by

Δ(𝑧) = (𝐼 + 𝐿 (𝑧𝐼 − 𝐴)−1𝐾)Σ1/2,

where we define
𝐾 = 𝐴𝑃𝐿Σ−1, Σ = 𝐼 + 𝐿𝑃𝐿∗,

and 𝑃 is the unique Hermitian solution to the Riccati equation

𝐵𝑢𝐵
∗
𝑢 − 𝑃 + 𝐴𝑃𝐴∗ − 𝐴𝑃𝐿 (𝐼 + 𝐿𝑃𝐿∗)−1𝐿𝑃𝐴∗ = 0.

With this factorization, we can easily recover the optimal infinite-horizon competi-
tive controller; it is simply the 𝐻∞-optimal infinite-horizon controller in the system
whose dynamics in the frequency domain are

𝑠(𝑧) = 𝐹 (𝑧)𝑢(𝑧) + Δ(𝑧)𝑤(𝑧), (3.3)

where the synthetic disturbance 𝑤 is

𝑤(𝑧) = Δ−1(𝑧)𝐺 (𝑧)𝑤(𝑧). (3.4)

Define 

𝐴 =


𝐴 𝐾Σ1/2

0 0

 ,
𝐵𝑢 =


𝐵𝑢

0

 ,
𝐵𝑤 =


0

𝐼𝑛

 ,
�̂� =

[
𝐿 Σ1/2

]
.

(3.5)
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Notice that Δ̂(𝑧) = 𝑧−1Δ(𝑧) can be cleanly expressed as

Δ̂(𝑧) = �̂� (𝑧𝐼 − 𝐴)−1𝐵𝑤 . (3.6)

Similarly, 𝐹 (𝑧) can be written as

𝐹 (𝑧) = �̂� (𝑧𝐼 − 𝐴)−1𝐵𝑢 . (3.7)

We can rewrite the frequency domain dynamics (3.2) in terms of Δ̂(𝑧):

𝑠(𝑧) = 𝐹 (𝑧)𝑢(𝑧) + Δ̂(𝑧) (𝑧𝑤(𝑧)). (3.8)

It is easy to check that the stabilizability of (𝐴, 𝐵𝑢) implies the stabilizability of
(𝐴, 𝐵𝑢), and similarly the detectability of (𝐴, 𝐿) implies the unit-circle observability
of (𝐴, �̂�). We have shown that the competitive-suboptimal controller at level 𝛾
in the system {𝐴, 𝐵𝑢, 𝐵𝑤, 𝐿} is the 𝐻∞-suboptimal controller at level 𝛾 in the
system {𝐴, 𝐵𝑢, 𝐵𝑤, �̂�}. Plugging these parameters into Theorem 17 immediately
yields necessary and sufficient conditions for the existence of a causal competitive-
suboptimal controller at level 𝛾, along with a state-space model for the controller, if
it exists. It is easy to recover the strictly causal competitive-suboptimal controller
in an analogous fashion.

We now construct the synthetic disturbance 𝑤. Recall that 𝑤(𝑧) = Δ−1(𝑧)𝐺 (𝑧)𝑤(𝑧).
We have

Δ−1(𝑧) = Σ−1/2
(
𝐼 − 𝐿 (𝑧𝐼 − (𝐴 − 𝐾𝐿))−1𝐾

)
,

𝐺 (𝑧) = 𝐿 (𝑧𝐼 − 𝐴)−1𝐵𝑤 .

We note that 𝐴 − 𝐾𝐿 is stable and hence Δ−1(𝑧) is causal and bounded since its
poles are strictly contained in the unit circle. The operator Δ−1(𝑧)𝐺 (𝑧) is given by

Δ−1(𝑧)𝐺 (𝑧) = Σ−1/2𝐿 (𝑧𝐼 − (𝐴 − 𝐾𝐿))−1𝐵𝑤,

therefore a state-space model for 𝑤 is

𝜈𝑡+1 = (𝐴 − 𝐾𝐿)𝜈𝑡 + 𝐵𝑤𝑤𝑡 , 𝑤𝑡 = Σ−1/2𝐿𝜈𝑡 . (3.9)

We emphasize that the system whose frequency domain dynamics are given by (3.8)
is driven by 𝑤𝑡+1, not 𝑤𝑡 , since the driving disturbance in (3.8) is 𝑧𝑤(𝑧), not 𝑤(𝑧).
We reiterate that 𝑤 is a strictly causal function of 𝑤; in particular, 𝑤𝑡+1 depends only
on (. . . , 𝑤𝑡−1, 𝑤𝑡). □



27

Competitive Control in Time-Varying Systems
We show that a controller with optimal competitive ratio can also be systems which
vary over a finite horizon from 𝑡 = 1 to 𝑇 ; similar techniques can be used to obtain
pathlength-optimal and energy-optimal controllers in time-varying systems. The
dynamics are

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑢,𝑡𝑤𝑡 + 𝐵𝑤,𝑡𝑤𝑡 ,

where 𝐴𝑡 ∈ R𝑛×𝑛, 𝐵𝑢,𝑡 ∈ R𝑛×𝑚, 𝐵𝑤,𝑡 ∈ R𝑛×𝑝 for 𝑡 = 1 to 𝑇 . The state cost in each
round is ∥𝑠𝑡 ∥2, where 𝑠𝑡 = 𝑄1/2

𝑡 𝑥𝑡 and 𝑄𝑡 ⪰ 0.

Theorem 7 (Finite-horizon competitive control). A causal controller 𝜋 such that

sup
𝑤

𝐽𝑇 (𝜋, 𝑤)
𝐽𝑇 (𝜋0, 𝑤)

< 𝛾2 (3.10)

exists if and only if

𝐵⊤
𝑤,𝑡

[
𝑃𝑡+1 − 𝑃𝑡+1𝐵𝑢,𝑡

(
𝐼𝑚 + 𝐵⊤

𝑢,𝑡𝑃𝑡+1𝐵𝑢,𝑡

)−1
𝐵⊤
𝑢,𝑡𝑃𝑡+1

]
𝐵𝑤,𝑡 ≺ 𝛾2𝐼𝑛

for 𝑡 = 0, . . . , 𝑇 , where we define

𝐴𝑡 =

[
𝐴𝑡 𝐾𝑡Σ

1/2
𝑡

0 0

]
, 𝐵𝑢,𝑡 =

[
𝐵𝑢,𝑡

0

]
, 𝐵𝑤,𝑡 =

[
0
𝐼

]
, �̂�𝑡 =

[
𝑄

1/2
𝑡 Σ

1/2
𝑡

]
,

we define 𝑃𝑡 to be the solution of the backwards-time Riccati recursion

𝑃𝑡 = �̂�
⊤
𝑡 �̂�𝑡 + 𝐴⊤𝑡 𝑃𝑡+1𝐴𝑡 − 𝐴⊤𝑡 𝑃𝑡+1�̃�𝑡 �̃�

−1
𝑡 �̃�⊤

𝑡 𝑃𝑡+1𝐴𝑡

where we initialize 𝑃𝑇+1 = 0, and we define

�̃�𝑡 =

[
𝐵𝑢,𝑡 𝐵𝑤,𝑡

]
, �̃�𝑡 =

[
𝐼 0
0 −𝛾2𝐼

]
+ �̃�⊤

𝑡 𝑃𝑡+1�̃�𝑡 ,

and 𝐾𝑡 , Σ𝑡 are defined as in (3.14). In this case, a causal controller with competitive
ratio bounded above by 𝛾2 is given by

𝑢𝑡 = −
(
𝐼𝑚 + 𝐵⊤

𝑢,𝑡𝑃𝑡+1𝐵𝑢,𝑡

)−1
𝐵⊤
𝑢,𝑡𝑃𝑡+1

(
𝐴𝑡𝜉𝑡 + 𝐵𝑤,𝑡𝑤𝑡+1

)
,

where the dynamics of 𝜉 ∈ R2𝑛 are

𝜉𝑡+1 = 𝐴𝑡𝜉𝑡 + 𝐵𝑢,𝑡𝑢𝑡 + 𝐵𝑤,𝑡𝑤𝑡+1 (3.11)

and we initialize 𝜉0 = 0. The synthetic disturbance 𝑤 can be computed using the
recursion

𝜈𝑡+1 = (𝐴𝑡 − 𝐾𝑡𝑄1/2
𝑡 )𝜈𝑡 + 𝐵𝑤,𝑡𝑤𝑡 , 𝑤𝑡 = Σ

−1/2
𝑡 𝑄

1/2
𝑡 𝜈𝑡 ,
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where we initialize 𝜈0 = 0. A strictly causal finite-horizon controller with competitive
ratio bounded above by 𝛾2 exists if and only if

𝐵⊤
𝑤,𝑡𝑃𝑡+1𝐵𝑤,𝑡 ≺ 𝛾2𝐼𝑛

for 𝑡 = 0, . . . , 𝑇 . In this case, a strictly causal controller with competitive ratio
bounded above by 𝛾2 is given by

𝑢𝑡 = −
(
𝐼𝑚 + 𝐵⊤

𝑢,𝑡𝑃𝑡+1𝐵𝑢,𝑡

)−1
𝐵⊤
𝑢,𝑡𝑃𝑡+1𝐴𝑡𝜉𝑡 ,

where we define

𝑃𝑡+1 = 𝑃𝑡+1 − 𝑃𝑡+1𝐵𝑤,𝑡 (−𝛾2𝐼𝑝 + 𝐵⊤
𝑤,𝑡𝑃𝑡 + 1𝐵𝑤,𝑡)−1𝐵⊤

𝑤,𝑡𝑃𝑡+1.

Proof. Let 𝐿𝑡 = 𝑄1/2
𝑡 for 𝑡 = 0, . . . , 𝑇 . The offline optimal cost is

𝐽𝑇 (𝜋0, 𝑤) = 𝑤∗𝐺∗(𝐼 + 𝐹𝐹∗)−1𝐺𝑤,

where 𝐹 and 𝐺 are the transfer matrices mapping 𝑢 = (𝑢0, . . . , 𝑢𝑇 ) and 𝑤 =

(𝑤0, . . . , 𝑤𝑇 ) to 𝑠 = (𝑠0, . . . , 𝑠𝑇 ):

𝐹 =



0 0 0 0 · · ·
𝐿1𝐵𝑢,0 0 0 0
𝐿2𝐴1𝐵𝑢,0 𝐿2𝐵𝑢,1 0 0
𝐿3𝐴2𝐴1𝐵𝑢,0 𝐿3𝐴1𝐵𝑢,1 𝐿3𝐵𝑢,2 0

...
. . .


,

𝐺 =



0 0 0 0 · · ·
𝐿1𝐵𝑤,0 0 0 0
𝐿2𝐴1𝐵𝑤,0 𝐿2𝐵𝑤,1 0 0
𝐿3𝐴2𝐴1𝐵𝑤,0 𝐿3𝐴1𝐵𝑤,1 𝐿3𝐵𝑤,2 0

...
. . .


.

We note that due to the time-varying dynamics, 𝐹 and 𝐺 lack the block-Toeplitz
structure of the transfer operators associated to LTI systems.

We see that condition (3.10) is equivalent to

𝐽𝑇 (𝜋, 𝑤) ≤ 𝛾2𝑤∗𝐺∗ (𝐼 + 𝐹𝐹∗)−1
𝐺𝑤.
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Let Δ be the unique causal and causally invertible matrix such that

𝐼 + 𝐹𝐹∗ = ΔΔ∗.

With this factorization, condition 3.10 becomes the 𝐻∞ condition

𝐽𝑇 (𝜋, 𝑤) ≤ 𝛾2∥𝑤∥2,

where the synthetic disturbance 𝑤 is given by

𝑤 = Δ−1
2 𝐺𝑤

and the synthetic system dynamics are

𝑠 = 𝐹𝑢 + Δ2𝑤. (3.12)

A state-space model for 𝐹 is given by

𝜖𝑡+1 = 𝐴𝑡𝜖𝑡 + 𝐵𝑢,𝑡𝑢𝑡 , 𝑠𝑡 = 𝐿𝑡𝜖𝑡 .

Given this state-space model, we wish to obtain the factorization ΔΔ⊤ = 𝐼 + 𝐹𝐹⊤

whereΔ is causal. We interpret 𝐼+𝐹𝐹⊤ as the covariance matrix of an appropriately
defined random variable and use the Kalman filter to obtain a state-space model for
Δ. Suppose that 𝑢 and 𝑣 are zero-mean random variables such that E[𝑢𝑢⊤] = 𝐼,
E[𝑣𝑣⊤] = 𝐼 and E[𝑢𝑣⊤] = 0. Define 𝑦 = 𝐹𝑢 + 𝑣; notice that E[𝑦𝑦⊤] = 𝐼 + 𝐹𝐹⊤.
Given a state-space model for 𝐹, the Kalman filter can be used to construct a state-
space model for a causal matrix Δ such that 𝑦 = Δ𝑒, where 𝑒 is a zero-mean random
variable such that E[𝑒𝑒⊤] = 𝐼; this is the so-called “whitening" property of the
Kalman filter. Notice that since 𝑦 = 𝐹𝑢 + 𝑣, E[𝑦𝑦⊤] = 𝐼 + 𝐹𝐹⊤; on the other hand,
𝑦 = Δ𝑒, so E[𝑦𝑦⊤] = ΔΔ⊤. Therefore 𝐼 + 𝐹𝐹⊤ = ΔΔ⊤, as desired.

Using the Kalman filter as described in Theorem 9.2.1 in [KSH00], we obtain a
state-space model for Δ:

𝜂𝑡+1 = 𝐴𝑡𝜂𝑡 + 𝐾𝑡Σ1/2
𝑡 𝑒𝑡 , 𝑦𝑡 = 𝐿𝑡𝜂𝑡 + Σ

1/2
𝑡 𝑒𝑡 , (3.13)

where we define
𝐾𝑡 = 𝐴𝑡𝑃𝑡𝐿𝑡Σ

−1
𝑡 , Σ𝑡 = 𝐼 + 𝐿𝑡𝑃𝑡𝐿⊤𝑡 , (3.14)

and 𝑃𝑡 is defined recursively as

𝑃𝑡+1 = 𝐴𝑡𝑃𝑡𝐴
⊤
𝑡 + 𝐵𝑢,𝑡𝐵⊤

𝑢,𝑡 − 𝐾𝑡Σ𝑡𝐾⊤
𝑡
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where we initialize 𝑃0 = 0.

Now that we have state-space models for 𝐹 and Δ, we can form a state-space model
for the overall system (3.12). Letting 𝛼𝑡 = 𝜖𝑡 + 𝜂𝑡 , we see that a state-space model
for this system is

𝛼𝑡+1 = 𝐴𝑡𝛼𝑡 + 𝐵𝑢,𝑡𝑢𝑡 + 𝐾𝑡Σ1/2
𝑡 𝑤𝑡 , 𝑠𝑡 = 𝐿𝑡𝛼𝑡 + Σ

1
2
𝑡 𝑤𝑡 .

This system can be rewritten as

𝜉𝑡+1 = 𝐴𝑡𝜉𝑡 + 𝐵𝑢,𝑡𝑢𝑡 + 𝐵𝑤,𝑡𝑤𝑡+1, 𝑠𝑡 = �̂�𝑡𝜉𝑡 , (3.15)

where we define

𝐴𝑡 =

[
𝐴𝑡 𝐾𝑡Σ

1/2
𝑡

0 0

]
, 𝐵𝑢,𝑡 =

[
𝐵𝑢,𝑡

0

]
, 𝐵𝑤,𝑡 =

[
0
𝐼

]
, �̂�𝑡 =

[
𝐿𝑡 Σ

1/2
𝑡

]
and we initialize 𝜉0 = 0. Recall that our goal is to find a controller 𝜋 in the
synthetic system (3.15) such that 𝐽𝑇 (𝜋, 𝑤) < 𝛾2∥𝑤∥2

2 for all disturbances 𝑤, or
to determine whether no such controller exists. Theorem 18 gives necessary and
sufficient conditions for the existence of such a controller, along with an explicit
state-space description of the controller, if it exists.

We emphasize that the driving disturbance in the synthetic system (3.15) is not 𝑤,
but rather the synthetic disturbance 𝑤 = Δ−1𝐺𝑤. Notice that Δ−1𝐺 is strictly causal,
since Δ−1 is causal and𝐺 is strictly causal. Exchanging inputs and outputs in (3.13),
we see that a state-space model for Δ−1 is

𝜂𝑡+1 = (𝐴𝑡 − 𝐾𝑡𝐿𝑡)𝜂𝑡 + 𝐾𝑡𝑦𝑡 , 𝑒𝑡 = Σ
−1/2
𝑡 (𝑦𝑡 − 𝐿𝑡𝜂𝑡).

A state-space model for 𝐺 is

𝛿𝑡+1 = 𝐴𝑡𝛿𝑡 + 𝐵𝑤,𝑡𝑤𝑡 , 𝑠𝑡 = 𝐿𝑡𝛿𝑡 .

Equating 𝑠 and 𝑦, we see that a state-space model for Δ−1𝐺 is[
𝜂𝑡+1

𝛿𝑡+1

]
=

[
𝐴𝑡 − 𝐾𝑡𝐿𝑡 𝐾𝑡𝐿𝑡

0 𝐴𝑡

] [
𝜂𝑡

𝛿𝑡

]
+

[
0
𝐵𝑤,𝑡

]
𝑤𝑡 ,

𝑒𝑡 = Σ
−1/2
𝑡 𝐿𝑡 (𝛿𝑡 − 𝜂𝑡).

Setting 𝜈𝑡 = 𝛿𝑡 − 𝜂𝑡 and simplifying, we see that a minimal representation for 𝑤 is

𝜈𝑡+1 = (𝐴𝑡 − 𝐾𝑡𝐿𝑡)𝜈𝑡 + 𝐵𝑤,𝑡𝑤𝑡 , 𝑤𝑡 = Σ
−1/2
𝑡 𝐿𝑡𝜈𝑡 .

We reiterate that 𝑤 is a strictly causal function of 𝑤; in particular, 𝑤𝑡+1 depends only
on 𝑤0, 𝑤1, . . . , 𝑤𝑡 . □
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3.2 Energy-Optimal Control
The energy-optimal control problem is to find an online controller which minimizes
the ratio of the regret to the energy in the disturbance:

Problem 3 (Energy-optimal control). Find an online controller which minimizes

sup
𝑤

𝐽 (𝜋, 𝑤) − 𝐽 (𝜋0, 𝑤)
∥𝑤∥2

2
.

We call the controller with the smallest possible ratio the energy-optimal controller.
Instead of minimizing the ratio of regret to energy directly, we instead solve the
following relaxation:

Problem 4 (Energy-suboptimal control). Given 𝛾 > 0, find an online controller
such that

sup
𝑤

𝐽 (𝜋, 𝑤) − 𝐽 (𝜋0, 𝑤)
∥𝑤∥2

2
< 𝛾2

for all disturbances 𝑤, or determine whether no such controller exists.

We call such a controller the energy-suboptimal controller at level 𝛾. It is clear that if
we can solve this suboptimal problem then we can easily recover the energy-optimal
controller via bisection on 𝛾.

We derive necessary and sufficient conditions for the existence of an energy-
suboptimal controller at level 𝛾, along with a state-space model of the controller:

Theorem 8. Suppose (𝐴, 𝐵𝑢) is stabilizable and (𝐴, 𝐿) is detectable. Fix 𝛾 > 0
and define 𝐴, 𝐵𝑢, 𝐵𝑤, �̂� as in (3.26). A causal controller 𝜋 such that

sup
𝑤∈ℓ2

𝐽 (𝜋, 𝑤) − 𝐽 (𝜋0, 𝑤)
∥𝑤∥2

2
< 𝛾2 (3.16)

exists if and only if the DARE

𝑃 = �̂�∗ �̂� + 𝐴∗𝑃𝐴 − 𝐴∗𝑃𝐵𝐻−1𝐵∗𝑃𝐴,

where we define 

𝐵 =

[
𝐵𝑢 𝐵𝑤

]
,

𝑅 =


𝐼𝑚 0

0 −𝐼𝑝

 ,
𝐻 = 𝑅 + 𝐵∗𝑃𝐵,
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has a solution 𝑃 such that

1. 𝐴 − 𝐵𝐻−1𝐵∗𝑃𝐴 is stable;

2. 𝑅 and 𝐻 have the same inertia;

3. 𝑃 ⪰ 0.

In this case, one possible causal controller satisfying (3.16) is

𝑢𝑡 = −(𝐼 + 𝐵∗
𝑢𝑃𝐵𝑢)−1𝐵∗

𝑢𝑃(𝐴𝜉𝑡 + 𝐵𝑤𝑤𝑡),

where the synthetic state 𝜉 ∈ R2𝑛 evolves according to the linear dynamics equation

𝜉𝑡+1 = 𝐴𝜉𝑡 + 𝐵𝑢𝑢𝑡 + 𝐵𝑤𝑤𝑡

and the synthetic disturbance 𝑤 is given in (3.21). A strictly causal controller
satisfying (3.16) exists if and only if conditions (1) and (3) hold, and additionally

𝐵∗
𝑢𝑃𝐵𝑢 ≺ 𝛾2𝐼,

𝐼 + 𝐵∗
𝑤𝑃(𝐼 − 𝐵𝑢 (−𝛾2𝐼 + 𝐵∗

𝑢𝑃𝐵𝑢)−1𝐵∗
𝑢𝑃)𝐵𝑤 ≻ 0.

In this case, one possible strictly causal controller satisfying (3.16) is

𝑢𝑡 = −(𝐼𝑚 + 𝐵∗
𝑢𝑃𝐵𝑢)−1𝐵∗

𝑢𝑃𝐴𝜉𝑡 ,

where we define
𝑃 = 𝑃 − 𝑃𝐵𝑤 (−𝛾2𝐼𝑝 + 𝐵∗

𝑤𝑃𝐵𝑤)−1𝐵∗
𝑤𝑃.

Proof. Recall that the offline optimal cost is

𝐽 (𝜋0, 𝑤) = 𝑤∗𝐺∗(𝐼 + 𝐹𝐹∗)−1𝐺𝑤.

We see that condition (3.16) is equivalent to

𝐽 (𝜋, 𝑤) < 𝑤∗
[
𝛾2𝐼 + 𝐺∗ (𝐼 + 𝐹𝐹∗)−1

𝐺

]
𝑤.

Our goal is to obtain the factorization

𝛾2𝐼 + 𝐺∗ (𝐼 + 𝐹𝐹∗)−1
𝐺 = Δ∗

2Δ2, (3.17)
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where Δ2(𝑧) is causal and causally invertible. With this factorization, condition
(3.16) becomes the 𝐻∞ condition

𝐽 (𝜋, 𝑤) < ∥𝑤∥2,

where the synthetic disturbance 𝑤 is given by

𝑤(𝑧) = Δ2(𝑧)𝑤(𝑧)

and the system dynamics in the frequency domain are

𝑠(𝑧) = 𝐹 (𝑧)𝑢(𝑧) + 𝐺 (𝑧)Δ−1
2 (𝑧)𝑤(𝑧). (3.18)

In Theorem 2 we found that a causal and causally invertible operator Δ satisfying

𝐼 + 𝐹 (𝑧)𝐹 (𝑧−∗)∗ = Δ(𝑧)Δ(𝑧−∗)∗

is given by
Δ(𝑧) = (𝐼 + 𝐿 (𝑧𝐼 − 𝐴)−1𝐾)Σ1/2,

where we define
𝐾 = 𝐴𝑃𝐿Σ−1, Σ = 𝐼 + 𝐿𝑃𝐿∗,

and 𝑃 is the unique Hermitian solution to the Riccati equation

𝐵𝑢𝐵
∗
𝑢 − 𝑃 + 𝐴𝑃𝐴∗ − 𝐴𝑃𝐿 (𝐼 + 𝐿𝑃𝐿∗)−1𝐿𝑃𝐴∗ = 0.

The operator Δ−1 is given by

Δ−1(𝑧) = Σ−1/2
(
𝐼 − 𝐿 (𝑧𝐼 − (𝐴 − 𝐾𝐿))−1𝐾

)
,

therefore Δ−1(𝑧)𝐺 (𝑧) is

Δ−1(𝑧)𝐺 (𝑧) = Σ−1/2𝐿 (𝑧𝐼 − (𝐴 − 𝐾𝐿))−1𝐵𝑤 .

Define 𝐴 = 𝐴 − 𝐾𝐿. We can now recover the factorization (3.17). Notice that the
left-hand side of (3.17) can be written as[

𝐵∗
𝑤 (𝑧−∗𝐼 − 𝐴)−∗ 𝐼

] [
𝐿Σ−1𝐿 0

0 𝛾2𝐼

] [
(𝑧𝐼 − 𝐴)−1𝐵𝑤

𝐼

]
.

Applying Lemma 1, we see that this equals[
𝐵∗
𝑤 (𝑧−∗𝐼 − 𝐴)−∗ 𝐼

]
Λ2(𝑃2)

[
(𝑧𝐼 − 𝐴)−1𝐵𝑤

𝐼

]
,
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where 𝑃2 is an arbitrary Hermitian operator and we define

Λ2(𝑃2) =
[
𝐿Σ−1𝐿 − 𝑃2 + 𝐴∗𝑃2𝐴 𝐴∗𝑃2𝐵𝑤

𝐵∗
𝑤𝑃2𝐴 𝛾2𝐼 + 𝐵∗

𝑤𝑃2𝐵𝑤

]
.

Notice that the Λ2(𝑃2) can be factored as[
𝐼 𝐾∗

2 (𝑃2)
0 𝐼

] [
Γ2(𝑃2) 0

0 Σ2(𝑃2)

] [
𝐼 0

𝐾2(𝑃2) 𝐼

]
,

where we define

Γ2(𝑃2) = 𝐿Σ−1𝐿 − 𝑃2 + 𝐴∗𝑃2𝐴 − 𝐾∗
2 (𝑃2)Σ2𝐾2(𝑃2),

𝐾2(𝑃2) = Σ−1
2 (𝑃2)𝐵∗

𝑤𝑃2𝐴,

Σ2(𝑃2) = 𝛾2𝐼 + 𝐵∗
𝑤𝑃2𝐵𝑤 .

Notice that 𝐴 is stable, therefore the Riccati equation Γ2(𝑃2) = 0 has a unique
stabilizing solution (Theorem E.6.2 in [KSH00]). Suppose 𝑃2 is chosen to be
this solution, and define 𝐾2 = 𝐾2(𝑃2), Σ2 = Σ2(𝑃2). We immediately obtain the
factorization (3.17), where we define

Δ2(𝑧) = Σ
1/2
2 (𝐼 + 𝐾2(𝑧𝐼 − 𝐴)−1𝐵𝑤). (3.19)

Recall that the energy-suboptimal controller at level 𝛾 is the 𝐻∞-suboptimal con-
troller at level 1 in the system (3.18). The operator Δ−1

2 is given by

Δ−1
2 (𝑧) = (𝐼 − 𝐾2(𝑧𝐼 − (𝐴 − 𝐵𝑤𝐾2))−1𝐵𝑤)Σ−1/2

2 .

We note that 𝐴 − 𝐵𝑤𝐾2 is stable and hence Δ−1
2 (𝑧) is causal and bounded since its

poles are strictly contained in the unit circle. Define

𝐴 =


𝐴 −𝐵𝑤𝐾2

0 𝐴 − 𝐵𝑤𝐾2

 ,
𝐵𝑢 =


𝐵𝑢

0

 ,
𝐵𝑤 =


𝐵𝑤Σ

−1/2
2

𝐵𝑤Σ
−1/2
2

 ,
�̂� =

[
𝐿 0

]
.

(3.20)
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It is easy to verify that

𝐹 (𝑧) = �̂� (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐺 (𝑧)Δ−1(𝑧) = �̂� (𝑧𝐼 − 𝐴)−1𝐵𝑤 .

Furthermore, one can check that the stabilizability of (𝐴, 𝐵𝑢) implies the stabiliz-
ability of (𝐴, 𝐵𝑢), and similarly the detectability of (𝐴, 𝐿) implies the unit-circle
observability of (𝐴, 𝐵𝑢). We have shown that the energy-suboptimal controller
at level 𝛾 in the system {𝐴, 𝐵𝑢, 𝐵𝑤, 𝐿} is the 𝐻∞-suboptimal controller at level
1 in the system {𝐴, 𝐵𝑢, 𝐵𝑤, �̂�}. Plugging these parameters into Theorem 17 im-
mediately yields necessary and sufficient conditions for the existence of a causal
energy-suboptimal controller at level 𝛾, along with a state-space model for the
controller, if it exists. It is easy to recover the strictly causal energy-suboptimal
controller in an analogous fashion. Recall that the synthetic disturbance 𝑤 is given
by 𝑤(𝑧) = Δ2(𝑧)𝑤(𝑧); it immediately follows from (3.19) that a state-space model
for 𝑤 is

𝜈𝑡+1 = 𝐴𝜈𝑡 + 𝐵𝑤𝑤𝑡 , 𝑤𝑡 = Σ
1/2
2 (𝐾2𝜈𝑡 + 𝑤𝑡). (3.21)

□

3.3 Pathlength-Optimal Control
It is natural to bound the regret of an online learning algorithm by the temporal
variation in the data it encounters. Intuitively, it should be easier to achieve low
regret when the data changes slowly over time, since the past observations of the
algorithm are predictive of the future; conversely, when the data sequence changes
frequently or abruptly one should expect a learning algorithm to incur high regret.
An alternative idea, first proposed by Zinkevich in [Zin03], is to bound the regret
of the online algorithm by the variation of the comparator sequence instead of the
variation of the data. Both types of regret bounds are referred to as pathlength
bounds. A series of works [BGZ15; Bub+19; Zha+20] describe bandit algorithms
whose regret is bounded pathlength. We also note [ZWZ22], which describes
an online control algorithm with regret which is bounded by the variation in a
comparator sequence of DAC policies.

The pathlength-optimal control problem is to find an online controller which min-
imizes the ratio of its regret (relative to the optimal noncausal controller) to the
pathlength the disturbance:

Problem 5 (Pathlength-optimal control). Find an online controller which minimizes

sup
𝑤

𝐽 (𝜋, 𝑤) − 𝐽 (𝜋0, 𝑤)
∥𝐷 𝑝𝑤∥2

2
.
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We call the controller with the smallest possible ratio the pathlength-optimal con-
troller. Instead of minimizing the ratio of regret to pathlength directly, we instead
solve the following relaxation:

Problem 6 (Pathlength-suboptimal control). Given 𝛾 > 0, find an online controller
such that

sup
𝑤

𝐽 (𝜋, 𝑤) − 𝐽 (𝜋0, 𝑤)
∥𝐷 𝑝𝑤∥2

2
< 𝛾2

for all disturbances 𝑤, or determine whether no such controller exists.

We call such a controller the pathlength-suboptimal controller at level 𝛾. It is
clear that if we can solve this suboptimal problem then we can easily recover the
pathlength-optimal controller via bisection on 𝛾.

We derive necessary and sufficient conditions for the existence of an pathlength-
suboptimal controller at level 𝛾, along with a state-space model of the controller:

Theorem 9. Suppose (𝐴, 𝐵𝑢) is stabilizable and (𝐴, 𝐿) is detectable. Fix 𝛾 > 0
and define 𝐴, 𝐵𝑢, 𝐵𝑤, �̂� as in (3.26). A causal controller 𝜋 satisfying

sup
𝑤∈ℓ2

𝐽 (𝜋, 𝑤) − 𝐽 (𝜋0, 𝑤)
∥𝐷 𝑝𝑤∥2

2
< 𝛾2 (3.22)

exists if and only if the DARE

𝑃 = �̂�∗ �̂� + 𝐴∗𝑃𝐴 − 𝐴∗𝑃𝐵𝐻−1𝐵∗𝑃𝐴,

where we define 

𝐵 =

[
𝐵𝑢 𝐵𝑤

]
,

𝑅 =


𝐼𝑚 0

0 −𝐼𝑝

 ,
𝐻 = 𝑅 + 𝐵∗𝑃𝐵,

has a solution 𝑃 such that

1. 𝐴 − 𝐵𝐻−1𝐵∗𝑃𝐴 is stable;

2. 𝑅 and 𝐻 have the same inertia;
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3. 𝑃 ⪰ 0.

In this case, one possible causal controller satisfying (3.22) is

𝑢𝑡 = −(𝐼2𝑛+𝑝 + 𝐵∗
𝑢𝑃𝐵𝑢)−1𝐵∗

𝑢𝑃(𝐴𝜉𝑡 + 𝐵𝑤𝑤𝑡),

where the synthetic state 𝜉 ∈ R2𝑛+𝑝 evolves according to the linear dynamics equa-
tion

𝜉𝑡+1 = 𝐴𝜉𝑡 + 𝐵𝑢𝑢𝑡 + 𝐵𝑤𝑤𝑡

and the synthetic disturbance 𝑤 is given in (3.27). A strictly causal controller
satisfying (3.22) exists if and only if conditions (1) and (3) hold, and additionally

𝐵∗
𝑢𝑃𝐵𝑢 ≺ 𝛾2𝐼,

𝐼 + 𝐵∗
𝑤𝑃(𝐼 − 𝐵𝑢 (−𝛾2𝐼 + 𝐵∗

𝑢𝑃𝐵𝑢)−1𝐵∗
𝑢𝑃)𝐵𝑤 ≻ 0.

In this case, one possible strictly causal controller satisfying (3.22) is

𝑢𝑡 = −(𝐼𝑚 + 𝐵∗
𝑢𝑃𝐵𝑢)−1𝐵∗

𝑢𝑃𝐴𝜉𝑡 ,

where we define
𝑃 = 𝑃 − 𝑃𝐵𝑤 (−𝛾2𝐼𝑝 + 𝐵∗

𝑤𝑃𝐵𝑤)−1𝐵∗
𝑤𝑃.

Proof. Recall that the offline optimal cost is

𝐽 (𝜋0, 𝑤) = 𝑤∗𝐺∗(𝐼 + 𝐹𝐹∗)−1𝐺𝑤

and that the pathlength of the disturbance sequence is ∥𝐷𝑤(𝑧)∥2, where𝐷 (𝑧) = 1−𝑧.
We see that condition (3.22) is equivalent to

𝐽 (𝜋, 𝑤) < 𝑤∗
[
𝛾2𝐷∗𝐷 + 𝐺∗ (𝐼 + 𝐹𝐹∗)−1

𝐺

]
𝑤.

Our goal is to obtain a canonical factorization

𝛾2𝐷∗𝐷 + 𝐺∗ (𝐼 + 𝐹𝐹∗)−1
𝐺 = Δ∗

2Δ2, (3.23)

where Δ2(𝑧) is causal and causally invertible. With this factorization, condition
(3.22) becomes the 𝐻∞ condition

𝐽 (𝜋, 𝑤) < ∥𝑤∥2,

where the synthetic disturbance 𝑤 is given by

𝑤(𝑧) = Δ2(𝑧)𝑤(𝑧)
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and the system dynamics in the frequency domain are

𝑠(𝑧) = 𝐹 (𝑧)𝑢(𝑧) + 𝐺 (𝑧)Δ−1
2 (𝑧)𝑤(𝑧). (3.24)

In Theorem 2 we found that a causal and causally invertible operator Δ satisfying

𝐼 + 𝐹 (𝑧)𝐹 (𝑧−∗)∗ = Δ(𝑧)Δ(𝑧−∗)∗

is given by
Δ(𝑧) = (𝐼 + 𝐿 (𝑧𝐼 − 𝐴)−1𝐾)Σ1/2,

where we define
𝐾 = 𝐴𝑃𝐿Σ−1, Σ = 𝐼 + 𝐿𝑃𝐿∗,

and 𝑃 is the unique Hermitian solution to the Riccati equation

𝐵𝑢𝐵
∗
𝑢 − 𝑃 + 𝐴𝑃𝐴∗ − 𝐴𝑃𝐿 (𝐼 + 𝐿𝑃𝐿∗)−1𝐿𝑃𝐴∗ = 0.

The operator Δ−1(𝑧) is given by

Δ−1(𝑧) = Σ−1/2
(
𝐼 − 𝐿 (𝑧𝐼 − (𝐴 − 𝐾𝐿))−1𝐾

)
,

therefore a minimal representation of Δ−1(𝑧)𝐺 (𝑧) is

Δ−1(𝑧)𝐺 (𝑧) = Σ−1/2𝐿 (𝑧𝐼 − (𝐴 − 𝐾𝐿))−1𝐵𝑤 .

We can now recover the factorization (3.23). Notice that the left-hand side of (3.23)
can be written as[

𝐵∗
𝑤 (𝑧−∗𝐼 − 𝐴)−∗ 𝐼

] [
�̃�∗ �̃� 𝑆

𝑆∗ 𝛾2𝐼

] [
(𝑧𝐼 − 𝐴)−1𝐵𝑤

𝐼

]
,

where we define

�̃� =

[
Σ−1/2𝐿 0

0 𝛾𝐼𝑝

]
, 𝑆 =

[
0

𝛾2𝐼𝑝

]
, 𝐴 =

[
𝐴 − 𝐾𝐿 0

0 0

]
, 𝐵𝑤 =

[
𝐵𝑤

−𝐼𝑝

]
.

Applying Lemma 1, we see that this equals[
𝐵∗
𝑤 (𝑧−∗𝐼 − 𝐴)−∗ 𝐼

]
Λ2(𝑃2)

[
(𝑧𝐼 − 𝐴)−1𝐵𝑤

𝐼

]
,

where 𝑃2 is an arbitrary Hermitian operator and we define

Λ2(𝑃2) =
[
�̃�∗ �̃� − 𝑃2 + 𝐴∗𝑃2𝐴 𝑆 + 𝐴∗𝑃2𝐵𝑤

𝑆∗ + 𝐵∗
𝑤𝑃2𝐴 𝛾2𝐼 + 𝐵∗

𝑤𝑃2𝐵𝑤

]
.
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Notice that the Λ2(𝑃2) can be factored as[
𝐼 𝐾∗

2 (𝑃2)
0 𝐼

] [
Γ2(𝑃2) 0

0 Σ2(𝑃2)

] [
𝐼 0

𝐾2(𝑃2) 𝐼

]
,

where we define

Γ2(𝑃2) = �̃�∗ �̃� − 𝑃2 + 𝐴∗𝑃2𝐴 − 𝐾∗
2 (𝑃2)Σ2𝐾2(𝑃2),

𝐾2(𝑃2) = Σ−1
2 (𝑃2) (𝑆∗ + 𝐵∗

𝑤𝑃2𝐴),

Σ2(𝑃2) = 𝛾2𝐼 + 𝐵∗
𝑤𝑃2𝐵𝑤 .

It is clear that (𝐴, 𝐵𝑤) is stabilizable, therefore the Riccati equation Γ2(𝑃2) = 0 has
a unique stabilizing solution (Theorem E.6.2 in [KSH00]). Suppose 𝑃2 is chosen to
be this solution, and define 𝐾2 = 𝐾2(𝑃2), Σ2 = Σ2(𝑃2). We immediately obtain the
factorization (3.23), where we define

Δ2(𝑧) = Σ
1/2
2 (𝐼 + 𝐾2(𝑧𝐼 − 𝐴)−1𝐵𝑤). (3.25)

Recall that the pathlength-suboptimal controller at level 𝛾 is the 𝐻∞-suboptimal
controller at level 1 in the system (3.24). A state-space model for Δ−1

2 is given by

Δ−1
2 (𝑧) = (𝐼 − 𝐾2(𝑧𝐼 − (𝐴 − 𝐵𝑤𝐾2))−1𝐵𝑤)Σ−1/2

2 .

We note that 𝐴 − 𝐵𝑤𝐾2 is stable and hence Δ−1
2 (𝑧) is causal and bounded since its

poles are strictly contained in the unit circle. Define

𝐴 =


𝐴 −𝐵𝑤𝐾2

0 𝐴 − 𝐵𝑤𝐾2


𝐵𝑢 =


𝐵𝑢

0

 ,
𝐵𝑤 =


𝐵𝑤Σ

−1/2
2

𝐵𝑤Σ
−1/2
2


�̂� =

[
𝐿 0

]
.

(3.26)

It is easy to verify that

𝐹 (𝑧) = �̂� (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐺 (𝑧)Δ−1(𝑧) = �̂� (𝑧𝐼 − 𝐴)−1𝐵𝑤 .
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Furthermore, one can check that the stabilizability of (𝐴, 𝐵𝑢) implies the stabiliz-
ability of (𝐴, 𝐵𝑢), and similarly the detectability of (𝐴, 𝐿) implies the unit-circle
observability of (𝐴, 𝐵𝑢). We have shown that the pathlength-suboptimal controller
at level 𝛾 in the system {𝐴, 𝐵𝑢, 𝐵𝑤, 𝐿} is the 𝐻∞-suboptimal controller at level
1 in the system {𝐴, 𝐵𝑢, 𝐵𝑤, �̂�}. Plugging these parameters into Theorem 17 im-
mediately yields necessary and sufficient conditions for the existence of a causal
pathlength-suboptimal controller at level 𝛾, along with a state-space model for the
controller, if it exists. It is easy to recover the strictly causal pathlength-suboptimal
controller in an analogous fashion. Recall that the synthetic disturbance 𝑤 is given
by 𝑤(𝑧) = Δ2(𝑧)𝑤(𝑧); it immediately follows from (3.25) that a state-space model
for 𝑤 is

𝜈𝑡+1 = 𝐴𝜈𝑡 + 𝐵𝑤𝑤𝑡 , 𝑤𝑡 = Σ
1/2
2 (𝐾2𝜈𝑡 + 𝑤𝑡). (3.27)

□
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C h a p t e r 4

REGRET-OPTIMAL MEASUREMENT-FEEDBACK CONTROL

We now turn to the more challenging problem of measurement-feedback control,
where the online controller is unable to directly observe the state or disturbance
when selecting the control action, but instead only has access to a noisy linear
observation of the state in each timestep:

𝑦𝑡 = 𝐶𝑥𝑡 + 𝑣𝑡 .

We let 𝐻 and 𝐽 be the transfer operators mapping 𝑢 and 𝑤 to the observations 𝑦:

𝑦 = 𝐻𝑢 + 𝐽𝑤 + 𝑣.

We restrict our attention to causal control policies which are a linear function of the
observations 𝑦, i.e., policies which set 𝑢 = 𝐾𝑦 for some causal matrix 𝐾 . Solving
for 𝑦, we see that

𝑦 = (𝐼 − 𝐻𝐾)−1(𝐽𝑤 + 𝑣),

implying that
𝑢 = 𝐾 (𝐼 − 𝐻𝐾)−1(𝐽𝑤 + 𝑣).

We introduce the Youla parameterization 𝑄 = 𝐾 (𝐼 − 𝐻𝐾)−1; we can easily recover
𝐾 from𝑄 by setting𝐾 = (𝐼+𝑄𝐻)−1𝑄. To each𝐾 , we associate the transfer operator

𝑇𝐾 :

[
𝑤

𝑣

]
→

[
𝑠

𝑢

]
given by

𝑇𝐾 =

[
𝐺 0
0 0

]
+

[
𝐹

𝐼

]
𝑄

[
𝐽 𝐼

]
. (4.1)

Recall that the optimal noncausal controller selects the control 𝑢 = 𝐾0𝑤, where

𝐾0 = −(𝐼 + 𝐹∗𝐹)−1𝐹∗𝐺.

The transfer operator associated to the optimal noncausal controller is therefore

𝑇𝐾0 =

[
−𝐹 (𝐼 + 𝐹∗𝐹)−1𝐹∗𝐺 + 𝐺 0

−(𝐼 + 𝐹∗𝐹)−1𝐹∗𝐺 0

]
.
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The zeros in the second column represent the fact that the optimal noncausal con-
troller observes the actual disturbance 𝑤 and the control signal it selects is not
at all affected by the measurement noise 𝑣; it is this disparity between the infor-
mation available to the online and offline controllers which makes regret-optimal
measurement-feedback control considerably more challenging than regret-optimal
full-information control. In fact, we show in this chapter that it is often impossible
to attain any regret bound at all, depending on the stability of the system dynamics
and which data-dependent regret bound we consider.

4.1 Non-existence results
Non-existence of a controller with bounded competitive ratio
In this section we establish that in unstable systems there is no controller with
bounded competitive ratio. The key observation is that the competitive ratio bound
implies that the online controller must incur zero cost on every disturbance sequences
on which the optimal noncausal controller incurs zero cost. In particular, in order
to have a bounded competitive ratio, a controller must always set the control 𝑢 to
be zero when 𝑤 = 0. In the measurement-feedback setting the controller is unable
to directly observe 𝑤, and hence must set 𝑢 = 0 at all times. The only setting under
which this “zero controller” can be competitive is when the system is stable.

Theorem 10. Fix 𝛾 > 0 and suppose 𝐴 is unstable. There does not exist a causal
measurement-feedback controller 𝜋 such that

𝐽 (𝜋, 𝑤, 𝑣)
𝐽 (𝜋0, 𝑤)

< 𝛾2 (4.2)

for all driving disturbances 𝑤 and and all measurement disturbances 𝑣. If 𝐴 is
stable, then the only competitive controller is the “zero controller” which always
sets 𝑢 = 0. This controller has competitive ratio 1 + ∥𝐹∥2.

Proof. We restrict our attention to controllers 𝜋 which set 𝜋(𝑦) = 𝐾𝑦 for some
causal operator 𝐾 . Condition (4.2) can be rewritten as

𝑇∗
𝐾𝑇𝐾 ≺ 𝛾2𝑇∗

𝐾0
𝑇𝐾0 . (4.3)

The (2, 2) block of 𝑇∗
𝐾
𝑇𝐾 is 𝑄∗(𝐼 + 𝐹𝐹∗)𝑄. This operator is clearly positive-

semidefinite, and zero only when𝐾 = 0. If𝐾 ≠ 0 then condition (4.3) clearly cannot
hold because the (2, 2) block of 𝑇∗

𝐾0
𝑇𝐾0 is zero. If 𝐾 = 0, then the competitive ratio

is simply

sup
𝑤∈ℓ2

∥𝐺𝑤∥2

∥Δ−1𝐺𝑤∥2 ,
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where Δ is defined in Theorem 2. Let 𝑤2 = Δ−1𝐺𝑤. The competitive ratio becomes

sup
𝑤2∈ℓ2

∥Δ𝑤2∥2

∥𝑤2∥2 = sup
𝑤2∈ℓ2

∥Δ∗𝑤2∥2

∥𝑤2∥2

= sup
𝑤2∈ℓ2

𝑤∗
2(𝐼 + 𝐹𝐹

∗)𝑤2

∥𝑤2∥2

= 1 + sup
𝑤2∈ℓ2

𝑤∗
2𝐹𝐹

∗𝑤2

∥𝑤2∥2

= 1 + ∥𝐹∥2.

It is easy to check that 𝐹 is bounded if and only if 𝐴 is stable. □

Non-existence of a controller with regret bounded by the pathlength of the
driving disturbance and the measurement disturbance
In this section we establish that there is no controller whose regret bounded by
the joint pathlength of the driving disturbance and the measurement disturbance;
this non-existence result holds for all linear systems, stable or unstable. The key
observation is that the regret bound implies that the online controller must incur
zero cost whenever 𝑤 and 𝑣 are constant. In the measurement-feedback setting the
controller is unable to directly observe 𝑤 and 𝑣, and hence must set 𝑢 = 0 at all
times. However, there exist choices of 𝑤 and 𝑣 with zero pathlength such that this
“zero controller” incurs positive regret, contradicting the pathlength bound.

Theorem 11. Fix 𝛾 > 0. There does not exist a causal controller 𝜋 such that

𝐽 (𝜋, 𝑤, 𝑣) − 𝐽 (𝜋0, 𝑤) < 𝛾2
(
∥𝐷 𝑝𝑤∥2

2 + ∥𝐷𝑟𝑣∥2
2

)
(4.4)

for all driving disturbances 𝑤 and and all measurement disturbances 𝑣.

Proof. We restrict our attention to controllers 𝜋 which set 𝜋(𝑦) = 𝐾𝑦 for some
causal operator 𝐾 . We argue by way of contradiction; suppose there is some causal
𝐾 satisfying (4.4). Let us first assume 𝐾 ≠ 0. Let 𝑤 = 0 and let 𝑣 be nonzero
constant sequence such that (𝐼 − 𝐻𝐾)−1𝑣 is orthogonal to the nullspace of 𝐾 . The
left-hand side of (4.4) is 𝑣∗𝑄∗(𝐼 + 𝐹𝐹∗)𝑄𝑣, which is strictly positive due to our
assumption on 𝑣. The right-hand side of (4.4) is clearly zero for all choices of 𝛾,
therefore condition (4.4) cannot hold. Now assume that 𝐾 = 0. The left-hand side
of (4.4) is

∥𝐺𝑤∥2 − ∥Δ−1𝐺𝑤∥2 = 𝑤∗𝐺∗(𝐼 − (𝐼 + 𝐹𝐹∗)−1)𝐺𝑤
= 𝑤∗𝐺∗𝐹 (𝐼 + 𝐹∗𝐹)−1𝐹∗𝐺𝑤,
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where Δ is defined in Theorem 2. Set 𝑤 to be a nonzero constant sequence which is
orthogonal to the nullspace of 𝐹∗𝐺; such a choice always exists since 𝐹 and 𝐺 are
strictly causal. Set 𝑣 = 0. Then the left-hand side of (4.4) is strictly positive, but the
right-hand side is zero for all 𝛾. □

Non-existence of a controller with regret bounded by the energy of the driving
disturbance and the pathlength of the measurement disturbance
In this section we establish that in unstable systems there is no controller whose
regret is bounded by the energy of the driving disturbance and the pathlength of the
measurement disturbance. The key observation is that the regret bound implies that
the online controller must incur zero cost whenever 𝑤 = 0 and 𝑣 is constant. In
the measurement-feedback setting the controller is unable to directly observe 𝑤 and
𝑣, and hence must set 𝑢 = 0 at all times. The only setting under which this “zero
controller” can have regret bounded by the energy of the driving disturbance and
the pathlength of the measurement disturbance is when the system is stable.

Theorem 12. Fix 𝛾 > 0 and suppose 𝐴 is unstable. There does not exist a causal
controller 𝜋 such that

𝐽 (𝜋, 𝑤, 𝑣) − 𝐽 (𝜋0, 𝑤) < 𝛾2
(
∥𝑤∥2

2 + ∥𝐷𝑟𝑣∥2
2

)
(4.5)

for all driving disturbances 𝑤 and and all measurement disturbances 𝑣. If 𝐴
is stable, then the only controller which satisfies (4.5) for any value of 𝛾 is the
“zero controller” which always sets 𝑢 = 0. This controller satisfies (4.5) with
𝛾 = ∥Δ−∗

2 𝐹∗𝐺∥, where Δ2 is the unique causal and causally invertible operator
such that Δ∗

2Δ2 = 𝐼 + 𝐹∗𝐹.

Proof. We restrict our attention to controllers 𝜋 which set 𝜋(𝑦) = 𝐾𝑦 for some
causal operator 𝐾 . We argue by way of contradiction; suppose there is some causal
𝐾 satisfying (4.5). Let us first assume 𝐾 ≠ 0. Let 𝑤 = 0 and let 𝑣 be nonzero
constant sequence such that (𝐼 − 𝐻𝐾)−1𝑣 is orthogonal to the nullspace of 𝐾 . The
left-hand side of (4.5) is 𝑣∗𝑄∗(𝐼 + 𝐹𝐹∗)𝑄𝑣, which is strictly positive due to our
assumption on 𝑣. The right-hand side of (4.5) is clearly zero for all choices of 𝛾,
therefore condition (4.5) cannot hold. Now assume that 𝐾 = 0. The left-hand side
of (4.5) is

∥𝐺𝑤∥2 − ∥Δ−1𝐺𝑤∥2 = 𝑤∗𝐺∗(𝐼 − (𝐼 + 𝐹𝐹∗)−1)𝐺𝑤
= 𝑤∗𝐺∗𝐹 (𝐼 + 𝐹∗𝐹)−1𝐹∗𝐺𝑤,
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where Δ is defined in Theorem 2. The smallest possible value of 𝛾2 such that (4.5)
holds is given by

sup
𝑤∈ℓ2

𝑤∗𝐺∗𝐹 (𝐼 + 𝐹∗𝐹)−1𝐹∗𝐺𝑤

∥𝑤∥2 = ∥Δ−∗
2 𝐹∗𝐺∥2,

where Δ2 is the unique causal and causally invertible operator such that Δ∗
2Δ2 =

𝐼 +𝐹∗𝐹. We note that the operator Δ−∗
2 𝐹∗𝐺 is bounded if and only if 𝐴 is stable. □

4.2 Regret bounded by the joint energy of 𝑤 and 𝑣
In this section we describe a causal controller 𝜋 whose regret is bounded by the joint
energy of the driving disturbance and the measurement disturbance. This presents a
sharp contrast with the negative results of the previous sections; the key difference
is that the only pair of disturbances (𝑤, 𝑣) whose joint energy is zero is simply
𝑤 = 0, 𝑣 = 0. It is easy to guarantee that 𝜋 sets 𝑢 = 0 on this specific instance
without also requiring that 𝜋 sets 𝑢 = 0 on all other instances.

Analogously with the full-information setting, we derive the measurement-feedback
controller whose regret has optimal dependence on the joint energy of the driving
disturbance and the measurement disturbance via a reduction to 𝐻∞ measurement-
feedback control.

Theorem 13. Fix 𝛾 > 0 and define 𝐴, 𝐵𝑢, 𝐵𝑤, 𝐶, �̂� as in (4.11). There exists a
causal measurement-feedback controller 𝜋 such that

𝐽 (𝜋, 𝑤, 𝑣) − 𝐽 (𝜋0, 𝑤) < 𝛾2(∥𝑤∥2
2 + ∥𝑣∥2

2) (4.6)

if and only if the control DARE

𝑃𝑐 = 𝐴
∗𝑃𝑐𝐴 + �̂�∗ �̂� − 𝐾∗

𝑐𝑅𝑐𝐾𝑐,

and the estimation DARE

𝑃𝑒 = 𝐴𝑃𝑒𝐴
∗ + 𝐵𝑤𝐵∗

𝑤 − 𝐾𝑒𝑅𝑒𝐾∗
𝑒 ,
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where we define 

𝐾𝑐 = 𝑅
−1
𝑐


𝐵∗
𝑢

𝐵∗
𝑤

 𝑃𝑐𝐴
𝑅𝑐 =


𝐼𝑚 0

0 −𝐼𝑝

 +

𝐵∗
𝑢

𝐵∗
𝑤

 𝑃𝑐
[
𝐵𝑢 𝐵𝑤

]
,

𝐾𝑒 = 𝐴𝑃
𝑑
[
𝐶 𝐿

]
𝑅−1
𝑒 ,

𝑅𝑒 =


𝐼𝑟 0

0 −𝐼𝑛

 +

𝐶

�̂�

 𝑃𝑐
[
𝐶∗ �̂�∗

]
,

have solutions 𝑃𝑐 ⪰ 0 and 𝑃𝑒 ⪰ 0 such that

1. The matrix 𝐴 −
[
𝐵𝑢 𝐵𝑤

]
𝐾𝑐 is stable.

2. The matrix 𝑅𝑐 has 𝑚 positive eigenvalues and 𝑝 negative eigenvalues.

3. The matrix 𝐴 − 𝐾𝑒

[
𝐶

�̂�

]
is stable.

4. The matrix 𝑅𝑒 has 𝑟 positive eigenvalues and 𝑛 negative eigenvalues.

5. 𝜌(𝑃𝑐𝑃𝑒) < 1.

If these conditions are satisfied, then one possible choice of 𝜋 is given by

𝑢𝑡 = −𝐾𝑢 (𝜉𝑡 + 𝑃𝐶∗(𝐼𝑟 + 𝐶𝑃𝐶∗)−1(𝑦𝑡 − 𝐶𝜉𝑡)),

where the synthetic state 𝜉 ∈ R2𝑛 evolves according to the linear dynamics equation

𝜉𝑡+1 = (𝐴 − 𝐵𝑤𝐾𝑤) (𝜉𝑡 + 𝑃𝐶∗(𝐼𝑟 + 𝐶𝑃𝐶∗)−1(𝑦𝑡 − 𝐶𝜉𝑡)) + 𝐵𝑢𝑢𝑡 .

The matrices 𝐾𝑢 ∈ R𝑚×2𝑛 and 𝐾𝑤 ∈ R𝑝×2𝑛 are defined as[
𝐾𝑢

𝐾𝑤

]
= 𝐾𝑐,

and we define 𝑃 ∈ R2𝑛×2𝑛 as

𝑃 = 𝑃𝑒 (𝐼𝑛 − 𝑃𝑐𝑃𝑒)−1.



47

We note that the regret-optimal controller can be easily obtained via bisection on 𝛾.

Proof. The regret condition (4.6) can be rewritten as[
𝑤

𝑣

]∗
𝑇∗
𝐾𝑇𝐾

[
𝑤

𝑣

]
<

[
𝑤

𝑣

]∗ (
𝛾2

[
𝐼𝑝 0
0 𝐼𝑟

]
+ 𝑇∗

𝐾0
𝑇𝐾0

) [
𝑤

𝑣

]
. (4.7)

Let Δ2 be the unique causal and causally invertible operator such that

𝛾2𝐼𝑝 + 𝐺∗ (𝐼 + 𝐹𝐹∗)−1
𝐺 = Δ∗

2Δ2. (4.8)

Then

𝛾2

[
𝐼𝑝 0
0 𝐼𝑟

]
+ 𝑇∗

𝐾0
𝑇𝐾0 =

[
Δ2 0
0 𝛾𝐼

]∗ [
Δ2 0
0 𝛾𝐼

]
.

Define [
𝑤

�̂�

]
=

[
Δ2 0
0 𝛾𝐼

] [
𝑤

𝑣

]
.

Condition (4.7) can be rewritten as[
𝑤

�̂�

]∗
𝑇∗
𝐾
𝑇
𝐾

[
𝑤

�̂�

]
<


[
𝑤

�̂�

]2

2

,

or equivalently as
∥𝑇
𝐾
∥ < 1,

where we define

𝑇
𝐾
= 𝑇𝐾

[
Δ2 0
0 𝛾𝐼

]−1

.

Using the parameterization (4.1) of 𝑇𝐾 , we see that

𝑇
𝐾
=

[
𝐺Δ−1

2 0
0 0

]
+

[
𝐹

𝐼

]
(𝛾−1𝑄)

[
𝛾𝐽Δ−1

2 𝐼

]
.

Notice that 𝑇
𝐾

itself has the form of a transfer operator described in (4.1); it is the
transfer operator with Youla parameter 𝑄 = 𝛾−1𝑄 in the system

�̂� = 𝐹�̂� + 𝐺𝑤, �̂� = 𝐻�̂� + 𝐽𝑤 + �̂�, (4.9)

where we define 𝐹 = 𝐹, 𝐺 = 𝐺Δ−1
2 , 𝐻 = 𝛾𝐻, 𝐽 = 𝛾𝐽Δ−1

2 . It is now clear that a
controller 𝐾 satisfying (4.6) exists if and only if there exists a controller 𝐾 in the
system (4.9) such that ∥𝑇

𝐾
∥ < 1. If such a controller 𝐾 exists, then we can easily
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recover 𝐾 from 𝐾 by setting 𝐾 = 𝛾𝐾; notice that this is the unique choice of 𝐾
which is consistent with the relations 𝐻 = 𝛾𝐻,𝑄 = 𝛾−1𝑄.

In order to assign state-space structure to 𝐹, 𝐺, 𝐻, 𝐽, we must first find Δ2(𝑧). Let
Δ be the unique causal and causally invertible operator such that

𝐼 + 𝐹𝐹∗ = ΔΔ∗.

Theorem 2 shows that

Δ(𝑧) = (𝐼 + 𝐿 (𝑧𝐼 − 𝐴)−1𝐾)Σ1/2.

It follows that Δ−1(𝑧)𝐺 (𝑧) is given by

Δ−1(𝑧)𝐺 (𝑧) = Σ−1/2𝐿 (𝑧𝐼 − (𝐴 − 𝐾𝐿))−1𝐵𝑤 .

Define 𝐴 = 𝐴 − 𝐾𝐿. Notice that

𝛾2𝐼𝑝 + 𝐺∗Δ∗Δ−1𝐺 =

[
𝐵∗
𝑤 (𝑧−∗𝐼𝑛 − 𝐴)−∗ 𝐼𝑝

] [
𝐿∗Σ−1𝐿 0

0 𝛾2𝐼𝑝

] [
(𝑧𝐼𝑛 − 𝐴)−1𝐵𝑤

𝐼𝑝

]
.

Applying Lemma 1, we see that this equals[
𝐵∗
𝑤 (𝑧−∗𝐼𝑛 − 𝐴)−∗ 𝐼

]
Λ2(𝑃2)

[
(𝑧𝐼𝑛 − 𝐴)−1𝐵𝑤

𝐼

]
,

where 𝑃2 is an arbitrary Hermitian matrix and we define

Λ2(𝑃2) =
[
𝐿∗Σ−1𝐿 − 𝑃2 + 𝐴∗𝑃2𝐴 𝐴∗𝑃2𝐵𝑤

𝐵∗
𝑤𝑃2𝐴 𝛾2𝐼 + 𝐵∗

𝑤𝑃2𝐵𝑤

]
.

Notice that the Λ2(𝑃2) can be factored as[
𝐼 𝐾∗

2 (𝑃2)
0 𝐼

] [
Γ2(𝑃2) 0

0 Σ2(𝑃2)

] [
𝐼 0

𝐾2(𝑃2) 𝐼

]
,

where we define

Γ2(𝑃2) = 𝐿∗Σ−1𝐿 − 𝑃2 + 𝐴∗𝑃2𝐴 − 𝐾∗
2 (𝑃2)Σ2𝐾2(𝑃2),

𝐾2(𝑃2) = Σ−1
2 (𝑃2)𝐵∗

𝑤𝑃2𝐴, Σ2(𝑃2) = 𝛾2𝐼 + 𝐵∗
𝑤𝑃2𝐵𝑤 .

It is clear that (𝐴, 𝐵𝑤) is stabilizable (in fact, 𝐴 is stable), therefore the Riccati
equation Γ2(𝑃2) = 0 has a unique stabilizing solution (Theorem E.6.2 in [KSH00]).
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Suppose 𝑃2 is chosen to be this solution, and define 𝐾2 = 𝐾2(𝑃2), Σ2 = Σ2(𝑃2).
We immediately obtain the factorization (4.8), where we define

Δ2(𝑧) = Σ
1/2
2 (𝐼 + 𝐾2(𝑧𝐼 − 𝐴)−1𝐵𝑤). (4.10)

We have
Δ−1

2 (𝑧) = (𝐼 − 𝐾2(𝑧𝐼 − (𝐴 − 𝐵𝑤𝐾2))−1𝐵𝑤)Σ−1/2
2 .

We note that 𝐴 − 𝐵𝑤𝐾2 is stable and hence Δ−1(𝑧) is causal and bounded since its
poles are strictly contained in the unit circle. Define

𝐴 =


𝐴 −𝐵𝑤𝐾2

0 𝐴 − 𝐵𝑤𝐾2

 ,
𝐵𝑤 =


𝐵𝑤Σ

−1/2
2

𝐵𝑤Σ
−1/2
2

 ,
𝐵𝑢 =


𝐵𝑢

0

 ,
𝐶 =

[
𝛾𝐶 0

]
,

�̂� =

[
𝐿 0

]
.

(4.11)

Recall that 𝐹 = 𝐹, 𝐺 = 𝐺Δ−1
2 , 𝐻 = 𝛾𝐻, 𝐽 = 𝛾𝐽Δ−1

2 ; it follows that 𝐹, 𝐺, 𝐻, 𝐽 are
given by

𝐹 (𝑧) = �̂� (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐺 (𝑧) = �̂� (𝑧𝐼 − 𝐴)𝐵𝑤,

𝐻 (𝑧) = 𝐶 (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐽 (𝑧) = 𝐶 (𝑧𝐼 − 𝐴)𝐵𝑤 .

□

4.3 Regret bounded by the pathlength of 𝑤 and the energy of 𝑣
In this section we describe a causal controller 𝜋 whose regret is bounded by the
pathlength of the driving disturbance and the energy of the measurement disturbance.
This presents a sharp contrast with the negative results of the previous sections; the
key difference is that the only pairs of disturbances (𝑤, 𝑣) such that the pathlength
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of the 𝑤 is zero and the energy of 𝑣 is zero are pairs where 𝑤 is constant and 𝑣 is
zero. It is easy to guarantee that 𝜋 matches the offline controller 𝜋0 on these specific
instances, without constraining the behavior of 𝜋 on all other instances.

Analogously with the full-information setting, we derive the measurement-feedback
controller whose regret has optimal dependence on the pathlength of the driving
disturbance and the energy of the measurement disturbance via a reduction to 𝐻∞

measurement-feedback control.

Theorem 14. Fix 𝛾 > 0 and define 𝐴, 𝐵𝑢, 𝐵𝑤, 𝐶, �̂� as in (4.19). There exists a
causal measurement-feedback controller 𝜋 such that

𝐽 (𝜋, 𝑤, 𝑣) − 𝐽 (𝜋0, 𝑤) < 𝛾2(∥𝐷 𝑝𝑤∥2
2 + ∥𝑣∥2

2) (4.12)

if and only if the control DARE

𝑃𝑐 = 𝐴
∗𝑃𝑐𝐴 + �̂�∗ �̂� − 𝐾∗

𝑐𝑅𝑐𝐾𝑐,

and the estimation DARE

𝑃𝑒 = 𝐴𝑃𝑒𝐴
∗ + 𝐵𝑤𝐵∗

𝑤 − 𝐾𝑒𝑅𝑒𝐾∗
𝑒 ,

where we define 

𝐾𝑐 = 𝑅
−1
𝑐


𝐵∗
𝑢

𝐵∗
𝑤

 𝑃𝑐𝐴
𝑅𝑐 =


𝐼𝑚 0

0 −𝐼𝑝

 +

𝐵∗
𝑢

𝐵∗
𝑤

 𝑃𝑐
[
𝐵𝑢 𝐵𝑤

]
,

𝐾𝑒 = 𝐴𝑃
𝑑
[
𝐶 𝐿

]
𝑅−1
𝑒 ,

𝑅𝑒 =


𝐼𝑟 0

0 −𝐼𝑛

 +

𝐶

�̂�

 𝑃𝑐
[
𝐶∗ �̂�∗

]
,

have solutions 𝑃𝑐 ⪰ 0 and 𝑃𝑒 ⪰ 0 such that

1. The matrix 𝐴 −
[
𝐵𝑢 𝐵𝑤

]
𝐾𝑐 is stable.
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2. The matrix 𝑅𝑐 has 𝑚 positive eigenvalues and 𝑝 negative eigenvalues.

3. The matrix 𝐴 − 𝐾𝑒

[
𝐶

�̂�

]
is stable.

4. The matrix 𝑅𝑒 has 𝑟 positive eigenvalues and 𝑛 negative eigenvalues.

5. 𝜌(𝑃𝑐𝑃𝑒) < 1.

If these conditions are satisfied, then one possible choice of 𝜋 is given by

𝑢𝑡 = −𝐾𝑢 (𝜉𝑡 + 𝑃𝐶∗(𝐼𝑟 + 𝐶𝑃𝐶∗)−1(𝑦𝑡 − 𝐶𝜉𝑡)),

where the synthetic state 𝜉 ∈ R2𝑛+𝑝 evolves according to the linear dynamics equa-
tion

𝜉𝑡+1 = (𝐴 − 𝐵𝑤𝐾𝑤) (𝜉𝑡 + 𝑃𝐶∗(𝐼𝑟 + 𝐶𝑃𝐶∗)−1(𝑦𝑡 − 𝐶𝜉𝑡)) + 𝐵𝑢𝑢𝑡 .

The matrices 𝐾𝑢 ∈ R𝑚×(2𝑛+𝑝) and 𝐾𝑤 ∈ R𝑝×(2𝑛+𝑝) are defined as[
𝐾𝑢

𝐾𝑤

]
= 𝐾𝑐,

and we define 𝑃 ∈ R(2𝑛+𝑝)×(2𝑛+𝑝) as

𝑃 = 𝑃𝑒 (𝐼𝑛 − 𝑃𝑐𝑃𝑒)−1.

We note that the regret-optimal controller can be easily obtained via bisection on 𝛾.

Proof. The regret condition (14) can be rewritten in matrix form as[
𝑤

𝑣

]∗
𝑇∗
𝐾𝑇𝐾

[
𝑤

𝑣

]
<

[
𝑤

𝑣

]∗ (
𝛾2

[
𝐷∗
𝑝𝐷 𝑝 0
0 𝐼

]
+ 𝑇∗

𝐾0
𝑇𝐾0

) [
𝑤

𝑣

]
. (4.13)

Let Δ2 be the unique causal and causally invertible operator such that

𝛾2𝐷∗
𝑝𝐷 𝑝 + 𝐺∗ (𝐼 + 𝐹𝐹∗)−1

𝐺 = Δ∗
2Δ2. (4.14)

Then

𝛾2

[
𝐷∗
𝑝𝐷 𝑝 0
0 𝐼

]
+ 𝑇∗

𝐾0
𝑇𝐾0 =

[
Δ2 0
0 𝛾𝐼

]∗ [
Δ2 0
0 𝛾𝐼

]
.

Define [
𝑤

�̂�

]
=

[
Δ2 0
0 𝛾𝐼

] [
𝑤

𝑣

]
.
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Condition (4.13) can be rewritten as[
𝑤

�̂�

]∗
𝑇∗
𝐾
𝑇
𝐾

[
𝑤

�̂�

]
<


[
𝑤

�̂�

]2

2

,

or equivalently as
∥𝑇
𝐾
∥ < 1,

where we define

𝑇
𝐾
= 𝑇𝐾

[
Δ2 0
0 𝛾𝐼

]−1

.

Using the parameterization (4.1) of 𝑇𝐾 , we see that

𝑇
𝐾
=

[
𝐺Δ−1

2 0
0 0

]
+

[
𝐹

𝐼

]
(𝛾−1𝑄)

[
𝛾𝐽Δ−1

2 𝐼

]
.

Notice that 𝑇
𝐾

itself has the form of a transfer operator described in (4.1); it is the
transfer operator with Youla parameter 𝑄 = 𝛾−1𝑄 in the system

�̂� = 𝐹�̂� + 𝐺𝑤, �̂� = 𝐻�̂� + 𝐽𝑤 + �̂�, (4.15)

where we define 𝐹 = 𝐹, 𝐺 = 𝐺Δ−1
2 , 𝐻 = 𝛾𝐻, 𝐽 = 𝛾𝐽Δ−1

2 . It is now clear that a
controller 𝐾 satisfying (4.13) exists if and only if there exists a controller 𝐾 in the
system (4.15) such that ∥𝑇

𝐾
∥ < 1. If such a controller 𝐾 exists, then we can easily

recover 𝐾 from 𝐾 by setting 𝐾 = 𝛾𝐾; notice that this is the unique choice of 𝐾
which is consistent with the relations 𝐻 = 𝛾𝐻,𝑄 = 𝛾−1𝑄.

In order to assign state-space structure to 𝐹, 𝐺, 𝐻, 𝐽, we must first find Δ2(𝑧). Let
Δ be the unique causal and causally invertible operator such that

𝐼 + 𝐹𝐹∗ = ΔΔ∗.

Theorem 2 shows that

Δ(𝑧) = (𝐼 + 𝐿 (𝑧𝐼 − 𝐴)−1𝐾)Σ1/2.

It follows that Δ−1(𝑧)𝐺 (𝑧) is given by

Δ−1(𝑧)𝐺 (𝑧) = Σ−1/2𝐿 (𝑧𝐼 − (𝐴 − 𝐾𝐿))−1𝐵𝑤 .

Define

�̃� =

[
Σ−1/2𝐿 0

0 𝛾𝐼𝑝

]
, 𝑆 =

[
0

𝛾2𝐼𝑝

]
, 𝐴 =

[
𝐴 − 𝐾𝐿 0

0 0

]
, 𝐵𝑤 =

[
𝐵𝑤

−𝐼𝑝

]
. (4.16)
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Notice that we can rewrite[
𝛾2𝐷∗

𝑝 (𝑧−∗)𝐷 𝑝 (𝑧) + 𝐺∗Δ−∗Δ−1𝐺 0
0 𝛾2𝐼

]
as [

𝐵∗
𝑤 (𝑧−∗𝐼 − 𝐴)−∗ 𝐼

] [
�̃�∗ �̃� 𝑆

𝑆∗ 𝛾2𝐼

] [
(𝑧𝐼 − 𝐴)−1𝐵𝑤

𝐼

]
.

Applying Lemma 1, we see that this equals[
𝐵∗
𝑤 (𝑧−∗𝐼 − 𝐴)−∗ 𝐼

]
Λ2(𝑃2)

[
(𝑧𝐼 − 𝐴)−1𝐵𝑤

𝐼

]
,

where 𝑃2 is an arbitrary Hermitian matrix and we define

Λ2(𝑃2) =
[
�̃�∗ �̃� − 𝑃2 + 𝐴∗𝑃2𝐴 𝑆 + 𝐴∗𝑃2𝐵𝑤

𝑆∗ + 𝐵∗
𝑤𝑃2𝐴 𝛾2𝐼 + 𝐵∗

𝑤𝑃2𝐵𝑤

]
.

Notice that the Λ2(𝑃2) can be factored as[
𝐼 𝐾∗

2 (𝑃2)
0 𝐼

] [
Γ2(𝑃2) 0

0 Σ2(𝑃2)

] [
𝐼 0

𝐾2(𝑃2) 𝐼

]
,

where we define

Γ2(𝑃2) = �̃�∗ �̃� − 𝑃2 + 𝐴∗𝑃2𝐴 − 𝐾∗
2 (𝑃2)Σ2𝐾2(𝑃2),

𝐾2(𝑃2) = Σ−1
2 (𝑃2) (𝑆∗ + 𝐵∗

𝑤𝑃2𝐴), Σ2(𝑃2) = 𝛾2𝐼 + 𝐵∗
𝑤𝑃2𝐵𝑤 . (4.17)

It is clear that (𝐴, 𝐵𝑤) is stabilizable (this follows from the stability of 𝐴 − 𝐾𝐿),
therefore the Riccati equation Γ2(𝑃2) = 0 has a unique stabilizing solution (Theorem
E.6.2 in [KSH00]). Suppose 𝑃2 is chosen to be this solution, and define 𝐾2 =

𝐾2(𝑃2), Σ2 = Σ2(𝑃2). We immediately obtain the factorization (4.14), where we
define

Δ2(𝑧) = Σ
1/2
2 (𝐼 + 𝐾2(𝑧𝐼 − 𝐴)−1𝐵𝑤). (4.18)

We have
Δ−1

2 (𝑧) = (𝐼 − 𝐾2(𝑧𝐼 − (𝐴 − 𝐵𝑤𝐾2))−1𝐵𝑤)Σ−1/2
2 .
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We note that 𝐴 − 𝐵𝑤𝐾2 is stable and hence Δ−1
2 (𝑧) is causal and bounded since its

poles are strictly contained in the unit circle. Define

𝐴 =


𝐴 −𝐵𝑤𝐾2

0 𝐴 − 𝐵𝑤𝐾2


𝐵𝑢 =


𝐵𝑢

0

 ,
𝐵𝑤 =


𝐵𝑤Σ

−1/2
2

𝐵𝑤Σ
−1/2
2

 ,
𝐶 =

[
𝛾𝐶 0

]
,

�̂� =

[
𝐿 0

]
.

(4.19)

Recall that 𝐹 = 𝐹, 𝐺 = 𝐺Δ−1
2 , 𝐻 = 𝛾𝐻, 𝐽 = 𝛾𝐽Δ−1

2 ; it follows that 𝐹, 𝐺, 𝐻, 𝐽 are
given by

𝐹 (𝑧) = �̂� (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐺 (𝑧) = �̂� (𝑧𝐼 − 𝐴)𝐵𝑤,

𝐻 (𝑧) = 𝐶 (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐽 (𝑧) = 𝐶 (𝑧𝐼 − 𝐴)𝐵𝑤 .

□
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C h a p t e r 5

CONNECTIONS TO ONLINE LEARNING

In this section we demonstrate a surprising connection between regret-optimal con-
trol and online learning. Specifically, we show that the competitive controller is
closely approximated by disturbance-action-control (DAC) policies, which general-
ize linear state-feedback policies. A DAC policy has the form

𝑢𝑡 = 𝐾𝑥𝑡 +
𝐻∑︁
𝑖=1

𝑀 [𝑖−1]𝑤𝑡−1,

where 𝐾 is a stabilizing state-feedback controller and 𝑀 = (𝑀 [0] , . . . , 𝑀 [𝐻−1]) is a
series of geometrically decreasing weights. The class of DAC policies has attracted
much recent attention in the online learning community [Aga+19; FS20; Sim20;
CH21] due to the fact that that for any fixed 𝐾 , the states generated by a DAC policy
have a linear dependence on the weights 𝑀; it follows that the problem of selecting
the weights to minimize cost can be formulated as a convex program. In particular,
[Aga+19] showed that the weights can be optimized online via a gradient-based
algorithm using a reduction to online convex optimization with memory. This
problem, introduced in [AHM15], is a generalization of OCO where the costs
incurred by the learner depend not only on the learner’s most recent decision but
rather on the learner’s past 𝐻 decisions.

Using this approximation of the competitive controller by DAC policies, we show
that online algorithms with sublinear policy regret against DAC policies can be in-
stantiated so as to retain sublinear policy regret while also achieving an approximate
competitive ratio guarantee on bounded disturbance sequences. The proof can be
summarized as follows. We first construct a DAC policy �̃�𝑐 which 𝜀-approximates
the strictly causal competitive policy 𝜋𝑐, in the sense that

𝐽𝑇 (�̃�𝑐, 𝑤) − 𝐽𝑇 (𝜋𝑐, 𝑤) ≤ 𝜀

for all bounded disturbances 𝑤. Our construction of �̃�𝑐 involves rewriting the com-
petitive controller as the sum of a stabilizing component 𝐾0 and a linear combination
of all previous disturbances; the weights on the most recent 𝐻 disturbances are used
to instantiate �̃�𝑐. We then observe that an algorithm which obtains sublinear pol-
icy regret against a DAC class containing �̃�𝑐 will automatically attain the optimal
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competitive ratio of the strictly causal competitive controller 𝜋𝑐, up to a sublinear
correction term. Surprisingly, these results can be extended even to the “adaptive
control" setting, where the online algorithm does not know the system dynamics
ahead of time and must perform online system identification.

Our results shows that combining regret-optimal controllers, which are derived
using 𝐻∞ control, can be fruitfully combined with gradient-based algorithms from
online learning to give new performance guarantees in control. While the results
we present here are stated in terms of the competitive controller, we expect that
analogous results can be derived for other flavors of regret-optimal control using
similar techniques.

5.1 Approximation of the competitive controller by DAC policies
We prove that we can find a DAC policy which generates a sequence of states
and control actions which closely tracks the sequence of states and control actions
generated by the optimal competitive policy by taking the history𝐻 of the DAC to be
sufficiently large, and choosing the stabilizing component and weights appropriately.
Before we state our approximation result, we introduce some convenient notation.
We introduce the partition

𝐾 =

[
𝐾0 𝐾1

]
of 𝐾 into two 𝑛 × 𝑛 block matrices, where 𝐾 is the state-feedback matrix appearing
in the strictly causal controller we obtained in Theorem 6. Recall that 𝐴 + 𝐵𝐾 is
stable; this matrix is block upper-triangular, and the matrix in the (1, 1) block is
𝐴+𝐵𝐾0. It follows that 𝐴+𝐵𝐾0 is also stable, and hence there exist matrices 𝑆1, 𝐿1

such
𝐴 + 𝐵𝐾0 = 𝑆1𝐿1𝑆

−1
1

and ∥𝐿1∥ < 1. Similarly, there exist matrices 𝑆2, 𝐿2 such that 𝐴−𝐾𝑄1/2 = 𝑆2𝐿2𝑆
−1
2

and ∥𝐿2∥ < 1.

We now show that the competitive controller can be arbitrarily well-approximated
by DAC policies:

Theorem 15. Fix a time horizon 𝑇 and a disturbance bound𝑊 . Define

𝜅 = max(1, 𝐾0, 𝐾1, ∥𝐵𝑢∥, ∥𝐵𝑤 ∥, ∥𝑆1∥∥𝑆−1
1 ∥, ∥𝑆2∥∥𝑆−1

2 ∥)

and
𝛿 = 1 − max(1/2, ∥𝐿1∥, ∥𝐿2∥).
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For any 𝜀 > 0, set

𝐻 =
1

log(1 − 𝛿/2) log
(
988𝑊2𝜅12 max(1, ∥𝑄∥2)

𝛿4𝜀
𝑇

)
and define M be the set of (𝐻, 𝜅2(1 + ∥𝑄1/2∥), 𝛿/2)-DAC policies with stabilizing
component 𝐾0. Let 𝜋𝑐 be the strictly causal competitive controller described in
Theorem 6. There exists a DAC policy �̃�𝑐 ∈ M such that

𝐽𝑇 (�̃�𝑐, 𝑤) − 𝐽𝑇 (𝜋𝑐, 𝑤) ≤ 𝜀

for all disturbance sequences 𝑤 = (𝑤0, . . . , 𝑤𝑇 ) such that ∥𝑤∥∞ ≤ 𝑊 .

Proof. Unrolling the recursive definition of 𝜈𝑡 in Theorem 6, we see that

𝜈𝑡 =

𝑡∑︁
𝑖=1

(𝐴 − 𝐾𝑄1/2)𝑖−1𝐵𝑤𝑤𝑡−𝑖 .

Let {𝑥𝑡}𝑇𝑡=0 be the state sequence generated by the strictly causal competitive control
policy 𝜋𝑐 in the original 𝑚-dimensional system and let {𝜉𝑡}𝑇𝑡=0 is the sequence
of states generated by 𝜋𝑐 in the 2𝑚-dimensional synthetic system. Recall that
𝑤𝑡 = Σ−1/2𝑄1/2𝜈𝑡 and 𝑢𝑡 = �̂�𝜉𝑡 , so Theorem 6 implies that the first 𝑛 states of 𝜉𝑡
are precisely 𝑥𝑡 − 𝜈𝑡 . We decompose 𝑥𝑡 as a linear combination of the disturbance
terms:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝐾𝜉𝑡 + 𝐵𝑤𝑤𝑡

= 𝐴𝑥𝑡 + 𝐵𝑢
[
𝐾0 𝐾1

] [
𝑥𝑡 − 𝜈𝑡

Σ−1/2𝑄1/2𝜈𝑡

]
+ 𝐵𝑤𝑤𝑡

= (𝐴 + 𝐵𝑢𝐾0)𝑥𝑡 + 𝐵𝑢 (𝐾1Σ
−1/2𝑄1/2 − 𝐾0)𝜈𝑡 + 𝐵𝑤𝑤𝑡

=

𝑡∑︁
𝑖=0

(𝐴 + 𝐵𝑢𝐾0)𝑖
(
𝐵𝑤𝑤𝑡−𝑖 + 𝐵𝑢 (𝐾1Σ

−1/2𝑄1/2 − 𝐾0)𝑣𝑡−𝑖
)

=

𝑡∑︁
𝑖=0

(𝐴 + 𝐵𝑢𝐾0)𝑖 ©«𝐵𝑤𝑤𝑡−𝑖 + 𝐵𝑢
𝑡−𝑖∑︁
𝑗=1

𝑀 [ 𝑗−1]𝐵𝑤𝑤𝑡−𝑖− 𝑗
ª®¬

=

𝑡∑︁
𝑖=0

©«(𝐴 + 𝐵𝑢𝐾0)𝑖 +
𝑖∑︁
𝑗=1

(𝐴 + 𝐵𝑢𝐾0)𝑖− 𝑗𝐵𝑢𝑀 [ 𝑗−1]ª®¬ 𝐵𝑤𝑤𝑡−𝑖,
where we define the weights

𝑀 [𝑖−1] = (𝐾1Σ
−1/2𝑄1/2 − 𝐾0) (𝐴 − 𝐾𝑄1/2)𝑖−1
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for all 𝑖 ≥ 1. We now describe a DAC policy �̃�𝑐 which approximates 𝜋𝑐; recall
that every DAC policy is parameterized by a stabilizing controller and a set of 𝐻
weights. We take the stabilizing controller to be 𝐾0 and the set of weights to be
𝑀 = (𝑀 [0] , . . . , 𝑀 [𝐻−1]). The control action selected by �̃�𝑐 in each timestep is
therefore

�̃�𝑡 = 𝐾0𝑥𝑡 +
𝐻∑︁
𝑖=1

𝑀 [𝑖−1]𝐵𝑤𝑤𝑡−𝑖, (5.1)

where {𝑥𝑡}𝑇𝑡=0 is the state sequence generated by �̃�𝑐.

We now show that the weights {𝑀 [𝑖−1]}∞
𝑖=1 decay geometrically in time. Recall

that 𝐴 + 𝐵𝐾0 = 𝑆1𝐿1𝑆
−1
1 , where ∥𝑆1∥∥𝑆−1

1 ∥ ≤ 𝜅 and ∥𝐿1∥ ≤ 1 − 𝛿. Similarly,
𝐴 − 𝐾𝑄1/2 = 𝑆2𝐿2𝑆

−1
2 , where ∥𝑆2∥∥𝑆−1

2 ∥ ≤ 𝜅 and ∥𝐿2∥ ≤ 1 − 𝛿. It follows that

max
(
∥(𝐴 + 𝐵𝐾0)𝑖−1∥, (𝐴 − 𝐾𝑄1/2)𝑖−1)∥

)
≤ 𝜅(1 − 𝛿)𝑖−1. (5.2)

Recall that Σ = 𝐼 +𝑄1/2𝑃𝑄1/2 ⪰ 𝐼, therefore ∥Σ−1/2∥ ≤ 1. It follows that

∥𝐾1Σ
−1/2𝑄1/2 − 𝐾0∥ ≤ ∥𝐾1Σ

−1/2𝑄1/2∥ + ∥𝐾0∥
≤ 𝜅(1 + ∥𝑄1/2∥) (5.3)

Using (5.2) and (5.3) together, we immediately obtain

∥𝑀 [𝑖−1] ∥ ≤ 𝜅2(1 + ∥𝑄1/2∥)(1 − 𝛿)𝑖−1. (5.4)

We now bound the distance between 𝑥𝑡 and 𝑥𝑡 . Plugging our choice of �̃�𝑡 given in
(5.1) into the dynamics

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑢𝑡 + 𝐵𝑤𝑤𝑡 ,

we see that

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢

(
𝐾0𝑥𝑡 +

𝐻∑︁
𝑖=1

𝑀 [𝑖−1]𝐵𝑤𝑤𝑡−𝑖

)
+ 𝐵𝑤𝑤𝑡

=

𝑡∑︁
𝑖=0

(𝐴 + 𝐵𝑢𝐾0)𝑖 ©«𝐵𝑤𝑤𝑡−𝑖 + 𝐵𝑢
𝐻∑︁
𝑗=1

𝑀 [ 𝑗−1]𝐵𝑤𝑤𝑡−𝑖− 𝑗
ª®¬

=

𝑡∑︁
𝑖=0

©«(𝐴 + 𝐵𝑢𝐾0)𝑖 +
min{𝐻,𝑖}∑︁
𝑗=1

(𝐴 + 𝐵𝑢𝐾0)𝑖− 𝑗𝐵𝑢𝑀 [ 𝑗−1]ª®¬ 𝐵𝑤𝑤𝑡−𝑖 .
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Applying (5.2) and (5.4) we obtain

∥𝑥𝑡+1 − 𝑥𝑡+1∥ ≤
𝑡∑︁

𝑖=𝐻+1

𝑖∑︁
𝑗=𝐻+1

∥(𝐴 + 𝐵𝑢𝐾0)𝑖− 𝑗 ∥∥𝐵𝑢∥∥𝑀 [ 𝑗−1] ∥∥𝐵𝑤 ∥𝑊

≤ 𝑊𝜅5(1 + ∥𝑄1/2∥)
𝑡∑︁

𝑖=𝐻+1

𝑖∑︁
𝑗=𝐻+1

(1 − 𝛿)𝑖−1

≤ 𝑊𝜅5(1 + ∥𝑄1/2∥)
∑︁
𝑖≥𝐻+1

𝑖(1 − 𝛿)𝑖−1

≤ 4𝑊𝜅5(1 + ∥𝑄1/2∥)
𝛿

∑︁
𝑖≥𝐻+1

(1 − 𝛿/2)𝑖,

≤ 8𝑊𝜅5(1 + ∥𝑄1/2∥)
𝛿2 (1 − 𝛿/2)𝐻 (5.5)

where in the penultimate line we applied Lemma 4 in Appendix A .

We now bound the distance between 𝑢𝑡 and �̃�𝑡 . Unrolling the dynamics, we see that

𝑢𝑡 = 𝐾𝜉𝑡

= 𝐾0𝑥𝑡 + (𝐾1Σ
−1/2𝑄1/2 − 𝐾0)𝜈𝑡

= 𝐾0𝑥𝑡 +
𝑡−1∑︁
𝑖=1

(𝐾1Σ
−1/2𝑄1/2 − 𝐾0) (𝐴 − 𝐾𝑄1/2)𝑖−1𝑤𝑡−𝑖

= 𝐾0𝑥𝑡 +
𝑡−1∑︁
𝑖=1

𝑀 [𝑖−1]𝑤𝑡−𝑖 .

The definition of �̃�𝑡 given in (5.1) and the bounds (5.4) and (5.5) imply that

∥𝑢𝑡 − �̃�𝑡 ∥ ≤ ∥𝐾0∥∥𝑥𝑡 − 𝑥𝑡 ∥ +
𝑡−1∑︁
𝑖=𝐻+1

∥𝑀 [𝑖−1] ∥𝑤𝑡−𝑖

≤ 9𝑊𝜅6(1 + ∥𝑄1/2∥)
𝛿2 (1 − 𝛿/2)𝐻 ,

where we used the fact that 𝛿 < 1 and 𝜅 ≥ max(1, ∥𝐾0∥).

We now show that by taking 𝐻 to be sufficiently large we can ensure that

𝐽𝑇 (�̃�𝑐, 𝑤) − 𝐽𝑇 (𝜋𝑐, 𝑤) ≤ 𝜀.

Lemma 5 shows that

max(∥𝑥𝑡 ∥, ∥𝑢𝑡 ∥) ≤
3𝑊𝜅5(1 + ∥𝑄1/2∥)

𝛿2 .
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We put the pieces together to bound the difference in costs incurred by the compet-
itive policy and our DAC approximation in each timestep. Using the easily-verified
inequality ∥𝑥∥2 − ∥𝑦∥2 ≤ (∥𝑥 − 𝑦∥) (∥2𝑥∥ + ∥𝑥 − 𝑦∥) and the fact that 𝜅 ≥ 1,
1 − 𝛿/2 < 1, we see that

∥𝑄1/2𝑥𝑡 ∥2 − ∥𝑄1/2𝑥𝑡 ∥2 ≤ ∥𝑄∥∥𝑥𝑡 − 𝑥𝑡 ∥ (2∥𝑥𝑡 ∥ + ∥𝑥𝑡 − 𝑥𝑡 ∥)

≤ 112𝑊2𝜅10(1 + ∥𝑄1/2∥)2∥𝑄∥
𝛿4 (1 − 𝛿/2)𝐻

Similarly,

∥𝑢𝑡 ∥2 − ∥�̃�𝑡 ∥2 ≤ ∥𝑢𝑡 − �̃�𝑡 ∥ (2∥𝑢𝑡 ∥ + ∥𝑢𝑡 − �̃�𝑡 ∥)

≤ 135𝑊2𝜅12(1 + ∥𝑄1/2∥)2

𝛿4 (1 − 𝛿/2)𝐻 .

We observe that

(1 + ∥𝑄1/2 |)2 max(1, ∥𝑄∥) ≤ 4 max(1, ∥𝑄∥2).

The difference in aggregate cost is therefore

𝐽𝑇 (�̃�𝑐, 𝑤) − 𝐽𝑇 (𝜋𝑐, 𝑤) =
𝑇∑︁
𝑡=1

(𝑥⊤𝑡 𝑄𝑥𝑡 + ∥𝑢𝑡 ∥2 − (𝑥⊤𝑡 𝑄𝑥𝑡 + ∥�̃�𝑡 ∥2)

≤ 988𝑊2𝜅12 max(1, ∥𝑄∥2)
𝛿4 (1 − 𝛿/2)𝐻𝑇.

Taking

𝐻 ≥ 1
log(1 − 𝛿/2) log

(
988𝑊2𝜅12 max(1, ∥𝑄∥2)

𝛿4𝜀
𝑇

)
is thus sufficient to guarantee that

𝐽𝑇 (�̃�𝑐, 𝑤) − 𝐽𝑇 (𝜋𝑐, 𝑤) ≤ 𝜀.

□

We now show that this result implies best-of-both-worlds.

5.2 Best of both worlds: sublinear policy regret implies approximate compet-
itive ratio

We now show that any online learning algorithm A which minimizes regret relative
to the class M of DAC policies described in Theorem 15 automatically achieves
the best of both worlds: sublinear regret against the best DAC policy selected in
hindsight from M, and optimal competitive ratio, up to a sublinear regret term:
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Theorem 16. Fix 𝜀,𝑊 > 0 and the system parameters (𝐴, 𝐵𝑢, 𝐵𝑤, 𝑄), and let M
be defined as in Theorem 15. Let A be any algorithm such that

𝐽𝑇 (A, 𝑤) − min
𝜋∈M

𝐽𝑇 (𝜋, 𝑤) ≤ 𝑅(𝑇)

for all disturbances 𝑤 such that ∥𝑤∥∞ ≤ 𝑊 , where 𝑅(𝑇) is a bound on the regret
incurred by A over the time horizon 𝑇 . Then A also satisfies the “approximate
competitive ratio” condition

𝐽𝑇 (A, 𝑤) < 𝛾2 · 𝐽𝑇 (𝜋0, 𝑤) + 𝑅(𝑇) +𝑂 (1),

where 𝛾2 is the optimal competitive ratio attained by the strictly causal competitive
controller.

Before turning to the proof, we note that the approximate competitive ratio guarantee
described in Theorem 16 is substantially weaker than that offered by the standard
competitive controller 𝜋𝑐. Recall that 𝜋𝑐 offers the following guarantee:

sup
𝑤∈ℓ2

𝐽 (𝜋𝑐, 𝑤)
𝐽 (𝜋0, 𝑤)

< 𝛾2.

Note that this holds for all disturbances 𝑤, including those which grow over time.
As we showed in Theorem 7, this guarantee can also be obtained in time-varying
systems. By contrast, Theorem 16 holds only for bounded disturbances and LTI
systems. Furthermore, the competitive ratio bound described in Theorem 16 is not
necessarily constant in the time horizon 𝑇 ; it says that

sup
∥𝑤∥∞<𝑊

𝐽𝑇 (A, 𝑤)
𝐽𝑇 (𝜋0, 𝑤)

< 𝛾2 + sup
∥𝑤∥∞<𝑊

𝑅(𝑇) +𝑂 (1)
𝐽𝑇 (𝜋0, 𝑤)

.

This bound on the competitive ratio can grow rapidly as 𝑇 → ∞, provided that 𝑤 is
constructed such that 𝐽𝑇 (𝜋0, 𝑤) ≪ 𝑅(𝑇). It is an open question whether there exist
control algorithms with constant competitive ratio and sublinear policy regret.

We now present the proof of Theorem 16.

Proof. By Theorem 15, we know that there exists a DAC policy �̃�𝑐 ∈ M such that

𝐽𝑇 (�̃�𝑐, 𝑤) − 𝐽𝑇 (𝜋𝑐, 𝑤) ≤ 𝜀,
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where 𝜋𝑐 is the strictly causal competitive controller described in Theorem 6. The
cost incurred by A can be bounded as follows:

𝐽𝑇 (A, 𝑤) ≤ min
𝜋★∈M

𝐽𝑇 (𝜋★, 𝑤) + 𝑅(𝑊,𝑇)

≤ 𝐽𝑇 (�̃�𝑐, 𝑤) + 𝑅(𝑇)
≤ 𝐽𝑇 (𝜋𝑐, 𝑤) + 𝑅(𝑇) + 𝜀
≤ 𝐽 (𝜋𝑐, 𝑤) + 𝑅(𝑇) + 𝜀
≤ 𝛾2 · 𝐽 (𝜋0, 𝑤) + 𝑅(𝑇) + 𝜀
≤ 𝛾2 · 𝐽𝑇 (𝜋0, 𝑤) + 𝑅(𝑇) +𝑂 (1),

where in the penultimate line we applied the competitive ratio bound of the infinite-
horizon strictly causal competitive controller, and in the last line we used the fact
that 𝜀 is constant with respect to 𝑇 and used the following bound which relates the
finite-horizon cost of the optimal noncausal controller to its infinite-horizon cost:

𝐽 (𝜋0, 𝑤) ≤ 𝐽𝑇 (𝜋0, 𝑤) +𝑂 (1).

This bound can be proven as follows. The infinite-horizon cost incurred by 𝜋0 on
the disturbance sequence 𝑤 is the sum of the cost incurred by 𝜋0 up to time 𝑇 and
the cost incurred by 𝜋0 from time 𝑇 + 1 to infinity. Recall that we define 𝑤𝑡 = 0 for
all 𝑡 ≥ 𝑇 + 1. Using the characterization of 𝜋0 we obtained in Theorem 3, we see
that 𝜋0 simply selects the 𝐻2-optimal action starting at time 𝑇 + 1. The 𝐻2 policy
is stabilizing and the state 𝑥𝑇+1 generated by the optimal noncausal policy has norm
which is 𝑂 (1), so the residual 𝐽 (𝜋0, 𝑤) − 𝐽𝑇 (𝜋0, 𝑤) is also 𝑂 (1). □

By leveraging recently proposed online control algorithms with sublinear policy
regret against DAC classes, we immediately obtain several concrete best-of-both-
worlds results as corollaries of Theorem 16. We begin by considering the case
when the learner knows the linear system (𝐴, 𝐵𝑢, 𝐵𝑤); in this case, we can apply
the algorithm from [Sim20], which has 𝑂 (polylog(𝑇)) regret against the best DAC
policy selected in hindsight from M. This algorithm hence exhibit the following
best-of-both-worlds behavior, where we suppress dependence on 𝜖,𝑊 , and the
system parameters and focus on how the cost incurred by the algorithm scales in the
time horizon:

Corollary 1. Fix 𝜀,𝑊 > 0 and the system parameters (𝐴, 𝐵𝑢, 𝐵𝑤), and let M be
defined as in Theorem 15. There exists a computationally efficient online control al-
gorithmA which, given the system parameters (𝐴, 𝐵𝑢, 𝐵𝑤), simultaneously achieves
the following performance guarantees:
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1. (Approximate competitive ratio) The cost of A satisfies

𝐽𝑇 (A, 𝑤) < 𝛾2 · 𝐽𝑇 (𝜋0, 𝑤) +𝑂 (polylog(𝑇))

for all disturbances 𝑤 such that ∥𝑤∥∞ < 𝑊 , where 𝛾2 is the optimal compet-
itive ratio attained by the strictly causal competitive controller.

2. (Sublinear regret) The cost of A satisfies

𝐽𝑇 (A, 𝑤) < min
𝜋∈M

𝐽𝑇 (𝜋, 𝑤) +𝑂 (polylog(𝑇))

for all disturbances 𝑤 such that ∥𝑤∥∞ < 𝑊 .

We next consider the “adaptive control” setting, where the online control algorithm
does not know the system dynamics. The algorithm proposed in [CH21] achieves
𝑂 (

√
𝑇) regret even when the system dynamics are unknown; we note that this is

exponentially worse than the 𝑂 (polylog(𝑇)) regret which is attainable when the
dynamics are known. The algorithm operates in two phases; in the first phase it
performs system identification by exciting the system using the control inputs and
then estimating the system parameters by observing the system response to the
excitation. In the second phase, it uses the estimates obtained in the first phase to
construct an 𝐻2 controller in the estimated system; this 𝐻2 controller is stabilizing in
the true system provided that the estimate is sufficiently accurate. The𝑂 (

√
𝑇) regret

bound leads to the following corollary of Theorem 16, where we again suppress
dependence on 𝜖,𝑊 , and the system parameters and focus on how the cost incurred
by the algorithm scales in the time horizon:

Corollary 2. Fix 𝜀,𝑊 > 0 and the system parameters (𝐴, 𝐵𝑢, 𝐵𝑤), and let M be
defined as in Theorem 15. There exists a computationally efficient online control
algorithmA which, without knowing the system parameters simultaneously achieves
the following performance guarantees:

1. (Approximate competitive ratio) The cost of A satisfies

𝐽𝑇 (A, 𝑤) < 𝛾2 · 𝐽𝑇 (𝜋0, 𝑤) +𝑂
(√
𝑇

)
for all disturbances 𝑤 such that ∥𝑤∥∞ < 𝑊 , where 𝛾2 is the optimal compet-
itive ratio attained by the strictly causal competitive controller.
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2. (Sublinear regret) The cost of A satisfies

𝐽𝑇 (A, 𝑤) < min
𝜋∈M

𝐽𝑇 (𝜋, 𝑤) +𝑂
(√
𝑇

)
for all disturbances 𝑤 such that ∥𝑤∥∞ < 𝑊 .

We note that [Aga+19] showed that algorithms with low regret relative to a DAC
policy class M automatically also achieve low regret relative to the class of stabi-
lizing linear state-feedback policies K; this implies that Corollaries 1 and 2 can also
be translated into statements about regret relative to K. We refer to their paper for
details.
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C h a p t e r 6

NUMERICAL EXPERIMENTS

6.1 Double Integrator
The double integrator is a simple dynamical system that models the one-dimensional
kinematics of a moving object. The states of the system are the object’s position and
velocity, which are represented by the variables 𝑥 ∈ R and ¤𝑥 ∈ R, respectively. The
continuous-time dynamics of the system are represented by the Newtonian equation

𝑑

𝑑𝑡

[
𝑥(𝑡)
¤𝑥(𝑡)

]
=

[
¤𝑥(𝑡)
0

]
+

[
0
𝑢(𝑡)

]
+

[
0

𝑤(𝑡)

]
,

where 𝑢(𝑡) ∈ R and 𝑤(𝑡) ∈ R are the control input and the exogenous disturbance at
time 𝑡, respectively. The goal of the controller is to stabilize the object by keeping
(𝑥, ¤𝑥) as close to (0, 0) as possible, while using little energy. The discrete-time
dynamics are [

𝑥𝑡+1

¤𝑥𝑡+1

]
=

[
1 𝛿𝑡

0 1

] [
𝑥𝑡

¤𝑥𝑡

]
+

[
0
𝛿𝑡

]
𝑢𝑡 +

[
0
𝛿𝑡

]
𝑤𝑡 ,

where 𝛿𝑡 is the discretization parameter; in our experiments we set 𝛿𝑡 = 0.1 seconds.
In our experiments we take 𝑄 = 𝐼2 and initialize 𝑥 and ¤𝑥 to zero.

We compare the regret-optimal controllers to standard 𝐻2 and 𝐻∞ controllers in the
causal, full-information setting. Each of the regret-optimal and 𝐻∞ controllers is
associated with a parameter 𝛾 which quantifies its performance guarantee:

1. The competitive controller has 𝛾 = 2.14; in other words, the competitive ratio
of the competitive controller is 4.58.

2. The energy-optimal controller has 𝛾 = 0.63; in other words, the regret of the
energy-optimal controller against the optimal noncausal controller is bounded
by 0.4 times the energy of the disturbance.

3. The pathlength-optimal controller has 𝛾 = 934.99; in other words, the regret
of the pathlength-optimal controller against the optimal noncausal controller
is bounded by 8.74 × 105 times the pathlength of the disturbance.

4. The 𝐻∞-optimal controller has 𝛾 = 1.00, so the cost incurred by the 𝐻∞

controller is at most the energy of the disturbance.
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Figure 6.1: Frequency responses of causal controllers in the double integrator
system.

Frequency Response
In Figure 6.1, we plot the frequency response ∥𝑇𝐾 (𝑒𝑖𝜔)∥2 at different frequencies 𝜔,
where 𝑇𝐾 is the transfer operator associated to the controller 𝐾 and 𝐾 is alternately
taken to be the competitive, energy-optimal, pathlength-optimal, 𝐻2, 𝐻∞, and op-
timal noncausal controller. The frequency response measures how much energy
is transferred to the closed-loop control system from a sinusoidal disturbance with
frequency𝜔. The optimal noncausal controller has the lowest frequency response at
all frequencies; its frequency response is a lower bound on the frequency response
of any other controller. The 𝐻∞ controller is the causal controller which minimizes

sup
𝜔∈[0,2𝜋]

�̄�
(
𝑇∗
𝐾 (𝑒𝑖𝜔)𝑇𝐾 (𝑒𝑖𝜔)

)
.

We see that the frequency response of the 𝐻∞ controller peaks at 𝜔 = 0, where it
matches the frequency response of the optimal noncausal controller; all other causal
controllers have a higher peak frequency response. The 𝐻2 controller is the causal
controller which minimizes

1
2𝜋

∫ 2𝜋

𝜔=0
Tr

(
𝑇∗
𝐾 (𝑒𝑖𝜔)𝑇𝐾 (𝑒𝑖𝜔)

)
,

therefore the𝐻2 controller is the controller with the smallest area under its frequency
response curve; we note that the disturbance in the double integrator system is scalar,
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therefore �̄�
(
𝑇∗
𝐾
(𝑒𝑖𝜔)𝑇𝐾 (𝑒𝑖𝜔)

)
= Tr

(
𝑇∗
𝐾
(𝑒𝑖𝜔)𝑇𝐾 (𝑒𝑖𝜔)

)
. The competitive ratio of a

controller 𝐾 at frequency 𝜔 is the spectral radius of the matrix

𝑇∗
𝐾 (𝑒𝑖𝜔)𝑇𝐾 (𝑒𝑖𝜔)

(
𝑇∗
𝐾0
(𝑒𝑖𝜔)𝑇𝐾0 (𝑒𝑖𝜔)

)−1
,

where 𝑇𝐾 is the transfer operator associated to 𝐾 and 𝑇𝐾0 is the transfer operator
associated with the optimal noncausal controller. The disturbance is scalar, so the
competitive ratio simplifies to

𝑇∗
𝐾
(𝑒𝑖𝜔)𝑇𝐾 (𝑒𝑖𝜔)

𝑇∗
𝐾0
(𝑒𝑖𝜔)𝑇𝐾0 (𝑒𝑖𝜔)

,

which is simply the ratio of frequency responses.

We see that the competitive controller has a lower frequency response than all other
causal controllers at all frequencies except near 𝜔 = 0 and 𝜔 = 2𝜋, where its
frequency response is highest. Intuitively, this is because the competitive controller
is constrained to maintain a frequency response within a factor of 4.58 of the
frequency response of the optimal noncausal controller, so it has more leeway at
frequencies near 𝜔 = 0 and 𝜔 = 2𝜋, where the optimal noncausal controller also
has a high frequency response.

The energy-optimal controller minimizes

sup
𝜔∈[0,2𝜋]

�̄�

(
𝑇∗
𝐾 (𝑒𝑖𝜔)𝑇𝐾 (𝑒𝑖𝜔) − 𝑇∗

𝐾0
(𝑒𝑖𝜔)𝑇𝐾0 (𝑒𝑖𝜔)

)
.

In other words, the energy-optimal controller minimizes the gap between its own
frequency response and the frequency response of the optimal noncausal controller.
Consulting Figure 6.1, we see that every other causal controller indeed has a larger
peak difference in frequency response relative to the optimal noncausal controller.

Time Domain Analysis
We next benchmark our regret-optimal controllers in the double integrator system
across a wide variety of disturbances. We first consider an i.i.d. standard Gaussian
disturbance. In Figure 6.2 we see that the competitive controller closely tracks the
performance of the 𝐻2 controller, while the pathlength-optimal and 𝐻∞ controller
incur almost identical cost. Intuitively, an i.i.d. Gaussian disturbance has no
correlation across timesteps and hence is expected to have high pathlength, so it is
unsurprising that the pathlength-optimal controller performs poorly. We see that the
energy-optimal controller incurs cost which is roughly halfway between that of the
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𝐻2 and 𝐻∞ controllers. In Figure 6.3 we plot the costs of only the competitive and
𝐻2 controllers to better illustrate how closely the competitive controller is able to
approximate the performance of the 𝐻2 controller.
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Figure 6.2: Relative performance of causal controllers in the double integrator
system driven by an i.i.d. Gaussian disturbance.

We next consider sinusoidal disturbances of frequency 𝜔 = 0, i.e., constant distur-
bances. The frequency responses shown in Figure 6.1 predict that the competitive
controller will perform the worst, while the pathlength-optimal and 𝐻∞ controllers
will match the performance of the optimal noncausal controller; this prediction
is confirmed in Figure 6.4. As expected, the pathlength-optimal controller incurs
zero regret, since the pathlength of the disturbance is zero. We note that while
the competitive controller incurs the most cost, its cost is still less than 4.58 times
the optimal noncausal cost, which is consistent with its competitive ratio bound.
We also note that the time-averaged cost of the 𝐻∞ controller converges to 1.00 in
steady-state, which is consistent with the fact that its 𝐻∞ gain is 1.00.

We next consider a sinusoidal disturbance of frequency 𝜔 = 𝜋, i.e., the disturbances
alternate between +1 and −1 in each timestep. Due to the very large variation in the
costs incurred by the causal controllers, we plot the costs on a log scale in Figure 6.5.
The frequency responses shown in Figure 6.1 predict that the competitive controller
will perform the best out of all causal controllers; this prediction is confirmed
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Figure 6.3: Relative performance of the competitive and𝐻2 controllers in the double
integrator system driven by an i.i.d. Gaussian disturbance.

in Figure 6.5. The energy-optimal, pathlength-optimal, and 𝐻∞ controllers incur
several hundred times more cost than the competitive controller. This huge variation
in costs highlights the value proposition of the competitive controller; while it does
not always perform better than the other causal controllers, it is impossible to
construct disturbances on which it incurs hundreds of times more cost than the other
controllers. The 𝐻∞ controller, however, can be extremely suboptimal for some
disturbances.

We note that Figure 6.4 and Figure 6.5 together illustrate the key difference between
the competitive and energy-optimal controllers: the gap in performance between the
energy-optimal controller and the optimal noncausal controller is roughly constant
at all frequencies, whereas the competitive controller closely tracks the noncausal
controller when the noncausal controller incurs low cost, but can incur much higher
cost when the noncausal controller also incurs high cost. This difference in behavior
stems from the fact that the energy-optimal controller seeks to minimize the worst-
case difference in cost relative to the optimal noncausal controller, whereas the
competitive controller instead minimizes the worst-case ratio of costs.

We next consider a “Gaussian random walk” disturbance, where a series of standard
Gaussian random variables is sampled once, before the experiment begins, and



70

150 300 450 600
Time (sec)

0

0.5

1

1.5

2

2.5

3

T
im

e-
A

ve
ra

ge
d 

C
os

t

Figure 6.4: Relative performance of causal controllers in the double integrator
system driven by a constant disturbance.
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Figure 6.5: Relative performance of controllers in the double integrator system
driven by a sinusoidal disturbance with frequency 𝜋 (log scale).

the disturbance in timestep 𝑡 is the cumulative sum of the first 𝑡 variables. In
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Figure 6.6, we see that the pathlength-optimal controller almost exactly matches
the performance of the optimal noncausal controller; intuitively, this is because the
pathlength of a random Gaussian walk is very small compared to its energy. The
energy-optimal controller incurs roughly 25% more cost than the optimal noncausal
cost, while the competitive controller incurs around 2.7 times more cost, well below
the 4.58 factor guaranteed by its competitive ratio bound.
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Figure 6.6: Relative performance of the competitive and𝐻2 controllers in the double
integrator system driven by a Gaussian random walk.

6.2 Inverted Pendulum
In this section we study the behavior of the competitive controller in the classic non-
linear inverted pendulum system. This system models the dynamics of a pendulum
which attached to one end of a rigid rod; the other end of the rod is attached to a
mobile base which the controller can push to the left or the right. The pendulum is
initially suspended above the base but is subjected to environmental forces which
push it off the vertical axis; the goal of the controller is to dynamically adjust the
position of the base to keep the pendulum in the vertical position. This system has
two scalar states, 𝜃 and ¤𝜃, representing the angle between the rod and the vertical
direction the and angular velocity, respectively, and a single scalar control input 𝑢,
which represents the force applied by the controller to the base. The state (𝜃, ¤𝜃)
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evolves according to the nonlinear evolution equation

𝑑

𝑑𝑡

[
𝜃

¤𝜃

]
=

[
¤𝜃

sin 𝜃 + 𝑢 cos 𝜃 + 𝑤 cos 𝜃

]
,

where we have assumed that the coordinate system is scaled so that all physical
parameters of the pendulum system are equal to 1.

Although these dynamics are nonlinear, we can benchmark the competitive con-
troller against the 𝐻2, 𝐻∞, and optimal noncausal optimal controllers using Model
Predictive Control (MPC). In the MPC framework, we iteratively linearize the model
dynamics around the current state, compute the optimal control signal in the lin-
earized system, and then update the state in the original nonlinear system using this
control signal. We emphasize that the noncausal controller is no longer guaranteed
to outperform all other controllers in the MPC setting; the decisions it makes in each
timestep are globally optimal only in the linearized dynamics, and may be highly
suboptimal in the true nonlinear dynamics.

Intuitively, one might expect that our regret-optimal algorithms would outperform
𝐻2 and 𝐻∞ controllers in the MPC setting for the following reason. An MPC
controller must account for two kinds of deviation from the reference trajectory.
The first is simply the effect of the disturbance, which pushes the state off the
reference trajectory in each timestep; this deviation is also present in the linear
setting we have studied throughout this thesis. The second is linearization error
which arises from the fact that the linearized model the controller uses to select
control actions is only a local approximation to the true nonlinear dynamics. This
linearization error means that the controller itself may inadvertently add to the
deviation from the reference trajectory, since the control signal selected by the
controller generally will not be optimal in the actual system, even if it is optimal
in the linearized model. Both 𝐻2 and 𝐻∞ controllers are designed with respect
to a specific generative model of the disturbance sequence and do not account for
linearization error. Even if the disturbance encountered by the controller is generated
according to this model, the actions selected by the controller will not be optimal in
the nonlinear system. For example, even if the disturbance is generated i.i.d. from
a zero-mean Gaussian distribution, the 𝐻2 controller will not select the optimal
control signal for the nonlinear system due to linearization error. The regret-optimal
controllers, however, do not posit any specific model of the disturbance sequence,
and hence may be better able to account for linearization error.
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Figure 6.7: Relative performance of causal controllers in an inverted pendulum
system driven by an i.i.d. Gaussian disturbance.

We plot the relative costs incurred by the competitive,𝐻2,𝐻∞ and optimal noncausal
controllers across a wide variety of disturbances. In our experiments we take𝑄 = 𝐼2

and initialize 𝜃 and ¤𝜃 to zero. We set the discretization parameter 𝛿𝑡 = 0.01 and
sample the dynamics at intervals of 𝛿𝑡 over the time interval [0, 10]; the total number
of timesteps in each experiment is thus 1000.

In Figure 6.7, we plot the costs incurred by the causal controllers when the distur-
bance is generated i.i.d. from a standard Gaussian distribution in each timestep.
We see that the competitive controller performs almost as well as the 𝐻2 controller;
this is somewhat surprising, since the 𝐻2 controller is specifically tuned for i.i.d
zero-mean noise. The 𝐻∞ controller incurs nearly an order of magnitude more cost
than the competitive controller.

We next consider sinusoidal disturbances with amplitude 1 across a range of fre-
quencies. We first consider a sinusoidal disturbance of frequency 𝜔 = 0, i.e., a
constant disturbance. We see in Figure 6.8 that the 𝐻∞ controller exactly matches
the performance of the optimal noncausal controller, while the competitive and 𝐻2

controllers incur an order of magnitude more cost. However, at higher frequen-
cies the competitive controller starts to significantly outperform the 𝐻2 and 𝐻∞

controllers. In Figures 6.9 - 6.11 we plot the relative performance of the causal



74

2.5 5 7.5 10
Time (sec)

0

2

4

6

8

10

12

14

T
im

e-
A

ve
ra

ge
d 

C
os

t

Figure 6.8: Relative performance of causal controllers in an inverted pendulum
system driven by a constant disturbance.

controllers at a range of frequencies ranging from 𝜔 = 0.01𝜋 to 𝜔 = 𝜋. We see that
the competitive controller performs the best, and outperforms the 𝐻∞ controller by
a three orders of magnitude at 𝜔 = 𝜋.

We next consider a “Gaussian random walk” disturbance, where a series of standard
Gaussian random variables is sampled once, before the experiment begins, and
the disturbance in timestep 𝑡 is the cumulative sum of the first 𝑡 variables. In
Figure 6.12, we plot the costs incurred by the causal controllers and the optimal
noncausal controller, averaged across ten trials. Perhaps surprisingly, the noncausal
controller performs the worst, incurring more than 400 times as much cost as the
𝐻∞ controller. This experiment highlights how the nonlinear dynamics radically
influence the relative performance of various controllers; the noncausal controller
does not account for linearization error and hence can incur high cost, despite having
full knowledge of the disturbance sequence. While the competitive controller does
not perform as well as the 𝐻∞ controller, it still manages to perform significantly
better than the 𝐻2 controller.

Together, our experiments highlight the value proposition offered by the competitive
controller: while it doesn’t always perform the best out of all causal controllers, it
always incurs at most a small constant factor more cost than the optimal noncausal
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Figure 6.9: Relative performance of causal controllers in an inverted pendulum
system driven by sinusoidal noise with frequency 0.01𝜋.
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Figure 6.10: Relative performance of causal controllers in an inverted pendulum
system driven by sinusoidal noise with frequency 0.1𝜋 (log scale).
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Figure 6.11: Relative performance of causal controllers in an inverted pendulum
system driven by sinusoidal noise with frequency 𝜋 (log scale).
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Figure 6.12: Relative performance of causal controllers in an inverted pendulum
system driven by a Gaussian random walk (log scale).
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controller. This is in stark contrast to the 𝐻∞ controller, which incurs hundreds
of times more cost than the optimal noncausal controller on some adversarially
constructed disturbances. Furthermore, when the disturbance is stochastic, the
competitive controller is able to nearly match the performance of the 𝐻2 controller,
which is specifically tuned for stochastic noise.
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C h a p t e r 7

CONCLUSION AND FUTURE WORK

In this thesis we proposed data-dependent regret as a criterion for controller design
and showed that causal controllers with optimal data-dependent regret can be derived
via a reduction to𝐻∞ control in both the full-information and measurement-feedback
settings. We also described a surprising connection between regret-optimal control
and online learning, and used that connection to show that it is possible to achieve
“best-of-both-worlds” performance guarantees, at least in LTI systems which are
perturbed by norm-bounded disturbances. We also presented numerical simulations
which suggest that our regret-optimal control paradigm is a promising approach to
adapting to model error in nonlinear control.

There are a few open problems which we think would be interesting to explore
in future work. First, our negative results in Chapter 4 suggest that the optimal
noncausal controller is too strong to use as a benchmark in some regret minimization
problems. The fact that the optimal noncausal controller is able to observe the actual
disturbances when selecting the control actions represents a huge advantage relative
to the online controller, which only has access to noisy linear measurements of the
state; it is this disparity which precludes the existence of measurement-feedback
controllers with bounded competitive ratio, or regret which is bounded by the
pathlength of the measurement disturbance. In recent work [GH21] we described
an alternative choice of noncausal benchmark controller, which is able to evaluate
the costs that would result from choosing a specific sequence of control actions but
does not have access to the actual disturbance sequence. We believe such noncausal
benchmarks are an interesting choice to study in future work on regret-optimal
measurement-feedback control.

Another topic to explore in future work is regret-optimal control in settings where
it is more natural to measure the size of signals via the the ℓ∞ norm rather than the
ℓ2 norm. In the late 1980s and early 1990s a theory of robust control was developed
[Vid86; DP87; DK93] to bound the worst-case amplification of ℓ∞ bounded signals;
this approach to control is called 𝐿1 control. It naturally parallels the 𝐻∞ approach
to robust control, which focuses on bounding the worst-case amplification of ℓ2

bounded signals. It would be interesting to develop an analogous theory of regret-
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optimal control using a reduction to 𝐿1 control.

Finally, while we have studied the problem of obtaining controllers with sublin-
ear policy regret and approximate competitive ratio, it is natural to consider the
more challenging metric of adaptive policy regret, which was recently studied in
[GHM20]. This metric generalizes adaptive regret, which was introduced by Hazan
and Seshadhri in [HS09], and measures the performance of an online control algo-
rithm by its regret relative to a fixed comparator in any contiguous subinterval. It is
hence a more challenging notion than policy regret, since the controller must achieve
low regret in every subinterval, not merely over the full time horizon. One advantage
of this metric is that is more meaningful when the dynamics are time-varying and it
makes little sense to compare to a fixed controller.



80

BIBLIOGRAPHY

[Aga+19] Naman Agarwal et al. “Online Control with Adversarial Disturbances”.
In: International Conference on Machine Learning. 2019, pp. 111–119.

[AGL22] Mohammad Akbari, Bahman Gharesifard, and Tamas Linder. “Loga-
rithmic Regret in Online Linear Quadratic Control using Riccati Up-
dates”. In: Mathematics of Control, Signals, and Systems (2022), pp. 1–
32.

[AHM15] Oren Anava, Elad Hazan, and Shie Mannor. “Online Learning for Ad-
versaries with Memory: Price of Past Mistakes”. In: Advances in Neural
Information Processing Systems 28 (2015).

[Aue+02] Peter Auer et al. “The Nonstochastic Multiarmed Bandit Problem”. In:
SIAM journal on computing 32.1 (2002), pp. 48–77.

[BB08] Tamer Başar and Pierre Bernhard. 𝐻∞ Optimal Control and Related
Minimax Design Problems: A Dynamic Game Approach. Springer Sci-
ence & Business Media, 2008.

[BE05] Allan Borodin and Ran El-Yaniv. Online computation and Competitive
Analysis. Cambridge University Press, 2005.

[BGZ15] Omar Besbes, Yonatan Gur, and Assaf Zeevi. “Non-Stationary Stochas-
tic Optimization”. In: Operations research 63.5 (2015), pp. 1227–1244.

[Bub+19] Sébastien Bubeck et al. “Improved Path-length Regret Bounds for Ban-
dits”. In: Conference On Learning Theory. PMLR. 2019, pp. 508–528.

[CGW18] Niangjun Chen, Gautam Goel, and Adam Wierman. “Smoothed Online
Convex Optimization in High Dimensions via Online Balanced De-
scent”. In: Conference On Learning Theory. PMLR. 2018, pp. 1574–
1594.

[CH21] Xinyi Chen and Elad Hazan. “Black-Box Control for Linear Dynamical
Dystems”. In: Conference on Learning Theory. PMLR. 2021, pp. 1114–
1143.

[Coh+18] Alon Cohen et al. “Online Linear Quadratic Control”. In: International
Conference on Machine Learning. PMLR. 2018, pp. 1029–1038.

[DK93] Munther A Dahleh and Mustafa H Khammash. “Controller Design
for Plants with Structured Uncertainty”. In: Automatica 29.1 (1993),
pp. 37–56.

[Doy78] John C. Doyle. “Guaranteed Margins for LQG Regulators”. In: IEEE
Transactions on Automatic Control 23.4 (1978), pp. 756–757.



81

[DP87] Munther A. Dahleh and J. Boyd Pearson. “ℓ1-Optimal Feedback Con-
trollers for MIMO Discrete-Time Systems”. In: IEEE Transactions on
Automatic Control 32.4 (1987), pp. 314–322.

[FS20] Dylan Foster and Max Simchowitz. “Logarithmic Regret for Adversarial
Online Control”. In: International Conference on Machine Learning.
PMLR. 2020, pp. 3211–3221.

[GH21] Gautam Goel and Babak Hassibi. “Regret-Optimal Measurement-Feedback
Control”. In: Learning for Dynamics and Control. PMLR. 2021, pp. 1270–
1280.

[GHM20] Paula Gradu, Elad Hazan, and Edgar Minasyan. “Adaptive Regret for
Control of Time-Varying Dynamics”. In: arXiv preprint arXiv:2007.04393
(2020).

[Goe+19] Gautam Goel et al. “Beyond Online Balanced Descent: An Optimal
Algorithm for Smoothed Online Optimization”. In: Advances in Neural
Information Processing Systems. 2019, pp. 1875–1885.

[GW19] Gautam Goel and Adam Wierman. “An Online Algorithm for Smoothed
Regression and LQR Control”. In: Proceedings of Machine Learning
Research 89 (2019), pp. 2504–2513.

[HAK07] Elad Hazan, Amit Agarwal, and Satyen Kale. “Logarithmic Regret
Algorithms for Online Convex Optimization”. In: Machine Learning
69.2 (2007), pp. 169–192.

[Haz19] Elad Hazan. “Introduction to Online Convex Optimization”. In: arXiv
preprint arXiv:1909.05207 (2019).

[HS09] Elad Hazan and Comandur Seshadhri. “Efficient Learning Algorithms
for Changing Environments”. In: Proceedings of the 26th International
Conference on Machine Learning. 2009, pp. 393–400.

[HSK99] Babak Hassibi, Ali H. Sayed, and Thomas Kailath. Indefinite-Quadratic
Estimation and Control: A Unified Approach to 𝐻2 and 𝐻∞ Theories.
SIAM, 1999.

[Kal+60] Rudolf Emil Kalman et al. “Contributions to the Theory of Optimal
Control”. In: Bol. soc. mat. mexicana 5.2 (1960), pp. 102–119.

[KSH00] Thomas Kailath, Ali H. Sayed, and Babak Hassibi. Linear Estimation.
Prentice Hall, 2000.

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge
University Press, 2020.

[RTS65] Herbert E. Rauch, F. Tung, and Charlotte T. Striebel. “Maximum Like-
lihood Estimates of Linear Dynamic Systems”. In: AIAA journal 3.8
(1965), pp. 1445–1450.



82

[Shi+20] Guanya Shi et al. “Online Optimization with Memory and Competitive
Control”. In: Advances in Neural Information Processing Systems 33
(2020), pp. 20636–20647.

[Sim20] Max Simchowitz. “Making Non-Stochastic Control (Almost) as Easy
as Stochastic”. In: Advances in Neural Information Processing Systems.
Vol. 33. 2020, pp. 18318–18329.

[Vid86] Mathukumalli Vidyasagar. “Optimal Rejection of Persistent Bounded
Disturbances”. In: IEEE Transactions on Automatic Control 31.6 (1986),
pp. 527–534.

[Whi81] Peter Whittle. “Risk-Sensitive Linear/Quadratic/Gaussian Control”. In:
Advances in Applied Probability 13.4 (1981), pp. 764–777.

[Zam81] George Zames. “Feedback and Optimal Sensitivity: Model Reference
Transformations, Multiplicative Seminorms, and Approximate Inverses”.
In: IEEE Transactions on Automatic Control 26.2 (1981), pp. 301–320.

[Zha+20] Peng Zhao et al. “A Simple Approach for Non-Stationary Linear Ban-
dits”. In: International Conference on Artificial Intelligence and Statis-
tics. PMLR. 2020, pp. 746–755.

[Zin03] Martin Zinkevich. “Online Convex Programming and Generalized In-
finitesimal Gradient Ascent”. In: Proceedings of the 20th International
Conference on Machine Learning. 2003, pp. 928–936.

[ZWZ22] Peng Zhao, Yu-Xiang Wang, and Zhi-Hua Zhou. “Non-Stationary On-
line Learning with Memory and Non-Stochastic Control”. In: Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR. 2022,
pp. 2101–2133.



83

A p p e n d i x A

SOME USEFUL LEMMAS

Lemma 1. For all 𝐻, 𝐹 and all Hermitian matrices 𝑃, we have[
𝐻∗(𝑧−1𝐼 − 𝐹∗)−1 𝐼

]
Ω(𝑃)

[
(𝑧𝐼 − 𝐹)−1𝐻

𝐼

]
= 0,

where we define

Ω(𝑃) =
[
−𝑃 + 𝐹∗𝑃𝐹 𝐹∗𝑃𝐻

𝐻∗𝑃𝐹 𝐻∗𝑃𝐻

]
.

Proof. This identity is essentially the “transpose” of Lemma 2 and is easily verified
via direct calculation. □

Lemma 2. For all 𝐻, 𝐹 and all Hermitian matrices 𝑃, we have[
𝐻 (𝑧𝐼 − 𝐹)−1 𝐼

]
Ω(𝑃)

[
(𝑧−1𝐼 − 𝐹∗)−1𝐻∗

𝐼

]
= 0,

where we define

Ω(𝑃) =
[
−𝑃 + 𝐹𝑃𝐹∗ 𝐹𝑃𝐻∗

𝐻𝑃𝐹∗ 𝐻𝑃𝐻∗

]
.

Proof. This identity is a special case of Lemma 3; it also appears as Lemma 12.3.3
in [HSK99]. □

Lemma 3. For all 𝐻1, 𝐻2, 𝐹1, 𝐹2 and all matrices𝑊 , we have[
𝐻1(𝑧𝐼 − 𝐹1)−1 𝐼

]
Ω(𝑊)

[
(𝑧−1𝐼 − 𝐹∗

2 )
−1𝐻∗

2
𝐼

]
= 0,

where we define

Ω(𝑊) =
[
−𝑊 + 𝐹1𝑊𝐹

∗
2 𝐹1𝑊𝐻

∗
2

𝐻1𝑊𝐹
∗
2 𝐻1𝑊𝐻

∗
2

]
.

Proof. Notice that Ω(𝑊) can be rewritten as

Ω(𝑊) =
[
𝐹1

𝐻1

]
𝑊

[
𝐹2 𝐻2

]
−

[
𝐼

0

]
𝑊

[
𝐼 0

]
.
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The proof is immediate after observing that[
𝐻1(𝑧𝐼 − 𝐹1)−1 𝐼

] [
𝐹1

𝐻1

]
= 𝐻1(𝑧𝐼 − 𝐹1)−1𝑧,

[
𝐹2 𝐻2

] [
(𝑧−1𝐼 − 𝐹∗

2 )
−1𝐻∗

2
𝐼

]
= 𝑧−1(𝑧−1𝐼 − 𝐹∗

2 )
−1𝐻∗

2 .

□

Lemma 4. For all 𝛿 ∈ [0, 1/2] and all 𝑖 ≥ 0, the following inequality holds:

𝑖(1 − 𝛿)𝑖−1 ≤ 4
𝛿
(1 − 𝛿/2)𝑖 .

Proof. Recall that 𝑥𝑒−𝑥 ≤ 1 for all 𝑥, therefore 𝑖𝑒−𝛿𝑖/2 ≤ 2
𝛿
. Also for all 𝛿 ∈ [0, 1/2]

we have the inequality
√

1 − 𝛿 ≤ 1 − 𝛿/2. We see that

𝑖(1 − 𝛿)𝑖−1 =
𝑖

1 − 𝛿 (1 − 𝛿)𝑖/2(1 − 𝛿)𝑖/2

≤ 𝑖

1 − 𝛿 𝑒
−𝛿𝑖/2(1 − 𝛿)𝑖/2

≤ 2
𝛿(1 − 𝛿) (1 − 𝛿)𝑖/2

≤ 2
𝛿(1 − 𝛿) (1 − 𝛿/2)𝑖

≤ 4
𝛿
(1 − 𝛿/2)𝑖 .

□

Lemma 5. Let 𝜋 be a policy from an (𝐻, 𝜃, 𝛿)-DAC policy class whose stabilizing
component K is (𝜅, 𝛿)-strongly stable. The states and actions generated by 𝜋 are
pointwise bounded; in each timestep 𝑡 ≥ 1 the states and control actions satisfy

max(∥𝑥𝑡 ∥, ∥𝑢𝑡 ∥) ≤
3𝜅3𝜃𝑊

𝛿
.

Proof. SinceK is (𝜅, 𝛿)-strongly stable, there exists matrices 𝑆, 𝐿 such that 𝐴+𝐵K =

𝑆𝐿𝑆−1 with max(∥K∥, ∥𝐵∥, ∥𝑆∥∥𝑆−1, 1)∥ ≤ 𝜅 and ∥𝐿∥ ≤ 1 − 𝛿. Recall that for
every member of an (𝐻, 𝑅, 𝛿)-DAC class satisfies ∥𝑀 [ 𝑗−1] ∥ ≤ 𝜃 (1 − 𝛿) 𝑗−1, where
𝜃 > 1 and 𝛿 < 1. It follows that

∞∑︁
𝑗=1

∥𝑀 [ 𝑗−1] ∥ ≤ 𝜃

𝛿
.
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Observe that for any 𝑡 ≥ 0 the states 𝑥𝑡+1 satisfies

∥𝑥𝑡+1∥ =

 𝑡−1∑︁
𝑖=0

(𝐴 + 𝐵K)𝑖 ©«𝑤𝑡−𝑖 + 𝐵
𝐻∑︁
𝑗=1

𝑀 [ 𝑗−1]𝑤𝑡−𝑖− 𝑗
ª®¬


≤
(
𝑡−1∑︁
𝑖=0

∥(𝐴 + 𝐵K)𝑖∥
)
· max

0≤𝑖≤𝑡−1

𝑤𝑡−𝑖 + 𝐵 𝐻∑︁
𝑗=1

𝑀 [ 𝑗−1]𝑤𝑡−𝑖− 𝑗


≤

(
𝑡−1∑︁
𝑖=0

∥(𝐴 + 𝐵K)𝑖∥
)
· max

0≤𝑖≤𝑡−1

©«∥𝑤𝑡−𝑖∥ + ∥𝐵∥ max
𝑗

∥𝑤𝑡−𝑖− 𝑗 ∥
𝐻∑︁
𝑗=1

∥𝑀 [ 𝑗−1] ∥ª®¬
≤ 𝜅

𝛿
𝑊

(
1 + 𝜅𝜃

𝛿

)
≤ 2𝜅2𝜃𝑊

𝛿2 ,

Turning to 𝑢𝑡 , we see that

∥𝑢𝑡 ∥ =
K𝑥𝑡 + 𝐻∑︁

𝑖=1
𝑀 [𝑖−1]𝑤𝑡−𝑖


≤ 2𝜅3𝜃𝑊

𝛿2 + 𝜃𝑊
𝛿
.

Since 𝜅 ≥ 1 and 𝛿 < 1, both ∥𝑢𝑡 ∥ and ∥𝑥𝑡 ∥ are bounded above by 3𝜅3𝜃𝑊
𝛿2 for all

𝑡 ≥ 1. □
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A p p e n d i x B

𝐻∞ CONTROL

In this chapter we review the 𝐻∞ control paradigm and present state-space models
of 𝐻∞ controllers in both the full-information and measurement-feedback settings.

B.1 Full-Information 𝐻∞ control
The𝐻∞-optimal control problem is to find the controller which minimizes the worst-
case gain from the energy in the disturbance 𝑤 to the cost incurred by the controller.
More formally, the 𝐻∞-optimal control problem is:

Problem 7 (𝐻∞-optimal control). Find a causal controller 𝜋 that minimizes

sup
𝑤

𝐽 (𝜋, 𝑤)
∥𝑤∥2

2
.

The finite-horizon 𝐻∞ problem is identical, except that the infinite-horizon cost
𝐽 (𝜋, 𝑤) is replaced by the finite-horizon cost 𝐽𝑇 (𝜋, 𝑤). In general, it is not known
how to derive a closed-form for the 𝐻∞-optimal controller, so it is common to
consider a relaxation:

Problem 8 (Suboptimal 𝐻∞ control at level 𝛾). Given 𝛾 > 0, find an online con-
troller such that

𝐽 (𝜋, 𝑤)
∥𝑤∥2

2
< 𝛾2

for all disturbances 𝑤, or determine whether no such controller exists.

We call such a controller an 𝐻∞ controller at level 𝛾. It is clear that if we can solve
this suboptimal problem then we can easily recover the 𝐻∞-optimal controller via
bisection on 𝛾. The suboptimal 𝐻∞ control problem has a well-known state-space
solution:

Theorem 17 (Theorem 13.3.3 in [HSK99]). Suppose (𝐴, 𝐵𝑢) is stabilizable and
(𝐴, 𝐿) is observable on the unit circle. A causal controller 𝐾 such that

∥𝑇𝐾 ∥ < 𝛾

exists if and only if the DARE

𝑃 = 𝑄 + 𝐴⊤𝑃𝐴 − 𝐴⊤𝑃𝐵𝐻−1𝐵⊤𝑃𝐴
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where we define 

𝐵 =

[
𝐵𝑢 𝐵𝑤

]
,

𝑅 =


𝐼𝑚 0

0 −𝛾2𝐼𝑝

 ,
𝐻 = 𝑅 + 𝐵⊤𝑃𝐵,

has a solution 𝑃 such that

1. 𝐴 − 𝐵𝐻−1𝐵⊤𝑃𝐴 is stable;

2. 𝑅 and 𝐻 have the same inertia;

3. 𝑃 ⪰ 0.

In this case, one possible infinite-horizon 𝐻∞ controller at level 𝛾 is

𝑢𝑡 = −(𝐼𝑚 + 𝐵⊤
𝑢 𝑃𝐵𝑢)−1𝐵⊤

𝑢 𝑃(𝐴𝑥𝑡 + 𝐵𝑤𝑤𝑡).

A strictly causal 𝐻∞ controller at level 𝛾 exists if and only if conditions (1) and (3)
hold, and additionally

𝐵⊤
𝑢 𝑃𝐵𝑢 ≺ 𝛾2𝐼𝑚

and
𝐼𝑚 + 𝐵⊤

𝑢 𝑃(𝐼𝑛 − 𝛾−2𝐵𝑤𝐵
⊤
𝑤𝑃)−1𝐵𝑢 ≻ 0.

In this case, one possible strictly causal 𝐻∞ controller at level 𝛾 is

𝑢𝑡 = −(𝐼𝑚 + 𝐵⊤
𝑢 𝑃𝐵𝑢)−1𝐵⊤

𝑢 𝑃𝐴𝑥𝑡 ,

where we define
𝑃 = 𝑃 − 𝑃𝐵𝑤 (−𝛾2𝐼𝑝 + 𝐵⊤

𝑤𝑃𝐵𝑤)−1𝐵⊤
𝑤𝑃.

𝐻∞ Control in Time-Varying Systems
We can also describe a state-space model for the 𝐻∞ controller at level 𝛾 in a
time-varying system over a finite horizon:

Theorem 18 (Theorems 9.5.1 and 9.5.2 in [HSK99]). Given 𝛾 > 0, a causal finite-
horizon 𝐻∞ controller at level 𝛾 exists if and only if

𝐵⊤
𝑤,𝑡

[
𝑃𝑡+1 − 𝑃𝑡+1𝐵𝑢,𝑡𝐻

−1
𝑡 𝐵⊤

𝑢,𝑡𝑃𝑡+1
]
𝐵𝑤,𝑡 ≺ 𝛾2𝐼𝑝
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for all 𝑡 = 0, . . . 𝑇 , where we define

𝐻𝑡 = 𝐼𝑚 + 𝐵⊤
𝑢,𝑡𝑃𝑡+1𝐵𝑢,𝑡

and 𝑃𝑡 is the solution of the backwards-time Riccati recurrence

𝑃𝑡 = 𝑄𝑡 + 𝐴⊤𝑡 𝑃𝑡+1𝐴𝑡 − 𝐴⊤𝑡 𝑃𝑡+1�̃�𝑡 �̃�
−1
𝑡 �̃�⊤

𝑡 𝑃𝑡+1𝐴𝑡 ,

where we initialize 𝑃𝑇+1 = 0 and define

�̃�𝑡 =

[
𝐵𝑢,𝑡 𝐵𝑤,𝑡

]
, �̃� =

[
𝐼𝑚 0
0 −𝛾2𝐼𝑝

]
, �̃�𝑡 = �̃� + �̃�⊤

𝑡 𝑃𝑡+1�̃�𝑡 .

In this case, one possible causal finite-horizon 𝐻∞ controller at level 𝛾 is given by

𝑢𝑡 = −𝐻−1
𝑡 𝐵⊤

𝑢,𝑡𝑃𝑡+1(𝐴𝑡𝑥𝑡 + 𝐵𝑤,𝑡𝑤𝑡).

A strictly causal finite-horizon controller at level 𝛾 exists if and only if

𝐵⊤
𝑢,𝑡𝑃𝑡+1𝐵𝑢,𝑡 ≺ 𝛾2𝐼𝑚

for 𝑡 = 0 . . . 𝑇 . In this case, one possible strictly causal finite-horizon controller at
level 𝛾 is given by

𝑢𝑡 = −𝐻−1
𝑡 𝐵⊤

𝑢,𝑡𝑃𝑡+1𝐴𝑡𝑥𝑡 ,

where we define

𝑃𝑡+1 = 𝑃𝑡+1 − 𝑃𝑡+1𝐵𝑤,𝑡 (−𝛾2𝐼𝑝 + 𝐵⊤
𝑤,𝑡𝑃𝑡+1𝐵𝑤,𝑡)−1𝐵⊤

𝑤,𝑡𝑃𝑡+1.

If the dynamics are time-invariant then this controller converges to the infinite-
horizon controller described in Theorem 17 as 𝑇 → ∞.

B.2 Measurement-Feedback 𝐻∞ control
The 𝐻∞-optimal measurement-feedback control problem is to find the controller
which minimizes the worst-case gain from the energy in the disturbances 𝑤 and 𝑣 to
the cost incurred by the controller. More formally, the 𝐻∞-optimal measurement-
feedback control problem is:

Problem 9 (𝐻∞-optimal measurement-feedback control). Find an online controller
that minimizes

sup
𝑤,𝑣

𝐽 (𝜋, 𝑤, 𝑣)
∥𝑤∥2

2 + ∥𝑣∥2
2
.
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In general, it is not known how to derive a closed-form for the 𝐻∞-optimal
measurement-feedback controller, so it is common to consider a relaxation:

Problem 10 (Suboptimal 𝐻∞ measurement-feedback control at level 𝛾). Given
𝛾 > 0, find an online controller such that

𝐽 (𝜋, 𝑤)
∥𝑤∥2

2 + ∥𝑣∥2
2
< 𝛾2

for all disturbances 𝑤, or determine whether no such controller exists.

We call such a controller an 𝐻∞ measurement-feedback controller at level 𝛾. It is
clear that if we can solve this suboptimal problem then we can easily recover the𝐻∞-
optimal controller via bisection on 𝛾. The suboptimal 𝐻∞ measurement-feedback
control problem has a well-known state-space solution:

Theorem 19 (Theorem 13.3.5 in [HSK99]). A causal measurement-feedback con-
troller 𝐾 such that

∥𝑇𝐾 ∥ < 1

exists if and only if the control DARE

𝑃𝑐 = 𝐴
∗𝑃𝑐𝐴 + 𝐿∗𝐿 − 𝐾∗

𝑐𝑅𝑐𝐾𝑐

and the estimation DARE

𝑃𝑒 = 𝐴𝑃𝑒𝐴
∗ + 𝐵𝑤𝐵∗

𝑤 − 𝐾𝑒𝑅𝑒𝐾∗
𝑒 ,

where we define 

𝐾𝑐 = 𝑅
−1
𝑐


𝐵∗
𝑢

𝐵∗
𝑤

 𝑃𝑐𝐴

𝑅𝑐 =


𝐼𝑚 0

0 −𝐼𝑝

 +

𝐵∗
𝑢

𝐵∗
𝑤


𝑃𝑐

[
𝐵𝑢 𝐵𝑤

]
,

𝐾𝑒 = 𝐴𝑃
𝑑
[
𝐶∗ 𝐿∗

]
𝑅−1
𝑒 ,

𝑅𝑒 =


𝐼𝑟 0

0 −𝐼𝑛

 +

𝐶

𝐿

 𝑃𝑐
[
𝐶∗ 𝐿∗

]
,
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have solutions 𝑃𝑐 ⪰ 0 and 𝑃𝑒 ⪰ 0 such that

1. The matrix 𝐴 −
[
𝐵𝑢 𝐵𝑤

]
𝐾𝑐 is stable.

2. The matrix 𝑅𝑐 has 𝑚 positive eigenvalues and 𝑝 negative eigenvalues.

3. The matrix 𝐴 − 𝐾𝑒

[
𝐶

𝐿

]
is stable.

4. The matrix 𝑅𝑒 has 𝑟 positive eigenvalues and 𝑛 negative eigenvalues.

5. 𝜌(𝑃𝑐𝑃𝑒) < 1.

If these conditions are satisfied, then one possible choice of 𝐾 is given by

𝑢𝑡 = −𝐾𝑢 (�̂�𝑡 + 𝑃𝐶∗(𝐼𝑟 + 𝐶𝑃𝐶∗)−1(𝑦𝑡 − 𝐶�̂�𝑡)),

where the state-estimate �̂�𝑡 is given by the recursion

�̂�𝑡+1 = (𝐴 − 𝐵𝑤𝐾𝑤) (�̂�𝑡 + 𝑃𝐶∗(𝐼𝑟 + 𝐶𝑃𝐶∗)−1(𝑦𝑡 − 𝐶�̂�𝑡)) + 𝐵𝑢𝑢𝑡 ,

and 𝐾𝑢 ∈ R𝑚×𝑛 and 𝐾𝑤 ∈ R𝑝×𝑛 are defined as[
𝐾𝑢

𝐾𝑤

]
= 𝐾𝑐,

and we define 𝑃 ∈ R𝑛×𝑛 as

𝑃 = 𝑃𝑒 (𝐼𝑛 − 𝑃𝑐𝑃𝑒)−1.

While Theorem 19 tells us how to determine whether there exists a controller 𝐾
such that ∥𝑇𝐾 ∥ < 1, it does not directly answer the more general question if there
exists a controller 𝐾 such that ∥𝑇𝐾 ∥ < 𝛾, for any fixed 𝛾 > 0. This condition is
equivalent to ∥𝑇

𝐾
∥ < 1, where we define 𝑇

𝐾
= 𝛾−1𝑇𝐾 . Notice that

𝑇
𝐾
=

[
𝛾−1𝐺 0

0 0

]
+

[
𝐹

𝐼

]
(𝛾−1𝑄)

[
𝐽 𝐼

]
.

Recall that 𝑄 = 𝐾 (𝐼 − 𝐻𝐾)−1, implying that 𝛾−1𝑄 = (𝛾−1𝐾) [𝐼 − (𝛾𝐻) (𝛾−1𝐾)]−1.
It follows that the controller 𝐾 satisfying ∥𝑇𝐾 ∥ < 𝛾 in the system 𝐹, 𝐺, 𝐻, 𝐽 is
precisely 𝛾𝐾 , where 𝐾 is the controller satisfying ∥𝑇

𝐾
∥ < 1 in the system 𝐹, 𝐺, 𝐽, 𝐻
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and 𝐹 = 𝐹, 𝐺 = 𝛾−1𝐺, 𝐻 = 𝛾𝐻, 𝐽 = 𝐽. We can assign state-space structure to
𝐹, 𝐺, 𝐻, 𝐽 as follows. Recall that

𝐹 (𝑧) = 𝐿 (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐺 (𝑧) = 𝐿 (𝑧𝐼 − 𝐴)−1𝐵𝑤,

𝐻 (𝑧) = 𝐶 (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐽 (𝑧) = 𝐶 (𝑧𝐼 − 𝐴)−1𝐵𝑤 .

Define
𝐶 = 𝛾𝐶, 𝐵𝑤 = 𝛾−1𝐵𝑤 .

We have
𝐹 (𝑧) = 𝐿 (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐺 (𝑧) = 𝐿 (𝑧𝐼 − 𝐴)𝐵𝑤,

𝐻 (𝑧) = 𝐶 (𝑧𝐼 − 𝐴)−1𝐵𝑢, 𝐽 (𝑧) = 𝐶 (𝑧𝐼 − 𝐴)𝐵𝑤 .

We can hence use Theorem 19 to check the existence of a controller 𝐾 such that
∥𝑇𝐾 ∥ < 𝛾, for any fixed 𝛾 > 0.


