
Safe Input Regulation for Robotic Systems

Thesis by
Andrew Wills Singletary

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2022
Defended May 19, 2022

ii

© 2022

Andrew Wills Singletary
ORCID: 0000-0001-6635-4256

All rights reserved

iii

ACKNOWLEDGEMENTS

To Winston and Daisy.

iv

ABSTRACT

The safety of robotic systems is paramount to their continued emergence into our
lives. From collaborative industrial manipulators to drone deliveries to autonomous
vehicles, safety is the primary concern when it comes to the continued adoption
of these technologies. While a number of techniques can be used to design safe
controllers and planners that govern the actions of these robots, few are able to
provide the type of safety guarantee needed to bring these technologies into reality.

The goal of this thesis is to provide a framework for regulating, or filtering, existing
control inputs before they are applied by the robot, in order to ensure that safety is
upheld. To illustrate this, consider one of the primary applications for this method:
human-operated robotic platforms. For vehicles, this framework would modify the
throttle, braking, and steering commands from a human driver to prevent him from
driving off the road or into other cars. However, when the human is operating
the vehicle safely, his commands should go unaltered. This illustrates the idea
of a minimally invasive safety regulator: one that only engages when absolutely
necessary to ensure safety.

Within the last decade, the mathematical framework that allows us to achieve this
result, control barrier functions, was introduced. Its adoption among the nonlinear
controls community has been rapid, and the method has been used to create con-
trollers that guarantee safety on a large class of systems. Despite this, real-world
implementations of control barrier functions are less common, since they require a
very accurate model of the system, and they can be difficult to formulate properly.
This work provides several major extensions, improvements, and modifications of
control barrier functions that allow them to be utilized on a variety of real-world
robotic systems.

The first major contribution of this thesis is a set of formulations for safety reg-
ulators that do not depend on complete knowledge of the underlying dynamical
systems. Three unique formulations are proposed, whose usages depend on the
level of knowledge of the underlying system. The resulting performance and safety
guarantees are analyzed in real-world applications of quadrotor collision avoidance
and fast-food frying with industrial manipulators. The second major contribution
is a set of two safety filtering frameworks that utilize knowledge of the full-order
dynamics, but allow for guaranteed safety in the presence of input constraints on

v

high-dimensional systems. Two formulations are given, with one designed for use on
microcontrollers with minimal computational resources. Both formulations utilize
the knowledge of an existing "backup controller" that attempts to take the system
into a small, safe "backup set". This method is demonstrated in simulation on a
robotic manipulator and a Segway robot, and on hardware for collision avoidance
and geofencing of single and multi-agent racing drones. The third major contribu-
tion is a novel discrete-time formulation of control barrier functions that allow for
safety regulation of discrete-time systems. We show how safety constraints can be
encoded as temporal logic specifications that are enforced over discrete-time models
of the systems and their environments. The fourth and final major contribution is a
unified, multi-rate control framework that guarantees safety at both the high-level,
in discrete-time, and the low-level, in continuous-time. A mid-level Model Predic-
tive Controller (MPC) is used to generate reference signals based on the high-level
planner which are tracked by the low-level controller.

Together, these four major contributions result in safe input regulation on a wide
variety of robotic systems. Since no single method can reliably enforce safety on
such a wide range of systems with different requirements, this thesis provides the
smallest collection of methods that applies to the largest classes of systems.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Ryan K Cosner et al. “Measurement-robust control barrier functions: Cer-
tainty in safety with uncertainty in state”. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 6286–6291.
doi: 10.1109/IROS51168.2021.9636584.
AWS led in the creation of the simulation environment, led the generation
of the hardware results, and participated in the writing of the manuscript.

[2] Andrew Singletary et al. “Comparative analysis of control barrier functions
and artificial potential fields for obstacle avoidance”. In: 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 8129–8136. doi: 10.1109/IROS51168.2021.9636670.
AWS led in the conception of the project, led in the development of the the-
ory, led the implementation of the software and hardware results, generated
the safety sets, and led in the writing of the manuscript.

[3] Andrew Singletary, Mohamadreza Ahmadi, and Aaron D Ames. “Safe Con-
trol for Nonlinear Systems with Stochastic Uncertainty via Risk Control
Barrier Functions”. In: arXiv preprint arXiv:2203.15892 (2022). doi: 10.
48550/arXiv.2203.15892.
AWS participated in the conception of the project, created the simula-
tion environment, helped generate the theory, and led in the writing of
the manuscript.

[4] Andrew Singletary et al. “Onboard safety guarantees for racing drones:
High-speed geofencing with control barrier functions”. In: IEEE Robotics
and Automation Letters (2022). doi: 10.1109/LRA.2022.3144777.
AWS led in the conception of the project, created the simulation environ-
ment, led the hardware implementation, led the theory development, and led
in the writing of the manuscript.

[5] Andrew Singletary et al. Safety-Critical Manipulation for Collision-Free
Food Preparation. 2022. doi: 10 . 48550 / arXiv . 2205 . 01026. url:
https://arxiv.org/abs/2205.01026.
AWS led the conception of the project, led in the implementation in the
simulation and hardware, helped generate the theory, and led in the writing
of the manuscript.

[6] Tamas G Molnar et al. “Model-free safety-critical control for robotic sys-
tems”. In: IEEE Robotics and Automation Letters 7.2 (2021), pp. 944–951.
doi: 10.1109/LRA.2021.3135569.
AWS participated in the conception of the project, participated in the soft-
ware and hardware implementation, generated the safety sets, and partici-
pated in the writing of the manuscript.

https://doi.org/10.1109/IROS51168.2021.9636584
https://doi.org/10.1109/IROS51168.2021.9636670
https://doi.org/10.48550/arXiv.2203.15892
https://doi.org/10.48550/arXiv.2203.15892
https://doi.org/10.1109/LRA.2022.3144777
https://doi.org/10.48550/arXiv.2205.01026
https://arxiv.org/abs/2205.01026
https://doi.org/10.1109/LRA.2021.3135569

vii

[7] Andrew Singletary, Shishir Kolathaya, and Aaron D Ames. “Safety-critical
kinematic control of robotic systems”. In: IEEE Control Systems Letters 6
(2021), pp. 139–144. doi: 10.1109/LCSYS.2021.3050609.
AWS led in the conception of the project, helped generate the theory re-
sults, generated the simulation environment, led the implementation, and
participated in the writing of the manuscript.

[8] Mohamadreza Ahmadi et al. “Barrier functions for multiagent-pomdps with
dtl specifications”. In: 2020 59th IEEE Conference on Decision and Control
(CDC). IEEE. 2020, pp. 1380–1385. doi: 10.1109/CDC42340.2020.
9304266.
AWS participated in the conception of the project, created the simulation
environment, generated the safety sets, and participated in the writing of the
manuscript.

[9] Aaron D Ames et al. “Safety-critical control of active interventions for
COVID-19 mitigation”. In: Ieee Access 8 (2020), pp. 188454–188474. doi:
10.1109/ACCESS.2020.3029558.
AWS participated in the conception of the project, created the dynamical
system models, analyzed the real-world data, and participated in the writing
of the manuscript.

[10] Yuxiao Chen, Andrew Singletary, and Aaron D Ames. “Guaranteed obsta-
cle avoidance for multi-robot operations with limited actuation: a control
barrier function approach”. In: IEEE Control Systems Letters 5.1 (2020),
pp. 127–132. doi: 10.1109/LCSYS.2020.3000748.
AWS participated in the conception of the project, created the simulation
environment, generated the backup controllers and backup sets, and partic-
ipated in the writing of the manuscript.

[11] Yuxiao Chen, AndrewWSingletary, andAaronDAmes. “Density functions
for guaranteed safety on robotic systems”. In: 2020 American Control Con-
ference (ACC). IEEE. 2020, pp. 3199–3204. doi: 10.23919/ACC45564.
2020.9147265.
AWS participated in the conception of the project, created the simulation
environment, led the development of the hardware platform and results, and
participated in the writing of the manuscript.

[12] Ruben Grandia et al. “Nonlinear model predictive control of robotic sys-
tems with control lyapunov functions”. In: arXiv preprint arXiv:2006.01229
(2020). doi: 10.15607/RSS.2020.XVI.098.
AWS participated in the conception of the project, helped create the simula-
tion environment, created the hardware demonstration, and participated in
the writing of the manuscript.

[13] Thomas Gurriet et al. “A scalable safety critical control framework for
nonlinear systems”. In: IEEE Access 8 (2020), pp. 187249–187275. doi:
10.1109/ACCESS.2020.3025248.

https://doi.org/10.1109/LCSYS.2021.3050609
https://doi.org/10.1109/CDC42340.2020.9304266
https://doi.org/10.1109/CDC42340.2020.9304266
https://doi.org/10.1109/ACCESS.2020.3029558
https://doi.org/10.1109/LCSYS.2020.3000748
https://doi.org/10.23919/ACC45564.2020.9147265
https://doi.org/10.23919/ACC45564.2020.9147265
https://doi.org/10.15607/RSS.2020.XVI.098
https://doi.org/10.1109/ACCESS.2020.3025248

viii

AWS participated in the conception of the project, led in the creation and de-
velopment of many of the software and hardware examples, and participated
in the writing of the manuscript.

[14] Tamás G Molnár et al. “Safety-critical control of compartmental epidemio-
logical models with measurement delays”. In: IEEE Control Systems Letters
5.5 (2020), pp. 1537–1542. doi: 10.1109/LCSYS.2020.3040948.
AWS participated in the conception of the project, helped in the creation
of the dynamical system models, and participated in the writing of the
manuscript.

[15] Ugo Rosolia, Andrew Singletary, and Aaron D Ames. “Unified multi-rate
control: from low level actuation to high level planning”. In: arXiv preprint
arXiv:2012.06558 (2020). doi: 10.48550/arXiv.2012.06558.
AWS participated in the conception of the project, created the simulation
environment, helped in the implementation of the code and hardware, and
participated in the writing of the manuscript.

[16] Andrew Singletary, Yuxiao Chen, and Aaron D Ames. “Control barrier
functions for sampled-data systems with input delays”. In: 2020 59th IEEE
Conference on Decision and Control (CDC). IEEE. 2020, pp. 804–809. doi:
10.1109/CDC42340.2020.9304281.
AWS led in the conception of the project, led in the generation of the
simulation and hardware results, led the theory development, and led in the
writing of the manuscript.

[17] Andrew Singletary et al. “Safety-critical rapid aerial exploration of un-
known environments”. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2020, pp. 10270–10276. doi: 10.1109/
ICRA40945.2020.9197416.
AWS led in the conception of the project, created the simulation envi-
ronment, generated the backup control law, and led in the writing of the
manuscript.

[18] AndrewTaylor et al. “Learning for safety-critical control with control barrier
functions”. In: Learning for Dynamics and Control. PMLR. 2020, pp. 708–
717.
AWS participated in the conception of the project, helped created the sim-
ulation environment, generated the CBFs, led in the hardware development
and testing, and participated in the writing of the manuscript.

[19] Andrew J Taylor et al. “A control barrier perspective on episodic learning
via projection-to-state safety”. In: IEEE Control Systems Letters 5.3 (2020),
pp. 1019–1024. doi: 10.1109/LCSYS.2020.3009082.
AWS participated in the conception of the project, helped create the sim-
ulation environment, led in the generation of the hardware results, and
participated in the writing of the manuscript.

https://doi.org/10.1109/LCSYS.2020.3040948
https://doi.org/10.48550/arXiv.2012.06558
https://doi.org/10.1109/CDC42340.2020.9304281
https://doi.org/10.1109/ICRA40945.2020.9197416
https://doi.org/10.1109/ICRA40945.2020.9197416
https://doi.org/10.1109/LCSYS.2020.3009082

ix

[20] Mohamadreza Ahmadi et al. “Safe policy synthesis in multi-agent POMDPs
via discrete-time barrier functions”. In: 2019 IEEE 58th Conference on
Decision and Control (CDC). IEEE. 2019, pp. 4797–4803. doi: 10.1109/
CDC40024.2019.9030241.
AWS participated in the conception of the project, created the simulation
environment, generated the safety conditions, and participated in the writing
of the manuscript.

[21] Thomas Gurriet et al. “A scalable controlled set invariance framework with
practical safety guarantees”. In: 2019 IEEE58thConference onDecision and
Control (CDC). IEEE. 2019, pp. 2046–2053. doi: 10.1109/CDC40024.
2019.9030159.
AWS participated in the conception of the project, helped create the simula-
tion environment, helped create the backup controller and backup sets, and
participated in the writing of the manuscript.

[22] Thomas Gurriet et al. “Realizable set invariance conditions for cyber-
physical systems”. In: 2019 American Control Conference (ACC). IEEE.
2019, pp. 3642–3649. doi: 10.23919/ACC.2019.8815332.
AWS participated in the conception of the project, helped design the digital
controller implementation, helped create the simulation environment, and
participated in the writing of the manuscript.

[23] Andrew Singletary et al. “Online active safety for robotic manipulators”.
In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE. 2019, pp. 173–178. doi: 10.1109/IROS40897.2019.
8968231.
AWS led in the conception of the project, created the simulation environ-
ment, generated the safety sets, and led in the writing of the manuscript.

[24] Thomas Gurriet et al. “Towards a framework for realizable safety critical
control through active set invariance”. In: 2018 ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS). IEEE. 2018, pp. 98–106.
doi: 10.1109/ICCPS.2018.00018.
AWS participated in the conception of the project, performed the safety set
computations, helped prepare the hardware, and participated in the writing
of the manuscript.

https://doi.org/10.1109/CDC40024.2019.9030241
https://doi.org/10.1109/CDC40024.2019.9030241
https://doi.org/10.1109/CDC40024.2019.9030159
https://doi.org/10.1109/CDC40024.2019.9030159
https://doi.org/10.23919/ACC.2019.8815332
https://doi.org/10.1109/IROS40897.2019.8968231
https://doi.org/10.1109/IROS40897.2019.8968231
https://doi.org/10.1109/ICCPS.2018.00018

x

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . vi
Table of Contents . ix
List of Illustrations . xii
List of Tables . xvii
Chapter I: Introduction . 1

1.1 Safety-critical control . 1
1.2 Control barrier functions . 3

1.2.1 Continuous-time . 3
1.2.2 Discrete-time . 5

1.3 Safety regulation . 5
1.4 Outline . 5

Chapter II: Kinematic and model-free safety regulation 7
2.1 Comparison between potential fields and kinematic barrier functions 7

2.1.1 Applications: APFs vs CBFs on quadrotor 15
2.2 Energy-based CBFs . 19

2.2.1 Guarantees on dynamics 24
2.2.2 Underactuated systems . 29

2.3 Model-free guarantees . 32
2.3.1 Applications: Automated cooking with robotic arms 34

Chapter III: Input regulation with backup controllers 45
3.1 Backup set CBF . 45

3.1.1 Applications: Industrial manipulators 49
3.1.2 Handling sampled-data systems and input delay 54
3.1.3 Multi-agent backup CBFs 64

3.2 Gradient-free backup CBFs . 74
3.2.1 Safety regulator formulation 74
3.2.2 Comparison to backup controller CBF 76
3.2.3 Applications: Collision avoidance 79
3.2.4 Applications: High-speed geofencing 83
3.2.5 Time-varying backup controllers 89

Chapter IV: Discrete-time safety regulation 105
4.1 Safe policy synthesis in multi-agent POMDPs via discrete-time bar-

rier functions . 105
4.1.1 Applications: Multi-Robot Exploration 114

4.2 Finite-time DTBFs and DTL specifications 119
4.2.1 Finite-time DTBF . 121
4.2.2 Applications: LDTL specifications on multi-agent simulation 124

xi

4.3 Accounting for uncertainty: risk control barrier functions 125
4.3.1 Coherent risk measures . 127
4.3.2 Risk-Sensitive Safety and Reachability 129
4.3.3 Risk control barrier functions 131
4.3.4 Applications: Uncertain cart-pole system 136

Chapter V: Total system safety: Multi-layer approach and future directions . . 139
5.1 Unified Multi-Rate Control: from Low-Level Actuation to High-

Level Planning . 139
5.1.1 Problem formulation . 141
5.1.2 Multi-rate control architecture 143
5.1.3 Safety and performance guarantees 152
5.1.4 Applications: Multi-rate control on the Segway 157

5.2 Conclusion and future work . 165
Bibliography . 166

xii

LIST OF ILLUSTRATIONS

Number Page
2.1 Comparison of APFs and CBFs at various values of d0 and U at a

control frequency of 1000 Hz . 10
2.2 Potential Fields and CBFs on a double integrator. 15
2.3 Simulation results for the quadrotor with APFs and CBFs for the five

scenarios considered in this section. 17
2.4 The quadrotor used in the experiments. 18
2.5 Hardware results for the control barrier function and artificial poten-

tial field. Note that the APF showcases the drone as it goes to the
goal, while the CBF is pictured returning to the start position. Due to
symmetry of the setup, these trips almost identical for each method,
and the plots contain data for the round trip. The video found here
[156] shows both directions for each of the experiments from three
different angles. The first two columns show the velocities in the
north and east directions, and the final column shows the value of
d(G) − 0.3 for the APF on the left, and ℎ(G) for the barrier on the right. 20

2.6 A 6-DOF manipulator safely avoiding an obstacle with energy-based
control barrier function. The CBF intervention is shown in red. . . . 23

2.7 Velocity-based kinematic barrier function on the 6 DOFmanipulator.
Safety depends on choice of U. 23

2.8 Energy-based kinematic CBF on the 6 DOF manipulator. Safety is
guaranteed regardless of the choice of U4, but performance improves
as U4 increases. The times taken to complete the second portion
of the task, near the obstacle, are 10.07, 8.06, and 6.86 sec for
U4 = {250, 500, 1500}, compared to values of 7.60 to 7.94 for the
purely kinematic case and 5.79 for CBF-free case. 29

2.9 Cart-pole system with energy-based CBF. 32
2.10 The simulation environment, which shows the collision objects and

their representations as mesh files. The same mesh representations
are used on the hardware system. 41

xiii

2.11 Two examples behaviors implemented on the Flippy2 robot. See
https://youtu.be/nmkbya8XBmw for video. The large spikes in
signed distance ℎ(@) come from enabling and disabling collision
objects when required for interaction, like the basket when gripping
and the fryer when hanging. At themaximum value of ℎ(@), the robot
is only 11 cm away from the frame around it during these behaviors. . 44

3.1 Illustration of the backup set and resulting implicit invariant set. . . . 47
3.2 The IRB 6640 industrial manipulator. 50
3.3 The set describing the human at C0 and reachable set after one second. 52
3.4 Block diagram of the ROS nodes used in the simulations. 53
3.5 Value of the Barrier Function with and without ASIF engaged. 55
3.6 Results from simulations with three different controller frequencies,

and one with input delay. 65
3.7 Compatibility of multiple backup strategies 70
3.8 Robot traces of the Robotarium experiment with 3 robots. Each robot

is asked to patrol between 2 positions. The CBF controller guarantees
zero collision. 72

3.9 Traces of 2 robots equipped with 3 backup strategies and broadcast-
ing their current backup strategy. Colors show the selected backup
strategy in the CBF QP. 73

3.10 Swerving maneuvers of the drones under the CBF controller when
commanded to fly at each other. 74

3.11 As the drone approaches the barrier, _ decreases, resulting in the
backup controller being utilized more. 77

3.12 The filtering performance of the traditional CBF compared to the
proposed regulation function, for two parameters V in (3.41) and the
scalar U for the CBF (2.9). 78

3.13 Simulation environment. The top shows the desired and filtered
velocity commands based on the closest point in the point cloud. The
bottom shows the drone navigating through the cave. 80

3.14 Pictures of the cave (in red) and the octomap (in yellow) being built
throughout the 28 minutes it takes for the drone to completely explore
the cave. 83

3.15 Simulation results of the two primary hardware test cases. On the
left, the drone accelerates towards the barrier at GF = 10 m. On the
right, the drone free-falls from 70 m towards the barrier at IF = 0.5 m. 87

https://youtu.be/nmkbya8XBmw

xiv

3.16 The 7" racing drone used for experiments. 88
3.17 Two highlighted examples of geofencing with the high-speed racing

drone. 90
3.18 Actual drone flight during the two showcased example is highlighted

in blue. 91
3.19 Four separate experimental runs where the drone is commanded to

approach the barrier several times. _ never reaches zero, meaning the
pilot always has some amount of control, and the drone never leaves
the defined safe set. 92

3.20 Illustration of the benefits of time-varying backup controllers. (a) A
high-inertia semi truck driving along the highway must keep a large
distance behind lighter cars in order to stop before reaching them. (b)
By adding a maneuver to switch lanes before stopping, the truck can
follow much more closely, under the condition that no one is in the
lane. 94

3.21 Illustration contrasting single agent and multi-agent implementation.
(a) shows the single agent case, while (b) shows the multi-agent case
where state and backup policy information is required to guarantee
safety. 100

3.22 Simulation results capturing the performance benefits of allowing
backup maneuvers. While the value of _ is often lower, due to being
closer or faster near the barrier, there is significantly better alignment
with the desired velocities. 101

3.23 The Cinewhoop quadrotor used in the experiments 103
3.24 Hardware results using time-varying backup maneuvers. 104
4.1 The agents, the obtacles (black), and the sample (red) in ROS simu-

lation environment. 115
4.2 Implementation of the nominal policy. Darker cells represent unsafe

terrain, and the blue cells in the third image represent the belief of
the Segway location. 117

4.3 Implementation of the safety filter. The blue arrow in the first image
represents the desired action, and the orange arrow is the filtered action.118

xv

4.4 Simulation results of themulti-agent system. (a)The initial positions
of the three agents, obstacles (red), and sample (green). (b) Example
of the nominal action (blue) being overwritten by the safety shield
(green). (c) Updated costmaps reflected in grayscale after a longer
period of exploration. (d) The plots of the DTBFs for the experiment,
as explained above. 125

4.5 The value of the safe-set ℎ(GC) is known at time C, but stochastic
uncertainty makes ℎ(GC+1) a random variable. We must pick DC such
that ℎ(GC+1) is safe subject to a risk measure taken over the worst V
probability. 127

4.6 Simulation results for the cart-pole system with no RCBF filter, and
with standard RCBF (top) and finite-time RCBF (bottom) filters using
total conditional expectation and CVaR. 138

5.1 Multi-rate control architecture. The high-level decision maker lever-
ages the system’s state G(C) and partial environment observations >:
to compute a goal cell, the constraint set and the goal positions, which
are fed to the mid-level MPC planner. The planner computes a refer-
ence trajectory given the tracking error bounds E from the low-level
tracking controller. Finally at the lowest level, the control action is
computed summing up the mid-level input D< (C) and the low-level
input D; (C). 140

5.2 This figure shows an environment composed of 25 cells, 3 obstacles
(yellow and blue boxes) and 3 uncertain regions (light brown). In
this example the goal of the controller is to explore the state space in
order to find a science sample. 140

5.3 The above figure illustrated the high-level updated from Algorithm 9
that is used to compute the goal position (green star). 150

5.4 Closed-loop trajectory. The Segway first explores regions R1, which
is traversable, and G1 that does not contain the science sample. Af-
terwards, it explores the traversable region R2 and it reaches G2. . . . 158

5.5 This figure shows the closed-loop probability of mission success,
which equals the probability of satisfying the high-level specifica-
tions. Furthermore, we reported also the belief about regions R1

and R2 being travel about the goal regions G1 and G2 containing the
science sample. 159

xvi

5.6 This figure shows the computational time associated with middle and
low layers. It takes on average 12ms to compute the mid-level control
actions and less than 1 ms to compute the low-level commands. In
this example the middle layer is discretized at 20 Hz and the lowest
level at 1 kHz. 160

5.7 Comparison between the barrier function associated with the pro-
posed strategy and a naive strategy MPC which is based on the
linearized dynamics. As shown in the figure, when the low-level
controller is not used the difference between the planner trajectory
and the MPC trajectory grows and, as a results, the barrier func-
tion (5.29) becomes negative. 162

5.8 Input torque sent to the right (top) and left (bottom) motor over a
period of 0.2 second. The mid-level input is updated at 20 Hz,
whereas the low-level action is updated at 1 kHz. Notice that the total
input is the summation of the low and mid-level inputs. 162

5.9 Experimental results. Input torque sent to the right (top) and left
(bottom) motor over a period of 0.3 seconds. The mid-level input is
updated at 20 Hz, whereas the low-level action is updated at 800 Hz.
Notice that the total input is the summation of the low and mid-level
inputs. 163

5.10 Closed-loop trajectory during the experiment. The Segway first ex-
plores the uncertain regions R1, R1 and R1 and then it reaches the
goal region. 164

5.11 Experimental comparison between the barrier function associated
with the proposed strategy and a naive MPC which is based on the
linearized dynamics. Also in this case, when the low-level controller
is not used, the difference between the planner trajectory and the
MPC trajectory grows and, as a result, the barrier function (5.29)
becomes negative. 164

xvii

LIST OF TABLES

Number Page
3.1 Computation time of IRB 6640 in Pinocchio 53
4.1 LDTL specifications and the DTBF implementation. 123

1

C h a p t e r 1

INTRODUCTION

Ensuring safety of robotic systems is the primary focus of this work. To achieve
this, we plan to leverage results from control theory.

1.1 Safety-critical control
Safety-critical control is a subset of control theory that focuses on providing math-
ematical guarantees of safety for dynamical systems. This can be in the form of
formal verification of an autonomous system, or in the form of a controller that is
guaranteed to keep a control system safe.

Frequently, the notion of safety in robotics involves the avoidance of obstacles in
the environment. Artificial Potential Fields (APFs) have been utilized for over
thirty years in the context of real-time obstacle avoidance. They were first in the
seminal paper by Khatib [81], and has since been developed further, beginning
with computational methods [23]. Of particular importance to this work, there has
been significant work in applying APFs to obstacle avoidance [160, 93], including
dynamic obstacles [55]. Work has also been been done on improving the behavior of
artificial potential fields, particularly in dealingwith undesirable oscillation behavior
[122]. Finally, the search for effective methods for path planning using APFs has
continued [96], including application to UAV path planning [34]. While potential
fields have been shown to work well in practice, they are heavily dependent on
tuning parameters, and offer no formal verification of safety for robotic systems.

Safety verification for a robotic system can be encoded as checking whether the
system remains inside a pre-specified safe set or alternatively avoids a pre-defined
unsafe set. Then, a natural method for checking safety is to compute the reachable
set of a system subject to disturbances and controls [102, 1, 12]. However, for com-
plex and high-dimensional systems such methods are either intractable, or overly
conservative. Alternative approaches to reachability date back to the pioneering
works of Nagumo [107] to study the set invariance of ordinary differential equations
(ODEs). Nagumo’s works were extended to ODEs with inputs by Aubin et. al. [22]
in the context of viability theory. The interest in hybrid systems in the 2000’s led
to the introduction of barrier certificates for safety verification [117]. However, the

2

construction of these barrier certificates require solving a set of polynomial opti-
mization problems that become intractable for high-dimensional systems (despite
some promising recent directions [4]).

The recently proposed notion of control barrier functions [15] circumvent the com-
putational bottleneck of barrier certificates inasmuch as the closed-form expression
for a barrier function can be derived from the definition of the safe set. By taking
advantage of this property, barrier functions have been used for designing safe con-
trollers (in the absence of a nominal controller) and safety filters (in the presence
of a nominal controller) for dynamical systems, such as biped robots [108] and
trucks [33], with guaranteed performance and robustness [166, 83].

Control barrier functions are similar to control Lyapunov functions [143, 51], which
have been used to guarantee asymptotic stability for robotic systems [111]. However,
control barrier functions allow for freedom of movement inside of the sets that
they define, whereas a control Lyapunov function will enforce convergence to an
equilibrium point.

The field of formal methods is also used to verify safety properties of autonomous
systems. As shown in [163], correctness guarantees can be formalized over specifi-
cations that define safe behaviors, and control strategies can be synthesized that meet
these specifications. More generally, methods like abstract interpretation [46] and
model-checking [42] can be used to automatically generate proofs of correctness for
software systems. There is not a framework, however, for regulating control inputs
of general robotic systems utilizing techniques from formal methods.

While the concept of minimally invasive input regulation is less studied than system
verification, several approaches exist in the literature. In [30], the authors propose
a sampling-based MPC approach that generates many possible safe trajectories at
each time-step, and chooses the one closest to the user’s desired input subject to
safety conditions. Another MPC-based approach is demonstrated in [148], which
uses learning to minimize conservatism, but neither of these approaches are able to
run in real-time on a microcontroller. Explicit Reference Governor (ERG) schemes
modifies the derivative of the applied inputs subject to safety constraints utilizing
Lyapunov functions, as shown in [66]. While this approach is optimization-free and
could be implemented online, it is difficult to find the required upper-bound of the
Lyapunov function that guarantees constraint satisfaction.

More extensive literature reviews and comparisons to existing methods can be found

3

in the individual sections of this thesis, to better relate each individual contribution
to works that relate to it.

1.2 Control barrier functions
To achieve the safety guarantees desired in this work, we will extensively utilize
control barrier functions. Before we define a control barrier function, we must first
define several other properties.

To begin, we look at the class of systems that we will be studying: nonlinear
dynamical systems in control-affine form.

Definition 1 (Control system). A nonlinear, control-affine system is a dynamical
system such that

¤G = 5 (G) + 6(G)D, (1.1)

where G ∈ D ⊂ R= is the state, and D ∈ * ⊆ R< the input. Here, D is the domain
of the state space, and * is the admissable input set. Assume that the functions
5 : R= → R= and 6 : R= → R=×< are continuously differentiable.

Next, we must formally define our notion of safety. The goal is to keep a system
inside of some safe set (⊂ D ⊂ R=. This can be formalized through the notion of
set invariance.

Definition 2 (Set invariance). A set S is called invariant if the system’s state stays
in S for all time, i.e., ∀C ≥ C0, G(C) ∈ S. Moreover, for (1.1), a set S is control
invariant if, for all time, there always exists an input D ∈ * such that the system
stays in S for all time, i.e. ∀C ≥ C0, ∃D ∈ * s.t. G(C) ∈ S.

With the system and the concept of set invariance defined, we can now define a
control barrier function.

1.2.1 Continuous-time
First, we begin with the (more common) continuous-time formulation.

Definition 3 (Control barrier function). Let the safe set S ⊂ D ⊂ R= be the
0-superlevel set of a continuously differentiable function ℎ : D → R:

S = {G ∈ R= : ℎ(G) ≥ 0},
mS = {G ∈ R= : ℎ(G) = 0}, (1.2)

Int(S) = {G ∈ R= : ℎ(G) > 0}.

4

Then ℎ is a control barrier function (CBF) if mℎ
mG
(G) ≠ 0 for all G ∈ mS and there

exists an extended class K function ([15, Definition 2]) U such that for the control
system (1.1) and for all G ∈ S:

sup
D∈*

[
! 5 ℎ(G) + !6ℎ(G)D︸ ︷︷ ︸

¤ℎ(G,D)

]
≥ −U(ℎ(G)), (1.3)

where ! 5 ℎ(G) = mℎ
mG
5 (G) and !6ℎ(G) = mℎ

mG
6(G). We say that ℎ is a control barrier

function (CBF) on S if (1.3) holds for all G ∈ S (but not necessarily on all of D).

The main control barrier function result is that this class of functions give sufficient
(and necessary) conditions on set invariance, i.e., safety of the system relative to
S. Note that, in the literature, this formulation may sometimes be referred to as a
"zeroing" control barrier function, but this terminology is not utilized in this work,
as we do not consider reciprocal CBFs.

Theorem 1 ([15]). Given a control barrier function ℎ : R= → R together with the
associated set S, for any Lipschitz continuous controller satisfying:

¤ℎ(G, D(G)) = ! 5 ℎ(G) + !6ℎ(G)D(G) ≥ −U(ℎ(G)),

the set S is forward invariant, i.e,. safe. Additionally, the set S is asymptotically
stable.

Since the constraint (1.3) is affine in D, the above definition can be used to construct
a quadratic program that functions as a safety filter, guaranteeing the safety of the
system by enforcing it to stay inside of S. This quadratic program is given by

D∗(G) = argmin
D∈R<

‖D − Ddes(G, C)‖2 (CBF-QP)

s.t. ! 5 ℎ(G) + !6ℎ(G)D ≥ −U(ℎ(G))

Importantly, this QP has an explicit solution given by

D∗(G, C) = Ddes(G, C) + Dsafe(G, C) (1.4)

where Dsafe is added to Ddes if the nominal controller would not keep the system safe,
which is determined by the sign of Ψ(G, C; Ddes) := ¤ℎ(G, Ddes(G, C)) + U(ℎ(G)) via:

Dsafe(G, C) =
{
− !6ℎ(G))
!6ℎ(G)!6ℎ(G)) Ψ(G, C; Ddes) if Ψ < 0

0 if Ψ ≥ 0
(1.5)

5

1.2.2 Discrete-time
The use of discrete-time control barrier functions is significantly more limited, due
to their computational complexity. While the continuous-time CBF is an affine
constraint for a nonlinear system, the same is not true for discrete-time CBFs. One
formulation exists in the literature [3], based on the reciprocal CBF formulation, but
its formulation will not be copied here.

Instead, in this thesis, we will extend the zeroing CBF formulation to discrete-time
systems, and present algorithms to utilize them on robotic systems.

1.3 Safety regulation
The specific focus of this work is the idea of regulating a desired control input in
a minimally-invasive way, subject to safety constraints. This is not a typical task
in control theory or robotics, as it is generally preferred to incorporate the safety
constraints into the original controller or planner for the system. However, this
approach to filter a desired signal, rather than generate safe signals from the start,
has a number of unique benefits.

• Easy integration with human operators. In this case, human operators provide
the desired input signal that is tracked. Humans operators are generally not
able to guarantee the safety of the systems they operate themselves, so this
framework uniquely allows them to operate the systemwhile providing formal
safety guarantees.

• Verification of systems running complicated ML-based algorithms. It is
very difficult to verify the safety of these controllers generated with machine
learning, but by filtering the outputs of these models, we can guarantee safety
while maintaining their performance advantages.

1.4 Outline
This thesis is broken down into four major chapters, all of which are centered around
the use of CBFs to regulate safety of robotic systems.

Chapter 2 focuses on kinematic and model-free safety regulation. Here, we break
the norm of enforcing the CBF condition at the low-level with forces and torques,
and instead enforce the conditions at the velocity layer. Section 2.1 compares a
simple velocity-layer kinematic barrier to artificial potential fields, one of the staple
obstacle avoidancemethods in robotics. Section 2.2 proposes a new type of dynamic

6

extension based on the kinetic energy of robotic systems to guarantee safety utilizing
minimal model information. Lastly, Section 2.3 showcases the kinematic CBFs on a
full-scale application of robotic cooking, while also providing theoretical results on
the full-order dynamics utilizing information on the low-level controller’s velocity
tracking abilities.

Chapter 3 focuses on utilizing the knowledge of a single "backup controller" that tries
to take the system to a small, safe region called the "backup set" to regulate control
inputs. Section 3.1 covers how this knowledge can be used to construct "implicit"
control invariant sets, allowing CBFs with input constraints to scale to higher-
dimensional systems. This section details applications for robotic manipulators,
sampled-data systems with input delays, and multi-agent drone systems. Section
3.2 utilizes the same knowledge of backup controllers and sets, but implements
a gradient-free CBF approach that is much more computationally efficient. This
is demonstrated on several drone platforms in applications of obstacle avoidance,
geofencing, and multi-agent collision avoidance.

Chapter 4 proposes a new formulation for discrete-time barrier functions (DTBFs),
utilizing the dynamics of belief-space updates of Multi-agent Partially Observable
Markov Decision Processes (MPOMDPs). Section 4.1 formalizes this notion of
DTBFs, while Section 4.2 shows how safety constraints can be formulated as linear
distrubutional temporal logic (LDTL) specifications. Lastly, Section 4.3 shows how
uncertainty can be formulated as risk using coherent risk measures, and how safety
can be enforced over these risk measures using risk control barrier functions.

Finally, Chapter 5 offers a brief perspective on how safety can be guaranteed at
all levels of a robotic system: the low-level control layer, the high-level decision-
making layer, and the "mid-level" planning layer. The chapter concludes with a
summary of the work, and possible future directions for this research area.

7

C h a p t e r 2

KINEMATIC AND MODEL-FREE SAFETY REGULATION

2.1 Comparison between potential fields and kinematic barrier functions
As mentioned in the introduction, Artificial Potential Fields (APFs) have been a
staple for safety in the field of robotics for decades. Given their historic use and the
recent popularity of control barrier functions, the natural question to ask is: How
do control barrier functions compare to artificial potential fields? Since the main
application of control barrier functions is to provide critical safety guarantees for the
systems in which they are implemented, their use in the literature is generally heavily
model-dependent. In contrast, we show in this work just how effectively control
barrier functions can be utilized even without a model of the system dynamics.

Themajor contribution of this section is a comparative analysis of CBFs andAPFs—
both theoretically and through simulation and experimental results on obstacle
avoidance. At a formal level, we establish that a broad class of APFs can be
used to synthesize a specific instance of a CBF. Additionally, this translation results
in beneficial properties: it (pointwise) optimally balances avoidance and goal at-
tainment, is well defined if the system leaves the safe set, and allows one to easily
generalize these APFs to nonlinear control systems. From a comparative perspec-
tive, we begin with simple examples to illustrate the beneficial properties of CBFs
vs. APFs, followed by high-fidelity simulations of a quadrotor for different obstacle
avoidance scenarios. Finally, these same scenarios are carried out experimentally
on a quadrotor with onboard sensing. In these experiments, the CBFs outperform
APFs in the context of providing smooth behaviors that are minimally invasive while
avoiding the obstacles, even though the quadrotor dynamics were not utilized.

We begin by considering artificial potential fields (APFs) in the setting of obstacle
avoidance. A variety of potential functions can be utilized, but this section will look
at the original formulation [81]. In this context, consider a control system described
by a single integrator:

¤G = E, (2.1)

with G ∈ R= is the position, and E ∈ R= is the velocity. Here E is viewed to be the
control input to the system. The goal is to synthesize a desired velocity profile that

8

reaches a goal position while avoiding one or multiple obstacles. The motivation
for considering a single integrator is that the resulting behavior of this system can,
for example, be utilized as desired velocity profiles for end-effector positions for a
robot manipulator (= = 3) wherein classic Jacobian methods can be utilized [160].

To explicitly present artificial potential fields, per the original formulation in [81],
let Ggoal the goal position. This exerts an attractive potential to the system given by:

*att(G) =
1
2
 att

G − Ggoal

2
. (2.2)

Any obstacles in the area assert a repulsive potential, given by:

*rep(G) =


0 d(G) > d0

1
2 rep

(
1
d(G) −

1
d0

)2
d(G) ≤ d0,

(2.3)

where d(G) is the distance to the obstacle or the distance from a safe region around
the obstacle, e.g.:

d(G) = ‖G − Gobs‖ − �obs, (2.4)

for �obs > 0, and d0 is the region of influence. The potential function is set to
zero outside of this region to allow the attractive potential to dominate over large
distances.

To obtain a feedback controller that pushes the system to the goal while avoiding
obstacles, the attractive and repulsive potentials are combined and the gradient is
taken

�APF(G) = −∇*att(G) − ∇*rep(G), (2.5)

with ∇*−(G) = m*−
mG
(G)) and

∇*att(G) = att(G − Ggoal) (2.6)

∇*rep(G) =
 rep

d(G)2

(
1
d(G) −

1
d0

) (G − Ggoal)
d(G) . (2.7)

For a single integrator (2.1), where one directly controls velocity, we simply apply
this expression as the velocity input

¤G = �APF(G),

yielding a gradient dynamical system with respect to the attractive and repulsive
potentials.

9

Example 1. Consider a mobile robot modeled as a single integrator travelling in
the plane: = = 2. The initial position is G0 = (0, 0), and the goal position is
Ggoal = (3, 5). There are two obstacles, at G$1 = (1, 2) and G$2 = (2.5, 3), that the
mobile robot must not come within 0.5 meters of these obstacles.

The new distance function for obstacle 8 is d = ‖G − G$8‖ −0.5. Using att = rep =

1, with varying values of d0, we have the result shown in Figure 2.1(a). As can be
seen in this figure, the potential field works well at d0 values of 1 and 0.25, but it
gets stuck in a local minimum at d0 = 0.5, and oscillations start to occur at d0 = 0.1
at a controller frequency of 1000 Hz. To remove these oscillations, one would have
to either increase the control frequency beyond 1000 Hz or decrease the maximum
speed of the system.

We again consider the the single integrator in (2.1), this time in the context of control
barrier functions. For this system, we wish to formulate a safety-critical controller.
We define the safe set S as the complement of any obstacles in the space. That is,
one can utilize d and define:

ℎ(G) = d(G) = ‖G − Gobs‖ − �obs ≥ 0

where now the safe set S is the set we wished to render safe with the potential fields.

For the single integrator, the control barrier condition becomes

¤ℎ(G, E) = ∇ℎ(G)) ¤G = ∇ℎ(G))E ≥ −Uℎ(G) (2.8)

for U > 0.

This can be framed as an optimization problem:

E∗(G, C) = argmin
E∈R=

‖E − Edes(G, C)‖2 (2.9)

s.t. ∇ℎ(G))E ≥ −Uℎ(G),

where E∗(G, C) is the pointwise optimal controller. This is an important and substan-
tial divergence from potential fields in that gradients are no longer used for synthesis.
Rather, one can optimize over controllers that satisfy the safety constraint. To see
how this difference manifests itself, we return to Example 1 but instead apply control
barrier functions.

Example 2. Consider the same setup as Example 1. The desired velocity command
is a simple % controller on position,

Edes(G, C) = − (G − Ggoal), (2.10)

10

(a) Artificial Potential Field

(b) Control Barrier Function

(c) APF-based CBF

Figure 2.1: Comparison of APFs and CBFs at various values of d0 and U at a control
frequency of 1000 Hz

11

with = 1. Note that this is equivalent to the ∇*att from the previous example,
as the attractive force functions as a P controller on position. The control barrier
function, as inspired by d in (2.4), is given by

ℎ(G) = min
8∈{1,2}

‖G − G$8‖ − �obs, (2.11)

where ∇ℎ(G) = G−G$8
‖G−G$8 ‖ , for the closer obstacle 8, and here we pick �obs = 0.5. Note

that, technically, this barrier function is non-smooth, but the methods from [58] can
be employed.

The simulation is run for varying values of U, and the results are shown in Figure
2.1(b). For all values of U, the robot safely completes the mission and suffers from
no oscillations. Additionally, one can see the minimally invasive behavior of (2.9)
in that the nominal trajectories to goal are modified to a much smaller degree when
compared against potential fields.

Now, we show the main result of this section: that many potential fields are specific
instances of control barrier functions. This will be demonstrated by explicitly con-
structing a CBF from an APF. Importantly, this transformation results in additional
beneficial properties that the original controller did not benefit from. Thus, control
barrier functions generalize these types of potential fields.

Definition 4. Given a goal state, Ggoal ∈ R=, an attractive potential is a positive
definite continuously differentiable function *att : R= → R, such that there exists
2, 2 > 0 such that, ∀ G ∈ R=:

2‖G − Ggoal‖2 ≤ *att(G) ≤ 2‖G − Ggoal‖2.

Given an obstacle at Gobst and minimum distance �obst > 0, a repulsive potential is
a continuously differentiable positive semi-definite function *rep : R= → R, strictly
increasing, that “blows up” at the minimum distance:

Positive semi-definite: *rep(G) ≥ 0,

Strictly increasing: ∇*rep(G) > 0 if ‖G − Gobst‖ ≤ d0

“Blows up” at obstacle: lim
‖G−Gobst‖→�obst

*rep(G) = ∞.

An artificial potential field: * (G) := *att(G) +*rep(G), yields a controller:

: (G) = −∇* (G) ⇒ ¤G = −∇* (G).

12

The CBF paradigm includes these types of APFs as a special case. In this case,
rather than combining the attractive and repulsive potentials into a single function,
we utilize the attractive potential as the desired velocity, and the repulsive potential
as the control barrier function.

Theorem 2. Consider an artificial potential field with repulsive potential*rep meet-
ing Definition 4. The function:

ℎ(G) = 1
1 +*rep(G)

− X, (2.12)

with X ∈ (0, X0) a small constant, is a control barrier function for the single
integrator: ¤G = E. Additionally, given any feedback controller E = : (G) satisfying:

¤ℎ(G, : (G)) = ∇ℎ(G)) : (G) ≥ −U(ℎ(G))

the set
S = {G ∈ R= : ℎ(G) ≥ 0} ⊂ {G ∈ R= : ‖G − Gobst‖ ≥ �obst}

is forward invariant, i.e., safe, and asymptotically stable.

Remark 1. Note that the set S depends on the choice of X with:

lim
X→0
S = {G ∈ R= : ‖G − Gobst‖ ≥ �obst}.

Thus, the smaller the choice of X, the closer the safe set, S, to the complement of the
obstacles. Additionally, unlike potential fields, in the case when the system starts
with an initial condition outside of S, the CBF will be well defined and the system
will asymptotically stabilize back to S.

Proof. Taking the gradient of ℎ(G) yields

∇ℎ(G) = −
∇*rep(G)
(1 +*rep(G))2

.

To be a control barrier function, we first require that ∇*rep ≠ 0 when ℎ(G) = 0.
When ℎ(G) = 0, we have that

1
1 +*rep(G)

− X = 0 =⇒ *rep(G) =
1
X
− 1.

Since *rep “blows up” with proximity to obstacles, one can pick X0 > 0 such that
for all X ∈ (0, X0) it follows that ℎ(G) = 0 implies that ‖G − Gobst‖ ≤ d0. Therefore,
by the strictly increasing assumption, ∇*rep ≠ 0.

13

For the single integrator dynamics, the CBF requirement given in Equation (1.3)
is trivially met, as ! 5 ℎ(G) = 0 and !6ℎ(G) = ∇ℎ(G))E, so there always exists
a velocity such that − ∇*repE

(1+*rep (G))2
≥ −U(ℎ(G)). Therefore, ℎ is a CBF and the

remaining statements follow from Theorem 1.

The advantage of CBFs is that they allow for controller synthesis where the attractive
and repulsive potentials are combined in a pointwise optimal fashion. Specifically,
using −∇*att(G) as the desired velocity, we have:

E∗(G) = argmin
E∈R=

‖E + ∇*att(G)‖2 (2.13)

s.t. −
∇*)repE

(1 +*rep(G))2
≥ −U(ℎ(G)).

Importantly, this controller has an explicit solution:

E∗(G) = −∇*att(G) +
{
− ∇ℎ (G)
∇ℎ (G)) ∇ℎ (G)Ψ(G;*att) if Ψ < 0

0 if Ψ ≥ 0
(2.14)

for Ψ = Ψ(G;*att) := −∇ℎ(G))∇*att(G) + U(ℎ(G)).

Note the parallels between this function and the original artificial potential field,
where the repulsive potential only plays a difference when within a certain radius
d0. Now, the attractive potential is used unless −∇ℎ(G))∇*att + U(ℎ(G)) < 0, in
which case the CBF minimally alters the velocity inputs in order to maintain safety.

Example 3. Consider the APF given in Example 1. The repulsive potential is given
by (2.3), which is used to make the barrier function (2.12), with value X = 0.001.
The attractive potential given by (2.3) with gradient (2.6) is used in the desired
velocity controller.

By applying the APF-CBF QP given in (2.13) or the explicit solution (2.14), the
path shown in 2.1(c) is obtained for tuning parameters rep = att = U = 1. One
can see improved performance for the APF-CBF QP obtained from the APF when
compared against the original APF, wherein the APF-CBF QP gets closer to the
obstacles with fewer oscillations. Moreover, when the robot has passed the obstacle
and is moving towards the goal, the APF-CBF converges more quickly to the desired
path.

It is important to note that the connection between APFs and CBFs allows for
potential fields to be generalized to a nonlinear setting with ease. In particular, since

14

CBFs are defined for general nonlinear control systems, as in (1.1), we can use the
instantiation of APFs as CBFs to easy extend APFs to a nonlinear setting.

Proposition 1. Consider a nonlinear control system of the form: ¤G = 5 (G) + 6(G)D.
Assume the existence of a potential field as given in Definition 4 with the associated
safety constraint, ℎ, given in (2.12). If the repulsive potential,*rep, satisfies the CBF
condition

∇*rep(G))6(G) = 0 ⇒ −
∇*rep(G)) 5 (G)
(1 +*rep(G))2

≥ −U(ℎ(G)),

for some extended class K function U then the controller

D∗(G) = argmin
E∈R=

‖D + ∇*att(G)‖2 (2.15)

s.t. −
∇*)rep(5 (G) + 6(G)D)
(1 +*rep(G))2

≥ −U(ℎ(G)),

renders the set {G ∈ R= : ‖G − Gobst‖ ≥ �obst} forward invariant, i.e., a controller
that ensures safety.

Proof. The CBF condition is simply: !6ℎ(G) = 0 implies that ! 5 ℎ(G) ≥ −U(ℎ(G)).
One can verify that this implies that (1.5) is well defined, thus (1.3) is satisfied and
ℎ is a CBF. The result then follows by combining Theorem 1 with Theorem 2.

To illustrate the issue with utilizing model-free collision avoidance on systems
with non-trivial dynamics, we will compare the performance of the same artificial
potential field and control barrier function described in Examples 1 and 2, but
applied to a double integrator:

¤G = E, ¤E = D (2.16)

The velocity outputs of the safety filters, denoted E∗(G), are now tracked by the
velocity-based controller:

D(G, E) = − (E − E∗(G)). (2.17)

The velocity-based controller is implemented for E∗ obtained from APFs and CBFs
(per Examples 1 and 2). For the APF, the d0 values of 1 and 2, the APF is
able to keep the system safe while reaching the goal. However, large oscillations
occur while approaching the first obstacle. The oscillations are not present with

15

Figure 2.2: Potential Fields and CBFs on a double integrator.

d0 equal to 0.5, but safety is no longer maintained. Eliminating these oscillations
and maintaining safety is possible, but would require additional tuning. For CBFs,
safety could be trivially guaranteed by utilizing the double integrator dynamics in
the CBF-QP, but we instead utilize the velocity-based controller from Example 2.
Safety is maintained for U values of 0.5 and 1, but it is not maintained for U = 2.
This biggest difference between the performance of the CBF and the APF is the lack
of oscillations when approaching the obstacles, with CBFs resulting in smoother
controllers. This is a trend that will be seen in simulation and experimentally on the
quadrotor.

2.1.1 Applications: APFs vs CBFs on quadrotor
To provide a more realistic comparison of APFs and CBFs realized as velocity-
based controllers (2.17), we consider their application to quadrotors in the context
of obstacle avoidance. In particular, we compare the APF and CBF velocity-based
controllers in a high-fidelity simulation environment based on the physical hardware

16

that will be detailed after. The dynamics and low-level control are provided by the
ArduPilot SITL simulator, and the velocity commands are produced and filtered in
ROS nodes using simulated LIDAR sensor data from Gazebo.

In the context of the APF velocity-based controller, we will utilize the general
form given in Example 1, with the same attractive potential as given in (2.2). The
repulsive potential is replaced with a more modern potential field formulation that
has been tuned for a quadrotor in simulation—this was done to avoid the repulsive
potential from becoming ill-defined when realized in practice. In particular, the
repulsive potential is taken from [54], yielding the repulsive force

�rep = (G − G$8) rep exp
(
−d

2

d0

)
(2.18)

with d = ‖G − G$8‖. The values of rep and d0 were tuned until oscillations vanished
in practical cases, and safety was achieved, but optimized such that they do not affect
flight when collision is unlikely.

For the CBF-based velocity controller, we use a formulation identical to Example
2. In particular, the barrier function is given as in (2.11), where G$8 is the 8th point
of the simulated laser scan, and �obs = 0.3 represents the minimum distance that
the drone must maintain from the obstacles. Utilizing this with the single integrator
dynamics results in the control law in (2.9) which is passed to a low-level velocity
tracking controller. The value of U kept to 1, to ensure that no tuning is performed
to improve the results.

For each experiment, the quadrotor is given a waypoint 5m ahead in the x-direction.
The five tests are described as follows, in order of difficulty for the collision avoidance
algorithms: (1) in between the quadrotor and the goal, two obstacles are placed that
are offset from the center of the path, but close enough to effect the drone. (2) A
single obstacle is placed such that the edge of the obstacle aligns with the center of
the drone. This is done to ensure that the drone is able to find a path around it, but
to strongly obstruct the drone. (3) Two obstacles are placed with edges 1 m apart, to
mimic a 1 m wide doorway, and the drone has to fly through this to reach the goal.
(4) The doorway from the previous test is reduced to 0.7 m in width. (5) In between
the starting position and the goal is a large wall that the drone is not able to pass.
This is to test the oscillations that may occur when running directly at an obstacle
that is in front of the goal.

Each of the five tests are run for both the artificial potential field, as well as the
control barrier function. The setups and paths are shown in Figure 2.3, along with

17

Figure 2.3: Simulation results for the quadrotor with APFs and CBFs for the five
scenarios considered in this section.

the velocities. Oscillations do not occur for the CBF velocity-based controller, and
only occur for the APF based controller situations where the drone is unable to get
to the goal, e.g., the wall and the 0.7 m doorway. In all cases, the CBF is able to get
closer to the obstacles while staying safe due to its pointwise optimally.

18

Figure 2.4: The quadrotor used in the experiments.

Hardware setup The quadrotor used for experiments is shown in Figure 2.4. It
consists of a Lumenier Defender frame, four T-Motor F40 PRO II 1600 KV brush-
less motors, a Lumenier 50A 4-in-1 ESC, a mRobotics Pixracer R15 autopilot, a
T265 RealSense camera, a Intel NUC i7 onboard computer, and a Hokuyo UST-
10LX LIDAR. The Hokuyo UST-10LX 2D LIDAR gives 1080 points in front of the
quadrotor in a 270◦ field of view along the XY plane. Google’s Cartographer SLAM
package was used with the Hokuyo LIDAR and the RealSense camera for localiza-
tion. Additionally, the Hokuyo LIDAR is used for obstacle detection and avoidance.
An Intel NUC i7 onboard computer is used to run the ROS nodes that perform the
localization and collision avoidance. The high-level velocity commands are passed
from the onboard computer to the Pixracer flight controller. The flight controller
utilizes a cascading PID control structure of velocity, acceleration, attitude, and
angular rate.

The samefive tests described in the previous section (see Fig. 2.3)were implemented
on the hardware, and the results are shown in Fig. 2.5. The only difference in the
setup was that the drone is now commanded to yaw 180◦ and return along the same
path, in order to maximize the amount of data for the analysis. While the hardware
results are similar to simulation for CBFs, the artificial potential field suffers from

19

significantly more oscillations than in the high-fidelity simulation environment.
This suggests that the CBF implementation is more robust to model uncertainty
and noise, as the APF would need to be tuned again to eliminate oscillations due
to the differences between the simulation and reality. Finally, APFs fail to reach
the goal in the case of the narrow door, while the CBFs succeeds. Thus, the CBFs
outperformed APFs on hardware.

2.2 Energy-based CBFs
Kinematic control provides a powerful method for achieving desired behaviors on
a large class of robotic systems [136, 164, 18]. Ensuring safety for these kinematic
systems is widely researched area. Artificial potential fieldmethodswere formulated
as a way to reach goal positions while avoiding obstacles utilizing an attractive force
from the goal and a repulsive force from the obstacles [81]. In [48], the authors
improve upon this idea by constructing the problem as a quadratic program (QP),
where the objective is to track the desired goal subject to geometric constraints on
the velocities to prevent collisions. While this work is effective in practice, and has
been extended to multi-objective task structures [75], it can be made more general
and more formal through control barrier functions (CBFs).

Recently, energy-based reciprocal control barrier functions were introduced [84] as
a means to provide robust safety guarantees for fully-actuated robotic platforms with
model uncertainty. This was done by utilizing bounds on the inertia and Coriolis-
centrifugal matrices, as well as the gravity vector, and providing safety guarantees
for the worst-case scenario. While the resulting QP formulation yielded robustness
in safety, it does not have well-defined behavior on the boundary of the set and
outside of it, making it difficult to implement in practice.

In this section, an alternative formulation for the energy-based CBFs is introduced
for zeroing control barrier functions, which are well defined on the boundary and
exterior of the set. Using this formulation, we modify the traditional torque-based
formulation into a kinematic control problem, and showcase several simplifications
that can be made to reduce model dependence. The resulting formulation allows for
formal safety guarantees at the dynamical system level, while allowing for simple
implementation with kinematic controllers. This analysis is then extended to the
class of underactuated robotic systems. The results are demonstrated in a 6-DOF
manipulator and a cart-pole system wherein different levels of uncertainties are
incorporated and safety-critical kinematic control laws are applied.

20

Figure 2.5: Hardware results for the control barrier function and artificial potential
field. Note that the APF showcases the drone as it goes to the goal, while the CBF
is pictured returning to the start position. Due to symmetry of the setup, these trips
almost identical for each method, and the plots contain data for the round trip. The
video found here [156] shows both directions for each of the experiments from three
different angles. The first two columns show the velocities in the north and east
directions, and the final column shows the value of d(G) − 0.3 for the APF on the
left, and ℎ(G) for the barrier on the right.

21

Before beginning the kinematic formulation, we propose the following theorem for
the explicit solution of the CBF-QP (CBF-QP).

Lemma 1. Let ℎ be a control barrier function for the control system (1.1) and
assume that* = R<. Then the explicit solution to the QP (CBF-QP) is given by:

D∗(G, C) = Ddes(G, C) + Dsafe(G, C), (2.19)

where Dsafe minimally modifies Ddes depending on if the nominal controller keeps the
system safe, i.e., the sign of Ψ(G, C; Ddes) := ¤ℎ(G, Ddes(G, C)) + U(ℎ(G)), according to:

Dsafe(G, C) =
{
− !6ℎ(G))
!6ℎ(G)!6ℎ(G)) Ψ(G, C; Ddes) if Ψ(G, C; Ddes) < 0

0 if Ψ(G, C; Ddes) ≥ 0
. (2.20)

We are interested in kinematic mappings of the form G = H(@) where @ ∈ & ⊂ R: ,
G ∈ D ⊂ R= and thus H : & → D. Here, we assume that : ≥ =, i.e., that there
are more degrees of freedom than tasks. Here G is the vector of “outputs” or “task”
variables, i.e., a vector of elements which we wish to control, and @ is a vector
consisting of the systems configuration, e.g., angles of the robotic system. The
evolution of the task variables is therefore given by:

¤G = �H (@) ¤@. (2.21)

In kinematic control, we view ¤@ as the input to the system. That is, we have the
dynamics model:

¤@ = E. (2.22)

With this, we wish to determine a feedback control law: ¤@ = (@, C) that achieves
the desired properties.

Suppose that we have a desired trajectory G3 (C) for the task vector. The goal is to
track this trajectory, i.e., for 4(C) = G(C) − G3 (C) → 0 with G(C) satisfying (2.21).
Differentiating this yields:

¤4 = �H (@) ¤@ − ¤G3 (C).

Therefore, for W > 0, if we choose ¤@ such that �H (@) ¤@ = ¤G3 (C) − W4, we have
¤4 = −W4 ⇒ 4(C) = exp(−WC)4(0). As a result, if we wish to track a trajectory, we
can pick:

¤@(G, C) = �H (@)† (¤G3 (C) − _4) , (2.23)

22

with �H (@)† = �H (@)) (�H (@)�H (@)))−1, the Moore-Penrose (right) pseudoinverse,
assumed to be well defined.

Equipped with ¤@, which will now serve as the desired (potentially unsafe) input ¤@des,
we can now impose safety. We have the following.

Lemma 2. Consider a kinematic safety constraint ℎ : & ⊂ R: → R and the
corresponding safe set S = {@ ∈ & : ℎ(@) ≥ 0} defined as the 0-superlevel set of
ℎ. If �ℎ (@) ≠ 0, then the following velocity based controller:

¤@∗(@, C) = argmin
¤@∈R:

‖ ¤@ − �H (@)† (¤G3 (C) − _(H(@) − G3 (C))) ‖2

s.t. ¤ℎ(@, ¤@) = �ℎ (@) ¤@ ≥ −U(ℎ(@)), (2.24)

ensures safety, i.e.,S is forward invariant. Moreover, this has a closed form solution
given by

¤@∗(G, C) = ¤@des(@, C) +
{
−�ℎ (G)†Ψ(@, C; ¤@des) if Ψ(@, C; ¤@des) < 0
0 if Ψ(@, C; ¤@des) ≥ 0

, (2.25)

where Ψ(G, C; ¤@des) = �ℎ (@) ¤@des(@, C) + U(ℎ(@)).

Therefore, the controller (2.25) utilizes ¤@des whenever it is safe, i.e., when
Ψ(@, C; ¤@des) ≥ 0. Conversely, in the case when ¤@des is unsafe the controller takes
over and enforces ¤ℎ = �ℎ (@) ¤@∗(@, C) = −U(ℎ) until ¤@des is safe again.

Example 4 (Manipulator Obstacle Avoidance). Consider a 6-DOF industrial
manipulator attempting to track a desired trajectory G3 (C) using the desired velocity
given in (2.23) with its end-effector. Note that CBFs have been successfully applied
to robot manipulators in [45, 120, 91] via kinematic control. Suppose that the
manipulator needs to complete this trajectory while avoiding an obstacle located at
(G0, H0, I0). Thus, in the set S = {@ | ℎ(@) ≥ 0}, the end-effector must be at least
a distance 3 from the obstacle. A control barrier function representing this safety
constraint is

ℎ(G) = (G − G0)2 + (H − H0)2 + (I − I0)2 − 32. (2.26)

By substituting this into (2.24) or (2.25), we obtain the results shown in Figures
2.6 and 2.7. Since this CBF does not take into account the system dynamics or the
tracking ability of the low-level controller, safety is not guaranteed, but it can be
achieved by proper choice of U. In this case, with scalar multiple U ∈ [0.5, 1], the
obstacle is avoided, but not for U ∈ [2, 3].

23

Figure 2.6: A 6-DOF manipulator safely avoiding an obstacle with energy-based
control barrier function. The CBF intervention is shown in red.

Figure 2.7: Velocity-based kinematic barrier function on the 6 DOF manipulator.
Safety depends on choice of U.

24

2.2.1 Guarantees on dynamics
We now wish to establish the main result of this section: guarantees safety for
the dynamics of a robotic system, not just the kinematics. To do this, we first
introduce an alternative formulation of the energy-based CBFs shown in [84] for
robotic systems.

We consider Euler-Lagrangian dynamics of the form:

� (@) ¥@ + � (@, ¤@) ¤@ + � (@) = �D, (2.27)

where � ∈ R:×< is the actuation matrix, �,�, � are the inertia, Coriolis-centrifugal
and gravity matrices respectively of appropriate dimensions. We assume < ≤ : ,
wherein < = : with � invertible corresponds to full actuation. From the equations
of motion, we can obtain a control system of the form (1.1). We will first discuss
the fully actuated case, and the underactuated case will be discussed after.

We begin by formulating a safety-critical controller for fully actuated robotic sys-
tems given kinematic safety constraints—thus bridging the gap from kinematic to
dynamics. This will be achieved via a “dynamically consistent” extension to the
desired safe set. This is similar to the extensions shown in [16], [109] for higher
relative degree systems, but leverages the kinetic energy of the system. Specifically,
to dynamically extend the CBF, we note that the inertia matrix, � (@) is a symmetric
positive definite matrix, � (@) = � (@)) � 0, and thus:

_min(� (@))‖@‖2 ≤ @)� (@)@ ≤ _max(� (@))‖@‖2,

where _min, _max are the min and max eigenvalues (which are dependent on @) of
� (@) which are necessarily positive due to the positive definite nature of � (@).

Definition 5. Given a kinematic safety constraint expressed as a function ℎ : & ⊂
R: → R only dependent on @, and the corresponding safe set: S = {(@, ¤@) ∈
& × R: : ℎ(@) ≥ 0}, the associated energy-based safety constraint is defined as:

ℎ� (@, ¤@) := −1
2
¤@)� (@) ¤@ + U4ℎ(@) ≥ 0 (2.28)

with U4 > 0. The corresponding energy-based safe set is:

S� := {(@, ¤@) ∈ & × R: : ℎ� (@, ¤@) ≥ 0}. (2.29)

This construction is similar to the augmentation of kinetic energy in [84] for recip-
rocal control barrier functions. While the reciprocal formulation has the advantage

25

of having no added conservatism, due to the set remaining unchanged, it does not
have well-defined behavior on the boundary of the set and outside of it, making
it less popular for implementation. In fact, we now will show that the energy
based constraint in Definition 5 is a valid (zeroing) control barrier function (CBF),
thereby allowing for a new class of QPs that guarantee safety. First, we establish the
relationship between S� and S.

Proposition 2. Consider a kinematic safety constraint, ℎ : & ⊂ R: → R, with
corresponding safe set S, and the associated energy-based safety constraint, ℎ� , as
given in Definition 5 with corresponding safe set S� . Then

(i) S� ⊂ S, (ii) Int(S) ⊂ lim
U4→∞

S� ⊂ S. (2.30)

Proof. To establish (i), we simply note that

S� ⊂ {(@, ¤@) ∈ & × R: : ℎ(@) ≥ 1
2
_min(� (@))

U4
‖ ¤@‖2 ≥ 0} ⊂ S.

To establish (ii), we first note that

(� (U4) = {(@, ¤@) ∈ & × R: : ℎ(@) ≥
1
2 ¤@

)� (@) ¤@
U4

},

where here we made the dependence of (� on U4 explicit. Consider an increasing
sequence U84 where 8 ∈ N and lim8→∞ U84 → ∞. This results is a nondecreasing
sequence of sets: {S� (U84)}∞8=1:

U84 < U
8+1
4 ⇒

1
2 ¤@

)� (@) ¤@
U84

>

1
2 ¤@

)� (@) ¤@
U8+14

⇒ S� (U84) ⊂ S� (U8+14).

As a result:

lim
8→∞

1
2 ¤@

)� (@) ¤@
U84

= 0 ⇒ lim
8→∞
S� (U84) =

⋃
8∈N
S� (U84) ⊃ Int(S),

and S� (U84) ⊂ S for all 8 ∈ N.

We nowhave the necessary constructions to present themain result of this section—a
largely model independent safety-critical controller that ensures the forward invari-
ance of S� and, thus, S in the limit for U4 sufficiently large. We will establish this
by showing that ℎ� is a valid CBF and that ¤ℎ� only depends on the kinematics, the
gravity vector � (@), and the inertial matrix � (@). This makes the controller more
robust to uncertainty in the dynamics than full model based controllers—which
would require knowledge of the Coriolis-centrifugal matrix, � (@, ¤@).

26

Theorem 3. Consider a robotic system (2.27), assumed to be fully actuated with �
invertible, and a kinematic safety constraint ℎ : & → R with corresponding safe
set S = {(@, ¤@) ∈ & × R: : ℎ(@) ≥ 0}. Let ℎ� be the energy based constraint
defined as in (2.28) with corresponding safe set S� as given in (2.29). Then ℎ�
is a control barrier function on S� and given a desired controller Ddes(G, C), the
following controller for all (@, ¤@) ∈ S�:

D∗(@, ¤@, C) = argmin
D∈R<

‖D − Ddes(@, ¤@, C)‖2

s.t. − ¤@)�D + � (@)) ¤@ + U4�ℎ (@) ¤@︸ ︷︷ ︸
¤ℎ� (@, ¤@,D)

≥ −U(ℎ� (@, ¤@)), (2.31)

guarantees forward invariance ofS� , i.e., safety ofS� . Additionally, it has a closed
form solution:

D∗(G, C) = Ddes(@, ¤@, C) +
{

�) ¤@
‖�) ¤@‖2Ψ(G, C; Ddes) if Ψ(G, C; Ddes) < 0
0 if Ψ(G, C; Ddes) ≥ 0

, (2.32)

where

Ψ(G, C; Ddes) := ¤@) (U4�ℎ (@)) + � (@) − �Ddes(G, C)) + U(ℎ� (@, ¤@)).

It is interesting to note that ℎ� is a CBF on S� without requiring that ℎ has relative
degree 1, i.e., one need not require that �ℎ (@) ≠ 0 (except on mS) as in Lemma 2.
This reinforces the idea that these energy-based control barrier functions are natural
extensions for relative-degree 2 systems.

Proof of Theorem 3. Differentiating ℎ� along solutions yields (and suppressing the
dependence on @ and ¤@):

¤ℎ� = − ¤@)� ¥@ − 1
2
¤@) ¤� ¤@ + U4�ℎ ¤@ (2.33)

= ¤@) (� ¤@ + � − �D) − 1
2
¤@) ¤� ¤@ + U4�ℎ ¤@

=
1
2
¤@)

(
− ¤� + 2�

)
¤@ − ¤@)�D + �) ¤@ + U4�ℎ ¤@

= − ¤@)�D + �) ¤@ + U4�ℎ ¤@,

where the last equality follows from the fact that ¤� − 2� is skew symmetric (see
[106, Lemma 4.2]). To establish that ℎ� is a CBF, we need only show that (2.31)
has a solution since the inequality constraint in (2.31) implies that (1.3) is satisfied

27

in Definition 3. As a result of Lemma 1, the solution to (2.31) is given by (1.4) .
Note that

! 5 ℎ� (@, ¤@) = (U4�ℎ (@) + � (@))) ¤@, !6ℎ� (@, ¤@) = − ¤@)�.

Since (1.4) has a !6ℎ!6ℎ) term in the denominator, to show that (1.4) is well
defined, we need to establish that:

!6ℎ� (@, ¤@) = − ¤@)� = 0 ⇒ ! 5 ℎ� (@, ¤@) + U(ℎ� (@, ¤@)) ≥ 0.

Yet ¤@)� = 0 implies that ¤@) = 0 since � is invertible and therefore ! 5 ℎ� (@, ¤@) = 0
and since (@, ¤@) ∈ S� it follows that ℎ� (@, ¤@) ≥ 0 and hence U(ℎ� (@, ¤@)) ≥ 0
implying that (1.4) is well defined and thus ℎ� is a CBF. Finally, the forward
invariance of S� follows from the results of Lemma 1 and Theorem 1.

Having established Theorem 3, the following corollary demonstrates how to further
reduce model dependence.

Corollary 1. Under the conditions of Theorem 3, if there exists a 2D > 0 such that
2D ≥ 1

2_max(� (@)) then replacing the safety constraint (2.31) in the safety-critical
QP with:

− ¤@)�D + � (@)) ¤@ + U4�ℎ (@) ¤@︸ ︷︷ ︸
¤ℎ� (@, ¤@,D)

≥ −U(−2D ‖ ¤@‖2 + U4ℎ(@)), (2.34)

implies safety of S� . Moreover, if in addition ‖� (@)‖ ≤ 2D, for a large enough
2D > 0 (perhaps larger than previously determined), then the constraint (2.31) can
be replaced by:

U4�ℎ (@) ¤@ − ¤@)�D − 2D | ¤@ | ≥ −U
(
−2D ‖ ¤@‖2 + U4ℎ(@)

)
. (2.35)

wherein safety of S� is guaranteed.

Proof. It can be verified that −U(−2D ‖ ¤@‖2 + U4ℎ(@)) ≥ −U(−1
2_max(� (@)) ‖ ¤@‖2 +

U4ℎ(@)) ≥ −U(ℎ� (@, ¤@)), which means that (2.34) =⇒ (2.31). The second inequal-
ity, (2.35), follows from the bound on the gravity vector �.

The goal is to now connect the previous constructions with the kinematic controllers
defined previously. Often, controllers can only be implemented as desired position
and velocity commands that are passed to embedded level PD controllers. Moreover,

28

minimizing the difference between the desired and the safe robot velocities often
leads to more desirable behaviors with the lower-level commands, which affect the
system in much more complex ways. As such, we consider a controller:

D = − vel(¤@ − ¤@∗3 (@, ¤@, C)) (2.36)

where ¤@∗
3
(@, C) is a desired velocity signal that enforces safety while trying to achieve

tracking as in the case of Lemma 2wherein we have a desired velocity based tracking
controller: ¤@des(@, C) := �H (@)† (¤G3 (C) − _(H(@) − G3 (C))) for _ > 0. The following
is a result of the direct application of Theorem 3 in the context of the controller
(2.36).

Theorem 4. Consider a robotic system (2.27), and assume it is fully actuated. Given
a kinematic safety constraint ℎ : & → R and the associated dynamically consistent
extended CBF ℎ� : &×R→ R as given in (2.28) with associated safe set S� , along
with a desired trajectory G3 (C) in the task space G = H(@). The D controller (2.36)
with vel � 0 and the following QP:

¤@∗3 = argmin
¤@3∈R=

‖ ¤@3 −

¤@des (@,C)︷ ︸︸ ︷
�†H (¤G3 − _(H − G3)) ‖2

s.t. U4�ℎ ¤@ + ¤@)� vel ¤@ − ¤@)� vel ¤@3 + �) ¤@︸ ︷︷ ︸
¤ℎ� (@, ¤@, ¤@3)

≥ −U(ℎ�),
(2.37)

guarantees forward invariance, i.e., safety, of S� . Moreover, it has a closed form
solution:

¤@∗3 = ¤@des +


)vel�
) ¤@

‖)vel�) ¤@‖2
Ψ(@, ¤@, C; @des) if Ψ(@, ¤@, C; @des) < 0

0 if Ψ(@, ¤@, C; @des) ≥ 0
, (2.38)

where

Ψ(@, ¤@, C; ¤@des) := ¤@) (U4�)ℎ + � vel ¤@ − � vel ¤@des + �) + U(ℎ�).

Proof of Theorem 4 is omitted as it is a straightforward extension of Theorem 3.

It may be the case, as with industrial actuators, that vel is not known. In that case,
it can typically be determined from experimental data. Formally, one can guarantee
safety by utilizing adaptive control barrier functions [147]. Similar to Remark 1,
we can reformulate the constraints to eliminate the � and� matrices to yield robust
QPs.

29

Figure 2.8: Energy-based kinematic CBF on the 6 DOF manipulator. Safety is
guaranteed regardless of the choice of U4, but performance improves as U4 increases.
The times taken to complete the second portion of the task, near the obstacle, are
10.07, 8.06, and 6.86 sec for U4 = {250, 500, 1500}, compared to values of 7.60 to
7.94 for the purely kinematic case and 5.79 for CBF-free case.

Example 5 (Energy-based kinematic CBF). The 6 DOF manipulator from Exam-
ple 4 is now filtered with the constraint given in (2.34), using 2D = 5_max(�). Figure
2.8 shows the result for different values of U4. Safety is guaranteed regardless of the
value of U4, but as the value increases, the manipulator is able to move faster and
get closer to obstacles, resulting in better performance.

2.2.2 Underactuated systems
The methods developed can also be applied to underactuated systems, i.e., where
< ≤ : and we have a potentially non-singular actuation matrix �. The key idea is
to treat ℎ(@) as one of the coordinates. Choose a mapping Φ(@) := (F(@), ℎ(@)),

30

where F is chosen such that Φ is a diffeomorphism. This can be easily obtained for
non-singular configurations. We obtain the derivative as

[
¤F(@, ¤@)
¤ℎ(@, ¤@)

]
= �4 (@) ¤@, (2.39)

where �4 (@) is the Jacobian matrix. �4 is non-singular by property of diffeomor-
phism. We re-write the equations of motion of the robot as

�4 (@)
[
¥F
¥ℎ

]
+ �4 (@, ¤@)

[
¤F
¤ℎ

]
+ �4 (@) = �4 (@)−)�D, (2.40)

where

�4 (@)= �4 (@)−)� (@)�4 (@)−1

�4 (@, ¤@)= �4 (@)−)� (@)�4 (@)−1 + �4 (@)−)� (@) ¤�4 (@)−1

�4 (@)= �4 (@)−)� (@), (2.41)

are the new terms that define the dynamics in the transformed space. It can be
verified that the properties of �4, �4 will be same as that of �,�, i.e., �4 is
symmetric positive definite, and ¤�4 − 2�4 is skew-symmetric. More details are in
[106, Chapter 4, Section 5.4]. We can separate (2.40) into two parts:

�11(@) ¥F + �12(@) ¥ℎ + �1(@, ¤@) ¤@ + �1(@) = �1(@)D
�21(@) ¥F + �22(@) ¥ℎ + �2(@, ¤@) ¤@ + �2(@) = �2(@)D, (2.42)

where the terms corresponding to �,�, �, � are apparent from the setup. ¥F can be
eliminated from (2.42) to obtain

(�22 − �21�
−1
11�12)︸ ︷︷ ︸

�ℎ

¥ℎ + (�2 − �21�
−1
11�1)︸ ︷︷ ︸

�ℎ

¤@ + �2 − �21�
−1
11�1︸ ︷︷ ︸

�ℎ

= (�2 − �21�
−1
11�1)︸ ︷︷ ︸

�ℎ

D,

(2.43)

where�ℎ is nothing but the Schur complement form, and it is known to be symmetric
positive definite [85, Proposition 1]. Note that here �ℎ : & → R1×< is the mapping
from D to the joints, which is assumed to have full row rank (in other words, ℎ is
assumed to be inertially coupled with D. This may not be satisfied for all &, in
which case a subset &D ⊂ & is chosen (for example, in the cart-pole, pole-angle is
not inertially coupled with D when it is horizontal). With this formulation, we have
the following theorem.

31

Theorem 5. Consider a robotic system (2.27) and a kinematic safety constraint:
ℎ : & → R. Consider the dynamically consistent extended CBF for underactuated
systems:

ℎ̂� (@, ¤@) := −1
2
¤ℎ(@, ¤@))�ℎ (@) ¤ℎ(@, ¤@) + U4ℎ(@) (2.44)

with the safe set: (̂� := {(@, ¤@) ∈ & × R: : ℎ̂� (@, ¤@) ≥ 0}. Then (̂� ⊂ S and for
all (@, ¤@) ∈ (̂� the following controller:

D∗(@, ¤@, C) = argmin
D∈R<

‖D − Ddes(@, ¤@, C)‖2

s.t. − 1
2
¤ℎ ¤�ℎ
¤ℎ − ¤ℎ(−�ℎ ¤@ − �ℎ) + U4 ¤ℎ − ¤ℎ�ℎD ≥ −U(ℎ̂� (@, ¤@))

(2.45)

guarantees forward invariance of (̂� , i.e., safety of (̂� .

Proof. Differentiating ℎ̂ yields:

¤̂
ℎ� = −

1
2
¤ℎ ¤�ℎ
¤ℎ − ¤ℎ(−�ℎ ¤@ − �ℎ) + U4 ¤ℎ − ¤ℎ�ℎD. (2.46)

It can be verified that if ¤ℎ = 0, then the inequality in (2.45) is satisfied. The safety
property follows directly.

Remark 2. Similar to Corollary 1, we can eliminate some of the model-based terms
in (2.45). Specifically, we can replace the constraint in the QP with the following:

−1
2
2; ¤ℎ2 − 2D | ¤ℎ | (| ¤@ |2 + 1) + U4 ¤ℎ − ¤ℎ�ℎD ≥ −U(−2D ¤ℎ2 + U4ℎ(G)),

where 2; , 2D are constants that bound the norms: 2; ≤ ‖�ℎ‖ ≤ 2D, ‖�ℎ‖ ≤ 2D | ¤@ |,
‖�ℎ‖ ≤ 2D. We have used the same notations for convenience. Note that these
bounds may not exist for all (@, ¤@) ∈ & ×R: , and they are dependent on the validity
of the coordinate transformation Φ. This is usually avoided by choosing a smaller
configuration set &D. More details on the bounds are in [85].

Example 6 (Cart-Pole System). To demonstrate these concepts, we consider the
cart-pole system with two states, the cart position G and the pole angle \. The
system is actuated through a force input D applied to the cart, which moves freely
in a line. The safety constraint is to ensure that pole remains mostly upright, with
\ ∈ [5c6 ,

7c
6].

32

Figure 2.9: Cart-pole system with energy-based CBF.

2.3 Model-free guarantees
Similar to the energy-based approach presented in the previous section, the goal of
this section is to provide safety guarantees for robots, despite filtering inputs at the
velocity level, rather than the low-level control level.

To do this, we leverage the kinematic model of the manipulator and information on
the lower-level velocity tracking controller to guarantee safe behavior on the full-
order dynamics. Specifically, we establish that tracking the safe velocity obtained
from the QP (2.24) results in safety under reasonable conditions on the tracking
controller.

To see this, first consider the full-order dynamics associated with a robotic manipu-
lator [106]:

� (@) ¤@ + � (@, ¤@) ¤@ + � (@) = �D, (2.47)

with @, ¤@ ∈ R=, � (@) ∈ R=×= the inertia matrix, � (@, ¤@) ∈ R=×= the Coriolis matrix,
and � (@) ∈ R= the gravity vector. Here we assume full actuation: the actuation
matrix � ∈ R=×= is invertible and D ∈ R=. Associated with these dynamics is a
control system of the form (1.1) with G = (@, ¤@) (hence : = 2=).

Motivated by the approach in [103], we assume the existence of a “good” low-level

33

velocity tracking controller on the manipulator (as is common on industrial robots).
Concretely, for a velocity command E∗(@, C) consider the corresponding error in
tracking this velocity:

¤4 = ¤@ − E∗, (2.48)

and assume exponentially stable tracking.

Assumption 1. There exist a low-level controller D = : (G, C) for the control system
(1.1) obtained from (2.47) such that

‖ ¤4(C)‖2 ≤ "4−_C ‖ ¤40‖2 (2.49)

holds for some ", _ > 0 along the solution G(C) of the closed-loop system with
@(C0) = @0, ¤@(C0) = ¤@0 and ¤4(C0) = ¤40.

Under this assumption, we have the first theoretic result of the section which we
state in general terms before applying it to the case of avoiding collisions.

Theorem 6. Consider the full-order dynamics of a robot manipulator (2.47) ex-
pressed as the control system (1.1), and the safe set S. Assume that ℎ has bounded
gradient, i.e., there exists �ℎ > 0 s.t.

 mℎm@

2
≤ �ℎ for all @ ∈ S. Let E∗(@, C)

be the safe velocity given by the QP (2.24), with corresponding error in (2.48). If
Assumption 1 holds with _ > U, safety is achieved for the full-order dynamics (2.47)
in that:

(@0, ¤40) ∈ S" ⇒ @(C) ∈ (, ∀C ≥ C0, (2.50)

where:
S" =

{
(@, ¤4) ∈ R2= : ℎ(@) − �ℎ"

_ − U ‖ ¤4‖2 ≥ 0
}
. (2.51)

Proof. First, we lower-bound ¤ℎ(@, ¤@) as follows:

¤ℎ(@, ¤@) = mℎ
m@
E∗ + mℎ

m@
¤4

≥ −Uℎ(@) −

mℎm@

2

‖ ¤4‖2

≥ −Uℎ(@) − �ℎ" ‖ ¤40‖2e−_C ,

(2.52)

where we used (i) the definition (2.48) of the tracking error, (ii) the constraint on the
safe velocity in (2.24) and the Cauchy-Schwartz inequality, and (iii) the upper bound

34

�ℎ on ‖ mℎm@ ‖2 and the upper bound (2.49) on the tracking error. Then, consider the
following continuous function H : R→ R:

H(C) =
(
ℎ(@0) −

�ℎ" ‖ ¤40‖2
_ − U

)
e−UC + �ℎ" ‖ ¤40‖2

_ − U e−_C , (2.53)

which satisfies:

¤H(C) = −UH(C) − �ℎ" ‖ ¤40‖2e−_C

H(C0) = ℎ(@0).
(2.54)

For (@0, ¤40) ∈ (" , we have H(C) ≥ 0, ∀C ≥ C0, and by the comparison lemma we get:

ℎ(@(C)) ≥ H(C) ≥ 0, ∀C ≥ C0, (2.55)

that implies @(C) ∈ (, ∀C ≥ C0. This completes the proof.

2.3.1 Applications: Automated cooking with robotic arms
In order to prevent collisions with the environment, we must ensure that any point on
the robot does not come into contact with any point in the environment. However,
unlike the simple example before, we cannot rely on the robot and environment
being represented by simple spheres.

Let us denote the set of all points on the robot as � ⊂ R3, and the set of all points in
the collision environment as � ⊂ R3. To guarantee safety, we require that �∩� = ∅,
thus distance(�, �) > 0. More formally, distance is defined as:

distance(�, �) = inf
?�∈�
?�∈�

‖?� − ?�‖2 , (2.56)

which can be computed in R3 using the GJK algorithm [57].

This notion gives a nonnegative distance, which could be used as CBF. However,
it is advantageous to define a CBF that is negative in the event of collision, since
CBFs may also ensure that the boundary of the set S is re-approached if ℎ(G) < 0
[15]. In collision, penetration is defined as:

penetration(�, �) = inf
?�∈�
?�∈�

‖?� − ?�‖2 , (2.57)

where � is the complement of �, or the set of points outside the collision scene.
Penetration is often computed using the EPA algorithm [153].

35

These two functions can be combined to form the notion of signed distance. Signed
distance is typically written as

sd(�, �) = distance(�, �) − penetration(�, �). (2.58)

When the points ?� and ?� of the robot and the environment are given in local
coordinates, the following expression from [131] can be utilized to compute the
signed distance:

sd�� (@) = max
=̃∈R3

‖=̃‖2=1

min
?�∈�
?�∈�

=̃ ·
(
�W
� (@)?� − �

W
� ?�

)
, (2.59)

where �W
�
(@) ∈ R3×3 gives the pose of the robot in the world frame that depends

on the configuration @, and �W
�
∈ R3×3 gives the pose of the collision environment,

i.e., �W
�
(@)?� and �W

�
?� indicate points in the world frame.

Given the signed distance, we propose the CBF candidate:

ℎ(@) = sd�� (@), (2.60)

which defines the corresponding safe set of the system:

S = {@ ∈ R= : ℎ(@) = sd�� (@) ≥ 0}. (2.61)

We remark that based on (2.59) ℎ can be written as:

ℎ(@) = =̂(@)>
(
�W
� (@) ?̂� (@) − �

W
� ?̂� (@)

)
. (2.62)

Here =̂(@) and ?̂� (@), ?̂� (@) denote the direction and points that maximize and
minimize the expression in (2.59), respectively, which depend on the configuration
@.

It is important to note that in Euclidean space, signed distance, ℎ, is differentiable
almost everywhere, and satisfies

 mℎ
m?�

2
= 1 [129]. There exists, however, a set of

measure zerowhere mℎ
m@

is discontinuous, since functions =̂ and ?̂�, ?̂� are nonsmooth
due to the max and min operators in (2.59). Since the above framework requires
continuously differentiable ℎ, we take special care in applying the theory, and we
handle nonsmoothness under the following construction.

First, we express the gradient of ℎ as follows:

mℎ

m@
= =̂(@)>�� (@) + X(@), (2.63)

36

where �� (@) =
m�W

�

m@
?̂� (@) and X(@) is the remainder term associated with the

derivatives of =̂, ?̂�, and ?̂�. Importantly, note that =̂(@)>�� (@) is continuous,
while X(@) is discontinuous on a set of measure zero. The term =̂(@)>�� (@) can
be interpreted as a continuous approximation of mℎ

m@
, while the approximation error

X(@) acts as disturbance. The size of the disturbance is characterized by its essential
supremum1:

‖X‖∞ := ess sup
C≥C0
‖X(@(C))‖2.

The points where ℎ is not differentiable and X is discontinuous occur on a set of
measure zero, and therefore do not impact the essential supremum.

Now we incorporate the continuous approximation =̂(@)>�� (@) in (2.63) into the
control design. The following result demonstrates that this approximation is suf-
ficient to maintain safety if the disturbance X(@) is properly accounted for (in an
input-to-state safety (ISSf) context [86, 11]).

Proposition 3. Consider the kinematic model of a robotic manipulator (2.22). Then,
the controller expressed as the QP:

E∗(@, C) = argmin
E∈R=

‖E − Edes(@, C)‖22 (2.64)

s.t. =̂(@)>�� (@)E ≥ −Uℎ(@) + 2�max ¤@max,

with ¤@max = ‖ ¤@‖∞ and �max = max@∈R= ‖�� (@)‖2, renders the setS in (2.61) forward
invariant for the resulting closed-loop system. That is, the controller (2.64) keeps
system (2.22) safe.

As such, collision-free behavior is enforced for the kinematic model of the manip-
ulator, if the disturbance, i.e., the approximation error in (2.63), is accounted for in
the controller. This is achieved by the last term in the constraint of (2.64).

Proof. First, we bound the essential supremum ‖X‖∞ of the disturbance. Recall
that the points where ℎ is not differentiable are on a set of measure zero and do not
impact the essential supremum, thus, we construct the bound on ‖X‖∞ by picking
generic points where the ℎ is differentiable. For an arbitrary point on the robot

1The function X is essentially bounded if ‖X(C)‖2 is bounded by a finite number for almost all
C ≥ C0 (i.e., ‖X(C)‖2 is bounded except on a set of measure zero). The quantity ‖X‖∞ is then defined
as the least such bound.

37

?� ∈ � where ℎ is differentiable:

mℎm@

2
=

 mℎm?� m?�m@

2

≤

 mℎm?�

2

m?�m@

2

≤ 1 · �max.

(2.65)

This leads to the bound:

‖X‖∞ =

mℎm@ − =̂(@)>�� (@)

∞
≤

mℎm@ − =̂(@)>�� (@)

2

≤

mℎm@

2

+

=̂(@)>�� (@)

2

≤ �max + ‖�� (@)‖2
≤ 2�max.

(2.66)

Then, we differentiate the CBF ℎ in (2.60) and use (2.63):

¤ℎ(@, ¤@) = mℎ
m@
¤@ = =̂(@)>�� (@) ¤@ + X(@) ¤@

≥ =̂(@)>�� (@) ¤@ − ‖X‖∞ ¤@max.

(2.67)

Substituting ¤@ with the solution E∗(@, C) to (2.64) and incorporating the bound on
‖X‖∞, the result is:

¤ℎ(@, E∗(@, C)) ≥ =̂(@)>�� (@)E∗(@, C) − ‖X‖∞ ¤@max

≥ −Uℎ(@) + 2�max ¤@max − ‖X‖∞ ¤@max

≥ −Uℎ(@).

(2.68)

Thus, the set S is forward invariant based on Theorem 1.

Self-collisions are defined as collisions between any two links of the robot that are
not explicitly allowed to collide. For these types of collisions, we still use the signed
distance function, but now �W

�
also depends on the configuration @:

sd�� (@) = max
=̃∈R3

‖=̃‖2=1

min
?�∈�
?�∈�

=̃ ·
(
�W
� (@)?� − �

W
� (@)?�

)
. (2.69)

Thus, the gradient of ℎ(@) = sd�� (@) becomes:

mℎ

m@
= =̂(@)> (�� (@) − �� (@)) + X(@), (2.70)

38

with �� (@) =
m�W

�

m@
?̂� (@) and �� (@) =

m�W
�

m@
?̂� (@).

Proposition 3 can again be applied to self-collisions, with slight modifications. The
analysis results in the QP:

E∗(@, C) = argmin
E∈R=

‖E − Edes(G, C)‖22 (2.71)

s.t. =̂(@)> (�� (@) − �� (@)) E ≥ −Uℎ(@) + 4�max ¤@max.

The safety guarantees of Proposition 3 are valid for the kinematic model (2.22).
However, like in Theorem 6, the controllers (2.64) and (2.71) lead to collision-free
motion also on the full-order dynamics—assuming good velocity tracking.

Theorem 7. Consider the full-order dynamics of a robot manipulator (2.47) ex-
pressed as the control system (1.1), and the safe set S in (2.61) associated with
the signed distance sd�� (@) between the robot and the environment in (2.59). Let
E∗(@, C) be the safe velocity given by the QP (2.64), with corresponding error in
(2.48). If Assumption 1 holds with _ > U, safety is achieved for the full-order
dynamics (2.47) in that:

(@0, ¤40) ∈ S" ⇒ @(C) ∈ (, ∀C ≥ C0, (2.72)

where:
S" =

{
(@, ¤4) ∈ R2= : sd�� (@) −

�max"

_ − U ‖ ¤4‖2 ≥ 0
}
. (2.73)

Note that the same safety guarantees can be stated for self-collision avoidance with
the QP (2.71).

Proof. The proof follows the same steps as in the Proof of Theorem 6with the substi-
tution �ℎ = �max, which is justified by

 mℎm@

2
≤ �max based on (2.65). Furthermore,

note that mℎ
m@
E∗ ≥ −Uℎ(@) still holds due to (2.68).

2.3.1.1 CBF Implementation on Precomputed Trajectories

Assuming the knowledge of a reference trajectory, we now detail the trajectory
safety filter algorithm. The most straightforward implementation of the QPs (2.64)
and (2.71) is to run them in real-time paired with a desired joint velocity controller,
which tracks the waypoints of the reference. This can be achieved with a P controller
to the next waypoint 8:

Edes(@, C) = % (@8des − @). (2.74)

39

For the best results, the error on joint positions should be heavily saturated to
avoid large differences in desired velocities at short and long distances. The
tracked waypoint is iterated forwards either when the robot is sufficiently close(

@8des − @

2 < n

)
, or when the robot gets stuck.

Due to the large time delay that many industrial manipulators have, it is often desired
to instead send precomputed time-stamped trajectories, rather than attempting to
track a trajectory online with feedback. The basic algorithm for generating these
safe trajectories, given a cache of previously computed reference trajectories, is
detailed in Algorithm 1.

Algorithm 1 Trajectory generation in modified collision environments with safety
filters.
Require: �, the cache that contains behaviors �8

�
, planning scenes �8

%
, and trajec-

tories �8
-

Input
� Desired behavior
% Planning Scene
@ Robot State

Output
- Trajectory

for each �8 s.t. � == �8
�
do ⊲ Iterate through cache

) 8 = 5 (�8
%
, �8

-0
, %, @) ⊲ Compute suitability metric

if) 8 <)1 then ⊲ Reference is extremely similar
- ← CBF(�8

-
, %, @)

return
end if

end for
[)min, idx]← min() 8) ⊲ Find best reference
if)min <)2 then ⊲ Close match

- ← CBF(�idx
-
, %, @) ⊲ Safety filter

return
else if)min <)3 then ⊲ Suitable match

- ← CBF(�idx
-
, %, @)

� ← -

return
else ⊲ Best reference is very dissimilar

- ← Re-plan from scratch
� ← - ⊲ - gets added to cache

end if

There are three fields of interest in the cached trajectories: the desired behavior �,
the manipulator’s trajectory) , and the collision environment used by the original

40

planner, referred to as the planning scene %. While only the joint trajectory is
required to generate the modified, safe trajectory, the inclusion of the original
planning scene allows for more information when choosing the closest trajectory to
track.

The algorithm first assesses the suitability of previously computed trajectories in the
cache. There are two major considerations: the difference in initial conditions and
the similarity of the planning scene. The suitability of the 8th member of the cache
�8 is evaluated by the function:

) 8 = 5 (�8%, �
8
-0
, %, @) = X8@ + X8%, (2.75)

where

X8@ =

�8-0
− @

2

(2.76)

X8% =

�8% − %

 = ∑

>∈$

�8%> − %>

 (2.77)

assess the differences in the initial conditions of the robot and the collision objects
> ∈ $ making up the planning scene.

There are three threshold values ()1,)2 and)3) for this suitability metric. If) 8 <)1,
then the search stops, as the trajectory in the cache is so close that it is not worth
searching, and the CBF filter is applied. After searching through all cache members,
if) 8 <)2, then the filter is applied, but the trajectory is not added to the cache to
prevent it from growing unnecessarily large. If)2 <) 8 <)3, then the filter is
applied and the resulting trajectory is added to the cache. Finally, if) 8 >)3, then
the original motion planning algorithm is used, and the result is added to the cache.

To obtain the joint trajectory - via the CBF, we simply utilize a trajectory tracking
controller like (2.74) along with the CBF-QP, and integrate its solution throughout
the behavior.

Figure 2.10 shows the simulated cooking environment. The robot and obstacle
representations are a series of meshes described by URDF and SRDF files. The
position and orientation of objects are updated before each planning attempt, and
collision objects in the environment are assumed to be stationary unless directly
interacted with by the manipulator, such as the baskets being grabbed and moved.

To implement the CBF filter, we require three values to be computed: the signed
distance to the obstacles and other links sd(@), the normal vectors corresponding to

41

Figure 2.10: The simulation environment, which shows the collision objects and
their representations as mesh files. The same mesh representations are used on the
hardware system.

these points =̂(@), and the manipulator Jacobian at these points � (@). The MoveIt
framework [43], an open-source robotics software package for motion planning, is
able to compute all three of these values. Specifically, the distanceRobot() and
distanceSelf() functions of the CollisionEnv class provide the signed dis-
tances and normal vectors needed for environmental and self-collisions. Moreover,
the getJacobian() function in the RobotState class returns the manipulator
Jacobian. Thus, no other external libraries are required to implement this algo-
rithm. Once these three values are computed, the OSQP quadratic program solver
[145] is used to calculate the velocity commands subject to the CBF condition, and
integration is done manually.

Before hardware implementation, the algorithm was tested in simulation. The
resulting behaviors are described in the next section, and the simulation results are
shown along with the hardware trajectories in Figure 2.11.

42

We apply the approach described in this section to one of the Miso Robotics robotic
cooking environments. Specifically, we utilize a FANUC LR Mate 200iD/7LC
robotic manipulator wrapped in a sleeve, and we send joint trajectories from an Intel
i9-9900KF running ROS.

The cooking environment used in the testing is fully modeled using high-quality
meshes used for collision checking. There are 36 collision objects in total, each
represented by tens to hundreds of mesh triangles. The primary collision objects
of concern are the six baskets, three industrial fryers, the hood vent over the fryers,
and the glass pane separating the manipulator from the human workers. Of these
objects, the baskets and fryers are the most commonly displaced.

As shown in the figures, the configuration space of the manipulator is very densely
crowded with obstacles. To complete a behavior, it is common to have less than a
few centimeters of clearance between the robot and the surrounding environment.
For this reason, planning methods must be minimally conservative, and there is no
room for any collision buffer.

For the purpose of the experiments, a minimal cache was utilized to highlight the
role of CBFs in re-planning around obstacles. In a commercial setting, with a
more populated cache, the CBF would have many more prior trajectories to choose
from, meaning that the path modifications would be much smaller in magnitude. In
practice, we find that the cache size saturates at around 200 stored behaviors.

We test our framework’s ability to safely re-plan on the two most volatile behaviors:
fryer_to_hanger and hanger_to_fryer, described below.

Fryer to hanger. The fryer_to_hanger behavior moves a basket from the dipped
state to the hanging state. The manipulator picks up a basket that has finished
cooking and hangs it, allowing the oil to drip off the basket before serving food to
customers.

Hanger toFryer. Thehanger_to_fryerbehavior is the reverse of fryer_to_hanger,
transitioning a basket from the hanging state to the frying state.

Each behavior is tested in two primary configurations: one where the adjacent basket
is submerged, and onewhere it’s hanging. For the purpose of this section, each of the
four testing configurations were run 25 times, each with different cached trajectories
and planning environments, for 100 total executions. The testing methodology was
simple: for each setup, we first run the CBF on the best matching reference trajectory
in the limited cache, and then we re-plan using TrajOpt for comparison purposes.

43

The CBF was able to produce a successful, collision-free trajectory in all 100 cases,
even with the artificially limited cache size. The average computation time per CBF
call was 2 ms, and the average computation time for the entire behavior was 223
ms. This is a significant improvement compared to TrajOpt’s average computation
time of 5923. Note that the CBF’s trajectory is updated every 10 ms compared to
TrajOpt’s 64 ms, meaning no additional local planner needs to be utilized. Two
example trajectories from the CBF are visualized in Figure 2.11, and the value of
ℎ(@) throughout the motion is included.

44

(a) fryer_to_hanger with adjacent basket in fryer.

(b) hanger_to_fryer with adjacent basket hanging.

Figure 2.11: Two examples behaviors implemented on the Flippy2 robot. See
https://youtu.be/nmkbya8XBmw for video. The large spikes in signed distance
ℎ(@) come from enabling and disabling collision objects when required for interac-
tion, like the basket when gripping and the fryer when hanging. At the maximum
value of ℎ(@), the robot is only 11 cm away from the frame around it during these
behaviors.

https://youtu.be/nmkbya8XBmw

45

C h a p t e r 3

INPUT REGULATION WITH BACKUP CONTROLLERS

To implement a CBF with input bounds, the set S must be control invariant, as
mentioned before. In [59], however, it was shown that an explicit representation
of a control invariant set S is not necessary. A control invariant subset S� can
be implicitly computed using what is now commonly referred to as the backup set
method.

3.1 Backup set CBF
The approach for defining such a set is inspired by [69]. The idea is to start with a
backup controller and backup set:

Definition 6 (Backup controller and set). A backup controller is a predefined control
law c(G) : D → U that attempts to take the system (1.1) from anywhere in D into
the backup set, a small set that invariant under the backup controller.

The size of the backup set does not affect the size of the implicitly computed
invariant set, meaning that very conservative approaches can be used to compute it.
The performance of the backup controller, however, is very critical to the size of the
implicit safe set.

To compute the set S� , we first need to define the flow of the system along the
backup control law.

Definition 7 (Flow). Theflow of the system (1.1) along a control law D(G) : D → U,
denoted as qcC (G0), is the solution to the initial value problem

dG
dC
= 5 (G) + 6(G)D(G),

G(0) = G0.

(3.1)

Furthermore, when the dynamics and control law are smooth, the sensitivity of the
flow operator with respect to the initial time and state satisfies

�qDC (G0) = &(C), (3.2)

46

where &(C) is a solution to the initial value problem [67]

d&
dC

= �
[
(5 + 6D) ◦ qDC (G)

]
&(C),

&(0) = � .
(3.3)

Consider a safe set S, similar to (1.2), but now defined by #B continuously differ-
entiable functions

(= {G ∈ R= | ∀8 ∈ {1, . . . , #B} , ℎ8 (G) ≥ 0}
m(= {G ∈ (| ∃8 ∈ {1, . . . , #B} , ℎ8 (G) = 0} .

(3.4)

With this, we can now define S� as follows:

(� =

G |
∧

g∈[0,)]

(
qcg (G) ∈ S

)
∧

(
qc) (G) ∈ S�

) . (3.5)

In short, S� is defined as the intersection of two sets. The first set, described

by

{
G | ∧

g∈[0,)]

(
qcg (G) ∈ S

)}
, states that the flow of the system along the backup

trajectory states in the safe set S for all time C ∈ [0,)], where) is the integration
time chosen for the method, typically on the order of a few seconds.

The second set, described by
{
G |

(
qc
)
(G) ∈ S�

)}
, is the set of states such that the

flow along the backup controller ends in S� by time) . Note that this condition
would be unnecessary if) = ∞, but this would make the first constraint intractable.

That is, the implicit set S � consists of all initial conditions that are steered to S�

within time) without exiting S along the way.

Theorem 8. If S� is invariant under c(G), then S � is a viable set contained in (.

Proof. Consider G ∈ S � , then qcg (G) ∈ S for all g ∈ [0,)]. Containment of S � in S
follows from the special case g = 0. From the semi-group property of the flow and
invariance of S� under c it follows that for any g, B > 0

G ∈ S � =⇒ qcB ◦ qcg (G) ∈ S ∧ qc) ◦ q
c
g (G) ∈ S�

=⇒ qcg (G) ∈ S � ,

which implies that also S � is invariant under c. Hence S � is viable.

47

Figure 3.1: Illustration of the backup set and resulting implicit invariant set.

Moreover, there is no need to implement more than one constraint, as demonstrated
by the following Lemma.

Lemma 3. S� is the 0-level set of the following function

ℎ(G) = min{ min
C∈[0,)]

ℎ(ΦcC (G)), ℎ� (Φc) (G))}. (3.6)

Proof. First notice that by the continuity of the flow function Φc and the min
function, ℎ is continuous. For all G ∈ S, by definition, under the backup strategy
c, the state evolution ΦcC (G) would satisfy the constraint and reach S0 at time
) , therefore ℎ(G) ≥ 0. On the other hand, for all G ∉ S, under the backup
strategy c, the state evolution either violates the state constraint at some C, i.e., ∃C ∈
[0,)], ℎ(ΦcC (G)) < 0, or does not reach S0 within the horizon) , i.e., ℎS (ΦcC (G)) <
0, indicating that ℎ(G) < 0. Therefore, S = {G |ℎ(G) ≥ 0}.

Figure 3.1 illustrates the implicit viable set for a double integrator under an optimal
backup controller with walls at G = ±5.

48

With a properly defined c the implicit setS � can be significantly larger than S�, and
thus be less conservative. However, enforcement of the barrier condition requires
knowledge of a collection of level set functions ℎ�

9
that together define S � , as well

as their derivatives. In the following we construct such functions and then discuss
how they can be computed on-the-fly via numerical integration.

Two types of constraints are required to define S � : one for ensuring that S� is
reached within time) , and a family of constraints that ensure that (is kept invariant
along the trajectory. Such constraints can be defined in terms of the functions ℎ�

and ℎ 9 that define the sets S� and S, and the flow of the backup controller:

ℎ�) (G) = ℎ� ◦ qD
�

) (G), (3.7a)

ℎ�9 ,g (G) = ℎ 9 ◦ qD
�

g (G). (3.7b)

Equation (3.7b) represents an infinite collection of functions, which poses an issue
that we will address later. The validity of the following proposition is clear from the
definition of (�.

Proposition 4. (� is the super 0 level set of the functions defined in (3.7), i.e.,

(� =

G : ℎ�) (G) ≥ 0 ∧
∧

g∈[0,)]

A∧
9=1

(
ℎ�9 ,g (G) ≥ 0

) . (3.8)

From the chain rule of differentiation the gradients can be written as follows:

∇ℎ�) (G) = �
[
ℎ�

]
qD
�

)
(G) �

[
qD

�

)

]
G

(
5 (G) + 6(G)D1 (G)

)
, (3.9a)

∇ℎ�9 ,g (G) = �
[
ℎ 9

]
qD
�
g (G)

�

[
qD

�

g

]
G

(
5 (G) + 6(G)D1 (G)

)
. (3.9b)

These expressions can both be evaluated if the flow qD
�

g (G) and the flow sensitivity
� [qD�g]G are known, which can be found via numerical integration of the closed-loop
dynamics under the backup controller.

We now turn to the issue of having an infinite number of functions defining the set.
In practice we can only enforce positivity of a finite number of the functions in (3.7)
defining (� , and therefore propose a safety filter that enforces positivity of a subset
of n-tightened constraints evenly spaced in time:

! 5 ℎ
�
) (G) + !6ℎ�) (G)D ≥ −U) (ℎ�) (G)), (3.10a)

! 5 ℎ
�
9 ,:[(G) + !6ℎ

�
9 ,:[(G)D ≥ −U: (ℎ

�
9 ,:[(G) − n), (3.10b)

49

for : = 0, 1, . . . ,)/[.

Although this just enforces positivity of a finite number of the functions ℎ�
9 ,g
, under

some regularity conditions and appropriate margin n we expect that this should be
sufficient to guarantee positivity of the whole family of functions. We make this
more precise below via the following lemma.

Lemma 4. Let !ℎ be the Lipschitz constant of ℎ with respect to the Euclidean norm
and let

!q = sup
G∈(
‖ 5 (G) + 6(G)D� (G)‖2 (3.11)

be the maximal velocity of the closed-loop vector field. Then���ℎ ◦ qD�C (G) − ℎ ◦ qD�B (G)��� ≤ !ℎ!q |C − B |. (3.12)

Proof. Assume WLOG that C ≥ B and let H = qD�B (G)���ℎ ◦ qD�C (G) − ℎ ◦ qD�B (G)��� ≤ !ℎ

qD�C (G) − qD�B (G)

2

= !ℎ

qD�C−B (H) − H

2
≤ !ℎ!q |C − B |,

since !q is the maximal velocity of the vector field.

It follows that enforcing invariance of (via a finite subset of constraints as in

Theorem 9. For n ≥ !ℎ!q [2 the safety filter in (3.10) enforces invariance of (� .

Proof. The filter implies that ℎ�
9 ,g
(G) = ℎ 9 ◦qD

�

g (G) ≥ n for all g = :[, so by Lemma
4 we can for each g find a :∗ such that���ℎ�9 ,g (G) − ℎ�9 ,:∗[(G)��� ≤ !ℎ!q [2 , (3.13)

meaning that
ℎ�9 ,g (G) ≥ n − !ℎ!q

[

2
≥ 0. (3.14)

Thus all the functions defining (� are positive, and hence (� is invariant.

3.1.1 Applications: Industrial manipulators
We now apply the method to the problem of collision avoidance in an environment
with a robotic arm and a human. An advantage of the implicit approach is that the
implicit safe set can be time-varying even when the backup set and backup controller

50

Figure 3.2: The IRB 6640 industrial manipulator.

are not. The dynamics of the robotic arm are described by the usual manipulator
equations

" (@) ¥@ + � (@, ¤@) ¤@ + � (@) = g, (3.15)

where @ describe the joint angles and g is a vector of applied torques.

For manipulators with many degrees of freedom the explicit expressions for " (@),
� (@, ¤@) and � (@) are very complicated. As an alternative, they can be evaluated at
given points via the Articulated Body Algorithm (ABA) that steps over links of the
manipulator [49]. Only having “black-box” access to the equations of motion would
pose a problem for most methods for finding invariant sets, but the implicit method
proposed in this section only requires access to the numerical values of the dynamics
and its derivatives. We rewrite the dynamics on state-space form and also add a
time variable so that we can enforce safety of time-varying sets: - = [@, ¤@, C]) .

We now consider the 6-link IRB6640manipulator fromABB, depicted in Figure 3.2.
This robot has six degrees of freedom, making the overall system in 13-dimensional.

For the ARB 6640, the backup set is considered to be a vertical tube around the
robot. In practice, this would be a small closed-off area that is inaccessible to

51

the human. For this implementation, it is described by the following set of angle
constraints:

(� =
{
- ∈ R13 | @2 =

[
− c

12
,
c

12
]

@3 =
[
− 7c

12
,−5c

12
]}
.

The safe set is then simply the union of the backup set and complement of the
reachable set of the human in space-time over the duration of the backup control
maneuver.

For the purpose of this demonstration, the human is modeled as a single integrator
with a maximum velocity, meaning that the size of its reachable set grows linearly in
time. By adding time as a state, we prevent the filter from being overly conservative,
which would be the result if we only used the reachable set of the human over the
time horizon of the backup controller.

If (G0, H0) is the current position of the human, the reachable set of the human, or
the complement of (, can be simply expressed as an ellipsoid (or an n-cylinder [80])
centered at (G0, H0, �/2), where � is the height of the human. We can then write
this set as the superlevel set of a time-dependent differentiable function ℎ : R= → R

ℎ(C, G, H, I) = (G − G0)2 + (H − H0)2 +
(I −
√
�)2

�/(A0 + EmaxC)
− (A0 + EmaxC)2.

Thus, when ℎ(C, G, H, I) > 0, for all points along the robot, the robot is not contacting
the human. Similarly to sampling along the backup trajectory, wewould theoretically
need to check an infinite number of points. Again, however, we can pick a finite
number of samples along the robot to enforce this condition. This sampling does
not affect the guarantee on safety, as one can simply increase the radius of the
human A0 and the height �ℎ by the spacing between the points. It does, however,
add conservativeness to the problem, so the choice is sampling becomes a tradeoff
between computational performance and system performance.

As the dynamics of the robot are defined in joint space, and the safety set is defined
in Cartesian space, one must be careful when implementing the barrier condition.
Let us define our forward kinematics function that takes us from joint space to
Cartesian space as (@, C) : R=+1 → R4, augmenting it with the identity map for
time.

52

Figure 3.3: The set describing the human at C0 and reachable set after one second.

Consider � = [G, H, I, C]) and - = [@, ¤@, C]) . The gradient of ℎ with respect to the
states is

mℎ(�)
m-

=
mℎ((@))

m-
=

(
mℎ(�)
m�

◦ (@)
)
m

m-
,

where

m

m-
=

[
m
m@

m
m ¤@

m
mC

]
=

[
� ®0 � ¤@
®0 ®0 1

]
,

where the Jacobian � is calculated numerically.

For the backup controller, we will leverage the power of the recursive Newton-Euler
algorithm (RNEA) [79], which provides the necessary joint torques to generate
desired joint accelerations. The flexibility of this method is again showcased by the
fact that we do not need an analytic expression for the backup controller, as long as
we know its gradient.

There are only two joints that require actuation to reach the backup set. A simple
PD controller is used to obtain desired joint accelerations for these joints, which is

53

CONT ASIF PLANT
D34B D02C @, ¤@

TASK HUMAN
I

Figure 3.4: Block diagram of the ROS nodes used in the simulations.

fed into the RNEA that generates the control inputs, as well as their gradient. The
controller is of the form,

0des(@, ¤@) = −: ? (@ − @3) − :3 (¤@)
Db(@, ¤@) = RNEA(@, ¤@, 0des(@, ¤@)).

The gradient of this backup controller, which is required to evaluate (3.9) online, is
described by

mD1

m@
=
mRNEA
m@

+ mRNEA
m0des

m0des
m@

=
mRNEA
m@

− : ?
mRNEA
m0des

,

mD1

m ¤@ =
mRNEA
m ¤@ + mRNEA

m0des

m0des
m ¤@ =

mRNEA
m ¤@ − :3

mRNEA
m0des

,

mD1

3C
= 0.

Since the RNEA provides the exact torques needed to achieve desired joint acceler-
ations, the forward invariance of the backup controller is almost trivially guaranteed
under the proper choice of desired joint accelerations.

The rigid body algorithm library used for this simulation is Pinocchio [31]. This
C++ library has been shown to be the fastest of its kind, with the Table 3.1 illustrating
the average computation times of each necessary expression for our robot.

Table 3.1: Computation time of IRB 6640 in Pinocchio

Expression Time (`s)

Affine forward dynamics (5 (G) and 6(G)) 4
Gradient of closed-loop forward dynamics 42
Backup controller 5
Gradient of backup controller 31

54

A ROS environment was created to simulate the system, with V-REP used as a
visualizer. The ROS package consisted of five nodes: the robotic arm (PLANT),
the task giver (TASK), a nominal controller (CONT), the human (HUMAN), and
the safety filter (ASIF), connected as shown in Figure 3.4. Each component of
the system ran at 200 Hz on a desktop PC with an Intel 8700k processor. The
dynamics were integrated in the plant node via the Boost C++ library, with the
runge_kutta_dopri5 scheme over the timestep of 5 ms.

The controller node tracked a sequence of desired end-effector positions, given to it
by the task giver node. Once the system reached the desired position, the task giver
would send a new desired location to the system. The RNEA is also used for this
tracking controller.

The human node allowed the user to joystick a human, modeled as a single integrator,
around the factory floor.

Lastly, the safety filter node handled safety for the system. It takes in the state from
the plant and the desired inputs from the controller, and outputs the actual inputs
that are used for integration by the plant.

The ASIF uses an adaptive-step RK4 scheme for integration under the backup
controller, and the resulting quadratic program is solved by the OSQP library [145].

Figure 3.5 shows the value of the ASIF when a human attempts to pass through the
arm. This image well illustrates the minimally invasive property of the ASIF, as the
filter keeps the value of ℎ(G) just barely above zero.

3.1.2 Handling sampled-data systems and input delay
Control theory in practice is almost always implemented in the form of a digital
controller on a physical system that evolves continuously. However, these systems
are rarely treated as such due to the difficulties that arise in the formulation of
controllers that act optimally for these types of systems. Generally, the system is
controlled rapidly enough that the time discretization can be ignored, and the entire
system can be treated as continuous, allowing for a much larger class of control
techniques. This is especially true for robotic systems, where continuous controllers
are often implemented at loop rates faster that 1 kHz. In the context of safety-critical
control, however, it is important to model the system as accurately as possible, in
order to extend the guarantees from theory to practice. Moreover, optimization-
based controllers tend to be less robust than simple control laws such as PID, and
therefore this calls for a more accurate model.

55

Figure 3.5: Value of the Barrier Function with and without ASIF engaged.

Another reality of control theory in practice is the presence of input delay. Input de-
lay for myopic, optimization-based controllers (such as Control Lyapunov Functions
[111] and control barrier functions), is often handled by making the problem for-
mulation robust to any value of the input delay in some bounded set. However, this
treatment degrades performance due to conservatism and complicates the (already
difficult) computation of the Lyapunov or barrier functions. In practice, the input
delay for a system is relatively easy to identify, so it would be beneficial to formulate
the problem with the knowledge of the input delay of the system. While many
solutions to handling specific time delays have been proposed, in general they either
require either linear systems [70, 52], are applicable only to autonomous systems
[115], require difficult construction [71], or rely on frequency-domain analysis that
is not applicable to these optimization-based controllers [170].

The contributions of this subsection are:

• We propose a formulation of the implicitly defined control barrier function
that is applicable to sampled-data systems, while retaining scalability.

56

• We use the concept of incremental stability [17] to prove robustness of the
proposed backup controller-based CBF controller under state uncertainty.

• We are able to guarantee safety under a known input delay with much less
conservatism under the proposed framework.

While condition (3.5) can be used to guarantee safety for continuous-time systems,
it relies on the input being computed and applied continuously. In the presence of a
zero-order hold controller, the description of the invariant set need to be modified.
The zero-order hold backup controller, denoted as D� (G(·), C), simply takes on the
value of D� (G) every ΔC seconds, and holds that value until its next update:

D� (G(·), C) = D� (G(bC/ΔCcΔC)), (3.16)

where b·c is the largest integer not greater than the argument.

Remark 3. The flow of the system under the zero-order backup controller qD�C
is well-defined, as unique solutions to sampled-data systems exist so long as the
underlying controller is piecewise continuous (c.f. [92, p. 16]).

The updated control invariant set under the zero-order hold backup controller can
be written as

S� =
{
G ∈ R= |

(
∀g ∈ [0,)], ℎ

(
qD�g

)
≥ 0

)
and(

ℎ�

(
q
D�
)

)
≥ 0

)}
.

(3.17)

This is a control invariant set for the system under a zero-order controller with the
same sampling time ΔC as D�. The proof follows from [59, Theorem 1].

Remark 4. While the flow of the system under the zero-order hold backup controller
is Lipschitz [2], it is nonsmooth. Because of this, the barrier function itself is
nonsmooth, and thus ¤ℎ cannot be expressed at finitelymany points, which correspond
to when the controller is updated. Despite this, a nonsmooth barrier function is
valid if ¤ℎ ≥ −U(ℎ) almost everywhere. For proof, see [58, Lemma 2.2].

To enforce the CBF condition, ¤ℎ needs to be computed, which requires mq
D�
C

mG
to be

evaluated. This expression is continuous over each controller sampling time, and
can be computed using finite-differences [95].

57

To do this, simply integrate forward = + 1 initial conditions under D� to evaluate
mq

D�
(8+1)ΔC

(G)
mq

D�
8ΔC
(G) at each time-step. Then, use the chain rule to get

mq
D�
8ΔC
(G)

mG
=

8−1∏
==0

mq
D�
(=+1)ΔC (G)
mq

D�
=ΔC
(G)

. (3.18)

The last caveat to consider in the implementation of the CBF condition is the fact
that the condition must be met over the entire time horizon of the zero-order hold
controller. Note that this consideration must be taken regardless of the method used
for expressing the robust control barrier function, and was a subject of prior research
of the authors [60].

Consider verifying the barrier function over the horizon of a single time-step of the
zero-order hold controller with sample time ΔC ,

ℎ(qD�g (G0)) ≥ 0 ∀ g ∈ [0,ΔC] . (3.19)

The robust satisfaction of the above condition can be verified by checking the stronger
condition shown in [60],

ℎ(R(G0,ΔC)) ≥ 0, (3.20)

where R(G0,ΔC) is the set of states reachable from G0 in time ΔC with any input
D ∈ U.

Remark 5. This condition adds conservatism to the barrier formulation. While
checking only the points qDg (G0) ∀g ∈ [0,ΔC] would result in a more performant
condition, this would make the constraint no longer affine, due to its dependence on
the decision variable D.

Let D� (·) be the input signal w.r.t. the nominal state flow, the robust CBF condition
defined from the set S� ,

3ℎ

3G

����
q
D� (·)
g (x0)

mq
D� (·)
g (x0)
mG

(5 (x0) + 6(x0)D) + U(ℎ(qD� (·)g (x0))) ≥ 0

3ℎ�

3G

����
q
D� (·)
)

(x0)

mq
D� (·)
)
(x0)

mG
(5 (x0) + 6(x0)D) + U(ℎ� (qD� (·))

(x0))) ≥ 0,
(3.21)

where x0 = R(G0,ΔC), and the first inequality must hold for all g ∈ [0,)].

58

Proposition 5. Let (D8)∞8=0 be a sequence of inputs that satisfies (3.21) at the begin-
ning of each time-step and is applied with zero-order hold to the system (1.1). If
G0 ∈ S� , then qDC (G0) ∈ S� for all C ≥ 0.

Proof. Consider any time interval of a single time-step T = [C0, C0+ΔC], and assume
GC0 ∈ S� .

DenoteΦ := {⋃C∈T q
D8
C (GC0)}. Since xt0 = GC0 +R(GC0 ,ΔC) covers all states reachable

from time C0, Φ ⊂ qD8C (xt0), Therefore, if D8 satisfies (3.21) for xt0 , then the CBF
condition holds for Φ as well. Thus, by the invariance of S� , qD8C (GC0) ∈ S� for all
C ∈ T .

Since this condition is met over the entire sequence of time-steps, qDC (G0) ∈ S� for
all C ≥ 0.

Remark 6. It is possible that, for some G0 ∈ S� , that G0 ∈ S� but x0 ∉ S� . In this
case, the system is inside of its control invariant set, but the CBF condition (3.21)
cannot be satisfied. This is due to conservatism mentioned in Remark 5. However,
when this occurs, the backup control action can be taken. Thus, the system will stay
safe for all time. Furthermore, this occurs on a very small set at the boundary of
S� , which the strengthening term U(·) makes difficult to reach.

Note that the condition is evaluated here over a set, rather than a single point. The
evaluation of qD� (·)g (x0) poses the most difficulty, as it involves robustly integrating
over a set. This makes techniques like interval arithmetic [72, 61] difficult to
implement, due to numerical issues. To show that safety can be guaranteed for
a small neighborhood of initial conditions, we adopt the concept of incremental
stability (c.f. [17]).

Definition 8. Given the dynamic system in (1.1), the system is incrementally sta-
ble inside a set X ⊆ R= if ∀) ≥ 0, ∀ G1, G2 ∈ X and D(·) : [0,)] → R<

such that qD(·)C (G1) and qD(·)C (G2) stay inside X, the evolution of the state satisfies

qD(·)C (G1) − qD(·)C (G2)

 ≤ V(‖G1 − G2‖ , C), where V : R × [0,)] → R is nonincreas-

ing in C and ∀ C ∈ [0,)], V(·, C) is a class-K function.

Proposition 6. Suppose there exists a Lyapunov function + : X → R that satisfies
21 | |G | | ≤ + (G) ≤ 22 | |G | | for some 22 ≥ 21 > 0. For two initial conditions G1, G2 ∈ X
and an input signal D(·) such that qD(·) (G1), qD(·) (G2), and qD(·) (G1) −qD(·) (G2) ∈ X,
let+ (C) = + (qD(·)C (G1) −qD(·)C (G2)). If ¤+ ≤ 0, then the system is locally incrementally
stable in X.

59

Proof. The proof follows from the fact that+ (·) and | | · | | are equivalent norms.

In the context of control barrier functions with a backup strategy, if the system is
incrementally stable, then given a nominal initial condition G0 and an uncertainty
set characterized as a level-set of the Lyapunov function, ∀G ∈ {G |+ (G − G0) ≤ n},
for any input signal D(·), qD(·)C (G) ∈ {G |+ (G − q

D(·)
C (G0)) ≤ n}. We shall show how

this result can simplify the robust CBF condition in (3.21), which requires that the
CBF condition hold for a small set R(G0,ΔC) around the nominal initial condition.

The system (1.1) may not incrementally stable, but pre-feedback can be used to
make it so. Since the error dynamics are being considered, the nonlinear dynamics
are linearized to simplify the analysis. Given a set X ⊆ R= of states, multiple
linear dynamics models ¤G = �8G + �8D, 8 = 1, ..., # can be obtained by considering
the extreme points of X. Given a quadratic Lyapunov function + = Gᵀ%G where
% is symmetric and positive definite, and an input set hyperbox defined as U =

{−Dmax ≤ D ≤ Dmax} ⊆ R<, we develop the following Linear Matrix Inequality
(LMI) to search for a pre-feedback gain that guarantees incremental stability for the
system:

min
 ∈R=×<

| |Λ%− 1
2 ᵀ | |∞

s.t. ∀8 = 1, ..., #, %(�8 + �8) + (�8 + �8)ᵀ% ≤ 0,
(3.22)

where Λ = diag(1
D<0G1

, ... , 1
D<0G<
).

The cost function is chosen due to the fact that

{max
G
| 8G | s.t. Gᵀ%G ≤ 1} =

√
 8%

−1
ᵀ
8
, (3.23)

which means that the pre-feedback is available within the level set {G |Gᵀ%G ≤
min

8=1,...,#

Dmax
8√

 8%
−1

ᵀ
8

}. Therefore, minimizing the cost function in (3.22) is maximizing
the size of the level-set of the Lyapunov function in which the pre-feedback is
available.

Proposition 7. Given a dynamic system as described in (1.1) with U = {−Dmax ≤
D ≤ Dmax}, a setX ⊆ R=, and a Lyapunov function+ (G) = Gᵀ%G, % ≥ 0, assume that
∀ G1, G2 ∈ X,∀ D ∈ U, 5 (G1)+6(G1)D− 5 (G2)−6(G2)D ∈ �>=E(�8) (G1 − G2). Then,
with a solved with (3.23), the system with pre-feedback ¤G = 5 (G) + 6(G) (D + G)
is incrementally stable within X ∩ {G |Gᵀ%G ≤ min

8=1,...,#

Dmax
8√

 8%
−1

ᵀ
8

}.

60

Proof. Since the � and � matrix enters linearly into the Lyapunov condition in
(3.22), by the assumption that 5 (G1)+6(G1)D− 5 (G2)−6(G2)D ∈ �>=E(�8) (G1 − G2),
convexity shows that ¤+ (G1 − G2) ≤ 0, which shows incremental stability.

The CBF condition shown in Equation (3.21) is shown for a specific uncertainty
set x0 = '(G0,ΔC) that arises from the sampled-data nature of the system. For an
incrementally stable dynamic system, the CBF condition is rewritten as

3ℎ

3G

����
q
D� (·)
g (G0)

���
x0

mq
D� (·)
g

mG

�����
x0

(5 (x0) + 6(x0)D) + U(ℎ(qD� (·)g (G)
���
x0
))

3ℎ�

3G

����
q
D� (·)
)

(G0)
���
x0

mq
D� (·)
g

mG

�����
x0

(5 (x0) + 6(x0)D) + U(ℎ� (qD� (·))
(G)

���
x0
)).

(3.24)

The new set in which the constraint is being evaluated is x0 := R(G0,ΔC) + �G ,
where �G ⊂ R= is the state uncertainty set such that the estimated value of the state
G̃ ∈ G + �G , with G being the true state. The other major difference from Equation
(3.21) is that the flow over the backup trajectory is now being computed for the
nominal value of G0, and it is simply being evaluated over the set qDC (G0) + �G . This
greatly simplifies the computation, and makes the constraint tractable in real-time.

Theorem 10. Let D(·) be a input signal with zero-order hold that satisfies (3.24). If
the system is incrementally stable in S� , then qD(·)C (G0) ∈ S� for all C ≥ 0.

Proof. From incremental stability, we have∀ G1, G2 ∈ S� , and for V : R×[0,)] → R
nonincreasing in C, and ∀ C1, C2 ∈ R+ with C2 > C1,

qD(·)C (G1) − qD(·)C (G2)

 ≤ V(‖G1 − G2‖ , C)
⇓

qD(·)C2

(G1) − qD(·)C2
(G2)

 ≤

qD(·)C1
(G1) − qD(·)C1

(G2)

 . (3.25)

Therefore,

qD(·)0 (G1) − qD(·)0 (G2)

 = ‖G1 − G2‖

⇓
q
D� (·)
C (x0) ⊂ qD� (·)C (G0)

���
x0
. (3.26)

Fix any x0, D̄, C. For brevity, let Φ1 := qD� (·)C (x0) and Φ2 := q
D� (·)
C (G0)

���
x0
, and let

x := mq
D� (·)
C

mG

����
x0

(5 (x0) + 6(x0)D).

61

Φ1 ⊂ Φ2 ⇒
3ℎ

3G

����
Φ1

⊂ 3ℎ

3G

����
Φ2

⇒ 3ℎ

3G

����
Φ1

x ⊂ 3ℎ

3G

����
Φ2

x.

Following the same logic, we have

Φ1 ⊂ Φ2 ⇒ U(ℎ(Φ1)) ⊂ U(ℎ(Φ2)).

Thus,
3ℎ

3G

����
Φ1

x + U(ℎ(Φ1)) ⊂
3ℎ

3G

����
Φ2

x + U(ℎ(Φ2)).

Therefore, any x0, D̄(·) that meets condition (3.24) will also meet condition (3.21),
and by Proposition 1, qD(·)C (G0) ∈ S� for all C ≥ 0

Now, wewill extend the safety guarantees to systemswith known time-delay, without
simply making the barrier robust to a set of possible input delays, which would
degrade system performance. First, we rely on two assumptions.

Assumption 2. Suppose that the system has a time delay equal to some integer =
multiple of the controller period ΔC . Therefore, the system evolves with dynamics

¤G = 5 (G) + 6(G)D̄(G, C − =ΔC) (3.27)

for zero-order hold controller D̄.

This is a reasonable assumption, especially for the time delay caused by the numerical
computation of the digital controller. Moreover, rounding of the time-delay can
always be made robust with an addition to the state uncertainty.

Since it is not possible to provide any input to the system before time C = =ΔC , one
more assumption is required.

Assumption 3. From any initial set of states x0 = G0 + �G ⊂ S� , we require

q0
=ΔC
(x0) ⊂ S� . (3.28)

Here, the 0 in q0
=ΔC

denotes the fact that a control input of zero is applied to the
system during this time.

In practice, this is not a restrictive assumption since the initial condition can be set
well within the safe set. Moreover, if this is not met, there is no hope to keep the
system safe whatsoever.

62

In order to obtain the state at which the control input will be applied, the most recent
=ΔC inputs must be stored in a vector D̄� . Since no input can be applied during time
C ∈ [0, =ΔC], the input vector is initialized to all zeros. With this, the state at which
the 8th computed control action will be applied can be expressed as

G(8+=)ΔC = q
D̄�
=ΔC
(G8ΔC) (3.29)

, The input history vector D̄� is executed under zero-order hold, just as the inputs
are applied to the system. Starting with the initial state, the algorithm for handling
input delay is now described.

At initial time-step C0, the control action to be implemented at time C = =ΔC is
computed. To keep the system safe, the barrier conditions must be evaluated at state
G=ΔC , which is computed using Equation (3.29). Note that the constraint itself does
not need to be altered, and is still affine. The only extra step is the integration from
G0 to G=ΔC .

The input chosen by the quadratic program at time C0 is then placed at the head of
the D̄� buffer, after each previous value is shifted backwards. Thus, the oldest value
in the input buffer is lost, as it has already taken effect on the system.

The computation for all future time-steps is outlined in Algorithm 2.

Algorithm 2 CBF with Input Delay of =ΔC
1: D� [=] = {0}
2: 8 ← 0
3: while (true) do
4: G(8+=)ΔC = q

D̄�
=ΔC
(G8ΔC)

5: Compute safe action with D34B, G(8+=)ΔC using (3.24)
6: update D�
7: 8 = 8 + 1
8: end while

While this algorithmmay seem trivial, it is onlymade possible by treating the system
as a sampled-data system. The continuous case of this algorithm would be much
more complex, as there is no finite time-history of inputs to integrate over. Safety
under this algorithm is summarized with the following theorem.

Theorem 11. Given a control invariant setS� , if inputs are chosen with Algorithm 2,
and the system model is accurate, then the system (3.27) remains safe, i.e. qDC (G0) ∈
S� for all C ≥ 0.

63

Proof. Assume by contradiction that for some time C = <ΔC , G<ΔC ∉ S� . Let this be
the first time in which G ∉ S� , thus G:ΔC ∈ S� ∀: < <.

Because system integration is accurate,

G<ΔC = q
D<�
=ΔC
(G(<−=)ΔC) D<� = [D<−2=+1, ..., D<−=]

G(<−1)ΔC = q
D<−1
�

=ΔC
(G(<−=−1)ΔC) D<−1

� = [D<−2=, ..., D<−=−1] .

Since G(<−1)ΔC ∈ S� , the control inputs chosen up until time C<−=−1 keep the system
in S� . Therefore, the control action D<−= must cause the system to exit S� . The CBF
condition at C = (< − =− 1)ΔC is based on q

D<−1
�

=ΔC
(G(<−=−1)ΔC), the estimated G(<−1)ΔC ,

but since the model is assumed to be correct, it is equal to the actual state. However,
if D<−= was computed via CBF condition, then qD

<
�

=ΔC
(G(<−=)ΔC) ∈ S� by Theorem 10.

This implies that G<ΔC ≠ q
D<�
=ΔC
(G(<−=)ΔC), which contradicts the assumption that the

model is accurate.

The set S� is an example of one such control invariant set robust to zero-order hold,
but this theorem holds for any other such set.

It is important to recognize the fact that, under this algorithm, one is effectively
performing open-loop control over the time-horizon of the input delay. However,
due to the state uncertainty result, it is possible to guarantee safety for a range of
possible initial conditions that the system is expected to lay within at the time of the
control input being enacted. Thus, we have the following extension:

Corollary 2. Given an invariant set S� , robust to state uncertainty �G , if inputs
are chosen with Algorithm 2, and qD̄�

=ΔC
(G0) ∈ G=ΔC + �G for any G0 ∈ S� (i.e., the

system integration is accurate up to the set uncertainty set �G), then the system (3.27)
remains safe, i.e., G(C) ∈ S� for all C ≥ 0.

Proof. The proof follows directly from the Theorem 1, and simply utilizes the
guarantees over state uncertainty from before.

3.1.2.1 Applications: Segway simulation

The simulation is done in a ROS-based simulation environment. The full, nonlinear
dynamics are integrated under zero-order hold at a variable sampling time ΔC . The
true state of the system is not known to the controller, only the state estimate from

64

an extended Kalman filter. This state observer receives noisy sensor data based on
the true state of the system. A pre-feedback gain was computed following (3.22).

The Segway has 4 states G = [?, ¤?, \, ¤\]ᵀ. The safe set is described by S =

{G |1 − 4?2 ≥ 0}, which enforces the robot position ? to stay within a 0.5 m range
from the origin. The robust barrier condition (3.24) is evaluated over sets using the
interval arithmetic library libaffa [53]. The constraint is imposed at the 10 closest
points to the boundary of the safe set along the backup trajectory.

Figure 3.6 shows the result of three simulations with the nominal CBF conditions
(3.5), and the robust condition (3.24). The robust condition is set to handle a state
uncertainty set based on the uncertainty caused by the zero-order hold and the
Kalman filter. At 40 Hz, the Segway is able to stay within the set with the nominal
controller, but it is unable to maintain invariance at 20 Hz, or in the presence of an
input delay of 30 ms. The robust barrier is able to maintain safety for not just the
nominal trajectory, but over the entire robustness margin.

3.1.3 Multi-agent backup CBFs
In this subsection, we propose a backup CBF approach for multi-agent obstacle
avoidance that can be implemented completely decentrally for multiple agents and
scales to an arbitrary number of agents.

The core idea is to equip each agent with one or multiple backup strategies that bring
the agent to an equilibrium point and check whether the corresponding backup tra-
jectory satisfies the safety constraint. In fact, we will show later in the paper that all
initial conditions whose corresponding backup trajectories satisfy the safety con-
straint constitute a control invariant set. Then by enforcing the CBF supervisory
controller, if the backup trajectory associated with the initial condition satisfies
the safety constraint, the state can be kept within the safe set indefinitely. Fur-
thermore, we show that the CBF condition can be implemented decentrally with
no communication between agents and can scale to an arbitrary number of agents.
Nonetheless, communication between agents is helpful, especially in the case with
multiple backup strategies, and we propose a simple broadcast scheme that to guar-
antee compatibility between agents.

The proposed approach bears some similarity to motion primitives [50] as the
backup trajectory can be viewed as a simple motion primitive. However, the key
difference is that the agent almost never execute the backup strategy. Instead, the
backup strategy is used as a feasibility check to make sure that an equilibrium point

65

Figure 3.6: Results from simulations with three different controller frequencies, and
one with input delay.

66

can be always be reached safely.

Here, we show how the control barrier function based on backup strategies can
be applied to multi-agent obstacle avoidance. We consider a multi-agent system
consisting of # agents with state G1, ..., G# , respectively. The # states evolve with
potentially heterogeneous dynamics:

¤G8 = 58 (G8, D8), G8 ∈ R=8 , D8 ∈ U8 . (3.30)

For the whole system, let G = [Gᵀ1 , G
ᵀ
2 , ..., G

ᵀ
#
]ᵀ denote the aggregated state and the

dynamics for G is the following:

¤G = 5 (G, D) =
[
51(G1, D1)ᵀ . . . 5# (G# , D#)ᵀ

]ᵀ
.

For agent 8, let c8 : R= →U8 be its backup strategy and let 5c8 (G) � 58 (G8, c8 (G)) be
the closed loop dynamics under c8. The overall backup strategy given c1, c2, ...c#

is then denoted as c, where D = c(G) = [c1(G)ᵀ, ..., c# (G)ᵀ]ᵀ.

The control barrier function constructed from a backup strategy requires an invariant
set S� to begin with. Although control invariant set can be difficult to compute, one
control invariant set is almost free to obtain for most of the commonly seen robotic
systems.

Definition 9. A point G4c ∈ R= is a stable equilibrium point for a given backup
strategy c if 5 (G4c, c(G4c)) = 0 and G4c is stable in the sense of Lyapunov under 5c.

We let X4c denote the set of all equilibrium points under c. For example, if the
backup strategy c stabilizes the steady hovering maneuver of a drone, then any
steady hovering state is an equilibrium point under c. Obviously, any subset of X4c
is a control invariant set, and S0 is taken as X4c ∩ C.

Given a multi-agent system as described previously, if all agents are controlled by a
centralized controller, the CBF scheme should work with any backup strategy c that
result in a nonempty S0. However, as mentioned previously, centralized control is
usually not realizable due to the communication and scalability limitations. There-
fore, the focus of this paper is on a decentralized implementation of a CBF-based
supervisory controller. We assume that each agent can measure the states of other
agents but independently select the control input. For the proposed decentralized
scheme to work, the following assumption is needed.

67

Assumption 4. The state constraint C is pairwise decomposable, i.e.,

C = {ℎC (G) ≥ 0} = {(
∧
8

ℎC8 (G8) ≥ 0) ∧ (
∧
8≠ 9

ℎC8 9 (G8, G 9) ≥ 0)},

where ℎC
8

: R=8 → R is a constraint of only G8, ℎC8 9 : R=8 × R= 9 → R is a constraint
of G8 and G 9 .

This is a reasonable assumption since for static obstacles, the obstacle avoidance
constraint is on each agent; for agent-to-agent collision avoidance, the constraint is
defined pairwise. Under Assumption 4, since S0 is taken asX4c ∩C, and the equilib-
rium point is defined on the state of each agent, S0 is also pairwise decomposable:

S0 = {ℎS (G) ≥ 0} = {(
∧
8

ℎS8 (G8) ≥ 0) ∧ (
∧
8≠ 9

ℎS8 9 (G8, G 9) ≥ 0)}. (3.31)

Next, we show how the CBF QP can be implemented in a decentralized structure.
In a decentralized setting, the backup strategy for each agent is restricted to be a
function that only depends on the agent itself, i.e., c8 only depends on G8. Under
Assumption 4, the original CBF QP becomes

D★ = arg min
D∈U

D − D0

2

s.t. ∀C ∈ [0,)], ∀8 ≠ 9 ∈ {1, 2, ..., #},
∇ℎC8 (∇G8Φ

C
5c8
58 (G8, D8) − mΦC5c8 /mC) + U(ℎ

C
8 Φ

C
5c8
(G8))) ≥ 0,

∇G8ℎC8 9 (∇G8Φ
C
5c8
58 (G8, D8) − mΦC5c8 /mC)+

∇G 9 ℎC8 9 (∇G 9Φ
C
5c9
58 (G 9 , D 9) − mΦC5c9 /mC)

+ U(ℎC8 9 (Φ
C
5c8
(G8),ΦC5c9 (G 9)) ≥ 0,

∇ℎS8 (∇G8Φ
)
5c8
58 (G8, D8) − (mΦC5c8 /mC) |C=)) + U(ℎ

S
8 Φ

)
5c8
(G8))) ≥ 0,

∇G8ℎS8 9 (∇G8Φ
)
5c8
58 (G8, D8) − (mΦ)5c8 /mC) |C=))+

∇G 9 ℎS8 9 (∇G 9Φ
)
5c9
58 (G 9 , D 9) − (mΦC5c9 /mC) |C=))

+ U(ℎS8 9 (Φ
)
5c8
(G8),Φ)5c9 (G 9))) ≥ 0.

(3.32)

If all agents follow their backup strategies, (3.32) is feasible whenever ℎ(G) ≥ 0.
However, due to the coupling constraints between agents, this CBF QP cannot be
solved decentrally. In particular, for each ¤ℎC

8 9
and ¤ℎS

8 9
, the derivatives contain two

parts, one determined by ¤G8 and one by ¤G 9 . To resolve this problem, notice that the

68

terms containing D8 and D 9 are summed together. Therefore, with a decomposition
of the CBF derivative, the CBF QP with a sufficient condition of (3.32) can be
solved decentrally. For the agent 8, the following CBF QP is solved:

D★ = arg min
D8∈U8

D8 − D0
8

2

s.t. ∀C ∈ [0,)], ∇ℎC8 (∇G8Φ
C
5c8
58 (G8, D8) − mΦC5c8 /mC) + U(ℎ

C
8 Φ

C
5c8
(G8))) ≥ 0,

∀ 9 ≠ 8,∇G8ℎC8 9 (∇G8Φ
C
5c8
58 (G8, D8) − mΦC5c8 /mC)

+ 0.5U(ℎC8 9 (Φ
C
5c8
(G8),ΦC5c9 (G 9)) ≥ 0,

∇ℎS8 (∇G8Φ
)
5c8
58 (G8, D8) − (mΦC5c8 /mC) |C=)) + U(ℎ

S
8 Φ

)
5c8
(G8))) ≥ 0,

∇G8ℎS8 9 (∇G8Φ
)
5c8
58 (G8, D8) − (mΦ)5c8 /mC) |C=))+

0.5U(ℎS8 9 (Φ
)
5c8
(G8),Φ)5c9 (G 9))) ≥ 0,

(3.33)
where D0

8
is the desired input for agent 8 from the legacy controller. Note that this

optimization only depends on information of agent 8 and ΦCc 9 (G 9), i.e., the backup
trajectories of other agents. Since we assume that each agent can measure the state
of other agents, if c 9 is known a priori,ΦCc 9 (G 9) can be solved by agent 8 by a simple
integration scheme.

Theorem 12. For all G ∈ {G |ℎ(G) ≥ 0}, (3.33) is always feasible for every agent;
and when each agent implement the supervisory controller in (3.33), the solution
[D★1 ; ...D★

#
] is a feasible solution to (3.32) (not necessarily the optimal solution).

Proof. The feasibility comes from the fact that D8 = c8 (G8) is a feasible solution.
Given [D★1 ; ...D★

#
] as the solutions to (3.33) for each agent, for each 8 ≠ 9 , ∀C ∈ [0,)],

we have
3ℎC

8 9
(ΦC

5c8
(G8),ΦC5c9 (G 9))

3C

=∇G8ℎC8 9 (∇G8Φ
C
5c8
58 (G8, D8) − mΦC5c8 /mC)

+∇G 9 ℎC8 9 (∇G 9Φ
C
5c9
58 (G 9 , D 9) − mΦC5c9 /mC)

≥ − 0.5U(ℎC8 9 (Φ
C
5c8
(G8),ΦC5c9 (G 9)) × 2

= − U(ℎC8 9 (Φ
C
5c8
(G8),ΦC5c9 (G 9)) ≥ 0.

The same is true for the constraints on ℎS
8 9
, therefore [D★1 ; ...D★

#
] is a feasible solution

to (3.32).

69

To conclude, the proposed decentralized CBF supervisory controller begins by
selecting a backup strategy for each agent in the system that brings the agent to a
stable equilibrium point under the backup strategy. The backup strategies for all
agents are known a priori to every agent as part of the centralized design. Then
each agent measures the state of the adjacent agents (agents that are far away do
not pose any danger of collision) and makes sure that if other agents execute the
backup strategy, its own backup strategy would avoid collision with both the static
and other agents. This is achieved by every agent solving (3.33) decentrally. We
show that the decentralized CBF QP is always feasible when the CBF ℎ(G) ≥ 0.
Furthermore, since the computation only depends on the states of adjacent agents,
whose number is bounded (due to the clearance requirement), the algorithm can
scale to an arbitrary number of agents.

3.1.3.1 CBF with multiple backup strategies

The previous strategy guarantees obstacle avoidance for amulti-agent system, but the
mobility of the system may be compromised for safety. Since the CBF intervention
is based on the backup strategy, one natural way to increase mobility is to equip
the agents with multiple backup strategies and the CBF condition only need to
hold for one of the backup strategies. However, we show that this is not always
implementable, especially in the cases without communication. We present a simple
broadcast scheme that enables the implementation of CBF controllers with multiple
backup strategies for each agent.

Let <8 denote the number of backup strategies for agent 8 and let c:
8
denote the

:-th backup strategy for agent 8. Given G8 and G 9 , we say that c:
8
and c;

9
are two

compatible backup strategies for agent 8 and 9 if ∀C ∈ [0,)],

ℎC8 (Φ
C

c:
8

(G8)) ≥ 0, ℎC9 (Φ
C

c;
9

(G 9)) ≥ 0, ℎC8 9 (Φ
C

c:
8

(G8),ΦCc;
9

(G 9)) ≥ 0,

ℎS8 (Φ
)

c:
8

(G8)) ≥ 0, ℎS9 (Φ
)

c;
9

(G 9)) ≥ 0, ℎS8 9 (Φ
)

c:
8

(G8),Φ)c;
9

(G 9)) ≥ 0,

that is, if the backup trajectories of agent 8 and 9 under c:
8
and c;

9
satisfy the state

constraint and terminal constraint.

With multiple backup strategies for each agent, a choice of backup strategies for the
whole multi-agent system {c:8

8
}#
8=1 is a feasible backup strategy if for each agent pair

8 and 9 , c:8
8
and c: 9

9
are compatible.

Unfortunately, decentralized CBF with multiple backup strategies without commu-
nication between agents is in general not implementable. Consider the situation

70

Figure 3.7: Compatibility of multiple backup strategies

depicted in Fig. 3.7 consisting of 3 agents with 3, 2, and 3 backup strategies.
Each line indicates that the two backup strategies it links are compatible. For the
whole system, (c3

1, c
2
2, c

2
3) and (c

3
1, c

2
2, c

3
3) are the two feasible backup strategies.

However, agent 1 would not be able to tell that c2
1 is not a valid choice without the

information about the compatibility between the backup strategies of agent 2 and 3.

To resolve this problem, we propose a broadcast scheme in which each agent broad-
cast its currently selected backup strategy and use the information about other agents’
selected backup strategies to determine whether it can change its current backup
strategy. For example, in the situation depicted in Fig. 3.7, if the circled backup
strategies are selected and broadcasted by the agents, agent 3 can switch from c2

3 to
c3

3 since it is able to determine that c3
3 is also compatible with the backup strategies

selected by other agents. Let cB
8
denote the selected backup strategy for agent 8, and

based on the selected backup strategies of other agents, agent 8 is able to determine
the set of all backup strategies that is compatible with other agents in the system,
we denote this set as Π0

8
, the active backup strategy set for agent 8.

The CBF QP is solved for every backup strategy in Π0
8
and the one with the smallest

intervention is selected and broadcasted to other agents in the system. The input
corresponding to the selected backup strategy is then taken as the input D8 of agent
8, shown in Algorithm 3.

71

3.1.3.2 Applications: Dubin’s car

In this section, we present the application of the proposed algorithm on a Dubin’s
car example and a quadrotor example.

Dubin’s car We consider a simple Dubin’s car example with the following dy-
namics: [

¤- ¤. ¤E ¤\
]ᵀ
=

[
E cos(\) E sin(\) 0 A

]ᵀ
, (3.34)

where - , . , E, \ are the longitudinal and lateral coordinates, the velocity, and the
heading angle. The inputs are acceleration 0 and yaw rate A, and are bounded by
0max and Amax. This is a valid model for differentially driven ground robots such
as the ones in the Robotarium of Georgia Institute of Technology [116]. We first
consider the simple case with only one backup strategy for each robot. In this case,
the backup strategy is simply to brake until full stop. In practice, the expression
of the CBF in (3.33) is not implementable since there are uncountably many C in
[0,)]. We replace the continuous spectrum [0,)] with a finite time sequence
0 = C0 < C1 <, ..., < C" =) and enforce the CBF condition on these time instances
instead. This finite sampling and the finite update rate of the CBF controller call
for additional robustness of the control strategy. We proved robust safety under
time discretization and the finite sampling of the backup trajectory in [140], check
the result therein for detail. The backup trajectory and the sensitivity matrices are
computed by solving the corresponding ODEs.

We conduct experiment in the Robotarium environment with 3 and 6 robots and the
goal for each robot is to patrol between two way points. The legacy controller D0 is a
simple greedy linear controller that tries to bring the robot to the destination without

Algorithm 3 CBF QP with multiple backup strategies
1: procedure CBF-QP(cB1:# , D

0
8
,U8)

2: Compute Π0
8
, set of all compatible backup strategies with cB1:#

3: for c:
8
in Π0

8
do

4: Solve (3.33) with c:
8
and D0

8
, and obtain D★

8,c:
8

5: end for
6: D8 = min

c:
8
∈Π0

8

D★
8,c:

8

7: cB
8
= arg min

c:
8
∈Π0

8

D★
8,c:

8

8: end procedure

72

-1.5 -1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 3.8: Robot traces of the Robotarium experiment with 3 robots. Each robot is
asked to patrol between 2 positions. The CBF controller guarantees zero collision.

any knowledge of other robots. The CBF keeps the robot within the boundary (static
state constraints) and avoids any collision with other robots in the system.

Fig. 3.8 shows the traces of the 3 robots where they meet at the center of the state
space and rotate to make ways for each other until they can move towards their
destinations. Note that the seemingly coordinated behavior is actually the result of a
decentralized control structure. With the same setup, we conducted experiment with
6 robots in the Robotarium, and the result shows that the CBF is able to guarantee
no collision between the robots. The video of the experiments and the simulations
can be found at https://youtu.be/RqsCvHBjf88. The differences between this
experiment and the control barrier function approach in [158] are (1) acceleration
rather than speed is used as control input and the CBFQP is guaranteed to be feasible
under torque limit (2) the proposed CBF approach is implemented decentrally where
each robot solves for the safe input without communication with other robots.

We also tested the case in which each robot is equipped with 3 backup strategies,
where c1 is to simply break, c2 is to break and turn right, and c3 is to break and turn
left. Fig. 3.9 shows the state trajectories of 2 robots performing a similar surveillance
task controlled under the CBF with 3 backup strategies and the broadcasting scheme
from before. Different colors were used to mark the segments of the trajectory
during which different backup strategies were chosen. When the two robots swerve
and avoid each other, c2 and c3 are selected so that the intervention needed is

https://youtu.be/RqsCvHBjf88
https://youtu.be/RqsCvHBjf88

73

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.3

-0.2

-0.1

0

0.1

0.2

Figure 3.9: Traces of 2 robots equipped with 3 backup strategies and broadcasting
their current backup strategy. Colors show the selected backup strategy in the CBF
QP.

minimized.

3.1.3.3 Applications: Two quadrotors in simulation

To showcase the scalability of this method, we now consider a 17-dimensional
quadrotor model. The state vector G = [r, v, q,w,
]ᵀ where r is the position
[G, H, I]ᵀ in R3, v is the velocity [EG , EH, EI]ᵀ in the world frame, q is the quaternion
[@F, @G , @H, @I]ᵀ, w is the angular velocity vector [FG , FH, FI]ᵀ in the body frame,
and
 is the vector of angular velocities of the propellers, [Ω1,Ω2,Ω3,Ω4]ᵀ. The
control input is the voltages applied at the motors D = [+1, +2, +3, +4]ᵀ.

The dynamics are derived from force-balance equations in a rotating frame, as well
as a first order motor model. The gradients of the dynamics w.r.t. the state are
computed symbolically. The resulting symbolic expressions for 5 (G) and m 5 (G,D)

mG
,

and m 5 (G,D)
mD

are then exported to C++ using code generation from Matlab for the
simulation environment.

The backup policy aims to simply stop the quadrotor and set the pitch and roll angles
to zero, which is achieved through simple PD controllers around the linear velocities,
angular rates, and angles. The gradients of these dynamics with respect to the state
are also computed symbolically and exported to C++. The corresponding backup
set is a small ball around linear velocity, pitch, and roll angles equal to 0.

For each quadrotor, the barrier function ℎ(G) seeks to avoid a ball of radius A around

74

Figure 3.10: Swerving maneuvers of the drones under the CBF controller when
commanded to fly at each other.

the closest point on the other quadrotor’s backup trajectory ([G2, H2, I2]ᵀ), giving

ℎ(G) = (G − G2)2 + (G − G2)2 + (G − G2)2 − A2.

The final expression needed is the gradient of this function ∇ℎ, which can be derived
trivially.

The simulation environment is based on ROS and is written in C++. The code can be
found at https://github.com/DrewSingletary/uav_sim_ros, including the
Matlab dynamics and C++ code generation. The solver used was the OSQP solver
[145], and the nominal controller tracked linear velocity and yaw rate commands
using the same PD control strategy as the backup controller. Fig. 3.10 shows a
snapshot of the simulation, when the two drones are sent directly at each other.

3.2 Gradient-free backup CBFs
While the backup controller CBF formulation is applicable for a wide variety of
systems, it is too computationally expensive to run on microcontrollers, such as
those used in flight hardware. This is due primarily to the expensive computations
of mΦ

mG
needed for the CBF condition. In this section, we introduce an alternative

approach that avoids such gradient computations.

3.2.1 Safety regulator formulation
As in the previous section, we consider the implicit safe set:

https://github.com/DrewSingletary/uav_sim_ros
https://github.com/DrewSingletary/uav_sim_ros

75

S� ,
{
G ∈ - |

(
qc) (G) ∈ S�

)
∧

(
∀ C ∈ [0,)] , qcC (G) ∈ S

)}
(3.35)

for backup policy c, safe set S described by ℎ(G), and backup set S� described by
ℎ� (G).

Assuming ℎ and ℎ� are continuously differentiable, we can express the implicit safe
set as

S� =
{
G ∈ S | min

C∈[0,)]
ℎ ◦ qD1C (G) ≥ 0 ∧ ℎ� ◦ qD1) (G) ≥ 0

}
. (3.36)

Therefore:
ℎ� (G) , min

C∈[0,)]

{
ℎ ◦ qD1C (G) , ℎ� ◦ q

D1
)
(G)

}
(3.37)

is a control barrier function and one can define a filtering policy that guarantees set
invariance of S� , and therefore S as well.

To enforce safety without the use of the standard CBF condition on the implicit safe
set, we propose the following method.

Theorem 13. Given a smooth function : : D × R→ *, a control law defined by

D(G) = :
(
G, ℎS) (G)

)
, (3.38)

regulates solutions of (1.1) to stay in (� ⊆ S for all time if for all G ∈ S�:

: (G, 0) = c(G). (3.39)

Proof. By definition, (� is invariant under the control law c(G). Therefore, ∀G0 ∈
(� ,∀C ≥ C0,Φc (G0, C) ∈ (� . By continuity of the flow operator, we know that Φ: is
continuous, and ℎ� is continuous since it is the composition of continuous functions
ℎ and ℎ� and the flow Φ: . Therefore, the state must pass through ℎ� (G) = 0 before
exiting (� . Without loss of generality, label any such point Gℎ0 . Since 5: = 5c at
such a point, the system will remain in (� for all time, as Gℎ0 ∈ S� =⇒ Φc (G0, C) ∈
(� ,∀C ≥ Cℎ0 .

More than just safety, however, we also have a smoothness result on the control law.

Theorem 14. If : (·, ·) is locally Lipschitz in its arguments, and the dynamics under
the backup controller 5c are continuous and bounded on S, then the resulting filter
: (G, ℎ� (G)) is locally Lipchitz continuous.

76

Proof. By the definition of a CBF, ℎ(G) and ℎ� (G) are differentiable. Moreover, the
flow of the system Φc (G, C) is differentiable for continuous dynamics and backup
controller by the second fundamental theorem of calculus, and therefore locally
Lipschitz (since it is also bounded). Since Lipschitz continuity is preserved under
the min operator, we have that ℎ� (G) is locally Lipschitz continuous. Lastly, since
Lipschitz continuity is preserved under compositions, we have that : (G, ℎ� (G)) is
locally Lipschitz continuous.

The two requirements for our filtering function is that (i) the backup controller c(G)
is applied when ℎ� (G) = 0, (ii) it is Lipschitz continuous in its arguments. When
ℎ� (G) > 0, we want the filter to mimic Ddes(G) as much as possible. To achieve this,
we first choose the mixing function

: (G, ℎ� (G)) = _ (G, ℎ� (G)) Ddes(G) + (1 − _(G, ℎ� (G)))c(G), (3.40)

for _(G, ℎ� (G)) : R= × R → [0, 1]. Figure 3.11 illustrates how this mixing works.
When _(G, ℎ� (G)) = 1, the human operator is in complete control. As the drone
approaches the wall, the value of _(G, ℎ� (G)) decreases, and it begins to slow down.
Finally, near the boundary, a steady-state is reached between the operator’s control
action and the backup control action, and the drone stops. It is important that the
backup controller attempts to move away from the boundary, so that the system does
not get "stuck" near the boundary, i.e., _ > 0 always.

To allow for maximum freedom of the operator, the function should exactly match
Ddes(G) when ℎ� (G) � 0. One way to achieve this is by exploiting the exponential
function:

_(G, ℎ� (G)) = 1 − exp
(
−Vℎ+� (G)

)
, (3.41)

where constant V is used to tune how quickly the function _(G, ℎ� (G)) decays,
and ℎ+

�
(G) = max(ℎ� (G), 0) ensures that _(G, ℎ� (G)) ∈ [0, 1]. With this filtering

controller, we get the desired behavior of _(G, ℎ�) ≈ 1 when ℎ� (G) � 0, while
providing a smooth decay to 0 when as ℎ� (G) → 0. The constant V is used to tune
how quickly the function _ decays.

3.2.2 Comparison to backup controller CBF
To demonstrate the effectiveness of this method, we compare its performance to the
backup set CBF approach [59]. The two relevant metrics for this comparison are
the computational times and the conservatism, as both methods provide guarantees
of safety.

77

Figure 3.11: As the drone approaches the barrier, _ decreases, resulting in the
backup controller being utilized more.

While no perfect comparison can be made, due to the freedom in the selection of
both _(G) and : (G), these functions are chosen independently to result in smooth
transitions when approaching the boundary of the set, while minimizing conser-
vatism.

Example 7. Consider an inverted pendulum with state G dynamics ¤G

G =

[
\

¤\

]
+

[
0
1

]
D, ¤G =

[
¤\

sin(\)

]
+

[
0
1

]
D, (3.42)

and backup control law
c(G) = −�G, (3.43)

which attempts to stabilize the system to the backup set

ℎ� (G) = min
{(c

12

)2
− G2

1, X
2 − G2

2

}
, (3.44)

for a small velocity value X chosen to be 0.1 rad/s, while staying in the set

ℎ(G) = min
{
1 − G2

1, 2 − G
2
2
}
. (3.45)

For the exact formulation of the backup-set CBF, see [36]. The filtering function
used here is the same as that used on the drone (3.40), to be detailed in the following

78

Figure 3.12: The filtering performance of the traditional CBF compared to the
proposed regulation function, for two parameters V in (3.41) and the scalar U for the
CBF (2.9).

section. The inverted pendulum was commanded a constant angular acceleration of
2 rad/s2, and the resulting positions, velocities, and filtered inputs are displayed in
Figure 3.12.

Two benefits of the smooth filter can be seen in this comparison. While filtering
performance is similar, the regulation function is an order of magnitude faster to
evaluate. Moreover, when the gains are increased to allow a rapid approach of the
boundary of the safe set, the CBF begins to oscillate near the boundary, whereas
the smooth filter does not suffer from such behavior. These oscillations occur due
to numerical instability of the optimization problem as the system pushes against
boundary of the safe set.

It is important to note that the optimization-based CBF still has a distinct advantage
in some situations. Utilizing gradient information allows quick motion along the
boundary of the set, whereas with this switching approach, the value of _(G, ℎ� (G))
will be low, limiting performance near the boundary. However, the following

79

section will partially remedy this issue through the use of various time-varying
backup control policies.

3.2.3 Applications: Collision avoidance
The most prevalent uses for drones, including deliveries, exploration, environmental
monitoring, and more, involve navigating through unknown or uncertain environ-
ments. Due to the altitude of the vehicles and their often exposed propellers,
collisions are catastrophic for the drone and might also be dangerous for its sur-
roundings. For this reason, collision avoidance techniques are crucial to further the
use of these systems in everyday life.

In typical drone flight, collision avoidance is the process of creating and tracking
trajectories that take the drone through the surrounding free space and avoid occupied
or uncertain space. While this approach to collision avoidance can be effective in
practice, as evidenced in [98, 97, 68], it is typically quite conservative and leads to
slow mobility, or lacks guarantees of collision-free paths. The conservative aspect
of these planners stems from two major hurdles: the computational complexity of
the planners that necessitate simplified abstractions of the model and obstacles, and
uncertainty in the mapped environment.

Planning in uncertain environments requires frequent updates to the planned tra-
jectories as new information is gained. It is intractable to plan feasible trajectories
for the true dynamics of these aerial vehicles in such short time, so traditionally,
a global planner with no regard for the system dynamics creates a rough path to
follow, and the local planner uses this as a guide to create more realistic, shorter
trajectories that can be tracked. Even the trajectories generated by the local planner
do not account for the full nonlinear dynamics, as this would require solving a large
nonlinear constrained optimization problem, but are instead generated with other
assumptions that approximate dynamically feasible paths to various degrees, such
as triple integrator models with jerk-limited trajectories [151, 90] or linearizations
[47].

This subsection showcases the application of the gradient-free CBF to collision
avoidance for aerial vehicles that enables high-speed flight in uncertain environ-
ments. This offers an alternative to the planning-based approaches mentioned
previously, as it directly modifies the desired velocities at the rate of the flight
controller, using real-time sensor data.

The simulation environment is shown in Figure 3.13. We utilize this environment

80

Figure 3.13: Simulation environment. The top shows the desired and filtered
velocity commands based on the closest point in the point cloud. The bottom shows
the drone navigating through the cave.

81

to showcase the method working with a simple planner to explore a large 240m
by 460m cave system. The model used for the demonstration is a 16-dimensional,
nonlinear model of a quadrotor with voltage inputs, to be as realistic to the actual
system as possible.

A standard 12-dimensionalmodel for a quadrotor is first obtained from force-balance
equations in a rotating reference frame (e.g. [100, 171]). Let the 12-dimensional
state be x = [r, v, b, l]ᵀ, where r and v are position and velocity inR3, b = [q, \, k]ᵀ

are roll, pitch, and yaw angles, and l ∈ R3 are angular velocities in the quadrotor
body frame. Then

"
d2

dC2
r =


0
0
−"6

 + �I'(b)

0
0
1

 , (3.46a)

d
dC
b =) (b)l, (3.46b)

�
d
dC
l = g − (l × (�l)). (3.46c)

Here '(b) is the x-y-z rotation matrix from a body-fixed frame to the world frame,
and) the resulting mapping between angular velocities:

'(b) = 'I (k)'H (\)'G (q),

) (b) =

1 sin(q) tan(\) cos(q) tan(\)
0 cos(q) − sin(q)
0 sec(\) sin(q) cos(q) sec(\)

 .
(3.47)

The vertical force and angular torques acting on the body are obtained from motor
angular velocities

�I = : 5

(
Ω2

1 +Ω
2
2 +Ω

2
3 +Ω

2
4

)
, (3.48a)


gG

gH

gI

 =

−;: 5 −;: 5 ;: 5 ;: 5

−;: 5 ;: 5 ;: 5 −;: 5
−:C :C −:C :C



Ω2

1
Ω2

2
Ω2

3
Ω2

4


, (3.48b)

with ; = �

2
√

2
and � the frame diameter. Since the angular velocities of the propellers

cannot be controlled directly, their response to a voltage input +8 must be modeled.
The equation of motion for the angular velocity Ω8 of each motor is

(�A>C + �?A>?) ¤Ω8 =
1
 E'

(
+8 −

Ω8

 E

)
− :CΩ2

8 . (3.49)

82

Disturbances enter the system through external forces acting on the center of mass
of the vehicle.

The attitude controller is simple cascade PD controller on the angles and angular
rates of the quadrotor. The motor voltages at the output of the velocity controller
are given by 

+1

+2

+3

+4


=


DI − Dq − D\ − Dk
DI − Dq + D\ + Dk
DI − Dq + D\ − Dk
DI − Dq − D\ + Dk


, (3.50)

where

DI = EI (EI,des − EI) + Dhover(q, \) (3.51)

Dq = q (E (EH,des − EH) − q) − :qlG (3.52)

D\ = \ (E (EG,des − EG) − \) − :\lH (3.53)

Dk = −:k (lI,des − lI). (3.54)

Note that the upper-case gains are the proportional gains, while the lower-case :
gains are the derivative gains. Also, Dhover(q, \) is the input required to maintain a
constant height.

The backup policy c is simply the velocity controller fed with a desired velocity of
zero.

The filtering law is chosen to be

Esafe = _(G)Edes + (1 − _(G)) c, (3.55)

with
_(G) = 1 − 4−ℎ� (G)/Δ< , (3.56)

where Δ< is a tuning parameter.

The simulation environment is a ROS-based C++ environment. The point cloud
data is obtained from a Velodyne LIDAR sensor inside of the Gazebo simulator at
a frequency of 10 hz. The simulation, including visualization in Gazebo and RVIZ,
was able to run at a frequency of 500 hz on a modern laptop computer with an Intel
i9 CPU.

The cave environment was a large 240m by 460m structure with one entrance and
one exit. The cave height is constant at roughly 3m, but the width is constantly

83

Figure 3.14: Pictures of the cave (in red) and the octomap (in yellow) being built
throughout the 28 minutes it takes for the drone to completely explore the cave.

changing, and gets as small as 0.75m with several protruding areas. For reference,
the size of the quadrotor is 0.5m in diameter.

The quadrotor was able to explore the entire 240m by 460m cave in just under 28
minutes. The maximum allowable speed from the planner was 5 m/s, which the
drone reached during open areas of the cave. The average desired speed sent from
the planner was 4.09 m/s, and the average speed of the drone after the safety filter
was 3.28 m/s.

A positive value of the barrier function was maintained throughout, meaning the
quadrotor never went closer than the minimum allowed distance to a point in the
point cloud, which was set at 0.2 meters. The results can be shown in Figure 3.14

3.2.4 Applications: High-speed geofencing
Safety of small aerial vehicles is a heavily researched area. These works generally
focus on safely planning trajectories rather than intervening along a desired trajec-
tory. In this setting, [152] accounts for the low computational ability of drones,
as well as the slow updates of mapping software, in their design of a planner for
quick flight in unknown environments using motion primitives. While this and
similar planners [150] have demonstrated results in unknown environments, they
have not been demonstrated at the high speeds seen in drone racing. This is true
for nearly all vision planners [78, 77], as the localization and mapping algorithms
simply cannot keep up with speeds that human operators are capable of. Moreover,
for known environments, reinforcement learning has been utilized to plan highly
dynamic trajectories at speeds exceeding 60 km/h [142], but attempting to track
these trajectories on hardware results in large tracking errors. This points to the

84

difficulty of adapting existing strategies to ensure safety with human operators in
the loop.

While most drone racing research focuses on autonomy [104], this work departs
from this paradigm with the goal of giving the human operators as much freedom
and control authority as possible subject to safety constraints. In the context of
geofencing, [168] presents an MPC-based approach, but it lacks the guaranteed
feasibility of solutions.

Flight controllers on modern racing drones are able to track desired angular rates
extremely well. With the availability of low-cost, high-speed electronic speed
controllers (ESCs) and rate gyros, state-of-the-art controllers can track angular rates
at control frequencies of 8 kHz. We utilize this by wrapping our controller around
the closed-loop system of the drone with the onboard flight controller. Therefore,
rather than the control inputs being the torques of the four motors, we command
throttle and angular rates. This choice of architecture greatly simplifies the task
of modeling the drone dynamics, and allows us to better filter the system in a way
that minimizes the impact on the pilot. Moreover, the same filter can be applied to
different drones with different dynamics, including those with six or eight rotors.

By modeling the response of the system to desired angular rate commands, the
proposed method does not rely on perfect angular rate tracking. Through this, we
also account for any delay in the filter stemming from communication between the
sensors and the onboard flight controller.

The drone and flight controller system ismodelled as rigid bodymotion in the Special
Euclidean Group in 3 dimensions, SE(3). The state-space model G ∈ R13 is chosen
to be G = [?F, @, EF, l1]) where ?F = [G, H, I]) is the position in the world frame,
EF = [EG , EH, EI]) are the world-frame velocities, @ is the quaternion representation
of the orientation with respect to the world frame, and l1 = [lG , lH, lI]) are the
body-frame angular velocities.

To model the system’s response to an angular rate command, we set the derivative
of the angular rates to

¤l = � (G) (ldes − l), (3.57)

where � (G) : R= → R+ is a (potentially state-dependent) function that determines
how quickly the desired rates are tracked. For a well-tuned racing drone with
minimal filter delay, its value should be on the order of 50, and can be treated as
state-independent.

85

Lastly, to map the throttle command to thrust, we fit a second-order polynomial with
data from the accelerometer and GPS. While this mapping will be dependent on
the voltage, the inclusion of an integral term in the altitude controller is generally
sufficient to eliminate any drift.

The primary goal of this work is to constrain the position of the drone inside a large
polytope in the 3D space, inside of which the pilot has almost complete control, but
is unable to leave. To this end, we define the safe set

ℎ(G) = min
{
A2
G − (G − G2)2, A2

H − (H − H2)2, A2
I − (I − I2)2

}
, (3.58)

which is positive inside of a box with side lengths (AG , AH, AI) centered at (G2, H2, I2),
and negative outside.

The backup controller c(G) is a velocity controller on SE(3), inspired by [94]. The
backup controller attempts to bring the drone to zero velocity in the G, H, I, but has
one other goal which is very important: to bring the drone away from the boundary
if it is too close. This is critical, as if the drone were to simply stop at the boundary,
the pilot would be stuck at the edge of the safe set due to _(G) approaching 0. To
achieve this, we set the desired velocity to

EG =


0 A2

G − (G − G2)2 ≥ X,

−(X − A2
G + (G − G2)2) otherwise.

(3.59)

Under this backup controller, the drone will move a distance X from the boundary
before stopping. The desired velocities are identical for H and I directions.

Finally, the backup set (� is defined by the function

ℎ� = −
√
E2
G + E2

H + E2
I + n . (3.60)

This backup set ensures that the drone is able to slow itself to a speed of n , chosen
to be 0.1 m/s, thus guaranteeing that the drone is able to stop before hitting the
boundary.

Modifications must be made to the function _(G, ℎ� (G)) to work well at very high-
speeds. This is because V must be made large to have smooth breaking at high
speeds, which would make the filter overly conservative near the boundary at low
speeds. This can be fixed simply by scaling the value of ℎ� (G) by the inverse of the
velocity towards the barrier. The safety filtering function used by the drone is

86

_(G, ℎ� (G)) = 1 − exp
(
− Vℎ� (G)

+

E+⊥

)
, (3.61)

where E⊥ is the velocity in the direction of the barrier.

Before testing the barrier functions on hardware, we first devise the test cases in
simulation. While the safety filters are the same in simulation and on hardware, the
hardware is operated by a human pilot, while the sim has its own desired controllers,
so some discrepancies will arise because of this.

Two primary test cases were run in simulation, a high-speed horizontal test, with the
goal of successful filtering at 100 km/h, and a free fall from 70 m. The results of the
horizontal simulation are shown in Fig. 5a. The drone accelerates to a maximum
speed of 107 km/h before being forced to stop. The minimum distance to barrier
was 0.12 m. The free fall simulation was also successful: the drone accelerated to
a top speed of 70 km/h downwards, before reaching a hover at a distance of 1.2 m
above the barrier.

Our quadrotor is built on a Chimera 7” frame with four iFlight XING X2806.5
1300 KV brushless motors, a T-Motor F55A Pro II 4-in1 ESC, a MAMBA BASIC
F722 Flight Controller (FC), a Teensy 4.1 microcontroller, a Vectornav VN-200
IMU+GPS, a FrSky R-XSR receiver, a DJI FPV air unit, and a Cadex FPV camera.
We use a FrSky QX7 radio to send desired angular rates commands to Teensy
microcontroller through the receiver. The VN-200 fuses GPS and IMU data with a
built in extended Kalman filter. This data is sent to the Teensy as navigation data
at 400 Hz. Using this data, the microcontroller then modifies these angular rates
commands with the regulation function and then forwards them on to the FC. The
FC runs betaflight, an open source software, to track the commanded angular rates.
The PID loop runs at the gyro update rate at 8 kHz. The FC sends digital commands
to the ESC using DSHOT600 at the same 8 kHz. FPV video is digitally streamed
with an end to end latency of 25 ms from the DJI FPV air unit to DJI FPV goggles,
which are worn by the operator.

To simplify the transition from simulation to hardware, the barrier functions are first
generated in MATLAB for simulation, and then codegen is used to create C++ code
that will run on hardware. All code used to generate and run the barrier functions on
a Teensy 4.1 can be found at https://github.com/DrewSingletary/racing_
drone_geofencing. This codebase also includes the interface for our specific

https://github.com/DrewSingletary/racing_drone_geofencing
https://github.com/DrewSingletary/racing_drone_geofencing

87

(a) Horizontal barrier active at 107 km/h.

(b) Vertical barrier active at -70 km/h.

Figure 3.15: Simulation results of the two primary hardware test cases. On the left,
the drone accelerates towards the barrier at GF = 10 m. On the right, the drone
free-falls from 70 m towards the barrier at IF = 0.5 m.

88

Figure 3.16: The 7" racing drone used for experiments.

receiver and flight controller, but this could be modified to fit other drone and radio
configurations.

The execution time of the filter on the Teensy is approximately 350 `s. The algorithm
runs at the update rate of the navigation data, which is 400 Hz.

A large number of flight tests were done to verify the safety guarantees provided by
our method. We emphasize two specific examples, but several more flight tests are
displayed in Figure 3.19.

Test 1: Horizontal barrier at 104 km/h. For this test, the pilot commanded the
drone to head north at high speeds. The active component of the barrier was 40 m
north of the initial position. The drone was able to reach a top speed of 104 km/h,
before beginning to break at a distance of 15 m from the barrier. The pilot attempted
to push the drone past the barrier, but was stopped at a minimum distance of 1.7 m
from the barrier. Due to this, the pilot was then able to safely move away from the
restricted airspace.

Figure 7a showcases the results of the experiment. The results agree strongly with
the simulation data in Fig. 5a, despite the human piloting commanding different
desired inputs than the simulation. This is, in part, due to the very accurate angular
rate tracking showcased at the bottom right of Fig. 7a. While there is a slight delay
in this tracking, this is properly modeled in (3.57), and thus it does not affect our

89

ability to guarantee safety.

Figure 7c shows the drone throughout this maneuver, highlighted in blue. Above
this, the orientation of the drone at different snapshots is visualized. As shown, the
drone reaches an angle of nearly 90◦ while breaking.

Test 2: Free fall from 70 m. At the beginning of this test, the pilot was flying at an
altitude of 70 m and then sends no commands, mimicking a loss of radio connection.
The barrier was chosen to be a distance of 0.5 m from the ground. After a short
free-fall, reaching a vertical velocity of -60 km/h, the safety filter stabilizes the drone
before coming to a stop at a distance of 1.8 m above the ground.

The data from this flight is visualized in Fig. 7b. Rather than plotting desired
angular rates, we now showcase the desired throttle of the drone sent from the user
compared to the throttle produced by the safety filter. Despite the pilot commanding
no throttle for the entire duration of the descent, the drone is able to smoothly recover
before crashing.

Again, when comparing this data to the simulation in Fig. 5b, notice the extremely
similar results. In fact, the only major discrepancy, which is the fact that the
simulation reached a speed of 10 km/h faster downwards than the drone, can be
easily explained by a lack of drag in the simulation model. This did not occur
during the horizontal tests, as the velocity controller is able to correct for this drag
in flight.

Testing for reliability and consistency. Figure 8 highlights the reliability and
consistency of this method in the application of geofencing. Four separate flights
are plotted, two of which engage the horizontal barrier whereas two engage the
vertical barrier. In each flight, the barrier is engaged two to four times, and every
time, safety is maintained, and _ never reaches zero, meaning the pilot never lost
complete control of the drone for any period of time.

3.2.5 Time-varying backup controllers
The intuition behind a time-varying backup controller stems from the desire to
execute a maneuver before engaging the backup controller that makes it easier for
the backup controller to return to the backup set S� while staying in S. In this
section, we will show that even a bad maneuver will not reduce the size of (� when
compared to the original backup controller when properly formulated.

Definition 10 (Time-Varying Backup Controller). Let D" : R= → *, D� : R= → *

90

(a) Horizontal barrier active at 105 km/h.

(b) Vertical barrier active at -60 km/h.

Figure 3.17: Two highlighted examples of geofencing with the high-speed racing
drone.

91

(a) Horizontal barrier active at 105 km/h.

(b) Vertical barrier active at -60 km/h.

Figure 3.18: Actual drone flight during the two showcased example is highlighted
in blue.

92

(a) Horizontal barrier active

(b) Vertical barrier active.

Figure 3.19: Four separate experimental runs where the drone is commanded to
approach the barrier several times. _ never reaches zero, meaning the pilot always
has some amount of control, and the drone never leaves the defined safe set.

93

and D"→�R= × [)" ,)" + X] → * for some X > 0. We call policies of the following
form time-varying backup controllers:

c(G, g) =


D" (G) g ≤)"
D"→� (G, g))" ≤ g ≤)" + X

D� (G) g >)" + X

. (3.62)

In (3.62), c is executing two controllers (D" and D�) in sequence and continuously
transitioning between them with D"→�. The first controller, D" describes a maneu-
ver to be performed before the backup controller is engaged. The controller D� is the
backup controller that brings you to (�. Finally, D"→� is a time-varying controller
that (locally Lipschitz) continuously transitions the input from D" (G) to D� (G) over
time X. The potential benefit from introducing a maneuver is illustrated in Figure
3.20.

For a policy c(G, C) and initial condition G(C0) = G0 ∈ R=, the solution to this closed-
loop system is given by the flow:

G(C) = Φc (G0, C) = G0 +
∫ C

C0

(5 (G) + 6(G)c(G, g)) 3g. (3.63)

In this case, for any initial time C0 ≥)" , the maneuver will not be performed. To
remedy this, we introduce an alternative notion for the flow of the system with a
time-varying backup controller:

G(C) = Φc (G0, C, g0)

= G0 +
∫ C

C0

(
5 (G) + 6(G)>c(G, g − g0)

)
3g. (3.64)

This flow will implicitly maintain forward-invariance of the following set:

(� (g0) = (3.65){
G ∈ R=

���� min
C∈[0,)]

{ℎ (Φc (G, C, g0)) , ℎ� (Φc (G,), g0))} ≥ 0
}

which is equivalent to the formulation in (3.6) where the policy c corresponds to c
with the system time offset by g0. The choice of time-offset parameter g0 ultimately
determines the shape (� .

94

Figure 3.20: Illustration of the benefits of time-varying backup controllers. (a) A
high-inertia semi truck driving along the highway must keep a large distance behind
lighter cars in order to stop before reaching them. (b) By adding a maneuver to
switch lanes before stopping, the truck can follow much more closely, under the
condition that no one is in the lane.

Example 8. Let us consider two examples that demonstrate how the parameter g0

transforms the final invariant set. First, suppose g0 = C0 −)" − X. In this case,

Φc (G0, C, C0 −)" − X) = G0 +
∫ C

C0

(
5 (G) + 6(G)>D� (G)

)
3g

= ΦD� (G0, C), (3.66)

which implies that (� (C0 −)" − X) recovers the safe-set of the nominal backup
controller D�.

Second, suppose g0 = C0+)−)" , which corresponds to the case of only themaneuver
being performed over time): Φc (G0,), C+) −)") = ΦD" (G0,)). This would likely
result in (� = ∅, as the backup maneuver D" (G) would not bring the system back
into the backup set (�.

95

Clearly, the choice of g0 is critical to the performance of the time-varying backup
controller and, as demonstrated below, the right choice of g0 can yield a control
invariant set that is larger than the one guaranteed by the nominal controller.

3.2.5.1 Time-Offset for Time-Varying Backup Control Filters

Rather than pick a single g0 for the entire evolution of our dynamical system we will
allow it to change as a function of the system time and the current state:

g∗0 (G, C) B min
g0∈[−C,)−C]

g0 (3.67)

s.t. Φc (G, C + g, g0) ∈ (∀g ∈ [0,)] (3.68)

Φc (G, C +), g0) ∈ (�. (3.69)

Recall that in (3.6), we give the policy a maximum time horizon of) to bring the
system into the backup set. We operate under the assumption that) >)" +X so that
the horizon can in principle cover both the maneuver and leave enough time for the
backup set controller to take the system back to (�. (3.68) ensures that the chosen
g∗0 will be safe for states in a horizon of length) . The constraint in (3.69) ensures
that the final state of the horizon belongs to the backup set (�. Notice that these
two constraints, by definition, imply that c(G, g, g0) is a valid backup controller with
time-offset g∗0 . The linear objective ensures we include as much of our maneuver
behavior as possible, otherwise we could simply set g0 = C0 −)" − X and only
execute the backup controller.

We now show that a time-offset chosen by this optimization problem results in a
strict improvement over the nominal case of a single backup controller.

Theorem 15. The safe set for a nominal backup controller D� (G) is strictly smaller
than the safe set provided by a time-varying backup controller c(G, g − g0) with
time-offset g∗0 as defined in (3.67) so that the following condition holds true:

(� (D�) ⊆ (� (g∗0) (3.70)

Proof. Suppose for the sake of contradiction that there exists an G ∈ (� (D�) so
that G ∉ (� (g∗0). Now G ∈ (� (D�) implies that ΦD� (G, C) ∈ (∀C ∈ [C0, C0 +)] and
ΦD� (G, C0 +)) ∈ (� by definition. Recall that g0 = C0 −)" − X implies that

Φc (G, C, C0 −)" − X) = ΦD� (G, C).

96

Therefore g0 = C0 −)< − X is feasible for the optimization problem g∗0 . This is a
contradiction since G ∉ ((g∗0) implies C∗0 has no feasible solution but g0 = C0 −)< − X
is a feasible solution.

Notice that because g∗0 is an optimization problem over time rather than state or
control input, it is amenable to the time discretization required to numerically
integrate ODE’s and can be efficiently approximated in practice. We introduce
Algorithm 4 to approximate g∗0 online within the mixing framework.

Algorithm 4 Online Approximation of g∗0
1: Inputs:
2: G, C ⊲ Current State and System Time
3: Δ ⊲ Discrete-Time Increment
4: g∗0 (G(C − Δ), C − Δ) ⊲ Previous g∗0 Solution
5: c ⊲ Time-Varying Backup Controller
6: procedure ResetTimeOffset
7: P ← {Φc (G, C + g,−C) |0 ≤ g ≤) }
8: if (P ⊆ () ∧ (Φc (G, C +),−C) ∈ (�) then
9: return g∗0 (G(C), C) ← −C
10: else
11: return g∗0 (G(C), C) ← g∗0 (G(C − Δ), C − Δ) + Δ
12: end if
13: end procedure

The end result of Algorithm 4 is that the time-offset g0 gets set to the the negation
of system time whenever the system is able to perform the backup maneuver D" for
the entirety of)" and remain safe. Otherwise g∗0 is allowed to increase with the
system time.

Remark 7. The maneuver D" (G) is chosen not to be time-varying is so that g0 may
be reset freely before C − g0 <)" without discontinuities. While there is likely
to be a discontinuity in the input when reset after C − g0 >)" , it can only occur
every)" seconds, and the resulting backup maneuver corresponding to the new g0

is Lipschitz continuous. Therefore, the reset-induced discontinuities do not affect
the safety guarantees, nor do they lead to high-frequency oscillations in the input.

3.2.5.2 Multiple Backup Policies

Now that the theory is established for the time-varying backup maneuvers, we can
introduce the utilization of multiple maneuvers. For a maneuver 8, the time-varying

97

backup controller takes the following form:

c8 (G, g) =


D" 8 (G) g ≤)"
D" 8→� (G, g))" ≤ g ≤)" + X

D� (G) g >)" + X

. (3.71)

For ease of notation, we assume that)" is constant among the different maneuvers,
but in practice, there is no need for this to be the case.

Much like the introduction of a single maneuver D" (G) resulted in a safe set (� at
least as large as, and generally larger, than the original set, the inclusion of multiple
maneuvers can further increase the size of (� . For example, in the case of Figure
3.20, having multiple maneuver options could correspond switching to different
lanes, increasing the likelihood that one of them is empty.

As shown in Figure 3.20, naive mixing of backup maneuvers may not yield a safe
control input and could cause discontinuities in the resulting control action taken.
In the case of the truck, going left or going right are mutually exclusive. As a
secondary consideration we also want to avoid the expensive computation of rolling
out trajectories for all possible maneuvers every time we wish to generate a Dact.

One possible condition for switching is once it is no longer possible to perform
the current maneuver and has engaged only the backup controller portion, i.e.
g0 ≥ C0 −)" − X. In this case, the backup controller is already engaged, switching
to a different policy c8 (G, C, g0) will not result in a discontinuity. This process can
be continued for all possible backup maneuvers, until one of the maneuvers allows
a reset of g0. If no choice of backup maneuver allows a reset, the backup controller
continues executing maintaining the safety of the system. This is formalized in
Algorithm 5.

Remark 8. Similar to Algorithm 4, this algorithm results in a discontinuity no more
frequently than every)" seconds. Moreover, only one maneuver is evaluated at
each time-step, resulting in minimal computational burden.

For backup CBFs, the decentralized multi-agent case was handled in [35]. In this
work, we follow a similar approach with our regulation functions along backup
maneuvers.

Suppose we have a set of agents 0 ∈ A, each with its own independent state G0 ∈ R=

and nominal safe set defined by continuously differentiable ℎ0 : R= → R. We

98

Algorithm 5Maneuver Switching Algorithm
1: Inputs:
2: G, C ⊲ Current State and System Time
3: 9 ⊲ Current Maneuver
4: Δ ⊲ Discrete-Time Increment
5: g∗0 (G(C − Δ), C − Δ) ⊲ Previous g∗0 Solution
6: {c8}�

8=1 ⊲ Time-Varying Backup Controllers
7: procedure SwitchManeuver
8: if g∗0 (G(C − Δ), C − Δ) ≥ C −)" − Δ then
9: 9 ← 9 + 1
10: if 9 > � then
11: 9 = 1
12: end if
13: P 9 ← {Φc 9 (G, C + g,−C) |0 ≤ g ≤) }
14: if

(
P 9 ⊆ (

)
∧ (Φc 9 (G, C +),−C) ∈ (�) then

15: return g∗0 (G(C), C) ← −C
16: else
17: return g∗0 (G(C), C) ← g∗0 (G(C − Δ), C − Δ) + Δ
18: end if
19: end if
20: end procedure

are also concerned with avoiding collisions between agents using pair-wise barrier
ℎ01 : R= × R= → R. Combining these two conditions we define a safe set for each
agent:

(0 =

{
G00 ∈ R

=

�����
(∧
0

ℎ0 (G0) ≥ 0

)
∧

(∧
0≠1

ℎ(0,1) (G0, G1) ≥ 0

) }
(3.72)

This leads to the following result on safety in the decentralized case.

Theorem 16 (Distributed Safety). Consider a set of agents A, with each agent
0 ∈ A described by (1.1), i.e., ¤G0 = 5 0 (G0) +60 (G0)c0 (G) with each agent following
a TBC c0 using independent time-offsets g∗00 . Then

• For all 0 ∈ A if the initial state G00 ∈ (
0 then (0 in (3.72) is safe (forward

invariant) so long as each agent has state information, G1 for 1 ∈ A \ {0}.

• The global safe set

(=

{
G0 ∈ R=|A|

�����
(∧
0

ℎ0 (G0) ≥ 0

)
∧

(∧
0≠1

ℎ01 (G0, G1) ≥ 0

) }
(3.73)

99

is forward invariant where G0 ∈ R=|A| is the concatenation of all agent states:
the global state.

Proof. Recall that by Theorem 15, a TBC using g∗00 as offset results in a backup
controller that renders (0 safe (forward invariant) for each agent 0 ∈ A. Clearly, if
for all 0 ∈ A (0 is forward invariant then ∩0∈A is forward invariant. This allows us
to perform the following derivation:

∪0∈� (0 =
{
G ∈ R=|A|

�����∧
0∈�
G0 ∈ (0

}
(3.74)

=

{
G ∈ R=|A|

�����∧
0∈A

ℎ0 (G0) ≥ 0 ∧ ∀1∈A\{0}ℎ01 (G0, G1) ≥ 0

}
(3.75)

=

{
G0 ∈ R=|A|

�����
(∧
0

ℎ(0) (G (0)) ≥ 0

)
∧

(∧
0≠1

ℎ(01) (G (0) , G (1)) ≥ 0

) }
(3.76)

= (. (3.77)

Here, (3.75) follows from the application of the definition of (0 and (3.76) follows
from the application of associativity and commutativity the logic and operator
(∧).

If multiple agents have multiple maneuvers, the current maneuver must be known
by all agents. As a consequence of D8

�
(G) being constant in time throughout all

maneuvers for an agent 8, the drones are able to independently update theirmaneuvers
at any time g0 ≥ C −)" − X. However, all drones must have knowledge of the new
maneuver being utilized, in order to know whether or not they can reset g0.

Figure 3.21 demonstrates the idea behind requiring knowledge of the other agents’
maneuvers to guarantee safety of the individual.

3.2.5.3 Application: Multi-drone collision avoidance

For this work, the nominal safe set of each agent 8 is chosen as a box of free space
centered at (G2, H2, I2) ∈ R3 with side lengths AG , AH, AI,

ℎ8 (G) = min
{
A2
G − (?8G − G2)2, A2

H − (?8H − H2)2, A2
I − (?8I − I2)2

}
. (3.78)

The safety constraint between agents 8 and 9 is given as

ℎ8 9 (G) = (?8G − ?
9
G)2 + (?8H − ?

9
H)2 + (?8I − ?

9
I)2 − 4A2, (3.79)

100

Figure 3.21: Illustration contrasting single agent and multi-agent implementation.
(a) shows the single agent case, while (b) shows the multi-agent case where state
and backup policy information is required to guarantee safety.

which ensures that no collision occurs between the drones, which are modeled as
spheres of radius A.

The backup controller D� (G) is the same velocity controller on SE(3), inspired by
[94], that was used in in the previous example. The backup controller attempts to
stop the drone, and repel it from the boundary of the safe set if it gets too close.

The backup set (� is defined by the function

ℎ� = −
√
E2
G + E2

H + E2
I + 0.1, (3.80)

which guarantees that the drone is able to slow itself to a speed of 0.1 m/s, which is
forward invariant under the backup controller.

In this section, we will outline two simple maneuvers, and demonstrate how they
improve performance on hardware. We call these maneuvers the "carry on" and
"evade" maneuvers.

Carry onmaneuver. The carry onmaneuver is exactly how it sounds: themaneuver
attempts to propagate the current desired input forward. This input is held constant
throughout)" , and is updated every time g0 is allowed to reset. With the carry on

101

(a) Carry on maneuver compared to only
D� (G) in tightly constrained space.

(b) Evade maneuver compared to only D� (G)
when encountering a spherical obstacle.

(c) Carry on maneuver switching to evade
maneuver when encountering a spherical ob-
stacle in tightly constrained space

(d) Multi-agent sim

Figure 3.22: Simulation results capturing the performance benefits of allowing
backup maneuvers. While the value of _ is often lower, due to being closer or faster
near the barrier, there is significantly better alignment with the desired velocities.

102

maneuver, the overall policy is defined as

d8 (G, g) =


Ddes g ≤)"
D" 8→� (G, g))" ≤ g ≤)" + X

D� (G) g >)" + X

. (3.81)

This policy shines when a skilled pilot wants to move along the edge of the safe set,
when one might have _ << 1. This is illustrated in Figure 3.22a.

Evademaneuver. The evade maneuver is a maneuver that attempts to reposition the
drone before coming to a stop. This is similar to a lane change, as in Chapter 3.20.
For this specificmaneuver, we attempt to bring the drone upwards, but similar results
could be achieved with evading in different directions. The policy is written as

d8 (G, g) =


DI (G) g ≤)"
D" 8→� (G, g))" ≤ g ≤)" + X

D� (G) g >)" + X

, (3.82)

with DI (G) being the velocity controller attempting to track to the desired height.
This policy shines when the pilot does not react to avoid an obstacle fast enough,
and relies on the safety filter to do it for them. This is illustrated in Figure 3.22b.

Finally, the decentralized, multi-agent approach was tested for two agents moving
towards each other. Agent 1 is utilizing with the evade maneuver, while Agent 2
attempts the carry-on maneuver. The desired velocity EG of Agent 1 is 3 m/s, and
for Agent 2, it is -1 m/s.

Figure 3.22d demonstrates the advantage over simply utilizing the backup controller
D� (G) in preventing the drones from reaching a deadlock.

3.2.5.4 Hardware results

The quadrotor used in our experiments is a consumer "Cinewhoop" drone shown in
Fig. 3.23. We add several components to this off the shelf drone for the computation
of the barrier functions: a Teensy 4.1 microcontroller, a Xbee 93b radio and an
Adafruit BNO055 IMU. Optitrack position and attitude data is streamed to the
drone at 20 Hz via a Xbee93B radio. The Teensy 4.1 reads this position data along
with IMU data at 100 Hz. The on-board barrier computation issues angular rates
commands at 100 Hz to a flight controller running Betaflight, an open source flight

103

Figure 3.23: The Cinewhoop quadrotor used in the experiments

control software which is tightly integrated with the flight controller. This allows
angular rate tracking at the internal IMU update frequency of 8 kHz.

To validate the tractability and robustness of our algorithms in flight, we recreate
the simulation results showcased in Figures 3.22b and 3.22d with two identical
"Cinewhoop" drones. The results are demonstrated in Figure 3.24b.

The only major difference between the simulation and the hardware was the choice
of the evade maneuver to move to the side rather than up. This was done due to
limit the effects of the downward airflow on the other agent. As demonstrated in
the plots, the TBC’s ran quite well despite the very noisy velocity data, as well as
the computational constraints of a microcontroller. However, the CBF and all other
onboard computations were easily ran at the update rate of the Betaflight’s desired
inputs, 100 Hz.

104

(a) Illustration of the experimental results demonstrating safe flight of multiple
drones through the use of time-varying backup controllers.

(b) Plots of the hardware results showcased above. For more hardware results,
please refer to the attached video.

Figure 3.24: Hardware results using time-varying backup maneuvers.

105

C h a p t e r 4

DISCRETE-TIME SAFETY REGULATION

4.1 Safe policy synthesis in multi-agent POMDPs via discrete-time barrier
functions

Complexmission planning of multiple heterogeneous robots, e.g., flying and ground
robots, presents an inherent tension between the need for greater autonomy and the
absolute necessity of strong safety [6] and performance guarantees [5]. Safety
is crucial for the duration of a safety-critical mission, for example, those involving
human-robot interactions [154]. The planning problem becomes evenmore involved
in the presence of partial or uncertain information about the world, as well as
stochastic actions and noisy sensors [119, 132].

Multi-agent partially observable Markov decision processes [101, 14] provide a se-
quential decision-making formalism for high-level planning of multiple autonomous
agents under partial observation and uncertainty. In MPOMDPs, the agents share
their local observations and make decisions based on a global information state
(the joint belief). Despite this unique modeling paradigm, the computational com-
plexity of MPOMDPs is PSPACE-complete [26, 64]. Therefore, several promising
approximate methods for solving MPOMDPs have been proposed in the literature,
e.g., sampling-based methods [14] and point-based methods [133]. However, it is
difficult to provide safety assurances when one employs approximate methods for
solving MPOMDPs, as such methods either use discretization techniques [62] or
finite-state controllers [135].

In this section, we extend the application of barrier functions from low-level safety
constraints of dynamical systems to high-level safety objectives of MPOMDPs. Our
results are based on the observation that the joint belief evolution of an MPOMDP
is described by a discrete-time system [9, 10, 7]. We begin by formulating a, both
necessary and sufficient, theorem for safety verification of a given set for discrete-
time systems based on discrete-time barrier functions (DTBFs) and we demonstrate
that our formulation allows for more complicated safe belief sets described by
Boolean compositions of DTBFs. Then, we apply these DTBFs to study the safety
of a given set of safe beliefs. We propose online methods based on one-step greedy
algorithms to either synthesize a safe policy for an MPOMDP or synthesize a safety

106

filter for an MPOMDP given a nominal planning policy. We illustrate the efficacy
of the proposed approach by applying it to an exploration scenario of a team of
heterogeneous robots in a high-fidelity simulation environment.

An MPOMDP [101, 14] provides a sequential decision-making formalism for high-
level planning of multiple autonomous agents under partial observation and uncer-
tainty. At every time step, the agents take actions and receive observations. These
observations are shared via (noise and delay free) communication and the agents
decide in a centralized framework.

Definition 11. An MPOMDP is a tuple(
�, &, ?0, {�8}8∈� ,), ', {/8}8∈� , $

)
,

wherein

• � denotes a index set of agents;

• & is a finite set of states with indices {1, 2, . . . , =} (which can be described as
the product space of the states of all agents);

• ?0 : & → [0, 1] defines the distribution of the initial states, i.e., ?0(@) denotes
the probability of starting at @ ∈ &;

• �8 is a finite set of actions for agent 8 and � = ×8∈��8 is the set of joint actions;

•) : & × � × & → [0, 1] is the transition probability, where) (@, 0, @′) :=
%(@C = @′|@C−1 = @, 0C−1 = 0),
∀C ∈ Z≥1, @, @

′ ∈ &, 0 ∈ �, i.e., the probability of moving to state @′ from @

when the joint actions 0 are taken;

• ' : & × �→ R is the immediate reward function for taking the joint action 0
at state @;

• /8 is the set of all possible observations for agent 8 and / = ×8∈�/8, repre-
senting outputs of discrete sensors. Often, I ∈ / are incomplete projections
of the world states @, contaminated by sensor noise;

• $: & × � × / → [0, 1] is the observation probability (sensor model), where
$ (@′, 0, I) := %(IC = I |@C = @′, 0C−1 = 0), ∀C ∈ Z≥1, @ ∈ &, 0 ∈ �, I ∈ /,
i.e., the probability of seeing joint observations I given joint actions 0 were
taken and resulting in state @′.

107

Since the states are not directly accessible in anMPOMDP, decisionmaking requires
the history of joint actions and joint observations. Therefore, we must define the
notion of a joint belief or the posterior as sufficient statistics for the history [21].
Given an MPOMDP, the joint belief at C = 0 is defined as 10(@) = ?0(@) and 1C (@)
denotes the probability of the system being in state @ at time C. At time C + 1, when
joint action 0 ∈ � is taken and joint observation I ∈ / is observed, the belief is
updated via a Bayesian filter as

1C (@′) = %(@′|IC , 0C−1, 1C−1)

=
%(IC |@′, 0C−1, 1C−1)%(@′|0C−1, 1C−1)

%(IC |0C−1, 1C−1)

=
%(IC |@′, 0C−1, 1C−1)
%(IC |0C−1, 1C−1)
×

∑
@∈&

%(@′|0C−1, 1C−1, @)%(@ |0C−1, 1C−1)

=
$ (@′, 0C−1, IC)∑@∈&) (@, 0C−1, @′)1C−1(@)∑

@′∈& $ (@′, 0C−1, IC)∑@∈&) (@, 0C−1, @′)1C−1(@)
, (4.1)

where the beliefs belong to the belief unit simplex

B =
1 ∈ [0, 1] |& | |

∑
@∈&

1C (@) = 1, ∀C
 .

A policy in an MPOMDP setting is then a mapping c : B → �, i.e., a mapping
from the continuous joint beliefs space into the discrete and finite joint action space.
The special case of � being a singleton (only one agent) is known as a partially
observable Markov decision process (POMDP) [141].

The execution of an MPOMDP is carried out in the following steps [112]. At every
time step C, each agent 8 observes IC

8
and communicates its own observation IC

8
to all

other agents. The agent then in return receives observations of others I \ {I8} and
uses the joint observations IC and the previous joint action 0C−1 to update the new
joint belief 1C from (4.1). Finally, the agent looks up the joint action from the joint
policy c(1C) = 0C and executes its individual action 0C

8
.

Noting that the joint belief evolution of anMPOMDP (11) is described by a discrete-
time system [9, 10, 7], we propose conditions based on DTBFs for safety analysis
of discrete-time systems.

In [3], the barrier functionmethodwas extended to discrete-time dynamical systems.
Unfortunately, with the latter formulation of the (reciprocal) barrier functions, we

108

cannot study the solutions of the discrete-time system outside of the invariant set,
i.e., if the solution is on the boundary of the set or when it leaves the set. To
overcome this difficulty, we next extend the notion of (zeroing) barrier functions to
discrete-time systems.

We consider the following discrete-time system

GC+1 = 5 (GC), C ∈ N≥0, (4.2)

with 5 : X → X ⊂ R= and a safe set defined in (1.2), we have the following
definition of a DTBF.

Definition 12 (Discrete-Time Barrier Function). For the discrete-time system (4.2),
the continuous function ℎ : R= → R is a discrete-time barrier function for the set S
as defined in (1.2), if there exists U ∈ K satisfying U(A) < A for all A > 0 and a set
D with S ⊆ D ⊂ R= such that

ℎ(GC+1) − ℎ(GC) ≥ −U(ℎ(GC)), ∀G ∈ D . (4.3)

In fact, the discrete-time barrier function would more correctly be called a discrete-
time zeroing barrier function per the literature, but we drop the “zeroing” as it is
the only form of barrier function that will be considered throughout the rest of this
section.

We can show that the existence of a DTBF is both necessary and sufficient for
invariance.

Theorem 17. Consider the discrete-time system (4.2). Let S ⊆ D ⊂ R= with S as
described in (1.2). Then, S is invariant if and only if there exists a DTBF as defined
in Definition 12.

Proof. We begin by proving the sufficiency. If (4.3) holds, we have ℎ(GC) ≥ (Id −
U) ◦ ℎ(GC−1). Furthermore, since U(A) ≤ A, (Id−U) ◦ (A) < A and (Id−U) ∈ K [73].
For C = 0, we have

ℎ(G1) ≥ (Id − U) ◦ ℎ(G0).

Similarly, for C = 1, we have

ℎ(G2) ≥ (Id − U) ◦ ℎ(G1).

109

From the inequality obtained at C = 0, we obtain ℎ(G2) ≥ (Id − U) · ℎ(G1) ≥
(Id − U) ◦ (Id − U) ◦ ℎ(G0). Then, by induction, we conclude

ℎ(GC) ≥ (Id − U)C ◦ ℎ(G0), C ∈ N, (4.4)

where (Id − U)C denotes composition C times.

At this point, we check invariance of S and asymptotic convergence (followed by
invariance) of solutions toS for the two cases of G0 ∈ S and G0 ∈ D\S, respectively.

For any G0 ∈ S, since ℎ(G0) ≥ 0 by definition of S and (Id − U) ∈ K, we can
deduce from (4.4) that ℎ(GC) ≥ 0 for all C ∈ N, implying that S is invariant. This is
simply because if (Id − U) ◦ (A) < A, then there exist a constant W ∈ (0, 1) such that
(Id − U) ◦ (A) ≤ WA and hence (Id − U)C ◦ (A) ≤ WCA.

For any G0 ∈ D \ S, inequality (4.4) implies that as C → ∞, we have ℎ(GC) ≥ 0.
That is, all solutions of system (4.2) starting at G0 ∈ D \S, asymptotically converge
to S.

We next prove the converse direction. We set S = D in Theorem 17. IfS is forward
invariant, we have GC−1 ∈ S and GC ∈ S for all C ∈ N. From the definition of the setS,
this implies that if ℎ(GC−1) ≥ 0 then ℎ(GC) ≥ 0 for all C ∈ N. Furthermore, we claim
if S is forward invariant, then ℎ(GC) − ℎ(GC−1) ≥ 0. Because if ℎ(GC) − ℎ(GC−1) ≤ 0
or alternatively ℎ(GC) ≤ ℎ(GC−1), for all GC−1 ∈ mS, we have ℎ(GC) ≤ 0. That is,
GC ∉ S which is a contradiction. Hence, we have ℎ(GC) − ℎ(GC−1) ≥ 0 for all C ∈ N.

For any A ≥ 0, the set {G ∈ R= | 0 ≤ ℎ(G) ≤ A} is a compact subset of S. Define a
function U : [0,∞) → R by

U(A) = − inf
{G ′ |0≤ℎ(G ′)≤A}

inf
{G |0≤ℎ(G)≤A}

(ℎ(G′) − ℎ(G)) .

Using the compactness property stated above and the fact that the difference of two
continuous functions is continuous, U is a well-defined, non-decreasing function on
R≥0 satisfying

ℎ(GC) − ℎ(GC−1) ≥ −U ◦ ℎ(GC−1), ∀GC−1 ∈ S.

Moreover, if S is forward invariant, ℎ(GC) ≥ 0 for all C ∈ N. That is, ℎ(GC) ≥
(Id − U) ◦ ℎ(GC−1). Since ℎ(GC−1) ≥ 0, (Id − U) · (A) > 0, which implies U(A) < A .
This completes the proof.

110

Note that a simple example of the function U in inequality (4.3) is when U is a
constant U0 ∈ (0, 1). In this case, from the proof of Theorem 17, we infer that

ℎ(GC) ≥ (1 − U0)Cℎ(G0), C ∈ N.

Indeed, we can control the rate of convergence of the DTBF by changing the value
of U0.

As a technical remark, we point out that, unlike proving the converse BF theorem
for continuous-time systems, we did not invoke Nagumo’s theorem on the boundary
of the set S. This is simply because such condition does not imply invariance for
discrete-time systems [27, Section 3.2].

It is often desirable to consider sets defined by Boolean composition of multiple
barrier functions. In this regard, in [58], the authors proposed non-smooth barrier
functions as a means to analyze composition of barrier functions by Boolean logic,
i.e., ∨ (disjunction), ∧ (conjunction), and ¬ (negation). Similarly, we use max to
represent ∨ and min to show ∧. In other words, if G ∈ {G ∈ R= | max8=1,...,: ℎ8 (G) ≥
0}, then there exists at least one 8∗ ∈ {1, . . . , :} such that ℎ8∗ (G) ≥ 0 and if
G ∈ {G ∈ R= | min8=1,...,: ℎ8 (G) ≥ 0}, then for all 8 ∈ {1, . . . , :} we have ℎ8∗ (G) ≥ 0.
The negation operator is trivial and can be shown by checking if −ℎ satisfies the
invariance property.

In the following, we propose conditions for checking Boolean compositions of
barrier functions. Fortunately, since we are concerned with discrete time systems,
this does not require non-smooth analysis.

In the context of DTBFs, we have the following result.

Proposition 8. Let S8 = {G ∈ R= | ℎ8 (G) ≥ 0}, 8 = 1, . . . , : denote a family of safe
sets with the boundaries and interior defined analogous to S in (1.2). Consider the
discrete-time system (4.2). If there exist a U ∈ K satisfying U(A) < A for ∀A > 0
such that

min
8=1,...,:

ℎ8 (GC+1) − min
8=1,...,:

ℎ8 (GC) ≥ −U
(

min
8=1,...,:

ℎ8 (GC)
)

(4.5)

then the set {G ∈ R= | ∧8=1,...,:ℎ8 (G) ≥ 0} is forward invariant. Similarly, if there
exist a U ∈ K satisfying U(A) < A for all A > 0 such that

max
8=1,...,:

ℎ8 (GC+1) − max
8=1,...,:

ℎ8 (GC) ≥ −U
(

max
8=1,...,:

ℎ8 (GC)
)

(4.6)

then the set {G ∈ R= | ∨8=1,...,:ℎ8 (G) ≥ 0} is forward invariant.

111

Proof. We prove the case for conjunction and the proof for disjunction is similar.
If (4.5) holds from the proof of Theorem 17, we can infer that

min
8=1,...,:

ℎ8 (GC) ≥ (Id − U)C ◦
(

min
8=1,...,:

ℎ8 (G0)
)
.

That is, if G0 ∈ {G ∈ R= | min8=1,...,: ℎ8 (G) ≥ 0}, then min8=1,...,: ℎ8 (GC) ≥ 0 for all
C ∈ N≥0, which in turn implies that ℎ8 (G) ≥ 0 for all 8 ∈ {1, . . . , :}.

The next section shows how the results in this section can be used to provide safety
assurances for MPOMDPs.

Since the states are not directly observable in MPOMDPs, we are interested in
guaranteeing safety in a probabilistic setting in the joint belief space. To this end,
we define the set of safe joint beliefs as

BB := {1 ∈ B | ℎ(1) ≥ 0}, (4.7)

Int(�B) := {1 ∈ B | ℎ(1) > 0}, (4.8)

mBB := {1 ∈ B | ℎ(1) = 0}, (4.9)

where ℎ : B → R is a given function. We denote by c= : B → A a nominal joint
policy mapping each joint belief into a joint action. We use subscript = to denote
variables corresponding to the nominal policy designed offline.

We are interested in solving the following problems for MPOMDPs.

Problem 1. Given anMPOMDP as defined in Definition 11, a corresponding belief
update (4.1), and a safe joint belief set BB, design a sequence of actions 0C , C ∈ N≥0

such that 1C ∈ BB, ∀C ∈ N and the instantaneous rewards A C =
∑
@C∈& 1(@C)'(@C , 0C)

are maximized for all C ∈ N≥0.

Problem 2. Given anMPOMDP as defined in Definition 11, a corresponding belief
update equation (4.1), a safe joint belief set BB, and a nominal planning policy c=,
determine a sequence of actions 0C , C ∈ N≥0 such that 1C ∈ BB, ∀C ∈ N≥0 and
the quantity ‖A C − A C=‖2 is minimized for all C ∈ N≥0, where A C= denotes the nominal
immediate reward at time step C.

As can be inferred from Problems 1 and 2, we seek to ensure safety in addition to
motion planning at every time step. Such problems are prevalent inmulti-agent robot
applications, where safety is of significant importance, e.g., robots in performing
tasks in the presence of human coworkers [105].

112

Algorithm 6 The one-step greedy algorithm for finding the safe action at time C.
Require: System information �, &, �,) , ', / , $, safe belief set BB, current

observation IC , the past belief 1C−1

1: 8 = 1
2: for 8 = 1, 2, . . . , |�| do
3: 1C (@′) = $ (IC |@′,0(8))∑@∈&) (@′ |@,0(8))1C−1 (@)∑

@′∈& $ (IC |@′,0(8))
∑
@∈&) (@′ |@,0(8))1C−1 (@)

4:
5: if ℎ(1C) − ℎ(1C−1) ≥ −U(ℎ(1C−1)) then
6: A (8) =

(∑
@′∈& 1(@′)'(@′, 0(8))

)
7: end if
8: end for
9: 8∗ = arg max8=1,2,...,|�| A (8)

return 0∗ = 0(8∗).

Next, we use the result in Theorem 17 to ensure safety of a team of heterogeneous
autonomous agents described by an MPOMDP. To this end, we solve the following
discrete optimization problem at each time step C:

0∗ = arg max
0∈�

©­«
∑
@′∈&

1(@′)'(@′, 0)ª®¬
B.C. ℎ(1(@′)) − ℎ(1(@)) ≥ −U(1(@)). (4.10)

Algorithm 6 summarizes the steps involved in finding the safe action based on
barrier functions at each time step. At every time step, the algorithm picks a joint
action 0(8) from |�| combinations of actions (recall that ×8∈��8 = �). For each joint
action 0(8), it computes the next joint belief and checks whether if the next joint
belief satisfies the safety constraint. If the safety constraint is satisfied, it computes
the corresponding reward function A (8) for the joint action 0(8). After checking all
actions, the algorithm returns the joint action maximizing the reward function.

Algorithm 6 designs a safe and myopic optimal action at each time step based on
the current observation and the belief state at the step before. Therefore, it does not
require a full memory of past actions and observations. This synthesis algorithm
for POMDPs parallels those using control barrier functions for dynamical systems
wherein safety for all time and optimality at each time instance is required.

113

Algorithm 7 The one-step greedy algorithm for finding the safe action at time C
when agents have different safety constraints.
Require: System information �, &, �,) , ', / , $, safe belief set BB, current
observation IC , the past belief 1C−1

8 = 1
for 8 = 1, 2, . . . , |�| do

1C (@′) = $ (IC |@′,0(8))∑@∈&) (@′ |@,0(8))1C−1 (@)∑
@′∈& $ (IC |@′,0(8))

∑
@∈&) (@′ |@,0(8))1C−1 (@)

if ℎ: (1C: (@
′)) − ℎ: (1C−1

:
(@)) ≥ −U: (ℎ: (1C−1

:
(@))) for all : ∈ � then

A (8) =
(∑

@′∈& 1(@′)'(@′, 0(8))
)

end if
end for
8∗ = arg max8=1,2,...,|�| A (8)
return 0∗ = 0(8∗).

Note that, if the safety requirement is defined by Boolean logic and we need to
check either inequality (4.5) or (4.6), we can just replace the inequality in the “if”
statement in Algorithm 6 with either inequality (4.5) or (4.6).

Furthermore, we remark that stability is not an issue in MPOMDP problems, since
the beliefs evolve in the probabilistic belief simplex. However, we can encode
instability in an MPOMDP problem as a set of bad states, that is, B \ BB.

Each autonomous agent might have a different safety requirement, characterized by
sets B8, 8 ∈ �, i.e., B8 is the safe set for agent 8. Then, we just need to check the
safety of each agent separately. We denote by 18, 8 ∈ �, the subset of joint beliefs
concerning agent 8, e.g., beliefs showing the location of the agent. Algorithm 7
demonstrates how we can check the safety requirement of each agent separately at
every time step.

In many real world multi-robot navigation scenarios, an offline policy for path
planning exists (e.g., based on point-based methods [133]). However, such policy
may not guarantee safety. We can use the barrier functions to design an online
method for ensuring safety while remaining as much faithful as possible to the
offline policy (see [28, 59] for analogous formulations for systems described by
nonlinear differential equations).

Algorithm 8 illustrates how barrier functions can filter the agent actions to ensure
safety. At every time step C, the algorithm first computes the next joint belief

114

Algorithm 8 The one-step greedy algorithm for filtering the nominal policy with a
safe action at every time-step C.
Require: System information �, &, �,) , ', / , $, nominal policy c=, safe belief
set BB, current observation IC , the past belief 1C−1

1C (@′) = $ (IC |@′,0C=)
∑
@∈&) (@′ |@,0C=)1C−1 (@)∑

@′∈& $ (IC |@′,0C=)
∑
@∈&) (@′ |@,0C=)1C−1 (@)

if ℎ(1C) − ℎ(1C−1) < −U(ℎ(1C−1)) then
8 = 1
for 8 = 1, 2, . . . , |�| do

1C (@′) = $ (IC |@′,0(8))∑@∈&) (@′ |@,0(8))1C−1 (@)∑
@′∈& $ (IC |@′,0(8))

∑
@∈&) (@′ |@,0(8))1C−1 (@)

if ℎ(1C) − ℎ(1C−1) ≥ −U(ℎ(1C−1)) then
A (8) =

(∑
@′∈& 1(@′)'(@′, 0(8))

)
end if

end for
8∗ = arg min8=1,2,...,|�| ‖A (8) − A C=‖2

return 0∗ = 0(8∗)
end if
return 0∗ = 0C=.

1C given the nominal action 0= designed based on the nominal policy c=. It then
checks whether that action leads to a safe joint belief update (this is allowed since the
existence of a DTBF ℎ satisfying (4.3) is both necessary and sufficient for safety).
If yes, the algorithm returns 0= for implementation. If no, the algorithm finds a
safe joint action that minimally changes the immediate reward from the nominal
immediate reward A C= in a least squares sense.

4.1.1 Applications: Multi-Robot Exploration
To demonstrate our method, we consider a system of three heterogeneous robots
exploring an unknown environment. The mission objective is to retrieve a sample
located somewhere in the robots’ vicinity. Each robot has different and limited capa-
bilities to explore and observe the environment, so coordination and communication
between the robots is required in order to complete the mission.

The robot team consists of a drone and two ground vehicles. The drone can
rapidly explore the environment from above, but is unable to explore any covered or
underground regions. The ground vehicles include a Rover Robotics Flipper, and a
modified Segway. The Flipper is a small, tracked vehicle capable of traversing in
tight spaces and rough terrain, while the Segway is a larger, wheeled robot without

115

Figure 4.1: The agents, the obtacles (black), and the sample (red) in ROS simulation
environment.

external sensing capabilities, whose purpose is to retrieve the sample.

The set of agents includes the UAV, �* , the Flipper, �� , and the Segway, �(. These
agents all inhabit a planar = × < grid, with the drone located two meters above the
ground vehicles. The beliefs of the vehicle locations in this grid are updated after
each action is completed, based on the previous belief and the observation made.
The initial vehicle locations are known, and the remaining system states are given
by the environmental model.

In order to capture the heterogeneity of the team, each grid in the environment has
two states that measure the habitability of the grid for the Segway, as well as the
probability that the grid in question contains the sample. These states are initialized
to 0.5, and observations of these states can be made when the Flipper or the UAV are
within a certain distance from the cell. The Flipper can make accurate observations
about the traversability of the terrain, but cannot sense the location of the sample
well. The drone is more suited to locating the sample, but less suited to gauging
traversability.

The set of actions for each agent �8 is the same, and consists of five actions:
remaining in the same grid, and moving either forwards, backwards, left, or right to
an adjacent grid. Thus, the total number of actions is 125. The transitions between
states are handled by controllers on the low-level dynamics, and the transition
probability) when moving from one grid to another is modeled as a high chance to

116

move to the desired grid, and equal, smaller chances of landing in one of the eight
grids adjacent to the desired grid.

The components of the reward function for the Flipper and the UAV are measures
of how much information will be gained from moving in that direction. The reward
function also includes a heavy reward for the Segway moving towards a cell likely
to contain the sample, and a heavy cost towards moving to a potentially dangerous
cell. The observations for each agent update the environment states based on the
observation made (binary detection) and the beliefs of the vehicles locations.

The exploratory mission is concluded when the sample has been collected, resulting
in a mission success. In terms of the system states, mission objective is satisfied
when the Segway inhabits the same grid as the sample. If the Segway enters an
uninhabitable region, this results in a mission failure. Thus, the safe set of beliefs
is defined as all states in which the Segway does not coincide with an uninhabitable
region. For this mission, given the partial observability constraint, we require that
there is a 95% probability of the Segway entering a habitable grid with each action.
It is important to note that safety for this problem does not depend on the entirety of
the belief space. Thus, it is possible to verify safety without computing the beliefs
of each of the states.

The simulation is carried out in a ROS environment as depicted in Figure 4.1.
Occupancy grids are utilized to represent the states of the system, which are updated
after each action is taken. When an action is initialized, the low-level dynamics of
the vehicles are simulated, and a message is published when the action is complete.
Utilizing the observations made by this action, the beliefs are updated, and a new
joint action is generated. The simulation is ended when the true position of the
robot inhabits the same grid as the true position of the sample, or when the robot
coincides with an uninhabitable cell.

To demonstrate the efficacy of the policy filter, a near-optimal policy that violates
the belief safety filter was passed through Algorithm 3. The trajectory of the Segway
under this policy is shown in Figure 4.2. While the policy is successful in simulation,
due to perfect control over the states, it does not meet the imposed requirements for
probabilistic 95% safety.

The resulting trajectory of the Segway after the policy filter is shown in Figure 4.3.
The first filtered action occurred at the time of the first image. While the desired
trajectory of the Segway was to move towards the uninhabitable terrain, as shown

117

Figure 4.2: Implementation of the nominal policy. Darker cells represent unsafe
terrain, and the blue cells in the third image represent the belief of the Segway
location.

118

Figure 4.3: Implementation of the safety filter. The blue arrow in the first image
represents the desired action, and the orange arrow is the filtered action.

119

in blue, the safety filter rejected this action. Instead, the action with the next highest
reward, indicated by the orange arrow, was taken. This process continues, and the
final trajectory is shown to move to the right wall of the building and then to the
sample location. Thus, this filter was able to circumvent the unsafe policy, while still
achieving the objective of the mission. While the resulting route is less optimal, it is
a policy that could be implemented on a real systemwith realistic safety guarantees.

4.2 Finite-time DTBFs and DTL specifications
In this section, we employ discrete time barrier functions (DTBFs) to enforce
safety/mission specifications in terms ofLDTLspecifications inMulti-agent POMDPs
in run time with minimum interference (see Fig. 1). To this end, we represent the
joint belief evolution of an MPOMDP as a discrete-time system [8]. The main
contributions of this section are then as follows: (i) We enrich the DTBFs for en-
forcing invariance with finite-time DTBFs for assuring finite time reachability and
(ii) we propose Boolean compositions of these finite-time DTBFs. (iii) We propose
a LDTL safety-shield method based on one-step greedy algorithms [44, Chapter
16] to synthesize a safety-shield for an MPOMDP given a nominal planning policy.
We illustrate the efficacy of the proposed approach by applying it to an exploration
scenario of a team of heterogeneous robots in ROS simulation environment.

We formally describe high-level mission specifications that are defined in temporal
logic. Temporal logic has been used as a formal way to allow the user to intuitively
specify high-level specifications, in for example, robotics [89]. The temporal logic
we use in this section can be used for specifying tasks for stochastic systems with
partial state information. This logic is suitable for problems involving significant
state uncertainty, in which the state is estimated on-line. The syntactically co-safe
linear distribution temporal logic (scLDTL) describes co-safe linear temporal logic
properties of probabilistic systems [74]. We consider a modified version to scLDTL,
the linear distribution temporal logic (LDTL), which includes the additional tem-
poral operator � “always”. The latter operator is important since it can be used to
describe notions such as safety, liveness, and invariance.

LDTL has predicates of the type Z < 0 with Z ∈ F& = { 5 | 5 : B → R}, i.e., F&
is the class of (nonlinear) functions mapping from the belief simplex into reals, and
state predicates @ ∈ � with � ∈ 2& .

Definition 13 (LDTL Syntax). An LDTL formula over predicates F& and & is

120

inductively defined as

i := �|¬�|Z |¬Z |i ∨ i |i ∧ i |i U i | © i|♦i |�i, (4.11)

where � ∈ 2& is a set of states, Z ∈ F& is a belief predicate, and i is an LDTL
formula.

Satisfaction over pairs of hidden state paths and sequences of belief states can then
be defined as follows.

Definition 14 (LDTL Semantics). The semantic of LDTL formulae is defined over
words l ∈ (& × B)∞. Let (@8, 18) be the 8th letter in l. The satisfaction of a LDTL
formula i at position 8 in l, denoted by l8 |= i is recursively defined as follows:

• l8 |= � if @8 ∈ �,

• l8 |= ¬� if @8 ∉ �,

• l8 |= 5 if 5 (18) < 0,

• l8 |= ¬ 5 if 5 (18) ≥ 0,

• l8 |= i1 ∧ i2 if l8 |= i1 and l8 |= i2,

• l8 |= i1 ∨ i2 if l8 |= i1 or l8 |= i2,

• l8 |= ©i if l8+1 |= i,

• l8 |= i1Ui2 if there exists a 9 ≥ 8 such that l 9 |= i2 and for all 8 ≤ : < 9 it
holds that l: |= i1,

• l8 |= ♦i if there exists 9 ≥ 8 such that l 9 |= i, and

• l8 |= �i if, for all 9 ≥ 8, l 9 |= i.

The word l satisfies a formula i, i.e., l |= i, iff l0 |= i.

Designing policies that guarantee LDTL formulas as defined in Definition 14 can
only be carried if the system is linear and subject to Guassian noise [155]. We show
here that DTBFs can be used to enforce LDTL formulas for any finite POMDP.

121

4.2.1 Finite-time DTBF
One class of problems we are interested in involve checking whether the solution of
a discrete time system can reach a set in finite time. To this end, we define a finite
time DTBF (see [144] for the continuous time variant).

Definition 15 (Finite Time DTBF). For the discrete-time system (4.2), the contin-
uous function ℎ̃ : B → R is a finite time DTBF for the set S as defined in (1.2), if
there exist constants 0 < d < 1 and Y > 0 such that

ℎ̃(1C+1) − dℎ̃(1C) ≥ Y(1 − d), ∀1C ∈ B. (4.12)

We then have the following result to check finite time reachability of a set for a
discrete-time system.

Theorem 18. Consider the discrete-time system (4.2). Let S ⊂ B ⊂ R= be as
described in (1.2). If there exists a finite time DTBF ℎ̃ as in Definition 15, then for
all 10 ∈ B \ S, there exists a C∗ ∈ N≥0 such that 1C

∗ ∈ S. Furthermore,

C∗ ≤ log
(
Y − ℎ̃(10)

Y

)
/log

(
1
d

)
, (4.13)

where the constants d and Y are as defined in Definition 15.

Proof. We prove by induction. With some manipulation inequality (4.12) can be
modified to ℎ̃(1C+1) − Y ≥ dℎ̃(1C) − dY = d

(
ℎ̃(1C) − Y

)
. Thus, for C = 0, we have

ℎ̃(11) − Y ≥ d
(
ℎ̃(10) − Y

)
. For C = 1, we have ℎ̃(12) − Y ≥ d

(
ℎ̃(11) − Y

)
≥

d2 (
ℎ̃(10) − Y

)
, where we used the inequality for C = 0 to obtain the last inequality

above. Then, by induction, we have ℎ̃(1C) − Y ≥ dC
(
ℎ̃(10) − Y

)
. Hence, ℎ̃(1C) ≥

dC (ℎ̃(10) − Y) + Y. Since 0 < d < 1 and 10 ∈ B \ S, i.e., ℎ̃(10) < 0, as C increases
1C approaches S because by definition ℎ(1C) ≥ 0 implies 1C ∈ S. Re-arranging the
terms gives

Y − ℎ̃(1C) ≤ dC
(
Y − ℎ̃(10)

)
. (4.14)

Since 10 ∈ B \ S, i.e., ℎ̃(10) < 0, Y − ℎ̃(10) is a positive number. Dividing both
sides of (4.14) with the positive quantity Y − ℎ̃(10) yields Y−ℎ̃(1C)

Y−ℎ̃(10) ≤ d
C . Taking the

logarithm of both sides of the above inequality gives log
(
ℎ̃(1C)−Y
ℎ̃(10)−Y

)
≤ C log(d), or

equivalently

− log
(
ℎ̃(10) − Y
ℎ̃(1C) − Y

)
≤ −C log(1

d
).

122

Since 0 < d < 1, log(1
d
) is a positive number. Dividing both sides of the inequality

above with the negative number − log(1
d
) obtains C ≤ log

(
Y−ℎ̃(10)
Y−ℎ̃(1C)

)
/log

(
1
d

)
. Also,

by definition, 1C reachesS at least at the boundary at C∗ when ℎ̃(1C) = 0. Substituting
ℎ̃(1C) = 0 in the last inequality for C gives C∗ ≤ log

(
Y−ℎ̃(10)

Y

)
/log

(
1
d

)
, which gives

an upper bound for the first time 1C ∈ S.

Proposition 9. Let S8 = {1 ∈ B | ℎ̃8 (1) ≥ 0}, 8 = 1, . . . , : denote a family of sets
defined analogous to S in (1.2). Consider the discrete-time system (4.2). If there
exist constants 0 < d < 1 and Y > 0 such that

min
8=1,...,:

ℎ̃8 (1C+1) − d min
8=1,...,:

ℎ̃8 (1C) ≥ Y(1 − d), ∀1 ∈ B, (4.15)

then there exists

C∗ ≤ log
(Y −min8=1,...,: ℎ̃8 (10)

Y

)
/log

(1
d

)
(4.16)

such that if 10 ∈ B \⋃:
8=1 S8 then 1C

∗ ∈
{
1 ∈ B | ∧8=1,...,:

(
ℎ̃8 (1) ≥ 0

)}
. Similarly,

the disjunction case follows by replacing min with max in (4.15) and (4.16).

Proof. We prove the conjunction case and the disjunction case follows the same
lines. If (4.15) holds, from the proof of Theorem 18, we can infer that

min
8=1,...,:

ℎ̃8 (1C) − Y ≥ dC
(

min
8=1,...,:

ℎ̃8 (10) − Y
)
,

which implies that

C ≤ log
(
Y −min8=1,...,: ℎ̃8 (10)
Y −min8=1,...,: ℎ̃8 (1C)

)
/log

(
1
d

)
.

If 10 ∈ B \ ⋃:
8=1 S8, then by definition ℎ̃8 (10) < 0, 8 = 1, . . . , : . Hence,

min8=1,...,: ℎ̃8 (10) < 0. Moreover, because C is a positive integer,

Y − min
8=1,...,:

ℎ̃8 (10) ≥ Y − min
8=1,...,:

ℎ̃8 (1C).

That is, min8=1,...,: ℎ̃8 (10) ≤ min8=1,...,: ℎ̃8 (1C) along the solutions 1C of the discrete-
time system (4.2). Furthermore, 1C ∈

{
1 ∈ B | ∧8=1,...,:

(
ℎ̃8 (1) ≥ 0

)}
whenever

min8=1,...,: ℎ̃8 (1C) ≥ 0. The upper-bound for this C happens when min8=1,...,: ℎ̃8 (1C) =
0, i.e., when all ℎ̃8 (1C) are either positive or zero. This by definition implies that
1C ∈

{
1 ∈ B | ∧8=1,...,:

(
ℎ̃8 (1) ≥ 0

)}
. Then, setting min8=1,...,: ℎ̃8 (1C) = 0 gives

C∗ ≤ log
(
Y−min8=1,...,: ℎ̃8 (10)

Y

)
/log

(
1
d

)
.

123

LDTL Specification DTBF Implementation
l8 |= � ℎ(18) = ∑

B∈� 1
8 (B) − 1

l8 |= ¬� ℎ(18) = ∑
@∈&\� 1

8 (B) − 1
l8 |= 5 ℎ(18) = − 5 (18) + X
l8 |= ¬ 5 ℎ(18) = 5 (18)

l8 |= i1 ∧ i2 ℎ(18) = min{ℎ1(18), ℎ2(18)}
l8 |= i1 ∨ i2 ℎ(18) = max{ℎ1(18), ℎ2(18)}
l8 |= ©i ℎ(18+1) = ℎi (1)
l8 |= i1Ui2 ℎ2(1 9) < 0 =⇒ ℎ = ℎ1(1 9),∀ 9 ≥ 8
l8 |= ♦i ℎ(1 9) = ℎ̃(1 9), ∀8 ≤ 9 ≤ C∗
l8 |= �i ℎ(1 9) = ℎi (1 9), ∀ 9 ≥ 8

Table 4.1: LDTL specifications and the DTBF implementation.

Now, we describe how the semantics of LDTL as given in Definition 14 can be
represented as set invariance and reachability conditions over the belief simplex.
The structure of the DTBFs for each specification are summarized in Table 4.1.

We describe each row of the table as follows. (1) l8 |= � ⊂ &: can be encoded
as verifying whether @8 ∈ �. In the belief simplex, this is equivalent to checking
whether 18 ∈ BB = {18 ∈ B |

∑
@∈� 1

8 (@) ≥ 1}, which can be checked by con-
sidering the DTBF ℎ(18) = ∑

@∈� 1
8 (@) − 1. (2) l8 |= ¬� ⊂ &: can be cast as

checking whether 18 ∈ BB = {18 ∈ B |
∑
@∈&\� 1

8 (@) ≥ 1} by considering the
DTBF ℎ(18) = ∑

@∈&\� 1
8 (@) − 1. (3),(4) l8 |= 5 and l8 |= ¬ 5 : these formulas are

defined in the belief space, since l8 |= 5 implies 5 (18) < 0 and l8 |= ¬ 5 implies
5 (18) ≥ 0. They can be checked by considering DTBFs ℎ(18) = − 5 (18) + X with
0 < X << 1 for l8 |= 5 and ℎ(18) = 5 (18) for l8 |= ¬ 5 . (5),(6) l8 |= i1 ∧ i2 and
l8 |= i1∨i2: can be implemented by Boolean composition of the barrier functions.
(7) l8 |= ©i: can be implemented by checking whether i is satisfied in the next
step. (8) l8 |= i1Ui2: can be enforced by checking whether formula i1 is satisfied
until i2. To this end, we can check whether formula i2 is not satisfied at every time
step 8 by checking inequality ℎ2(1) < 0 where ℎ2 is the DTBF for formula i2. If
i2 is not satisfied, then i1 is checked via a corresponding DTBF ℎ1. (9) l8 |= ♦i:
can be checked using the finite time DTBF given by Theorem 18. Note that the
property is checked until C∗, since after C∗ the formula i is ensured to hold. (10)
l8 |= �i: can be simply enforced by checking whether i is satisfied for all time
using the corresponding DTBF ℎi.

124

4.2.2 Applications: LDTL specifications on multi-agent simulation
We take the identical simulation environment from the previous application.

The first mission objective given to the Segway (located at @() is to not collide with
the Flipper (located at @�) with probability 0.9. This can be represented as �¬ 51,
for 51 = 0.1−1(@()1(@�). The next requirement is that the Segway must not collide
with the three obstacles (located at @>8 , 8 = 1, 2, 3), again with probability 0.9. This
can be enforced with the formula �¬ 52, for 52 = 0.1−∧3

8=11(@()1(@>8). To enforce
these objectives as a single specification, the formula is �¬(51 ∨ 52). Note that, if
the agents meet this specification at time C = 0, then there always exists an action
that meets this specification, as the agents can stop or remain in place.

In order to enforce LDTL formula�¬(51∨ 52), we use theDTBF ℎ(1) = min(51, 52),
where we used DeMorgan’s laws to obtain ¬(51∨ 52) = ¬ 51∧¬ 52, the fourth row of
Table 4.1, and Proposition 9. Figure 4.4(b) illustrates the safety shield enforcing this
specification over the beliefs of the agents and the obstacles. Despite the obstacle
being one cell away from the desired Segway position, the uncertainty stemming
from the Flipper measurements of the obstacles as well as the state estimator of the
Segway prevent the robot from moving into the desired position.

While the safety shield is able to keep the robots safe under this specification, there is
no requirement of progression towards the objective, to retrieve the sample (located
at @�). Retrieving the sample with probability 0.5 can be written as ♦ 53, with
53 = 0.5 − 1(@()1(@�).

Combining all three objectives into one yields the final mission specification, given
by the formula:

i = �¬(51 ∨ 52) ∧ ♦ 53, (4.17)

which ensures that the Segway always avoids the Flipper and the three obstacles
with more than 0.90 probability and eventually reaches the goal with more than 0.5
probability.

The finite time DTBF ℎ̃(1) = 1(@()1(@�) − 0.5 where we used the third and ninth
rows of Table 4.1 to enforce ♦ 53. For the finite time DTBF condition (4.12), the
parameters d and n must be set to tune how quickly the set must be reached. To
allow for more freedom of operation, we choose d = 0.99 and n = 0.1.

Figure 4.4(c-d) shows the results in our high-fidelity simulation environment. In
particular, Figure 4.4(d) depicts the evolution of the DTBFs over the whole exper-
iment. As it can be seen, for the nominal policy, the Segway fails to satisfy the

125

(a) (b)

(c)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

-0.5

0

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

-1

-0.5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

0.05

0.1

(d)

Figure 4.4: Simulation results of the multi-agent system. (a) The initial positions
of the three agents, obstacles (red), and sample (green). (b) Example of the nominal
action (blue) being overwritten by the safety shield (green). (c) Updated costmaps
reflected in grayscale after a longer period of exploration. (d) The plots of the
DTBFs for the experiment, as explained above.

mission specifications (since ℎ becomes negative in many instances). However,
with the safety-shield the satisfaction of mission specifications is guaranteed (ℎ is
always positive). Furthermore, the finite time DTBF becomes positive at the end of
the experiment, which shows that the eventually specification in (4.17) is satisfied.

4.3 Accounting for uncertainty: risk control barrier functions
Autonomous robotic systems are being increasingly deployed in real-world settings
where safety is critical. With this transition to practice, the associated risk that stems
from unknown and unforeseen circumstances is correspondingly on the rise [149].
In the context of safety-critical scenarios, such as those found in aerospace and
human-robot applications, it is essential that decision making accounts for risk.
These risks are often associatedwith uncertainty due to extremely intricate nonlinear

126

dynamics, e.g. bipedal robots [121], and/or extreme unstructured environments, e.g.
subterranean or extraterrestrial exploration [127].

Mathematically speaking, risk can be quantified in numerous ways, such as chance
constraints [114, 157], exponential utility functions [82], and distributional robust-
ness [165]. However, applications in autonomy and robotics require more “nuanced
assessments of risk” [99]. Artzner et. al. [20] characterized a set of natural prop-
erties that are desirable for a risk measure, called a coherent risk measure, and
have obtained widespread acceptance in finance and operations research, among
other fields. An important example of a coherent risk measure is the conditional
value-at-risk (CVaR) that has received significant attention in decision making prob-
lems, such as Markov decision processes (MDPs) [40, 39, 118, 24]. For stochastic
discrete-time dynamical systems, amodel predictive control techniquewith coherent
risk objectives was proposed in [137], wherein the authors also proposed Lyapunov
condition for risk-sensitive exponential stability. Moreover, a method based on
stochastic reachability analysis was proposed in [32] to estimate a CVaR-safe set of
initial conditions via the solution to an MDP.

Our approach to risk-sensitive safety is based on a special class of control barrier
functions. Recently, for a class of stochastic (Ito) differential equations, safety
in probability and statistical mean was studied in [41, 130] via stochastic barrier
functions.

This section goes beyond the conventional notions of safety in probability and statis-
tical mean through the use of coherent risk measures. To this end, for discrete-time
systems subject to stochastic uncertainty, we define safety and finite-time reachabil-
ity in the risk-sensitive sense, i.e., in the context of theworst possible realizations, via
coherent risk measures. We then propose risk control barrier functions (RCBFs),
together with finite-time RCBFs, as tools to enforce risk-sensitive safety and reach-
ability, respectively. The main result of this section establishes that RCBFs ensure
safety in a risk sensitive fashion. Finite-time RCBFs allow for the extension of this
result to risk-sensitive reachability. Furthermore, for safe and goal sets defined as
Boolean compositions of multiple function level-sets, we propose conditions that
ensure safety and reachability of these sets based on RCBFs and their finite-time
counterparts. Importantly, in all cases, the risk-sensitive controllers are designed to
minimally invasive with respect to a given system legacy controller. We show the
efficacy of our approach through simulation on a nonlinear cart-pole system (see
Figure 4.5).

127

Figure 4.5: The value of the safe-set ℎ(GC) is known at time C, but stochastic
uncertainty makes ℎ(GC+1) a random variable. We must pick DC such that ℎ(GC+1) is
safe subject to a risk measure taken over the worst V probability.

4.3.1 Coherent risk measures
The goal of this subsection is to introduce conditional risk measures with a view
toward defining risk control barrier functions subsequently. In this context, consider
a probability space (Ω, F , P), a filtrationF0 ⊂ · · · F# ⊂ F , and an adapted sequence
of random variables ℎC , C = 0, . . . , # , where # ∈ N≥0 ∪ {∞}. For C = 0, . . . , # ,
we further define the spacesHC = L? (Ω, FC , P), ? ∈ [0,∞),HC:# = ZC × · · · × Z#
and H = H0 × H1 × · · · . We assume that the sequence h ∈ H is almost surely
bounded (with exceptions having probability zero), i.e., ess supC |ℎC (l) | < ∞. In
order to describe how one can evaluate the risk of sub-sequence ℎC , . . . , ℎ# from the
perspective of stage C, we require the following definitions.

Definition 16 (Conditional Risk Measure). A mapping dC:# : HC:# → HC , where
0 ≤ C ≤ # , is called a conditional riskmeasure, if it has the following monotonicity
property:

dC:# (h) ≤ dC:# (h′), ∀h,∀h′ ∈ HC:# such that h � h′.

128

A dynamic risk measure is a sequence of conditional risk measures dC:# : HC:# →
HC , C = 0, . . . , # .

One fundamental property of dynamic risk measures is their consistency over
time [128, Definition 3]. That is, if ℎ will be as good as ℎ′ from the perspec-
tive of some future time \, and they are identical between times g and \, then ℎ
should not be worse than ℎ′ from the perspective at time g.

If a risk measure is time-consistent, we can define the one-step conditional risk
measure dC : HC →HC−1, C = 0, . . . , # − 1 as follows:

dC (ℎC) = dC−1,C (0, ℎC), (4.18)

and for all C = 1, . . . , # , we obtain:

dC,# (ℎC , . . . , ℎ#) = dC
(
ℎC + dC+1(ℎC+1 + dC+2(ℎC+2 + · · ·

+ d#−1

(
ℎ#−1 + d# (ℎ#)

)
· · ·))

)
. (4.19)

Note that the time-consistent risk measure is completely defined by one-step condi-
tional risk measures dC , C = 0, . . . , # −1 and, in particular, for C = 0, (4.19) defines a
risk measure of the entire sequence h ∈ H0:# . This leads to the notion of a coherent
risk measure.

Definition 17 (Coherent Risk Measure). We call the one-step conditional risk mea-
sures dC : HC+1 → HC , C = 1, . . . , # − 1 as in (4.19) a coherent risk measure if it
satisfies the following conditions

• Convexity: dC (_ℎ + (1 − _)ℎ′) ≤ _dC (ℎ) + (1 − _)dC (ℎ′), for all _ ∈ (0, 1)
and all ℎ, ℎ′ ∈ HC;

• Monotonicity: If ℎ ≤ ℎ′ then dC (ℎ) ≤ dC (ℎ′) for all ℎ, ℎ′ ∈ HC;

• Translational Invariance: dC (ℎ + ℎ′) = 2 + dC (ℎ′) for all ℎ ∈ HC−1 and
ℎ′ ∈ HC;

• Positive Homogeneity: dC (Vℎ) = VdC (ℎ) for all ℎ ∈ HC and V ≥ 0.

All risk measures studied in this section are time-consistent coherent risk measures.
Concretely, we briefly review two examples of coherent risk measures.

129

Total Conditional Expectation: The simplest risk measure is the total conditional
expectation given by

dC (ℎC) = E
[
ℎC | FC−1

]
. (4.20)

It is easy to see that total conditional expectation satisfies the properties of a co-
herent risk measure as outlined in Definition 17. Unfortunately, total conditional
expectation is agnostic to realization fluctuations of the stochastic variable ℎ and is
only concerned with the mean value of ℎ at large number of realizations. Thus, it is
a risk-neutral measure of performance.

Conditional Value-at-Risk: Let ℎ ∈ H be a stochastic variable for which higher
values are of interest1. For a given confidence level V ∈ (0, 1), value-at-risk
(VaRV) denotes the V-quantile value of a stochastic variable ℎ ∈ H described as
VaRV (ℎ) = supZ∈R{Z | P(ℎ ≤ Z) ≤ V}. Unfortunately, working with VaR for non-
normal stochastic variables is numerically unstable, optimizing models involving
VaR are intractable in high dimensions, and VaR ignores the values of ℎ with
probability less than V [124].

In contrast, CVaR overcomes the shortcomings of VaR. CVaR with confidence level
V ∈ (0, 1) denoted CVaRV measures the expected loss in the V-tail given that the
particular threshold VaRV has been crossed, i.e., CVaRV (ℎ) = E

[
ℎ | ℎ ≤ VaRV (ℎ)

]
.

An optimization formulation for CVaR was proposed in [124] that we use in this
section. That is, CVaRV is given by

CVaRV (ℎ) : = − inf
Z∈R
E

[
Z + (−ℎ − Z)+

V

]
. (4.21)

Note that the above formulation of CVaR is concerned with the left-tail of distribu-
tions (higher values of ℎ are preferred).

A value of V → 1 corresponds to a risk-neutral case, i.e., CVaR1(ℎ) = E(ℎ);
whereas, a value of V→ 0 is rather a risk-averse case, i.e., CVaR0(ℎ) = VaR0(ℎ) =
ess inf(ℎ) [123]. Figure 4.5 illustrates these notions for an example ℎ variable with
distribution ?(ℎ).

4.3.2 Risk-Sensitive Safety and Reachability
We assume the robot dynamics of interest is described by a discrete-time stochastic
system given by

GC+1 = 5 (GC , DC , FC), G0 = G0, (4.22)
1For example, greater values of ℎ indicate safer performance as will be discussed in the next

section.

130

where C ∈ N≥0 denotes the time index, G ∈ X ⊂ R= is the state, D ∈ U ⊂ R<

is the control input, F ∈ W is the stochastic uncertainty/disturbance, and the
function 5 : R= × U × W → R=. We assume that the initial condition G0 is
deterministic and that |W| is finite, i.e.,W = {F1, . . . , F |W|}. At every time-step
C, for a state-control pair (GC , DC), the process disturbance FC is drawn from setW
according to the probability mass function ?(F) = [?(F1), . . . , ?(F |W|)]) , where
?(F8) := P(FC = F8), 8 = 1, 2, . . . , |W|. Note that the probability mass function
for the process disturbance is time-invariant, and that the process disturbance is
independent of the process history and of the state-control pair (GC , DC).

Note that, in particular, system (4.22) can capture stochastic hybrid systems, such
as Markovian Jump Systems [169].

In the presence of stochastic uncertainty F, assuring almost sure (with probability
one) invariance or safety may not be feasible. Moreover, enforcing safety in expec-
tation is only meaningful if the law of large numbers can be invoked and we are
interested in the long term performance, independent of the realization fluctuations.
In this work, instead, we propose safety in the dynamic coherent risk measure sense
with conditional expectation as an special case.

Definition 18 (d-Safety). Given a safe set S as given in (1.2) and a time-consistent,
dynamic coherent risk measure d0:C as described in (4.19), we call the solutions
to (4.22), starting at G0 ∈ S, d-safe if and only if

d0,C (0, 0, . . . , ℎ(G)) ≥ 0, ∀C ∈ N≥0. (4.23)

In order to understand (4.23), consider the case where d is the conventional total
expectation. Then, (4.23) implies safety in expectation. As mentioned earlier, the
definition of safety for general coherent risk measures goes beyond the traditional
total expectation.

Another interesting property we study in this section arises when G0 ∈ X \ S. That
is, when instead of safety, we are interested in reaching a set of interest in finite time.

Definition 19 (d-Reachability). Consider system (4.22) with initial condition G0 ∈
X \ S. Given a set S as given in (1.2) and a time-consistent, dynamic coherent risk
measure d0:C as described in (4.19), we call the set S d-reachable, if and only if
there exists a constant C∗ such that

d0,C∗ (0, 0, . . . , ℎ(G)) ≥ 0. (4.24)

131

4.3.3 Risk control barrier functions
In order to check and enforce risk sensitive safety, i.e., d-safety, we introduce risk
control barrier functions. We then extend these to a finite-time variation, which
allows us to establish risk-sensitive reachability, i.e., d-reachability.

Definition 20 (Risk Control Barrier Function). For the discrete-time system (4.22)
and a dynamic coherent risk measure d, the continuous function ℎ : R= → R is
a risk control barrier function for the set S as defined in (1.2), if there exists a
convex U ∈ K satisfying U(A) < A for all A > 0 such that

d(ℎ(GC+1)) ≥ U(ℎ(GC)), ∀GC ∈ X. (4.25)

Note that a simple choice for the function U is U = U0, where U0 ∈ (0, 1) is a
constant.

In the first main contribution of the section, we demonstrate that the existence of an
RCBF implies invariance/safety in the coherent risk measure.

Theorem 19. Consider the discrete-time system (4.22) and the set S as described
in (1.2). Let d be a given coherent risk measure. Then, S is d-safe if there exists an
RCBF as defined in Definition 20.

Proof. The proof is carried out by induction and using the properties of a coherent
risk measure as outlined in Definition 17. If (4.25) holds, for C = 0, we have

d(ℎ(G1)) ≥ U(ℎ(G0)). (4.26)

Similarly, for C = 1, we have

d(ℎ(G2)) ≥ U(ℎ(G1)). (4.27)

Since d is monotone, composing both sides of (4.27) with d does not change the
inequality and we obtain

d ◦ d(ℎ(G2)) ≥ d(U(ℎ(G1))). (4.28)

Since U is a convex function, from Theorem 3 in [38] (Jensen’s Inequality for
coherent risk measures), we obtain2

d ◦ d(ℎ(G2)) ≥ d(U(ℎ(G1))) ≥ U(d(ℎ(G1))).
2In particular, if U ∈ (0, 1) is a constant, from positive homogeneity property of d, we have

d ◦ d(ℎ(G2)) ≥ d(Uℎ(G1)) = Ud(ℎ(G1)).

132

Then, using inequality (4.26), we have

d ◦ d(ℎ(G2)) ≥ U(d(ℎ(G1))) ≥ U ◦ U(ℎ(G0)).

Therefore, by induction, at time C, we can show that dC (ℎ(GC)) ≥ UC (ℎ(G0)). The
left-hand side of the above inequality is equal to d0,C (0, . . . , ℎ(GC)). Hence,

d0,C (0, . . . , ℎ(GC)) ≥ UC (ℎ(G0)). (4.29)

If G0 ∈ S, from the definition of the set S, we have ℎ(G0) ≥ 0. Since U ∈ K, then
we can infer that (4.23) holds. Thus, the system is d-safe.

Note that, in the case when G0 ∈ X\S, the existence of an RCBF implies asymptotic
convergence to the set S in the coherent risk measure d. This can be inferred
from (4.29). In fact, if U(A) < A , then there exist a constant X ∈ (0, 1) such that
U(A) ≤ XA and hence

UC (A) ≤ XCA, C ∈ N≥0. (4.30)

If G0 ∈ X \S, then ℎ(G0) < 0. However, from (4.30), as C →∞, U ◦ · · · ◦U(A) → 0,
since the compositions of classK functions is also class ^ (hence non-negative). We
then obtain d0,C (0, . . . , ℎ(GC)) ≥ 0, which implies that the solutions become d-safe.

In practice, we are often interested in satisfying system specifications characterized
by the set S in finite time. To this end, we define finite-time RCBFs.

Definition 21 (Finite-Time RCBF). For the discrete-time system (4.22) and a dy-
namic coherent risk measure d, the continuous function ℎ : X → R is a finite-time
RCBF for the set S as defined in (1.2), if there exist constants 0 < W < 1 and Y > 0
such that

d(ℎ(GC+1)) − Wℎ(GC) ≥ Y(1 − W), ∀GC ∈ X. (4.31)

In the second key contribution of the section, we show that the existence of a
finite-time RCBF implies d-reachability.

Theorem 20. Consider the discrete-time system (4.22) and a dynamic coherent risk
measure d. Let S ⊂ X be as described in (1.2). If there exists a finite-time RCBF
ℎ : X → R as in Definition 21, then for all G0 ∈ X \ S, there exists a C∗ ∈ N≥0 such
that S is d-reachable, i.e., inequality (4.24) holds. Furthermore,

C∗ ≤ log
(
Y − ℎ(G0)

Y

)
/log

(
1
W

)
, (4.32)

where the constants W and Y are as defined in Definition 21.

133

Proof. Similar to the proof of Theorem 19, we use induction and properties of
coherent risk measures. We prove by induction. From (4.31), we have d(ℎ(GC+1)) −
Y ≥ Wℎ(GC) − WY = W

(
ℎ(GC) − Y

)
. Hence, for C = 0, we have

d(ℎ(G1)) − Y ≥ W(ℎ(G0) − Y). (4.33)

For C = 1, we have
d(ℎ(G2)) − Y ≥ W(ℎ(G1) − Y). (4.34)

Since d is monotone, composing both sides of the above inequality with d does not
change the inequality and we obtain

d ◦ d(ℎ(G2) − Y) ≥ d(W(ℎ(G1) − Y)) = Wd(ℎ(G1) − Y),

where in the last equality we used the positive homogeneity property of d since
W ∈ (0, 1). Since Y > 0 is a constant, translational invariance property of d yields

d ◦ d(ℎ(G2)) − Y ≥ W(d(ℎ(G1)) − Y).

Moreover, from inequality (4.33), we infer

d ◦ d(ℎ(G2)) − Y ≥ W(d(ℎ(G1)) − Y) ≥ W2(ℎ(G0) − Y).

Thus, by induction, we see that at time step C, the following inequality holds:

dC (ℎ(GC)) − Y ≥ WC (ℎ(G0) − Y).

Taking Y to the right-hand side and noting that the left-hand side of the above
inequality is equal to d0,C (0, . . . , ℎ(GC)), we have the following inequality:

d0,C (0, . . . , ℎ(GC)) ≥ WC (ℎ(G0) − Y) + Y. (4.35)

Since 0 < W < 1 and G0 ∈ X \ S, i.e., ℎ(G0) < 0, as C increases GC approaches S
in the dynamic risk measure d0,C , because by definition ℎ(GC) ≥ 0 implies GC ∈ S.
Hence, S is d-reachable in finite time.

by definition, GC reachesS at least at the boundary by C∗when ℎ̃(GC) = 0. Substituting
ℎ̃(GC) = 0 in (4.35) yields

0 ≥ WC∗ (ℎ(G0) − Y) + Y, (4.36)

where we used the fact that d0,C (0, . . . , ℎ(GC
∗)) = d0,C (0, . . . , 0) = 0. Re-arranging

the term and noting that ℎ(G0) ≤ 0 and therefore ℎ(G0) − Y ≤ 0, we obtain
Y

Y − ℎ(G0)
≤ WC .

134

Taking the logarithm of both sides of the above inequality gives log
(

Y
Y−ℎ(G0)

)
≤

C log(W), or equivalently

− log
(
Y − ℎ(G0)

Y

)
≤ −C log(1

W
).

Since 0 < W < 1, log(1
W
) is a positive number. Dividing both sides of the inequality

above with the negative number − log(1
W
) obtains C ≤ log

(
Y−ℎ̃(10)

Y

)
/log

(
1
d

)
.

The upper bound described by inequality (4.32) in Theorem 20 is dependent on the
two parameter W and Y. In our experiments, we often fix 0 < W < 1 and carry
out a line search over Y until the finite-time RCBF condition (4.31) does not hold
anymore. Then, we pick the corresponding C∗ as the upper-bound on the earliest
time the solutions can enter the goal set S.

We have proposed RCBFs and finite-time RCBFs as means to verify d-safety and
d-reachability, respectively. We now propose conditions for verifying d-safety and
d-reachability for Boolean compositions of several control barrier functions.

Proposition 10. Let S8 = {G ∈ R= | ℎ8 (G) ≥ 0}, 8 = 1, . . . , : denote a family of safe
sets with the boundaries and interior defined analogous to S in (1.2) and d be a
given dynamic coherent risk measure. Consider the discrete-time system (4.22). If
there exist a U ∈ (0, 1) such that

d

(
min
8=1,...,:

ℎ8 (GC+1)
)
≥ U min

8=1,...,:
ℎ8 (GC) (4.37)

then the set {G ∈ R= | ∧8=1,...,: (ℎ8 (G) ≥ 0)} is d-safe. Similarly, if there exist a
U ∈ (0, 1) such that

d

(
max
8=1,...,:

ℎ8 (GC+1)
)
≥ U max

8=1,...,:
ℎ8 (GC) (4.38)

then the set {G ∈ R= | ∨8=1,...,: (ℎ8 (G) ≥ 0)} is d-safe.

Proof. If (4.37) holds from the proof of Theorem 19, we can infer that

dC
(

min
8=1,...,:

ℎ8 (GC)
)
≥ UC min

8=1,...,:
ℎ8 (G0).

That is, if G0 ∈ {G ∈ R= | min8=1,...,: ℎ8 (G) ≥ 0}, then

d0,C

(
0, . . . ,

(
min
8=1,...,:

ℎ8 (GC)
))
= dC

(
min
8=1,...,:

ℎ8 (GC)
)
≥ 0

135

for all C ∈ N≥0. Let ℎ8∗ (GC) be the smallest among ℎ8 (GC), 8 = 1, 2, ..., : , i.e., it
satisfies ℎ 9 (GC) ≥ · · · ≥ ℎ8∗ (GC), ∀ 9 ≠ 8∗. From the assumption that d is a coherent
risk measure, we infer that d is monotone (see Definition 16). Then, the latter
inequality implies d0,C

(
0, . . . , ℎ 9 (GC)

)
≥ · · · ≥ d0,C

(
0, . . . , ℎ8∗ (GC)

)
, ∀ 9 ≠ 8∗. Since

d0,C
(
0, . . . ,min8=1,...,: ℎ8 (GC)

)
= d0,C

(
0, . . . , ℎ8∗ (GC)

)
≥ 0 for all C ∈ N≥0, we have

d0,C
(
0, . . . , ℎ 9 (GC)

)
≥ · · · ≥ d0,C

(
0, . . . , ℎ8∗ (GC)

)
≥ 0,

for all 9 ≠ 8∗. Thus, d0,C (0, . . . , ℎ8 (G)) ≥ 0 for all 8 ∈ {1, . . . , :}.

Similarly, if (4.38) holds, we can infer that

dC
(

max
8=1,...,:

ℎ8 (GC)
)
≥ UC max

8=1,...,:
ℎ8 (G0).

Hence, using similar arguments as the proof of the conjunction case,

dC
(

max
8=1,...,:

ℎ8 (GC)
)
≥ 0

for all C ∈ N≥0. That is, there exists at least an 8 ∈ {1, . . . , :} for which

d0,C
(
0, · · · , ℎ8 (GC)

)
= dC

(
ℎ8 (GC)

)
≥ 0.

We next propose conditions for risk-sensitive finite-time reachability of sets com-
posed of Boolean compositions of several functions ℎ as described in (1.2).

Proposition 11. Let S8 = {G ∈ R= | ℎ8 (G) ≥ 0}, 8 = 1, . . . , : denote a family of sets
with the boundaries and interior defined analogous to S in (1.2) and d be a given
dynamic coherent risk measure. Consider the discrete-time system (4.22). If there
exist constants 0 < W < 1 and Y > 0 such that

d

(
min
8=1,...,:

ℎ8 (GC+1)
)
− W min

8=1,...,:
ℎ8 (GC) ≥ Y(1 − W) (4.39)

then the set {G ∈ R= | ∧8=1,...,: (ℎ8 (G) ≥ 0)} is d-reachable. Then, there exists a
constant C∗ satisfying

C∗ ≤ log
(
Y −min8=1,...,: ℎ8 (G0)

Y

)
/log

(
1
W

)
, (4.40)

such that if G0 ∈ X \∪8=1,...,:S8 then GC
∗ ∈ ∩8=1,...,:S8. Similarly, the disjunction case

follows by replacing min with max in (4.39) and (4.40).

136

Proof. We prove the conjunction case and the disjunction case follows the same
lines. From (4.35) in proof of Theorem 20, we infer that if (4.39) holds, we have

d0,C (0, . . . , min
8=1,...,:

ℎ8 (GC)) ≥ WC (min
8=1,...,:

ℎ8 (G0) − Y) + Y, (4.41)

for all C ∈ N≥0. This implies that

C ≤ log
(

Y −min8=1,...,: ℎ8 (G0)
Y − d0,C (0, . . . ,min8=1,...,: ℎ8 (GC))

)
/log

(
1
W

)
. (4.42)

If G0 ∈ X \ ∪8=1,...,:S8, then by definition ℎ8 (G0) < 0, 8 = 1, . . . , : . Hence,
min8=1,...,: ℎ8 (G0) < 0. Furthermore, since 0 < W < 1, log(1/W) > 0. Therefore,
because C ∈ N≥0, we have

Y − d0,C (0, . . . , min
8=1,...,:

ℎ8 (GC)) ≤ Y − min
8=1,...,:

ℎ8 (G0).

That is,
d0,C (0, . . . , min

8=1,...,:
ℎ8 (GC)) ≥ min

8=1,...,:
ℎ8 (G0)

along the solutions to (4.22). Furthermore, GC reaches ∧8=1,...,: (ℎ8 (G) ≥ 0) in the
sense of d whenever

d0,C (0, . . . , min
8=1,...,:

ℎ8 (GC)) ≥ 0.

In addition, the latest GC reaches∧8=1,...,: (ℎ8 (G) ≥ 0) is when GC crosses the boundary
of ∧8=1,...,: (ℎ8 (G) ≥ 0), which is by definition ∧8=1,...,: (ℎ8 (G) = 0). Denoting this
time C∗, we have

d0,C∗ (0, . . . , min
8=1,...,:

ℎ8 (GC
∗)) = d0,C∗ (0, . . . , 0) = 0.

Substituting the latter equality into (4.42) yields (4.40).

4.3.4 Applications: Uncertain cart-pole system
In order to illustrate the results of these risk-aware guarantees, we apply our method
in the case of the cart-pole, modeled as a nonlinear, control-affine discrete-time
system.

GC+1 = GC +



EG

¤\
DC+<? sin \ (; ¤\2+6 cos \)

<2+<? sin2 \
−DC cos \−<? ; ¤\2 cos \ sin \−(<2+<?)6 sin \

; (<2+<? sin2 \)


ΔC + FC (4.43)

137

The disturbanceFC ∈ , enters the system linearly, and is described by a pmf over the
states. This could include the modeling error from this Euler-approximated discrete-
time model, but in this case, it is a simple pmf normally distributed around 0 with
standard deviation f = {0.05, 0.05, 0.2, 0.2} for the four states G =

[
?G , \, EG , ¤\

]
.

The safety set is described by

ℎ(GC) = −20max?
C
G − ECG

2sgn(ECG), (4.44)

where 0max > 0 is a tuneable parameter that designates the maximum linear accel-
eration at any point. This function is positive when ?G < 0, but allows ℎ(GC) > 0
when ?G > 0 if EG is sufficiently negative.

While this safety set is nonlinear in the control inputs, the one-step nature of this
optimization problem results in no issues solving such a program in real-time, using
modern solvers such as IPOPT or NLOPT. In future work, we plan to show how
nonlinear CBFs can be linearized to result in an affine RCBF constraint, with the
error included in the stochastic uncertainty to result in formal safety guarantees.

The RCBF was solved using PAGMO’s integrated SLSQP solver from NLOPT.
Each solution took roughly 0.7 ms to compute on a modern laptop, resulting in a
maximum control frequency of 1428 Hz. Three trajectories are shown in Figure 4.6.
The desired trajectory shows the trajectory with only the nominal controller, which
clearly surpasses the safe set at G = 0. The trajectory corresponding to E[ℎ] was
filtered subject to the total conditional expectation coherent risk measure, which
also corresponds to CVaR with V = 1. While this filter guarantees safety in the
expectation, safety is frequently violated due to the stochastic uncertainty. Finally,
the trajectory corresponding to CVaR with V = 0.01 results in safety over the entire
trajectory.

Similarly, Figure 4.6 also demonstrates the same three trajectories with the finite-
time reachability RCBF. Specifically, we utilize constants W = 0.05 and n = 0.1, with
an initial safety violation of ℎ(G0) = −0.2. From (4.32), this suggests a C∗ ≤ 0.3667s.
While this is not reflected in the plot, which only shows ?CG rather that ℎ(GC), we find
that ℎ(GC∗) > 0 at C∗ = 0.08s, well below the theoretical guarantee.

138

Figure 4.6: Simulation results for the cart-pole system with no RCBF filter, and with
standard RCBF (top) and finite-time RCBF (bottom) filters using total conditional
expectation and CVaR.

139

C h a p t e r 5

TOTAL SYSTEM SAFETY: MULTI-LAYER APPROACH AND
FUTURE DIRECTIONS

In the following section, we take a brief break from safety regulation of a desired
reference signal, and instead formulate the desired controller with aModel Predictive
Control (MPC) framework. While this serves as a departure from the main focus
of this thesis, the concepts illustrated and implemented are valuable to the study of
safety regulation.

5.1 Unified Multi-Rate Control: from Low-Level Actuation to High-Level
Planning

Control design for complex cyber-physical systems, which are described by contin-
uous and discrete variables, is usually divided into different layers [161, 162, 146,
13, 63, 62, 87, 134, 65]. Each layer is designed using model of increasing accuracy
and complexity, which allow the controller to take high-level decision, e.g. perform
an overtaking maneuver, and to compute low-level commands, e.g. the input current
to a motor. High-level decisions and low-level control actions are computed at dif-
ferent frequencies and the interaction between layers should be taken into account
to guarantee safety of the closed-loop system [161].

In this section, we present a multi-rate hierarchical control scheme for nonlinear
systems operating in partially observable environments. Our architecture, which
is composed by three layers running at different frequencies, guarantees constraint
satisfaction and maximization of the closed-loop probability of satisfying the high-
level specifications. At the lowest level, we leverage the continuous time nonlinear
system model and guarantee a bounded tracking error. The mid-level planning
layer computes a reference trajectory using a simplified prediction model and the
low-level tracking error bounds. Finally, at the highest level of abstraction we model
the system-environment interaction using Mixed Observable Markov Decision Pro-
cesses (MOMDPs), which allows us to account for partial environment observations.
This control architecture is illustrated in Figure 5.1, and the environment used is
shown in Figure 5.2.

140

Figure 5.1: Multi-rate control architecture. The high-level decision maker leverages
the system’s state G(C) and partial environment observations >: to compute a goal
cell, the constraint set and the goal positions, which are fed to the mid-level MPC
planner. The planner computes a reference trajectory given the tracking error bounds
E from the low-level tracking controller. Finally at the lowest level, the control action
is computed summing up the mid-level input D< (C) and the low-level input D; (C).

Figure 5.2: This figure shows an environment composed of 25 cells, 3 obstacles
(yellow and blue boxes) and 3 uncertain regions (light brown). In this example the
goal of the controller is to explore the state space in order to find a science sample.

141

5.1.1 Problem formulation
In this work, we consider the same dynamics (1.1), but we denote the state G(C) =
[?>(C), @>(C)]> ∈ R=G for the position vector ?(C) ∈ R=? and the vector @(C) ∈ R=@
collecting the remaining states. Furthermore, the above system is subject to the
following state and input constraints:

D(C) ∈ U, ?(C8) ∈ X? and @(C8) ∈ X@ (5.1)

for all C ∈ R0+ and C8 = 8) for all 8 ∈ Z0+. The time constant) is specified by the
user and, as it will be clear later on, it defines the frequency at which the controller
updates the planned trajectory. In the above equation (5.1), X? represents free space
and X@ is a user-defined constraint set.

High-level objectives are expressed using syntactically co-safe Linear Temporal
Logic (scLTL) specifications. For a set of atomic proposition AP, an scLTL
specification is defined as follows:

k := ? | ¬? | k1 ∧ k2 | k1 ∨ k2 | k1*k2 | © k,

where the atomic proposition ? ∈ AP and k, k1, k2 are scLTL formulas, which can
be defined using the logic operators negation (¬), conjunction (∧) and disjunction
(∨). Furthermore, scLTL formulas can be specified using the temporal operators
until (*) and next (©). Each atomic proposition ? is associated with a subset
of the high-level state space P ⊂ S × Z and a high-level state l: satisfies the
proposition ? if l: ∈ P. Finally, satisfaction of a specification k for the trajectory
8: = [l: , l:+1, . . .], denoted by

8: |= k (5.2)

is recursively defined as follows: 8) 8: |= ? ⇐⇒ l: ∈ P, 88) 8: |= k1∧k2 ⇐⇒
(8: |= k1) ∧ (8: |= k1), 888) 8: |= k1 ∨ k2 ⇐⇒ (8: |= k1) ∨ (8: |= k1), 8E)
8: |= k1*k2 ⇐⇒ 8; |= k2 and8 9 |= k2, ∀ 9 ∈ {:, . . . , ;−1}, E)8: |= ©k ⇐⇒
8:+1 |= k. Please refer to [25, Chapter 3] for further details.

We consider nonlinear dynamical systems operating in partially observable environ-
ments, which are partitioned into C1, . . . , C2 cells as in the example from Figure 5.2.
We assume that the state of the system is perfectly observable, but we are given
only partial observations about the environment state. Thus, at the highest level
of abstraction, we model the interaction between the nonlinear system (1.1) and
the environment using a Mixed Observable Markov Decision Process (MOMDP).

142

A MOMDP provides a sequential decision-making formalism for high-level plan-
ning under mixed full and partial observations [113] and it is defined as tuple
(S,Z,A,O,)B,)I, $), where

• S = {1, . . . , |S|} is a set of fully observable states;

• Z = {1, . . . , |Z|} is a set of partially observable states;

• A = {1, . . . , |A|} is a set of actions;

• O = {1, . . . , |O|} is the set of observations for the partially observable state
I ∈ Z;

• The indicator function1)B : S×Z×A×S → {0, 1} equals one if the system
will transition to a state B′ given the action 0 and current state (B, I), i.e.,

)B (B, I, 0, B′) =


1 If B′ = 5B (B, I, 0)

0 Else
,

where the high-level update function 5B : S ×Z × A → S.

• The function)I : S ×Z × A × S ×Z → [0, 1] describes the probability of
transitioning to a state I′ given the action 0, the successor observable state B′

and the system’s current state (B, I), i.e.,

)I (B, I, 0, B′, I′)
:=%(I:+1= I′|B: = B, I: = I, 0: =0, B:+1= B′);

• The function $: S × Z × A × O → [0, 1] describes the probability of
observing the measurement > ∈ O, given the current state of the system
(B′, I′) ∈ S × Z and the action 0 applied at the previous time step, i.e.,

$ (B′, I′, 0, >) := %(>: = > |B: = B′, I: = I′, 0:−1 = 0);

MOMDPs were introduced in [113] to model systems where a subspace of the
state space is perfectly observable. In this work, the high-level observable state B
represents the location of the system, i.e., the grid cell containing the position vector
?(C) which is part of state G(C) = [?>(C), @>(C)]> of the nonlinear system (1.1).

1We introduced the indicator function as it will be used later on to compute the belief vector
update.

143

On the other hand, the definition of the partially observable state I depends on the
application, and it describes how the environment may affect the evolution of the
system. For example, it may be used to model external events (e.g., rain, wind,
etc) that would affect the traversability of specific regions of the state space. The
evolution of the environment state I may be stochastic and, most importantly, it is
not perfectly observable. Thus, the controller has to make decisions based on the
belief about the environment. For example, when the objective is to reach a goal
location before a deadline and only partial knowledge about the traversability of the
terrain is given, the controller should follow a path that maximizes the probability
of reaching the goal in time given our belief about the environment.

More formally, control actions are computed based on the environment belief vector
1: ∈ B = {1 ∈ R|Z| :

∑|Z|
I=1 1

(I) = 1} representing the posterior probability that the
partially observable state environment I: equals I ∈ Z, i.e., 1: = [1 (1): , . . . , 1

(|Z|)
:
]

with
1
(I)
:
= P(I: = I |o: , s: , a:−1), ∀I ∈ {1 . . . , |Z|},

where at time : the observation vector o: = [>0, . . . , >:], the observable state
vector s: = [B0, . . . , B:], and the action vector a:−1 = [00, . . . , 0:−1]. Notice that
the evolution of the environment belief vector 1: is stochastic as it is a function of
the noisy observation vector o: = [>0, . . . , >:]. Therefore, the planned path that
maximizes the probability of completing the task should be computed online at after
collecting the observation >: and updating the belief vector 1: .

Given the system’s state G(C) ∈ R= and : observations o:−1 = [>0, . . . , >:−1] ∈ O:

about the environment, our goal is to design a control policy

c : R= × O: →U, (5.3)

which maps the state G(C) and the observation vector o:−1 to the continuous control
action D ∈ U. Furthermore, the control policy (5.3) should guarantee that state
and input constraints (5.1) are satisfied and that the probability of satisfying the
specification (5.2) is maximized.

5.1.2 Multi-rate control architecture
In this subsection, we describe the multi-rate control architecture. First, we design
a low-level CLF-CBF controller, which tracks a reference state-input trajectory and
guarantees bounded tracking errors. Afterwards, we show how to update the state-
input reference trajectory leveraging an MPC, which is designed using a goal state

144

computed from a discrete high-level decision maker. Finally, we introduce the
hierarchical multi-rate architecture, which guarantees that the synthesis objectives
are satisfied.

Low-Level Control

We leverage CBFs and CLFs to design a low-level tracking controller for the non-
linear system (1.1). CBFs guarantee safety for nonlinear system, but they are
suboptimal as the control action is computed without forecasting the system’s tra-
jectory. For this reason, we use CBFs to enforce safety around a reference state-input
trajectory that is computed at low frequency by the mid-level planner, as shown in
Figure 5.1.

Error Model: At the lowest layer, the goal of the controller is to track a reference
trajectory Ḡ(C). We assume that the reference trajectory is given by the following
Linear Time-Varying (LTV) model:

ΣḠ :

¤̄G(C) = �bC/)c Ḡ(C) + �bC/)cD< (C), C ∈ T

Ḡ+(C) = ΔḠ (G(C)), C ∈ T 2
, (5.4)

whereT 2 = ∪∞
9=0{ 9)}, T = ∪

∞
9=0(9), (9+1))) and the time) from (5.1) is specified

by the user. Furthermore, we denote Ḡ−(C) = limg→C Ḡ(g) and G+(C) = limg→C Ḡ(g)
as the right and left limits of the reference trajectory Ḡ(C) ∈ R=, which is assumed
right continuous. In the above system, the reference input D< (C) ∈ R3 and the reset
map ΔḠ : R= → R= maps the current state of the system G(C) to the state Ḡ(C) of
the reference trajectory. Both the reference input and the reset map are given by the
middle layer. Finally, the time-varying matrices (�bC/)c , �bC/)c) are known and, in
practice, may be computed linearizing the system dynamics (1.1).

Given the nonlinear system (1.1) and the LTV model (5.4), we define the error state
4(C) = G(C) − Ḡ(C) and the associated error dynamics:

Σ4 :

¤4(C) = 54 (G(C), Ḡ(C), D; (C) + D< (C), C), C ∈ T

4+(C) = G+(C) − Ḡ+(C), C ∈ T 2
(5.5)

where the time-varying error dynamics are

54 (G,Ḡ, D; + D<, C)
= 5 (G) + 6(G) (D; + D<) − (�bC/)c Ḡ + �bC/)cD<).

In the above definition, we dropped the dependence on time for states and inputs to
simplify the notation. Furthermore, we introduce the low-level input constraint set

145

U; ⊂ U and the mid-level input constraint set U< ⊂ U which partition the input
space, i.e.,

U; ⊕ U< = U .

Next, we design a low-level controller which guarantees that the reference trajectory
Ḡ(C) from the LTV model (5.4) is tracked within some error bounds.

Control Barrier and Lyapunov Functions: We show how to design a tracking
controller using CBFs and CLFs. First, we define the candidate Lyapunov function

+ (4) = | |4 | |& , (5.6)

where | |4 | |& = 4>&4. Furthermore, we introduce the following safe set for the error
dynamics (5.5):

E = {4 ∈ R= : ℎ4 (4) ≥ 0} ⊂ R=. (5.7)

The above function ℎ4 is defined by the user and it depends on the application as
discussed in the result section.

Finally, the CBF associated with the safe set (5.7), and the CLF from (5.6) are used
to define the following CLF-CBF Quadratic Program (QP):

E∗; (C) = argmin
E;∈U; ,W

| |E; | |2 + 21W
2

s.t.
m+ (4)
m4

54 (G, Ḡ, E; + D<) ≤ −22+ (4) + W
mℎ4 (4)
m4

54 (G, Ḡ, E; + D<) ≥ −U2(ℎ4 (4)),

(5.8)

where we dropped the time dependence to simplify the notation, and E; ∈ U; is
the low-level control action. In the above QP, the parameters 21 ∈ R0+, 22 ∈ R0+,
U1 ∈ K4 and U2 ∈ K4. Given the optimal control action E∗

;
(C) from the QP (5.8),

the low-level control policy is defined as follows:

D; (C) = c;
(
G(C), Ḡ(C), D< (C)

)
= E∗; (C). (5.9)

Assumption 5. The CLF-CBF QP (5.8) is feasible for all 4 = G − Ḡ ∈ E and for all
D< ∈ U<.

Remark 9. We underline that Assumption 5 is satisfied for some U1 ∈ K4 and
U2 ∈ K4 when the set E is robust control invariant for system (5.5) with D< (C) ∈ U<
and mild assumptions on the Lie derivative of (5.5) hold. The set E may be hard
to compute and standard techniques are based on HJB reachability analysis [65],
SOS programming [139], Lyapunov-based methods [138] and Lipschitz properties
of the system dynamics [37, 167].

146

The low-level control policy (5.9) guarantees that the difference between the evo-
lution of the nonlinear system (1.1) and the LTV model (5.4) is bounded. Indeed,
when Assumption 5 is satisfied, the CLF-CBF QP (5.8) guarantees invariance of the
safe set (5.7) for all C ∈ (8), (8 + 1))) and 8 ∈ Z0+. Next, we show how to design a
mid-level planner which leverages the safe set E from (5.7).

Mid-Level Planning

In this section we describe the mid-level planning strategy. At this level of abstrac-
tion, we assume that we are given a goal grid cell where we would like to steer the
system. Afterwards, we compute a reference state-input trajectory using an MPC,
which leverages a simplified model and the tracking error bounds from the previous
section.

GridModel: Given the state G(C) = [?>(C), @>(C)]>, we define the current grid cell
C:curr, which contains the nonlinear system (1.1) for time C ∈ [C: , C:+1), i.e.,

?(C) ∈ C:curr ⊂ X?, ∀C ∈ [C: , C:+1). (5.10)

Similarly, we define the goal cell C:goal, which represents the region where we want
to steer the system for time C ∈ [C: , C:+1). Finally, we introduce the goal equilibrium
sets X:curr and X:goal, which collect the unforced equilibrium states that are contained
into C:curr and C:goal, i.e., for 8 ∈ {curr, goal}

X:8 = {G = [?, @] ∈ R= |? ∈ C:8 , ¤G = 5 (G) = 0} ⊂ R=. (5.11)

Throughout this section, we assume that C: , X:goal, C
:
curr and C:goal are given by the

high-level planner andwe synthesize a controller to drive the system from the current
cell C:curr to the goal cell C:goal.

Model Predictive Control: We design an MPC to compute the mid-level input
D< (C) that defines the evolution of the reference trajectory (5.4) and to define the
reset map ΔḠ for the LTV model (5.4). The MPC problem is solved at 1/T Hz and
therefore the reference mid-level input is piecewise constant, i.e.,

¤D< (C) = 0 ∀C ∈ T = ∪∞:=0(:), (: + 1))).

Next, we introduce the following discrete time linear model:

Ḡ3
(
(8 + 1))

)
= �̄8 Ḡ

3
(
8)

)
+ �̄8D

(
8)

)
, (5.12)

where for all 8 ∈ Z0+

�̄8 = 4
� b8) /) c) and �̄8 =

∫)

0
4� b8) /) c ()−[)�b8)/)c3[,

147

and the matrices �b8)/)c and �b8)/)c are defined in (5.4). Now notice that, as the
mid-level input D< is piecewise constant, if at time C8 = 8) the state Ḡ(8)) = Ḡ+(8)) =
Ḡ3 (8)), then at time C8+1 = (8 + 1)) we have that

Ḡ+((8 + 1))) = Ḡ3 ((8 + 1))). (5.13)

Given the discrete time model (5.12), at time C8 = 8) ∈ T 2 we solve the following
finite time optimal control problem:

� (G(8)), #) =

min
vC ,G

3
8 |8

| |G3
8 |8 − G(8)) | |&4 +

8+#−1∑
C=8

ℎ
(
G3
C |8, EC |8

)
+ ||?3

8+# |8 − ?
:
goal | |& 5

s.t. G3
C+1|8 = �̄CG

3
C |8 + �̄CE

3
C |8

G3
C |8 =

[
?3
C+1|8
@3
C+1|8

]
∈ X:?,@ 	 E, E3C |8 ∈ U<

G3
8 |8 − G(8)) ∈ E

G3
8+# |8 ∈ X

:
goal 	 E?,∀C = {8, . . . , 8 + # − 1},

(5.14)

where E is defined in (5.7), | |? | |& = ?>&?,

X:?,@ =
{
G =

[
?

@

]
∈ R= |? ∈ C:curr ∪ C:goal and @ ∈ X@

}
(5.15)

and

E? =
{
4 =

[
4?

0

]
∈ R= |∃4@ ∈ R=? and

[
4?

4@

]
∈ E

}
. (5.16)

Notice that the MPC problem (5.14) is designed based on the time-varying com-
ponents X:goal, C

:
curr, C:goal, ?

:
goal which are given by the high-level decision maker,

as shown in Figure 5.1. Problem (5.14) computes a sequence of open loop actions
v3C = [E3C |C , . . . , E

3
C+# |C] and an initial condition G3

8 |8 such that the predicted trajectory
steers the system to the terminal set X:goal, while minimizing the cost and satisfying
state and input constraints. Let v3,∗C = [E3,∗

C |C , . . . , E
3,∗
C+# |C] be the optimal solution and

[G3,∗
C |C , . . . , G

3,∗
C+# |C] the associated optimal trajectory, then the mid-level policy is

Π< :

D< (C) =c<

(
G(C), #

)
= E

3,∗
C |C C ∈ T 2

¤D< (C)=0 C ∈ T
. (5.17)

148

Finally, we define the reset map from the LTV model (5.4) as follows:

ΔḠ (G(C)) = G3,∗C |C . (5.18)

Assumption 6. Consider the equilibrium set X:curr defined in Equation (5.10). For
all states G(C) ∈ X:curr ⊕ E Problem (5.14) is feasible with horizon # .

The above assumption is satisfied when any equilibrium state Ḡ ∈ X:curr of the
discrete time system (5.12) can be steered to the goal equilibrium set X:goal in at
most # time steps. More formally, Assumption 6 holds when, for the discrete time
system (5.12), X:goal is #-step backward reachable from the set X:curr.

Later, we will show that when the nonlinear system (1.1) and the LTV system (5.4)
are in closed-loop with the low-level policy (5.9) and the mid-level policy (5.17),
then state and input constraints (5.1) are satisfied for system (1.1). Furthermore, the
nonlinear system (1.1) is steered from the current cell C:curr to the goal cell C:goal in
finite time.

Remark 10. We highlight that also RRT-based methods can be combined with CLF-
CBF to design amulti-rate control architecture. In particular, it would be possible to
leverage sampling-basedmethods, such as [76, 19, 56, 88], to repeatedly solve online
problem (5.14). Notice that it important to consider the constraint tightening from
problem (5.14) that accounts for the low-level tracking error. Indeed, this constraint
tightening strategy allow us to guarantee safety of the nonlinear system (1.1) in
closed-loop with the proposed multi-rate control architecture, as we will discuss
later on.

High Level Decision Making

Here, we first describe how to compute a control policy which maximizes the
probability of satisfying the specifications. Afterwards, we show how to compute
the time-varying components ?:goal, C

:
curr, C:goal and X

:
goal used in the MPC prob-

lem (5.14).

Belief Model: For the MOMDP, we introduced the belief vector 1: ∈ B that
represents the posterior probability that the partially observable state I: equals
I ∈ Z.

149

The belief is a sufficient statistic and, for all I′ ∈ Z, it evolves accordingly to the
following update equation:

1
(I′)
:+1 = [$ (B:+1, I

′, 0: , >:)
×

∑
I∈Z

)B (B: , I, 0: , B:+1))I (B: , I, 0: , B:+1, I:+1)1 (I): ,

where [is a normalization constant [113]. Notice that the above update equation
can be written in a compact form, i.e.,

1:+1 = 51 (B:+1, B: , >: , 0: , 1:), (5.19)

where 51 : S ×S × O ×A ×B → B. Finally, given the belief 1: , we introduce the
maximum likelihood environment state estimate:

Î: = argmax
I∈Z

P(I: = I |o: , s: , a:−1) = argmax
I∈Z

1 (I) . (5.20)

Quantitative Control Policy: At the highest level of abstraction our goal is to
compute a control policy cℎ, which maximizes the probability that the high-level
trajectory 8 satisfies the specifications k. Such control control policy can be
computed solving the following quantitative problem:

cℎ = argmax
c

Pc [8 |= k], (5.21)

where Pc [8 |= k] represents the probability that the specification k is satisfied
for the closed-loop trajectory 8 under the policy c. The solution to the above
qualitative problem can be approximated using point-based and simulation-based
strategies [29, 63, 155, 62, 159]. In this work, we used the point-based strategy
discussed in [126]. The resulting high-level control policy maps the high-level state
B: and the environment belief 1: to the high-level control action 0: , i.e.,

0: = cℎ (B: , 1:). (5.22)

The high-level policy (5.21) is leveraged in Algorithm 9 to compute the goal position
?:goal and the sets C:curr and C:goal, which are used in the MPC problem (5.14). In
Algorithm 9, we first use the function getState, which maps the current state G(C)
to the high-level state B: representing the cell containing the nonlinear system 1.1
(line 2). Then, we compute the current cell C:curr associated with the high-level state
B: using the function getCell (line 3). Afterwards, we update the belief state 1:

150

Algorithm 9 Update High-Level
inputs: G(C), >: , B:−1, 0:−1, 1:−1
set current high-level state B: = getState(G(C))
compute current set C:curr = getCell(B:)
update belief 1: using (5.19)
compute high-level action 0: = cℎ (B: , 1:)
compute maximum likely estimate Î: using (5.20)
update state B:+1 = 5B (B: , Î: , 0:)
compute goal set C:goal =getCell(B:+1)
computed the forecasted action 0̂ = cℎ (B:+1, 1:)
compute the forecasted state B̂:+2 = 5B (B:+1, Î: , 0̂)
set forecasted set C:forc =getCell(B:+1)
get forecasted cell center 2forc = getCenter(C:forc)
compute goal position ?:goal = Proj(2forc, C:goal)
return: 0: , 1: , B: , C:goal, C

:
curr, ?:goal

Figure 5.3: The above figure illustrated the high-level updated from Algorithm 9
that is used to compute the goal position (green star).

and we compute the control action 0: (lines 4 − 5). Given the control action 0:
and the maximum likelihood estimator of the environment state Î: , we update the
high-level state and we compute the goal cell C:goal (lines 6 − 8). Next, given the
current belief 1: , we compute the action 0̂ that the high-level planner would select
at the next update : + 1 assuming the belief 1: is unchanged. We leverage this
action to estimate the high-level state B̂:+2, which represents the location where we

151

should steer the system after transitioning to the high-level state B:+1. The state B̂:+2
is used to incorporate forecast into the high-level planner. In particular, given the
B̂:+2 we compute the forecasted cell center 2forc ∈ R=? and the forecasted cell C:forc
where the system should be steered to, if no informative observations are collected
(lines 11 − 12). Finally, the goal cell C:goal and the forecasted center 2forc ∈ R=? are
used to compute the goal position ?goal (line 13).

Figure 5.3 illustrates the high-level update from Algorithm 9 that is used to compute
the goal position leveraged in the design of the mid-level MPC. In this example,
the Segway is located in the top left corner of the grid and the current high-level
action 0: is to move east. The figure also shows the forecasted action 0̂ that the
Segway would take from the goal region, if the belief 1: is not updated. Basically,
0̂ is a high-level open-loop prediction of the future control action and it is used to
incorporate forecast into the high-level decision maker. Indeed, the goal position
?:goal is computed projecting the forecasted cell center 2forc onto the goal cell C:goal.

Control Architecture

Finally, we introduce the multi-rate hierarchical control architecture which leverages
the low-level, mid-level and high-level control policies from the previous sections.
The multi-rate control Algorithm 10 details the architecture depicted in Figure 5.1.
When the nonlinear system (1.1) reaches the goal cell (i.e., ?(C) ∈ C:goal), the
high-level decision maker reads the new observations >:+1 and updates high-level
state, action, goal position ?:goal, goal cell C

:
goal and current cell C:curr (lines 3 − 4).

Finally, it updates the high-level time : and it initializes the MPC horizon # :
8
= # .

Afterwards, the mid-level planner (lines 8 − 20) updates the mid-level time counter
8 and the planned trajectory at a constant frequency of 1/) Hz. First, it solves the
MPC problem (5.14) with # = # :

8
and time-varying components X:goal, C

:
goal, C

:
curr

and ?:goal. If the MPC problem is not feasible, the planner computes a contingency
plan (lines 10− 14), otherwise it updates the prediction horizon (lines 15-16). Note
that the MPC problem solved in line 9 of Algorithm 9 may be not feasible as the
terminal constraint set X:goal is updated by the high-level planner. For this reason,
we introduced the contingency plan (lines 10 − 14), where the MPC problem from
line 11 is constructed using the terminal constraint setX:−1

goal . As we will show in the
proof of Theorem 21, when the MPC problem constructed with terminal constraint
set X:goal is not feasible, we can guarantee the feasibility of the contingency MPC
with X:−1

goal as terminal constraint. This fact allows us to guarantee safety for the
closed-loop system. Finally, Algorithm 10 computes the low-level control action

152

Algorithm 10 Multi-Rate Control
inputs: : , B: , 1: , 0: , 8, G(C), D< (C), Ḡ(C), C:curr, C:goal, ?

:
goal, #

:
8
, C:−1

curr , C:−1
curr ,

?:−1
goal, #

:−1
8

if @(C) ∈ C:goal or : = 0 then
//Update high-level goal
measure >:+1
update 0:+1,1:+1, B:+1, X:goal, C

:+1
goal , C

:+1
curr , ?:+1goal using Algorithm 9 with G(C),

>:+1, B: , 0: , 1:
set # :+1

8
= #

: = : + 1
end if
if C ∈ T 2 = ∪∞

9=0{ 9)} then
//Update mid-level plan
solve MPC problem (5.14) with # = # :

8
, and X:goal, C

:
curr, C:goal, ?

:
goal

if the MPC problem (5.14) is not feasible then
solve MPC problem (5.14) with # = # :−1

8
, and X:−1

goal , C
:−1
curr , C:−1

goal , ?
:−1
goal

set # :−1
8+1 = max(1, # :−1

8
− 1)

set # :
8+1 = #

:
8

else
set # :−1

8+1 = # :−1
8

set # :
8+1 = max(1, # :

8
− 1)

end if
set D< (C) = E3,∗C |C + (G(C) − Ḡ

3,∗
C |C)

update Ḡ(C) = ΔḠ (G(C)) = Ḡ3,∗C |C
8 = 8 + 1

end if
//Compute low-level control
solve the CBF problem (5.8)
Compute total input D(C) = D; (C) + D< (C)
Return: D(C), : , B: , 1: , 0: , 8, G(C), D< (C), Ḡ(C), C:curr, C:goal, ?

:
goal, #

:
8
, # :−1

8

solving the CLF-CBF QP (5.8) and the total control input D(C) = D; (C) + D< (C).

5.1.3 Safety and performance guarantees
In this subsection we show the properties of the proposed multi-rate control archi-
tecture. We consider the augmented system:

Σaug :


¤G(C) = 5

(
G(C)

)
+ 6

(
G(C)

) (
D; (C) + D< (C)

)
, C ≥ 0

¤̄G(C) = �bC/)c Ḡ(C) + �bC/)cD< (C), C ∈ T

Ḡ+(C) = ΔḠ (G(C)), C ∈ T 2
(5.23)

153

where the nonlinear dynamics for state G(C) ∈ R= are defined in (1.1) and the LTV
model for the nominal state Ḡ(C) ∈ R= is defined in (5.4) for the reset map (5.18)
given by the MPC. In what follows, we analyse the properties of the proposed multi-
rate control Algorithm 10 in closed-loop with system (5.23). We show that the
closed-loop system satisfies state and input constraints (5.1) and that the proposed
algorithm maximizes the probability of satisfying the specifications. Notice that in
practice the state G(C) is given by the nonlinear system (1.1), whereas the nominal
state Ḡ(C) is computed by the low-level layer to update the tracking error 4(C), as
shown in Figure 5.1.

Proposition 12. Consider the closed-loop system (5.9) and (5.23) with mid-level
input D< (C) ∈ U< and ¤D< (C) = 0,∀C ∈ T . If Assumption 5 holds and the error
4(:)) = G(:))− Ḡ(:)) ∈ E for all : ∈ Z0+, then the control policy (5.9) guarantees
that 4(C) ∈ E and D; (C) ∈ U; , ∀C ∈ [:), (: + 1))).

Proof. The proof follows from standard CBF arguments. First, we notice that the
error 4(:)) = G(:)) − Ḡ(:)) follows the error dynamics in (5.5). Furthermore, by
construction the time-varying matrices (�bC/)c , �bC/)c) are constant for C ∈ [:), (: +
1))). Therefore, for all : ∈ Z0+ and C ∈ [:), (: + 1))), we have that error
dynamics in (5.5) are nonlinear control affine for the low-level input D; . This
fact implies that, if at time C = :) the error 4(:)) = G(:)) − Ḡ(:)) ∈ E, then
from the feasibility of the CLF-CBF QP (5.8) from Assumption 5 we have that
4(C) = G(C) − Ḡ(C) ∈ E, ∀C ∈ [:), (: + 1))).

Proposition 12 shows that between time C8 = 8) and C8+1 = (8 + 1)) the difference
between the state G and the state Ḡ of the reference trajectory is bounded. Next,
we show that this property allows us to guarantee safety and convergence in finite
time to the goal cell C:goal for the nonlinear system (1.1). In turns, convergence in
finite time allows us to show that the high-level specifications are satisfied, when
the following assumption holds.

Assumption 7. Algorithm 9 returns a goal cell C:goal which is contained in the
feasible set X?.

Remark 11. The above assumption is satisfied when a perfect measurement is
available when the system is in a grid cell adjacent to an uncertain region. In this
case, the high-level planner is able to identify the obstacle-free cells and it will not
return a goal cell C:goal where an obstacle is located.

154

Theorem 21. Let Assumptions 5-7 hold and consider system (5.23) in closed-
loop with Algorithm 10. If at time C8 = 8) the MPC problem (5.14) is feasible
with # :

8
= # and time-varying components X:goal, C

:
curr, C:goal and ?

:
goal, then there

exists a 9 ∈ {8, . . . , 8 + # − 1} such that the closed-loop system satisfies state
and input constraints (5.1) for all C ∈ {8), . . . , 9)} and the state G((9 + 1))) =
[?>((9 + 1))), @>((9 + 1)))]> reaches the goal cell C:goal, i.e., ?((9 + 1))) ∈ C:goal.

Proof. From Assumption 7 we have that the high-level policy (5.21), takes a high-
level action 0: which avoids collision with the obstacles, i.e.,

C:goal ⊂ X? . (5.24)

Next, we show that if at time C8 = 8) the MPC problem (5.14) is feasible with
X:goal, C

:
goal, C

:
curr, ?

:
goal and #

:
8
> 1, then at time C8+1 = (8 + 1)) the MPC prob-

lem (5.14) is feasible with X:goal, C
:
goal, C

:
curr, ?

:
goal and #

:
8+1 = #

:
8
− 1. Let

[G3,∗
8 |8 , G

3,∗
8+1|8, . . . , G

3,∗
8+# :

8
|8] and [D

3,∗
8 |8 , . . . , D

3,∗
8+# :

8
−1|8]

be the optimal state input sequence to theMPC problem (5.14) at time C8 = 8) . Then,
from Proposition 12, equation (5.13) and the definition of the reset map (5.18), we
have that

G((8 + 1))) − Ḡ3,∗
8+1|8 = G((8 + 1))) − Ḡ−((8 + 1))) ∈ E (5.25)

and therefore, by standard MPC arguments, the following sequences of # :
8
−1 states

and # :
8
− 2 inputs

[G3,∗
8+1|8, . . . , G

3,∗
8+# :

8
|8] and [D

3,∗
8+1|8, . . . , D

3,∗
8+# :

8
−1|8] (5.26)

are feasible at time C8+1 = (8+1)) for theMPCproblem (5.14)withX:goal, C
:
goal, C

:
curr, ?

:
goal

and # :
8+1 = #

:
8
− 1.

Now, we show that state and input constraints are satisfied until the system reaches
the goal set C:goal. Recall that by assumption the MPC problem is feasible at
time C8 = 8) with X:goal, C

:
goal, C

:
curr, ?

:
goal, #8 = # and assume that ?(9)) ∉ C:goal

for all 9 ∈ {8, . . . , 8 + # − 1}. By induction the MPC problem (5.14) with
X:goal, C

:
goal, C

:
curr, ?

:
goal and #

:
9
= # :

8
− 9 is feasible for all 9 ∈ {8, . . . , 8+#−1}. Con-

sequently, Algorithms 9 returns a feasible mid-level control action2 D< (C) ∈ U<.
2Note that as ?(9)) ∉ C:goal for all 9 ∈ {8, . . . , 8 + # − 1} the MPC time-varying components are

not updated.

155

Furthermore, from Proposition 12 we have the low-level controller returns a feasible
control action D; (C) ∈ U; and therefore

D(C) = D; (C) + D< (C) ∈ U; ⊕ U< = U,∀C ∈ R0+. (5.27)

The feasibility of the state-input sequences in (5.26) for the MPC problem solved
with X:goal, C

:
goal, C

:
curr, ?

:
goal implies that

G
3,∗
9 | 9 ∈ X

:
?,@ 	 E

G(9)) − G3,∗
9 | 9 ∈ E,

(5.28)

∀ 9 ∈ {8, . . . , 8+#−1}. Consequently, from the above equation and definition (5.15),
we have that

?(9)) ∈ X? and @(9)) ∈ X@,∀ 9 ∈ {8, . . . , 8 + # − 1}.

Finally, we show that the state G(C) of the augmented system (5.23) in closed-loop
with Algorithm 10 converges to the goal cell C:goal in finite time. We have shown
that, if ?(9)) ∉ C:goal for all 9 ∈ {8, . . . , 8 +# −1}, then the MPC problem is feasible
for all time C: = :) and : ∈ {8, . . . , 8 + # − 1}. Now we notice that by feasibility of
the MPC problem at time C8+#−1 = (8 + # − 1)) with #8+#−1 = 1, we have that the
optimal planned trajectory satisfies

G
3,∗
8+# |8+#−1 ∈ X

:
goal 	 E? .

From Proposition 12, equation (5.13) and the definition of the reset map (5.18), we
have that

G((8 + #))) − Ḡ3,∗
8+# |8 = G((8 + #))) − Ḡ((8 + #))) ∈ E .

The above equation together with definition (5.16) imply that at time C8+# = (8+#))

G((8 + #))) =
[
?((8 + #)))
@((8 + #)))

]
∈ X:goal 	 E? ⊕ E

and therefore ?((8 + #))) ∈ C:goal.

Concluding, if for all time C 9 = 9) and 9 ∈ {8, . . . , 8 + # − 1} we have that
?(9)) ∉ C:goal, then ?((8 + #))) ∈ C

:
goal. Thus, the closed-loop system converges

to the goal cell C:goal in finite time.

156

Finally, we leverage Theorem 21 to show that the multi-rate control Algorithm 10
steers the system in finite time to goal cell C:goal for all : ∈ Z0+ and, consequently,
the closed-loop systems satisfies the high-level specifications when Assumption 7 is
satisfied. In particular, we show that the contingency plan from lines 10–14 of Al-
gorithm 10 guarantees feasibility of the planner when the time-varying components
are updated.

Theorem 22. Let Assumptions 5-7 hold and consider system (5.23) in closed-loop
with Algorithm 10. If G(0) ∈ X:curr ⊕ E, then the closed-loop system (10) and (5.23)
maximizes the probability that the closed-loop satisfies the high-level specifications.

Proof. The proof follows by induction. Assume that at time C8 = 8) the closed-loop
system reaches the goal cell C:goal, i.e., ?(8)) ∈ C

:
goal. Then, at time C8 = 8) we

have that the high-level decision maker from Algorithm 10 (lines 2–9) updates the
high-level time and the time-varying components X:+1goal , C

:+1
curr , C:+1goal , ?

:+1
goal used to

design the MPC problem (5.14). After the high-level update, the MPC problem
with # = # :+1

9
, X:+1goal , C

:+1
curr , C:+1goal , and ?

:+1
goal may be either feasible or unfeasible3.

Thus, we analyse the following three cases for 9 ≥ 8:

Case 1: The MPC problem with C:+1goal , C
:+1
curr , ?

:+1
goal and # = # :+1

9
is feasible,

therefore from Theorem 21 we have that Algorithm 10 steers the nonlinear system
to the goal C:+1goal .

Case 2: The MPC problem with C:+1goal , C
:+1
curr , ?

:+1
goal and # = # :+1

9
is not feasible

and # :
9
= 1. Then from Theorem 21, we have that the contingency MPC with # :

9
,

C:goal, C
:
curr and ?:goal is feasible and Algorithm 9 returns a feasible control action.

Furthermore, as # :
9
= 1 the terminal state of the optimal predicted trajectory is

G
3,∗
9+1| 9 ∈ X

:
goal 	 E? .

The above equation together with equation (5.25) imply that

G((9 + 1))) ∈ X:goal 	 E? ⊕ E ⊂ X
:
goal ⊕ E .

Therefore, from Assumption 6, we have that at the next time step C 9+1 = (9 + 1))
the MPC problem with # :+1

9+1 = # , X
:+1
goal , C

:+1
goal , C

:+1
curr and ?:+1goal is feasible and, from

Theorem 21, we have that Algorithm 10 steers the nonlinear system to the goal C:+1goal
in finite time.

3Unfeasiblity may be caused by the update of C:+1goal , C
:+1
curr and X:+1curr .

157

Case 3: The MPC problem with C:+1goal , C
:+1
curr , ?

:+1
goal and # = # :+1

9
is not feasible

and # :
9
> 1. Then from Theorem 21, we have that the contingency MPC with # :

9
,

C:goal, C
:
curr and ?:goal is feasible (lines 10–13 in Algorithm 10).

Concluding, we have that by assumption G(0) ∈ X:curr ⊕ E, which from Assump-
tion 6 implies that at time C = 0 the MPC is feasible and therefore by Theorem 21
Algorithm 10 steers system (1.1) to G0

goal. Afterwards, the conditions form one the
above Cases 1–3 are met. Now notice that at each time step # :

9+1 = #
:
9
−1 (line 16),

thus Case 3 occurs at most # times. Therefore, after at most # time steps the con-
ditions from either Case 1 or Case 2 are met and Algorithm 10 will steer the system
to C:+1goal . Consequently, as the high-level policy (5.21) maximizes the probability
of satisfying the specifications by definition, we have that the closed-loop system
maximizes the probability of satisfying the specifications.

5.1.4 Applications: Multi-rate control on the Segway
We tested the proposed strategy in simulation and experiment on navigation tasks
inspired by the Mars exploration mission [62, 63, 110]. We control a Segway-like
robot and our goal is to explore the environment to find science samples which may
be located with some probability in known goal regions G8 shown in Figure 5.4.
The specification k = ¬collision* ((Goal1 ∧ sample1) ∨ (Goal2 ∧ sample2)),
where the atomic proposition sample8 is satisfied if the region G8 contains a science
sample and the atomic proposition Goal8 is satisfied if the Segway is in a goal cellG8.
The high-level control policy associated with specification k is computed solving a
reach-avoid problem for the product MOMDP, which is computed preforming the
cross-product between an automata associated the specification k and the original
MOMDP4. For further details on how to convert a specification into a finite state
automata and the computation of the product, please refer to [25]. While performing
the search task, we have to collect observations to determine the state of the uncertain
region R8, which may be traversable with some probability. The controller has
access to only partial observations about the environment. In particular, the Segway
receives a perfect observation about the state of the uncertain region R8 when one
cell away, an observation which is correct with probability 0.8, when the Manhattan
distance is smaller than two, and an uninformative observations otherwise. Similarly,

4The computational complexity of solving the high-level synthesis problem is a function of
the dimension of the product MOMDP, which may grow exponentially for complex specifications.
The analysis of the computational tractability of the high-level synthesis process is beyond the
scope of this work and the code used to synthesize the high-level policy can be found at https:
//github.com/urosolia/MOMDP.

https://github.com/urosolia/MOMDP
https://github.com/urosolia/MOMDP

158

Figure 5.4: Closed-loop trajectory. The Segway first explores regions R1, which is
traversable, and G1 that does not contain the science sample. Afterwards, it explores
the traversable region R2 and it reaches G2.

the Segway receives a partial observation about the goal region G8 which is correct
with probability 0.7, when one cell away and a perfect observations when the goal
cell G8 is reached.

The state of the Segway is G = [-,., \, E, ¤\, k, ¤k], where (- − .) represents the
position of the center of mass, (\, ¤\) the heading angle and yaw rate, E the velocity
and (k, ¤k) the rod’s angle and angular velocity. The control input D = [); ,)A],
where); and)A are the torques to the left and right wheel motors, respectively. In
order to implement the low-level CLF-CBF QP we used the following function:

ℎ(4) = 1 − ||diag(Eℎ) (G − Ḡ) | |22, (5.29)

where Eℎ = [1/0.02, 1/0.02, 1/0.1, 1/0.1, 1/0.3, 1/0.1, 1/0.3] and Ḡ = [-̄, .̄ , \̄, Ē, ¤̄\, k̄, ¤̄k]
represents the state of the nominal system from (5.4). The candidate control Lya-

159

Figure 5.5: This figure shows the closed-loop probability of mission success, which
equals the probability of satisfying the high-level specifications. Furthermore, we
reported also the belief about regions R1 and R2 being travel about the goal regions
G1 and G2 containing the science sample.

punov function is
+ (4) = | |diag(EE) (G − Ḡ) | |22,

where EE = [100, 100, 100, 100, 10000, 10000, 100] and in the CLF-QBF QP (5.8)
we used 21 = 1, 22 = 10 and U2(G) = G. The planning model (5.4) is computed
iteratively linearizing the Segway dynamics around the predicted MPC trajectory.
This strategy is standard in MPC, for more details on the linearization strategy
please refer to [125]. The stage cost ℎ(G, D) = G>&D + D>'D and the tuning
matrices are & = dial(0.1, 0.1, 0, 0, 10, 1, 10), ' = diag(0.01, 0.01) and & 5 =

diag(100, 100). Furthermore, we added an input rate cost with penalty &rate = 0.1
and a slack variable for the terminal constraint on the state @C+# |8 with weight
&slack = diag(100, 100, 100). Finally, we approximated S = {4 = G − Ḡ ∈ R= :
ℎ(4) ≥ 0} = {4 = G − Ḡ ∈ R= : | |diag(EE) (G − Ḡ) | |22 ≤ 1} with S̄ = {4 = G − ∈̄R= :
| |diag(EE) (G − Ḡ) | |∞ ≤ 1}. This strategy allows us to write the MPC problem (5.14)

160

Figure 5.6: This figure shows the computational time associated with middle and
low layers. It takes on average 12 ms to compute the mid-level control actions and
less than 1 ms to compute the low-level commands. In this example the middle layer
is discretized at 20 Hz and the lowest level at 1 kHz.

as a QP5, which we solved using OSQP [145].

Simulation

We implemented the proposed strategy in our high-fidelity Robotic Operating Sys-
tem (ROS) simulator. Figure 5.4 shows the locations of the uncertain and goal
regions. The code can be found at https://github.com/DrewSingletary/
segway_sim, please check the REAME.md to replicate our results. In this example
the goal regions G1 and G2 may contain a science sample with probability 0.6 and
0.4, respectively. Whereas, regions R1 and R2 may be traversable with probability
0.5 and 0.1, as shown in Figure 5.5.

Figure 5.4 shows the closed-loop trajectory of the Segway. We notice that the
controller explores the uncertain region R1, which in this example is traversable and
afterwards it reaches the goal regions G1. As shown in Figure 5.5, at the high-level
time : = 19 the controller figures out that the goal cell G1 does not contain a science
sample and, consequently, the probability of mission success drops. Afterwards,
the controller steers the Segway to the traversable region R2 and to the goal regions
G2. In this example, the goal regions G2 contains a science sample and the mission
is completed successfully, as shown in Figure 5.5.

5Note that using S renders the MPC problem an SOCP, which is convex but computationally
more demanding.

https://github.com/DrewSingletary/segway_sim
https://github.com/DrewSingletary/segway_sim

161

The mid-level is discretized for) = 50 ms and the low-level at 1 kHz. Figure 3.7
shows the computational time associated with mid-level and low-level control ac-
tions. It takes on average 12 ms to compute the mid-level control action D< (C) and
less than 1 ms to compute the low-level action D; (C).

Finally, we analyse the evolution of the barrier function (5.29), which quantities the
difference between the trajectory G(C) of system (1.1) and the reference trajectory
Ḡ(C) associated with nominal model6 (5.4). We compared the proposed strategy
with a naive MPC which is synthesized as in (5.14), but without taking into account
the effect of the tracking error, i.e., we do not tighten the constraints and we set
G8 |8 = G(C). Figure 5.7 shows the evolution of the barrier function for the proposed
strategy and the naive MPC. We notice that when the low-level controller is not
used, the barrier function becomes negative and in general has a lower magnitude.
Therefore, this figure shows the advantage of the proposed hierarchical control
architecture, where the low-level high-frequency controller is leveraged to track
the reference trajectory. Indeed, this high-frequency feedback is used to modify
the mid-level control actions, as shown in Figure 5.8. As discussed, the mid-level
control action is updated at 20 Hz and the low-level input at 1 kHz. Notice that after
the update of the mid-level input, the contribution of the low-level input towards
the total control action is limited. However, as time progresses the linearization
used to plan the reference trajectory is less and less accurate and for this reason, the
magnitude of low-level controller increases.

Experiment

We implemented the proposedmulti-rate hierarchical control strategy on the Segway-
like robot shown in Figure 5.2. State estimation is based on wheel encoders and
IMU data from a VectorNav VN-100. The state estimate and the low-level control
action D; are computed at 800 Hz on the Segway, which is equipped with an ARM
Cortex-A57 (quad-core) @ 2 GHz CPU running the ERIKA3 RTOS. On the other
hand, the mid-level planner discretized at 20 Hz and the high-level decision maker
run on a desktop with an Intel Core i7-8700 CPU (6-cores) @ 3.7 GHz CPU, which
sends the reference trajectory Ḡ and the reference input D< via WiFi.

Figure 5.2 shows the location of the three uncertain regions R1, R2 and R3 which
may be traversable with probability 0.9, 0.3 and 0.2, respectively. In this example,
we assume that the goal region G1 contains the science sample with probability 1.
Figure 5.10 shows the closed-loop trajectory. First, the controller explores region

6In this example the nominal model is computed iteratively linearizing the nonlinear dynamics.

162

Figure 5.7: Comparison between the barrier function associated with the proposed
strategy and a naive strategy MPC which is based on the linearized dynamics. As
shown in the figure, when the low-level controller is not used the difference between
the planner trajectory and the MPC trajectory grows and, as a results, the barrier
function (5.29) becomes negative.

Figure 5.8: Input torque sent to the right (top) and left (bottom) motor over a period
of 0.2 second. The mid-level input is updated at 20 Hz, whereas the low-level action
is updated at 1 kHz. Notice that the total input is the summation of the low and
mid-level inputs.

163

Figure 5.9: Experimental results. Input torque sent to the right (top) and left
(bottom) motor over a period of 0.3 seconds. The mid-level input is updated at 20
Hz, whereas the low-level action is updated at 800 Hz. Notice that the total input is
the summation of the low and mid-level inputs.

R1, which is not traversable and afterwards it steers the Segway towards regions
R2 and R3. After collecting observations about the environment, the controller
detects that region R2 is not traversable and that region R3 is free space that the
Segway can navigate through to reach the goal region G1. A video of the experiment
and comparison with a naive MPC can be found at https://www.youtube.com/
watch?v=Q-Mm0ywPh_I.

Figure 5.11 shows the evolution of the control barrier function (5.29). We compare
the proposed strategy with a naive MPC which is designed as in (5.14), but without
robustifying the constraint sets and setting G8 |8 = G(C). Also in this case, when
the high-frequency low-level controller is not active, the barrier function becomes
negative meaning that the error 4 does not belong to the safe set E, i.e., 4(C) ∉ E for
all C ∈ R0+. This result highlights the importance of the low-level high-frequency
feedback from the CLF-CBF QP, which compensates for the model mismatch at the
planning layer. Indeed, the MPC planner uses a linearized and discretized model,
which is a first order approximation of the true dynamics. This approximation is
accurate at the discrete time instances when the MPC input is computed. For this
reason, the low-level CLF-CBFQP tracking controller computes the high-frequency
component D; (C) which corrects the mid-level piecewise constant input D< (C), as
shown in Figure 5.9.

https://www.youtube.com/watch?v=Q-Mm0ywPh_I
https://www.youtube.com/watch?v=Q-Mm0ywPh_I

164

Figure 5.10: Closed-loop trajectory during the experiment. The Segway first ex-
plores the uncertain regions R1, R1 and R1 and then it reaches the goal region.

Figure 5.11: Experimental comparison between the barrier function associated with
the proposed strategy and a naive MPC which is based on the linearized dynamics.
Also in this case, when the low-level controller is not used, the difference between
the planner trajectory and the MPC trajectory grows and, as a result, the barrier
function (5.29) becomes negative.

165

5.2 Conclusion and future work
In this work, we presented four major types of safety regulator implementations,
each with their own unique set of strengths and requirements. Chapter 2 showed the
kinematic and model-free methods, Chapter 3 formulated the backup set methods,
Chapter 4 demonstrated discete-time safety filtering, and Chapter 5 provided a
unified framework for robotic systems with controllers and planners running at
different rates.

We implemented these algorithms on real-world hardware, including industrial
manipulators, quadrotors, racing drones, and a Segway robot, all with onboard
sensing and control. No single method could have been used to achieve safety in all
of these separate cases, and each method has a practical use in robotics.

In my opinion, the most relevant research area for future work would be a tighter
integration of these safety regulators with perception. As of now, the methods
require an estimate of the state or environment with associated uncertainty. By
having tighter integration with the perception system, perhaps better performance
and tighter safety guarantees could be achieved, and the number of safety failures
due to localization errors would be minimized.

166

BIBLIOGRAPHY

[1] A. Abate et al. “Probabilistic reachability and safety for controlled discrete
time stochastic hybrid systems”. In: Automatica 44.11 (2008), pp. 2724–
2734.

[2] MasoudAbbaszadeh. “Is Lipschitz continuity preserved under sampled-data
discretization?” In: arXiv preprint arXiv:1612.08469 (2016).

[3] A. Agrawal and K. Sreenath. “Discrete Control Barrier Functions for Safety-
Critical Control of Discrete Systems with Application to Bipedal Robot
Navigation.” In: Robotics: Science and Systems. 2017.

[4] Amir Ali Ahmadi and Anirudha Majumdar. “DSOS and SDSOS optimiza-
tion: LP and SOCP-based alternatives to sum of squares optimization”. In:
2014 48th annual conference on information sciences and systems (CISS).
IEEE. 2014, pp. 1–5.

[5] M. Ahmadi, H. Mojallali, and R. Wisniewski. “Guaranteed cost Hinf con-
troller synthesis for switched systems defined on semi-algebraic sets”. In:
Nonlinear Analysis: Hybrid Systems 11 (2014), pp. 37–56.

[6] M. Ahmadi, G. Valmorbida, and A. Papachristodoulou. “Safety verification
for distributed parameter systems using barrier functionals”. In: Systems &
Control Letters 108 (2017), pp. 33–39.

[7] M. Ahmadi et al. “Barrier Certificates for Assured Machine Teaching”. In:
2019 American Control Conference (2019).

[8] M. Ahmadi et al. “Control theory meets POMDPs: A hybrid systems ap-
proach”. In: arXiv preprint arXiv:1905.08095 (2019).

[9] M. Ahmadi et al. “Privacy verification in POMDPs via barrier certificates”.
In: 2018 IEEE Conference on Decision and Control (CDC). IEEE. 2018,
pp. 5610–5615.

[10] M. Ahmadi et al. “Verification of uncertain POMDPs using barrier cer-
tificates”. In: 2018 56th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE. 2018, pp. 115–122.

[11] Anil Alan et al. “Safe controller synthesis with tunable input-to-state safe
control barrier functions”. In: IEEE Control Systems Letters 6 (2021),
pp. 908–913.

[12] Matthias Althoff, Olaf Stursberg, andMartin Buss. “Reachability analysis of
nonlinear systems with uncertain parameters using conservative lineariza-
tion”. In: 2008 47th IEEE Conference on Decision and Control. IEEE. 2008,
pp. 4042–4048.

167

[13] Rajeev Alur et al. “Discrete abstractions of hybrid systems”. In: Proceedings
of the IEEE 88.7 (2000), pp. 971–984.

[14] C.Amato and F.A.Oliehoek. “Scalable planning and learning formultiagent
POMDPs”. In: Twenty-Ninth AAAI Conference on Artificial Intelligence.
2015.

[15] Aaron D Ames et al. “Control barrier function based quadratic programs for
safety critical systems”. In: IEEE Transactions on Automatic Control 62.8
(2017), pp. 3861–3876.

[16] Aaron D Ames et al. “Control barrier functions: Theory and applications”.
In: 2019 18th European Control Conference (ECC). IEEE. 2019, pp. 3420–
3431.

[17] David Angeli. “A Lyapunov approach to incremental stability properties”.
In: IEEE Transactions on Automatic Control 47.3 (2002), pp. 410–421.

[18] Gianluca Antonelli and Stefano Chiaverini. “Kinematic control of platoons
of autonomous vehicles”. In: IEEE Transactions on Robotics 22.6 (2006),
pp. 1285–1292.

[19] OktayArslan andPanagiotis Tsiotras. “Use of relaxationmethods in sampling-
based algorithms for optimal motion planning”. In: 2013 IEEE International
Conference on Robotics and Automation. IEEE. 2013, pp. 2421–2428.

[20] P. Artzner et al. “Coherent measures of risk”. In: Mathematical finance 9.3
(1999), pp. 203–228.

[21] K. J. Astrom. “Optimal control of Markov decision processes with incom-
plete state estimation”. In: Journal of mathematical analysis and applica-
tions 10 (1965), pp. 174–205.

[22] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre. Viability theory: new direc-
tions. Springer Science & Business Media, 2011.

[23] Jerome Barraquand, Bruno Langlois, and J-C Latombe. “Numerical po-
tential field techniques for robot path planning”. In: IEEE transactions on
systems, man, and cybernetics 22.2 (1992), pp. 224–241.

[24] N.Bäuerle and J. Ott. “Markov decision processeswith average-value-at-risk
criteria”. In: Mathematical Methods of Operations Research 74.3 (2011),
pp. 361–379.

[25] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal methods for
discrete-time dynamical systems. Vol. 89. Springer, 2017.

[26] D. S. Bernstein et al. “The complexity of decentralized control of Markov
decision processes”. In: Mathematics of operations research 27.4 (2002),
pp. 819–840.

[27] F. Blanchini. “Set invariance in control”. In: Automatica 35.11 (1999),
pp. 1747–1767.

168

[28] U. Borrmann et al. “Control barrier certificates for safe swarm behavior”.
In: IFAC-PapersOnLine 48.27 (2015), pp. 68–73.

[29] Maxime Bouton, Jana Tumova, and Mykel J Kochenderfer. “Point-Based
Methods for Model Checking in Partially Observable Markov Decision
Processes.” In: AAAI. 2020, pp. 10061–10068.

[30] Alexander Broad, Todd Murphey, and Brenna Argall. “Highly parallelized
data-drivenMPC forminimal intervention shared control”. In: arXiv preprint
arXiv:1906.02318 (2019).

[31] Justin Carpentier et al. “The Pinocchio C++ library”. In: ().

[32] Margaret P Chapman et al. “A Risk-Sensitive Finite-Time Reachability Ap-
proach for Safety of Stochastic Dynamic Systems”. In: 2019 American Con-
trol Conference (ACC). IEEE. 2019, pp. 2958–2963.

[33] Y. Chen et al. “Enhancing the performance of a safe controller via super-
vised learning for truck lateral control”. In: arXiv preprint arXiv:1712.05506
(2017).

[34] Yong-bo Chen et al. “UAV path planning using artificial potential field
method updated by optimal control theory”. In: International Journal of
Systems Science 47.6 (2016), pp. 1407–1420.

[35] Yuxiao Chen, Andrew Singletary, andAaronDAmes. “Guaranteed obstacle
avoidance for multi-robot operations with limited actuation: a control barrier
function approach”. In: IEEE Control Systems Letters 5.1 (2020), pp. 127–
132. doi: 10.1109/LCSYS.2020.3000748.

[36] Yuxiao Chen et al. “Backup Control Barrier Functions: Formulation and
Comparative Study”. In: arXiv preprint arXiv:2104.11332 (2021).

[37] Yuxiao Chen et al. “Data-driven computation of minimal robust control
invariant set”. In: 2018 IEEE Conference on Decision and Control (CDC).
IEEE. 2018, pp. 4052–4058.

[38] Z. Chen, K. He, R. Kulperger, et al. “Risk measures and nonlinear expecta-
tions”. In: Journal of Mathematical Finance 3.03 (2013), p. 383.

[39] Y. Chow and M. Ghavamzadeh. “Algorithms for CVaR optimization in
MDPs”. In: Advances in neural information processing systems. 2014,
pp. 3509–3517.

[40] Y. Chow et al. “Risk-sensitive and robust decision-making: a cvar optimiza-
tion approach”. In: Advances in Neural Information Processing Systems.
2015, pp. 1522–1530.

[41] AndrewClark. “Control barrier functions for complete and incomplete infor-
mation stochastic systems”. In: 2019 American Control Conference (ACC).
IEEE. 2019, pp. 2928–2935.

https://doi.org/10.1109/LCSYS.2020.3000748

169

[42] Edmund M Clarke. “Model checking”. In: International Conference on
Foundations of Software Technology and Theoretical Computer Science.
Springer. 1997, pp. 54–56.

[43] David Coleman et al. “Reducing the barrier to entry of complex robotic
software: a moveit! case study”. In: arXiv preprint arXiv:1404.3785 (2014).

[44] T. H. Cormen et al. Introduction to algorithms. MIT press, 2009.

[45] Wenceslao Shaw Cortez et al. “Control barrier functions for mechanical
systems: Theory and application to robotic grasping”. In: IEEE Transactions
on Control Systems Technology (2019).

[46] PatrickCousot. “Abstract interpretation”. In:ACMComputing Surveys (CSUR)
28.2 (1996), pp. 324–328.

[47] Jan Dentler et al. “A real-time model predictive position control with colli-
sion avoidance for commercial low-cost quadrotors”. In: 2016 IEEE confer-
ence on control applications (CCA). IEEE. 2016, pp. 519–525.

[48] B. Faverjon and P. Tournassoud. “A local based approach for path planning
ofmanipulatorswith a high number of degrees of freedom”. In:Proceedings.
1987 IEEE International Conference on Robotics and Automation. Vol. 4.
1987, pp. 1152–1159. doi: 10.1109/ROBOT.1987.1087982.

[49] Roy Featherstone. “A divide-and-conquer articulated-body algorithm for
parallel O (log (n)) calculation of rigid-body dynamics. Part 1: Basic al-
gorithm”. In: The International Journal of Robotics Research 18.9 (1999),
pp. 867–875.

[50] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. “Maneuver-based mo-
tion planning for nonlinear systems with symmetries”. In: IEEE transactions
on robotics 21.6 (2005), pp. 1077–1091.

[51] Randy Freeman and Petar V Kokotovic. Robust nonlinear control design:
state-space and Lyapunov techniques. Springer Science & Business Media,
2008.

[52] Emilia Fridman. “A refined input delay approach to sampled-data control”.
In: Automatica 46.2 (2010), pp. 421–427.

[53] Olivier Gay, David Coeurjolly, and Nathan Hurst. Libaffa-C++ affine arith-
metic library for GNU/Linux. 2006.

[54] Veysel Gazi et al. “Aggregation, foraging, and formation control of swarms
with non-holonomic agents using potential functions and sliding mode tech-
niques”. In: Turkish Journal of Electrical Engineering&Computer Sciences
15.2 (2007), pp. 149–168.

[55] Shuzhi SamGe and Yun J Cui. “Dynamic motion planning for mobile robots
using potential field method”. In: Autonomous robots 13.3 (2002), pp. 207–
222.

https://doi.org/10.1109/ROBOT.1987.1087982

170

[56] Dibyendu Ghosh et al. “Kinematic constraints based Bi-directional RRT
(KB-RRT) with parameterized trajectories for robot path planning in clut-
tered environment”. In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 8627–8633.

[57] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. “A fast proce-
dure for computing the distance between complex objects in three-dimensional
space”. In: IEEE Journal on Robotics and Automation 4.2 (1988), pp. 193–
203.

[58] Paul Glotfelter, Jorge Cortés, and Magnus Egerstedt. “Nonsmooth barrier
functions with applications to multi-robot systems”. In: IEEE control sys-
tems letters 1.2 (2017), pp. 310–315.

[59] Thomas Gurriet et al. “An Online Approach to Active Set Invariance”.
In: 2018 IEEE Conference on Decision and Control (CDC). IEEE. 2018,
pp. 3592–3599.

[60] Thomas Gurriet et al. “Realizable set invariance conditions for cyber-
physical systems”. In: 2019 American Control Conference (ACC). IEEE.
2019, pp. 3642–3649. doi: 10.23919/ACC.2019.8815332.

[61] Thomas Gurriet et al. “Towards a framework for realizable safety critical
control through active set invariance”. In: 2018 ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS). IEEE. 2018, pp. 98–106.
doi: 10.1109/ICCPS.2018.00018.

[62] S. Haesaert et al. “Temporal logic control of pomdps via label-based stochas-
tic simulation relations”. In: IFAC-PapersOnLine 51.16 (2018), pp. 271–
276.

[63] Sofie Haesaert et al. “Temporal logic planning in uncertain environments
with probabilistic roadmaps and belief spaces”. In: 2019 IEEE 58th Confer-
ence on Decision and Control (CDC). IEEE. 2019, pp. 6282–6287.

[64] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. “Dynamic programming
for partially observable stochastic games”. In: AAAI. Vol. 4. 2004, pp. 709–
715.

[65] Sylvia L Herbert et al. “FaSTrack: a modular framework for fast and guar-
anteed safe motion planning”. In: 2017 IEEE 56th Annual Conference on
Decision and Control (CDC). IEEE. 2017, pp. 1517–1522.

[66] Elie Hermand et al. “Constrained control of UAVs in geofencing applica-
tions”. In: 2018 26th Mediterranean Conference on Control and Automation
(MED). IEEE. 2018, pp. 217–222.

[67] MWHirsch, Stephen Smale, and Robert L Devaney.Differential Equations,
Dynamical Systems, and an Introduction to Chaos. 3rd ed. Academic Press,
2012.

https://doi.org/10.23919/ACC.2019.8815332
https://doi.org/10.1109/ICCPS.2018.00018

171

[68] Stefan Hrabar. “3D path planning and stereo-based obstacle avoidance for
rotorcraft UAVs”. In: 2008 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. IEEE. 2008, pp. 807–814.

[69] Ali Jadbabaie, Jie Yu, and John Hauser. “Unconstrained receding-horizon
control of nonlinear systems”. In: IEEE Transactions on Automatic Control
46.5 (2001), pp. 776–783.

[70] Mrdjan Jankovic. “Control barrier functions for constrained control of linear
systems with input delay”. In: 2018 Annual American Control Conference
(ACC). IEEE. 2018, pp. 3316–3321.

[71] Mrdjan Jankovic. “Control Lyapunov-Razumikhin functions and robust sta-
bilization of time delay systems”. In: IEEE Transactions on Automatic Con-
trol 46.7 (2001), pp. 1048–1060.

[72] Luc Jaulin et al. “Interval analysis”. In: Applied interval analysis. Springer,
2001, pp. 11–43.

[73] Z. Jiang and Y. Wang. “A converse Lyapunov theorem for discrete-time sys-
tems with disturbances”. In: Systems & control letters 45.1 (2002), pp. 49–
58.

[74] A. Jones, M. Schwager, and C. Belta. “Distribution temporal logic: Com-
bining correctness with quality of estimation”. In: 52nd IEEE Conference
on Decision and Control. IEEE. 2013, pp. 4719–4724.

[75] O. Kanoun, F. Lamiraux, and P. Wieber. “Kinematic Control of Redun-
dant Manipulators: Generalizing the Task-Priority Framework to Inequality
Task”. In: IEEE Transactions on Robotics 27.4 (2011), pp. 785–792. doi:
10.1109/TRO.2011.2142450.

[76] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for op-
timal motion planning”. In: The international journal of robotics research
30.7 (2011), pp. 846–894.

[77] Elia Kaufmann et al. “Beauty and the beast: Optimal methods meet learn-
ing for drone racing”. In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 690–696.

[78] Elia Kaufmann et al. “Deep drone racing: Learning agile flight in dynamic
environments”. In: Conference on Robot Learning. PMLR. 2018, pp. 133–
145.

[79] Wisama Khalil. “Dynamic modeling of robots using recursive newton-euler
techniques”. In: ICINCO2010. 2010.

[80] Oussama Khatib. “Real-time obstacle avoidance for manipulators and mo-
bile robots”. In: Proceedings. 1985 IEEE International Conference on
Robotics and Automation. Vol. 2. IEEE. 1985, pp. 500–505.

https://doi.org/10.1109/TRO.2011.2142450

172

[81] Oussama Khatib. “Real-time obstacle avoidance for manipulators and mo-
bile robots”. In: Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[82] Sven Koenig and Reid G Simmons. “Risk-sensitive planning with proba-
bilistic decision graphs”. In: Principles of Knowledge Representation and
Reasoning. Elsevier. 1994, pp. 363–373.

[83] S. Kolathaya and A. D. Ames. “Input-to-State Safety With Control Barrier
Functions”. In: IEEE control systems letters 3.1 (2019), pp. 108–113.

[84] Shishir Kolathaya. “Energy based Control Barrier Functions for Robotic
Systems”. In: (Aug. 2020). doi: 10.36227/techrxiv.12831503.v1. url:
https://www.techrxiv.org/articles/preprint/Energy_based_
Control_Barrier_Functions_for_Robotic_Systems/12831503.

[85] Shishir Kolathaya. “Local stability of PD controlled bipedalwalking robots”.
In: Automatica 114 (2020), p. 108841. issn: 0005-1098. doi: https://
doi.org/10.1016/j.automatica.2020.108841.

[86] Shishir Kolathaya and Aaron D Ames. “Input-to-state safety with control
barrier functions”. In: IEEE control systems letters 3.1 (2018), pp. 108–113.

[87] Shreyas Kousik et al. “Bridging the gap between safety and real-time perfor-
mance in receding-horizon trajectory design for mobile robots”. In: arXiv
preprint arXiv:1809.06746 (2018).

[88] James JKuffner and StevenMLaValle. “RRT-connect: An efficient approach
to single-query path planning”. In: Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065). Vol. 2. IEEE. 2000, pp. 995–
1001.

[89] M. Lahĳanian et al. “Motion planning and control from temporal logic
specifications with probabilistic satisfaction guarantees”. In: 2010 IEEE In-
ternational Conference on Robotics and Automation. IEEE. 2010, pp. 3227–
3232.

[90] Shupeng Lai et al. “A robust online path planning approach in cluttered en-
vironments for micro rotorcraft drones”. In:Control Theory and Technology
14.1 (2016), pp. 83–96.

[91] Chiara Talignani Landi et al. “Safety barrier functions for human-robot
interaction with industrial manipulators”. In: 2019 18th ECC. IEEE. 2019,
pp. 2565–2570.

[92] Grüne Lars and P Jürgen. Nonlinear model predictive control theory and
algorithms. 2011.

[93] Min Cheol Lee and Min Gyu Park. “Artificial potential field based path
planning for mobile robots using a virtual obstacle concept”. In: Proceed-
ings 2003 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM 2003). Vol. 2. IEEE. 2003, pp. 735–740.

https://doi.org/10.36227/techrxiv.12831503.v1
https://www.techrxiv.org/articles/preprint/Energy_based_Control_Barrier_Functions_for_Robotic_Systems/12831503
https://www.techrxiv.org/articles/preprint/Energy_based_Control_Barrier_Functions_for_Robotic_Systems/12831503
https://doi.org/https://doi.org/10.1016/j.automatica.2020.108841
https://doi.org/https://doi.org/10.1016/j.automatica.2020.108841

173

[94] Taeyoung Lee, Melvin Leok, and N. Harris McClamroch. “Geometric track-
ing control of a quadrotor UAV on SE(3)”. In: 49th IEEE Conference on
Decision and Control (CDC). 2010, pp. 5420–5425. doi: 10.1109/CDC.
2010.5717652.

[95] Randall J LeVeque. “Finite difference methods for differential equations”.
In: Draft version for use in AMath 585.6 (1998), p. 112.

[96] Guanghui Li et al. “An efficient improved artificial potential field based
regression search method for robot path planning”. In: 2012 IEEE Interna-
tional Conference on Mechatronics and Automation. IEEE. 2012, pp. 1227–
1232.

[97] Yucong Lin and Srikanth Saripalli. “Sampling-based path planning for UAV
collision avoidance”. In: IEEE Transactions on Intelligent Transportation
Systems 18.11 (2017), pp. 3179–3192.

[98] Sikang Liu et al. “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-d complex environments”. In: IEEE Robotics
and Automation Letters 2.3 (2017), pp. 1688–1695.

[99] A. Majumdar and M. Pavone. “How should a robot assess risk? Towards an
axiomatic theory of risk in robotics”. In: Robotics Research. Springer, 2020,
pp. 75–84.

[100] Daniel Mellinger and Vĳay Kumar. “Minimum snap trajectory generation
and control for quadrotors”. In: Proc. IEEE ICRA. 2011, pp. 2520–2525.
doi: 10.1109/ICRA.2011.5980409.

[101] J. V. Messias, M. Spaan, and P. U. Lima. “Efficient offline communication
policies for factored multiagent POMDPs”. In: Advances in Neural Infor-
mation Processing Systems. 2011, pp. 1917–1925.

[102] IanMMitchell, AlexandreMBayen, andClaire J Tomlin. “A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic
games”. In: IEEE Transactions on automatic control 50.7 (2005), pp. 947–
957.

[103] Tamas G Molnar et al. “Model-free safety-critical control for robotic sys-
tems”. In: IEEE Robotics and Automation Letters 7.2 (2021), pp. 944–951.
doi: 10.1109/LRA.2021.3135569.

[104] Hyungpil Moon et al. “Challenges and implemented technologies used in
autonomous drone racing”. In: Intelligent Service Robotics 12.2 (2019),
pp. 137–148.

[105] V. Murashov, F. Hearl, and J. Howard. “Working safely with robot workers:
Recommendations for the new workplace”. In: Journal of occupational and
environmental hygiene 13.3 (2016), pp. D61–D71.

[106] Richard M Murray et al. A mathematical introduction to robotic manipula-
tion. CRC press, 1994.

https://doi.org/10.1109/CDC.2010.5717652
https://doi.org/10.1109/CDC.2010.5717652
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1109/LRA.2021.3135569

174

[107] Mitio Nagumo. “Über die lage der integralkurven gewöhnlicher differen-
tialgleichungen”. In: Proceedings of the Physico-Mathematical Society of
Japan. 3rd Series 24 (1942), pp. 551–559.

[108] Q. Nguyen et al. “3d dynamic walking on stepping stones with control
barrier functions”. In: 2016 IEEE 55th Conference on Decision and Control
(CDC). IEEE. 2016, pp. 827–834.

[109] Quan Nguyen and Koushil Sreenath. “Exponential control barrier func-
tions for enforcing high relative-degree safety-critical constraints”. In: 2016
American Control Conference (ACC). IEEE. 2016, pp. 322–328.

[110] Petter Nilsson et al. “Toward specification-guided activemars exploration for
cooperative robot teams”. In: Robotics: Science and Systems (RSS) (2018).

[111] Petter Ogren, Magnus Egerstedt, and Xiaoming Hu. “A control Lyapunov
function approach to multi-agent coordination”. In: Proceedings of the 40th
IEEE Conference on Decision and Control (Cat. No. 01CH37228). Vol. 2.
IEEE. 2001, pp. 1150–1155.

[112] F. A. Oliehoek and M. T. J. Spaan. “Tree-based solution methods for multi-
agent POMDPs with delayed communication”. In: Twenty-Sixth AAAI Con-
ference on Artificial Intelligence. 2012.

[113] Sylvie CW Ong et al. “Planning under uncertainty for robotic tasks with
mixed observability”. In: The International Journal of Robotics Research
29.8 (2010), pp. 1053–1068.

[114] M. Ono et al. “Chance-constrained dynamic programming with applica-
tion to risk-aware robotic space exploration”. In: Autonomous Robots 39.4
(2015), pp. 555–571.

[115] Gábor Orosz and Aaron D Ames. “Safety Functionals for Time Delay Sys-
tems”. In: 2019AmericanControl Conference (ACC). IEEE. 2019, pp. 4374–
4379.

[116] Daniel Pickem et al. “The robotarium: A remotely accessible swarm robotics
research testbed”. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2017, pp. 1699–1706.

[117] S. Prajna, A. Jadbabaie, and G. J. Pappas. “A framework for worst-case and
stochastic safety verification using barrier certificates”. In: IEEE Transac-
tions on Automatic Control 52.8 (2007), pp. 1415–1428.

[118] L. Prashanth. “Policy gradients for CVaR-constrained MDPs”. In: Interna-
tionalConference onAlgorithmic LearningTheory. Springer. 2014, pp. 155–
169.

[119] D. V. Pynadath and M. Tambe. “The communicative multiagent team de-
cision problem: Analyzing teamwork theories and models”. In: Journal of
artificial intelligence research 16 (2002), pp. 389–423.

175

[120] Manuel Rauscher, Melanie Kimmel, and Sandra Hirche. “Constrained robot
control using control barrier functions”. In: 2016 IEEE/RSJ International
Conference on IROS. IEEE. 2016, pp. 279–285.

[121] Jenna Reher and Aaron D Ames. “Dynamic Walking: Toward Agile and
Efficient Bipedal Robots”. In: Annual Reviews (2020).

[122] Jing Ren, Kenneth A McIsaac, and Rajnikant V Patel. “Modified Newton’s
method applied to potential field-based navigation for mobile robots”. In:
IEEE Transactions on Robotics 22.2 (2006), pp. 384–391.

[123] R Tyrrell Rockafellar and Stanislav Uryasev. “Conditional value-at-risk for
general loss distributions”. In: Journal of banking & finance 26.7 (2002),
pp. 1443–1471.

[124] R Tyrrell Rockafellar, Stanislav Uryasev, et al. “Optimization of conditional
value-at-risk”. In: Journal of risk 2 (2000), pp. 21–42.

[125] Ugo Rosolia and Francesco Borrelli. “Learning how to autonomously race
a car: a predictive control approach”. In: IEEE Transactions on Control
Systems Technology (2019).

[126] Ugo Rosolia et al. “Time-Optimal Navigation in Uncertain Environments
with High-Level Specifications”. In: To appear on the IEEE Conference on
Decision and Control (CDC), arXiv preprint arXiv:2103.01476 (2021).

[127] Tomáš Rouček et al. “Darpa subterranean challenge: Multi-robotic explo-
ration of underground environments”. In: International Conference onMod-
elling and Simulation for Autonomous Systesm. Springer. 2019, pp. 274–290.

[128] A. Ruszczyński. “Risk-averse dynamic programming for Markov decision
processes”. In: Mathematical programming 125.2 (2010), pp. 235–261.

[129] Takashi Sakai. “On Riemannian manifolds admitting a function whose gra-
dient is of constant norm”. In: Kodai Mathematical Journal 19.1 (1996),
pp. 39–51.

[130] Cesar Santoyo, Maxence Dutreix, and Samuel Coogan. “A barrier function
approach to finite-time stochastic system verification and control”. In: arXiv
preprint arXiv:1909.05109 (2019).

[131] John Schulman et al. “Motion planning with sequential convex optimization
and convex collision checking”. In: The International Journal of Robotics
Research 33.9 (2014), pp. 1251–1270.

[132] S. Seuken and S. Zilberstein. “Formal models and algorithms for decen-
tralized decision making under uncertainty”. In: Autonomous Agents and
Multi-Agent Systems 17.2 (2008), pp. 190–250.

[133] G. Shani, J. Pineau, and R. Kaplow. “A survey of point-based POMDP
solvers”. In: Autonomous Agents and Multi-Agent Systems 27.1 (2013),
pp. 1–51.

176

[134] Yifei Simon Shao et al. “Reachability-based Trajectory Safeguard (RTS): A
Safe andFast Reinforcement Learning SafetyLayer forContinuousControl”.
In: arXiv preprint arXiv:2011.08421 (2020).

[135] R. Sharan and J. Burdick. “Finite state control of POMDPs with LTL spec-
ifications”. In: 2014 American Control Conference. IEEE. 2014, pp. 501–
508.

[136] Bruno Siciliano. “Kinematic control of redundant robot manipulators: A
tutorial”. In: Journal of intelligent and robotic systems 3.3 (1990), pp. 201–
212.

[137] S. Singh et al. “A framework for time-consistent, risk-sensitivemodel predic-
tive control: Theory and algorithms”. In: IEEE Transactions on Automatic
Control (2018).

[138] Sumeet Singh et al. “Robust online motion planning via contraction the-
ory and convex optimization”. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2017, pp. 5883–5890.

[139] Sumeet Singh et al. “Robust tracking with model mismatch for fast and safe
planning: an SOS optimization approach”. In: International Workshop on
the Algorithmic Foundations of Robotics. Springer. 2018, pp. 545–564.

[140] Andrew Singletary, Yuxiao Chen, and Aaron D Ames. “Control barrier
functions for sampled-data systems with input delays”. In: 2020 59th IEEE
Conference on Decision and Control (CDC). IEEE. 2020, pp. 804–809. doi:
10.1109/CDC42340.2020.9304281.

[141] R. D. Smallwood and E. J. Sondik. “The optimal control of partially observ-
able Markov processes over a finite horizon”. In: Operations research 21.5
(1973), pp. 1071–1088.

[142] Yunlong Song et al. “Autonomous Drone Racing with Deep Reinforcement
Learning”. In: arXiv preprint arXiv:2103.08624 (2021).

[143] Eduardo D Sontag. “A Lyapunov-like characterization of asymptotic con-
trollability”. In: SIAM journal on control and optimization 21.3 (1983),
pp. 462–471.

[144] M. Srinivasan, S. Coogan, and M. Egerstedt. “Control of Multi-Agent Sys-
tems with Finite Time Control Barrier Certificates and Temporal Logic”. In:
2018 IEEE Conference on Decision and Control (CDC). 2018, pp. 1991–
1996.

[145] Bartolomeo Stellato et al. “OSQP: An operator splitting solver for quadratic
programs”. In: 2018 UKACC 12th International Conference on Control
(CONTROL). IEEE. 2018, pp. 339–339.

[146] Paulo Tabuada and George J Pappas. “Linear time logic control of discrete-
time linear systems”. In: IEEE Transactions on Automatic Control 51.12
(2006), pp. 1862–1877.

https://doi.org/10.1109/CDC42340.2020.9304281

177

[147] A. J. Taylor and A. D. Ames. “Adaptive Safety with Control Barrier Func-
tions”. In: 2020 American Control Conference (ACC). 2020, pp. 1399–1405.

[148] BenTearle et al. “A predictive safety filter for learning-based racing control”.
In: arXiv preprint arXiv:2102.11907 (2021).

[149] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
Cambridge, Mass.: MIT Press, 2005.

[150] Jesus Tordesillas, Brett T Lopez, and Jonathan P How. “Faster: Fast and safe
trajectory planner for flights in unknown environments”. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE.
2019, pp. 1934–1940.

[151] Jesus Tordesillas, Brett T. Lopez, and Jonathan P. How. “FASTER: Fast
and Safe Trajectory Planner for Flights in Unknown Environments”. In:
arXiv e-prints, arXiv:1903.03558 (Mar. 2019), arXiv:1903.03558. arXiv:
1903.03558 [cs.RO].

[152] Jesus Tordesillas et al. “Real-time planning with multi-fidelity models for
agile flights in unknown environments”. In: 2019 International Conference
on Robotics and Automation (ICRA). IEEE. 2019, pp. 725–731.

[153] Gino Van Den Bergen. “Proximity queries and penetration depth compu-
tation on 3D game objects”. In: Game developers conference. Vol. 170.
2001.

[154] M. Vasic and A. Billard. “Safety issues in human-robot interactions”. In:
2013 IEEE International Conference on Robotics and Automation. IEEE.
2013, pp. 197–204.

[155] C.-I. Vasile et al. “Control in belief spacewith temporal logic specifications”.
In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE.
2016, pp. 7419–7424.

[156] Video of the experiments. https://vimeo.com/468799586.

[157] A. Wang, A. M Jasour, and B. Williams. “Non-gaussian chance-constrained
trajectory planning for autonomous vehicles under agent uncertainty”. In:
IEEE Robotics and Automation Letters (2020).

[158] Li Wang, Aaron D Ames, andMagnus Egerstedt. “Safety barrier certificates
for collisions-free multirobot systems”. In: IEEE Transactions on Robotics
33.3 (2017), pp. 661–674.

[159] Yue Wang, Swarat Chaudhuri, and Lydia E Kavraki. “Bounded policy syn-
thesis for POMDPs with safe-reachability objectives”. In: arXiv preprint
arXiv:1801.09780 (2018).

[160] Charles W Warren. “Global path planning using artificial potential fields”.
In: 1989 IEEE International Conference on Robotics and Automation. IEEE
Computer Society. 1989, pp. 316–317.

https://arxiv.org/abs/1903.03558
https://vimeo.com/468799586

178

[161] T. Wongpiromsarn, U. Topcu, and R. M. Murray. “Receding Horizon Tem-
poral Logic Planning”. In: IEEE Transactions on Automatic Control 57.11
(2012), pp. 2817–2830.

[162] TichakornWongpiromsarn, Ufuk Topcu, and RichardMMurray. “Receding
horizon control for temporal logic specifications”. In: Proceedings of the
13th ACM international conference on Hybrid systems: computation and
control. 2010, pp. 101–110.

[163] TichakornWongpiromsarn, Ufuk Topcu, and RichardMMurray. “Synthesis
of control protocols for autonomous systems”. In: Unmanned Systems 1.01
(2013), pp. 21–39.

[164] Ji Xiang, Congwei Zhong, and Wei Wei. “General-weighted least-norm
control for redundant manipulators”. In: IEEE Transactions on Robotics
26.4 (2010), pp. 660–669.

[165] Huan Xu and Shie Mannor. “Distributionally robust Markov decision pro-
cesses”. In: Advances in Neural Information Processing Systems. 2010,
pp. 2505–2513.

[166] X. Xu et al. “Robustness of control barrier functions for safety critical
control”. In: IFAC-PapersOnLine 48.27 (2015), pp. 54–61.

[167] Shuyou Yu et al. “Tube MPC scheme based on robust control invariant set
with application to Lipschitz nonlinear systems”. In: Systems & Control
Letters 62.2 (2013), pp. 194–200.

[168] Songyuan Zhang et al. “Model predictive control based dynamic geofence
system for unmanned aerial vehicles”. In: AIAA Information Systems-AIAA
Infotech@ Aerospace. 2017, p. 0675.

[169] Ping Zhao, Yu Kang, and Yun-Bo Zhao. “A Brief Tutorial and Survey on
Markovian Jump Systems: Stability and Control”. In: IEEE Systems, Man,
and Cybernetics Magazine 5.2 (2019), pp. 37–C3.

[170] Qing-Chang Zhong. Robust control of time-delay systems. Springer Science
& Business Media, 2006.

[171] Dingjiang Zhou and Mac Schwager. “Vector field following for quadrotors
using differential flatness”. In: Proc. IEEE ICRA (2014), pp. 6567–6572.
doi: 10.1109/ICRA.2014.6907828.

https://doi.org/10.1109/ICRA.2014.6907828

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Safety-critical control
	Control barrier functions
	Continuous-time
	Discrete-time

	Safety regulation
	Outline

	Kinematic and model-free safety regulation
	Comparison between potential fields and kinematic barrier functions
	Applications: APFs vs CBFs on quadrotor

	Energy-based CBFs
	Guarantees on dynamics
	Underactuated systems

	Model-free guarantees
	Applications: Automated cooking with robotic arms

	Input regulation with backup controllers
	Backup set CBF
	Applications: Industrial manipulators
	Handling sampled-data systems and input delay
	Multi-agent backup CBFs

	Gradient-free backup CBFs
	Safety regulator formulation
	Comparison to backup controller CBF
	Applications: Collision avoidance
	Applications: High-speed geofencing
	Time-varying backup controllers

	Discrete-time safety regulation
	Safe policy synthesis in multi-agent POMDPs via discrete-time barrier functions
	Applications: Multi-Robot Exploration

	Finite-time DTBFs and DTL specifications
	Finite-time DTBF
	Applications: LDTL specifications on multi-agent simulation

	Accounting for uncertainty: risk control barrier functions
	Coherent risk measures
	Risk-Sensitive Safety and Reachability
	Risk control barrier functions
	Applications: Uncertain cart-pole system

	Total system safety: Multi-layer approach and future directions
	Unified Multi-Rate Control: from Low-Level Actuation to High-Level Planning
	Problem formulation
	Multi-rate control architecture
	Safety and performance guarantees
	Applications: Multi-rate control on the Segway

	Conclusion and future work

	Bibliography

