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Abstract

In multicellular organisms, a relatively small number of highly conserved signaling
pathways are used to enable intercellular communication. While the underlying
molecular components and interactions are increasingly well understood, a fun-
damental mystery is how the diverse cell types of the body can be so precisely
coordinated by so few pathways. It has long been known that different cell types
exhibit varied responses to molecular signals, and it is unclear how this cell type
specificity arises. In this work, we take a different perspective on this question and
explore how cell type specificity can be generated at the level of intracellular signal.
We refer to this ability to selectively activate different cell types as “addressing.”
By eliminating the complexity of considering downstream pathway effectors, we
are able to more comprehensively understand how cell type specificity can arise in
spite of—or because of—promiscuity in ligand-receptor interactions. We focus on
the bone morphogenetic protein (BMP) pathway as an ideal example. This pathway
is essential in development, is of therapeutic interest in an array of pathologies, and
has proven amenable to theoretical and experimental analysis. We first describe a
minimal model of the pathway and identify what types of response functions can be
achieved. We show that each layer of computation, from the formation of signaling
complexes to the activation of downstream second messenger, can provide nontrivial
integrations of ligand inputs. We then extend this analysis to systems with multiple
cell types that may vary in receptor expression profile. The diverse response func-
tions of this pathway enable systems in which different cell types or sets of cell types
may be addressed with high specificity. In particular, the BMP pathway can address
multiple cell types with high capacity, flexibility, and robustness. Taken together,
these results provide a framework for understanding how molecular promiscuity in
signaling pathways can, in fact, enable cellular specificity in pathway responses.



vi

Published Content and Contributions

Su, C.J., Murugan, A., Linton, J.M., Yeluri, A., Bois, J., Klumpe, H., Langley,
M.A., Antebi, Y.E., and Elowitz, M.B. (2022). Ligand-receptor promiscuity enables
cellular addressing. Cell Syst. 13, 408–425. DOI 10.1016/j.cels.2022.03.001.

C.J.S. conceptualized the research, designed the study, developed the mathemat-
ical models, performed the computational analysis, and wrote the manuscript.
The authors have a patent related to this work (U.S. patent number 10,527,631).

Klumpe, H.E., Langley, M.A., Linton, J.M., Su, C.J., Antebi, Y.E., and Elowitz,
M.B. (2022). The context-dependent, combinatorial logic of BMP signaling. Cell
Syst. 13, 388–407. DOI 10.1016/j.cels.2022.03.002.

C.J.S. developed mathematical models, performed parameter fitting, and gave
feedback on the work.

Ding, F., Su, C., Chow, K.-H.K., Liang, G., and Elowitz, M.B. (2022). Dynamics
and functional roles of splicing factor autoregulation. Cell Rep., accepted. bioRxiv.
DOI 10.1101/2020.07.22.216887.

C.S. developed mathematical models, performed parameter fitting, and partici-
pated in writing of the manuscript.

Antebi, Y.E., Linton, J.M., Klumpe, H., Bintu, B., Gong, M., Su, C., McCardell, R.,
and Elowitz, M.B. (2017). Combinatorial Signal Perception in the BMP Pathway.
Cell 170, 1184–1196. DOI 10.1016/j.cell.2017.08.015.

C.S. performed modeling and simulations, gave feedback on the work, and
participated in revision of the manuscript.

https://doi.org/10.1016/j.cels.2022.03.001
https://doi.org/10.1016/j.cels.2022.03.002
https://doi.org/10.1101/2020.07.22.216887
https://doi.org/10.1016/j.cell.2017.08.015


vii

Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . vi
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Intercellular Communication . . . . . . . . . . . . . . . . . . . . . 1
1.2 Signaling Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Signaling Pleiotropy . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Cellular Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 BMP Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2: Ligand-Receptor Promiscuity Enables Complex Computations . . 20
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 3: Ligand-Receptor Promiscuity Enables Cellular Addressing . . . . 46
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5 Supplemental Information . . . . . . . . . . . . . . . . . . . . . . . 84
3.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 4: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Appendix A: Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



viii

List of Figures

Number Page
2.1 The BMP pathway can be represented by a minimal mathematical

model describing promiscuous ligand-receptor interactions. . . . . . 24
2.2 Single-complex responses can be classified into archetypal basis

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Multiplicity of both receptor subunits is required to generate more

sophisticated single-complex responses. . . . . . . . . . . . . . . . 28
2.4 Enumerate-optimize approach enables systematic analysis of possi-

ble responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Systematic screening of single-complex functions reveals consistent

repertoire of archetypes. . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Promiscuous ligand-receptor interactions generate a larger repertoire

of response functions at the level of pathway activity. . . . . . . . . 33
2.7 Diverse single-cell responses can be understood as linear combina-

tions of simpler single-complex responses. . . . . . . . . . . . . . . 35
3.1 Promiscuous ligand-receptor interactions in the BMP pathway may

allow combinatorial addressing. . . . . . . . . . . . . . . . . . . . 49
3.2 A mathematical model of promiscuous ligand-receptor interactions

allows systematic optimization of addressing capabilities. . . . . . . 53
3.3 Two ligand variants can independently address eight cell types with

high specificity and robustness. . . . . . . . . . . . . . . . . . . . . 59
3.4 Promiscuous architecture enables diverse addressing repertoires. . . 65
3.5 Cell lines preferentially respond to different ligand combinations. . . 69
3.6 Information theoretic analysis reveals design principles for combi-

natorial addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.7 Promiscuous ligand-receptor interactions allow for flexible and high-

bandwidth addressing. . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.S1 Promiscuous ligand-receptor interactions generate a repertoire of

archetypal response functions. . . . . . . . . . . . . . . . . . . . . 84
3.S2 Orthogonal addressing can arise from a variety of different response

types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.S3 Orthogonal addressing schemes are robust to extrinsic noise in re-

ceptor expression levels. . . . . . . . . . . . . . . . . . . . . . . . . 86
3.S4 Varying distinguishability thresholds reveal a tradeoff between the

capacity and robustness of addressing systems. . . . . . . . . . . . . 88
3.S5 Orthogonal addressing capacity remains generally consistent when

considering higher-resolution ligand discretization. . . . . . . . . . 90
3.S6 Addressing properties vary across parameter sets. . . . . . . . . . . 92
4.1 Addressing systems with three ligand variants can provide greater

bandwidth than two-ligand systems. . . . . . . . . . . . . . . . . . 136



ix

List of Tables

Number Page
3.S1 Experimentally analyzed cell lines have receptor expression profiles

resembling those of biological cell types. . . . . . . . . . . . . . . . 93



1

Chapter 1

Introduction

1.1 Intercellular Communication

The emergence of life is remarkable, the evolution of multicellular life even more

so. Every human living today comprises approximately 40 trillion cells that orig-

inated from a single fertilized egg (Bianconi et al., 2013). These cells represent

hundreds of different cell types with specialized functions (Vickaryous and Hall,

2006), yet all work in tandem to enable development and homeostasis. Intercellular

communication systems allow these distinct cell fates to act in concert, from the

coordinated contraction of myocytes for movement to the synchronized release of

digestive enzymes after eating. As such, analyzing how signals can be directed

to appropriate cell types is essential to understanding how these communication

systems function in vivo.

These biological communication systems can be divided into two main types: sig-

naling pathways and neuronal transmission. In intercellular signaling pathways,

sending cells produce signaling molecules known as ligands that can interact with

receptors on receiving cells to transduce responses (Nair et al., 2019). Most cells

can both send and receive signals, and these chemical signals can be transmitted at

different length scales (Alberts et al., 2008). At the largest or most “public” scale,

signals can be secreted into the bloodstream and “broadcast” across the entire body.

These molecules, known as hormones, mediate endocrine signaling. At a smaller

scale, ligands can diffuse within their local environment, performing paracrine sig-

naling (Francis and Palsson, 1997). Alternatively, the ligand may be expressed
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directly on the plasma membrane of the signaling cell and activate receptors on an

adjacent cell that is in direct contact with the sender cell; this contact-dependent

signaling is known as juxtacrine signaling. Finally, cells can respond to their own

signals through autocrine signaling.

In addition to signaling pathways, many multicellular organisms feature a specialized

nervous system that processes inputs and coordinates outputs across different parts

of the body. This system uses electrochemical signals to transmit information.

Briefly, specialized cells known as neurons fire electrical impulses along their

axons. An impulse induces the release of chemicals called neurotransmitters at the

axon terminal, where the signaling neuron forms synapses with the receiving cell(s).

These neurotransmitters diffuse across the gap between the sending cell’s axon and

the target cell’s membrane. The target cell can then respond by producing its own

electrical signal or otherwise enacting a desired response (Cotman and McGaugh,

1980). However, intercellular communication remains an essential function across

all cells, most of which are not neurons. For typical cells, signal transduction is

largely implemented by signaling pathways using chemical mediators.

1.2 Signaling Pathways

Although these chemical signals are utilized across hundreds of cell types, they

represent a relatively small number of signaling pathways that are highly conserved

in development. These key signaling pathways (typically named for a component

of the pathway) include the Notch, Hippo, transforming growth factor β (TGF-

β), Wnt, Hedgehog, receptor tyrosine kinase (RTK), Janus kinase (JAK)-signal

transducer and activator of transcription (STAT) (JAK-STAT), Jun kinase (JNK),

nuclear factor-κB (NF-κB), and nuclear receptor pathways (Basson, 2012; Housden

and Perrimon, 2014; Perrimon et al., 2012). Among these, the Notch and Hippo

pathways are juxtacrine, while the remaining are paracrine. Each pathway may have



3

multiple variants of ligands and receptors, along with a variety of other components

that modulate or regulate signaling activity.

While the importance of cellular communication is clear, untangling the complex

underlying interactions is a major challenge and an abiding goal in biology. The

Hodgkin-Huxley model describing how action potentials are propagated in neurons

was first published in 1952 (Hodgkin and Huxley, 1952). Initial evidence of chemical

signaling pathways was discovered around the same time. While the concept that

chemicals secreted into blood could affect distant cells had emerged earlier (Nair

et al., 2019; Starling, 1914), discoveries of the underlying molecular components

were only reported starting in the 1950s. Cohen and Levi-Montalcini discovered

epidermal growth factor (EGF) and nerve growth factor (NGF) (Cohen, 1962; Levi-

Montalcini and Hamburger, 1951). These studies identified particular examples of

“first messengers” (now called ligands), or the extracellular molecules that initiate

signaling by binding to cell surface receptors. Concurrently, Sutherland discovered

that epinephrine and glucagon result in the production of cyclic AMP (Rall et al.,

1956; Sutherland and Rall, 1957). This result represented the first identification of

“second messengers,” or the intracellular molecules that act within a cell to mediate

the cellular response to ligands. The development of this conceptual framework

enabled the emergence of signal transduction as a field (Hunter, 2000).

Subsequent technological advances in molecular biology have greatly expanded our

understanding of the molecular players in signaling pathways. These discoveries

include not only the ligands and receptors for the various pathways mentioned above

but also their overall architectures, which may encompass many other molecules that

transduce or modify ligand signals. For example, the Wnt pathway involves binding

of Wnt proteins to the Frizzled (Fz)/low-density lipoprotein (LDL) receptor-related

protein (LRP) complex at the cell surface. Canonical Wnt signaling results in in-
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hibition of the degradation of β-catenin, which then accumulates and translocates

to the nucleus to act as a transcriptional regulator (Logan and Nusse, 2004). In

the JAK-STAT pathway, ligand-receptor binding leads to conformational changes in

the receptor and activation of receptor-associated JAKs. They are activated through

trans-phosphorylation and can in turn phosphorylate select tyrosine residues on

the cytokine receptor, allowing docking of STATs and other signaling components.

STATs are then themselves phosphorylated by JAKs and, upon activation, translo-

cate to the nucleus to effect cellular responses (Kisseleva et al., 2002; O’Shea et al.,

2002). These examples illustrate how signaling pathways can be understood within

an overarching conceptual framework: ligand-receptor binding at the cell surface

triggers activation of second messengers that enable the intracellular response (here,

by translocating to the nucleus and regulating gene expression). They also demon-

strate some of the variations in implementation across different pathways, such

as inhibition of degradation (Wnt) or phosphorylation-induced association (JAK-

STAT). Nonetheless, these mechanisms often recur across pathways (Krebs and

Beavo, 1979).

Knowledge about intracellular signaling pathways has advanced concurrently with

our understanding of signal-initiating events. One essential class of signaling pro-

teins is the set of guanine nucleotide-binding proteins (G proteins), both the small

monomeric G proteins and the heterotrimeric G proteins. These proteins bind

guanine nucleotides and can cycle between inactive guanosine diphosphate (GDP)-

bound and active guanosine triphosphate (GTP)-bound states through their GTPase

activity (Hamm, 1998; Takai et al., 2001). Upon activation by G protein-coupled

receptors, heterotrimeric G proteins undergo GDP release and then bind GTP at

the Gα subunit, allowing dissociation of the Gβγ subunits. The activated Gα∗

subunits interact with effector enzymes and are divided into families based on

these interactions. For example, Gs activates adenylyl cyclase, Gi inhibits adenylyl
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cyclase, and Gq activates phospholipase C (PLC) (Neves et al., 2002). Ras, the

best-characterized member of the small G proteins, is well known for its role in

activating the intracellular mitogen-activated protein (MAP) kinase cascade (Mor

and Philips, 2006).

While G proteins are ubiquitous and highly evolutionarily conserved signaling com-

ponents, other work has revealed that signaling transducers are not limited to pro-

teins. For example, lipids were identified early on as part of the response to signaling

(Hokin and Hokin, 1953). Subsequent work unraveled more details about phospho-

inositide (PI) pathways in signal transduction. In one, phosphatidylinositol is phos-

phorylated to phosphatidylinositol 4,5-bisphosphate, which is then hydrolyzed by

PLC to two second messengers: inositol 1,4,5-trisphosphate (IP3) and diacylglycerol

(DAG) (Kapeller and Cantley, 1994). IP3 acts to release calcium ions (Ca+2) from

intracellular stores, and Ca+2 itself can serve as an important second messenger for

a variety of cellular processes, often acting through Ca+2-sensing proteins (Cheung,

1980; Chin and Means, 2000; Klee et al., 1980; Means and Dedman, 1980). DAG

acts by activating protein kinase C (Bell and Burns, 1991). An alternate pathway of

PI metabolism involves PI 3-kinase, which generates 3-phosphoinositides that are

not hydrolyzed by PLC (Kapeller and Cantley, 1994). In addition to lipids and ions,

even gases like nitric oxide have emerged as important second messengers (Stamler

et al., 1992).

This increased molecular understanding of signaling pathways has also enabled

major advancements in synthetic control and therapeutic applications. Genetic mu-

tations in signaling pathway components have been linked with various pathologies

(Wang et al., 2014). Compounds to activate or inhibit important effectors have been

developed, many of significant clinical impact (Cohen et al., 2021). Nonetheless,

a deeper systems-level understanding of these pathways has not yet been achieved.
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It remains unclear what communication capabilities these pathways provide for an

individual cell type or for a tissue composed of multiple cell types.

1.3 Signaling Pleiotropy

While the molecular understanding of signaling pathways has broadened dramat-

ically, the mystery of how so many cell types can be precisely coordinated by so

few pathways remains a key question. Any given cell may be exposed to numer-

ous different signaling molecules in its environment, and each cell must selectively

respond to particular signals based on its particular function.

The relationship between signals and downstream cellular responses is complex

and context-dependent. A given molecular signal can induce a range of cellular

responses across cell types. For example, acetylcholine acts to decrease the rate

and strength of contraction in cardiac muscle but stimulates contraction in skeletal

muscle; in salivary gland, it induces glandular secretion (Alberts et al., 2008).

Conversely, a single cell type can show a range of cellular responses to different

signals. In a given cell, activation of the PI 3-kinase pathway by the insulin receptor

may induce metabolic responses while activation of the same pathway by growth

factor receptor does not (Hunter, 2000). These observations demonstrate specificity

of cellular responses depending on the particular signal or cell type. However, how

these differential responses arise is still unclear.

Various models have been proposed to explain these phenomena. In models of

intrinsic specificity, distinct responses are programmed within the receiving cells.

For example, two cell types might express distinct intracellular pathway components

or downstream effectors (Tan and Kim, 1999). In the former, a receptor capable

of activating multiple intracellular signaling pathways can activate different path-

ways and therefore different responses if each cell type expresses components for
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a different pathway. In the latter, cell types might express different transcription

factors, thus generating different changes in gene expression upon activation. These

hypotheses suggest that different cellular responses can be generated in a permissive

manner by leveraging intrinsic differences in the responding cells.

Alternatively, models of extrinsic specificity imply that the signals themselves con-

trol the resulting responses. For example, different signaling kinetics or combina-

torial integration of multiple signaling pathways could allow for different responses

(Tan and Kim, 1999). With the former, cell types might respond differently depend-

ing on whether signals are transient or sustained. With the latter, multiple signaling

pathways could synergize (or show other combinatorial interactions) to provide a

larger set of responses from a smaller number of signals. These hypotheses imply

that signals act in an instructive manner to induce different cellular responses.

It is likely that each of these models may hold in different contexts. For example, the

LET-23 RTK provides support for intrinsically generated specificity. This receptor

functions in multiple tissues in Caenorhabditis elegans development (Aroian and

Sternberg, 1991). Several of these tissues rely on the Ras-mediated MAP kinase

pathway (Church et al., 1995; Sundaram et al., 1996), but one instead expresses and

requires components of the IP3 pathway (Clandinin et al., 1998). Conversely, the

Notch signaling pathway gives one example of extrinsically generated specificity.

The ligand Dll1 activates Notch1 in pulses and leads to upregulation of Hes1, while

the ligand Dll4 yields sustained activation of Notch1 and induces upregulation of

Hey1 and HeyL (Nandagopal et al., 2018). These models all provide possible

mechanisms for the outstanding question of how different cell types exhibit varied

responses to molecular signals.
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1.4 Cellular Addressing

In this work, we approach the question of cellular specificity from a unique angle by

asking how signals can generate different levels of pathway activation across different

cell types. In other words, we ask how cell type specificity can be realized at the

level of intracellular signal rather than overall phenotypic response, eliminating the

complexity added through downstream pathway effectors. While analyzing further

layers of computation is essential for a complete understanding of how cell types

respond differentially to signals, focusing on the level of the signal itself enables us

to better understand the operational principles of signal transduction and determine

what functions can be achieved at each level of complexity. We refer to this ability

to selectively activate different cell types as “addressing.”

As an analogy, any communication system, from mail to email, must provide this

ability to address the desired recipient(s). In some cases, this specificity can be

achieved through physical proximity. Consider, for example, early telephone sys-

tems, where switchboard operators physically connected the caller to the recipient.

A similar situation applies to neuronal transmission, where a given neuron can only

signal to cells with which it forms synaptic contacts. Thus, mapping the complex

connectivity of the nervous system is a monumental task (Micheva et al., 2010), but

it is relatively straightforward to infer the cell(s) that a cell may send information to

or receive information from. Similarly, understanding how signals may be addressed

in a juxtacrine pathway is relatively clear; a cell may only send or respond to its

immediate neighbors. An analogy might be a conversation at a loud party, where

any given individual can only converse with someone immediately adjacent.

However, it is unclear whether and how secreted signals can be similarly targeted. In

the many signaling pathways involving secreted ligands, signals enter the local envi-

ronment and/or bloodstream and can affect a large number of cells. One possibility
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is that different cells can simply express a limited set of receptors in order to respond

to a limited set of ligands, similar to listening to a particular frequency on the radio.

However, ligands and receptors are often expressed in combinations (Diez-Roux et

al., 2011; Faber et al., 2002; Glister et al., 2004; Onagbesan et al., 2003; Simic and

Vukicevic, 2005). Furthermore, many pathways exhibit ligand-receptor promiscu-

ity, where ligands can activate multiple different receptors to varying extents. These

pathways include BMP (Heldin et al., 1997; Massagué, 1998; Mueller and Nickel,

2012; Nickel and Mueller, 2019; Schmierer and Hill, 2007), Notch (Shimizu et al.,

2000a, 2000b), Wnt (Llimargas and Lawrence, 2001; Wodarz and Nusse, 1998),

Eph-Ephrin (Dai et al., 2014), and FGF (Ornitz et al., 1996; Zhang et al., 2006). As

such, the intuitive expectation might be that widespread pathway activation would

be observed. Therefore, it remains unclear whether cell type specificity can emerge

at the level of pathway activation or whether such specificity requires the additional

layer of downstream signal transducers.

In this work, we investigate whether and how cellular addressing can be achieved

in a prototypical paracrine pathway. Given the ubiquity of promiscuous ligand-

receptor interactions in key signaling pathways, we focus on analyzing the potential

for addressing in a promiscuous pathway architecture. It has remained unclear

whether molecular promiscuity in ligand-receptor interactions is compatible with

addressing at all and, if so, what advantages it might provide. Understanding how

specific addressing of particular cell types can be achieved would not only improve

understanding of intercellular signaling in physiological contexts but also facilitate

development of therapeutic applications with enhanced specificity for desired cell

types.
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1.5 BMP Signaling

To analyze this question, we use the BMP signaling pathway as a prototypical exam-

ple of a paracrine signaling pathway with promiscuous ligand-receptor interactions.

Briefly, BMP ligands (part of the TGF-β superfamily) are secreted dimers that signal

by interacting with a heterotetrameric receptor complex formed from dimeric type

I and type II serine-threonine kinase receptors. In mammals, there are ten or more

ligands that can interact promiscuously with four type I receptors and three type II

receptors (Miyazono et al., 2010). Upon ligand binding, the constitutively active

type II receptor phosphorylates type I receptor, which can in turn phosphorylate the

receptor-regulated SMADs (R-SMADs). For BMP signaling, these second mes-

sengers are SMAD1, SMAD5, and SMAD8 (with SMAD2 and SMAD3 primarily

activated by receptors for the TGF-β subfamily). These R-SMADs form a com-

plex with the co-mediator SMAD (co-SMAD) SMAD4, which then translocates to

the nucleus and acts as a transcription factor to regulate expression of target genes

(Massagué, 2000; Shi and Massagué, 2003). While the specific downstream ef-

fects depend on cell type, the level of phosphorylated SMAD can be used as a cell

type-independent measure of pathway activation.

First identified as inducers of bone formation (Urist, 1965), BMPs are not limited to

bone and cartilage but also play vital roles in the development and normal function

of heart, lung, liver, kidney, and many other systems, where they mediate a host of

downstream responses (David and Massagué, 2018; Wagner et al., 2010; Wang et

al., 2014).

Furthermore, dysregulation of the BMP pathway is known to contribute to a range

of diseases. For example, several classes of skeletal disorders that manifest with

severe longitudinal growth defects in the limbs are associated with reduced BMP

signaling, such as mutations reducing secretion of the ligand GDF5 or impairing
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ligand binding by the receptor BMPR1B. Conversely, excessive BMP signaling

also leads to skeletal disorders; for instance, mutations of the receptor ACVR1

that increase activation potential can produce the extraskeletal ossification seen in

fibrodysplasia ossificans progressiva (FOP) (Salazar et al., 2016). Mouse transgenic

models have further demonstrated the broad array of phenotypic defects resulting

from mutations in TGF-β and BMP pathway components (Wu et al., 2016). BMP-

related pathologies are not limited to the skeletal system. For instance, BMP

signaling plays a role in inducing cardiac mesoderm formation and cardiomyocyte

differentiation (Morrell et al., 2016). BMP ligands are also upregulated at sites

of systemic vascular injury and in vessel walls in animal models of hypertension

(Lowery and de Caestecker, 2010). Mutations in the receptor ACVRL1 are linked

to a subtype of hereditary hemorrhagic telangiectasia (HHT), which manifests with

arteriovenous malformations in the lungs and other organs. Again, animal models

of mutations in BMP pathway components have shown a variety of cardiovascular

phenotypes (Morrell et al., 2016).

These examples illustrate a few of the essential roles that BMP signaling plays in

physiology and pathology. Unsurprisingly, modulation of the BMP pathway is an

area of therapeutic interest. For instance, small-molecule BMP inhibitors show

potential use in regenerative medicine, such as inducing cardiomyocyte differentia-

tion from pluripotent stem cells (Hong and Yu, 2009). BMP7 has shown effective

suppression of renal fibrosis in animal models (Liu, 2006), while BMP9 has demon-

strated promise in reducing glycemia in mouse models of diabetes (Chen et al.,

2003). BMP signaling is of particular interest in bone injuries, and recombinant

BMP2 and BMP7 have both shown promise in treating fractures (Friedlaender et

al., 2001; Govender et al., 2002). However, effective delivery is an essential con-

sideration (Anitua et al., 2008), and it remains an outstanding challenge to deliver

BMP signals to desired targets while minimizing off-target activity. As such, un-
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derstanding how cell type specificity can be achieved will be vital for optimizing

signaling-based therapeutic approaches.

Together, these observations indicate that BMP signaling is a system of great biolog-

ical importance. Beyond its significance, however, previous work suggests that the

pathway represents an ideal choice for systematically investigating how signaling

specificity can be achieved. Experimental measurements of pathway responses in

multiple cell types exposed to multiple ligand combinations revealed that cells can

“compute” combinatorial functions of ligand inputs. Different computations can be

generated for a single cell type with different ligand combinations or for multiple cell

types with the same ligand combination. A minimal mathematical model describing

only ligand-receptor interactions (neglecting further pathway components) success-

fully described the types of responses observed experimentally in cell lines (Antebi

et al., 2017; Klumpe et al., 2022). These results demonstrate that the BMP pathway

exhibits a range of capabilities that are amenable to experimental and mathematical

modeling.

1.6 Present Work

In this work, we build on this body of knowledge to model what computations are

possible in the BMP pathway and how they can enable cellular addressing. To better

understand the functional capabilities of this architecture, we develop a simplified

mathematical model of the pathway that describes promiscuous ligand-receptor

interactions and their enzymatic activation of second messenger. In Chapter 2, we

perform a comprehensive analysis of the model to identify what types of cellular

response functions can be achieved. This study enables deeper understanding of the

functional capabilities of a promiscuous ligand-receptor architecture. In Chapter

3, we then generalize this approach to analyze systems of diverse cells, each with

potentially distinct receptor expression profiles. Specifically, we show that these
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diverse responses allow high-capacity, flexible, and robust addressing of cell types.

Together, this work provides a framework for understanding the unique functions

of a promiscuous ligand-receptor architecture and how molecular promiscuity can,

counterintuitively, enable cellular specificity.
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Chapter 2

Ligand-Receptor Promiscuity
Enables Complex Computations

2.1 Abstract

Signaling pathways represent an integral mode of intercellular communication in

multicellular organisms. As such, it is essential to understand the capabilities they

provide. The bone morphogenetic protein (BMP) pathway is an ideal example for

study. This pathway is used in many biological contexts, has potential therapeutic

applications in a range of pathologies, and has previously been shown to allow

cells to perform complex computations on ligand inputs. In this work, we utilize a

mathematical model of ligand-receptor interactions in the pathway to systematically

interrogate how these computations arise. We show that nontrivial integrations

of inputs can occur even at the level of formation of ligand-receptor signaling

complexes. Receptor multiplicity is required to achieve these computations. Further

diversity of responses is added when considering the combined output of these

signaling complexes at the level of pathway activity. These results provide a more

systematic understanding of the computations achievable in this pathway.

2.2 Introduction

Multicellular organisms require precise coordination of diverse cell types during

development and normal functioning. Core communication pathways allow for

signal transmission between cells and are used recurrently in diverse biological

processes. Many of these pathways exhibit promiscuous, many-to-many interactions

between multiple ligand and receptor variants. These pathways include not only the
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BMP (Heldin et al., 1997; Massagué, 1998; Mueller and Nickel, 2012; Nickel

and Mueller, 2019; Schmierer and Hill, 2007) but also the Wnt (Llimargas and

Lawrence, 2001; Wodarz and Nusse, 1998), Notch (Shimizu et al., 2000a, 2000b),

Eph-Ephrin (Dai et al., 2014), FGF (Ornitz et al., 1996; Zhang et al., 2006), and

other signaling pathways. However, the model of promiscuous interaction systems

can also be applied more generally to other input-output systems, such as basic

helix-loop-helix (bHLH) transcription factors (de Martin et al., 2021).

Despite the ubiquity of such systems in biology, we have lacked a general, quan-

titative framework for understanding the signal processing capabilities of these

architectures. Specifically, it has remained unclear what types of computations such

systems can implement and how this functional repertoire depends on the molecular

architecture of the system.

One prototypical example of a signaling pathway with a promiscuous ligand-receptor

architecture is the BMP pathway. In mammals, the pathway contains more than

ten distinct ligands that dimerize and interact promiscuously with four type I and

three type II receptor variants (Massagué, 2000; Miyazono et al., 2010; Shi and

Massagué, 2003). Formation of a full signaling complex results in phosphorylation

of the SMAD1/5/8 proteins, regardless of which ligands and receptors are involved.

However, despite their similar molecular functions in the pathway, different ligands

have been observed to have distinct and even opposite effects on developmental

processes (Klammert et al., 2015; Piscione et al., 1997). Similarly, ligands can have

non-additive effects and can synergize or antagonize each other (Açil et al., 2014;

Ying and Zhao, 2001; Ying et al., 2000, 2001).

Recently, a systematic analysis of how the pathway integrates multiple ligands

revealed that it can respond combinatorially to ligands, effectively “computing”

functions of multiple ligands. A single cell type can respond differently to different
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combinations of ligands; conversely, cell types with distinct receptor profiles can

compute different functions of the same ligand inputs. These computational effects

of promiscuous ligand-receptor interactions could be recapitulated using a minimal

mathematical model describing the promiscuous interactions of ligands and recep-

tors and their enzymatic activation of a downstream target (Antebi et al., 2017;

Klumpe et al., 2022).

In this work, we perform a more complete analysis of this model of the BMP

pathway, aiming to develop a more fundamental understanding of what types of

computations could theoretically be achieved with such an architecture. We utilize

two complementary approaches to study this question. We first simulate many

randomly generated systems to build intuition for the spectrum of possible responses.

We then systematically enumerate all possible targets in a more constrained system

and optimize for each one. Together, these results reveal the diverse spectrum of

computations that can be achieved and provide a better understanding of how they

arise.

2.3 Results

2.3.1 A simple one-step model yields a similar computational repertoire as a
more complex two-step model

To model the BMP pathway, we consider a general framework with 𝑛𝐿 ligands, 𝑛𝐴

type I receptors, and 𝑛𝐵 type II receptors, denoted as a (𝑛𝐿 , 𝑛𝐴, 𝑛𝐵) model. We have

previously described a model of sequential two-step binding in which the 𝑖th ligand,

𝑗 th type I receptor, and 𝑘th type II receptor interact to form active signaling complex

𝑇𝑖 𝑗 𝑘 in a two-step process (Methods 2.5.1). Ligand 𝐿𝑖 first binds with receptor 𝐴 𝑗

to form dimer 𝐷𝑖 𝑗 , which then interacts with receptor 𝐵𝑘 to form trimeric complex

𝑇𝑖 𝑗 𝑘 .
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To understand the signal processing capabilities of this system for two inputs, we

simulated the system for many random parameter sets and found that the resulting

functions interpolated among four archetypal functions: ratiometric, additive, im-

balance, and balance (Antebi et al., 2017). Briefly, ratiometric responses feature

reduction of activity of one ligand by the second, such that the overall response

approximates the ratio of the two concentrations; these responses can be gener-

ated by competitive inhibition, where the “denominator” competes for receptors

needed to generate signaling activity but produces inactive complexes. Additive

responses approximate the sum of the two ligand concentrations, as the ligands

increase pathway activity either alone or together; they are readily generated when

both ligands activate receptors similarly. Imbalance detection responses, where

cells respond maximally to imbalances in the levels of the two ligands, can arise if,

for instance, competition between two ligands favors complexes with low signaling

activity. Conversely, balance detection responses, where cells respond maximally

when both ligands are present at a specific ratio, can be generated when ligand

binding favors formation of high-activity signaling complexes.

Having identified these archetypal functions in a two-step model, we next considered

a simplified one-step model in which 𝑇𝑖 𝑗 𝑘 forms from 𝐿𝑖, 𝐴 𝑗 , and 𝐵𝑘 in a single

reaction (Figure 2.1; Methods 2.5.2). This model is described by 𝑛𝐿𝑛𝐴𝑛𝐵 affinity

parameters and 𝑛𝐿𝑛𝐴𝑛𝐵 efficiency parameters for each complex, as well as the initial

levels of ligands and receptors. We have shown theoretically that this model can

give rise to the same steady-state responses as the previously described two-step

model (Methods 2.5.3). We have further demonstrated that the one-step model

can recapitulate the four previously identified archetypal functions of ratiometric,

additive, imbalance, and balance responses (Figure 3.S1). Since the one-step model

is sufficient to capture the computational complexity of the two-step model but

reduces the number of parameters to consider, we chose to proceed with this model.
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Figure 2.1: The BMP pathway can be represented by a minimal mathematical
model describing promiscuous ligand-receptor interactions.

We developed a model that describes the interactions among 𝑛𝐿 ligands, 𝑛𝐴 type I
receptors, and 𝑛𝐵 type II receptors in the BMP pathway (Methods 2.5.2). All ligands
𝐿𝑖 and receptors 𝐴 𝑗 and 𝐵𝑘 can potentially interact, allowing formation of any of the
possible signaling complexes𝑇𝑖 𝑗 𝑘 . For simplicity, we model this interaction as a one-
step process with an affinity 𝐾𝑖 𝑗 𝑘 . Each signaling complex can then phosphorylate
SMAD proteins to generate second messenger with a corresponding activity 𝑒𝑖 𝑗 𝑘 .
This model provides two layers of computation. In the first, the affinity parameters
dictate the levels at which different signaling complexes form. In the second, the
activity parameters represent the weights with which each single-complex response
is combined to generate the total single-cell response. Equations describe the
steady-state levels of each component and the total signal 𝑆.

This model effectively represents two layers of computation. The first layer describes

the formation of specific combinatorial complexes from the initial concentrations

of the individual components. The computations that determine which complexes

are formed and at what amount are controlled by the affinity parameters, 𝐾𝑖 𝑗 𝑘 . The

second layer specifies how the formed complexes combine together to generate the

single-cell pathway response. In this level, the computations are governed by the

activity parameters, 𝑒𝑖 𝑗 𝑘 . Together, the two layers form a directed network, where

each layer can perform specific computations on its inputs and generate the input of

the next layer.
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2.3.2 Analysis of responses at the level of signaling complexes identifies several
archetypal “basis functions”

To understand the repertoire of computations possible in the BMP pathway, we

sought to gain a deeper understanding of how pathway activity arises as an inte-

gration of the levels of multiple signaling complexes. Pathway activity represents

a linear combination of signaling complex levels, so we started by analyzing the

profiles of signaling complexes to determine whether we could identify fundamental

archetypes or basis functions of single-complex responses, similar to the ratiomet-

ric, additive, imbalance, and balance functions observed previously for single-cell

behaviors.

Certain responses are inherently impossible at the level of signaling complexes;

since complex 𝑇𝑖 𝑗 𝑘 comprises ligand 𝑖, formation of 𝑇𝑖 𝑗 𝑘 requires the presence of 𝐿𝑖,

and there cannot be a response in the absence of that ligand. Intuitively, complex

levels would rise in conjunction with increased concentrations of the associated

ligand, but increasing the concentration of a different ligand would decrease complex

levels through competition for a limited set of receptors. Thus, the simplest single-

complex responses would exhibit a ratiometric-like behavior. However, the presence

of a different ligand can potentially modulate the overall response and enable other

types of computations.

We first sought to identify what single-complex functions could arise in a model with

two variants each of ligand, type I receptor, and type II receptor, as this (2, 2, 2) model

represents the minimal model size that demonstrates multiplicity of each component.

Therefore, we randomly generated many different parameter sets and simulated the

resulting steady-state levels of each of the 𝑛𝐿𝑛𝐴𝑛𝐵 signaling complexes for a high-

resolution (10× 10) ligand titration (Methods 2.5.4). Upon visualizing the resulting

single-complex responses, we identified many examples that matched the expected
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Figure 2.2: Single-complex responses can be classified into archetypal basis
functions.

To identify possible single-complex responses, we performed many random simula-
tions of a (2, 2, 2) model (Methods 2.5.4). This analysis revealed several archetypal
responses: ratiometric-like, nonmonotonic-like, and balance-like. We also saw
responses that combined the features of nonmonotonic-like and balance-like behav-
iors.

ratiometric-like behavior; however, we also found response profiles that showed

more complex responses (Figure 2.2). Some responses exhibited nonmonotonic-

like behavior, in which signaling complex levels are highest when the associated

ligand is present alone but in moderate concentration. We also observed a response

type in which levels of signaling complex are maximal at a specific ratio of the

two ligands. We referred to such responses as balance-like, due to their similarity

to balance detection responses seen at the level of pathway activity. Finally, we

observed responses that combined features of the nonmonotonic-like and balance-

like profiles. These results illustrate that complex computations can arise even at

the level of signaling complex formation.

2.3.3 Multiplicity of both receptor types is necessary to produce more complex
computations at the level of signaling complexes

To understand how the types of computations observed relate to overall model

complexity, we repeated this procedure for a range of receptor multiplicities. We

started from a (2, 1, 1) model, which has no receptor multiplicity, and increased
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the number of receptor variants to a (2, 4, 3) model, which reflects the receptor

multiplicity in humans and other mammals. Specifically, we evaluated (2, 1, 1),

(2, 2, 1), (2, 2, 2), (2, 3, 2), (2, 3, 3), and (2, 4, 3) models.

To more systematically evaluate the types of responses seen across these hundreds of

thousands of examples, we reasoned that we could analyze the qualitative behavior

of any given response by examining where local maxima occurred. For simplicity,

we symmetrized responses by always labeling the ligand associated with a given

complex as ligand 1 and considering the other ligand to be ligand 2. The simple

ratiometric-like responses, for instance, would yield a single local maximum, oc-

curring where the concentration of ligand 1 is high and the concentration of ligand

2 low. We identified all such local maxima for each response profile and then

computed the frequency distribution for their locations for every choice of model

complexity (Figure 2.3; Methods 2.5.5).

These results revealed that multiplicity of both receptors is required to achieve com-

putations beyond the predicted ratiometric-like response. In the (2, 1, 1) and (2, 2, 1)

models, local maxima are observed only when ligand 1 is present at high concen-

trations and ligand 2 at low concentrations, consistent with the ratiometric-like

behavior. By contrast, models with multiplicity of both receptors began showing

the presence of local maxima at intermediate concentrations of ligand 1, corre-

sponding to nonmonotonic-like responses, or at specific ratios of the two ligands,

corresponding to balance-like responses. However, all models with at least two

variants of each receptor showed the same general classes of responses. Although

models with additional receptor variants showed a slight increase in the proportion of

more sophisticated computations (such as the balance-like function), no new classes

of integration functions were seen beyond those already observed in the (2, 2, 2)

model. Thus, promiscuous ligand-receptor interactions generate a relatively small
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Figure 2.3: Multiplicity of both receptor subunits is required to generate more
sophisticated single-complex responses. Continued on next page.
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Figure 2.3: Multiplicity of both receptor subunits is required to generate more
sophisticated single-complex responses. Continued from previous page.

For different model sizes, we randomly generated 10,000 parameter sets and iden-
tified the local maxima of each single-complex response. We then computed the
overall frequency distribution for each model size (Methods 2.5.5). Specifically, we
considered (A) (2, 1, 1), (B) (2, 2, 1), (C) (2, 2, 2), (D) (2, 3, 2), (E) (2, 3, 3), and
(F) (2, 4, 3) models. These choices range from models with no receptor multiplicity
to models capturing the mammalian pathway size. Models without multiplicity
in both receptor types showed only local maxima consistent with ratiometric-like
responses. All models with multiplicity in both receptors yielded additional regions
of local maxima consistent with a broader spectrum of possible responses, including
the more complex nonmonotonic-like and balance-like functions.

set of response types at the level of signaling complexes, and multiplicity of both

receptor variants is necessary and sufficient to achieve those functions beyond the

expected ratiometric-like behavior.

2.3.4 Systematic screen for single-complex responses identifies no additional
functions

Analyzing many randomly generated parameter sets revealed the existence of a

limited number of classes of single-complex computations. However, given the

large number of parameters even in our one-step model, the number of parameter

sets sampled represents a relatively small subset of parameter space. Therefore, we

sought to develop a more systematic approach to evaluating the full spectrum of

possible computations in the BMP pathway architecture.

Specifically, we asked what computations could be generated by systematically

enumerating all response profiles in a discretized space and seeking to optimize

parameters to achieve each target (Figure 2.4; Methods 2.5.6). To comprehensively

sample the space of possible responses, we quantized the input ligand concentrations

to three levels (low, medium, and high) spanning a 1,000-fold dynamic range, and

we considered binarized response values (off and on). We specified “off” responses
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Figure 2.4: Enumerate-optimize approach enables systematic analysis of pos-
sible responses.

To comprehensively analyze all possible responses and identify which can be
achieved, we used an enumerate-optimize approach (Methods 2.5.6). i. We first
discretized ligand space and considered three levels of ligand concentrations. ii.
This discretization enabled us to enumerate all possible binary responses in the low-
resolution space. iii. We then sought to optimize parameters that yielded responses
best matching the targeted function. iv. Finally, we simulated the responses at higher
resolution to better visualize the computations.

when all ligand concentrations are “low.” This process generated 28 = 256 possible

3 × 3 binary response functions to analyze. For each of these functions, we used

least-squares optimization to optimize both biochemical parameters (affinities and

activities) and initial conditions (receptor expression levels) such that the resulting

output would best match the target function. We then used these parameters to

simulate the response at higher resolution.

We first used this strategy to analyze single-complex computations in a (2, 2, 2)

model (Methods 2.5.7). For each targeted response, we visualized a high-resolution

simulated response for the best parameter set identified (Figure 2.5). These results
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Figure 2.5: Systematic screening of single-complex functions reveals consistent
repertoire of archetypes. Continued from previous page.

To evaluate the types of single-complex response functions achievable in the BMP
pathway, optimization was performed to identify parameters best achieving each of
the possible binary 3× 3 functions (Methods 2.5.7). These parameters represent the
affinity and activity of each signaling complex as well as the expression level of each
receptor. For each function, the performance of the parameter set with the lowest
optimization error, defined as the sum of squared errors, is shown. In particular, each
result shows the binary 3×3 target function (left), the corresponding low-resolution
3×3 matrix (center) obtained from the optimized parameters, and the high-resolution
10× 10 simulated matrix (right). Shading indicates low (white), moderate (yellow),
and high (red) optimization error. The resulting response functions can be classified
qualitatively into a relatively small number of archetypes.

largely agreed with those from our analysis of random parameter sets. We again

identified ratiometric-like, nonmonotonic-like, and balance-like responses, as well

as responses combining nonmonotonic-like and balance-like behavior. Overall, the

classes of computations identified by both approaches were in good agreement.

These results revealed that two of the previously established response functions,

ratiometric and balance detection behavior, can already arise at the level of single

complexes. However, additive and imbalance behaviors (or any previously unseen

computations) would require the integration of multiple complexes.

2.3.5 Systematic screen for single-cell responses reveals a wide array of pos-
sible computations

Therefore, we next extended our analysis to include multi-complex integration. By

activating the same intracellular signal with different rates, the pathway can integrate

multiple complexes using distinct weights. In this way, multiple single-complex

response functions could combine to generate a diverse set of computations. We

applied the same enumerate-optimize strategy to identify possible responses at the

level of total pathway output (Figure 2.6; Methods 2.5.8). In analyzing the results
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Figure 2.6: Promiscuous ligand-receptor interactions generate a larger reper-
toire of response functions at the level of pathway activity. Continued from
previous page.

The enumerate-optimize approach of Figure 2.4 was applied to analyze the types of
response functions achievable at the level of pathway activity in a (2, 2, 2) model
(Methods 2.5.8). For each possible binary 3×3 function, optimization was performed
to identify parameters best achieving that function, and the result from the parameter
set with the lowest optimization error is shown. For each target function (left), the
corresponding low-resolution 3 × 3 matrix (center) and high-resolution 10 × 10
matrix (right) are shown, as simulated from the optimized parameters. Shading
indicates low (white), moderate (yellow), and high (red) optimization error. The
resulting responses span a diverse repertoire of input-output functions.

of the top parameter sets for each target function, we found that we were able to

reproduce many of the targets. These responses included the four response functions

identified previously (Antebi et al., 2017) as well as many others. However, it is

interesting to note that some target functions were not generated at all. For example,

no parameters were found that give rise to a response profile that is only active when

both ligands are used together at an intermediate level. These results suggest that

many, but not all, two-ligand functions can be generated within the (2, 2, 2) model.

2.3.6 Single-cell responses represent linear combinations of single-complex
responses

Having identified a diverse array of responses achievable in the (2, 2, 2) model, we

sought to understand them further. In particular, we decomposed select examples

as linear combinations of the underlying single-complex computations, ordered by

their relative weights (Figure 2.7). We chose the additive and imbalance archetypes

that had previously been identified as well as two new response functions that had

never previously been observed experimentally or theoretically. One demonstrates a

nonmonotonic responses for both ligands, while the other is a “multimodal” response

that combines imbalance and balance detection. Intriguingly, each example could
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Figure 2.7: Diverse single-cell responses can be understood as linear combina-
tions of simpler single-complex responses. Continued on next page.
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Figure 2.7: Diverse single-cell responses can be understood as linear combina-
tions of simpler single-complex responses. Continued from previous page.

Each single-cell response represents a linear combination of the underlying single-
complex responses. For selected single-cell responses, the corresponding single-
complex profiles with the highest contributions are shown, together with their re-
spective weightings. These responses represent previously known response types
such as (A) additive or (B) imbalance behaviors as well as newly identified compu-
tations such as (C) nonmonotonic or (D) multimodal functions. In each case, the
top three single-complex functions are sufficient to approximate the full single-cell
response.

be accurately approximated by as few as three of the underlying signaling complex

profiles. This finding indicates that complex computations can arise even if many

signaling complexes have relatively low activities.

2.4 Discussion

In this work, we have described a minimal mathematical model for the BMP pathway

and performed a systematic analysis to understand the theoretical capabilities of this

architecture. In particular, our model involves two key types of parameters and

two associated levels of computations. Affinity parameters describe ligand-receptor

binding and thereby dictate the levels at which different signaling complexes form.

Activity parameters quantify how efficiently signaling complexes produce second

messenger and thus dictate how signaling complexes integrate to generate the total

level of pathway activation.

To better understand the computational capabilities of the pathway, we have an-

alyzed both single-complex and single-cell responses. We use two different ap-

proaches: (1) analysis of many randomly generated parameter sets and (2) op-

timization of systematically enumerated target functions. These complementary

approaches revealed that single-complex responses can be divided into relatively

few archetypes. Ratiometric-like responses arise at all levels of model complexity,
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whereas nonmonotonic-like and balance-like responses (as well as a response com-

bining features of both) require multiplicity of both receptor subunits. However,

integration of multiple complexes produces a larger diversity of response types. We

reproduce the previously observed ratiometric, additive, imbalance, and balance

responses as well as many other responses, such as nonmonotonic responses or a

multimodal response that combines imbalance and balance detection.

Together, these results provide a fundamental understanding of the limits of the

BMP pathway architecture. They also reveal the existence of additional responses

beyond those previously observed experimentally (Antebi et al., 2017; Klumpe et

al., 2022). It remains unclear how difficult they may be to achieve in practice, as

they may require a narrow range of biochemical parameters or be sensitive to natural

biological variation in ligand and receptor levels.

This work lays a foundation for understanding higher-level principles of the BMP

pathway. Our results have helped elucidate how a single cell may respond to ligand

combinations in its environment. The approach could be generalized to understand

how multiple cells, potentially expressing different sets of receptors, respond to their

environment. This question is fundamental for analyzing how signaling may occur

in natural biological contexts, where signals may diffuse locally to affect multiple

cell types.

This framework for analyzing ligand-receptor interactions can also be generalized

to the range of signaling pathways that likewise demonstrate a promiscuous path-

way architecture. It will be interesting to assess whether other pathways yield a

similar range of computations and evaluate the unique functions that their different

architectures may enable. Ultimately, enhancing our ability to predict and control

biological signaling will enable better understanding of developmental and disease

processes and guide development of therapeutics to rationally modulate signaling.
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2.5 Methods

All data and code are publicly accessible at the CaltechDATA research data reposi-

tory (https://doi.org/10.22002/D1.20181). Code is also publicly accessible

at GitHub (https://github.com/christinasu/PromiSys).

2.5.1 Two-Step Model for Promiscuous Interactions

Many signaling pathways demonstrate promiscuous interactions between multiple

ligand and receptor variants, which can bind with varying affinities to form many

distinct signaling complexes. The BMP pathway represents a canonical example

of such an architecture. Previously, we have described a mathematical model

that captures key features of this pathway and recapitulates experimentally observed

responses (Antebi et al., 2017). This model considers formation of the heterotrimeric

complexes 𝑇𝑖 𝑗 𝑘 in a two-step process. Briefly, ligand 𝐿𝑖 and receptor 𝐴 𝑗 form an

intermediate dimer 𝐷𝑖 𝑗 , which then binds to receptor 𝐵𝑘 to form trimer 𝑇𝑖 𝑗 𝑘 . We

assume that the reactions are reversible and follow first-order kinetics, with forward

and reverse reaction rates 𝑘𝐷
𝑓𝑖 𝑗

and 𝑘𝐷𝑟𝑖 𝑗 for formation of the dimers and 𝑘𝑇
𝑓𝑖 𝑗𝑘

and 𝑘𝑇𝑟𝑖 𝑗𝑘
for formation of the trimers. Defining 𝐾𝐷

𝑖 𝑗
≡ 𝑘𝐷

𝑓𝑖 𝑗
/𝑘𝐷𝑟𝑖 𝑗 and 𝐾𝑇

𝑖 𝑗 𝑘
≡ 𝑘𝑇

𝑓𝑖 𝑗𝑘
/𝑘𝑇𝑟𝑖 𝑗𝑘 , the

steady-state solutions for 𝑇𝑖 𝑗 𝑘 in the two-step model are as follows:

𝑇𝑖 𝑗 𝑘 = 𝐾
𝑇
𝑖 𝑗 𝑘𝐾

𝐷
𝑖 𝑗 𝐿𝑖

(
𝐴0
𝑗
− ∑𝑛𝐿

𝑖′=1
∑𝑛𝐵
𝑘 ′=1 𝑇𝑖′ 𝑗 𝑘 ′

1 + ∑𝑛𝐿
𝑖′=1 𝐾

𝐷
𝑖′ 𝑗𝐿𝑖′

) ©«𝐵0
𝑘 −

𝑛𝐿∑︁
𝑖′=1

𝑛𝐴∑︁
𝑗 ′=1

𝑇𝑖′ 𝑗 ′𝑘
ª®¬ (2.1)

Each complex𝑇𝑖 𝑗 𝑘 phosphorylates the second messenger at some rate 𝜀𝑖 𝑗 𝑘 to generate

intracellular signal 𝑆, which degrades at rate 𝛾. The rate of change of the total signal

is given by the following differential equation:

𝑑𝑆

𝑑𝑡
=

𝑛𝐿∑︁
𝑖=1

𝑛𝐴∑︁
𝑗=1

𝑛𝐵∑︁
𝑘=1

𝜀𝑖 𝑗 𝑘𝑇𝑖 𝑗 𝑘 − 𝛾𝑆 (2.2)

https://doi.org/10.22002/D1.20181
https://github.com/christinasu/PromiSys
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Defining activities 𝑒𝑖 𝑗 𝑘 ≡ 𝜀𝑖 𝑗 𝑘/𝛾, Equation 2.2 can be solved at steady state as below:

𝑆 =

𝑛𝐿∑︁
𝑖=1

𝑛𝐴∑︁
𝑗=1

𝑛𝐵∑︁
𝑘=1

𝑒𝑖 𝑗 𝑘𝑇𝑖 𝑗 𝑘 (2.3)

2.5.2 One-Step Model for Promiscuous Interactions

Here, we consider a simplified version of the model that captures equivalent be-

haviors at steady state while reducing the number of parameters to be considered.

Briefly, we describe a system in which active signaling complexes, composed of a

ligand and two receptor subunits, form in a single reaction, which we refer to as

a one-step model. A system with 𝑛𝐿 ligands, 𝑛𝐴 type A receptors, and 𝑛𝐵 type

B receptors is denoted as a (𝑛𝐿 , 𝑛𝐴, 𝑛𝐵) model. Since binding and unbinding of

ligands and receptors occur on fast time scales relative to the time scales of reporter

detection, we analyze the behavior of this system at steady state (Methods 3.6.1). In

particular, this model is described by the following set of steady-state equations:

𝐿0
𝑖 = 𝐿𝑖 (2.4)

𝐴0
𝑗 = 𝐴 𝑗 +

𝑛𝐿∑︁
𝑖=1

𝑛𝐵∑︁
𝑘=1

𝑇𝑖 𝑗 𝑘 (2.5)

𝐵0
𝑘 = 𝐵𝑘 +

𝑛𝐿∑︁
𝑖=1

𝑛𝐴∑︁
𝑗=1
𝑇𝑖 𝑗 𝑘 (2.6)

𝑇𝑖 𝑗 𝑘 = 𝐾𝑖 𝑗 𝑘𝐿𝑖𝐴 𝑗𝐵𝑘 (2.7)

𝑆 =

𝑛𝐿∑︁
𝑖=1

𝑛𝐴∑︁
𝑗=1

𝑛𝐵∑︁
𝑘=1

𝑒𝑖 𝑗 𝑘𝑇𝑖 𝑗 𝑘 (2.8)

We can solve this system of equations to find an expression for the values of 𝑇𝑖 𝑗 𝑘 at

steady state, which we can then use to compute the total signaling response 𝑆. We

obtain a system of 𝑛𝑇 = 𝑛𝐿𝑛𝐴𝑛𝐵 quadratic equations for 𝑇𝑖 𝑗 𝑘 :

𝑇𝑖 𝑗 𝑘 = 𝐾𝑖 𝑗 𝑘𝐿𝑖

(
𝐴0
𝑗 −

𝑛𝐿∑︁
𝑖′=1

𝑛𝐵∑︁
𝑘 ′=1

𝑇𝑖′ 𝑗 𝑘 ′

) ©«𝐵0
𝑘 −

𝑛𝐿∑︁
𝑖′=1

𝑛𝐴∑︁
𝑗 ′=1

𝑇𝑖′ 𝑗 ′𝑘
ª®¬ (2.9)
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As in the two-step model, the solutions for 𝑇𝑖 𝑗 𝑘 from this system of equations can

then be substituted into Equation 2.3 to compute the total signal 𝑆.

To solve the model efficiently, we used Equilibrium Toolkit (EQTK), an optimized

Python-based numerical solver for biochemical reaction systems (Bois, 2020).

EQTK casts the coupled equilibrium problem as an unconstrained convex dual

optimization problem and employs a globally convergent trust region algorithm to

solve it (Bois, 2020; Dirks et al., 2007). This method accelerated computation by

approximately 600-fold compared to standard nonlinear least-squares optimization

used previously (Antebi et al., 2017).

2.5.3 Comparison of One-Step and Two-Step Models

Comparing Equation 2.1 and Equation 2.9, the steady-state solutions for 𝑇𝑖 𝑗 𝑘 in the

two-step model can be mapped to the one-step model under the following parameter

choice:

𝐾𝑖 𝑗 𝑘 =
𝐾𝑇
𝑖 𝑗 𝑘
𝐾𝐷
𝑖 𝑗

1 + ∑𝑛𝐿
𝑖′=1 𝐾

𝐷
𝑖′ 𝑗𝐿𝑖′

(2.10)

Since 𝑆 is defined by the values of 𝑇𝑖 𝑗 𝑘 and is given by Equation 2.3 in both the

one-step and two-step models, the steady-state behavior of the two-step model with

any set of parameters can also be represented in the one-step model. However, the

two-step model requires 𝑁 two-step
𝑝 = 𝑛𝐴 + 𝑛𝐵 + 𝑛𝐿𝑛𝐴 + 2𝑛𝐿𝑛𝐴𝑛𝐵 parameters, while

the one-step model involves 𝑁one-step
𝑝 = 𝑛𝐴 + 𝑛𝐵 + 2𝑛𝐿𝑛𝐴𝑛𝐵 parameters. Thus,

the one-step model enables us to simplify the system while preserving all possible

behaviors of 𝑇𝑖 𝑗 𝑘 and 𝑆 at steady state.

2.5.4 Simulation of Single-Complex Responses

To understand what types of single-complex responses are possible with the promis-

cuous pathway architecture, we started by generating many random parameter sets
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in a (2, 2, 2) model. In particular, we considered 10,000 randomly generated param-

eter sets and the resulting steady-state profiles of each of the 𝑛𝐿𝑛𝐴𝑛𝐵 = 2 · 2 · 2 = 8

signaling complexes, or 80,000 responses in total. We then visualized these profiles

to identify qualitatively different response types.

2.5.5 Analysis of Single-Complex Responses

We next sought to generalize this analysis of single-complex responses to multiple

different model sizes and therefore developed an approach to capture key features

across large numbers of responses. For each model size, we again generated 10,000

random parameter sets and simulated the steady-state levels of each signaling com-

plex for an extensive ligand titration, ranging from 10−3.5 to 103.5. This procedure

yielded varying numbers of responses, from 20,000 for the (2, 1, 1) model (with 2

possible signaling complexes) to 240,000 for the (2, 4, 3) model (with 24 possible

signaling complexes). In each profile, we identified all local maxima, defined as any

element with value greater than all adjacent elements. To allow comparison of the

results from different profiles, we relabeled ligands such that ligand 1 always denotes

the ligand that is present in the signaling complex of interest. (In particular, profiles

for complexes 𝑇2 𝑗 𝑘 were transposed.) For each ligand concentration, we counted

the total number of occurrences 𝑀 of a local maximum and compared it to the total

number of profiles 𝑃. We then visualized log
[ 1+𝑀
𝑃

]
to analyze the distribution of

local maxima in ligand concentration space.

2.5.6 Enumeration of Target Responses

To systematically analyze the computational repertoire of the BMP pathway, we

used a discretized ligand concentration space to enable a comprehensive screening.

We considered a 1,000-fold dynamic range and discretized ligand concentrations to

three levels (100 = 1, 101.5 ≈ 32, and 103 = 1,000), yielding 32 = 9 possible ligand
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words. By considering the resulting responses to be binary (off or on), we could

enumerate 29 = 512 total targets to represent all possible binary functions in this

ligand space. However, the combination with all ligands at the lowest concentration

is assumed to yield negligible activation, leaving a total of 28 = 256 targets to

consider.

2.5.7 Optimization of Single-Complex Responses

We then sought to optimize all possible single-complex responses. For a given 𝑇𝑖 𝑗 𝑘 ,

there cannot be a response to any ligand combination in which the concentration of

ligand 𝑖 is low, as ligand 𝑖 is required for the formation of𝑇𝑖 𝑗 𝑘 . Therefore, we remove

any target functions which include an active response when ligand 𝑖 is present at low

concentration. We also filter out targets that are redundant under changes in ligand

labels. This procedure yielded a total of 64 possible targets.

We then performed constrained least-squares optimization to search for parameters

achieving each target. Specifically, we optimized for 𝑛𝐿𝑛𝐴𝑛𝐵 affinity parameters

𝐾𝑖 𝑗 𝑘 , 𝑛𝐿𝑛𝐴𝑛𝐵 activity parameters 𝑒𝑖 𝑗 𝑘 , and 𝑛𝐴 + 𝑛𝐵 receptor expression levels, with

all parameters required to be nonnegative. We sought to minimize the residuals

between the target responses and the simulated responses at all ligand combinations.

(To allow comparison with the binary target responses, we normalized the simulated

responses by the maximum value.) As this optimization procedure is not guaranteed

to converge to a global minimum, we optimized repeatedly with different initial

conditions. At each trial, we chose which target to optimize based on both the

lowest error 𝐸 achieved and the number of trials 𝑇 attempted. Specifically, we

optimized for the target with maximal value of 𝐸/𝑇2 and repeated this process for

at least an average of 50 optimizations per target to ensure adequate testing of all

targets.
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2.5.8 Optimization of Single-Cell Responses

We applied the same optimization approach to study all possible single-cell re-

sponses. In this context, the ligand combination with both ligands present at

low concentration should not generate any response, but all other combinations

could yield pathway activation. Therefore, we only excluded targets invariant under

changes in ligand labels, leaving a total of 144 possibilities. We then systematically

optimized parameters for all targets using the procedure described above (Methods

2.5.7).
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Chapter 3

Ligand-Receptor Promiscuity
Enables Cellular Addressing

Su, C.J., Murugan, A., Linton, J.M., Yeluri, A., Bois, J., Klumpe, H., Langley,
M.A., Antebi, Y.E., and Elowitz, M.B. (2022). Ligand-receptor promiscuity enables
cellular addressing. Cell Syst. 13, 408–425.

3.1 Abstract

In multicellular organisms, secreted ligands selectively activate, or “address,” spe-

cific target cell populations to control cell fate decision-making and other processes.

Key cell-cell communication pathways use multiple promiscuously interacting lig-

ands and receptors, provoking the question of how addressing specificity can emerge

from molecular promiscuity. To investigate this issue, we developed a general mathe-

matical modeling framework based on the bone morphogenetic protein (BMP) path-

way architecture. We find that promiscuously interacting ligand-receptor systems

allow a small number of ligands, acting in combinations, to address a larger number

of individual cell types, defined by their receptor expression profiles. Promiscuous

systems outperform seemingly more specific one-to-one signaling architectures in

addressing capability. Combinatorial addressing extends to groups of cell types, is

robust to receptor expression noise, grows more powerful with increasing numbers of

receptor variants, and is maximized by specific biochemical parameter relationships.

Together, these results identify design principles governing cellular addressing by

ligand combinations.
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3.2 Introduction

During development, a handful of core communication pathways control a huge

range of cell fate decisions and other processes across diverse tissues and contexts.

These pathways include the BMP and the broader transforming growth factor β

(TGF-β) pathways, as well as Wnt, fibroblast growth factor (FGF), Hedgehog, and

Notch. Each of these pathways comprises multiple ligand and receptor variants

that are expressed in different combinations in different cell types. Expression

of these pathway components is generally widespread, with receptors for most

pathways expressed in most cell types and ligands for most pathways present in most

tissues. Puzzlingly, despite the ubiquitous expression of their signaling components,

activation of pathways tends to be tightly restricted, occurring only in specific cell

types within particular spatiotemporal contexts. If we understood the principles that

naturally restrict signaling to specific cell types, we could potentially apply them to

control pathways with greater cell type specificity in therapeutic applications.

Multiple mechanisms have been shown to restrict pathway activation. First, mod-

ulation of extracellular ligand concentrations through formation of morphogenetic

gradients, secreted inhibitors, and factors in the extracellular matrix allows spatial

and temporal control of signaling (Bier and De Robertis, 2015; Rogers and Schier,

2011). Second, intracellularly, cells can regulate the amplitude and dynamics of

their individual pathway responses by controlling phosphorylation of effector pro-

teins, subcellular localization of signaling components, or selective silencing of

particular target gene sets (Axelrod et al., 1998; Lim-Tio and Fuller, 1998; Shaul

and Seger, 2007). Third, different ligand variants could bind to and interact with

different receptor variants with different strengths. This mechanism would allow

the organism to use different ligands to preferentially activate different cell types,

based on the receptor variants they express. These three mechanisms could operate

individually or in combination.
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Here, we focus on this third class of mechanism. It is well known that different

ligands can preferentially bind to and activate different receptors, and that differ-

ent ligands can activate different downstream target genes in the same cell type

(Nandagopal et al., 2018; Wootten et al., 2018). However, the features that de-

termine the number of distinct cell types or cell type combinations that can be

selectively activated using a given set of ligands are not understood. This level of

specificity describes the encoding of information about which cell types, among

the constellation of cell types in a complex tissue or entire body, will activate in

response to the ligand-encoded “message.” We therefore introduce the term “ad-

dressing” to denote the ability of ligands to selectively activate, or “address,” a

pathway in different cell types or cell type combinations.

The simplest conceivable implementation of addressing uses specific, one-to-one

ligand-receptor interactions, where each ligand variant interacts exclusively with a

single cognate receptor variant (Figure 3.1A, left). This architecture is conceptually

straightforward, has been implemented synthetically in the synNotch system (Morsut

et al., 2016), and is extendable, as new orthogonal ligand-receptor pairs can provide

additional communication channels without disrupting existing ones. However, most

natural signaling pathways do not exhibit one-to-one ligand-receptor interactions.

Instead, they employ a many-to-many, or promiscuous, architecture, in which each

ligand variant interacts with multiple receptor variants and vice versa (Figure 3.1A,

right). Pathways such as BMP (Heldin et al., 1997; Massagué, 1998; Mueller

and Nickel, 2012; Nickel and Mueller, 2019; Schmierer and Hill, 2007), Wnt

(Llimargas and Lawrence, 2001; Wodarz and Nusse, 1998), Notch (Shimizu et al.,

2000a, 2000b), Eph-Ephrin (Dai et al., 2014), and FGF (Ornitz et al., 1996; Zhang

et al., 2006) all exhibit promiscuous interactions among their multiple ligand and

receptor variants. It has generally remained unclear whether molecular promiscuity

in ligand-receptor interactions is compatible with addressing at all and, if so, whether
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Figure 3.1: Promiscuous ligand-receptor interactions in the BMP pathway may
allow combinatorial addressing.

(A) In a one-to-one ligand-receptor architecture (left), each ligand interacts ex-
clusively with a single receptor, while in a promiscuous architecture (right),
ligands interact with multiple receptor variants.

(B) In this simplified schematic of the BMP pathway, ligands interact combinato-
rially with type I and type II receptors at the cell membrane to form signaling
complexes, which then activate SMAD1/5/8 effector proteins.

(C) Signaling pathways could enable different forms of addressing. In orthogonal
addressing (left), different combinations of ligands each activate a distinct
cell type. More generally, subset addressing (right) could allow activation of
different groups of cell types by different ligand combinations.

it might counterintuitively provide potential advantages compared to simpler one-to-

one architectures. More generally, a concise set of principles governing the design

of multi-ligand, multi-receptor interaction systems has not been identified.

The BMP pathway provides an ideal system to study these questions. BMP plays

diverse roles in most tissues and has demonstrated therapeutic potential (David and
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Massagué, 2018; Massagué, 2000; Miyazono et al., 2010; Wagner et al., 2010;

Wang et al., 2014). In well studied systems, individual cells co-express multiple

receptor variants and are simultaneously exposed to multiple ligand variants, sug-

gesting that the pathway could function combinatorially (Diez-Roux et al., 2011;

Dudley and Robertson, 1997; Godin et al., 1999; Graham et al., 2014; Kapushesky

et al., 2010; Li and Ge, 2011; Liem et al., 1995; Simic and Vukicevic, 2005; Zhang

et al., 1998). These ligand and receptor variants have been shown to interact promis-

cuously. In mammals, the pathway comprises more than ten distinct homodimeric

and heterodimeric ligand variants as well as four type I and three type II receptor

variants (Massagué, 2000; Miyazono et al., 2010; Shi and Massagué, 2003). Sig-

naling complexes, comprising a covalent ligand dimer and two type I and two type

II receptor subunits, phosphorylate SMAD1/5/8 effectors, which translocate to the

nucleus and act as transcription factors to control the expression of target genes

(Figure 3.1B). Overall, this pathway architecture uses combinations of receptors to

integrate information from combinations of ligands.

Previous observations suggest that the BMP system can generate complex ligand-

and cell type-dependent pathway activation patterns (Baur et al., 2000; Chen et

al., 2013; Grassinger et al., 2007; Lind et al., 1996; Varley and Maxwell, 1996;

Yu et al., 2008). For example, during neural tube development, different BMP

ligands, expressed in overlapping combinations, direct distinct dorsal interneuron

identities in neural progenitors, with each ligand showing specific effects on a subset

of interneuron identities but not others (Andrews et al., 2017). This behavior could

result from addressing of different progenitor states by distinct ligand combinations

and/or by ligand-specific activation of different target programs.

Recently, mathematical modeling, together with in vitro experiments, showed that

competitive formation of distinct BMP signaling complexes with different ligands
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and receptors effectively generates a set of “computations,” in which pathway activ-

ity depends on the identities and relative concentrations of multiple ligands (Antebi

et al., 2017; Klumpe et al., 2022; Martinez-Hackert et al., 2021). These response

functions include ratiometric and additive responses as well as imbalance and bal-

ance detection responses that are minimal or maximal, respectively, at defined ligand

ratios (Figure 3.S1). Further, the pathway can perform different computations on the

same ligands depending on the combinations of receptors expressed by individual

cells. These results suggest that promiscuous ligand-receptor interactions might

allow addressing to function combinatorially, with different ligand combinations

addressing particular cell types based on their receptor expression profiles.

Here, we aim to understand how molecular promiscuity in ligand-receptor inter-

actions could potentially enable addressing of specific cell types based on their

receptor expression profiles. To this end, we developed a minimal mathematical

model of promiscuous ligand-receptor interactions. While additional biochemi-

cal mechanisms could further augment addressing in natural biological systems,

focusing on ligand-receptor interactions allowed us to explore and understand the

specific capabilities that are introduced by this aspect of the pathway. Using this

model, we found that promiscuous ligand-receptor interactions alone are sufficient

to generate an extensive repertoire of orthogonal communication channels (Fig-

ure 3.1C, left), with higher specificity than that of the same number of ligands in

the simpler one-to-one architecture. Modest increases in the number of receptor

variants increase the number and orthogonality of these addressing channels. Fur-

thermore, the promiscuous architecture allows ligand combinations to address not

only individual cell types but also more complex groups of cell types (Figure 3.1C,

right). Experimentally, similar types of addressing can be observed in cell lines

with differing receptor expression profiles. Finally, using an information theoretic

framework, we show how biochemical features, such as anticorrelations between
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affinity and activity parameters, maximize the information content that can be trans-

mitted through promiscuous ligand-receptor interactions. These results highlight

a potentially general biological design principle—promiscuous ligand-receptor in-

teractions enable ligand combinations to address cell types based on the receptor

combinations they express—that should be useful for understanding and designing

natural and synthetic communication systems.

3.3 Results

3.3.1 A minimal model allows analysis of promiscuous BMP ligand-receptor
interactions

To explore the addressing capacity of promiscuous ligand-receptor systems, we

developed a minimal mathematical model based on the architecture of the BMP

pathway (Methods 3.6.1). Briefly, the model describes a set of 𝑛𝐿 ligands, 𝑛𝐴 type

I receptors, and 𝑛𝐵 type II receptors. A ligand 𝐿𝑖 binds simultaneously to type

I and type II receptor subunits 𝐴 𝑗 and 𝐵𝑘 to form an active signaling complex

𝑇𝑖 𝑗 𝑘 (Figure 3.2A, left). A set of effective interaction strengths, denoted 𝐾𝑖 𝑗 𝑘 ,

represents the strength of binding between a ligand, a type I receptor subunit, and

a type II receptor subunit. We further assume that each signaling complex has

its own specific activity, denoted 𝑒𝑖 𝑗 𝑘 , controlling the efficiency or rate at which

it phosphorylates downstream SMAD effector proteins. The overall activity of

the pathway is then the sum of the concentrations of the signaling complexes,

each weighted by its own activity parameter. We assume steady state in ligand-

receptor binding and unbinding, which occur at fast time scales relative to the

response to signaling. Under this assumption, the model can be described by one

set of equations representing binding and unbinding interactions, a second set of

equations representing conservation of total receptor levels, and an expression for

total pathway activity, 𝑆 (Figure 3.2A, right).
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Figure 3.2: A mathematical model of promiscuous ligand-receptor interac-
tions allows systematic optimization of addressing capabilities. Continued from
previous page.

(A) A minimal model of the BMP signaling pathway includes ligand variants (𝐿𝑖,
blue and green), which interact with type I receptors (𝐴 𝑗 , purple and pink)
and type II receptors (𝐵𝑘 , orange and yellow) to form a combinatorial set of
trimeric signaling complexes (𝑇𝑖 𝑗 𝑘 ) with varying affinities (𝐾𝑖 𝑗 𝑘 ). Active sig-
naling complexes phosphorylate the SMAD effector with varying efficiencies
(𝑒𝑖 𝑗 𝑘 ). Equations describe the steady-state levels of each component and the
total signal 𝑆 (Methods 3.6.1).

(B) Optimization systematically identifies potential combinatorial addressing
schemes in four steps. i. An orthogonal addressing scheme is specified as
orthogonal activation by a set of desired ligand words (red circles). Discretiza-
tion of ligand space (3 × 3 grid) enables enumeration of all such addressing
schemes. ii. A given orthogonal addressing scheme can be translated into
target response functions, in which each cell type is activated by exactly one
ligand word (yellow) and not by others (blue). Responses to other ligand
words (hatched) are unconstrained. iii. Least-squares optimization identifies
a global set of affinity (𝐾𝑖 𝑗 𝑘 ) and activity (𝑒𝑖 𝑗 𝑘 ) parameters, along with a set
of receptor expression levels for each cell type, that yield responses similar
to the target functions. Upper and lower arrows represent affinity and activity
parameters, respectively, for each receptor dimer complexed with each of the
two ligands (blue and green arrows). Thin and thick arrows correspond to
low and high values, respectively. iv. Responses can be simulated at higher
resolution for visualization and further analysis.

(C) After optimization, the crosstalk matrix represents the responses of each cell
type at the selected ligand words (orthogonal channels). For orthogonal
addressing, this matrix should ideally be diagonal, with each ligand word
activating only its target cell type (orange border) with no off-target activation
(blue border).

(D) Best optimization results are shown for all 31 possible three-channel orthog-
onal addressing schemes (Methods 3.6.4). (Top) Distributions of on-target
(orange) and off-target (blue) activation levels are plotted, representing all el-
ements in the crosstalk matrix. Shaded regions span all activity values. (Bot-
tom) The corresponding distinguishability value for each addressing scheme
is shown (black). Distinguishability values below 1 (gray region) indicate
that the corresponding scheme cannot be successfully addressed. For com-
parison, the best distinguishability achieved in a one-to-one architecture is
shown (red). Addressing schemes (𝑥-axis) are shown in order of decreasing
distinguishability.

See also Figures 3.S1 and 3.S2.
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To solve the model efficiently, we used Equilibrium Toolkit (EQTK), an optimized

Python-based numerical solver for biochemical reaction systems (Bois, 2020; Dirks

et al., 2007). For simplicity, the model neglects some specific features of the nat-

ural BMP pathway, including sequential binding of ligands to receptors and the

hexameric nature of the full BMP signaling complexes (Massagué, 2000; Shi and

Massagué, 2003). These features could enable even greater complexity in pathway

behavior beyond that described for this minimal model (Methods 3.6.2). This model

was capable of reproducing different response functions that were previously ob-

served experimentally and in a more complex model (Antebi et al., 2017), including

ratiometric, additive, imbalance, and balance behaviors (Figure 3.S1).

3.3.2 An optimization approach identifies possible addressing schemes

Here, using the model, we sought to identify mixtures of ligands at specific con-

centrations, or “ligand words,” that preferentially activate, or address, specific “cell

types,” defined here and throughout the paper as a group of cells sharing a common

receptor expression profile. (An overview of addressing terminology is provided

in Appendix A.) We started by searching for instances of “orthogonal addressing,”

where each ligand word exclusively activates a single cell type, providing one com-

munication channel per cell type. Intuitively, increasing the number of variants

of ligand (𝑛𝐿) and receptors (𝑛𝐴 and 𝑛𝐵) should expand the number 𝑁 of possible

channels by allowing greater diversity of ligand words and cell types. However, it

remains unclear how the number and quality of channels in a promiscuous archi-

tecture compares to that possible in a one-to-one architecture, how the number of

addressable channels grows with increasing ligand and receptor multiplicity, and

what biochemical properties enable optimal orthogonal addressing.

To systematically identify parameters that generate orthogonal channels, we used an

optimization approach (Figure 3.2B). We considered discrete ligand concentrations,
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allowing each ligand to take on one of three logarithmically spaced concentrations,

100 = 1, 101.5 ≈ 32, and 103 = 1,000 arbitrary units (AU), reflecting the exper-

imentally observed input dynamic range for BMP signaling (Antebi et al., 2017;

Bradford et al., 2019; Hatsell et al., 2015). This discretization defines a finite set

of 3𝑛𝐿 possible ligand words. To identify a system with 𝑁 channels, we chose a

subset of 𝑁 ligand words (Figure 3.2Bi). Each such choice defines an “addressing

scheme.” Achieving an addressing scheme requires identifying 𝑁 cell types that are

each individually activated by one word (Figure 3.2Bii). We then used least-squares

optimization to identify biochemical parameters (affinities, 𝐾𝑖 𝑗 𝑘 , and activities, 𝑒𝑖 𝑗 𝑘 )

and 𝑁 receptor expression profiles (one for each cell type) that best implement the

target addressing scheme (Figure 3.2Biii; Methods 3.6.3). To obtain a more com-

plete view of the functional behavior, we then computed the responses of each cell

type on a higher-resolution (10 × 10) grid of ligand levels (Figure 3.2Biv).

To quantify the channel structure of the resulting communication system, we com-

puted the crosstalk matrix (Figure 3.2C), where each row is a ligand word, each

column is a cell type, and each value represents the normalized response of that cell

type to the corresponding ligand word. Diagonal elements of this matrix represent

“on-target” signaling, which ideally approach 1. Off-diagonal elements represent

“off-target” signaling, ideally 0.

3.3.3 Two ligands can orthogonally address five distinct cell types

To test whether the promiscuous architecture can improve on a one-to-one system,

we applied our optimization approach to search for two-ligand systems (𝑛𝐿 = 2) that

generate three orthogonal channels in a model with two type I and two type II receptor

subunits (𝑛𝐴 = 2 and 𝑛𝐵 = 2), reflecting the receptor multiplicity seen in Drosophila.

We enumerated all 31 possible discrete addressing schemes, optimized parameters

for each scheme, and analyzed the resulting responses (Figure 3.2D; Methods 3.6.4).
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In 28 of the 31 possible schemes, all on-target activity levels (orange shaded regions)

exceeded all off-target activity levels (blue shaded regions), giving rise to orthogonal

addressing. To quantify the addressing specificity, we computed a distinguishability

score, defined as the fold difference between the lowest on-target activity and the

highest off-target activity (Methods 3.6.5). The best scheme, based on using each

ligand individually as well as a word with both ligands at their maximal level,

produced a distinguishability greater than 45 (Figure 3.2D, scheme 1). (We note

that these results represent a lower bound on the potential addressing capacity and

specificity, as global optima are not guaranteed.) By contrast, one-to-one systems

achieved distinguishability values of only ∼1.4 for three channels (Figure 3.2D;

Methods 3.6.6).

Inspection of the addressing schemes showed that they typically used combinations

of archetypal response functions previously observed in the BMP signaling pathway

(Figure 3.S1) (Antebi et al., 2017). In most schemes, two cell types produced

opposite ratiometric responses to the two ligands, with the third cell type exhibiting a

variety of other responses (Figure 3.S2). These included a balance detector, in which

the combination of the two ligands synergistically activated the pathway more than

either ligand alone (Figure 3.S2, e.g., schemes 1 and 2); a nonmonotonic response,

in which the pathway was most highly activated at intermediate concentrations of a

given ligand (e.g., schemes 3 and 4); a distinct ratiometric response (e.g., schemes

18 and 19); and an additive response to the two ligands (e.g., scheme 17). Many of

these response types require ligand-receptor promiscuity. For example, ratiometric

responses cannot occur in a one-to-one architecture, as an additional ligand that

signals through a different receptor cannot decrease the response to the activating

ligand. Thus, the ability of cells to access a variety of multi-ligand response functions

with different receptor configurations facilitates addressing.
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We extended this analysis to systems with up to eight channels. (The value of eight

channels reflects the discretization of ligand concentration space and is not inherent

in the system.) With a fly-like model (𝑛𝐿 = 2, 𝑛𝐴 = 2, 𝑛𝐵 = 2), up to seven

orthogonal channels could be addressed with distinguishability greater than that

possible in a corresponding one-to-one model (Figures 3.3A–B; Methods 3.6.6).

Fewer channels (lower bandwidth) could be achieved with greater distinguishability.

For instance, a five-channel scheme exhibited a distinguishability of 3.6 through a

combination of ratiometric, balance detection, and nonmonotonic responses (Figure

3.S3A). Taken together, these results demonstrate that two ligands with promiscuous

ligand-receptor interactions can address a larger number of cell types, albeit at

varying levels of distinguishability.

3.3.4 Addressing can occur despite gene expression noise

Stochastic fluctuation, or noise, in gene expression presents a challenge for address-

ing (Elowitz et al., 2002; Raser and O’Shea, 2005). On the one hand, signaling

must be sensitive to receptor expression in order for cell types to have different

responses to the same ligand words. On the other hand, if sensitivity is too high,

receptor expression noise could disrupt addressing. Here, we asked whether ad-

dressing could occur despite correlated (extrinsic noise) and uncorrelated (intrinsic

noise) fluctuations in receptor expression, each assumed to have a physiologically

reasonable coefficient of variation (ratio of the standard deviation to the mean) of

0.5 (Elowitz et al., 2002; Raj et al., 2006; Suter et al., 2011).

To characterize the extent to which each type of noise degrades addressing, we

computed receiver operating characteristic (ROC) curves and corresponding area

under the curve (AUC) values (Figure 3.3C; Methods 3.6.7), which characterize the

proportion of on- and off-target cells that are correctly classified (Hanley and McNeil,

1982). (AUC values range from 0.5 for a random system to 1.0 for an ideal system.)
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Figure 3.3: Two ligand variants can independently address eight cell types with
high specificity and robustness. Continued from previous page.

(A) In the fly-like model with two type I and two type II receptor subunits, the
pathway activities of each cell type in response to each ligand word (𝑦-axis) are
plotted for varying numbers of channels (𝑥-axis), using the optimal parameters
for each bandwidth. Shaded regions span full distribution of on-target (orange)
and off-target (blue) activities, and lines indicate median values.

(B) Distinguishability values are plotted for each number of channels (black),
together with the optimal values achieved for the same bandwidths in a one-
to-one architecture (red). The five-channel system is further analyzed in (D).

(C) Robustness to receptor expression fluctuations was evaluated for the top-
performing system of each bandwidth. Optimized receptor expression levels
were perturbed in a correlated or uncorrelated way to represent, respectively,
extrinsic (green) or intrinsic (purple) noise, with a coefficient of variation
of 0.5. The resulting receiver operating characteristic (ROC) curves are
computed by comparing true and false positive rates for classifying on- and
off-target values at different thresholds (inset), and the corresponding area
under the curve (AUC) values are plotted for each bandwidth. A perfect
classifier has AUC 1, and a random classifier has AUC 0.5 (gray dashed line).

(D) The crosstalk matrix shows the response of each cell type at each ligand
word of interest for the five-channel example from (A–C). Perfect orthogonal
specificity would yield a diagonal matrix.

(E) The pathway activities for a mammalian-like model with four type I and three
type II receptors are shown, as in (A).

(F) As in (B), distinguishability values are plotted for the mammalian-like model
from (E) (black), along with the optimal values achieved for the same band-
widths in a one-to-one architecture (red). The eight-channel system is further
analyzed in (H–I).

(G) AUC values for the top parameter set of each bandwidth are shown, as in (C).

(H) The crosstalk matrix for the eight-channel system in the mammalian-like
model is shown, as in (D).



61

(I) The full responses of each cell type are shown for the eight-channel system
analyzed in (H). Red circles correspond to the eight ligand words, and cell
types are spatially arranged according to the ligand word to which they pref-
erentially respond. For example, the bottom right cell type (cell type F) is
orthogonally activated by high levels of ligand 1 only, while the top right cell
type (cell type H) would be activated by combining high levels of ligand 1
and 2 together. The bottom left ligand word, with low levels of both ligands,
is non-activating and therefore omitted.

See also Figures 3.S3, 3.S4, and 3.S5.

The five-channel system showed separation between channels (Figure 3.3D) but also

demonstrated high AUC values of 0.9820 and 0.9400 with extrinsic and intrinsic

noise sources, respectively. The more stringent metric of distinguishability, which

is sensitive to incorrect activation of even a single cell type, was impacted more

by intrinsic than extrinsic noise (Figure 3.S3B, left). These results suggest that

minimizing intrinsic noise is important for maximizing addressing capacity.

The addressing capacity of a system depends on the minimum acceptable distin-

guishability level. Five-channel addressing could be achieved with a distinguisha-

bility threshold of 2, which could be physiologically reasonable given that two-fold

changes in signaling pathway activation have been shown to alter cell fate decisions

(Dessaud et al., 2007; Falo-Sanjuan et al., 2019; Van de Walle et al., 2013; Zagorski

et al., 2017). Greater values of distinguishability, such as 4 or 10, were achieved

with four or three channels, respectively (Figure 3.S4). In general, higher distin-

guishability thresholds translated to reduced noise sensitivity (Figures 3.S4A–C).

In particular, the three-channel system (distinguishability greater than 10) exhibited

AUC values of 0.9992 and 0.9914 for extrinsic and intrinsic noise, respectively.

These results show that systems with just two ligands and only two variants of each

receptor type can provide multiple channels with reasonable levels of distinguisha-

bility.
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3.3.5 The number of addressable channels increases with the number of re-
ceptor variants

BMP receptor multiplicity has varied during evolution, leading to different num-

bers of receptor variants in Drosophila (two type I and two type II), humans (four

type I and three type II), and other species (Massagué, 1998; Newfeld et al., 1999;

O’Connor et al., 2006). What additional addressing capabilities emerge with this

increase in receptors? A mammalian-like model with four type I and three type II

receptor subunit variants outperformed the fly-like model (Figures 3.3E–F), achiev-

ing better specificity at any given number of channels (cf. Figures 3.3A–B). In

fact, in this model, two ligands were able to address as many as eight orthogonal

channels with 1.5-fold distinguishability between on- and off-target activity (Figure

3.3F) and high AUC values (Figure 3.3G), resulting in a generally diagonal crosstalk

matrix (Figure 3.3H). Six-, five-, and four-channel systems could be achieved with

distinguishability values greater than 2, 4, and 10, respectively (Figures 3.S4D–F).

Five-channel addressing yielded AUCs of 0.9924 and 0.9608 for extrinsic and in-

trinsic noise, while four-channel addressing gave near-perfect AUCs of 0.9983 and

0.9944 (Figures 3.S4E–F).

Eight-channel addressing was more robust to extrinsic than intrinsic noise in receptor

expression levels, with AUC values of 0.9794 and 0.8853 for extrinsic and intrinsic

noise, respectively (Figure 3.3G). Distinguishability values remained above 1 for

correlated fluctuations of receptor expression but not for uncorrelated noise (Figure

3.S3B, right). The overall addressing scheme resulted from diverse single-cell

responses, including ratiometric, balance detection, and nonmonotonic behaviors

(Figure 3.3I). Taken together, these results show that a modest increase in the

number of receptor variants generates a substantial expansion in addressing capacity,

achieved through a variety of single-cell responses.
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While eight is the maximum number of channels in the three-level ligand discretiza-

tion scheme, more channels may be possible with higher-resolution grids. For

instance, a four-level ligand discretization scheme allows up to fifteen channels. At

this level, it was no longer computationally feasible to systematically test all possible

addressing schemes. Instead, we sought to optimize increasing bandwidths, choos-

ing random schemes with a given number of channels until successfully optimized

(Methods 3.6.3).

We performed this analysis for both the fly-like and mammalian-like models. With

a fly-like model, we successfully optimized systems with up to five orthogonal

channels (Figures 3.S5A–B). This five-channel system exhibited distinguishabil-

ity of 2.3 (Figure 3.S5C) and, like the system obtained using a lower-resolution

grid, exhibited a combination of ratiometric, balance detection, and nonmonotonic

responses (Figure 3.S5D; cf. Figure 3.S3A). In the mammalian-like model, we

identified a seven-channel system with distinguishability of 2.2 as well as a more

weakly addressable eight-channel system with distinguishability of 1.4 (Figures

3.S5E–G). The eight-channel system used similar types of responses to those in

the three-level discretization scheme (Figure 3.S5H; cf. Figure 3.3I). Overall, the

bandwidths achievable and the responses observed remained qualitatively similar

using the higher-resolution ligand grid compared to the three-level discretization.

Allowing ligand concentrations to vary continuously or exploring parameter space

more comprehensively could reveal greater addressing capacity.

3.3.6 Promiscuous architectures enable subset addressing

Combinatorial addressing can extend beyond the addressing of individual cell types,

as explored thus far, to generate more complex, multi-cell type response patterns. In

such “subset addressing,” each ligand word activates a specific subset of cell types.

In the olfactory system, for example, odorants activate specific subsets of olfactory
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receptor neurons, giving rise to a combinatorial representation of odors (Hallem and

Carlson, 2006; Malnic et al., 1999). Subset addressing systems can be characterized

by an “addressing repertoire,” defined as all unique subsets of cell types (channels)

that can be addressed across all possible ligand words (Figure 3.4A). For example, a

system with three cell types that can only be orthogonally activated would have three

channels (Figure 3.4A, top). The highest bandwidth of seven addressable subsets

occurs when all cell types can be activated in any required combination using some

ligand word (Figure 3.4A, bottom).

We first asked what addressing repertoires are possible in mammalian-like systems

with three cell types, or seven possible channels. Using the optimization approach,

we identified parameters that achieve the fully addressable seven-channel system

(Figure 3.4B; Methods 3.6.8). We then generalized this approach to all 32 possible

addressing repertoires (Methods 3.6.9), successfully identifying parameter sets that

generated every repertoire with distinguishability greater than 1 and 29 repertoires

with distinguishability greater than 2 (Figure 3.4C). These results show that two

ligand variants can generate any addressing repertoire of three cell types, most with

high distinguishability.

Achieving such a broad set of addressing repertoires requires promiscuous ligand-

receptor interactions. In a one-to-one model, having high concentrations of all

ligands will activate all cell types; therefore, any addressing repertoire in which

the three cell types cannot be simultaneously co-activated requires a promiscuous

architecture (Figure 3.4C, orange stars; Methods 3.6.10). Taken together, these

results demonstrate that the promiscuous ligand-receptor architecture allows diverse

addressing repertoires, beyond those achievable in a one-to-one model.
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Figure 3.4: Promiscuous architecture enables diverse addressing repertoires.
Continued on next page.
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Figure 3.4: Promiscuous architecture enables diverse addressing repertoires.
Continued from previous page.

(A) For different parameter sets, the responses of three cell types (A, magenta;
B, yellow; and C, cyan) to a titration of two ligands (blue and green) are
shown (left). Unique rows reveal the subsets of cell types that can be activated
across all ligand words (center). Addressable subsets can also be represented
as a Venn diagram (right), where colored regions represent subsets that are
activated by at least one ligand combination and gray regions represent subsets
that cannot be addressed by any ligand combination. These subsets constitute
the “addressing repertoire” of a system. Addressing capability can vary
widely. Examples include purely orthogonal activation (top) and all possible
subsets (bottom).

(B) We optimized parameters to achieve the fully addressable system of (A).
Simulating the responses of the three cell types to each ligand word confirms
that any of the seven possible subsets can be successfully addressed.

(C) We generalized the optimization approach to identify parameters achieving
each possible addressing repertoire of three cell types in a mammalian-like
model with four type I and three type II receptors. The optimal distinguisha-
bility value for each repertoire is plotted. Orange stars indicate addressing
repertoires that cannot be achieved in the one-to-one architecture (Methods
3.6.10).

3.3.7 Cell lines show combinatorial addressing in vitro

Having analyzed the theoretical conditions that permit addressing, we next asked

whether addressing could occur in living cells. Previous work revealed that individ-

ual cell lines exhibit complex responses to ligand combinations that can be altered

by perturbing the expression of specific receptors (Antebi et al., 2017). However, it

is unclear to what extent the responses generated in this way could allow differential

activation of distinct cell types using different ligand words. Experimentally ana-

lyzing the responses of multiple cell lines with differing receptor expression profiles

to the same panel of ligand combinations could reveal the potential for addressing.

To this end, we engineered cell lines with different receptor expression profiles and

analyzed their responses across two-dimensional titrations of two different ligand
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pairs—BMP2+BMP9 and BMP9+BMP10—in which combined signaling activity

was shown to depend on receptor expression profiles (Klumpe et al., 2022). To read

out pathway activity, we used a transcriptional fluorescent reporter for SMAD1/5/8

containing BMP response elements from the Id1 promoter (Korchynskyi and ten

Dĳke, 2002). We stably integrated the reporter into cell lines with different re-

ceptor expression profiles, then analyzed their responses to a range of BMP ligand

combinations by flow cytometry 24 hours after ligand addition (Methods 3.6.11).

We used ligand concentrations up to 1,000 ng/mL to broadly survey physiologically

relevant levels. While measured serum levels are around 0.1–10 ng/mL (Albilia et

al., 2013; David et al., 2008; Herrera and Inman, 2009; Penn et al., 2017), effective

levels at the cell surface are likely to be higher due to local production, consistent

with the higher concentrations of 10–500 ng/mL used for in vitro studies of various

BMP-dependent processes (Blackwell et al., 2009; Grassinger et al., 2007; Kim et

al., 2013; LaVaute et al., 2009; Valera et al., 2010; Zhao et al., 2003; Zhu et al.,

2017). Finally, BMP ligands are used clinically in concentrations on the order of

1,000 ng/mL (Gupta and Khan, 2005; Kim et al., 2015). Thus, our chosen titration

range effectively represents these varied conditions.

We started with a previously characterized epithelial cell line, NAMRU mouse

mammary gland (NMuMG) cells, that robustly responds to a variety of BMP ligands

(Antebi et al., 2017). NMuMG cells responded additively to BMP2 and BMP9

(Figure 3.5A, first), consistent with previous results (Antebi et al., 2017). Since

opposing ratiometric responses are a common “motif” in the addressing schemes

identified above (Figures 3.2 and 3.3), we sought to generate additional cell lines that

would exhibit such responses by knocking down receptors with known preferences

for each specific ligand. In the NMuMG background, knockdown of ACVR1, which

directly interacts with BMP9 (Luo et al., 2010), resulted in a minimal response to

BMP9 but a strong response to BMP2, thereby generating a ratiometric response
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profile (Figure 3.5A, second). By contrast, knockdown of BMPR2, the major

BMP2 receptor (Xia et al., 2007), gave rise to a reduced responsiveness to BMP2

with a strong BMP9 response, producing a complementary ratiometric response

(Figure 3.5A, third). In contrast to receptor knockdown, which increases competition

for a limited receptor pool and therefore could increase the complexity of multi-

ligand responses, we anticipated that ectopic receptor expression might relieve

receptor competition and thereby generate more additive responses (Klumpe et al.,

2022). Indeed, ectopic ACVRL1 expression increased sensitivity to ligands without

qualitatively altering the combinatorial response (Figure 3.5A, fourth). Finally, for

comparison with a more distantly related cell type, we also analyzed E14 mouse

embryonic stem cells (mESCs), which differ in receptor expression profile from

NMuMG cells in at least three receptors (Antebi et al., 2017). mESCs responded

maximally to combinations of BMP2 and BMP9 together (Figure 3.5A, fifth).

Comparing the responses of these cell lines across double titrations of BMP2 and

BMP9 showed that the two ligands could be used at different concentrations to

preferentially activate certain cell types individually or in groups (Figure 3.5B). For

example, moderate levels of BMP9 alone predominantly activated NMuMG with

ectopic ACVRL1 (Figure 3.5B, word 1), while higher levels additionally activated

first NMuMG (word 2) and then NMuMG with BMPR2 knockdown (word 3).

Intermediate levels of both ligands abolished activation of NMuMG with BMPR2

knockdown and allowed activation of NMuMG with ACVR1 knockdown (word

4). High levels of BMP2 activated all cell types except NMuMG with BMPR2

knockdown (word 5), and high levels of both ligands activated all cell types (word

6). In this way, distinct combinations of BMP2 and BMP9 enabled preferential

activation of six distinct combinations of five cell types (Figure 3.5C), establishing

that the BMP pathway has combinatorial addressing capability.
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Figure 3.5: Cell lines preferentially respond to different ligand combinations.
Continued on next page.
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Figure 3.5: Cell lines preferentially respond to different ligand combinations.
Continued from previous page.

(A) Responses were measured for, from left to right, NMuMG cells, NMuMG cells
with ACVR1 knockdown (KD), NMuMG cells with BMPR2 KD, NMuMG
cells with ACVRL1 overexpression (OX), and mESCs, using flow cytometry
of an integrated fluorescent protein reporter (Methods 3.6.11). Each cell line
was exposed to a double titration of BMP2 and BMP9, and responses were
quantified by taking the mean of at least 3 replicates. For each cell line, fold
change is calculated relative to the baseline fluorescence with no added ligand
and then normalized by the maximum value. Responses at select ligand words
(red circles) are analyzed further in (B).

(B) For select ligand words from (A), the responses of each cell line are shown.
Error bars indicate standard deviation of at least 3 repeats. Ligand words were
chosen by fixing a threshold of 0.5 (gray dashed line) and identifying those
ligand combinations yielding unique on- and off-target activation patterns.

(C) Data from (B) are summarized by showing the response of each cell type
(columns) to each ligand word (rows), illustrating that distinct ligand words
can activate different subsets of cell types.

(D) Responses of NMuMG, NMuMG with ACVR1 KD, and NMuMG with
BMPR2 KD to BMP9 and BMP10 are shown, as in (A).

(E) As in (B), the responses of each cell type at selected ligand words are shown.

(F) As in (C), the responses of each cell type (columns) to each ligand word (rows)
confirm that distinct ligand words preferentially activate distinct groups of cell
types.

See also Table 3.S1.

To extend this analysis to another ligand pair, we evaluated the responses of three

NMuMG-derived lines to BMP9 and BMP10 (Figure 3.5D). In this pairwise titration,

NMuMG and NMuMG with BMPR2 knockdown responded more strongly to BMP9

than to BMP10 alone, with BMP10 reducing activation by BMP9 when present in

combination. BMP10 inhibition of BMP9 signaling was stronger when BMPR2

was knocked down. By contrast, ACVR1 knockdown cells exhibited the opposite

response, responding more strongly to BMP10 than to BMP9. We were able to

identify five ligand words that activated distinct combinations of these three cell
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types (Figures 3.5E–F). BMP10 alone activated only ACVR1 knockdown cells

(Figure 3.5E, word 1). Intermediate levels of BMP9 activated the wild-type cells

(word 2), while higher levels additionally activated BMPR2 knockdown cells (word

3). NMuMG and ACVR1 knockdown cells could be simultaneously activated

with intermediate levels of both ligands (word 4), while additional BMP9 enabled

activation of all three cell types simultaneously (word 5). These results provide

additional evidence that the BMP pathway could potentially support addressing.

The ability to achieve addressing in vitro does not demonstrate that addressing occurs

in physiological contexts. However, single-cell gene expression atlases reveal that

the receptor profiles of NMuMG cells and their perturbed derivatives resemble those

in some natural cell types (Table 3.S1) (Tabula Muris Consortium, 2020; Tabula

Muris Consortium et al., 2018). It will be interesting to determine whether the

profiles analyzed here play natural addressing roles in vivo.

3.3.8 Response function diversity increases addressability

The values of key biochemical parameters—affinities and activities—ultimately

determine the addressing bandwidth of a promiscuous ligand-receptor system. What

is the distribution of addressing bandwidth across parameter sets? Are there design

rules that allow tuning of those values, in absolute or relative terms, to optimize

addressing? Information theory provides a natural framework to answer these

questions (Huntley et al., 2016; Itzkovitz et al., 2006). More specifically, the concept

of mutual information can be used to quantify the addressing power of a promiscuous

ligand-receptor system without assuming any particular choice of ligand words or

cell types, or any particular mapping between them (Methods 3.6.12).

To identify parameter sets that maximize mutual information, we systematically

analyzed the diversity of responses across a set of cell types to a set of ligand
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words for different biochemical parameter sets (Figure 3.6A). Mutual information

measures information communicated by the optimal subset of ligand words to the

optimal subset of cell types, allowing the use of comprehensive libraries. In a

fly-like model, we constructed a discrete ligand word library in which each of two

ligands takes on one of three concentration values (3𝑛𝐿 ligand words, or 9); a cell

type library, in which each of the two type I and two type II receptors is expressed

at one of two values (2𝑛𝐴+𝑛𝐵 cell types, or 16); and a biochemical parameter library,

in which each 𝐾𝑖 𝑗 𝑘 and 𝑒𝑖 𝑗 𝑘 takes on one of two values (22𝑛𝐿𝑛𝐴𝑛𝐵 parameter sets,

or 65,536). We then simulated the response of each cell type to each ligand word

for each biochemical parameter set and computed the mutual information between

the sets of ligand words and pathway activities across the library of cell types

(Figures 3.6A–B; Methods 3.6.13). Random, rather than grid-based, sampling of

𝐾𝑖 𝑗 𝑘 and 𝑒𝑖 𝑗 𝑘 produced similar results (Figure 3.S6A). Mutual information values

varied broadly across parameter sets, from 0.32 to 1.91 bits, with a median value

of 1.36 bits (Figure 3.6B). By refining our search over biochemical parameters, we

were able to identify parameters with values as high as 2.38 bits (Methods 3.6.14).

To assess whether mutual information correlates with addressing, we defined an

addressability metric, which quantifies how strongly activation patterns differ for

different ligand words without requiring specific targeted profiles (Methods 3.6.15).

For every pair of ligand words, we identified the largest fold difference of activation

levels across all cell types. This value is high when two ligand words induce distinct

responses in at least one cell type. We defined the addressability metric as the lowest

such value across all ligand word pairs and calculated this value for a given number

of channels 𝑁 by taking the best choice of all possible subsets of 𝑁 ligand words.

Using this metric, we analyzed addressability for systems with low, intermediate,

and high mutual information (Figure 3.6C). For the parameter set of highest mutual

information (2.38 bits), each of the eight ligand words activated a distinct cell type
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Figure 3.6: Information theoretic analysis reveals design principles for combi-
natorial addressing. Continued from previous page.

(A) Mutual information between a comprehensive library of ligand words (rows)
and the corresponding activation patterns across a library of cell types
(columns) can be computed across a systematic grid-based sampling of the
biochemical parameters 𝐾 and 𝑒 (matrices). For each row, one, two, and four
ligand symbols indicate low (100), medium (101.5), or high (103) concentra-
tions of the indicated ligand. Similarly, one or two receptor symbols indicate
low (1) or high (100) levels of the indicated receptor for each column.

(B) The distribution of mutual information across biochemical parameters is
shown. Dashed lines indicate the lowest (blue), median (cyan), and high-
est (green) values. High mutual information indicates that many distinct cell
type combinations can be specifically activated by distinct ligand words.

(C) The addressability values of activated subsets are shown for different numbers
of channels. The addressability reflects the minimal fold difference in the
response of at least one cell type when exposed to any two distinct ligand
words (Methods 3.6.15). Results are shown for three sets of biochemical
parameters generating the lowest, median, and highest mutual information
values.

(D) The parameter set with the lowest mutual information is represented schemat-
ically (top), as in Figure 3.2Biii. For these parameters, the responses for
the library of 16 cell types are shown as a 4 × 4 grid (bottom left). In each
response, the 𝑥- and 𝑦-axes represent logarithmic titrations of ligands 1 and 2,
respectively. All show the same qualitative response of additive (“a”) behav-
ior, differing only in their quantitative sensitivity. Schematically, overlaying
four differing responses (highlighted in purple, cyan, red, and green) reveals
that different ligand words largely address similar combinations of cell types
(bottom right), with relatively few distinct subsets represented.

(E) For the parameter set with the highest mutual information (top), the cell types
in the library show a variety of response patterns (bottom left): ratiometric
(“r”), additive (“a”), imbalance (“i”), and balance (“b”), matching the response
archetypes (Figure 3.S1) previously observed experimentally (Antebi et al.,
2017). One response not fully matching any archetype is unclassified (“u”).
Schematically, overlaying four differing responses (purple, cyan, red, and
green) reveals that different ligand words can address many distinct subsets
of cell types (bottom right). Note that complexes tend to have opposite values
of affinity and activity parameters as well as other parameter anticorrelations,
as analyzed in (G–H).
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(F) Violin plots indicate the distribution of mutual information values for systems
with different numbers of distinct archetypes represented among individual
cell response functions. Note that greater archetype diversity enriches for
high mutual information.

(G) Anticorrelation of affinity and activity parameters for the same complex is
associated with higher mutual information. We analyzed average properties
across bins of 800 parameter sets. To measure the correlation between affinity
and activity of complexes, we represented low and high values as−1 and 1 and
computed the dot product between 𝐾 and 𝑒 vectors. The average correlation
and mutual information across bins are plotted.

(H) Parameter sets with high mutual information show anticorrelation in the ac-
tivities of complexes with the same receptor but different ligands. Analysis
was done analogous to (G).

(I) We defined a fitness function 𝐹 that rewards parameter sets exhibiting the
anticorrelations observed in (G–H).

(J) An evolutionary algorithm identifies parameter sets that maximize 𝐹. At each
iteration, a random parameter value is flipped from low to high or vice versa.
Changes that increase 𝐹 are accepted. Changes that decrease 𝐹 are accepted
with indicated probability (bottom), which depends on a selection pressure
parameter 𝑠. This process is repeated iteratively (Methods 3.6.18).

(K) An evolutionary algorithm enriches for high mutual information. We ran the
algorithm with 𝑠 > 0 to favor anticorrelations or with 𝑠 = 0 to randomly
sample parameters. For each case, we randomly initialized 2,000 parameter
sets and performed 200 iterations. We then evaluated the mutual information
for the final value of the parameter set and visualized the resulting distribu-
tions. Random selection (𝑠 = 0, blue) led to a similar distribution of values
as the systematically sampled parameter sets (cf. Figure 3.6B), while favor-
ing anticorrelations (𝑠 > 0, green) resulted in an overall increase in mutual
information.

See also Figure 3.S6.

combination with over 5.5-fold addressability. The median parameter set (1.36

bits) addressed up to seven distinct cell type combinations at an addressability of

1.6, while the parameter set with lowest mutual information (0.32 bits) addressed

only three distinct cell type combinations with addressability of 1.2. Overall, a

1-bit difference in mutual information can increase addressing specificity as well as

bandwidth, enabling diverse responses to different ligand words.
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We next sought to understand how high addressing bandwidth arises from the indi-

vidual response functions of each cell type by comparing the parameter sets with the

lowest and highest mutual information. The parameter set with the lowest mutual

information generated a homogeneous spectrum of responses across all cell types

(Figure 3.6D; Methods 3.6.16). These responses predominantly varied quantita-

tively in their sensitivity to ligand. By failing to fully exploit the two-dimensional

nature of ligand concentration space, this parameter set exhibited limited address-

ing potential. By contrast, the parameter set with the highest mutual information

generated a broad diversity of ligand response functions across the cell types, repro-

ducing the experimentally observed ratiometric, additive, imbalance detection, and

balance detection “archetypal” functions (Figure 3.6E; Methods 3.6.16) (Antebi et

al., 2017). By generating diverse two-dimensional response functions, this param-

eter set allowed each ligand word to activate a distinctive combination of cell types.

In fact, such a correlation between the diversity of response functions and mutual

information is seen across the full library of parameter sets (Figure 3.6F).

3.3.9 Affinity-activity relationships control addressing bandwidth

How do parameter sets with high mutual information generate the varied response

functions associated with addressing? Inspection of the parameter set with the

highest mutual information revealed two notable relationships between binding

affinities𝐾𝑖 𝑗 𝑘 and signaling activities 𝑒𝑖 𝑗 𝑘 (Figure 3.6E). First, complexes that formed

with strong affinity (large 𝐾𝑖 𝑗 𝑘 ) often had low signaling efficiency (small 𝑒𝑖 𝑗 𝑘 ).

Second, the activity of a given receptor pair strongly depended on the identity of

the bound ligand, producing opposite values for 𝑒1 𝑗 𝑘 or 𝑒2 𝑗 𝑘 . Systematic analysis

of these relationships revealed their dependence on mutual information (Methods

3.6.17). In particular, anticorrelations between the affinity and activity (𝐾𝑖 𝑗 𝑘 and

𝑒𝑖 𝑗 𝑘 ; Figure 3.6G) and between the activities of complexes with distinct ligands
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(𝑒1 𝑗 𝑘 and 𝑒2 𝑗 𝑘 ; Figure 3.6H) were associated with higher mutual information. These

results suggest that such anticorrelations could predict high addressing capacity.

To test whether the anticorrelated structure of the parameters is sufficient to produce

high mutual information, we developed an evolutionary algorithm that evolves the

biochemical parameters to maximize the above anticorrelations (Figures 3.6I–K).

The algorithm starts with an initial parameter set, proposes a random change to

one 𝐾𝑖 𝑗 𝑘 or 𝑒𝑖 𝑗 𝑘 value, and accepts that change with probability 1 if the change

increases the fitness function 𝐹 and with probability 𝑒𝑠Δ𝐹 if it does not, where 𝑠 is

a parameter that controls the strength of the selection (Methods 3.6.18). Iteration

of this procedure increased mutual information between ligand words and cell type

responses to values comparable to the strongest ones identified in the systematic

screen (Figure 3.6K; cf. Figure 3.6B).

These results indicate that strong addressing is not rare. It is realized to varying

degrees across all of parameter space and enhanced by specific parameter anticor-

relations. Further, experimental analysis of ligand-receptor interactions suggests

that the natural BMP system may exhibit such anticorrelations (Klumpe et al.,

2022). When systematic measurements of responses to pairwise ligand combi-

nations were fit to the same model used here, four of the five ligands analyzed

(BMP4, BMP7, BMP9, and BMP10) exhibited properties consistent with formation

of strong-affinity, low-activity complexes (e.g., with the BMPR1A/ACVR2B recep-

tors) and weak-affinity, high-activity complexes (e.g., with the ACVR1/ACVR2A

receptors). Overall, the parameter fits from this study are consistent with a broad

range of addressing capabilities (Figure 3.S6B).
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3.4 Discussion

Communication systems such as email enable one to address messages to specific

recipients and groups of recipients. Similarly, in multicellular organisms, it is crucial

to activate the right cells at the right time and place. A fundamental mystery in cell-

cell communication is how freely diffusing ligands can precisely target, or address,

specific cell types. The promiscuity of ligand-receptor interactions in BMP and other

communication pathways makes this question especially perplexing, since it appears

to reduce rather than enhance communication specificity. However, promiscuous

architectures are employed for specificity in other biological contexts. For example,

promiscuous ligand-receptor interactions in the olfactory system enable a limited

number of receptors to sense a great diversity of odorants through a combinatorial

population code (Duchamp-Viret et al., 1999; Goldman et al., 2005; Hallem and

Carlson, 2006; Malnic et al., 1999). Such architectures also appear analogous to

simple neural networks, which can compute complex functions of multi-dimensional

inputs (Bray, 1995). This computational ability could allow different cell types to

respond to different ligand combinations, as observed experimentally (Figure 3.5)

(Antebi et al., 2017; Klumpe et al., 2022).

Our results show that promiscuity could potentially allow ligand combinations to ad-

dress different cell types or groups of cell types with remarkable specificity (Figures

3.7A–B). Compared to one-to-one architectures that achieve perfect specificity for a

limited number of channels, promiscuous signaling pathways can target a large num-

ber of cell types at higher specificity (Figure 3.3) as well as enable greater flexibility

in addressing arbitrary subsets of cell types (Figure 3.4). High addressing capacity

can be a robust feature of promiscuous ligand-receptor systems, withstanding cor-

related noise in receptor expression levels (Figures 3.3C,G) and emerging across a

broad range of biochemical parameter values. A more general mutual information

framework identified design principles that maximize addressing capacity (Figure
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3.6). In particular, these include anticorrelation between the affinity and activity

of a given ligand-receptor complex and anticorrelation between the activities of

two ligands interacting with the same receptor dimer. Together, these results show

how addressing specificity can emerge from molecular promiscuity in a canonical

cell-cell communication system.

Are the biochemical parameters of the natural BMP pathway compatible with ad-

dressing? Quantification of BMP ligand-receptor interaction parameters has been

done for select components, although direct measurements of the activity of specific

signaling complexes have not yet been achieved (Karim et al., 2021). Systematic

analysis of pairwise ligand combinations showed complex responses to ligand com-

binations and revealed their dependence on specific receptors (Klumpe et al., 2022).

When fit to the same model used here (Figure 3.2A), these data provide estimated

values for 𝐾𝑖 𝑗 𝑘 and 𝑒𝑖 𝑗 𝑘 . These values exhibit the types of anticorrelations that

favor addressing, suggesting that the BMP pathway may have evolved to facilitate

high-capacity addressing. However, experimental studies of specific developmen-

tal systems will be necessary to establish to what extent combinatorial addressing

functions in natural contexts.

The addressing principles described here do not reflect the full complexity of cel-

lular signaling systems. We have focused on computations that can arise through

promiscuous ligand-receptor binding and activation of intracellular second messen-

gers. However, our model omits myriad additional processes that can modulate and

regulate cell signaling. Examples include nonhomogeneous spatial distribution of

ligands and receptors, such as in polarized cells (DeWitt et al., 2002; Kuwada et al.,

1998); trafficking of receptors (Burke et al., 2001; Resat et al., 2003; Shankaran et

al., 2012) and second messengers (Schmierer et al., 2008); and signaling-induced

feedback loops (Shankaran et al., 2007). These processes can enrich the com-
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Figure 3.7: Promiscuous ligand-receptor interactions allow for flexible and
high-bandwidth addressing.

(A) Promiscuous ligand-receptor interactions enable orthogonal addressing, in
which individual cell types can be specifically activated using combinations
of only two different ligand variants (cf. Figures 3.3E–I).

(B) Promiscuous ligand-receptor interactions enable subset addressing, in which
different ligand words address diverse cell type combinations (cf. Figure 3.6E).

(C) This notional schematic shows how two antiparallel morphogen gradients
could address different cell types (black, dark gray, and light gray) in specific
spatial regions. Yellow nuclei indicate activation. In this example, high levels
of blue ligand activate the black cell type (left), the combination of both
ligands (blue and green) activates the dark gray cell type (center), and high
levels of green ligand activate the light gray cell type (right).
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plexity of computations beyond those analyzed here and thereby potentially further

enhance the number and distinguishability of addressing channels. While smaller,

more focused models have been essential for developing our current understanding

of signaling, fully describing biological systems will require building integrated

models that span multiple scales and processes (Wells and Wiley, 2018; Wiley et

al., 2003).

BMPs function as morphogens, provoking the question of whether and how address-

ing plays out in a dynamic, spatially extended “heterocellular” tissue context (Wells

and Wiley, 2018). BMP-dependent developmental patterning processes typically

use multiple BMP ligands in spatially and temporally overlapping gradients that can

be further shaped by shuttling and other extracellular processes. For example, dur-

ing early Xenopus embryo development, an antiparallel gradient of BMP ligands is

formed between ventral and dorsal centers (Ben-Zvi et al., 2008; Reversade and De

Robertis, 2005). Similarly, overlapping expression patterns of GDF5 and multiple

BMP ligands, together with distinct receptor expression patterns, play a key role in

activation (and suppression) of BMP signaling in specific cell populations during

joint formation (Lyons and Rosen, 2019; Salazar et al., 2016). In such overlapping

gradients, addressing could allow different cell types, all with functional BMP path-

ways, to each selectively respond in distinct regions based on the concentrations of

multiple ligands (Figure 3.7C).

Additionally, temporal changes in receptor expression are common during devel-

opment (Danesh et al., 2009; Dewulf et al., 1995; Erickson and Shimasaki, 2003;

Sanyal et al., 2002). For instance, in neural precursors, Bmpr1a is expressed early

and ubiquitously; subsequent treatment with BMP2 induces activation of BMPR1A

and expression of Bmpr1b (Panchision et al., 2001). These different receptor ex-

pression states could preferentially respond to different ligand combinations and
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therefore be addressable. Spatiotemporal addressing could be tested experimen-

tally by genetically modifying the expression of BMP variants in developmental

contexts and analyzing the effects on different cell types. In vitro reconstitution of

multi-ligand gradients could allow a complementary, systematic analysis of spatial

addressing (Li et al., 2018).

An increasing amount of expression data is available from cell atlas projects, en-

abling analysis of expression profiles of ligands and receptors across diverse cell

types. Together with quantitative measurements of effective biochemical parame-

ters, these data could potentially be used to design ligand combinations that selec-

tively address target cell populations. The ability to design selective targeting would

be useful in biomedical applications such as directed differentiation and targeted

therapy. For example, recombinant BMP2 has been tested in a variety of therapeutic

applications, largely related to promoting bone healing and regrowth. However,

there are substantial risks, such as ectopic bone formation, respiratory failure, tissue

inflammation, and others (Epstein, 2011; Poon et al., 2016). If these complications

result from undesired activation of off-target cell types, using a combination of

ligands could potentially provide more specific addressing of the appropriate cell

type(s). Other potential therapeutic applications for modulators of BMP signaling

include cardiac fibrosis, where BMP2 and BMP7 have both shown promise in animal

models (Flevaris et al., 2017; Wang et al., 2012); Parkinson disease, where BMP2

and GDF5 both appear to promote survival of dopaminergic neurons (Hegarty et al.,

2014; O’Keeffe et al., 2017; O’Sullivan et al., 2010); and cancer, where inhibition

of BMP signaling reduces tumor formation in mice (Yokoyama et al., 2017). As

the range of clinical applications targeting BMP signaling continues to grow, it will

be essential to determine whether combinations of ligands could provide greater

specificity than individual ligands.
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The principles elucidated here in the context of BMP signaling could apply to

other pathways that exhibit promiscuous ligand-receptor interactions, including the

broader TGF-β pathway as well as the Wnt, Eph-Ephrin, FGF, and JAK-STAT path-

ways. The principle of addressing suggests that beyond sensing the concentration

of a given set of ligands, these pathways may serve more broadly as computational

devices that exploit promiscuous interactions, enabling cells to tune in to specific

ligand words and thereby receive information specifically addressed to them.
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3.5 Supplemental Information

Figure 3.S1: Promiscuous ligand-receptor interactions generate a repertoire
of archetypal response functions.

Four archetypal response functions—ratiometric, additive, imbalance, and
balance—appeared in a more complex model of the BMP pathway (Antebi et al.,
2017). Here, we show that similar archetypes appear in the model used here (top)
and illustrate the model parameters that generate them (bottom). Parameter dia-
grams represent the affinity (top arrows) and activity (bottom arrows) parameters
associated with each signaling complex. Arrow width indicates relative magnitude.
Thin arrows correspond to values of 0.1, while thick arrows represent values of 1.

(A) In ratiometric responses, one ligand reduces the activity of the other, such that
the overall response approximates the ratio of the two concentrations. Such
responses can arise through competitive inhibition, where a second ligand
binds the receptors that are needed to generate signaling activity but produces
inactive signaling complexes.

(B) Additive responses approximate the sum of the two ligand concentrations, as
the ligands increase pathway activity either alone or together. Ligands that
activate receptors equivalently can generate such responses.

(C) In imbalance detection, the pathway is most active when there is a large
imbalance in the levels of the two ligands. These responses can arise if,
for instance, competition between two ligands favors complexes with low
signaling activity.

(D) Balance detection responses show most activity when both ligands are present
simultaneously at a particular ratio. One mode for generating them is when
ligand binding favors formation of high-activity signaling complexes.

Related to Figure 3.2.
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Figure 3.S2: Orthogonal addressing can arise from a variety of different re-
sponse types.

For the parameter sets represented in Figure 3.2D, the responses of each cell type
are shown. Parameter sets are ordered by distinguishability, from best to worst.
These responses illustrate that three-channel addressing can be achieved in a variety
of ways, although common patterns do emerge (for example, schemes 1–2 and
schemes 3–4). Different scales are used to focus on the strongest examples.

Related to Figure 3.2.
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Figure 3.S3: Orthogonal addressing schemes are robust to extrinsic noise in
receptor expression levels. Continued on next page.
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Figure 3.S3: Orthogonal addressing schemes are robust to extrinsic noise in
receptor expression levels. Continued from previous page.

(A) The responses of each cell type in the five-channel system analyzed in Figure
3.3D are shown. As in Figure 3.3I, ligand words corresponding to orthog-
onally activating channels are shown as red circles. Responses have been
rearranged such that the response of a given cell type is shown in the relative
position of its orthogonally activating ligand word. For example, the top left
cell type is activated by high levels of ligand 2 only, while the bottom right
cell type is orthogonally activated by high levels of ligand 1 only.

(B) Top parameter sets from (left) the fly-like model (two type I and two type II
receptor variants) of Figures 3.3A–C and (right) the mammalian-like system
(four type I and three type II receptor variants) of Figures 3.3E–G were eval-
uated for addressing specificity in the presence of noise. Receptor expression
levels were perturbed with correlated extrinsic (top, green) or uncorrelated
intrinsic (bottom, purple) noise (Methods 3.6.7), and distinguishability values
were computed with all other parameters held constant. For each condition,
the results of 100 perturbations are shown, along with the baseline value
(black crosses).

Related to Figure 3.3.
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Figure 3.S4: Varying distinguishability thresholds reveal a tradeoff between
the capacity and robustness of addressing systems. Continued on next page.
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Figure 3.S4: Varying distinguishability thresholds reveal a tradeoff between
the capacity and robustness of addressing systems. Continued from previous
page.

To understand the tradeoff between addressing capacity and robustness, we show the
system of highest bandwidth that exceeds the indicated distinguishability thresholds.
Specifically, we highlight the crosstalk matrix as well as the ROC curves in response
to extrinsic (green) or intrinsic (purple) noise.

(A) In the fly-like model, five channels can be orthogonally addressed at a distin-
guishability of at least 2.

(B) In the fly-like model, four channels can be orthogonally addressed at a distin-
guishability of at least 4.

(C) In the fly-like model, three channels can be orthogonally addressed at a
distinguishability of at least 10.

(D) In the mammalian-like model, six channels can be orthogonally addressed at
a distinguishability of at least 2.

(E) In the mammalian-like model, five channels can be orthogonally addressed at
a distinguishability of at least 4.

(F) In the mammalian-like model, four channels can be orthogonally addressed
at a distinguishability of at least 10.

Related to Figure 3.3.
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Figure 3.S5: Orthogonal addressing capacity remains generally consistent
when considering higher-resolution ligand discretization. Continued on next
page.
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Figure 3.S5: Orthogonal addressing capacity remains generally consistent
when considering higher-resolution ligand discretization. Continued from pre-
vious page.

(A) We sought to optimize for orthogonal addressing systems using a four-level
ligand grid, compared to the three concentration levels used throughout the rest
of this work. We optimized randomly generated addressing schemes for each
given number of channels, moving to a higher bandwidth once a parameter
set had been successfully optimized. On-target and off-target responses are
shown for the best parameter set for each number of channels in a fly-like
model, as in Figure 3.3A.

(B) Distinguishability values are plotted for each number of channels, as in Fig-
ure 3.3B. The five-channel system, which reflects the highest addressable
bandwidth and has a distinguishability of 2.3, is further analyzed in (C–D).

(C) The crosstalk matrix is shown for the five-channel system, as in Figure 3.3D.

(D) The full responses of each cell type are shown for the five-channel system.
Red circles correspond to the five ligand words.

(E) The pathway activities for the top parameter set of each tested bandwidth are
shown for a mammalian-like model with four type I and three type II receptors,
as in (A).

(F) Distinguishability values are plotted for the mammalian-like model, as in (B).
The eight-channel system, which reflects the highest addressable bandwidth
and has a distinguishability of 1.4, is further analyzed in (G–H).

(G) The crosstalk matrix for the example in the mammalian-like model is shown,
as in (C).

(H) The full responses for the example in the mammalian-like model are shown,
as in (D).

Related to Figure 3.3.
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Figure 3.S6: Addressing properties vary across parameter sets.

(A) The approach of Figures 3.6A–B was applied to an equivalent number of
randomly generated parameter sets, rather than a grid of parameter values.
The resulting distribution of mutual information values is similar, indicating
that the result is robust to the method of parameter sampling (cf. Figure 3.6B).

(B) Parameters for five ligands (indicated in legend), two type I receptors, and
three type II receptors were fitted to the experimental measurements of BMP
responses in multiple cell lines with differing receptor expression profiles
described in (Klumpe et al., 2022) and analyzed for their addressing potential.
Specifically, we computed the addressability for every pair of ligands using the
same libraries of ligand combinations and cell types as in (A). Different pairs
show varying levels of addressing potential, with some pairs (e.g., BMP4-
BMP7, BMP4-BMP10, and BMP7-BMP10) exhibiting addressing of different
cell type groups for every ligand combination and others (e.g., BMP7-BMP9)
showing lower bandwidths.

Related to Figure 3.6.
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Table 3.S1: Experimentally analyzed cell lines have receptor expression profiles
resembling those of biological cell types.

Cell lines analyzed in Figure 3.5 were compared to cell types from annotated single-
cell RNA-seq expression atlases (Tabula Muris Consortium, 2020; Tabula Muris
Consortium et al., 2018). Receptor profiles for NMuMG cells were measured
directly through bulk RNA-seq, while receptor profiles for perturbed NMuMG lines
were simulated by estimating the perturbation magnitudes from qPCR data (Klumpe
et al., 2022). For each cell line, a cell type with similar receptor expression profile
is identified, along with the relevant developmental timepoint or age.

Related to Figure 3.5.

Cell Line Similar Cell Type
NMuMG Tongue keratinocyte (24 months)
ACVR1 KD Tongue basal cell of epidermis (3 months)
BMPR2 KD Tongue keratinocyte (18 months)
ACVRL1 OX Limb muscle Schwann cell (18 months)
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3.6 Methods

All data are publicly accessible at the CaltechDATA research data repository

(https://doi.org/10.22002/D1.1692). All code is publicly accessible at

GitHub (https://github.com/christinasu/PromiSys) as well as at the Cal-

techDATA research data repository (https://doi.org/10.22002/D1.20047).

3.6.1 One-Step Model for Promiscuous Interactions

Ligand-Receptor Interactions

Many signaling pathways demonstrate promiscuous interactions between multiple

ligand and receptor variants, which can bind with varying affinities to form many

distinct signaling complexes. The BMP pathway represents a canonical example

of such an architecture. Previously, we have described a mathematical model that

captures key features of this pathway and recapitulates experimentally observed

responses (Antebi et al., 2017). Here, we develop a simplified version of the model

that captures equivalent behaviors at steady state while reducing the number of

parameters to be considered.

In the model, we describe binding of a ligand to a heterodimer of type I and type

II receptors. Specifically, we consider 𝑛𝐿 ligand variants, 𝑛𝐴 type I or A receptor

variants, and 𝑛𝐵 type II or B receptor variants, where ligand 𝐿𝑖 can interact with A

receptor 𝐴 𝑗 and B receptor 𝐵𝑘 to form the heterotrimeric signaling complex 𝑇𝑖 𝑗 𝑘 .

We assume that this process occurs as a one-step reaction with an effective three-

way interaction, with forward rate 𝑘 𝑓𝑖 𝑗𝑘 and reverse rate 𝑘𝑟𝑖 𝑗𝑘 . This reaction can be

summarized as

𝐿𝑖 + 𝐴 𝑗 + 𝐵𝑘
𝑘 𝑓𝑖 𝑗𝑘−−−−⇀↽−−−−
𝑘𝑟𝑖 𝑗𝑘

𝑇𝑖 𝑗 𝑘 (3.1)

https://doi.org/10.22002/D1.1692
https://github.com/christinasu/PromiSys
https://doi.org/10.22002/D1.20047


95

Differential Equations and Constraints

Letting 𝐿𝑖 denote the concentration of ligand in a volume 𝑉 and letting 𝐴 𝑗 , 𝐵𝑘 , and

𝑇𝑖 𝑗 𝑘 denote the absolute numbers of receptors and complexes on the cell surface,

we can then write the differential equations that describe the dynamics of these

reactions:

𝑑𝐿𝑖

𝑑𝑡
=

1
𝑉

𝑛𝐴∑︁
𝑗=1

𝑛𝐵∑︁
𝑘=1

(
−𝑘 𝑓𝑖 𝑗𝑘𝐿𝑖𝐴 𝑗𝐵𝑘 + 𝑘𝑟𝑖 𝑗𝑘𝑇𝑖 𝑗 𝑘

)
(3.2)

𝑑𝐴 𝑗

𝑑𝑡
=

𝑛𝐿∑︁
𝑖=1

𝑛𝐵∑︁
𝑘=1

(
−𝑘 𝑓𝑖 𝑗𝑘𝐿𝑖𝐴 𝑗𝐵𝑘 + 𝑘𝑟𝑖 𝑗𝑘𝑇𝑖 𝑗 𝑘

)
(3.3)

𝑑𝐵𝑘

𝑑𝑡
=

𝑛𝐿∑︁
𝑖=1

𝑛𝐴∑︁
𝑗=1

(
−𝑘 𝑓𝑖 𝑗𝑘𝐿𝑖𝐴 𝑗𝐵𝑘 + 𝑘𝑟𝑖 𝑗𝑘𝑇𝑖 𝑗 𝑘

)
(3.4)

𝑑𝑇𝑖 𝑗 𝑘

𝑑𝑡
= 𝑘 𝑓𝑖 𝑗𝑘𝐿𝑖𝐴 𝑗𝐵𝑘 − 𝑘𝑟𝑖 𝑗𝑘𝑇𝑖 𝑗 𝑘 (3.5)

Each complex𝑇𝑖 𝑗 𝑘 phosphorylates the second messenger at some rate 𝜀𝑖 𝑗 𝑘 to generate

intracellular signal 𝑆, which degrades at rate 𝛾. The rate of change of the total signal

is given by the following differential equation:

𝑑𝑆

𝑑𝑡
=

𝑛𝐿∑︁
𝑖=1

𝑛𝐴∑︁
𝑗=1

𝑛𝐵∑︁
𝑘=1

𝜀𝑖 𝑗 𝑘𝑇𝑖 𝑗 𝑘 − 𝛾𝑆 (3.6)

We assume that the volume for the ligands is large, or 𝑉 → ∞. In this regime,

there are significantly more ligand molecules than receptors, as is the case for ex-

perimental conditions in which ligands are dissolved in an excess of media. Under

this assumption, ligand concentrations remain constant. We further assume that

production and consumption of the various molecular species are in steady state.

By conservation of mass, the total number of each type of molecule, alone or in

complex with other species, must remain constant. Letting 𝐿0
𝑖
, 𝐴0

𝑗
, and 𝐵0

𝑘
denote

the initial values of the respective species, we obtain the following constraints:
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𝐿0
𝑖 = 𝐿𝑖 (3.7)

𝐴0
𝑗 = 𝐴 𝑗 +

𝑛𝐿∑︁
𝑖=1

𝑛𝐵∑︁
𝑘=1

𝑇𝑖 𝑗 𝑘 (3.8)

𝐵0
𝑘 = 𝐵𝑘 +

𝑛𝐿∑︁
𝑖=1

𝑛𝐴∑︁
𝑗=1
𝑇𝑖 𝑗 𝑘 (3.9)

Steady-State Equations

Since binding and unbinding of ligands and receptors occur on fast time scales

relative to the time scales of reporter detection, we focus on characterizing the

behavior of this system at steady state. Here, all time derivatives in Equations

Equations 3.2–3.6 vanish. Defining affinities 𝐾𝑖 𝑗 𝑘 ≡ 𝑘 𝑓𝑖 𝑗𝑘/𝑘𝑟𝑖 𝑗𝑘 and activities 𝑒𝑖 𝑗 𝑘 ≡

𝜀𝑖 𝑗 𝑘/𝛾, Equations 3.5–3.6 can be solved as follows:

𝑇𝑖 𝑗 𝑘 = 𝐾𝑖 𝑗 𝑘𝐿𝑖𝐴 𝑗𝐵𝑘 (3.10)

𝑆 =

𝑛𝐿∑︁
𝑖=1

𝑛𝐴∑︁
𝑗=1

𝑛𝐵∑︁
𝑘=1

𝑒𝑖 𝑗 𝑘𝑇𝑖 𝑗 𝑘 (3.11)

Together, Equations 3.7–3.11 describe the behavior of the model at steady state.

𝐿0
𝑖 = 𝐿𝑖

𝐴0
𝑗 = 𝐴 𝑗 +

𝑛𝐿∑︁
𝑖=1

𝑛𝐵∑︁
𝑘=1

𝑇𝑖 𝑗 𝑘

𝐵0
𝑘 = 𝐵𝑘 +

𝑛𝐿∑︁
𝑖=1

𝑛𝐴∑︁
𝑗=1
𝑇𝑖 𝑗 𝑘

𝑇𝑖 𝑗 𝑘 = 𝐾𝑖 𝑗 𝑘𝐿𝑖𝐴 𝑗𝐵𝑘

𝑆 =

𝑛𝐿∑︁
𝑖=1

𝑛𝐴∑︁
𝑗=1

𝑛𝐵∑︁
𝑘=1

𝑒𝑖 𝑗 𝑘𝑇𝑖 𝑗 𝑘

We can solve this system of equations to find the values of 𝑇𝑖 𝑗 𝑘 at steady state,

which we can then use to compute the total signaling response 𝑆. By rearranging
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Equations 3.8–3.9, the steady-state values of the receptors can be derived as the

following expressions:

𝐴 𝑗 = 𝐴
0
𝑗 −

𝑛𝐿∑︁
𝑖=1

𝑛𝐵∑︁
𝑘=1

𝑇𝑖 𝑗 𝑘 (3.12)

𝐵𝑘 = 𝐵
0
𝑘 −

𝑛𝐿∑︁
𝑖=1

𝑛𝐴∑︁
𝑗=1
𝑇𝑖 𝑗 𝑘 (3.13)

Substituting into Equation 3.10, we have a system of 𝑛𝑇 = 𝑛𝐿𝑛𝐴𝑛𝐵 quadratic equa-

tions for 𝑇𝑖 𝑗 𝑘 :

𝑇𝑖 𝑗 𝑘 = 𝐾𝑖 𝑗 𝑘𝐿𝑖

(
𝐴0
𝑗 −

𝑛𝐿∑︁
𝑖′=1

𝑛𝐵∑︁
𝑘 ′=1

𝑇𝑖′ 𝑗 𝑘 ′

) ©«𝐵0
𝑘 −

𝑛𝐿∑︁
𝑖′=1

𝑛𝐴∑︁
𝑗 ′=1

𝑇𝑖′ 𝑗 ′𝑘
ª®¬ (3.14)

The solutions for 𝑇𝑖 𝑗 𝑘 from this system of equations can then be substituted into

Equation 3.11 to compute the total signal 𝑆.

To solve the model efficiently, we used Equilibrium Toolkit (EQTK), an optimized

Python-based numerical solver for biochemical reaction systems (Bois, 2020).

EQTK casts the coupled equilibrium problem as an unconstrained convex dual

optimization problem and employs a globally convergent trust region algorithm to

solve it (Bois, 2020; Dirks et al., 2007). This method accelerated computation by

approximately 600-fold compared to standard nonlinear least-squares optimization

used previously (Antebi et al., 2017).

3.6.2 Comparison with Alternative Models

Promiscuous vs. One-to-One Model

We compare a promiscuous signaling architecture to a simple model for signaling

with one-to-one ligand-receptor interactions, where each ligand variant 𝐿𝑖 binds with

a single cognate receptor 𝑅𝑖 to form an active dimer 𝐷𝑖. We can derive the equations

describing this system analogous to the analysis done above for the promiscuous

architecture. Assuming that this binding has forward rate 𝑘 𝑓𝑖 and reverse rate 𝑘𝑟𝑖 ,
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the chemical reactions can be expressed as follows:

𝐿𝑖 + 𝑅𝑖
𝑘 𝑓𝑖−−⇀↽−−
𝑘𝑟𝑖

𝐷𝑖 (3.15)

We measure 𝐿𝑖 as the concentration of ligand in a volume 𝑉 and 𝑅𝑖 and 𝐷𝑖 as the

absolute numbers of receptors or complexes on the cell surface. The differential

equations describing their dynamics are then as below:

𝑑𝐿𝑖

𝑑𝑡
=

1
𝑉

(
−𝑘 𝑓𝑖𝐿𝑖𝑅𝑖 + 𝑘𝑟𝑖𝐷𝑖

)
(3.16)

𝑑𝑅𝑖

𝑑𝑡
= −𝑘 𝑓𝑖𝐿𝑖𝑅𝑖 + 𝑘𝑟𝑖𝐷𝑖 (3.17)

𝑑𝐷𝑖

𝑑𝑡
= 𝑘 𝑓𝑖𝐿𝑖𝑅𝑖 − 𝑘𝑟𝑖𝐷𝑖 (3.18)

We again assume that the volume for ligands is large, such that there are significantly

more ligand molecules than receptors. This assumption holds for our experimental

setting, where ligands are dissolved in an excess of media. Ligand concentrations

thus remain constant. We enforce conservation of mass for the receptor subunits.

Finally, we define affinities 𝐾𝑖 ≡ 𝑘 𝑓𝑖/𝑘𝑟𝑖 and activities 𝑒𝑖 ≡ 𝜀𝑖/𝛾 as before. At steady

state, we have the following equations to describe the behavior of a model with 𝑛

ligands and receptors:

𝐿0
𝑖 = 𝐿𝑖 (3.19)

𝑅0
𝑖 = 𝑅𝑖 + 𝐷𝑖 (3.20)

𝐷𝑖 = 𝐾𝑖𝐿𝑖𝑅𝑖 (3.21)

𝑆 =

𝑛∑︁
𝑖=1

𝑒𝑖𝐷𝑖 (3.22)

The steady-state solutions for 𝐷𝑖 can then be derived as

𝐷𝑖 = 𝐾𝑖𝐿
0
𝑖

(
𝑅0
𝑖 − 𝐷𝑖

)
=
𝐾𝑖𝐿

0
𝑖
𝑅0
𝑖

1 + 𝐾𝑖𝐿0
𝑖

(3.23)
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One-Step vs. Two-Step Model

We have previously considered a mathematical model that describes the promiscuous

architecture of the BMP pathway, which considers formation of the heterotrimeric

complexes 𝑇𝑖 𝑗 𝑘 in a two-step process (Antebi et al., 2017). Briefly, ligand 𝐿𝑖 and

receptor 𝐴 𝑗 form an intermediate dimer 𝐷𝑖 𝑗 , which then binds to receptor 𝐵𝑘 to form

trimer 𝑇𝑖 𝑗 𝑘 . Again, we assume that the reactions are reversible and follow first-order

kinetics, with forward and reverse reaction rates 𝑘𝐷
𝑓𝑖 𝑗

and 𝑘𝐷𝑟𝑖 𝑗 for formation of the

dimers and 𝑘𝑇
𝑓𝑖 𝑗𝑘

and 𝑘𝑇𝑟𝑖 𝑗𝑘 for formation of the trimers. Defining 𝐾𝐷
𝑖 𝑗

≡ 𝑘𝐷
𝑓𝑖 𝑗
/𝑘𝐷𝑟𝑖 𝑗

and 𝐾𝑇
𝑖 𝑗 𝑘

≡ 𝑘𝑇
𝑓𝑖 𝑗𝑘

/𝑘𝑇𝑟𝑖 𝑗𝑘 , the steady-state solutions for 𝑇𝑖 𝑗 𝑘 in the two-step model,

analogous to Equation 3.14 in the one-step model, are as follows:

𝑇𝑖 𝑗 𝑘 = 𝐾
𝑇
𝑖 𝑗 𝑘𝐾

𝐷
𝑖 𝑗 𝐿𝑖

(
𝐴0
𝑗
− ∑𝑛𝐿

𝑖′=1
∑𝑛𝐵
𝑘 ′=1 𝑇𝑖′ 𝑗 𝑘 ′

1 + ∑𝑛𝐿
𝑖′=1 𝐾

𝐷
𝑖′ 𝑗𝐿𝑖′

) ©«𝐵0
𝑘 −

𝑛𝐿∑︁
𝑖′=1

𝑛𝐴∑︁
𝑗 ′=1

𝑇𝑖′ 𝑗 ′𝑘
ª®¬ (3.24)

Comparing Equation 3.14 and Equation 3.24, the steady-state solutions for 𝑇𝑖 𝑗 𝑘

in the two-step model can be mapped to the one-step model under the following

parameter choice:

𝐾𝑖 𝑗 𝑘 =
𝐾𝑇
𝑖 𝑗 𝑘
𝐾𝐷
𝑖 𝑗

1 + ∑𝑛𝐿
𝑖′=1 𝐾

𝐷
𝑖′ 𝑗𝐿𝑖′

(3.25)

Since 𝑆 is defined by the values of 𝑇𝑖 𝑗 𝑘 and is given by Equation 3.11 in both the

one-step and two-step models, the steady-state behavior of the two-step model with

any set of parameters can also be represented in the one-step model. However, the

number of parameters is reduced from 𝑁
two-step
𝑝 = 𝑛𝐴 + 𝑛𝐵 + 𝑛𝐿𝑛𝐴 + 2𝑛𝐿𝑛𝐴𝑛𝐵 to

𝑁
one-step
𝑝 = 𝑛𝐴 + 𝑛𝐵 + 2𝑛𝐿𝑛𝐴𝑛𝐵. Thus, the one-step model enables us to simplify the

system while preserving all possible behaviors of 𝑇𝑖 𝑗 𝑘 and 𝑆 at steady state.

Trimeric vs. Hexameric Model

We have developed a simplified model in which a ligand binds to type I and type II

receptor subunits to form a trimeric signaling complex. However, the BMP signaling
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pathway is known to involve hexameric signaling complexes, where a dimeric ligand

interacts with two type I and two type II receptors. This model captures reactions

of the following form:

𝐿1
𝑖 + 𝐿2

𝑗 + 𝐴1
𝑘 + 𝐴

2
𝑙 + 𝐵

1
𝑚 + 𝐵2

𝑛

𝑘 𝑓𝑖 𝑗𝑘𝑙𝑚𝑛−−−−−−⇀↽−−−−−−
𝑘𝑟𝑖 𝑗𝑘𝑙𝑚𝑛

𝐻𝑖 𝑗 𝑘𝑙𝑚𝑛 (3.26)

This model can essentially be reduced to a trimeric model by setting reaction rates

to 0 for any reaction with 𝑖 ≠ 𝑗 , 𝑘 ≠ 𝑙, or 𝑚 ≠ 𝑛. As such, responses in the trimeric

model represent a subset of the functions that could be possible in the hexameric

model.

3.6.3 Optimization of Orthogonal Addressing Schemes

Given a target orthogonal addressing scheme of 𝑁 channels, we optimized for

parameters that would yield matching responses. Specifically, we used constrained

least-squares optimization for 𝑛𝐿𝑛𝐴𝑛𝐵 affinity parameters 𝐾𝑖 𝑗 𝑘 , 𝑛𝐿𝑛𝐴𝑛𝐵 activity

parameters 𝑒𝑖 𝑗 𝑘 , and 𝑁 (𝑛𝐴 + 𝑛𝐵) receptor expression levels. We bounded affinity

and activity parameters in [0, 1] and receptor levels in [0,∞). We sought to

minimize the residuals between the target responses and the simulated responses

at the 𝑁 ligand words of interest. Since the simulated responses have arbitrary

units, we normalized all responses for a given parameter set. In particular, we

normalized by the maximum value in any cell type over the full ligand titration,

not only the ligand words of interest. This normalization ensures that all cell types

share a relatively similar level of activation and that the activation in the orthogonal

channels is distinguishable from activation by other ligand combinations.

As this optimization procedure is not guaranteed to converge to a global minimum,

we optimized repeatedly with different initial conditions. Biochemical parameters

were chosen in a uniform random distribution over [0, 1], and receptor levels were

initialized to 1. To evaluate the potential capacity of promiscuous ligand-receptor
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systems for orthogonal addressing, we sought to optimize progressively higher

bandwidths without requiring any particular scheme. For 𝑁 channels, we randomly

selected 𝑁 ligand words as orthogonally activating inputs and sought to optimize

parameters as described. We iterated this process with randomly chosen ligand

words until parameters had been identified to generate 𝑁 channels successfully.

Once this criterion was met, we then proceeded to optimize 𝑁 + 1 channels, up to

the limit derived from the number of possible ligand words. We performed at least

an average of 500 optimizations per bandwidth.

3.6.4 Enumeration of Orthogonal Addressing Schemes

To analyze the possibility for orthogonal addressing, we used a discretized ligand

concentration space to enable a comprehensive screening. We reasoned that we

could systematically test for all possible orthogonal addressing schemes by selecting

a subset of the possible ligand combinations to be orthogonally activating and

defining a set of targeted response functions accordingly. For a set of 𝑁 chosen

ligand words, we enumerated 𝑁 targeted response functions, where each ligand

word activates exactly one cell type and, conversely, each cell type is activated by

exactly one ligand word. Having discretized ligand concentrations to three levels,

there are 32 = 9 possible ligand words. The combination with all ligands at the lowest

level is assumed to yield negligible activation in any cell type, so this ligand word

cannot generate a channel. Thus, there can be one to eight possible communication

channels.

For each possible number of channels 𝑁 , we took all possible subsets and sought

to achieve these addressing schemes. There are
( 8
𝑁

)
possible addressing schemes

for a given bandwidth and 28 = 256 possible addressing schemes overall. However,

addressing schemes that are identical under changes in ligand labels were removed,

leaving 144 total possibilities. We systematically tested for the ability to achieve
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each addressing scheme by performing a search over all schemes. At each trial,

we chose which addressing scheme to optimize based on both the lowest error 𝐸

achieved and the number of trials 𝑇 attempted. Specifically, we optimized for the

addressing scheme with maximal value of 𝐸/𝑇2 and repeated this process for at

least an average of 50 optimizations per scheme to ensure that all schemes would

be tested adequately. This strategy of systematically optimizing every possible

addressing scheme rather than randomly selecting schemes of a given bandwidth

provided a complementary approach for analyzing addressing capability.

3.6.5 Distinguishability of Channels

We optimized parameters for each addressing scheme based on the squared error

between the targeted and simulated responses at each ligand word of interest. How-

ever, this error does not necessarily guarantee specificity of addressing, where a

given ligand combination should activate only a single cell type and not the oth-

ers. To quantify the performance of each system, we analyzed the distributions of

on-target and off-target activation levels. We defined the distinguishability as the

fold difference between the minimum on-target and maximum off-target activities,

which measures the ability to differentiate between specific and nonspecific signals

in the worst case.

3.6.6 Orthogonal Addressing in One-to-One Model

Lower Bound for Distinguishability

For a one-to-one architecture, we can readily use Equations 3.22–3.23 to calculate

the steady-state signal for any set of initial ligand and receptor concentrations under

a given set of biochemical parameters. With a two-component system, we obtain

the following:

𝑆 =
𝐾1𝑒1𝐿

0
1𝑅

0
1

1 + 𝐾1𝐿
0
1
+
𝐾2𝑒2𝐿

0
2𝑅

0
2

1 + 𝐾2𝐿
0
2

(3.27)
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Suppose that 𝐾1 = 𝐾2 and 𝐾𝑖 � 𝐿0
𝑖

for any 𝑖. Define 𝑄𝑖 = 𝑒𝑖𝑅0
𝑖
. In this regime, the

signal (subject to an arbitrary normalization factor) is approximately as below:

𝑆 ≈ 𝐿0
𝑖𝑄𝑖 + 𝐿0

2𝑄2 (3.28)

To obtain an addressing system of 𝑁 orthogonal channels, we must define 𝑁 ligand

words and 𝑁 cell types. Let W𝑖 denote the 𝑖th word, or a length-2 vector representing

a ligand expression profile as W𝑖 =

(
𝐿0

1, 𝐿
0
2

) (𝑖)
. Likewise, let C′

𝑗
represent the

𝑗 th cell type, or a length-2 vector representing a receptor expression profile as

C′
𝑗
=

(
𝑅0

1, 𝑅
0
2

) ( 𝑗)
. For mathematical convenience, we can instead consider C 𝑗 =

(𝑄1, 𝑄2) ( 𝑗) , which encompasses receptor expression as well as activity. Letting S𝑖 𝑗

denote the steady-state signal for the 𝑖th ligand word and the 𝑗 th cell type, this value

is simply S𝑖 𝑗 = W𝑖 ·C 𝑗 . As such, we wish to maximize W𝑖 ·C𝑖 and minimize W𝑖 ·C 𝑗

(for 𝑖 ≠ 𝑗) in order to maximize distinguishability. Since the dot product between any

two vectors a and b with an angle 𝜃 between them is given by a · b = ‖a‖‖b‖ cos 𝜃,

we should choose W𝑖 and C𝑖 to be directly proportional to one another (i.e., 𝜃 = 0,

thus maximizing cos 𝜃), and we should choose the different W𝑖 to be equidistantly

spaced across the “unit arc” or first quadrant of the unit circle (thus maximizing 𝜃

and minimizing cos 𝜃). Specifically, we can define W𝑖 = C𝑖 = (cos 𝜃𝑖, sin 𝜃𝑖) for

𝜃𝑖 =
𝑖−1
𝑁−1 · 𝜋2 radians. Each on-target signal will then simply be S𝑖𝑖 = 1, and each

off-target signal will be cos
(

𝜋
2(𝑁−1)

)
. Thus, we can guarantee implementation of 𝑁

orthogonal channels with a distinguishability of at least

𝐷 =
1

cos
(

𝜋
2(𝑁−1)

) (3.29)

Optimization

The above analysis guarantees implementation of arbitrarily many orthogonal chan-

nels with distinguishability greater than 1. However, it makes several assumptions.

Therefore, we also sought to identify parameters that could improve upon the class
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of solutions derived above in the absence of such simplifications. We used an opti-

mization approach, optimizing for distinguishability and searching over a single set

of affinity and activity parameters as well as 𝑁 sets of ligand and receptor expres-

sion values. For the same bandwidths as considered for the promiscuous system, we

performed 100 optimization trials each. In all cases, the resulting distinguishability

values approached but did not exceed the theoretical value. Thus, our theoretical

solutions, while not proven to be optimal, are able to outperform computationally

optimized parameters.

3.6.7 Analysis of Robustness

Biological systems are subject to noise. In particular, cellular systems show both

extrinsic noise, or correlated changes such as during cell growth or changes in ex-

pression machinery, and intrinsic noise, or independent stochastic variation in each

element. To assess whether the optimized parameters are robust to noise in receptor

expression levels, we evaluated whether on-target and off-target signals could be

correctly distinguished across many random perturbations, using the receiver op-

erating characteristic (ROC). In particular, we computed the area under the ROC

curve (AUC), which represents the probability of successfully classifying on-target

from off-target activations. We considered both purely extrinsic and purely intrinsic

noise. For a given coefficient of variation (CV) 𝜈 (here, 𝜈 = 0.5), we simulated

extrinsic noise by generating a scale factor from a gamma distribution with shape

parameter 1/𝜈2 and scale parameter 𝜈2 (giving a mean of 1 and a variance of 𝜈2)

and multiplied all receptor levels by this scale factor. For intrinsic noise, we instead

drew scale factors i.i.d. for each receptor. With each form of noise, we generated 100

random perturbations, simulated the resulting activity levels, and computed the cor-

responding ROC and AUC (Figures 3.3C,G). We also plotted the distinguishability

values for these perturbations (Figure 3.S3B).
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3.6.8 Optimization of Subset Addressing Repertoires

We next considered more general addressing systems, targeting activation not just

of individual cell types but also of groups of cell types. Specifically, an addressing

repertoire encompasses all subsets of cell types that can be co-activated by any ligand

word across a complete titration of ligand concentrations. For instance, titrating two

ligand variants with three concentrations yields 32 = 9 ligand words, each of which

activates some subset of the cell types considered. Every distinct group of cell types

constitutes an achievable channel. The set of channels resulting from the 9 ligand

words considered constitutes the addressing repertoire for that set of parameters.

To characterize the specificity of addressing different subsets of cell types, we

generalized the distinguishability metric defined above. Each ligand word activates a

particular subset of cell types; the corresponding response(s) of the cell type(s) would

represent on-target signaling, while the response(s) of any other cell type(s) would

represent off-target signaling. Therefore, as in the case of orthogonal addressing,

distinguishability can be calculated as the fold difference between the minimum

on-target activity and the maximum off-target activity.

Similar to a specific number of orthogonal channels, a given addressing repertoire

can potentially be implemented in many ways. In other words, many different sets of

responses can generate the same addressing repertoire. Unlike the orthogonal case,

however, the responses for all ligand combinations are relevant. Thus, enumerating

the ways to achieve a given addressing repertoire requires considering any possible

response for every cell type.

To generalize our optimization approach to analyze addressing repertoires, we first

set out to define what sets of responses could yield a given repertoire. Therefore, we

started by enumerating all possible binary response matrices for a single cell type.

The number of possible responses then reduces to the number of ways to choose
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“on” signals. Assuming that cells are always inactive for the ligand combination

where both ligands are present at low levels and ignoring the case where the cell is

entirely nonresponsive, there are 28 − 1 = 255 possible responses.

By considering all combinations of three responses from this set, we were able

to map all addressing repertoires to the potential sets of three responses. Due to

the large number of possibilities for a given repertoire, we sought to prioritize sets

of responses that were more likely to be achievable. Therefore, we individually

optimized each of the 255 responses and quantified the quality of each response

using the sum of squared distances to the target, after normalizing the simulated

response to have a maximum response of 1 (Figure 2.6). We ranked sets of three

responses based on the sum of the scores of each response individually. Since

parameter sets were individually optimized, a response that can be achieved with

high quality independently may not be possible in the same biochemical parameter

regime as another; however, this scoring should reduce consideration of responses

that are challenging to optimize individually, let alone together with others.

Having selected candidate sets of responses, we could then perform least-squares

optimization as done previously. We also complemented this optimization approach

by reasoning that any given set of responses matches some addressing repertoire,

depending only on how the threshold between “inactive” and “active” pathway

response is defined. Therefore, we simulated a random set of responses, chose the

threshold that yielded the greatest distinguishability between the lowest on-target

and highest off-target responses, and associated those parameters with the resulting

addressing repertoire. We iteratively optimized for this distinguishability, stopping

if the resulting addressing repertoire was one for which a valid parameter set had

not yet been identified.
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3.6.9 Enumeration of Subset Addressing Repertoires

We focused on analyzing addressing repertoires for three cell types, denoted A, B,

and C. With three cell types, there are eight possible channels: one with no cell

types activated, three with a single cell type activated, three with two cell types

activated, and one with all cell types activated. Since the channel with no cell types

activated is always achieved in the absence of any ligand, we neglect this from further

consideration. Each of the remaining seven channels may or may not be present,

for a total of up to 27 = 128 addressing repertoires. We discard repertoires that are

redundant with respect to relabeling of ligands as well as repertoires in which two

cell types are indistinguishable by any ligand combination (such that the addressing

repertoire could be mapped to a repertoire for two cell types). As discussed in more

detail below, these simplifications leave us with 32 addressing repertoires of three

cell types, corresponding to those shown in Figure 3.4C.

We first seek to eliminate repertoires that are invariant with respect to relabeling of

ligands. The subset with all three cell types activated, or triple, does not change

when ligands are relabeled; however, singles or doubles may. For example, the

addressing repertoire consisting of “A” and “BC” is equivalent to that comprising

“B” and “AC,” simply by swapping the labels of cell types A and B. As such, we

consider the unique ways to include singles or doubles. Consider each single with

its complementary double (for example, “A” with “BC”). There are 22 = 4 possible

ways to include this pair in an addressing repertoire: both absent, only single present,

only double present, and both present. The three pairs can then encompass three

distinct choices of these four possibilities (4 combinations), two distinct choices

(4 · 3 = 12 combinations), or the same choice (4 possibilities). There are then

4 + 12 + 4 = 20 ways to choose combinations of singles or doubles, and the triple

may be either present or absent. Thus, considering ligand relabeling reduces the

total number of addressing repertoires to consider to 40.
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Note, however, that some of these repertoires may only represent two distinct cell

types, rather than three. For example, the addressing repertoire with channels

“A” and “BC” indicates that cell types B and C are indistinguishable across all

ligand combinations and are therefore functionally equivalent. Let B and C be

indistinguishable, without loss of generality. The only possible channels are then

“A,” “BC,” and “ABC.” Thus, the 23 = 8 repertoires that only contain these channels

can be reduced to two distinct cell types and are therefore omitted from our analysis

of addressing three cell types. This correction yields our final set of 32 addressing

repertoires.

3.6.10 Subset Addressing in One-to-One Model

To understand how subset addressing in a promiscuous pathway compares with that

in a one-to-one architecture, we note that all responses in a one-to-one pathway

must be monotonic, meaning that responses never decrease with added ligand. As

such, a given cell’s response is maximal when exposed to the ligand combination

where all ligands are present at highest concentration. Therefore, every cell type

will be active in response to this ligand combination. (Otherwise, there would be

no response across the entire ligand titration, and there would be no addressing.)

Consequently, the subset “ABC” will always be addressable in the one-to-one archi-

tecture. Conversely, any repertoire where “ABC” is absent cannot be achieved in

the one-to-one architecture.

3.6.11 Addressing of Cell Lines

Cell Lines

NAMRU mouse mammary gland (NMuMG) cells (female) were acquired from

ATCC (CRL-1636). Mouse embryonic stem cells (mESCs; E14Tg2a.4, male)

were obtained from the laboratory of Bill Skarnes and Peri Tate. Reporter cell
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lines were cultured as in (Antebi et al., 2017). Briefly, cells were cultured in a

humidity-controlled chamber at 37◦C with 5% CO2. NMuMG cells were cultured in

DMEM supplemented with 10% FBS (Clontech #631367), 1 mM sodium pyruvate,

1 unit/mL penicillin, 1 µg/mL streptomycin, 2 mM L-glutamine, and 1× MEM

nonessential amino acids. mESCs were plated on tissue culture plates pre-coated

with 0.1% gelatin and cultured using DMEM supplemented with 15% FBS (Gibco

#16141), 1 mM sodium pyruvate, 1 unit/mL penicillin, 1 µg/mL streptomycin, 2

mM L-glutamine, 1× MEM nonessential amino acids, 55 mM β-mercaptoethanol,

and 1,000 units/mL leukemia inhibitory factor (LIF).

Receptor Knockdown and Ectopic Expression

To analyze the potential for addressing in living cells, we engineered cell lines with

differing receptor profiles. Using an NMuMG reporter line, individual BMP recep-

tors were knocked down (KD) or overexpressed (OX), as described in (Klumpe et al.,

2022). Briefly, receptor knockdown lines were engineered by transducing lentivi-

ral particles containing constructs for constitutive shRNA expression reported by

mCherry with a puromycin resistance gene (SMARTvector, Dharmacon). ACVR1

KD cells were a clonal population selected by limiting dilution of cells transduced

with a pool of three shRNAs, while BMPR2 KD cells were a polyclonal population

generated by a single shRNA. Cells were selected 48 hours after transduction and

continuously maintained in 3 µg/mL puromycin. For ectopic expression of BMP

receptors, a construct for constitutive expression of mouse receptor cDNA reported

by mTurquoise and co-expressed with a geneticin resistance gene was integrated

by PiggyBac integration (System Biosciences) using previously reported plasmids

(Antebi et al., 2017). ACVRL1 OX cells were selected and maintained in 500 µg/mL

geneticin.
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BMP Response and Flow Cytometry

Responses of cell lines to BMP ligands were quantified by flow cytometry as de-

scribed in (Klumpe et al., 2022). Recombinant BMP ligands were acquired from

R&D Systems (BMP2, catalog #355-BM; BMP9, catalog #5566-BP; BMP10, cat-

alog #6038-BP). Cells were plated at 20–30% confluency in 96-well plates and

cultured under standard conditions for 12 hours. Media was then replaced, and

ligands were added at specified concentrations. 24 hours after ligand addition, cells

were prepared for flow cytometry by washing with PBS and lifting from the plate

using trypsin (NMuMG) or Accutase (mESC) for 5 minutes at 37◦C. Protease activ-

ity was quenched by resuspending the cells in HBSS with 2.5 mg/mL bovine serum

albumin (BSA). Cells were then filtered with a 40 µm mesh and analyzed by flow

cytometry (MACSQuant VYB, Miltenyi Biotec; CytoFLEX, Beckman Coulter).

Single-cell flow cytometry data were analyzed by taking the population median. For

measured experimental responses (Figure 3.5), responses were quantified by taking

the mean of at least 3 repeats. Fold change was measured compared to response

with no ligand present and then normalized by the maximum fold change for each

cell type.

3.6.12 Computation of Mutual Information

We use mutual information between ligand words and activation patterns across a

library of cell types to quantify the combinatorial addressing power of the ligand-

receptor system. Mutual information was initially developed to quantify the capacity

of a noisy channel to transmit information, or the extent to which distinct input

messages can be resolved by the receiver after passing through the channel. Here,

we view the ligand words as input messages and the resulting activation pattern

across cell types as the received message. Then, the communication system’s

capacity is determined by the biochemical constants 𝐾𝑖 𝑗 𝑘 and 𝑒𝑖 𝑗 𝑘 .
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One important benefit of using an information theoretic framework is that we do not

need to assume a particular set of ligand words and cell types and then optimize over

them. Instead, we can use extensive libraries of input ligand words and cell types;

mutual information will reflect the best subset of each with no penalty (or benefit)

for redundancies. Thus, in our framework, mutual information reflects a property of

the biochemical constants 𝐾 and 𝑒 alone; ligand inputs and cell types are implicitly

assumed to be optimally chosen. (In information theoretic language, we do not need

to know optimal error-correcting codes to compute the capacity of a channel.)

Let W represent a library of 𝑛𝐿𝑊 ligand words, where the 𝑖th input W𝑖 is a vector

of 𝑛𝐿 ligand concentrations. Given a library of 𝑛𝐶𝑇 cell types, let S (W) represent

the resulting activation profiles of these cell types, or a set of 𝑛𝐿𝑊 × 𝑛𝐶𝑇 responses.

Earlier sections have presented a way to compute S (W) deterministically by solving

quadratic equations. Here, we assume that the activation is probabilistic due to a

Gaussian error bar of size 𝜎 around the deterministic solution Sdeterm (W). The

standard deviation 𝜎 can represent molecular fluctuations upstream of SMAD (e.g.,

in receptor levels or activity) that result in fluctuations of SMAD phosphorylation.

Thus, the distribution of signaling activities can be represented as follows:

𝑃 (S | W) = Normal
(
Sdeterm (W) , 𝜎2

)
(3.30)

We compute mutual information 𝐼 (S,W) using the formula below:

𝐼 (S,W) = 𝐻 (S) − 𝐻 (S | W) (3.31)

The second term can be expressed as follows:

𝐻 (S | W) =
𝑛𝐿𝑊∑︁
𝑖=1

𝑝 (W𝑖) 𝐻 (S | W = W𝑖) (3.32)

Each𝐻 (S | W = W𝑖) is the entropy of a 𝑛𝐶𝑇 -dimensional Gaussian with covariance

matrix Σ = 𝜎2𝐼𝑛𝐶𝑇
, where 𝐼𝑛𝐶𝑇

is the identity matrix of size 𝑛𝐶𝑇 . This entropy (in
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bits) is

𝐻 (S | W = W𝑖) =
1
2

lg [det (2𝜋𝑒Σ)]

=
1
2

lg
[(

2𝜋𝑒𝜎2
)𝑛𝐶𝑇

]
=
𝑛𝐶𝑇

2
lg

[
2𝜋𝑒𝜎2] (3.33)

Assuming input probabilities are uniformly distributed, or 𝑝 (W𝑖) = 1
𝑛𝐿𝑊

, this

conditional entropy is simply given by

𝐻 (S | W) = 𝑛𝐶𝑇

2
lg

[
2𝜋𝑒𝜎2] (3.34)

Thus, this term is constant regardless of choice of biochemical parameters.

The entropy 𝐻 (S) in Equation 3.31 is the entropy of 𝑃 (S), which is a sum of

Gaussians, one at each of the activation patterns corresponding to each ligand input

W𝑖. This entropy is a measure of the distinguishability of activation patterns S (W𝑖)

for different inputs W𝑖; the entropy will be small if the Gaussians are overlapping

and large otherwise. Intuitively, this entropy is a measure of how well separated the

activation patterns for different ligand inputs are.

The problem of determining the entropy of a normalized sum of Gaussians (i.e., a

Gaussian mixture) in high dimensions is complex; however, simple analytic approx-

imations have been developed in a recent advance (Kolchinsky and Tracey, 2017).

We use the approximation to the kernel density estimator presented therein for a

sum of 𝑛𝐿𝑊 Gaussians 𝑝 (𝑥) = 1
𝑛𝐿𝑊

∑𝑛𝐿𝑊
𝑖=1 𝑝𝑖 (𝑥) in 𝑛𝐶𝑇 dimensions:

𝐻𝐾𝐿 (𝑝 (𝑥)) =
𝑛𝐶𝑇

2
−
𝑛𝐿𝑊∑︁
𝑖=1

𝑚𝑖 ln

𝑛𝐿𝑊∑︁
𝑗=1

𝑚 𝑗 𝑝 𝑗
(
𝛍𝑖

) (3.35)

Here, 𝑝 𝑗 is the 𝑗 th Gaussian component (normalized to 1, individually), 𝛍𝑖 the mean

of the 𝑖th component, and 𝑚𝑖 the mixture weight of the 𝑖th component. In this case,
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we assume uniform mixture weights, or 𝑚𝑖 = 1
𝑛𝐿𝑊

for all 𝑖. Further, 𝑝 𝑗
(
𝛍𝑖

)
is

𝑝 𝑗
(
𝛍𝑖

)
=

1√︁
(2𝜋)𝑛𝐶𝑇 detΣ

𝑒−
1
2 (𝛍𝑖−𝛍 𝑗)𝑇Σ−1(𝛍𝑖−𝛍 𝑗) (3.36)

Thus, the mutual information can be evaluated by simply evaluating each Gaussian

at the mean of all other Gaussian components, or by using the matrix D𝑖 𝑗 of distances

between activation patterns Sdeterm (W𝑖) for different ligand inputs W𝑖:

D𝑖 𝑗 = ‖Sdeterm (W𝑖) − Sdeterm
(
W 𝑗

)
‖2 (3.37)

We can therefore simplify 𝑝 𝑗
(
𝛍𝑖

)
to

𝑝 𝑗
(
𝛍𝑖

)
=

1√︃(
2𝜋𝜎2)𝑛𝐶𝑇

𝑒
−

D𝑖 𝑗

2𝜎2 (3.38)

Substituting into the approximation, we find an entropy (in nats) of

𝐻𝐾𝐿 (𝑃 (S)) = 𝑛𝐶𝑇

2
−
𝑛𝐿𝑊∑︁
𝑖=1

1
𝑛𝐿𝑊

ln


𝑛𝐿𝑊∑︁
𝑗=1

1
𝑛𝐿𝑊

· 1√︃(
2𝜋𝜎2)𝑛𝐶𝑇

𝑒
−

D𝑖 𝑗

2𝜎2


=
𝑛𝐶𝑇

2
− 1
𝑛𝐿𝑊

𝑛𝐿𝑊∑︁
𝑖=1

ln


1
𝑛𝐿𝑊

· 1√︃(
2𝜋𝜎2)𝑛𝐶𝑇

𝑛𝐿𝑊∑︁
𝑗=1

𝑒
−

D𝑖 𝑗

2𝜎2


=
𝑛𝐶𝑇

2
− 1
𝑛𝐿𝑊

𝑛𝐿𝑊∑︁
𝑖=1

©«− ln [𝑛𝐿𝑊 ] −
𝑛𝐶𝑇

2
ln

[
2𝜋𝜎2] + ln


𝑛𝐿𝑊∑︁
𝑗=1

𝑒
−

D𝑖 𝑗

2𝜎2

ª®¬
=
𝑛𝐶𝑇

2
+ ln [𝑛𝐿𝑊 ] +

𝑛𝐶𝑇

2
ln

[
2𝜋𝜎2] − 1

𝑛𝐿𝑊

𝑛𝐿𝑊∑︁
𝑖=1

©«ln

𝑛𝐿𝑊∑︁
𝑗=1

𝑒
−

D𝑖 𝑗

2𝜎2

ª®¬
= ln [𝑛𝐿𝑊 ] +

𝑛𝐶𝑇

2
ln

[
2𝜋𝑒𝜎2] − 1

𝑛𝐿𝑊

𝑛𝐿𝑊∑︁
𝑖=1

©«ln

𝑛𝐿𝑊∑︁
𝑗=1

𝑒
−

D𝑖 𝑗

2𝜎2

ª®¬ (3.39)

We can convert this expression to bits by multiplying by lg 2 and then combine with

Equation 3.34 to estimate mutual information. We note that these derivations omit

a correction factor −𝑛𝐶𝑇 lgΔ𝑆 arising from binning with bin width Δ𝑆 to make the

entropy of a continuous distribution well defined; however, as the same correction
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applies to both 𝐻 (S) and 𝐻 (S | W), these terms cancel out. Our estimator of

mutual information is therefore

𝐼 (S,W) = 𝐻 (S) − 𝐻 (S | W)

= lg 𝑒 ©«ln [𝑛𝐿𝑊 ] +
𝑛𝐶𝑇

2
ln

[
2𝜋𝑒𝜎2] − 1

𝑛𝐿𝑊

𝑛𝐿𝑊∑︁
𝑖=1

©«ln

𝑛𝐿𝑊∑︁
𝑗=1

𝑒
−

D𝑖 𝑗

2𝜎2

ª®¬ª®¬
− 𝑛𝐶𝑇

2
lg

[
2𝜋𝑒𝜎2]

= lg [𝑛𝐿𝑊 ] −
1
𝑛𝐿𝑊

𝑛𝐿𝑊∑︁
𝑖=1

lg

𝑛𝐿𝑊∑︁
𝑗=1

𝑒
−

D𝑖 𝑗

2𝜎2

 (3.40)

We use this expression to estimate mutual information in this paper. From the form,

it is clear that mutual information rewards large values of D𝑖 𝑗 , or distinct activation

patterns for different ligand inputs.

The mutual information framework above can be naturally extended to scenarios

not considered here. For example, not all ligand inputs might be equally likely

or of equal physiological significance. In this case, the map of ligand inputs to

activation profiles (i.e., the coding scheme) can separate the activation patterns of

more important ligand words at the expense of more similar activation patterns for

less important words. The mutual information framework can account for such

weighting of different inputs easily through unequal 𝑝 (W𝑖) above.

Finally, note that mutual information naturally rewards robustness, since mutual

information is higher when each activation pattern is realized over equally sized

regions of input space. For example, if an output S1 is only obtained for a sliver of

ligand input space while another output pattern S2 is realized over the rest of input

space, mutual information will be lower than if both outputs are realized over half

of input space.
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3.6.13 Analysis of Mutual Information

Libraries of Ligand Words and Cell Types

To provide the broadest information theoretic characterization, we first constructed

comprehensive libraries of ligand words, or input messages, and cell types, or

receptor expression profiles. Each ligand can independently take on three distinct

concentrations sampled logarithmically over three orders of magnitude, or 100 = 1,

101.5 ≈ 32, and 103 = 1,000. This library of 32 = 9 words is a representative

sampling of all possible ligand inputs. Similarly, we constructed a library of cell

types by varying each receptor level independently over two distinct concentration

levels {1, 100}. For a system with two type I receptor variants and two type II

receptor variants, this library comprises 22+2 = 16 possible cell types.

Systematic Sampling of Biochemical Parameters

In our model, a promiscuous ligand-receptor system is defined by its interaction

affinities 𝐾 and signaling activities 𝑒. To comprehensively sample all possible

biochemical parameters, each parameter was allowed to be either of {0.1, 1}, giving a

total of 216 = 65,536 qualitatively distinct parameter sets. We then evaluated mutual

information between the ligand words and the corresponding cell type activation

profiles for each possible choice of biochemical parameters (𝐾, 𝑒). The resulting

data characterize the combinatorial addressing power across a comprehensive set of

promiscuous ligand-receptor systems.

Random Sampling of Biochemical Parameters

To ensure that the grid-based sampling procedure did not introduce any artifacts,

we also repeated this analysis for an identical number of randomly generated pa-

rameter sets. Specifically, we chose each value independently and randomly with

a log-uniform distribution over
[
10−1.5, 1

]
. The resulting distribution of mutual

information values is shown in Figure 3.S6A.
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Choice of Variance

Computing mutual information requires choosing the Gaussian fluctuation or vari-

ance 𝜎2 for activation levels. For all results here, we choose 𝜎2 = 0.5, based on

testing a range of values. Very large or small choices of 𝜎 lead to the same value of

mutual information for all biochemical parameters, either low or high, respectively.

Intermediate choices of 𝜎 discriminate between different (𝐾, 𝑒). While the precise

value of mutual information depends on𝜎, different choices of𝜎 do not qualitatively

change the relative ordering of biochemical parameter sets.

3.6.14 Optimization of Mutual Information

These sampling procedures enable us to comprehensively analyze mutual informa-

tion across parameter space. However, they are likely to miss extremes of mutual

information. Therefore, we chose the 16 parameter sets from the systematic grid-

based sampling with the highest starting mutual information and further refined

(𝐾, 𝑒) to maximize mutual information, using least-squares optimization.

3.6.15 Addressability of Ligand Words

To determine which ligand words in the library activate distinct combinations of

cell types, we define the overall addressability of a set of ligand words by evaluating

all pairs. To compare a pair of ligand words, we compute the ratio of activation

levels for each cell type and take the separation 𝑟 as the largest such fold change

(inverted if needed, such that 𝑟 ≥ 1). If two ligand words have a separation of 5,

then at least one cell type’s activation is different by a factor of at least 5 in the

two conditions. We extend this pairwise separation to a set of 𝑁 ligand words by

forming a 𝑁 × 𝑁 addressability matrix, where element (𝑖, 𝑗) corresponds to the

pairwise separation of ligand words 𝑖 and 𝑗 . This matrix has 1s along the diagonal.

We define the smallest off-diagonal value, which represents the minimum pairwise
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separation between different ligand words, to be the overall addressability of that set

of 𝑁 ligand words.

3.6.16 Analysis of Archetypal Responses

Response Classes

We next analyzed the responses generated by the full library of cell types for

high-performing and low-performing parameter sets. As expected, parameter sets

giving rise to low mutual information showed relatively little diversity in responses

(Figure 3.6D); parameter sets that generated high mutual information showed distinct

activation patterns among cell types (Figure 3.6E). Furthermore, these response

types appeared qualitatively different and were similar to experimentally observed

patterns reported previously (Antebi et al., 2017). We therefore further analyzed the

presence of these archetypal responses across parameter sets.

Examples of these archetypes were generated by simulating responses to parame-

ters reflecting our understanding of the underlying design principles (Figure 3.S1).

These parameters are not specifically tuned, with all affinity and activity values set

to either 0.1 or 1 and all receptor levels fixed at 10−1.5. Thus, they reflect qualitative

differences rather than finely tuned quantitative ones. Briefly, ratiometric responses

feature reduction of activity of one ligand by the second, such that the overall re-

sponse approximates the ratio of the two concentrations. Competitive inhibition,

where the “denominator” competes for receptors needed to generate signaling ac-

tivity but produces inactive complexes, can produce such responses (Figure 3.S1A).

Additive responses approximate the sum of the two ligand concentrations, as the

ligands increase pathway activity either alone or together, and are readily generated

when both ligands activate receptors similarly (Figure 3.S1B). Imbalance detection

responses, where cells respond maximally to imbalances in the levels of the two

ligands, can arise if, for instance, competition between two ligands favors complexes
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with low signaling activity (Figure 3.S1C). Conversely, balance detection responses,

where cells respond maximally when both ligands are present at a specific ratio,

can be generated when ligand binding favors formation of high-activity signaling

complexes (Figure 3.S1D).

Phenotypical Parameters

We characterized the spectrum of responses as described previously (Antebi et al.,

2017). Briefly, we use the relative ligand strength (RLS), which represents the

ratio of activation produced by the weaker ligand to that produced by the stronger

ligand, and the ligand interference coefficient (LIC), which measures the degree to

which two ligands positively or negatively synergize. We computed these values

for each of the 16 responses of the cell type library for each set of biochemical

parameters and determined what response classes each fell into, adapting previously

described criteria (Antebi et al., 2017). Ratiometric responses were defined by

RLS < 0.2, additive responses by RLS > 0.8 and |LIC| < 0.05, imbalance responses

by RLS > 0.8 and LIC < −0.1, and balance responses by RLS > 0.8 and LIC > 0.1.

Responses outside these ranges were considered to be intermediate variants and were

not classified as a particular archetype.

Relationship with Mutual Information

Having identified the response classes represented for each set of biochemical pa-

rameters, we plotted the distribution of mutual information values associated with a

given number of response classes (Figure 3.6F).

3.6.17 Analysis of Parameter Correlations

Based on observations from parameter sets with high mutual information, we com-

puted two correlation measures for the biochemical parameters. Since each param-

eter could only take on two values, we transformed them to −1 and 1. In particular,
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we defined 𝐾′
𝑖 𝑗 𝑘

= −1 if 𝐾𝑖 𝑗 𝑘 = 0.1 (low) and 𝐾′
𝑖 𝑗 𝑘

= 1 if 𝐾𝑖 𝑗 𝑘 = 1 (high), with 𝑒′
𝑖 𝑗 𝑘

defined analogously. (Equivalently, we defined 𝐾′
𝑖 𝑗 𝑘

= 1+2 log𝐾𝑖 𝑗 𝑘 .) We computed

𝐻𝐾𝑒 =
∑
𝑖, 𝑗 ,𝑘 𝐾

′
𝑖 𝑗 𝑘
𝑒′
𝑖 𝑗 𝑘

to measure correlation between binding and signaling activity

for each signaling complex. We also computed 𝐻𝑒𝑒 =
∑
𝑗 ,𝑘 𝑒

′
1 𝑗 𝑘𝑒

′
2 𝑗 𝑘 to measure the

correlation between activities of the two signaling complexes with the same receptor

dimer but different ligands.

To analyze potential relationships between parameters, we calculated these two

correlation metrics for each of the 65,536 parameter sets (Methods 3.6.17). To

evaluate the association of these correlations with mutual information, parameter

sets were sorted by mutual information and binned into sets of 800 (apart from the

last bin, with a bin size of 736). These bins were then analyzed by computing the

mean correlation and the mean mutual information (Figures 3.6G–H).

3.6.18 Evolutionary Algorithm as a Generative Model

While the observed anticorrelations of 𝐾 and 𝑒 appear to be predictive of mutual

information, it is not clear if these relationships are sufficient to fully describe

the criteria for high addressing power and can thus serve as a design principle.

Therefore, we developed a generative algorithm that systematically evolves a given

set of parameters (𝐾, 𝑒) according to these principles and asked whether favoring

anticorrelations yields higher addressing power.

We first formed a fitness function 𝐹 (𝐾, 𝑒) = − (𝐻𝐾𝑒 + 𝐻𝑒𝑒), where 𝐻𝐾𝑒 and 𝐻𝑒𝑒

are as above. Intuitively, a choice of (𝐾, 𝑒) that has strong affinity-activity or

activity-activity anticorrelations would have high fitness. Our algorithm is then a

simple “evolutionary” algorithm that performs noisy gradient ascent in this fitness

landscape. Starting with a given (𝐾, 𝑒), each iteration involves choosing a random

element of(𝐾, 𝑒) and proposing a flip (changing it to high if currently low or vice
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versa). We then compute the resulting change in fitness Δ𝐹. If such a flip increases

fitness (Δ𝐹 > 0), we immediately implement it. If the proposed flip decreases fitness

(Δ𝐹 < 0), we accept it with a probability 𝑒𝑠Δ𝐹 , where 𝑠 represents the selection

pressure. Such moves towards lower fitness allow dynamics to escape local fitness

maxima; the frequency of such moves towards lower fitness is controlled by the

selection pressure 𝑠 (or, equivalently, temperature in Monte Carlo algorithms). We

repeat this process over many iterations and track the addressing power of the

resulting (𝐾, 𝑒) configuration.

We ran our algorithm on 2,000 randomly initialized choices of (𝐾, 𝑒). For each

initialization, we performed 200 iterations of the evolutionary algorithm and quan-

tified the addressing capacity of the final (𝐾, 𝑒) using mutual information. We then

visualized the resulting distribution of mutual information values (Figure 3.6K).

With 𝑠 = 0 (i.e., no selection for particular parameter relationships), there is a

wide histogram equivalent to random sampling of parameter space; indeed, only a

few parameter sets show substantial addressing power. However, with 𝑠 = 1 and

therefore selection for parameter anticorrelations, the resulting histogram is notably

shifted towards higher addressing power, despite starting from similar randomly

chosen initial conditions. Longer runs of the evolutionary algorithm did not change

the resulting histograms, indicating equilibration within 200 iterations.
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Chapter 4

Conclusion

4.1 Summary

In this work, we have developed a framework for modeling signaling pathways with

promiscuous ligand-receptor interactions and applied this approach to the BMP

pathway to better understand what features emerge from this promiscuous pathway

architecture. We first show that ligand-receptor multiplicity and promiscuity enable

cells to perform complex computations on ligand combinations and explore how

these computations arise at the level of ligand-receptor signaling complexes as well

as at the level of total pathway activity (Chapter 2). Building on these findings, we

then show how cell types expressing different receptor combinations can implement

distinct computations on the same ligand inputs, allowing ligand combinations to

selectively activate or “address” individual cell types or groups of cell types (Chapter

3). Taken together, these results provide a deeper systems-level understanding of

intercellular signaling pathways and their capabilities as communication systems.

4.2 Future Directions

This work illustrates how promiscuously interacting ligand and receptor variants can

enable increased computational complexity and greater communication specificity

compared to a seemingly simpler one-to-one architecture. While these findings pro-

vide a foundation for understanding how signaling pathways function in intercellular

communication, our results focus on the application of a simplified model of the

BMP pathway to a limited set of target behaviors. Further research to expand the

scope of this work will be valuable for better understanding the many intercellular
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signaling pathways with this promiscuous architecture. Here, we suggest possible

future directions toward this goal and discuss key considerations for these areas.

4.2.1 Improvements in Methodology

Our work leveraged a systematic optimization approach to comprehensively iden-

tify target behaviors and test which behavior(s) can be achieved. However, both

aspects—a “systematic” screening using an “optimization” method—have limita-

tions. We largely focused on analyzing responses to two ligands using a three-level

ligand discretization scheme, with 32 = 9 total ligand words. More generally, an-

alyzing 𝑛𝐿 ligands with a 𝑑-level ligand discretization scheme would involve 𝑑𝑛𝐿

ligand words. Determining which single-cell response functions are achievable

would require testing on the order of 2𝑑𝑛𝐿 possible binary targets, and optimizing

for multi-cell addressing schemes would require even larger numbers, given that

each cell type considered will have its own output. While these numbers can be

modestly reduced (such as by eliminating targets that are invariant to ligand rela-

beling), it is clear that the number of targets increases superexponentially as more

complex applications are considered, such as higher-resolution ligand discretization

or increased ligand multiplicity. As a concrete example, our analysis of all possible

single-cell responses to two ligands with a three-level ligand discretization has a

baseline of 29 = 512 possible targets. Increasing to a four-level ligand discretization

would require 242
= 216 = 65,536 targets, and increasing to three ligands would

create an immense set of 233
= 227 = 134,217,728 targets. Thus, systematically

enumerating all possible outputs rapidly becomes intractable as larger problems are

studied, given the superexponential growth in possible targets.

In addition to increasing the number of targets to consider, such applications gener-

ally make each optimization problem more challenging as well, since the number of

variables to optimize—one set of affinity and activity parameters for the system as
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well as one set of receptor expression levels for every cell type considered—typically

increases concurrently. While our optimization approach successfully identified pa-

rameters for most response functions and addressing schemes that reproduced the

target with high fidelity, the optimization problem is not guaranteed to yield global

optima. We addressed this issue by performing repeated trials with many different

random initializations, which should allow for better exploration of local optima.

However, we observed that high-quality solutions were identified with decreasing

frequency as the number of parameters under consideration increased, consistent

with the fact that the parameter space to be explored expands exponentially with

additional parameters. As such, it is challenging to assess whether more complex

targets truly cannot be achieved or simply have not been identified with optimization.

Given these challenges, improvements in the optimization algorithm would be valu-

able in approaching further extensions of this work. Better optimization methods

could increase the quality and/or speed of solutions. For example, methods that

more accurately estimate global optima will allow for better solutions and increase

our ability to determine which targets can or cannot be achieved, while methods

that more efficiently explore parameter space or more frequently identify quality

solutions will allow for faster solutions and enable us to apply this approach to more

complex applications that may have previously been computationally intractable.

Apart from pursuing improvements in the optimization method, developing new ap-

proaches entirely could allow for new avenues of study. For instance, incorporating

an information theoretic approach enabled us to analyze information capacity across

a comprehensive enumeration of parameter sets, although analyzing larger systems

remained challenging due to the exponential increase in the number of parameter

sets to consider. Developing additional methods could expand the questions we can

answer about the communication capabilities of signaling pathways. Possibilities

for new ways to approach questions of interest are discussed further below.
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4.2.2 Spectrum of Computations

In this work, we performed a systematic optimization of all possible 3 × 3 binary

response functions and revealed a broad range of achievable computations, including

multimodal functions that have not previously been described (Figure 2.6). Given

these diverse responses, testing 3 × 3 targets may not be sufficient to describe

all possible functions, and further analysis could reveal additional response types.

As a natural extension of our approach, we could use higher-resolution targets to

investigate the existence of other types of functions. While increasing the number

of levels of ligand discretization may yield an impractical number of targets, we

could selectively identify a smaller subset to focus on; for example, we could filter

out those that are essentially equivalent to targets from the low-resolution screen.

However, other approaches could provide a complementary way to explore the

spectrum of possible response functions. For example, we could randomly generate

many different parameter sets, simulate their responses, and classify the results. This

classification could be guided by specific quantitative metrics computed for each

response (such as the phenotypical parameters of RLS and LIC used in this work),

which would allow us to readily identify responses with particular features of interest,

or similarity to the response types we have already identified, which would enable us

to use our existing data to screen for responses that are more likely to represent new

functions. We could also combine unsupervised learning methods such as clustering,

principal component analysis (PCA), 𝑡-distributed stochastic neighbor embedding

(t-SNE), and autoencoders to automatically learn the structure of response types

without further input. These techniques could enhance our understanding of the full

spectrum of computations that can be achieved with two ligands.

While our analysis focused exclusively on responses to pairs of ligands, the BMP

pathway includes ten or more ligand variants in mammals, and combinations of

three or more ligands have been identified in various biological contexts. As such,
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analyzing how response complexity increases with ligand multiplicity will provide

insight into the potential computations achievable in vivo. Since additional receptor

variants can increase the types of possible responses, we expect that increased

ligand multiplicity will likewise enable more complex computations. The number of

possible three-ligand functions at the same three-level ligand discretization scheme

is vastly larger than the number of two-ligand functions and is computationally

impractical to analyze with our current approach, and refinement of the existing

optimization algorithm is unlikely to provide enough improvement in performance

to allow scaling up to a comprehensive screen. As such, it will likely be most

effective to start from a simulation-based approach, or simulating many responses

from randomly generated parameter sets and using unsupervised learning methods

to better understand the structure of possible response types. As with our two-ligand

systems, exploring the possible responses at the level of signaling complexes first

should then provide a better understanding of how they integrate to generate the

full spectrum of computations at the level of total pathway activity. Once different

response types have been identified, we could then use optimization to identify

additional functions of particular interest. Together, these results will enable us to

map the possible computations on ligand inputs and better understand the complexity

of BMP signaling in vivo, where multiple ligands are often expressed in combination.

4.2.3 Scalability of Addressing

We have shown that a fly-like model with two type I and two type II receptor subunits

allows addressing cell types or groups of cell types with high specificity, flexibility,

and robustness (Figures 3.3 and 3.6). A mammalian-like model with four type I

and three type II receptor subunits further expanded the capacity for orthogonal

addressing, which should likewise translate into higher addressing capacity overall.

Quantifying this increase in information could be done by extending our analysis of



135

mutual information to the mammalian-like model and comparing the distributions

of mutual information across parameter sets.

A complete understanding of how addressing scales with pathway complexity in-

volves analyzing different numbers of variants for not only receptors but also ligands.

The complexity of possible computations is likely to grow with more ligand variants,

which would allow for more types of responses to be used in any given addressing

system. However, many of the high-quality addressing systems we identified did

not require diverse response types but instead incorporated multiple responses of

the same type, such as ratiometric responses with different ligand preferences or

sensitivities (Figure 3.S2). Even if computational complexity does not increase

with the number of ligands, exponential growth in the space of ligand combinations

still allows for higher bandwidth, due to the increased volumetric space for ligand

combinations to differentially activate cell types. Initial analysis reveals that three-

ligand systems can indeed expand on the capabilities of two-ligand systems—for

example, increasing the number of orthogonal channels—by incorporating a small

number of response classes that are used repeatedly with varying ligand preferences

or sensitivities (Figure 4.1). However, identification of high-capacity addressing

systems with our optimization approach is technically challenging. Increased ligand

multiplicity yields an exponential increase in the number of ligand combinations and

responses to consider, precluding a systematic screen; concurrently, the higher num-

ber of parameters to optimize reduces the quality and speed of optimization. New

approaches circumventing these challenges would be valuable for analyzing how

addressing capacity scales. For example, we could accept additional assumptions in

the model, such that the model can be sufficiently simplified to allow for mathemat-

ically derived solutions (rather than computationally obtained ones). Developing

improved or new approaches will allow us to mathematically and computationally

describe how addressing scales with increasing numbers of pathway components.



136

Figure 4.1: Addressing systems with three ligand variants can provide greater
bandwidth than two-ligand systems.

(A) In systems with three ligands, responses can be visualized as cubes.

(B) For an example addressing system achieving ten orthogonal channels, the full
responses of each cell type are shown, following the representation depicted
in (A).

To experimentally evaluate the anticipated increase in addressing capacity between

the fly and mammalian BMP systems, we could analyze a library of Drosophila

cell types with different receptor profiles, interrogate their responses to different

ligand pairs, and compare the results with the subset addressing profiles identified

in mammalian cells (Figure 3.5). These analyses can also provide a different

perspective on the evolutionary history of the BMP pathway; increasing organism



137

complexity has generally been associated with higher numbers of variants of pathway

components, which may also enable greater capacity for addressing.

4.2.4 Generalizability to Biological Contexts

Ultimately, our goal is to develop a framework for addressing that can be used to un-

derstand organismal physiology and facilitate synthetic or therapeutic applications.

Our results have shown that addressing can be realized in vitro (Figure 3.5), and we

have preliminary evidence suggesting that the receptor profiles allowing for in vitro

addressing can also be identified in vivo (Table 3.S1). However, it remains unclear

whether and how addressing is used in vivo. Further work in this direction could

include systematically analyzing receptor profiles of known cell types, using the

rapidly growing atlases of single-cell expression data. Ideally, we would be able to

use these known receptor expression profiles alongside fitted model parameters to

be able to predict and design ligand combinations with desired cell type specificity.

This ability to address signals to specific cell types would have broad utility in both

synthetic and clinical applications.

Generalizing our modeling framework to biological applications will require vali-

dated estimates of model parameters that can capture the behavior of known BMP

ligands and receptors. We have identified various parameter sets that are consistent

with responses to pairs of BMP ligands in a comprehensive experimental screen.

While improving the parameter fitting process could provide better estimates of the

model parameters, we can also refine the possibilities by evaluating the predictive

power of these parameter sets. We could simulate the responses to unmeasured

ligand combinations predicted by each parameter set, identify those combinations

that best differentiate between the parameter sets, and experimentally measure the

responses to the chosen ligand combinations. Similarly, we can use the fitted pa-

rameters to predict responses of a new cell type with known receptor expression
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profile, measure the responses experimentally, and validate or refine model param-

eters accordingly.

Alternatively, we could aim to directly measure the parameter values. One approach

would be to generate cell lines expressing single receptor subunits and then measure

the response of every type I and type II receptor pair with different ligands, thus

providing an estimate for the affinity and activity parameters of each signaling

complex. Identifying model parameters with full predictive power for BMP pathway

responses would enable us to use the model to identify ligand combinations and cell

types that exhibit desired addressing behaviors.

Our model focuses on a relatively limited aspect of BMP signaling, describing only

ligand-receptor binding and activation of second messenger. As such, it may be

impossible to fully predict cellular responses to BMP signaling without incorporat-

ing other biochemical processes that we have omitted. Including other mechanisms

in our model will not only enhance the predictive power of the model but also

reveal the ways in which those features modulate the function of the pathway as a

communication system.

This work has focused on the capabilities of the BMP pathway, but multiple sig-

naling pathways that are likewise of great biological and clinical importance also

exhibit a promiscuous pathway architecture. The exact molecular details of each

pathway vary, and these variations may result in different types of computations and

addressing systems across pathways. Translating our modeling framework to other

pathways and characterizing their responses experimentally will provide a broader

understanding of how addressing is achieved in promiscuous signaling pathways as

well as what unique capabilities are provided by each pathway.
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Appendix A

Terminology

Combinatorial addressing involves mappings between combinations of ligands and
responses of cell types defined by their receptor subunit expression. Here, we define
some of the terminology introduced in this work to describe these relationships
between ligand inputs and cell type responses.

Ligand word
A set of specific concentration values for each ligand variant in a combination.
For example, a concentration of 10 µM for ligand 1 and 100 µM for ligand 2
constitutes a ligand word (10 µM, 100 µM).

Cell type
A set of specific receptor subunit expression levels. For example, a cell
expressing receptor subunits 1 and 3 would represent a different cell type than
a cell expressing subunits 1, 2, and 4 or a cell expressing more subunit 1 and
less subunit 3.

Channel
A set of one or more cell types that can be selectively activated (without
activating other cell types) by some ligand word. For example, if ligand word
1 activates cell type A, while ligand word 2 activates cell types B and C, then
“A” and “BC” constitute distinct channels.

Bandwidth
The number of unique channels in a given system. As an example, suppose
that ligand words 1 and 2 both activate only cell type A, while ligand word 3
activates cell type B. This system would have a bandwidth of two channels,
as ligand words 1 and 2 yield the same activation profile.

Combinatorial addressing (or simply addressing)
A mapping between ligand words and the corresponding cell type(s) activated
by those words.

Orthogonal addressing
A particular form of combinatorial addressing in which each ligand word
activates a single, unique cell type. An example of three-channel orthogonal
addressing is shown in Figure 3.2B.
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Addressing repertoire
The combinations of cell types (each combination representing a channel) that
can be activated across all possible ligand words for a given set of cell types
and biochemical parameters. Examples of addressing repertoires are shown
with the Venn diagrams in Figure 3.4A.

The next two terms define quantitative metrics used in this paper.

Distinguishability (Figures 3.2, 3.3, and 3.4; Methods 3.6.5)
A measure of the specificity of a given addressing scheme, defined as the
ratio of the lowest on-target activity to the highest off-target activity, or
(lowest on-target activity)/(highest off-target activity). As an example, con-
sider a system where ligand word 1 activates on-target cell type A and off-target
cell type B at levels of 0.8 and 0.1 units, respectively, while ligand word 2
activates off-target cell type A and on-target cell type B at levels of 0.4 and 0.9.
The distinguishability for orthogonal addressing of “A” and “B” would then
be 0.8/0.4 = 2. As another example, if cell types A and B are both on-target
for ligand word 2, addressing “A” and “AB” would have a distinguishability
of 0.4/0.1 = 4.

Addressability (Figure 3.6; Methods 3.6.15)
A measure of the diversity of the addressing repertoire for a set of ligand
words. The separation of two ligand words is first quantified as the largest
fold change of their resulting activation levels in any cell type. Addressability
is then defined as the separation of the least separable pair of ligand words.
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